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SUMMARY

Brickwork is commonly used as a load-bearing component in both
low-rise domestic buildings and high-rise structures. Analytical
investigations conducted in tHe past on the strength of brick walls
have been based on the assumptions that a brickwork wall or panel
behaves as a column regardless of ény vertical edge support conditions
and that no tension stresses can exist in the assumed column. These’
simplifying assumptions do not reflect the actual behaviour of real
brickwork and consequently have led to conservative predictions for
wall str‘engths.l

The work presented in this thesis has approached more closely
the real behaviour of brickwork by observing that even for a stress
distribution in which there are no tensile stresses at the brick-mortar
interfaces, the stresses in the bricks themselves can be significant.
For walls supported only at the top and bottom, equations are derived
for an equivalent column of varying thickness by using a two-
dimensional finite element method to calculate the bending stiffness
of a brick-mortar module in which cracking may occur at the brick-
mortar interfaces. It is assumed that the brick material is linearly
elastic and the mortar is either linearly elastic or non-linear with
a specified stress-strain relationship. For panels supported on four
sides, equations are derived for an equivalent plate of variable thick-
ness in which both the brick and mortar materials are assumed to
be linearly elastic. The plate stiffness properties ’ar*e determined by
using a three-dimensional finite element method to analyse a brickwork
module in which cracking may occur at the horizontal and vertical

brick-mortar interfaces. Both the equivalent column equations and ihe



equivalent plate equations are written in finite difference form and
are solved by using Newton-Raphson iteration.

Experiments conducted on a steel block column, brickwork prisms
and a series of full-scale brickwork walls ar‘é described, and a full-
scale test on a brickwork panel simply-supported on four sides is
presented. All  experimental results indicate that the numerical
approach closely reflects the real behaviour of brickwork.

A brief review of Codes of Practice is given in which specified
design loads are compared with load capacities calculated using the
equivalent column and equivalent plate equations. The comparisons
show that, generally for walls of high slenderness, Code requirements
lead to conservative predictions of wall and panel strength. Further,
it is demonsirated that the methods of analysis may be used as a basis
for modifying existing Code recommendations related to the design of

vertically-loaded slender brickwork walls and panels.
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1. INTRODUCTION

Brickwork has been a common form of building construction from
the times of civilizations which existed several thousands of years B.C.

Today it remains a popular material, particularly in residential con-

struction because of its durability, its acoustic and insulation
properties, its natural resistance to fire and its general aesthetic
appeal.

Iln Australia, brickwork has been used extensively in both single-
storey domestic construction and in multi-storey housing developments.
In South Australia and Western Australia, many houses built since 1945
have internal partition walls with bricks laid on edge in order to save
on material costs. These walls are relatively slender by comparison
with walls constructed traditionally with bricks laid on flat. In some
domestic buildings, the interior partition walls may be required to carry
vertical loads arising from suspendéd floors, building services or roof
loads when the roof structure is str‘uttec.j off the interior brickwork.
Although these loads may be relatively small, many building Codes place
restrictions on the slenderness ratio of walls in load-bearing situations
irrespective of the load levels in the walls. These restrictions are
usually not unreasonable in view of the lack of knowledge of the
behaviour of slender walls especially with respect to the unknown
effects of imperfections in workmanship and difficulties associated with
the definition of edge support conditions.

A number of investigations have previously been carried out fo
determine the load carrying capacities of various types of brick wall.
In general, however, this work has been aimed at structures of
relatively low slenderness ratios in which ultimate failure has been

governed by a material failure rather than structural instability.



The aim of this thesis, therefore, is to fill the gaps left by
previous researchers by investigating the behaviour of a wide range
of brickwork walls with varying support conditions, making allowances
for non-linearities in material behaviour and imperfections in workman-
ship. The effects of increasing the wall slenderness ratio are
investigated in some detail.

In many of the previous research programmes, a consider‘éb!e
amount of effort has been directed towards the experimental testing of_
isolated brickwork walls and piers, possibly because brickwork, as
an anisotropic and non-homogeneous material with its distinct planes
of weakness in the mortar, appears not to be readily suited to
mathematical analysis.

The few theories which have been developed have been applied

to walls supported at the top and bottom edge which undergo one way

bending. In general these theories assume that brickwork is a no-
tension material, an assumption which may lead, in some cases, to
conservative wall load capacities. In the investigation described in
this thesis, it has been possible by atlowing for the actual behaviour

of the individual components of brickwork, that is,the bricks and
mortar, to develop analytical procedures which permit general parametric
studies to be carried out for many types of load-bearing brickwork.

In brickwork walls subjected to vertical loads, cracking may
occur at discrete intervals at the brick-mortar interfaces, the extent
of the cracking in the bedjoints depending on the position of the line
of action of the resultant compression load relative to the wall centre-
line. No cracking occurs in the brickwork when the resultant load acts
inside the middle third of the wall section, the kern. However, if the
brick—mortar tensile bond strength is small, cracking occurs when the
resultant load acts outside the kern. Under such conditions the brick-

work flexural stiffness is altered.



The approach adopted in this thesis is that the change in brick-
work stiffness can be determined by using a two-dimensional finite
element analysis to calculate the moment-rotation characteristics of a
cracked brickwork module consisting of two half-height bricks plus one
mortar bedjoint. The resulting characteristics are used to develop load-
deflection relationships for a homogeneous isotropic varying-thickness
column equivalent to the real brickwork. The load capacities of
eccentrically-loaded brickwork walls are calculated from equivalent-
column equations, written in finite difference form, by using a
numerical Newton-Raphson method to solve the resulting equations. The
method is checked by testing under eccentric load conditicns a model
slender steel block column and a series of brickwork walls having
varying slenderness ratios.

The analytical methods have been extended to accoun—t for brick-
work panels which are simply-supported on four sides and subjected
to vertical load. The bending and torsion stiffnesses of a three-
dimensional brickwork module are estimated from a three-dimensional
finite element method of analysis. Load-deflection relationships are
developed for an equivalent plate of varying thickness, analogous to
the equivalent column of wvarying thickness for a wall, in order to
represent the behaviour of a real brickwork panel. By writing the load-
deflection equations in finite difference form, load capacities are
calculated for eccentrically-loaded simply-supported brickwork panels.
Results obtained from the numerical method are checked by testing
several small panels and a full-scale slender brickwork panel simply-
supported on four sides.

It is shown that the combination of finite element methods with

finite difference solution procedures gives an efficient means of solving

large non-linear load-bearing brickwork prcblems. Results obtained by



using the numerical ~methods indicate that the strengths of slender
brickwork walls may be calculated for many different types of brick-
work materials and wall support conditions. It is further demonstrated
that the methods of analysis may be developed to revise some current
Codes of Practice to allow, in some cases, the use of slender walls
and panels in load-bearing situations not permitted at present.

TJo assist in the detailed understanding of the behaviour of
brickwork, the following two chapters contain a general review of
design procedures and construction practices used for structural brick-
work, and a review. of previous methods of analysis and relevant

research results.

)



2. STRUCTURAL BRICKWORK - A SYNOPSIS

The concept of "structural brickwork" as a method of construc-
tion. in masonry has evolved over many centuries. In this chapter,
the development of construction methods using masdnr‘y is outlined
together with current practices for the erection of structural brickwork.
Design procedures are discussed and exemplified by consider‘ing the
engineering details of a particular structural brickwork building.

Attention is also given to the limitations of structural brickwork.

2.1 THE DEVELOPMENT OF STRUCTURAL BRICKWORK

!

The use of masonry in buildings other than low-rise domestic
houses has developed from practices used in the construction of the
major churches and cathedrals of medieval Europe. A paucity of
contemporary documentation on the methods for both engineering design
and the building construction has led modern writers such as

(1) (2)

Fitchen and Heyman to attempt a formulation of the respective
procedures which might possibly have been adopted. Until the sixteenth
century when the vector addition of forces was developed, all building
proportions and dimensions appear to have been entirely dependent
upon height-to-width ratios developed by arbitrary rules and per-
petuated through masons' lodges. The notion of forces and their lines
of action allowed design to progress in an analytical fashion.

At that time, the materials used for the construction of the
major churches and cathedrals of Europe were not bricks as we know
them, but large blocks of stone carefully finished to fit together

closely without a need for mortar. The two design principles which

appear to have been followed were that -—



(a) the compressive strength of the stone, for all
practical purposes, was infinitely large, and
(b) the resultant force in the stonework must lie

within the middle third of the section.

(3)

Coulomb , in 1773, proposed that the resultant force shouild never be
outside the section otherwise failure would occur by the formation of
a hinge at an outer edge and that this was the only possible mode

of failure for masonry.

Brickwork differs from the stonework used in the large catnhedrals

(4)

in that it is an assemblage of bricks bonded together with mortar
to give uniform bearing between the relatively small and rough-faced
brick units. Brickwork is commonly categorized into '"Normal Brickwork"
and "Structural Brickwork'"; '"Normal Brickwork" requires no engineering
design while "Structural Brickwork” requires design for fully struc-
tural applications.

The methods used by the medieval builders evolved through to
the nineteenth century into what has become known as conventional
load-bearing brickwork. Each wall in a structure was treated as
though it was independent of the rest of the building and hence relied
on its own weight for its stability. Figure 2.1,(Francis(5)), shows that
the brickwork was designed to be in compression under all likeiy load
combinations by ensuring that the resultant forces acting on any cCross-
section would lie within the middle third of the section. This design
philosophy, which had its roots in Renaissance Europe, proved to be
grossly uneconomical in the late nineteenth century when steel and
concrete framed structures were being developed. The Monadnock Build-
ing constructed in Chicago and completed in 1891 was a sixty-metre
high tower block in which approximately 20 percent of the ground floor

area was taken up by the load-bearing walls some 1650mm thick at
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street level. By the end of the nineteenth century, framed structures
which were both economically more viable and architecturally more
flexible were replacing masonry high-rise buildings.

In the 1950's, a new design approach for masonry was
developed for high-rise r‘esiden.tial buildings in Europe to cope with
the post-war population problems in many countries. Haller‘(G), in
1958, reported the construction of a number of nine-storey apartment
houses and an eighteen-storey tower on the outskirts of Zurich. In
the design, each wal! was recognized as being an integral part of
the whole building. The concrete floor slab at each level was
assumed to be a diaphragm, rigid in its own plane, which con-
strained the walls to lateral translations which depended on the
lateral translation and rotation in a horizontal plane of the floor
slab. Simplified calculations were made to obtain the e%fective load
eccentricities for each wall by taking into account the flexural
stiff_ness'es of the concrete floor stabs. The improved efficiency of this
approach over conventional load-bearing brickwork is evident in an

(7)

eighteen—storey apartment house in Biel in which the load-bearing
walls at ground level are of the order of 150mm compared with
1650mm for the Monadnock Building, a structure of comparable height.

(31) shows a diagrammatic layout of a modern struc-

Figure 2.2
tural brickwork building. The diaphragm-type action of the floors

causes lateral loads, such as wind loads, to be transferred to

ground as shear forces in the planes of the walls which are parallel

to the direction of the resultant lateral force. It is this use of
shear walls for the transfer of lateral loads to ground which
differentiates structural brickwork from conventional load-bearing

construction.
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2.2 LOAD TRANSMISSION IN STRUCTURAL BRICKWORK

The efficiency of structural brickwork is obtained by ensuring
that the walls are aligned ver‘tica'lly throughout the height of the
building. The walls serve multiple purposes. As well as ‘carrying the
vertical loads they pr*ovide the necessary separation between different
rooms on each level and often provide the architectural finish as well.
The concrete floors carry live loads at each level to the bearing walls
and provide thermal and acoustic insulation between adjacent storeys
of the building. The floors are usually of the order of 100mm to 150mm
thick so that some degree of structural interaction between the floors
and walls is’ possible because they are both of similar flexural
rigidity. The bending effects produced by this interaction cause the
walls to be loaded eccentrically so that the design of structural
brickwork, even for vertical loads only, must take account of the
possibility of failure not only under excess compression but also by
instability. Methods of calculation which allow for interaction effects
between crushing and instability will be discussed in Chapter 3.

The main effects of lateral loads on brickwork are shown in
figure 2.3. The lateral forces which have a component normal to a
wall cause transverse bending in that panel, and lateral forces which
have a component parallel to a wall produce in-plane shear and normal
stresses.

(8) (9) (10) (11) (12)

Hallquist , Hendry , Satti s Baker , Lawrence ,

(13) (14)

Bradshaw and Entwisle and West have investigated the effects

of lateral loads on brickwork panels supported on both horizontal and
vertical edges.

Extensive comparisons have been made between experimental resuits
and theoretical predictions based on elastic plate behaviour, yield

(11)

line collapse and a panel sirip theory proposed by Baker who



1i.

showed that good agreement between theory and practice may be
obtained if the respective moduli of rupture are known for the
directions both parallel to and ncrmal to the bedjoint planes of the
brickwork. Hendry(g) stated that for panels and walls without vertical
precompression, none of the théor‘etical predictions are entirely satis-
factory for calculating brickwork strength under lateral pressure. For
this reason, Hendry has given empirical values for effective bending
moment coefficients which are intended to give interim assistance in
design. It is Hendry's stated opinion that the behaviour of walls with
appreciable precompression has been thoroughly explored experimentally

and theor*étically“s).

The transmission of lateral loads by in-plane shear is achieved
by ensuring that enough walls are constructed parallel to the direction
of the resultant lateral load. A residential-type plan ﬁrovides this
condition in most cases. The walls which are required to carry vertical
loads are usually all that is required for transmitting lateral loads
in shear and flexure to the foundation because the effective shear
stresses are usually small. One design criterion usually observed is
that tension induced by in-plane flexure in the structure must be less
than any compression induced by superimposed gravity loads. This
is shown schematically in figure 2.4.

A method which has been proposed for the design of walls which

carry the lateral loads in shear assumes that the concrete floor siab

at each level acts as a rigid horizontal diaphragm interconnecting

the load-bearing walls. If the resultant of the lateral load acts
thrcugh the centroid of the wall ptlan, all walls deflect horizontally
by the same amount at any given level and consequently will share

the applied lateral forces at that level in proportion to their relative

stiffnesses about centroidal axes normal to the direction of the applied
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force. |f, however, the resultant of the lateral load causes a moment
about the centroid of the wall plan, additional forces must be applied
to all walls in proportion to their relative stiffnesses about centroidal
axes radial from the centroid of the wall plan. In order to simplify
the structural behaviour of a building, it may be assumed that the
walls at each storey act as a series of tall cantilever columns inter-
connected by the floors at each level (figure 2.5).

(16)

Hendry carried out several tests on one-sixth scale column
structures and on a full-scale five-storey building to compare the
results of different methods of analysis with experimental results. He
concluded that the cantilever design method produced conservative
results for the lateral displacements but did not give an accurate
assessment of the stresses in the walls. However, it was noted that
a design, based on the cantilever method, which indicated the stress
levels to be acceptable, would always result in a satisfactory struc-
ture. Hendry further suggested that more refined calculations, such
as a finite element aralysis, might be used as a check on the
cantilever design method. The super-elements developed by Leung(17)
for the analysis of high-rise buildings might be suitable for brickwork
buildings in which lateral loads are critical to the design. However,
the choice of elastic modulus may be difficult because, as Hendry
reported, this parameter varies with the degree of precompression in

the walls. The elastic moduli of brickwork will be discussed in Chapter

3.
2.3 A STUDY OF A STRUCTURAL BRICKWORK BUILDING

Many high-rise residential structural brickwork buildings have
been constructed in the world in the past twenty years. The group
(18)

of fourteen-storey Residential Blocks at the University of Essex

is an early example of structural brickwork in tall buildings in
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Britain. Figure 2.6 shows a typical wall plan of a Residential Block.
Load-bearing brickwork was chosen because it presented an economical
solution to the problem of student accommodation. The brickwork is
fair-faced internally for reasons of economy and ease of maintenance.
The structure relies basically on 11" (280mm) cavity external
walls and 9" (230mm) solid internal walls for its strength and
stability. However, some 1511 (390mm) cavity walls and 133" (34Cmm)
solid walls are utilized up to the eighth storey. All floors are insitu
reinforced conc;r‘ete 4" (100mm) thick, except in the communal area where
they are 5" (125mm). Each wall was assumed to be an independent
cantiliver linked to the structure by pin-ended connections at each
floor level. This design approach showed that some tension might occur
at the lower levels, so that a Quetta bond (figure 2.7) was used with

vertical reinforcement in the grout-filled cavities.

(16) (19)

Results of research by Hendry and Soane into the inter—
action between the various wall groups and the floors allowed the
designers to omit the vertical tensile reinforcement in the walls of
the third and fourth towers, and it was eventually decided to use

o" (230mm) solid and 11" (280mm) cavity construction for the load-

bearing elements.

2.4 SUMMARY OF THE PRINCIPLES OF STRUCTURAL BRICKWORK

In order to achieve efficiency and hence economy with structural
brickwork, there are several principles which should be observed.
Some of these are of an architectural nature but are nevertheless

(20)

important from an engineering point of view. Krantz states that

two fundamental prirniciples are:

1. All loads must be distributed as evenly as

possible among the load-bearing elements.
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2. Vertical loads must be transferred to ground by

the shortest possible route.

A corollary of these two principles is that an identical floor
ptan. must be used at each level and be such that areas of fioor
supported by each wall are approximately equal. In residential
buildings this can be attained without gross penalty to the function
of the building.

An important architectural aspect to be considered is the ability.
of the floor slabs to span between the walls without the aid of beams
or piers. Beams cause concentration of loading on the walls and
isolated piers may be susceptible to accidental damage which could
lead to progressive collapse of large sections of the structure. It is
preferable, therefore, to span all slabs in two-way action between
continuous brick walls so that in the event of the removal of part
of a wall, say by gas explosion, the slab can still remain, albeit
in a distressed but uncollapsed state, to support loads from above

which may include some sections of load-bearing walls.

2.5 STABILITY AND PROGRESSIVE COLLAPSE OF STRUCTURAL BRICKWORK

The stability of structural brickwork has become a mandatory
design issue since the partial collapse of a block of flats at Ronan
Point, Canning Town, London in 1966. Following the accident, a con-
siderable amount of work was carried out in the United Kingdom to
assess the possibility of bearing wall structures failing by progressive
collapse. The "Fifth Amendment' to the English Building Regutlations,
publiished in 1970, required all buildings over four storeys to remain
stable under specified loading conditions, with a reduced loading

factor, in the event of a defined structural member or portion thereof
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being removed. Limits of damage were specified so that if a member,
such as a wall, could not be removed because of its importance in
the design, that member must be designed to resist the effects of a
pressure of 34KPa in any direction. The intention of the amendment
was that structural failure and progressive collapse could not be

(21)

tolerated as a result of damage by a gas explosion. Hendry has

(22)

summarized an investigation carried out by Morton in which nine-
teen designs for existing buildings between three and sixteen storeys
were examined.l Under the requirements of the Fifth Amendment all
the high-rise buildings were acceptable with the low-rise ones up to
four storeys not being affected by the Act. However, Hendry reported
that a number" of low-rise schoo! buildings with relatively large floor
spans would be susceptible to extensive collapse upon application of

(23) supported

the Fifth Amendment design requirements. Sutherland
Hendry's conclusions and observed that high-rise masonry structures
are generally not subject to stability failure or progressive collapse.
He noted that low-rise structures such as classrooms, hospital wards
or assembly halls, in which modified domestic detailing has been
used, are the most likely to suffer a stability failure. The likelihood
of progressive collapse in a multistorey masonry building, when
designed according to what might be regarded as good practice, is
remote even for those buildings designed prior to the Fifth Amend-
ment. |n addition, Hendry suggested that in current designs failure
by instability under expected impact loads is of such a low
probability that specific design allowances need not be made.

The British Code of Pr‘actice(24)

for the structural use of
masonry incorporates the following three methods for complying with

the Fifth Amendment:
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(i) By considering the removal, one at a time,
of wvertical and horizontal elements, unless
each is capable of withstanding a lateral
pressure of 34KPa with a partial safety
factor of 1.05 on the material.

(ii) By providing ties between vertical and hor-
izontal elements capable of resisting certain
specified impact Ioéds and then considering
the removal, one at a time, of the vertical
elements.

(iii) By incorporating in the structure horizontal
Iand vertical ties to resist specified impact

loads.

(4)

The Australian Code places the responsibility on the designer to
the extent that if there 1is a possibility that certain walls in a

storey may become structurally ineffective due to impact damage, an

ultimate load design must be used for the floors, using vyield line
theory if appropriate. In addition, a reduced load factor and only a
fraction of the design floor live load may be used to check that

there is an adequate margin of safety against local collapse ver-

tically above and below the walls initially destroyed.

2.6 THE BEHAVIOUR OF BRICKWORK UNDER SEISMIC LOADS

Research into the effects of seismic loads on unr‘ei_nfor‘ced masonry
structures has been reported only recently at conferences such as
VIBMAC in 1979. Design Codes have been based on experiences gained
throughout the seismic zones of the world and have been framed in
terms of the externt of damage which may be tolerated after an earth-

quake of known intensity. According to Bubb(zs), the Uniform Building
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Code (U.B.C.) of the United 5States, which is empirically based, sets
minimum standards with regard to public safety and is updated
every three years according to any new information obtained from
eartﬁquakes and earthquake damage anywhere in the world.

The Australian Earthquake Code(26)

prescribes equivalent static
design forces for various structure classes which depend upon the
likelihood of regional seismic activity and the degree of post-yield
ductility of the structural material. The return period of the design
earthquake for most structures is assumed to be sixty years and there-
fore unreinforced masonry structures, which may be long-standing
residential and commericial buildings, can be expected to experience
at least one design earthquake in their lifetime. The Design Code
recognizes that unreinforced masonry structures are essentially brittle
and have very little post-yield ductility. It ther‘efor‘e'specifies a
horizontal force factor which is deemed to be sufficient to ensure
that the masonry does not fail in a design earthqguake. The u.B.cC.
specifies the factor K as 4.0, while the Australian Earthquake Cocde
allows K to be 3.2. A further restriction placed on unreinforced
masonry structures is that they must not be constructed in an area
designated as Zone 3 (a zone having the greatest earthquake inten-
sity) and are only permitted in Zone 2 if they are not required as
post-disaster function buildings.

(27)

The Meckering earthquake of 1968 in Western Australia was
felt in Perth 130km away. Although the vibrations felt in Perth
registered 6.75 on the Richter Scale, no structural damage was
evident in load-bearing walls in high-rise buildings. This was
partly due to high precompression from vertical loads. Masonry infill

panels, however, did show cracking, while many old brick buildings

with conventional free-standing walls and timber floors were badiy
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cracked. It is apparent from that earthquake and others of similar
intensity, that where unr‘einfor‘ced masonry structures are permitted,
great care must be taken with structural details particularly in
wall-—-elements with little or no precompression such as a wall
connected to a roof or a parapet wall.

(26) states that all masonry struc-

The Australian Design Code
tures in Zone 3 must be reinforced. The philosophy is that the steel
reinforcement increases the post-yield ductility of a masonry structure
and decreases the likelihood of major structural damage in an

(28)

expected design earthquake. Mayes and Clough have summarized

the behaviour of reinforced masonry under cyclic loads.

2

2.7 REINFORCED MASONRY

Structural masonry reinforced with steel bars or mesh is used
if a designer requires the characteristic strength and behaviour of
reinforced concrete but with the appearance of masonry. Plummer and

(29) (30) have reported extensively on

Blume and Davey and Thomas
the behaviour of reinforced brick masonry. As a structural system it
is a hybrid form of construction brought about by a compromise
between concrete and masonry, and as such witl not be dealt with in

detail in this thesis.

2.8 ECONOMICS OF STRUCTURAL BRICKWORK

The relative economy of structural brickwork compared with
other forms of construction is dependent upon the type of structure and

(31)

the general prevailing economic climate. Page reported costs which
were applicable in 1970 but these costs certainly have altered since

that time. In South Australia in 1981, structural brickwork is reported
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t0 be commercially competitive with concrete-framed structures clad with
precast concrete panels in buildings costing less than $% million, but
for more expensive structures, the concrete construction is preferred.
The cost of external cavity-wall fair-faced brickwork in Adelaide in
1981 is approximately $50/m?* of which $24/m? is brick cost, $30/m? is
labour cost and $%6/m? is associated material cost. The cost of
internal single-leaf walls is approximately $30/m?. The corresponding
cost of external precast concrete non-load-bearing panels is approx-
imately $70/m?, but cost savings may be made, compared with
structural brickwork, because of possible reductions in construction
time.

Overall, the economics of structural brickwork is extremely
sensitive to local building practice and therefore each structure must

be evaluated economically in terms of local! conditions.
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3. LITERATURE REVIEW

This chapter presents a study of the strength and stress-strain
characteristics of the materials of brickwork, the clay bricks and the
mortar, and describes theories of analysis for the load-deformation
behaviour of slender brick walls and panels. For the purpose of this
thesis, a wall is defined to be a brickwork assemblage which spans
only between its base and top and a panel is defined to be a wall
which ‘is supported additionally on its two vertical edges. A slender
brick wall or panel is defined to be a brickwork assemblage subject
to vertical load in which the effects of out-of-plane deformations on
the brickwork stresses may be significant.

The characteristics of brickwork as a structura! material are
reviewed initially in terms of the properties of the component materials
and particular references are made to standard methods of determining
material properties as specified by Australian Codes of Practice.
Results of experiments on brickwork assemblages are presented which
relate the strength of brickwork to the strengths of the component
materials and theoretical studies of the strength of brickwork are also
described. Stress-strain characteristics of structura! brickwork, deter-
mined by experiment, are presented and methods proposed for the
analysis of brickwork columns subject to vertical load are described;
results of experiments cn brickwork walls are compared with calculated
wall behaviour. The chapter concludes with a review of the theory
of thin plates, the basis of a method proposed in Chapter 6 for the

analysis of slender brickwork panels.
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3.1 CLAY BRICKS

3.1.1 Introduction

Australian Standards define three categories of brick. Clay bricks

must comply with AS1225—1980(32), "Burnt Clay and Shale Building
Bricks'", calcium silicate bricks with AS1653—1974(33), "Calcium Silicate
Bricks" and concrete bricks with AS1346—1974(34), "Concrete Building
Bricks". The investigations presented in this thesis consider only clay
bricks to AS1225—1980(32) an.d will not hecessar‘ily include calcium

silicate and concrete bricks.

2

3.1.2 Manufacture and Specification

The ancient art of brickmaking has been refined by modern
manufacturing methods so that it is now possible to obtain clay bricks
of high strength and improved durability. Most importantly, these
modern processes have minimized the variation in brick properties
caused by variability of the raw materials such as clays and shales.

In Australia, clay bricks are made by shaping a mass of clay
and/or shale material made plastic by the addition of water. The
bricks are oven-dried and are subsequently heated to temperatures
which may vary from 7500C to 13OOOC. During the heating process,
often referred to as '"firing', any water remaining after drying is
evaporated, any combustible materials are oxidized and a process
known as vitrification takes place in which the individual soil
particles fuse together.

The shaping of the clay mass is usually done in one of three
ways; the clay may be semi-dry pressed, stiff-piastic pressed or
extruded and wire-cut. The semi-dry pressed method involves com-

pressing the clay powder with 10 to 12 percent moisture content in



a steel mould, while the stiff-plastic pressed method uses a clay of
14 to 17 percent moisture content which is pressed in two stages.
Pressed bricks are manufactured with a depression in one face, known
as a "frog", which allows the formation of a shear key in the bedjoint
mortar. Extruded bricks are formed from a clay with a moisture content
of 18 to 25 percent and are cut from a continuous extruded column
of clay using single-filament wire strands. Extruded bricks may be
solid but are often perforated to reduce weight, improve firing
efficiency and to provide a shear key for the bedjoint mortar.

[~
Australian Standard AS1226—1980(3J),

"Methods of Sampling and
Testing Burnt Clay and Shale Building Bricks'", specifies that for small
projects, tests must be carried out on a random sample of forty bricks
chosen from each consignment of either 30,000 bricks, or part thereof.
For large projects, forty bricks must be chosen for each consignment
of 100,000 bricks, or part thereof. For the determination of com-
pressive strength, twelve bricks are taken at random from the forty
brick sample and are halved along the largest dimension. One half-
brick from each of the twelve bricks is saturated, placed in the same
orientation as in the completed wall and compressed between single
sheets of nominal 4mm thickness plywood. The minimum compressive
strength, C, of a brick batch is the least value for the twelve test
specimens expressed in megapascals.

The initia! rate of absorption (1.R.A.), sometimes referred 1o
as the suction, is measured using six bricks from the forty-brick
sample. Australian Standard AS1226-1980 specifies the calculation of
|.R.A. as a gain in weight per minute of a brick placed in 3mm of
water corrected on the basis of a bed-face area of 25000mm? and has
as its units gm/25000mm’min. The bricks must be tested in the orienta-

tion in which they are finally used.
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The transverse strength of a batch of bricks is assessed by a
central point load bending test on each of six bricks from the forty-
brick sample. The transverse strength is often referred to as the
modulus of rupture.

Australian Standard AS1226-1980 does not specify a method for

the measurement of the elastic properties of bricks.

3.1.3 Brick Properties

The properties of brick which have important influences on the
behaviour of brickwork are compressive strength, tensile strength,
the elastic modulus and the |.R.A. The last property influences the
bond between mortar and brick, as does the surface texture of the

brick-mortar interface.

3.1.3.1 Compressive strength

Tests which are deemed to measure the compressive str‘ength of
bricks actually measure the load capacity under uniaxial compression
in which failure is governed by the lateral tensile strength of the
specimen. The load capacity, or "compressive strength'" of bricks from
any batch varies because of differences in raw materials, manufactur-
ing processes, degree of burning and the brick shape and size. The
method of testing can also influence the test results. Grimm(36)
reported that specimens which are square in a plane perpendicular
to the direction of compressive stress were stronger than rectangular
specimens. The compressive str‘éngth was generally found to be higher
for units made of shale by the stiff mud process and burned at high
temperatures.

Compression tests on plaster-capped bricks give higher values

for the load capacity than ‘tests on bricks whose surfaces are not

laterally restrained by friction on the platens of a test machine.
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(37)

Grenley reported the r‘esultls of tests in which the bricks were
relatively unrestrained by the insertion of teficn pads between the
brick and the machine platens. The apparent compressive strength was
found to be between 25 and 67 percent of the. conventional restrained
value.

It has been recognized since the turn of the century that the
degree of saturation affects brick compressive str‘ength(_g?s). Bricks
tested in a dry condition may be up to 15 percent stronger than the
same bricks tested in a saturated state.

The Australian Standard AS1226-1980 specifies a method for testing
the compressive strength of bricks using plywood capping, so that
results obtained using AS1226-1980 cannot be compared directly with
research results in which other types of capping have been used.
However, although there is little information on the strength of bricks
laid on edge,® the strength of Australian clay bricks commonly varies
between 30MPa and B80MPa in a brick-on-flat orientation. AS1226-1980
does not refer to bricks with performations or cores, but Shellbach(m)
has reported that as long as coring of bricks does not exceed 35
percent of the cross-sectional area perpendicular to the load, then
a brick is as strong as if it were solid. The improved firing achieved
by coring is responsible for the increase in nett-area strength,
although, as West(b'z) has indicated, brick strength is dependent upon
the coring pattern as well as the size and shape of the cores. A few
large round cores are preferable to many small cores or cores with

sharp re-entrant corners. The British Code BS3921:1965(43)

recognizes
the increase in strength of cored bricks due to improved firing by

specifying that all bricks with less than 25 percent by volume perfora-

tions are "solid" for design purposes.

* A practice followed in some States of Australia for domestic buildings
and partition walls.
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3.1.3.2 Initial rate of absorption

The initial rate of obsorption is a measure of the degree to which
a brick has an affinity for the moisture in a mortar. A reduction in
the water content of a mortar affects the adhesion or bond between
the brick and mortar to the detriment of the brickwork as a whole.

Sahlin(44)

has reported that the I1.R.A. shows a strong relationship
to brick strength, especially the modulus of rupture, and-that brick
suction varies inversely with brick density.

3.1.3.3 Transverse strength

(45) the transverse strength or modulus

According to Nevander,
of rupture of solid brick varies between 14 and 32 percent of the
compressive strength for strengths ranging from approximately 20MPa

(46)

to approximately 50MPa (2750psi to 7150psi). Hilsdorf has given

this percentage ratio as either 11, 15 or 17 percent for three types

of uncored solid bricks, and S.C.P.R.F.(Zﬂ)

tested three types of cored
bricks for percentage ratios of 11, 10 and 10 percent respectively.
The standard deviation for Hilsdorf's tests was about 25 percent and,

for the S.C.P.R.F. results, the standard deviation was between 5 and

20 percent.

3.1.3.4 Modulus of elasticity
(48)

Glanville and Barnett measured the modulus of elasticity for
a representative sample of bricks available in Great Britain in 1927
the bricks 7 were (:'omp"rtesseqL between sheets of plywood. Fngr‘e 3.1
shows the relationship between modulus of elasticity and compressive
strength for all bricks tested. In each sample of twelve bricks, the
strength variation was %50 percent of the mean and Glanville and
Barnett stated that the results could not be used to give a meaningful

statistical analysis. |f, however, the results for pressed bricks are

discounted, a regression analysis gives the relationship —
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E, = 309C + 64O0MPA (3.1)

in which Eb is the brick elastic modulus
C is the brick compressive strength
The correlation coefficient is 0.94.

Sahlin(lm) gave the relationship for the same points as

Eb = 300C (3.2)
Psaltis(l‘g) has investigated the dynamic measurement of elastic modulus
on solid bricks using sonic techniques and has reported a correlation
of 0.99 between sonic and mechanical test results. The wvariation ‘of

elastic modulus within individual bricks was of the order of 10 to

15 percent for the specimens tested.

(50)

’

Scrivener and Williams have given a complete stress—-strain
curve for a brick prism (figure 3.2) in which the linear-elastic
behaviour of the brick material and its brittle failure characteristic
are clearly shown.

(51)

Plowman has summarized the relationship between brickwork
modulus and brick strength but has not given results for the elastic

modulus of the bricks themselves. The modulus of brickwork is discussed

further in Section 3.3.

3.2 MASONRY MORTAR
3.2.1 Introduction

A masonry mortar must fulfil certain requirements during brick--
laying and also be well suited as a load-carrying material when in
its hardened state. A wet mortar must have good workability so that
all joints can be filled easily and it must have an early rigidity so

that excessive rocking movements cannot occur as new courses of bricks

are laid. The ability of a mortar to retain its moisture, even if the
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brick suction is high, is also important because the mortar relies on
the moisture for complete hydration of the cementitious materials.
Factors which affect mortar strength, workability, water retentivity
as well as other important properties will be discussedl in the following

sections.

3.2.2 Mortar Specification

Mortar mixes have traditionally been based on paste-sand ratios
which .var‘y from 1:21 to 1:3 by volume. This is based to some extent
on the approximate amount of paste which is required to fill the voids
between the sand particles. Australian Standard AS A123-1963 '"Mortar

(52) states that all mortars which are

for Masonry Construction"
specified by proportion , rather than by compressive strength, must

comply with Table 3.1 for the appropriate mortar type.

] Par-‘t'_si by Vol ume

Porportion Portland Hydrated Lime Fine
Cement:Lime:Sand Cement or Aggregate
Lime Putty
Cement Mortar 1:1/10:3 1 1/10 3
Composition 1:1:6 1 1 6
Mortiars 1:2:9 1 2 9
1:3:12 1 3 12

Lime Mortar 0:1:3 0 1 .3

Table 3.1: Mortar Mix Proportions

A mortar may also be specified by compressive strength, in which
case the parts by volume of aggregate in the mortar must not be less
than 2% times the total volume of the cementitious material used. For
Australian masonry mortars the aggregate used is sand which complies

(53)

with AS351465-1974 "Dense Natural Aggregates for Concrete'", with
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the added stipulation that the material passing a No. 200 B.S. test

(52)

sieve shall not exceed 10 percent The Brick Development Research

(54)

Institute has indicated, however, that 10 percent of such fine

material may result in excessive shrinkage cracking. For a natural
(55)

(56)

sand, ASTM Standard ASTMi44 allows no material to pass a 200

sieve while the British Standard calls for not more than 3 percent

passing.

(57)

Cementitious materials must comply with AS1315-1973 "Portiand

(58)

Cement" or AS1672-1974 "Building Limes'". Lime putty may also

be used provided it complies with AS A123—1963(52).

The water retentivity of a mortar, which is a measure of its

’

ability to retain water against suction from the bricks, is tested in

accordance with the provisions of ASTM C91, "Specifications for Masonry

Cement".(sg)

(59)

The flow of a mortar, tésted in accordance with ASTM
C91 is related to workability. Both water retentivity and flow

will be discussed in Section 3.2.3.2.

3.2.3 Mortar Properties

3.2.3.1 Effects of type of aggregate
A graded sand which is within the limits prescribed by AS A123-
1963(52) gives an overall aggregate density which requires a minimum

. - : . 4
amount of cementitious material for a given strength. Monk(_o)

has
reported that the compression and tensile strengths decrease as the
sand varies from a uniform coarse sand to a uniform fine sand, while
a blend of coarse and fine particles giVes the maximum strength
because the void ratio is a minimum.

Filling of the voids is thus achieved with a minimum of cement-

(28)

itious material. Mayes and .Clough have indicated that natural
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sands have void ratios which vary from 25 to 40 percent. EXxperiment-
ally, the lowest void ratio achieved is about 16.8 percent using a

mixture of particles as in Table 3.2.

Particle 7 total volume Relative diameter
Coarse - 70 50.5
Medium 20 8.0
Fine 10 1.0

(28)

Table 3.2: Optimum Sand Particle-size Distribution

Natural sands vary from the gradation required for optimal
packing and therefore will not generally produce mortars of optimum

strength. Creep and shrinkage are also minimized if the void ratio

in the sand particles can be kept to a minimum.

3.2.3.2 Effects of variations in cementitious material

Mortars traditionally were composed of sand and lime, either
hydrated lime or Ilime putty, and depended upon atmospheric carbon
dioxide for carbonation and strength development. 1t was found that

naturally-occurring cements and Portland cement proved to be com-
patible with the lime and produced a workable, early-setting mortar
which led to sironger brickwork and permitted more rapid construction.
As the need for faster construction rates developed, the acceptance
of Portland cement increased, until at ‘the present time, sand-lime
mortars are seldom used and are rnot permitted for str‘uctur‘al brick-
work.

The performance of cement-iime mortars and cement mortars is
largely dependent on the proportion of cement in them. Tricalcium
silicate and tricalcium aluminate are the two compounds which

contribute to high early-strength development. After mixing, the cement
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hydration begins immediately with hydration of the tricalcium aluminate
and is foliowed progressively by hydration of the tricalcium silicate
which is the more important in terms of the final mortar strength.
The hardening process is quite different from the carbonation of a
lime mortar.

The workability of a mortar is usually controlled by the use
of lime although plasticizers other than lime may be interground with
the Portland cement. Plasticizers such as clay and limestone and air-
entraining agents provide mortars with increased workability, but are
not permitted by AS A123—1963(52) as a .r‘eplace'ri1§nt for fche lime cqntent*‘

(60)

of any mortar-type covered by that specification. Isberner "has
described wor‘k:ability as a complex rheological property which includes
adhesion, cohesion, density, flow-ability, plasticity and viscosity.
In the laboratory, the evaluation of mortars is often made using
mortars which have the same flow, which is a measurable quantity
related approximately to workability. In the standard flow test, a
tr‘u‘ncated cone of mortar is subjected to twenty-five one-half inch
(12mm) drops of a standard flow table. The diameter of the disturbed
sample is compared with the original diameter of the conical mortar
sample and the ratio of the disturbed diameter to the original

. . 40
diameter, expressed as percent, IS called the mortar flow. Monk( )

has given the water:cement ratios, ‘shown in Table 3.3, required
to produce a desirable wor‘kab_ility,ir\’a"’m:or-tar using an average brick-
layer's sand; the flow values are also given.

An important property of a mortar, which is related to work-
ability and flow, is water retentitivity which is'a measure of its
ability to retain water and prevent it from being drawn into bricks

(44)

with high suction. Sahltin has reported that there are conflicting

claims among researchers regarding the effect which water retentitivity
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i / " .
Mortar Type Proportion by Volume Water:Cement Average
Cement:Lime:Sand Ratio (by Weight) Flow

1:4:3 0.74 124.3

S 1:3:43 1.13 130.2
1:1:6 1.64 122.7

Table 3.3: Mortar Water-to-Cement Ratios

(61)

has on mortar strength and adhesion, with Hogberg claiming that

low water retentitivity gives better adhesion to very absor*‘bent

(62)

materials and Palmer and Parsons claiming that the opposite is

true. Water retentivity is usually measured in the laboratory by
comparing the flow of a mortar sample after being subjected to a

vacuum of 50mm of mercury for one minute with the original flow of

(52)

the mortar. Australian Standard AS A123-1963 specifies that a

mortar must have a minimum flow after suction of not less than 70

percent of the original flow.

(63)

Hoath has plotted the curves shown in figure 3.3, derived

from results obtained by Ritchie and Davison(64), in which mortars
were prepared to conform with types M, S, N, O and K as designated
by the ATSM C270—68(65).

Results obtained from mortars made from seven different types

of lime and a standard sand are shown in figure 3.4. All tests were

in accordance with the British Draft Standard 68/3502(66). The results
. . . (67)

for figure 3.4 were obtained by Gillard and Lee.
Davey and Thomas(3o) reported that the compressive strength

of mortar depends on the cement:lime ratio and the proporticn of
cementitious material to sand (figure 3.5), and recommended three

mortar mixes for low, medium and high-strength bricks. From figure
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(30)

Mix A for low-strength bricks (10MPa)
Mix B for medium-strength bricks (20MPa to 30MPa)
Mix C for higher strength bricks (> 30MPa)
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Figure 3.5:

Mortar Mixes for Brickwork
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3.5, for ratios of cementing material to sand 1:3 by volume, pure lime
mortars have compressive strengths of about 0.1 to 1.0MPa and pure
cement mortars 15 to 20MPa when tested in uniaxial compression.

(68)

Lenczner tested batches of 1:1:6 mortar mixes in which the
water content was varied to give a range of workébilities used in
common trade practice. The mortar mixes were cast into both 76mm
cubes and 115mm diameter by 230mm long cylinders. The strengths of
the 76mm mortar cubes, tested in uniaxial compression, varied between
2.8MPa and 6.3MPa and increased with a decrease in water:cement
ratio.

(36)

Grimm has summarized the experimental results of many
researchers and has found that the compressive strength of mortar

as measured by standard methods may be approximated by the

expression —

3

fc = 22.4 SaBT [5546 + ¥ (130-F)] x 10~ (3.3)

fc is uniaxial compressive strength in MPa

S is a shape factor

a is a moisture curing factor

B is an air-content factor

T is plastic mortar age factor

§ is mortar type factor for mortars to ASTM

F is initial flow as a percent

y is a factor dependent upon the volumetric ratio of Portland

cement:lime in mortar.

The water:cement ratios typically varied from 0.74 to 1.64.GCGrimm
found that the higher water:cement ratios reduced mortar compressive

strength but increased mortar—to-brick bond strength.
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The flexural tensile strength of conventional mortar does not
usually control the flexural strength of brickwork because the tensile

strength of the mortar generally exceeds the tensile bond strength

between mortar and brick (Section 3.3). Grimm(36) has given an
approximation for flexural tensile strength, taken from results
presented by Monk (402 as —
_ -3 -
ft = 2.13 x 10 fc (80.75 - fc) (3.4)

ft is the flexural tensile strength of the mortar in MPa

fc is the compressive strength of the mortar in MPa.

Monk's results showed that for normal mortars, the flexural

tensile strength is approximately 10 to 15 percent of the compressive

strength.

3.2.3.3 Modulus of elasticity
Stress-strain diagrams from observations of different types of

(46) (figure 3.6), show that the

mortars, as reported by Hilsdorf
tangent modulus of elasticity at zero stress varies widely for different
cement/lime ratios: the highest modulus of elasticity, obtained with
a cement mortar, is approximately two hundred times that of a lime
mortar. Therefore if the modulus of elasticity is important, &as can

(44)

be the case for slender walls, then the mortar used in the

brickwork must be chosen with care.

(50)

Scrivener and Williams determined a complete stress-strain
curve for mortar cylinders (figure 3.7) and, using a stress-strain curve
for lateral strains, they calculated Poisson's Ratio for a mortar bed-
joint tested in a short brick pier under uniaxial loading (figure 3.8).

The value of Poisson's ratio, which is the absolute value of the

ratio of the lateral strain to the longitudinal strain, had a constant

value of 0.22 until the stress reached 75 percent of its maximum value
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. Cement-sand mortar, ratio 1:3 (by
volume) 3
Eo 25.3 x 10 MPa
ch = 3.1 x 1073

. Lime-cement-sand mortar, ratio
1:2:8 (by volume)

E, - 3.6 x 103MPa
ey = 1.25 x 10-3MPa

. Lime-sand mortar, ratio 1:3 (by

volume)
E, = 0.66 x 103MPa
€, = 8.8 x 10-3MPa

€ is strain at maximum stress
E is initial tangent elastic
modulus

Stress—-strain Diagrams for Mortars
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Figure 3.7:
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Stress-strain Curve for Mortar

(50))
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and then increased with increasing stress. At a stress of 98 percent
maximum stress, Poisson's ratio reportedly reached a value of 0.50.
As the stress level decreased after the maximum stress was reached,
the ratio of lateral strains to longitudinal strains reportedly increased
to a value of 3.0 at a lateral strain of approximately 0.5 percent.

(69)

Base and Baker measured the strains in a mortar bedjoint
as well as in the adjacent brick using DEMEC gauges and -showed for
their case that the strains in the mortar were very much larger than
in the ‘bricks. They also presented results (figure 3.9) which indicated
the difference between the behaviour of mortar in a joint under
triaxial stress conditions and its uniaxial behaviour in a mortar
prims. The triaxial behaviour of mortar will be discussed in Section
3.4,

Sahlin(44)

has attempted to relate mortar elastic properties to
prism strength and has given the relationship shown in figure 3.10.
The equations  are not based on the physical material properties but
are approximations deduced from tests on concrete specimens with
strengths between 15MPa and 45MPa, that is, outside the range of most

mortars used in practice.

The equations used by Sahlin are —

E = 1000f (3.5)
m C

E =43 x 1075 o' J/F . (3.6)
m C

E = 12.4 x 105 + 500f (3.7)
m C

in which Em ic the mortar elastic modulus
in MPa
fc is the mortar uniaxial compressive strength

in MPa

w is the moertar density (kg/m3) = 2300kg/m3.
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None of the eguations gives a particularly good approximation for the
modulus of elasticity — strength relationships of mortars as tested

(48) (46)

by Glanville and Barnett and by Hilsdorf.

(68)

Leczner tested mortar cylinders of 115mm diameter and 230mm
long and determined the static elastic modulus using a compression
testing machine and the dynamic elastic modulus using sonic methods.
He showed that both methods of measurement gave the same results
for elastic modulus and that the 28 day compressive strength of a 76mm

mortar- cube varied approximately as the square of the dynamic

modulus (figure 3.11).

3.2.4 Summar‘y’

This section has presented results which indicate that the
compressive strength of a mortar depends upon the ratio of cement-
itious material to sand, the sand gradation and the water-to-cement

(68)

ratio. Test results also indicate that mortar elastic modulus may
be a function of the mortar compressive strength. However, mortar test
results have been obtained from various methods of testing so that
quantitative comparisons between sets of data may not be made. In
particular, no relationship has been established between mortar-type
and the elastic properties required for the analysis of slender brick

(44)

walls. At this stage, therefore, a mortar elastic modulus must be

determined for each case by test using either static or dynamic

(68)

methods A method for determining the elastic modulus of a mortar

will be discussed in Chapter 5.
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3.3 BRICK-MORTAR COMBINATION — SMALL ASSEMBLAGES

3.3.1 Introduction

In considering the general behaviour of walls and panels, it
is necessary to investigate the properties of small assemolages, or
units, of brickwork. Factors such as the compressive strength under
loads normal to the .bedjoints, the tensile strength both parallel to
and normal to the bedjoints, the shear strength with simultaneous
vertical compression and the elastic properties of the brickwork may
all influence significantly the behaviour of brickwork either spanning
vertically only or supported on more than two sides. Previous research
has involved bloth experimental programs and theoretical analyses based
on the assumption of elastic behaviour up to the point of failure. This

section reviews the reported behaviour of small assemblages up to

failure.

3.3.2 Compressive Strength

Many investigations have been carried out on the compressive
strength of brickwork loaded uniformly in a direction normal to the
bedjoints. Because of the many possible combinations of bricks and
mortars, the range of strengths can vary from 1MPa for very weak
bricks and lime mortars up to 50MPa for very strong bricks and cement

mortars.

3.3.2.1 Mechanism of failure

The failure mechanism most frequently observed in structural
brickwork loaded in uniform compression normal to the bedjoints is
a splitting failture produced by the formation of vertical cracks through

(50)

the bricks and bedjoints. Scrivener and Williams observed that the
first visible signs of failure were in the crushing of the mortar in the

bedjoints at locads near the maximum load. The crushing of the mortar
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was accompanied by very large lateral strains in the bedjoints until
eventually the bricks failed in tension under the lateral expansion. In
all cases the failure load was Iar'éer* than the uniaxial compressive
strength of the mortar as determined from mortar cylinders, but less
than the compressive strength of the bricks. The increased mortar
strength is related to the differential lateral expansions of the brick
and the mortar. At loads near to failure, a triaxial state of stress
is induced in the brickwork so that, at the brick-mortar interface,
the brick material is subjected to uniaxial compression and bilateral

tension ;. the mortar .is in triaxial compression.
(40)

’

mechanism 1is consistent with the assumed stress—strain state at the

Monk reported tests which showed that the splitting failure
brick-mortar interface if the mortar is less stiff than the bricks,
Gypsum blocks, jointed by either aluminium or polythene sheets were
tested in compression. When the joint material was stiffer than the
blocks, as in the case of the aluminium sheet, a shear failure occurred
in the gypsum which was similar to the failure of a brick tested
between steel platens. HoWever, for the polythene joint material, which
was much less stiff than the blocks, a tensile splitting failure
occurred. The failure 'Ioad associated with shear failure was con-
sistently higher than the failure load produced by vertical splitting
of the blocks. Monk noted that in brickwork built with lime mortars,
spalling and crushing of the mortar forced material from the joints'
at loads well below failure, but in brickwork built with cement

mortars, spalling of the bricks occurred immediately prior to failure.

3.3.2.2 Methods of determining compressive strength
Many factors can affect the compressive strength of brickwork
and it has been found that a good estimate of the load bearing

capacity of a wall or panel can be made by testing small brickwork
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prims constructed from the materials to be used in the actual
structure, For example, a good estimate of the strength of a single-
leaf wall can be obtained by testing a statistically-significant
number of single-leaf brickwork prisms constructed from the materials
to be used in the wall.

(29

Plummer and Blume ) investigated the extent to which a testing
machine with stiff bearing platens can affect the failure loads of
brickwork prisms by varying the height-to-thickness (h/d) ratio of
the brickwork prisms. The compressive strengths of prisms of wvery
low h/d ratios were affected by the stiffness of the machine platens
and strength correction factors were proposed so that the splitting
type of failur‘e'z load in a wall could be estimated from the results of
brickwork prism tests. The correction factors increase with the h/d
ratio until the latter reaches a value of 6, beyond which the factors
remain essentially constant for h/d ratios up to 12 (figure 3.12).

(74)

Anderson compared the results of full scale wall tests con-

ducted by Base(73)

with other measures of brickwork strength and
showed that prism tests gave failure loads up to 33 percent higher

than those measured in full scale wall tests.

3.3.2.3 The effect of brick strength

it is not known whether there exists a relationship between the
strength of brickwork as determined by prism strengths and the
compressive strength of the brick and mortar components, although
attempts havé been made to relate brickwork strength to both indi-

vidual brick strength and mortar prism strength. Sahlin([m)

(47), (70), (71)

reported

tests conducted by S.C.P.R.F. which showed a non-

linear relationship between brickwork strength and brick strength for

various types of mortar, and tests by NevanderMS) gave a series of

relationships of the form —
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Fr = kc"
m

(3.8)
in which F'm is the brickwork compressive strength
C is the brick strength

k, n are constants which depend on the brick strength

and mortar type.

(30) related the strength of 18" x 18" x 8'-0"

Davey- and Thomas
(460mm x 460mm X 2440mm) brickwork piers to the strength of the
individ_ual bricks when combined with either weak mortar having a
prism strength less than 3.5MPa or sirong mortar with a strength
between 14MPa and 20MPa (figure 3.13). The experimental relationships
between pier strength and brick strength for the two mortars generally
follow the form of equation (3.8).

(66)

Lenczner investigated the strength of 9" (230mm) brickwork
cubes and found that the dry density of the bricks was directly
related to cube strength and further suggested that brick dry d_ensity
could be a useful criterion for estimating the strength of brickwor‘k{
for a given mortar type.

The compressive strength of brickwork built with cored bricks
rather than solid bricks is affected by a number of additional
parameters, not all of which are fully understood. Nevander‘(as), in
tests which included solid bricks, bricks which were cored with 19
holes and bricks cored with 78 holes showed that there was a sig-
nificant decrease in strength when the cored bricks were combined
with a weak lime mortar, but the 19-tole bricks gave the same or
higher strength than solid bricks when laid in a medium-strength lime-
cement mortar.

(41)

Schelibach tested cored bricks in a mortar with proportions

1:2:8 (cement:lime:sand by volume) and found that optimum utilization
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could be made of the brick material if the bricks had a core space
ratio of about 38 to 43 percent, provided that stress concentrations

were avoided by using cores with no sharp or re-entrant corners.

3.3.2.4 Effect of mortar properties
The effect of mortar properties on the strength of 9 inch (230mm)

(68) who related the 28-day

brickwork cubes was studied by Lenczner
mortar strength, determined from 76mm cubes loaded in uniaxial

comppression, to the brickwork cube strength. The general relationship

between the brickwork cube strength and mortar strength was taken

to be -—
0.25
Ll 1 —
F m k {fc) (3.9)
where F'm is brickwork cube strength
k is constant of proportionality
'fc ‘is mortar cube strength in uniaxial compgr‘_giiiorn:_

(72)

Stang, Parsons and McBurney also proposed an exponential
relationship between wall strength and mortar strength of the form

3

- 0.3
Fro= k (f) (3.10)

in which F'm is brickwork compressive strength.

The compressive strength of brickwork has also been found to

(44) concluded

depend upon the thickness of the mortar joint., Sahlin
that brickwork sirength is decreased by approximately 15 percent for
every 1/8 inch (3.2mm) increase in bedjoint thickness from a mean
value of joint thickness of 3/8 of one inch (9.5mm). He also stated
that if the bedjoint thickness is decreased from this mean value, &8
15 percent increase in compressive strength for each 1/8 inch (3.2mm)

(50)

decrease in joint thickness may be expected. Scrivener and Williams
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reported a less significant bedjoint thickness effect in which, for
both a weak lime-cement mortar and a richer cement mortar, specimens
with 1+ inch (6.3mm) joint thickness only had compressive strengths
approximately 10 percent greater than specimens with % inch (12.7mm)
thickness. The degree of change in strength with change in bedjoint

(68)

thickness was also reported by Lenczner to be approximately 10
percent per 1/8 inch (3.2mm) change in bedjoint thickness. Methods

which may be used to calculate the effect of bedjoint thickness on

compressive strength of brickwork will be reviewed in Section 3.3.2.6.

3.2.2.5 Brickwork strength related to brick and mortar interaction

The compressive strength of brickwork is dependent upon both
the brick and mortar properties and not upon each independently of
the other as implied by the results reviewed in the previous two
sections. However, the interactive influences of the two materials are

(75)

very difficult to assess. Brocker proposed the empirically-based
relationship —

Froo= 0303 (3.11)
m C

where F'm is the compressive strength of brickwork

Cc is brick compressive strength

fc is uniaxial mortar compressive strength.

(41) .
Schellbach reported tests on walls constructed with 1:2:8

mortar and either solid or cored bricks which showed good agreement
with equation (3.11) especially when the brick strengths were above
25MPa and the void ratio for the cores did not exceed 35 percent of
the brick area.

By analysing experimental data from a large number of tests,

(36)

Grimm suggested that the interactive effect of brick and mortar
properties on the compressive strength of brickwork could be expressed

by equation {3.12).
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F'm = 208 x 10"6€n C (fC2 + 450)(1 + e)"‘ (3.12)

in which F'm is compressive strength of masonry in MPa

€ is workmanship factor

0 for inspected work

0.012 (83 - C) for uninspected work in which
C < 83MPa

or assume C = 83MPa if C > 83MPa

C is average compressive strength of bricks in MPa
(asTme?! 7))
'3 is a brickwork prism slenderness factor

, - 0.0178 {57.3 - [hs/ts 6]

where hs/tS is the prism slenderness ratio (height-to-

least lateral dimension) in which 2 <hs/tS <6
n is material size factor

= 0.0048 {273 - [hu/tj - 14] %}

where hu/tj is the ratio of the brick height to mortar
bed thickness in which 2.5 < hu/tj <10

f is the compressive strength of mortar in MPa determined

from mortar prism tests.

Grimm stated that eguation (3.12) applied to brickwork prisms
with compressive strengths in the range of approximately 1.7MPa tec
45MPa (250psi to 6500psi). He did not give any, confidence ii-mits on
results using equation (3.12), but implied that brickwork strength
is proportional to brick strength for a given mortar strength, a
premise which is not supported by results reviewed in Section 3.3.2.3.

(30)

For practical purposes, Davey and Thomas recommended the
combinations of brick strength and mortar type, given in Table 3.4,

to obtain both eficiency and economy.



52,

Brick ‘Strength Mortar Mix
psi MPa =1 (C:L:S by volume)
<1500 <10.4 1:2:9
3000 to 4000 20.7 to 27.6 1:1:6
> 4000 > 27.6 1:3:3

Table 3.4: Brick and Mortar Combinations

They gave no recommendation for brick strengths between 10.4PMa
and 20.7MPa (1500psi and 3000psi) although 1:1:6 mortar would be

suitable for bricks in that low to medium strength range.

3.3.2.6 Thecretical prediction of compressive strength

(77) (118)

Hilsdorf , Khoo and Hendry (78)

and Francis et al. have
attempted to predict the compressive strength of brickwork analytically
by evaluating the interaction of the materials up to failure. Hilsdorf
assumed that the stress distribution in a brickwork pier could be
idealized as in figure 3.14.

She!lbach(m)

found experimentally that the failure load of
brickwork made of high strength bricks (100MPa) could be increased
by up to 80 percent if the normally-irregular brick faces were ground
flat. Surface and material irregularities caused the stresses, Oy’ in
the direction of the external load to be non-uniform so that stress
concentrations. could be present to cause premature failure of the
brickwork. Hilsdorf expressed the ratio of the maximum normal stress
to the average normal stress by a term, U, calied the non-uniformity
coefficent.

Experiments by Base and Baker‘(69) showed that U varied between

1.10 and 1.49 depending on the brickwork sample and the stress level,
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and Hilsdorf found experimentally that U varied as in figure 3.15.
Figure 3.16 shows how the combination of stresses could vary in a
single brick within a brickwork unit subjected to axial compression.

For the purpose of constructing the diagram, it is assumed that
the lateral tensile stresses, o énd o are equal and that the critical
compressive stress, v is equal to the average stress, oym’ multiplied
by the non-uniformity coefficient U, With reference to figure 3.16, line
A represents the assumed failure criterion for a brick subjected to
uniform compression and biaxial tension, and the development of
internal stresses under increasing load is assumed to be given by
a stress pathlsuch as line B,.‘. Hilsdorf assumed that the intersection
of line B1 would produce only local cracking in the brick and would
not cause total failure because the triaxial stress state in the mortar
for that loading condition would not constitute a failur‘e-state in the
mortar (line C). Failure of the brickwork was assumed to occur at
a triaxial stress condition represented by the point.at the inter-
section of line A and line C in figure 3.16. Hilsdorf assumed that the
strength of mortar under triaxial compression was simitar to the
strength §f concrete under triaxial compression. Richart et a_l_.(81)

had found that, for a small range of concrete strengths, the triaxial

strength of concrete could be approximated by —

| c 1o, (3.13)

in which fl is the compressive strength of a laterally confined
concrete cylinder

fc is the uniaxial compressive strength of a concrete

cylinder

9]

9 is the lateral confinement pressure on the cylinder.

Hilsdorf further assumed, for simplicity, that the lateral stresses

were uniformly distributed throughout the height of each brick and
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each mortar joint. The expression Hilsdorf obtained for the axial

strength or masonry was —

fbt+r‘ f

F"m = U% : fbt + r‘:liz.c = (3.14)
in which F'm is brickwork strength

Uu is value of non-uniformity at failure

fbt is uniaxial brick tensile strength

fc is uniaxial mortar compressive strength

r‘jb is the ratio proportional to joint thickness /brick height
= n where j is joint thickness

! 4,1 b

b is brick height

Cc is the brick uniaxial compressive strength.

The non-uniformity coefficient Uu was not constant but depended
on a number of parameters including joint thickness and mortar
strength.

(117)

Khoo and Hendry ‘investigated the behaviour of brick

material in a state of biaxia} tension and uniaxial compression and
the behaviour of mortar subjected to triaxial compression. They
established that the strength envelope for brick, which Hilsdorf

assumed to be linear (figure 3.16), could be represented by the

relationship

(3.15)

in which G;m is the average compressive stress at failure

€ is the uniaxial brick compressive stress
1)

o, is the tensile stress at failure

£ is the uniaxial brick tensile strength.

bt
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Equation (3.15) is shown in figure 3.17 and was based on the
results of tests on a large number of specimens of bricks ranging in
crushing strength from 31.6MPa to 92.7MPa. The concave shape of the
failure curve shows that the compressive strength of a brick may be
severely reduced by the presence Of, orthogonal tensile stresses.

Khoo and Hendry also investigated the triaxial compressive
(118)

strength of 1:2:3 and 1:1:6 mortars using a triaxial test cell.

The principal stress relationship was found to be

f o
]E*L - 1+ 2.91'(1:_2_)0.805 (3.16)
c c

in which f is the compressive strength of the laterally confined

mortar
fc is the uniaxial! strength of the mortar

6 is the lateral confinement pressure on the mortar.
2

Equation (3.16) gives lower strengths for mortar in a triaxial
stress state than does equation (3.13) proposed by Hiisdorf. On the

(117), (119) proposed a

basis of their test results, Khoo and Hendry
failure theory for brickwork (figure 3.18).

As the vertical compression acting on a brickwork increases,
the state of stress in the brick may change as represented by the
dashed line OA in figure 3.18. Failure should occur in the brick when
the curve OA intersects the failure envelope at point A, so that the
compressive s_tr‘ength of the brickwork prism would be given by the
stress ordinate at that point. The stress path depends upon the
characteristics of the mortar joint under triaxia! compression, so that
for a weaker mortar, whose lateral strain may be greater under
vertical load, the stress path could be represented by the cuve 0B8.

