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Abstract

Sign language is a visual language used by deaf or hearing-impaired people to communicate'

For distant communication, deaf people commonly use the text telephone, which is at least

10 times slower than sign language. Moreover, sign language is the first language of many

pre-lingually deaf individuals, and its speed is comparable to that of normal speech' Video

communication would allow deaf individuals to communicate remotely via sign language,

providing them the equivalent of the telephone for individuals of normal hearing. Therefore,

video communicationwouldbe aboonto the deaf community'

Block-based video coding strategies, the cornerstone of the H.261 and F{'263 coding

standards for video conferencin g, aÍeunsuitable for the transmission of sign language video

over affordable low bit-rate channels. This is mainly due to the presence of rapid hand and

arm motion in sign language video, as well as the necessity of smooth motion perception'

Accordingly, sign 1angaagevideo will require content-based coding strategies to achieve the

image qualrty and frame rate necessary for accurate perception. Using content-based coding,

video sequences are typically segmented into different objects which may be independently

coded and transmitted. More resources are allocated to the perceptually important objects,

which in the case of sign language, are the face and hands'

In this thesis, a methodology is devised for the segmentation of the face and hands in

sign language video sequences. As well as an improved coding performance, the content-

based representation of video data would allow other frmctionalities, such as improved eror-

robusüress and scalability. The proposed algorithm employs color and motion cues to seg-

ment the face and hands. First, a color segmentation algorithm is devised to locate skin-color

regions in each frame. Second, we note that sign language is characterizedby the motion of

the hands and the face. Based on this observation, the proposed face and hand segmentation

xv



methodology employs motion information to locate the moving skin-color regions in each

frame. To this end. a statistical change detection method is proposed based on the f'test and

block-based motion estimation. In addition to the face and hand segmentation methodology,

a face detection and temporal tracking method is also presented. This has applications in

lip-reading, where more coding resources are allocated to the face.

The performance of the skin-color segmentation algorithm is demonstrated by simula-

tions carried out on both still images and video sequences. The proposed change detection

method is tested on four video sequences. The simulation results demonstrate the effective-

ness of the proposed face and hand segmentation methodology, and the face detection and

tracking method.
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Chapter 1

Introduction

"The beginning is the most important part of the work."

- Plato, The RePublic, Book II,377B

This chapter provides an overall introduction to the thesis. Content-based representation

is reviewed, and the research objectives defined. The major contributions of the thesis are

listed, and an outline of the thesis is provided.

1



Chapter 1. Introduction

l.L Content Based Representation: An Overview

The text telephone is a commonly used device by deaf or hearing impaired individuals for

distant communication. However, text communication is susceptible to misunderstandings

and omissions [Hel00], and its speed is at least 10 times slower than that of sign language

[Hel97]. Moreover, sign language is the first language of many pre-lingually deaf individ-

uals, and its speed is comparable to that of normal speech UT99l. As a result, affordable

and effective video communication would be a boon to the deaf population. Unfortunately,

videoconferencing and videotelephony technology accessible to individuals of normal hear-

ing, are seldom suited to sign language communication. This puts deaf and hearing-impaired

people at a disadvantage, and creates obstacles to education,job opportunities, and social life

[Hel97].

Digital video communication is charactenzed.by the generation, manipulation, and trans-

mission of an enormous amount of data. Video sources usually generate more data than can

be transmitted over current low-cost communication channels. For example, the approxi-

mate bit-rate required to transmit a color video sequence at 30 frames per second (þs) with

a frame-size of 352 x 288 pixelsr andapixel resolution of 24bhts is 73 million bits per

second (bps). To get some idea of the significance of this rate, note that the current telephone

modem rate is 56 kbps. Transmitting one second of this color video sequence over a 56 kbps

modem would require 21.73 minutes (more if the telephone line is too noisy). A more ex-

pensive solution is to transmit the video sequence over an ISDN (integrated services digital

networþ line. The transmission time for one second of the sequence over a 128 kbps ISDN

line is 9.51 minutes. Due to the vast amount of data associated with video, compression is a

key requirement for its digital transmission. Based on current trends, the demand for video

communication will continue to outpace increases in channel capacity. Hence, the impor-

tance of video coding (also called video compression) is unlikely to diminish, in spite of the

promises of unlimited bandwidth [GGKV98].

Current video coding standards can be categonzedinto block-based2 (Section 2.2.I) and

content-based (Section 2.2.2) video coding. In block-based video coding, a video sequence

lThis is the common intermediate format (cIF) luminance image size. see Appendix A.
2Also known as waveform based video coding.

2



1.2. Sign L angu a ge Vi de o C ommunic ati on

is compressed without any regard to its semantical content. On the other hand, content-based

video coding identifies regions and semantical objects in a video sequence and compresses

those.

1.2 Sign Language Video Communication

Sign language video sequences have characteristics different from those of a typical head-

and-shoulder sequence. Therefore, block-based video coding strategies, the cornerstone of

the4.26l UT93l andlF^.263 tIT98l coding standards for video communication (i.e., video-

conferencing and videotelephony), are unsuitable for the transmission of sign language video

sequences over affordable low bit-rate channels [Sch98]. This is mainly due to the presence

of rapid hand and arm motion in sign language video, as well as the necessity of smooth

motion perception. Accordingly, sign language video will require content-based coding

strategies, as advocated in the MPEG-4 standard [Gro01], to achieve the image quality and

frame rate necessary for accurate perception [Sch98]. Using content-based coding, video

sequences are typically segmented into semantically meaningful objects whichmaybe inde-

pendentþ coded and transmitted. More resources are allocated to the perceptually important

objects. As well as improved coding efficiency, content-based representation enables other

functionalities, such as improved error-robustness, and scalability.

The language carrying components in sign language are movements and positions of the

hands, the eyes, the mouth, and the face [IT99, Sch98]. Therefore, the perceptually signifi-

cant objects in sign language video are the face (which includes the eyes and the mouth) and

the hands.

1.3 Research Objectives

The primary goal of this thesis is to devise a methodology for the segmentation of the face

and hands in sign language video sequences. The segmentation of the face and hands will

provide a content-based representation of sign language video for different content-based

functionalities.

In this thesis, we employ two cues to segment the face and the hands. The first cue is
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Chapter 1. Introduction

color. The human skin has a special color distribution that diffcrs significantly (although not

entirely) from those of the backpçround objects [CN99l. Color information is used toLocalize

skin-color regions in each frame.

As noted above, sign language is characterized by the motion of the hands, the eyes, the

mouth, and the face. Accordingly, the second cue that we employ is motion. A statistical

hypothesis test is employed to segment the video frames into "changed" and "unchanged"

regions with respect to the previous frame. Changed regions represent the moving and oc-

clusion regions, and unchanged regions represent the stationary backgrowrd. The moving

skin-color regions (i.e., the face and the hands) are then identified based on the color and

motion information.

Having segmented the face and the hands, it may sometimes be necessary to discriminate

between the two. This is required in applications such as lip-reading, where more coding

resources are allocated to the face. Therefore, the other objective of this thesis is to detect

the face in a video frame, and then to track it throughout the sequence.

The block diagram of the face and hand segmentation methodology is shown in Fig-

ure 1.1, and the block diagram of the face detection and tracking methodology is shown in

Figure 1.2. The flowcharts are intended to give the reader an overview of the scope covered

in this thesis. Basically, hand and face segmentation is the result of color segmentation and

change detection. The face ancl hand segmentation mask (F H S M) is then employed for the

purpose of face object detection and tracking. The skin-segmentation and change detection

methods presented in this thesis are self-contained and independent; each can be utilized as

a component of another algorithm, e.g., face recognition for skin-color segmentation and se-

curity surveillance for change detection. Therefore, besides sign language video sequences,

we have also tested our proposed methods on other video sequences and still images.

1.4 Contributions of the Thesis

The major contributions made in this thesis are:

4

o An analysis of the dichrornatic reflection model and its relation to skin-color
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Previous
Frame

Gurrent
Frame

Gurrent
Frame

Face and Hand
Segmentation Mask

Figure 1.1: Block diagram of the face and hand segmentation methodology.

o The development of a methodology for the segmentation of the face and hands in sign

language video sequences. To the best of our knowledge, the only other study on face

and hand segmentation for sign language video communication in the framework of

MpEG-4 is by Schumeyer [Sch98]. Unlike Schumeyer's approach, our face and hand

segmentation methodology is intended to work on a range of skin colors, lighting

conditions, and background complexities. Moreover, orn algorithm does not require a

separate face detection algorithm to generate a skin-color model. The following were

developed as part of the face and hand segmentation methodology:

- A new skin-color segmentation algorithm.

- A new change detection technique based on the -F' test and block-based motion

estimation.

o The development of a new methodology for face detection and tracking. As part of the

face detection and tracking methodology, the following techniques were developed:

5
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Face and Hand
Segmentation Mask

Face Detection

Face Tracking

Face Object
Location

Current
Frame

Face Object Location
in Current Frame

Figure 1.2: Block diagram of the face detection and tracking methodology.

- A new technique for face detection based on shape features.

- Two different face tracking techniques.

1.5 Outline of the Thesis

Chapter 2 presents background information on segmentation, video coding, and sign lan-

guage. In particular, we discuss the differences between block-based and content-based

video coding, and emphasize the significance of video communication for deaf and hearing-

impaired people.

Chapter 3 presents an introduction to color. We review the basics of light and color, and

explore certain aspects of the human visual system, such as eye anatomy, color perception,

and the opponent color model of chromatic vision. We also consider the trichromatic theory

of color mixture, and the dichromatic reflection model. The color spaces, CIE XyZ, yUV

6



1.5. Outline of the Thesis

YIQ, and YCbCr, are also reviewed.

Chapter 4 presents an introduction to motion in video. We discuss different camera

models, and then consider two-dimensional and three-dimensional motion models. 'We also

distinguish between two-dimensional motion and apparent motion'

Chapter 5 presents our skin-color segmentation algorithm. For skin-color segmentation,

we employ the YCbCr color space, and obtain training data by manually segmenting training

images into skin and non-skin classes. The skin class training pixels are modeled as a bi-

variate normal distribution in the CbCr plane. Image pixels are classified as skin or non-skin

based on their Mahalanobis distance. A segmentation threshold is derived for the classifier'

The performance of the algorithm is illustratedby simulations carried out on still images, and

on sign language video sequences. A literature survey of different skin-color segmentation

algorithms is also provided.

Chapter 6 discusses statistical change detection. A change detection technique based on

the ,¡r test and block-based motion estimation is proposed. Simulation results are presented

for four different video test sequences. Previous research pertaining to change detection is

also discussed.

Chapter 7 discusses the generation of the hand and face segmentation mask. The F H S M

is a binary map that indicates the face and hand regions in a frame. Techniques are also

introduced for the detection and tracking of the face, which may be required in applications

such as lip-reading.

Chapter 8 provides the overall conclusions of the thesis, and discusses some avenues for

future research.

7
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Chapter 2

Segmentation, Video Coding, and Sign

Language: An Overview

,,While the task of image segmentation hardly has a counterpart inhumanvisual experience,

it is a nontrivial task in digital image analysis'"

- Kenneth R. Castleman in Digital Image Processing, t996

This Chapter presents background information on segmentation, video coding, and sign

language. In Section 2.l,we define image andvideo segmentation, and discuss a general

scheme for segmentation algorithms. Video coding is discussed in Section2.2, the charac-

teristics of sign language video are discussed in Section2.3, and the chapter is summarized

in Section 2.4.
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Chapter 2. Segmentation, Video Coding, and Sign Language: An Overview

2.1 Segmentation

The decomposition of an image into non-overlapping parts is an effortless process for a
human being. Humans use numerous cues, such as color, motion, texture, and shape to

aid the segmentation process. These cues are then analyzed, and. matched against objects

stored in the memory. Unfortunately, the task of image or video segmentation is far from

effortless in digital image analysis. Autonomous segmentation is one of the most diffrcult

tasks inimageprocessing [G]V921. The state of the arthas still tobe improvedto leadto

robust segmentation algorithms able to deal with generic images and video sequences. Image

segmentation has been widely and actively studied for the last few decades, with applications

such as image understanding, robot vision and face recognition. Moreover, in recent years,

research activity in segmentation has intensified as a result of its applications being extended

towards image and video coding.

The goal of image segmentation is to partition animage into a set of non-overlapping re-

gions whose union is the entire image. The purpose is to decompose an image into parts that

are meaningful with respect to a particular application. For example, in2D object recogni-

tion, segmentation might be performed to separate a2D object from the background. Figure

2-I(a) shows a gray-level image of four coins, and Figure 2.1þ) shows its grayJevel his-

togram' One obvious way to extract the coins from the background is to select a threshold

that separates the two modes in the histogram. Figure 2.1(c) shows the result of segmenting

Figure 2.1(a) by using a threshold of 170. The segmented coins are shown in white (i.e.,

binary "1"), and.the background is shown in black (i.e., binary ,.0").

It is very difficult to define what constitutes a "meaningful" segmentation. However,

general segmentation procedures tend to obey the following rules [HS92]:

1' Regions of a segmented image should be uniform and homogeneous with respect to

some characteristics, such as grey-level or texture.

2. Region interiors should be simple and without many small holes.

3. Adjacent regions of a segmented image should have significantly different values with

respect to the characteristics on which they are uniform.

10
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Figure 2.1: Example of gray-level thresholding. (a) Original image, (b) the

histogram of the image, and (c) result of segmentation.

4. Boundaries of each segment should be simple, not ragged, and must be spatially accu-

rate.

Achieving all these desired properties is difficult because strictly uniform and homoge-

neous regions are typically full of small holes and have ragged edges. Also, insisting that

adjacent regions have large differences in values can cause regions to merge and boundaries

to be lost. V/hile the above propefties refer to still image segmentation, the temporal ex-

tension of segmentation is straightforward when referred to video sequences. In this case,

motion parameters are included among the characteristics that ars considered in the seg-

mentation process. The resulting video partition is required to show the same propefties of
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Chapter 2. Segmentation, Video Coding, and Sign Language: An Overview

uniformity and homogeneity that were required in the case of still images.

It is important to distinguish between regions and objects. A region is defined as a set of

tative criterion, such as

gray-levell, color, texture, motion, or a combination of those [Cas98]. The formal definition

of connectedness is as follows: between any two pixels in a connected set, there exists a

connected path wholly within the set, where a connected path is a path that always moves

between neighboring pixels [Cas96]. Thus in a connected set you can trace a connected

path between any two pixels without ever leaving the last. Meanwhile, our definition of
object is in accordance with the definition of the video object in MPEG-4 (Section 2.2.2),

i.e.,"a video object in a scene is an entity that auser is allowed to access (seek, browse) and

manipulate (cut and paste)" [Gro98]. Objects arc charactenzed,by their semantical meaning,

unlike regions. An object may be formed by the union of several regions.

Salembier and Marqués [SM99] have advoc ated. ageneral scheme for segmentation. The

scheme is the concatenation of three steps, namely simplification, feature extraction, and

decision. The steps are illustrated in Figure 2.2 and, summarized below.

o Simplification: Most often, the original data pertaining to an image or a video se-

quence contains information that is irrelevant for a given application. The data can

be simplif,ed by removing or filtering the irelevant information. The simplification

step controls the amount and nature of the information that is preserved. Furthermore,

the simplif,ed data should contain areas that are easier to segment. For example, sim-

plification can reduce the complexity of textured areas or remove small details. Note

that simplification should not modify the boundary information that is relevant for the

application.

o Feature extraction: Segmentation relies on specific features of the data. The selec-

tion of the feature space determines the type of homogeneity that is expected in the

final partition. Tn some applications, the pixel values correspond directly to the fea-

ture of interest (e.g. color segmentation), and in other applications, the feature has

to be estimated from the data. Note that, in some cases, feature estimation has to be

performed on a region of support which should be homogeneous in terms of the same

t2

lThe grayJevel is the luminance component of an image.



2.1. Segmentation

feature. As a result, a loop is sometimes introduced (the dashed line in Figure 2.2) n

the segmentation process so that the estimation depends on the segmentation results.

The final result is obtained through an iterative process'

o Decision: The feature space is analyzed to obtain a partition of the data. The decision

step decides on the position of the boundaries that form the partition in the temporal

(1D), spatial (2D), or spatio-temporal (3D) decision space. The boundaries separate

data areas that contain elements sharing the same characteristics in the selected feature

space.

Decision Space:
lD: Temporal
2D: Spatlal
3D: Spatio-temporal

I

I

I

lmage
Segmented

lmage

4-Ð> .l>Low-pass fllter
Medlan filter
Morphological filter
Wndowlng

Golor
Texture
Motlon
Depth
Frame Difference
Hlstogram
Rate/Dleto¡tion
Semantlc

Glaeslficatlon
Transltlon-Based
Homogenelty-Based

Homogenelty C¡iterlon
Optlmlzation Algorlthm

Figure 2.22 The major segmentation steps and the typical tools used.

Segmentation algorithms often use more than one feature. This can be achieved either

through the def,nition of a complex criterion combining several features, or through the use

of several segmentation steps that use different criteria. For example, the application of

various degrees of simplification allows the analysis to be performed at several levels of

resolution and, at each resolution level, a specific feature space may be used' The feature

space can be complex to define if the segrnentation process allows user interaction. In such

cases, a user can implicitly introduce semantic notions which might not be easily obtained

by any automatic analysis of the data. As a result, it is often not possible to classiff the

segmentation algorithms as a function of the feature space they use [SM99].

DecisionFeature
Extraction

Simplification
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2.1.1 Approaches to Still Image Segmentation

higher levei systems of symboiic representation and manipulation. It is generally the case

that the more flexible an image segmentation approach needs to be, the less accurate it be-

comes. Some coÍtmon approaches to image segmentation include:

o Gray-level thresholding.

o Clustering.

o Edge detection.

o Region growing.

o Region splitting and merging.

o Statistical classification.

Gray-level Thresholding

GrayJevel thresholding [NR79, Kr86, ctry89, HS92, P893, Jwg7, Ros99] is a popular

image segmentation technique. The simplest thresholding technique is to partition an image

histogram by using a single threshold (e.g., Figure 2.1). Segmentation is then accomplished

by scanning the image pixel by pixel and labeling each pixel as foreground or background,

depending on whether the gray-level of that pixel is greater or less than the threshold. This

technique is known as global thresholding, and its success depends entirely on how well

the histogram can be partitioned [GW92]. The counterpart of global thresholding is local

thresholding. In local thresholding, a threshold is selected based on some local property

(e.g., neighborhood average) of the pixel.

Clustering

Image segmentation methods based on clustering are also popular lPap92, HD94, TG97,

RT99, Tur01, Com02]. Clustering, in the context of image segmentation, refers to the clas-

sification of pixels into groups according to certain properties of the pixels [Tek95]. In im-

age segmentation, it is expected that feature vectors from regions with a similar appearance

I4



2.1. Segmentation

would form groups, known as clusters, in the feature space. If we consider the segmentation

of an image into K classes, then the segmentation label field, (S,LF), assumes one of the K

values at each pixel, i.e., S LF(n,a) : l,l : I, ..', K. The parameters r andy are the spatial

coordinates of the image.If the features are scalar, for example pixel intensities, clustering

can be considered as a method of determining the K - I thresholds that define the decision

boundaries in the lD feature space. V/ith .L-dimensional vector features, the segmentation

corresponds to partitioning the .L-dimensional feature space into K regions. A standard pro-

cedure for clustering is to assign each sample to the class of the nearest mean [Tek95]. In

the unsupervised mode, clustering can be achieved by an iterative procedure known as the

K-means algorithm [Rom84, Fuk90, KR90] since the means are initially unknown' A gener-

alizedversion of the K-means algorithm isthefuzzy K-means algorithm [Bez8l, BKKP99]'

Instead of classiffing the feature vectors as belonging to one class or another, in the fiazzy

K-means approach, the feature vectors possess a degtee of belongingness to each class. An

analysis of some work on clustering is given in [Fas99]'

Edge Detection

Edge detection [eated93, HSSB96,Fas97, KC97] is commonly employed for detecting dis-

continuities in gray-level images. An edge is the boundary between two regions in an image

with relatively distinct gray-level properties. An edge ímøge or an edge map is an image

in which the gray-levels reflect how strongly each pixel meets the requirements of an edge

pixel. This can also be displayed as a binary image showing the location, but not the mag-

nitude, of the edge pixels. An edge map usually shows the outline of each image, but the

outline seldom forms closed, connected boundaries required for image segmentation. Edge

linkingis the process of associating nearby edge pixels so as to create a closed, connected

boundary. Common edge detection techniques are the Roberts, Sobel, Prewitt, and Canny

edge operators [Cas96]. Figure 2.3 shows the binary edge map of Figure 2.1(a) using the

Sobel edge operator.
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Figure 2.3: Example of edge detection using the Sobel edge operator.

Region Growing

Region growing is a conceptually simple approach to image segmentation [gana9g, Tilgg,

GSH0I, FYEAOI, SGT02]. Segmented regions are formed by grouping together neighbor-

ing pixels with similar properties. Region growing techniques usually proceed as follows:

the image is partitioned into connected regions by grouping neighboring pixels of similar

intensþ levels. Adjacent regions are then merged under some criterion involving perhaps

homogeneity or sharpness of region boundaries. Region growing methods strongly depend

on the estimation of the measure of similarity between pixels and regions, as well as the rules

used to establish the level of pixel connectivity (e.g.,4- or 8- neighborhood connectivity).

The watershed transform [Cas96] is a popular region growing based image segmentation

algorithm.

Region Splitting and Merging

In region splitting and merging [OPR78, GW92], an image is initially subdivided into a set

of disjoint regions. The regions are then merged and/or split until each region satisfies some

condition indicating that it is homogeneous with respect to some criteria. For example, it is
possible to split an image into four quadrants. If the homogeneity condition is not satisfied

for a quadrant, then the quadrant is further subdivided into four smaller quadrants. It is
also possible to merge neighboring regions whose combined pixels satisfii the condition of
connectedness. The process is terminated when no further splitting or merging is possible.

l6



2.1. Segmentatiott

Statistical Classification

Statistical classification based image segmentation methods have also been studied [STB97].

Statistical classification is akin to pattern recognition. The first step in statistical classifica-

tion is to decide which properties of pixels (e.g., grayJevel, color) best distinguishes the pixel

types, and how to measure them. The classifier is then designed by establishing a mathemat-

ical basis for the classiflcation algorithm, and selecting the type of classifier structure to be

used. Once the basic decision rules of the classifier have been established, one must deter-

mine the particular threshold values that separate the classes. This is generally achieved by

training the classifier on a group of knownpixels. The training set is a collection of pixels

from each class that have been previously identif,ed by some accurate method (e.g., manual

segmentation). Pixels in the training set are then modeled, usually via maximum-likelihood

(ML) estimation [DHS01] or the expectation-maximizatíon (EM) algorithm [DLR77], and

the feature space is partitioned into regions that maximizethe accuracy of the classifier when

it operates on the training set. The Bayes classifier [DHS01] is commonly used to classify

the image pixels.

