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Abstract

Modern calculations of quantum chromodynamics (QCD) in lattice gauge

theory are restricted to the simulation of quark masses which are significantly

heavier than those observed in nature. In order to compare with experiment,

an extrapoiation of lattice QCD results is required. A low-energy effective field

theory (EFT), chiral perturbation theory (XPt), provides an optimal framework

for studying the quark-mass variation of hadron properties. Established as a

rigorous expansion about the limit of vanishing quark-masses' convergence of

the EFT at the scale of masses explored in lattice QCD is not guaranteed'

Working with various regularisation schemes, a quantitative analysis is per-

formed to investigate the convergence properties of the quark-mass expansion.

The traditional formulation of XPT, defined by a minimal subtraction renor-

malisation scheme, is found to have a limited range of applicability. An alter-

native scheme, namely finite-range regularisation (FRR), displays significantly

enhanced convergence properties. consequently, the use of FRR permits the re-

liable extrapolation of modern lattice simulation results to the physical regime.

The study of the quark-mass dependence of nucleon properties in quenched

iattice QCD provides valuable insight into the structure of the nucleon' Ap-

plication of finite-range regularisation reveals a phenomenological link between

quenched QCD and the physical theory. This work offers an improved under-

standing of the dynamicai role of the pion field in baryon spectroscopy and

electromagnetic structure.
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1

lntroduction

Quantum chromodynamics (acD) is the fundamental quantum field theory

which governs the strong-interaction force in nature. The interactions of all

subatomic particles, such as protons, neuttons, pions etc., are governed by this

theory. At high-energies, QCD provides an excellent description of the dynamics

of electron-proton scattering experiments. In the low-energy domain, the quarks

and gluons of QCD are manifest as the constituents of hadrons. Developing a

dynamicai description of this manifestation is one of the ultimate ambitions of

hadronic physics. This problem presents a tremendous challenge, where pertur-

bative techniques of quantum field theory are unable to account for the highly

nontrivial structure of the QCD vacuum'

A rigorous method for extracting the low-energy properties of QCD, where

traditional perturbative techniques fail, is delivered by lattice gauge theory.

Calculations in lattice QCD are iimited by computational approximations, nec-

essaly for the efficient simulation of the theory on today's computers' One

signiflcant restriction is the use of quark-masses an order of magnitude larger

than those in nature, with tvpical simulations having quark-masses of the or-

der 50 MeV and above, compared to the physical value of about 5 MeV' This

requires an extrapolation in quark-mass to complete the scientific process of

comparing theory with experiment. It is this extrapolation problem which is

the principal focus of this research'

An introduction to the theory of QCD is described in Chapler 2. Particular

emphasis is given to the formulation of QCD in lattice gauge theory and some

of the practical aspects of modern simulations. With an evident restriction to

unphysically large quark-masses, an outline of the issues in chiral extrapolation

is provided. In particular, the extrapolation problem is complicated by the

dynamic structure of the nucleon. Some empirical observations of the physical

nucleon are addressed to highlight this intrinsic complexity.

These nontrivial characteristics of the nucieon are a consequence of sponta-

neously broken phase of chiral symmetry in the QCD vacuum. The elementary

concepts of chiral symmetry and spontaneous symmetry breaking are described

in Section 3.1. This leads to the subsequent development of an effective field

theory (EFT) of low-energy QCD, which encompasses the imposed symmetry

constraints. This nonperturbative approach to QCD, an alternative to an ex-
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pansion in small coupling constant, chiral perturbation theory (xPT) defines a
systematic expansion in both momentum scale and quark mass.

As for any physical description in quantum field theory, infinities arising from
self-interactions must be regularised and renormalised to make the theory mean-
ingful. This two step procedure is discussed in detail in Section 3.3, where the
traditionally implemented minimal subtraction regularisation scheme is intro-
duced. Whereas this scheme is ideal for elementarv particles, general physical
arguments suggest that the applicability will become more restrictive when work-
ing with effective fields of finite structure. This leads to the construction of a
regularisation scheme which embodies this extended nature of the fields. Charac-
terised by the suppression of the ultraviolet behaviour of loop integrals, this
scheme is referred to as finite-range regularisation (FRR). The implementation
of this procedure is given and the mathematical equivalence to minimal subtrac-
tion is demonstrated.

Before attempting chiral extrapolation based upon xPT, it is important to
understand the effective range of the expansion about vanishing quark-mass.
The convergence properties of the quark-mass expansion of the nucleon mass
are the primary focus of Chapter 4. The combination of the physical observable,
lattice simulation results and XPT enables estimates of the quark-mass deperr-
dence of the nucleon mass over a wide range of mass scale. Near the chiral limit,
all regularisation schemes are mathematically indistinguishable. As the quark
masses are increased, differences in the truncation of the chiral series become
apparent. To the order of the calculation, it is observed that minimal subtraction
regularisation, ot equivalently dimensional regularisation (DR), exhibits a much
narrower range of convergence, compared to the alternative offered by FRR.

When using a chiral series based upon DR, the maximum accessible pion
massl , within the scope of the EFT, is found to be of the order m2, < 0.4 Gev2.
On the other hand, the chiral expansions offered by FRR provide enhanced
convergence properties, applying up to m? - 0.8GeV2.

For the application to lattice QCD, the actual problem of interest reverses
the role of the initial investigation. Instead of analysing the expansion about the
chiral limit, the converse issue of ertrapolation is distinguished by the determi-
nation of the chiral series in the absence of low quark-mass data. The described
regularisation schemes are applied to the extrapolation of lattice simulation
results in Chapter 5. The results of FRR are profound, with the extrapolated
nucleon mass displaying a systematic accuracy of two parts in one thousand.
Stability with respect to truncation of the chiral series is also discovered, with

1As described in Chapter 3, a consequence of chiral symmetry is that the square of the
pion nrass is proportional to the quark mass, rnl x mn. Throughout, the pion rnass and quark
mass are therefore used interchangeably as a measure of deviation frorn the chiral limit.
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an observed difference of less than one percent between the leading-order result

and that at next-to-leading order. Neglecting the discretisation artifacts of the

lattice formalism, the conclusions produce a solution to the chiral extrapolation

problem.

The determination of the nucleon mass, based upon the successful union

of lattice gauge theory and this modern implementation of XPT, represents

the most rigorous nonperturbative calculation of this funrlamental observable in

QCD.
Upon completion of the investigation of QCD, the focus of this Thesis is

redirected to the study of a modification of QCD commonly implemented in

lattice simulations. In particular, the quenched approximation of QCD can offer

valuable insight into the chiral behaviour of hadron properties. Quenched QCD

is a modification of standard QCD, defined by the absence of dynamical quark

loops in the vacuum. This modification induces an alteration of the low-energy

effective theory, the main features of which are discussed in Chapter 6' Two

difiering techniques, for the calculation of nonanalytic contributions to haclron

properties, are illustrated'
With the modified chiral behaviour, an investigation of the quark-mass depen-

dence of baryon masses in quenched QCD is presented in Chapter 7. The im-

proved convergence properties of the EFT formulated with FRR are expioited.

The adoption of FRR leads to a remarkable, somewhat unexpected, result'

Although no rigorous connection between QCD and its quenched analogue can

be given, it is found that accounting for the modified chiral interactions can

describe the primary differences in the observed baryon masses' This pheno-

menologicai link is demonstrated to extract physical masses of the nucleon and

Delta baryons, from a purely quenched simulation. This discovery provides an

enhanced understanding of the role of chiral physics in baryon structure, and

subsequently assists an improved description of the origin of the physical baryon

spectrum.

Beyond the description of the mass of the nucleon, further information on

internal structure of the nucleon is provided by its response to the electromag-

netic field. The charge and current distributions of the nucleon are characterised

by the electromagnetic form factors. Revealing the nature of this structure is one

of the elementary objectives of lattice QCD. The restriction to the simulation of

relatively large quark masses means that a significant portion of this dynamical

structure is absent. In Chapter 8, the chiral behaviour of the proton magnetic

moment is investigated. This analysis considers the extrapolation method for

both quenched and physical simulations of QCD. The chiral unquenching proce-

dure, as discovered in the baryon mass analysis, is successfully applied to pro-

vide improved estimates of the physical moment. The pion cloud is observed to
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describe almost one third of the physical proton magnetic moment, highlighting
the dynamical nature of QCD - beyond the static constituent quark picture.

A summary and concluding remarks of the work presented in this Thesis are
presented in Chapter 9.
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QCO NonperturbativeIS

The building blocks of atomic nuclei are protons and neuttons, generically

referred to as nucleons. Understanding the structure of the nucleus has chal-

lenged physicists since Rutherford's discovery in 1911 of. a small, positive-charge

core to the atom. In 1932 Chadwick confirmed the existence of the neutron, the

neutral-charge partner to the proton. The force binding these constituents to

the nucleus is strong, much stronger than the familiar Coulomb force.

Today, the strong binding force is understood as the residual interaction

of the complex substructure of individuai nucleons. Nucleons themselves are

comprised of a system of quarks and gluons whose dynamics are governed by

the quantum gauge theory, QCD. QCD is the fundamental theory of all strong

interaction physics - from high energy particle collisions and the decay of heavy

nuclei to the properties of matter under extreme conditions, such as at the core

of a neutron star.

Although the theory of QCD can be written down in a compact form, under-

standing the physical dynamics presents a tremendous theoretical challenge' To

date, rigorous testing of QCD against experiment is restricted to the domain

of high-energy scattering. The low-energ-y nature of QCD has shown a much

stronger resistance to theoreticai development. We focus our attention on the

low-energy structure of QCD, in particular the properties of the nucleon at rest.

Lattice QCD has proven to be the most successful method for studying QCD in

the low-energy regime.

After giving an introduction to QCD, in this Chapter we outline the lattice

regularisation of quantum field theory and the simulation of QCD. Computation

costs restrict simulations to quark masses much larger than those observed in

nature. We address the necessity to extrapolate results in quark mass to com-

pare with physical observables. We highlight some of the early research into

performing extrapolations which are consistent with known properties of QCD.

Central to the chiral extrapolation problem are the strong coupling of the

nucleon to the light pseudoscalar pion. We highlight some phenomenological

aspects of the pion-cloud structure of the nucleon.
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2.L An Outline of QCO

In the Standard Model, hadrons are composite objects comprised of a complex
substructure of quarks and gluons. Hadrons are classified into two subgroups,
mesons and baryons, which are bosons and fermions respectively. To date, all
known hadrons can be described in terms of a simple underlying quark struc-
ture. Mesons are quark-antiquark (qQ) pairs and baryons are three-quark (qqq)
systems. Recently, there has been extensive interest in the possible discovery of
a pentaquark baryon (qqqqò [N+03,S+03].

The underlying theory describing the interactions of quarks is quantum chro-
modynamics. QCD is a gauge field theory built on the premise of invariance
under local gauge transformations of ,S[/(3)""r"".. Each quark carries an internal
quantum number, one of three possible colours. The gauge bosons of the theory
are the eight gluon fields lying in the adjoint representation of the gauge group.

The QCD Lagrangian, in naive form, can be summarised as

Lqco: I ,t;{ttr n7 - 6nt *n)rþ'n - }r[1t 
røtr" , (2.r)

q

with
r[7) : ðrAî - a,Aî" - g"r"u"Al,Aî, (2 2)

and

D'l : 6r o, + ø")s! a:, , (2.J)

with 3 colours, z; 6 flavours, q; and 8 gluon fields, a.

The non-Abelian nature of the theory means that the gluons couple to them-
selves. This causes the vacuum to become highly nontrivial as the coupling
becomes strong. At high energy, the coupling becomes weak, vanishing in the
limit of infinite momentum transfer. This property is referred to as asymptotic
freedom.

The experimental observation of asymptotic freedom and the existence of
point-like constituents in hadronic matter, is of fundamental importance to the
foundation of QCD in the Standard Model.

2.2 Lattice Quantum Field Theory

At low energies, perturbative methods are unable to account for large scale
fluctuations of the vacuum. QCD calculations therefore require nonperturbative
techniques. Only with continued theoretical developments will the low-energy
domain be tested with experimental rigour.



2.2 Lattice Quantum Field Theory

Lattice gauge theory provides the only calculable definition of the path inte-

gral in the nonperturbative regime. The lattice formulation was first proposed

by Wilson in t974 [Wil74]. QCD Green functions, defined via the path inte-

gral, are calculated on a lattice-discretised, Euclidean space-time. There are

numerous review articles on the modern implementation of lattice gauge theory,

those of Richards [Ric99], Di Pierro [DP00] and McNeile [McN03] have been

particularly useful.

The primary focus of this Thesis is the study of the nucleon mass in QCD.
As an example calculation, we outline some of the principal components in the

calculation of the nucleon mass in lattice QCD.
Ground-state masses are calculated by the determination of the large Eu-

clidean time behaviour of two-point correlation functions, calculated in coordi-

nate space,

C*("): (f-llx.¡y(r)UN(0)lf-¿) , (2.4)

where X¡r is a spinor interpolating field carrying the quantum numbers of the

nucleon, f) denotes the QCD vacuum. The source and sink of the nucleon field

are located at 0 and , : (t,d), respectively.

This correlation function is defined through the path integral by

(f-¿lx¡r(r)Ir(o) lCI) : I o arorþprþ x* @)x¡,,(o)r-"'ncD¡t'''t"'t'l (2 5)
J

To explain how this is calculated within the lattice formalism, we first consider

the evaluation of a correlation functiot, O, which does not depend explicitly on

the fermion fields, such as

(CI1(rlCI) : D U D-qD q O lu I e- sïq "o lu' q'El (2.6)

The continuum fields have been replaced by their lattice-discretised analogues

and appropriate lattice action. The lattice fermion fields, q and Ç, Iie on the

lattice sites, with gauge symmetry preserved by the covariant link variables [/.
These link variables encompass the gluon fields.

There has been a tremendous effort towards creation of improved formula-

tions of the lattice QCD action and we return to address these issues below.

Whatever our choice of lattice action, we separate the purely gauge component

and the fermion component byl

,slacDlu, q,d: s"lu] + s'[(J,q,q), (27)

7

lFrom here we drop the subscript -Ð and assume a Euclidean space-time implicitly
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where the fermion part can be written as

r,a
S' lu,, q, ql : Ð q@) nr @, a ; U) q(a) (2 8)

and M is the fermion matrix. In Eq. (2.6), we can now perform the integral over

the fermion fields explicitly

(r-¿lolf-¿) : DU OIU)det M(U) e-s"tul (2 e)

Computation of this integral may still seem a formidable task. We have an

integration over 8 colours of gauge field for every link on the lattice. With a

typical lattice volume 163o""" X 32¡¡¡.,", this gives a total integration over a 106

dimensional parameter space. Fortunately, Monte Carlo integration techniques

are able to make this problem computationally tractable.
Since we are working in Euclidean space we have a positive-definite action

and hence the factor
det M(U) e-s"lul, (2.10)

can be treated as a probabilistic weight. The functional integral can be approx-

imated by an ensemble average of gauge configurations

(CI|(rlCI) : *t ovo), Q.77)
N/--/ 

L ')l

{u¡}

where N gauge configurations, [, have been randomly generated based on the
acceptance probability of the weight function, Eq. (2.i0).

Evaluation of the fermion determinant is a nonlocal operation and hence

dramatically slows down the process of generating an ensemble of gauge config-
urations. To save time, lattice simulations have often made the crude approx-
imation of setting the determinant to unity. This is known as the quenched

approximation and corresponds to performing calculations on a purely gluonic
gauge field. The physical implications of quenching are discussed in Chapters 6
and 7.

For the nucleon two-point correlation function, Eq. (2.5), we need to deal with
explicit fermion fields. It turns out that the same set of gauge configurations

can be used to perform the functional integration over gauge fields. The explicit
inclusion of the fermions requires a Wick contraction and the relevant quark
propagators must be calculated explicitly for each gauge configuration.

To be more explicit, we define the nucleon interpolating field

xN(r) : €abc (u[(r)crdo(")) u"(r) , (2,r2)



2.2 Lattice Quantum Field Theory

where ¿bc denote the colour labels and the spinor multiplication remains implicit.
C is the charge conjugation matrix. For each gauge configuration, U¿, the quark

propagators are evaluated

svb(r,ù: (aolqi@)aot@)lan) , (2.13)

where / denotes the quark flavour. Propagators are typically calculated from a
fixed source point, gr, to every point on the lattice, r, by inversion of the fermion

matrix. Being limited to iterative solution methods, this causes calculation of

the quark propagator, to every site on the lattice, for every configuration to be

computationally intensive.
Performing the appropriate Wick contractions we can express the two-point

correlation function of the nucleon as

(r-¿lx¡,' (")zr (o) l0) :

9

1

f,r"u.r",u,r {r, lri""' 
(r,o)] tr 

le ü' @, 0)c-t sff' (r, 0)]
¡/

+ r, i,qoo' tr.o\aS!b'(r, o)C-rSi"'(", o)l ) , Q.r4)' u. 
1", \*r-./-vd \e1v)v "u \*)"r) 

J 
\

where the traces are over Dirac space and we use the shorthand notation C :
c^lu'

With the correlation functions at hand, the low-lying mass states are now

readily accessible. The coordinate-space correlation function, C¡¡(r), is decom-

posed into its Fourier modes in momentum space

Cw(t,Ð:D,"oF''(Qlx*(r)¡r(o)1CI) , (2.15)
d

and inserting a complete set of mass eigenstates, o, with momenta q- gives

Cx(t,ù:U,le-t't'tlalx¡,'(")l*(ql)("(qllX"(0)lc¿) , (2.16)

d,í d

: t le-tø 
d qals-iâ,,yN(0¡e+io.,1açfl)("(qllXN(o)lf-¿), (2.rT)

arQ' õ

- \- f e-i(p--sl '' 
"-E-'(elxr(o)1"(ql)("(ql lzr(0)lr-¿) , (2.1s)-/'/'"

d,í i

: I 6(F- ù"-""(Qlx'(0)1"(d)('(qllZ¡o(o)1CI) , (2.1e)

drd

:t 
"-n'(Ðt(Qlx¡"(o)l*@)(o(pll7r(o)1CI) 

. (2'20)
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Since we are only considering the mass extraction we can just consider the zero

momentum component of our field

Cto(t) = C¡¡(t d: 0) : t e-M-'À.,Ào. (2.2I)

We see that the energy, E.(Ð, has now U".i ,"ptuced by the rest ma,ss, Mo,
and for convenience we have defined the notation

À.: (f)lxn.(o)lo(o')) , Io: (*(d)lx¡r(0)1CI) (2.22)

In the case where we use point sources and sinks these two equations are complex
conjugates, Ào : À|. When the interpolating fields are smeared in the spatial
direction, this simplification is no longer valid and we employ the bar notation
to remain generic. Smearing is a common technique used in lattice simulations,
which acts to reduce high-momentum modes and hence increase overlap with
the ground-state wave-functions.

The large time behaviour of C¡,' will be dominated by the lowest-lying mass

states, with all excited states being suppressed by the exponential. For extrac-
tion of the mass, we define the effective mass

M"tr :r"* l-9(ú)-\ e.2B)\c"(¿ +r)) '

which for large times, ú ---+ oo, gives the lowest-lying mass, Ms. The effective

mass is typically plotted as a function of the time and once a plateau is observed,

it is clear that the ground-state has been isolated.

The final step in the extraction of the nucleon mass) m¡¡, is to convert the
lattice measurement to physical units. All calculations are computed in dimen-
sionless lattice units, such that the simulated nucleon mass is given by am¡¡,
with ¿ the physical lattice spacing.

Determination of the scale in lattice QCD is an important step for the com-

parison with physical observables. For studying the quark mass variation of
hadron properties and in particular, the chiral extrapolation problem, it is es-

sential that the scale-determination procedure is insensitive to chiral physics.

This ensures that we do not contaminate the very physics that we are attempt-
ing to investigate.

We identify the Sommer scale [Som94] for QCD [EHKgSa] as the ideal

method for setting the scale for the present application. The Sommer scale

is extracted from the static quark potential at an intermediate distance scale.

Considering the QCD flux tube as a string model, the large distance behaviour
of the potential in pure gauge theory is described by

v(r):vo*or-9. Q.24)
T
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In pure galge theory, or quenched simulations, the string tension ø is a well

defined quantity and therefore the large distance behaviollr can be used to deter-

mine the scale. In a dynamical simulation the sea quarks permit string-breaking

and a modifled procedure is therefore required. Sommer proposed defining the

scale by the static quark force at an intermediate scale ro by

rfiV'(ro) : ¿, (2.25)

with c set to a dimensionless constant. Typical values of the parameters, c

and 16, are set by phenomenological models of heavy quark potentials' These

show the least model dependence at a distance scale near ro:0'5fm, which

corresponds to c : 1.65. This then sets the physical lattice spacing, a, and

allows us to convert the extracted lattice mass to dimensional units.

With this rigorous formulation of the QCD path integral through lattice

regularisation, QCD observables can be evaluated. In performing calculations,

one must be careful to deal with all approximations in a systematic fashion. The

immediately apparent approximations are those associated with the discretisa-

tion of space-time - both the finite cutoff scale, ø, and the finite volume of the

lattice, 7. The physical theory is obtained in the limits ¿ ---+ 0 and I/ ---+ oo'

These issues are beyond the scope of this Thesis, and most of the time we will

assume lattice results represent the continuum, infinite-volume theory'

The other major limitation of modern lattice simulations is the restriction

to the domain of heavy quarks. Producing results for light, dynamical quarks

is computationally expensive. Simulation time increases rapidly as the lattice

volume is enlarged. The physical volume of the lattice must be large enough to

contain the longest-ranging quantum fluctuations. The spatial extent of these

fluctuations is characterised by the Compton wavelength ()" : 2rlm) of the

lightest excitation. As the pion is the lightest degree of freedom in QCD, accurate

simulation requires a physical length of. L )- À[, or equivalently, satisfy the

dimensionless measure mnL z 2n. For a physical pion mass simulation, this

requires L - 9fm.
In addition to the volume constraints, the implementation of fermion actions

on a discrete space-time causes increased computational complexity, as the chiral

regime is approached. There are various formulations of lattice fermions which

attempt to improve access to light quark simulations.

Wilson [Wil74] described the original formulation of a lattice action. with

the continuum integrals and derivatives replaced by sums and finite difference

equations. Implementation of the fermion field in the lattice formulation is

nontrivial because of the fermion doubling problem - there exist 2d degenerate

quarks for each flavour. Wilson introduced a higher dimension operator which

lifts the mass of the doubler species with the inverse lattice spacing, a. As
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a ---+ 0 the doublers become infinitely massive and the continuum theory is
restored. The main drawback to this formulation is that chiral symmetry is
violated at O(a) and hence large scaling violations are observed at finite lattice
spacing [EHKgSb].

There has been tremendous success in removinS O(") errors and suppressing
O(o') errors in lattice simulations through the development of nonperturbatively
improved actions [LSSW96, Z+02,NN95]. These actions display excellent scal-
ing properties IZLLWO5, EHK98b,DLLZ}}I, providing near continuum results
at finite lattice spacing. The overlap formalism [NN9b, NNg3b, NNg4, NN93a]
describes an implementation which has an exact lattice chiral symmetry and, lo
date, is the most physical implementation of chiral fermions on a lattice. Un-
fortunately, in typical simulations the computational cost of overlap fermions is
two orders of magnitude more expensive than Wilson-style actions. For reasons
which will become clearer below, most of this additional cost will be recovered
as the chiral limit is approached. Efforts have been made towards accelerating
the computation time of overlap simulations [KAL\4r02].

Another formulation of lattice fermions is that by Kogut and Susskind [KS75],
known as staggered fermions. Staggered fermions remove the doubler problem
by distributing the fermion spinor over the corners of. a 2a hypercube. This
implementation maintains a form of chiral symmetry, yet the 16 doubler species
have been reduced Lo 4 taste species. Distribution over the hypercube doubles
the effective spacing between independent fermion sites - meaning on a typical
gauge configuration of dimensions 163 x 32 at a - 0.125fm, the fermion field is
only sampled at 83 x 16 and a - 0.250 fm. The advantage of the staggered formal-
ism is that computational costs are significantly reduced. Improvement schemes
have been developed to reduce the taste-violation artifacts [Lep99]. Although it
is not clear that this theory has a rigorous connection to the continuum [Neu04],
impressive results have been obtained at comparably light quark masses [D+04].

Improvement schemes based on Wilson fermions have proven to be an im-
portant development towards removing lattice-discretisation artifacts. One suc-
cessful method is that of nonperturbatively improved clover [SW8b, LSSW96,
LSS+97], Nonperturbatively improved clover fermion action removes O(a) dis-
cretisation effects to all orders in the coupling g. Results using this action
have been demonstrated to give near-continuum results at finite lattice spac-
ing [EHK98b]. A drawback to all Wilson-style fermion actions is that access to
the chiral regime becomes restricted as the exceptional configuration problem is
encountered.

The exceptional configuration problem is related to the additive quark mass
renormalisation of Wilson quarks [BDE+98]. For a given input quark mass,
there is an additive renormalisation which shifts the value of the renormalised
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quark mass. The quark-mass lenormalisation is dependent both on the gauge

configuration and lattice action. An ensemble average criticai mass fÙ.. can

be defined as the point where the pion mass vanishes' This can be obtained

by extracting pion masses) at finite quark masses, from ensemble averages and

extrapolating to the point where the pion mass vanishes'

The sensitivity to individual gauge configurations can be understood by

studying the behaviour of the low-lying eigenmodes of the Dirac operator. This

aliows the the critical quark-mass rnq to be determined for each configura-

tion [BDETg8,BDE+98]. In particular, the distribution o1 m., can be studied

for a set of gauge configurations. When working at quark masses fat from rn".,

the role played by the finite width distribution is largely irrelevant. At lighter

quark masses) the fluctuation in simulated quark masses on a configuration-bV-

conflguration basis will become mole apparent. This will become realised in

Iarge statistical errors in ensemble averaged quantities - especially those which

exhibit rapid variation near the chiral limit'

Even more dramatic is the potential to perform a simulation below rn., lor

a given configuration, such that the renormalised quark mass is less than zero.

Any such configuration will provide absurd results and are therefore aptly named
,,exceptional". Any improvement scheme which reduces the width of the m".

distribution will reduce the exceptional configuration problem and allow better

access to the light quark regime.

A recently developed improvement scheme involves fat-link irrelevant clover

(FLIC) fermions lz+021. Fat-link fermion actions couple the quark fields to

smoothed, gauge configurations. The removal of the short-range topological

defects has been demonstrated to reduce the exceptionai configuration prob-

Iem [DHK99]. FLIC fermions only use smeared links for the higher dimensional

irrelevant operators and retain the untouched links for the physical operators.

Recent studies have shown that FLIC fermions exhibit improvement in the

distributio î or rn", and hence ailow better access to the chiral regime [BKL+04].

The scaling properties of FLIC fermions have also been demonstrated to be

equivalent to that of nonperturbatively improved clover [zLL\ /05].

Although much progress has been made towards the accurate simulation of

eCD in the light quark regime, realistic simulations at the physical quark mass

are likely to require I 100Tflops of designated computing power' Since this

is well beyond the next generation of QCD supelcomputers, extrapolation of

lattice results, to compare with experiments, will be required for quite some

time.
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Figure 2.1: Extrapolation based on Eq. (2.26) with ca set to the phenomenolo-
gical value (solid curve) and ca as a free parameter (dashed curve).

2.3 The Chiral Extrapolation Problem

The restriction of simulations in lattice QCD to the use of quark masses much
heavier than those found in nature necessitates an extrapolation of results to
the physical regime. After all, one of the key goals of lattice QCD is to confront
experiment in the nonperturbative regime. Understanding how to extrapolate
the benchmark calculations, such as the nucleon mass, is therefore paramount
in the theoretical development of low-energ-y QCD.

The nature of spontaneous symmetry breaking in the QCD vacuum dictates
that hadron properties should exhibit rapidly-varying nonanalytic behaviour
with quark mass. Lattice simulations have so far shown little evidence of this
nonanalytic structure2. Infact,lattice simulations observe very smooth variation
with quark mass - just as would be anticipated in a constituent quark model
of hadron structure. For example, masses grow linearly with quark mass and
magnetic moments fall like the Dirac moment, - llMq.

We show some dynamical fermion lattice QCD data from Cp-pACS [AK+02]
for the nucleon mass as a function of m2* in Fig. 2.1. The data only slightly
deviates from a straight line. Approximate chiral symmetry in eCD tells us

-ã

./

¿

I,.

2There have been some recent breakthroughs, which we will highlight in a later Chapter
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that near the chiral limit the nucleon mass should behave as

zrl¡¡:colczm?icsm3*+.,., (2.26)

where the phenomenological value for ca: -5'5GeV-2' First we fit the data

with this form and attempt to extract ca from the lattice. The resultant fit is
shown by the dashed culve in Fig. 2.1. The best-fit value of cs :-0'63GeV-2,

almost an order of magnitude smaller than the physical one' Instead, we could

attempt to fit the data constraining the physical ca. This is a very poor descrip-

tion of the data as seen in the solid curve of Fig. 2'1'

There are two alternatives to explain this failure:

o Lattice QCD does not describe the correct physicai theory of the strong

interaction, or

o The chiral series truncated in this fashion has poor convergence in the

range of quark masses explored on the lattice. This is because either the

data lies beyond the radius of convergence, or more terms must be included

in the series.

If we are to believe QCD then the poor convergence of the chiral series is clearly

the most satisfactory interpretation. We clarify the technical issue of radius-of-

convergence versus terms-in-the-series in the proceedings chapters of this Thesis.

One point to note at this stage is that if we assume the data ¿s within the radius

of convergence, then all terms beyond rn| must effectively sum to zero in order

to reproduce the lattice data.

The physical explanation for the observation of smooth variation with quark

mass is easily understood in terms of chiral quark models, such as the cloudy

bag model (CBM) [ThoS ]. Chiral quark models of the nucleon incorporate the

correct low-energy properties of chiral symmetry, together with a model for the

underlying dynamics of the internal quark structure. The cloudy bag model

is an extension of the MIT bag model to incorporate the dynamical effects of

the pion field. The MIT bag model ICJJ+74,CJJT74l is a relativistic model of

free quarks confined to an infinite spherical well. Reflection at the bag surface

violates chiral symmetry, which is restored in the cBM by the coupling to the

pion field.
The key point of our discussion is that the pion field couples to an internal

quark structure of finite size. This finite size necessarily means that there is an

associated form factor which suppresses the pion-nucleon interaction for high

momentum transfer. In the context of quark mass variation, the result of the

form factor is to suppress the effects of the pion cloud for increasing quark

mass. This means that there will be a characteristic scale associated with the
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transition from dominant chiral physics to a region where chiral-loop effects
are negligible [DLM+01]. This transition is set by the size of the source of
the pion cloud and the axial form factor of the nucleon, described by a radius of
?')t^(?* - 0.66 fm [TW01], suggesting thar the scale is of order tlþá)'J?^r- 0.3-
0.4 GeV. Once the Compton wavelength of the pion becomes smaller than the
size of the source, fluctuations of the pion field are rapidly suppressed.

To highlight these effects, we consider the variation of nucleon magnetic
moments with quark mass as an example. As a consequence of spontaneous
chiral symmetry breaking, the magnetic moment of the nucleons near the chiral
limit are known to behave as

p,p : plo - amn + O(m?") ,

p" : tt\ * am* + O(m?*) . (2.27)

As will be seen later m2* 6 ffiq and hence the magnetic moments vary with
the square-root of the current quark mass, This nontrivial result cannot be
described within the simple quark model. The most important feature is that
chiral symmetry predicts a model-independent [LP71] value for the coefficient
(r' j

o: nA^,Y 
.arfi' (2'28)

This coefficient is relatively large, taking the physical values f.or g¡: 1.26 and

"f" 
: 0.093 GeV, the leading nonanalytic term contributes cvnî: 0,96 p¡ to the

physical magnetic moment. This is roughly a third of the physical proton mag-
netic momentr, ¡,tp:2.793/-ú¡, and a half that of the neutroî, þn: -1.913/-¿u.

The CBM automatically incorporates this leading chiral behaviour through
coupling to the pion cloud. This model has a physical form factor, which
provides a natural suppression mechanism for the pion field at larger pion
masses. In Fig. 2.2 we show a calculation of the magnetic moment of the pro-
ton in the cloudy bag model [TT83, LTwgS] for varying quark mass3. In this
model, we observe that the transition scale between rapid chiral curvature and
the smooth Dirac moment is roughly TrLr - 300-500 MeV. This behaviour is
typical of all nucleon properties and gives a clear physical explanation of the
smooth behaviour observed in lattice simulations which typically lie in the re-
gion m2* ì 0.3 GeV2. The task for the analysis of lattice results is to incorporate
these physical features into a systematic extrapolation procedure. The solution
to this problem will be the principal focus of this Thesis.

Based on the quark mass variation found in the CBM, one early proposal for

3Details of the calculation are shown in Appendix C
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Figure 2.2: Magnetic moment in the cloudy bag model as a function of m2^' the
three curves, from top-down, correspond to bag radii,R - 1.0,0.9,0.8fm.

the lattice extrapolation problem was to use a Padé approximant [LLT99]

1

0 0.4 0.6
mnz çGev2¡

lto:1+ 
fr^*lcm2,'

pl(')

where ¡.ls and c are free parameters and a constrained to its model-indepenrlent

value, Eq. (2.2S). By Tayior expansion we see that this form precisely recovers

the leading expansion as dictated by chiral symmetry, Eq' (2'27)'

We show pioneering lattice data on lattice magnetic moments by Leinweber

et al. [LWDg1] in Fig. 2.3. An extrapoiation based on this Padé approximant is

shown by the solid curve. We see that this simple form encapsulates both the

rapid nonlinear variation near the chiral limit and the smooth Dirac moment

behaviour at large quark mass. This form is also observed to be phenomenolog-

ically consistent with the model calculation shown inFig.2.2.
The Padé form has been extended to the entire baryon octet with demon-

strated success IHJLTOOb]. A similar procedure was also extended to perform

extrapolations of baryon charge radii [HJLT0Oa].
Early work also highlighted the importance of incorporating the pion-cloud

effects into extrapolations of moments of parton distribution functions (PDFs)

[DMN+01,DMT01]. The results found dramatically improved agreement with

the experimental moments, compared to naive extrapolations based on linear

forms. This work was further developed to obtain accurate estimates of the

low-lying moments of spin dependent PDFs from lattice QCD [DMT02].

(2.2e)
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Figure 2.3: Extrapolation of proton magnetic moment lattice QCD data based
on the Padé form is shown by the solid curve. The dashed line shows a naive
linear extrapolation for comparison.

For the extrapolation of the nucleon mass, it was found that the only way
to fit lattice data consistently with chiral symmetry was to explicitly evaluate
the loop contribution [LTTW00]. In contrast to simply building in the func-
tional expansion dictated by chiral symmetry, the loop integrals that dictate the
chiral behaviour are evaluated with a chosen regularisation scheme. This was
subsequently extended to extrapolation of the rho-meson mass [LTTWOI].

These studies represented the first steps towards direct application of finite-
range regularisation for lattice QCD simulations. One of the major features
of this Thesis is the extension of this foundation work, consequently ensuring
a systematic approach to the chiral expansion problem. The issue of model-
dependence within this formalism has encountered significant criticism [B+03].
these claims are quantitatively addressed and found to be unsubstantiated.

2.4 Constituent Quarks to a Dynamical Theory

In the early historical development of QCD, a nucleon could be described as a
system of three constituent quark. As a dynamical theory of interacting quarks
and gluons the true structure of the nucleon is much richer than this static quark
picture. As highlighted, the consequences of spontaneous symmetry breaking
forces model-independent constraints on the low-energy structure of the nucleon.
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Here we highlight a couple of key features of the nucleon which take its structure

beyond that of the simple quark picture.

One of the key observations of nontrivial structure is seen in the flavour

asymmetry of antiquark distributions in the nucleon [Kum98]. The difference

in the light quark masses, mu and. m¿, is very small with respect to typical

eCD scales and therefore any perturbative calculation of qÇ fluctuations wouid

predict only a small difference between u and ã quarks in the nucleon' Any

asymmetry in these distributions can be measured by violations of the Gottfried

sum rule [Got67], which under the assumption of charge symmetry states

ra -- [' 
o' (pî(,,e\ - Fî(,,e\) :å .3 

Io' 
o* (a(,,Q') - d(*,Q\) '

Jo r \ ¿\ ¡ ó"/o 
(2.30)

It is clear that any measured variation of ,Iç from 1/3 is a direct measutement

of the uf iI asymmetry. The first measurement of this asymmetry found [A+91,

A+941
Ic :0.235 + 0.026, (2.31)

which is nearly four standard deviations away from the expectation of a sym-

metric sea. This result describes an excess of ã to u quarks given by

¡t

Jo 
o" (¿(") -n(")): 0.148 + 0.03e . (2.32)

This is a remarkable result, demonstrating a rich structure to the physical vac-

uum. The phenomenology of this asymmetry can be easily explained within a

simple pion cloud model and was in fact predicted by Thomas in 1983 [ThoS3].

As will be shown in more detail in the following Chapter, the dynamical be-

haviour of the pion plays an important role in the structure of the nucleon. Here

we describe at the simplest phenomenological level how to give interpretation

to the discovered asymmetry. A proton wave-function has strong overlap with

a bound pion-nucleon system. In particular, at a given time a proton could be

found to be a, pTTo or a n1T+ , where a Q has been generated to create the pion'

Angular momentum selection rules tell us that the proton will have greater over-

lap with ntr+ rela¡ive to pzro. Since the zr+ carries only a ã antiquark we are led

to the conclusion that there is an excess of ã-quarks in the proton relative to u'

The pion cloud structure of the nucleon also implies other consequences on

more elementary observables of the nucleon. The electromagnetic properties of

the nucleon are also constrained by the properties of chiral symmetry'

One of the celebrated features of the constituent quark model is the predic-

tion of the ratio of proton to neutron magnetic moments

ttP 3

pn 2'
(2 33)
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which is very close to the experimental ratio, -I.46. This agreement is quite
remarkable considering the rapid chiral variation with quark mass described by
chiral symmetry [LTY01]. Equation (2.27) gives a model independent expansion
of the ratio of magnetic moments

þo:t(r-[f rr \
ttn p6\ ltt+rrr)"*")+o(m?)' Q'34)

Constraining the chiral expansions to reproduce the experimental proton mo-
ment and the experimental ratio provides

¡lfi: 3.75 ¡.ty¡ , 4 : -1.34, (2,35)
tr\

and hence the numerical value for Eq. (2.34) becomes

#: -t.r4 - 0.r2ffi + oin?^) . (2.16)

The constituent quark model prediction of -312 is independent of quark
mass, yet as a consequence of spontaneous chiral symmetry break we observe
that the ratio can change by as much 18% as rn,. varies from 0 to just 2rnphv".
Interestingly, if the physical quark mass were slightly larger, rrùr - 1g0 MeV,
the experimental ratio would exactly match that of the quark model prediction.
In reality, the quark model corresponds to the static quark limit, rrùn -+ cp,
and the observed agreement is rather coincidental [LTY01]. We will return
to the behaviour of the ratio at larger quark masses in the context of lattice
extrapolations in a later Chapter.

The chiral behaviour of the magnetic moment naturally leads us to consider
the behaviour of the charge radii, in particular that of the neutron. The squared
charge radius of the neutron is determined by the slope of the electric form factor
at zeto momentum transfer,

þ,)!n: -uh"b@\lo,__o. e.rl)
The Sachs clcctric and magnetic form factors can be written ilr temrs of Lhe

covariant vertex functions ,Fr and F2 as [ESW60, Sac62]

GU(Q,) : F,(Q\ - -A:- F,(Q\,
+,rnir

Gtr(Q\ : Fr(Q\ + Fz(Q2) (2.3s)

The electric charge and magnetic moment correspond to Go(Q\ and, G¡a(e2)
evaluated at Q2 : g. The charge is therefore given by f'r (Qt :0) and hence
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vanishes for the neutron. The magnetic moment of the neutron is purely anoma-

tous, fii(Q2 - 0) : l-Ln. The charge radius of the neutron can then be expressed

â,S

?'lïn- -6
d

dQ2
Fi@')

p"
t

Tn'N
(2 3e)

Q2:O

The second term is known as the Foldy term [Fot52a, Fol52b] and takes the

numerical value -.0.726fm2. This is extremely close to the experimental result,

?\?n: -0.113 + 0.003 + 0.004fm2 [t<RuHg5].

The phenomenological interpretation of this result has been the subject of

considerable debate. It has long been the argument that the Foldy term con-

tributes the dominant part of the charge radius, with the residual portion, in-

volving the Dirac form facto, Fi, being attributed to some kind of i'ntri,ns'ic

charge distribution. This is the interpretation given by Foldy [Fol58], where the

neutron is assumed point-like with an intrinsic magnetic moment.

