
*ls y3

THE STRENGTH OF SLENDER BRICK WALL5

by

D.C. Payne, B. E. (Hons. )

A Thesis pnesented to the Faculty of Engineering
of the University, s¡ Adelaide fon the

Degree of Docton of Philosophy

Civi I Engineening Depantment

University of Adelaide

Januany, 1982.



CONTENTS

LIST OF FIGURES

LIST OF TABLES

SUMMARY

DECLARAT I ON

ACKNOWLEDGEMENTS

PRINCIPAL NOTATION

CHAP'I-ER 1 INTRODUCT ION

CHAPTER 2 STRUCTUF]AL BRiCKWORK _ A SYNOPSIS

The Development ot Structunal Bnickwork
Load Tnansmission in Structunal Bnickwonk
A Study of a Structunal Bnickwork Bu i lding
Summany of the Pninciples of Stnuctunal Brickwonk
Stabilìty and Pnognessive Col lapse of Structunal Bnickwoþk
The Behaviour- of Brickwork Unden Seismic Load
Rei rrfor-ced Mason ry
Economics of Structural Bnickwork

CHAPTER 3 LITERATURË REVIEW

C lay Bnicks
Masonny Montan
Br ick-Montan Combination - Small Assemblages

I ntroduction
Compnessive stneng Èh

Axial and f lexural tensile stnength across tlre
bed joi n ts

3.3.4 Flexura! strength acnoss the penpends
3.3.5 Elastic pnoperties of small assemblages

3.4 Arralysis of Bnick Walls and Panels
Analysis of columns witlr no tensile strength
Companison of experiments with no-tension matenia!

column theony
3.4.3 Theon}z of panels simply-supported on four sides
3.4.3 Experiments on panels unden vertical load
3.4.4 Summany

CHAPTER 4 THË ANALYSIS OF BRICKVúORK VVALLS IN ONE-IVAY
BEND i NG

I ntroduct ion
The Stiffness and Geornetric Pnoperties of Pantially-

cnackecl Bnicl<wonk Wal ls
Load-def iection Relationships ancl Equations of

Equ i lii:r ium

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

ft

Page

ix

xi

xiii

xiv

XV

1

5

5
r0
13
15
16
18
20
20

,.,

23
29
44
44
44

108
112
119
119

121

121

121

141

3.1
3.2
3.3

4.1
4.2

3.3.1
3. 3.2
3.3.3

3.1r. 1

3.4.2

66
72
B3
96
96

4.3



Solution Pnocedune
Results of the Numenical Method
Summany and Conclusions

CHAPTER 5 EXPERIMENTS ON WALLS IN ONE-WAY BENDING

4.4
4.5
4.6

nat io

¡ll

Page

149
157
166

170

170

170

172
185
188
188
196

228

228
229
229
229
236
250

260
260
263
267
269
273
275
278

280

2eo

280
292
292
293
305
309
322

324

325

326

facton, a

.2 An effective elastic moc'lulus fon uncnacked bnick-
work unden eccentnic comPness¡on

3 The stiffness of pantially-cr acked bnickwonk
Experi men ts
1 Tests on a slender steel block column
2 Tests on br ickwonk walls

THE ANALYSIS OF BRICKWORK PANELS IN TWO-WAY

dEt¡o tNc

I ntnoduct ion
The Stiffness of Partiaily-cnacked br ickrvonk panels
6.2.1 An analytical element fon panels
6.2.2 Bending nonmal to lhe bedjoints
6.2,3 Ben<Jing parallel to the bedjoints
6.2.4 Tonsion in bnickwonk
Equation of Equilibnium and Load-def lection nelationships

fon a plate of varYing thickness
The equation of equilibrium
Consti tutive nel ationshiPs
Finite diffenence fonmulation
Boundary conditions

Solution Procedure
Results of the Numenical Method
Summany and Conclusions

CHAPTER 7 EXPER IME-NTS ON BR ICKWORK PANELS

5.1 Stiffness ExPeriments
5.1 .1 Expenimental venif ication of cunvatune

5.2

CHAPTER 6

6.3

7.3

I ntroduction
Bnickwork Panels subjected to Bending Panallel

Bed joi n ts
A Simply-supponted Panel in Two-way Bending
7.3.1 lntroduction
7.3.2 Experimental aPPanatus
7.3.3 Bnickwonk material propenties
7.3.4 Panel exPeniment resu lts
7. 3. 5 Surnmary

CHAPTER 8

5.1

5.1
Wal
5.2
5.2

6.1
6.2

6.4
6.5
6.6

7.1
7.2

6.3.1
6.3.2
6.3.3
6.3.4

to the

COMPARISONS OF THEORETICAL RËSULTS WITH
DES IGN CI]DE SPEC ¡ F I CAT I ONS

Bnickwonk Walls -- PROGRÀM P¡ERl
8.1.1 Walls loaded with equal end eccentricities in

one-way bending

8.1



Walls loaded with unequal end
Effect of in it ia I imPenf ect ions
Summany
Bnick-on-edge pantition wa I ls

8.2 Bnickwonk Panels in, Two-way Bending
8.2.1 Panels loaded with equal load

1.2
1.3
1.4
1.5

I
I
I
I

eccentnicities

_ PROGRAM PANEL1
eccentnicities

(4.2') )

Eccen tn i c

IV

Page

330
333
336
338
338
343

346

351

369

407

412

447

456

476

CHAPTER 9 SUMMARY AND RECOMMENDATIONS

APPEND I CES

B I BL I OGRAPH Y

355

A

B

c

D

The Brick Cunvatune Function, c (Equation

An ldeal ized
Compnession

Non-linean Montan Subject to

Blickwonk Walls in One-way Bencling -
PROGRAM PIERI

Brickwork Prism Tests and Non-linean Pnopenties
of Mòrtan (Section 5.2.2.4(b) )

Thnee-dimensional Finite Element PROGRAM MFYDCP

Denivation of Panel Equations

Bnickwork Panels in Two-way Bending -
PROGRAM PANELl

E

F

G



Page

2.1
2.2
2.3
2.4
2.5
2.6
2.7

F I GURE

3.1

3.4

3.14
3.15
3.16
3.17
3. 18
3.19
3.20
3.21

3.22

3.25

3.26

3.27

LIST OF FIGURES

Conventional Load-bear ing Bnickwot k
Stnuctural Bnickwork - Wall Arnangement
ln-plane Shear Caused b¡z Latenal Loads
stnesses in wall Due to ventical and Lateral Loads
Assumed Cantileven Action of High-nise Brickwonk Stnucture
Floon Plan of Residential Blocks at the University of Essex
Quetta Borrd

Relationsh ip between E last ic Modu I us and compnession
Stnength

Stness-stnain Curve fon Bnick
Montan Composition, Compressive Strength and lVaten

Retent iv i ty
Relationship between Mortan Composition, Avenage Com-

preFsive Strength and Waten Retentivity
Montan Mixes for Brickwonk
Stness-stnain Diagrams fon Mortars
Stness-strain Cunve for Montan
Stress-stnain and Poisson's Ratio-stnain fon Montan
Compression Tests on Bnickwonk Pnisms
Relationships between Montar stnength and Elastic Modulus
Montan cube stnength Related to Dynamic Elastic Modulus
Strength Connection Factons fon Brickwonk Prisms
Relationship between Bnick Stnength and Stnength of

Bnickwonk Prisms
Stress Distr ibr-ltion in a Brickwork Pnism
Values of Nonuniformity Coefficient, U

Fai lure Theory fon Brickwonk
Fai lure Envelope for Bnicks
Failune Envelope fon Br ick fvlatenial
Graphical solution f or Br ickwonk Prism compnessive strength
Brick and Montan Stnesses due to Applied Compnessive Load
Theoretical Failur-e Envelope Relating Tensile and com-

pnessive Stresses in Bnick at Failure
vaniation of Brickwonk Pnism strength with lr4ortan Joint

Th ickness
Relationship between Mortan Sti ength and cuning Time
Effect of waten-cement Ratio on Terrsile Borld and Montar

Compressive Stnength
Relationships between Tensile Bond stnength and Bnick

Suction (l.R.A.)
Relationship between Br-ickwork shear Stnength and Ventical

Precomp ress i on
Failune Relationships fon combinecl shear and Nonmal com-

pression along the Bedjcint
Failune Modes fon Model Brickwork
Mechanism of Failure fon Brickwot k subjected to Horizontal

Bend i ng
Strength Ratio Related 'to Bedioint Bond Str ength
Bending Tests on Model Br ickwonk Prisms
Bending Tests on Full-scale Br ickwonk Panels

7
9
9

12
12
14
14

35
36
39
39
40
40
42
42
47

47
53
<?

55
58
5B
59
6l

6'¡

69

75

'7 c,

77

77
81
86
B6

3.2
3.3

2B
28

35

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

64
6423

24
3
3

2B
29

3
3

3. 30
3. 31

3. 32

69



F I GURE

3.33
3.34
3.3.5
3. 36
3. 37
3.38
3. 39
3.40
3.41
3.42

3.43
3.44
3.45
3.46

4.1

4.9

4.10

5.3

5.4

Bending Tests on Model Bnickv¡onk Panels
Stness-stnain Cunves for Bnick and Bnickwork Fnisms
Stress-strain Relationships fon Bnickv¿onk Piens
Aver-age Stness-stnain Cunves in Shean for Bnickwonk Panels
A Column Without Tensile Strength
Assumed Stress-stnain Relationship for Non-linear Matenial
Load-deflection cunves fon columns with Eccentnic Load
Modes of Final Collapse
Column Def lection lmmediately Pnion to Collapse
Angles of Rotation of , and Edge Stnesses in, a Wall hiaving

no Tensile Stnength
Load Tests on Slenden Walls
Plate Subjected to Unifonm Compnession
Buckling Loads of a Plate simply-supponted on Four sides
Simp ly-supponted P I ate Sub jected to Un ifonm Moments on

Two Opposite Sides

Cracking on a Bedjoint Caused
Ventical Load Resultant

Analysis of Cnacked Brickwor^k
Flexunal Stiffness Cunves
Relat ionsh ip between Cunvatune
Relat ionsh ip between Cunvatune

by the Position of the

Rat io
Stress Distnibution fon Loa
Montan Stness Distributions
Stress-stnai n Rel ationshiP

Bedjoi n t
Stress and Stnain Distnibutions

Montan
Stness and Stnain Distnibution

Montan
Bnickwonk Curvatunes

fon Cracked Non-Iinear

fon Uncracked Non-linean

2 F_ffeclive section Depth fon No-tension Matenial column
3 Column Loads, Reactíons and Displacements
4 Wall Load and SuPPont Conditions
5 Finite Difference Subdivision
6 Wali Load-displacement Curves (PROGRAM PIERI)

Test fon Stnain Pnof iles in Steel Blocks
Steel Block Cornpnessed w¡th Load Eccentr^icity d/5

(Nominal)
Steel Block Compnessed with Load Eccentnicity d/3.5

(Nominal)
Steel Block Compressed with Load Eccentricity d/3

(Nominal)
steel Block column Showing Martens Minnon Extensometer
Test Appanatus fon Detenminíng Bnickwonk Elastic Modulus
Bnick and Mortan Prisms
Loacl-stnain Curves fon Brick arr d Mortan Pnisms
Steel Block Column Loaded lnside Clean Acrylic Tube
Load Tests on Pin-end.Steel Block Column
Load Tests on Fixed Base Steel Block Column
Bnickwonk Walls

Ratio and
Ratio and

Load EccentnicitY
Bnick Aspect

Vr

Page

87
90
9o
94
97
97

102
102
104

107
111
114
114

116

122
124
127
129

130
133
134

134

136

4.6
4.7
4.8

5.1
5.2

4.2
4.3
4.4
4.5

4
4
4
4
4
4

5.5
5.6
5.7
5.8
5.9
5.10

d Eccentnicity d/3
fon Load EccentricitY d/3

fon an Axial ly-loadetJ Montan

136
139
142
147
150
151

1 60-1 63

171

173

174

175
176
179
182
183
190
192
194
198

5.11
5.12



F I GURE

5.13
5.14
5. 15

5. 16

5.17

5.18

5.19

5.20

5.21

5.22
5.23
5.24
5.25
5.26
5.27
5.28

6. 10
6.1 1

6.12
6.13
6.14
6.15
6. 16
6 .17
6.18
6. 19

6.20

Gnading Cunve fon Sand in Bnickwork Walls
1416mm High Wall Tests
l416mm Wall Loaded Eccentnically at the Top (Base Fixed

Against Rotation)
Load Displacement Relationships fon 1416mm Height Fixed

Base Wa I ls (Wa t I No. 2')

Load-rotation Relationship fon 14'l6mm High Wall with
Fixed Base

lnitial Displacement Profiles fon 14l6mm Walls with Fixed
Base; Top Load EccentnicitY d/6

lnitial Displacement Pnofiles for- 1416mm Walls with Fixed
Base; Top Load EccentnicitY d/3

lnitial Displacement Pnof iles fon 2714mm Walls with Fixed
Base; Top Load EccentnicitY d/6

lnitial Displacement Pnofiles fon 2714mm V/alls with Fixed
Base; Top Load EccentricitY d/3

Ventical Splitting Failure (Wall 6)
Spalling Failure (Walt 8)
Spalling Failune (watt 4j
2714mm Walls Loaded at an Eccentnicity of
2?14mm Wa lls Loadecl at an Eccentnicity of
1416mm Walls Loaded at an Eccentnicity of
1416mm Walls Loaded at an Eccentricity of

Bnickwonk Panel Module
Finite Element Details
Bedjoint Cnacking in Panel Module
Panel lviodulle Subjected to Bencling Nonmal to the
Brickrryor k Dimensions
Bending of Panel Module Parallel to ttre Bedjoints

Bed join ts

Relative Flexunal Stiffness for Vanious Bnick-Mortar
Modu lan Rat ios

Simulated Flexunal Cracking at tl-re Perpend Joint
Distribution of Flexunal Stnesses on X-Y Planes fot

Bnickwonk with Cnacking on Penpends Only
Possible combinatíons of Penpend and Bedjoint cracking
Panel Module Subjected to Pure Twist
Subdivision of Brickwork into Panel Modules
Vaniation of Twisting Momen!s with Modulan Ratio
Functions F1 and F2
Varying Thickness Plate Element
Finite Diffenence Mesh
Panel Loading Details
Finite Difference Mesh for Simply-supported Panel
Quadnatic Extnapolation fon DisplaceÍlent of Connen

Fictitious Node
Buckling Failune Loads of Cnacked Bnickwork Panels

Small Panel Detaiis
Moment-cunvatune Relationship fon Uncnacked Br ickwork

Panel s
Moment-cunvatune Relatíonships fon SmalI Panel
Bnickwork Panel Failure Mode
Full-scale Bnickwonk Panel Experiment
Method of Laying Bnîcks in Panel

d/6
d/3
d/6
d/3

vll

Page

200
203

206

207

208

210

211

213

214
218
218
219
221
222
223
224

230
232
233
234
237
237

242

243-247
249
õÉ.4LJA

254
256
256
261
268
268
271

271
277

284-285

286
288
291

294-297
300

6.1
6.2
6.3
6.4
6.5
6.6
6.7

239

6.8
6.9

7.1
7.2

7.3
7.4
-É.
7.6



F I GURE

vtlt

Page

301
303
304
306
sl0

312
314
316
317

31 8-31 9
319

327

332

334

335
337
339
341

344

354

356

356
360
360
364
364

370

408
408

414
415

448

7
7
7
7
7
7

7
7
7
7
7

Gnouting of Brickwor^k into Top Edge Channels
Jack Calibration Curves
Positions of Gauges on Brickwonk Panel (East Elevation)
lnstnumentation Block Díagram
Test fon Brickwonk Bond Strength
Companison between Expenimental and Calculated Latenal

D isp I acemen ts
Load - Centnal Displacement Curves fon Brickwonk Panel
Latenal Displacements of Bnickwor k Panel
Cnack Pattenns in Bnickwonk Panel
Latenal Displacement Contouns Pnion to Failune
Load Displacement Contouns fon Load 17BN/mm

Failune Loads fon Walls Loaded at Equal End Eccentnicities
Failure Loads of Walls Loaded Eccentrically at the Top

and Concentnical ly at the Base
Failune Loads of Fixed Base Brick-on-f lat Walls Loaded

Eccçntnically at the Top
Failure Loads of Walls Loaded Eccentrically on Opposite

Sides of the Wall Centneline
Failune Loads of Wails with lnitial lmpenfections
Failune Loads of Brick-on-edge Partition Walls
Modes of Failur-e for a Bnickwonk Panel
Failune Loads fon Panels Simply-supponted on Four Sides

( Brick-on-edge Construction )

4.1 Scale Model of Function, q

8.1 Stress-stnain Relationship fon Non-linear Mortan (eea;oint
Cnacked )

Stness-stnain Relationship fon Non-línear Mortan (aea¡oint
Uncracked )

Partially Cnacked Montan Jc¡int (¡lon-linear Montan)
Pantially Cnacked Montan Joint (Linean Mortar)
Uncracked Montar Joint (Linean Mortar)
Uncnacked Montan Joint (Non-linean fv'lor-tar)

8.2

c Cases which may be Solved l>y using PRtf,GRAM PIERI

Bnickv¡onk Prism Subject to Eccentnic Load
Failur e of Bnickwonk Pnisms in Axial Compnession

7
B

9
10
11

12

13
14
r5
l6
17

8.1
8.2

8.3

8.4

8.5
8.6
8.7
8.8

8.3
8.4
8.5
8.6

D.1
D.2

E.1
8.2

Side Elevation of Panel
End Elevation of Panel

Modu I e
Modu I e

F.1 Varying Thickness Plate Element

Simply-supponted Brickwonk
for PROGRAM PANELI

G.l Panel showing Load Conditions
457



3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

TABLE

4.5

4.6

4.7

5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.r6
5. r7
5.18

6.1

6.2

LIST OF TABLES

Mortar Mix Propontions
Optimum Sand Particle-size Distribution
Montan Water'-to-Cement Ratios
Brick and Mortar Combinations
Bond Str^ength in Brickwonk Pnisms
E lastic Modu lus fon Bend ing Acnoss the Bedjoints
Elastic Modulus for Bending Across the Penpends
Column Failune Load Panametens fon Equation (3'64)
Moments arrd Deflections for a simply-supponted Plate

F lexuna I St iff ness Va I ues
Cunvature Ratío, s
Wall Pr oper ties fon PROGRAM PIERI
Buckling Failune Loads fon Pin-end walls of Linean

,Ma tenia I

Buckling Failur e Loads fon Fixed Base walls of Linean
Ma tenia I

Buckling Faílune Loads fon Pin-end walls of Non-linean
Matenial

check on Failune Loads of Bnickwork walls computed by
Diffenent Vensions of PROGRAM P lERl

Comparison of Curvatune Factons, c
Exper'imental Elastic Modulus fon Bnickwonk
Calculated Elastic Modulus Values fon Bnickwonk
Elastic Modulus \/alues fon Br^ick Pnisms
Elastic Modulus Values for Mortan Prisms
Relative stiffness of cnacked and uncnacked Bnickv.¿ork

P nisms
Column End Conditions and Loa"d Eccentnicities
Buckling Failur-e Loads and Displacements of Pin-end

Colulmn
Buckling Failune Loads fon Fixed Base Columns
Bnickwor'k Wall Dimensions
Bnick E lastic Modu lus
Montar E I ast ic Modu I us
Bnickwor^k Elastic Modulus
Changes in Slope at Top of 1416mm High Walls
Positions of Dial Gauges fon Tall (2?14mm) Watls
Changes in Slope at Top of 2714mm High Walls
Wall Failune Loads and Failure Modes
Expenimental and Theor etical Failure Loads fon Bnick-

work Wa I ls

Stiffness of Bnickwonk Subject to Bending
Bedjoints

Flexural Stiffness of Bnickwork Subject to
Pana I le I to the Bed joi n ts

Flexunal Stiffness of' Bnickwonk
Flexunal Stiffness of Bnickwonk

Nonmal to the

IX

Page

30
32
34
52
67
85
B8
99

117

128
12,8
158

165

165

166

167

177
181
184
186
187

188
191

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5"5
5.6

Ê.,
5.8

6.3
6.4

193
195
197
201
201
202
209
212
215
217

225

235

240
241
248

Bending



6.5
6.6
6.2
6.8

X

Page

255
258
260
278

TABLE

7.10
7.11

8.1

8.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Panel Module Subjected to Pune Twist
Tonsional Stiffness of Cnacked Bnickwork
Tonsional Stiffness of Cnacked Bnickwonk
Buckling Loads of Brickwonk Panels and Walls

Bnick Elastic Modulus
Montan Elastic Modulus
Bnickwork ComPnessive Stnength
Ratio of Applied Moment: Cunvature in Honizontal Plane

Relative Honizontal Stiffness of Bnickwonk Panel
Stnengths of Bnickwonk Panels in Honizontal Bending
Bnick Elastic Modulus
Montar Elastic Modulus
Br^ickwonk Elastic Modulus
Bnickwor k Pnism Compnessive Stnength
Bnickwonk Flexural Bond Strength

Material Pnoperties fon Parametnic Study on Bnickwor-k
Walls

Wall Support and Loading Conditions

Coeffícients fon Function
Coefficients fon Function

Compnession Failure of Brickwonk Pnisms
Constants in Equation (8.1) fon Vanious Exponents' n

2,81

282
282
287
289
290
307
307
308
308
309

4.1
A.2

D.1
D.2

o1

oz

325
331

351
352

407
409



XI

SUMMARY

Brickwonk is corrmon I y used as a load-bearing component i n both

low-nise domestic buildings and high-nise structunes' Analytical

investigations conducted in the past on the stnength of bnick walls

have been based on the assumptions that a bnickwork wall on panel

behaves as a column negardless of any ventical edge suppont conditions

and that no tension stnesses can exist in the assumed column ' These'

simplifying assumptions do not nef lect the actual behavioun of neal

bnickwor k and consequently have led to conservative pnecl ictions for

wa I I strengths.

The wonk pnesented in this thesis has approached mone closely

the neal behaviour- of brickwonk by observing that even fon a stness

distnibution in which thene ane no tensile stnesses at the bnick-montan

interfaces, the stnesses in the br icks themselves can be significant'

Fon walls supported only at tlre top and bottom, equations are denived

fon an equivalent column of varying thickness by using a twcr-

dimensional finite element method to calculate the bending stiffness

of a brick-mortan mocJule in which cnacking may occrjl at the br ick-

montan intenfaces. lt is assumed that the brick matenial is linearly

elastic and the montar is eithen linear ly elastic or non-linean witlr

a specified stness-stnain relationship. For panels supponted on four

sides, equations ane denived fon an equivalent plate of vaniable thick-

ness in which both the brick and mortan matenia,l s are assumed to

be lineanly elastic. The plate stiffness pnopenties ane detenmined by

using a thnee-d!mensional f inite element method to analyse a br ickrvonl<

module in which cr acking may occun at the horizontal and ventical

bnick-montan interfaces. Both the equivalent column equations and ihe



equivalent

ane solved

xtr

plate equations ane wr¡tten in finite diffenence fonm and

by using Newton-Raphson i tenat ion .

Expeniments conducted on a steel b lock column, bnickwonk prisms

and a series of f ull-scale brickwonk walls ."å described, and a f ull-

scale test on a bnickwonk panel simply-supponted on four sides is

pnesented. All expenimental nesults indicate that the numenical

appnoach closely neflects the real behavioun of brickwor-k.

A bnief review of Codes of Pnactice is given in which specif ied

design loads ane companed with load capacities calculated using the

equivalent column and equivalent plate equations. The companisons

show that, ge¡enally fon walls of high slendenness, Code nequirements

lead to conservatíve pr edictions of wall and panel stnength. Funthen,

¡t is demonstnated that the methods of analysis may be used as a basis

fon modifying existing Co<Je recommendations nelated to the design of

ventically-loaded slenden bnickwonk walls and panels.
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I NTRODUCT I ON

' Brickwork has been a common fonm of building construction f nom

the times of civilizations which existed sevenal thousands of yeans B'C '

Today ¡t remains a populan matenial, particulanly in nesidential con-

stnuction because of its dur ability, its acoustic and insulation

propenties, its natunal resistance to f ine and its genenal aesthetic

appeal.

ln Austr-alia, bnickwork has been used extensively in both single-

stoney domestic constnuction and in multi-stoney housing developments'

ln South Austnalia and Wesier-n Austnalia, many houses built since 1945

have intennal pantition walls with bnicks laid on edge in order to save

on material costs. These walls ane nelaiively slencier by comparison

with walls constructed tnaditionally with bnicks laid on f lat' ln some

domestic buildings, the intenior pantition walls may be required to canry

ventical loads ar ising f nom suspended f loons, builcling services on noof

loads when the roof stnuctune is strutted off the interíor bnickwork '

Although these loads may be relatively small, many building codes place

nestnictions on the slendenness natio of walls in loarC-bear ing situations

irrespective of the load levels in the walls' These nestrictions ane

usually not unreasonable in t,iew of the lack of knowledge of the

behavioun of slender walls especially with nespect to the unknowtr

effects of imperfections in wonkmanship and difficulties associated with

the definition of edge support conditions'

Anumberofinvestigationshavepneviouslybeencarriedoutto

detenmine the load carnying capacities oÍ vanious types of br'ick wall'

lngenenal,however^,thiswor.khasbeenaimedatStnuctunesof

nelatively low slenderness natios in which ultimate failure has been

govenned by a material f ailune rathen than structural instability '
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The ainr of this thesis, thenefone, is to f ¡ll the gaps lef t by

previous nesearchens by investigating the behavioun of a wjde range

of bnickwonk walls with vanying suppont conditions, making allowances

for non-lineanities in material behavioun and impenfections in 'dorkman-

ship. The effects of incneasing the wall slendenness natio ane

investigated in some detail.

ln many of the previous neseanch pnogrammes, a considerable

amount of effont has been dinected towands the experimental testing of

isolated bnickwonk walls and piens, possibly because brickwork, as

an anisotnopic and non-homogeneous matenial with its distinct planes

of weakness i q the montan, appeans not to be nead i I y su i ted to

mathematical analYsis.

The f ew theonies which have been developed have been applied

to walls supported at the top and bottom edge which undengo one !vay

bending. ln general these theor^ies assume that brickwonk is a no-

tension matenial, an assumption which may lead, in some cases, to

conservative wall load capacities. ln the investigation descnib¡ed in

this thesis, ¡t has been possible by allowing fon the actual behaviou'^

of the individual components of bnickwork, that is, the bnicks and

montan, to develop analytical pnocedunes which per mit genenal panametric

studies to be canniecj out fon many types of load-bearing br ickwork'

ln bnickwork walls subjected to veltical loads, cracking may

occun at discr-ete inter vals at the brick-montar interfaces, the extent

of the cr-acking in the bedjoints depending on the position of the line

of action of the nesultant compnession load relative t'o the wall centre-

line. No cnacking occuns in the brickwor k when the nesultant load acts

inside the micJdle thincl of the wal I section, the kenn ' Howeven, if the

brick-mortar tensile bond strength is sma ll, cracking occLl l-s when the

nesultant load acts outside the ker'n. Under such conditions the brick-

work flexunal stiffness is altered.
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The appnoach adopted in this thesis is that the change in bnick-

wonk stiffness can be deter'mined by using a two-dimensional finite

element analysis to calculate the moment-rotation chanactenistics of a

cr-acked bnickwor k modu le consisting of two half-height bnicks p lus one

montar bedjoint. The resulting characteristics ane used to develop load-

deflection nelationships for a homogeneous isotr'opic vanyinç¡-thickness

column equivalent to the real bnickwonk. The load capacities of

eccentrically-loaded bnickwonk walls ane calculated f nom equivalent-

column equations, wnitten in finite diffenerrce fonm, by using a

numenical Newton-Raphson method to solve the resulting equations' The

method is checked by testing unden eccentric load conditions a model

slenden steel block column and a senies of brickwonk walls having

varying slendenness ratios.

The analytical methods have been extended to account fon bnick-

work panels which ane simply-supponted on foun sicles and subjected

to vertical load. The bending and torsion stiff nesses of a thnee-

dimensional brickwonk module are estimated from a three-dimensional

finite element method of analysis. Load-deflection nelationships ane

developed fon an equivalent plate of varying thickness' analogous to

the equivalent colu;nn of vanying thickness for a wall, in or^der to

repnesent the behaviour of a neal brickwork panel. By wniting the load-

def lection equaiions in f inite differ ence form, load capacities are

calculatecj fon eccentnically-loaded simply-suppor ted brickwork panels'

Resu lts obtained f nom the numenical method are checked by testing

several small panels and a f ull-scale slenden brickwonk panel simply--

supponied on four sides.

It is shown that the combination o'î f inite element methods rvith

finite difier-ence solution procedur-es gives an efficient means of solving

lange non-lirtear load-bearing brickwork prcblems' Results obtained by
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us¡ng the numenical - methods indicate that the strengths of slender

bnickwonk walls may be calculated for many different types of bnick-

work matenials and wall suppont conditions' lt is f urther demonstrated

that the methods of analysis may be developed to revise some curnent

Codes of Practice to aJlow, in some casesr the use of slenden walls

and panels in load-bearing situations not . permitted at present.

To assist in the detailed undenstanding of the behaviour of

bnickwonk, the following two chaptens contain a genenal neview of

design'pnocedures and construction practices used for structunal brick-

wonk, and a neview. of previous methods of analysis and relevant

neseanch nesu I ts.
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2. STRUCTURAL BRICKWORK A SYNOPSIS

The concept of rrstructural brickwonk" as a method of constnuc-

tion. in masonny has evolved oven many centuries. ln this chapten,

the development of constnuction methods using masonny is outlined

together with current pnactices f or the enection of stnuctunal bnickwonk.

Design pnocedures are discussed and exemplif ied by considening the

engineening details of a panticulan stnuctunal brickwonk buildirrg.

Attention is also given to the limitations of stnuctunal brickwork.

2.1 THE DEVELOPMENT OF STRUCTURAL BRICKWORK

The use of masonny in buildings other than low-nise domestic

houses has developed from pnactices used in the constnuction of the

major churches and cathedrals of medieval Eunope. A paucity of

contemponary documentation on the methods fon both engineening desîon

and the bui lding construction has Ied modern wnitens such as

r¡tcrren(1) and H.yr.r,(2) to attempt a fonmulation of the nespective

procedunes which might possibly have been adopted. Until the sixteenth

centuny when the vecton addition of fonces was developed, all building

propontions and dimensions appear to have been entinely dependent

upon height-to-width natios developecl by anbitnar-y nules and per-

petuated through masons' lodges. The not¡on of fonces and their lines

of action allowed design to pnogness in an analytical fashion.

At that time, the matenials used fon tlre constnuction of the

major chunches and cathedrals of Eunope wene not bricks as we know

them, but lar-ge blocks of stone canef ully f inished to f it togethen

closely without a neeC fon montan. The two design principles which

appear to have been foliowed wene that
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(a) the compnessive stnength of the stone, fon all

pnactical punposesr was infinitely large, and

(b ) the resu ltant f once in the stonewonk must I ie

within the middle thir d of the section'

Cou lomb

outside

(3)

the

in 17?3, pnoposed that 
.tn.

section otherwise f ailure

an outen edge and that

nesultant force should never be

wou ld occui- bY the f onmat ion of

this was the oniY Possible modea hinge at

of f ai lure fon masortnY.

Bnickwor k diffens f r^om the stonework used in the large cathedrals

in that ¡t is an assemblage of bricks bonded togethen with to"t."(4)

to give unifonr¡ bearing between tl-re nelatively small and nough-faced

bnick units. Br ickwork is commonly categonized into trNonmai Bnickwonk'l

and rrstnuctunal Brickwork"; "Nonmal Bnickworkil nequines no engineering

design while rrstnuctunal Brickwonk" nequines design for f ully struc-

tural applicatior¡s.

The methods used by the medieval builder^s evolved thror-rgh to

the nineteenth centuny into what has become known as conventional

load-beaning h¡rickwork. Each wall in a stnucture was tneated as

though ¡t was inclependent of the nest of the building and hence r eiiecj

on its own weight fon its stability. Figune 2.1 ,(Fnanci=(t\, shows that

the brickwonk was clesigned to be in compnession unden all likely load

combinations by ensuning that the resultant fonces acting on any cnoss-

section rvould lie within the middle thind of the section' This design

phi losophy, wh ich had its noots in Renaissance Ëut ope, pnoved to be

gnossly uneconomical in the late nineteenth centuny when steel and

concnete f named structunes were being developed . The Monadrrock Bu i ld-

ing constructed in chicago and completed in 1891 was a sixty-metre

high towen block in lvhich approximately 20 percent of the ground floor

anea was taken up by the load-bear ing walls some 1650rnm tl-r ick at
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stneet level .. By the end of the n ineteen th centuny, f named stnuctunes

which wene both ecorìomically more viable and architectunally more

f lexible wene replacing masonny high-rise buildings'

I n the 1950's, a new design approach fon masonry was

developed fon high-rise nesidential buildings in Eunope to cope with

the post-wan popuiation pnoblems in many countnies. H-11."(6), in

.|958, reponted the constnuction of a numben of nine-stoney apantment

houses and an eighteen-stoney towen orì the outskints of Zunich ' ln

the design, each wal! was recognized as being an integral pant of

the whole building. The concrete floon slab at each level was

assumed to be a diaphnagm, nigid in its own plane, which con-

stnained the walls to latenal tnanslations which depended on the

lateral translation and rotation in a honizontal plane of the floon

slab. Simplif ied calculations wene made to obtain the effective load

eccentricities fon each wall by taking into account the f lexunal

stiffness.es of the concnete floon slabs. The intpnoved etficiency of this

appnoach over conventlonal load-bear-ing bnickwork is evic1ent in an

eighteen-stoney apantment house in Si"t(7) in wlrich the ioacl-beaning

wa I ls at gr.ound level are of the orden of 1 50mm companed w i th

165Omm fon the Monadnock Buildín9, a stnuctune of compar able height.

Figune z.zl31) =ho*= a diagrammatic layout of a modenn stnuc-

tunal brickwor^k building. The diaph¡agm-type action of the f loor-s

causes lateral loads, such as wind loads, to be tnansfenred to

gnound as shêar^ fcrces in the planes of the walls which ane panallel

to the dinection of the nesultant latenal force. lt is this use of

shean walls for- the tnansfen of latenal loads to gnound which

differentiates structunal br-ickwork fnom conventional load-bearing

construction.



9

r Wall

_Jo
+

-_.->

PLAN

Figure ,.r(3t ) 
t

SECTION A_A

Structunal Brickwonk

Anrangement- Wall

Panel Subjected to
Latenal Normal Load

Shean Panels with
in-plane Forces c!ue

to Latera I Load

ln-plane Shean Causect by Latenal l-oads on

a Brickrvork Structune

F

-22

E=-

Figune 2.3



10.

2.2 LOAD TRANSMISSION IN STRUCTURAL BRICKWORK

The efficíency of stnuctunal bnickwork is obtained by ensuring

that the walls are aligned vertically thnoughout the height of the

building.ThewallsServemultiplepurposes.Aswellascarnyingthe

ventical loads they pnovide the necessary sepanation between different

nooms on each level and of ten provicie the architectunal f inish as well'

The concnete f loors car-ry live loads at each level to the bearing walls

and provide thenmal and acot-tstic insulation between adjacent stoneys

of the building. The floot^s ane usually of the or'der of loomm to 150mm

thick so that some degree of stnuctunal interaction between the f loot-s

andwallsis,possiblebecausetheyarebothofsimilanflexunal

nigidity.ThebendingeffectsproducedbythisintenactioncaUsethe

walls to be loaded eccentr ically so that the design of str^uctr'¡nal

bnickwor-k,evenforverticalloadsonly'musttakeaccountofthe

possibility of failune not only ulnder excess compnession but also by

instability. Methods of calculation which allow for intenaction effects

between crushing and instability will be discussed In chapter 3'

Themaineffectsoflater.alloadsonbrickrvonkareshownin

figur^e2.3.Thelatenalforceswhichhaveacomponentnonmaltoa

wall cause trânsvense bending in that panel, and lateral forces which

haveacomponentpar^a'lleltoawallproducein_planesheanandnonmal

stnesses.

Hallqu¡=t(B), Hendnu(9), satti(10), 8.k""(11 ), Lawrence 
(12) 

,

Bradshaw and Entwi=tu(13) and v/est(14) have irrvestigated the effects 
i

of lateral loacls on br ickwc,rk panels supported on both honizontal ancl 
i

vent ica I edges. l

ExtensiVecornparîsonshavebeenmadebetweenexpenimentalr^esuits

and tlreoreticaI pr^edictio¡rs based on elastic plate behaviottn, yield

l ine col lapse and a panei sir ip theony proposed by a-t."( 1 1 ) who
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showedthatgoodagreementbetweentheoryandpnacticemaybe

obtained if the nespective moduli of nuptune ane known fon the

dínections both parallel to and nonmal to the bedjoint planes of the

bnickwonk. H"nd"y(9) stated that for panels and walls without ventical

pnecompression, none of the theoretical predictions are entinely satis-

factory for calculating brickwor k strength unden latenal pnessune' Fon

this neason, Hendny has given empir ical values for effective bending

moment coefficients which ane intended to give intenim assistance in

design. I t is Hendr-y's stated opinion that the behavioun of wal ls with

appreciable precompression has been thor-oughly explored experimentally

and theoretically(15).

The transmission of latenal loads by in-plane shear is achieved

by ensuring ihat enough walls are constructed parallel to the dinection

of the nesultant latenal load. A residential-type plan pnovides this

condition in most cases. The walls which ane required to canry ventical

loads ane usually all that is r^equined fon transmitting lateral loads

irr shean and flexure to the foundation because the effective shean

stresses are usually small. One design cniterion usually obsenved is

that tension induced by in-plane flexune in the stnuctune rnust be less

than any compnession induced by supenimposed gnavity loads' This

is shown schematically in ligure 2'4'

Amethodwhichhasbeenpnoposedforthedesignofwallswhich

carry the latenal loads in shear assumes that the concnete floon siab

at each level acts as a r-igid honizontal diaphr^agm interconnecting

the load-bearing walls. lf the nesultant of the latenal load acts

thncugh the centnoid of the wall plan, all walls def lect horizontally

by the same arnount at any given level and consequently will shane

the appliecj latenal for^ces at that level in proportion to their nelative

stiff nesses about centnoidal axes nonmal to the direction of the applied
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fonce. !f, however, the nesultant of the lateral load causes a moment

about the centroid of the wall plan, additional fcnces must be applied

to all walls in proportion to their relative stiff nesses about centnoidal

axes radial fnom the centroid of the wall plan. ln orden to simplify

the stnuctural behavioun of a building, it may be assumed that the

walls at each stoney act as a series of tall cantilerzen columns inten-

connected by the f loons at each level (f igure 2'5) '

Hund"y(16) cannied out sevenal tests on one-sixth scale column

structu.res and on a full-scale five-stoney building to compane t.he

nesults of different methods of analysis with expenimental results. He

concluded that the cantileven design method pnoduced consenvative

results fon the latenal displacements but d¡d not give an accurate

assessment of the stnesses in the walls. Howeven, ¡t was noted that

a design, based on the cantileven method, which indicated the stness

levels to be acceptable, would always nesult in a satisfactory stnuc-

tune. Hendry funther suggested that mone nefined calculations, such

aS a finlte element analysis, might be used aS a check on the

canti!even design method. The super-.-elements del¡eloped by L"r.'g(17)

fon the analysis of high-r'ise buildings might be suitable for brickwonk

buildings in which lateral loads ane cnitical to the design' Howeven,

the choice of elastic modulus may be clifficult because, as Hendry

neponted, this panameten vanies with the <Jegree of pnecompnession in

the walls. The elastic moduli of bnickwork will be discussed in chapter

3

2.3ASTUDYoFASTRuCTURALBRIcKwoRKBI.IILDING

Many high-rise residential stnuctunal brickwonk buildings have

been constnucted in the wonld in the pas+' twenty years' The gnoup

of fourteen-storey Residential Blocks at the Univer sity of E=tu*(18)

is an eanly example of structural bnickwor"k in tall buildings in
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Britain.Figune2.6showsatypicalwallplanofaResidentialBlock.

Load-bearírrgbnickwonkWaschosenbecause¡tpresentedaneconomical

solution to the pr-cblem of student accommodation ' The bnicl<wonk is

fain_facedintennallyfonreasorlsof,economyandeaseofmaintenance.

The stnucture relies basically on 11" (28omni) cavity extennal

walls and 9" (23Omm) solid intennal walls for its strength and

stability. However. some 15]r' (SgOmm) cavity walls and 13å" (34cnrm)

solid walls ane utilized up to the eighth storey. All f loons ane insitu

neinforced concnete 4" (1O0mm) tnict' except in the communal anea whene

they ane 5" (lzsmm). Each wall was assumed to be an independent

cantiliver- linked to the str-uctune by pin-ended connections at each

f loor level. Th'i s design appnoach showed that some terrsion might occun

at the lowen levels, so that a Quetta bond (fisure 2.?\ was used with

ventical neinfoncement in the grout-filled cavities'

Resu lts of nesearch by n..,d.y 
( 16) and so..r.(19) into the inten-

action between the va¡ ious wall groups and the f loor^s allowed the

clesigners to ornit the ventical tensile neinfoncement in the walls of

the thind and founth towens, and ¡t was eventually decided to use

gil (230mm) solid and 11rr (zgOmm) cavity constnuction fon the load-

bearing elements.

2.4 SUMMARY OF TIIE PRINCIPLES OF STRTIC'TURAL BRICKWORK

15.

with structural

be obsenved.

hence economy

rvh ich shou I d

natune bu,t are

view. Knantz

even I y as

e lemen ts.

ln onder to achieve eff iciency and

brickwonk, there ane sevenal principles

Some of these ane of an anch itectunal

impontant from an engineering point of

two funcjarnental pririciples ane:

neventhel ess

states that

1. All loads rnust be distributed as

the load-bearingpossible among

( 20)
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2. Vent ica I loads must be tnansfenned to ground by

the shontest Possible route'

Aconollanyofthesetwopr^inciplesisthatanidenticalfloon

plan.mustbeusedateachlevelandbesuchthatareasoffloon

supportedbyeachwallareapproximatelyequal.lnresidential

buildings this can be attained without gnoss penalty to the function

of the building.

Animportantarchitecturalaspecttobeconsidenedistheability

of the f loor slabs to span between the walls without the aid of beams

orpiers.Beamscauseconcentrationofloadingonthewallsand

isolated piers, may be susceptible to accidental damage which could

lead to pnogressive collapse of lange sections of the stnuctune' lt is

pnefenable, therefone, to span all slabs in two-way action between

continuous brick walls so that in the event of the nenìoval of part

of a wall, Say by gas explosion, the slab can still nemain, albeit

in a distr^essed but uncollapsed state, to suppont loads f nom above

which may include some sections of load-beaning walls

2.5 STABILITY AND PROGRESSIVE COLLAPSE OF STRUCTI'IRAL BRICKWORK

The stability of structunal bnickwor^k has become a mandatory

design issue since the partial collapse of a block of f lats at Ronan

point, canning Town, London in 1966. Following the accident' a con-

siderable amount of wonk was canried out in the united Kirrgdom to

assess the possibility of bear ing wall stnuctunes f aili'ng by prognessive

collapse. The,rFifth Amendment'r to the English Builclirrg Regulatiorrs'

published in 1970, requir ed all buildings over four storeys to remain

stable unden specified loading conclitions, with a nedrlced loacling

factor, in the event of a defined structunal memben or portion theneof
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being removed. Limits of damage were specified so that ¡f a membeno

such as a wall, could not be removed because of its impontance in

the design, that memben must be designed to nesist the effects of a

pnessure of 34KPa in any dinection. The intention of the amendment

was that structural f ailur-e and pnognessive collapse could not be

tolenated as a result of damage by a gas explosion. H".td"y(21 ) has

summanized an investigation canried out by Mo".ron(zz) in which nine-

teen designs for existing buildings between thnee and sixteen storeys

wene examined. under the nequinements of the Fif th Amendment all

the high-nise buildings were acceptable with the low-nise ones up to

foun stoneys not being affected by the Act. Howeven, Hendry neponted

that a number of low-rise school h-¡uildings with nelatively lar S¡e f loor

spans would be susceptible to extensive collapse upon application of
t2j) 

supportedthe Fifth Amendment design requinements. suther-land'"'

Hendny,s conclusions and observed that high-nise masonry stnuctures

ane genenally not subject to stability failur e on pnognessive collapse'

He noted that low-rise structures such as classnooms, hospital wards

or assembly halls, in whlch modif ied domestic detailing has been

used, are the most likely to suffen a stability failure' The likelihood

of prognessìve collapse in a multistorey masonry building, when

designed according to what might be negarded as good practice, is

remote even fcn those buildings clesigned pt ior to the F¡f th Amend-

ment. ln adclition, Hendry suggested that in cunrent designs failune

by instability unclen expected impact loads is of such a low

probabilitythatspecificdesignallowancesneednotbemade.

The British CoCe of Pract il;"(24) for the structunal use ot

masonny incorponates the following thnee metlrods fon complying with

the F if th Amendmen t :
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(¡) By considering the removal, one at a time'

of ventical arrd horizontal elements' unless

each is capable of withstanding a lateral

pnessune of 34KPa with a pantial safety

factor of 1.05 on the matenial'

(¡i) By pnoviding ties between ventical and hor-

izontal elements capable of nesistíng centain

specified impact loads and then considening

the nemoval, one at a time, of the ventical

e lemen ts .

(¡ii) By inconponating in the structune horizontal

än¿ ver tical ties to nesist specif ied impact

loads.

The Austnalian coa"(4) places the responsibility on the designen to

the extent that if there is a possibility that certain walls in a

storey may become stnucturally ineffective due to impact damage, äñ

ultimate load design must be used for the f loot s, using yield line

theory ¡f appropr^iate. ln aclcl ition, a reduced load factot and only a

fnaction of tlre cJesign f loor live load mey be usecl to check that

thene is an adequate margin of safety against local col lapse ver-

ticallyaboveandbelowthewallsinitiallydestt-oyed.

2.6 THE BEHAVIOUR OF BRICKWORK UNDER SEISMIC LOADS

Reseanch into the effects of seismic loads on t¡nreinfonced masonry

stnuctunes has been reported only necently at confel'ences such as

vIBMAC in 1g7g. Design codes have been based on expeniences gained

thnoughout the seismic zones of the worlcl and have been fnamed in

tenms of the externt of damage whiclr may be tolerated after an earth-

quake of known intensity. According to Brbb(25), the Uniform Builciing
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code (u.B.c. ) of the united states, which is empinically based, sets

m in imum standands w i th negancj to pub I ic saf ety and i s updated

evenythneeyeansaccordirrgtoanynewinfonmationobtainedfrom

eanthquakes and earthquake damage anyrvhere in the wonld'

The Australian Eanthquake co¿"(26) pnescnibes equivalent static

design fonces for vanious structure classes which depend upon the

likelihood of regional seismic activity ancl the degnee of post-yield

ductility of the stnuctural matenial. The neturn per iod of the design

eanthquake for most stnuctures is assumed to be sixty yeans and there-

for.e unreinfo¡ced masonny structures, which may be long-standing

nesidential .": commerícial buildings, can be expected to expen¡ence

at least one design eanthquake in thein lifetime. The Design code

necognizes that unneinforced masonry Stnuctures are essentially bnittle

and have very little post-yield ductility. lt thenefore specif ies a

hor^izontal for.ce factor which is deemed to be sufficient to ensure

that the masonry does not fail in a design earthquake' The u'B'c'

specif ies the f acton K as 4.O, while the Australian Eanthquake code

allows K to be 3.2. A funther nestriction placed on unneinfonced

masonry stnuctunes is that they must not be constnucted in an anea

designated as Zone g (a zone having the greatest eanthquake inten-

sity) and are only penmitted in zone 2 i1 they ane not nequired as

post-disaster function buildings.

The Meckening eanthquat .( 27 ) of 1 968 in westenn Austr a I ia v'/as

felt in Penth 13Okm away. Although the vibnations felt in Perth

registened 6,75 on the Richter Scale, no stnuctunal ciamage vúas

evident in load-bearing walls in high-r-ise buildings' This was

pantly due to high precompression tnom vertical loads' Masonry inf ill

panels, holvever, d¡d show cnacking, while rìanv old brick buildings

with conventional f r^ee-standing walls ancl timber f loot's were badly
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cracked. lt is apparent f rom that earthquake and othens of similan

intensity, that where unneinfonced mascnry stnuctunes ane penm¡tted'

great care must be taken with structunal details panticular ly in

wall.- elements w¡th little on no pnecompnession such as a wall

connected to a noof on a panapet wall'

The Australian Design co¿"(26) states that all masonny stnuc-

tunes in zone 3 must be neinfonced. The phi losophy is that the steel

reinforcement incneases the post-yield ductility of a masonny stnuctune

and decreases ihe likel ihood of majon structunal damage in an

expected design eanthquake. Mayes and ctorgt'',(28) have summanizecl

the behaviour of neinfonced masonry under cyclic loads

2"7 RE INFORCED MASONRY

structunal masonny neinforced with steel bans on mesh is used

if a designer nequines the chanactenistic stnength and behaviour of

reinfonced concnete but with the appeanance of masonny. PIummer and

gtr,.n"(29) arrd Davey and Tr,or.=(30) have neponted extensively on

the behaviour of neinforced brick masonry. As a stnuctunal system it

is a hybnid fonm of constnuction brought about by a compnomise

between concrete and masonry, and as such wiil not be dealt with in

detail in this thesis'

2.8 ECONOM ICS OF STRUCI-URAL BR ICKWORK

Therelativeeconomyofstnuctunalbrickwonkcompanecwith

othen forms of constnuction is dependent upon the type of stnuctune and

the general pr-evailing economic ctimate. ean"(3t ) reported costs which

wene applicab!e in 1g7O but these costs certainly have altered since

that time. ln South Austnalia in 1981, structunal brickwork is neponted



21 .

io be comn-rencially competitive lvith cOncnete-f rarned stnuctunes clad with

precast concnete panels in buildings costing less than $+ million, but

fon more expensive structures, the concrete constnuction is pneferned'

The cost of external cavity-wall fain-faced bnickwork in Adelaide in

lggl is appnoximately $50/m'? of which $z+fm' is br^ick cost, $30/m' is

laboun cost and 5O/m2 is associated material cost ' The cost of

internal single-leaf walls is appnoximately |Sa/m' ' The connesponding

cost of extennal pnecast concnete non-load-beaning panels is approx-

imately $ZO/m,, but cost savings may be made, companed with

stnuctural brickwonk, because of possible neductions in construction

t ime. 
,

ovena l l , the economics of stnuctuna l brickwork is extnemel y

sensitive to local building practice and thenefone each stt ucture must

be evaluated economically in tenms of local concJitions'
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3. LITERATURE REV I EW

Thischaptenpnesentsastudyofthestnengthandstress-stnain

char-acteristics of the matenials of brickwot k, the clay bricks and the

montan, and descr^ibes theories of analysis fon the load-deformation

behaviour of slenden brick walls and panels. Fon the punpose of this

thesis, a wall is def ined to be a brickwor k assemblage w'hich spans

on ly between its base and top and a panel i s def ined to be a wa I I

which .is supported additionally on its two ver^tical edges' A slender'

bnick wa I I or panel is def ined to be a bnickwork assemb lage sub ject

to ver tical load in which the effects of out-of-plane deformations on

the bnickwork stnesses mey be signif icant '

The charactenistics of brickwor^k as a stnuctunal material are

r.eviewed initially in terms of the propenties of the component matenials

and particulan refenences ar-e made to standand methods of determining

mater.ial pr-oper ties as specif ied by Australian codes of Pnactice'

Results of expeniments on brickwonk assemblages are presented which

nelate the stnength of brickwor k to tl''¡e strengths of the componerr t

materials and theor etical stuldies of the stnength of brickwork are also

descnibed. Stress-stnain chanactenistics of structural bnickwonk' deter-

mined by exper iment, are presentecl ancj methocis proposed fon the

analysis of br ickwork columns subject to ventical load ane described;

results of exper-iments on br ickwonk walls are compared with calcuiated

wall behavioun. The chapter conclucles with a neview of the theony

of thin p lates, tl-re basis of a method proposed in chapten 6 f on the

analysis of slenden bnickv¿or k panels'
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3.I CLAY BRICKS

3.1 .1 lntnoduction

Austr-alian standar ds def ine three categonies of brick ' clay bnicks

must compty wìth Aslzzs-1980(32), 'rBunnt clay and shale Building

Bnicks", cärcium silicate br icks with 4S1653-.|974(33), "calcium silicate

Bnicksil and concrete' bnicks w¡th 4S1346-l gZ+ß4ì-, 'rconcnete Building

Bricks". The investigations presented in this thesis consider only clay

br icks to As1225-1ggo(32) and will not necessar ily include calcium

si licate and concrete bnicks.

3.1.2 Manufactune and Specif ication

The ancient ant of brickmaking has been refined- by modenn

manufactuning methods so that it is rìow possible to obtain clay bricks

of high strength and impnoved dunability. Most impor tantly, these

modenn pnocesses have minimized the vaniation in bnick pnopenties

caused by variability of the raw matenials such as clays and shales'

ln Australia, clay bnicks ane made bry shaping a maSS of clay

and/or shale matenial made plastic by the adclition of waten' The

bricks are oven-dnied and ane subsequently lreated to temperatunes

wl-rich may vany fnom ?sOoC to 13OOoC. During the heating pnocess'

often referned to as rrfiringltr âñY waten remaining after dnying is

evaporated, any combustible matenials ane oxidized and a pnocess

known äs vitnification takes place itr which the individual soil

panticles 'f use together.

Theshapingoftheclaymassisusuallydoneinoneofthree

ways; the clay may be semi-dr y pnessed, stiff-p lastic pnessed or

exti udecj and wine-cut. The semi-dry pressed method involves com-

pnessing the clay powder with 1O to 12 percent moisture content in
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asteeImould,whilethestiff-plasticpnessedmethodusesaclayof

14 to 17 percent moístune content which is pnessed in two stages'

Pnessedbnicksaremanufactunedwithadepressioninoneface,known

as a rrfnog", which allows the fonmation of a shear^ key in the bedjoint

mortan.Extrudedbnicksarefonmedfromaclaywithamoisturecontent

oflsto25percentandanecutfnomacontinuousextrudedcolumn

ofclayusingsingle_fìlamentwinestnands.Extnudedbricksmaybe

solid but are of ten perforated to neduce weight, impnove f iring

efficiencyandtopr.ovi<Jeashearkeyfot^thebedjointmontar.

Australian standar d As1226-19g0(35), r'Methods of Sampling and

TestingBunntClayandShaleBuildingBnicks||,specifiesthatfor-small

pnojects,testsmustbecar.riedoutonanandomsampleoffortybnicks

chosen fnom each consignment of either 30,ooo bricks, or part thereof'

Fot-largeprojects,fortybnicksmustbechosenforeachconsignment

ofloo,0oObnicks,olpantthereof.Fot.thedeter^minationofcom_

pnessivestnength,twelvebr-icksanetakenatrandomfromtheforty

brick sample and are halrred along the largest dimensiorr' one half-

brick f nom each of the twelve br icks is saturatedr p iaced in the same

onientation as in the completed wall and compnessed between single

sheets of nominal 4mm thickness plywoo<1 . The minimum compressive

strength, C, of a brick batch is the least value for the twelve test

specimens expressed in megapascals'

The initial nate of absorption ( I .R.4. ), sometimes refenred lo

as the suction, is measuned using six bnicks fnom the forty-br ick

sample. Austr-alian standard Às1226-1980 specifies .the calculation of

l.R.A.aSagaininweightperminuteofabr^ickplacedin3mmof

waten conr-ected on the basis of a bed-f ace anea of Z5OOOmm 
2 and has

as its units sm/zsooomm'fmin. The bricks must be tested in the onienta-

tion in which they are f inally used '
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The tnansvense stnength of a batch of bnicks is assessed by a

centnal point load bending test on eaclr of six bricks fnom the forty-

bnick sample. The tnansverse stnength is often refenned to as the

modúlus of nuptune.

Australian Standand A5'!226-1980 does not specify a method fon

the measunement of the elastic properties of bricks.

3.1 .3 Bnick Pt'oPenties

The ProPenties of brick

behavioun of brickwork ane

impontant influences on the

streng tl-r , tens i le stneng th,

Iast pnopertY infIuences the

the sunface texture of the

wh ich have

comp ress i ve

the elastic modulus and the l.R.A'

bond between montar and bnick, ds

bnick-mor tar intenface.

The

does

3.1.3.1 ComPressive stnength

Tests wh ich ane deemed to measune the compnessive strength of

bnicks actually measune the load capacity under uniaxial compnession

in which f ailure is govenned by the latenal tensile strength of the

specimen. The load capacity, or rrcompressive strength" of br^icks f rom

any batch vanies because of diffenences in naw materials, manufactun-

ing pnocesses, degnee of bunning ancj the bnick shape and size. The

method of testing can also influence the test results' G"i.nt(36)

r-eponted that specimens which ane square in a plane perperìdicular

to the d ir-ection of compnessive stress wene strongen than nectangu lar

specimens. The compnessive str-ength was generally found to be higher

for units made of shale by the stiff mud process and burned at high

temperatures.

compression tests on plasten-capped bricks give highen values

fon the load capacity than tests on bricks whose sunfaces ane not

laterally restnained by f r iction on the platens of a test machine'
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Gren I ey
(37) br-icks were

be between 25 and 67 percent of the, conventional restrained

va I ue.

It has been recognized since the tunn of the century that the

degnee of saturation affects brick compnessive strength(q8)' Br-icks

tested in a dry condition may be up to 15 pencent stnonger than the

same b'nicks tested in a satunated state

The Austr alian standard As1226-1980 specif ies a method for testing

the compressive stnength of bnicks using plywood capping' so that

results obtained using 4S1226-1980 cannot be companed directly with

neseanch results in which othen types of capping have been used'

Howeven, although there is little infonmation on the stnength of bricks

laid on edge, * the stnength of Austnalian clay br^icks commonly varies

between 3OMPa and SOMPa in a bnick-on-f lat onientation ' 4S1226-1980

does not nefen to bnicks with penformations on cores, but shelluttt-t(41 )

has reponted that as long as coning of bnicks does not exceed 35

pencent of the cnoss-sectional area perpendicular to the load, ihen

a brick is as stnong as ¡f ¡t were solicl. The improved fining achìeved

by coning is nesponsible for the incnease in nett-area strength,

arthough, âs w.rt(42) has indicated, br-ick strength is dependent upon

the coring pattenn as well as the size and shape of the cones' A few

lange round cones ar^e pneferable to many small cones or cores with

sharp re-entrant conners. The British Code 853921tlgOS(43) recognizes

the incnease in strength of coned bnicks due to improved f ir^in9 by

specifying that all bricks with less than 25 percent by volume penfona-

tions ane "sol id" f or' desi n u1^ S

,,. A pnactice foll,orryed in some states of Australia for domestic buildîngs
and partition walls.

reponted the nesults of tests in which the

unnestrained by the insertion of teflcn pads

the machine platens. The appanent compressive

between the

str^ength was
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3.1.3.2 lnitial nate of absonption

The initial rate of obsonption is a measure of the degnee'ro which

a bnick has an affinity for the moisture in a montan. A reduction in

the waten content of a montan affects the adhesion on bond between

the bnick and montan to the detriment of the brickwork as a whole'

Sahlin(44) has neponted that the I .R.4. shows a stnong nelationship

to bnick stnength, especially the modulus of nuptr'lre, and' that bnick

suction vanies inversely with brick density'

3.1 .3.3 Tnansverse stnength

Acconding to Nevanden, 
(45) the transverse strength or modulus

of ruptune of , solid br^ick vanies between 14 and 32 percent of tlre

compressive stnength fon strengths nanging from appr^oximately 20MPa

to appnoximatel), SOMPa (2750psi to 715Opsi) . Hilsdor-t(46) has given

this pencentage ratio as either t tl 15 on 17 percent f on thnee types

of uncored solid br icks, and s.c.p.R.F.(47) tested three types of coned

bnicks fon pencentage natios of 11, 1O and 1O pencent respectively'

The standand deviation fo¡^ Hilsdorf 's tests was about 25 percent and'

fon the S.C.P.R.F. nesults, the standard cleviation was between 5 and

20 pencent.

3.1.3.4 Modulus of elasticitY

Granville and Bannet'(48) measuned the modulus of elasticity for

a repnesentative sample of bricks avaiiable in Gneat Br-itaín in 1927;

the-. bricks wene comprressed between,sheets of plylvood' Figure 3' 1

shows the nelationship between modulus of elasticity and compress¡ve

str-ength fon all bnicks tested. ln each sarnple of twelve br'icks, the

stnength var-iation was t5O percent of the mean and Glanville and

Bannett stated that the results could not be used to give a meaningf ul

statistical analysis. lf, howèver, the results for- pnessed bricks are

discounted, a negr-ession analysis gives the relationship
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Eu = 3o9C + 64OMPA (3'1)

in which EU is the bnick elastic modulus

C is the bnick compressive stnength

'The cornelation coefficient is 0'94'

Sahlin(44) gave the nelationship for the same points as

EU = 30OC ß.2\

psart,=(+s) n.r investigated the dynamic measunement of elastic modr-rlus

on solid br icks using sonic techniques and has neported a connelation

of 0.99 between sonic and mechanical test nesl¡lts' The vaniation of

elastic modulus within individual bnicks was of the order of 10 to

15 percent for the specimens tested '

Scrivener and willitt=(50) have given a complete stness-straln

cunve for a bnick prism (figure 3.2) in which the linean-elastic

behavioun of the brick material and its brittle failure chanacterístic

ane clearly shown.

plo*r..,(51) has summanized the nelationship between bnickwork

modulus and b¡ ick str'englh but has not given results fon the elastic

modu lus of the br^icks themselves. The modu lus of bnickwor k i d discussed

f urther i n Sect ion 3.3.

3.2 MASONRY MORTAR

3.2.1 lntnoduction

A masonny mortar must f ulf il certain requinements duning bnick-

layingandalsobewellsuiiedaSaload-cannyingmatenialwhenin

its handened state. A wet mortan must have good wonkab i I i ty so that

all joints can be f illecl easily and it must have an early rigidit:¡ sc

that excessive r ocl<ing movements cannot occur aS new courses of bricks

are laid. The ability of a montar lo retain its moistune, even if the
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bnick suction

the moisture

Factors

as well

sect î ons

wh ich

is high, is also important because the montar relies on

forcompletehydnationofthecenlentitiousmatenials.

affect mor'tan stnength, workability' waten netentivity

as othen important properties will be dìscussed in the fol lowing

3.2.2 Mortar SPecif ication

Montar^mixeshavetnaditionallybeenbasedonpaste_sandratios

which vary f rom 1tzf, to 1 :3 by volume. This îs based to some extent

on the appnoximate amount of paste which is requir^ed to f ill the voids

between the sand par^ticles. Australian standarc AS 4123-1963 rlMortar

for lvlasonr y Constnuction t'( 52) states that all rnortars which ane

specif ied by pnoportion, nather than by compressive sinength' must

comply with Table 3.1 for the appnopriate mortar type'

Table 3.1 : Montar Mix ProPontions

A mortar may also be specif ied by compÌ essive strerrgth, in which

casethepantSbyVolumeofaggregateinthemontanmustnotbeless

than 2+ times the total volume of the cementitious matenial used' Fon

Australian masonny mortars the aggregate used is sand which cornplies

with 4S1465-,¡97/+(53), rrDense Natural Agg¡egates for Concreterr' with

Cement Mortan t : t /10:3

1:1:6
1:2:9

1:3:12

0:1:3Lime Montan

Composition

Mortars

0

1

I

1

1 1 /10

1

2

3

1

5

6

9

12

3

Port I and
Cemen t

Hydnated Lime
or

Lime Puttlu

F ine
AggnegatePor Portion

Cement:Lime:Sand

Vol umePants b
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the added stipulation that the matenial passing a No' 2OO B'S' test

sieve shall not exceed 'lo pencent ß2) . The Bnick Development Reseanch

rnstitute(54) has indicated, howeven, that 1o percent of such fine

matehial may result in excessive shrînkage cnacking' For a natunal

sand, ASTM standand ASTMl44(55) allows no material to pass a 2oo

sieve while the British st.r,d."¿(56) calls fon not mone than 3 perce.t

pass I n9 .

Cementitious matenials must comply with AS131s-tszs(57), rrPortland

Cement,.f or As16?2-1924(58), "Building Limes't. Lime putty may al.so

be used provided it complies with AS A1 23- 19æß2) '

Thewaternetentivityofamontar,whichisameasuneofits

ability to netain waten against suction fnom the bt'icks, is tested in

accordance with the pnovisions of ASTM c91 r "specif ications f on Masonny

Cemen¡,,. 
(59) tn. f low of a montar, tested in accondance with ASTM

cst, (5s¡ is related to workability. Both wate. netentivity and f low

will be discussed in Section 3.2'3'2'

3.2.3 Mortan PnoPenties

3.2.3.1 Effects of type of aggregate

A gnaded sand which is within the limits pnescnibed by AS 4123-

.¡963(52) gives an ovenall aggregate density which requires a minimum

amount of cementitious matenial fon a given strength. Monk(40) has

repor-ted that the compnession and tensile strengths decnease as the

sand varies f nom a unifonm coarse sand to a unifonm f ine sand, while

a blend of coanse arrd fine particles gives the maximum strength

because the void ratio is a minimum'

Filling of the voids is thus achieved with a minimum of cement-

itious matenial. Mayes ancl .ctorgr',(28) have indicated that natural
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sands have void ratios which vary from 25 to 40 p'encent. Exper iment-

ally, the Iowest void ratio achieved is about 16.8 pencent using a

mixture of particles as in Table 3'2'

50.5

8.0

1.0

7A

20

10

Coanse

Med i um

F ine

Relative diameten% total volumePant i cl e

Table 3.2: Optimum Sand Panticle-size Distribution
(28)

Natural sands vany fnom the gr adation r equired for optimal

packing and therefone wil I not genenal ly pnoduce montar's of optimum

stnength. creep and shrinkage ane also rninimized ¡f the void natio

in the sancl particles can be kept to a minimum'

3.2.3.2 Effects of vaniations in cementitious matenial

MontanstraditionallyWenecomposedofsandandlime,eithen

hydrated lime or lime putty, and depended upon atmosphenic carbon

dioxide for canbonation and stnength development. lt vúas found that

natunally-occurring cements and Portland cement pr^oved to be com-

patible with the lime and pnoduced a wonkable, ear ly-setting mortan

which led to strongen bnickwot k and penmitterJ mone napid construction '

As the need for faster constnuction rates developed, the acceptance

of por-tland cement incneased, until at the pnesent time, sand-iime

montans are seldom used and are rrot penmitted for structunal brick-

wot k.

The penformance of cemen t-i ime morlars and

langely dependent orì the proportion of cement in

silicate and tnicalcium aluminate ane the two

contribute to high early-str^ength development' Aften

cemen! mortars is

them. Tr icalcium

compounds wh ich

mixing, the cement



hydration begins immediately with

and is followed ProgressivelY bY

which is the more imPortant in

The hardening Process is quite

!ime mortan.
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of the tr'icalcium aluminate

of the tricalcium silicate

mortar stnength.

canbonation of a

the final

hydnation

hydnat ion

tenms of

diffenent from the

Thewonkabilityofamontarisusuallycontnolledbytheuse

of lime although plasticizers othen than lime may be interground with

the Por-tland cement. Plasticizer's such as clay and limestone and air-

entraining agents pr ovide mortans with incneased workability' but ar'e

( 52) as a nep I acenten t f or t he I i-me corl ten t'not pernritted bY AS Ai23-1963

of any mor tan-type covered by that specif ication ' lsber-t'"n(60) 
' ¡'35

descnibed workäuitity as a comple>< rheological propenty which inclucjes

adhesion, cohesion, density, f lol,v-ability, plasticity and viscosity '

ln the laborator^y, the evaluation of montans is often made using

mortars which have the same flow, which is a measunable quantity

nelated appr^oximately to workability. ln the standar d f low test, a

tnu.ncated cone of mortan i s subjected to twen ty-f ive one-ha lf i nch

(l2mm) drops of a sta.ndard flow tab!e. The diameten of the distt-¡rbed

sample is compared with the original diameter of the conical mortar

sample and the ratio of the distunbed diameter to the oniginal

diameter, expnessed as per^cent, is called the montar f low ' ¡¡o'-'L(40)

has given the waten:cement ratios, shown in TabIe 3.3, nequired

to pr^oduce ã desi nable workability -in a mor'tar using an average brick-

layei's sand; the flovr values ane also given'

Animportantprope.rtyofamontan'whichisnelatedtowork-

ability and f low, is waten retentitivity which is a measure of its

abi I ity to retain waten and pnevent it f nom being dnawn

with high suction. Sahlir''(44) n.= neponted that ther e are

into br^icks

confl icting

claims among reseanchers reganding the effect which water retentitivity
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124.3

130.2

122.7

o.74

I .13

1 .64

1:f :3
1:|:a|
1:1:6

M

S

N

Average
F low

Wa ter : Cemen t

Ratio (by Weight)
Pnopontion bY Volume

Cemen t: L i me: Sand
Mortar TYPe

Table 3.3: Montar Water-to-Cement Ratios

has on montan stnength and adhesion, with ttogu."g(61) claiming that

low water retentitivity gives betten adhesion to ver y absonbent

mater ials and Palmen and Pt"=on=(62) claiming that the opposite is

true.Watennetentivityisusuallymeasunedinthelabonatoryby

companing the flow of a montan sample aften being subjected to a

vacrum of 50mm of mencuny fon one minute rryith the oniginal flow of

the mor tan. Austr-alian Standard AS A123--1963(52) specif ies that a

mortar must have a minimum flow aften suction of not less than 70

percent of the original flow.

Hoath(63) has plotted the cunves shown in figure 3'1, derived

from nesurts obtained by Ritchie and D.t i=o.t(64), in which mortars

were prepared to confonm with types M, S' N' O and K as designated

by the ATSM c270-68(65).

Results obtained from mortans made from seven different types

of lime and a standancl sand 9re shown in figure 3'4' All tests were

in accordance w i th the Brit ish Draf t Standar^d øa/zsozrc'\ ' The resu I ts

for f igune 3.4 were obtained by Gillard and L-""' 
(67)

Davey and rhomas(30) reponted t!'rat the compressive strength

of mortan depends on the cement: lime ratio ancl the pnoponliorr of

cementitious matenial to sand (f igu,-e 3.5), and necommended three

mor-tan mixes for low, medium and irigh-str ength bricks' From f igure
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(30 )
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3.5, for natios of cementing matenial to sand 1 :3 by volume' pure lime

mor-tars have compnessive strengths of about 0.1 to I 'oMPa and pune

cement mortans 15 to 2OMPa when tested in uniaxial compression'

. Lenczne"(0e) tested batches of 1:l:6 montan mixes in whick¡ the

waten content was var ied to give a nange of wonkabilities used in

commontradepractice.ThemontanmixesWenecastintobothT6mm

cubes and 115mm diameter by 23Omm long cylinders' The sf nengths of

the Z6mm nìortan cubes, tested in uniaxial compression, vanied between

2.8MPa. and 6.3tv1Pa and incneased rvith a decrease in water:cement

ratio.

c"ir.( 36) has summanized the

and has found that the

by standard methods

22.4 S1BT I ss+ o + .r (t SO-r) ] x 10-3 ( 3.3)

f is uniaxial compressive stnength in MPa
c

S is a shaPe factor

a is a moistune cuning facton

B is an air'-content factot

T is p lastic montar age f acton

ô is montan type facton fon mortars to ASTM

F is initial flow as a Percent

Y¡safactordependen'tuponthevolumetnicratioofPortland

cement:lime in montan'

expenimental nesu lts of many

compressive stnength of montar

rnay be aPPnox imated bY the
nesearchens

as measured

expnession

f=
c

The wa ten : cemen t

the h igher'found that

ratios typically varied f rom O'74 to 1'61+' Grimm

waten:cement ratios recJuced montar compressive

mortan-to-brick bond strength 'stnength but incneased
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The f Iexural tensile strength of conventional montan does not

usually control the f lerunal strength of bnickwonk because the tensile

strength of the mortan general ly exceeds the tensile bond strength

between montar and bnick (Section 3'3)' G"itt(36) has given an

appnoximation fon f lexunal tensile stnength' taken f nom results

pnesented by Monk 
(40) as -

2.13 x lo-3 t ( 80.75 I (3.4)
c

f, is the f lexuna I tensi le strength of the mortar i n MPa

f is the compressive strength of the montar in MPa'
c

Monkrs nesults showed that fon

tensile stnength is appnoximately 10

strength.

nonmal montars, the flexunal

to 1 5 Pencen t of t he comp r^ess I ve

3.2.3.3 Modulus of elasticitY

Stress-strain diagrams fnom observations of diffenent types of

mortans, ês repor-ted by H¡t=¿o"t(46) (f igure 3'6), show that the

tangent modulus of elasticity at ze-:o stness varies widely fon ci ifferent

cement/lime natios: the trighest modulus of elasticity, obtained wìth

a cement montar, is appnoximately twc hur-rdr ed titnes that of a lime

montar. Therefore if the modulus of elasticity is impor'tant, âs can

be the case for slender *.ll=, (44) then the mortan used in the

bnickwork must be clrosen with care'

Scnivener^ and !villi-tt(uo) determit'ed a complete stness-sinain

curve foi mor-tan cylinclers (figune 3.7) and, using a stress'-stnain curve

fon lateral stnains, they calculated Poisson's Ratio for a rnortar bed-

joint tested in a shor t brick pier under uniaxial loading (f igune 3'8)'

].he value of Poisson,s ratio, whíclr is the absolute value of the

natio of the latenal strain tô the longitudinal stnain, had a const'ant

value of O.zz until tht: stness neached 75 percent of its maximum value

)f c
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and then increased with incneasing stness. At a stress of 98 pencent

maximum stness, Poissonrs ratio reportedly neached a value of 0'50'

As the stress level decreased after the maximum Stness waS reached,

the i.atio of latenal strains to longitudinal strains repontedly incneased

to a value of 3.0 at a latenal stnain of approximately 0.5 percent.

Base ancl gaL."(69) measuned the strains in a mortan bedjoint

as wel I as in the adjacent brick using DEMEC gauges and 'showed f on

their- case that the stna ins i n the montan wene veny much I anger than

in the.bricks. They also pnesented nesults (f igune 3.9) which indicated

the difference between the behaviour^ of montar in a joint unden

tniaxial stness condi tions and i ts uniaxial behaviour i n a mortar

prirns. The tniaxial behaviour of montan will be discussed in section

3.4.

Sahlin(44) has attempted to relate montar elastic propenties to

prisnr stnength and has given the r-elationship shown in f igure 3 '10'

The equations ane not based on the physical material pnopenties but

are approximations deduced f nom tests on concrete specimens with

str engths between 1SMPa and 45MPa, that is, outside the nange of most

montars used in Practice.

The equations used bY Sahlin are

41 .