2.\.2 The Use of Motion in Video Segmentation

In video segmentation, motion information can be included among the criteria used in the

segmentation procoss. For further information on motion, the reader is referred to Chapter 4.

Spatial and motion information are usually combined to segment moving objects in video

sequences. Thus, motion segmentation is an integral part of video segmentation. Besides

video segmentation, motion segmentation also finds use in many other image sequence anal-

ysis problems, including improved optical flow estimation, 3D motion and structure estima-

tion in the presence of multiple moving objects, and higher-level description of the temporal

variation andlor the content of video imagery [Tek95]'

Tekalp [Tek95] classif,es motion segmentation into three categories: direct methods

(change detection), optical flow segmentation, and simultaneous estimation and segmenta-

tion. Our approach to motion segmentation is based on change detection, which is described

in Chapter 6. In change detection, a video frame is segmented into "changed" versus "un-

changed" regions with respect to the previous frame. The changed and unchanged regions
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are marked in a so-called change detection mask (CDM). Change detection is a popular

the motion characteristics of individual components in a scene. More sophisticated motion

segmentation algorithms need to address the following requirements:

o Estimation of the nrunber of motion components in a scene.

o Estimation of the motion characteristics of each component.

o Estimation of the spatial support of each component.

The proposal in [KCK+99] employs the C DM and performs spatio-temporal segmen-

tation of moving objects in a video sequence. To this end, regions for which a majority of
pixels are classified as changed are assigned to moving objects. In [Wan98], the watershed

transform is employed to spatially segment an image into homogeneous regions based on

pixel intensity. Adjacent regions with coherent motion are then merged to form a moving

object. The object is then tracked in subsequent frames of the sequence.

A semi-automatic video object segmentation approach was described in [TTE00]. As-

suming that the boundary of an object of interest is interactively marked on some key-frames,

the method finds the boundary of the object in all other frames automatically by tracking

the 2D mesh representation of the object in both forward and backward directions. Semi-

automatic segmentation is also exploited in [KJK+O1].

h [MN98b] and [MN99l, a 2D binary model of moving object is derived and tracked

throughout the sequence. The edge pixels of the binary model are detected by the Canny

edge operator. The main assumption of the approach is the existence of a dominant global

motion that can be assigned to the background. Individual objects that do not follow the

background motion indicate the presence of independently moving objects. A morphological

motion filter or a C D M is used to identifr such objects.

A video segmentation approach based on multiple features was presented in [CEK98]

and [Cas98]. The extraction of regions is based on a multidimensional analysis of several

image features by a spatially constrainedfu"zy /f-means algorithm. The features consid-

ered were position, motion, texture, and color. The local level of reliability of the features

is taken into account in order to adaptively weight the contribution of each feature in the
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segmentation process. In order to track the image regions in the sequence, an average fea-

ture vector for each region is evaluated. The correspondence among regions is assessed by

comparing their average feature vectors. Another video segmentation method based on mul-

tiple features was presented in tKSOl]. In this paper, the authors employed position, motion,

and color within a maximum a posteriori framework. Weights were assigned to each fea-

ture and then adjusted for every pixel based on a confidence measure of the feature. The

authors did not employ tracking to find correspondence among the regions in the sequence.

A comprehensive literature review on motion segmentation is provided in lzLDll.

2.2 Video Coding

Compression is a process intended to yield a compact digital representation of a signal. The

goal of video compression (also called video coding) is to reduce the bit-rate of a video se-

quence so that it is feasible to transmit the sequence in real-time over a given communication

channel. In addition to video communication, compression is also necessary for the storage

and retrieval of video data, where different storage media have different storage capacities

and access rates, thus demanding varying amounts of compression. Due to the wide range

of data rates and applications, different video coding algorithms have been developed. A

detailed discussion on compression is outside the scope of this thesis, however it is worth

summarizing the main attributes of video coding. For more information on video coding, the

reader is referred to texts such as [8K95, MPFL96, So197, ES98, GBL+98]'

Video coding can be categoizedinto lossless and /ossy compression [BK95]. Lossless

compression techniques seek to eliminate statistical redundancy in a video sequence by ex-

ploiting spatial correlation among neighboring pixels, and temporal correlation between con-

secutive frames [8598]. Adjacent pixels in the same video frame usually change smoothly

and aretherefore correlated. Temporal correlation refers to the faúthat consecutive frames

of a video sequence usually show the same physical scene, occupied by the same objects

thatmay have moved. Statistical redundancy can be removed without destroying any infor-

mation. That is, the original uncompressed data can be covered exactþ by various inverse

operations. Therefore, the reconstructed and the original video sequences are identical. Un-

fortunately, a video coding algorithm based solely on lossless compression will not achieve
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the large compression ratios required for video transmission.

As well as and

vantage ofthe subjective or perceptual redundancies inherent in a video sequence. For ex-

ample, the human visual system (I{VS) is more sensitive to changes in brightness than to

changes in color. Also, the IIVS is more sensitive to the low frequency components of an

image than to its high frequency components. Unlike statistical redundancy, the removal

of information based on the limitations of the IIVS is irreversible. The original video data

cannot be recovered following such removal. Therefore, lossy compression techniques in-

troduce some distortion in the reconstructed video sequence. It is however possible to con-

struct a lossy compression technique such that the difference between the original and the

reconstructed sequence is barely perceptible, and still provide the large compression ratios

required for video communication. Almost all video coding techniques in use today are

lossy.

The components of a video coding technique are determined to a large extent by the

source model that is adopted for modeling the video sequence. The video coder seeks to de-

scribe the contents of a video sequence by means of its source model. The source model may

make assumptions about the spatial and temporal correlation between pixels of a sequence.

It might also consider the shape and motion of objects or illumination effects. The basic

components of a video coding system are shown in Figure 2.42.Inthe encoder,the digitized.

video sequence is first described using the parameters of the source model. If a source model

of statistically independent pixels is employed, then the parameters of this source model

would be the luminance and chrominance amplitudes of each pixel. On the other hand, if the

model describes a scene as several objects, the parameters would be the shape, motion, and

texture ofthe individual objects. Next, the parameters of the source model arc qaantized into

a finite set of symbols. The quantization parameters depend on the desired trade-off between

the bit-rate and distortion. The quantized parameters of the souïce model are finally rnapped

into binary codewords using lossless coding techniques, which further exploit the statistics of
the qnantized parameters. The resulting bit-stream is then transmitted over a communication

channel (with some added noise) [PS94]. The decoder retrieves the quantized parameters of
the source model by reversing the binary encoding and quantization processes of the encoder.

20
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Finally, the decoded video frame is synthesized using the quantized parameters of the source

model.

Current video coding standards can be categorized tnto block-bøsed and content-based

video coding. In block-based video coding, a video sequence is compressed without any

regardto its semantical content. On the other hand, content-based video coding identifies

regions and semantical objects in a video sequence and compresses those.

Encoder

Gamera

!-

Source
Model

Quantlzation Model Parameter
Statlstics

Nolse
Pa¡amete¡s

Monltor

Decoder

Figure 2.42 Ovewiew of a video compression system.

2.2.1 Block-Based Video Coding

Inl992,the Moving Picture Experts Group (MPEG) completed the ISO/IEC3 MPEG-I video

coding standard and approvedthe MPEG-2 standard in1994 (see http://www.cselt.ilmpeg)'

These standards made interactive video on CD-ROM and digital television possible. The

Intemational Telecommunications Union-Telecommunications (ITU-T) otganizalion estab-

lished theH.26l standard in 1990 andE.263 ín1995,which are especially targeted to video-

phone communications. The ITU-T standards made videophone image sequence transmis-

sion possible at rates of approximately 64 kbps.

The video coding standards, H.26L,H.263,MPEG-1, and MPEG-2,atebased onmotion-

compensated hybrid codíng,which combines predictive coding with transform coding. This

3ISO is the International Organization for Standardization.IBC is the International Electronics Commrssion.
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coding technique subdivides cach image into fixed sized blocks of 8 x 8 or 16 x 16. Eaoh

block in frame k is q¿nthgqlzq4 uqlqg s block of the somc sizc at a disnlaccd nosition in the

previous frame k - 7. This is performed for all blocks of frame k. The resulting image

is called the predicted image. The 2D motion vectors for all blocks are transmitted by the

encoder to the decoder so that the decoder can compute the same predicted image. The en-

coder subtracts this predicted image from the original image, resulting tnthe prediction error

image.If the synthesis of a block using the predicted image is not sufficiently accurate, then

the encoder uses a transform coder (based on the discrete cosine transform) for transmitting

the prediction effor of this block to the decoder. The decoder adds the prediction effor to the

predicted image and thus synthesizes the decoded image. In addition to the luminance and

chrominance information encoded as transform coefficients of the prediction error, motion

vectors have to be transmitted.

The following is a list of the problems caused by the block-based nature of such coding

schemes.

e The semantic content of the frame is not taken into account; the partitioning of the

frames into blocks results in visible degradation (e.g., blockiness), specially when high

compression rates are desired.

o The motion models are applied to square blocks of pixels, which have little resem-

blance with the motion of objects in the scene.

o Unnatural motion arises when the limited bandwidth forces the frame rate to fall below

that required for smooth motion.

Hence, there is a need for new coding schemes that have improved coding efficiency and

produce acceptable quality video at very low bit-rates. In the next section, we will describe

content-based video coding, which recognizes the problems associated with block-based

video coding.

2.2.2 Content-Based Video Coding

To overcome the problems associated with block-based video coding, content-based video

coding schemes have been proposed, e.g., [SM95, AH95, LCL+97,To897,MS97, TAB97].
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2.2. Video Codittg

Content-based coding schemes segment a video frame into regions corresponding to different

semantic objects, and then compress those objects independently. The following is a list of

the functionalities enabled by content-based manipulation of video data [Cas98].

o Multiplex functionalities: The different semantic objects can be multþlexed sepa-

rately in the bitstream, allowing the receiver to manipulate each object independently.

In addition, the decoder can choose to download a subset of the objects (e'g., if there

is bandwidth shortage), and still obtain a semantically meaningful scene. This is com-

monly referred to as obiect scalabilíty-

o Improved coding performance: Different coding strategies can be implemented for

different objects in the scone. For example, different objects in a video sequence can

be compressed at different rates, depending on their signif,cance to the overall scene.

o Improved error-robustness: Parts of the bitstream corresponding to different objects

can be protected with different levels of error resilience, both at the source and at the

channel coding level, according to their relative relevance to the overall scene. This

will guarantee a higher level of subjective quahty in error-prone environments.

o Scalability: In additionto object scalability, the object-based structure ofthe bitstream

would allow two other types of scalability, namely temporal and spatial scalability.

The bitstream can be structured so as to allow the decoder to retrieve the same object

at different levels of spatial and/or temporal resolution'

o Content description: Access to the semantic constituents of a scene would allow the

description of the scene content in a much more efficient way. This will in turn allow

faster access and retrieval of the desired information'

In order to benefit from the different functionalities of content-based video coding, a

video frame needs to be decomposed into semantically meaningful objects. Therefore, inte-

gral to any content-based coding scheme is video segmentation.

MPEG-4 Standard

This section provides avery brief overview of the MPEG-4 video standard' InI993, MPEG

launched the MPEG-4 standard [Sik97, Gro98, Bra99, Gro01], approving version 1 in Octo-
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Chapter 2. Segmentation, Video Coding, and Sign Language: An Overview

ber 1998 and version 2 in December 1999. MPEG-4 is the first audio-visual representation

standard

havior. The MPEG-4 standarcl allows ¿ rnr-rch more flexible approach to video coding than its

predecessors (MPEG-I and MPEG-2). MPEG-4 is designed to address the requirements of
a new generation of highly interactive multimedia applications while supporting traditional

applications as well. The standard provides tools for object-based codinga of natural and

synthetic audio and video, as well as graphics.

MPEG-4 enables content-based interactivity with video objects by coding objects inde-

pendently using motion, texture, and shape. At the decoder, the objects are composed into a

scene and displayed. An MPEG-4 scene consists of several video objects (VOs). A VO cor-

responds to a particul ar 2D object in the scene. Each VO can be encoded in a scalable (multi-

layer) or a non-scalable form (single layer), depending on the application, represented by the

video object layer (VOL). The VOL provides support for scalable compression. A video

object can be encoded using spatial or temporal scalabiliry from coarse to fine resolution.

Depending on parameters such as bandwidth, computational poweç and user preferences,

the desired resolution can be made available to the decoder. A video object plane (VOp)

is a time sample of a VO. The VOPs can be either encoded independently of each other, or

dependently on each other by using motion compensation. A conventional video frame can

be represented by a single VOP with a rectangular shape. VOPs can be grouped together to

form group of video object planes (GOÐ. GOVs provide points in the bitstream where VOPs

are encoded independently ofeach other, and can thus provide random access points into the

bitstream. The standard does not prescribe a method for creating the VOs. Depending on the

application, VOs may be created in a variety of ways, such as spatio-temporal segmentation

of natural scenes, or from parametric descriptions used in computer graphics.

The basic structure of the MPEG-4 codec (i.e., coder-decoder) is shown in Figure 2.5.

The encoder, shown in Figure 2.5(b), is subject to MPEG-4 standardization. Methods used

to obtain the VOs are not standardized. Similarly, the encoder (Figure 2.5(a)) itself is not

standardized, as compliance with the standard is required only at the bitstream level.

A VOP can be utilized in several different ways. In the most common way, the VOp

contains encoded video data at a time sample of a VO. The encoded video data includes
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Figure 2.5: Structure of the MPEG-4 codec. (a) Decoder, and (b) encoder.
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motion parameters, shape information, and texture data. This information is then encodecl.

The VOPs can also be used to code a sprite. A sprite is a VO that is usually larger than

the displayed video, and persists over time. It can be modified slightly by changing its

brightness, or by warping it to take into account spatial deformation. A sprite is used to

fepresent large, more or less static areas, such as backgrounds.

Figure 2.6(a) shows a frame from the Akiyo sequence. The scene consists of a fore-

ground person and a stationary background. The frame is decomposed into a foreground

VOP (VOPr) and a background VOP (VOP2). The contents of the two VOPs are shown in

Figures 2.6(b) and (c).

(a) (b) (c)

Figure 2.6: Tbe concept of the video object plane. (a) original fr e from the

Akiyo sequence, (b) VOPr, and (c) VOP2.

In addition to video coding, MPEG-4 also provides tools for still image coding, mesh

animation, and face and body animation.

2.3 Sign Language

Sign language is a visual language used by deaf or hearing-impaired people to communicate.

A common device for distant communication between deaf individuals is the text telephone.

The text telephone is an assistive technology that allows people who are deaf or hard of hear-

ing to communicate dilectly over a telephone line using standard telephone equipment. This

technology is also useful for individuals who have difficulty communicating using a standard

telephone due to speech impairment, Unfortunately, the speed of text conversation is lim-

ited by a person's typing ability, and is at least 10 times slower than sign language tHel97l.

Moteover, sign language is the first language of many pre-lingually deaf individuals, and
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2.3. SignLanguage

its speed is comparable to that of normal speech [IT99]. Therefore, affordable video com-

munication would greatly benefit the deaf community. In this section, we will summarize

the characteristics of sign language and the qualrty requirements for effective sign language

video communication. For further information, the reader is referred to [Hel97] and the

international telecommunications union (ITU) supplement H. Supp- 1 UT99l.

2.3.1 Characteristics of Sign Language

Sign language has been in existence in some form for thousands of years [Inc01]. Contrary

to popular beliet there is no single universal sign language. For example, Australian sign

language or Auslan, is the sign language used by the Australian deaf community, and BSL,

or British sign language, is one used by the British deaf community. Most sign languages

are linguistically complex and sophisticated, with their orwn graÍrmar and lexicon [SSW99].

Sign language uses distinct movements called signs in place of spoken words and sentences.

Although some signs are iconic (i.e., based on natural gesture), most signs are arbitrary (i.e.,

have no links between the sign and its referent). The signs are based on movements and

positions of the hands. Facial expressions, similar to vocal intonation in spoken language,

and body language, are also signif,cant.

Sign language is often supplemented by lip-reading and finger-spelling. Lip-reading is a

method by which deaf people read the speech of others from the movements of the lips and

mouth. On the other hand, finger-spelling allows the spelling of words via different hand-

arrangements representing the letters of the alphabet. Words that are f,nger-spelt do not have

a sign (e.g., names of people and places). Finger-spelling presents a considerable challenge

for videophone communication, because the finger movements are extremely rapid, and in

some cases are recorded in one frame only. Figure 2.7 depicts three frames of the lrene

sequence, depicting the finger-spelling of the letter "k". Eye blinks are also typical gram-

matical components of sign language, and are used as sentence delimiters. The blinks are

rapid, and in many cases are recorded in one or two frames only'
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(b) (c)

Figure 2.7: Tltree consecutive fi'ames of the lrene sequence showing the spelling

of the letter "k"

2.3.2 Sign Language Video

Most videophone research conducted to date has concentrated on head-and-shoulder video

sequences lcN94, EJ95, Itog6, Zhagg, cNgg, MW00a, EV/G001. Sign language video se_

quences, however, have characteristics different from those of a typical head-and-shoulder

sequence. While sign language video shares many leal-time constraints with videoconfer-

encing, thele are additional challenges inherent in the transmission of sign language video.

These challenges include the presence of increased motion and the necessity of smooth mo-

tion perception. A significant difference in arm position or shape would mean that consec-

utive video frames in the sequence are less alike. This would rcsult in less compression (or

a deterioration in video quality if codcd at the s e compression ¡ate) since t"he consecutive

fi'ames are less correlated. Sign language video is characterizedby the motion of the head,

eyes, mouth, and the rapid motion of the arms and hands. Generally there is no global motion

(e.g., ca ra panning, zooming, etc.) in sign language video.

The quality requirements of sign language video for distant communication have been

studied by Hellström [Hel97, Hel00]. Hellström observed that for accurate comprehension,

the frame rate of sign language video should be at least 20 frames per second (fps) at CIF

resolution. As well as video, sign language communication systems are also required to pro-

cess and transmit text and audio information. People who have impaired hearing, but are

not completely deaf, sometimes use voice as well as sign language to communicate.s Ac-

cordingly, the transmission of sign language video over low-bit ¡ate channels would require

(a)
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signifi cant compression.

In his study, Schumeyer [SHB97, 5898, Sch98] compared the coding performance be-

tween two QCIF (see Appendix A) test sequences: Akiyo, a head-and-shoulder sequence,

and Silent, a sign-language sequence using American sign language. Schumeyer's observed

that the Silent sequence is not as compressible as the Akiyo sequence utilizing the H.263

coder. For a fixed frame rate and quantizer, the Silent sequence had lower peak signal-to-

noise ratio (PSNR) and higher bit-rate. Alternatively, for a fixed bit-rate, the Silent sequence

had lower PSNR and lower frame rate. Schumeyer concluded that for transmission over

low bit-rate channels, sign language video would require content-based coding strategies to

achieve the necessary image quality and frame rate for accurate perception. In sign language

video, the hands and face are perceptually important, while other regions are less important

UT99, Sch98l. Therefore, to enable content-based manipulation of sign language video, the

face and the hands must be extracted from the rest of the frame. Figure 2.8(a) shows frame

22I from the Silent sequence. The objects of interest, namely the face and hand objects,

are indicated in Figure 2.8(b). Note that parts of the hair and neck may also be included

in the face object. Details of the video test sequences used in this thesis are provided in

Appendix B.

(a) (b)

Figure 2.8: The objects of interest. (a) Frame 22I of the Silent sequence, and

(b) the objects ofinterest,

2.4 Summary

In this chapter, we reviewed and discussed segmentation, video coding, and the different

characteristics of sign language. The following list summarizes the main points in this chap-
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ter

regions whrose union is the entire image. In the case of video segmentation, motion

information can be employed in the segmentation process. A region is defined as a

set of pixels that is homogeneous with respect to a given quantitative criterion, while

objects are characterizedby their semantical meaning.

o The goal of video coding is to reduce the bit-rate of a video sequence so that it is
feasible to transmit the sequence in real-time over a given communication channel.

Compression can be characterized into lossless and lossy compression. Almost all

video coding techniques in use today are lossy.

o Block-based video coding schemes suffer from blockiness and unnatural motion. To

overcome these problems, content-based coding schemes have been proposed. Content-

based coding schemes segment a video frame into different semantic objects, and then

compress these objects independently.

o MPEG approved version 1 of the MPEG-4 standard in October 1998 and version 2 in

December 1999. MPEG-4 is the flrst audio-visual representation standard to model a

scene as a composition of objects with specific characteristics and behavior.

o Sign language is a visual language used by deaf or hearing-impaired people to com-

municate. The challenges inherent in the transmission of sign language video include

the presence of increased motion and the necessity of smooth motion perception.

o For transmission over low bit-rate channels, sign language video would require content-

based coding strategies to achieve the image quality and frame rate required for accu-

rate perception. In sign language video, the face and hands are perceptually important,

and must be segmented to enable a meaningful content-based representation of the

sequence.
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Color

"Indeed rays, properly expressed, are not colored."

- Sir Isaac Newton

We employ color as a cue to segment the face and the hands. A video signal is a sequence of

two dimensional frames projected from a three dimensional scene onto the image plane of a

camera. The color at a point in a frame records the emitted or reflected light at a particular

point in the dynamic 3D scene. In this chapter, we review the basics of light and color

(Section 3.1), and the human visual system (Section 3.2). The trichromatic theory of color

mixture is discussed in Section 3.3, and the dichromatic reflection model is discussed in

Section 3.4. Some commonly employed color spaces are reviewed in Section 3.5, and the

chapter is summarizedin Section 3.6.

31



Chapter 3. Color

3.L Light and Color

Color is the perceptual result of light in the visible spectrum, with wavelengths in the region

of 380nmto780nmtNH95l. Theradiantintensity of lightreferstoitsradiantpower(flux)

in a particular, specified direction. Formally, radiant intensity is the rate at which energy is

transferred, per unit solid angle, and is measured in watts per steradian (Wsr-l). Radiant

intensity has a large extent, but imaging systems use pixels with a small area. Thus, it is not

appropriate to use radiant intensity as a metric for image data. A more suitable quantity is

radiance, defined as radiant intensity per unit projected area [Poy95b]. Radiance is measured

in waffs per steradian per meter squared.

The color of light depends on its wavelength composition. For example, light that has

its energy concentrated near 700 nm appears red, and light that has equal energy in the

entire visible spectrum appears white. In general, tight of a single wavelength (or narrow

bandwidth) is referred to as a spectral color. On the other hand, white light is referred to as

achromatic.