The phenomenological interpretation of Foldy's argument is described by

the relativistic phenomenon of Zi,tterbewegung. In a semi-classical sense, a free

Dirac particle does not travel in a straight line with constant velocity, but un-

dergoes random motion at the speed of light about a central point of uniform

trajectory. The physical extent of this random motion is of the order of the

Comptonwavelengthoftheparticle,Àc:2rfm.Astructureless,chargedpar-
ticle will therefore exhibit an effective charge distribution of finite extent. In

addition, this random motion has a collective flow around the spin axis' This

current circulation is then responsible for the Dirac moment of charged fermions,

eh.f 2m. The spatial smearing of Zitterbewegung motion wiil modify the intrin-

sic electromagnetic structure of fermions. By intrinsic structure, we refer to the

properties of the particle at an instantaneous position, independent of the effects

of Zitterbewegung.

The Foldy term is a relativistic effect of the Zitterbewegung motion of the

neutron having an intrinsic magnetic moment. The random motion of the mag-

netic moment gives rise to an effective charge distribution and hence contributes

to the charge radius. The similarity with the experimental result is remarkable

and gives the interpretation of a very small intrinsic charge distribution.

A careful treatment of the relativistic corrections to the charge radius in a

quark-diquark model has found that the Foldy term is exactly cancelled by a

contribution to F1 [Isg99]. This supports the interpretation of G n describing a

rest-frame charge distribution. Consideration of the chiral behaviour of electro-

magnetic properties demonstrates in a model-independent way that the observed

agreement is purely coincidental [LTY01].
The leading nonanalytic contribution to the electric charge radius of the

3
_-L _'2



22 2. QCD is Nonperturbative

neutron is given by [BZ72,GSS88, LC93]

?')?n:ffi'*(?) (2.40)

As a consequence of the approximate chiral symmetry of QCD we observe that
the charge radius of the neutron diverges as the quark mass tends to zero, in
contrast to the magnetic moment, which behaves as mr and remains finite as

rnr ---+ 0. If the physical quark mass \¡,/ere lighter by just a few MeV, the charge
radius would be dominated by a contribution from F1 and the agreement with
the Foldy term would be lost. This important result again highlights the role of
the pion cloud in nucleon structure.

***

Quantum chromodynamics is the fundamental theory describing the strong
interaction within the Standard Model. Low-energy properties within this theory
cannot be studied by using perturbative methods. The most promising theo-
retical developments within the field have been proven within the formalism of
lattice gauge theory. We have identified the technical issues which cause the
computational difficulty of reducing the quark masses in numerical simulations,
particularly with dynamical fermions. This restriction to the domain of hear,1,

quarks necessitates an extrapolation to the physical regime.
The chiral extrapolation problem is complicated by the nontrivial nature

of the QCD vacuum. This is a direct result of spontaneous chiral symmetry
breaking. The observed complexity in the structure of the nucleon is enriched
by the nature of the pion cloud. In the following Chapter we describe details of
spontaneous symmetry breaking and the immediate consequences. We outline
the construction of a low-energy effective field theory of QCD, with application
to the chiral extrapolation problem being the principle objective.
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Chiral SymmetrY and Effective
Field Theory

Early studies of strong-interaction physics found chiral symmetry to be well

respected in the real world, indeed it is recognised as the best hadron symmetry

after isospin [Pag75], The nature of this symmetry and its observed symmetry-

breaking patterns have provided a wealth of information for understanding low-

energy phenomena in QCD.
In this Chapter we discuss the nature of chiral symmetry and the conse-

quences of spontaneous breaking in the QCD vacuum' We outline the uses of

effective field theory and the construction of a low-enelgy effective theory for

QCD - namely chiral perturbation theory'

Calculations in chiral perturbation theory are traditionally carried out using

dimensional regularisation - or an equivalent minimal subtraction scheme' We

describe the theoretical framework for an alternative scheme which offers many

advantages in the context of quark mass variation. Being characterised by the

suppression of ultra-violet behaviour in loop diagrams, we refer to this scheme

as fi,ni,te-ran g e regularis at'ion (FRR) .

3.1 Spontaneous Breaking of Chiral Symmetry

In the absence of a quark mass term, the QCD Lagrangian, EQ' (2'1)' is invariant

under independent vector and axial-vector chiral transformations, defined by

,þ(") - e-'e'''rþ(r),
,,þ(") 

- "tee'ttsþ(r), 
(3 1)

respectively. We have collected our quark spinors into a two-component vector,l

r: (i) (32)

lOur discussion in this Chapter will only consider two

of the strange quark is a trivial extension'

flavours of light quarks. Inclusion
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The rotat'ion angles in SU(2) space are defined by 0v and 0¡, with pauli spin ma-
trices z operating in flavour space. With every continuous symmetry, Noether's
Theorem tells us that there exists a classically conserved current. The corre-
sponding vector and axial-vector conserved currents are given by

YP : ,þlrrrþ (B 3)

Ap : l,.yr.yrrl, (3.4)

Associated with these conserved currents are the classically conserved charges

Qv: d3rYo, Q¿: d3r.þ¡o (3 5)

The phenomenon of spontaneous symmetry breaking is characterised by a
degeneracy of eigenstates which minimise the action. In a system with an infi-
nite number of degrees of freedom, such as a quantum field theory, one cannot
relate these vacuum states via a unitary transformation. A physical system will
therefore choose a preferred vacuum state. If a symmetry of the action is con-
sequently lost by identification of a unique vacuum then this symmetry is said
to be spontaneously broken.

In QCD we have identified chiral transformations as a symmetry of the La-
grangian. The axial charge operators, Q1, tr"""rsarily commute with the Hamil-
tonian, l?"o,ul: o, The 75 structure in the axial current means that it is
negative parity and would therefore imply degenerate parity partners in the low-
energy hadron spectrum. This behaviour is not observed in nature. For example,
consider the nucleon ll/+) which has positive parity and mass ïrL¡¡ :0.g40 GeV,

¡f l¡f*) : rr¿¡,¡ll/+) (3 6)

we can define a negative parity partner, l¡/-) : SZ|w*), which must be de-
generate in mass by the commutation relation. In nature, the lowest excitations
of the nucleon carrying the appropriate quantum numbers are the l/(1535) and
A(1620), both being more than - 600MeV larger in mass than the nucleon.
Assuming the masses are not significantly altered in going to the chiral limit,
spontaneous chiral symmetry breaking is therefore realised by thc absence of
degenerate chiral multiplets.

Identification of the degenerate eigenstate l.n/-), which must exist to main-
tain the underlying Hamiltonian symmetry, requires further explanation. Preser-
vation of the commutation relation is resolved by the Goldstone Theorem [Gol61],
this theorem states that [GSW62]

". . .i'f there 'is a continuous symmetry transformat'ion under uhich
the Lagrangian 'is 'inuarzant, then ei,ther the u(rc'u,urn state ,is also
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,inuariant und,er the transformat'ion, or there must en'ist spi'nless par-

ti,cles of zero mass."

In any physical system in which the vacuum state breaks a symmetry there must

exist a zelo-mass, spinless boson carrying the quantum numbers of this symme-

try transformation. This massless boson is referred to as a Goldstone boson' The

negative parity state ll/-), created by the axial charge operating on the nucleon,

then corresponds to a non-interacting system of a nucleon and a massiess Gold-

stone boson. In this way, we have preserved conservation of the axial charge and

identified the degenerate eigenstate of opposite parity. The Goldstone bosons

therefore provide a connection between the continuum of degenerate vacua'

In QCD, the pions are approximate Goldstone bosons arising from the spon-

taneous symmetry breaking of the chiral axial-vector current, There are three

charge states corresponding to the different isospin projections' The physical

pion is only approximately Goldstone because it is not massless the finite mass

of the pion is a result of the explicit symmetry breaking given by the finite ,rl

and d quark masses.

An explicit quark-mass term in the Lagrangiafr, -mq1þ1þ, is not invariant un-

der axial-vector transformations. The associated Noether currents are no longer

conserved and their classical divergences, from the Euler-Lagrange equations,

given bY 
ðuÚr - 2i,mnrþlutrþ (3 7)

In historical studies of low-energy hadron interactions the hypothesis of par-

tially conserved. axial-vector current (PCAC) permitted the development of low-

energy theorems based on the approximate chiral symmetries of the strong in-

teraction. This hypothesis can be understood as the assumption that deviations

from a chirally symmetric world vary smoothiy with the explicit symmetry-

breaking parameter. Thus processes, such as zr-zr scattering, could be calculated

assuming an exact chiral symmetry and then violations arising from finite quark

mass contributions treated as small perturbations.

As described by Eq. (3.7) we would anticipate that the divergence of the

axial-vector current should be small and to leading-order be proportionallo mn'

The physical pion is observed to decay Lo a p"u-pair via the weak interaction. The

transition matrix-element between the single pion state and the QCD vacuum

via the left-handed current must be non-vanishing

(f-rlrrlr) : (Qlvp - Arlr) 10. (3 8)

With the vacuum defined to have positive parity and pion field carrying intrinsic

negative parity, the matrix element involving V, must vanish and hence the decay

transition couples exclusively to the axial current. Conversely, it can be stated
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that the axial-vector current creates the pion field. For decay of a single-pion
state of momentum Q¡,t,t we define the matrix element

Plafl@)l"o(q)) : ,i 6"b fnqtreiq'" . (3 9)

This equation defines the pion decay constant /,, which is experimentally deter-
mined for the charged pions from the decay rr -- lt+u.2 Taking the divergence
of Eq. (3.9) gives

(alap Afl(r) llr'(q)) : 6"b f nm2nein'' , (3.10)

and we observe that the divergence of the axial current is proportional to both
f* and m2*.

Comparing Eqs. (3.7) and (3.10) we observe that the divergence of the axial
current is proportional to bolh mn and m?* - implying that the pion mass varies
with the square-root of. mn. Treated rigorously, commutation relations between
the generators of the chiral transformations with the explicit symmetry breaking
terms give the famous Gell-Mann-Oakes-Renner (GoR) relation [GMOR68]

^o n L.fÍ*i : -;(^' + m¿)(uu + dd). (3.11)

Here we have introduced the chiral condensate which takes a value approximately

(au¡ : (dd) : (qq) = -(225 Mev)3, (8.12)

at a renormalisation scale of þ:7 GeV [GLS2]. With this value we observe the
average light-quark mass to be rî't : (mu + m¿) 12 - 7 MeV.

As the limit of vanishing quark-mass is approached the pion decay constant
and quark condensate remain finite. The pion mass approaches zero in the chiral
limit and is realised as a true Goldstone mode of QCD. The finite decay constant
at zeto quark mass enables the creation of massless states from the vacuum at
no energetic cost.

The physical QCD vacuum lies very close to a spontaneously broken phase
of an exact chiral symmetry. With the quark masses being so small on hadronic
scales, explicit symmetry brcaking is small and can systematically be treated as
a perturbation. We can utilise these features to enhance our understanding of
low-energy QCD. In particular, low-energy phenomena can be described entirely
in terms of an effective field theory for the approximate Goldstone bosons. This
effective field theory is commonly referred to as chiral perturbation theory.

2Decay of the neutral meson is complicated by coupling to the electromagnetic interaction
via the triangle diagram, ro -- 21. This process is intimately related to the nature of the
t/(1) axial anomaly in QCD.
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3.2 Chiral Perturbation TheorY

At low-energies the strong interaction is well described by hadronic degrees of

freedom, In fact, there is no evidence of explicit quarks and gluons as dynamical

fields in this energy regime. QCD at low energies can therefore be described by

an effective Lagrangian describing the interactions of the asymptotic fields of

the theory, As has been described in detail, the nature of spontaneous chiral

symmetry breaking in QCD means that the pion is significantly lighter than ali

other fields. The dynamical degrees of freedom, or quantum fluctuations, can

therefore be described entirely by the pion field. All other particles are treated

as heauy and are integrated out of the effective theory.

\Mith the quark mass treated as a light energy scale, a simultaneous expansion

in small pion momenta and quark mass about the chiral limit can systematically

describe QCD up to some energy scale. This effective field theory for QCD, with

an appropriate counting scheme for the energ-y scales, is commonly known as

chi,ral perturbatr'on theorE (XPT)

The general construction of phenomenological Lagrangians has been outlined

by callan, coleman, wess and Zumino [cwz69,cJcwz69]. These papers de-

scribed the tools for creating phenomenological Lagrangians for fields which

transform under arbitrary symmetry gloups. The use of such Lagrangians as

a systematic approach to the study of a more fundamental theory came about

with Weinberg's seminal paper [Wei79]. This work is characterised by Wein-

berg's elementary theorem, if one is to calculate matrix elements based on the

most general possible Lagrangian consistent with appropriate symmetries, then

the obtained result will be the most general solution - to a given order in

the expansion scale. For the most general Lagrangian, one must include ¿ll in-

teraction terms compatible with the underlying symmetry. This theorem also

relies on the definition of an appropriate counting scheme to define the necessary

contributions to any order in the expansion'

The most general Lagrangian for the pion, QCD's asymptotic field, based on

the fundamental symmetries of QCD will therefore describe a rigorous approach

to strong interaction theory in the low-energy regime.

We now describe the construction of the effective pion Lagrangian for low-

energy QCD. The QCD generating functional, in the presence of external fields,

can be expressed as

I o,qrorttorþ e*plo I o^" Lqço(A¡,,rþ,rþ;r,o, r,o)] , (3.13)
JL

where the QCD Lagrangian in the presence of the associated external fields is

given by the bare Lagrangian in the chiral limit, Eq. (2.1) with rnn : 0, plus



28 3" Chiral Symmetry and Effective Field Theory

chiral source terms

Lqco(A¡,,rþ,rþ;u, a,s,p) : .C$cn + rþOru, +'ys'ypat,- s -l ilup)rþ. (3.14)

The external fields 1)) o,) s,p are 2 x 2 matrices in flavour space and act as sources
for the vector, axial-vector, scalar and pseudoscalar fields respectively. The
transformation properties of these fields, see Refs. [GL84,BKM95], are defined
such that the Lagrangian is left invariant under the local chiral transt'ormations
defined in Eq. (3 1)

As we are interested in the low-energy sector of QCD, we can now expand
this expression in small momenta of the external fields. Working just in the
low-energy sector also means that we are able to integrate out all the quark and
gluon fields in the functional integral and replace it by an integration over the
pion field with appropriate effective Lagrangian,

zlu,a,s,pl: I"r.*o [, I o^rLrpr((];r,o,r,n¡f . (3.15)

The matrix [/ contains the pion field, where symmetry under SU(2) x SU(2)
chiral transformations is preserved by the nonlinear relation,

(J -- (J' : VRUV; , VR,L € SU(Z). (3.16)

In the standard nonlinear representation, U is given by U: exp(ir.r.lf).
The interactions of the effective field theory are then characterised by the

expansion of the effective Lagrangian

LrPr:LzlLq+..., (3.17)

where the subscript counts the energy dimension of the contributions to the
effective theory. In the simplest meson theory a derivative of (J or quark mass
contribution each count one dimension of energy. The lowest order, O(p') effec-
tive Lagrangian describing low-energy QCD is

r.r:74f, {tr lvrut v,u + xru + xull} , (3.1s)

where the covariant derivative V, preserves the symmetry under chiral trans-
formations [GL84, BKM95]

V ¡"U : 1rU - i(u, -t a)U + iU(u, - or). (3.19)

The couplings to the external scalar and pseudoscalar field are contained in the
fieldx 

x:2((s+i.p). (3.20)
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Here we see that to leading order we have introduced two low-energy constants,

F and B. Inprinciple, these parameters are calculable in terms of the under-

lying parameters of QCD. Without exact solutions to QCD Green's functions

they must be determined phenomenologically, such as by comparison with ex-

periment,
The parameter f describes the normalisation of the field U and from its

relation to the axial current is found to correspond to the value of the pion

decay constant in the chiral limit.

With the quark mass being contained in the external field, s, the parameter

B is therefore a measure of the scale of explicit chiral symmetry breaking in

QCD. Expanding the symmetry-breaking component of Eq' (3.18) there is seen

to be a vacuum expectation value proportional to the quark masses' Comparing

with the underlying Hamiltonian, it is found that B is given by

B
m2* \qq) (3.21)
2fn f2

which we identify as the GoR relation seen above, Eq. (3.11)' Using the physical

values quoted above, B is found to be approximately B - 1.3 GeV.

Contributions from next-to-leading order are systematically included by in-

corporating higher-derivative and quark-mass dependent terms in the O(pa) La-

grangian, La. In addition to the tree-level contributions from this Lagrangian,

working to this order also requires that higher-order loop diagrams from the

leading interactions, Lz,, must also be calculated. The complete powel-counting

therefore describes chiral perturbation theory as an expansion in quark-mass

and momentum-dependent interactions, together with an expansion of increas-

ing loop complexitY [Wei79].

Extension to BarYons

We now wish to also outline a description of baryon fields in the low-energy

efiective field theory. One significant difference in the inclusion of the nucleon

field is that it is non-chiral - the nucleon mass in the chiral limit is finite and

similar in magnitude to the scale of chirai symmetry breaking' Care must be

taken to ensure that the nucleon field transforms symmetrically under chiral

transformations.
We collect the proton and neutron fields into a two component iso-vector

Q;)
\trr : (3.22)
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We define a field u(r) as the square-root of the matrix freId U(r) : u2(r), with
transformations given by Eq. (3.16),

U'(") : VnUVj : u'2(r), (3.23)

We introduce the matrices K, which depend nonlinearly onV¡1,7 and [/, defined
by

Vpu : utK .

These matrices describe how the nucleon field transforms:

V':Kú. (3.25)

For explicit definition of the corresponding covariant derivative of the nucleon
field we refer the reader to Refs. [GSSS8,BKM95].

We note that the transformation of the nucleon field describes direct cou-
plings to the pion field. Our nucleon is therefore a fermion dressed, by a sea of
pions. The presence of the pions is therefore identified with our earlier discussion
of the Goldstone field connecting degenerate vacua.

Because the nucleon field is heavy, we do not consider fluctuations of the
nucleon field in the vacuum. Correspondingly, the nucleon field will not ef-
fect vacuurn-to-vacuum transition elements as described by the pion-only La-
grangian. The nucleon field simply acts as a source field on incoming and out-
going asymptotic states, No processes will create or destroy the nucleon and we
can consider an expansion in increasing, even powers of nucleon fields. For the
present work, we will only be concerned with the 2-point, nucleon propagator
and how it is modified by the interactions with the Goldstone field. The 4-point
function would therefore correspond to an analysis of ,¡/ ,^/ scattering.

Expanding the n l/ interaction, defined through the covariant derivative, to
leading order in the meson fields gives the lowest-order z.ly' Lagrangian [BKMg5,
rw01l,

cl*:Vp(l),ú

-(. o¡ ì: * 
tø - 

Ms- î¡rrrur(ôen) jv. (3.26)

From this we can read off the pion-nucleon coupling, given by the Goldberger-
Treiman relation [GT58]

(3,24)

M¡¡
9rNN : 9A--;- ,

Jn

which is exact in the chiral limit. The best empirical value for the pion-
nucleon coupling, defined at the pion mass pole, is found to be grNN: 13.32 t

(3.27)
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Figure 8.1: The pion-loop induced self-energy correction to the nucleon mass

The solid and dashed lines are the nucleon and pion respectively.

0.03(stat)t0.09(syst) [ELT02]. Inserting the physical values into Eq. (3'27) we

produce an estimate of the coupling, L2.87, and observe that the relation is

satisfied lo - 3Yo.

We have demonstrated how to incorporate the nucleon and the corresponding

interactions with the Goldstone field in the framework of chiral effective field

theory. We can now study the modifications to the nucleon field induced by

coupling to the pion field.

3.3 Regularisation and Renormalisation

In order to define a calculation within a quantum field theory one must regu-

larise and renormalise divergent loop diagrams. Clearly a physical theory is only

tractable once quantities are made finite. Regularisation and renormalisation is

the two step process of the removal of infinite divergences. Regularisation de-

scribes the process of quantifying the asymptotically divergent components of

loop integrals. Renormalisation is the subsequent removal of these divergences

such that results are finite and any dependence on the intermediate regulari-

sation procedure is removed.

At this point we consider a specific example to discuss the issues of renormal-

isation. As it will figure prominently in this Thesis, we consider the one-ioop

pion correction to the nucleon mass as shown in Fig. 3.1. By summing this

diagram as a geometric series, this loop is found to give an additive correction

to the nucleon mass given by XnIn.Together with appropriate local-interaction

terms, the nucleon mass to leading one-loop order can be expressed as

rL¡¡ - as ! a2m2* I XnIn, (3'28)

The parameters a6 and, a2 come from the bare nucleon propagator and its leading

quark-mass dependence respectively3. The zrl/ vertex describes the leading loop

3The term giving rise to ø2 does not appear in the leading-order Lagrangian descri

t

Eq. (3.26)

bed by
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diagram and the LNA coefficient to the nucleon mass expansion

x* : -*øg'o, (3.29)
ù.^JT

with corresponding loop integral l,. In the hear,y baryon limit, this integral over
pion momentum is given bya

k2 + m2*
(3.30)

This integral diverges as a cubic polynomial for large loop momentum. Its
infrared behaviour gives the leading nonanalytic correction to the nucleon mass.
This arises from the pole in the pion propagator at complex momentum k : ,irûn

and will be determined independent of how the ultraviolet behaviour of the
integral is treated. Rearranging Eq. (3.30) we see that the pole contribution can
be isolated from the divergent part

r_ : 
? I,* or (t, _ 

^?) + 1 l,* dk #;A (3 31)

The second term converges and is given simply by

) f(Ð m!1 I dk ___::!_ : mr (3.32)rJo -'"k2+*7 "ur1

where we now recognise the choice of normalisation of the loop integral, de-
fined such that the coefficient of the LNA term is set to unity. This choice is
purely convention and allows for a much more transparent presentation of the
differences in the quark-mass expansion with various regularisation schemes.

In the most Lrasic form of renormalisation we could simply imagine absorb-
ing the infinite contributions arising from the first term in Eq. (3.31) into a
redefinition of the coefficients ø6 and a2 in Eq. (3.2s). This solution is sim-
ply a minimal subtraction scheme and the renormalised expansion can be given
without making reference to a renormalisation scale,

Ttù1¡ : co I czm| + X,ms*, (3.33)

with the renormalised coefÊcients defined by

¡ta
dkl,*fn :2

1T

dlc k2 ,

I,*
aWe demonstrate reduction from the relativistic, covariant form of this loop integral in

Appendix A.

2co: ao I Xn-
^
2c2: a2 - Xn-,17

l,* (3 34)

(3.35)dk
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Equation (3.33) therefore encodes the complete quark mass expansion of the

nucleon mass to O(*t"). This result will be precisely equivalent to any form

of minimai subtraction scheme, where all the ultraviolet behaviour will be ab-

sorbed into the two leading coefficients of the expansion. The most commonly

implemented form of minimai subtraction is carried out within the framework

of dimensional regularisation.

Dimensionai regularisation was first developed by 't Hooft and Veltman in

1972 [tHV72]. This procedure has had a profound impact within the field of ele-

mentary particle physics - in fact, this work earned the authors the NobelPr\ze

awarded in 1g99. One of the primary features of this scheme is the preservation

of local gauge symmetries. Alternative regularisation schemes, which break local

gauge invariance, are not suited for elementary field theories constructed on the

basis of local gauge symmetries - such as the standard Model.

The procedure for performing the loop integral within dimensional regular-

isation is described in Appendix A. The final result to this discussion is that

the result is precisely equivalent to the minimal subtraction scheme performed

above. The flnite part is given simply by *t^ and the coefficients, a,6 â,nd a2, àrQ

renormalised by the leading divergences of the loop integral,

We have hinted that dimensional regularisation is best suited for elementary

field theories, comprised of point-like constituents. There is no intrinsic scale

dependence to interaction vertices. As has been referred to in Chapter 2, the

pion and nucleon are extend systems of finite structure and the high momentum

components are necessarily suppressed'

A common example in proton structure, which highlights the momentum

dependence of coupling to an extended object, is the electromagnetic form fac-

tor. We show the electric form factor of the proton in Fig. 3.2. This data

at intermediate momentum transfer can be parameterised by a dipole form,

Gb : Q + Q2l\2)-2, with mass scale À2 :0'7I GeV2.

An external current coupled at zero momentum transfer (Q' :0) determines

the net charge of the object. Coupling at high momentum transfer is suppressed

by the finite size of the proton's charge distribution. Physically, this can be

reconciled by observing that the photon probe, of finite wavelength, only resolves

a fraction of the net charge. The interaction of the pion and nucleon is quite

similar in nature, with the zly' form factor also being characterised by a dipole

of mass - l GeV [TW01].
An alternative regularisation scheme to that described by minimal subtrac-

tion, would be to suppress high-momentum contributions to loop diagrams by

introducing a functional regulator which vanishes sufficiently fast for k --+ oo'

Motivated by the physical form factor and the finite size of the nucleon, we refer

to this prescription as fini'te-range regularisateorz (FRR)'
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which upon explicit evaluation we find
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Figure 3.2: Experimental measurement of the proton's electric form factor -Hohlereú al. lH+76].

We can now consider the renormalisation of the quark-mass expansion by Taylor
expanding this expression about the chiral limit

rSC2L32L2e2nIì" : 3" - ;*i +mi" - n1^*i +.., , (3.39)

Combining this expansion with the leading analytic terms in the expansion en-
ables the appropriate renormalisation for the low-energy constants. Evaluating
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Eq. (3.28) with a sharp cut-off FRR and expanding the result gives the renor-

malised expansion

rnN - ao t azm? * *" (# -'**Z + *?. - #^+. ), (3 40)

where for comparison with Eq. (3.33) we make the identification

2L3
Co:ûol-X.n ^ ,

ó7f
2L

1T

Substituting these expressions into Eq. (3.a0), we find a renormalised expansion,

TTù¡¡ : col- czm?+X*rns* - *-h*f + .'., (3'43)

which is precisely Eq. (3.33) up to O(*Ð.
We have now demonstrated the mathematical equivalence of minimal sub-

traction and finite-range regularisation schemes. This renormalisation can be

extended to any finite order in the quark-mass expansion to maintain equiva-

lence.

A key feature of FRR is that the regularisation scale, Â., remains frnite.

In a traditional approach to a vertex regularisation scheme as outlined, the

scale parameter is removed by taking it to infinity. It is clear that as Ä -+
oo r,¡¡e will simply recover exactly the same expression as given by a minimal

subtraction scheme. With .A as an adjustable parameter, the regularisation

given here therefore includes a greater class of regularisation schemes, which

incorporates minimal subtraction as a subset. A finite r\. allows efficiency in

separating the long- and short-distance interaction scales [DHB99].
For the general case of Eq. (3.36) we describe the Taylor expansion as

4'**: boibzmT+^t*+..., (3.44)

and the corresponding renormalisation is given by

c2: a2 - Xr

(3.41)

(3.42)

co: ao I Xnbo,

C2: A2 - XnbZ.

(3.45)

(3.46)

With the infinities removed from our effective field theory, for two distinct

regularisation prescriptions, we are now prepared to apply the developed theory

to physical observables.

***
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We have described the elementary features of the nature of chiral symmetry in
low-energy QCD. In particular, the spontaneous breakdown of chiral symmetry
and consequent appearance of approximate Goldstone bosons. With develop-
ment of an effective field theory for QCD in the low-energy domain, we have
described the construction of the quark-mass expansion of the nucleon mass
about the chiral limit.

This quark-mass expansion relies on a regularisation and renormalisation pre-
scription for dealing with ultraviolet divergent loop integrals. We have described
a minimal subtraction and finite-range regularisation schemes.

The regularisation tools developed in this Chapter are the first step towards
the construction of an appropriate extrapolation form for modern lattice QCD
simulations. Before attempting the extrapolation problem we first wish to in-
vestigate the convergence properties of different regularisation schemes.



4

Convergence of the Quark Mass

Expanslon

We have shown in the previous Chapter that chiral perturbation theory provides

us with a tool for constructing a quark-mass expansion of hadronic properties

about the chiral limit. As described, there are issues to be considered in how to

most efficiently regularise divergent loop integrals. With modern lattice QCD

simulations restricted to the domain of heavy quarks, it is essential to minimise

the errors associated with truncation of the chiral series. A quantitative analysis

of the truncation process is of fundamental importance for the determination of

the applicability of the effective field theory in the context of lattice QCD'

In this Chapter, we set out to systematically study the expansion of the

nucleon mass about the chiral limit. We consider a number of different regular-

isation schemes in order to provide an unbiased assessment of the qualities of

each scheme. We find that finite-range regularisation offers superior convergence

properties over minimal subtraction, or dimensional regularisation' The main

features of this research were originally pubiished in Ref. [YLT03].

4.L lssues of Convergence

An early study of the quark mass expansion in ¡PT was carried out by Hatsuda

[Hatgg] within the model framework of Nambu and Jona-Lasinio (NJL) [NJL61a,

NJL61b]. The NJL model has had a wide ranging success in the application to

QCD phenomena. Modern applications have included studies of the QCD phase

diagram at large temperature and density [HK94, SKP99] and the structure of

nuclear matter in medium [VW91,8T01]. Hatsuda considered various properties

within the model, such as the quark condensate and meson decay constant.

The quark mass dependence of these quantities could therefore be studied by

changing the input parameters of the model. It was found that the quark-mass

expansion about the chiral limit is quite slowly converging. In fact, truncating

the series to just the first few terms was unable to reproduce the full result at the

physical strange quark mass - with convergence to roughly rnq N 30 50 Mev'

Remarkablv, the discrepancies cancel in the calculation of the meson mass and
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by coincidence the GOR relation (*'" o m) is consequently found to hold over
a wide range of quark mass.

The convergence properties of the quark mass expansion of the nucleon self-
energy loops (1-) was studied early on by Stuckey and Birse [SBg7]. The pion-
loop induced self-energy correction to the nucleon mass was evaluated with a
finite-range regulator. Taylor expanding their expressions, they found that one
would require terms beyond O(^7") to reach convergence at the physical kaon
InASS.

These studies highlighted that there may be potential problems in truncat-
ing the chiral expansion as a naive Taylor series. With the smooth behaviour of
lattice QCD results at moderate to large pion masses, as described in the previ-
ous Chapter, it was demonstrated early that successful application of the EFT
requires a more sophisticated analysis [LTTWO0]. The solution was realised in
the physical description of the source of the pion field being of finite physical
extent. This provided a natural mechanism for the suppression of chiral physics
at larger quark masses consistent with the empirical observation in lattice QCD.

Studying the problem in further detail, we have found that these problems
of convergence arise from the more fundamental issue of regularisation of ef-
fective field theory. The importancc of rcgularising effective field theory at a
finite mass scale, below where the theory breaks down, was addressed in a lec-
ture series by Lepage [Lep97]. Applications of EFT within nuclear systems
have also had a long-standing appreciation for the principle of a finite regu-
larisation scale [vKgg]. The formulation of chiral EFT with a finite-range (or
long distance) regularisation was first developed by Donoghte et a/. [DHB9g],
where they demonstrated dramatically improved convergence properties of the
3-flavour expansion incorporating the physical strange quark mass.

As an example case, Lepage [Lep97] considered the problem of solving the
Schrödinger equation for an unknown potential by development of an trFT. The
key physical idea of the effective field theory is to introduce an energy scale, À,

above which one does not attempt to understand the physics. For example, the
energy region above that cut-off may involve new physics - e.g., in the very high
energy limit, physics beyond the Standard Model. Because one does not pretend
to control physics above the scale ), one shoulcl not include momenta above
À in computing radiative corrections. Instead, one introduces renormalisation
constants which depend on the choice of cut-off so that, to the order one works,
physical results are independent of ).

As Lepage points out, "it makes little sense to reduce a (ie. increase À - 1/¿)
below the range" in which we understand the physics, because the "structure
they see there is almost certainly wrong." When it comes to specific problems
with the development of an effective theory of l/l/ scattering, this line of argu-
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ment leads him to conclude that "the problem is with dimensional reguiarisation

- and not with effective field theory." In particular, dimensionai regularisation

involves integrating loop momenta in the EFT over momenta all the way to

infinity - way beyond the scale where the effective theory has any physical

significance.

In the present discussion of maximising the convergence of the chiral expan-

sion, we learn from Lepage's investigation that one should not lake the regula-

tor parameter to oo. Efficiency of the expansion will therefore be compromised

by implementing dimensional regularisation, or any other equivalent minimal

subtraction scheme. The most physically relevant theory will therefore be ob-

tained by choosing a finite regulator scale, below where the theory omits essential

physics, and constrain the renormalisation constants by matching to data. The

process of determining the renormalised constants will therefore eliminate the

dependence on the regulator.
Finite-range regularisation schemes are very well motivated by quite general

physical arguments. The arbitrary nature of the choice of functional form of cut-

off regularisation has raised questions of model-dependence [8L99'B+03]' These

claims of model-dependence have not been quantified in any systematic fashion.

We set out to make a detailed investigation of the level of model-dependence

in finite-range regularisation. This study wiil also provide information on the

convergence properties of the quark-mass expansion under various regularisation

schemes.

4.2 Constraining the Chiral Expansion

To leading nonanalytic order the chiral expansion of the nucleon mass is given

by
MÍ'Ð - ao Í azm? I x¿nIpn(mn, L) r a'nmf. (4 1)

The superscript (3) is used to denote our power counting scheme, where we count

in powers of the quark mass. The single pion-loop self-energy contribution to

the nucleon mass has been written in a regularisation generic form. As outlined

in the previous Chapter, divergences in the loop-integral must be regularised

in order to obtain the renormalised expansion. The leading analytic terms in

the expansion, ie. ml2, are generated by local terms in the chiral Lagrangian.

The renormalised coefficients therefore are completely described by low-energy

constants of the chirai Lagrangian to this order'

We have used a prime notation for a'n to indicate that this parameter need

not be explicitly calculated to this order. This parameter is chosen to min-

imise any residual model-dependence in the choice of regularisation scheme

39
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[DHB99,YLT03,BHM04]. The necessity for inclusion of this term is ampli-
fied if working with the truncated Taylor series of dimensional regularisation.
This was highlighted in Section 2.3 where the series truncated at m3^ failed to
fit the data. Physically, the term a'n acts as a counterterm to remove, as far as
possible, any incorrect, ultraviolet behaviour from the loop contribution.

As an alternative procedure to the fitting of the next analytic parameter (a'n

in this case), the formulation of FRR allows freedom in the choice of regulator
scale, Â. The vastly improved convergence properties of FRR EFT are founded
on the principle that the regulator parameter, A, remains finite. This leaves
the task of choosing an appropriate value for the regulator parameter. At the
same time, results from an acceptable EFT should be largely independent of the
regulator parameter.

This raises an apparent contradiction to the formulation of a quantum field
theory are attempting to choose an optimum value of À and still retain
independence from this specific choice. The solution to this problem is to recall
that the sensitivity of the results on the regulator parameter diminishes as the
expansion is carried out to higher orders. Upon renormalisation, all discrepancies
between differing A values are contained in the remaining higher-order terms.
Hence the focus must be on improving the convergence properties of low orders
of the chiral expansion. Optimizing Á. with higher-order terms of the residual
series set to zero ensures that convergence will be enhanced. Calculating to
beyond leading order in the expansion will then be guaranteed to be a small
perturbation on the leading result.

Lattice simulation results combined with the experimental value gives a de-
scription of the nucleon mass over a wide range of quark mass. This offers
the potential to obtain an ab i,ni,t'io estimate of the appropriate mass scale A
which will minimise sensitivity to higher-order terms in the expansion. Being
motivated by the physical zIy' form-factor, one expect to regularise the
dipole form at r\ - 1.0 GeV or below. As shown by Eq 3.43), choosing r\ large
will produce results in exact agreement with minimal su raction. Recent work
of Bernard et al. [BHM04] classified the regime of sharp
produce resnlts equivalent to dimensional regularisation,

t-off ,4. required to

Our leading-order fits therefore have three free fit parameters to be deter-
mined. We fit os and a2 of Eq. (a.1) for all regularisation schemes, in additional
T,o a'n for DR and Â for FRR.

In Section 3.3 we described in detail the procedure for regularisation and
renormalisation of the loop integral for dimensional regularisation, or equivalent
minimal subtraction, and finite-range regularisation. In addition to the DR
expansion, we study the expansion with numerous functional forms in the FRR
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formalism. we select four different finite-range regulators, z(k)

Sharp cut-off (SC) 0(L - k)

Monopole (MON)

Dipole (DIP)

Gaussian (GAU)

(4 2)

(4.3)

(4 4)

(4.5)

Functional forms, where available, for the integrals and corresponding renormal-

isation coefficients are given in Appendix A'
AII regularisation schemes then give the following renormalised expansion

about the chiral limit

MÍP - co t czrn? + x¡*ms* I c'nml + O(mf), (4'6)

where now all expansions are identical up to O(ms") and any regulator depen-

dence is containe d in c'n and higher order terms' With the coefficient ¡¡¿',. set to

its phenomenological value, there are three free parameters in order to constrain

the expansion.

The ability to constrain these parameters precisely would require exact knowl-

edge of how the nucleon mass varies over a range of quark masses. Experiment

only offers a single quark mass and cannot constrain the expansion' The expan-

sion can only be constrained by taking information from an alternative source'

Lattice QCD provides a non-perturbative method for studying the variation

of. My with rnn. In principle, this allows one to fix the parameters of the chiral

expansion using data obtained in simulations performed at varying quark mass'

With the lightest dynamical simulation data point at rnn - 500 MeV it is un-

clear, a priori, if the effective field theory maintains applicability to this scaie of

quark mass. Fortunately, the self-consistency found within our results indicate

that the EFT can be reliably applied in this range of quark mass.

Making use of dynamical simulation results of lattice QCD enables us to

constrain an expression for M¡¡ as a function of the quark mass. In this study,

we use results of a 2-flavour simulation of the CP-PACS Collaboration [AK+02].
The lattice results have been obtained using improved gluon and quark actions

on fine, large volume lattices with high statistics. Specifically, simuiations are

performed using an Iwasaki gluon action [IwaS5] and the mean-field improved

clover fermion action.

In this work we concentrate on only those results with rn""" : TrLuul and the

two largest values of p (i.e. the finest lattice spacings, ø - 0'09 0.13fm)' This
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Reference a (fm) ¡/ mnL m2" (GeY2) M¡¿ (GeV)
CP-PACS 0.130 24

0.L23
0.118

0.111

0.r02
0.099

0.095

0.092

15.1

12.4

70.2

7.r
72.0

10.1

8,5

6.7

0.e130(18)

0.68e3(18)

0.5023(11)

0.2718(16)

0.e3e5(31)

0.7035(44)
0.53e4(30)

0.3535(56)

r.7es(4)
1.643(5)

r.4e7(6)
r.275(7)

1.80e(15)

1.652(e)

1.51e(e)

1.348(12)

Table 4.1: Lattice data used to constrain the chiral expansion. We also display
the physical lattice spacing and spatial dimensio" (¡/) of the lattice. Results
from CP-PACS Collaboration [AK+02].

Regulator as ü2 a4 
^ 

y2ldof
DR
SC

MON
DIP
GAU

0.885

t.274
2.763

r.795
7.324

3.51

0.691

0.446

0.527

r.423

310
0.690

0.880

1.380

r.072

3.8

0.61

0.44

0.46

0.48

Table 4.2: FiL parameters, in units of appropriate powers of GeV, of the residual
chiral series for various regularisation schemes to leading order, O(*?").Deter-
mined by fitting to the physical nucleon mass and lattice data ( 0.8 Gev2.

ensures that the results obtained represent accurate estimates of the continuum,
infinite-volume theory at the simulated quark masses. As described in Chapter 2,

we use the QCD Sommer scale [EHK98a] to set the scale for each independent
set of gauge field configurations. We list the data in Table 4.1.

Together with the physical nucleon mass, rve use the lattice data lying below
ml < 0.8 GeV2 to constrain our leading-order expansion formula, Eq. (4.1). The
resultant fits for various regularisation schemes are displayed in Fig. 4.1. The
corresponding fit parameters are seen in Table 4.2. The parameters listed in this
table are bare quantities and hence renormal,isat,ion scheme dependent. Com-
parison of the chiral expansion should only be performed upon renormalisation
of the loop contributions. The resulting expansion coefficients of these leading-
order fits are seen in Table 4.3. The level of agreement between the terms is
excellent. Most notably, we highlight the power of renormalisation to remove
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Figure 4.1: Leading order (O(*t")) fits for various regularisation expansions

constrained to physical nucleon mass and lattice data. The solid lines depict the

four FRR fits and the dashed curve shows the dimensionally regularised form'

a
,tt-tf

I, t
a

Figure 4.2: TheurA-loop self-energy correction to the nucleon mass. The solid,

double and dashed lines are the nucleon, a and pion respectively.

the large discrepancies observed among the bare parameters.