(3.5)

(3.6 )

(3.7)

E 1 000f
m c

E
343 x 10 (¡

m
3

E 12.4 x 10 + 500f
Íì

5

^Æ.

c

in wh ich E is the mortar elastic modu lus
m

in MPa

f is the mon'ran uniaxial compnessive strength
c

in MPa

u) is the mcntan densitY kT/m 3 23OOkg/m
3
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None of the equations gives a particularly good appt-oximation for the

modulusofelasticitystrengthrelationshipsofmontarsas.tested
(48) ,,=,--^-r (46)

by Glanville and Bannett\--' and by Hilsdorf'

L"...,u"(68) tested montan cy I inder-s of 1 I 5mm d iameter and 230mm

long and determined the static elastic modulus using a compnession

testing machine and the dynamic elastic modulus using sonic methods'

He showed that both methods of measurement gave the same nesults

fon elastic modulus and that the 28 day compnessive stnength of a 76mm

mortar'cube vanied appnoximately as the squane of the dynamic

modulus (f igune 3.11).

3.2.4 SummarY

Thissectionhaspnesentedresultswhichindicatethatthe

compressivestrengthofamontar<lependsuponthenatioofcement-

itious matenial to sand, the sand gnadation and the waten-to-cement

natio. Test nesults(68) also indicate that montar elastic modulus may

be a function of the montar compressive strength' However' mortan test

resu I ts have been obta inecl f nom various methods of test ing so that

quantitativecompanisonsbetweenSetSofdatamaynotbemade.ln

particulan, no relationship has been established between mof tan-type

and the elastic pr operties required for the analysis of slenden brick

walls .Ø4) At this stage, therefore, a mo¡tan elastic modulus must be

determined for each case by test using eithen static ol dynamic

methocrs(eg). A method fon detenmining the elastic modulus of a mortar

will be discussed in ChaPten 5'
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3.3BRlCK-MORTARcofulBlNATloN_SMALLASSEMBLAGES

3.3.1 lntnoduction

ln considening the genenal behaviour of walls and panels' it

is necessary to investigate the propenties of small assemblages' on

units,ofbrickrvork.Factorssuchasthecompnessivestrengthuncjer

loads nonmal to the bedjoints, the tensile stnength both panalleI to

and normal to the bedjoints, the shear stnength wi th simu l taneous

vertical compi-ession anci the elastic pnoperties of the bt ickrvonk may

all inf luence signif icantly the behavioun of bnickwork either spanning

venticallyonlyonsLtpportedonmorethantwosides.Pneviousreseanch
t

has involved both expenimental programs and theonetÎcal analyses based

ontheassumptionofelasticbehaviour^uptothepointoffailure.This

section neviews the reponted behavioun of small assembla5¡es up to

failure.

3.3.2 ComPnessive Stnength

lvlanyinvestigationshavebeencarniecloutonthecompressive

str.engthofbric!<wor'kloadeduniformlyinadinectionnor.maltothe

bedjoints.Becauseofthemanypossiblecombinationsofbricksand

montars'thenangeofstnengthscanVaryfromlMPaforVeryrveak

bnicks ancl lime montar-s up to 501¡1pa for very stnong trr'icks ancJ cement

montans.

3.3.2.1 Mechanism of failune

The failure mechanism most f requently observed in stnuctunal

brickwonk loaded in uniform compnession normal to the bedjoints is

a splitting failure prcduced by the fonmation of vertical cracks thror-rgh

the bricks and bedjoínts. scrivener and w¡ll¡.,.n=(50) ob=t"""d that the

of failure wene in tl-re cnushing of the rnortan in the

near the r,naximum load . The cr^ush ing of the mortar-
first t'isible signs

bedjoints at loads



45.

was accompan¡ed by veny large latenal strairls in the bedjoints until

eventually the bnicks failed in tension unden 'the latenal eipansion' ln

all cãses the f ailure load was largen than the uniaxial compnessive

stnength of the mortar as determined f nom nlontan cy lindens' but less

thanthecompnessivestrengthofthebrícks.Theincneasedmontar

strength is nelated to the d ifferential lateral expansions of the br-ick

and the mortan. At loads nean to f ailune, a triaxial state of stress

is induced in the brickwor k so that, at the bnick-mortan intenf ace'

the br-ick material is subjected to uniaxial compnession and bilateral

tension ;. the montar -is in triaxial 'compnession ' ':

t,to.t 
(40) reponted tests wh ich showed that the sp I itting f ai lur e

mecharrism is consistent with the assumed stress-strain state at the

bnick-montan intenf ace if the mortan is less stiff than the bnicks,

Gypsumblocks,jointedbyeithenaluminiumonpolythene-sheetswere

tested in compression. when the joint mSter^ial was stiffen than the

blocks, as in the case of the aluminium sheêt, a shear failure occut^ned

inthegypsumwhichwassimilantothefailuneofabr.icktested

between steel platens. l-loweven, for the polythene joint matenial, which

was nruch less stiff than the blocks, a tensile splitting f ailune

occunred. The failune load associated with shear failure was con-

sistently higher^ than the failure load procjucecj by ventical splitting

of the blocks. Monk noted that in brickwork built with lime mortans'

spallingandcr^ushingofthemontanforcedrnatenialfnomthejoints

at loads well below f ailune, but in bnicktryork built with cement

mortars, spalling of the bnicks occunned immediately pnior to f ailune'

3.3.2.2 Methods of

ManY f actons

and it has been

capacitY of a wa I I

cletermining compressive stnength

can affect the ccmpressive strength of bnickwor^k

founcj that a good estimate of the load beaning

or panel can be macle by testing smal I brickwork
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pnirns constnucted fnom the matenials to be used ln the actual

str uctune. For example, a good estimate of the strerrgth of a single-

leaf wall can be obtained by testing a statistically-signif icant

number- of single-leaf brickwonk prisms constructed from the materials

to be used in the wall'

Plummer and At""(29) investigatecl the extent to which a testing

machinewithstiffbeaningplatenscanaffectthefailuneloadsof

br ickwonk prisms by varying the height-to-thickness (h/d) natio of

the br-ickwork pnisms. The compressive strengths of pnisms of very

low h/d ratios wene affectetJ by the stiffness of the machine platens

andstr^engthcorrectionfactonsweneproposedSothatthesplitting

type of taiturå road in a wail courd be estirnated from the nesults of

bnickwork prism tests. The cornection f actons incnease with the h/d

ratiountilthelattenneachesavalueoí6,beyonclwhiclrthefactors

remain essentially constant fon h/d natios uP to 12 (f igure 3'12) '

A,-.,d""=on(74) compared the nesults of full scale wall tests con-

ducted by a.=.(?3) with other measunes of b'ickwork str-ength and

showed tl-rat pr ism tests gave f ailure loads up to 33 percent higher

than those measur^ed in full scale wall tests'

3.3.2.3 The effect of bnick str ength

ltisnotknownwhethenthereexistsar^elationshipbetweenthe

strengthofbr.ickworkaSdete¡^rninedbyprismstnengthsandthe

compnessive stnength of the brick and montan components' although

attemptshavebeenmadetorelatebrickworkstnengthtobothindi-
( 44') rePortecl

viduar bnick str-ength and mortan prism strength. sahlin'

tests conclucted by s.c.p.R.F. 
(47), (70)' (71) which showed a non-

linear. ne!aiiorrship between brickwork stnength and bnick strength for

vanious types of mortac, and tests bv N"tr-'td"t(45) gave a senies of

relationshiPs of the form
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(3.8)
FI

m

in which F' is the
m

C is the

kcn

bnickwor k comPressive

bnick strerrgth

constants which dePend

strength

k, n ane on the brick str'ength

and mortan tYPe'

Davey and tt',or.r(30) related tlre strength of 18rr x lBrr x 8r-orr

(460mm x 46Omm x 244}mm) Unickwonk piers to the strength of ihe

individual bricks when combined with either weak mortar having a

prism str^ength less than 3'5MPa or sirong montan with a strength

between 14MPa and 2OMPa (f igune 3'13)' The expenimental relationships

between pien str ength and bnick stnength fot the two mortans genenally

follow the fonm of equation (3'B) '

L"...,..,."(66) investigated the strength of 9r' (zgomm) ur ickwot k

cubes and found that the dry density of the bnicks was directly

nelated to cube stnength and f unthen suEgested that bnick dry density

could be a useful cniterion fon estimating the str'ength of brickwork

fon a g iven montar tYPe.

Thecompnessivesti.engthofbrickworkbuiltwithcoredbricks

rathenthansolldbricksisaffectedbyanumbenofadditional

panametens, not all of which are fully undenstood' Nevander(45)' in

tests which included solid [:ricks, bnicks which were coned with 19

holes and bricks coned witlr ?8 holes showed that thene was a sig-

nificant decrease in stnength when the coned bnicks wene combined

with a weak I ime montan, but the 19-hole bricks gave the same or

higher str ength than solid bricks when laid in a medium-strengtt-t lime-

cement montar.

schellbach(41 ) testeci cored bricks in a morta. with propor^tìons

1:2:g (cement:lime:sand by vòlume) and'tound that optimunr utilization



could be made

rat io of abou t

wene avoided bY

of the bnick matenial if the bnicks had

38 to 43 pencentr pnovided that stress

using cores with no sharp ot' ne-entrant

49.

a cone space

concen trat i ons

cornens.

3.3.2.4 Effect of montan propenties

The effect of mor-tan propen.ties on the stnength of 9 inch (zgomm)

brickwork cubes was studied by L"n.tr,."(68) who nelated the 28-day

montar strength, determined fnom 76mm cubes loaded in uniaxial

comppnession, to the bnickwork cube strengtkr. The genenal nelationship

between the brickwor k cube stnength and montan stnength

to be

o.25 (3.e)
Fr

m

where
m

is bricklvork cube strength

is constant of Propont iona I i tY

'is montan cube strength in uniaxial

Stang, Parsons

relationship between

Fr

and M.8.,.nuy(?2) also

wall stnengtlr and mortar

0.33

was takerl

comp p-ne_s_sj 
"a-.'_

an exponential

of the fonm

(3.10)

)Ík c

F'

k

fc
pnoposed

streng th

k (f.)
m

in which Fr is brickwonk compressive strength '
m

Thecompr.essîvestnengthofbnic[<workhasalsobeenfoundto

depend upon the thickness of the montc.r joint. Sahtitt(a4) concluded

that brickwork str ength is decneasecl by approximately 15 percent for-

eveny 1/B inch (3.2mm) incr-ease in bedjoint thickness fnom a mean

value of joint thickness of 3/B of one inch (g.5mm) . He also stated

that if the bedjoint thickness is decreased from this mean value, ð

15 percent increase in compnessive str-ength for each 1/8 inch (g'Zmm)

decnease in ioint thickness may be expected. Scnivener and V/illi-t=(50)
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reponted a !ess significant bedjoint thickness effect in whiclr' fot^

both a weak lime-cement montar- and a nicher cement rnontan' specimens

with I inch (6.3mm) joint thickness only had compnessive strengths

appnoximately 1O percent greater than specimens with j inch (tz'zmm)

thickness. The degnee of change in strength with change in bedioint

thickness was also reported by L".t.t.,".(68) to be appro'xÎmately fo

percent per- 1/8 inch (3.2mm) change in bedjoint thickness' Methods

wh ich may be used to ca lcu late the ef f ect of bed joint th ickness on

compnessive strength of bnickwor k will be neviewed in section 3'3'2'6'

3.2.2.5Bnickv¿orkstnengthrelatedtobrickandmortaninteraction

Thecompnessivestrengthofbr^ickworkisdependentuponboth

the bnick and montar pnoperties and not upon each independently of

the othen as implied by the nesults neviewed in the previous tlvo

sections. Howeven, the interactive influences of the two materials ane

veny diff icult to assess. Bröcken(75) pnoposed the empir^ically-based

relationshiP -

Fr
(3.11)c0.5. f 0.33

cm

whene F', is the compnessive strerrgth of brickrryor-k

C is brick compressive strength

f¡suniaxialmortarcompressivestnength.c

schellbach(41 ) reported tests on walls constnucted wíth 1:2zB

mortan and either sol id or coned bnicks wh ich showed good agreement

with equation (3.11) especially wherr the br ick stnengths wene al;rove

25MPa and the void natio for the cones did not exceecl 35 pencent of

the brick area.

By analysing expenimental daia from a lange number of tests'

G"i,n'.n(36) suggested that the intenactive effect of bnick and montar

pnoperties on the compressive strength of brickwork could be expnessed

by equation (3.12) .
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(3.12)
Fr

m

in which F I

E

m
is compressive stnength of masonny in MPa

is workmansh îP f acton

= 0 for insPected work

= 0.012 (83 - C) for uninspected work in which

C < B3MPa

or assume C = 83MPa if C > B3MPa

is average compnessive stnength of br icks in MPa

(ASrM67(76))

is a bnickwonk pt ism slenCerness factor

= o.o178 {57.3 - [htlr, -o]il
whene hs/t= is the prism slenderness nat.io (treignt-to-

least lateral dimension) in which 2 <hs/t= < 6

is materia I size f actot

e

c

n

= 0.00118 1273 - Ihrltj - 14] 2]

f

where hu/tj is the ratic of the brick height to montan

becj thicl<ness in rvhich 2-5 t hu/ri < 1o

is the compressive strength of mortar in tüPa determined
c

f nom mort an P r i sm tests '

Gnimmstatedthatequation(3.12)appliedtobrickworkpnisms

with compressive str engths in the nange of approximately 1'7MPa tc

45Mpa (25Opsi to 65OOpsi). He did not give .a'ny. conf idence limits on

results using equation (3.12), but implied that brìckwonk str^ength

is pnoportional to bnick stnength for a given mortan strength' a

pnemise wtrich is not suppor^ted by results reviewecl in section 3'3'2'3'

Fot pnactical purposes, Davey and T.'ot-t(30) necommended the:

combinations of bnick str ength and mortar type' given in Table 3'4'

to obtain both ef iciency and economy '



Table 3.4: Brick and Mortan Combinations

. They gave no necommendation fon brick strengths between

ancl 20.7MPa (t5OOps¡ atrd 3O00psi) although 1:1:6 mortar

suitablefonbricksinthatlowtomedium.str.engthnange.

and Baken showed that

sample and
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1 0.4PMa

would be

U vanied between

3.3.2.6 Thecnetical prediction of compnessive strength

Hilsdorf ft7) , Khoo and Hendr^y 
( 1 18) and Francis tt ãt '(78) have

attempted to pnedict the compressive str ength of brickwork analytically

by evaluating the interaction of the materials up l,o f ailune. Hilsdor^f

assumed tlrat the stress distnibutiorr in a brickwonk pier could be

idealized as in figune 3'14'

shellt ..t.,(41 ) found expenimentally that the failu.e load of

brickwork made of high strength bnicks (loo¡¡pa) could be increased

byuptoB0percentîfthenornìally-irr.egularbnickfacesweneground

f lat. su¡ face and material ir^regular-ities caused the stresses' o y' in

thedinectionoftheeXtennalloadtobenon-uniformsothatStress

concentnatìons. cou I d be pnesent to cause prematune fai I ure of the

bnickwor^k. Hilsdonf expressed the natio of the maximum nonmal stress

totheaVerâgenonmalstressbyaterm,u,caliedthenon-Unìfor.mit5,

coeff icent.

ExPeriments bY Base
(6e)

<1500

3000 to 4000

> 4000

< 10.4

2O.7 to 27 .6

> 27.6 1 :f,:3
1:1:6
1:2:9

psr a

Bnick:stnength lvlorta n

(C: L:S bY

Mix
vol ume)

1.10 and 1.49 depending on the brickwork the stness level,
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and Hilsdorf found expenimentally that U varied as in figune 3'15'

Figune3.l6showshov,;thecombinationofstressescouldVanyina

singlebrickwithinabrickwonkunitsubjectedtoaxialcompression.

Forthepuf^poseofconstructingthediagnam,¡tisassumedthat

thelatenaltensilestresses,oxandcz,aneequalandthatthecritical

compnessive stress, oy, is equal to the avenage stnesst oy*, multiplied

by the non-uniformity coeff icient u. with neference to f igure 3" 16' line

Anepnesentstheassumedfailurecriterionforabricksubjectedto

unifonmcompnessionandbiaxialtension,andthedevelopmentof

internalstnessesunderincneasingloadisassumedtobegivenby

astnesspath,suchaslineBl.Hilsdonfassumedthattheintensection

oflineBtwouldpnoduceonlylocalcrackinginthebnickandlvould

not cause tota I f ai lure because the triax ia I stness state i n the mortar

fon that loading condition would not constitute a failur^e state in the

montar (line c). Failur-e of the br ickwork was assumed to occur at

atniaxialstnessconditionrepnesentedbythepoint.attheinten-

section of line A and line c in figure 3'16' Hilsdorf asstrmed that the

str-ength of montar unden tniaxial compression was similar to the

strength of concnete unden tniaxial compnessiot-t' Riclrant et al' (Bl )

had found tlrat, fon a small range of concnete strengths, t; tlaxial

stnength of concnete cor: ld be approx imated by -

fc + 4.1 o2

is the comPressive strength

concrete cYlinden

is the uniaxial comPnessive

cy I i nder

is the latenal confinement

(3.13)

in which f of a latenallY confined

stnength of a concrete

f

pnessure on

54

the cy I inder.

I atenal stresses

eaclr bnick and

f
c

o
2

l.i ilsdorf fur^ther assumed, fot'simplicity, that the

uniformly distrlbuted throughout the height of
were
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each montan ioint. The expression Hilsdonf obtained for the axial

stnength on masonr Y was -

f r f
C bt + c (3.14)

+ J .. ¡bt JD
C

st r'eng th

non-unifor mitY at f ailure

br^ick tensile stnength

montan compressive strength

pr^opontional to joint thickness/Un¡cX height

whene j is joint thickness

b is bnick height

uniaxial comPnessive stnength'

b
Fr

in which F'

fbr

m u

is brickwot-k

is value of

is uniaxial

is uniaxial

is the natio

-J--4.1 b

u

m

U
u

r
c

"ju

C is the brick

Thenon_unifonmitycoefficientU,waSnotconstantbutdepended

onanumbenofparametensincludingjointthicknessandmontan

stnength.

Khoo and Hendny(117) investigated the behaviour- of bnick

mater^ial in a state of b!a1ia! tension and uniaxial compnession and

the behavioun of montan subjected to triaxial compression ' They

established that the strength envelope fon brick, which Hilsdor-f

assumed to be linean (f igur e 3.16), could be repnesented by the

relationshiP

ol
( Yq)

c

0.546 (3.1s)

in which o t ¡s tlre average compressive stness at fai lune

the uniaxial bnick compnessive stress

the tensi le str'ess at f ai lure

ym

C is

o t IS

t bt is the uniaxial brick tensile str ength'
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Equation(3.15)isshowninfigure3.lTandwasbasedonthe

results of tests on a lange number of specimens of bnicks r'anging in

cnushingstrengthfnom3l.6MPatog2.TMPa.Theconcaveshapeofthe

f ailur e curve shows that the compressive stnength of a b¡^ick may be

severelyneducedbythepne-senceoforthogonaltensilestnesses.

Khoo and Hendny also investigated the triaxial compnessive

strength of t :|:3 an.d 1 :1 :6 mo.tars using a tniaxial test cell' (118)

The pr incipal stness nelationship was found to be

o (3.16)

(

I
I

ì

i

l

l

l
I

¡

f
f 1+ 2.g1 .(--î 

o'8 o s

c c

in wh ich f is the compnessive stnength of the laterally conf ined

cf

o

mot tar

is the uniaxial

is the later al

streng th of the mortan

confinement pressure on the montan'
2

Equation(3.16)giveslowenstnengthsformontarinatniaxial

stness state than does equation (¡.1g) pnoposed by tlilsdorf ' On the

basis of their test nesurts, Khoo and Hendny(117)' 
(ttg) p"opo=td a

failure theony fon bnickworl< (f igune 3'18)'

As the ventical compression acting on a bnickwor.k increases,

thestateofstressinthebrickmaychangeaSrepnesentedbythe

dashed line oA in f igur e 3.18. Failune should occun in the br ick when

the cunve oA intensects the f ailune envelope ai point At so that the

compr.essivestrengthofthebnickwor^kpnismwouldbegivenbythe

stnessor-dinateatthatpoint.ThestnesspathdependsUponthe

chanactenistics of the mortan joint unden triaxial compnession' so that

fon a weaken montan, whose latenal stnain may be greater under

ventical load, the stness path could be represented by the cuve ots'

ln this case, the point B on the f ailure envelope v;ould cjef ine the

compnessivestrengthofthebrickwonkpnism.Hendryindicatedthat
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¡t is not 
'necessany to detenmine the stness paths OA and OB in f igur'e

3. lg because the stnesses in the bnick at the brick-montan-intenface

can be nepnesented by superimposing on the bnick f ailure envelope

a cunve derived fnom the tniaxial compressive stnength relationship

for the montar. curves fon vanious montans have been determined by

Khoo(118) and ane shown in figune 3.19 supenimposed on the bnick

failure envelope (cur ves AA' and BB' ) . Hendny( 120) neponted that the

bnickwork pnism stnengths calculated using graphs such as figune 3''19

compane well with exper^imental nesults.

Fnancis et 
"1. 

(78) .rrrr.d that the stness distnibution in a

stack-bonded prism could be as shown in figure 3.20. The pnism is

subjected to an axial compnessive stress oy so that the latenal stnesses

induced in a centnal bnick and in the montan joint ab<¡ve and belolv

¡t may be nepnesented as in f igune 3.20(b). The f ailune envelope

assumed fon the bnick was the linean relationship between tensile and

compressive stnesses shown in figure 3.21. It can be shown that the

failure compnessive stness oult is related to the latenal rensile stress

induced in the bnick by a linean expnession of the form -

U/ ¡ th nef erence to f igur e 3.20,

x and z dinections may be calculated

60.

(3.17)

the strains in the brick in the

as fol lows:

o xf)

oxb 1i ' (o,itt o ult
o ultin whích 0

and -t
t

is the lateral tensi le stnen-qlh of the brick '

o

1.-Ë; L o,.o + ub (o 
u

c; t o.b * 'b (o,

otu)l

o^u)l

( 3. 18)€
Xb

1
e
zb (3.1e)
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Simi larly, in the montar joints
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( 3. 20)

(3.21 )

moduli of the

correspond i ng

+vÊ zmxmE
m

and o

zmE

xm

zm

€ I +v o )lxnl

are the elastic

and v are the
m

m
m

ln the above equations EU and E.

bnick and mortar.espectively and ub

Poissonrs ratios.

For- equilíbnium, the total lateral

equa I to the tota I latera I compnessive

¡f the natio óf brick height-to-montar

ttren -

fonce in the montanr so that
, 
h¡.

thickness is denoted bY (h-)'
m

tensi le force in the bnick is

ß.22).

(3.23)

(3.20), (3.1s) and (3.21 )'

sl-lown that -

o

Fon compatibility of displacements at the brick-mortan intenface,

"xb
€
XM

a,nd ,zb
(3. 2s )

e
zm

Tlrenefone, f rom

(3.22\, (3.23) , ß.24)

equations (3.18) and

and (3.25), it can be

uo)
o

E
b

h
m

Eu

E-
m

v
m

b
o

Xb =O= zb E b b
hl+

m

ub
m

E
m

m

( 3. 26)
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St¡bstituting fon o

and neglecting the term

oult
o ult

1+

equation (3.26) using equation (3' 17)'

) gives the result

(3.27)

tnxb
(1 ub

1

E.,b
o( E- 'u.

m

uu)

h

h
b

m

bE

E
m

(1 -v )'m

Fnancis conducted expeniments to test nesults fnom equation ß'27)

by using two types of brick' one solid and the othen coned, together

with 1 :1 :6 mortan and showed that the neduction in bnickwor^l< prism

stnength causeþ by montar joint thickness could be pnedicted to an

acceptable degree of accuracy as shown in figune 3'22' However'' the

assumptionthatmontarislineanlyelasticLlptofailur^eisnot

supported by expeninrental evidence (section 3.2) and test nesults

presentedbyKhooandHendrydonotsuppor-teithenHilsdorfIson

Francis, proposition that a Tresca-type f ailune cniter^ion is applicat¡le

to brick material . Francis used a Poissonrs ratio fon mortar of o'25'

and althougtr its value was important to the result, ¡t was estimated

and not measured. Ther-efore, of the thnee ¡nethods described in this

section, the gnaphical appnoach proposed by Khoo and Hendny (figure

3.19), based upon experimental tests on br^ick and montai^ materials,

appeans to give the best estimate avaìlable at this stage of the

compressive stnength of a bnickwork prism'

3.3.2.? The effect of time on compressive strengttr

The cur-ing time of the cement and lime in the

joi nts affects the contpnessi ve stnength of brickwork

similar to that for the tement in concrete. sahti.r(aa)

incnease in montar- prism strength with time' based orl

by o.rri=(79) as shown in figure 3'23'

mortar^ in the

in a mannen

neported the

data presented
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, lt was shown in the previous section that the stnength of

brickwonk is nelated to the tniaxial compnessive stnength of the montan

so that it may be assumed that the increase in brickwonk stnength

with time is similar in a qualitative sense to the incnease with time

of mortar pr-ism str^ength as shown in figure 3.23' That is, com-

pressive strength increases signif icantly up to appnoximately two

months af ten construction af ter which no signif icant change in str-ength

isappanent.Fromtheresultsshowninfigure3.23,theZS_day

uniaxial compressive str ength of a montar is appnoximately 70 peÌ cent

of the long-term stnength.

3.3.2.8 Eff ect 'of boncl Patterns

lr,,to,-rL(40) descr-ibed several investigations on both piens and walls

in which different bc,nd patterns wene used. No signif icant difference

in compressive strengths was observed among the vanious methods of

bonding. Sinha and U".rO"y(80) neached the same conclusion after

tests on model brickwork walls using several diffenent bonding systems'

The differ ences which may occur betweetr single-leaf walls and

multiple-leaf walls will not be discussed here'

3.3.2,9 SttmmanY

The compnessive strength of bnickwork depends tlpon the strength

of the montan in tniaxial compnession and the br-ick mater'ial in ventical

compnession and biaxial lateral tension. Émpirical studies based on

the uniaxial stnengths of both the brick and montan materials have

resulted in pr-oposed fonmulae which may be used to obtain appnoximate

values of bnickwor k strength, for example equation (s.lz) (cr^inrrn(tu))'

Khoo and HencJr^y(118) have pr^oposed an analytical approach by which

the compressive strength of bnickwonk may be pr ed ictecl using a

gr aphical method as shown in f igune 3.19. The compnessive stnength
t
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of brickwonk may be 'calculated using thein

type, the brick uniaxial compnessive strength

mortan thickness to brick height are known '

method

and

once the mortan

the ratio of the

3.3.3 Axial and Flexural Tensile Strength Across the Bedjoints

Tensilefailune,oncnackingalongthebedjoints,canbepnoduced

eitherbypUreaxialtensionorbytensioncausedbyflexune.

Stnuctunal bnickwonk is often constnucted from r'elatively high strength

bnicks and medium-to-high stnength mortans so that the most fnequent

mode of tensile f ailure across the bedjoints nesults f nom a bond f ailure

at a br ick-to-montan interface. Mortans which ane modified by onganic

bondingagentScandevelopexceptionallyhighbondSothatfailune

mayoccul^inthebedjointmor.tar,andpossiblyinthebrickadjacent

to the mortan-bnick interface. Howeven, norrnal Portland cement montans

which use only lime as a plasticizen do not usually expenience matenial

tensile f ailur-e. The f actons which inf luence the strength of the bond

betweenthebedjointmontanandthebnicksaner.eviewedinthe

following sections.

3.3.3.1 A companison between axial and f lexuraì bond

Plummer and al"t(29) assessed nesults obtained by Dtt'it(79)

who neponted cliffer^ences between the bond stnength of bnicl<work when

measured in axial tension and in flextune across the bedjoints' (Bond

stnength measur^ed by a test which induces flexure tension with no

axiaItensionisusuallynefennedtoasthemodulusofrupt.uneof

bnickwonk. ) in the tests, all bricks wene wet prior to laying and axial

tensile borrd was detenmined using couplets of crossed bnicks' The

modulus of r-uptune was determirred using a lirre load on a cantilever-

brickwork pier which spanned in a direction nonmal to the bedjoints'

companisons between lhe axial tensile bond strength and the modulus
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ofr-uptuneforthneetypesofbrickandthreetypesofmontarcanbe

made fnom the nesults summarized in Table 3'5' Davis concluded that

the axial tensile stnength, determined f rorn a test on a cnoss-brick

coup,l et, is less than the modulus of ruptune. Funther'tests wene con-

ducted and the nesults indicated that bond is approximately 25 pencent

less between mortan and smooth bnick sunfaces than between mortar

and nouEhened sur faces. Table 3.5 shows that in all cases,. the axial

tensile bond stnengths were less than the moduli of ruptune and in

no instance was the bond stnength gneater than 20 percent of the

montar compnessive str ength.

Modu I us

of Ruptune

(MPa)

1 .231 .19 0 .66 1 .57 0.72 2.36o.79 1.14 1 .39

Axial
Tensile
Boncl (MPa )

0.560.45 o.23 0.43 0.190.60 0.59 0.45 0.34

eT
(b)

tan
¿ 3 2 3 32

(a) Br ick
Bni ck
Bri ck

20.9MPa
26.7lv1Pa
53.2MPa

.(b) Morian 1;
Mc¡rtan 2;
l¿lortar^ 3;

= ZO.ZNIPa
= 17.OMPa
= 11.7MPa

A; c =
B; C

c; c =

121/3:4
1:|:a|;
1:1:6;

f
fc
fcc

Table 3.5: Bond Strength in Brickwonk Pnisms

. (36) .---^-r^r -^^,,!+- ^+ rtav,rnal tenq'ile strenqth and cJinectþnlmm neported results of f lexural tensile strengtl'

tensire str^ength tests measu.ed according to AsrM E149(82)' He showed

that the flexural tensile strength r-anged fnorn O'34MPa to 3'4MPa (50psi

to 50opsi) and typically was as much as twice tlre vaiue of the dinect

tensile strength. The !arger^ values of f lexur al tensile stnength



(modulus of nuptune) agreed w¡th the results in Table 3.5 given

Davis, but neithen Davis non Gr imm offened an explanation fon

f lexural bond strength being gneaten than axial tensile stnength '

68

by

the

3.3.3.2 Factons which affect bond

The bond of conventional Portland cement montan to bnick is

pnimanily a mechanical keYing

rather than a moleculan bond

f low into the sunf ace voids of

affect bnick-montar bond ane

of the montan into the bnick sun'tace

(36) . Thenefone, the montan paste must

the bnick so that thnee factons which

flow of the montanr waten retentitivity

suction (l.R.A.). Tests neponted byof the montar and

Irb""nu.(60) indicated

raised i ts flow fnom

compressive stnength

3.24).

bnick

100 to 1 35

but incr'eased

pencent Produced

the tensile bond

a decnease in

stnength (figur'e

that the addition of waten to a mortan which

The increase in bond stnength with incneased water-to-cement-

nat io possib ly was caused by the i ncneased ab i I i ty of the mortan to

flow into the bnick surface innegularities'

youl and Fo=t..(83) suggested, âS a nesult of expeniments on

miniature bnickwork panels, that optimum bond, â3 measured bv a

flexural bond test, could be achievecj vrith a mortar flow of 130 pencent

and waten netentitivity not less than 80 pencent'

plummer and Ru."do.(84) reponted that the tensile bond Str^engtir

decreased rapidly as the bnick suction (l.R.A. ) incneased' panticularly

fon strong cement mortars (figure 3.25). The removal of waten fnom

the montan by the br ick causes incomp lete hydration of the cement at

the brick-mcntar interface and tl'rereby leads to reduced mortar

stnength.

other researche"r(tui, Qz) fourrd that brickwor k specimens rvhich

wene macle with br'icks rvhich had been rtwetrt pr ior to laying developed
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substantially higher bônd strengths than those which wene laid dny,

andthatasuitablemethodfonachievingoptimumbricksuction

involvedsaturatingthebnicksbutallowingthesurfacetociry

immediatelybeforelaying.Abrickinthisconditionisoftennefenred

to as being satunated sunf ace-dny. c"irr(36) stated that the time

intenval between spr eading and laying the bnick should not exceed

one minute and that each br.ick should be tapped into place once only,

usingthetnowel,intoafull-bedjointSothatthemontanisforcedinto

the bnick sunf ace without any separation of the mortan constituents '

Subsequenitothelayingpnocess,themethodofcuringcanbecnitical

to bond strength and ¡t has been torn¿(60) that moist-curing of tensile

bond specin.l".= produces considenably higher bond stnengths companed

with stor^ed-in-ain Pnisms '

. (¡Ot -^anìmont.a I lv-b, ns f on both
þnlmm ' proposed expenimentally-based expnesslo

direct tensile bond stnength (equation (3.28)) and f lexunal tensile

stnength (equation (3.29)) for brickwonk constnucted with normal Pontland

cement mortan as follows -

(a) Direct Tensi le Bond Strength

105)o'ul (ooÍ 35x 10-6. Il.e + (F

is bond stnength

E14s(82)l

is initial flow of

is air content in

t is montai' exPosune
m

the t ime takerl

70,

Al (124 t ) (3.28)

of montar to br ick in MPa (ASTM

< 135%\

m
b

in which fb

F

A

montan (tos% < F

montar bY volume

time (tm <12O

between laY ing

whene A < 30%.

wh ích isseconds )

the brick.

the mortan and laY ing



(b) Flexural

( Modu I us

f, 0.026

Tensile Bond Strength

of Ruptune acnoss Bedjoints)
c

ofb. (28 - tr)[s.e + (T: 1)
0.5

71 .

(3.2e)l

in which f,

0

f

is f lexur al tensile strength in MPa

is workmanship constant fon masonry in flexure

- 1 fon inspected wonk (all joints f illed)

= 0.8 for uninspected wot k (io¡nts pantially f illed)

is bond stnength acconding to equation (3'28) in MPa

is montar' bedjoint thickness in mm where 
'j 

< 19
b

t.
J

c
(È) IS

TYPicallY,

inch) bedjoints,

cement: lîme ratio bY volume in
CC

t*d-<4(+=4fortYPeM
and 1 fon N).

montan where

mortan, 2 for S

fon type

equation

N montan and inspected work and lOmm ß/A

(3.29) becomes

85 fb (3"30)f, 1

Gnimmquotedthecoefficientofvar'iationonthedatausedto

denive equation (3.23) as 21 percent '

The effects of oiher factons such as sand-to-cement natio, sand

gnadation, sand panticle shape and the chemical properties of tl¡e

cement and lime on the bond strength of brickwork have not been

studied. The long-tenrn char-acteristics of bond stnengih also have not

been investigated, and although the shont-tenm effects on borrd of

montar flov,r, waten netentivity and bnick suction are undenstood, it

is possible that the lorrg-term strength of br ickwonk may depend not

only on bond at the becìjoints but also on fr ictional shear at the br-ick -

montar intenfaces" These shear aspects of bnickwork are discussed in

the next section.



3.3.4 Flexural Strength Across the Perpends

The behaviour of small br ickwonk assemblages subject to bending

parallel to the'bedjoints is compliçated by the fact that the comfnon

stnetcher bond pattenn causes horizontal bending to be tnansmitted

in part by a complex tor sional shean in the bedjoints. A review of

nesearch into the simplen problem. of in-plane shear on the bedjointst

both with and without compression normal to the becijoints, is therefore

useful in assessing the panametens which affect the flexunal behaviour

of brickwor-k unden honizontal bending '

3.3.4.1 ln-pla,ne shean on the bedjoints
r36) to be aThe shean stnength of masonny has been r'eponted'-

function of both the bond strength of the montar to the bnick and also

the fnictional nesistance at the br-ick-mortar intenface which itself

depends on the compnession forces nonmal to the bedjoints' lf tl're

brickwork is constnucted with cored bnicks, then the shear strength

is incneased by the montan intnusions into the br ick cones, sînce

failune in that case also nelies on a shean failr'jre in the morta'r'

intrusion. Grirr(36) recognized that there was no specified nreihod

fon testing the u ltirnate shean stnength of bnickr¡rork with a cornpression

stness and suggestecl that the following equation could be used:

72

(3.31)1. + 0fbp41
S

f

whene f is shear str-ength of brìckuror k in MPa
S

f, is bond str'ength in MPa
b

o is coefficient of fniction

f is axial compression stress in MPa and f > f
pps
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A necommencjed pnactical value fon the coefficient of fniction,

e'waso.63,andtypicalvaluesfortheshearstnengthofbrickwork

were neported as nanging fnom 0.42MPa lo 4-7MPa (OOpsi to 68Opsi)'

Hatle"(7) gave the following expnessions, which repnesented f itted

cunves to exPerimental data -

(.) Nonmal Quality Brickwonk (Cement-Lime Montan)

T 2.9 o + 1.93 3.73MPa ( 3.32 )

(b) Special Quality Brickwonk (Cement Montan)

T 2.9 90 't .73MPa (3.33)

ln both equations (3.32) and (3.33)'

o+0

is the

is the

Munthy and HendrY

set of exPeni ments, that the

previously, fnom a

could be exPnessed

in-p lane shear strerr gth in MPa

compressive stness nonmal to the bedjoirrt in MPa'

0.73/;;

in wh ich r is the shear bond strength in MPa
o

otb is the tensile bond stnength in MPa'

(s6)

i
ó

Fon the cases in which ú is zero, I for Nonmal Quality Br ickwonk

from equation (S.gZ) is 0.3OMPa and for Special Quality Bnickwork'

i from equation (¡.¡:) is 1.02MPa'

sinrra and H"no"y(85) r elated the shean boncl strengthr as

distinct f nom the f r ictional shear strerrgth, to the tensile bond

strength, after they Ï-.ad tested specimens, built with cement montant

to which no compressive stress was applied. Their proposed relation-

ship was

T
(3.34)

similar

in the

o

had nepontecl

r-elationshiP

fonm



2.3

Equation (9.¡S) was similan to

Poty.kot 
(92) and subsequently used by

was

(3.3s)

the relationshiP PnoPosed bY

Mayes and Clough Qgl , which

7 t+.

(3.36)

bnick-mor'tan i ntenface

the bedjoints.

otbo
T

T,

o
6tb

in which

(85)
Both Sinha and MunthY

compnession is Present the total

be expressed i. terms of bond

fonm -

2.25

expnessed in MPa and was less than 0'lBMPa'

5'o,b

O. WAStb

T=T + fo

(86) concludecl that when vertical pne-

shean stnength of bnick couplets could

shean and frictional resistance in the

( 3.37 )
o c

inwhichtisthein-planeshearstnengthonthebedjoints

o
T

f

o

is the bond shean stnength

is the coefficient of fniction at the

is the compressive stness nonmal to
c

'f he coeff icients of f niction calculated by the two authorsl95)' 
(86) 

f rom

test nesu I ts were 0.7/+ and O '725 nespect ive I y '

Hendry( 120) reported mone recent tests on model and f ull-scale

structunes conducted to establish a nelationship of the form of equation

(3.37). The shear stnength fot the type of bnickwork tests was found

to be g iven bY the exPnession

T 0.3 + 0.5 q (3.38)
c

Equation(s.se)fittedtheexperimentaldatawellfor^vaiuesof

the ventical pnecompression, ac, less than 2.OMPa (figure 3'26)'

Hendny(120) also summanized experimental results which indicate that

the value of bond shean strength, .o, may vary between 0"141'¡1Pa and
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O.3MPafonpracticaIcombinationsofbnickandmontarandthatthe

coefficientoffniction,f'mayVanybetweeno.3and0.34fondiffenent

types of brickwork.

Hamid and Drysdalu(87) ,.toicated that the strength of brickwor k

in combined shear and compression on the bedjoints may be sensitive

to the natio of nonmal, compressive stness to the in-plane shean stness

along the bedjoints, panticular ly at relatively high nonmal stnesses'

Their exper-iments on brickwork specimens showed that the intenaction

ofcompressiveStressanc-!sheanstnesscausedthestrengthofthe

bnickwonktoVaryasshovlninfigur.eg.2?.Theyconcludedtlratthe

montantypedidnothaveanyeffectonthecapacityofthebr^ickwonk

as long as tÁ. shear_slip mode of f ailune was pnedominant by com-

parison with a vertical splitting failune chanactenistic of excessive

nonmal compressive stness (Section 3'3'2) '

3.3.4.2 Tot sional slrean on the bedjoints

Any combination of ioads which causes a bnickwork panei'

nestrained at its ventical edEes, to translate out of its unloadecl

plane,pnodr-tcesbendingstr-essesparalleltothebedjoìntsancJ

consequentlyinducestorsionalsheaninthebedjointntontan.Baseand

8.L."(69) described the f ailure modes of small bnickwor-k assemblages'

built with model bnicks, which experienced bending stnesses acnoss

the per'pend joints (f igune 3'28)'

Thethneetypesoffailur^eobsenvedWereabendingfailurein

the br-icks (figure s.28(a)), a failur-e of bond in bendi.ng on a per'pend

joint (f igure :.zg(rr)) and f ailur e of the bedjoints' in torsional shean

(figure¡.28(c)).Basestatedthattor-sionalsheanfailunewas

associated with a boncl f ailure, but the nesearch revierryed in section

3.3.4.1 suggested ihat, for in-plane shean' a f rictional component was
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Fnactune Line
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alsopresent'sothat¡tSeemsneasonabletoassumethatthenecould

also be a f nictional component in torsional shean'

. sahtin(aa) summanized a theonetical appnoach by Royun(88) who

descnibed the mechanism of flexural actiorr acnoss the perpends by
1.y

assuming¡ that the sheai^ str-ess.oven the anea (d x z) (figune ,Z{\

had a maximum value r . The maximum moment carnied by that anea'

by the membnane ..,.logy(89) (for a f ully plastic type shean stress

distribution) is thus

$'t= - +)
( 3.3e )

where M is the maximum moment capacity of the area (d X z'|.

tigr". 3.2g.

RoyenassumedthattheshearStnessWasrnobilizedsolelyby

f riction and not by bnick-mcrtar bond, and that the moment capacity

per unit height of wall could be expressed as

( 3.40 )

ì<

M

m (z

ñ ¡s the mornent capacity pen unit

u ¡s the coefficient of friction

o is the cornpressive stness nonmal

also considerecl a non-uniform

the friction anea so that when the

[<ern at an effective eccentricity

the friction area was r-educed fnom

3/2.(d - 2e). z

height of wall

to the bedjoints.

distr ibution of ventical

axial f orce was aPPlied

of e fnom the section

(d x z\ to

(3.41 )

ryq'
2b

d
3

in wh ich

Rogetr

stness oven

outside the

centrel ine,

The stress o was assumed then to be a uniform avenage stness

over the reduced effective anea given by equation (3'41 )'

Sahlin(zt+) pr-oposed tha't an uppen limit fon m could be taken

as the moment which caused a bending failure with cracks tlrr^ough



the bnicks and per pend montan joints' That is,

d ot
(Failune) m

bt
6

2

79

(3.42)

( 3.43 )

.in which oå,¡t a tnansvense

Therefone f rom equation (3.40),

bending strength for the bnickwork '

m (zuod2-zt d/3)
d2olbt
-et

ln equation (S.a¡), 2 >

assumedtobeapproximatelyo.5too.Tataclaybnick-montarinten-
. (44)
Tace

Royen's theory d¡d not include the continuity of the bedjoint

mont,ar non thé stness-car^nying capacity of the perpends which could

be signif icant. No neseanch has been cannied out to compane any theory

on tonsional shear with expenimental evidence. comparisons have been

made, howeven, between the flexuraI stnength of stretchen-bond bnick-

wonk acnoss the perpencs and acnoss the bedjoints, but the complex

nature of bedjoint tonsional shean has not been investigated' lnstead'

reseanch has been dir ected towands an ovenall appneciation of bending

across the bnickwork penpends. Some of the nesults which compare

flexunal stnengths in the two pnincipal directiorls in brickwonk aÎ^e

pnesented in the next section.

3.3.4.3 Compar.isons of flexural strengths acnoss perpends and bedjoints

Expenimentsdesignedtoestablishapnedictablenatioofflexural

stnerrgth across br-ickwonk perpends to flexunal stnength acnoss bed-

joints fon brickwork built in stretcher bond have pnoduced natios which

vary frorn approximately 1.5 to 9.5(90) or.. a range of brick and

mortar tYPes.

L.*.un."(91 ) investigated the f lexunal str ength of bnickwork

nonrnal to an,c panallel to the beojoints, without the inf luence of
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on-plane compress¡ve fonces,

fnom the nesearchers, to obtain

and used the nesu lts togethen with data

the nelationshiP

(3.44)

f lexura I strength acr oss the

f lexural stnength across the

2. 17
R

in which R is the r^atio of

penpends

bedjoints

B is the flexunal

in MPa.

to

in MPa

strength across the bedjoints

/*-

/"-

A plot of equation (5.++) togethen with the expenimental data

is given in fig'ure 3.30.

Lawnence stated that the connelation coefficient was 0'94 which

indicated that the ratio R was highly dependent on the bond stnength

achieved by the bnick-montar combination. Lawnence also claimed that

the results shown that the ratio R was independent of whether failure

occurned in the bnick or as a torsional shear failune in the bedjoints'

Equation (3.44) was subsequently modified by Lawnence(121) as a nesult

of more experimental data being available to be -

75
( 3.4s )R

The difference between equations (3.44) and (3.45), resultirrg

from the amourrt of test data available, indicates that thene may not

be a useful relationship of that fonm fon brickwonk. Holvever,

Hendny(120) has reponted that wort(122) showed that statisticall¡r there

exists a nelationship between f lexural str ength acnoss the per-pends

and brick section ( | .R.4. ), a f acton which inf luences the f lexunal bond

at the bedjoints (Section 3.3.3.2).
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3.3.4.4 SummarY

ln-plane shear stnength of bnickwor:k may be calculated by using

equation (3.37) provided that the nonmal compression stness, o c, is

less than 2.0Mpa. ln equation (3.37), the bond strength, t o, may vany

between 0.14Mpa and o.3Mpa depending on the type of brick and montan

and the coefficient of friction, f, may vany between 0.3 and

o.g4( 120) . At normal stnesses greater than 2.0MPa the shear strength

maydependUponthenormalcompnessivestressinanon-|inear

f.sh¡o.'(87) (f igur e 3.27).

Equation (s.+g) gives a method of calculating the moment capacity

of brickwonk subject to bending acr oss the perpends. Howeven,

Sahlin(44) n.rr. no value fon the tnansverse bending strength for

bnickwo¡ k, oåt. Possibly fot brickwork in commorì stnetchen

may lie in the range

bond, oj,

0.5 o \< o
br

( 3.46)
br

of \<bt

in which o is the transvense bending

3.1.3.3).

strength of a bnick (Section
bt

The nelationship between flexunal strength across the bedjoints

and the flexu¡ ral stnength acnoss the perpends, ês detenminecl by

Lawrence(121) (equations (s.++), (3.45)), may not be acceptable

because the r-elationship appears to depend upon the sample size fot

itsfonm.lnaddition,theeffectsoftimeontheboncJatthebrick_

mortar intenface has not been assessed in the test data used for the

development of equations (3.4A) and (¡.¿s) (section 3.3.3.2)'
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3.3.5 Elastic Pnoperties of Small Assemblages

and Baken
(69) calculated effective elastic moduri fon b.ick-

and parallel to the bedjoints assuming that both

matenials wene linear ly elastic as follows:

3.3.5.1 Elastic Modulus, E

Base

wonk both

the brick

(¡ ) fon

normal to

and mortan

bedjoints,

in which E

a stack-bonded pnism in axial compression normal to the

Êc E.

H+(FE
tr

Eb' t
H+b

m

is the brickwonk

nonma I to the

l
A

n
Ã-

s

(3.47)

the gnoss

( 3.48)

the bed joints

nett sectíon

b

elastic modttlus fon comPresslon
C

bedjoints

Eb is the brick modulus

is the montan modulus

is the brick height

is the bedjoint thickness

is the nett anea of the L'rricks, neduced fnom

ar'ea A bY coring of the bricks'
s

E
m

H

(¡¡) fon a stack-bonded pnism in bending acrosS the bedjoints,

(H + b)

b

A
n

in which E

l
n

IEub
?._
Lñ

Þ
E rt

H+(
E

m
). b

trt
IJ

is the elastic modulus fon bending acnoss

is the seconcl rnoment of at'ea of the br ick

about an axis parallel to the bedjoints

is the connesponding secorr cl moment of anea fon the

gt oss brick section.

n

s



(¡i¡) for a wall subject to bending across the perpends'

E H+Eb
m

84

( 3. so)

(3.51 )

(3.52)

Ep
(3.4e)

(H+b)

is the erastic modurus for bending acro-ss the per pencls

is an equivalent modulus for^ bending defined as
in which E

P

E

E E

in which L is

p is

l' 'is
s

IS

in which E
S

E
2

E

E
2

t.(É)
E., b,(-- ). P
tr

b
(t- +

n
+

m

I

n

the bnick length

the mortan PenPend thic.kness

the second moment of area of tlre'orick gross

section about an axis nor-ma I to tl-re bédjoints

the corresponding second moment of anea for the nett

bnick section.

(iv) fon a wall subjected to bending acnoss the bedjoints'

ES E
(H + b)

2 2 ).( fr'o
t l

E

H+( tr-
m n

is the erastic modurus for bending across the bedjoints

is an equivalent modt-tlus fon bending defined as

I.(+ ). L + dn,'.o
b

1r- + o)

lfthepenpendthickness,P,inequation(3.52)isinsignificant

relative to the brick length, L, equation (S'Sl ) gives approximately

the sairìe result for a wall as does equation (S'¿g) for a stack-bonded

pnr sm.
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Base and Baken tes'ued the theor'et ica I nesu I ts by bend in9 sma I I

br^ickwork assemblages both normal to the par allel to the bedjoints'

The load-deflection cunves fon tests on model brick pier's in flexure

acnoss the bedjoints when loaded over a 33Omm span with line loads

95mm apant, placed symmetnicallyr ane shown in f iguré 3'31 '

BaseandBakennepontedthatthecUf.Vesinfigure3.3lWene

typicalforalltestsconducted,thenesultsofwhicharesummanized

in Table 3"6.

Table3.6:ElasticModulusfot.BendingAcrosstheBedjoints

Base

in bending

and Baker

across the

also tested

perpends,

both

rvith no

f ull-sized and model brickwork

compnession nonmal to the

bedjoints.

The nesults showecl that the load-def lection characteristics were

initially linean and agneed well with theonetical pr edictions as

indicated in Table 3-7.

However, a distinct change in bnickwor k stiffrress was noted

dur^ing the experinrents (f igur e 3.32). Base and daken attempted to

explain the change in bnickwork stiffness by testing sever-al srnall

panels constructed f ronr nmodel br-icksil in which the penpends wene

greased so that the bnick-mor^tar bond on the penpends cou ld be

neglected (f igur-e 3.33) . Tlrey concl,-rded that the displacements for lhe

Solid
(lZ tests)

1 ?-hol e

(1 test) 26.6

26.6

8.7€)

8.76 17 .3 25.0

21 .O

21 .4

20.4

21 .4

Min. Max. Àvenage

rimen ta IExpe Ca lcu lated
Bni ck

Type (x to3¡¡pa)

b
E

MPa )
3
m

E

(x 10

Elastic Modulus (x lO3fr¡Pa)
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9olid
(t¡ tests)

17-hole
(t test) 26.6

26.6

8.76

8.76 19.3 23.4

15.8

21 .3

1 7.3

22.6

Min. N4ax. Average
Ex er-imen ta I

Calculated

Bnick

Type

b
3tr¡p. 

)

E

(x 10 (x t o3t,tPa )

m
E Elastic Modulus (xlO3tvtPa)

B8

Table 3.7: Elastic Modulus for Bending Across the Perpends

panels with gneased penpends were sufficientiy diffenent f¡'om those

of a nonmal br ickwonk panel that the changes in slope shown in figune

3.32 could not be caused by cracking in the per'pends. Howeven, tlrey

wene unable to propose an altennative explanation'

Lawnence and Mo"g-.,(12) investigated the pt openties of small

brickwork panels in bending acnoss the penpends and concluded that

thene was a distinct change in flexur-al stiffness at appr-oximately 40

to 50 pencent of the ultinlate bending moment' The r^elationship between

the reduced stiffness and the initial stiffness was appnoximated, using

a least-squanes

E

in which E
2

analysis, as

z = o.'57E1 - 5oMPa

is the r^educed modulus of elasticity in MPa

is the initial modulus of elasticity in MPa'

(3.s3)

E

The conrelation coefficient was reported as 0.90. Lawrence stated that

the significant correlation coefficient showed that the ratio EztEl was

an intrinsic property of the bnickwork. He suggested that the r eduction

in stiffness cc¡ulcl have been caused by partial cracking in the

perpends but did not obtain dinect expenirl'ìental evidence to confìr'm

such behav iout^.
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Scnivenen and Wi I I iams
(50) repor^ted axial compnession tests on

small brick pnisms ln which the stness-strain nelationships wene

neconded. A complete stress-stnain cunve for the bnick pr^ism with 1omm

(3/8inch)mortarjointsisshowninfigure3.34,togetherwiththe

stness-strain cunve for the br ick. scrivener neported that the secanr

modulus obtained fnom the ascending por^tion of the curve at the point

whene the strain was half the stnain, t O' at maximum stress was

7.5 x lO3Mpa and at maximum stress' eO was 0'0063'

Themaximumstrainobtainedbyscnivenen,whilenelativelyhigh

compared rvith concrete, was nc¡t suppontecl by expeniments by Powel I

and Hodgk¡.'=o.,(93) who tested bnick pier s in compression beyond the

maximum str ess levels. Figure 3.35 shows typical stness-strain graphs'

ThetestsWeneconductedonsmalIbnickwor.kpiersbuiltfnom

foun differ ent types of bnicks and 1:f,:3 mortar. The initial tangent

modu lus i n a I I cases was greater than the secant modu.l us ca lcu I ated

fon two-thirds maximum stness, and the ratio of the moduli varied f rom

l.33fontypecbnickstol.53fontypeAbnicks.Althoughthe

bnickwonk pr isms showed non-linean elastic matenial behaviout^ at

StnesSes near failune, the stness-stnain bel-raviour \/as close to linean

elastic at lovl St]^eSSeS' especially fon higher-stnength bnick types A,'

B ancl D. Hendr y(120) has neported that by plotting the four stness-

stnain cunves on dimensionless axesr the cunves are of tlre same form

and ma5' be exPnessed as

z . ç3-)-Ê-
1

tf
(3.s4)2e

in wh ich o

o-ï
e

is stress nonmal to the bedjoints

is the maximum stness

is strain nonmal to the bedjoin'es

is the stnain at maximunl stness'tf
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From

(3.54), the

91 .

the par-abolic stness-stnain relationship given by equation

initial tangent rnodulus fon the brick is

E
(3.55)

br

s f-2 e f

Themaxirnumstr.essfonallpiersoccunredatastrainof0.3S

per-cent on less compar-ed with a stnain of 0.63 percent reported fon

tests conclucted by Scrivener ancl Williarns (figune 3'34)

Walstein and All"n(94) conclucted tests on forty-f ive walls using

one batch of solid br icks and one type of moFtar. They report,ed

stness-stnain nelationships for bnickwor^k similar to the cunves shown

in figune 3.35.,

other nesearch on the elastic modulus of brickwork has been con-

centnated on nesu lts f rom compressive tests on brick pnisms and has

attempted to relate bnickwonk modulus to the compnessive strength

nor^mal to bedjoints. Base and g.t u"(69) (equations (3'48), (3'49),

(3.50), (3.51 ), ß.sz)) showed that the elastic modulus of bnickwonk

was dominated by the br ick modu lus ancl s-t-t li'n 
(44) r^eponted that the

elastic rnodulus of a br ick was approximately pnoportional to its

strength (equation (3.2), Section 3.1 '3.4}. However, in Section 3.3.2'

it was shown that bnickwork compr^essive stnength is not dírectiy

pr-oportional to brick strength, and ther-ef or^e brickwonk compressrve

strength is unlikely to be related directly to its elastic modulus'

However, in onder to present the nesults of past reseanch' some

nelationslrips which have been pnoposerJ as measunes of elastic modulus

ane given below (includìng cor nections to Plowman's o.o".^(51))'

'51 ).(a) Piowman\"

(i)Eb"=(Br^ickwor^k5tnength(tvtpa)-0.7)X1o3MPa(3.56)



(i¡) Eb. Bnick Stnen th MPa ) .+ 4.1) x lo3MPa
0

(2s)

92.

(3.s7)

(3.58)

( 3.5e )

( 3.60 )

( 3.61 )

height-to-thic[<ness ratio of test

(b) Plummer and Blume

(.) Anderso'n
(7 4\

7OO F; \< Eb" -< 1200 F;

E 1250 Fr
bn m

l:6 montar

br icks 51MPa \< C -< 112MPa

490 F I \< Eb"'-< 1000 Fr

(d) Sahl in

for 1

and

(44)

(u) Grimm

in which ht/,

and

m

but E 700 F' at low stresses
bn m

(36).

Ebr + 6.25 F'i (eO +
m

is a slendenness

h=/t 
)'S

S

ht/t
'S

p ler

< 45, F; .< 21MPa

I rr equat ions (3.56) to ( 3.61 ) 
'

F' is brickwork compnessive str-ength
m

Eb"isinitialtangentbnickwonkmodulusnormaltothe,oedjoints

C is brick compnessive strength'

W¡th relation to equation (¡.OO), Sahlin(44) r-eponted that the

tangent modulus of elasticity decreased as the stress incneased v¿ith

the nate of clecr-ease depend ing upon the type of montan used ' l-le

indicated that l¡ecause the tangent modulus variecl with siress' the

buckling load of a bnickwor k column woulci clepend upon the vaniation

of modulus. ln addition, Nyt.r'out(45) indicated that a stness-strairr
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relatiorrship obtained from a concentrically-loaded pnism might not be

suitable fon calculating the buckling load of an eccentrícally-loaded

column because the stress, and hence elastic modulus, vanies acnoss

the column sectîon. Never^theless, anatytical methods pr-oposed by other

nesearchers for pnedicting the f ailure cf walls and panels will be

discussed in Section 3.4.

3.3.5.2 Modulus of rigiditY, G

Sofan,investigationsinbnickworkhavebeenconcer.nedessen-

tiallszwiththemodulusofrigidityaS¡tappliestoin_planeshean.

ea9"(95) conducted experiments on small one-haff scale brickwot-k

panels loaded , in combinecl compression and shean and calcu lated

avenage stress-strain cunves fon shear fon each of the bnickwork types

shown in figure 3.36, ln each case, the shear stress and the normal

stness were assumed to be unifonmly distributed along the bedjoint

so that each cunve repnesents avenage values fon all tests at each

stness level . Page concluded that the shear defonmations wene nc¡t

sensitive to the degnee of compnessiorr normal to the bedjoint, althougtr

the stress-stnain cunves themselves wene not linear'

Hur,d"y 
( 16) conducted tests on one-sixth sca le sing le-storey

structunes and concluded that the shear rnodu lus of br^ickwork increased

Venyrapidlyatpnecompr.essionloadswithinthenangeofltlonking

stresses. This result is a contnadiction to Page's conclusions above'

possibly because the modulus relationships wene determined using two

different experimental appr^oaches'

ln pnactical design applications, the elastìc rnoduli in the tvvo

pnincipal dir ections, say X and Yt al'e suff iciently close to each

( 122)
other 

(69), so that the following approximation is possible'



0.8 e =60:.
\

\
Q= ?oo

0.6

0.4

rd
À
ã

u)
o
o
L
(n

L
o
o

.C
(t¡

0 =451,.\

o =30o

o.2

0 500
Shean Stnain (x10

750 1 000
o 250 -6

Figune 3. 36: Avenage Stress-stnain

ËÌnickwonk Panels (Pa

Cunves in Shean fon
(95),ge,



+v)

modulus of nigiditY of bríckwork

the elastic modu I i paral lel to, and nor-ma I to'

bedjoints at low stresses

everage Poisson's natio for bnickwor-k which

be taken as o .2ßo\ ' 
(1zo)

95

( 3.62 )

equation develoPed bY

an onthotnoPic Plate.

I
2(E E

X v
G

2,U

in wh ich G is the

are

the

E.E
v

v ts an

Equat ion

T i moshenko
(112)

3.3.5.3 CreeP,

Long-term

in the montar'

(a)

(t')

(c)

(d)

(.)

i n bnickwonk

behav ioun of

bedjoints and

trrickwork can be affected bY creep both

Plo*rn..r 
(51 ) repor-ted that

upon the f ol low ing f actors:

moistune absorPtion bY the

may

(3.62 )

fon the

is der^i ved

modulus of

from

rig id i tY

an

of

the degree of cneeP i n a mortan can

in the bri cks.

depend

af terWater conten t of the montar

bricks

Type of sand

Pnopor tions of the mortar mix

Stness level

Air humiditY

Plowman concluded fncm exþìenimental evicjence that the cneep

of brickwork may be assumed to be approxinrately 20 to 25'pencent

that of concnete under similar conditions of stness and envinonment'

lle suggested that a va lue of 1 OO x 1 0-6 f or cneep af ten ten yeans cou I cj

applytoaIlstr^engt|lsofbrickwor.k.Thebehaviourofwallsandpanels

in which creep is not signif icant is reviewed in the following section'



3.4 ANALYSIS OF BRICK WALLS AND PANELS

This section nev iews the theories

panels subjected toof bnick walls and

96

which predict the behaviour'

vertical load either concentric

panel middle sunface. For the

mode of a wall on Panel is

fai I une rathen than a

on eccentnic

purposes

assumed

bnicktvork

of

nespect to t he wa I I or

sect ion, the col laPse

with

th is

to be chanacterized bY a buckIing

material f ailur e (Section 3.3).

3.4.1 Analysis of Columns with No Tensile Stnength

Most theonies adopted foi- br ick wal ls assumed that the matenial

had no tensi[e stnength. Consequently, the theories clo not apply

stnictly to bnickwonk because the bnick units themselves can nesist

signif icant tensile stnesses. That is, the bricks remain intact while

discrete cnacks may appean in the mortan joints on at the bnick-mortar

interfaces(69). Angenvo(96) considered an eccentnically compressed

homogeneous column, initially stnaight (f igur e 3.37) with a cross-

section symmetnical with respect to the plane of deflection' The negion

of the section in compression is the shaded area in f igune 3 '37 ' The

centroid of the compnessecl anea differs from the centroid of the f ull

section in those pants of the column in which a par t of the section

is ineffective, that is, irr zones that would be subject to tensile

stnesses ¡f tlre matenial had tensile strength. Angervo extencled tl¡e

Bernoulli-Navier hypothesis fon uncracked columns by assuming that

for columns with no tensile strength, planes which were perpendicular-

to the centroida I ax is of the column pnior to load ing nema ined p I ane

in their- compressed pants and pet'pendicular to the or iginal centroidal

AX IS.
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The strain at eacl-l f ibr e is thus propor tional to the distance

fnom the neutral axis at that f ibne. lf the column is divided into small

elementsalongitsheight,theplanesattheendsofanelementinten_

SectatthecentneofcUnVatUnefortheoriginalcentr^oidaIaxis,and

herrcethecontpressionface,fonthatelement.Angervocalculatedthe

fai I une loads fon pi n-ended col umns of constant nectangu I an section

and linean-elastic matenial as

'El
u 

-h,
( 3.63 )

in which Pt is the colulmn f ailune load

E , is the Youngrs Modulus in compression

I is the full-section second moment of area

h is the column height

u is the facton which depends upon the end eccentric!ty

of the load as follows -

(¡) ¡f the load is applied at the same eccentricity at both ends such

that the load acts outside the kern at both ends, then Angervo

be appnoximated asshowed tlrat the constant u maY

fP

s.44 ( t - $r'
in which m

6e
d

where e i s the load eccen tr ici ty at both

fnom the centnoid of the full

d is the section thickness'

li
(3.64 )

(3.65)

measunedends

sect i on

(¡i) if the load is applied at both ends with.q'.tl eccentricity but

withinthekern,itispossibleforthelineofactionoflh.load

to be insicJe the kern fon the encj pants of the column and outsicle

the [<er n near the midheight. ln this case, A,ngenrzo showed that-
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frã + å.rn ,tte..¡f r-il*)
0.5

F= 4. r-p) 1'5. 
I

{,
+ arcsin

z

arcs I n

in which the Panameter, Pr

3eo

Angervo gave values

of the load (faUle 3.8).

(3.66)

is defined bY-

of p and p fon various end eccentnicities

t,".(ffi)'''fJ

p
( 3.67 )

whene, e is the maximum effective eccentnicity of the load at
o

failure (figure 3.37)

d is the section thickness

'm is as def ined fon equation (3'65)'

Thevalueofthepa].ameter'Platcolumnfailunemaybesolved

by trial by calculating the value of p for- which equation (3'66)

tends to a maximum value for u'

1

2d

Table 3.8: Column Failune Load Parameters

for Equation (3.64)

n2

8.75

7.36

5.48

3.98

2.80

0

0.081 5

o.147

o.234

o.312

0.388

0

0. 10

o.23

0.50

o.75

1 .00

upm (eqn.(3.65) )
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Angervo showed Îunthen that values of U calculated using

equation (¡.OS) with values of m < 1 (end load ínside the ker n) wene

with.in 5 percent of values of U calculated using equation (3'66)' He

suggested, thenefone, that the buckling failure loads for all cases

of end load eccentnicity could be calculated approximately using

equations (3.64) and (3.65).

Many matenials do not possess stress-stnain chanacteristics which

can be nepnesented adequately by a simple mathematical model ' ln

order to investigate the behavioun of a non-linean mater ial with Fro

tensile stnength, Angenvo suggested one panticulan form of constitutive

nelationship as' follows -

(3.68)(-s)
o

S 2E
o

S

s* 1

tn o ls
S

sustained bY the materia I

IS e I ast ic rr,odu I us

IS

IS

Equation (3.68), plotted in f igune 3'38, was selected because

the nesulting differential equations for the column defonmations could

be solved r eadilY.

powell ,r(93) 
"^pu"iments 

(section 3.3.5, f igune 3.35) bhowed,

howeven, that the stness-strain relationships fon brickwonk viere con-

siderably ctifferent fnom the relationship pnoposed by Angervo, so that

any non-linean analysis for bnickt¡''onk behaviour based on equation

(3.68) could nesult in significant enrors'

chapman and slatfor d(97) analysec, the elastic buckling of

columns both without tensi le strength arrd with I imited tensile strength

and considered the following cases;

wh ich the maximum stness

the initial tangent

the stness

the strain.

E

o

e
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(¡)thecolumnwaspinnedandconcentnicallyloadedateach

end.lnitiallythecolumnWaSassumedtobedeformedin

theshapeoftwolineansegmentssuchthattheimper^fection

was a maximum at column mid-height'

(¡i) the column was clamped at each end and was deformed

initiallY as in (¡) above'

(¡¡¡)thecolumnWaSinitiallystraightandwasloadedwithequal

eccentnicitY at each end '

Thecolumnsectionwasassumedtoberectangulanfor.allthneecon-

ditions and the investigation was essentially focussed on the pnoblem

oftheinitiallystnaightcolumnwithequalendeccentnicities.The

material was assumed to be without tensile stnength but to behave

according to Hookers Law. The load against centnal defle-ction curves

fon these eccentnically loaded columns were calculated and are shown

in figune 3.39.

ltisimpontanttonotethatinnealc.clumns,theunstable

equilibriumcondition,indicatedbythefallingload_deflection
..characteristic in figune 3.39, is not attained and column buckling

f ailune occurs at the maximum load. (tfre assumption is made thr-ough-

out this section that matenial f ailune does not occun pr ior to buckling

f ailune. )

ChaPman

loaded column

maximum load

ancl Slatfor-d f unthen stated that fon an eccentnical!y

inwhichtheloadWasappliecJoutsidetl.reker.n,the

nlay be calculated approximately by the expression

Pf
tr'cnit

tå - oel

3

load

the full section

7.65

in which Pf is the buckling f ailure

is the Eulen load for

the loarJ end-eccentr^icitY

Pcrtl
e is

d is the section thickness

( 3.6e )
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Theyalsostatedthatequation(3.69),whichcanber-educed

to equation (3.63) wlren combined with equation (3.64)' gave the

maximurn load with fain accu¡acy fo¡ eccentricities less than d/6'
Pf

although the limiting value for' Þ-: at e equal to zero was 0'95
' cnlt

instead of 1.00.

ChapmanandSlatfondattemptedtoexplainthefailunemechanism

of a col umn w¡ thout tensi le str"ength by means of the d iagnams shown

in f igure 3.40. They stated that at the moment of f inal collapse in

the pin-ended columns, the effective depth of the section due to

cracking at the centne of the column was reduced to ze"o (figure

3.ao(a)andfigure3.40(b))Sothatahingerryasforlnedandeachhalf

of the column tot.r.rtar^i ly became straight '

Atthatinstant,thecentneofthecompressionfaceofthecolumn

was said to coincide with the line of the thnust' ln f act, the cases

descnibed are unrealistic cases of unstable equilibrium achieved only

if the exter-nal load is ze.:o, since there must be sonle bending in tl're

column ¡f the load is non-ze.o. The situation shown ín figur^e 3'40(b)

Sôyr can only occur ¡f the eccentnically-loaded column is in the state

e
at whích .{=|) in figure 3.39 is equal to 0'5' ln real columns

unden eccentnic load, ât the maximum load the effective section is

reducedto.Somethicknessatwhichcolumnequrilibriumisata

transition from a stable to an unstable condition (f igur-e 3'41 ) ' lf

the defelction at column mid-height incneases beyond that point, then

equilibnium cànnot be attained at the load level and the column f ails'

At no stage cloes a real column exist in the state described by

Chapman and Slatfond in f igure 3'40(a) and 3'40(b) '

AnimpontantphenomenonwhichChapm.lnandSlatfordCJidllot

consider, panticularly when testing their theon5' against exper^imental

results, was the incnease in compression stnesses which might occun
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¡f the load is maintained as the column fails. chapman and slatfondrs

expenimental nesults wiil be discussed f urthen in section 3.4'2'

yoker(98) use,l the same assumptions as Angervo and chapman

and slatfond, but considered only pin-ended columns loaded with

identical end eccentricities outside the kern. The fonm of Yokel's

equation was -

P 0.64I

ca lcu lated that

the deflection at

,o

II2Eb ,l

Sahlin
(44)

t Fni sch-Fay

(3.70)

in which P. is the failune load
T

E is Youngrs Modulus

b, is column width

u.isdistancefr^omloadtocompressionfaceattheends
I

h is column height'

Yokel also

the ends,

given by

provi.ded the load was outside the kern at

mid-height immediately before f ailur e was

,1

in which tO is the

the

,l is the

the

o.625 (3.71 )

distance fnom the line of action of the load to

column mid-heightcompnession face at

distance fnom the line of action of the load to

compnession f ace at the ends.

Equation (¡.zo) can be neduced to the same forrns pt'oposed

and Chapman and Slatford.

H.¡""(7), Monk(102) and

which ane essentiallY of

and (3.70).

(9e), (1oo)

by Angenvo

chen(tot),

Risager 
(103) have also denived expnessions

the same fonm as equations (g'O¡), (3'69)
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Sahlin also extended the results to columns in which the load

is eccentnic at one end only. The nesults, summarized in figune 3'42'

may be used to ca lcu I ate the buck I i ng load of f ixed-base col umrrs

providedthattheeffectiveheight,trh,isknown.lnpnactice,the

effective height is not easily calculated'

Yokel indicated that the no-tensile stnength theony was inadequate

for bnickwork because the real tensile strength would alten the

equilibrium conditions and the load capacities would be langen than

those pr edicted by a bnittle-matenial theony. He stated that this was

the case particulanly fon walls of veny high slendenness natios ancl

high load eccentr icities. He also pointed out that the br-ick units, with

theiñ gneaten stnength and stiff ness than the montan joints, wou ld

cause stress distributions in the bnickwork which might be much mor e

complex than the idealized lirrear stness distnibution assumed in the

no-tension solution. The distribution of stnesses in the bnicks and its

effects on the behaviour of bnickwonk will be discussed in Chapten

4.

Tesfaye and Bnoome(104) investigated

weight orì the failure load of eccentnically

that, fon single-leaf slender br ick v'ralls,

cranston and Robents(105) testecl solid concrete blocks under

ventical eccentnic load and developed a theory which included an

appr-oximate methocl for analysing the tension-stiffening associated with

the tensile stnength of the blocks. However, they d¡d not indicate how

the theony could be implemented and most of their nesults were obtained

f nom small-scale tests on blockwork couplets. -lhe block aspect natio,

height-to-thicl<ness, used in the couplet tests differ-ed substantially

f rom the aspect ratio of the f u I l-sized blocks, so that the moment-

rotation charactenistics used by Cranston anci Roberts ane of question-

able value.

the effect of wall self-

and showedloacled co I umns

the ef f ect was neg I ig ib le.
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Contaldo 9l al. (106) used f inite diffenence techniques to model

the linear-elastic pnoblem solved by Ang."to(96) and also to simulate

the nesurts obtaine¿ on brickwonk piens by Powell and Hodgkinson(93),

by assuming that the stness-stnain relationship for bnickwor k was of

the form

o = Ee - Krn (3-72)

in which E is Young's Modulus at zero stress

Kr n are constants

Contaldo et al. neponted that Powell and Hodgkinson's nesu!ts

showed that the exponent, n, was appnoximately equal to 2' Howeven'

the formulation did not distinguish between the ciiffenent behavioc¡r

r 0B.

the nesults cannot

the finite differ-

pin-ended br-ittle

used. The use of

material columns

in mone detaìl in

of the bnick and montan components, and thenefone

be applied generally. Contaldo et al. did show that

ence methc¡d is quite an accurate method for modelling

columns panticulanly if at least eight elements are

f inite diffenence technîques in mocielling no-tension

as well as slender brick walls will be discussed

Chapter 4.