In this case, the point B on the failure envelope would define the

compressive strength of the brickwork prism. Hendry indicated that
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it is not necessary to determine the stress paths OA and OB in figure
3.18 because the stresses in the brick at the brick-mortar-interface
can be represented by superimposing on the brick failure envelope
a curve derived from the triaxial compressive strength relationship
for the mortar. Curves for various mortars have been determined by
(118) . . . .
Khoo and are shown in figure 3.19 superimposed on the brick

(120)

failure envelope (curves AA' and BB'). Hendry reported that the
brickwork prism strengths calculated using graphs such as figure 3.19
compare well with experimental results.

(78)

Francis et al assumed that the stress distribution in a

stack-bonded prism could be as shown in figure 3.20. The prism is
subjected to an axial compressive stress cy so that the lateral stresses
induced in a central brick and in the mortar joint above and below

it may be represented as in figure 3.20(b). The failure envelope

assumed for the brick was the linear relationship between tensile and

compressive stresses shown in figure 3.21. It can be shown that the
failure compressive stress Sult is related to the lateral tensile stress
% b induced in the brick by a linear expression of the form —
b = E (ot - ) (3.17)
ult ult
o 1
. . It
in which ¢ = -:,
t
and o is the lateral tensile strength of the brick.

t
With reference to figure 3.20, the strains in the brick in the

x and z directions may be calculated as follows:

b 5 [be + Vo (oy - czb)] (3.18)

“2b + v, {0 =0 (3.19)
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Similarly, in the mortar joints

(3.20)

M
|
—
!
=+
<
Q
|
Q
—
—

xm_E

N o m + v (cy = oxm)] (3.21)

In the above equations Eb and Ern are the elastic moduli of the
brick and mortar respectively and \Jb and vm are the corresponding

Poisson's ratios.

For equilibrium, the total lateral tensile force in the brick is
equal to the total lateral compressive force in the mortar, sO that
h
if the ratio dof brick height-to-mortar thickness is denoted by (—h—b),
m
then —
P :
xm h_ " "xb (3.22)
m
hb
and o = E;'oxb (3.23)

For compatibility of displacements at the brick-mortar interface,

xb xm
= IS
and b &m (3.25)
Therefore, from equations (3.18) and (3.20), (3.19) and (3.21),

(3.22), (3.23), (3.24) and (3.25), it can be shown that —

E
b
Oy-{ Em “m” \)b)
s, = o, = ; (3.26)
Xb Zb 1 + E'_E _[_-:_.b, \V] ._h_lg t_).\)
h E ~ b h m
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Substituting for o, in equation (3.26) using equation (3.17),
and neglecting the term (1 - \)b) gives the result
o 1
ULt = E (3.27)
Tult ¢(——E-v = v)
Ern m b
VAR E
h E m
m m

Francis conducted experiments to test results from equation (3.27)
by using two types of brick, one solid and the other cored, together
with 1:1:6 mortar and showed that the reduction in brickwork prism
strength caused by mortar joint thickness could be predicted to an
acceptable degree of accuracy as shown in figure 3.22. However, the
assumption that mortar is linearly elastic up to failure is not
supported by experimental evidence (Section 3.2) and test results
presented by Khoo and Hendry do not support either Hilsdorf's or
Francis' proposition that a Tresca-type failure criterion is applicable
to brick matgrial. Francis used a Poisson's ratio for mortar of 0.25,
and although its value was important to the result, it was estimated
and not measured. Therefore, of the three methods described in this
section, the graphical approach proposed by Khoo and Hendry (figure
3.19), based upon experimental tests on brick and mortar materials,
appears to give the best estimate available at this stage of the

compressive strength of a brickwork prism.

3.3.2.7 The effect of time on compressive strength
The curing time of the cement and lime in the mortar in the

joints affects the compressive strength of brickwork in a manner

(44)

. ¢ . .
similar to that for the cement In concrete. Sahlin reported the

increase in mortar prism strength with time, based on data presented

(79

by Davis ) as shown in figure 3.23.
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It was shown in the previous section that the strength of
brickwork is related to the triaxial compressive strength of the mortar
so that it may be assumed that the increase in brickwork strength
with time is similar in a qualitative sense to the increase with time
of mortar prism strength as §hown in figure 3.23. That is, com-
pressive strength increases significantly up to approximately two
months after construction after which no significant change in strength
is apparent. From the results shown in figure 3.23, the 28-day
uniaxial compressive strength of a mortar is approximately 70 percent

of the long-term strength.

3.3.2.8 Effect’of bond patterns
(40) . : o :
Monk described several investigations on both piers and walls
in which different bond patterns were used. No significant difference
in compressive strengths was observed among the various methods of

bonding. Sinha and Hendry(BO)

reached the same conclusion after
tests on model brickwork walls using several different bonding systems.

The differences which may occur between single-leaf walls and

multiple-leaf walls will not be discussed here.

3.3.2.%9 Summary

The compressive strength of brickwork depends upon the strength
of the mortar in triaxial compression and the brick material in vertical
compression and biaxial lateral tension. Empirical studies based on
the uniaxial strengths of both the brick and mortar materials have
resulted in proposed formulae which may be used to obtain approximate
values of brickwork strength, for example equation (3.12) (Grimm(36)).
Khoo and Hendr‘y“w) have proposed an analytical approach by which

the compressive strength of brickwork may be predicted using a

graphical method as shown in figure 3.19. The compressive strength
;
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of brickwork may be calculated using their method once the mortar
type, the brick uniaxial compressive strength and the ratio of the

mortar thickness to brick height are known.

3.3.3 Axial and Fiexural Tensile Strength Across the Bedjoints

Tensile failure, or cracking along the bedjoints, can be produced
either by pure axial tension or by tension caused by flexure.
Structural brickwork is often constructed from relatively high strength
bricks and medium-to-high strength mortars so that the most frequent
mode of tensile failure across the bedjoints results from a bond failure
at a brick-to-mortar interface. Mortars which are modified by organic
bonding agents can develop exceptionally high bond so that failure
may occur in the bedjoint mortar, and possibly in the brick adjacent
to the mortar-brick interface. However, normal Portland ce_ment mortars
which use only lime as a plasticizer do not usually experience material
tensile failure. The factors which influence the strength of the bond

between the bedjoint mortar and the bricks are reviewed in the

following sections.

3.3.3.1 A comparison between axial and flexurai bond

(29) (79)

Plummer and Blume assessed results obtained by Davis
who reported differences between the bond strerigth of brickwork when
measured in axial tension and in flexfpr'e across the bedjoints. (Bond
strength measured by a test which induces flexure tension with no
axial tension is usually referred to as the medulus of rupture of
brickwork.) in the tests, all bricks were wet prior to laying and axial
tensile bond was determined using couplets of crossed bricks. The
modulus of rupture was determined using a line load on a cantilever

brickwork pier which spanned in a direction riormal to the bedjoints.

Comparisons between the axial tensile bond strength and the modulus
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of rupture for three types of br‘ick. and three types of mortar can be
made from the results summarized in Table 3.5. Davis concluded that
the axial tensile strength, determined from a test on a cross-brick
couplet, is less than the modulus of rupture. Further tests were con-
ducted and the results indicated that bond is appr‘oxim‘ately 25 percent
less between mortar and smooth brick surfaces than between mortar
and roughened surfaces. Table 3.5 shows that in all cases, the axial
tensile bond strengths were less than the moduli of rupture and in
no instance was the bond strength greater than 20 percent of the

mortar compressive strength.

Brick Designation(@)

A B C
Mortar
Type(b) i 2 3 1 2 3 1 2 3
Axial
Tensile 0.45 0.56 | 0.23 0.43 0.60 | 0.19 0.59 0.45 | 0.34
Bond (MPa)
Modulus
of Rupture 1.19 1.23 | 0.66 1.57 0.72 | 0.79 2.36 1.14 1 1.39
(MPa)

(a) Brick A; C = 20.9MPa (b) Mortar 1; 1:1/3:4; fc = 20.2MPa
Brick B; C = 26.7MPa Mortar 2; 1:3:43; fo = 17.0MPa
Brick C; C 53.2MPa Mortar 3; 1:1:6; fc = 11.7MPa

Table 3.5: Bond Strength in Brickwork Prisms

Gr‘imm(36) reported results of flexural tensile strength and direct

(82). He showed

tensile strength tests measured according to ASTM E149
that the flexural tensile strength ranged from 0.34MPa to 3.4MPa (50psi

to 500psi) and typically was as much as twice the value of the direct

tensile strength. The larger values of flexural tensile strength
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(modulus of rupture) agreed with the results in Table 3.5 given by
Davis, but neither Davis nor Grimm offered an explanation for the

flexural bond strength being greater than axial tensile strength,

3.3.3.2 Factors which affect bond

The bond of conventional Portland cement mortar to brick is
primarily a mechanical keying of the mortar into the brick surface
rather than a molecular bond(36). Therefore, the mortar Ipaste must
flow ir_1to the surface voids of the brick so that three factors which
affect brick-mortar bond are flow of the mortar, water retentitivity
of the mortar and brick suction (1.R.A.). Tests reported by

(60)

Isberner ihdicéted that the addition of water to a mortar which
raised its flow from 100 to 135 percent produced a decrease in
compressive strength but increased the tensile bond strength (figure
3.24).

The increase in bond strength with increased water-to-cement-
ratio possibly was caused by the increased ability of the mortar to
flow into the brick surface irregularities.

(83)

Youl and Foster suggested, as a result of experiments on
miniature brickwork panels, that optimum bond, as measured by &
flexural bond test, could be achieved with a mortar filow of 130 percent
and water retentitivity not less than 80 percent.

(84)

Plummer and Reardon reported that the tensile bond strength
decreased rapidly as the brick suction (1.R.A.) increased, particularly
for strong cement mortars (figure 3.25). The removal of water from
the mortar by the brick causes incomplete hydration of the cement at
the brick-mortar interface and thereby leads to reduced mortar
strength.

(36),(72)

Other researchers found that brickwork specimens which

were made with bricks which had been "wet" prior to laying developed
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substantially higher bond strengths than those which were laid dry,
and that a suitable method for achieving optimum brick suction
involved saturating the bricks but allowing the surface to dary
immediately before laying. A brick in this condition is often referred

(36)

to as being saturated surface-dry. Grimm stated that the time
interval between spreading and laying the brick should not exceed
one minute and that each brick should be tapped into place once only,
using the trowel, into a full-bedjoint so that the mortar is forced into
the brick surface without any separation of the mortar constituents.
Subsequent to the laying process, the method of curing can be critical

(60)

to bond strength and it has been found that moist-curing of tensile

bond specimens produces considerably higher bond strengths compared
with stored-in-air prisms.

(36)

Grimm proposed experimentally-based expressioﬁs for both
direct tensile bond strength (equation (3.28)) and flexural tensile

strength {equation (3.29)) for brickwork constructed with normal Portland

cement mortar as follows —

(a) Direct Tensile Bond Strength

£ = 35 x 10’6.[1.8 + (F - 105)0'5](40 - A)(124 - tm) (3.28)
in which fb is bond strength of mortar to brick in MPa (ASTM
E149(82)]

F is initial flow of mortar (105% < F < 135%)

A is air content in mortar by volume where A < 30%

tm is mortar exposure time (tm < 120 seconds) which is
the time taken between laying the mortar and laying

the brick.
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(b) Flexural Tensile Bond Strength

(Modulus of Rupture across Bedjoints)
C

f, = 0.026 of . (28 - tJ.)[3.8 + (t‘f _ 193 (3.29)

b

in which ft is flexural tensile strength in MPa

-0 is workmanship constant for masonry in flexure

1 for inspected work (all joints filled)

0.8 for uninspectéd work (joints partially filled)

f is bond strength according to equation (3.28) in MPa

b
t. is rﬁor‘tar bedjoint thickness in mm where tj <19
Cv
(—L—) is cement:lime ratio by volume in mortar where
C C
1 < —L—V < 4 (TV = 4 for type M mortar, 2 for S

and 1 for N).

Typically, for type N mortar and inspected work and 10mm (3/8

inch) bedjoints, equation {3.29) becomes

ft = 1.85 fb (3.30)

Grimm quoted the coefficient of variation on the data used to
derive equation (3.23) as 21 percent.

The effects of other factors such as sand-to-cement ratio, sand
gradation, sand particle shape and the chemical properties of the
cement and lime on the bond strength of brickwork have not been
studied. The long-term characteristics of bond strength also have not
been investigated, and although the short-term effects on bond of
mortar flow, water retentivity and brick suction a’me understood, it
is possible that the long-term strength of brickwork may depend not
only on bond at the bedjoints but also on frictional shear at the brick -
mortar interfaces. These shear aspects of brickwork are discussed in

the next section.
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3.3.4 Flexural Strength Across the Perpends

The behaviour of small brickwork assemblages subject to bending
parallel to the bedjoints is complicated by the fact that the common
stretcher bond pattern causes horizontal bending to be transmitted
in part by a complex torsional shear in the bedjoints. A review of
research into the simpler problem.of in-plane shear on the bedjoints,
both with and without compression normal to the bedjoints, is therefore
useful in assessing the parameters which affect the flexura! behaviour

of brickwork under horizontal bending.

3.3.4.1 In-plane shear on the bedjoints

(36)

The shear strength of masonry has been reported to be a
function of both the bond strength of the mortar to the brick and also
the frictional resistance at the brick-mortar interface which itself
depends on the compression forces normal to the bedjoints. If the
brickwork is constructed with cored bricks, then the shear strength
is increased by the mortar intrusions into the brick cores, since
failure in that case also relies on a shear failure in the mortar

(36)

intrusion., Grimm recognized that there was no specified method
for testing the ultimate shear strength of brickwork with a compression

stress and suggested that the following equation could be used:

= Y/ 1
fs 1.4 fb + @fp (3.31)

where fs is shear strength of brickwork in MPa
f is bond strength in MPa
® is coefficient of friction

f is axial compression stress in MPa and fp > fs
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A recommended practical value for the coefficient of friction,
o, was 0.68, and typical values for the shear strength of brickwork
were reported as ranging from 0.42MPa to 4.7MPa‘ (60psi to 680psi).

Haller‘(7) gave the following expressions, which represented fitted

curves to experimental data —

(a) Normal Quality Brickwork (Cement-Lime Mortar)

T =209/0+ 1.93 - 3.73MPa (3.32)
(b) Special Quality Brickwork (Cement Mortar)

T =2.9/0 + 0.90 - 1.73MPa (3.33)

In both eq'uations (3.32) and (3.33),

Al

is the in-plane shear strength in MPa

al

is the compressive stress normal to the bedjoint in MPa.

For the cases in which & is zero, T for Normal Quality Brickwork
from equation (3.32) is 0.30MPa and for Specia!l Quality Brickwork,
T from equation (3.33) is 1.02MPa.

(85)

Sinha and Hendry related the shear bond: strength, as
distinct from the frictional shear strength, to the tensile bond
stréngth, after they had tested specimens, built with cement mortar,

to which no compressive stress was applied. Their proposed relation-

ship was

T, = 0.731/0tb‘ (3.34)

in which T is the shear bond strength in MPa

o) is the tensile bond strength in MPa.

tb
Murthy and Hendr'y(86)

had reported previously, from a similar
set of experiments, that the relationship could be expressed in the

form —
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T, 2 2.3 %6 (3.35)

Equation (3.35) was similar to the relationship proposed by

Polyakov(gz) and subsequently used by Mayes and Clough(zs), which

was

T
o

b

= 2.25 - 5.ctb (3.36)

in which % Was expressed in MPa and was less than 0.18MPa.

(85) (86)

concluded that when vertical pre-

Both Sinha and Murthy

compression is present the total shear strength of brick couplets could

be expressed in terms of bond shear and frictional resistance in the

]

form —

T = 1 + fo (3.37)

in which T is the in-plane shear strength on the bedjoints
T is the bond shear strength
f is the coefficient of friction at the brick-mortar interface

L is the compressive siress normal to the bedjoints.

(85), (86)

The coefficients of friction calculated by the two authors from

test results were 0.74 and 0.725 respectively.

Hendr‘y(lzo) reported more recent tests on model and full-scale

structures conducted to establish a relationship of the form of equation

(3.37). The shear strength for the type of brickwork tests was found

to be given by the expression
T = 0.3 + 0.5 0 ' (3.38)

Equation (3.38) fitted the experimehtal data well for values of

the vertical precompression, S less than 2.0MPa (figure 3.26).

Hendry“zo) also summarized experimental results which indicate that

the value of bond shear strength, T may vary between 0.14MPa and
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0.3MPa for practical combinations of brick and mortar and that the
coefficient of friction, f, may vary between 0.3 and 0.84 for different
types of brickwork.

Hamid and Drysdale(87) indicated that the strength of brickwork
in combined shear and compression on the bedjoints may be sensitive
to the ratio of normal compressive stress to the in-plane shear stress
along the bedjoints, particularly at relatively high normal stresses.
Their experiments on brickwork specimens showed that the interaction
of compressive stress and shear stress caused the strength of the’
brickwork to vary as shown in figure 3.27. They concluded that the
mortar type did not have any effect on the capacity of the brickwork
as long as tk;e shear-slip mode of failure was predominant by com-

parison with a vertical splitting failure characteristic of excessive

normal compressive stress (Section 3.3.2).

3.3.4.2 Torsional shear on the bedjoints

Any combination of loads which causes a brickwork panel,
restrained at its vertical edges, to translate out of its unloaded
plane, produces bending stresses parallel to the bedjoints and
consequently induces torsional shear in the bedjoint mortar. Base and

(69

Baker ) described the failure modes of small brickwork assemblages,
built with model bricks, which experienced bending stresses across
the perpend joints (figure 3.28).

The three types of failure observed were a bending failure in
the bricks (figure 3.28(a)), a failure of bond in bending on a perpend
joint (figure 3.28(b)) and failure of the bedjoints in torsional shear
(figure 3.28(c)). Base stated that torsional shear failure was

associated with a bond failure, but the research reviewed in Section

3.3.4.1 suggested that, for in-plane shear, a frictional component was
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also present, so that it seems reasonable to assume that there could

also be a frictional component in torsional shear.

(44) (88)

Sahlin summarized a theoretical approach by Royen who
descr"ibed the mechanism of flexural action across the perpends by
assuming that the shear stress over the area (d x z) (figure 3/21;3/})
had a maximum value 1. The maximum moment carried by that area,

(89

by the membrane analogy ) (for a fully plastic type shear stress

distribution) is thus

_ 1d? d '
M = fif'(z - 3) (3.39)

where M is the maximum moment capacity of the area (d x z) in

’

figure 3.29.

Royen assumed that the shear stress was mobilized solely by
friction and not by brick-mortar bond, and that the moment capacity

per unit height of wall could be expressed as

= _owd® o d
m 55 (z 3) (3.40)

in which m is the moment capacity per unit height of wall
i is the coefficient of friction

¢ is the compressive siress normal to the bedjoints.

Rogen also considered a non-uniform distribution of vertical
stress over the friction area soO that when the axial force was applied
outside the kern at an effective eccentricity of e from the section

centreline, the friction area was reduced from (d x z) to
3/2.(d - 2e). z ) (3.41)

The stress ¢ was assumed then to be a uniform average stress
over the reduced effective area given by equation (3.41).
_(4d) : o -
Sahlin proposed that an upper limit for m could be taken

as the moment which caused a bending failure with cracks through
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the bricks and perpend mortar joints. That is,
d20,|
___bt

(Failure) m = =

(3.42)

in which Ul;tis a transverse bending strength for the brickwork.

Therefore from equation (3.40),

2,1
dobt

6

pod?

75 (z - d/3) <

m < (3.43)

In equation (3.43), z > d, % 2> 2z (figure 3.29) and- ¢ may be
assumed to be approximately 0.5 to 0.7 at a clay brick-mortar inter-
face(44).

Royen's theory did not include the continuity of the bedjoint
mortar nor thé stress—carrying capacity of the perpends which could
be significant. No research has been carried out to compare any theory
on torsional shear with experimental evidence. Comparisons have been
made, however, between the flexural strength of stretcher-bond brick-
work across the perpends and across the bedjoints, but the cqmplex
nature of bedjoint torsional shear has not been investigated. Instead,
research has been directed towards an overall appreciation of bending
across the brickwork perpends. Some of the results which compare

flexural strengths in the two principal directions in brickwork are

presented in the next section.

3.3.4.3 Comparisons of flexural strengths across perpends and bedjoints
Experiments designed to establish a predictable ratio of flexural
strength across brickwork perpends to flexural strength across bed-
joints for brickwork huilt in stretcher bond have produced ratios which
. (90) .
vary from approximately 1.5 to 9.5 over a range of brick and
mortar types.

(91)

Lawrence investigated the flexural strength of brickwork

normal to and parallel to the bedjoints, without the influence of
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on-plane compressive forces, and used the results together with data

from the researchers, to obtain the relationship —

R = (3.44)

2.17

J B

in which R is the ratio of flexural strength across the
perpends to flexural strength across the
bedjoints in MPa

B is the flexural strength across the bedjoints

in MPa.

A plot of equation (3.44) together with the experimental data
is given in figure 3.30.

Lawrence stated that the correlation coefficient was 0.94 which
indicated that the ratio R was highly dependent on the bond strength
achieved by the brick-mortar combination. Lawrence also claimed that
the results shown that the ratio R was independent of whether failure
occurred in the brick or as a torsional shear failure in the bedjoints.

(121)

Equation (3.44) was subsequently modified by Lawrence as a result

of more experimental data being available to be —

R:

1.75
f_ET (3.45)

The difference between equations (3.44) and (3.45), resulting
from the amount of test data available, indicates that there may not
be a useful relationship of that form for brickwork. However,

Hendr*y“zo) (122)

has reported that West showed that statistically there
exists a relationship between flexural strength across the perpends
and brick section {!.R.A.), a factor which influences the flexural bond

at the bedjoints (Section 3.3.3.2).
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3.3.4.4 Summary

In-plane shear strength of brickwork may be calculated by using
equation (3.37) provided that the normal compression stress, 'cc, is
less than 2.0MPa. In equation (3.37), the bond strength, T, may vary
between 0.14MPa and 0.3MPa depending on the type of brick and mortar
and the coefficient of friction, f, may vary between 0.3 and
0.84(120). At normal stresses greater than 2.0MPa the shear strength
may depend upon the normal compressive stress in a non-linear
fashion(87) (figure 3.27).

Equation (3.43) gives a method of calculating the moment capacity
of brickwork subject to bending across the perpends. However,

Sah|in(44) gave no value for the transverse bending strength for

’

brickwork, o Possibly for brickwork in common stretcher bond, Gt;t

]
bt

may lie in the range

< ol « 46)
0.50,, o, € 9, (3.46)

in which Gb is the transverse bending strength of a brick (Section

t
3.1.3.3).
The relationship between flexural strength across the bedjoints
and the flexural strength across the perpends, as determined by

Lawrence“zn

(equations (3.44), (3.45)), wmay not be acceptable
because the relationship appears 1o depend upon the sample size for
its form. In addition, the effects of time on the bond at the brick-

mortar interface has not been assessed in the test data used for the

development of equations (3.44) and (3.45) (Section 3.3.3.2).
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3.3.5 Elastic Properties of Small Assemblages

3.3.5.1 Elastic Modulus, E

Base and Baker'(69) calculated effective elastic moduli for brick-
work both normal to and parallel to the bedjoints assuming that both

the brick and mortar materials were linearly elastic as foliows:

(i) for a stack-bonded prism in axial compression normal to the
bedjoints,
A
B H+ b n
Ec = Eg - [— £, ]——A— (3.47)
H+ (g9:b 9
m

in which E(': is the brickwork elastic modulus for compression
normal to the bedjoints
Eb is the brick modulus ‘ -
E is the mortar modulus
H is the brick height
b is the bedjoint thickness
A _is the nett area of the bricks, reduced from the gross

area Ag by coring of the bricks.

(ii) for a stack-bonded prism in bending across the bedjoints,

. (H + b) N
Bp = E,e [— el 1.2 (3.48)

(a]

E,
H+ (g2)b
m

in which .EB is the elastic modulus for bending across the bedjoints
|n is the second moment of area cof the brick nett section
about an axis parallel to the bedjoints
Ig is the corresponding second moment of area for the

gross brick section.
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(iii) for a wall subject to bending across the perpends,

E1 H+ E b
EP = i (3.49)
(H + b)

in which EP is the elastic modulus for bending across the perpends

E‘l is an eqguivalent modulus for bending defined as
£ & E .| eeiip ] : (3.50)
1 b l9 Eb
L '(TT') + (—E—)' P
n m

in which L is the brick length
p is the mortar perpend thickness
Ié /is the second moment of area of the brick gross
section about an axis normal to the bedjoints

lr'w is the corresponding second moment of area for the nett

brick section.

(iv) for a wall subjected to bending across the bedjoints,

B (H + b)
Eg = Ez.[ E, | ] (3.51)
H + (E—)-<Tﬂo b
m N

in which E. is the elastic modulius for bending across the bedjoints

S
E‘,2 is an equivalent modulus for bending defined as
In .
Eb'(T_)'L + Em.p
E, = [ 2 ] (3.52)

(L + p)

If the perpend thickness, P, in equation (3.52) is insignificant
relative to the brick length, L, equation (3.51) gives approximately

the same result for a wall as does equation (3.48) for a stack-bonded

prism.
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Base and Baker tested the theoretical results by bending small
brickwork assemblages both normal to the parallel to the bedjoints.
The load-deflection curves for tests on model brick piers in flexure
across the bedjoints when loaded over a 330mm spén with line loads
95mm apart, placed symmetrically, are shown in figure 3.31.

Base and Baker reported that the curves in figure 3.31 were

typical for all tests conducted, the results of which are summarized

in Table 3.6.
Elastic Modulus (x 103MPa)
Brick Eb Em
Type (x 10°MPa) | (x 10°MPa) Experimental Calculated
Min. Max. Average
Solid
(12 tests) 26.6 8.76 17.3 25.0 21.4 21.4
17-hole
(1 test) 26.6 8.76 - - 21.0 20.4

Table 3.6: Elastic Modulus for Bending Across the Bedjoints

Base and Baker also tested both full-sized and model brickwork
in bending across the perpends, with no compression normal to the
bedjoints.

The results showed that the load-deflection characteristics were
initially linear and agreed well with theoretical predictions as
indicated in Table 3.7.

However, a distinct change in brickwork stiffness was noted
during the experiments (figure 3.32). Base and E;aker‘ attempted to
explain the change in brickwork stiffness by testing several small
panels constructed from "mode! bricks" in which the perpends were
greased so that the brick—mortar bond on the perpends could be

neglected (figure 3.33). They concluded that the displacements for the
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Brick Eb Em Elastic Modulus (x103MPa)
Type (x 103MPa) (x 103MPa) b Experimental
Min. Max. | Average R IedR=a
Solid
(13 tests) 26.6 8.76 19.3 23.4 21.3 22.6
17-hole
(1 test) 26.6 8.76 e ad 15.8 . 17.3

Table 3.7: Elastic Modulus for Bending Across the Perpends

panels with greased perpends were sufficiently different from those
of a normal br"ickwor‘k panel that the changes in slope shown in figure
3.32 could not be caused by cracking in the perpends. However, they
were unable to propose an alter‘naﬁve explanation.

iawrence and Mor‘gan“z) investigated the properties of small
brickwork panels in bending across the perpends and concluded that
there was a distinct change in flexural stiffness at approximately 40
to 50 percent of the ultimate bending moment. The relationship between

the reduced stiffness and the initial stiffness was approximated, using

a least-squares analysis, as

E2 = 0.57E1 - 50MPa (3.53)
in which E2 is the reduced modulus of elasticity in MPa

E1 is the initial modulus of elasticity in MPa.

The correlation coefficient was reported as 0.90. Lawrence stated that
the significant correlation coefficient showed that the ratio EZ:E1 was
an intrinsic property of the brickwork. He suggested that the reduction
in stiffness could have been caused by partial cracking in the
perpends but did not obtaiﬁ direct experimental evidence to confirm

such behaviour.
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(50)

Scrivener and Williams reported axial compression tests on

\

small brick prisms in  which the siress—strain relationships were
recorded. A complete stress-strain curve for the brick prism with 10mm
(3/8 inch) mortar joints is shown in figure 3.34, together with the
stress—strain curve for the brick. Scrivener reported that the secant.
modulus obtained from the ascending portion of the curve at the point
where the strain was half the strain, € at maximum stress was
7.5 x 1O3MPa and at maximum stress, e, was 0.0063.

The maximum strain obtained by Scrivener, while retlatively high
compared with concrete, was not supported by experiments by Powell

(93)

and Hodgkinson who tested brick piers in compression beyond the
maximum stress levels. Figure 3.35 shows typical stress-strain graphs.

The tests were conducted on smal! brickwork piers built from
four different types of bricks and 1:1;:3 mortar. The in{tial tangent
modulus in all cases was greater than the secant modulus calculated
for two-thirds maximum stress, and the ratio of the modul‘i varied from
1.33 for type C bricks to 1.53 for type A Dbricks. Although the
brickwork prisms showed non-linear elastic material behaviour at
stresses near failure, the stress-strain behaviour was close to linear
elastic at low stresses, especially for higher-strength brick types A,

B and D Hendr‘y“zo)

has reported that by plotting the four stress-
strain curves on dimensionless axes, the curves are of the same form

and may be expressed as
) = 2.(2) - (=) (3.54)

in which ¢ is stress normal to the bedjoints
0. is the maximum stress
e is strain normal to the bedjoints

is the strain at maximum stress.
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From the parabolic stress—strain relationship given by equation

(3.54), the initial tangent modulus for the brick is

a

_ f
Ebr = Z.E—f-

(3.55)

The maximum stress for all piers occurred at a strain of 0.38
percent or less compared with a strain of 0.63 percent reported for
tests conducted by Scrivener and Williams (figure 3.34).

(94) conducted tests on forty-five walls using

Walstein and Allen
one batch of solid bricks and one type of mortar. They r*epor‘tled
stress-strain relationships for brickwork similar to the curves shown
in figure 3.35.

Other r‘eslear‘ch on the elastic modulus of brickwork has been con-
centrated on results from compressive tests on brick prisms and has
attempted to relate brickwork modulus to the compressive strength

(69)

normal! to bedjoints. Base and Baker (equations (3.48), (3.49),

(3.50), (3.51), (3.52)) showed that the elastic modulus of brickwork
(44)

was dominated by the brick modulus and Sahlin reported that the
elastic modulus of a brick was approximately proportional to its
strength (equation (3.2), Section 3.1.3.4). However, in Section 3.3.2,
it was shown that brickwork compressive strength is not directiy
proportional to brick strength, and therefore brickwork compressive
strength is unlikely to be related directly to its elastic modulus.
However, in order to present the results of past research, some
relationships which have been proposed as measures of elastic modulus

(51))_

are given below (including corrections to Plowman's paper

(51)

(a) Piowman

(i) Epr = (Brickwork Strength (MPa) - 0.7) x 10°MPa (3.586)
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Brick Strength (MPa)

(ii) Ebr =: 56 + 4.1) x 10°MPa (3.57)
(b) Plummer and Blume(zg):
700 F ! < Egp € 1200 F (3.58)
(c) Ander‘so'n(w"):
Eyp ™ 1250 Fr'n (3.59)

for 1:1:6 mortar

and bricks 51MPa < C < 112ZMPa

(d) Sahtin 44
" 400 F' < E. "< 1000 F! (3.60)
. m br m
but E = 700 F' at low stresses
br m
(e) Gr‘imm(36):
h
1
Ebr + 6.25 Fm (80 + s/ts) (3.61)

in which hs/ts is a slenderness height-to-thickness ratio of test
pier

and hs/t < 45, F' < 21MPa
s m

In equations (3.56) to (3.61),
Fr'n is brickwork compressive strength
Ebr is initial tangent brickwork modulus normal to the bedjoirts

C is brick compressive strength.

With relation to equation (3.60), Sahlin(lm)

reported that the
tangent modulus of elasticity decreased as the stress increased with
the rate of decrease depending upon the type of mortar used. He
indicated that because the tangent modulus varied with stress, the
buckling load of a brickwork column would depend upon the variation

(45)

of modulus. In addition, Nylander indicated that a stress-strain
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relationship obtained from a concentrically-loaded prism might not be
suitable for calculating the buckling joad of an eccentrically-loaded
column because the stress, and hence elastic modulus, varies across
the column section. Nevertheless, analytical methods p_r'oposed by other
researchers for predicting the failure of walls and panels will be

discussed in Section 3.4.

3.3.5.2 Modulus of rigidity, G
So far, investigations in brickwork have been concerned essen-
tially with the modulus of rigidity as it applies to in-plane shear.

(95)

Page conducted experiments on small one-half scale brickwork
panels loaded"’ in combined compression and shear and calculated
average stress-strain curves for shear for each of the brickwork types
shown in figure 3.36. In each case, the shear stress and the normal
stress were assumed to be uniformly distributed along the bedjoint
so that each curve represents average values for all tests at each
stress level. Page concluded that the shear deformations were not
sensitive to the degree of compression normal to the bedjoint, although
the stress—strain curves themselves were not linear.

(16)

Hendry conducted tests on one-sixth scale single-storey
structures and concluded that the shear modulus of brickwork increased
very rapidly at precompression loads within the range of working
stresses. This result is a contradiction to Page's conclusions above,
possibly because the modulus relationships were determined using two
different experimental approachés.

In practical design applications, the elastic moduli in the two

principal directions, say X and Y, are gufficiently close to each

(69) (122) _

, so that the following approximation is possible

other
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B

E_.E)
G = X ¥ (3.62)
2.(1 +v)
in which G is the modulus of rigidity of brickwork

Ey,Ey are the elastic moduli parallel to, and normal to,
the bedjoints at low stresses
v is an average Poisson's ratio for brickwork which

may be taken as 0.2(_50), (120)

Equation (3.62) is derived from an equation developed by

Timoshenko(ﬂz) for the modulus of rigidity of an orthotropic plate.

3.3.5.3 Creep in brickwork
Long-term behaviour of brickwork can be affected by creep both
in the mortar bedjoints and in the bricks. Plowman(sn reported that

the degree of creep in a mortar can depend upon the following factors:

(a) Water content of the mortar after moisture absorption by the
bricks

(b) Type of sand

{(c) Proportions of the mortar mix

(d) Stress level

(e) Air humidity

Plowman concluded from experimental evidence that the creep
of brickwork may be assumed to be approximately 20 to 25 percent
that of concrete under similar conditions of stress and environment.
He suggested that a value of 100 X 10_6 for creep after ten years could
apply to all strengths of brickwork. The behaviour of walls and panels

in which creep is not significant is reviewed in the following section.
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3.4 ANALYSIS OF BRICK WALLS AND PANELS

This section reviews the theories which predict the behaviour
of brick walls and panels subjected to vertical load either concentric
or eccentric with respect to the wall or panel middle surface. For the
purposes of this section, the collapse mode of a wall or panel is
assumed to be characterized by a buékling failure rather than a

brickwork material failure (Section 3.3).

3.4.1 Analysis of Columns with No Tensile Strength

Most theories adopted for brick walls assumed that the material
had no tensife strength. Consequently, the theories do not apply
strictly to brickwork because the brick units themselves can resist
significant tensile stresses. That Iis, the bricks remain intact while
discrete cracks may appear in the mortar joints or at the brick-mortar

inter‘faces(Gg) . (96)

Angervo considered an eccentrically compljessed
homogeneous column, initially straight (figure 3.37) with a cross-
section symmetrical with respect to the plane of deflection. The region
of the section in compression is the shaded area in figure 3.37. The
centroid of the compressed area differs from the centroid of the full
section in those parts of the column in which a part of the section
is ineffective, that is, in zones that would be subject to tensile
stresses if the material had tensile strength. Angervo extended the
Bernoulli-Navier hypothesis for uncracked columns by assuming that
for columns with no tensile strength, planes which were perpendicular
to the centroidal axis of the column prior to loading remained plane

in their compressed parts and perpendicular to the original centroidal

axis.
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The strain at each fibre is thus proportional to the distance
from the neutral axis at that fibre. If the column is divided into small
elements along its height, the planes at the ends of an element inter-
sect at the centre of curvature for the original centroidal axis, and
hence the compression face, for that element. Angervo calculated the

failure loads for pin-ended columns of constant rectangular section

and linear-elastic material as

. El
Pf = W (3.63).
in which P]c is the column failure load

E is the Young's Modulus in compression

’

| is the full-section second moment of area
h is the column height
u is the factor which depends upon the end eccentricity

of the load as follows —

(i) if the load is applied at the same eccentricity at both ends such
that the load acts outside the kern at both ends, then Angervo

showed that the constant p may be approximated as
3
po= 9.4k (1 - %) (3.64)

6e
= (3.65)

where e is the load eccentricity at both ends measured

in which m =

from the centroid of the full section

d is the section thickness.

(ii) if the load is applied at both ends with equal eccentricity but
within the kern, it is possible for the line of action of the load
to be inside the kern for the end parts of the column and outside

the kern near the midheight. In this case, Angervo showed that—
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) 1.5 pnfj i 14p 0.5 . 1-p
H= 4.{(1"[3) . [T_]_—E)-l- z-ln (T;;rs—)] + arcsin -i-_l—_?p—')

2

_ arcsin [m.(11—+"—3p—p)". ']} (3.66)

in which the parameter, p, is defined by-—

3e
o
p: d —

(3.67)

(NP

I whe.r'e.: €, is the maximum effective eccentricity of the load at
failure (figure 3.37)
d is the section thickness
'm is as defined for equation (3.65).
The value of the parameter, p, at column failure may be solved

by trial by calculating the value of p for which equation (3.66)

tends to a maximum value for u.

Angervo gave values of p and p for various end eccentricities

of the load (Table 3.8).

m (egn.(3.65)) p "
0 0 n2
0.10 0.0815 8.75
0.25 0.147 7.36
0.50 0.234 5.48
0.75 0.312 3.98
1.00 0.388 2.80

Table 3.8: Column Failure Load Parameters

for Equation (3.64)
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Angervo showed Ffurther that values of p calculated using
equation (3.65) with values of m <1 (end load inside the kern) were
within 5 percent of values of calculated using equation (3.66). He
suggested, therefore, that the buckling failure loads for all cases
of end load eccentricity could be calculated approximately using
equations (3.64) and (3.65).

Many materials do not possess stress-strain characteristics which
can bg represented adequately by a simple mathematical model. In
order to investigate the behaviour of a non-linear material with no
tensile strength, Angervo suggested cne particular form of constitutive

relationship as’ follows —

(%) =1 - (3.68)
o

in which o is the maximum stress sustained by the material
E is the initial tangent elastic modulus
o is the stress

€ is the strain.

Equation (3.68), plotted in figure 3.38, was selected because
the resulting differential equations for the column deformations could
be solved readily.

(93)

Powell's experiments (Section 3.3.5, . figure 3.35) showed,
however, that the stress-strain relationships for brickwork viere con-
siderably different from the relationship proposed by Angervo, so that
any non-linear analysis for brickwork behaviour based on eqguation
(3.68) could result in significant errors.

Chapman and Slatfor‘d(97)

analysed the elastic buckling of
columns both without tensile strength and with limited tensile strength

and considered the following cases;
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(i) the column was pinned and concentrically loaded at each
end. lnitially the column was assumed to be deformed in
the shape of two linear segments such that the imperfection
was a maximum at column mid-height.

(ii) the column was clam;-jed at each end and was deformed
initially as in (i) above.

(iii) the column was initially straight ahd was loaded with equal

eccentricity at each end.

The column section was assumed to be rectangular for all three con-
ditions and the investigation was essentially focussed on the problem
of the initially straight column with equal end eccentricities. The
material was assumed to be without tensile strength but to behave
according to Hooke's Law. The load against central defle_ction curves
for these eccentrically loaded columns were calculated and are shown
in figure 3.39.

It is important to note that in real columns, the unstable
equilibrium condition, indicated by the falling load-deflection
" characteristic in figure 3.39, is not attained and column buckling
failure occurs at the maximum load. (The assumption is made through-
out this section that material failure does not occur prior to buckling
failure.)

Chapman and Slatford further stated' that for an eccentrically
loaded column in which the load was applied outside the kern, the

maximum load may be calculated approximately by the expression —

Pf e’
- 7es (3-9) (3.69)

crit
in which P]c is the buckling failure load
Pcrit is the Euler load for the full section

e is the load end-eccentricity

d is the section thickness.
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They also stated that equation (3.69), which can be reduced
to equation (3.63) when combined with equation (3.64), gave the

maximum load with fair accuracy for eccentricities less than d/6,

Pg

although the limiting value for at e equal to zero was 0.95

crit
instead of 1.00.

Chapman and Slatford attempted to explain the failure mechanism
of a column without tensile strength by means of the diagrams shown
in figure 3.40. They stated that at the moment of final collapse in
the pin-ended columns, the effective depth of the section due to
cracking at the centre of the column was reduced to zer'b (figure
3.40(a) and figure 3.40(b)) so that a hinge was formed and each half
of the column momentarily became straight.

At that instant, the centre of the compression face of the column
was said tc coincide.with the line of the thrust. In fatgt, the cases
described are unrealistic cases of unstable equilibrium achieved only
if the external load is zero, since there must be some bending in the

column if the load is non-zero. The situation shown in figure 3.40(b)

say, can only occur if the eccentrically-loaded column is in the state
e

at which .,(—ag) in figure 3.39 is equal to 0.5. In real columns
under eccentric load, at the maximum load the effective section is
reduced to- some thickness at which column equilibrium is at a
transition from a stable to an unstable condition (figure 3.41). |If
the defelction at column mid-height increases beyond that point, then
equilibrium cannot be attained at the load level and the column fails.
At no stage does a real column exist in the state described by
Chapman and Slatford in figure 3.40(a) and 3.40(b).

An important phenomenon which Chapman and Slatford did not

consider, particularly when testing their theory against experimental

results, was the increase in compression stresses which might occur
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if the load is maintained as the column fails. Chapman and Slatford's

experimental results wiil be discussed further in Section 3.4.2.

(98)

Yokel used the same assumptions as Angervo and Chapman

and Slatford, but considered only pin-ended columns loaded with
identical end eccentricities outside the kern. The form of Yokel's
equation was —

n%Eb U,
Pf = 0.64 - —RT (3.70)

in which P1c is‘the failure load

E is Young's Modulus

b is column width

2

u. is distance from load to compression face at the ends

1

h is column height.

Yokel also calculated that provided the load was outside the kern at
the ends, the deflection at mid-height immediately before failure was

given by

Y = 0.625 (3.71)
Y

in which u0 is the distance from the line of action of the load to

the compression face at column mid-height

u,} is the distance from the line of action of the load to

the compression face at the ends.

Equation (3.70) can be reduced to the same forms proposed by Angervo

and Chapman and Slatford. Sahlin(zm), Frisch-—Fay(gg)’(ioo), Chen“o”,

hatler”). Monk (10?) (103)

and Risager have also derived expressions
which are essentially of the same form as equations (3.63), (3.69)

and (3.70).
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Sahlin also extended the results to columns in which the load
is eccentric at one end only. The results, summarized in figure 3.42,
may be used to calculate the buckling load of fixed-base columns
provided that the effective height, Ah, is known. In practice, the
effective height is not easily calculated.

Yokel indicated that the no-tensile strength theory was inadequate
for brickwork because the real tensile strength would alter the
equilibrium conditions and the load capacities would be larger than
those predicted by a brittle-material theory. He stated that this was
the case particularly for walls of very high slenderness ratios and
high load eccentricities. He also pointed out that the brick units, with
their greater strength and stiffness than the mortar joints, would
cause stress distributions in the brickwork which might be much more
complex than the idealized linear stress distribution ass.umed in the
no—tension solution. The distribution of stresses in the bricks and its
effects on the behaviour of brickwork will be discussed in Chapter
4.

(104)

Tesfaye and Broome investigated the effect of wall self-
weight on the failure load of eccentrically loaded columns and showed
that, for single-leaf slender brick walls, the effect was negligible.

(105) tested solid concrete blocks under

Cranston and Roberts
vertical eccentric load and developed a theory which included an
approximate method for analysing the tension-stiffening associated with
the tensile strength of the blocks. However, they did not indicate how
the theory could be implemented and most of their results were obtained
from small-scale tests on blockwork couplets. The block aspect ratio,
height-to-thickness, wused in the couplet tests differed substantially
from the aspect ratio of the full-sized blocks, so that the moment-

rotation characteristics used by Cranston and Roberts are of question-

able value.
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(106) used finite difference techniques to model

(96)

Contaldo et f_l_l_

and also to simulate

(93)

the results obtained on brickwork piers by Powell and Hodgkinson ,

the linear-elastic problem solved by Angervo

by assuming that the stress-strain_ relationship for brickwork was of

the form

6 = Ee - Ke" (3.72)
in which E is Young's Modulus at zero stress

K, n are constants

Contaldo et al. reported that Powell and Hodgkinson's results
showed that the exponent, n, was approximately equal to 2. However,
the formulation did not distinguish between the different behaviour
of the brick and mortar components, and therefore the results cannot
be applied generally. Contaldo et al. did show that the finite differ-
ence method is quite an accurate method for modelling pin-ended brittle
columns particularly if at least eight elements are used. The use of

finite difference techniques in modelling no-tension material columns

as well as slender brick walls will be discussed in more detail in
Chapter 4.
3.4.2 Comparison of Experiments with No-tension Material Column
Theory
(97) . .
Chapman and Slatford compared the experimental results
(30)

reported by Davey and Thomas with their own no-tension material
column theory and reported that, subject to corrections on the assumed
end conditions and assuming that the columns failed by lateral
buckling, the experiments agreed well with theory. However, in the
; . . . {30)
discussion on their paper on brickwork, Davey and Themas

reported that the only buckiing faiture among all the walls they had

tested had been induced artificially by using plywood in the bedjoints.
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Therefore, effectively, Chapman and Slatford compared their results
from a no-tension material column theory with experimental failure
loads resulting from material failure. Any conclusions drawn from sucn
a co.mpar‘ison are clearly invalid.

Chapman and Slatford also tested their brittle~column theory by
constructing a column of thirty-three, two-inch high (50.8mm) by one-
inch thick (25.4mm), aluminium blocks and compressing the column
between knife-edges both axially and eccentrically. However, because
of the relatively high aspect ratio, or height-to-thickness ratio of
the blocks, they did not test precisely a no-tension material column,
but one which could crack only at widely-spaced intervals. The end
faces of the blocks were reported to have been machined flat and
parallel to within + 0.0003 inches (0.008mm). However, it is probable
that after column failure, damage would have been incurred at the
block edges because of the very jarge increase in compression stresses
at failure (Section 3.4.2), particularly since the blocks were of
aluminium. The initial slopes of the experimental load-deformation
curves differed markedly from the theoretical curves, consistent with
a hypothesis of damage, so that even although the experimental failure
loads were reported to agree with the theoretical failure loads, the
experiments did not establish the validity of the theory. Chapman and
Slatford's experiments have been repeated by the author using steel
blocks and the results, which differ from those of Chapman and Slat-
ford, are discussed in Chapter 5. '

James“oﬂ’(]os)’(mg) and Martin and Nettle(no)

tested storey-
height brick walls, three bricks long, with slenderness ratios up to
32 so that all walls failed by elastic buckling. James tested walls

of bricks laid on flat while Martin and Nettle used bricks on edge

throughout, and the loads were applied through knife edges at
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identical eccentricities top and bottom. James' results (figure 3.43)
which show considerable spread at each load eccent_r‘icity, are from
ten tests at each eccentricity and Martin and Nettle's results are each
from one test only. ;I'he elastic modulus values for James' experiments
have been calcutated from Ioad—deflection data. On the other hand,
Martin and Nettle obtained modulus values from tests on small mortar
and brick prisms, but they noted that the Young's modulus values
were of questionable accuracy because of the small number of prisms
tested from each mortar batch.

(123)

Hasan and Hendry reported tests on one-third scale model

brickwork walls supported top and bottom and loaded concentrically
and at equal e'nd eccentricities of d/6 and d/3. The height-to-thickness
ratios (slenderness ratios) of the walls varied between 6 and 25. All
walls loaded concentrically reportedly failed by ver'tical-splitting or
brick spalling as did walls of slenderness ratio up to 18 loaded at
d/6. However, walls of slenderness ratio 25 failed by lateral buckling
when loaded at d/6. All walls loaded at d/3 (slenderness ratios 6,
12, 18 and 25) reportedly failed by lateral buckling. By using an
elastic modulus, calculated from the test results of 5.26 x 10’MPa,
the failure load ratios for the walls which failed by buckling may
be calculated as shown in figure 3.43; the failure load ratio for an
eccentricity of d/3 is the mean of the ratios for walls with slenderness
ratios 18 and 25. Hasan and Hendry stated that the buckling mode
of collapse occurred as a result of bond failure at a brick-mortar
interface, thereby explaining the higher‘—than—pr‘edicted failure loads
(figure 3.43) because Chapman and Slatford's theory (equation 3.69)
assumes that the bond strength is negligible. Hasan and Hendry's test

results may indicate, therefore, that model brickwork should not be
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used for testing slender walls because the bond strength, which may
not be zero, cannot be scaled in the same way as are all the wall
dimensions.

(42) tested walls at eccentricities

West, Hodgkinson and Davenport
of d/8 but, because no Young's Modulus values were obtained, com-
parison with no-tension material colum Jltheor‘y cannot be made.

The failure load ‘of slender ;vall's may also- be affected by

(111)

workmanship and initial imperfections, but these effects have not
been incorporated into any of the theories for columns of no-tension
material subjected to eccentric loading. The possible reduction in the
load-carrying capacity of slender walls due to these effects, even when

constructed within limits prescribed by Cods of Practice, will be

discussed in Chapter 8.

3.4.3 Theory of Panels Simply-supported on Four Sides

(112)

Timoshenko described the equation of equilibrium for an
isotropic plate loaded both by lateral loads and forces in the middle
plane of the plate. By using Timoshenko's conventions for the calcula-

tion of forces, moments and displacements, the equation of equilibrium

on a plate element can be expressed as —

3TM_ - 22 M a2M ) )
B P Tt =
X 9 X 3y ay X X y 9Yy
+ 2N 2wy (3.73)
Xy 9axay ‘
w is the plate displacement in the Z direction

N>< is the force per unit width of plate in the X direction
Ny is the force per unit width of plate in the Y direction
N‘)iy is the shear force per unit width of plate

q is the uniform lateral pressure
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Mx is the bending moment per unit width of plate caused by
normal stresses in the X direction

My is -the bending moment per unit width of plate caused by
normal stresses in the Y direction

Mxy is the twisting moment per unit width of plate

. Nx’ Ny are positive for tension.

Substitution of the constitutive relationships

_ 32w 82w.

M)< = - D.(_é_;(_! + \)T'y—z) (3-74(3))
B aZ‘W azw

M, = - D,.(—372 + va=7) (3.74(b))

Moy = D.(1 - V) 553y - (3.74(c))

in which, for an isotropic plate of constant thickness, D is constant

Eh?®
and equa! to 20 59 (3.75)

where E is the elastic modulus
h is the plate thickness
v is Poisson's ratio

gives equation (3.73) in the form —

3w o'w 3w 1 tw 3w
+ & e - = — . .
ax? ZW?F 3y? D (@ + No-gxz * Ny ay?
9% w
Zny- Bxay) (3.76)

1§ Nx’ q and ny are zero, and Ny is compression and constant

throughout the plate (figure (3.44)) then equation (3.76) becomes —

L 32
(- Ny._,W (3.77)

2w w oo 8'wo ]
ay " dy

9
L T D
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Timoshenko showed that the critical buckling load, (N_) ., for

such a plate simply-supported on four sides, is given by

_ I*D ma b .
Nep = 2 (% " ma (3.78)

in which m is the number of half-sine waves into which the plate

buckles.

The variable m is an integer and must be chosen to make (N )cr
in equation (3.78) a minimum. For aspect ratios (b/a) € 1, m is unity

and equation (3.78) becomes

(N ) = 5253-[1 + (542]2 (3.79)

The critical buckling load (Ny)cr is plotted non-dimensionally against
the aspect ratio (b/a) in figure 3.45. The buckling load for a square
plate simply-supported on four sides is four times the buckling load
of the plate if supported top and bottom only.

The lateral displacements of a plate loaded only by a constant
force, Ny', which is eccentric with respect to the middle plane of the
plate, can be approximated by the expressions obtained by Timo-

(112) for a plate with moments uniformly distributed along iwo

shenko
opposite edges, provided that the load is small compared with the

critical buckling load (figure 3.46).

The solution for the lateral displacements in the plate is

2Mga’ . 1 : miy
W T D _ ) m:cosha —{(um.tanhum.cosh( a )
m=1,3,5... .
mily, mily ( . mix
( = ) sinh ( i %.sun = (3.80)
in which o = MmIB. (3.81)
m 2a
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Along the axis of symmetry, y=0, the lateral displacements are given by

2M0a2 w 1 tanha miIlx
(w) . = —o=— - ) — e s ———— .+ SiN (3.82)
y=0 n°D _ m m cosha
m=1,3,5... m

and for any given ratio (b/a), the lateral deflection at x=a/2, y=0 is

M ab @ (n-1)
(Wyog, xeasa = T L _ ] (1) 2, 1 B (3.83)
Y=t m=1,3,5... m> cosha

Values for these deflections and bending moments per unit width

for a plate for which Poisson'é ratio v, is 0.3 are shown in Table
3.9.
wD

(b/a) ('M—O (Mx/MO) (My/MO)

0 0.1250b2 0.300 : 1.000

0.50 0.0964b* 0.387 0.770

0.75 0.0620b* 0.424 0.476

1.00 0.0368a’ 0.394 0.256

1.50 0.0280a’ 0.264 0.046

2.00 0.0174a” 0.153 -0.010

Table 3.9: Moments and Deflections for a Simply-

supported Plate

The central deflection of a strip length b unsupported on its
edges is approximately 3% times that of a square plate of edge dimen~
sions b, simply-supported on four sides; the moment My at the centre
of the strip is equal to the end moment MO’ while-My decreases in
a square plate from M0 at the edges to a smaller value at the centre
of the plate. Timoshenko stated that the change in moment My was
due to a '"damping effect" of the edges x=0 and x=a which are not

subject to a moment couple.
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It is important to note that the critical buckling load for a solid
isotropic plate subjected to a uniform edge moment on two opposite
sides is given by equations (3.78) and (3.79).

Timoshenko also described the analysis of rectangular plate,
isotropic in material properties but variable in thickness, and con-
cluded that provided there was no abrupt variation in thickness the
expressions for bending and twis‘ting moments derived for plates of
constant thickness (equations (3.74(a)), (3.74(b)) and (3.74(c))) could
be applied with sufficient accuracy. However, because the flexurall
rigidity, D, was no longer a constant but was a function of the X

and y coordinates, the equilibrium equation (3.73) became—

DAAwW + z_a_gﬂ_A_V‘_’l + 2.?_9..3(AW) + AD. Aw
ax ax y oy
32D a%w 32D 32w 32D 32w
- (=) (Gt - 2355, Fxay | Iy e AT
32w 3%w 3w
= + X + : + 3 .
a + Nogyer ¥ Ny © 2N ey 5.6l
. . 92 3%
in Wthh A= -a—><—2— + a—y—r

(113)

Olsson used equation (3.84) to solve the particular case

for which the flexural rigidity was given by —

D = D0 + D1y (3.85)

and the latera!l load g by -

o

qg=aq, (1 +=1y) ,

0 D, (3.86)
In equations (3.83) and (3.86) DO’ D1 and q, are constants.
Nakagawa(lm) obtained a finite difference solution for equation

(3.84) applied to the plate problem defined by Olsson in equations

(3.85) and (3.86). For a plate of dimensions {(b/a) = 1.0 and a mesh
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of (6 x 6) internal grid points, the finite difference results were

very close to Olsson's results.

3.4.4 Experiments on Panels Under Vertical Load

(115) tested brickwork panels loaded axially

Sinha and Hendry
both top and bottom, both full scale and one-third scale, with the
height-to-length ratios between 0.8 and 5.6; the height-to-thickness
slenderness ratios varied between 8 and 32. Sinha and Hendry con-
cluded that, because failure was produced by vertical splitting of
the brickwork in all cases, walls with stiffened returns with slender-
ness ratios up to 32 behaved in a similar manner to walls without
end returns. However, they did not test the panels under eccentric
loading, nor were any panels with height-to-length aspect ratios less
than 0.8 investigated.

in real structural brickwork, the height-to-length ratio can be
expected to vary between 0.3 and 1.0 or more, and, to the author's

knowledge, experiments have not been conducted on panels of low

aspect ratios subject to either concentric or eccentric vertical loading.
3.4.5 Summary

The theories which have hitherto been applied to structural
brickwork were derived for no-tension material columns. In structura!
brickwork, the brick wunits themselves can take significant tensile
stresses, so ‘that the equations of equilibrium derived by Angervo,
Chapman and Slatford and others do not strictly apply to brickwork.
Contaldo et al. showed that finite difference techniques can be used
effectively on no-tensile material coiumns, but they did not give a
detailed deécriptjqn cf ithe means by which the finite differéence tech-

nique could be applied to brickwork columns. Nakagawa showed that
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plafes of variable thickness, at least for the cases governed by
equations of the type similar to equations (3.85) and (3.86), can be
analysed using finite difference.

A method which combines a finite element procedure with finite
differences to analyse brickwork - columns is proposed in Chapter 4 and
several experimental case studies are preéented in Chapter 5.

The analysis of slender brickwork panels simply-supported on
four sides, based or.‘m finite element and finite difference techniques,
is presented in Chapter 6 and in Chapter 7 an experimental case study
is presented of a slender brickwork panel subjected to an eccentric
load both top and bottom. The results of the full-scale experiment are
compared with’ Timoshenko's plate theory and the proposed theory for

slender brickwork panels.



121.

4. THE ANALYSIS OF BRICKWORK WALLS IN ONE-WAY BENDING

4.1 INTRODUCT ION

It was shown in Chapter 3 that the stress-strain characteristics
of a fired clay solid brick under axial compression could be assumed
as linear (Section 3.1), whereas a mortar joint may deform in a non-
linear manner (Section 3.2). In the foliowing sections, the load-
deformation characteristics of the brick and mortar materials under
eccentric load are described and the behéviour‘ of a combination of
brick and mortar is investigated. A numerical method for calculating
the failure of brick walls in one-way bending in which discrete cracxk-
ing may occur at the brick—mortar interfaces is developed for both
linear and non-linear mortar. (Linear brick properties are assumed
throughout.) Comparisons are made with results calculated from wall
theories described in Section 3.4. The numerical calculations, using
PROGRAM PIER1, show that the no-tension material theories! 281 (87)
which make no allowance for material failure, do not predict the
failure of walls in which the compression stresses in the bedjoints
are a significant fraction of the mortar failure stress, ©

-

4.2 THE STIFFNESS AND GEOMETRIC PROPERTIES OF PARTIALLY-CRACKED
BRICKWORK WALLS

4.2.1 Cracking in the Bedjoints

The extent of bedjoint cracking in one-way bending of brickwork

depends on the position of the line of action of the resultant
combression load with respect to the wall centreline when the tensile
bond strength between brick and mortar at the bedjoint is small. No

cracking on the bedjoints occurs if the resultant vertical lcad acts
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within the kern (figure 4.1(a)). However, when the resultant load acts
outside the kern, a crack forms at one or both of the brick-mortar
interfaces (figure 4.1) and the brickwork stiffnéés is altered.

In the analysis which follows, it is assumed that, by symmetry,
plane sections remain plane at the brick half-height planes AA and
CC (figures 4.1{a), 4.1(b)) and that the plane section BB remains
plane at the bedjoint mid-height. The calculations may be simplified
considerably by assuming further that the compressed parts of the
interfaces between brick and mortar on planes DD and EE remain plane
during bending. As a result of this simplifying assumption, the
deformations of the brick and mortar components may be calculated
separately anc{ then combined to determine the overall behaviour of

the brickwork unit AACC.
4.2.2 Solid Bricks under Eccentric Compression Load

It has been shown (Section 3.1.3.4) that the brick material can
be assumed linear, that is, stress s proportional to strain. The
flexural stiffness of solid bricks under eccentric vertical load may
be calculated using two half-height bricks, without the mortar bed-
joint, as shown in figure 4.2(a). The cases for which the resultant
load acts within the kern are trivial because there is no cracking
and therefore the flexural stiffness of the full section remains
unaffected. However, the effective flexural stiffness of a brick
subjected to vertical compression such that the line of action of the
resultant lies outside the kern differs from the stiffness of the full
section and may be calculated by using a finite element technique
(figure 4.2(b)).

In both figures 4.2(a) and 4.2(b), P is the load per unit fength
of brick and eq is the eccentricity of the resulftant, P, from the brick

centreline. The relative end rotation of the brick mid-planes AA and

CC is denoted by ¢.
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All elements in the analysis are eight-noded isoparametric plane-
stress elements, chosen because the non-uniform nature of the loading
precludes the wuse of four-noded rectangular elements unless a very
large number is used. Cracking between the brick units may be
simulated by uncoupling the element nodes on plane IDD(EE) in figure
4.2(b) at intervals of one-sixteenth of the section depth as described

in the following section.

4.2.2.1 Solution procedure

An iterative solution procedure is necessary because equivalent
nodal loads cannot be calculated, initially, on planes AA and CC of
the finite element mesh shown in figure 4.2(b) unless the stress
distributions are known. The solution procedure is as follows. The
(element) nodes on plane CC in figure 4.2(b) are restrained against
transtation in the direction of the applied load. The effective
eccentricity of the load resultant and the magnitude of the load per
unit length, P, are chosen. A set of nodal loads, statically equivalent
to the chosen eccentric force, is applied on the plane AA; the resultant
of the reactions on the plane CC will be statically equivalent to the
reaction force shown in figure 4.2(b). The opposite forces to the
reactions on plane CC are th\en applied at the nodes of plane AA and
a new set of reactions is calculated on plane CC. Cracking between
the brick units may be simulated during the iteration procedure by
uncoupling nodes on plane DD(EE) so that no normal tension stresses
occur on that plane. In the calculations, the nodal reactions on plane
CC were found to be closely equal to the applied nodal loads on plane
AA after four cycles. The resuiting set of nodal forces may be applied
in a finite element analysis of the model shown in figure 4.2(b) and
the end rotations ¢/2 may be calculated (the rotation of plane AA in

the nodal load iteration procedure described above is for practical
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purposes equal to ¢). The flexural stiffness of the brick units may

be calculated once the relative end rotation, ¢, is known.

4.2.2.2 Results from the finite element analysis

(]25) was used to

The finite element software package ACES
calculate the deformations and stress distributions for bricks of height-
to-thickness aspect ratios of 0.691 (standard brick-on-flat), 1.447
standard brick-on-edge) and 2.00. The relative rotations of the planes
AA and CC (figure 4.1(b)) are summarized in Table 4.1 in non-
dimenslional form for the various brick aspect ratics and for a range

of load eccentricities. Relative rotations are also given for a no-

tension material and a non-cracking material.

In Table 4.1, 9 is the eccentricity of the load resultant from
the brick centreline
d is the brick thickness
hb is the brick height

Eb is the brick Young's Modulus
P is the load per unit length

0 is the relative rotation of planes AA and CC

in figure 4.1(bj.