It is evident from the y2f dof of the leading-order fit, that the expansion

based on dimensional regularisation is incompatible with the lattice results up

to pion masses m7 - 0.7GeV2. The FRR expansions to this order produce

quaiitatively consistent results, although fitting the data does not quantify a

convergent expansion. We therefore extend the analysis beyond leading order

to include the next-to-leading nonanalytic contributions (NLNA) to the nucleon

mass. Most importantly, we incorporate contributions arising from the one-loop

ø-A diagram.

The contribution to the nucleon mass from coupling to a ¡'A intermediate

state is shown in Fig. 4.2. This provides another term to the expansion given by

(4 7)X*rIrL ¡
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DR
SC

MON
DIP
GAU

Regulator cs c2

0.885

0.892

0.896

0.896

0.895

c2

(4 8)

The coefficient

3.51

3.10

2.86

2.89

2.92

Table 4.3: Renormalised expansion parameters, in units of appropriate powers
of GeV, for various regularisation schemes of leading-order fits, Eq. (4.6). Bare
parameters shown in Table 4.2.

with 1,¡ describing the loop integral analogous to In. In the simplest form,
where we use a minimal subtraction scheme (like dimensional regularisation)
and with the l/-A mass-splitting taken to be large, we obtain

r,.T: -¡k*+brT,
with A : ïrLL - Tn¡¡ and ¡t a scale to define the logarithm
describing this interaction is given by

38
X^n: - J2"fig

where \Me use the ^9tl(6) value for the coupling given by C : -2D.
In the context of the expansion to large pion masses, it is important to realise

that Eq. (4.8) used the approximation ^*lL << 1. At just twice the physical
pion mass this ratio approaches unity. Mathematically the region mn = L,
is dominated by a square root branch cut which starts at mn : A. Using
dimensional regularisation, the loop integral is given by [8M96]:

(4.e)

I,Dfrer; : +(zxt -3m2*L)rog

| / n, _ 
^r,)tlr log

,,- \-

m2"

p2

A- L'-^7
(4.10)n+ JN=ifi

f.or mn < A, while for mn > A the second logarithm becomes an arctangent.
To access the higher quark masses in the chiral expansion, currently of most
relevance to lattice QCD, one requires a more sophisticated expression than
that given by Eq. (4 8)

The loop integral with a finite-range regulator is given by

) ræ ,- k4u2(k)1"":1Jo anffi, (4'Lr)
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with r.,:(k) : k t m7, in the limit A --+ 0 we identify this with Eq. (3.30)

This form will automatically pïeserve the branch structure at' mn - A' Simi-

Iarly to the leading-order result, the finite contributions to the ieading analytic

terms \n m2* must be absorbed into the renormalised expansion. This time we

must ensure that we carry out our renormalisation procedure including terms

at ml to ensure that alll possible contributions are accounted for - the for-

mal heavy-baryon expansion parameters at this order have been calculated by

Steininger et al. [SMF9S]. Similar to a'4 in Eq. (4.1)' it will be necessary to

allow freedom at the next analytic order, this time ml,, lo absorb any residual

regulator dependence.

In summaly, we now have our nucleon maSS expansion to NLNA given by

rmN : ao * azm?* i aamf -f a6ml

lx¡vnInlXntInt' Ø'72)

Once again, with appropriate renormalisation, the expansion is equivalent for

all regularisation schemes

rmN : co I czmT l 1lxt¡nml + "n*f3 n, rn,î
-x"nn]¡maolos3 +... (4'13)

We note that the scale of the logarithm implies a p-dependence on the coefficient

C4¡

c+(t):c¿(tr)-x-ohbr#. Ø'14)

Determini\g c+ from the data will ensure that there is no residual dependence

on the scale. We choose to set P : 1GeV.

We show the NLNA curves constrained to the physical nucleon mass and the

lattice data in Fig. 4.3. We observe excellent qualitative agreement between all

regularisation schemes to this order. The resulting expansion parameters are

displayed in Table 4.4.

Similarly to the leading-order case, the dependence on the regularisation

scheme is removed upon renormalisation, with the renormalised expansion co-

efficients given in Table 4.5. The level of agreement for the leading two terms,

cs and c2, is once again remarkable, particularly between the FRR schemes' We

note that the values of c4 among the latter three FRR schemes are consistent.

lThe present analysis only considers the one-loop diagrams arising from the Ieading order

Lagrangian. A tadpole loop arising from expansion of the explicit chiral symmetry breaking

term is neglected.
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Regulator as a2 a4 a6^X ldof
DR
DR(BP)
SC

MON
DIP
GAU

0.882

0.825

1.03

1.56

7.20

t.t2

3.82

4.37

I.t2
0.884

0.972

r.02

6.65

9.77

-0.292
-0.203
-0.229
-0.246

-4.24
-2.77

0.47

0.46

0.49

0.50

0.49

0.49

0.418

0.496
0.785

0.616

Table 4.4: Fit parameters, in units of appropriate powers of GeV, of the residual
chiral series for various regularisation schemes to next-leading order, E,q. (aJ\.
Determined by fitting physical nucleon mass and lattice data < 0.8 GeV2.

Regulator cs c2 c4

DR
DR(BP)
SC

MON
DIP
GAU

3.82

3.64

3.04

2.80

2.84

2.87

0.882

0.884

0.894

0.898

0.897

0.897

6.65

8.50

13.5

23.4

22.0

20.6

Table 4.5: Renormalised expansion parameters, in units of appropriate powers
of GeV, for various regularisation schemes of leading-order fits, Eq. (4.13). Bare
parameters shown in Table 4.2.
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Figure 4.3: Next-leading order (O(**)) fits for various regularisation expansions

constrained to physical nucleon mass and lattice data, The solid lines depict

the four FRR fits and the dashed and dash-dot curves show the dimensionally

regularised forms, with and without the branch-point respectively.

The efficiency of the FRR schemes is highlighted by comparison between

the bare and renormalised coefficients of. mf, o'a a'nd ca. Whereas the renor-

malised coefficients are quite large for the three smooth FRR schemes, the bare

coefficients of the residual expansion are a factor of 100 smaller. We remember

that regularising the loop integrals with a finite-range regulator ensures that

the contributions are suppressed for increasing pion masses. Divergences will

arise from large coefficients in the residual series alone. By adjustment of A we

observe FRR effectively distributing weight to the loop contributions and hence

improving the convergence properties at large quark mass'

If we trust the renormalised expansion of the smooth FRR schemes then

we can easily understand the behaviour of the DR flts. The dimensionally regu-

larised curves have large values for the bare parameter a4, yet the small (or zero)

renormalisation does not yield a ca lhat is consistent with the magnitude of the

FRR results. The DR schemes therefore fail to obtain a fit which is compatible

with the large value of ca and smooth behaviour of the lattice data'

These six curves now represent our best estimates for the variation of the

nucleon mass over a wide range of quark (pion) masses. we now wish to anal-

yse each of these regularisations in an unbiased fashion. For each curve' \Me

attempt to reproduce the given curve with each of the alternative regularisation
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prescriptions. It is a fundamental tenet of quantum field theory, that phystcal
obseruables are'independent of regulari,sation scheme.

4.3 lnvestigating Regularisation Eqrivalence

In the limit of vanishing quark mass, the expansions given by all regularisation
schemes are identical. One can therefore switch from one scheme to another
without loss of generality - provided one is close enough to the chiral limit. Of
more practical importance in the present context, is the issue of the range of
quark masses where regularisation schemes maintain their equivalence.

we make use of the six constraint curves, M(^*), as determined at NLNA
in the previous section. We then attempt to reproduce the same curve by any
other regularisation scheme. By doing a one-to-one comparison over different
ranges of pion mass we are able to determine the effective convergence range of
each scheme.

For each constraint curve, M(**), we have six úesl regularisation schemes,
F(*"). We refit the free parameters of the test curves to the constraint over
increasing windows of pion mass.

This is achieved by defining our matching criteria between two curves by the
measure X2, which defines a normalised, mean-square area between the curves,

x2(mw,5r: Ïii d^'- -[l(*^) - u(*-)]'
ïW 

(4 15)

1

where we normalise to an average deviation of d, which we choose to set at
d : 1Mev. For computational purpose, we approximate the integral over ml
by the Riemann sum, dividing the region into l/ segments of size h:m2w/N,

dm?" [F(m*) - M(^òl' , (4.16)

am?" ¡(m?") -- hÐ f Q,h) ,

N

i:l
(4.r7)

with h fixed to 0.001GeV2. For each upper limit, m2*, Lhe measure x2 is min-
imised in the parameter space of the test function form, F(*").

All regularisation prescriptions have precisely the same structure in the limit
ffin + 0. As our test window moves out to larger pion mass the variation of
¡2 will describe the utility of each expansion. Accurate reproduction of the
expansion coefficients also serves to test the convergence over a given range.
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The variation of X2 as a function of the upper limit of the curve matching

window, myt,, is plotted in Fig. 4.4. By our choice of normalisation, õ :7,
a measure X2 :1 corresponds to an average deviation between the curves of

1MeV. The first feature that one notices is that, if the BP scheme is used as

the constraint curve, øll schemes are able to describe it very well for m7 up

to - 0.b GeV2 and beyond. On the other hand, we see from the lower four

graphs of Fig. 4.4 tirlat DR the form is only equivalent to the FRR forms up

fo - 0.3GeV1, with the BP curve performing marginally better, - 0'35GeV2.

This already provides an indication that the FRR forms are more adaptable to

describe the expansion over a wider range of pion masses'

In contrast between these significant discrepancies between the FRR and

DR schemes, the agreement between the different FRR formulations is excep-

tional. Marginal differences are observed between the sharp cut-off and the

smooth FRR forms. The error between the monopole, dipole and Gaussian

forms are below the resolution of this plot. This is an exceptional resuit, espe-

cially considering the wide range of quark masses considered, and puts to rest

any questions of model-dependence in the choice of regulator, such as raised by

Refs. [BL99,B+03,BHM04]. The improved convergence properties of the FRR

schemes are observed to be independent of the functional form of regulator. This

hightights the importance of the rapid convergence of the residual series of the

FRR expansions, in contrast to the large divergences encountered with the DR

forms.

Perhaps a more important measure of the applicability of a given scheme is

the ability to accurately produce the low-energy constants of the renormalised

chiral expansion. We test how well the these parameters are reproduced as the

curve-matching window is increased. Taking the same best-fit parameters as

obtained from our curve-matching measure over a given range of pion masses'

we extract the renormalised expansion parameters. With the branch-point DR

curve taken aS our constraint, we show the leading term' cs, âs a function of the

curve-fitting window in Fig. 4.5. A similar curve) with the dipole form taken as

the constraint, is shown in Fig. 4.6'

It is clear from Fig. 4.5 that, whatever scheme is used to extract c6 from

the BP constraint curve) it is determined with an accuracy better than lTo -
as long as the fitting window is smaller than 0.7GeV2. Our 1% cut is defined

such that the contribution from the given term to the physical nucleon mass is

accurate to within 1%. This means for c¡ we have 6csf MN <7% or in the case

of c2,, we require õc2m?*f M¡¡ < I%'
With the dipole as the constraint, Fig. 4.6 shows that the dimensional regu-

larisation schemes do not give an accurate description of c6 once the matching

window extends beyond 0.5 GeV2. Conversely, all the FRR schemes are in ex-
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Figure 4.4: Mean-square area between the constraint curve (indicated on the
ordinate) and each of the test curves, plotted as a function of the curve fitting
window (0,*'*). Normalisation chosen such that y2 : 1 describes a fixed
deviation of 1MeV.
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Figure 4.5: Recovered cs from various regularisation schemes constrained to the

dimensionally regularised (BP) curve. c6 is plotted as a function of the curve-

fitting window (0,^'*). The dashed horizontal line indicates the maximum

deviation of co to within l% of the physical nucleon mass'

cellent agreement over the entire range.

For the coefficient c2, Figs. 4.7 and 4.8 display similar results to those found

for the leading term. AII methods yield the correct value of c2 based on the BP

constraint curve within I7o ourt to a fit window of 0.7GeV2. We highlight that

the breakdown beyond 0.7 GeV2 does not come as a surprise, since the original

BP curve already encounters a power divergence beyond the last constraint from

the iattice data, as seen in Fig' 4.3.

With the FRR forms taken as the constraints, the dimensionally reguiarised

forms fail to accurately reproduce c2 beyond 0.4 GeV2. We show the case of the

dipole constraint in Fig. 4.8. The agreement between all FRR schemes is once

again found to be remarkable over the entire range'

The results found in this section demonstrate that one cannot use a chiral

expansion based upon dimensional regularisation, to the order described, to

analyse datawith m2n over an upper limit around 0.4GeV2. This is assuming

that one has perfect data all the way down to the chiral limit. In a practical

case of a Iattice QCD simulation, there will be limited data points of finite

accuracy and, most importantly, restricted to values above some lower-bound

in m2^. These considerations mean that using DR-based forms, for analysis of

lattice data, will be restricted to the case where all of the data included must lie

0.4 0.6 0.8

DR
BP
SC
MON
DIP
GAU
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Figure 4.6: Recovered cs from various regularisation schemes constrained to the
dipole regularised curve. ca is plotted as a function of the curve-fitting window
(0,^'*), The dashed horizontal line indicates the maximum deviation of c6 to
within t% of the phvsical nucleon mass

well below m?* < 0.4Gev2. with the described alternative given by FRR, it is
apparent that the improved convergence properties will enable reliable analysis
of lattice data in the region up to 0.8 GeV2 or greater. This is a regime where
we already have impressive data from CP-PACS [AK+02,N+04], MILC [B+01],
JLQCD [A+03] and QCDSF-UKQCD [AK+04]. In particular, the FRR approach
offers the ability to extract reliable fits where the low-mass region is excluded
from the available data, ie., application to the ch'iral ertrapolati,on problem -this will be addressed in detail in the proceeding Chapter.

4.4 Enhanced Convergence w¡th FRR

As to bc expected from the I'ormulation of the effective field theory, we have
demonstrated the equivalence of all regularisation schemes for the expansion
about the chiral limit. In particular, we have found that the low-energy expan-
sion coefficients are consistent between all regularisations, both DR and FRR,
provided one limits the range of pion masses tom2* < 0.4GeV2, The formalism
of FRR offers the ability to extend the applicable range beyond that permitted
within a DR expansion. We find that all the FRR curves are able to describe any
of the expansions, including those constrained within DR, over a significantly

DR
BP

- - -SC
MON_ DtP
GAU

\ ì-._
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Figure 4.7: Recovered c2 from various regularisation schemes constrained to the

dimensionally regularised (BP) curve. c2 is plotted as a function of the curve-

fitting window (0,*'*). The dashed horizontal line inrlicates the maximum

deviation c2 cà¡_ take such that the error in the quantily c2m?, is less than 7Yo

of the physical nucleon mass at the physical pion mass'

enhanced range of pion masses 0 < *7 < 0.7 GeV2'

This range can be extended further by acknowledging that the DR curves

are not applicable beyond m7 - 0.4GeV2. Therefore the original constraint

cuIVeS'whichfitlatticedataupLom2^-0,TGeV2,arebeyondthereliablerange
of the expansion. Considering just the FRR schemes, we observe equivalence

over the entire range of pion mâsses considered 0 < *7 < 0.8GeV2' The

agreement between the three smooth FRR scheme is incredibly precise. We

therefore conclude that the use of dimensional regularisation is not efficient for

the present application of effective field theory.

The failure of dimensionally-regularised XPT can be understood by recog-

nising that the only mass scale appearing is that of the pseudoscalar meson.

As the pseudoscalar mass increases, physical processes become dominated by

short-distance physics. Because the loop contributions are not suppressed for

large momentum scales, the chiral loops are therefore modeling the high-energ-y

behaviour of the theory; beyond the regime which is well described by the low-

energy efiective field theory. At these higher momenttrm scales the hadronic

degrees of freedom are no longer elementary, but composed of a finite structure

of QCD constituents, quarks and gluons. The point-like interactions described

-

---DRBP
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MON

- 

DIP
GAU
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Figure 4.8: Recovered c2 from various regularisation schemes constrained to the
dipole regularised curve. c2 is plotted as a function of the curve-fitting window
(0,^'*).The dashed horizontal line is as described in Fig.4.7.

by DR therefore leads to a badly divergent series expansion at higher order.
Fortunately the separation of scales, between low- and high-energy, can be

achieved by incorporating a finite energy scale, above which loop contributions
are suppressed, This scale is easily identified as the finite size of the nucleon

- in particular, the size of the pion-field source. As described in Section 2.3,
this is a physical scale, l\souncB - llU')'J?"r - 0.3-O.4GeV, and surprisingly
small. The finite size of the nucleon will only be generated in the dimensionally-
regularised expansion at higher order.

Similar to the shift from the logarithm to the arctangent in the explicit treat-
ment of the A in the branch-point DR expansion, one should not expect a series
expansion to be compatible beyond - l\souacr;, without incorporation of this
scale. The FRR formalism can then be seen as treating this scale nonperturba-
tivcly and therefore permits a reliable expansion rrp t, and ì-reyr-rncl l\ssurÌçs,

Although the FRR procedure relies on choosing a functional form of regula-
tor, we conclude that the physical expansion is insensitive to this choice. This
result is a consequence of the procedure which guarantees the stability under
truncation of higher-order terms. Higher-order terms, which are implicit in the
structure of FRR, are essentially summing to zero in the regime of large quark
masses such that the chiral series is stable to truncation.

The regularisations described have been derived rigorously up to the order

DR
BP

--_SCMON
DIP
GAU

4

tt-
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one is working, such as O(^*) in the NLNA curve presented in this Chapter.

Any regularisation scheme cannot therefore be taken to give any information on

the higher order terms in the expansion. We find, nevertheless, that the three

smooth FRR schemes give rise to a significantly large rnf contribution.

The two-loop calculation of fhe m5* term in heavy-baryon XPThas been cal-

culated by McGovern and Birse [M899]. These contributions are intimately

related to the Goldberger-T[eiman relation [GT5S] and the deviation of the

zr',4/,^/ coupling from the chiral limit. Importantly, the m\n coefficient2 arises

from quark-mass variation of the axial coupling g¡f f* and the Q2-dependence

of the nlr/l/ form factor [YLMT]. In addition to a small correction to lhe m5*

coefficient, the variation of the coupling gives rise to a new nonanalytic con-

tribution at mí*logmn. The Q2-dependence of the interaction dominates the

mín correction. The monopole, dipole and Gaussian forms of FRR already imi-

tate this Q2 variation and hence, for the respective Â. values, give a coefficient

consistent with the two-loop calculation of McGovern and Birse. Thereby, we

observe that the one-loop calculation in FRR is already giving rise to a reason-

able approximation to higher-order contributions in dimensionally regularised

XPT.
The one-loop estimates of the rnf contribution are certainly model-dependent

- they depend on A-2. Going to higher order in the chiral expansion will

remove this À-dependence through renormalisation [YLT]. Importantly, these

higher-order corrections will only appear as small perturbations from the one-

Ioop estimates. The convergence of the FRR expansions is therefore manifest.

The precise agreement between the smooth finite-range regulated results over

the entire pion-mass range considered, 0 ( m?* < 0.8 GeV2, confirms that the

shape of the regulator is irrelevant provided that the regulator parameter is

optimised by the fit to the data. The approach is systematicaliy improved by

simply going to higher order in the chiral expansion, introducing additional

analytic terms as appropriate to maintain model independence.

***

With a selection of regularisation schemes we obtain our best estimate of the

nucleon mass variation over a wide range of quark masses. Using the physical

nucleon mass and modern lattice QCD simulation data enables us to constrain

the parameters of the NLNA chiral expansion of the nucleon mass. General

principles of quantum field theory tell us that we should be able to change

2At higher orders it is important to account for discrepancies of the GoR
that ml 4 ^1/'. Since we are working with lattice masses, we always use the

relation, such

renormalised

pton mass mn
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regularisation scheme without changing our physical conclusions. This feature
is observed is the low-energy, low-quark-mass regime, where the theory is well-
defined.

We find that the use of dimensional regularisation, in the context of the quark
mass expansion, for the effective field theory restricts the convergence of the
chiral series. At best, we find that the NLNA extrapolation based on DR(BP) is
only applicable at pion masses below m2* < 0.4GeV2. As an alternative to DR,
we find that finite-range regularisation offers superior convergence properties
over a much wider range of pion mass - in fact, convergence is observed over
the entire range considered 

^7 S 0.8 GeV2.
The characteristic feature of FRR is the finite regulator scale which acts

to give a physical description of the finite size of the pion-nucleon interaction,
Mathematically, this scale offers the advantage to enhance the convergence of
the expansion by minimising the divergences of the residual chiral series. Im-
portantly, the results are insensitive to the choice of ultra-violet regulator and
display no dependence on the functional form.

The techniques described using FRR, therefore mean that we have a rel!
able chiral expansion for performing a model-independent chiral extrapolation of
modern lattice QCD data.



5

Nucteon Mass Extrapolation for
Lattice QCO

As outlined in the Introduction, the chiral extrapolation problem is of funda-

mental importance for modern lattice QCD simulations to make contact with

physical observations of Nature. The character of chiral symmetry breaking in

low-energy QCD complicates the problem, because hadron properties exhibit

nonanalytic variation with quark mass.

Fortunately, these nonanalytic structures involve coupling constants defined

in the chiral limit, which are essentially model-independent [LP71]. The only

further obstruction they add is that the ultra-violet behaviour of the loop in-

tegrals must be regularised. with the results of chapter 4 al hand, we find

that FRR techniques in chirai EFT are best suited for the chiral extrapolation

problem.
We constrain the free parameters of the chiral expansion to the lattice data

alone. In contrast to the previous Chapter, we no longer constrain the theory

to the physical nucleon mass and therefore provide a true ertrapolat'ior¿ to the

physical regime. This enables us to determine the best theoretical calculation

of the nucleon mass from nonperturbative QCD. The principal results discussed

in this Chapter have appeared in Ref. [LTYO ].

5.1 Extrapolation Formula

We review the formulae for the chiral expansion of the nucleon mass as described

in detail in chapter 4. To leading nonanalytic order, o(-1,) we use the following

expression to fit lattice QCD data, Eq' (a.1)

M|? - ao I azm?n i aamf I y¡,¡*I*(m', 
^) 

' (5 1)

The regulator dependence remains implicit, with details of the regularisation and

renormalisation prescriptions have been shown in Section 3.3 and Appendix A'

For example, in dimensional regularisation we have the form

Mf)o* : co -]- ,2m2* + a¿mI, + xN*m"*, (5'2)
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Figure 5.1: The tadpole-loop correction to the nucleon mass. The solid and
dashed lines are the nucleon and pion, respectively.

with the parameters cs, c2 and aa to be determined from lattice data. For
comparison, we also show the dipole FRR form

Mf)ore : aorazm?raaml* **-ffi, (5.3)

with free parameters as, o,2 and aa. We note that the differing fit parameters,
o¿ and c¿, àrQ defined for simplicity with no loss of generality. Whereas with
the dipole, it is convenient to fit the bare parameters, this is not possible in DR
bccausc thcsc values are set to infinity through the renormalisation procedure.

We also summarise our functional extrapolation forms for going beyond lead-
ing order. In particular, we include contributions arising from coupling to the
decuplet A-baryon as described in the previous Chapter. We again study both
forms of the A-zr diagr with and without the correct branch structure at
mr: M6- M¡¡. For the extrapolation analysis we also include atadpoleloop
contribution arising from expansion of the O(^) chiral Lagrangian, as shown
in Figure 5.1. A chiral invariant expansion in higher powers of the pion field
generates this r nl/N vertex proportional to the quark mass. The tadpole loop
produces a nonanalytic contribution at mflogmn, being the same order as the
Azr interaction. By including this additional contribution we ensure that we
have all nonanalytic contributions to O(^Ð in the heavy-baryon expansion.

The tadpole diagram appears with a coupling proportional to the renor-
malised rr¿q expansion coefficienr, c2. The corresponding loop integral can be
expressed as

r,ud: *?^ [ dk-L, (b.4)
" J u/kz +m2"'

with coefficient given by
t
r)

Xtud : -cz 16n\l

I
t

,

(5 5)

We note that in evaluating 1¡"¿ with a FRR we must subtract the leading con-



5.1 Extrapolation Formula

stant from the integral such that the renormalisation of c2 remains linear,

59

-2k "'(k)
2k2

+
ir^ ml (5 6)

k

With these two additional contributions we now have our complete expression

for the extrapolation formula at next-to-leading order, O(^*),

*tl) : ao I azm? -f aama^ -l a6m6,

*XnIn I XntInt * Xruair^a (5'7)

Expressions for the loop integrals for the various regtrlarisation schemes are

shown in Appendix A, with the corresponding renormalised expansions given in

Appendix B. In the simplest dimensionally regularised form the renormalised

expression is given bY

M¡¡ : co I czm? + Xw^^t* -l camf

3
-XnL,-¡ * Xt"a

47f D,

The scale-dependence of ca has been left implicit and all calculations are per-

formed with ¡.i : l GeV'
We remind the reader that all reguiarisation schemes are equivalent to this

order of the chiral expansion.

The key feature of finite-range regularization (FRR) is the presence of an

additional adjustable regulator parameter which provides an opportunity to

suppress short distance physics from the loop integrals of the effective field

theory. This short-distance physics is otherwise treated incorrectiy, as the effec-

tive fields are not realized in QCD at short distances'

The advantage of FRR is offered in the ability to shift weight between the

loop integrals and the residual expansion, characterised by the bare patameters,

a¿. Whereas the residual expansion will encounter a power divergence a's rnr

becomes iarge, the FRR loop integrals will tend to zero as a power of ltf m"'

Since lattice calculated masses are observed to be smoothly varying [TLY03],

there should exist a range of -4. values for which the residual series is reliably

convergent.

T\.rning a precise value of A is unnecessary, as the higher order terms are

effectively summing to zero where the lattice data is being fit' In addition, the

extrapolation of lattice data has no information in the light-quark regime and

therefore prevents an accurate determination of an adjustable A. We therefore

choose the best-fit À (rounded to the nearest 100 MeV) found in the NLNA fits

of Section 4.2.

+ ( ) 
*fbrT t c'um6n (5 8)
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Regulator as cL2 cL4 
^

I dof
Dim. Reg.

Sharp Cutoff
Monopole
Dipole
Gaussian

2.38

-0.286
-0.247
-0.25r
-0.266

0.715

1.00

r.27
1.10

1.01

4.24

r,74
1.01

1.05

1,57

0.4

0.5
0.8

0.6

0.96

0.40

0.40

0.40

0.40

Table 5.1: Bare, unrenormalised, parameters extracted from the leading-order
fits to lattice data. All quantities are in units of appropriate poweïs of GeV.

5.2 Resu lts

We fit our extrapolation curves to recent nucleon mass data obtained in lattice
QCD by CP-PACS [AK+02]. This is the same data considered in the previous
Chapter - with an additional two points in the range 0.8 < m2* < 1.0 GeV2.
These results have been obtained using a high statistics ensemble, which has
enabled very precise measurements for a number of quark masses. It is only
the extreme precision of the data which allows the determination of as many as
four fit parameters to be reliably determined. Because this group used the mean-
field improved clover fermion action with an Iwasaki gauge action on fine lattices
and large volumes, we assume that the results represent accurate estimates of
the infinite-volume, continuum theory. The simulation results are shown in
Table 4.1, where it is observed the physical lattice spacings are in the range
¿ - 0.09-0.13fm and all lattice volumes respect the condition mnL ) 2r.

We first fit the data with the leading-order expansion given by Eq. (b.1). The
resultant fit parameters are shown in Table 5.1. The corresponding fit curves are
shown in Fig. 5.2. To this order, we observe that all FRR prescriptions are in
excellent agreement with each other and give a good description of the physical
nucleon mass. The dimensionally regularised curve does not offer the same
level of agreement as the FRR curves. We compare the renormalised expansion
coefficients from the various fits in Table 5.2.

We now attempt to fit our next-to-leading order form, O(^l), given by
trq. (5.7). The resultant fit parameters are shown in Table 5.3. The large coeffi-
cients of the residual series for the DR forms suggests that there could potentially
be significant errors associated with the truncation of the series at this order. In
particular, the large value of a4 means that the fit curves are diverging rapidly
with pion mass. The coefficient ø6 appears small but is significantly larger than
the FRR counterparts. In contrast, the small values ror aa and a6 for the FRR
curves, combined with the convergent large-mn behaviour of the loop contribu-
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Regulator cs c2

Dim. Reg.

Sharp Cutoff
Monopole
Dipole
Gaussian

0.715

0.931

0.928

0.927

0.930

4.24

2.53

2.38

2,42

2.40

Table 5.2: Renormalised expansion coefficients extracted from the leading-order

fits to lattice data. All quantities are in units of appropriate powers of GeV.

Regulator A¡ O"2 CL4 a6^ dof

Dim. Reg.

Dim. Reg. (BP)
Sharp Cutoff
Monopole
Dipole
Gaussian

0.827

0.792
1.06

r.74
1.30

1.08

3.58

4.75

0.56

0.30

0.37

7.22

3.63

8.92

-0.55
-0.48
-0.49
-0.50

-0.711
0.384

0.116

0.082

0.089

0.095

0.43

0.47

0.40

0.40

0.40

0.40

0./t

0.5

0.8

0.6

Table 5.3: Bare, unrenormalised, parameters extracted from the fits to lattice

data displayed in Figure 5.3. All quantities are in units of appropriate polü/ers

of GeV.
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Figure 5.2: Leading-order fits to lattice data based on leading-order chiral ex-
pansion with various ultra-violet regulators. The sharp cut-off, monopole, dipole
and Gaussian cases are depicted by solid lines - indistinguishable on this plot.
The dimensionally regularised form is represented by the dashed curve.

tions, indicates that the truncation of higher-order contributions is reliable.
The corresponding extrapolation curves are displayed in Fig. 5.3. The agree-

ment at this order between all regularisation schemes is remarkable. This is
highlighted by the renormalised coefficient, c¡, shown in Table b.4. The ob-
served agreement in c6 correspondingly means that the extrapolation to extract
the physical nucleon mass is consistent with for all regularisation schemes. The
discrepancy between the curves becomes more apparent as we analyse the low-
order terms in the expansion, particularl! c2 and ca. These parameters will enter
more significantly in other low-energy properties of the nucleon - such as the
pion-nucleon sigma commutator, which we discuss below.

The large renormalised value for c4, found consistently for all FRR schemes,
supports the argument that the DR forms will be sensitive to higher-order con-
tributions. The large values of aa lor the DR fits seen in Table 5.3 suggest that
the X2-minimisation is attempting to balance between the correct, large values
of ca and a non-divergent curve which reproduces the smooth lattice-data.

Determination of the coefficient c2 is especially important for the extraction
of the pion-nucleon sigma commutator, being defined as

1

2

6

1

1on*: 
5

(5 e)(wllQz,lqi, nlll¡v) ,
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Figure 5.3: Next-to-leading order fits to lattice data for various ultra-violet reg-

ulators. The sharp cut-off, monopole, dipole and Gaussian cases are depicted by

solid lines - indistinguishable on this plot. The dimensional regularised forms

are illustrated by the dashed curves, with the correct branch point corresponding

to the higher curve.

where Qi i, the axial charge operator defined by Eq. (3.5) and H lhe Hamil-

tonian. FYom the discussion in Chapter 3 we note that the commutator van-

ishes in the chiral limit. This quantity therefore acts as a measure of explicit

chiral symmetry breaking, where the double commutator exposes the quark-mass

dependenc e of. ÊI ,

orN: (Nl(m.uu+rnd7ülN). (5.10)

In the isospin-symmetric limit we can formulate the sigma term as

^ ðM¡,t ,}MrvatrN:^#:*?ffi, (5.11)

where we have made use of the GOR relation, Eq. (3.11), Since the physical

quark masses are small, the physical on¡¡ is dominated by the leading quark-

mass dependence of M¡¡, which is describedby c2. With a large uncertainty on

the empirical value of the sigma term [GLS91]

arN :45 + 8 MeV, (5.12)

the accurate extraction of this quantity from lattice QCD will further enhance

our understanding of nucleon structure.
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Regulator Cg C2 C4

Dim. Reg.

Dim. Reg. (BP)
Sharp cutoff
Monopole
Dipole
Gaussian

0.827(56)

0.s75(56)

0.e23(65)

0.e23(65)

0.e22(65)
0.e23(65)

3.58(25)

3.14(25)
2 61(33)

2.45(33)
2.4e(33)

2.48(33)

3.6(8)

7.2(8)
11.8(8)

20.6(15)

18.e(15)

18.3(15)

Table 5.4: Renormalised expansion coefficients in the chiral limit obtained from
various regulator fits to lattice data. (All quantities are in units of appropriate
powers of GeV.) Errors are statistical in origin arising from the errors in the
lattice data. Deviations in the central values indicate systematic errors associ-

ated with the chiral extrapolation.

We quote our final values for the extrapolated nucleon mass and sigma com-

mutator in Table 5.5. In this table, we also show the results from the leading-
order fits. The comparison between the O(ms") and O(mf) results further estab-

lish the enhanced convergence achieved by using FRR techniques. Where the
results of the FRR extrapolations vary by a few MeV between the O(ms") and
O(-*) results, the DR forms vary by order 100 MeV or more.

To the date of publication in Physical Review Letters [LTY04], the results
displayed in Table 5.5 represent the most comprehensive and systematic extrac-
tion of the physical nucleon mass and ø,,¡¿ from lattice QCD. This therefore
corresponds to the most advanced nonperturbative calculation of the nucleon

mass - one of the most fundamental observables of low-energy QCD.

5.3 Remaining lssues

The impressive results obtained in this Chapter could lead to the conclusion that
low-energy QCD has now been solved by the successful combination of lattice
gauge theory and effective field theory. In this section we wish to address some

remaining issues which highlight that there is still a wealth of research before

there is a complete description of low-energy QCD.
From Table 5.5 we see that the statistical errors quoted are quite significant

- being of order 6To lor the nucleon mass and even greater for the sigma term.
Since our curves are only constrained by the lattice data, the dominant source

of this error bound is the large void between the physical pion mass and the
Iightest lattice pion mass.
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Regulator
LNA
rmN

NLNA
TIL¡¡ OrN

Dim. Reg.

Dim. Reg. (BP)
Sharp cutoff
Monopole
Dipole
Gaussian

0.884 + 0.051

0.923 + 0.051

0.961 + 0.058

0.960 + 0.058

0.959 + 0.058

0.961 + 0.058

50.3 + 5.0

42.7 +5.0
33.9 + 6.5

33.0 + 6.5

33.4 + 6.5

33.2 + 6.5

0.784

0.968

0.964

0.963

0.966

Table 5.5: The nucleon mass, rn¡¿ (GeV), and the sigma commutatol, on¡¡

(MeV), extrapolated to the physical pion mass obtained from the O(mf) chiral

expansion. We list the nucleon mass extrapolated at O(*"") to display the

remarkable convergence of the FRR schemes.

As all data points are statistically independent, we define the region of one-

sigma deviation from the best-fit curve by (X' - X?^i,) < 1. We use a standard

X2 measure, weighted by the squared error of the simulated data point and X|,,.,

corresponds to the optimum frt to the data.1

To give a pictorial view of how the error bound grows with extrapolation

distance we choose the dipole curve to represent a characteristic curve. We

show the one-sigma variation from the best-fit curve by the shaded region in

Fig. 5.4. It is clear that a simulated point at a pion mass, m? - 0.1GeV2,

would greatly reduce the statistical error in the extrapolation. A simulation in

this regime should be accessible to the next generation of dynamical simulations

in QCD.
Although the data selected for this analysis was chosen to minimise the effects

of lattice discretisation, they have been assumed to describe continuum results.

The lattice data will have small corrections as one takes the limits ¿ --+ 0 and

V -- æ. These corrections will slightly alter the extrapolation to the chiral

limit.
With continued development in action improvement it is foreseeable that

results obtained at finite lattice spacing, - 0'1fm, will give an excellent descrip-

tion of the continuum theory. Any residual corrections should be able to be

handled quite trivially.
As simulations go further into the chiral regime, the corrections associated

with the finite volume will become increasingly significant. These effects are

infrared dominated and hence all the tools of the low-energy effective theory

lThis x2 measure is not the same, although similar, as that used in the curve-matching

analvsis of Chapter 4.
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Figure 5.4: Error analysis for the extraction of the nucleon mass) at next-to-
leading order, using a dipole regulator. The shaded region corresponds to the
region allowed within the present statistical errors.

developed in this Thesis can be extended to incorporate finite-volume correc-
tions. Initial studies of the volume corrections in XPT have been performed
in Refs. ILTTWOO,YLTWO2]. Recent studies have analysed the volume depen-
dence of the nucleon mass in chiral effective field theory [Bea04] and also the
corresponding application to the extrapolation problem IAK+04]. Finite-volume
corrections are addressed in the following Chapters.

Another issue with the lattice simulation is the procedure for determining
the physical scale. As described in Chapter 2, we choose the QCD Sommer scale,

16, to define the lattice spacing. This method is insensitive to chiral physics and
hence allows us to study quark-mass variation of nucleon properties, independent
of lattice artifacts. This scale is based on phenomenological models of heavy-
quark systems and a complete assessment of sources of error would incorporate
some uncertainty, eg. - ro :0.50+0.01fm. In addition, the scale is determined
on a finite lattice and will also be subject to O(a2) discretisation errors.

Ultimately, one would like to be able to determine the scale, independent
of any model calculations. Direct determination from the light hadron spec-

trum would seem ideal, only this will always be contaminated by large chiral
corrections. It will therefore be necessary to have a complete and thorough
treatment of the chiral extrapolation to accurately set the scale this way. Al-
ternatively, it seems that the mass-splittings in some heavy-quark systems show

0 0.2 0.4 0.6
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little dependence on quark mass and these could be fit directly to set the lattice

spacing [D+97,D+04].
Related to this problem comes the determination of the nonanalytic coeffi-

cients from the lattice simulation. In this work, we have set the coefficients to

their best phenomenological values for accurate extrapolations using this knowl-

edge of low-energy QCD. For a fiue ab i,nit'io calculation) one would wish to

determine these coefficients directly from nonperturbative simulations of lattice

QCD. Only with a large number of points at light-quark mass, on large volumes

will this become possible.

The results shown in this Chapter have demonstrated the solution to the

chiral extrapolation problem, neglecting lattice artifacts, The final remark to be

made is that this study has only focussed on the nucleon mass. There are many

more QCD observables which will also require extrapolation from the large quark

masses simulated in lattice calculations. Utilising the techniques of finite-range

regularisation will be essential for the reliable extrapolation to the chiral regime.

To name a couple, FRR will be extremely useful for the analysis of excited-state

spectroscopy [MCLT03] and electromagnetic structure functions [ALTY04].

***

We have shown that the extremely precise dynamical simulation data from

CP-PACS permits one to determine four parameters in thie O(mf) chiral extrap-

olation formula, Eq. (5.7). Both the dimensionally regularised and FRR forms

give an accurate description of the data which is consistent with the physical

nucleon mass. With a large shift of the DR result from the O(*"") result to

O(**), one cannot be guaranteed of sufficient convergence. In contrast, the

FRR results show very little variation when extended to higher order. Com-

bined with the results of Chapter 4, the stability of the FRR extrapolation is

established.

The results shown in Table 5.5 display a systematically accurate extrapola-

tion of the nucleon mass - with modei-independence at the level of to 2 parts

in 1000. The insensitivity to the choice of finite-range regulator also provides

a sigma commutator accurate to within 3%. Although there is still a large

statistical erïor associated with the large extrapolation distance, the suitable

combination of lattice gauge theory and effective field theory has enabled a

state-of-the-art nonperturbative calculation of the nucleon mass.

F\rture work will see the extension of FRR techniques to a wide range of

QCD observables for the reliable extrapolation to the physical regime. Increased

computing power will improve access to the light-quark domain and reduce the

statistical uncertainty of the present calculation.
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Quenched Chiral Perturbation
Theory

Quenched QCD has been studied extensively in lattice gauge theory. Finite-

range regularised chiral perturbation has been demonstrated to provide an effi-

cient tool for the analysis of modern lattice QCD simulations. We now wish to

address the corresponding issue of chiral extrapolation for the quenched modifi-

cation of QCD. Simulations of quenched QCD (QQCD) modify the path-integral

measure, Eq. (2.9), by setting the fermion determinant to a constant,

detM : L. (6 1)

In the context of a lattice simulation, the effect of quenching alters the distri-

bution of gauge fields sampled by the Monte Carlo integration. The summation

over an ensemble of gauge fields describes a distorted integration over gauge field

configurations, which no longer accurately samples the true QCD vacuum.

