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Abstract

The elements of non-commutative geometry are presented from an operator al-
gebraic viewpoint. Threaded through the presentation is the example of a spectral
triple associated to a second countable metrisable locally compact oriented manifold
without boundary and without the assumption of spin structure.

Generalisation of the spectral triple associated to such a manifold admits the new

notion of a Riemannian representation of a C*-algebra which directly links to the
standard theory of von Neumann algebras. The involvement of the standard theory
and the reformulation of the axioms of non-commutative geometry in the absence of
spin structure are investigated and presented.

The construction of Riemannian representations of C*-algebras is also considered.

A new generalisation of a symmetric derivation on a von Neumann algebra -R provides

the means of constructing Riemannian representations of a C*-subalgebra A c R
associated to a faithful finite trace on -R. The interaction between the standard theory
and the generalised symmetric derivation provides new analysis into the structure of
K-cycles.
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Summary

There exist many notions of geometry in mathematics inherited from the elements of
Euclid. Non-commutative geometry is a broad term used in many fields for the
generalisation of algebraic geometric notions to non-Abelian base rings and non-

ãommutative algebraic structures.
Non-commutative geometry, in this thesis, refers to the field drawn and established

from the parent fields of operator algebras and difierential geometry by the work of
numerous mathematicians.

Fbom,the inception of operator algebras in the papers of Murray and von Neu-

mann [ur'l], the inception and identification of C*-algebras by the works of Gelfand,

Naimark and Segal [cu] [s.], the modular theory of Tomita [ro] [rt], the development

of standard forms, crossed products of and derivations on von Neumann algebras by
Araki, Haagerup, Takesaki, Sakai [Ar] [tta] [rt<z] [satr] and others, and the classifica-

tion of hyperfinite factors by Connes [ct] [cz], C*-algebras and their automorphisms
have been inherently viewed as topological and ergodic dynamics. The topological
view broadened with the development of K-theory, homology and cohomology theo-

ries for C*-algebras. The measure theoretic view broadened with the development of
non-commutative integration [sez] and generalised Radon-Nikodym theorems. The
introduction of Dirac operators by Dirac [oir] and the culminating index theory of
Atiyah and Singer that linked Fledholm operators associated to Dirac operators and

characteristic classes [ls] drew algebraic differential geometry into the field of op-

erator algebras. Flom these pieces Connes drew out a generalisation of differential
geometry and established it by a series of foundation papers [cs]-[cs] that began a
new paradigm in geometry.

This thesis, essentiall¡ views the field of non-commutative geometry inside the
parent field of operator algebras. An overview of differential geometry in Section

l.L presents a difierential calculus as the elements of a topological space, a space of
functions on the topological space, derivation and integration of the functions, and

a metric. The remainder of chapter 1, following for the most part the approach

of Connes, describes the manner in which the field of operator algebras provides

the elements of a (generalised) differential calculus. This is done, where possible,

through collation of results in the theory of C*-algebras and von Neumann algebras,

for example Theorems 1.2.1, L2.8, L2.9, 1.2.11,1.5.2, 1.5.6. Where necessary direct

citation of results are used as background to the theory, such as Theorems 1.2.6

(Gel'fand-Naimark-Segal),I.2.72 (Gel'fand), 1.5.5 (Reisz-Markov), and Section 1.6.2

(Radon-Nikody^).
There are three original facets to the presentation of the background of non-

commutative geometry contained in chapter 1.
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Firstly, the presentation itself is the collation of an extensive field.
Secondly, we introduce the notion of a base representation of a C*-algebra in Defi-

nition 1.4.3. Let Abe a C*-algebra. A base representation (f/, zr, D) of the C*-algebra
,4 is a separable representation (H,n) of ,4 and a selfadjoint operator D : DomD -+ H .

A base representation of a C*-algebra leads to the notion of a C"1-representation, a
Cf;-representation and an integrable representation of a C*-algebra, Definitions 1-.4.4,

1.4.8 and 1.7.7 respectively. In the literature the same information is contained in
the notion of a smooth spectral triple. Retaining an explicit definition in terms of the
representation theory of the C*-algebra has notational and conceptual advantages.
As an example, Section 1.5.3 introduces the notion of disintegration of base repre-
sentations in terms of the established theory of disintegration of representations of
C*-algebras and spectral representations of the selfadjoint operator D.

Thirdlg there is a sequential presentation, through Proposition 1,.3.6, Section
1.3.6, Example L.4.13, Example 1.5.4, Example 1.5.10, Example 1.6.10, Example
7.7.77 and Example 1.8.3, of the base representation (L'(X,A*X), n¡,d,I d*) asso-
ciated to the C*-algebra Co(X). Here X is a second countable metrisable locally
compact oriented manifold without boundar¡ Co6) is the C*-algebra of complex
valued functions on X that vanish at infinity, Â*X is the exterior bundle of differen-
tial forms on X, d + d* is the selfadjoint extension of the signature operator and zr¿

is the action of Cs(X) on the Hilbert space L2(X,^*X) by left multiplication. This
presentation lays the framework for the original sections of Chapter 2.

The initial sections of Chapter 2, following stìll for the most part the approach of
Connes, describes the deeper aspects of generalising algebraic differential geometry in
the field of operator algebras. Section 2.1 introduces Z2-graded Hilbert modules over
C*-algebras. This admits the discussion of finite projective modules over C*-algebras,
Definition 2.I.4, the Serre-Swan Theorem, Example 2.L.5, and Kasparov's bivariant
KK-theory for C*-algebras, Section 2.4. Section 2.5 introduces the Hochschild and
Cyclic homology of a C*-algebra. This admits the discussion of non-commutative
De-Rham differential forms and cohomology, Section 2.5.1 and Section 2.5.2, and
non-commutative volume forms, Section 2.5.3. The background results of Sections
2.I, 2.2, 2.4 and 2.5, as in chapter 1, contain collations or direct citation such as

Theorem 2.1.9 (Serre-Swan), Theorems 2.4.2,2.4.5,2.4.6 (Kasparov), and Theorems
2.4.11, 2.5.4, 2.5.51 2.5.7,2.5.8. The initial sections of Chapter 2 contain the following
original facets.

Section 2.3 contains an original presentation of the concept of Riemannian alge-
braic structure in non-commutative geometry. Theorems 2.3.I, 2.3.2 and 2.3.3 detail
the Z2-graded Hilbert modules associated to a second countable metrisable locally
compact oriented manifold X with no boundary. Theorem 2.3.4 identifies the con-
struction of the Hilbert modules associated to X with the standard form associated
to the base representation (L2(X,A*X), n¿,d,* d*) of the C*-algebra C¡(X) as dis-
cussed in Remark 7.6.12 and Theorem L.7.2L. Theorem 2.3.4 in effect links Remark
1.6.12 and Theorem L.7.2L with Theorems 2.3.2 and Theorem 2.3.3. This identifica-
tion, as discussed in Sections 2.3.3 and 2.3.4, elucidates a Riemannian structure that
generalises to base representations of arbitrary C*-algebras. The notion of a Rie-
mannian representation of a C*-algebra, Definition 2.3.5, constitutes the first major
contribution of the thesis.
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We remark that no spin or complexified spin structure is assumed in Section 2.3.

Spin representation are recovered through the notion of a Morita equivalence, when

it exists, see Definitions 2.3.7 and 2.3.8. The absence of spin structure necessitates

the reformulation of Poincaré Dualit¡ Example 2.4.4 and Section 2.6.1, and a funda-
mental class, Section 2.4.4, distinct from the presentation of Connes [ca, c]. Section
2.4.4 contains minor original results and notions of a real grading and fundamental
class for a Riemannianrepresentation (H,T,D) of a C*-algebra,4. This involves the
introduction of an index algebra, Definition 2.4.L5, intended to be the Poincaré dual
of the C*-algebra ,4..

In section 2.5.3 the absence ofspin structure necessitates a distinct relationship be-

tween a volume form and a real grading. We note that, independent of the existence

of volume forms, parity gradings always exist for a Riemannian representation by
virtue of the standard theory of von Neumann algebras, see Proposition 2.5.12. The
relationship between volume forms and gradings is summarised in Theorem 2.5.13,
which neatly generalises Theorem 2.3.1. The notion of a real Riemannian representa-

tion, necessarily more general than the notion of reality presented in [c+], appears in
Theorem 2.5.14 and Definition 2.5.15. Section 2.5.4 includes a criteria for uniqueness

of a volume form for a Riemannian representation, Proposition 2.5.20. This result is

gained, as with the majority of the results of Section 2.3, by the direct link between

Riemannian representations and the standard theory of von Neumann algebras.

The exposition of Sections 1.2 through to 2.5, extensive as they may be, are

the required background to present the axioms of compact Riemannian geometry
in Section 2.6. The axioms, see Section 2.6.2, are closely based upon the axioms
presented in [Cs] with modifications necessitated by the absence of spin structure.
The purpose of the axioms is this: a commutative unital *-algebra ,4. should satisfy
the axioms of compact Riemannian geometry if and only if A: C(X) where X is a
metrisable compact manifold without boundary. The axioms entail the contribution
of an original axiom, the axiom of symmetry, and the necessity of this axiom is
demonstrated by Proposition 2.6.6.

We remark that Section 2.6 has been, hopefull¡ designed as a starting point
for the reader familiar with the extensive background of non-commutative geometry.

Section 2.6.1 summarises the contribution of a Riemannian representation, a notion
of this thesis, and back references definitions, concepts and notations to the revelant
preceding sections.

Section 2.6.3 contains the details of the statement: a commutative unital *-algebra

,4. should satisfy the axioms of compact Riemannian geometry if and only if A : C (X)
where X is a metrisable compact manifold without boundary. Theorem 2.6.9 proves

the 'if' direction. This culminates the exposition of the base representation associated

to a manifold that is threaded through the thesis in the results Proposition 1.3.6, Sec-

tion 1.3.6, Example 1.4.L3, Example 1.5.4, Example 1.5'10, Example 1.6.10, Example
L.7.17, Example 1.8.3, Theorem 2.3.1, Theorem 2.3.4, Theorcm 2'4.2I and Example
2,5.6. The reconstruction theorem of Connes [cs] is cited, modified as necessary in
the absence of spin structure, as Theorem 2.6.10 and provides the 'only if' direction.

Sections 2.L to 2.6 in addition to Sections 1.1 to 1.9 complete the presentation of
Riemannian Non-commutative Geometry as set in the field of operator algebras. We

note the key definition of a Riemannian representation (f/p, ,rp, D) of a C*-algebra A,
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Definition 2.3.5, involves the GNS representatiotr (Hp,no) associated to a faithful state
p of. a von Neumann algebra -R such that ,4. C.R. The GNS representation (Ho,rp)
can be constructed from the abstract information (R, p). However, the selfadjoint
operator D : DomD è Hp is concrete. The natural question to ask is whether
Riemannian representations can be constructed from abstract information? Section
2.7 culminates in answering the question in the affirmative when p is a trace. In
Section 2.7 the approach of a Riemannian representation finds it full application and
validation.

Section 2.7.1 discusses the established notion of a symmetric derivation ó' on von
Neumann algebra Ã, see Definition 2.7.1. Established results, collated in Theorem
2.7.3, allows the construction of triples (Hp,np,D) from the abstract information of an
inner K-cycle (.R, p, d') where D is the spatial implementer of the symmetric derivation
ô, see Definition 2.7.7. The definition of an inner Riemannian cycle (R,p,õ) over a
C*-algebra, Definition 2.7.9, follows with the result that (Hp,rp, D) is a Riemannian
representation of ,4, Theorem 2.7.10.

The kinds of Riemannian representations constructed from inner Riemannian cy-
cles are limited however. They do not include the base representation (L2(XrÂ*X), n¿,d,*
d*) of the C*-algebra C6(X) discussed previously. Here X is a second countable
metrisable locally compact oriented manifold with no boundary. Section 2.7.2 con-
tains the second major contribution of the thesis. It introduces the concept of a
symmetric A-derivation on a von Neumann algebra -R such that ,4 C B, see Defi-
nition 2.7.25. Section 2.7.3 defines an abstract K-cycle (R,p,6) over a *-algebra 

-4
where.R is a von Neumann algebra AC R, p is a faithful state on R and ô is a sym-
metric,4-derivation, see Definition 2.7.29. The GNS representation associated to an
abstract K-cycle, see Definition 2.7.3I, is the field of interaction between symmetric
.4-derivations, K-cycles and the standard theory of von Neumann algebras. Intrinsic
structural and geometric results follow in Remarks 2.7.35, 2.7.39, 2.7.44 and 2.7.48.
The highlight of the remarks is probably the notion of the Laplacian ,C6 associated
to a symmetric A-derivation d' and the relation between positivity of the Laplacian
and the modular flow on Ã, see Theorem 2.7.4L, Corollary 2.7.42, Remark 2.7.44 and
Theorem 2.7.47. Section 2.7.3 concludes with the result that a Riemannian represen-
tation of a C*-algebra A arising from a trace is equivalent to the GNS representation
of a tracial abstract K-cycle, see Theorem2.7.52. This result reduces the study of
tracial Riemannian representations of a C*-algebra Ato symmetric A-derivations and
traces on a'von Neumann algebra containing,4.

Section 2.7.4 attempts the converse to Theorem 2.7.52. It defines a Riemannian
cycle over a C*-algebra A as an abstract K-cycle whose associated GNS represen-
tation is a Riemannian representation of ,4., see Definition 2.7.54. While the means
of abstractly identifying a Riemannian cycle is beyond the present treatment, a par-
tial converse to Theorem2.7.52 is derived. Theorem 2.7.56 motivates a subclass of
Riemannian cycles called uniform positive Riemannian cycles, see Definition 2.7.57.
Theorem 2.7.59 is a generalised GNS result that constructs a Riemannian represen-
tation (Hp,,rp,D¿) of the C*-algebra,4 associated to a uniform positive Riemannian
cycle (-R, p,6) over,4 when p is a trace. The results and notions of Sections 2.7.2,
2.7.3 and 2.7.4 arc completely neïy as far as we know.

We remark that the notion of a symmetric ,A-derivation produces a natural bilin-
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ear map 56 : A x A -+ À where "4 is a Flechet pre-C*-algebra of the C*-algebra .4

contained in the von Neumann algebra .R, see Remark 2.7.35. The map ,S¿ is called

the metric sheer of the ,4.-derivation ð, Definition 2.7.37. The metric sheer, a com-
pletely general notion applicable to any abstract K-cycle (R, p, õ) over ,4., is shown to
correspond to the Riemannian metric when A : C(X) and X is a compact metrisable
oriented manifold with no boundary, see Example 2.7.6L.

The thesis concludes with an example of the concepts in Section 2.7. Section

2.8 details the Riemannian geometry associated to an irrational rotation algebra

As. The original nature of this presentation lies in constructing a Riemannian cycle
(Mz(Ae),ô, p) associated to an irrational rotation algebra As, see Theorem 2.8.8. The
general construction theorems of Section 2.7 provide a Riemannian representation as-

sociated to the cycle, see Corollary 2.8.9, which is proved to admit a Riemannian
geometry Theorem 2.8.L2. The well-known spin geometry of an irrational rotation
algebra, abundant in the literature, can then be derived if necessary from the Morita
equivalence of. A6 and Mz(Ae), Corollary 2.8.13. Section 2.8 concludes with the proof
that the metric sheer of the ,4.p-derivation ô, see Definilion 2.7.37, provides an orthog-
onal bilinear map 56 : As x A6 -+ nr(A!Çaù) in the sense ,S¿(u, u) : 2r : ^9¿(u, u)

and,56(u,u) :0 where ut): e2ni9rJrr, see Theorem 2.8.14. This result, coupled with
the result in Example 2.7.6L that 

^96 - -g for the usual commutative torus where g

is the Riemannian metric of the torus, makes the metric sheer 56 a strong candidate
for the role of metric on the non-commutative torus.

Contribution to the field

We summarise the contribution of this thesis to the field of non-commutative geometry

in the following manner.
The results of the thesis are divided into six possible categories.

The results in category one provide context or background for the topic of the
thesis. Obviously they entail no original contribution to the field and are unlisted in
the table below.

The results in category two are original collations of results in category one. The
collation and interweaving of existing results in the field are viewed as contributions,
albeit contributions of review and exposition, that may be of interest to readers.

The results in category three include new presentations or minor extensions of ex-

isting material in the field. The results in category three include preparatory lemmas

and propositions for results and notions in category four or frve, and sufficiently origi-
nal presentations in an original manner that extend existing material and/or precedes

and/or elucidates results in category four or five.

The results in category four are new results andf or notions that contain a contri-
bution to the field. These results include original extensions of existing material in
the field.

The results in category five are new results and/or notions that contain a major
original contribution to the field. These results include major extensions or generali-

sations of existing material in the field and solutions to conjectures in the field. There

are four notions and two results of category five in this thesis.

The results in category six are contributions to mathematics that are field gen-

erative, field establishing or field unifying. These results include novel directions in
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Riemannian Non-commutative Geometry





Chapter 1

Elements of Non-commutative
Geometry

The 'quantum' or non-commutative differential calculus is at the core of Connes' non-

commutative geometry [c, IV,VI.l]. To start with the most basic form of this calculus

we require

(Ð a separable C*-algebra ,4.,

(ii) a concrete representation of the C*-algebra ,4.

r: A-+ B(H)

onto a separable Hilbert space f/,
(iii) and a selfadjoint linear operator

D: DomD -+ H.

Demonstrating in what sense the triple (A,H,D) is a non-commutative generalisa-

tion of differential calculus is the purpose of this chapter. We review the essential

elements of commutative calculus, from our point of view, and then explain the non-

commutative emulations in the subsequent sections.

1.1 Review of Calculus and Differential Geometry

1.1.1 Basic Calculus

Consider the metric space (lR, d) where the metric d is defined by d,(r,y) :: lr - yl for
r,A € R. The metric topology is defined by the base sets l(n,h) ,: {A € IR I d(r' g) <
h\: (r-h,r *h,) for ø € IR,/¿ > 0. The directedset {.I(r,h)}nro for fixed ø € IR

defines a net in this topology that converges to {r}. We consider the point sets {ø} the

irreducible components of the topology. Irreducible in the sense .E C {"} + E : {r).
Components in the sense F : U"e¡'{ø} for all ,F C R'

Let f : IR + lR. be a function and - the equivalence relation defined by r - y if
l@): /(g). Then / defines a new topological space IR'/- with base sets /(/(ø'h)).
By this method we gain new topological spaces and new (inequivalent) presentations

2
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of the standard interval topology. Let / : lR -+ lR be a continuous function. First of
all, a continuous function has the property of preserving convergence of nets in the
standard topology. Moreover, the condition

j'g/(r(", h)): Í({"}) : {/(")}
quantifies a relationship between the topological spaces IR and R/- ut their most irre-
ducible structural level. Specification of this relationship is exactly what a continuous
function is.

Calculus carries the same ideas to the metric structure. Let f be a continuous
function. The map (do f)(n,A) : d(Í (r), /(y)) : R. x IR. -+ [0, oo) defines a continuous
semi-metric on lR, a metric on the quotient space lR/-, and from it the topology with
base sets f Q@,h)). We define

l@+h)-f(n-h) d,o r*h,r-h
(r+h)- r-h) : lt$'*"(/ (n+h) - f @-h)) d(r+h,r-h)

if it exists as the derivative of / at the limit {ø}. To say a function is differentiable for
all r € IR is exactly to say a proportion or relation exists between topological structures
defined by (semi)-metrics d o / and d. For any continuous function / we have the set

R¡(r):: {sgn(/(ø +h)- f (r-ùg+tffi}¡¡¡ that encod.es the metric relation
between the base sets of the topologìes.'The distinction of differeniiable functions
amongst continuous functions is this relationship exists between the metric structures
at the most irreducible level of the topology. In the case of the metric topology of
lR this means points {r} c R" The function l'@): lim/,-o R¡(*) quantifies that
relationship at each point. This is highlighted in the Leibniz notation,

Lt¡ - r,(r.\ , d,f @): ft(r)d,r.dr\*l - J \el

In common terminology, the symbol d!(r) is an 'infinitesimal'in the metric structure
d o /, defined as above in proportion to the 'infinitesimal' d,r of the metric structure
d at that point, We define the'length'of the infinitesimaldf (r) as

laf l@) = lft(r)ldr.

In dificrcntiation wc started with a continuous function /, and for a particular few
we obtained a function /' that quantified a pointwise relationship between the metric
spaces (R,d) and (R/-, d" l). Newton's Fundamental Theorem of Calculus says
that any continuous function g is itself quantifying a pointwise relationship between
such spaces. In pa,rticular, there exists an anti-derivative G such that g(r) : G'(r)
is quantifying the pointwise relationship between (R, d) and (R/-, d o G). An anti-
derivative G is defined by integration,

G(r): s(rt)dr',

for any fixed ¿ € IR.

The depth of this result in relation to the geometry of the real line cannot be
understated. The metric relationship existing at the irreducible level of the topology

3
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allows us to define a new semi-metric on lR for every differentiable function / from
the integral and the derivative by,

d ¡ (*, ù,: l,,ov,rl4) 
: 

I,,ollt 
(t)ldt.

for all r,g € IR. H"r" Ï,,0 denotes [! if r ( g and Ïf it * ) g in line with the
standard orientation on IR- The re-presentation of the metric structure has allowed
definitions of 'distance' between points with greater generality. Simultaneously, as far
as pointwise proportional alteration of the metric is concerned, 'distance' has been
classified.

!.L.2 Multivariable Calculus

Let X : IM with metric d(r,A) :: frn-Un for xry € R"rL- ++
The standard topology is given by base sets B(r, h) :: {y e R" ld(",ù < h,} for
r € IM ,h ) 0. Let f : lRn -+ lR- be a continuous function, which can be denoted
using the standard basis of IR' as f : (fu..., Í^) where /¡ : IRP -+ IR are continuous
functions for j: L,..,ffi. Let.D(R",Rm) denote the continuous linear functions. As
in basic calculus we are interested in relations between (R',d) and (lRm,do /). We
can begin to analyse the geometric consequences of the mapping / by using basic
calculus on each of the independent variables. Define the partial derivatives,,

(o¿Í¡)(q, "', rn) :: lim l¡@u.'.,r¿ * h, , rn) - f ¡(q,...t ri - h, ..., rn)
/¿-i0 2h

for all i : 7, ...,n, i : 1, ..., m. We say / is continuously differentiable if the partial
derivatives exist and are continuous. We denote this by / e Cl(n",lRm) or the
terminology "f is C1. The n'Lxn matrix associated to a Cl-function /: (.fr, ...,1*),
lRn -+ lRm,

J l (r r, ..., r n) :: lô¿ f ¡ (r 1, ..., r n)f,i=t,...,n, j =L,...,m

is called the Jacobian of / at (r1, ...,rn) € IR3 [cr, 6.4]. The Jacobian of / is the
pointwise standard matrix representation of the function

d/ : R" -+ ¿(R7', R7")

called the derivative of f ,lct, Thm6.7,Thm6.8]. The chain rule in the multivariable
setting for g o /' IM J R-, where "f r R" + IRp and g : lRp -+ lRrn are differentiable,
is [cr, 6.12]

J ¡ o s (r 1, .'., n n) : J s (l (r b "', r 
")) 

J ¡ (r t, ..', r n).

Recall the bijection.L(lRn,R-) = IR3*, which introduces a metric topology on
¿(K, ìRn). Derivation is then a map

a: cl(M,tK') -+ c(w,¿(tR",tR-))

and the function d/ e C(R",tr(R",R-)), provided its partial derivatives exist, has

the derivative,
d,(df) : IR' -+ ¿(R", ¿(R", R^)).
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The partial derivatives of d/ exist and are continuous if ô¿ô¡ f exist and are continuous
fori,i:1,...,n.'Wedenotethosefunctionssucht}natô¿ô¡f existandarecontinuous
for i, i : 1, ..., n by C2 (R", R" ). FYom the isomorphism ¿(K, tr(R", R")) -+ I(R3 x
IP,IR-), where the right hand side denotes multilinear maps, we have the second
derivative

d2 : c2(W,,R") -+ c(w,r(Rl x R",R-)).

\Me can continue this process indefinitely to define Cp(re, lR') for p € N as functions
such that ô¿r...ô¿ol exist and are continuous and

¿n t Çn(W,R,) -+ C(R",tr((m"¡xr,R-)).

The class of smooth or infinitely differentiable functions C-(R", ìRm) are those such
that / € ce(R3,JRm) for all p e N.

Like the derivative in basic calculus, the Jacobian of / provides a measure of
what the mapping / does to the metric relationships between the points of lR3 in the
context of the metric space IRm. For example, the Jacobian of / contains information
on the tangent spaces, which are the multidimensional versions of the ratio ft : ffi
in basic calculus above. Specificall¡ let r¿ < rn, f : IK -+ K' be differentiable
and r € IRn. Then -I¡(ø) '(kt,...,kr,) for (kr,...,k") e IRn defines vectors in the r¿-

dimensional tangent space to the surface /(R3) C IRrn at the point /(ø) e IRn [cr,
6.51.

We also use the Jacobian of /, the generalisation of the derivative of /, to define

'infinitesimal volumes' on / (Rf ) . Recall from basic calculus the pointwise relationship

larl@) : lft(r)ldr
of infinitesimal lengths in (R,d) and (R/-, d" f). Similarly we want to measure
the pointwise variation in volumes under the mapping "f : lR" -+ /(K). Let V ::
{ut,...,un} be n vectors in IR- arrd M(V) be the n1 x n matrix formed by taking
u¿ as the ith-column. Let E(V) t: {* € IRTn l, : D?:rt¿u¿ , t¿ € [0,1], D¿t¿ :
1) be the closed convex hull of {uu...,un}. This can be intuitively thought of as

a n-dimensional parallelogram in IRm. Then the volume of this region is given by
Vol(E(Iz)) : {d,et(M(V).M(V)) where * denotes the transpose of. M(V) [sr, XI
Cor2.2]. Let e¿ € IRn be the ith standard basis vector. We recall that the vectors
rt¿:: ,I¡(n).ei: ith-colrrmn of J¡(r) span the tangent space of /(R) at /(r). Hence
we define the infinitesimal'volume' element by

ldll@t...rn) = det(J ¡ (r 1, ..., n n)* J ¡ (r 1, ..., r n)) dr t...dr n

Let z € IRU and / be differentiable. We call the function

9/ , IRI -+ ¿(lR'r,R') , 9¡@):: J¡(r).J¡(r)

the Riemannian metric of /(R). We commonly shorten the notation of infinitesimals
to ldfl(*) = Jffi¡@ar. The metric allows us, in particular, to redefine the
volume of an open set ,4. € IR3 with standard orientation via [Sr, XI.3,XI Prop2.4]

5
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which is also referred to as the'surface area'of /(,4) c R-.
Particularl¡ and importantly, r¡¡e can now measure distance and direction along

oriented'paths' in FRln. That is, orientation preserving embeddings 7:lR -+ lRm such

that l¿ is piecewise continuous. The arclength distance between points on the path,
0,b € 7(lR), is given by

$(a,b):: ldtl: lo@)2d'r
I (o),r- 1 (b)

using the fact Jr(r) : (ll@),...,1'*@)).
There are, of course, many paths 7 between two points r,A e W. If we were to

measure 4@,y) for all such oriented paths, we would find that the straight line I
from r to g provides the 'shortest' path. That meaning

d¿(r,a) < dr(*,a)

for all oriented paths 7 such that r,g € 7(R). In fact

d(*,ù : d¿(r,u) : 
,,rp"f1m )dr(r,g).

This insight extended to surface embeddings / : IR' -+ IKn allows us to define metrics
for subspaces of IR- not so geometrically uniform as the restriction of the standard
distance. Due to the embedding property of "f, all oriented paths in the subspace

/(R') can be defined by the composition T o'f: IR. -t IRm where 7: lR -+ IRn is an
oriented path in R.'. We can then define a metric for r,g e /(R') by

ld(l " t)l

where 7 is a oriented path connecting Í-t(*) and /-1(g). The Jacobian of the compo-
sition function can be calculated from the chain rule, Jlot: J¡J.r. The introduction
of "I¡ entails that 'shortest distance'on a path from /(z) to l@)'along' the surface

/(R) i. not necessarily the straight line distance in lRm.

Exarnple A simple example is / : IR2 -+ R3 given by f @,A) : (r,A,,r2 I y2). the
image C* : /(R2) is the positive circular paraboloid in IR3. The paths of shortest
distance are straight lines in l-t (C+) : IR2 which become curved paths on the surface
C+ - /(R2) when mapped into the space R3 under /.

We have seen that multivariable calculus involves the principles of basic calculus
of lR in conjunction with linear algebra. This combination leads to a richer theory.
We can define length along one-dimensional embeddings or in the multi-dimensional
space, and surfaces have other metric related relationships between points other than
just distance such as torsion and curvature. These concepts are defined and quantified
in the theory of sub-manifolds of Rm, which leads to the general abstract theory of
differentiable manifolds.

d¡(*,a) :inf I
t Jt,a
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1.1.3 Differentiable Manifolds

Let X be a second countable metrisable locally compact r¿-dimensional topological
manifold with a chosen locally finite atlas

þo:Uo-+W

for a € .ô. a countable indexing set [sr, II.1] [st, 5]1. We recall [Io are open sets,

sometimes called co-ordinate patches or just patches, such that X : UoUo and /o :

Uo ) IR' are open and continuous injections. That X is a topological manifold means

on any overlap of patches WB,a i: UsflUB the overlap maps

b)þ,a t: óp " óãr : So(Wp,o) -+ þB(WB,.)

are homeomorphisms. The overlap homeomorphisms upd a;e maps JR' -+ IP, hence

fall under the multivariable calculus. If the overlap mâps are p-differentiable (resp.

smooth), X is called a p-differentiable (resp. smooth) manifold. If the overlap maps
preserve an orientation of IR' [Sr, XI.3] then X is called an oriented manifold. Note
these designations are all with respect to the chosen locally finite atlas.

Let X be a topological manifold. Let f : X -+ IR- be a continuous function. Then

Í " óãL : IR' -+ lR- is continuous. Let f : X -+ Rm be a continuous function such

that / o ó;r : IRn -+ lK" is a differentiable function in the multivariable calculus sense

for each a € 1L. Define the Jacobian and metric of the function f at a point r in a
chart Uo by

J"(Í, r) r: J 
f oô;' (ö"("))

and

9"ff , r) r: J 
ln,l,;, 

(ö"(r)). l, 
"+;t 

(ó"(r)).

This is valid in each chart. However, in an overlap r € UoñUp, we could define a

derivative and metric at ø using the Jacobian for the function I " óãr or / o óBr. tn
general the two Jacobians will not agree, of course. They are matrix representations
of a linear mapping called the derivative, hence basis dependent. However, they may
not agree even up to a change in basis. Hence the Jacobian of / at a point r € X is
potentially ambiguous. This ambiguity does not exist on a differentiable manifold X
as differentiabilitv of the overlap function øp,." ensures Jp(,f ,r) : J"(óp,r)J"(f ,r)
[cr, 6.12]. Hence, on a differentiable manifold X, we say a function / : X -+ IRm is
differentiable if / " óor : IR3 -+ IRn is a differentiable function for each o € Â. A
difierentiable function I , X -+ IRrn has a well-defined Jacobian J¡(r) at each point
reX.

Let X be a second countable metrisable locally compact differentiable manifold.
Let r € X and u,ø € IRn. We say (Uo,óo,tr.') and (Up,óB,u) are equivalent if

1We recall for topological spaces: (1) second countable, locally compact and Hausdorfi + Lindelöf,
locally compact and Hausdorff =à ø-locally compact + paracompact and every cover has a countable
locally finite subcover [FI, 10] [St, 5], and (2) second countable, locally compact and Hausdorff
â regular with ølocally finite base <+ metrisable [FI, 10] [St, 5]. As a result second countable
metrisable locally compact topological spaces are equivalent to second countable locally compact
Hausdorff topological spaces. 'We also note: (3) second countable, metrisable + paracompact with
countable base [St, 5], however (4) second countable, metrisable f locally compact.

!



B CHAPTER 1. ELEMENTS OF NON-COMMUTATIVE GEOMETRY

w : Ja(óþ, ø)u. This is an equivalence relation on such triples and the equivalence

class [z] is called a tangent vector at r e X. The tangent space TrX is defined to be

the set of all tangent vectors at r and proved to be a n-dimensional vector space. We
,denote by L(W,V) the continuous linear functions from a topological vector space

W to a topological vector space V, and by L(W xW,V) the continuous multilinear
functions fromW xW -+ I/. We have the well defined derivative of. J : X -+ IW71,

df : r r+ L(T,X,R-) , df (r)ful:: Jo(Í,r)u

which is independent of the choice of (Uo,óo,u) e [r]. Similarly metrics are well
defined independent of the chart

gU), r + L(T,X,T"X), 9(Í,ø)[u] :: lg"U,*)rl'

Metrics are equivalently viewed as multilinear symmetric functionals,

g(Í), rè L(%X xT*X,R) , g(/,")([r],[tr.']) :: u*so(f ,r)w.

Let X be a second countable metrisable locally compact p-differentiable (resp. smooth)
manifold. For each r e X, let z(r) : IM -+ lRn be a pdifferentiable (resp. smooth)
bijective function. Define the p-differentiable (resp. smooth) function h : X -+ IRn by
h(n) :: u(r)(þ"(r)) when r e (Ja for some o. We call the metric g(h) a Riemannian
metric on the p-differentiable (resp. smooth) manifold X. Henceforth we shall refer
only to Riemannian metrics of the manifold X.

Let X be a second countable metrisable locally compact differentiable manifold
and 9(h) aRiemannian metric. Let / : X -+ R. suchthat I "ó;t : IRU -+ R is Lebesgue

measurable for each a € Â. We can define the integral of / over an oriented patch

Uo c X using multivariable calculus,

det(e"(h, r))dS"@)

To use this formula to obtain a linear positive definite functional on the set of all such

functions we have to (1) sum the contributions from each chart without 'overcounting'
the contributions on the overlaps, and (2) the orientation of the patches must be

consistent so that cancellation does not occur in the summation. Let f : X -+ IR

be such that / o ó;r t lR' -t R is Lebesgue measurable for each a € .ô.. Define the
support of the function / as supp(f):: {r e Xlf (r) l0}. As the atlas is locally
finite each r € X is contained in the intersection of a finite number of patches and
there exists a continuous partition of unity [Sr, II Cor3.4]. A partition of unity is a
set of continuous functions {po: X -+ [0,1]] such that supp(po) : Uo and

t po@):t
p1?u,t

for all r e X. The functions.po can be chosen to be smooth if X is a smooth manifold.
The integral of /, if it exists, is defined b

Ing)::D I p,@)!(r)du*
o J[Jo

fu.l{ùor.(r) 
:: 

Ir,rr.rÍ "ó;r(r)
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and is linear and positive definite when X is an oriented manifold. An alternative
notation for this formula is

I

det (s(h,r))d,r.

Let X be a second countable metrisable locally compact differentiable manifold
with Riemannian metric a(h). Let -E be a Borel subset of X and denote by X¿(r) the
characteristic function of 82. We refer to the measure €e defined bV ts@) ,: Is(Xø)
as the Lebesgue measure of the pair (X, g(h)).

It is standard in differential geometry to denote the pair of a differentiable second
countable metrisable locally compact manifold and a chosen metric by (X, g(h)). We
shall not be considering changes of metric however, so after this section we shall
usually denote such a pair by X and consider the metric to be present,'fixed and
denoted by g without reference to the function h,. We denote thdmeasure {, associated
to (X,9) as just {, and call { the Lebesgue measure of X.

With integration and derivation now defined on a differentiable manifold, distances
and directions can be defined for oriented paths 7 : IR -+ X in complete analogy
with the multivariable case. This leads us to the metric distance on a difierentiable
manifold. Let r,y e X, then

d(r,y) ,: inf-, I Vll.Ja,U

for all oriented paths 7 such that r,g e 7(lR). The metric d: X x X -+ [0,oo) is
called the geodesic metric on X.

We have overviewetl the basic application of urultivariable calculus in definirg
calculus on a differentiable manifold. We return later to algebraic structures on a
differentiable manifold based on the calculus introduced above, see section 1.3. We
note we have taken the derivative and the integral of real-valued functions thus far.
We shall henceforth consider all functions to be complex valued unless explicitly
stated. As /(r) : il*) +if2(r) for f1,/2 real-valued, differentiation and integration
are defined by linear extension.'

Non-Commutative Calculus (Part 1)

In the review above of multivariable calculus we encountered the following basic ele-
ments that, together with linear algebra, provided the theory of multivariable calculus:

(i) the second countable metrisable locally compact topological space X,
(ii) the algebra of continuous complex valued functions C(X) on the space X,

2We recall the Borel sets are the elementò of the algebra ß(X) of subsets of X generated by
complements, countable unions and countable intersections of open subsets of X. The characteristic
function of a Borel set .Ð is the function that is I on E and 0 on X \ E.

rnu): l.røl
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(iii) the derivative operation on differentiable functions Ct(X) C C(X),

d: cL(x) -+ c(x,L(TX,C)),

where TX :: UrçyTrX is the disjoint union of tangent spaces and
C(X,L(TX, C)) are the continuous functions X -+ L(TX,C),

(i") the integral of a continuous function over the space X, which can be viewed
as a linear positive definite functional

I:C(X)-+Cu{ooi.

(") a geodesic metric derived from the integral and derivative.

In this chapter we are concerned with the emulation of the elements (i)-(v) in
the non-commutative environment of the triple (,4,, H, D) defined in the introduction.
In part 1 we deal with the elements (Ð-(iii). Section 1.2 identifies the separable
C*-algebra A as a counterpart of the continuous vanishing at infinity complex valued
functions on a second countable metrisable locally compact topological space, and the

structure spaces of the C*-algebra PS(A) tÌ ¿ E Prim(.A) as the counterpart of a
second countable metrisable locally compact topological space. Section 1.3 introduces
the exterior derivative on a differentiable manifold X, which is a generalisation of the
derivative operation. Section 1.4 identifies the derivation z-(ø) è lD,zr(a)] for a subset
Ar C A as a counterpart to the derivative operation and introduces the counterpart
to exterior derivation.

Basic Definitions

Let V and W be topological vector spaces over C. All vector spaces we consider shall
be vector spaces over the field of complex numbers C. We denote by L(V,W) the
continuous linear functions V -+ W. Let Vxp denote the pth Cartesian product of
I/. We denote by L(Vxn,W) the continuous pmultilinear functions Vxp -+ W, and
Lo(V'p ,W) fhe antisymmetric element s of. L(Vxn ,IZ). An involution * : V -+ V of. a

topological vector space is a conjugate linear map such that u** : (u* ) 
* : u Y u e. V .

Let A be a vector space with product m: (a,b) r+ ab such that

(i) (associative) m(ab,c) : m(a,bc) V a,b,c e A,

(ii) (distributive) m: Ax A -+,4. is a multilinear function.

Then ,4. is called an (associative) algebra over C. We define the commutator [.,.] :

AxA-+Aby
[a, b] :: m(a,b) - m(b,a) : ab - ba.

The algebra .4 is called commutative (or Abelian) if the commutator map is trivial,
that is, rn is symmetric or ab : ba V a,b e A. We define the centre of an algebra ,4
by Z(A) :: {b € Allo,ó] : O V a e A}. The algebra .4 is called unital if there exists
an element, the unit or identity, e € A such that m(e,a) : o! : m(a,e) Y a e A. A
topological algebra ,4 is an algebra .,4. such that A is a topological vector space and
rn e L(Ax A, A). A topological algebra .4 is called separable if it admits a countable
basis. An involution * of a topological algebra ,4. is an continuous involution * : A -+ A
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such that (ab)* : b*a* Yab e A. A topological algebra admitting an involution * is
called a topological *-algebra. A normed (*-)algebra is a topological (*-)algebra with
norm ll 'll (and isometric involution). A Banach (*-)algebra is a normed (*-)algebra
that is closed in the norm topology. A C*-algebra ,4, is a Banach *-algebra ,4 such

thatllo-øll :lloll2 Vae A.

A homomorphism between topological (*)-algebras ,4. and B is map þ e L(A, B)
such that S@b) : ó(")ó(U) (and {(a-) : ó(o)-). An isomorphism / : A -+ A
of a topological (*)-algebra A is called a (*)-automorphism of ,4.. The set of (-)-
automorphisms of A with the product of composition of maps and the weakest topol-
ogy making each automorphism continuous is a topological group denoted Aut(,A).

A module (W,,n) of a topological algebra A is a topological vector space W with a
homomorphism zr : A -+ L(W,W). In this context r is referred to as a representation
of r4.. Injective representations are referred to as faithful representations. Represen-
tations such that r(A)W is dense inW arc called non-degenerate. A representation
r : A -+ L(W,W) of a topological *-algebra A shall be taken to include the con-
dition L(W,W) admits an algebraic involution | : L(W,W) -+ L(W,W) such that
zr(a*) : n@)t y'o € A. Let Abe a topological *-algebra and (W,zr) a module. The
topological *-subalgebran(A)' ,: {T e L(W,W)llf,n(a)l:0 V¿ € A} is called the
commutant of r(A).

Let H be Hilbert space. We say -FJ is separable if it admits a countable orthonormal
basis. We denote by C(H) the closed linear operators on fI, B(H) :: L(H,ÍI) the
C*-algebra of bounded linear operators on H, K(H) the compact operators on Il,
and FR(H) the finite rank operators on f/. We recall the norm closure of ,F'A(fI) is
K(H) and the compact operators form a norm closed *-ideal of B(H) [S, Thm 1.3].

Let sp(^9) denote the spectrum of a bounded or selfadjoint linear operator on ,[/ [ns,
vI.3,VIII.1l,

Let K : DomK -+ f/ be a selfadjoint linear operator. We recall if S e B(H)
has the properties SDomK C DomK and supr., 

"^x,llr¡llt 
ll[¡f, ,S]ryll ( oo then the

closure of the linear operator lK, Sl with domain DomK is a bounded operator. We
will abusively refer to ,S e B(H) satisfying the conditions of the last sentence for
selfadjoint K e C(H) by the term [K,^9] is bounded.

We introduce the uniform, strong, o-weak and weak operator topologies of B(H)
where 11 is separable. Let .R be a *-subalgebraof B(H). We recall a sequence o' of
elements of -R converge to a e B(H)
(i) uniformly if lla" -øll -+ 0. The uniform closure of .R is a C*-subalgebra of

B(H) that we typically denote by Ã.

(ii) strongly if ll(o" - a)nll -+ 0 for all r¡ e H. The strong closure of ,R will be
denoted Sú(,R) c B(H).

(iii) o-weakly ill¡,¡,(n¡,Ø" - o)€*) -+ 0 for all (q¡,€¡) e H x f/ such that

D¡llnill',D¡ ll(¡ll' < *. The a-weak closure of -R will be denoted W,(R)'
(i") weakly if (r¡,(a" - o)€) -+ 0 for all (4,€) € If x,F1. The weak closure of .R is

a unital C*-algebra denoted by W(R). The commutant -R/ of rB is an example
of a weakly closed C*-algebra. The terminology R acts non-degenerately on fI
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means RIl is dense in If, or equivalentl¡ the unit of W(R) is the unit of. B(H).
Let R act non-degenerately on f/. Then we denote the weak closure by the
double commutant R" : (H)' :W(R).Further, the strong, o-weak and weak
closure of .R are identical (though the weak topology is weaker than the o-weak
topology which is weaker than the strong topology). These results follow from
von Neumann's bi-commutant theorem, lYea, 2.2.2,2.2.5] [vu].

Let A be a normed *-algebra and f/ a Hilbert space that admits a non-degenerate
representation zr : A -+ B(H). TVe refer to the module (H,n) as a (concrete) repre-
sentation of the normed *-algebra A. When I/ is separable the representation (f/, zr)

is called separable. In this case the above topologies can be applied to n(.4) as a
*-subalgebra of B(,ff).

Let A be a C*-algebra. Let A* :: {a*ala €,4} denote the positive elements of
,4, [uu, 2.2]. rWe recall a weight on ,4. is an additive mapping

r : A* -+ [0, oo].

Since the positive elements ,4+ complex linearly span A [nn, 2.2.11], from any weight
we may uniquely form the linear mapping

r: A-+ AU {oo}

by linear extension.
We recall any C*-algebra A possesses an approximate unit {rr}rr, [uu, 3.1.1]. That

is, a directed set Â. and us e A+ such that lim¡6¡llu¡o- oll : O for all a e A. A
positive linear form o on A is a weight such that lim¡ o(u¡) 1 M for all approximate
units {u¡}¡ and some fixed M > 0.

I.2 Non-Commutative Topological Spaces

The theory of C*-algebras is often called non-commutative topology. We shall take a

C*-algebra -4 to be the 'non-commutative functions' on the 'non-commutative space'

PS(A) t4 ¿ E Prim(,A) where PS(A) is the pure state space, á tt" spectrum, and
Prim(,4) the primitive ideals of á respectively. To understand this association we
review the structure of C*-algebras.

L.z.L The GNS Construction

Let A be a C*-algebra. Let r be a positive linear form on ,4, and define N, :: {a e
Alr(a.a): 0). \Me have the following'GNS construction'from Gelfand and Naimark

[cu] and Segal [se]:

(i) The space try'" is proved to be a closed left ideal of .4.

(ii) We define the factor space

A¡:: AlNr.

(iii) We let ar i: a * n for a € A,n e Nr denote an element a, e. Ar. Then

(ar,br), t: r(a*b)
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defines an inner product on A,
(i") We can define the Hilbert space

H,:: A,

as the closure of the pre-Hilbert space -4, in the inner product (., ')"
(") The canonical inclusion map

4:Ar)H,
is a linear injection with dense range, and

r"(a)a(b") -- 4(a,b,)

defines a non-degenerate representation r, : A-+ B(H").
fn summar¡ to each positive linear form r of a (separable) C*-algebra ,4 we

construct the associated (separable) 'GNS representation' (f/", nr) of ,4.. The positive
linear form r and the GNS representation rr a,re faithful if 

^ã: 
{0}.

L,2.2 Topological Spaces associated to a C*-algebra

There are three fundamental spaces associated to the structure of a C*-algebra A.

(1) Pure State Space, PS(A)

Let A be a C*-algebra. We recall the dual A* i: L(A,C) of ,4. consists of all
continuous linear functionals

r:A-+C,.

The dual has two topologies we consider,

(i) the norm topology from the norm

llrll :: sup lr(a)l
lloll<t

(ii) the weak*-topolog¡ which is the locally convex topology generated by the
l'amily of scmi-norms

po(r):: l"(r)l , ae A.

The linear extension o of. a positive linear form

o : At -+ [0, oo)

has the defining property [uu, 3.3.4]

lima(u¡) : ll"ll

for all approximate units {r.i}rr of ,4.. Hence o belongs to the dual4,* of continuous
linear functionals. The extensions of positive linear forms on ,4. are called positive
linear functionals on A.
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Let ,S..(,4, C) denote the positive linear functionals on -A of norm less than or
equal to one. Then S+(Á, C) is a convex weak*-compact subset of /* [oix, 2.5.5]. We
denote by Extr(^9-.(,4, A)) the extremal points of ,S-.(.4, C). We define the pure states
as the non-trivial extremal points,

PS(A) :: Extr(,S+(,4, A)) \ {0}.

We give the space PS(A) of pure states the topology of the restricted weak*-topology
from,4*. We recall that PS(.A) separates A [uu, 5.1.11]. This means for any non-zero
a e A there exists p e PS(A) such that p(") # 0. This implies the weak*-topology is
Hausdorff. We recall our initial formulation of the triple (A, H,D) involved a separable
C*-algebra.

Theorem 1.2.1 (i) Let Abe a C-algebra. Then PS(A) is a Hausd,orfftopological
space (giuen the weald-topology).

(ä) Let A be a separable C-algebra. Then PS(A) is a complete second countable
metrisable topological space (giuen the weak*-topology) [rea, 4.3.2].

The realisation of PS(A) as a complete second countable metrisable topologi-
cal space determines the exclusive role of separable C*-algebras in non-commutative
geometry.

(2) Spectrum, Á

A representation (f1, n) of. a C*-algebra ,4, is called irreducible if r(A)t : {,S €
B(H) l["(o),S] : o Va € A) : Cl where 1 : id¡r [uu, 5'1'5]. We denote the
irreducible representations of ,4 by Irr(.4). A consequence of irreducibility is every
non-zero vector t e H is cyclic for A, that means "(A)€: ä [Mo, 5.1.5].

Let p e PS(A). Then the GNS representation (Ho,rp) associated to p is irre-
ducible [se] [uu, 5.1.6]. A cyclic vector is given by ( : lim¡ r.r(z¡) for any approximate
unit {u¡} of. Ao. Conversely given an irreducible representation (f/, n) with unit cyclic
vector € e H, one can define the pure state p(o*o) ': ({, n(a*a){)¡¡ : A* -+ [0,-)
such that (H,n) is the GNS representation associated to p [se] [uu, 5.1.7]. This leads
to the following result at the core of the structure of C*-algebras,

PS(A)

p

<+
<---+

Irr(,4)

lfp

We say that representations (Ht,nù and (H2,n2) of. Aarc unitary equivalent if
there exists a unitary U : H1-+ Hz such that Uir{a)U* : rz(a) for all a e A. Unitary
equivalence is an equivalence relation on representations of A which restricts to the
irreducible representations of ,4.. We denote unitary equivalence of two representations

Â::hr(A)l_u

Flom the isomorphism PS(A) -l Irr(.4) we will denote an element of the spectrum
by the class [(f/p, Tp)]u e L or equivalently [p)" e ¿,.
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With the identification of ,Â as a quotient

S(A) -+ PS(A)l-,<+ Â

we can induce the quotient of the weak*-topology on á. In general Á with this
topology is quasi-locally compact but not Hausdorflls [oix, 3.3.7].

Example 1.2.2

a. Let A: Co(R) be the C*-algebra of continuous vanishing at infinity con-
tinuous complex valued functions / : IR -+ C. As Co(R) is commutative it com-
mutes with itself. Hence for any representation (f/,zr), r(C¡(ìR)) C zr(Cs(R))'.
In particular, all irreducible representations are one-dimensional as zr(Cs(R)) C
r(C¡(R))' : Cl' Flom this one easily shows that

Irr(C6(1R)) : {(C, zr,) | r e R}

where
r, : C6(R) I C, n,(l)z : f(r)z Y z eC.

Since unitary equivalence is equality on one-dimensional representations,

PS(A)=á=R.

The pure states pt are given by pointwise evaluation

p,(f):: f(r).
Hence a base for the weak*-topology on PS(A) is given by

Bt(p",e) :: {ps I l/(") - Í@l 1e,l e Co(n)} : B(r,õ¡)

where ô¡ > 0 is defined by a e B(r,õ¡) + Í@) e B(f (r),e) in the definition
of continuity of 

"f 
. Hence the weak*-topology is just the standard open interval

topology on IR. and Â <+ PS(A) is homeomorphic to IR. These spaces are both
locally compact and Hausdorff

b. Let A: M"(C) be the C*-algebra of n, x n complex matrices,

Proposition 1.2.3 Let A : M"(C) be the C -algebra of nxn compler matrices.
Then

(i) PS(A) ^. PU??(C)

(ii) Á = {r}.
where PU"(C) is the project'iue unitary group.