3.4,2 comparison of Expeniments w¡th No-tension Mater-ial column

TheonY

chapman ancl stutto"d(97) companed the experimental resulls

neponted by Davey and Thor-=(30) with tl-reir own no-tension nrateriel

column theony and reported that, subject to corrections on the assumed

end conditions and assuming that the columns f ailed by later al

buckling, the experirnents agneed wel I with theony. Howeven, i¡r the

discussion on their paper on bnickwork, Davey and Thcmas(30)

neponted that the only buckiing failune among all the walls the¡r hacJ

tested had been induced ar tif icially by using plywoocl in the becijoínts'
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Therefone, effectively, chapman and slatford compared thein results

fnomano-tensionmaterialcolumntheonywithexperimentalfailune

loadsr^esultingfrommatenialfailure.AnyconcIusionsdrawnfnomsuch

a comparison are clear'ly invalid'

ChapmanandSlatfondalsotestedtheirbnittle_columntheonyby

constructing a column of thirty-thnee, two-inch high (50'Bmm) bv one-

inch thick (25.4mm), aluminium blocl"s and compressing the column

between knife-edges both axially and eccentnically' Howeven' because

ofthe.relativelyhighaspectnatio,onheight-to-thicknessnatioof

theblocks,theydidnottestpneciselyano_tensionmatenialcolumn,

butonewhich,couldcrackonlyatwidely-spacedintenvals'Theend

faces of the blocks were reponted to have been machined flat and

panallel to within I O.OOO3 inches (o.ooamm). Howeven, it is pnobable

thataftercolumnfailune,damagewouldhavebeenincurredatthe

block edges because of the veny lange incnease in compnession stresses

at failune (Section 3'4'2 , panticular^ly since the blocks were of

aluminium. The initial slopes of the experimental load-deformation

cunves diffened mankedly f nom the theonelical cunvesr consistent with

ahypothesisofdamage,sothateVenalthoughtheexpenimentaIfailure

loads Wene reported to agnee with ihe theoneticaI f ailune loads, the

experiments d ¡cJ not estab I ish the va I id i ty of the theory ' chapman and

Slatfor-d,s expenimentS have been repeatec{ by, the author using steeI

blocks and the results, which differ fnom those of chapman and slat-

fond, ane discussed in ChaPter 5'

, (107), (1oB), (lo9) ..d Mantin arJames , )?1, (1oB), (log) ..d Mantin and Nettle( 110) tested stoney-

heightbr^ickwalls,thr^eebrickslong,withslendennessnatiosupto

32sothatallwallsfailedbyelasticbuckling.Jamestestedwalls

ofbnickslaidonflatwhileMantinandNettleusedbr^icksonedge

thtoughout,andtheloadswereappliedthnoughknifeedgesat



1 10.

identical eccentnicities top and bottom. Jamestresults (figune 3'43)

which show considerable spnead at each load eccentricity, ane f rom

ten tests at each eccentnicity and Martin and Nettle's resu lts are each

from one test only. The elastic modulus values for Jamesrexpeniments

havebeencalculatedfromload-deflectiondata.ontheothenhand'

Mantin and Nettle obtained modulus values f nom tests on small mortan

andbnickpnisms,buttheynotedthattheYounglsmodulusvalues

weneofqUestionableaccuracybecauseofthesmallnumbenofprisms

tested f rom each montar batch '

Hasan and Hendry(123) neponted tests on one-thind scale model

bnickwonk wal ls supponted top and bottom and loaded concentrically

and at equal ..,¿ eccentnicities of d/6 and d/3" The height-to-thickness

¡-atios (slendenness natios) of the walls vanied between 6 and 25' All

walls loaded concentr ically nepontedly failed by vertical splitting or

bnick spalling as did walls of slendenness natio up to 18 loaded at

d/6. Howeven, walls of slendenness ratio 25 f ailed by lateral buckling

when loaded at d/6. All walls loaded at d/3 (slender^ness natios 6,

12, 1B and 25) r^epontedly failed by latenal buckling. By using an

elastic rno,Julus, calculated fnom the test nesults of 5'26 x 103MPa'

the failune load natios fon the walls which faiied by buckling may

be calculated as shown in f igune 3.43; the f ailure load natio for an

eccentnicity oi d/3 is the mean of the ratios fon walls with slenderness

natios lg and zs. Hasan and Hendry stated that the buckling mode

of collapse occurned as a result of bond failune at a brick-montan

interf ace, thereby explaining the higher-than-pnedicted failune loads

(figure 3.43) because chapman and slatfordrs theon¡z (equation 3'69)

assumes that the bond strength is negligible' Hasan and Hendryrs test

resultsmayir.rdicate,therefone,thatmodelbrickworkshouldnotbe
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usedfontestingslendenwallsbecausethebondstnength,whichmay

not be ze?o' cannot be scaled in the same way as ane all the wall

dimensions.

West, Hodgkinson and DavenPont Gz) tested walls at eccentricities

of d/B but, because no Youngrs Modulus values wene obtained' com-

panison with no-tension matenial col theor y cannot be made.

Thefã.ilur^eload.ofslenderwallsmayal.so-beaffectedby,

wonkmanship(111) and initial impenfections' but these effects have not

been inconponated into any of the theories for columns of no-tension

materiaIsubjectedtoeccentricloadíng.Thepossìbleneductioninthe

load-carrying çapacity of slender walls due to these effectst even when

constructedwithinlimitspnescnibedbycodsofPnactice,willbe

discussed in ChaPter 8.

3.4.3 Theony of Panels Simply-supponted on Four Sides

Timoshenko(112) described the equation of equilibr ium for an

isotnopicplateloadedbothbylater.alloadsandfoncesinthemiddle

plane of tlre plate. By using Timoshenko's conventions fon the calcula-

tion of fonces, moments and displacementsr the equtation of equilibnium

on a plate element can be expnessed as -

a2 l'1
__ xY
axðy

â2 w
x' -a xu

a2 w
nw-

112.

(3. ?3 )

X

(q+N + Nc +

is the p late

is the force

+2N xy

unit width

unit width

a2w'ñTt

displacement în the Z directionw

N

N is the for ce Per
v

N is the shear force
xy

pen uni t

of p late in the X d irect ion

of plate in the Y dir^ection

width of Plate

per
X

q is the uniform latenal Pressune



is the berrding moment pen unit width of plate caused by

normal stnesses in the X direction

is the bending moment per unit width of plate caused by

normal stresses in the Y direction

is the twisting moment per unít width of plate

N ane Positive for tension '
v

Substitution of the constitutive relationships

o.(-# * "ff1

M D.(1 v). ð 2w

ãtrtxy

in which, for an isotroPic Plate

Eh3
and equa I to

12 .11 - v')

whene E is the elastic modulus

. h is the P late th ickness

v is Poissonrs natio

gives equation (3.73) ¡n the for^m -

113.

(3.74(a))

(3.74(b) )

(3.7a(c) )

c¡f constant thickness, D is constant

(3.?5)

X

xyM

M

M

N

M=
X

v

X

M D,.(
â 2.w

w +
v

ôqw
ãiz-

(q + N
02w

x'ã;z
â2wtt-+2 -F

aqw 1;i- - ¡' +N
v

+ ,n *u. -;r
(3.?6)

lf Nx, cl and N*U aFe ze-.o, and N U is compression and constant

throughout the plate (f igur e (3.44) ) therr equation (3'76) becomes -

âqw
A,ra-F

1

D
â2w

y'ay-r+ (-N ß.??)
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Tìmoshenko showed that the critical buckling load' (Nr)t"' fon

such a plate simply-supported on foun sides' is given by

II2 D ma b ( 3.78 )
2

(N)
v cr

(N )' y'ct^

( + )

half-sine waves into which the plate
a b ma

in which m is the numben of

buck I es '

The vaniable m is an integer^ and must be chosen to

minimum. Fon aspect natios (u/a) < 1

make,*r,..

m is un itY
in equation (3.78) a

and eq'uation (3.78) becomes

2Mo a
w = -II-5õ-

flz D

bT
.[ r

m=l ,3, 5. . .

+
b
a

2 (3.7e )

(3.80)

2 l

Thecriticalbucklingload(*u)."isplottednon-dimensionallyagainst

theaspectnatio('b/a)infigure3.45.ThebucklingloadfonasqUar.e

platesîmply_suppontedonfout^sidesisfountimesthebucklirrgload

of the plate if supponted top and bottom only'

Thelateraldisplacementsofaplateloadedonlybyaconstant

force,Ny,whicl-liseccentnicwithnespecttothemiddleplaneofthe

plate,canbeapproxirnatedbytheexpnessionsobtainedbyTimo-

,r.'"r,ko(112) fon a plate with moments unifonmly distributed along two

oppositeedges,provideclthattheloadissmallcompanedwiththe

cnitical buckling load (f igune 3'46) '

ThesoIutionfonthelater^aldisplacementsintheplateis

2

I f ,"-. tanh *,- . cosh (!1y)
L'm rn

lJv. mlly mll x
(

mIIbz;'in which c=
m

a ) sinh (
a

sln a

( 3.81 )
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Along the axis of symmetny, v-or the latenal displacements ane given by

2Mo
tanhc m mIIx

'<'Slfìm cosho a
m

and fon any given ratio (b/a), the later^al deflection at x=a/2, y=0 is

2

(w) -l-"m"
( 3.82 )I

,3
--r,D-

a

y=0
m=1 5

(*)y=0, *=u/2 =

Values Io. these

foÉ a plate for which

tanh a
m (3.83)

cosho
m

bend ing momen ts Pen un i t w idth

v, is 0.3 are shown in Table

lvlOab

lrÐ-
þ_--1)(-1) 2', 1

Ii
=1,315...m

deflections and

Poisson' s nat io

3.9

wD(b/a)
Mo

(Mx/Mo) (MylMo)

Table 3.9: Moments and Deflections fon a Simply-

supported P late

The centrel deflection of a stnip length q unsuppor^ted on its

edges is approximatel y 3+ times that of a square plate of edge dimen-

sions b, simply-srrppor ted on four sicles; the momen, Mu at tl-¡e centl-e

of the strip is eoual to the end moment M6r while N4U decreases in

a square plate f rom Mo at the edges to a smaller úalue at the centne

oftheplate.Tirnoshenkostatedthatthechangeinmomen,Muwas

due to a "damping effectrr of the edges x=0 and x =a which ane not

subject to a moment couPle.

0

0.50

o.75

1 .00

1 .50

2 .00

0.1 250b'z

o.0964b'z

o. o62ob'?

0.0368a'z

0.0280a2

O.O174a2

0.300

0.387

o.424

0.394

o.264
0.153

1.000

o.770
o.476
0.256

0.046

-0.01 0
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ltisimportanttonotethatthecniticalbucklingloadforasolid

isotnopic plate subjected to a unifonm edge moment on two opposite

sides is given by equations (3'78) and (3'79)'

Timoshenko also clescribed the analysis of nectangular plate'

isotnopic in matenial propenties but vaniable in thickness, and con-

cluded that provided thene was no abnupt vaniation in thickness the

expnessions fon bending and twisting moments der^ived fon plates of

constant thickness (equations (3"74(t)), (3'74(b) ) and (¡'74(c) )) could

beappliedwithsufficientaccunacy'Howeven'becausetheflexunal

rigidity,D'wasnolongeraconstantbutwasafunctionoftheX

andycoordinates,theequilibr-iumequation(s.zs)became-

DÂÁw * '-* 
jIr-y- a(aw) * ÂD.aw

ây

a2D
ax ay'

Da

(t-v¡ .1

+2

a2D A 2w

ä v

2

+

a2w a2D â'wt
I 

-.-:----T 

IAxây ðy'Ax

ô2w2N . :-;-xy oxdY
(3.84)q+Nr.

in which 
^ 

=

a2w +N

+

ð2w

v'-{v

a2

ãT2-
a2-

Tl"

olsson(113) used equation (3.84) to solve the particular' case

fon which the flexural r^igicJity was given by -

D = Do * DtY (3'85)

and the latenal load q bY

D
1

q
D

(3.86)
0

ln equations (3.85) and (3'86) DO, Dt and qO are constants'

Nakagawa(114) obtained a f inite diffenence solution for equ'rtiorr

(3.84) applied to the plate pnoblem def ined by Olsson in equations

(¡.as) and (3.86). For a plate of dimensions (x/a\ = 1'O and a mr:sh

qo (1 + v)
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of (O x O) internal gnid Points,

veny close to Olssonrs results'

the'finite diffenence results wene

3.4.4 Experiments on Panels Under Ventical Load

Sinha and Hendry(115) tested bnickwonk panels loadecJ axially

bothtopandbottom,bothfullscaleandone-thir-dscale,withthe

height-to-length natios between 0.8 and 5.6; the height-to-thickness

slendennessnatiosvaniedbetweenBand32.SinhaandHendr-ycon-

cludedthat,becausefailuneWasproducedbyventicalsplittingof

the brickwonk in all casesr walls with stiffened netunns with slender-

nessratios,lto32behavedinasimilanmallnentowallswithout

endreturns.However,theyd¡dnottestthepaneIsunder.eccentnic

loading, nor wene any panels with height_to-length aSpect natios less

than 0.8 investigated'

lnnealstructunalbnickwork,theheight-to_lengthr.atiocanbe

expected to vany between O'3 and 1 'O on moret and' to the authorrs

knowledge,expenimentshavenotbeenconductedonpanelsoflow

aspect ratios subject to either concentric on eccentric ver^tical loading '

3.4. 5 SumnranY

Thetheor.ieswhichhavehithentobeenappliedtostructunal

brickwonkWenedenivedfonno-tensionmateniaIcolumns.lnstnuctunal

brickwork, the bnick units themselves can take signif icant tensile

stnesses, So .that the equations of equilibr^ium derived by Angenvo'

ChapmanandSlatfondandothensdonotstrictlyapplytobrickwonk.

contaldo et al. showed that f inite diffenence techniques can be used

effectivelyonno-tensilemateriaIcoiumns,buttheydidnotgivea

detaîled-descnipt]?.cfthemeansbywhichthefini.tediffer^èncetech-

niquecouldbeappliedtobr.ickwo¡^kcolumns.Nakagawaslrowedthat
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plategofVan¡ablethickness,ätleastfonthecasesgovernedby

equations of the type similan to equations (3.85) and (g'90), can be

analysed using finite difference'

Amethodwhichcombinesafiniteelementprocedurewithfinite

differences to analyse bnickwork ' columns is proposed in Chapten 4 and

sevenal expenimental case studies are pnesented in chapten 5'

Theanalysisofslendenbnickwonkpanelssimply-suppontedon

foun sides, based on finite element and finite diffenence techniques'

ispnesentedinChapter6andinChapterTanexperimentalcasestudy

is pnesented of a slenden bnickwonk panel subjected to an eccentnic

load both top and bottom. The results of the full-scale experiment ane

companedwith,TimoshenkoIsplatetheor.yandthepnoposedtheonyfon

slenden bnickwonk Panels'
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BRICKWORK WALLS ¡N ONE-WAY BEND I NG4. THE ANALYSIS OF

4.1 INTRODUCT ION

ltwaSshowninChapter..3thatthestness-stnaincharactenistics

ofafinedclaysolidbrickunderaxialcompressioncouldbeassumed

aS linean (Section 3'1), wheneas a mortar- joint may defonnl in a non-

linear manner- (sectÏon 3.2). ln the following sections, the load-

deformation charactenistics of the brick and montar materials undei'

eccentric load ane descr ib¡ed and the behaviour of a combination of

brick and mortar is investigated. A numenical method fon calculating

thefailureof,bnickwallsinone-waybendinginwhichdiscretecrack-

ing rnay occun at the [¡nick-mortar intenfaces is developed for both

linear and non-lînear^ mortar.(l-¡near bnick pr-openties al-e assumed

thnoughout. ) comparisons ane made with results calculated from wall

theor ies described in section 3.4. The numenical calct'llations' using

'R'GRAM 
p rERr , show that the no-tension mate.ial the'ri.=(96) 

(97),

which make no allowance for matenial f ailure, do not pnedict the

failure of walls in which the compnession stresses in tlre bedjoints

signif icant f naction of the mortar^ failune stress' o.'
are a

4.2 THE 5T I FFNESS AND GEOMETR I C

BRICKWORK WALLS

PROPERTIËS OF PARTIALLY_CRACKED

4.2.1 Cracking in the Bedjoints

The extent of becJjoint cracking in one-way bendirrg of bt'ickwor^k

dependsontlrepositionofthelineofactionoftheresultant

compressîon load with nespect to the wall centreline when the tensile

bondstrengthbetweenbnickandmortanatthebedjointissmall.No

cnack ing on tlre bed joints occurs if the resu I tant vent ica i load acts
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within the kern (f igure ¿.1(a)). Howeven, when the nesultant load acts

'outside 'the kenn, a crack forms at one on both c;t tfre bnick-montan

interf aces (f igur e 4.1 ) anel the bnickwonk stiff ness is altened '

ln the analysis which follows, ¡t is assumed that,- by symmetny'

planesectionsnemainplaneat-thebnickhalf-heightplanesAAand

cc (f igures ¿.1 (a), ¿.1 (u)) and that the plane section BB nemains

planeatthebedjointmid-height.Thecalculationsmaybesimplified

considerab ly by assuming f ur ther that the compressed parts of the

intenfaces between brick and montar on planes DD and EE r^emain plane

duning bending. As a r-esult of this simplifving assumption, the

defonmations of the br ick ancJ montan components may be calculated

sepanately ang then combined to determine the over-all behavioun of

the brickwork unit AACC.

4.2.2 solid Bnicks unden Eccentnic compression Load

It has been shown (section 3.1 .3.4) that the brick matenial can

be assumed linean, that is, stress is pnopontional to str^aîn ' The

f lexunal stiff ness of solid bnicks under eccentt'ic vertîcal load may

be'calculatecl using two half-height bnicks, without the nrortar bed-

joint,âsshowninfigur^ea.2(a).Thecasesfonwhichtheresultant

load acts within the kenn are tnivial because thene is no cnacking

and therefore tlre f lexltral stiffness of the f ull section remains

unaffected. Howeven, the effective f lexural stíff ness of a bnick

subjected to vertical compnession sulch that the line of action of the

nesultant lies outside the kenn diffens f rom the stiffness of the full

section and may be calculated by using a f inite element technique

(f igure 4.2(b,) ).

ln both figures 4.2(a) and 4.2(b\, P is the load per unit length

of br ick and .o is the eccentr icity of the neset ltant, P, f rom the brick

centneline. The relative end notation of the brick mid-planes AA and

CC is denoted bY 0
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All elements in the analysis are eight-noded isoparametnic plane-

stness elements, chosen because the non-unifonm natune of the loading

pnecl udes the use of foun-noded rectangu l an elements un less a veny

lange number is used. Cnacking between the bnick units may be

simulated by uncoupling the element nodes on plane DD(EE) in f igune

4.2(b) at intenvals of one-sixteenth of the sectir¡n depth as described

in the following section.

4.2.2.1 Solution Procedure

An iterative solution pnocecJure is necessary because equivalent

nodal loads cannot be calculated, initially, oñ planes AA and CC of

the f inite element mesh shown in f igur e 4.2b) unless the stness

distributions are known. The solution pnocedune is as follows. The

(element) nodes on plane CC in figure 4.2(b) ane restrained against

translation in the dir ection of tlre applied load. The effective

eccentr icity of the load nesultant and the magnitude of the load per"

unit length, P, are chosen. A set of nodal loads, statically equivalent

to the chosen eccentnic force, is applied on the plane AA; the resultant

of the neactions on the plane cC will be statically equivalent to the

neaction fonce shown in f igune 4.2(b). The opposite forces to the

r-eactions on plane cc are then applîed at the nodes of plane AA and

a new set of reactions is calculatecl on plane CC' Cnacking between

the br ick units may be simulated dur-ing the iteration pnocedune by

uncoupling nodes on plane DD(EE) so that no nonmal tension stresses

occun on that plane. ln the calculations. the nodal reactions on plarre

cc wene found to be closely equal to the applied nodal loads on plane

AA aften foun cycles. The resulting set of nodal forces may be applied

in a finite element analysis of the model sl'rown in figur'e 4'2(b) and

the end rotations O/2 may be calculated (ttre notation of plane AA in

the n6dal load itenation procedune described above is fon practical



punposes equal to

be calculated once

O). The f lexunal stiffness

the relative end rotation, 0t
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of the bnick un its maY

is known.

4.2.2.2 Results fnom the finite element analysis

The f inite element sof tware package ncrs(121) was used to

calculate the defor matiorrs and stress distnibutions for bnicks of height-

to-thickness aspect natios of 0.691 (standard bnick-on-f lat) ' 1'447

standand brick-on-edge) and 2,a0. The nelative rotations of the planes

AAandcc(figure4.1(b))aresummanizedinTable4.linnon-

dímensional fonm fon the various brick aspect natios and fon a range

of load eccentnicities. Relative notations ane also given fon a no-

tension mateniql and a non-cnacking material'

lnTable4"l,"oistheeccentnicityoftheloadnesultantfrom

the bnick centneline

d is the bnick

b is the brick

b is the bnick

th i ckness

hei ght

Youngrs Modulus

h

E

P is the load Pen r¡n it length

O ¡s the relative rotation of planes AA and CC

in fisure 4.1(b).

ThenesultsgiveninTable4.laneplottedinfigure4.3.The

natio of the cunvatune of a non-tension matenial to the curvature of

asolidbrick,ifbothareloadedequallyattheSarneeccentr^icity,

can be calculatecl fnom the results sunrmanized in Table 4'1 ' The natio

of cunvatures may be denoted by a facton, o t such that

q= )1
R

i_
Rnt

in which ( ) is the cunvatune of a no-tension matenial
R nt

b

and 11
R
) ¡s the curvature of a solid brick'
b

(4.1 )
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o.167

0.208

o.250

2.292

0.333

0.375

2.OO

2.50

3.00

3.50

4.00

4.50

2.OO

2.61

3 .56

5.12

8.00

14.22

2.OO

2.57

3 .45

4.90

7 .45

12.43

z.oo
2.53

3.24

4.30

5 .98

I .89

2.OO

2.52

3.17

4.O7

5.42

7 .65

Non-
cnacki ng

No-
ten s ion

huTo=0. ost
ht¡ a=t .tr+z \,o / ¿=z.oo

Load

EccentnicitY
( eolo )

Non-dimensional Relative End-plane Rotation

Table 4.1 : Flexural Stiffrress Values

Va lues of s f or various load

thickness aspect r^atios ane gîven in

eccentnicities and br ick height-to-

Table 4.2.

Iaible 4.22 Cunvature Ratio, o

The nelationships between the cunvature

eccentricity are shown in figune 4'4 and between

q, and brick aspect ratio in figure 4'5'

natio, q, and load

0.167

0.209

0.250

o.292

0.333

0.375

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.016

1.O32

I .0115

1 .O74

1 .144

1.000

1 .O32

1.099

1 .191

1.338

1.600

1.000

1.036

1.123

1 .258

1.476

1 .859

No-tensi on
hola=0. ogt

ho 
/¿,=t.++z 6 / d=2.oo

( eold )

Load
EccentricitY

Curvature Ratio, G

the curvature natio,
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a may be repnesented as a function

by using a least-squanes approximat ion

4.2 (Appendix A), so that
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or ,eo/¿) and (hu/o)

to the data in Table

1

(hul¿)

t 
hulo )'

thu/o)'

("o/d, ll (eolo \ (uo/¿l" fo/¿)' I In]hg d)

1 .03

-o.326

1 .22

-1.39

-1 .18

14.4

-54. 1

6',1 .0

o.794

-9.47

31 .3

-18.5

-0. TB7

2.32

-7.98

4.79

(4.2)

(4.3 ),

(A.e)

in which tn] is a 4 x 4 matrix, and is given by -

tnl

ln the ranges 0 \< hO/¿ \< 2.O, O.167 \< "o/d -< 0.375, equations

(4.21 and (4.3) give values fon the cunvatune natio' d ' to within

I percent of the f inite element values at all (hu/¿) and ("o/¿) points

used to obtairr In].

As a clreck on equations (4'2) and (+'3) ' a bnick with an aspect

natio 1.0 ..,g an effective load eccentr-icity ("o/¿) of O'26 may be

taken as an example. The finite element analysis gave a curvature

ratio, 0, of 1.071, while equations (4.2) and (4.3) yielded a value

for s of 1 .062. The nesults may be seen to agnee to an acceptable

degnee of accunacy '
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Nonmal stness distributions for both bnick-on-edge (hU/a = 1.447)

and brick-on-f lat thO/¿ = 0.691 ) conf igurations ane shown in f igunes

4.6(a) and 4.6(b) respectively, and the stnesses at the bnick nrid-

height ane compared with values calculated for both no-tension and

non-cnacking materíals. The nesults show that the stness distnìbution

at the bnick mid-height depends upon the brick aspect natio (hu/¿),

and that the stresses in a bnick laid on f lat are similan to the

stnesses in a no-tension mater-ial .

4.2.3 Montar Bedjoints Subject to Eccentnic Compnession

The behayiour of montar bedjoints subject to eccentnic compresslon

can be investigated using a similan method to that descnibed for solid

bricks in Section 4.2.1. Results obtained fon a linear mortan using

the f inite element method with a mesh of eighty elenrents (f igur^e

4.2(b)) show that the flexural stiffness of a lOmm thick montan joint

is appnoximately equal to that of a no-tensiorl material' That is, the

cunvatune ratio, s, ciefined in Section 4.2.2, may be taken to be unity

fon a mortan bedjoint. A typical stress distribution calcu lated by the

finite element method is shown in figure 4'7'

Howeven, the stress-stnain relationship for a montar bedjoint can

be non-linean, panticularly at stnesses greater than the ur¡iaxial

compnession strerrgth (Section 3.2"3.3). An expression which may be

used fon the non-linean nelationship is ( 106)

g = Em.(e K. ^) (8.1)

is the initial tangent modulus
nl

is norma I stness orr the bedjoint

stnain on the bedjointi s nonma I

E

o

e

in which

K, n ane constants.
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Equation (8.1) is shown in f igune 4'8' The maximum normal

StresS'oc,attainedbythemontarinastateoftr.iaxialcompnession

occursatastnainec.TheinitialtangentelasticmodulusisEm.

Moment-cunvatune nelationships fon such a non-linean montan can be

companed with the relationships fon a linear mortar as follows'

Considerthecaseinwhichthebrickworkispantiallycnacked

through the bedjoint at the brick-mortar intenf ace and f on which the

maximum stnain at the compnession face is '1 and the conresponding

stness is o1 (f igur-e 4.9)'

ltisshowninAppenclixBthat,providedtheloadresultantis

outside the ker-n of the f ull sectiot-r, the natio, 97 of the cunvature

ofabedjointwithanon-linear.mortartothatofabedjointhaving

alinear^montar'subjectedtosimilarloadconditions,isgivenby_

E
m

(8.21 )

in which.l is the maximum compression stnain in the non-linean

montar in the cnacked becljoint

is the depth of the uncracked pant of the non-linean

montar bed joint

is the distance fnom the compnession face to the load

nesu ltant

is the load Pen unit length

is the initial tangent mociulus of the non-linear montar

and is equal to the elastic modulus of the linean

9tl
" 2 dc

d'p
P

dc

d p

P

E
m

montan.

ltisalsoshowninAppendixBthatfonanon_|ineanmortar

described by . equation (s. r ), cnacking can occur at a bnick-montar

intenface in cases in which the load resuliarrt acts within the kern

as determined for a linear elastic material' For this condition' the
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(8.241

must

trd
pdd

612Pd

arrd the

(8.24)

-1

m

uncrackeci

must be

B tl and

Ep= m

Athirdconditionforthebnickwonkisthatinwhichthemontan

bedjointisuncr.acked.Themaximumcompressionstnaininthemo¡tan'

e -. and the minimum mortar compnession stnain, . O, occun simultan-
l'

eously with stres=o o1 and o0 respectively (figure 4'10)

ltisshowninAppendixBthatthecunvatunenatio,glis_

d )- (8.33)

c

d2 (e
12P

The stra i,n, t 
I ,

equations @.Zt ) and

procedure described in

also be found bY using

depth of the mortar, d., in

calculated bY an iteration

in equation (8.33)

itenation technique.

p0
Edep 2

Appendix

a similan

to

4.2.4 Bt ickworl< Subjected to Eccentnic Compression [-oad

The nesults pnesenteci in Sections 4'2'2 and 4'2'3 may

tocalculatetheflexunalstiffnessofbnickwonksubjectedto

compression load. The assumptions made in Sections 4'2'2

4.1(b)) and 4.2.3 ane neiterated belclv as an intnoduction

sectìon.

(¡) By :symmetnY' Plane

bend i ng .

Planes DD anC EE at

sections AA and CC nemain plane aften

(¡i) the brick-montar intenf aces remain p lane

in the compnessed part of the bedjoint after bending'

l-he bnick elastic ntodulus, Eb,i= constant'

The mortar elastic modulus is Er for a

a non-l inean mortan Er is the initial

(i¡i)

(iv)

be used

eccentnic

(figur^e

to this

I inear^ montar and f or

tangent modu I us. Fcr
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a non-linean mortar, the stness-stnain nelationship is assumed

to be

Ke
n (8.1)

Assumption(ii),asmentionedinSection4.2.l,simplifiesthe

calculation of the effective br ickwonk f lexur al stiffness; the method

of calculation is as fol lows'

It is assumed that the radius of cunvature of each 'half-bnick'

calculated fnom the nelative nelations of planes AA and DD (cc and

IE) r is Rb. Assume also that the naclius of curvature of the montan

joint, Côlculated fnom the r-elative notations of planes DD and EE, is

Rm.ThegeometnyoftheunitAACCmaybenepresentedbyfigune

4.11(a) ¡f RU ' R, and by f igune 4' 11(b) if RU t Rt' The case for

which RO = R, is trivial'

Let the average racj ius of curvatune for the whole brick-montar

unitAAccbedenotedbyR-.,.Theequivalentunifor.mcunvatur^efon

the unit AACC, shown by the dashecl cinculan cunve in each of figlrres

a.11(a) and 4.11(b), differs from the tnue displaced shape, but

pnovided that Rb, R, and R.,, ane all much greaten than ho/z and

hrn, the diffenence is small.. The errcl slopes cornesponding to the

equivalent curvatune unit are iderrtical to those for the actual unit

AACC. The avenal]e nadius of cunvature, R.,r' is nelated to the nadii

of curvatune of the br-ick and montan, RU and Rrn nespect ivel y, ôS

o = E (e
m

follows -
R = (hun h,.n)'

AV

R.Rbm
+ (4.4)Þ R

h

h

h

b

m

R

R

(huR

b m m b

m)
+(hu

+

+

m(hu

provided that

a
m)



Figu.re 4. 11 (a):

R. >R
bm

R. =MD=NEt)
R =RE=RD

m
R =AQ=QCav

Fisune 4,1 1 (b) :

R

A
h¿ /z

N

o

ha/z
c.

hb/2

nr/,

1 39.

Centneline of
Unit AACC

Equivalent uniform
curvature of brick-
montar combination

h
m

<R
m

Rb

h
m

N

R. =MD=NEb
R =RD=REm
R =48=QCav

Equivalent unifonm
curvatune of bnick-
montan combination

Centneline
of Unit
AACC

Fiqune 4.11 : Brickwork Curvatures
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lnonderthesimplifycalculations,thebehaviounofabnickwot^k

wallmayber-elatedtothebehaviourofahomogeneousno-tension

matenial column. Therefone, by using the nelationship between the nadius

of curvature of a brick and a no-tension material with same material

properties(equation(4.1))andthecUnVatuner.atiofactorfonmontans'

p (Appendix B), equation (4'4) may be wr'itten as -

(4.5 )
hb + e(*)r. h,

R

1)
R'ntt

q
1

t*l,

h +h
AV b m

in which (*)", is the cur vatune of a no-tension material

identical elastic pt operties to the bnick

is the curvatune of a linear mortar

with

a is a cunvatune natio f aclon for^ the bnick def ined

in Section 4.2.2'2

p is a curvature natio f acton f or the mortar def ined

in Section 4'2'3;for the lirrean mortan' P= 1'0

(Appendix B)

h. is the brick height
b

h is the montar bedjoint thickness'
m

4.2.5 SummarY

This section has presented relationsl^rips between the cunvature

ofbrickwonksubjectedtoeccentniccompnessionandthecunvatunes

of the brick ancl montar. components, both fon I inear and non-| inean

mortars. The results of a finite element analysis of the br-ick and

mortan components show that the stress distributions in bricks and

mortar (both with linear- stness-strain chanactenistics) depend upon

the height-to-thickness aspect r'atio. A cunvatune nelationship for'
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bnickwork

curvatune

materials.

resul ts of

4.3.1

4.3 LOAD-DEFLECTION RELATIONSHIPS AND EOUATIONS OF ESUILIBRIUM

lnthefollowingsections,relationshipsaneexaminedbetween

the moments and associated cunvatunes in a no-tension matenial column'

By using the resulting equations, further nelationships ane established

between moments and associated cunvatunes fon actual brickwonk in

which discnete,cnacking may occur on the bedjoints'

Theequationsofequilibr^iumfonwallsaneinvestigatedanda

finite difference method of solution is descnibed which takes into

account initial imper-fections and various end support conditions'

Load-Deflection Relationships fon a

Col umn

Linean No-Tension Matenial

(equation 4.5) ) has been pnesented which

of brickwor k to the cunvatune of a column of

Equation (4.5) has been derived fnom geometry

f inite element calculations (facton q) '

d 3d p

in which d is def ined in f igure 4'12(ó\ '

relates the

no-tensi on

and the

lnitially,itisassumedthatano-tensionmateniaIcolumnis

subjected to eccentnic cornpnession and that the lateral defonmations

of the column are negligible. The no-tensi<¡n matenial is taken to have

a linear stness-strain relationship and plane sections ane assclmed

to nemain plane dur ing loading. The effecÙive depth of section of such

a column clepends upon the eccentnicity of the nesultant load pen unit

length, P (f igur^es +.t2(a\, 4.12(b)). The column section depth is d

¡f the loac1 nesultant acts within the kenn (figune a'2(a)\ and if the

loadnesultantactsoutsidethekernthesectiondepthis_

c

p

(4.6 )
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dp P (Resultant Load)

Strain (Linear)

h

Fiqure +.12(al z

ñæultant Load Within
Kernc

Stnain (Linean)

Itant Load )

d P (Resultant Load)

Strain (Linear)

Hatched Region shows negion
assun'ìed to be inef f ect ive

Stnain (Linear')

F¡ une 4.1 2(b) :

esu I tan t oa d Outside
Kern of Full Section

dp

p

hc

d

3d

Figure 4.122 Effectîve section Depth fon No-tension Material column



Theeffectivemoment,Mar,ofthenesultantloadaboutthecolumn

centreline of the uncnacked section (f igr-rne ¿' 12(a) ) is -

M =P(d/2-d^) G'7)'eu P

Bygeometny,fonsmalllatenalcleformations,thecurvatur-eof

the no-tension matenial column is

143.

(4.8 )

(4.s)

(4.5(a) )

a no-tenslon

(4.10)

(4.11 )

1

R

Meu= IETT_' 'u

is the f lexur^al stiff ness per unit length of the

column calculated as follows -

Ed3
12

in which (Et)

u

U

,(Et)u

whene E is the elastic modulus of the no-tension material'

Equation (4.5), wnitten fot

unity (Section 4.2.2-2\, is -

uncn¿lcked brickwonk in which a is

(å)", 1p(
R

h + l-r

(*)." =

Fnom equations

matenial column with

and the cunvatune of

pnoperties of a linear

mmb
(hu * hrn

(4.8) and (+.g), the curvature of

the elastic pnoperties of a bnick is

n
1

R t

a no-tension material column with the elastic

montan is

r*l,"

BY using equations

be wnitten as -

(4.10) and (¿.1 I ), equation (a'5(a) ) mav



M
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(4.12)
É

in which (El)

eu
AV EI )"o,,

is the equivalent flexural stiffness

brickwork and may be calculated
eQr u

m d3

of uncnacked

as follows

(4. 1 3)

about the

col umn in

h +h
b(Et) E

b E.

çll
m

12eQr u
h + ph

b m

The ef fect ive momen t ' M"., of the nesu I tan t

centneline of thê uncracked pant of a no-tension

which the load acts outside the kenn is -

Pd p
ec 2

(4.14)

(4 " 1s)

per unit length of the

(4. 1 6)

the curvature of a no-tensicn

of a brick is -

(4.17)

load, P,

mater^ia I

M

Bygeometny,forsmalllateraldefonmations'thecunvatureof

this no-tension matenial column is -

R c

in which (El)
c

(Et)
c

Fnom equatiorts

matenial colum with

).rt

Mec
(Et)' 'c

is the f lexural stiff ness

)

column calctllated as follows -

d9
4

3

p

{+. r s) and (4.1 6),

the elastic PnoPerties

MecI
E (i.to. o; )

and the cunvature of a no-tensiotr matenial with the elastic pnoperties

of a linear montan is -



M

cracked

follows

1 45.

(4. 18)

(4.1e)

(4.20)

(4.21)

hei ght

abou t

be<l-

ce
R m

BY using

wnitten as -

pd
o(i 'Er 3

equaiions (4.1?) and (4' 18), eqtration (4'5) mav be

M
1

F
ec

AV EI

in which (E l)
eQr c

(Et)

in which IS

h +h
m

equivalent flexural

may be ca lcu lated as

eQr C

is the equivalent flexunal stîffness of

brickwonk and rnay be calculated as

b 9.a 3

4p
I

bh
Eb.

êQrC

rETT-' 'eq

ph
mc

+

Equations (4.12) and (+.lg) may be written gener ally

M
e

tå1""

as-

(*).,, an average curvature for brickwork over a

of two half-bnicks and one montan joint

the ef fective moment of the load nesu ltant

the centreline of the uncracked pant of a

of linean montar

M is
e

(Et)

joint

is the

and

+h
m

eq
stiffness of bnickwor^k

follows -

h
b(eràq E

,Eu
t-5

m

hl-
( " ) + ph'cr.m

eq (4.22\

1a.2s(a) )

b

d for 3d <d

d3
n for^ 3d >. d

9
n

a

p p

in which I eq
p

1a.2s(b))
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4.3.2 Equations of Equilibrium

Figune4.l3showstheinitialanddeflectedshapesofthecentre_

line of the f ull-depth column, together witlr coondinate axes used in

thesubsequentanalysis.Atthemid_heightoiamontanbedjoint'at

sectionN-N,SâYlassumethattheinitialdeviationfr.omtheX-

coondinateaxisisonandthatthesubsequent-latenaldeflectiondue

to load p per. unit length, is yn. The ieffective ecc'entr:icity""of the' load

at the section N-N with nespect to the centreline of the f ull section

column is -

e
n

in which M
n

The honizontal end

4.1 3), ane

equal.

lf the

ze?o if the

len

and 3d p

The exPresslon

effective eccentnicitY,

n
P(e n

P

is the bending moment

the centneline of the

+Y HX
n (4.24)

at section N-N also taken about

ful l-section column.

M

P

+ô n

reactions, H Per unit length of

applied load eccentniciiies at

column (figune

both ends are

vertical load acts within the kern at section N-N' then

\< d/6

d

is taken to be

ca lcu I ated bY

(a.25(a))

(4.25(b))

the absolute va lue of the

using equation (4.24\' For

in the Pnevious section, is

(4.26)

le n

e
n

this case, the effective moment, M", def ined

However, if

4.13) then

M = P.
e

the load

e
n

acts outside the ker n at section N-N (f igune
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ô
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Def lected
Shape unden
LoacJ
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P

Figur e 4.13: Column Loads, Reactions and

D isp lacements
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For-thiscase'thecolumnsectionN-N,atamortanjoint,is

cracked and the effective moment, M", is (Section 4'3' 1) -

and 3d p

M (sgrr e
e

in wh ich ( sgn e

Yn+1

d
Ie,-',1 )2

+1 if e is Positiven

I 1¡8.

(a "27 (a) |

(4.27 (b) \

(4.281P
2n

n -l if e is negative

4.3.3 Finite Diffenence Fonmulation

For small def lections, the average curvatur-e of brickwor^k fnaY

be expressed as -

rlr = _q? Ø.29)*R'av dx'

Equations(+.zl)and(4.2g)togethengivethedisplacementsof

the column in f in ite d ifference f onm as -

2v +

n

Yn-1 M
ed"y

ãXz
n ]= _ rcri--' ecl

(+.:o)
t Ax

in which Vn+.,, Yn, Yn-l ane the def lections at

and (n-t )tfr joints respectively and ax = ( hb J-

distance between neighbouring bedjoints'

Fnom equations (4.24) and (¿'SO) it follows that

the ( n+l ) th, nth

hm) is the axial

¡f e d/6,
n

2Y n + Yn-l
( A_!' .PG/2 Y., )ne ô

Yn+1
2(Et) eq

ln

and if e <-
n

d/6,

+ HX
(4.31 )



Yn+1
Y., )+

n
ôe2y n

+ Yn-1

lur., | < d/6,

.[-p( d/z + +

149.

(4.32\

l ( 4,33)

+HX ln

For

v)n'+o..
n

+ HX
Yn+1 2Y n + vn-l n

4.3.4 BoundanY Conditions

As examples, consider-ation is given to two types of boundany

conditions whiéh cor-nespond to a pinned base and a per fectly f ixed

base respectively (f igunes ¿.14(a) and 4.1¿+(b)). The top support is

a trpin-and-nolleril fon both examples'

(a) for a wall with pinned suppor^ts top and bottom (figur^e ¿'1a(a))

(1) yt=Q Q) YN=o (3) H=*(et-ttt) Ø'34\

(b) fon a wall pinned at the top and fixed at the base (figure 4'14(b))

(1) vl - o Q',) YN = o (3) tåIl* =

The end s loPe cond i t ion ( 3) maY be

a f ictitious node (N+t ) at a distance (lx)

YN*l = YN-l'

4.4 SOLUTION PROCEDURE

Figur-e4.i5showsabrickwallas¡tisnepnesentedforthefinite

difference equations (4.31 ), (+.zz) o" (+.¡¡) with the governing

*-,Àt
equation at each note, nr depending on the equilibrium conditions

(Section 4.3). Once the column starts to cnack at a mortar joint (node

0

simu lated

below the

( 4.35 )

by introducing

base such that
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Node I
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F¡ une 4.14(a):
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+
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+
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Fiqune 4.142 Wall Load and Suppont Conditions
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n), (r,).O,n changes with the depth of the cnacked section and fot

a f ixed_base wall the natio H/p also changes. The set of simultaneous

equations generated for the (U-Z) nodes away from the ends' plus the

three boundar.y equations (section 4.3.4) ane therefone non-linean and

directsolutionscannot-beobtained.lnthesolutionmethodpnoposed,

theload,P'isappliedincnementallyandateachloadincr.ement,

aNewton-RaphsontechniqueisusedtofindaconsistentSetofvalues

fon the def lections (y), the stiff nesses ((El)"q)' and fon a f ixed-base

wall the horizontal r-eaction, H, such that the equations ane satisf ied

to within a pr escribed ennon limi!. Load-displacement gnaphs can be

plotted for vanious bnick and mortar combinations, fon both linear

and non-linear- mortars, allowing for initial impenfections' suppont

conditions and load eccentricity. As the ratio of displacement iricrement

toloadincnementincreases,themagnitudeoftheloadincnementcan

bedecreased.Columnbucklingisdeemedtohaveoccurred¡fno

displacement configuration can be found fon the incremental load'

4.4.1 Matnix Fonmulation

lfthewallisdividedintoN_ielementsandhasNnodes,âS

strown in figune 4.15, equations (4.31 ), (4'321, (4'33), applied at each

node,togetherwiththebounclaryconditions,maybewrittenasthe

equation sYstem -

tnl
( 4.36 )

in which -

t"Ït-Ë]
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2
c

c

trl

3

N-1

c

with -

c

¡f le

1 -2

d/6

t_

I

I

c,H

c

N

c

+

v2

j

j
(^x)'.x j ¡f le l<d/6j

fon i 2 to (N-1).

H

{

2lorafixed base

pinned baseabsent. fon a

as C. fon a f ixed base, i
J

absent for a Pinned base

N

c
N

tlrt )P
h

Ytt-t

t+l and H (e fon pinned base.
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##+'@/z - e,
' 'e9' 

J

if e.
J

J
ô.
J

v

B
2

BN-t

with B -181)

i=2 to (N-1 )

.(et + oj * uj

¡r l.¡l

P (^x)'

> d/6

< d/6{e} = eQrJ

B
N .(d/2 *.1*ôj + uj)

if e. <-d/6

and B¡t
as 

"j, 
i = N' fon f ixed base'

absent for Pinned base'

The dependent vaniables ane y 2 to y*-t fon a pinned base wall and'

additionally, H fon a f ixed base wall; correspondingly thene are N-2

and N-l equations nesPectivelY '

I

l

L

I

I

I

I

l
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4.4.2 Solution of Equations

Calculationsmaybestar'tedwithasmal!valueofPSothatby

settingyj-owhereven¡tappeansin"j(onthenighthandsideof

equation (4.36) ), stiff nesses (El )"q, j may be calculated using equation

(4.22).Equation(4.36)isthensolved.Fnomthenesultingvaluesof

y and H' new values of (El )eq, j, *"Y be calculated at all nodes' j

(equation(4.22))andaftensubstitutionofthecurnentvaluesofYj'

H and (El)"q, j in all nelevant placest an ilenror vectonrr may be

calcu lated as f ol lows:

trl t-[-t (4.37l,
t,n ] {B}

Asimplegeometr.icalinter^pretationcanbeattr.ibutedtothisernon

vecton. Each term is pnopontional to the difference between two

curvatures: tlre first is calculated from the loads, the cur'nent deflec-

tionsandthecorlsistentstiffnessvalues;theothencurvatuneis

calculated geometnically f rom the cur'nent def lection values by f inite

differences" The components of the erron vector are -

2y v -l ( 4.38 )
+

I (¡ x),M Y j*renj= E Ax

trial that if no component of { n} exceeds

to be 1.0 x 10-6 , the ca lcu lated

eQ' j

I t has been

in absolute value

values of Y and H

found by

a I imit se I ected

accepted.may be

4.4.3 Newton-RaPhson Cornection

lf anY comPonent

Raphson corrections ane

of { n} exceeds the prescr ibed l imi t Newton-

neached.aþplied until the desired accunacy ls



Fon a f unction of a single vaniable y = f (x ), it

that an approximate solution (x., ) of equatjon t(¡)

yl - f ('x,, ) = oYl, is generally impnoved by calculating-

*z= "1 - ¡xl = *r - t+tï
and evaluating YZ - tlx-Z

The connesponding

equations (4.36) fon the

lll 
¡

{ n}

Newton-RaPhson cornect ion f ot

ith itenation can be calculated

{
Ày

-^-F[-
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is well known

0, giving

( 4.3e )

the simultaneous

fnom -

(4.40)

(4.41 )

)

,ayt---'^H Ì

and setting ,Ão r-Ë-v
ïr- Ì )+)

i+1

ln equation (4.40), Il] i= the 'rJacobian" of tn] 
'

Squanematnixfonmedfnomthepantialder^ivativesofthe

of { n} , with respect to the components of the solution

lf nj denotes the ith component of the error vector and

.ththe k component of the solution vecton) t-il-t

of the rrJacobian'r matrix ane given by -

, 
t n'

J-- = = 
J-ik 

"k
Elenrents of the "Jacobianrt matnix can be

by incrementing successively the components of

appnoximately O.01 pencent and calculating the

vector, giving -

, then the

that is, a

comPonents

vecton, t-Ë-t

.k denotes

componen ts

(4.42'l

evaluated numerical lY

the solution vecton bY

incnements of the ennon

An.
J (4.43].

J jk
^a.k

compl ication encountened an oscì I I atonY behav iour-, wel IwasOne

known in

poi n t (.,r

the one-dimensional Pnoblem

slope-discontinuitY) at or

ancJ associated w i th an i nf lect ion

nean the solution Point. Such a
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slope-disconti nui ty is encoLlntered i n the pnesent pnoblem wheneven

cnacking stants. ln such cases the load-incnement was alterec, but

generally closure was obtained in less than ten cycles'

An altennative appr-oach is to USe |'regula falsi,|'in such caSeS'

using the ari thmet ic or a weighted mean of successive osci I lator^y

solutions.

4.5 RESULTS OF THE NUMERICAL METHOD

4.5.1 Results fnom PROGRAM PIERl

PROGRAM , PlERl, documented in Appendix C' has been used io

investigate several pnoblems, summanized in Table 4'3, which illustrate

thetypeofresultswhichmaybeobtainedusingthenumenicalmethod.

AmonedetailedSetofrest¡ltsinthefonmofapanametricstuciyis

given in ChaPten 8.

The bnick Youngrs modulus is 16 x lO3MPa in all cases and tÌ'¡e

montan initial tangent modulus is I x 1O3MPa. Each of the eight walls

is analysed fon thnee cases:

(¡)

(¡¡)

linear bricks and mortar, both of no-tension material '

linean bnicks and montan, with the bnick unit capable al sus-

taining tension stnesses.

linearbricksandnon-|inearmortar'withthebnickunitable

to sustain tension StneSSeS. The cnushing strength of the montar,

6 c, is assurned to be 3OMPa and n is assumed to be 3 so that

e = 5.G25 x 1O-3 and K = 10535 (Appendix'B' equations (B'2)
c

and (8.3) ).

The nesults of all the computecl load-def iection characteristir:s

points on the r^espective columns wlrich sustain maximum deflection

(i¡¡)

fon



Wal I No.

Wali height, h

Th ickness, d

Slender ness Ratio, h/d

Brick height, hU

Nlortan th ickness, hm

No. of courses

Base supPont

Top suPPot t

Eccentricity , G/¿)

A

2400

76

32

110

10

20

F

PR

0.250

B

2400

76

32

110

10

20

F

PR

0. 0833

c

2408

110

z2

76

10

z8

F

PR

0.250

D

24æ

110

22

?6

10

28

F

PR

0.0833

E

2400

76

32

110

10

zo

P

PR

0.250

F

2400

76

32

110

10

20

P

PR

0.0833

G

2408
't 10

22

76

10

28

P

PR

0.250

H

2408

110

22

76

10

28

P

PR

0.0833

(i)

(i¡)

All length dimensîons ane mm

F denotes penfectly-fixed suppont

P denotes pinned suppont (f igure 4'14)

PR denotes pin-rollen suppont (f igune 4'14)

(¡¡i)

(iv)

Table 4.3: S/all Pnoperties fon PROGRAM PIERl

(¡
@
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are pnesented in f igures 4.16(a) to (d). The buckling failune load

fon eaclr of the eight walls with linean montan is less fon a no-tension

matenialwallthanfot.awallinwhichthebnickstaketension

str-esses. The diffénence in buckling failur e load is less than 5 pencent

between br ick-on-flat br ickwonk and cot-nesponding no-tension matenial

walls(wallSC,D'GandH'figur.es4.16(b)and4.16(d)).Howeven,

the buck I ing f ai lune load of a wa I I of bnick-on-edge construct ion ' when

loade<J eccentnically at each end at d/4, is approximately 30 percent

higher than the buckling f ai lune load of the same wal I given by a

no-tension theory (f igure ¿.16(c) ) '

Themaxlmumwallloadsfontlrelineanandnon-|inearmortans

ane within 6 pencent of one anothen for pin-ended walls load at end

eccentnicities of d/12 and ane within less than 1 percent for an

eccentricity of d/4 (figures a.16(c), 4.16(d)). Howeven, the maximum

wal I loads f on the f ixed base wal ls with the non-l inean monta,n are

less than the corresponding maximum loads for the linean montan walls

(figunes +.16(a), 4.16(b)). The pencetrtage difference in maximum loads

is gneaten fon walls loaded at an eccentnicity of d/12 than at d/4'

The points rM,and rN, in figure 4"16(b) (walls c and D nespect-

ively) indicate the loads at which the maximum stness in the mortar

isequaltooc,themortanfai!urestnessintniaxialcompression

(figune4.8).Thatis,pointsIMIand'N'representtheloadsatwhich

theoretical stness-related f ailure '¡f tle walls occurs by crushing of

the montar and splitting of the bnickwork due to lange latenal

(117)
slna I ns '

Stness-relatedfailuneinbnickworkmayalsooccunatstresses

lessthanoc,panticularlyinthecaseoflorv-str^engthbnickswhose

stnengths in conrpnession ah¿ biaxial tension may be less than
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triaxial compression. Howeven, combina-

mortar and low-strength brick are not
the mortar

tions of

penm i tted

fu nthen .

The

sect i on

of an

stnength in

high-strength

in stnuctunal bni.l.*o"k(4) and therefore ane not considened

non-linean montan parameters n and o. assumed in this

mayVar.yfnomvaluessuitablefornealbnickwonk.Thisaspect

idealizednon-|ineanmontar.isconsidered,i.conjunctionwith

expenimental data, in ChaPter 5'

4.5.2ResultsoftheNumericalMethodCompanedwithothenResults

Results obtained fon no-tensicn walls by

(Appendix C ) are comparecJ in this section with

the no-tension matenial column theories neviewed

cases neviewed ar'e as follows:

using PROGRAM PIERl

resu I ts ca lcu latecl f rom

in Section 3.4.1. The

(¡)Pin_endedwallsloacledwithequalendeccentricities;thenesults

ane companed with the no-tension mater'ial column theony pnoposed

by A.,g".,ro(96) (taule 4'4) '

(¡¡) walls pinned at the top with perfectly fixed bases; the nesults

ane cgmpaned with results fnom a method pnoposed by sahlirì(44)

(f igure 3.42, Section 3'4' 1)' The effective heights' trh' of the

wallsareassumedtobethevalueàcalculatedbyPROGRAMPlE.Rl

(taute 4.5).

(i¡¡) Pin-ended walls of non-linear homogeneous material' described

by equation (B'1), and loaded with equal end eccentricities'

Theresultsanecomparedwithgraphicalnesultspublishedby

contatdo et al.(106) (taule 4.6).



Pt is the computed buckling f ailune

P is the Euler cnitical load for
crll

I oad

a pin-end column

immed iatelY bef one

I 65.

if the

be cal-

occul^s

at ttre

is the maximum load eccentnicitY
fai I ure

Table 4.4: Buckling Failure Loads for^ Pin-end Walls of Linear Material

o.796
1 .56

0.785

1 .55
0.250

0.0833
A c

B,D

PIERlSahlin
(a)

Load

at
Eccentr^ici tY

top ( eold )

Wall No.

(tante 4.3)

( P f/pcnit )-

(a) Fnom PROGRAM

for (e

fon (e

PIER1,

o/

o/

Table 4.5: Buckling Failune Loads for^ Fixed Base

Walls of Linean Matenial

ec

d)

d)

- 0..25O, À =0.67

- 0.0833, À =0.69

PRoGRAlvlPlERlhasbeenwrittenwiththefacilitythat

ventical compression load is knowrr, end eccentr icities nlay

culatedatwhicheither^stress_relatedfailureorbuckling

(Section4'5.1).Thewallsmaybeeitherpirr_endedonpinned

top with perfectly f ixed bases (Appenclix C) '

o.344

o.242
0.344

o.244

0.119

0.554
0.120

0.555
o.250

0.0833
E

F

, G

H,

PIERlAngervoPIERlAngenvo

Load Eccentr^icitY
( eola )

Wall No.

(taUte 4.3)

( e./a )( erle.", , )
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o.248

0.413

0.0253

o.25

o.41

0.025

ze?o

1/tg = 0.0556

1/3 = 0.333

25

15

15

I

2

3

PIERlContaldo et al.
Load EccentricitY

("/d)
Wal I Slender-

ness (h/d)
Case

No.

Í(Pr/ (o.. d) l

Fon the

(i)

thnee casesr -

lnitial central defleòtion is

height.

h/1OOO, where h is the wa I I

is the matenial f ailune stness

is the initial tangent modulus

pinned.

0.0038, whene oa

E

This aspect of PIER1 has been used to

be companed with the theories reviewed in

of the orden of accunacy obtained by the

assessecl f rom the resul I ts summanized in

investigated, the agneement is closen than 0

(¡i)

( ¡¡i) Both toP and base are

Table 4.6: Buckling Failure Loads fon Pin-end Walls of

Non-linean Mater iaI

o
c

E

check nesu lts wh ich cannot

Section 3.4.1. An indication

num\r ical method can be

\
Tab le \4. 7. Fon a I I cases

.5 pencent.

4.6 SUMMARY AND CONCLUSIONS

Thischapterdescribesafinitediffer^encemethodofanalysis

of bnickwork walls which includes the effect of discrete cnacking on

the bedjoints. As examples of the method, the following types of wall

and loading conditions have been considened -



c

E

H

Wal I No.

(taute 4.3)

On Flat
On Edge

On Flat

Bni ck

O r ien tat ion

NL

L

NL

Montan

Type

PR

PR

PR

Top

End

Supports

F

P

P

Base

0.250

0.250

0 .0833

Chosen

(e /o)
o

Load I ncrement

Method

0.540

0.155

0.535

Computed

(Pf /Pcni t)

0.540

0.155

0.535

Chosen

( PtlP. 
"i 

t )

EccentnicitY I ncnement

Method

0.250

o.250

0.0831

Computed

( eolo )

NL

L

P

PR

F

denotes non-linean mortar

denotes linean montar

denotes Pin suPPort

denotes Pin-roller suPPont

denoies PerfectlY fixed suPport

Ì
J

(figure 4.14)

Table 4.7: Check on Failure Loads of Bnickwork walls computed by

Diffenent Vensions of PROGRAM PIERI

ol{



(i);

(¡¡)

(¡¡i) a pin-end wall under loads

end. The load is chosen and

to fai lure.
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suppont,

i s chosen

lvith equal eccentnicities at each

the end eccentnicity is incnemented

top suPPort.

the top is

a pin-end wall unden eccentnic end load with eithen equal or

unequal end eccentr-icity. The end eccentnicities ane ctrosen and

the load is incnemented to failure'

a wall with a per^fectly f ixed base and a pin-rollen top

loaded eccentnically at the top' The load eccentricity

and the load is incnemented to f ailur e'

( iv) a wall with

The toa¿

i ncremented

a penfectly f ixed base and a pirr-rollen

is chosen and the

to failune.

load eccentricitY at

For each of the fouln cases above, tl-le montar stness-strain nelationship

can eitfrer- be linear on non-linean of the fonm o = Er' (e - 6en);

K and n ane constants and Ern is the initial tangent modulus (Appendix

B). companisons of nesults ft-om PROGRAM PIERl with the results of

no-tension theor-ies have shown that the finite difference method can

be used to calculate the behaviour of columns of no-tension matenial'

Results obtained using PROGRAM PIERi (lante 4'?\ show that flexur'al

stiffening due to the tension field effect in the bnicks may be deter-

mined by a finite element method. This stiffening can be inconponated

into a f inite differ.errce method fon the calculation in bnickwork walls

of the displacements and stresses at any specified load, so that wíth

a knowledge of the bnickwonk material pnoperties, ttle finite diffenence

method can be used to pr ed ict the loads that lvou id cause either stress-

nelated f ailure oF buckling of the bnickwonk. An impontant featune

oftheirrcnementalpt-ocedureusedinPRoGRAMPlERlisthatthe

equilibrium conf iguration calculated at any load level (on value of
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eccentnic¡ty ¡f the load is spec¡f ied ) is independent of the path chosen

fon the analYsis.

PRoGRAMPlERlmayalsobeusedtoinvestigatetheeffectsof

initial deviations from ventical straightness (figure 4'13) due to' s€IVr

poor.wonkmanship.Thisaspectofbnickworkwallsisconsidenedin

ChapterSinacompanisonbetweenasetofnesultsobtainedfnom

PRoGRAM P lERl , in the form of a parametnic sunvey ' and design

critenia specif ièd by cunnent Codes of Pnactice'
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5. EXPERIMENTS ON WALLS IN ONË-WAY BEND I NG

Exper^iments<lescribedinthischaptenrveredesignedtotestthe

stiffness nesults obtainecl from the finite element analysis of eccen-

tr ically compnessed br icks (chapten 4), and to check the results of

calculations using PRoGRAM PlERl. The results of chapman and

sratford(97) were checked by testing a steel column, similan to thein

aluminium column (section 3.4.2), and companisons are pnesented

between the test nesu I ts and resu I ts ca lcu lated by PROGRAivi P I ER 1 '

ln addition, displacements ancl f ailure loads calculated using PROGRAI\1

plERl are compared with results fnom experiments on eight brickwor^k

wa I ls.

5.1 ST IFFNESS EXPER IMEI'¡TS

5.l.lExpenimentalVerificationofCurvatuneRatioFacton,a

AprognarnofexperimentsWasundertakentomeasUneaccuraiely

both the stnain prof iles and also the magnitude of the cur^vatune natio

factor,q'inr^eplicamildsteelblocksunder^eccentricioad.

ln orden to check the strain pr^oflles calculated by the finite

element analysis, a column compr^ising f ive steel blocks, each nonrinally

50mm x 5Omm x 25mmr was placed in a testing machine (f igure 5'1(a))

and loaded eccentr-ically at each end. Electnical resistance strain

gaugesofZmmgaugelength\ryenefixedtothe5OmmX50mmfacesof

the central steel block as shown in f igune 5.1(b). The block thickness

wasmeasur.edtobe24.gmm.LoadsWereappliedthroughknifeedges

at nominai eccentricities of d/5, d/3.5 and d/3, but the actual eccen-

tnicities were measuned to be 5.16mrrr (di4.83),7'19mm (d/3'46) and

g.2gmm (d/3"00) nespectively. For each eccentricity value, two ioad

testSwerecar^nîedout,eachwiththeloadonoppositesidesofthe
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columncentreline.Plotsoftheexperimentalandcalculated

pnof iles are shown in f igunes 5.2 tó 5.4, the expenimental points

the mean of two tests. The agreement between computed and

mental strain pr of iles was veny close'

A column of five steel blocks (figure 5.5) was set up

pairofMantensminnonextensometersfixecjtooppositefacesoftrvo

blocks separated by the centne block (f igure 5.1(a) )' The cunvatune

ratio faCtor s, cr (Section 4.2.2), wene deter^mined fon various load

eccentricities by measuring the relative notations of the midplanes of

the blocks, the nesolution of the extensometers giving an angle of

resolution of 50 x 10-6 nadians' To cief ine pnecisely the line of action

of the load nelative to the centreline of the column, dial gauges were

used to measure latenal cl isplacement. The mating sunf aces of the

blocks wene hand-lapped to nemove excessive inregularities and to allow

intimate contact of the bear ing sunfaces. The elastic modulus of the

steel was determined by tension tests on a solid ban of the same stock

mater^ial as the blocks, strains being calculated fnom both Mar^tens

mirnor extensorleters and by electt ical resistance stnain gauges' The

expenimental Young's Modulus of the blocks gîven by both sets of

measurements was zo3 x 1o 3 Mpa. The expenimental values of f acton

s and the values of 0 cõlculatecl using equations (4'zlt and (4'3)

(section 4.2.2) are summa¡-ized in Table 5.1. The agneement in the

factons q is within 3 Percent.

5.1 .2 An Effective Elastic Modulus

Eccentnic ComPression

fon Uncracked Brickwork under

stnain

bei ng

experi -

with a

Base ancl 8.t ""(69)
work assuming that both

elastic and there was

calculated effective elastic moduli for brick-

the bnick and montan matenials were linearly

no 'cracking at the brick-mor'tar^ interf aces
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Figure 5.5: Steel Block Column Showing

Martens Mirror Extensorneter
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Table 5.1 : Comparison of Curvature Factors, c

(section 3.3.5.1). The theoretical nesults wene tested by bending bond-

beam specimens, loaded with line loads placed symmetrically on the

span. For the gr oup of twelve tests on solid b¡ icks in brickwork piers'

the agneement between theor^etical ancJ pnactical results was close

(taUte 3.6). However, tests wene not conducted to determine the elastic

modulus of brickwork ulrder eccentríc compression loading' Con-

sequently,aSapantofthetestprognamonthemeasur.ementofbnick-

work stiffness, six bnickwor^k pt^isrns wene tested to determine whethe¡'

the measuned flexur-al pr^openties of uncnacked bnickwonk depend upon

either the loacl eccentricity or the tnethod of measurement ' The tests

were conducted to determine also wheiher the brickwork modulus of

elasticity determined unde¡ conditions of eccentnic compression agneed

with calculated values using results obtain by Base and g-ttt"(69)

(equations (3.47), (3.48)).

Eachpnismcomprisedsixbricksandfivemontanjointsandwas

built in a steel f name to achieve vertical alignment on one f ace. All

bnicks wene without penforations ancl wene selected fot- unifonmity, theit'

dimensions being 228mm x 1O8mm x 75mm closely ' The mortan propor^-

tions by volume were 1 cement:1 hyclrated lirne:6 sand with the wat'en:

cement natio 1.41 by weight ancl the ratio of water:cementitious

o.97

0.98

o.97

1 .04

1 .24

1 .48

1.01

1 .21

1 .43

5.23

7.33

8.45

d/5
d/3.5
d/3

Rat io

o ("r.-p_e{rnellg1l_
@Ca lcu I ated

(Equations
(4.2\, (4.3))

Exper-imen ta I

Load

EccentnicitY
(eo+ og) ( m. )

Nominal

Load

Eccentr icitY

Curvatune factort q
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mater¡als (cement and lime) was 1.03 by weight. All bricks were laid

in a satunated sunface-dr^y condition and in a br-ick-on-edge orientation

with 1omm bedjoints. The pnisms wene cuned sub'sequently unden poly-

thenesheetfor2ldaysanqunderambientconditionsuntiltestedat

a minimum 28 days af ten constnuction '

Theexperimentalappanatus(fi9ure5.6)WasdesignedSothat

all later-al displacements could be measured nelative to a plane def ined

by the end-Pin suPPonts'

Thneeofthebr-ickwonkpnismswereloadedataneccentnicity

of 12.5mm (cl/6) at each end and the remaining three at an eccentricity

of 25mm G/3). Effective elastic modulus values fon each pnism wene

detenmined Uv tf,e following methods

Thelater.aldisplacementsofeachmontanjointrelativetotheends

of the prism were measuned and a circular-curve approximation

tothedisplacedshapewasmadeusingaleast-squar.e-ennormethod.

An effective elastic modulus was calculated fnom the relationship -

E
(5.1)MR-l-bn

in which Eb" is an effective elastic modulus for uncracked

br i ckwonk

Misthemomentabouttheprisrncentreplane

R is the r adius of the best-f it circulan curve

appnoximation to lateral displacements

. I is the section second moment of ar^ea about the

centre Plane.

I n equation (5.1 ) 
'

the prism height.

2. The rotations of the

micrometers having a

the moment, M, was assumed constant along

ends of the

sensitivitY

pnisms were
_(

of 2 x 10 "

measuned w i th bubb le

radians. An effective
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elastic modulus for each of the prisms was calculated fnom the

nelationshiP

- Mh (5.2)E. *-Þr Ql

in which Eb", M and I ane as def ined fon equat'ion (5.1)

h is the d istance between the bubb le m icnometens

O is the nelatîve end rotation caused by the

moment M.

3.DEMECpointsWeneusedoneachpnismfacetomeasunetheaxial

shontening of each of the brickr¡¿ork pnisms. An effective elastic

modulus was calculated from -

E = -Ã¡-

is an effective elastic modulus for uncracked

bni ckwork

(5.3)
bn

in which E bn

Ph
D

P is the load on the Pnism

ô is the mean axial shontening between DEMEC points

A is the section anea of the Pnism

h- is the DEMEC gauge length'
U

The effective elastic modulus values calculated using equations

(5.1),ß.2\and(5.3)aresullmar^izedinTable5.2.

ln all six pnisms, the differ'ences between measured later^al dis-

placements and the respective best-fit circular cunves wene less than

1O percent of the measuned displacements, with an avenage absolute

difference of 3.8 Percent.

Atwo-waystatisticalanalysisofvanianceonthenesultsin

Table 5.2 showed that ther e was no signif icant difference (at the 5

percerìt signif icance level on a two-tailed test) among effective

elastic modulus values calculated by the three methods at the two

diffenent load eccentnicities.
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10.8

9.4

10.2

9.8

9.8

10.2

10.7

9.0
10. 5

25.O

25.O

25.O

4

5

6

9.3

11.9

11.5

10.0

11.6

12.2

9.5

12.O

13.2

12.5

12.5

12.5

1

2

3

DEMEC

Eq. (5.3)
Rota t ions

Eq . (5.2)
D i sp I acemen ts

Eq. (5.1)

Load

EccentricitY
(mm )

Brickwork
Pri sm

No.

Effective Elastic
(x10 MPa)

Modu I us

Table 5.2: Expenimental Elastic Modulus fon Brickwork

v-
' A founth method of estimating an effective elastic modulus fon

uncracked bnickwonk was also investigated. six bnicks fnom the batch

used for the piens were saw-cut to give, fnom each br ick, two sample

prisms 75mm x 25mm x 108mm. The twelve prisms wene tested in axial

compression (f igur-e 5.7(a)) and estimates of elastic modulus fot- the

bnicks were made fnont an avenage of the two prisms fnom each bnick'

six montan pr-isms, 2.5r¡rn x 25mm x SOmm, cast fnom tlre mont¿rn batch

used for the piers were also tested in axial compression (fi9ur^e

5.7(b)). Typical stress-stnain curves fon the br^ick arrd mortar pnisms

ane given in f igunes 5.8(a) and 5.8(b) respectively. The montar prisms

showed non-linear behaviour when loaded in uniaxial compnession and

the brick matenial behaved linearly in agreement with the results

obtained by Scnivener and V,¡¡lli-.=(50)(S..tio., 3.1.3.4).

six estimates (laute 5.3) of brickwork elastic modttltrs were

obtained by conrbining at random the initial tangent elastic modulus

values for- the six [:r,icks and six mor'tar pnisms using the equation -

I

.' '¡ 
o?,

É5
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F igure 5.71al : Brick
Pr-ism Showing Sulphur
Cappíng and Strain
Gauge

5.7(b): Mortar Prisms

t

' 'tr'l

Shrowinq Strain Garrqcs

\

F ne 5.7: Bnick ¿lnd Morl¿lr Pr-isnrs

Figure
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( 5.4)Etbr

in which E ISbr

IS

IS

IS

m

b ). hh.
fr

+
E m

m

is similar to

3.3.5. 1 ) .

b
Eu

E

E

h

b

m

b

an ef fect it,e e I ast ic modu I us f or uncnacked

b ni ckwork

a calculated bnick initial tangent modulus

a calculated montan initial tangent modulus

the br ick height (lOgmm)

the bedjoint thickness (lOmm)'h is
m

Equation (5.4)

and Baken(69) (Section

equation (3.48) Pnoposed bY Base

9.4

12.6

8.3

7.6

9.0

10.5

1

2

3

4

5

6

Effective Elastic

Modulus (x1O3MPa)Estimate No

Table 5'3: Calculated Elastic Modulus Values

for- Bnickwonk

A one-way statistical analysis of vaniance inconporating a method

ofplannedcomparisonsWasusedtocompanethenésultsofTable5.2

with the modulus values in Table 5.3. calculations showed that there

was no significant d¡ffer^ence between the effective elastic modulus

values obtained by ally of the four rnethods, when tested at ttre 5

per'cent level on a two-tailecl test '



Fromtheexper.ìmentsonbnickwonkpr.ismsandbnickandmo]^tan

pnisms,¡tmaybeconcludedthatallofthefounmethodscrfmeasure-

mentgivestatisticallyequivalentestimatesoftheelasticmodulusof

uncracked bnickwonk under- eccentric compression loading ' The stness-

stnainnelationshipfonamontanpnismundenuniaxialcompression

(figur^e5.8(b))becamelinear^oncethespecimenhadbeenloadedand

unloaded, although possible non-linear behaviour' in tr^iaxial com-

pressionatstnessesbeyondtheuniaxiaIfailureStnessWaSnot

investigated. The behaviour^ of uncnacked bnickwork in the non-linear

nangeofthemater.ialswillbeconsideredinSection5.2.2'

5.1 .3 The Stiff ness of Partially-cracked Briclcwonk

r 85.

(4.5)

(4.2i )

(5.s)

A nelationshiP

eccentric compression

was given in Section

between tlre avenage

and

4.2.4.1

the cunvatures

cunvatune of br ickwonk in

of the component materials

AS

1

R
1
o

h + e (*),. h
1

R

AV
1

R

nt' b m
) + hAV h b m

and also as

M

Gil;

in which, for linear elastic matenials (p Appendix B),

e

b

h. -t- hbm(Et) E t

+h
eqeq

m
m

4.3.1

eq
in equation (5.5) is defined by equations Ø'23) in Section



186.

ln order to check equation (5.5) against expenimental nesults,

six brickwonk prisms of six bnicks and five mortan joints were con-

structed as f on the tests conducted to detenm ine e I ast ic modu I us va I ues '

ln addition, six bnícks f rom the 'batch were saw-cut to give twelve

sample pr isms each 75mm x 25mm x lo8mm which were tested in

compression using pair-s of 3omm long stnain 9au9es to detenmine

stnains. The brick elastic modulus values are shown in Table 5'4'

Table 5.4: Elastic Modulus Values fon Bnick Prisms

The mean elastic modulus was g.?5 x 103MPa with a coefficierrt

of variation of 21 Percent.

Six mortan Pnisms, 25mm x 25mm x 5Omm, were cast to detenmine

uniaxial compt-ession (Tabte 5'5)' The

103MPa with a coefficient of variation
the mortan elastic modu lus tn

main elastic modulus was 8.3 x

of 5 percent.

Each of the brickwork pr^isrns \ryás tested in a l000KN compnession

machine, as cjescribed in Section 5.1 .2, and to eliminate problems of

matenial vaniability, each pr-ism was tested initially at an eccentnicity

of 12.5mm (d/6) and subsequently at 25 'Omm (d/3) ' The former test

did not produce cracking at the br ick-mortan intenfaces so that in

equation (5.5), the curvatune natio, c ¡ for the bricks should be unity '

9.30

14.40

8.22

7.22

10.05

11.56

9.87

12.33

8.46

7 .79

8.05

9.70

Sample 1 Sample 2
Brick No.

Elastic Modulus (x103 MPa)



2

3

4

5

6

7.84

7 .87

8.28

8.72

8.34

8.84

N4ontan Prism No Elastic Modulus (x1O MPa)

I 87.

Table 5.5: Elastic Modulus Values fon Montan Prisms

ln section 5.1.2, it was shown that measunement of nelative end

notations of a, brickwor k prism gave a statistically neliable estimate

of the bnickwork stiffness. Consequently, the stiffness of a cracked

bnickwork prism loaded at d/3 was companed with the uncracked prism

stiff ness. Befone testing each pnism, a load wa's applied at an

eccentnicity of 25mm (d/3) to ensune that the bnick-montan interfaces

were debonded, brt the load was chosen so that cracking would occiJr

without causing distness irr the compnession regions of the mortar

joints.

The end notations pen unit loacl for the bnickwonk prisms are

summarized in Table 5.6. The load t otation graphs wene all essentially

Iinear fon the nange of loads selected'

From equation (5'5), with hU = 108mm'ht = 1Omm êrrd the

cornespondingelasticrnodulusvalucsgiveninTablesS.4and5.5,

the theor^etical ratio of the end notation rates is 3'08' The average

oftheexper.imentalvaluesinTable5.6is2.S2withacoefficientof

variation of 3 pencent. The clifference between the theor etical and

experimentalresultscouldbeattributecJ,inpant,tosomedegr.eeof

tension across the bt ick-mortan inter'face because of incomplete debond-

ing and also some snlall residual f niction effects in the pin joints

tlrrough which the load was appliecj '
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Table 5.6: Relative Stiffness of Cnacked and Uncracked

Bnickwonk Prisms

5.2 WALL EXPF.R I MENTS

5.2.1 Tests on a Slender Steel Block Column

5.2.1 .1 lntnoduction

The method of analysis of a linear. elastic bnickwonk column,

descr ibed in chapten 4, was checked expenimentally by loading a stee!

column SOmm x 25mm ir¡ cnoss-section cor¡sisting of thinty-three blocl<s

eachof50mmlength.TheexpenimentalprogramWassimilantothe

tests of chapman and slatfond(97) except that steel blocks were used

instead of the oniginal aluminium blocks

Thematchingfacesoftheblocl<sWeregroundandhand_|apped

so that intimate contact could be achieved and the blocks were stacked

in the same orcjer for all tests such that minimum deviation fnom

stnaightnessWasobtained.ThecolumnWaspnecompr.essedfclt^the

purpose of handling by two 6mm cliameten high-tensile |ods and placed

1

2

3

4

5

6

91 .6

94.6

84.6

94.2

80.8

87.0

274

268

236

256

224

244

2.99

2.83

2.79

2.72

2.77

2.80

EccentricitY d/6 EccentnicitY d/3
Br ickwonk

Pri sm

No.