The physical consequence of this procedure is the removal of qQ pair-creation

in the QCD vacuum. The only quarks which are contained in any simulation

are those created explicitly by the interpolating fields. This simplification is

commonly referred to as the ualence or quenched approrimation.l

This absence of qQ pairs in the QQCD vacuum alters the low-energy structure

from the physical theory. As a result, we have a new low-energy effective field

theory for the quenched theory, namely quenched chiral perturbation theory

(QxPr)
In this Chapter, we outline the formalism of constructing a low-energy ef-

fective theory for quenched QCD. In particular, we describe applications of the

theory in the baryon sector. The quark mass expansion of the nucleon mass are

presented in two distinct formalisms. The first we will work with the graded sym-

metry approach to the QXPT devised by Bernard and Goltermann [8G92] and

subsequently extended to baryons by Labrenz and Sharpe [LS96]. As an alter-

native, we also work with the physically intuitive approach of Leinweber [Lei04]
which is characterised by a pictorial view of the quark-flow involved in meson-

lUse of the terminology "approrimation" is certainly an embellishment, since any syste-

matic connection to the physical theory has been abandoned.
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baryon interactions. This is similar to the original work of Sharpe in the meson
sector [Sha92].

6.1 Graded-symmetry Approach

As described in Chapter 3, XPT describes a systematic approach to the study
of QCD at low energies. Quenched XPT (QXPT) provides the analogous low
energy effective theory for QQCD [Sha92,BG92,LS96].

This is achieved by defining a Lagrangian, which is equivalent to the quenched

theory simulated on the lattice. With the Lagrangian of 3-flavour QCD, Eq. (2.1),
in shorthand notation,

Lqco - Lsilrye +lþ(i,P- M)rþ , (6 2)

where the quark fields are collected into tþr : (eu,ea,Q"), and corresponding
mass matrix M : diag(m.,rn¿,rn"). For a field theoretic definition of quenched

QCD, this Lagrangian is extended to include a set of bosonic quark fields,
q [Mor87]. The new quark fields are therefore given by Q' : (eu,Qd,Q",q.,q¿,q"),
and importantly, these additional ghost quark fields are degenerate in mass

with the original quark fields, such that the new matrix is given by M :
diag(mu,TÍt,¿,TrL",Tnu,Trl¿,rn"). The physical removal of sea-quark loops is there-
fore realised by considering the generating functional of this modified theory,

2z.,qeCD - DADQDQ exp(zSs""eu a z darQ@)Qp- ut)Q@D. (6 3)

Whereas integration over the standard quark fields produces the fermion deter-
minant, the anticommuting nature of the ghost quarks gives rise to the inverse
of the same determinant,

zqqco: I ooexp(z5c"s'1ffiffi (6 4)

The fermion determinant is therefore effectively removed from the path-integral
neasile. The inclusion of this set of bosonic quarks has therefore simulated the
lattice technique of setting the fermion determinant to a constant.

The symmetries of this quenched QCD Lagrangian are exploited to develop
the appropriate low-energy effective field theory. The standard chiral symmetry
group of ,SU(3)¿ x Stl(3)p is replaced by the graded symmetry group, ,9U(313)¿ x
Stl(313)n, incorporating the appropriate mixing of the ghost-quark sector.

We now summarise the calculation of baryon masses in quenched chiral per-
turbation theory, as described by Labrenz and Sharpe [LS96].
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Beginning with the chiral Lagrangian for full QCD, given by

L: Ln I Lsn I Lrn, (6.5)

where the octet (decuplet) baryon frelds are described by B Q) Explicitly, the

octet-baryon Lagrangian can be expressed as

Lnn : i'Lt (Bu 'DB)
t2Dtr (BSp{Aït,B}) + zFrr (BSt"lAï" Bl)

-t2púotr (B{M*,9}) + 2p"bpff (BIM+, Bl)

t2¡-Lbstr (BB)tr (M*) * 2s"tr çBSun)tr (Ai\, (6.6)

and correspondingly for the decuplet,

Lrn : -lT" (u .D)7" + LMT"T,
i2tlT" St' Aî'7, + C (T" A';' n + n A7'f"¡
+c:f'M+7, - oT"T,tr (M*)
+2g'"7" St"T,tr (A",]-) (6 7)

A complete decription of all symbols can be found in Ref. [LS96]. These La-

grangians are extended beyond the standard form, to incorporate explicit cou-

pling to the flavour-singlet r¡' freld., deflned through the couplitrBS, 9" and 9!

[YLTW02]. The octet and singlet components of the meson matrix, A, ate

labeled for clarity.
The flavour singlet 4' remains light in the quenched approximation, and is

therefore an efiective degree of freedom in the low energy sector. Such exci-

tations must be incorporated into the low-energy analysis. Within full QCD'
resummation of internal loop diagrams renders the 4' massive and hence it plays

no role in the low-energy dynamics. For this reason couplings to such flavour-

singlet states are negiected in full QCD. In our analysis, we wish to compare the

low-energy structure of the quenched and physicai theories. A flavour-singlet

coupling, like l/l/4" must be included in the chiral Lagrangian of QCD, in or-

der that it is treated on equal footing with the quenched theory. This coupling

will not alter any results of the physical theory, as any diagram would involve

the propagation of a heavY 4'.
The efiective chiral Lagrangian of quenched QCD is given by [LS96]

¿@) : L\ot * rL'ì + Lroì , (6 s)

where meson and baryon states are now understood to be constructed of or-

dinarv quarks and the ghost, bosonic quarks. The general Lagrangian for the
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heavy fields can be written in terms of the rank-three tensor fields as defined
in Ref. [LS96]. The octet baryons are described by the tensor-field, ß, with
interactions characterised by

L (a)
ßó : i(ßu 'Dß)

r2a(ß Sp B Ar) + 2 13 (B Sp Apß)
-121"(BSPß) str(,Ar) + ûM(BßM+)

+þu(BM+ß) + o(BB) str("it4+) , (6.e)

where str denotes a supertrace, as given in Ref. [LS96]. The corresponding
Lagrangian for the decuplet fr,eId, T, is described by

Ltoì -i(7" (u .qf") + LM(T"T")

+211(Í'St'At"T,) - l-trrr'A,B + BA,T'I

+21'"(i" SPT") sfi(Ar)

+cT" M+7; - "(7"7")tr (M+) (6.10)

In any lattice simulation of quenched QCD, the external sources of baryon
propagators will only create valence-type quarks. The ghost fields, which describe
the cancellation of internal quark loops, will not appear in any external baryon
fields. Comparison with the QCD chiral Lagrangian can be achieved by restric-
tion of the indices on the tensor fields, B and T, to those corresponding to
the physical quarks. The details of this procedure are described in Ref. [LS96].
Performing these restrictions on the octet-baryon, quenched chiral Lagrangian
(Oq. (0.S)) one finds:

L@)
BÞ i,(Bu .Dß)1"R:

+25f2" - 0)t, (Bst"At"B)+ lf-" - aflft (Bst'BAt")

+]1" + aþ +67")tr (Bst'B)rr (Ap)

(2o* - ¡m)rr (BM+ B) +!f-'* - 4Bxa)tr (BBM+)

(o* + 4þm -r 60)tr (BQtr (M*). (6.11)

Equating this with the QCD chiral Lagrangian, Eq. (6.6), provides the following
relations between the parameters of the quenched chiral Lagrangian and the

1f;
J

1
I-,6
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(a) (b)

Figure 6.1: Quark flow diagrams for the chiral 4' Ioop contributions appearing

in QQCD: (a) single hairpin, (b) double hairpin.

physical theory provides [LS96,YLTWO2]

',r'" - e>

]r-" - 4p)

|t"* 4B+61,)

'5lr*, - 0u)
tur-.* - ar,ut)

: 2D+2F,

: 2D-2F,

: 2g",

: 2pbn +2tbr,

: 2pbo - 2pbp ,

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

tr(o* 
+ 4þ¡rt + 6o) : 2pbo. (6.17)

b'

Although the couplings of the quenched theory have no rigorous connection

with the physical theory, we work with the assumption that the relations above

hold to a good approximation.
Loop corrections in the quenched theory are evaluated by calculating all

diagrams described by the couplings in Eqs. (0.9) and (6.10). For a loop cor-

rection, the summation over all intermediate meson-baryon states will include

standard meson and baryons, plus those loops which contain hadrons comprised

of a mixture of quark and ghost-quark states. For the complete calculation

of the chiral corrections to the baryon masses in quenched QCD we refer the

reader to Refs. [LS96,YLTWO2]. Expressions for the nonanalytic contributions

are summarised in the following Chapter.

The flavour-singlet 4' requires special attention, particularly for estimating

the appropriate quenched coupling strengths. The parameter,, 9" (g'"), describes

the coupling of the flavour-singlet 4' to the baryon octet (decuplet). Within

QCD, the single vertex has two topologically different quark-flow diagrams, as

illustrated by the left and right-hand vertices of Fig. 6.1(a). The left is that of

a qq insertion on one of the valence quark lines and the right is a pure gluonic,
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mediated via a hairpin-style qg annihilation. The total coupling is a sum of these
two contributions. Denoting the hairpin vertex coupling by Tqco and 7["o for
octet and decuplet baryons respectively we have

1
9, : u6lr'**f Tqco' (6.18)

,Ig'" : 
5sr'oof lô"o' (6.19)

The first of these interactionst gn,NN (gr,tt) is related to the axial couplings by
SU(6) phenomenology. We take the standard approach and assign

9ntNN (6.20)

ed^,A,: {2groo: l'rr. (6.2r)

As in the case of the physical theory, the terms 7" and 7l describe both
types of flavour-singlet coupling, not just that arising through the hairpin alone.
Analogous to Eq. (6.19), the quenched couplings can be described by

1

¡69n'ww 
i 7 '

1
(6.23)'Y'" grt'/.6 l1t ,

t/6

where the terms 7 and 7' now correspond to the pure hairpin couplings, as used
in Ref. [LS96]. Here we note the terms gn,NN and 9r,66 are chosen to retain
their physical values in the quenched theory. This is consistent with the working
assumption that the chiral parameters f'and D arc unchanged between the two
theories.

To relate the flavour-singlet contributions to the physical theory, Eq. (6.14)
provides

r4ltl,
j* + 

JP 
+ | jlr,*N 121 : 

1f 7sr,** i 21qco , (6.24)

and combining with Eqs. (6.12,6.13), one arrives at [YLTWO2]

7:7eco+D-F. (6.25)

The computation for the decuplet is much simpler, where one finds

'Y' :'l'qco ' $.26)

In estimating the hairpin-type couplings in full QCD one assumes that they
are relatively small, ?eco (( gntNNt due to OZI-type suppression [C1o79]. With

It
'/2srxN:litsr-D),

^1" (6.22)
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analogous arguments for the decuplet, we take ?ecD : 1'qcn :0' In summary,

7 and 1' are described by [YLTWO2]

l:D-F, 1':0. (6.27)

6.2 Diagrammat¡c Method

A simpler, somewhat more intuitive approach, to the calculation of nonana-

lytic corrections to hadron properties in quenched chiral perturbation theory

has been developed by Leinweber [Lei02,Lei04]. This method uses results of the

physicai EFT, combined with a pictorial view of the underlying quark dynamics,

to distinguish the sea and valence components of chiral-loop diagrams.

To demonstrate the implementation of this approach, an example calculation

is presented. In particular, the modification of the leading nonanalytic contri-

bution to the nucleon mass, as induced by the quenched approximation. The

relevant couplings for this calculation are given by [Lei04, RSY99]

lwNn: F +D, f¡'¡vx: -#(3-F +D),
f Nwr: h?r - D), f>¡vrc: D - F, (6.28)

ÍNNr':rfrGF-D)'
All the leading, one-loop diagrams contributing to the nucleon mass are dis-

played in Fig. 6.2. The proton is chosen to give an explicit representation of

the relevant quark flavours. For each of the meson-loop diagrams, a quark-flow

diagram depicts the minimal dynamics of the underlying quark field. These

skeleton diagrams should be interpreted to contain an arbitrary number of ad-

ditional quark and gluon lines'

The familiar result of the pion contribution in full QCD, Eq. (3.29), is ob-

served in the sum of the z'0 and zr+ loop contributions to the nucleon, given by

the respective terms,

- I 12 r ,t F2 \ -It , 
=?1r . (6.29)U"Nx-+2fít¡v) dn: -3(D + F) 
szn.f*

The factor of 2 for the ¡+ loop is an isospin factor. To describe all the light-

quark loop diagrams, the 4 and 4/ contributions must also be summed, providing

a net contribution

- (zr\*- + r2xN, + rk¡v,,) &: -(4D2 + 72t\ffi' (6'30)

Recognition of the flavour symmetry of QCD enables linear combinations of

diagrams to isolate the contributions involving a quark loop and those of the
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Figure 6.2: Quark flow diagrams contributing to the chiral corrections to the
nucleon mass.

purely valence sector. Flavour-symmetry dictates that if the flavour of sea-quark
in a loop diagram is changed, without changing its mass, then the contribution
is equal. For example, the contribution from Fig. 6,2(9) is precisely equal to
Fig. 6.2(h). Subtracting diagra- (h) (with TTLI¡ : mn and M^: M> : MN)
from the total p -, nlri diagram will therefore determine the purely quenched
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result.
In summary, the relations between the diagrams are given by

(b) : (g) : (h.), (") : (") : (i), (6.31)

where the inclusion of a diagram including a doubly-charged proton, P ' Pt*7T,

should now be apparent. In QCD, a uuu-qrark proton is forbidden by the Pauli

exclusion principle. Therefore, for intermediate ly'z states2, the net sum of

diagrams (d) and (e) which amounts to zero. In the absence of the cancellation

of diagram ("), u uuu proton can propagate and hence diagram (d) provides a

finite contribution in the quenched theory.

using the relationship between the diagrams, Eq. (6.31), and the known

kaon-loop contributions, Eq. (6.28), the sea contributions can be subtracted

from the total result, Eq. (6.30). The final contribution to the rn| dependence

of the nucleon mass in quenched QCD is given by

-f irrt - o'Yffi (6 32)

This result is in agreement with the result of Labrenz and Sharpe [LS96]'

This method is particularly useful for the analysis of the electromagnetic

form factors, where the individual flavour sectors become increasingly important

[L+05].

2Clearly, a contribution from the excited A++-baryon is possible'
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Baryon Masses in Quenched QCO

Studies of the quenched approximation in lattice QCD have provided enhanced

accessibility to the development of improved algorithms and numerical tech-

niques, with limited computing resources. With the quenched approximation

offering greater access to the chiral regime, we study the extrapolation prob-

lem in the modified theory to further develop an understanding of the chiral

behaviour of hadron ProPerties'
Using the appropriate low-energy EFT, we study the chiral behaviour of

the nucleon and Delta masses in quenched QCD. In particular, the techniques

of finite-range regularisation are applied to exploit the improved convergence

properties of the chiral series.

In studying a matched ensemble of quenched and dynamical simulations from

the MILC Collaboration [B+01], we find that FRR offers a connection between

the masses observed in the two theories [YLTWO2]. This remarkable discovery

allows the opportunity to take quenched simulation results and estimate the

corrections in going to the dynamical theory.

This behaviour leads to an improved understanding of the magnitude of chiral

loop corrections in the physical nucleon. We find that less than one-third of the

physical nucleon-Delta mass-splitting arises from interaction with the pion field'

The remainder therefore being the result of short-range gluon interactions within

the baryons.

7.L Quenched Expansion Formulae

Extrapolation formulae, analogous to those of QCD in Chaptet 5, are con-

structed for the quenched modification of QCD. In addition to the nucleon mass'

the chiral behaviour of the decuplet A-baryon is also investigated' The nature

of the Delta in quenched QCD is particularly interesting because of a repulsive

interaction in the ly'zr channel.

We first summarise our expression for the expansion of both the nucleon and

Delta masses in quenched and physical QCD,

Mn : o! + "!*?" + 
"Pn^f 

I DB(m*,1\) , (7 1)
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QCD QQCD
G
G
G
G

N¡¿

NA

AA

A¡T

F D
C2

Vz

+
q
I

25
81

2

2
) $(sar - D')

gz

Vz

4
I

20
81

2

Table 7.1: Chiral couplings appearing in the pion-loop contributions in dynam-
ical and quenched QCD. In numerical calculations we have used the couplings
arising from ,Stl(6) relations [BSS93], C: -2D andTl: -3D.

where we denote the baryon by B :ly', A and all loop contributions are collected
into D6.

The simple one-loop integrals are summarised as

In(^n.,4, 
^) 

: dk
k4u2(lc,lt)

I,*
2
,]T

(7 2)
,/F +@¡t+ k +

which \Me recognise as Eqs. (3.30) and (4.11). For baryon B, the pion-loop
cotlLponent of the chiral corrections can be described by the sum of two terms

XlwI*(m*, M¡¡ - Me, Ì\) + yf oI*(mn, M^ - Ma,1\) , (7 3)

where the physical mass-splitting is used in the definition of the integrals. For
the A ---+ ly'zr diagram, the mass-splitting in Eq. (7.2) becomes negative and a
pole exists in the integrand corresponding to the opening of the decay channel.
In this case, 1,,,. is defined by the principal value of the integral.

The coefficients ¡f¡¿ and yl6 differ between QCD and the quenched theory.
These coefficients are given by

^,8 3xrB,:-rrnflr""', (74)

with the values of GBe, listed in Table 7.1 [LS96].
In addition to the pion-loop diagrams, the flavour-singlet r7l is also a low-

energy degree of freedom, as described in the previous Chapter. Within full
QCD, 4'-loops do not play a role in the chiral expansion because the r¡' remains
massive in the chiral limit. In the quenched approximation the q/ behaves as

a Goldstone boson and the 4' propagator has the same kinematic structure as

that of the pion [Sha92].
As a consequence, there are two new chiral loop contributions unique to the

quenched theory. The first of these corresponds to an axial-hairpin diagram, such
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¡/ A

fË,
rg)

lQr - o¡1 Hxt'

xf,

5

fg),

3F - D)2 yz

Table 7.2: Couplings used in flavour singlet 4/ self-energies'

as that depicted in Fig. 6.1(a). This diagram gives an additional contribution

to the chiral expansion of baryon masses which is nonanalytic at order rn|'
The single-hairpin diagram has the exact same kinematic structure as the

simple pion-loop graphs, with the contribution to the nucleon and Delta masses

given by
Xl'ç1¡I*(m"' 0' A) (7'5)

The coefficient is given bY

^.B 3 n(r)
xi,1t¡ : -ù ¡f'Ë' 

, (7'6)

with the expressions for f(1) displayed in Table 7.2 [LS96]. The couplitte f (f')
describes the hairpin-baryon vertex shown in Fig. 6.1(a). This is topologicaily

different from any coupling which appears in the physical low-energy theory'

The second of these new 4' loop diagrams arises from the double hairpin

vertex, as pictured in Fig.6.1(b). This contribution is particularly interesting

because it involves two Goldstone boson propagators and is therefore the source

of more singular nonanalytic behaviour - Iinear in mn. This contribution is

described by

xf'çr¡I[? (-*' lY) ' (7'7)

with the loop integral defined bY

r[?ç^-,Ð:-#1,**ffi (7s)

The coefficient involves another new parameter, unique to the quenched ap-

proximation, which measures the strength of the double-hairpin interaction,

7Ls. This dimensionful parameter is related to the physical 4' mass, as the

summation of quark-loop diagrams through this double-hairpin coupling can

be seen to generate a finite mass for tlne r¡t, even in the chiral limit' We

estimate a vaIue, mf; : 0.42GeV2, based upon phenomenology and lattice

results [KFM+94, BDET0O, DH02]. The coefficient of this diagram is given by

m!
Ø: - g2nl?

(7 e)
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and f$) shown in Table 7.2. The contribution from the double-hairpin 4/ is
positive and therefore describes a repulsive interaction. This acts to raise the
mass of the baryon as the chiral limit is approached. The momentum dependence
of the double hairpin vertex, which is believed to be small, is neglected.

The explicit appearance of unphysical parameters, like 7 and ?rn6, causes the
Iow-energy EFT of quenched QCD to be disconnected from that of QCD. This
is not true for the partially-quenched sector, where all unphysical r¡' couplings
can be integrated out, and hence there is a smooth connection to the physical
theory [SS00,SS01]. Partially-quenched QCD describes the situation where sea-
quark contributions to the fermion determinant are explicitly evaluated, but the
masses simulated in the sea do not match those of the valence sector.

The net contribution of all the chiral-loop corrections to the nucleon and
Delta baryons can be summarised as

X6 : X!*NI,(^*, M1¡ - Mp, Ì\) + y!*ot*(mn, M^ - Mn,l\)
+yl,rrrI*(mn, o, A) + xf,rrrtf? (^*, t\) (7.10)

The contributions of QCD are recovered by setting the r¡'diagrams to zero, and
adjrrsting the pion-loop coefficients to their physical values,

7.2 Extrapolation to the Chiral Regime

The chiral expansions of the quenched and dynamical baryon masses, Eq. (7.1),
are now constrained to their respective lattice results. The lattice data consid-
ered in this analysis comes from the paper of Bernard et al. lB+01]. These sim-
ulations were performed using an improved Kogut-Susskind (staggered) quark
action, which is known to have good scaling properties [B+00]. These results
have been obtained on matched lattice sizes, such that all lattice spacings
(a - 0.13fm) and volumes (163) remain constant. Comparison of the quenched
and dynamical spectra should therefore be insensitive to discretisation artifacts.

We continue to determine the lattice scale using the Sommer scale [Som94,
EHK9Sa]. The definition of re is desclibed by F,q. (2.25) aL a clisbarrce scale

- 0.5 fm. The present analysis uses a slightly modified version, defining the
force at rr:0.35fm via rlf(r'):1.00 [B+01].

The physical simulations have been performed on lattices with 2 * 1 flavours
of dynamical quarks. The simulation results, in physical units, are listed in
Table 7.3. Only the few heaviest quark masses simulated on these lattices respect
the condition on finite-volume effects, m,L f 2r. For this reason) the chiral
expansion formulae are modified to account for finite-volume corrections.
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rnnL G( e ) M¡v (GeV) M¡ (GeV)

7.7

7.0

6.0

5.0

3.6

0.5321(4)

0.4246(4)

0.31s4(2)
0.2167(2)

0.1080(2)

1.5e2(8)

1.502(4)

1.38e(4)

1.275(4)

1.140(e)

1.740(12)
1.650(13)

1.5s1(e)

1.477(Lo)
1.34s(18)

7,4

5.7

4.7

3.4

0.4760(4)

0.2882(3)

0.1e46(2)

0.1000

1.56e(10)

1.40e(7)

r.322(to)

r.774(78)
1.636(18)

1.585(22)

1.510(25)2) 7.2t4(73

Table 7.3: Lattice data used for the analysis of quenched versus physical baryon

masses. The upper five points are results of the dynamical simulations, ancl the

lower four from corresponding quenched analysis. AII simulations on a 163 x 32

lattice at spacing, ø - 0.13fm. Resuits from MILC Collaboration [B+01].

Chiral effective field theory is constructed on the low-energy degrees of free-

dom of QCD. The effects of the finite-volume lattice will therefore be dominated

by the modified behaviour of these low-energy degrees of freedom. In the present

context, this means that the chiral loop diagrams considered wiil be altered by

an infrared suppression of the integrand. The requirement that Green functions

are periodic [GLss] restricts momentum components to the values

lc¡
2trn¿ (7.11)

L

For the p-wave loop contributions considered in this Chapter, the integrand

vanishes for lc :0. Strength in the integrand is not sampled until one component

of k reaches 2tr I L. Since chiral physics is dominated by the infrared behaviorir of

loop integrals, the nonanalytic terms of the chiral expansion exhibit substantiai

threshold effects.

Within the FRR formalism, the extension to incorporate finite-volume effects

is straightforward. The continuous momentum integrals, 1,. and I[? , ur"replaced

by sums over the discrete momentum states. This is implemented by making

the substitution [LTTWO1,YLTWO2]

+n [* k2dk: [ ; 
1 /2n \3 '

',' ro r "r 
-' + l+) r.E,*. (7'r2)

The lattice data is then directly fit to trq. (7 .7), with Es modifled to incorpo-

rate the finite-volume corrections of the effective field theory. The fit patameters,

+21+0TÙ¿
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Figure 7.I: Fit (open squares) to lattice data [B+01] with appropriate,
finite-volume, chiral corrections. The infinite-volume limits of the dynamical
(quenched) fits are shown by the solid (dashed) curves. The lower two curves
and data points are for the nucleon, while the upper two are for the A.

ai, characterise local, short-distance interactions and should be largely insensi-
tive to finite-volume effects. The infinite-volume result of the chiral fit is esti-
mated by replacing the momenturn sums by their continuum integral analogues,
with the ø¿'s held fixed.

The scale of the quenched and physical simulations has been matched at
a short to intermediate distance scale. The inter-quark forces of the nucleon
constituents will be effectively matched across both simulations. The inter-
nal structure of the nucleon will therefore be of similar scale in both quenched
and dynamical simulations. The regulator scale, A, which governs the transi-
tion between short- and long-distance physics, will be chosen the same for both
quenched and dynamical extrapolations.

The dependence on the choice of rcgulator is not the focus of the present
analysis - this has been discussed in great detail in Chapters 4 and 5. Integrals
are regularised with a dipole, of preferred mass scale, À : 0.8 GeV.

The fits to the lattice simulation results of the nucleon and Delta are showrr
in Fig. 7.1. On this plot, we see that both the nucleon and Delta baryons lie
systematically higher in the quenched approximation, relative to their physical
counterparts. A highlight of the extrapolation curves is the prediction of an en-
hanced l/ A splitting in the quenched approximation, as the light quark regime
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A¡ A2 A4

l/ (Dynamical)
l/ (Quenched)

1.23(1)

1.20(1)

1.13(8)

1.10(s)
-0.35(12)
-0.42(13)

A (Dynamical)
A (Quenched)

1.11(18)

0.76(2r)
-0.56(25)
-0.04(33)

1.40(3)

1.43(3)

Table 7.4: Fit parameters of Eq. (7.1), with finite-volume colrections' con-

strained to staggered fermion simulations of quenched and dynamical QCD'
The chiral corrections are regularised with a dipole, Â' : 0.8 GeV. (Units are in

appropriate powers of GeV.)

Ag O,2 A4

l/ (Dynamical)
,n/ (Quenched)

o.ee(1)
1.10(1)

r.44(7)
7.22(e)

-0.56(10)
-0.50(14)

A (Dynamical)
A (Quenched)

1.40(1e)

0.63(1e)
-0.77(27)
0.10(31)

1.21(3)

1.45(3)

Table 7.5: Parameters of fit to lattice data based on a polynomiai in m2,, wilh
chiral corrections neglected.

is approached. This prediction has recently been observed with FLIC fermion

simulations [BKL+04], as discussed below.

We display the bare, fit parameters in Table 7.4. The renormalisation of the

Ieading expansion parameters can be obtained in a similar fashion to that of

Chapters 4 and 5. The importance of renormalisation for obtaining the physical

expansion about the chiral limit has been emphasised throughout this Thesis'

In the present anaiysis, there is more to be learned on the nature of the underly-

ing chiral dynamics, and the low-energy expansion parameters of the quenched

theory are not of particular interest.

A key feature of Table 7.4 is that the bare parameters of the expansion display

a remarkable level of agreement between the quenched and physical theories.

This is highlighted by contrasting with a corresponding frt which neglects the

chiral-loop effects. In Table 7.5, we show a frt to the data based on a simple

quadratic inm2* - Eq. (7.1), with E6 : g'

The extent of the agreement between the quenched and physical simulations,

once the chiral loops have been accounted for, is remarkable. This discovery is

embraced to investigate the possibility of simultaneously fitting both data sets

with common fit parameters. The entire difference between the fit curves are
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Figure 7.2: Net X2ldoÍ for various regulator masses, Â. The minimum of this
curve describes a r\ which provides optimal agreement between the residual series
of the quenched and physical masses.

to be encoded in the chiral corrections. The preliminary fit, Fig. 7.1, used
the preferred dipole mass of r\ : 0.8 GeV, which is now tuned to optimise
the agreement between the simulations. In Fig. 7.2 we show the net y2f dof
for the simultaneous fits to the quenched and dynamical data. This measure
combines lhe y2 of the nucleon and Delta fits. We show the resultant fits for
the optimum value of the dipole regulator, l\ : 0.725, in Fig. 7.3. These fits
are extraordinary, considering each baryon has been fit with a common set of ø¿

parameters, describing both quenched and dynamical data.

The differences in the quenched and dynamical baryon spectra can be pre-
dominantly described by the differences in the appropriate chiral corrections,
evaluated with a suitable regulator. This is a profound result, which offers a
phenomenological link between quenched QCD and reality. This observation
offers the potential to analyse quenched simulation data and obtain physical
estimates by restoration of the appropriate chiral-loop effects.

Recent FLIC fermion simulations of quenched QCD, approaching the chiral
regime [BKL+04], are investigated to test this hypothesis. The simulation results
for the baryon masses are shown in Table 7.6. Figure 7.4 show the fits to the
quenched FLIC fermion results based on Eq. (7 1) The adjustment for the
finite-volume corrections is displayed by the fit-boxes, relative to the dashed
curve. These fits use the optimal regulator mass) l\:0.725GeV, the value that

0
0
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Figure 7.3: Simultaneous fit to both quenched and dynamical data, with a
common set of bare parameters. Graph description the same as for Fig. 7.1.

gave the best simultaneous description of the quenched and dynamical results

with staggered fermions.

One feature to note is the enhanced .ôy'-A mass splitting as the chiral limit is

approached in quenched QCD - as predicted by the present analysis (originally

appearing in Ref. [YLTWO2]). Ar the chiral limit is approached, the deviations

of the boxes from the dashed curves in Fig. 7.4 become enhanced. This is a

direct consequence of the infrared suppression of the chiral corrections on a

finite-volume. Large lattice volumes will be required to observe the dramatic

curvature of the continuum theoryl'
Based upon the analysis of the staggered fermion results, we can estimate

QCD corrections to the FLIC fermion data. The bare fit parameters, o¿, ârê ob-

tained by fitting the quenched lattice results with finite-volume, quenched chiral

EFT. The physical chiral-loop corrections are then added to this bare expansion

polynomial. These estimates of the physical theory are shown by the solid curves

in Fig. 7.4. The agreement with the experimental masses is astonishing. The

majority of the discrepancy between the observations of quenched lattice QCD

and the physical theory can be described by the chiral-loop corrections.

This resuit is certainly model-dependent and is rather sensitive to the choice

lsimulations of the A-baryon on a large enough volume, and small enough quark masses,

will encounter the p-wave decay threshold. Advanced techniques will be required to access the

resonant state.
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mnL (G" M¡¿ (GeV) M¡ (GeV)
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191.159 2l

Table 7.6: Quenched lattice data used of FLIC fermions. All simulations
on a 203 x 32 lattice, at spacing, ø - 0.128fm. Results from Boinepalli et
al. [BKL+04].
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Figure 7.4: Finite-volume fits to FLIC fermion results (l) are described by the
box symbols. The resulting infinite-volume fits are shown by the dashed curves.
The solid lines give a phenomenological estimate of the corrections in going to
dynamical QCD. The stars denote the physically observed masses.

of À. Nevertheless, this discovery provides valuable insight into the dynamics of
the hadronic spectrum in QCD.
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Figure 7.5: The net chiral corrections, XB, for the physical and quenched theory

are shown by the solid and dashed curves, respectively. Contributions to the

nucleon (Delta) mass are displayed in the left (right) figure. All curves evaluated

with a dipole regulator, r\' : 0.8 GeV'

7 .3 Physica I lnsights

To gain further insight into the dynamics of how the meson-loop corrections

affect the baryon masses) the loop corrections, D3, âr€ plotted in Fig. 7'5. Shown

are the corrections to the nucleon and Deita masses arising from chiral loops,

over a range of pion masses. Whereas the chiral corrections in QCD are quite

similar for the nucleon and Delta, there are significant differences in the quenched

theory. Individual contributions are illustrated in Ref. [YLTWO2].
For the nucleon, the effects of quenching are primarily to reduce the magni-

tude of the chiral corrections. This is dramatically different for the Delta, where

interaction with the ly'r' becomes repulsive, raising the mass of the resonant

state in the quenched theorY.

This repulsive interaction can easily be understood by considering a pictorial,

quark-flow description of the processes contributing to the l/-zr loop in full QCD'

Figure 7.6 shows all different topological contributions to the A++ --+ /úz- loop

diagram. Diagrams (b) and (c) both indicate the propagation of an unphysical

uuu octel, baryon. Because there is no physical doubiy-charged nucleon, these

two processes must sum to zero in the physical theory, i,.e. (c):-(b). QCD is

also flavour-blind and knows nothing of the quark flavour propagating in the

loop, meaning that processes (a) and (b) are identical, for degenetate u and d

0 0.1 o.2 0.3 0.4
mnz (Gev2)

o 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 7.6: Pictorial quark-flow view of the ly'-zr chiral loop contributions to the
A baryon in full QCD.

quark rnasses. In the quenched theory, diagrams (a) and (b) are absent and the
only remaining diagram is (c), which is auuu quark state, degenerate with the
nucleon. By deduction, this contribution is precisely the same in magnitude as

Fig. 7.6(a) with the opposite sign, this is seen by the coefficients in Table 7.1.
The significa,nce of this unphysical nucleon was highlighted in the original work
of Labrenz and Sharpe [LS96].

It has been recognised that other excited states lie systematically high in the
quenched approximation. Using chirally improved quark actions, the BGR Col-
laboration have noted that there seems to be a correlation between the quenched
discrepancies and the physically observed widths [G+04]. As chiral extrapola-
tion techniques for excited states are developed [MCLTO3], it will be interesting
to see if more quenched spectroscopy can be similarly understood in terms of
chiral interactions.

Very near the chiral limit in the quenched curves of Fig. 7.5, there is an
upward turning lip, which arises from the linear m,. behaviour of the double-
hairpin 4/ contribution. The magnitude of the correction is quite small for the
nucleon, and appears to be more significant for the Delta. In both cases though,
it seems observation will require lattice simulation results below the physical
pion mass.

The analysis of lattice data has demonstrated the ability to describe the
primary difference between quenched and dynamical simulations in terms of the
meson-loop self-energies. This helps to develop an increased understanding of
the origins of the mass-splittings in the physical baryon spectrum.

Figure 7.7 shows the difference in the chiral corrections for the l/ and A
in quenched and full QCD, for a range of dipole regulator parameters, Â :
0.8 + 0.1GeV. It is quite clear that there is a difference of between 150 and
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Figure 7.7: Meson-loop contribution to the A-ly' mass splitting in both quenched

(dashed curve) and full (solid curve) QCD. The central ctrrves are evaluated with

a dipole, Â. : 0.8 GeV. The upper and lower dotted curves display variation of

the regulator scale by *0.1GeV, respectively'

250 MeV between the quenched and full QCD cases. This difference was essen-

tial in accounting for the clear discrepancy in the behaviour of the baryon masses

in QQCD and QCD, as highlighted in Frg. 7.4. This therefore provides confi-

dence in interpreting these results to say how much of the physical .fy'-A mass

splitting is associated with pion loops, in today's leading phenomenological mod-

els. The residual mass-splitting is accordingly attributed to some short-range,

non-hadronic processes, such as gluon exchange'

An examination of the solid curve of Fig. 7.7, indicating the chiral correc-

tions in QCD, suggests that only about 50 MeV of the observed, 300 MeV, ,n/-A

splitting arises from pion interactions. This is in agreement with the argument

of Isgur in Ref. [Isg00], that the spin-dependent, hyperfine forces in hadrons,

cannot be dominated by mesonic interactions'

.30
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An investigation of the quark mass dependence of the I/ and A masses within

the quenched approximation has been presented. The leading chiral behaviour

of hadron masses is known to differ in quenched QCD from the physical theory.

Techniques of finite-range regularisation have been introduced to Q¡PT anci the

subsequent chiral expansion, fit to modern simulation results.
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Remarkably, a comparison of the two fits suggests that the properties of
the l/ and A, stripped of their chiral corrections, are essentially the same in
quenched and physical QCD - provided the lattice scale is set using the Sommer
scale. This observation appears dependent on an optimal regulator shape and
size2, and the assumption that the axial coefficients are similar in quenched
and dynamical QCD. This result identifies a phenomenological link between the
results of quenched lattice simulations and the real world. This link has been
demonstrated to provide excellent estimates of the nucleon and Delta masses in
QCD from a purely quenched simulation.

The l/-A mass-splitting is observed to be significantly enhanced in the
quenched approximation - a consequence of the modified chiral behaviour of
the quenched theory. The study of these chiral corrections has provided an en-
hanced understanding of the role of meson interactions in the baryon spectrum.

2The phenomenological insight gained is true for any finite-range regulator. The degree
to which the discovered success could be repeated with a different regulator has not yet been
quantified.



I
Nucleon Magnetic Moments

The electromagnetic form factors describe the fundamental charge and cur-

rent distributions of the nucleon. Beyond the nucleon mass) which has been

discussed in great detail, description of the electromagnetic properties of the

nucleon presents a further test of nonperturbative QCD'

AII lattice QCD simulation resuits, to date, of the electromagnetic structure

of baryons are restricted to the quenched approximation. Combined with the

relatively large quark masses, the analysis of modern simulation results requires

all the machinery developed throughout this Thesis'

Previous studies of the chiral extrapolation of magnetic moments have as-

sumed that simulation results give a good description of the physical theory.

These investigations have ranged from XPT, with heavy-quark phenomenol-

ogy [LLTgg, HJLT00b]1, to the more ambitious direct application of dimen-

sionally regularised XPT [HW02, G+05]. Recent work has applied FRR to the

extrapolation of A-baryon magnetic moments in physical QCD [CLT03]. The

electromagnetic form factors, at finite momentum transfer, have also seen re-

newed interest [G+05, ALTY04].

In this work, the chiral expansion of the physical magnetic moments is stud-

ied, within the framework of finite-range regularisation. With lattice simulations

limited to the quenched approximation, the necessary adjustments to the chiral

expansion are examined. Constraining the expansion formulae to lattice results

enables the analysis of the behaviour of the proton magnetic moment in the

chiral regime. Finite-volume effects are also investigaterl and found to be quite

small, for the lattice simulation parameters considered.

The discovery of a phenomenological link between quenched and physical

QCD, as described in Chapter 7, is extended to the magnetic moments' This

allows estimates of QCD magnetic moments to be obtained from results of a

pure quenched simulation. It is observed that there is little deviation between

the two theories over a wide range of quark mass - despite marked differences

in the nonanalytic structure.

Extending the analysis beyond leading order is found to improve the estimate

lWhile these studies are exact XPT to leading order, a systematic extension to

does not appear perceivable

higher-order
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of the physical proton magnetic moment. While the difference between leading
and next-to-leading order is evident, they remain equivalent within statistical
uncertainties.

The principal research of this Chapter has been presented in Ref. [YLT05],
with preliminary analyses appearing in Refs. [L+03,YLT04b,YLTO4a].

8.1 Chiral Expansion

Similarly to the construction of the expansion of the nucleon mass, Eq. (4.1),
the most general expansion of the magnetic moment can be written as

ttn: o!+"f^?+af**+...
Xarlr+"', (8 1)

where the isospin of the nucleon is denoted by B : p or n. The formal expansion
of the magnetic moments has been described by Jenkins et al. lJLMSg3], where
the leading (renormalised) coefficients are expressed in terms of the underlying
chiral Lagrangian. In Eq. (8.1), the term yB,I* denotes the leading nonana-
lytic (LNA) chiral correction to the baryon magnetic moment of Fig. 8.1. The
coefficients of the leading loop-diagrams arise from the tree-level meson baryon
interaction vertices and are known to high precision. For example, the coefficient
of the leading nonanalytic contribution to the proton magnetic moment is given
by

Xpp
g2A MN

(8 2)
8tr fi

With a demonstrated difficulty in the direct determination of these nonanalytic
coefficients from lattice simulations, these terms of the expansion are fixed to
their phenomenological values.

The short-distance contributions, encoded by the analytic terms, are not
constrained by the low-energy effective field theory. Following the same proce-
dure as outlined for the mass extrapolation, these parameters can be determined
nonperturbatively by fitting to lattice QCD data.

The loop-integral, 1r, evaluated within the usual minimal subtraction renor-
malisation scheme, gives rn,.. The linear divergence of the integral is absorbed
into the renormalisation of øs. The poor expansion properties of the chiral series,
evaluated in dimensional regularisation, has been demonstrated in Chapters 4

and 5.