There are two types of light sources: illuminating sources, which emit electromagnetic

waves, and reflecting sources, which reflect incident waves. Examples of illuminating light

sources are the sun, and television (TV) sets. The perceived color of an illuminating light

source depends on the range of wavelengths emitted by the source. Illuminating light follows

an additive rule, that is the perceived color of several mixed illuminating sources depends on

the sum of the spectra of all light sources. For example, white color is created by combining

red, green, and blue lights in appropriate proportions.

As already mentioned, reflecting light sources are those that reflect an incident light,

which could itself be reflected. When light hits an object, the energy in a certain wavelength

is absorbed, while the rest is reflected. The color of reflected light depends on the spectral

content of the incident light and the wavelengths that are absorbed. The perceived color

of several mixed reflecting light sources depends on the unabsorbed wavelength range, i.e.,

reflecting light sources follow a subtractive rule. For example, if the incident light is white,

a dye that absorbs the wavelength near 400 nm (blue) would appear yellow. This is further

discussed in Section 3.4.

32



3.2. The Human Visual System

3.2 The Human Visual System

In this section, we will review the different attributes of the human visual system. The

anatomy of the eye, color perception, and the opponent-color model are covered.

3.2.1 Anatomy of the Eye

The human eye, shown in Figure 3.11, is a complex anatomical device. The eye is essentially

an opaque eyeball filled with a water-like fluid. In the front of the eyeball is a transparent

opening known as the cornea. The cornea has the dual purpose of protecting the eye and

refracting light as it enters the eye. After passing through the cornea, a portion of the light

passes through an opening known as the pupil. The diameter of the pupil is controlled by the

iris. The iris functions like the aperture of a camera, enlarging in dim light and contracting

in bright light. Light that passes through the pupil opening enters the lens. The lens is made

of a fibrous, jelly-like material with a refractive index of I.42 to 7.47 [V/S82]. The shape of

the lens changes to flne-tune vision, a process known as accommodation.

Optic
Nerve

Conjunctiva

Cor nea

Figure 3.1: The human eye.

The inner surface of the eye is known as the retina. The retina consists of receptors

sensitive to light called photoreceplors. The photoreceptors contain chemical pigments that

absorb light and initiate a neural response. There are two types of photoreceptors, rods and

cones. Rods are responsible for low light vision, while cones are responsible for details and

Lens

Sclera

I From the National Eye Institute, http://www. nei'nih. gov.
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color under normal light conditions (e.g., daylight). The visual information from the retina

^-l ,.-l^-^¿^-li-- ^ ----,-- ',,, rtAnC unüersiâi]ciiirg OcCUi'S iit ihe vrsuai cortex

3.2.2 Color Perception

In the previous section, we noted that the retina of the human eye contains photoreceptors

called cones that are responsible for color vision. There are three types of cones that have

overlapping pass-bands in the visible spectrum, with peaks at blue (near 445 nm), green (near

535 nm), and red (near 570 nm). Each type of cone integrates the energy in the incident light

at various wavelengths in proportion to their sensitivity to light to that wavelength. The

three resulting number are primarily responsible for color sensation. This is the bases for the

trichromatic theory of color vision [WS82], first described by Thomas Young [You02]. The

theory states that the color of light entering the eye can be specified by only three numbers,

rather than a complete function of wavelengths over the visible spectrum.

Color sensation is described by luminance and chrominanc¿. Luminance is proportional

to the light energy emitted per unit projected area in the visible band, and is closely related to

the perception of brightness. Moreover, the same amount of light energy produces different

sensations of brightness at different wavelengths. This phenomenon is characterized by the

relative luminous fficiency function, oo}).The eye is most sensitive to green, less sensitive

to red, and least sensitive to blue light. The luminance (denoted by Y) of any given spectral

distribution C(À) is given by:

Y:k,n c(À)aoQ)dÀ, (3.1)

where le* is a constant. Luminance is measured in candelas per meter squared (cdm 2).

However, luminance is often normalized to 1 or 100 units with respect to the luminance of

a specified or implied white reference. For example, a studio broadcast monitor has a white

reference whose luminance is about 100 cdm-2, andY : 1 refers to this value [Poy95b].

Human vision has a nonlinear perceptual response to luminance, e.g., a source having only

18%o of a reference luminance appears about half as bright. The perceptual response to lumi-

nance is called lightness (denoted by L*), and is defined by the Commission Internationale
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de l'Eclairage (CIE) as [MPFL96]:

L

J

100

{<

r16(YlY")å - 16,

eo3 3(Y lh),
ifYlY" > 0.008856

otherwise
(3.2)

where Y, is the white reference luminance. The relationship between lightness and lumi-

nance is plotted in Figure 3.2.
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Relative luminance (Y/Yn)

Figure 3.2: The relationship between perceived brightness (i.e., lightness) and

luminance.

Chrominance is related to the perception of color hue and saturation. Hue describes the

color tone, and depends on the peak wavelength of the light. On the other hand, saturation

specifies how pure the color is, and depends on the bandwidth of the light spectrum. Figure

3.32 shows a perceptual representation of the color space. Brightness varies along the vertical

space, hue varies along the circumference, and saturation varies along the radial distance. For

a fixed brightness, the symbols Ë, G, and B show the relative locations of red, green, and

blue spectral colors, respectively.

2Adapted fi'om Uai89l, Figure 3.10.

35



Chapter 3, Color

Hue

G

White

Black

R

Line of Grays

Pure (Spectral)
Colors

Saturation

Brightness

Figure 3.3: Perceptual representation of the color space.

3.2.3 The Opponent-Color Model of Chromatic Vision

A secondary stage in the human visual system converts the three color values obtained by

the cones into values that are proportional to luminance and chrominance. This is known as

the opponent-color model of chromatic vision [NH95, MPFL96]. The opponent-color model

hypothesizes the interconnectivity represented in Figure 3.43. The large numbers of intercon-

nections in the visual system are modeled as simple functional blocks with two basic types of

synaptic action, excitation (indicated by the add sign) and inhibition (indicated by the minus

sign). According to the opponent-color model, the light absorbed by the three types of cones

first undergoes a logarithmic transformation. Then, by sums and differences, three opponent

36
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systems are developed, blue-yellow, red-green, and black-white. The summation of red and

green provide the luminance channel and the other two are chrominance channels.

Perceived Blue-YellowRed-Green
Opponent

Red
Absorbing

Cones

Bri

Green
Absorbing

Gones

ent

+

Blue
AbsorbinE

Cones

+

Figure 3.4: The opponent color model.

3.3 The Trichromatic Theory of Color Mixture

The trichromacy theory of color mixture is the counterpart of the trichromacy of vision. The

theory was first demonstrated by Maxwell in 1855 [NH95], and states that light of any color

can be synthesized by an appropriate mixture of three properly chosen primary colors. Let

C¿, ,i : 1,2,3 represent the colors of the three primary color sources, and C a given color.

Then the theory can be stated as: 
ir

C :\TrCr, (3.3)

t:l

where the 7¿'s are the amounts of the three primary colors required to match color C. The

4 's are called the tristimulus values. In general, some of the tristimulus values can be

negative. The most popular primary set for illuminating lights is the RGB primrtry. The CIE
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RGB primarv svstem consists of colors atlO0 nm (,R), 546.1 nm (G), and 435.8 nm (B)

lwozoll.
For a given primary set, the tristimulus values for any color can be evaluated by determin-

ing the color matching functions, m¿(À), for primary colors Co, ,i : r,z,J. These functions

describe the tristimulus values of spectral colors with unit intensity. The tristimulus values

for any color with spectrum C(À) is deterrnined by:

Ti CQ)m¿(À)dÀ, i,:1,2,3 (3.4)

By convention, tristimulus values are expressed in normalized form for a reference white

color (equal energy in all wavelengths) with unit energy.

The tristimulus representation described above mixes the luminance and chrominance

attributes of color. The chrominance information (i.e., hue and saturation) of light can be

measured by employing normalized quantities called chromaticity coordinates, defined as:

T"
ci : 

T\ +É +,h , 
'i : 7,2,3. (3.5)

Note that Ðl:r"o: 1, therefore two chromaticity coordinates are sufficient to specify the

chrominance of a color.

3.4 The Dichromatic Reflection Model

The light reflected from an object L(rþ, 
^) 

is determined by its reflectance and the light it is

exposed with (i.e., the incident light). The reflected light is a function of À, and the photo-

metric anglesT/, including the viewing angle, the phase angle, and the illumination direction

angle. For dielectric non-homogeneous materials this is often modeled by the dichromatic

reflection model, which described the reflected light L(rþ, 
^) 

as an additive mixture of the

light trs reflected atthe material's surface (interface or surface reflection) and the ligbt Lp

reflected from the matedal's body (botly, diffuse, or matt reflection) [SAGO1]:

L(rþ, 
^) 

: ms(tþ)Ls(À) + mp(þ)LsQ), (3.6)

where 
^s(rþ) 

andmB(þ) are geometrical scaling factors for the surface and body reflections,

respectively. For materials with a high oil or water content, the reflected light at the surface
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has approximately the same spectral power distribution as the light that it is exposed with,

i.e., it has the same color as the illuminant'

The light that is not reflected at the surface penetrates into the material body where it is

scattered and selectively absorbed at wavelengths that are characteristic of the material. A

fraction of this light arrives back at the surface and exits the material. The body reflection

provides the characteristic color of the material'

The reflected lights, Ls and Lp, from the surface and the body, are a product of the

incident light spectrum E and the spectral surface reflectance ps and body reflectance ps of

the material, respectively [SAGO 1] :

ts(À) : E(À)ps(À), (3.7)

and

Ln(Ð: Ð(À)p6(À) (3.8)

A non-homogeneous dielectric material, depicting the photometric angles and reflection

components, is shown in Figure 3.54.

lncident
Local

Surface
NormalE

Exiting Surface Reflectance, La

Viewing Angle
Exiting Body Beflectance, L"

lllumination Direction
Angle

Phase Angle
lnterface

Material Body

Colorant

Figure 3.5: Photometric angles and reflection components from a non-

homogeneous material.

4Adapted fl'om ISAGO1]
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3.5 Color Spaces

generally accepted way [GW92]. Most color spaces are oriented either towards hardware

(e.g., monitors and printers) or towards applications where color manipulation is a goal (e.g.,

color graphics for animation). In the following sections we will review four commonly

employed color spaces. A more comprehensive treatment of color science and color spaces

is given in [Poy96].

3.5.1 CIE){YZ Color Space

To facilitate cooperation among scientists, CIE has defined a standard observer andtheXYZ

primar¡ in which the Y tristimulus value directly measures luminance, normalized to equal

energy white. The tristimulus values and the color matching functions in the CIE XYZ

primary are non-negative (Figure 3.6), which is a very desirable feature. The problem with

the CIE XYZ primary is that the X, Y, and Z colors are not realizable by actual color

stimuli. Therefore, the CIE XYZ primary is not used directly for color production, rather it

is employed to define other primaries and for the numerical specification of colors [WOZ01].

Following from (3.5), the chromaticity coordinates for CIE XYZ are:

X

and

X+Y+2, (3.e)

(3.10)

A color can be specifled by the two chromaticity coordinates r, g and luminance. Figure 3.7

shows the chromaticity diagram for this system.

RGB values in a particular set of primaries can be transformcd to and from CIE XYZ

by a three-by-three matrix transform. To transform from XYZ to ITU-R recommenda-

tion 8T.709-4 RGB5 (with D65 white point), the following matrix transform is employed

5The chromaticity coordinates for the RGB primaries and the D65 white point are specified in ITU-R rec-

ommendation BT.7 09 - 4 [IR00].
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Figure 3.6: Color matching functions r(À), y(À), and z(À) of the CIE 1931

standard colorimetric system.

IPoy95a]

R

G

B

X

Y

Z

3.240 -1537 -0.499

-0.969 1.876 0.042

0.056 -0.204 1.057

(3.11)

(3.r2)

The range for valid R, G, B values is [0,1]. Note, the above matrix has negative coeffi-

cients. Consequently, some XYZ colors may be transformed to RGB values that are negative

or greater than one. This means that not all visible colors can be produced using the RGB

system. The inverse transform is:

X

Y

Z

0.4r2

0.213

0.019

0.358

0.715

0.1 19

0.180

0.072

0.950

R

G

B

3.5.2 YUV Color Space

It is often desirable to define color in terms of its luminance and chrominance components.

This will enable a more efficient processing and transmission of color signals. Various three-

component color spaces have been developed, in which one component reflects the lumi-
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Figure 3.7: Chromaticity diagram for the CIEXyZ color space

nance and the other two collectively characteúze hue and saturation. YUV is one such color

space.

The YUV color space is used in the (Phase Alternation by Line) TV system. The

PAL system is used mainly in western Europe, most of Asia (including Australia), and the

Middle East. The YUV space is related ro rhe pAr RGB primary values by [NH95]:

Y

U

V

R'

G'

Bt

(3. l3)

(3.r4)

and

R'

G'

B,

1.000 0.000 r I40

1,000 -0.395 -0.581

1.000 2.032 0.001

Y

U

V

where R' ,G', Bt arenormalized gamma-coffected values, so that (R' ,G' , B') : (1, 1, 1) cor-

responds to the reference white defined in the PAL system. Gamma correction is performed

because most display devices suffer from a non-linear relationship between the input voltage

signals and the displayed color intensity,6

470
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3.5. ColorSpaces

Since Y is derived from gamma-coffected H,G',8'values, it is referredto as luma

[poy01]. However, in common with most literature on video compression and segmentation,

we will use the term luminance instead of luma. The two chrominance components, U and

V, areproportional to color differences, B -Y and R -Y, scaled to have adesired range.

3.5.3 YIQ Color Space

The NTSC (National Television Standards Committee) TV system (used mainly in North

America and Japan) uses the YIQ color space, where the 1 and Q components are the rotated

versions (by 33') of the (I and I/ components. As a result of the rotation, the 1 component

corresponds to colors in the orange-to-cyan range, and the Q component corresponds to

colors in the green-to-purple. The human visual system is less sensitive to changes in the

green-to-purple range than it is to changes in the yellow-to-cyan range. Therefore, the Q

component can be transmitted with less bandwidth than the 1 component [V/O201]. The

YIQ values are related to the NTSC RGB values by:

(3.1s)

and

Y

I
a

0.299

0.596

0.272

0.587

-0.275

-0.523

0.114

-0.327

-0.311

R,

G'

B,

0.956

-0.277

-1.108

0.620

-0.647

1.700

Y

I
a

(3.16)

In the YIQ color space, tan-t(Qll) approximates the hue, and

saturation.

3.5.4 YCbCr Color Space

Due to an increasing demand for digital approaches in image and video processing, the

ITU-R 8T.601 tIR98l recommendation defined the YCbCr color space. The Y, Cb, and

Cr components are scaled and shifted versions of the analog Y , U, and V components,

subject to approximately a 0.5-power function. This is comparable to the l/3-power function defined by -L*

in (3.2).

12 + Q2lY reflects the
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Chapter 3. Color

respectively, where the scaling and shifting operation results in the components having a

. range oL(O,255). Assuming that the RGB (Red-Green, Blue) values are in the rangeoÊO to

255,the YCbCr r¡alues can be derived from the RGB values by:

Y

Cb

Cr

The inverse relation is:

R¿

Ga

B¿

0.257

-0.148

0.439

0.504

-0.297

-0.368

16

128

r28

(3.n)

(3.18)

7.764

7.t64

1.764

0.0

-0.392

2.0t7

In the above relations, Ra:255R', Gd,:255Gt, B¿:255ft arcthe digital equivalents

of the normalized, gamma-corrected RGB primaries. In the YCbCr color space, Y reflects

the luminance (actually luma) and is scaled to a range of 16 to 235. This places black at

level 16 and white at level 235. In doing so, it reserves the extremes of the range for signal

processing footroom and headroom. The chrominance components, Cb and Cr, are scaled

versions of color differences B - Y and ,R - Y, respectively. Cb and Cr have a range of 16

to 240, inclusive.

In Chapter 5, we show that the YCbCr color space provides an effective use of chromi-

nance information for modeling the human skin-color. This, coupled with the fact that the

YCbCr color space is employed in digital video (and therefore digital video coding) was the

main motivation for choosing this color space in this thesis.

3.6 Summary

The first cue that we employ to segment the face and the hands in sign language video

sequences is color. In this chapter, we reviewed the basics of light and color, the human

visual system, the trichromatic theory of color mixture, and the dichromatic reflection model.

The CIE XYZ, YUY YIQ, and YCbCr color spaces were also reviewed. We summarize the

important points below :
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3.6. Summary

o Color is the perceptual result of light in the visible spectrum, with wavelengths in the

region of 380 nm to 780 nm. The color of light depends on its wavelength composition'

o Any color can be created by mixing three primary colors. This is know as the trichro-

macy theory of color mixture. The most coÍìmon primary set includes red, green, and

blue colors.

o The human eye perceives color by photoreceptors (cones) in the retina that are sensitive

to red, green, and blue wavelengths. The color sensation can be described by three at-

tributes, namely luminance (i.e., brightness), hue (color tone), and saturation (purity).

The eye is most sensitive to luminance, followed by hue, and then to saturation.

o A secondary stage in the human visual system converts the three color values obtained

by the cones into values that are proportional to luminance and chrominance. This is

known as the opponent-color model of chromatic vision'

o Color can be specified by three numbers. These numbers either correspond to the

contributions of the three primary colors (i.e., tristimulus values), or a luminance and

two chrominance values.

o The dichromatic reflection model describes reflected light as an additive mixture of the

light reflected from the material's surface, and the light reflected from the material's

body.

o CIE has defined a standard observer and the XYZ primary color space. The ts tris-

timulus value directly measures luminance, and is normalized to equal energy white'

The tristimulus values and the color matching functions in the CIE XYZ primary ate

non-negative.

o The YUV color space is used in the PAL TV system, while the YIQ color space is used

in the NTSC TV system.

o The YCbCr color space is defined in the ITU-R 8T.601 recommendation. In this

thesis, we employ the YCbCr color space for skin-color segmentation. The YCbCr

color space is considered since it is employed in digital video and is effective for

modeling the human skin-color.
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Chapter 4

Motion

"Never mistake motionfor action'"

- Ernest Hemingway

Motion is the second cue that we employ to segment the face and the hands. In this chapter,

we summarize the main attributes of motion. In order to relate changes in the real world

to temporal changes in a video sequence, we need parametric models to describe the real

world and the image generation process. Using the parametric models and their estimated

parameters, we can reconstruct a model that is an approximation of the real world.

In the following sections, we describe the camera model (Section 4.1), three-dimensional

motion (Section 4.2.7), and two-dimensional motion (Section 4.2.2). The scene model is

discussed in Section 4.3, and we distinguish between 2D motion and apparent motion in

Section 4.4.The chapter is summarizedin Section 4.5.
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Chapter 4. Motion

4.1 Camera Models

To understand how vision can be modeled computationally and replicated on a computer, we

need to understand the image acquisition process. The role of the camera is analogous to that

of the eye (Section 3.2.7). The camera model describes the projection of real objects onto

the imaging plane of the camera.

The pin-hole camera is a widely used approximation of the camera function, shown in

Figure 4.1. In Figure 4.7, F denotes thefocal length, and C thefocal center. The projected

position p of a 3D point P is the intersection of the line connecting P and C with the imaging

plane. The image position is reversed from its true 3D position, since the imaging plane is

behind the focal center. Usually, reversed image positions are avoided by placing the image

plane and the object on the same side of the focal center. This scenario is shown in Figure 4.2.

Z
Y

X

Y

P
a

ì

la Z

/
C

F
v

x

lmage Plane

Figure 4.1: Perspective projection by a pin-hole camera. The image plane is

behind the focal center.

p
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Figure 4.2: Perspective projection by a pin-hole camera. The image plane and

the object are on the same side of the focal center'

It is assumed (cf. Figure 4.2) thatthe origin of the 3D world coordinate is located at the

focal center, its XY-plane is parallel to the imaging plane, and the scene coordinate (X,Y, Z)

follows the right-hand rule, with the positive direction of the Z-axis being in the imaging

direction tWOZQll. Also, it is assumed that the imaging plane uses the same distance unit

as the 3D coordinate. From Figure 4.2, wehave:

or

rX
FZ
E:Y
FZ

r:F+
Ya:rz

(4.r)

(4.2)

The relation @.2) is known as perspective proiection. Note that there is an inverse rela-

tion between the projected r andgr values and Z . Therefore, the image of an object is smaller

if it is farther away from the camera.
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Chapter 4. Motion

The other type of projection is the orthographic or parallel projection. Orthographic

assumed that all the rays from the 3D object to the irnage plane travel in parallel [Tek95].

Provided that the image plane is parallel to the XY plane of the world coordinate system,

orthographic projection can be described in Cartesian coordinates as:

tr: X, a:Y. (4.3)

The distance of the object from the camera does not affect the image plane intensity

distribution in orthographic projection. That is, the object will always yield the same image

no matter how far it is from the camera. Orthographic projection provides a reasonable

approximation to the actual image formation process if the distance between the objects and

the camera is large compared to the depth of the object [MN98b]. The relation (4.3) is much

simpler than (4.2) and greatly simplifies 3D and 2D transformation.

P
.a2t

XY)-

.tr' ....

.fi'

x

lmage Plane

Figure 4.3: Orthographic projection as an approximation of a pinhole camera.

Having discussed the camera model, it must be pointed out that the pin-hole camera and

its perspective projection are only an approximation of real cameras. For example, it does

not consider misalignment of the camera axis and the image center, the lowpass filter effect
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4.2. MotionModels

of the f,nite size aperture of a real lens, the finite exposure time, and other distortions of the

lens [V/O201].

4.2 Motion Models

This section introduces the motion models used in describing the assumptions that we make

about the real world. We will look at both 3D motion and2D motion models.

4.2.1 Three-DimensionalMotion

The 3D motion of a rigid object can be described in terms of a translation vector T :

(T,,Tu,T,) anda rotation matrix [R]. The translation vector T describes a displacement of a

point from P to P/ by T*T,,T, in the direction of the coordinate axes X, Y, Z, respectively:

p,:p-|T. Ø.4)

Equation (4.4) holds for all points of a translated object.