The results given in Table 4.1 are plotted in figure 4.3. The
ratio of the curvature of a non-tension material to the curvature of
a solid brick, if both are loaded squally at the same eccentricity,
can be calculated from the results summarized in Table 4.1. The ratio

of curvatures may be denoted by a factor, a, such that

Al 1
o {R) (=) (4.1)

nt R b
in which (Tli) is the curvature of a no-tension material
nt
and (—1—) is the curvature of a solid brick.

b
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Values of o for various

+

thickness aspect ratios are given in Table 4.2.

2

Load Non-dimensional Relative End-plane Rotation (¢-E—t|%-hd—-)
Eccentricity b

(ey/d) CPEZE;ﬂg te:z;on hb/d=0.691 hy/a=1.447 | Pb/d=2.00

L
0.167 2.00 2.00 2.00 2.00 2.00
0.208 2.50 2.61 2.57 2.53 2.52
0.250 3.00 3.56 3.45 3.24 3.17
2.292 3.50 5.12 4.90 4,30 4,07
0.333 4.00 8.00 7.45 5.98 5.42
0.375 4.50 14.22 12.43 8.89 7.65
Table 4.1: Flexural Stiffness Values

Load Curvature Ratio, o

Eccentricity h = =
(ey/d) No-tension b/d=0.691 | 'b/d=1.447 | b/d=2.00
0.167 1.000 1.000 1.000 1.000
0.208 1.000 1.016 1.032 1.036
0.250 1.000 1.032 1.099 1.123
0.292 1.000 1.045 1.191 1.258
0.333 1.000 1.074 1.338 1.476
0.375 1.000 1.144 1.600 1.859

Table 4.2: Curvature Ratio, o
The relationships between the curvature ratio, o, and

eccentricity are shown

a, and brick aspect ratio in figure 4.5.

load eccentricities and brick height-to-

load

in figure 4.4 and between the curvature ratio,
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o may be represented as a function of (®0/d) and (hb/d)
by using a |east-squares approximation to the data in Table

4.2 (Appendix A), so that —

o (So/d, Nd) = [1(%/d) (So/d)? (So/dP 1[R] [ 1

h
(‘b/d)
Y (Pbra)?
("b/d)?
(4.2)
in which [R] is a 4 x 4 matrix, and is given by —
1.03 -1.18 0.794 —O.f87j
-0.326 14.4 -9.47 2.32
[R] = (4.3),
1.22 -54.1 31.3 -7.98
(A.9)
L—1.39 61.0 -18.5 4.79

In the ranges 0 < hb/d < 2.0, 0.167 < €0/d < 0.375, equations
(4.2) and (4.3) give values for the curvature ratio, o, to within
1 percent of the finite element values at all (hb/d) and (fo/d) points
used to obtain [R].

As a check on equations (4.2) and (4.3), a brick with an aspect
ratio 1.0 and an effective load eccentricity (®o/d) of 0.26 may be
taken as an example. The finite element analysis gave a curvature
ratio, a, of 1.071, while equations (4.2) and (4.3) yielded a value
for o of 1.067. The results may be seen to agree to an acceptable

degree of accuracy.
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Normal stress distributions for both brick-on-edge (hb/d = 1.447)
and brick-on-flat (hb/d = 0.691) configurations are shown in figures
4.6(a) and 4.6(b) respectively, and the stresses at the brick mid-
height are compared with values ‘calculated for both no-tension and
non-cracking materials. The results show that the stress distribution
at the brick mid-height depends upon the brick aspect ratio (hb/d),
and that the stresses in a br‘ick laid on flat are similar to the

stresses in a no-tension material.

4.2.3 Mortar Bedjoints Subject to Eccentric Compression

The behayiour of mortar bedjoints subject to eccentric compression
can be investigated using a similar method to that described for solid
bricks in Section 4.2.1. Results obtained for a linear mortar using
the finite element method with a mesh of eighty elements (figure
4.2(b)) show that the flexural stiffness of a 10mm thick mortar joint
is approximately equal to that of a no-tension material. That is, the
curvature ratio, ¢, defined in Section 4.2.2, may be taken to be unity
for a mortar bedjoint. A typical stress distribution calculated by the
finite element method is shown in figure 4.7.

However, the stress-strain relationship for a mortar bedjoint can
be non-linear, particularly at stresses greater than the uniaxial
compression strength (Section 3.2.3.3). An expression which may be

used for the non-linear relationship is (106) _

0=Em.(€ - Ke (8.1)

in which Em is the initial tangent modulus
g is normal! stress on the bedjoint
€ is norma! strain on the bedjoint

K, n are constants.
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Equation (B.1) is shown in figure 4.8. The maximum normal
stress, O, attained by the mortar in a state of triaxial compression
occurs at a strain €t The initial tangent elastic modulus is Em.
Moment-curvature relationships for such a non-linear mortar can be
compared with the relationships for a linear mortar as follows.

Consider the case in which the brickwork is partially cracked
through the bedjoint at the brick-mortar interface and for which the
maximum strain at the compression face is €4 and the corresponding
stress is o, (figure 4.9).

It is shown in Appendix B that, provided the load resultant is

outside the kern of the full section, the ratio, p, of the curvature

of a bedjoint with a necn-linear mortar to that of a bedjoint having

a linear mortar, subjected to similar load conditions, is given by —
€ d?
9. 1. B

0= dc P Em (B.21)

in which e, is the maximum compression strain in the non-linear

mortar in the cracked bedjoint

d is the depth of the uncracked part of the non-linear
mortar bedjoint

d is the distance _fr‘om the compression face to the load
resultant

P is the load per unit length

Em is the initial tangent modulus of the non-linear mortar
and is equal to the elastic modulus of the linear

mortar.

It is also shown in Appendix B that for a non-linear mortar
described by . equation (B.1), cracking can occur at a brick-mortar
interface in cases in which the load resuliant acts within the kern

as determined for a linear elastic material. For this condition, the
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ratio p, is —

-1 ’
- dp) . Em (B.24)

A third condition for the brickwork is that in which the mortar
bedjoint is uncracked. The maximum compression strain in the mortar,
€ and the minimum mortar compression strain, €9 occur simultan-

eously with stresses 01 and 00 respectively (figure 4.10).

It is shown in Appendix B that the curvature ratio, p, is —
_d? d -1 :
p = 135 ley - o) (5 - dp) E (B.33)
The strain, €1 and the uncracked depth of the mortar, dc, in
equations (B.21) and (B.24) must be calculated by an iteration

procedure described in Appendix B. €4 and €0 in equation (B.33) must

also be found by using a similar iteration technigue.

4.2.4 Brickwork Subjected to Eccentric Compression lLoad

The results presented in Sections 4.2.2 and 4.2.3 may be used
to calculate the flexural stiffness of brickwork subjected to eccentric
compression load. The assumptions made in Sections 4.2.2 (figure

4.1(b)) and 4.2.3 are reiterated below as an introduction to this

section.

(i) By :symmetry, plane sections AA and CC remain plan-e after
bending.

(ii) © Planes DD and EE at the brick-mortar interfaces remain plare

in the compressed part of the bedjoint after bending.
(iii) The brick elastic modulus, Eb’ is constant.

(iv) The mortar elastic modulus is Em for a linear mortar and for

a non-linear mortar Em is the initial tangent modulus. For
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a non-linear mortar, the stress-strain relationship is assumed
to be

n
0=Em (e - Ke ') (B.1)

Assumption (ii), as mentioned in Section 4.2.1, simplifies the
calculation of the effective brickwork flexural stiffness; the method.
of calculation is as follows.

it is assumed that the radius of curvature of each half-brick,
calculated from the relative relations of planes AA and DD (CC and
EE), i.s Rb' Assume also that the radius of curvature of the mortar

joint, calculated from the relative rotations of planes DD and EE, is

Rm. The geometry of the unit AACC may be represented by figure
. N - ; < :
4.11(a) if Rb Rm and by figure 4.11(b) if Rb Rm. The case for
which R, = R_ is trivial.
b m .

Let the average radius of curvature for the whole brick-mortar
unit AACC be denoted by Rav' The equivalent uniform curvature for
the unit AACC, shown by the dashed circutar curve in each of figures
4.11(a) and 4.11(b), differs from the true displaced shape, but
provided that Rb’ Rm and Rav are all much greater than hb/2 and

hm’ the difference is small. The end slopes corresponding to the

equivalent curvature unit are identical to those for the actual unit

AACC. The average radius of curvature, Rav’ is related to the radii
of curvature of the brick and mortar, Rb and Rm respectively, as
follows — R R
h h ). o b m
= K -ll + .
R, = b+ "m TRyh R hy) (4.4)
provided that Rb >> (hb - hm)
R > (hb + hm)
m



139.
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In order the simplify calculations, the behaviour of a brickwork
wall may be related to the behaviour of a homogeneous no-tension
material column. Therefore, by using the relationship between the radius
of curvature of a brick and a no-tension material with same material
properties (equation (4.1)) and the curvature ratio factor for mortars,
p (Appendix B), equation (4.4) may be written as —

1 1 1
TRy Pp t PR e D

m
(4.5)
(hb + hm}

b5l =

av

pelb

. . 1 . ; . .
in which (ﬁ)nt is the curvature of a no-tension material with

; identical elastic properties to the brick

(—)m is the curvature of a linear mortar

a is a curvature ratio factor for the br‘ick—defined
in Section 4.2.2.2

p is a curvature ratio factor for the mortar defined
in Section 4.2.3;for the linear mortar, ¢ = 1.0
(Appendix B)

h is the brick height

hm is the mortar bedjoint thickness.

4.2.5 Summary

This section has presented relationships between the curvature
of brickwork subjected to eccentric compression and the curvatures
of the brick and mortar components, both for linear and non-linear
mortars. The results of a finite element analysis of the brick and
mortar components show that the stress distributions in bricks and
mortar (both with [linear stress-strain characteristics) depend upon

the height-to-thickness aspect ratio. A curvature relationship for
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brickwork (equation 4.5)) has been presented which relates the
curvature of brickwork to the curvature of a column of no-tension
materials. Equation (4.5) has been derived from geometry and the

results of finite element calculations (factor a).

4.3 LOAD-DEFLECTION RELATIONSHIPS AND EQUATIONS OF EQUILIBRIUM

In the following sections, relationships are examined between
the moments and associated curvatures in a no-tension material column.
By usilng the resulting equations, further relationships are established
between moments and associated curvatures for actual brickwork in
which discrete cracking may occur on the bedjoints.

The equations of equilibrium for walls are investigated and a
finite difference method of solution is described which takes into

account initial imperfections and various end support conditions.

4.3.1 Load-Deflection Relationships for a Linear No-Tension Material

Column

initially, it is assumed that a no-tension material column is
subjected to eccentric compression and that the latera! deformations
of the column are negligible. The no-tension material is taken to have
a linear stress-strain relationship and plane sections are assumed
to remain plane during loading. The effective depth of section of such
a column depends upon the eccentricity of the resultant load per unit
length, P (figures 4.12(a), 4.12(b)). The column section depth is d
if the load resultant acts within the kern (figure 4.12(a)) and if the

load resultant acts outside the kern the section depth is —

d. = 3d, (4.6)

in which dp is defined in figure 4.12(b).
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The effective moment, Meu’ of the resultant load about the column

centreline of the uncracked section (figure 4.12(a)) is —
(4.7)

Meu = P(d/2 - dp)

small lateral deformations, the curvature of

By geometry, for
the no-tension material column is: —

M )
: (4.8)

in which (El)u is the flexural stiffness per unit length of the
column calculated as follows —

| (4.9)

_ Ea’
T P

where E is the elastic modulus of the no-tension material.

Equation (4.5), written for uncracked brickwork in which o is

unity (Section 4.2.2.2), is —

1 i
(=) ..h_ + o(5) .h
1 _ Rnt" ' b R'm m

Rlav ~ (hy + ) (4.5(a))

From equations (4.8) and (4.9), the curvature of a no-tension

material column with the elastic properties of a brick is

&y = ——TMQU (4.10)
R'nt (E _d__) ‘
b 12

column with the elastic

and the curvature of a no-tension material

properties of a tinear mortar is -
(4.11)

) = S
R'm d
B 72

By using equations (4.10) and (4.11), equation (4.5(a)) may

be written as —
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(4.12)

M
eu

Jav™  (ET)

eqg, u
is the equivalent flexural stiffness of uncracked

1
(7

in which (E1)
eq,u
brickwork and may be calculated as follows

h + h ,
= AL -?—2 (4.13)

i

m

m
o

(El)eq U

the resultant load, P, about the

The effective moment, Mec’ of
the uncracked part of a no-tension material column in

centreline of

which the load acts outside the kern is —

, Pdp
= — /
Mec 5 (4.14)
for small lateral deformations, the curvature of

By geometry,

this no-tension material column is

1 ec
() = = (4.15)
R (EI)Z
in which (El)c is the flexural stiffness per unit length of the
column calculated as follows —
(3d )°
_or P 2 %.49°
(E|)C o5 79 (#.16)
{4.15) and (4.16), the curvature of a no-tension

From equations

material colum with the elastic properties of a brick is

1 Mec
(=) N (4.17)
R'nt (—9—E q° )

47 b Tp
and the curvature of a no-tension material with the elastic properties
is —

of a linear mortar
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) = —_— (4.18)

By using equations (4.17) and (4.18), equation (4.5) may be

written as —

(4.19)
eq,cC

(-F_{ av _ (EN)

in which (EI)eq c is the equivalent flexural stiffness of cracked
)

brickwork and may be calculated as follows —

9 4 9
(EDeq ¢ = Eb.Lh E } 79 (4.20)
)

Equations (4.12) and (4.19) may be written generally as —
M

1 _ e
Rav = @D, said

in which (%)av is an average curvature for brickwork over a height
of two half-bricks and one mortar joint
Me is the effective moment of the load resultant about
the centreline of the uncracked part of a bed-
joint of linear mortar
(EI)eq is the equivalent flexural stiffness of brickwork

and may be calculated as follows —

(Eldg = BEp | T E " eq (4.22)

%.d:) for 3d_ < d (4.23(a))
in which le = q°
q a_ for 3d > d (4.23(b))
12 P
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4.3.2 Equations of Equilibrium

Figure 4.13 shows the initial and deflected shapes of the centre-
line of the full-depth column, together with coordinate axes used in
the subséquent analysis. At the mid-height of a mortar bedjoint, at
section N—N,. say, assume that the initial deviation from the X-
coordinate axis is Gn and that the subsequent. lateral deflection due
to load P per ur_wit length, is Yo The ‘:effective eccentricity"-.of the. load
at the section N-N with respect to the centreline of the full section
column is —

P(e,l + Gn + yn) - H)(n

= 5 (4.24)

M
e = N
n’' P

in which Mn is the bending moment at section N-N also taken about

the centreline of the full-section column.

The horizontal end reactions, H per unit length of column (figure
4.13), are zero if the applied load eccentricities at both ends are
equal.

If the vertical load acts within the kern at section N-N, then

Ien| < d/6 (4.25(a))
and 3dp > d (4.25(b))
The expression Ienl is taken to be the absolute value: of the

effective eccentricity, e, calculated by using equation (4.24). For
this case, the effective moment, Me’ defined in the previous section, is

M = P.e (4.26)
e n

However, if the load acts outside the kern at section N-N (figure

4.13) then —
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|en| ¥ d/e (4.27(a))
and 3dp £ d | (4.27(b))

For this case, the column section N-N, at a mortar joint, |is

cracked and the effective moment, Me’ is (Section 4.3.1) —

N| T

M, = (sgn en). .(% - Ienl) (4.28)

+1 if e is positive

in which (sgn en] =
-1 if e, is negative

4.3.3 Finite Difference Formulation

4

For small deflections, the .average curvature of brickwork may

be expressed as —

1 _d?%
(ﬁ)av T T dx? (4.29)

Equations (4.21) and (4.29) together give the dispiacements of

the column in finite difference form as —

d’y . [yn-'-1 _ zyn " Tn-t ]=- Me (4.30)
dx? (ax)? (E1) '
: eq
in which y_ ., v, Y, 4 are the deflections at the (n+1)th, nth
and (n-1)th joints respectively and Ax = (hb + hm) is the axial

distance between neighbouring bedjoints.
From equations (4.24) and (4.30) it follows that if e, > d/e,

' _ (8x)? :
Yo = 2V, Y Y == [Pld/2 - ey - 8 - Y
2(E1)

q

+ Hx ] (4.31)
n

and if e = <- d/e,
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_ (ax)?
Yo+t ~ zyn tYaot T 7 2(ED [-pld/2 + e * Sy T yn)
eq
+ HX] (4.32)
For |e | < d/6,
_ (ax)* , )
Yo+t Zyn + Yot &= A eq.[P(el + o..n + yn) - Hxn] (4,33)

4.3.4 Boundary Conditions

As examples, consideration is given to two types of boundary
conditions whi¢h correspond to a pinned base and a perfectly fixed
base respectively (figures 4.14(a) and 4.14(b)). The top support is
a "pin-and-roller" for both examples.

(a) for a wall with pinned supports top and bottom (figure 4.14(a))
-0 (3) H=g (e - ey (4.34)

(b) for a wall pinned at the top/and fixed at the base (figure 4. 14(b))

-0 (3 (FHy, =0 (4.35)

The end slope condition (3) may be simulated by introducing

a fictitious node (N+1) at a distance (Ax) below the base such that

YN+ T N1t

4.4 SOLUTION PROCEDURE

Figure 4.15 shows a brick wall as it is represented for the finite
difference equations (4.31), (4.32) or (4.33) with the governing
s\l

w10

equation at each note, n, depending on the equilibrium conditions

(Section 4.3). Once the column starts to crack at a mortar joint (node
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n), (El)eq,n changes with the depth of the cracked section and for
a fixed-base wall the ratio H/P also changes. The set of simultaneous
equations generated for the (N-2) nodes away from the ends, plus the
three boundary equations (Section 4.3.4) are therefore non-linear and
direct solutions cannot be obtained. In the solution method proposed,
the load, P, is applied incrementally and at each load increment,
a Newton-Raphson technique is used to find a consistent set of wvalues
for the deflections (y), the stiffnesses ((El)eq), and for a fixed-base
wall the horizontal reaction, H, such that the equations are satisfied
to within a prescribed error limit. Load-displacement graphs can be
plotted for various brick and mortar combinations, for both linear
and non-linear mortars, allowing for initial imperfections, support
conditions and load eccentricity. As the ratio of displacement increment
to load increment increases, the magnitude of the load increment can

be decreased. Column buckling is deemed to have occurred if no

displacement configuration can be found for the incremental load.

4. 41 Matrix Formulation

If the wall is divided into N-1 elements and has N nodes, as
shown in figure 4.15, equations (4.31), (4.32), (4.33), applied at each
node, together with the boundary conditions, may be written as the

equation system —

[A] {—;’—} = {8} (4.36)

in which —



[A] =

with —

-2 1
1 -2 1
1 -2
e CH
(ax)z.xj
+ STET) ; if lejl > d/6
€eq,)
(A‘x)z.XJ.
- if Je.| < d/6
(EN) <
eq, y
for j = 2 to (N-1).
2 for a fixed base
absent. for a pinned base
as Cj for a fixed base, j = N

absent for a pinned base

_ P
}andH—ﬁ(eI

- eN) for pinned base.
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2(E| ]
( )eq,J

j=2 to (N-1)

LN J P(Ax)?
t ZEY .
4 edq,

: P(AX)?
th B, = & - e
wi 2 El .y
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P(Ax)*® (d/2 - ey = & - yj)

if e > d/6

e+6.+.-
1 JyJ)

if |ej| < d/é

(d/2 + e +6j + yJ)

1
if e <-d/6

as B., j = N, for fixed base.

and BN

The dependent variables are Yo to YN-1

additionally, H for a fixed base wall;

and N-1 equations respectively.

absent for pinned base.

for a pinned base wall and,

correspondingly there are N-2
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4.4.2 Solution of Equations

Calculations may be started with a small value of P so that by
setting y‘i = 0 wherever it appears in Bj (on the right hand side of
equation (4.36)), stiffnesses (El)éq,j may be calculated using equation
(4.22). Equation (4.36) is then solved. From the resulting values of
y and H, new value.s of (El)eq,j’ may be calculated at all nodes, |
(equation (4.22)) an;:l after substitution of the current values of vy.,

J

H and (EI)eqj in all relevant places, an "erpror vector" may be
b

calculated as follows:

{tn} = {B} - [A]{-};--} (4.37)

A simple geometrical interpretation can be attributed to this error
vector. Each term is proportional to the difference between two
curvatures: the first is calculated from the loads, the current deflec-
tions and the consistent stiffness values; the other curvature is
calculated geometrically from the current deflection values by finite

differences. The components of the error vector are —

M Y..4 = 2y, T V.
_ e j*H J j-1 2
'ﬂj [—(me—q—J - Gx)? ] . (ax) (4.38)
]

|+ has been found by trial that if no component of {n} exceeds
in absolute value a limit selected to be 1.0 X 10—6, the calculated

values of y and H may be accepted.
4.4.3 Newton-Raphson Correction

If any component of {n} exceeds the prescribed limit Newton-

!
Raphson corrections are applied until the desired accuracy is reached.
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For a function of a single variable y = f(x), it is well known

that an approximate solution (x.) of equation f(x) = 0, giving

1
y'1 - f(fxl) = Ay1, is generally improved by calculating—
Ay1 '
bos = X — X = X -

and evaluating Yo = f(x.z).

The corresponding Newton-Raphson correction for the simultaneous

equations (4.36) for the ith iteration can be calculated from—
] . 23 = - (4.40)
i AH T i ’
S Setfie e i - Y o+ EY (4.41)
EH i+ A0 A :

In equation (4.40), [J] is the '"Jacobian" of {n}, that is, &
square matrix formed from the partial derivatives of th;e components
of {n}, with respect to the components of the solution vector, {—%—L
If nj denotes the jth component of the error vector and a, denotes
the kth component of the solution vector, {—%_/'—}, then the components
of the "Jacobian" matrix are given by —

an,

. J
ij = 73, (4.42)

Elements of the "Jacobian" matrix can be evaluated numerically
by incrementing successively the components of the solution vector by
approximately 0.01 percent and calculating the increments of the error

vector, giving —

), o= 1 (4.43)

One complication encountered was an oscillatory behaviour, well
known in the one-dimensional problem and associated with an inflection

point (or slope—discontinuity) at or near the solution point. Such a
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slope-discontinuity is encountered in the present problem whenever
cracking starts. In such cases the load-increment was altered, but
generally closure was obtained in less than ten cycles.

An alternative approach is to use "reguta falsi" in such cases,
using the arithmetic or a weighted mean of successive oscillatory

solutions.

4.5 RESULTS OF THE NUMERICAL METHOD

4.5.1 Results from PROGRAM PIER1

PROGRAM PIER1, documented in Appendix C, has been used to
investigate several problems, summarized in Table 4.3, which illustrate
the type of results which may be obtained using the numerical method.
A more detailed set of results in the form of a parametric study is
given in Chapter 8.

The brick Young's modulus is 16 x 10®*MPa in all cases and the
mortar initial tangent modulus is 8 X 10°MPa. Each of the eight walls

is analysed for three cases:

(i) linear bricks and mortar, both of no-tension material.

(ii) linear bricks and mortar, with the brick unit capable of sus-
taining tension stresses.

(iii) linear bricks and non-linear mortar, with the brick unit able
to sustain tension stresses. The crushing strength of the mortar,
s is assumed to be 30MPa and n is assumed. to be 3 so that

€. = 5.625 X 10—3 and K = 10535 (Appendix B, equations (B.2)

and (B.3)).

The results of all the computed load-defiection characteristics

for points on the respective columns which sustain maximum deflection



Wall No. A B C D E F G H

Wal! height, h 2400 2400 2408 2408 2400 2400 2408 2408
Thickness, d 76 76 110 110 76 76 110 110
Slenderness Ratio, h/d 32 32 22 22 32 32 22 22
Brick heignt, hb 110 110 76 76 110 110 76 76
Mortar thickness, hm 10 10 10 10 10 10 10 10
No. of courses 20 20 28 28 20 20 28 28
Base support F F F F P P P
Top support PR PR PR PR PR PR PR PR
Eccentricity, (e/d) 0.250 0.0833 0.250 0.0833 0.250 0.0833 0.250 0.0833

(i) All length dimensions are mm (iii) P denotes pinned support (figure 4.14)

(ii) F denotes perfectly-fixed support (iv) PR denotes pin-rolier support (figure 4.14)

Table 4.3: Wall

Properties for PROGRAM PI1ER1

‘8S1
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are presented in figures 4.16(a) to (d). The buckling failure load
for each of the eight walls with linear mortar is less for a no-tension
mafe_r‘ial wall than for a wall in which the bricks take tension
stresses. The difference in buckling failure load is less than 5 percent
between brick-on-flat brickwork and corresponding no-tension material
walls (walls C, D, G and H, figures 4.16(b) and 4.16(d)). However,
the buckling failure load of a wall of brick-on-edge constr*ucétion, when
loaded eccentrically at each end at d/4, is approximately 30 percent
higher than the buckling failure load of the same wall given by a
no-tension theory (figure 4.16(c)).

The maximum wall loads for the linear and non-linear mortars
are within 6 percent of one another for pin-ended walls load at end
eccentricities of d/12 and are within less than 1 percent for an
eccentricity of d/4 (figures 4.16(c), 4.16(d)). However, the maximum
wall loads for the fixed base walls with the non-linear mortar are
less than the corresponding maximum loads for the linear mortar walls
(figures 4.16(a), 4.16(b)). The percentage difference in maximum loads
is greater for walls loaded at an eccentricity of d/12 than at d/4.

The points 'M' and 'N' in figure 4.16(b) (walis C and D respect-
ively) indicate the loads at which the maximum stress in the mortar
is equal to oc’ the mortar failure stress in triaxial compression
(figure 4.8). That is, points 'M' and 'N' represent the loads at which
theoretical stress-related failure of t\he walls occurs by crushing of

the mortar and splitting of the brickwork due to large lateral

(117)

strains
Stress—related failure in brickwork may also occur at stresses
less than L particularly in the case of low-strength bricks whose

strengths in compression and biaxial tension may be less .than
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the mortar strength in triaxial compression. However, combina-
tions of high-strength mortar and Jow-strength brick are not

(4)

permitted in structural brickwork and therefore are not considered
further.

The non-linear mortar parameters n and o assumed in this
section may vary from values suitable for real brickwork. This aspect

of an' idealized non-linear mortar is considered, in conjunction with

experimental data, in Chapter 5.

4.5.2 Results of the Numerical Method Compared with Other Results

Results obtained for no-tensicn walls by using PROGRAM PIER1
(Appendix C) are compared in this section with results calculated from

the no-tension material column theories reviewed in Section 3.4.1. The

cases reviewed are as follows:

(i) Pin-ended walls loaded with équal end eccentricities; the results
are compared with the no-tension material cdlumn theory proposed

(96)

by Angervo (Table 4.4).

(ii) Walls pinned at the top with perfectly fixed bases; the results

are compared with results from a method proposed by Sahlin(lm)
(figure 3.42, Section 3.4.1). The effective heights, ah, of the
walls are assumed to be the values calculated by PROGRAM PIER1
(Table 4.5).

(iii) Pin-ended walls of non-linear homogeneous material, described
by equation (B.1), and loaded with equal end eccentricities.

The results are compared with graphical results published by

Contaldo et ﬂ.(106) (Table 4.6).
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Wall No. Load Eccentricity (Pf/Pcr‘it) (ec/d)
(
(Table 4.3) ‘eo/d) Angervo | PIER1 | Angervo | PIERI]
, G 0.250 0.120 0.119 0.344 0.344
F, H 0.0833 0.555 0.554 0.244 0.242
Pf is the computed buckling failure load
Pcrit is the Euler critical load for a pin-end column

e is the maximum
failure

load eccentricity immediately before

Table &.4: Buckling Failure Loads for Pin-end Walls of Linear Material

Wwall No. Load Eccentricity (Pf/Pcr‘it)w
(Table 4.3) at top (eo/d) Sahlin(a) P IERT
A, C 0.250 0.785 0.796
B, D 0.0833 1.55 1.56
(a) From PROGRAM PIERT,
for (eo/d) = 0.250, A =0.67
for (eo/d) = 0.0833, » =0.69

Table 4.5: Buckling Failure Loads for Fixed Base

walls of Linear Material

PROGRAM PIER1 has been written with the facility that if the

vertical compression load is known, end eccentricities may be cal-

culated at which either stress—-related failure or buckling occurs

(Section 4.5.1). The walls may be either pin-ended or pinned at the

top with perfectly fixed bases (Appendix Cc).



166.

Case Wall Slender- Load Eccentricity [(Pf_/(cc.d)]

e ness (h/d) (eg/) Contaldo et al. | PIERI
1 25 zero 0.25 0.248
2 15 1/18 = 0.0556 0.41 0.413

15 1/3 = 0.333 0.025 0.0253

For the three cases,.

(i) Initia! central deflection is h/1000, where h is the wall
height.
o
(i) —EC— = 0.0038, where o is the material failure stress
E is the initial tangent modulus

(iii) Both top and base are pinned.

Table 4.6: Buckling Failure Loads for Pin-end Walls of

Non-linear Material

This aspect of PIER1 has been used to check results which cannot

be compared with the theories reviewed in Section 3.4.1. An indication

of the order of accuracy obtained by the numgir*icai method can be

assessed from the results summarized in Table ™%.7. For all cases

investigated, the agreement is closer than 0.5 percent.

4.6 SUMMARY AND CONCLUSIONS

This chapter describes a finite difference method of analysis

of brickwork walls which includes the effect of discrete cracking on

the bedjoints. As examples of the method, the following types of wall

and loading conditions have been considered —



End Load Increment Eccentricity Increment
Wwall No. ) Brick Mortar Supports Method Method
(Table 4.3) OFieptoh Type Chosen Computed Chosen Computed
Top Base _
(eo/d) (Pf/Pcr‘it) (-Pf/Pcr‘it) (eo/d)
On Flat NL PR F 0.250 0.540 0.540 0.250
On Edge L PR P 0.250 0.155 0.155 0.250
H On Flat NL PR P 0.0833 0.535 0.535 0.0831

NL denotes non-linear mortar

L denotes linear mortar

P denotes pin support

PR denotes pin-rolier support (figure 4.o14)
F

denotes perfectly fixed support

Table 4.7: Check on Failure Loads of Brickwork Walls Computed by

Different Versions of PRQGRAM PIER1

*L91
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(i), a pin-end wall under eccentric end load with either equal or
unequal end eccentricity. The end eccentricities are chosen and

the load is incremented to failure.

(ii) a wall with a perfectly fixed. base and a pin-roller top support,
loaded eccentrically at the top. The load eccentricity is chosen

and the load is incremented to fatlure.

(iii) a pin-end wall under loads with equal eccentricities at each
end. The load is chosen and the end eccentricity is incremented

to failure.

(iv) a wall with a perfectly fixed base and a pin-roller top support.
The load is chosen and the load eccentricity at the top is

incremented to failure.

For each of the four cases above, the mortar stress-strain relationship
can either be linear or non-linear of the form 0 = Em.(E - Ke
K and n are constants and Em is the initfal tangent modulus (Appendix
B). Comparisons of r'esglts from PROGRAM PIER1 with the results of
no-tension theories have shown that the finite difference method can
be used to calculate the behaviour of columns of no-tension material.
Results obtained using PROGRAM PIERT (Table 4.7) show that flexural
stiffening due to the tension field effect in the bricks may be deter-
mined by a finite element method. This stiffening can be incorporated
into a finite difference method for the calculation in brickwork walls
of the displacements and stresses at any specified load, so that with
a knowledge of the brickwork material properties, the. finite difference
method can be used to predict the loads that would cause either siress-
related failure or buckling of the brickwork. An important feature

of the incremental procedure used in PROGRAM PIER1 is that the

equilibrium configuration calculated at any load level (or value of
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eccentricity if the load is specified) is independent of the path chosen
for the analysis.

PROGRAM PIER1 may also be used to investigate the effects of
initial deviations from vertical stre;ightness (figure 4.13) due to, say,
poor workmanship. This aspect of brickwork walls 5 considered in
Chapter 8 in a comparison between a set of results oEtained from
PROGRAM PIER1, in the form of - a parametric survey, and design

criteria specified by current Codes of Practice.
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5. EXPERIMENTS ON WALLS IN ONE-WAY BENDING

Experiments described in this chapter were designed to test the
stiffness results obtained from the finite element analysis of eccen-
trically compressed bricks (Chapter 4), and to check the results of
calculations using PROGRAM PIERT. The results of Chapman and

Statford (97

were checked by testing a steel column, similar to their
aluminium column (Section 3.4.2), and comparisons are presented
between the test results and results calculated by PROGRAM PIERL.
In addition, displacements and failure loads calculated using PROGRAM
PIER1 are compared with results from experiments on eight brickwork

’

walls.

5.1 STIFFNESS EXPERIMENTS
5.1.1 Experimental Verification of Curvature Ratio Factor, a

A program of experiments was undertaken to measure accurately
both the strain profiles and also the magnitude of the curvature ratio
factor, o, in replica mild steel blocks under eccentric ioad.

In order to check the strain profiles calculated by the finite
element analysis, a column comprising five steel blocks, each nominally
50mm x 50mm x 25mm, was placed in a testing machine (figure 5.1(a))
and loaded eccentrically at each end. Electrical resistance strain
gauges of 2mm gauge length were fixed to the 50mm x 50mm faces of
the central steel block as shown in figure 5.1(b). The block thickness
was measured to be 24.9mm. Loads were applied through knife edges
at nominal eccentricities of d/5, d/3.5 and d/3, but the actual eccen-
tricities were measured to be 5.16mm (d/4.83), 7.19mm (d/3.46) and
8.29mm (d/3.00) respectively. For each eccentricity value, two ioad

tests were carried out, eacn with the load on opposite sides of the
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column centreline. Plots of the experimental and calculated strain
profiles are shown in figures 5.2 to 5.4, the experimental points being
the mean of two tests. The agr‘eemént between computed and experi-
mental strain profiles was very close.

A column of five steel blocks (figure 5.5) was set up with a
pair of Martens mirror extensometers fixed to opposite faces of two
blocks separated by the centre block (figur‘e 5.1(a)). Thg curvature
ratio factors, o (Section 4.2.2), were determined for various load
eccentricities by measuring the relative rotations of the midplanes of
the blocks, the resolution of the extensometers giving an angle of
resolution of 50 x 10—6 radians. To define precisely the line of action
of the load refative to the centreline of the column, dial gauges were
used to measure lateral displacement. The mating surfaces of the
blocks were hand-lapped to remove excessive irregularities and to allow
intimate contact of the bearing surfaces. The elastic modulus of the
stee!l was determined by tension tests on a solid bar of the same stock
material as the blocks, strains being calculated from both Martens
mirror extensometers and by electrical resistance sirain gauges. The
experimental Young's Modulus of the blocks given by both sets of
measurements was 203 x 10°MPa. The experimental values of factor
o and the values of a calculated using equations (4.2) and (4.3)
(Section 4.2.2) are summarized in Table 5.1. The agreement in the

factors o is within 3 percent.

5.1.2 An Effective Elastic Modulus for Uncracked Brickwork under

Eccentric Compression

(69

Base and Baker ) calculated effective elastic moduli  for brick-
work assuming that both the brick and mortar materials were linearly

elastic and there was no cracking at the brick-mortar interfaces
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Nominal Load Curvature factor, o Ratio
Load Eccentricity Calculated o ((exper‘imental)
e . a (calculated)

Eccentricity (eo+ GE)(mm) Experimental (Equations
(4.2), (4.3))

d/5 5.23 .01 1.04 0.97

d/3.5 7.33 1.21 1.24 0.98

d/3 8.45 1.43 1.48 . 0.97

Table 5.1: Comparison of Curvature Factors, o

(Section 3.3.5.1). The theoretical results were tested by bending bond-
beam specimens, loaded with line loads placed symmetrically on the
span. For the group of twelve tests on solid bricks in brickwork piers,
the agr‘eement' between theoretical and practical results was close
(Table 3.6). However, tests were not conducted to determine the elastic
modulus of brickwork under eccentric compression loading. Con-
sequently, as a part of the test program on the measurement of brick-
work stiffness, six brickwork prisms were tested to determine whether
the measured flexural properties of uncracked brickwork depend upon
either the load eccentricity or the method of measurement. The tests
were conducted to determine also whether the brickwork modulus of
elasticity determined under conditions of eccentric compression agreed
‘with calculated values using results obtain by Base and Baker‘(69)
(equations (3.47), (3.48)).

Each prism éompr‘ised six bricks and five mortar joints and was
built in a steel fr‘ame.to achieve vertical alignment on one face. Al
bricks were without perforations and were selected for uniformity, their
dimensions being 228mm x 108mm X 75mm closely. The mortar propor-
tions by volume were 1 cement:] hydrated lime:6 sand with the water:

cement ratio 1.41 by weight and the ratio of water:cementitious
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materials {cement and lime) was 1.03 by weight. All bricks were laid
in a saturated surface-dry condition and in a brick-on-edge orientation
with 10mm bedjoints. The prisms were cured subsequently under poly-
thene sheet for 21 days and under ambient conditions until tested at
a minimum 28 days after construction.

The experimental apparatus (figure 5.6) was designed so that
all lateral displacements could be measured relative to a plane defined
by the end-pin supports.

Three of the brickwork prisms were loaded at an eccentricity
of 12.5mm (d/6) at each end and the remaining three at an eccentricity
of 25mm (d/3). Effective elastic modulus values for each prism were

determined by the following methods —

1. The lateral displacements of each mortar joint relative to the ends
of the prism were measured and a circular-curve approximation
to the displaced shape was made using a least-square-error method.

An effective elastic modulus was calculated from the relationship —

E. = T (5.1)
in which Ebr‘ is an effective elastic modulus for uncracked
brickwork
M is the moment about the prism centre plane
R is the radius of the best-fit circular curve

approximation to lateral displacements
| is the section second moment of area about the

centre plane.

In equation (5.1), the moment, M, was assumed constant along

the prism height.

2. The rotations of the ends of the prisms were measured with bubble

micrometers having a sensitivity of 2 X 10—5 radians. An effective
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elastic modulus for each of the prisms was calculated from the

relationship —

Ebr’;‘%lkll (5.2)
in which Ebr" M and | are as defined for equation (5.1)

h is the distance between the bubble micrometer‘s.

o) is the relative end rotation caused by the

moment M.

3. DEMEC points were used on each prism face to measure the axial

shortening of each of the brickwork prisms. An effective elastic

modulus was calculated from —

* Ph

E,. - ie _ (5.3)
in which Ebr is an effective elastic modulus for uncracked
brickwork
P is the load on the prism
$ is the mean axial shortening between DEMEC points
A is the section area of the prism
hD is the DEMEC gauge length.

The effective elastic modulus values calculated using equations

(5.1), (5.2) and (5.3) are summarized in Table 5.2.

In all six prisms, the differences between measured lateral dis-
placements and the respective best-fit circular curves were less than
10 percent of the measured displacements, with an average absolute
difference of 3.8 percent.

A two-way statistical analysis of variance on the results in
Table 5.2 showed that there was no significant difference (at the 5
percent significance level on a two-taiied test) among effective
elastic modulus values calculated by the three methods at the two

different load eccentricities.
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Brickwork Load Effective Elastic Modulus
Prism Eccentricity (x10 MPa)
Displacements Rotations | DEMEC
No. (mm)
Eq. (5.1) Eq. (5.2) [Eq.(5.3)
1 12.5 9.5 10.0 9.3
12.5 12.0 11.6 11.9
3 12.5 13.2 12.2 11.5
4 25.0 10.7 9.8 10.8
5 25.0 9.0 9.8 9.4
25.0 10.5 10.2 10.2

Table 5.2: Experimental Elastic Modulus for Brickwork

A fourih method of estimating an effective elastic modulus for
uncracked brickwork was also investigated. Six bricks from the batch
used for the piers were saw-cut to give, from each brick, two sample
prisms 75mm x 25mm x 108mm. The twelve prisms were tested in axial
compression (figure 5.7(a)) and estimates of elastic modulus for the
bricks were made from an average of the two prisms from each brick.
Six mortar prisms, 25mm x 25mm x 50mm, cast from the mortar batch
used for the piers were also tested in axial compression (figure
5.7(b)). Typical stress-strain curves for the brick and mortar prisms
are given in figures 5.8(a) and 5.8(b) respectively. The mortar prisms
showed non-linear behaviour when loaded in uniaxial compression and
the brick material behaved linearly in agreement with the results
obtained by Scrivener and Williams(so)(Section 3.1.3.1});

Six estimates (Table 5.3) of brickwork elastic modulus were
obtained by combining at random the initial tangent elastic modulus

values for the six bricks and six mortar prisms using the equation —
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Figure 5.7(a): Brick
Prism Showing Sulphur
Capping and Strain
Gauge

Figure ﬁ.?ﬂ)): Mortar Prisms Showing Strain

FiQUﬁo 5.7: Brick and Mortar Prisms

Gauges
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I (hb + hm) ;
Epr b : 1 (5.4)
hb + (_E_-) hm
m

in which Ebr‘ is an effective elastic modulus for uncracked
brickwork

Eb is a calculated brick initial tangent modulus

Em is a calculated mortar initial tangent modulus

h, s the brick height (108mm)

hm is the bedjoint thickness (10omm).

Equation (5.4) 1is similar to equation (3.48) proposed by Base

and Baker(69) (Section 3.3.5.1).

[}

Effective Elastic

Estimate No. Modulus (x10°MPa)

-—

9.4
12.6
8.3
7.6
9.0
10.5

B~ W N

o

Table 5.3: Calculated Elastic Modulus Values

for Brickwork

A one-way statistical analysis of variance incorporating a method
of planned comparisons was used to compare the results of Table 5.2
with the modulus values in Table 5.3. Calculations showed that there
was no significant difference between the effective etlastic modulus
values obtained by any of the four methods, when tested at the 5

percent level on a two-tailed test.
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From the experiments on brickwork prisms and brick and mortar
prisms, it may be concluded that all of the four methods of measure-
ment give statistically equivalent estimates of the elastic modulus of
uncracked brickwork under eccentri.c compression loading. The stress-—
strain relationship for a mortar priém under uniaxial compression
(figure 5.8(b)) became linear once the specimen had been loaded and
unloaded, although possible non-linear behaviour in triaxial com-
pression at stresses beyond the uniaxial failure stress was not
investigated. The behaviour of uncracked brickwork in the non-linear

range of the materials will be considered in Section 5.2.2.

2

5.1.3 The Stiffness of Partially-cracked Brickwork

A relationship between the average curvature of brickwork in
eccentric compression and the curvatures of the component materials

was given in Section 4.2.4.1 as —

1 o 'R'nt’ b m  m
(ﬁ)av B h._ + h (4.5)
b m
and also as
1 Me
(ﬁ}av = ET) (4.21)
€eq
in which, for linear elastic materials (p = 1, Appendix B),
hb -+ hm
= 1
(El)eq Eb.[ = E "[eq . (5.5)
(-2) + h . =2)
a m E
m

qu in equation (5.5) is defined by equations (4.23) in Section

4.3.1.
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In order to check equation (5.5) against experimental results,
six brickwork prisms of six bricks and five mortar joints were con-
structed as for the tests conducted to determine elastic modulus values.
In addition, six bricks from the ‘batch were saw-cut to give twelve
sample prisms each 75mm X 25mm x 108mm which were tested in
compression using pairs of 30mm long strain gauges to determine

strains. The brick elastic modulus values are shown in Table 5.4.

Elastic Modulus (x10°MPa)
Brick No.

Sample 1 Sample 2

1 9.30 9.87

2 14.40 12.33

3 8.22 8.46

4 7.22 7.79

5 10.05 8.05

6 11.56 9.70

Table 5.4: Elastic Modulus Values for Brick Prisms

The mean elastic modulus was 9.75 X 103 MPa with a coefficient
of variation of 21 percent.

Six mortar prisms, 25mm X 25mm x 50mm, were cast to determine
the mortar elastic modulus in uniaxial compression (Table 5.5). The
main elastic modulus was 8.3 x 103MPa with a coefficient of variation
of 5 percent.

Each of the brickwork prisms was tested in a 1000KN compression
machine, as described in Section 5.1.2, and to eliminate problems of
material variability, each prism was tested initially at an eccentricity
of 12.5mm (d/6) and subsequently at 25.0mm (d/3). The former test
did not produce cracking at the brick-mortar interfaces so that in

equation (5.5), the curvature ratio, a, for the bricks should be unity.
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Mortar Prism No. Elastic Modulus (x10 MPa)

7.84
7.87
8.28
8.72
6.34
8.84

-—

oINS B — B @S R

[

Table 5.5: Elastic Modulus Values for Mortar Prisms

{n Section 5.1.2, it was shown that measurement of relative end
rotations of a, brickwork prism gave a statistically reliable estimate
of the brickwork stiffness. Consequently, the stiffness of a cracked
brickwork prism loaded at d/3 was compared with the uncracked prism
stiffness. Before testing each prism, a load was applied at an
eccentricity of 25mm (d/3) to ensure that the brick-mortar interfaces
were debonded, but the load was chosen so that cracking would occur
without causing distress in the compression regions of the mortar
joints.

The end rotations per unit load for the brickwork prisms are
summarized in Table 5.6. The load rotation graphs were all essentially
linear for the range of loads selected.

From equation (5.5), with hb = 108mm, hm = 10mm and the
cor‘r‘espohding elastic modulus values given in Tables 5.4 and 5.5,
the theoretical ratio of the end rotation rates is 3.08. The average
of the experimental values in Table 5.6 is 2.82 with a coefficient of
variation of 3 percent. The difference between the theoretical and
experimental results could be attributed, in part, to some degree of
tension across the brick-mortar interface because of incomplete debond-
ing and also some small residual friction effects in the pin joints

through which the load was applied.
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Relative End Rotation Rate Ratio of

Brickwork ) (><10—6 rad/KN) Rotation Rates
Erhsm Eccentricity = d/6 éccentr‘icity = d/3 [Rotation (d/3)]
No. Rotation (d/6)

1 91.6 274 2.99

2 94.6 268 2.83

3 84.6 : 236 2.79

4 94.2 256 2.72

5 80.8 224 2.77

6 87.0 244 2.80

Table 5.6: Relative Stiffness of Cracked and Uncracked

Brickwork Prisms

5.2 WALL EXPERIMENTS

5.2.1 Tests on a Slender Steel Block Column

5.2.1.1 Introcduction

The method of analysis of a linear elastic brickwork column,
described in Chapter 4, was checked experimentally by loading a stee!
column 50mm x 25mm in cross-section consisting of thirty-three blocks
each of 50mm length. The experimental program was simiiar to the
tests of Chapman and Slatford(97) except that steel blocks were used
instead of the original aluminium blocks.

The matching faces of the blocks were ground and hand-{apped
so that intimate contact could be achieved and the blocks were stacked
in the same order for all tests such that minimum deviation from

straightness was obtained. The column was precompressed for the

purpose of handling by two 6mm diameter high-tensile rods and placed
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inside a clear acrylic rectangular tube. The rods were removed prior
to testing when the column was loaded through knife edges in a
compression testing machine (figure 5.9).

Column failure occurred by lateral buckling, so that confinement
of the column in a clear acrylic tube was necessary to prevent damage
to the steel blocks and the loading knife edges by falling on hard

surfaces after failure.

5.2.1.2 Boundary conditions
The column was loaded with two types of end support con-

ditions —

(a) réstrained from lateral translation but free to
rotate both at the top and at the base (pinned
end condition).

(b) restrained from lateral translation and free to

rotate at the top only (fixed base condition}.

The load eccentricity was nominally either one-fifth or one-tenth
the section thickness, the load being applied successively on either
side of the column centreline as a test of the symmetry of the set up.

A summary of the test conditions is given in Table 5.7.

5.2.1.3 lInstrumentation

Lateral deflections were measured by dial gauges at columin mid-
height for the pin-end column tests and at third points for the fixed
base column tests. Deflections at the column supports were also
checked in all tests and the loads were measured by a hydraulic load

cell at the column base (figure 5.9).



Figure 5.9(b): Knife-edge Looadsidy

Figure 5.9(a): Steel Block Column

Inside Clear Acrylic Tube at Top of Steel Column

F_l_g_u_r‘g_S__Q Steel Block Column Test

‘061
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Boundary Conditions Load
. .. (a), (b)
Test No. (refer to text) Eccentricity
Top Base
1 Case (a) +d/ 4.83 +d/ 4.83
Case (a) -d/ 4.83 -d/ 4.83
3 Case (a) +d/10.6 +d/10.6
4 Case (a) -d/10.6 -d/10.6
5 Case (b) +d/ 4.83 Fixed
6 Case (b) -d/ 4.83 Fixed
7 Case (b) +d/10.6 Fixed
8 Case (b) -d/10.6 Fixed
(a) "+" and "-" refer to loading on opposite sides of column

centreline

(b) d is column thickness (nominally 25mm)

Table 5.7: Column End Conditions and Load Eccentricities

5.2.1.4 Experimental results

The results of the pin-end column tests were compared with the

PROGRAM P1ER1

(97)

load-displacement characteristics calculated by
(Appendix C) and the no-tension theory of Chapman and Slatford
initial slopes of the

(figure 5.10). From the differences in the

theoretical and experimental curves, it was evident that there was
some lack of straighness in the column, possibly caused by mismatch
at the steel block interfaces. Nevertheless, the test failure loads and
maximum central deflection prior to failure were more closely predicted
by PROGRAM PIER1 than by the no-tension theory, particularly at the
greater load eccentricity (Table 5.8). The average of the two

experimental curves is very close to the predicted curve of PROGRAM

PIER1 (figure 5.10).
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Failure Load Max. Centre Displacement
coag (P/P )(a) Prior to Fail (s /d)(c)
Eccentricity crit - _rlor‘ o Fatiure E
(mm) No- . No-
Test(b) : PIER1 Test(b, . PIER1
tension - tension
d/10.6(c) 0.589 0.512 0.566 0.28 0.246 0.284
d/ 4.83(6) 0.280 0.192 0.267 0.35 0.317 0.355
(a) l?:r‘it is the Critical Buckling Load of a pin-end column.
(b) Average of 2 tests — pin-end columns.

(c)- d is column thickness (nominally 25mm)

Table 5.8: Buckling Failure Loads and Disptacements of Pin-end Column

The results of the fixed base tests were compared V\{ith the cal-
culated results from PROGRAM PIER1 (figure 5.11). Again, the lack
of straightmess in the column was evident in the differences between
initial slopes of the theoretical and experimental curves. However,
the agreement between Iexper‘imental and theoretical failure loads was
close. Failure loads calculated by a no-tension material theor‘y(lm)
(figure 3.42) agree closely with the experimental results provided that
a suitable estimate is made of the column effective height, »*h (Table
5.9). This indicates that the tension field stiffening effect of the
blocks is not as significant in a fixed base column as in a column
with pinned ends (Table 5.8). Although the  two estimates of 2 in
Table 5.9 giv-e good agreement with the tests, in most practical design

cases the column effective length cannot be calculated easily for the

fixed base column.
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Load Non-dimensional Failure Load (Pf/Pcrit)(a)
Eccentricity ( ¥
(mm) Test(P) No-tension " 1 pROGRAM PIERI

1=0.67 r=0.70

(c)

d/10.6 1.50 1.58 1.45 1.57
d/ 4.83¢) 0.99 0.98 0.90 1.10
(a) Pcrit is the critical buckling load of a column with pinned ends.

(b) Mean of two tests.
(c) d is column thickness (nominally 25mm).

(d) »=0.67 from PROGRAM PIER1
(44)

A =0.70 from column theory

Table 5.9: Buckling Failure Loads for Fixed Base Columns

5.2.1.5 Conclusions on steel column tests

The experimental results presented by Chapman and Slatford as
neconfirmation" of the validity of no-tension theory for brickwork did
not agree with the calculations produced by the more rigorous finite
element model contained in PROGRAM PIER1. Repetition of the experi-
mentis using an articulated steel column showed that the reported
results obtained with the aluminium column were not repeated. As has
been stated (Section 3.4.3), irregularities in the contact surfaces of
the original aluminium blocks could have caused the differences
between the initial slopes of Chapman and Siatford's experimental
results and the no-tension theory curves. Moreover, in Chapman and

Slatford's tests(y?),

the maximum column displacements immediately
prior to failure were closer to those predicted by PROGRAM PIER1 than

by the no-tension theory (Table 5.8). Therefore, the experiments on

a pin-end steel block column have shown that the resuits of Chapman
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and Slatford's experiments cannot be used as confirmation of the
validity of the no-tension theory of brickwork.

In contrast, results of tests on both pin-end and fixed-base steel
block columns agree closely with results obtained using PROGRAM PIER1
thus indicating that the finite element model incorporated into PROGRAM
PIER1 is a better predictor of the behaviour of a linear elastic column
under eccentric load than the no-tension theories proposed by Chapman

and Slatford and Sahlin.
5.2.2 Tests on Brickwork Walls

5.2.2.1 Introduction

In Section 4.5, a parametric study was made on brickwork walls
which were restrained against lateral translation at the top and base
and either free to rotate at both the top and the base or free to
rotate at the top but restrained against rotation at the base. Walls
included in the parametric study were considered to be laid in either
brick-on-flat or brick-on-edge configuration and the mortar properties
were either linear or non-linear in the form given by equation (B.1},
Appendix B. In this section, the results of a series of experiments
are presented to assess the adequacy of the numerical predictions of
PROGRAM PIER! as applied to fixed base brickwork walls loaded
eccentrically at the top. All brickwork material properties required
for use in PROGRAM PIERt1 were determined during the tests.

Although the number of tests was, of necessity, small, it is
possible to make comparisons, both qualitative and quantitative,
between the calculated displaced shapes, failure .Ioads and failure

modes and the respective experimental values.
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5.2.2.2 Wall construction

Each of a total of eight walls was constructed against a timber
frame to achieve a wall with one face as close as possible to a plane
(figur;es 5.12(a), 5.12(b)). The wall dimensions are summarized in

Table 5.10.

Wwall Dimension (mm) Slenderness

Wall No. No. of Courses Ratio,
Height | Length | Thickness h/d

1 23 2714 714 75.0 36.2
2 12 1416 718 74.5 19.0
3 23 2714 711 74.9 36.2
4 12 1416 714 74.9 18.9
5 23 2714 710 75.1 36.1
6 12 1416 713 75.0 18.9
7 23 2714 714 Th.2 36.6
8 12 1416 714 Th.4 19.0

s i
Mean - 714 74.8 -

Table 5.10: Brickwork Wall Dimensions

The bricks for the walls were extruded, wire-cut and without
performations, and were selected with dimensions closely 108mm x 75mm
x 228mm. They were also chosen for uniformity of colour and texture
because the degree of vitrification, which may affect the brick material
properties, is related to brick colour, texture and dimensions (Section
3.1). All bricks in the walls were laid in a saturated, surface-dry
condition in an "on-edge'" configuration, the base course being con-
structed in a 900mm length of 127 x 64 rolled channel section to allow
transportation to the compression testing machine.

The mortar was 1 cement:llime:6 sand by volume with a water-to

cement ratio of 1.41 by weight; the ratio of water-to-cementitious



Figure 5.12(b): Timber Construction

Figure 5.12(a): Eight Brickwork Walls

Frame

Figure 5.12: Brickwork Walls
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material was 1.02 by weight. Hydrated lime powder and Portland Type
A cement were used from fresh bags and the sand was oven-dried for
48 hours and sieved through a B.S. No. 7 sieve (2.40mm mesh)}. The
sand grading curve is shown in figure 5.13.

The mortar was mixed in 15kg batches which r'emained workable
for the 1% hours required to lay twelve courses without the addition
of water. Each of the tall walls was constructed in two sessions using
two mortar batches on the one day, and three mortar prisms, each
25mm x 25mm x 50mm, were cast for each mortar batch at approximately
three—quarters of an hour after construction commenced.

All walls were cured for 21 days covered with polythene sheeting
and subsequently under ambient conditions. Six brickwork prisms, each
four bricks high (figure 5.12(a)) were constructed simultaneously with
the walls for measurement of the brickwork compressive strength. The

method of curing was identical for the walls, mortar prisms and

brickwork prisms.

5.2.2.3 Elastic modulus tests

(a) Bricks and Mortar

Six bricks were selected at random from the batch used for the
walls and two prisms, approximately 25mrm thick, were cut from each
brick, as described in Section 5.1.3. ERS gauges were fixed to the
prisms and the load-strain characteristics measured and plotted. The
experimental elastic modulus values for the twelve prisms are given
in Table 5.11.

The mean elastic modulus was 18.2 X 10°MPa, with a coefficient
of variation among bricks of 11.3 percent.

All mortar prisms cast were tested at a minimum 28 days in axial

compression, as described in Section 5.1.3. The experimental initial
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' Elastic Modulus, E_ (x10°MPa)
Brick No.

' ' Prism No. 1 Prism No. 2 Average
1 21.3 20.9 . 21.1
2 16.1 17.2 16.6
3 19.4 19.4 19.4
4 20.7 19.3 20.0
5 16.4 14.6 15.5
6 17.0 16.3 16.6

Table 5.11: Brick Etastic Modulus

tangent modulus values are summarized in Table 5.12. The average
initial tangent modulus was 8.29 x 10°MPa and the coefficient of varia-
tion among mortar batch averages was 17 percent. The coefficient of

variation among prisms in any batch was less than 13 percent.

Mortar wall ‘ Elastic Modulus, E_ (x10°*MPa) C.V.

Batch No. Prism 1 Prism 2 Prism 3 Average A
1 8.51 8.08 8.44 8.34 3.6
2 } L { 5.44 5.41 6.06 5.64 4.0
3 2 6.33 6.44 6.38 6.38 0.7
4 6.99 8.81 6.72 7.51 12.4
5 } ) { 9.63 9.72 8.60 9.32 4.8
6 4 6.42 6.29 6.12 6.28 2.0
7 9.78 8.95 8.09 8.94 7.7
8 } 5 { 9.40 10.43 8.34 9.39 9.1
S 6 10.00 9.75 8.86 9.54 5.1
10 9.36 9.25 7.23 8.61 11.4
1 } 7 { 9.75 9.62 9.22 9.53 A
12 8 11.20 8.94 9.75 9.96 9.4

Table 5.12: -Mortar Elastic Modulus



(b) Tests on Walls

All walls were capped with a 900m iength of 127 x 64 M.S.C.
bedded in a high alumina grout to permit early testing of the walls.
For all walls, the base channel was restrained against rotation by
bedding it into a thin. later of freshly mixed "pPlasti-bond'" polyester
resin spread on the rigid base platen of a-5000KN capacity compression
testing machine. Four seis of steel blocks with machined and greased
pins, each 100mm long, were placed centrally along the top of each
wall as shown in figure 5.14, and the wall was loaded up to 100KN
in 10KN increments. At each load increment, the axial shortening was
measured and an effective elastic modulus for the wall was calculated.
With reference'to figure 5.14, the gauge length for the 12-course walls
(walls 2, 4, 6 and 8) was nine courses (1062mm) and for the 23-course
walls {walls 1, 3, 5 and 7) was ten courses (1180mm). The relationship
between load and axial shortening was linear for each wall; a summary
of the calculated effective brickwork moduli is given in Table 5.13.

The average value of effective brickwork modulus was 15.0 X 10°MPa

with a coefficient of variation of 3.5 percent.

Gauge Length Brickwork Modulus
Wall No. (mm) Eb (x10° MPa)
r
1 1180 14.5
2 1062 14.3
3 1180 14.7
4 1062 14.4
5 1180 15.6
6 1062 15.1
7 1180 15.5
8 1062 15.6

Table 5.13: Brickwork Elastic Modulus
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(¢c) Summary of Elastic Modulus Tests

From the experimental results summarized in Tables 5.11 and
5.12, the effective elastic modulus for brickwork, according to equation
(5.4), should be 16.5 X 103MPa.. This wvalue, calculated from the
separate rﬁoduli of the bricks and mortar, is approximately 10 percent
higher than the effective modulus obtained directly from brickwork
wall tests (Table 5.13). However, the two calculated means of the
effective elastic modulus values for brickwork are within one standard
deviation of the brick modulus values (Table 5.11), so that the two
sets of modulus values may be assumed to be from the same statistical
population of means.

The large variation in mortar modulus (Table 5.12) did not cause
large variations in the overall brickwork modulus in comparison with
that caused by the variation in brick modulus. Equation (5.4) shows
that the mortar modulus does not exert a major influence on the
brickwork elastic modulus for the cases in which brick and mortar
moduli are approximately equal. Therefore, the experimental results
(Tables 5.11, 5.12 and 5.13) indicate that a sample size of six bricks
was insufficient to obtain a good estimate of the mean brick elastic
modulus of the batch.

Consequently, in the following section, in which eccentric lcad
tests on the walls are described and compared with the calculated
results of PROGRAM PIER1, a brickwork elastic modulus of 15.0 x
10°MPa is used in PROGRAM PIER1. Values of brick and mortar modul!i
consistent with equation (5.4) and the results of tests on brick and
mortar prisms, as well as the brickwork walls, have been chosen to

be 16.2 x 10°MPa and 8.3 x 10°MPa respectively.
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5.2.2.4 Eccentric Load Tests on Fixed Base Walls

(a) Non-destructive lLoad Tests

Experiments were first conducted on the eight walls (Section
5.2.2.2) to check under eccentric ioading the correlation between the
lateral displacements calculated by PROGRAM PIER1 and the measured
wall profiles.

Each of the four short piers (1416mm) was placed in a S5000KN
compression testing machine and loaded through pin blocks as shown
in figure 5.15. Lateral displacements were measured by dial gauges,
placed as shown, and end rotations were measured close to the top
and base steel channe! sections by bubble micrometers as in previous
tests (Section 5.12, figure 5.6). The out-of-plane imperfections on the
face built against the timber construction frame were measured and
found to be less than 1.0mm. Each wall was loaded successively at
eccentricities of 12.5mm (d/6) and 25mm (d/3) at the top, the base
being rigidly fixed against rotation. The wall was loaded to 100KN;
at every 10KN increment the lateral displacements and end rotations
were recorded. The set of load-displacement results for wall 2 (figure
5.16) showed that for loads up to 20KN there was some settling in the

[ )
(44,)

wall, possibly caused by shrinkage in the mortar joints (Sahlin
and end supports, but, between 20KN and 100KN, the lateral displace-
ments varied almost linearly with the load. Linear load-displacement
relationships were observed for all short walls tested.

A plot of load against rotation at the top of wall 2 (figure 5.17)
showed that, between loads of 20KN and 100KN, the rotation varied
linearly with the applied load. Figure 5.17 shows only the results
for a 25mm load eccentricity on wall 2, but the load-rotation relation-

ships were essentially linear for all short walls at both test load

eccentricities when the loads were between 20KN and 100KN.
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Graphs of the lateral displacement profiles for the short walls
are shown in figures 5.18 and 5.19 in which the average profile is
compared with a theoretical displaced shape computed using PROGRAM
PIER1 and the material properties in Section 5.2.2.3. The spread of
experimental results is more pronounced for the lower load eccentricity,
but overall, the theoretical and experjimental displacement profiles
are comparable, the differences being consistent for the two load
eccentricities. Several possible reasons for the differences are discussed
later in this section.