To exploit the improved convergence of the chiral expansion, finite-range
regularisation is applied to the magnetic moment expansion. The loop integral,
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Figure 8.1: Leading one-loop diagram contributing to the nucleon magnetic

moment. The solid, dashed and wiggly lines describe nucleon, pion and electro-

magnetic curtents, resPectivelY.

integral gives

I, in the hear,y baryon limit can be expressed as

_ 1 f ,rË4,.!.ur(k), (8.3)Ir:-2nrJo 
(k2+m2*)2

for ultra-violet regulator, z(k), k:lÉl and ri : dlld. Performing the angular

f -_ -' ó'rf

4 (8 4)

For a dipole regulator, explicit evaluation of the loop integral gives

ry,:-ffi (85)

The appropriate renormalisation of the chiral expansion is obtained through

a power series expansion of the loop contributions. The Taylor expansiorr in rnn,

of the dipole form, provides

4":-.fittrrln- #*'"+"' ' (86)

The leading nonanalytic contribution is observed, independent of regularisation,

x"rlort'(LNA) - Xnrmn, (8'7)

with a finite renormalisation of all other terms in the series. Explicitly, for a

renormalised expansion defined by by

lrB:cf -ly6rm*+clm?^+..., (88)

the corresponding renormalisation of the analytic terms is defined by

^B ^B-.^ 5n
co : ao - XBp 24tr t

^B .R 35cl : "l - xsrö¡ (s'9)
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This renormalisation ensures the mathematical equivalence of all regularisation
prescriptions to any given order.

In summary, in working to leading order in the chiral expansion with a dipole
FRR, the quark-mass dependence of nucleon magnetic moments in QCD is given
by

þB: o! + of *?^ Lu(*n + 5^l-xur'ffi. (8.10)

To this order, inclusion of a term at mf is not necessary. This term will need to
be reinstated at next-to-leading order upon inclusion of nonanalytic contri-
butions at m2rlogmn.

8.2 Quenched Considerations

Modern simulations of the electromagnetic form factors in lattice QCD are re-
stricted to the quenched approximation [G+05,ZLWZ}4,ZBL+04]. As high-
lighted by Chapters 6 and 7, the chiral effective field theory is modified by
the absence of qQ-pairs in the vacuum. Meson loop diagrams are restricted
to those where the ìoop is comprisecl of valence quarks - those quark fields
that are continuously connected to the interpolating fields of the baryon cor-
relation function. This has the effect of modifying the effective zr-N coupling
constants [Sav02, Lei04] and the corresponding factors XB àre changed accord-
ingly.

The contributions to nucleon magnetic moments in both quenched and dy-
namical QCD are summarised by the introduction of the coupling-strength pa-
rameter, Bfi, defined through

M¡¡
(8.11)Xep pi

srf?

Values of the parameters, l3b, are provided in Table 8.1 [Sav02,Lei04]. The
standard phenomenological values are used, fn : 93 MeV and gA: D + F :
1.26. The relative strengths in D- and F-style couplings are given by the SU(6)
estimate, D lF :312.

In addition to the modification of the pion-loop contributions, the flavour-
singlet 4'-meson also becomes important. In a similar way to that observed in
our study of the nucleon mass, the r¡' gives rise to more singular behaviour near
the chiral limit. With zero charge, the 4' does not make a direct contribution to
the magnetic moment of the nucleon. The leading enhancement of the moment
comes from 4'-dressing of the current insertion as in Fig. 8.2. The singular
behaviour arises from the double-hairpin diagram of tlne qt propagator. This
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Baryon PE Pi
p
n

-(F + D)2 -iD'
(F+D pz24

Table 8.1: Coefficients of the leading pion-loop contributions to nucleon mag-

netic moments in QCD and QQCD. The superscript (Q) denotes a quenched

quantity.

double-hairpin diagram has a logarithmic divergence near the chiral limit. This

is a pathological feature of the quenched approximation, where the magnetic

moment tends to infinity near the chiral limit. This is not possible in the physical

theory, as angular momentum quantization ensures that the induced magnetic

field of the meson-loop remains finite, even in the chiral limit [LTY01].
The vertex-correction, induced double-hairpin diagram, provides a contribu-

tion to the nucleon magnetic moment in the quenched approximation [Sav02],

xl?) pf,q)"""h, , (s.12)

\
I

with coefficient

,t?,:t## (s13)

The hairpin strength is set to the same value used in the spectrum analysis,

mZ : 0.42 GeV2 '

The loop integral describing the vertex correction, in the heavy-baryon limit,

is given by

r,,:-l*W, (8.14)

with ø¡ : JF +@,. The normalisation of the integral is defined such that the

Ieading-nonanalytic term is logmn.

x
I

Figure 8.2: Double-hairpin 4' vertex correction to nucleon magnetic moment.
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Because the moment is logarithmically divergent in the chiral limit, the ex-
pansion cannot be defined relative to this point. Equation 8.12 describes the
coefficient of the vertex correction proportional to the tree-level moment, /-rln)"""

[Sav02]. To define this quantity, independent of ultraviolet-regularisation, re-
quires a finite tree-level moment. This must therefore be chosen as the renormal-
ised moment, evaluated at finite quark mass. The scale dependence of choosing
a particular quark mass is removed by replacing the tree level coefficient by the
renormalised magnetic moment at each quark -ur, ¡rla)""' : ,çQ)2.

For quenched simulations, the appropriate expansion is given by

pçO : an{at + ol@^?* +
+xl}r, + xça) plØ rr,, (8 15)

which is analogous to the QCD expression, Eq. (8.1). Lattice results are used to
constrain the parameters øf (a). 1¡" magnetic moment at arbitrary rn, is then
identified as

p|q : {4 
rnr + ol Q) *?* + oln @ *f

+ xLqþ,\ (t - ,çnì,,,,) 
-' 

(8.16)

8.3 Extrapolation of Lattice Magnetic Moments

The simulation results of lattice QCD can describe the variation of the mag-
netic moments over a range of quark masses. This allows the nonperturbative
determination of the free parameters of the chiral expansion.

Recent calculations in lattice QCD have studied the electromagnetic form fac-
tors of the nucleon [G+05, ZLWZ04,ZBL+04). These calculations extend the pi-
oneering calculations by Leinweber et ¿1. in Refs. [L\MD91]. Results by Göckeler
et al. [G+05] have been obtained using the nonperturbatively improved clover
(NPIC) fermion action [LSS+97]. Simulations of the three-point functions using
FLIC fermions have been performed by Zanotti et al. IZLWZ04,ZBL+04]. For
the present investigation, only the six most accrrrate data points from the FT,IC
data set are selected. The results of both the NPIC and FLIC simulations are
displayed in Fig. 8.3. The precision of the FLIC fermion results reflects the
use of improved unbiased estimation techniques [L\ /D91], improved actions and
high statistics. AII results above m7 :0.8 GeV2 have been excluded from the
current study.

2This approximation will be accurate provided xf,?) ,fal""" tr, makes only small contribu-
tions for ïnr > rnphvs. This is satisfi.ed for all finite-range regulator scales consiclered.



8.3 Extrapolation of Lattice Magnetic Moments 99

3

2.5

z
_Jr

a_
I

2

1.5

1

0 o.2 0.4 0.6 0.8
m,r2 lcev¡

Figure 8.3: The solid diamonds (l) illustrate the FLIC fermion results

IZLWZ14, ZBL+ 041 and the open symbols describe nonperturbatively improved

clover results [G+05] , at 13: 6.0 (v), P : 6.2 (A) and P : 6'4 (ç)' The

experimental moment is shown by the star.

The expansion, Eq. (8.15), is constrained to the entire lattice data set, with

the resultant fit curve shown in Fig. 8.4. The solid curve describes the fit with

the preferred dipole regulator scale, Â. : 0.8 GeV. The upper and lower dashed

curves display the dependence on this scale, showing Â. : 1.0 and 0.6 GeV,

respectively.

The results are quite insensitive to the regulator scaie. The variation in the

proton moment, evaluated at the physical pion mass, is similar to the statistical

uncertainty of the FLIC simulation result at the lightest quark mass considered.

The sensitivity to Â will be reduced by increasing the chiral expansion to higher

order.

Finite Volume Effects

Simulations in lattice QCD are always performed on a finite volume at finite

lattice spacing. There will necessarily exist corrections in extending the theory

to the infinite-volume continuum. Ultimately, both these discretisation artifacts

wili be built into the effective field theory to characterise a complete description

of the variation of hadron properties with mq, a and L.

There have been studies in EFT which incorporate new local operators

lr'L¿rt' l-i + 'i

*

+
{,
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Figure 8.4: Leading-order fit of Eq. (8.15) to quenched lattice data. The solid
curve displays the preferred regulator scale, A : 0.8 GeV. The insensitivity
of the scale is shown by the upper and lower dotted curves) corresponding to
.4. : 1.0 and 0.6 GeV, respeclively. Data is the sarne as clescribed in Fig. 8.3.

into the chiral Lagrangian reflecting fhe O(a) dependence of hadronic observ-
ables [RS02,BRS03,Aok03]. There have been significant advances in the formu-
lation of lattice QCD to remove O(a) errors and suppress those at O(a2). The
finite lattice-spacing effects are therefore minimised through nonperturbative im-
provement schemes, such as NPIC [LSSW96], overlap [NN95] and FLIC lZ+02].
These actions have been demonstrated to exhibit excellent scaling properties at
finite lattice spacing [EHK98b, DLLZ}},ZLLWO5]. Therefore, the lattice data
currently under study already represent an excellent approximation to the con-
tinuum limit.

The effects of finite lattice volume will be more apparent, with the lightest
simulated FLIC fermion result at the dimensionless measure mnL : 4.8. Corre-
spondingly, thcrc will bc significant corrcctions associated with the suppression
of infrared physics. Similarly to the analysis of Chapter 7, we extend the effec-

tive field theory to incorporate finite-volume effects. The dominant corrections
from the finite-volume will lie in the corrections to the chiral-loop integrals. The
continuous loop integrals over the pion momenta are replaced by a summation
over the discrete momenta of the finite box, as described by Eq. (7 .72).

Evaluation of the loop integrals on a finite volume in FRR is a rather simple
extension. This allows the features of finite-range regularisation to carry over to

{
+
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the finite volume case. For example, Eq. (8.3) becomes

r,,r :-: ('+\'t j9 " *11= u'(k) (8 17)LttL 2r2\L) ?tËr+*7),

The discretized momenta on a cube are given by i, : k-i'ñ for ñ e V'3, with lhe

minimum nontrivial momentum given by k-i., : 2tr lL. A similar modification

is made to the 4' loop integral, Eq. (8.14)'

The high precision of the FLIC fermion data, obtained by Ref. [ZBL+04],

means that the fits are dominated by these points and the results of Ref' [G+05]

have consequently been neglected. The FLIC fermion simulations have been

carried out on a physical lattice volume, V: (2.56fm)3.

In Fig. 8.5, the results based on the finite-volume' quenched EFT, shown by

the open boxes, are fit to lattice results. The quality of fit should be judged

by the comparing the boxes to the lattice data. The solid curve represents the

infinite-volume limit, with the discrete sum loop-integrals being replaced by their

continuous counterparts. The dashed curves) which show the insensitivity to the

regulator parameter, display the infinite-volume corrected results for Ä : 0'6 and

1.0 GeV.
This systematic uncertainty is smaller than the statistical uncertainty of the

lightest quark mass considered here, and could be suppressed further through

the introduction of higher-order terms in the chiral expansion or through the

introduction of precise lattice QCD results at light quark masses.

8.4 Chiral Unquenching

Although the lattice simulations have been restricted to quenched QCD, the

magnetic moments of the physical theory can be estimated by correcting the

Iong-distance chiral contributions. The results of Section 7.2 demonstrated that

the differences in the quenched and dynamical baryon spectrum can be described

by the chiral loop corrections, evaluated with a FRR. This provides a pheno-

menological link, relating quenched QCD to the physical theory.

This allows quenched simulation results Lobe unquenched, with application to

FLIC fermion simulations, of baryon masses, with demonstrated success' Upon

replacing the chiral loops of QQCD by their QCD counterparts the nucleon and

Delta are found to be in good agreement with experiment'

By applying the same principle to the calculation of magnetic moments in

quenched QCD one can obtain improved estimates of the physical magnetic

moment. The fit parameters, af (Q), ur. determined by fitting finite-volume
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Figure 8.5: Finite-volume FRR-EFT fit to FLIC fermion results for fixed volume.
The boxes display the finite-volume fit to the lattice data points, for dipole reg-
ulator parameter fixed to Â : 0.8 GeV. The solid curve indicates the correction
to the infinite volulre. The upper and lower dashed curves describe the corre-
sponding infinite-volume corrected curve for r\ : 1.0 and 0.6 GeV, respectively

- the discrete fit points for these A values are not shown.

quenched lattice QCD using Eq. (8.15) with discretized momenta and a dipole
regulator of 0.8 GeV. The estimate of the quenching effects are obtained un-
der the assumption that the bare residual expansion parameters are unchanged
in infinite-volume QCD when Â. : 0.8 GeV. That is, the full QCD result can
be described by Eq. (8.10) with the identification aP(Q¡ - al. By fitting with
finite-volume FRR-EFT both quenching and finite-volume corrections are incor-
porated in the final estimate. We show the infinite-volume QCD estimate of the
proton magnetic moment by the dashed curve in Fig. 8.6.

In a similar manner) the infinite-volume limit of QQCD is estimated by fitting
the parametcrs øf (a) 

of Eq. (8.15) using finite-volume discretized momenta and
a dipole regulator of 0.8 GeV in the loop integrals. The correction is estimated
by Eq. (8.16) calculated with infinite-volume continuous momenta in the loop
integrals. Figure 8.6 illustrates that the finite volume corrections are minor in
the regime of the lattice QCD simulation results.

We emphasize that this result is a phenomenological estimate, as the size

of the correction is r\ dependent. The primary feature of Fig. 8.6 is that the
observable differences are quite small, despite the fact that the quenched and

0 0.2
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Figure 8.6: Correcting the finite-volume quenched approximation to the infinite-

volume limit of full QCD. The boxes and solid curve are the same as those shown

in Fig. 8.4. The dashed curve shows estimates of the proton magnetic moment

in full QCD, as described in the text.

physical theory have significantly different chiral structure. The logarithmic

divergence appears to only become apparent well below the physicai pion mass'

'Within the current formalism of lattice QCD, it seems such observation would

be a formidable task, particularly given the large finite volume required to reveal

Ihe r¡t contribution.

The results here, based on the leading chiral corrections, indicate that proton

magnetic moments evaluated in quenched simulations give a good approximation

to the true theory. The enhancement from the 4'-loop compensates for the

reduction in the standard pion-loop from QCD to QQCD. The similarity in the

efiective curvature was also highlighted by Savage [Sav02].

8.5 Beyond Leading Order

The analysis is extended beyond leading-order, with an investigation of higher-

order terms in the FRR expansion. In particular, effects of the A-baryon are

explicitly treated in the expansion. The coupling to the A-resonance is under-

stood to play a significant role in spin-dependent properties of the nucleon. The

leading contribution from the A-baryon, shown in Fig' 8.7, can be summarised

0 0.4
rn"2 (GeV)

0.6 0.8
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3
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Figure 8.7: Leading pion-loop contribution to nucleon magnetic moment from
the A resonance.

Table 8.2: Coefficients of the leading decuplet, pion-loop contributions to
nucleon magnetic moments in QCD and D 21, c: -2D

Baryon /Et l3i
^

o
2

p
n 2lc

AS

xÈLo Ir(^n,n, 
^) 

, (8.18)

where, analogous to trq. (a.tt¡, the corresponding couplings are given by

.,A, M¡¡ rrlrXEp: ffi7t"' (8'19)

and Table 8.2. The loop integral is also modified by the fact that the intermediate
baryon propagator is non-degenerate with the external state. With the mass-
splitting given by A, Eq. (8.3) becomes

r,(*n,a,^) :-#l*\*ffi (s20)

The full expression for the expansion, at this order, is given by

p,9) : af {ol + ol (q 
^?* 

+ 
"Pn 

(q *}
+x9) p|q Ir, + xç? Ir(*n,O, 

^) 
+ xÈt') Ir(^n,a, 

^) 
, (8.21)

We compare the extrapolation, including the A, with the leading order result
in Fig. 8.8. The leading-order result, with volume corrections, as shown in
Fig. 8.5, is displayed by the solid curve. The boxes describe the finite-volume
fit at next-to-leading order, with the corresponding infinite-volume corrections
described by the dash-dot curve. Increased curvature is realised in these beyond
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Figure 8.8: The role of A contributions in the extrapolation of the proton

magnetic moment. The solid curve displays the leading-order extrapolation of

Eq. (8.16), without explicit decuplet contributions) as seen in Fig. 8.4' Equation

(3.16) is extended to include the pion contributions with decuplet baryons in

Eq. (g.21). The dotted curve displays the quenched fit of Eq. (S.21) to lattice

simulation results.

leading-order fits. This arises both from the explicit A ioop contribution and the

additional degree of freedom given by aamf,. Although the curvature appears to

be somewhat enhanced, the difference between the leading-order extrapolation

and the one including the A, is at the scale of the error bar of the lightest

simulation result. Without a statistically significant difference in the curves, the

extrapolation shows little sensitivity to the inclusion of the A. Nevertheless,

accurate extraction of the the low-energy constants, to this order, will require

explicit inclusion of the correct nonanalytic structure, as given by the A diagram.

With regard to the estimation of full QCD corrections, the inclusion of the

decuplet is again a small effect. With the A, the QCD estimate of the proton

magnetic moment at the physical quark mass is increased by 0.15 p¡, from the

leading-order result. Comparison of the QCD estimates described at leading and

next-to-leading order are shown in Fig' 8.9.

Finally, the prediction of the physical proton magnetic moment obtained by

including the A contributions and compensating for the flnite lattice volume is

2.b4(30) ¡1u, where the uncertainty is statistical in origin. This result agrees well

with the experimental value of.2.79 ¡1"1s.
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Figure 8.9: Estimates of the QCD magnetic moment of the proton. Curves
are based on finite-volume and quenched chiral corrections. The dashed curve
displays the leading-order result, seen in Fig. 8.6. The dotted curve describes
the result at next-to-leading order-.

Further improvement on this result is given by explicitly including the physics
of the K-meson contributions. These results have been applied to the entire
baryon-octet magnetic moments and the observed agreement with experiment
is excellent [L+04a,L+05]. This has also enabled the accurate determination of
the strangeness magnetic moment of the proton, found to be G"tø : -0.046 +
0.019 pN [L+05,L+04b].

This novel understanding of the quark mass dependence of the magnetic
moments has implications for cosmological observations of the temporal variation
of the fine structure constant (a) [FLTYO4]. Experimental measurements of
variation of the fine structure constant are also sensitive to small variations
in the quark masses. For a range of experimental observations, the work in
Ref. [FLTYO4] provides limits on the correlated variation of a and, mo.

***

Nucleon magnetic moments in QQCD become logarithmically divergent as

the chiral limit is approached. Fortunately for modern lattice simulations, the
results indicate that this pathological behaviour only becomes apparent for pion
masses well below the physical value.

The effects of the finite volume in modern simulations at moderate quark
masses appear to be quite small. With the onset of increased curvature, by

*

-ì---.*.*
I
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the dominant infrared behaviour of loop integrals in the chiral limit, the finite-

volume effects will become significant.

Estimates for the proton magnetic moment in QCD have been obtained,

through the application of the discovered link between QCD and the quenched

approximation. Although difierences are evident, the moments are remarkably

similar over a wide range of quark mass - resulting from a coincidental corre-

spondence between the chiral corrections of the two theories.

The dynamical nature of QCD becomes increasingiy more significant as the

chiral regime is approached. A linear extrapolation from the heaviest simulated

masses would produce a magnetic moment of less than 2'0 p¡. The physical

value can only be explained by the dynamics of the meson dressings. At light

quark mass) the long-ranging extent of the charge circulation of the pion field

induces a large contribution to the magnetic moment, the order of nearly one

third of the total observed value relative to the naive linear extrapolation. This

gives a significantly enhanced picture of the dynamic structure of the nucleon,

far beyond that offered by the constituent quark model'





I
Summary and Conclusion

QCD presents a fascinating challenge for the study of strongly-interacting quan-

tum field theory. With continued development, the strongly-interacting compo-

nent of the Standard Model will be tested against observation. An enhanced

understanding of the theory will provide much improved guidance to the next

generation of experimental programs, where the nonperturbative QCD "noise"

must be separated from the electro-weak effects.

In this Thesis we have focused on the low-energy properties of the nucleon.

In particular, the mass and electromagnetic structure has been studied in the

application of effective field theory to lattice gauge theory'

The only available rigorous formulation of the QCD path integral is given

by lattice gauge theory. This has provided a powerful tool in the study of non-

perturbative QCD. For computational reasons, approximations are requirecl and

these must be understood if one is to draw comparisons with experiment. The

restriction which has been of most interest in the present work is the simulation

with relatively large quark masses.

The rich dynamic structure of the nucleon causes the quark-mass extrap-

olation to be a nontrivial procedure. The physical nucleon displays a strong

coupling to the lightest pseudoscalar meson, the pion. An enhanced picture of

the dynamics of the nucleon is described by its interactions with the pion field.

Preserving this physical role of the pion field is fundamentai to any chiral

extrapolation procedure. A systematic approach to this problem is provided by

chiral perturbation theory. Construction of this theory is based upon the sym-

metries of QCD, Provided all contributions, to a well-defined counting scheme'

are accounted for, this theory deflnes a rigorous approach to the study of QCD

at low energies and small quark-masses.

How to quantify the domain of "small quark-mass" is of significant interest,

especially for the chiral extrapolation problem. A strong extrapolation proce-

dure is reliant on being within the effective convergence range of the effective

field theory. Varying rates of convergence are offered by different regularisation

Schemes, which induce alternative resummations of the chiral series'

The traditional implementations of chiral perturbation theory have been

based upon dimensional regularisation. Although this scheme has had an enor-

mous success in the description of elementary fields, early investigations demon-
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strated dimensional regularisation to be incompatible with lattice simulation
results. The origins of this failure are revealed in the way dimensional regulari-
sation treats particles of extended structure. Dimensional regularisation, or any
other minimal subtraction renormalisation scheme, treats the quantum fields as

point-like objects. Necessarily, the ultraviolet behaviour in loop integrals be-
comes modeled by the low-energy coefficients of the effective field theory an
immediate contradiction is realised. Large counterterms are therefore required
to remove the incorrect treatment of the high-energy physics and, consequently,
the series becomes slowly converging and highly divergent.

An alternative regularisation scheme was presented, which has the feature of
suppressing loop integrals for momenta above some characteristic energy scale.
Finite-range regularisation encompasses the extended structure of the nucleon,
at one-loop order, in a very natural fashion. This extended structure is only
generated within the dimensionally regularised formalism at increasing orders of
the expansion.

Although various choices in FRR have significantly different ultraviolet be-
haviour, this investigation has found that results are insensitive to the choice
of regulator. The most consequential result of this analysis is the markedly im-
proved convergence of the chiral expansion formulated with FRR - sufficient
for reliable extrapolation of modern lattice simulation results to the physical
quark mass.

The quenched modification of QCD, as commonly implemented in lattice
simulations, has proven a valuable framework to provide an enhanced under-
standing of the role of chiral physics in the nucleon. The absence of vacuum
quark fluctuations in quenched QCD causes the low-energy effective field theory
to be altered from the physical theory. The calculation of these essential alter-
ations has been outlined for two different methods.

The modifications of the effective field theory has a significant impact on the
subsequent chiral extrapolation. It is observed that the chiral behaviour of the
Delta baryon is especially pronounced in the quenched theory. In particular, the
N-A mass difference is significantly enhanced as the chiral limit is approached

- a prediction which has recently been identified in FLIC fermion simulations.
f¡rom the use of finite-range regulalisation, a rerualkal-¡le conrrection between

the quenched and physical theories has been deduced. This link has provided the
opportunity to gain improved physical estimates from simulations of quenched

QCD. A successful application of this hypothesis has been demonstrated.
The discovery of this phenomenological link has provided an improved under-

standing of the origins of the mass-splittings in the baryon spectrum. It has been
found that most of the mass discrepancy between the nucleon and Delta is to
be attributed to short-range gluonic interactions.



111

Quenched QCD has also been used to investigate the electromagnetic struc-

ture of the nucleon. In particular, the quark-mass dependence of the proton

magnetic moment was studied in finite-range regularised quenched chiral per-

turbation theory. The results of the baryon-mass analysis were applied to gen-

erate physical estimates of the moment, based on quenched lattice simulation

results. Although the chiral behaviour of the quenched and physical theories are

considerably different, only small discrepancies from the physical theory were

observed over a wide range of quark mass.

With the chiral corrections to the nucleon magnetic moment being rapidly

suppressed for increasing quark mass, the improvement offered by using finite-

range regularisation techniques, compared to dimensional regularisation, was

further established.

The applications of finite-range regularisation have provided a wealth of in-

sight into the structure of the nucleon, with the most enlightening discovery be-

ing a solution to the probiem which motivated this investigation. High-precision

lattice QCD data, combined with the effective resummation of the chiral se-

ries provided by FRR, has enabled the accurate extrapolation of the nucleon

mass. With residual lattice artifacts yet to be accounted for, and a significant

statistical error associated with the large extrapolation distance, this work has

contributed the most advanced first-principles calculation of the nucleon mass

in QCD.
With a rigorous extrapolation procedure at hand, further development of

FRR to a wider ranging class of observables will be a natural progression. This

promises a prosperous future for the advancement of hadronic physics in non-

perturbative QCD.
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Loop Regularisation

The 4-dimensional covariant loop-integral contributing to the nucleon mass shift,

in the heavy baryon limit is given by [DHB99]
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where \Me use k: lkl. As Â --¡ oo, this is precisely the form given by Eq. (3.30),
up to the normalisation scale,

(A.10)

'We now give analytic expression for the various FRR integrals, where possi-
ble. The complete expressions for the finite-range regularised integrals are given.
For a degenerate intermediate baryon state, fn, we obtain

i : -i,6oj L24r "

2(m + lr)2 )

lyu(^' r 4mly+ 
^')

(A.12)

IP"
76(m + lt)a (A.13)

For the more complicated integral, 1,.¡, âs defined by Eq. (4.11), we obtain for
the sharp cut-off
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For the monopole regularised integral we obtain
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For the dipole regularised integral we obtain
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Renormalised Expansions

The Taylor expansions, necessary for the renormalisation of the chiral expansion
are now defined. For a generic regulator, the Taylor expansion of the integral,
1-, is given by

In:bolb2m2 +rns +bama 1... . (B 1)

For the case where the intermediate state being non-degenerate, In6, the m3
contribution becomes a logarithm and the expansion is given by

InL.:óo¡ * bz¿,m2 lbarma - -3 -^nlogmi_ ... (B 2)
4¡r L,

In Table 8.1 we summarise lhe b¿ expansion coefficients. We were unable
to obtain neat analytic expressions for the Gaussian regulator and hence all
relevant calculations have been perforlrecl nurnerically. For both DR and BP
schemes the ó¿ of the 1, diagram can trivially be treated as zero. The expansion
tetms, b¿¡ for the 1-¡ diagram are more complicated and are summarised in the
following.

In the DR case, the b¿ 6 câ,r again be treated as zero. From the expansion of
Eq. (4.10), for the BP case one finds that the appropriate coefficients are given
by (with renormalisation scale 1.0GeV)
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Table 8.1: Expansion coefficients for the finite regulators
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The Taylor expansion of the FRR forms, Eqs. (A 1_4) to (A'16), provides the

,".ror-áliration for these forms. For the sharp cut-off, expressions are given by
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Model Magnetic Moments

Here we summarise the calculation of the proton magnetic moments in the cloudy

bag model as displayed in Fig. 2.2. Hete we summarise the results of previous

work [TT83, Tho84, LTW98].
The quark wave function in the infinite spherical well of radius R is simply

the MIT bag solution [CJJ+74,CJJT74]

where the spin-isospin information is carried by X. The ground state solutions

for finite mass quarks are given bY
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with j¡, ji spherical Bessel functions and

I (r)

,þ(r) : g(r)
io.î f (r)

x?(R - r) ,

Jt'

(c 1)

(c 3)

(

(

AT

E
ar
E

)

)

1
E(rnn, R) : 

E.
u2 + (mnB)2

and normalisation constant given by
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The linear boundary condition, describing a vanishing flux through the bag

surface, determines the eigenfrequency

tanul:+ (C5)uorrw- 7-mnR-Jæ+jnqfi

The contributions to the nucleon magnetic form factor from quark contribu-

tions in the bag is given bY

T lzs(r)f (r)lGffù (q) :2mt¡ (c 6)
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C¡v¡v Ctt CNt
p igi #c' -#goc
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Table C.1: Coefficients of vertex renormalisation diagrams for the proton (p)
and neutron (n) magnetic moments.

Direct coupling of the electromagnetic current to the pion field gives the
following contributions to the proton magnetic moment

Gff)(q':o): 'ffilo*Ú:P, (c7)

Gf,o) (q, : 0) : 
r4r_r¡: I *ww, (c.8)

with the pion energy given by ,n: \/W I 12 and u(k) the CBM form factor

u(k):tt+P (c e)

This solution for the form factor is determined in the chiral limit and we do not
include any variation of the form factor with quark mass in this model.

There are also corrections to the magnetic moment from vertex and wave-
function renormalisation graphs. The net contribution to coupling to quarks in
the bag, including the one-loop pion dressings, is summarised as

c(fl Q' : o) : z, pff'") Gfo"Ð @' : o) + GW Q' : o)

+Gott^(q': o) i CfroØ': o) , (C.10)

where the tree contributions are defined by p1""") : 1 and lr!:'"') : _213. 22
defines the bare baryon probability, with expression provided in Ref. [LTW98].
The vertex corrections are given by

G"r,'' (q'- o) : ffi I'r fficll)@': o), (c.11)

with mass-splitting given by As¡r : MB - M¡¡ and the coefficients C66, defined
in Table C.1.
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Chiral Symmetry and the Intrinsic Structure of the Nucleon
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Understanding hadron structure within the framework of QCD is an extremely challenging problem. In

order to solve it, it is vital that our thinking should be guided by the best available insight. Our purpose

here is to explain the model-independent consequences of the approximate chiral symmetry of QCD for

two famous results conceming the structure of the nucleon. We show that both the apparent success of

the constituent quark model in reproducing the ratio of the proton to neutron magnetic moments and

the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are

coincidental. That is, a relatively small change of the current quark mass would spoil both results.

DOI: l0.l 103/PhysRevlett.86.50l 1

The chiral properties of QCD have been the subject

of considerable attention, from chiral quark models [1,2'3]
to the less ambitious, but more systematic, approach of
chiral perturbation theory [4]. Most recently one has begun

to realize the importance of chiral symmetry in describing

the dependence of hadron properties such as masses [5]
and magnetic moments [6] on quark mass. This is vital
if one is to compare lattice QCD calculations, which are

presently confined to current quark masses, ¡ø, of order

40-80 MeV or higher, with experimental data'

For our purposes the essential point is that chiral sym-

metry is dynamically broken. The resulting Goldstone

bosons enter the calculation of hadron properties through

loops which lead to a characteristic dependence on m
which is not analytic. Indeed for the magnetic moment

of the nucleons one finds a leading nonanalytic behavior
t l)

proportional to mtql' . In the chiral limir. mI ú mn and

pr:p3-dftit+O(mT),
p, : tr6 + dmr + O(mz,). 

(1)

It is a crucial property of the leading nonanalytic (LNA)
coefficient, a, thaL it is entirely determined by the axial

charge of the nucleon and the pion decay constant (both in
the chiral limit):

,:t-1'=!-. e)B¡f?'
Taking the one-loop value of g¡(: Ft + Dt :0.40 +
0.61) from chiral perturbation theory [7] we find a :
4.41. [Note that all magnetic moments will be in nuclear

magnetons (¡¿¡¿) and all masses in GeV.l

Clearly the LNA term is large, of order 0'6 p'¡¡, at the

physical pion mass. This is one-third of the magnetic

moment of the neutron. Provided the 0(m2r) terms are

small at the physical pion mass we can use Eq. (1) to
extract the proton and neutron magnetic moments in the

chiral limit:

pr| = pP + amúr*,

t+6 = t-t' - o*Phlt.
(3)

PACS numbers: 13.40.Gp, 12.38.Gc, 12.39.Fe, l2-39.Jh

One then finds a model-independent expression for the

dependence of the proton to neutron magnetic moment

ratio on the pion mass:

t'p -*3(,.1 I I I \
tp,l t¡,öl U Lmi - Ã)"^')+ o(mz')'

(4)

Constraining the chiral expansions to reproduce the ex-

perimental proton moment p'p and the experimental ratio
pP llp"l provides

¡"( : z.+t ¡"*,
lto
lp6,l

and

!+ :1.31 + o.os+ + o@I). (6)
lp'' I mr

As a consequence of Eq. (6), we see that the ratio of
the p to the n magnetic moments varies from 1.37 to 1.55

(a variation of order l3%o) as mn varies from 0 to 2mplv'.

In terms of the underlying quark mass, such a variation

corresponds to a current quark mass variation from 0 to
just 20 MeV. Within the constituent quark model this ratio

would remain constant 
^t 

3 /2, independent of the change

of quark mass.
A study by Leinweber et al. f6l suggests a new method

for describing the mass dependence of baryon magnetic

moments which satisfies the chiral constraints imposed

by QCD. We briefly summarize the main results of
that analysis. A series expansion of p'p1n¡ in powers of
mo is not a valid approximation for m, larger than

the physical mass. On the other hand, the simple Padé

approximant 
p(n)

urØ):. - Po 

- 
(7)P I t 4øm, * Bnh)^z'

has the correct leading nonanalytic (LNA) behavior of
chiral perturbation theory

*nh): ¡r((n\ + o^,,

: 1.37, (s)
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and also builds in the expected behavior at large mo. At
heavy quark masses we expect that the magnetic moment
should fall of't as the Dirac moment

p:JL*f=2*n m2-

as ruo becomes moderately large. (Note that this form
is valid provided *I o m, which seems to be true for
mn lp to at least I GeV within lattice simulations.)
A fit of the Padé approximanr to lattice QCD data
[8,9] leads to predictions of the magnetic moments of
2.90(20) and -1.79(21) p¡y to be compared with 2.793
and -1.193 p"¡¡ lor p and n, respectively. The smooth
transition between the chiral and heavy quark regimes
provided by the Padé approximant models the lattice QCD
results well.

Figure I shows a similar fit to the lattice data, this time
constrained to pass through the experimental moments, and
providing the solid curve in Fig. 2 for the p f n ratio of
magnetic moments.

The Padé approximate fit parameters are (p,s, B) :
(3.33, 0.527) and (- 2.41, 0.427), for p and n, respecrively.

Figure 2 also shows the result of the constituent quark
model (dashed line) and the variation of the ratio predicted
by the leading nonanalytic behavior of chiral perturbation
theory inEq. (6) (dotted line). The imporrance of the terms
oforder m2. andhigher are revealed by the ratio calculated
using the Padé approximant of Eq. (7) (solid curve). The
values of ¡"ooø) uory slightly in the chiral expansion and
the Padé due to these small higher order corrections at the
physical pion mass. However, it is important to note that
the slopes of the curves agree exactly in the chiral limit, as
demanded by chiral perturbation theory.

The key point is that the ratio displays a significant quark
mass dependence. It is roughly linear in mo lul;rttl m, is of

3.5
3.0
2.5
20
1.5

1.0

0.5

0.0

-0.5
-1.0
- 1.5

-2.0
-2.5

order 2mplvt.It is amusing to imagine the excitement had
the pion mass been 100 MeV heavier at 240 MeV where
the Padé crosses the constituent quark model prediction of
3f2. However the constituent quark model prediction re-
ally corresponds to the mî + rÐ limit, and Fig. 2 suggests
this limit is approached rather slowly.

The surprising consequences of chiral symmetry for this
famous ratio naturally lead us to reconsider the neutron
charge radius. The squared charge radius of the neutron
(þ')iÐ is obtained from the slope of the neutron elecrric
form factor, Go,(Q2) as Q2 - g'

U,)!n: -rbGn(ez)lo.:, (8)

The Sachs electric and magnetic form factors can be
written in terms of the covariant vertex functions F1
and F2 as

cn(ez): r're2) 
ffiFz(ez),

Gu(Qz): rJQz) + Fz(Q2).
(e)

Note that for a neutral charge particle FlQz :0) van-
ishes and hence F2(Q2 : 0) is simply the magnetic mo-
ment of the particle. Now the charge radius squared of the
neutron can be written as

,1.- d 3 un
\r")'l¡ : -6 dØ Ftn(Q')le':o * Z ¡T,. 

(10)

Experimentally (r')!¡ : -0.113 -f 0.003 + 0.004 fm2
[10], while the last term in Eq. (10), the Foldy rerm
llll, is numerically -0.126 fmz.

The close agreement between the Foldy term and the
observed mean square charge radius of the neutron has
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FIG. l. Extrapolation of lattice QCD magnetic moments
(., LDW [8]; f, V/DL [9]) for the proton (upper curve)
and neutron (lower curve) to the chiral limit. The curves
are constrained to pass through the experimentally measured
moments which are indicated by asterisks.
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FIG. 2. Ratio of the magnitudes of the proton to neutron mag-
netic moments. The solid curve describes the predictions of the
Padé approximant while the dashed line denotes the constituent
quark model prediction of 312. The dotted line is the leading
nonanalytic behavior of chiral perturbation theory. The experi-
mental measurement is indicated by the solid point.
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led to considerable controversy. It has been argued that

the difference, namely, the term involving the Dirac form
factor (F1r), should be interpreted as the true indication of
the intrinsic charge distribution of the neutron. Clearly this

would be quite insignificant. On the other hand, decades of
modeling the structure of the nucleon have suggested that

the neutron must have a nontrivial intrinsic charge distribu-

tion. Pre-QCD it was clear that the long-range tail must be

negative, corresponding to the emission of a negative pion

(n - prr-), but old-fashioned meson theory was inca-

pable of describing the interior of the neutron. Post-QCD

ihi. was resolved in the cloudy bag model [3,12], where the

neutron charge distribution then originated mainly from
the Fock component of its wave function consisting of a
ø- cloud and a positive core of confined quarks. Altema-

tively, within the constituent quark model, it was proposed

that the repulsive gluon exchange interaction between the

two d quarks would tend to force them to the exterior of
the neutron-again yielding a positive core and a negative

tail [4].
In view of these expectations of an internal charge dis-

tribution, the interpretation of (r2)lr' in terms of the Foldy

term has been controversial. Isgur [15] has recently shown

that a careful treatment of relativistic corrections for the

calculation of (r2)l¡, in a quark-di-quark model, leads to

a recoil contribution that cancels the Foldy term exactly,

hence restoring the interpretation in terms of an intrinsic

charge distribution-see also [16]' V/e now show that the

study of the chiral behavior of (r2)f¡ and p'" supports this

idea, establishing in a model-independent way that the ob-

served similarity between the experimental value and the

Foldy term is purely accidental.
It is a little appreciated consequence of the approximate

chiral symmetry of QCD that the mean square charge ra-

dius of the nucleon has a leading nonanalytic term propor-

tional to lnm. flTl:.

(,')Ín(')l,"n :'å#"(i)' (rr)

where the upper and the lower sign correspond to p and

n, respectively. As a result, the charge radii of both p

and n diverge logarithmically as the quark mass tends to

zero. Physically this is easy to understand; as mr + 0

the Heisenberg uncertainty principle allows the pion cloud,

and theret'ore the charge density, to extend to infinite dis-

tance. For the magnetic moment, on the other hand, there

is no divergence-indeed the neutron magnetic moment

increases in magnitude by about 307o as the pion mass

moves from its physical value to zero. (Loosely speaking'

even though the pion may be af alarge distance it moves

slowly; its angular momentum is constrained to one by an-

gular momentum conservation.)

To summarize, whereas a change of order 5 MeV in

the light quark mass leads to a 307o change in the Foldy

term, the neutron charge radius (r2)!¡ becomes infinite.

Hence, the similarity of (rz)i,n and the Foldy term is purely

an accident. A small change in the quark mass leads to

completely different values. This physics is not captured

in the constituent quark model where a 5 MeV change

in the light quark mass corresponds to a change in the

constituent quark mass from roughly 340 to 335 MeV' In
this case the neutron charge radius originates in the one-

gluon-exchange interaction which is proportional to the

inverse square of the constituent quark mass and therefore

(r2)!¡ would change by onlY 37o.