Relative End

( xl 0-6 KN)nad

Rotat ion Rate Ratio of

Rotation Rates

Rotation (d/3)

Rotation (d/6\
I



inside a clear acr^ylic nectangular tube' The rods

to testing when the column was loaded through

compression testing machine (f igure 5'9)'

Column failune occunned by lateral bucklingt

of the column in a clean acrylic tube was necessany

to the steel blocks and the loading knife edges

sunfaces after failune.

5.2.1 .2 BoundanY

The column

ditions -

conditions

was loaded with two types of end suppont con-

latenal tnanslation but

the top and at the base

189.

wene nemoved Prior'

kn ife edges in a

so that confinement

to prevent damage

by falling on hard

fnee to

(pinned
(a) réstrainecl from

rotate both at

end conditiorr ) .

(b) nestnained from

notate at the top

The load eccentricitY was

the section thickness, the load

side of the column centreline as

A summarY of the test conditi<¡ns

lateral translation and free to

only (f ixed base condition) '

nominal lY eithen one-f if th on

being aPPlied successi'YelY

a test of the sYmmetrY of

is given in Table 5.7.

one-tenth

on either

the set uP.

5.2.1.3 lnstnumentation

LateraldeflectionsWenemeasunedbyclialgãUgesatcolum¡r

height f or the p in-end col umn tests and at th ird points f on the

base column tests. Deflections at the column supports wef'e

checked in all tests and the loads !vene measurecj by a hydnaulic

cel I at the column base (f igure 5 ' 9) '

mid-

fixed

a lso

I oad
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re 5.9(a): Steel Block Column F¡ ne 5.9(b): Knife-edge L"':'1 'l

Steel Columtr (o
O
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I

I
¡t

I
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F igu

lnside C lear AcrY I ic Tube

Fj-g"jç-1.9: Steel Block Column Test

at ToP of
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+d/ 4.83

-d/ 4.83

+d/ 10.6

-d/ 1o.6

Fixed
Fixed

Fixed

Fixed

+d/ 4.83

-d/ 4.83

+d/ 10 .6

-¿/'to:ø

+d/ 4.83

-d/ 4.e3

+d/ 10.6

-d/ 10.6

Case (a)

Case (")
Case (a )

Case (")

Case (b)

Case (b)

Case (b)

Case (b)

1

2

3

lç

5

6

7

B

BaseTop

Boundary Conditions

( nef en to text )Test No

Load

Eccentricit
(a), (b)

(a) rr+rr and rr-rr refer to

centrel ine

(b) d is column thickness

loading on opposite sides of column

(nominally 25mm)

Table 5.7: Column End Conditions and Load Eccentricities

5.2.1 .4 ExPerimerlta I resu I ts

The results of the pin-end colunlrr tests were compared with the

load-displacement charactenistics calculated by PROGRAM PlËR1

(Appendix c) and the no-tension theony of Chapman and Slatford(97)

(f igure 5.10). Fnom the differences in the initial slopes of the

theoretical and experimental cunves, it was evident that ther^e was

some lack of stnaighness in the column, possibly caused by mismatch

at the steel block interf aces. Neventheless, the test f ailune loads and

maximum centnal def lection prior to f ailur-e were more closely pr edicted

by PROGRAM P lERl than by the no-tension theory' panticu lanly at the

gneater load eccentnicity (TaUte 5'8) ' The average of the two

expenimental cunves is veny close to the pr^edicted cunve of PROGRAM

PIERI (f isune 5.10).
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o.284

0 .355

o.246

0.317

o.28

0.35

0 .566

0.267

o.512

o .192

0. 589

0. 280

o/ro.o(')

d/ 4.83(')

PIERl
No-

ten s ionTes t
(b)

PIERl
No-

tens ion
(b)

Test

Load

Eccentricity
(.m )

Max.

Pr ior'

Centne DisPlacement

ro Faiture {oq/c)(c)
Fai lune Load

(P/%"iJ (")

(a) .

(b)
(c) .

PistheCr.iticalBucklingLoadofapin-endcolumn.cf'tt
Average of 2 tests - pin-end columns'

d is column thickness (nominally 25mm)

Tab le 5.8 : Buc|< I ing Fa i lune Loads and D isp lacements of P in-end col umn

The results of the f ixed base tests were compared with the cal-

culated nesults fnorn PROGRAM PIERI (f igure 5'11). Again, the lack

of str-aightrress in the column was evident ín the differences between

initial slopes of the theoretical ancl experimental curves' lloweven'

the agneement between expenimental and theonetical f ailune loads was

close. Failur^e loads calculated by a rro-tension material th"o"y('*4)

(f igune 3.42'') agree closely with the expenimental results pr-ovided that

a suitable estimate is made of the column effective height, À h (Tabte

5.9). This indicates that thq tension f ield stiffening effect of the

blocks is not as significant in a fixed base column as in a colunrn

with pinned encls (taute 5.8). Although the two estimates of À in

Table 5.9 give good agreement with the tests, in most pnactical design

cases the colunrn effective length cannot be calculated easily fon the

f ixed base column.
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a/ro.o(")

d/ 4.rr(') 0.99

1 .50

0.98

1 .58

0.90

1 .45

1.10

1 .57

À =0.67 I =0.70
Test

(b) No-tens i on
(¿)

PROGRAM PIERl

Load

Eccentr icity
(mrn)

Non-dimensional Failure Load (Pf/Pcrit) (a)

(a)

(b)

(c)

(d)

P is thecnrt
Mean of two

d is column

À =0.67 fnom

À =0.70 fronr

cnitical buckling load of a column with pinned ends'

tests.
thickness (nominallY 25mm)'

PROGRAM PIERl
' (44)

column theony '

Table 5.9: Buckling Failune Loads for Fixed Base Columns

5.2.1 .5 Conclusions on steel column tests

Theexper^imentalresultspnesentedbyChapmanandSlatforcjas
rrconf inmationt' of tlre validity of no-tension theor y for brîckwork did

not agnee with the calculations produced by the mone rigonous f inite

element model contained in pRoGRAM PlERl. Repetition of the expei i-

ments using an ai"ticulated steel column showed that the neported

nesults obtainecl wìth the aluminiurn column wene not repeated' As has

been stated (Section 3.4.3), inregularities in the contact surf aces of

the original aluminium blocks could have caused the diffenences

between the inltial slopes of chapman and slatford's experínlental

nesu lts and the no-tension theor^y curves. Moneover , in Chaprtan anC

Slatfordrs tests(97), the maximum column displacelnents immediately

pnior to f ailur e wei^e closen to those predicted by PROGRAM P lERl than

by the no-tension theory (Table 5.8). Tl'lerefore, the experiments on

a pin-end steel block column have shown that the results of Chaprnan
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conf¡ nmat ion of theand Slatfond's expeniments cannot be used as

validity of the no-tension theory of br^ickwork '

ln contrast, r'esults of tests on both pin-end

block columns agree closely with nesults obtained using PROGRAM

and fixed-base steel

PIERl

thus indicating that the finite element modet lnconporated into PROGRAIvI

PIERl is a betten pnedicton of the behavioun of a linean elastic colurnn

unden eccentn¡c load than the no-tension theonies proposed by Chaprnan

and S I atf ond and Sah I in .

5.2.2 Tests on Brickwonk Walls

5.2.2.1 lntnoduction

ln Section 4.5, a panametnic study WaS made on brickwork r¡lalls

which wene restrained against lateral translation at the top and base

and eithen f ree to notate at both the top and the base on f nee to

notate at the top but nestrained against notation at the base' walls

included in the par^ametnic stucJy vJene consider:ed to be laid in either

brick-on-flat on brick-on-edge configunation and the mortan pnoperties

wene either linear- on non-linean in the fonm given by equation (B.i )'

Appendix B. ln this section, the nesults of a series of expenirnents

ane pnesented to assess the adequacy of the numerical pnedictions of

PROGRAM P lERl as applîed to f ixed base bnickwork walls loaded

eccentr-ically at the top. All bnickwor-k matenial properties nequirecl

fon use in PROGRAI'4 PIERI wene detenmined dur ing the tests.

Although the numben of tests wasr of necessity, small, it is

possible to mal<e compar-isons, both qualitative and quantitative,

between the calculaterJ displaced shapes, f ailune toads and f ailure

modes and the nespective experimental values'
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5.2.2.2 Wall constnuction

Each of a tota I of eight wa I ls

f name to ach ieve a wa I I w i th one

(fisures 5.12(a), 5.12(b)). The

Table 5.10.

The bnic

was constnucted against a timber

face as close as Possible to a Plane

wall dimensions are summanizecl in

Table 5.10: Brickwonk Wall Dimensions

ksfonthewallswereextruded,wine-cu1'andwithout

and wene selected with dimensions closely 1o8mm x 75nlmperf orma t ion
=)

x 228mm. They were a lso chosen for un iformity of colour and tev'tune

because the degr ee of vitnif ication, which may affect the brick mater^ial

pnopenties, is r.elated to bnick colour, texture and climensions (section

3.1). All bnicks in the walls wene laid in a satunated, sunface-dn¡'

condition in anrron-edge" configunation, the base counse being con-

structed in a gOOmm length of i27 x 64 rolled channel section to allow

tnanspontation to tl-re compnession testing rnachine'

The montan was 1 cement: 1 I ime:6 sand by volume with a water-to

cenìent ratio of 1,41 by weigtrt; the ratio of water-to-cemerrtitious

74.8714Mean

36.2

1 9.0

36.2

1 8.9

36. 1

18.9

36.6

1 9.0

75.O

74.5

74.9

74.9

75 .1

75.0

7t+.2

74.4

714

718

711

714

710

713

714

714

271 4

1 416

271 4

1416

271 4

1416

2'.714

1 416

qa
LJ

12

,2

12

23

12

23

12

1

2

3

4

5

6

7

I

S I enderness

Rat io,

h/dTh i cknessLeng t hHei ght
No. of CounsesVta I I No.

Wall Dimension (mm)
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maten¡aIwaSl.ozbyweíght.HydratedlimepowderandPontlandType

A cement were used from fnesh bags and the sand was oven-dnied fon

4g houns and sieved through a B.s. No. 7 sieve (z'+omm mesh)' The

sand gnading curve is shown in figune 5'13'

Themortaf.wasmixedinl5kgbatcheswhichremainedwol.kable

for the 1+ hours nequined to lay twelve counses without the addition

of water. Each of the tall walls was constnucted in two sessions tlsing

two montan batches on the one davr and thnee montar pnisms, each

25mm x 25mm x 5Omm, wene cast for each mortan batch at approximately

three-quarters of an houn af ter constt uction commenced '

Allwalls,werecunedfon2ldayscoveredwithpolythenesheeting

and subsequently unden ambient conditions' Six bnickwork prisms' each

four bricks high (f igure 5.12(a)) wene constructed sirnultaneously with

the walls for measurement of the brickwonk compressive stnength ' The

method of curing was identical for the walls, montar prisms and

brickwork Pr^isms.

5.2"2.3 Elastic modulus tests

(a) Bnicks and fvlontar'

I :r:, .

the

ear:h

tl-re

The

given

Sixbr^icksweneselectedatnandomfnomthebatchusedfor

wallsandtwopt^isms'approxirnatelyZímrrtthick'wer^ecUtfnom

br ick, ês ,lescribed in Section 5' 1 '3' ERS gauges were f ixed to

prisms and the loaci-stnain characteristics measuned

experimental elastic modulus valtles fon the twelve

in Table 5.1 i .

The rnean elastic modulus was 18'2 x

of variation among bnicks of 1 1 ' 3 percent '

Al I montan prisms cast wene tested at

compression, as described in Section 5' 1 '

and P lotted .

pnisms ane

a minimum 28 daYs in

1O3MPa, with a coefficient

axial

initial3. The exPenimental
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?.01 .

21 .3

16. 1

19,4

20.7

16.4

17.O

20.9

17 .2

1 9.4

1 9.3
14.6

1 6.3

21 .1

16.6

19.4

20.o

1 5.5

16.6

Prism No. 1 Pnism No. 2 Avenage

Elastic Modulus, EO (x1O3MPa)

Table 5.11: Bnick Elastic Modulus

tangent modulus values are summarized in Table 5'12' The avenage

initial tangent modulus was 8.29 x 1O3MPa and the coefficient of vania-

tion among mortar- batch averages was 17 pencent ' The coeff icient of

vaniationamongpnismsinanybatchWaslessthanl3pencent.

1

2

3

4

5

6

7

B

9

10

11

12

2

3

4

5

6

7

B

f
t

8.51

5.44

6.33

6.99

9.63

6.42

9.78

9 .40

1 0.00

9.36

9.75

11 .20

B .08

5.41

6.44

8. B1

9.72

6.29

8.95

1 0.43

9.75

9.25

9.62

8.94

8.44

6.06

6.38

6.72

8.60

6.12

8.09

8.34

8.86

7.23

9.22

9.75

8.34

5.64

6.38

7 .51

9.32

6.28

8.94

9.39

9 "54

8.61

9.53

9.96

3.6

4.0

o.7

12.4

4.8

2.O

7.7

9.1

5.1

11.4

2.4

9.4

Pnism 1 Prism 2 Prism 3 Avenage
Mortan

Batch

Wall

No.

E I ast ic Modu I us, E- (x'l 0 3 MPa ) c.v.
07
/0

Table 5.122'Montan Elastic Modulus
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(b) Tests on Wa I I s

AllwallswenecappedwithagOOmlengthofl2TX64M.S.c.

bed.ded in a high alumina gnout to per^nrit early testing of the walls'

For all walls, the base channel was nestrained against notation by

bedding it into a thin later of fneshly mixed ilPlasti-bond" polyesten

resin spread on the nígid base platen of a 5OOOt(N capacity compression

testing machine. Four^ sets of steel blocks with machined and greased

pins, each lOOnrm long, wene placed centnally along the top of each

wall as shown in f igure 5.14, and the wall was loaded up to 100K1\l

in loKN incnements. At each loacl increment, the axial shortening was

measured and an effectiru e elastic rnodulus fon the wall was calculated'

with refenence to f igune 5.14, the gauge length f or the 12-cour.se walls

(walls2,416andB)wasninecounses(1062mm)andforthe23-counse

walls (walls 1, 3, 5 and 7\ was ten counses (tlgomm)' The relationship

.between load and axial shontening was linear for each wall; a summary

of the calculated effective br'ickwork nrocjuli is given in Table 5' 13'

The avenage value of effective brickwork modulus was 15'O x 103MPa

with a coefficient of variatíon of 3'5 percent'

14.5

1 4.3

14.7

14 .4

1 5.6

15.1

15.5

1 5.6

1 180

1062

1 180

1062

1 180

1062

1 180

1062

1

2

?

4

5

6

7

B

Br ickwonk Modulus

Eb" (x103 MPa)
Gauge Length

(mm)Wall No.

Table 5.13: B.rickwoni< Elastic Modulus
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(c) Summany of Ëlastic Modulus Tests

From the exper-imenta I nesu I ts summanized in Tab les 5 ' I 1 and

5.12, the effective elastic modulus fon brickwonk, according to equation

(5.4), should be 16.5 x 'lO 3 MPa. This value, calculated from the

sepanate moduli of the br icks and montan, is appr oximately 10 per^cent

higher than the effective modulus obtained dinectly from bnickwonk

wall tests (laUle 5.13) . Howeven¡ the two calculated means of the

effective elastic modulus values for brickwonk ane within one standard

deviation of the bnick modulus values (laOle 5.11), so that the two

sets of modulus values may be assumed to be from the same statistical

popu lat ion of r¡eans.

The large var iation in mortan modulus (laule 5.12) did not cause

lange vaniations in the overal I bnickwork ntodu lus in companison wíth

that caused by the var-iation in brick modulus. Equation (5.4) shows

that the montar modulus does not exert a majon influence on the

bnickwonk elastic modulus for the cases in which bnick and rnortan

moduli ane appr-oximately equal . Thenefone, the expenimental results

(Tables 5.11, 5.12 and 5.13) indicate that a sample size of síx bticl<s

was insufficient to obtain a good estimate of tl-re !'nean brick elasiic

modulus of the batch.

consequently, in the following section, in wlrich eccentric loaci

tests on the wa I ls are described and companed w i th the ca lcu l¡rted

nesults of PROGRAM PlER1, a brickwork elastic modulus of 15'0 x

lO3MPa is used in PROGRAM PIER1. VaIues of bnick a.nd montan moduIi

consistent with equation (5.4) ancl the nesults of t'ests on brick and

mortar prisms, as well as the bnicl<work walls, have been chosen to

be 16.2 x lO3MPa and 8.3 x 1O3MPa respectively '
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5.2.2.4 Eccentnic Load Tests on Fixed Base Walls

(") Non-destr uctive Load Tests

Experiments wene f inst conducted on the eight walls (Section

5.2.2.2) to check unden eccentnic loading the cot-nelation between the

lateral displacements calculated by PROGRAM P lERl and the measured

wall prof iles.

Each of the foun shont piers (1¿l6mm) was placed in a 5000KN

compnession testîng machine and loaded through pin blocks as shown

in figune 5.15. Latenal displacements were measuned by dial gauges'

placed as shown, and end rotations wene measuned close to the top

and base steel, channel sèctions by bubble micrometers as in previous

tests (Section 5.12, f igure 5.6). The out-of-plane imperfections on the

face built against the timber- cotrstnuction fname vvere measuneci and

found to be less than 1 .Omm. Each wall was loaded successively at

eccentnicities of 12.5mm (d/6) and 25mm (d/3\ at the toP, the base

being r-igidly f ixed against notation. The wall was loaded to 100KNl;

at eveny lOKN increment the lateral displacements and end notations

wene recorded. The set of load-displacement nesults fo¡' wall 2 (fiqure

5..¡6) showed tlrat fon loads up to 2OKN thene was some settling in the

wall, possibly causecl by shninkage in the montar joints (Sahlin(aA))

and end suppor-ts, bur t, betyreen zOKN and looKN, the latenal displace-

ments variecl alrnost lineanly witþ the load. l-inean load-displacement

relationships wene obsenved fot all short walls tested.

A plot of load against rotation at the top of wall 2 (figune 5'17)

showed that, between loads of 2oKN and 1ooKN, t'he notation varied

linearly with the applied load, Figure 5.17 shows only the resulls

fon a 25mm load eccentricity on wall 2, but the load-r^otation nelation-

ships wene essentially linean fon all shont walls at bcth test loacj

eccentrícities when the loads wene between 20KN and 100KN.
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Graphs of the latenal displacement pnof iles fon the shont walls

ane shown in f igur es 5.1g and 5.19 in which the avenage pnof ile is

companed with a theoretical displaced shape computed using PROGRAIVI

PIERl and the matenial pnoper ties in section 5.2.2.3. The spnead of

expenimental results is more pronounced for the lowen load eccent;'iCity'

but ovenall, the theor etical and exper^imental displacement prof iles

ane comparable, the differences being consistent fon the two load

eccentricities. sevenal possible r'easons fon the differences are discussed

later in this section.

The changes in slope at the top of each of the short (1416mm)

walls as the load incneased fnom 2oKN to lOOKN ane summanized in

Tabie 5.14.

Table 5.14: Changes in Slope at Top of 1416mm High Walls

The change in sloPe

to be insignificant.

Ëach c¡f the f our' ta I I

at the base of each shont wa I I was f ounci

walls (2714rnm) was tested in the same way

gauge positions were as in Table 5' 15'

PROGRAM PIERl 0 94 2.12

Average
c.v.

1.22

15.8% s.o%

2.16

1 .3i
1 .41

1.25

0.90

2.14

2.35

2.30

1 .85

Eccentnicity 12.5mm Eccenti^icity 25mm
Wal I No.

Change in Slope (xtO-3 naa/eoKN)

as the shot t wa I ls. The d ia I
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top p laten

2714

2242

1770

1298

826

35lt

ze?o

1

2

3

4

5

6

7

8

Height Above Wall Base

(mm)
Gauge Nc.

(ref. figune 5.15)

Table 5.15: Positions of
(22I +mm)

Dial Gauges fon Tall

Walls

Theout_of-planeimpenfectionsonthefacebuiltagainstthe

timben constnuction fname wene measuned and found to be less than

1.omm. The base of each wall was nestnained against notation, as des-

cribed in section 5.2.2.3, and each wall was loaded successively at

eccentnicities of 12.Smm (d/6) and 25mm (d/3) as f on the shor't ( I ¿lGmm )

walls.

ThewallwasloadedtolOOKN;atevenylOKNincnementthe

latenal displacements and end rotations were r^ecorded' For all tall

walls, the load-lateral displacement nelationships were essentially

linear- f on loads between 2OKN and lOOKN. Gnaphs of the latenal dis-

placement prof iles fon the tall walls ane given in f igures 5'2O and

5.21 for load eccentricities of 12.5mm and 25mm nespectively, and the

avenage prof ile is companed with the theonetic¿¡l displacement pnof ile

computecl by PROGRAM P lERl using the material pnopenties specif ied

in section 5.2.2"3. Ttre nesults for wall 1 wer^e not included in the

avenage prof ile because the method used for f ixing the wall base did

not restnain adequately the base of the wall fnom notation (figure
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5.2O). The spread of nesults fon walls 3, 5 and 7 was similan fon both

load eccentnicities, and fon both loading cäses the theonetical and average

expenimental prof iles were closely companable. The change in slope

at the top of each tall wall between loads of 20KN and 100KN is

summanized in Tabie 5.16. Fon all tall walls, the change in slope at

the base was insign if icant .

ln wall 1, fon loads greaten than 20KN, the change in slope at

the base was .small, but ther e was signîf icant rotation at low load.

This behaviour may have been caused by a low gnout stnength at the

time of first testing.

4.351 86PROGRAM PIERl

4.31

1 .?%

2..OO

s .1%

Au.".9u(t )

c.v. (. )

5.13

4.31

4.22

4.40

2.30

2.12

2.13

1 .74

1

?

5

7

Eccentnicity 25mmEccentricity 12.Smm
Wall No

Change in Slope (x10-3 raoleoxNl )

(a) Statistics cn walls 3, 5, 7 only (nefen to text).

Table 5.16: Changes in Slope at Top of 2714mm High Walls

ln summany, the non-destructive tests on the eight f ixed base

walls at load eccentricities of 12.5mm (di6') and i'5^^ (d/3) showed

linear- relationships betrveen load and displacentents, including end

rotat ions .
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Small initial movements at the wall base, which effectively would

result f nom a pantial release of full rotational f ixity, would have

pnoduced the diffenences between expenimental and theonetical displace-

ment prof iles and end notations, par'ticulanly in the short v'ralls

(f igures 5.18, 5.19). Small ennons in placing the eccentnically-located

p¡n blocks also could have led to differences betureen experimental

and theoretical results, particulanly at the 12.5mm eccentnicity (d/61 '

lngeneral,however,thetestsshowedanacceptabledegneeof

agreement with displacements and rotations calculated by PROGRAIVI

PIERI (Tables 5,14, 5.16) using the matenial pr^operties specif iecl in

section 5,2,2.3. ln all computations, the mortan was assumed linear

because the rr"o== Ievels wene low and because the axiaI load tests

on the walls (Section 5.2.2.3) did not indicate that the montar was

non-linear at loads up to I OOKN, Howeven, for the subsequent wa I I

tests to f ailune, the theonetical pnedictions were based on PROGRAM

P I ER I w i th an assumed non-l inear mortar^ behav iour'.

(b) Load Tests to Failtlne

Fon the load tests to failune, the rotations at tlre top of the

walls and tlre latenal movements of the top and base supponts \^/ere

measuned on the assumption that the wall behavioun could be assesseC

satisfactor ily by companing only the measured and calculatecl end

notations. This assumption was based on test results given in Sections

5.1.2 and 5.1.3. A summany of the load ecceni¡icities, f-ilur e loads

and f ailure modes is given in Table 5.17 '

Thnee modes of f ailur-e \ryere observed. All the tall walls (1, 3,

5 and 7) collapsed by later^al buckling; no visibie distress was evident

in either- of the bnick on montar materials pr ion to collapse. l-lcwever-,

the two rnodes of failune displayed by the short walls wene -
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Table 5.17: Wall Failur e Loads and Failure Modes

(a) a vertical splitting f ailure (section 3.3), shown in tigure

5.22

and (b) a brick spalling f ailur e at the conrpression f ace of the wall

(figures 5.23 and 5.24) fon walls I and 4 respectively.

ThesecondtypeoffailuneWasnotnotedinareviewofthe

literature. lt differed f rom pneviously neponted spalling due to bearing

in wh ich the mortan, úsua I ly of veny low strength, had spa I led by

itselfG4'). ln the tests on walls 4 and 8, tl-re spalling failure was

pneceded by a ,rpow,Jening" of the mortan at the wa l l compression f ace,

indicating that tota I f ai lure of the mor'tar had. occurred at the

compression f ace of the joint. ln wall 4, the spalling occunned at the

third bedjoint (354mm) fnom the top and in wall I at the first (ttemm)

fnonr the top. The bricl< spallîng was pr'obably pnecipitated by lar-ge

latenal str^aÌns in ihe mortan at the compressîon face' The rnaximum

thickness of the wedge-shaped pieces of bnick which spalled off was

Latenal Buckl ing

Ver tical Splitting
Latenal Buckl ing

Br'ick Spa I I ing on
Comp. Face

Latenal Buckl ing

Ventical Spl itting
Latenal Buckling

Brick Spa I I ing on
Comp. Face

503

780

293

584

550

800

290

765

12.5

12.5

25.O

25.0

12.5

12.5

25.O

25.O

2714

1416

2714

1416

2714

141 6

271 4

1416

1

2

3

4

5

6

7

B

Failune
Mode

Fai lure Load

Pt (KN)

Load

EccentricitY
(m.)

Hei ght
(mm )

Wal I

No.
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approximately6mmatthemortanjoirrt(figunes5.23,5.24\.Wall2

showed a vertical splitting f ailure at 78OKN; howeven, the load could

be-furthenincneasedtolll2KNbefonethewallcollapsed.Theactual

mode of f ai lure cou ld not be detenmined because the wa I I d isintegnated

instantaneously at collapse. wall 6r which was tested similarly to wall

2'wasnotloadedbeyondtheventicalsplittingstage,deemedtobe

wall f ailur^e, for r'easons of safety. Plots of load against t'op rotatîon

fonallwallsare9iveninfigunes5.z5,5.26,5.z?and5.28together.

with theoretical end rotations calculated by PROGRAtvI PlËR1' ln tl're

calculations, the bnick elastic modulus was 16.2 x 1O 
3MPa and the

linear montan elastic modulus was 8.3 x 103MPa (section 5'2'2'3)'

Alsoshowninfigures5.2StoS.2Earetheoneticalwalltor)

rotations calculated by usinq PRoGRAM PIERl with a non-linean montar

with the stness-strain relationship -

o = 8.3 x 1or (e - 6.104'1'5¡ (5'6)

Equation (5.6) was obtained from the general equation gîven

in Appendix B' using n = |'5 ancl o. = 33'OMPa' This value of o'

was deter^mined from axial compnession tests on four-bnick prisms con-

str-u¡cted with the walls (f igur e S.l2(a), Appendix D)'

ApanametricstudyWasmadetoinvestigatetheeffectonthe

wa¡ f airune roads of using exponents, n, in equation (B' 1) of 1'2,

l.5,2.oand3.0.ThenesultsaresummarizedinTable5.lstogether

with failune loads calculated by PROGRAM PlER',l using a linear

matenial analYsis.
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Wall Height (mm)

(S lender'ness 
'

h/d )

2714

(36)

271 4

(36)

1 416

( 1e)

1 416

(1e)

Load

EccentricitY
(mm)

12.5

(d/6)

25.0

(d/3)

12.5

(d/6)

25.O

(d/3)

( zso)

[^t ]

{:::}

ü:ll

ì
)

q

c)

503

550

(d)

Montan

Li nean

620

300

884

442

n = 3.0

1 050

295

604

525

n = 2.O

1 068

583

286

537

n = 1.5

1 081

553

269

547

Failure Load, P, (KN)

Non-Linean Mortan

Theonet i ca I

n = 1.2

1025

230

555

469

(a)

(c)
(d)

Ëach pain of 'loads is f norn two tests

lnitial Slopes of Load-r otation Curves

Failune Str ess 33.0MPa (Appendix D)'

Table 5.18: ExPerimental

(b) Ultimate failune load fon wall 2 was 1 l1zKN

vanies considenably between walls (f igune 5'28)

N
N
ul

and Theoretical Failure Loads fon tsrickwor^k lValls
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(.) Summarv of Failure Load Tests

Thetoprotationsandthebucklingfailureloadsofthetallwalls

I, 3, 5 and z (slenderness natio 36) agneed closely with the calculated

values f nom pROGRAM plERl (f ¡gures 5.25 and 5.26). The computations

used a bnick elastic modulus, Eb, of 16.2 x 103 MPa (Section 5'2'2'3\

and a non-linean mortan with the stness-strain relationship -

(5.6)5
o = 8.3 x 103 (e 6.1O4e

Byusingequation(5.6),themaximumstressattainableinthecalcula_

tions was 33MPa, the minimum axial compnessive f ailune stness fo¡^ the

bnickwork (Appendix D).

Thetoprotationsoftheshot-twalls2,4ando(slendennessnatio

1g) were calculated closely by PROGRAM PIERl usìng a non-linear

montan in the analysis given by equation (5.6). The failure load of

shor.twall4,whichfailedbybrickspalling,Wascalculatedby
pRoGRAM plERl using a non-linean montar' (equation (5.0) ) tc' within

6 pencent of the expenimental value (f igure 5.28, Table 5' 18)' Possible

errons in the test set up of wall I pnoduced signif icant differences

between expenimental and theoretical values of top rotation and f aiiune

load (f igure 5.28).

A linear analysis using PROGRAM PIERl predicted ciosely the

ver-tical splitting failure loads in walls 2 and 6 (figure 5'27' Table

5.1g) and the ultimate f ailure load fon wall 2 (1112K1'¡) was calculated

by using a non-linear- montar analysis (equation (5'6) ) itt PROGRAM

PlER1. The difference between the failune loacls 'calculated t¡y the

linean and non-linear analyses was less tl-ran 30 pencent of tlre largen

va I ue.
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¡tappeans,thenefone,thatinamonegenenalinvestigationinto

the behaviour of bnickwork walls, a senies of brickwork pnism testst

similan to tests described in Apperrdix D, could be used to detenmine

whether.theventicalspl¡tt¡ngmodeoffailuneismorelikelytooccur

for a specif ied load eccentnicity than f ailune by bnick spalling' lf

the splitting mode of failure is predominant, the corresponding failure

Stnesscouldbe,p""ifi.daSanuppenlimitonwallloadinalinean

mateniaIanalysisusingPRoGRAMPlERl.However,ifwallfailuremight

occur by latenal buckling or brick spalling' a non-l inean rnontan cou ld

be used in the analysis. Results summaniz-ed in Table 5'18 for a nange

of non-linear lnortars (Appendix D) indicate that the exponent' n' fon

a non-linean mortan with a stress-strain charactenistic descnibed by

equation (8.1) might not be critical to the values of wall f"ailune loads

calculated bY such an analYsis'

Alargenumbenofexperimentsisrequine<Jbefonethegeneral

utility of PROGRAM P lERl fon bnickwor k walls can be assessed on a

statistical basis. Howeven, the exper iments summarized in this section

indicate that PROGRAM PIERl has a numben of advantages over previous

methods of analysis in providing mone accunate pr^edictions for both

the,o..odeformationbehaviounandthefailureloadsofeccentrically-

loaded br ickwor k walls.
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OF BRICKWORK PANELS IN TWO-WAY BENDING6. THE ANALYSIS

6.1 INTRODUCTION

A bnickwor k structure is generaI ly non-homogeneous and non-

isotnopic, as it is built up f rom bnicks, sepanated by layens of mortan'

ln general the r elative amounts of brick and montan along a honizontal

section is different from that along a ventical section'

lnChapter4,itwasshownthatabrickcolumncanbeanalysed

asanequivalenthomogeneousisotr-opiccolumnofvaryingthickness;

the thickness vanies with the effective eccentricity of the load' which

in tur-n depends on the initial eccentricity and the defleciion' The

r^elationship between the thickness to be used in the calculations and

the effective eccentricity was established usìng a iwo -dimensional

finite element analysis by making the moment-rotation characteristic

for^ a module of this equivalent column, which was one br ick heighi

plus one mortan thickness in length, equal to the connesponding

chan¿rcteristics of the real column . Although the stnesses irr the real

column and the equivalent column ane not equal at all sections' oi'lce

the def lections have been calcu lated the stresses in ihe real column

can be comPuted.

lnthischapteriiispt.oposedthatasimilar-equivalentplate

ofvanyingthicknesscanbeanalysedtofindthedeflectionofa

brickwonk panel suppor-ted on f oun s icjes and loaded by i n-p I ane

eccentric compression forces. Bnick-montar un its of appropniate size

ane analysed by thnee-dimensional finite element methods to calculate

the bending and torsion stiffness of the equivalent homogeneous plate

which'can be usecj irl the calculations'
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6.2 THE ST IFFNESS OF PART IALI-Y-CRACKED BR ICKWORK PANELS

6.2.1 An Analytical Element for Panels

' The anrangement of br^icks and montan in conventional stretcher

bond is shown in f igure 0.1(a).

lf the panel in f igure 6.1 (a) is subjected to uniform bending

on in-plane fonces, a small volume of the panel, def ined by 'the planes

AAAA, BF^B^B., CCCC and D.QQQ,, and ref enned to in this chapten as a
'ïäiU -t-z-t-'t' t234 l23q

panel module, can be used to analyse the behavioun of the whole panel

(f igune 6.1(b)). The dimensions of the panel module given in f igure

6..|(b)) refer^ 
:" 

the par ticular br^icks used in the construction of ôn

exper imental panel to be descnibed i rr Chapter 7 . l n the fol lowi ng

sections, the stiffness of the panel module is calculated for both

uncnacked brickwork and cnackecl brickwor k in which thene is bond

in shean but no tensile bond between the bnick and mcntan components'

Bending of the panel module is defined to be nonmal to the bedioints

if the moment is associated with stresses normal to the bedjoints and

bending is def ined to be oarallel to the bedjoints if the moment is

associated with stresses parallel to the bedjoints'

6.2.2 Bending Nonmal to the Bedjoints

The extent of bedjoint cnacking in walls suppor ted only at the

top and base deperrcJs orì the position of the in-plane force nesultanl

acting nonmal to the bedjoints (Section 4.2\. The effect of load

eccentricity on the cracking and stiffness of complete panels supponted

on thnee or four sides may be investigated by the finite element methoc

in which the panel module, defined in the previous section, is divided

into ninety twenty-node isopanametnic ihr-ee-dimensional pnism elements'

A system of eight-noded elemerlts was found to be unsatisfactony
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because of ttre lange number of elements r-equined to model the

bnickwor k adequately in bending. A typical twenty-node element is

shown in figure O.2(a) and the finite element gnid for- the complete

panel module in f igune 6.2(b). Details of the panel module subdivision

ane given in APPendix E.

lfthepanelmoduleiscompressedbyaventicalloadwhose

nesultant acts within. the kern, thene is no cnacl<ing on the bedioint'

lVhen the nesultant load acts outside the kenn, a cnack fonms at one

on both of the bríck-mor tan intenfaces on the bedjoint dependin9 on

the position along the bedjoint (f igures 6.3(a), 6"3(b), O'3(c))'

The stiff ness of the bnickwor^k vanies as a resu lt of the cracking

at the bedjoint br^ick-mortar intenfaces. The results obtained for one-

way bending (Section 4.2') wene companed with calculations based on

the panel module, shown irr figur e 6.1(b), fon various values of bnick

and montar mo¿ul,i . With neference to f igunes 6.1(a), 6'1(b)' the planes

ArS¡- and B,q?B.. ane taken to remain plane for bending nonmal to

the bedjoints and. similanly, planes C,C.C.C* and qDrqq ane assumecJ to

remain plane. ln orden to calculate the f lexural rigidity of the panel

moclu !e, p I anes A¡Aô. and B,BrBFu may be rotated by a chcsen ang le'

sayQ,ancJthelengthofthemiddlesurfaceÇÇErEnmaVbedecreased

by a chosen amount' say o (f igur^e 6'4)'

The nocles of elements at the hor^izontal brick-montar interfaces'

on planes tulf,ur'lld,, and N,Nj'q.l- in figur-e 6.4, can be uncoupled whene

tension normal to the intenface could be developed'

The problem can be solved using a finite element pnogram such

as PROGRAtvi MFYDCP (Appendix E). The positiorr and magnitude of a

nesultant load requined to deform the panel module into the shape

specifierJ cen be calculated from the reactions on the faces AA'\\ and

BlBFPdTl.reeffectiveflexur-alstiffnessofihepanelmodulemaybe

def ined as -
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(6.1)(Et) (h +
meq b

in which P is the total nesultant

' e is the eccentricitY of nesu I tant load

notations of Planes AA and

the

is 20 x lO3MPa fr:t all cases'

radians, ô = O.02rnm (f igune 6 '4) fon all

calculated bY Equation (6'1)

eP

0

I oad

0 is the sPecified nelative

BB

and h ane as definited in ChaPter 4'
m

Thecalculatednesultsshowedthat,fonsolidbnickwor^kwith

dimensions given in f igure 6.1(b), PROGRAM MFYDCP gave solutions

which agneed closely with the nesults calculated using equation (4' 1)

for bnickwonk i,n one-way bending (tal¡te 6' 1) '

0 .99

0.99

o.97

0.95

o.32

a.32

0.31

0. 30

1.0

2.O

4.O

10.0

Ratio of

Effective Flexur^al

stiff.,.==(c)

Ca lcu lated

Effective Eccentnici tY

(./a ) 
(b)

Bnick:Montar
Modu I ar
Rat¡o(a )

hu

(")
(b)

(c)

That is,

on the

Brick Modulus

0 - 1.0 x 10

cases.

(Et)
Ratio t

3

l
EI ca cu la y Equation

eq

Table 6.'l : Stîff ness of Brickwork Subject to

Bend ing Norma I to the Bed joints

theeffectiveflexuralstiffnessofabnickworkpanelcr.acked

bedjoinls bY an eccentr-ic compnession fonce, unifonm along the



panel lengthr can

derived in ChaPten
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be calculated using the cunvatune r atio facton' ct 
'

4 fon brickwor-k in one-way bending'

6.2.3 Bending Parallel to the Bedjoints

Whenabr^ickpanel(tiguneo.l(a))issubjectedtobending

moments par allel to the bedjoints, tension stnesses can develop at the

venticaljoints,o]^penpends.lfthebondstnengthatthepenpends

isnegligible,crackingintheperpendoccuns'andtheflexuralstiff-

ness of the br ickwork is neduced below that for uncnacked brickwonk'

6.2,3.1 Uncnacked bnickwot k

Asapneliminanyinvestigationfoncalculatingthereductionin

stiffness, PROGRAM MFYDCP was used to calculate the stiffness of

uncnackecl Lrrìckwork f on bend ing pana I lel to the bed joints. An ef f ect ive

stiffness for uncnacl<ed brickwonk was calcu!ated by Base and

B.ke.(69) (S..t¡o.' 3.3.5) in the fonm

d3b (6.2)
(El)

p

in whictr (El)

L' H,

d

E
H(L+p)

E.
(t- + (*) p)

+
b b 12

m

is the effective flexunal stiffness, per unit height'

fon uncnacked bnickwor^k

is the elastic moclulus for the br icks

is the elastic modulus fon the montan

pr b, ane dimensions defined in figune 6'5

is the panel thickness.

E
m

+Hb( )

p

Eu

E.m

in f igure 6.1(b)' The

assumed Èo be subject

Equation lO.Z) was checked by using tlre Panel module shown

panel sholvn in f igur e 6' 1(a) was

berrding parallel to the bedjoints'
b r ickwor'k

to unifonm



237

ø/2

b

H

L

Figure 6.5: Brickwonk Dimensions

p

DzD+
czc+

o/2

K
¡l)
(ozK+K

z

120

PLAN VIEW

Bending of Panel Module Parallel to

' the Bedjoints

3

\
\

Dt Dg cr c¡

F igure 6.6



23A.

It was also assumed that the plane boundanies 4AA4' B¡BP3B,,' CCCC anct

DDDD nemained plane during bending. PROGRAM MFYDCP was used with
¡23|{

a subdivision of ninety elements (Appendix E), and the planes Crcrcrc.

and DDDD were rrrotatedrr by pnescr^ibing the displacements of all nodes
I23rr

on planes CCTCC. and DPrDrq (f igune 6'6) ' Planes Arry\â and BTBF3B'- lvene

restrained against out-of-plane translations'

The f inite element solution indicated that thene was'no change

in length of the middle sunface, KrqKr\'The bendirrg moment nequired

to achieve the prescr ibed end notations was calculated fnom lhe

reactions at the nodes on planes CrCprC' and ?DrQD,,' Because there ane

no resultant forces par.alleI to the bedjoint on the planes C,C,C,C' and

DPPTD, (f igure 6.6), an e'ffective f lexunal stiff ness pen unit height for'

the panel module may be calculated fnom the equation -

(El)
p

in wl'lich N4 is the nesultant moment

,þ,.(#

p

CCCC ancl DDDD about
l23tt l23r+

0 is the relative rotation
p

L, H, b, p are defined in

r:f the end f onces on P lanes

the middle surface, K'KIR

of planes CCCÇ and qqqq

f igur e 6.5.

{6.3)

A summany of calculated relative stiffnesses fon selected bnicl<:

montar mocjular ratios is given in Table 6'2 and figui^e 6'7'

The calculatecl results, summar.ized in figure 6.7 and Table 6.2'

agneed closely with equivalent stiffnesses proposecJ by Base and Baker

fon vanious brick and montan moduli provided that the bnick:montan

modular natios wer-e less than 5.0. Fon a modular natio of 5'0, the

difference in relative stiffnesses calculated by equation G'2) and

pRoGRAM MFYDCP, was approximately 5 percent, with equation (6' 2)

giving the lowen value. Base and Baker assu¡med ihat plane sections'

normal to a neutral axis along the brickwonk, remained plane (Section
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(") Bending stiffness relative

E. /E = 1.0.b'm

Tab le 6.2! F lexuna I St if f ness of Bnickwonk Sub ject to Bend ing

Par'allel to the tsedjoints

3.3.5)'andhencethatbrickwor.ksubjectedtobendingpanalleItotlre

bedjoints def lects into a cylindnical circulan sunf ace' Howeven' the

nesultsfnomPRoGRAMMFYDCPshowedthat,ingeneral,brickworkdid

not def lect into such a cy lindrical shape and that ther^e wene sig-

nificant twisting moments and slrear stresses on the bedjoints'

panticulanly for. modular ratios gneaten than 5'0' These diffenences

between the defonmed shape assumed by Base and Baken and the shape

predicted fnonr the mone accurate numenical model account for the

differences in the flexunal stiffnesses calculated by the two nrethods'

6.2.3.2 Brickwonk with cnacked penpends

The effective flexunal stiffness in horizontal bending fon brick-

wonk with rìo tensile borrd stnength on the per pends was calculated

using the panel module shown in f igure 6.1(b). The planes def ined

by Aêll+ BB2tsB- C,Cp,C* and qqqD. were assumed to remain plane during

lronizontaIbending.PRoGRAMMFYDcPWaSusedwithninetyelements

(Appenclix E) and planes CprCF, and qqDrD, wenerrnotatedrrabout thein

to br^ickwonk with modulan natio

1.0

2.O

4.0
5.0

10.0

20.o

1 ,00

o.92

0.83

0.80

o.67

0.51

1 .00

0.94

0.85

0.83

0 .73

o.62

(6e )Base and Baken PROGRAM MFYDCP

Modu lan Rat io

( EblEm )

Relative Stiffness
(a)



respect¡ve vent¡cal centrelines by pnescnibing the displacements of all

nodes on p lanes C,C,C.C. and qDrqq' The p lanes tA¡å and EB'EB- wene

restrainedagaínstout-of_planetranslation.Bytnial,elementswhose

edges def ined the penpend bnick-mor tar interfaces wene uncoupled at

al I nodes at wh ich tension norma I to the intenf aces cou ld develop '

A prof ile of the simulatecj per pend 'rcr-acl<ing", shown in f igune 6'B'

represents an appnoximation to th9 neal per-pend cnacking because of

the coanseness of the finite element mesh and because of the assumption

of matenials with linean stress-stnain nelatiorrships' ln neal' bnickwonk'

the extent of perpend cr-acking varies with incneasing t otations on

olanes cccc and DDDD because of non-linean material behavioun and
I23f t 123\

the nestraint of in-plane defonmations in the horizontal direction '

PROGRAM MFYDCP was usecl with the simulated cnacked penpends (figr-rre

6.8) and with varior.¡s bnick:montar modulan natios (taute 6'3) to cal-

culate the effective stiffness of bricl<wor k subjected to bending parallel

to the bed joi n ts '

0.768

a.766

0.765

1.0

2.5

1 0.0

Relative stiff.t.t=(t )

.PROGRAM MFYDCP
Modular Ratio

E. :Ebrn

cracked brickwonk relative to uncnacked

same modulan natio (perpend cracking only)

F lexur al Stiff ness of Brickwonk

. P lots of

won[< with a'

lange nonmal

s t r'ess

rnodu lan

.cross-sect ion s

in figure 6.9,

bedjoint rvith

241.

for brick-

RelativelY

a perPencl

(a) Bending stiffness of

brickwonk with the

Table 6.3:

distrÎbutions at selected

natio of 2.5 ane given

junction of astr-esses at the
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may indicate that

a penpend-bedjoint

to the bedjoints.
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tensile f ailur e of the bnicks could be expected at

intensection in a case of excess bending panallel

6.2.3.3Br.ickwonkwithcrackedperpendsandcnackedbedjoints

Eccentnic ventical compression loads applied simultaneously with

bendingpanalleltothebedjointscanpnoducecnackingonboththe

penpend and bedjoint bnick-montan interf aces. The cracking on 'the

bedjoints can take place eithen on the same panel face as the perpencl

cracking (f igur^e O.1O(a) ) on the bedjoint ancl per pend cracking can

occun on opposite faces of a panel (f igure 6.10(b)). ln this thesis,

the only.-ruå considened ane those in which pe.pend and bedjoint

cracking occun on the same panel f ace (f igur e 6" 10(a)i .

PROGRAM MFYDCP was used with simulated cnacked penpends and

bedjoint cr acking up to one-lralf the panel thickness (Appendix F-)

and tJre relative flexur^al stiffness fon horizontal bending of cnacked

brickwonk wene calculated for selected brick:montan modular ratios

as shown in Table 6.4

Relative 5tiff.'"==(t) - PRoGRAM MFYDCP

{.) Bending stiffness of cnacked brickwor k nelative to uncnacked

brickworl<withtheSamemoclularratio(Section6.2.3.1).
(b) Perpend and bedjoint cnacks on same panel face'

Table6.lr:FlexuralsiiffnessofBnickwork

1.0

2.5

10.0

o.751

o.745

0.733

o.724

0.718

0.705

0.699

0.691

o.676

d/6 d/3 d/2
Modular Ratio

mb
EE

Depth of Bedjoint Crack
(b)
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6.2.3.4 SummanY

The calculated nelative stiffness values (table 6'3) showed that

the stiffness of the br.ickwonk studied (f igur e 0.1(a), 6.1 (b)), when

subjected to bending panallel to the becljoints and cnackc-d on the

penpends only, was appnoximatelY thnee-quantens of the uncracked stiff-

ness. Simultaneous cnacking of the bedjoints with the penpend reduced

the nelative stiffness, depending upon the depth of the bedjoint cnack

andthebr^ick_montanmodularratio,asshowninTable6.4.

6.2.4 Tonsion in Bnickwonk

6.2.4.1 Uncnacked bnickwonk

Timoshenko(i 
l2), as mentioned in Section 3

an effective shean mc¡dulus for onthotropic plates

by using the exPnession -

X
G

+

.3.5.2, showed tl'rat

could be calculated

E E EE
( 6.4)

effective shean modulus

are elastic moduli in the. pnincipal dinections of

an onthotroP ic P I ate

ane effectivä PoissonIs ratios fon an orthotropic

plate in the nespective pnincipal directions x

and y

X
+

v .vxy yx2(1

xy' yx

)

in which G

E

ts an

Ext v

v

v is an effective Poissonrs natio for the plate'

PROGRAM MFYDCP (Appendix E) was used to artalyse the panel

rnoduli (Section 6.2.1, figune O.l(O)) to determine wheihen ar-r expr-es-

sion similar to equátion (6.4) might be developecì fon uncracked

bnickwonk. For this pur-pose, it was assutrrred that the panel modr-rle

maybesubjectedtopuretwistbyapplyingtwistingmomentsonthe



surf aces AA, BB, CC and DD (f igure 6' 1 1 ) ' As in the

bending, the dimensions of the module given in figune

the particulan bnicks used in the expenimental panel to

in Chapten 7.

lf the elastic pnoperties of the brick and montan

similan and are assumed to be linear, the displacements

surf ace of the panel modu le (pana I lel to the Y-Z p lane

in its undeflectecJ state) may be given by the equation -

; - k(v-60) (z-60)

in which k is a constant.

displacements of any poirrt P(x,y,z)

the tc¡tal twisting moment couples M

by the following equations -

251 .

case of pur^e

6.ll nefen to

be described

materia ls aÌ'e

of the middle

of the modu le

(6.5)

su ¡^f ace

pure

within

and

(0.6(a) )

(6.6(b))

(6.6(c) )

Q(x' y 1,21\ on the

may be ca lcu I atecj

The

direction

It

rema ins

twist. ln

displacements of the panel module middle surface in the Y

(t) arrd in the Z dinection (') may be taken as all zelo'

may be assumed that anY line rronmal to the middle

sunface aften defonmations occur duenonma I to that

such a caset

to

the

the

M

modu le,

(figure

*P=

associated with

6.11) are given

yz

zy

i t (y-60) (z-60)

(x-32.5) -k (x-32.s) (z-60)

tP
aX=-- 3z

( x-32.5 ) -k (x-32.5¡ (y-60)

vP
âx- -rt

Therefone the di sP I acements of

boundary faces AA, BB, CC and DD

any Point

(f isune 6.11)

as-
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F igune 6. 1 1 : Panel Modu le Sub jected to Pune Tw ist
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rO

Mzy
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B
B

D

tX

I

\

J



( ¡ ) Boundany face AA (v 
r=12O1

X

v8

ta

o 6Ok ( z., -60 )

-k(xI -32.5)(2,,-60)

= -60k(x -32. 5 )

253

(6.6(d))

(6.6(e))

(6.6(f ) )

(6.6 (s ) )

(i¡) Boundary

= -60k(z

face BB(y

-60 )

=0)

"e

;a

in

(¡i¡)

,g

*e

v8

2a

vQ

vQ

= -k ( x.,-32. 5 ) ( z., -60 )

= 6Ok(xr-32.5)

Boundary face CC(2.,=0)

= -6Ok(Vr-60)

= 60k(xr-32.5)

= -k( xr-32.5) (vt-60)

( i v ) Boundary face DD (2.. =120\

= 6gk(v,-60)

= -60k(xr-32.5)

= -k( xr-32.S) (vt-60)

It should be noted that brickwork in common stretchen bond rnay

be subdivided into modules, as shown in figure 6.12, in which any

chosen module is sunroundecJ by foun modules, all of which ane fiìil^t ot^

images of the given module. lf all modules are subjected to the same

set of twisting rnoments (figur e 6.12), then, in onden that deformations

at the boundapies of adjacent modules nr ight be compatible, innespective

of the etastic modulus of the bnicl< and nrontan rnatenials, any initially-

stnaight line on a module boundar^y must nemain str aight aften defonma-

tions have occunred. That is, fon all values of bnick and mortan

elastic moduli, the displacements at the boundanies of a panel module

may be siven by equations (6.6(d)), (6.6(e)), (6.6(f )) and (0.6(g)).
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-rlr
Jr Et* Jr

dr

F igune 6.12t Subdivision of Brickwork into Panel Modules

(showing Twisting Moments)
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These equations may be reganded as displacement functions fon the

boundanies of a bnick',,vork panel module subjected to pure twist; the

intennal defor-mations may be calculated subseqrtently by using a f inite

elementmethodsuchasinPRoGRAMMFYDCP.Asacheckonthecom-

puted displacements within the panel module shown in f igur e 6' 11'

equatíons (6.5) ancj (6.6) must hold fon the line fon which Y = 60 and

z = 60, that is x = 0, i, = 0, ig = 0'

For all calculations involving PROGRAM MFYDCP, the bnick

modulus was chosen as 20 x 1O3MPa and the bnick:montan modulan ratio

was vanied between 1 .0 and 10.0. Fon equations (6.6) , the constant,

k, was chosen to be 1Oo x 10-6 so that the maximum displacernents

ln, to and ;n were o.36omm, o.l95mm and o.195mm nespectively' The

resulting twist on the panel module (f igune 6.11) was 100 x 10-6 rad/

mm. The total twisting moments *r. on faces AA and BB and *tu on

faces CC and DD were calculated fnom the nodal neactions (taOte 6'5 
'

f igune 6.3) . Accondîng to Timoshenko d12), the total' tvristing moment fon an

isotropic plate with the pr-operties and dimensions of the panel module'

when subjected to a twist of 'lOO x 1O-6nad/mm, are 4'776 x lO6Nmm

(a)
(b)

Eb is 20

Tr¡rist is
Poi sson ' s

x 1o 3MPa
_^

10 " nad/mm

0.15.

Module Subjectecl to Pure Twist

100 x

natio IS

4.78

4.65
¿. sg

4. 10

4.77

3.95
2.84
2.23

zFaces AA, BB (lvl zFaces CC, DD (M

Modu I an

E.:EDM

Ratio
(a)

Total Twisting Monrerlts
(b) (xlO Nmm)

Table 6.5: Panel
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on each face. This companes closely with the values computed fon

M and M given in Table 6.5 fon a modulan natio of 1'0' As the
yz zy

modulan ratio incneases, the total twisting moments on faces cc and

DD (M ) decrease mone rapidly than the moments' on faces AA and
'zy

BB(M).Thismaybeattr^ibutedinpanttothefactthatthereIative-yz

magnitudeofthesheaningStnessesintheperpendmortardecneases

with incneasing modular natio'

Equivalent elastic moduli tU and Ê= may be calculated for tlre

panel module by using equations (4.21) (Section 4'3'1) and (6'2) (Section

6.2.3.1)respectively.ByusingthenesultssummanizedinTable6.S

and the calcuf atecl values of tu and E., the following two f unctions

may be plotted (f igure 6,14) '

M +M (6.?(a))Fl (EO:E,n) vz zV

in which M M M fot a modulan natio of 1'0
Yz zy

E z (6.7(b))
F (E E E2 b

in which E is the L¡nick elastic modulus'
b

1t can be shc¡n,n (Appenclix F) that because f unctions Fl and

F^areapproximatelyequalformodularratiosbetweenl.0andlc.0,
¿

an effective shear modulus for the uncracked brickwork module may

be nepresented bY the exPression -

(6.8)

åt
ñl

E

t')m b

G

in wh ich É is an equivalent elastic modulus for bending nonmal

to the bedjoints (equation (4'21 ) )

is an equivalent elastic modulus fo¡^ bending par-allel

to the bedjoints (equation 6'2'))

is Poisson's ratio for the bnick only'

v

E z

v
b
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inspection, equation (6'8) is similan to equation (6'4)

by Tímoshenno(t 
t 2) to. onthotnopic plates'

6.2.4.2 Bnickwork with cnacked perpends

It may be assumed that.'fon ibnickwork with.. no tensile bond stnength'

cnacking in the perpends is pr edominantly caused by bending panallel

to the bedjoints. The finite element subdivision with simr-llated penpend

cnacking, described in Section 6'2'3'2, may be used to analyse a

bnickwbrk panel module subjected to twist. w¡th refenence to figunes

6.11, 6.12 , by symmetny, the displacements of the panel module

boundany faces AA, BB, cc and DD may be calculated using equations

(6.6). By using PROGRAM I,4FYDCP with the simulated cracked penpends

shown in f igure 6.8, an effective tot-sional stiffness fon bnicl<work was

calculated for vanious brick:montan modulan natios (Tabte 6'6)' The

brick elastic modulus was 20'0 x 103MPa fon all cases'

(a) Tonsional stiffness of brickwork lraving cnacked penpends

only nelative to uncnacked brickwork with the same

modu I an rat io -

Table 6.6: Torsional Stiffness of Cnacked Bnickwonk

The calculations u,sing PROGRAM MFYDCP showed that as a result

of .cracking on the ,Þer Pends, nonmal stnesses, both tension:'âfl-d

rLcompnesston, nriqht occur at the bedjoint-oer pend junction in the br'ìcks

and that the magn i tude of ihe norfÏ31 stnesses cou ld be, loca I I y, of

the oncler of the shear stresses. This could indicate, thenefore' that

1.0

2.O

5.0

0.906

0.909

0.928

Modular Ratio

mb
tE

Relative Tonsîonal Stiff ness

PROGRAI.¿ MFYDCP

(a)
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the bedjoints,
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cracking had occunred because of bending parallel to

tensile f ailure of the Lrnicks due to nonmal stness con-

centration could be expected at the perpend-bedjoint intersection as

a résult of torsion. This type of f ailure may also be expected as a

nesult of bending parallel to the bedjoints (Section 6'2'3'2) '

6.2.4.3 Bnickwonk with cnacked penpends and cnacked bedjoints

cracking on both the perpend and bedjoint bnick-montar intenfaces

can be caused by applying an eccentnic ventical compression load

simultaneously with bending parallel to the bedjoints (Section 6'2'3'3)'

Itmaybeasssumed,ôsanapproximation,thattheactionoftwist

does not contribr-lte signif icantly to bedjoint and perpend cnacking '

calculations using PROGRAM MFYDCP, in which the bedioints ane

simulated as cnacked up to one-hall the panel thickness (f igune

6.10(a)), Appendix E), showed that the relative tonsional stiffnesses

of cracked brickwonk for vanious brick:mortar modulan ratios wene

as shown in Table 6.7.

6.2.4.4 SummanY

An equivalent shear modulus for uncracked brickwork may be

calculatecl by equation (6.g) which is sirnilar to equation (6.a) pnoposed

by Timoshenko(112) fon shea¡" in onthotropic plates. The calculated

relative torsional stiffness values (laule 6.6) skrowed that the stiffness

of the panel module (f igure 6.1(b) ) in which the penpends wene cr'acked

as a nesult of bending panallel to the bedjoints, was appr'oximately

nine-tenths the stiffness of the br icl<wonk in its uncnacked state'

simultaneous cr acking of bedjoints and perpends (cracks on the sarne

panel face) neduced the nelative torsional stiffnesses în accondance

with some function dependent upon the depth of the bedjoint cnack

(laute 6.7).
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d/2

(a) Torsional stiffness of cnacked bnickworl< relative to uncnacked

b.rickworkwithttlesamemodulannatio.Brickmodulus
20.0 x lO3MPa fon all cases'

(tr) penpend and bedjoint cnacks on same panel face (Section 6'2'3'3)

Table,6.7:TorsionalstiffnessofCnackecJBrickwork

6.3 EOUATION OF EOUILIBRIUM AND LOAD_DEFLECTION RELATIONSHIPS

FOR A PLATE OF VARYING THICKNËSS

6.3.1 The Equation of Equilibnium

The coondinate axes shown on earì element of a plate of varying

thickness of dimensions dx by, dy in f igune 6.15(a) and the bending

mr¡ments and shean fonces shown in f igune 6.15(b) def ine the positive

sign conventions useÇ throughout this section. (Note that the axis

systern diffens fnom the set of axes used in Section 6'2') The middle

surface shown in figure 6.15(a) is defined so that ¡t is always at

the mid-distance between the negative-z and positive-z faces of the

element. The irr-plane nesultant fonces (figune 6.15(b)) ane assumed

to act at the middle sunface at the element bourldaries.

The equation of equilibnium fot the element shown in f igures

6.15(a) and 6.15(b) is

1.0

2.O

5.0

0.855

0.858

0.869

0. Bo0

0.805

0.826

o.766
o.774

0.806

d/6 d/3
Modular Ratio

E. :Ebm

Cra
(b)

D kth of oi ntBed

Relative Tonsional Stiffness
(a)

PROGRA|*1 MFYDCP
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(6.e)

azM.v+w+M)x.y yx
++ X

* *r(f/. t# ) + 2,N +t'frtxy

in which M is the moment Pen
X

normal stresses

M is the moment Pen
v

norma I s t nesses

are the

unit width of plate associated with

in the X direction

un it w idth of p late associated w i th

in the Y dinectiorr

moments per unit width of p late

the X-Y

M and Mxy yx

associ ated

plane

is the nonmal

X direction

is the nonmal

X

N xy

cl

Equation (6.9) is derived

ness is constantr eQUation (6'9)

with shean stnesses Panallel to

force pen unit width of Plate in the

force pen unit width of Plate in the

N

N
v

t

Y direction

is the shear force per unit widtl'l of plate par^allel

to the X-Y Plane

is a unifonmly applied pressune on the z-f aces in

the posit ive-z dir-ection

is the element thickness '

in Appendix F. lf the element thick-

(3. 73 )reduces to the P late equation

in section 3.4.4, provided that account is taken of the different

definitions fon positive twisting mornents'
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6.3.2 Constitutive Relationships

Equation (6.9) can be applied to a plate element of vanying

thickness (f igur e 6.15(a) ) when subjected iÒ the fonces shown in

f igune 6.15(b) innespective of .the matei^ial propenties of the plate'

Timoshenko(112) described the analysis of a rectangulan plate,

isotropic in its matenial properties but with vanying thickness (section

3.4.4), and showed that, provided there was no abrupt charrge in plate

thickness, the expnessions fot bending and twisting moments wene

similan to the equations for an isoti'opic plate of constant th¡ckness'

v tzi

I

Mx
_D( a2w-rv +v â2w

-rv2
(6.10(a) )

(6.10(b) )

16.10(c) )

lvl
v

Mxy yx

in which M Mxt

D is the

and M areyx

stiffness =

defined as in

Et'
equation (6.9)).

16.16(d) )

-o(.+ * "Sr
-D(1-v).

ô2w
5;tt

v
Mxy
p late 12(1-v 'l

in which E is Young's Modulus fon the isotropic plate

tistheplatethicknesswlrichvaniestht^oughoutthe

p late

v is Poissonrs ratio'

Timoshenko also neviewed the analysis of anisotropic plates anc

suggested that the relationships between the stresses and stnains fon

the case of plane stness in the x-Y plane could be represented by

the f ol lowing equations -



in wh ich a

o

T

e

.e

xy

i s nonma I

is nonmal

is shear

is norma I

is nonmal

+ Err. e

+ Eil.e

v
E

o
X

E

X

v

o

o

T

Erx

v

GY

stness in the X

stness in the Y

stress paral lel

stnain in the X

strain in the Y

strain Panallel

E'r ane constants

E and E andxy

d inect ion

dinection

to the X-Y Plane

d ir ect ion

dinection

to the X-Y plane
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(6.11 (a))

(6.11 (b))

(6.11 (c) )

(6.12(a))

(6.12(b))

e
X

e
v

v

x

xy

X

v

xy

x

v

Y

E

G

is shearxy
I . Et andx' y

modu I i

v yx

is the shear modulus.

re I ated

Poi ssonrs

to the e I ast ic

natios v andxy

The invense fonmu lation of equatiotrs (6.11) is -

v

X

oo.X
E_

X
o

v
E

v

T

X
e vxy

v yx E

Y
(6.12(c;)

xy

ln equations (6.12), five constants, E*, Ey, Gt u*y and uy*

are needed to descnibe the elastic pr'operties of the matenial' However'

T¡ ko showed that on ly four of the constants ar-e independent '

As in the analysis of bnickwork walts and columns of vanying

thickness(96), 
(124'), with refenence to f igune o. t 5(a), ¡t may be

assumed that p lane sections norma I to tl-¡e z-f ace in wh ich o y stnesses

are compnessive remain plane thnoughout bending. Equations (6' 12)

can be used to obtain constitutive relationships similar to equations

t 112)(6.10), that is'

e -v

xy
G
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(6.13(a) )

(6.13(b))

(0.13(c))

x
(t),

momen t-

E t
I vyx

â2w
'----TdXM

v - tZ(t- v*

M Mxy yx

in which w is

As an extension

E (t) and G(t) can be
v

notation chanattenistics

neal bnickwork, so that

of equations (6.13),

der-ived (Appendix F)

of a p late of vanY i ng

equations (6.13) become:

modulus functions

which equate the

â2w
T"-ãt

thedisplacementofthez-faceinwhichStresses'

o y, are comPnessive.

tr

and instead oi equartion (6.13(c) ),

c(t a2w

th ic[<ness to those f or

(6. 1a(a ) )

(6.14(b) )

(0.1a(c))

M

E (t). t'
X â2w-tt=

a2w
av

+v
X l2(l-v XY YX

Ey(t) .t3
1- v .vXY YX

M
â2w+V.-yx iix-v

(M +M'xy 6 âxôyyx

The functions E (t) and G(t) ane descnibed in Appendix F(t), E
X v

Equations (o.l+) for aR equivalent plate of varying thickness

lead to the calculation of the def lections of a neal brickwork panel'

The thickness of the equivalent plate at any po=ìtion in th¡e panel

can be calcu lated f nom the ef fective eccentricity cf the vertical

compression f once in the neal bnickwork. if the eff ective eccentnicity

of the nesultant ventica! load is greaten than d/6, the bnickwork is

assumed to be cracked on the bedjoints at that point. The equivalent
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plate thickness is less than the panel thickness, d, and can be

calculated as follows.

Themagnitudeofthebendingmoment,My,abouttheequivalent

plate middle sunface is given bY

lu N.t (e. ls(a))
v 6

v

in which N is the nesultant compnessive ventical force
v

t is the equivalent plate thickness'

Fnom equation 1A.ta(U)),

E (t). t'
M 1-vxy X

â2w
at-

â2 w* u Yt'ãr-
(6.14(b))

(6.15(b ) )

v v

Substitution fon M in equation (6.15(a)) leads to the result -
v

a2w

1

2N
_J.
C

v
yx+t'(1-v*u'v

,=[

e2ww + uu"' ,ft

is the absolute value of the quotient (Ny/Cy)

lf the resultant ventical load irr the bnickwonk acts within the

kern region, the br^ickwonk is not cr.acked on a bedjoint and the

equivalent plate thickness is equal to the panel tlrickness, d'

Equations (6.9), (0. t+) and (o.l s) can be solved by an itenation tech-

nique described in Section 6.4.
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6.3.3 Finite Difference Fonmulation

Considenawallpanelsuppontedonfoursidesandsubdivided

into a uniform rectangulan finite difference mesh as shown in figure

6.16. ln finite diffenence fonm; with centnal diffenences fon bending

moments M)< ancl tu and an avenaged finst central difference fon

twisting moment tenms (M^U+MU"), equations (6.14) at node I in f igure

6.16 become -

(r)
E (t).t' *(r-1 n) 2w(m n) + w(m+l n)X

x xy yx
M )' t

1

xy o

E (t ) . t' w(m n-1 ) 2w (m n) + w(m n+1)v

w(m n-t ) 2w (m n) + \/

* (.-l n) 2w (m n) w (m+l n,

m n+1 ) I (0.16(a))

I (6.16(b))

+v

M (r) 1211- v .v ). XYYXY

(M'xy

+
+v

+M )(I)=-z

yx

g1_,1_._t'
6yx

w(m+l n+1 *(r-1 n+1 ) m+1 n-1 + w (m-l n-i ) I t0.16(c))
t 4

The

expressed

tenms w i th

a2M x
nvr-

a2

T;T'
(M +M

X yx

equilîbrium equation (6.9)

in finite element form bY

the f ol lowing exPnessions -

M*(m-l, n) - 2M*(t,.) +

at node f in

neplacing the

f igure 6.16 can be

pantial differentiai

+'

M*(m+1,n) (6.17(a) )

x+M
v

) (m+1, n-1 )

xy)(m+1, n+1 ) (¡¡ +M ) (m-1, n+1 )

v
( lt¡

X

( trt
X

+lv1
X

4

4

(Mxy+M )(m-l , n-l )
(6.17(b))
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(6.17(c))

(6.17(d))

(6.17(e) )

( nL)'

N
â!w
avz

a2t
ç-+ I

2 N t
X X

m-1 n) 2t m

N .t

t n) + t m+1 n)

*u(#. +**,

+

+

w(m n-1 ) 2w (m n) + w(m n+1 )

v

t( .ri-1 2t (m n) t (m n+'l )+

2N .(. t'Yxy .dx dy
t
2+

a 2t

rxãt

w(m+1 n+1 w (m-1 n+1 w(m+1 n-1 ) + *(r-1 n-1 )
2N*v'I 4

+
t(m+1 n+1 t(m-1 n+1 t (m+1 n-1 + t(m-1 n-l ) (6.17(f ))

B

6.3.4 Boundany Conditiorls

The boundany conditions considened in this thesis fon slenden

bnickwonk panels ane shown in figune 6.17. The panel is simply-

supponted on all four sides and tlre load eccentricity, e' is the same

at the top and the base of the panel. The compressive force, W per

unit length of panel, is a unifonm load pen unit length of wall so

that the forces in equation (6.9) ín Section 6'3'1 ar-e -

-W
( 6. 18)

Equation

a2Mx
- axT-

'N-0
xy

(6.9) becomes, thenefone,

¡2
d

N

N

0
X

v

+
âx 3y

( tt't xy+M
v X

â2w
î-vT

1

2
(6.1e)-q+w( +

a2 t
àT



The solution of equation (6.19), in a

can be obtained using the grid shown in

The numben of nows and columns

270.

finite diffenence formulation,

f igune 6.18.

be vanied with the numben of nows different

columns. At the now of nodes, i=2 in figune 6.18,

(6.16) in Section 6.3.3 become -

0 fon i=2r7
*Ex(t).t'

of finite difference

fnom the

the moment

points can

number of

equat ions

Mx( ¡,2)

2

12(1-v ) ' 
u^u'I

xy yx

0 fon i=2r7

-E
v

(t).t'
.t

w(i 1) + w(i 3) -(TI(l - ruu .u"" i oI

w(i 1) + w(i 3) I ton i=3 to 6 (6.20(a))
o&

fw..to"oce<d/6
My(¡,2)

(tvt +M )(i.2).XY 
YX

lw,o
lzrz -
l.

e) tocd/6 <e<dfZ

for i=3 to 6

(6.20(b))

w(¡+l 3) - w(i-1 3 - w(¡+t 1) + w 1)i-1
t 4ae'

fon i =2 to T (6.20(c) )

The displacements of the fictitious nodes on now i=l can be

calculatecl f nom equations (O.ZO(b))' so that -

0 f or i=2t7
12( 1-v'xy v ).(slr)2.W.eyx

-w(i , g) - 

-Ey(d).d'

fonO<e-<d/6 for

i=3

to 6

1-v .v
w(i,1)

-w(i ,3)
12( ) . (nø ), . (Yzd/z-e)l

lord/6<e<dfz

(6.21)
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The displacements fon nodes (t, ¡) and (8,3)
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ane also nequired

on row i=2. At the

are zeîo, so that,

(6.23(a))

fon the calculation of twisting moments (M

simply-supported boundanies, Mx(2,3) and

f nom equation (0.10(a))'

+M)XY YX'

lv1 (7,3)
X

(6.22)

Equations similan to equations (6.20), (O,Zl ) and (6-ZZ) can also

be derived fon nodal row i=? (f igune 6. 18) .

The twisting moments (N1-... + tr't..-,), at the panel corner-'xy:yx
nodes (ZrZ), ('7 r2), (2r7) and (7,71 are also nequined, which implîes

that the displacements of fictitious corner nodes (1,1), (8,1), (1,8)

and (8,8) must be calculated (equation (6.16(c)) ). The displacements

of the fictitious connen nodes may be appnoximated by quadratic extna-

polation of the edge f ictitious nodes, as shown in f igure 6- 19. on the

row j=1, it can be shown that fon quadnatic extnapolation on fictitiouls

nodes

w(1 ,3)

w (e, s)

-w ( 3,3)

-w (0, s)

gw(3, 1)w(1,1)" w(+, 1)

Simi lanly, on the column i=1 , it can be shown that

w(1,1)y = ¡v(1,4) - 3w(l,g)

The mean of the two solutions w(t,t)" and w(1,1)u may

in the calculations fon (M"y*My") -t the panel connen node

that -

rv(1,4) gr.v(t,¡)]

(6.23(b))

be useci

(z,z\ , so

(6.24|w(1,1) = å[r,v(4, 1) 3w(3, 1)

with similar exPressions for-

Tl-re displacements, w, on the

cJisplacements w(8,1), w(1,8) and w(a,e)'

four panel edges ane zelo.

+
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6.4 SOLUTION PROCEDURE

Figune 6.18 (Section 6.3.4) shows a brickwo¡ k panel subdivided

into a 5 x 5 f inite diffenence mesh in which the grid lines do not

necessarily coincide with the mortan penpends anC becJjoints. The sub-

division is differ ent fr'om that fon a bnick wall (f igur e 4.15, Section

4.4) in wh ich the nodes wene specíf iecJ to be at the mid-height of the

mortar joints. The large numben of montan joints in a panel prohibi.iecj

the placement of a node at eveny joint so that a gnid size was, selected

(Section 6.5) which gave a compnomise between the accLinircy of the

solutions and the time taken fon computation.

The equilibnium equation (0.tg) was applied at all tl-¡e intennal

nodes in the panel, that i=, al I nodes excluding the nodes on the

panel boundaries. À.t any node at which eithen penpend. cr acking or

bedjoint cracking occunned, the equations for the bending and twisting

moments changed witlr the depth of the bedjoint cnack. The set of

simultaneous equations genenated fon all the intennal nodes, plus the

equations at the boundaries, wene non-linean and dînect solutions could

not be obtained. The method pnoposed fon the solution of tlie equations

was sirnilan to the technique used fon solving tl're non-linean equatíons

fon a bnicl< wall (section 4.41 . The vertical uniform loacl, !V, was

applied incrementally and at each load incnement, a Newton-Raphson

method was used to find a consistent set of values fon the nodat

deflectíons, w, and the nodal effective thicknesses, t, such that the

equilibrium equation (0.1S) rvas satisfied to within a prescnibed ennon

at all nodes. As the ratio of the node displacement incnements to load

incnement inci'eased, the magnitude of the load incnement was

decr^eased. Panel buck I ing was deemed to have occurnecl if no conf ig-

unat ion of d isp lacemen ts cou I cj be f ound f on the incrementecJ load .
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wene stanted with a small value of W and all node

wene set to zeno. At each internal node, the effective

Calculations

displacements, w,

panel thickness

f unc.t ions E._ ( t ) ,X

WAS

E

calculaied by equations (0.tS) and the modulus

(t) and C(t) wene evaluated (Appendix F). The

and M wene calcu lated at al I intennal nodes and
v

(t¡ +M ) . wene ca lcu latedxy yx

v

bending moments M"

the twisting moments,

and at all nodes on the boundany (Sections 6.3.3,

An ernon term, g iven bry nearnang ing

calculated at each intennal node I(m, n) as

a2Mx(m,n) 
à2t(m, n) = --jãt-- * 

, "nu 
(nn*u*to^)(rn, 

^)

a2 (m,n)

Ay
*(#y. ffii

(6.25) is

at al I intennal nodes

6.3.4).

equation (0. tg), was

+ +q (6.25)

ln finite difference fonm (equations (ø.'tZ), figune 6.18), equation

M"(nr-l,n) - 2l x(rn,.) M"(m+'l,n)+

t(m,n) ¿2

) (m+1, n+l )(tu +M
+ t xy yx (M +M )(m-1, n+l )xy yx

(u +M

4 nl,2

")(m+t, 
n-1 ) (H¡ +M )(m-t, n-l )

X xy yx
l

o
Mu (m, n-1 ) 2M (m,n) + M ( nr, n+l )

Y v

+q w.I
w(m, n-1 )

(n o)"

- 2w (m,.t) + w(m, n+1 )

,i
rn n-1 )

(o 1)'
2t(m n) .L

l (6.26l'
oc

The ennon term, equation (O.ZA¡, is a measune of the out-of-'

balance of force in the z-directlon ancJ is nelatecl to the displacement

and fonce nesultants in the equilibnium equation (6.19) at node I(m,n)

(f igure 6.18). The erron terms at all nodes lvene qncuped into an ennor-

vecton { E}. ln the solution pnocedune, ¡f no component of { E} exceeded

a limit, selected to be 1 .0 x 10-6 (Newtons), the displaced shape of

+

t(m n+l )+
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of the panel was assumed to be in equ i I ibrium w¡ th the extenna I

fonces. lf any component of { 6} exceedecj the limit of 1 .O x 10-6

(Newtons), a Newton-Raphson method of correction was applied until

the desined accunacy was reached (Section 4.4.3).