The rotation matrix [R] describes the rotation of the points of an object around the origin

of the 3D space, i.e.,

[R] : [R"] .[Rr] . [R,]. (4.s)

Equation (4.5) rotates a point in 3D space around the axes X,Y , and Z in this order. The

rotation matrix is computed from the rotation matrices that rotate a point just around one

axis. The individual rotation matrices are:

lR,l :

[R"] :

10
0 cos /,
0 sin /,

cos @,

0

-sin þ,

cos $"

sinþ,

0

0

sin$*

ó*cos

sin @,0

óocos

10

,

I

(4.6)

(4.1)

(4.8)

0

-sinþ,
cos þ"

0

0

0

1

and

[R,] :
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where Ór, Óy, and,þ" are the lotatiou anglcs with respect to each axis. Therefore, the rotation

matrix is:

lRl :

Since [R] ir an orthonormal matrix, it satisfies:

lRl': [R]-',

and

det[Q : *1'

The motion of a point on the object surface from p to p/ can be expressed as:

P,: [R] .P + T.

cas Socas þ"

cos þo sin þ"

-sinSo

sin f, sin óy cos þ, - cos,þ, sitr þ"

sin /, sin óy sin6" * cos /, cos þ"

sin /, cos /,

cos cþr sin /, cos ó" I sin S, sin þ"

cos /, sin /, sin þ" - sinþ, cos þ"

cos þ, cos þo
(4.e)

(4.10)

(4.11)

(4.12)

(4.13)

For many motion estimation algorithms, the non-linear rotation matrix according to (4.5)

has to be linearized with respect to the rotation angles tWOZOll. Assuming small rotation

angles such that cos / = 1 and sin ó = ó, the rotation matrix can be simplified to:

7 -ó" ó,

ó' 7 -4r*

ÓaÓ,1
Equation (4.12) rotates the point P on the object surface around the center of the world

coordinate system. If the object is far away from the center of the coordinate system and

is just rotating around its own center, a local coordinate system for each object can be

defined' Rotation and translation are then defined with respect to the object's own center

C : (C,,Cy,C,)r, which is also the center of the local coordinate system. The 3D motion

equation can now be expressed as:

P':[R] .(p-C) +C+T (4.14)

If an object is non-rigid, it can be described by decomposing it into two or more rigid

components. Each component would then have its own set of motion parameters according

to (4.14).
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4.2.2 Tlvo-Dimensional Motion

Object or camera motion in 3D space leads to 2D or proiected motion. 'When an object

movesfromP:lXY Z)' attimeú1 toP/:lX'Y'Z'1r: [X+Vx Y -lVv Z¡V"1'

at time tz : tt *lr¿, its projected image changes from p : lr A]'to p/ : l*' A'l' :

lr I u, A + us]r. This is shown in Figure 4.4. Using the notations in [WOZOlf, the 3D

displacement, V(P; h,tz) : P' - P : lVx V" V"]' , is called the 3D motion vector atP.

Likewise, the2D displacement, v(p; h,tz) : p' - p : la, uo]r,is called the 2D motion

vector at p. Motion vectors (MVs) are in general position-dependent. The 2D motion field

from ú1 to ú2 is represented by .r(p; h,tz).

P

v
Z

.." P',

v,'
Y

x

lmage Plane

X

c

Figure 4.42 Projection of a moving object.

It is sometimes more convenient to specify for each point p at time ú1, its corresponding

position att2, w(pih,tz) : p/. The mapping function is represented by w(p;úr, t2). Note

that the mapping function is uniquely related to the motion field by w(p;úr' t2) : p i

v(p;fu,t2).

This thesis deals with digital video signals that have a finite and discrete image domain,

described by a truncated lattice, ,A,. The notation x : lr Al' €,4' represents a pixel index.

Furthermore, we assume that the time interval l)¡ : tz - h is either equal to the temporal

53



Chapter 4. Motion

sampling interval or an integer multiple of this interval. The motion field for a given time

Vetrocity vectors can also be used to characterize motion. The velocity vectors, or flow

vectors,are def,ned as f : H : luäi *1" If o¿ is small, the motion within the interval

can be assumed to be constant, i.e. f : v lut. Similar to motion fields, the flow field canbe

defined over the entire image domain as f (p; tt,tz),p € 
^.

Let us now consider the 2D motion induced by an arbitrary 3D rigid motion. TVithout

loss of generality, we will assume that the object is undergoing rigid motion and the camera

is stationary. As mentioned in Section 4.2.7, the 3D motion of an object can be described by:

The rotation matrix can be completely determined by three rotation angles. As well as the

three translation parameters, there are six parameters in total.

The perspective displacement field can be derived by substituting (4.2) into (4.15) to

obtain the relation between the image coordinates before and after motion:

(s1r -f szU I4F)Z +T*F

X,

Y'

zt

S1

S4

37

(", + t"g -f ssP)z +T"F )

(sar * ssU t s6F)Z +TaIr
(4.16)

(s7r I saA I ssF)Z +T"F
If the translational parameters T,,,T,,T" and the depth Z are scaled by the same factor, the

correspondence between (r,g) and (r',A') will not change. This indicates that based on

the correspondence of image coordinates, the parameters 7}, Ts,T, are unique only up to a

scaling factor.

On the other hand, the orthographic displacement field can be derived by substituting

(4.3) into (4.15) ro obrain:

sú) I szU I (ssZ +T*),

: sar I srg I (s6Z 1_Tr)

tr':F

!l':F

(4.1s)

(4.11)

tr'

a'

The model (4.17) is an affine mapping of the pixel (r, y) attime ú1 to the pixel (n',A') at

timet2definedintermsofthesixparameterssl ,,s2,(s3ZlTr),s4,sb, and(s6ZITr).
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It is common to model 3D objects by (piecewise) planar patches whose points line on a

plane described by [MN98b]:

aX I bY + cZ : !, (4.18)

where labc)T denotes the normal vector of this plane. The 3D displacement model (4'15)

can be rewritten as [Tek95]:

+ Tlab cl

X
Y

Z

(4.re)

(4.20)

of

-A

where

(4.21)

If we map the 3D displacement onto the 2D image plane using perspective geometry and

normalize ag : 7 due to the well known scale ambiguity, we obtain the image plane mapping

from ú1 to ú2 given by the eight-parameter model [Tek95]:

o,yrtazAlas

X

Y

Z

X
Y

Z

0,3

A6

Ag

A: R +Tfabc]

r'

a

0,7rlas!*7'
o,alrla5!la6 (4.22)
0,7rlasy*7

If the imaging geometry is approximated by an orthographic projection, a planar patch

undergoing 3D rigid motion can be described by an affine model, expressed as:

û7r10,28+as)

aarlasA+a6 (4.23)

Both the eight-parameter (4.22) and affine (4.23) models are very popular, however many

other transformations exist depending on the assumptions made [MN98b].

n'

a
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4.3 Scene Model

Having discussed motion models, we are now ready to consider the modeling of an image

scene. ff the objects in a sequence are in motion, we distinguish between four frame areas:

unchanged (stationary) background, moving object, uncovered background, and covered. or

occluded background.

Figure 4.5 shows two frames with a moving object. Comparing frames k and lc + l,
we can distinguish between the changed regions and unchanged regions. The unchanged

regions show the stationary background in both frames. The moving object is part of the

changed regions in frames k and k + 7.In frame k,the changed region is defined as the area

of the moving object and the background to be covered region in frame k + 7 due to object

motion. In frame k + l, the changed region is defined as the area of the moving object and

the uncovered background region that was not visible in frame k. Note that in real video

sequences, motion vectors are not always defined everywhere. For example, motion vectors

are not defined over uncovered regions.

4.4 2D Motion Versus Apparent Motion

Motion is perceived by identifying corresponding points at different times. The correspon-

dence is usually determined by assuming that the color or brightness of a point does not

change after the motion. Under certain circumstances, the observed 2D motion can be dif-

ferent from the actual projected 2D motion. Figure 4.6 illustrated one such example. A

sphere with a uniform flat surface is rotating under a constant ambient light. Since every

point on the sphere reflects the same illumination, the eye cannot perceive any change in the

color pattern of the imaged sphere and therefore considers the sphere as being stationary.

The actual projected 2D motion is referred to as 2D motion, while the observed 2D

motion is refemed to as apparent motion [Tek95]. For example, the apparent motion of the

sphere in Figure 4.6 is zero. In computer vision literature, apparent motion is referred to as

opticalflow. Moving objects must contain sufficient texture to generate optical flow, because

the luminance in the interior of moving objects with uniform intensity remains constant. For

further information on optical flow and the derivation of the optical flow equation, the reader
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Unchanged
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Ghanged Region

Movins J-paCIgIgqlC l9.l
f-- oblect Be Covered -
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Uncovered Movin
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Figure 4.5: The separation of changed regions into moving objects, uncovered

background, and background to be covered.

IIU
I

I

nchanged
Region

57



Chapter 4. Motion

Rotating Sphere

Figure 4.62 A sphere rotating under constant ambient illumination.

is referred to [LK81, HS81, Tek95].

4.5 Summary

In this chapter, we reviewed the different attributes of motion as they relate to video se-

quences. Motion is the second cue we employ to segment the face and the hands in sign

language video sequences. The following list summarizes the main points in this chapter:

o The camera model describes the projection of the 3D world on to the image plane of

a camera. Depending on the application, camera models of different complexity can

be used. If the objects in the 3D world are far away from the camera, a simple camera

model with orthographic projection can be employed. On the other hand, perspective

projection enables us to describe the change of object size in an image sequence as an

object changes its distance from the camera.

o The 3D motion of an object can be expressed by means of a 3D translation vector and

a three-by-three rotation matrix. The rotation matrix is computed from the rotation

angles around the three coordinate axes.

o Object or camera motion in 3D space leads to 2D motion. If perspective geometry is

assumed and a 3D object is modeled by planar patches, the relation between the image
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coordinates before and after motion can be described by the eight-parameter model. If

the imaging geometry is approximated by an orthographic projection, a planar patch

undergoing 3D rigid motion can be described by an affine model'

o In the scene model, four different frame regions can be distinguished: unchanged

(static) background, moving object, uncovered background, and covered or occluded

background.

o The projection of 3D motion onto the image plane is referred to as 2D motion. Appar-

ent motion is what the human visual system perceives as motion.
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Chapter 5

Skin-Color Segmentation

"Everything should be as simple as possible, but not simpler-"

- Albert Einstein

This chapter presents our skin-color segmentation algorithm. The YCbCr color space is em-

ployed in digital video. It also provides an effective use of chrominance information for

modeling the human skin-color. This was also observed in [CN99]. To obtain training data,

we manually segment training images into skin and non-skin classes. The skin-color distri-

bution in the CbCr plane is modeled as a bivariate normal distribution. A pixel is classified

as skin or non skin based on its Mahalanobis distance. We derive a segmentation threshold

for the classifier. The skin and non-skin regions of an image or frame are represented in a

skin detection mask (SDM). The performance of our algorithm is illustrated by simulations

carried out on still images and video sequences.

A literature survey of some existing skin-color segmentation algorithms is presented in

Section 5.2. The proposed skin-color model is described in Section 5.3, and the S DM gen-

eration method is described in Section 5.4. Simulations results are presented in Section 5.5,

and the chapter is summarizedin Section 5.6.
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Chapter 5. Skin-Color Segmentation

5.L Introduction

The use of color cues to segment skin regions in image and video sequences has gained in-

creasing popularity in recent years. Skin-color segmentation is feasible because the human

skin has a special color distribution that differs significantly (although not entirely) from

those of the background objects [CN99]. Skin segmentation has been mainly employed

for face segmentation in digital images and video. Some major uses for face segmenta-

tion include content-based representation in MPEG-4, face recognition, and face tracking.

Skin-color segmentation is usually performed using the chrominance components of image

pixels and not the luminance component. The reason for this is twofold: (a) by utilizing

the chrominance components only, skin-color segmentation algorithms will remain rela-

tively invariant to changes in brightness (e.g., shadow versus no shadow); and (b) it has

been widely observed that apparent differences in skin-color among different races (e.g.,

dark skin versus fair skin) are characterized by the difference in the brightness of the color,

which is governed by the luminance component of light and not the chrominance components

[V/C97, SP98, CN99, MW00b]. Another reason is that, by considering the chrominance

components only, the feature space is reduced from 3D to 2D, thus reducing the computa-

tional complexity of the segmentation algorithm.

The human skin is composed of a thin surface layer, called the epiderntis, followed by

a thicker layer, called the dermis. Surface reflection takes place at the epidermis, and is

approximately ps : 5To (see Section 3.4 for notations) of the incident light, independent

of its wavelength [SAG01]. The rest of the incident light (i.e., 95Vo) enters the skin, where

it is absorbed and scattered within the two skin layers, and then eventually reflected (body

reflectance). The epidermis has the property of an optical filter, and absorbs light. The light

is transmitted depending on its wavelength and the melanin concentration in the epidermis.

In the dermis, the light is scattered and absorbed, and the absorption is mainly dependent on

the content of blood and its ingredients, such as hemoglobin, bilirubin, and beta-carotene.

The optical properties of the dermis are basically the same for all humans. Skin-color is

therefore determined by the epidermis transmittance, which depends mainly on its melanin

concentration. Differences in melanin concentration affect the intensity of the light reflected

from the skin, but not its hue [JR99]. Variations in the blood content of the dermis are
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independent of human ethnicity.

There are some limitations to any skin-color segmentation algorithm that must be con-

sidered. Accurate and reliable results are obtained if there is reasonable contrast between

skin-color and those of the background objects. Note that in the context of hand and face

segmentation, other parts of the body, including clothing, are also considered as background.

Stationary background regions with color similar to that of skin do not pose a serious prob-

lem, since they can be identified by change detection (Chapter 6). However, articles of

clothing that undergo motion and have similar color to that of skin, may pose problems. As

well as poor color contrast, there are other limitations of color segmentation when an input

image is taken under some particular lighting conditions. The color segmentation process

may encounter difficulties if the input image has the following characteristics [CN99]:

o A "bright spot" on the subject's face or hands due to the reflection of an intense light

source.

o A dark shadow is present on the face or hands as a result of strong directional lighting

that has partially blackened the skin region.

o A colored filter has been used to capture the image.

Bright spots and strong shadows pose great technical challenges to skin color segmentation.

The effect of a colored filter can be overcome if skin training pixels for that particular colored

filter are available.

rwe have considered the YCbCr color space in our study since it is typically used in video

coding, and provides an effective use of chrominance information for modeling the human

skin-color tCN99l. Also, since digital video is stored and processed in the YCbCr color

space, our algorithm does not require color space conversion. Conversion from one color

space to another is computationally expensive.

The block diagram of our skin-color segmentation algorithm [HLM01, HLM02] is shown

in Figure 5.1. The portion within the dashed line is performed during classifier training. The

algorithm follows the general segmentation scheme proposed by Salembier and Marqués

tSM99l (Section 2.1). The algorithm is automatic in the sense that it does not require any

manual adjustment of the design parameters during the skin-color segmentation process.
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Chapter 5. Skin-Color Segmentation

Also, our algorithm is intended to work on a range of skin types and its underlying assump-

fions are minin'ral Tlre followinglisL describes the steps in thealgorithm-andìndicateslhe

section in which that step is developed:

1. A universal skin-color model is generated from training images depicting people of

different ethnicity (Section 5.3).

2. A segmentation threshold is derived by considering the probability of classification

error (Section 5.4.3).

3. A median filter is applied to the Cb and Cr components of the input image (Section

s.4.1).

4. The pixels are classified as skin or non-skin based on their Mahalanobis distance. If
the Mahalanobis distance of a pixel is below the segmentation threshold, the pixel is

classified as skin, otherwise it is classified as non-skin (Section 5.4.2).

5. A skin detection mask (S D M) is generated, indicating skin and non-skin color regions

in an image or video frame (Section 5.4.2).

lmages

Segmentation
Threshold

Input lmage
Cb, Cr Skin Detection

Mask

Figure 5.1: Block diagram of the skin-color segmentation algorithm.

5.2 Previous Research

This section reviews some skin-color segmentation algorithms proposed in the literature for

different applications. A good review of skin-color segmentation is provided in [Zar99l.

cb, GrlngTrai n Skin-Color
Model

Threshold
Derivation

Median
Filtering

Pixel
Classification
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In their srudy, Chai and Ngan tCN99l employed the YCbCr color space (Section 3.5.4) to

automatically segment a human face from a given image with a complex background scene'

The skin-color pixels are set to a range of [133 173] for the Cr values, andllT l27l for the

Có values. The same set of Cr and Cb values are used for all human races. This set of Cr

and Cb values forms a square region in the CbCr plane, as shown in Figure 5.2. Based on

the spatial distribution of the detected skin color pixels and their corresponding luminance

values, the algorithm employs a set of regularization processes to reinforce regions of skin

color pixels that are more likely to belong to the facial regions, and eliminate those that are

not. The authors then employ the face segmentation algorithm to improve the perceptual

quality of a videophone sequence encoded by a H.261-compliant coder. In a later study,

Chai and Bouzerdoum [CB00] considered the Bayesian decision rule for minimum cost to

classify image pixels into skin and non-skin classes. The authors tested their algorithm on

images of different subjects, head poses, background complexities, and lighting conditions.

100

50 100 tcu 200 250
cb

Figure 5.2: Skin-color region in the CbCr plane according to Chai and Ngan,

1999

Wang and Chang tWC97l proposed an algorithm to detect human face regions in MPEG

video sequences. The algorithm takes the inverse quantized discrete cosine transform co-

efficients as the input, and outputs the location of the detected facial regions. The authors

200

150

O

50
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Chapter 5. Skin-Color Segmentation

argue that by detecting faces directly in the compressed domain, there is no neecl to carry

out the inverse discrete cosine transform, enabling the algorithm to run faster. The algo-

rithm uses the Bayesian decision rule for minimum cost to classify a color into the skin class

or the non-skin class. Therefore, the classification problem becomes finding the class that

gives the minimal cost, considering different cost weightings on classification decisions. The

algorithm can be applied to JPEG unconstrained images or motion JPEG video.

Menser and Wien tMw00bl modeled the the skin-color distribution in the CbCr plane

as a bivariate normal distribution. Instead of binary classification (i.e., either skin pixel or

non-skin pixel), a skin probability image is created. Connected component operators are then

applied to the skin probability image to reduce the number of face candidate regions. The

number of face candidates regions are then further reduced by employing shape-based oper-

ators. To this end, the solidity, aspect ratio, and compactness of each region are evaluated.

Finally, texture information is employed to eliminate any remaining non-face regions. The

authors applied their algorithm to aH.263 region of interest coding system [MW00a]. The

authors claim that the bit-rate can be significantly reduced while retaining a high perceptual

quality.

Garcia and Tziritas [GT99] considered both the YCbCr and the HSV (hue, saturation,

and value) spaces in their study. The authors proposed a scheme for the detection of faces

under unconstrained scene conditions, such as the presence of a complex background and

uncontrolled illumination. Clustering and filtering using approximations of the YCbCr and

HSV skin color subspaces are first applied to an image, providing quantized skin color re-

gions. The algorithm then iteratively merges the set of homogeneous skin color regions in

the color quantized image, in order to provide a set of potential face regions. To detect faces,

face shape and size constraints are considered, and then texture analysis is performed on each

face ateacandidate by wavelet packet decomposition. The authors reported a good detection

rate in images depicting different face appearances.

The HSV color space was also employed by Sobottka and Pitas [SP96, SP98]. The

authors deemed a region of the HS space (shaded area in Figure 5.3) to contain skin-colors.

The following parameters, indicated in Figure 5.3, were defined: smin : 0.23, s-'.- :
0.68, H*i, : 0o, and H^o, : 50o. To discriminate between the face and other skin-

color regions, connected components analysis is first performed to remove isolated and small
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regions. Then, assuming that the shape of the face can be approximated by an ellipse, shape

analysis is performed to discriminate between the face and other regions.

Green Yellow
H r"*

Cyan

Blue Magenta

Figure 5.3: The HS space, indicating the region that contains skin-color pixels.

Instead of segmenting the face, Zha et al. lZYWO0l employed the HSV color space to

segment the hands for the purpose of gesture recognition. A hand color model and a back-

ground color model are generated for each image and the expectation-maximization (EM)

algorithm IDLRTTI is employed to train a normal mixture model. Pixels are then classified

as skin or non-skin using the Bayes decision theory. The authors claim that their proposed

algorithm is capable of segmenting hands of arbitrary color in a complex scene. We have

found that the performance of the EM algorithm is dependent on the starting par¿ìmeter val-

ues and the number of components in the normal mixture. Usually these values are difficult

to estimate.

In his study, Schumeyer [SHB97, SB98, Sch98] considered the problem of segmenting

the face and the hands in sign language video sequence, which is also the subject of this

thesis. Schumeyer employed the CIE L*a*b*1 color space for skin color segmentation. The

proposed algorithm maps each possible YCbCr value to an a*b* value, and stores the a*b*

values in a look-up table. The look-up table is then quantized to reduce the memory size. The

skin color distribution is modeled as a normal mixture in the a*b* space. The mean vector

and the covariance matrix of each component of the normal mixture are then estimated by the

1,L* is lightness defined in (3.2) (i.e., the perceptual response to bdghtness), and a* and b* are the chromi-

nance components.

H

Red

H

Smin Sr"t
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EM algorithm. A separate skin localization algorithm is required for distribution training. In

contrast, our skin-color segmentation algorithm does not require a separafe skin localizafion

algorithm. Schumeyer did not take advantage of any motion information to enhance the seg-

mentation results either. The skin-segmentation algorithm along with a proposed perceptual

rate controller were incorporated into aH.263 coder for sign language video communication.

The CIE L*u*v* color space (where u* andu* are the chrominance components) has also

found use in skin-color segmentation. In [Y499], an algorithm is proposed for the segmen-

tation of skin color for applications in image and video databases. Skin color is modeled as

a normal mixture in the u*v* color space and the EM algorithm is employed to estimate the

mean vectors and covariance matrices of the components. Mclachlan's bootstrap method

tMB88l is used to determine the number of components in the mixture. In [YA99], skin-

color is modeled as a bivariate normal distribution in the u*v* plane. A pixel is classified as

skin if its probability in the normal distribution is greater than 0.5.

A color classification algorithm was proposed by Saber et aI. lSTEK96l. The YES color

space is employed for color classification. Training pixels for each class are obtained from

a set of training images, and each class is modeled as a bivariate normal distribution in the

ES plane (i.e., the chrominance plane). The Mahalanobis distance (Section 5.3.2) is then

employed to classify image pixels as sky, skin, or grass. A universal threshold is selected for

each class based on the the receiver operating characteristics (ROC) (Section 5.4.3) of the

training set. The classification results are improved by adapting the universal threshold to

the characteristics of the individual pixels based on histogram cluster analysis. Finally, if a
pixel is found to belong to more than one class, a maximum a posteríori probability (MAP)

rule is employed to resolve the ambiguity.

An algorithm for the detection of faces and facial features was introduced by Saber and

Tekalp [ST98]. First, using the algorithm introduced in [STEK96] (see above), image pixels

are classified as skin or non-skin to obtain a color-classification map. The color-classification

map is then smoothed by Gibbs random lìeld model-based filters to define skin regions.

Symmetry-based cost functions are then employed to search for facial features, such as the

tip of the nose and the center of the eyes.