The changes in slope at the top of each of the short (1416mm)

walls as the load increased from 20KN to 100KN are summarized in

¢

Tabie 5.14.
Change in Slope (x10—3 rad/80KN)
Wall No.
Eccentricity 12.5mm Eccentricity 25mm

2 1.31 2.14
4 1.41 2.35
6 1.25 2.30
8 0.90 1.85
Average 1.22 2.16
C.V. 15.8% 9.0%
PROGRAM PIERI1 0.94 2.12

Table 5.14: Changes in Slope at Top of 1416mm High Walls

The change in slope at the base of each short wall was found
to be insignificant.
Each of the four tall walls (2714mm) was tested in the same way

as the short walls. The dial gauge positions were as in Table 5.15.
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Gauge No. Height Above Wall Base
(ref. figure 5.15) {mm)

top platen
2714
2242
1770
1298
826
354

0w N O 0w~

zero

Table 5.15: Positions of Dial Gauges for Tall
p (2714mm) Walls

The out-of-plane imperfections on the face built against the
timber construction frame were measured and found to be less than
1.0mm. The base of each wall was restrained against rotation, as des-
cribed in Section 5.2.2.3, and each wall was loaded successively at
eccentricities of 12.5mm (d/6) and 25mm (d/3) as for the short (1416mm)
walls.

The wall was loaded to 100KN; at every 10KN increment the
lateral displacements and end rotations were recorded. For all tall
walls, the load-lateral displacement relationships were essentially
linear for loads between 20KN and 100KN. Graphs of the lateral dis-
placement profiles for the tall walls are given in figures 5.20 and
5.21 for load eccentricities of 12.5mm and 25mm respectively, and the
average profile is compared with the theoretical displacement profile
computed by PROGRAM PIER1 using the material properties specified
in Section 5.2.2.3. The results for wall 1 were not included in the

average profile because the method used for fixing the wall base did

not restrain adequately the base of the wall from rotation (figure
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5.20). The spread of results for walls 3; 5 and 7 was similar for both
load eccentricities, and for both loading cases the theoretical and average
experimental pr‘ofiles_were closely comparable. The change in slope
at the top of each tall wall between loads of 20KN and 100KN is
summarized in Table 5.16. For all tall walls, the change in slope at
the base was insignificant.

In wall 1, for loads greater than 20KN, the change in slope at
the base was small, but there was significant rotation at low load.

This behaviour may have been caused by a low grout strength at the

time of first testing.

Change in Slope (x10"3 rad/80KN)
Wall No.
Eccentricity 12.5mm Eccentricity 25mm
1 2.30 5.13
3 2.12 4 .31
5 2.13 4.22
7 1.74 4 .40
Average®) 2.00 4.3
c.v.t@ 9.1% 1.7%
PROGRAM PIERT1 1.86 _1_&.35

(a) Statistics on walls 3, 5, 7 only (refer to text).

Table 5.16: Changes in Slope at Top of 2714mm High Walls

In summary, the non-destructive tests on the eight fixed base
walls at load eccentricities of 12.5mm (d/6) and 25mm (d/3) showed
linear relationships between load and displacements, including end

rotations.
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Small initial movements at the wall base, which effectively would
result from a partial release of full rotational fixity, would have
produced the differences between experimental and theoretical displace-
ment profiles and end rotations, particularly in the short walls
(figures 5.18, 5.19). Small errors in placing the eccentrically-located
pin blocks also could have led to differences between experimental
and theoretical results, particutarly at the 12.5mm eccentricity (d/6).

in general, however, the tests showed an acceptable degree of
agreement with displacements and rotations calculated by PROGRAM'
PIER1 (Tables 5.14, 5.16) using the material properties specified in
Section 5.2.2.3. In all computations, the mortar was assumed linear
because the st]ress levels were low and because the axial load tests
on the walls (Section 5.2.2.3) did not indicate that the mortar was
non-linear at loads up to 100KN. However, for the subsequent wall

tests to failure, the theoretical predictions were based on PROGRAM

PIER1 with an assumed non-linear mortar behaviour.

(b) Load Tests to Failure

For the load tests to failure, the rotations at the top of the
walls and the lateral movements of the top and base supports were
measured on the assumption that the wall behaviour could be assessed
satisfactorily by comparing only the measured and calculated end
rotations. This assumption was based on test results given in Sectiong
5.1.2 and 5.1.3. A summary of the load eccentricities, failure loads
and failure modes is given in Table 5.17.

Three modes of failure were observed. All the talt walls (1, 3,
5 and 7) collapsed by lateral buckling; no visible distress was evident
in either of the brick or mortar materials prior to collapse. However,

the two modes of failure displayed by the short walls were —
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Wall Height Eond Failure Load Failure
No. {mm) Eccentricity Pf (KN) Mode
(mm)
1 2714 12.5 503 Lateral Buckling
1416 12.5 780 |- Vertical Splitting
2714 25.0 293 | 7 Lateral Buckling
4 1416 25.0 584 " Brick Spalling on
_ Comp. Face
2714 12.5 550 - Lateral Buckling
1416 12.5 800 - Vertical Splitting
2714 25.0 290 - Lateral Buckling
8 1416 25.0 765 J Brick Spalling on
Comp. Face

Table 5.17: Wall Failure Loads and Failure Modes

(a) a vertical splitting failure (Section 3.3), shown in figure
5.22
and (b) a brick spalling failure at the compression face of the wa'!l

(figures 5.23 and 5.24) for walls 8 and 4 respectively.

The second type of failure was not noted in a review of the
literature. It differed from previously reported spal!ling due to bearing
in which the mortar, usually of very low strength, had spalled by

itself44)

In the tests on walls 4 and 8, the spalling failure was
preceded by a "powdering'" of the mortar at the wall compression face,
indicating that total failure of the mortar had, .occur‘r'ed at the
compression face of the joint. In wall 4, the spalling occurred at the
third bedjoint (354mm) from the top and in wall 8 at the first (118mm)
from the top. The brick spalling was probably precipitated by large

lateral strains in the mortar at the compression face. The maximum

thickness of the wedge-shaped pieces of brick which spalled off was
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Figure 5.24(a)

Figure 5.24(b)

Figure 5.24: Spalling Failure (wall &)
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approximately 6mm at the mortar joint (figures 5.23, 5.24). Wall 2
showed a vertical splitting failure at 780KN; however, the load couid
be further increased to 1112KN before the wall collapsed. The actual
mode of failure could not be determined because the wall disintegrated
instantaneously at collapse. wall 6, which was tested similarly to wall
2, was not loaded beyond the vertical splitting stage, deemed to be
wall failure, for reasons of safety. Plots of load against top r‘ot_ation
for all walls are given in figures 5.25, 5.26, 5.27 and 5.28 together
with theoretical end rotations calculated by PROGRAM PIER1. In the
calculations, the brick elastic modulus was 16.2 X 10 °MPa and the
linear mortar elastic moduius was 8.3 X 10°MPa (Section 5.2.2.3).

Also shown in figures 5.25 to 5.28 are theoretical wall top
rotations calculated by using PROGRAM PIER1 with a non-linear mortar

with the stress-strain relationship —

1.5

o = 8.3 x 10° (e - 6.104¢ "7) (5.6)

Equation (5.6) was obtained from the general equation given
in Appendix B, using n = 1.5 and G 33.0MPa. This value of L
was determined from axial compression tests on four-brick prisms con-
structed with the walls (figure 5.12(a), Appendix D}.

A parametric study was made to investigate the effect on the
wall failure locads of using exponents, n, in equation (B.1) of 1.2,
1.5, 2.0 and 3.0. The results are summarized in Table 5.18 together
with failure loads calculated by PROGRAM PIER1 using a linear

material analysis.
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Failure Load, P. (KN)
Wwall Height (mm) Load
(Slenderness, Eccentricity @) Theoretical
h/d) (mm) Expts Linear‘(d). Non-Linear Mortar
Mortar n = 3.0 n = 2.0 n =1.5 = 1.
2714 12.5 503
(36) (d/s) 550 620 604 583 547 469
2714 25.0 250
(36) (d/3) 293 300 295 286 269 230
1416 12.5 780} {?)
(19) (d/6) 800 884 1050 1068 1081 1025
1416 25.0 sg4) ()
(19) (d/3) 765 442 525 537 553 555

(a) Each pair of loads is from two tests
(c) Initial Slopes of Load-rotation Curves Vv

(d) Failure Stress 33.0MPa (Appendix D).

Table 5.18: Experimental and Theoretical

(b) Uttimate failure load for wall 2 was 1112KN

aries considerably between walls (figure 5.28)

Failure Loads for Brickwork Walls

*GC¢
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(c) Summary of Failure Load Tests

The top rotations and the buckling failure loads of the tal!l walls
1, 3, 5 and 7 (slenderness ratio 36) agreed closely with the calculated
values from PROGRAM PIER1 (figures 5.25 and 5.26). The computations
used a brick elastic modulus, Eb’ of 16.2 x 10°MPa (Section 5.2.2.3)
and a non-linear mortar with the stress-strain relationship —

1.5

o = 8.3 x 10° (¢ - 6.104¢ "7) (5.6)

By using equation (5.6), the maximum stress attainable in the calcutla-
tions was 33MPa, the minimum axial compressive failure stress for the
brickwork (App}endix D).

The top rotations of the short walls 2, 4 and 6 (slenderness ratio
19) were calculated closely by PROGRAM PIERT1 using a non-linear
mortar in the analysis given by equation (5.6). The failure load of
short wall 4, which failed by brick spalling, was calculated by
PROGRAM PIER1 using a non-linear mortar (equation (5.6)) to within
6 percent of the experimental value (figure 5.28, Table 5.18). Possible
errors in the test set up of wall 8 produced significant differences
between experimental and theoretical values of top rotation and failure
load (figure 5.28).

A linear analysis using PROGRAM PIER1 predicted closely the
vertical splitting failure loads in walls 2 and 6 (figure 5.27, Table
5.18) and the ultimate failure load for wall 2 (1112KN) was calculated
by using a non-linear mortar analysis (equation (5.6)) in PROGRAM
PIER]1. The difference between the failure loads .calculated by the
linear and non-linear analyses was less than 30 percent of the larger

value.
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It appears, therefore, that in a more general investigation into
the behaviour of brickwork walls, a series of brickwork prism tests,
similar to tests described in Appendix D, could be used to determine
whether the vertical splitting mode of failure is more likely to occur
for a specified load eccentricity than failure by brick spalling. If
the splitting mode of failure is predominant, the corresponding failure
stress could be spec‘ified as an upper limit on wall load in a linear
material analysis using PROGRAM PIER1. However, if wall failure might
occur by lateral buckling or brick spalling, a non-linear mortar coulid
be used in the analysis. Results summarized in Table 5.18 for a range
of non-linear fmortars (Appendix D) indicate that the exponent, n, for
a non-linear mortar with a stress-strain characteristic described by
equation (B.1) might not be critical to the values of wall failure loads
calculated by such an analysis.

A large number of experiments is required before the general
utility of PROGRAM PIER1 for brickwork walls can be assessed on &
statistical basis. However, the experiments summarized in this section
indicate that PROGRAM PIER1 has a number of advantages over previous
methods of analysis in providing more accurate pr‘edictio'ns for both
the Ioad'defor‘mation behaviour and the failure loads of eccentrically-

loaded brickwork walls.
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6. THE ANALYSIS OF BRICKWORK PANELS IN TWO-WAY BENDING

6.1 INTRODUCTION

A brickwork structure is génerally non-homogeneous and non-
isotropic, as it is built up from bricks, separated by layers of mortar.
In general the relative amounts of brick and mortar along a horizontal
section is different from that along' a vertical section.

in Chaptér' 4, it was shown that a brick column can be analysed
as an equivalent homogeneous isotropic column of varying thickness;
the thickness varies with the effective eccentricity of the load, which
in turn depends on the initial eccentricity and the deflection. The
relationship between the thickness to be used in the calculations and
the effective eccentricity was established wusing a two —dimensional
finite element analysis by making the moment—rotation characteristic
for a module of this equivalent column, which was one brick height
plus one mortar thickness in length, equal to the corresponding
characteristics of the real column. Although the stresses in the real
column and the equivalent column are not equal at all sections, once
the deflections have been calculated the stressesjn ihe real column
can be computed.

in this chapter it is proposed that a similar equivalent plate
of varying thickness can be analysed to find the deflection of a
brickwork panel supported on four sides and loaded by in-plane
eccentric compression forces. Brick—-mortar units of .appropriate size
are analysed by three-dimensional finite element methods to calculate
the bending and torsion stiffness of the equivalent homogeneous plate

which ‘can be used in the calculations.
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6.2 THE STIFFNESS OF PARTIALLY-CRACKED BRICKWORK PANELS

6.2.1 An Analytical Element for Paneis

The arrangement of bricks and mortar in conventional stretcher
bond is shown in figure 6.1(a).

If the panel in figure 6.1(a) is subjected to uniform bending
or in-plane forces, a small volume of the panel, defined by the planes
AlAzAaA“, BleBaBH, C1C2C3Cu and [)1D2DSD10, and referred to in this chapter as a
panel module, can be used to analyse the behaviour of the whole panel
(figure 6.1(b)). The dimensions of the panel module given in figure
6.1(b)) refer to the particular bricks used in the construction of an
experimental p;anel to be described in Chapter 7. In the following
sections, the stiffness of the panel module is calculated for both
uncracked brickwork and cracked brickwork in which there is bond
in shear but no tensile bond between the brick and mortar components.
Bending of the panel module is defined to be normal to the bedjoints
if the moment is associated with stresses normal to the bedjoints and

bending is defined to be parallel to the bedjoints if the moment is

associated with stresses parallel to the bedjoints.

6.2.2 Bending Normal to the Bedjoints

The extent of bedjoint cracking in walls supported only at the
top and base depends on the position of the in-plane force resultant
acting normal to the bedjoints (Section 4.2). The effect of load
eccentricity on the cracking and stiffness of complete panels supported
on three or four sides may be investigated by the finite element method
in which the panel module, defined in the previous section, is divided
into ninety twenty-node isoparametric three—dimensional prism elements.

A system of eight-noded elements was found to be unsatisfactory
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Figure 6.1(a): Elevation of
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Figure 6.1: Brickwork Panel Module



because of the ‘large number of elements required to model the
brickwork adequately in bending. A typical twenty-node element is
shown in figure 6.2(a) and the finite element grid for the complete
panel module in figure 6.2(b). Details of the panel module subdivision
are given in Appendix E.

If the panel module is compressed by a vertical load whose
resultant acts within the kern, there is no cracking on the bedjoint.
When the resultant load acts outside the kern, a crack forms at one
or both of the brick-mortar interfaces on the bedjoint depending on
the position along the bedjoint (figures 6.3(a), 6.3(b), 6.3(c)

The stiffness of the brickwork varies as a result of the cracking
at the bedjoin't brick-mortar interfaces. The results obtained for one-
way bending (Section 4.2) were compared with calculations based on
the panel module, shown in figure 6.1(b), for various vaiues of brick
and mortar moduli. With reference to figures 6.1{(a), 6.1(b), the planes
AxAzAan. and BleBaEi are taken to remain plane for bending normal to
the bedjoints and similarly, planes CCCC, and DbbD, are assumed to
remain plane. In ;rder to calculate the flexural rigidity of the panel
module, planes Af\f\f\“ and BszBaBu may be rotated by a chosen angle,
say ¢, and the length of the middle surface EEEE, may be decreased
by a chosen amount, say § (figure 6.4).

The nodes of elements at the horizontal brick-mortar interfaces,
on planes Ml\/\zl‘v‘g\/\“ and NNNN, in figure 6.4, can be uncoupled where
tension normal to the interface could be developed.

The problem can be solved using a finite element program such
as PROGRAM MFYDCP (Appendix E). The position and magnitude of a
resultant load required to deform the panel module into the shape
specified can be calculated from the reactions on the faces AIAAAH and

BleBaBH. The effective flexural stiffness of the panel module may be

defined as —
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Figure 6.4: Panel Module Subjected to Bending

Normal to the Bedjointg N



P. e
¢

(h, + hm) (6.1)

(El)eq - b

_in which P is the total resultant load
e is the eccentricity of the resultant load
¢ is the specified relative rotations of p-lanes AA and
BB

hb and hm are as definited in Chapter 4.

The calculated results showed that, for solid brickwork with
dimensions given in figure 6.1(b}, PROGRAM MFYDCP gave solutions
which agreed closely with the results calculated using equation (4.1)

for brickwork in one-way bending (Table 6.1).

==
Brick:Mortar Calculated Ratio of
Modular Effective Eccentricity Effective Flexural
Ratio!?) (e/d) D) Stiffness'S)
1.0 0.32 0.99
2.0 6.32 0.99
4.0 0.31 0.97
10.0 0.30 0.95

(a) Brick Modulus is 20 X 10°MPa for al!l cases.
(b) ¢ = 1.0 x 10“3 radians, § = 0.02mm (figure 6.4) for all

cases.
(c) (El)eq calculated by Equation (6.1)
Ratio [ (El)eqcalculazed by Equation (4.21)]

Table 6.1: Stiffness of Brickwork Subject to
Bending Normal to the Bedjoints

That is, the effective flexural stiffness of a brickwork panel cracked

on the bedjoints by an eccentric compression force, uniform along the
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panel length, can be calculated using the curvature ratio factor, a,

derived in Chapter 4 for brickwork in one-way bending.
6.2.3 Bending Parallel to the Bedjoints

When a brick panel (figure 6.1(a)) is subjected to bending
moments parallel to the bedjoints, tension stresses can develop at the
vertical joints, or perpends. If the bond strength at the perpends
is negligible, cr‘acki.ng in the perpend occurs, and the flexural stiff-

ness of the brickwork is reduced below that for uncracked brickwork.

6.2.3.1 Uncracked brickwork

As a prgliminary investigation for calculating the reduction in
stiffness, PROGRAM MFYDCP was used to calculate the stiffness of
uncracked brickwork for bending parallel to the bedjoints. An effective
stiffness for uncracked brickwork —was calculated by Base and

Baker(69)(5ection 3.3.5) in the form-—

- N
= E. 3 H(L+p) bl & 6.2
(El)p =% E, + e, = (6.2)
L+ (2)p) ()
m m
L (b+H) b

in which (El)p is the effective flexural stiffness, per unit height,
for uncracked brickwork
Eb is the elastic modulus for the bricks
Em is the elastic modulus for the mortar

L, H, p, b, are dimensions defined in figure 6.5

d is the panel thickness.

Equation (6.2) was checked by using the panel module shown
in figure 6.1(b). The brickwork panel shown in figure 6.1(a) was

assumed to be subject to uniform bending parallel to the bedjoints.
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Figure 6.5: Brickwork Dimensions
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It was also assumed that the plane boundaries AAAA, 8182838:.’ C1C2C3C“ and
DlDzDaD“ remained plane during bending. PROGRAM MFYDCP was used with
a subdivision of ninety elements (Appendix E), and the planes ClcngCL.
and DlDzDaD; were '"rotated" by prescribing the displacements of all nodes
on planes CCCC and DDDD (figure 6.6). Planes AAAA and BBBB were

1234 1234 B 1234 1234
restrained against out-of-plane translations.

The finite element solution indicated that there was no change
in length of the middle surface, KleKsK“. The bending moment required
to achieve the prescribed end rotations was calculated from the
reactions at the nodes on planes C1C2C3C“ and DIE;DR Because there are

no resultant forces paralle!l to the bedjoint on the planes ClCzCBC“ and

DIDZDSD“ (figure 6.6), an effective flexural stiffness per unit height for

the panel module may be calculated from the equation —

M
_ py (Ltp)
(El)p = (Tp)‘(“bm (6.3)

in which Mp is the resultant moment of the end forces on planes
CCCC and DDDD about the middle surface, KKKK
1234 1234

1230h

¢ is the relative rotation of planes cccC and DDDD
12304 123 b

L, H, b, p are defined in figure 6.5.

A summary of calculated relative stiffnesses for selected brick:
mortar modular ratios is given in Table 6.2 and figure 6.7.

The calculated results, summarized in figure 6.7 and Table 6.2,
agreed closely with equivaltent stiffnesses proposed by Base and Baker
for various brick and mortar moduli provided that the brick:mortar
modular ratios were less than 5.0. For a modular ratio of 5.0, the
difference in relative stiffnesses calculated by equation (6.2) and
PROGRAM MFYDCP, was approximately 5 percent, with equation (6.2)
giving the lower value. Base and Baker assumed that plane sections,

normal to a neutral axis along the brickwork, remained plane (Section
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: . (a)
Modular Ratio Relative Stiffness
(Eb/Em) Base and Baker(69) PROGRAM MFYDCP
1.0 1.00 1.00
2.0 0.92 0.94
4.0 0.83 0.85
5.0 0.80 0.83
10.0 0.67 0.73
20.0 0.51 0.62

(a) Bending stiffness relative to brickwork with modular ratio

Eb/Em = 1.0.

Table 6.2: Flexural Stiffness of Brickwork Subject to Bending

Parallel to the Bedjoints

3.3.5), and hence that brickwork subjected to bending parallel to the
bedjoints deflects into a cylindrical circular surface. However, the
results from PROGRAM MFYDCP showed that, in general, brickwork did
not deflect into such a cylindrical shape and that there were sig-
nificant twisting moments and shear stresses on the bedjoints,
particutarly for modular ratios greater than 5.0. These differences
between the deformed shape assumed by Base and Baker and the shape
predicted from the more accurate numerical model account for the

differences in the flexural stiffnesses calculated by the two methods.

6.2.3.2 Brickwork with cracked perpends
The effective flexural stiffness in horizontal bending for brick-
work with no tensile bond strength on the perpends was calculated
using the panel module shown in figure 6.1(b). The planes defined
by AAAA, BBBB, CCCC and DDDD were assumed to remain plane during
1234 123%¥ 1234 1\23'0
horizontal bending. PROGRAM MFYDCF was used with ninety elements

(Appendix E) and planes CCLLC, and DlDszD“ were 'rotated" about their
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respective vertical centrelines by prescribing the displacements of all
nodes on planes CIC'ZCSCH and DIDZDSDH The planes AlAzAaAq and BleBaEi were
restrained against out-of-plane transiation. By trial, elements whose
edges defined the perpend brick-mortar interfaces were uncoupled at
all nodes at which tension normal to the interfaces could develop.
A profile of the simulated perpend "cracking', shown in figure 6.8,
represents an approximation to the real perpend cracking because of
the coarseness of the finite element mesh and because of the assumption
of materials with linear stress-strain relationships. In real brickwork,
the extent of perpend cracking varies with increasing rotations on
planes C1C2C3C“ eind DIDZDR hecause of non-linear material behaviour and
the restraint of in-plane deformations in the horizontal direction.
PROGRAM MFYDCP was used with the simulated cracked perpends {figure
6.8) and with various brick:mortar modular ratios (Table 6.3) to cal-
culate the effectivé stiffness of brickwork subjected to bending parallel

to the bedjoints.

_—
Modular Ratio Relative Stiffness(a)
Eb:Em . PROGRAM MFYDCP
1.0 0.768
2.5 0.766
10.0 0.765

(a) Bending stiffness of cracked brickwork relative to uncracked

brickwork with the same modular ratio (perpend cracking only).

Table 6.3: Flexural Stiffness of Br‘ickwo}“k

Plots of stress distributions at selected cross-sections for brick-

work with a modular ratio of 2.5 are given in figure 6.9. Relatively

large normal stresses at the junction of a bedjoint with a perpend
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Figure 6.9: Distribution of Flexural Stresses on X-Y Planes for Brickwork

with Cracking on Perpends Only
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may indicate that tensile failure of the bricks could be expected at
a perpend-bedjoint intersection in a case of excess bending parallel

to the bedjoints.

6.2.3.3 Brickwork with cracked perpends and cracked bedjoints

Eccentric vertical compression loads applied simultaneously with
bending parallel to the bedjoints can produce cracking on both  the
perpend and bedjoint brick-mortar interfaces. The cracking on the
bedjoints can take place either on the same panel face as the perpend
cracking (figure 6.10(a)) or the bedjoint and perpend cracking can
occur on opposite faces of a panel (figure 6.10(b)). In this thesis,
the only cases considered are those in which perpend and bedjoint
cracking occur on the same panel face (figure 6.10(a)}.

PROGRAM MFYDCP was used with simulated cracked perpends and
bedjoint cracking up to one-half the panel thickness (Appendix E)
and the relative flexural stiffness for horizontal bending of cracked
brickwork were calculated for selected brick :mortar modular ratios

as shown in Table 6.4.

Relative Stiffness(a) — PROGRAM MFYDCP
Modular Ratio Depth of Bedjoint Cr‘ack(b)
BB d/6 d/3 d/2
1.0 0.751 0.724 0.699
2.5 0.745 0.718 - 0.691
1C.0 0.733 0.705 g 0.676

(a) Bending stiffness of cracked brickwork relative to uncracked
brickwork with the same modular ratio (Section 6.2.3.1).

(b) Perpend and bedjoint cracks on same panel face.

Table 6.4: Flexural Stiffness of Brickwork
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6.2.3.4 Summary

The calculated relative stiffness values (Table 6.3) showed that
ithe stiffness of the brickwork studied (figure 6.1(a), 6.1(b)), when
subjected to bending parallel to the bedjoints and cracked on the
perpends only, was approximately three-quarters of the uncracked stiff-
ness. Simultaneous cracking of the bedjoints with the perpend reduced
the relative stiffness, depending upon the depth of the bedjoint crack

and the brick-mortar modular ratio, as shown in Table 6.4.

6.2.4 Torsion in Brickwork

6.2.4.1 Uncracked brickwork

(112), as mentioned in Section 3.3.5.2, showed that

Timoshenko
an effective shear modulus for orthotropic plates could be calculated

by using the expression —

—— '\
) E. E, JE Eg '
S Vo) B ER) (6.4)
( \)xy‘\)y.x
in which G is an effective shear modulus
Ex’ Ey are elastic moduli in the principal directions of
an orthotropic plate
vV o, Vv are effective Poisson's ratios for an orthotropic
Xy y X

plate in the respective principal directions x
and vy

v is an effective Poisson's ratio for the plate.

PROGRAM MFYDCP (Appendix E) was used tolana|yse the panel
moduli (Section 6.2.1, figure 6.1(b)) to determine whether an expres-
sion similar to equation (6.4) might be developed for uncracked
brickwork. For this purpose, it was assumed that the panel module

may be subjected to pure twist by applying twisting moments on the
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surfaces AA, BB, CC and DD (figure 6.11). As in the case of pure
bending, the dimensions of the module given in figure 6.11 refer to
the particular bricks used in the experimental panel to be described
in Chapter 7.

If the elastic properties of the brick and mortar materials are
similar and are assumed to be linear, the displacements of the middle
surface of the pane! module (parallel to the Y-Z plane of the module

in its undeflected state) may be given by the equation —

x = k(y-60)(z-60) (6.5)

in which k is a constant.

The displ'acements of the panel module middle surface in the Y
direction (y) and in the Z direction (z) may be taken as all zero.
It may be assumed t‘hat any line normal to the middle surface
remains normal to that su;lr‘face after deformations occur due to pure
twist. In such a case, the displacements of any point P(x,y,z) within
the module, associated with the total twisting moment couples Myz and

sz (figure 6.11) are given by the following equations —

?<P - x = k(y-60)(z-60) (6.6(a}))
7, L% (x-32.5) = —k (x-32.5)(2-60) (6.6(b))
EP =-% (x-32.5) = -k (x-32.5)(y-60) (6.6{c))

Therefore the displacements of any point Q(xl,yl,zl) on the
boundary faces AA, BB, CC and DD (figure 6.11) may be calculated

as —
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(i) Boundary face AA(y1=120)
Xq = 60k(z1—60)
Yo = —k(x1—32.5)(z1—60) (6.6(d))
zq = —60k(x1—32.5) | '

(ii) Boundary face BB(y1=O)
Xq = —60k(z1—60)
§/Q = —k(x1—32.5)(21—60) (6.6(e))
ZQ = 60k(x1—32.5)

(iii) Boundary face CC(Z1=0)
_ _ e
xQ 60k(y1 60)
§Q = 60k(x1—32.5) (6.6(f))
Zq = -—k(xl—32.5)(y1—60)

(iv) Boundary face DD(21=120)
Xy = 6(?;<(y1—60)
- _ B o
Ya 60I<(x1 32.5) (6.6(g))
2Q = -k(x1—32.5)(y]—60)

It should be noted that brickwork in common stretcher bond may
L;e subdivided into modules, as shown in figure 6.12, in which any
chosen module is surrounded by four modules, all of which are mirror
images of the given module. If all modules are subjected to the same
set of twisting moments (figure 6.12), then, in order that deformations
at the boundaries of adjacent modules might be compatible, irrespective
of the elastic modulus of the brick and mortar materials, any initially-
straight line on a module boundary must remain straight after deforma-
tions have occurred. That is, for all values of brick and mortar

elastic moduli, the displacements at the boundaries of a panel module

may be given by equations (6.6(d)), (6.6(e)), (6.6(F)) and (6.6(g)).
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These equations may be regarded as displacement functions for the
boundaries of a brickwork panel module subjected to pure twist; the
internal deformations may be calculated subsequently by using a finite
element method such as in PROGRAM MFYDCP. As a check on the com-
puted displacements within the panel module shown in figure 6.11,
equations (6.5) and (6.6) must hold for the line for which y =60 and

z = 60, that is x = 0, >?P=0,x = 0.

For all calculations involving PROGRAM MFYDCP, the brick
modulus was chosen as 20 x 10°MPa and the brick:mortar modular ratio
was varied between 1.0 and 10.0. For equations (6.6), the constant,

k, was chosen to be 100 x 10—6 so that the maximum displacements

2’

P and z.. were 0.360mm, 0.195mm and 0.195mm respectively. The

a Ya Q

resulting twist on the panel module (figure 6.11) was 100 x 10—6 rad/

mm. The total twisting moments Myz on faces AA and BB and sz on

faces CC and DD were calculated from the nodal reactions (Table 6.5,

(”2), the total twisting moment for an

figure 6.3). According to Timoshenko
isotropic plate with the proper‘ties and dimensions of the panel module,

when subjected to a twist of 100 X 10_6rad/mm, are 4.776 X 106Nmm

Modular Ratio Total Twisting Moments(b) (x10 Nmm)
E.E (a) - =
b’ "m Faces AA, BB (M__) Faces CC, DD (M__)
¥z zy
1.0 4.78 4.77
2.0 4.65 3.95
5.0 4.39 2.84
10.0 - 4.10 2.23 |

(a) Eb is 20 x 10°MPa
(b) Twist is 100 x 10_6 rad/mm

Poisson's ratio is 0.15.

Table 6.5: Panel Module Subjected to Pure Twist
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on each face. This compares closely with the values computed for
Myz and sz given in Table 6.5 for a modular ratio of 1.0. As the
modular ratio increases, the total twisting moments on faces CC and
DD (sz) decrease more rapidly than the moments on faces AA and
BB (Myz). This may be attributed in part to the fact that the relative
magnitude of the shearing stresses in the perpend mortar decreases
with increasing modular ratio.

Equivalent elastic moduli Ey and Ez may be calculated for the_
panel module by using equations (4.21) (Section 4.3.1) and (6.2)({(Section
6.2.3.1) respectively. By using the results summarized in Table 6.5

and the calculated values of Ey and EZ, the following two functions

may be plotted (figure 6.14).

M z * Mz
F. (E :E ) = $(-X2-—=) (6.7(a))
1 b -
M
in which M = M = M for a modular ratio of 1.0
Yz zy
Ey ; EZ 2
Fz(Eb:Em) = [[—EE—“E—b] (6.7(b))

in which Eb is the brick etastic modulus.

It can be shown (Appendix F)} that because functions F,‘ and

F2 are approximately equal for modular ratios between 1.0 and 10.90,

an effective shear modulus for the uncracked brickwork module may
be represented by the expression —
JEE
G e
2]1+vb)

in which Ey is an equivalent elastic modulus for bending normal

(6.8)

to the bedjoints (equation (4.21))
EZ is an equivalent elastic modulus for bending parallel
to the bedjoints (eguation 6.2))

vb is Poisson's ratio for the brick only.
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By inspection, equation (6.8) is similar to equation (6.4)

(112)

proposed by Timoshenko for orthotropic plates.

6.2.4.2 Brickwork with cracked perpends

lt‘ may be' assumed that for ibrickwork ‘with_ no tensile bond strength,
cracking in the perpends is predominantly caused by bending parallel
to the bedjoints. The finite element subdivision with simulated perpend
cracking, described in Section 6.2.3.2, may be used to analyse a
brickwork panel module subjected to twist. With reference to figures
6.11, 6.12, by symmetry, the displacements of the panel module
boundary faces AA, BB, CC and DD may be calculated using equations
(6.6). By using PROGRAM MFYDCP with the simulated cracked perpends
shown in figure 6.8, an effective torsional stiffness for brickwork was
calculated for wvarious brick:mortar modular ratios (Table 6.6). The

brick elastic modulus was 20.0 X 10?*MPa for all cases.

Modular Ratio Relative Torsional Stiffness(a
Eb:Ern PROGRAM MFYDCP
1.0 0.906
2.0 0.909
5.0 0.928

(a) Torsional stiffness of brickwork having cracked perpends
only relative to uncracked brickwork with the same

modular ratio.

Table 6.6: Torsional Stiffness of Cracked Brickwork

The calculations using PROGRAM MFYDCP showed that as a result
of .cracking on the . perpends, nor‘rhal stresses, both tension=:and
compression, might occur at the be;jjoint—pérpe’rw.d—‘junction in the bricks
and that the magnitude of tlhe normal stresses could be, locally, of

the order of the shear stresses. This could indicate, therefcre, that
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once perpend cracking had occurred because of bending parallel to
the bedjoints, tensile failure of the bricks due to normal stress con-
centration could be expected at the per‘pend—bredjoint intersection as
a result of torsion. This type of failure may also be expected as a

result of bending parallel to the bedjoints (Section 6.2.3.2).

6.2.4.3 Brickwork with cracked perpends and cracked bedjoints
Cracking on both the perpend and bedjoint br‘ick—mor‘tarl' interfaces
can be caused by applying an eccentric vertical compression load
simultaneously with bending parallel to the bedjoints (Section 6.2.3.3).
It may be asssumed, as an approximation, that the action of twist
does not contribute significantly to bedjoint and perpend cracking.
Calculations using PROGRAM MFYDCP, in which the bedjoints are
simulated as cracked up to one-half the panel thickness (figure
6.10(a)), Appendix E), showed that the relative torsional stiffnesses
of cracked brickwork for various brick:mortar modular ratios were

as shown in Table 6.7.

6.2.4.4 Summary
An equivalent shear modulus for uncracked brickwork may be
calculated by equation (6.8) which is similar to equation (6.4) proposed

(112) for shear in orthotropic plates. The calculated

by Timoshenko
relative torsional stiffness values (Table 6.6) showed that the stiffness
of the panel module (figure 6.1(b)) in which the perpends were cracked
as a result of bending parallel to the bedjoints, was approximately
nine-tenths the stiffness of the brickwork in its uncracked state.
Simultaneous cracking of bedjoints and perpends (cracks on the same
panel face) reduced the relative torsional stiffnesses in accordance

with some function dependent upon the depth of the bedjoint crack

(Table 6.7).
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Relative Torsional Sﬂffness(a) — PROGRAM MFYDCP

Modular Ratio Depth of Bedjoint Crack(b)
EyiEm d/6 l d/3 d/2
1.0 0.855 0.800 0.766
2.0 0.858 0.805 0.774
5.0 : 0.869 " 0.826 0.806

(a) Torsional stiffness of cracked brickwork relative to uncracked
brickwork with the same modular ratio. Brick modulus
20.0 x 10°MPa for all cases.

(b) Perpend and bedjoint cracks on same pane! face (Section 6.2.3.3)

Table 6.7: Torsional Stiffness of Cracked Brickwork

6.3 [EQUATION OF EQUILIBRIUM AND LOAD-DEFLECTION RELATIONSHIPS
FOR A PLATE OF VARYING THICKNESS

6.3.1 The Equation of Equilibrium

The coordinate axes shown on an element of a plate of varying
thickness of dimensions dx by dy in figure 6.15(a) and the bending
moments and shear forces shown iln figure 6.15(b) define the positive
sign conventions used throughout this section. (Note that the axis
system differs from the set of axes used in Section 6.2.) T‘he middle
surface shown in figure 6.15(a) is defined so that it is al\&'ays at
the mid-distance between the negative-z and positive-z faces of the
element. The in-plane resultant forces (figure 6.15(b)) are assumed
to act at the middle surface at the element boundaries.

The equation of equilibrium for the element shown in figures

6.15(a) and 6.15(b) is —



261.
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Figure 6.15(a): Geometry of
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Figure 6.15: Varying Thickness Plate Element
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azMx 52 azMy 520 52t
—_— 5 + + + — = —[atN (= * 35—~
9% % By (Mxy Myx) 3y [a Nx( 3% 23x )
2w , A%t dw? , At? -
+ —t 37 —_—
Ny( Ay * 2 3y ). i Z'ny(ax Ay Zaxay)] (6.9)

in which Mx is the moment per unit width of plate associated with
normal stresses in the X direction
My is the moment per unit width of plate associated with
normal stresses in the Y direction
Mxy and Myx are the moments per unit width of plate
associated with shear stresses paraliel to the X-Y
plane
Nx is the normal force per unit width of plate in the
X direction
Ny is the normal force per unit width of plate in the
Y direction
ny is the shear force per unit width of plate parallel
to the X-Y plane
q is a uniformly applied pressure on the z-faces in
the positive-z direction

1 is the element thickness.

Equation (6.9) is derived in Appendix F. 1f the element thick-
ness is constant, equation (6.9) reduces to the plate equation (3.73)
in Section 3.4.4, provided that account is taken of the different

definitions for positive twisting moments.
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6.3.2 Constitutive Relationships

Equation (6.9) can be applied to a plate element of varying
thickness (figure 6.15(a)) when subjected to the forces shown in
figure 6.15(b) irrespective of the material properties of the plate.

Timoshenko(nz)

described the analysis of a rectangular plate,
isotropic in its material properties but with varying thickness (Section
3.4.4), and showed that, provided there was no abrupt change in plate

thickness, the expressions for bending and twisting moments were

similar to the equations for an isotropic plate of constant thickness,

viz:
,_ 32W 32W y
M>< = —D(W + \’—372) (6.10(a))
B 22w 32w
My, = _[)(._3_}72 + vy ) (6.‘10(b))
M = M = _D(1_\;)._31!V. (6.10(c))
Xy y X Ix3dy

in which Mx’ M M and Myx are defined as in equation (6.9)).

y’' Xy \
D is the plate stiffness = 1—2E(tT:—V—zT (6.10(d})

in which E is Young's Modulus for the isotropic plate
t is the plate thickness which varies throughout the '

plate

v is Poisson's ratio.

Timoshenko also reviewed the analysis of anisotropic plates and
suggested that the relationships betweén the stresses and strains for
the case of plane stress in the X-VY plane could be represented by

the following equations —
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= ' "

o El.e, + E'.e (6.11(a))
o =8 E'. + E". 6.11(b
, =y e (6.11(b))
Ty = G,y (6.11(c))

in which Ox is normal stress in the X direction
cy is normal stress in the Y direction
Txy is shear stress parallel to the X-Y plane
ex is normal strain in the X direction
ey is normal strain in the Y direction
ny is shear strain parallel to the X-Y piane

E!
X

’

s E}', and E'" are constants related to the elastic
moduti E and E and Poisson's ratios Vv and
x Y Xy
v
y X

G is the shear modulus.

The inverse formulation of equations (6.11) is —

o o
“x “E. " %E, Sle
x y
g o
€ 2 Y _v &2 ')
y Ey yxEx (6.12(b))
Ty
ny = G (6.12(c)
In equations (6.12), five constants, E_, Ey’ G, Yy and Vyx

are needed to describe the elastic properties of the material. However,
Timosehnko showed that only four of the constants are independent.

As in the analysis of brickwork walls and columns of varying
thickness(96)’(124), with reference to figure 6.15(a), it may be
assumed that plane sections normal to the z-face in which oy stresses

are compressive remain plane throughout bending. Equations (6.12)

can be used to obtain constitutive ~elationships similar to equations

(6.10), that is!112)
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X 3w 9w
Ma T " et VkyavT (6.13(a))
- . 3 9 .
X ]2(1 \)xy\)yx) X TxXy 9y
E_.t° 2 ,
- A ) _F.l_w N .3 W e [
My 12(1-v v ) (ay" VN v (6.13(b})
Xy yX '
_ _ G.t° 32w 7
My = Myx = 7 76 "xay (6.13(c))

in which w is the displacement of the z-face in which stresses,

o , are compressive.

As an extension of equations (6.13), modulus functions Ex(t),
Ey(t) and G(t) can be derived (Appendix F) which equate the moment-
rotation characteristics of a plate of varying thickness to those for

real brickwork, so that equations (6.13) become:

M, = —12(E,>f(\,tx);.i;x}.(:;‘f + vx9%¥) (6.14(a))
w o Ey(.t).ta .(azw 'azw)
y IZU-\)Xy.\)y_x.) dy? yX 3x? (6.14(b))
and instead of equation (6.13(c)),
(Mo tM, ) = --2G(té"3 - a‘i:;"y (6.14(c))

The functions Ex(t), Ey(t) and G(t) are described in Appendix F.

Equations (6.14) for an equivalent plate of varying thickness
lead to the calculation of the deflections of a real brickwork panel.
The thickness of the equivalent plate at any pos'ition in the panel
can be calculated from the effective eccentricity of the vertical
compression force in the real brickwork. f the effective eccentricity
of the resultant vertical load 'is greater than d/6, the brickwork is

assumed to be cracked on the bedjoints at that point. The equivalent
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plate thickness is less than the panel thickness, d, and can be
calculated as follows.
The magnitude of the bending moment, My’ about the equivalent

plate middle surface is given by

M =
I, |

(6.15(a))

in which Ny is the resultant compressive vertical force

t is the equivalent plate thickness.

From equation (6.14(b)),

E (t).t3 2 2
3w I°w
M o= - Y sl = (6.14(b))
y 12(1—vxy.\)yx) 3y yX 93X

Substitution for My in equation (6.15(a)) leads to the result —

) N |1z
t = m‘(1—\)xy.\)yx'). —C——- (6.15('3))
Yy Yy
. : o, 8%w %w
in which Cy = (-a—y—z- + Vyx'—a'"x'r)
N
and Y| is the absolute value of the quotient (Ny/Cy).
Y

If the resultant vertical load in the brickwork acts within the
kern region, the brickwork is not cracked on a bedjoint and the
equivalent plate thickness is equal to the panel thickness, d.
Equations (6.9}, (6.14) and (6.15) can be solved by an iteration tech-

nique described in Section 6.4.
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6.3.3 Finite Difference Formulation

Consider a wall panel supported on four sides and subdivided
into a uniform rectangular finite difference mesh as shown in figure
6.16. In finite difference form; with central differences for bending
moments Mx and My and an averaged first central difference for
twisting moment terms (Mxy+Myx)’ equations (6.14) at node I in figure

6.16 become —

E_(t).t?
X't w(m-1,n) - 2w(m,n) + w(m+1,n)
Mx(” - 12(1—vxy.vyx)' 1
oy pmast) o Zemn) 2 wlmasl)) o (sate(a))
E (t).t°
- y qwlm,n-1) - 2w(m,n) + w(m,h n+1)
My(I) S 12(1—vxy.vyx) [ (L) -
+ vyx.w(m—1,n) - i\;v(m,n) + w(m+1,n)] (6.16(b))
(MM ) (1)=-2- S
Xy yX ©
[w(m+1,n+1) - w{m=1,n+1) = w(m+t,n=-1) + w(m-l,n—1)] (6.16(c))
4 f? )

The equilibrium equation (6.9) at node T in figure 6.16 can be
expressed in finite element form by replacing the partial differential
terms with the following expressions —

82Mx Mx(m—1,n) - 2Mx(m,n) + Mx(m+1,n)
5z 17 (6.17(a))

(Mx +Myx)(m+1,n+1) - (Mxy+Myx)(m—1,n+1)

32 : vy
Ix By(Mxyi-'Myx) ) 4 Qb*

(M +M  Y(m+1,n-1) = (M__+M ) (m-1,n-1)
Xy " yXx s oS . (6.17(b})
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(n-1)
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Figure 6.16: Finite Difference Mesh
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82My My(m,n—l) - 2My(m,n) + My(m,n+1)

(6.17(c))

ay? (at)
fw , 193°%t, w(m-1,n) = 2w(m,n) + w(m+i,n)
Nolaxz + aggn) = NI . ’
5 t (m=-1,n) - 2t (zm,n) + t (m+1,n) (6.17(d))
2%
2w 1 a2t . w(m,n-1) - 2w{m,n) + w{m,n+1)
Nygge + zgyr) = Nl (@2)*
t (mri-1) - 2t (m,n) + t (m,n+1)
. e (6.17(e))
2 2
3w 1 3t
2ny(3x3y Tz axay)
« 2N [w(m+1,n+1) ~ w(m=1,n+1) = w{m+1,n=1) + w(m-1,n-1)
xy© 4 p*
+ t(m+1,n+1) - t(m—1,8n5;”1z} - t{m+1,n-1) + t(m-1,n-1) (6.17())

6.3.4 Boundary Conditions

The boundary conditions considered in this thesis for slender
brickwork panels are shown in figure 6.17. The panel is simply-
supported on all four sides and the load eccentricity, e, is the same
at th.e top and the base of the panel. The compressive force, W per
unit length of panel, is a uniform load per unit length of wall so

that the forces in equation (6.9) in Section 6.3.1 are —

N = 0

X

N = -W 6.18
y ( )
N = 0

Xy

Equation (6.9) becomes, therefore,

azM>< 52 3tMm
ax 2 £ 9% 3y (Mxy+Myx) i y?
~ a%w 1 9%t .
= -q + W(ayz + '2—8y2) (6-19)
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The solution of equation (6.19), in a finite difference formulation,
can be obtained using the grid shown in figure 6.18.

The number of rows and columns of finite difference points can
be wvaried with the number of rows different from the number of
columns. At the row of nodes, j=2 in figure 6.18, the rﬁoment equations

(6.16) in Section 6.3.3 become —

r
0 for ii=2,7
-E_(t).t° . :
M (1,2) = ) i)y [ gy for i3 t0 6 (6.20(a))
Xy yx

(
0 for i=2,7

My(i,Z) ={
: W.e for 0 <e < d/6
-Ey(t).t3

12(1—\>>.<:y.vy'><

(.11)+ (-;3) -
AR €

(£ - e) for d/6 <e < d/2

=
(N1 [N

“~

for i=3 to 6

(6.20(b))

(M><y + Myx)(i,Z) =

NHJ%MHLQ—wUJJ)—MHhH+wU4JH

= 20 6 4921

for i=2 to 7 (6.20(c))

The displacements of the fictitious nodes on row i=1 can be

calculated from equations (6.20(b)), so that —

(
0 for i=2,7
12(1—\)>< .V ><),(stL)Z.W.e

-w(i,3) ~ ——E—B(Ld—jy-a—;-————-— for 0 < e < d/6 for

y .
w(i,1) # -
’ 12(1-—\:}( .V x).(m,)z.(v—zv(d/?,_e)) i=3

w(i,3) - ot M L : for d/6 < e < d/2

[-_y(t).t to 6

(6.21}
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The displacements for nodes (1,3) and (8,3) are also required
for the calculation of twisting moments (Mxy+Myx) on row j=2. At the

simply-supported boundaries, M_(2,3) and Mx(7’3) are zero, so that,

5

from equation (6.16(a)),

w(1,3) -w(3,3)

(6.22)

w(s,3) -w(6,3)

Equations similar to equations (6.20), (6.21) and (6.22) can also

be derived for nodal row j=7 (figure 6.18).

The twisting momeénts (M + M ), at the pane! corner
xy o Lyx'’
nodes (2,2), (7,2), (2,7) and (7,7) are also required, which implies

that the displacements of fictitious corner nodes (1,1), (8,1), (1,8)
and (8,8) must be calculated (equation (6.16(c))). The displacements
of the fictitious corner nodes may be approximated by quaéir‘atic extra-

polation of the edge fictitious nodes, as shown in figure 6.19. On the

row j=1, it can be shown that for quadratic extrapolation on fictitious
nodes —

w(1,1)x = w(4,1) - 3w(3,1) (6.23(a))
Similarly, on the column i=1, it can be shown that

w(1,1)y = wi(1,4) - 3w(1,3) (6.23(b})

The mean of the two solutions w(1,1)>< and w(1,1)y may be used
in the calculations for (Mxy+Myx) at the panel corner node (2,2), so

that —
wi1,1) = 1[w(4,1) = 3w(3,1) + w(1,4) = 3w(1,3)] (6.24)

with similar expressions for displacements w(8,1), w(1,8) and w(8,8).

The displacements, w, on the four panel edges are zero.
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6.4 SOLUTION PROCEDURE

Figure 6.18 (Section 6.3.4) shows a brickwork panel subdivided
into a 5 x 5 finite difference mesh in which the grid lines do not
necessarily coincide with the mortar perpends and bedjoints. The sub-
division is different from that for a brick wall (figure 4.15, Section
4.4) in which the nodes were specified to be at the mid-height of the
mortar joints. The large number of mortar joinits in a panel prohibited
the placement of a ncde at every joint so that a grid size was selected
(Section 6.5) which gave a compromise between the accuracy of the
solutions and the time taken for computation.

The equilibrium equation (6.19) was applied at al! the internal
nodes in the panel, that is, all nodes excluding the ncdes on the
panel boundaries. At any node at which either perpend cracking or
bedjoint cracking occurred, the equations for the bending and twisting
moments changed with the depth of the bedjoint crack. The set of
simultaneous equations generated for all the internal nodes, plus the
equations at the boundaries, were non-linear and direct solutions could
not be obtained. The method proposed for the sclution of the equations
was similar to the technique used for solving the non-linear equations
for a brick wall (Section 4.4). The vertical uniform load, W, was
applied incrementally and at each load increment, a Newton-Raphson
method was used to find a consistent set of values for the nodal
deflections, w, and the nodal effective thicknesses, t, such that the
equilibrium eéuation (6.19) was satisfied to within a prescribed error
at all nodes. As the ratio of the node displacement increments to load
increment increased, the magnitude of the load increment was
decreased. Fanel buckling was deemed to have occurred if no config-

uration of displacements could be found for the incremented load.



274,

Calculations were started with a small value of W and all node
displacements, w, were set to zero. At each internal node, the effective
panel thickness was calculated by equations (6.15) and the modulus
functions Ex(t), Ey(t) and G(t) were evaluated (Appendix F). The
bending moments M>< and My were calculated at atll iﬁternal nodes. and
the twisting moments, (M)< +Myx),were calculated at all internal nodes
and at all nodes on the boundary (Sections 6.3.3, 6.3.4).

An error term, given by rearranging equation (6.19), was

calculated at each internal! node I(m,n) as —

BzMx(m,n)

2 (M +M_ ) (m,n)

= +
&(m,n) ax? IXAY XY yX

¢ 3:M (m,n)
Y

32w 132t)

+ = ~ +
q W(ayz

ay2 (6-25)

In finite difference form (equations (6.17), figure 6.18), equation

(6.25) is —
Mx(m—l,n) = 2Mx(m,n) + Mx(m+1,n)
g(myn) = %
L g _ _ y
3 [(Mxy+Myx)(m+1,n+1) (Mxy+Myx)(m 1,n+1)
4082
B (Mxy+Myx)(m+1,n—1) - (Mxy+Myx)(m—1,n—1)
4Lat?
. My(m,n—1) - 2My(m,n) + My(m,n+1)
(at)?
w{m,n-1) - 2w(m,n) + w(m,n+1)
+ _ » " ) 3
q - W[ @)
“t(m,h-1) = 2t(m,n) + t{m,n+1)
The error term, equation (6.26), is a measure of the out-of-

balance of force in the z-direction and is related to the displacement
and force resultants in the equilibrium equation (6.19) at node I(m,n)
(figure 6.18). The error terms at all rrodes were grcuped into an error
vecter {&}. In the solution procedure, if no component of {f} exceeded

a limit, selected to be 1.0 x 10—6 (Newtons), the displaced shape of
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of the panel was assumed to be in equilibrium with the external

forces. |If any component of {f} exceeded the limit of 1.0 x 10'_6
(Newtons), a Newton-Raphson method of correction was applied until
the desired accuracy was reached (Section 4.4.3).
The correction to displacements was calculated, for the kth
iteration, by the equations
[J], awy = -{ey, (6.27)
{W}k+1 {w}k i {Aw}k (6.28)

In equation (6.27), [J] is the "Jacobian" of {£} and is a square
matrix formed by the partial derivatives of the components of {f} with
respect to the components of the solution vector, {w}. Elements of the
"Jacobian" matrix were evaluated numerically by incrementing succes-
sively the solution vector, {w}, and calculating the increments of the
error vector, as described in Section 4.4.3. Generally, the largest
component of the error vector {g} was reduced to a value less than
the selected limit in less than ten iteration cycles. Once equilibrium
was attained for a specified load, W, the load was increased and new
displacements were calculated using the iteration technique. A further
increment in load was then applied, and so on, until a load was
reached for which no displacements were calculated after one hundred

iterations. The pane!l was deemed to have failed by buckling at that

load.

6.5 RESULTS OF THE NUMERICAL METHOD

PROGRAM PANEL1, documented in Appendix G, has been used to
calculate the buckling failure loads of a range of brickwork panels
simply-supported on four sides. In this section, it is assumed that

the material strength does not affect the failure mode of the panels;
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brickwork panels which fail as a result of material failure are
examined in detail in Chapter 8.

With reference to figure 6.17, the load is applied with equal
eccentricity top and bottom and the panel length-to-height ratios vary
between 1.0 and 10.0. The brick elastic modulus is arbitrarily 16 x
10°MPa in all cases and the mortar is assumed to be linear with a
modulus of 8 x 10°MPa. The lateral pressure, q, on all panels is
assumed to be zero. Buckling failure loads were calculated using iwo
finite difference grids, 6 by 6 and 8 by 8 (figure 6.18), and the panel’
buckling failure load was calculated for each case by using a "delta-
squared extrapolation" on the two sets of results. The resuliing
correction on the buckling loads for an eccentricity of d/12, calculated
using an 8 by 8 grid, was approximately 3 percent for length-to-height
ratio of 1.0 and approximately 1.5 percent for an {/h of 10.0. The
corrections were similar for eccentricities of d/4 and d/1000.

The calculated results, shown in figure 6.20, show that the
buckling failure load decreases as the pane! aspect ratio, £/b,
increases and that for panels( with aspect ratios greater than 5.0,
the buckling failure load is within 30 percent of the buckling load
of a wall of similar ‘height supported top and bottom (Table 6.8).

in figure 6.20, it is evident that the buckling failure load of
a brickwork panel decreases with increasing load eccentricity and that
the failure load of a brickwork panel under near-axial load (d/1000)
is approximately equal to the failure load calculated using equation
(3.79) derived for non-cracking panels of uniform thiékness(1]2). This
shows that the buckling failure loads of br‘ickwor‘l; panels subjected

to vertical loads which are close to axial may be calculated by

PROGRAM PANELT1.
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Figure 6.20: Buckling Failure Loads of Cracked Brickwork Panels



Calculated Buckling Failure Load (N/mm)
=oad (PROGRAM PANEL1)
i 5 E
Eccentricity Aspect Ratio #/h (PROGRAM P.I' R1)
Wall/Column
5.0 10.0 :
d/1000 631 594 577
d/12 375 357 342
d/4 127 102 95

Table 6.8: Buckling Loads of Brickwork Panels and Walls

6.6 SUMMARY AND CONCLUS!ONS

A method of analysis has been proposed in which the deformations
of a brickwork panel supported on four sides and loaded by in-plane
vertical compression forces may be calculated by replacing the brick-
work with an equivalent plate of varying thickness. The bending and
" torsion stiffnesses of the equivalent plate have been calculated by
analysing a brickwork module using a three-dimensional finite element
program (PROGRAM MFYDCP) and the results have been incorporated
into finite difference formulations of the plate equations in PROGRAM
PANELT.

The finite difference method permits the analysis of panels with
various boundary conditions by altering the constraints on bbundar‘y
nodes and the fictitious nodes generated outside the panel boundaries.
The scope of PROGRAM PANEL1 may be extended to include a range
of boundary conditions as well as initial imperfections in the panel,
as in PROGRAM PIER1 (Appendix C).

PROGRAM PANEL1 has been applied to the analysis of brickwork

panels constructed of 110mm x 65mm x 230mm bricks on edge, as in
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the experimenta! tests described in Chapter 7. The calculated buckling
failure loads for brickwork panels, summarized in figure 6.20, have

not been obtained previously.
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7. EXPERIMENTS ON BRICKWORK PANELS

7.1 INTRODUCTION

A series of experiments was carried out on 'small brickwork
panels designed to check the finite element calculations described in
Section 6.2.3. In addition, a full scale panel was tested as a par-
ticular case study in order to compare the predictions of the finite
difference PROGRAM PANEL1 with actual panel behaviour.

The small brickwork panels were subjected to bending par‘aliel
to the bedjoints and the moment-curvature characteristics were
determined botrin before as well as after cracking on the perpends had
occurred. An axial vertical stress was applied to check the effect of
axial stresses normal to the bedjoints on the behaviour of brickwork
in horizontal bending.

PROGRAM PANEL1 was tested by loading a slender, simply-
supported -brickwork panel eccentrically top and boitom with a uniform
vertical load. The development of the test apparatus constituted a
significant part of the experiment because of the scale of the test and
the quantity of data needed to obtain a meaningful interpretation of
the structura! action. Details of the test apparatus are presented and
comparisons are made between measured deflections and the values

calculated using PROGRAM PANEL1.

7.2 BRICKWORK PANELS SUBJECTED TO BENDING PARALLEL TO THE
BEDJOINTS

Six brickwork panels, each six bricks long by five courses high,

were constructed to test the following —
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(95)

1. Page's proposition that shear deformations in brickwork are
not sensitive to the degree of compression normal to the bedjoint.

(69) that the effective stiffness

2. The proposition by Base and Baker
of uncracked brickwork subjected to bending parallel to the bed-

joints may be calculated using equation (6.2).

3. The ratios of stiffness after cracking to stiffness before cracking
in the perpends, as summarized in Table 6.3.

(44) (88)

4. The method of calculation proposed by Sahlin and Royen
which may be used to determine whether failure will occur by

torsional! shear failure on the bedjoints or by tensile failure in

the bricks.

All bricks were selected to be approximately 230mm x 110mm x
65mm and were laid on-edge to give the panels a height-to-thickness
ratio of 9.1. The mortar was 1 cement:1 lime:6 sand by volume with
a water—to-cement ratio of 1.41 by weight. All bricks were solid and
were selected to have no visible chips or cracks and were laid in
a saturated surface-dry = condition. All panels were cured in polythene
sheeting for 21 days and subsequently were cured in ambient con-
ditions.

(116)

Three bricks from the batch were tested in compression using
pairs of 30mm tong strain gauges to determine the strains., The brick

elastic modulus results are shown in Table 7.1.

Elastic Modulus
Brick No. (x10°MPa)
1 21.9
2 21.7
19.6

Table 7.1: Brick Eiastic Modulus
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The mean brick elastic modulus was 21.1 x 103MPa with a
coefficient of variation of 4.9 percent.

Six mortar prisms 25mm x 25mm x 50mm were cast for each of
the six panels constructed and one prism from each mortar batch was

tested in compression to measure the mortar elastic modulus (Table

7.2).

Mortar Prism Elastic
Faite: | INGk Modulus (x10*MPa)

1 12.1

2 12.5

3 11.6

4 13.4

5 12.5

6 11.4

Table 7.2: Mortar Elastic Modulus

The mean mortar prism elastic modulus was 12.3 x 10*MPa with
a coefficient of variation of 5.4 percent.

Six brickwork prisms, each four bricks high, were constructed
with the panels and were tested in axial compression to failure between

4mm sheets of plywood (Table 7.3).

Prism No. Axial Stress at Ratio(Me‘—?m Elastic MOdqus(a))
Failure (MPa) Failure Stress
L 52.3 381
2 48.7 5
3 48.9 i
4 51.3 388
5 49.7 401
6 49.4 .

(a) Mean Elastic Modulus Values calculated from Tables 7.1 and

7.2 and equation (5.4).
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The mean compression failure stress was 50.0MPa with a co-
efficient of variation of 3 percent and the mean ratio of mean elastic
modulus to failure stress was 398 with a coefficient of variation of
3 pelr'cent.

Each panel was set up in the test apparatus shown in figures
7.1 so that a vertical axial load could be applied simultaneously with
a uniform bending moment parallel to the bedjoints. Initially no
vertical load was applied to the panel and the horizontal force at
each l.oading point (figure 7.1(a)) was increased by increments to
approximately 0.75KN. This produced a bending moment parallel to
the bedjoints of approximately 350 x 10?Nmm which was insufficient
to cause cracking in the perpends. The out-of-plane displacements of
the panel were measured using linear voltage displacement transducers
(L.v.D.T.) constructed to a multi-channel logger and the three
curvatures (top, centre and bottom) in the horizontal plane were
calculated at each load increment by using the computing facilities
in the logger. The three curvatures were found to be within 5 percent
of one another. A plot of applied moment against horizontal! curvature
is shown in figure 7.2(a) for curvature calculated on the horizontal
centreline.

Subsequently, the panel was subjected to bending parallel to
the bedjoints simultaneously with a vertical axial stress of 1.3MPa
applied by the four hydraulic jacks (figure 7.1). A wvertical stress
of 2.6MPa was then applied simultaneously with the horizontal bending.
The relationships between the applied moments and the panel curvatures
in the horizontal plane, shown typically in figure 7.2, are summarized

in Table 7.4.
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Applied Vertical Stress (MPa)
Panel No.

Zero 1.3 2.6
1 325 346 337
2 232 232 266
3 303 328 339
4 272 277 268
5 281 310 317
6 293 299 282

Table 7.4: Ratio of Applied Moment: Curvature in

Horizontal Plane (x10°Nmm?)

The results in Table 7.4 indicate that, statistically, the stiffness
of the brickwork panels, when subjected to bending paralliel to the
bedjoints, was independent of the magnitude of the applied axial stress
normal to the bedjoints. The mean effective stiffness of the panels
was 295 x 10°Nmm? with a coefficient of variation of 4.7 percent. The

(69) proposed equation (6.2)

stiffness calculated using Base and Baker's
with the material properties summarized in Tables 7.1 and 7.2 is
280 x 10°Nmm ?, approximately 5 percent less than the experimental
value.

Each panel was then loaded so that the bending parallel to the
bedjoints caused cracking in the perpends. The moment-curvature
relationships, shown typically in figure 7.3, are summarized for the
six panels in Table 7.5.