Proof Lectures Notes [ner]. tr
3We recall that a topological space X is quasllocally compact if every point ø € X has a quasi-

compact open neighbourhood U. An open set U C X is quasi-compact if every open cover of [/ has
a finite subcover. A quasi-compact open set U is called compact if it is satisfies the ?o separation
axiom [FI].
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(3) Primitive Spectrum, Prim(A)

Define a set of closed two sided ideals of ,4. called the primitive ideals,

Prim(,4,) ;- {ker rpl p e P^9(,4)}.

The relatiotr p -p o if kernp : kerzro is an equivalence relation on PS(.A) that
commutes with -¿. We distinguish the equivalence classes of. p e PS(A) where
necessary by lpl" and [p]o. A C*-algebra .4 has the sequence of surjective maps and
quotients,

PS(A) I3 A e+ Prim(A)

p+l(Hp,np)l"r+kerro.

We will define a topology on Prim(,A.). Let ,I be a closed ideal of A and define

hull(/) ,: {a € Prim(,A) lI c a).

For a subsetY C Prim(A) define

kernel(Y) :: ñseyU

which is a closed ideal of ,4. Then there exists a unique topology such that huil(kernel(Y))
defines the closure of Y c Prim(,4) [uu, 5.4.6]. The topology is called the Jacobson
topology. The induced Jacobson topology on .4. is the weakest topology such that
Á fg Prim(A) is continuous.

Remark L.2.4 Ttre map -I r+ hull(/) is a bijection between closed ideals of ,4 and the
closed subsets of Prim(.A), and inverts the partial order, \ C 12 iff hull(/2) C hull(ft)
[uu, 5.4.7].

Example 1.2.5 As an example, consider the C*-algebra Cs(lR), We recall lR was

homeomorphic to PS(C6(R)) : {p,lp"ff): /(r)} given the weak*-topology.
Now

Prim(C¡(R)) : {ker rp,} : {I* : {/ e Co(R) I /(") : O}}

Clearly I e I"# I e Io and f e Io# I elrfor r*A. Hencethethemap

R. -+ Prim(Co(R)) , r -+ I,

is a bijection. Let Y C R and Iy : {I* lr e Y}. Then

kernel(Iy) : tl,eyl* : )nev{Í € Cg(R) I /(") : 0} : {/ € Cg(R) Il@) :0 Vø e Y}

where IZ denotes the closure of Y in the usual topology on IR. Hence

Iv : hull(kernel(.Iy)) : {1, € Prim(,A) I f" I 1¡ € Co(R) I f@) :0 Vø € Y}} : Iv.

The bijection IR + Prim(C¡(R)) is a homeomorphism. We also see

PS(C0(R)) = Co(R) ry Prim(Cs(rR))

as topological spaces. This is not true for a general C*-algebra ,4. We shall see

that PS(A) e Prim(,4.) if and only if ,4 is a commutative C*-algebra.
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Let A be a C*-algebra. Then PS(A) separates A. In particular for ¿ € ,4. there
exists p e PS(A) such that p(o) : lloll [uu, 5.1.11]. Hence no@) I 0. We note
if no@) I 0, which occurs ifr roþ) I kernp, then r"(a) l0 for any o e lplo by
construction. Hence PS(A) separates ,4. implies Prim(,A) (and so á) separates ,4. in
this sense.

We can now realise the structure of C*-algebras with the following decomposition
theorem [uu, e.+.t] [cn],

Theorem 1.2.6 (Gelfand-Naimark Theorern) Let A be a CT-algebra. Let H ::
(E¡p1,eÁ H, and *,: Olpl.e ¡trr' Then (H,n) is a faithful representation of A'

Remark L.2.7 (H,zr) is called the universal representation of A. It is unique up to
unitary equivalence. There is some degeneracy in the universal representation, in the
sense $¡e use a representative of the unitary equivalence class [p]" to obtain a faithful
representation, where all that was needed v¡as a representative of [p]o since Prim(A)
separates A. Let op e lp)p for each p e PS(A). Then I// :: @ooHoo and rt i: Øopnop
defines a faithful representation (I1', n') of. A. However, this representation is not
uniquely determined up to unitary equivalence. Two representations (f/oo, ror) arrd
(Ho,o,To,) where op, 

"', e lp]o may have the same kernel but not be unitary equivalent.

This occurs as -4 -+ Prim(,A) is only a surjection in general.

There is significant structural difierence when ,4 -+ Prim(,4.) is a bijection. A
C*-algebra such that L -+ Prim(,4,) is a bijection is called postliminal.

Theorem L2.8 Let A be a C-algebra, Then

(i) the surjection PS(A) -+ Â. is continuous and open,

(iÐ the surjection PS(A) -+ Prim(A) , p) kern, is continuous and open,

(iii) the quotient topology on Â as a quotient A: PS(A)f -u anil the ind,uced

Jacobson topology on Â ¡ro* Á I eri-1 A) agree.

Proof (i) [oix, 3.4.11] (ii) [rea, 4.3.3] (iii) [nix, 3.4.11] D

Theorem L,2,9 Let A he a C -alge.bra. The.n

(i) Prim(A) i,s a locally compact Ts-space,

(ii) Â it o IocaIIy quasi-compact space,

(iii) A i, a locally compact Ts-space, itr A !::, Prim(,A) ,is an isomorphism,

(i") A is unital + Â. and, Prim(,A) are compact.

Proof [oi.x, 3.1.6] (iv) [Mu, 5.4.8]

Note the converse of (iv) is false [uu, 5.4.8]. For non-unital simple C*-algebras
Prim(,A) : {0} is a one-point space, and a particular example is the compact operators
on a Hilbert space f/ where [(f/,Id)], : K(Ð = Prim(K(¡I)) : {0}.
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Theorem 1.2.10 Let A be a C-algebra and Z(A) : {b e Al [ø,b] : 0 Va € A] be

the centre oJ A. Then the following are equiualent

(i) Prim(,A) is a locallg compact Hausdorff space,

(ii) z(A) = Ce(Prim(,a)).

Proof (i) + (ii) that Z(A) C C6(Prim(A)) is a closed *-subalgebra is established by

1Yea,4.4.4). Let / € C6(Prim(,a)) and À e Prim(,4.). Let 
^ 

c ..î denote the set such

that ker[zr](Â) : À. Then n(/) : OÀep.i-(A) O^ /(À) is a central element of nu(A)
where (Hu,nu) is the faithful universal representation of ,4 (Gelfand-Naimark Theo-
rem). Clearly rc is a a faithful representation such that T7(Z(,A)) I rc(C¡(Prim(A))).
(ii) + (i) BV the Gelfand Theorem in the next section Z(A) : Co(t) for a locally com-
pact Hausdorff space D. Hence C0(D) = Ce(Prim(A)) which implies D and Prim(,A)
are homeomorphic. ¡

To summa¡ise, the structure of a C*-algebra is encoded in the triple of topological
spaces

PS(A)ll+¿9e'i'o1a¡

where PS(A) is Hausdorff but not locally compact in general, and Prim(.A) is locally

compact but not Hausdorff in general. The triple PS(A) t* ¿ E Prim(.A) is consid-
ered the 'non-commutative space' associated to the C*-algebra .4. This interpretation

comes from the form of the sequence PS(A) U+ ¿ g Prim(,A) in the sub-theory of
commutative C*-algebras.

t.2.3 Commutative C*-algebras

Let Abe a commutative algebra C*-algebra and P^9(.4) B ¿ E Prim(A) the pure
state space of ,4,, the spectrum of ,4. and primitive ideals of ,4, respectively. The

fund.amental property of a commutative 'non-commutative space' is PS(A) t4 ¿ E
Prim(,A) resolves to the single locally compact Hausdorff space D(A),

Theorem L,2.LL Let A be a C -algebra. Then A is commutatiue iff the continuous
and, open surjections

PS(A) 1 A9 e'i-1R¡

are homeomorphisms.

Proof (+) Since .A is commutative, then for any irreducible representation zr :

A-+ B(H) we have r(A) cr(A)' c Cl. Hence any irreducible representation is one

dimensional, and unitary equivalence -, restricted to Irr(,4,) just becomes equality.
Further, ker zr has co-dimension one, hence ker n1 : ker 12 iff n1 : ¡2,

(c) The isomorphism implies [nÀ : r, for p e PS(A). Then Uno(o,)U* -
nr(a) + lnr(o),Ul : 0 for all a e. A and U e B(Hp). Since B(f/r) is a C*-algebra,
then every element in B(H) decomposes as a linear combination of four unitaries,
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lBR, 2.2.141. Hence 
"p(A) 

c B(Hp)' = Cl, and r, is one-dimensional (so commuta-
tive) for every p e PS(A). Using the Gelfand-Naima¡k Theorem we have a faithful
commutative representation zr : @peps(A)Tp of -4. Hence ,4, is commutative. tr

When ,4 is a commutative C*-algebra we speak of 'the' spectrum Ð(A) :: Â =
PS(A) ry Prim(,4,). Since the locally compact Hausdorff space E(á) is central to
the structure of the C*-algebra A, we can determine the form of all commutative
C*-algebras [l,tu, 1.3.5,2. 1. 10].

Theorem 1,2.L2 (Gelfand Theorem) Let A be a commutatiue C-algebra with
spectrum E(,4). Defi,ne the Gelfand transform

aè Ío

where the function f " 
: Ð(A) -+ C is defined by Í"[p]") :-- p(a) for p e PS(A). Then

the Gelfanrl transform prouides an isomorphism of C -algebras,

A -+ cs(E(A))

Conversely, for any locally compact Hausdorff space X, Co6) is a C*-algebra
and X : t(Co(X)), [Mo, LI.3,2.1.2]. This provides the theorem,

Theorem I.2.I3 There is a bijectiue correspondence between locally compact Haus-
dorff spaces and continuous uanishing at infinity functions on them (X,Cy(X)), and,

cornmutatiue C-algebras and their spectrums (E(A),A),

(x, Go(x)) +--+ (l(A),.4)

Example L.2.L4 We have already seen the correspondence (IR,C9(R)) as an
example last section. We apply the result of the Gelfand-Naimark Theorem in
this case. We recall the pure states of C6(R) are given bV p*U) : I@),and the
irreducible representations (C, c, ) by

c":C6(lR) -lC, ("*(Í)t)7f(r)z Vøe C.

The spectrum lR is deflned by the isomorphisms

{r} -+ p, ) cx r ker c, : {f € Cg(R) I /(") : 0}.

The universal representation Hilbert space is given by

¿'(R) = Oa
IR

and the universal representation

c: (Ðnsc, , þU)ò@) : J@)s(r) Vg e ¿'(R).
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L.2.4 Non-Commutative Topological Spaces

It is the bijective correspondence

(x, Co6)) +-+ (E(.a),,a)

between locally compact Hausdorff spaces X and commutative C*-algebras Á which
leads to the view general non-commutative C*-algebras A are the 'non-commutative

continuous functions' on the 'non-commutative topological space' PS(A) tÌ ¿ E
Prim(,{). We shall take this view. Hence a C*-algebra ,4. and the structure spaces

PS(A) B; E Prim(A) provide the basic elements of (i) a'topological space', (ii)
tcontinuous functions' on that space, in non-commutative geometry.

Remark 1.2.15 (i) Does the terminology'non-commutative continuous functions'
have more than a conceptual meaning? In the sense explained below, every non-
commutative C*-algebra with Prim(,A) Hausdorffis an algebra of continuous operator-
valued functions. Recall Theorem 1.2.10, Z(A) = Co(C) for any C*-algebra ,4. such

that C :: Prim(, ) is Hausdorff The elements of the C*-algebra can then be viewed
as 'operator valued continuous functions on' or 'continuous sections of a bundle of
simple C*-algebras over' the locally compact Hausdorff space C,

a: c -+ r(a)

where o, e. A and (fl,r) e ker-l(c) is irreduciblea [eea] þix]. Note that this view is

not unique up to unitary equivalence. If further,

(u) (Postliminal) á g Prim(,A) is an isomorphism, then A is viewed as 'con-
tinuous sections of a bundle of simple C*-algebras' over the locally compact
Hausdorff space C,

a: c -+ r(a)

where (H,n) e ker-1(c) : l(H,zr)]r. This presentation is unique up to unitary
equivalence [oix],

(b) (Liminal) r(A) : K(H) for each (H,n) € Irr(,4'), then ,4, can be considered

as 'compact operator valued functions' over the locally compact Hausdorff
space Prim(¿) Þi.].

Commutative 'non-commutative continuous functions', which are continuous func-

tions on C in the ordinary sense, are the trivial case where each fibre is the one-

dimensional simple C*-algebra C. The simplest non-commutative example of the
above situations is the C*-algebra A: Co(X) Ø M"(C) : Co(X, M"(A)) where X is

a locally compact Hausdorff space.

(ii) As our last point on 'non-commutative continuous spaces', we remark on C*-
algebras such that Prim(A) is not Hausdorff. An 'operator valued function' view can

be determined as in (i) above, but one needs to consider bounded Borel sections over

alfthe reader has not encountered the terminology section and bundle, see [Sr, I.1,III.1], or 1.3.2

Vector Bundles.
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the space of unitary equivalence classes of factor representations of the von Neumann
closure n(A)". These are deeper results in the theory of C*-algebras, [tea, Dix].

Howevet, that Prim(A) is locally compact but non-Hausdorff in general is one of
the deepest generalising points of non-commutative topology. A. Connes has used this
viewpoint to perform 'geometry' on non-Hausdorff spaces. These spaces are typically
pathological and outside the reach of classical methods. Examples are in the work of
Connes, the space of Penrose Tilings [c, IL3], the dual of non-type I discrete groups

[c, IL4] and foliations [cz].

1.3 Exterior Derivation on Differentiable Manifolds

Let A be a separable C*-algebra. We have the 'non-commutative second count-

able metrisable topological space' PS(A) tÌ ¿ E Prim(A) and its algebra of 'non-
commutative continuous functions' ,4 from the previous section. \Mhat should consti-
tute the derivative of a 'non-commutative function'?

As an initial guide we reduce the derivative in basic calculus on IR. to algebraic
terms. Denote the polynomial functions by P[r]. Define a linea,r map ô : Plrl -+ Plrl
by

6(anr" + ... + a1fr j-a¡) :: nanrn-L + (n - 7)an-1r"-2 * ... * a1.

'We note that ô is completely determined by the relation

6(pq) : p6(q) + 6(p)q Y p, q e P[r]

and ô(z) : 1. The map ô is an example of a derivation (definition below). Define
norms on Plr],

llplll" ,: sup lp(")l + sup lôþ)(")l +... + sup
ael-m,ml r€l-m,m) nel-m,m]

l¿e(p)(")l

We make the convention ô0(p) - p. We say a sequence of polynomials is k-Cauchy if
it is Cauchy in the norm ll.llfr for all rn. We denote by C¡(Plrl) the set of /c-Cauchy

sequences of P[r] and by on I I the limit / of the k-Cauchy sequence {p¿}. The
result C¡(P[r]) : C(R) is a consequence of the Stone-Weierstrass Theorem. It can be

shown C¡(Plrl) : Ck (R). Explicitl¡ if p¿ 3 .f then 6k (p¿) I .¡{r,l . Differenriation is
hence defined as the continuous closure

6 : C1(Plr)) -+ cs(Plr))

of 6: P[r]-+ P[r], and 6 is a derivation Cl(lR) + C(R).

Hence an immediate candidate for the role of differentiation in non-commutative
calculus are derivations on C*-algebras. Derivations on C*-algebras is a well estab-
lished theory [BR, 3.2].

Definition 1.3.1 [nn, 3.2.2L, 3.2.54]

(i) A symmetric norm-dense deriuation 6 of a C -algebra A is a l,i"near oper-
ator 6 : Dom6 -+ A with norm dense doma'in Dom6 such that ô(a)* : 6(a*) and,
6(ab) : ô(a)ö + a6(b) for aII a,b e Dom6.
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(ii) / sArnmetric d,eriuation 6 of a C -algebra A is said, to be spati,ally implernented
by a symmetric operator D on a Hi,Ibert space H if there erists a representation (H,n)
of A such that r(õ(a)) : -i[D,"(¿)].

Example 1.3.2 Let C"1(lR) denote the continuous compactly supported func-
tions IR -+ C with continuous derivative. Then the derivative operation

d: C"1(R) -| C"(R) , I -> l'
is a derivation of the C*.algebra C¡(lR) with norm-dense domain C"l(R). Let us
examine a spatial implementer of d,. Define the linear operator

tfi , c!1w¡ -r c"(R) , l@) r+ ift(r).

As Cj (n) is .L2-dense in I2(R, {), this operator has a unique selfadjoint extension
as an unbounded linear operator [ns, VIII.I]

i!: Dom¿! *¿2(R,€).
úT O,T

V/e recall the representation (¿'(R, €),nt) of the commutative C*-algebra Cs(R)

zr¿ : Cs(lR) -+ B(¿2(R,€)) , ("¿(/)g)(") : f (r)s(r) {-a.e. Ve € ¿2(R,6)

where f is the Lebesgue measure on IR.

Proposition 1.3.3 Let f €. C!(R). fhen

... d-ili;,"¿U)l: núl')-

Proof Let f ,9 € C"l(R) and D : i
Now, for g e DomD we have gr, €

d
d,x,

cl
; Then Drtj)g : O(lù : iÍ'g-tl Dg (*).
(ìR) such that gn -l g in the graph norm.

Clearly nj)g" -+ nj)g in the graph norm from (*). Hence r¿(f)DomD c
DomD. Furthermore from (*),

Dnff)g - rúf)Dg : iÍ's : in(l')s

for g € DomD. Thus [i$, "úl)l 
: ¿n¿(l) on DomD and, as /' is compactly

supported and continuous, ir¿(//) is norm bounded on DomD. Hence it extends
as a bounded operator on all of ,f2(m,6¡. ¡

All the elements of basic calculus have been encoded in the triple

(co(R), ¿'(m, e),0#),

which is of the form (-4, H, D) as described in the introduction to this chapter. We
have the separable C*-algebra A : Co(R), a faithful representation (I2(R, €), r¿ )
of C¡(lR), and a selfadjoint linear operator O: i# on.L2(R,0 that spatially
implements the symmetric derivation

d(') : -ili#,.1 : ci(m) + c"(R), d(ntí)) : núl).



1,3. EXTEHIOR DERIVA"ION ON DIFFERENTIABLE MANIFOLDS 23

The example above was the one-dimensional case. In the multivariable case,

d: c"1(w) -+ c"(w,¿(tp,c))

and on the differentiable manifold X

d: c:(x) -+ c"(x,L(TX,aD.

The map d still satisfies the Leibniz relation

dUù:df s + f d's Yl,geCl6)
but is clearly not a derivation of C¡(X) in general. To develop a counterpart in
non-commutative geometry to the derivative of a differentiable function / on a dif-
ferentiable manifold X we review exterior difierentiation on X. A summary of the
algebraic structures involved in exterior difierentiation appears in section 1.3.6. Sec-

tion 1.4 develops a counterpart of exterior differentiation in the non-commutative
calculus.

1.3.1 Exterior and Clifiord Algebras

Let V be a vector space over C. Lef T'(V) : \rØi be the ,ith tensor product. Let
T(V) : @=oTi(V) be the tensor algebra of I/ and 1 the ideal generated by the
elements {u I tr.r * t¿ I ulu,w e V}. The exterior algebra of V is defined as the
quotient [ecv, 3.1]

À(Iz) :: T(V)lI,

and has the natural N-grading L'(V): f'(V)lQ nT'(V)). The quotient product,
denoted A, is the called the exterior product and has the property

uAw+.wAu:0.

Let V be finite dimensional with diml/ : rz and Lo(V*p,C) denote anti-symmetric
multilinear functionals on Vp. We recall the isomorphism [sr, V.3]

,4.(I/) -+ Lo(Vx",C).

Suppose V admits an inner product q : V x V -+ C,. Let Io be the ideal generated by
the set of elements of the form {u I t¿ * w Ø u -f2q(u,w)lu,u e V}. The Clifford
algebra of I/ (generated by g) is defined as the quotient algebra [acv, Prop 3.2]

Cliff(Y, q) :: T(V)lIq

The quotient product, denoted ., is called the Clifford product or Clifford multiplica-
tion and has the property

u .ut * LU .,ì) : -2q(u,w).

With a quadratic form one can introduce the interior product on the exterior algebra,

u t (wtA... A un) :: !{-r)'e{r,w¡)wt A ,.. A u¿-t Aw¿+t A...Aw,- Yu,w¿ €V.
n

i=l
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The homomorphism

r.: Cliff(V,q) -+.^.(V)

defined by

\u .w) :: 4u) A r.(tu) + i(u) t 4ru)

is a linear isomorphism [acv, 3.1]. We call the action

u¿(u) :: t(w . t-|(u))

the left action of w €. Clitr(y, q) on u € Ä(Iz), and

w,(u) ,: t(r-r(u) .w)

the right action of w e Cliff(% q) on u e /\(y).
The Clifford and Exterior algebras are linearly isomorphic as graded vector spaces

by giving the Clifford algebra the grading [acv, Prop 3.6]

k

chd(Y, q) ': O,-111¿1tz¡¡.
i=0

We point out the surjection 4: C\#(V,q) -+ Lk(V) defined by

Lk i ut' ...'uk -| 1,1 A ..,Aun Vul,.., u¡ e V

is not an isomorphism. The kernel of this map is Cli#-2(V,q). Finally we define an
inner product on Â'(V) by

q¿(ul A... Awi,ur 4... Au¿):-- det([q(tu-, un))^,n:t,-,,i,).

\Me extend this to an inner product of .ô.(U) by q(r,w) : q¡(a,w) if. a,?, € l1'¿(I/) and
q(u,w): 0 otherwise.

1.3.2 Vector Bundles

Let X be a locally compact Hausdorff space. Let e: E -+ X be a vector bundle' We

recall this means there exists a topological space -Ð, a topological vector space V and

open coveri"g {tt"} of X such that [Sr, III.1]

(i) (local triviality) there is a homeomorphism (U"xV is given the product topol-
osy)

oo, e-L(u") -+ uo x v

that commutes with the canonical projection p : Uo x V -+ Uo. In particular
there is the isomorphism

oo(r) , e-t(r) -+ V.
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(ii) (transition functions) the map UañUp -+ L(V,I/) given by r r+ op(r)ooo(r)-L
is a morphism. In particular, for ø € U,ìUB we have

op(r)ooo(r)-r:V -+V

is an isomorphism.

The vector space .8, : e-r(r) is called the fibre over ,r. A section s of a vector
bundle e: E -+ X is afunction s: X -+.Esuchthat eos(ø) : ø. 'We denote
continuous sections of e : E -+ X by C(X,E) and the continuous sections with
compact support by C"(X,E). Let us suppose each fibre -8, admits a norm ll.llø,
then we may define a norm on sections,

llsll :: sup lls(ø)ll,'

The closure of C.(X,,E) in this norm is the Banach space C¡(X,E) of continuous
sections that vanish at infinity. Let us suppose further that each frbre E, is a Hilbert
space with inner product (',.)r. Then

det(s)d,r

defines an inner product on C"(X,,E). The closure of. C"(X,-Ð) in the associated norm
is a Hilbert space tr2(X,.Ð) called the squa,re integrable sections of the vector bundle
e : E -+ X. Finall¡ suppose the fibre .8" is an algebra for each ø. Then C"(X, E) is
an algebra when given the product

(rr"z) : X -+ E, (sç2)(r) : sr(ø)s2(r) Y s1,s2 € C¿(X,E).

Consequently one shows Cy(X,-E) is a Banach algebra.

We shall mean by the term(Hermitian' vector bundle a vector bundle whose fibres
are separable Hilbert spaces.

Fbom a Hermitian vector bundle e : E -+ X we can define another vector bundle
e¡: L(E,E) -+ X with fibres

e¡: L(Er,Er) -+ r.
'We note the C*-algebra Cs(X, L(8, E)) has a natural concrete faithful representation
(L2(X,E), À), where

), : C6(X, L(8, E)) -+ B(L2(X, E)) , (À(s)e)(r) : s(r)(g(r)) Vg e L2(X, E),

As C¡(X) = C0(X)Idø C Cs(X,L(E,E)), the representation À restricts to a faithful
representation (L2(X, E),nù where

r¿: Cs(X) -+ B@2(X,,8)) , ("úf)ù@) -- f (r)rd4,(g(")) V s e r,2(x,n).

We say the vector bundle e : E -+ X is finite dimensional if V is finite dimensional.
Then ,8, o' IRlv for some N. Hence we can apply the multivariable calculus, If the

(rr, rz),: f *{rr(*), rz(r)),
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transition functions op(r) o oo(r)-r : RN -+ IRN are p-differentiable (resp. smooth),
we say e : E -+ X is a p-differentiable (resp. smooth) bundle.

Let X be a p-difierentiable (resp. smooth) second countable metrisable locally
compact manifold and e: E -+ X a pdifferentiable (resp. smooth) Hermitian vector
bundle. A section s : X -+ E is called p-differentiable (resp. smooth) if the funciions
o*" óprO(r. dtl(.)) : R3 -+ IRN are p-differentiable (resp. smooth) for alt a,B
where oa are the trivialising maps for the vector bundle e : E -+ X and þp are lhe
co-ordinate maps for X. We denote the p-difierentiable sections of a Hermitian vector
bundle e: E -+ X l:y Cn(X,.Ð) and smooth sections by C*(X,E).

We note, for notation purposes, that the sections of the trivial Hermitian bundle
X x C + X that are continuous and vanishing at infinity square integrable, or
smooth, define the functions on the manifold X that are continuous and vanishing at
infinity, square integrable, or smooth respectively.

1.3.3 Exterior and Clifford Bundles

Let X be a second countable metrisable locally compact r¿-dimensional differentiable
manifold with metric A. Lel TrX be the r¿-dimensional tangent space at r e X.
The dual space of continuous linear functionals TrX* : L(f"X,C) is also arl n-
dimensional vector space, called the cotangent space at r eX 5. Let f , X -+ C be
differentiable, then dJ @) e L(f"X,C) : TiX. By construction, if. r e [Jo for a chart
(uo,óo: (óL,..., /[)) then

TIX = span6{d/} (r),...,aóX@)}

There exists a isomorphism between the tangent and cotangent spaces at r € X
provided by the metric,

nn : lul r+ 9(ø)([r.'],.),

and we define an inner product onTlX by

as@) : TIX x TIX -+ C,

(u, w) r+ as@)(u, u) :: g(r)(olL (u), n;L (w)).

We form the exterior algebra L(T;X) and Clifiord algebra Clifr(T;X,qs@D of the
n-dimensional vector space TIX with inner products qs@) as in Section 1.3.L.

Take the chosen atlas {t/"} over X as an open covering, and define the disjoint
unions,

TX :: UrEyTaX

T*X :: UsçyTlX
L*X :: U*çyÌt(TlX)

Cl(X,q) :: UsçyClifr(TlX,qs@))

sThe standard notation of the cotangent space at x, ís TIX
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ând maps

eTi TX-+X,TrXr+r
êT*i T*X-+X,TlXr+n
e^i .4.*X-+ X, L(T;X)->,
ec i Cl(X, aò -+ X , Cliff(Ç X,qn@)) r+ r

Then e7 : TX -+ X,e7* : T*X ) X,e¡: Ìr*X -+ X and eç : Cl(X,qs) -+ X
are Hermitian vector bundles over X [se, III.1], called the tangent bundle, cotangent
bundle, exterior bundle and the Clifford bundle respectively. When X is a smooth
manifold then the the tangent bundle, cotangent bundle, exterior bundle and the
Clifford bundle are smooth. We can extend the natural linear identification of the
exterior and Clifford algebras fibrewise to the bundles,

t : Cl(X,aò -+ À*X , Cliff($, qs@)) -+ ^A.(4).

This provides the canonical inclusions

C.(X,Cl(X, qs)) -+ C"(X, L(L* X,^-X))

called the left action,

w¿(r)(u) = L(u(r) 'r-1(u)) Vw eC"(X,Cl(X, as)),ue L(T;X)

and right action

w,(r)(u) ,: t(t-r(u).,r¿(r)) Vt¿ € C"(X,CI(X, aò),u € ¡.(IiX)

respectively.
'Warning: henceforth we consider only connected, oriented, geodesically complete
manifolds with no boundary. That a manifold is oriented is equivalent to the state-
ment that there exists a non-vanishing continuous section in C(X,Âdi*xx). That
the manifold is connected implies Co(X) contains no proper projections and the di-
mension of the fibres in any Hermitian vector bundle over X is constant.

L.3.4 Covariant Derivatives and Tlxterior Differentiation

Let X be a second countable metrisable locally compact r¿-dimensionalp-differentiable
manifold. W'e recall the operation of kth-differentiation,

ah : c!(x) -+ cc(x,L(TXxk,c)),

for /c ( p. The kth-derivatives of a function in C!(X) is seldom used in differential
geometry. Instead we consider a co-ordinate independent form of partial or directional
differentiation, called a covariant derivative. A covariant derivative then defines a
fundamental graded derivation

a : C! (x, L o(T xx(k-l), c)) -+ C 
"(x, 

L o(T xxk, c)),

called an exterior derivative.
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Let E -+ X be a Hermitian vector bundle. A covariant derivative on E -> X

v : c!(x,TX Ø E) -+ C"(x,E)

is a map u Ø o -+ Vro with the properties

(i) (linearity) Y ¡,+s,: lV, * gY, Y l,g e Cl(X),
(ii) (Leibniz) V,lo : fVuo + df (u)o V I e Cl6).

The Leibniz rule is equivalently stated [V,, /] : dl@) V I e C](X).

Let (Uo,ó": (ór.,...,óÐ) be a local trivialising chart of X for the vector bundle
E. Denote the 'local coordinates' of [fo by *¿ : óL(U") i : 1,..,n. Then the
local frame 0¿ : h, spans TU* Let V be a covariant derivative on .E -+ X. We

consider V¿ :: lar a generalised ith-pa,rtial derivative. Defining grad :: (Vr,..., Vr,)
then V, : lu¿Y¿: (u1, ...,un).grad is a generalised directional derivatiye where
uluo : D¡u¿ù¿.

We dualise a covariant derivative on .E -) X as the map

v , c!(x, E) -+ c"(x,T* x Ø E)

by defining

Û1'¡1r¡ : v(u a o) vu e c:(x,TX),o e clØ,8).

Then Û has the form Vø :loYio where locally

Y'o : d"¿ ØY¿o Y o e Cl6, E).

In this form Û is called a connection on .E -+ X. We shall henceforth drop the dual
notation and denote a connection or a covariant derivative by V. A connection V on
E -+ X is a linear :rrrap C)(X, E) -+ C"(X,T* X Ø,8) and satisfies the Leibniz rule

ÍY, ll" : d,Í Ø o Y f e C:(X),o e C:(X, E).

We can extend a connection on .E -+ X to a linear map

v : c!(x,^kx ø E) -+ c"(x,^ft+lx a ,ø)

as follows. We define
d, : c)(x, Lh x) -+ c"(x,¡,k+lx)

by the rule in a local frame {dr¡}¿=t,,..,n of T*Uo

d,(f d,r¡, A ... A d,r¿o) :: d,f Ad,r¡, A... Ad,r¿,,

for a multi-index i¡ e {1, ...,nI ,i : 7,.,., k. Then there exists a unique extension V
such that Vlrroxør : V and V satisfies a Leibniz rule

li,wl¡o : d,w Ø o V w8 o € C:(X,nkX ø ø).
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Here [^9, T]¡:: ^9f + (-t)e?,S is the graded commutator. Henceforth we denote the
extended connection V and the extended dual covariant derivative by just V.

Let u € C"(X,LkX) and w e C.(X,Ì\iX). Let m denote the antisymmetrisation
map m(u I u.r) :: u A w. Let V be a covariant derivative on the tangent bundle
TX -+ X. We define the exterior derivative associated to V by

d,e :: moY : C!(X,LhX) -+ C"(X,^fr+lx).

This is illustrated by the action of dy in a local frame {d,r¿}¡=r,...,n of T*Uo,

d,yw :DO*iA V¿,u Vw e C:(X,ÌrkX).
i

Let X be a smooth manifold. Then

de : Cf;(X,^kx) -+ C?(x,^e+lx).

Applying this to map simultaneously to each exterior por¡/er yields the linear operator

dy : Cf; (X, 
^*X) 

-+ CT (X, L* X)

with the properties [sr, V Prop 3.3]

(i) (graded derivation) de(u A u) : dvu A t¿ * (-l¡a'g', A d,ew,

(ii) (nilpotency) dT : O.

Let u € C"(X,LbX) and u e C"(X,L/X). Let m, denote the interior contraction
map mr(u I ø) :: u T w. We define the interior derivative associated to V

d,þ :: mt oy : C!(x,^frx) -+ Cc(X,^k-1x).

This is illustrated by the action of dþ in a local frame {dr¡}¿=y,...,n of T*Uo,

d,Çw :Ðoq T Y¡w V w e C!(x, 
^frX).

The interior derivative dþ is also a linear operator

dþ : Cf;(X, 
^*X) 

-+ Cc*(X, 
^'X)

such that dþ' :0 and dþ is a graded derivation. In fact dþ is the adjoint of dy for
the inner product [n, 4.2.3]

Qs@,w): I qn@)(u(r),w(n))1/-detsdr Yu,w € Ci(X,^-X).
JX

Let X be a smooth second countable metrisable locally manifold. Then there exists
a unique covariant derivative V/ on the tangent bundle TX -+ X such lhat d,y, : fl
[acv, Prop 1.22]. The connection associated to V'is called the Levi-Cevita connection
and the operators d and d* are usually called 'the' exterior and interior derivative.
Elements of Cf (X,Â*X) are called the compactly supported smooth exterior differ-
ential forms on X.
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Remark 1.3.4 The exterior derivative and the exterior differential forms on a second
countable locally compact smooth manifold X are fundamental objects in the study
of differential geometry. We leave the theory of differential geometry at this point
however. We are concerned with emulating the structure of the exterior derivative and
the exterior differential forms primarily before we consider emulating their geometric
consequences.

The exterior derivative d : Cf;(X,Ä*X) -+ Cf (X,Â*X) on a second countable
metrisable locally compact smooth manifold X and its metric adjoint d* define two
fundamental operators.

1.3.5 The Laplacian and the Signature operator

The Laplacian

Let X be a second countable metrisable locally compact smooth manifold with exte-
rior derivative d and interior derivative d*. We define the Laplacian operator

A :: (d + d*)' : Cf;(X,^kX) + Ci(x,^kx).
The Laplacian operator derives the name Laplacian from the following identifrca-
tion. Let (Uo,óo : (ó'",...,óå)) b" a chart of X with t¿ i: þi tlne local co-

ordinates anð. {d,r¿}¿:1,...,rù a frame of. T*Uo. We define the 'components of the
metric' on(Jo as the functions g'l(r):: qn@)(d,r¿,drj) (which provide the matrix
representation of the metric ao(r) : lg'¿(ùli,;=r,...,*). We can then identify from
(h,Ll) : (dh,df) V l,h e Cf;(X) [n, 1.2.3],

A"f : -Dn,j ,/-detgo-t ð¡(g'¿ \Ma¿Ð

: -3'' u:',t,t'io7'? 

"'i 

l, I'f-J ?::'*xa' 
/ ) )

When go(r) : id e L(T"X,T"X) Y r e Uo,for instance when X : RP with standard
metric, then A is the usual Laplacian on IRn.

Remark 1.3.5 The form of the (generalised Laplacian' above is central to the phi-
losophy of non-commutative geometry. FYom the form of the Laplacian, it could be

considered that the metrics go(ø) determine A. However, the converse is equally
valid. The metrics go(r) arc determined by A and C?(X).Explicitely,

9,1 : -Lrn*¡: -I[A,c(r¿)],"(r¡)l

where r,í : óL for the chart (Uo, ó" : (ör., ..., óå)) [ncv, Prop 2.3]. Non-commutative
geometry is not formulated in terms of co-ordinate charts or Riemannian metrics,

a non-commutative spâce may have none of these. Non-commutative geometry is

formulated in operator algebra theory, hence it takes operators as its fundamental
objects. Hence, conceptually, an unbounded linear operator we take as the'Laplacian
operator' A and a separable C*-algebra .A determines a geometric structure on the

non-commutative space P,9(,4.) q 
,4, I eri*1a). !V" reiterate this is a conceptual

view.
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The signature operator

Let X be a second countable metrisable locally compact smooth manifold with exte-
rior derivative d and interior derivative d*. The signature operator is defined by the
linear combination,

d + d* : Cf;(X,Â,*X) -+ Cf (X,^*X).

This operator is essentially selfadjoint considered as a linear operator

d + d* : Cf;(X,^*X) + Ctr(X,^,*X) c L2(X, L* X)
and has an unbounded selfadjoint closure [Lu, II Thm5.7]

D: DomD -, L2(X,L*X)

such that Ìt : C?(X, 
^*X) 

is an inva,riant core for D, Dl¡: d + d* and D2l¡ : ¡.
V[e shall often abuse notation and write D : d+d* and call D the signature operator.

For the purposes of Section L.4, where a counterpart to the exterior derivative
d, and the compactly supported smooth exterior differential forms Cf (X,À*X) is
derived in the non-commutative calculus, we discuss how the operation of exterior
derivation d is transferred to the *-algebra Cf; (X, Cl(X, qc)). W" follow the treatment
of Connes in [c, VI.l]. Define d,r:: t-rdt,

ci(x,chd(x, qe)) 1 ctr(x, Lk x)
d,I +d

cf (x , Cüd+1 (x, q, )) 1 c? (x , Lk+I x) .

We recall the left Cliford action on the exterior bundle in section 1.3.3,

w¿ : C.(X, CI(X, qù) -+ Co(X, f.(^* X, 
^- 

X))

and the canonical representation (L2(X,A*X), À) in sectiot t.3.2 where

), : C"(X, L(L* x,^-x)) -+ B@2 (X, 1\.x)).

The composition rr :: 
^out 

forms a faithful concrete representation (L2(Xr lt* X),r¿)
of the C*-closure Co(X,Cl(X,q)).

Proposition 1.3.6 [ru, II Lemma 5.5) Let X be a second countable metrisable locally
contpact sntooth narti,lolú ,witlt, sigrtature operator d * d* . Then

ld+d*,nf)l:n(d,l)
for all f e C.(X).

Remark 1.3.7 We note that

d+d*:(m.|m¡)oV:coV
where c denotes Clifford multiplication and V is the LeviCivita connection. Hence

ld + d*,rúf)l: n(d,f)
is an equivalent statement of the Leibniz rule. The signature operator in the form
d + d* : coV is a Dirac operator [Lu].
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Define a *-subalgebra of B(L2(X,^*X)),
{ta+d*(Cf (X)) ;: ( zr¿(Ci( X)), ld I d,*,,r¿(Cf;(X))l )

generated by nj),ld+d*,"úù] Yf ,g e Ctr6). Fïom Proposition 1.3.6 and [c,
VI.1 Lemma 6]

od+¿* (Cf (x)) : n(Ci(X, Cl(X, qr))),

and there exists a canonical isomorphism,

n, t : {t¿¡¿.(Cf (X)) -+ Cf (X,CI(X, qr))

given by n, t : r¿(fs)ld + d* ,"úl|¡l..]d * d,* ,n¿(f ¡)l r+ lod,h' ... . d,ln.

Hence we can reconstruct Cf (X,CI(X, Çg)) given just the signature operator d + d*
and the C*-algebra Co(X).What about the exterior derivative?

Define

e5,*0.(Cf (x)) :: {tr¿(fs)ld, * d,*,n¡(f)1...[d + d*,núÍù]|"f0,..., f¡ e Cf;(x)],
and a'linear map

6¿ : efi*¿.(cf (x)) * oÍ+j. (cf (x))

by

õ¿(n¿(fs)ld, * d*,r1(f)l...td + ¿., n¿(/,t)l) :: ld + d,.,,n¡(fs)lld, + d|,r¿(J)l...td + d*,nt(f n)1.

We note ntr(Qh+a-(Cf (x))) is not

cr (x,cri# (x, aò),: t-r 1cy 1x,e[onix¡¡.
Hence

6aortft¿od'r'

To rectify this, we recall the map from section 1.3.1

Lk : rDL' ... - w¡-+ r(T.u1) A... A l(u.'¡) YuL,..rwk e C?(X,T*X)
is a surjection. Hence the surjective map

q,or¿r tek+¿-(cf (x)) -+ ci(x,Ìtrx),
define's a quotient algebra

Lh*0.(c"-(x)) ,: Q*+a.@?(x))lker r,¡ o n¡l.
Then the following diagram commutes, moreover the top and bottom surjections are

isomorphisms [c, IV.l Lemma 6],

LL*d.(C"*(X)) å r¿(Cf (X,^ftX))

6aI +d

Ld+l.(c"-(x)) å r¿(cf;(x,^k+1x)).

Hence this treatment of Connes has captured exterior differentation on a manifold.
The map 6¿we can generalise in section 1.4.1 to the non-commutative situation, the
map d, we cannot since it relies on anti-commutation relations specific to the Clifford
algebra.
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1.3.6 Summary of Riemannian Structure

We recall the term Riemannian manifold refers to a second countable, metrisable,
locally compact, connected, oriented, geodesically complete smooth manifold with no
boundary and given Riemannian metric g. Let X be a Riemannian manifold. Then
section 1.3.1 through to section 1,3.5 have discussed the following structures:

(i) the map
qn : C"(X,T* X) x Cc(X,T* X) -+ C"(X)

defined by qs(u,.)(") :: qn@)(u(*),r(g)) Yu,w e C"(X,T*X). The map

Çe is often called the metric (since the matrix representation of the metric A

at r is the inverse of the matrix of co-efficients of øs(r) as an inner product),
see Section 1.3.3,

(ii) the Hilbert space L2(X,^*X) defined as the closure of C"(X,^*X) in the
inner product, see Section 1.3.2,

(fu,h2) ,: 
I*Qs(ht,n2¡1*¡1/-aetls¡ar 

Vh1,h2 e C"(x,Â*X),

(iii) the faithful representatior. (L2(X,À*X), zr¿) of the C*-algebra Co(X,Cl(X, qr))
defined by n¡ :: ), o ut, see Section 1.3.5,

(i") from the inclusion Co(X) .+ Cs(X,Cl(X,Qg)) we obtain the representation
(L'(X,^*X),zr¿) of the C*-algebra Cs(X) referred to as 'representation by
multiplication operators',

(u) the signature operator d+d* which is an unbounded selfadjoint linear operator

d + d* : Dom(d + d*) -+ L2(x,L. x)

that implements differentiation, see Section L.3.5,

ld+d*,"¿(/)l :nt(d'l) V f e Cf;(X),

("i) the Laplacian A : @ + a.)2 determines the metric A, and hence the geometry
of X, see Section 1.3.5.

Let X be a Riemannian manifold. Analagous to Example L3.2, the above in-
formation providcs thc triplc (Co(X), L'(X,À*X), d I d*) of a scparablc C*-algcbra
Co(X), a representation (L2(X,À*X), r¿) of. Co(X) and a selfadjoint linear operator
d+d* : Dom(d*d*) -+ L2(X, 

^*X). 
Hence, as in Example 1.3.2, differential calculus

on a Riemannian manifold is encoded in the triple

(co(x),L2(x,À*x), d, + d*)

which is of the form (,4, H, D) described in the introduction to this chapter. In the lit-
erature the triple (Co(X) , L' (X ,À* X), d+d.) is referred to as the spectral triple of the
Riemannian manifold X. We prefer to consider the information (L2(X, A*X), r¿,d I
d*) as a representation for the separable C*-algebru Cs(X) which generates differential
geometry on the spectrum X : E(Co(X)). This non-standard view aids considera-
tions to follow. Hence we shall retain it and reiterate we make distinct definitions
from [cs].
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L4 Exterior Derivation on C*-algebras

1.4,L Non-Commutative Differential Forms

The purpose of last section was to review the structure of the exterior derivative on
a differentiable manifold as a guide to how we could conceive an exterior derivative
in non-commutative geometry. We introduce in this section a variant of Connes'
non-commutative counterpart to section 1.3.5 above.

Let A be a C*-algebra. Let P(X) denote the power set of a set X. Define a map

supp: A-+P(Pri-(,4)) , o,F) supp(o) ¡-{kernplpe PS(A),a(kerrr)

called the support map.

Definition 1.4.1 We say a e A has compact support i/ supp(a) is contained in a

compact subset o! Prim(A).

Let A" denote the subset of ,4, consisting of all elements of compact support. If
Prim(,A) is compact then,4, - A".

Theorem L.4.2 Let A be a C -algebra. Then A. is a norrn d,ense two-sid,ed * -i,deal

oÍ A.

Proof Let ¿ € A" and p e PS(A) such that np(o):0. Then rp(o*): rp(a)* :0
and r r(ab) : r o(a)n o(b) : 0 : r r(b)r o(a) : n p(bo) Y b e A. This proves,4" is a two-
sided *-ideal. Let C : Prim(A) and c e C. Let [ø]" denote the class of a € ,4+ in the
quotient Af c. Defrne a function /o: Prim(,4) -+ [0,*) by l"þ),: ll[o]"11. The map
a ) f o extends to an isomorphism Z(M(A)) -+ C6(C) where M(A) is the multiplier
algebra of á and C6 denotes continuous bounded functions (Dauns-Hofmann Theorem

[tea, Cor 4.4.8]). Let {f ,} be a net of continuous bounded functions with compact
support such that ll(1 - /r)/ll -+ 0 for all f e Co(C). Let {u¡} be an approximate
unit of .4. Then {f pux} is a compactly supported approximate unit for .4. This is
sufficient for norm density of 4.. !

Definition L,4,3 Let (H,n) be a non-degenerate separable concrete representation
of a normed, * -algebra A. Let D be a (bouniled or unbound,ed,) selfadjoi,nt operator
D : DomD -+ H. Then we call (H,r,D) a base representation of the normed*-
algebra A.

Definition L,4.4 læl Let (H,r, D) be a base representation of a C -algebra A. Then
we call (H,T,D) a C!-representation if there erists a norm-dense*-subalgebra A1" oÍ
A. such that

(i) r(a)DomD C DomD for a e Af,,

(ii) lD,r(a)) is norm bounded, on DomD for a e Af,.

There exists a unique bounded operator extending lD,n(a)l for a e A!. We
abuse notation and denote the extension [D,r(a)] as well. Let (H,r,D) be a CL-
representation of a C*-algebra ,4. 'We 

define

anØÐ :: < r(Al) , lo,r(e!)l >
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as the *-subalgebraof B(H) generated by zr(a),fD,n(b)l for all a,b e ,4,]. We can
Z-grade this algebra by CIO(A]) :: rúAL) and

AbØL) :: {w e Ap(A}) | u.' is degree k in lD,"(AÐ) terms}
: {n(as)fD,n(aùl. . .lD,r(aùll oo, ..., ak e ÂL}.

for k ) 1 where l¡ ir tfr. unitisation of A! 6. We view the operation

lD, .l , r(AÐ -+ o!1a]¡

as 'differentiation'. We extend this to

6 : a$(Æ.¡ -+ CI!+l(A|)

given by 6p(tr@ùln, zr(¿r)l ...\D,"(r*)l) ,: lD,n(o¡)l[D, r(aù]...|D,n(aù!.

The map d¿ is designed to be the generalised exterior derivative. It satisfies
6'o :0 by construction. However, it is not a graded derivation in general. Following

[c, VI.l] we will quotient the algebra ObØL) by the obstruction to d¿ being a graded
derivation, and hence obtain the generalisation of differential forms. Let us calculate
the obstruction.

The universal graded differential algebra (CI(B), d) of a unital associative algebra
B is given by

(i) oo(B) :: B,

(ii) O1(B) :: ker{¿ I b r-+ abla,b € B} C B O B,

(iii) the rleriva,tion ô: B+O1(B) defined hyrf(b) ::'l th-b81,
(i") ok(a) : 01(B)oa oB 01(B) lor lc 22,

(") the unique graded derivation ô : Ofr(B) - nt+t(B) that extends 6 : B -+
01(B) [su, II Lemma L.1.2]

("i) O(B) :: e¡¡¡Ofr(B) with multiplication by tensor product over B.

Let B be the unitisation of a non-unital *-algebra, B. We then rlefine the rmiversal
graded differential algebra of B by

o(B) ::Bo(oËl0u(s)).

Let (H,r, D) be a C]-representation of a C*-algebra A. The map

r¡ : Qk(A!") -+ abØ\") , õ -+ 6p
6The equality between the sets defining ObØÐ is not a triviality. For instance, consider u €

f¿D(,A:) given by w : n(ao)lD,n(at)ln(az) for øq, a1,a2 €,41. This is of degree 1 in [D, "(AÐ]terms. The fundamental relation

lD,r(a)r(b)l = ¡(a)ÍD,n(b)l + lD,r(a)lr(b) Y a,b e A!

provides the form w = r(ao)lD,n(a¡a2)l I n(aoa1)lD,n(az)).
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defrned by \

ro(ao8 ô(a1) a . . . a ô(or)) :-- r(as)lD, zr(¿r)l ...lD,zr(ar)l

is an algebraic homomorphism [c, Pg 186]. We use the terminology (Oo(A]),ô¿) is

a representation of the universal graded differential algebra (Ok(A:), ô). However, it
is not differential as rD o õ I 6p o irD in general.

Example 1.4.5 The universal graded differential algebra of an associative alge-

bra B is universal in the following sense, Let M : @nMk be a graded B-bimodule
with M0 : B and graded derivation d,: Mk a ¡4k-tr such that d,2 :0 7. Theo
there exists a graded bimodule homomorphism g : O(B) -+ M such that 06 : d,0

[;r] [r, 7.r,7.2].

For example, on a Riemannian manifold X there exist homomorphisms p1,p2

Pt 
o(cr(x)) 

p2

,/\
ctr(x,c\(x,q)) 1 c?(x,^*x)

such that Lpr: pz, pt6 : dtpt and p26 : dpz. Let D : d,l d* and define the
surjection

p: Cf;(x, Ch#(x, qg)) -+ abQi6)) , d, -+ õo.

Thenp3dr* õops.This is due to the existence of elements tu € kerp3 such that
dru # kerp3. As an example, an element with local representation in a chart
(Jo of X with the form, w"(r): f (r)r¿(dr)...r¿(dr¡-1) such that 0¿f :0 for
i:1,...,1ç - 1 and \nl * o. As flfr(Cf;(x)) ir universal then p3p1 - rrD.Hence
no6 * õprp as 7rp6 : pflú : psdrpt * |opzpt: 6DTD.