Research has also concentrated on skin-color segmentation using the RGB color space

UR98, JR99l. Note that in the RGB color space, the luminance component and the chromi-
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nance components are not decoupled. Also, the feature space is 3D for RGB as opposed

to 2D for chrominance skin-color segmentation. In [JR98] and UR99l, the authors com-

pared the performance of histogram and normal mixture models in skin detection and found

histogram models to be superior in accuracy and computational cost. A training set is first

obtained from images on the world wide web, and the normal mixture model is trained using

the EM algorithm. As mentioned in Section 3.3 the chrominance information (i.e., hue and

saturation) of light can be measured by employing chromaticity coordinates. An algorithm

for the detection of the hands in sign language video sequences was presented in tAAOll.

The authors employed the RGB skin-color segmentation approach presented in [JR98] and

tJR99l to detect skin-color regions in the video frames. To eliminate false alarms, motion

information obtained from motion history images is employed. The authors did not explain

how the face and the hands can be differentiated. Bergasa et al. [BMG+00] considered the

problem of skin-color segmentation using the normalized RGB space' where:

R (s.t)
R+G+B'

and

s: --:- . 6.2)ß+G+B'
The proposed algorithm employs a clustering method based on vector quantization.

An algorithm for finding faces in the wavelet domain for content-based coding of color

images was introduced by Karlekar and Desai tKDOOl. The YUV color space (see Section

3.5.2) is employed in the algorithm, and three level wavelet transform is performed on each

component (Y , (J, andV) of the input image. The lower resolution LL (low, low) subimage

corresponding to chrominance components (t/,V) of wavelet transform is used for skin-color

classification. A multilayer perceptron (MLP) is trained to classify each pixel as skin or non-

skin. The result is a binary map indicating skin and non-skin regions in the image. The binary

map is further processed by using a median filter to eliminate noise and to fill holes. In the

second stage of the algorithm, shape constraints are applied to the connected components in

the binary map to eliminate false alarm regions. The final stage of the algorithm examines the

wavelet coefficients of componentY. The eyes, nose, and lips, give rise to high frequency

coefficients in the wavelet domain. If a skin-color region in the binary map does not have

sufficient high frequency coefficient, it is deemed a false alarm and discarded. The block
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diagram of the algorithm is shown in Figure 5.4.

Median
Filtering

Shape
Constra¡nts

Skin-Color
Classification
using MLP on

UandV

Analysis
of Wavelet
Coefficients

Wavelet T¡ansform
of Y Component

I

I

I

I

LL Segmented
lmageofUandV

I

I

I

Figure 5.4: Block diagram of the wavelet based face segmentation algorithm

introduced by Karlekar and Desai (2000).

Note that algorithms that advocate color space other than the YCbCr would incur addi-

tional computational cost because digital video processing is usually performed in the YCbCr

color space.

5.3 Generation of the Skin-Color Model

A skin-color model can be derived in three ways. One approach is to predefine a skin-color

model for a particular race, lighting condition, or camera system. For example, Terrillon ¿/

a/. [TDA98] predefined a skin-color model for a particular camera system and race. Another

approach is to define a skin-color model for an individual (e.g., [Sch98]). The third approach

is to predefine a universal skin-color model that encompasses different races and lighting

conditions. Among the three approaches, the first two are likely to produce more accurate

segmentation results since a more precise skin-color model is employed. However, improved

segmentation results are realized at the expense of a skin segmentation algorithm that is

either too restrictive because it uses a model that is suited only to a particular condition,

or that requires human interaction to manually define the necessary model. Therefore, the

third approach is more practical since it attempts to cater for a wide range of skin-colors and

lighting conditions. In this thesis, we have opted for the third approach.
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5.3.L Manual Segmentation of Training Images

This section describes the method used to obtain labeled training pixels from training images.

The training images were downloaded over the internet, and were selected randomly from

various sites. Each image was visually examined to assess whether it was modified by a col-

ored filter. If an image was modified by a colored filter, for example a person's skin appeared

too red or yellow, the image was excluded from the training set. The training images were

of different subjects (with different ethnicities, e,g., European, Asian, and African), body

poses, background complexities, and lighting conditions (e.g., outdoor, indoor, and studio

images).

Each image was manually segmented in the following manner: regions of skin pixels

were marked using the Jasc Paint Shop Pro'tM software tool [Jas01]. In the labeled image,

the eyes, hair, eyebrows, and the mouth opening were excluded. In most images, it was often

difflcult to define the boundary between skin and non-skin regions (e.g., forehead obscured

by hair), therefore only the easily identifiable skin pixels were segmented. This strategy was

employed to avoid the contamination of the skin training pixels with non-skin pixels. The

marked skin pixels were then added to the skin training set, and the non-skin pixels were

similarly added to the non-skin training set.

The manual segmentation process is depicted in Figure 5.5. The original image is shown

in Figure 5.5(a) and the labeled image is shown in Figure 5.5(b). Figure 5,5(c) shows the

binary mask with the skin pixels set to binary 'ot" and non-skin pixels set to binary "0".

(a) (b) (c)

Figure 5.5: Example of manual image segmentation. (a) Original image, (b)

labeled image, and (c) binary mask.

Figures 5.6(a), (b) and (c) show the distribution of the skin training pixels in the CbCr

i-|
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plane for people of European, African and Asian descent, respectively. Notice that the skin

training pixels occupy similar regions in the CbCr plane. The fact that the skin-training

pixels occupy similar regions in the CbCr plane suggests that the chrominance components

of skin-color are invariant across different races. The skin training pixels for all three races is

shown in Figure 5.7. V/e notice that the skin training pixels form a small and compact cluster

in the CbCr plane (Figure 5.1(a)), and the Y component (luminance) has little influence on

the distribution of the training pixels in the CbCr plane (Figure 5.7(b)). This demonstrates

that an effective skin-color model can be derived based on the Cb and Cr components of the

input image.

5.3.2 The Skin-Color Model

This section discusses the proposed skin-color model. Let c denote the feature vector formed

by the cb and Cr components of a pixel (i.e., c : [Cb cr]'), and c is in a 2D Euclidean

space R2, called the feature space. The skin and non-skin classes are denoted by øs and

øg, respectively. We model the skin-color distribution in the CbCr plane (Figure 5.7) as a

bivariate normal distribution:

p(clas) : 
^r+""^p¡-]1. 

- p,s)rÐi'(" - ¡r")1, (s.3)

where p,t and Ðs are the mean vector and covariance matrix of the distribution, respectively,

and lÐsl is the determinant of Es. These parameters are estimated from the skin training

pixels. Consider an ith skin training pixel. The sample mean vector and covariance matrix

are given by [DHS01]:

llg
^1lts : Ns D'0, (s.4)

i:r

and

(s.s)

where l/5 is the number of skin training pixels and is in the order of ninety thousand pixels

The results are given in Table 5.1.

i" : M= Ë,", - t"r)(". - t"s)',
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Figure 5.6: Skin training pixels in the CbCr plane. (a) European skin, (b)

African skin, and (c) Asian descent.
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Figure 5.7: Skin training pixels for people of European, Asian, and African

descent in the (a) CbCr plane, and the (b) yCbCr cube.
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Parameter Value

þr: I tr"u u", f' I roo.s 151.b ]
T

>s
o
o

CbCb

CrCb

õcac,
õcrc,

3t.4

-2L8
-2t.8
47.0

IJ: €1 E2 l
0.82
0.58

-0.58
0.82

T U1

0

0

U2

16.1 0

0 62.3

Table 5.1-: Estimated model parameters for the skin class density function.

The Mahalanobis Distance

The quantity d in

d" -- (. - trà'Ðst(. - p") (s.6)

is the Mahalanobis distance from c to lts.It follows from (5.3) that the contours of constant

density are ellipses for which d is constant. If the features are uncorrelated and the variances

in all directions are the same, these contours are circles, and the Mahalanobis distance is

equivalent to the Euclidean distance. 
'We define U to be a 2 x 2 matrix whose columns are

the orthonormal eigenvectors (e1 and e2) of Es,

U: [e1 e2],

and T the diagonal matrix of the corresponding eigenvalues (u1 and u2),

(s.1)

(s.8)

Note that ul andu2 àÍe the eigenvalues associated with e1 and e2, respectively (values

given in Table 5.1). The axes of the ellipses are given by the principal components (the eigen-

vectors) of E5, and the length of these axes are given by df u1(along e1) and dlu, (along
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ez). These concepts are illustrated in Figure 5.8. The ellipse is at constant Mahalanobis

distance d from Lts in the CbCr plane.

Cr

e2

e

FC,.
d {iz

cb
rcu

Figure 5.8: Contour of constant Mahalanobis distan ce rl ftom ¡_t, o

Equation (5.6) provides a mapping from the 2D feature space to a lD distance space.

Within this framework, skin pixels can be classified as skin or non-skin based on their Ma-

halanobis distance. The value of d is related to the probability that a given pixel belongs to

class øs. A small value of d indicates a high skin pixel probability and vice-versa.

5.4 Generation of the Skin Detection Mask

In this section, we describe the classification method employed to classify pixels as skin

or non-skin. The method is analogous to the single hypothesis classifier [Fuk90]. Single

hypothesis schemes have been proposed to solve problems in which one class is well defined

while others are not.
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5.4.1 Median Filtering

prior to pixel classiflcation, a median f,lter [GV/92] is applied to the Cb and Cr components

of each image that is to be segmented. In median filtering, the chrominance-level of each

pixel is replaced by the median of the chrominance-levels in the neighborhood of that pixel.

The filter removes outliers in skin regions, while preserving edges (if the size of the kernel

is small, see below).

The median med of a set of values is such that half the values in the set are less than

med, andhalf are greater than med. In order to perform median filtering in a neighborhood

of a pixel, the values of the pixel and its neighbors are first sorted, the median is determined,

and the median value is assigned to the pixel. For example, in a 3 x 3 kernel the median

is the 5th largest value, in a 5 x 5 kernel the median is the 13th largest value, and so on.

When several values in a neighborhood are the same, all equal values have to be grouped'

For example, suppose that a 3 x 3 kernel has values (16,2I,21,2I, 77,21,2I,200,26)'

These sorted values are (1I,16,21,2I,27,27,21,26,200), which results in a median of 21.

Therefore, the principal function of median filtering is to force points with distinct intensities

to be more like their neighbors, actually eliminating intensity spikes that appear isolated in

the neighborhood.

The size of the kernel was chosen based on an empirical study of sign language video

frames (in QCIF format). Our experimental data suggests that if the size of the kernel is large

(i.e.,7 x 7 pixels or larger), the face and hand objects would merge if they are close to each

other. This is not desirable for face detection. Alternatively, a small kernel size (i'e., 3 x 3

pixels) would be ineffective in eliminating outliers. \We have found a kernel size of 5 x 5

pixels to be effective in eliminating outliers without merging nearby skin-color regions. For

larger frame sizes, the size of the kernel should be increased accordingly. For example, if

the frame size is CIF (i.e., double of QCIF, see Appendix A), the kernel size should be set to

10 x 10 pixels.

Examples of the effect of using different kernel sizes in median filtering are shown in

Figure 5.9. Figure 5.9(a) shows frame 2 of the lrene seqtence, and Figures 5.9(b), (c), (d),

and (e) show the effect of using kernels of different sizes. For a kernel size of 3 x 3 pixels

some residual noise is present in the skin detection mask, while for a kernel size of 7 x 7
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pixels the hand objects have merged. For larger kernel sizes (i.e., greater than 11 x 11 pixels),

an arklerl tlisadvanl"age is thatthe edges of the face and hand rcgions beeome distsrted (trigure

s.e(e)).

5.4.2 Pixel Classification

As discussed in Section 5.3.2, the skin-color distribution in the CbCr plane is modeled as a

bivariate normal distribution. Recall that for the bivariate normal distribution, the contours

of constant density are ellipses of constant Mahalanobis distance to þs. To classify a pixel

as skin or non-skin, we first measure the Mahalanobis distance of the pixel, i.e., the Ma-

halanobis distance between the feature vector of the pixel and ¡-cs. Next, we compare the

Mahalanobis distance against a predetermined threshold. If the Mahalanobis distance is less

than or equal to the predetermined threshold, the pixel is classified as skin, otherwise it is

classified as non-skin.

The skin detection mask(SDM) is def,ned as:

SDM(r,U,k):

where r is the segmentation threshold. The Mahalanobis distance d,*,u,¡, is defined as

d?,a,n: (cr,a,t - ¡r")tÊ"t ("r,r,r - îrr)

L, tf clr,o,¡, I r
0, otherwise,

(s.e)

(s.10)

The parameter cr,o,¡, denotes the feature vector of a pixel in frame k, at spatial location (*, ù.
Therefore, SDM is a bitmap where binary "l" indicates a skin class pixel and a binary

"0" indicates a non-skin class pixel. The derivation of a suitable segmentation threshold is

discussed next.

5.4.3 Derivation of the Segmentation Threshold

Let?-s denote the region in the feature space where the classifier decides us, àtrd likewise

for 7?g and øg. There are two ways in which a classification error can occur; either an

observation c falls in Rs and the true class is øg, or c falls in Rs and the true class is øs.

Since these events are mutually exclusive and collectively exhaustive, the probability of error
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fr
J

(a) (b)

(d) (e)

Figure 5.9: The effect of using different kernel sizes in median filtering, (a)

Frame 2 of the lrene sequence, (b) kernel with a size of 3 x 3 pixels, (c) kernel

with a size of 5 x 5 pixels, (d) kernel with a size of 7 x 7 pixels, and (e) kernel

with a size of 17 x 17 pixels.

(c)
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Chapter 5. Skin-Color Segmentation

IS

erTor (J.r

(s.14)

l)

P(c e ?Rslws)P(us) + p(c e Rslu)P(",s) (s.12)

p(clas)P(r") * p(claòP(".,s), (s.13)

where P(rt) and P(øg) denote the a priorl probabilities of the skin and non-skin classes,

respectively, and P(rt) + P(u) : 1. The probabilities p(cløs) and p(cl, s) denore the

conditional probability densities of c given us and øs, respectively. For the remainder of

this chapter, the following notations, borrowed from radar terminology, will be used

p(clus)P(o.'s)

p(clas)P(".'s)

P7v¡ t pþlws)P(as).
Jns

Pp, Po and Pp: are the probabilities of false alarm, detection and miss, respectively. Note

that P¡a - 1 - Pp. The concepts of false alarm, detection, and miss as related to an image,

are illustrated in Figure 5.10. The box represents a skin region (SR) and the circles indicate

the regions identified by the classifier as skin. Detection occurs when the SR coincides with

a region, or part of a region, identified as skin. When the SR, or part of it, is not identified as

skin, miss occurs. False alarm occurs when a skin identified region, or part of it, is outside

the SR.

Based on the above notations, we define the probability of error as

P.,,o,: PM(0)P(ø") + Pp(0)P(u), (s.1s)

where á is a Lhrestrolcl. The probability of error is a function of d and the a priori proba-

bilities, P(rt) and P(.us). The relationship between 0, Rs, and 7l,s is illustrated in Figure

5.11. The ellipse represents the decision boundary, and is at Mahalanobis distance d from

¡^rs. Note that region ßs is inside the ellipse while region 7?s is outside the ellipse.

The probabilities Pp and Pp are evaluated using the skin and non-skin class training
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5.4. Generation of the Skin Detection Mask

Miss

Detection

I
/

False Alarm

Figure 5.L0: The concepts of false alarm, detection, and miss as related to an

image. The box represents a skin region (SR) and the circles indicate the regions

identified by the classifier as skin.

data. For the set of training images Ii, i : I,..., J,

7 .'r
Po(O) : + t I a(c*,r¡,0),

lv.s jJ @,y)er¡

and

1,r
Pp(o) : 

"r 
t t þ(c,,u,i,o),
j:t (n,y)€Ii

where e(c*,y,j,0) and þ(c*,y,j,0) are defined as:

(s. r6)

(s.17)

(s.18)

(s.1e)

a(c*,a,j,0) --
1, if c*,u,j € øg and d*,y,j l0
0, otherwise,

and

0(cr,a,i,o): I
I

1

0

if c*,a,j € øg and d*,y,j l0
otherwise.

Theparametef c*,r,¡ denotesthefeaturevectorof apixelintrainingimage Ii,i:I,.,.,J,
at spatial location (*,a).The Mahalanobis distance d*,a,j is defined as:

d?,r,j : (cr,y,j - lr")tÊr'(.r,r,j - ttò. (5.20)
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Cr

e2

e1

efozIc'

Rs

cb
rcu

Figure 5.11: Contour of equal density at Mahalanobis distance 0 from &s, where

ui and u2 àfè the eigenvalues associated with e1 and e2, respectively. Region Rg

is inside the ellipse while region ßs is outside the ellipse.

The problem is how to derive a segmentation threshold. Two methods for deriving the

segmentation threshold are described next. In both methods, the probability of error will

guide the r selection process.

Case One: P(rs) is Known

Consider if P(øs) is known. The segmentation threshold can be derived by minimizing

(s.ls),

r : ãrE m;n(P¡y¡(0)P(rt) + Pt,(0)P(rò) . (5.21)

To solve (5.2I), we plot á against P.rro, and find the minimum P"rror. For generic images

and video sequences, P(rt) is difficult to estimate. However, for specific images or video

sequences (e.g., passport photos or sign language video sequences), it is possible to estimate

P(rs). The skin class prior P(us) is simply the number of skin pixels in an image divided
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5.4. Generation of the SkinDetection Mask

by the number of pixels in an image. Using the dimensions of a QCIF frame (Appendix A),

the number of image pixels is 176 x 744 : 25344. This leaves only the number of skin

pixels to be estimated. For a sign language video frame, Schumeyer [Sch98] assumed aface

size of b0 x 50 pixels and a hand size of 25 x 25 pixels. This results in P(øs) : 0.15 and

P(rù: 0.85. Based on our experimental data, P(rs) : 0.15 seems appropriate for sign

language video. Figure 5.12 shows the probability of error versus d for P(rs) : 0.15. The

minimum P"rro, is indicated in the graph and corresponds to 0 : 2.7. The corresponding

skin-color region in the CbCr plane is shown in Figure 5.13'

We now briefly compare the decision boundary (in the CbCr plane) proposed in this thesis

to the one proposed by Chai and Ngan (CN) tCN99l, and reviewed in Section 5.2. As eluded

to in Section5.3.2, our proposed decision boundary forms an ellipse in the CbCr plane.

Based on the distribution of the skin training pixels in the CbCr plane (Figure 5.7), anellipti-

cal decision boundary seems more appropriate than the square decision boundary advocated

by CN (Figure 5.2). To see the effect that the different decision boundaries have on skin-

color segmentation, we segment frame 33 of the Silent sequence, shown in Figure 5.14(a).

Notice that the amount of false alarms in the SDM (with the identified skin-color pixels

shown) using the CN decision boundary (Figure 5.14(b)) is much higher than the amount of

false alarms in the S D M using our elliptical decision boundary (Figure 5.14(c))'

The following is a summary of the procedure used to derive the segmentation threshold

when P(rt) is known:

1. Find an expression for the probability of classification effor as a function of P(øs)

and 0.

2. Evahnte P"(0) and Pp(0) for the set of training images

3. Estimate P(as)

4. For the given P(rr), the segmentation threshold is taken to be the value of 0 that

minimizes the probability of error.
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Figure 5.12: Probability of classification error versus 0 for p(us) : 0.1b and

P(rò: 0.85.
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Figure 5.13: Skin-color region in the CbCr plane when r :2.I



5,4. Generution of the Skin DetectionMask

(a)

(b) (c)

Figure 5.14: The effect of using different decision boundaries on the S D IVL

(a) Frame 33 of the Silent sequence, (b) SDNI obtained using the CN decision

boundary, and (c) SDM obtained using our proposed elliptical decision bound-

afy
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Chapter 5. Skin-Color Segmentation

Case TWo: P(rò is Unknown

, -, The expression for the errorprobabiliçin (5-15) shows that onee d is fixed (henee P¡a and

P- qre fivarl\ D io o li-o-. f"-^+i^^ ^f +L^ ^ ^-:^,-: --^L^Lili+l^ ^ n(. . \ ^-l n/. \r tr sv r¡l\vs/, a eTror rú 4 ¡rrrvql lullwllvll Ul Lllv Ll P, LUI ¿ PI\JUd'UlllllE;ù, f \U,/Sl/ 4IlU L \U,/S/.

: Therefore, to select the 0 that minimizes P.rror, P(rt) must be known beforehand. Unfortu-

nately, P (, t) can vary quite considerably among different images. Factors such as a person's

distance from the video camera and the orientation of the body can influence P(øs). The

minimax test [Tre68, Fuk90, DHS01] is designed to protect the performance of the classifier

from variations in P(rr).
Inserting P(rs) - 1 - P(rr) into equation (5.15),

P",,o, : P¡a(O)P(us) + Pr(P)(t - P(ø5))

(Pr(o) - PF@))P(ø") + pr(e) (s.22)

In Figure 5.15, the curved line at the bottom shows minimum P.rro, plotted against

P(rt) (i.e., 0 is selected optimally for each P(r")). If d is fixed at some threshold, say

0 : 2.I, and P(øs) allowed to change, P"rro, will change as a linear function of P(øs), as

indicated by the dashed-dot line. The maximum P.rro, will occur at the extreme value of the

a priori probability, P(rt): 1. To minimize the maximum P.,,o,, d should be set to make

the coefficient of P (, t) in (5 .22) zero, tegardless of P (,,) . That is, we need to solve:

P*(0) - Pr(0) 0,

P*(o) Pr(o), (s.23)

for 0. This choice of 0 would render P",,o, independent of P(øs), as indicated by the

horizontal dashed line (line of equal error), and hence guarantee that the maximum error

probability is minimized regardless of any changes in P(øs).

In order to find the segmentation threshold based on the minimax test, we need to show

the miss and false alarm probabilities as a f'unction of d (Figure 5.16). The point where

Pr(0) : Po(O) is indicated in the graph and conesponds to 0 : 2.6. The data of Fig-

ure 5.16 also appears in the corresponding receiver operating curve (ROC) of Figure 5.17.

The receiver operating curve shows P*(0) versus Pr(0).Based on the information in Fig-

ures5.16 and5.l7,r:2.6 isderivedfortheminimaxtest. Weadvocatetheuse of r:2.6
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Figure 5.17: The receiver operating curve for the set of skin training pixels

when P(ø5) is unknown, for example in segmenting generic images or video sequences.

The corresponding skin-color region in the CbCr plane is shown in Figure 5.1g.