The conrect¡on to displacements was calculated, fon the kth

iteration, by the equations

[¡]ni¡,*]n = -{t}k (6-27'I

. {*}k*1 = {w}t * {Âw}n (6'28)

ln equation (6 .27), [J] is the I'Jacobian" of { Ei and is a square

matrix fonmed by the pantial denivatives of the components of { E} with

respect to the components of the solution vecton, { w}. Elements of the

rUacobian,' matrix wene evaluated numenîcally by incnementing succes-

sively the solution vector, { w }, and calculating the increments oi the

ennon vecton, as described in Section 4.4.3. Generally, the largest

component of the ennon Vecton {E} was neduced to a value less than

the selected limit in less than ten íteration cycles. Once equilibniurn

was attained fon a specifie<1 load, W, the load was increased and new

cJisplacements were calculated using the itenatiorr technique. A furthen

incnement in load was then applied, and so on, until a load was

reached for which no displacements wene calculated after one hundred

itenations. The panel was deemed to have f ailed by buckling at that

load.

6.5 RESULTS OF THE NUMERICAL METHOD

PROGRAM PANELl, documented in Appendix G, has been used to

calcu.l ate the buckling f ailune loac!s of a nange of brickwonk pa-nels

simply-suppor ted on toun sides. ln this section, ¡t is assumed that

the matenial stnength does not affect tlre f ailure mode of the panels;
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bnickwonk panels which fail as a nesult of matenial f ailu¡'e are

examined in detail in ChaPter B.

w¡th reference to f igure 6.17, the load is applied w¡th equal

eccentricity top and bottom and thq panel length-to-height ratios vany

between I .O and 10.0. The bnick elastic modulus is arbitnarily 16 x

lO3Mpa in all cases and the montar is assumed to be linear w¡th a

modulus of I x 1O3lvf Pa. The latenal pressune, Qr on all panels is

assumed to be zeno. Buckling f ailune loads wene calculated using il'¡o

f inite differ ence gr.ids, 6 by 6 and 8 by I (f igune 6.18)' and the pane!'

buckling failune load was calculated for each case by using a "delta-

squaned extnapolation'r on the two sets of nesults. The resulting

cor-rection on tÉre buckling loads for an eccentnicity of d/12, calculated

using an B by I gnid, v/as appnoximately 3 pencent for length-to-height

r atio of 1.0 ancJ appnoximately 1.5 percent for an 4,/h of 10.0. The

cornections were similan fon eccent¡^icities of d/4 ano d/1000.

The calculated nesults, shown in f igur e 6.2A, shorv that the

buckling f ailune loacJ decneases as the panel aspect ratio, N'/n,
(

incr-eases and that f or panels w i th aspect nat ios gneater thatr 5. t,

the buckling failune load is within 30 percent of the buckling load

of a wall :of similar height supponted top and bottom (laOie'6.8).

ln f igune 6.2O, it is evident that the buckling f ailune load of

a brickwork panel decneases with incneasin5¡ load eccentricity arld that-

the failur e load of a bnicl<worl< panel urtden near-axíal load (d/1000)

is appnoximately equi:l to the f ailune load calculated using equation

(Z.Zg) derived for non-cracking panels of unifonm thièkness(112). This

shows that the buckling f ailure loads of ¡nict<wonX panels subjected

to vertical ioads wl.lich are close to axial may be calculateC by

PROGRAI'4 PANELl.
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342

95

594

357

102

631

375

127

d/1ooo

d/12

cJ/ 4

( PROGRAM P I ER1 )

wall/Coluhn
10.05.0

Load

Eccentricity

(PROGRAM PANEL1 )

Aspect Ratio l'/t¡

Calculated Buckling Failure Load (N/mm)

2'/8.

Table 6.8: Buckling Loads of Brickwonk Panels and Walls

6.6 SUMMARY AND CONCLUSIONS

A method of analysis has been proposed in which the deformations

of a brickwork panel sLtpportecl on foun sides and loaded by in-plane

vertical compression forces may be calculated by replacing the bnick-

work with an equivalent plate of varying thickness. The bending and

torsion stiffnesses of the equivalent plate have been calculated by

analysing a bnickwonk module using a three-dimensiorral finite element

prognam (PROGRAlr,l MFYDCP ) and the nesu lts have been inconporated

into finite difference fonmulations of the plate equations in PROGRAM

PANELl.

The finite cliffer^ence method permits the arlalysis of panels with

var-ious bounclar y concJ!tions by altering the constnaints on boundany

nodes and the fictitious nodes genenated outsicle the panel boundanies"

The scope of PROGRAM PANELl may be extended to include a range

of boundar^y conditions as well as initial impenfections in the panel,

as in PROGRAI'4 P lERl (/rppendix C).

PROGRAM PANELl has o:": applied to the analysis of brîckwork

panels constructed of 11omm x 65mm x 23Amm br iclcs on edge, as in



the experimental tests descnibed in

f ailure loads for bnickwonk panels,

not been obtained pr ev iously.

Chapter 7. The

summanized in

279

calculated buckl ing

figune 6.2O, have
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7 . EXPER IMENTS ON BR ICI..WORK PANELS

7.1 INTRODUCT ION

A sen¡es of experiments was canried out on small br ickwcnk

panels designed to check the finite element calculations described În

Section 6.2.3. ln addition, a f ull sccale panel was tested -as a par-

ticulan case study in onden to compare the pr^edictions of the f inite

difference PROGRAM PANELI with actual panel behaviour.

The small brickwor.k panels wene subjectecl to bending pa".tt.t

to the bedjoints and the moment-curvatune charactenistics wei'e

determined botÉ befone as well as after cracking on the perpends l-¡ad

occunred. An axial ventical stness was applied to check the effect of

axial stresses normal to the bedjoints on the behavioun of bnickwork

in horizontal bending.

PROGRAI,4 PANELl was tested by loading a slenden, simplv'-

suppor-ted -brickr,vork panel eccentrically top and bottom with a uniforrn

ventical load. The develolrment of the test apparatus constituted a

significant part of the experiment because of the scale of the test and

the quantity of data needed to obtain a meaningful inienpretation of

the stnuctunal action. Details of the test apparatus ane presented an'J

companisons ane made between measuned deflections and the values

calculated t.rsing PROGRAM PANELl .

7.2 BR ICKWORI( PANELS SUBJECTED TO BEND ING PARALLEL TO THE

BEDJO I NTS

Six bnickwork

wene constnucted to

panels, each si,x bnicks long by five counses l-r igh,

test the following -
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l. page,.(95) O"ooo=itÍon that shean defonmations in bnickwor"k ane

not sensitive to the degr-ee of compression ncnmal to the bedjoint.

Z. The pnoposition 'oy Base and S.ku.(69) that the ef fective stif f ness

of uncnacked brickwonk subjected to bending par-allel to the bed-

joints may be calculated using equation (ø.2)

3. The ratíos of stiffness after cnacking to stiffness before cr-acking

in the perpends, as summanized in Table 6.3'

(44) (88 )
4. The methocl of calculation pnoposed by Sahlin ancl Royen

which may be used to determine whether f ailune will occun b)'

tonsiona! shean f ailune on the bedjoints on by tensile f ailure in

the bricks. '

All bnicks \ryere selectecj to be appnoximately 230mm x 11omm x

65mm and wene laid on-edge to give the panels a height-to-thickness

ratio of 9.1. The mortar was I cement:1 lime:6 sand by volume with

a water-to-cenrent natío of 1.41 by weight. All bnicks wene solid and

wene selected to have no visible chips ol cnacks and wene laid in

a satunatecl sunface-dny condition. All panels were cuned in polythene

sheeting fon 21 days and subsequently wene cuned in ambient con-

ditions.
(1 16) compnession using

strains. Tlre br íck

Thnee bricks from the batch wene tested tn

parrs

elastic

of 30mm long stnain

modu lus resu lts are

gauges to detenmine the

shown in Table 7.1.

21 .9

21 .7

19.6

1

2

3

Elastic Modr.llus

(x103MPa)Bnick No.

Table 7.1 : Brick Eiastic Modulus
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The mean brick elastic modulus was 21 .1 x 1O3lvlPa with a

coef f icient of vaniation ol 4.9 pencent.

Six mortar pnisms 25mm x 25mm x 50mrn

the six panels constnucted and one pnism fnom

tested in compnession to measune the mortan

7.21 .

wene cast fon each of

each montar batch was

elastic modulus (Table

12.1

12.5

11.6

13.4

12.5

11 .4

1

2

3

4

5

6

Montan Pr-ism E lastic
Modulus (xi03À1Pa)Panel No.

Tat:.le 7.2: Mortar Elastic Modulus

The mean montan pnism elastic modulus was 12.3 x l03lvlPa with

a coefficient of variation of 5.4 pencent.

Six brickwork prisnrs, each foun bnicks high, wene constructed

with the panels and were tested in axial compression to failune between

hmm sheets of plywood (lairte 7.3).

381

409

407

388

401

403

1

2

3

4

5

6

Mean Elastic Modulus
( a )

Rat io( )

Fai lure Str ess
Axial Stness at
Fa i lure (¡¡Pa )

Pnism No

52.3

48.7

48.9

51 .3

49.7

49.4

(a) Mean Elastic Modulus Values calculated from Tables 7.1 and

7.2 and equation (5.4).
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The mean compnession failur e stress was 50.oMPa with a co-

efficient of

modu lus to

vaniation of 3 pencen t

fai I une stress was 398

and the mean natio of mean elastlc

of vaniation ofwith a coefficient

3 percent.

Each panel was set up in the test appanatus shown in f igur^es

2.1 so that a ventical axial load could be applied simultaneously with

a unifonm bending moment panallel to the bedjoints' lnitially no

ventical load was applied to the panel and the horizontal fonce at

each loading point (f igure 7.1 (a) ) was incneased by incnements r'o

approximately o.75KN. This produced a bencling moment parallel to

the bedjoints pf appnoximately 350 x 103 Nmm which was insuff icient

to cause cnacking in the penpends. The out-of-plane displacements of

the panel were nreasuned usin5¡ linean voltage displacement tnansciucens

(t-.V.D.T. ) constnucted to a multi-c¡annel logger and tl-re thnee

cunvatures (top, centr-e and bottom) in the honizontal plane were

calculated at each load incnement by using the computing f acilities

in the logger'. The thnee curvatunes were found to be within 5 percent

of one anothen. A plot of applied moment against hor izontal curvature

is shown in f iqune ?.2(a) for cunvatune calculatecl orì the hor izontal

centnel i ne.

subsequently, the panel was subjected to bending panal lel to

the bedjoints sirnultaneously with a ventical axial stness of 1.3Ív1Pa

applied by the foun hydraulic jacks (f igur-e 7.1). A ver"tical stness

of 2.6Mpa was then applie'J simultaneously with the hor izontal bendíng.

The nelationsl-rips between the applied nroments and the panel cunvatures

in the honizontal plane, shown typically in ligure 7.2, ane summar'ized

in l'ab le 7 .4.
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Table 7.4: Ratio of Applied Moment: Cunvatune in

Hor-izontal Plane (xlOsNmm')

The nesul'ts in Table 7.4 indicate that, statistically, the stiffness

of the bnickwork panels, when subjected to bendíng panallel to the

bedjoints, was independent of ihe magnitude of the applied axial stress

nonmal to the bedjoints. The mean eÏfective stiffness of the panels

was ZgS x 'l0sNrnm2 with a coefficient of vaniation of 4.7 pencent. The

stiff ness calculated usinq Base and Baken' =(69) p"opo="d equation (6'2)

with the matenial propenties summarized in Tables 7 -1 and 7.2 is

ZBO x lOsl..rmm 2, appnoxiniately 5 percent less than the expenimentai

va I ue.

Each panel was then loaded so tlrat the bending parallel to ihe

bedjoints caused cracking in the penpends. The moment-cunvature

relationships, shown typically in f igure 7.3, are summanized fon the

six panels in Table 7.5.

A one-way analysis of variance on the results in Table 7.5 shows

that the stiffness natios SLOPE3:SLOPF-1 and SLOPE4:SLOPEl are

statistically the same, but ar^e diffenent fnom the stiffness ratios

SLOPE2:SLOPE1.
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Table 7.5: Relative Honizontal

is shown in figune 7.3.

St if f nesses of Eln ickwonk Pane I

The mean of the stiffness natios SLOPE3:SLOPE1 and SLOPE4:

SLOPEl is 0.82 with a coefficient of variation of 6 percent and tlre

mean of the stiff ness natios SLOPE2:SLOPEl is 0.70 with a coetticient

of var iation of 1O pencent. The diffenence in the gnoups of stiffness

natios may be explained by an obsenved non-elastic behaviour of the

panels in which the penpend cracks appean not tc¡ close completely

as the panel is unloaded (f igune 7,3). lt is also signif icant that for'

the finst loading, tlre panels were loaded from the urrcracked to the

cr-acked condition wheneas fon the subsequent tests, the panels wel'e

cnacked throughout tlre entire loading nange. The stiffness ratio conì-

puted fon the panels as O.77 (la¡te 6.3, Section 6.2.3.2) cornpares

favour-ably with the results in Table ?.5, noting that the assurnption

of zero tensile bond made in the calculations cornesponds mone closel-v.-

with the behavioui of a panel having pne-existent perpend cnacks than

that fon a panel which is initially uncnacked. lt should be noted also

that the experi;'nentally-der-ived ratio proposed by [-awnence and

Mo.g.r,(12) (equation (3.53)) differ s fnom the nesults summai izecJ in
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laid on
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3 and ?.5 because the tests were conducted on panels of brick

flat with a gL-ometny different from that of the panels in the

present investigation.

The bending moments

bending stnesses (calculated

in Table 7.6.

which pnoduced f ailune and the maximurn

on a gnoss panel section) ane summanized

parìel section.( 
" ) Fa i l une stness ca l cu I atecl on gross

Table 7.6: Strengths of Bnickwonk

Honizontal Bending

Panels in

The mean f ailur-e stness was 2.66MPa with a coeff icient of vania-

tion of 14.7 pencent. Failune occurred in the panels with the fonmation

of a vertical crack nunning tht'ough both the mortar perpends and

the bricks (figure ?.4') . An altennate mode of failune, pnoposed by

sahlin(44) and Royer-r(BB) in which torsional shear failune occuns on

the bedjoints, would lrave nequired a bending stness in the panel of

3.2MPa (u - 0.5 in equation (3.43), Section 3'3'4'2)' The tnode of

failune in the panels (figune 7.41 was thus not inconsistent with

Sahlin's and Royenrs conclusions. The position of the cnack formation

at a penpend.-be,Jjoint intensection agnees witlr nesults obtained using

PROGRAM MFYDCP (Section 6.2,2).
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The test results pnesented in this section suppont the pnopositions

by e"g.(95) and Base and e-*u"(69) (as outlined at the beginning

of this section) and show that the stiffness ratios, calculated by

PROGRAM MFYDCP and summar-ized in'Table 6.3 may be used to calculate

the behaviour of complete br-ickwor k panels.

? .3 A S IMPLY-SUPPORTËD PANEL ¡N TWO-WAY .BEND ING

7.3.1 lntroduction

A f ull scale e.rpeniment was carried out on a br ickwonk panel

appnoximately 36O0mm long by 24OOm high. The experiment was <Jesigned

specif ically to compane the theor^etical behaviour pnedicted fnont

PROGRAM PANEL1 (Appendix G) with test obsenvations. Fon this ptinpose,

idealized ecige conditions and loading pattenns were chosen nather than

the less well icJentif ied conditions and patterns found in pnactice. The

expeniment may thus be reganded as a panticulan case study under-

taken to indicate the order of accunacy that might be expected from

the ca lcu I at ions .

The experinrental apparatus was designed to meet the following

criteria.

(") The load required to cause f ailure should be achievable with the

test f acilities available.

(b) The panel should be fnee to rotate at its four supported edges

with no out-of-plane movements at the edges (that is, simply-

supponted ) .

(c) The load shor-lld be applied uniformly along the top and botton-r

edges with no load-shedding towands the vertical edges as the

out-of-plane def lections Încnease.
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I n onder the make the test nesu lts as extensive aS possib le, the

test panel itself was designed -

(a) To avoid excessive ventical compression (causing ventical splitting)

so that f ailune might occun f nom lateral buckling'

(b) To ensune that the mortan would not be stnessed into the non-

linear nange in a state of tr'iaxial compnession'

Pneliminany calculations showed that a panel

at a nominal eccentr icity of 2Omm along both top

might comply with the above conditions. Details of

pnovided to meet the design critenia ane givert

sect iotrs

65mm thick loaded

and bottom edges

the test aPPara tus

in the following

7.3.2 Experimental APParatus

?.3.2.1 Panel support str'uctune and leading fname

The elements of the steel suppont structune and loading frame

ane shown in f igures 7.5(a) to (f ). The suppo¡t stnucture was erected

on foun fabnicated steel bases attached to a 'l .5 metre thick concnete

strong f loor by 38mm diameten high strength bolts (f igur-e Z'5(a) ) '

The supenstructure, neaction and Suppont frames, consisted of lengths

of modulan channel section system (300m x 90mm x lOmm thick) designed

fon use on the concrete stnong f loon, with all lengths interconnected

by high str-ength f riction gnip bolts (f igr-rre 7.5(b) ) . The loading f rame

consistecl of two steel beams contained by the modular channel section

super-stnuctune (f igure ?.5(b)). The base bearn was an l-section

stiffened at suppont points by vertical piate stiffenens and the top

beam was a boxed steel beam f abnicated f rom two lengths of rolled

steel channel section welded toe-to-toe.

ln onder to pnovide for the cJesign loading concjition, hydnaulic

jacks were f abricated f nom 8O0mm lengths of r olled steel channel, over
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Figune 2.5(f ): Elevation of Brickwork

Figure 7.5(e): Steel

Suppont Fname

Panel

F r^ame )(Pnior to Constnuction of lnstrumentation
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the toes of which 1.2mm mild steel plate was welded, to fonm low-

pnof ile units (f igunes 7.5(b), 7.5(d). The ends of the jacks wene sealed

by welding in 6mm steel plates. Eight jacks wene used to load the

panel, foun at the base and fout at the top (f igure 2.5(a))' The load

was applied to the panel eccentnically thnough lengths of mild steel

rod offset nominally ZOmm'fnom the stnuctune centreline (figur es 7.5(b)'

2.5(d)). The centneline of the jacks was thus coincident with the line

of application of the load to the panel. Pneliminany tests on a pnoto-

type jack showed that the jack top plates could extend by plastic

yielding unden load, so lengths of 16mm thick plate wene placed

between the 1 .2¡nm p I ates and the 22mm d iameten steel load ing r'ods

(f igure 2.5(d)). To netnact the jacks af ten the hydnaulic pnessure was

neleased, six bolts pen jack passecJ through this top plate'and wer^e

welded to a base plate unden each jack (f igur-es 2.5(c), (d)).

The panel edges wene restnained from out-of-plane displacement

by building the brickwork into lengths of nolled steel channel section.

The lengths of channel were, in turn, connecte,c to the main support

fname b¡y lerrgths of steel rod, the diameter being cjetenmined by cal-

culating the maximum expected latenal force at the panei edges' The

nesistance to notation of the channel /rod edge suppor^t system was

measuned to k¡e of the orden of only 2.5 percent of the calcrllated

stiff ness of the panel against f lexunal notation at its edge. The edge

condition was thus considered to be essentially simply-supponted. The

positiorr of the applied load relative to the panel middle surface was

f ixed additionally by welding lengths of squane-section steel to the

top and bottom edge channel supponts (f igune 7.5(d))'
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7.3.2.2 Panel constnuction

All bnícks used in the panel wene solid extruded wire-cl¡t clay

bnicks selected to be approximately 23Omm x 1î5mm x 65mm (soiid

bricks of width l lOmm wene not available at the time of constnuction).

A random sample of twelve bnicks fnom the batch was measured giving

mean br ick dimensions of 231mm x 115mm x 65.4mm. The panel was

constructed by lay ing n ineteen counses of bnickwork with the bnicl<s

on edge. The mortar was l cement:1 lime:6 sand by volume with a

waten-to-cement ratio of 1.29. The bricks wene laid in a saturated

sunface -dr y condition and each counse of bnickwonk was laid against

a double str-inþ line as shown in f igure 7.6. The br ickwonk was bllilt

into the base clrannels and vertical eclge support channels using the

mortan as gnout.

Six brickwork pnisms, each of foun bnicks, wene constnuctecl to

test the bnickwor^k compressive strength. Six pt isms, each of six

bnicks, wene also br¡ilt to test the bricl<wonk bond stnength of the

bedjoints. Three montan pnisms 25mm x 25mm x 50mm wene cast with

each of the ten rrrortan batches used in the panel constnuction. All

the bnickwonk was cuned in polythene sheeting for 14 days aften which

the top edge channels wene gno uted to the brickwork using a mortar

of 1 cement:3 sancl by volume with a waten-to-cement natîo of 0.53

by weight. The gnout thickness above the bnickrvork was appnoximaiely

15mm (f igures 7.7(a\, 7.?(b\).

The measured height of the comp leted panel \ryas 2369mm between

the top and bottom edge r.estraints and the length *.= 36O5mm (figune

2.5(a)). The mean rneasuned eccentr icity of the load at the base was

20.1mm and the top was 20.8mm; the ovenall mean of the measuned

load eccentr icity (for' use in PROGRAM PANELl ) was 20.5mm with a

coefficient of variation of appnoximately 5 percent.
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7.3.2.3 Jack calibration

Each of the low pnof ile test hydraulic iacks (section 7.3.2.1')

was calibnated by placing the jack ìn a compnession testing machine

and displacing the thin plate by a pnescribed amount by pnessunizing

the fluid in the jack. The reaction fonce applied by the compnession

machine was measured, and by taking sets of reaction fonce-jack

pressune-jack displacement neadings, a senies of calibration cunves

fon vanious values of thin plate displacement wene obtained (figure

Z.B). The cunves for- all of the eight jacks wene closely coincident

and showed that the displacement of each jack must be known to

calculate the.'¡,ack loacl . The displacements of the jacks wene measured

throughout the panel load tests by using two dial gauges at the mid-

points of the long sides of each jack.

7.3.2.4 lnstnumentation

Figure 7 "g shows the positions of stnain gauges, dial gauges

and linean voltage displacement tnansducens (t-.V.D.T. ) installed tc'

measure stnains and displacements in the panel unden ventical load.

All stnain gauges on the bnickwor k were of 2Omm gauge length and

were fixed in pains to opposite.laces of the panel so that in-plane

stnains and bending sinains could be measured on the panel ventical

and horizontal centrelines and at one connen. 5mm gauge length stnain

gauges wene f ixed to foun of the 12mm bolts nestraining the panel from

lateral movement so that the change in fonce in the bolts with chang-

ing vertical load coulcj be measuned.

The out-of-plane displacements of the panel edges

with eight L.v.D.T.'s and the displacements on the panel

and honizontal cerrtl-elines and at the panel quarten

wene checked

ver^tical and

points were

measuned usíng nine dial gauges. The dial gauges and L'V'L)'T.ls
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wene fixecl to an independent rigid fname mounted on the concnete floor

sepanately from the panel suppont fname.

The pressure in the low-prof ile l-rydnaulic jacks was mcnitored

by connecting all jacks to a manifold which in tunn was connected

to a high output pnessune transducen which was accunate to within

10KPa. The pnessur e was applied thnough a hand-operated lrigh

pressune hydnaulic pump and was nead dinectly on a digital voltmet.en.

All tlre stnain gauges and L.V.D.T. were connected to a computer-

based data logger and the dial gauge r'eadings were entened manually'

into the data-col lection pnogrant. Al I data was neduced by cornputen

aS the test prognessed to give a continuous assessment of the

experimental b'ehavioun of the parrel. Figur e 7.1O shows schematically

the interconnections of al I the instrumentation.

7.3.3 Bnickwor k Matenial Propenties

Tests wene conclucted to cletennrine the elastic moduli of the

bnicks, the mortan and the bnickwork. Six bricks fronl the batch were

tested in compression using pairs of 30mm gauge length stnain geuses

to detenmine stnains. The bnick elastic modulus nesults ane given in

Table 7.7.

The mean elastic modulus was 9.4 x 103 MPa

vaniation of 23 percent.

Six montan pnisms, all fnom different mortar

at randorn, wene tested in cornpnession to measunc

modulus (taUte 7.8). Six prisms only were tested

of any ernor in detenrnining the mortan modulus on

of the br ickwonk is signif icantly less than the

detenmining the bnick modulus.

with a coeffícient of

batches anci chosen

the mortar e I ast ic

because the effect

t he ovena I I rnodu i us

ef f ect of enr-on in



II

DL-1 1

I NTERFACE

L

- COMPUTER
D rG r rAL 11/34

(Data Stonage and
Man ipu lation)

TERM I NAL
vT-1 00

(Data Stonage and
Contoun Plotting
Pnograms Control)

X-Y PLOTTER
(Oisplacement

Con tou ns )

Dial Gauges

Linean Voltage
D i sp I acemen t
Transducers

COMPUTER-BASED
LOGGER

SOLARîRON 11/O4
(Data Collection and

lr4an ip u I at ion )

TERM I NAL
LA-36

(Data tnput, Hand CoPY of
Computed Strains, Fonces

and DisPlacements)

E I ectni ca I

Strain
Resistance
Gauges

Digital
Voltmeter

(Pnessure, KPa)

Calibnated
Voltage
Divider

D.C. Voltage
High SensitivitY

Pnessune Tnansducen

(¡
o
or

Figure 7 .1O: lnstnumentation Block Diagram



10.3

6.6

8.2

9.0

13.6

8.7

1

2

3

4

5

6

Elastic Modulus
(x103MPa)Bnick No.

Table 7.7: Bricl< E!astic Modulus

Table 7.8: Mortan Elastic lvlodulus

The mean montar prism elastic modulus

a coeff icient of variation of 15 pencent.

The four-bnick-high brickwonk prisms

compression and the axial shortening was
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l'able 7.9: Bnickwonk Elastic Modulus

The mean bnickwork elastic modt-¡lus was 9.1 x 103MPa with a

coefficient of variation of 7 pencent. A bnickwork modulus calculated

using the nesults f rom Tables 7,7 and 7.8 in equation (5.4) is 9'5

x 103MPa with a coefficient of vaniation of appnoximately 20 pencent.

This value is consistent with the nesults in Table 7.9.

The six four^-br-ick-high bnickwonk pnisms wene tested to failune

in axial compression between sheets of 4mm thick plywood. The

compressive str-engths and elastic modulus-to-compnessive stnength natios

ane summar-ized in Table 7.1O.
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Table 7.102 tsrickwonk Prism Compnessive Strength
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The mean compnessive stnength was 26.1MPa wÎth a coeff icient

of vaniation of 6 percent and the mean ratio of elastic ntodulus to

compnessive strength was 350 with a coefficient of variation of I

percent. The ratio of elastic modulus to compressive stnength of

bnickwork is nefenreci to in mone detail in chapter 8.

The six pnisrns of six bricks wene tested fon bond strength in

a two-point load test. as shown in f igure ?.11. The nesults of the tests

are summanized i n Tab le 7 .11 .

0.365

0.046

o.264
0.695

0. 599

o.209

1

2

3

4

5

6

Mínimunl Joint

Bond Stnength (MPa )
Bnickwork Prism No

Table 7 .11 Brickwork Flexural Bond Strength

The mean minimum ioint bond

prisms was 0.363lvlPa . Howeven,

for- a 95 pencent conf Ìdence limit

stnength of the bnickwork would

indicates that the assumPticn of

the theor-etical analysis (PROGRAM

for- the six brickwork

nesults indicates that

tests, the flexural bond

the

streng th

scatter of

based orì six

be zero. The statistical analysis thus

zero flexural bond strength made in

u nneasonab I e.PANEL1 ) is not

7.3.4 Panel ExPeniment Results

A Prel iminarY load test was

the apparatus and instnumentation

d i sp I acements Pnesen ted the best

conducted on the

and ¡t was found

pane I

that

to check

the ! atera I

the panelrnethod c¡i assess ing
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behavioun. The strain gauges shorved that the loaci-strain behaviour

of the bnickwork was linear at low load, but tire measunecj stnains

could not be companed with the theoretical values because of the lange

variation in elastic modulus values amoíìg the bnicks and also wìthirl

the bricks themselves. Strain gauge neadings on ten bnicks in the

panel (on the vertical centneline, f igune 7.9i gave a mean elastic

modulus for the bnicks of 11.5 x 103MPa companed with 9.4 x 103lv1Pa

detenmined from brickwor k pr ism tests (ta¡le 7.7). The elastic modulus

determined f nom the panel tests was used for all calculations using

PROGRAM PANELl because the d ifference between the two test modu lus

values was within one stanCand deviation f r om the mean of the pri=m

test results (section 7.3.3) and the modulus deter^mined from the par-rel

test was calcuiated fnom the langen sartple.

After the preliminany test, the panel was loadecl incrementally

to 55N pen millimetne length of brickwor!< so that no debonding, on

cnacking, woulcl have occurned at the brick.-montan intenfaces. All the

measur-ed load-deformation chanactenistics wene linear thr oughcut tl-re

lo¿rci range. 4

The panel was loadecj subsequently in incnements to a load cf

approximately 17ON/mm lengtlr of brickwork and pnogressive crac'king

(bnicl<-montan debonding ) was observed on loads gr-eaten than

approximately TClN/mm. Compar-isons between expenimental and theor-etical

latenal <Jisplacements at the panel ce¡tre and quanten-points (figur^e

Z.1Z) showed that during this loading phase f rom the uncnacked 
"o

the cnacl<ed state, the measuned lateral displacements initially were

less than the calci-llated values (panel uncnacked). Howeven' olrce

cracking was initiatecj, the diffenences between the measured and

calculatecl dispiacemerìts decneasecj. The test results in f igune 7 '12

showed that fon loads less than approximately 13ON/mm length of
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bnickwork, the measuned lateral displacements wene consistently less

than the calculated values by approximately 15 pencent at the panel

centr e and'by approximately 1O pencent at the panel quanter-points.

This pencentage difference is lesg than tlre coefficient of variation

of the b¡ick elastic modulus, so that the agneement between the

measuned displacements and the computed values may be reganded as

acceptable.

Once the load exceeded 13ON/mm, some material non-linearity was

evident as shown by sudden increases in the stnains at two of the

strain gauges. This material non-lineanity, not inconponated into

PROGRAM pANELl, nesulted in def lections larger tlran calculated vaiues

(fisure 7.12).

The panel was un loaded and was then neloaded by increments

of approximately 14ON pen rnillimetne length to brickwonk. The lcad

against central deflection cunves fo¡'this test and the pnevious test

in which the bnickwork was initially ulncnacked ane shown in f igure

? .13, The resu I ts showed th¿rt f on the cnacked panel , the change i n

latenal displacement pen unit load was appnoximately 20 percent greaten

than that for the uncnacked panel; for the cnacked panel, the slopes

of the linean pants of the loading and unloading curves were apprc'x-

imately the same. Calculations using PROGRAI\'i PAt'lELl showed that the

ratio of centnal displacements of cracked panel-to-uncracked panei

was approximately 1 .1 1 compned with 1 .2O found in the test ' The

connesponding natios at tl-re panel quanten-points (f igure 712) were 1.12

and 1.23 nespectively. Fur ther detailed neseanch involving a number

of tests on the prognessive cracking of brickwork is required to

ascertain conf idetrce limiis on these ratios.

The panel was loaded, f inally, by increments to f ailune which

oræur ned at a load of appnoximately 1B5l{/mm length of brícl<wonk. This
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nepresentecl a total load on the panel of approximately 66 tonnes

(6ZOKN). The loacl-clisplacement chanacter^istics ane shown in f igur-e

7.14 and the crack pattenn at panel f ailune is shown in f igure 7 '15'

Failur^e was initiated by the fonmation of a crack thr'ough the

br icks and along some of the montan joints, at point rAr in f igune

7.15, which continued ventically thnough the bnickwork to point rBr.

The load nemained at appnoximately 1ON/mm below the maximum lcaC

ancj the cracking developed further as the iack displacements wene

increased. Final collapse, at appnoximately 175N/mmr was caused by

a latenal buckling failur e of the centnal area of the panel acting

essentially as a column isolated by the two vertical cracks f norn tlre

ventîcal edge suppor'ts. The crack pattenn at collapse (f igure 7 '15ìr

was appnoximately symmetnical about the parlel ventical and honizonta'I

centnelines.

Figur-e ?.14 shows that the displacc'ments agreed closely with

calculated values for loads up to approxirnately 1SON/mm after which

non-linear matenial behaviour occunred. The deviation of the expeni-

mental displacements fnom calculated values was less at the quanten-

points than at the panel centne (f igur e 7.14') .

contour plots of latenal displacements, plotted by the com¡ruter

dur-ing the er.periment (figunes 7.16(a) to 2.16(c)) showed tl-¡at the

displacements wene approximately symmetnícal about the panei centre--

lines for the load values shown. By superímposing on one anothen

dur ing the test the tlrree plots shown in figunes 7.16(a) to (c), ¡t

was possible to confinm imnlediately that the nelationship between load

and displacement vvas closely linear thnoughout the panel' As the !oad

was increased, a general non-linear beiravioun in the panel became

evident by plottirrg the displacement contours and companing them as

described above. Figure ?,17 shows that imrnediately pt ior to f ailure,
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the displacements were still appnoximately symmetrical about the panel

centnelines and also indicates that tl'¡e load was approximately

symmetnical about the ventical centneline of the panel .

The crack ing in thê parrel at a load of 1 BSN/mm length of panel

was associated with a tensile f ailure of the bnickwonk close to the

panel cornens, both thnough the bnicks and on the brick-montar inten-

faces, caused by normal tensile stnesses at appnoximately 45 deg'nees

to the bedjoints. The magrritude of the vertical load and its effective

eccentnicity, combined with connen twisting moments, can cause sig-

nificant normal tensile stresses close to the panel connens(112|' No

f ailune critenion fon brickwonk subjectecl to this comb!nation of bending

and pune twist ís known to the authon. However, an appnoximate

method using the nesults of PROGRAM PANET-1 and the tensile str^ength

of a bnick, âs pnoposed by Hendr-y 
(12o]'r mërv be usecl to predict thîs

type of bnickwonk f ailune in the test panel as fol lows '

Fon a unifor-m ventical loacj !V N/mm length of panel, the ventical

compnessive stness in the middle sunface of the panel is -

(?.1)
a

in which d is the panel thickness (d 65.4mm )

!v
ãg

By assuming a Mohn's

noting that the bnick and

equal, the component of the

bedjoints is -

(o
a 45 = ou, cos' fi/4

Resu I ts obta ined

cnacks predominantly

since the bnick a¡-¡ci

Cincle distribut¡on of rronmal stnesses,

montar elastic moduli ane approx'imately

vertical stness: o-r ât 45 degr^ees to the

w
,d (?.2\

fnom PROGRAM PANELl indícate that the br-ickwc¡rk

in the region of the panel centre. Thenefone,

montan rnoduli ane approximately equal, it may
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be assumed that bend ing momen ts at 45 degrees to the bed joints, say

(M associated with twisting momentsr M and My", are -xy 45', xy

( 7.3)( tvt 45
+M

xy xy yx

The maximum flexunal stress associated with (t*U)OS

ått'¡

(o *u )0, = n9,t

The ventical tensile

eccentricity of the aPP I ied

b, caused b:z

be calculated

(7.4')

bending due to the

as-

comb ined to g ive the

to the bed joints. Th is

stness, o

load may

(? .4) and (7 .6\

aq(xy 45

bnick at

ca lcu I ated

M +Mxy yx

W.e
(7.5)

in which w, is the load per unii length of panel, and for a bnick

close to the top on bottom edge of the panel, e n'ìay

be assumed to be equal to the eccentr'icity of the

appliecl load (c.f . stness distnibutions shown in

f isunes ¿.6(a), (b) ).

The component of the bending stness, o b, ât 45 degnees io the

bedjoints may h-¡e calcu lated, as fon the axial stnesses, as -

(oo)os = õb. cos' n/+ = # (7'6)

6
a'b

o

Equat ions

maximum tensile

stress, sayr ( o,

(o

That is,

)05, may be

(7 .2) ,

s t ness tn a

may k¡e

degnees45

as-

t 45
(o + (o + (o

a 45 45 xy 45)b
l?.7)

3)+(o
t 45 -å',' 6e

d d
(Htxy +M yx (7.8)
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Equation (7.8) may be solved by iteration by using PROGRAM

PANELI as f ol lows.

Hendny(120) pnoposed a set of nelationships between bnick uni-

axial compressive str engths and úniaxial tensile stnengths as showrl

in figune 3.19. Fon example, according to Hendry, a bnick with a

compressive str ength of $OtvlPa woulcl have a tensile stnength of approx-

inrately 3.5MPa. This value may be assumed fot the tensile stnength

of the bricks in the exper imental panel described above; that is

(o, )oS - 3.5MPa in equatíon (7.8). A (lO x 8) mesh mav be used in

PROGRAM PANELI to calculate the twisting moments (Mxy+Myx) at point

f C' on the expenimental failure line (f igur e '?'15) fon any selected

value of the vertical load, W per unit length of panel. lt is found,

by itenation, that equation (7.8) is satisf ied at point I C I when Vl/ is

appnoximately 173N/m¡n length of panel; the connesponding value of

(¡r¡ +M ) is appr'oximately 32BONmm/mm.' xy yx'
That is, by using PROGRA¡4 PANELl, the vertical load at whích

the brickwork panel described in'this section could be expected to

f ail in tension at 45 degr ees to the bedjoints, close to a panel conner't

is appnoxirnately 173N/mm length of panel. This may be companed with

1BSN/mm failur e load measured in the panel expeniment.

7.3.5 Summany

A case study has been descnibed of a f ull scale brickwonk panel

appnoximately 240omm high x 36oomm long x 65mnr thick Ioadecj

ventically at an eccentricity nominally 20mm at both the top and the

bottom. Statistically, the results obtained f norn the 'case siudy ane con-

sistent with results obtained using the finite difference theony fon

bnickwork panels p¡oposed in Chapter 6. ln additi6n, an appnoximate
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method has been presented fon pnedicting the f ailune of bnickwork

panels in wh ich bend ing at 45 degrees to the bed joints may be s ig-

nif icant. The f ailune load calculated for the case study by using thís

method agrees closely with the expei^imental result'

Furthen reseanch is nequired involving a nange of brickwonk

panels befone def inite conclusions can be dnawn concerning the validitSr

of PROGRAM PANELl. Factor s to be considered include the effects on

panel behaviour- of the load eccentnicity, the degnee of f ixity at the

panel edges and matenial constitutive and stnength pnopenties' Othen

factons to be considened include initial deviations of a brlckwork panel

f nom a plane lnd 
poor quality bnicl<wor k due to infenior workmarrship.

However, the theonetical wonk proposed in chapten 6 and

incorporated ínto PROGRAM PANELi appeans to pnovide a method fon

pnedicting the behavioun of brickwork panels subjectecl to unifonnl

vent ica I load . Experimenta I resu I ts summarized in th is chapten i nd icate

that PROGRAM PANELl coulc! be used as the basis of a compnehensive

parametnic study car^r ied out to investigate . the sensitivity of the

stnength of bnickwork panels to the factors mentioned above.
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8. COMPÀRISOI\I5 OF THËORETICAL RESULTS WITH DESIGN CODE

SPECIFICATIONS

ln chapters 4 and 5 it hag been shr:wn that PROGRAM P lERl

(Appendix C) may be used to caiculate the f ailune loads of br^ickwork

walls subjected to eccentnic ventical loads. Panameters which may affect

the failune loads include the brickwork elastic pnopenties, the bnicl<-

wonk compressive strength which in tunn depends on the mortar

compnessive stnength in tniaxial compnession, the top and base suppont

conditions and the initial deviations of the wall f norn a vertical piane.

I t w il I be appneciated that a compnehensive panametnic study of the

above effects án wall failune loads is beyond the scope of this thesis'

Howeven, a general indication is given in thìs chapter of typical

results which may be obtained fnom such a study by pr esenting wall

failune loads calculated for one type of bnickv¡onk by using PRCGRAfvf

plER1. Tl-le effects of var.ious end conditions and deviations f nonl

ventical straightness are investigated and companisons ane made

between the calculated f ailune loads and f ailune loads which f orm the

basis of vanious Design Codes.

ln Chapter s 6 and 7 PROGRAM PANF-L1 (Appendix G) has l¡een

used to calculate the strength of bnickwork panels when simply-

supported orì four sicjes and subjected to eccentnic unifonm vertical

line loads. ln contnast to PROGRAM P lER1, PROGRAM PANELl calculates

a panel f ailure loaci on the assumption that the brickwonk nemains

linearly elastic; the analysis of brickwonk panels with norl-linean

matenialpropentie*<isbe5z9¡¿thescopeofthisthesis.Possiblecr^iteria

wl-rich may be usecl in PROGRAM PANELl are summarized !n Section 8.2.

Failur-e loads are pr^esented for one type of brickwc¡r-k only and, in

onder to place the calculated nesul ts in penspective, the panel
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failune loads ane companed with wall f ailune loads and such nelevant

Code Design r^equirements as exist at pnesent '

8.1 BRICKWORK WALLS - PRCGRAM PIERl

calculated f ailune loads ane girzen in the following sections fon

walls with vanious conditions of end loacj eccentnicity, end f ixity ancJ

initial deviations f rom vertical stnaiglrtness. All computations use the

brickwork pnoperties summanized in Tab le B ' 1 '

Table 8.1 : Material Propenties fon Panametric study on Bnickwork lvalls

A fur ther assessment of consistency of the assumed matenial pnopenties

may be made by calculating the ratio -

(B.t)X=

E. isbr
ø

the initial tangent modulus cf the br ickwork (¡¡pa)

the br'ickwork compressive stnength (NaPa)'
c

Br ick Compr-essive Stnength, 6OMPa (c)

Mortan, 1:1:6 bY Volunre

Elastic Modulus, lBx1O'MPa (E

Tensile Stnength, 3.5N4Pa (o, )

Bnickwork Compressive Strength, 26MPa (o.)

Non-linear Mortar ModuIus

lniti,al Tangent lrlodulus, 8.0x1O3MPa (E

n = 1.5

6.752

Coeff icients:

K

m

bBnick

Bnick

Assumption for tYPical
b r- icks

Assumption for tYPical
montar

sahl i.'(oo), F'igure 3. 1

Hendny(120),
Figune 3.19

Henciry 
(12o') 

,
Figure 3.19

Assumption, ChaPten 5

Assuntptirtn, Sectiorr
5.2.2, Figure 0.3

Equation (8.2)

Matenia I PropentY Refenence ( s )

in whiclr

IS
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Henclry 
(1201 has neponted experimentat results which show thai

typically x may vany between approximately 4oo and 800. (These

neponted values of X may be compared with mean expenimental values

of 398 and 350 (Tables ?.3 and 7.1O nespectively) and a mean value

of 5OO fon the wal I expeniments (Sections 5,2.2"3, Appendix D ) . ) The

value of x for the materials summanized in Table 8.1 is 604, thus

indicating that the matenial assumed propenties are nepresentative of

the pr operties of neal bnicks and montan.

g.l.l Walls Loaded with Equal End Eccentnicities irr One-way Bending

Figure 8,. 1 shows wall f ailune loacJs plotted non-dinrensionally

as a fraction of the compnessive strength of a short bnickwork wall.

The end load eccentnicities are assumed to be equal, pinned both top

and bottom, and initial deviations fnom ver tical straightness ane taken

to be ze"o. Failune loads ane shown fon eccentnicitities of zeîo, d/50,

d/6 and d/3 fon wall lreight-to-thickness natios (slendenness r'atios)

up Io 40, catculated for bnick-on-flat bnickwonk wilh lOmm thick mortan

bedjoints. The failure loads of end eccerìtnicities of d/50, d/6 a¡rd

d/3 wene calculated using PROGRAM PlER1. Howeven, PROGRAM PIERI

cannot be used fon the calculation of axial f ailure loads because

latenal cJisplacements of a wall pnion to f ailune ane zero; the axial

failur e loads nray be estimated as follows.

Fon linean matenials, the maximum wall load pen unit length,

in a non-dimensional form, may be taken to be the lowen value

obtainecl f nom equations (8.2) and (8.3). That is,

n2

12oc

Pf
-sd

c

(8.2)
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in which bn is tlre initial tangent rnodulus of the bnickwonk

is the wa I I th ickness

is the wa I I hei tht

is the bnickwot k coÍrpnessive stnength

Pt
1.0 (8.3)or od

c

ln equation (8.2), the initial tangent modulus of the brickwonk

may be calculated f rom equation (3.47) '

Results obtained using equations (8.2) arrd (8.3), shown in figune

8.1 , indicate a shar p transition between bric[<v¡ork compnession

failune (ventical splitting) and wall buckling f ailure at a slenderness

natio of 22.3. This shar-p tansition has not been observed in expeni-

ments (Hendry(120) ). the neasons can be appreciatecl by- considering

the effects of the non-linean behavioun of br ickworl<.

Fon bnickwork constnucted f rom I inear- elastic br-icks and non-

linean montan, the wall failune loads fon zeîo load eccentricity rnay

be estimated using a tangent modu lus appr^oach. The nlontar stness-

strain nelationship may be assumed to be -

K.n) (8.1)

E

d

h

o
c

o=t.(e m'

¡h whícl-r E
m

K,

li,hen the

uniform stnain

ís tl-re montan initial tangent moclr-¡lus

n ane constants (APPendix B).

stness ín axia I ly loaded bnickwor k i s o

in the montar is .a, the mol'tan tangent

and the
a

modulus is

t do
a;E | = t''' n-1 ( 8.4)nKe

a

Fnom equation

a
Èe

a

(3,47), the average rnoCulus for the brickwork

by--at stness o_ ls glven
a
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(B.s)E Eol
bn, a

l-.l r-

in which Eb, H, b, t ar'e as

defined in

The critical buckling load Per

for^ which the elastic modulus is E bn

unit length of a pin-ended wall

is thus -

(8.6)

(e.z)

defined in figune 6.

equation (8.4).

t5andE IS AS
a

a

(E )d'Í2 bn a
Pcn

in which h and d are as def inecl above.

The nomiñal cnitical bucklirrg stress becomes, thenefone -

12 Eb"r.
d=-u.. - 1|7^'\r"7¿¡z

Equarions (8.1), (8.4), (8.5) and (8.7) must be solved bv itena-

tior-l because the stnain in the mortan, .a, is not known initially"

By Newton-Raphson itenation, a failune cunve may be obtained for

axially-loaded non-linean br ickwork walls which fail by buckling

(f igure 8. 1 ) . As can be seen, th is method, wh ich uses an equ iva len t

tangent modulus, gives nesults which f it well in the region between

a linear mater-ial analysis with ze-.o eccentnicity, and a non-l inean

analysis with an eccentr icity of d/50.

ln contnast the the curve obtained for linean br ickwork, ihe

smoothness of the non-linear curve in f igune 8.1 nef lects the transition

in wall failure f rom bnickwork compressicn f ailure (vertical splitting)

to a buck I ing f ai lure rnod.( 120) 
.

Figune 8.1 indicates that for rìon-linean bnickwonk walls con-

structed f nom matenials specif ied in Table 8.1 and loaded at eccen-

tnicities of d/6 on less, the wall str ength decreases rapidly as the

slenderness r-atio incnea-ses. ln addition, the stnength of walls loaoed
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at an eccentn¡city of d/50 nemains gneater than appnoximately 25

pencent of the brickwonk compnessive strength fon slendenness natios

up.to 40. Howeven, this level of stnength in walls of high slenderness

is not shown in the r-esults obtained for brickwonl<. walls loaded at

an eccentnicity of d/3: For such walls the load capacity decneases

fnom appnoximately 30 pencent of the brickwor-k compnessive strength at a

slendenness natio of 2 to less than 5 percent fon slendenness natios

greater than 2.0.

Also plotted in figune 8.1 ane the load capacities of br ickwonk

walls as calculated by using the recommendations of Design Codes

s.c.p. l.-1 969(1?7\, 855628: Pant l: 197',z4l and ASi640-1 9?4(41 ' lt

should be noted that 855628: Part l: 1978 (Section 32, Table ?) may

be applied only to the axially-loaded walls in f igur e 8.1 because the

load is equally-eccentr ic at the encjs. The Code f ailure loads agnee

closely with the calcu!ated values fot load eccentnicities of ze?o and

d/6, but the calculated wall capacities for an eccentnicity of d/3 are

less than the code loads by as much as 50 pencent of the code values

fon a nange of slendenness natios, The nesu lts for eccentnicities less

than d/6 indicate that stnuctunal bricktt¡ork desic¡n and constnuction

may be nestnicted unnecessarily by specif ying the maximum allowable

wa I I slenderness nat io to be zz(\4), 
(24\ on 30(127)- . code timitations

on slenderness rat ios wi I I be discussed f unthen in this chapten as

of wall f ailunenesults ane pnesented which show some on the

conditions and initial

effects

loads of various end deviations fnom vertical

stna i ghtness.

8.1 .2 Walls Loaded with unequal End Eccentricities

Figur^es 8.2, 8.3 and B:4 ane plotteci non_dimensionally

wall failune loads as f unctions of u¿all slendenness. All

matenials ane assumecj to have the pnopenties summanized in

and show

bnickwork

Table 8.1
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Table 8.

(a)
(b)

(c) pin-nollen at a

the honizontal

e

d

A

in
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walls are subjected to the loading conditions described in

ze?o, d/50, d/6, d/3

1 1Omm

top suppont pnovides translational rest¡ aint

d irect ion on ly .

Tab le 8.2: Wa I I Suppor t arrd Load ing Cond i t ions

Figur e 8.2 shows that the load capacities of walls loaded axially

at the base and loaded at the top at eccentricities of d/3 or less

depend essentiall¡z on the bnickwor^k compnessive strength for slender-

ness ratios of 15 on less. For slenderness ratios greater tlran 15, the

wall strengths decrease as a nesult of slendenness effects which cause

wall f ailure by latenal buckling rather than matenial f ailune. Figure

8.2 indicates also that the stnength of a wall with a slenderness ratio

of 4O, when loaded at a top eccentricity of d/50, is approximately

25 percent of . the stnength of an axially-loaded shont (slendenness less

than 6) bnickwonk wall.

Failur-e loacJs calculated using the Swiss Rule, as specif ied in

clause # 4.13.3.1r of the Australian Code 4S1640-1 974(4), Ciffer con-

sider ably f rom values calculated using PROGRAT/ P lERl . This shows

that the Code requinemerrts may not be consenvative fon walls in which

the top load eccentr-icity is gneaten tl-ran d/6. Failur e loads calculated

zer0

-0.75e

e

e

e

Pin

Fixed

Pin

Pin-nollen
Pin-nol ler
Pin-rollen

8.2

8.3

8.4

BaseTopBaseTop
(c)

Figune No.

Load

Eccentnicities
(a), (u)WalI Suppor t Conditions
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using 855628: pant l: ,nrr?o) (maximum loacl eccentnicity o.3od) also

differ fnom the computed values but ane closen than values calculated

by the Swiss Rule.

Figune 8.3 shows the load capacity cunves for walls fixed against

notation at the base and loaded eccentnically at the top' ln pnactical

tenms, the cunves may be used to estimate the load capacities of

síngle-stoney bnick-on-f lat walls sitting on nigid concnete naf t footings'

The calculated nesults shown in figune 8.3 indicate that the load

capacities of such walls, when loaded at eccentricities of d/3 or less'

depend only on the bnickwork compressive stnength and the load

eccentr^icity fof slenderness natios of 20 on less. ln addition, f or^ a

given load eccentricity, the stnength of a wall with a slendenness natio

of 40 is approximately one half the strength of a wall with a slenden-

ness natio of 6 on less. Figune 8.3 also shows that f ailure loads

calculated using # 4.13.3.4 of AS1640-1974' may be non-consenvative for

load eccentricities of d/6 or gneater'

lnfiguneS.4,plotsaregivenfontheloadcapacitiesofwails

fnee to rotate at both ends loadecJ eccentnically on opposite sides of

the wall centreline (taf¡te 8.2). The curves show that the failure loads

fon an ecce.tnicity of d/50 agnee closely with the load capacities of

axially-loaded walls with slencie¡ness natios between 15 and 40; the

load capacities fon walis loaded at d/6 and d/3 ane almost constant

for slendenness ratios of 20 on less. wall load capacities calculated

using 45161 4O-1974 show that the code nequinernents may be non-

conservative fon load eccentricities between d/3 and d/50.

8.1.3 Effect of lnitial lmpenfections

333

straightness,

of Austnalian

fnom ventical

lnitialimpenfections,otrdeviationsft.clmventical

may nesuIt fnom poor wor^kmanship' Clause #- 5'5'3

Stancla.d AS164.0-1 gz4(4) per mits a maximum deviation



PIERI e=

PIERl
e=d/50
AS1 640- |

e=di6
AS 1 640-

aLs-
1

PIERl

e
P H

-+

B.O.F. h

d/3 -\

74

4
\

d/6

\+-AS 1640-1974

Linea

-..--Non-l'

e=zero

\
\

\

near
zer.0

-

s.
o
c
O

r/)

1.2

1.0

E
C)
'a
o-

J O.B
L

3
_v.
(J
'a
t 

0"6
o

0.4

_c

o
c
C)
L
m

=ú

,* O.2
o

,9

o
É.

0 40
0 10 20

Wall Slendenness Ratio (n/dl;

Figune 8.3: Failure Loads of F ixed Base

LoadecJ Ecentrical lY at the

30

d-11Omm

Bnick-on-f lat Walls'

Top

(,
U)
N



PIERl e

PIERI e=

AS 1 640- 1

"ã/T -

AS1 540-1

e=d/6---

AS1 640-1
e=d/50

=¿/sl

d/ 6

t74

\7rr
Þ\

--a\

)74

P lERl -f
-{=¿/so

--Nor¡-iin l^

tn€ e=ze

I
\

\\

P
e

-*
H

h

H
<_

0.75e P

.C

U'
c
O

(/)

E
a'-
o-

v
L

3
_v.
U
'a
m

1.2

0

6

o.B

0

f
c)
c
I0.4

(t)

3
tþ
o

.9
IU

É.

o.2

0 0 10
Wall Slender-ness

20
Ratio (r'ld);

30
d=1 1 Omm

40

Faiiune Loads of [Ialls Loaded Eccentnically on

Opposite Sides of the Wali Cerrtreline

(^)
(/)(¡

Figure 8 4



336

stra¡ghtness within a storey of 6mm fon eveny 3 metres of height; that

is, a maximum deviation fnom ventical str aightness of h/500.

Figure 8.5 shows the effects on wall load capacity of initial

deviations of zero, h/BOO (3mm fon each 24O}mrn height) and h/4OA (6r¡m

fon each 24OOrnm height). The walls are assumed to be loadecl with

equal end eccentnicities and the shape of the initial impenfecticns is

assumed to be bilinear with the ma><imum deviation at wall mid-height'

PROGRA¡^ p I ER 1 can a lso be used to ana I yse any arb i tnary pattenn

of initial deviations.

The nesults plottecl in figure 8.5 show that fon a slenderness

natio of 20, the load capacity of a wall loaded at an eccentricity of

d/SO may U. .pp"oximately 80 percent of the capcity of a wall initially

stnaight; if the initial imper'fection is h/4OO, for a sletrderness r^atio

of 40, the capaci ty nat io i s appnoximatel y 65 pencent. The load

capacities of walls loaded at eccentricities of d/6 ane also neduced

by the assumed initial impenfectiorrs but the wall failure lo'ads

calculated using AS16¿10-1974 appean to be onlyr slightly non-

conservative f or most slender^ness natios.

8.1 .4 Summary

F igunes B. 1 . ancj 8.5 show that for wa I ls loaded at equa I end

eccentnici¡es of d/6 on less, code specificatio.'=(4\'(z+)'(lz'z) ,.n".u

closely wíth wall failure lo'ads calculated using PROGRAM PIERl for

the bnickwork materials summanized in Table 8.1. However, the effects

of initial deviations fnom vertical straightness may cause Code

specif ications to become slightly non-consenvative btttu=" they do not

give the expected factor of safety. The resuIts shown in figunes 8'1

to g.5 also inci icate that fon walls loaded at eccentnicities gneater'

than d/6, the load capacities calculated by using Cocle coefficients
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and the Swiss Rule, where r-elevant, may be significantly gneaten than

the wall failur-e loads calculated using PROGRAM PlER1.

8.1 .5 Bnick-on-edge Partition Walls

It was state<J in Chapten 1 that one of the aims of thîs inves-

tigation was to study the stnength of slenden brick-on-edge walls used

as partition walls in domestic constnuction. Figure 8.6 shows the load

capacities of such walls assuming that the supponting nigid footing

nestnains the base of the wall against ¡^otatîon. The nesults' which

are close to those shown in f igure 8.3 fon bnick-on-f lat walls, indicate

that a br ick-on-edge wall may suppor t signif icant loacls even at

a slenderness natio of 40 provided that the load at the top acts witl"rirr

the middle thind of the wall section. Figune 8.6 also shows that limit-

ing the slenderness natios to 32 or less, as nequíned by AS1640-1 SZ+(4),

may be unnecessarily restrictive. However, in the fonmtllation of design

nules fon such slenden walls, ¡t would be prudent to ntake soi'ne

allowances for the effects of initial impenfections and the possibility

of small lateral loads which may anise accidentally. ln acJdiiion, as

with br ick-on-f lat walls built on a rigid base (f igune B'3), the ioad

capacities calculated by using,AS1640-1974 specifications may be rron-

consenvative fon some load eccentnicities, as indicated, whene the

eccentnicity exceeds d/6.

8.2 BRICKWORK PANELS IN TWO-WAY BENDING PROGRAM PANEL1

ln

bni ckwonk

vent i ca I

domestic

nooms.

this section, it is demorrstnated that thg loacl capacity of

walls rta\/ be sîgrrificantly incneased by nestt'aining the

edges against lateral translation. This may be achieved in

ccnstnuction by the intersectirrg of walls at the corl-ìens oÍ

ln such a situation the br ickwor'k wil I behave as a panel



PIERi e

PIERl e /so

e=d/6
AS1 640-1 4 e=d/

-\

7

ASl 640-i

Ð
I e

+
H

B.O. E h

.cl/3...,
'L

g7+ e=d/i 0

\
\\

^,.-Linez
-Non-lin

{

n e=zeno

\\ì
\

3an
:eno

E
o)
c
O
L
(¡

E

'-
o_

l¿
L

3
ll
O
'L
c0

o

-C

UJ
C
(.)
L
ut

ru

=
r+-
o

.9

o
É

1.2

1.0

0.8

0.6

0.4

a0

o
0 10

Wal I Slendenness
30(h/d); d=76mrn

20
Rat ío

40

(,
(!
(c

F i gure 8.6: Failune Loads of Bnick-on-edge Par^tition lt/alls



340.

(Chapten 6) nathen than as a wa I I supponted on ly at the top and at

the base.

The bnickwonk matenial propenties ane assumed to be as specified

in Table 8.1 v¿ith the exception of the montar elastic modulus which

is taken as constant at 8. Ox10 sMPa. Al I bnickwork panels are assumed

to be simply-suppor ted on foun sides and ane loaded uniformly and

eccentrically both at the top and at the base (Appendix G, f igure

G.1). PROGRAM PANIELl has been wnitten so that a unifonm latenal load

may be applied in combination with the vertical load (Appendix G),

but, because the modes of failune may be comptu^(69), no results ane

pnesented irr 
,th 

is chapten f on panels sub jected to comb ined load ing

cond i t ions.

Three possible modes of f ailune ane sholvn in f igur e 8.7. The

vertical splitting failure (figune 9.7(a)) is associated with excessive

ventical compnession (Section 3.3.2) and may occur in the brickwot k

when the maximum nonmal ventical stness per unit length of panel is

egual to the brickwonk compnessive strength, oc, so that -'

o +
6e(m, n)

d
(8.8 )

in which *t is the f ailune load pen unit length of panel

d is the Panel thickness

e(m, n) is the load eccentnicity at a typical node (m, n) in

the Panel .

Figure 8.7(b) shows the mode of f ailune expected as a nesult

of excessive bending parallel to the bedjoints (Section ?.2\ pr ovided

that the vertical pnecompnession is suf f icient io pnevent bond shear

failure orì the bedjoints at the bnick-montan interf aces (Sahti,.(44),

Base ancl Baker-(69), Section 3.3.4.2\. ¡t may be assumed that the bnick

tnansverse bendirrg strength, obt, i= equal to the bnicl< norn'lal terrsile
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I

4

\

\V-l

Figune 8.7(a): Ventical .Compnession Failure (Ventical Splittirrg)

Figur e 8.7(b): Failune in Flexure due to l-{onizontal Bending

\

Figure 8.7(c): Tor^sional Cr-acking Failure at 45 clegrees to the Bedjoints

I

Fiç¡ure 8.7: lvlocles of Failure for a Br-ickwonl< Panel
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(44)
stneng th, (Table 8.1 ), so that equation (3.46) may be wr-itteno t

as-

o'5o, -< oxx,f \< ot

in which a ; is a brickwonk bendingxx, I
panel at failure and

6M xxr 1

'xx, f - --æ-

stness pen unit height of

may be ca lcu lated as -

momen t ,

6) and d

(8.e)

(8. 10)

per

IS

l.n equation (e.tO), t^*,f i= the failune bending

unit height of panel, panallel to the bedjoints (Chapter

the panel thickness.

A value for the f ailur-e stness' oxx, 
f , must be chosen

because of a lack of experimental data. Howeven,

Section 3.3.4,4, a pnactical estimate of o would

AS WAS

be-

anbitrar-il)¡

shown in

xx, f

o_xxrf O.75 o, (8.11)

Thenefone, f nom equations (g. tO) and (g.l I ), the bending moment

per unit height of panel at which the f ailune mode shown in f igure

8.7(b) may be expected is -

M*r.,f = 0.125ord2 (8'12)

Failure at 45 degnees to the becJjoints adjacent to a panel cornen

(f igune g.7(c)) rnay be caiculated by using equation (7.8) '(Section

2.3). lt may be assumed fon practical pur-poses that (or)OU = o t

appnoxirnately, so that tlre failure load, \¡/çr may be calculated by

itenation by using -
W-

- Åt,(o,)¿5 =
3
ã,+o

t
6e
d

( lut xy M)yx'+

in which e, d, Mxy' M yx ane def ined in Sect ion 7 .3

(7.8 )



The thnee failune conditions

and (7.8) may be inconPonated

calculate the least value of tlre

failr,rre occuns on the panel f ails

pnescnibed by equãtions

into PROGRAM PANËL1

vertical load at which

by latenal buckling.

Load Eccentricities

343

(8.8), (e. tz¡

in orden to

eithen matenia I

8.2.1 Panels Loaded with Equal

The r elative stiffness of cnacked bnickwork subjected to bendîng

panallel to the bedjoints (Section 6,2.3) and the relative tonsiorral

stiffness of cnacked brickwork (Section 6.2.4) have been calculated

fon bricks 23Omm x 'l I Omm x 65mm I a id on edge as used in the test

panel. Figune 8.8 shows the f ailune loads, plcltted non-dimensionally,

fon panels 24OOmm high constnuctecl f rom standar d br icks 23Omm x 11Omm

x 76mm laid on edge. lt may be assumed, for pnactical punposes, that

the r^elative bending and tor sion stiffnesses for such cracked br-ickwork

ar e as given in Chapter 6'

The nesults indicale that fon aspect natios 9,/h Iess than 1.0,

panels loaded at eccentnicities of d/1OO0 carny appnoximately the same

load pen unit length as a shont bnickr¡tork pnisrn loaded in axial com-

pression. This nesult is supponted bV expeniments on bnickwonk panels

(Hendry(120)). Figure B.B shows that panel load capacity clecneases

as the panel aspect natio (length-to-height natio) increases betrveen

.¡.0 ancJ 3.0, but, nevertheless, pancl stnength exceeds the str ength

of a linear matenial wall with the same height-to-thicl<ness ratio.

Results obtained by assuming lineat' material pnopenties show

that a panel loaded at an eccentricit¡z of d/6 f ails at one-half the

bnickwor k compnessive strength if the panel aspect ratio is less than

0.5. Fon panels with aspect natios greaten than 0.5, the load

capacity decneases napicJly to appnoxirnately 23 pencent of the bnickrronk

compressive strength. lrr addition, the calculations show that panels
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with aspect natios gneater than approximatelY 0.6, when loadecl at

an eccentnicity of d/6, f ail due to excess¡ve honizontal bending stress

as detenminecl by equatio'n (A.l Z) .

Bnickwor k panels of aspect natios less than approximately Q'7,

loaded at an eccentnicity of d/3, fail due to excessive horizontal

bending stnesses at the top ancj base supponts caused by cr acking on

the bedjoints combined with the effects of fonces associated with a

nela'tively high value of Poissonrs ratio (v = 0.20). However, fon all

panels investigated with aspect natios gneater than O.7, the calculated

load capacities ane detenrnined by the loads at which terrsile lailune

occuts at 45 degr-ees to the bedjoints adjacent to a panel cornen

(equation (7.8)).

' Austnalian Stanclard AS'1640-1974 states that the slendenness natio

of a bnickwonk panel shall be detenmined by the smaller value of the

natios 9,/d ancl h/d, and specif ies that the slendenness r"aiio slrall

not exceed 27. For a bnick-on-e<1ge panel of height 24OOmm, âS used

in the computations in this section, the slendenness natio h/d ís 31 '6'

Howeven, if the le¡gth of such a panel is less than 2O52m¡n, lhe CccJe

nules may be applied and tl're load capacities may be calculated. îlre

nesults ane shown in figune B.B. The cocle nesults are similar to the

panel load capacities calculated by PRoGRAM PANELl fon loacj eccen-

tricities of d/6, but ät eccentrícities of d/1000 and d/3 the two sets

of values differ consider-ably. Figure 8.8 shows clearly that for panels

with aspect natios gneaten than 0.5, the Code loacl capacities ane

consenvative and take no account of the resenve of s.trerrgth in a panel

beyond the stnength of a wall with the same height-to-thickness n¿rtio'
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9. SUMIvIARY AND RECOMMENDAT I ONS

str.uctunal brickwonk, âs an engineered system' must be designed

by using the nules of stnuctural mechanics together^ with a knowledge

of the strengths of its component ma'rerials. ln orden to facilitate the

design pnocedune, pnactical simplif ications may be made and sum-

manized in the for^m' of Code nules, but, initially at least, the true

behavioun of brickwonk when subjected to vanious fonces ancJ deforma-

tions shou lcJ be undenstood '

Cocles of pr actice can only be formulated in the light of the

available knoryledge. The ovenall behaviour- of br^ickwot k stnuctunes'

in which the wall and f loor elements are assumecl to act conpos-i t9-l¡z-t

is neasonably well appneciated; fon example, ¡t is known that the

cantilever method of analysis fon wind loads (Section 2'2) gener ally

leads to a safe structure. Experience has also shown that the even

distr ibuiion of loads among all the wall elements is desinable in

structur.al brickwonk. Howeven, in the past, the divensity of nesearch

and the variabilîty of component materials for bt-ickwonk, as neviewed

in chapter 3, made it diff icult to assess ancl compane many of the

published nesults. Recently, Kl-roo ancl Hendny fi17) have developed a

fundamental theor^y for pnedicting brickwonk matenial str^ength in com-

pnession and Base and g.t 
""(60) have summanized the elastic pnoper ties

of uncnackec brickwonk-in the linear elastic nanges of the br ick and

montar materia ls.

It is also notecl in chapter 3 that theonetical investigations

conducted in the past on the stnength of bnickr'vonk wa I ls have been

based on the assumptions that a wall behaves as a column regan'Jless

of its vertical edge suppont conditic¡ns and that no tension stresses

can exist in the brickwonk column(96)' 
(97)' These simplif ying
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assumptions do not reflect the actual behavioun of neal bnickwork and,

as a consequence, pasi theonetical studies have led to inaccunate and

generally consenvative pnedictions fon wall stnengths.

The wonk pnesented in this thesis has appnoached rnone closely

the neal behaviour of bnickwonk walls by observing that even fon a

stness distributton

mortan intenf aces,

in wl'rich thene ane no tensile stnesses at the bnick-

the tensile stnesses in the bnicks themselves can

be significant. ln Chapten 4, it is shown that cnacking occuns at

discnete intervals on the bnick-montan intênfaces, with tlre extent of

the cnacking in the bedjoints depending on the position of the line

of action of tf u nesu ltant compnession load nelatíve to the wal I centne-

line. The recluction in bnickwonk f lexunal stiff ness caused by the

cnacking is determined by using a two-dimensional finite element

analysis to calculate the moment-notation chnactenistics of a cnacked

brickwork nrodule consisting of two half-height bnicks plus one montan

bedjoint. The nesulting character istics ane used to develop load-

deflection nelationships for a homogeneous isotropic vanying-thickness

column equivalent to the real bníckwork. The load capacities of

eccentricaliy-loaded bnickwonk rvalls are calculated by solving the

equivalent-column equations, written in f inite diffenence forrn, by using

a Newton-Raphson method.

Chapten 5 contains a descniption of experimerrts fnom which was

determined the elastic modulus of a brickwonk pnism subjected to

eccentnic vertica I compnession ; the test nesu lts are shown to agree

with analytical nesults pr.oposed by Base and Baken(69). ln addition,

nesults obtained from the method of analysis developed in Chapten 4

ane shown to agnee with nesu lts obtaíned f nom expeniments conducted

on a slencjen steel block column ancl a series of bnickwonk walls of

var ying slenderness r-atio.
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ln Chapter 6, br-ickrvork panels simply-supported on fout sides

and subjected to ventical eccentnic load are analysed by detenmining

the bending and torsion stiffness of a thr ee-dimensional bnickwork

modute using a thnee-dimensional finite element method of analysis'

Load-deflection r-elationships ane developed fon an equivalent plate

of vanying thickness, analogous to the equivalent column of vany ing

thickness for a wall, in onden to nepnesent the behavioun of a real

bnickwork panel. By wr^itíng the load-def lectiorr equations in f inite

differ ence form, load capacities are calculated fon eccentnically-loacJed

simply-supponted bnickwonk panels.

Chapten Z descnibes tests conducted on small bnickv¡onk partels

subjected to hor izontal bending. Results obtained fnom the expeninlents

for the neduction in bnickwonk bending stiff ness caused by cracking

agr-ee closely with values given by the finite element analysís in

Chapter'6. ln addition, a full scale test of a slender simply-sttpponted

bnickwonk panel loaded eccentnically top and bcttom is describecJ in

detail. Results obtained f rom the experiment show that the equivalent

plate analysis developed in chapten 6 can be used for calculating

the load capacities of vertically-lcaded br^ickwonk panels.

I n Chapter 8, PROGRAM P I ER t has been used in a paramett-ic

study of the Ioad capacities of bnickwonk walls. wall load capacities

calculated by pRoGRAf\¡ P lERl diffen signif icantly in some instances

fnom load capacities calculated using Code necomnìendations (f igur es

8.1 to 8.6), thus indicating that r-cvision of some Code recommendations

may be nequined. Fon example, the swiss Rule, clause # 4.13.3.4 iri

AS'1640-1 gr4(4), can lead to non-consenvative load capacities fon some

types of wall w¡th slendenness natios up to 27. ln additicn, results

obtained from PROGRAM PIERl indicate that ihe maximum allowable wall

slendenness nat io cou ld be incneased to penrnit brîck-on-edge wa I ls

in domestic constnuction to act as load-bear^ing elements.



PROGRAM PANELl has been used to calculate the load

of bnickwork panels, simply-supported on four sides, loaded

eccentnicities top and bottom. PROGRAM PANELl cou ld

f unthen fon use in a more genenal study of the load

bnickwonk panels if the following wene included -
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capaci t i es

at equal

exten ded

capaci ties of

be

( i ) The r el ative stiffness factot s, calculated using a finite element

laid in vanious Pnactical bondingmethod of analYsis,

pattenns subjected

for br icks

to hor izontal bending on pur^e tonsion

( ¡¡) Non-linear montan behavioun.

(¡i¡) lnitial impenfections due to poot wonkmanship'

(iv) Failure cnitenia, detenminecl expenimentally, fon bnickwork

subjected to combined compression, bending and tonsion.

(v) The clegree of fixity on panel eclge suppot'ts"

A general panametnic study of bnickwonk panels should neces-

sanily detenmine the sensitivity of the panel load capacity to the

f actors listed above. ln addition, theonetical pnedictions should be

checked against expenimental nesuits f nom tests on f ull-sized panels'

Othen more ger-renai aspects of stnuctunal br ic[<wot k subjected to ventical

loacls which cou!d be investigatecl to gain a mor-e comprehensive unden-

stand ing of bricl<wonk behav Îoun i ncl ucje -

(i) The true distribution of ventical lo¿rcjs along the lengths of

stnuctural bnickwor^k walls and panels'

(¡i) The exte.t of the inter-action betweerr walls and f loon slabs

and the resulting effects on vertical load eccentnicity'

( iii) The combined effects of ventical and honizontal

walls, which are

loads on

u rr ders toodbnickwork panels (as distinct fnom



(15)
( Hendry )). This

PROGRAM PANELl,

the scope of this

may be investigated initiallY

this topic is consider ed to bebut

350

us I.ng

beyond

thesis.

(iv) Seismic loading ãs ¡t affects the stability of slenden brick walls

and panels.