We can identify the obstruction to zr¿ being a differential representation. Define for
k)0,

JkØl) :: {tq + 6(w2) lr, e ahØl),w2 e Qk-r(A!),rp(w1) : ro(wz) :0}'
The algebra Jp(A!) :: @nno(Jr(AÐ) is a graded differential two sided ideal of
0¿(Ál) [c, VI.1 Prop 4]. Define

Lo(AÐ :: aD(AL)lJT(AL)

then
tp: tr|,(,+!) -+ À$+1(a])

has the properties

(i) ô¿ is a graded derivation on Â¿(,4]),

(ii) 6T : o,

that generalise the properties of the exterior derivative.
TBimodules of associative algebras are discussed in Secüion 2.1,1
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L,4.2 Smooth Non-Commutative Differential Forms

Last section we defined the non-commutative exterior differential forms and non-
commutative exterior difierentiation associated to the Cj-representation (H,T,D) of
a C*-algebra.4. as the diflerentialrepresentation (^ô.¿(,4.L),¿o) of the universal graded
differential algebra (Oe(,4:),6). The only detraction of this construction is the inca-
pacity to define degrees of differentiability. The nilpotency of the 'exterior derivative'
ô¿ prevents repeated derivation of a function from determining degree of differentia-
bility. We recall f¡om Section 1.3.4 that covariant derivatives provided the analogue of
partial or directional derivatives on a Riemannian manifold. A. Connes treatment of
'non-commutative covariant derivation'in [cs, CM] involves a non-commutative pseudo-
differential calculus of a C"l-representation (H,T,D) of a C*-algebra .4. We outline
the definition of smooth non-commutative differential operators in this calculus.

Let (H,r,D) be a C]-representation of a C*-algebra,4.. Define the subspaces of
the Hilbert space f/, 8

H' : DomlDl'

for all s ) 0, We define opt,t as the linear space of continuous operators

oP"'" : Hs -+ Hs-r

for alls )r)0. Let fr(r):(I+r2)-i,r€R,s ) 0. Introducethenorm

ll"ll, :: sup{ll/"(D)rh@)ll ls * ú : r}'
Define the normed space

opf,' :: {7 € op"'r I ll"ll, < oo}.

We will consider the operators in opf'p V s ) p to be the pth-differential operators in
the calculus of (f1, T, D).

Remark 1.4.6 We have op0,0 : op3'0 : B(H). A zeroth order operator ? is
bounded andT e L(DomlDl',DomlDl') for all s ) 0. The operators D,l¿l e
opi'l Vs ) 1 and are considered'first order'. The Laplacian D2 € op'o'2 Vs ) 2 is
second order. A first order operal,or l,hal is cenl,ral irr Curures lucal irrtlex lurnul¿ is
the'covariant derivative' [cs, cu]

y do : f,ln2,n(o)l

for ø € Af, tnat are zeroth order. Connes' definition of a covariant derivative provides
generators of the 'non-commutative geodesic flow' and generalisations of the Levi-
Civita connection, see [cs, Section 6].

sl,et h : IR -r C be a bounded Borel function, then h(D) will denote the operator defined by
the spectral theorem for selfadjoint operators [RS, Thm VIII.5]. The spectral theorem extends to
unbounded Borel functions in the following sense. Let hn be bounded and Borel and. hn -+ h
pointwise. Then there exists an unbounded closed operator h(D) such that h"(D) -+ å(D) in the
strong resolvent sense (Spectral Theorem with Tiotter-Kato and Tïotter Theorems [RS, VIII.21-22]),
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Define the covariant derivation,

and the derivation
ô¡o¡(tr);: flDl,u.rl

for ti.r € 
"(AÐ 

or t¿ € Atr(AL) that are zeroth order.

Proposition L.4.7 [c5, Lemma L, Cor 1, Lemma 2]

Let w e n(A!) or u € OtoØÐ be zeroth ord,er and p € N. ?ñ,en

w e Domôþl rm: I,...,p 1==¡ $m(trl) e opT'* ffi: L,,...,p.

The result identifies p-differentiability of differential forms and the domain nh=t6þ1,

Definition 1.4.8 [ca] Let (H,r,D) be a base representation of a C-algebra A. We

say (H,r,D) is a Cf;-representation if there erists a norm-dense*-subalgebra A? oÍ
A" such that

(i) n(a)DomD c DomD for a e Af;,

(ii) lD,n(a)) is norm bounded, on DomD for a e Af ,

(iii) r(a),lD,n(a)l e nomõfol Vk € N for a e Af .

Let (f1, n,D) be a Cf-representation of a C*-algebra,4,. As a consequence of the
definition above AoØ?) C opå'0 for each s ) 0. In otherwords, defining

H* ;: ñr>o//t = ¡r>sDornlDl,

then
O¡(Ai) c L(H*,H*).

We define a locally convex topology on Cl¿(Áf;) by the family of semi-norms [nn, V.1]

p^(w) ,: llõþl(.)ll , rn:0,1,2,...

with the convention dlDl(") : ? for T € B(H). We denote this locally convex

topology 5¿ and the closure of a set O C 1'^Dom6m by So@). We define a stronger
Iocally convex topology on Af by the family of semi-norms

p0*(") ': llóíbl("(r))ll , pkþ') ': llôíBl([l,n(a)])ll , trl:01r,2,...

with the convention ôlDl(") : T lor T e B(H). We denote this locally convex

topology .9f, and the closure of a set O c ¡*Domõ by .Så(O). We have not
specified that ,4.f be closed in the locally convex topology Sf,.

Let (If, r, D) be a Cf;-representation of a C*-algebra A. We introduce the notion
of smoothness in the non-commutative calculus associated to the C"--representation
(H,T,D). Define

An :: {a e Alp?.("(")) ( oo, n : 0, 1, Tn : 0,1,2, ...}.

V(tr) :: !lo',-l
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Proposition 1.4.9 The*-algebra An as aboue has the propert'ies,

(i) the topology Ero on A^ i,s metrisable,

(ii) A" i,s closed ln Erp,

(iii) An is closed i,n the holomorphic functional calculus,

(i") ,!^ is norrn dense i,n A.

Proof Checking that A. is a *-algebra is straightforward. (i) .Så is generated by a
countable family of semi-norms [ns, Thm V.5]. (ii) By construction.
(iii) This result is well known, and the same concept as [c, Lemma 6]. We outline
the proof. Let n(a) e Aq. Let /(n(a)) : [" f6)(n(a) - À)-1dÀ where C is a closed
contour with sp(a) interior to C and / is holomorphic on a region containing C and
its interior. Let M(C,sp(¿)) : inf 

"çç,.çrplo¡ llz - urll and L(C) : arclength of C.
FÞom p, ("(o) - À)-tl : -("(o) - À)-1[", r(a)](n(a) - À)-t. we obtain

I I [r, / ("(r) )] ll < I I [", "(ø)] I I ryx I f I 
rur (c,sp(a))-2 r, (c).

This proves p!(¡(r(a))),ptff("("))) < * letting 7 : lDl,D. Similar arguments
provide the same result for the semi-norms pf;n wherc n : 0,1 and n1, : 0,I,2,....
Hence l("þ)) e An.
(iv) There exists a norm dense sub-algebra A? C A" bV definition. tr

A locally convex space that is closed and metrisable is called a Fþechet space [.tn].
In the literature a smooth algebra is deflned to be a Fbechet *-algebra stable under
the holomorphic functional calculus. A pre-C*-algebra is defined to be a norm dense
*-subalgebra of a C*-algebra stable under the holomorphic functional calculus.

Corollary 1.4.10 'L'he pre-(7-aLgebra An ol A is smooth.

The *-algebra of multipliers,

M(,A^) ;: {a € M(A)lab,ba e "A" V b e "4*},

is a pre-C*-algebra of the multiplier algebra M(A) that is closed in the non-metrisable
locally convex topology given by the family of seminorms

f^,a:-- phþb) + pi"(ba) , b €. Ao,n:0,7,rn :0,I,2t...

We denote this locally convex topology by MSrp and the closure of O c MQa) bV

MSID(O).

The locally convex topology Sf, can be placed on the *-algebra

M(,A)^: {a € M(A)lph("@)) 1 æ,n: 0, 1, rn : 0,1,2, ...},

making it a Fhechet C*-subalgebra of the multiplier algebra M(A).

Lemma L,A.II Let M(A)* and M(A^) be the closed locally conuer*-algebras as

aboue. Then
MsbçA,)cM(A),cM(A")
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with Sb 11 ME o.

Proof Let X: MEro(A,),Y: M("4)* and Z: M(A*).Let aeY. Then (*)

p?,,u@) : pfr(ab) + pfi(ba) 
=ä(7)ørølf^-¿(u) 

+ ú(u)pk-¿(o)) < -.

Hence a € Z. Moreover, tet {a¿} C Y such that ø¿ -t ø in the topology Sf,. Then
p?n,u(o¿-a) -+ 0 for each b e An bv (*). Hence 5; << MEo and Y is closed in
ME o. Then X C Y since .A^ c Y. ¡

Theorem L.4.L2 Let M(,A)^ and M(fu) be the closed locally conuer*-algebras as

aboue. Then the following statements are equiualent

(i)

Msro(&) : M(A)n: M(&,),

(ii) the smooth *-algebra An admits an appronimate unit {rr}.re¡t for the C-
algebra A such that pi"(u¡) -+ 0 for all m,n + 0.

Proof Let X: A4(A)*,Y : M(A*) and Z: MEro(&,).
(i) + (ii) We have I e Z and by hypothesis there exists a sequence {u¿}¿ex c .4"

such that nln,6(u¿-t) -+ 0 for all b e 4r,n: 0, 1, rn : 0,I,2,,.... Fix (rn, n) e Z1xZ2.
Letu¿: öas above. Thenthereexists j(i,n,rz) e Nsuchthat V j > j(i,m,n),
pir@¿ulu¡) 1 p\n,unfuì < i-'. Then {u¿,¡ :: u¿uJut}tex C .A' is an approximate
unit such that p$(u¿,r) -+ 0 as 'i -+ oo fo' any j > j(i,m,n). Now define u!¿ :: u¿,¡

for any j > max{j(i,k,n) In:0,|,k:0,1,...,p}. Then {uf}1i,p)eNxN C,4,, is an
approximate unit such that phþti) -+ 0 as i,p -+ æ.

(ii) + (i) The result follows from the previous lemma if we establish Z C X. Let
a e Z. Then øb, ba e. "4" for all b e ,4". By hypothesis there exists an approximate
unit {u¡}¡6 ¡ C A" such that pfn@u¡b - ab) -+ 0 and pfr(baus - ba) -+ 0 for all r¿ :
O,lrm:0,1,2,..,. Hence there exists a sequence {or¡} C "4, such that p\,u(au¡-
a) -+ 0 for all b e Ar,n:0,7,n1, - 0,1,2,.... Then a e X. ¡

An approximate unit {rr}.r.rr C "4^ is called a smooth approximate unit for the
C*-algebra A if pi"(u¡) -+ 0 for all m,n f 0. In the absence of A" admitting a
smooth approximate unit for ,4. we consider the largest *-algebra M(A") as the pre-
C*-algebra of smooth multipliers. A corollary of Theorem I.4.12 is that M(,4") is

a smooth *-algebra admitting the topology Sf if and only if "4, admits a smooth
approximate unit for A.

Let A be a C*-algebra and Er(,A) :: PS(A) \ ¡ I eri*1e) the associated
non-commutative space. In summary, we have introduced the algebras in the non-
commutative smooth differential calculus associated to the Cf;-representation (H , r , D)
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coincident with the following intuitive scheme

4t

A?
A"ì Ao

An

J"l("+)
A.
A

M(A)

dense
C ' non-commutative Ci (Er)'

'non-commutative Qi (Er)'

'non-commutative Cff (tq)'
'non-commutative C f (D r)'
'non-commutative C.(Dr)'

'non-commutative Co (En)'

'non-commutative C u(En)' .

The next example demonstrates the algebras above are the counterparts to smooth,
compactly supported and continuous functions on a Riemannian manifold.

Example L.4.13 Let X be a Riemannian manifold.

Proposition t.4.t4 Let (L2(X,Â*X), n¿,d * d*) be the base representation of
the commutati,ue C-algebra A: Co(X) defined in section 1.3.6. Then the base

representation (L2(X,À*X), r¿,d * dl) is a Cf;-representation of Co6). In
particular A": C"(X), A",: Cf (X) and M(A^,): Cf (X).

Proof Let r¿:: zr. It is trivial that C"(X) : Co(X)" by Prim(C¡ (X)) : X.
Let f € Cf(X) which is norm-dense in Co(X). We refer to lcu, Theorem
I.1l for the proof thai fld + d*l,lld + d.1,..., fld * d*l,"l..ll for T : rt(f) or

[d + d* , 
"¿ 

(/)] : núdl) are zero order because the principal symbol of ld + d- | is
scalar. The same proof holds for any bounded smooth function Cf (X). Then
Ci6) c "4^ c Co6) and Cf;(x) c M(A)" c M(A*) c Cb6).
Equally it is an exercise in differential geometry to determine V(d/) ,: å[4, lrilÍ)]
indeed defines a covariant derivative up to scalar terms. Then llVk(/)ll* < -
implies the partial derivatives of / in any chart all exist and are continuous.
Hence "4^ c Ci6) and M(A)" c CDoo(X). Otherwise one may use the sym-
bol calculus to obtain the partial derivatives as co-efficients of fld + d-1,[d +
d*1,..., fld + d.l,nf)1..1], such as [ne, 4.3] or the proof of [cu, Theorem I.1]. !

Non-Commutative Calculus (Part 2)

We recall the following basic elements that, together with linear algebra, provided
the theory of multivariable calculus:

(i) the second countable metrisable locally compact topological space X,
(ii) the algebra of continuous complex valued functions C(X) on the space X,
(iii) the derivative operation on difierentiable functions CI6) C C(X),

a: cr(x) -+ C(x,L(TX,C)),
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(iu) the integral of a continuous function over the space X, which can be viewed
as a linear positive deflnite functional

I:C(X)-+Cu{oo}.
(u) a geodesic metric derived from the integral and derivative.

In this chapter we are concerned with the emulation of the elements (i)-(") in the non-
commutative environment of the triple (A, H,D) defined in the introduction. In part
2 we deal with the elements (iv)-(v). Section 1.5 identifies the predual of a von Neu-
mann envelope of a separable C*-algebra A as the counterpart of the space of linear
positive definite functionals on integrable functions. Section 1.6 extends the theory of
non-commutative integration by introducing generalised Radon-Nikodym derivatives.
Section 1.6 also introduces a foundation structural theory of von Neumann algebras
called the Tomita-Takesaki or Modular theory. The Tomita-Takesaki theory is shown
to have a fundamental link to the spectral triple (C¡(X),L2(X,À*X), d+d*) of. a

Riemannian manifold X. Section 1.7 introduces A. Connes formulation of the inte-
gral calculus associated to a base representation (H,TrD) of a C*-algebra A. We
rema¡k Connes formulation is not coincident with the established non-commutative
integration theory of normal semi-finite weights on von Neumann algebras discussed
in Section 1.5 and Section 1.6. Section 1.8 develops the counterpart of geodesic metric.
Section 1.9 summarises the non-commutative calculus associated to a Cf;- and inte-
grable representation (f1, r,D) of. a C*-algebra .A as developed in Section 1.2 through
to Section 1.8.

Basic Definitions

Let X be a topological space and p a Borel measure. We call the pair (X, t") a (Borel)
measure space. We recall a Borel subset B of X is defined by

B : u{C c BIC is compact} : o{B c OIO is open}.

A regular Borel measure on X is a Borel measure p such that for all Borel sets B,

p(B): 
åuBp(c) 

:;¿fou@)

where O are open and C are compact and Borel. A Borel measure p is called o-finite if
there exists a countable collection of Borel sets {.8"}"6ry such that p,(8") ( oo Vr¿ € N
and tJn&n : X . A, Borel measure ¡r is called finite if p(X) < oo. When the topology
on X is metrisable every finite measure is regular.

A Borel set B is called a null set for p, if p,(B) : g. Let ¡,t, and u be Borel
measures on X. Then z is absolutely continuous with respect to ¡.1, denotedv 11 ¡-t,

tf u(B) : 0 + p(B) :0 for a Borel set B. The Borel measures / and p, are called
equivalent, denoted u = þ, if. u 11 ¡t and H, 11u.

1.5 Non-Commutative Measure Theory

Let X be a locally compact Hausdorff space and p a regular Borel measure on X. In
the following sections we shall show a bijective correspondence

(X, p) <---+ (W(A),r)
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between regular Borel measure spaces (X, tt) and commutative von Neumann algebras
and normal semifinite weights (W(A),r). The existence of this bijective correspon-
dence leads to the generalised theory of von Neumann algebras and normal semifinite
weights being called 'non-commutative measure theory'.

1.5.1 Measure Theory on lR.

Let p be a regular Borel measure on IR" Let ¿t (n, p) be the Banach space of integrable
functions and.ú-(lRrp) the Banach space of essentially bounded functions. Let / €
tr-(R, ¡l). The correspondence

Í ,+ TP(f,') , TP(f ,ù ,: [ Ígdu V g € ¿1(R, p)
Jm.

defines a linear isometry
¿-(R, p) 1---+ trt(lR,p)*

between essentially bounded functions and the dual of tr1(R,p). However, letting
9 € ¿1(lR, ¡.r,), the correspondence

9 è Tp(.,g) , Tt'(l,g) ,: I f gdp V/ e I-(R,¡r)
Jn

defines a linear isometry of .[l(R,p) onto a proper closed subspace ¿-(B tò* of
tr*(R,P)*,

¿t(m, ù êtr-(tR,p)*.

We call ¿-(& /.¿)* the pre-dual of Iæ(R, p). The Radon-Nikodym Theorem identifies
¿-(&/r)* with the finite Borel measures ¡/ absolutely continuous to ¡.r,

u(E) :: TP(Xn, f),,

where X¿ is the characteristic function of a Borel set -8. The ultraweak topology on
¿-(R, p) is the weak*-topology induced on ,[-(R, ¡.r) as the dual of ¿1(n, p),

fn-+ f ç tu(fn,s)-+Trff,s) Vg €¿1(R,p).

The equivalences

finite Borel measure z << ¡; on lR

e Tp(.,/) e ,ú-(R, p)*,

Borel measurable sets .E s.t. p(,8) > 0
14 sþ¿¡¿cteristic functions Xø in I-(lR, p),

e+ the non-zero projections in .[-(lR, p),
regularity of a finite Borel meastre u 11 lt

44 ulf¡¿ïysak continuiff of Tu(,/) e ¿-(&p¿)*. on the

unit ball of -[*(R, ¡r),
Borel measurable sets constructed from the topology of IR

<a l,oo(ft, p) is the ultraweak closure of C¡(R),
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transfer measure theory from Borel sets and measures to the Banach space,D*(lRrpl)
and the predual I*(& ¡r)-.

\Me convert the Banach space concepts above into operator algebra theory. The
Banach space -D*(lR,p) is a *-algebra given the involution of complex conjugation
and the product (Íg)("): f (r)g(r)p-a.e. Then.ú*(R,p) is a C*-algebra. It has a
faithful representation (I2 (lR, t r), T t) where

zr¿: -Læ(lR, p,) -+ B(Lz(m,p)) , "¿(Í)g(*): f (r)s(r) p-a.e.V9 e I2(m,p).

The continuous linear functionals ¿- (R, lr)* : ¿(¿* (R, p), C) play the same role
assectionl.2inthestructureoftheC*-algebra¿*(&¡^l). Howevero:.L*(lR,¡r) -+C,
while continuous in the ll.ll--norm sense

o(f") -+ o(f) when ll/" - "f ll- + 0,

is not necessarily continuous in an ultraweak sense

o(f") -+ o(f) when /o -+ / ultraweakly.

Hence the weaker topology on -úæ(lR, p) prescribes a restricted class of (norm-)continuous
Iinear functionals and a new facet to the analysis:

Let {/"} be any bounded monotonically increasing net of positive essentially
bounded functions such that lo -+ / ultraweakly. Then a continuous linea¡ func-
tional o e L(L@(]R, p), C) is called normal if lim" o(lo) : o(/). The normal linear
functionals are denoted ¿-(¿-(R, p), C).

Theorem L.6.I Let p, be a Borel measure on R. Then

(i) I-(m, ¡,t) is ultrawealcly closed,

(ii) the pre-d,ual cons'ists of normal linear functionals,

I-(re, p)* : I-(I-(B p), C)

Proof (i) The dual of a Banach space is closed in the weak*-topology. (ii) þed, Cor
3.5.6, Thm 3.6.41. D

The normal linear functionals on.ú-(R,¡l) are equivalent to the finite regular
Radon measures in the measure theory on .D-(R, p).

L.5.2 Von Neumann Algebras and 'Weights

Theorem 1.5.1 is the basis for the generalisation of measure theory to general operator
algebras.

Let H be a Hilbert space. A von Neumann algebra R is a weakly closed C*-
subalgebra of B(H). For any C*-algebra,4. we have denoted by L(A,C) the contin-
uous linear functionals on -4 and L+(A,C) the positive linear functionals. Let {4"}
be any bounded monotonically increasing net of positive elements of .R such that
aa -+ a, weakly. Then a continuous linear functional o e L(R,C) is called normal if
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limo o(øo) : o(a). The normal linear functionals are denoted L*(R,C). The space of
normal linear functionals on a von Neumann algebra -R is also denoted A* and called
the pre-dual of .R e. The pre-dual À* is, conceptually, the space of non-commutative
finite regular Radon measures on .R.

Von Neumann algebras with separable pre-dual

Theorem L,6.2 Let R be a uon Neumann algebra on a separable Hi,Ibert space. Then
there enists a separable C -algebra A such that

(i) ro(A)" * R, where (Ho,To) is the separable representati,on assoc'i,ated to a

faithful positiue linear Juncti,onal o e L+(A,C),
(ii) R is isomorphic as a Banach space to the second dual A**,

(iii) the pre-dual R* = A* is separable.

Proof (i) The proof of [rea, Prop 3.8.4] (ii) [eea, Prop 3.7.8] (iii) [rea, Thm 3.9.8]

The statements (i)-(iii) of Theorem 1.5.2 are equivalent and provide the form of
all von Neumann algebras with separable pre-dual.

Let A be a separable C*-algebra. We recall the structure spaces PS(A) t3 A g
Prim(,A) of .4, and that P^9(,4) is a complete second countable metrisable Haus-
dorff topological space given the weak*-topology, see Theorem 1.2.L. We are not
interested in generalised measure theory per se, but the 'non-commutative measure
space(s)' arising from a 'second countable metrisable non-commutative topological

space' PS(A) t* ; E Prim(A). Theorem 1.5.2 hence restricts our study to von
Neumann algebras with separable pre-dual. Let (H,n) be a separable representation
of ,4. We shall call n(A)" the von Neumann envelope of ,4 associated to (H,n) r0.

Remark 1.5.3 The fundamental relation PS(A) ++ Irr(,4) identifies PS(A) as non-
commutative 'point' measures for the 'points' given by the irreducible representations
of the algebra. The pre-dual of the von Neumann envelope is generated by the closure
of linear combinations of 'point' measures in the weak*-topology. This is precisely the
case on IR, where the Dirac measures p¡ for r € IR generate the finite Radon measures
on.Læ(R,p) [Rs, variant problem 41, IV].

Relevant examples of Von Neumann algebras

Example 1.5.4
elet B be a Banach space, The pre-dual B* is the unique closed subspace of the dual B* such

that B is the dual of B*. A Banach space is called reflexive if B* : B*. The spaces rve deal with
are not reflexive in general. For example, tr-(R,¡r)- :,Ll(lR,p) I ¿-(R,¡r)*. For a von Neumann
algebra one identifies the normal linear functionals with the pre-dual [Ped, Cor 3.5.6, Thm 3.6.4].

104 von Neumann algebra with separable pre-dual will suffice as non-commutative measure theory
for us. However, there are deeper reasons why hyperfinite von Neumann algebras are considered
regular measure theory. Connes' early work completes the classification of hyperfinite von Neumann
algebras [C1]. Amenable ( : hyperfinite) von Neumann algebras arise by replacing separable C*-
algebras in Theorem 1.5.2 with separable nuclear C--algebras [EC].
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a. Commutative von Neumann Envelopes
LeI A be a commutative C*-algebra. Hence A : Co(E) for a locally compact
Hausdorffspace E [Gelfand Theorem, Thm 1.2.12]. The space of positive linear
functionals on C¡(E) are the finite regular Radon measures [ns, IV.18]

Theorem 1.5.5 (Riesz-Markov Theorem) LetD be alocally compact Haus-
dorff space. Then euery p € L+ (Cy(D), C) is of the form pr(f) : I f dp, Jor some

f,nite regular Borel nxeasure p.

' Denote by M(E) the space of complex finite regular Borel measures on E.

Theorem 1.5.6 Let A be a commutati,ue C -algebra with spectrumD. Then

(i) M(E) = L(A,C) : A*,

(ii) the representati,on by rnultipli,cation operators

nr: A -+ L2(8,1.ù,

prou'ides the GNS representat'ion associateil to pp Íor p, e M(E),
(iii) np(A)" : L*(E, tr) Íor p, e M(E).

Proof (i) Riesz-Markov (ii),(iii) [eea, 3.4.1, 3.4.4,3.4.5]

b. Essentially bounded sections
Let X be a Riemannian manifold and p : E -+ X be a Hermitian vector bundle.
We recall from section 1.3.2 we have

(i) the Hilbert space L2(X,.8) with inner product

L(ot, oz) : (ot(*),o2(r)),f detgd,r V o1,02 e L2(X, E)

(ii) the C*-algebra Cs(X,L(E,E)) with norm

ll"ll : sup ll"(r)ll"

and representation (L' (X,E), À) where

(À(z)a)(r) : T(r)(o(r)) v" e Cs(x, L(8, E)),o e B@2(x, E))

Let { denote the Lebesgue measure of X, see Section 1.1.3. We define an es-

sentially bounded sections of endomorphisms on .E as a sections ,9 taking values
in L(8,-Ð) such that ess-supll^9(z)ll" < -. We denote the space of essentially
bounded sections of endomorphisms on E by L* (X, L(8, E)).

Proposition 1.5.7 
^(Cy(X, 

L(8, E)))tt : L* (X, L(8, E)).

Proof For convenience let R : L*(X,L(E,E)), C : Co(X,L(E,E)) and
H: L2(X,E). Both -R and C act faithfully on the separable Hilbert space 11

!
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by left multiplication operators. Let us consider the commutant of R and C.
As L(E,,E*)' : Z(L(EÍ,,E*)) : C then Rt : Ct = n¿(Læ(X,())'8 id where
id : r -+ idr and c : Læ(X,() -+ B(L2(X, €)). Now (ø¿(,ú-(X, €))' I id)' : ¿
as r¿(Læ(X,{)) i. weakly closed. Hence R: Rt' : C". By von Neumann's
bi-commutant theorem R is weakly closed [eea, Z.Z] [vtrt]. !

Let V be a choice of Hilbert space such that V = Er. Let A be a C*-algebra
that admits a representation (V,n). Then for each r € X there exists the rep-
resentation (Er,Tr) where n, : A -+ L(Er,Er). We define a C*-subbundle
A(E) of the vector bundle L(8, E) to be the vector subbundle of X -+ L(8, E)
defined by the map pr : n*(A) r+ ø. Let A(E) be a C*-subbundle of L(E,E).
Then Att(E) denotes the associated C*-subbundle of. L(8,-E) defined by the map
p2: rr(A)tt r+ r.

Corollary 1.5.8 Let A(E) be a C* -subbund,Ie of L(8, E). Then 
^(C¡(X, 

A(E)))tt :
L*(X, A" (E)).

Note A'l(,8): A(E) when V is finite dimensional. This follows as the weak and
uniform topologies agree on the finite dimensional representation (Iz, zr) of the
C*-algebra A.

Weights on von Neumann algebras

Let A be a separable C*-algebra with separable representation (Il,n). Let Er(A);:
PS(A) U+ ¿ E Prim(,A). Define the'volume' of Er(A) with respect to the 'measure'
o e n(A)'l by

Vol"(Xn(,A)) :: o(1).

Elements of the pre-dual 
"(A)'l are considered 'finite measures' as o(t) ( oo. This

occurs for any linear functional. To generalise to tnon-finite measures' we introduce
the notion of a weight on the von Neumann envelope o(A)".

Definition-Lemma 1.õ.9 [eea, 5.1.1,5.1.2]

LetRbeaC-algebra.

(i) A weiqht p on R is an addi,tiue form p : R+ -+ [0, oo].

(ii) A trace wei,ght i,s a weight p such that p(a* a) : p(aa*) for all a € R.

(iii) The positiue support of p, RT : {a € R+ I p@) ( *}, is a heredi,tary sub-
space of R+.

(i") The support oÍ p, -Ro : Span6 @l), is a two-si,ded, id,eal of R.

(u) A weight p on a uon Neumann algebra R is called

(u) faithful i,f p(a*a):0 =+ a:0,
(b) semifinite if R, i,s o-weakly d,ense in R,

(.) normal if there is a set {p"} C R* such that p(a): süpa po(a) for all
a€Ro,

("i) A weight p is a positiue linear form if and only if I e Rr.
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The GNS construction can be performed for semifinite weights, exactly as in
section L2.2, replacing the C*-algebra .R by the o-weakly dense two-sided ideal .R,

[rea, 5.1.6]. We will denote faithful normal semifinite by the acronym fns.

Example 1.5.L0 Lebesgue Integration on IR and Absolute Continuity

Let { denote the Lebesgue measule on IR. Let C¡(R) be the C*-algebra of vanish-

ing at infinity complex valued functions with representation (¿2(R,{), r'¿) given

by multiplication operators zr'¿ : Cs(R) -+ B(¿2(R,0) at in Example 1'3.2. Let

Co+(R) denote the non-negative continuous functions. Define the Lebesgue inte-
gral of a non-negative continuous function "f by

f
À(/) :: 

Jol@)dt@).

Proposition L.5.11

(i) The integral ), is a faithful normal semifi,nite wei,ght on the uon Neurnann

algebra ¿-(R, €).

(ii) The representat'ion (¿2(R, {), n¿) o/ ¿*(R, O is the GNS representation

associ,ated to the integral ),.

Proof (i) BV Theorem I.5.6 rúCl(ìR))" : ¿-(R'0. Hence ¿*(R,() is a
von Neumann algebra. Let.R: ¿-(&O and "f ,IR -+ [0,oo) be essentially

bounded. Faithfulness of À follows from À(/) : 0 iff "f : 0 {-a.e' The support

Ã.r : {/ € ¿-(R, €) l À(l/l) < oo} : ¿1(& €) n ¿-(R,0 it strong dense in A,
hence ø-weak dense. For normality, let Xø@) be the characteristic function for
a Borel set -E € IR. Define

À,(/) : 
fox?,,,1@)l@)dr: I:^f @)d'r'

which is finite for any non-negative essentially bounded function. Hence Àr' is

a positive linear functional. Let f o -+ / be an bounded increasing net of pos-

itive functions in ¿-(R,() that converge weakly to /' Then ¡¡-,',nll'@) -+

X¡-,",n1l (r) €-a.e. for fixed r¿. Hence the Lebesgue Dominated Convergence

Theorêm implies Àr, is normal. As À(/) : süP¡¿ À"(/) then À is a normal

weight. (ii) The support of À is.R¡ - ¿1(B€) n¿-(R,0. For /,9 e R¡,
À(/-g) : /e /(")ø (*)dt. Hence R^: ¿'(n, () and the associated representation

is multiplication functions. Apply Theorem 1'5'6(ii)' ¡

Let p, be a Borel measure on IR and

þ:þaclttt.i-'ltpp

be the Lebesgue decomposition of ¡; 11. The Hilbert space.D2(lR,p) decomposes

as the summand

¿'(n, p) : ¿2(R, t¿u") @ ¿'(m, ¡rr) o r'(R, ¡,oo)'
l1Any Borel measure ¡.r, on IR decomposes ãs Lt = !.1øc + p" + ¡r,oo where pr" is absolutely continuous

with respect to (, p" is singular with respect to ( but points are null sets, and ¡.roo is a pure point
measure [RS, Lebesgue Decomposition Theorem, I.14].
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Hence the GNS representation r, of C6(R) given by Theorem 1..5.6 decomposes
into

Tl":Tl"^"Ørr"Ørrrr.

Definition L.6.L2 Let A be a C-algebra with representation (H,r). The rep-
resentat'ion (H,n) is called an absolutely cont'inuous representati,on if for all self-
adjoint elements a of A the Borel seú sp(zr(a)) C IR ¿s a null set for all singular
and pure poi,nt Borel measures onR.

Theorem 1.5.6 implies for any Borel measure p¿ on IR there exists the GNS repre-
sentation (¿2(R, t-ù,rp) of C¡(R). In Proposition 1.5.11 the Lebesgue measure {
distinguished ihe representation (I2(R, t),nù as the GNS representation arising
from the Lebesgue integral. In the reverse direction, what identifies the Lebesgue
measure { among GNS representations of C¡(R)?

Theorem 1.5.13 (Absolute Continuity) IeúC6(R) bethe commutatiue C-
algebra of continuous uanishing at infi,nity Juncti,ons on R. Up to equiualence of
Tneasures there erists a unique Borel measure f on IR. such that the representation
by multi,pli,cation operators

zr¿ : C6(R.) -+ B(¿2(R,€))

prou'ides a faithful absolutely cont,inuous GNS representation (¿2(R, e),nù oÍ
Co(R).

Proof By Theorem 1.5.6 every GNS representation of Co(R) is of the form
(¿2(R, þ),Tp) for some regular Borel measure /r. By the Lebesgue decomposition
theorem there exists elements of the C*-algebra a.r(C¡(R)) that have singular
spectrums with respect to Lebesgue measure, unless rp"Øfrþor: U. Hence p is
absolutely continuous. If p is absolutely continuous but inequivalent to {, there
exists some open set O such that p,(O):0. Hence "p(l):0 for àrry I € C"+(R)
with support in O. Then n, is not faithful. Hence p must be equivalent to (. !

The results of this example can be extended to the Lebesgue measure on IRn,

subsequently to Lebesgue measure on a Riemannian manifold X. In Example
1.6.10 we discuss a similar result to Proposition 1.5.11 for Hermitian vector
bundles over X.

1.5.3 Remark - Structure of Cf;-representations

Disintegration of Representations

Let A be a C*-algebra. In section L2.2 we reviewed the decomposition theory of
a C*-algebra,4. over its structure space PS(A) t3 ¿ E Prim(,A). In particular, we
found the universal representation of the C*-algebra A disintegrated into a direct sum
of irreducible GNS representations (f/p,nr) associated to the pure states p e PS(A).
We describe below, following [eea] and [oix], the more sophisticated situation of the
disintegration of. any non-degenerate separable representation (H,n) of a separable
C*-algebra ,4.
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Let A be a C*-algebra. Denoleby Attthe von Neumann envelope associated to the
universal representation (f/y, r'y) given by Theorem 1.2.6. We call Att the universal
von Neumann envelope of A. We recall the statement of the Dauns-Hofmann Theorem

[rea, 3.12]: Let A be a C*-algebra and M(A) the multiplier algebra of ,4.. Then
there exists an isomorphism / i a è /o from Z(M(A)) to the bounded continuous
functions on L [r"a, 4.4.7,4.4.8]. As Z(A)tt : Z(M(A))" : Z(M(,4,))** there exists
an isomorphism / : Z(A)tt -+ C6(A)**, and Z(!)" corresponds to some cla,ss of
functions otr -Â. We define a D-Borel subset p c A as the support of a characteristic
function /, where a e Z(A)tt is a projection. Hence we have a bijective correspondence
between central projections of .4// and the D-Borel structure on ,4.. We will denote a
central projection by pp e Z(A)t'. Let p e LI(A",C) and deflne the central measure
pp@):: p(pe) oo Â.

Theorem 1.5.L4 Let A be a separable C -algebra and At' the uniuersal uon Neumann
enuelope. Then

(i) for each p € LI(Att,C) there is an isomorphism between L*(A,p,) and
Z(trr(A))'t.

(ii) two separable representations of A are unitari,ly equ'iualent if and, only if
they haue the same D-Borel null sets i,n Â,

(iii) there erists a bijectiue correspondence between classes of separable repre-
sentations and central projecti,ons. In particular (H,T) -u (prilu,ppnupp)
for some support F e A.

Proof (i) [rea, Prop 4.7.6], (ii) [eea, Thm 4.7.10] (iii) [rea, Thm 3.8.2] !

Let A be a separable C*-algebra. We define the support of. p e LI(Att,C), or indeed
any semifinite weight p on Att, as the central projection associated to the support
of the equivalence class of the GNS representation (Hp,zrr). The previous theorem
classifies the equivalence classes of separable representations in term of the D-Borel
structure otr Á. However, unless ,4 is postliminal [oix], then the D-Borel structure
ott Á is insufficient to disintegrate the class of a representation (f/, zr) in terms of
the support F C Á, ree [eea, 4.8.1]. The larger space required is called the factor or
quasi-spectrum.

Let A be a separable C*-algebra. A factor representation (.I1, r) of. A is a represen-

tation such that Z(tr(A)): C. Define the quasi-spectrum ,À to b" the space of unitary
equivalence classes of factor repres.entation of ,4. Each irreducible representation is a
factor representation, hence A c A. Using an argument similar to above there exists
an isomorphism between Z(A)ttand a class of functions otr ã. Th" D-Borel structure
or, ,À is defined such that the characteristic function of a D-BoreI set corresponds to
a projection in Z(A)t'. As above associate a central measure pp(F) = p(pp) for a
D-Borel set -F C L to each p e Ll(AIt,C).

We recall from flea, 4.11] and foix, 8.1] the concept of a Borel field of Hilbert
spa,ces {Hr}ter over a Borel space T and.the direct integral Hilbert tpu." jf Hñp(t)
for a bounded Borel measure p, on T . Let C¿ denote the scalars of the Hilbert space 11¿,

A diagonalisable operator )f is an operator of the form ff À(t)d¡r(t) where À(¿) € Aú

for p-almost all t. Let U denote the set of diagonalisable operators. An operator
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C e A([$ H¡d,p,(t)) is called decomposable if C : IS Clt¡a¡r(ú) where C(t) e B(Hr)
for p-almost all t. Equivalently C e J/' [oi*, (,{80)]. An unbounded selfadjoint
operator S : DomS -, A(18 H¡d,¡t(t)) is called decomposable if ,S is affiliated to !'.

Theorem 1.5.15 Let (Hrr) be a non-degenerate separable representation of a sep-
arable t -algebra A. Then there erists a central rneasure ¡, on À,, a D-BoreI subset
Fn C Ä and, a D-Borel fietd of factor representat'ions {(&,nù}rc¡ such that

¡@ ¡e
H -u I nra¡t(t) ,, r -u I n¿dp,(t).

JFn JF.

Proof [eea, Thm 4.L2.4]

Disintegration of Base Representations

Let (H,n,D) be a Cf-representation of a separable C*-algebra -4. as in Definition
1.4.8. The kind of disintegration in Theorem 1.5.15 cannot be performed in general
for (I/, n, D). The simple obstruction is the decomposition of D with respect to the D-
Borel space (F", þ). Here (tr1r, p) is the pair associated to the representation (f1, n) as
in Theorem 1.5.15. There exist two extreme cases of the possible decomposition of D
with respect to (,F]., p), (1) it is completely indecomposable, or (2) it is decomposable.

Definition 1.5.16 Let (H,r,D) be a base representation oJ a C-algebra A as in
Defini,tion 1.1.3. Then (H,r,,D) is called base-irreducible if [D,"(p)] l0 for any
proper central projection p e Z(A)tt.

Let (f1, r , D) be a base representation of a separable C*-algebra A. Let (Fn, ¡l be
the Borel space corresponding to the representation (f1, r) of A. As a consequence of
base-irreducibility D is not decomposable for any pair (F,u) c (l'n, þ) where u 11 lt.
Hence base-irreducibility corresponds to the case (1).

Proposition 1.5.17 Let (H,n,D) be a Cf -representation of a separable C-algebra
A and (F",u) be the corresponding D-BoreI space g,iuen by Theorem 1.5.15. 'L'he

following statements are equiaalent

(i) ÎD,"(p)l:0 for all central projecti,ons p e z(A)t',
(iÐ there enists a D-BoreI field of factor Cf;-representations {(Ht,nt,Dt)}rcÅ

such that

H -u [* 
"ror(r) 

t 1r -, fa n,a¡"ft) , D -u [* ororlr¡.
JFn JFn JFn

Proof (i) <+ (ii) Both statements are equivalent to the statement D is decomposable
with respect to (F", ¡t). !
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Spectral Representations

Let (I/, zr, D) be a Cf-representation of a C*-algebra ,4..

Lemma 1.5.18 Let (H,n,D) be aCf -representation of a C-algebra A. Then any
representatiue (Ht,n') oÍ the class l(H,")1" prouides a Cf -representation (Ht,nt,Dt)
of the C -algebra A. In particular,

(H' ,n' , D') : (U H,UrU* ,U DU")

where U : H -+ H' is unitary.

Proof Define DomDt :: UDomD, then Dt : DomDt -+ Ht is an unbounded self-
adjoint operator and lDll : UIDIU*. The completion of the proof is straightforward.
D

Lemma 1.5.18 implies that Cf;-representation is a property of the unitary equiv-
alence class [(f1, zr)]". This point of view leads to several points to consider:

(i) Let (I/,r) be a separable representation of a sepa.rable C*-algebra A. Deflne
the outer Cf;-basespace of the unitary equivalence class [(I1, zr)]",

D(l@,r))"):: {n e C@) \ B(¡1) l(H,n,D) is a Cf;-representation of A.}

Note 2([(}r,n)]") is defined using a fixed representative of [(/l,zr)],, but is
independent of which representative is chosen. The study of D(l(H,r)1")
is of central interest in non-commutative geometry. Considerations include
D(l@,T)]") * Ø (existence of Cf-representations where D is unbounded),
unitary equivalence classes inD(I(H,ø')]") (gauge transformations), and topolo-
gies and extremal points of D(I(H,?r)]").

(ii) We have observed Cf-representation is a property of the class [(.11, zr)], para-
metrised by the space 2([(I1 , n)]") . The natural question of a canonical repre-
sentative in [(,Ff, zr)], for O e O(@, r)]") arises. The spectral representation
is an immediate candidate. We recall the statement of the Spectral Theorem
for selfadjoint operators. There exists a mea,sure space (M, p) and a unitary
Uo : H -+ L2(M,p) such that U>DUþ : núp) where p I M -+ lR. is a mea-

surable real-valued function on the measure space (M, ¡.r) and (n¡(p)g)(m) :
p(m)g(m) Vg e L2(M,/-r) is the usual representation by left multiplication.
Let Hp : UoH and zr¿ : UotUb. Then by Lemma l-.5.18,

(H, T, D) -u (H n,n o, "úp)).
Hence (Ho,ro) € [(f/, r')]" is a canonical representative for D e D([(H,T)]").

1.6 Modular Theory and the Radon-Nikodym Theorem

Von Neumann algebras and normal semifinite weights have incredible structure theo-
rems associated to them. We shall review the Tomita-Takesaki Modular Theory and
the non-commutative Radon-Nikodym Theorem.
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Basic Deffnitions

Let H be a Hilbert space and -R be a *-subalgebra of B(H). We recall a cyclic vector

4 e H for.R is a vector such that Ã€: H. A, separating vector € e H for -R is a
vector o(:0 ) s,:0 for ¿ € -R. A cyclic andseparatingvector € e H for -Ris a
vector that is both cyclic and separating.

1.6.1 Modular Theory

Theorem 1.6.1 (Tomita-Takesaki) [Ha, Thm 1.6] [nn, Thm 2.7.14]

Let R be a uon Neurnann algebra. Then R is isomorph'ic to a uon Neumann algebra
in stand,ard, form (nr(R),H,J,L,P). Here r(R) is a uon Neumann algebra on the
Hilbert space H whi,ch admits the following structures

(i) (modular conjugation) a conjugate linear isometric 'inuolution J : H ) H,

(ii) (modular operator) a positiue operator L: DomA ) H,

(iiÐ (positive cone) a self-ilual cone P in H,

with the properties

(i") (symmetry) Jr(R)J -- n(R)' and Jr(a)J : n(o)* iff a e Z(R),

(u) (modular automorphism) At¿zr(-R)A-i¿ : r(R) for ú € R,

("i) (reality) Jq : q for all n e P.

The information (zr(Ã),H,J,A,P) is called a standa¡d form of Ã. There is an
associated standard form to every fns weight on a von Neumann algebra ,l?.

Theorem L.6.2 Let R be a uon Neumann algebra with fns weight p. Then there
erists an associated, stønilard, form þrr(R),Hp,Jp,Lp,Pp) where (Hp,Tp) is tke GNS
representation associated to p. Let to be the dense i,njection to: Ro -+ Ho giuen bU

the GNS construction. Then we hauie the further properties,

trr/atr(a[)

to@) -+ tp(o*) for a € Ro

separating and cyclic uector

Proof The closure of R, in the inner product (., .)p provides an achieved left Hilbert
algebra Hr. Hence, by the original Tomita-Takesaki theory f/, admits a standard
form. For the properties (i)-(iv), see [nn] or [ua]. ¡

The one-parameter family of automorphisms of ,B

oq¿(a) :: L'jn(a)L;¿t Vo e iB ú e IR

is called the modular automorphism group associated to p. The modular automor-
phism group is fundamental in Connes' classification of hyperfinite factors [C1]. It
has deep physical consequences, such as links to KMS states [rt, wn] and time flow in
thermodynamic systems [ctt].

(i) Pp: {trr(a)J¿o@)la e Ro} :
(ii) tp(Rp) C Dom\o and, Jo\,rol2 ,

(iii) if p is a trace then A,, - I
(i") if I e R, then t,o(I) Ê. Ho is a
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L.6.2 Generalised Radon-Nikodym Theorems

Let -R be a von Neumann algebra with fns weight p. Then there exists an associated
standard form (n'r(R),Hp,Jp,Lp,Pp) where (Ho,rp) is the GNS representation asso-
ciated to p. Elements of the positive cone P o are considered the generalised 'positive'
.t2-functions associated to the fns weight p [Ha, Lemma 2.2f,

Theorem 1.6.3 (Radon-Nikodym Theorem, positive cone version)

Let (tr(R), H, J, L,P) be a standard form. The rnap n -+ (n,'q) is a homeomorphism
of P onto R! , the normal positiue linear functionals.

The Radon-Nikodym theorem induces (unique) unita,ry equivalence of standard
forms [Ha, Thm 2.3],

Theorem 1.6.4 (Radon-Nikodym Theorem, standard form version)

Let (R,H,J,L,P) and (ó(R),H',J',L',P') be two standard, forms where þ is an
'isomorphism. Then there enists a unique unitary U : H -+ Ht such that n'($(a)):
Ur(a)U* for aII a€ R, Jt :UJU*, A: (JL|(J* and,P' :UP.

Connes' Radon-Nikodym Theorem associates the modular automorphism groups
arising from fns weights (stated as appears [cr]),

Theorem 1.6.5 (Connest Radon-Nikodyrn Theorem, cocycle version)

Let R be a uon Neumann algebra and U (R) the unitary group of R equipped with the
o-wealc topology. Let p be a fns weights on R. Then

(i) for each fns weight r there erists a unique continuous nxo,p u: R -+ tr(R)
such that

uslt: (of (u,))u¡ Vs,ú € IR,

of (a) : u¿oqr(a)ui vú € IR, a e R

and
r(a) : p(u¿¡2auf¡r) Vø e ,R.

(ii) for each cont'inuous m,o,p u: IR. -+ U(R) such that

us*t : (of (u,))u¿ Vs, ú € IR

there erists a unique Jns weightr with the properties of (i).

Remark 1.6.6 The operator u¿¡2 of Theorem 1.6.5(i) is ambiguous as stated. Let fn
be a compactly supported approximate unit of Cb(A). Then /r,(u1)il2 und, fn(ul)i/2 :
Un@ùil')* are normal. We then realise the operator uil2 : limn fn(u)i/2 as a strong
resolvent limit in any faithful representaiion (f/, zr) of -R 12. The equality stated in
the theorem is shorthand for

r (a) : lim p(f 
"(u¿ ¡ ù a I "fut ¡ ù* ).

l2Every normal (bounded) operator on B(.FI) whe¡e If is separable can be written o = ó+ic where
ö, c are selfadjoint and commute, Hence the spectral representations for ó and c coincide and there
exists a unique operator g(a), a complex measure space L2(M,p) and unitary U : H --+ L'(M,tt)
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The Radon-Nikodym derivatives in the standard form version and cocycle version
of the Radon-Nikodym Theorem correspond to equivalences of measures. Let p and
r be normal semifinite weights on a von Neumann algebra ,R. We denote r 11 p if.
r(a):0+ p(a):0 for¿ )0. \Me say r= p if r (( pand p<<r.

Corollary 1.6.7 (Radon-Nikodym Theorem, derivative version)

Let p,r be normal semifinite wei,ghts of a uon Neumann algebra R.

(i) Let r 11 p, Then there erists an operator p, affiIiated to R such that
r(a) : p}.tap*).

(ii) Let p be a normal semi,finite trace-we'ight and, r << p. Then there erists a
positiue operator Lf p : (" t p) affili,ated wi,th R such that r(a) : p((r : p) a).

Proof (i) Let p, andppbe the central support projections for r and p þed, Thm
3.8.2], see Section 1.5.3. As r 1<-p then prpp: p,. Define pr(') :: p(p"'). Then
p, and r are fns weight on prR. One applies Connes' RN-Theorem to get unitaries
u¿ € prR and hence partial isometries utpr e -¿B with the results of Connes' RN-
Theorem(i) for the fns weights p, and r. In particular, the corollary is proven by
setting p: ui/2pr' (ii) obvious from the tracial property and Remark 1'6.6. tr

We note Corollary 1.6.7 (ii) is the original non-commutative Radon-Nikodym the-
orem, developed well before Tomita-Takesaki Theory and Connes' cocycle generalisa-
tion. For instance, see [sez] or various formulations in [eea, 5.3].

1.6.3 Modular Theory for von Neumann algebras with separable
pre-dual

We introduced the general modular theory last section. For von Neumann algebras
with separable pre-dual the theory can be formulated in terms of cyclic and separating
vectors. This was the original exposition in the papers [ca] and [m]. A von Neumann
algebra .R is called countably generated if each set of pairwise orthogonal projections
in Ã is countable.

Theorem L.6.8 The following are equ'iualent

(i) R is a uon Neumann algebra with separable pre'dual,

(ii) R is a countably generated uon Neumann algebra with a fai,thful normal
state u, 13

such that (Ug(a)U"f)(m) = gof(m)t(m) where 9: C -+ C is Borel and bounded and -F is complex
valued. 'When o is unbounded and a" : o, then we say ¿ is normal if the selfadjoint operators
b : a I o* and c = -i(a - o*) commute. That is, they have the same spectral representations. Then
o can be written a = b+ic and the functional calculus can be defined on o using the spectral theory of
å and c. An equivalent definition of afÊliation of a selfadjoint operator m to a von Neumann algebra
n is /(m) € ß for all bounded Borel functions /. When a is normal and ¿: blic, then ó and
c affiliated to R implies a is affiliated to R in the same sense. It can be showt u¿12 is normal and
affiliated to Â in the senses above.