In summary, chiral perturbation theory provides model-

independent constraints on the quark mass dependence of
nucleon magnetic moments and charge radii which com-

pel one to conclude that the apparent success of the con-

stituent quark model to predict the p /n magnetic moment

is accidental. Had the pion mass been lighter than the ob-

served value, the p ln ratio would drop further from the

constituent quark model prediction of 3 /2' the latter cor-

responding to Íhe mn - co limit' The coincidence of the

Foldy term and the observed neutron charge radius is also

accidental. Here a small change in the quark mass to the

chiral limit increases the neutron moment by about 30%

while the charge radius becomes infinite. These results,

which are a rigorous consequence of the chiral symmetry

of QCD, cannot be simulated in conventional constituent

quark models.
This work was supported by the Australian Research

Council.
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'We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and

the delta in lattice simulations of full QCD. Even after including the mesonloop self-energies which give rise

to the leading and next-to-leading nonanalytic behavior (and hence the most rapid variation in the region of

light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop

self-energies by the conesponding terms in full QCD yields a remarkable level of agreement with the results

of ihe full eCD simulations. This comparison leads to a very good understanding of the origins of the mass

splitting between these baryons'

DOI: l0.ll03ÆhysRevD.66.094507 PACS number(s): 12.38.Gc, 12.38.4w, 12.39.Fe, l2.4O.Yx

I.INTRODUCTION

The quenched approximation is a widely used tool for
studying nonperturbative QCD within numerical simulations

of lattice gauge theory. With an appropriate choice of the

lattice scale and at moderate to heavy quark masses, this

approximation has been shown to give only small, systematic

deviations from the results of full QCD with dynamical fer-

mions. Although no formal connection has been established

between full and quenched QCD, the similarity of the results

has led to the belief that the effects of quenching are small

and hence that quenched QCD provides a reasonable ap-

proximation to the full theory [l].
Improved lattice actions, together with advances in high

performance computing, have been responsible for signifi-

cant improvements in the calculation of baryon masses at

moderate to light quark masses within the quenched approxi-

mation [2-5]. Simulations with dynamical fermions have

proven to be more difficult, but results have been reported

with pion masses as low as 320 MeV [4,6].
The fact that one is restricted to quark masses much larger

than the physical values means that, in addition to all the

usual extrapolations (e.g., to the infinite volume and con-

tinuum limits), if one wants to compare with empirical had-

ron observables, one must also have a reliable method of
extrapolation to the chiral limit' Any such extrapolation must

incorporate the appropriate chiral corrections, arising from

Goldstone boson loops, which give rise to rapid, nonlinear

variations as the chiral limit is approached.

Studies of the exactly soluble Euler-Heisenberg problem

[7], suggest that one can develop surprisingly accurate ex-

trapolation functions, provided one builds in the correct be-

havior in both the small and large mass limits. For QCD,
Leinweber et aI. 18] have suggested an extrapolation method

which ensures both the exact low mass limit of chiral pertur-

bation theory [technically its leading (LNA) and next-to-

leading nonanalytic (NLNA) behavior] and the heavy quark

limit of heavy quark effective theory (HQET). The transition

between the chiral and heavy quark regimes is characterized

by a mass scale Â., related to the inverse of the size of the

chiral
r with
chiral

sses [8,10], the sigma commutator
12-15), charge radii [16] and Par-

[17-le].
The impressive results found using these methods have

led us to the present investigation of the problem of the

chiral extrapolation of baryon masses in quenched QCD' The

chiral properties within the quenched approximation are

known to differ from those of full QCD in a number of very
interesting ways [20-25]. For example, not only are the ef-

fective couplings at the pion-baryon vertices significantly al-

tered in quenched QCD (QQCD) but, because the 7' be-

haves as a Goldstone boson in QQCD' one must also

consider 7' loops.
Here we first review previous work [8] which reported a

successful method for extrapolating baryon masses as calcu-

lated in full QCD lattice simulations. The modified chiral

structure of quenched baryon masses [23] is presented next'
\ùy'e show how to construct the various meson loop induced

self-energies 126l in order to preserve the leading-

nonanalytic and next-to-leading nonanalytic structure appro-

priate to QQCD, while incorporating the established behav-

ior at heavier quark masses. This is followed by a detailed

application to the extrapolation of the quenched N and À

masses to the chiral limit. Finally, we use the observed simi-

larity of the structure of baryons stripped of their Goldstone

boson clouds, in full and quenched QCD, to explore whether

one can make a connection between the masses calculated in

QQCD and those obtained in a dynamical simulation. The

remarkable agreement obtained suggests a number of further

tests and also leads us, with considerable confidence, to an

interpretation of the origin of the N-A mass splitting.

o s s 6 -282 t I 2002 I 66(9) / 09 4501 ( I 0y$20.00 66 094501-l 02002 The American Physical Society
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rr. QCD EXTRAPOLATTON

In general, the coefficients of the LNA and NLNA terms
in a chiral expansion of baryon masses are very large. For
instance, the LNA term for the nucleon mass is ârz[LNe¡-
-5.6m3, (with m, and âmILNA) in GeV). with m,
:0.5 GeV, quite a low mass for current simulations, this
yields ômluLNA):O.7 GeV-a huge contribution. Further-
more, in this region hadron masses in both full and quenched
lattice QCD are found to be essentially linear in m2. or
equivalently quark mass, whereas âz[LNel is highly nonlin-
ear. The challenge is therefore to ensure the appropriate LNA
and NLNA behavior, with the correct coefficients, as mr
-0, while making the transition to linear behavior as lzo
increases, sufficiently rapidly to describe the actual lattice
data.

A reliable method for achieving all this was proposed by
Leinweber et al. l8f. They fit the full (unquenched) lattice
data with the form

Ms:aB-l Bsm2n+2s(mn,lt), (l)

where 13 is the total contribution from those pion loops
which give rise to the LNA and NLNA terms in the self-
energy of the baryon. For the N these correspond to the pro-
cesses N+Nø+N and N+Åø+N, while for the À we
need A-Aø+Â and Â+Nø+4. Explicitly,

2y: o{t*+ c-fto,

16: of,o+ øfl,

In the heavy baryon limit, these four contributions (B

-B'n+B) can be summarized as

- 3 fæ k4u2( k\cÅs':- 
lonycuu' )oa* ^:--#. (l)

where rr;(ft): 'p¡æ is the intermediare pion energy and
as6,:(M u,- M s) ts the physical baryon mass splitting and

f ":93 
MeV. The coefficients G sst ãÍê standard SU(6) cou-

plings and are summarized in Sec. IV. The ultraviolet regu-
lator, u(k), has a very natural physical interpretation as the
Fourier transform of the source of the pion field. The LNA
and NLNA structure of these diagrams is associated with the
infrared behavior of the corresponding integrals and hence is
independent of the choice of regularization scheme. The use
of such a regulator effectively suppresses the self-energies
like L2/mzn for mrÐ l\, the characteristic mass scale of the
cutoff. A common choice of regulator, which we use
throughout this work, is the dipole form, u(t):La/(lt2
+k12.

In terms of the underlying effective field theory, the shape
of the regulator is irrelevant to the formulation of ¡PT [9].
However, current lattice simulation results encourage us to
look for an efficient formulation which maximizes the appli-
cable pion-mass range accessed via one- or two-loop order.
An optimal regulator (motivated by phenomenology) will ef-
fectively re-sum the chiral expansion encapsulating the phys-

PHYSICAL REVIEV/ D 66,094507 (2002)

ics in the first few terms of the expansion. The approach is
systematically improved by simply going to higher order in
the chiral expansion. Our experience with dipole and mono-
pole vertex regulators indicates that the shape of the regula-
tor has little effect on the extrapolated results, provided lat-
tice QCD simulation results are used to constrain the optimal
regulator parameter on an observable-by-observable basis

[8,10].
In a phenomenological sense, the linear term of Eq. (l),

which dominates for nrÞÂ, encompasses the quark mass
dependence of the pion-cloud source-the baryon without its
pion dressing. This term also serves to account for loop dia-
grams involving heavier mesons (integrated out of the effec-
tive field theory), which have much slower variation with
quark mass. Given the current state of the art in lattice simu-
lations, data in the low to intermediate mass range are unable
to reliably constrain the optimal parameter Â. There is con-
siderable phenomenological support for choosing a dipole
regulator parameter somewhat smaller than found for the
axial form factor of the nucleon, which is 1.03+0.04 GeV
127-291. However, it is important to understand that the an-
ticipated development of supercomputing resources and
techniques are such that r\. may be optimally constrained by
full QCD simulation data in the near future.

Fitting lattice results ro Eq. (l) is straightforward. Upon
calculating the described self-energies for a given choice of
À, the fitting procedure amounts to a simple linear fit in a,
and Bs.

(2) III. QUENCHED CHIR.AL PERTURBATION THEORY

Standard chiral perturbation theory is a low energy effec-
tive field theory built upon the symmetries of QCD [30,3 1].
It amounts to an expansion of Green's functions in powers of
momenta and quark mass about the chiral limit (n.r:0). In
the case of baryon masses, XPT tells us the leading behavior
of the quark mass expansion. Because ¡PT is an effective
field theory, the renormalization procedure must be per-
formed order by order in perturbation theory. At higher and
higher order, more and more unknown parameters are intro-
duced. These unknowns only play a role in analytic terms of
the expansion. The coefficients of the leading nonanalytic
terms are constrained by chiral symmetry [32]-they are in-
dependent of regularization and the order of the chiral ex-
pansion. In connecting the results of lattice QCD to the
physical world it is essential that one incorporate the correct
nonanalytic structure of the low energy theory.

Quenched ¡PT (Q¡PT) provides the analogous low en-
ergy effective theory for QQCD l2l-231. Sea quark loops
are removed from QCD by including a set of degenerate,
commuting (bosonic) quark fields. These bosonic fields have
the effect of exactly cancelling the fermion determinant in
the functional integration over the quark fields. This gives a
Lagrangian for a field theory which is equivalent to the
quenched approximation simulated on the lattice. The low
energy effective theory is then constructed on the basis of the
symmetries of this Lagrangian.

The leading chiral expansion of baryon masses in the
quenched approximation has been calculated by Labrenz and
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TABLE I. Coefficients of the lowest order nonanalytic terms in

the chiral expansions of the N and À masses, with values from both

full and quenched QCD listed for comparison (u-t : 16ÍÊ ' ^M:Mt-MÐ.

PHYSTCAL REVIEV/ D 66,094s0'7 (2002)

TABLE II. Chiral couplings appearing in the self-energy inte-

grals, Eq. (3) for full QCD and Eq. (6) for QQCD. In numerical

calculations we have used the couplings arising from SU(6) rela-

tions [34], C:-2D ar'd'11:-3D.

B c¡ QCD QQCD G u¡,¡ Gnt Gl¿ Gtu

C¡

Nca
c¿t

-lq+ o¡2v
0 -lGp-Ð2^3v

1\ 1o2 - t o n¡ - 2(3 F - D) yJ v
n2L

-V

2¡A,M

QCD

QQCD

( F+ D)2

lGor- n')
ft{n+D2

Eo'
(F+ D)2

To'
ft6+ o¡2

-3o'
1

-@+Dr11

323
2s ïLM "

C1

L"t
c ¿t 83

25 qLM'

Sharpe [23]. For the reasons already mentioned in the Intro-
duction, it differs from the corresponding expansion in full
QCD. In particular, the chiral expansion coeffrcients take dif-
ferent values and new, nonanalytic behavior is also intro-
duced. The explicit form can be expressed as

M r Mf) + cBrmn+ cBrmzr+ cBrm3n

+cBoml+cfrmllogm,+... (4)

with the coefficients of the terms which are nonanalytic in
the quark mass listed in Table L Vy'e note that in Ref. [23] the

N and Â were treated as degenerate states in the chiral limit'
Experience in other situations suggests that it is more accu-

rate to retain a finite mass difference, in which case off-
diagonal terms such as N-Aø-N lead to the nonanalytic

behavior of the form *llog*n.
The contribution linear in m, is unique to the quenched

approximation. The quenched theory therefore exhibits a

more singular behavior in the chiral limit. The origin of this

behavior is the Goldstone nature of the r¡' in QQCD and

specifically the process shown in Fig. l(b). We note also that

the coefficients of the chiral expansion involve new cou-

plings, y and y' , which are related to the flavor-singlet,

hairpin-baryon couplings for N and Â respectively, illus-
trateì in Fig. 1(a). In the formalism of Ref. [23] these are

related to the couplings of full QCD via the relations

as described in Appendix B. There is some uncertainty over

the flavor singlet couplings, especially in connection with
Okubo-Zweig-Iizuka (OZI) violation associated with the

U(1) axial anomaly [33]. While this may modify our calcu-

lated curves at extremely light quark mass, it would have no

significant effect on the fit to lattice data at large quark mass

nor on the comparison of current quenched and full QCD
data.

IV. QI'ENCHED SELF.ENERGIES

Our aim is to apply a similar procedure for the chiral

extrapolation of quenched QCD data to that which has

proven successful for the physical theory' That is, we wish to

generalize EC. (l) to replace the LNA and NLNA self-energy

terms arising in full QCD by their quenched analogues. The

pion loop contributions have the same kinematic structure as

those in full QCD. A simple redefinition of the couplings,

GsB, , in the expressions for the self-energies ensures that

the correct LNA and NLNA of Q¡PT is maintained. Thus,

the analytic expressions for the pion cloud corrections to the

masses of the N and A are of the same form as the full QCD
integrals [c.f. Eq. (3)]:

t<4 uz (k)

-|g + o¡2,
- l¡ut-'o,

{-Eu'-Euv'},
c24

2¡L.M 25'

0

3^
- -(F+D)"ît

(a) O)

FIG. 1. Quark flow diagrams for the chiral 7' loop contributions

appearing in QQCD: (a) single hairpin, (b) double hairpin'

(6)
a(k)lass,+ a(k)l

where the quenched couplings, Gss,, are listed in Table II,
together with their physical counterparts. Assuming a weak

N¡ dependence of the chiral parameters, we describe the

qüenched self-energies using the same tree level values of
D:O.76 and F:0.50 as in tull QCD.

Within the quenched approximation 4' loops also con-

tribute to the low energy effective theory whereas they are

usually neglected in the physical case' This is because a re-

summation of internal loop diagrams (coming from the fer-

mion determinant) means that the 7' remains massive in the

chiral limit of full QCD. On the other hand, the absence of
these virtual loops in the quenched approximation causes the

flavor singlet 7' to behave as a Goldstone boson l2l,22l' As

a consequence of this feature of the quenched theory, there

are two new types of loop contributions to be considered' A
schematic view of these processes is shown in Fig. I'

The first of these two contributions, shown in Fig. l(a)'
arises from a single "hairpin" interaction. As discussed

above, it is responsible for the term proportional to 7 (7') in
the chiral expansion of the N (Â) mass. These couplings are

discussed in considerable detail in Appendix B. The structure

Y:D_ F, T,:O, (s)
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TABLE III. Couplings used in flavor singlet 7' self-energies.
We take ^i:0.+Z GeV2, lying between phenomenological and lat-
tice estimates [35-371. The momentum dependence of the double
hairpin vertex, which is believed to be small, is neglected.

N']) v!2)1cev2¡

0.0

-0.1

-0.2

-0.3

q)

o
Þ

N
A

l<t r- Dy
#uv'

lçr-o¡'?mi
#u'^i

of this diagram is exactly the same as the pion loop contri-
bution where the intemal baryon is degenerate with the ex-
ternal state. The integral representing this diagram is then the

same as that for ã[u,

ãg'rrt- - --3-'¡t,;,f* ¿¡,{!!!) . (7)
l6n'J', - Jo a'(k)

The factors N$), providing the correct nonanalytic behavior
in the chiral expansion [gq. (+)], are displayed in Table IIL

The second of these new r7' loop diagrams arises from the
double hairpin vertex, pictured in Fig. I (b). This contribution
is particularly interesting because there are two meson propa-
gators and it is therefore responsible for the nonanalytic term
linear in mo-this term being unique to the quenched case.
The integral corresponding to this self energy can be written
in a similar way:

-,,t2\ 3 ,", f- k4u21k)aß\'): 
r6r2nN'u'' Jodk;i; (8)

Note the sign change and the higher power of a-¡ in the de-
nominator. The coefficients, Nf), providing the correct
nonanalytic behavior in Eq. (4)-in this case the coefficient
of mn-are given in Table III. The sum of these four contri-
butions then gives the net meson-loop induced self-energies
within the quenched approximation,

lo:o;r+õ[r,+o3'<rt¡õ1'rzt. (9)

The individual contributions to the N and A masse s over a
range of pion mass are plotted in Figs. 2 and3. These a¡e all
evaluated with the dipole regulator mass parameter À
:0.8 GeV. The corresponding self-energies from full QCD
are also shown for comparison. We note that in QQCD the
contributions are typically quite a bit smaller and the double-

hairpin graph, õfr'(2t, is repulsive. The differences are en-

hanced for the A where ãf," is also repulsive. We observe
that the rapid, nonlinear behavior (which is effectively much
larger in full QCD) is restricted to the region mzn

=0.2 GeYz, above which the self-energies are quité
smoothly varying functions of the quark mass.

V, FITTING PROCEDURE

The lattice data considered in this analysis come from the
recent paper of Bernard et al. l4f. These simulations were

0.0 0.1 0.2 0.3 0.4 0.5 0.6
m*2 (GeY1

FIG. 2. Various self-energy contributions to M ¡¡ for dipole mass,
À:0.8 GeV. From top down at m2,:O.l GeV2, the curves core-
spond to (where a - over the symbol denotes a quenched QCD

contribution) õil'Qt,ã't'o),-' *,õ[,o, total quenched ir, oí¡ ,

øff, and total physical l¡.

performed using an improved KogurSusskind quark action,
which is known to have good scaling properties [38]. Unlike
the standard Vy'ilson fermion action, masses determined at
finite lattice spacing are excellent estimates of the continuum
limit results.

We are particularly concerned with the chiral extrapola-
tion of baryon masses and how their behavior is affected by
the quenched approximation. In such a study, it is essential
that the method of scale determination be free from chiral
contamination. One such method involves the static-quark
potential. As low-lying pseudoscalar mesons made of light
quarks exhibit negligible coupling to hadrons containing
only heavy valence quarks, the low energy effective field
theory plays no role in the determination of the scale for
these systems. In fixing the scale through such a procedure
one constrains all simulations, quenched, 2-flavor, 3-flavor

0.2

0.1

0.0
(¡)

ü
o -0.1

-o.2

-0.30.0 0.1 0.2 0.3 0.4 0 5 0.6
m,2 (GeYz)

FIG. 3. Various self-energy contributions to M¡ for dipole mass,
À:0.8 GeV. From top down at ^i:O.t GeV2, the curves cone-
spond to (where a - over the symbol denotes a quenched QCD

contribution) ãir,õX'trt, total quenched lo, oi,r, o[¡, r-f,oand,
total physical l¡.
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1.2

1,O

0.8

,o 0.6

0.4

o.2

0,00.65 0.?O 0.75 0.80 0.85 0.90 0.95

^ 
(cev)

FIG. 4. The value á is a measure of the difference between the

quenched and dynamical data sets after accounting for the relevant

self-energy diagrams. This measure is proporlional to the net area

contained between the straight lines obtained from the flts and has

been normalized to the case where the self-energy diagrams æe

totally neglected.

QCD data. This strongly suggests that the self-energies in-
cluded here, which contain the LNA and NLNA behavior

appropriate to each type of simulation, contain the primary

effect of quenching. To illustrate the point, Fig. 4 shows a

measure, á, of the difference between the quenched and dy-

namical data sets over the Íarrge of mr considered. This mea-

sure is proportional to the net area contained between the

straight lines obtained from the fits and has been normalized

to the case where the self-energy diagrams are totally ne-

glected. The improved agreement between data sets over the

range of dipole masses highlights the effectiveness of this

self-energy correction. It is also worth noting that the

yzld.o.f . is also improved by incorporating the self-energies

into the fit. For the preferred dipole mass, À:0.8 GeV, this

is better by a factor 2. Results of both the physical and

quenched fits are shown together in Fig. 5. The parameters of
the best fits a¡e displayed in Table IV. Here we see the re-

markable agreement of the linear term of our fitting formu-

las, Eqs. (l) and (ll). This strongly suggests that the behav-

ior of the meson-cloud source is very similar in quenched

and full QCD. The primary difference between the quenched

and physical results can then be described by the meson-loop

induced self-energies.
This observation suggests that it may well be possible to

make a connection between quenched simulations and had-

ron properties in the real world. One would fit quenched data

with appropriate self-energies to obtain the linear behavior of
the meson-cloud source. Then the quenched self-energies

would be replaced by their full-QCD counterparts, hence ob-

taining more physical results. It is clearly very important to

test this result further on other hadrons (e.g. for other mem-

bers of the octet) and against dynamical simulations at lower

quark masses.

VI. A-N HYPERFINE SPLITTING

The analysis of lattice data has demonstrated the ability to

describe the primary difference between quenched and dy-

etc., to match phenomenological static-quark forces. Effec-

tively, the short range (0'35-0.5 fm) interactions are

matched across all simulations.
A commonly adopted method involving the static-quark

potential is the Sommer scale [39,40]' This procedure defines

the force, F(r), between heavy quarks at a particular length

scale, namely ro:0.5 fm. Choosing a narrow window to
study the potential avoids complications arising in dynamical

simulations where screening and ultimately string breaking is

encountered at large separations. The lattice data analyzed in

this report use a variant of this definition, choosing to define

the force ar rr:9.35 fm via rlFQr): 1.00 [4].
As we rema¡ked earlier, the nonanalytic chiral behavior is

governed by the infrared regions of the self-energy integrals.

The fact that the lattice calculations are performed on a finite
volume grid means that the self-energy integrals implicit in

current lattice simulations do not include the exact chiral

behavior. It is important to take this into account in the fitting
procedure and we therefore follow Ref. [10] in replacing the

continuum self-energy integrals used in the fitting process by

a discrete sum over the meson momenta available on the

lattice:

+,[- r,a*: I o'o-I1T)' 
r.r,r, r, (ro)

The self-energy integrals calculated in this way are what

should be directly compared with the lattice data, and we

illustrate these by open squares in subsequent figures' Upon

obtaining the optimal fit parameters, one can evaluate the

integrals exactly and therefore obtain the infinite-volume,
continuum limit. The latter is the result which should be

compared with experiment at the physical pion mass.
'We now proceed to fit quenched lattice data with the form

Ms:ãu+þu*zn+lu(mn,lt) (ll)

[by analogy with the form used in full QCD, Eq. (l)]' with
the self-energies evaluated, as we have just outlined, using

the momentum grid corresponding to the specific lattice

simulation. Phenomenologically speaking, the linear terms in

Eq. (ll) may be thought of as accounting for the quark mass

dependence of the pion-cloud source. This form then auto-

matically includes the expected heavy quark behavior where

the zr and r7' loop contributions are suppressed.

The effective field theory regulator, motivated by the

physical structure of the meson-baryon vertex, characterizes

ih" finite size of the pion source' Quenched simulations of
hadronic charge radii performed at moderate to heavy quark

masses [41] have been demonstrated to be consistent with
experiment once the meson-cloud properties of full QCD are

taken into account U6,42). This indicates that the size of the

meson-cloud source is expected to be of similar size in both

quenched and physical QCD. For this reason we proceed to

fit both quenched and physical data with a common value of
Ä. For a fixed choice of Ä, fitting to lattice data amounts to

a linear fit in a and B.lt tums out that, for a range of values

of Â, the values of a and B found for the QQCD data are

surprisingly close to the values found for the fit to dynamical
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FIG. 5. Fit (open squares) to lattice data [4] (quenched A, dy-
namical A) with adjusted self-energy expressions accounting for
finite volume and lattice spacing artifacts. The infinite-volume, con-
tinuum limit of quenched (dashed lines) and dynamical (solid lines)
are shown. The lower curves and data points are for the nucleon and
the upper ones for the A.

namical simulations in terms of the meson-loop self-
energies. Figure 6 shows the difference in the self-energy
terms for the N and Â in quenched and full QCD, for several
values of the common dipole-regulator mass. It is quite clear
that there is a difference of between 150 and 250 MeV be-
tween the quenched and full QCD cases. Since this differ-
ence was essential in accounting for the clear differences in
the behavior of the baryon masses in QQCD and full QCD
shown in Fig. 5, we have some confidence in using these
results to say how much of the physical N-À mass splitting is
associated with pion loops and how much comes from short
range processes, such as gluon exchange. In fact, an exami-
nation of Fig. 6 for the case of full QCD suggests fairly
clearly that only about 50 MeV of the observed 300 MeV
N-A splitting arises from pion loops. Of course, this result is
more dependent on the assumption of the same dipole mass
parameter at every vertex than the fits to the Nand Â masses
individually. Nevertheless, it seems unlikely that more than a
third of the total splitting could come from this source.

VII. CONCLUSIONS

'We have investigated the quark mass dependence of the N
and Â masses within the quenched approximation. The lead-

TABLE IV. Best fit parameters for both full and quenched data
sets with dipole regulator, 

^:0.8 
GeV. The second set correspond

to a simple linear fit, where the self-energy cont¡ibutions have been
neglected. All masses are in CeV.
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FIG. 6. Meson-loop contribution to the À-N mass splitting in
both quenched and full QCD-for several values of the dipole
mass.

ing chiral behavior of hadron masses is known to differ in
quenched QCD from the physical theory. This knowledge
has been used to guide us in the construction of an effective
field theory which encompasses the correct chiral structure,
and is consistent with current lattice simulations. This proce-
dure of fitting lattice data with a linear term together with the
meson-loop corrections which give rise to the LNA and
NLNA behavior has been demonstrated previously to fit dy-
namical QCD simulation results remarkably well. Here we
have shown that the application of the same procedure to
quenched results is able to consistently fit the data in that
case as well. We note that this approach encapsulated in Eqs.
(l) and (11) is a finite-range regulated effective field theory
consistent with the traditional dimensional regularization ap-
proach to XPf. By calculating next-order loop contributions
it is systematically improvable and model independent [9].

Remarkably, a comparison of the two fits suggests that the
properties of the N and Â, stripped of their pion clouds, are
essentially the same in quenched and full QCD, once the
scale is set using the Sommer scale appropriate to heavy
quark systems. This observation is dependent on an optimal
regulator shape and size, and the assumption that the axial
coefficients are similar in quenched and full QCD. Therefore
this result should be regarded as a phenomenological link.
The extent to which this observation is model independent
requires the investigation of alternative regulators and new
accurate lattice results approaching the light quark-mass re-
gime. At present, the success of this result further motivates
use of the phenomenologically prefened dipole, which gives
a most accurate description of the shape of the pion-cloud
source. It is clearly essential to test this finding against fur-
ther full QCD simulations at lighter quark masses as well as

for other hadrons.
'We have demonstrated that although the quenched ap-

proximation gives rise to more singular behavior in the chiral
limit, this is not likely to be observed in lattice simulations as

these contributions are quickly suppressed with increasing
quark mass. Indeed our results suggest that it will be very

Dipole Physical

Quenched

0.90(5)
0.85(6)

0.74(8)
0.12(tt)

t.27(2)
t.24(2)

r.45(3 )
1.45(4)

Physical

Quenched

1.04(2)

t.t4(2)
1.07(s )
0.92(6)

l.28(3 )
t.44(4)

0.88( 8 )
0.69( l l)

----- Phydcal - O.?

Quê¡ched - 0.0
QucDch.d - 0.8
QucDobGd - 0.7
Pb!'rlcâl - 0.9
Pbyrlcôl - 0.0

Nil
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hard to detect any significant chiral curvature in the case of
the nucleon, while for the A there may be some small, up-

ward curvature. The À-N mass splitting increases to around

400 MeV at the physical point in QQCD.As a consequence

of this behavior, the Â mass in the quenched approximation

is expected to differ from the physical mass by approxi-

mately 257o. Finally, we have shown that while a fraction of
the physical N-Â mass difference can be attributed to a dif-
ference in pion self-energy loops, this is unlikely to amount

to more than a third of the observed splitting.
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APPENDIX A: ANALYTIC INTEGRÀTION

Here we summarize analytic expressions for the self-

energy integrals. It should be noted that these expressions are

not used in fitting lattice data. For the purpose of fitting, the

continuum integral is replaced by a discrete sum over the

available momenta on the corresponding lattice, as described

in Eq. (10).

Firstly we consider the case of the simple meson-loop

digram where the internal baryon line has degenerate mass

with the external state:

3 r* *4u2(k)o:_ *s¡1o J,oo;õ. (Ar)

Using a sharp cutoff, u(k):0(lt-k), the integral can be

expressed as

3G t /^\ ¡: -l
": - ffil*',*"t^\:,}.î- ^^"1 

(42)
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The case of the double meson propagator can also be

performed analytically,

The LNA behavior of this can then be immediately read from

this,

(A5)

a: 
ßltrfa-,

3 m2nL + 2 l.3 - 3 m,(mzr+ lt2)
XN

z(mzn+ lr2)

(A6)

For ø(k):L4l(L2+k2)2,

3N l:'s(m,+5lt)
(A7)": 5wrf, (h+m,)s

APPENDIX B: FLAVOR SINGLET IN FI]LL AND

QUENCHED QCD

This appendix serves to clarify the derivation of the hair-

pin meson-baryon couplings in quenched ¡PT.
The flavor singlet 7' remains light in the quenched ap-

proximation, and is therefore an effective degree of freedom

in the low energy sector. Such excitations must therefore be

incorporated into the low-energy analysis. V/ithin full QCD'
resummation of intemal loop diagrams renders the 7' mas-

sive and hence it plays no role in the low-energy dynamics.

For this reason couplings to such flavor singlet states are

neglected. In our analysis, we wish to compare the low-

energy structure of the quenched and physical theories. In

this case, a flavor singlet coupling, like NNT', must be in-

cluded in the chiral Lagrangian of full QCD in order that it is

Once again both integrals give the same LNA behavior,

ol'*n: - )!=^,. (As)
6arf¿,

For the off-diagonal contributions, where the intemal

baryon is not degenerate with the external state,

3 r* k4u2(k)
o:- - .Gl dk l.A9)- l6r2f¿o Jo a(k)la6s,+ a(k))

with r,r¡¡, finite. The results do not have a simple form. The

full expression for the case of a sharp cutoff form factor can

be found in Ref. [8]. V/e show the LNA contribution to this

diagram for reference,

'-ILNA: - 
n", 

^ 
úror^,. (Alo)' I28 n'f'n a 6s,

J
o: -------:=ìt

l6n'f".

For ø(k) : 0(Ì\- k),

-t

( Ø k4 u2 (t<)
I dk--Jo ao(k)

/l\
arctanl 

- 
|

\m"l

3G
o-l.*o: _ _mI. (A3)

5¿1tI r

Alternatively, our preferred dipole u(ft): L4l(L2 + k2)2,

also provides an analytic expression for this self-energy,

3G 
^sû:_ ____ _ = 
L_(rzn+4hmn+ L2). (A4)

SlZnfi (A* m ")'
This gives precisely the same LNA behavior as the sharp

cutoff, as expected because the nonanalytic behavior is due

to the infrared behavior of the integral. It is associated with
the residue of the pion Propagator pole, and hence indepen-

dent of an ultraviolet cutoff.
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treated on equal footing with the quenched theory. This cou-
pling will not alter any results of the physical theory as any
diagram would involve the propagation of a heavy 7'.

Here we derive best estimates for the flavor singlet cou-
plings in quenched QCD. This is achieved by comparison of
the quenched and full chiral Lagrangians, under the standard
assumption that the couplings exhibit negligible change be-
tween the two theories [23]. We follow the notation of La-
brenz and Sharpe [23] in the analysis of such contributions.

PHYSICAL REVTEW D 66,094507 (2002)

All symbols retain the same meaning, unless otherwise
specified.

The chiral Lagrangian for full QCD can be expressed as

L: Ln+ Lun* Lro. (B l)

The standard octet and decuplet Lagrangians are given with
an additional coupling to an SU(3) flavor singlet state. For
clarity we label the octet and singlet parts of the meson ma-
trix, A:

f.un: itr(Eu .DB) +2Dtr(E St'{Aït ,B})+2Ftr(ESplA"[î ,B]) +2 ¡tb orr(E{M+ ,n}¡ +z p.ø ofi@lM+ ,Bl)
+2 p.borr(E B)tr(M +) +28,t(E st"B) rr(A"/" ). (82)

Lrn: - iT"(u .D)7,+ LMT'7,+2'ÌlT"SþAo;'7,+ C(T'Ao,"¡B + EAo,'t T\ + cT'M+ T,- oT'T,tt(M*)

+28:T"st'T,r(Ai,). (83)

The new parameters, g" and gj, describe couplings of the
flavor singlet 7' to baryon octet and decuplet states respec-
tively. Within full QCD the single verrex has two ropologi-
cally different quark flow diagrams as illustrated by the left
and right-hand vertices of Fig. l(a). The left is rhat of a 41
insertion on one of the valence quark lines and the right is a
pure gluonic coupling through a hairpin-style qq annihila-
tion. The total coupling is a sum of these two contributions.
Denoting the hairpin vertex coupling by yqco and yf,.o for
octet and decuplet baryons respectively we have

I ': ,¡U8 n'uN* 7eco, (84)

tf]: il&u .DB) +2a(BSt"ßA t)+z B(Bst,A pB)

+ 2 y 
"(BS 

p B)str(A r) + a ¡a(BßM 
+ 

) + p M(BM + ß)

+ o(BB)str(M+), (B9)

LW : - i(7 (u . qr) + L M (VT,) + 217(V S t"A 
þT,)

It
- ! flTo,B+ BA,T'f+2y!(7SþT,)srr(A r)

+cVM*T,-o(77,)tr(M+). (Bl0)

It should be noted that the terms % und yi describe both
types of flavor-singlet coupling, not just that arising through
the hairpin alone. Similarly to Eq. (85), in the quenched
theory these can be described by

I
s-

v6
I n'¿,tI Y'eco

(87)

The effective chiral Lagrangian of quenched QCD is [23]

¿tot: ¿$o)¡ tf]+ tfr, (Bs)

where meson and baryon states are now understood to be
constructed of ordinary quarks and bosonic quarks. The gen-
eral Lagrangian for the heavy fields can be written in terms
of the rank-3 tensor fields as deûned in Ref. [23], B and T

I
ll: 

¡us 
,t'tt* !' ' (Bl2)

where the terms y and y' now correspond to the pure hairpin
couplings as used in Ref. 1231. Here we also note the terms

8a,¡¡¡¡ and, Br,¡6 are unchanged in going to the quenched
theory; this is consistent with the assumption that the chiral
parameters F and D are unchanged between the two theories.

One can then relate the quenched chiral Lagrangian back
to that of full QCD by restricting the indices on the rensor
fields, 6 and T to those corresponding to the physical
quarks. The details of this procedure are described in Ref.
[23]. Performing these restrictions on the octet-baryon,
quenched chiral Lagrangian [Eq. (89)] one finds

(85)

The first of these interactions, g,t,tr,y (g 
a, 6,a,) is related to the

axial couplings by SU(6) phenomenology. We rake the stan-
dard approach and assign

I n,u.':,l2s,w¡v: ,f'rßo-,r, (86)

I
T': 

¡u8 dwu+ 7' (Bll)

tî
raa: V-H.s,t,M: J-2e

094507-8
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Equating this with Eq. (82) gives

2

lQa- p):2D+2F,

¡ll
L?¿l^: i(Bu.Dß)lp+ i{2"- Þ)rr{nsþA t B)+ 1t- "-+ßltr(Esp 

BA r)+ 1{o+ +F+ 6 7")tr(FSpB)tr(Ar)

PHYSTCAL REVIEW D 66,09450'7 (2002)

(B l3)tll
+ i {z o, - ß r) tr(B M. r ; + i ( - a ¡a - 4 B ) tr(B B M + 

) + i @ u + 4 F u + 6 c)tr(B B) tr( M + 
)

I q,y^r*'2Yrat,
(B2o)

and combining with Eqs. (Bl4), (Bl5) one arrives at

T: ^tqco-+ D - F. (B2l)

The restrictions are much simpler for the decuplet case and

one finds

f':T'qco. @22)

In estimating the hairpin-type couplings in full QCD one

assumes that they are relatively small, 7q6o(8a'¡v¡¿, due to

OZI-rype suppression [43]. V/ith analogous arguments for

the decuplet, we take Teco:7ôco:0. We do note that the

U(l) axial anomaly may be effective in overcoming the OZI

rule in the case of 4' couplings [33], but as we mentioned in

the text the main conclusions of our present analysis are not

very sensitive to the precise value of the 7'-nucleon cou-

pling.

1cr+ 1ß+ ,[?r,,***rr: tr,
14

I
1G a-aP):2D-2F,

(B14)

(Bl5)

(B16)
I
1@+aF+6y,):2s,,

I
J

(2ou- þÀ:2p.bpI2p'bp, (Bl7)

I
uG ou- a 9 fi:2 p'b p- 2 ¡.tb ¡ '

(Bl8)

(ay+4 B¡a+6o):2¡1"b6 (Bre)

In extracting the flavor-singlet part, Eq' (B16) provides us

with

I
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We investigate various resummations of the chiral expansion and fit to the extremely accurate lattice

eCD data for the mass of the nucleon recently obtained by the CP-PACS group. Using a variety of

flnite-range regulators, we demonstrate a remarkably robust chiral extrapolation of the nucleon mass.

The systernatið error associated with the chiral extrapolation alone is estimated to be less lhan 7Vo'
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Hadronic physics presents fascinating theoretical chal-

lenges to the understanding of strongly interacting sys-

tems in terms of their fundamental degrees of freedom in

QCD, quarks, and gluons. Lattice gauge theory [1] has so

far provided the only rigorous method for solving non-

perturbative QCD. We will show that recent progress

within the field [2] together with advances in effective

field theory (EFT) t3l now permit systematically accurate

chiral extrapolations of observables, enabling the deter-

mination of the physical properties of hadrons from lat-
tice QCD simulations, even though it is not yet feasible to

make calculations at the physical quark mass.

It is now possible to make extremely accurate lattice

QCD calculations of the masses of hadrons, such as the

nucleon, with dynamical fermions. Indeed the CP-PACS

group has just reported data with a precision of order l7o

[2]. However, such precise evaluations are limited to

quark masses an order of magnitude larger than those

found in nature. In order to compare with experiment,

which is after all one of the main aims in the field, it is

therefore necessary to extrapolate in quark mass' Such an

extrapolation is complicated by the unavoidable nonana-

lytic behavior in quark mass, which arises from
Goldstone boson loops in QCD with dynamically broken

chiral symmetry [4].
Early work motivated by the important role of

Goldstone bosons led to the construction of chiral quark

models [5], which incorporated this nonanalytic behavior'

An alternative, systematic approach, designed to avoid

reference to a model, involved the construction of an

effective field theory to describe QCD at low energy [6]'
The application to baryons has developed to the point
where chiral perturbation theory (¡PT) is now under-

stood as a rigorous approach near the chiral limit [7'8].
Because it is defined as an expansion in momenta and

masses about the chiral limit, ¡PT provides an attractive

approach to the problem of quark mass extrapolation for
lãtiice qCD. The advantages of formulating ¡PT with a
finite-range regulator (FRR), as opposed to the com-

monly implemented dimensional regularization (DR)'
have been demonstrated by Donoghue et al. l9l. Early
implementations of a FRR to evaluate chiral loop inte-

grals in ¡PT suggested that, in the context of the extrapo-

lation of lattice data from relatively large quark masses,

FRR provides a more reliable procedure [10,11]. There has

been considerable debate on whether current lattice data

are within the scope of dimensionally regularized ¡PT or

whether the form of the FRR chosen introduces signifi-
cant model dependence [12]. However, this issue has

now been addressed in a recent detailed study of numer-

ous regularization schemes in ¡PT, both dimensional and

FRR t3l. This study quantified the applicable range of the

EFT and established that all of the FRR considered pro-

vided equivalent results over the range mzo = 0.8 GeV2.