A one-way analysis of variance on the results in Table 7.5 shows
that the stiffness ratios SLOPE3:SLOPE1 and SLOPE4:SLOPE1 are

statistically the same, but are different from the stiffness ratios

SLOPE2:SLOPET.
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Ratios of Slopes from Moment-Curvature Graphs a)
Panel No.
SLOPE2:SLOPE1 SLOPE3:SLOPE1 SLOPE4:SLOPEN
1 0.65 0.86 0.81
2 0.70 0.79 0.78
3 0.67 0.89 0.84
4 0.85 0.76 0.78
5 0.68 0.78 0.77
6 0.66 0.90 0.88

(a) Definition of SLOPE1, etc. is shown in figure 7.3.

Table 7.5: Relative Horizontal Stiffnesses of Brickwork Panel

The mean of the stiffness ratios SLOPE3:SLOPE1 and SLOPE4:
SLOPE1 is 0.82 with a coefficient of variation of .6 percent and the
mean of the stiffness ratios SLOPE2:SLOPE1 is 0.70 with a coefficient
of variation of 10 percent. The difference in the groups of stiffness
ratios may be explained by an observed non-elastic behaviour of the
panels in which the perpend cracks appear not to close completely
as the panel is uniocaded (figure 7.3). 1t is also significant that for
the first loading, the panels were loaded from the uncracked to the
cracked condition whereas for the subsequent tests, the panels were
cracked throughout the entire loading range. The stiffness ratio com-
puted for the panels as 0.77 (Table 6.3, Section 6.2.3.2) compares
favourably with the resulis in Table 7.5, noting that the assumption
of zero tensile bond made in the calculations corresponds more closely

with the behaviour of a panel having pre-existent perpend cracks than

that for a panel which is initially uncracked. It should be noted also
that the experimentally-derived ratio proposed by Lawrence and
Mor‘gan“z) (equation (3.53)) differs from the results summarized in
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Table 6.3 and 7.5 because the tests were conducted on panels of brick
laid on flat with a geometry different from that of the panels in the
present investigation.

The bending moments which produced failure and the maximum

bending stresses (calculated on a gross panel section) are summarized

in Table 7.6.
Failure Moment Failure Stress N
Panel No, (x10 °Nmm) (MPa)
1 1.40 3.37
2 0.90 2.17
‘3 1.13 2.72
4 1.08 2.60
5 0.95 2.29
6 1.17 2.82

(a) Failure stress calculated on gross panel section.

Table 7.6: Strengths of Brickwork Panels in

Horizontal Bending

The mean failure stress was 2.66MPa with a coefficient of varia-
tion of 14.7 percent. Failure occurred in the panels with the formation
of a vertical crack running through both the mortar perpends and
the bricks (figure 7.4). An alternate mode of failure, proposed by'
Sahlin(M;) and Royen(88) in which torsional! shear failure occurs on
the bedjoints, would have required a bending stress in the panel of
3.2MPa (g =.0.5 in equation (3.43), Section 3.3.4.2). The mode of
failure in the panels (figure 7.4) was thus not inconsistent with
Sahlin's and Royen's conclusions. The position of the crack formation

at a perpend-bedjoint intersection agrees with results obtained using

PROGRAM MFYDCP (Section 6.2.2).
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The test results presented in this section support the propositions

(95) and Base and Baker‘(69)

by Page (as outlined at the beginning
of this section) and show that the stiffness ratios, calculated by
PROGRAM MFYDCP and summarized in” Table 6.3 may be used to calculate

the behaviour of complete brickwork panels.
7.3 A SIMPLY-SUPPORTED PANEL IN TWO-WAY. ‘BENDING

7.3.1 Introduction

A full scale experiment was carried out on a brickwork panel
approximately 3600mm long by 2400m high. The experiment was designed
specifically to compare the theoretical behaviour predicted from
PROGRAM PANEL1 (Appendix G) with test observations. For this purpose,
idealized edge conditions and loading patterns were chosen rather than
the less well identified conditions and patterns found in practice. The
experiment may thus be regarded as a particular case study under-
taken to indicate the order of accuracy that might be expected from
the calculations.

The experimental apparatus was designed to meet the following

criteria.

(a) The load required to cause failure should be achievable with the

test facilities available.

(b) The panel should be free to rotate at its four supported edges
with no out-of-plane movements at the edges (that is, simply-

supported).

(c) The load should be applied uniformly along the top and bottom
edges with no load-shedding towards the vertical edges as the

out-of-plane deflections increase.
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In order the make the test results as extensive as possible, the

test panel itself was designed —

(a) To avoid excessive vertical compression (causing vertical splitting)

so that failure might occur from lateral buckling.

(b) To ensure that the mortar would not be stressed into the non-

linear range in a state of triaxial compression.

Preliminary .calculations showed that a panel 65mm thick loaded
at a nominal eccentricity of 20mm along both top and bottom edges’
might comply with the above conditions. Details of the test apparatus
provided to meet the design criteria are given in the following

Il

sections.
7.3.2 Experimental Apparatus

7.3.2.1 Panel support structure and leading frame

The elements of the steel support structure and loading frame
are shown in figures 7.5(a) to (f). The support structure was erected
on four fabricated steel bases attached to a 1.5 metre thick concrete
strong floor by 38mm diameter high strength bolts (figure 7.5(al).
The superstructure, reaction and support fr‘émes, consisted of lengths
of modular channel section system (300m x 90mm x 10mm thick) designed
for use on the concrete strong floor, with all lengths interconnected
by high strength friction grip bolts (figure 7.5(b)). The loading frame
consisted of two steel beams contained by the modular channe! section
superstructure (figure 7.5(b)). The base beam was an |-section
stiffened at support points by vertical plate stiff'ener*s and the top
beam was a boxed steel beam fabricated from two lengths of rolled
steel channel section welded toe-to-toe.

In order to provide for the design loading condition, hydraulic

jacks were fabricated from 8&00mm lengths of rolled steel channel, over
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the toes of which 1.2mm mild steel plate was welded, to form low-
profile units (figures 7.5(b), 7.5(d). The ends of the jacks were sealed
by welding in 6mm steel plates. Eight jacks were used to load the
panel, four at the base and four at the top (figure 7.5(a)). The load
was applied to the panel eccentrically through lengths of mild steel
rod offset nominally 20mm from the structure centreline (figures 7.5(b),
7.5(d)). The centreline of the jacks was thus coincident with the line
of application of the load to the panel. Preliminary tests on a procto-
type jack showed that the jack top plates could extend by plastic
yielding under load, so lengths of 16mm thick plate were placed
between the 1.2mm plates and the 22mm diameter steel loading rods
(figure 7.5(d))'. To retract the jacks after the hydraulic pressure was
released, six bolts per jack passed through this top plate and were
welded to a base plate under each jack (figures 7.5(c), (dh)).

The panel edges were restrained from out-of-plane displacement
by building the brickwork into lengths of rolled steel channel section.
The lengths of channel were, in turn, connected to the main support
frame by lengths of steel rod, the diameter being determined by cal-
culating the maximum expected lateral force at the panel edges. The
resistance to rotation of the channel/rod edge support system was
measured to be of the order of only 2.5 percent of the calculated
stiffness of the panel against flexural rotation at its edge. The edge
condition was thus considered to be essentially simply-supported. The
position of the applied load relative to the panel middie surface was
fixed additionally by welding lengths of square-section steel to the

top and bottom edge channel supports (figure 7.5(d)).
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7.3.2.2 Panel construction

All bricks used in the panel were solid extruded wire-cut clay
bricks selected to be approximately 230mm x 1i5mm x 65mm (soiid
bricks of width 110mm were not available at the time of construction).
A random sample of twelve bricks from the batch was measured giving
mean brick dimensions of 231mm x 115mm x 65.4mm. The panel was
constructed by laying nineteen courses of brickwork with the bricks
on edge. The mortar was 1 cement:1 lime:6 sand by volume with a
water—to—cement ratio of 1.29. The bricks were laid in a saturated
surface -dry condition and each course of brickwork was laid against
a double string line as shown in figure 7.6. The brickwork was built
into the base channels and vertical edge support channels using the
mortar as grout.

Six brickwork prisms, each of four bricks, were constructed to
test the brickwork compressive strength. Six prisms, each of six
bricks, were also built to test the brickwork bond strength of the
bedjoints. Three mortar prisms 25mm x 25mm x 50mm were cast with
each of the ten mortar batches used in the panel construction. All
the brickwork was cured in polythene sheeting for 14 days after which
the top edge channels were grouted to the brickwork using a mortar
of 1 cement:3 sand by volume with a water-to-cement ratio of 0.53
by weight. The grout thickness above the brickwork was approximately
15mm (figures 7.7(a), 7.7(b)).

The measured height of the completed panel was 2369mm between
the top and bottom edge restraints and the length v'vas 3605mm (figure
7.5(a)). The mean measured eccentricity of the load at the base was
20.1mm and the top was 20.8mm; the overall mean of the measured
load eccentricity (for use in PROGRAM PANEL1) was 20.5mm with a

coefficient of variation of approximately 5 percent.
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7.3.2.3 Jack calibration

Each of the low profile test hydraulic jacks (Section 7.3.2.1)
was calibrated by placing the jack in a compression testing machine
and displacing the thin plate by é prescribed amount by pressurizing
the fluid in the jack. The reaction force applied by the compression
machine was measured, and by taking sets of reaction force-jack
pressure-jack displacement readings, a series of calibration curves
for various values of thin plate displacement were obtained (figur‘e_
7.8). The curves for all of the eight jacks were closely coincident
and showed that the displacement of each jack must be known to
calculate the jack load. The displacements of the jacks were measured
throughout the panel load tests by using two dial gauges at the mid-

points of the long sides of each jack.

7.3.2.4 Instrumentation

Figure 7.9 shows the positions of strain gauges, dial gauges
and linear voltage displacement transducers (L.Vv.D.T.) installed to
measure strains and displacements in the panel under vertical load.
All strain gauges on the brickwork were of 20mm gauge length and
were fixed in pairs to opposite faces of the panel so that in-plane
strains and bending strains could be measured on the panel vertical
and horizontal centrelines and at one corner. 5mm gauge length strain
gauges were fixed to four of the 12mm bolts restraining the panel from
lateral movement so that the change in force in the bolts with chang-
ing vertical load could be measured. |

The out-of-plane displacements of the panel edges were checked
with eight L.V.D.T.'s and the displacements on the panel vertical and
and horizontal centrelines and at the panel quarter points were

measured using nine dial gauges. The dial gauges and L.V.D.T.'s
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were fixed to an independent rigid frame mounted on the concrete fioor
separately from the panel support frame.

The pressure in tlhe low~profile hydraulic jacks was menitored
by connecting all jacks to a manifold which in turn was connected
to a high output pressure transducer which was accurate to within
10KPa. The pressure was applied through a hand-operated high
pressure hydraulic pump and was read directly on a digital voltmeter.

All the strain gauges and L.V.D.T. were connected to a computer-
based data logger and the dial gauge readings were entered manually
into the data-collection program. All data was reduced by computer
as the test progressed to give a continuous assessment of the
experimental behaviour of the panel. Figure 7.10 shows schematically

the interconnections of all the instrumentation.

7.3.3 Brickwork Material Properties

Tests were conducted to determine the elastic moduli of the
bricks, the mortar and the brickwork. Six bricks from the batch were
tested in compression using pairs of 30mm gauge length strain geauges
to determine strains. The brick elastic modulus results are given in
Table 7.7.

The mean elastic modulus was 9.4 x 10°MPa with a coefficient of
variation of 23 percent.

Six mortar prisms, all from different mortar batches and chosen
at random, were tested in compression to measurc the mortar elastic
modulus (Table 7.8). Six prisms only were tested _bécause the effect
of any error in determining the mortar modulus on the overall moduius
of the brickwork is significantly less than the effect of error in

determining the brick modulus.
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Elastic Modulus
Brick No. (x10°MPa)
1 10.3
2 .6
3 .2
4 .0
5 13.6
6 .7

Table 7.7: Brick Elastic Modulus

Initial Tangent

Prism Batch No. Modulus (x10°MPa)

10.
10.

9.
13.
10.
13.

©C 0 O O W
c O v ® O

-—

Table 7.8: Mortar Elastic Modulus

The mean mortar prism elastic modulus was 11.2 X 10°MPa with
a coefficient of variation of 15 percent.

The ;fOL.JI"—br‘iCk—high brickwork prisms were tested in axial
compression and the axial shortening was measured across a height
of three bricks and three mortar joints. Elastic modulus values

calculated for the brickwork prisms are given in Table 7.9.
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Brickwork Elastic

Modulus (x103MPa)

Brickwork Prism No.

1 10.2
9.2

[0 2 NS 1 B N OS B N
@
wn

Table 7.9: Brickwork Elastic Modulus

The mean brickwork elastic modulus was 9.1 x 10°MPa with a
coefficient of variation of 7 percent. A brickwork modulus calculated
using the resuilts from Tables 7.7 and 7.8 in equation (5.4) is 9.5
x 10°MPa with a coefficient of variation of approximately 20 percent.
This value is consistent with the results in Table 7.9.

The six four-brick-high brickwork prisms were tested to failure
in axial compression between sheets of 4mm thick plywood. The
compressive strengths and elastic modulus-to-compressive strength ratios

are summarized in Table 7.10.

Brickwork Compressive Ratio(E|astic Modulus(a) 3
Prism No. Strength (MPa) Compressive Strength

1 25.1 406

2 27.6 333

3 25.7 346

4 25.7 33i.

5 28.7 331

6 23.9 351

(a) Elastic Modulus Values from Table 7.9.

Table 7.10: Brickwork Prism Compressive Strength
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The meah compressive strength was 26.1MPa with a coefficient
of variation of 6 percent and the mean ratio of elastic modulus to
compressive strength was 350 with a coefficient of wvariation of 8
percent. The ratio of elastic modulus to compressive strength of
brickwork is referred to in more detail in Chapter 8.

The six prisms of six bricks were tested for bond strength in
a two-point load test as shown in figure 7.11. The results of the tests

are summarized in Table 7.11.

Minimum Joint

Bond Strength (MPa)

Brickwork Prism No.

0.365
0.046
0.264
0.695
0.599
0.209

o n &~ W N -

Table 7.11: Brickwork Flexural Bond Strength

The mean minimum joint bond strength for the six brickwork
prisms was 0.363MPa. However, the scatter of results indicates that
for a 95 percent confidence limit based on six tests, the flexural bond
strength of the brickwork would be zero. The statistical analysis thus
indicates that the assumption of zero flexural bond strength made in

the theor‘eticall analysis (PROGRAM PANEL1) is not unreasonable.
7.3.4 Panel Experiment Results

A preliminary load test was conducted on the panel to check
the apparatus and instrumentation and it was found that the !ateral

displacements presented the best method of assessing the panel
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behaviour. The strain gauges showed that the load-strain behaviour
of the brickwork was linear at low load, but the measured strains
could not be compared with the theoretical values because of the large
var‘i'ation in elastic modulus values among the bricks and also within
the bricks themselves. Strain gauge readings on ten bricks in. the
panel (on the vertical centreline, figure 7.9) gave a mean elastic
modulus for the bricks of 11.5 x 10°MPa compared with 9.4 X 10°MPa
determined from brickwork prism tests (Table 7.7). The elastic modulus
determined from the panel tests was used for all calculations using
PROGRAM PANEL1 because the difference between the two test modulus
values was wi/thin one standard deviation from the mean of the prism
test results (Section 7.3.3) and the modulus determined from the panel
test was calculated from the larger sample.

After the preliminary test, the panel was loaded incrementally
to 55N per millimetre length of brickwork so that no debonding, or
cracking, would have occurred at the brick-mortar interfaces. All the
meastred load-deformation characteristics were linear throcughout the
lcad range. .

The panel was loaded subsequently in increments to a load of
approximately 170N/mm length of brickwork and progressive cracking
(brick-mortar debonding) was observed on loads greater than
approximately 70N/mm. Comparisons between experimental and the_oretica.!
lateral displacements at the panel centre and quarter-points (figure
7.12) showed that during this loading phase from the uncracked to
the cracked state, the measured lateral disptacements initially were
less than the calculated values (panel uncracked). However, once
cracking was initiated, the differences between the measured and

calculated dispiacements decreased. The test results in figure 7.12

showed that for loads less than approximately 130N/mm length of
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brickwork, the measured lateral displacements were consistently less
than the calculated values by approximately 15 percent at the panel
centre and by approximately 10 percent at the panel quarter-points.
This percentage difference is less than the coefficient of wvariation
of the brick elastic modulus, so that the agreement between the
measured displacements and the computed values may be regarded as
acceptable.

Once the load exceeded 130N/mm, some material non-linearity was
evident as shown by sudden increases in the strains at two of the
strain gauges. This material non-linearity, not incorporated into
PROGRAM PANEL1, resulted in deflections larger than calculated wvalues
(figure 7.12). '

The panel was unloaded and was then reloaded by increments
of approximately 140N per millimetre length to brickwork. The lcad
against central deflection curves for this test and the previous test
in which the brickwork was initially uncracked are shown in figure
7.13. The results showed that for the cracked panei, the change in
lateral displacement per unit load was approximately 20 percent greater
than that for the uncracked panel; for the cracked panel, the slopes
of the linear parts of the loading and unloading curves were approx-
imately the same. Calculations using PROGRAM PANEL1 showed that the
ratio of central displacements of cracked panel-to-uncracked panel
was approximately 1.11 compred with 1.20 found in the test. The
corresponding ratios at the panel quarter-points (figure 712) were 1.12
and 1.23 respectively. Further detailed research involving a number
of tests on the progressive cracking of br‘ickwot'"k is required to
ascertain confidence limits on these ratios.

The panel was loaded, finally, by increments to failure which

occurred at a load of approximately 185N/mm length of brickwork. This
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represented a total load on the panel of approximately 66 tonnes
(670KN). The load-displacement characteristics are shown in figure
7.14 and the crack pattern at panel failure is shown in figure 7.15.

Failure was initiated by the formation of a crack through the
bricks and along some of the mortar joints, at point 'A' in figure
7.15, which continued vertically through the brickwork to point '‘B'.
The load remained at approximately 10N/mm below the maximum lcad
and the cracking developed fur‘tHer' as the jack displacements were
increased. Final collapse, at approximately 175N/mm, was caused by
a lateral buckling failure of the central area of the panel acting
essentially as a column isolated by the two vertical cracks from the
vertical edge 'suppor-ts. The crack pattern at collapse (figure 7.15)
was approximately symmetrical about the panel vertical and horizontal
centrelines.

Figure 7.14 shows that the displacements agreed closely with
calculated values for loads up te approximately 150N/mm after which
non-linear material behaviour occurred. The deviation of the experi-
mental displacements from calculated values was less at the quarter-
points than at the panel centre (figure 7.14).

Contour plots of lateral displacements, plotted by the computer
during the experiment (figures 7.16(a) to 7.16(c)) showed that the
displacements were approximately symmetrical about the panel centre-
lines for the load values shown. By superimposing on one another
during the test the three plots shown in figures 7.16{a) to (c), it
was possible to confirm immediately that the relationship between load
and displacement was closely linear throughout the panel. As the !oad
was increased, a general non-linear behaviour in the panel became
evident by plotting the displacement contours and comparing them as

described above. Figure 7.17 shows that immediately prior to failure,
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Figure 7.15(a): East Face
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_Figur‘e 7.15: Crack Patterns in Brickwork Panel (refer to figure 7.5)



Figure 7.16(a): Lateral Displacement Contours for Load 27N/mm

(Contour Intervals 0.10mm)

Figure 7.16(b): lLateral Displacement Contours for Load 54N/mm

(Contour lnterval 0.20mm)
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Figure 7.16(c): Lateral Displacement Contours for Load 83N/mm

(Contour Interval 0.30mm)

Figure 7.17: Lateral Displacement Contours for load 178N/mm

(Contour Interval 0.90mm)
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the displacements were still approximately symmetrical about the panel
centrelines and also indicates that the load was approximately
symmetrical about the vertical centreline of the panel.

The cracking in the panel at. a load of 185N/mm length of panel
was associated with a tensile failure of the brickwork close to the
panel corners, both through the bricks and on the brick-mortar inter-
faces, caused by normal tensile stresses at approximately 45 degrees
to the bedjoints. The magnitude of the vertical load and its effective
eccentricity, combined with corner twisting moments, can cause sig—'

(112}

nificant normal tensile stresses close to the panel corners No

failure criterion for brickwork subjected to this combination of bending
and pure twilst is known to the author. However, an approximate
method using the results of PRQGRAM PANEL1 and the tensile strength
of a brick, as proposed by Hendr*y“zo), may be used to predict this
type of brickwork failure in the test panel as follows.

For a uniform vertical load W N/mm length of panel, the vertical

compressive stress in the middle surface of the panel i.s —
s = W (7.1)

in which d is the panel thickness (d = 65.4mm)

By assuming a Mohr's Circle distribution of normal stresses,
noting that the brick and mortar elastic moduli are approximately
equal, the component of the vertical stress, T at 45 degrees to the
bedjoints is —

L

5 (7.2)

2
(06)45 = 0_. COS n/4 = "=

Results obtained from PROGRAM PANEL1 indicate that the brickwork
cracks predominantly in the region of the panel centre. Therefore,

since the brick and mortar moduli are approximately equal, it may
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be assumed that bending moments at 45 degrees to the bedjoints, say

(M_ )

, associated with twisting moments, M and M__, are —
Xy 45 Xy Y- X

N

(Mxy)45 = %(Mxy+Myx) (7.3)

The maximum flexural stress associated with (M_ ) o=
xy 45

O(m_ )

_ .3
(cxy)45 Td? U xy 45 “EP(Mny*M ) (7.4)

y X

The vertical tensile stress, Ty caused by bending due to the
eccentricity of the applied load may be calculated as —

_ 6
4] =

b azaw.e (7.5)

in which W is the load per unit length of panel, and for a brick
close to the top or bottom edge of the panel, & may
be assumed to be equal to the eccentr;icity of the
applied load (c.f. stress distributions shown in
figures 4.6(a), (b)).
The component of the bending stress, O b at 45 degrees to the
bedjoints may be calculated, as for the axial stresses, as —

(orb)45 =0, cos? /4 = %_'\éi (7.6)

Equations (7.2), (7.4) and (7.6) may be combined to give the
maximum tensile stress in a brick at 45 degrees to the bedjoints. This

stress, say, (Ot)AS’ may be calculated as —

(00, = (o )45+ (op)ys + (o, )usg (7.7)
That is,
W 6e 3
(00,5 = ~5g(1 =) +gHM M 0 (7.8)
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Equation (7.8) may be solved by iteration by using PROGRAM
PANEL1 as follows.

Hendry (120)

proposed a set of relationships between brick uni-
axial compressive strengths and dniaxial tensile strengths as shown
in figure 3.19. For example, according to Hendry, a brick with a
compressive strength of 60MPa would have a tensile strength of approx-

imately 3.5MPa. This value may be assumed for the tensile strength

of the bricks in the experimental panel described above; that is

(0,[)45 = 3.5MPa in equation (7.8). A (16 x 8) mesh may be used in
PROGRAM PANEL1 to calculate the twisting moments (Mxy+Myx) at point
IC' on the experimental failure line (figure '7.15) for any selected
value of the vertical load, W per unit length of panel. It is found,

by iteration, that equation (7.8) is satisfied at point 'C' when W is
approximately 173N/mm length of panel; the corresponding value of
(Mxy+Myx) is approximately 3280Nmm/mm.

That is, by using PROGRAM PANEL1, the vertical load at which
the brickwork panel described in "this section could be expected to
fail in tension at 45 degrees to the bedjoints, close to a panel corner,
is approximately 173N/mm length of panel. This may be compared with

185N/mm failure load measured in the panel experiment.

7.3.5 Summary

A case study has been described of a full scale brickwork panel
approximately 2400mm high x 3600mm long x 65mm thick loaded
vertically at an eccentricity nominally 20mm at both the top and the
bottom. Statistically, the results obtained from the .case study are con-
sistent with results obtained using the finite difference theory for

brickwork panels proposed in Chapter 6. In addition, an approximate
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method has been presented for predicting the failure of brickwork
panels in which bending at 45 degrees to the bedjoints may be sig-
nificant. The failure load calculated for the case study by using this
method agrees closely with the experimental result.

Further research is required involving a range of brickwork
panels before definite conclusions can be drawn concerning the validity
of PROGRAM PANEL1. Factors to be considered include the effects on
panel behaviour of the load eccentricity, the degree of fixity at the
panel edges and material constitutive and strength properties. Other‘l
factors to be considered include initial deviations of a brickwork panel
from a plane and poor quality brickwork due to inferior workmanship.

However, the theoretical work proposed in Chapter 6 and
incorporated into PROGRAM PANEL1 appears to provide a method for
predicting the behaviour of brickwork panels subjected to uniform
vertical load. Experimental results summarized in this chapter indicate
that PROGRAM PANEL1 could be used as the basis of a comprehensive
parametric study carried out to investigate the sensitivity of the

strength of brickwork panels to the factors mentioned above.
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8. COMPARISONS OF THEORETICAL RESULTS WITH DESIGN CODE
SPECIFICATIONS

In Chapters 4 and 5 it has been shown that PROGRAM PI!ER1
(Appendix C) may be used to caiculate the failure loads of brickwork
walls subjected to eccentric vertical loads. Parameters which may affect
the failure loads include the brickwork elastic properties, the brick-
work compressive strength which- in turn depends on the mortar
compressive strength in triaxial compression, the top and base support
conditions and the initial deviations of the wall from a vertical plane.
It will be appreciated that a comprehensive parametric study of the
above effects én wall failure loads is beyond the scope of this thesis.
However, a general indication is given in this chapter of typical
results which may be obtained from such a study by presenting wall
failure loads calculated for one type of brickwork by using PROGRAM
PIER1. The effects of various end conditions and deviations from
vertical straightness are investigated and comparisons are made
between the calculated failure loads and failure loads which form the
basis of various Design Codes.

In Chapters 6 and 7 PROGRAM PANEL1 (Appendix G) has been
used to calculate the strength of brickwork panels when simply-
supported on four sides and subjected to eccentric uniform vertical
line loads. In contrast to PROGRAM PIER1, PROGRAM PANEL1 calculates
a panel failure load on the assumption that the brickwork remains
linearly elastic; the analysis of brickwork panels with non-linear
material properties is beyond the scope of this thesis;. Possible criteria
which may be used in PROGRAM PANEL1 are summarized in Section 8.2.
Failure loads are presented for one type of brickwork only and, in

order to place the calculated results in perspective, the pane!
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failure loads are compared with wall failure loads and such relevant

Code Design requirements as exist at present.

8.1 BRICKWORK WALLS - PRCGRAM PIERI

Calculated failure loads are given in the following sections for
walls with various conditions of end load eccentricity, end fixity and
initial deviations from vertical straightness. All computations use  the

brickwork properties summarized in Table 8.1.

Material Property Reference(s)
Brick Compressive Strength, 60MPa (c) Assumption for typical
‘ ! bricks
Mortar, 1:1:6 by Volume Assumption for typical
mortar
. ; 3 . (44) .
Brick Elastic Modulus, 18x10°MPa (Eb) Sahlin , Figure 3.1
Brick Tensile Strength, 3.5MPa (ct ) Hendhy“zo),
Figure 3.19

Brickwork Compressive Strength, 26MPa (UC) Hendr‘y“zo),

Figure 3.19

Non-linear Mortar Modulus Coefficients:

Initial Tangent Modulus, 8.0x10°*MPa (Em) Assumption, Chapter 5
n = 1.5 Assumption, Section
5.2.2, Figure D.3
K = 6.752 Equation (B.2)

Table 8.1: Material Properties for Parametric Study on Brickwork Walls

A further assessment of consistency of the assumed material properties

may be made by calculating the ratio —

E
_ (_br :
x = (== (8.1)
&
in which E is the initial tangent modulus cf the brickwork (MPa)

br

°. is the brickwork compressive strength (MPa).
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(120) has reported experimental results which show that

Hendry
typically x may vary between approximately 400 and 800. (These
reported values of x may be compared with mean experimental values
of 398 and 350 (Tables 7.3 and 7.10 respectively) and a mean value
of 500 for the wall experiments (Sections 5.2.2.3, Appendix D).) The
value of ¥ for the materials summarized in Tabte 8.1 is 604, thus

indicating that the material assumed properties are representative of

the properties of real bricks and mortar.

8.1.1 Walls Loaded with Equal End Eccentricities in One-way Bending

Figure 8.1 shows wall failure loads plotted non-dimensionally
as a fraction of the compressive strength of a short brickwork wall.
The end load eccentricities are assumed to be equal, pinned both top
and bottom, and initial deviations from vertical str*aightnesg are taken
to be zero. Failure loads are shown for eccentricitities of zero, d/50,
d/6 and d/3 for wall height-to-thickness ratios (slenderness ratios)
up to 40, calculated for brick-on-flat brickwork with 10mm thick mortar
bedjoints. The failure loads of end eccentricities of d/50, d/6 and
d/3 were calculated using PROGRAM PIER1. However, PROGRAM PIERI
cannot be used for the calculation of axial failure loads because
lateral displacements of a wall prior to failure are zeroj; the axial
failure loads may be estimated as follows.

For linear materials, the maximum wall load per unit length,
in a non-dimensional form, may be taken to be the lower value

obtained from equations (8.2) and (8.3). That is,

AT ' (8.2)
o d - 120 (h/d)? ’
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in which Ebr is the initial tangent modulus of the brickwork
d is the wall thickness
h is the wall height
9. is the brickwork compressive strength
Ps
or Ocd = 1.0 ' (8.3)

In equation (8.2), the initial tangent modulus of the brickwork
may be calculated from equation (3.47).

Results obtained using equations (8.2) and (8.3), shown in figure
8.1, indicate a sharp transition between brickwork compression
failure {vertical splitting) and wall buckling failure at a slenderness
ratio of 22.3. This sharp tansition has not been observed in experi-
ments (Hendr’y“zo)); the r‘easohs can be appreciated by considering
the effects of the non-linear behaviour of brickwork.

For brickwork constructed from linear elastic bricks and non-
linear mortar, the wall failure loads for zero load eccentricity may
be estimated using a tangent modulus approach. The mortar stress-

strain relationship may be assumed to be —

g = E .(e - Ken) (B.1)
in which E’m is the mortar initial tangent modulus
K, n are constants (Appendix B).
\_Nhen the stress in axially loaded brickwork is %4 and the"

uniform strain in the mortar |is €49 the mortar tangent modulus is

t do n-1
Ea & gof = Em.('l = nKea ) (8.4)
€=€
a
From equation (3.47), the average modulus for the brickwark

at stress o, is given by -—
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~ H+ b
Ebr,a = Eb.[———'E—b]. (8.5)
H + b(—)
E
a
in which E_, H, b, t are as defined in figure 6.5 and E' is as
. b a

defined in equation (8.4).

The critical buckling load per unit length of a pin-ended wall

for which the elastic modulus is E is thus —
br,a
HZ(EbP a)d3
= ] S
er T 12R7T (8_‘6)

in which h and d are as defined above.

The nomimal critical buckling stress becomes, therefore —

E
_ I* “br,a
%cr T 92 " h/d)? i)

Equations (B.1), (8.4), (8.5) and (8.7) must be solved by itera-
tion because the strain in the mortar, € is not known initially.
By Newton-Raphson iteration, a failure curve may be obtained for
axially-loaded non-linear brickwork walls which fail by buckling
(figure 8.1). As can be seen, this methed, which uses an equivalent
tangent modulus, gives results which fit well in the region between
a linear material analysis with zero eccentricity, and a non-linear
analysis with an eccentricity of d/50.

In contrast the the curve obtained for linear brickwork, the
smoothness of the non-linear curve in figure 8.1 reflects the transition
in wall failure from brickwork compression failure (vertical splitting)
to a buckling failure mode“zo).

Figure 8.1 indicates that for non-linear brickwork walls con-
structed from materials specified in Table 8.1 and loaded at eccen-
tricities of d/6 or less, the wall strength decreases rapidly as the

slenderness ratio increases. In addition, the strength of walls loaded



at an eccentricity of d/50 remains greater than approximatetly 25
percent of the brickwork compressive strength for slenderness ratios
up “to 40. However, this level of strength in walls of high slenderness
is rlwot shown in the results obtained for brickwork walls loaded at
an eccentricity of d/3. For such walls the load capacity decreases
from approximately 30 percent of the brickwork compressive strength at a
slenderness ratio of 2 to less than 5 percent for slenderness ratios
greater than 20.

Also plotted in figure 8.1 are the load capacities of brickwork

walls as calculated by using the recommendations of Design Codes

(127) (24) (4).

;

S.C.P.1.-1969 , BSb628: Part 1: 1978 and AS1640-1974 It
should be noted that BS5628: Part !: 1978 (Section 32, Table 7) may
be applied only to the axially-loaded walls in figure 8.1 because the
load is equally-eccentric at the ends. The Code failure loads agree
closely with the calculated values for load eccentricities of zero and
d/6, but the calculated wall capacities for an eccentricity of d/3 are
less than the Code loads by as much as 50 percent of the Code values
for a range of slenderness ratios. The results for eccentricities less
than d/6 indicate that structural brickwork design and construction
may be restricted unnecessarily by specifying the maximum allowable

(4)’(24) or 30(12'7). Code Ilimitations

wall slenderness ratio to be 27
on slenderness ratios will be discussed further in this chapter as
results are presented which show some on the effects of wall failure

loads of various end conditions and initial deviations from vertical

straightness.

8.1.2 Walls Loaded with Unequal End Eccentricities

Figures 8.2, 8.3 and 8.4 are plotted non-dimensionally and show
wall failure loads as functions of wall slenderness. All brickwork

materials are assumed to have the properties summarized in Table 8.1
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and the walls are subjected to the loading conditions described in

Table 8.2.
Wall Support Conditions Load (a), (b)
i *| Eccentricities i
Figure No.
Top(c) Base Top Base
8.2 Pin-roller Pin e zero
Pin-roller Fixed e -
8.4 Pin-roller Pin e -0.75e
(a) e = zero, d/50, d/6, d/3
(b) d = 110mm

(c) A pin-roller at a top support provides translational restraint

in the horizontal direction only.

Table 8.2: Wall Support and Loading Conditions

Figure 8.2 shows that the load capacities of walls loaded axially
at the base and loaded at the top at eccentricities of d/3 or less
depend essentially on the brickwork compressive strength for slender-
ness ratios of 15 or less. For sienderness ratios greater than 15, the
wall strengths decrease as a result of slenderness effects which cause
wall failure by ltateral buckling rather than material failure. Figure
8.2 indicates also that the strength of a wall with a slenderness ratio
of 40, when loaded at a top eccentricity of d/50, is approximately
25 percent of. the strength of an axially-loaded short (slenderness less
than 6) brickwork wall.

Failure loads calculated using the Swiss Rule, as specified in

clause # 4.13.3.4 of the Australian Code /—\51640—1974(4)

, differ con-
siderably from values calculated using PROGRAM PIERIT. This shows

that the Code requirements may not be conservative for walls in which

the top load eccentricity is greater than d/6. Failure loads calcuiated
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(24) (maximum load eccentricity 0.30d) atso

using BS5628: Part I: 1978
differ from the computed values but are closer than wvalues calculated
by -the Swiss Rule.

Figure 8.3 shows the load capacity curves for wa_lls fixed against
rotation at the base and loaded eccentrically at the top. In praclical
terms, the curves may be used to estimate the load capacities of
single-storey brick-on-flat walls sitting on rigid concrete raft footings.
The calculated results shown in figure 8.3 indicate that the load
capacities of such walls, when loaded at eccentricities of d/3 or less,
depend only on the brickwork compressive strength and the load
eccentricity fo}r slenderness ratios of 20 or less. In addition, for a
given load eccentricity, the strength of a wall with a slenderness ratio
of 40 is approximately one half the strength of a wall with a slender-
ness ratio of 6 or less. Figure 8.3 also shows that failure loads
calculated using # 4.13.3.4 of AS1640-1974 may be non—<onservative for
load eccentricities of d/6 or greater.

In figure 8.4, plots are given for the load capacities of walls
free to rotate at both ends loaded eccentrically on opposite sides of
the wall centreline {Table 8.2). The curves show that the failure loads
for an eccentricity of d/50 agree closely with the load capacities of
axially-loaded walls with slenderness ratios between 15 and 40; the
load capacities for walis loaded at d/6 and d/3 are almost constant
for slenderness ratios of 20 or less. Wall load capacities calculated
using AS16140-1974 show that the Code r‘equir‘ernénts may be non-

conservative for load eccentricities between d/3 and d/50.

8.1.3 Effect of lnitial !mperfections

initial imperfections, or deviations from vertical straightness,
may result from poor workmanship. Clause # 5.5.3 of Australian

Standard AS164-0—1974(4) permits a maximum deviation from verticat
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straightness within a storey of 6mm for every 3 metres of height; that
is, a maximum deviation from vertical straightness of h/500.

Figure 8.5 shows the effects on wall load capacity of initial
deviations of zero, h/800 (3mm for each 2400mm height) and h/400 (6mm
for each 2400mm height). The walls are assumed to be loaded with
equal end eccentricities and the shape of the initial imperfecticns is
assumed to be bilinear with the maximum deviation at wall mid-height.
PROGRAM PIER] can also be used to analyse any arbitrary pattern
of initial deviations.

The results plotted in figure 8.5 show that for a slenderness
ratio of 20, the load capacity of a wall loaded at an eccentricity of
d/50 may be a[;proximately 80 percent of the capcity of a wall initially
straight; if the initial imperfection is h/400, for a slenderness ratio
of 40, the capacity raiio is approximately 65 percent. The load
capacities of walls loaded at eccentricities of d/6 are also reduced
by the assumed initial imperfections but the wall failure loads

calculated using AS1640-1974 appear to be only slightly non-

conservative for most slenderness ratios.

8.1.4 Summary

Figures 8.1 and 8.5 show that for walls loaded at equal end
eccentricities of d/6 or less, Code specifications(“’(24)’(127) agree
closely with wall failure loads calculated using PROGRAM PIERY for
the brickwork materials summarized in Table 8.1. However, the effects
of initial deviations from vertical straightness may cause Code
specifications to become slightly non—conser‘vajtive bécause they do not
give the expected factor of safety. The results shown in figures 8.1

to 8.5 also indicate that for walls loaded at eccentricities greater

than d/6, the load capacities calculated by using Code coefficients
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and the Swiss Rule, where relevant, may be significantly greater than

the wall failure loads calculated using PROGRAM PIERT.

8.1.5 Brick-on-edge Partition Walls

It was stated in Chapter 1 that one of the aims of this inves-
tigation was to study the strength of slender brick-on-edge walls used
as partition walls in domestic construction. Figure 8.6 shows the load
capacities of such walls assuming that the supporting rigid footing
restrains the base of the wall against rotation. The results, which
are close to those shown in figure 8.3 for brick-on-flat walls, indicate
that a brick-on-edge wall may support significant loads even at
a slenderness 'ratio of 40 provided that the load at the top acts within
the middle third of the wall section. Figure 8.6 also shows that limit-
ing the slenderness ratios to 32 or less, as required by AS1640—1974(4),

may be unnecessarily restrictive. However, in the formulation of design

rules for such slender walls, it would be prudent to make some
allowances for the effects of initial imperfections and the possibility
of small lateral loads which may arise accidentally. In addition, as

with brick-on-flat walls built on a rigid base (figure 8.3), the icad
capacities calculated by using AS1640-1974 specifications may be non-
conservative for some load eccentricities, as indicated, where the

eccentricity exceeds d/6.

8.2 BRICKWORK PANELS [N TWO-WAY BENDING - PROGRAM PANELI1

In this section, it is demonstrated that the ‘Ioad capacity of
brickwork walls may be significantly increased by restraining the
vertical edges against lateral translation. This may be achieved in
domestic  construction by the intersecting of walls at the corners of

rooms. |In such a situation the brickwork will behave as a panel
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(Chapter 6) rather than as a wall supported only at the top and at
the base.

The brickwork material properties are assumed to be as specified
in Table 8.1 with the exception of the mortar elastic modulus which
is taken as constant at 8.0x105MPa, All brickwork panels are assumed
to be simply-supported on four sides and are loaded uniformly and
eccentrically both at the top and at the base {Appendix G, figure
G.1). PROGRAM PANEL1 has been written so that a uniform lateral load
may be applied in combination with the vertical load (Appendix G),
but, because the modes of failure may be complex(69), no results are
presented in this chapter for panels subjected to combined loading
conditions. ’

Three possible modes of failure are shown in figure 8.7. The
vertical splitting failure (figure 8.7(a)) is associated w_ith excessive
vertical compression (Section 3.3.2) and may occur in the brickwork

when the maximum normal vertical stress per unit length of panel is

equal to the brickwork compressive stirength, oc’ so that -

= - -t +_6_e<31,n)) (8.8)

in which Wf is the failure load per unit length of panel
d is the panel thickness

e(m,n) is the load eccentricity at a typical node (m,n) in

the panel.

Figure 8.7(b) shows the mode of failure expected as a result
of excessive bending parallel to the bedjoints (Section 7.2) provided

that the vertical precompression is sufficient to prevent bond shear

failure on the bedjoints at the brick-mortar interfaces (Sahlin(ah),_
Base and Baker‘(eg), Section 3.3.4.2). it may be assumed that the brick
transverse bending strength, ¢ is equal to the brick normal tensile

bt’
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AR IO, D

Figure 8.7(a): Vertical Compression Failure (Vertical Splitting)
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Figure 8.7(b): Failure in Flexure due to Horizonta!l Bending
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strength, o, (Table 8.1), so that equation (3.46)(44) may be written
as —
< < .
0.50t oxx,f o, (8.9)
in which O s F is a brickwork bending stress per wunit height of
b

panel at failure and may be calculated as —

oM x, f
= )
0xx,f —ar ) (8.10)
In equation (8.10), Mxxf is the failure bending moment, per
) ) .

unit height of panel, parallei to the bedjoints (Chapter 6) and d is
the panel thickness.

A value for the failure stress, 9 must be chosen arbitrarily

x, f?

b)

because of a lack of experimental data. However, as was shown in

Section 3.3.4.4, a practical estimate of O . f would be —
?

Oxx,f = 0.75 g (8.11)

Therefore, from equations (8.10) and (8.11), the bending moment
per unit height of panel at which the failure mode shown in figure

8.7(b) may be expected is —

- 2
Mxx,f = O.1250td (8.12)

Failure at 45 degrees to the bedjoints adjacent to a pane! corner
(figure 8.7(c)) may be calculated by using equation (7.8) (Section

7.3). It may be assumed for practical purposes that (0)45 = a

t {

approximately, so that the failure load, Wf, may be calculated by

iteration by using —

We 6e, . 3
(ct)45 - C‘t T -Z_d—‘(1 F) * i (Mxy * Myx) (7.8)
in which e, d, M M are defined in Section 7.3.

xy’ Tyx
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The three failure conditions prescribed by equations (8.8), (8.12)
and (7.8) may be incorporated into PROGRAM PANEL1 in order to
calculate the least value of the vertical load at which either material

failure occurs or the panel fails by lateral buckling.

8.2.1 Panels Loaded with Equal Load Eccentricities

The relative stiffness of cracked brickwork subjected to bending
parallel to the bedjoints (Section 6.2.3) and the r'elativ.e torsional
stiffness of cracked brickwork (Section 6.2.4) have been calculated
for bricks 230mm x 110mm x 65mm laid on edge as wused in the test
panel. Figure 8.8 shows the failure loads, plotted non-dimensionally,
for panels 2400mm high constructed from standard bricks 230mm x 110mm
x 76mm laid on edge. It may be assumed, for practical purposes, that
the relative bending and torsion stiffnesses for such cracked brickwork
are as given in Chapter 6.

The results indicate that for aspect ratios &/h less than 1.0,
panels loaded at eccentricities of d/1000 carry approximately the same
load per unit length as a short brickwork prism loaded in axial com-
pression. This result is supported by experiments on brickwork panels

(Hendr‘y“zo)),

Figure 8.8 shows that panel load capacity decreases
as the panel aspect ratio (length-to-height ratio) increases between
1.0 and 3.0, but, nevertheless, pancl strength exceeds the strength
of a linear material wall with the same height-to-thickness ratio.
Results obtained by assuming linear material properties show
that a panel loaded at an eccentricity of d/6 fails at one-half the
brickwork compressive strength if the panel aspect ratio is less than
0.5. For panels with aspect ratios greater than 0.5, the load

capacity decreases rapidly to approximately 23 percent of the brickwork

compressive strength. In addition, the calculations show that panels
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with aspect ratios greater than approximately 0.6, when loaded at
an eccentricity of d/6, fail due to excessive horizontal bending stress
as determined by equation (8.12).

Brickwork panels of aspect ratios less than approximately 0.7,
loaded at an eccentricity of d/3, fail due to excessive horizontal
bending stresses at the top and base supports caused by cracking on
the bedjoints combined with the effects of forces associated with a
relatively high value of Poisson'sl ratio (v = 0.20). However, for all
panels investigated with aspect ratios greater than 0.7, the calculated
load capacities are determined by the loads at which tensile failure
occurs at 45 degrees to the bedjoints adjacent to a panel corner
(equation (7.85).

Australian Standard AS1640-1974 states that the sienderness ratio
of a brickwork panel shall be determined by the smaller value of the
ratios #/d and h/d, and specifies that the slenderness ratio shall
not exceed 27. For a brick-on-edge panel of height 2400mm, as used
in the computations in this section, the slenderness ratio h/d is 31.6.
However, if the length of such a panel is less than 2052mm, the Code
rules may be applied and the load capacities may be calculated. The
results are shown in figure 8.8. The Code results are simitar to the
panel load capacities calculated by PROGRAM PANEL1 for load eccen-
tricities of d/6, but at eccentricities of d/1000 and d/3 the two sets
of values differ considerably. Figure 8.8 shows clearly that for panels
with aspect ratios greater than 0.5, the Code load capacities are
conservative and take no account of the reserve of strength in a panel

beyond the strength of a wall with the same height-to-thickness ratio.
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9. SUMMARY AND RECOMMENDATIONS

Structural brickwork, as an engineered system, must be designed
by using the rules of structural mechanics together with a knowledge
of the strengths of its component materials. in order to facilitate the
design procedure, practical simplifications may be made and sum-
marized in the form  of Code rules, but, initially at least, the true
behaviour of brickwork when subjected te various forces and deforma-
tions should be understood.

Codes of Practice can only be formulated in the light of the
available knowledge. The overall behaviour of brickwork structures,
in which the wal! and floor elements are assumed to act conpoiiﬂtge_l_yﬂ,
is reasonably well appreciated; for example, it is kno_wn that the
cantilever method of analysis for wind loads (Section 2.2) generally
leads to a safe structure. Experience has also shown that the even
distribution of loads among all the wall elements is desirable in
structural brickwork. However, in the past, the diversity of research
and the variability of component materials for brickwork, as reviewed
in Chapter 3, made it difficult to assess and compare many of the

(117)

published results. Recently, Khoo and Hendry have developed a

fundamental! theory for predicting brickwork material strength in com-

(60

pression and Base and Baker ) have summarized the elastic properties
of uncracked brickwork.n the linear elastic ranges of the brick and
mortar mater'ilals.

It is also noted in Chapter 3 that theoretical investigations
conducted in the past on the strength of brickwork walls have been
based on the assumptions that a wall behaCes as a column regardless
of its wvertical edge support conditions and that no tension stresses

can exist in the brickwork column(96)’(9/). These simplifying
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assumptions do not reflect the actual behaviour of real brickwork and,
as a consequence, pas:i theoretical studies have led to inaccurate and
generally conservative predictions for wall strengths.

The work presented in this thesis has approached more closely
the real behaviour of brickwork walls by observing that even for a
stress distribution in which there are no tensile stresses at the brick-
mortar interfaces, the tensile stresses in the bricks themselves can
be significant. In Chapter 4, it is shown that cracking occurs at
discrete intervals on the brick-mortar interfaces, with the extent of
the cracking in the bedjoints depending on the position of the line
of action of the resultant compression load relative to the wall centre-
line. The reduction in brickwork flexural stiffness caused by the
cracking is determined by using a two-dimensional finite element
analysis to calculate the moment-rotation chracteristics c—>f a cracked
brickwork module consisting of two half-height bricks plus one mortar
bedjoint. The resulting characteristics are used to develop load-
deflection relationships for a homogeneous isotropic varying-thickness
column equivalent to the real brickwork. The load capacities of
eccentricaliy-loaded brickwork walls are calculated by solving the
equivalent-column equations, written in finite difference form, by using
a Newton-Raphson method.

Chapter 5 contains a description of experiments from which was
determined the elastic modulus of a brickwork prism subjected to
eccentric vertical compression; the test results are shown to agree

with analytical results proposed by Base and Baker'(eg)

. In addition,
results obtained from the method of analysis developed in Chapter 4
are shown to agree with results obtained from experiments conducted

on a slender steel block column and a series of brickwork walls of

varying slenderness ratio.



In Chapter 6, brickwork panels simply-supported on four sides
and subjected to vertical eccentric load are anaiysed by determining
the bending and torsion stiffness of a three-dimensional brickwork
module using a three-dimensional  finite etement method of analysis.
Load-deflection relationships are developed for an equivalent plate
of varying thickness, analogous to the equivalent column of varying
thickness for a wall, in order to represent the behaviour of a real
brickwork panel. By writing thé load-deflection equations in finite
difference form, load capacities are calculated for eccentrically-loaded
simply-supported brickwork panels.

Chapter 7 describes tests conducted on small brickwork panels
subjected to hlor'izontal bending. Results obtained from the experiments
for the reduction in brickwork bending stiffness caused by crackina
agree closely with values given by the finite element analysis in
Chapter 6. In addition, a full scale test of a slender simply-supported
brickwork panel loaded eccentrically top and bottom is described in
detail. Results obtained from the experiment show that the egquivalent
plate analysis developed in Chapter 6 can be used for calculating
the load capacities of vertically-loaded brickwork panels.

In Chapter 8, PROGRAM PIER1 has been used in a parametric
study of the load capacities of brickwork walls. Wall load capacities
calculated by PROGRAM PIER1 differ significantly in some instances
from load capacities calculated using Code recommendations (figures
8.1 to 8.6), thus indicating that rcvision of some Code recommendations
may be required. For example, the Swiss Rule, clause # 4.13.3.4 in
AS1640—1974(4), can lead to non-conservative load capaci'ties for some
types of wall with slenderness ratios up to 27. |In addition, results
obtained from PROGRAM PIER1 indicate that the maximum allowable wall
slenderness ratio could be increased to permit brick-on-edge walls

in domestic construction to act as load-bearing elements.
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PROGRAM PANEL1 has been used to calculate the load capacities
of brickwerk panels, simply-supported on four sides, loaded at equal
eccentricities top and bottom. PROGRAM PANELI1 could be extended
further for use in a more general study of the load capacities of

brickwork panels if the following were included —

(i) The relative stiffness factors, calculated using a finite element
method of analysis, for bricks laid in various practical bonding

patterns subjected to horizontal bending or pure torsion.
(ii) Non-linear mortar behaviour.

(iii) Initial imperfections due to poor workmanship.

(iv) Failure criteria, determined experimentally, for brickwork

subjected to combined compression, bending and torsion.

(v) The degree of fixity on panel edge supports.

A general parametric study of brickwork panels should neces-
sarily determine the sensitivity of the panel load capacity to the
factors listed above. In addition, theoretical predictions should be
checked against experimental results from tests on full-sized panels.
Other more general aspects of structural brickwork subjected to vertical
loads which could be investigated to gain a more comprehensive under-

standing of brickwork behaviour include —

(i) The true distribution of vertical loads along the lengths of

structural brickwork walls and panels.

(ii) The extent of the interaction between walls and floor slabs

and the resulting effects on vertical load eccentricity.

(iii) The combined effects of vertical and horizontal loads on

brickwork panels (as distinct from walls, which are understood
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(Hendr‘y“s))). This may be investigated initially using
PROGRAM PANEL1, but this topic is considered to be beyond
the scope of this thesis.

(iv) Seismic loading as it affects the stability of slender brick walls

and panels.
(v) The effects of cavity wall construction on wall stiffness and

strength.

(vi) The effect of coring on brickwork stiffness.

Initially, however, PROGRAM PIER1 and PROGRAM PANEL1 may
be used confid,ently as a basis for modifying existing Code recommenda-
brickwork

tions related to the design of vertically-loaded slender

walls and panels.
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APPENDIX A

o (EQUATION (4.2))

THE BRICK CURVATURE FUNCTION,

A.1 A METHOD FOR CALCULATING THE CURVATURE RATIO FUNCTION, o

This section describes one method which may be used to calculate
the curvature ratio function, o, in equation (4.2).

It may be assumed that there exists a function a1(eo/d, hb/d)

such that —

h h h h
al(eo/d, b/d) = A(Mb/d) + B("b/d).(%o/d) + C("b/d)(fo/d)?
+ D(Mb/d)(C0/d)? (A.1)
. . h h h h i .
in which A('b/d), B( b/d), C( b/d), D( b/d) are cubic polyromial
functions of (hb/d). Using the results in Table 4.1 (Section 4.2.2),
the wvalues of the functions A(hb/d), B(hb/d), C(hb/d) and D(hb/d),
can be found for each value of (hb/d) by a least-squares approxima-
tion (Table A.1). For the calculation, it can be assumed that the value

of the function 011(eo/d, hb/d) is 1.000 for (hb/d) = 0.050 (one-half

a mortar joint aspect ratio).

(Mb/a) A("b/d) B(Mb/d) c("b/d) p("b/d)

0.000 1.00 0 0

0.050 1.00 0 6]

0.651 0.521 5.93 -24.0 33.6

1.447 0.406 7.75 -35.6 62.4

2.00 0.311 L 9.47 -46.4 85.7
Table A.1: Coefficients for Function ul(eo/d,' hb'/d)

Assume also that there exists a function @ (eo/d, hb/d) such

2
that —
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0y(%/d, Mb/a) = E(%/d) + F(%o/d)Mb/d) + 6(%o/d)("b/d)?

3 H(eo/dx(hb/d)a (A.2)

in which E(%/d), F(%/d), G(%/d), H(®o/d) are cubic polynomial

functions of (eo/d). The values of these functions for each value of

(eo/d), using the results in Table 4.1, are summarized in Table A.2.

(®o/d) E(%o/d) F(%o/d) G(®o/d) H(%o/d)
0.167 1.000 0] 0 0
0.208 1.000 0.0201 0.00837 -0.00466
0.250 1.000 -0.00582 0.0974 -0.031¢9
0.292 1.001 -0.00696 0.242 -0.0716
0.333 1.003 -0.134 0.428 -0.122
0.375 1.003 -0.172 0.676 -0.188

Table A.2: Coefficients for Function az(eo/d, hb/d)

Functions A(hb/d), B(hb/d), C(hb/d), D(hb/d) can be expressed

as cubic polynomials in {hb/d) by using the values of the functions,

summarized

values

sufficient for a least-squares approximation). The four

be written as —

for

in Table A.1,

in a

each of A(hb/d),

8("b/d),

c(Mb/d)

least-squares approximation

and D(Mb/d)

{the five

are

functions may

rA(hb/d) [ 1.03 -1.18 0.799 -0.193_ ( 1 )
B(hb/d) -0.324 14.4 -9.51 2.38 (hb/d)
h ﬁ h ? (A.3)
ﬁ C( 'b/d) 1.22 -54.0 31.6 -8.23 (‘'b/d)?
LD(hb/d) -1.39 60.8 -18.8 5.11 (hb/d)SJ

Similarly, the functions E(So/d), F(%o/d), G(%o/d), H(%o/d) can be

expressed as cubic polynomials in (eo/d), so that —
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f & 3 r ] ( 3
E(%o0/d) 1.03 ~0.328 1.23 -1.40 1
F(%/d) ~1.19 14.5 -54.3 61.2 (%0/d)
J e = : { e ? (A.4)
G(%o/d) 0.789  -9.43 31.1 -18.2 (%0/d)?
H(eo/d)J ~0.181 2.26 ~7.74 4.48 h(eo/d)a

Equation (A.2) can be written as —

a,(®o/d, "b/d) = [1(%/d)(%0/d)*(So/d)'] [s] [ 1 ]
| ("b/d) |
(Mb/d)? (A.5)
h 3

h.( b/d) )

in which [S] is the 4x4 matrix in equation (A.3).

Similarly, equation (A.2) can be written as —

0y(%/d, Mb/a) = [1("6/0)("b/a)2 (Mb/a)* ) [T] i-

(®o/d)

(®o/d)2 [ (A.6)

(Co/d) ?

in which [T] is the 4x4 matrix in equation (A.4).

If the fitted functions al(eo/d, hb/d) andouz(eo/d, hb/d) fit the
data in Tabie 4.1 exactly, the right-hand side of equation (A.5) will
be the transposed form of the right-hand side of equation (A.6).

That is, : T
[s] = [Tl (A.7) -

in which [T]T is the trénsposed matrix of [T].

Inspection of equations (A.3) and (A.4) shows that equation
(A.7) is not satisfied because the functions ai(eo/d, hb/d) and
e h , - .
a2( o/d, b/d) are calculated by a least-squares approximation to

the data on the assumption that both functions are cubic polynomials

in (o/d) and (hb/d).
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As an approximation, it may be assumed that a 4x4 matrix for

equations (A.3) and (4.2) may be calculated as follows —

T
R] - %{[s] ; m} (A.5)
That is,
1.03 -1.18 0.794 -0.187 |
-0.326 14.4 -9.47 2.32
[R] = (A.9)
1.22 -54 .1 31.3 -7.98
L—1.39 61.0 -18.5 4.79

A scale model representing the function a (%o/d, hb/d) is shown in

figure A.1l.

} h
Figure A.1: Scale Model of Function, a (®o/d, 'b/d)
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APPENDIX B

AN IDEALIZED NON-LIiNEAR MORTAR SUBJECT TO

ECCENTRIC COMPRESSION

B.1 A STRESS-STRAIN RELATIONSHIP FOR NON-LINEAR MORTAR

Assume that the stress-—strain relationship for a non-linear mortar

_ _ n
o = Em(e Ke. ) (B.1)
in which Em is the initial tangent modulus
a is normal stress parallel to the applied load
e’ is strain parallel to the applied load

X and n are constants.

Assume that 9% is the maximum normal stress attained by the
mortar at strain €. (figure B.1).

Parameters €. and K in equation (B.1) may be calculated as

do

ol 0, so that, from equation

follows. At the maximum stress o ,

(8.1),

That is,

— (B.2)

This value of K can be substituted into equation (B.1) at the
int o=¢a d e= i —
poin N an € Ec to give
€

= €
) —Em{ec_ n)

so that -—
no
c

& Em(n—l) (B.3)

m
1
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By choosing values of o_ and n(n>1), the parameters € and

K may be calculated from equations (B.2) and (B.3).

B.2 GEOMETRIC PROPERTIES OF STRESS-STRAIN CURVE

The shaded area under the curve in figure B.1 is —

A =J dA
o

? K n+l
Ao 2 Em(?T ———— ¢ E ) (B.4(a))

The first moment of area of the shaded portion under the curve

in figure B.1 about the axis origin, 0, is —

(FMA)o :‘f edA
f eode

n+2

e ™) (B.4(b))

(FMA)

From equations (B.4(a)) and (B.4(b)), the distance to the

centroid of the shaded portion under the curve from the axis origin,

0, is —
e
1 K e n+2
- (FMA) _ i E. =3 - 3] )
o A T 2 )
o0 1 K n+1
E_.kE )
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2. (iK__.e"‘
- a7 - 3.1 B n+2) 1
e0 N 1 - 2K . n-1 (B.5)
s (n+1) 1

Assume that the shaded area under the stress-strain curve does
not include the origin, 0, but lies in the strain range [eo,‘ 51]
(figure B.2). The area of the shaded portion under the curve in figure

B.2 is —

- 2 ) - K ( n+l n+l )}

€.~ £g (B.6(a))

The first moment of area of the shaded portion under the curve in

figure B.2 about the axis origin, 0, is —

(FMA)1 = f edA

(FMA)1 = E { (B.6(b))

From equations (B.6(a)) and (B.6(b)), the distance to the
centroid of the shaded portion under the curve in figure B.2 from the

axis origin, 0, is —



S PR " K n+2 n+2
. Em { 3 -(91 = eO) - ) (r»:1 -5 )1
1 1 N . K n+1 n+l
Ectz(ep - ) - w51 7% )}
2, 3 2K 2 n+2
. 3] - %) - ) (ey "=59 ) ]
i ¢, = (B.7)
1 (e2 - ) - 2K e n+1 €n+1)
1 0 (n+1) 1 0

B.3 LOAD-CURVATURE RELATIONSHIPS

B.3.1 Partially Cracked Section

Assume that the stress and strain distributions on a partially
cracked mortar bedjoint at each brick-mortar interface are as shown
in figure B.3.

The tota! load per unit length, P, from geometry (figures B.1

and B.3) and equation (B.4(a)) is —

e% d

= A K n+1 ¢ y
Po= Exly - e )'?1“ (5.8)

Also from geometry (figures B.1 and B.3) and eguation (B.5),

d
- _ = '__C_
dp (e, €o) 51 (B.9)
For equation (B.9), dp can be calculated from static equilibrium
as —
d (Moment about the Compression Edge) (B.10)
P Total Load per unit Length ‘

The curvature of the uncracked part of the mortar is

& = T (B.11)

Equations (B.8), (B,9) and (B.10) can be used to calculate 91
and dc which are required in equation (B.11) for the calculation of

the non-linear mortar curvature.
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P (Load Resultant)
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Figure B.3: Partially Cracked Mortar Joint

(Non-linear Mortar)

P (Load Resuttant)
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[ b Ineffective Portion
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)
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Figure B.4: Partially Cracked Mortar Joint

{(Linear Mortar)



B.3.1 Solution Procedure

The parameters € and dc may be calculated by using a Newton-

Raphson technique. Arbitrary approximately-correct values for € and

dc may be chosen and used in equation (B.8), rewritten as follows.

e:21 A n+l dc
= - —r . € P ——
T P Em'( 2 (n+1) 1 ) € (B.12)

1
in which T is an error term caused by approximations € and dc.

Similarly, equation (B.9) may be rewritten as —

i T, )vimas (B.13)
in which V’'is an error term caused by approximations o and dc'
If the values of T and V in eqguations (B.12) and (B.13) exceed
prescribed limitations because of incorrect values of €, and dc’ a
series of Newton-Raphson corrections can be applied successively until
the desired accuracy is reached.

For a function of a single variable y= f(x), an approximate

solution, X of the equation f{(x)=0, giving yi—f(x])=ﬂy1, is generally

1’
improved by calculating —

B)‘(1
= - = ge—" Li4)
X X, X, X, X (B.14)

P

The corresponding Newton-Raphson correction for the simultaneous

equations (B.12) and (B.13), for the ith iteration, can be calculated

from —
Ae-1
' B =1)7T .
by = -3y . (B.15)
c i
so that —
€ € Ae
(1 L L (B.16)
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In equation (B.15), [J] is the 'Jacobian'" matrix of the functions
T( 51,dc) and V(g],' dc)’ and is formed from the partial derivatives
of the components T and V of the error vector i-{/]with respect to the

€
components of the solution vector‘[ ]]-

d
[ =
That is, - =
8T 8T
351 Bd
C
[J]1 = (B.17)
AV, 2
8&:1 ad
C

The elements of the "Jacobian'" matrix can be calculated numer-
ically by incrementing successively the components of the solution

[
vector {d1}by approximately 0.01 percent and calculating the resulting
c

increments of the error vector {1\_/} as follows.

o7 eT |
Ae ad
1 c
[4] = (B.18)
SR
Ae Ad
L 1 c
After several iterations, the error vector {3/] can be reduced
€

to within prescribed limits to give the solution vector {d } Generally,
c

closure to acceptable levels has been attained within ten iteration

cycles.