134 state u oL a C*-algebra ,4 is a positive linear functional with ll"ll : t. Alternatively,
lim¡ z(u¡) = 1 for any approximate unit us of. A. States correspond to probability measures, since
t = llvll ='volume' of the non-commutative space Ðr(.'4).
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(iii) R is isomorphic to a uon Neumann algebra n(R) on a separable Hilbert
space H that admits a cycli,c and separating uector for R,

Proof (i) +(ii) +(iii) +(i) is contained in [rea, 3.8.4,3.9.9]

Corollary 1.6.9 (Radon-Nikodym Theorern) Let u be a fai,thful normal state
on a uon Neumann algebra R with separable pre-dual. Let þr(R),H,J,L,P) be a
standard, form. Then (nr(R),H,J,L,P) is unitary equiualent to a standard form
(nr(R),Hr,Jr,L.r,Pr) with a cyclic and separating uector tr(I) ePr.

Example 1.6.10 This example is a continuation of Example 1.5.a(b).

Proposition 1.6.11 Let X be a R'iemannian manifold uith Lebesgue nxeasure

€. Let p: E -+ X be a Hermitian uector bunille ouer X. Let A(E) be a C-
subbundle of L(E,E). Suppose there enists a section q e Læ(X,E) such that

n@) e E, is a cgclic and separating uector for r*(A)". Then

(i) The wei,sht

In.x@) : I h@),o(r)rt@)),d,(rltr\\ , 
lx

is a faithful semi,fini,te normal weight on Læ(X,A"(E)).
(ii) The f ai,thful representation (L2 (X , E) , nt) of L* (X, A" (E)) as in Erample

1.5.4(b)(ü) is the GNS representation associated, to In,x.

Proof (i) The fotm lq,x is linear. Let o e L*(X,,4,"(.8)). Since

h @), o (r). o (r) q(r) ), : (o (r) r7 @), o (r) r¡ (r)), : llo (r) rì (r) ll|,,,
the form is positive. Moreover, the section 4 is separating, so lr,x(o*o):0 iff
o:0 €-a.e. Hence f,t,x is faithful. Let llall - K. By the Cauchy-Schwattz
inequality, (n@),o(r)q(r))" < K2llo(r)ll*. Hence the support of .[r,x con-

tains .L1(x,A"(E)) o L*(X,A"(E)), which is strong dense in .L-(x, A"(E)).
Hence Ir,x is semifinite. Let U¡ be a countable set of compact subsets of. X.
Let y¡ be the characteristic function of the set U¡. An argument identical
to the proof in Proposition 1.5.11 implies lq,u*(o) : Iq,x(yko) is a positive
normal linear functional for each k. Hence normality of ltt,x follows from ø-
compactness of the Riemannian manifold. Let X : U*Un where U¡ C U¡ç¡1

are compact. Then lr,x(o): süp/4,u¡(o) for non-negative sections o. (ii) Let
Rt: Lt(x,A(E\)ìLæ(X,A(E)). Then the closure -R¡ in the inner product
Ir,x(r*o) is L2(x, A(E)Ð : L2(x, E) bv the cyclic property of {. By the GNS
construction the representation is given by left multiplication operators. ¡

For any Hermitian bundle E -+ X and C*-subbundle ,4(E) satisfying the hypoth-
esis of Proposition 1.6.11, Theorem 1.6.2 provides a standard form associated to
the fns weight Ir,x

(tr¿(L* (X , A" (E))) , L' (X , E) , J,t , A,t,P,) .

Remark L.6.L2 (Riemannian Structure)
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Let X be a r¿-dimensional Riemannian manifold. Let Cliff(% q) be the Clif-
ford algebra for a r¿-dimensional vector space I/ as in Section 1.3.1. The ex-
terior bundle zl,*X -+ X is the unique Hermitian bundle over X, up to iso-
morphism, that satisfies the conditions of Proposition 1.6.11 for the C*-algebra
A: Clifr(V,q). Consequently there exists a unique Hilbert space L2(X,À*X),
up to isomorphism, which admits a standard form for the von Neumann algebra
R: L*(X,Cl(X,q)),

Riem : (Læ (X,Ct(X, qs)), L2 (X,À*X), J, r, L2 (X,^- X)+ ).

Proposition 1.6.11 further implies the standard form Riem is constructed from
.R using the fns trace weight À given by the Lebesgue integral and the metric qr,

57

det(s)dr Vu e L*(X,Cl(X,q))

The standard form Riem, and its construction from .R using the fns weight À,

characterises the representation (L2(X,Â*X),zr¿) amongst all other representa-
tions (f1,zr) of the C*-algebra Co6).

L.7 Non-Commutative Integral Calculus

We have introduced Cf-representations (H,T,D) of a C*-algebra A \n the role of
differential calculus, see Section 1.4.1 and Section 1.4.2. The representation (H,n)
provides a generalised measure theory of semifinite weights on the von Neumann en-
velope n(A)" as seen in Section 1.5 and Section 1.6. However, it is not apparent that
a general semifinite weight constitutes an 'integral' in the calculus sense (a summa-
tion of infinitesimals distances' in the sense of Sections 1.1.1 and Section LI.2). A
generalisation of infinitesimals and summation procedures on them is contained in
the theory of what are termed symmetric functionals. Symmetric functionals are still
an area of active research [oesss] [orsssz] [rss].

Basic Definitions

Let ,S € B(^ff). The projection ps :: 1- Pker,s : Pker,sr is called the support
projection of 

^9.

1.7.I Symmetric Norm ldeals

Let a e K(H) and p,n(a)r.ry denote the sequence of the singular values of a (the
decreasing rearrangement of the eigenvalues of lal). Let $ A" u symmetric norm on
l- [s]. Defrne S@):: ó0tt@),pz(a),...), I(ó),: {o € K(H)lóþ) < oo}, and
Is(þ) :: {a e K(H) I li-- ó(o - a^) :0 for some {¿-}-ex e FR(H)}.

Theorem 1.7.1 [s, Theorem 2.7]

(i) þ is a norn'r on I(þ) such that g(abn¿) < llollll"lld(a) and S(b) > llblld(1, 0, ...)

for b e I(þ) and a,c e B(H).

À(tr) : | *øn0, 
r¿(w)L)(r)
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(ii) I(þ) and, Is(þ) are Banach spaces in the norm S. For any a e Is(þ) its
canonical decompositi,on as a compact operator conuerges in þ.

(iii) (Non-commutative Fatou Lemma) Let a* e l(ó),am -) a weakly and,
stry-þ(a-) < æ. Then a e I(ó) and þ(a) ( sup- ó("*)

For brevity we also call the norm þ on the two sided *-ideal /(/) of K(H) a
symmetric norm. The symmetric norm / is called regular 1f I(ó): /o(d).

Example L.7.2 Let o, € I((H) with singular values p,,(¿)r,ex.
(i) The uniform operator norm

þ(a) :: lloll : sup¿ P¿(a)

is a regular symmetric norm [s]. The associated ideal is the compact operators
themselves K(H) = 1(ll.ll) : ¡o(ll.ll).
(ii) The norm

S@) :: llollp : (D¿ p¡@)P)i

is a regular symmetric norm [s]. The associated ideals, the Schatten ideals [s],
are denoted Lp:: /(ll.llo) :10(ll.llp). If a €..to then lolo e.t1 and

ll"llo : Tr(laln¡t/n (1.1)

(iii) Define the sequences for p e [1, oo)

N
ar(a) :: {f {o, Ð | ø(o)}r.* (1.2)

where /(1,¡f) ': (lnl/)-1 and l@,N),: l/-1+å for p) 1. Then the norm

þ(a) :: ll"llr,- : supao(a)

defines non-regular symmetric norms for all p e ll,oo). The associated ideals,
the weak ideals [s], are denoted by L,p,*,:1(ll.llp,-) and Ljr,oo.: /o(ll.llo,-).
The non-regularity of ll.llp,- allows the definition of a distinct semi-norm or Lp,*

Pe,*(a) :: lim sup ap(¿).

The semi-norT pr,* vanishes exactly oo tr!,- and induces a noïm on the factor
space trp,- lLor,*.

Let þ be a symmetric norm. Neither weak operator convergence, strong operator
convergence, nor uniform operator convergence of a sequence of compact operators
am -) ¿ will guarantee ó(o^ - ø) -+ 0 in general.

1.7.2 Symmetric Functionals

Let / be a symmetric norm. A positive linear functional r on a two-sided --ideal /(/)
of B(H) is called a hypertrace if r(aT) : r(Ta) for all a € I(ó) and ? € B(H).
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Definition L.7.3 We call a positiue linear functi,onal r on I(þ) such that lr(o)l <
þ(a) Jor aII a e l(ó) o symmetric functi,onal. We call a symmetric functional on I(þ)
that is a hypertrace a symmetric hypertrace.

Example 1.7.4 (a) The canonical trace Tr is a symmetric hypertrace on .L1.

(b) Let ø be a dilation and translation invariant positive linear functional on l*
such that u.r(l) : 1. Then

Trr(a) ': r(or(o))

defines a symmetric hypertrace on -L1,- [c, rss]. These symmetric hypertraces
are called Dixmier traces after their discovery by J. Dixmier [oi.x]. The symmetric
hypertrace 7r, relates to the seminorm pr,oo rather that the symmetric norm

[tss, Theorem 6.4]

ø,æ(a): sup?r,(lal).

That p1,-(a) vanishes on -F'À(fI) C Lt c tr!,- implies every Dixmier trace is a
non-normal trace on the factor B(H) and singular to the canonical trace Tr.

I.7.3 Symmetric Measures

Definition L.7.6 Let r be a symmetric hgpertrace associated to a symmetric norm
S. Let K be a fired positiue bounded operator with triui,al lcernel Define the spaces

Ft(r,K) :: {S e B(H)ISK,KS € 1(d)}

and
T"(r,K):: {S € B(¡1) lr,¡s¡ e I-r?,K)}

with norm

öx6) = ó(sK).

We call the pai,r (r,K) a symrnetric nleasure. We say the symmetric measure (rrK)
is finite il K e I(ó).

The linear functional on I-t(r, K)

tx(S) :: r(SK)

is positive on I-c(r,K) and positive on 1-1(r,K) when l(ó) 
" 

geometrically stable
symmetric norm ideal [xl, rz] 14. The Shatten ideals L, and their weak variants f
are geometrically stable. 

L@uuç'ruç@r' up a'v ur¡E' wçoÃ vorr@'uù lp'ocl

Deftnition 1,7.6 Let (r,K) be a symmetric measure. The linear functi,onal rK on
F'(r,K) defi,ned by 16(3) :: r(SK) is called, a weighteil symmetric functional. A
weighted sgmmetric functional ry that ,is a trace i,s called a weighted syrnmetric trace.

laThis result and results on the spaces f-1(r,1l) and I-'(r,K) are discussed in the paper [LS].
They are not considered relevant here since the predominant situation in this thesis involves K e I(ó),
for which the results become greatly simplified.
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Definition 1-.7.7

(A\ Let A be a C -algebra. Let

(i) (H,T,K) be a base representati,on of A such that K ) 0,

(ii) (r,K) be a symmetric measure associated, to a symmetric norm $.

(iii) r(A") C l-t(r,K) for the ideal A.c A as in Defi,ni,tion 1.1.1.

Then (H,r) i,s called a (r,K)-i,ntegrable representation of the C-algebra A.

(B) Let A be a C -algebra, Let

(i) (H,T,D) be a base representation of A,

(ii) / : ìR + (0, -) be bounded and Borel measurable,

(iii) (r,l@)) be a symmetric measure associated to a symmetric norm þ.

(i") r(A.) c I-t(r, f @D for the ideal A. C A as in Definition 1./¡.1.

Then (H,r,D) is called a (r,f (D))-i,ntegrable base representation of the C-algebra
A,

Corollary I.7.8 Let (H,T, D) be a (r, f (D))-i,ntegrable base representation of a sep-

arable C-algebra A. Then r(A)'t admi,ts a semifini,te weight p such that p(tr(a)):
,¡p¡("(")) for all a 2 0.

Proof By definition r is a positive linear functional in /(/). Define p(S) : 
"¡qt¡(S)for ,9 ) 0. We prove p : n(A)t! -+ [0, oo] and is additive. By Theorem 1.7.1(ii)

1(/) and /¡(/) are Banach spaces. Hence they are geometrically stable by [xr,
3.2]. It follows from [xz, 2.6] that r(^9) : r(T) for any ,5 e I(Ó) such that 7
has the same eigenvalues with multiplicity as ^9. As,9fl ar,id Krl2SKr/2 have the
same eigenvalues with multiplicity for ^9 

positive and .[f positive with trivial kernel,
r$ f @)) : r(f (D)U2 S ¡ 1n¡rlz| Positivity and additivity of r¡1a¡ now follows from
positivity and additivity of r.

Hence p is a positive linear functional on r(A)tt ll I-r(r,K). Let Rp: r(A)" À
I-r(r,K). Norm density of Á" in A, from Theorem 1.4.2, implies z(,4'") is ø-weak
dense in r(A)" by von Neumann's bi-commutant and density theorem. As zr(,4.") c
,r(A)" ì Ft(r,If) bV Definition 1.7.7(8)(iv), J?, is a-weak dense in r(A)tt. Hence p
is semifinite. !

Definition L.7.9 Let (H,T,D) be a (r, f (D))-integrable representati.on of a separable

ö-algebra A. Then the support of the symmetric rneasure (r,Í(D)) and the support
of the wer,ghted symmetric functional r¡ço7 shall identically mean the central support
projecti,on p e A" of the semifinite weight p on n(A)t' in Corollary 1.7.8.

The next result displays the fundamental role of the canonical trace and the trace
class operators in the theory of von Neumann algebras with separable pre-dual.

Theorem 1.7.10 (Characterisation of the pre-dual) [eea, 3.6.4]

Let R be a uon Neumann algebra on a separable Hilbert space H. Let p e. R* . Then
the Jollowi,ng are equ'iualent:
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(i) p € R*,

(ii) p is weaklg cont'inuous on the unit baII of R,

(iii) p is o-ueakly continuous on R,

(iu) there i,s an operator lc, e L1 such that p(a) : Tr(ak) for alt a e R.

In particular, lep 2 0 if p e R!.

The result can be rephrased. Define

SM1 :: {(Tr,k) lk > 0, k e L1}

SF1 :: {Tr*l(Tr,k) € SMl}.

Corollary L.T,!L Let R be a uon Neumann algebra on a separable Hilbert space H.
Then R! c SFr.

Corollary I.7.L2 Let A be a separable C-algebra. Let o e L+(A,C). Then there
exists a finite symrnetric measure (Tr,,k) e SM1 such that

(i) the GNS representation (H,r) is (Tr,lc)-i,ntegrable,

(ii) o(a) : Tr¡(n(a)) V a e A.

The results indicate the non-commutative integration theory of von Neumann algebras
with separable pre-dual discussed in section 1.5 and section 1.6 is equivalent to the
symmetric measures SM1. A. Connes' non-commutative calculus does not involve
symmetric measures from SM1.

L.7.4 Connes' Non-commutative Integral

Let D, be the set of dilation and translation invariant positive linear functionals ¿¿

on læ such that ø(t) : 1. Then

rr,(a)':, ({ # å 
p,@)l;_,)

defines a Dixmier trace for u e D, (see Example 1.7.a(b)). Define the set of finite
symmetric measures

SMr,- :: {(Trr,K)1, e Ds,K } 0,K € ¿1,-}

Then Connes' integral is a weighted symmetric trace resulting from a measure in
SMr,* as follows.

Let fn@)': (1 + *z¡-nlz. Let (f/, r, D) be a (Tr,, f ̂ (D))-integrable 
base repre-

sentation of a unital separable C*-algebra ,4. Then the positive linear functional on
n(A)",

rr(a) :: Tr r(n (a) f "(D)),
is considered a non-commutative integralls.

15We note that there are alternate definitions of integrability that lead to the same integral. The
condition of. (Tr,,/,(D))-integrable is generally the weakest.
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Remark 1.7.13 (") The separable C*-algebra .4. is taken to be unital. It is im-
mediate that A.: ,4 when ,4. is unital. This implies l"@) € LL,* as required for
(Trr, f"(D)) e SM1,-. We note that results using Connes' integral exist only in final
form for the case A unital16.

(b) The functionals ru are not necessarily normal linear functionals on r(A)" . This is
a difficulty, but not a weakness of the theory. In some cases it provides a conceptual
evolution, demonstrated by Connes in [c, IV.3]. We denote by (Hr,r'r) the GNS
representation of A associated to the semifinite weight r, for u e Dr. By construction
r, is a faithful normal semifinite weight on rr(A)'t.

Results on Connes' Integral

Lemma L.7.14 Let (r,K) be a fi,nite symmetric nleasure associated to a sgmmetric
norm þ. Then the wei,ghted symmetric functional 16 is a uniformly cont'inuous linear

functional on B(H).

Proof Let ^9 e B(H). Then ^91f e I(ó) as 1l € /(/). Hence I-r(r,K): B(H).
Let ,9r, -+ ,5 uniformly where 

^9,r, ^9 € B(fI). Then

Thm1.7.1(i)

lrx(S" - S)l < ó((5" -^9)lr) lls" - slló@).

Hence rx(S") -+ r¡¡(,S). tr

Theorem L.7.L6 [c, IV.2.ô.15] Let (H,r,D) be a C[-representation of a unital sep-

arable C-algebra A. Let ln(r) : (l+ *z¡-"¡2 and, l"@) € LL,* Jor some n) L.

Letue Dr. Then

(i) the C -algebra A admi,ts a trace state,

(ii) (H,r,D) is (Tr,,f"(D))-i,ntesrable and

r,(a) :: fr,(n(a)f 
"(D))

i,s a posi,ti,ue trace on A,

(iii) Let p e N \ {1}, at¡...ta, be commuting seltadjoi,nt elements of A, and,

Eu. C IRp úfr,e absolutely cont'ínuous support of their joint spectral measure p,.

Let pu. be the Radon nl,easure giaen by ¡-t^",

p""U) : f þ)dp"" V/ € Co(Re).

Define the measure

r,(f) :: r,(f (au...,an))

for f e C¡(ren¡. Then pu" 11r,.
l6Equivalent results for non-unital C*-algebras are still being finalised. Conditions such as local

approximate units [Re3] have allowed non-unital versions of the local index theorem and Theorem
1.7.15, see [Re, I,II] [Re4].
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Proof Note [c, IV.2.ô.15] considers the pre-C*-algebra AL: {a €,4lll[D,"(o)]ll <
oo] and smooth functions / € Cf (R). However, the functional r, is uniformly
continuous by Lemma 1.7.L4. So the result, once established for -4.1 and / e Cf (R),
can be extended by uniform continuity to ,4. and / € C¡(R). The original statement
also involves the operator lDl-r, which requires lDl have trivial kernel. Connes refined
a,rgument appears in [co] using /"(D). (i) fhe trace state here is not necessarily rr.
The trace r, is possibly trivial (for instance, Í^(D) e I!+ is not excluded). If it is
zero, one uses the fact f"¡1(D) e Lt and [cs, Thm 8]. (ii) [ccs] (iii) section 2.6 of lc,ry1. D

Corollary 1,7.16 Let (H,r,D) be a (Tr,,f"(D))-integrabte Cf,-representation of a

uni,tal separable C-algebra A for r¿ € N\ {1} /or any a e Dr. Let r be absolutely
continuous as in Definiti,on 1.5.12. Let a1,...,an be commuting selfadjoi,nt elements
of A. Then r, = ), on the commutatiue C-subalgebra C*(a1,...,an) : C(Eu"), where
À is the Lebesgue integral as in Erample 1.5.10.

Proof Let / be positive and continuous on -Ðu.. Suppose À(/) : 0. Then "f 
: 0 by

absolutely continuity of the representation zr and continuity of /. Hence rr(/) : g.

This implies r, (( À. Theorem 1.7.15(iii) provides À (( r,. ¡
The relationship between the weighted symmetric function r, associated to a

(Tr,,f"(D))-integrable Cf-representation (H,T,D) of a unital C*-algebra A and
the Lebesgue measure on the commutative C*-subalgebra C*(a¡...rar) is very deep.
Connes views the integer z¿ such that f"(D) e L¡ as the (finite) dimension of the

non-commutative space P,9(A) t+ i I eri*1a¡ 17. We complete the correlation
suggested by Corollary L.7.16.

Example L,7,LT Lebesgue Integration and the Laplacian

Let X be a compact Riemannian manifold of dimension n. Let C(X) denote the
continuous complex-valued functions on X, Then (L2(X,Â*X), r¿,d* d*) is a
C"--representation of the unital separable C*-algebra C(X), see Example 1.4.13.

Theorem 1.7.18 (Hodge Theorem and Decomposition)

Let X be a compact lliemannian ntanifold. Let Ìy+ X -+ X be the eúeriot' buntJle.
Then the eigenuectors of the Laplacian L: DomL, -+ L2(X,lt*X) form an
orthonormal basis oÍ L2(X,^-X). Each of the eigenualues are pos'itiue, of fi,nite
multi,pli,ci,tg and, they accumulate only at infinity.

Let lv:: C*(X,Â*X) c L2(X,^*X). Then the eigenuectors of A belong to lt
and we haue the id,entifi,cation

Â : ker(d + d-l,r) @ im (d + d-l,r)
l7lnfinite dimensional spaces correspond to (Tr,Et(D))-integrability for all t, where the function

Et(n): "-t". This condition is called á-summability. We shall not consider á-summability in this
thesis. The extension to 9-summable geometry is natural and necessary. Connes shows in [C9, Thm
16,Thm 19] there exist discrete groups G with no (Tr,,/,(D))-integrable Cj-representations for the
reduced group C"-algebra. See [C, IV.7-9] for the properties of t-summability and links to quantum
field theory,
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or in terrns of the closure oÍ d+ d-l¡

Ä:l-ìr>oDom(d+d*)'

Proof The statement of the first paragraph and first identification are from the
reference [n, Thm 1.30, Thm 1.37], and an instructive proof using the spectral
theory of d, * d* is contained in [R, Ex 34]. Let k ) 0 and H¡ be the kth

Sobolev space for sections of the bundle Â.*X [n, 1.3.3]. We know d + d* |

Hr*r - Hp + Ho: L2(X,^*X) is continuous for p € N. In fact, we have the
Garding inequality [n, Thm 2.44]; there exists a constant C such that llu.'llo*, <
C(ll.llo+ ll(d + d-).llo) for all u Ç H,¡t,p € N. We use this to prove the second

identification. Let w €.FIs and w e ìf;=tDom(d+d*¡n. Then by induction
using the Garding inequality, w e H¡,. Hence Org¡Dorn(d+d*¡n C opExI/p.
The Sobolev embedding theorem on a compact Riemannian manifold has the
following corollaryTr.r € OpqxIlp <+ u e CØ(X,^*X) [R, 1.3.3]. Hence

ño6¡Dorn(d + d*¡n c .4.. Fbom the definition of d + d* it is clear noc¡Dorn(d I
d*), : Á,. This provides the equality with intersection over the natural numbers.
To extend to s ) 0, we know from the spectral calculus ttrat Dom(d + d*)" C
Dom(d,+d*)" fors€ (n,n* 1],ne N. I

Corollary 1-.7.1-9 Let X be a compact Riemannian manifold, L denote the
Laplaci,an L,: DomL. -+ L2(X,lt*X) and / e Co(sp(A)). Then f(A) is a

compact operator.

Proof Let f e Cs(sp(A)). The spectral theorem for unbounded selfadjoint
operators provides a bounded operator /(A) on H : L2(X,^-X) with spectrum
sp(/(A)) : /(rp(A)). Hence the spectrum of /(A) is a set with zero the only
limit point, identifying /(A) as a compact operator [s, tnm f .t]. !

Lemma L,7.2O Let X be a compact Riemanni,an mani,fold of dimension n. Let

fo@) : (l + rz¡-n/2 e c¡(n) and (d + d\2 : a : Doma, -+ L2(x,Ìt* x) be the

Laplacian. Then

(i) lp@ + d*) : (1 + A)-å 6 ¿r for p ) n.

(ii) f,@,+ d*): (t + n¡-? e LL,*\ ¿1,-.

Moreouer for any u e. Dr,

Tr,($+ A)-ä ) : C(rz)Vol(x)

where C(n) : n-ifçry + 1)-1.

Proof Let À;y be the Nth eigenvalue of A listed in increasing order with
multiplicity. We have the following statement of \Meyl's theorem [acv, Cor 2.43],

"lgÀ//'w:ffi\
Let c(n): vol(x)(n"/21(î+ 1))-1. since limlv-r*xni'l'(l + 

^N)nl2: 
1 we

have lim¡¿--(l + À70¡-n¡z* : c(n). Let o¡¡(n) : (1 + À¡¡)-nlz*. Then
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N

M=l

and taking the limit N + oo implies g0(A) is not trace class.

Let us show the Dixmier trace of 90(A) does not vanish. We have

lim1S,:*1S
ru-oo ln(l + N) þ=ro*: nlT* l"G +Ð þ_r"'

for any k e N and any {o¡w} e tr1+. We can re-derive (*)

N

65

a(n) : {"¡r(")}¡s is a bounded, convergent sequence with strictly positive terms,
oN(r) > 0 V¡f, and strictly positive limit c(n) ) 0. Hence a(n) has a positive
supremum [/ and positive infinum L. Let [/¿ : supTy>nax(n) 1 U and L¡ :
infTy¡¡ a¡¡(n) > L.
Let ô ) 0 and define g¿(r): (1+ø)-ä(t+ô). Thutr 9¿ € C¡([0,oo)) for all ô > 0.

As g is monotonically decreasing the value 96 (ÀN) is the Nth-singular value of the
compact operator gô(^). FYom continuity of the function 11+ô on the interval

IL,U)

i$ oa(rN)l¡t+a : "(,)t+d'

This sequence has supremum [/1*d and infinum Zl+d. Using

g¡ (xM ) : (s 6(^M ) M1+ô)M-(l+d)

we derive (*)

NNN
¿'+d/(N) D u-<t*u) < /(¡r) \, w0') < ur+õ f (N) | ø-tt+al

M=l M:I M:l

where /(N) : 1 or /(N) : (ln(l + N))-1.
When ô ) 0, then limiy Dil=, M-O+õ) : Ft 1oo is convergent. Let f :1 and
take the limit as N -+ oo in (*). Then

Lr+õ F¡ <Tr(g6(L)) < ur+õ Ito

using . The compact operator g¿(A) is trace class. This completes the proof of
(Ð.

Let ü - 0. The harmoric series f[:rfuI-t is lugaril,lulically tlivergelù bul uol,

convergent. Let tr'o : ll{M-r}n=rllr* ( oo and recall lim¡¡ E+TI Dlo=, ¡4-r -
1. Taking the supremum over N in (*),

llso(A)llr* luFs
and 9¡(A) e L¡. Considering

Nt
M:l

¡y¡-t < | øo(ÀÀr)L

1I lz-1 <
M=lc

ln(1+ i oo{r'l < v-r,,(+tÐ fu*-'.
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Taking the limit as Il -> oo,

1N
¿* < JT* EË't D ao(À") 1uw

' M=l

It follows the limit exists and is given by c(n) as Iim¡L¡: c(n): lim¡ [/¡. ¡

Let gn: (1 + ,z¡-n/z for ø € IR. Define the weighted symmetric traces on C(X)

r,(f) :: Tr"(n¿(f)s"(d + d-)) V/ e C(X)

for u e D". Lemma 1.7.14 implies r, e C(X)*. Theorem 1.5.2 provides the
normal extension î, of r, to .L*(X, €) : rt(C(X))" ,

î,¿(f)::I\rrrî,U,ò when /- e C(X) s.t. f*+ Í € ¿*(R) ultraweakly.

Hence, to clarifyls, we consider the weighted symmetric trace

ru e c(x)*

and consider the normal extension on the von Neumann closure

î, e L*(X,{)*.

These traces are distinguished by the following result.

Theorem L.7.2L (Riemannian Structure)

Let (X,fl be a compact Riemann,ian mani,fold, of dimension n with Lebesgue
nleosure {. Let CI(X) :: Cl(X, qg). Let u € D,. Then

(i) the Cf; -representation (L' (X,Â*X), r¿, d i d*) of the unital separable C -
algebra C(X) is (Tr,,l"@ + d,*))-integrable,

(ii) î, is a faithful normal trace on L*(X,O : n¿(C(X))" . Moreouer

î,(nU)) : c(n) L t@)d,E@)

where

JorallfeL*(X,(),
l8Define the weighted symmetric trace on L*(X,€),

r.(f) := Tr,(tn(l)g"(d + d.)) V / € ¿-(tR, 4).

Lemma 1.7.14 implies r, e L*(X,()*. However, nowhere in the literature is it demonstrated r, €
L* (X,O-. The possibility,

(". - î,)(!) f 0, for some / e L*(X,O \ C(x),

remains nethier confirmed nor denied at present.

c(n) : "-7rç|-+ 1)-1
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(iii) {td+d*(C-(X)) : n(C* (X, Cl(x))),
(iu) the uon Neumann algebra Çla+d*(C*(X))" : L*(X,CI(X)) has a cyclic

and separating uector gi,uen by the one-secti,on I e L*(X,lt*X), and
admi,ts the Jaithlul normal trace

Li,(n¿(u)) :-- î,(qn(I,?, . 1)) : C(n) a s $ @), u (r) I (r)) (r) d€("),

(u) the representation (L'(X,À*X), rù oÍ (ld+d*(C*(X))" i,s the GNS rep-
resentat'ion associated to i*

(ui) the trace i, is the unique faithjul normal trace (up to Radon-Nikodyrn
deriuatiues) on the fi,nite hyperfinite uon Neumann algebra L*(X,Cl(X)).

Proof Let D:: d,* d-. (i) Lemma L7.20
(ii) Let n + I. Theorem 1.5.14 and Corollary 1.7.16 identifies î, = Ë as measures
on G(X). The identification n¡(C(X))tt : L*(X,O is Theorem 1.5.6. Since the
Lebesgue integral is a fns trace when extended to n¿(C(X))" then î, : ( as

measures on I-(R,f). The further identification of î, as a scalar multiple of
the Lebesgue integral can be proven as follows (including the case n : I). In
[cro, Thm 1] it is shown

1N
Tr,(n¿(f)(t + 6¡-"/z) : ,lT* hN--1- t p,(núÐ(r * L)-nlz¡

n:I

for / e C*(X) and any u € D,. Then (see the proof of Proposition I.2 [cu])

l*tfùæfr) 
Q n,,o'(,, t)îrr@t¡)r-'o) Q ,,ir(t +|)rr,@¿(/)(r + a)-n/2,

for / ) 0 and smooth. Equality (i) is the consequence of the asymptotics of
the heat kernel of the Laplacian on the bundle r\.*X [R, 3.3], and equality (ii) is
proven in [crs, Thm 5.3]. This proves î, is a scalar multiple of the Lebesgue
integral on C(X). The result follow from uniqueness of normal extensions of
elements of C(X). to ,L-(X,0*.
(iii) [c, VLl Lcmma 6]

(iv),(v) using norm density of C*(X) in C(X), AD@*6))" : Qp(C(X))" :
n¿(C (X,CI(X)))/. Then we have r¿(C (X, Cl(X))),, : L* (X,Cl(X)) from Corol-
lary 1.5.8 where E : /y* X is finite-dimensional and C(E) : Cl(X).
As X is oriented, r\.*X admits a one-section. Clearly 1(r) e L(T;X) is a sep-

arating and cyclic vector for the canonical left action tr¿ of Cliff(T],qn@)) on
L(T;X) by the isomorphism r (section 1.3.3). We apply Proposition 1.6.11 to
obtain i¿ is a faithful normal state. The tracial property follows as qnþ)(A) ::
(I(r),Al(r))(r) equivalent to the matrix trace on Clitr(Ii, qs@)).

(vi) Uniqueness of ip as a faithful trace on L*(X,CI(X)) up to positive -L2-

functions is a consequence of Corollary 1.6.7(ii). Since Z(C(X, Cl(X))) : C(X) :
Z(C(X)), then C(X,CI(X)) and C(X) have the same factor representations. In-
deed the space of unitary equivalence classes of factor representations of C(X)
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is exactly its spectrum C(X) : X. Hence the quasi-spectrum of C(X,U(X))
is the spectrum X and the central factor decomposition of L*(X,CI(X)) is
given as a direct integral over X [eea, Thm 4.L2.4, Cor 4.12.5]. One need
only prove the factor L*(X,CI(X))" over u € X is hyperfinite and finite for
L*(X,CI(X)) to be hyperfinite and finite [c, V.Z.a] [rea, Thm 5.8.9]. As
L*(X, Cl(x))" : Ctiff(Iäx, Çe) is finite dimensional, finiteness and hyperfinite-
ness of the factor is trivial. !
Remark L.7.22 Remark 1.3.5 discussed the capacity of the Laplacian A and
the C*-algebra n¿(C(X)) to determine the Riemannian metric, and so all the
local geometric information. We have seen in Theorem L.7.21the equally deep
capacity ofthe Laplacian operator to produce the measure class ofthe Lebesgue
measure, and infact the Lebesgue integral, from its spectral properties.

1-.8 The metric on pure states

Definition L.8.L Let (H,T,D) be a C)-representation of a separable ü-algebra A.
We call (H,T,D) geometrically irreducible if the set

Bo(A): {ø €,4\alll[l,n(a)]ll < 1]

'is norm bounded in n(A).

Theorem L.8.2 Let (H,T,D) be a C!-representation of a separable U-algebra A.
Let (H,r,D) be geometrically irreduci,ble. Then

(i) (H,T,D) is base irreducible i,n the sense of Defi,nition 1.5.17,

(ii)
d(pt, pz) :: sup{lpr (") - pz(")lla e A \ C, ll[D, zr(ø)]ll < t]

d,efi,nes a metric on PS(A), the pure state space of A,

(iii) the metri,c topology induced by the metric d on PS(A) is stronger than the
weah* -topology on P S(A).

(i") (PS(A),d") is a complete metric space.

Proof (i) Let [D,r(a)]: 0 for any a € ,4\ A. Then [D,n.(Àa)] : 0 for any
À e C. This contradicts the hypothesis on Bp(A) as a norm-bounded subset of A,
Consequently [D, "(")] * 0 for all non-scalar a e Z(A). Since any proper central
projection is a spectral projection of some a € Z(A), this imples lD,"(p)l l0 for a
proper central projection p.

(ii) [cs, Prop 3]

(iii) Let pa ) p in the metric topology. Let a € A]. then o' : lllD,r(a)]ll-to e
Bo(A) and lpo(a') - p(at)l -+ 0. Hence lp"@) - p(o)l -+ 0. By hypothesis .4] is

normdensein,4. Lei beA and{a-} beasequenceof.A! suchthat am) b. Then

lp"(b) - p(b)l llp"@^ - b)l+ lp.@*) - p(o,^)l*lp"þ^ - b)l -+ 0. Hence pa 4 p
in the weak*-topology.

(iv) By Theorem 1.2.1(ii) PS(A) is complete in the weak*-topology. Hence, by
(iii), it is complete in the metric topology. !
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Note all that is required for Theorem 1.8.2 is a C"1-representation. This theorem
appeared as [cs, Prop 3] and the next example is [cs, Rem 2]. For a non-commutative
example [cs, Lemma 5].

Example 1.8.3 Let X be a Riemannian manifold. Let (L2(X,t),q,d + d*)
be the geometrically irreducible C"1-representation of the C*-algebra C¡(X) from
Example 1.4.13. We recall from Remark 1.5.3 that the elements of P.9(Cg(X)) ry
X are the Dirac point measures on X. Then we have the equality of metrics

d(pr, pù : d.r(*,A) V pr,ps € P,S(C¡(R))

where dr(r,A) is the geodesic distance between r,y e X.

1.9 Summary of Non-Commutative Calculus

We summarise our introduction to the non-commutative calculus

Definition L.9.I Let (H,T,D) be a (Tr,,f"(D))-i,ntegrable Cf;-representat'ion of a

C-algebra A, see Defi,nition 1.1.8 and, Definiti,on 1.1.9. Then we call (H,n,D) a

C!'* -representat'ion of the ü -algebra A.

Motivation and Philosophy

Through various examples we have seen the signature operator d*d* on. a Riemannian
manifold is a realisation of the philosophy of a C!'*-representation of a C*-algebra
,4. That philosophy explicitly:

the addition of the concrete selfadjoint linear operator D : DomD -+ H
to the representation (fI, zr) of the C*-algebra A provides local differential
geometr¡ through exterior derivations as in Section 1.4, and global integra-
tion, through weighted symmetric functionals as in Section 1.7.

Let (H,n, D) be a C!'*-representation of a separable C*-algebra A.

The metric space

The structure space of the C*-algebra ,4.

Er(A) :: PS(A)B ¿ E prim(, 
)

is considered a non-commutative space. It involves a triple of topological spaces
linked by continuous and open surjections. The pure state space P^9(,4.) is a complete
second countable metrisable topological space in the weak*-topology and Prim(,A) is
locally compact in the Jacobson topology. 'With geometric irreducibility the operator
D induces a metric on P^9(,4),

d(pt, pz): sup{lpr (") - pz@)lla e A \ c, ll[D, zr(a)]ll j t]

and (P,5(,4),d) is a complete metric space.



70 CHAPTER 1. ELEMENTS OF ]VO]V-COMMUTATIVE GEOMETRY

Differential Forms

Define the seminorms

pj*Q) ': llôi}l(")ll , pr*g) ': llôi}l([D,"])ll , TrL:0,1,2,...

with the convention ôfDl(") : T for T e B(H) such that T e ìi=LDom6fo1 and

lD,f] is bounded. Define the *-algebra

An :: {a e Alph("Ø)) ( oo, n. : 0,1, rn:0,I,2,...}.
Let ,9| be the metrisable locally convex topology generated by the seminorms pff,
n:0,I,rn:0,I,2,.... Then A, is a FYechet pre-C*-subalgebra of .4 in the topology
s;

Vy'e form the graded *-subalgebra of B(H),

on(A^) :: An e 0Ê10å(1")
where ;L ir th" unitisation of ,A^ and for k ) 1

Af, (Âò : {zr(os ) [D, r (a)]-.|D, n (a*)l I oo, ot, ..., on e h]
We view the operation

[D, .] ' "(A*) +Aro(A^)

as 'differentiation'. We extend this to

õp:a\Q+") -o|*t(¡,,)
given by

6o r (as)lD,zr(¿r)l . . . \D, "(an)l
: lD, r (as))lD, r (at)) . . . lD, n (an)).

The pair (On(A^),ó¿) is a representation zr¿ of the universal graded differential
algebra (O("4"),6) that is not differential in general

rpo6f6porp.
Quotienting by the obstruction to a differential representation we obtain the *-algebra

of exterior differential forms Ìvo(A") and a graded differential representation

r¡ (A(A*), ô) -+ (ltp(A"),õo).

Integration

The normal semifinite weights on the von Neumann algebra A/' provide the regular
non-commutative Radon meâsure theory on A.

\Me consider the integral calculus as particular measures constructed from the spec-
tral properties of D. The condition of (Tr", f"(D))-integrability for some smallest
n € [I,oo) introduces the notion of finite dimensionality and provides the weighted
symmetric traces ru orr the norm dense ideal ,4",

r,(a)::rr"þr(a)f"(D)) Ya € A"

for any u e Dr. There potentially exists multiple measure classes defined by an
integral calculus.

Let (Hr,rr)be the GNS representation of ,4. associated to any u € Dr.
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Analytic Regime

A. Connes introduction of non-commutative differential calculus via C?'* -representations
of C*-algebras spans the existing analytic regime in operator algebra theory:

algebra

regime

notation

topology

FTechet pre-C*-algebra

smooth

A,

så

c C

C*-algebra

topological

A

lHt

von Neumann algebra

measure

n,(A),,

weak



Chapter 2

Riemannian Non- Commutative
Geometry

We recall the theory of C*-algebras had the bijective correspondence

(X, Co6)) <---+ (E(,a),,a)

between the pair of a locally compact Hausdorff spaces X and the vanishing at infinity
continuous functions Co(X) on X, and a commutative C*-algebras -4 and its spectrum

t(A), see Theorem L.2.I2. This was the basis for considering general C*-algebras

..4. and their structure spaces PS(A) B ¡ I eri-1a) to be the theory of non-

commutative topology.
In the theory of von Neumann algebras we had the bijective correspondence

(L* (X, t'), M (p)) <---+ (W (A),W (A).)

between the pair of essentially bounded functions on a Borel measure space (X, p)

and the finite regular Borel measures absolutely continuous to p and the pair of
a commutative von Neumann algebra W(A) and its predual W(A)*, see Theorem

1.5.6. This was the basis for considering general von Neumann algebras W(A) arrd

their preduals W(A). to be non-commutative measure theory.
However, we do not have a bijective correspondence

(Co6), x, (L2 (x,A* x), r ¿, d, I d-) ) <-r (A,E(A), (H, n, D))

between the triple associated to a Riemannian manifold X and the triple associated to

a base-irreducible faithful Cf;'--representation (H,T,D) of a commutative separable

C*-algebra A. Hence, though we have a non-commutative calculus, it is not considered

that C*-algebras and C!'*-representations constitute the theory of non-commutative

differential manifolds.

Last chapter we introduced the non-commutative calculus of Connes. The initial
sections of this chapter will be involved with more advanced aspects of generalising

diflerentiable manifolds to operator algebra theory. We shall discuss Hilbert modules

and finite projective modules ('non-commutative vector bundles'), Kasparov's KK-
theory ('non-commutative algebraic topology'), and Hochschild and cyclic homology

72
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('non-commutative Kähler-de Rham complex and cohomology of exterior differential
forms'). In this framework Connes introduced a list of sufficient conditions on a
C!'*-representation of a unital C*-algebra that defined a non-commutative compact
manifold. We shall follow the 'axiomatic' treatment presented in [cs, c+]. How-
ever, we shall not introduce the axioms that result in a correspondence with compact
spin manifoldsl. We define a Riemannian representation of a C*-algebra based upon
the Riemannian structure detailed in Theorem 7.7.2I, Theorem 2.3.2 and Theorem
2.3.3. We adjust the axiomatic approach to these representations to gain a corre-
spondence with compact Riemannian manifolds, no spin structure assumed. One of
the advantages of a Riemannian representation is the introduction of the modular
theory of von Neumann algebras, which plays a central part in naturalising some of
the 'axioms'. Indeed, we can construct Riemannian representations from abstract
information called a Riemannian cycle using the modular theory and the theory of
.A-symmetric derivations of a C*-algebra ,4. The chapter is concluded by introducing
a Riemannian cycle associated to the irrational rotation C*-algebra As and deriving
the Riemannian geometry of the non-commutative torus.

2.L Hilbert Modules

Henceforth we shall be concerned with both C*-algebras and norm dense trYechet pre-
C*-algebras. Let A be a FYechet *-algebra stable under the holomorphic functional
calculus. We shall consider only those locally convex topologies such that one of the
semi-norms is a C*-norm ll.ll Let A be the C*-closure of 

"4, 
in ll.ll. Consequently ,4 is

a pre-C*-algebra of .4. Hence there is an equivalence between the Fþechet *-algebras

we consider and Flechet pre-C*-algebras.

Let A be a (Flechet pre-)C*-algebra. In this section we introdrrce (pre-)Hilbert
A-modules. A Hilbert ,A-module will provide a generalisation of the concrete rep-
resentation theory of the C*-algebra ,4. Hilbert ,4.-modules shall also provide 'non-
commutative vector bundles' and 'non-commutative algebraic topology' in the form
of finite projective ,A-modules and the KK-theory of ,4.

Tensor Products

The tensor product A Ø B of C*-algebras A arrd B shall always denote the spatial
tensor product [rc]. That is, the closure of the algebraic product AO B in the spatial
C*-normlløObll :lløll^llóllBwherea€A,be- Bandll.ll¿,ll.ll"aretherespective
C*-norms on ,4 and B. Let.4a" denote the nth spatial tensor product of a C*-algebra
A.

The tensor product AØB of FYechet pre-C*-algebras "4 and B shall always denote
the projective tensor product. That is, the closure of the algebraic product AO ß
in the locally convex topology generated by the family of semi-norms p^,¡(a I b) :
max{pfi(a),pl(b)} Va e A,b e B where {pfl} and {pf} arc rhe seminorms rhar
generate the locally convex topologies on "4 and B respectively. Let ,44" denote the
nth projective tensor product of a FYechet pre-C*-algebra ,4.

lFor the notion of a spin manifold see [LM]
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2.L.L Definition of Hilbert Modules

Let A be a topological algebra. Let t : A -+ A be the identity homeomorphism.

Denote by Aoo the topological vector space r,(.4) given the product /a) x t(b) r+ /ba).
Then,Aop is a topological algebra homeomorphic to ,4. such that Z(A) : /(/ov). Let
,4 have an involution. Then Aop has an involution. In particular if A is a FYechet
*-algebra, a C*-algebra or a von Neumann algebras, then,4,op is a Frechet *-algebra, a

C*-algebra or a von Neumann algebra respectively. We call ,Aop the opposite algebra

of. A.

We have already denoted the continuous linear functions between topological vec-

tor spaces V andW fty L(V,W). We recall a module W of.a topological algebra A
is a topological vector space W' with a continuous representation zr : A -+ L(WrW)'
We will denote A-modules by (W,n). 4n.A.-module (lIz,zr) has a basis {øo} if for
any ?, e W, w: Do r(a.,)wo for some 'co-ordinates' {oo} c ,4.

Let (V,ur1) and (W,nz) be -A-modules. We will denote the continuous module

homomorphisms

Et((V,rt), (W,r2)) : {f e L(V,W) lr2(a) f : f r{a) V a e A},

Let Ea(W,r) denote E¡((W,n),(W,r)). We call an,Aop-module (I'7'zr) aright A-
module and hence an ,A-module is called a left ,4-module by default. We will some-

times denote a right A-module (W,Top), indicating an opposite (product reversing)

representation of ,4 is involved.
Let A and. B be topological algebras. Let (W,nn) be a B-module and (W,n"f) be

a right A-module. We say (W,na,zrlp) is a B-,4'-bimodule 1f rs(B) C E¡(W,r"v)-
Alternativel¡ when A, B are (FYechet pre-)C*-algebras, a B-,4-bimodule is an B@.Aop-

module (W,nn I "io). 
We refer to an A-A-bimodule as an ,4'-bimodule.

Definition 2.1.t Let A be a topological*-algebra that admits a Ü-norm. A pre-

Hitbert A-rnodule (W,nop) i,s a right A-module with an 'A-ualued inner product'. That

is, a sesquil'inear function (',')¿,W xW -+ A with the properties [ro]
(i) (r,nov(").)¡: (u,u\ta V a e A,u,w eW,
(ii) (r,-).¿, : (w,ul\ Vu,u eW,
(iii) (.,-).a.2 0, (ur,u)¡:0 i'ff u :0 Yw eW'

Define a norrn on W by ll*ll : J[þnø;ll. The completion of W is called a Hilbert
A-module.

Define supp(I4r) as the closure of Span6{(u)w)Alu,w e.W} in the topology of A.

The pre-Hilbert ,A-module is called (1) full if supp(I4z) : ,4 and (2) separable if it
admits a countable basis as an ,A-module.

Let (V,a'1) and (W,nz) be pre-Hilbert A-modules with A-valued inner products

(.,,)1 and (', .)z respectively. A map f t V -+ W is adjointable if there exists a
map "f* : W -+ I/ such that (u, l*.)t : (lu,w)2 fot all o € V,w e W. We will
denote the adjointable continuous module homomorphisms by B¡((V,rt),(W,nzD C

E,q((V,rt),(W,zr2)). We denote by Ba(W,zrop), or sometimes B,q(W), the elements

of Ea(W,7rop) that are adjointable. Given the operator norm BÁW) is a (pre-)C*-

algebra [ar, Prop L3.2.2].
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Let A and B be (Flechet pre-)C*-algebras. Let (W,Ta,zrlp) be a B-,4-bimodule
such thai (W,"T) is a (pre-)Hilbert ,A-module and np : B -+ B(W,r.on) is a *-
representation. Then we call (W,na,""Ì) 

" 
B-,4-(pre-)C*-bimodule.

Remark 2.1.2

(i) Hilbert .A-modules and B-A-C*-bimodules generalise Hilbert spaces and concrete
representations of C*-algebras on Hilbert spaces respectively. (Separable) Hilbert C-
modules are exactly (separable) Hilbert spaces and a B-C-C*-bimodule (1l,zr,À) is
equivalent to a concrete representation (f1, n) of the C*-algebra B.

(ii) Let "|be aFlechet pre-C*-algebra, A the C*-closurc of "A,and (W,zr) a pre-Hilbert
,4-module. Then the closure (W,ñ) is a Hilbert ,4.-module [rcz].
(iii) Let (W¿,r'¿) be a countable family of (pre-)Hilbert ,A-modules with ,A-valued
inner products (',.)¿. The direct sum (e¿I,tr/¿, Oa¿) is a pre-Hilbert ,A-module with
-A-valued inner product (@u¿, Ou¿) : Dnþu,tn¡)¿,ftcz].
(it) Many of the standard notions of Hilbert spaces carry through to Hilb ert A-
modules. Let (V,n1) and (W,nz) be Hilbert ,4-modules.

An operatot U e B¿((V,rt), (W,nz)) such that (J*(J : idry,U(J* : idy is called a
unitary. We denote (V,nt) -u (W,zr2) if there exists a unitary tl e BA((V,r1),(W,n2))

Let (W,non) be a Hilbert,4.-module. Let u,us e. W. We define an operator
Fu,r("): nop((u, z)¡)u. Then .F.Ra(W) : Spanç{f'r,, lu,w e W} ís a two-sided
*-ideal of B¡(W), considered finite rank operators. The operator norm closure of
FRÁW) is denoted Kt(W) and considered compact operators [Lcz].

Let M(A) be the multiplier algebra of a C*-algebra ,4,. Then we ha,ve the result
M(KA(w)) : B¡(w) [nr, Thm 13'4.1].

Example 2.1.3

(i) A closed two-sided *-ideal I of a (Fbechet pre-)C*-algebra ,4 provides a
canonical ,A-bimodule. The representation zr : ,4. I Aop -+ B¡(I) is given by
r(a ØþoP)c : acb V a,b e A,c e L

Hence a closed two-sided *-ideal 1 provides a (pre-)Hilbert A-module and an
A-A-C*-bimodule with the A-valued inner product (",d)t : c*d, V c,d e I.
(ii) Let 1 be a closed two-sided *-ideal of a (FYechet pre-)C*-algebra ,4.. We
denote by Ik the direct sum pre-Hilbert ,A-module ef=r/ and, ik the completion.
We note that K¡(ik) : MnG) and B¡Qk) : Ur(ltli)) where M(B) is rhe
multiplier algebra of a C*-algebra B, [nt, Cor 13.4.2]. Here Ík is considered to
consist of /-valued column vectors and the matrices M¡(M(I)) act on the left
by matrix multiplication.

Let A be a C*-algebra. The Hilbert ,A-module fI¿ defined by

HA: {eËrru I (er¿, ou¿) : D,þo,u¿)¿ converges in A}.

is called the Hilbert space of A[tcz].Thu;. exists a projection pk e B(H¡) such
that pkH¡: Ak for each k e N. The submodules,4.ft are fully complemented
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in the sense (1 - pk)H¡ -u HA. Indeed, any countably generated Hilbert .4.-

module (W,n) is unitarily equivalent to a fully complemented submodule of fI¿
[tcz, Thm 6.2, Cor 6.3].