Here we demonstrate that by adopting the FRR formu-
lation of XPT one can improve its convergence properties

to the point where the chiral extrapolation to the physical

quark mass can be carried out with a systematic uncer-

tainty of less than l7o. Gtven this remarkable result, the

current errors on extrapolated quantities are dominated

by the statistical errors arising from the large extrapola-

tion distance-the lightest simulated pion mass being

typically mzn = 0.27 GeV2, in comparison with the physi-

cal value,0.02 GeV2.
In the usual formulation of effective field theory, the

nucleon mass as a function of the pion mass (given that

ût2, o ffiq [l3]) has the formal expansion

MN : do ! a2m2n * aam[ * a6m6, +' "
* ofr¡v * o|t I o[uo. (l)

In principle, the coefficienfs, an, can be expressed in
terms of the parameters of the underlying effective

Perturbation theorY.

to lattice QCD, the
fitting to the lattice
rms, o{,y, of,,o, and

o[0, are loop corrections involving the (Goldstone) pion'

wäich yield the leading (LNA) and next-to-leading non-

analytic (NLNA) behavior of M¡y' As these terms involve

the coupling constants in the chiral limit, which are

essentially model independent [14], the only additional

complication they add is that the ultraviolet behavior of
the loop integrals must be regulated in some way.
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Traditionally, one uses dimensional regularization,
which (after infinite renormalization of a6 and a2) leaves
only the nonanalytic terms, cLNAm3. and c¡¡¡anf x
ln(m,/ p,), respectively. (Note that the coefficient cLN.q
is the sum of contributions from the N * Aø' and tad-
pole diagrams.) Within dimensional regularization, one
then arrives at a truncated power series for the chiral
expanslon,

M¡,t : co I c2m?, * cy¡1¡m3, I caml

* c¡¡¡anf ¡¡-z¡ c6m6,+..., (z)
þ

where the bare parametêÍs, {t¡t have been replaced by the
finite, renormalized coefficients, c¡. Through the chiral
logarithm, one has an additional mass scale, p, but the
dependence on this is eliminated by matching ca to
"data" (in this case, lattice QCD). We work to fourth
order in the chiral expansion and include the next analytic
term to compensate short-distance physics contained in
the NLNA loop integrals, as suggested in Ref. [9].
Provided the series expansion in Eq. (2) is convergent
over the range of values of mn where the lattice data exist,
one can fhen use Eq. (2) to evaluate M¡¡ at the physical
pion mass. Unfortunately, there is considerable evidence
that this series is not sufficiently convergent 13,12,15-111.

In line with the implicit ¡r, dependence of the coeffi-
cients in the familiar dimensionally regulated ¡pT, the
systematic FRR expansion of the nucleon mass is

Mw : at + almz, + afmf + a[m6, i o{,¡y(m., 1\)

+ o[,o(mo, L) + c[u@,,1r), (3)

where the dependence on the shape of the regulator is
implicit. The dependence on the value of r\. and the choice
of regulator are eliminated, to the order of the series
expansion, by fitting the coefficients, af , to lattice eCD
data. The clear indication of success in eliminating model
dependence, and hence having found a suitable regulari-
zation method, is that the higher order coefficients
@! , ¡ = 4) should be small and that the renormalized
coefficients, c¡, and the result of the extrapolation should
be insensitive to the choice of ultraviolet regulator.

The key feature of finite-range regularization is the
presence of an additional adjustable regulator parameter
which provides an opportunity to suppress short-distance
physics from the loop integrals of effective field theory.
This short-distance physics is otherwise treated incor-
rectly, as the effective fields are not realized in eCD at
short distances. As emphasized in Eq. (3) by the super-
scripts À, the unrenormalized coefficients of the analytic
terms of the FRR expansion are regulator-parameter de-
pendent. The large m, behavior of the loop integrals and
the residual expansion (the sum of the dl terms) are
remarkably different. Whereas the residual expansion
will encounter a power divergence, the FRR loop inte-
grals will tend to zero as a power of t\f mo as røo becomes

242002-2

large. Thus, ,A provides an opportunity to govern the
convergence properties of the residual expansion and
thus the FRR chiral expansion. Since hadron masses are
observed to be smooth, almost linear functions of m2, for
quark masses near and beyond the strange quark mass
[18], it should be possible to find values for the regulator-
range parameter, Â, such that the coefficients øf and
higher are truly small. In this case, the convergence
properties of the residual expansion and the loop expan-
sion are excellent and their truncation benign [19].

In order to investigate the model dependence associ-
ated with the truncations of the chiral expansions, several
regulators are considered. Vy'e evaluate the loop integrals
in the heavy baryon limit

ctn, : - ffio,, li on;ffiffi6, r0,

u{ud : - ffi,,^î{l; rr(ffi)-.}, (5)

taking u(k) to be either a sharp cutoff, a dipole, a mono-
pole, or finally a Gaussian. These regulators have very
different shapes, with the only common feature being that
they suppress the integrand for momenta greater than À.
In Eq. (4) we have G¡y¡y : gl lwith g¡: 1.26) and
G¡v¡ : 169l/9 (to reproduce the empirical width of the

A resonance). In addition, o(k) : ,¡e14, u¡vu :0,
and a;¡¿6 : 292M^eY, the physical A-N mass splitting. In
Eq. (5) ts, defined such that the term in braces vanishes at
mn :0, is a local counter term introduced in FRR to
ensure a linear relation for the renormalization of c2.

In addition, we also consider the case where Eq. (2) is
modified to maintain the correct branch-point (BP) struc-
ture at ftto: aNL [20], in particular,

cfr t : - øfuo -^{ å 
tto' - 3m2 

^) "t(#)
1

-;(o'- m\3/2

/¡-uP-fi\l
"'"e[.¡;Tç/f (6)

One can now compare the expansion about the chiral
limit for these six different regularization schemes in
order to assess their rate of convergence. It turns out
that all the FRR expansions precisely describe the dimen-
sional regrrlarization expansion over the range mzn E
(O O.f¡ GeV2. Furthermore, the smooth, FRR formula-
tions are consistent with each other, for the renormalized
chiral coefficients, ca,2,4, to an extraordinarily precise
level [3]. This ensures a systematically accurate extrapo-
lation to the regime of physical quark masses.

For this study we use recent precision nucleon mass
data obtained in lattice QCD by CP-PACS l2l.
Simulations are performed using the mean-field im-
proved clover fermion action with the Iwasaki gluon

242002_2
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FIG. 1. Fits to lattice data for various ultraviolet regulators.

The sharp cutoff, monopole, dipole, and Gaussian cases are

depicted by solid bnes, indistinguishable on this plot The

dimensional regularized forms are illustrated by the dash-

dotted curves, with the correct branch point corresponding to
the higher curve. Lattice data are from Ref' [2].

action, known to provide small scaling violations. We

choose the largest volumes at the two smallest lattice
spacings [21] such that the results are good approxima-
tions to the continuum theory. These data are used to

determine the unknown parameters, a0-ct6, in Eq. (3)

for each choice of regularization. Only in the naive,

dimensionally regulated form, i.e., without the N - Azr

branch structure of Eq. (6), do the a¡ coincide with the c¡

of Eq. (2). It is only the extreme accuracy of the data

which makes the determination of as many as four pa-

rameters possible.
Figure 1 shows the resulting fits to the lattice data over

the range mzoe (0,1.0)GeV2, with the corresponding
parameters given in Table I. It is remarkable that all
four curves based on FRR are indistinguishable on this
plot. Furthermore, we see from Täble I that the coefficient

of mf in all of those cases is quite small-an order of
magnitude smaller than the dimensionally regularized
forms. Similarly, the FRR coefficients of m6n arc again

much smaller than their DR counterparts. This indicates
that the residual series, involving a¡, is converging when

the chiral loops are evaluated with a FRR.

TABLE I. Bare, unrenormalized, parameters extracted from
the fits to lattice data displayed in Fig. I' All quantities are in
units of appropriate powers of GeV and ¡r, : 1 GeV in Eq. (2).

Dim. stands for dimensional and BP for the branch-point form
defined in Eq. (6).

TABLE II. Renormalized expansion coefficients in the chiral
limit obtained from various regulator fits to lattice data. (All
quantities are in units of appropriate powers of GeV.) Errors are

statistical in origin arising from lattice data" Deviations in the

central values indicate systematic errors associated with the

chiral extrapolation.

Regulator Cg C2 C¡

4

o.4 0.6
m,2 1cev2¡

Dim. regulator
Dim. regulator (BP)

Sharp cutoff
Monopole
Dipole
Gaussian

As explained by Donoghue et al. Í91, one can combine
the order m0;2'4" terms from the self-energies with the

"bare" expansion parameters, ao,2,4..., to obtain physi-

cally meaningful renormalized coefficients. These are

shown in Table II, in comparison with the corresponding
DR coefficients found using Eq. (2). Details of this renor-

malization procedure are given in Ref. [3]- The degree of
consistency between the best-fit values found using all
choices of FRR is remarkably good. On the other hand,

DR significantly underestimates c4. We can understand

the problem very simply; it is not possible to accurately

reproduce the necessary llmz, behavior of the chiral
loãps (for m, > L) with a third order polynomial in mzo.

It is clear that the use of an EFT with a FRR enables

one to make an accurate extrapolation of the nucleon

mass as a function of the quark mass. Although minimal
deviation is seen between the best-fit curves, we need to

determine how well these curves are in fact constrained
by the statistical uncertainties of the lattice data. As all
data points are statistically independent, the one-sigma

deviation from the best-fit curve is defined by the region
for (yz - Xz^ì/¿ot < l. Vy'e use a standard ¡2 measure,

weighted by the squared error of the simulated data point,
and 72^r, corresponds to the optimum fit to the data-

1.8

1.6

o
o

0.827(r2o)
0.875(l20)
0.e23(130)
0.e23(130)
o.922(130)
0.923(130)

3.s8(so)
3. l4(s0)
2.61(66)
2.4s(67)
2.4e(67)
2.48(67)

3.6(ls)
7.2(ts)

1s.3( l6)
20.s(30)
18.e(2e)
18.3(2e)

4

Þ=,.,

Regulator ao a2 a4 a6 lt x2 ldof
0.43
0.41
0.40
0.40
0.40
0.40

1.0

0.8
3.58
4.15
1.47
1.64
1.54
r.48

Dim. regulator 0.82'l
Dim. regulator (BP) 0.792

Sharp Cutoff 1.06

Monopole 1.74

Dipole 1.30

Gaussian 1.17

3.63 -0.711 .'.
8.92 0.384'..

-0.554 0.116 0.4

-0.485 0.085 0.5

-0.492 0.089 0.8

-0.504 0.095 0.6

o20.o 0.4 0.6
m,2 1cev2¡

0.8 1.0

FlG. 2. Error analysis for the extraction of the nucleon mass

using a dipole regulator. The shaded region corresponds to the

region allowed within the present statistical errors.
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TABLE III. The nucleon ÍrâSS, r??¡ (GeV), and the sigma
commutator, ø7y (MeV), extrapolated to the physical pion
mass obtained in a NLNA (fourth order) chiral expansion.
Convergence of the expansion is indicated by the nucleon
mass obtained in an analysis where we retain only the LNA
(third order) behavior.

feasible with the new generation of computers dedicated
to lattice QCD currently under construction.

We thank M. Birse, J. McGovern, and S.V. Wright for
helpful conversations. This work was supported by the
Australian Research Council.

Regulator
LNA
lfl¡¡

NLNA
lll y û¡r¡

Dim. regulator
Dim. regulator (BP)
Sharp cutoff
Monopole
Dipole
Gaussian

0.784
0.784
0.968
0.964
o.963
0.966

0.884 -f 0. 103

0.923 -r 0.103
0.961 -l_ 0. 116

0.960 | 0.116
0.959 + 0.116
0.960 -f 0. 116

50.3 -f 10.0

42.7 -r t0.o
34.0 -f 13.0

33.0 -f 13.0

33.3 -r 13.0

33.2 -r 13.0

Vy'e show the one-sigma variation from the best-fit di-
pole curve by the shaded region in Fig. 2. The primary
source of the large error band is the large extrapolation
distance. It is clear that a simulated point at a pion
mass, m2o - 0. I GeV2, would greatly reduce the statisti-
cal error in the extrapolation. The extrapolated values for
the nucleon mass are shown in Thble III Í251. k is espe-
cially interesting to observe the very small difference
between the physical nucleon masses obtained with
each FRR when we go from LNA to NLNA, i.e., when
the effect of the A is included. (The change is rypically a
few MeV for a FRR but more than 100 MeV for DR.) Once
again the convergence properties of the FRR expansion
are remarkable.

To summarize, we have shown that the extremely pre-
cise dynamical simulation data from CP-PACS permit
one to determine four parameters in the chiral extÍapo-
lation formulas, Eqs. (2) and (3). Whereas the former
(involving dimensional regularization) does not appear
to be convergent over the required mass range, the im-
proved convergence properties of the finite-range regu-
larized expansion yield an excellent description of the
data over the full mass range, regardless of the functional
form chosen for the vertex regulator. Table III summa-
rizes the resulting values of the physical nucleon mass
and sigma commutator. The systematic error in the chiral
extrapolation, based upon a smooth FRR, is less than l%
for the nucleon mass and within 27o for the sigma com-
mutator. We note also that the systematic uncertainty in
the determination of the low energy constant, cs, is less
fhan l7o, while for c2 it is at the level of a few percent.
With the issue of chiral cxtrapolation addressed, there is
an urgent need for high precision lattice QCD simulations
at m2, - 0. I GeV2 in order to reduce the present statistical
error on the extrapolation. Such simulations should be
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hyperfine (21 cm) and molecular rotational transitions in quasar absoçtion systems, atomic clock experiments
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I.INTRODUCTION

Interest in the temporal and spatial variation of major con-

stants of physics has been recently revived by astronomical

data which seem to suggest a variation of the electromag-

netic constant d:ezlhc at the l0-5 level for the time scale

l0 billion years, see Ref. Il] (a discussion of other limits can

be found in the review [2] and references therein). However,

an independent experimental confirmation is needed.

The hypothetical unification of all interactions implies

that the variation of the electromagnetic interaction constant

a should be accompanied by the variation of masses and the

strong interaction constant. Specific predictions need a

model. For example, the grand unification model discussed

in Ref. [3] predicts that the quantum chromodynamic (QCD)

scale Ägco (defined as the position of the Landau pole in the

logarith-m for the running strong coupling constant) is modi-

fied as follows: 6Lççpll\9co:34 6al a' The variation of
quark and electron masses in this model is given by 6m/ m

-7O 6al a. This gives an estimate for the variation of the

dimensionless ratio

limits on the variation of mnll\7co have been obtained re-

cently from consideration of big bang nucleosynthesis, qua-

sar absolption spectra, and the Oklo natural nuclear reactor,

which was active about 1.8 billion years ago [5-8] (see also

Refs. [9-13]). Below we consider the limits on various com-

binations of the quark masses and the fine structure constant

which follow from quasar absorption radio spectra and labo-

ratory atomic clock comparisons. Laboratory limits with a
time base of the order I yr are especially sensitive to oscil-

latory variations of fundamental constants. A number of rel-

evant measurements have been performed already and even

larger numbers have been started or are planned. The in-

crease in precision is happening very fast.

It has been pointed out by Karshenboim [14] that mea-

surements of ratios of hyperfine structure intervals in differ-
ent atoms are sensitive to any variation of nuclear magnetic

moments. First rough estimates of the dependence of nuclear

magnetic moments on mo I Ì\9co and limits on the variation

of ihis ratio with time were óbtained in Ref. [5]' Using H,

Cs, and Hg+ measurements [15,16], we obtained a limit on

the variatiõn of mnlÌ\7co of about 5x t0-13 per year' Be-

low we calculate ihe dependence of nuclear magnetic mo-

ments on mol.l\7co and obtain the limits from recent atomic

clock experimenls with hyperfine transitions in H, Rb, Cs'

Yb+, Ht+, and the optical transition in Hg+. It is conve-

nient to assume that the strong interaction scale Àpco does

not vary so we will speak about the variation of masses (this

means that we measure masses in units of llgcù. We shall

restore the explicit appearance of l\7co in the final answers.

The hyperfine structure constant can be presented in the

following form:

6(ml lrsç) ^ -õa
@AiD) -3s--- (r)

This result is strongly model dependent (for example, the

coefficient may be an order of magnitude smaller and even

of opposite sign [4]). However, the large coefficients in these

expressions are generic for grand unification models, in

which modifications come from high-energy scales: they ap-

pear because the running strong-couPling constant and Higgs

constants (related to mass) run faster than a' This means that

if these models are correct the variation of masses and the

strong interaction scale may be easier to detect than the

variation of a.
One can only measure the variation of dimensionless

quantities and therefore we want to extract from the mea-

surements the variation of the dimensionless ratio

m,,/l\qco-where m, is the quark mass (with the depen-

dehce ãn the renormalization point removed). A number of

A : constX (#)¡ o' n,",12 ,,¡1(
me

ffipIt (2)

The factor in the first set of brackets is an atomic unit of
energy. The second "etectromagnetic" set of brackets deter-

mines the dependence on a. An approximate expression for
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(4)

(Zo)2(12y2 - t)
\J,l

y'(+ y'- t)
More accurate numerical many-body calculations [17] of the
dependence of the hyperfine structure on a have shown that
the coefficient K is slightly larger than that given by this
formufa. For Cs (Z:55) K:0.83 (instead of 0.74), for Rb
K:0.34 (instead of O.29), and finally for Hg+ K:2.28 (in-
stead of 2.18).

The last set of brackets in Eq. (2) contains the dimension-
less nuclear magnetic moment p li.e., the nuclear magnetic
moment M:p.(eh/2m,c)], electron mass ,n¿ and proton
mass mp. We may also include a small correction arising
from the finite nuclear size. However, its contribution is in-
significant.

Recent experiments measured the time dependence of the
ratios of the hyperfine structure intervals of leeHg+ and H
[15], t33Cs and 87Rb [18], and rhe rario of the optical fre-
quency in Hg+ to the hyperfine frequency of l3lCs 

[20]. In
the ratio of two hyperfine structure constants for different
atoms' time dependence may appear from the ratio of the
factors F,"¡ (depending on a) as well as from the ratio of
nuclear magnetic moments (depending on mr lLgço). Mag-
netic moments in a single-particle approximation (one un-
paired nucleon) are

t-r: ls ,+ (2 j - l) g ¡l/2 (6)

for ¡: ¡ t, 1¡r,

6F,"t ..6a
--:11 -,fr"l d

*: Ufr¡f-s,+(2i+3)g¡)
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the relativistic correction factor (Casimir factor) for an
s-wave electron is the following:

F,"t:- 3 
(3)

vØy2- D'

where y: 'f -øæ and, Z is the nuclear charge. Variation
of a leads to the following variation of F,", [15]:
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cussing such corrections is chiral perturbation theory and we
discuss these chiral corrections next.

II. CHIRAL PERTURBATION THEORY RESULTS
FOR NUCLEON MAGNETIC MOMENTS AND MASSES

In recent years there has been tremendous progress in the
calculation of hadron properties using lattice QCD. Moore's
Law, in combination with sophisticated algorithms, means
that one can now make extremely accurate calculations for
light quark masses (m) larger than 50 MeV. However, in
order to compare with experimental data, it is still necessary
to extrapolate quite a long way as a function of quark mass.
This extrapolation is rendered nontrivial by the spontaneous
breaking of chiral symmetry in QCD, which leads to Gold-
stone boson loops and, as a direct consequence, nonanalytic
behavior as a function of quark mass 121,22f. Fortunately the
most important nonanalytic contributions are model indepen-
dent, providing a powerful constraint on the extrapolation
procedure.

In the past few years the behavior of hadron properties as

a function of quark mass has been studied over a much wider
range than one needs for the present purpose 122-28]. One
can therefore apply the successful extrapolation formulas de-
veloped in the context of lattice QCD with considerable con-
fidence.

The key qualitative feature learned from the study of lat-
tice data is that Goldstone boson loops are strongly sup-
pressed once the Compton wavelength of the boson is
smaller than the source. Inspection of lattice data for a range
of observables, from masses to charge radii and magnetic
moments, reveals that the relevant mass scale for this transi-
tion is m o-50 MeV-i.e., mn-400-500 ll4eY l22,29l.The
challenge of chiral extrapolation is therefore to incorporate
the correct, model independent nonanalytic behavior dictated
by chiral symmetry while ensuring excellent convergence
properties of the chiral expansion in the large mass region, as

well as maintaining the model independence of the results of
the extrapolation. Considerable study of this problem has
established that the use of a finite range regulator (FRR)
fulfiffs all of these requirements 130-32].Indeed, in the case
of the mass of the nucleon, it has been shown that the ex-
trapolation from m2,-0.25 GeYz to the physical pion
mass-a change of moby a factor of l0----can be carried out
with a systematic error less than l7o l3ll. In the following
we apply this same method to calculate the change in the
nucleon mass, conesponding to quark mass changes at the
level of 0.17o or less, as required in the present context.

A. Variation of the nucleon mass with quark mass

The expansion for the mass of the nucleon given in Refs.

[31,32] is

M ¡¡:ag* a2m2r+ aoml+ aum6n+ o*n+ o¡o* c¡u¡,
(8)

where the chiral loops which given rise, respectively, to the
leading and next-to-leading nonanalytic (LNA and NLNA)
behavior are

(7)

for ¡:¡-112. Here the orbital g factors are gr:l for a va-
lence proton and g¿:0 for a valence neutron. The present
values of the spin g factors g , are g o: 5.586 for protons and
g,,: -3.826 for neutrons. They depend on mr/l\qçp. The
light quark masses are only abou| I7o of the nucleon mass

lm,,:(m,lm¿)/2:5 MeV] and the nucleon magnetic mo-
ment remains finite in the chiral limit, m,: m¿:0. Therefore
one might think that the corrections to gr arising from the
finite quark masses would be very small. However, through
the mechanism of spontaneous chiral symmetry breaking,
which leads to contributions to hadron properties from Gold-
stone boson loops, one may expect some enhancement ofthe
effect of quark masses [19]. The natural framework for dis-
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3
øNr: - :^ "2J¿7fJ Ì

3 32"
o Ln: - i;e 258¿AI 

Mon''a'ry¡' A )'

P3olu,:-, 
*cPeø,tv(mp,Lss',Ì\) 

(ls)

with Gfu, the associated coupling squared. Once again we

select the dipole regulator:

I ¡' \'u(ft.4):l^*,/

(10)

6M¡,t ^', ðM* õ^,,
(15)

MN My ðmzn mq

:o.o3fmq. (16)
mq

The extension of this procedure to the effect of a variation
in the strange quark mass is similar, but one must include the

variation arising from 4-nucleon loops, as well as kaon loops

with intermediate I or Â baryons,

of,r+ of,n+ oX,r. (17)

These contributions can be expressed as

glt r(m,,Lr*,lt), (e)

J
c¡ad: - -. ---;-c2m2Jr(^r,l¡), (11)

l61t'j;

and the relevant integrals are defined (in heavy baryon ap-

proximation) as

2 f* k4u2(k.L)
ru(mp,A¡,,,À): ;Jroo;r<oi* o, 02)

r6 I zn'u't*\\
r7(m,Jt)-- | dkl--;;:+l-h. (13)

J0 \!K--rmîl

with aro: 'l-F¡æ and Ary the relevant baryon mass dif-
ference (i.e., M u,-M ù.We take the 

^-N 
mass splitting,

L,: M t- M u, to have its physical va]rue (0.292 GeV), while
function u(k,lt) is taken to be a
GeV. In Eq. (13) te, defined such

, is a local counter term introduced
relation for the renormalization of

C2.

The model independence of the expansion given in Eq.

(8) is ensured by fitting tbe unknown coefficients to the

physical nucleon mass and lattice data from the CP-PACS

Collaboration [33], yielding ao:1.22, az:1.76, a¿,

: -0.829, aø:0.260 (with all parameters expressed in the

appropriate powers of GeV)' With these parameters fixed one

can evaluate the rate of change of the mass of the nucleon

with quark or pion mass at the physical pion mass:

d ^ð
^nùM*:*I u#,r*:0.035 

Gev, (14)

a quantity commonly known as the pion-nucleon sigma com-

mutator. Using Eq. (14) one finds the relationship (in terms

of dimensionless quantities)

(le)

For the relevant diagrams, N-lK, N+ÀK, and N
+N7, we have

cfrt:trP-r¡',

cftn:f,çn+ o¡'.

cX,*:f,çn-o¡'. (20)

where we take F:0.50 and D:0.76' 'We use the Gell-

Mann-Oakes-Renner relation in the SU(2) chiral limit to
relate the variation of the kaon mass in the chiral SU(2)

limit, m,¡: p'*- I p'n:0.484 Gev (with ¡r,'1*1 , the physi-

cal pion{kaon} mass), to the variation of the strange quark

rnass (6ñ2*lñ2x:6m,/m,)' Hence the variation of the

nucleon mass with strange quark mass is given by

H:l#h,"x'+ ofrn+ "fr-)ly e'\)

Using the dipole regulator mass, Â : 0.8 GeV, Eq. (21) leads

to the result

6M ^, õm"

,;:o'o"----j (22)

B. Variation of proton and neutron magnetic moments

with quark mass

The treatment of the mass dependence of the nucleon

magnetic moments is very similar to that for the masses.

Once again the loops which give rise to the LNA and NLNA
behavior are evaluated with a FRR, while the smooth, ana-

lytic variation with quark mass is parametrized by fitting
relevant lattice data with a finite number of adjustable con-

stants.
For the lattice data we use the CSSM Lattice Collabora-

tion results [3a] of nucleon three-point functions. Results are

obtained using established techniques in the extraction of
form factor data [35]. Similar calculations have also been

recently reported by the QCDSF Collaboration [28]. We use

the two heaviest simulation results, 
^2n-0.6-0.7 

GeV2 [34].
These simulations were performed with the FLIC fermion

action [36] on a 203x40 lattice at a:0.128 fm.

l 15006-3



FLAMBAUM, LEINWEBER, THOMAS, AND YOUNG PHYSTCAL REVTEW D 69, 115006 (2004)

have a valence proton with j:7/2, l:4, and

õp. 6m, 6^,' :0.110----r+0.017-
Pffiqms

For 87Rb we have valence proton with j:3/2, l: l, and

ôø 6m. 6m -' :-0.064 "-0.01F
Pffiqms

As an intermediate result it is convenient to present the
dependence of the ratio of the hyperfine constant A to the
atomic unit of energy E:m"ea/h2 (or the energy of the
ls-2s transition in hydrogen, which is equal to 3/88) on a
variation of the fundamental constants. We introduce a pa-
rameter V defined by the relation

6v 6(AtE)
(33)V AIE

'We start from the hyperfine structure of l33Cs which is used
as a frequency standard. Using Eqs. (2), (31) we obtain

(o)

k)

i

K

(b)

;
(3 l)

3 (32)

I

\

In the magnetic moment case the formulas are a little
more complicated, so we leave the details for the Appendix.
Suffice it to say here that the relevant processes are shown in
Fig. l. Again we use a dipole form for the regulator with
,{:0.8 GeV.

Having parametrized the neutron and proton magnetic
moments as a function of mo, the fractional change versus
mq oÍ ms is given by

6p. | *'z. a¡"1 a^"
___j_:i____j: ;i=. \23)P I lt ðm"o) m,

6p. lø,* ap) a*,
\z+)P lu aAtr) ^''

The numerical results may then be summarized as

,r,,:_r.orr!!", 
(25)

lrp ffiq

6*' : -s.sß!!t, e6)Fp ms

u*" : -o.rrru*n
lln ffiq

6u- õm-__i_r:0.0013 .,
þn ms

6(p.plþ,) _o.0316^0.
\Prl ¡t','¡ ffiq

õ! p, 
! t",,) -- o.o l s 

â',
\ltrl ¡t,,¡ ms

FIG. l. Chiral conections to the nucleon magnetic moments
included in the present work.

III. DEPENDENCE OF ATOMIC TRANSITION
FREQUENCIES ON FUNDAMENTAL CONSTANTS

v1,33cs) : **(#) ""'( 
oä) 

oo" 

r (34)

The factor m"lmo will cancel out in the ratio of hyperfine
transition frequencies. However, it will survive in compari-
son between hyperfine and optical or molecular transitions
(see below). According to Eqs. (16) and (22) the relative
variation of the electron to proton mass ratio can be de-
scribed by the parameter

x(m"lm,):(:-l-oo"/ 't' l-''ott me 
(3s)' ltleco) \ Aqcol l\çco

which can be substituted into Eq. (34) instead of m"/mo.
This gives an expression which is convenient to use for com-
parison with optical and molecular vibrational or rotational
transitions

v(r33cs¡: or.rr( -'n \o'ot'l ,t' )o* !t. <ru¡- \Aocol \Aorrl /\çco

The dependence on the strange quark mass is relatively
weak. Therefore it may be convenient to assume that the
relative variation of the strange quark mass is the same as the
relative variation of the light quark masses (this assumption
is motivated by the Higgs mechanism of mass generation)
and to use an approximate expression V1 l33cs¡

: a2'83 ( * 
o / /\ pc o)o'tt I ^ " 

I m o¡.
For hyperfine transition frequencies in other atoms we

obtain

v187Ru¡: ..rro( -^o \-oouol .-' )-0010 
m? 

(37)" \Locol \Lorol ffip

y(rH): ,r( ^o \-oo*t/ -' )-oot3me\Aecot \l;;/ ^,' 
(38)

(27)

(28)

(2e)

(30)

Using the results of the previous section we can now use
Eqs. (6), (7) to study the variation of nuclear magnetic mo-
ments. For all even Z nuclei with valence neutron (tngHg,
rTrv¡,rrrc¿, etc.) we obtain ôp,/ ¡t: 6gu/gu. For l33cs we
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y( 2H) : .(*)-""( #) 
-ooo' 

f,,

y( ,nnHs*) : *,(#)-""'(¡î;)'""'f,

v1,7,yb* ¡ : *,(h)-""'( ü;) 
ooo" 

f.

v1,, cd*¡ : *"(h)-' "'(oî;) o*" 

f

V(Cs)
X ( Cs/Rb) : t66j 

: ao aelm 
o I L ç c o10 

)1 4¡m, I lr n r rfo'o"
(45)

and the result of the measurement in Ref. [18] may be pre-

sented as a limit on variation of the parameter X:

I dX(Cs/Rb)

X(Cs/Rb) dt

Note that if the relation (l) were correct, the variation of
X(Cs/Rb) would be dominated by the variation of

lm./lr6'çp]. The relation (l) would give X(Cs/Rb)o48.
Íto. Ã(rr3cs¡/A1H¡ we have

VlCs)
x( cs/H) : 7ö 

: ao 83lm 
o I l\ pc oforeílm, I Ã n rlo 

o'o

(47)

and the result of the measurements in Ref. [16] may be pre-

sented as

PHYSTCAL REVIEV/ D 69, 115006 (2004)

I dX(Cs/H)
<5.5x lo-lalyr. (48)

X(Cs/H) dt

dx(HetH) <8x l0-ra/yr. (50)
dt

(3e)

(40)

(41)

(42)

Note that the hyperfine frequencies of all even-Z atoms

where the nuclea¡ magnetic moment is determined by a va-

lence neutron have the same dependence on quark masses'

IV. LIMITS ON VARIATION OF FUNDAMENTAL
CONSTANTS

Now we can use these results to place limits on the pos-

sible variation of the fundamental constants from particular

measurements. Let us start from the measurements of quasar

tion of Y (6Y /Y : 6Y I /Y ),
.l *" \ -0087/ ,øs \ -oor3

y:a21 ,'l l-------:--l (a3)AarrJ \ À0."/

Then the measurements in Ref. [9] lead to the following

limirs on the variation of Y: 6YlY:(-0.2O-+0.44) l0-5 for
redshift z:0.246j md 6Y/Y:(-0.1610.54)10-s for z

:O.6841.
The second limit corresponds to roughly t:6 billion

years ago. There is

=o2grm"lm, obtai
preted as a limit on

tive variation of X.
of

x:,.'( ,^o \-ot'o( '^' \-o'o'o ,^" ø4)^-*\lreco) \np.r/ l\eco

The dependence on qu Pro-
ton g factor and the P Ref'

[10] leads to the fol I X:

6X/X:(0.7-t 1.1) 10-
Now let us discuss the limits obtained from the laboratory

measurements of the time dependence of hyperfine structure

intervals. The dependence of the ratio of frequencies

¿(l33Cs)/¡(87Rb¡ can be presented in the following form:

For.4( leeHg¡le1P we have

Y(He)
x( Hg/H) : ffi 

: 
"2 

3lm 
n I I\ q c ol- 

o o3tlm' 
I d nt'lo'ot 

t'

(4e)

The result of the measurement in Ref. [15] may be presented

AS

Note that because the dependence on masses and the strong

interaction scale is very weak here, this experiment may be

variation of the
Yb+/133cs (this
381). Using Eqs.

(34). (41) we can present the result as a limit on X(Yb/Cs)
: o,il^ o I Loro]to"tl^, /ÀgcoJ -0 0's:

I dX(Yb/Cs) . .-,1.
iGtrct -'i--: - I (2)x lo-ri/Yr' (sl)

The optical clock transition energy E(Hg) (À':282 nm)

in the Hg+ ion can be presented in the following form:

/ ¿\

E(Hg): cons ,"[Y+l F,"¡(za). (52)
\h'l

Numerical calculation of the relative variation of E(Hg) has

given [17]

ôE(He) 6a-=-o,':-3'2:' (-s¡i
E(Hg) a

This corresponds to v(Hg opt): d-3'2' variation of the ratio

of the Cs hyperfine splitting A(Cs) to this optical transition

energy is described by X(Opt): V(Cs)/V(Hg Opt):
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I dx(opt)

| * _\ootr/ ., \o*ul ^, 
,x(oPt):"'\n#"1 \Asrol \nn.r)' (54)

Here we used Eq. (36) for V(Cs). The work of Ref. [20]
gives the limit on variation of this parameter:

PHYSTCAL REVTEW D 69, lls006 (2004)

TABLE I. Chiral coefficients for various diagrams contributing
to proton and neutron magnetic moments. We use SU(6) symmetry
to relate the meson couplings to the øy'y'^ vertex, C: -2D.

a pL"þL"

<7 x l0-lslyr. (55)

(a)

(b)

(c)

(d)

-@+D)2
2 -.- t(,-

- [çn+tn¡2
- *@- r)'

6+ D)2
?n2
9U

0

-@- Ð2

x(opÐ dt

Molecular vibrational transitions frequencies are propor-
tional to 1m"/mo)rt2. Based on Eq. (35) we may describe the
relative variation of vibrational frequencies by the parameter

I m- \-o.0t8| m- \-000s/ _- \05v(vib):\&-i lÃr."/ l&-/ (56)

Comparison of the Cs hyperfine standard with SF6 mol-
ecular vibration frequencies was discussed in Ref. [39].
In this case- X( Cs/Vib) : a2 

qlm 

" 
I L g ç o105¡m,, / l\ I c o)o 

0e I

1*, /ltgco)o.orl .

The measurements of hyperfine constant ratios in different
isotopes of the same atom depends on the ratio of magnetic
moments and is therefore sensitive to moll\çco. For ex-
ample, it would be interesting to measure the rate of change
for hydrogen/deuterium ratio where X(fyD)
: lm o 

/ A çc o7-o'o68lm, / lt n r]0 
0".

Walsworth has suggested that one might measure the ratio
of the Zeeman transition frequencies in noble gases in order
to explore the time dependence of the ratio of nuclear mag-
netic moments. Consider, for example r2exel3he. For 3He

the magnetic moment is very close to that of neutron. For
other noble gases the nuclear magnetic moment is also given
by the valence neutron, however, there are significant many-
body corrections. For 129Xe the valence neutron is in an s172

state, which corresponds to the single-particle value of the
nuclear magnetic moment, p: p,: - 1.913. The measured
value is þ: -0.718. The magnetic moment of the nucleus
changes most efficiently through the spin-spin interaction,
because the valence neutron transfers a part of its spin, (s.),
to the core protons and the proton magnetic moment is large
and has the opposite sign. In this approximation p,:(l
- b) p.,,1 b p.r. Thìs gives b:0.24 and the rario of magnetic
momenrs Y : p(l2exe) | u(]Fre¡ - 9.7 6* 0.249, / g,,. Using
Eqs. (25)-(28) we obtain an estimare for the relative varia-
tion of ¡^c( 

t2exe¡/ 
¡t13He;, which can be presented as varia-

tion of X : lm,, I l\ qc o)- 0'027 
lm, / A, e, o)o'ot'. Here again

6YlY:6X/X.
Note that the accuracy of the results presented in this

paper depends strongly on the fundamental constant under
study. The accuracy for the dependence on a is a few per-
cent. The accuracy for m,,ll\7co is about 3}%o-beinglim-
ited mainly by tbe accuracy of the single-particle approxima-
tion for nuclear magnetic moments. (For comparison, the
estimated systematic enor associated with the calculation of
the effect of the quark mass variation is less than lOVo.)
Finally, we stress that the relation (l) between the variation
of a and ml Lgco has been used solely for purposes of il-
lustration.
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APPENDIX MAGNETIC MOMENTS

As explained in the text, we explicitly include the pro-
cesses shown in Fig. l, which give rise to the leading and
next-to-leading nonanalytic behavior as a function of quark
mass.

We describe the quark mass dependence of the magnetic
moments as

u: - .oo -+Mr, (Al)
I -l a2m'.

where ML denotes the chiral loop corrections given by

ML:7r1o.¡I r(m,,0,lt)* ¡ r1t ¡l ¡,(m,,LNt,l\)
* Xrç¡l *(m¡ç,Â¡¡rr,A) r X¡"1a¡I ¡"(my,A¡u¡',À).

(A2)

The chiral coefficients of the loop integrals X ¡ra àrc given by

xr,: pu"!+ (Æ)' E ¡rJ""

and are summarized in Table I 140-42]. Note that the re-
quired analytic terms in the chiral expansion to this order
have been placed in a Padé approximant designed to repro-
duce the Dirac moment behavior of the nucleon at moderate
quark mass.

The corresponding loop integral is given by

4 f * (L+2r"l¡)kau,{tr,tt¡
I u1n.L. A): - 3, J, 

oo -;ffi-,
(A4)

where the various terms have been defined in Sec. II. Vy'e

note that in the limit where the mass splitting vanishes this
integral is normalized such that the leading nonanalytic con-
tribution is z¿.
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Upon renormalization of the loop diagrams, the resultant

mãgnetic moments in the SU(2) chiral limit are given by

P'P¡:3.a8 þt¡¡, and P'å:-258 Pw' (47)

With the coefficients of the loop integrals defined, we

only f the Parameters do and d2 in
Eq. ( ation with quark mass. We note

also no analYtic dePendence on the

strange quark mass, beyond what is implicitly included in the

^2,-O.e-OJ 
GeV2. These simulations were performed with

th; FLIC fermion action [36] on a 203 x 40 lattice ar' a

:0.128 fm. We select the heaviest two data points, where

the effects of quenching are anticipated to be small 143,441'
The best fits to the physical values and the lattice data

give

a6:2'tl ¡t'¡¡, al:}'8ll GeY-2' (45)

o6:-t.ll P'v, ai:o'758 GeV-2' (46)

'We now take derivatives of Eq. (Al) at the physical pion

mass to determine the variation with quark mass' In particu-

lar, we have

(A8)

(Ae)
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We present the first investigation of the extrapolation of quenched nucleon magnetic moments in

quenched chiral effective field iheory. we utilize est te-range regularization and

incorporate finite-volume corrections to the relevant contributions of dynamical

sea qìarks to the proton moment are estimated ed phenomenological link

between quenched and physical QCD.

DOI: 10.1103/PhysRevD.?1.014001 PACS numbers: l2'39'Fe' 12'38'Gc

I.INTRODUCTION

Describing the quark content of nucleon structure in
terms of QCD is a fundamental aim of modern nuclear

physics. As an inherently nonperturbative theory, the most

.igorout approach to low-energy phenomena in QCD is by

numerical simulations in lattice gauge theory' Although

restricted at present to the regime of quark masses exceed-

ing those realized in nature, recent advances in efiective

field theory (EFT) have made it possible to accurately

extract the physical nucleon mass from QCD tll.
These advances and breakthroughs in chiral effective

field theory (XEFT) have their origin in the study of a

range of hadron properties in QCD, including nucleon

magnetic moments and charge radii [2-5], the nucleon

sigma commutator [1,6,7], moments of structure functions

tS-l0l and the p-meson mass Ill]'
With the most detailed studies being on the extrapolation

of the nucleon mass, it has been shown that the use of
finite-ra es the most system-

atically ve field theory and

lattice l. MathematicallY
equivalent to dimensional regularization (DR) to any ûnite

order, FRR chiral effective field theory provides a resum-

mation of the chiral expansion with vastly improved con-

vergence properties. Central to FRR is the presence of a
finite energy scale which may be used to optimize the

convergence properties of the truncated expansion. The

success of FRR-EFT is highlighted by the observation

that the higher-order terms of the traditional dimensionally

regulated expansion, although individually large, must sum

to zero to describe lattice QCD results.

Here FRR-¡EFT is applied to nucleon magnetic mo-

ments calculated in lattice QCD. In particular, we inves-

tigate the modifications required for the extrapolation of
quenched simulation results. Issues with the formulation of
EFI ot a finite volume are also discussed.'We consider the

modifications to chiral-loop integrals on a finite volume

and perform a fixed-volume extrapolation.
\ili extend a phenomenological link between quenched

and dynamical baryon masses [14] to the case of magnetic

moments to estimate the artifacts associated with the

quenched approximation. We find that the full-QCD cor-

rèctions of the quenched magnetic moments are small over

a wide range of quark mass.