B.3.2 Relationships between Curvatures for Non-linear ‘and Linear
Mortars

B.3.2.1 Cracked Section

(i) Load Resultant Cutside Kern

If the resultant of the distributed load are outside the kern, the

stress and strain distributions for the non-linear and linear mortars
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as shown in figures B.3 and B.4 respectively. It has been shown that

the curvature of the non-linear mortar given by equation (B.1) is—

(z) = (B.11)

in which 81 and dC are calculated iteratively as described above.

Assume that dp’ P and Em are identical for both the non-linear
mortar and the linear mortar shown in figures (B.3) and (B.4) respect-
ively. The curvature of the linear mortar (figure B.4) is —

(=) - 3 (B.19)

P = %.0,.3d

3 p
in which 03= Em. 63
) 1 2P
U iE20%
m p
. _ . min! 1 : .
The ratio of the two curvatures (ﬁ) and (ﬁn—'n) is (equations (B.11),
(B.20)) —
1 I
(=) € 2
RRLLPPIE A R - T
p H(.l) = 5 dc 5 m (B.21)
R'm :

(ii1) Load Resultant Inside Kern

It should be noted that for a non-linear mortar defined by equa-
tion (B.1), the section can be partially cracked for cases in which
the load resultant is inside the kern. However, a linear mortar is
uncracked for this case and the stress and strain distributions for
the non-linear and linear mortars are as shown in figures B.3 and

B.5 respectively.
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The curvature of the non-linear mortar is —

o=

) = q (B.11)

Assume that dp, P and Em are identical for both the non-linear
mortar and the linear mortar shown in figures B.3 and B.5 respect-

ively. The curvature of the linear mortar (figure B.5) is —

2= =g (B.22)
1 P 6,d
But €3 ——E—- a'{'l + 'a('—z‘ - dp)}
m
= il o 6.d
and & = E'G {1 d( - dp)]
m
-1 Pui2d g
tS3T R TUEC 'd'{d(Z p)]

Equation (B.22) becomes —

/
Hence, the ratio of the two curvatures (%) and (_I;-)m is fequations (B.11),

(B.23))—
1!
(‘) € 3
R 1 d d -1
o o e = Y
P & d_1® (5 - dp) B, (B.24)
R'm
In general, in equation (B.24) p>1.

B.3.2.2 Uncracked section

Assume that a bedjoint of a non-linear mortar, defined by equa-

tion (B.1), is uncracked and that the stress distribution is as shown

in figure B.6.



The total load per unit length, P, from geometry (figures B.2

and B.6) and equation (B.6(a)) is —

- 1.2 = K n+l n+l {, d
P El'ﬁ 2(51 - 50) = W (51 EO ﬁ(—e‘r—_‘so) (B-ZS)

Also, from geometry (figures B.2 and B.6) and Equation (B.7),

d

d, = (e - E‘)'m (B.26)

For equation (B.286), dp can be calculated from static equilibrium

. ' ;Moment about the Compression Edge

dp = Total Load ) (8.10)
The curvature of the mortar bedjoint is—

1. 5= "0

('ﬁ) . 5 (B.27)

Equations (B.10), (B.25) and (B.26) can be used to calculate €, and

€0 which are required in equation (B.27) for the non-linear mortar

curvature.

The parameters €1 and €y may be calculated by using a Newton-

Raphson technique similar to that described in Section B.3.1. Equation

(B.25) can be rewritten as —

_ i 1.2 2 K . n+l n+l o f d
Q=P - En:‘{;(el = eo) = (nET) (61 €0 )}(E———-—-—1 = 80) (B.28)

Equation (B.26) can be rewritten as-

S=dp-(e = €.).
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in equations (B.28) and (B.29), Q and S are error terms caused

by approximations to € and e As described in Section B.3.1,

0] 1’

solutions to 60 and 611 can be found as successive approximations by

calculating a ™acobian" matrix [J] such that —

i aQ 3Q ] 5Q AQ
860 3&:1 A'EO Ae1
[4] = = (B.30)
a5 as 55 85
8(-:0 de Aeo A€1

€
The solution vector {O} can be found by successive increment
1

Ae
vector‘s{ O} which satisfy the relationship at the ith step —

Ae
he
0 -1 }Q

1
(B.32)

so that

™ m
(o]
‘\—-—w——)
o=
1l
™ ™
o
+
> B>
4] [y
o

It has been found that, generally, the solution vector is obtained

to an acceptable accuracy within ten iteration cycles.

If there is no cracking on the bedjoints, the stress and strain
distributions for the non-linear mortar defined by equation (B.1) are
as shown in figure B.6. The stress distribution for a linear mortar

is shown in figure B.5. The curvature of the non-linear mortar is —
' € €.
Ly o (- o) (B.27)

in which éo and é1 are calculated by iteration as described above.

Assume that dp’ P and Em are identical for both the non-linear

mortar and the linear mortar shown in figures B.6 and B.5 respectively.

The curvature of the linear mortar (figure B.5) is —
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(3 -2 (B.22)

As shown in Section B.31,

£ dp) (B.23)

Nl

Wy = 1,122
R'm E d
m

[
Hence, the ratio of the two curvatures (%) and (%)m is (equations

B(27), (B.23)) —

1
U
12P

p = — =

d -1
.{~2- ~ dp] . E (B.33)

e m

;o)

In general, in equation (B.33) p>1,

4
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APPENDIX C

BRICKWORK WALLS IN ONE-WAY BENDING - PROGRAM PIER1

C.1 THE SCOPE OF PROGRAM PIER1

PROGRAM PIER1 was a finite difference method of solution to cal-
culate the behaviour of brickwork walls in one-way bending in which
discrete cracking may occur at the brick-mortar interfaces. The types

of problems which may be solved by PROGRAM PIiER1 are as follows.

(a) A pin-end wall subjected to an eccentric veriical load with either
equal or unequal eccentricities top and bottom (figure C.1(a}).
The eccentricities e and e, are chosen and the load is incre-

mented to calculate the column failure load.

(b) A wall with a perfectly fixed base and a "pin-roller" top support
(figure 4.14) loaded eccentrically at the top (figure C.1(b)).
The load eccentricity, €y is chosen and the load is incremented
to calculate column failure.

(c) A pin-end wall subjected to egually-eccentric vertical load, both
top and bottom (figure C.1(c)). The load, P1c per unit length,

is chosen and the eccentricity is incremented to calculate the

column failure eccentricity.

(d) A wall with a perfectly fixed base and a "pin-roller" top support
(figures - 4.14, C.1(d}). The load, P, per unit length, is chosen
and the eccentricity is incremented to calculate the column failure

eccentricity.

For all of the cases above, the brick stress-strain characteristic

is linear. The mortar-strain relationship may be either linear or non-

\
linear as“os' —



370.
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PROGRAM PIER1 (refer to text)
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c = Em(e - Ke') (B.1)

in which Em is the initial tangent modulus

K, n are constants (Appendix B)

For all cases, the horizontal reéctions, H per unit length, may be
calculated by the solution method described in Section 4.3.

In real brickwork, poor bricklaying methods may produce walls
which are not straight vertically. Effects of this type of poor workman-
ship may be calculated by PROGRAM PIER1 by specifying initial
deviations from vertical straightness at each finite difference node
(figures 4.13, 4.15).

Details of input data for PROGRAM PIER1 are given in the follow-

ing section.
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cOoOcOcocOcOcOO0O0OcOc 0000000000000 OO0 aan

.2

LISTING OF PROGRAM PIER1

PROGRAM PIER1(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0OUTPUT)

RERRRRAXBERREX AR R BRI R AN A EXERXEARRERFARRRRARERRRRR

%*
*
*
*
*
*
*
*
¥
*
¥
*
¥
¥
*
*
*
*
*
*
*
*
*
¥
*
*
*
¥
#
*
*
*
¥
*
*
*
*
*
*
¥
L]
*
%
%
*
*
¥
¥

PROGRAM PIER1 WAS WRITTEN BY
DAVID C. PAYNE AS PART OF THE REQUIREMENTS
FOR A DOCTOR OF PHILOSOPHY DEGREE AT THE

UNIVERSITY OF ADELAIDE ( SUBMITTED IN 1982 )

THE PROGRAM CALCULATES THE FAILURE LOADS
OF BRICKWORK WALLS AND COLUMNS WHICH EXHIBIT

ESSENTIALLY TWO-DIMENSIONAL BEHAVIOUR.

THE MAXIMUM NUMBER OF FINITE DIFFERENCE
ELEMENTS ALLOWED BY THE MATRIX
DIMENSIONS IS 39

THE MAXIMUM NUMBER OF NODES IS 40

( EACH FINITE DIFFERENCE ELEMENT CAN

INCLUDE MORE THAN ONE BRICK AND ONE MORTAR
JOINT )

THE MAXIMUM NUMBER OF LOAD/ECCENTRICITY
INCREMENTS IS 40

THE BRICKS ARE ASSUMED TO BE LINEAR-
ELASTIC. THE MORTAR MAY BE SPECIFIED AS

EITHER LINEAR OR NON-LINEAR EXPRESSED AS---

SIGMA = MOD¥*(EPS-C¥EPS#**N)

IN WHICH SIGMA IS NORMAL STRESS
MOD IS MORTAR INITIAL
TANGENT MODULUS
EPS IS NORMAL STRAIN
C IS A CONSTANT
N IS AN EXPONENT

THE PROGRAM CALCULATES EITHER THE MAXIMUM

LOAD FOR A SPECIFIED ECCENTRICITY ——wmmme—e

THE PERMISSIBLE BOUNDARY CONDITIONS ARE:
(1) PINNED TOP AND BOTTOM WITH THE SAME
END-LOAD ECCENTRICITY
(2) PINNED TOP AND BOTTOM WITH DIFFERENT
END-LCAD ECCENTRICITY
(3) PINNED TOP AND FIXED BASE
---------------- OR THE
MAXIMUM ECCENTRICITY FOR A SPECIFIED LOAD
ONLY IF THE BASE IS FIXED OR IF THE
ECCENTRICITY IS IDENTICAL BOTH TOP AND
BOTTOM

ERNARAR R RS AR AL AR R XA RRAEX R AL EFARRXRRRERRRRARRRRER

DIMENSION W(40),PW(40),RIN(L40),ECC(40),SMAX(LO)
DIMENSION QA(U40),PPL(40),PLAT(40),SLOT(40),NX(40),RA(LO0),CK(HO)

DIMENSION DPW(40),RR(40),R(40),PA(LO),RID(L40),WE(H0),PKO(LD)

DIMENSION PWP(U40,40),SP(40,40),C(40,40)

********#**************************

*
*
*
*
¥
*
*
*
*
*
*
*
*
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DIMENSION EP(L0),E0(40),EOP(40),A(H)
DIMENSION PNBM(40),EMX(40),DC(U40),EMN(LO)
DIMENSION SEMX(40),SDC(40),TEMX(40),TDC(40)
DIMENSION SEMN(40),TEMN(40)

DIMENSION RS(40,40)

RERR RN AR R EARRARRERR R R XA RARFURRARURRE XA RXARRRRREE

THE INPUT DATA FORMAT IS AS FOLLOWS:--

11 (OR 10 OR 21 OR 20)
1 (0)
'16000'65.00'2400.00""''20''"'10.000'"''"10.000
=R
( '16000'65.00'2400.00'''20''50.0 )
110.00'10.00''2,00'2
1ririg 10411,50 (OMIT FOR LINEAR MORTAR)
o (1
IMPERFECTIONS 16F5.2
IMPERFECTIONS 16F5.2
IMPERFECTIONS 8F5.2
0 (1'''10.000)

¥

¥

#

*

*

%

¥

#*

*

*

*

*

*

%

%

¥

*

* LINE1: 1ST CHAR.(I1): 1=LOAD INCREMENT
L 2=ECCENTRICITY

b 2ND CHAR.(I1): O=LINEAR MORTAR

# 1=NON-LINEAR MORTAR
¥ LINE2: 1=PINNED TOP AND BOTTOM

# 0=FIXED BASE AND PINNED TOF

# LINE3: BRICK MODULUS F6.0 ( MPA )

* WALL THICKNESS Fé6.2 ( MM )

* WALL HEIGHT F8.2 ( MM )

* NO. OF F.,D.ELEMENTS IN WALL IS5

* TOP END ECCENTRICITY F10.3 ( MM )
# BOTTOM END ECCENTRICITY F10.3 ( MM )
¥ ( OMIT FOR FIXED BASE WALL )

N ( LOAD AT TOP F6.1 N/MM )

% LINEY4: BRICK HEIGHT F6.2 ( MM )

* MORTAR HEIGHT F6.2 ( MM )

N BRICK:MORTAR MODULAR RATIO F6.2
* NO. OF BRICKS PER F.D.

i ELEMENT I2 (DEFAULT IXN=1)

¥ LINES: (FOR NON-LINEAR MORTAR ONLY)

* CONSTANT "C",F10.3

¥ CONSTANT "N",F5.2

¥ LINE6: O=TENSION STIFFENING INCLUDED

N 1=NO TENSION STIFFENING

# LINE10: 0=LOAD INCREMENT CALCULATED AUTO.
N 1=SPECIFY LOAD INCREMENT

* POSITIVE SPECIFIED LOAD

¥ INCREMENT, F9.3 ( N/MM )

*
*

EREREREE AR LR L RN RSB RN A RE XL RR AR RSB RARRERLRRRARRRRR

********#********#*********************#******
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READ(5,4) IPEO,ITYPE
4 FORMAT(2I1)
IF(ITYPE.EQ.1) WRITE(6,900)
IF(ITYPE.NE.1) WRITE(6,899)
899 FORMAT(1H1, 15X, ¥——~—- LINEAR MORTAR PROBLEM ———=%,///)
900 FORMAT(1H1, 15X,*~—~—-~ NON-LINEAR MORTAR PROBLEM ———=%,///)
C READ BASE SUPPORT CONDITION FLAG,"IS"
READ (5,58) IS
58 FORMAT(I1)
IF(IS.EQ.1) WRITE(6,115)
IF(IS.NE.1) WRITE(6,116)
115 FORMAT(1HO, 15X, ¥COLUMN BASE IS PINNED*//)
116 FORMAT(1HO, 15X, ¥COLUMN BASE I8 FIYXED*//)
IF(IPEO.EQ.1) GO TO 10
IPEO EQ 1 IMPLIES ECCENTRICITY IS SPECIFIED
TPEO NE 1 IMPLIES LOAD IS SPECIFIED
C READ FOR ECCENTRICITY INCREMENTS
READ(5,5) E, D,WL,N,P
5 FORMAT(F6.0,F6.2,F8.2,15,F6.1)
WRITE(6,3) E,D,WL,N
3 FORMAT(1HO, 15X, #~-=~THIS PROGRAM INCREMENTS THE LOAD ECCENTRICITY E
$0 ¥/ //
*6X,*YOUNGS MODULUS OF BRICK IS # F6.0,% MPA%//
¥6X,*THICKNESS OF WALL I3 # F6.,2,% MM¥//
*¥6X ,*HEIGHT OF WALL IS *,F8.2,%* MM*%//
¥6X,*NUMBER OF WALL SEGMENTS IS # 15//)
WRITE(6,13) P
13 FORMAT(6X,#*LOAD VALUE IS ¥ F6.1//)
GO TO 11
10 CONTINUE
c READ FOR LOCAD INCREMENTS
READ(5,2) E,D,WL,N,TEQC,BEO
2 FORMAT(F6.0,F6.2,F8.2,15,2F10.3)
WRITE(6,12) E,D,WL,N
12 FORMAT(1HO, 15X, *-~~THIS PROGRAM INCREMENTS THE LOAD P ——-%///
¥6X,¥YOUNGS MODULUS OF BRICK IS ¥ F6.0,% MPA¥%//
¥6X,*THICKNESS OF WALL IS ¥ F6.2,% MM#//
#6X ,*HEIGHT OF WALL IS * F8.,2,% MM¥*//
#6X, *NUMBER OF WALL SEGMENTS IS ¥ I5//)
WRITE(6,6) TEO
6 FORMAT(6X,*LOAD ECCENTRICITY IS ¥ F10.3,%¥ MM AT TOP OF COLUMN¥)
IF(IS.EQ.1) WRITE(6,14) BEO
14 FORMAT(6X,*LOAD ECCENTRICITY IS # F10.3,% MM AT BASE OF COLUMN¥%®//)
11 CONTINUE
C READ BRICKWORK PARAMETERS
READ(5,8) PHB,PHM,PNB,IXN
8 FORMAT(F6.2,F6.2,F6.2,I2)
IF(IXN.EQ.0) IXN=1
WRITE(6,9) PHB, PHM, PNB, IXN
9 FORMAT(1HO,5X,#BRICK HEIGHT IS *# F6.2,% MM¥//
*6X ,*MORTAR THICKNESS IS ¥ F6.2,% MM¥*//
#6X,¥*MODULAR RATIO AT ZERO STRESS IS # F6.2 //
#6X,%¥NO, OF BRICKS PER F.D. ELEMENT IS ® 15 //)

aa
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H=0.
HH=0,
KL =0
MS=40
NS=40
MO=1
DEAL=0.0001
po 1 ISK = 1,MS
EO(ISK)=0.
EOP(ISK)=0.
PW(ISK)=0.
W(ISK)=0.
WE(ISK)=0.
QA(ISK)=0.
RA(ISK)=0.
PPL(ISK)=0.
PLAT(ISK)=0.
SLOT(ISK)=0.
PNBM(ISK)=PNB
DC(ISK)=D
EMX(ISK)=0.0001
SEMX(ISK)=0,001
TEMX(ISK)=0,001
SDC(ISK)=D
TDC(ISK)=D
EMN(ISK)=0.
SEMN(ISK)=0.
TEMN(ISK)=0.
RR(ISK)=0.
R(ISK)=0.
DC 7 ITK = 1,MS3
RS(ISK,ITK)=0.
PWP(ISK,ITK)=0.
SP(ISK,ITK)=0,
7 CONTINUE
1 CONTINUE
DMAX=D/b6
IF(ITYPE.NE.1) GO TO 901
EM=E/PNB
READ(5,131) AE,PT
131 FORMAT(F10.3,F5.2)
WRITE(H,132) EM,AE,PT
132 FORMAT(1HO,5X,*INITIAL MORTAR MODULUS IS # F6.0,% MPA¥*/
#6X, *NON-LINEARITY CONSTANTS ARE~———-%/
*12X,*%K = * F10.3/12X,*N = *,F5.2)
901 CONTINUE
HD=PHB/D
X=(PHB+PHM)*IXN
CHECK WHETHER TENSION FIELD STIFFENING EFFECT IS
INCLUDED IN PROBLEM
READ(5,21) ITFS3
21 FORMAT(I1)
IF(ITFS.EQ.0) GO TO 22
ITFS EQ 0 IMPLIES TENSION FIELD STIFFENING IS IN PROGRAM
WRITE(6,23)
23 FORMAT(1HO,5X,*-—~NO TENSION FIELD STIFFENING IN THIS PROBLEM~——%#)
GO TO 24
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22 CONTINUE
C CALCULATE MATRIX A(L4X1)=MATRIX R X MATRIX H-TRANSPOSE
HD1=HD ¢ HD2=HD¥HD $ HD3=HD¥¥3
A(1)=1.03-1.18%HD1+0.79U4%¥HD2-0. 187*HD3
A(2)==0.326+14,4%HD1-9, 47#HD2+2.32%HD3
A(3)=1.22-54. 1*%HD1+31.3%HD2-7.98%HD3
A(4)==1.39+61.0%¥HD1-18.5¥HD2+4.79%*HD3
WRITE(6,25)
25 FORMAT(1HOQ,5X,#¥--~TENSION FIELD STIFFENING IS IN THIS PROBLEM---%)
24 CONTINUE
C CALCULATE EULER BUCKLING LOAD FOR WALL WITH PIN ENDS
CALL EULER(E,D,WL,PHB,PHM,PNB,PCR)
C READ INITIAL IMPERFECTIONS AT NODES
READ(5,59) (EP(IAT),IAT=1,16)
59 FORMAT(16F5.2)
READ(5,65) (EP(JAT),JAT=17,32)
65 FORMAT(16F5.2)
READ(5,68) (EP(KAT),KAT=33,40)
68 FORMAT(8F5.2) )
NP=N+1
WRITE(6,60)
60 FORMAT(1H1,5X,*¥NODE NO.*,20X,*INITIAL IMPERFECTION (MM)* ///)
DO 61 IA ='1,NP
WRITE(6,62) IA,EP(IA)
62 FORMAT(1HO,8X,12,35X,F5.2)
61 CONTINUE
IF(ITYPE.EQ.1) WRITE(6,999) -
999 FORMAT(1H1,8X,*LOAD*,3X,*NODE*,3X,*STRAIN IN MORTAR¥,
12X, *¥STRAIN IN MORTAR¥,3X,*UNCRACKED DEPTH*/8X,¥(N/MM) ¥,
29X,%( MAX. COMP. )* LX,*( MIN. COMP. YR OTX,¥( MM ) ¥/)
IF(IPEO.NE.1) GO TO 40
GO TO M1
40 TEO=0. $ BEO=0.
L1 CONTINUE
Do 63 IB = 1,NP
EO(IB)=TEO+EP(IB)
63 CONTINUE
IF(IPEO.NE.1) GO TO 44
C INITIALIZE LOAD INCREMENT PO
READ(5,800) IP,PO
800 FORMAT(I1,F9.3)
IF(IP.NE.O) GO TO 801
PO=0.1%(D/2-TE0)/(D/2)¥*¥PCR
801 CONTINUE
P=0.
PP=0.
4y CONTINUE
DO 200 NK = 1,40
FIN=0.
IR=0
MP=1
C ALLOW FOR EXTRAPOLATION
DO 74 KD = 1,NP
WE(KD)=W(KD)
SEMX(KD)=TEMX(KD)
SDC(KD)=TDC(KXD)
SEMN(KD)=TEMN(KD)
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74 CONTINUE
REDUCE LOAD/ECCENTRICITY INCREMENT TO AVOID FAILURE
DO 150 NO = 1,500
THIS LOOP ALLOWS FOR CHANGE IN DELP
DO 50 KO = 1,NP
W(KO)=PW(KO)
TEMX (KO )=EMX (KO )
TDC (KO )=DC (KO)
TEMN (KO )=EMN (KO)
50 CONTINUE
IF(NK.EQ.1) GO TO 77
EXTRAPOLATE FOR W AND H
CALL EXTRAP(MP,NP,D,PW,WE,H,HA, IS, SEMX,EMX,SDC,DC, SEMN, EMN, NK,
1ITYPE) ,
77 CONTINUE
IF(IPEO.NE.1) GO TO 42
CALCULATE THE LOAD INCREMENT DELP
DELP=1./MO¥PO
P=P+DELP
GO TO 43
42 CONTINUE
CALCULATE THE ECCENTRICITY INCREMENT DELEO
DELEO=D/(6.%MO)
DO 64 JA = 1,NP
EO(JA)=EO(JA)+DELEO
64 CONTINUE
43 CONTINUE
CALCULATE HORIZONTAL REACTION H FOR COLUMN PINNED BOTH TOP AND BOTTOM
IF(IS.EQ.1) H=(EP(1)+TEO-EP(NP)-BEO)/(X*N)*P
DO 110 II = 1,10
CALCULATE PHYSICAL PROPERTIES AT ALL NODES
IF(ITYPE.NE.1) CALL PHYSP1(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X)
IF(ITYPE.EQ.1) CALL PHYSP2(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X,PNBM, AE,
1PT, EM, EMX, DC, E, KL, EMN)
IF(KL.GE.200) GO TO 80
CALCULATE PKO AT ALL NODES
CALL KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB, PNBM, PHM, A, ITFS)
IF(NK.NE. 1) GO TO 101
SET UP MATRICES C AND CK
AT FIRST ITERATION COLUMN IS ASSUMED UNCRACKED
IL=1
CALL MATCOM(IS,N,X,E,RIN,NP,H,P,EO,PW,DMAX,C,CK,ECC,D,MS,IL, NK,
#PKO, PHB, PHM, PNBM)
CALCULATE DISPLACEMENTS BY GAUSSIAN REDUCTION
CALL DISPL(N,C,CK,IS,H,PW,MS,EP,X,NP)
CHECK VALIDITY OF SOLUTIONS FOR RUNAWAY DISPLACEMENTS
DO 87 KC = 1,NP
IF (PW(KC) .GT.1060.) GO TO 80
EC=(P*(EO(KC)+PW(KC))-H¥X*(KC-1))/(P)
EC=ABS(EC)
IF(EC.GE.0.95%D/2) GO TO 80
87 CONTINUE
CHECK VALIDITY OF MAX STRAIN AND EFFECTIVE WIDTH
BOTH MUST BE NON-NEGATIVE
DO 187 KKA = 1,NP
IF(EMX(KKA).LT.0.) GO TO 80
IF (DC(KKA).LT.0.) GO TO 80
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IF(EMN(KKA).LT.0.) GO TO 80
187 CONTINUE
CALCULATE NEW PHYSICAL PROPERTIES '
IF(ITYPE.NE.1) CALL PHYSP1(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X)
IF(ITYPE.EQ.1) CALL PHYSP2(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X,PNBM,AE,
1PT,EM,EMX,DC,E,KL,EMN)
IF(KL.GE.200) GO TO 80
CALCULATE PKO AT ALL NODES
CALL KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB, PNBM, PHM,A,ITF3)
CHECK EQUILIBRIUM OF COLUMN
CALL EQUIL(N,RIN,PW,ECC,E,P,X,FIN,D,DMAX,H,IS,EO,IR,RR,R,PKO)
APPLY NEWTON-RAPHSON ITERATION TO ALL W AND H
101 CONTINUE
po 100 IL = 1,50
IR=1
CHANGE W VALUES ONE AT A TIME
Do 27 IT = 2,N
PACIT)=PW(IT)
DO 16 1Y = 2,NP
RID(IY)=RIN(IY)
16 CONTINUE
PW(IT)=PW(IT)+DEAL
CALCULATE NEW I-VALUES
IF(ITYPE.NE.1) CALL PHYSP1(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X)
IF(ITYPE.EQ.1) CALL PHYSPZ(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X,PNBM,AE,
1PT ,EM,EMX,DC,E,KL,EMN)
IF(KL,GE.200) GO TO 80
CALCULATE PKO AT ALL NODES
CALL KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB,PNBM,PHM.A,ITFS)
CHECK EQUILIBRIUM OF COLUMN
CALL EQUIL(N,RIN.Pw,ECC,E,P,X,FIN,D,DMAX,H,IS,EO,IR,RR,R,PKO)
CALCULATE CHANGE IN ERROR TERM -~-STORE IN ARRAY RS
JY=IT-1
DO 28 KX = 1,N
RS(KX,JY)=(RR(KX)-R(XX))/DEAL
28 CONTINUE
RESTORE ORIGINAL VALUES TO W
PW(IT)=PA(IT)
DO 17 IX = 2,NP
RIN(IX)=RID(IX)
17 CONTINUE
27 CONTINUE
IF COLUMN IS PINNED H IS PROPORTIONAL TO LOAD P AND NOT
ALTERED BY NEWTON-RAPHSON PROCCEDURE
IF(IS.EQ.1) GO TO 20
IS = 1 IMPLIES PIN ENDS
CHANGE VALUE OF H
HB=H
DO 18 IW = 2,NP
RID(IW)=RINC(IW)
18 CONTINUE
H=H+DEAL
CALCULATE NEW I-VALUES
JF(ITYPE.NE.1) CALL PHYSP1(NP,D,EO,PW,ECC,RIN,P,DMAX, H,X)
IF(ITYPE.EQ.1) CALL PHYSP2(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X,PNBM,AE,
1PT,EM,EMX,DC, E,KL,EMN)
IF(KL.GE.200) GO TC 80
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CALCULATE PKO AT ALL NODES
CALL KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB, PNBM, PHM,A,ITFS)
CHECK EQUILIBRIUM OF COLUMN
CALL EQUIL(N,RIN,PW,ECC,E,P,X,FIN,D,DMAX,H, IS, EO,IR,RR,R,PKO)
CALCULATE CHANGE IN ERROR TERM --- STCRE IN ARRAY RS
DO 29 KW = 1,N
RS(KW,N)=(RR(KW)~-R(KW))/DEAL
29 CONTINUE
RESTORE ORIGINAL VALUES TO H
H=HB
DO 19 IV = 2,NP
RIN(IV)=RID(IV)
19 CONTINUE
20 CONTINUE
IR=0
SOLVE EQUATIONS TO GIVE NEW VALUES OF W AND H
CALL NEWRAPH(N,RS,R,DPW,PW,H,MS,P,IL,PWP)
CHECK VALIDITY OF SOLUTIONS FOR RUNAWAY DISPLATUEMENTS
OR OSCILLATORY DISPLACEMENT MODES
DO 86 KD = 2,N
IF (ABS(PW(KD)).LT.O. 1%¥DMAX) GO TO 856
IF (ABS(PW(KD)).GT.D) GO TO 80
IF(W(KD)/PW(KD),LT.0.) GO TO 80
EC=(P#(EO(KD)+PW(KD))~-H*¥X¥(KD=1))/(P)
IF(ABS(EC).GE.0.95¥%¥D/2) GO TO 80
86 CONTINUE
CHECK VALIDITY OF MAX STRAIN AND EFFECTIVE SECTION
EMX AND DC MUST BOTH BE NON-NEGATIVE
DO 186 KKB = 1,NP
IF(EMX(KKB).,LT.0.) GO TO 80
IF(DC(KKB).LT.0.) GO TO 80
IF (EMN(KKB).LT.0.) GO TO 80
186 CONTINUE
CHECK EQUILIBRIUM BEFORE NEW ITERATION IS COMMENCED
CALCULATE PHYSICAL PROPERTIES AT ALL NODES
IF(ITYPE.NE.1) CALL PHYSP1(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X)
IF(ITYPE.EQ.1) CALL PHYSP2(NP,D,E0,PW,ECC,RIN,P,DMAX,H,X,PNBM, AE,
1PT,EM,EMX,DC,E,KL,EMN)
IF(KL.GE.200) GO TO 80
CALCULATE PKO AT ALL NODES
CALL KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB,PNBM,PHM,A,ITFS)
CALL EQUIL(N,RIN,PW.ECC‘E,P,X,FIN,D,DMAX,H,IS,EO,IR,RR,R,PKO)
IF(FIN.EQ.0.) GO TO 100
FIN GT 0. IMPLIES EQUILIBRIUM TO DESIRED ACCURACY
GO TO 15
100 CONTINUE
NEWTON-RAPHSON ITERATION HAS NOT REACHED SOLUTION
ONE OR MORE OF SOLUTION HYPERSURFACES HAS SLOPE DISCONTINUITY
SHIFT P OR EQO HYPERSURFACE TO ALLOW SOLUTION
IF(IPEO.NE.1) GO TO 71
P=P+1
GO TO 110
71 CONTINUE
ET=0.01%D
DO 72 JJ = 1,NP
EG(JJ)=EO(JJ)+ET
72 CONTINUE



110

CONTINUE
WRITE(6,160) P,E0(1)

160 FORMAT(1H1, 10X, *COLUMN EQUATIONS ARE ILL-CONDITIONED AT ¥

80

70

u5
66

48

1%LOAD = *,F10.3,*% N/MM LENGTH OF WALL*¥*/1HO, 30X,
2%TOP LOAD ECCENTRICITY IS #¥,F10.3,* MM*//1HO, 25X,
e RUN PROGRAM WITH ALTERED LOAD(ECCENTRICITY) PATH

STOP " PROGRAM ENCOUNTERED ILL-CONDITIONED EQUATIONS "
DO 70 JO = 1,NP
PW(JO)=W(JO)
EMX(JO)=TEMX(JO)
DC(JO)=TDC(JO)
EMN(JO)=TEMN(JO)
CONTINUE

IF(IPEO.NE.1) GO TO 45
P=PP

H=HH

GO TO 48

DO 66 JD = 1,NP
EO(JD)=EOP(JD)
CONTINUE

H=HH

CONTINUE

c THIS LOOP DECREASES THE INCREMENT IN P OR EO

k9
51
150

15

MO=MO#*2

MP=MP#2

IF(IPEO.NE.1) GO TO 49

IF (DELP.LT.0.1) GO TO 35

GO TO 51

IF(DELEO.LT.0.01) GO TO 55
CONTINUE

CONTINUE

STOP "500 ITERATIONS INSUFFICIENT"
CONTINUE

c FAILURE HAS NOT OCCURRED IF THIS STEP IS REACHED
c INCREASE LOAD/LOAD ECCENTRICITY

52

67

53

IF(IPEO.NE.1) GO TO 52
PP=P

HA =HH

HH=H

GO TO 53

bo 67 IF = 1,NP
EOP(IF)=EQ(IF)
CONTINUE

HA=HH

HH=H

GO TO 54
CONTINUE

C CALCULATE STRESS AT COMPRESSION FACE AT ALL NODES

IF(ITYPE.NE, 1) CALL STRESS1(NP,P,D,EO, PW,SMAX,H,X)
IF(ITYPE.EQ.1) CALL STRESS2(NP, AE, PT,EMX,E, PNB, SMAX)

C ALLOCATE VALUES FOR PLOTTING AND PRINTING

91

PPL(NK)=P

D091 KA=1,NP
PWP(NK,KA)=PW(KA)
SP(NK,KA)=SMAX(KA)
CONTINUE

IF(ITYPE.NE.1) GO TO 92

380.
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IF(IS.EQ.1) NPQ=(NP+1)/2
IF(IS.NE.1) NPQ=U*N/10
WRITE(6,1000) P,NPQ,EMX(NPQ),EMN(NPQ),DC(NPQ)
1000 FORMAT(1HO,5X,F8.2,15,5X,E12,3,5X,E12.3,5X,F12.4)
92 CONTINUE
IF(DELP.LT.0.1) 35,34
54 IF(DELEO.LT.0.01) GO TO 55
34 CONTINUE
200 CONTINUE
c COMPLETED NK LOOP LEADS TO NK TOO LARGE BY ONE
NK=NK-1
WRITE(6,37)
37 FORMAT(1HO, 25X, *WALL FAILURE NOT ATTAINED IN 40 ITERATIONS*/)
IF(IPEO.NE.1) STOP
GO TO 36
35 CONTINUE
WRITE(6,88) P,H
88 FORMAT(1HO, 30X, *WALL FAILURE LOAD IS #¥,F8.2,% N/MM¥ / 1HO, 30X,
¥¥MAX, HORIZONTAL REACTION IS *,F8.4, ¥ N/MM¥) J
36 CONTINUE
C PRINT DISPLACEMENTS AND STRESSES FOR CRITICAL NODE(S)
CALL PRINT(NP,NX,NK,PWP,SP,PPL,NS)
c PLOT CRITICAIL NODE(S) FOR DEFLECTION AND STRESS
CALL DPLOT(NK,NP,QA,PPL,PWP,PLAT,NS)
CALL SPLOT(NK,NP,RA,PPL,SP,SLOT,NS)
GO TO 56
55 EOD=D/EO(1)
WRITE(6,57) PF,EOD
57 FORMAT(1HO,25X,*FOR LOAD OF *,F6.1,% MAX, ECCENTRICITY IS D /*,F8
ti5D)
56 CONTINUE
END
SUBROUTINE EULER(E,D,WL,PHB,PHM,PNB, PCR)

C CALCULATE EQUIVALENT WALL ELASTIC MODULUS FOR FULL SECTION

EQ=E#*(PHB+PHM)/ (PHB+PNB¥PHM)
BI=D¥#¥3/12
PCR=3. 1415Q2%¥2¥EQ¥BI/WL¥¥%2
WRITE(6,4) PCR
4 FORMAT(1HO,5X,*CRITICAL BUCKLING LOAD FOR PIN-END WALL IS * F8.2,
1# N/MM LENGTH#/)
RETURN
END
SUBROUTINE EXTRAP(MP,NP,D,PW,WE,H,HA,IS,SEMX,EMX,SDC,DC, SEMN,
¥EMN, NK, ITYPE)
DIMENSION PW(1),WE(1),SEMX(1},EMX(1),SDC(1)
DIMENSION DC(1),SEMN(1),EMN(1)
c EXTRAPOLATE ON ALL W
DO 73 KC = 1,NP
IF(PW(KC).EQ.0.) GO TO 76
WMULT=1.+(1.-WE(KC)/PW(KC))/MP
PW(KC)=PW{KC)*WMULT
GO TO 73
76 PW(KC)= -WE(KC)/MP
73 CONTINUE
C EXTRAPOLATE ON H
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IF(IS.EQ.1) GO TO 72
IS.EQ.1 IMPLIES PIN ENDS
HMULT=1.+(1.-HA/H)/MP
H=H*HMULT
72 CONTINUE
IF(NK.EQ.2) GO TO 77
IF(ITYPE.NE.1) GO TO 77
EXTRAPOLATE ON MAX STRAIN EMAX
DO 74 KD = 1,NP
EMULT=1.+(1.~-SEMX(KD)/EMX(KD))/MP
EMX(KD)=EMX(KD)*EMULT
74 CONTINUE
EXTRAPOLATE ON EFFECTIVE SECTION DC
DO 75 KE = 1,NP
IF(EMN(KE).GT.0.) GO TO 75
EMN GT ZERO IMPLIES SECTION IS NOT CRACKED AND DC EQ D
DMULT=1.+(1.-SDC(KE)/DC(KE))/MP
DC(KE)=DC(KE)*DMULT
75 CONTINUE
EXTRAPOLATE ON EMIN
DO 78 KF = 1,NP
IF(DC(KF).NE.D) GO TO 78
IF (EMN(KF) .EQ.0.) GO TO 78
DC NE D IMPLIES SECTION IS CRACKED AND EMIN IS ZERO
EMULT=1.+(1.-SEMN(KF)/EMN(KF))/MP
EMN(KF)=EMN(KF)*EMULT
78 CONTINUE
77 CONTINUE
RETURN
END
SUBROUTINE PHYSP1(NP,D,EOQ,PW,ECC,RIN,P,DMAX, H,X)
DIMENSION RIN(1),PW(1),ECC(1),E0(1)
DO 51 J = 1,NP
ECC(J)=D/2.-E0(J)~PW(J)
EC=(P*(EO(J)+PW(J))-H¥X¥(J~1))/P
ABSEC=ABS(EC)
IF(ABSEC.LT.DMAX) GO TO 40
RIN(J)=(3.%¥(D/2.~ABSEC))*#*¥3/12,
GO TO 51
40 RIN(J)=D%#%¥3/12,
51 CONTINUE
RETURN
END
SUBROUTINE PHYSP2(NP,D,EO,PW,ECC,RIN,P,DMAX,H,X,
%PNBM, AE, PT ,EM,EMX,DC,E,KL,EMN)
DIMENSION RIN(1),PW(1),ECC(1),E0(C1),PNBM(1),EMX(1)
DIMENSION DC(1),EMN(1)
DIMENSION DP(40),XX(2,2),ICF(40)
DO 50 J = 1,NP
ECC(J)=D/2-E0(J)-PW(J)
EC=EO(J)+PW(J)-H*X#¥(J~-1)/P
ABSEC=ABS(EC)
IF(ABSEC.LT.DMAX.OR.DC(J).EQ.D) ICF(J)=1
IF(ABSEC.GE,DMAX.OR.DC(J).LT.D) ICF(J)=0

ABSEC EQ ZERO IMPLIES AXIAL LOAD AT NODE J
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IF (ABSEC.EQ.0.) RIN(J)=D¥%3/12
IF(ABSEC.EQ.0.) GO TO 50
IF(ICF(J).NE. 1) ICF(J)=0
C CHECK WHETHER CRACKING IS BEING INITIATED
IF(EMN(J).LT.0.) ICF(J)=0
IF(EMN(J).LT.0.) EMN(J)=0.
DP(J)=D/2-ABSEC
Do 150 KP = 1,5
IF(ICF(J).EQ.1) GO TO 160
DO 300 KL = 1,200
EMN(J)=0.
EBAR=(2./3%¥EMX(J)-(2.%¥AE)/ (2+PT)REMX(J)¥*PT)/
%$(1.,-(2.%AE)/(1+PT)*EMX(J)*¥¥(PT-1))
T=P-EM#* (EMX(J)*EMX(J)/2-AE/(PT+1)*EMX(J)¥*(PT+1))
®¥*¥DC(J)/EMX(J)
V=DP(J)-(EMX(J)~-EBAR)*DC(J)/EMX(J)
IF(ABS(T).LT.0.01.AND.ABS(V).LT.0.001) GO TO 400
DO 200 ILO = 1,2
IF(ILO.EQ.1) EX=EMX(J)+0.00"
IF(ILO.EQ.1) D8=DC(J)
IF(ILO.EQ.2) EX=EMX(J)
IF(ILO.EQ.2) DS=DC(J)+0.1
EBAR=(2./3%EX-(2.*AE)/ (2+PT)*¥EX**¥PT)/(1.-(2.%AE)/
*¥(14+PT )*¥EX¥%(PT-1))
DT=P-EM¥ (EX*¥EX/2-AE/(PT+1)*¥EX¥¥(PT+1))*¥DS/EX
DV=DP(J)-(EX-EBAR)¥DS/EX
IF(ILO.EQ.2) GO TO 100
XX(1,1)=(DT-T)/0.001
XX(2,1)=(DV=V)/0.001
GO TO 200
100 XX(1,2)=(DT-T}/0.1
XX(2,2)=(DV-V)/0.1
200 CONTINUE
DETXX=XX(1,1)¥XX(2,2)-XX(1,2)*XX(2,1)
DEMX=(-T*XX(2,2)+V*XX(1,2))/DETXX
DDC=(T¥*XX(2,1)-V¥XX(1,1))/DETXX
C CHECK WHETHER ITERATION LEADS TO NEGATIVE STRAIN EMX ( INVALID )
IF((EMX(J)+DEMX).LE.O0.) DEMX=0.
EMX(J)=EMX(J)+DEMX
DC(J)=DC(J)+DDC
300 CONTINUE
WRITE(6,1000) P
1000 FORMAT(1HO,5X,*CONSISTENT CRACKED SECTION NOT FOUND FOR
1 LOAD =% F12.4,% N/MM*)
RETURN
400 CONTINUE
IF(DC(J).GT.1.001%D) ICF(J)=1
IF(ICF(J).EQ.1) DC(J)=D
IF(ICF(J).EQ.1) GO TO 160
C CALCULATE EFFECTIVE MORTAR MODULUS AND VALUE OF RIN
IF(ABSEC.LT.DMAX) GO TO 201
PNBM(J)=E*(L4.5¥%DP(J)¥DP(J)¥EMX(J))/(DC(J)*P)
RIN(J)=(3.¥DP(J))¥*3/12
GO TO 50
201 CONTINUE
PNBM(J)=E/(12.#%P/D¥%%3%(0,5%D-DP(J))*¥DC(J)/EMX(J))
RIN(J)=D*¥¥3/12
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GO TO 50
160 CONTINUE
SET EMIN GREATER THAN ZERO BUT NOT EQUAL TO EMAX ( IF REQUIRED )
IF (EMN(J).EQ.0.) EMN(J)=0.00001
EDEL=1.0E-06
IF(EMN(J).EQ.EMX(J)) EMX(J)=EMX(J)+EDEL

LObP 500 CALCULATES EMAX AND EMIN FOR UNCRACKED SECTION

DO 500 KL = 1,200
EBAR=(2. /3*(EMX(J)**3 EMN(J)¥%¥3)-2,¥AE/(PT+2)* (EMX(J)**(PT+2)
¥_EMN(J)*%(PT+2)))/(EMX(J)¥EMX(J)~EMN(J)*¥EMN(J)~2.*AE/
*(PT+1)*(EMX(J)%*%¥(PT+1)-EMN(J)**¥(PT+1)))
CALCULATE ERROR TERMS Q AND 3
Q:P—EM*(O.5*(EMX(J)*EMX(J)-EMN(J)*EMN(J))~AE/(PT+1)*(EMX(J)**
% (PT+1)~EMN(J)*¥*¥(PT+1)))¥D/(EMX(J)-EMN(J))
S:DP(J)—(EMX(J)-EBAR)*D/(EMX(J)—EMN(J))
IF(ABS(Q).LT.0.01.AND.ABS(S).LT.0.001) GO TO 600
DO 700 ILP = 1,2
IF(ILP.EQ.1) EX=EMX(J)+EDEL
IF(ILP.EQ.1) EN=EMN(J)
IF(ILP.EQ.2) EX=EMX(J)
IF(ILP.EQ.2) EN=EMN(J)+EDEL
EBAR=(2./3%(EX¥*3-EN¥*3)_.2 ¥AE/(PT+2)*(EX¥*(PT+2)- EN¥%(PT+2)))/
® (EX®EX-EN¥EN-2,*AE/ (PT+1)*¥ (EX¥%(PT+1)-EN¥¥(PT4+1)))
CALCULATE CHANGE IN ERROR TERMS DQ AND DS
DQ=P-EM* (0, 5% (EX¥EX-EN*EN)-AE/(PT+1)*¥(EX**¥(PT+1) ~EN*¥*#(PT+1))) ¥
#D/(EX-EN)
DS=DP(J)-(EX-EBAR)¥D/(EX-EN)
IF(ILP.EQ.2) GO TO 800
XX(1,1)=(DQ-Q)/EDEL
XX(2,1)=(DS-S)/EDEL
GO TO 700
800 XX(1,2)=(DQ-Q)/EDEL
XX(2,2)=(D3-S)/EDEL
700 CONTINUE
DETXX=XX (1, 1)*¥XX(2,2)~-XX(1,2)¥XX(2,1)
DEMX=(-Q*XX(2,2)+S*¥XX(1,2))/DETXX
DEMN=(Q#¥XX(2,1)-S*XX(1,1))/DETXX
CHECK WHETHER ITERATION LEADS TO NEGATIVE STRAIN EMX ( INVALID )
IF ((EMX(J)+DEMX).LE.0.) DEMX=0.
EMX(J)=EMX(J)+DEMX
EMN(J)=EMN(J)+DEMN
IF EMN(J) IS LESS THAN OR EQUAL TO ZERO, LIBRARY EXPONENTIATION
ROUTINE XTOY WILL NOT WORK FOR REAL EXPONENTS
IF(EMN(J).LE.O.) EMN(J)=0.00001
500 CONTINUE
IF, AT COMPLETION OF LOOP 500, EMN(J) IS EQUAL TO 0.00001,
CRACKED SECTION ANALYSIS SHOULD BE USED
IF, HOWEVER, PROGRAM REACHES END OF LOOP 500 AND STRAINS ARE
NOT CALCULATED, FLAG IS SET TO REDUCE LOAD INCREMENT
IF (EMN(J).NE.0.00001) RETURN
SET FLAGS FOR CRACKED SECTION ANALYSIS
ICF(J)=0 ‘
EMN(J)=0.
150 CONTINUE
STOP "SECTION PROPERTIES NOT CALCULATED"
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600 CONTINUE
C CALCULATE EFFECTIVE MORTAR MODULUS AND VALUE OF RIN
IF(DP(J).EQ.D/2) GO TO 850
PNBM(J):E*D*D*(EMX(J)—EMN(J))/(12.*?*(D/2—DP(J)))
850 RIN(J)=D*#¥3/12
50 CONTINUE
RETURN
END
SUBROUTINE KON(NP,P,EO,PW,H,X,DMAX,D,PKO,PHB,PNBM,PHM,A,ITFS)
DIMENSION PW(1).PKO(1),EO(1),A(”),PNBM(1)
DO 61 JB = 1,NP
C CALCULATE EFFECTIVE ECCENTRICITY
EC:(P*(EO(JB)+PW(JB))"H*X*(JB—1))/(P)
ABSEC=ABS(EC)
IF (ABSEC.LE.DMAX) GO TO 67
IF(ITFS.NE.O0) GO TO 67
ED=ABSEC/D
ED1=ED ¢$ ED2=ED¥*ED $ ED3=ED¥%¥3
PEC=A(1)+ED1*¥A(2)+ED2%A(3)+ED3¥A(H)
PKN=1./PEC
GO TO 62
67 PKN=1.
62 CONTINUE
PKO(JB):(PKN*PHB+PNBM(JB)*PHM)/(PHB+PHM)
61 CONTINUE
RETURN
END
SUBROUTINE EQUIL(N,RIN,PW,ECC,E,P,X,FIN,D,DMAX,H,IS,EO,IR.RR,R,
¥PKO)
DIMENSION RIN(1),PW(1),ECC(1),RR(1),R(1)
DIMENSION PKO(1),E0(1)
ERR = 0.
ERRAL=0.000001
NQ=N+1
DO 30 KM = 2,NQ
JI = KM-1 $ JK = KM + 1
IF(KM.NE,NQ) GO TO 75
IF(IS.EQ.1) GO TO 31
C IS = 1 IMPLIES PINNED BASE
PW(JK)=PW(JI)
75 EC=(P*(EO(KM)+PW(KM))-H®X*(KM=-1))/(P)
ABSEC=ABS(EC)
IF(ABSEC,.LT.DMAX) GO TO 37
IF(EC.LT.0.) GO TO 38
ERROR:E*RIN(KM)/P*(PW(JK)+PW(JI)—2.*PW(KM))/X**2+PKO(KM)*(}5*ECC(K
¥M)+ . 5¥H¥JI¥X/P)
IF(IR.EQ.0) GO TO 41
RR(JI)=ERROR
GO TO 31
41 R(JI)=ERROR
ERROR=ABS(ERROR)
IF (ERROR.LE.ERR) GO TO 31
EER = ERROR
GO TO 31
38 ERROR:E*RIN(KM)/P*(PW(JK)+PW(JI)—2.*PW(KM))/X**2+PKO(KM)*(u.5*(D—E
X¥CC(KM))+ . 5*¥H*JI*X/P)
IF(IR.EQ.0) GO TO 43
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RR(JI)=ERROR
GO TO 31
43 R(JI)=ERROR
ERROR=ABS (ERROR)
IF (ERROR.LE.ERR) GO TO 31
ERR=ERROR
GO TO 31
37 ERROR= L*RIN(KM)/P*(PW(JK)+PW(JI) ~2.¥PW(KM))/X*%¥2,PKO(KM)*((D/2~ECC
®(KM))-H*JI*X/P)
IF(IR.EQ.0) GO TO 45
RR(JI)=ERROR
GO TO 31
45 R(JI)=ERROR
ERROR=ABS(ERROR)
IF (ERROR.LE.ERR) GO TO 31
ERR=ERROR
31 CONTINUE
30 CONTINUE
IF(IR.EQ.1) GO TO 16
IF (ERR.GT.ERRAL) GO TO 16
FIN=ERR
16 CONTINUE
RETURN
END
SUBROUTINE MATCOM(IS,N,X,E,RIN,NP,H,P,EO,PW,DMAX,C,CK, ECC,D,MS,
#IL,NK, PKO,PHB, PHM, PNBM)
DIMFNSlON RIN(1) PW(1) c(Ms,1),CK(1),ECC(1) -
DIMENSION PKO(1),E0(1),PNBM(1)
DO 20 IXA = 1,MS
DO 21 IXB = 1,MS
C(IXA,IXB)=0.
21 CONTINUE
20 CONTINUE
PK=(PHB+PNBM (1) ¥PHM) / (PHB+PHM)
C SET UP EQUATION MATRIX C WITH FIXED TERMS
NA=N-1 $ NB=N-2
c(1,1)=2.
c(1,2)=-1.
C(NA,NB)=-1.
C(NA,NA)=2,
IF(IS.EQ.1) GO TO 6
C(N,NA)=-2.
6 CONTINUE
DO 55 1 = 2,NB
IF=I-1 $ IG=I+1

C(I,IF)=-1.
C(I,I)=2.
C(I,IGY==-1.

55 CONTINUE
DO 52 K = 2,NP
KJ=K-1 $ KL = K+
¢ ASSUME COLUMN IS UNCRACKED FOR FIRST ITERATION
IF(NK.NE.1) GO TO 14
IF(IL.NE. 1) GO TO 14
DI=D*#3/12
DO 53 LP = 1,NP
PKO(LP)=PK



53
14

58

56

57
52

RIN(LP)=DI

CONTINUE

GO TO 58

CONTINUE

EC=(P¥(EO(K )+PW(K ))-H*X¥(K -1))/(P)
ABSEC=ABS(EC)

IF (ABSEC.GE.DMAX) GO TO 56
CK(KJ):P*(D/2—ECC(K))*X**2/(E*RIN(K))*PKO(K)
GO TO 52

IF(EC.LT.0.) GO TO 57
CK(KJ):X**Z/(E*RIN(K))*(.5*P*ECC(K))*PKO(K)
GO TO 52
CK(KJ):X**2/(E*RIN(K))*(—.5*P*(D—ECC(K)))*PKO(K)
CONTINUE

IF(IS.EQ.1) GO TO 10

DO 12 IN = 1,N

IM=IN+1

ASSUME COLUMN IS UNCRACKED FOR FIRST ITERATION

15

13
12
10

58

57

59

IF(NK.NE. 1) GO TO 15
IF(IL.NE.1) GO TO 15
PKO(IM)=PK
RAN=X*%2/(E¥DI)*X¥*IN

GO TO 13 ~

CONTINUE
EC=(P*(EO(IM)+PW(IM))-H¥X*¥(IM-1))/(P)
ABSEC=ABS(EC)
RAN=X*%2/(E¥RIN(IM))*X*IN
IF(ABSEC.LT.DMAX) GO TO 13
C(IN,N)=—.5*RAN¥PKO (IM)

GO TO 12
C(IN,N)=RAN#¥PKO(IM)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE DISPL(N,C,CK,IS, H,PW,MS,EP,X,NP)
DIMENSION C(MS, 1),CK(1),PW(1),EP(1)
ND=N-2

po 57 IT = 1,ND
DIV=C(IT,IT) $ IV=IT+1

DO 58 IR = 1,N
C(IT,IR)=C(IT,IR)/DIV
C(IV,IR)=C(IV,IR)+C(IT,IR)
CONTINUE

CK(IT)=CK(IT)/DIV
CK(IV)=CK(IV)+CK(IT)
CONTINUE

NE=N-1

DUV=C(NE,NE)/2

DO 59 IW = 1,N

C(NE, IW)=C(NE, IW)/DUV
C(N,IW)=C(N,IW)+C(NE, IW)
CONTINUE

CK(NE)=CK(NE)/DUV
CK(N)=CK(N)+CK(NE)

MATRICES ARE NOW REDUCED
BACK-SUBSTITUTE FOR VALUES OF W AND H

387.
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IF(IS.NE. 1) H=zCK(N)/C(N,N)
PW(N)=(CK(NE)-C(NE,N)*H)/2
DO 61 NO = 1,ND
NR=N-NO
NRI=NR-1 $ NRJ=NR+1
PW(NR)=CK(NRI)-C(NRI,NR)*PW(NRJ)-C(NRI,N)*H
61 CONTINUE
RETURN
END
SUBROUTINE NEWRAPH(N,RS,R,DPW,PW,H,MS,P,IL,PWP)
DIMENSION RS(MS,1),R(1),DPW(1),PW(1)
DIMENSION PWP(MS, 1)
IPT=N-1
DO 51 LB = 2,N
LA=zLB-1
IF(RS(LB,LA).EQ.0.) GO TO 51
C THIS IMPLIES NO REDUCTION IS REQUIRED ON ROW LB
RMULT=-RS (LA, LA)/RS(LB,LA)
DO 53 LC = 1,N
RS(LB,LC)=RS (LB, LC)*RMULT
RS(LB,LC)=RS(LB,LC)+RS(LA,LC)
53 CONTINUE
R(LB)=R (LB)*¥RMULT
R(LB)=R(LB)+R(LA)
51 CONTINUE
C  BACKSUBSTITUTE
IF(RS(N,N).EQ.0.) GO TO 54
DELH=-R(N)/RS(N,N)
GO TO 55
54 DELH=O0.
55 CONTINUE
IF(RS(IPT,IPT).EQ.0.) GO TO 56
DPW(N)= (=R (IPT)-RS(IPT,N)*DELH)/RS(IPT,IPT)
GO TO 57
56 DPW(N)=0.
57 CONTINUE
NR=N-2
DO 58 NC = 1,NR
MR=N-NC
MSI=MR-1 $ MSJ=MR+1
IF (RS(MSI,MSI).EQ.0.) GO TO 59
DPW(MR)= (=R (MSI)=RS(MSI,MR)*DPW(MSJ)~RS(MSI,N)*DELH)/RS(MSI,MSI)
GO TO 58
59 DPW(MR)=0.
58 CONTINUE
C CALCULATE NEW VALUES OF W AND H
DO 61 MT = 2,N
PW (MT)=PW(MT)+DPW(MT)
61 CONTINUE
H=H+DELH
RETURN
END
SUBROUTINE STRESS1(NP,P,D,EO0,PW,SMAX, H,X)
DIMENSION PW(1),SMAX(1),E0(1)

THIS ROUTINE CALCULATES STRESSES FOR LINEAR MORTARS ONLY

Qa0
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DO 53 JT=1,NP
DAX%=D/6
EC=(P*(EO(JT)+PW(JT))-H¥X¥(JT=1))/(P)
ABSEC=ABS(EC)
IF (ABSEC.LT.DAX) GO TO 41
SMAX(JT)=2./3%(P)/(D/2-ABSEC)
GO TO 53
41 SMAX(JT)=(P)*(1./D+6./D¥*¥2%ABSEC)
53 CONTINUE
RETURN
END
SUBROUTINE STRESS2(NP,AE,PT,EMX,E,PNB, SMAX)
DIMENSION EMX(1),SMAX(1)

THIS ROUTINE CALCULATES STRESSES FOR NON-LINEAR MORTARS ONLY

Do 60 JA = 1,NP
SMAX(JA)=E/PNB*(EMX(JA)-AE¥EMX(JA)*¥¥PT)
60 CONTINUE
RETURN
END
SUBROUTINE PRINT(NP,NX,NK,PWP,SP,PPL,NS)
DIMENSION NX(1),PWP(NS,1),SP(NS,1),PPL(1)
PRINT DISPLACEMENTS AND STRESSES FOR ALL NODES
DO 69 IX = 1,2
XL=0.
IF(IX.EQ.2) GO TO 68
50 CONTINUE
WRITE(6,64)
64 FORMAT(1H1,50X,*DISPLACEMENTS*/1HO.2X,*LOAD*.65X,*NODES*)
GO TO 61
68 CONTINUE
WRITE(6,62)
62 FORMAT(1H1,40X,*¥MAX. COMPRESSIVE STRESS*/1HO0, 2X, *LOAD#*, 65X, #*NCDES*
)
61 CONTINUE
IF(NP.GT.21) GO TO 80
DO 65 KP = 1,NP
65 NX(KP)=KP
WRITE(6,66) (NX(KT),KT=1,NP)
66 FORMAT(8X,2116/)
GO TO 81
80 CONTINUE
DO 82 JP = 1,NP
T=JP/2.
JS=INT(T)
VR=T-JS
IF(VR.EQ.XL) GO TO 82
IF(XL.NE.0.)GO TO 90
JS=JS+1
90 CONTINUE
NX(JS)=JP
82 CONTINUE
WRITE(6,66) (NX(JT),JT=1,JS)
81 CONTINUE
IF(IX.EQ.2) GO TO 67
IF(NP.GT.21) GO TO 84



T4
73

8

86
85

91

93

9y

67

T7
76

87

89
88

95

96
98

69

DO 73 KV = 1,NK

WRITE(6,74) PPL(KV),(PWP(KV,KW),KW=1,NP)
FORMAT(1HO,F6.1,2X,21F6.3/)

CONTINUE

GO TO 69

CONTINUE

IF(XL.EQ.0.5)GO TO 91

DO 85 KZ = 1,NK

WRITE(6,86) PPL(XKZ),(PWP(KZ,KW) ,KW=1,NP,2)
FORMAT(1HO,F6.1,2X,21F6.3/)

CONTINUE

GO TO 94

CONTINUE

DO 92 KZ = 1,NK

WRITE(6,93) PPL(XZ),(PWP(KZ,KW) ,KW=2,NP,2)
FORMAT(1HO,F6.1,2X,21F6.3/)

CONTINUE

CONTINUE

IF(XL.EQ.0.5)GO TO 69

XL=0.5

GO TO 50

CONTINUE ,

IF(NP.GT.21) GO TO 87

DO 76 KX=1,NK

WRITE(6,77) PPL(KX),(SP(KX,KY),KY=1,NP)
FORMAT(1HO,F6.1,2X,21F6.2/)

CONTINUE

GO TO 69

CONTINUE

IF(XL.EQ.0.5)GO TO 95

DO 88 KZ=1,NK

WRITE(6, 89) PPL(KZ),(SP(KZ,KY),K¥=1,NP,2)
FORMAT(1HO,F6.1,2X,21F6.3/)

CONTINUE

GO TO 98

CONTINUE

DO 96 KZ =1,NK

WRITE(6,89) PPL(XZ),(SP(KZ,KY), KY=2,NP,2)
CONTINUE

CONTINUE

IF(XL.EQ.0.5) GO TO 69

XL=0.5

GO TO 68

CONTINUE

RETURN

END

SUBROUTINE DPLOT(NK,NP,QA,PPL,PWP,PLAT,NS)
DIMENSION QA(1),PPL(1),PWP(NS,1),PLAT(1)

C FIND NODE(S) WITH MAX. DISPLACEMENT

93
92

DIS=0. $MA=1

DO 92 NA = 1,NK

DO 93 NB = 1,NP
DISP=PWP(NA,NB)
IF(DISP.LT.DIS) GO TO 93
DIS=DISP

CONTINUE

CONTINUE

390.