Let A be a C*-algebra and K the C*-algebra of compact operators on a Hilbert
space. Then [rcz, 6]

K¿(Hò e AØ K,

and
B,q.(Hò=M(AsrO.

(iii) Let 1 be as in (ii). Let p € Mk@GÐ be a (self-adjoint) projection. Then

oin' is a sub-modub of ik such that Ík : pik o (idft - ùih. Moreover B¡(pih) :
pB¡(ik)p: pM¡(M(Í))p and N¿,(pik) : pX¡(ik)o: ptW¡(i)p.

Definition 2.L.4 Let Abe a C-algebra and M(A) the multiplier algebra of A' We

call a Hilbert A-mod,ule (W,r) a finite projecti,ue A-mod'ule iÍ (W,iT) -u pAk for sorne

projection p e M¡(M(A)).

Let A be a Flechet pre-C*-algebra with C*-closure,4.. We call a pre-Hilbert ',4,-

module (W,n) a finite projective .A-module if 0ñ/,ñ) is a finite projective A-module.

Example 2.1-.5 The Serre-Swan Theorem
Let X be a locally compact Hausdorff space. Let C¡(X) be the C*-algebra of
continuous vanishing at infinity functions on X. Let E -+ X be a Hermitian
vector bundle with fibres -8, isometric to a Hilbert space 11 (see Section 1.3.2).

Let þ, : E, -+ fI denote the isometric isomorphism between E, and the Hilbert
space fI. Let o,o' be continuous sections of. E -+ X with compact support.
Then

(o, o' ) (r) 7 (þ*(o (r)), ó,(o' (")))

defines a continuous function of compact support on X. It is immediate (ø, a') de-

fines a sesquilinear function (', ') : C6(X, E) x Co(X, E) -+ Co(X)' Let Cs(X, E)
be the C*-algebra of vanishing at infinity sections on .8. Define the representation
n,: Cs(X) -+ L(Cs(X,E),Cy(X,E)) given by

r,(f)o(r): o(r)f (r) V I eCo(X),o e Cs(X,E).

Lemma 2.1.6 Let X be a locally compact Hausdorff space and E -+ X a Her-

mitian uector bundle. Then (Cs(X,E),T,) i,s a full Hilbert Cs(X)-module.

Proof Denote (Co(X,E),Tr) by (C,a-) for convenience' That (C,n) is a pre-

Hilbert Oe(X)-module is discussed in [sw]. We check that (C,zr') is full and

complete.

Suppose f e Co6) \ Span(C) exists. LetY be the closure of supp(/)' Then
Iv: {Í e C¡(X)lf @) -- 0 Vø € Y} is a proper closed ideal of Co(X). As

Span(C) C 1v this implies from the positive definite property of the Co6)-
valued inner product that C c Iy: {o €Clo(r):0 Vz €Y}.This implies
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C is contained in a proper closed ideal of itself, which is a contradication. Hence

f e Co6) \ Span(C) does not exist.

The norm ll.ll", induced on C as a pre-Hilbert C¡(X)-module is given by

ll"llc: sup(a, o)(r) : ,up J þ,o)(*): lloll."
æeX n€X

Hence ll.ll" and ll.ll- are identical. So C is complete. !

Lemma 2.1.7 Let X be a locally compact Hausdorff space and E -+ X a Her-
mitian uector bundle. Let (W,n) be a Hilbert Cs(X)-module such that (W,T) -u
(Co(X,E),Tr). Then there erists a Hermitian uector bundle F -+ X such that
W : Cy(X,F),

Proof Let Cø:: Cy(X,E). Let r € X and consider the ideal I,: {f e
Co6) I f @) :0). There exists the corresponding submodule

i,: r,(I*)Cn : Co(x \ {r}, Elxtr"i).

The quotient module
Cøli,= E,= H,

where I e Co(X) acts on e e E,by c?"e(f)(e) : /(r)e þix].
Define the submodule J, : T(I")W. Define the quotient module W,:WlJ"
Let U e Bsrlx¡(Cø,W) be unitary. Then Ur(f)ou : r(f)U.o : U*r,(l)o.
Hence tJrr(I*)CB : n(Ir)UCe : r(I*)W. Explicitly (Ji* : ¡,. Hence the
quotient map is well definedU(CEli,) : UCølUi,: WlJ, - Wx. Hence
define the bundle by the disjoint union F : U,exW, with fibres

W*= Cølir= E,o H.

It is immediate that f' has the same trivialising charts as E and that W :
Co(X,tr') as C6(X)-modules by [oix]. ú

A Hermitian vector bundle with finite dimensional fibres means ff is finite di-
mensional.

Lemma 2.1.8 Let X be a locally compact Hausdorff space and E -+ X a Her-
miti,an uector bundle with fi,nite triuialisi,ng couer and fini,te di,mensional fibres.
Then (Cs(X,E),r,) is a finite projectiue Cs(X)-module.

Proof Let {Ui}l=o be the finite trivialising cover of ,8. Let T : E -+ TE
be the map defined by ?lyr : Eui ) U' x H where fI is finite dimensional.
FYom the definition of a vector bundle [sr] we obtain a fibrewise isometric iso-
morphism Tl, : E, -+ TEr. This provides a unitary equivalence as follows. Let
{e¿} be an orthonormal basis of fI and define e¿(r) :: ó;r("¿). By definition
Tlre¿(n) : ei. Hence Tl"o(n): I¿ À¿Te¿(r) : D¿\¡e¿. Then ?lr(o(r)/(r)) :
Qlro(r))f (n). Hence ? defines a unitary element of B6^@)(CB,C7B) and
(Cn,nr) -u (Crø,nr) as C¡(X)-modules.

77
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We now show C7B : pCs(X)k for a projection p e M¡(M(C06D. Note
M(CI(X)) : Ca(X) by the Dauns-Hoffman Theorem [tea, Cor 4.4'8]. Con-
sider a continuous partition of unity {p¿} of X subordinate to the finite cover

{U'}. Let l/ be the dimension of the Hilbert space I/. Define the diago-
nal matrix P¡ e M¡¡(Cu6)) by P¿ - p¿id¡r. Define the selfadjoint matrix
P e Mo(M¡¡(Cb(X))) by P¿¡: J4-4 for i,,j : !,..,p. Let lc: Np. One
checks the property D P¿ - id¡r implies P2 : P. Hence there exists a projection
P e M¡(C6(x)) : Mk(M(Co(X))) such that C7B: PCo(X)k. tr

The main result about (full) finite projective Cs(X)-modules is their one-to-one
correspondence with Hermitian vector bundles E -+ X with a finite trivialising
cover and finite dimensional fibres.

Theorem 2.1.9 (Serre-Swan) Let X be a locally compact Høusdorff space.

Let (W,r) be a full C¡(X)-HiIbert module. Then (W,r) i,s finite proiectiae i,f

and only if W : Co(X,E) for some Hermitian uector bundle E -+ X with finite
tri,uialisi,ng couer and fi,ni,te d,imensi,onal fi,bres.

Remark 2.L.LO The above theorem is a generalisation of the original statement
of the Serre-Swan theorem [sw]. fne original statement for compact Hausdorff
spaces is recovered from the fact that every Hermitian vector bundle on a com-
pact Hausdorff space has a finite trivialising cover. The finite trivialising cover

condition for a locally compact Hausdorff space appeared in [sw] and [Hgn] as

remarks and a detailed discussed appears in [nes].

2.t.2 V,2-graded C*-algebras

Let A be a C*-algebra. Denote by Aut2(,4) the continuous *-automorphisins a of. A
such that a2 : id.

Definition 2.L.LL AV,2-grad,ed C-algebra is the pair (A,a) oÍ a C-algebra A and

c € Aui2(,4).

We introduce notions and notations,

1. Let A be a C*-algebra. Then tlne Z2-gaded C*-algebra (A,id) is called a trivially
graded C*-aìgebra, and A is referred to as trivially graded.

2. Let A be a C*-algebra. A Z2-grading c € Aut2 is unitary implemented if there

exists a unitary u € M(A) such that a(a) : vou*.

3. An isomorphism of Z2-graded C*-algebras (A,o) and (B,B) is an isomorphism

þ:A-+Bsuchlhatþoo-:þ.
4. Let A l:e a Z2-graded C*-algebra. Defrne

(i) the even elements, A" : {a e. Ala(a) : a},

(ii) the odd elements, Ao : {a e Ala(a) - -a},
We say a, € A is even if ¿ € Á" and odd if a e Ao. Any o € ,4 has a unique

decomposition
a: as * as,
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where a": l(a + o(a)) € Ae and o"o: +(ü - a(a)) € .Áo. We call ¿ € ,4, homoge-
neous if it is even or odd. FYom the decomposition above we can define properties
on the homogeneous elements and extend by linearity to all of ,4. Let ¿ be a
homogeneous elements, Then deg(a) € {0,1} is defined by a(a) : (-1)des(o)o.
Define the graded commutator on homogeneous elements of A by

lo,bls : ab - (-t)d'g(a)deg(b) 6r,

and extend it linearly to a bilinear map A x A -+ A.

5. Let (W,oon) be a Hilberi B-module for any C*-algebra B. A grading element I
is an adjointable operator I e L(W,?I/) such that f2 : 1. We have a simila¡
decomposition of I4l as above

(i) the even elements, W' : {ta e W I ftr : u},
(ii) the odd elements, Wo : {w eW lfu : -tr},
(iii) n) :'u)e|wo Vw € 17 where ue : ?r-|lw €We and u.,o : u-lu e

wo.

An element w e W is called homogeneous if it is even or odd. For a homogeneous
element u e W define deg(?r) € {0,1} by f,u.r: (-1)des(tr)r.

6. Let (W,oon) be a Hilbert B-module for any C*-algebra B. Let (A,o) be a Z2-
graded C*-algebra. Then (zr, l) : ,4 -+ Bs(W) is a graded representation of ,4 if
r : A -+ Bp(W) is a representation of ,4 and I is a selfadjoint grading element
such that ad¡ o r(ø) : n o a(a) V a e A.

Definition 2,L.L2 Let (A,a) and (B,P) beZ2-grad,ed, C-algebras. Then a graded
Hilbert B-mod,ule (W,ooP,l) ¿s ¿ Hilbert B-module (W,oov¡ wi,th selfadjoint grading
elementl such thatloop(b)w : ooP(Bþ\fw Yb e B,,u € W. A graded, A-B-
C-bimodule (W,n,doP,f,T) is a grad,ed Hilbert B-module (W,oop,T) and, a graded
representation (tr,,f) : ,4 -+ BB(W) such that [f,T] :0, [f,""p(b)] :0 Yb € B,
[zr(ø),T] :0YaQA.

2.1.3 Tensor Products of Hilbert modules

Lct (,4, o) a,nd (8, P) bc Z2-gradcd C*-algcbras.

Graded Tensor Products of C*-algebras

The spatial tensor product A Ø B has the natural Z2-grading

tþØb):a(a)ØP(b)'
However, the graded C*-algebra typically used is the skew-commutative tensor prod-
trct A68, defined as follows. Let (AO B,l) be the graded algebraic tensor product.
Define a product and involution on homogeneous elements that extends linearly to
AO B,

(a O b)(at O bt) : (-1)des(o'¡aec(b) sst 6 þþt

(ø O b)* : (-1)dec(o)aeg(b) r* I 6*
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The closure in the graded spatial C*-norm [xst, 2.6] is the V'2-graded C*-algebra
(AØ¡,1.
Let A or B be trivially graded. Then AôB ry A I B [rsr, 2.6].

Exterior Tensor Product of Hilbert modules

Let (W,zrop, f) and (Y, oop, T) be graded Hilbert modules of ,4, and B respectively.

Let W O Y be the algebraic tensor product with grading element lÞ : I O T.
Then (trü O y, O) forms a graded pre-Hilbert -4 O B-module with the representation
(for homogeneous element extended linearly)

(zron O ooo)(oo b)(tr O g) : (-1)dec(s)aes@) ¡"o(a)w O oop(b)y,

and ,4. O B-valued inner product (for homogeneous element extended linearly)

(. o a,u' o a'): (-1¡d"s(u)(deg(.,)*deg(.,'D þn,-', o (a,a')'

The closure of W o Y yields the Hilbert A8B-module (W,6Y,zropÔoop) [rsr, 9].

There is a continuous injection frsr, 9]

B A(W)Ø B a(Y) -+ B A6B(W 6Y),

and a continuous isomorphism

K A(W)ØI( B(Y) -+ K A6B(W ØY).

Let W or Y be trivially graded (implying A or B are trivially graded). Then the
skew-commutative tensor product ô reduces to the construction involving the tensor
product I detailed in [lcz, 4].

Interior Tensor Product of Hilbert modules

Let (W,zrop,l) be a graded Hilbert A-module and (Y,T,ooÞ,f',T) be a graded A-
B-C*-bimodule. The interior product W6rY is designed to yield a graded Hilbert
B-module.

Define the subspace Z, of the algebraic tensor product W OY above

Z, : þr"p (a)w O y -'¿¿ O r(a)A I w eW,U e Y,a' € A).

Define the gradingelement onW OY byÕ:lOf'T. ÃsQZr- Zr,lhen

W O,Y:W OYIZ7

is a graded right B-module

olP (b)(w o" U) : w O, ooo (b)9.

with B-valued inner product ftcz, 4.51

(ru o, u,,txt o, a') : \a,r((w,u'))yt).
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The closure of (W O,Y,ol-p) defines the Hilbert B-module (W&"Y,olp).

The correspondence T -> T 81 induces a graded representation [Lc2, 4] [Ks1, 2.8]

r*: B¡(W) -+ BB(W&,Y).

The statements of this section apply equally to Flechet pre-C*-algebras ,4 and B
with the substitution of the phrase (FYechet pre-C*) for (C*).

2.L.4 Morita Equivalence

Basic Definitions

Let A be a C*-algebra. Then .4 is called a-unital if it admits a countable approximate
unit. Indeed, Á is o-unital if and only if A is countably generated as an ,A-module

[rcz, 6]. It follows every separable C*-algebra is ø-unital.

Let K be the C*-algebra of compact operators on a Hilbert space. The stabilisation
of a C*-algebra A is the C*-algebra Ax : AØ K. A C*-algebra A is called stable if
A= AK.

(Strong) Morita Equivalence

Definition 2.1.13 Let A and B be C-algebras. Then A is Morita equ'iualent to B,
denoted A -M B, iÍ there erists a full Hilbert A-module (W,T"p) such that B ?
K¡(w).

Morita equivalence is an equivalence ¡elationfLc2, Prop 7.5], and sometimes called
strong Morita equivalence.

Theorem 2.1,L4 [ncn] Let A and B be o-unital C-algebras. Then A -M B if
and only if Ay = By.

Exarrrlrle 2,L.L6 Let .4. be a C*-algebra and k e IN. Consider the full Hilbert
-A-modules Ak and H4 as in Example 2.1.3(i),(ii), Then

(i) MnØ) -M A as M¡(A): Kt(Ak),
(ii) AK -M A as Ay : AØ K = K¡(H¡).

Graded Morita Equivalence

There exists an extended notion of Morita equivalence for Z2-graded C*-algebras

Definition 2.1.16 Let(A,a) and(B,P) beZ2-grad,ed C-algebras. ThenAis graded
Mori,ta equ'iualent to B, denoted A -M B¡ if there erists a full graded C-A-B-
bi,mod,ule (W,T,ooP, f ,T) such that (A,a) e (Kp(W ), udr).
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Example 2.L.L7 Graded Morita equivalence of A and M2(A)

Let Abe aZ2-graded C*-algebra and z a selfadjoint unitary in M(A). Recall
from Section 2.L.2 that ad., € Aut2(,4) where ad"(a) : LLaLt* Y a e A. Define

the operations l,.r,ltr: A2 -+ A2 by

lu(a,,a!) : (ua,-ua') Ya,a' €. A

l'r(a,at) : (au,-a'u) Va,,at e A.

Lemma 2.1.18 Let (A,adu) andlt, be as aboue. Then (A2,f'") zs a graded

Hilbert A-module.

Proof Let u € M(A) be unitary and selfadjoint. Then u : Lf arrd u,2 :
1. Hence l'3@,o'): (au2,(-t)2o'u2) - (o,o') Va,at€ -/. and lt2 : L

Now ffbon(o,o') - (abu,-atbu) - (auubu,-atuubu) : (au(ubu),-at(ubu)) :
(ubu)"v(au,atu): adu(b)opf/ (o,o') Ya,a' e A. !

Let u € M(A) be a selfadjoint unitary, Let 1u be the selfadjoint unitary in
M2(M(A)) : M(Mz(A)) defined bY

u

0

0

-u
Iu

Theorem 2.1.19 Let A be a C -algebra and, u e M(A) be a selfadjo'int unitary.
Then (A,adu) -m (Mz(A),aòr.) as Z2-grad,etl t-algebras.

Proof FYom Lemma 2.1-.18 (A',tL) is a graded Hilbert A-module. Fþom

Example 2.1.15(Ð, Mz(A) : Ke(A2). The proof is complete if it is shown

lu : 1u. Note 1,, e BB(A\ : Mz(M(A)) is immediate from its definition.
Moreover l?: t and (f.,(ø, o'),(b,b')) : (ua)*bl (uat)*bt : o'*t.tb* at*ub' :
((o,o'),f;(b, ó')). Hence f is a selfadjoint unitary of Mz(M(A)). It is immediate
from using an approximate unit of ,4. that the matrix representation of l, is 7,.r.

¡

2.2 Non-commutative Vector Bundles

Let X be a locally compact Hausdorff space. The Serre-Swan Theorem (Theo-
rem 2.1.9) asserted the one-to-one corïespondence between finite projective C¡(X)-
modules and Hermitian vector bundles E -+ X with finite dimensional fibres and

finite trivialising cover. When X is compact every Hermitian vector bundle has a
finite trivialising cover. This leads to the definition in the literature,

Definition A non-commutat'iue uector bund,le of a unital C -algebra A is a fi,nite
projectiue A-mod,ule.

2.3 Graded Hilbert Modules in Riemannian Geometry

Let X be a Riemannian manifold and C6(X) be the C*-algebra of continuous vanish-

ing at infinity functions on X. Graded Hilbert C¡(X)-modules provide examples of
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the concepts in section 2.1 which are of central importance in the generalisation of
Riemannian structure to non-commutative geometry.

Basic Definitions

The two-dimensional Clifford algebra C1 is abstractly defined by

Cr : {Àr + h^21 Àr, Àz e C,h2 : l}
with a Z2-grading þ t \ -f hÀz -+ Àr - hÀ2. A concrete graded representation
e : C1-+ B(e) : Mz(C) is provided by

^,*lTi,],0*llå],p*[å i] [; j,]
2.3.L Structure and Gradings on the Clifford Bundle

Let .4.*X and Cl(X) denote the exterior bundle and Clifford bundles of X respectively
as in Section 1.3.3.

Parity and the Volume Form

Let V be a n-dimensional vector space with inner product q and {u¿}T=t be an or-
thonormal basis of I/. We recall from Section 1.3.1 the Clifford algebra Clitr(Iz,q)
with Clifford product 'satisfying u'ul,u.lD: -2q(-,u) Vu,u e V. Define the
parity map €y on homogeneous elements of Clitr(V, q) by

ev(u¿, . ... ' u¡¡) 1: (-l)r u¿, . ... . lsii

and extend it linearly to be an order two automorphism e y of Clitr(I/, q). We define
the volume form 7y e Clitr(Iz, q) by

.yv ::,irru1 . ... .un.

The relations u,'yv : (-7)"-1lv.u for all r.r € I/ and .yV..yv: 1 follow from
the Clifford product. This implies 7y is a central element when r¿ is odd. We note

,ey(7y): (-I)n1y.

Extend the parity map to the C*-algebra C6(X,Cl(X)) of continuous vanishing
at infinity sections of the Clifford bundle by

e(w)(r) :: e7;y(ru(r)) Vw e Cs(X,CI(X)).

Then e is an order two *-automorphism of the C*-algebra Co(X,CI(X)). Hence
(Co(X,Cl(X)),e) is a Z2-graded C*-algebra. The C*-algebra C6(X) inherits a trivial
Z2-grading by the restriction of e to Co(X) C Cs(X,Cl(X)).

The complex volume form of a n-dimensional Riemannian manifold X is the ele-
ment 7 € C6(X,CI(X)) : M(Co(X, Cl(x))) defined by

'Y(r) :: 1'' *
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The complex volume form has the properties e ("¡') : (-1)"?, 'Y : 'Y*, 'Y ' 1 : l,
.t.l: f '1for alt/ e Cu(X) and u.7: (-l)"-t"t .u forall u €C6(X,?*X). Note

1 e Z(C¡(X, CI(X))) when dimX is odd.
Define a unitarily implemented V.2-grading a of the C*-algebra C¡(X, Cl(X)) by

a(w) ::'Y 'w "Y'

The relationship between the Z2-gradings e and c is summarised in the next theorem.

We recall the two-dimensional Clifford algebra

Cr: {Àr -lÀzþlÀr,Àz e C,B2:1¡

is Z2-graded by the map À1 * \zþ -+ \ - ),2þ.

Theorem 2.3.L Let X be an n-d'imensional Riemannian manifokl. Let e be the

parity rnap on Co(X,Cl(X)) and 1 e C6(X,Cl(X)) be the compler uolume form'
Let dimX be euen. Then

(i) e is unitarily implemented by 1,

e(w) :',1 'ID .'l

for allue Cs(X,Cl(X)),
(ii) z(co(x,cl(x))) : co(x),
(iii) e is triuial on the centre Z(C0(X,CI(X)))

Let dimX be odd,. Then

(i") 1 i,s a central element of C6(X,CI(X)), hence a is a triuial Z2-grad,ing,

(") e(l) : -1, hence e is a non-triui,al Z2-grad'ing,

("i) Z(C0(X,Cl(x))) : {"fr * lztl h, fz € C'(X)} = Co(X) Ø Ct where Ct i,s

the gradeil two-dimensional Clifford algebra.

(vii) e prou'id,es the Z2-srad,'ins on Z(Cy(X,Cl(X))) = Co(X) I Cr.

Proof
algebra.

Straightforward from the properties of the volume form and the Clifford
D

2.3.2 Graded Representations

'We consider representations of the C*-algebras M(C¡(X)) and M(Cs(X' Cl(X))) into
the space L(Cy(X,À*X), C¡(X,^-X)). We recall from section 1.3.1 and section 1,3.3

the left and right actions of the Clifford bundle on the Exterior bundle. The left
action provides a representation

n¿ : M(Cs(X, CI(X))) -+ L(Cy(X, À*X), Co(X,^-X))

given by
(n¿(w)u) (r) : t (w(r). r-1 1u1r¡¡¡
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for all u € M(Cy(X, Cl(X))), u e Cs(X,^*X). The right action provides an opposite
representation

n, : M(C¡(X, Ct(X))) -+ L(Cy(X, À*X), Co(X,l\'.X))

given by

(n,(w)u)(r) : t('-r(u(ø)) .'u(ø))

for all w e M(Cy(X,Cl(X))),u e Cy(X,^*X). We note ln,(.),r¡(u)l:0 for all
u,u e M(Cy(X,CI(X))) from associativity of the Ctifford product. We denote the
restricted representation to the centre Z(Cb(X,Cl(X))) by zr¿ as well and

r¡ : Z(Cs(X, Cl(X))) -+ L(Cy(X, A*X), Cy(X,^-X))

Note n¿(tr) : r,(u) for all u) e Z(Cb(x,Cl(X))). Then er¿ is a representation of
Co(X) as C6(X) a Z(C¡(X, Cl(X))). As mentioned in section 1.3.6 the represen-
tation î¿ extends to a concrete representation (L2(X,À*X), r¿) of. the C*-algebra
M(Cy(X,Cl(X))) and C6(X) by restriction. Let zr¿(7) and zr'"(.y) be the representa-
tives of the volume form 7 € M(Cy(X, CI(X))) of the Riemannian manifold X.

Theorem 2.3.2 (Riemannian Structure)

Let X be an euen dimensional Riernannian manifold. Then

(Ð (Co(X,À*X), r,) is a Hilbert Cs(X)-module, that is finite projectiue if X is
compact, such that the Riemannian metric es defines the Cs(X)-ualued ,inner

prod,uct,

(ii) (Cy(X,À*X), rr,nr(,ù) ie a gradcd fi,ni,tc projcctiuc Cs(X,Cl(X))-Hi,lbut
rnodule,

(iii) (Co(X,,Â*X),'ntrrr) is a Cy(X)-C0(X)-C -b,imod,ule,

(i") (Co(X,Â*X), TTttTtr¡¡r,(ù) is a graded C¡(X)-C¡(X, Cl(X))-6t -bimod,ule,

(") (Co(X, L* X),lTtt ntr ¡ "t0)) is a graded Co(X,Cl(X))-C0( X)-C -bimodule,

("i) (Co(X,A*X), rrt'rlr¡rú.y),r,(l)) is a grad,eil

Co(X,Cl(x))-C0 (x, Cl(x))- CT -bimodule,

(vii) (L'(X,À*X), r¡ Ø n,,"úù",Ø)) is a graded

Co(X,Cl(X)) Ø Cs(X,Cl(x))op-C-C -bimodule.

Proof (i) Lemma 2.1.6, Theorem 2.1.9 and Section 1.3.6. (ii) Define the C6(X, Cl(X))-
valued inner product on C¡(X,^*X) by (r, z):4u)*t(z) for allu,z eC¡(X,^*X).
The module Cs(X,^*X) is full in this inner product. Since C¡(X, À*X) = Co(X,Cl(X))
linearly it is clearly a finite and projective Cs(X,Cl(X))-module. That the grading
element required is zr"(7) follows from nr(7)2 : L and nr(1)nr(*) : nr(eþt))nr(1)
by Theorem 2.3.1. (vi) Follows from r¡(1)2 : 1 : nr(.ù2, r¿(1)r¿(w)nt(l) : n¿(e(w))
and [r¿(tr.'),",h)]:0: lnt\),n,(w)l for all w € Cs(X,Cl(X)). (iii),(iv),(v) fol-
low directly from (vi). (viii) Follows from (vi) by restricting to compactly supported
sections and closing in the inner product of section 1,3.6(ii). D
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Let X be a Riemannian manifold with odd dimension. We recall from Theorem
2.3.1 that nt(y) -- zr"('y) is a central element and that

Z(n¿(Cs(X, Cl(X))) : Spanç'1¡¡ (1,'rr(r)) e Cs(X) Ø C1

where C1 is the graded two-dimensional Clifford algebra. Any grading induced by
zr¿ (7) will be a trivial grading. We cannot obtain a graded representation of the
Z2-graded C*-algebra (Co(X,Cl(X)),e) on the module (Co(X,À*)(),n") using the
complex volume form.

Let V be a r¿-dimensional vector space with inner product q and orthonormal basis

{r¿]¡?=t.We recall from Section 1.3.1 the Exterior algebra .A(Iz) with exterior product
satisfying w Au * u Aw: 0 Vu, w e V. Define the parity map ev on homogeneous

elements of Â(V) by

ev(u¿, A... A uij) i: (-I)rrA A... Au¿,

and extend it linearly to be an order two automorphism ey of l'(V). Let Â.""""(I/)
denote the even elements of A(Iz) with respect to the parity grading and /rodd(V) the
odd elements. The grading ey splits the exterior algebra into a direct sum

À(v) : 
^""""(Y) 

e 
^odd(Y)

and ey has the matrix representation

[;
0

€v=
1

It is immediate from the form of the left action

w¿(u) :: /w't-L(u))

of. u; € Cliff(Y, q) on u € À(V) that

u;ven(^even(y)) : 
^""""(y),,rldd(^odo(v)) 

: À'"u"(v)

'r¡dd1Â""""(y)) : 
^ooo(y), 

ri"'"(Âodo(v)) : 
^odd(y)'

Identical relations hold for the right action

u,(u) :: {t-L(u) .u)

of.w € Cliff(%q) on z € 
^.(y). 

Hence the matrix representation of the left action of
u e. CIifr(V,q) on ,4.(Iz) with respect to the grading ey is

f ri.,9utn tl;9dd I
ut=l L L I

L ,ioo utven J '

and
ad"r(w¿) : (ey(u))t
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Identical relations hold for the right action. Then 7y has the matrix representation
in the left action or right action of Cliff(Iz, q) on 

^.(y),

^Yv
0

0v)t

rr(''t) =

hv),
0

hr)tf I o
l:lo J løò,

and

ad"r(lv) : -'Yv'

Extend the parity grading ey to the C0(X)-Hilbert module (Co(X,A*X), nr) by

e(u)(r) :: e7¿ y(u(r)) Y u e Cs(X,^-X).

decomposition into sub Cs(X)-Hilbert modules is given by

Co(X,^*X) = Cs(X,^.""n(X)) @ Cs(X,^.dd(x)).

The matrix representation of e is given by

0

'=lå 1

and
o n(t)

nh) o

with
ad'(n.¿(7)) : -n¿(t).

Let U denote the unitary operator on the Hilbert space L2(x,A*x) such that IJ = e
on the dense subspace Co(X,L*X)'.

Theorem 2.3.3 (Riemannian Structure)

Let X be an od,d d'imensional Riernannian mani,fold, and C1 be the graded, two dimen-
sion,o,l, Clffiord alge.bra. Then

(i) (Cy(X,Â*X), r,) i,s a Hilbert Cs(X)-module, that i,s finite projectiue if X is
compact, such that the Riemannian metric Qs defines the Cs(x)-ualued inner
prod,uct,

(ii) (Co(X,A*X), r,,e) is a graded Hi,tbert Co(X) Ø Crmoilule
(iii) (Co(X,L*X),r,,e) is a graded finite projectiue Cs(X,Cl(X))-Hilbert moil-

ule,

(i") (Co(X, L* X),,rrt,7rrt e) is a grad,ed, Co(X)-Co(X) ø CrC -U'imod,ule,

(") (Co(X,A*X), rtt'trrte) i,s a grad,eil Co(X) ØCrCs(X)-C-bimod,ule,
("i) (Cy(X,À*X), rtt,rrrt e) i,s a grad,ed Co(X,Cl(X))-C0( X)-C -bi,mod,ute,

2The existence of 7 is detailed in Theorem 2.3. (v) and Lemma 2.5.18
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(vii) (L'(X,À*X), r¿Ør,,U) is a graded

Co(X,Cl(X)) I C0(x, Cl(x))"r-ç-C -bimodule

Proof (i) Lemma 2.1.6, Theorem 2.1.9 and Section 1.3.6. (iii) Same a,rgument as the
proof of Theorem 2.3.2(ii) except for the grading. That ad"(zr"(tll)) : rr(e(w)) follows
from the statements preceding the theorem. (ii) Follows from (iii) since Co(X) 8C1 =
Z(C¡(X,Cl(X))). (iv),(v),(vi) Straightforward. (vii) Follows from (vi) and (iii) by
restricting to compactly supported sections and closing in the inner product of section
1.3.6(ii). The existence of (J we defer to Theorem 23.a(iv). Note that U : U* and
Uq Ø r,þu)U : zr¿ I rr(e(w)). ¡

2.3.3 Riemannian Structure

Let X be a Riemannian manifold. Remark 1.6.2, TheoremL.7.2L, Theorem 2.3.2 and
Theorem 2.3.3 have been labeled 'Riemannian Structure'. We compare the results
and emphasise their unification and generalisation in the Tomita-Takesaki modular
theory.

The finite projective C¡(X)-module (Ce(X, À*X), r,) car' be determined, by Remark
1.6.12 with Theorem2.3.2 and Theorem 2.3.3, amongst other Hilbert Cs(X)-modules
by its properties as a graded Co(X,Cl(X))-bimodule. In particular, (Cs(X,.tr* X),nr)
is a free graded finite C¡(X, Cl(X))-module of module dimension one and a graded

C o (X, Cl ( X) ) - C0 (X) -C* -bimodule. Equivalently:

Riem': The representation (L'(X,À*X), n¿) of. the C*-algebra C6(X) is the
unique graded Co(X,Cl(X)) I C0(X,Cl(X))on- C-C*-bimodule that ad-

mits a dense subspace isomorphic to C"(X,CI(X)).

Compare the statement Riem/ to Remark 1.6.L2. That there exists exactly a unique
Hilbert space L2(X, 

^*X) 
which admits a standard form for the von Neumann algebra

L* (X, Cl(X)),

Riem : (L* (X,CI(X)), L' (X,À*X), J,t, L2 (X,^-X)+)

and the standard form Riem is constructed from the pair of the von Neumann algebra

L*(X,CI(X)) and the fns trace weight À given by the Lebesgue integral and the
metric qr,

À(tr) : L qn$,n¿(tn)1,)(r) det(s)dr Vu e L*(X,Cl(x))

Define 
e@)(r) :: e7;y(w(r)) vu' €. L*(x,ct(x)).

Then e is an order two *-automorphism of the von Neumann algebra L*(X,CI(X))
We claim the standard form Riem contains the statement Riemt.

Theorem 2.3.4 Let Riem be the standard forrn as aboue.



2,3, GRADED HILBERT MODULES IN HIEMANNIA]V GEOMETRY 89

(i) The GNS representation assoc'iated to the Lebesgue integral

n¡: LØ(X,CI(X)) -+ B@2(X,^-X))

restri,cts identicallg to the representation

r¿ : Cs(X, Cl(X)) -+ L(C,(X, À*X), C"(X,^-X))

on Cs(X,Cl(X)) C Læ(X,CI(X)) and C"(X,,I\.X) c L2(X,^*X).
(ii) The opposi,te representation of L*(X,CI(X)) prouid,ed, by the Tomi,ta

conjugat'úon operator

"ïo(tl,') 
:: Jr^(w)*J

for all w e Læ(X, Cl(X)) restricts identi,cally to the right representation

r,: Cs(X,CI(X¡¡on + L(C"(X,À*X), C"(X,^-X))

on C¡(X,CI(X)) c Læ(X,CI(X)) anil C"(X,.,\*X) c L2(X,^.X).
(iii) The representation

n I noP : L* (X,Cl(X)) I ¿-(X, Cl(X))/ -+ B@2(X, 
^*X))

prouid,ed, by

r Ø n\P(w 8 u) :- r¡(u)Jr¡(u)* J

restricts identically to the representation

n¿ Ø r, : Cs(X,CI(X)) Ø Cs(X,Cl(X))oe -+ Bsrçx)(C.(X,^-X))

on Co(X,CI(X)) c L*(X,CI(X)) o,n,d, C"(X,^. X) c l,'(X,A* r).
(i") Let a e Aut2(Z-(X, Cl(X))) . Then there erists a selfadjoi,nt unitary

tJ" e B(L2(X,L.x)) such that

ady. (ø¡(r.u)) : 
".1(o(tr))

for all ut e L*(X,CL(X)) and

[[lo, .r1 : ¡,

Let a be the pari,ty automorphisrn e. Then U, : e when restri,cted, to the
subspace C"(X,À-X) c L2(X,^*X).

(") The GNS inclusion map

q: LL(X,Cl(X)) . L@(X,Ct(X)) -+ L2(X,^-X)

ind,uces a d,ense subspace t¡(C"(X,Cl(X))) of L2(X,lt*X) isomorphic to
c"(x,cl(x)).

Proof (i),(iÐ,(iii) Immediate from Theorem 1.6.1 and Proposition 1.6.11. (iv) The-
orem 1.6.4 with Riem and Riem as the two standards forms and a the isomorphism.
(v) Immediate from Section 1.2.1 and Definition-Lemma L.5.9. !
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The moral of Remark 7.6.12 and Theorem 2.3.4 is that one obtains the statement
Riem/, indeed one constructs the grad,ed fini,te Cs(X,Cl(X))-bi,module
(L'(X,^*X), rr) cornplete with gradi,ng element (Ir, from tlne Z2-graded von Neu-
mann algebra (¿-(X,CI(X)),e) with semifinite faithful normal trace À using the
GNS construction and Tomita-Takesaki theory.

Let X be a compact Riemannian manifold. The moral of A. Connes viewpoint
and Theorem L7.2L is one constructs the uon Neumann algebra L*(X,0(X)) and,

the trace prouided by the Lebesgue i,ntegral À fromthe FÏechet pre-C*-algebra C*(X)
and the signature operator d+ d* (statements (ii), (iii) and (iv) of Theorem L.7.2L).

Hence the statement Riem' reaches its most general form for a compact Riemannian
manifold X in statement (v) of Theorem L7.21

The representation (L2(X,À*X),zr'¿) of dìd,+d¡(C-(X))' is the GNS rep-
resentation associated to the trace îr.

This statement characterises the representation (L2(X,Â*X),zr¿) amongst all other
representations (I/,zr) of the C*-algebra C(X). It also a statement that we can
generalise to an arbitrary C*-algebra.

2.3.4 Riemannian Representations

Let (H,r,D) be a Cf;-representation of a C*-algebra,4.. Let A^ be the'smooth
elements' of. A for this representation (the FYechet pre-C*-subalgebra of -4 defined
in Section 1.4.2). Let (A¿("4"),õo) be the representation ñ of the universal graded

differential algebra (O(,4r), ô) as in Section 1.4.1. The universal differential algebra
(O(/"),ô) has the natural parity grading

ee(a6ôo1 ...6aù ¡: (-l)køe 6a1...6a¡

and the direct sum decomposition

aØà: ou"""(.4,.) o o"dd("4,,).

This parity grading cannot be transferred to the representation (Oo(A^),ô¿) in gen-

eral 3. We say the representation fr of (O(fu), ô) is parity preseruing if the map

e(tr (as) lD, n (a )1...[D, n (" ò)) ; : ( - 1 ) 
k r ( a¡)lD, r (a))...[D, 

" 
(" ù]

is well defined on Qp(A").

Definition 2.3.6 Let R be a uon Neumann algebra w'ith separable pre-dual anil (Hp,np)
be the GNS representat'ion associated to a fai,thful normal semi,fi,ni,te wei'ght p on R.
Let A be a C -subalgebra of R.

If there erists a selfadioint operator D : DomD + Hp such that

(i) (Hp,np,D) i,s a Cf -representation of A,

(f) (Hp,rp,D) is a C!'*-representat'ion of A,
sFor example, if D is bounded and D e M(A") then [D, r(a)] e .A.o fot all o € v4'. The parity

grading with ..4, even and AbçA") odd is then not well defined.
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(ii) íTp(O(A"r)) is a wealc d,ense*-subalgebra of nr(R), and

(iii) îro i,s parity preseru'ing,

then we call (Hp,no,D) (1,) a Riernann'i,an representation of the C-algebra A when
conditions (i), (ii), and (ä1) are satisfied, and (2) an n-dimens'ional Riemannian rep-
resentation of the C-algebra A when cond'it'ions (l), (ii), and (r\i) are sati,sfied.

A base representation (Hp,lrp,D) of a C*-algebra,4 is called an ungraded Rie-
mannian representation if it satisfies Definition 2.3.5 and conditions (i) and (ii) alone.
ïVe shall seldom use the ungraded notion until section2.7.

Remark 2.3.6 Associated to each Riemannian representation of a C*-algebra ,4, is
the standard form (see Section 1.6.2)

Riem(Á, ò : (AoÇL"r)", H p, J p, Lp,Pp).

Hence Riemannian representations are intimately bound to the Tomita-Takesaki mod-
ular theory of von Neumann algebras4.

2.3.6 Spinç Representations

Let V be a n-dimensional vector space with inner product q and {"¿}T=t be an or-
thonormal basis of I/. Define the function

2, n evenm(n): n-l
2 2 nodd.

Then the Clifford algebra Clitr(% q) has a unique irreducible representation (Cæ(n), ¿;
such that ó(Clifr(V, q)) : M^(n¡ (C) 5. Note / is an isomorphism when n is even. The
representation is not faithful in the odd case. Let n be odd. The volume element

1y and the identity 1 generate the centre of Cliff(Iz, q) which is trivialised in any
irreducible representation. Then Cliff(% Q) = M^(nl (A) ø C1 where C1 is the two-
dimensional Clifford algebra.

These iuetlucible represerrtaticlrrs carrrrot always be transferred fibrewise to the
Clifford bundle on a Riemannian manifold.

Let X be a r¿-dimensional Riemannian manifold. Then X is called a Riemannian
spinç manifold if there exists a Hermitian vector bundle S -+ X with a repre-
sentation þ : Cs(X,Cl(X)) -+ L(Cy(X,S),C¡(X,S)) such that Cs(X,CI(X))) ^.
Kco6)@cr)(Co(X,^9)(ø42)). Here C1 is the graded two dimensional Clifford algebra
and (8Cr) is added when dimX is odd. This implies C¡(X, Cl(X)) -M Cy(X)(ØC1)
where -¡4. denotes strong Morita equivalence. The converse is also true, [HP, Lemma
3, Theorem 8(ii)].

aThe relationship between the operators D,Jp,Lp is a very interesting question. It is a direction
of further research.

sThe details of the representation @ are not relevant here, see [LM]
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Definition 2,3.7 Let X be Ri,emannian manifold. We call X a Riemannian spinp

mani,fold if the C -algebras Cs(X)(øCr) and, Cs(X, CI(X)) are strong Morita equiua-

Ient. Here Cy is the graded two d,'imensional Clifford algebra and (ØCy) is added, when

dimX is odd.

This definition of sping structure on a Riemannian manifold we can generalise to
an arbitrary C*-algebra.

Definition 2.3.8 Let A be a C-algebra. Let (Hp,rp,D) be a Riemannian repre-

sentation of the C-algebra A. Then we call (Hp,np,D) an euen (resp. odd) spi'np

representation of A iÍ A" -¡a Qp(An) (resp. .,4" ø Ct -u An(A^))'

Remark 2.3.9 Let X be a Riemannian manifold. The statements of this section
(Section 2.3) can be applied to the pre-C*-algebras Cff(X) and Cf (X, Cl(X)) and

the Cf (X)-module Ci(X,À.X) by replacing verbatim C* for C, pre-Hilbert for
Hilbert and pre-C* for C*.

2.4 Poincaré Duality in KK-theory

2.4.L The elements of KK-theory

We refer the reader to the sources [rsr] and [rsz] for the detailed definitions and

results of this theory. It is designed specifically for C*-algebras ,4 and B (equivalently
for pre-C*-algebras by using pre-Hilbert modules).

Definition 2,4.L A Kasparou A-B-bimodule is a triple (E,F,a) i'nuoluing

(i) a countably generated graded, Hilbert B-mod,ule (E,o) with a grad,ed, represen-

tat'ionr:A-+Bn(E),
(ii) an operator F e Bp(E) such that F i's od,d with respect to a and r(a)(F -

F.),n(a)(F' - Iø),lF,r(a)ln are elements of Kp(E) for all a €. A.

Here [.,'], is the graded commutator with respect to a. The Kasparov bimodule
is called degenerate lf r(a)(F - F.) : 0 : r(a)(F2 - le) : lF,"("\s. The col-

lection e(A,B) of Kasparov ,4-B-bimodules and D(A,B) of degenerate Kasparov
,4-B-bimodules are closed under the direct sum (81 @ Ez,F1@ F2,at@c.z) of two
Kasparov,4-B-bimodules (-E¿, F¿, o"¡),i : 7,2.

Theorem 2.4.2 Let KK(A,B) : (t(O,B)lD(A,Ð)l - where the equ'iualence

relation -'is defrned by homotopy equiualence, Then (KK(A,B),@) is an Abelian
qroup.

For separable C*-algebras,41, A2 and D there exists an associative bilinear prod-

uct,
Øo: KK(Ar,BrøD) x KK(DØAz,Bz) -+ KK(hØAz,Bt6Bz)

called the intersection product, It is functorial in all possible senses given morphisms

between C*-algebras, contravariant in At,Az and covariant in 81,82. Note the pres-

ence of the graded tensor product Ô of section 2.7.3. We recall from that section
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A68 ¡'A8B when,4 is atrivially graded C*-algebra, If we restrict to B: C
and .4 always trivially graded Kasparov's KK-theory reduces to the K-theory and
K-homology of the C*-algebra ,4,,

KoØ): KK(C,A) , KO(A): KK(A,C).

Here .[16(,4) consists of stable classes of finite projective ,A-modules and /l0(,4.) con-
sists of homotopy classes of FYedholm modules over ,4. For a pre-C*-algebra A c A we
use the K-theory and K-homology of its norm closure. They are equivalent since the
inclusion map ¿ : A -+ .4 provides an isomorphism in K-theory, r,* : K*(A) -+ K.(A)
and homotopy classes of Fledholm modules over ,4 extend uniquely to ,4, [co, Appe].
Higher KK-groups are defined by KKL(A,B) : KK(A&C",8) and KK,(A,B) :
KKn(A,BØC"). Here C' is the graded Clifiord algebra over C? 6. Then

K.(A): KK*(C,A) , K.(A): KK*(A,C)

when A is trivially graded. Formal Bott periodicit¡

KKn(C,,A) = KKn-o¿z(C, A) , KK"(,4,C) = KK"^"d2(A,C)

follows from functoriality of the KK-groups and the order 2 periodicity of the graded
complexified Clifford algebras under graded tensor product. We note that KK-theory
has the property of stabilit¡

KK(A,C) : KK(Aa ¡¡,C)

and hence

KK(A,C): KI((AaK,C) : KK(B 81l,C) : KK(B,C)

for strong Morita equivalent C*-algebras A and B. The intersection product includes
the usual K-theory cap product,

Øa: KK*(c, A) x KKn(Aa B, c) -+ KK*+n^od2(B,c)

for C*-algebras .4 and B. Hence the intersection product enables a generalisation of
the index theory of Atiyah-Singer and Poincaré Duality.

2.4.2 Poincaré Duality in KK-theory
Let A be a trivially graded unital C*-algebra, B a c*-algebra and u e KK(AaB, c).
The intersection product defines a group homomorphism,

Ø4u : K K*(C., A) -+ I{ K* (B,C) ) e t+ e Ø¡ u

The z-index of e e KK*(C.,A) is defined to be the index of the K-homology class
eØ¡u 7. An isomorphism Øtv between the K-theory of A and the K-homology of. B
is an example of Poincaré duality in KK-theory.

6The grading of the Clifford algebras over C" used here are detailed in [Ks1]TSee Section 7.2, Section 8.7, Section 9,7 and. Section Ll.4 of. [HgR] to trace the z-index as the
generalisation of the Atiyah-Singer index theory.
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Definition 2.4.3 Let u e KK(A8 B,C) such that Øtu is an isomorphism. Then

ue súA the C -algebras A and B are Po'incaré dual.

See [cs], VI.A.P for a discussion of Poincaré Duality. The next example is of
central importance in understanding the generalisation of Poincaré Duality to non-

commutative geometry.

Example 2.4.4 Poincaré Duality for compact Riemannian manifolds

LeI X be a compact n-dimensional Riemannian manifold. Let (L2 (X,Ä* X), n¡, d*
d*) be ttre C?'*-representation of the C*-algebra C(X) of Example L.7.t7. Let
l@) : ø(1 .¡ r2)-r/2 for ø € IR and define Fd: f (d +d*). We recall from
Section 2.3.2 tlnat (L"(X,Â*X), r¡ Ø r¡,¿¡.) ir a graded C(X) Ø C(X, CI(X))-A-
C*-bimodule.

Theorem 2,4.6 (Kasparov) The triple (L'(X,À*X), F¿,t1,) as aboue consti-

tutes a Kasparou C(X) Ø C(X,CI(X))-A-åi,rnod,ule.

Proof Definition-Lemma 4.2 of lxszl. '.. !

We denote the homotopy class of the Kasparov C(X)ØC(X,Cl(X))-A-bimodule
(L,(X,À*X), F¿,U,) by

[d] = lØ2 (x, L* x), F¿, u,)l € K K (C (x) ø C (x,cl(x) ), a).

The class [d] is called either the Dirac element or the fundamental class of the
compact Riemannian manifold X.

Theorem 2.4,6 (Kasparov) Let fd] be the fundamental class of a compact

Riemannian manifold X. Then we haue the following isomorphism g'iuen by the

'inters ection product,

KK*(C,,C(X)) Øc6)14: KK.(C(X, Cl(X)), C)

Proof Theorem 4.8 or Corollary 4.11 of [rsz]. !

The statement of Poincaré duality for a Riemannian manifold is the isomorphism
in Theorem 2.4.6

8c(x) fdj : K K.(C,, C (X)) -+ K K* (C (x' Cl(x))' q.

Hence we regard Poincaré duality on a compact Riemannian manifold as Poincaré

duality of the C*-algebras C(X) and C(X,Cl(X)).

Remark 2.4,7 The situation when X is a Riemannian spin6 manifold is con-

ceptually different, \Me detail this in Example 2.4.9 below.
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2.4,3 KK-equivalence

The intersection product possesses an identity,

i: KK(A,C) 8c KK(C,C) -+ KK(A,C).

The class i: [H¡,?, o] is described fully in Theorem 4.5 of [xsr] or Proposition 9.3.1 of
[ngn]. It involves aZ2-graded Hilbert space I/¿ and an odd operator ? arising from an
index 1 Fledholm operator Hfo -+ Hydd. Take a class lE,Fl e KK(A,C). The rank
one projection aspect of ? is used to transform EØH into (,8øC)O(.E8Hil) such that
the Kasparov product F#oT becomes just F I 1 on the first direct summand, and is
degenerate on the second. Hence, we recover the same class as (8, F) â. (.E8C, ¡'81).
For a Z2-graded C*-algebra B we set

ie : lB6H6 1 a ?l e KK(8, B).

This element provides the identity for

fi : KK(A,B) Øa KK(B,B) -+ KK(A,B)

A KK-equivalence between KK(A,C) and KK(B,C) is given by elements o €
KK(A,B) and 13 e KK(8,.4) such that a Øn þ: i¿ and þØ¿,o - ie. Then
the intersection product provides the isomorphism aØB KK(B,C) : KK(A,C)
with inverse þ Ø¿, KK(A,C) : KK(B,C).

Example 2.4.8 KK-equivalence of A and Mz(A)

Let A be a C*-algebra and u be a unitary in M(A). We recall from Theorem
2.I.79 that (,4., ãdr) -u (Mz(A),adr,)as Z2-gtadedC*-algebras. Werecallfrom
Lemma 2.1.18 and the proof of Theorem 2.1.79 that (A2,fi,) is the graded Hilbert
,A-module such that (Mz(A),udr,) o (K¡(A2),ad¡,). Let

K = (A2,(u)

By similar considerations it is easily shown (A2,lu) is a graded Hilbert Mz(A)-
module such that (A, adu) o (K u"çq) (,42 ) , ad¡, ) . Let

Æop :: (Ar,lu).

Define
i(rc) : lA' ø H¿,I ØT,lt,Ø a] e KK(M2(A),A)

and
i(rcon¡ : lA2 Ø H¿,r ØT,rua o] e KK(A, uz(A)).

Then
i@on¡ ØmrØ) i(rc) : lAø H¡,1- ØT,ad, I al: it.

In reverse,

i(rc) 8a i@or¡ : [M2(A)6H¿,I ØT,ad1,I o] : iur(t).

Hence we have a KK-equivalence between KK(A,C) and KK(M2(A),C).
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Example 2.4.8 demonstrates the general procedure how every strong Morita equiv-

alence between C*-algebras gives rise to a KK-equivalence. The next example com-

pletes the discussion of Poincaré duality on Riemannian manifolds in Example 2.4.4.