The following is a summary of the procedure used to derive the segmentation threshold

based on the minimax test:

1. Find an expression for the probability of classification error as a function of p(øs)

and 0

2. Evaluate Pn(0) and Pp(d) for rhe set of training images

3. Derive the segmentation threshold by solving pru(0) : pe(0) for 0

5.5 Simulation Results and Discussions

This section presents the simulation results for the skin-color segmentation algorithm. The

proposed algorithm is intended to work on a range of skin colors. To this end, the test

set \ /as chosen to contain people of European, Asian and African descent. The results are

presented in two sections. In the first section, skin-color segmentation results for stil images
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Figure 5.18: Skin-color region in the CbCr plane when r :2.6

are presented.2 In the second section, results for the Irene and Silent video sequences are

presented.

5.5.1 Performance Evaluation

Researchers in the field of skin segmentation usually provide a qualitative (i.e., visual) eval-

uation of their segmentation results. In common with other researchers, we will also provide

a qualitative evaluation of our results. However, due to the lack of space, it is not possible to

include a large number of images in the thesis. Therefore, quantitative evaluation is also pro-

vided. Quantitative evaluation is intended to give the reader an insight into the performance

of the algorithm without the need to include a large number of images in the thesis. To

quantitatively evaluate the accuracy of the proposed segmentation algorithm, each image (or

frame) was manually segmented into skin and non-skin classes.3 The manually segmented

images serve as a reference (i.e., benchmark) to which the automatically segmented images

are compared. The false alarm rate (Ri¡) and miss rate (Rv) are evaluated for each image'

2These images do not include any of the uaining images.
3The manual segmentation of the training images, test images, and the video sequences took four days to

accomplish.

50
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Chapter 5. Skin-Color Segmentation

Image False Alarm Rate (7o) Miss Ratc (7o)

John 3.2 0.2

Alex 1.3 7.8

Latiena 1.6 8.2

Table 5.2: Miss and false alarm rates for the John, Alex, and Latiena images.

Rp and R¡a are given by

Rp
Number of false alarm pixels

x 100,
Number of non-skin pixels

and

R
Number of miss pixels

(s.24)

Number of skin pixels
(s.2s)

,R¡ and R¡a are expressed as a percentage. The concepts of false alarm and miss are illus-

trated in Figure 5.10.

5.5.2 Still Images

Testing was carried out on 100 test images of different subjects, body poses, lighting condi-

tions, and background complexities. The images were obtained either from the internet, or

with a digital camera. Three images from the test set are shown in Figure 5.79. The John

and the Latiena images were obtained from the world wide web. The AIex image was taken

with a digital camera. Note that the images have varying degrees of background complexity.

Since P(rt) is unknown, the segmentation threshold was set to r :2.6.

The results, shown in Figure 5.19, indicate that the skin regions in each image have been

effectively segmented. This demonstrates that the chrominance distributions are consistent

across each race. The false alarm and miss rates are given in Table 5.2. The false alarm rates

for the John and Alex images are both low. It is slightly higher for the Latiena image since

parts of the subject's clothing and hair have been classified as skin. The miss rate for the

John image is the lowest, and higher for the Alex and Latiena images. This is partly due to

the strong shadow cast under the chin area of both subjects.

M- x 100.
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(a) Iohn

(b) Alex

(c) Latiena

Figure 5.19: Results of the segmentation algorithm on thfee images depict-

ing people of different descent. Left column: Original image, Center column:

SDM. Right column: Identified skin pixels.
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Figure 5.20: False alarm versus miss rates for 100 different images

The average false alarm and miss rates for the 100 test images werc7.5Vo and.5.8Vo,

respectively. The low average miss rate demonstrates the effectiveness of the proposed clas-

sifier in detecting skin-color pixels. Moreover, we have found that the proposed skin-color

model is immune to moderate illumination changes and shading, as those conditions do not

signiflcantly alter the chrominance characteristics of the skin-color model. The relatively

higher average false alarm rate is due to the inability of the algorithm to distinguish between

actual skin and background objects with skin-color appearance. The false alarm rate can

be reduced by postprocessing tasks. The scatter plot of miss rate versus false alarm rate is

shown in Figure 5.20. Note that the points ¿ì.re concentrated near the lower left-hand corner

of the scatter plot. Additional simulation results are provided in Appendix C.
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5.5.3 Video Sequences

Figures 5.21 and -5.22 show the segmentation results for six consecutive frames of the Car-

phone and Foremar¿ video sequences, respectively. The Carphone and Foremal? sequences

were considered as generic, and thus the threshold was set to 7 : 2.6.

Our aim, with respect to the Carphone and Foreman video sequences, is to segment the

face regions. For the Foreman sequence, the subject's face has been effectively segmented,
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5.5. Simulaúion Resulús and Discussions

however some background regions have also been segmented as skin. For the Carphone

sequence, although the amount of false alarm regions is less, small regions of the subject's

neck and face have been classified as non-skin. These observations are reflected in the plots

of Figures 5.25(a) and (b). The plots show the the false alarm and miss rates for 60 consecu-

tive frames of the Carphone and Foreman sequences. Notice that the false alarm rate for the

Foreman sequence is consistently higher than that of the Carphone sequence. The opposite

is true for the miss rates. The miss rate for the Carphor?¿ sequence is higher than that of the

Foremansequence. The average false alarm and miss rates for the 60 frames tested are given

in Table 5.3.

We now turn our attention to sign language video sequences. The segmentation results

for six consecutive frames of the Silent and lrene video sequences are shown in Figures 5.23

and. 5 .24, respectively. For still images (Section 5.5 .2) and the Carphone and Foreman video

sequences , we assumed that P(rt) is unknown, and the segmentation threshold was selected

(r : 2.6) to minimize the maximum error probability regardless of any changes in P(øs)

(Figure 5.15). In Section 5.4.3, we estimated the skin and non-skin a priori probabilities for

a sign language video frame as P(øs) : 0.15 and P(øg) : 0.85, respectively. Since we

can reasonably estimate P(as) for sign language video frames, the segmentation threshold

is set to r :2.7 (Figure 5.12).

The face and hands of the subjects in the Silent and Irene sequences have been effectively

segmented, however some background regions have also been detected as skin. False alarm

regions can be removed by change detection and connected components analysis, which will

be described in the next two chapters.

Figures 5.26(a) and (b) show the false alarm and miss rates for 60 consecutive frames

of the Silent and lrene sequences, respectively. The false alarm and miss rates for both se-

quences are reasonably low. Note that both sequences have complex background scenes. The

average false alarm and miss rates for the first 60 frames are given in Table 5.3. 'We observe

that for the Silent sequence, the average false alarm rate is lower than the average miss rate.

The strong shadow cast under the chin of the subject in the Silent sequence contributes to

the miss rate. For the lrene sequence, the average false alarm rate is higher than the average

miss rate. The main contributors to the false alarm rate are two large background regions, at

the bottom of each frame, detected as skin. The Silent sequence has a higher average miss
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l'ate than Lhe lrene sequence. In contrast, tlte lrene sequence has a higher average false alarm

. and the hands can be extracted from the sequence reasonably well.

Sequence Average Rp (7o) Average Rm (7o)

Carphone 2.8 9.9

Foreman 9.7 0.5

Silent 4.3 6.8

Irene 6.2 3.2

Table 5.3: Average miss and false alarm rates for 60 consecutive frames of the

Carphone, Foreman, Silent, and lrene sequences.

5.6 Summary

Our skin-color segmentation algorithm was presented in this chapter. Training images of

different subjects, body poses, lighting conditions, and background complexities, were man-

ually segmented into skin and non-skin classes. The skin-color distribution in the CbCrplane

was modeled as a bivariate normal distribution. Pixels were classified as skin or non-skin

based on their Mahalanobis distance. A segmentation threshold was derived for the classifier.

Simulation results for both still images and video sequences demonstrated that the algo-

rithm is capable of segmenting skin regions quite effectively. The algorithm was found to be

tolerant to different lighting conditions, and skin-color of people of different ethnicity.
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Figure 5.21: Results of the skin-color segmentation algorithm for the Carphone

sequence. Left column: Ffames 10 to 15. Center column: SDM. Right column:

Identifled skin pixels.
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Figure 5.22: Results of the skin-color segmentation algorithm for the Foreman

sequence. Left column: Frames I to 6. center column: S D AI . Right column:

Identified skin pixels.
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Figure 5.23: Results of the skin-color segmentation algorithm for the Silent

sequence. Left column: Frames 22 to 2l . Center column: S D NI . Right column:

Identified skin pixels.
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Figure 5.24: Results of the skin-color segmentation algorithm on the lrene se-

quence. Left column: Frames 12 to r7 . center column: s D luI . Right column:

Identified skin pixels.
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Figure 5.25: Miss and false alarm rates for 60 consecutive frames of the (a)

Carphone sequence, and (b) Foremnn sequence.
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Figure 5.26: Miss and false alarm rates for 60 consecutive frames of the (a)

Silent sequence, and (b) Irene seq]dlence.

rm-'- Falss

- 
l\¡liss

- 
Miss

alarm

100



Chapter 6

Statistical Change Detection

"Nothing endures but change."

Heraclitus

In this chapter, we present a new statistical change detection technique based on the f' test

and block-based motion estimation. Change detection is employed for segmenting video

frames into "changed" and "unchanged" regions with respect to the previous frame. The

unchanged regions denote the stationary background, while the changed regions denote the

moving and occlusion regions. An advantage of the proposed change detection technique is

that it is automatic in the sense that no manual input from a user is required.

A literature survey of previous research is provided in Section 6.2,the proposed statistical

change detection method is discussed in Section 6.3, simulation results are presented in

Section 6.4, andthe chapter is summarizedin Section 6.5.
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6.1 Introduction

'We derive temporal information by segmenting a video sequence into moving and stationary

regions. Since we are only interested in determining which regions in a frame have changed

due to motion, the direction of object motion and its velocity are not required. Therefore,

motion estimation and optical-flow methods, cited extensively in the literature, provide ex-

cessive information and would not necessarily improve the accuracy of our hand and face

segmentation algorithm. Besides, motion estimation and optical-flow methods are computa-

tionally expensive, and would inhibit real-time segmentation.

If the background is stationary (i.e., no camera panning or zooming)l and there are no

changes in the image acquisition parameters (i.e., camera focus etc.), taking the color or

gray-level (i.e., the luminance component) difference between two frames is an efficient way

to detect changed regions with respect to the previous frame. The grayJevel difference frame

(DF) between frames F(r,A,k) and F(*,A,k - 1) is defined as:

D F¡,,¡,a(r, A) : F (r, A, k) - F (*, A, k - 1). (6.1)

Assuming that the illumination remains constant from one frame to the next, pixel loca-

tions where D F¡,,¡,a(r , y) differ from zero indicate objects that are moving or changing their

shape. Moreover, the intensity at each pixel in the current frame is either a displaced value

from the previous frame (i.e., a moving pixel), the same value as in the previous frame (i.e., a

stationary pixel), or an uncovered-background value (i.e., an uncovered-background pixel).

These different pixel types are depicted in Figure 6.1. Furthermore, unless the objects are

textured, only the boundaries of moving objects can be observed, and not the objects them-

selves. In sign language video, the moving eyes, nose, mouth and f,ngers add texture to the

face and hands.

Non-zero differences can also occur due to camera or quantization noise. Figures 6.2(a)

and (b) show frames 13 and 14 (grayscale) of the Silent seqllence, respectively. The binary

difference frame (BDF) is shown in Figure 6.2(c), and is def,ned as

B DF¡",¡,-1(r,A) : if lDFk,k-r(*,a)l > 0

otherwise.

1

0

lThis is usually the case for sign language video set¡uences.

r02

(6.2)
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Frame k-l Frame k Stationary pixels

Moving pixels

Uncovered-background p¡xels

D¡fference frame Background pixels

Foreground pixels

Figure 6.1: Different pixel types inherent in object motion.

That is, abinary "1" is allocated to non-zero differences, and abinary "0" is allocated to zero

differences. Since the background is stationary, one would expect the background to consist

entirely of binary "0" pixels, however due to noise, the background appears very noisy. The

notion of noise is also illustrated in Figure 6.2(d), which shows the 3D plot of the absolute

difference levels in the difference frame. The moving pixels have a much higher difference

level than the stationary pixels. The histogram of the difference levels is shown in Figure

6.2(e).

The image noise is usually modeled as an additive zero-mean normal distribution (i.e.,

additive white Gaussian noise) [KCK+99, Tek95, HMBO0a, HMBO0b]. Note that the his-

togfarn in Figure 6.2(e) appears to follow a normal distribution, at least near zero. This gives

weight to the assumption that the background pixels follow a zero-mean normal distribution.

The objective of change detection is to distinguish between temporal variations caused by

noise from those caused by object motion. We refer to changed pixels as foreground pixels
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Figure 6.2: Example of frame differencing. Frames 13 (a) and, 14 (b) of the

Silent sequence, (c) B D It , (d) 3-D plot of the absolute difference levels, and (e)

histogram of the difference levels.
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6.2. Previous Researcll

and stationary pixels as background pixels. In order to distinguish between foreground and

background pixels, the difference frame can be thresholded to form a change detection mask

(C DM). Thresholding may be viewed as an operation that involves tests against a function

of the form:

g : g(r,U,Pn,n-t(r,A), DFn,n-r(r,A)), (6.3)

where p¡,,¡-r@, A) denotes some local property of the difference pixel in D F¡,,¡,-1(r, A) @.g.,

average gray-level or median). V/ith p as threshold, the change detection mask is def,ned as:

C DM¡¡,-1(*,U) :
if lDFk,k-L(*,a)l > ç
otherwise.

1

0

(6.4)

Foreground pixels are assigned a binary "1" and background pixels are assigned a binary "0".

In practice, thresholding may still yield isolated 1's in the CDM, which can be eliminated

by post-processing; for example, forming 4- or 8-connected components, and discarding any

component with a predetermined number of pixels [Tek95]. The difficulty with discarding

components if they are below a certain size is deciding what size constitutes a foreground

region, and what size constitutes residual noise.

In the next section, we present a literature survey of common change detection method-

ologies.

6.2 Previous Research

The change detection method described in tGW92l uses memory to ignore changes that

occur only sporadically over a frame sequence and can therefore be attributed to random

noise. An accumulative difference frame is formed by comparing a reference frame with

every subsequent frame in the sequence. A counter for each pixel location is incremented

every time a difference occurs at that pixel location between the reference and a frame in the

sequence. Thus when the kth frame is being compared with the reference, the entry in a given

pixel of the accumulative frame gives the number of times the gray-level at that position \ryas

different from the corresponding pixel value in the reference frame.

Rosin [Ros97, Ros98] described four different methods for selecting change detection

thresholds. Either the noise or signal (i.e., foreground pixels) is modeled, and the model
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covers either the spatial or intensity distribution charactcristics. Thc mcthods are: (a) a

es are tested by

making local intensity distribution comparisons in the two frames; (c) the spatial properties

of the noise are modeled by a Poisson distribution; and (d) the spatial properties of the signal

are modeled as a stable number of regions (or stable Euler number). In method (a), the noìse

is modeled as a zero mean normal distribution. The variance of the noise is estimated by

a robust estimation technique based on the least median of squares (LMS) method tRL87l.

A suitable threshold is chosen for an acceptable proportion of false foreground pixels (i.e.,

false alarms). Note that the decision is based on the difference level of a single pixel, not

the statistical properties of an observation window. We have tested the LMS method on

a number of synthetic (i.e., noise variance is known a priori) and real video sequences,

and found that the LMS method does not accurately estimate the noise variance, especially

when the noise variance is low. In method (b), a non-parametric method is used so that no

assumptions about the intensity distributions need to be made. The Kolmogorov-Smirnov

and the Cramer-von Mises tests are used to compare the pixel intensities in two observation

windows of the original (pre-differenced) frames. The spatial distribution of the noise is

modeled as a Poisson distribution in method (c). Since a Poisson distribution has its mean

equal to its variance, the ratio of the sample variance to the sample mean is a natural test

for that distribution, and is called the relative variance. The threshold is chosen such that

the relative variance is maximized, thereby maximizing "clumpiness" (regions of change)

and minimizing the Poisson distribution (noise). In method (d), a frame's Euler number is

used to select a suitable threshold. The Euler number is the number of regions in the BDF

minus the number of holes in those regions. At low threshold values, there will be many

regions and holes in the BDF caused primarily by the noise, and the Euler number will alter

rapidly with threshold. At high threshold values, there will be few regions in the BDF, and

the Euler number will be stable. Therefore, a suitable threshold is when the Euler number

becomes stable.

Mech and Wollborn [MW97] employed change detection to segment moving objects in

video sequences. Initially, a C DM is generated by taking the difference between two suc-

cessive frames using a global threshold. The C DM is then refined in an iterative relaxation

method that uses a locally adaptive threshold to enforce spatial continuity. Temporal stabil-
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ity is increased by incorporating a memory such that each pixel is labeled as changed if it

belonged to an object at least once in a certain number of previous C DMs. The simplifica-

tion step involves the morphological closing operator, and the elimination of small regions

to obtain the final C D M .

An automatic change detection algorithm was proposed by Neri et al. [NCRI98]. In

the preliminary stage, potential foreground regions are detected by applying a higher order

statistics test to a group of frame differences. The non-zero values in the difference frames

are either due to noise or moving objects, and the noise is assumed to be Gaussian in con-

trast to the moving objects, which are highly structured. In the case of moving background,

the frames are first aligned by motion compensation. For all difference ftames, the zero-lag

fourth order moments are calculated because of their capability to suppress Gaussian noise.

These moments are then thresholded, resulting in a preliminary segmentation map contain-

ing moving objects and uncovered background. To identify the uncovered background, the

motion analysis stage computes the displacement of pixels that are marked as changed. The

displacement is calculated at different lags from the fourth-order moment maps by block-

matching. If the displacement of a pixel is estimated at different lags, it is classified as

background, otherwise it is classif,ed as foreground. Finally, a rcgúarization phase applies

morphological opening and closing operators to achieve spatial continuity and to remove

small holes inside moving objects of the segmentation map.

Meier and Ngan tMN99l employed change detection to detect independently moving

objects in their motion segmentation algorithm. Connected components analysis is used to

suppress noise in the BDF since pixels belonging to moving objects are connected, while

noisy pixels form isolated clusters. If the size of a connected component exceeds a threshold,

it is assumed that the connected component belongs to a moving object. Unfortunately, this

method will only work if the amount of noise in the B DF is little. For example, it would be

difficult to accurately detect any foreground regions in the BDF shown in Figure 6.2(c).

A motion detection algorithm based on spatial-temporal entropy was presented in [M201].

The color variation in successive frames is measured and a spatio-temporal entropy image

(STEÐ is formed. Morphological operators are then employed to extract the moving objects

from the STEI. The authors claim that since STEI is a statistical measurement of variation,

the method is more robust to noise than methods based on change detection.
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Aach et al. [AKM93] proposed several statistical change detection methods. In one

proposal-the loeal sum ot:absolute diftèreneesjs used as ¿ test statistie-jFhe loeal+um ot'

pixel differences can be traced back to the assumption of Laplacian noise in the difference

frame. In another proposal, the camera noise is modeled as a zero-mean normal distribution,

and the chi-square test is used to detect changed regions in the difference frame. The chi-

square test requires the variance of the background population ol rn ntr. The background

population variance is estimated offline for the used camera. Since the camera noise is

uncorrelated between different frames, oo2 is equal to twice the variance of the assumed

Gaussian camera noise ø"2, i.e.,

ol : zol. (6.5)

A recursive method that automatically estimates the background population variance was

proposed by Zlliani tzilO0l. First, oo2 is estimated for the used camera, and then change

detection is performed on the DF. The areas in the DF that are declared as background

are used to estimate a new øfr. ttris allows ofi to be automatically adapted to the Gaussian

noise. Unforfunately, it is diff,cult to estimate the variance of the Gaussian camera noise for

the used camera system.

Noting the difflculty of estimating the variance of the background population, Kim et

al. [KCK+99] proposed a change detection method based on the F test. Instead of the

background population variance, the ,F test requires a sample variance of the difference

pixels in a background region. The authors did not explicitly explain how a background

region in the DF can be selected. To make the change detection technique automatic in the

sense that no manual manipulation is required, we employ block-based motion estimation to

find difference pixels in a background region of DF

6.3 Change Detection Based on the F Test

This section presents a method for thresholding the gray-level difference frame based on the

,F test [JW82, Hay88, ASW94, oST01]. In order to make change detection less sensitive

to noise, thresholds are usually calculated based on the statistics of a small region in DF,

rather than the difference level of a single pixel. Therefore, the hypothesis test is based on the

statistical properties of the samples in a square observation window, W.To form a CDM,a
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binary "1" is allocated to the center pixel in W If the null hypothesis (i.e., the hypothesis that

the difference pixels inW are drawn from the background population) is rejected, otherwise

a binary "0" is allocated. The use of a window for thresholding coffesponds to applying

a low-pass filter to the difference frame. This will cause a blurring effect in the CDM

because changes in the observation window are attributed to the center pixel in I/, regardless

of precisely where the changes occur. Figure 6.3 shows the effect of increasing the size

of W. As the size of I/ is increased, the bluning effect becomes more profound. The

blurring effect can be reduced by the Markov random field based refining method described

in [AKM93]. However, we have found that the blur does not adversely affect the outcome of

our segmentation results if a window size of 3 x 3 pixels is used (for frames of size QCIF;

see Appendix A).

Another parameter that must be considered is the significance level, a. The significance

level is the probability of detecting background pixels as foreground. The value of a is

critical, since too high a value will swamp the CDM with spurious changes, while too

low a value will suppress significant changes. A significance level of 0.01 was found to be

appropriate.

6.3.1 The F' Tþst

The ,F test is used to test if the standard deviations of two populations are equal. Suppose

that the difference pixels inW aredrawn from a normal population with variance ol. The F

hypothesis test is def,ned as:

H1 , ofi<ol (6.6)

The null hypothesis, 116, implies that o2o and ol are equal, while the alternative hypothesis,

Ifi, implies that olis less than ol. The hypothesis test is based on the notion that the intensity

variation induced by a moving object is greater than that of the background due to the higher

intensity gradient at the edge and within a moving object.

Let ,So2 (respectively, S?) be the unbiased estimator of ofr (respectively, ol), and no (re-

o3: o?,Ho
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(a) (b)

L

(c) (d) (e)

Figure 6.3: The effect of increasing the size of W. Frames A (a) and 15 (b)

of the lrene sequence, (c) W : 3 x 3 pixels, (d) W : 5 x 5 pixels, and (d)

W:7 x Tpixels.

I
J¡
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spectively, n1) be the sample size. If the null hypothesis is true, then the ratio

a2F: a 6.1)-s3
has an F-distribution with no-7 and.ra- 1 degrees of freedom [Wei99]. The F-distribution

is the ratio of two independent chi-square random variables, each divided by its degrees of

freedom no - 7 andnl - 1, i.e.,

':ffiffi' (68)

6.3. Change Detection Based on the F Test

where
q2

X?(,,_tt: (r¿o - 1)3 (6'9)' '06

and

x!(.,-t): (u- - ÐS (6'10)
' u1

are chi-square distribution with no - 7 andnl - 1 degrees of freedom, respectively.