(v) The effects of cavity wall construction on wall stiff ness and

strength

(vi) The effect of coning on bnickwork stiff ness'

lnirially, howeven, PROGRAM PIERl and PROGRAM PANELl mav

be used confidently as a basis for^ modifying existing code recommenda-

tions nelated to the design of ventically-loaded slenden bnickwonk

walls and panels.
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APPENDIX A

THE BR ICKT CURVATURE FUNCTtON. c (ESUATtON (4.2)l

A.1 A METHOD FOR CALCULATING THE CURVATURE RATIO FUNCTION, c

This section descnibes one

the curvatu¡'e natio function, q

method which may be used to calculate

in equat ion (4.2) .

thene exists a f unction c., (eo/d, hu,/o)
be assumed thatIt may

such that -

o' {to/d, hb/d) n(hu/a) + a(hul¿).('olo) + c (ho/¿).('olo)'

o (hul¿ ).("o,/o ) '+ (A.1)

the value

( one-ha I f

in which e(hÞ/¿), B

functions of (hu/a).

the values of the

can be found fon

tion (raute 4.1).

of the function

(hulo), c(hbld), D(hb/d) are cubic poIynomiaI

Table 4.1 (Section 4.2.2),Using the nesults in

runctions ¡1hu/d), s(hu/o), c(hu/¿) and o(hu/a),

each value of (l'o/¿) bv a least-squanes appnoxima-

For the ca lcu lat ion, i t can be assumed that

(hu7u¡ = o.o5oo.' ("o/d, hu/¿) is 1.000 fon

a montar joint aspect natio).

Table 4.1 : Coeff icients fon Function o., (eo/d,, hU/O)

o r{é o/d,

0

0

JJ. O

62.4

85 "7

0

0

-24.O

-35.6
-46.4

0

0

5.93

7.75

9.47

1 .00

1 .00

0.521

0.406

0.311

0.000

0.050

0.69'l

1 .447

2.OO

D(
h b/d)c ( 

hr,/a 
)e(hul¿)r(huld)Ìr

( b/d)

tha t

Assume also that there exists a function hula 
) such



o r(eo/ d, ¿/¿) E(eolo) + r(eo/¿).(holo) +

+ H(eo/¿).(hnz'o)'
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C (eo,/¿ ¡.1hu/a ) '

(A.2)

cubic polynomial

för each value of

ht /¿) can be expnessed

values of the f unctions,

appnoximation (ttre five
hø/¿) an,c o (hu/¿ ) ane

The foun functions may

h

(to/¿), using the nesults in Table 4.1, are summar-ized in Table 4.2.

Table A;2: Coefficients fon Function or(eo/a, hU/O)

in wh ich

functions

AS

r(eo/a),

of ("o/¿).

Functions n(hu/a ) ,

cubic polynomials in

r(eo/o), c(eo/¿), uleo/¿) ar-e

The values of these functions

a(hula), clhu/a¡, D(

h

suff icient for a least-s<¡uanes approximation).

be wnitten as -

summarized in Table A

val ues fon each of

¡( huld 
)

s(hola)

c (hul¿ )

D(huld)

b/d)

in a

¡1 huld 
) ,

1.03 -1 .18

-o.324 14.4

"t.22 -54.0

-1.39 60.8

by using the

I east-squares

e(hulcl), c(

0.799

-9.51

3'.t .6

-18.8

-0. 1 93

2.38

-8.23

5.11

I

( 
hol¿ 

)

thoio)'

tho/a)'

(A.3)

Similanly, the functions E(eo/¿), r(eo/¿), c(eo/¿), H(uo/¿)

expressed as cubic polynomials in ("o/¿1, so that -

0

-0.00466

-0.0319

-0.071 6

-o.122

-0. 1 88

0

0.00837

o.0974

o.242

o.428

o,676

0

0.020i

-0.00582

-0.0696

-0. 1 34

-o .172

1.000

1.000

1.000

1.001

1.003

1.003

o.167

0.208

0.250

o.292

0.333

0.375

H ('olc )c ('ol¿ )r(qold)sleo/o)('ol¿ )

can be



E (eol¿ )

r("o/d)

c(eol¿)

¡1(eold )

't .03

-1 .19

0.789

-0. 181

-0.328

14.5

-9.43

2.26

( 
tol¿ 

)

(uo/ ¿\'

("u/ ¿)'

1

( 
hul¿ 

)

t 
hulo )'

thu/o),

(eolct )

(uo/¿)'

(to/a)'
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(A.4)

(A.5)

(A.6)

1 .23 -1.40

-54.3 61 .2

31 .1 -18.2

-7.74 4.48

Equation (^.2) côn be wnitten as

o, (eolo , "r/o) Ir (""/¿) ('"/o)'(eold)'] [s]

in which IU,] is the 4x4 matrix in equation (4.3).

Similarly, equation (A.21 can be wnitten as -

orf o/a, hu/.t) lr (hul¿) (hul¿¡' thu/d)' J trl

in which Ir] IS

lf the fitted

data i n Tab le 4..1

be the tnansposed

the 4xlr matnix in equation (4.4).

functions o' (eo/o, hu/¿) ancl or(eo/d, ho/¿) f it tl-re

exactly, the night-hand sirle of equation (4.5) will

form of the right-hand síde of equation (A'6) '

That is' 
tsl = [r] T (A'7)

'in which Ir] T is .the tnansposed matnix of tr].

lnspectiòn of equations (n.g) and (4.4) shows that equation

(A.Z) is not satisf ied because the functions o' (to/,i, hO/¿) ancl

or(eo/a, hø/¿) ar e calculated by a least-squares appnoximation to

the data on the assumption that both functions ane cubic polynomials

in ("o/¿) and (hul¿ ) .
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As an appnoximation, it may be assumed that a 4x4 matnix fot

equations (4.3) and (4.2) may be calculated as follows

That is,

lRl

l.o3

-0.326

1.22

-1.39

-1 .18

14.4

-54. 1

6l .0

o.794

-9.47

31 .3

-r 8.5

-0. 1 87

2.32

-7.98

4.79

(A.8)

(A. e)

lnl tsl + trl T_t-2

A scale model repnesenting the function

figure 4.1 .

a ("o/d, h b/d) is shown in

qj
lÌ
!
I

:2 .0

Oû

x
J

Y

"t-

-

0.3

go

dd

h

Fiqune A.l : Scale Model of Function, a' (eo/¿, hU/O)

+
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APPENDIX B

AN IDEALIZED NON_LINEAR MORTAR SUBJECT TO

ECCENTRIC COMPRESSION

8.1 A STRESS-STRAIN RELATIONSHIP FOR NON-LINEAR MORTAR

Assume that the stress-strain nelationship fon a non-linean mortan

ts -

in which IS
m

IS

IS

K and

Assume that

montar at strain ec

Panametens €

- E (e - Kel¡
m

the initial tangent modulus

nonmal stness parallel to the applied

strain panallel to the applied load

n are constan ts .

(8.1)

I oad

nonma I stness attained bY the

o

E

o

e

o is the max¡mum
c

(fisune 8.1).

and K in equation
c

(8.1)

=0,

may be

so that,

calculatecl as

fnom equationfollows.

(8.1 ),

At the maximum stness o c, *

E (,t .,K..n-l ) = o

€ c,
n

m

That, is,
1 (8.2 )K

n-1ne
c

This value of K carì be substituted into equation (8.1) at the

poi nt a=o and e=e to
c c

g ive

e=E e
c m c

e

noc

so that

c El-n:lT
m

(8.3 )
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By choosing . values of o. and n(n>1 ),

K may be calculated fnom equations (B'2) and

the panametens E

(8.3).
c
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e.nd

(B.a(a))

B.2GEoMETRIcPRoPERTIESoFSTRESS-STRAINCURVE

The shaded anea unden the cunve in f igure B'1 is -

Ao I dA

ode

E Ken)d e

e
I

2e

2mo

e
I

(e
m

K

1;tT¡' 'r
n*t 

)

The first moment of area of

in f igure 8.1 about the axis onigin,

shaded portion unden the cunve

is -

the

0,

o t(FMA) edA

= 

oi.,
=r/:,'

=E (J1TlJ

ode

i

(.t nr-1
Ke )d.

n+2
(FMA) Ê*1 (8.4(b ))

the d istance to the

from the axis ot igin,

o

From

centnoid of

0, is -

equations (B. (a))

the shaded Pontion

and

under

(8.4(b) ),

the curve

"i. K

3 - GTZT
E.(

m
a n+2

1

e

, n+l

1

o
E

m



2'
-13'-1

2R n'

--¡Ê
(n+2) -l

n+1

0
)l
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(B.s)

(8.6(a) )

e
o 2K--iç1ler n-1

Assume that the shaded area under the stness-stnain cunve does

not include the onigin, O, bu.t lies in the strain r ange [t O; t l ]

(f igure 8.2). The anea of the shaded portion unde¡ the curve in f igure

8.2 is =

A dA

=.1'
0

e

:.1'
0

ode

E (e - K.n)d.
m

Ai 
.= 

E .{+(e"1 t"o ) (e n +-1
e

The finst moment of anea of the shaded pot tion under the currve in

figunè 8.2 about the axis onigin, 0' is --

(FMA) I edA

eod e

1

e

e

t
I
E (r'-

m
K.n*l ¡ du

e
0

0.ä) . (e n+2 n*r)) (8.6(b))e

From equations (8.6(a)) and (8.6(b) )'

centnoid of the shaded pontion unden the cunve

axis onigin, 0, is -

the d istance to the

in f igur e 8.2 fnom the



E,. {. å ', 'i
E .{

m z'
0

. (e

d) T.+f)
n+1

1

n+2

1
)))

n+2ç-0
n+1to

s59.

(8.7)

e
Itz't . (e )l

3', 'ì
3

0
2K n+2.(e -Ê.

n+2

0n*
ã,,

(e 2

1

.ô) . (e n+1 n+l
ç-o

8.3

8.3

cnacked ñìontar

in f igu re B .3.

The tota I

LOAD-CURVATURE RELAT I ONSH I PS

1 PantiallY Cnacked Section

Assume that the str.ess and stnain ci istnibutions on a

bed joint at each br ick-mortar intenf ace ar^e

I oad

partially

as s,houln

pen unit length, P, f nom geometry (f igures B' 1

(s.a(a)) is -

d

and 8.3) and equation

AS

Eq uat i ons

and d wh ich
c

the non-l inear

(B.B), (8,9) and (8.10)

dne requined in equation

montar cul-vatLlne.

(8.8 )

can be usecj to calculate e'

(8.11) fon the calculation of

t?
P - E.(*-m¿

t ,,n*t )
c

g
1

Also f nom geometry (f igures 8.1 and 8.3) and equartion (8.5),

d (e (B.s)
p

Fon equation (8.9), can be calculated f nom static equilìbrium

Moment about the Conl nession Ed e (4. to)
Tota I Loa pen un ength

The curvatune of the uncnackecl pant of the mon.tar is

e1

dc

(8.11 )

d

do

c;).
o' e

d p

Éí
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8.3.1 Solution Procedune

The panametens t 1 and d. may be calcu lated by using a

technique. Anbitr ary appnoximately-conrect values fot

be chosen and used in equation (8.8), rewnitten as

Raphson

d íìay

361 .

Nevu ton-

and

follor¡is.

(8"12)

c

c

e 2

2

d
T P_E.(n'ì'

in which T is

Simi lanly, equation

term caused by appnoximations e,, and d

be newnitten as -
d

- n+lÞ c
e

an ennon

(8.9) may

(e (8.13)
I

in which v'is an ennor tenm caused by appnoximations .1 and dc.

lf the values of T and V in equations (8.12) and (g.lS) exceed

pnescnibed limitations because of inconrect values of .l and d., a

series of Newton-Raphson conrections can be applied successively until

the desired accunacy is neached.

Fon a f unctlon of a single vaniable y= f (x), an appnoximate

solution, *1, of the equation f (x)=0, giving yl-f (x., )=ÂY1, is ç¡enerally

improved by calculating

?o)' cv-d p e

"2=^l XX

correction fon

th
I tera t lon ,

(8.14)

the simultaneous

can be calculated

(8.15)

The

equations

fnom -

corr espond ing Newton-[ìaPhson

(g.tz) and (8.13), fon the i

i.:] i^.J

so that

i+1

+
(8.16)



ln equation (8.15),

T( e l, dc) and V ( rl, O.),

of the components T and

components of the solution

That is,

362.

is the "Jacobian" matnix of the functions

is fonmed fnom the pantial denivatives

Ir]
and

Vof the enror vector IlJ -' t. r'espect to the

vecton

äe. Adlc

âT aT

aV aV
tr l

ennor vecton

the solution vector

(8.17)

be neduced

. GeneraIl¡2,

ten i ter-at ion

The

by

{:J
increments of the enror vecton

ically

vecton

âe âd
c

elernents of the "Jacobianil matrix cõ.n be calct.llated numen-

incnementing successively the components of ttre solution

by appnoximately 0.01 pencent and calculatìrrg the resulting

{l} "' ror rows '

AT AT

^d cÂen
L

tLl (8.18)
AV AV

Âe Ad
c

Af ten sevenal itenations, the

to within pr escr ibed limits to give

closune to acceptable levels has

cycles.

t;] can

{.J
been attained within

8.3.2 Relationships between Cunvatunes for Non-linean and Linear

Montans

8.3.2.1 Cracked Section

(¡) Load Resu I tan t Ou ts ide Kern

lf the resultant of the distributed !oad ane outsicJe the kern, the

stness and stnain distributions for the non-linea¡' ancl linean montars



as shown in f igunes 8.3 and 8.4 nespectively '

the curvatune of the non-linean montar given by

363:

I t has been shown that

equation (8.1) is-

(8.11)

( 8.20)

{l' and tnhl IS (equations (8.11),

E (8.21 )
p

m

tjnl'
e

dc

in which and d ane calculated itenatively as descnibed above'e
c

Assume that d

and the linean
p P and E ane identical fon both the norr-lír'rean

m

mortan shown in figunes (8.3) and (B'4) respect-

( B. 1e)

montar'

ively. The cunvatune of the linean montan (fìgure B'4) is --

(* 3
€

m 3q
The load resuldant in f igur e 8.4 is -

P j . or.3do

in which
m

t3o3= E

tn

'l

R
(

The ratio of the two curvatunes (

(8.20) ) -

R 9tl d2
p 2d P

R
c

m

(¡¡) Load Resultant I nside Kern

It should be noted that for- a non-linean rnortan def ined by equa-

tion (8.1), the section can t¡e partially cnacked fon cases irr which

the load nesultant is inside the kenn. l-lowever, a linear^ montan is

uncr-acked for this case and the stness and stnain distributions fon

the non-linear arrd linear montans ane as shown in f igures 8.3 and

8.5 nespectivelY.
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P (Loacl Resu I tant )

Stness (Linean)

a

Stra in (L i ear )

Figune 8.5: Uncracked Mortar Joint (Linear Montan)

P (Load Resultant)
d

Stress (Non-lìnear^)

û
o

o

E

Strairr (L¡n n)

d

o
3

2

t2

e
3

d

p

o
I

e

1 It

Figure 8.6: Uncnacked Mortar Joint (Non-linear Mor tan)
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The cunvatune of the non-linear mortan is

(8.1't )

Assume P and E ane identical for both the non-linear
m

8.3 and 8.5 nespect-

t1

ã-cR

that dp'
the I ineanmontan and

ively. The

figunes

(figune

mortar shown in

cunvatune of the I inear montan 8.5) is

(e tzl
dr*1,

p
d6,d*ã(z-P

ã
1

E--
m

3

(8.22\

(8.23)

t*1,.' is (equations (8.11),

(8.24')

3

But e

and .z IP
E-'ã

m

tzt3

Equation (g.ZZ) becomes -
t3 tz 1 12P=-F_ d'

m

Hence, the r atio of the two curvatunes

(8.23))-

t*l' .1 d 3

r*r,"
d 12P

dþ)
dt*r,"

d
¿

(*í and

p e
_1do) '.En]

c

I n genena I , in ecluat ion (B .24) p >1 .

8.3.2.2 Uncnacked section

Assume that a bedjoint

tion (8.1), is uncnaÇked and

in figure 8.6.

of a non-linear montar, defined by equa-

as shownthat the stness distnibution is
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f nom geometry (f igunes 8.2The total load Per^ unit

and 8.6) and equation (8.6(a))

length, P,

is -

þ
(.i .(eK

(n+il

to

and (8.26)

i n equation

K
( n+T) '

(e

n+1 n+1 d (8.25)

( 8.28)

P E tT
2

0
e e

Equations (9. to), (8.25)

. O wh ich ane requ i ned

curvatune.

The

Raphson

0

(8.26)'

can be used to calculate .1 and

(8"27 ) for the non-linean monter^

n+l n+l d

m e
0

Also, f rom geometry (f igunes 8.2 and 8.6) and Equation (8.7),

d

qÞ

(e

-t

e

d

do
I e

Fon equation (A.ZO), dp can be calculated from static equilibt ium

Moment about the Com ression Ed e (8.10)dp Tota Loa

The cur vatune of the mortan bedjoint is-

(8.27)
to)e

,*,' =

panameters .l and . O may be ca lcu I ated by using a Newtc'n-

technique similar to that described in Section 8.3.1. F-quation

(S.ZS) can be newritten as -

o P +(.iE
2

0
€ "0 tot1

Equation (B -Zo) can be rewritten as -

dp ç
e1

S (e (dr
d

0

(8.2e)



sol utions to .O anci .l

calculating a rUacobian"

AQ

ãfo t t1

t.r l

as successive aPPnoximations bY

ln equations

by approximations

( 8.28) and ( 8.29) ,

.O arrd .l .

can be found

matnîx IJ] such that

O. and S ane ernon terrns

As descnibecl i n Sect ion

367.

caused

8.3. 1 ,

(8. 30 )

by successive incnement

. .ththe r step -

( 8.31 )

(8.32 )

(s 'zzl

as descnibeci above.

both the non- I inear-

and 8.5 nespectivelY.

to

âS

AQ A8 Â8r{Âc"-o

AS

t uo ,.1
AS AS

The solution vecton

À to Àtl

can be found
e

Ae

0

1

e

vectors 0 which satisfy the nelationshiP at
Àe

trli 1

ßt
so that

={.:J +
Ae

Àe îl

It has been found that, generally, the solution vecton is obtained

to an acceptable accunacy within ten itenation cycles.

lf there is no cnacking on the bedjoints, the stress and stnain

distr-ibutions fc¡n the non-linean montar def ined by equation (B' 1) are

as shown in f igure 8.6. The stress distribution fon a linear montar

is shown in f igur e 8.5. The cunvature of the non-linean montar is -
"0)ç

(¿;
I

)

in which r0 and tl

Assume that dp,

montar and the linean montar shown

d

are calculated bY iteration

P and E ane identical f or
m

in figunes B

(fisune 8.5)

6

ts -The cunvature of the I irlean montan



tz\

As shown in Section 8.31 ,

t*r,

the rat io of

(8.23) ) -

the two curvatures (*i

368.

(8.22)

( 8.23 )

and is (equations

(8.33)

)_
I
R

( 
t¡

d

1 12P
tr-'-æ-

m
).( d

2
d p

t*r,."Hence,

s(zz),

1

R d -1
2

Ep
d' t-= lzF't "1 pdto)

t*1,"
m

ln genenal, in equatiort (8.33) P)'1 .
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APPENDIX C

BRICKWORK WALLS IN ONE-WAY BENDING PROGRAM PIERl

C.l THE SCOPE OF PROGRAM PIER1

PROGRAI,I plERl was a finite ciifference method of solution to cal-

culate the behaviour of bnickwonk walls in one-way ben<1ing in whích

discrete cracking may occut at the br ick-mortan interfaces. The types

of problems rvhich may be solved by PROGRAM PIERl are as follows.

(a) À pin-end wall subjectecì to an eccentric vertical loacl with either

equal on, unequal eccentnicities top and bottom (f igune c.1(a)) '

The eccentnicities "1 and "2 ane chosen and the load is incne-

menteci to calculate the column f ailure load'

(b) A wall with a penfectly fixed base and a ttpin-rollenrr top suppor-t

(f igune 4.14¡ loacied eccentnically at the top (f igure C.1 (b) ).

The loacl eccen tnici ty , €0, i s chosen anci

to calculate column f ailure.

the load is incnementeci

(c) A pin-encJ wall subjected to equaliy-eccentnic veptical load, both

top ancJ bottorn (figrrne C.1(c)). The loacj, Pt pen unit length'

is chosen and the eccentnicity is irrcnemented to calculate tl-re

column f ai lure eccentricitY.

(d) A wall with a per-fectly fixed base anci a itpin-rollerrr top support

(f igures ' 4.14, C.l (O)). The load, Pt peF unit length, is chosen

. and the eccentnicíty is incne¡nentecj to calculate the colunrn failur e

eccentricitY "

Fon all of

, The

(106)

the cases above, the brick stness-stnain charactenistic

is I inean

I inear as

montan-strain nelationship rnay be eithen linear or non-
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H

P

e "o

+-H .H
ê"2 (b)

P

(a)

H=o)

H

7 {-
e

(d)
Pt

(c)

(H=0)

Figune C.l: Cases which rnay be Solved by using

1 H

(For er=e,

P

e

H

zv.

PROGRAM P lERl (nefer to text)
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(8.1)
a

m

in which E is the initial tangent modulus
m

K, n are constants (APPendix B)

For all cases, the honizontal reactions, H per unit lengthr mâV be

calculated by the solution method descnibed in Section 4.3.

lnnealbnickwonk,poorbnicklayingmethodsmayproducewalls

which are not stnaight vertically. Ëffects of this type of poor wonkman-

ship may be calculated by PROGRAM PIERl by specifying initial

deviations fnorn ventical str^aightness at each finite diffenence node

(figunes 4.13, 4.15)'

Details of input data fon PROGRAT/I PIERl are given in the follow-

ing sect ion.
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C.2 LISTING OF PROGRAM PIER1

PROGRAM PIER 1 (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=0UTPUT)

t(*ttr*tt**tf**tÉtçlÉt{****t+***tftç*x*lt****¡tl*lc*lß***l(l(l(*ltlÊl(**
*
*
It
It

*
tÍ
*
It
lt
tß

t(

tÊ

*
tÊ

*
It
*
lß

tÊ

*
tf
*
*
tÊ

*
tÊ

*
*
*
*
*
*
*
tf

*
*
*
*
*
*
t
ti
*
It
tf
It
*

PROGRAM PIERl WAS WRITTEN BY
DAVID C. PAYNE AS PART OF THE REQUTREMENTS

FOR A DOCTOR OF PHILOSOPHY DEGREE AT THE

UNIVERSITY OF ADELAIDE ( SUBMITTED IN 198?- )

THE PROGRAM CALCULATES THE FAILURE I.OADS

OF BRICKI,JORK !üALLS AND COLUMNS V¡HICH EXHItsÏT
ESSENTIALLY TttIO-DIl'lENSIONAL BEHAVIOUR.

THE I.,IAXIMUM NUMBER OF FINTTE DIFFERENCE
ELEMENTS ALLOWED BY THE MATRIX
Dü,rENSrol{s rs 39

THE MAXII"IUM NUMBER OF NODES IS 40
( EACH FINTTE DIFFERENCE ELEMENT CAN

INCLUDE MORE THAN ONE BRICK AND ONE MORTAR

JOTNT )
THE MAXTI'IUM NUMBER OF LOAD/ECCENTRÏCITY

INCR EMEN 1'S IS 4O

*
*
*
*
t¡

*
*
lf
*
*
tÊ

lÊ

*
*
lf
*
*
t
I

*
4

T

t¡

lf
*
*
*
*
*
*
t(

*
*
x
tå

*
*
*
*
*
*
*
t

*
tf

*
*

THE BRTCKS
ELASTIC. THE
EITHER LINEAR

ARE ASSU¡4ED TO BE LINEAR-
MORTAR MAY BE SPECIFIED AS

OR NON-LINEAR EXPRESSED AS---

S]GI"IA M0Dr+(EPS-C*EPS**l{)

IN WHICH SIGMA TS NORMAL STRESS
MOD IS MORTAR INITIAI.,

TANGENT 14ODULUS

EPS IS NORMAL STRAIN
C IS A CONSTANT
N IS AN EXPONENT

THE PROGRAM CALCULATES EITHER THE MAXIMUI"I

LOAD FOR A SPECIFIED ECCENTRICITY
THE PERMISSTBLE BOUND.q,RY CONDITIONS ARE:

( 1 ) PTNNED TOP AND BOTTOM WITH THE SAME

END-LOAD ECCENTRICITY
Q) PINNED TOP AND BOTTOM W]TH DIFFERENT

END-LOAD ECCENTRICITY
(3) PINNED TOP AND FIXED BASE

OR THE
I.IAXIMUM ECCENTRICITY FOR A SPECIFIED LOAD
ONLY TF THE BASE TS FIXED OR IF THE

ECCENTRICITY ]S IDENTICAL BOTH TOP AND

BOTTOM

**tf**tti(tÊ*i*ttt6**t{**xt(*å(x**tçlß*tß*lÍ*tt*ll*¡(***¡t****¡t***lß

Dil'fENSTON t{(40), Pl{(40),RrN(40),ECC(ll0),SMAX(40)
DTMENSION QA ( 40 ), PPL (40 ), PLAT ( 4O ),SLOT (40 ), NX(40 ), RA( 40 )' CI{( 40 )
DTMENSTON DPW(40 ),RR (40),R(40 ), PA(40),RrD(40),WE(40) ' PKo(40)
DIMENSION pWp(¿lO, 40),SP(40, 40),C(40, 40)
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DTMENST0N EP(40 ),EO (40), E0P(40),4(4)
DTMENSTON PNBM(40),EMX(40),DC(40),liMN(40)
DIMENSION SEMX(40),SDC(40),TEMX(40),TDC(40)
DTMENS]ON SEI'fN (40 ), TEMN ( 4O )
DIMENSION RS ( 4O, 4O )

tß****xt{tttttç**lt*tßlËtÉ***x***lßttx**lßlttÊ*lt*lt*l{tÉltlÉ*ltlt**l{**
*
tÊ

*
tç

*
*
It

*
*
tt

*
*
*
*
*
*
tÊ

It

*
*
*
*
*
*
It

It

t3

lÊ

*
lÊ

It

*
*
It

*
*
*
*
It

*
*
*
*
It
It

*

THE INPUT DATA FORI'IAT IS AS FOLLOWS:--

11 (0R 10 0R 21 0R 20)
1 (0)
t 1 6000 t 65. oo t 2qo0. o0 t I r 20 r r t t 10. 000 t M 10. 000

---0R ---
( r 16000'65.00t2400.00r I r20"50.0 )

110.00'10.00112.00t2
r r r r r6. 104 t 1.50 (0MIT FOR LINEAR MORTAR)

0 (1)
IMPERþ'ECTIONS 16F5.2
TMIERFECTIONS 16F5.2
IMPERFECTIONS 8F5.2
0 (1trr10.000)

tç

*
x.

*
lÍ
)Ê

*
x
*
*
l&

a

It
I

*
*
*
x

*
*
åt

tf

*
*
*
*
*
tÊ

*
It

l(

*
tç

*
*
*
tß

*
*
tß

It

It
*
*
*
*

LINE 1 :

LINE2:

LINE3:

(

LINE4:

LINE5:

LINE 6 :

LINE 1 O:

1ST CHAR.(I1): 1=LOAD INcREMENT
2 =ECC !iNT R IC ITY

2ND CHAR.(I1): 0=LINEAR MORTAR
1=t{ON-LINEAR MORTAR

1 =PINNED TOP AND BOTTOM
O=FIXED BASE AND PINNED TCP
BRICK I4ODULUS F6.O ( MPA )
!,IALL THTCKNESS F6.2 ( MM )
WALL HEIGHT F'8.2 ( I¡¡,I )
N0. 0F F . D. ELEMENTS TN I^IALL I5
TOP END ECCENTnICTTY F10.3 ( MM )

BOTTOM END ECCENTRICITY F10.3 ( I'II¡ )
( OMIT FOR FIXED BASE WALL )

LOAD A1' TOP F6.1 N/MM )
BRICK IiEIGHT F6.2 ( I'{M )
MORTAR IIEIGHT Í6.2 ( MM )
BRICK:M0RTAR l''IODULAR RATI0 F 6.2
NO" OF BRTCKS PER F.D.

ELEMENT 12 (DEÏ'AULT IXN= 1 )
(FOR NON-LINEAR MORT/\R ONLY)

coNSTANT il Cil ,F 10. 3
coNSTAllr rr¡rr,F5.2
O=TENSION STIFFENING INCLUDED
1=l{0 TEI'¡STON STIFFENING
0=LOAD INCREMENT CII'I,CULATED AUTO.

1 =SPECIFY LOAD INCREMENT
POSITIVE SPECIFIED LOAD

TNcREMEì¡T, F9.3 ( N/MM )

* * * * * * {. * * * * l( * * l( * * * * * * t+ * lÊ * }ß * lÊ ä' * * åÊ * x l( * lÊ * * * lt * * * * x * * lt
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c
READ(5,4) IPEO, ITYPE

4 FORMAT ( 2I 1 )
IF ( ITYPE. EQ. 1

IF ( ITYPE . NE. 1

8gg FoRMAT(1H1,15
goo FoRMAT(1H1,.15

) !'l

)w
Yl(
Y*

RrrE ( 6, goo )
RrrE(6,899)

LTNEAR MORTAR PROBLEM ----rç,///)
NON-LINEAR MORTAR PROBLËM ----*,// /)

,WLrNrP
.2,F8.2,15,F6. 1 )

,l,lL, N

, *---THIS PROGRAM INCREI'IENTS THE LOAD ECCENTRTC ITY E

, rxll
EIGHT IS x,F6.2,x l'114*//
S *,F6.2,x l4l4x//
ERO STRESS IS X ,F 6 .2 / /
F. D. ELEMENT IS * , T5 / / )

C READ BASE SUPPORT CONDITION FLAG'IIIS'I
READ ( 5, 58 ) IS

5B FORMAT(I1)
IF(IS.EQ. 1 ) WRITE(6, 115)
IF(IS" NE. 1 ) WRITE(6, 116)

115 FORMAT( 1HO, 15X, *COLUI'lN BASE rS PTNNEDx//)
1 1 6 FORMAT ( 1H O, 'I5X , IÊ COLUMN BASE IS FIXEDX// )

IF(IPEO.EQ.1) GO TO 1O

C IPEO EQ 1II'IPLIES ECCENTRICITY IS SPEC]FIED
C IPEO NE 1 IMPLIES LOAD IS SPECTFIED
C READ FOR ECCENTRICITY INCREMENTS

READ(5,5)
5 FORMfiT ( F6 .

WRITE(6,3)
3 FoRMAT(1Ho
*o---x / / /
*6X,*YOUNGS MODULUS OF BRICK IS *,F6.0,IÊ I'4PAX//
*6X, *THICKNESS OF WALL IS *, F6. 2, X I"IMX / /
rf6x,xHEIGHT 0F I^IALL IS x,FB.2,ìt l4l4x//
*6X,*NUMBER OF WALL SEGMENTS IS X,f5//)
WRITE(6,13) P

13 FORMAT(6X,r(LOAD VALUE rS x,F6.1//)
G0 TO 11

1 O CONTINUE
C READ FOR LOAD INCREMENTS

READ (5,2) E, D,}IL, N, TEO, BEO

2 FORMAT(F6. O ,F6.2,F8.2, r5,2F 10. 3)
!,lRrrE (6, lz ) E, D, l'I1,, N

12 FORMAT(1H0,15X,*---TFIlS PROGRAM INCREMENlS THE I.,OAD P _"*///
*6X,XYOUNGS MODULUS OF BRICK IS X,F6'O,TÉ MP¡,'X//
*6X,XTHTCKNESS OF WAI,L IS *,F6.2,* I"II4'à//
*6X,*HEIGHT OF WALL IS *,F8.2,x l'lu*//
#6X,TNUMBER OF WALL SEGMENTS IS X,T5//)
WRITE(6,6) TEO

6 FORMAT'(6X,r*LOAD ECCENTRICITY IS rÈ,F10.3,àr IlM AT TOP 0F C0L,uMI\t*)

IF(IS.EQ. 1) WRITE(6, 14) BEO

14 FORMAT(6X,+LOAD ECCEIITRICITY IS x,F10.3,* l-114 AT BASE 0F C0LUI'fN*//)
1 1 CONTlNUE

C READ BRTCKVÍORK PARAMETERS

E, D

0,F6
E'D

', 
15X

t

t

B

H

I
z

IXN
r2)

READ(5,8) PHB,PHM,PNB
8 FoRMAT (F 6. 2,Ë6. 2,F 6 " 2

IF(IXN.EQ.0) IXN=1
WRITE ( 6, 9 ) PHB, PHM, PN

9 FORMAT( 1i{0, 5X, xg*tt*
If 6X, XMORTAR THICKNESS

U

c

*6X,*MODULAR RATiO AT
*6X,*NO. OF BRTCKS PER

INITIALIZE CONSTANTS AND ARRAYS
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c
c

H=0.
HH=0.
KL =0
MS=40
NS=40
M0= 1

DEAL=O.0C01
D01ISK=1,MS
E0(ISK)=0.
EOP(ISK)=0.
Ptl(ISK)=0.
tJ(ISK)=0.
hrE(ISK)=0.
QA(ISK)=0.
RA(ISK)=0.
PPL(ISK)=0.
PLAT(ISK)=0.
SLOT(ISK)=0.
PNBM(ISK)=PNB
DC(ISK)=D
EMX(ISK)=0.0001
sEMX(ISK)=0.001
TEMX( ISK) =0. 00 1

SDC(ISK)=D
TDC(ISK)=D
EMN(ISK)=0.
SEMN(ISK)=0.
TEMN(ISK)=0.
RR(ISK)=0.
R(ISK)=0.
DC 7 ITK = 1,MS
RS(ISK, ITK) =0.
Pl¡P(ISK,ITK)=0.
SP(ISK, ITK)=0.

7 CONTINUE
1 CONTINUE

DMAX=D/6
IF ( ITYPE. NE. 1 ) GO TO 90 1

EM =E,/Pl{B
READ(5,131) AE,PT

131 FORMAT(F10. 3,F5. 2)
lfRrrE (6,132 ) EM, AE, PT

132 FORMAT(1H0,5X,*INITIAL MONTAR MODULUS TS II,F6.O,* MPA*/
*6X, *NON-LTNEARITY CONSTANTS ARE----Iå/
It12X,*K = *,F10.3/12X,x¡ = x,F5.2)

go 1 coNTTNUE
HD=PHB/D
X=(Ptlg+PHM)xIXN

CHECK I'JHETHER TENSTON FIELD STIFFENING EFFECT IS
INCLUDED IN PROBLEM

READ(5,21) ITFS
21 FORMAT(T 1 )

TF(ITFS.EQ.O) GO TO 22
ITFS EQ O IMPI,IES TENSION FTELD ST]Fþ-ENING TS ]N PROGRAM

I^IRITE (6 ,23)
23 FORMAT(1H0,5X,*---NO TENSION FrELD STTFFENING IN THrS PR0BLEM---ñ)

c

co To 24
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?2 CONTINUE
C CALCULATE MATRIX A(4X1)=MATRIX R X MATRIX H-TRANSPOSE

HD1=HD $ HD2=HD*HD $ FlD3=FID**3
A( 1)= 1. 03-1 . 18rËHD1+0.794*HD2-0. 1B7rÊHD3

A(2)=-O . 326+1 4. 4xi'lD 1 -9 . 47 xHD2+2. 32ttHD3
A(3)= 1 .22-54. 1 *HD1+31 . 3*HD2-7. 98r(HD3
A ( 4 )=- I .39+61 . O*HD 1 -1 B. 5xHD2+4. 79*HD3
t/r¡RITE (6,25)

25 FORMAT(1HO,5X,n---TENSION FIELD STIFFENING IS IN THIS PR0BLEM---*)
24 CONTINUE

C CALCULATE EULER BUCKLING LOAD FOR WALL WITH PIN ENDS

CALL E UL E R ( E , D , W L , PFIB , PHM , PN B , PCR )

C READ INTTIAL IMPERFECTIONS AT NODES

READ(5'59) (EP(IAT), IAT=1, 16)
5g FoRMAT( 1 6F5. 2)

READ(5,65 ) (eP(JAT) , JAT=17,32)
65 FORMAT( 1 6F5.2)

READ(5, 68) (EP(KAT),KAT=33, 40)
68 FORMAT(8F5.2)

NP=N+1
tIRrrE(6,60)

6o FORMAT(1H1,5X,*NODE NO.*r2OX,rÉINITIAL IMPERFECTION (MM)* / / /)
DO 61 IA ='1,NP
IIIRrrE (6,62) rA, EP(rA )

62 FORMAT ( 1 Ho, 8X , r2, 35X, F5.2)
61 CONTI¡¡UE

rF(rrYFE. EQ. 1 ) WRrrE(6, 999 )

999FORMAT(1ll1,8X,xLOAD*,3X,*NODE*,3X,*STRATNTNMORTAR*'
12X, *51p¡IN IN l'IORTARx , 3X, xuNcRAcKED DEPTII*/8x, * ( I'l/MM) * '
2gx,*( MAX. COMP. )*,4X,*1 MrN. COMP. )*,7X,*( MM )*/)
rF(rPEo.NE.1) Go ro 40
G0 TO 41

40 TE0=0. $ BE0=0.
41 CONTINUE

D0 63 IB = 1,NP
E0(lB)=TEO+EP(IB)

63 C0NTTNUE
IF(IPEO. NE.1 ) GO TO 44

C INITIAL]ZE LOAD INCREMENT PO

READ ( 5, BOC ) TP, PO

Boo FoRMAT(r1,F9.3)
IF(IP.NE. O) GO TO 801
PO=0. 1 x (D / ?-TEO ) / (D / 2) *PCR

801 CONTINUE
P=0.
PP=0.

44 CONTINUE
D0 200 NK' = 1 ,40
FIN=0 

"
IR =0
MP= 1

C ALLOW FOR EXTRÂPOLATION
D0 74 KD = 1,NP
lrE(KD)::W(KD)
SEMX ( KD ):TEl'lX (KD )
SDC(KD)=TEC (KD)
SEMN (KD ) =TEMN (KD )
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74 CONTINUE
REDUCE I,OAD/ECCENTRICITY INCREMENT TO AVOID FAILURE

DO 150 N0 = 1'500
THIS LOOP ALLO}íS FOR CHANGE IN DELP

D0 50 KO = i,NP
W(K0)=PW(K0)
TEMX(Ko)=EMX(K0)
TDC(KO)=DC(K0)
TEMN(K0)=EMN(l(0)

5O CONTINUE
rF(NK.EQ.1) Go ro 77

EXTRAPOLATE F'OR W AND H

CALL EXTRAP ( MP, NP, D, Pl¿*r,WE, FI, HA, IS, SEMX, EMX, SDC, DC, SEMN, EMN o NK'

1 TTYPE )

TT CONTINI.IE
rF ( rPEo. NE. 1 ) GO To 42

CALCULATE THE LOAD INCREMENT DELP

DELP=1 . /M0r*P0
P=P+DELP
G0 TO 43

42 CONTINUE
CALCULATE THE ECCENTRICITY INCREMENT DELEO

DELEO=D/(6¿*M0)
D0 64 JA = 1,NP
E0(JA)=E0(JA)+DELEO

64 CONTINUE
43 CONTTNUE

CALCULATE HORIZONTAL REACTION H FOR COLUMN PINNED BOTH TOP AND BOTTOI'1

c

c

c

c

c

P( 1 )+TEO-EP(NP)-BEo)/(X*N )xP

PROPERTIES AT ALL NODES

ALL PHYSPl (NP,D,EO, PW, ECC,RTN, PODMAX'H

ALL PHYSP2(NP, D, EO, Pl{, ECC, RrN, P, DMAX, H

TF(IS.EQ.1) H=(E
D0 110 II = 1,10

CALCULATE PHYSICAL
IF(ITYPE.NE.1) C

IF(ITYPE.EQ.1) C

1PT, EM, EMX, DC,
ÏF (KL. GE. 20O J

CALCULATE PKO A

CALL KON (NP, P

TF(NK.NE.1) G

,x)
, x, PllBM, AE,

t
U

TA
,E0
OT

c

E,KL,EM¡I)
c0 T0 80

LL NODES
PW, H, X, DMAX, D, PKC, PHB, PNBM, PHM, A' ITFS)

101
C SET UP MATRICES C AND CK

C AT Þ'IRST ITERATION COLUMN IS ASSUMED UNCRACKED

IL=1
CALL MATCOM ( IS, N, X, E, RrN, NP, H, P, EO u PW, DMAX, C, CK, ECC, D,MS' IL, NK,

SPKO, PHB, PHM, PNBM)

C CALCULATE DTSPLACEMENTS BY GAUSSIAN REDUCTION

CALL DISPL(N,C,CK, IS,H, PW,MS, EP,X, NP)

C C}IECK VALIDITY OF SOLUTIONS FOR RUNAWAY DISPLACEMENTS

D0 87 KC = 1,NP
rF(PW(KC).GT.1ooo. ) Go To Bo

EC=(P*(Eo (KC)+PW(Kc) ) -HxX*(Kc-1 ) ) / (P )
EC=ABS(EC)
rF(EC.cE.0.g5xD/2) c0 10 B0

87 CONTINUE
C CHECK VALID]TY OF MAX STRAIN AND EITFECTIVE I''IIDTH

C BOTH MUST BE NON-NEGATIVE
D0 187 KKA = 1'l'lP
rF(EMX(KKA).1T.0") G0'I0 B0

IF(DC(KKA).LT. O. ) GO TO Bb
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IF ( EMN (KKA ) . LT. O. ) GO TO 80
1 87 CONTTNUE

CALCULATE NEW PHTSICAL PROPERTIES
IF ( ITYPE. NE. 1 ) CALL PHYSPl (NP, D, EO, P!'I, ECC, RIN, P, DMAX, H, X)
IF(ITYPE.EQ.1)CALLPHYSP2(NP,D,EO,PhT,ECC,RIN,P,DMAX,H,X,PNBM'AE'

1PT, EM, EMX, DC, E,KL, EMN)

rF (KL. GE. 2oo ) GO To 80
CALCULATE PKO AT ALL NODES

CALL KON ( N P , P , EO , PW , H , X , DMA X , D , PKO , PHB , PNBM , PHM , A , TTF S )

CHECK EQUILIBRIUM OF COI-UMN

CALL EQUIL(N, RIN, PhI, ECC, E, P,X,FTN,D, DMAX, H,

APPLY NEWTON-RAPHSON ITERATION TO ALL I'¡ AND H

1O 1 CONTINUE
DO 100 IL = 1,!0
IR=1

CHANGE W VALUES ONE AT A TIME
DO 27 rT - 2,N
PA(IT)=PVrl(IT)
D0 15 IY = 2,NP
RID(IY)=RIN(IY)

1 6 CONTINUE
PW(IT)=PI'l(IT)+DEAL

CALCULATE NEW I-VALUES

IS, EO, TR, RR, R, PKO )

IF(ITYPE. NE. 1 ) CALL PHYSPl (NP, D, EO, PhI, ECC, RIl\¡, P' DMAX, H,X)
IF ( ITYPE. EQ. 1 ) CALL PHYSP2 (NP, D, EO, P!'1, ECC' RIN, P, DMAX, H, X' PNIIM, AH'

1PT, EM, EMX, DC, E, KL, El'',lN)

rF(KL.GE.20o) GO To 80
C CALCULATE PKO AT ALL NODES

CALL KON (NP, P' EO, Pl^J, H, X' DMAX, D" PKO, PHB, PNBM, PHM,A, ITFS)
C CHECK EQUILIBRIUM OF COLUì,fN

CALL EQUIL(N, RIN, Pi\I, ECC, E, P, X, FIN, D, DMAX, H, TS, EO, IR, RR, R, PKO )

C CALCULATE CHAI'IGE TN ERROR TERM.--STORE TI'I ARRAY RS

JY =IT-1
D0 28 KX = 1,N
RS (KX, JY)= (RR (KX)-R (KX ) ) /DEAL

28 CO}¡T IN UE

C RESTORE ORIGINAL VALUES TO W

PW(IT)=PA(IT)
DO 17 IX = 2,NP
RIN(IX)=RID(IX)

1 7 CONTINUE
27 CONTINUE

C IF COLUMN IS PINNED H IS PROPORTTONAL TO LOAD P AND NOT

C ALTERED BY NEWTON-RAPHSON PROCEDURE

IF(IS.EQ.1) GO TO 20
C IS = .I IMPLIES PIN ENDS

C CHANGE VALUE OF H

HB =H
D0 18 IV¡ = 2,NP
RID(IW)=RIN(IW)

1 8 CONTINUE
H =H+DEAL

C CALCULATE NEW I-VfTLUES
IF(ITYPI.NE. 1 ) CALL PHYSPl (NP,D, EO, PW, ECC,RIN,P, DMAX,H,X)
IF(lTYPE. IQ. 1) CAI.L PHYSP2(NP, D, EO, PW, ECC, RIN, P, DMAX, H,X, Pl'lBM, AE'

1PT, EM , EMX, DC, E, KL, EMN )

rF (KL. GE. 20o ) Go ro Bo

c

c

c

c
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C CALCULATE PKO AT ALL NODES

CALL KON (NP, P, EO, Pl'J, H, X, DMAX, D' PI(O, PHB, PNBM, PiJM, A, ITFS)
C CHECK EQU ILIBR IU}4 OF COLUMN

CAI.,L EQU IL (N, RIN, PW, EC C, E, P, X, F IN, D, DI'IAX, H, IS, EO, IR, RR, R, PKO )

C CALCULATE CHANGE IN ERROR TERM --. STORE IN ARRAY RS

D0 29 Kht - 1,N
RS(KW,l{)= (RR (KW)-R (K!'l) ) /DEAL

29 CONTII'IUE
C RESTORE ORTGTNAL VALUES TO H

H =HB
D0 19 IV = 2,NP
RIN(IV)=RID(IV)

1 9 CONTINUE
20 CONTINUE

IR =0
C SOLVE EQUATIONS TO GIVE l'lEW VALUES 0F Vtr AND H

CALL NEWRAPH (N, RS, R, DPI,{, PI,I, H,MS, P, IL, PWP)

C CHECK VALIDITY OF SOLUT]ONS FOR RUNAI{AY DISPLA'JE}IENTS

C OR OSCILLATORY DISPI-ACEME}¡T MODES

D0 86 KD = 2,N
rF(ABS(PW(KD)) .LT. 0.',I'çDMAX) G0 T0 B6

IF(ÂBS(PW(KD)).GT.D) GO TO BO

TF(}I(KD)/PTV(KD).LT.O.) GO TO BO

EC= ( P* ( Eo (KD ).¡PW(KD ) ) -H'xX* ( KD-1 ) ) / ( P )

rF(ABS(EC).GÐ.0.95xþ/2) GO To Bo

86 CONT]:NUE
C CHECK VALIDITY OF MAX STRAIN AND EFFECTIVE SECTTON

C EMX AND DC MUST BOTH BE NON*NEGATIVE
D0 186 KKB = 1,NP
IF(EMX(KKB).LT.O.) GO TO 80
IF(DC(KKB).LT.O.) GO TO BO

rF(EMN(KKB).t,'r.0.) Go ro Bo

1 86 CONTINUE
C CHECK EQUTLIBRIUI4 BEFORE NE''{ ITERATION IS COMMENCED

C CALCULATE PIIYSICAL PROPEiìTIES AT ALL NODES

IF( ITYPE. NE.'l ) CALL PHYSPl (NP, D, EO, P'vl, ECC, RIN, P 
' 

DMAX, H, X)

IF ( ITYPE. EQ. 1 ) CALL PHYSP2(NP, D, EO, P}J, ECC, RTN, P, DMAX, H, X, PNBM, ÂE'

1PT, EM, EMX, DC, E, KL, El"lrl- )
rF(KL.cE.200) G0 T0 80

C CALCULATE PKO AT AI,L NODES
CALL KON (NP, P, EO, PI,'J, H, X, DMAX, D, PKO, PFïB, PNBM, FHl4, A' rTFS)
CALI. EQUTL(N, RIN, PI{, ËCC, E, P, X, FIN, D, DMAX, H, IS, EO, IR, RR, R, PKO)

IF(FTN.EQ.O.) GO TO iOO
C FIN GT O. IMPLTES EQUILIBRIUM TO DESIRED ACCURACY

c0 T0 15
1 OO CONTINUE

C NEWTON-RAPHSON ITERATION HAS NOT REACHED SOLUTION
C ONE OR MORE OF SOI.,UTTON HYPERSURFACES HAS SLOPE DTSCONTINUI'TY

C SHIFT P OR EO HYPERSURFACE TO ALLOW SOLUTION
rF(IPEO. NE. 1 ) G0 TO 71
P=P+1
G0 T0 110

71 CONTTNUE
ET=0.01 *D
DO'(2 JJ = 'l ,NP
E0(JJ)=E0(JJ)+.ET

T2 CONTINUE
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c

1 1 O CONTINUE
I'.lRrrE(6,160) P,Eo(1)

160 FORMAT( 1H1,10X:*COLUMN EQUATIONS ARE ILL-CONDITIONED AT rÉ

1*LOAD = *,F10.3,* N/MM LENGTH 0F ÏíALLx/1H0,301t'
2*TOp LOAD ECCENTRICITY IS x,F10,3,* l4l4x//1H0,25X,
3*------RUN PROGRAM WITH ALTERED LOAD(ECCENTRTCITY) PATH---'-*)

STOP '' PROGRAM ENCOUNTERED ]LL-CONDITIONED EQUATIONS II

80 D0 70 J0 = 1,NP
Pl,¡(J0)=l,\l(J0)
EMX(J0)=TEMX(J0)
DC(J0)=TDC(JO)
EMN ( J0 ) =TEMN ( J0 )

7O CONTTNUE
IF ( rPEO. NE. 1 ) GO T0 45
P =PP
H =HH
G0 T0 48

45 D0 66 JD = 1,NP
E0(JD)=EoP(JD)

66 CONTINUE
H =HH

48 CONTÏNUE
THIS LOOP DECREASES THE TNCREMENT IN P OR EO

M 0=M0* 2

M P=M Px2
rF ( IPEo. NE. 1 ) G0 T0 49

IF (DEI.P. LT.0. 1 ) c0 T0 35
c0 T0 51

49 rF(DELEo.LT.0.01 ) G0 T0 55
51 CONTINUE

150 CONTTNUE
STOP TI!OO IlERATIONS INSUFFICIENTII

15 CONTÏNUE
FAILUREHASNOToccURREDIFTHISSTEPISREACHED
Il'ICREASE LOAD/LOAD ECCENTRICITY

IF ( IPEO. NE. 1 ) GO TO 52
PP =P
HA =HH
HH =H
c0 T0 53

52 DO 67 IF = 1,NP
E0P(IF)=E0(IF)

67 CONTINUE
HA=HH
HH =H
c0 T0 54

53 CONTTNUE
CALCULATE STRESS AT COMPRESSION FACE AT ALL NODES

TF(ITYPE. NE.1) CALL STRESS 1(NP, P, D, EO, Pl,'I, SMAX, H, X)

IF(ITYPE. EQ. 1 ) CALL STRESS2(NP,AE, PT,EMX,E, PNB,SMAX)

ALLOCATE VALUES FOR PLOTTING AND PRTNTING

PPL(NK)=P
D091 KA=1 ' 

NP

PWP(NK,KA)=PltI(KA)
SP(NK,KA)=SMAX(KA)

91 CONTINUE
IF( ITYPE. NE. 1 ) GO TO 92

c
C

c

c



IF(IS.EQ. 1 ) NPQ=(NP+1 )/2
IF(IS. NE.1 ) NPQ=4*N/10
hf RITE(6, 1000 ) p, NpQ, Et"lx(NpQ ) , EMN (NpQ) , DC(NPQ)

l ooo F ORMAT ( l il0, 5X, F8. 2, r5, 5X,812.3, 5X, 812. 3, 5X, F 12. 4)
92 CONTINUE

IF(DELP.LT.o.1 ) 35,34
54.rF(DELEO.LT.0.01) c0 T0 55

34 CONTINUE
20O CONTINUE

C COMPLETED NK LOOP LEADS TO NK TOO LARGE BY ONE

NK=NK-1
T'IRITE(6,37)

37 FORMAT(1HO ,25X,*WALL FAILURE NOT ATTAINED IN 40 ITERATIONSTß/)

IF(IPEO.NE.1) STOP
G0 T0 36

35 CONTINUE
WRITE ( 6, 88 ) P, H

88 FORMAT( 1H0,30X, *WALL FAILURE LOAD IS *,F8.2, x N/MM* / 1H0,30X'
*rßMAX. HORIZONTAL REACTION IS rå,F8. 4, * N/Ml4ri )

36 CONTINUE
C PRINT DISPLACEMENTS AND STRESSES FOR CRITICAL NODE(S)

CALL PRINT(NP, NX, NK, PIN¡P, SP, PPL' TIS )

C PLOT CRITICAL NODE(S) FOR DEFLECTTON AND STRESS

cALL DPLOT ( NK , NP , QA, PPL , Pl'¡P , PLAT , NS )

c/\LL SPLOT(NK, NP, RA, PPL, SP, SLOT, NS )

GO TO 56
55 EoD=D/E0(1)

vtRrrE (6,57 ) P, EOD

57 FOR},IAT( 1HO, 25X, *FOR LOAD OF *,F6. 1 , * MAX.
rç.5)

56 CONTINUE
END
SUBROUTINE EULER(E, D,WL, PHB, PHM, PNB' PCR)

CALCULATE EQLI IVALE NT WALL ELASTIC I'IODULUS FOR FULL SECTION

EQ=E x ( PHB +PHM ) / ( PHB +PNBt( PHM )
BI=D**3,/12
PCR =l . 1 4 1 592*x2*EQnBL /WLxx 2

WRITE(6,4) PCR

4 FoRMAT(1H0,!}.TcCRITICAL BUCKLING LoAD FoR PIN-END WALL IS *,F8.2,
1* N/MM LENGTHX/)

RET UR N

END
SUBRoUTTNE EXTRAP (MP, NP, D, Phr,trlE, H, HA, rS' SEMX' EMx' SDc' Dc' SEI'Í N'

IßEMN, NK, ITYPE )
DIMENSI0N pW( 1 ),hrE(1 )

3B't .

ECCENTRTCITY IS ¡ 7*,FB

c
c
c

c
DIMENSTON DC( 1

EXTRAPOLATE 0ll A

D0 73 KC = 1'lrl
IF(PI'¡(KC).EQ.O

SEMX( 1 ),EMX( 1 ),SDC( 1 )

),EMN(1)),SEMN(
LLW
P

)c0T076
WMULT=1 . +( 1 . -hrE (Kc) /Pt^I(KC) ) /MP
Ptl (KC ) = PW ( KC ) xliM ULT
c0 T0 '73

76 PW ( KC ) = -tJE (K C) /l4P
73 CONTINUE

C EXTRAPOLATE ON H



3B'2

IF(IS.EQ.1) GO TO 72
C TS.EQ.1 IMPLIES PTN ENDS

HMULT=1 . +( 1 . -HA/H)/MP
H =H 

xHM ULT

72 CONTII¡UE
IF(NK.EQ.2) cO TO 77
IF ( IÎYPE. NE. 1 ) GO TO 77

C EXTRAPOLATE ON MAX STRAIN EMAX

D0 74 KD = 1,NP
EMULT=1 . +( 1 . -SEMX(KD) /Etqx(KD) ) /MP
EMX ( KD ) =EMX ( KD ) xEM ULT

74 CONTINUE
C EXTRAPOLATE ON EFFECTIVE SECTIO¡i DC

D0 T5 KE = 1'NP
rF(EMN(KE).GT.o.) Go ro 75

C EMN GT ZERO TMPLIES SECTION TS NOT CRACKED AND DC EQ D

DMULT= 1 . +( 1 . -SDC (KE ) /DC (KE ) ) /MP
DC (KE ) =DC (KE ) àtDMULT

75 CO}¡TINUE
C EXTRAPOLATE ON EI'f ÏN

D0 78 KF = i,N
IF(DC (KF) . NE. D
IF(EMN(I{F):EQ.

C DC NE D IMPLIES SECTION IS CRACKED AND EMIN IS ZERO

EMULT=1 . +( 1 . -SEMN ßF) /El'lN (KF) ) /MP
EMN (KF ) = EM I'l (KF ) tÊEþf ULT

78 CONT]NUE
77 CONTINUE

RET UR N

END
SUBROUTINE PHYSPl (NP, D, EO, PW' ECC, RIN, P, DMAX, H,X)
DlM EN S rON R rN ( 1 ) , PW ( 1 ) , EC C ( 1 ) , EO ( 1 )

D0 51 J = 1'NP
Ecc( J ) =D /2. --80 ( J ) -Pv'I( J )
EC=(Px(Eo ( J )+PW( J ) ) -HxXlr' ( J-1 ) ) 1P
ABSEC=ABS (EC)
rF(ABSEC.LT.DMAX) Go ro 40
RIN ( J )= ( 3. * (D /2. -ABSEC ) ) xx3/ 12.
G0 T0 51

4o RIN(J)=Dxx3/12'
51 CONTINUE

RETURN
END
SUBROUTINE PHYSP2 (NP, D

TPNBM, AE, PT, EM, EI"IX, DC, E

DIMENSIgN RIN( 1 ), pt^r( 1 )

DIMENSION DC( 1 ),EMN(1 )
DIMENSION DP ( 4O ) , XX (2 ,2) , ICF ( 4O )
D0 50 J = 1'NP
Ecc( J ) =D / Z-Ea( J ) -PhI( J )
EC=80 ( J )+PW( J )_HnX* ( J -1 ) /P
ABSEc=ABS(EC)
IF ( ABSEC. LT. DI4AX' 0R. DC ( J ) . EQ. D) ICF ( J ) s 1

Il'(ABSEC. GE. Dl'lAX. OR. DC ( J ) . LT. D) ICF(J )=0

P

)G
0. )

OTO78
G0 TO 78

, E0, Pr/{, ECC, F.IN, P, DMAX, H, X,

,KL,EMN)
,ECC( 1 ),EO( 1 ), PNBM( 1 ),EMX(1 )

c
c
c

ABSEC EQ ZERO TMPLIES AXIAL LOAD AT NODE J
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c

IF(AllSEc. EQ. 0. ) RIN( J)=Dx*3/ 12

rF(ABSEC.EQ.0.) GO TO 50
IF(IcF(J) .NE. 1 ) ICF(J)=0

CHECK I^IIIETHER CRACKING IS BEING INITIATED
IF(EMN(J) .LT. 0. ) IcF(J)=0
IF(EMN(J) .LT. 0. ) EMN(J)=0.
DP(J)=D/2-ABSEC
D0 150 KP = 1,5
rF(rcF(J).EQ.1) Go ro 160
D0 300 KL = i'200
EMN(J)=0.
EBAR = (2. / 3xEl4 X ( J ) - Q. *AE ) / ( 2 +PT ) n EM X ( J ) **PT ) /

x ( t . -(2. *AE )/ ( 1+PT )*EMX( J ) r(* ( PT-1 ) )
T=P-EM* ( EMX ( J ) rÊEMX ( J ) /2-AE / (PT +1 ) *EMX ( J ) nr* ( PT+1 ) )

r+fDC(J)/EMX(J)
V=DP ( J )-(EMX( J ) -EBAR )*Dc ( J ) /EMX( .j )
IF(ABS(T).LT.O.01.AND.ABS(V).LT.0.001 ) G0 To 400
D0 200 ILO = 1,2
IF(ILO" EQ. 1 ) EX=EMX(J )+0.001
IF(ILo.EQ.1) DS:DC(J)
IF ( ILo. EQ. 2) EX=El'lX( J )
IF(IL0.EQ. 2) DS=DC(J)+0. 1

EBAR= (2. /3rçEX--(2. *AE )/ (Z+PT )*EXx*PT)/ (1.-Q. *AE)/
*( 1+PT )+ÊEXrÊ* (PT-1 ) )

DT=p-EMx ( EX*EX/ z-AE / ( PT+1 ) *EX** ( PT+1 ) ) *DS/EX

DV=DP ( J ) - ( EX-EBAR ) r{DS/EX

rF(rL0.EQ.2) G0 T0 100
XX(1,1)=(DT-T)/0.001
XX(2, 1 )= (DV-V)/0.001
G0 TO 200
XX(1,2)=(DT-T)/0.1
XX(z,2)= (DV-V)/0.1
CONT IN UE

DETXX=XX( 1, 1 ) *NN(2, 2)-XX (1,2)nXX(2, 1 )

DEMX= ( -Tt*XX (2, 2)+V*XX ( 1' 2 ) ) /DE'fXX

100

200

DDC = (TißXX (2, 1 ) -V*XX (

CHECK 1{HETIIER ITERATÏO
IF((EMX(J)+DEMX).1E.
EMX(J )=EltlX(J )+DEMX
DC(J)=DC(J)+DDC

3OO CONTINUE

) ) /DETXX
EADS TO NEGATIVE STRAIN [SlX ( II'IVALÏD )

DEMX=0.

1'1
NL
0. )

lfRrrE(6,1000) P

Io0OFoRMAT(1Ho'5X,¿{cONSISTENTcRACKEDSEcTIoNNOTF0UNDFoR
1 LOAD -x,F12.4,* N/l"lM*)

RET URN

40O CONTINUE
IF(Dc(J).GT. 1. 00'l *D) ICF(J)=1
IF(IcF(J) .EQ. 1 ) DC(J)=D
TF(rCF(J).EQ. 1) Go'ro 160

CALCULATE EFFECTIVLì MORTAR MODULUS AND VALUE OF RIN
rF(ABSEC. LT. DMAX) Go ro 201
PNBM ( J ) =E 

x ( 4. 5*DP ( J ) xDP ( J ) *El'iX (J)) / ( DC ( J ) xP )

RIN (J )= (3. nDP ( J )) r'x3/ 12
c0 To 50

201 CONTTNUE
pNBM ( ¡ ) =E / ( 1 2. # P /D*x3* ( O. 5åiD-DP ( J ) ) *DC ( J ) /EMX ( J ) )
RrN(J)=Dxx311'

c



c
c
c
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G0 T0 50
1 60 CONTINUE

SET EMIN GREATER THAN ZERO BUT NOT EQUAL TO EMAX ( IF REQUIRED )
IF(EMN(J) .Ea.0. ) EMN(J)=0. 00001
EDEL=1.0E-06
IF (EMN(J) .EQ. EMX(J ) ) EMX(J)=EMX(J)+EDEL

LOOP 50O CALCULATES EMAX AND EMIN FOR UNCRACKED SECTION

D0 500 KL = 1,200
EBAR = e. / 3n ( EMX ( J ) x * 3-EMN ( J ) rç * 3) -2 .*AEl ( PT+2 ) * ( EM X ( J ) rÊ r* ( PT+2 )

*-EMN(J ) xx ( pT+2 ))) / (EMX( J ) xEMX( J )-EMN(J )*EMN(J )-2 .x AE/
* (pT+1 )rÊ(EMX(J )*x ( pT+1 )-Eì4N(.1)x* (PT+1) ) )

C CALCULATE ERROR TERMS Q AND S

Q=p-Et4 rÊ ( O . 5 x ( EM X ( J ) ++EM X ( J ) -EM N (.1 ) o EM N ( J ) ) -AE/ ( PT+ 1 ) * ( EMX ( J ) * *
* (pT+1 )_e ¡,lt¡(J )*rÉ (pT+1 ) ) ) xDl(EMX(J )-EMN(J ) )

S=DP ( J )- (EMX( J ) -EBAR ) xDl ( EMX ( J )-EþrN ( J ) )

TF(ABS(Q).LT.0.01.AND.ABS(S).1T.0.001) G0 T0 600
D0 700 ILP = 1,2
1F(ILP. EQ. 1 ) EX=E¡'lX(J )+EDEL
IF(ILP.EQ. 1 ) EN=EMN(J)
IF-( ILP.EQ. 2) EX=EMX( J )
IF ( ILP. EQ.2) EN=EMN ( J )+EDEL
EBAR= (2. /3x( EX**3-ENxx Ð*2.x AF,/ (PT+2 )n (EXrix (PT+2)-ENxx (PT+2)) ) /

t$ ( EX*EX-EN xEN-2. x AE / ( PT+1 ) x ( EX*x ( PT +1 ) -nNxx ( PTr- 1 ) ) )
C CALCULATE CHANGE TN ERROR TERMS DQ AND DS

DQ=p-EMrÊ ( 0. 5r((EXnEX-ENtÊEN )-AE/ ( PT+1 )* (EX** (PT+1 )-ENxx ( PT+1 ) ) ) *
XD / (EX-EN )

DS=DP ( J )- (EX-EtsAR )xD / (EX-EN )
TF ( II-P . EQ. 2 ) GO TO 8OO

XX(1,1)=(DQ-Q)/EDEL
xx(2,1)=(DS-S)/EDEL
GO TO 700

800 XX (1 ,2) = (DQ-Q ) /EDEL
XX(2,2)=(DS-S)/EDEL

7OO CONTINUE
DETXX=XX( 1' 1)xXX (2,z)-XX( 1,2)nXX(2' 1)
DEMX= ( -Q*XX (2, 2)+S xXX (1, 2) ) /DETXX
DEMN= (Q*XX (2, 1)-S*XX ( 1' 1 ) ) /DETXX

C CHECK WHETHER TTERATION LEADS TO NEGATÎVE STRAIN EMX ( INVALID )

IF( (EMX(J )+DEMX) . L8.0. ) DEMX=0 '
EMX(J)=EMX(J)+DEMX
EMN(J)=EMN(J)+DEMN

C IF EMN(J) TS LESS THAN OR EQUAL TO ZERO, LIBRARY EXPONENTIAT]ON

C ROUTTNE XTOY WILL. NOT I,IORK FOR REAI. EXPONENTS

IF(EMN(J) .LE. 0. ) EMN(J)=0. 00001
5CIO CONTINUE

C IF, AT COMPLETION OF LOOP 5OO, EMN(J) IS EQUAL TO O.OOOOI'

C CRACKED SECTION ANALYSIS SHOULD BE USED

c IF r HOWEVER , pROGRAt'f REACHES END OF L00P 500 Al'lD STRAINS ARE

c NoT CALCULATED, FLAG IS SET T0 REDUCE LoAD INCREI"IENT

IF(EI',IN(J ).NE. O. OOOOl ) RETURN

C SET FI,AGS FOR CRACKED SECTION ANALYS]S
ICF(J)=0
EMN(J)=0.

150 CONTINUE
STOP I'SECTION PROPERTIES NOT CALCULATEDI'
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6OO CONTINUE
C CALCLILATE EFFECTIVE MORTAR MODULUS AND VALUE OF RIN

rF(DP(J).Ea.D/2) G0 T0 850
p N BM ( J ) = E * D x D rí ( EM X ( J ) -E M N ( J ) ) / ( 12 . x P * (D / 2 -DP ( J ) ) )

850 RrN (J ) =f)xx3/ 12

5O CONTINUE
RETURN
END
SUBROUTTNE KON (NP, P, EO, PW, H, X, DMAX, D, PKO, PHB, PNBM, PHM, A, ITFS)
DIMENSION PI,J( 1 ),PKO(1 ),EO(1 ),4(4)'PNBM( 1 )

D0 61 JB = 1,NP
C CALCULATE EFFECTIVE ECCENTRICTTY

ËC=(Px(Eo ( JB)+PW( JB) ) -H*Xn( iB-1 ) ) / (P )
ABSEC=ABS (EC )
IF(ABSEC.LE.DMAX) GO TO 67
IF(ITFS.NE.O) GO TO 67
ED=ABSE C/D
EDl =ED $ ED2=ED*ED $ ED3=f,)ur* l
PEC=A ( 1 )-rED1*A( 2 )+ED2xA( 3 )+ED3xA( 4 )

PKN=1./PEC
G0 T0 62

67 PKN ='1 .

62 CONTINUE
PKO (JB) = (Prl¡*PHB+PNBM( JB) *PHM) / ( PHB+PHM)

61 CONTTNUE
RETURN
END
SUBROUTINE EQU IL (N, RTN, Pi,I, ECC, E, P, X, FIN, D, DMAX, H, IS, EO, IR, RR, R,

*PKO)
DTMENSION RTN(1 ),PW( 1 ),ECC(1 ),RR(1 )'R(1 )

DIMENSION PKO(1 ),EO(1 )

ERR = 0.
ERRAL=O. OO0OO 1

N Q=N+ 1

D030KM=2
JI = KM-1 $
IF(KM. NE. NQ)

'NQJK=KM
GO TO

+1
75

c
IF(IS.EQ.1) GO TO 31

IS = 1 TMPLIES PINNED BASE
PW(JK)=PW(Jr)

75 EC=(Px(Eo(Kl"l)+Pll(KM) )-HxX*(KM-1 ) ) /(P)
ABSEC=ABS (EC )

rF ( ABSEC. LT. DMAX) cO T0 3T
rF(EC.LT.0") G0 1O 38
ERR OR =E 

*R IN (KM ) / p x ( iw ( JK ) +PW ( JI ) -2 . *P}rI ( KM ) ) /Xn*2+PKO (KM ) x ( '. 5 *Ecc ( K

*M)+.5rçHl(JI xX/P)
IF(IR.EQ.O) CO TO 41

RR (JI )=ERR0R
G0 TO 31

41 R(JI)=ERR0R
ERR0R =ABS ( ERR0R )
IF(ERROR.LE.ERR) GO TO 31

ERR = ERROR
G0 T0 31

3B ERROR=E*RIN(KM)/Prß(PW(JK)+PW( Jf)-2.*PW(KM))/X*x2+PKO(KM)rÊ1.-.5x(D-E
rßcc (KM) ) +. 5nH*JI r(X/P )
IF(IR.EQ.O) GO TO 43
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RR(JI)=ERROR
G0 T0 31

43 R(JI)=ERROR
ERR0R=ABS (ERR0R )
TF (ERRoR. LE. ERR ) Go ro 31
ERR=ERROR
GC TO 31

3Z ERROR=E*RIN(KM)/Px(PId(JK)+P!t( JI)-2.#P1,1(KM))/Xþ*Z+PKO(KM)*((D/2-ECC
te(KM))_H*JTxX/P)
rF(rR.EQ.0) G0 T0 45

RR (JI )=ERROR
co ro 31

45 R (JI )=ERROR
ERR0R=ABS (ERROR )
rF(ERRoR.LE.ERR) G0 TO 31
ER R =ERR0R

31 CONTTNUE

30 CONTINUE
IF(IR.EQ.1) GO TO 16

IF (ERR. GT. ERRAL) GO TO 1 6

F IN =ERR
16 CONTINUE

RETURN
END
SUBROUTINE MATCOM ( TS, N, X, E, R]N, NP, H, P, EO' PW, DMAX, C, CK' ECC' D'MS'

*IL, NK, PKO, PHB, PHM, PNBM)

DIMENSTOIí RIN ( 1 ) , Pl'l( 1 ) , C(MS, 1) , CK( 1 ) ' 
ECC ( 1 )

DIMENSION PKO(1 ),E0(1 ),PNBM( 1 )

D0 20 IXA = 1,MS
DO 21 lXB = 1,MS
C(IXA, IXB)=0.

21 CONT]NUE
20 CONTINUE

PK= (PHB+PNBM ( 1 ) tcPHM ) / ( PHB+PHl4 )

SET UP EQUATION MATRIX C WITH FIXED TERMS

NA=N-1 $ NB=N-2
C(1,1)=2,
C(1'2)=-1.
C(NA, NB)=-i .

C(NA'NA)=2.
rF(rs. E8.1 ) Go ro 6

C ( N, NA )=-2.
6 CONTINUE

D0 55 I = 2'NB
IF=I-1 $ IG=I+1
C(I,IF)=-1 .

C(I,T)=2.
C(I'IG)=*1 .