Example 2.4.9 Riemannian spinç manifolds
Let X be a Riemannian manifold. Let E -+ X be a Hermitian vector bundle
with .0, = H. Then there exists a Hermitian vector bundle E* -+ X, called

the dual bundle of ,8, such that the fibres Ej are isomorphic to the dual Hilbert
space ff* [sr, IIL4].

Let X be a Riemannian spinç manifold as in section 2.3.5. Then Cy(X)(øCù -^I
Co(X,Ct(X)). Here C1 is the graded two dimensional Clifford algebra and (8Cr)
is added if dimX is odd. Let 7 be the complex volume form of X. The com-
plexified spinor bundle S -+ X provides a graded Hilbert Cg(X)(SC1)-module
(Co(x,S)(8C2), d(øcr), d(rXøÉ)) such that

Co(X,Cl(X)) = K6og)(Øc,¡(Co(X,S) (sC'z )).

Thedualofthecomplexifiedspinorbundle S* -+ X providesaHilbert Co(X,CI(X))-
module (Co(X,S.)(øC2), d*(ø"r), 4-17)(øÉ)) such that

Cs(X) (ØCr) ? Kco4,crtxll (Co (X, S-) (8C2 )).

Define
i(rc) : lco(x,.9)(84'z) I fIi,1(81) ø 

", 
d(r)(ø þ) ø 

"1.

Then i(rc) e KK(C|(X, CI(X)), Ce(X)(øC1)). Define

i(rcon¡ : lc|(x,s.)(8c2) 6 Hn,1(s1) øT,ó.0)(øB) ø ol

Then i(rcon) e KK(Cy(X)(øCr), Co(X,Cl(X))). The relations

i(noe) Øco1x,cl(x)) i(rc) : i6'o1x)(øcr)

and
i(Æ) As.1¡; @cù i(noe) : ico(x,cr(x))

follow. As in the last example, the strong Morita equivalence provides a KK-
equivalence between K K(C06)(øCt), C) and K K(Cy(X,CÌ(X))' q.

Poincaré Duality on a Riemannian spin6 manifold

Let X be a r¿-dimensional compact Riemannian spinq manifold. Following Ex-
ample 2.4.4 we can define, since X is a compact Riemannian manifold, the fun-
damental class

wj: l@2(M,L* x), F¿,u,)) e KK(c(x) ø cçx,cl(x)), q.

We have the isomorphism

Øcrnl{ : K K (C, C (x)) --+ K K (C(x, Cl(X)), C)
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from Theorem2.4.6. A spinq structure is a strong Morita equivalence C(X) -M
C(X,C\(X)) when n is even and C(X) Ø C7 -* C(X,C\(X)) when n is odd.
The KK-equivalence above provides the isomorphism

i(rcon¡ 8c1x,cr1x¡¡ . : KK(C(X,Cl(X)),C) ---+ KK(C(X)(8C1),C).

Hence, if r¿ is even the class

p: i(rcop)8cqx,cr1x¡¡ ldl e KK(C(X)s C(X),A) = /{o(C(X))

provides the isomorphism,

Ko@6)) KK(C(x,Cl(x)), A)

J i(rcoo¡

KK(C(x),C) : I<o(C(x)),

in terms of the intersection product,

Øc6)tr: Ky(C(X)) -+ KoQ6D.
Similarly there is a triangle showing the isomorphism 86,1¡7U : K{C()f)) -+
KT(C60.
When n is odd, then

p: i(rcop)8c1x,cr1x¡¡ ldl e XX(C(X)s C(X) s Ct,C) = KrQ6))
provides the isomorphism

Ko(c(x)) lE KK(c(x,cl(x)), a)

\ J i(rcor¡
p KK(C(X) s Ct,Ç) : KL(i(x)),

in terms of the intersection product,

Øc(Ðp: Ks(C(x)) -+ Kr@J{^).
Similarly there is a triangle showing the isomorphism g61¡¡U : KúC(X)) -+
K0@rXD.
Hence Poincaré duality on the compact Riemannian manifold X descends to the
usual cap product statement in I{-theory through the Moril,a equivaleuce giveu
by the spinç structure. Note that the class ¡.r : i(rcop) 8c1x,cr1x1¡ [d] is called
the K-orientation (or sometimes called the fundamental class) of ine Riemannian
spin6 manifold X. The K-orientation is also known to be the homotopy class of
the Fþedholm module (L2(X, S), Fo,ó(ù),

[o] :: l@, (X, S), Fo, ó(ù)1,

where D is the Dirac operator on the complexified spinor bundle ,s -+ x and
FD: D(1 + D2)-r/2 [ngn, Definition 11.2.10]. Explicitly the link between the
fundamental class and the K-orientation is the relations

i(rc) 86'1¡¡1øc¡ [D] : ¡q

i(rcor¡ Ø c 1u,ct1x7¡ ldl : lDl.

97

tdl.

\
p
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2.4.4 F\rndamental Class of a Riemannian Representation

A. Connes, in the foundation paper [c+], considered Poincaré Duality an essential
indicator of smooth manifold structure. To generalise the statement of Poincaré Du-
ality to non-commutative geometry involves generalising the notion of a fundamental
class.

Graded Representations and Unbounded Kasparov Bimodules

Definition 2.4.LO Let A be a C-algebra. Let (H,T,D) be a base representati,on of
a (f-aþebra A with a selfadjoint operator f e B(ä) such that 12 : !, {l,Dl : g,

andll,n(a)):0. Then (H,T,D,f) zs called a graded base representati,on of A.

Let Fp,: l(D) where l@): z(1* *2¡-rlz.

Theorem 2.4.LL Let (H,r,D,l) be a graded, C)-representation of a C-atgebra A
suchthatr(a)(D -À)-t eK(H) for allae Aand).€C\R. Then(H,Fp,l) is a
K asparou A-C.-bimoilule.

Proof See [a;] or [Hgn, 10.9.15]

Corollary 2.4.t2 Let (H,r,D,l) be a graded C!'*-representation of a C-algebra
A. Then (H,Fo,f) is a Kasparou A-C-bi,module.

Proof Immediate from Definition 1.9.1, Theorem 4.1.1 of the appendix and Theo-
rcm2.4.11.. ¡

The graded C|'--representation (H,T,D,l) of the C*-algebra A is an example
of an unbounded Kasparov .4-C-bimodule [a;].

The Index Algebra

Let (Hp,rp,D) be a Riemannian representation of a C*-algebra ,4. with associated

standard form Riem(A, p) : (Qo(A"r)" , Hp, Jp, Lp,Pp).

Definition 2.4.13 Let (Hp,np,D,l) be a graded Riemannian representation oJ a
ö -algebra A and Riem(, , p) be the standard, form as aboue. Then T is called a real
grading element iÍ [], Jp] : 0.

Theorem 2.4.L4 Let (Hp,np,D) be a R'i,emannian representati,on oJ a C-algebra
A. Then the real graded elements associated to thi,s representation, if theg erist, are

parameterised by the group of uni,taries {U e U(Z(Q7(A"))" ) | [.D, ff1 : 91.

Proof Let .R : Qo(Ap,)". Let l,l/ be real grading elements. Consider the unitary
(J : llt. Then [/ € A' such that [U, Jp] : 0. Hence U e Z(R) by (iv) Theorem
1.6.1. That lD,Ul:0 is immediate from Definition 2.4.10' !

Define the opposite action of the von Neumann algebra Qo("4")" by

,tt)oP : Jow* Jo.
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Then (o¿(An)"¡oo =ao(A"r)/ by the Tomita-Takesaki theorem. Hence (Hp,r) is
an Ap(Ano) ø Qp(A"o)op-C-bimodule using the representation

t¿ I troP ,+ uwoP.

A grading element I implements the parity automorphism

ad¡(u'') : e(w)'

The opposite grading element 17 :: JplJp implements the parity automorphism on
the opposite representation

ad¡r(u.'op) : e(u)ol'

A real grading element f : f.¡ implements the parity automorphism simultaneously

ad¡(utlop) : e(t¿)e(u)ol

and hence allows (Hp,rp,f) the structure of a graded Qo(An) A O¿("4r0¡oo-ç-
bimodule.

Definition 2.4.L5 Let (Hp,np,D) be a Riemanni,an representation of a C-algebra
A. Then we define the inder algebra Bno as the uniform closure of the set ßoo -
{troP e Qn(Ano)o, I ll[D,r'o]ll < oo].

Proposition 2.4.16 Let (Hp,no,D) be a Riemannian representati,on of a separable
C -algebra A. Then the inder algebra Bn, is a separable C -subalgebra of the uon
Neumann algebra Ao(A^)' that contains AÃ JpAJp.

Proof Let {ø¿}p1 be the countable set of elements iyr .\rc that generate ,4. Then
Oo(A^r) contains the set {o¿,[D,¿¿]]Ër that generates C, the uniform closure of
An(A^r). Hence C is a separable C*-algebra and Bn, is a C*-subalgebra of the
separable C*-algebra Cop - JC*J. ¡s.4nol\JpA^eJp a Bro then the norm closure
An JpAJp a Bro. ¡

This implies Brr, is non-empty when A is unital.

Fundamental Class of a Riemannian representation

Theorem 2.4.L7 Let (Hp,no,D) be a n-dimens'ional Riemannian representati,on of
a U algebra A with non-crnpty inden algebra and real grading element L Then
(Hr,Fo,l) i,s an AØ Bne-C.-Kasparou bimodule.

Proof It is immediate that (Hp,rp,l) is a graded AØ Brp-C-C*-bimodule. Since

lD,rr(a)uon] is bounded for the norm dense set a Ø woq , Arro * ßro it follows from
[n;] that ro@)wov(D-À)-t:uoprp(a)(D-¡;-t eK@) forall ae A, Àe c\R
and u;oP e Bno, that t¿opr(a)(1 - F|),lpo,r(a)uovl e K(H). To transfer to the
graded commutator requires a trivial adjustment to the opposite representation. Let
úoP :: t¿opl define the right adjusted opposite representation for u e AD(A)". Then
adr(¿'op) : lt¿oP:6(¿ron)l:.(L)oo. Hence the right adjusted opposite representa-
tion is still a graded representation such that úopn(a)(I- FÐ : woplr(a)(I- F2ò :
wopr(a)(L- f2o)f e K@) and [F¿, r(a)úon]n : lFo,n(a)waofln : lFo,n(o)tlron]l e
K(H), !
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By the notation l(H,Fo,l)] we shall mean the K-homology class of the Kasparov
AØ Bre-C-bimodule (H,Fn,l) in KIf(AØ Bnr,C). The following definition shall
apply only to unital separable C*-algebras.

Definition 2.4.L8 Let (Hp,np,D) be a n-d'imens'i,onal R'iemannian representation of
a unital separable C -algebra A with real grading element I . Then the class

À1, :: l(Ho,Fo,l)j e KK(AØ Boo,C)

is called, the Jundamental class assoc'i,ated to thi,s representation.

Remark 2,4.L9 Let l,l' be real grading elements for the r¿-dimensional Riemannian
representatiot (Hp,rp,D) of a unital separable C*-algebra ,4.. Then I : Ul' for a

central unitary such that lD,Ul: 0 by Theorem 2.4.14. Hence lFo,Ul: 0 and there
exists a homotopy (Hp,F¿,f) - (Hp,Fo,l').Hence Àp-r is independent of the real
grading element chosen.

Example 2.4.20 Riemannian Manifold

Let X be an r¿-dimensional compact Riemannian manifold. Let C(X) be the sep-

arable C*-algebra of continuous functions on X. Let (L2(X,À*X), n¡,d, * d* ,Ur)
be the graded C(X,Cl(X))8 C(X, Cl(X))'n-6-C*-bimodule studied in Theorem
2.3.4 and Theorem L7.2I.

Theorem 2.4.21 Let X be a n-dimensional compact Riemannian manifolil.
Then

(i) (L'(X,Â*X), n¿,d,1 d*,Ur) is an n-d,imensional Riemann'ian representa'
tion of the ö-algebra C(X) with real grading element U,,

(ii) the inil,er algebra of this representation is

Bnt: C(x, Cl(x))oP'

(iii) the fundamental class \-t ol this representation is the fundamental class

oJ the R'iemannian mani,fold X

À-r : [d],

(i") the C-algebras C(X) and C(X,CI(X)) are Poincaré. dual. In particular,

8c(x)À-r : KK(C,C(X)) -+ KK(C(x, Cl(x))' C)

'is an'isomorphism.

Proof (i) Immediate from Theorem 2.3.4 and Theorem 7'7'2I. (ii) Let D:
d + d*. As z'¿(/)on : n,(l) : nU) then [D, núl)opþt : núdf)(w) : df 't¿ for

all / € C*(X) and ø e. C''(X,CI(X)). Similarly [D,n(l)]pw : n,(dl)(r) :
w .df . Then

lD,lD,n-¿(/)l'ol, : D(tu'df) - @w)'df .
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for t¿ € C*(X,CI(X)). Working in a chart úr with local tangent bundle ba-
sis {ô¿(ø)}þ, and local cotangent bundle basis {dr¿(r)}i=1 for r € I/ then
D : D'; d,r¿(r). Van("). Hence D(.' dl)@) : (Dw)(r)' df@) + l¿dr¿(r) .

.(") .V 
6nç,¡d,J @) and

lD,lD,"¿(/)l"plr(r) :D¿dr¿(r) 'w(r) .Y 6oç"¡d,f (r)
extends to a bounded operator (u.,, not d/, is what we axe acting upon). Then
lD,ntf)"pl and [D, [D,*¿(/)]"p] are bounded for all / € C*(X).Hence
C*(X,Cl(X))on . Brt c C(X,CI(X¡¡on. By norm density of C*(X,CI(X)) in
the C*-algebra C(X,CI(X)) the result follows.

(iii) follows from (ii) and (i)
(iv) the right adjusted right action, õ,, of the C*-algebra C(X,CI(X)) is the
representation À. * Ài used in Kasparov, [xsz] Definition-lemma 4.2. Hence
Theorem 2.4.6 applies. !

2.5 Non-commutative Volume Form

Basic Definitions

Let A be a unital associative algebra (over C). We denote the k-fold algebraic tensor
product

cnØ):Aoéo..'o¿.
k

Let C -+ A be the canonical inclusion À À1 for all À e C. Let A: coker{C -+ A}.
Define

CxØ): Ao o... o,4
k

We denote by (O(,a),d) the universal graded differential algebra of section 1.4. We
recall the ,4-bimodule fll(,4) with derivation ü : A -+ f)l(A) has the following property
of universality. Let M be any ,A-bimodule with a derivation 6¡a : A -+ M. Then there
exists a unique element o € E¡(QL(A),M) such that 6¡v : oõ.

Let Abe a unital commutative associative algebra. We denote Qot : Aand by 0|
we dcnotc thc symmctric ,2l-bimodule with derivation 6¡ A -+ AtA with the property
that for any symmetric ,A-bimodule M with derivation 6¡a : A -+ M there exists a
unique element o € Ea(Qta,M) such that ô¡a - o6¡ [ua, Pg 180]. Define the exterior
algebra Qa :: 

^(CIh) 
with unique exterior derivative d¿ : .,l.ft(Qf,) -+ Àft+l(O|)

extending 6¡: A -+ 01. Then the complex (Q¡,õò is called the complex of Kähler
de-Rham differential forms on the unital commutative associative algebra .4.

2,5.L Non-commutative De-Rham Complexes

Let A be a unital associative algebra and (A(,4),ô) the universal graded differential
algebra of ,4. Define

[O(,4), O(,4)] :: @¡¡6[O( Ð, AØ)]k
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where

[o(,4), Q(,4)]¿ :: | {roro - ?t¡'orouplup e or(A), øo e CIq(.4)}
plq=k

Deflne

^o(A) 
:: o(A)/[o(A), o(A)].

As ô([0(A),O(/)]) c [ç¿(,4),O(Á)] [su,.n] the quotient derivative ô:^,eQ(,4,) -+

^k+lçr(Á) 
is well defined and we have the exact sequence of complexes [su, .tt ]

o -+ ([o(,a),0(A)], d) + (CI(A), ô) -+ (^o(,4), ô) -+ 0

The complex (,ô,O(,4), ô) is called the complex of non-commutative de-Rham exterior
differential forms on A.

Remark 2.5.1 We remark on the distinction between the non-commutative exte-
rior differential forms in the sense of Connes' non-commutative calculuss and non-

commutative de-Rham exterior differential forms as above. The complex (ÂO(,4), ô)

is a purely algebraic construction, independent of the representation theory of any

C*-envelope of A, and is a differential complex that is not a representation of O(,a)

in general [su, Pg 94].

The first two terms in the non-commutative de-Rham complex of a unital asso-

ciative algebra are: (1) The commutatisation or symmetrisation of ,4.,

l\oo(A) : Alcom(A)

since

[CI(,4),O(A)]o : {[o, dlo,b e A] : Com(A)

(2) The symmetric á-bimodule,

¡.1o(A) : çtr çÐ I {"ô(ó) - ô(b)a I a,b e A}

slnce

lo(,4), o(A)lr : {aõ(b) - 6(b)ala,b e A}.

The symmetric A-bimodule 
^10(,4) 

is viewed as the symmetrisation of O1(,4) as an

A-bimodule.

Corollary 2.6.2 UI Remark 1.1.8, II Consequence 1.1.L3, Sbl Let A be a commuta-

tiue unital associatiue algebra. Then

,4: 
^oo(,4) 

: o%

sl,et (ã,zr,D) be a Cl-representation of a unital C*-algebra B. Let A be any unital associaüive

subalgebra of ,4,1. Then Connes, as in section 1.4, defines the differential representation (Ào(-4),ôo)
of the universal difierential algebra (O(A),ð). The differential representation (/ro(,4),do) is also,

confusingly, called the exterior differential forms on A.
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and
orØ)llaØ), o(/)¡ : .'\1r¿(á) : ol,

howeuer

a2Ø) llaØ), o(Á)lz = ña(t) + a2t

in general.

The complex of Kähler de-Rham exterior differential forms can only be defined on
a commutative unital associative algebra. The consequence of Corollary 2.5.2 is that
the non-commutative de-Rham complex of exterior differential forms (^.O(A), ô) over
a unital associative algebra .4 is not the appropriate generalisation of the complex
of Kähler de-Rham exterior differential forms. The search for the appropriate non-
commutative generalisation of the Kähler de-Rham exterior differential complex and
Kähler de-Rham cohomology led to cyclic homology and the situation as follows
[su, ;r] which we outline in the next section,

(i) The Hochschild homology ã-(,4) of a unital associative algebra ,4 is the non-
commutative generalisation of the Kähler de-Rham complex of exterior differ-
ential forms,

(ii) The cohomology H*(ltO(,4),ô) of the complex of non-commutative de-Rham
differential forms is a component of the cyclic homology HC.(A) of a unital
associative algebra Á and is the non-commutative generalisation of the Kähler
de-Rham cohomology.

2.5.2 Hochschild and Cyclic Homology

Let A be a unital associative algebra,. I)efine the ma,ps h : C¡ 1r (Á) -+ Cn(A),

k-r
b(oo8or8...8a¡) ': t(

i=0

and B : C¡a(A) -+ C¡¡2(A),

B(asA¿r 8,..8a¿) :: Df=o?I)oolØa¿A...4 a¡Øasa...8 a¿-t I
Df=o(-l)no a¿ Ø I Ø a¿+t8 . . . A a¡ Ø as8 . . . I a¿-r

Then (C¡,(A),b,B) is a mixed complexe [su, I.2.3, L2.41'. We define an associated
chain complex (C¡(A),dù by

C*(A) :: Cn(A) a Ch_2Ø) o C|_ (A) Ø ...

dt(c*,ck-2tctc-4,t. . .) ,: (b"n + Bck-z,bc¡-2 * Bck- ,bcn-a + Bcx-a,...)

The Hochschild homology ¡1.(,4) of a unital associative algebra .4 is defined to be
the homology of the complex (Ck(A),b). The cyclic homology HC.(A) of a unital
associative algebra,4 is defined to be the homology of the complex (Ck(A),dù.

-l)o oo Ø . . Ø a¿a4¡r 8. . 8 ¿¡ t (-7)k a¡ao 8 ør 8 . . . Ø ak-t,

emeaning b2 = B2 = bB t Bb = 0,
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An explicit relationship between Hochschild and cyclic homology can be derived
in terms of a long exact sequence as follows [c, .11,, Su]. We define the shift of chain
complexes

S : (C¡(A), dù + (Ck-2(A),dk-2)

by projecting out the first direct summand

S : C¡(A) @ Ck-2(A) @ Ck-4(A) o... ¡+ Cn-z(A) @ C¡- (A) @ ...

We define the inclusion map of chain complexes

I : (C¡,(A),b) -+ (C¡(A),d¡)

by
I : C¡(A) -+ Ck(A), ck ) c¡ O 0 @ 0 O...

clearly with.Ibc¡ : d*Ic* for all chains c¡ç e C¡(A). Immediately from the above
definitions of ,S and .I we have the exact sequence of chain complexes

0 -+ (c¡,(A), b) å (cn,dù 3 (cu-r,d¡-2) -+ 0.

This exact sequence of chain complexes induces a long exact sequence in homology
where the connecting map is exactly the map induced in homology by B,

B : (C¡-2(A),dn-z) -+ (Ck-L(A),b)

defined by
B:C¡-2(A) -+ C¡-1(A) , cn-z@cn-¿,e... l+ Bcn-2.

Theorem 2.5.3 [CN,JL,Sb] Let A be a unital assoc'iatiue algebra. Let H*(A) be the

Hochschi,Id homology of A, HC*(A) be the cyclic homology of A and the maps I,S
and, B be as aboue. Then there 'is a long eract sequence in homology

... -+ Hn(A) ! ncrçq) 4 uco-r(A) 3 Hx-{A) -+ ...

where the connecting map is i,nd,ucerl by B.

A corollary to the theorem is that the combination

HnØ) \ nc*1,+¡ 4 no*r1.t¡

yields a cochain complex (H.(A),B). The resultant cohomology H.(H*(A),B) can

be seen to be a component of the,reduced cyclic cohomology HCí'I(A) as follows.

Let (D¡,(A),b, B) be the mixed subcomplex defined by D¡(A) : {468ø18 . . .Øa¡la¿ :
1 some 'i:7,...,k) [su, L2.5]. Deflne the quotient mixed complex

(C x(A), b, B) :: (Cx(A),b, B) I @k(A),b, B).

The map B : C¡(A) -+ C¡a(A) is simplified in the quotient to

k

B(oo ø¿r 8. ..an): D(-t)n*t 8¿¿ 8...ok 8ao 8...8¿¿-r.
i.:0
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Let C -+ .4, be the canonical inclusion À -+ À1 for all À e C. Then we have an induced
homomorphism of mixed complexes

-+0-+C
J.t

-) AøA -+ A
Define the quotient mixed complex

(ci,"d (A),b, B) :: (e n(A), b, B) I @ k@), b, B).

Then cfi"d(A) :Ã, and cf,"d(A) :C*(A) vk > 1. The Hochschild homolosy ø;'d(A)
and the cyclic homology HC'."d(A) of the mixed complex (C,k"d(A),b,8) arc called the
reduced Hochschild homology and reduced cyclic homology of the unital associative
algebra,4 respectively.

Theorem 2.6,4 Let A be a unital associat'íue algebra. Then there erists an'inclus'ion
rnap

H(I): Hk(Hk(A),8) -+ HC'h.d(A)

such that B o H(I) :0 Íor all k > L

Proof The Hochschild homology H.(A) is the homology of the complex (C¡(A),b)
[su, I Prop 2.5.3]. Let Z¡ - {"t, e e nØ)lbc¡ : O,Bc¡ : bck+z some c¿12 €
e x+z(A)\I{** e e *Ø)I*t : bmx+t} and B¡: {Be¡-t e Ck(A)Ib"*_1:0,e¡-1 e
Õn-t(A)Il{^n eÕxØ)l*n : b*n+t}. Let M¡ : {c* e C'fdØ)ld,¡c¡ :0}l{m¡, e
C'k'dØ)l^n: dnmn+t\. Consider the map a1t C¡rçA¡ -+ C'k'd(A)

o¿r i ctc i m¡ r+ (-"n+z t Bm¡¡)O (c¡ t **) @0 O ... O 0

for k ) 1. Then d,¡¡2a1(c¡¡^n) - (-b"n+z*Bc¡*bBm¡¡1-lBm¡)@(bc¡r+brnùØ
0 O... O 0 : (bB + Bb)rnr+r O 0 e... O 0 : 0. And a1(c¡, -l m¡) : - cte+2Ø c¿ O 0 O... O 0 f
B mn+t@bm¿+r O 0O... O 0 : - ck+zØc¡ O 0 O... OOf d¡13(0 O rn¡-'1 @ 0 O... O 0). Hence
the map a,2 i Z¡ ) Mn+z given by a2: [c¡r] -+ l-cn+zØc* O0O... O0] is well defined.
Now, suppos€ c¡: Be¡-t for lc) 2 such that be¡-1:0. Then Bq - B2e¡r4- 0
and a2 : [Be¡-l-+ [0 O Be*¡O 0 O... O 0] : ldft+s(O O 0 @ e*_tØ0 e ... O 0)] : 0.
\Mhen k : 1 then ct : Ba: (1, [r]) : gla]and [Bø] -+ [dB(Q,0, [r])] : 0. Hence the
map d,2 : Z¡rf B¡ -+ Mn+z is well defined for ,k ) 1. The combination H(I) :: Sa2 :

ZxlBn -+ Mx for k ) l is injective as Sa2[c¡]:0 if and only if [c¡] :0. Clearly
BH(I) : BSaz:Q by Theorem 2.5.3. !

Hence the cohomology H*(H*(A),8) is a component of kerB c HC,.ed(A). The
final result that motivates Hochschild and cyclic homology is the identification of
ker B. Let d be the map induced by the isomorphisms

e¡: akÇ+) -+ CkØ)

given by 0¡ : as6q... 6a*r) a¡ I a1 Ø ... a¡.
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Theorem 2.5.5 [Sb, II Thereom 1.1.18] Let A be a unital assoc'iatiue algebra. Then
there erists an eract sequence

0 -+ r/ft(^CI(. ),ô) ! nc';dç.+¡ 3 n;f¡a) -+ 0

forallk>L.

Example 2.õ.6 Kähler De-Rham Differential Forms
Let A be a commutative unital associative algebra. Let (Qa,ô¿) be the cochain
complex of Kähler de-Rham exterior differential forms on A and f/fi¡(,A) ::
H* (Q¿, ô¿) the Kähler de-Rham cohomology of .4. Define the map

þ: C¡(A) -+ O¿, a0 8¿r 8. .. Ø an + o,¡dar A... Ad,a¡.

Theorem 2.5.7 [su, II Complement 1.2.14) Let A be a commutatiue unital as-

sociatiue algebra. Then we haue the epimorphi,srn of cochain compleres

p, : (H.(A), B) -+ (O¿, ô¿)

induced by the rnap tl aboue.

Let A be a commutative unital associative algebra. Then A is called C-smooth
if for every prime ideal P of .4 the local ring ,4.p is formally smooth over C.

Theorem 2.5.8 [su, II Corollary t.2.I7l Let A be a commutatiue unital asso-

c'iati,ue algebra. Then the following statements are equiualent.

(i) p,: HC¡,(A) -+ a\laa\-'e ufiçql o ¡rßR4(,4) o. . . ¿s an isomorphism

for all lç > 0,

(ii) ¡-r: H¡(A) -+ Oh, is an 'isomorphism for aII k ) 0,

(iii) H.(A) is an erterior algebra oaer H1(A),

(i") A i,s C-smooth.

Corollary 2.5.9 Let A be a commutatiue unital associat'íue algebra that is a

C-smooth. Then Hþ,(A) : H* (H*(A), B) : f/.(ÂO(,4)' d).

Proof By Theorem 2.5.5 and Theorem 2.5.8 we have

frk(^CI(A),d) : ker B: p,-rHr(ah,,6t): tt-rpUk(HnØ),B).

D

Theorem 2.5.10 Let X be an n-d,imensional compact Riemannian mani,fold.

Then we haue the isomorph'ism of cochain compleres

p, : (H*(C*(X)), B) -+ (Ìr. X,d)

where d is the erterior deriuatiue and the i,somorphism of cohomologi,es

p, I H* (H.(C* (X)), B) + f/ön(X)
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where äðn(X) i,s the il,e-Rham cohomology of the compact Ri,emanni,an manifold
X.

Proof The result is immediate from Theorem 2.5.8, Corollary 2.5.9 and the
definition of the Kähler de-Rham complex as C-(X) is C-smooth. tr

As a result of Example 2.5.6 the Hochschild homology H.(A) of a unital associative
algebra .4 is considered the space of non-commutative Kähler de-Rham exterior dif-
ferential forms on,4 and the cohomology fI-(ÂO(A),6) the non-commutative Kähler
de-Rham cohomology of A.

2.5.3 Volume Form

Let (Hp,Tp, D) be a r¿-dimensional Riemannian representation of a unital C*-algebra
A. Let A^o be the smooth unital pre-C*-algebra of ,4. The results of Section 2.5.2
indicate the Hochschild cycles Z"(A^r) a¡e the non-commutative generalisation of the
highest power smooth exterior differential forms. The Hochschild cycles Zn(A^r) arc
hence the candidates for non-commutative complex volume forms.

Define the linear representation nr:: ro0l7 ,e *(A^r) -+ A$(Arr). Explicitly

n p(oo Ø ¿r I . . . a ¿k) : r p(a,o)lD, r p(aùl . . . ID, n p(où]

for all /r > 1. Define

np(oo Øar I . . . I ¿k)op : Jr(n r(ao)lD,n r(a1)]. . . ID, nr(a¡)]). Jo.

Definition 2.6.LI Let (Hp,np,D) be an n-dimens'ional Riemannian representation
of a unital C-algebra A. Then we call (Hp,np,D) an oriented n-dimensional Rie-
mannian representation of the uni,tal C -algebra A if there erists a Hochschild, cycle
c e Zn(Ano) such that

(i) rr(c) is a self-adjoint unitary,

(ii) [nr("),"p(o)]:0 Íor all a € A, and

(iii) Drr(c) : (-I)"-rroþ)D.
The element noþ) e AbV*) is called a (non-commutatiue) uolume form for thi,s
representation.

Proposition 2.6.L2 Let (Hp,np, D) be a Riemannian representation of a C -algebra
A. Then there erist a selfadjoint un'itary I e U(H) such that e(w) : lwl. for alt
w e Qp(Ano)" and [l,.fr1 : 9.

Proof See Lemma 2.5.78 below. D

Let Parity(p,A,D) denote the non-empty set of selfadjoint unitaries I e U(Hr)
as in Proposition 2.5.I2. Recall the two-dimensional Clifford algebra C1 is abstractly
defined by

C1 : {À1 + h^21 Àr, Àz e C,h2 : I}

with a Z2-grading B
Theorem 2.3.1.

\ * hÀz -+ Àr - hÀ2. Compare the following result with



108 CHAP T ER 2, RIEMAN]V/AN NO]V- CO MMU T.|TIV E G E O MET RY

Theorem 2.6,L3 (Riemannian Orientations and Gradings)

Let (Hp,rp,D) be an oriented n-dimens'ional Ri,emann'ian representation of a unital
C-algebra A with uolume form rr(c). Let f e Parity(p,A,D). Th,en, when n i,s

eaen

(i) roþ) is a grading element for thi,s Riemannian representat'i,on,

(ii)

I e Parity( p, A, D) : { Vroþ)np(")op lV' : L,V e Z(Qo(A"r))"},

(iii) adr - e is tri,uial on the centre Z(Q7(A,))",

and when n i,s odd

(i") noþ) is a central element olAo(&r)tt, hence not a grad,'i,ng element for this

Riemanni an repre s ent ati o n,

(")
ad¡(ro(c)) : lnp(c)f : -r p(c),

hence adr - e'i,s not tri,uial on the centre Z(Q1(A^))",

("i) the Hilbert space Ho is a graded AØCrC-C-bimod,ule. In particular we

haue the representation A I C1 -+ Ap(nr(A))tt giuen by,

a¿ r+ ro(a¿), h r) np("), B + ad¡

The proof of Theorem 2.5.13 shall be comprised of the lemmas and propositions

of Section 2.5.4. That section collects related results on orientations and grading as

well as provide the proof.

Theorem 2.6.L4 Let (Hp,np,D) be an oriented n-dimensional Riemannian repre-

sentation of a unital C-algebra A with uolume form roþ). Then the following sets

are equiualent:

(i) the set of I e Parity(p, A, D) such that lD2,l] : 0,

(ii) the set of I e Parity(p, A,D) such that {D,l} : O.

Proof (ii) + (i) is immediate. (i) + (ii) Let I € Parity(p, A,D)'Hence [f,zrr(a)] :
0 and {1, [D, "p(")]] 

: 0 for all a e Aar' The relation [f' lDl] : 0 follows from
(llDll)2 : f lDl2l : f'D2l : D2 : lDl2 and uniqueness of the positive square root
of a positivé operator. Hence I preserves the dense domains DomDm -- DomlDl*
fot m e N and the selfadjoint operator {D,l} has dense domain' Let ( € ñ^DomDm.
Then [{D, f}, zrr(a)]{ : {f , ID,rr(a)]](: 0 and [{D, f}, lD,rr(a)]l: [[f, D2l,nr(a)]{ :
0 for all o a A^o.Using density of the subset f\*DomDm C Hp, [{D,f},rr(a)]:
0 : [{D,f},[D,"p("))) for all o ç ,4n0. Hence [{D,l},rr(c)] : g. However,

{{D,l}, "p(c)}: 0 as fr'(c) : (-1)"zr(c)f and Dn(c): (-l¡n-tnþ)D. Hence

{D,t1 :9. tr

Definition 2,6.Ló A Ri,emannian representation (Hp,rtp,D) oÍ a C-algebra A is

called a real Riemannian representation iJ there erists I e Parity(p,A,D) such that

[D2,1] : L
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Corollary 2.6.16 Let (Hp,np,D) be an oriented n-dimensional Riemannian repre-
sentat'ion of a unital C-algebra A. Then there erists a real grad,ing elementl for this
Riemannian representation i,f and, only if the Riemann'ian representation i,s real.

Proof Immediate from Theorem 2.5.74 and Definition 2.5.15.

Remark 2.6.L7 Let (Hp,iTp, D) be a real oriented n-dimensional Riemannian repre-
sentation of a unital C*-algebra ,4.. Then this representation has a fundamental class
À-r : [(Hp, Fo,l)] e 1(1(( A Ø B,rp,C) where Bn, is the index algebra.

2.6.4 Riemannian Orientations and Gradings

Let (Hp,np, D) be a Riemannian representation of C*-algebra A. Let Riem(,A, p) :
(Qo(Anr)" , Hp, Jp, Lp,Pp) be the associated standard form. Let R: Qo(A^o)" and
tp(Rp) be the dense image of the pfinite elements Ro in Ho.

Lemma 2.5.18 There erists a selfad,joint unitaryT eU(H) such that e(u) : ¡¿¡
for allu e R andll,Jp]:0. Moreouer, i,f p is atrace, there erists|. suchthat
Itr(r) : toft(r)) for all r e Rr.

Proof Let (.R, Hp, Jp, Lp,Pp) and (e (,R), Hp, Jp, L' ,P') be two standard forms. Let
I be the unitary given by Theorem 1.6.4. Existence follows from setting A' : A,
and PI : Pp.

Let p be a trace. Define lto(r) :: Lp(€(r)) for all r e Ro. By density of r,o(R)
the linear operator I extends to a selfadjoint unitary operator on Ho. Moreover
lwlto(r):ltp(we(r)): e(w)to(r) for all t¿ € R,r e -Rr. Hence I implements the
parity automorphism on .R. As Ap : I tinen P, : Lp(Rl) by Theorem 1.6.2. Hence
JrTto(r*r): Jptp(c(r)*.(")) : tp(c(r)*c(t)) : lto(r*r):lJptp(r*r) for allr e Ro
by Theorem 1.6.1 (vi). Then ["Ip,l]Pp:0 and lJp,l)Ho:0 by linearity. Hence

["/r,l] : o. D

Lemma 2.6.L9 Let (Hp,Tp,D) be an oriented odd-dimensional R'iemannian repre-
sentation of a unital C-algebra A. Then each uolume form r(c) belongs to z(ap(A)).

Proof Follows as [D, r(c)] : g : [r'(c), zr(ø)] for all a e A. !

Define the *-algebra closed under the holomorphic functional calculus, Ofen(do) :
{weAp(A")le(w):r}.

Proposition 2,6.20 Let (Hp,np,D) be an oriented n-dimens,ional Riemannian rep-
resentation of a unital C-algebra A.

(i) The space of uolume forms for this representation is parameterised by a
subset of the group

{u e u(z(ai""(A",))) lu, : I,lD,ul : 0}.

(ii) The uolume form for this representat'ion 'is unique if one of the following
condi,tions hold
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(") Z(Oi""(Arr)) contains no proper projections,

(b) Prim(Qfe" (.,+,)) is connected,

(") Z(Qï"(A")) : Z(,4") and Z(A) conta'ins no proper projecti,ons,

(d) z(ai""(A"r)): z('4^o) and Prim('A) is connected',

(") z(ai'"(,+r))" : z(A)" and (Hp',no,D) is base irreducible.

Proof (i) Let R: Qo(A"r)" . L"t c,c' e Z"(A") such that np(c),np("') are volume
forms. LetU :nr(c)ro(c') eA'?çq^o). Theo (J*(J :(J(J* :1is unitary. Moreover,

lD,Ul:lnp(a),Ul:o forall ae A' Hence U e R'andU e U(Z(R))' Thisimplies
lU,nr(c)]:0 and hence lnr("'),"lþ)]:0. Then U2 : np(c)rr(c')noþ)rp(C): t.
So [/ is a selfadjoint unitary.

(ii) There is a bijective correspondence between self-adjoint unitaries LI and pro-
jections P via the formulaU : I-2P. Since [D,Ul: O è ID,P] : O then the
statements imply the group in (i) is the trivial group {1}. This follows from the proof
of Theorem 1.2.10 and Definition 1.5.17. ¡

Note that Z(Oi"(A^o)) : Z(AoÇ4"r)) under the hypothesis of Proposition
2.6.20 with r¿ even. This follows from Theorem 2.5.13(iii).

Lemma 2,6.2L Let (Hp,rp,D) be an oriented euen-dimensional Riemannian repre-
sentation of aunital C-algebra A. Thenl is a selfad,joint unitary such as in Lemma
2.5.18if anrlonlyifl:Vr(c)r(c)ov forsomeselfadjointunitarAVeU(Z(R)tt). U
p is a trace, thenltr(r): tp(e(r)) for aII r e R, if and, only if f : zr'(c)zr(c)op.

Proof Let I be as in Lemma 2.5.18. Consider U : lr(c). Then [/* : r(c)l :
fzr(c) : [/. Hence [/ is a selfadjoint unitary. Moreover lU,noþ)): 0 and lU,[D,np(o)]):
0 for all o a Ano. Hence U e R'. Then we have two selfadjoint unitaries Jr(c)J
and [/ in -R'. Let V : Jr(c)JU € -Rl One checks that [I/, Jr(c)Jl : a. Hence

V2 : I. Now "IVJ : r(c)lJr(c)J : UJr(c)J : V. Hence V e Z(R)'t. Fi-
nally I : Vr(c)n(c)op. Conversel¡ LeI V e Z(R)tt such that V2 : l. Since

ltr(c),Jn(c)/] : 0 then 7 :Vr(c)r(c)op is a selfadjoint unitary that implements the
parity automorphism on R. Moreover lJ,T]:0 as [J,V1:0 and J(n(c)Jn(c)J) :
J r (c) Jr (c) ¡ : (n (c) Jr (c) J) J .

Let p be a trace and lar(r) : tp(r(r)). Consider Jr(c)J - fzr(c) e Rt. In
particular (Jr(c)J -Tn(c))r,o@) : Jr(c)t(r*)-n(c)lq(r) : 4rr(c))-n(c)¡þ(")) :
n(c)(t(e(r)) -r.(e(r))) :0for allr €.Rr. Hence r(c)Jr(c)J -f - 0. Thereverse
implication is obvious. D

2.6 Connes' Axioms of Non-commutative Geometry

We recall a faithful state p on a von Neumann algebra.R is a faithful normal semifinite
weight such that p(1) : 1.



2.6. CONJVES' AXIOMS OF IVOIV-COMMUTATIVE GEOMETRY 111

2.6.t Structure of Riemannian Representations

Let (Ho,rr,D) be a Riemannian representation of a unital C*-algebra A with asso-
ciated standard form Riem(A,p): (Qo(Aro)",Hp,Jp,L.p,Pp), see Definition 2.3.5.
Let p be a faithful state and to t Qo(A")" -+ Ho the injection given by the GNS
construction.

Define
Lp:: q(Ao(A^,))

which is a dense subset of. Hr. We recall the results of Section 1.4.1. We have a
concrete representation

(Qo(A*),õp) : (o(A^o), ô) -+ BØ2(Lp))

and a graded differential representation

(lto(A"),ô¿) : (o("4n,),6) +Åp

of the universal difierential algebra. The unital *-algebra Ao(A"r) is naturally a
Ao(A^r) ø Ao(A^r)op-C*-bimodule, and hence un Ano ø "43!-Uimodule, by left and
right multiplication. This structure is transferred faithfully to the set Ào by the
representations zr, and rf,P where

?roP :: Jrw* Jo

for u € Qo(A^r)". There exists a selfadjoint unitary parity grading I by Proposition
2.5.72 that grades Â, by parity of differential forms and ad¡ implements the auto-
morphism of parity of differential forms on Qp(Ano). This structure generalises the
situation on a Riemannian manifold as in Theorem 2.3.3 and Theorem 2.3.4.

Lef IIf, - ì*>lDontlDlm. These elerirell,s are cuusitlered l,he sruut-r[h elenelts
of the Hilbert space Hr. A Riemannian representation is a Cf-representation, see

Definition 1.4.8, hence

Ao(A.,) : Hf, -+ Hf,.

By the GNS construction
Ao(Arr) : h, -+ Ito.

There is no rcason in gcncral why.A,, C Hi and hence why Â, are non-commutative
smooth exterior differential forms.

Remark 2.6.1 As p is a faithful state the vector r,r(1) is a cyclic and separating
vector for Qp(An)". A necessary and sufficient condition for Â, C Hî is r,r(1) e
ñrnDomDm.

We will assume Lp: HT. We recall from section7.4.2 the locally convex topology
5¿ generated by the seminorms pm.

Proposition 2.6,2 Let (Hr,np,D) be a Riemannian representati,on of a C-algebra
A such that p is a faithful state and Lo : Hf . Then

Qo(A") : {u: € Qo(An)" lp^@) < oo, rn € N}
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and hence'is a smooth *-algebra in the locally conuet topology Sp.

Proof Let -R : Qo(A^). Let T € R'l such that p^(T) ( oo for all m € N. Then
Ttr(l) € ñ^DomlDl^ by Proposition B.2. Hence f r,o$) -- ,p(r) : rtp(I) for some

r € R. Then ?: r as r,r(1) is a separating and cyclic vector on -R/'. !

The space Âo is completely generalised as a space of non-commutative smooth sec-

tions of the Hermitian non-commutative vector bundle of non-commutative exterior
differential forms when we assume the right Ar.o-module t\.0 is finitely generated and
projective, see Definition2.1..4. \Me can define an Ano-valtted Hermitian structure

(.,')p : Ito x |to -s Ano

by the equality [vz, rr.s],

p((t p(wt), t p(.2)) p) p p(rulwz)

for tr1, uz e Qo(An). Through the isomorphism to : Qp('Ç) -+ Ìto the right
; oro-module Qp(A") is finitely generated and projective with Hermitian structure
(tat,uz) : (tp(wt), t.p(wz)) p.

Let the Riemannian representation (fIp,rp,D) of the unital C*-algebra A be n-
dimensional. Let D, be the set of dilation and translation invariant states on l-.
Then a non-commutative integral r, € A* is given by rr(a) :: Trr(n(a)1.@))
where f^@) : (L+ rz¡-^¡2 and. u e Dr, see Section 1.7.4. Assume that p provides

the measure class of a non-commutative integral. In mathematics, p : T, itr A* for
some u € D* see section 1.6.2. Then the inner product on the GNS Hilbert space

fI, is identified on the dense subspace .ô.0 as

(rlt,nr) : ,, (nt, nz) p dp,'.

where do,r, is the positive invertible Radon-Nikodym derivative (p , ,r) of Corol-
lary 1.6.7 and q¿ : ¿p(tu¡) e to(Q¡t(A,,')) fot i : 1,2. The Hilbert space -tlo
is completely generalised as a space of non-commutative -L2-sections of the Hermi-
tian non-commutative vector bundle of non-commutative exterior differential forms

Hp: L2(lvp,ru) wilh the assumption p : T, irt .4* for some ø € Dr.

Compare the paragraphs above to the structure of a Riemannian manifold in
Section 1.3.6 (i) and (ii).

Let roþ) be a volume form for a real r¿-dimensional Riemannian representation
(Hp,Tp,D) of the separable unital C*-algebra ,4., see Definition 2.5.1,L and Definition
2.5.15. Then we recall there exists a non-empty separable C*-subalgebta Bo, of the
commutant Qo(Anr)' and a real grading element I such that [(Hp,F¿, f)] e KK(AØ
Bno,C), see Proposition 2.4.6 and Theorem 2.5.7. We recall that the intersection
product 8¿ induces a group homomorphism

Øt[(Hp,F¿,1)] : KK(C.,A) -+ KK(Brp,C),

see section 2.4.I and 2.4.2.
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2.6.2 The Axioms of Riemannian Geometry

The following axioms, derived from those detailed by Connes in [cs] [c+], were put
forward as determining the structure of (compact) Riemannian differential geometry.

Basic Definitions

Let A be a unital associative *-algebra. Then ,4 is a C*-algebra if it is a Banach
*-algebra with norm ll . ll that satisfies lla*all : lløll2 for all ¿ € ,4., see the preamble
to section 1.2, A C*-algebra ,4 is called separable if it admits a countable basis. Let
(Hp,np,D) be a real rz-dimensional Riemannian representation of a separable unital
C*-algebra .4, see Definition 2.3.5. A Riemannian representation is called irreducible
if it is base irreducible in the sense of Definition L.5.7. Let A*o be the Flechet pre-C*-
algebra of smooth elements, see Proposition 1.4.9. When p is a faithful state let r\p,
tp, Qo("4n0), Hl, rr, D* np("), Bn, and 8.a be as described in section 2.6.1 above.

The Axioms of Compact Riemannian Geometry

Let A be a unital associative *-algebra.

Rl. Axiom of Second Countable Metrisable Compact Topology
The unital *-algebra ,4 is a separable C*-algebra.

R2. Axiom of Riemannian Structure
There exists an irreducible real Riemannian representation (f/r, np,D) of A
such that p is a faithful state, and

R3. Axiom of Symmetry
The centre nr(Z(A)) belongs to the centre Z(Qo(A"o))".

R4. Axiom of Finiteness and Smoothness
The right "A,r,-module 1\, :: h(Ao(A"r)) is finite projective and Âo - Hi.

R5. Axiom of Absolute Continuity
The Riemannian representation is n-dimensional and there exists o € D, such
that p : ru in A*.

R6. Axiom of Orientation
There exists a Hochschild cycle c e Zn(Anr) such that roþ) is a volume form.

R7. Axiom of Poincaré Duality
A and the index algebra Bno are Poincaré dual. In particular, the map

. Ø ¡ [(H p, FD,t)] : K K (C., A) -+ K K(Brp,C),

is a group isomorphism.

Riemannian Geometries and Symmetry

The axioms constitute a formulation which at no point requires commutivity of the
*-algebra ,4. The purpose of the axioms is this: a commutative unital *-algebra A
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should satisfy the axioms of compact Riemannian geometry if and only if A: C(X)
where X is a compact Riemannian manifoldl0.

Definition 2.6,3 Let A be a unital*-algebra that satisfi,es the arioms R1, R2, R3,

R4, n5, R6 and, R7. We call

(i) the unital*-algebra A a unital Connes-Riernann- or CR-algebra,

(ii) the information (A,Hp77Tp,D,c)n a Ri,èmanni,an geometry associaterl, to the

CR-algebra A,

(iiÐ the information PS(A) t* ¿ E Prim(.A) a cornpact Riemann'ian manifolil.

Remark 2,6.4 A Riemannian geometry (A,Hp,np,D,c)¿ has an associated stan-

dard form
Riem(,A, p) : (Oo(A^o)" , Hp, Jp, Lp,Pp)

by the Tomita-Takesaki theory.

Let ,R be a von Neumann algebra. Then ,4. C Z(R) implies ,4 is commutative but the

converse is false.

Proposition 2.6.5 Let R be a uon Neumann algebra. Then the following statements

are equiualent

(Ð AcZ(R) e Ais a commutatiue*-subalgebra of R,

(ii) R'is commutatiue.

Proof (ii) + (i) is immediate. (i) + (iÐ Let r e -iB. Then the C*-algebra generated

by r, C*(r), is a commutative *-subalgebra. Hence C.(r) C Z(R) ar.d r e Z(R)'
Then Z(R): R. ¡

' This demonstrates that the axiom of symmetry is not a tautology. The next

result demonstrates the necessity of the axiom of symmetry. Let Hn(A) denote the

kth Hochschild homology group of a unital associative algebra A.

Proposition 2,6.6 Let (A,Hp,lrp,D,c)n be a R'iemannian geometry. Then the fol-
lowing statements are equ'iualent

(i) r(A) c z(Qo(A"))",
(ii) the maps

nr: H¡("A*r) -+ Qoo(A*r)

10We revisit the opening discussion of this chapter. Compare the statement: a commutative unital
*-algebra ,4 should satisfy the axioms of compact Riemannian geometry if and only íf A = C(X)
where X is a compact Riemannian manifold; which, with the terminology of definition 2.6.3, is stated:

a commutative unital *-algebra A is a C R-algebra if and only if. A : C(X) where X is a compact

Riemannian ma,nifold; to the statement: a commutative unital *-algebra .4 is a C*-algebra if and

only if A: C(X) where X is a compact Hausdorffspace; and the statement: a commutative unital
*-algebra A is a von Neumann algebra if and only if A: L* (M, p) where M ís a measure space and

¡.r a finite regular Borel measure on M.
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ro: Hr(A^) -+ QLoGA,o)

erist and are isomorphi,srns.

Proof Let B be a unital associative algebra. The homology group H¡(B) :
BlCom(B). Then B = H¡(B) iffB is commutative. Let 21: {a8ô la,b e B,la,bl:
0Ì' Then 21 : C{B) iff B is commutative. Let B be commutative. Let [ :
{bobtØbz-boØb1b2¡6"b0 8br I ó0, br, bz e B}. Then Ifi (B) : C{B) l-I1. Let 3 - Ano
and nr: zr. The linear map 7r : C¡(B) -+ Ob(B) given by zr(ø I b) : r(a)lD, zr(b)] is
an isomorphism. This follows as the Riemannian representation is irreducible and zr is
faithful representation of B. Hence r : H1(B) -+ ob(B) exists and is an isomorphism
iff er([ ) : {0}. Consider n (b¡fu Ø bz - bo Ø btbz * b2bs8 b1 ) : r(ó¡ )n(b1 ) [ 

D, r (b2)) -
r(bs)[D,n(b)n(b2)]In(bùr(bs)lD,r(b1)l: zr(bo) (nþ2)lD,r(br)l- [D, zr(fu)] 

"(ur)).
Hence zr(I1) : {0} iff fla)fD,r(b)l : lD,n(b))n(a) for all a,b € B.