95
96

94

DO 94 NC 1, NK

DO 95 ND = 1,NP
DOS=PWP(NC,ND)

IF (DOS.EQ.DIS) GO TO 96
CONTINUE

GO TO 94

QA(MA)=ND

MA=MA+1

CONTINUE

PLOT DISPLACEMENT OF CRITICAL NODE(S)

98

uy
97

DO 97 IB = 1,5

NF = QA(IB)

IF(NF.EQ.0.) GO TO 97

DO 98 IC = 1,NK

PLAT(IC)=PWP(IC,NF)

CALL QIKPLOT(PLAT,PPL,—HO,1HH*DISPLACEMENT*,6H*LOAD*,~1)
WRITE(6,44) NF

FORMAT(1HO, 30X, *CRITICAL NODE IS NODE NO. ¥*,I3/)
CONTINUE

RETURN

END

SUBROUTINE,SPLOT(NK,NP,RA,PPL,SP,SLOT,NS)
DIMENSION RA(1),PPL(1),SP(NS,1),SLOT(1)

FIND NODE(S) WITH MAX. STRESS

23
22

25
26

24

TIS=0. $ MB=1

DO 22 LA = 1,NK

po 23 LB = 1,NP
STRS=SP(LA,LB)
IF(STRS.LT.TIS) GO TO 23
TIS=STRS
CONTINUE
CONTINUE
DO 24 LC
DO 25 LD
TOS=SP(LC,LD)

IF (TOS.EQ.TIS) GO TO 26
CONTINUE

GO TO 24

RA(MB)=LD

MB=MB+1

CONTINUE

1,NK
1,NP

PLOT STRESS AT CRITICAL NODE(S)

28

45
27

DO 27 LE = 1,5

LF=RA(LE)

IF(LF.EQ.0) GO TO 27

DO 28 LG = 1,NK

SLOT(LG)=SP(LG,LF)

CALL QIKPLOT(SLOT,PPL.—NO,8H*STRESS*,6H*LOAD*,—1)
WRITE(6,45) LF

FORMAT(1HO, 30X, ¥*CRITICAL NODE IS NODE NO. *# 13/)
CONTINUE

RETURN

END

391,
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¢.3 FLOW CHARTS FOR PROGRAM PIER1

PIER1L

Y
deee
Read problem type- constants
IPEO, 1TYPE
Read base support

condition flag, IS
Read wall dimensions

Is load N Read load

incremented i value
i )
Read top
eccentricity
Read base
Y eccentricity u
Read material =

properties

l

Print out all
input

l

Initialize all
remaining constants
and arrays

Is
mortar j:>£Q ] Read non-linearity

. e et e .
linear function constants
2
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no-tension

Calculate curvature
ratio vector

material

Calculate critical

buckling load
CALL EULER

\

Read initial node
imperfections

¥

Calculate initial load
eccentricity increment

LOOP 200

\

Set up arrays for
extrapolation

LOOP 150

Y

Set up arrays for
load/eccentricity
increments

?

Extrapolate for
new set of wvariables
CALL EXTRAP

Calculate load/

eccentricity
increment
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< LOOP 110 >

‘L

Calculate section
properties at all nodes

Lincar
mortar

N e |
Calculate horizontal
reactions
CALL PHYSP1 }

?

CALL PHYSP2

roperties
calculated
?

N

Calculate equivalent
elastic modulus at
all nodes
CALL KON

First
N oad/eccentricity Y

Set up equations for
uncracked section
CALL MATCOM

‘\\\\\iiiijiiiif/’///
= .

¥

Solutions

valid

Calculate displacements/ I
horizontal reactions
CALL DISPL




Calculate section
properties at all nodes

Linear

Mortar
?

395.

CALL PHYSP1

CALL PHYSP2

roperties
calculated
?

Calculate equivalent
elastic modulus at
all nodes
CALL KON

{

Check equilibrium
CALL EQUIL

XX
<i LOOP 100 >

Newton-Raphson
iteration

¥

( LOOP 27 >
i

Change displacement at

small increment

each node in turn by a

L)

¥

Calculate section

properties at all nodes

-

A



XXX

396.

Linear
mortar

H

CALL PHYSP1

CALL PHYSP2

Properties

calculated
?

Calculate equivalent
elastic modulus
at all nodes
CALL KON

[

Check equilibrium
CALL EQUIL

: |

Calculate change in error
terms at all nodes

lr .

Restore original
values to arrays

<i END LOOP 27 :>

Change horizontal reaction
by small increment




XXX

Calculate section
properties at all nodes

Linear
mortar
?

397.

CALL PHYSPI

CALL PHYSP2

‘roperties
calculated
?

Calculate equivalent
elastic modulus
at. all nodes
CALL KON

"

Check equilibrium
. GALL EQUIL

Calculate change in error
terms at all nodes

¥

Restore original values to

horizontal reaction and

arrays

{or=y

Calculate displacements
(and horizontal reactions
if required)

CAL]L, NEWRAPH
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solutions

valid
?

Calculate section
properties at all nodes

Linear
Mortar
?

s CALL PHYSP1

CALL PHYSP2 ]

Properties
” calculated
; ?

Calculate equivalent
elastic modulus at
all nodes
CALL KON

l

Check equilibrium
CALL EQUIL

fquilibrium
attained
?

N
END LOOP 100

Change load/eccentricity
increment by a small
amount

Assign arrays and
variables for

extrapolation é

<< END LOOP 110

I
l_ STOP

i i

 L——




Calculate sltress at
compression face
at all nodes

|

Assign arrays and
variables for
extrapolation

e

¥
Decrease the load/
eccentricity increment

|

CALL STRESSI1 }

CALL STRESS?2

increment

too small
?

Is

load/

eccentricity
increment

‘00 smal

{ END LOOP. 150

;p-<END LOOP 200 >

Print "failure
not attained"

STOP
E\\\ Print out
results
Is ~ _
load
incremented P ey

2

Is
load

incremented
?

Print
maximum
eccentricity

Print
maximum
eccentricity
e CALL PRINT
CALL SPLOT

CALL DPLOT

STOP




horizontal
reactions

Extrapolate on

FROM PIER1

l

Extrapolate on all
nodal displacements

second load/

eccentricity

Linear

material

Extrapolate on
maximum compression
strain

Extrapolate on
depth of uncracked
part of section

Is
section
cracked

Extrapolate on
minimum compression
strain

sl RETURN TO PIERI1

SURROUTINE EXTRAP

400.



FROM PIERI1

< LOOP 51 >

Calculate effective
load eccentricity

Is
section
cracked

401.

Calculate effective
cracked section
modulus

Calculate full
section modulus

<i END LOOP 51

RETURN TO PIER1

SUBROUTINE PHYSP1




FROM PIER1

.

< LOOP 50 >
{

Calculate effective
load eccentricity

Set TFLAG
ICF=0

I«

Is
secltion
cracked

KP=KP+1

402.

Set FLAG ICF=0

minimum
strain<Q
?

Section

properties

calculated
V]

e

STOP

e |

END LOOP 500 ,

Y

< LOOP 300 >

y

Calculate maximum
compression and
minimum compression

-

Calculate maximum
compression strain
and uncracked depth

of section

Set FLAG
ICF=1

v

SUBROUTINE

Section
properties

N

"—9=~< LOOP 500

%

s

strains

¥

éND OF LOOP 3(% P

Set FLAG Kl

to decrease
load/eccentricity

increment

calculated

,alculatea“xu N
depth>D
?

7

-

PHYSP2

Sy

i

. - ,{ RETURN TO
9 END LCOP )3:>' PIERI

Calculate ecffective
section modulus

Calculate non-linearvr
curvature ratio, p




FROM PIERI1

) A

< LOOP 61

¥

Calculate effective
load eccentricity

o-tension
material

[

Curvature ratio
factor, a =1

Calculate curvature
ratio factor, o

Y

Calculate equivalent
elastic modulus
factor, PKO

|

< END LOOP 61 ‘:>

RETURN TO PIER1

SUBROUTINE KON




FROM PIER1

¥

< LOOP 30 >
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Create fictitious node

below base with same

displacement: as first
node above base

Calculate effective
load eccentricity

Is
section
Y

effective
eccentricity

cracked
2

Calculate error
term

<o

{

Calculate Calculate
error error i
term term

¢ v

ubrout ind-
called in
Newton-Raphson

Store error Y
in array RR.r&m.

cycle
?

Is

error
> max. error

Store error Y
as maximum
error

S—— -m----a-@\m LOOP 30 >——-4=-

SUBROUTINE EQUIL

Zubroutine
called in
Newton-Raphson
cycle
?

1Is
maximum
error too
large

Set FLAG
FIN£O

é .

{ RETURN TO PIER1 ‘I“"“"”"’“
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FROM PIER1 ]

Initialize matrix C
and constant PK

Set up equation
matrix C

Set: up right hand
vector CK

Set up terms in
matrix C and vector
CK for equation at
base

RETURN TO PIER1 <t

SUBROUTINE MATCOM
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MISCELLANEOUS SUBROUTINES

SUBROUT INE

SUBROUTINE

SUBROUT INE

SUBROUT INE

SUBROUT INE

SUBROUT INE

SUBROUT INE

SUBROUT [NE

EULER:

DISPL:

NEWRAPH:

STRESS1:

STRESS2:

PRINT:

DPLOT:

SPLOT:

Calculates Critical Buckling Load of Pin-ended
Wall.

A Gauss Reduction routine on Matrix C and
Vector CK Set up in MATCOM.

A Gauss Reduction routine on Matrix RS and
Vector R Set up by EQUIL and PIER1 in the
Newton-Raphson Cycle.

Stresses for Linear Mortar,
Stresses for Non-linear Mortar,
Routine for Output of Displacements and Stresses.

CYBER* Plot of Displacements of Node with
Maximum Displacement.

CYBER* Plot of Stresses at Node with Maximum
Stress.

* NOTE: Plotting Routine in PROGRAM PIER1 is called QIKPLOT.
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APPENDIX D

BRICKWORK PRISM TESTS AND NON-LINEAR

PROPERTIES OF MORTAR (Section 5.2.2.4(b))

Six brickwork prisms were constructed from the same batches
of materials as the eight walls and cured identically with the walls
(figure 5.12(a)). Each prism comprised four bricks and three mortar
joints. All prisms were tested concurrently with the walls in a 5000KN
capacity compression testing machine, two prisms axially, two pr‘isms.
at an equal end eccentricity of 12.5mm (d/6) and two prisms at an
equal end eccentricity of 25.0mm (d/3). All prisms were loaded through
pin blocks both top and bottom (figure D.1) and the rotations at the
mid-heights of the end bricks were measured on the eccentrically-
loaded prisms. The failure loads and failure modes for the six prisms
are summarized in Table D.1 and the vertical splitting failure modes
of prisms 1 and 2 are shown in figure D.2. Vertical splititing occurred
for a load eccentricity of d/6 and brick spalling failure was evident

at a load eccentricity of d/3 (Table D.1j.

Load Failure
Prism No. Eccentricity | oad Failure
faml) (KN) Mode
1 zero 570 Vertical Splitting
2 zero 595 Vertical Splitting
3 12.5 270 Vertical Splitting
4 12.5 395 Vertical Splitting
5 25.0 184 Brick Spalling on Comp. Face
6 25.0 164 Brick Spalling on Comp. Face

Table D.1: Compression Failure of Brickwork Prisms



Figure D.1: Brickwork Prism

Subjected to Eccentric Load

Figure D.2:

Prisms

in Axial Compressicn

at Rear)

Failure of Brickwork

(Prism

1

*80%
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The minimum axial stress at which failure occurred was 33.0MPa
(prism 1, Table D.1) which may be chosen to be the crushing strength,

(117)

o’ of the mortar in the brickwork. An initial mortar modulus

o
of 8.3 x 10®MPa may be used (Section 5.2.2.3) and the non-linear

stress—strain relationship may be assumed to be —

o = Em(e - Ke') _ (B.1)

in which Em is 8.3 x 10°MPa.

By using equations (B.2) and (B.3) in Appendix B, values of
the coefficient, K, in equation (B.1) may be calculated for assumed
values of exponent, n. Values of K, together with values of crushing
strain, &8 are shown in Table D.2 for various n. Equation. (B.1)

is plotted for the exponents, n, in figure D.3.

Exponent, n Coefficient, K Strain, eC(x10-3)
3.0 9371 5.964
2.0 62.88 7.952
1.5 6.104 11.93
1.2 1.759 23.86

Table D.2: Constants in Equation (B.1) for
Various Exponents, n

Although the rotations of the brickwork prisms were measured
for the cases of eccentric loading, a comparison could not be made
with calculated rotation values because the small number of bricks
measured (three bricks in each of two prisms) was not a sufficient
statistical sample (Section 5.2.2.3).

If an experimental program were to be carried out to test the
non-linear behaviour of mortar in brickwork, a sample of at least

six brickwork prisms should 'be tested axially to give an estimate of
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the minimum axial crushing strength, o and six prisms should be
tested at each chosen eccentricity to give a statistical comparison with

the non-linear mortar analysis in PROGRAM PIERT.
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APPENDIX E

THREE-DIMENSIONAL FINITE ELEMENT

PROGRAM MFYDCP

E.1 INTRODUCTION

The stiffness of brickwork in bending and torsion may be affected
by discrete cracking at the brick-mortar interfaces on thé bedjoints
and perpends (Sections 6.2.2, 6.2.3 and 6.2.4). The effects of such
cracking may be calculated by using a three—dimensional finite element
analysis. Commercially-produced packages may be expensive, if obtain-
able, and, because they are usually general purpose programs, they
may require the capacity of virtual memory computers to solve large
problems, say, of thirty elements or more. However, large problems
requiring three-dimensional isoparametric elements may be solved using
conventional core-storage computers by transferring data between
central memory and disk storage as required. Such problems may be
solved efficiently in terms of total calculation time by optimizing the
total data transfer time.

(126) described a two-dimensional finite element

Cheung and Yeo
program in which a front-solver method was used to minimize the
amount of data required in central memory at any time. Yeo extended
the method to a three-dimensional version of the program, "MFY3D" (the
program is unpublished) in which one of the three displacement vectors
at each node was calculated at each step of the front-solver technique.
The modified versicn of PROGRAM MFY3D (PROGRAM MFYDCP, Section
E.3) also uses a front-solver method, but all three rodal displacements

are calculated at each step by using 3x3 matrices throughout the

equation reduction and backsubstitution stages. The total execution
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time for PROGRAM MFYDCP as determined by the program control cards,
was approximately 35 percent of that of PROGRAM MFY3D for the problem
described in the following <ection; the total execution time for

PROGRAM MFYDCP was approximately 40 minutes.

E.2 THE FINITE ELEMENT SUBDIVISION

Figures E.1 and E.2 show the finite element subdivision of the
panel module described in Chapter 6 (figure 6.1(b)). The elements
close to the brick-mortar interfaces are specified to be smaller than
other elements so that displacements arnd stresses may be calculated
accurately in t’he regions of possible cracking.

Element definitions may be generated by computer but the
uncoupled nodes on the perpends (Section 6.2.3, figure E.2) must be
included into the input data file manually.

The element subdivision shown in figures E.1 and E.2 require
a front width of 240 equation coefficients for uncracked brickwork.
The front width for brickwork with both perpend and bedjoint cracking
is 258 coefficients. PROGRAM MFYDCP (Section E.3) requires a central
memory area (on a CYBER 173 computer) of approximately 130K (octal)
and requires a disk storage space of approximately 900,000 words.

A skeleton flow chart for PROGRAM MFYDCP is presented in Section
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£.3 LISTING OF PROGRAM MFYDCP

PROGRAM MFYDCP(INPUT=65,0UTPUT=65,TAPE5=INPUT, TAPE6=0OUTPUT,TAPEZ,

1

TAPE3, TAPEL4, TAPE20=0,TAPE21=0)

COMMON/MFY1/XX(20),YY(20),ZZ(20)
COMMON/MFY2/WTFUN(3), VECTLC(3)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

RS(60),AW(9),S(1830),SHP(20),X(20),Y(20),Z(20),CW(9)
PIVOT(3,3),PINVOT(3,3),CFACT(3,3), DFACT(3 3)

DX(20), DY(20) DZ(20),U(20),V(20), w<90) SIGMA(6),D(12)
NELDES(20), NELDEF(20\

DISP(120,3),REACT( 9,3),NREACT( 9),MAT( 90)
LDEST(700),LDEF( 91,20),CORD(700,3)
YM(5),PR(5),WT(5),AYM(5),EXPN(5),GG(5),APR(5)

SRS(260), ss(15000) REQ(2000), LREQ(300)

NDISP(120,4), DISPL("OO 3) ,NW(260),dW(260) ,NDISPZ (200, 4)
XREQ(260),YREQ(260),ZREQ(260),XRAQ(260),YRAQ(260),ZRAQ(260)
YMOD, PRAT,WEIGHT,AYMOD,AGG,EXPAN,WX,WY,WZ,XL,YL,ZL

NVABZ MAXDIS,NIC,LIV,NNODZ,NSNW,NFNW,MAXNDZ, MAXNEL NEL,NTN
MTM, MAYFW MAXREQ,MAXNW,MAXNOD,MAXMAT ,MAXSS
DETJ,NPUT,IPRINC,NPRINC,NRULE,LIN,NSTOP
L20,L21,NK,KMAX,KS,KF

E RN AN R R I PN AR AR RN R E RN BRI SRR AR T RN AR NXRRRXLANAARREA

********#************************

PROGRAM MFYDCP IS A REVISED VERSION OF A
THREE-DIMENSIONAL FINITE ELEMENT PROGRAM
( PROGRAM MFY3D ) WRITTEN BY MICHAEL F YEO
AT THE UNIVERSITY OF ADELAIDE,
SOUTH AUSTRALIA

DAVID C. PAYNE AS PART OF THE REQUIREMENTS
OF A DOCTOR OF PHILOSOPHY DEGREE AT THE
UNIVERSITY OF ADELAIDE ( SUBMITTED 1982 )

THE PROGRAM USES 90 20-NODE ISOPARAMETRIC

3-DIMENSIONAL ELEMENTS TO ANALYSE THE

BENDING OF BRICKWORK IN STRETCHER BOND

AND HAS BEEN WRITTEN FOR A CYBER 173

COMPUTER FOR WHICH THE MAXIMUM CM IS

150K AND THE MAXIMUM DISK STORAGE SPACE
IS 900 000 WORDS

%
*

*

*

*

*

*

THIS REVISED VERSION WAS WRITTEN BY *
*

*

*

*

*

*

%

*

NO DOCUMENTATION ON INPUT DATA REQUIREMENTS
IS GIVEN IN THIS PROGRAM

¥
*
*
*
*
*
*
THE 17 LINES OF COMMON STATEMENTS LISTED ¥
ABOVE ARE REQUIRED IN ALL SUBROUTINES EXCEPT ¥
SUBROUTINE CLOKIT(N). FOR CONVENIENCE IN b
LISTING THE PROGRAM, THE COMMON STATEMENTS *
ARE ABBREVIATED TO THE FOLLOWING---- L

*

#

*

*

*

%% INSERT 17 LINES OF COMMON STATEMENTS
HERE ¥#

********i’:***********QTE*********%*%{'***************
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INITIALIZE PROGRAM VARIABLES

%%

MAXRCT=0
MAXFW=0

NRULE=3
MAXMAT =1
NPUT=0

IPRINC=0
NPRINC=0
MAXNEL=0
MAXNOD=0
NVABZ =3
NNODZ =20

MAXSS=15000
MAXREQ=2000

MAXDIS=0
MAXNDZ =0
MAXNW=260

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
STOP
END

SUBROUTINE ASMBLE

INSERT 17 LINES OF COMMON STATEMENTS HERE ¥*¥

DO 26 KK = 1,NK

N1=0

DO 24 INOD=1,NNODZ
IDES=NELDES (INOD)
I1=(IDES-1)¥NVABZ
I2=(INOD-1)*NVABZ
IF(KK.NE.1) GO TO 4

DO 3

SRS(I1+I)=SRS(I1+I)+RS(I2+1)

CLOKIT(1)
INDAT
CLOKIT(2)
PREFNT
CLOKIT(3)
STIFN
CLOKIT(Y4)
FRONT
CLOKIT(5)
BAKSUB
CLOKIT(6)
STRESS

I=1,NVABZ

CONTINUE

DO 23 JNOD=INOD,NNODZ
JDES=NELDES(JNOD)
I3=(JDES-1)*NVABZ
I4=(JNOD-1)*¥NVABZ

DO 22 I=1,NVABZ

417,
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19

20
22
23
24

11

14
26

12
13

¥ %

ISS=I11+1

NW(ISS)=1

IS=I2+I

DO 20 J=1,NVABZ

JS8S8=I3+J

IF(IDES.GT.JDES) GO TO 19

JS=I4+J

IF(IS.GT.JS) GO TO 20

N1=N1+1

LOC=JW(ISS)+J3S5-ISS
IF(LOC.LT.KS.0R.LOC.GT.KF) GO TO 20
LOC=LOC-KS+1

SS(LOC)=SS(LOC)+S(N1)

GO TO 20

N1=N1+1

LOC=JW(JSS)+I3S~J3S
IF(LOC.LT.KS.OR.LOC.GT.KF) GO TO 20
LOC=LOC-KS+1

SS(LOC)=SS(LOC)+S(N1)

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF(KK.EQ.NK) GO TO 26

BUFFER OUT(L21,1) (SS(1),3S(MAXSS))
IF(UNIT(L21)) 11,12,13

CONTINUE

BUFFER IN(L20,1) (SS(1),33(MAXSS))
KS=KS+MAXSS

KF =KF +MAXSS .

IF(UNIT(L20)) 14,12,13

CONTINUE

CONTINUE

CALL RESETT

RETURN

STOP

STOP

END

SUBROUTINE BAKSUB

INSERT 17 LINES OF COMMON STATEMENTS HERE **

DO 300 NEL=1,MAXNEL
MEL=MAXNEL+1~NEL
WRITE(6,1005) MEL

DO 299 IN=1,NNODZ
N1=NNODZ+1-IN
NIC=-LDEF(MEL,N1)
IF(NIC.LE.0) GO TO 299
IF(NTN.NE.O) GO TO 219
BACKSFACE 2

READ(2) MTM,NTN,REQ,LREQ
BACKSPACE 2

418.



219 MTM=MTM-NVABZ
NSNW=LREQ(MTM+1)
NFNW=LREQ(MTM+2)
LIV=LREQ(MTM+3)
NTN=NTN-NVABZ
DO 230 I = 1,NVABZ
C OVERWRITE XREQ WITH REDUCED RIGHT HAND SIDE COEFFICIENTS
NTN=NTN+1 :
XREQ(I)=REQ(NTN)
230 CONTINUE
C EXTRACT MATRIX PIVOT FROM REQ
NPIVOT=NTN-NVABZ+3%¥(LIV-NFNW)
DO 221 J = 1,NVABZ
DO 222 K = 1,NVABZ
NPIVOT=NPIVOT+1
PINVOT (J,X)=REQ(NPIVOT)
REQ(NPIVOT)=0.0
222 CONTINUE
221 CONTINUE
N2=NTN-—-NVABZ+3*%(NSNW--NFNW-1)
NTN=z=N2
DO 225 J = NSNW,NFNW,NVABZ
c EXTRACT MATRIX FOR BACKSUBSTITUTION FROM REQ
DO 226 I = 1,NVABZ
DO 227 K = 1,NVABZ
C OVERWRITE MATRIX CFACT
N2=N2+1
CFACT(I,K)=REQ(N2)
227 CONTINUE
226 CONTINUE
DO 228 L 1,NVABZ
DO 229 I 1,NVABZ
XREQ(L)=XREQ(L)-CFACT(L,I)*¥SRS(J+I-1)
229 CONTINUE
228 CONTINUE
225 CONTINUE
DO 231 I = 1,NVABZ
SMULT=0.
DO 232 J = 1,NVABZ
SMULT=SMULT+PINVOT (I, J)*XREQ(J)
232 CONTINUE
SRS(LIV+I)=SMULT
DISPL(NIC,I)=SMULT
231 CONTINUE
LIV=LIV+1
CALL POSTCN
299 CONTINUE
300 CONTINUE
c RESTORE ELEMENTS OF CFACT TO ZERO
DO 233 I = 1,NVABZ
DO 234 J = 1,NVABZ
CFACT(I,J)=0.0
234 CONTINUE
233 CONTINUE
RETURN
1005 FORMAT(///,5X, 18HREACTIONS ELEMENT ,I3)



END
BLOCK DATA

#% INSERT 17 LINES OF COMMON STATEMENTS HERE ¥#%

c
c
c
c
c
c
c

* %
c
C
&
c

10

11

14

20

12

13
c
c

1000

*%
c
c
c

1

1

1

DATA XX/1.0,1.0,1.0,
1.0,1.0,0.0,~1.0,-1.0,-1.0,0.0/

DATA YY/-1.0,0.0,1.0,1.0,1.0,0.0,-1.0,-1.0,-1.0,1.0,1.0,-1.0,-1.0,
0.0,1.0,1.0,1.0,0.0,-1.0,-1.0/

420.

.0,0.0,-1.0,-1.0,-1.0,0.0,1.0,1.0,-1.0,-1.0,1.0,
0

1.0,
DATA ZZ/-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,0.0,0.0,0.0,0.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0/
DATA WTFUN/0.55555555556,0.88888888889,0.55555555556/
DATA VECTLC/-0.77459666924,0.0,0.77459666924/
END
SUBROUTINE CHK(N)

INSERT 17 LINES OF COMMON STATEMENTS HERE ¥*

’

IF(N.GE.KS.AND.N.LE.KF) GO TO 20
BUFFER OUT(L21,1) (SS(1),SS(MAXSS))
IF(UNIT(L21)) 11,12,13

CONTINUE

BUFFER IN(L20,1) (8S(1),SS{MAXSS))
KS=KS+MAXSS

KF=KF+MAXSS

IF(UNIT(L20)) 14,12,13

CONTINUE

GO TO 10

N=N-KS+1

RETURN

STOP

STOP

END

SUBROUTINE CLOKIT(N)

CALL SECOND(ASECS)

WRITE(6,1000) N,ASECS

FORMAT(1HO,5X,¥LOCATION = % ,I3,10X,*TIME = ¥,F10.3,%
RETURN

END

SUBROUTINE DMAT(I1)

INSERT 17 LINES OF COMMON STATEMENTS HERE ##

YMOD=YM(I1)

SEC3¥)
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PRAT=PR(I1)

WEIGHT=WT(I1)

AYMOD=AYM(I1)

AGG=GG(I1)

EXPAN=EXPN(I1)

APRAT=APR(I1)

IF (AYMOD.EQ.0.0) AYMOD=YMOD
IF(APRAT.EQ.0.0) APRAT=PRAT
IF(AGG.EQ.0.0) AGG=YMOD/(2.0%*(1.0+PRAT))
A1=1.0+PRAT

A2=YMOD/AYMOD
A3=(1.0-PRAT-2,0%A2¥APRAT¥APRAT)
AlL=A1%¥A3

D(1)=YMOD*(1.0-A2* APRAT¥APRAT) /Al
D(2)=YMOD*(PRAT+A2¥APRAT®¥APRAT)/AY
D(3)=YMOD#APRAT/A3

D(4)=D(2)

D(5)=D(1)

D(6)=D(3)

D(7)=D(3)

D(8)=D(6)
D(9)=AYMOD*(1.0-PRAT)/A3
D(10)=YMOD/(2.0%(1.0+PRAT))
D(11)=AGG

D(12)=AGG

RETURN

END

SUBROUTINE FRONT

INSERT 17 LINES OF COMMON STATEMENTS HERE #¥

DIMENSION CIS(3,3),C3J4(3,3)
REWIND 2

REWIND U4

DO 1 I=1},MAXFW

NW(I)=0

CONTINUE

JW(1)=1

DO 2 I=2,MAXFW
JW(I)=JW(I-1)+MAXFW+2-1I
CONTINUE

CALL SETUP

MTM=0

NTN=0 .

DO 42 NEL=1,MAXNEL

READ(Y4) S,RS,NELDEF,NELDES
WRITE(6,13) NEL
FORMAT(10X,*LAST EL. READ NO.¥,I5)
CALL CLOKIT(7)

CALL ASMBLE

CALL CLOKIT(8)

NSNW=1

NF NW=MAXFW
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DO &0 NOD=1,NNODZ
NIC=-NELDEF(NOD)
IF(NIC.LE.O0) GO TO &40
LIN=NELDES(NOD)

422.

SET START FLAG NSNW FOR NODE VECTCR NW ( FIRST NON-ZERO ROW )

9.

IF(NW(NSNW).YE.0) GO TO 10
NSNW=NSNW+1
GO TO 9

SET FINISH FLAG NFNW FOR NODE VECTOR NW ( LAST NON-ZERO ROW )

10

IF(NW(NFNW).NE.O) GO TO 11
NFNW=NFNW-1
GO TO 10

START AND FINISH FLAGS FOR NODE NIC ARE SET

11

CALL PRECON

LIV=(LIN-1)*¥NVABZ

N13=NTN+1
IF((NTN+(NFNW+2-NSNW)*¥3) . LT.MAXREQ) GO TO 12
WRITE (2) MTM,NTN,REQ,LREQ

MTM=0

NTN=0

N13=1

EXTRACT THREE EQUATIONS AT NODE NIC FROM STIFFNESS MATRIX S3
STORE EACH ROW IN MATRICES XREQ,YREQ ZREQ IN TURN
START BY STORING GROUPS OF THREE DOWN "COLUMN"

12

NXN=0
NYN=0
NZN=0
IREQ=1
IF((LIV+1).EQ.NSNW) GO TO 8

FIRST NON-ZERO MATRIX IS ON DIAGONAL

DO 24 TAI = NSNW,LIV,3
IF(NW(IAI).EQ.0) GO TO 62

UP TO PIVOT MATRIX

NW EQ 0 IMPLIES ROWS AND COLUMNS IAI,IAI+1,IAI+2 ARE ALL ZERO

26

29
27

30
28

bo 25 I = 1,NVABZ
ITI=TATI+I-1

GO TO ( 26,27,28 ),I
DO 29 J = 1,NVABZ
NXN=NXN+1
N5=JW(II)+LIV-II+J
CALL CHK(N5)
XREQ(NXN)=SS(N5)

IF (NXN.GT.MAXNW) WRITE(6,1060)
S3(N5)=0.0

CONTINUE

GO TO 25

DO 30 K = 1,NVABZ
NYN=NYN+1
N5=JW(II)+LIV-II+K
CALL CHK(N5)
YREQ(NYN)=SS(N5)
IF(NYN.GT.MAXNW) WRITE(6,1060)
SS(N5)=0.0

CONTINUE

GO TO 25

DO 31 L = 1,NVABZ
NZN=NZN+1
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C

C

N5=JW(II)+LIV-II+L
CALL CHK(N5)
ZREQ(NZN)=SS(N5)
SS(N5)=0.0

31 CONTINUE

25 CONTINUE
GO TO 24

62 DO 63 JF = 1,NVABZ
NXN=NXN+1
NYN=NYN+1
NZN=NZN+1
XREQ(NXN)=YREQ(NYN)=ZREQ(NZN)=0.0

63 CONTINUE

24 CONTINUE
TREQ=NYXN+1

STORE PIVOT MATRIX

FIRST STORE FIRST ROW AND THEN REMAINDER OF MATRIX XREQ

THEN STORE SECOND ROW PAST DIAGONAL AND REMAINDER OF MATRIX YREQ

FINALLY STORE THIRD ROW AT DIAGONAIL AND REMAINDER OF MATRIX ZREQ

8 DO 32 J = 1,NVABZ
IT=LIV+J
DO 36 K = J,NVABZ
NS=JW(II)+K-J
CALL CHK(N5)
GO TO ( 33,34,35 ),J

33 NXN=NXN+1
XREQ(NXN)=0.
PIVOT(J,K)=SS(N5)
SS(N5)=0.0
GO TO ( 36,37,38 ),K

37 NYN=NYN+1
PIVOT (K, J)=PIVOT(J,K)
YREQ(NYN)=0.0
GO TO 36

38 NZN=NZN+1
PIVOT(K, J)=PIVOT(J,K)
ZREQ(NZN)=0.
GO TO 36

34 NYN=NYN+1
YREQ(NYN)=0.0
PIVOT(J,K)=SS(N5)
SS(N5)=0.0
IF(K.EQ.J) GO TO 36
NZN=NZN+1
PIVOT (K, J)=PIVOT(J,K)
ZREQ(NZN)=0.
GO TO 36

35 NZN=NZN+1
ZREQ(NZN)=0.
PIVOT(J,K)=SS(N5)
SS(N5)=0.0

36 CONTINUE

STORE REMAINDER OF ROW ( LIV+J ) IN ARRAYS XREQ,YREQ,ZREQ
IF((LIV+NVABZ) .EQ.NFNW) GO TO 32

PIVOT IS LAST NON-ZERO MATRIX ON DIAGONAL
N6=JW(II)+NVABZ=J+1
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N7=JW(II)+NFNW-II
DO 39 N18 = N6,N7
N8=N18
GO TO (u1,43,44),J
41 NAN=NXN+1
CALL CHK(N8)
XREQ(NXN)=S3(N8)
IF (NXN.GT .MAXNW) WRITE(6,1060)
SS(N8)=0.0 '
GO TO 39
43 NYN=NYN+1
CALL CHK(N8)
YREQ(NYN)=SS(N8)
IF (NYN.GT.MAXNW) -WRITE(6,1060)
SS(N8)=0.0
GO TO 39
44 NZN=NZN+1
CALL CHK(N8)
ZREQ(NZN)=SS(N8)
IF (NZN.GT.MAXNW) WRITE(6,1060)
SS(N8)=0.0
39 CONTINUE
32 CONTINUE
LEFT HAND SIDE OF THREE EQUATIONS FOR NODE NIC ARE NOW STORED
IN CORE IN ARRAYS XREQ,YREQ AND ZREQ
SORT COEFFICIENTS FOR ALL 3X3 MATRICES AND STORE AS GROUPS OF
1X9 IN ARRAY REQ FOR STORAGE ON TAPE2 -
IR=(LIV+1-NSNW)/3
IF(IR.EQ.0) GO TO 51
IR EQ 0 IMPLIES FIRST NON-ZERO MATRIX FOR EQUATIONS AT NODE NIC
IS ON MAIN DIAGONAL
DO 45 IL = 1,IR
IN=IL-1
IS=IN*NVABZ
DO 46 IK = 1,NVABZ
IV=IS+IK
DO 47 IT = 1,NVABZ
NTN=NTN+1
GO TO (48,49,50),IT
48 REQ(NTN)=XREQ(IV)
GO TO 47
49 REQ(NTN)=YREQ(IV)
GO TO 47
50 REQ(NTN)=ZREQ(IV)
47 CONTINUE
46 CONTINUE
45 CONTINUE
STORE PIVOT POSITIONS IN REQ AS ALL ZERO

51 DO 52 IJ = 1,NVABZ
DO 58 JI = 1,NVABZ
IF(IJ.EQ.1.AND.JI.EQ.1) N9=NTN
NTN=NTN+1

REQ(NTN)=0.0
58 CONTINUE
52 CONTINUE
STORE REMAINDER OF 3X3 MATRICES PAST PIVOT IN REQ

424,
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IF((LIV+NVABZ) .EQ.NFNW) GO TO 53
N1=LIV+NVABZ+1
DO 54 II = N1,NFNW,NVABZ
IREQ=IREQ+NVABZ
DO 59 JJ = 1,NVABZ
DO 60 KK = 1,NVABZ
LL=IREQ+KK~1
NTN=NTN+1
GO TO (55,56,57),Jd
55 REQ(NTN)=XREQ(LL)
GO TO 60
56 REQ(NTN)=YREQ(LL)
GO TO 60
57 REQ(NTN)=ZREQ(LL)
60 CONTINUE
59 CONTINUE
54 CONTINUE
53 DO 61 IJ = 1,NVABZ
NW(LIV+IJ)=0
NTN=NTN+1
STORE RIGHT HAND SIDE OF THREE EQUATIONS FOR NODE NIC
REQ(NTN)=SRS(LIV+IJ)
SET RIGHT-HAND SIDE MATRIX SRS ELEMENTS TO ZERO
SRS(LIV+IJ)=0.
61 CONTINUE
LREQ(MTM+1)=NSNW
LREQ(MTM+2)=NFNW
LREQ(MTM+3)=LIV
MTM=MTM+NVABZ
RESET ARRAY SS FOR EQUATION REDUCTION
CALL RESETT
REDUCE SET OF THREE EQUATIONS TO ELIMINATE NODE NIC
CALCULATE THE INVERSE OF MATRIX PIVOT
CALCULATE THE DETERMINANT OF MATRIX PIVOT
DPIVOT:PIVOT(1,1)*(PIVOT(Z,2)*PIVOT(3,3)—PIVOT(2,3)*PIVOT(3,2))
1 —PIVOT(Z,1)*(PIVOT(1,2)*PIVOT(3.3)-PIVOT(1,3)*PIVOT(3.2))
2 +PIVOT(3.1)*(PIVOT(1,2)*PIVOT(2,3)—PIVOT(1,3)*PIVOT(2,2))
IF(DPIVOT.EQ.0.0) WRITE(6,1050) NEL,NIC
IF(DPIVOT.EQ.0.0) STOP
CALCULATE COFACTORS FOR INVERSE MATRIX PINVOT
COFACT1=PIVOT(2,2)%PIVOT(3,3)-PIVOT(2,3)*PIVOT(3,2)
COFACT2=PIVOT(1,1)*PIVOT(3,3)-PIVOT(1,3)¥PIVOT(3,1)
COFACT3=PIVOT(1,1)%¥PIVOT(2,2)-PIVOT(1,2)*PIVOT(2,1)
COFACT4=—PIVOT (2, 1)*¥PIVOT(3,3)+PIVOT(2,3)*PIVOT(3,1)
COFACT5=“PIVOT(1'1)*PIVOT(3,2)+PIVOT(1v2)*PIVOT(3.1)
COFACT6=PIVOT(2, 1)¥PIVOT(3,2)-PIVOT(2,2)*PIVOT(3,1)
CALCULATE MATRIX PINVOT-~--INVERSE OF MATRIX PIVOY
PINVOT(1,1)=COFACT1/DPIVOT
PINVOT(2,1)=PINVOT(1,2)=COFACTU4/DPIVOT
PINVOT(3, 1)=PINVOT(1,3)=COFACT6/DPIVOT
PINVOT(2,2)=COFACT2/DPIVOT
PINVOT(3,2)=PINVOT(2,3)=COFACT5/DPIVOT
PINVOT(3,3)=COFACT3/DPIVOT
N2=0
STORE MATRIX CIS NEEDED FOR REDUCTION OF EQUATIONS AT NODE NIC
DO 64 J = NSNW,NFNW,NVABZ
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IF(J.EQ.(LIV+1)) GO TO 68
IF(J.GT.(LIV+NVABZ)) GO TO 65
DO 66 I = 1,NVABZ
N2=N2+1
CIS(1,I)=XREQ(N2)
CIS(2,I)=YREQ(N2)
CIS(3,I)=ZREQ(N2)

66 CONTINUE
GO TO 166

65 CONTINUE
DO 67 K = 1,NVABZ
N2=N2+1
CIS(K, 1)=XREQ(N2)
CIS(X,2)=YREQ(N2)
CIS(K,3)=ZREQ(N2)

67 CONTINUE

166 CONTINUE

POSTMULTIPLY CIS BY PINVOT

DO 69 I = 1,NVABZ
DO 70 K = 1,NVABZ
DO 71 L = 1,NVABZ

CFACT(I,K):CFACT(I,K)+CIS(I,L)*PINVOT(L,K)

71 CONTINUE

70 CONTINUE

69 CONTINUE
N3=N2-NVABZ
NU4=0

STORE MATRIX CSJ NEEDED FOR REDUCTION OF EQUATIONS
DO 94 JJ = J,NFNW,NVABZ

(LIV+1) EQ JJ IMPLIES PIVOT IS AT JJ

IF(JJ.EQ.(LIV+1)) GO TO 75
IF(JJ.GT.(LIV+NVABZ)) GO TO 73
DO 74 I = 1,NVABZ
N3=N3+1
CSJ(I,1)=XREQ(N3)
CSJ(I,2)=YREQ(N3)
CSJ(I,3)=ZREQ(N3)

T4 CONTINUE
GO TO 72

73 CONTINUE
DO 76 KK = 1,NVABZ
N3=N3+1
CSJ(1,KK)=XREQ(N3)
CSJ(2,KK)=YREQ(N3)
CSJ(3,KK)=ZREQ(N3)

76 CONTINUE

72 CONTINUE

PREMULTIPLY CSJ BY MATRIX CFACT

DO 77 LA = 1,NVABZ
DO 78 LB = 1,NVABZ
DO 79 LC = 1,NVABZ

DFACT(LA,LB)=DFACT(LA,LB)+CFACT(LA,LC)*CSJ(LC,LB)
79 CONTINUE
78 CONTINUE
77 CONTINUE
STORE VALUES OF DFACT IN ARRAYS XRAQ,YRAQ,ZRAQ
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AND RESET MATRIX DFACT TO ZERO
DO 80 LD = 1,NVABZ
NU4=N4+1
XRAQ(NH)=DFACT(1,LD)
YRAQ(N4)=DFACT(2,LD)
- ZRAQ(NY4)=DFACT(3,LD)
DFACT(1,LD)=DFACT(2,LD)=DFACT(3,LD)=0.
80 CONTINUE
GO TO 94
75 N3=N3+NVABZ
94 CONTINUE
N6=0
NT7=1
N8=2
REDUCE ELEMENTS OF STIFFNESS MATRIX SS
JA=J+NVABZ -1
DO 81 LL = J,JA

JL=LL~J+1

DO 82 LK = LL,NFNW

DO 83 LJ = 1,NVABZ
IF(LK.NE. (LIV+LJ)) GO TO 83
GO TO 82

fl

83 CONTINUE
N5=JW(LL)+LK-LL
CALL CHK(N5)
GO TO (85,86,87),JL
85 N6=N6+1
SS(N5)=8S(N5)-XRAQ(NS6)
GO TO 82
86 N7=NT+1
SS(N5)=SS(N5)-YRAQ(NT)
GO TO 82
87 N8=N8+1
SS(N5)=SS(N5)-ZRAQ(NS8)
82 CONTINUE
81 CONTINUE
REDUCE RIGHT HAND SIDE OF THREE EQUATIONS FOR NCDE NIC
EXTRACT THE THREE ELEMENTS OF MATRIX SRS FOR NODE NIC
N10=NTN-NVABZ
DO 883 LS = 1,NVABZ
JP=J4+LS-1
DO 89 LT = 1,NVABZ
NA=N10+LT
SRS(JP)=SRS(JP)-CFACT(LS,LT)*REQ(NA)
89 CONTINUE
88 CONTINUE
RESET MATRICES CFACT AND DFACT TO ZERO
DO 92 IK = 1,NVABZ
PO 93 JK = 1,NVABZ
CFACT(IK,JK)=0.0
DFACT(IK,JK)=0.0
03 CONTINUE
92 CONTINUE
GO TO 64
68 CONTINUE
N2=N2+NVABZ
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.4 CONTINUE

STORE INVERSE OF MATRIX PIVOT (PINVOT) IN ARRAY REQ
DO 90 JS = 1,NVABZ
DO 91 JT = 1,NVABZ
N9=Ng+1

REQ(N9)=PINVOT (JS,JT)
91 CONTINUE
90 CONTINUE
ALL EQUATIONS HAVE NOW BEEN REDUCED BY EQUATIONS FOR NODE NIC
THREE EQUATIONS FOR NODE NIC HAVE BEEN STORED IN ARRAY REQ
CALL RESETT
40 CONTINUE
CALL CLOKIT(9)
42 CONTINUE
RETURN
1050 FORMAT(//5X,26HZERO DETERMINANT FOR PIVOT,/,5X,
11 1HELEMENT NO.,I5,/,5X,8HNODE NO.,Ig)
1060 FORMAT(//5X,36HMATRICES XREQ,XRAQ,ETC.ARE TOO SMALL)
END
SUBROUTINE INDAT

%% INSERT 17 LINES OF COMMON STATEMENTS HERE #¥

DIMENSION HEAD(9)
READ(5,1002) ICODE,NCODE
2 WRITE(6,1083) ICODE,NCODE
IF(ICODE.EQ.99) RETURN
GO To(100,150,200,250,300,350,400),ICODE
100 READ(5,1002) ICODE,NCODE,HEAD
IF(ICODE.NE.O) GO TO 2
WRITE(6,1003) HEAD
GO TO 100
150 READ(5,1004) IPRINC,NPRINC,NPUT
WRITE(6,1005) IPRINC,NPRINC,NPUT
GO TO 1
200 GO TO(201,210),NCODE
201 READ(5, 1006) ICODE,NCODE,NMAT,YMOD,PRAT,WEIGHT,EXPAN,AYMOD,APRAT,
1 AGG
IF(ICODE.NE.O) GO TO 2
WRITE(6,1007) NMAT, YMOD, PRAT,WEIGHT, EXPAN,AYMOD,APRAT, AGG
YM(NMAT)=YMOD
PR(NMAT)=PRAT
WT(NMAT)=WEIGHT
EXPN(NMAT )=EXPAN
AYM{NMAT)=AYMOD
APR(NMAT)=APRAT
GG (NMAT)=AGG
GO TO 201
210 READ(5,1014) ICODE,NCODE,NMAT,(NW(I),I=1,14)
IF(ICODE.NE.O) GO TO 2
WRITE(6,1015) NMAT,(NW(I),I=1,14)
IF(MAXMAT.LT.NMAT) MAXMAT=NMAT
DO 220 I=1,14

-
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NIC=NW(I)
IF(NIC.EQ.0) GO TO 210
MAT(NIC)=NMAT
220 CONTINUE
GO TO 210
250 READ(5,1006) ICODE,NCODE,NIC,COX,COY,COZ
IF(ICODE.NE.O) GO TO 2
WRITE(6,1007) NIC,COX,COY,COZ
CORD(NIC, 1)=COX ’
CORD(NIC,2)=C0OY
CORD(NIC,3)=COZ
GO TO 250
300 NEL=0
301 NEL=NEL+1 :
READ(5,1018) ICODE, NCODE, (LDEF (NEL,I),I=1,14)
IF(ICODE.NE.O) GO TO 302
READ(5, 1004) (LDEF(NEL,I),I=15,20)
WRITE(6,1015) NEL,(LDEF(NEL,I),I=1,20)
MAXNEL=NEL
GO TO 30t
302 DO 305 NEL=1,MAXNEL
DO 304 LNOD=1,NNODZ
IF (MAXNOD.LT.LDEF(NEL,LNOD)) MAXNOD=LDEF (NEL,LNOD)
304 CONTINUE
305 CONTINUE
GO TO 2
350 NCOUNT=0
GO TO(351,360),NCODE
351 NCOUNT=NCOUNT+1
READ(5,1026) ICODE, NCODE, (NDISP(NCOUNT,I),I=1,4),
1 (DISP(NCOUNT,I),I=1,3)
IF(ICODE.NE.O) GO TO 2
WRITE(6,1027) (NDISP(NCOUNT,I),I:1,H),(DISP(NCOUNT,I),I:1,3)
MAXDIS=NCOUNT
GO TO 351
360 READ(5,1008) ICODE,NCODE,NFIXX,NFIXY,NFIXZ,(NW(I),I=1,14)
IF(ICODE.NE.O) GO TO 2
WRITE(6, 1009) NFIXY,NFIXY,NFIXZ,(NW(I),I=1,14)
DO 365 I=1,14
IF(NW(I).EQ.0) GO TO 360
NCOUNT=NCOUNT+1
NDISPZ(NCOUNT, 4)=NW(I)
NDISPZ(NCOUNT, 1)=NFIXX
NDISPZ(NCOUNT, 2)=NFIXY
NDISPZ(NCOUNT, 3)=NFIXZ
MAXNDZ =NCOUNT
365 CONTINUE
GO TO 360
400 NCOUNT=0
401 NCOUNT=NCOUNT+1
READ(5,1006) ICODE,NCODE,NREACT(NCOUNT),(REACT(NCOUNT.I).I:1,3)
IF(ICODE.NE.O) GO TO 2
WRITE(6,1007) NREACT(NCOUNT), (REACT(NCOUNT,I),I=1,3)
MAXRCT=NCOUNT
GO TO 401
1002 FORMAT(2I2, 1X,9A8)
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1003
1004
1005
1006
1007
1008
1009
1014
1015
1018
1026
1027
1083

% ¥

1

FORMAT (6X,9A8)
FORMAT(10X,61I5)
FORMAT(11X,61I5)

FORMAT(2I2,1X,I5,7TE10.4)

FORMAT(6X,I5,7E10.3)

FORMAT(2I2,1X,3I1,2X, 14I5)

FORMAT(6X,3I1,2X,141I5)
FORMAT(2I2,1X, 15I5)

FORMAT(6X, i5I5,/,11X,615)

FORMAT(2I2,6X, 14I5)

FORMAT(2I2,1X,3I1,2X,15,5X,3F10.5)
FORMAT(6X,3I1,2X,I5,5X,3F10.5)

FORMAT(1X,212)
END :
SUBROUTINE JACOB(I1)

INSERT 17 LINES OF COMMON STATEMENTS HERE

DO 5 I=1,9,
CW(I)=0.0
CONTINUE
A1=1.0-XL¥XL
A2=1.0-YL*YL
A3=1,0-ZL¥ZL

DO 100 I=1,20
AT=XL*XX(I)+1.0
AB=YL¥YY(I)+1.0
AQ=ZL*ZZ(I)+1.0

Go To(10,20,10,30,10,20,10,30,40, 40,
40,40,10,20,10,30,10,20,10,30),1I

10 A6=AT+A8+A9-5.0

20

30

4o

90

DX(I)=AB%AQ¥(AG6+AT)®XX(I)*0.125
DY(I)=AT*AQ¥(A6+A8)*YY(I)¥*0.125
DZ(I)=AT*A8*(A6+AQ)¥ZZ(I)¥*0.125
SHP(I)=AG¥AT*A8%A9%0. 125

GO TO 90
DX(I)=A2*¥AQ¥XX(I)*0.25
DY(I)=-AT7TH#AQ%¥YL¥*0.5
DZ(I)=A2%AT*7ZZ(I)¥0.25
SHP(I)=A2*AT*#AQ¥%0.25
GO TO 90
DX(I)=-A8*¥AQ¥XL¥*0.5
DY(I)=A1*¥AQ*YY(I)*0.25
DZ(I)=A1*A8*ZZ(I1)%¥0.25
SHP(I)=A1*¥A8%A9%0.25
GO TO 90
DX(I)=A3¥A8*XX(I)¥*0.25
DY(I)=A3*AT*YY(I)*0.25
DZ(I)=—A8*%AT*ZL*0.5
SHP(I)=A3¥AT7%A8%0.25
CW(1)=CW(1)+DX(I)*X(I)
CW(2)=CW(2)+DX(I)*Y(I)
CW(3)=CW(3)+DX(I)*Z(I)

* %
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2

200

CW(L)=CW(L4)+DY(I)*X(I)
CW(5)=CW(5)+DY(I)*Y(I)
CW(6)=CW(6)+DY(I)*Z(I)
CW(T)=CW(T)+DZ(I)*X(I)
CW(8)=CW(8)+DZ(I)¥Y(I)
CW(9)=CW(9)+DZ(I)*Z(I)
CONTINUE
DETJ=CW(1)*(CH(5)*CW(9)-CW(8)*CW(6))+
CW(2)%(CW(T)*CW(6)-CH(L)Y*CW(9))+
CW(3)*(CW(U)RCW(8)-CW(TI®CW(5))
IF(DETJ.GT.0.0) GO TO 110
WRITE(6,1000) NEL,DETJ
NSTOP=1
RDETJ=1.0/DETJ
AW(1)=(CW(5)*CW(9)-CW(E)*CW(8))¥RDETJ
AW(2)=(CW(3)*CW(8)-CW(2)*CW(9))*RDETJ
AW(3)= (CW(2)%CW(6)=CW(3)*CW(5))*RDETJ
AW(4)=(CW(6)*CHW(T)-CW(L)#CW(9))*RDETJ
AW(5)=(CW(1)*CW(9)-CW(3)¥CW(T7))*RDETJ
AW(6)=(CW(3)*CH(4)-CW(1)*CW(6))¥RDETJ
AW(T)=(CW(U)*CW(8)-CW(5)*CW(T))*RDETJ
AW(8)=(CW(2)*¥CW(T)~CW(1)*¥CW(8))*RDETJ
AW(9)=(CW(T1)*¥CW(5)-CW(2)*CW(U))*RDETJ
IF(I1.EQ.1) RETURN
DO 200 I=1,20
DXI=DX(I)
DYI=DY(I)
DZI=DZ(I)
DX(I)=AW(1)#¥DXI+AW(2)*DYI+AW(3)*DZI
DY(I)=AW(U4)*¥DXT+AW(5)*DYI+AW(6)*¥DZI
DZ(I)=AW(7)*DXI+AW(8)*DYI+AW(9)*¥DZI
CONTINUE
RETURN

431.

1000 FORMAT(//,5X,28HNEGATIVE OR ZERO DETERMINANT,/,5X, 8HELEMENT ,I5,

1

*%# INSERT 17 LINES OF COMMON STATEMENTS HERE ¥¥

12H DETERMINANT,2X,E10.3)
END
SUBROUTINE MULT1

N=0
WAIT=WX*WY*WZX¥DETJ

DO 20 I=1,NNODZ
DXI=DX(I)*WAIT
DYI=DY(I)¥WAIT
DZI=DZ(I)¥WAIT

DO 15 J=I,NNODZ
DXJ=DX(J)

DYJ=DY(J)

DZJ=DZ(J)
S(N+1)=S(N+1)+DXI*¥DX
S(N+2)=S(N+2)+DXI%#DYJ
S(N+3)=S(N+3)+DXI*DZJ
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15
20

* %

20

30
40

S(N+4)=S(N+4)+DYI#*DYJ
S(N+5)=S(N+5)+DYI*DZJ
S(N+6)=S(N+6)+DZI*DZJ
N=N+6

IF(I.EQ.J) GO TO 15
S(N+1)=S(N+1)+DYI¥DXJ
S(N+2)=S(N+2)+DZI*DXJ
S(N+3)=S(N+3)+DZI*DYJ
N=N+3

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE MULT2

INSERT 17 LINES OF COMMON STATEMENTS HERE L

N=0

DO 40 I=1,NNODZ

DO 30 J=I,NNODZ

S1=S(N+1)

S2=8(N+2)

S3=S(N+3)

SY=S(N+L4)

S5=8(N+5)

S6=S(N+6)

IF(I.EQ.J) GO TO 20

ST7=S(N+T7)

SS:S(N+8)

S9=S(N+9)
S(N+1)=S1*D(1)+SU4%¥D(10)+S6*D(12)
S(N+2)=52%D(2)+ST7#*D(10)
S(N+3)=S3#D(3)+38%D(12)
S(N+4)=ST*D(4)+32%¥D(10)
S(N+5)=SH*D(5)+S1*D(1O)+S6*D(11)
S(N+6)=S5%¥D(6)+39%D(11)
S(N+7)=S8*D(7)+33*¥D(12)
S(N+8)=S9*D(8)+S5%¥D(11)
S(N+9)=S6*D(9)+S4¥D(11)+S1%¥D(12)
N=N+9

GO TO 30
S(N+1):S1*D(1)+34*D(10)+S6*D(12)
S(N+2)=S2%(D(2)+D(10))
S(N+3)=S3%(D(3)+D(12))
S(N+4)=SL*D(5)+S1*¥D(10)+S6¥D(11)
S(N+5)=S5%(D(6)+D(11))
S(N+6):S6*D(9)+SU*D(11)+ST*D(12)
N=N+6

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE MULT3
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%

10

* %

45

49
50

* %

INSERT 17 LINES OF COMMON STATEMENTS HERE *¥

DO 1 I=1,9

CW(I)=0.0

CONTINUE

DO 10 I=1,NNODZ

CW(1)=CW({1)+DX(I)*¥U(I)
CW(2)=CW(2)+DX(I)*V(I)
CW(3)=CW(3)+DX(I)*W(I)
CW(U)=CW(L)+DY(I)*U(I)
CW(5)=CW(5)+DY(I)*V(I)
CW(6)=CW(6)+DY(I)*W(I)
CW(T)=CW(T)+DZ(I)*U(I)
CW(8)=CW(8)+DZ(I)*¥V(I)
CW(9)=CW(9)+DZ(I)Y*W(I)

CONTINUE
SIGMA(1)=CW(1)*D(1)+CW(5)*D(2)+CW(9)¥D(3)
SIGMA(2)=CW(1)¥D(4)+CW(5)*D(5)+CW(9)*D(6)
SIGMA(3)=CW(1)%¥D(7)+CW(5)*#D(8)+CW(G)*D(9)
SIGMA(4)=(CW(2)+CW(L))*¥D(10)
SIGMA(5)=(CW(6)+CW(8))*D(11)
SIGMA(6)=(CW(3)+CW(T7))*¥D(12)

RETURN

END

SUBROUTINE PLOAD

INSERT 17 LINES OF COMMON STATEMENTS HERE ¥*#

DO 50 NOD=1,NNODZ

NIC=NELDEF (NOD)

DO 49 I=1,MAXRCT
IF(NIC.NE.NREACT(I)) GO TO 49
II=(NOD-1)*NVABZ

DO 45 J=1,NVABZ
RS(II+J)=RS(II+J)+REACT(I,J)
CONTINUE

NREACT(I)=0

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE POSTCN

INSERT 17 LINES OF COMMON STATEMENTS HERE ¥*#

DIMENSION RACTN(3)
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DO 232 I=1,NVABZ
RACTN(I)=0.0

232 CONTINUE
IF(MAXDIS.EQ.0) GO TO 251
DO 250 I=1,MAXDIS
IF(NIC.NE.NDISF(I,4)) GO TO 250
DO 240 J=1,NVABZ
IF(NDISP(I,J).EQ.0) GO TO 240
DSP=DISP(I,J)
N1=LIV4+J-1
IF (ABS (SRS(N1)).GT.ABS(DSP/1.0E15)) WRITE(6,1400)
RACTN(J)=-SRS(N1)¥1,0E+50
SRS(N1)=DSP
DISPL(NIC,J)=DSP

240 CONTINUE
WRITE(6,1200) NIC,RACTN

250 CONTINUE

251 IF(MAXNDZ.EQ.0) RETURN
DO 270 I=1,MAXNDZ
IF(NIC.NE.NDISPZ(I,H4)) GO TO 270
DO 260 J=1,NVABZ
IF(NDISPZ(I,J).EQ.0) GO TO 260
N1=LIV+J-1
RACTN(J)=-SRS(N1)#1,0E+50
IF (ABS (SRS(N1)).GT.1.0E-15) WRITE(6, 1400)
SRS(N1)=0.0
DISPL(NIC,J)=0.0

260 CONTINUE
WRITE(6,1200) NIC,RACTN
RETURN

270 CONTINUE
RETURN

1200 FORMAT(/,6X,I5,3(5X,E10.3))

1400 FORMAT(42H1BIG SPRING STIFFNESS IS NOT LARGE ENOUGH.,/,
1 684 ERRORS ARE ALMOST CERTAIN TO OCCUR DUE TO FIXITY BEING INEFFE
2CTIVE.,/, 1HO)

END
SUBROUTINE PRECON

%#% INSERT 17 LINES OF COMMON STATEMENTS HERE ¥*

IF(MAXDIS.EQ.0) GO TO 175

DO 170 I=1,MAXDIS
IF(NIC.NE.NDISP(I,4)) GO TO 170
DO 160 J=1,NVABZ
IF(NDISP(I,J).EQ.0) GO TO 160
DSP=DISP(I,J)
N1=(LIN-1)¥NVARZ+J

DO 140 K=NSNW,N1

N2=JW(K)

N4=N2+N1-K

CALL CHK(NY4)
SRS(K)=SRS(K)-DSP%¥SS(NL)
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140 CONTINUE
SS(N4)=1.0E+50
IF(N1.EQ.NFNW) GO TO 159
N3=N1+1
DO 150 K=N3, NFNW
N4=N2-N1+K
CALL CHK(NH)
SRS(K)=SRS(K)-DSP*SS(N4)

150 CONTINUE

159 CONTINUE
CALL RESETT

160 CONTINUE

170 CONTINUE

175 IF(MAXNDZ.EQ.O0) RETURN
DO 190 I=1,MAXNDZ
IF(NIC.NE.NDISPZ(I,4)) GO TO 190
DO 180 J=1,NVABZ
IF(NDISPZ(I,J).EQ.0) GO TO 180
N1=(LIN=1)%¥NVABZ+J
N2=JW(N1)
CALL CHK(N2)
SS(N2)=1.0E+50

180 CONTINUE
CALL RESETT

190 CONTINUE
RETURN
END
SUBROUTINE PREFNT

%% INSERT 17 LINES OF COMMON STATEMENTS HERE *#

DO 1 I=1,MAXNW
NW(I)=0

1 CONTINUE
DO 10 NEL=1,MAXNEL
DO 5 I=1,NNODZ
NIC=LDEF(NEL, I)
LDEST(NIC)=NEL

5 CONTINUE

10 CONTINUE
DO 20 NIC=1,MAXNOD
NEL=LDEST(NIC)
IF(NEL.EQ.0) GO TO 20
DO 15 I=1,NNODZ
IF(LDEF(NEL,I).NE,NIC) GO TO 15
LDEF(NEL,I)=-NIC
LDEST(NIC)=0
GO TO 20

15 CONTINUE

20 CONTINUE
DO 100 NEL=1,MAXNEL
DO 50 I=1,NNODZ
NIC=IABS(LDEF(NEL,I))
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30

50

70
100

RETURN

1000 FORMAT(62HIMAXIMUM FRONT WIDTH DURING PREFNT EXCEEDS LENGTH OF NW
1VECTOR)
FORMAT(/////,5X, 19HMAXIMUM FRONT WIDTH, 2X,I3)

1001

#%

10

11

14

20

15

16

IF(LDEST(NIC).NE.O) GO TO 50
DO 30 J=1,MAXNW
IF(NW(J).NE.O) GO TO 30
LDEST(NIC)=d

NW(J)=NIC
IF(MAXFW,.LT.J) MAXFW=J
GO TO 50

CONTINUE

WRITE(6,1000)

STOP

CONTINUE

DO 70 I=1,NNODZ
NIC=LDEF(NEL, I)
IF(NIC.GT.0) GO TO 70
N1=LDEST(-NIC)

NW(N1)=0

CONTINUE

CONTINUE
MAXFW=MAXFW¥NVABZ
WRITE(6,1001) MAXFW

END
SUBROUTINE RESETT

INSERT 17 LINES OF COMMON STATEMENTS HERE ¥#%

IF(KF.EQ.XMAX) GO TO 20

BUFFER OUT(L21,1) (SS(1),SS(MAXSS))
IF(UNIT(L21)) 11,12,13

CONTINUE

BUFFER IN(L2C,1) (SS(1),SS(MAXSS))
KS=KS+MAXSS

KF=KF+MAXSS3

IF(UNIT(L20)) 14,12,13

CONTINUE

GO TO 10

BUFFER OUT(L21,1) (SS(1),SS(MAXSS))
REWIND L20

IF(UNIT(L21)) 15,12,13

CONTINUE

REWIND L21

LEN=L20

L20=L21

L21=LEN

KS=1

KF =MAXSS

BUFFER IN(L20,1) (SS(1),SS(MAXSS))
IF(UNIT(L20)) 16,12,13

CONTINUE
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RETURN
12 STOP
13 STOP
END
SUBROUTINE SETUP

#* INSERT 17 LINES OF COMMON STATEMENTS HERE ¥¥

NK=(JW(MAXFW) /MAXSS)+1
DO 10 I = 1,NK
BUFFER OUT(20,1) (SS(1),SS(MAXSS))
IF(UNIT(20)) 11,12,13
11 CONTINUE
BUFFER OUT(21,1) (SS(1),SS(MAXSS))
IF(UNIT(21)) 14,12,13
14 CONTINUE
10 CONTINUE
NO MORE MATRIX SS —=--- WRITE END OF FILE ON TPAE20,TAPE21
ENDF ILE20
ENDFILE21
REWIND 20
REWIND 21
BUFFER IN(20,1) (SS(1),SS(MAXSS))
L20=20
L21=21
KS=1
KF=MAXSS
KMAX =NK¥MAXSS
IF(UNIT(20)) 15,12,13
15 CONTINUE
RETURN
12 STOP
13 STOP
END
SUBROUTINE STIFN

%% INSERT 17 LINES OF COMMON STATEMENTS HERE ¥¥

REWIND 4
IF(MAXMAT.EQ.1) CALL DMAT(1)
DO 900 NEL =1,MAXNEL
NCHK=0
DO 1 I=1,60
RS(I)=0.0

1 CONTINUE
DO 2 1=1,1830
S(I)=0.0

2 CONTINUE
IF (MAXMAT,EQ.1) GO TC 3
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10

80
90
100

900

I1=MAT(NEL)

CALL DMAT(I1)

DO 10 J=1,NNODZ
NIC=IABS(LDEF(NEL, J))
NELDES(J)=LDEST(NIC)

- NELDEF (J)=NIC

X(J)=CORD(NIC, 1)
Y(J)=CORD(NIC, 2)
Z(J)=CORD(NIC, 3)
CONTINUE
IF(MAXRCT.NE.O) CALL PLOAD
DO 100 JA=1,NRULE
XL=VECTLC(JA)
WX=WTFUN(JA)

DO 90 JB=1,NRULE
YL=VECTLC(JB)
WY=WTFUN(JB)

DO 80 JC=1,NRULE
ZL=VECTLC(JC)
WZ=WTFUN(JC)

CALL JACOB(O0)

CALL MULTT,

CONTINUE

CONTINUE

CONTINUE

CALL MULT2

WRITE(Y4) S,RS,(LDEF(NEL,J),J=1,NNODZ),NELDES
CONTINUE
IF(NSTOP.EQ.0) RETURN
WRITE(6,1000)

STOP
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1000 FORMAT( S50H1ILLCONDITIONING OR GEOMETRY OR DEFINITION ERRORS3.,/,

®%

10

11

12
20

1 22H EXECUTION TERMINATED.)
END
SUBROUTINE STRESS

INSERT 17 LINES OF COMMON STATEMENTS HERE **

WRITE(6,1000)

DO 10 I=1,MAXNOD
WRITE(6,1001) I,(DISPL(I,J),J=1,NVABZ)
CONTINUE

IF(NPUT.EQ.0) GO TO 20
N1=MAXNOD#¥*7
IF(N1.LE.MAXSS) GO TO 11
NPUT=0

WRITE(6,2000)

GO TO 20

DO 12 I=1,N1

8S5(I1)=0.0

CONTINUE

DO 100 NEL=1,MAXNEL
IF(MAXMAT.EQ.1) GO TO 25



N2=MAT (NEL)
CALL DMAT(N2)
25 CONTINUE
DO 30 NOD=1,NNODZ
N3=IABS(LDEF (NEL,NOD))
NELDEF (NOD)=N3
X(NOD)=CORD(N3, 1)
Y(NOD)=CORD(N3,2)
Z(NOD)=CORD(N3, 3)
U(NOD)=DISPL(N3,1)
V(NOD)=DISPL(N3,2)
W(NOD)=DISPL(N3,3)
30 CONTINUE
DO 50 NOD=1,NNODZ
XL=XX(NOD)
YL=YY(NOD)
ZL=ZZ (NOD)
CALL JACOB(O0)
CALL MULTS3
NIC=NELDEF (NOD)
IF(NPUT.EQ.0) GO TO %0
NU=(NIC—1)*7
DO 40 I=1,6
SS(NU+I)=SS(NH+I)+SIGMA(I)
40 CONTINUE
SS(NLU+7)=SS(NU4+7)+1.0
50 CONTINUE
100 CONTINUE
IF(NPUT.EQ.O0) RETURN
N5==17
WRITE(6,1004)
DO 150 NOD=1,MAXNOD
N5=N5+7
DIV=SS(N5+7)
IF(DIV.EQ.0.0) GO TO 150
DO 140 I=1,6
SIGMA(I)=SS(N5+1)/DIV
140 CONTINUE
WRITE(6,1003) NOD,SIGMA
150 CONTINUE
RETURN
1000 FORMAT(20H1NODAL DISPLACEMENTS,/,
1 7X, UHNODE, 8X, 6HX-COMP, 9X, 6HY~COMP, 9X, 6HZ~-COMP)
1001 FORMAT(6X,I5,3(5X,E10.3))
1003 FORMAT(/,1X,I110,3X,6(2X,F10.1))
1004 FORMAT(23H1AVERAGE NODAL STRESSES,//,
1 7X, UHNODE, 6X, 9HSIGMA X-X,3X,9HSIGMA Y-Y,3X,9HSIGMA Z~72,5X,
2 THTAU X-Y,5X, 7HTAU Y-7,5X,7HTAU X-Z)
2000 FORMAT( 65H1INSUFFICIENT SPACE IN SS VECTOR TO ALLOW NODAL STRESS
1AVERAGING.,/, 21H AVERAGING CANCELLED.)
END



E.4 SKELETON FLOW CHART FOR PROGRAM MFYDCP

MFYDCP

|
i

Initialize variables

'

Read input data
CALL INDAT

|
V

Assign nodal vectors for
front solver and calculate
maximum front width
CALL PREFNT

Calculate element
stiffness for all elements
CALL STIFN

Use front solver to reduce
and store all equations
CALL FRONT

&

Backsubstitute through
reduced equations to
calculate nodal
displacements
CALL BAKSUB

;

Print out displacements
Calculate nodal stresses
CALL STRESS

|

END

MAIN PROGRAM MFYDCP
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SUBROUTINE INDAT

FROM MFYDCP
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Read data ICODE, NCODE ’]""

ICCDE=1 .
? \(-—-—-—--—-h- Read heading N
]
p Read code
Y for stress
results
[N
Read element -
material
ICODE=3 properties
?
Read element i
material
Q number
Y Read node
- S coordinates Rt =
ICODE=5 Y Read element
.
14 definitions
¥ K | Read zero-

displacement B
fixities

NCODE=1

A

Read non-zero-

L &) "displacement s
- fixities
1CODE=7 Y Read applied
? o nodal loads e
I N
RETURN TO

MFYDCP




SUBROUTINE PREFNT

FROM MFYDCP

\

Initialize vector NW
to zero

¢

Choose first element

\

Choose first node

|

o e 0]

Assign element to which
node belongs to vector
LDEST (NODEN®)
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Choose next
node

Choose next

b
element
Choose first node
Read vector
LDEST (NODEN®)

R = element in which

node appears last
¥

Assign negative value
to matrix LDEF for
last appearance of

node

Choose mnext
node

element

Choose first

—

Choose
next
element

¥
Assign node numbers

to vectors LDEST and NW

and calculate maximum
front width MAXFW

Compute which nodes
will be eliminated and
set vector NW to zero
for those nodes

Last

i

element
?