Since hypothesis test (6.6) is an upper one-tailed test, the null hypothesis is rejected if

F ) F6,rr-1,ns-1), where Fçs,,u-r,no_r¡ isthecriticalvalueof theF-distributionwithn6-1

and n1- 1 degrees of freedom, and a signif,cance level of o. Note that the f' test does not

require the background population variance'

The sample variance of the background population must be derived from an areain DF

that does not contain any moving regions. To this end, we advocate a method based on

block-based motion estimation. The procedure is described in the next section.

6.3.2 Estimation of the Background Sample Variance

Block-based motion estimation techniques are commonly used in video coding schemes to

reduce temporal redundancies between frames. Indeed, block-based motion estimation is

a core component of the H.267, H.263, MPEG-I, MPEG-2, and MPEG-4 video coding

standards. Given a reference frame (frame k - I) and an ,n/ x l/ block in the cument frame

(frame k), the objective of block-based motion estimation is to seek the l/ x l/ block in

the reference frame that best matches (according to a given cost function) the characteristics

of the block in the current frame. The relative displacement between a block in the current

frame and a block in the reference frame is described by a motion vector (u,,uo).To reduce
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Frame k

Frame k-1

Block in
Frame k

Best Match Block
in Frame k-1

Search Window

Locat¡on of Block
in Frame k

Figure 6.4: Block-based motion estimation.

the computational complexity, the search is usually restricted to a search region around the

original location of the block in the cuffent frame (Figure 6.4). The full search algorithm

exhaustively searches the entire search window in the reference fi'ame to find the optimal

match. However, this is at the expense of higher computational cost. Various other sub-

optimal block-based motion estimation techniques have been proposed IKIH] 81, GM90,

CCJC91, LZL9\ PM96, TRRK98, HMB99I that aim to rcduce the computational cost.

Let the search range be tA pixels in both horizontal and vertical directions. V/ith a

stepsize of one pixel, the total number of candidate matching blocks in the search window

is (2r? + 1)(2R + 1). Our block-based motion detection strategy is conceprually simple.

We first choose a ly' x l/ block in frame k, and define a search window in frame k - I.

An l/ x l/ block located at the upper border of a frame is usually chosen, since we do not

expect motion at the upper border.2 Since the probability of motion at the upper bor.der is

low, the value of A is set to 7. Usually a value of A : 15 is chosen for head and shoulder

type scenes [8K95], however a large Ê value would substantially increase the computational

cost of motion estimation, i.e., from 225 searches for R. : 7 to 961 searches for A : 1b.

The full search algorithm is then employed to find the best matching block in frame k. The

2Note lhat if the block is at the border of the fr'ame, the number of candidate matching blocks is reduced.

R

R{_--=+

i(,",
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6.3. Change Detection Based on the F Test

procedure is depicted in Figure 6.4. The matching of the blocks can be quantif,ed according

to various criteria including the maximum cross-correlation, the minimum mean square effor,

the minimum mean absolute error, and maximum matching pixel count. The mean absolute

enor (M A-E) was chosen as the matching cost function because it is a popular choice for

hardware implementation [Tek95]. The M AE is defined as:

1
M AE(u,,uo) t lF(r,a,k) - F(r r u,,u I u,k - 1)1, (6.11)

N2
(ur,ur)eB

where 6 denotes an ly' x l/ block, for a set of candidate motion vectors (u*, ur) . The estimate

of the motion vector is taken to be the value of (u,,u) that minimizes the M AE, i.e.,

lû,ûd' - ars ëiûtMAÐ(u*,uy). (6.12)

If the motion vector is zero, i.e.,lû, ûr]' : [0 0]t, we assert that the corresponding ,Àú x l/

block in DF does not contain any foreground pixels. However, if the motion vector is non-

zero, we assume that the corresponding block in DF contains foreground pixels. If the

motion vector is non-zero, another block in frame k is chosen, and the above procedure

repeated. Since a block was chosen at the upper border of a frame where the probability of

motion is low, motion estimation usually had to be performed only once (for block sizes of

8 x 8, see below). The procedure rarely had to be performed more than twice.

The assumption of a common displacement (u*,u) for all pixels in the block implies that

a local smoothness constraint is imposed on the motion vector field. The local smoothness

constraint is only satisfied for small block sizes. The choice of the dimensions of the block

is the result of tradeoffs among three conflicting requirements, specifically [8K95],

1. a small value for .ô/ is preferable, since the smoothness constraint would be easily met

at this resolution;

2. a small value for N would reduce the reliability of the motion vector (u*,uo), since

few pixels would participate in the matching process; and

3. fast algorithms for finding motion vectors are more efficient for larger values of l/.

In block-based motion estimation, block-sizes of 4 x 4, 8 x 8, and 16 x 16 pixels are

typically considered. In order to determine which block-size to employ, we performed full
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search motion estimation on various video sequences and analyzed the resulting motion vec-

tors. For a block=size of 4 x 4 pixels, we found that non-zero mstion vectsrs often oceur

in regions where motion is not expected. An example is shown in Figure 6.5. The motion

vectors (blue arrows) are superimposed on top of frame 11 of the Salesman sequence. Blue

dots indicate a motion vector of [0 0]" for that particular block (with reference to frame

l2).Inthe Salesman seqùence, the subject moves while the background is stationary. Even

though the background is stationary, a significant proportion of the motion vectors in the

background regions are non-zero. This is because small block-sizes reduce the reliability of

the motion vectors. As a result, the motion estimation procedure may have to be performed

a number of times. This adds to the computational cost of the change detection procedure

and is undesirable.

In Figure 6.6, block-based motion estimation has been performed using block-sizes of

8 x 8 pixels. Notice that the proportion of non-zero motion vectors in the stationary regions

is significantly less. The motion estimation results for block-sizes of 16 x 16 pixels are shown

in Figure 6.7. We found that for block-sizes of 16 x 16 pixels, the motion vectors in moving

regions are unreliable. In Figure 6.7, even though the hand is moving, the motion vector for

the hand region indicates no motion.

Basedontheabovediscussions,ablock-sizeofNxly':SxSpixels(i.e.,64samples)

was employed to perform motion estimation. Therefore, from (6.7), the F-distribution has

no - I : 8 and nt - L : 63 degrees of freedom. For a significance level3 of 0.01, and

no-I:8and nt-I:63degreesof freedom,thecriticalvalueof f'is{0.0r,03,8) : 5.024.

The following is a summary of the change detection procedure based on the F test.

1. Compute the background sample variance,So2 using block-based motion estimation

2. Compute the sample variance ,Sr2 of the difference pixels in observation window I4l.

3. Compute the test statistic (6.7), where the degrees of freedom are 8 and 63

4. If F > 5.02, the center pixel in I4l is declared a foreground, otherwise it is declared a

background.

3Recall that the signifìcance level is the probability ofdetecting background pixels as foreground.
aThe critical value was derived using the Matlab "finv.m" function.
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Figure 6.5: Block-based motion estimation between frames 11 and 12 of the

Salesman sequence using block-sizes of 4 x 4 pixels.
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Figure 6.6: Block-based motion estimation between frames 1l and 12 of the

Salesman sequence using block-sizes of 8 x 8 pixels.
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Figure 6.7: Block-based motion estimation between frames 11 and 12 of the

Salesmnn sequence using block-sizes of 16 x 16 pixels.
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5. Repeat steps 2 to 4 for all pixel locations in DF

6.4 Simulation Results and Discussions

In this section, we present the simulation results. In Section 6.4.1, simulation results for syn-

thetic frames are presented, and in Section 6.4.2 simulation results for real video sequences

are presented.

6.4.1 Synthetic Frames

Two pairs of synthetic frames (SF1 and SF2) were created. The size of each frame was set

to 200 x 200 pixels. For SF1, the stationary background was set to a constant gray-level of

128, and the moving object (of size 75 x 75 pixels) was set to a constant gray-level of 200.

Gaussian noise of mean-zero and variance 2 was then added to each frame.s The So2 values

are given in Table 6.1. The original frames are shown in Figures 6.8(a) and (b), and the

change detection mask is shown in Figure 6.8(c). The bright areas indicate the foreground

regions. Note that only the occlusion regions of the moving object are marked as changed.

This is because there is a large intensity gradient at the edge of the moving object, but no

intensity gradients within the moving object. Thus, regions within a moving object will be

marked as changed only if they are textured.

For SF2, the stationary background was also set to a constant gray-level of 128. However,

instead of a non-textured moving object, a textured moving object (of size 75 x 75 pixels)

was used. The original frames are shown in Figures 6.9(a) and (b), and the change detection

mask is shown in Figure 6.9(c). Gaussian noise of mean-zero and variance 2 was also added

to each frame. This time regions within the moving object are also marked as changed since

the moving object is textured.

6.4.2 Real Frames

This section presents the simulation results for real video test sequences. Simulations results

for 10 consecutive gray-level frames of the Silent, Irene, Salesman, and Mother & Daughter

5Therefore the variance of the background population in Df is 4.
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(a) (b)

(c)

Figure 6.8: Synthetic frames SFr. (a) Frame 1, (b) frame 2, and (c) C DM.
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(a) (b)

Figure 6.9: Synthetic frames SF2. (a) Frame 1, (b) frame 2, and (c) C DM .

(c)
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Sequence s3

SFr 3.4

SFz 3.7

Thble 6.1: Sample variance values for the synthetic frames tested.

Sequence so'z

Silent 0.35

Irene 0.62

Salesman 0.92

Mother & Daughter 0.58

Table 6.2: Sample variance values for the real sequences tested.

test sequences are presented. The Sfr values for the sequences are given in Table 6.2. The

same ,So2 value was used to obtain the C DMs for each sequence, i.e., motion estimation was

performed only once for each sequence. This would reduce the computational cost of change

detection since block-based motion estimation is computationally expensive. In addition to

the four test sequences mentioned above, we have also tested other video sequences, however

due to the lack of space, these results are not presented here.

Change detection results for the Silent and lrene sign language test sequences are shown

in Figures 6.10 and 6.11, respectively. The bright areas indicate the foreground regions.

Since the test statistic is the ratio of the variance estimate of the difference pixel in the

observation window to the variance estimate of the background, the value of the test statistic

would be large when the window passes over moving objects. Sign language is characteúzed

by the motion of the mouth, eyes, face, and hands. Since these regions are textured, we would

expect the hand and face objects to be marked as foreground in the C DM. The foreground

regions cover the face and hand objects reasonably well, with little residual noise (i.e., false

alarms) present in the C DMs.

Note that only some parts of the chest area of the subject in the Silent sequence are

marked as changed. This is due to insufficient texture in the moving regions. It is difficult to

detect intensity changes in moving objects if there is insufficient texture, as was illustrated
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' , for synl"hel"ic frames above. On the other hand, the clothing of the subject in the lrene se-

r - quence is textuled, and consequently the chest ale¿ olthe subject is r¡rarke(Las changed. The

foregroundregionsontherighthandsideofthe CDMs(i.e.,rightsideofthemovingperson)

are due to shadow. Shadows can be eliminated from change detection masks using shadow

and reflection cancellation strategies devised in [RE95, ZC99], however these strategies have

not been employed in this thesis.

The results for the Salesman and Mother & Daughler sequences are shown in Figures

6.12 and 6.13, respectively. The Salesman sequeîce represents a typical videoconferencing

sequence. The salesman is holding an object which he is trying to describe, and in the

process, moves the object and turns it around. In the Mother & Daughter sequence, the

head of the mother has a relatively large motion (mostly small rotations), while her body

exhibits little motion. The daughter also exhibits little motion throughout the sequence. The

reground regions in the C DMs cover the moving subjects reasonable well. There is very

little residual noise in the CDMs of the Mother & Daughter sequence, however there is

some residual noise in the C DMs of the Salesman sequence.

6.5 Summary

In this chapter, we considered the problem of segmenting video frames into foreground and

background regions. A statistical change detection technique based on the ,t'test and block-

based motion estimation was proposed. The background pixel population was modeled as a

zero-mean normal distribution. The F test compares the sample variance of the difference

pixels in W with the sample variance of background pixels. To evaluate the background

sample variance, we devised a method based on block-based motion estimation. 'We 
observed

that the proposed change detection technique detects textured moving objects (e.g., the face

and hands) effectively.
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(a)

(b)

Figure 6.10: Change detection masks for 10 consecutive frames of the Silent

sequence. (a) Original gray-level frames, and (b) C DMs.
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(a)

(b)

Figure 6.11: Change detection masks for l0 consecutive frames of the lrene

sequence. (a) Original gray-level frames, and (b) CDMs.
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(a)

(b)

Figure 6.122 Change detection masks for 10 consecutive frames of the Salesman

sequence. (a) Original grayJevel frames, and (b) C DM*
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(a)

(b)

Figure 6.13: Change detection masks for f,ve consecutive frames of the Mother

& Daughter sequence. (a) Original grayJevel frames, and (b) C DMs.
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Chapter 7

Segmentation and Tþacking

"The moving finger writes; and, having writ, moves on..."

- Omar Khayyam (The Rubaiyat)

In the first part of this chapter, the methodology used to generate the face and hand segmen-

tation mask (FfI SM) is presented. In the second part of this chapter, the techniques used

to detect and track the face are described. The F H S M generation method is discussed in

Section 7.1, and face detection and tracking is discussed in Section 7.2. Simulations results

are presented in SectionJ.3, and the chapter is summarizedin Section 7.4.
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7.1 FHSM Generation

The methodology used to generate the face and hand segmentation mask is described in this

section. To generate the F H S M, color and motion information from the skin detection mask

(S D M) and the change detection mask (C D M ) are utilized. We first note that the skin-color

regions in a frame arelocalized in the SDM. Also, as noted previously, sign language is

charucterized by the motion of the arms, the hands, and the face (including the eyes and the

mouth).

Moving objects entail intensity changes between consecutive frames, which are marked

as foreground in the CDM. Thus, the CDM can be used to separate the moving skin-

color regions from the stationary skin-color regions in the SDM. The FHSM is a binary

map where a binary "1" indicates a moving skin-color region, and a binary "0" indicates a

background pixel. The F H S M is analogous to the VOP in the MPEG-4 standard (Section

2.2.2).r The postprocessing stages are described below.

To generate the F H S M, connected components labeling [HS92] is first performed on

the SDM to f,nd the connected components (with 8-neighborhood connectivity). If the size

of a connected component is less than a certain threshold, we assume that it is a false alarm

and eliminated from the S DM. To determine a suitable threshold, we must examine the size

of the face and hand objects in the sequence. We note that the size of the face object remains

fairly constant throughout a sign language sequence, however the size of the hand objects

vary depending on their position. Figure 7.1 shows frame 218 of the Silent sequence. The

size of the right hand is 243 pixels, and the size of the left hand is lll . After an extensive

analysis of different hand positions and their conesponding sizes in both sign language video

sequences (i.e., Silent and lrene), we found that a suitable threshold is 100 pixels. This

threshold value was derived empirically. Thus, if the size of a connected component in the

S DM is below 100 pixels, it is assumed to be a false alarm and discarded.

To identify the moving skin-color regions, the skin-color regions in the SDM are pro-

jected onto the C D M, as shown in Figure I .2. When the majority of a connected component

in the SDM is covered by a foreground region in the CDM, the connected component is

declared as a moving skin-color region. We expect the moving skin-color regions to repre-

lIn this case, the face and hand objects represent a VO.
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7.1. FHSM Generation

Figure 7.1: Frame 218 of the Silent sequence, indicating the hand objects.

sent either the face or hand objects, however the F H S IVI may also contain false alarms due

to the following teasons:

1. Moving skin-color regions due to clothing or hair

2. Skin-color regions in the uncovered background. The uncovered background areas are

marked as changed in the C D NI . To overcome this, the uncovered background areas

must be identified, e.g., [MN98a].

3. Shadows produced by moving objects will entail intensity variations that are marked

as changed. This may result in false alarms if a skin-color region coincides with a

foreground region associated with shadows. To overcome this, shadow cancellation

strategies can be employed, e,g., [RE95,ZC99l.

The face object may contain holes due to the presence of the eyes, mouth, and eyebrows.

In addition, "bright spots" and shadows may also produce holes in the face and hand objects.

To fi|Ithese holes, we employ the morphoLogical closing operator [HS92, Cas96]. Morpho-

logical closing has the effect of filling small and thin holes, connecting nearby regions, and

generally smoothing the boundaries of regions without significantly changing their areas.

Closing is the process of dilation followed by erosion.

Erosion is defined by [Cas96]:

E:B8S: {*,!tlS,,, qB}, (7,1)

where B and S denote the binary image and structuring element, respectively, and are defined

on a2D Cartesian grid. The parameter S",, denotes the structuring element after it has been
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Figure 7.2: S D NI projected onto the C D AI

translated so that its origin is located at (r,'y). According to (7.1), the binary image E that

results from eroding B by S is the set of points (r, y) such that if S is translated so that its

origin is located at (r , y) , then it is completely contained within B .

Dilation is defined by [Cas96]:

D : B OS : {r,,AlS,,o aB + Ø} (7.2)

That is, the binary image D that results from dilating B by S is the set of points (2, y) such

that if S is translated so that its origin is located at (r,y), then its intersection with B is not

empty. Since closing is the process of dilation followed by erosion, it is defined by:

BoS:(B@S) øS (7.3)

We found that a large structuring element would merge nearby regions, even though they

may represent different objects. Figure 1.3(a) shows frame 16 of the Silent sequence, and

Figures 1.3(b), (c), and (d) show the result of the morphological closing operator applied

to the corresponding F H S AI with circular structuring elements of varying diameters. The

hand and face objects merge if a structuring element with a diameter of nine pixels or higher

is applied. We also found that a small structuring element would not effectively fill holes

in some cases. A circular structuring element with a diameter of 7 pixels was found to be

most effective in filling holes, while at the same time reducing the chances of nearby regions
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merging. Circular structuring elements tend to promote the formation of smooth and curved

object boundaries, which closely resemble those of real objects. The block diagram of the

F H S M generation process is depicted in Figure 7.4.

7.2 Face Detection and TFacking

This section presents our face detection and tracking techniques. It may sometimes be nec-

essary to discriminate between the face and the hands in a video sequences. This will allow

the face and the hand objects to be coded independently. For example, a sign language video

codec may have a "lip-reading" mode tSSOll. In this mode, the face is coded at a higher-bit

rate than the hands for a better perceptual quality. People who have become deaf late in life

usually find it diff,cult to communicate via sign language, but can lip-read. By coding the

face ata higher bit-rate, people would be able to lip-read more effectively. Consequently, we

need a method to detect the face in the video sequence. Once the face is detected, a reference

F H S M is formed and is used to track the face in subsequent frames of the sequence.

Face detection has received considerable attention among researchers in recent years. A

wide variety of techniques have been proposed, ranging from simple edge-based methods to

composite high-level approaches utilizing advanced pattern recognition methods. There are

many problems that are closely related to face detection. Face localization aims to determine

the image position of a single face; this is a simplified detection problem with the assumption

that an image contains only one face [MPgTl.Infacialfeature detection,the goal is to detect

the presence and location of features such as eyes, nose, nostrils, eyebrows, mouth, lips,

ears, etc. with the assumption that there is only one face in the image [CTB92]. Face

recognition or face identification compares an input image against a database and reports a

match tWFKM97l. The aimof facial expression recognitionisto identify the mood or state

(e.g., happy, sad, angry, etc) of humans [DBH+99]. Surveys on face detection methods can

be found in [HL01] and [YKA02].

In this section, we concentrate on the detection of faces in sign language video sequence.

The task of face detection in sign language video poses certain unique challenges. These are

discussed below.
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(a)

(b) (c) (d)

Figure 7.3: The effect of varying the size of the structuring element. (a) Frame

16 of the Silent sequence, (b) structuring element with a diameter of 7 pixels, (c)

structuring element with a diameter of 9 pixels, and (d) structuring element with

a diameter of 1l pixels.
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Figure 7.4: Block diagram of the FH SM generation process.
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7.2.1 Face Detection

One way to detect the face in a frame is components

in the F H S M . Intuitively, the face would have the largest size, however if a subject has

large parts of an arm exposed, the arm may have alarger size than the face and thus result in

inaccurate detection. Also, if the distance between the camera and the hand is significantly

shorter than the distance between the camera and the face, the hand may appear dispropor-

tionately larger.

In order to avoid the above problems, we will use shape-features to detect the face in a

frame. Three tests have been devised to make this differentiation: orientation, aspect ratio,

and solidity. In sign language video, the head is typically located in the upper half of a frame.

Therefore, the tests are restricted to connected components that have 5O7o or more of their

area in the top half of a frame.

To detect the face in a video frame, Menser and V/ien [MW00b] (see Section 5.2) also

employed shape-features in their algorithm. The authors considered the following shape-

features: aspect ratio, solidity, andcompactness. Let D, and Do denote the width and height,

respectively, of the bounding rectangle of connected component C. The width and height

are measured with respect to the r and g/ axes (Figure 7.5). The aspect ratio, solidity, and

compactness are given by:

A: Dt, 
(7.4)

5 : Ðg''x't 1, 
(7.5)DrDa '

and

g:D@g).r', (7.6)På)
respectively, where P¿ is the perimeter of C. Unfortunately, (7.4) and (7.5) do not take into

consideration the orientation of C. Since the head can tilt during signing, (7.4) and (7.5)

will not produce reliable results. Compactness (also called cicularity) is used to remove

connected components with complex contours. Equation (7.6) is minimum for a circle. The

connected component that contains the head object may also contain parts of the hair and

neck, and therefore possess a complex contour. As a result, (7.6) is not suitable for detecting

faces in a frame. Our orientation, aspect ratio, and solidity tests take into consideration
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Dy Bounding
Rectangle
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Connected
Component

Figure 7.5: The bounding rectangle of a connected component as proposed by

Menser and Wien (2000).

the orientation of C and are therefore better suited to face detection in sign language video

sequences,

After detecting the face object ina FHSNI, areference FHSNI is formed. The ref-

erence FH S M is then tracked in subsequent frames of the video sequence (Section 1.2.2).

There are two reasons why face tracking is necessary. First, it is computationally expen-

sive to perform all three tests for every frame in the sequence. Second, if the face and a hand

overlap during signing, they will form one connected component in the F H SNI (e.g., Figure

7.6). This occurs frequently in sign language video sequences. The three tests are designed

to detect the face object, and are not reliable when the face and hand objects form one con-

nected component. In order to detect the face object, the connected component that contains

the face object must be detected, and to do this, face tracking must be employed, The ob-

jective of face tracking is to detect the face (or the connected component containing the face

object) in subsequent frames of the video sequence, and to establish a correspondence of the

face object between frames. The tests a¡e discussed below.
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(a) (b) (c)

Figure 7.6: Face and hand objects forming one connected component. (a) Frame

22 of the lrene sequence, (b) F HSIVI, and (c) FHSIUI showing the identified

skin pixels.