In summary B = Ho(B) iff B is commutative and when B is commutative n :

H{B) -+ Ob(B) exists and is an isomorphism iff n(a)lD,ur(b)l : lD,r(b)ln(a) for all
a,b e B.

(i) + (ii) The hypothesis implies B is commutative and n'(a)[D,"(b)]: lD,r(b)ln(a)
for all a,b e B.

(ii) + (i)ThehypothesesimplyBiscommutative andr(a)1D,"(b)j :lD,n(b)ln(a)
forall a,b e B. Hence r(a)u:wnr(a) forall a€ B andu € OD(B). Hence
r(B) e Z@D(B))|/. The result follows as B is norm dense in,4. tr

Remark 2.6.7 The term symmetry comes from the fact

eL çt*; = H{z (A* )) = abØ (A*,))

is the universal symmeftic Z(fu)-bimodule with a derivation 6 : Z("4,*) - ALØ^rl.

Spin¿ Geometries

Let C1 denote the two-dimensional Clifford algebra. We recall section 2.3.5 and
Definiiion 2.3.8 of spin¿ structure. This allows a definition of spin¿ geometries.

Definition 2.6.8 Let (A,Hp,tTp,Dtc)n be q, Rxemønni,øn geometry of ilim,en,si,on, n,.

Then (A,Hp,lrp,D,c)n ,is a H'iemannian spinp geometry if Anr(ØC) -m Qo(Arr)
where (øCr) i,s added if n i,s odd,,

2.6.3 Reconstruction Theorem

The following results demonstrate the sufficiency of the axioms. We recall that we use
the term compact Riemannian manifold to denote a metrisable, compact, connected,
orientated smooth manifold without boundary.

Theorem 2.6.9 Let (X, g) be an n-dimensional compact R,iemannian manifold, C(X)
be the unital *-algebra of continuous functions on X, the essentially setfadjoint op-
erator d+ d* : C*(X,Â*X) -+ C*(X,lt*X) be the signature operator and, 1 e
C*(X,^"(X)) be the complen uolume form. Then
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(i)

p(w):: L qn\,w)(ù1/aet s ar,

where qn is the metric, i,s a fai,thful state on the uon Neumann algebra
L* (X, Cr(X)),

(ii) (L2(X,À*X), r¿) is the fai,thfut GNS representation of L*(X,Cl(X))
associated to p where n¡ is the left multiplication representation,

(iii) C(X) is a uni,tal Cfu-alsebra,

(iu) (C(X),L'(X,À*X), n¿,,d,* d*,^t)n is a compact Riemannian geometry

Proof (i) Theorem 1.7.21(iv). (ii) Theorem 1.7.21(iv),(v). (iii) (R1) As X is a
second countable metrisable compact space, C(X) is a separable unital C*-algebra.
(R2) Theorem 2.4.2L, (ii) and (i) imply R2. Irreducibility follows from Proposition
2.6.2 alad Proposition l.1l| as any central projection p e Læ(X) must lie in Cæ(X).
As X is connected by hypothesis C*(X) has no projections. Reality follows as

the Laplacian A is an even differential operator, hence commutes with the parity
grading U.. (R3) It follows from Theorem 2.3.1 that Z(Læ(X,Cl(X))) : ¿*(X)
when n is even or Z(L*(X,Cl(X))) : L*(X) I Cr when n is odd. (R4) Theorem
1.7.18 and Theorem 2.1.9. (R5) TheoremI.7.2l(ä) (R6) Theorem 2.5.70 implies 7 €
Z"(C*(X)). The selfadjoint properties and commutivity with Cæ(X) are immediate
from Section 2.3.1. For the relation with d * d*, see [ru]. (R7) Theorem 2.a.2L (iv)
Follows from the proof of (iii). !

We recall the spectrum E(,a) of a commutative C*-algebra ,4 from section 1.2.3
and Theorem I.2.12.

Theorem 2.6.10 (Connes' Reconstruction Theorem [cs])

Let A be a uni,tal cornmutat'iue C R-algebra with associated, n-d'imensional R'iemannian
geometry (A, H p,lT p, D, c) 4. Then

(i) D(A) is a compact n-dimensional Riemannian man'ifokl wi,th geodesic metric

d" (ó,,þ) : sul{ 
I d(ø) -'þ@)l I lllD, n o@)l ll < 1}

lo, ó,tþ eE(A), and

we haue the identi,fications

(ii) A: c(D(A)), A,, : C*(E(A)) and Ao(A",) : C*(E(A), Cl(r(,4))) act-
ing by left multiplicati,on on the Hilbert space Ho = L2(D(A), 

^*E(,4.)),(iii) the selfadjoint operator D is gi,uen by d*d* +E where E'is an operati,on by

one forms. When n is euen (resp. od,d,) then E € C-(E(,4),C11(E(,4))) (rup.
E: Et+ JEiJ where Et,Ez e C'o(D(,4),CI1(t(,4)))),

(iu) the Hochschilil cycle c e Zn(Aoo) is the compler uolume form 1 forE(A).

[[ (") Let D(E) (resp. D(Et,Ez)) denotethe space of selfadjoint operators giuen
by d * d* + E as i,n (äi) aboue. Let n ) 2. Then WPtes(lDl2-"), where



2.7. SYMMETHIC DERIUATIONS AND R/EMANNIAN CYCLES IL7

WRes denotes the Wodzicki res'idue, i,s a posi,ti,ue quadratic form on D(E) (resp
D(h,0)) wi,th unique minimum Do : d, * d*. In particular, for att u € Dr,

rr,(o2"(t + D?)-"/2): Wres(lDo f-n) : -c(nl2)L n1/aet s ar

where R i,s the scalar curuature of D(A) and

1

c(r) : ä(" - t)(rn" f ("))-1. ll

Proof The proof of this theorem is a thesis in itself. The extension and proof of
Connes' original formulation for spin geometry was undertaken in [ne, Re2]. \Me do
not attempt the proof here. ¡

We shall not discuss the Wodzicki residue here. Hence the brackets around [[(v)]]
to indicate this result is included for completeness and intended only for the specialist
reader.

Corollary 2.6.LL Let A be a unital CR-algebra. Then A is commutatiue i,f and only
if A: C(X) where X is a compact Riemannian mani,fold.

Proof Theorem 2.6.9 and Theorem 2.6.70

Corollary 2.6.L2 Let A be a unital C&-algebra that admits a R'iemannian spinp
geometry. Then A is commutatiue if and only if A: C(X) where X is a compact
R,'iemannian spi,na m,o,n,i,f ol,d,.

Proof Theorem 2.6.9, Theorem 2.6.10 and Definition2.3.7. tr

2.7 Symmetric Derivations and Riemannian Cycles

The theory of C*-algebras and von Neumann algebras has an abstract basis inde-
pendont of their concrete representation on Hilbcrt epaccll. Thc rclation bctwccn
abstract and concrete is the GNS construction, which is a function from the state
space of a C*-algebra or the pre-dual of a von Neumann algebra to concrete repre-
sentations.

The algebraic core of compact Riemannian structure is a Riemannian representa-
tion (Hp,np, D) of a unital C*-algebra ,4. where p is a faithful state on a von Neumann
algebra,R with A c R. The representation (Hp,Tp) is the GNS representation of À
associated to p but the selfadjoint operator D is concrete. It is natural to con-
sider the question of construction of a Riemannian representation of a C*-algebra
,4 from abstract considerations on a von Neumann algebra .R that contains A as a
C*-subalgebra.

llAbstract von Neumann algebras were studied under the title of lrl"-algebras by Sakai, [Sak2]
lSar<11.
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2.7.1 Symmetric Derivations

The study of derivations on von Neumann algebras is extensive [saxt] [xaa] [nn]. The
relevance of the theory to our situation is the existence of a selfadjoint unbounded
operator on a concrete representation that spatially implements an unbounded deriva-
tion. This is detailed as follows.

Definition 2.7.1 (nn, 3.2.2t, 3.2.54) (i) A symmetric deriuati,on 6 of a C -algebra

A wi,th domain Domõ C A i,s a linear operator 6 : Dom6 -+ A such that 6(a)* : d(¿*)
and õ(ab): ô(ø)b + aô(b) for all a,,b e Dom6.

(ii) A symmetric deriuation õ is spatially implemented by a symrnetric operator
D on a Hilbert space H if there etists a representation r ; A -+ B(H) such that
n(Dom6)DomD c DomD and r(6(a)) : ilD,"(o)1.

A symmetric derivation 6 : Dom6 -+ ,4. is called bounded if there exists M < æ
such that llô(r)ll < mll"ll for all a e Dom6.

Theorem 2.7.2 (BR, 3.2.47\ Let õ be a bounded symrnetri,c deriuat'ion of a uon Neu-
nlann algebra R such that Dom6 is norm dense in R. Then there erists a self-adjoi,nt
operator D e R such that ô(r) : ifD,rl for aII r € R.

Hence bounded symmetric derivations correspond to bounded spatial implementers.
A symmetric derivation õ : Dom6 -+ .R of a von Neumann algebra .R is called ø-weak
closed if r¿ -+ r and ô(r¿) -+ ú converge o-weakly in -R implies r € Domö and
ô(r) : t. A symmetric derivation ô : Dom6 -+ .R is called ø-weak closable if there
exists a closed symmetric derivation 6 : Dom6 -+ .R such that Dom6 c Dom6 and
ô(r) : d(r) Vr € Dom6.

Theorem 2.7.3 (øn, 3.2.27, 3.2.28, 3.2.6r\ Let6: Dom6 -+ Rbe a symmetric
deriuation of a aon Neumann algebra R such that Dom6 is o-weak dense in R. Let p
be a faithful state of R and (Ho,np) be the GNS representation of R associated to p.

Assume (p,õ) satisf,es the cond,i,tion

P(6(o)) : s

for all a e Dom6. Then

(i) õ is o-wealç closable,

(ii) there erists a self-adjoint operator D on H, such that

(u) tr(Dom6) C DomD 'is a core for D,

(b) nr(6(a)):i,lD,no@)l Vaç- Dom6,

(") if L e Dorn6, Dr,r(I) :0,
(iii) the following statements are equiualent

(u) eitDrr(R)e-itD - "p(R) for all ¿ € IR

(b) D and A, cornmute strongly, that is 6isp6-is : D Íor ¿ll s € IR.
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Remark 2.7.4 We remark that A, : 1 if p is a trace. Hence the result (iii)(a) is
automatic and the self-adjoint operator D is the generator of a o-weak-continuous
one-parameter family of automorphisms of Ã.

A relevant notion is the analytic elements of a derivation.

Definition 2.7.5 (nn, z,L.tT , 3. 1.5) The analytic elements of a symmetric deriua-
tion 6 : Dom6 ) R are those a € R such that a e Dom6n for all rn and the functi,on

zmfo:C4C, t*L
v¡¡1.

llô-(o)ll
rn€N

is entire. Let R6 denote the analytic elements in R for 6.

Corollary 2.7.6 Let the triple (R,p,6) satisfy the conditions of Theorem 2.7.3. such
that D and Lo strongly commute. Then Rt is o-wealc dense in R.

Proof Since ô generates a ø-weak-continuous family of automorphisms, then the
analytic elements are o-dense by [nn] Proposition 2.5.22. tr

Deffnition 2.7.7 Let6 be a symmetric d,eriuation of auon Neumann algebra R such
that Dom6 'is o-wealc d,ense and p a faithful state on R. We call (l) the triple (R,p,6)
an inner K-cycle if i,t satisfies the condi,tion

P(ô(r)) : s

for all r € Dom6, and, (2) the triple (Hp,np,D6) the GNS representation associated
to o,n, in,n,er K-cycle (.R, p, ð) uthere D5 is the seffadjoint operator giuen by Theorem
a.fo

Let (,8, p, ô) be an inner K-cycle and ,4. C .R a C*-subalgebra. Define A:: All R¡
where Ã6 âre the analytic elements for ô. Define O6("4) ::1"4,d(.4) >.

Lemma 2.7,8 Let (R,p,6), A and, R6 be as aboue. Then (I) A is a "-algebra
closed under the holomorphic Junctional calculus, and Q) aõ(A) is a * -subalgebra
of ì^Domõm.

Proof Follows from calculations involving linearit¡ symmetry and the derivation
property of ô. ¡

Definition 2.7.9 Let (R,p,õ) be an inner K-cycle anil A C R be a C-subalgebra.
Then (R,p,6) is called, an inner Riemannian cycle ouer the C-algebra A if the fol-
Iowi,ng cond,itions are sati,sfied (1) A: AìR6 is norm dense,in A, and (2) O¿("4) is
o-wealc dense in R.

The following theorem establishes a construction function with domain an inner
Riemannian cycle (R,p,6) of a C*-algebra,4 and range an ungraded Riemannian
fepresentation of ,4.
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Theorem 2.7.LO IGNS Construction]
Let (R,p,6) be an inner Riemann'ian cycle ouer a ö-algebra A. Then the associated

GNS representation (Ho,np,D6) is an ungraded Ri,emannian representation of the

C-algebra A such that

(i) lD6,roþ)): -i,trp(6(a)) fo, all a e '4,

(ii) Apo(tr o(A)) : zro(Q6(..4)),

(iii) Àp :: rr(06("4)) C Hi :: fimDomlD¡l*.

Proof (i) and (iii) follow immediately from Theorem 2.7.3. (iÐ follows from (i). A,ll
properties are immediate from (i), (ii) and Theorem2.7.3 except for the Cæ-property
of the representation. Let D :: Dõ, L i: Lpt and for simplicity let r stand for nr(r)
where r e R. By construction Dr(r) :: -i6(r)41) for all r € À^Dom6^. Note that
D : t(Dom6*) : DomDm is dense in H, and l(1) is a separating and cyclic vector.
Define V(r) :: lD",r) for r € f)^Dom6m. Then V(r)r.r(s) : D2t(rs)-rD2{s):
-(ô2(rs) + rô2(s))r.(l) : -(ô2(r)s * 2ô(r)ô(s))r(1) : -ô2(r)r.(s) - 2iõ(r)Dt'(') :
-(6'(r) +2i6(r)D). F\rrther [D,6(r)] : -¿õ2(r) as D is the spatial implementer.
Hence on 2

V(r) : -t'(r) -2i6(r)D:62(r) -2iD6(r).

Let f (r): (1+ x)2)-t/2. rhen ll/(D)v(")ll+llv(r)/(D)ll < zllô2(r)ll+allô(r)ll < oo.

Hence llfl¿|,"]ll ( oo by Proposition 1.4.7. One continues in this method'to find
r e ñ?#:LDom6^ implies ¡10þ1(r)ll ( oo for n't : L,...,n. Hence, as by hypothesis

and the previous lemma A,Aõ(A) C ì*Domõn, the representation is Cæ. !

Remark 2.7.LL It is immediate that a graded Riemannian representation, one such

that O¿o 6rØ)) admits the order 2 automorphism of parity of differential forms,
can be recovered by adding to Definition 2.7.9 the condition: (3) the map e(ø) :
a , e(ô(a)) -+ -ô(o) is well defined on O6("4) for all a € ,4,.

Remark 2.7.L2 Ultimately we are searching for the'geometric pre-dual'of a Ct-
algebra A and the 'GNS function' from the geometric pre-dual to Riemannian rep-

resentations. The pre-dual of a von Neumann algebra Ã contains the information
necessary to construct all the concrete representations of .R via the GNS construction
and decomposition theory. In analogy we are searching for the abstract informa-
tion and the process necessary to construct all the Riemannian representations of a
C*-algebra -4.

The theory of unbounded derivations on von Neumann algebras is insufficient
to provide the 'geometric pre-dual'. One need only consider the example of the
Riemannian represent ation (L2 (X, Â*X), n,d+d*) of the C*-algebra C(X) where X is
a compact Riemannian manifold to find a representation that is not constructed from
an inner Riemannian cycle. This follows as ô2(/) is unbounded where f e C*(X)
and ó(/) : ild+ d* , l). Hence Dom6 is not o-weak dense in the von Neumann algebra
L* (X, Cl(X)).

The more general construction involves, surprisingly, not symmetric derivations on
the C*-algebra A contained in a von Neumann algebra -R, but symmetric derivations
from -Rop to an A-linear Aop-bimodule.
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2.7.2 Symmetric,4-derivations

Basic Definitions

Let R be a von Neumann algebra. Let ,Rop denote the opposite algebra of A. Then
lBoP is a von Neumann algebral2,

Let A and B be a topological *-algebras. We recall the definitions of section 2.1.1.
Let (W,non) be a right A-module. Then Ea(W) are the elements of. E e L(W,W) such
that -Ðozrop(a):rov(a)oEforall¿ €,4,. Then (W,T,nor) isanB--4-bimoduleif there
exists arepresentation rr: B -+ L(W,W) satisfying ltr(b),rop(a)] :O Va€A,be B.
Then n'(B) c BA(W).

Let -R be a von Neumann algebra. Then ,R is a C*-algebra. In the theory of
Hilbert modules L(R, R) denotes the continuous linear operators R -+ R where the
topology on -R in consideration is the uniform topology. This implies -E e .D(rf,,R) is
bounded in the norm

llEll ': sup llE(r)ll.
ll"lls'

As an example let s € -R and define mr(r):: sr Vr € R and *?p(r):: rs Vr € -R.

Then rn : -R -+ L(R,R) and rnoP : -Rop -+ L(R,R) such that ll-,ll : ll-3oll : ll"ll.
An element E e L(R,Â) is called adjointable if there exists E* e L(R,lÎ) such that
(,Ð*(r))-s : r*E(s) Vr, s € -R. This condition implies E is adjointable if and only if
E : rrtrs for some I € R.

We diverge from the above treatment.

Linear Operators on von Neumann algebras

Let .R be a von Neumann algebra. Let Lin(,R, -rB) denote the linear operators R -+ R.
Let p C.R* be a faithful statc.

Definition 2.7.L3 An element,Ð e Lin(.R, R) is called

(i) p-adjoi,ntable i,f there erists E* e Lin(-R, R) such that
p((E.("))-r) : p(r*E(s)) Vr,s e R,

(ii) p-selfadjoint i,Í E is p-adjoi,ntable and E : E*,

(iii) p-posi,ti,ue if E is p-selfadjoint and p(r*E(")) > 0 Vr € -R,

(i") p-bound,ed, il ll4ll p:: sup{p(lE (r)l')à lr e R, p(lrl2) < 1} is finite.

Definition 2.7,L4 Denote the linear operators R-+ R that are

(i) p-adjointable by Co(R,R),

(ii) p-selfad,joint by Do(R,R),

(iii) p-bounded, and p-ad,jointable by B0(R).

We define on CI(R,-R) the weakest topology such that p(E"(I)) -+ p(.Ð(1)) is
continuous. Define a state on Cp(R,,R) to be a p-positive continuous linear functional
r on CP(R,IB) such that r(1) : t.

l2Every von Neumann algebra admits a faithful normal semi-finite weight, hence admits a standard
form (r?, H,J,L,P) and, hence an isomorphism between .Rop and the commutant R'.
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Proposition 2.7.16 Let p e R* be a faithful state. Then

(i) Let E € Cp(R,R). Then E*E and, EE* are p-positiue,

(ii) A state þ on Cq(R,R) is d,efined ba þ@) p p(E(t)),

(iii) ll.llo ';, 
a C-norm.

Proof (i) As E and.Ð* are adjointable, p((E* E("))-") : p(E(r)* E(r)) : p(r.E- E(s))
Hence E*E \s ¿selfadjoint and p(r*E*E(r)): p(E(r).E(r)) > O as pis positive on
.R. Similar argument for EE*. (ii) Define þ(E) :: p(E(I)) : p(1.8(1)) ) 0 for all
p-positive E. Let Eo ).8, then p(8" - E) : p(8"(1) - E(1)) -+ 0. The other prop-
erties are immediate. (iii) Positivity and scalar properties of a norm are immediate.
For instance llEllp:0 if and only if p(lÛ(r)12) :0 for r f 0 as,Ð(Q) :0 by linearity
which occurs if and only if E(r) :0 Vr € A. The triangle inequality follow from
the Cauchy-Schwartz inequality. The submultiplicative property follows as ll,4Bll, :

'uo, ro#"o# W ( sup,E¿ 
Y@,*,,*suPreÊ W : ll'411, ll B ll o' A'

p(E(r). E(r)) : p(r* E. E(r)) we have lp(E(r). E(r))12 < p@.r) p((8. E(r)). E. E(r))
by the Cauchy-Schwartz inequality. Hence '#rffi <

llD.Ellr. Similarly llE*ll| < llÛE.llo. Combining this with the submultiplicative
property (1) llEll; < llE.llrllEll, ulrahence llEll, < llE-llp,and (2) llÐ'-ll| < llEllrllE-ll,
and hence llÙ.llo < ll.Ellp. This finally proves llI.llr: llF,.ll, arlð,llDll2o: llD*Ellp.
¡

Let H be a Hilbert space. Denote by C(H) the closable linear operators on f/
and D(fI) the essentially selfadjoint linear operators on H.

Proposition 2,7,L6 Let (Hp,r) be the GNS representati,on o! R assoc'iated to p.

Then there erists a laithlul * -representat'ion

(i) îo: Co(R,R) -+ C(Hp),

(ii) îo: DP(R,J?) -+ D(Hp),

(iii) îr: B0(R,Ã) -+ B(Hp) such that llÐllp: llâr(E')ll.

Proof Let t: R-+ Ho be the dense linear injection given by the GNS construction
and zr : -R -+ B(Hp) the GNS representation. As p is a faithful state then r.(1) is a
cyclic and separating vector. Let E e CI(R,R). Define r(E){r) t: {E(r)) for all
r e R. Then zr(E) is a densely define linear operator on H, such that n(E): r,(R) -+
r.(,R). Note that (r.(r1), r(E)t(r2)): (¿(rr), t(E(r2))) : p(riÛ(rz)) for all r1,r2 e R
by the GNS construction. Hence (r("t), n(E)/r2)) : p(riÐ(rz)) : p((8.(r)r2) :
þr(E.)t(r1),t(rz)) for all r1,r2 e .R. Hence n(E*) is closable with zr(-E-) : r(E)* on

r.(,R) and r(E) is closable with zr(,8) :lr(E)** on r,(.R). This follows from [RS, Theorem
VIII.1] as r,(,R) is dense. Let E: E*. The domain of r(,8)** is the completion of
r.(,R) in the norm llr(")ll¿ : llr.(r)ll + ll¿(ø(r))ll. Similarl¡ as n(-Ð) : t(R) -+ r.(J?), the
domain of n(E)* is the completion of i(.R) in the norm llr.(r)116. Hence the domains
are equal and n(,8)* : r(E)**.

Note that lþr(E)r.(r)ll2 : p(lÛ(r)1z). Hence llzr(.ø)r.(r)ll : O for all r ifr E(r):
0 Vr. Hence zr is faithful by density of r,(R). The product homomorphism is given
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by n(EF)/r) : [EF(r)) : 4E(F("))) : n(E)/F(r)) : r(E)n(F)/r). The identi-
frcation of the norms ll.ll, ""a 

the operator norm ll.ll o" B(H) is immediate from the
construction of Ho from p. D

Remark 2.7.17 Let t, : .R -+ Ho be the dense linear injection given by the GNS
construction. Let E e Cp(R,rQ). Then the definition

fro(E)toþ) :: {E(r))
implies that

þ(E): ('o!),fr(E)q(r))

where q$) e I/, is the canonical separating and cyclic vector for .R. This construc-
tion of closable linea¡ operators on a GNS Hilbert space fI, is an extended GNS
construction. The construction was used in Proposition 3.2.28 of [an] to obtain the
selfadjoint operator of Theorem 2.7.3.

Remark 2.7,18 It is immediate that r.(,R) is a core for the selfadjoint closure fro@)

of E e DP(R,R) as fro(E)|,(n¡ : ñp(E).

Example 2.7.L9 Let s € .R. Define m,(r) :: sr and rn!p(r) :: rs Vr G

.¿8. Then mr,m?p € Lin(r?,4) and the following properties can be derived (1)
(-r)* : fls* Vs e R, (2) rn, is p-positive if and only if s is positive, and (3)

ll^,llo: ll*?Pllp: ll'll Vs € rB.

The following definition is independent of the normal state p on -R.

Definition 2.7.20 Let R be a uon Neumann algebra and, S.(R) C R* the set of
normal faithful states on R. Then we call a linear operator E : R -+ ,R (1) ,R*-
adjointable if E e C*(R, R) where C*(R,,B) :: ñpes.ln1Cp(R, R), and (2) R*-bound,ed
il E e B.(rÌ) where B-(rq) :: npe,e,(,?)Bp(R).

Remark 2.7.21 A ,R*-adjointable (resp. .R*-bounded) linear operator E : R -+ R
has a GNS representative ño@) in C(fIr), (resp. B(Hp)) for every faithful state
P e R*. Hence it is clearly stronger to be .R*-adjointable (resp. Ã*-bounded) than
¿adjointable (resp. p-bounded).

Remark 2.7,22 Let H. be a o-weak dense unital *-subalgebra of ,R. Then one may
replace Rby R. verbatim in the results of this section. This is possible since r(-iB.,)
is dense in H o for any o-weak algebra Ã, and any state p € R*.

Symmetric,4,-derivations

Let .R be a von Neumann algebra and p € .R* be a faithful state. Let -R, be a o-weak
dense unital *-subalgebra of .R and A be a *-subalgebra of R.. Then define

Coo(n , R,) :: {E e Cl(R., Rr)l E(a) : aE(I) V a e A}

with subspace

BpA@.) ,: {E e Bp(R.)l E(a) : aÛ(t) Y a e A}.
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cI(R*,R*)
trq
Rw

An element E € CpA(Rr, Rr) is called left ,4,-linear. Define the natural multiplication
map o : .R|,p -+ C,(Rr,Rr) by ro(s) : -lo(t) : sr Vs € -Rr,r e Rr. Define

C*(Rr,R.,A) : Àpes.@)Cp¡(Rr,Rr) and B* (R-,A): npes-(R)BpA@r).

Lemma 2.7.23 Let Rr, p, B*(R.,A) ando be as aboue. Theno:.Rlrp -+ B*(R-,A).

Proof Let a € A,r,s e R-. Then r'(ø) : ar : ar"(I)' Hence ro is A-Iinear.
It follows from the Cauchy-schwartz inequality that p(ltrl") S p(lrl2)p(lsl)2. Hence

ll"ll, < oo Vp € S-(,8). ¡

We notethat rn" eB*(R,,A) for se R, if andonlyif [t,o] :0forall ae A.

Definition 2.7.24 Let R* be a o-wealc dense unital*-subalgebra of a uon Neumann
algebra R and p e R* be a faithful state. Let A be a*-subalgebra of R. Then a
bounded symmetric A-deriuati,on on Rlrl is a linear map

6: R'] -+ BPA@,)

such that (1) ð(ronsoe)(¿) : (roô(son) * ô(ron)so)(t) for all r,s,t e Ru, and, (2)

ô((ron)*¡ : 6(rol)* for all r e R-.

Definition 2.7.26 Let R. be a o-wealc dense un'ital*-subalgebra of a uon Neumann
algebra R and p e R* be a faithful state. Let A be a *-subalgebra ol R.. Then a

symmetric A-deriuation on Rll is a I'i,near map

6 : Rff -+ CPA(R-, R*)

such that (L) ô(ronsoe)(ú) : (roô(son) * ô(ron)so)(t) for all r,s,t e R., and' (2)

ô((ron).¡ : d'(rol)* for aII r € R..

Lemma 2.7.26 Let R. be a o-wealc dense uni,tal*-subalgebra of a uon Neumann
algebra R, p € R* be a faithful state, A be a*-subalgebra of R. and õ be a symmetric
A-deriuation on R?,Ì . Then õ(L)(s) :0 lor all s € R.

Proof Let s € .R. Then ô(t)(s) : ô(1.1)(s) : (1oô(1) + ô(1)1")(s) : ô(1)(s)1 +
ô(1)(s1) : zô(l)(s). Hence ô(1)(s) : s. !

Remark 2,7,27 Thedefinitionof an, -linearelement of.C0(R*,Ar) canbemodified
to E(ar) : aÛ(r) V a e A,r e Rlrl when -R,, is non-unital. This allows a definition
of a symmetric ,4.-derivation ô : rRfl,p -+ CI(Rr,,Rr) when -R, is non-unital. The
definitions can also be made independent of p, but more restrictive, by replacing

Cp (R-,R.,) by the,R*-adjointable elements C*(Rr, R*).

Remark 2.7.28 Let d:lR?rp -+ C'¡(Rr,-Rr) be an á-symmetric derivation. Let,E €
Coo(n-,Ì?r) and define the evaluation map 4: Cpo(R.,Ar) + Ã, by 4(E) : E(l).
We can repeat the derivation in the following manner

.RÎ,P g
\
op
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Let 1- opo 11 o ô. Define ôm(ron) t: 6(,y*-t(""p)). As an example ô2(ron)(s) ::
d(ô(ron)(1)op)(s) for all s € A.r. We remark that we have defined symmetric,4-
derivations ô such that -Rlrp is the invariant domain for 6m, rn € N. The definition of
an A-symmetric derivation can be generalised by considering ô as a map ô : .Rop -+
Cp(Rr,-R) where C?(R.,,R) are the p-adjointable linear maps R., -) -R 13. Then one
defines rop e Dom6* if 4 (ror) e Ã, for j :7,...,m - 7.

We highlight that the condition ô(ron) e CpA(R.,-Rr) for all r € ,R., implies
d(ron)(a) : ød(ron)(l) for all a e A.

2.7.3 Abstract K-cycles

The definition of a symmetric , -derivation on the von Neumann algebra Rop allows
us to abstractly classify Riemannian representations arising from a faithful trace.

Deffnition 2.7.29 Let R be a uon Neumann algebra with faithful state p. Let A
be a *-subalgebra of a o-weak dense unital *-subalgebra R. of R. Let 6 : Rif -+
Coo(A., R.) be an A-symmetric deriuat,ion on R?Ì . Then we call the triple (R., p,6)
an abstract K-cycle ouer A i,f i,t satisfi,es the condition

p(ô(r"n)) : g

forallreR,

Let (-R,,,p,ô) be an abstract K-cycle over a *-algebra Ac R.. Let (Hp,n)be
the GNS representation of ,R associated to p with dense linear injection to : R, + Hp.
On the dense subspace rr(-R) define

D 6 /r) :: -iî p(6(r"o))rr(1)

Lemma 2.7.30 Let (Rr,p,6) !" an abstract K-cycle ouer a*-algebra Ac R*. Let
ñ¿ be defined, as aboue. Then ñ6 is an essentially setfad,jo,int operato, ñ6: t(R.) -+
L(Rr) such that [D6,no@)]: r,(R.) -+ L(R.) ,is norm bound,ed, on t(R.).

Proof Let n ::'trp. L i: t, and D :: ñd. We first note that D : /R.)-+ l(4.,) by

13and'p-closable'. In general the operators frp(Dp(R,,R)) would be a space of symmetric linear
operators on 11, instead of essentially selfadjoint operators.



126 CH AP TER 2. RIEMAN/VIAN IVO]V- CO MMU TATIV E G EOMETRY

construction. Secondly that Di(1) :0. Let s,r € Ar. Then

(r.(s), r.(-id(r"P ) (1) ) )

p(s. (-i6(r"o) (1)))

n((-zA1r"n¡- ("))-1)

ip(ô((r'n¡-¡ (1")-)
: ip((ô((ron)-)r,(1))

To {'d soP +d roP * soP 1

r(a)Dt(r):

(*)

-in(a)r(6(r"P))r.(1)
a(-ioô(ron)(1))

r(-zô(r'n)(ø1))

r.(-iô(ron )(1o))
r.(-iô(ror )a'(1))
t (-iõ (rov aop) (1)) * i/ro 6(aoo) (1))

Hence
!

t(s Dr,(r)) :
:
q

(u):

(uu:
(v)

(")

1

-i p(r* õ (sov) (1)) + ip(d(((sr- )"o)-) (1))

-ip(d(son¡ 11)*r) * ip(ô((sr-)"r))

p(-iô(son)(1).r)
(r.(-;01s"n¡), r("))
(Dr.(s), r.(r)).

Where at (i) we used the definition of p-adjoint, at (ii) the symmetry of ô, at (iii) we

used the definition of derivation, at (iv) we used the definition of padjoint to obtain
(("')-("))- : ((r')*(s))*1: s*ro(1) : s*1r: s*r and hence ("')*(t): (s*r)* :r*s¡
and at (v) closure of the derivation with respect to the state p onC0(R-,A-),: Hence

D is symmetric, with a closed adjoint with dense domain. As in Proposition 2.7.17

invariance of. D : L(R*) -+ L(R-) on the dense domain t(R*) provides the equality of
D* : D** on the ctosure of r,(Ã) in the norm llr(r)ll: p(lrl\r/'+ pç¡t1r'r)l')'/t.

As zr(ø)r.(r) : 4ar) then zr(a) : \R.) -+ L(R-) for all a, €. A. Consider

where we used the .A-linearity property at (*), and

D r (a) /r) : D 4ar) : t'(- i6 ((ar)"o ) ( 1) ) : t'(- iõ (rop o"o ) ( 1) )'

Hence

lD, r (a)lt (r) : -i t'(6 (a"o ) (1)")

Then

ll [D, zr(a)]r.(r) ll : p(r* 
| 
ô(oop) ) (Ð12 r)t / 2 < ll ô(øon) ( 1) ll ll,(") ll

by a consequence of the Cauchy-Schwartz inequality [an, Prop 2.3.11(c)]

ll[A,zr'(o)]ll < llô(¿op)(1)ll when taken over a supremum of r e R*.
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Let D6 denote the unique selfadjoint closure of D6. Note that L(Rr) is an invariant
core for D6 and rr(r) : f)^DomDm -+ l)*DomDm for all r € Ã,, and rn € N as a
consequence of the proof and Remark 2.7.28.

Definition 2.7.3L Let (R.,p,6) be an abstract K-cycle ouer o,*-algebra A c R-.
Then (Hp,rr,Dt) is called the GNS representation associated, to (Rr,p,6).

Remark 2.7.32 We remark that the construction involves a faithful state p on the
von Neumann algebra -R[. Hence each GNS representation has an associated standard
form (R!lo, Hp, Jp, 

^p,Pp) 
as in Section 1.6.1.

Let C*(A) denote the C*-closure of A in R. Let A6(,4) t:< Ao(L),d(,4,")(1) >
denote the *-algebra of .R generated by the operators q(ao) : a, q(6(bop)) : ô(bop)(1)
for a,b € A.

Corollary 2.7.33 Let (R-,p,6) be an abstract K-cycle ouer a uni,tal*-algebra AC
R. with associated GNS representation (Hp,rp,D6). Then

(i) (Hp,rp,D6) is a Cf,-representat'íon of the unital C-algebra C*(A), and

(ii) apo@r(A)) e rr(a6(A))

Proof (i) Immediate from Lemma 2.7.30. (ii) Let D :: Dõ, T i:lrpt L i: Lp. Then
from the proof of Lemma 2.7.30 we have lD,n(a)þo(r): t(6(aop)(1)") for all r e R.
This provides a linear isomorphism and r(a)lD,r(b))tr(r) : r(")46(bon)(1)r) :
r(øô(bon)(1)r) with ID,r(a)][D,r(b)]t r(r) : lD,n(a)lt(ô(bon)(1)r) : ¿(ô(øop)ô(bon)(1)r)
for all a,b e A and r € -R extends the linear isomorphism to O¿o(zr oØ)). !

Remark 2.7.34 Let (,R,ô,p) be a inner I(-cycle such that the derivation 6 has a
o-weak dense invariant domair Rr: llmDomïm. Let (Hr,TprD¡) be the GNS
representation associated to t}re inner K-cycle (R,6,p), see Definition 2.7.7. Define
the map 6o : R?Ì -+ Cp(RI,,Ru,) by ôo(ron)(s) : sd(r). Then it is easily verified
that (,R,,, 6o , p) is an abstract K-cycle with identical GNS representat ion (H p, rp, Dd).
Hence abstract K-cycles extend inner K-cycles.

Remark 2.7.36 Outer sheer of a symmetric -A-derivation

We highlight a distinction between abstract and inner K-cycles. In section 2.7.1 we
saw an inner K-cycle (.R, p,6) with associated GNS representation (Hp,rp,D6) has, in
general, an unbounded coderivation V(r) : +lD'õ,"p(r)l however lD¿,lD¿,np(r))l:
r(62(r)) was bounded for all r € Dom62. ihis restricted the application of inner
K-cycles in the theory of generalised differential geometry. This is not the case for
an abstract K-cycle (R.,6,p) over a *-algebra -4 and we identify the obstruction to
ID¿,lD¿,"r(o)]l being bounded for a € A.

Proposition 2,7.36 Let (R-,õ,p) be an abstract K-cycle ov)er o, *-algebra A wi,th
associated GNS representation (H p, r p, D6). Then

lD¿,[D¡,no@)]ltoî):-tp(62(a"o)(1)") - ro(t1r",¡(d(a"p)(1)) -ô(aop)(1)d(r"p)(r))
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and

lD|,r(a)lt'r(r): -rp(õ2(øon)(1)r) - rr(41""o¡(ô(ø"p)(1)) + ô(a"p)(l)ô(r'p)(r))

forallreRr.

Proof Let ro i: 7r, L i: Lp ãrLd D :: D¿. Then

DlD, n (a)lt(r) : -i,D t (ô(aon ) (1)r) : -r.(ô( (ô(¿op ) ( l)r)op) (1)).

We have ô(ronô(aon¡(l)op)(1) : roõ(6(aop)(l)op)(1) + ô(ron)(ô(r"p)(1)). Hence

DlD, r (a)lt(") : - ¿(ô(ô(øor ) (t)on) (t)") - r.(ô(ror) (d(¿op) (1)) ).

Inthe other direction, [D, r(a)]D/r) : -ilD,n(o)lr(ô(r'p)(1)) : -r(ô(aon)(1)ô(r"p)(t))
as ô(ron)(t) e n . The second formula follows ftollr- lD2,r(a)l : DlD,n(a)l +
[D,r(a)]D. rt

The first term in the expressions in Proposition 2.7.36 is uniformly bounded

llr.r(ô2(ø"p)(t)")ll < llô2(¿op)(1)ll ll,r(")ll.

Hence the second terms in the expression in Proposition 2.7.36 contain the obstruc-
tions of interest.

Definition 2.7.37 Let (R-,p,6) be an abstract K-cycle oaer a*-algebra A c R.
We call the map 15 : A x R, -+ R, gi,uen by

the outer sheer of the symmetri,c A-deriuation õ. We call the map 56: Ax R* -+ R-
giuen by

S 6 (a, r),: j (o{""o) (d(ø'p ) (r) ) + 6(a"p ) (1) d(r"p) (r))

the metric sheer of the symmetric A-deriuation 6.

On the dense subspace Lp(Rr) C Hp the operators in Proposition 2.7.36 have the
form

lD d, lD ¡, " 
p(")l) : - r p(õ2 (a"o) ( 1 ) ) - 2 t' oQ 6 @,'))

and

[Dl, n (a)] : -n p(62 (a"p) (1)) - 2r, o$ 6@,.))

for a € A. Hence the first operator is uniformly bounded if and only if

lþr(16þ,r)) ll - o(llø(") ll)

for all r e Rr. We note that .I6(a,r) : 0 for all r e R, if ô is ô(Aop)(1)-Iinear,
meaning d(r"p)(s) : sô(rop)(1) for all s € ô(Aop)(1). This condition of linearity is

satisfied when d' : ã0 fot a symmetric derivatiot ã or, the von Neumann algebra .R.

There is a partial converse.

r 6(a, r)': ] (a{""0) (ô(ø"p) (1)) - ó(oop ) (1) ô(r'p) (r))
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Theorem 2.7.38 Let (Rr,p,6) be an abstract K-cycle ouer a*-algebra A such that
Oa(,a) ::1A,ô(,4op)(1) )C R, is o-weale dense in R*. Then the following state-
ments are equ'iualent

(i) (Rr, p,6) ls on inner K-cycle ouer A where 6 : õo.

(ii) I6(a,r) :0 lor aII a € A, r € R,,1.

Proof (i) =+ (ii) Let d: ão. Theo ô(ror)(s) : rã(") : srã(r) : sô(rop)(1). Then
I6(a,r) : 0 using s : d(¿ol)(1).

(ii) + (i) Let l6(a,r) : s. Then ô(ron)(ô(ø"p(1)) : d(oop)(l)ô(ron)(1). Hence
d(rop)(øô(a"o)(1)) : ¿ô(øop)(1)ô(ron¡ using ,4.-linearity and the derivation property

9f ô. Similarly 6(r"p)(s) : sô(rop)(l) for all s e CI6("4). The result follows since
d(r) :: d(ron)(l) defines an inner derivation on l? with domain -R, and A6(,4) is
o-weak dense in J?. tr

To conclude the remark we note the previous result indicates essentially three
categories ofabstract K-cycles over a unital *-algebra,4 that are distinguished by the
outer sheer 16 of the symmetric .A-derivation ô.

abstract K-cycle outer sheer lDt,lD¿,no@)l): @z@op)(t)) + M-7f
M:0

M bounded

M unbounded

Remark 2,7.39 Reality of a symmetric /-derivation

Let (-i8., p, d) be an abstract K-cycle over a *-algebra A c R- with associated GNS
representation (Hp,ro,Dt). Define the positive elements of R, as the space Afr :
{r e R.lr : s*s, s € ,Rr}. We recall a linear mapping a: R. ) R. is called positive
definite if a: Rfi -+ Rl,.

Lemma 2.7,40 Let (Rr,p,õ), A and (Hp,n,Da) be as aboue, Then the fol,Iowing
conditions are equiualent

(i) L6: r -+ -ô2(ron)(1) is positiue defini,te,

(ii) n(a(""n¡1o1r.o)(1)) - ô(ron)(1)ô((s-)on)(1)-) : o for art r,s e R..

Proof Let ro i: ir) L:: tp, S :: ^90 and D :: D6. Let rrs € ,Rr. We have

: p(sord2(ron)(1))

I p(d(sonô(roe)(1)oe)(1) - d(son)(ô(r"p)(1))
: p(d(sonô(rop)(1)op)(1)) - n(ô(s"n¡1d(ron)(1)))
@ -p(d(sor)(d(ron)(1))

16=0
to@) -+ tr(16(a,r)) bounded

(16@,r)) unbounded(r) -+ t

p(ô2 (r"n) (1)s)
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where (i) used the derivation property of ô and (ii) used the cycle condition p(d(son)(1)) :
0 for all s € R-. Moreover

R(ô2 ((r*¡on) (1)-t)
(üi)

p(s*d2 ((r*)"o) (1))

p(ô(ô( (r- )"n)oo)* (s) * 1)

p(ô((ô(r"P) (1)) (1)oP)-) (s))

-p((ô((r-)"p) (1)*)opô('"p) (1))

-p(ô(son) (1)ô((r-)"n) (1)-)

(ir)

(¿),(iÐ

where (iii) used the fact ô is ¡adjointable and (iv) used symmetry of ô. Let r €. Rr.
Hence (*)

p(a2 (r"n) (r){ : p(õ2 ((r.)"p) (1)-s)

if and only if (**)

p(ô(s'p ) (ô(""p) (1)) : p(ô(sop) (1) ô( (r- )"p) (1). ).

for all s € R.. As p is a faithful state then (*) is equivalent to ô2((r*¡or¡1t¡- :
ô2(ron)(1) by setting s : (62((r-)'o)(1)* - ô2(r"n)(1))-. We note that ô2((Àr *
ps)"p)(1) : Àô2(rop)(1) +pô2(s"o)(1) for all À,p e C and r,s e.R., fromlinear-
ity of ô. Hence the condition d2(ron¡11) > 0 for all r ) 0, r e R- is necessary and

sufficient for the result ô2((r-)"n)(1). - ô2(ror)(1). !

Let (-rB, Hp,Jp,L,p,Pp) be a standard form associated to Rr,p,d) as in Remark
2.7.32. We recall from the Tomita-Takesaki theor¡ see Theorem 1.6.2(ii), that the
modular conjugation J, andthe modular operator Ao are derived from the unbounded

anti-linear operator So:: Jr\ro/2 , tr(r) -+ to@\ for all r € R..

Theorem 2.7,4L Let (R.,p,6) be an abstract K-cycle ouer a uni,tal*-algebra AC
R.. Let (Hp,np, D6) be the associated' GNS representation and (R, Hp, Jp, Ap,Pp) be

an associated standard form. Then the following cond,itions are equiualent

(i) L6 : r -+ -d2 (ron)(t) ls posi,tiue definite,

(ii) n(41""r¡101""p)(1)) - ô(ror)(1)ô((s*)on)(1)-) : o for atl r,s € R.,

(iii) lD], srl: o.

Proof Let t :: Lp, S ::^9, and D :: Dd. Let r eR. and note,Sr,(r) : ¿(r*). Then

(D'S - Sn\r.(r): D24r*) - St(-62(r"o)(1)) : -,(õ2i1r-)'o)(1) -O21r"n¡1t¡-)'

Since ¿ is an isomorphism (D2S - SD2)/r): 0 for all r € Rw if. and only if
62((r-)on)(1) : d2(rop)(l)*. This is equivalent to the statements in Lemma 2.7.40

by the proof of Lemma 2.7.40. Note that 
^9 

preserves Cauchy sequences in the graph

norm of D2. Hence,S preserves DomD2 and we take lD2,^9] defined on DomD2. a
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Corollary 2.7,42 Let(R-,p,6) be an abstract K-cycle ouer a*-algebra AC R. such
that p e. R* is a fai,thful trace. Let (Hp,Tp,D6) be the associated, GNS representation
and (R,Hp,Jp,I,tr(R+)) the associated, standard form. Then the Jollowi,ng condi,ti,ons
are equ'iualent

(i) L6 : r 1-d2(ron)(1) is positiue defi,nite,

(ii) n(a1r"n¡1a1s"p)(1)) - ô((s-)on¡11).ô(ron)(1)) : o for au r,s e R,,

(iii) lD|, trl : s.

Proof (ii) Follows by using the trace property. (iii) Immediate from Theorem 2.7.41
as Ar: l. ¡

Remark 2.7.43 We remark on the content of the equivalent conditions. Example
2.7.6I suggests the linear map .C6 is the appropriate generalisation of the Laplacian
operator. Hence the results suggest a deep relationship between the positivity of the
Laplacian and the modular theory. This is demonstrated further by the next example.

Remark 2.7.44 Modular Dynamics of a symmetric .A-derivation

Let (-R.,, p,6) be an abstract K-cycle over a unital *-algebra AC R-.
Let (Hp,ro,D) be the GNS representation associated to (Ã,,,p,ô). Define

V¿(') :: lD'õ,'l

as l,lre cuvariaul tlerivation associated to the abstract K-cycle (R., p,ô) (c.f. Section
1.4.2). Associated to the derivation V6 is a one-parameter family of unitaries 

"-isD] 
.

Hp + Ho that induce a one-parameter family of automorphisms on (1^DomVm

geo$(")'- 
"-isDzo 

7"iso]

for s € IR. and T e ñ^DomY^. We call the family geo6 the geodesic flow associated
to (.Rr, p, d). This name is derived from parallels with geodesic flow on a manifold as
discussed in [cs, Section 6].

Let (-R, Hp, Jp, Ap,Pp) be the standard form associated to (R., p,ô) as in Remark
2.7.32. Then there exists another one-parameter family of automorphisms given by
the modular ff.ow

ot (r) : L;itrL',j

for ú € IR. and r € R, see Section 1.6.1. The modular flow has been associated to time
flow in thermodynamic systems [ctt].
Given the physical context of the two one-parameter families, the coupling of the
geodesic flow geo6 and the modular flow o, is of great interest. In particular they are
decoupled if lD\,Ar] :0 and intertwined if lDï,LÀ* 0. We remark here on some
details of the coupling as a consequence of Theorem 2.7.4I.
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Lemma 2.7.41 Let (R.,p,õ), (Hp,np,Dd) and (R,Hp,Jp,Lp,Pp) be as aboue such

that L6 i r -+ -ô2(ron)(1) is positiue d,efinite. Then (I) iÍ Jp , DomDf;^ -+
Domn2o(^-t) th* Lt/' , DomD]* -+ DomD]@-L) þr angr rn € N. suppose

J, : DomDf -+ DomD2u and, d,efine R,,o :: lD|,Jp]Jp i,n this case. Then (2)

lD?, /III'I : I'u,ô.Tl' and, {r'6,0, n|l'} : 0 on L(R )'

Proof Let D:: Dõ, J:: Jp, A:: Ap, S:: JA.rl2 and fI:: Hp.
(1) Note Lrl2 -,I^9 as Jr : L By Theorem2.7.4l [D2,^9] : g. Hence ^9 

:

DomD2* -+ DomD2m for any rn € N. Then A1/2 : DomD2* -+ JDomD2n.
With the supposition lD2,JlJ : JD2J - D2J2 : JD2J - D2 is a densely defined

linear operator DomDa -+ H. Note it is immediat e J : DomD2 -+ ff as .I is a

bounded anti-linear operator. Hence R6,, is well defined. With (1) and the supposi-
tion the densely defined linea¡ operator lD2,Atlz1: DomDa -+ f/ is well defined as

A,Ll2 : DomDa -+ DomD2 and, DomD2 -+ H.
(2) Note Lrl2 :,,I,9 as J2 : I. Hence ln2,A,tlz1 : lD2,/,5] : tlO2,S]+

lD2,JlS : lD2,-I],9 from Theorem 2.7.4L Note that [D',Sl: 0 by Theorem
2.7.4L and.I,S : S*J. Hence S*lD',Jl: lD2,4S. This implie" 6r/z¡¡pz,Jl:
lD2, J)J LLl2. Hence L.LP|D2, JIJ : -lD', JIJ Lrl2 as JlD2 , Jl : -1D2, J]J from
t2 -l !J _ L.

Lemma 2.7.46 Let (R.,p,õ), (Hp,np,Dt) and (R,Hp,Jp,Lp,Pp) be as aboue. Let
Pp,õ: DomD2unPo. Then Jo: DomD] -+ DomD! if and only if Pp,6 is a closed

posi,tiue cone of DomD25.

Proof Let D :: Dõ, J :: Jpr'fi i: lrpt L :: Lp andP :: Pp. We recall from Theorem

1.6.2 that P is the closure of the set P : {tr(r)J{r)lr e J?r} and from Theorem
1.6.1 that JP: P. Here R, can be used in place of -R due to o-weak density.

(=+) Let r e R.. Then r.(r) e DomD2o and n(r) : DomD! -> DomD] by con-

struction. Hence r(r)Jt(r) e DomD! as J : DomD! -+ DornD]. Hence P C Pp,õ.