55 CONTTNUE
D0 52 K = 2,NP
KJ=K-1$KL=K+1

ASSUMEcOLUMNISUNcRACI(EDF0RFIRSTITERATI0Ì{
rF ( NI(. NE. 1 ) G0 T0 14

IF(IL.NE.1) GO TO 14

DI=Dx*3/12
D0 53 l,P = 1,NP
PKO(LP)=PK

c
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RIN(LP)=DI
53 CONTINUE

c0 To 58
1 4 CONTINUE

EC=(p*(EO(K )+PVt¡(K ))-tlxxx(K -1 ))/(P)
ABSEc=ABS (EC)
IF(ABSEC.GE.DMAX) GO TO 56

58 CK(KJ )= Px (D/}-ECC (K) ) *X** 2/ (EåRIN (l() ) *PKO (K)
c0 T0 52

56 rF (EC. LT. 0. ) co T0 57
cK(KJ )=X13n 2/ (E*RIN (K) ) rç ( . 5xPrÉEcc(K) ) xPKo (K)
c0 T0 52

57 CK(KJ)=X** 2/ (E*RIN(K) )*(-. 5xP*(D-ECC(K) ) )nPKO (K)

52 CONTINUE
IF(IS.EQ.1) GO TO 1O

D0 12 rN - 1,N
IM=IN+1

ASSUMEcoLUMNISUNcRACKEDF0RFIRSTITERATIoN
TF (NK. NE. 1 ) GO TO 15

rF(lL.NE.1) G0 TO 15

PKo(IM)=PK
RAN =X*x 2/ ( E *DI ) *X *IN
c0 T0 13

1 5 CONTINUE
EC = 

( P n ( EO ( Il'l ) +PVrr ( IM ) ) -H rÊXn ( IM-1 ) ) / ( P )

ABSEC=ABS (EC)
RAN=X*x2l ( E*RIt{ ( IM ) ) *X*IN
IF(ABSEC.LT.DMAX) GO TO 13

C ( IN, N) =-. 5*RAllrßPKO ( TM )

G0 TO 12
1 3 C(IN, N)=RAN*PKO (IM)
12 CONTINUE
1O CONTTNUE

RETUR N

END
SUBROUTINE DISPL(N, C, CK, IS UH' Pl{'MS, EP,X, NP)

DTMENSTON C(MS, 1 ),CK(1 ),PW( 1 )'EP( 1 )

DO58I

,ND
$ IV=IT+1

,N
C(IT, IR )=C(IT, fR ) /DIV
C(IV, IR )=C( IV, IR)+C( IT, IR )

58 CONTINUE
cK(IT)=cK(IT)/DIV
cK(IV)=cK(1V)+cK(IT)

57 CONTINUE
NE=N-1
DUV=C(NE'NE)/2
D0 59 IW = 1,N
C (NE, IW) =C (NE, IW) /DUV
C (N, IW) =C (l'¡' Il'l)'rC ( NE' IW)

59 CONTTNUE
cK(NE)=cK(NE)/DUV
CK(N)=CK(N)+'cK(NE)

C MATRICES ARE NOI^I REDUCED

C BACK-SUBSTITUTE FOR VÀLUES 0F V'l AND H

ND =N -2DO57I
DIV=C ( I

T=1
T, rT)
R=1
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IF(IS. NE. 1 ) H=CK(N)/C(N'N)
Plr( N )= ( cK(NE )-C ( NE, N) *Íl) / 2
D0 61 NO = 1,ND
NR =N-N0
NRI=NR-'! $ NRJ=NR+1
PW (NR ) = CK(NRI )-c (NRI, NR ) *PW( NRJ )-C ( NRI, N) nH

61 CONTINUE
RETURN
END
SUBROUTINE NEWRAPH (N, RS, R, DPTII, P}I, H,MS, P, IL, PWP)

DTMENSTON RS(MS, 1),R(1 ),DPi^l( 1 ),PW(1 )

DIMENS ION PI,TP ( MS , 1 )
IPT=l{-1
D0 51 LB = 2,N
LA=LB-1
lF(RS(LB,LA).Ea.o.) GO TO 51

THIS TMPLIES NO REDUCTION IS REQUIRED ON RO!{ LB

RMULT=-RS (LA' LA ) /RS (LB' LA )
D0 53 LC = 1,N
RS(LB, LC ) =RS (LB, LC ) nRMULT

RS (LB, LC ) =RS (LB, LC ) +RS (LA 
' 

LC )

53 CONTINUE
R(LB)=R(LB)nRMULT
R(LB)=R(LB)+R(LA)

51 CONTINUE
BACKSIJBST ITUTE

TF(RS(N,N).EQ.O.) GO TO 54
DELH=-R(N)/RS(N'N)
c0 To 55

54 DELH=0.
55 CONTINUE

rF(RS(rPT,rPT).E0.0.) c0 T0 56
DPt^l ( N ) = ( -R ( IPT ) -RS ( I PT, N ) tÊDELH ) / RS ( I PT, IPT )

c0 T0 57
56 DPVI(N)=0.
5T CONTTNUE

NR =N -2
D0 58 NC = 1,NR
MR=N-NC
MSI=MR-1 $ MSJ=MR+1
IF(RS(MSI,MSI).EQ.O.) GO TO 59
Dpl,I(MR)=(-R(MSr)-RS(MSI,MR)nDptr^I(MSJ)-RS(IrSr,N)nDELH)/RS(MSr,Ì',fSI)
c0 T0 58

59 DP!.l(MR)=0.
58 CONTINUE

CALCLILATE NEW VALUES OF W AND H

DO 61 MT = 2,N
PW ( I'lT ) = PW ( MT ) +DP!'l ( MT )

61 CONTINUE
H=H+DELH
ÍTET UR N

END
SUBROI.JTINE STRESSl (NP, P,D,EO, PW,SMAX, H,X)
DIMENSION PW( 1 ),SMAX(1 ),EO(1 )

c

c

c
c
c

THiS ROUTINE CALCULATES STRESSES FOR t,INEAR MORTARS ONLY
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DO 53 JT=1'NP
DAX=D/6
EC=(px( Eo ( JT )+PW( JT ) ) -H*Xn( JT-1 ) ) / ( P)
ABSE C =ABS ( EC )
rF(ABSEC.LT"DAX) C0 T0 41

SMAX( JT )= 2. / 3x (P ) / (D/2-ABSEC)
co To 53

41 SMAX(JT)=(P)* ( 1. /D+6. /Dx*2,rABSEC)
53 CONTINUE

RETUR N

END
SUBROUTINE STRESS2(NP,AE, PT, EMX, E, PNB, SMAX)

DIMENSI0N EMX( 1 ),SMAX( 1 )

THIS ROUTINE CALCULATES STRESSES FOR NON.LINEAR MORTARS ONLY

DO 60 JA = 1,NP
SMAX( JA)=E/PNBx ( EMX( JA )-AE*EMX( JA ) *nPT )

60 CONTINUE
RETURN
END
SUBROUTINE PRINT(NP, NX, I'IK, PhIP,SP, PPL' NS)

DIMENSION NX(1 ),PWP(NS, 1 ),SP(NS, 1),PPL(1 )

C PRINT DISPLACEMENTS AND STRESSES FOR ALL NODES

D0 69 IX = 1,2
XL=0.
rF(rx.EQ.2) G0 T0 68

5O CONTINUE
1,,IRrrE ( 6, 64 )

64 FORMAT ( 1 H 1, 5OX, IIDISPLACEMENTSIß/ 1 H O, 2X, *LOADtT, 65X, IINODES*)

G0 T0 61

68 CONTINUE
l^IRrrE (6,62)

. 62 FORMAT(1H1.qOX,*MAX. COMPRESSIVE STRESS*/1H0,2X,*LOAD*,65X,*}'¡ODES*
*)

61 CONTINUE
rF(NP.GT.21 ) Go ro Bo
D0 65 KP = 1,NP

65 NX(KP)=KP
IfRITE(6, 66) (NX(KT),KT=1,NP)

66 F'0RMAT ( 8X , 21r6/ )
co T0 81

80 CONTINUE
D0 82 JP = 1,NP
1 =JP /2.
JS=INT(T)
VR =T-JS
rF(vR.EQ.XL) Go rO 82
rF(xL. NE. o. )Go ro 90
JS=JS+1

90 CONTINUE
NX(JS)=JP

82 CONTINUE
WRITE(6, 66) (NX(JT), JT=1, JS)

81 CONTÏNUE
rF(rx.EQ.2) Go ro 6T
IF(NP.GT.21) GO TO 84
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D0 73 KV = l,NK
WRITE (6,74) PPL(KV), (PWP(KV,KW),Kl'l=1, NP)

74 FORMAT( 1Ho,F6. 1,2X,21F6.3/)
73 CONTINUE

c0 To 69
S4.CONTINUE

fF(xL.EQ.0.5)G0 T0 91
D0 85 KZ = 1,NK
IIRITE(6,86 ) PPL (KZ ) , ( PWP(KZ, Kúl) 

'Khr=1 
, NP ' 

2)
86 FORMAT( 1Ho,F6. 1,2X,21F6.3/)
85 CONTINUE

Go ro 94
91 CONTTNUE

DO 92 KZ = 1,NK
lilRITE(6, 93) PPL (KZ),(PhrP(KZ,KW),KW=2, NP, 2)

g3 FORMAT( 1H0,F6. 1,2X,21F6.3/)
92 CONTINUE
94 CONTINUE

rF(xL.EQ.0.5)G0 T0 69
XL=0. 5
co To 50

67 CONTINUE
IF(NP.GT.21) GO TO 87
D0 76 KX=1'NK
WRITE (6,77 ) PPL(KX), (SP(KX,KY),KY=1,NP)

77 FORMAT( 1FI0,F6. 1,2X,21F6.2/)
76 CONTINUE

c0 T0 69
87 CONTINUE

IF(XL.EQ.O.5)GO TO 95
D0 88 KZ=1,NK
WRITE(6, 89) PPL(KZ), (SP(KZ,KY),KY=1,NP,2)

89 FORMAT( 1H0,F6. 1 ,2X,21F6.3/)
88 CONTINUE

c0 T0 98
95 CONTINUE

D0 96 KZ =1,NK
ltIRITE(6, 89 ) PPL (KZ),(SP(KZ,KY),KY=2, l'¡P, 2)

96 CONTINUE
98 CONTINUE

rF(xL.EQ.0.5) c0 T0 69
XL=0.5
G0 T0 68

69 CONTINUE
RETURN
END
SUBROUTINE DPLOT(NK, NP, QA, PPL I P!'IP' PLP'T 

' 
NS)

DIMENSION QA(1 ),PPL(1 ),PWP(NS, 1 )'PL/IT(1 )

FIND NODE(S) WITH MAX. DISPLACEMENT
DIS=0. $MA=1
D0 92 NA = 1,NK
D0 93 NB = 1'IIP
DISP=PWP(NA, NB)
IF(DISP.LT.DTS) GO TO 93
DI S =DfS P

93 CONTTNUE

92 CONTINUE
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D0 94 NC = 1'NK
D0 95 ND = 1,NP
DOS=Pl¡lP (NC, ND )

IF(DOS"EQ.DIS) GO TO 96

95 CONTINUE
G0 T0 94

96 QA(MA)=ND
MA=MA+1

94 CONTINUE
PLOT DISPLACEMENT OF CRTTICAL NODE(S)

D0 97 IB = 1,5
NF = QA(IB)
rF (NF.8Q.0. ) c0 T0 97
D0 98 IC = 1,NK

98 PLAT(IC)=PWP(Ic, NF)
CALL QTKPLOT iplÁt, PPL, -40 , 1 4H|çDTSPLACEMENT* , 6H*LOAD* t -1 )

hTRITE ( 6, 44 ) NF

44 FORMAT(1H0,30X,*cRrTrcAL NODE rS NODE NO' x 
',Í3/)

97 C0NTrlluE
RETURN
END
SUBNOUTTNE , SPLOT (NK, NP, RA, PPL, SP, SLOT

DIMENSION ÉA( 1 ),PPL(1 ),SP(NS,1 ),SLOT(
C FIND NODE (S ) VÙITH MAX. STRESS

,NS)
1)

TIS=0. $
D0 22 LA
DO 23 LB

MB=
-1
=1

1

,NK
,NP

c

STRS=SP(LA' I-B)
IF(STRS.LT.TIS) GO TO 23

TIS =STRS
23 CONTINUE
22 CONTTNUE

D0 24 LC = 1,NK
D0 25 LD = 1'NP
TOS=SP(LC' LD)
IF(TOS.EQ"TIS) GO TO 26

25 COl,¡TINUE
G0 T0 24

26 RA(MB) =LD
MB =MB+1

24 CONTINUE
PLOT STRESS AT CRITICAL NODE(S)

D0 2T LE = 1,5
LF=RA(LE)
IF(LF.EQ.O) GO TO 27
D0 28 LG = 1,NK

28 SLOT(LG)=$P(LG'LF)
CALL QIKPLoT ( SLOT , PPL 

' -40 , 8H *STRESS |{ , 6H*L041¡x , -1 )

WRITE ( 6, 45 ) LF
45 FORMAT( 1HO,3OX, XCRITICAL NODE IS NODE NO. X 

'T3/)
27 CONTINUE

RETUR I'l

END



392,

C.3 FLOI^/ CHARTS FOR PROGRAI4 PIER1
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N
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Y
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Y
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Y

N

Y
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Y
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Y

N
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Chcclc equil ibrium
. CALL EQUlL

Calculate equivalenL
elasLi c modulus

at- a 1l nodcs
CALL KON

calculaLe<l
ESropert-i,

?

CALL PHYSP2

CALL PHYSP]mortar
?

lnear

Calculate sr:cLi-on
propertie,s aL al1 nodes
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N

re
o lut, ions
valid

2

Y

Y

N

Y

N

STOP

END LOOP 11O

Assígn arr:aYs and
variabl.es for
extraPolaL ion

Change load/eccentri.ci'IY
increnenL bY a smal-1

amo'.1nt

END LOOP 1OO
quilibriu
aL tained

?

Check equi. li.brium
CALL EQUIL

Calculate equivalent
elast:ic modulus at:

all nodes
CALL KON

calcul at e d
IEropert

?

CALL PHYSP2

CALL PHYSP1
Linear
Mortar

?

CalculaLe section
properties at al I norles
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Y

N

N

Y

Y

N
N

Y

fìToP STOP STOP

CALL PRINT
CALL SPLOT
CAT,L DPLOT

PrinL
maximum

eccent-r:icity

Fr i.nt,
maximum

eccentriciLY
inc r:emenL e-cl

?

Is
loa d

inc remenÈed
,|

1o¿r d
Is

Prinl out:
TCSUILS

STOP

PrinL "failure
not- attainedt'

END I.OOP, 15O

END LOOP 2OOeccenlricitY
increment

2

loadl
Is

oo smal

i-nc remen L

too small
?

Ts

CALL STRESS2

Ioad/
inc rementeccent-riciLY

Decrease- the

CALL STRESSl
Linear
mortar

,l

Assign arraYs and
variables for
ext rapo lat i on

Calculate sLress at
compression face-

at all nodes
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RETURN TO PIER1

ExLrapolate on
minimum contPression

strain

ExLraPolaLe on
deplh of uncracked

parl, of secLion
secttion
cracked

?

Is

ExLraPolate on
maximum comPression

strain

Linear
maLerial

?

second load/
eccent- ric itY

?

incr:emen

Is
t-hi s Lhe

ExtraPolaLe on
horizontal
react ions

base
f ixed

't

Is

Ext rapol ate on al 1

nodal di,sPlacements

FROþ4 PIER1

Y

N

Y

Y

SLI]JROUTINE EXTRAP
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RETURN TO PIER1

END I,OOP 51

Calculate ful1
secLion modulus

Ca'lculaLe effecLive
cracked section

modulus

s ect i-on
crackcd

,l

Is

Calculate effe-ctive
load eccenr ricitY

LOOP 51

FROM PIER1

SUBROUTINE PHYSPl
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N
Y

Calcula t-e non-l inear
curvaLure r:at-i o, p

Calctrlat,e cffecLive
sect-ion modulus

Set FLAG
ICF=1 depth>Ð

?

alcul ar,e

RETURN TO

PIERlEND LOOP 50

proper:Lies

2

lculacecl

ect ion

ND OF T,OOP 30

Calculate maximum
compressj-on sti:ain
and uncracke<! depth

of sect iorr

Set FLAG ì(ì,
Lo decrease

Lo aci I e c c e n t- r i, c i L y
incremcrtL

L00P 300

LOOP 500ICF=1

CalculaLe maximum
cornpressi-on anci

minimum compresslon
strains

KP 1

Set FLAG
ICF=1

END LOOP 5OOpropert. i e s

,I
alculat-e

ect i on

Se-t FLAG
ICF=0

STOP
secl-ion
c racked

?

Is

lnlnlmum
stra in(O

?

Is
C¿lIculaLe effect-ive

load eccenrricity

KP>5
?

SeL FLAG ICF=O
LOOP 50

KP:KP+1FROM PIER1

SU}IROUTTNIJ PHYSP2
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RETURN TO PIEII1

END LOOP 61

Calculate equivalenl
el asLic modul us

facLor r PKO

CalculaLe curvat-tlre
raLio factor, cr

CurvaLure raLi o

facLor, d :1
o-Lens iorr
mat-eriaI

,l

CalculaLe effective
load e-ccenLrj-ciLY

LOOP 61

FROM PIEII1

Y

SI]BROUl'Ih]E KOI'I
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N

Y

N

h¡

Y

: RETURN TO P]ER1

END LOOP 30

SeT FLAG
FrN/.O

SLore error
as maximum

error
) max.

Is

,|

e rror
error

maxi mum

error too
large

?

1s

St-or:c crror
in array RR

cal leci in
ewt on-Raphso

nêubrouLi

?

cycle

fs

ca I lcd í-n
Newt-on-Raphso

?

cyc le

ub rouL i
Is

Ca I cul aLe
error
term

Ca lcu l. at e
eÌ:ror:
term

Calculat:e error
term

sectiorr
cracked

?

fs
effecLi.ve

eccenLri ciLy

?

Is

<o

Calculate e,ffe-ctive
l-oad eccenLri citY

CreaLe fictitious node
bel.ow base with same

displace.ment as f i r:sr
node above base-

node aL
base

?

Is

LOOP 30 f i xe-d
?

Is
base

F'ROM PIERl

SUBROIJTTNE EQtrrL
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RETURN TO PIER1

Set up Lerms in
maLri.x C and vector

CK for equation at
base

base
pinned

?

Is

SeL up right hand
vecLor CK

SeL up equaLion
matri.x C

Inítialize mat-rix C

and constaút PK

FROM PIER1

SUBROUTINE MATCOM
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MISCELLANEOUS SUBROUTINES

SUBROUTINE EULER: Calculates Cnitical Buckling Load of Pin-ended
Wal l.

SUBROUTINË DISPL:

SUBROUTINE NEWRAPH: À Gauss Reduction routine on Matr ix RS arrd
Vecton R Set up by EOU I l- and P I ER'l i n the
Newton-RaPhson CYcle.

SUBROUTINE STRESSI: Stnesses for Linean Mortar"

suBRouTINE 5TRE5S2: Stresses fon Non-linear Montan.

SUBROUTINE pRINT: Routine for Output of Displacements and Stnesses.

A Gauss
Vector CK

Reduct íon
Set up in

noutine on Matrix C and
MATCOM.

SUBROUT INE I)PLOT: CYBER'I.
Maximum

Plot of DisPlacements of Node with
Displacement"

SUBROUTINE SPLOT:

* NOTE: Plorting Routine in PROGRAM P IER'l is called QIKPLOT.

CYBER':'Plot of Stresses at Node with Maximunl
Stness.
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APPEI.ID IX D

BR ICKIVORK PR ISM TESTS AND NON-LINEAR

PROPERTIES OF MORTAR ( Sect i on 5.2.2.4(b))

si)( bricklvonk pnisms vvene corrstructecj fnorn the same batches

of matenials as the eight walls and curecj identical ly with the rvalls

(f igure 5.12(a)). Each prism compriseci foun bricks and three montâr-

joints. All pr isms wene tested concunrently with the walls in a 5000i(hi

capacity compression testing machine, two pnisrns axially, two prisnrs

at an equal end eccenti icity of 12.5mm (d/6) and two prisms at an

equal end eccentnicity of 25.Orr,rn (cl/3). All pnisrns \¡/ene loaded thnough

p¡n blocks both top ancl bottorn (figure D.1) anci the notatíons at the

rnici-heights of the end bnicks vvene n'reasurecj on the eccentnically-

loadecl pnisms. The f ailune loads and f ailune rnocJes fot the six prisrns

are surnmanized in Table D.1 ancj ihe vertical splittinç; failure mocjes

of prisrns 1 arrd 2 are shown in f igure D.2. Ventical splitting occur'rec

for a loacj eccentricity of d/6 and brick spalling f ailune was evicjent

at a loacj eccentricity of d/3 (ta'UIe D'1)'

2

3

4

5

6

ze?o

ze?o

12.5

12.5

25.O

25.O

570

595

270

395

184

164

Ventical SPlitting
Vertical Splitting
Vertical SP! itting
Ventical SPlitting
Bnick Spa I I inE on

Bnick Spalling on

Face

Face

Comp.

Comp.

Pnism No.

Load

Eccen ini ci tY

(r-nm )

Fai I ure

Load

(KN )

Fa i I u¡-e

Mode

Table D.1 : Compnession Failure of Brickwo¡ k Pnisms
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F i gune D.1 : Bnickwor^k Prism

Eccentric Load

Figure D.2; Faìlur-e of Bnickwork

Prisms in Axial Compnession (Prism 1

at Rear^ )

ñ

@
Subjected to
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The minimum axial stness at which failune occut ned vvas 33'Olv1Pa

Table D.1) which may be chosen to be the cr^ushing stnength,(pr-ism 1

oc', of

of 8'.3

stness-strain nelationship may be assumed to be

o = E (e - K.n) (B'1)
mm

in wh ich E is 8.3 x 1 O3 f'¡Pa.
m

By using equations (8.2) and (B'3) in Appendix B, values of

the coeff icient, K, in equation (8.1) may be calculated fot- assumed

values of exponent, n. Values of K, together witl'l values of cr ushing

stnain, .c, aÉe shown in Table D.2 fon vanious n. Equation (B'1)

is plotted fon the exponents, nr in f igur e D'3'

the mortar in the bnickwork. 
(117) An initial mortan modulus

x 1o3MPa may be used (section 5.2.2.3') and the non-linea'n

-3

5.964

7.952

11.93

23.86

937 1

62.88

6. 104

1.759

Coefficient, KExponent, n Stnain, e (x10
c )

3.0

2.O

1.5

1,2

Tab le D .2: Constants in Equatiorr (B ' 1 ) for

Vanious ExPone:rttsr n

Although the r.otations of the brickwonk pnisms wene measuned

fon the cases of eccentric loading, a comparison could not be made

with calculated notation values because the small number^ of bric[<s

measuned (thr^ee bricks in each of two pnisms) was not a suf f icient

statistical sarnple (Section 5.2.2.3) '

lf an experimental pnognarn wene to be carnied out to test the

non-linean behavior-u- of mortar in bnickwonk, a sample of at least

six br-ickwonk pr isms should 'be tested axialiy to give an estimate of
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the rninimum

tested at each

the non-l i nean

axial crushing stnength , o 
c,

chosen eccentnicitY to give a

and six

statistical

411 .

prisms should be

companison w i th

montan analysis in PROGRAM P¡Eiì1'
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APPENDIX Ê.

I-HREE_D I MENS IONAL F IN ITE ELEMËI'JT

PROGRAM MFYDCP

E.1 INTRODUCTION

The stiffness of bnickwonk in bending and torsion may be affected

by discnete cracking at the br ick-mortar intenfaces on the bedjoints

and per-pends (Sections 6.2.2, 6.2.3 and 6.2.4). The effects of such'

cnacking may be calculated by using a three-dimensional finite element

analysis. Commercially-produced packages may be expensive, if obtain-'

able, and, bebause they ane usually genenal purpose prollnams' they

may nequine the capacity of virtual memony computers to solve lanS¡e

pnoblems, s€tVr of thinty elements on mone. However, lange problems

r^equiring three-dimensional isoparamett-ic elements may be solved using

conventional core-storage computens by tnansfenni ng data between

centnal memory and disk storage as requined. Such problems may 'oe

solved efficiently in terms of total calculation time by optimizing the

total data tnansfer time.

Cheung ancl yeo(126) descnibed a two-dime'nsional finite elerr.ent

pnogram in whiclr a front-solver n¡etho,l was used to minÎrnize the

amount of data requined in central memory at any time. Yeo extendeC

the niethod to a three-dimensional ver sion of the pnognanr, I'MFY3D" (trle

pnognam is unpublished) in which one of the Thnee displacemerìt vectors

at each node was calculated at each step of the fnont-Solven technique.

The modified vensic'n of PROGRANI MFY3D (PROGRAM MFYDCP' Section

E.3) also uses a f ront-solven me:thod, but all thnee nodal displacemertts

ane calculated ói eacl'r step by using 3x3 matrÎces thnour ghout the

equation r.eduction and back:;ut,stitution stages. The total e><ecution



tíme fon PROGRAM

was appnox imatelY

dedcr^ibed i n the

MFYDCP as detenmined

41 3.

by the pr ógnant contnol cands'

PROGRAM MFY3D for the Pnoblem

t he tota I execu t ion t i me f or

35 percent of that of

fol lowi ng section;

PROGRAM MFYDCP was appnoximately 40 minutes'

8.2 THE FINITE ELEMENT SUBDIVISION

Figunes E.l and E.2 show the finite element subdivision of the

panel nrodule descr-ibecl in Chapten 6 (f igune 6.1(b)). The elernents

close to the bnick-montan interfaces are specif ieci to be smaller than

othen elements so that displacements ar¡d stnesses may be calculated

accunately in the negions of possible cnacking'

Element definitions may be 5¡enenated by computer but the

uncouplecJ node,s on the per pends (Section 6.2.3, f igune E.2) must be

included into the input data f i le manua I ly '

The element subdivision shown in f igunes E. i and Ë.2 require

a f nont width of 24O equation coeff icients fon uncnacked br^ickwork.

The fnont width fon bnickwork with L¡oth penpend and bedjoint cr'ackirrg

is 258 coeff icients. PROGRAM MFYDCP (Section E '3) nequines a centnal

memory anea (o.t a CYBER 1?3 computer) of appnoximately 13OK (octal)

and requines a disk storage space of approximately 900,000 wonds'

A skeleton f low chart fon PROGRAIvI MËYDCP is presented in Section

Ê.4.
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E.3 LISTING OF PROGRAM MFYDCP

PROGRAM MFYDC P ( INPTJT =65, OUT PUT =65, TAPE 5=IN PUT, TAPE 6=OUT PUT' TAPE 2,
TAPE3, TAPE 4, TAPE20=0, TAPE21 =0 )

coMMoN /t4FY1/XX(20 ) , YY ( 20) ,ZZ(20)
cot{MON /MF'12 /WTF UN ( 3 ), VECTLC ( 3 )

cot'IMON RS ( 6O ), AVI ( 9 ), S ( 1 830 ), SHP ( 20 ), X ( 20 ), Y( 20 ),2 (20), Cl'J( 9 )

COMMON PIVOT(3, 3), PINVOT(3, 3),CFACT(3, 3),DFACT(3' 3)
coMMON DX( 20 ) , DY ( 20) ,DZ( 20 ) , U (20 ) , V(20 ) ,!Ù(20 ) , srGMA( 6 ) ' 

D( 12)

COMMON }IELDES ( 2O ) , NELDEF'( 2O )

COMMON DISP( 120,3),REACT( 9,3),NREACT( 9),MAT( 9O)
cot4ltloN LDEST(700),LDEF( 91, 20),C0RD(700' 3)
COMMON Ylf (5)'PR(5),V\IT(5),AYM(5),EXPN(5),GG(5)'APR(5)
coMMON SRS(260) ,SS( 15000) ,REQ(2000) 'LREa(300)
coMMoN NDrsp ( I zó, 4 ), DrspL ( Too, 3 ), NI,i( 260 ), Jül( 260 ), NDrsPz ( 200, ll )

coMMON XREQ ( 260 ), vnao( 260 ), ZREQ( 260 ), xRAQ( 260 ), YRAQ( 260 ), ZRAQ( 260 )

COMMON YMOD , PRAT , WEIGHT , AYI4OD , AGG , EXPAI'I , WX, I¡IY ,WZ 'XL ,YL ,ZL
COMMON NVABZ,MAXDIS,NIC,LIV,NI'IODZ,NSNId,NFN\'I,MAXNDZ,MAXNEL,NEL,NTN
COMMON MTM , MAXFhI, PlAXREQ, I'IAXNI,f , MAXNOD, MAXMAT , MAXSS

COMMON DETJ, NPUT, IPRlNC, NPRINC , NRULE, LIN, NSTOP

c0t4M0N L20 ,1.21, NK , i{MAX, KS , KF

**tÉi(t?t(*x*ti**xx*ttt(.:tlÊftÊtttç.xt*lÉ.¡tslç*¡{lt**l+ll*lç**lÊ*l(tÊltxxl(tt
*
*
*
t*

t?

t

*
*
*
*
lÉ

tç

lß

*
tß

*
*
l(

lÊ

*
*
*
*
It

*
t(

lÉ

*
lÍ
tß

tÍ
*

1

*
t
tß

IC

*
t3

*
*
It

*
*
*
*
t(

It
*
*
tÊ

*
*
*
lß

d'

lË

*
lç

*
*
lÊ

tÍ
*
*
*

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PROGRAM MFYDCP ]S A REVISED VERSION OF A

THREE-DIMENSIONAL FINTTE ELEMENT PROGRAM

( PROGRAM MFY3D ) WRITTEN BY MTCHAEL F YEO

AT THE UNIVERSITY OF' ADELAIDE,
SOUTH AUSTRALIA

TTI]S REV]SED VERSION WAS l,IRITTEN BY

DAVID C. PAYNE AS PART OF THE REQUTREMENTS

OF A DOCTOR OF PHILOSOPHY DEGREE AT THE

UNIVERSITY OF ADILAIDE ( SUBMITTED 1982 )

THE PROGRAI,Í USES 90 20-NODE ]SOPARAMETRIC

3-DIMENSIO¡IAL ELEMENTS TO ANALYSE THE

BENDING OF BRICKWORK IN STRETCI.IER BOND

AND HAS BEEN V.iR]TTEN FOR A CYBER 173
COMPUTER FOR I^JIIICH THE l'ilA;tIMLiM CM IS
15OK AND THE MAXI}lU}.{ DISK STORAGE SPACE

IS 900 000 rdoRDS

NO DOCUMENTATION ON INPUT DATA REQUIREMENTS

IS GIVEN IN THIS PROGRAM

THE i 7 LTNES OF COI'{MON STATEMENTS LTSTED

ABOVE ARE REQUIRED IN ALL SUBROUTINES EXCEPT

SUBROUTTNE CLOKIT(N). FOR CONVENTINCE IN
LISTING THE FROGRAM, THE COI'IMON STATEMENTS

ARE ABBREVIATED TO THE FOLLOWING----

*II INSERT 17 LINES OF CO}'fMON STATEMENTS
HERE rÊ*

Itt(*tÉttlÊtÉ*lt*tt*lt*l(ttl+*¡ç**tËlÊlß**tt*ttt(*Tcl(*ä'lç*lt*lÊt(*lç+****lf*
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c
c
c
c

INITIALIZE PNOGRAM VARIABLES

I

.t

MAXRCT=0
MA XF!,I=0
NRULE =l
MAXMAT = 1

NPUT =0
IPR INC =0
NPR INC =0
MAXNEL=0
MAXNOD=0
NVABZ =l
NN0DZ. =20
MAXSS=15000
MAXREQ=2000
MAXDï S =0
MAXNDZ =0
MAXNV,I =26 0
CALL CLOKIT( 1 )
CALL INDAT,
CALL CLOKIT(2)
CALL PREFNT
CALL CLoKTT(3)
CALL STIFN
CALL CLOKIT(4)
CALL FRONT
cALL CLOKTT(5)
CALL BAKSUB
CALL CLOKIT(6)
CALL STRESS
STOP
END
SUBROUTTNE ASMBLE

DO 26 KK = 1,NK
N 1=0
D0 24 INOD=1'NNODZ
fDES =NELDES ( INoD )
I1=(IDES-'l )TSNVABZ
I2=(fNOD-1 )rßNVABZ
IF(KK.NE.1) GO TO 4

D0 I I=1 
'NVABZ

SRS( I 1 +I )=SRS ( I 1 +I )+RS ( I2+I )

3 CoNTINUE
4 DO 23 JNOD=INOD'NNODZ

JDES=NELDES ( JN0D )

I3=(JDES-1 )¡ÊNVABZ
I4=(JN0D-1 )*NVABZ
DO 22 I=1'NVABZ

IT ]NSERT 17 LINES OF COMMON STATEMENTS HERE IIII

c
c
c
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c
c
c

ISS =I 1 +I
N!,1(lSS)=1
IS=I2+I
DO 20 J=1, NVABZ
JSS = I 3+J
IF(TDES.GT.JDES) GO TO 19

JS=I4+J
IF ( IS. GT. JS ) GO TO 20
N1=N1+1
L0C=JW( ISS )+"ISS-ISS
rF(LOc.LT.KS.0R.LOC.GT.KF) G0 TO 20
LOC =L0C-KS+ 1

SS (Loc ) =SS (L0C ) +S (N 1 )
G0 T0 20

19 N1=N1+1
L0C=JW( JSS )+ISS-JSS
IF(LOC.LT.KS.OR.LOC.GT.KF) GO TO 20
L0C=L0C-KS+'l
SS (L0C ) =SS (LoC ) +S (N'l )

20 CONTÏNUE
22 CONTINUE
23 CONTINUE
24 CONTINUE

IF(KK.EQ.NK) GO TO 26
BUFFER OUT(L21, 1 ) (SS( 1 ),SS(I"IAXSS))
rF(uNrr(L21)) 11, 12,13

1 1 CONTINUE
BUFFER IN(L20, 1 ) (SS(1 ),SS(MAXSS))
KS =KS +MÀXSS
KF =KF+MAXSSrF(uNrr(L20)) 14, 12,13

1 4 CONTINUE
26 CONTTNUE

CALL RESETT
RETUR N

12 STOP
13 SToP

END
SUBROUTINE BAKSUB

** ]NSERT 17 LINES OF COMMON STATEMENTS HERE **

D0 300 NEL=1 
'MAXNEL

MEL =MAXNEL+1 -NEL
!tRrrE ( 6, 1005 ) MFiL

DO 299 IN='l , NNODZ

N 1 =NNODZ+1 -IN
N IC =-LDEF ( MEL , Ìl'l )
rF(t{rc.LE.o) Go ro 299
IF(NTN.N
BACKS PAC

READ(2)
BACI(S PAC

) G0 TO 219

, NTN, ftEQ, LREQ

E.0
E2
MTM

E?.
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21 9 MTM=MTM-NVABZ
NSNW=LREQ(MTla+1 )
NFNW=LREQ(MTl4+2 )
LIV=LREQ(MTM+3 )
NTN =NTN-NVABZ
D0 23O f = l,NVABZ

C OVERI\IRITE XREQ I,TITH REDUCED RIGHT HAND SIDE COEFFTCIENTS

NTN =NTN + 1

XREQ(I)=REQ(NTN)
230 CoNTTNUE

C EXTRACT MATR]X PTVOT FROM REQ

N PIVOT =NT
D0 221 J
D0 222 K

VABZ +3 x ( LI V -NF N¡¡\I )

, NVABZ

, NVABZ
NPIVOT=NPIVOT+1
PINVOT ( J , K ) =REQ ( NPIVOT )

REQ(NPIVOT)=0.0
222 CONTINUE
221 CONTINUE

N2=NTN_NVABZ+3 r{ ( NSNW"_}IFNt'I_1 )
NTN =N 2
D0 22ç-t J = NSNlrl, NF Nl"l 

' 
NVABZ

C EXTRACT MATRIX FOR BACKSUBST]TUTION FROM REQ

DO 226 I = 1, NVABZ
D0 227 K = 1, NVABZ

C OVERWRITE MATRIX CFACT
N2=N2+1
CFAcT(I,K)=REQ(N2)

227 CONTÏNUE
226 CONTINUE

DO 228 L = 1'NVABZ
D0 2?-9 r - I,NVABZ
XREQ(L ) =XREQ(L ) -CFACT (L, I ) xSRS ( J+I-1 )

229 CONTINUE
228 CONTINUE
225 CONTINUE

D0 231 f - 1'NVABZ
SMULT=0.
D0 232 J = I,NVABZ
SMULT =SM ULT+PIN VOT ( I , J ) r(XRE Q ( J )

232 CoNTTNUE
SRS(LIV+I ) =Sl4ULT
DISPL(NIC,I)=Sl'IULT

231 CoNTTNUE
LIV=L I V+ 1

CALI, POSTCN
299 CONTTNUE

300 cONTTNUE
C RESTORE ELEMENT.S OF CFACT TO ZERO

D0 233 r
D0 234 J
CFACT(I,J

234 CoNTTNUE
233 CoNTTNUE

RETURN

,I'IVABZ
, NVABZ
.0

N-N
-1

=l

-1-l

=1
)=0

1OO5 FORMAT(///,5X, lBHREACTIONS ELEMENT,I3)
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c

c
c
c
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END

BLOCK DATA

** INSERT 17 LINES OF COMMON STATEMENTS HERE *II

DATA XXl1 . 0, 1. 0, 1. O, O. O, -1 . O,-1 . 0, -1 . 0, 0. 0, 1. 0, 1. 0, -1 . 0, -1 . 0, 1 . 0,
1 1 . O , 1 . 0 , 0 . 0 , - 1 . 0 , - 1 . o , - 1 " 0 , 0 . 0 /
DATA yr/-1. 0, 0. O, 1. O, 1. 0, 1. O, O. Oo -1 . 0,-1 . 0,-1 . 0, 1. 0, 1. 0, -1 . 0, -1 . C,

1 0.0,1.0,1.0,1.0,0.0,-1 .0,-1 "O/
DATA ZZ/ -1. O, -1 . O, -1 . 0, -1 . O,-1 . 0, -1 . 0, -1 . 0, -1 . 0, 0. 0, 0. 0, 0. 0n 0. 0,

1 1.0,1.0, 1.0,1.0,1.0,1.0,1.0"1.O/
DATA WTFUN/o. 55555555556, O. 88BSBB8BB89, 0.55555555556/
DATA VECTLC/ -O,77459666924, O. 0, 0.77 \59666924/
END
SUBROUTINE CHK(N)

*II TNSERT 1? LINES OF COMMON STATEMENTS HERE *Iê

c
c

c
c
c
c

10 IF(N.GE.KS.AI'ID.N
BUF'FER OUT (L21 , 1

IF(UNIT(121)) 11

11 CONTINUE
BUFFER IN (L20, 1 )

14

20

12
13

.LE.KF) GO TO 20
) (SS(1),SS(MAXSS))
,12,13

(ss(1),ss(MAXSS))
KS =KS+MAXSS
KF =KF+MA XSS
rF(uNrr(L20) )'14, 12, 13
CON T TNUE
G0 TO 10
N:N-KS+ 1

RET URN
STOP
STOP
END
SUBROUTTNE CLOKIT(N)

c
c

CALL SECOND(ASEOS)
IÙRITE ( 6, l OOO ) N, ASECS

1000 F0RMAT ( 1H 0, 5X, r'L0CATr0N
RETU RN

END
SUBROUTINE DMAT(I1)

* , I3 , 10X, tÊTIME *,F10.3,* SECS*)

** INSERT 17 LINES OF COI'ÍMON STATEMENTS HERE *IÊ

c
c
c

YM0D=YM(I1)
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PRAT=PR(I'l )

1,{EIcHT=WT(I1)
AYM0D=AYM(I1)
AGG=GG(I1)
EXPAN=EXPN(I1)
APRAT=ÁPR(I1)
IF ( AYM0D. EQ. 0. 0 ) AYM0D=Yl4oD
IF (APRAT. EQ. 0. 0) APRAT=PRAT
IF(AGG.EQ. O. O) AGG=YMOD / (2.0x( 1 . O+PRAT) )
A1=1.0+PRAT
A2=YM0D,/AYM0D
A3= ( 1 . O-PRAT-2. Ox A2* APRATxAPRAT )

A4=A 1 *43
:Yt4OD* ( 1 . O-A2rÉAPRATnAPRAT ) /44
= YMOD # ( PRAT +A 2n APRAT *APRAT ) / A4

=YM0D*APRAT/43
=D(2)
=D(1)
=D(3)
=D(3)

D(B)=D(6)
D(9 )=AYM0DT( 1 . 0-'PRAT)/43
D( 1O )=YMOD/ ( 2. 0x( 1 . 0+PRAT) )
D(11)=AcG
D(12)=AGG
RE TUR N

END
SUBROUT]NE FRONT

IÍI( INSERT 17 LINES OF COMMON STATEI,IENTS HERE 4*

DIMENSION CIS(3, 3),CSJ(3, 3)
RE1,{IND 2
REIiIND 4

D0 1 I=i,MAXFW
NW(I)=0

1 CONTINUE
JW(1)=1
D0 2 I=2'MAXF!Ù
Jl,ü ( I ) = JW ( I-1 ) +MAXFI'I+2-I

2 CONTINIJIi
CALL SETUP
MTM =0
l'!TN =0
D0 U2 NEL=1 

'MAXNELREAD(4) S, RS, NELDEF, NELDES
IÍRITE ( 6, 13 ) NEL

13 FORMAT( 1ûX,*LAST EL. READ N0. n, 15)
CALL CLOKIT(7)
CALL ASMBLE
CALL CLOKIT(B)
NSNr,^l = 1

NF NW =MA XFtr'I

D(1)
D(2)
D(3)
D(4)
D(5)
D(6)
D(7)

c
c
c



c

c

c
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D0 ¡iu NOD=1,NN0DZ
NIC=-.NELDEF(NOD)
rF (Nrc. LE. o) GO To 40
LIN=NELDES(NOD)

SET START FLAG NSNI,Í FOR NODE VECTOR NW ( FIRST NON.ZERO ROVü )
g rF(Nhr(NSNW).ilE" o) G0 T0 1o

NSNII =NSNV{+ 1

G0T0g
SET FINISH FLAG NFNW FOR NODE VECTOR N!,I ( LAST NON-ZERO ROW )

1O TF(NW(NFNW).NE.O) GO TO 11

NF NÏ'l =NF NW- 1

G0 TO 10
START AND FINISH FI,AGS FOR NODE NIC ARE SET

11 CALL PRECON
LIV=(LIN-1 )*NVABZ
N13=NTN+1
IF ( ( NTN+ (NFNW+2-NSNl,r) x3 ) . LT. MAXREQ) G0 T0 12

lrIR ITE (2.) MTM , NTN , RE Q , LR E Q

MTM =0
NTN =0
N13=1

EXTRACT THREE EQUATTONS AT NODE NIC FROI'Í STT}-FNESS MATRTX SS

STORE EACH RO'rlÙ IN MATRTCES XREQ, YREQ ZREQ IN TURN

START BY STORTNG GROUPS OF THREE DOI/IN IICOLUM}¡II UP TO PIVOT MATRIX
1 2 NXN=0

NYN =0
NZll=0
ïREQ= 1

rF( (LIV+1).8Q. NSNI^I) c0 TO B

FIRST NON-ZERO MATRIX IS ON DIAGONAL

c
c

f=N
I).EQ
PLI ES

c

c

DO 24 TA
IF(NW(IA

NhI EQ O ÏM
DO 25 I = 1'NVABZ
II =IAI+I-1
co ro ( 26,27 ,28 ) , T

26 DO 29 J = l, NVABZ
NXN=NXN+1
l'f $=JW ( II ) +LIV-II+J
CALL CHK(N5)
xREQ(NXN)=SS(N5)
IF (NXN. GT.MAXNltr) WRITE ( 6' 1060 )
ss(N5)=0.0

29 CONTINUE
c0 T0 25

2T DO 30 K = 1, NVABZ
NYN =NYN + 1

|'f S=JW( II )+LIV-II+K
CALL CHK(N5)
YREQ(NYN)=SS(N5)
IF(NYN. GT.MAXNW) WRITE(6, 1O6O)
ss(N5)=0.0

3O CONTINUE
c0 T0 25

28 D0 31 L = 1, NVABZ
NZ N=NZ N+ 1

SNW, LIV,3
.0) G0 T0 62
ROi"lS AND COLUMNS IAI,IAÏ+1 , TAI+2 ARE ALL ZERO
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N5=Jt'tr( II )+LIV-II+L
CALL CHK(N5)
ZREQ(NZN)=SS(N5)
ss(N5)=0.0

3 1 CONTINUE
25 CONTINUE

GO T0 24
62 DO 63 JF = 'l 

' 
NVABZ

NXN =NXN + 1

NYN =NYN + 1

NZ N=NZ I'l+'l
XREQ( NXN ) =YREQ( NYN ) =ZREQ( NZN ) =0. 0

63 CONTINUE
2II CONTINLIE

IREQ=llXN+1
C STORE PIVOT MATRIX
C FIRST STORE FIRST ROW AND THEN REMAINDER OF MATRIX XREQ

C THEN STORE SECOND ROW PAST DIAGONAL AI'ID REMAINDER OF MATRIX YREQ

C FTNALLY STORE THTRD ROI,í AT DIAGONAI, AND REMAINDER OF MATRIX ZREQ

B D0 32 J = 1'NVABZ
fï:LlV+J
D0 36 K = J, N\¡frBZ
frl!:JI{(rI)+Íç-¿
CALL CHI((N5)
c0 To ( 33,34, 35 ) , J

33 NXN=NXN+'l
XREQ(NXN)=0.
PIVOT(J,K)=SS(N5)
ss(N5)=0.0
co ro ( 36,37,38 ),K

37 NYN=NYN+1
PIVOT (K, J) =PIVOT ( J' K)
YREQ(NYN)=0.0
GO 1',0 36

38 NZN=NZN+1
PIVOT (K, J )=PIVOT ( J' K)
ZREQ(NZN)=0.
Go ro 36

34 NYN=NYN+1
YREQ(NYN)=0.0
PiVOT(J,K)=SS(N5)
ss(N5)=0.0
rF (K. EQ. J ) Go rO 36
NZ N=NZ N+ 1

PIVOT (K, J ) =PIVOT (.1, K)
ZREQ(NZN)=0,
G0 TO 36

35 NZN=NZN+1
ZREQ(NZN)=0.
PIVOT(J,K)=SS(N5)
ss(N5)=0.0

36 CONTINUE
C STORE REMAINDER OF ROl{ ( LIV+J ) TN ARRAYS XREQ,YREQ'ZREQ

IF((LIV+NVABZ) .EQ.NFNT¡l) G0 TO 32
C PTVOT IS LAST NON.ZERO MATRIX ON DTAGONAL

N6=JW( II )+NVABZ-J+1
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c
c
c
c

N7=JW(II).¡NFNW-II
DO 39 N18 = N6'NZ
NB=N 1 g

GO To (41,43,44),J
41 NXN=llXN+1

CALL CHK(N8)
xREQ(NXN)=SS(Ng)
IF ( NXN . GT. MAXNi,f ) WRITE ( 6, 1O6O )

SS(NB)=0.0
co T0 39

43 NYN=NYN+1
CALL CHK(N8)
YREQ(NYN)=SS(Ng)
IF (NYN. GT.MAXNW) WRITE(6, 1O6O)
SS(N8)=0.0
c0 T0 39

44 NZ N=NZl'l+1
CALI, CHK(NB)
zREQ(NZN)=SS(N8)
rF ( l¡z N . GT . Ì,f AXNW ) V,JR rrE ( 6 , 1 0 6 0 )

ss(NB)=0.0
39 CONTTNUE

32 CONTTNUE
LEFT HAND SIDE OF THREE EQUATIONS FOR NODE NIC ARE NOI'I STORED

IN CORE IN ARRAYS XREQ, YREQ AND ZREQ

SORT COEFFICIENTS FOR ALL 3X3 MATRICES AND STORE AS GROUPS OF

1X9 IN ARRAY REQ FOR STORAGE ON TAPE2
IR=(LIV+1 -NSNW) /3
rF ( rR. EQ. o) GO T0 51

IR EQ O ÍMPLIES FIRST NON-ZERO MATRIX FOR EQUATIONS AT NODE NiC

IS ON MAIN DIAGONAL
DO 45 IL = 1,IR
IN = IL-'l
IS - IN xNVABZ

c
c

DO 46
IV= IS+
D0 47
NTN=NT

TK
IK
1T
N.r 1

= 1 , NVABZ

= 1, NVABZ

(48,49,50),rT
TN)=XREQ(IV)

4T

GO

48 RE

GO

TO

O(N
TO

c

49 REQ(NTN)=YREQ(IV)
co T0 47

5O REQ(TITN)=ZREQ(TV)
47 CONTINUE
46 CONTINUE
45 CONTINUE

STORE PTVOT POSITICNS IN REQ AS ALL ZIRO

5'l D0 5?- TJ = 1'NVABZ
D0 5B Ji = 1, NVABZ.

IF(IJ.EQ. 1.AND. JI.EQ. 1 ) Ng=NTN
NTN =NTN + 1

REQ(NTN)=0.0
58 COIIT ÏNUE
52 CONTINUE

STORE REMAINDER OF 3X3 MATRICES PAST PIVOT IN REQc
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IF(
N1=
DO

IRE
DO

DO

NVABZ).Ea.rrFNW) G0 TO 53

VABZ+ 1

= Nl,IIFNW'I'IVABZ
Qr-N VAB Z

= 1 , Ì'IVABZ

= 1, NVABZ

LL=IREQ+KK-'l
NT N =NTN+ 1

co ro (55 ,56,57 ) , JJ
55 REQ(NTN)=XREa(LL)

G0 TO 60
56 REQ(NTN)=YREO(LL)

G0 TO 60
5? REQ(NTN)=zREQ(LL)
6O CONTINUE
59 CONTÏNUE
5\ CONTINUE
53 D0 61 IJ = l,NVABZ

NW(LIV+IJ)=0
NTN=NTN+1

STORE RIGHT HAND SIDE OF TI.IREE EQUATIOTIS FOR NODE NiC

REQ(NTN)=SRS(LIV+IJ)
SET RIGHT-HAÑD SIDE I'IATRIX SRS ELEMENTS TO ZERO

SRS(LIV+IJ)=0.
61 CONTINUE

LREQ (MTM+1 ) =NSNI/'l
LR E Q ( l'{TM +2 ) = N}- N'rl

LREQ(IITM+J)=LIV
l"lTM =MTM+l'IVABZ

RESET ARRAY SS FOR EQUATION REDUCTION

CALL RESETT
REDUCE SET OF TI]REE EQUÀTIONS TO ELIMINATE NODE NIC

CALCULÁTE THE INVERSE OF MATRIX PIVOT
CALCULATE THE DET'ERMINANT OF MATRIX PIVOT

DprvoT =prvoT ( 1, 1 ) * ( prvor (2, 2)xprvoT ( 3, 3 ) -PrVOr' ( 2, 3 ) *PrvoT ( 3' 2) )

1 -PIVOT (2,1)* ( PIVOT (',i , 2 ) *PIVOT ( 3, 3 ) -PIVO',I ( 1 , 3 ) I'PIVtlT ( 3 ' 2) )
2 +PIVOT(3, 1)x(PivoT (1,2)*PIVOT (2,3)-PIVOT( 1,3)*ÊPIVOT (2,2))

IF'(DPIVOl'.EQ"O. O) WRTTE(6, 1O5O) NEL'NIC
rF(DPrVoT.8Q.0. 0 ) S'i0P

CALCULATE COFACTORS FOR ]NVERSE MATRIX PINVOT

COFACTl =PIVOT (2,2)xPIVOT (3, 3)-PIVOT (2, 3)*PIVOT (3'2)
COFACT2=PIVOT ( 1, 1 )'ÊPIVOT(3, 3)-PIVOT ( 1, 3)*PiVOT(3' 1 )

COFACT3=PIVOT ( 1 , 1 ) *PIVOT (2.2) -PIVOT' (1' ,2) r{PIV0T (2 
' 1)

coFAcT4=-PIVOT (2, 1)*PiVOT (3, 3)+PIVOT (2,3)*PIV0T (3, 1 )

COFACT5=-PIVOTt f , f IxPIVOT (3,2)+PIVOT( 1, 2)*PIVOT(3' 1 )

COFACT6=PIVOT (2,1)".PIVOT ( 3, 2) -PIVOT (2,2) *PIVOT ( 3 ' 
'1 )

CALCLIL.I\TE MATRIX PINVOT----INVERSE OF MATRIX PIVOl
PINVOT ( 1, 1 )=C0FACT 1 /DPIVOT
PINVOT(2, 1 )=PINVOT ( 1, 2):COFACT4/DPIV0T
PINVOT (3, 1 )=PINVOT ('i, 3)=C0FltCT6/DPIVOT
PINVOT (2, 2)= C0FACT2/DP IVOT
PINVOT (3, 2)= PINVOT ( 2, 3 ) = COFACT5/DPIVOT
PIN\¡OT ( 3, 3 ) = COFACT3/DPIVOT
N2=0

STORE MATR]X CTS NEEDED FOR REDUCTION OF EQLIATIONS AT NODE NTC

DO 64 J = NSìüW , NF Nl'l , ItrVABZ

( LIV+
LI V+Ì'l
54 II
Q=lRE
59 JJ
60 KK

c

c
c
c

c

c

c
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c

IF(J.EQ.(LIV+1)) Go T0 68

IF(J.GT.(LIV+NVABZ)) Go T0 65
D0 66 I = 1'NVABZ
N2=N2+1
CIS(1,I)=XREQ(N2)
CIS(2, I)=YREQ(N2)
CIS(3,I)=ZREQ(N2)

66 CONTTNUE
c0 To 166

65 CONT]NUE
DO 67 K = I,NVABZ
N2=N2+1
C IS ( K , 1 ) = XRE Q ( N 2 )
CIS(K,2)=YREO(N2)
CIS (K ,3)=ZREQ(N2)

67 CONTINUE
166 CONTINUE

POSTMULT]PLY CIS BY PINVOT
DO69I
DOTOK
DO 71 L
CFACT ( I

MATR IX
94 JJ =
1) EQ JJ

= 1 , NVABZ

= 1, NVAtsZ

= 1 , NVABZ

, K ) = CFACT ( I, K) +CIS ( I o L ) *PINVOT (L, K )

c

71 CONTINUE
7O CONTINUE
69 coNTil'¡uE

N 3 =N 2-NVAB Z

N4 =0
STORE

DO

(LIV+
IF(

CSJ NEEDED FOR REDUCTTON OF EQUATIONS

.I , NF Nl¡l, NVABZ
II"IPLIES PIVOT IS AT JJ

IV+1 ) ) G0 To 75JJ. EQ. (L

c

IF ( JJ. cT. (LIV+NVABZ ) ) G0 T0 73
D0 TU I = 1'I'¡VABZ
N3=N3+1
CSJ(I,1)=XREQ(N3)
cs J ( I , 2 ) = YRE Q ( N 3 )
CS J ( I ,3) =ZRE a ( N 3 )

74 CONTINUE
G0 T0 T2

73 CONTINUE
DO 76 KK = I'NVABZ
N3=N3+1
csJ( 1, KK)=XREQ(N3)
CSJ(2,KK)=YREQ(N3)
CSJ(3,KK)=ZREQ(N3)

T6 CONTINUE
72 CONTINUE

PREMULTIPLY CSJ BY MATRIX CFACT

LB

LA
LB
LC

(LA,

7T
78
79

ACT

DO

DO

DO

DF

1,
1,
1,
)=

NVABZ
NVABZ
NVAB Z

DFACT (LA, LB) +CFACT (LA, LC ) rßCSJ (LC' LB)

79 CONTINUE
78 CONTINUE
77 CONTINUE

C STORE VALUES OF DFACT TN ARRAYS XRAQ,YRAQ,ZRAQ
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C AND RESET MATRTX DFACT TO ZERO
D0 B0 LD = I,NVABZ
N4=N4+1
xRAQ(Nrt)=DFACT ( 1, LD)
YRAQ(N4)=DFACT(2,LD)

. ZRAQ(N4)=DFACT (3, LD)
.DFACT( 1, LD):DFACT (2,LD)=DFACT(3, LD)=0.

8O CONTINUE
G0 T0 94

75 N3=N3+NVABZ
94 CONTINUE

ELEMENTS OF STTFFNESS I'{ATRTX SS

+NVABZ -1
1 LL = J,JA

JL =LL-J + 1

DO B2 LK = LL,NFNW
D0 83 LJ = l,NVABZ
IF(LK. NE. (LIV+LJ) ) G0 T0 83
c0 To 82

B3 CONTINUE
frl!=JW(LL )+LK-LL
CALL CHI((N5)

N6=0
N7=1
N8=2

REDUCE
JA =J
D08

c

G

85N
S

G

0T0
6=N 6
S(N5
0To

(95,86,87),JL
+1
)=SS (N5)-XRAQ(N6)

82

c
c

B6 N7=N7+ 1

SS (N5) =SS (N5) -YRAQ(NZ )
GO TO 82

B7 N8=N8+1
SS (N5 )=sS (N5 )-zRAQ(N8)

82 CONT]NUE
81 CONTINUE

REDUCE RTGHT HAND SIDE OF TTIREE EQUATIONS FOR NODE I\I]C
EXTRACT THE THREE ELEMEI'ITS OF }.IATRII' SRS FOR NODE NIC

N 1 0=NTN-NVABZ
DO 88 LS = I,NVABZ
JP=J+LS-1
D0 89 LT = 1, NVABZ
N.{ =lt 10+LT
SRS( JP ) =SRS ( JP ) -CFACT (LS' LT ) råREQ(NA )

89 CONT ]NLIE
88 CONTTNUE

RESET MATRICES CFACT AhID DFACT TO ZERO
DO 92 IK = I,NVABZ
D0 93 JK = 1, NVABZ
CFACT(IK,JK)=0.0
DFACT( IK, JK ) =0. 0

93 CONTINUE
92 CONTINUE

GO TO 64
68 CONTINUE

N 2 =N 2-rN VAB Z

c
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-4 CONTINUE

C STORE INVERSE OF MATRIX PIVOT (PINVOT) IN ARRAY REQ

DO 90 JS = I,NVABZ
D0 91 JT = I,NVABZ
N9=N 9+ 1

REQ(N9 ) =PINVoT ( JS' JT )

91 .CONTÏNUE
90 CONTINUE

C ALL EQUATIONS HAVE NOÌ,ü BEEN REDUCED BY EQUATIONS FOR NODE NIC

C THREE EQUATIONS FOR NODE NIC HAVE BEEN STORED IN ARRAY REQ

CALL RESETT
40 CONTTNUE

CALL CLOKIT(9)
42 CONTINUE

RETUR N

1O5O FORM AT(/ /5N,26HZERO DETERMINANT FOR PIVOT,/,5X,
1 1 lHELEMENT N0. , r5, / ,5X, BHNODE NO. ' i8)

1O6O FORM AT(/ /5X,36HMATRICES XREQ,XRAQ,ETC.ARE TOO SMALL)

END
SUBROUTINE INDAT

IIII INSERT 17 LTNES OF COMI"ION STATEMENTS HERE *If

DIMENSION HEAD(9)
READ(5, 1002) rcoDE, NCODE

!tRrrE(6, 1oB3) rCoDE, NCoDE

IF ( ICODE . EQ. 99 ) RETURN

GO TO( 100, 150,200 ,25A,300, 350, 400 ) , rcODE
READ( 5, 1002) TCODE, NCODE, HEAD

IF(ICODE.NE.O) GO TO 2
TdRITE ( 6, 1003 ) HE/\D
G0 T0 100
READ(5, 1OO4 ) IPRTNC, NPRTNC, NPUT

1'lRrrE(6, 1oo5) TpnTNC,NFRTNC,NPUT
GOTOl
co ro(201,210),NCoDE
READ ( 5, 1 O06 ) ICODE, NCODE, NMAT, YMOI-r, PRAT,WEIGHT, EXPAN, AYMOD, APRAT'

c
c
c

1

200
201

2

100

150

1 acc
IF ( ICODE. NE. O ) GO TO 2
l,JRITE ( 6, 1OO7 ) NMAl', YMOD, PRAT,WETGIiT, EXPAN, AYI'í0D, APRAT, AGG

YM(NMAT)=YMOD
PR(NMAT)=PRAT
!.¡T(NMAT )=WEIGHT
EXPN(NMAT)=EXPAN
AYM(NMAT)=AYMOD
APR(NMAT)=APRAT
cc(NMAT)=AGG
G0 T0 201

210 READ(5, 1014 ) ICODE, NCODE, NMAT, (NW(I), I=1 ' 14)
IF ( TCODE. NE. O ) GO TO 2

WRITE(6,'1015) NMAT, (Nv\r(I), I=1, 14)
IF (MAXMAT. LT. NMAT) MAXMAT=NMAT

D0 220 I=1,11{
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NIC=NW(I)
rF(Nrc.EQ.0) G0 TO 210
MAT(NIC)=NMAT

220 CONTINUE
c0 T0 210

250 READ(5, 1OO6) rC0DE,NC0DE,NrC, C0X,COY'C0Z
IF ( ICODË. NE. O) GO TO 2

hTRITE(6, 1007) NIC, COX, C0Y,C0Z
C0RD(NIC, 1 )=C0X
C0RD(NIC, l)=C0Y
CORD(NIC, 3 ) =COZ
c0 T0 250

300 NEL=0
301 NEL=NEL+1

READ(5, 101 8) IC0DE, NCODE, (LDEF(NEL, I), I=1 ' 14)
I!'(rcODE.NE.o) G0 T0 302
READ(5, 1OO4) (LDEF(NEL, I), f=15'20)
WRITE(6, 1015) NEL, (LDEF(NEL, I),I=1, 20)
IIAXNEL=NEL
GO T0 301

302 D0 305 NEL= 1 
' 
I4AXNEL

DO 304 LN0D=1, NNODZ

IF(MAXNOD. IT. LDEF(NEL, LNOD) ) MAXNOD=LDEF(NEL, LNOD)

304 C0NTTNUE

305 C0NTTNUE
GOTO2

350 NCOUNT=0
Go ro(351,360)'NCODE

351 NCOUNT=NC0UNT+1
READ (5, 1026) ICODE, NCODE, (NDISP(NCOUNT, T), T=1, 4),

1 (DISP(NC0UNT, I), I=1 , l)
rF(rcoDE.NE.0) G0 T0 2

14RITE (6, 1A27) (NDISP(NCOUNT, r),I=1, 4), (DISP(NC0UNT, I), I=1, l)
MAXDiS=NC0UNT
G0 TO 351

360 READ(5, lOOB) ICODE,NCODE,NFIXX,NFIXY,NFIXZ, (NW(I),I=1 
' 14)

rF(rcoDE.IIE.o) GO To 2

WRITE(6, 1009) NFIXX,NFIXY,NFIXZ, (NW(I), I=1 ' 14)
D0 365 f=1,14
rF(NW(r).EQ.0) Go T0 360
N C OUNT =NC 0U N 1'+ 1

NDISpZ ( IIC0UNT, 4 ) =NW( I )

NDISPZ ( NCOUNT, 1 ) =NFIXX
NDISPZ ( NCOUNT, 2 ) =NF IXY
NDIST'Z ( NC0UNT, I ) =NF IXZ
MAXNDZ =NC0UNT

365 C0NTTNUE
G0 TO 360

400 NC0UNT=0
401 NCOUl.lT=NC0UNT+1

READ( 5, 1 006 ) ICODE, ¡tCODE, NREACT ( NCOUNT ), ( RERCT (NC0UNT, I ), I= 1, 3)
IF ( ICODE. NE. O ) GO TO 2
lrIRrrE(6, 1007 ) NREACT(NCOUNT) , (REACT(NC0UNT, r) , r=1,3)
MAXRCT=NC0UNT
G0 TO 401

1002 FORMAT(2r2, 'lX, 9AB)
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1 003
100 4

1 005
100 6

1 007
1008
100 g

101 4
101 5

1018
1026
1027
1 083

FoRMAT ( 6X, gAg )
FORMAT(10X,6I5)
FORMAT(11X,6I5)
FORMAT (2T.2, 1X, I5, 7E 10. 4)
FORMAT(6X, r5,7810.3)
FORMAT (2r2. 1X, 3r 1, 2X, 1 4r5 )

FORMAT ( 6X, 3r 1, 2X, 1 4r5 )
!-oRMAT(2r2,1X,15r5)
FORMAT(6X, i 5r5, /,'l 1X, 6r5)
FoRMAT(2Í.2,6X,14r5)
FORMAT (2r2, 1X, 3r 1, 2X,r5, 5X, 3F 10. 5)
FORMAT(6X, 3r 1,2X,r5, 5X, 3F 10. 5)
FORMAT(1X,2I2)
END
SUBROUTINE JACOB(I1)

*II INSERT 17 LINES OF COMMON STATEMENTS HERE **
c
c
c

DO 5 I=1,9 ,

chl(I)=0.0
5 CONTINUE

A1=1.0-XLlÊXL
A2=1.O-YLl(YL
A3=1 . O-ZL*ZL
D0 100 I=1,20
A7=XL*XX(I)+1.0
A8=YL*YY(I)+1.0
A9=ZL*ZZ(f)+1.0
GO TO ( 10, 20, '10 , 30, 10, 20, 10, 30, 40, 40 ,

1 4C,40,10,20, 10,30, 10,20, 10,30)
10 A6=47+AB+49-5.0

DX ( I ) =A8xA9 # ( A6+47 ) nXX ( I)x o . 125
DY (I )=47*A9x( A6+48)*YY( I )*0. 125
DZ ( I ) :Alx[$x ( A6+A 9)x zZ( I ) x0. 1 25
SHP ( I ) =A6xA7*AB*49 x 0 . 125
G0 TO 90

20 DX(l )=42+tA9r(XX (I )r(0. 25
DY ( I ) =-47*49 r(YLrç0. 5
DZ ( I ) =A2* AT xZZ (T.) x 0, 25
SHP ( I ) =A2ttAJrÊ49n0' 25
G0 TO 90

30 DX( I )=-ABxA9*XLrË0. 5
DY ( I ) =A 1 xAgrÊYY ( I ) x0. 25
DZ ( I )=A 1 xA8*ZZ (I)x0, 25
SHP ( I ) =A 1 xASxA9tê0' 25
G0 TO 90

40 DX(I)=43*AB*XX(I)*0. 25
DY ( r ) =Alx{7*YY ( I ) *0. 25
DZ(I)=-AB*47*ZLxO.5
SHP(I )=Àlx[7xA3x0' 25

90 CI,¡( 1 )=Cl^l( 1 )+DX(l )rÊX(I )
cW( 2 ) =CN (2)+DX ( I ) *Y ( I )
CV\r( 3 ) =CI'I( 3 )+DX( I ) rÉZ ( I )

I
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CI^¡( 4 ) =Cl,l( 4 )+DY ( I )*X ( I )

cI'I( 5 ) =CW 
( 5 )+DY ( I ) ttY ( I )

chl( 6 ) =c!'l( 6 )+DY ( I ) xZ ( I )

CI'I( 7 ) =CW ( 7 )+DZ ( I ) *x ( I )
Chl( B )=Cll( I )+DZ ( I ) *Y ( I )

Cl,'¡ ( 9 ) = Cl"l ( 9 ) +DZ ( I ) x Z ( I )

1OO CONTTNLIE
DETJ=CW ( 1 )t3 ( cl.l( 5 ) tCW( 9 )-cW( B ) x CW ( 6 ) ) +

1 clu(2)rÉ(ctlJ(7)*cVrI(6)-cW(4)rÊCvtr(9))+
2 CW(3)*(C14i(4)*CVú(8)_CW(7)*CW(5))
IF(DETJ.GT.O.O) GO TO 110
llRrrE(6, 1000) l¡el, DETJ
NST0P= 1

110 RDETJ=1.0/DETJ
AW ( 1 ) = ( ct^I ( 5 ) i+ cl^l ( 9 ) -CW ( 6 ) x CW ( B ) ) åt RDET J

AW ( 2 ) = ( CW ( 3 ) x cw ( B ) -Cl^l ( 2 ) x cl^i ( 9 ) ) * RDET J

Alll ( 3 ) = ( chl ( 2 ) x CI'¡ ( 6 ) -CW ( 3 ) * CI¡I ( 5 ) ) x RDET J

At,I ( 4 ) = ( Cl{( 6 )* ctl( 7 )-cW ( 4 ) ä' CW( 9 ) ) xRDETJ

Al,,¡( 5 )= ( CVf ( 1 )*CW( 9 )*C!.I( 3 ) *"CW( 7 ) ) *RDETJ

At't( 6 )= ( cI/{( 3)xcr+( 4)-cl^I('1 )d'cl^I( 6 ) ) r(RDETJ

A}tl ( 7 )= ( cl{( 4 )*cW( 8 )-c!,I( 5 )* crd( 7 ) ) *RDETJ

AW( B )= ( CVü( 2 ) rÊCl{( 7 )-Cl"l( 1 )tt CW( 8) )'+RDETJ
A!,t(9 )= (Cti( i )*ctnt( 5 )-CW( 2 )*CW( 4) ) rÉRDETJ

IF(I1.8Q.1) RETURN
D0 200 I=i 

' 
20

DXI=DX(I)
DYI=DY(I)
DZI=DZ(f )
DX( I ) =AW( 1 ) *DXI+Al'l( 2 ) *DYI+AW ( 3 ) nDZ I
DY ( I ) =AW 

( 4 ) *OXl+Al'l ( 5 ) *DYT+AW ( 6 ) nDZ I
DZ ( I )=AV\r( 7 )*DXI+/\W ( B ) *DYI+AI'r ( 9 ¡ x¡7 1

2OO CONTTNUE
R ETUR N

lOOO FORM AT(/ /,5X,28H)¡t;GATIVE OR ZERO DETERMINANT, /,5X,8HELEMEN]', ,I5,
1 12H DETERMINANT, 2X, E 10. 3)

END
SUBROUTINE MUt.T1

*II INSERT 17 LINES OF COMMON STATEMENTS HERE Iß*

N=0
llJAIT =WX*WY*VrrZ 

x DET J
D0 20 I=1,NNODZ
DXI=DX(I)iÊWAIT
DYI=DY(I)*hfAIT
DZI=DZ(I)*h'AIT
DO 15 J =I ' 

NNODZ

DXJ=DX(J)
DYJ=DY(J)
DZJ=DZ(J)
S (N+1 )=S (N+'l )+DXI*D)(J
S (N+2 ) =S (N+2 )+DXT*DYi
S (N+3 )=S (N+3 ) +DXIxDZ J

c
c
c
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c
c
c

S (N+4 ) =S (N+4 )+DYI*DYJ
S (N+5 ) =S (N+5 )+DYI*DZ J
S (N+6 )=S (N+6 )+DZI*DZJ
N =N+6
IF(I.EQ.J) GO TO 15

S (N+1 ) =S (N+1 )+LrYf *DXJ

S (N+2 ) =S (N+2 )+DZ I*DXJ
S (N+3 ) =S (N+3 )+DZ I*DYJ
N =N+3

1 5 CONTINUE
20 CONTINUE

RETUR N

END
SUBROUTINE MULT2

** INSERT 17 LINES OF COMMON STATEMENTS HERE II*

N=0
D0 40 I= 1 , $NODZ
D0 30 J =I ' 

NNODZ

S1=S(N+1)
S2=S (N+2 )
S3=S (N+3 )
S4=S (N+4 )
S5=S (N+5 )

S6=3 (N+6 )
IF(I.EQ.J) GO TO 20
S7=S (ìl+7 )
SB=S (N+8 )
S9=S (N+9 )
S (N+1 )=S 1xD ( 1 )r'S4*D ( 10 )+S6*D ( 12 )

S (l{+2 ) =S2xD ( 2 )+S7*D ( 1 0 )

S (N+3 ) =Slx¡ ( 3 )+'S8*D ( 1 2 )

S (N+ll ) =S7*D ( 4 )+S2nD ( 1 0 )

S (N+5 )=S4xD (5 )+S i *D ( 1 0 )+S6r6D ( 1 1 )

S ( N +6 ) = S 5 xD ( 6 ) +S 9 r(D ( 1 1 )
S (N+7 )=S8xD ( 7 )+S3rÉD ( 1 2 )

S(N+8)=S!*P(B)+S5*D( 1 1 )

S(N+9 )=S6xD(9)+S4*D( 1 1 )+S 1 #D( 12)
N =N+9
c0 T0 30
S (N+1 ) =S 1*D ( 1 )+S4rÊD ( 10 )+S6*D ( 12 )

S(N+2 )=S2x(D ( 2 )+D( 1 0 ) )
S (N+3 )=S3x(D ( 3 )+D( 1 2) )
S(N+4 )=S4xD (5 )+S 1 *D ( 1 O )+S6*D ('l 1 )

S(N+5 )=S5x(D ( 6 )+D ( 1 1 ) )
S (N+6 )=S6xD (9 )+S4èôD ( 1 1 )+S i *D ( 12)
N=N+6
CONT ÏN UE

CONT IN UE

RETUR}¡
END
SUBROUTlNE MULT3

20

30
40
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c
c
c

*IÉ INSERT 17 LINES OF COMMON STATEMENTS HERE *IÊ

DO 1 I=1'P
Cl4r(I)=0.0

1 CONTINUE
DO 10 I=1,NNODZ
Cht(1)=Ct.l(1)+DX(I
Cl'l(2)=CW(2)+DX(I
cW(3)=cl^I(3)+DX(I
Cl^¡(tl)=CW(4)+DY(I
Cl'l(5)=C\,l(5)+DY(I
CW(6)=CW(6)+DY(I
Cl,l(7)=Cl,.l(7)+DZ(I
CW(8)=C\,1(B)+DZ(I
Cvr( 9 )=CW( 9 )+DZ ( I

1O CONTINUE
SIGMA( 1 )=c'l,l( 1 )r(D( 1 )+CW(5 )sD(2)+CW( 9)tßD(3)
SIGMA ( 2 ) = cIÍ ( 1 ) rËD ( 4 ) +CW ( 5 ) åç D ( 5 ) +C'tJ ( 9 ) xD ( 6 )

SIGMA ( 3 ) = CW ( 1 ) *D ( 7 ) +cW ( 5 ) åtD ( I ) +cVrr ( 9 ) x D ( 9 )

SIGMA ( 4 ) = ( Cl,J( 2 )+CW ( 4 ) ) xD ( 1 0 )
SIGMA( 5 )= (CW(6 )+Cl'l( B ) ) *D( 1 1 )

SIGMA ( 6 ) = ( CI,l( 3 )+CW( 7 ) ) xD ( 12 )
RET UR N

END
SUBROUTINE PLOAD

** INSERT 17 LINES OF'COMMON STATEMENTS HERE **

D0 50 l{OD=1' NN0DZ
NI C =NELDEF ( N0D )
D0 49 I=1,MAXRCT
IF(NTC.NE"NREACT(r)) GO T0 49

II=(NOD-1 ))ÈNVABZ
D0 45 J= 1 

' 
NVABZ

RS(II+J)=RS (II+J)+REACT(I 
' J)

45 CONTTNUE
NREACT(I)=0

49 CONTINUE
50 CONTINUE

RETUR N

END
SUBROUT]NE POSTCN

IIII INSE RT 17 LTNES OF COMI'ION STATEMENTS HERE IßIÊ

)*u(r)
)*v(r)
¡x1¡(r)
) *u ( r )
)rÉv(r)
) rÉI'¡( r )
)*u(r)
)*v(r)
) *t¡J( I )

c
c
c

c
c
c

DIMENSION RACTN(3)
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D0 232 I=1,NVABZ
RACTN(I)=0.0

232 CoNTTNUE
IF(MAXDIS.EQ.O) GO TO 251
D0 250 I=1,MAXDIS
IF(NIC.NE.NDISP(1,4)) G0 T0 250
DO 240 J=1,NVABZ
IF(NDISP(I,J).EO.O) GO TO 240
DSP=DISP(I,J)
N 1=LIVr-J-1
IF(ABS(SRS(N 1 ) ) .GT.ABS(DSP/1. 0815) ) t/'IRITE(6' 1400)
RACTN (J )=-SRS (N 1 )x 1 . 0E+50
sRS (N 1 )=DSP
DISPL(NIC'J)=DSP

240 CONTINUE
I^tRrrE ( 6, 12oo ) NrC , RACTN

250 CONTINUE
251 IF (MAXNDZ. EQ. O ) RETURN

DO 27 0 I=1 
'MAXNDZTF(NIC.NE.NDISPZ(I,4)) GO TO 27O

D0 260 J=1,NVABZ
rF(NDTSPZ(T,J).EQ.o) Go ro 260
N 1 =LI V+J -1
RAcTN(J )=-SRS (N 1 )* 1 . 0E+50
rF(ABS(SRS(N1 )) .GT. 1. 0E-15) l'¡RrrE(6' 1400)
sRS(N1)=0.0
DISPL (NIC 

' J ) =0. 0

26C CONT]NIJE
v,IRrTE(6, 12oo) NrC, RACTN
RETURN

270 CONTTNUE
RETUR N

12Oo FoRM AT(/,6X, r5, 3(5X, E1o. 3))
1 400 FORMAT ( 42ll 1BIG S PRING STIFFNESS IS NOT LARGE EN0UGH. , / ,

1 68H ERRORS ARE ALMOST CERTATN TO OCCUR DUE TO FIXITY BEING ]NEFFE
2CTrVE.,/,1H0)

END
SUBROUTINE PRECON

*I TNSERT 17 LINES OF COMI"ION STATEMENTS HERE II*

IF(MAXDIS.EQ.O) GO TO 175
D0 170 I=1,MAXDIS
IF(NIC.NE.NDISP(I,4)) GO TO 1TO

D0 160 J=1, NVABZ
TF(NDISP(I,J).EQ.O) GO TO 160
DSP=DISP(I, J)
N 1 = (LIl'l-1 ) *ì{VABZ+J
D0 140 K=NSNW,l{1
N2=JW(K)
N4=N2+N 1-K
CALL CHK(N4)
SRS (K )=SRS (K )-DSPrçSS (N 4 )

t\

c
c
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140

150
159

CONT I NUE

SS(N4)= 1 " 0E+50
IF(N1.EQ.NFNW) GO TO 159
N3=N1+1
D0 150 K=NJ'NF'II!'l
N4=N2-N 1+K
CALL CIjK(N4)
SRS (K ) =SRS (K ) -DSPrßSS (N4 )
CON T INUE
CONT INUE
CALL RESETT
CONTTNUE
CON TÏ N UE

IF(MAXNDZ. EQ. O) RETURN
D0 190 I=1,MAXNDZ
IF(NIC.NE"NDISPZ(I,4)) G0 T0 190
D0 180 J=1, NVABZ
rF(NDTSPZ(r,J).8Q.0) G0 T0 î80
N1=(LIN-1 )*NVABZ+J
N2=JW(N1)
CALL CHK(N2)
SS(N2)=1.0E+50
CONT IN UE

CALL RESEÏT
CON TIN UE

RET URN

END
SUBROUTINE PREFNT

160
1TO
175

180

190

c
c
c

** INSERT 17 LINES OF COMMON STATEMENTS I']ERE IÉ*

D0 1 I=1,MAXNW
N!ü(I)=0

1 CONTINUE
D0 10 NEL=1'MAXNEL,
DO 5 I=1'NNODZ
NIC=LDEF(NEL, I)
LDEST (NIC ) =NEL

5 CONTINUE
1O CONTINUE

DO 20 NIC=1 
'MAXNODNEL=LDEST ( NIC )

rF(NEL.EQ.o) Go ro 20
D0 15 I=1'NNODZ
IF(LDEF(NEL,I).NE"NIC) GO TO 15

LDEF(NEL, I)=-NIC
LDEST(NIC)=0
GO T0 20

1 5 CONTINUE
20 CONTINUE

DO 100 NEL=l,MAXllEL
DO 50 I=1,NNODZ
NIC=IABS (LDEF (NEL' I ) )
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rF(LDEST(NrC).NE.0) G0 TO 50
DO 30 J=1,MAXNW
rF(NW(J).NE.o) GO To 30
LDEST(NIC)=J
Nt4¡( J ) =NIC
IF(MAXFV'I. LT. J ) MAXFII=J
G0 TO 50

30 CONTINUE
I'IRITE ( 6, 1000 )
STOP

50 CONTINUE
D0 7C I=1,NNODZ
NIC=LDEF (NEL, I )
IF (NIC. GT. O) GO TO 70
N 1 =LDEST ( -NIC )
Nlrl(N1)=0

7O CONlTNUE
1OO CONTINUE

MAXFII =MAXFVrl*NVABZ
. !,¡RITE(6,1001) I'ÍAXFW

RE TURN
lOOO FORMAT(62H,1MAX]MUM FRONT WIDTH DURING PREFNT EXCEEDS LENGTH OF ¡I}I

lVEC r0R )
1 00 1 FORI4A'r (/ / / / / ,5X,I 9HMAXrMUM FRONT l¡rDTH, 2X , r3 )

END
SUBROUTINE RESETT

** INSERT 17 LII'¡ES OF COMMON STATEI"IENTS HERE IC*

1O IF(KF.EQ.KMAX) GO TO 20
BUFFER OLTT(L21, 1 ) (SS(1 ),SS(MAXSS))
rF(uNrr(L21 )) 1 1, 12,13

1 1 CONTINUE
BUFFER IN(L20, 1 ) (SS(1 ),SS(MAXSS))
KS =KS+MAXSS
KF =KF+MAXSS
rF(uNrr(L20)) 14, 12,13

1 4 CONTINUE
GO TO 10

20 BUFFËR OUT(L21,1) (SS(1 ),SS(MAXSS))
RE!.ITND L20
IF(UNIT(L21))

1 5 CONTINUE
REWIND L21
LEN=L20
L20=l-21
L21 =LEN
KS=1
KF =MAXSS
BUFFER TN (L20,
IF ( UI'IIT (L2O ) )

1 6 CONTINUE

c
c

c
c
c
c

15 ,12,13

(ss(1),ss(MAXSS))
,12 r 13

1)
16
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c
c

c
c
c
c

RETURN
12 STOP
1 3 STOP

END
SUBROUTINE SETUP

II* INSERT 17 LINES OF COMMON STATEMENTS IIERE **

NK= ( JW ( MAXFI^I ) /MAXSS )+ 1

D010I=1,NK
BUFFER OUT(20,1 ) (SS(1 ),SS(MAXSS))
IF(UNIT(20)) 11,12,',13

1 1 CONTINUE
BUFFER OUT(21, 1) (SS(1),SS(MAXSS))
rF(uNrr(21)) 14,12,13

1 4 CONTINUE
1O CONTINUE

C NO MORE MATRIX SS '¡IRITE 
END OF FILE ON TPAE2O'TAPE21

ENDF ILE 20
ENDFILE2l
RE}'IIND 20
RE!ÙIND 21

BUFFER IN(20,1) (SS(1 ) 'SS(MAXSS))
L20=20
L21 =21
KS=1
KF =MAXSS
KMAX=NK*MAXSS
rF(uNrr(20)) 15,12,13

1 5 CONTINUE
RETURN

12 STOP
13 SToP

END
SUBROUTINE STIFN

** INSERT 17 LINES OF COMMON STÂTEMENTS HERE **

RETIIND 4

IF(MAXMAT.EQ. 1 ) CALL DMAT(1 )
D0 900 NEL =1,MAXNEL
NCHK=0
D0 1 f=1,60
RS(I)=0.0

1 CONTINUE
D0 2 I=1,1830
S(I)=0.0

2 CONTINUE
TF(MAXMAT.EQ.1 ) GO TO 3

c
c
c
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r1=MAT(NEL)
CAI,L DMAT(I1)

3 D0 10 J=1,Nl.lODZ
NIC=IABS (LDEF ( NEL' J) )
NELDES(J)=LDEST(NIc)
NELDEF(J)=NIC
x(J)=cORD(NIC,1 )
T(J)=C0RD(NIC,2)
Z(J)=C0RD(NIC,3)

1 O CONTINUE
IF(MAXRCT. NE. O) CALL PLOAD

D0 100 JA=1, NRULE
XL =VECTLC ( JA )
l'lX =ÏlTF UN ( JA )
D0 90.T8=1,NRULE
YL=VECTLC(JB)
WY=!'lTF UN ( JB )
DO 80 JC=1, NRULE
ZL=VECTLC(.lC)
tlZ=Ì'ITFUN(JC)
CALL JACOB( O )
CALL MULTl

80 CONTINUE
90 CONTINUE

1OO CONTINUE
CALL MULT2
WRITE(4) S, RS, (LDEF(NEL, J), J=1,NNODZ)'NELDES

900 col'¡TTNUE
IF(NSTOP. EQ. O) RETURN

V'IRITE(6,1000)
STOP

lOOO FORMAT( 5OHlILLCONDTTTONING OR GEOMETRY OR DEFlNTTION ERRORS.,/'
,I 22H EXECUTION TERMINATED. )

END
SUBROUTINE STRESS

r* INSERT 17 LINES OF COMMON STATIIMENI'S HERE IIIÉ

}lRrTE(6,1000)
D0 10 I=1,MAXNOD
l¡RITE(6, 1001 ) f , (DISPL(I, J), J=1,NVABZ)

1O CONTINUE
TF(NPUT.EQ.O) GO TO 20
N 1 =MAXNOD*7
IF(N1.LE.MAXSS) GO TO 11

NPUT=0
l,lRrrE ( 6, 2000 )
GO TO 20

11 D0 12 I=1'N1
S(I)=0.0
ONTINUE
0 100 NEL=1,MAXNEL

c
c
c

S

12C
20D

IF(MAXMAT. EQ. 1) GC 1'0 25
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N2=MAT (NEL )
CALL DI"IAT(N2)

25 CONTINUE
D0 30 NOD=1'NNODZ
N3=IABS (LDEF ( NEL, NOD ) )
NELDEF(NOD)=N3
X(NOD)=C0RD(N3, 1 )
Y(N0D)=C0RD(N3,2)
z(N0D)=coRD(N3,3)
U (NoD)=DISPL (N3. 1 )
V(N0D)=DISPL(N3' 2)
W(N0D)=DISPL (N3' 3)

3O CONTINUE
D0 50 NOD= 1 

' 
NNODZ

XL =XX ( NOD )
YL =YY ( NOD )
ZL=ZZ ( N0D )
CALL JACOB( O )
CALL MULT3
NI C =NELDEF ( NOD )
rF(NPUT.EQ.o) Go ro 50
N4=(ttI6-1 ¡x7
D0 40 I=1,6
SS (N 4+I ) =SS ( N Lt+i ) T.SIGMA ( I )
CON TINUE
SS(N4+7 )=SS (N4+7 )+1 . 0
CON TIN UE

CON T INUE
II.'(NPUT. EQ. O) RETURN
N5=-7
hrRrrE(6,1004)
D0 150 NOD=1 

'MAXNOD
N 5 =N 5+'l
DI V=SS ( N ¡+7 )
IF(DrV.EQ.0"C) G0 TO 150
D0 140 f=1,6
SIGMA ( I ) =SS (N5+I )/DIV

1 4O CONTINUE
}{RrTE(6, 1003) ¡¡O0,SIGMA

150 CONTINUE
R ETUR N

lOOO FORMAT(2OH lNODAL DISPLACEMENTS, /,
1 7X, 4HNODE, BX, 6HX-COMP, 9X, 6HY-C0MP,9X, 6HZ-C0MP)

1001 FoRMAT(6X, r5, 3(5X, E1o. 3))
1OO3 FORMAT(/,1X, r1C, 3X, 6(2X,F10" 1 ) )
1OO4 FORMAT( 23H 1A\¡ERAGE I,¡ODAL STRESSES, // ,

1 TX,AHNODE,6X,9HSIGMA X-X,3X,gHSIGMA Y-Y,3X,gHSIGMA Z-2,5X'
2 THTAU X-Y , 5X , THTA I] Y-2, 5X, THTAU X-Z )

2OOO FORI4AT( 65HlINSUFFICTE¡IT SPACE TN SS VECTOR TO ALLOW NODAL STRESS

lAVERAGING.,/ , 2iH AVERAGING CANCELLED. )
END

40

50
100
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E.4 SKELETON FLOI./ CHART FOR PROGRAI"I I4}-YDCP

END

Prinl out, cli sPlacemenls
Cal culat-e nodai. sLrcsses

CALL STRESS

BacksubsL it,uLe rhrough
recluced equaL ions Lo

cal culaLe noclal
displacemenF-s
CALL BAKSUB

Use fronL solver Lo reduce
and s to re- a l, 1 e.quaL i ons

CALL FRONT

CalculaLe ele-mcnt'
sLíffness for all elemenLs

CALL ST]FN

Assign nodal vectors for
fronL solver and calculaLe

maximum f ronL wi-dLh
CALL PREF'NT

Read input data
CALL INDAT

Ini.ti.al ize variables

MÞ-YDCP

MÀIN PROGRAM I.4FYDCP



4¿¡1

SUBROUT INE INDAT

RETIIRN 1'O

MF'YDCP

Read applie-d
nodal loads

r c0DE-- 7

?