Print out
MAXFW

l

RETURN TO
MFYDCP




SURROUTINE STIFN

FROM MFYDCP

l

Rewind TAPEA4

Calculate element
properties
CALL DMAT(1)

MAXMAT
=1

4

Choose first element

l
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Set vector RS to zero
Set vector S Lo zero

sm—-—---l-

Calculate element
properties
CALL DMAT(I1)

Choose next
element

Choose first mode
of element

)

RETURN TO MFYDCP

\

Assign nodal destination in
front solver to clement
destination vector NELDES
and assign to coordinates
of node to coordinate
vectors

Y

Assign node N? to

vector NELDEF

Write to TAPE4 vectors

Choose next node
in element

Last
node in
element

?

NModal *
loads in

element
9

S,RS, element matrix
LDEF and element
destination vector
NELDES

{

Calculate element
stiffness maxtrix S
CALL JACOB(0)
CALL MULT1
CALL MULT2

4

Calculate element

load vector RS
CALL PLOAD




SUBROUTINE FRONT

FROM MFYDCP

t
¥

Rewind TAPE2
Rewind TAPE4

!

Set. front vector
NW to zero

Y

Assign positions of main
diagonal elements in front
stiffness matrix for
vector SS using vector JW

{

Allocate space for
vector SS on TAPE20
and TAPE21
CALL SETUP

Lhs,

Y

Choose next element

Choose first element

Y

Read off TAPE4 vectors
S,RS, NELDEF, NELDES

l

Print Element N¢

i

Assemble element stiffness

in vector § into vector SS

and element nodal laods in

vector RS into vector SRS
CALL ASMBLE

N
Last ‘\\

clement
?

RETURN TO
MFYDCP

{

Choose first node

=

in element

NELDEF (NOD)

0

Choose next node ]

Check for
nodal constraints
CALL PRECON

¥

Reduce all equations using
equations for node '"NOD"
and store equations for

"NOD'" on TAPE2

element P Y

2

U

iy

Reset TAPE20

store vector S5
CALL RESETT

and
TAPE21 which




SUBROUTINE BAKSUB

FROM MFYDCP

|

Choose last element
MAXNEL

—

Choose last node of

445,

Y

core

- element

_;__4,_ Backspace

TAPE2

- N node for back- é
substitution 1

Read TAPE2
equations Backspace

for node in - TAPE2

?

Backsubstitute to solve

displacement for mnode

i

Check for nodal
constraints
CALL, POSTCN

Choose next
node

Choose next
element

g 3 |
.

element
?

RETURN TO
MFYDCP




SUBROUTINE STRESS

FROM MFYDCP

l

Print Nodal displacements

stress
averaging
required

NPUT#0

446.

Ignore stress-—
averaging command
NPUT=0

-Set Vector SS
to zero

Choose first element

l

' Calculate element
material properties
CALL DMAT(N2)

Y

Choose next element

Set up element geometry
and choose first node in
element

RETURN TO MFYDCP

t

Calculate nodal
stresses for
element
CALL JACOB(0Q)
CALL MULT3

Store Stresses

in vector S5
for averaging

Print
average

stresses at
all nodes

t

Calculate
average
stresses at
all nodes

Choose next node
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APPENDIX F

DERIVATION OF PANEL EQUATIONS

F.1 - THE EQUILIBRIUM EQUATION (6.9)

For the equivalent plate of varying thickness (figure F.1(a)),
a coordinate system may be chosen with its origin at the middle thick-
ness (middle surface) of the plate; the Z axis may be chosen to be
perpendicular to the outer (negative-z) force of the element with the
X and‘Y axes parallel to the (undeflected) outer face. This coordinate
system may be chosen because the sections of the panel initially plane

£

and normal to, the outer face remain so during panel deflection {c.f.

(96)’(97)), whereas the middle surface can undergo additional

columns
rotations as the depth of cracking varies with loading.

Bending moment/s M>< and My (figure F.1{(b)) are defined to be
positive if caused by tensile normai stresses Ox or oy acting on a
positive X or Y face respectively and at positive z. Twisting moments
M><y and Myx are defined to be positive if caused by shear stresses
orn a positive X or Y face acting in a positive Y or X direction res-

pectively at positive z. The displacements in the X, Y, Z directions

are u, v, and w respectively.

(a) Moment Equilibrium

Take moments about the X axis and neglect high order curvature

effects, so that —

aM 9Q M

Xy y y _
] dxdy - (Qy + 3 dy)dy.dx + 5y dy .dx 0

By neglecting second order terms,

oM oM
X

y y =0
T ™ Qy + = (F.1)

Similarly, by taking moments about the Y axis,



443,

Negative-z face in
dx which sitressesag
are compr‘essiony

3 =]

| = x’u

_M_i__dd le Sur"fac,e'

Figure F.1(a): Geometry of Plate
Element (axes are defined in
text)

L\ﬂl_d_dl(_ Surface

Figure F.1 (b):
Forces and
Moments Positive
Sign Conventions

Figure F.1: Varying Thickness Plate Element




449.

yx - Q + -—7 = 0 (F.Z)

(b) Force Equilibrium

(i) Z Forces in X direction is zero, so that —

N, N
. Y

o 3y = 0 (F.3)

(ii) z Forces in Y direction is zero, so that—

aN aN
Xy Y

- + = .= 0 (F.4)

(iii) 2 Forces in Z direction is zero.

The forces in the Z direction are made up of several components.

(a) Considering the shear forces in figure F.1(b), if the wuniform
lateral pressure is q, then the component of forces in the Z
direction is —

(._8.9. + 3Q

ax 5y q)dxdy (F.5(a))

(b) The projection of X-directed forces in the Z-direction can be

calculated by observing that the slope of the middle surface on

. . . . . 2

the negative-X face in the X direction is (T‘)g + %—;—E—) and on the
S ow 4 ot 3 , 3w 1 at

positive-X face as [(—ﬁ + 2—a>z) + a_x(_a’x_ + 2“3_,>‘<)dx]- Therefore the

component of X-directed forces in the Z-direction is —

aN : : I :
aw ot X 9w 1 ot 3 , 0w 13t
.= — + i)+ + = R B
N dy {55 ) (N, + 3% dx) (55 * z3% (=

2 9% X ' AIX ‘EK)dx)dy

By neglecting high order terms, this expression becomes -

IN

3 2w ; 3%t X ;3w 13ty o
N, (e mggeddxdy ¢ o g dxey {S(bIY



450.

Similarly, projection of the normal forces Ny on the Z axis gives

the expression —

192t aNy dw | 9t
N, (Gyz + Tgyzldxdy + ghlag + zgy)dxdy (F.5(c})

(c) For the projection of the shearing forces ny on the Z-axis, the

slopes of the middle surface in the Y-direction on the two

opposite X faces of the element (figure F.1(a)) are —

aw 13t .
By + Ea—g) on the negative-X face
Bw 1 at 2 aW 18t -
and ™ a5 ——y—) + -a—;(a—y + 2ay)dx on the positive-X face.

Hence, the projection of the shearing forces ny on the Z-axis is

equal to
aN
rk 3%, 3 at

(d) Similarly, the projection of the shearing forces Nyx on the Z-axis

is —
aN

3w 9%t X Aw 3t
( 1 ) Yy 1
S AETL Z5x3y ' d dy +—= 5y G + ~—~Zax)dxdy (F.5(e))

By substituting N x:ny’ the total expression for the projection

of all forces on the Z-axis from equations (F.5(a)) to (F.5(e)) is —

3Q 2Q 2 2, = 9N 2,y 2
X Y o o.op N (W 197t X, oW 18t N 3 L o180
bt + 5+ ot NG+ ) ) TN G ¢ i)
9 3
_N_V(M q___1at) + (azw + 4 8%t ) + NXy(a_W_ + La_t)
dy "3y Zdy Xy ' B3xdy = 2axdy’ 3x Ay 23y
aN '
XY AW 08tyviaay =
Ty (Sx Zax) Jdxdy = © (F.6)

By inspection, from equations (F.3) and (F.4), the following relation-

ships may be used to eliminate terms from equation (F.6) —
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N oaN
_ X 3w 18t Xy (3w o, a3ty
ax ax o) dy Gx * 2 ) = 0 (F.7(a))
aN oaN
y dw , a8ty | xy dw 10t
a—y—('a‘; + Zay) + % (ay + 28y) = 0 (F.7(b})
cla) oM, BzMyx=
As well, from equation (F.1), el + Sx3y (F.7(c))
Y a2My My
and from equation (F.2), IV YV + SxBy (F.7(d))
With reference to section 6.2.4 on brickwork torsion, in general

Mxy # Myx’ so that, from equations (F.6) and (F.7(a)) to (F.7(d)),

the equation of equilibrium is —

2
] 3
M 3z (M M)+ My ~ N (azw 19 t)
ax? XAy ' Xy yx ayz 9 ax? | Zax?
32w | 197t 32w 5 9%t
- N Gor + agyr) - L Tyt Zaxay) (6.9)

F.2 MODULUS FUNCTIONS Ex(t), Ey(t), G(t)

The brickwork modulus functions Ex(t), Ey(t) and G(t) (Section
6.3.2) may be derived by using the results of the finite element cal-
culations described in Section 6.2. The functions Ex(t), Ey(t) and G(t)
modify the stiffnesses of the an equivalent varying thickness plate

to simulate the stiffnesses of cracked brickwork.
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F.2.1 Function Ex(t) (Section 6.2.3)

Provided that forces N_ and N are zero —
X Xy

_ H(L + p) b
,Ex(n = Cx.Eb. e, + e (F.8)
L +(z)p ("b/™m
m
(b + H)

in which Eb is brick modulus
Em is mortar modulus
H is brick height
b is bedjoint thickness

P is perpend thickness

L is brick length

1.0 for- uncracked perpends
and. Cx.= q.°
’ 0'75'(t—) for cracked perpends (bricks 110mm x 65mm X

230mm laid on edge)

It should be noted that in the derivation of equation (F.8),
brick-to-mortar modular ratios varied between 1.0 and 10.0 (Tables

6.3, 6.4).

F.2.2 Function Ey(t) (Sections 4.3.1, 6.2.2)

B (b + H)
Ey(t) = Eb' - 5 (F.9)

)+ Db

m

in which o is a curvature ratio factor defined in Chapter 4.

In terms of the equivalent plate thickness at any point —



453.

1.0 for t=d
o = .
ot o2t y[R] 1}
o o o
~
o
4 ?
r? for t<d
0 .
r? (F.10)
("o ).
. . _,d/2 - t/3
in which to = | g )

[R] is a 4x4 matrix derived in Appendix A (equation (A.3))
Py 2 (H/d)

H is the brick height

d is the brickwork thickness.

F.2.3 Function G(t) (Section 6.2.4)

It may be assumed (figure 6.14) that for brick-to-mortar modular

ratios between 1.0 and 10.0, functions F (E

i :Em) and F_.(E

b 2

(equations (6.7(a)), (6.7(b)) respectively) are equal. That is —

M+ M E E_|3
1iyz T Tzyy |y 2|
2 e B.. E
M b b

in which Myz is the total twisting moment on each Y force of the
panel module defined in figures 6.1(b), 6.11

is the total twisting moment on each 2Z face of the

zy
panel module defined in figures 6.1(b), 6.11.

M is the total twisting moment on each of the Y and
7 faces for a brick:mortar modular ratio of 1.0

Ey is an effective elastic modulus for brickwork as
defined by equation (4.21)

EZ is an effective elastic modulus for brickwork as
defined by equation (6.2)

E is the brick elastic modulus.
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(112)

From plate theory , it can be shown that —
E 3 -
= b-.d 32x
M = —(H+b)m;)(1—vb)m (F]Z)
in which d is the panel thickness (= 65mm in this case)
Vb is the brick Poisson's ratio
X is brick displacement in the X direction (figure 6.11)
H, b are defined as for equation (F.8)
Equation (F.11) may be written as —
_ _ _2M L .
iy v ) = B e ) (F.13)
Equations (F.12) and (F.13) together give —
1 = . ~ 3 d? %%
A7) -(MyZ + sz} = —2[Ey. E.] .12(1+Vb)- 7vsz (F.14)

Equation (F.14) is similar to the equation for twisting moments

(112)

of a homogeneous plate in which —
1
[€,.E,17
G = 2(1+vb) 65

Results summarized in Tables 6.6 and 6.7 for brick-to-mortar
modular ratios between 1.0 and 5.0 indicate that the torsional stiffness
of cracked brickwork is approximately 85 percent of the stiffness of
uncracked brickwork. Therefore, in equation (6.14(c)), the torsional

stiffness, G(t), for cracked brickwork may be expressed as —

G(t) = 0.85.G(

d 2
t~) (F.15)

since the equivalent plate thickness, t, may be less than the un-
cracked plate thickness, d, and perpend cracking occurs throughout

the panel defined in figure 6.17.
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That is, for the axis system defined in Section 6.3, the torsional

stiffness for cracked brickwork for equation (6.14(c)) is —

s JE_(t),_, E (t), _,°
G(t) = 0.85(5:—)'[ xzt]t;dv ’; L
b

(F.16)

in which Ex(t)t—d’ Ey(t)t=d may be calculated from equations (F.8)

and (F.9) respectively

vb is the brick Poisson's ratio.
Equation (F.16) may be applied to bricks 110mm x 65mm x 230mm

laid in common stretcher bond (figures 6.1(a), 6.1(b)), and for brick-

to—mortar modular ratios between 1.0 and 5.0.
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APPENDIX G

BRICKWORK PANELS IN TWO-WAY BENDING - PROGRAM PANEL1

G.1 THE SCOPE OF PROGRAM PANEL 1

PROGRAM PANEL1 uses a finite difference method to analyse a
brickwork panel simply-supported on four sides. Such a panel may
be loaded at equal eccentricities top and bottom by a uniform line
load and may be loaded simultaneously by a uniform lateral pressure
(figure G.1).

Both the brick and mortar materials are assumed to have linear
stress—-strain éharacter‘istics and stress-related failure criteria may
be assumed (Section 8.2). Documentation of input data requirements
is given in the following section and a skeleton flow chart is presented

in Section G.3.
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Figure G.1: Simply-supported Brickwork Panel showing
tLoad Conditions for PROGRAM PANELI1
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G.2 LISTING OF PROGRAM PANELI1

PROGRAM PANEL1(INPUT,OUTPUT,TAPE5=INPUT,TAPEG=0OUTPUT)

KR RF R L RE R AR N R R B R R B RN AR E XA RRAFXFRERXRXHRRRLARRNRNX
*

PROGRAM PANEL1.WAS WRITTEN BY
DAVID C. PAYNE AS PART OF THE REQUIREMENTS
FOR A DOCTOR OF PHILOSOPHY DEGREE AT THE
UNIVERSITY OF ADELAIDE ( SUBMITTED 1982 )

THE PRCGRAM CALCULATES THE FAILURE LOADS
OF BRICKWORK PANELS SUBJECTED TO VERTICAL
LINE LOADS AT THE TOP AND BOTTOM SUPPORTS
( A UNIFORM LATERAL PRESSURE MAY BE
SPECIFIED ALSO )

A BRICKWORK PANEL IS DIVIDED INTO A
FINITE DIFFERENCE MESH OF 16 ELEMENTS
HORIZONTALLY AND 8 ELEMENTS VERTICALLY.

( THE NODES IN THE MESH NEED NOT COINCIDE
WITH MORTAR PERPENDS NOR BEDJOINTS )

BOTH THE BRICK AND MORTAR MATERIALS ARE
ASSUMED TO HAVE LINEAR STRESS-STRAIN

*
*
*
#
¥
¥
%
%
#
*
*
*
#*
*
*
%
*
¥*
*
#*
* CHARACTERISTICS
*

¥

*
#
*
*
*
*
*
*
*
*
*
¥
*
¥
*
*
¥
]
¥
*
¥
*

FUPURFE R R R LR AN L AR R R LR ERRERERRARRFARN RN RN IR RS

eReReRslo ek Rs R Re Kt e K Rtz Es e Er oo e e N e e R )

DIMENSION W(19,11),PW(19,11),DW(19,11),WE(19,11)

DIMENSION R(105),RR(105),RS(105,105),A(105,105),AINV(105, 105)
DIMENSION BMX(19,11),BMY(19,11),BMXY(19,11)

DIMENSION AA(Y4),PKX(19,11),PKY(19,11),PKXY(19,11)

DIMENSION ET(19,11),BT(19,11),SKX(19,11),SKY(19,11)

DIMENSION SKXY(19,11),PLAT(100),PLOT(100)

RS RN RN L AR R U R KA R RN R AR R R RR AR ERXRFERXERXRRRXEXRRXRRRES
*

FOR A STANDARD BRICK-ON-FLAT PANEL ( 3600 MM #
LONG BY 2400 MM HIGH ) WITH A LOAD ECCENTRICITY
OF 20 MM, THE INPUT DATA FORMAT IS AS FOLLOWS:--

0 ( OR 1 0R 2 )

'-100.0000''0.000000
111230,000''''10,000'""'76.000''"'"'10.000
'1110.0000''225,00007''20.0000

1 333|l|161l'|8

1120000110000 FYIIOYI0,2001 0. 200"‘0 200
125.00''3.50'1(0)

LINE 1: 1ST CHAR.(I1): 0=SOLID PANEL
1=NO~TENSION-MATERIAL
2=CRACKED BRICKWORK

LINE 2: TOP AND BOTTOM LINE LOAD, Fi0.4 ( N/MM )

LATERAL PRESSURE, F10.6 ( MPA )

LINE 2: BRICK LENGTH, F10.3 ( MM )

OO0 OO0 OO OO0
B o M 3k o oM ok ko ok ok ook W ok g N ko ¥

& oW %k sk oo ok ok ok gk sk ook kK ok ke %k % ok ¥ X



OO0 0000
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PERPEND THICKNESS, F10.3 ( MM ) ®

BRICK HEIGHT, F10.3 ( MM ) N

BEDJOINT THICKNESS, F10.3 ( MM ) *

LINE 4: PANEL THICKNESS, F10.4 ( MM ) ®
F.D. ELEMENT DIM.(X-DIR.), F10.4 ( MM ) i

LOAD ECCENTRICITY, F10.4 ( MM ) ¥

LINE 5: RATIO ALPHA, F5.3 ¥
NO. ELEMENTS IN X-DIR.(16), I5 o

NO. ELEMENTS IN Y-DIR.(8), IS5 L

LINE 6: BRICK MODULUS, F8.0 ( MPA ) *
MORTAR MODULUS, F8.0 ( MPA ) *
BRICKWORK SHEAR MODULUS, F8.0 ( MPA )} L
( --IF ZERO, IS AUTO. GENERATED-- ) *
POISSONS RATIOS, UXY,UYX,UB, 3F&8.3 #
BRICKWORK COMPRESSIVE STRENGTH, F6.2(MPA) #
BRICK TENSILE STRENGTH, F6.2 ( MPA ) ®
STRENGTH TEST FLAG, I2 ( 1=YES,0=NO ) %
#

¥

%*

LINE 7

% % % B % w® ok & ok %k K % ok ¥ ¥ oM ok A N

AR RN RN R AR RN RN AR RN AR SRR XX R RN R AR N R NARARRRDARA A AR RARRR

MS=19 ’
MRS=11

MO=1
NPLOT=0
IFAIL=0

READ PROBLEM TYPE, INITIAL LOADS AND PANEL CONSTANTS

READ(5,1) ITYPE

1 FORMAT(I1)
IF(ITYPE.EQ.0) WRITE(6,60)
IF(ITYPE.EQ.1) WRITE(6,61)
IF(ITYPE.EQ.2) WRITE(6,62)

60 FORMAT(1H1, 15X, %¥-=~— SOLID PANEL PROBLEM ———-%/)
61 FORMAT(1H1, 15X, ¥=—~~ NO-TENSION-MATERIAL PANEL PROBLEM#*
1% ——-%/)
62 FORMAT(1H1, 15X,*¥-——— CRACKED BRICKWORK PANEL PROBLEM ————%/)

READ(5,10) PNY,Q

10 FORMAT(F10.4,F10.6)
WRITE(6,11) PNY,Q

11 FORMAT(1HO,5X,*VERTICAL LOAD IS *,F10.4,% N/MM LENGTH¥
1% OF WALL*¥,/,1HO,5X,*LATERAL LOAD IS #,F10.6, % MPA¥)
READ(5,2) XB,XP,HB,HM

2 FORMAT(4F10.3)
WRITE(6,3) XB,XP,HB,HM

3 FORMAT(1HO,5X,#*BRICK LENGTH IS ¥,F10.3,%* MM¥,6/,1H0,5X,
1#MORTAR PERPEND THICKNESS IS ¥*,F10.3,% MM*, /,1HO,5X,
2#BRICK HEIGHT IS *,F10.3,% MM*,/,1H0,5X,#MORTAR BEDJOINT*
3% THICKNESS IS ¥ ,F10.3,% MM¥%)
READ(5, 14) T,XH,EO

14 FORMAT(3F10.4)
WRITE(6,15) T,XH,EO

15 FORMAT(1HO,5X,*¥PANEL THICKNESS IS ¥,F10.4,% MM*,6/,1HO,5X,
1¥HORIZONTAL DIMENSION OF FINITE DIFFERENCE ELEMENT IS ¥,
2F10.4,% MM*, /,1HO,5X,*VERTICAL LOAD ECCENTRICITY IS *,F10.4,
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3% MM¥)
READ(5,12) ALPHA,M,N
12 FORMAT(F5.3,21I5)
WRITE(6,13) ALPHA,M,N
13 FORMAT(1HO,5X,*RATIO ALPHA IS *,F5.3,/,1H0,5X,*NO. COF*
1% FINITE DIFFERENCE ELEMENTS IN HORIZONTAL #¥/25%X%,
2¥DIRECTION IS *,I5,/,1H0,5X,*N0O, OF FINITE DIFFERENCE#*
3% ELEMENTS IN VERTICAL DIRECTION IS #,I5)
READ(5,90) EB,EM,GXY,UXY,UYX,UB
90 FORMAT(3F8.0,3F8.3)
READ(5, 114) CMFAIL,SIGT,ISTFLG
114 FORMAT(2F6.2,1I2) :
IF(ISTFLG.EQ.0) GO TO 116
WRITE(6,115) CMFAIL,SIGT
115 FORMAT(1HO,5X,*BRICKWORK COMPRESSIVE STRENGTH IS SPECIFIED TO BE %
1,F6.2,% MPA*/1HO,5X,*BRICK TENSILE STRENGTH IS SPECIFIED TO BE ®,
2F6 2,*% MPA¥)
GO TO 117
116 WRITE(6,118)
118 FORMAT(1HO,5X,*-—-NO MATERIAL STRENGTH TESTS IN THIS PROGRAM---%)
117 CONTINUE

CALCULATE EX FOR TRANSVERSE BENDING ( REF. BASE,BAKER )

EX=EB%(HB*(XB+XP)/(XB+EB/EM*XP)+HM¥EM/EB) / (HB+HM)
WRITE(6,4) EX
4 FORMAT(1HO,5X,*¥EQUIVALENT TRANSVERSE ELASTIC MODULUS IS ¥,
¥F10.0,% MPA¥)

CALCULATE EQUIVALENT MODULUS FOR UNCRACKED VERTICAL BENDING

EY-EB¥*(HB+HM)/ (HB+EB/EM#*HM)

CALCULATE SHEAR MODULUS IF REQUIRED
IF(GXY.NE.O.) GO TO 64
GXY=SQRT(EX*EY)/(2.%(1.+UB))

64 CONTINUE
WRITE(6,91) EB,EM,GXY,UXY,UYX,UB

91 FORMAT(1HO,5X,*¥BRICK YOUNGS MODULUS IS #,F10.0,% MPA%,
1/,1H0,5X,¥*MORTAR YOUNGS MODULUS IS ¥,F10.0,%* MPA*,/,1HO,5X,
2#BRICKWORK SHEAR MODULUS IS ¥,F10.0,* MPA¥*,/,
31H0, 5X, *BRICKWORK POISSONS RATIO UXY IS *,F10.3,/,1HO0,5X,
4*BRICKWORK POISSONS RATIO UYX IS *,F10.3,/1H0,5X,*BRICK ¥
5%¥POISSONS RATIO UB IS *,F10.3,/,1H1)

IF(ITYPE.NE.2) GO TO 63
CALCULATE MATRIX AA FOR TENSION-FIELD STIFFENING

HD=HB/T ¢ HD1=HD $ HD2=-HD*HD ¢$ HD3=HD**3

AA(1)=1.03-1.18%HD1+0.794%HD2-0. 187*HD3

AA(2)=-~0.326+14,4¥HD1-9, 47¥HD2+2.32%HD3

AA(3)=1.22-54, 1¥HD1+31.3%HD2-7.98*%HD3

AA(4)==1.39+61.0%¥HD1-18.5¥%HD2+4.T9¥HD3
63 CONTINUE

INITIALIZE LOAD INCREMENT CONSTANTS



eNeNe

aao

aoaan

QOO AQ

DELPNY=PNY
SPNY=0.

SET UP FINITE DIFFERENCE GRID CONSTANTS

MN=M+1 $ MNO=M+2 $ MNOP=M+3
NP=N+1 $ NPQ=N+2 $ NPQR=N+3
MNT=(M-1)¥(N-1)

SET MATRICES TO ZERO

DO 92 JT
DO 93 JS
W(JS,JT)=0.
PW(JS,JT)=0.
DW(JS,JT)=0.
WE(JS,JT)=0.
BMX(JS,JdT)=0.
BMY(JS,JdT)=0.
BMXY (JS,JT)=0.
PKX(JS,JT)=0.
PKY(JS,JT)=0.
PKXY(JS,JT)=0.
SKX(JS,JT)=0.
SKY (JS,dJT)=0.
SKXY(JS,JT)=0.
ET(JS,JT)=0.
BT(JS,JT)=0.

93 CONTINUE

92 CONTINUE

yMR3
S

1
1,M

DO 94 JW = 1,MNT
DO 95 JV = 1,MNT
RS(JV,JW)=0.
A(JIV,JW)=0.

AINV(JV,JW)=0.
95 CONTINUE
R(JW)=0.
RR(JIJW)=0.
94 CONTINUE

INITIALIZE SECTION THICKNESS AND ELASTIC MODULUS FACTORS
AT ALL NODES

DO 65 JIL
DO 66 JAK
ET(JAK,JIL)=T
PKX(JAK,JIL)=1.
PKXY (JAK,JIL)=1.
PKY(JAK,JIL)= (HB+HM)/(HB+EB/EM*HM)
66 CONTINUE
65 CONTINUE

2,N
2,1

PQ
MNO

CALCULATE ELASTIC MODULUS FACTORS PKY AT TOP AND
BOTTOM BOUNDARIES

DO 6 IL = 3,MN

461.
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CHECK WHETHER TENSION-STIFFENING IS REQUIRED
IF YES, CALCULATE EFFECTIVE MODULUS FACTORS PKY

IF(ITYPE.NE.2) GO TO 5
IF(EO.LE.T/6.) GC TO 5
TE=EO/T
TE1=TE ¢$ TE2=TE#TE $ TE3=TE¥*3"~
PEC=AA(1)+TE1%¥AA(2)+TE2*¥AA(3)+TE3*AA(H)
PKY(IL,2)=PKY(IL,NPQ)=(HB+HM)/(1./PEC*HB+EB/EM¥HM)
GO TO 6

5 PKY(IL,2)=PKY(IL,NPQ)=(HB+HM)/(HB+EB/EM¥HM)

6 CONTINUE

CALCULATE EFFECTIVE THICKNESS AT TOP AND BOTTOM SUPPORTS
DO 9 IRA = 3,MN
CHECK WHETHER SECTION IS CRACKED ON BEDJOINT

IF(ITYPE.EQ.0) GO TO 8
IF(EO.LE.T/6.) GO TO 8
ET(IRA,2)=ET(IRA,NPQ)=3.%¥(T/2.-EO)
GO TO 9

8 ET(IRA,2)=ET(IRA,NPQ)=T

9 CONTINUE

CALCULATE EFFECTIVE THICKNESS AT VERTICAL SUPPORTS

DO 7 IRC = 2,NPQ
ET(2,IRC)=ET(MNO, IRC)=T
7 CONTINUE

NEWTON-RAPHSON ITERATION PROCEDURE BEGINS AT THIS STAGE
DO 100 LP = 1,100

THIS LOOP INCREMENTS THE LOAD PNY
CALCULATE DISPLACEMENTS BY ITERATION ALLOWING FOR CRACKING
( IF REQUIRED )
DO 99 IJK = 1,20
ITERATE TO CALCULATE CONSISTENT SET OF DISPLACEMENTS, CURVATURES
AND TENSION STIFFENING FACTORS ( IF REQUIRED )
DO 98 JIK = 1,10
CALCULATE EFFECTIVE THICKNESS AT ALL NODES ( IF REQUIRED )
IF(ITYPE.NE.O) CALL PHYSP(NP,MN,XH,ALPHA,UYX,UXY,PNY,T,W,ET,MS,
¥PKX,PKY,PKXY,AA,EB,EM,HB,HM, ITYPE)
CALCULATE BENDING MOMENTS AT ALL NODES
CALL BEND(M,MN,MNO,MNOP,N,NP,NPQ,NPQR,I1,I2,XH,ALPHA,UYX,UXY,
¥EX,GXY,EO0,T,PNY,W,ET,BMX,BMY,BMXY,MS, PKX, PKY, PKXY,EB, ITYPE)
98 CONTINUE
CALCULATE THE ERROR TERM AT ALL NODES
_ CALL ERROR(NP,MN,XH,ALPHA,Q,PNY,W,ET,BMX,BMY,BMXY,RR,M3,ITYPE)
ERR=0.
DO 16 LX = 1,MNT
R(LX)=RR (LX)
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CALCULATE MAXIMUM ERROR TERM TO CHECK END OF ITERATION
ER=ABS(R(LX))
IF(ER.GT.ERR) ERR=ER

16 CONTINUE

CHECK VALUE OF MAXIMUM ERROR TERM
ITERATION IS COMPLETED IF MAX ERR IS LESS THAN 1.0E-06

IF(ERR.LT.1.0E-06) GO TO 110
USE MODIFIED NEWTON-RAPHSON METHOD TO CALCULATE DISPLACEMENTS
DEAL=0.001

CHANGE NODAL DISPLACEMENTS EACH IN TURN BY DEAL
CALCULATE EFFECT OF CHANGE IN ERROR TERM AT ALL NODES

NRS=0
DO 17 LY = 3,NP
DO 18 LZ = 3,MN
WSAVE=W(LZ,LY)
SAVE ORIGINAL VALUES OF EFFECTIVE THICKNESS AND STIFFENING COEFFICIENT
DO 19 IV ='3,NP
DO 20 JV = 3,MN
BT(JV,IV)=ET(JV,IV)
SKX(JV,IV)=PKX(JV,IV)
SKY(JV, IV)=PKY(JV,IV) g
SKXY(JV,IV)=PKXY(JV,IV)
20 CONTINUE
19 CONTINUE
NRS=NRS+1
W(LZ,LY)=W(LZ,LY)+DEAL
CALCULATF NEW EFFECTIVE THICKNESS AT ALL NODES ( IF REQUIRED )
IF(ITYPE.NE.O) CALL PHYSP(NP,MN,XH,ALPHA,UYX,UXY,PNY,T,W,ET,MS,
%PKX,PKY, PKXY,AA,EB,EM,HB,HM, ITYPE)
CALCULATE NEW BENDING MOMENTS AT ALL NODES
CALL BEND(M,MN,MNO,MNOP,N,NP,NPQ,NPQR,I1,I2,XH,ALPHA,UYX,UXY,
*EX,GXY,EO,T,PNY,W,ET,BMX,BMY,BMXY,M3, PKX, PKY, PKXY,EB,ITYPE)
CALCULATE NEW ERROR TERMS AT ALL NODES
CALL ERROR(NP,MN,XH,ALPHA,Q,PNY,W,ET,BMX,BMY,BMXY,RR,M3,ITYPE)
REASSIGN ORIGINAL DISPLACEMENT FUNCTION VALUES
W(LZ,LY)=WSAVE
DO 21 IW = 3,MN
DO 22 JW = 3,NP
ET(IW, JW)=BT(IW, JW)
PKX(IW, JW)=SKX(IW, JW)
PKY (IW, JW)=SKY(IW,JW)
PKXY(IW,JW)=SKXY{IW,JW)
22 CONTINUE
21 CONTINUE

SET UP JACOBIAN MATRIX RS FOR NEWTON-RAPHSON ITERATION
DO 23 MRS = 1,MNT
RS(MRS,NRS)=(RR(MRS)-R(MRS))/DEAL

23 CONTINUE

18 CONTINUE
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17 CONTINUE
TRANSFER MATRIX RS INTO MATRIX A FOR INVERSION

DO 34 KAR = 1,MNT
DO 35 KAT = 1,MNT
A(KAR,KAT)=RS(KAR,KAT)

35 CONTINUE

34 CONTINUE

INVERT MATRIX A
CALL MINV(A,AINV,MNT)
CALCULATE INCREMENTAL CHANGES IN DISPLACEMENTS ( DW )

DO 36 KAL = 1,MNT
X=0.
DO 37 KAK = 1,MNT
X=X+AINV(KAL,KAK)#*(-R(KAK))

37 CONTINUE
KBL=KAL-=-1
KAP=KBL/(M=1)
KBP=3+KAP
KAS=KBL-(M—1)*KAP
KASS=3+KAS
DW (KASS,KBP)=X

36 CONTINUE

CALCULATE NEW DISPLACEMENTS AT ALL NODES
CHECK FOR NEGATIVE DISPLACEMENTS ( INVALID )

DO 38 LTA 3,MN
DO 39 LTB 3, NP
W(LTA,LTB)=W(LTA,LTB)+DW(LTA,LTB)
IF(W(LTA,LTB).LT.0.) GO TO 120
39 CONTINUE
38 CONTINUE

CHECK THAT SECONDARY MODE OF DISPLACEMENT IS NOT ATTAINED ( INVALID )

DO 24 JXL 2,NPQ
DO 25 IXL 2,MNO
MC=M/2+2 $ NC=N/2+2
IF(W(IXL,JXL).GT.(1.05%W(MC,NC))) GO TO 120
25 CONTINUE
24 CONTINUE
99 CONTINUE

END OF INNER ITERATION LOOP

WRITE(6,40) PNY

40 FORMAT(1HD,5X,*AT LOAD PNY = ¥ ,F10.3,% N/MM %#/6X,*EQUILIBRIUM IS *
¥#NOT ATTAINED AFTER TWENTY ITERATIONS¥)
GO TO 130

120 WRITE(6,41)
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41 FORMAT(1HO,5X,*MATHEMATICAL FAILURE HAS OCCURRED%¥)
130 CONTINUE

DPNY=DELPNY/MO

IF(DPNY.GT.-1.0) GO TO 140

DECREASE THE LOAD INCREMENT ADDED TO PNY
REASSIGN DISPLACEMENT VALUES ASSOCIATED WITH LOAD SPNY

PNY=SPNY
DO 42 JLP = 2,NPQ
DO 43 ILP = 2,MNO

W(ILP,JLP)=PW(ILP,JLP)
43 CONTINUE
42 CONTINUE
MO=MO*2
PNY=PNY+DELPNY/MO

EXTRAPOLATE FOR NEW DISPLACEMENTS AT NEW LOAD PNY

CALL EXTRAP(NPQ,MNO,MO,W,WE,MS)
GO TO 100
110 WRITE(6,54)
54 FORMAT(1H1,25X,*EQUILIBRIUM HAS BEEN ATTAINED%*)

CHECK FOR MATERIAL FAILURE

IF(ISTFLG.EQ.0) GO TO 170
CALL MATFAIL(MNO,NPQ,T,SIGT,IFAIL,PNY,CMFAIL,EO,BMX,BMY,
1BMXY ,ET,MS) :
IF(IFAIL.EQ.0) GO TO 170
IF(IFAIL.EQ.1) WRITE(6,121)
IF(IFATIL.EQ.2) WRITE(6, 122)
IF(IFAIL.EQ.3) WRITE(6,123)
121 FORMAT(1HO, 20X, *TENSILE FAILURE DUE TO BENDING X-X¥)
122 FORMAT(1HO,2CX,*BRICKWORK COMPRESSIVE FAILURE¥*)
123 FORMAT(1HO,20%,*TENSILE FAILURE AT 45 DEGREES TO BEDJOINTS#)
IFAIL=0
GO TO 130
170 CONTINUE

PRINT OUT PLATE DISPLACEMENTS

WRITE(6,44) PNY
44 FORMAT(1HO, 10X, *NODAL DISPLACEMENTS (MM) FOR PNY = ¥,F10.3,
1% N/MM ARE —--%)
DO 45 ITI = 2,NPQ
WRITE(6,52) (W(JJ,II),Jdd=2,MNO)
45 CONTINUE

STORE DISPLACEMENTS OF CENTRE NODE FOR LOAD-DISPLACEMENT PLOT
NPLOT=NPLOT+1
PLAT(NPLOT)=-PNY
PLOT (NPLOT ) =W (MC,NC)

PRINT OUT BENDING MOMENTS AT ALL NODES
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WRITE(6, 180) PNY

180 FORMAT(1HO, 10X, *BENDING MOMENTS MX ( NMM/MM ) FOR PNY = ¥,F10.3,
1% N/MM ARE ---%)
DO 181 ITI = 2,NPQ
WRITE(6,52) (BMX(JJ,II),Jdd=2,MNO)
181 CONTINUE
WRITE(6,182) PNY
182 FORMAT(1HO, 10X, ¥ BENDING MOMENTS MY ( NMM/MM ) FOR PNY = ¥ ,F10.3,

1% N/MM ARE —--%)
DO 183 II = 2,NPQ
WRITE(6,52) (BMY(JJ,II),JdJ=2,MNO)
183 CONTINUE
WRITE(6,184) PNY
184 FORMAT(1HO, 10X, *TWISTING MOMENTS (MXY+MYX) ( NMM/MM ) FOR PNY #
1%z ¥ F10.3,% N/MM ARE ——=%)
DO 185 II = 2,NPQ
WRITE(6,52) (BMXY(JJ,II),JJ=2,MNO)
185 CONTINUE
WRITE(6,186) PNY
186 FORMAT(1H0, 10X, *NODE EFFECTIVE THICKNESSES ( MM ) FOR PNY = #,
1F10.3,% N/MM ARE ~——-#)
DO 187 II = 2,NPQ
WRITE(6,52) (ET(JJ,II),dJ=2,MNO)
187 CONTINUE
c
C STORE VALUES OF LOAD AND DISPLACEMENT IN CASE OF FAILURE AT NEW LOAD
c
SPNY=PNY
C STORE VALUES OF PW IN WE FOR EXTRAP AND VALUES OF W IN PW
DO 46 JOP = 2,NPQ
DO 47 IOP = 2,MNO
WE(IOP,JOP)=PW(IOP,JOP)
PW(IOP,JOP)=W(IOP,JOP)
47 CONTINUE
46 CONTINUE
C INCREASE LOAD VALUE PNY
PNY=PNY+DELPNY/MO
C EXTRAPOLATE FOR DISPLACEMENTS AT NEW LOAD PNY
CALL EXTRAP(NPQ,MNO,MO,W,WE,MS)
100 CONTINUE
c
C END OF MAIN ITERATION LOOP
c
WRITE(6,48)
48 FORMAT(1HO, 10X, *FAILURE NOT ATTAINED AFTER 100 ITERATION *#
#%LOAD INCREMENTS*)
GO TO 150
140 PNY=SPNY
WRITE(6,49) PNY
49 FORMAT(1H1,////10%, ¥ oo e e e e et e e e *
1/,20X,%*FAILURE LOAD IS *,/
25X,F10.3,/, 17X, *N/MM LENGTH OF PANEL*,/,

c
C PLOT DISPLACEMENT OF WALL CENTRE NODE
c
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CALL QIKPLOT(PLOT,PLAT,-40, 14H¥DISPLACEMENT¥*, 6H*L.OAD¥*,-1)
150 CONTINUE
52 FORMAT(1HO,5X,10F12.3)

END

SUBROUTINE PHYSP(NP,MN,XH,ALPHA,UYX,UXY,PNY,T,W,ET,MS,

¥PKX,PKY,PKXY,AA,EB,EM,HB,HM, ITYPE)

DIMENSION W(MS,1),ET(MS, 1)

DIMENSION AA(M),PKX(MS,1),PKY(MS,1),PKXY(MS,1)

PLX=0.

CALCULATE CURVATURE CURVY AND NEW EFFECTIVE THICKNESS AT ALL NODES

DO 10 LF = 3,NP
LR=LF-1 $ LS=LF+1
DO 11 LE = 3,MN
LG=LE-1 $ LH=LE+1
DO 13 LY = 1,10
CURVY=(W(LE,LR)-2.%W(LE,LF)+W(LE,LS))/(XH*ALPHA)*%2
¥4 UYX*¥(W(LG,LF)-2.%¥W(LE,LF)+W(LH,LF))/ (XH*XH)
ACURVY=ABS(CURVY)
IF(ACURVY,LT.1,0E~50) GO TO 12
PVY=PNY/CURVY
APVY=ABS(PVY)
BPVY=2.#(1.-UXY*UYX)/(PKY(LE,LF)¥*EB)¥APVY
CPVY=SQRT (BPVY)
IF(CPVY.GT.T) CPVY=T
ET(LE,LF)=CPVY
GO TO 16

12 ET(LE,LF)=T

16 CONTINUE

CALCULATE NEW VALUES OF ELASTIC MODULUS FACTORS PKX,PKY AND PKXY
( IF REQUIRED )

IF(ITYPE.EQ.1) GO TO 11

ITYPE EQ 1 IMPLIES NO-TENSION MATERIAL
ED=(0.5*T-ET(LE,LF)/3.)/T
IF(ED.LE.1./6.) PLY=1.
IF(ED.LE.1./6.) GO TO 15
ED1=ED $ ED2=ED*ED $ ED3=ED¥¥3
PLY=AA(1)+ED1%AA(2)+ED2#AA(3)+ED3*AA(L)
IF(ABS(PLY-PLX).LE.1.0E-09) GO TO 15
PLX=PLY

13 CONTINUE
WRITE(6, 14)

14 FORMAT(1HO,5X,#*PKY IS NOT FOUND AFTER 10 ITERATIONS#*)

15 PKY(LE,LF)=(HB+HM)/(1./PLY¥HB+EB/EM*HM)
PKX(LE,LF)=0.75%(T/ET(LE,LF))*¥3
PKXY(LE,LF)=0.85%(T/ET(LE,LF))¥*¥%3

11 CONTINUE

10 CONTINUE

CALCULATE NEW VALUES OF TWIST FACTOR PKXY AT TOP
AND BOTTOM BOUNDARIES ( IF REQUIRED )

IF(ITYPE.EQ.1) GO TO 18
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PO 17 ITW = 3,MN
PKXY(ITW,2)=0.85%(T/ET(ITW,2))**3
PKXY(ITW,NP+1)=0.85%(T/ET(ITW,NP+1))%*¥*3
17 CONTINUE
18 CONTINUE
RETURN
END
SUBROUTINE BEND(M,MN,MNO,MNOP,N,NP,NPQ,NPQR,I1,I2,XH,ALPHA,UYX,
*UXY,EX,GXY,EO,T,PNY,W,ET,BMX,BMY,BMXY, M3, PKX, PKY, PKXY,EB, ITYPE)
DIMENSION W(MS,1),ET(MS,1),BMX(MS,1),BMY(MS,1),BMXY(MS, 1)
DIMENSION PKX(MS,1),PKY(MS, 1),PKXY(MS, 1)

CALCULATE BENDING MOMENTS AT TOP AND BOTTOM BOUNDARIES

DO 12 IJ = 3,MN
IF(ITYPE.EQ.O0) GO TO 17
ITYPE EQ 0 IMPLIES SOLID PANEL PROBLEM
IF(EOQ.GT.T/6.) GO TO 13
17 BMY(IJ,2)=BMY(IJ,NPQ)=-PNY¥EOQO
GO TO 14
13 CONTINUE
BMY(IJ,2)=BMY(IJ,NPQ)=~0.5%¥PNY*(T/2.-EOQ)
i4 CONTINUE

CALCULATE VALUES OF DISPLACEMENTS OF FICTITIOUS NODES FOR
CALCULATION OF BMXY TWISTING MOMENTS TOP AND BOTTOM
( BMXY IS THE #*3UM¥ OF TWISTING MOMENTS MXY AND MYX )

W(IJ,1)=-W(IJ,3)-BMY(IJ,2)*(XH¥ALPHA)¥¥2%¥( 12, %(1,-UXY*UYX)}/
¥ (EB*PKY(IJ,2)*ET(IJ,2)%%3)
W(IJ,NPQR)=-W(IJ,NP)=BMY(IJ,NPQ)*(XH*ALPHA)*#¥2
®¥(12,%(1,-UXY*UYX))/(EB®¥PKY(IJ,NPQ)*¥ET(IJ,NPQ)¥¥3)

12 CONTINUE

CALCULATE BENDING MOMENTS BMX AND BMY AT ALL INTERNAL NODES

DO 10 NF = 3,NP
NR=NF -1 $ NS=NF+1
DO 11 NE = 3,MN
NG=NE-1 $ NH=NE+1
BY=(W(NE,NR)-2,¥W(NE,NF)+W(NE,NS)) /(XH¥ALPHA)*%2

¥UYX*(W(NG,NF)-2.%W(NE,NF)+W(NH,NF))/(XH#*XH)

BMY(NE, NF)=-EB*PKY(NE,NF)*ET(NE,NF)*%3/(12,%(1,-UXY*UYX))¥BY
BX=(W(NG,NF)-2.¥W(NE,NF)+W(NH,NF) )/ (XH#¥XH)

¥+ UXY®*(W(NE,NR)-2. ¥W(NE,NF)+W(NE,NS) )/ (XH*ALPHA)**?2
BMX(NE,NF)=-EX#PKX(NE,NF)¥ET(NE,NF)*¥3/(12,%(1,~-UXY¥UYX))¥BX

CALCULATE TWISTING MOMENTS AT INTERNAL NODE (NE,NF)

( BMXY IS THE #SUM#* OF TWISTING MOMENTS MXY AND MYX )
BXY=(W(NH,NS)-W(NG,NS)-W(NH,NR)+W(NG,NR)) /(4. *ALPHA*XH¥*XH)
BMXY(NE,NF)=-2,*GXY*PKXY(NE, NF)¥ET(NE,NF)¥#3/6, ¥BXY

11 CONTINUE
10 CONTINUE

CALCULATE BENDING MOMENTS BMX AT TOP AND BOTTOM BOUNDARIES

DO 18 KL = 3,MN
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BX=UXY*(W(KL,3)+W(KL, 1))/ (XH®ALPHA)#%2
TX=UXY ¥ (W(KL,NP)+W(KL,NPQR))/(XH¥*ALPHA)¥#*2
BMX (KL, 2)=-~-LX*T¥%3/(12,%(1.,-UXY#UYX))*¥BX
BMX(KL,NPQ)=—EX*T*%¥3/(12,%(1,-UXY*UYX))*TX

18 CONTINUE

CALCULATE APPROXIMATE DISPLACEMENTS OF FICTITIOUS CORNER NODES

W(1,3)=-W(3,3)

W{MNOP, 3)=-W(MN, 3)

W(1,NP)==W(3,NP)

W(MNOP, NP)==W(MN,NP)

w(1ou)=—"\,(3vu)

W(MNOP, 4 )=-W{MN, 4)

W(1,N)=-W(3,N)

W(MNOP, N)==W (MN,N)

I1=1 ¢ I2=1

CALL CORNER(M,MN,MNO,N,NP,NPQ,I1,I2,W,MS)
I1=MNOP $ I2=1

CALL CORNER(M,MN,MNO,N,NP,NPQ,I1,I2,W,MS3)
I1=1 ¢$ I2=NPQR

CALL CORNEB(M,MN,MNO,N.NP,NPQ,I1,I2,W,MS)
I1=MNOP $ I2=NPQR

CALL CORNER(M,MN,MNO,N,NP,NPQ,I1,I2,W,M3)

CALCULATE TWISTING MOMENTS BMXY AT TOP AND BOTTOM BOUNDARIES

15

( BMXY IS THE #SUM¥ OF TWISTING MOMENTS MXY AND MYX )

Do 15 IK = 2,MNO

IKA=IK-1 $ IKB=IK+1
BXY=(W(IKB,3)-W(IKA,3)-W(IKB, 1)+W(IKA, 1))/ (4. ¥ALPHA*XH*XH)
TXY:(W(IKB,NPQR)~W(IKA,NPQR)—W(IKB,NP)+W(IKA,NP))/(H.*ALPHA*XH*XH)
BMXY (IK,2)=-2.%GXY¥PKXY(IK,2)¥ET(IK,2)**3/6.%BXY

BMXY (IK,NPQ)=-2.*¥GXY*PKXY (IK,NPQ)*ET (IK,NPQ)**3/6.#TXY

CONTINUE

CALCULATE TWISTING MOMENTS BMXY AT VERTICAL SUPPORTS

16

( BMXY IS THE #3SUM¥®* OF TWISTING MOMENTS MXY AND MYX )

DO 16 JK = 3,NP

JKA=zJK-1 $ JKB=JK+1
VLXY=2.%(W(3,JKB)=W(3,JKA)) /(4. ¥ALPHA*XH*XH)

VRXY=2.% (W(MN, JKA)-W(MN, JKB) )/ (l4, ¥ ALPHA*XH*XH)

BMXY (2, JK)=—2. ¥GXY#PKXY (2, JK)#ET (2, JK)**3/6. #VLXY

BMXY (MNO, JK)=~2. ¥GXY ¥PKXY (MNO, JK)*ET (MNO, JK)**3/6 . *VRXY
CONTINUE

RETURN

END

SUBROUTINE ERROR(NP,MN,XH,ALPHA,Q,PNY,W,ET,BMX,BMY,BMXY,RR,MS
1, ITYPE) :

DIMENSION W(MS,1),ET(MS,1),BMX(MS,1),BMY(MS,1),BMXY(MS,1),RR(1)

CALCULATE ERROR TERM AT ALL INTERNAL NODES

KX=0
po 10 LB = 3,NP
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LA=LB-1 $ LC=LB+1
DO 11 KB = 3,MN
KA=KB-1 $ KC=KB+1
KX=KX+1
CALCULATE ELEMENTS OF ERROR TERM SEPARATELY
D2MXDX2
DMX=(BMX(KA,LB)-2.*BMX(KB,LB)+BMX(KC,LB))/(XH*XH)

D2MYDY2

DMY:(BMY(KB,LA)—Z.*BMY(KB,LB)+BMY(KB.LC))/(XH*ALPHA)**2

D2(MXY+MYX)DXDY

DMXY = (BMXY (KC, LC)-BMXY (KA, LC)-BMXY (KC, LA )+BMXY (KA,LA))/

#(4,*ALPHA*XH¥*XH)

D2WBARDYZ2

470.

DWBAR=(W(KB,LA)-2, *W(KB,LB)+W(KB,LC)+0.5%(ET(KB,LA)-2.%ET (KB, LB)

¥,.ET(KB,LC)))/(XH¥*ALPHA)¥*¥*2
COMBINE TERMS TO GIVE TOTAL ERROR TERM

RR(KX)=DMX+DMXY+DMY+Q+PNY¥DWBAR
11 CONTINUE
10 CONTINUE
RETURN
END
SUBROUTINE EXTRAP(NPQ,MNO,MO,W,WE,MS)
DIMENSION W(MS, 1) ,WE(MS, 1)

EXTRAPOLATE ON ALL DISPLACEMENTS IN ARRAY W

DO 10 KD 2,NPQ
DO 11 KC = 2,MNO
IF(W(KC,KD).EQ.0.) GO TO 12
WMULT=1.+(1,-WE(KC,KD)/W(XC,KD))/MO
W(KC,KD)=W(KC,KD)*WMULT
GO TO 11

12 W(KC,KD)=-WE(KC,KD)/MO

11 CONTINUE

10 CONTINUE
RETURN
END
SUBROUTINE MINV(A,AINV,MNT)
DIMENSION A(MNT,1),AINV(MNT, 1)

MATRIX INVERSION BY GAUSS-JORDAN METHOD ( AFTER P.
DO 10 I 1,MNT

DO 10 J = 1,MNT
AINV(I,J)=0.

C. WANG )
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10

13
16
17
18

14

19

20
21

22
12

CALCULATE DISPLACEMENTS OF FICTITIOUS CORNER NODES

10
11

12
13

IF(I.EQ.J) AINV(I,J)=1.0

CONTINUE
EPS=1,0E--08

DO 12 I = 1,MNT
K=I

IF(I-MNT) 13,14,13
IF(A(I,I)-EPS) 16,17, 14
IF(-A(I,I)-EPS) 17,17, 14
K=K+1

DO 18 J = 1,MNT
AINV(I,J):AINV(I,J)+AINV(K,J)
A(I,J):A(I.J)+A(K,J)

GO TO 13

DIV=A(I,I)

DO 19 J=1,MNT
AINV(I,J)=AINV(I,J)/DIV
A(I,Jd)=A(I,J)/DIV

DO 12 MM = 1,MNT
DELT=A(MM, I)

IF (ABS(DELT)-EPS) 12,12,20
IF(MM-I) 21,12,21

DO 22 J = 1,MNT

AINV(MM, J)2AINV(MM,J)-AINV(I,J)*DELT

A(MM, J)=A(MM,J)-A(TI,J)*DELT
CONTINUE

RETURN

END

SUBROUTINE CORNER(M,MN,MNO,N,NP,NPQ,I1,I2,W,MS)

DIMENSION W(MS, 1)

IF(I1.EQ.1) GO TO 10

NO=M $ N1=MN $ N2=MNO

GO TO 11

NO=4 $ N1=3 $ N2=2

CONTINUE
W1=W(N0,IZ)—3.*W(N1,12)+3.*W(N2,I2)
IF(I2.EQ.1) GO TO 12

LOsN & L1=NP $ L2=NPQ

GO TO 13

LOo=4 $ L1=3 $ L2=2

CONTINUE
W2=W(I1,L0)~-3.%¥W(I1,L1)+3.%W(I1,L2)
W(I1,I2)=0.5¥%(W1+W2)

RETURN

END

aOaOaaO0

SUBROUTINE MATFAIL(MNO,NPQ,T,SIGT,IFAIL,PNY,CMFAIL,EO,
1BMX,BMY,BMXY,ET,MS)
DIMENSION BMX(MS,1),BMY(MS,1),BMXY(MS,1),ET(MS,1)

THIS SUBROUTINE CHECKS FOR MATERIAL FAILURE IN ANY OF THREE MODES ---
1. TENSILE FAILURE IN BRICKWORK DUE TO BENDING X-X
2. VERTICAL SPLITTING FAILURE ---THE COMPRESSIVE STRENGTH
OF THE BRICKWORK MUST BE KNOWN OR ASSUMED. LINEAR MATERIAL
ELASTIC PRCPERTIES ARE ASSUMED.
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3. TENSILE FAILURE AT 45 DEGREES TO THE BEDJOINTS --- A CHECK
IS MADE AT AN INTERNAL NODE CLOSEST TO A PANEL CORNER

MODE 1.---CHECK FOR TENSILE FAILURE DUE TO BENDING X-X

11
10

DO 10 I 2,MNO

PO 11 J = 2,NPQ
SIGX=BMX(I,J)*6./(T*T)
IF(SIGX.GE.0.75%SIGT) IFAIL=1
CONTINUE

CONTINUE

MODE 2.---CHECK FOR VERTICAL SPLITTING FAILURE

14
15

13
12

DO 12 1 2,MNO

DO 13 J 2,NPQ
IF(ET(I,J).LT.T) GO TO 14
SIGY=—-PNY/T+6.%¥BMY(I,J)/(T*T)
GO TO 15

SIGY=-2.%PNY/ET(I,J)

CONTINUE
IF(SIGY.GE.CMFAIL) IFAIL=2
CONTINUE

CONTINUE

MODE 3.--~CHECK FOR TENSILE FAILURE AT 45 DEGREES TO THE BEDJOINTS

SIGXY=PNY/(2.%T)*(1.-6.%¥E0/T)+3./(T*T)*ABS(BMXY(3,3))
IF(SIGXY.GE.SIGT) IFAIL=3

MATERIAL FAILURE FLAG IFAIL IS NOW SET

RETURN
END
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