As the linear span of P is densely defined, then the linear span of Pp,6 is densely

defined. Hence the closure of the linear span of Pp¡ is DomD| by uniqueness of the
closure of a selfadjoint operator.

(e) Suppose the linear span of Pp,õ:PÀDomDf; rs DomD!. ttren JDomD!:
DomD| as JPp,õ: Pp,õ by Theorem 1.6.1 and anti-linearity of J. Û

Theorem 2.7.47 Let (R-,p,6) be an abstract K-cycle ouer a*-algebra A c Rr.
Let (Hp,ro,D,-) be the associated, GNS representation and (R,Hp,Jp,Ap,Po) be an

associated, standard Jorm such that

(i) L6: r -+ -ô2(ron¡(l) i,s positiue definite, and

(ii) Jo preserues the d,omai'n of Dl.
Then

lo!, a,ol: o

on r,r(R.).

Proof Let D :: Dõ and A ,: Ap. The equivalence of the condition follows from
Lemma 2.7.46. By Lemma 2.7.45 A: DomD2 -+ DomD2 and the linear opera-
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tor lD2,Ll: DomDa -+ H is well defrned. Moreover [D,,L]: Lrl2lD2,Arl1+
[D2,L1l1Arl2 - {lD2,Ltlz1,Arl2}. Hence by Lemma 2.7.[5 we have on r,(,R.,),

{[D2,ltlz1, Lrl2] : {R6,o\r/r, Lt/r' : {Rõ*, Lr/2}Arl2 : 0. D

Remark 2.7,48 Real Gradings of a symmetric , -derivation
Let (R.,, p, ô) be an abstract K-cycle over a *-algebra A C Rr. Define O¿(,4) ::(
,4,ô(,4op)(1) >. W. say (rB.,p,ô) is an abstract K-cycle over,4. with parity e if the
von Neumann algebra .R admits an order two *-automorphism e € Aut(rR) such that
e(a) : ¿ and e(ô(a"p(l)) : -ô(oop)(l) for all a € ,4.. Compare the following result
with Theorem 2.5.14.

Lemma 2.7.49 Let(R.,p,6), A and,Q6(A) be as abouewhere (R-,p,6) has parity
e. Then the followi,ng conditions are equiualent

(Ð e(ô(son)(1)) : -d(e(s)op)(I) Jor ail s e CIa(A),

(ii) e (ô2(aon)(s)) : ô2(aop)(e(s)) for all s e o¿(á).

Proof Let s €.4. By construction ô(e(a)"p)(1): d(¿op)(1) : -(-d(aoo)(1)) :
-e(d(øon)(1)). Now consider

ô(e(ad(b"p) (1))"p) (1) : -ô(d(bop) (l)oeaoo) (1) : -ô(bop)(1)ô(o"o)(1) - ô2 (bop) (¿)

and
e(d((øó(b"p)(1))"o)(1)) : ô(b"p)(1)d(øop)(1) + €(d2(bop)(o)).

If statement (i) is true for s € O;(,4) then (ii) is true for f € A. If statement (ii) is
true for ú € ,4, then (i) is true for s € CI;(,4). Similarlv

d(e(aô(bor)(1)d(con)(1))oe)(1) : d(cop)(1)d(bop)(1)ô(¿oe)(1)

+ô(cor ) ( 1) ô2 (bop) (a) + 62 (coo) (aô(óop ) (1) )

and

e(ô((ød(ó"n) (1)ô(cop ) (1)"o) (1) ) : -ô(con) (1)ô(bop) (1)ô(aop) (1)

-d(cop ) ( 1) d2 (bop) (ø) * c(d2 (con) (ad(bop ) (1 ) ) )

If statement (i) is true for s € a'ôØ) then (ii) is true for ú € oå(A). If statement (ii)
is true for ú € o;(/) then (i) is true for s ( a?Ø).The proof proceeds by induction.
¡

Definition 2,7.60 Let (R-,p,6) be an abstract K-cycle oaer a *-algebra A C R,
with pari'ty e. Then we sag (Rr,p,6) is a real abstract K-cycle ouer A c Rw úl
e(d2(a"n)(s)) : ð2(oop) (e(s)) for all a € A and,s e a6(,4).

Theorem 2,7,6L Let (R,x,p,6) be a real abstract K-cycle ouer a*-algebra A c R,
with parity e such that (l) p € R* is a trace and (2) o¿(,4) is o-wealç dense in R..
Let (Hr,no,Dt) be the associated GNS representation. Then there erists a selfadjoint
un'itary I e B(Hp) such that
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(i) zrr(e(s)) : lzrp(s)l for all s € 06(,4),

(ii) D6 and,l anticommute.

Proof Let D :: Dö and ¿ :: tr. The existence of I and the proof of (i) follows

from Lemma 2.5.18. Let s € O¿(,a). Then Dl.(s) : D¿(e(s)) : -i¿(d(e(s)on)(1)) I
*ir(e(ô(son)(1))) : fii(d(son)(1)) : -lD¿(s). Here (a) used the hypothesis of reality
contained in Definition 2.7.50 and Lemma 2.7.49. The result follows from density of
r.(O6(,a)) in Hr. ¡

In the terminology of Section 2.4.4 the unitary I is a real grading for the GNS
representation (Hp,ro, Dt) associated to (R-, p,6).

The next result culminates Section 2.7.3. It classifies the Riemannian representa-
tions of a C*-algebra arising from a trace by abstract K-cycles over the C*-algebra.

Theorem 2.7.62 Let (Hp,rr,D) be a Riemannian representati,on of a C-algebra A
such that

(i) p e R* is a fai,thful trace on Qp(A^)tt,

(ii) tp(Ao(A"r)) c ni 'is an inuariant core for D.

Then there erists an abstract K-cycle (Ao(A^r),p,6) ouer A"o wi'th associ'ated GNS

representation (H p, r r, Dd) such that

D:D¿ *u

whereueQp(A") and

Qo(A"r) - O¿¡ (A,r) : no(A¿(&,,))

Proof Let R. :: Qo(hrp), t :: to and A : Ano. Let rop e RÎf . Define

ô(r"p)(s) t: t;r(i[D,rop]i(s)) for all s € Ãr. This is well defined since -R, is

an invariant subspace for the operators rop and D. Hence ô(ron) : R. -+ Rr.
Note that lD,ropþ(a) : lD,¡on]zr(a)r,(1) : r(a)lD,rop]r.(l) + [zr(ø)'[D,rop]]r.(l) :
r(a)lD,r"p]r.(l)+[[D,n(a)),"on]r(1) : n(a)lD,"on]r,(l) a,s roP € Ã'. Hence ô(ron)(ø) :
zr(ø)ô(r"p)(l) is,4.-linear. It is clear that ô is a derivation and linear. The sym-

metric property follows as D is selfadjoint. Since D : /Rr) -+ /Rr) there exists

u e R, such that Dr"(L): u¿(1). Consider p(ô(ron)(1)) : (r(1)'z[D,r'n]r,(t)) :
(D/1,),¿ropt(1)) - (ronr,(l),D.(t)) : (r,(1),i,(ur -ru)/I)):0 as p is atrace. Hence

(R., p,ô) is an abstract K-cycle. Let D6 be the associated selfadjoint operator. The
result follow from the identification of D. Let r € L(R.) which is an invariant core

for D. Then, using the tracial property, Dr,(r): Drop4l):lD,"on]l(1) + ropD¿(l).
Hence D/r) : lD,r"plr.(l) +r"pu4I) : 4-i6(rop)(t)) + urop 41) : D¿t(r) I u/r) :
(Do + a)t(r) for all r e /R*). ¡

Remark 2.7.63 The conditions of Theorem 2.7.62 require that (Hp,np,D) be a Rie-

mannian representation of a C*-algebra ,4. such lhat p € -R* is a faithful trace. We
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remark on the difficulty when p € R* is not a trace. Let (Hp,rp, D) be a Riemannian
representation of a C*-algebra .4 and R,,, :: Qo(Aor). Let s € Ar. When p is not a
trace then there exists s¡ € Ã such that sopr,r(r): (À+ L,)-Itoþs¡) for any À > 0

[lR, Lemma 2.5.12]. The resolvent of the modular operator Ao 'twists' the opposite
representation. Let a € Anr. Then soplD6,roþ)þr(r) : (À + Ap)-1[D6,no@)](À-l
A,)sovtr(r). This prevents the identification of [D¿, "p(o)] 

€ -R without further as-
sumptions and hence prevents the construction of a symmetric ,A-linear derivation.

2.7.4 Riemannian cycles

Let C. (A) denote the C*-closure of a unital *-subalgebr a A of. a von Neumann algebra
,R. Let (R-, p,d) be an abstract K-cycle and .4 C R aC*-subalgebra. The result of
Theorem 2.7.52 introduces the following definition.

Definition 2.7.64 Let (R.,p,õ) be an abstract K-cycle oaer a unital*-algebra AC
Ru. Then we caII (R.,p,6) a Riemannian cycle ouer the C-algebra C.(A) i,f the
assoc'iated GNS representation (Hp,np,D6) i,s a Riemannian representation of C.(A).

Remark 2.7.65 We note that Theorem 2.7.38 provides the result that a Riemannian
cycle (-R.,, p, ô) over a C*-algebra A is an inner Riemannian cycle if and only if the
outer sheer I6(a,r) vanishes for all a € A and r € R..

To define a Riemannian cycle abstractly requires the converse of Theorem2.7.52.
At present, however, the converse of Theorem2.7.52 is beyond our treatment. The
following results culminate in a partial converse to Theorem 2.7.52.

Theorem 2.7.56 Let (R,,,,p,6) be an abstract K-cycle ouer a, unital*-algebra A c
R, with the hypothesis

(i) p € R* is a faithful trace,

(ii) L6 : r -+ -d2(rop)(L) is positiue definite,

(iii) 6*14"o : Aop -+ BpA@ò for atl rn € \ and

(i") Apo(nr(A)) : ro(A6(A))

Th'en the GNS representation (Hp,np, D6) associated, to (R., p, õ) ie a Cf rcprcacntation
of the unital C -algebra C-(A).

Proof That the conditions of Definition 1.4.8 are satisfied by (Hp,rp,Dt) follows
from Lemma2.7.30 with the exception of Definition l.4.s(iii). Let ro i:7t) L i: Lpt

J :: Jp, D :: Dõ, and fn(r) :: (1 + *2¡-n/2. We recall that n(s)r.(r) : ¿(sr) and
zrop(s)r.(r) : t(rs) for all s,r € R, as p is a trace.

We are required to show flD|,4 is bounded where t: n(a) or lD,"(")1.
1) We obtain an equivalent statement. By Proposition I.4.7 we are required to

prove /1(D)[D',t] is bounded where t : n(a) or [D, n(")]. We note lD,r(a)] :
-izr(d(øon¡1t)) by condition (iii) of the hypothesis and Corollary 2.7.33. We also

note fi(D)lD2,r*l is bounded if and only if J(ilÐlD2,s*])*/ @- [Ot,s.n]/1(D) is
bounded where s € ,l?., The equality (a) is given by Corollary 2.7.42 since hypothesis
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(i) and (ii) result in lD2,/] : O. Combining the above remarks, we are reduced to
showing lD2,t"v1¡t1D) is bounded where t: n(a) or zr(ô(a"p)(1)).

2) Let r,s e R*. We show that lD2,ttop(")] : -i{D,rr(ô(s"p))}. Consider

lD2,r"p(s))t(r): D2t'(rs) - t'(-ö21rov)(r)") : -r(o'ç1rr)"o)(1) - ô2(rop)(1)s).

We have

ô2((rs)or)(r) : ô(ô(sonror)(1)op)(1)

: a({a{""o){r)s + ô(s"p)(r))"e)(1)

: ô(sonô(ron)(l)op)(1) + ô(ô(son¡1r)on(1)

: ô2(ron)s + ô(son)(ô(r"p)(1)) + ô(ô(son)(r)on(1)

by repeated use of the derivation property of ô. Hence

ô2((rs)on) (t) - a21""n¡ 11)s : ô(sop) (ô(r"p)(t)) + ô(ô(s"p) (")"p) (1)

and'
lD2,roo (s)lt(r) : -r(a1r"o¡1a(rop)(1)) + ô(d(son¡1r)'e)(1))

: -zro(ô(son))D/r) - iDn ogþp))r(")
: -i{D,rr(ô(s"n))}r.(r).

3) Let ? be a bounded operator such that lD,fl is bounded. Then {D,T} :
2DT + [7, D] : 2TD + lD,Tl. Hence f{D){D,T} : 2|íD)DT + l{D)lT,Dl and

{D,T} f{D) : 2T D fíD) + lT, n)ft@) are bounded'
4) We show that [D,zr(ô(sop))] is bounded where s: ¿ or ô(øon)(1). Consider

[D, zrop(s)]r,(r) : D/rs) - 7¡on(s)Dr(r)

: ,(- mçr.or"o)(t) + iô(r"e)s)

: t( - mlr.r¡(1)r - iô(s.p)(r) + id(r'n)s)

: -ì,1u1"i¡1 r)) -- -ino(ô(s"p))i(r).

Hence [D,zrop(s)] is bounded iff ô(son) e BpA@,). By hypothesis (iii) ô(aor) and

62(aov¡: d(ô(¿op)(1)'p) belong b BpA(Ru).

The combination of 1,2,3,4 prove that [lDl, r(a)] and [lDl' [D' zr(ø)]] is bounded for
all ø € A. One continues in this method, with increasingly complicated calculations,
to find ôm(oor) e BpA@ò for m: 1, ...,2r2 implies 6þ1(n(a)) and 6þ¡(ÍD, zr(a)]) are

bounded for m: 1, ..., r¿ for all a € A. D

Let (-rÌr, p, d) be an abstract K-cycle and ,4 C ,R a C*-subalgebra' Define "4 ::
{a e An A, I 6m(aov) € BpA@ò Y m €. N} and Oa(/) ::1 A,d("4"p)(1) )C R,'

Definition 2,7.67 Let (Rr, p, õ) be an abstract K-cycle ouer the unital * -algebra A C
A. Then (R.,p,ö) is callerl a un'iform positiue Ri,emanni,an cycle ouer the C-algebra
A if the following conditions are satisf,ed (1) "4 is norrn dense in A, (2) 116(,4") : ¿,
and (3) L6 : r -+ -62(rop)(I) is positiue defini,te.
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Remark 2,7.68 We remark that the index algebra Bre of the GNS representation
(Hp,np,D6) associated to a tracial Riemannian cycle (.Rr,p,ô) over the unital C*-
algebra ,4 is the C*-algebra

Bn,: C.({nip(r)lr e R,,d(ron¡ € BpA@,)}).

In particular for a uniform positive Riemannian cycle, from the proof of Theorem
2.7.56, Brp C.(trr(A6(A))).

The following theorem establishes a construction function with domain a tracial
uniform positive Riemannian cycle (R, p,6) of a C*-algebta A and range an ungraded
Riemannian representation of ,4.. It extends Theorem 2.7.10.

Theorem 2.7.69 [GNS Construction]
Let (R*,p,6) be a uniform positiue Riemannian cycle ouer a C-algebra A such that
P € R* i's a laithful trace. Then the associated, GNS representation (Hp,rp,Dd) is an
ungraded R'iemannian representation of the C -algebra A such that

(i) [D6,rr(a)]: -itrp(6(a"p)(1)) for all a € "4,
(ii) apo(no(A)) : np(Q¿(A)) : nr(R.),
(iii) l\p:: q(O6(A)) c Hi :: t)mDomlD6l^.

Proof Let D ;: Dõ, T : Tp and t i: Lp. We prove the representation is Rie-
mannian. Combining Theorem 2.7.36 and Corollary 2.7.32 leaves only the condi-
tion O¡o(nr(A))tt : p. FYom Lemma 2.7.30 and Corollary 2.7.32 lD,n(a)þ(r) :
-ir.(d(aor)(1)r). Let son € A'. Then

sop[D, r(a)þ(r) : -iaop 46(aop) (1)")

I -zr,(ô(øon)(1)rs)
: lD,n(a)þ(rr¡ I ¡o,n(a)lsopr(r)

where (i) and (ii) used the tracial property. This implies [D, r(a)] e Rtt. Hence

lD,r(a)): -ir(6(aop)(1)) as rr(1) is a separating and cyclic vector for Rtt. This
proves statement (i) and statements (ii) and (iii) are immediate. As o¿(n("4)) :
r(R.) then Cl¿(n(, )) is a-weak dense in zr(,Él) ry it. ¡

Remark 2.7.60 We remark that one can amend the prefix ungraded in Theorem
2.7.38 by assuming the uniform positive Riemannian cycle is with parity as an abstract
K-cycle. Similarly one can add the prefix real by assuming the uniform positive
Riemannian cycle is real as an abstract K-cycle.

Example 2,7.6L Riemannian Manifold

Let X be an n-dimensional compact Riemannian manifold. We apply Theo-
rem 2.7.40 to the Riemannian represent ation (L2 (X, Â*X), n¿, d, * d*) of the C*-
algebra C(X), see Theorem 2.4.27 and Theorem 2.6.g, Let

C-(Cl) :: C*(X,CI(X)),
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À(tr) :: I nnÍ,w)(*)1/a"tsa*,
JX

where Çe is the metric, and

d¿(u.'"p)(u) :: t;L (-ild -t d*, rlp (w)lrr ("))

for all u,u e C'"(Cl) where r,¡ : Cæ(CI) -+ L2(X,Ä*X) is the linear injection of
Theorem n.a$).

Theorem 2.7.62 Let C*(Cl), ). and õ¿ be as aboue. Then (C*(CÐ, À, 6¿) de-

fines a Riemannian cycle on the smooth unital* -subalgebra C*(X) C L*(X,CI(X))
with associated GNS representati,on (L2(X,^*X), r¿,d,* d}).

Proof By construction of the selfadjoint operator d+d* and Theorem 2.4.21the
hypothesis of Theorem 2.7.52 is satisfied for A: C(X). The triple (C*(CI), ), ôd)

is exactly the triple constructed by Theorem 2.7.62. We note (d+d-)¿À(1):0.
Hence u : 0 in the statement of Theorem 2.7.52. !
We examine the explicit form of the symmetric C-(X)-derivation ô¿ and the
metric sheer for this example.

We recall from the proof of Theorem 2.4.21 lhat

ripff)q(u): q(ul),

nip@f)t¡(u): q(u.df),

-ild + d. ,rlp (f)lt¡(u) : n¡(dfþ¡(u) : t'x(dl ' u)

for all I e. C*(X) and u € C"o(Cl). Hence ô¿ : C-(Cl)oo -+ Bà*6)(C-(CI))
restricted to zero- and one-forms is given by

ô9(/)(") : ul,

ô¿(/)(") : dl 'u

for all f e C*(X) and u € C*(Cl). In particular

a!1¡¡1t¡ : ¡,

6dU)O) : dl

for all f e C*(X). In a chart [/ with local tangent bundle basis {Q(ø)}þt and

local cotangent bundle basis {d,r¿(n)}þ, for ø € [/ we have

- ild + d*, - iro¿p (d,T) (ø)l r¡ (u(z) ) : - r¡ ( Ð ô¡,¡ f (r) d,r ¿(r)' u(n)' d,r ¡ (r))

for all f e C*(X) by the proof of Theorem 
'r.n.rrrrr.Hence

63(Ð@)(r) :: õa@a(Ð"o)(")(") : - t ô¿,¡f (r)d,r¿(x) .u(r) .dr¡(r)
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and

63Ø0@: - t ô¿,¡f (r)d,r¿(r) .d,r¡(r): t 0¡,¿f @) : -Lf @)

where A is the g"rruruhJ"a Laplacian given by tfr. l*i-Civita connection on X.
We note we could continue to higher poruers of the symmetric C-(X)-derivation
ô¿ and demonstrate that (C"'(Cl), À, ô¿) infact defines a uniform positive Rie-
mannian cycle over C(X). The differentiability of functions on the manifold is
hence related to the domain of. d * d* as a spatial implementer of a derivation
with domain in the commutant C-(CÐ'. This is conceptually and in praetical
calculations more appealing than dealing with the derivations implemented by
ld + d.l.
Finally we consider the metric sheer S¿ :: ,9dd associated to the symmetric
C*(X)-derivation ô¿ as in Definition 2.7.37. We identify a restriction of the
metric sheer S¿ : C*(X) x C-(X) + Q2¿+¿.(C*(X)). Let J,h e C*(X). Then
we have

sa(r,h) : L(i,o1n¡1õ¿(Í)) + ód(/)(1)ôr(h)(1))

: L@n. dl + df .dh)
: -g(df ,d,h)

where .g is the metric of the Riemannian manifold X.

2.8 Example - Riemannian Geometry of the Torus

\Me provide an example of a Riemannian geometry (Ae, HrrT, Drc)¿ where ,4p is an
irrational rotation algebra.

2.8.L The rotation algebta As

The u,u be unitary operators such that u,u,: e2niqllu for some d € IR, Let F(22)
denote the set of double sequences {ø","} such that (r, s) e ,F where tr' is a finite
subset of 22. Define the unital *-algebra

F6 :: {a: t ar,r,u,',u'l {o","} e F@,\}.
f,9

with product and involution

ab :: t",, ( Dn,*o,r-n,*\ nbn,s-m)urus

a,* i: D",, (Àttd- r,-s)ur us

where ¡'- 
"2ri0. 

Define a linear functional r' : Fg -+ C by

r'(a) :: as,¡

Lemma 2,8.L Let Fs and, rt be as aboue. Then rt(a*a) > 0 for all a I 0.

Proof Let a € FB. Then rt(a*a) :Dn,*^-nmqn,-nxÀn^on,-^:Dn,^lon,_^|, > 0
and is equal to zero iff lon,-*l : 0 V n,m which occurs iff ¿ : 0. tr
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Hence (ø,b) : rt(a*b) defines an inner product on F6. Denote by H, the closure

of the pre-Hilbert space (F¿, (.,.)). Let a € Fs. Let zr(a) : Fs ) Fe denote the linear
operator defined by r(a)b : ab for allb e F6.

Lemma 2.8.2 The fai,thfut representation r: Fs ) L(Fe,Fs) ertend,s to a faithful
*-representation r, : F6 ) B(Hr).

Proof Define rr(a)b: abfor the densesubset F6 C H.r. Clearly rr(ab): r"(a)nr(b)
and (zr"(a*)b,c) : rt((a*b)*c) : r'(b*ac) : (b,r,(a)c) for all b,c e Fs. 1L r,(a)b:0
forall be Fe then¿b:0forallbe Fp. Lettingb:1€ Fp proves ø:0. Hence

the proof is complete by density of F6 it H, once we demonstrate zrr(a) is uni-
formly bounded in norm. This follows as llzr"(a)bll?: rt((ab)*ab) 1r'(a*a)rt (b*a¡ :
ll"ll?llbll? by the Cauchy-Schwartz inequality. !

Let As be the closure of .t'p in the uniform topology of B(Hr). Let Atj be the
closure of -Fp in the weak topology of B(H").

Corollary 2.8.3 Let Fs and rt be as aboue. Then

(Ð As i,s a separable uni,tal C -algebra,

(ii) Atj is a uon Neumann algebra with separable pre-dual,

(iii) Fs is norm dense in A6 and o-weak dense in A'j,

(i") there erists a normal fai,thful trace state r on Atj such that rlp, :7t,
(") (H",Tr) is the GNS representation of A'j associated to r.

Proof (i) and (ii) are immediate as ,F'B is countably generated. (iii) Follows from the
von Neumann density theorem. (iv) Define rt(a): (1,2r"(a)1) for ø €.4.f. Normal-
ity is immediate from construction. The properties of state, trace, and faithfulness
are then immediate by o-weak density of. F6 in Atj. (v) Immediate from the GNS

construction. !

Let 0 e Q. Then the spectrum lB is isomorphic to the torus'lf2 and As -M C(T2)

[niz]. Hence, in terms of the non-commutative topological features, the rational and

integer case are equivalent,

Lef 0 / Q. Then -4p is called an irrational rotation algebra. We recall a simple

C*-algebra is a C*-algebra that has no proper two-sided closed ideals.

Theorem 2,8.4 The following statements are equ'iualent'

(i) 0 is'irrational,

(ii) A6 is a si,mple C -algebra,

(iii) r i,s the unique normal faithful trace state on A'j,

(i") Atj is isomorphic to the unique hyperfinite type II1 factor'

Proof Theorem 1.10 and Corollary 1.16 [0o].
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We define two symmetric derivations on A'á Ay the linear extension and closure of
the maps 6u,õo: F6 -+ Fs defined by the assignments

6u(ar,ru' u' ) :: 2¡/ìir ar,s,u,r,us

6u(ar,rur ut) :: 2t/nisar,u,r,us .

Note that d"(1) : ô,(t) : g.

Lemma 2,8.5 Let a : 't1,u and (A'j,r,6") be as aboue. Then (A'j,r,6u) and, (A'j,r,6r)
are inner Riemannian cycles ouer the unital C-algebra A6.

Proof We check the conditions of Definition 2.7.9. A simple calculation reveals ô,
and ô, are symmetric derivations. As F6 € Dom|xuft Dom6J, for all ,i, j e N, then the
derivations have o-weak dense domains by Corollary 2.S.3(iii). Let a € F6. Clearly
(d'(o))o,o : 0 for a,:'t-tr¡u. Hence r(6"(a)): 0 for d.:,ttr¡u. Let a € F6 with support
f e F@2). Let k : sup(i,j)el ll(i,i)ll. Then lloY@)ll < k-ll"ll for all rn € .ôy' and
at:'tr,r.r. Hence.Fp contains analytic elements for ô, and ôr. Hence AglFg: tr'p is a
subset of analytic elements no¡m dense in As. Finally f¿¿(Fp) - Fs is ø-weak dense
in A'j. tr

Let S(22) denote the double sequences of rapid decay. Define

A6 :: {o : D ar,rr..!,'ut l {rr,r} e SV,\).
TtS

Lemma 2,8.6 Let A6 be as aboue. Then Ae is a unital * -algebra such that

(i) A6 i,s a Frechet pre-C -algebra of As

(ii) Ae : A'i n ( n- nomÍtr) n (n- Dom6ff), and

(iii) As 'is o-wealc dense in A[.

Proof Define the seminorms p!(a):: llôp(a)ll for m: 0, 1, 2,..., e: u,u.
(ii) Let a : Dr,rúr,rllru" be of rapid decay. Then for each k € N there ex-

ists a constant C* ) 0 and n¿ € N such that la,,,l < Cn\ + lrl + lsl)-k for
all lrl,l"l > ,¡, Let, rn € N{U {0}. Considcr 6Tþ) : D",, rna,r,r,u,rr)s. Then

ll¿tr(")ll l Cn¿r2D1",,¡ lrl^(1+ lrl+ lsl)-*-z *D¡"¡,¡,¡5, 
^*rlo,,"l 

( oo. Simitartyfor

6ff. Hence a e (n^ Donx61) n ( n- oomütr)
Let b € Atj such that that br,, is not of rapid decay. Then there exists k such that

lrkb,,,l > lrl for all lrl > r0 or lsfrbr,"l > lrl for all |rl > ro. Hence pfr(U¡ 
", 

pf(b) is
not finite. Then b ê (n^ nomltr) n ( n- Donx6|).

(i) Result (ii) implies "4e is a *-algebra closed in the metrisable locally con-
vex topology generated by the countable family of seminorms p! and in the holo-
morphic functional calculus. Let a € "4,6\Fs. Let F¡,: {(", s) e Z2llrr,rl )
(1 + lsl + lrl)-*-21. Then f'¿ is a finite subset of Z2 as ¿ is of rapid decay. Define
oh t: DO,r)eFoar,sLrrtt' e Fe' Then lla - o,kll < Dþfl*r¡ lo","l ( Dçr,{qr¡(l + lsl +
lr)-*-z l Mmax¡,s)øFe(1+lsl+lrl)-fr for aconstant M ) 0. Hence'li^o¡;¡o- o,kll:
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0 by the condition a / Fe. The inclusion Fs C "4p then implies .4a is norm dense in
As.

(iii) follows from ,F'p C "46 and Corollary 2.8.3(iii). !

2.8.2 A Riemannian Cycle on As

Let A be a unital *-algebra. Define Mz(A)::,48 Mz(A). Then M2(A) is a unital
*-algebra. We canonicallyidentify.4 with AøIz where 12 is the identity of M2(C).
Let Tr denote the normalised ,4.-valued matrix trace on Mz(A). We recall that M2(C)
has a basis given by the Pauli-sigma matrices

lrol loll lo il lr o'l
"o:Lo tj'o':1, o.J'o':l-o ol'o':Lo -11

Define the linear functional p: M2(Atj) -+ C by

p(n)::roTr(E) V E e Mz(A'Ð.

Define the opposite representation zrop : M2(Atj) -+ L(M2(A[),M2(Atj)) by

-E'P(¡') : FE V E,F € M2(Atá).

Define linear maps du,d,u: M2(,As) -+ M2(A6) by

du(l¿:sa¡o¡) :: l¿=oõu(a¿)o¿
d,r(l¿=sa¡o¿) :: l¿=s6o(a¿)o¿.

Formally \¡/e may consider these maps as d,u : 6u Ø Iz and d,, : d, I 12. Then define
the linear map ô : M2(A.6)op -+ L(M2(Ao),Mz(AeD by

ô(EoP)(F) :: otFd,u(E) + o2Fd,(E)

for E,F e M2(Ar). W" note that

ô(a"P)(1) : 6u(a)o1 * 6,(a)o2

forallaí-A¡,.

Lemma 2.8.7 Let Ae, p and 6 be as aboue. Then (M2Q4e),p,ö) is an abstract K-
cycle ouer Ae such that õ^(Eoo) e Boln]ttzGae)) Vrn € N Y E e Mz("Ae).

Proof We check the conditions of Definition 2.7.29. (t) MzÇ4e) is a unital o-
weak dense *-subalgebra of the von Neumann algebra Mr(A'Ð such that "Ae Ø Iz a
Mz(Ae) by Lemma 2.8.6. Moreover p is a normal faithful trace state on M2(,41j) by
construction.

(2) Let E : D¿o,¿o¿ e Mz(Aù. Then p(ô(E"o)(l)) : lr(6,(ar) + ô,(øt¡¡ :
lr(6"(a)) + lr(6,(ot)) : o,
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(3) It is an exercise to check that d"(EF) : Ed"(F)+d"(E)F for E,F e MzG4e)
anda:u,tu.Hence

6(EipEsp)s):î.útt'#::À\:;i,,#;hol,du('2)Er+o2,d'(Ez),'l

We have d(Eor)(aoe) : o1aos6"(E) * o2aos6r(E) : ao¡(o¡6u(E) * o2õr(E)) :
aooõ(Eoe)(1) as [o1,oo] : 0: lor,ø¡]. This has shown ô is an -4,p-derivation. We
have

d.(E*): d"(t afo¿):\0"1";¡",: t 6o(a¡)*o¿: (t 6o@¡)o¿)* : do(E)*
iitr,

for all E e Mz(Ae) and o :'u¡'u. Hence

n(ô((A"r¡-¡(F)* F2) : p((og1d"(E). + o2\d,"(E)*)* F2)

: p(d"(E)FiotFz t d,(E)Fio2F2)
q p(Fiþ1F2d,u(E) + o2F2d,,(E)))
: p(Fiõ@.v)(F2))

where we used the tracial property of p at (i). Hence ô is p-adjointable and symmetric.
( ) Let E : D¡aio.i €. Mz(Ae). Then d,ffdf,(ø) e Mz(Ae) for all rn, n € N as

a¡ e Ae. Now ô(Eon)(F) : of d"(E) + o2Fdu(E) is clearly a bounded operation as

d"(E),d,(E) e Mz(Ae). We have

ô(rf( Eop)(1 )oe)( F) : o1Fd,u(o1d,"(E) + o2d"(E)) + ozîdu(od"(E) + o2d,(E))
: og(ofi?,(E) + o2dudo(¿)) + o2F(ordudu(E) + o2d7@))

forall E,F e Mz(As).Hence 62(ø"o¡ isaboundedoperator asd?,(E),û,(E),dudu(E):
drd"(E) e M2(A0). The proof Eop e. Dom6^ for all rn € N follows from induction.
We note from above that

d2 ( Eop ) ( 1 ) : 
îri";i"i:rl r;i,o"o,( 

¿) ) + o 2 (o 7 d, d u (E) + o 2d? (E))

Hence d2((')oe)(1) is the natural positive Laplacian on M2(A6). !

Theorem 2.8.8 Let Ae, p and 6 be as aboue. Then (Mz(Ae),p,õ) is a uniform
positiue Riemannian cycle ouer the C-algebra As.

Proof Follows from Lemma 2.8.7 with the exception of the condition Ad(Ar) :
Mz(Ae). This condition follows from [c, Section VI.3 Lemma 12] with the identifica-
tion ô(aon)(7) :6"(a)or -t 6o(a)o2. D

Let (Hr,Tp,Dd) be the GNS representation associated to the Riemannian cycle
(Mz(Ae),p,6) over As.
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Corollary 2.8.9 Let (Mz("A¡),p,õ) be the Riemann'ian cycle ouer the C-algebra A6

as aboue. Then (HprnorDd) 'is an irred,ucible Ri,emannian representation of the C-
algebra A6 such that

(i) lD6,nr(a)l: -i(trp(õu("))q -f no@,@))o2) for all a e "A'0,

(ii) Qpoþrr(,4,6)) : no(Mr("{e)),

(iii) Â, :: t r(M2(A6\ : Hi :: ñmDomlD¡l^.

Proof Let ¿ :: r,o and D :: Dõ. The result follows from Theorem 2.8.8 and Theorem
2.7.59 as p is a trace, with the exceptions of irreducibility and Hi c À0. Let p be

a central projection in M2(A'j). Let 0 e Q. Then [D,p] : 0 implies p € Ae C Ae.

However ,4,p has no proper central projections. Let 0 / Q. Then Mr(A'á) is a factor.
Hence there exist no proper central projections. This proves the representation is

base irreducible in the sense of Definition 1.5.17.

Let E:luaiot e Mz(Aù. Consider llr(.Ð)ll¿ : llr(E)ll + ll¿¿(ø)ll. Notice that
(*) ll r(¿) ll' : p(E* E) : D¡ T, ("n)* oo) : D,,,,i Tloi'l' . Moreover (**)

llD(E)ll' : p(E* D2(E)) : -p(8.(d7@) + al,1ø¡¡¡

by definition of D and the proof of Lemma 2.8.7, Now dfl(,Ð) : D¿ 62,(a¡)o¿ and
d?(E) : lo ö2,(a)o¿. Hence

rr (8. (d?(E) + a?@))) : 
å t ({on). t?{on) + (ai). tlla¿¡)

Then (x**)

-p(8.(d?"(E) + d7@Ð) : - I D u r ((ai). 62,(ar) + þi). 0l (au)¡

- T Do(@n). 6',(on)) o,o + ((ai). 6l (ø¿ ) ) o,o

2tr l r,r,n(r2 + s2)lar,rl2

as ô.r(ai) : -4trDr,r12o\,ru"us and 6r(o¿) : -4trDr,r,is2ai,ru'ut . Hence if E(n) is a

sequence in Mz(Aù such that limp,llt@@) - nØDllo: 0 then lo(p)',,,-a(n)i,,1-+
0 and (r2 + s2¡t/zlo(p)i,, - o(r)i,,:-+ 0 by (*) (**) and (***) for all i:7,2,3,4 and
r,s e 22. One continues by induction on the graph norms llt@)llo^: ll¿(,E)ll +
llD*{E)ll to find that that ll'@@) - E("))llo- + 0 implies lo(p)i, - a(n)i,,1 -+ 0
and (r2 + s2)^lz1a1p)i,"- o(n)i,,| -+ 0 for all i : I,2,3,4 and r,s e 22. Hence,

it t(E(n)) is Cauchy in the graph norms ll,ll¿- for all rn € N U {0} then ,E(rz) is

Cauchy in the seminorms of rapid decay, (r2 + s2¡^/'loo(p)r,, - o(r)I,rl -+ 0 for all
r, s e Z2 and m € N U {0}. Hence, by closure of "4,6 in the seminorms of rapid deca¡
a'(n) -+ a' e As for all z¿ € N, i : I,2,3,4. Hence E(n) -+ E e Mz(Ap) where

E - l¿a'o¿. In summar¡ for any Cauchy sequence t/E(n)) c /M2(,Ae)) in the
Iocally convex topology determined by the graph norms ll.ll¿- for all rn € NU {0}
there exists E e M2(As) such that t (E(n)) -+ {E). Hence f/fl, which is the closure of
the invariant core tWz(A¡,) in the locally convex topology of graph norms, is contained
in LMz(Ae)). n
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2.8.3 The Riemannian Geometry of A6.

Let 0 be irrational. The following lemmas will enable us to prove the irrational
rotation C*-algebra ,4B satisfies the axioms of compact Riemannian geometry. They
are basic modifications of the statements in [cs] and establish the GNS representation
(Hp,rp,D6) of the Riemannian cycle (M2("4e),p, ô) over ,4p is 2-dimensional.

Lemma 2.8.10 Let(Hp,np,Dt) and A6 be as aboue and f (r): (I+r2)-r. Then

(i) l@¡) € L1,çe, and,

(ii) Tr"(af (D6)) : r(a) for all a e Ae and aII a e D,.

Proof Let A:: A0, D :: Dt and to:: t. Let E e Mn(A). Consider D2{E) :
-r'((6uo1+ 6,o2)28) : t(-(62rIz+ 6312)E). The spectrum of D2 is hence reduced
to the spectrum of A : -6'" - 6?, We follow [vr, 4]. It is easily computed that,
for each pair (r, s) e Z, A has discrete eigenvalues 4tr(r2 * s2) with eigenelements
c1'u,r'us *c2u-rus lcguru-s *c4u-ry-s for constants crrczrcytc4. Note that the zero
value has eigenspace spanned by 1. Hence A-1, defined as 0 on the finite dimensional
kernel of A, is compact as it has discrete eigenvalues of multiplicity 4 with limit point
zero. Then D-2, defrned as zero on the finite dimensional kernel of D2,, has the same
discrete eigenvalues with multiplicity 16. Let À¡,' be the eigenvalues of D-2 listed
in decreasing order with multiplicity. Let ,9n be the circle of radius .R. Let l/¿ be
the number of eigenvalues, Iisted with multiplicity, such tlnat 12 + s2 < R2. Then
4R2 < l{n ( 4(2R)2. Hence 2log(n) + alog(2) < los(¡rÃ) < 2tog(rf) + Slog(2).
Then

lim¡¡-1- #;r It fr : 4lim¿--¡- #raD,"*,r<p"(4r)-t(rz ¡ sz)-t
: (2")-t lim¿1* ,*le D,r*r r<p,r(r2 + s2)-1
: (2r)-r2n : \

by the calculation in [vr,4]. Hence D-2 e tr1,6q and Trr(D-2):1for allu e Dr.
As (f + *') '- r-2: (1 + r2)-2r-2 then /(ll) € Lr,* by the spectral theorem.
Moreover f @) - D-2 e h by the Hölder inequality for trp,oo-spaces [s]. Hence
Tr,(aD-2) -- Trr(af (D)) for all a € ,4 and u e D,. Let n(a) :: Trr(al(D)) for
all ¿ € "4 and some a, € D". Then rc is a continuous trace on A by [CcS] and Lemma
L'1.14. We now show rc: r. Consider n(u',ut): n(u*uurut): n(u*urrs*l) :
e2ni0'n(u*uurus) : e2ni0'n(u'ut). Hence n(u'ut)(7 - "2ri0r¡: 0. However, e2ni0' ¡ r
forall r eZ\{0} asdisirrational. Hence n(u'u'):0forallr € Z\i0} and
s € Z. Similarly n(u'u'): 0 for all s € Z\{0} and r e Z. Let a e Fe. Then
rc(a) : rc(D1r,"¡e/ ar,ru'ut): D1r,r)e,f ar,rn(u'ut) : as,gn(7): o0,0. Hence K : T

restricted to .F'B and K: r on ,4 by continuity. !

The other factor to dimension is the orientation. There exists a Hochschild cycle
c e Zz("Ae) given by [cs]

",: å (u-tu-rgz g u - u-ru-rg u g u)
Etrz'

that provides a volume form.
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Lemma 2.8.11 Let c e Zz(Ae) be as aboue. Then no(c) : ot.

Proof Let D:: Dõandno:: zr. Then r(u)*lD,zr(u)] :21/ni'o1andr(u)*[D,zr(u)] :
21/-trio2. Hence r(u).n(u)lD,n(u)llD,n(u)l-r(u)*n(u)lD,n(u)llD,r(u)l : -4tro1o2t
4tro2o1 : Striog. !

Theorem 2.8.L2 Let A6 be the irrational rotation algebra as aboue. Then Ag satis-

fi,es the auioms of compact R'i,emannian geometry.

Proof (R1,R2) Follow from Corollary 2.8.3, Corollary 2.8.9 and Lemma 2.8.11.

We note that I e U(Hp) defined densely by l.Ð : roþ)ro(c)opB : otÛor for all
E e M2(A6) is a real grading element. (R3) Immediate as Atj is a factor. (R4) Follows

as Ä, : t'(M2(A6\ is a rank 4 free "Ap-module such that Lp : Hf by Corollary 2'8.9'
(R5) Lemma 2.8.10. (R6) Lemma 2.8.11. (R7) Lemma 2.8.7 and Remark 2.7.58

establish that the index algebra B : Mz(Ap). Hence A0 -u B by Example 2.L.17.

The result follows as the C*-algebra ,4.p is Poincaré dual to itself [cs]. !

Corollary 2.8.13 The information (A6, Hp,7tp, Dd,") constitutes a compact Rieman-
nian spinp geornetry.

Proof Immediate from Theorem2.8.12 and Corollary 2.8.9(ii) as M2(As) -u Ae.
¡

As a final remark we compute the restriction of the metric sheer ,56 for the sym-
metric,Ap-derivation ô as defined in Definition2.7.37. Let a,b e Ae. Then we denote
by

s ¿ (da, dl) :: - | {u{o"o) {1)ô(ó"p) (1) + d(b"p ) (1)ô(ø"p ) (1))

the'commutative metric'

Theorem 2.8.L4 Let (A6,Hp,Tp,Dt,c) be the compact R'iemanni,an geometry of the

irrational rotati,on C -algebra as aboue. Then

^9¡(4, b) : -g6(d,a,db) + C6þ,b)

where

c6(a,b) : 
Too([0,{o), 

ô,(b)] + [ô,(o), ô,(Ð]) +f,l"r([a,{o), ô,(Ð] - [ô,(o), d,(b)]).

for aII a,b € 46.

Proof We have ô(bon)(ô(oop)(1)) : o1(o$u(a) + o26,(a))ô"(Ð + o2(o$u(a) +
o26,(a))6,(b). The commutation factors arise by commuting d"(b) through ôB(ø)

for a,, þ : uru. tr

Let a: z and b: u. Then g6(d,u,du) : -2rioslu,u]. Hence g¡(du,du) l0 for
the irrational rotation algebra. We compute the metric sheer. FYom ôr(u) :2Jtriu,
6,(u) :0, dr(u) :0 and õr(u) :21/-niu we obtain 2C6(a,b) : iosl6u(ø)'ô,(ö)] :
iqî2\/riut21/-ni,u]: i(2tfri)2osfu,ul - - trioslu,r.,]. Let a,b: u, or alb : u. Then
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gd(dr,du) : -2r:9d(du,du) and C6(u,u):0: C6(u,u). Hence the restriction of
the metric sheer provides a bilinear form

S¿ : A,e x A6 1rp'C,?(Aù)

such that
S 6(u, u) - 2ni,osfu, u] - 2nioslu, uf : Q

and

S6(u,u): ,S¿(u, u) :2n.



Appendix A

4.1 A Result used for the Fundamental Class

Let (f/,r,D) be a base representation of a C*-algebra A. Let A. be the norm
dense ideal of finite supported elements in ,4. of Theorcm !.4.2. Then we defined
p-integrability of a base representation in Definition 1.7.7 and Definition 1.9.1 as the
condition zr(ø)(1 ¡ pz¡-nlz € trr,* for all a € A". In this small section we shall prove

the following result.

Theorem 4.1.1 Let p) L. Let (H,T,D) be a base representation of a C-algebra
A such that r(a)(I ¡ pz¡-n/z e Lt,* for atl a e A". Then t(a)(D - l¡-t e K(H)
forallaeAand,),€C\R.

The proof consists of the following propositions and lemmas.

Lemma A.L.z Let I be a two-sided *-ideal of K(H). Let D : DomD -+ H be

selfad,joint and, S e B(H). Then the following statements are equiualent

(i) s(D + i)-L e I,
(ii) S(D - À)-1 e I for alt À e C\ R.

Proof (ii) + (i) is obvious. (i) + (ii) Let À e C \ R. By the spectral theorem
(D - ¡¡-t is bounded. Moreover (D - ¡¡-t : (D +i)-1 + (i + À)(D + i)-r(D- À)-t.
The result follows from left multiplication by 

^9 
and the ideal properties of .[. ¡

Proposition 4.1.3 Let p ) 0. Let S(l * pz¡-nlz e K(H) where S e B(H) and

D: DornD-+ H. Then S(D -À)-1 €K@) for all À e C\R.

Proof Let n be the least integer greater than p. By hypothesis ^9(1 + D2)-" -
,s(1 + oz¡-n$ ¡ pz¡-(n-n) is compact, Hence S(D - i)-"(D * i)-n : ^9(1 + D2)-"
is compact. Now (D - i)(D + ?)-1 : l, * 2i(D + i)-1 e B(H) by the proof of the
Lemma A.I.2. Hence (D - i)"(D *'i,¡-^ : ((D - i)(D t i)-t¡n is bounded and

^g(1 + Oz¡-n(D - i)"(D i fl-n : S(D + i)-2n is compact. By multiplication by
phases l^9llD + il-2n 's compact. The square root of a compact operator is compact

hence ll.gllD+il-" | : \ßÍD +Tãg is compact. Multiplication by phases implies

l^ellD + il -n is compact. The square root of a compact operator is compact hence

llsllD * il-n/z | : /l^9llD+i¡-"lsl is compact. Multiplication by phases implies

lSllD + il-n/z is compact. We continue by induction to the smallest rn such that

148
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2^ > n. Then l^9llD + i,l-h is compact. Multiplication on the right by the bounded
operator lD +'i¡-t+ç implies l$llD + il-l i. compact. Multiplication by phases
provides S(D + i)-1 ir compact. The result follows from Lemma A.1.2. !

The proof of Theorem 4,1.1 now follows from Proposition 4.1.3 and norm density
of. A. in A.

4.2 Relation of the Fundamental and Signature Classes

4.2.L Basic Definitions

\Me recall the Clifford algebra C1 is defined by

Cr : {Àr * hÀz lÀr, Àz e C,h2 : I}

witha Z2-grading þ t \+h^2 -) Àr -hÀ2. A concrete representation of C1 in
B@'): Mz(c),is provided bv

^,*lT^:,],n*llå],p*lå i,] i; î]
Note that B is implemented by the grading element

r':f 1 o 
I

I o -r l
Let A be a unital C*-algebra. Define

D.-L C .-
0-i
i0

Let (H,F) be the pair of a concrete representation (fI,n) of ,4, and an operator
F e B(H) such rhat F - F*,F, -I,lF,n(a)l e K(H). Then (f/ ØC2,F 8.q,18y)
defines a Kasparov ,4 A C1-C-bimodule. By default (H ø t , F Ø F",1 g y) defines a
Kasparov ,4-C-bimodule by the inclusion A -+,4 I 1 c AØ Ct.

A.2.2 The Signature Class

Let (H o, T p, D) be a real oriented n-dimensional Riemannian representation of a unital
C*-algebra .4 with volume form rr(c). We recall there exists a K-homology class
ÀP-1:: l(Hr,Fn,l)] € I{K(,A, C) called the fundamental class of this representation,
see Remark 2.5.77. As a result of Definition 2.5.11 a volume form zr(c) provides a
grading element in the sense of Definition 2.4.10 when n is even and a trivial grading
when n is odd, see Theorem 2.5.13.

Definition 
^.2,I 

Let (Ho,Tp,D) be an oriented n-dimensional Riemannian repre-
sentation of a C-algebra A wi,th uolume formnp("). Then define the signature class
op e KK(A,C) by oP i:[(Hp,D,r,(c))] whenn is euen andop,:l(HpØCP,D8
F",lØV)l when n is odd.



150 APPENDIX A.

Remark A.2.2 That the signature class op is independent of the choice of volume
form for this representation is immediate from Proposition 2.5,20(i).

Theorem A'.2.3 Let (Hp,np,D) be a real oriented n-dimensional Riemannian rep-

resentation of a C -atgebra A. Then op : (1 + (n, mod 2))^11.

The proof shall consist of the following two propositions.

Proposition A,,2.4 Let n be odd,. Then op :2Àp-t.

Proof Let ø € A. Let np(") :W andrp : T. Then [|,7, r(a)]:0. Let I be a real
grading element. Then {f,W}:0. Hence (Hp,W,l) with representation zr forms a

degenerate Kasparov,4.-C-bimodule.

lo 1'l
Let h: | - ' I t" the concrete representation of C1 into Mz(A). Flom degen-

L10l
erucy l(H, Ø e ,W I å,1 I 1)l is the identity of. KK(A,C). Hence

l(H, Ø C', Foø ¡'", 1 I y)] : l@ p Ø C2, Fo I F", 1 s v)] o [(ãp s C2,W I h, f I 1)].

It is more convenient to write the RHS in matrix form as l@pØÚ,F,t/)] where

/tr-

withrepresentation pof a€.4givenbydiag(zr(ø)). Let St:iFocosútl4lsinúand
3t : W cost*iFosinú. Now consider the norm continuous map [0, $) -+ B(HrøÚ)
given by

Ft:

Clearly we have Fo: F with F¿- fi,lh, p(")l e K(HpSAl) and {F¡,U} : 0. One

checks thar F! -1€ K(HrsAl) using,g¿^9f : F2Dcos2t+sin2¿as [W,Fo1 :9.
Similarly for S¿. The result is we have an operator homotopy from (H o Ø e , f , U) to

GIpØÚ,W I å, L 8 y) @ (HpØÚ,Fn I f'",f 81) where the first direct summand
is degenerate. Then

[(u o ø Ú, Fp Ø F",1 s y)] : Í(H p ØÚ, FDø F'", I I 1)l : [(//p, F¿, f)] @ l(H p,F¿, f )l

by a trivial homotopy of F" to 1 since the grading I I 1 is independent of F.. tr

0

-iFo
0 0 10 00
0 0 ff _ 0 -1 0 0

o w )u- o o f o

w 0 0 0 0l

iFo

0Sú00
sio o 0

000s¿
o o^9;o

0

0

0

0

0
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Proposition 4.2.õ Let n be euen. Then op : \l_t.

Proof Let n(c) - l\/. Then [l,W]:0 and {l,D} :0: {W,D}. Hence define
the Kaspa,rov ,A-Gbimodule (Ht,Ft,t/¿) with representation n¿ : Tpby

Ht: Hp , Ft: Fn , Ut: cos(ú)f + sin(f)\4l

for f € [0, f ]. This provides an operator homotopy between (Ho, Fo,l) and (H,, Fp,w).
¡
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