Re¿rd non-zero-
'displacemenL

fixities

T CODE=t¡ NCODE:1

Read zero-
displacemenL

fi,xi.t-ies

Read element
defini.tions

ICODE=5
't

Read node
coordi naLe-s

ICODE=4
?

Read elemenL
maLerial

numbe r

NCODii=1
,l

ICODE=3
2

Read e 1 emetÌt
rnaterial

properties

Read code
for st ress

resulLs
ICODE=2

,l

Reacl head ingICODE=1
?

Read dat-a ICODE, NCODI

FROM MFYDCP

N
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SUBROUTINE PREFNT

REI]URN TO

MFYDCP

Choose first elemenL

PrinL out-
MAXFl^I

Choose next,
node

Last
node

?

LasL
I cmenL

?

e

Assign negaLive value
to matrix LDEF for
lasL appearance of

node

Read vecLor
LDEST (l¡Olei'¡l )

: element i,n which
node appears last

ComprrLe whj.ch nodes
v¡ill be elimirrat-ed and
seL ve.cLor NW Lo zero

for t'-hose node-s

Choose first node

Choose nexL
e I ement

e Iement
,l

Last
Assi.gn noclr: numbers

to vectors LDES'll and Nhl

¿rnd calcu.l.a t-e- maxi.mum
f ronL widt,h HAXFW

Choose nexl
node

e 1 ement
ne-xL

Choo s e
node in
element

?

Last

As s.i-gn e I emenL to whi ch
node belongs ro vecLor

I,DEST ( I¡OOEN: )

Choose firsL node

Choose fi-rst element:

Initialize vect-or Ilv'l

to zero

FROI'I }IFYDCP

Y

Y

Y
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SUBROUTINE ST]FN

Cal c.ulat,e element
lo¿rci vect-or RS

CAI-L PI,OAD

Ioads i n
e I ement

?

Iìoda I

Cal cul aLe elemenL
st:i.ffness maxtrix S

CALL J^COB(O)
CALL MULT1
CALL MUT,T2

Choose nexL node
in element

node in
elemenL

?

La st

fürite to TAPE4 veclors
S,RS, elemenL mat-rix

LDEF and element
destination vector

NELDES

Assign node NÎ Lo
vect-or NELDEF

La st
e I ement

,|

Assign nodal destinat.ion i.n
front solver to clemertt

desLinat,ion vect-or NELDES

and assign to coordinat-es
of node Lo coordinaLe

vecLors

RETURN TO }ÍEYDCP

Choose fi.rst, r-rode

of e lement-

Choose ¡rexC
e l ement

Calculate e-lernent
properL i es

CALI, DI4AT(]1)
MAXMAT

=1
?

SeL vector RS t,o zero
Set vecLor S Lo zero

Choose first clement

Calculate ele,ment
propert i e s

CALL DMAT(1)
MAXMAT

-1
,|

FROI'Í MFYDCP

hl

N

\



SUBROIITINE Þ-RONT

N

Y

444.

Y

N

Reset TAPE2O
and

TAPE21 which
sLo¡:e vect-or SS

CALL RESE'I'T

Reduct: al l equat, j ons using
equaLions f or node i'NOD"

and stcre e-quations for
rrNODrr on TAPE2

Check for
nodal constlraint-s

CALL PRECON

node in
e I ement

7

Last

NELDEF(NOD

)o
Is

Choose next node

Choose first node
in element

RETURN TO

MFYDCP

Assernble- element sLif fness
in vector S into vector SS

and elc'-menL nodal laods in
vector RS into vcctor SRS

CALL ASMBLE

Pri.nL El ement N9

element
?

Last
Read off TAPE4 vectors

S,RS, NELDEF, NELDES

Choose first ele-ment

Choose next e lernent

Allocate sPace for
vector SS on TAPE2O

and TAPIì21
CALL SETUP

Assign positions of main
diagonal elements in fronL

stiffness mat-rix for
vector SS using vector Jtr'l

Set: f ront vect,or
ÌlW to zero

Rewind TAPE2
Rewind TAPE4

FROM M}-YDCP



SUBROUTINE BAKSLIB 445.

RETURN TO

MFYDCP

Choose next,
elemenL

e lemenL
,l

First

Choose next
node node of

e I ement
?

irsL

Check for nodal
constrainLs
CALI, POSTCN

BacksubstittuLe Lo solve
di,splacemr:nL for node

Backspact:
TAPE2

equa L i ons
for nodc in

core

Are

Read TAPE2

de f.or back-'
ubst,i t-ut,ion

no

,ì

is next:

Back-spac e

TAPE.2

Choose IasL node of
e lemenL

Choose lasL elernent
MAXNEI,

FROM MFYDCP

Y

Y



SUBROUTINE STRESS
446

N

Y

N

N

Last
element

'l

node in
e lement

?

st

Choose next node
NPUT

=o
,|

Store Stresses
in vector SS

ingfor avera

NPUT

=o
?

Calculate
average

stresses at
all nodes

Calculate nodal
stresses for

element
CALL JACOB(O)

CALL I,IULT3

Pr int
average

sLresses at
all nodes

Set up element geometrY
and choose first node in

e lement

CalculaEe elemenE
material properties

CALL DMAT(N2)

Choose next elementMAXMAT

-1
,|

Choose first element

to zeto
'Set Vector SS

Ignore stress-
averaging command

NPUT=O

SLTESS
ave raging
requi red

ode

PUTIo

nough

ector
SS

large

Print Nodal displacements

FROM MFYDCP

N
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APPENDIX F

DERIVATION OF PANEL EOUAT I ONS

F.1 THE EOUILIBRIUM EQUATION (6.9)

Fon the equivalent plate of vanying thickriess (f igure F.1(a)),

a coondinate system may be chosen \v¡th'its or^igin at the middle thick-

ness (middle sur face) of the plate; the Z axis may be chosen to be

penpendicular to the outen (negative-z) fonce of the element with the

X ancJ Y axes panallel to the (unCef lected) outen f ace. This coondinate

system may be chosen becar..¡se the sections of the patrel initially plane

and normal to, the outer face remain so dur-ing panel deflection (c'f'

columns;(96)'(97)), wheneas the middle surface can undengo additional

rotat¡c,ns as the depth of cnacking varies with loading.

BencJing moments M^ and *,U (f igune F.1(b)) are def ined to be

positive if caused by tensile nonmal stnesse= o* or oU acting on a

positive X or Y face nespectively anci at positive z. Twisting moments

M and M ane definecl to be positive if caused by shear stresses
XY YX

on a positive X or Y face acting in a positive Y on X dinection r^es-

pectively at positive z. The displacements in the x, Y' z clinections

ane u, v, and w resPectivelY.

(a) Moment Equilibrium

Take moments about the X axis and neglect high orden cunvature

effects, so that
AM

,# dxdy -
AQ

#ou)dv' dx +
AM

v dy.dx 0(o +
v

aNl
v

ây

ôy

By neglecting second onden tenms,

AMxy
AX

0
O

v
+

Similarly, by taking moments about the Y axis,

(F.1)



dx
Nr:galive--z f.-rce in
wh icl-r s t re:,ses o

arL- conlpre:r;ionY

Midd le

448

X,U

Sur-f ace

t+

{

Ar.
;-dxdx

t+ AÈ

ây
dy tt ac.

-dxðx

ar---dv
ày

Figune f .1(a): Geometny of
are defined

P late
in

zrw

N'l iddle Surface

H yx

+
ay

El-e-meñ t ( axes
text )

a

N
vÌi

N

I'tx
N

AN

N + ^*Yd"xy dx

M-
x

xy * 1fl-a*

M yx
-#o'

tQ*

0x dx

X

AN

N
x

x
ã r-dx

v F isur-e F. 1 (b ) :

Forces and
Moments Positirvc
Sign Convr-'ntions

M 1

N
MX

Fl

v
a

N

x

v
Ia

eQ-

' -ãfot +.v x

N+
AN yd
ay

z

v
v

Figune F.1: Var"ying Thickness Plate F-lement



calculated by obsenving

the negative-X face in

positive-X f ace as t(#

that the sloPe of

the X cj inect ion is (
iJX

+

AW åfila"au

Z-direction can be

middle sunface on

+ +#l and on the

449 "

(F.2)

(F.3)

(F.4)

(F.5(a))

Thenefone the

AM yx
ay

AM
X

O
X AX

+ 0

(b) Fonce Equilibnium

(i) f, Fonces in X dinection is ze?o, so that

AN.yx+
ay

0
AN

X

(a ) ConsicJening the

I atena I pressure

direction is -

AX

(¡¡) I Fonces in Y dinection is 7-e?o, so that-

+
AN

v
ây

0
âN xy

ôx

(i¡i) E Forcqs in Z dinection is zero.

The forces in the Z dinection ane made up of sevenal components'

EQ

shear forces in f igur e F.1 (b), if the unifonm

is gr then the component of fonces in the Z

âQ + q ) dxdy
ay

+

(b) The projection of X-directed forces in the

ôx

the

âw

+*r .*;t#+å-þra"1.

-N dv( I âtt
za*'

component of X-dinected forces in the Z-dinection is -

ðw
AX

+ + (N
X

By neglecting high onden tenrns, this expression becomes

+
X

(

AN
X

AX
a

a
N

X
ô2w ,l â't

t =--â x' ¿ A><".
i axay +

X
(F.5(b ))
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Similanly, projection of the nonmal fonces N on the Z axis gives
v

the expnession -

*u(# * 41u,f lo,.ou * l).(# . ff)o"av (F.5(c) )

Z-axis, t.he

on the tvrlo

(c) Fon the pr ojection of the shearing fonces *"U on the

slopes of the middle sunface in the Y-dinection

opposite X f aces of the element (r,n.r"" f .1 (a) ) are -

âw
Tt

rôtw ) on the negati,ve-X face

and (#. ; #;) - *,# * frlo" on the positive-X race.

Hence, the pnojection of the shearing fonces *", on the Z-axis is

equal to

,, â't t
zàxþyl þ,åî * ff)a*ov

+

N(xy'
â'w
axây

+ óxdy + (F.5(d ) )

on the Z-axisyx

(r.5(e))

expression f or the Project iorr

(F.5(a)) to (F.5(e)) is -

âw
ôy

(d) Similanly, the pnojection of the shearing for"ces N

is -

*u^(,* . å#,1-/ dxdv + +(H . ff)o^ou

By substituting *r*=t^u, the total

of all fonces on the Z-axis fnom equations

AQ
X .," Sr .. *,# . #) * *u(# . ;Sfr

âx

aQ
.#+q+N,.( e'.!v

ax2

.*,#.frr * ^*u(;#. +,iåþ.þ, . +Hr

aN-"#,#.;*)lo,.oy = o (F.6)

By inspection, fnom equations (F.3) and (F.4), the following nelation-

ships may be used to eliminate tenms f nom equation (F.6)



AN

-¡it# * #r ,#. #,+

so that, fnom

of equi l ibnium

ây

6.2.4 on

equations

is -

br ickwork

(r.o) and

tor s ion,

(r.z(a))

451 .

(r.z(a) )

(r.z(¡) )

(r.z(c))

(F.z(d))

i n general

to (F.z(a)),

AN
xy

ây

a8
X

ôx-

a8
v

0

a1r4yx
âx ây

fn¿
xy

ôxðy

#,+. Sr .ïi,#.+#, 0

As wel l, f nom equation (F. 1 ) 
'

and from equation (F.2),

W¡th ref erence to section

2
AM

X
axz
2

AM
vrf

+

+

Mxy

the

IM yx'
equatiot-t

fN,r
X

a;:r . *rq,r¡u

2
AM

vw n,.(å+ . ffit+ M
v

+ q
X

*r(# . '¡#, - ^"u 
(ãf,î .

F .2 MODULUS FUNCT IONS E.- ( t ),X

., â't
æÐ

(6.s)

E (t), c(t)
v

The br ickwork modulus functions f*(t), fr(t) and G(t) (Section

6.3.2) may be denived by using the nesults of the finite elernent cal-

culatiorrs descnibecl in Section 6.2, The f unctions Ex(t), eU(t) and C(t)

modify the stiffnesses of the an equivalent varying thickness plate

to simu late the stiff nesses of cracked bnickwork '



F.2.1 Function Ex(t) (Section 6'2'3\

Provided that fonces N" and *^U are zer-o

E (t)
X

in which E

E

H

b

p

)p (EulEt)

452.

(F.8)

(F.8),

(Tables

H L+ ) bc .E +
X b b+(

E
m
(b+H)

is brick modulus

is mortar modu I us

is bnicl< height

is bedjoint thickness

is penpend thickness

is brick length

L

b

m

L

I t shou lcl

br ick-to-mot^tar

6.3, 6.4).

(t)

1.0 for uncnacked PenPends
and, C =X 0.75. (f) fon

230mrn

cnacked penpends (bricks 1 1Omm x 65mm x

laid on edge)

be noted that in the denivation of equation

modulan natios vanied between 1'0 and 10'0

F .2.2. Function E (t) (Sections 4.3.1, 6-2.2)
v

(b+H) (F.s)
E E

v
b

in which Cl is a cunvatune natio facton define,i in chapler 4

b E.
+ (-=1

tr
T
0

m

ln tenms of the equivalent plate thickness at any point



d=

1.0 fon t=d

In] is a

H is
d, is

453.

( F.'to)

{1

in which t

l2
oo

to'l [R]

1'

o

fon t <d
o

n'
o

d/z - r/3
d

4x4

(H/d)
the br'icl< height
the brickwonk thickness.

n

o

matrix der ived in Appendix A (equation (A'3))

F.2.3 Function

It may be

nat ios between

G(t) (Section 6.2.4)

assumed (figune 6.14) that for

1.0 and 10.0, functions F

bnick-to-montan modulan

., (eo:e.n) and l-r(Eo:Em )

equal. That ís -(equations (6.7(a) ), (6.7(b)) nespectivelv) ane

M +tul
1t Yz z.Ytz1--

M

in which M ISyz

M iszy

the total twisting moment on eaclr Y fonce of the

panel module def ined in f igunes 6.1(b), 6' 11

the total twisting moment on each Z face of the

panel module def ined in f igunes 6.1(b), 6.11'

the total twisting moment on each of the Y and

Z faces fon a brick:rnontan modular ratio of 1'0

an effective elastic modulus fon bnickv¿onk as

clefined by ectruation (4.21)

an effective elastic modulus for- bnickwonk as

defined by equation (6.2)

the br^ick elastic modulus.

Mis

E

E

v

z

IS

IS

b
E IS



Fnom plate theony(112), 't can be shown that -
E. .3

M = -(H.b)#-g;¡.(t-vo\Tiú G'12\

in which d is the panel thickness (= 65mm in this case)

tb is the bnick Poisson's natio

i is brick displacement in the X direction (f igune 6.11)

H' b ane def ined as fon equation (F 'B)

Equation (F.1 1 ) m.y be wr itten as -

Yz zy

G
[rr. rrl

2 1+v b

since the equ iva lent P late

cnacked plate thickness, d,

z 12(1+v ) ayð z

454.

(F. i 3)

(F.14)

(6.8 )

less than the un-

(M +
vyz

Equations (F.12) and (F.13) together give -

M -2lE
I
2. d3 a2x

zzy
EM

2M
Eu le

1

Y

l

+17 E l
b

Equation (F.14) is similan to the equation fon twisting moments

of a homogeneous plate(112) in which -

Resu I ts summanized i n Tab les 6.6 and 6.7 f on bnick-to-montai'

modulan ratios between Î.0 and 5.0 indicate that the tonsional stiffness

of cr.acked brickwor-k is approximately 85 pencent of the stiff ness of

uncnacked br-ickwork. Thenefone, i. equation (0. t¿(c))' the torsional

stíffness, C(t), fon cracked brickwork may be expressed as -

c(t )
(F.15)

1

2

= o. 85 . c.(f )'

thickness, t, maY be

and penpend cnacking

the panel def ined in f igur e 6"17.

occurs thnoughout



That is, fon the axis system def ined in

stiffness for cracked bnickwork fon equation

4s5

Section .6.3, the torsional

(0.14(c) ) is -

(F . 16)G(t) 0
d
T85

3

)

Ex(t)t=d.E
2

(t)r=6

1+V b

in which Er.(t)r=6, ar(r),-O may be calculated from equations (F'B)

and (F.9) nesPectivelY

. ùb is the bnick Poissonrs ratio.

Equation (F.16) may be applied to br icks l10mm x 65mm x 230mm

laid in common stnetchen bond (f igunes 6.1(a), 6.1 (b)), and fon brick-

to-montan modulan natios between 1.0 and 5.0.
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APPENDIX G

BRICKWORK PANELS ¡N TWO-WAY BENDING PROGRAM PANELl

G.l THE SCOPE OF PROGRAM PANEL 1

PROGRAM PANELl uses a finite diffenence method to analyse a

b¡^ickwor-k panel simply-supported on four sides. such a panel rnay

be loaded at equal eccentricities top and bottom by a unifonm line

load and may be loaded simultaneously by a uniform latenal pnessune

(f isune G. 1 ) .

Both the brick and montar matenials are assumed to have linear

stness-strain chanacteristics and stness-related f ailure cnitenia may

be assumed (Section 8.2) . Documentation of input data requinemerìts

is given in the following section arrd a skeleton flow chant is pnesented

in Section G.3.
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W pen unit length

-+x

W per un it length
z

SIDE ELEVATION

Y

t-ine Load, W Per unit length

e

Uniform later-al
pressune, q
(optional)

..*-
7rw e

W per unit length
L

END ELEVATION

Figune G.1 : Simply-supported Brickwork Panel showing

t

I

Load Conditions fon PROGRAM PANEL.l
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G.2 LISTING OF PROGRAM PANEL1

PROGRAM PANEL 1 ( INPUT 
' 
OUTPUT, TAPE 5=Il{PUT, TAPE6=OUTPUT )

t(*tttÉ*tß**t+**tÊt(tt***ttx*tê*+(****x**lç***lÊ*l$*l(*ltl(t{**rç****

PROGRÁ,M PANEL'I hIAS I,IR]TTEN BY

DAVID C. PAYNE AS PART OF THE REQUIREMENTS

FOR A DOCTOR OF PHILOSOPHY DEGREE AT THE

UN]VERSITY OF ADELAIDE ( SUBMTTTED 1982 )

THE PRCGRAM CALCULATES THE FAILURE LOADS

OF BRICKVJORK PANELS SUBJECTED TO VERTICAL
LTNE LOADS A'T THE TOP AND BOTTOM SUPPORTS

( A UNIFORM LATERAL PRESSURE MAY BE

SPECIT'TED ALSO )

A BRICKWORK PANEL IS DIVIDED INTO A

FINITE DTFFERENCE }4ESI] OF 16 ELEMENTS
HORIZONTAI-LY ÀND B ELEI'IENTS VERTTCALLY.
( THE NODES ]N THE MESH NEED NOT COINC]DE

, I.JITH MORTAR PERPENDS NOR BEDJOINTS )

*
It

t

*
16

*
tç

*
*
It
*
*
*
lÊ

*
*
*
*
*
*
*
*

lÈ

t(

tÍ

*
*
tÊ

x
tÊ

t+

It
It

*
It

*
*
tÉ

a

*
t3

*
*
tç

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
l.

c
c
c
c

BOTH TiIE BRICK AND MORTAR MATERIALS
ASSUMED Tc TIAVE LINEAR STRESS-STRAIN

CHAR AC TE R IST ICS

LINE 1

LINE

ARE

DIMEN S ION
DTMEN S ION
DTMEN S ION
DIMENS ION
DIMEN S ION
DIMEN S ION

tf**lÊ*ttx*tô*t(*xt****tt****tÈtftçlt***l$**lt*l***lflilllt*13¡llt**lt**

H(19, 11 ),PW( 19, 11 ),DW(19, 11 ),WE(19' 11 )

R ( 105 ), RR ( 1 05 ), RS ( 1 C5, 105 ),4( 105, 105 ),A]NV( 105'',i05)
BMX( 1 g, 1 1 ) ,BMY( 19,11 ) ,BMXY ( 1 9, 1 1 )

AA(4), PI(X( 1 9, 1 1 ), PKY( 1 9, 1 1 ), PKXY(19' 1 1 )

ET( 1 9, 1 1 ),BT( 1 9, 1 1 ),SKX( 1 9, i 1 ),SKY( 1 9'',¡ 1 )

SKXY( 19, 11), PLAT ( 100 ), PLOT ( 100)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

*àÉ*tÊ******r***tÊttt{**ttttit*tÉ*lÊ***ttt¡ttl$ltltlÊlß*****x**ltlÊ**lt*ål*****
It
It

lÍ
*
*
*
*
It
*
*
*
t(

*
tÊ

*
It
*
*
¡f

tf

*
FOR A STANDARD BRICK-ON-FLAT PANEL ( 3600 MM *

LONG BY 24OO MM HTGH ) WITH A LOAD ECCENTRICÏTY
O!' 20 MM, THE INPUT DATA FOIìMAT IS AS FOLLOWS:--

0 (0R10R2)
'-100.0000 t r 0.000cc0
t t 1230.000r I I I 10.000r t I r76.000r t r t10.000
r t 1 1 o. 0000 t t 225. 0000 t t t 20. 0000
1.333rrr'l6rtrr8
r r r20000r ? t loooor I I I r I tOrr t0.200r I r0.200r I r0.200
125.00"3.50r1(0)

¿

3

1ST CHAR.(I1): 0=S0LID PANEL
1 =N0-TENS IO¡¡-MATERÏAL
2=CRACKED BRICIíV{ORK

TOP AND BOTTOM LINE LOAD, F 10. 4 ( N/MI'1 )
LATERAL PRESSURE, F10.6 ( MPA )
BRICK LENGTH, F10.3 ( MM )LI NE
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

* PERPEND THTCKTIESS, F10.3 ( MM )
BRICK HEIGHT, F10.3 ( MM )
BEDJOINT THICKI.IESS, F10.3 ( MM )

PANEL THICKNESS, F10.4 ( MM )

F.D. ELEMENT DIM.(X-D]R.), F10.4 ( ¡¡I¡ )

LOAD ECCENTRTCTTY, F 10. 4 ( Ml'l )
RATIO ALPHA, F5. 3
NO. ELEMENTS IN X-DIR.(16), I5
NO. ELEMENTS IN Y-DIR.(8), I5
BRICK MODULUS, F8.O ( MPA )
MORTAR MODULUS, F8.o ( MPA )

BRTCKWORK SFIEAR MoDULUS, F8.0 ( MPA )
( .-IF ZERO, IS AUTO. GENERATED-- )

POTSSONS RATr0S, UXY,UYX,UB, 3F8.3
BRICK'yJORK COMPRESSIVE STRENGTH, F6. 2(IíPA)
BRICK TENSILE STRENGTH, F6.2 ( MPA )

STRENGTH TEST FLAG; 12 ( 1=YES,0-N0 )

l*

lÉ

It

Í
lt
It

lÉ

*
*
x
It
*
.,$

*

*
lß

*
*

LINE 4

LINE 5

LTNE 6

LINE 7

c
c
C

****tÉtÉ**tê*****x*t(*****,r**xxxlSlÊ***ltx*x.*tt***tÊ*'****itit****x*x

MS=19
MRS=1 1

MO= 1

NPL0T =0
IFA IL =0

READ PROBLEI,f TYPE, INITIAL LOADS AND PANEL CONSTAI{TS

READ(5,1 ) ITYPE
1 FOIìMAT(I1)

TF (ITYPE. EQ. O) WRITE(6,6O)
rF ( rrYPE. EQ. 1 ) WRrrE ( 6, 61 )
rF (rrYPE. EQ" 2) l,lRrrE (6, 62)

óO FORMAT(1H1,'15X,'i---- SOLID PANEL PROBLEM ----X/)
61 FORMAT(1i]1, 15X,X---- NO-TENSION-MATERIAL PANEL PROBLEM*

1x ----x / )
62 FORI4AT(1H1, 15X,IÊ-.-- CRACKED T}RICKWORK PANEL PROBLEI'Í ----X/)

READ(5,1o) lruY,q
10 FOF.MAT(F10. 4,F 10. 6)

!üRrrE(6,11) tHt,q
11 FORI4AT(1H0,5X,*VERTTCAL LOAD TS *,F10.4,I( N/MM LENGTi{*

1rÉ oF WALL*,/"lHO,5X,|LATERAL LOAD IS *,F10.6, lt MPAå)

READ(5,2) XB,XP,HB,HM
2 F0RI4A1( 4F 10 . 3 )

WRITE ( 6, 3 ) XB, XP, HB, HM

3 FORMAT( 1HO,5X,ITBRICK LËNGTH IS IÊ,F:IO.3,IO MM*,,/, 1HO,5X,
1*MORTAR PERPEND TH]CKNESS IS X,F10.3, * MM*,/,1H0,5X,
2TiBRICK HETGHT IS x,F1O.3,* l4l4x,/ n1llo,5x,t¡"¡gttoo BEDJ0INTTç

3* THICKl\¡ESS IS X,F1O.3,If MMX)

READ(5,14) T,XH,EO
14 FoRMAT(3F10.4)

lIRrrE(6,15) T,XH,Eo
15 FORMAT(1H0, 5X,XPANEL THICKNESS IS *,F10. 4,If I'II'"I*,/, 1HO,5X,

1IÊHORlZONTA]- DIMENSION OF FINTTE DIFFERENCE ELEMENT IS *,
2F10.4,* I4T4Ê,/, 1HO,5X,*VERTICAL LOAD ECCENTR]CITY IS *,F10.4,
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.3rß MM* )

READ(5.12) ALPHA,M,N
12 F0RMAT(F5.3 ,2r5)

I,¡RrrE(6, 13) ALPHA,M, N

13 FORMAT( 1H0,5X, xp¡tto ALPHA IS x,F5. 3, / ,1H0,5X, *NO. 0FrÉ

1Iç F]NITE DIFFERENCE ELEI'JENTS IN HORIZONTAI, )E/25N'

2*DIRECTION IS *, T5, / ,1110, 5X, XNO. OF FINITE D]FFERENCEIË

3X ELEMENTS IN VERTICAL DIRECTION TS iÉ,15)
READ(5, 9O) EB, EM,GXY, UXY, UYX, UB

go FoRMA',r(3F8. o, 3FB. 3)
READ(5,1 14) CMFAIL,SIGT, ISTFLG

114 FORMAT(2F6 .2,f2)
IF'( ISTFLG. EQ. O ) GO TO 116
l1IRrTE(6, 1 15) CMFATL,STGT

115 FORt"tAT(1H0,5X,*BRICKWORK COMpRESSIVE STRENGTH IS SPECIFIED T0 BE r(

1.F6.2,X MPAIS/1HO,5X,IIBRICK TENSILE STREI'IGTH IS SPECIFIED TO BE *,
2F6.2,x MPA*)
GO TO 117

116 ürRrrE(6,118)
llBFORMAT(1HO,5X,tß---NOMATERIALSTRENGlHTESTSTNTHISPROGRAM---X)
1 1 7 CONTINUE

CALCULATE EX F'OR TRANSVERSE BENDING ( REF. BASE,BAKER )

EX=Etsx' ( HB* ( XB+XP ) / ( XB+EB/ EM nXP ) +HMx EM/ EB ) / ( IJB+HM )

r'tRrrE(6,4) EX
4 FORt/tAT(1H0,5X,*EQUIVALENT' TRANSVERSE ELASTIC M0DULUS IS *,
*F10.0,* MPAx)

C,I\LCULATE EQU TVALENT MODULUS FOR UNCRACKED VERTTCAL BEND]NG

EY=EB* ( HB+HM ) / ( HB+EB/EM*HM )

C CALCULATE SIIEAR I'fODULUS TF REQUlRED
rF (GXY. NE. 0. ) G0 T0 64
GXY=SQRT (EX*EY) / (2.* ( 1 . +UB) )

64 CONTINUE
WRITE(6, 9I ) EB, EM,GXY, UXY,UYX,UB

91 FOR},IAT( 1HO,5X, XBRTCI( YOUNGS MODULUS IS *,F10.0,* MPA*,
1/ ,1H0, 5X, *MORTAR YOUNGS MODULUS IS *, F 10. 0, * Ì"lPAx , / ,1110,5X '

c
c
c

c
c
t

2*BRTCKhIORK SHEAR MODULUS IS *,F10.0,
31H0, 5X,IåBRICKl,'lORK POISSONS RATIO UXY

4TBIìICK\'IORK POTSSONS RATIO UYX TS *,F
5IIPOTSSONS RATTO UB IS IÉ,F10.3,/,1H1)

rf MPAIÊ,/,
IS *,F',',i0.3, /,1H0,5X,

10. 3, / 1llo, 5x,*BRrcK *

c

c
c

IF(ITYPE.NE.2) GO TO 63
CALCULATE MATRIX AA FOR TENSION-FIELD STIFFENTNG

HD=HB,/T $ HD1=HD $ FID2=HD*HD $ HD3=HD**3
AA( 1 )=1 . 03-1 . 18*llD1+0. 794*HD2-0. 187*HD3
AA(2 ) =.^O . 326+1 4 . 4xHD 1-9 .47 *HD2+2. 32 *HD 3
AA ( 3 ) =1 .22-r¡4. 1*HD 1+31 .3*HD2-7. 98rßHD3
AA( 4 ) =-1 .39+61 . OnHD 1-18.5xHD2+4.79rÊHD3

63 CONTTNUE
c
c
c

INIT]ALIZE LOAD INCREMENT CONSTANTS
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c
c
c

DELPNY =PNY
SPN Y=0 .

SET UP FTNITE DIFFERENCE GRID CONSTANTS

MN=M+1 $ MNO=M+2 $ MNOP=M+3

NP=N+1 $ NPQ=Nr'2 $ NPQR=N+3
MNT=(M-1 )x(N-1 )

SET MATRICES TO ZERO
c
c
c

D0 92
D0 93
l'¡ ( JS,
PW( JS
DV¡(JS
I^IE ( JS
BMX(J
BMY(J

, MRS

'MS

Bl"lXY(JS,JT)=0.
PKX(JS, JT)=0.
PKY(JS, JT)=0"
PKXY ( JS, JT ) =0.
SKX(JS, JT)=0.
SKY(JS,JT)=0.
SKXY(JS,JT)=0.
ET(JS, JT)=0.
BT(JS,JT)=0.

93 coNTïNUE
92 CONTTNUE

D0 94 JW = 1,MNT
D0 95 JV = 1,IINT
RS(JV,Jl'l)=0.
A( JV 

' 
JW) =0.

AINV(JV,JW)=0.
95 CONTINUE

R(JW)=0.
RR(JW)=0.

94 CoNTTNUE

INITIALIZE SECTION TIITCKNESS ÂND ELASTIC I'lODULUS FACTORS

AT ALL NODES

JT=
JS=

JT)=0.
, JT)=0
, JT)=0
,JT)=0
s,JT)=
s,JT)=

1

1

:
0
0

c
c
c
c

c
c
c
c

D0 65 JIL =2
D066JAK=2
ET(JAK, JIL )=T
PKX(JAK, JIL)=
PKXY(JAK, JIL)
PKY(JAK, JIL)=
CONTINUE
CON T IN UE

, NPQ

,If N0

1

66
65

( HB +llM ) / ( HB+EBI EM xHM )

CALCULATE ELASTIC MODULUS FACTORS PKY AT TOP AND

BOTTOM BOUNDARIES

D0 6 IL = l,IlN



c
c
c
c

4Ê,2.

CHECK WIIETHER TE}.ISTON-STlFFEN]NG IS REQUIRED

IF YES, CALCULATE EFFECTIVE MODULUS FACTORS PKY

IF(ITYPE.NE.2) GO TO 5

rF(E0.LE.T/6.) GO T0 5

TE =E0l T
TE1=TE $ TE2=TExTE $ TE3=Tli*x3 '

PEC=AA( 1 )+TE 1 *AA( 2)+TE2*AA(3)+TE3nAA( 4 )

PKY(IL,2)=PKY ( IL, NPQ) = (HB+H14) / (1 . /PEC*HB+EB/EM+tHM )

GOTO6
5 PKY (LL,2)=PKY(IL, NPQ)= (HB+llM) /(tlB+EB/EM*HM)
6 CONTINUE

CALCULATE EFFECTIVE THICKNESS AT TOP AND BOTTOM SUPPORTS

D0 9 IRA = I'Mll

CHECK WHETHER SECTTON IS CRACKED ON BEDJOINl

IF(ITYPE.EQ.O) GO TO B

rF(E0.LE.T/6.) cO TO I
ET ( IRA ,2)=tT ( IRA, NPQ ) = 3.x (T /2. -EO )
G0TO9

I ET(IRA, 2)=ET (IRA, IIPQ)=T
9 CONTÏNUE

c
C CALCULATE EFFECTIVE THTCKNESS AT VERTICAL SUPPORTS

c
DOTIRC=2,NPQ
ET (2, IRC) =ET (MNO, IRC) =T

7 CONTÏNUE
C

C NEWTON-RAPIISON TTERATION PROCEDURE BEGINS AT THIS S1'AGE

c
D0 100 LP = 1'10C

c
C THIS LOOP INCREMENTS THE LOAD PNY

C CALCULATE DISPLACEÌ'IENTS BY ITERATI0N ALL0WING F0R CRÂCKING

C ( IF REQUTRED )

D0 99 IJK = 1,20
C ITERATE TO CALCULATE CONSISTENT SET OF DISPLACEMENTS, CURVATURES

C AND TENSTON STIFFENTNG FACTORS ( IF REQUTRED )

DO 98 JIK = 1,10
C CALCULATE EFFECTIVE THTCKNESS AT ALL NODES ( IF REQUIRED )

IF ( ITYPE. NE. O ) CALL PHYSP (NP, },f N, XH, ALPHA, UTX, UXT, PNY, T,W, ET, MS,
*PKX, PKY, PKXY, AA, EIJ , EM , HB, FIT4, ITYPE )

C CALCULATE BENDING MOI{ENTS AT ALL NODES

CALL BEND(M, MN, MNO, MNOP, N, }JP, NPQ, NPQR, f1, T2, XH, ALPHA, UYX, UXY,
*EX, GXY , EO , T, PNY, W, ET , BMX, BM Y, BMXY , MS, PKX , PKY, PKXY, EB , TTYPE )

9B CONTINUE
C CALCULATE THE ERROR TERM AT ALL NODES

CALT, ERROR ( NP, M],I, XH, ALPHA, Q, PNY,W, ET, BMX, BMY, BMXY, RR, MS, TTYPE )

ERR =0 .

D0 16 LX = 1,IÍNT
R (LX ) =RR (LX )

c
c
c

C

c
c
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C CALCULATE MAXIMUM ERROR TERM TO CHECK END OF ITERATION
ER=ABS (R (LX) )
IF(ER.GT.ERR) ERR=ER

16 CONTTNUE

CHECK VALUE OF MAXII'IUM ERROR TERM

ITERATTON ]S COMPLETED IF MAX ERR IS LESS THAN 1. OE-06

rF(ERR.LT.1.oE-06) Go ro 110

USE MODTI.'IED NEI^ITON-RAPHSON METHOD TO CALCULATE DISPLACEMENTS

DEAL=0. 001

c
C

c
c

c
c
c

c
c
c
c

CHANGE NODAL DISPLACEMENTS
CALCULATE EFFECT OF CHANGE

EACH IN TURN BY DEAL
IN ERROR TERM AT ALL NODES

NRS=0
D0 17 LY = l,NP
D0 18 L7' = J,MN
lüSAVE -l,l ( LZ 

' 
LY )

C SAVE ORTGII,¡AL VALUES OF EFFECTIVE THICKNESS AND STIFFENING COEFFICIE}{i
Do 19 rv ='l,NP
D0 20 JV = l,lvf N

BT(JV, IV)=ET(JV, IV)
SKX ( JV, IV) =PKX ( JV' IV)
SKY( JV, iV) =PKY( JV' IV)
SKXY ( JV, IV)=PKXY( JV, IV)

20 CONTINUE
19 CONTINUE

NRS=NRS+1
l'\I ( LZ, LY ) =hr (LZ, LY ) +DEAL

C CALCULAT'I NEW EFFECTTVE THICKNESS AT ALL I,IODES ( rF REQUIRED )

IF ( ITYPE, NE. O ) CALL PHYSP (NP, MN, XH, AI-PHA, UYX, UXY, PNY, T,l'i, ET,MS,
*PKX, PKY, PKXY, AA , EB , E},1, HB , HM, ITYPE )

C CALCULATE NE}¡ BENDING I'{OME¡¡TS AT ALL NODÉS

CALL tsEND (M, MN, MNO,MNOP, N, NP, NPQ, NPQR, I1,12, XH, ÂLPHA' UYX, UXY'
*EX, GXY o Eo, T, PNY,W 

' 
ET, BMX, BMY, BMXY,l"lS, PKX, PKY, PKXY, EB 

' 
ITYPE )

C CALCULATE NEI.I ERROR TERMS AT ALL NODES

CALL ERROR (NP, MN, XH, ALPHA, Q, PNY, l,J, ET, BMX, BI"!Y, BMXY, RR, MS, ITYPE )

C RE¡.SSIGN ORIGTNAL DISPLACEÌ'IENT F'UNClION VALUES
W (LZ , LY ) =i'iSAVE
DO 21 I\'¡ - i,MN
DO 22 JW = I'NP
ET(M, Jl'I)=BT(IW' JW)
PKX ( M, Jl,i) =SKX ( Il{, Jhr)
PKY ( IW, Jl,l) =SKY ( IW' JW)
PKXY ( I1¡¡, JW) =SKXY ( I'h¡ ' JW)

22 CoNTrltUE
21 CONTINUE

SET UP JACOBIAN MATRIX RS FOR NE!,ITON-RAPTISON ITERATION
D0 23 l"lRS = 1,MNT
RS (MRS, NRS ) = (RR (MRS )-R (MRS ) ) /DEAL
CON T INUE
CONT INUE

c
c

23
18
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c
c
c

17 CONTINUE

TRANSFER MATRIX RS INTO MATRIX A FOR INVERSTON

D0 34 KAR = 1,MNT
D0 35 KAT = 1,MNT
A(KAR' KAT )=RS (KAR, KAT )
CON T IN UE

COI"IT IN UE

INVERT MATRIX A

CALL MINV(A,AINV,MNT)

CALCULATE INCREMENTAL CHANGES IN DISPLACEMENTS ( DIT )

D0 36 KAL = 1,MNT
X=0.
D0 37 KAK = 1,lfNT
X=X+AINV (KAL, KAK) * ( -R (KAK) )

37 CONTINUE
KBL=KAL-1
KAP=KBL/(M:1 )

KBP=3+l(AP
KAS =KBL- (M-1 ) rçKAP

KASS =3+KAS
DW(KASS,KBP)=X

36 CONTINUE

35
34

c
c
c

(,

c
c

EN
RN

c
c
C

c

CALCULAT
CHECK FO

EW DISPLACEMENTS AT ALL NODES

EGATTVE DISPLACEMENTS ( INVALID )

c
c
c

c
c
c

D0 38 LTA = l,MN
D0 39 LTB = l, NP

lü(LTA, I-TB) =W(LTA, LTB)+Dl'¡(LTA, LTB)
IF(V'I(LTA,LTB).LT.O.) GO TO 12O

39 CONTINUE
38 CONTINUE

CI{ECK THAT SECONDART MODE OF DISPLACEMENT TS NOT ATTAINED ( TNVALTD )

D0 zLl JXL = 2, NPQ

D0 25 IXL = 2,MNO
l4C=14/ 2+2 $ NC =N /2+2
IF(hr(IXL, JXL).GT. ( 1.05*rrl(MC, Nc) ) ) G0 T0 124

25 CONT]NUE
24 CONTINI"IE
gg CONTTNUE

END OF INNER ITERATION LOOP

}¡RITE(6,40) PNY

40 FORMAT(1H0,5X,*AT LOAD PNY = *,F10.3,* N/MM L/6X,*EQUILIBRIUM IS *

X*NOT ATTAINED AFTER TV.IENTY ITERAT]ONS*)
G0 TO 130

120 V\TRITE(6, 41 )
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c
c
c
c

41 FORMAT( 1I]0,5X, *MATHEMATICAL FAILURE HAS OCCURRED*)

1 30 CoNlINUE
DPNY=DELPl'¡Y/M0
IF(DPNY.GT.-1.0) GO TO 140

DECREASE THE I,OAD INCREMENT ADDED TO PNY

REASSIGN DISPLACEMENT VALUES ASSOCIATED V'IITH LOAD SPNY

PN Y=S PNY

D0 42 .lLP
D0 43 rLP
ll( rLP, JLP )

43 CONTINUE
42 CONTINUE

M0=M0*2
P N Y = PNY +DE t, PN Y/M0

EXTRAPOLATE FOR NEW DISPLACEME].ITS AT NE!.¡ LOAD PNY

CALL EXTRAP(NPQ,MNO,MO,W,},IE,MS)
G0 T0 100

110 WRrrE(6,54)
54 FORMAT(1H1',25X,*EQUILIBRIUM HAS BEËN ATTAINEDX)

CHECK FOR MATERIAL FAILURE

rF ( TSTFLG . EQ. 0 ) G0 T0 17 0

CALL MATFAIL (MNO, NPQ, T, SIGT, TFATL, PNY, CMFAIL, EO,BI4X, BMY,

lBMXY,ET,MS)
IF(IFATL.EQ.O) GO TO 170
rF(rFArL. EQ. 1 ) l,{RrrE(6, 121 )
IF ( IFATL. EQ. 2 ) hIRTTE (6,122)
IF ( IFAIL. EO" 3 ) WRITE (6,123)

121 FORMAT( 1itO,20X, *TENSILE FAILURE DLlE T0 BENDING X-X*)
122 FOR14I\T ( 1H O. 2CX, *BRICKWORK COMPRESSTVE FAILUREIÉ)
123 FORMAT(1H0,20X,*TENSILE FAILURE AT 45 DEGREES T0 BEDJOINTS*)

IFA IL =0
c0 To 130

1 7O CONTINUE

PRINT OUT PLATE DISPLACEMENTS

WRITE ( 6, 44 ) PNY
44 FORMAT( 1H0, 1OX, *NODAL DISPLACEMENTS (MM) FOR PNT = *,F10.3,

1X N/MM ARE ---*)
DO 45 II = 2,NPQ
lrtRITE (6,52) (W( JJ, II), JJ=2,l"fNO)

45 CONTINUE

STORE DTSPLACEMENTS OF CENTRE NODE FOR LOAD-D]SPLACEMENT PLOT

N PL0T =N PLOT+ 1

PLAT (NPLoT ):_PNY
PLOT (NPLOT ) ='d( MC, NC )

-)
=2
=PW

, NPQ

, Mllo
( ILP, JLP )

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

PRINT OUT BENDTNG MOMENTS AT ALL NODES



}IRITE ( 6, 180 ) PNY

180 FORMAT(1HO,1OX,*BENDING MOMENTS MX ( NMM/MM )

1X N/MM ARE .--T)
DO 181 II = 2,NPQ
WRITE (6,52) (BMX(JJ, II ), JJ=2'MN0)

1 B 1 CONTI}¡UE
VIRITE(6,182) PNY

182 FORMAT(1HO,1OX,*BENDING MOMENTS MY ( NMM/MM )

466.

FOR PNY = *,F10.3,

FOR PNY = *,F10.3,

c
c
c

c

c

c

c
c
c

c
c
c

1* N,/MM ARE ---*)
D0 183 II = 2,NPQ
WRITE (6,52 ) (nUY( JJ, II ) , JJ=2,M1'10 )

1 83 CONTINUE
!fRrrE(6,184) PNY

184 FORI'lAT( 1H0, 1OX, xThIISTING MOMENTS (MXY+MYX)

1*= *,F10.3,tt N/Ml'l ARE ---*)
D0 185 II : 2,NPQ
WRITE (6,52) (tsMXY(JJ, fI ),JJ=2,MN0)

185 CONTINU[:
WRITE(6,186) PNY

186 FORMAT(11ì0, IOX,ttNODE EFFECTIVE THICKNESSES
1F10.3,n N/Ml.l ARE ---*)
D0 187 II ; 2'NPQ
I{RITE (6,52) (ef (iJ, f I ) , JJ=2,}4NO )

187 CONTINUE

( NMM/MM ) FOR PNY *

MM ) FOR PNY = *,

STORE VALUES OF LOAD AND DTSPLACEMENT IN CÂSE OF FAILURE AT NE}I LOAD

SPNY=PNY
STORE VALUES OF PI{ IN l,IE FOR EXTRAP AND VALUES OF I"I IN PI^I

DO 46 JOP = 2,NPQ
DO I4T I0P = 2'MN0
ldE ( I0P, JOP ) = Pl.t( I0P, J0P )
P!./( IOP, J0P ) ='tl ( I0P, J0P )

4T CONTINUE
46 CONTINUE

INCREASE LOAD VALUE PNY
PNY=PNY-TDELPNY/M0

EXTRAPOLATE FOR DISPLACEMENTS AT NEI'I LOAD PNY

CALL EXTRAP(NPQ,MN0,MO,W,l'lE,MS)
1OO CONTINUE

END OF MAIN ITERATION LOOP

l{RrrE ( 6, 48 )
48 FORMAT( 1HO, 1OX, *FAILURE NOT ATTAINED AFTER 1OO ITERATTON *

**LOAD INCREI'IENTSX)
G0 T0 150

1 40 PNY=SPNY
I,IRITE(6,49) PNY

49 FORMAT(1H1 ,//// 1OX,*--- :-----------------r,
1/'zox'à=FATLURE LOAD rs *'/
2,25X,F10. 3,/,17X,*N/MM LENGTH OF PANELx,/'
31 OX, *------- ------*)

PLOT DISPLACEMENT OF !ÙALL CENTRE NODE



c
c
c
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CALL QTKPLOT (PLOT, PLAT, -40, l4HXDTSPL¡.CEMENT*, 6H*J,OADX 
' -1 )

150 CONTINUE
52 FoRMAT( 1H0, 5X, 10F 12. 3)

END
SUBROUTTNE PHYSP(NP,MN, XH,ALPHA, UYX, UXY, PNY, T,W,ET,MS'

*PKX, PKY, PKXY, AA, EB, El'|, HB, Hl4, ITYPE )
DIMENSION W(MS, 1 ),ET(MS, 1 )
DIMENSION AA(4),PKX(MS, 1 ),PKY(MS, 1 ),PKXY(MS, 1 )

PLX=0.

CALCULATE CURVATURE CURVY AND NE!ú EFFECTfVE THTCKNESS AT ALL NODES

D0 10 LF = I,NP
LR=LF-1 $ LS=LF+1
D0 11 LE = I'MN
LG=LE-1 $ LH=LE+1
D0.13 LY = 1,10
CUR VY = 

(\i ( LE, LR ) -2 . *I'J ( LE, LF ) +W ( LE, LS ) ) / ( XH nALPHA ) x n 2
*+UYXx ( W ( Lc, LF ) -2 . tÊW( LE, LF ) +W ( LH, LF ) ) / ( XH'xXH )

AC UR VT =ABS ( CUR VY )
rF(ACURVY. LT. 1.0E-50) G0 T0 12

PVY=PNY,/CUB VY
APVY=ABS ( PVY )
Bpvy=2. * ( I . _uxyxuyx) / (pKy(LE, LF ) *EB) rÉApvy

CPVY=SQRT(BPVY)
IF(CPVY.GT.T) CPVY=T
ET(LE,LF)=CPVY
c0 T0 16

12 ET(LE,LF)=T
16 CONTINUE

CALCULATE NEW VALUES OF ELASTIC MODULUS FACTORS PKX, PKY AND PKXY
( IF REQUIRED )

IF ( ITYPE . EQ. 1 ) GO TO 11

ITYPE EQ 1 TMPLIES NO-TENSIOIJ MATERTAL
ED= ( 0. 5xT-ET (LE, LF ) /3 ") /T
lF(ED.LE.1 "/6.) PLY='l .

rF(ED.LE.1./6.) GO To 15
ED1=ED $ ED2=ED*ED $ ED3=EDx'*3
PLY=AA ( 1 ) +ED 1 xAA ( 2 ) +ED2*AA ( 3 ) +ED3ftAf{ ( 4 )
rF(ABS(PLY-PLX).LE. 1.0E-09) G0 T0 15
PLX=PLY

13 CONTINUE
vùRrrE(6,14)

14 F'ORMAT(1H0,5X,*PKY IS NOT FOUND AFTER 1O ITERATIONS*)
15 PKY(LE, LF)= (HB+Hl'l) / (1. /PLYrçHB+EBlEMxHM)

PKX (LE, LF ) = 0 .75x (T / ET (LE, LF ) ) ;Êx3

PKXY (LE, LF ) =0. B5r* ( T/ET (LE, LF ) ) **3
1 1 CONTINUE
1O CONTINUE

CALCULATE NEI,I VALUES OF TWIST FACTOR PKXY AT TOP

AND BOTTOM BOUNDARIES ( IF REQUIRED )

c
c
C

c

c

c
c
c
c

IF(ITTPE.EQ.1) GO TO 18
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DO 17 ITW = 3,MN
PKXY( ITW, 2) =0. 85*( T/ET ( ITW, 2 ) ) *r(3
PKXY(ITt¡ü, NP+1 )=0. B5v,(T/ET (ITW, NP+1 ) )**3

1 7 CONTINUE
18 CONTINUE

RETUR N

END
SUBROUTÏNE BEND

*UXY, EX, GXY, EO, T
DIMENSION hI(MS,
DIMENSION PKX(M

BX= (l^l( NG 
' 

NF ) -2.
*+UXY*'(W(NE, NR)-

BMX(NE, NF ) =-EXx
CALCULATE ThIISTIN
( BMXY TS THE XS

BXY=(W(NH,NS)-l^l

(M,M
, PNY
1),E
S,1)

N,MNO, MNOP, N, NP, NPQ, NPQR, T 1 , I2, XH, ALPHA, UYX,

,InI , ET , BMX, BMY, BMXY , M S, PKX, PKY,-PKXY, EB , ITYPE )
T(MS, 1 ),BMX(MS, 1 ),BMY(MS, 1 ),BMXY(MS, 1 )

, PKY (MS, 1 ) , PKXY (tis, 1 )

NE, NF )+!ù(NH, NF ) ) / (XH'ÊXH )
VI( NE, NF )+W ( NE, NS ) ) / (XHxALPHA ) **2
(IIE, NF)*ET(NE, NF)*x'3/(lZ.x ( 1.-UXY*UYX))rf BX
OMENTS AT INÎERNAL NODE (NE,NF)
0F' TIIISTING Mol'lENl'S MXY AND MYX )

, NS ) -W ( NIJ, NR ) +l^I ( NG, NR ) ) / (4 .x ALPI{A*XH*XH )

c
c
c

CALCULATE BENDING MOI4ENTS AT TOP AND BOTTOM BOUNDARIES

D0 12 IJ = J,MN
rF(ITYPE. EQ.0) GO T0 17

ITYPE EQ O IMPLIES SOLID PANEL PROBLEM
TF(EO.GT.T/6. ) GO TO 13

1 7 BMY (IJ ,2 ) =BMY( IJ, NPQ ) =-PNY*EO
GO T0 14

1 3 CONTINUE
BMY ( I J , 2 ) =BMY ( I J, NPQ ) =-0 . 5nPNYrÉ (T / 2 . -l:C)

1 4 CONTTNUE

CALCULATE VALUES OF DTSPLACEMENTS OF FTCTITIOUS NODES FOR

CALCULATTON OF BI"IXY Tl,IISTING MOMENTS TOP AND BOTTOM
( BMXY IS THE XSUI,í* OF TWISTING MOI.IENTS MXY AND MYX )

W( IJ, 1 ) =-W( IJ, 3 )-BMY (IJ, 2) * ( XH'ÊALPHA ) x*2* ( 1 2 " 
x (1. -UXYrÊUYX) ) /

* (EB*PKY (IJ, 2) xET ( IJ, 2)*n3 )
1'¡( IJ , l¡PQR ) =-W ( I J , NP ) -BMY ( I J , NPQ ) * ( XH *ALPHA ) * * 2

*x ( 12. * ( I . -UXy*UyX) ) Z ( ESopKy ( IJ, NpQ ) $ET ( I J, NpQ ) rÈ*3 )
12 CONTINUE

CALCULATE BENDING MOMEN'IS BMX AND BMY AT ALL INTERNAL NODES

D0 10 NF = I,NP
NR=NF-1 $ NS=NF+1
D0 11 NE = l,MN
NG=NE-1 $ NH=NE+1
BY=([t(NE, NR )-2. *i,J(NE, NF )+l,l(NE, NS ) ) / (XFIxALPHA)tÈn2

*+UYXx(If(NG, NF )-2. nW(NE, N!' )+!rr( NH, NF ) ) /(XH#XH )
BMY(NE, NF ) =-EBxPKY (NE, NF ) *ET (NE, NF ) * *3/ (12.x (1. -UXY*UYX) ) *BY

C

c
c
c
c
c

c
c
c

c
c
c

l( I^l (

2.x
PKX
GM
UM*
(NG

c
c

BMXY(NE, NF ) =-2.*GXY*PKXY(NE, NF ) rÊET (NE, NF )**3/ 6. r(BXY

11 CONTINUE
1O CONTINUE

CALCULATE BENDING MOMENTS BMX AT TOP AND BOTTOM BOUNDARIES

DO 18 KL = l,ÞlN



c
c
c
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BX=UXYx(1,,¡(KL, 3)+Ï'r(KL, 1 ) ) / (XHr(ALPHA ) rix2

TX=UXyx(W(KI., Np)+W(Kt., NpQR ) ) / (XH)ÉAl,PHA )*rf2
BMX(KL, 2)=-EX*T xx 3/ ( '12 ' * ( 1 ' -UXY"*UYX) ) xBX

BMX(i(L, NPQ)=-EXxT x*3/ (12.x (1 . -UXYTfUYX) ) xtX
1 8 CONTINUE

CALCULATE APPROXiMATE DISPLACEMENTS OF FICTITIOUS CORNER NODES

til(1,3)=-!rl(3,3)
I\I( MNOP, I )=-W( Mlt, 3 ¡
W(1,NP)=-W(3,NP)
W( MNOP, NP ) =-I,tr ( MN' NP )
I'l(1,4)=-!l(3,4)
t'¡(MNOP,4)=-W(MN,4)
!f(1,N)=-W(3,N)
hr( MNOP, N ) =-l^l ( ¡4N' N )
I1=1 $ I2=1
CAI.L CORNER (M,}4N,MNO, N, NP, }.IPQ, I 1,T2,W,MS)
f1=MNOP $ I2=1
CALL CORNER (M,I'fN,MNO, N, NP, NPQ, T1,T2,I¡¡,MS)
I1=1 $ I2=NPQR
CALL CORNER(M,MN,ì"ÍI{0, N, NP, NPQ, T1, I2,hI,MS)
I1=MNOP $ I2=NPQR
CALL CORNER(M,I"1N,MNO, N, NP, NPQ, I 1,T2,1.I,MS)

CALCULA'TE TWIST]NG MOMENTS BMXY AT TOP AND BOTTOI"J tsOUNDARIES
( BMXY IS THE *SUMi( OF TI,IISTING I4O¡4ENTS MXY AND MYX )

D0 15 IK = 2,MN0
IKA=IK-1 $ IKB=IK+1
BXY = 

(!ü( II(8, 3 ) -W ( IKA, 3 ) -\{ ( IKB , 1 ) +!l ( IKA , 1)) / ( 4 . tÊALPHAT(XH *XH )
TXY= (lù( IKB, NPQR ) -W ( IKA, NPQR ) -Ir¡ ( IKB, I'lP )+l{ ( IKA, NP ) ) / ( 4. rÉALPHATçXH xXil )

Bl"lXY ( IK,2) =-2 . *GXY 16PKXY ( IK, 2 ) *ET ( IK ,2)x x3/ 6. rÉBXY

BMXY ( IK, NPQ )=-2. #GXY*PKXY ( IK, NPQ) *ET ( IK, NPQ ) *x3/6. *TXY

15 CONTINUE

CAI,CULATE TWISTING MOMENTS BMXY AT VERTICAI. SUPPORTS
( B}4XY IS THE #SUMI( OF TWISTING I4OMENTS }'fXY AND MYX )

D0 16 JK = I'NP
JKA=JK-1 $ JKB=JK+1

c
c
c
c

c
c
c

c
c
c

VLXY=2. * (Vü( 3,
VRXY=2.*(l,l(MN
BMXY(2,J1()=-?
BMXY(MNO,JK)=

16 CONTINUE
RETURN
END

JKB) -W( 3, JKA) ) i ( 4. nAL,PHAxXH*XH )

, JKA ) -W ( l"íN, JKB ) ) / (4 . xALPHA*XH*XH )

. *GXY*PKXY ( 2, JK ) *ET ( 2, JK)X*3/6. #VLXY

-2. *cxy*pt(xy (Mt'to, JK ) r+ET (t'lN0, JK ) i{'r(3/6. *VRXY

SUBROUTINE ERROR (NP, MN, XH, AI-PHA, Q, PNY,tiI, ET, BMX, BMY, BMXY, RR, I'1S

1 , rTYPE )
DII.,IENSION !'I(MS,1),ET(þfS,1),BMX(MS,1),tsMY(MS,1),BMXY(MS,1)'NR(1)

CALCULATE ERROR TERM AT ALL INTERNAL }¡ODES

KX =0
DO 10 Lts 3, NP



c
c
c
c
c

c
C

c

c
c
c
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LA=LB-1 $ LC=LB+1
D0 11 KB = l,MN
KA=KB-1 $ KC=KB+1
KX=KX+ 1

CALCULATE ELEI,ÍENTS OF ERROR TERM SEPARATELY

D2MXDX2

DMX=(BMX(KA .LB) -2. nBMX(KB, LB)+BMX(KC, LB) ) / (XH*XH )

D2MYDY2

DMY= ( BMY (KB,LL) -2.. *BMY (KB, LB ) +BMY (KB, LC ) ) / ( XH *ALPHA )'t *2

D2 ( MXY +M YX ) DXDY

Dl,fXY= (BMXY (KC, LC) -BMXY(KA, LC)-BMXY (KC, LA )+BMXY (KA' LA ) ) /
* ( 4. *ALPHA*XH*XH )

D2WBARDY2

01,¡BAR=(Vrr(KB,LA)-2.tthl(KB,LB)+tl(KB,LC)+0.5x(ET(KB,LA)-2.rÉET(KB'LB)
*+ET (KB, Lc ) ) ) / ( XH*ALPHA )**2

COMBINE TERMS TO GIVE TOTAL ERROR TERM

R R (KX ) = DMX+DMXY+DMY+Q+PNY *DWBAR

1 1 CONTINUE
1O CONTINUE

R ETURN
END
SUBROUTINE EXTRAP (NPQ, MNO, MO,!ü,T^¡8, MS )
DIMENSTON W( MS, 1 ) ,WE (MS, 1 )

EXTRAPOLATE ON ALL DISPLACEMENTS IN ARRAY }'I

D0 10 KD = 2,NPQ
D0 11 KC = 2'MN0
rF(!.I(Kc, KD).EQ. o. ) Go ro 12

t'IMULT=1 . +( 1' -WE (Kc' KD )/hr(Kc' KD ) ) /l'10
ü¡ (KC, KD ) =I"l 

( KC, KD ) tÊ!üM ULT
G0 T0 11

1 2 VJ(KC, KD)=-trlE (KC' KD )/M0
11 CONTTTIUE
1O CONTINUE

RETURN
END
suBRouTrNE MrNV(4, Arl.lV,MNT )

DIMENSTON A(MNT,1 ),AINV(MNT, 1 )

MATRTX INVERSION BY GAUSS.JORDAN METHOD ( AF'TER P. C. WANG )

c
c
c

c
c
c

c
c
c

c
c
c

DO 10 I
DO 10 J
AINV(I,J

=1
=1
)=o

, MNT

, MNT



c
c
c
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rF (I. EQ. J) AINV(I 
' 
J)= 1 .0

1O CONTINI.JE
EPS=1.0E-08
D0 12 I = 1'MNT
K=f
IF(I-MNT) 13,14,13

13 rF(A(r,r)-EPS) 16, 17, 14

16 rF(-A(r,r)-EPS) 17,17,14
1 7 K=K+1

D018J=1'MNT
AINV( I, J )=AINV ( I, J )+AINV(K ' 

J)
18 A(I, J)=A(I, J)+A(K' J)

c0 T0 13
14 DIV=A(I'I)

D0 19 J=1,14NT
AINV(I' J)=AIl{V(I, J ) /DIV

19 A(I,J)=A(I'J)/DIV
D0 12 MM = 1,MNT
DELT=A(MM, I)
IF(ABS(DELT)-EPS) 12, 12,20

20 rF(MM-r) 21,12,21
21 D0 22 J = 1'MNT

AINV (MM, J ) =AINV 
(MM, J )-AINV ( T, J ) IßDELT

22 A(MM, J)=A(MÌ'í, J)-A( I' J)*DELT
12 CONTINUE

RETURN
END
SUBROUTTNE CORNER(M,MN,MNO, N, NP, I.¡PQ, I 1,T2,W,MS)
DIMENSION W(MS, 1 )

CALCULATE DISPLACEMENTS OF FTCTITIOUS CORNER NODES

IF(r1.EQ.1) G0 T0 10
N0=M $ N1=MN $ N2=Ì'lN0
GO T0 11

10 N0=4 $ N1=3 $ N2=2
1 1 CONTINUE

lrr 1=lr¡(NO, 12)-3. r{1ü( N 1 , I2 )+1. xç1N2, I2)
IF(r2.EQ.1) G0 T0 12
LO;N$L1=NP$L2=NPQ
G0 TO 13

12 L0=4 $ L1=3 6 L2=2
1 3 CONTINUE

W2=W( I1 , L0)-3. *W( I1 , L1 )+3. rf W( I1 
' 
L2)

Vl( I1 , I2)=0. 5* (UI1+W2)
RETURN
END
SUBROUTINE I4ATFATL(MNO, NPQ, T,STGT, TFATL, PNY, CMFAIL' EO'

1 BMX, BMY, BMXY , ET , M S )
DIMENSION BI-ÍX(MS, 1),BMY(MS, 1),BMXY(MS, 1),ET(MS' J )

THIS SUBROUTINE C¡{ECKS FOR MATERIAL FAILURE IN ANY OF THREE MODES

1. TENSILE FAILURE TN BRICKWORK DUE TO BENDING X-X
2. VERTICAL SPLTTTING FAILURE .--THE COMPRESSIVE STRENGTH

OF THE BRTCKWORK MUST BE KNOVJN OR ASSUMED. LINEAR MATERIAL
ELASTIC PROPERTIES ARE ASSUMED.

c
c
c
c
c
c
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MODE 1. ---CHECK FOR TENSILE FAILURE DUE TO BENDING X-X

c
c
c
c
c
c

D010I=2'MNO
DO 11 J = 2'NPQ
sIGX=BMX( I, J ) n6. / ( TåÉT )
IF(SIGX. GE. 0. T5xSIGT ) IFAIL=1

3

11 CONT]NUE
1O CONTINUE

DO

DO

TF(

, MN0

, NPQ
LT.T) GO TO 14

TENSILE FAILURE AT 45 DEGREES TO THE BEDJOINTS .-- A CHECK

IS MADE AT AN INTERNAL NODE CLOSEST TO A PANEL CORNER

MODE 2.---CHECK FOR VERTICAL SPLITTING FAILURE
c
c
c

12f=2
13 J = 2
ET(r,J).

c
c
c

MODE 3.---CHECK FOR TENSILE FATLURE AT 45 DEGREES T0 THE BEDJOTNTS

SIGY=-PN Y /T+6. n BMY ( I , J ) / ( T *T )
GO T0 15

14 SIGY=-2. *PNY/ET(I' J)
15 CONTINUE

IF(SIGY. GE. CMFAIL) IFAIL=2
1 3 CONTINUE
12 CONlINUE

SIcXY=PNY,/ (2.*1) tß ( 1 . -.6. *EO/T)+3. /(TråT)åtABS(tsMXY (3' 3) )
IF(SIcXY.GE. SIGT) IFAIL=3

}'IATERIAL FATLURE FLAG TFAIL IS NO}'J SET

RETURIi
END

c
c
c
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G.3 SKELETON FLOW CHART FOR PROGRAM PANEL1

max I mum
error small

.)
noug

ls

Ca lcu I ate erron tenm
at al I nodes

Calculate bending and
twisting moments at all

nodes

Calculate ttrickness of
equ i va lent p late at a I I

lrodes

Ca lcu I ate
i ncnemen ted

wall load, PNY

Read panel
panameters

Specify problem
et

N
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Reassign saved values
of displacement and

effective thickness at
al I nodes

Stor-e changes in
ernor terms in

t Jacob îan ' matrîx

lncr-ease
i ncnemen t

D i rr isonr lvlo

Ca lcu I a !e erron
terr¡ at all

nodes

Ca lcu late bend ing
and twisting

monìents at all
rrodes number of

Newton-RaPhson
loops been

?
done

max I mum
Have

Ca lcu I ate the
effectíve thickness

at all rrodes

Ca lcu late new
displacements at

al I nodes

Char-rge va lue
d i sp I acemen t

next node

of
at

Save displacemerìt values
and e'lf ect ive th ickness

at al I nodes

lnvent tJacobiat'r' matnix
to ca lcu late changes

in nodal disPlacements

i sp I acemen t

2
a I tere

noda I

All

Newton Raphson
I oop

N

N
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a

STOP

i ncnement
too small

2

load

Calculate new
load increment

DELPNY/tvlo

Print out displacements,
moments and effective

thicknesses at al I nodes

Y
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