The Orientation Test

The first test is the orientation test. The center of gravity of a connected component C is

given by [Jai89]:

þ:,y)ec

and

'4, (7.8)
(n,y)ec

where N denotes the number of pixels in C. The (p, q) central moments become:

tp,q- f f"-n)'(u-ù,. (7.s)
(n,y)ec

Orientation is defined as the angle of axis of the least moment of inertia, and is obtained

by minimizing with respect to / the sum:

1

¡/ t .lt -

I(ó): t D2(r,y): I tly -,¡j)cosþ_ (r_ n)sinþ12

t_1'll: 
-"N

(7.7)

(7.10)
\?JrU )t:ç (r,y)ec

The orientation can be computed by utilizing the central moments tr,o of the connected

component

t36
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Figure 7.72 Orientation of a connected component.

\ùy'e have observed that the head can typically tilt in the range Ó =70" to 110' during sign-

ing. Therefore, if the orientation of a connected component is not within this range, it cannot

be the face. To determine the orientation range, we performed an empirical study of head

orientations in the Silent and lrene video sequences, and in short sequences (usually three

frames long) found in "animated" sign language dictionaries lLap}2, Sti97l. In each case,

the face objects were manually segmented for various signs, and their orientations computed.

An example of a short sign language sequence (from [Lap02]) is shown in Figure 7.8.

x

Figure 7.8: An example of a short sign language sequence
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The Aspect Ratio Test

{he seeond test deals with the aspeet ratio (A - a/ b) ofiCìwhere a and b denote the lengths

' : of the major and minor axes, respectively, of the besi-fit ellipse (Figure 7.9(a)). W'e have

observed that the aspect ratio of the face and any exposed neck, range from 1.6 to 2.6.

This range was determined based on an empirical study of more than 50 different faces.

Therefore, any connected component outside ofthis range, cannot represent the face object.

The parameters a and b are determined by computing the moments of inertia of C. The least

and greatest moments of inertia for an ellipse are

I^i, abs,
,17

4
(7.12)

and

I*ot : Lo,th (7.13)
4

For a given þ,the above moments can be calculated as

Ik,,: t f(y - y)cosó - (" - r)sinþ12 , (7.14)
(r,v)ec

and

The Solidity Test

The third test is the solidity test. Solidity is defined as the area of C divided by the area of the

bounding rectangle. The bounding rectangle is the smallest rectangle enclosing the object

I'-o, :. 
Ð [(s - s)stnó - (" - n)cosþ]2 . (7.15)

\Í,4 )eL

For a best-fit ellipse we want Imin : Ilun and I^o, : Ifio*,which gives the lengths of ø and

b, respectively, as:

, : (!\i ¡(tk".)'làr."/ l-Ç) ' (7'16)

and

h: (!\i ¡u*,,')'lär."/ I ,,-; I (7 '17)
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Figure 7.9: Shaped based features. (a) Best fit ellipse, (b) bounding rectangle.
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Test Acceptable Range

Orientation

Aspect ratio 1.6 < A<2.6
Solidity 0.55<S<0.85

Thbte 7.1: Acceptable ranges for the face detection tests.

that is also aligned with its orientation. To find the bounding rectangle the transformation

rcosS * g sin@

-rsin$*gcosþ (7.18)

is used on the boundary points of C to search for e^in, emo* B^¿r, and þ^o*. These give the

locations of points Ar, Ar, A2, and Aa, respectively. Based on the preceding formulations,

the length and width of the bounding box are given by 16 : emar - a^¿n znd u)b : þ*o* -
By,¡¿n, rëspêctively. Solidity is given by the following ratio:

s Dç,,r¡.rI
(7.1e)

luwu

Face objects normally maintain a solidity in the range of 0.55 to 0.85. Again, this range

was determined based on an empirical study of more than 50 different faces. If the fingers

of a hand are spread for example, its solidity will be low. The acceptable ranges for the

orientation, aspect ratio, and solidity tests are given in Table 7.1.

7.2.2 Face T[acking

After the reference FHSM is formed, the face object is tracked in subsequent frames. In

sign language video, the head tends to maintain a fairly constant position throughout a se-

quence, similar to typical head and shoulder sequences. Thus, the same reference FH SM
can be employed to track the face. However, if in certain situations the position of the head

does change significantly, a new FHSM may need to be formed after a certain number

of frames. We have experimented with two tracking techniques, namely region projection

o

p
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and Euclidean distances. In its present state, our tracking technique is not able to separate

overlapping face and hand objects.

Region Projection

LetCp denote the face object in the reference FHSM, andCi,¡,i : 7,...,C, denote the

connected components in the current F H S M (F H S Mù. In the region projection technique,

the reference FH SM is projected onto Í',FIS M*. The projected Cp provides an estimate of

the face object in F H S Mn. Let N¿o¡¿,,* be the number of pixels in the union Cp ÀC¿,n of the

two connected components C¡ andC¿,¡r. The connected componentC¿,¡, that gives the highest

Ncrncn,* is then designated as the face object or the connected component that contains the

face object in FHSM*. Figure 7.10(a) shows the contour of Cp projected onto FHSM¡,.

Note that the contour of Cp coincides with the face object in F H S M6

Euclidean Distances

In the second method, we consider the Euclidean distance between Cr and Cn,r,'i : l, ..., C

The Euclidean distance between Cp and Cu,k,'i: 1, ..., C, is given by:

r(Cp,C¿,n): (*ro - rcc,h)2 - (ur, - uro,)'' (7.20)

Since the face maintains a fairly constant position throughout the video sequence, the

connected component in F H S Mn that minimi zes (7 .20) is the face object or the connected

component that contains the face object. Tracking based on Euclidean distances is more

computationally expensive than projection-based tracking, since the center of gravity (2, g)

must be computed for each connected component C¿,¡, in order to calculate the Euclidean

distance. Figure 7.10(b) depicts the Euclidean distances between Cp aîdC¿,¡,.

7.3 Simulation Results and Discussions

The simulation results are presented in this section. Section 7.3.1 presents the simulation

results for FHSM generation, and Sectionl.3.2 presents the simulation results for face

detection and tracking.
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(a)
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Figure 7.10: Face tracking. (a) contour of Cp projected onto trÉ1,9 IVI¡,, and. (b)

the Euclidean distances between Cp and Ci,¡.
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7.3.1 FHSM Generation

The change detection masks for frames 218 to 223 of the Silent sequence, and frames 210

to 275 of the lrene sequence are shown in Figures 7 .ll and 7.13, respectively. Note that the

face and hand objects are well covered by the foreground regions, and there is little residual

noise in the C DMs.

Figures 7.12 and 7.14 show the SDMs and the FHSMs for six consecutive frames

(same as the ones for the C D Ms) of the Silent and Irene sequences, respectively. The S D M s

for both the Silent (second column, Figure 7 .12) and Irene sequences (second column, Figure

7.14) contain false alarms. This is due to some background areas with a similar color to that

of skin. For the Silent sequence, most of the false alarms have been successfully discarded

(third column, Figure 1.12), since their size is less than 100 pixels. For the lrene sequence,

there are two false alarm regions that still remain after connected components analysis. This

is because their size is larger than 100 pixels. However, these regions reside in stationary

background, and can therefore be eliminated by the use of motion information. We observe

that the hair of the subject in the lrene sequence has been detected as skin. We do not

expect this to significantly affect the performance of a content-based video coder. Moreover,

we are not aware of any skin-segmentation technique that can successfully eliminate skin-

colored hair that has formed one connected component with the face. The F H S M s for the

sequences are shown in the fourth column of Figures 7 .72 andT .14. The false alarm regions

in the stationary background have been successfully eliminated'

Figures 1.15(a) and (b) show the false alarm and miss rates for 60 consecutive frames

(same as the ones tested in Chapter 5) of the Silent and Irene sequences, respectively. The

aveÍagefalse alarm and miss rates are given in Table 7.2. Compared to the rates in Table 5.3,

the average false alarm and miss rates for both sequences are lower after postprocessing. This

is understandable since the use of motion information and connected components labeling

has effectively eliminated most of the false alarm regions, and the morphological closing

operator has filled the holes in the face and hand objects'
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t
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l¿¡î

Figure 7.11: Change detection masks: Silent sequence. First column: Original

gray-level frames. Second column: CDMs. Third column: Identified fore-

ground pixels.
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Figure 7.12: Skin and hand segmentation masks showing the identified skin

pixels: Silent sequence. Firstcolumn: Original frames. Secondcolumn: SDNIs.

Third column: SDNIs after connected components labeling. Fourth column:

F ÍI S IVIs.
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t

Figure 7.13: Change detection masks: Irene seqlence. First column: original

frames. Second column: C D NIs. Third column: Identified foreground pixels.
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Figure 7.L4: Skin and hand segmentation masks showing the identified skin

pixels: Irene seqtence. First column: Original frames. Second column: S D Ms.

Third column: SDNIs after connected components labeling' Fourth column:

F LI S Als.
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Sequence Average Rr (Vo) Average Ru (Vo)

Silent t.4 5.7

Irene 2.4 3.0

Table 7.22 Average miss and false alarm rates for 60 consecutive frames of the

Silent, and Irene sequences after postprocessing.

7.3.2 Face Detection and Tracking

As already noted, the face detection tests may fail if the face and hand objects overlap. For

a connected component to be identifìed as a face object, it must comply with the specifi-

cations listed in Table 7.1. The test results for the face and hand connected component in

Figure 1.6(b) are given in Table 7.3. The connected component has a solidity of only 0.4,

which is outside the acceptable solidity range. Note that the test values for the orientation

and aspect ratio are in the desired range.

A reference FHSNI was formed at the start of each sequence. To form a reference

F H S NI , all connected components in the top half of the cunent Ir H S lvI were tested. [f

face detection failed (i.e., none or more than one of the connected components complied

with the specifications in Table 7.1), the next frame in the sequence was tested. The face was

then tracked in subsequent frames . The reference F H S NI s are shown in Figure 7. 1 6.

(a) (b)

Figure 7.16: Reference FÍI S AtIs. (a) Silent sequence, and (b) Irene seqtence

Both tracking techniques proved to be effective, and produced the same results. Tracking

results (using the region projection technique) for six consecutive frames of the Silent and
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Test Value

Orientation :14.1:

Aspect ratio 2.4

Solidity o.4t

Tâble 7.3: Face detection results for the face and hand connected component in

Figure 7.6(b).

Irene seqtences are shown in Figure 7.17. The contours indicate the outline of the connected

components containing the face object. However, since the computational cost of region pro-

jection is lower than Euclidean distances, the region projection technique is recommended.

7.4 Summary

This chapter presented a method for the generation of the F H S M . Connected components

labeling was performed on the S D Ms to remove connected components of 100 or less pixels,

respectively. These connected components can be generally attributed to false alarms. After

connected components labeling, the SDM was then transposed onto the CDM and the

moving skin-color regions detected. The morphological closing operator was applied to the

F H S M to fill any holes present in the connected components.

In the second part of this chapter, we presented techniques for the detection and tracking

of the face. Shape features were used to detect the face object in a FHSM. Tracking

methods based on region projection or Euclidean distances were then employed to track the

face in subsequent frames.
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.¿ -'

(a)

(b)

Figure 7.172 Face tracking results for six consecutive frames of the (a) Silent

sequence, and (b) Irene seqtence.
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Chapter I

Conclusions and Future Work

"So Long, and Thanks for all the Fish."

The title of a book by Douglas Adams

We summarize the major findings presented in this thesis, and present ideas for feature re-

search.
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S.L Conclusions

It was observed by Schumeyer [Sch98] that for effective transmission of sign language video

over low bit-rate channels, content-based coding strategies are required. This is mainly due

to the presence of rapid hand and arm motion in sign language video, and the necessity of

smooth motion perception. Content-based coding requires the segmentation of the video

sequence into different objects, which are then independently coded and transmitted. In

this way, more resources can be allocated to the perceptually important objects. Besides

improving coding performance, the content-based manipulation of video would also enable

other functionalities, such as improved error-robustness, and scalability. In sign language

video, the perceptually important objects are the face and hands. Therefore, the goal of this

thesis was to segment the face and hands in sign language video sequences. The face object

was then detected in a reference F H S M, and then tracked throughout the sequence. This

would have applications in lip-reading, where more resources must be allocated to the face

object.

8.1.1 Skin-Color Segmentation

The skin-color segmentation algorithm was presented in Chapter 5. We observed that the

YCbCr color space provides an effective use of chrominance information for modeling the

human skin-color. Another useful aspect of the YCbCr color space is that it is employed

in digital video. We observed that the skin pixels of people from different descent occupy

similar regions in the CbCr plane, and therefore the same skin-color model can be applied to

segment various skin types. To generate a skin-color model, training images were manually

segmented into skin and non-skin classes. The skin-color class was modeled as a bivariate

normal distribution in the CbCr plane. Image pixels were classified as skin or non-skin based

on their Mahalanobis distance. The classification threshold was derived by considering the

probability of classification error. If the a priori probabilities of each class are known, the

segmentation threshold is derived by minimizing the probability of classification error. How-

ever, if the a priori probabilities cannot be estimated with any certainty, then the minimax

test can be used to derive the segmentation threshold. The skin detection mask (,SDM) is a

binary map that indicates skin and non-skin color regions.
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The proposed algorithm was tested on both still images, and video sequences. The results

were evaluated both qualitatively and quantitatively. For a quantitative assessment of the re-

sults, we manually segmented each training image into skin and non-skin classes, and com-

pared the manually segmented images with the automatically segmented images. The false

alarm and miss rates were evaluated for each frame. The simulation results demonstrated

the effectiveness of the proposed algorithm in segmenting skin-color regions in images of

different subjects, body poses, lighting conditions, and background complexities.

8.1.2 Statistical Change Detection

In Chapter 6 we proposed a change detection method based on the F test and block-based

motion estimation. The proposed technique extended the change detection method proposed

by Kim et at. IKCK+991. Change detection is employed for segmenting video frames into

"changed" (foreground) and "unchanged" (background) regions with respect to the previ-

ous frame. The unchanged regions denote the stationary background, while the changed

regions denote the moving and occlusion regions. The foreground and background regions

are represented in a change detection mask C DM.

The background difference population was modeled as a zero-mean normal distribution.

The ¡' test compares the sample variance of the difference pixels in the observation window

with the sample variance of background pixels. To evaluate the background sample vari-

ance, we employed a technique based on full search block-based motion estimation. The

simulation results were presented in Section 6.4. The simulation results demonstrate that the

proposed method can detect hand and face motion in sign language sequences quite effec-

tively.

8.1.3 FHSM Generation' Face Detection' and TFacking

Chapter 7 developed methods for F H S M generation, and face detection and tracking. The

F H S M was generated based on information from the skin detection mask (S D M) and the

change detection mask (CDM). Connected components labeling was first performed on

SDM to remove connected components of 100 pixels (with 8-neighborhood connectivity).

Experimental datasuggests that these regions can generally be attributed to false alarms. The
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FHSIUI was theu gencral.etl by comparing the CDIII and the SDIUI. The morphological

olosrng operatorr/as applied to the.EHSM to frll any holes presenlin the face and hand

objeets. Simulation results demonstrate the effectiveness of the F H S M generation process.

We then turned our attention to face detection and tracking. The face object was detected

using shape features, and a reference F H S M formed. The referen ce F H S M was then used

to track the face object in subsequent frames. It was observed that during sign language,

the position of the head does not vary much, thus it was possible to use the same reference

F H S M throughout the sequence. Tracking techniques based on region projection and Eu-

clidean distances were investigated. It was discovered that when a hand touches or partially

covers a part of the face, the face region cannot be detected successfully. Both tracking

methods were successful in tracking the head object.

8.2 Future Work

Unlike the face and hand segmentation scheme proposed by Schumeyer [SHB97, SB98,

Sch98l, our algorithm does not require a separate face detection algorithm to generate a

skin-color model. The face detection algorithm imposes an extra overhead on the overall

algorithm, and does not guarantee that reliable skin training pixels can be obtained. To obtain

skin and non-skin training pixels, Schumeyer manually segmented a frame from the video

sequence to be segmented and compressed, and then modeled the skin and non-skin color

distributions based on the manually segmented training pixels. Obviously, such a method

is not suitable for an automatic system, and its only useful purpose is to test the viability

of content-based coding of sign language video sequences. Rather, our approach builds

a universal skin-color model, taking into consideration different skin-colors and lighting

conditions. Also, our algorithm takes advantage of motion information to eliminate false

alarms in the background. Of course, we will not declare that our study of face and hand

segmentation problem in sign language video is a solved problem. Thus, there are several

avenues of investigation that we feel will lead to future improvements in hand and face

segmentation:

o Texture can be used as a third cue to provide a more effective segmentation of the face

and hands. As eluded to in Section 6.1, facial features such as the eyes and mouth add
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texture to the face object. Also, the fingers add texture to the hand object.

o Shadow cancellation strategies can be employed to identify foreground regions in the

C DM that are due to shadow and not due to moving objects. Shadows may lead to

false alarms if a shadow foreground region covers 5O7o or more of a skin-color region.

o Identification of the face object when the face and hands form one connected compo-

nent. This has applications in face tracking.

o As well as tracking the face object, the hands can also be tracked. If there is little hand

motion between two consecutive frames (e.g., the subject is waiting for a response

from the other party), change may not be detected in the C DM, and the hand objects

not segmented.

o Adoption of the methodology within aMPEG-4 framework. Itis also worth measuring

the coding performance of the algorithm, and whether modifications need to be made

to the algorithm for real-time content-based applications.
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Appendix A

The Common Intermediate Format

One major problem in defining an international standard for videoconferencing was the fact

that two different line and frame rate television standards exist. NTSC, which is mainly

used in North America and Japan, uses 525 lines per interlaced frame at 30 frames per

second. In interlaced video, each frame is comprised of fields, i.e. a top field and a bottom

field. Within a frame of interlaced video, scanlines from the two fields are interleaved.

Most other countries use 635 lines per interlaced picture at 25 frames per second (PAL).

To eliminate the problem of interoperability among systems with different formats, a new

common intermediate format (CF) was adapted. Both the 625 and the 525 line systems

need to include pre- and postprocessing modules to convert to and from CIF.

CIF is a non-interlaced format. In non-interlaced video, there is no notion of a field. A

frame begins from the top left corner and continues through successive lines to the bottom

of the frame. The interlaced and non-interlaced schemes are shown in Figures 4.1(a) and

4.1(b), respectively (adapted from [8K95], Figure 6.1). The CIF format is based on 352

pixels per line, and 288 non-interlaced lines per frame at 30 frames per second. These values

represent half the active lines of a 625125 television signal and the picture rate of a 525/30

NTSC signal. Thus, 625125 systems need only to perform a picture rate conversion, and

NTSC systems need to perform only a line-number conversion.

Color pictures are coded using one luminance and two color-difference components in

the YCbCr color space, as specified in ITU-R 8T.601 tIR98l (see also Section 3.5.4). The

Cb and Cr components are subsampled by a factor of two on both the horizontal and vertical
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dimensions (known as the 4:2:0 subsampling format) and have 176 pixels per line and 144

Jinespedffii gure-A.å(adapted*om{Bll15J,Figureé2tTheaieture-

area covered by these numbers of pixels and lines has an aspect ratio of 4:3. Table 4.1

summarizes the characteristics of a CIF frame.

For low bit-rate applications, in addition to CIF, video coders may also use a quarter-ClF

(QCF) format, which has half the number of pixels and lines required for CIF.

Component Size (pixels x lines)

Y 352 x 288

Cb 176 x 144

Cr 176 x 744

Table 4.1: Frame characteristics of the common intermediate format (CF)

Bottom

(a)

(b)

Top
field

field
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Figure 4.1: Scanning schemes. (a) Interlaced, and (b) non-interlaced.
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Appendix B

f)escription of the Video Sequences

The video sequences that were used for segmentation in this thesis were obtained either from

the MPEG-4hbrary of test sequences, or from ITU-T. They were all downloaded over the

internet. The sequences are in QCIF format with 4:2:O subsampling. Two of the sequences,

the Silent and lrene, are sign language sequences. They contain various degrees of back-

ground complexity, and are characterized by rapid hand and arm motion, and face and head

motion. The other sequences used were the Carphone, Foreman, Salesman, and Mother &

Daughter test sequences. The Carphone sequence contains camera panning. The Foreman

sequence contains both camera panning and zooming. The Salesman andMother & Daugh-

ter sequences are typical head and shoulder sequences, and are characterized by smooth

movements of the body, head, and facial features such as the eyes and mouth. Note that the

Silent, Irene, Salesman, and Mother & Daughter test sequences do not contain any global

motion. The first frame from each sequence is shown in Figure B.1.
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(a)

(c)

(e)

(b)

(d)

(Ð

Figure 8.1: First frame of the (a) Silent, (b) Irene, (c) Cnrplnne, (d) ForentarL,

(e) Salesman, and (f) Mother & Daughter sequences.
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Appendix C

Additional Simulation Results

This appendix provides additional skin-color segmentation results for still images obtained

from the world wide web. These images were part of the test set. Figures C.7, C.2, and C.3

depict results for people with fair skin, Figures C.4, C.5, and C.6 depict results for people of

Asian descent, and Figures C.7, C.8, and C.9 depict results for people with dark skin.
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Figure C.1: Skin segmentation results for people with fair skin. Left column

original image. Center column: SDIvI. Right column: Identif,ed skin pixels.
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Figure C.2: Skin segmentation results for people with fair skin. Left column:

Original image. Center column: S DA,t . Right column: Identified skin pixels.
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Figure c.3: Skin segmentation results for people with fair skin. Left column

original image. Center column: SD NI . Right column: Identified skin pixels.
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Figure C.4: Skin segmentation results for people of Asian descent. Left column:

Original image. Center column: S D IvL Right column: Identified skin pixels.
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Figure C.5: Skin segmentation results for people of Asian descent. Left column

original image. center column: S D NL Right column: Identified skin pixels.

170



(Þ

/

Figure C.6: Skin segmentation results for people of Asian descent, Left column:

Original image. Center column: S D IvI. Right column: Identified skin pixels.

t7r



Appendix C. Additional Simulation Resu.lús

Figure c.7: Skin segmentation results for people with dark skin. Left column

original image. center column: s D IVI . Right column: Identified skin pixels.
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Figure C.8: Skin segmentation results for people with dark skin. Left column

Original image. Center column: SDIVI. Right column: Identified skin pixels.
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Figure c.9: Skin segmentation results for people with dark skin. Left column

original image. Center column: S D NI . Right column: Identified skin pixels.
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