Finally, the convergence properties of a truncated

Taylor-series expansion of the FRR results in powers of
mT are investigated. We illustrate how any moderate trun-

cation of the series expansion is unable to connect with
current lattice simulation results. The inclusion of higher-

order chiral-loop corrections associated with the A baryon

are also considered and found to be small.

II. MAGNETIC MOMENTS_QUARK MASS
DEPENDENCE

In a general construction of an effective field theory for

low-energy QCD, the expansion of the nucleon's magnetic

moment about the chiral limit can be written as

pn: a3 * aBrmzo + aBomf * "' xnnlo + ' ''. (l)

The term y6oln denotes the leading nonanalytic (LNA)
chiral correction to the baryon magnetic moment of Fig. 1.

Coefficients of low-order nonanalytic contributions to nu-

cleon properties are determined model-independently and

are known to high precision phenomenologically [15]. For

example, the LNA coefficient to the proton magnetic mo-

ment is given by

FIG. l. Diagram providing the leading nonanalytic contribu-

tion of pions (dashed curve) to the nucleon (solid line) magnetic

moment.
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xp-: -4Y+": - B;ñ. (2)

Any extrapolation of lattice QCD simulations must incor-
porate this knowledge of QCD.

The analytic terms are unconstrained by chiral symme-
try, and hence must be determined empirically. Lattice
QCD provides an ab initio framework to determine these
parameters from QCD.

The expression, Eq. (1), is analogous to the chiral ex-
pansion of the nucleon mass described in Refs. [1,12]. The
regulator dependence of the integrals is implicit. To define
the expansion one must define a regularization and renor-
malization scheme to remove ultraviolet divergences.

In the textbook approach to elementary field theory one
commonly uses dimensional regularization to renormalize
the theory. In this case, only the residue of the pion pole
becomes apparent and the loop contribution is therefore
given by

XøIPR - Xaffio, (3)

and the linear divergence of the integral is absorbed into an
infinite renormalization of ae.

Alternatively, ultraviolet divergences can be removed by
suppressing loop integrals above a finite energy scale. The
first systematic study of finite-range regularization in ¡pT
was performed by Donoghue et al. [16]. The development
of FRR-¡PT in the context of lattice QCD tl,l l,l3,l4,l7l
has found remarkably improved convergence properties of
the chiral expansion, providing access to a much wider
range of range of quark mass than the naively regularized
theory [2]. FRR is therefore best suited ro the problem of
chiral extrapolation, where the systematic error in the
extrapolation of modern lattice simulations is of order
t%o |1.

Using FRR, the loop integral, I,,inthe heavy-baryon
limit can be expressed as

ro: -: Idkt"P, Ø)rTJ aí

where ,¡: JFT@ and u(k) is rhe ulrravioler
regulator.

Expansion of the loop contributions as a power series
enables one to obtain the renormalized chiral expansion
parameters, where each of the analytic terms in Eq. (l) are
renormalized by a finite amount 112,16l. For example,
using a dipole regulator, u(k): (l + k2/^\-2, Eq. (4)
becomes

¡DtP - -!t\.*,+ 1\).24(m,I l\)5' (5)

and the Taylor expansion provides

¡DIP:-5 ¡ 3'5r;" :-241\+^,- 
l2A^î+.... (6)

pHysIcAL REVIEW D 71,014001 (2005)

Therefore, precisely the same LNA contribution is recov-
ered,

.DIPII-NA)
X uoll" XBil?t n Q)

with a finite renormalization of all other terms in the series.
By varying r\, strength in the loop integral may be moved
to the residual analytic expansion and vice versa. As the
moderately large mn behavior of the loop integral and the
residual expansion are radically different, varying À pro-
vides an opportunity to optimize the convergence proper-
ties of the truncated chiral expansion.

We show the mathematical equivalence of the renormal-
ization prescriptions to a given order. The renormalized
expansion in dimensional regularization is

tts: cBo ! Xaomr* cBrm2o +..., (8)

and these renormalized coefficients are recovered from the
FRR expansion via

s35
,3 : ouo - Xn,fiA, ,t : oî - xo.fi, (9)

where the second terms compensate the r\ dependence of
al.

In summary, in working to leading order in the chiral
expansion with a dipole FRR, the quark mass dependence
of nucleon magnetic moments in QCD is

pa: aB * a,rm2o + a,om[ - rr,ffiffi. (ro)

The inclusion of an mf term here is in anticipation of
adding next-to-leading nonanalytic terms in the following.

III. QUENCHED CONSIDERATIONS

Here we address the necessary modifications to the
chiral effective field theory for the quenched approxima-
tion. Vacuum fluctuations of qQ pairs are absent in
quenched simulations. As a result, the structure of the
low-energy effective field theory is modified. Meson loop
diagrams are restricted to only those where the loop is
comprised of valence quarks having their origin in the
interpolating fields of the baryon correlation function.
This has the effect of modifying the effective ø--N cou-
pling constants [8,19] and the correspondingfactors 7e
are changed accordingly.

To summarize, the LNA contributions to nucleon mag-
netic moments in both qnenched and dynamical QCD, we
use the standard notation and define

xso:;M+ pi, (ll)
Ó,ITI;

and provide rhe coefficients, Bi, in Table I [18,19]. We use

f ,:93 MeV, D :0.76 and F: 0.50 (g¡ : D + F).
A peculiar feature of the quenched theory is the appear-

ance of the flavor-singlet qtmeson as a light degree of

014001-2
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freedom. In the absence of vacuum quark loops the 4/
behaves as a Goldstone boson l20,2ll and must therefore

be incorporated in the low-energy effective field theory'

The r¡tcarries no charge and therefore does not make a

direct contribution to the magnetic moment of the nucleon'

The leading enhancement of the moment comes from 4/

ä:i5"il.:ilîi i;?;",i,äå iä,i
double-hairpin in the quark-flow

diagram. The vertex correction to the magnetic moment

induced by this loop produces more singular nonanalytic

behavior in the chiral limit than the physical theory.

The double-hairpin diagram has a logarithmic diver-

gence near the chiral limit. This is a pathological feature

of the quenched approximation, where the magnetic mo-

ment tends to infinity near the chiral limit. Physically this

is not possible as angular momentum quantization ensures

that the induced magnetic field of the meson-loop remains

finite, even in the chiral limit [22).
The double-hairpin vertex correction diagram has been

calculated in the graded-symmetry approach to Q¡PT by

Savage in Ref. [8], and provides the term

X(ra) *ço1,,""rr,, (I2)

with coefficient

..(a): mroqF - ?),. (13)x4,-W'

given by
k4u21t<¡

@l

PHYSICAL REVIEW D 71, 014001 (2005)

zX- \I I

FIG. 2. Double-hairpin qt vertex correction to nucleon mag-

netic moment.

accurate provided

butions for mr)
x(r9) rla"* t r, makes only small contri-

ohvsmo'
In Fig. 3 we show the value of the loop contributions for

varyingpion mass. The corrections from the 4/ are quite

small in the region of interest.
Our expansion in the quenched approximation, analo-

gous to Eq. (1), is given bY

ptQ : af,tol * olQ)*'.+ a!o(qm[+ x(ra)t.

* x(r',o,P(uo' l r', (15)

and is used to determine the parametett of(a). The total

magnetic moment at arbitrary ruo is then given by

ptc, -- {af,{or * oI@^'. + alo(amf + xça)t,}

x (1 - x(ral,tr,)-r. (16)

'We note that at this point the decuplet contributions have

been suppressed as their contributions are higher order in

the chiral expansion, when one accounts for the octet-

decuplet mass splitting realized in the (quenched) chiral

limit [14].

In': - I dk (14)

The normalization of the integral is such that the LNA
contribution to this loop is logmn.

We also highlight that this contribution is proportional to

the tree-level moment, ¡rton"" [18]. Because of the loga-

rithmic divergence one cannot simply define this to be the

renormalized moment in the chiral limit. This necessarily

means that one cannot remove the scale dependence of the

coefficient of this chiral log using standard methods' We

remove the scale dependence by replacing the tree-level

coefficient by the renormalized magnetic moment at each

quark mass pla)n* : p(ua).This approximation will be

TABLE L Coefficients of the leading pionJoop contributions

to nucleon magnetic moments in QCD and QQCD.

Baryon pi þ"(q)

FIG. 3. Loop corrections, in units of tt¡,t, evaluated with a

dipole FRR with Â' : 0.8 GeV. The dashed and solid curves

arè the pionJoop conections ofFig. I in quenched and physical

QCD, iespectively. The dash-dotted curve is the 4/ vertex

correction of quenched QCD, where the physical magnetic mo-

ment is used to deflne the renormalized coupling.
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IV. EXTRAPOLATION OF LATTICE
MAGNETIC MOMENTS

With the expansion of the low-energy EFT determined,
one needs to fix the values of the unconstrained terms
empirically. Lattice QCD provides information on the
quark mass dependence of hadronic properties and hence
enables the determination of these free parameters. If the
daia analyzed is within the applicable range of the effective
field theory then, upon fixing these low-energy constants,
one has an accurate extrapolation to the physical regime.

The electromagnetic form factors of the nucleon have
recently been studied in simulations of quenched lattice
QCD [23-25]. Early simulations of nucleon three-point
functions have been performed by Leinweber et al. in
Ref. [26]. Direct lattice calculations of the nucleon,s
strangeness form factor have also been carried out in
Refs. [27,28].

In this study we choose to analyze only the most recently
performed simulations using improved quark actions.
Results by Gockeler et al. [23] have been obtained using
the nonperturbatively improved clover fermion action [29].'We also consider recent form factor simulations by Zanotti
et al. [24,25] using the fat-link irrelevant clover (FLIC)
quark action [30]. For the purposes of this investigation, we
select the six most accurate data points from the FLIC data
set. The precision of the FLIC fermion results reflects the
use of improved unbiased estimation techniques t261, im-
proved actions and high statistics. It has been demonstrated
that FRR-¡EFT is applicable up ro m2, : 0.8 GeVz |l2l
and hence we also choose to truncate our data set at this
scale of pion mass.

All previous chiral extrapolations of lattice electromag-
netic structure have been based on ¡PT under the assump-
tion that quenching effects are minimal [2-5,1j,23,31_
33]. Here we present the first comprehensive analysis of
quenched lattice magnetic moments using e¡pT for
baryon form factors. Brief reports on preliminary eXpT
extrapolations have recently been presented in Refs. [34-
361.

In Fig. 4 we show fits to quenched lattice data of the
proton magnetic moment using Eqs. (15) and (16). In
anticipation of estimating unquenching corrections we
have adopted the preferred value of 

^ 
:0.8 GeV [14].

The logarithmic divergence of p.o in the chiral limit is
evident.

Figure 5 illustrates the dependence of the extrapolated
result, evaluated at the physical pion mass, on the choice of
regulator parameter r1,. The vertical axis has been fixed to
that of Fig. 4 in order to display the relevant scale. The
variation in the quenched proton moment is similar to the
statistical uncertainty of the FLIC simulation result at the
lightest quark mass considered. Further reduction of the 

^sensitivity could be obtained by considering higher-order
terms of the chiral expansion.
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15

FIG.4. Fit of Eq. (15) to quenched lattice data. The solid
squares (l) illustrate the FLIC fermion resulrs [24,25] and the
open symbols describe nonperturbatively improved clover re-
sults [23], at B : 6.0 (V), P : 6.2 (L) and ß, :6.4 (O).

V. EXTRAPOLATION ON A FINITE VOLUME

The previous section assumed the lattice eCD results
provide an accurate representation of the results to be
realized in the infinite-volume limit. However, results ob-
tained on a lattice of finite spatial extent will differ from
those in the infinite-volume limit, particularly in the chiral
regime where the pion Compton wavelength can approach
the lattice length. Here we extend the formalism of FRR to
incorporate fi nite-volume effects.

The leading-order finite-volume effect in the chiral ex-
pansion lies in terms analytic in the small expansion pa-
rameter, lf L, where L is the length of the cubic volume
[37]. Finite-volume corrections also enter through the
modification of loop integrals. The requirement that
Green's functions are periodic [37] restricts momentum
components to the values

0.4
m^2 (Gev)

0.8

^ 
(GeV)

0.6 0.8

0.9

z
q\

3

2.5

2

1.5

06 0.7

FIC. 5. The dependence of the extrapolated magnetic moment
determined at the physical pion mass on the dipole regulator
parameter A. Variation in the quenched proton moment is similar
to the statistical uncertainty of the FLIC simulation result at the
lightest quark mass considered.
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2rn't. _ _...., 
n¡ : 0, _r l, _r2, 

. . ..Ki_ 
L

(t7)

For the p-wave loop contribution of Fig. 1, where strength

in the integrand vanishes for k -- 0 as in Eq' (4)' the

dominant effect of discreiizing the momenta is to introduce

a threshold effect I l,l4]. Strength in the integrand is not

sampled until one component of k reaches 2rrf L- Since

chiral physics is dominated by the infrared behavior of
loop integrals, the nonanalytic terms of the chiral expan-

sion exhibit substantial threshold effects.
To obtain a complete description of the quark mass and

volume dependence ofhadron properties, one must have an

expansion in both mn and I / L Ï311. Without data at vary-

ing lattice volumes it is impossible to determine the ex-

pansion coefficients of the l/L contributions. Recent

calculations have also considered the finite-volume conec-

tions arising from the modification of the leading loop

integrals to discretized momentum sums [38,39].
Impressive results for a phenomenological description of
the volume dependence of hadron masses have also re-

cently been reported [40].
In the absence of lattice QCD results for magnetic mo-

ments from a variety of lattice volumes, it is not possible to

rigorously constrain the complete volume-dependent ex-

pansion. However, it is possible to precisely describe the

impact of the finite volume on the quark mass dependence

of magnetic moments on a single, fixed lattice volume.

Evaluating the loop integrals on a finite volume in FRR

is a rather simple extension. One simply replaces the

continuum integral by the discrete momentum sum over

available momenta on a given volume. Vy'e formulate the

finite-volume corrections in the continuum theory and

therefore continue the momentum sum to infinity. This
allows the features of finite-range regularization to carry

over to the finite volume case. For example, Eq. (4) be-

comes

kzu2(k)

ot!
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Simulations performed with standard Wilson actions

have large (?(a) errors that can be accounted for in the

effective field theory. One can introduce new local opera-

tors into the chiral Lagrangian reflecting (?(a) terms asso-

ciated with lattice discretizarion effects and explicit chiral
symmetry breaking Í41-431. However, there has been

tremendous success in removing ()(a) enors and suppress-

ing O(az) errors in lattice simulation results through the

development of nonperturbatively improved actions

130,44,451. These actions display excellent scaling proper-

ties [46-48], providing near continuum results at finite
lattice spacing. In particular, the FLIC fermion simula-
tions, dominating the chiral fits here, are performed using

an O(az)-mean-field improved Luscher-Weisz plaquette

plus rectangle gauge action [49] and the nonperturbatively
(?(a)-improved FLIC fermion action [30,46]. Hence these

lattice results already represent an excellent approximation
to the continuum limit.

Figure 6 illustrates the fit of Eq. (15) with the t and qt

loop integrals modified as described in Eq' (18) for the

finite volume. The physical volume of the FLIC lattice is

V : (2.56 fm)3. The chiral properties of the finite-volume
extrapolation are qualitatively different from the infinite-
volume curve of Fig. 4. In Fig' 7 we show the regulator
parameter dependence on the finite-volume extrapolated

magnetic moment for Ä in the range 0.6-1.0 GeV. The

variation of the extrapolated moment is suppressed relative
to the infinite-volume case, changing by 0. 1¡.c¡y. This sys-

tematic uncertainty is smaller than the statistical uncer-

tainty of the lightest quark mass considered here, and could

be suppressed further through the introduction of higher-

order terms in the chiral expansion or through the intro-

duction of precise lattice QCD results at light quark

InASSES.

ro:-+I*ry:-L*[*r
--#(+)'+n# (l 8)

3

5

2The discretized momenta on a cube are given by Ë : k.,"ñ
for ñ G 23, withthe minimum nontrivial momentum given

by k.in --2r/L. We note that in obtaining the infinite
volume form of Eq. (4) the angular dependence of the

three-dimensional integral has been performed analyti-
cally. In general, with an angular dependent integrand,

one must take caution in the naive conversion to a spheri-

cally symmetric sum as shown in Eq. (18). For the integrals

used in this paper, we have verified that the spherically
symmetric and angular dependent summations are

equivalent.

FIG. 6. Finite-volume FRR-EFI fit to FLIC fermion results for
fixed volume. Here the dipole-vertex regulator parameter is fixed

to Â :0.8 GeV.
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volume QCD estimate of the proton magnetic moment by
the dashed curve in Fig. 8.

In a similar manner, the infinite-volume limit of QQCD
is estimated by fitting the parameters rr{(Q) of Eq. (15)
using finite-volume discretized momenta and a dipole
regulator of 0.8 GeV in the loop integrals. The conection
is estimated by Eq. (16) calculated with infinite-volume
continuous momenta in the loop integrals. Figure 8 illus-
trates that the finite-volume corrections are negligible in
the regime of the lattice QCD simulation results.

'We emphasize that this result is a phenomenological
estimate, as the size of the correction is r\ dependent.
However, an important feature of this approach is that
the largest finite-volume corrections tie in the chiral limit
as they should. Ultimately, one would like to combine the
improved convergence properties of FRR-EFT with the
small I /L expansion such that accurate and model-
independent determinations of finite-volume effects can
be made.

The primary feature of Fig. 8 is that, although the
quenched and physical theory have quite different chiral
structure, the observable effects are rather small. In par-
ticular, the logarithmic divergence is likely to only become
apparent well below the physical pion mass. Within the
current formalism of lattice QCD it seems such an obser-
vation would be a formidable task, particularly given the
large lattice volume required to reveal the 4/ contribution.

The results here, based on the leading chiral corrections,
indicate that proton magnetic moments evaluated in
quenched simulations give a good approximation to the
true theory. The enhancement from the 4/-loop compen-
sates for the reduction in the standard pion-loop from QCD
to QQCD. The similarity in the effective curvature was also
highlighted by Savage [18].

2

1.5

o.2 0.4
(GeV)

0.8
ñr2

FIG. 8. Conecting the finite-volume quenched approximation
to the infinite-volume limit of full-QCD. The solid curve is the
finite-volume quenched fit to the data as in Fig. 4. The dotted
curve provides an estimate of the infinite-volume limit magnetic
moment in the quenched approximation. The dashed curve
shows estimates of the proton magnetic moment in full-QCD
as described in the text.

25

3

2a

1.5

1

0 .6 0.7 0.8
A (GeV)

0.9 1

FIG. 7. The extrapolated magnetic moment on a finite volume,
V : (2.56 fm)3, for varying regulator parameter Â.

VI. ESTIMATING EFFECTS OF DYNAMICAL
SEA QUARKS

In a study of baryon masses in quenched and 2 I
l-flavor QCD it has been found that the short-distance
physics of the analytic terms in the residual expansion of
FRR-EtrTare found to be very similar when the chiral-loop
effects are evaluated with an appropriate FRR [4]. By
identifying the short-distance behavior in quenched QCD
(QQCD), one need only restore the chiral-loop effects of
QCD to obtain an improved estimate of the physical mag-
netic moment.

In making such an identification it is essential to have a
consistent method for setting the scale in both quenched
and dynamical QCD. In particular, one must ensure that the
procedure is insensitive to chiral physics. The QCD
Sommer scale [50], based on the static quark potential, is
insensitive to light quark physics and provides an ideal
procedure for the scale determination.

The identification of this phenomenological link be-
tween quenched and dynamical simulations has been ap-
plied to FLIC fermion calculations of baryon masses

[34,361. Upon replacing the chiral loops of QQCD by their
QCD counterparts the nucleon and delta are found to be in
good agreement with experiment.

By applying the same principle to the calculation of
magnetic moments in quenched QCD one can obtain im-
proved estimates of the physical magnetic moment. The fit
parameters, ofq), ut" determined by fitting finite-volume
quenched lattice QCD using Eq. (15) with discretized
momenta and a dipole regulator of 0.8 GeV. The estimate
of the quenching effects is obtained under the assumption
that the bare residual expansion parameters are unchanged
in infinite-volume QCD when Â :0.8 GeV. That is, the
full-QCD result can be described by Eq. (10) wirh rhe

identification a!(q¡ - o?. By fitting with finire-volume
FRR-EFT both quenching and finite-volume corrections
are incorporated in the final estimate.'We show the infinite-
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VII. SERIES TRUNCATION AND HIGHER
ORDER EFFECTS

It is interesting to explore the convergence properties of
the series expansion truncated to various order in mo' The
convergence of the truncated series can be investigated by

studying the Taylor-series expansion of the FRR dipole

regularized form, Eq. (10), which describes lattice results

very well. Observing the behavior of the series expansion

provides valuable insight into the dynamics of different

truncation schemes. Similar studies of a truncation of the

chiral-loop corrections to the nucleon mass evaluated with
a FRR have been performed in Refs' [51-53]'

In Fig. 9 we show the Taylor-series expansion of
Eq. (10) truncated at various powers of m,. This plot
demonstrates that the quark mass expansion of the mag-

netic moment is very sensitive to the truncation of the

chiral series. Reproduction of the dipole FRR result at

jrsf mo - 300 lrieV requires all terms to order mf . tt
one wishes to reach the quark mass scale of modern lattice

QCD simulations many more powers in m, are required. In

fact, the lightest displayed FLIC quark mass requires terms

to rnzf;, similarly thã lightest QCDSF point needs løf .

Vy'e caution that the Taylor expansion of the FRR result

is not equivalent to performing a DR calculation. As we

work to leading order in the chiral expansion, only the

terms to mn of the Taylor expansion are guaranteed to be

equivalent to the DR expansion. The Taylor series cannot

reproduce the correct nonanalytic structures that will ap-

pear at higher order in the quark mass expansion.

Standard usage of DR to some chiral order would not

lead to the parameter values that are extracted from the

expansion of the FRR result. Fitting the low-order chiral

2

1.5
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expansion based on DR 14,23lto lattice data is enabled by a

shift in the low-energy expansion parameters. The fact the

expansion parameters differ between the DR and FRR

results indicates that the fits are dependent on higher-order

terms of the chiral expansion. This signifies that the chiral

expansion is not sufficiently convergent in the domain of
quark masses presently accessible in lattice QCD, for a

regulator independent determination of the low-energy
parameters.

This problem might have been anticipated by the fact

that at moderately large quark masses the Dirac moment of
the nucleon would be revealed

eh.
t"p: ZUn

Knowing that in this regime the nucleon mass grows

linearly with m2,, the moment would require an expansion

in inverse powers of mzn to describe the data [2,3]'
We also investigate some of the effects of including

higher-order terms in the FRR extrapolation of lattice

data. The leading contribution from the delta baryon,

shown in Fig. 10, is also incorporated into the fit'
Equation (15) becomes

¡rto : afrtol * our(a) 
^tn 

+ aBoQ) ml * x(ro)r,,"f,o'r r'

+ x|a)t, + y|la)r¡r, (20)

where, analogous to Eq. (ll), the corresponding couplings

are given by

xÈ,--ffiln, Qt)

and Table II. The loop integral is also modified by the fact

that the intermediate baryon propagator is nondegenerate

with the external state. With the mass splitting given by A,

/ \
\I

FIG. 10. Leading pion-loop contribution to nucleon magnetic

moment from the A resonance.

(1e)

3

25
z3
q

0 0.2 0.4
m^2 (Gev)

0.6 0.8

FIG. 9. Truncations of the Taylor expansion of the full-QCD
expression of the magnetic moment, Eq. (10)' to various orders

in mo.'[hte leftmost curves display a succession of truncations

from mo up to m1"0. To reach convergence at the lightest FLIC

Oata point considered here one requires terms up to m2f;, while

for QCDSF terms to m5f are necessary. The dashed curve dis-

plays the full-QCD expression as displayed in Fig' 8.
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TABLE II. Coefficients of the leading decuplet, pionJoop
contributions to nucleon magnetic moments in QCD and

QQCD t181, C: -2D.

Baryon ßit o¡(Q\Pnt

'qc'c

3
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0.2

p
n

-¿c2
¿c,

z
q

2.5

2

1.5Eq. (4) becomes

r _ 4 f ,,.(L+2oùk4u2(k)
3o J 

--'- 
2ro1(é + ro¡)z

(22)
0 0.4

m^2 lcev¡
0.6 0.8

Given that the finite-volume corrections are negligible in
the regime where the lattice QCD results lie, we illustrate
the role of the 

^ 
in FRR-EFT by taking the lattice results as

an accurate representation of the infinite-volume limit and
evaluate the loop integrals of Eq. (20) in the infinite-
volume limit.

The fit of Eq. (20) to lattice results is shown by the
dotted curve of Fig. 11. The comparison with the leading-
order result (solid curve) shows that the effect of the
decuplet on the extrapolation result is negligible. The
new nonanalytic behavior introduced by an explicit inclu-
sion of the A was already approximated well by the ana-
lytic terms in the expansion at leading order. Although the
extrapolation shows little sensitivity to the inclusion of the
A, it will be necessary to explicitly include this degree of
freedom if one is to extract the low-energy constants to this
order.

With regard to the estimation of full-QCD corrections,
the inclusion of the decuplet is again a small effect. With
the Â, the QCD estimate of the proton magnetic moment at
the physical quark mass is increased by 0.05¡r,¡y from the
leading-order result. Although small for the proton, the
inclusion of such contributions is found to be important
for other baryons of the octet in the extraction of the
strangeness magnetic moment of the proton [54,55].

Finally, the prediction of the physical proton magnetic
moment obtained by including the A contributions and
compensating for the finite lattice volume is 2.54(30)p,¡¡,
where the uncertainty is statistical in origin. This result
agrees well with the experimental value of 2.79p.¡¡.

VIU. CONCLUSIONS

Quenched and physical magnetic moments are in good
agreement over a large range of pion mass. Although pion
efïects alone are decreased in QQCD, the new behavior
introduced by the 4/ acts to suppress any difference.

We have demonstrated that the magnetic moments are
extremely sensitive to the truncation of the chiral series.
The domain where the chiral expansion can be formulated,

FIG. 1 1. The role of A contributions in the extrapolation of the
proton magnetic moment. The solid curve displays the leading-
order QQCD extrapolation of Eq. (16), without explicit decuplet
contributions, as seen in Fig. 4. IfEq. (16) is extended to include
the pion contributions with decuplet baryons in Eq. (20), one
obtains the dotted curve.

truly independent of regulator, is likely to be a rather
naffow window near the chiral limit. It is clear that there
must be a transition between the rapid chiral variation and
the smoothly varying lattice data at a scale around m2o -
0. I GeV2. FRR-EFT provides an effective resummation of
the chiral expansion that ensures that the slow variation of
magnetic moments observed in lattice QCD arises
naturally.

Finally, by estimating finite-volume and quenching ef-
fects through the leading one-loop contributions of the
finite-range regularized meson cloud, we obtain an excel-
lent value for the physical magnetic moment of the proton.
Combined with the previous success in describing the
difference between quenched and full-QCD nucleon and
A masses [4], these results strengthen the argument that
artifacts of the quenched approximation can be accurately
corrected using phenomenological methods. Ultimately,
lattice QCD simulations incorporating light dynamical-
quark degrees of freedom on a variety of lattice volumes
are required to achieve the goal of an ab initio determi-
nation of nucleon properties.
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By combining the constraints of charge symmetry with new chiral extrapolation techniques and tecent

low mass qu"n"h"d lattice-QCD simulations of the individual quark contributions to the magnetic mo-

ments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the

proton. The result, namely, G'M -- eO.O46 + 0.019)g,¡y is consistent with the latest experimental measure-

ments but an order of magnitJde more precise. This poses a tremendous challenge for future experiments.
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There is currently enormous interest in the determina-

tion of the strangeness content of the nucleon. It is crucial
to our understanding of QCD to determine precisely the

role played by heavier, nonvalence flavors. On the experi-

mental side new results on strangeness in the nucleon have

been reported recently from Jefferson Laboratory (JLab)

(HAPPEX) [1] and MIT-Bates (SAMPLE) [2]. In the near

future we can expect even more precise results from the A4
experiment atMainz as well as G0 and HAPPEX2 at JLab.

By contrast, the theoretical situation is somewhat con-

fused, with the predictions of various quark models cover-

ing an enormous range. Direct calculations within lattice

QCD have not yet helped to clarify the situation, with
values for G", ranging from -0.28 -f 0. 10 [3] to *0.05 +

0.06 [4].
We take a different approach, exploiting the advances in

lattice QCD which have enabled quenched QCD (QQCD)

simulations of magnetic moments at pion masses as low as

0.3_0.4 GeV [5-8], as well as the development of new

chiral extrapolation techniques [9,10]. Using these tech-

the experimental values of the octet moments and charge

symmetry we deduce a new theoretical value for Gi, which

is precise: setting a tremendous challenge for the next
generation of parity violation experiments.

As illustrated in Fig. l, the three-point function required
to extract a magnetic moment in lattice QCD involves two

topologically distinct processes. (Of course, in full QCD
these diagrams incorporate an arbitrary number of gluons

and quark loops.) The left-hand diagram illustrates the

connected insertion of the current to one of the "valence"
quarks of the baryon. In the right-hand diagram the exter-

nal field couples to a quark loop. The latter process, where

the loop involves an s quark, is entirely responsible for G'r.
Under the assumption of charge symmetry [ll]' the

magnetic moments of the octet baryons satisfy [12]

PACS numbers: 12.39.Fe, 12.38'Gc, 13.40'Em' 14.20.Dh

p: eoup * e¿dP * O¡,¡; n: €duP I eudP I O¡¡,

2* : ",u2 
* e"s> * o>i 2- : ,¿u2 + e,st + o2,

Éo : ",rE 
+ euu1 + o2: E- : r,tE + e¿uE ! o=.

(l)

Here, p and E- are the physical magnetic moments of the

proton and E-, and similarly for the other baryons. The

valence ø quark sector magnetic moment in the proton,

corresponding to the left-hand side ofFig. 1, is denoted up.

Charge symmetry has been used to replace the d quark

contribution in the neutron by ut, d in the l- by u in the

)* (r>), and so on. The labels on quark magnetic mo-

ments allow for the environment sensitivity implicit in
the three-point function ll2,l3l. That is, the naive expec-

tations of the constituent quark model, namely up lu> --
unf sE -- l, may not be satisfied. The total contribution
from quark loops, O¡¡, contains sea-quark-loop contribu-

tions (right-hand side of Fig. l) from u, d, and s quarks. By
definition

1o¡t: 2

J
Giú-a GdM

I;
J

GtM, (2)

(3)

where the ratio of s to d quark loops, t R) = | C'u /t Cl, , ¡"

expected to lie in the range (0,1). In deriving Eq' (3)' we

FIC. 1. Diagrams illustrating the two topologically different

insertions of the current within the framework of lattice QCD.
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Incorporating the experimentally measured baryon mo-
ments u4l, Eqs. (4) and (5) become

G',: (:h)[: oz: -{pentfu*, (6)

"il 
: (+_ ,^J[-r o:: - \1-o.ssÐ11u, (i)

have used charge symmetry to settG'h : ,C,lr. Since the
chiral coefficients for the d and s loops in the right-hand
side of Fig. I are identical, the main difference comes from
the mass of the K compared with that of the ø'.

With a little algebra O ¡¡, andhence Gir(= t G'r), may Ae

isolated from Eqs. (1) and (3)

the irrelevant operators, introduced to remove fermion
doublers and lattice spacing artifacts, are constructed
with APE smeared links [15]. Perturbative renormaliza-
tions are small for smeared links and the mean-field im-
proved coefficients used here are sufficient to remove @(a)
errors from the lattice fermion action [6].

The 0(a)-improved conserved vector current [17] is
used. Nonperturbative improvement is achieved via the
FLIC procedure, where the terms of the Noether current
having their origin in the irrelevant operators of the fer-
mion action are constructed with mean-field improved
APE smeared links. The results presented here are obtained
using established techniques [8] from a sample of 400
203 x 40 mean-field (C(a2)-improved Luscher-'Weisz [19]
gauge field configurations having a lattice spacing of
0.128 fm, determined by the Sommer scale rs : 0.49 fm.

One of the major challenges in connecting lattice calcu-
lations of hadronic properties with the physical world [20]
is that currently accessible quark masses are much larger
than the physical values. Our present analysis has been
made possible by a significant breakthrough in the regu-
larization of the chiral loop contributions to hadron ob-
servables 19,10,211. Through the process of regulating loop
integrals via a finite-range regulator (FRR) Í9,221, rhe
chiral expansion is effectively resummed to produce an
expansion with vastly improved convergence properties. In
particular, we extrapolate FLIC fermion calculations of the
valence quark contributions to baryon moments (uP, un,

u>, uE) to the physical mass regime. Vy'e select the dipole-
vertex FRR with r\ : 0.8 Gev, which yields the best
simultaneous description of both quenched and dynamical
simulation results [23].

Separation of the valence and sea-quark-loop contribu-
tions to the meson cloud of full QCD hadrons is a nontrivial
task. Vy'e use the diagrammatic method for evaluating the
quenched chiral coefficients of leading nonanalytic (LNA)
terms in heavy-baryon quenched chiral perturbation theory
(QXPT) [24,25]. The valence contributions (key to this
analysis) are obtained by removing the direct-current cou-
pling to sea-quark loops from the total contributions. Upon
further removal of "indirect sea-quark-loop" contribu-
tions, where a valence quark forms a meson composed
with a sea-quark loop, one obtains the "quenched valence"
contributions, the conventional view of the quenched
approximation.

Figure 3 displays the diagrams providing the leading
contributions to the chiral expansion of baryon magnetic
moments (upper diagrams) and their associatcd quark
flows in QQCD. The associated chiral expansion for the
proton magnetic moment ¡r,, is

þp: et + ppxq,ln,(m,, 4Y) + yn6lB(mo, 1\)

r yy6t6(mx, L) r almz, + af ml, (S)

where the repeated index B sums over allowed baryon octet
and decuplet intermediate states. Loop integrals denoted
by 1 are defined by

These expressions for G", are exact consequences of QCD,
under the assumption of charge symmetry.

Equating (6) and (7) provides a linear relationship be-
tween uP /u2 and, u' f uE, which must be satisfied within
QCD under the assumption of charge symmetry. Figure 2
displays this relationship. Since this line does not pass
through the point (1.0,1.0), corresponding to the simple
quark model assumption of universality, there must be an
environment effect exceeding l27o in both ratios or ap-
proaching 207o or more in at least one of the ratios. A
positive value for Gir(0) would require an environment
sensitivity exceeding 707o in the u'f uE rutio.

The numerical simulations of the electromagnetic
form factors presented here are carried out using the fat
link irrelevant clover (FLIC) fermion action [5,6] in which
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FIG. 2 (color online). The constraint [dashed line Gjr(O) < 0,
solid line G'MQ) > 0l on the rarios uP /u> and un f u= implied by
charge symmetry and experimental moments. Experimental un-
certainties are indicated by the dotted bounds. The assumption of
envi¡onment independent quark moments is indicated by the
crossed square. Our final result (chiral corrected extrapolation of
lattice results) is illustrated by the filled square on the charge
symmetry line.
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FIG. 3 (color online). Diagrams providing the leading contri-
butions to the chiral expansion of baryon magnetic moments

(upper diagrams) and their associated quark flows (lower dia-

grams) in QQCD.
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-t1f
FIG. 4 (color online). The contribution of a single ø quark
(with unit charge) to the magnetic moment of the proton. Lattice

simulation results (square symbols for m2, > 0.05 GeV) are

extrapolated to the physical point (vertical dashed line) in
finite-volume QQCD as well as infinite-volume QQCD, valence,

and full QCD; see text for details. Extrapolated values at the

physical pion mass (vertical dashed line) are offset for clarity.

(fine dash-dotted curve in Fig. 4). Figure 6 displays similar
results for the l+.

From these chiral extrapolations, we estimate the ratios

of the valence (connected) ø quark contributions, up /u>
and u'fuE. The final results

4 : ,.osr-È o.o3o, ) : t.rso-, 0.124, (11)
u2 Lr-

are plotted in Fig. 2. The precision of these results follows
from the use of correlated ratios of moments which act to
reduce uncertainties associated with the lattice spacing, the

regulator mass, and statistical fluctuations [27]. This result

leaves no doubt that Gi, is negative. The fact that this point

lies exactly on the constraint curve is highly nontrivial, and

provides a robust check of the validity of the analysis

techniques presented here.

As a further check, in Fig. 7 we compare the lattice-

QCD predictions of the baryon magnetic moments con-

structed from chirally corrected extrapolations of the indi-
vidual quark sectors. The results display an unprecedented

level of agreement with experiment. We note that the

FIG. 5 (color online). Conecting Q¡PT (upper) to the valence

sector of full QCD (lower diagrams). We remove quenched

negative-metric 4/ contributions and adjust the chiral coeffi-

cients of ¡ and K loops to account for the coupling of a valence

quark to the photon in a meson made from a sea-quark loop.

Coupling to the antiquark in the bottom-right diagram is also

included in the valence contribution of full QCD.

0.0 0.1 0.2 0.4 0.5 0.6 0.7
(cevJ

0.3
m2

z^[F +æ * A¿¡, k4u2(k, L)

IX dk
(k2 + m2)3/2

/ 

- 

\2
(Jt'z+ m2 + aau)

(e)

ll(mo,^): - li *6fuu2Q<,tt), (ro)

where A¿¡y is the relevant baryon mass splitting and

u(k, lt) is the dipole-vertex regulator. The coefficients ¡
denote the known model-independent coefficients of the

LNA term for ø- and K mesons 125,261. We take m2* :
*P' +\m2,, and use the physical values to define mf).
The mf term in Eq. (8) allows for some curvature associ-

ated with the Dirac moment of the baryon, which should go

as lf m2o for moderately large quark masses.

Figure 4 illustrates a fit of FRR Q¡PT to the FLIC
fermion lattice results (solid curve), where only the dis-

crete momenta allowed in the finite volume of the lattice
are summed in performing the loop integral' The long-
dashed curve that also runs through the lattice results

corresponds to replacing the discrete sum by the infinite-
volume, continuous momentum integral. For all but the

lightest quark mass, finite-volume effects are negligible..
The coefficients of the residual expansion, "{, af, a[,

show excellent signs of convergence. For example, the fit
to rz> yields values 1.48(7), -0.90(23), and 0.42(19) in
appropriate powers of GeY respectively. Incorporating
baryon mass splittings into the kaon loop contributions is

essential, e.g., the contribution of I -. NK is almost

doubled when the I - ¡r¡ mass splitting is included.
Figure 5 illustrates the considerations in correcting the

quenched ø quark contribution to yield the valence u quark
contribution in full QCD. The removal of quenched 4/
contributions and the appropriate adjustment of ¡¡ and K
loop coefficientsÍ24-26lprovides the dot-dashed curve of
Fig. 4. This is our best estimate of the valence ø quark
contribution (connected insertion) to the proton magnetic

moment of full QCD. Finally, the disconnected insertion of
the current is included to estimate the total contribution of
the ø quark sector to the proton magnetic moment 124-261

Lk<À
t)''.¿Àa

- 

Finite Vol qQCD

qQa¡

-' - valence Secìo¡
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FIG. 6 (color online). The contribution of a single ø quark
(with unit charge) to the magnetic moment of the I+. Curves
and symbols are as for Fig. 4.

experimental constraints on øl and uE emphasized by
V/ong [28] are both satisfied precisely.

While Gi, is most certainly negative, it remains to set
the magnitude. This requires an estimate of the strange to
light sea-quarkloop contributions, /R). Earlier estimates
of /R) were based on the constituent quark model. A more
reliable approach is to estimate the loops using the same
successful model invoked to correct the quenched results to
full QCD ll0,23l, as illustrated in Fig. 7. Allowing the
dipole mass parameter to vary between 0.6 and 1.0 GeV
provides tni : C¡¡Ch : 0.139 -r 0.042. A complete
analysis of the errors associated with the determination
of G', using Eqs. (4), (5), and (11) is reported in
Ref. [27]. The uncertainty is dominated by the statistical
errors included in Eq. (l l) and the uncertainty just noted
for/R}. The final result for the strangeness magnetic mo-
ment of the nucleon is

-0.5
-1.0
- 1.5

-2.O
-2.5

G"M : e0.046 + 0.019)p.¡¡. (12)

This precise value sets a tremendous challenge for the next
generation of parity violation experiments.
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FIG. 7 (color online). The I standard deviation agreement
between the FRR¡PT conected lattice simulation results (l)
and the experimentally measured baryon magnetic moments
(O). Quenched (i) and finite-volume quenched ([) results
are also illustrated.
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