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Abstract

The elements of non-commutative geometry are presented from an operator al-
gebraic viewpoint. Threaded through the presentation is the example of a spectral
triple associated to a second countable metrisable locally compact oriented manifold
without boundary and without the assumption of spin structure.

Generalisation of the spectral triple associated to such a manifold admits the new
notion of a Riemannian representation of a C*-algebra which directly links to the
standard theory of von Neumann algebras. The involvement of the standard theory
and the reformulation of the axioms of non-commutative geometry in the absence of
spin structure are investigated and presented.

The construction of Riemannian representations of C*-algebras is also considered.
A new generalisation of a symmetric derivation on a von Neumann algebra R provides
the means of constructing Riemannian representations of a C*-subalgebra A C R
associated to a faithful finite trace on R. The interaction between the standard theory
and the generalised symmetric derivation provides new analysis into the structure of
K-cycles.
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Summary

There exist many notions of geometry in mathematics inherited from the elements of
Euclid. Non-commutative geometry is a broad term used in many fields for the
generalisation of algebraic geometric notions to non-Abelian base rings and non-
commutative algebraic structures. '

Non-commutative geometry, in this thesis, refers to the field drawn and established
from the parent fields of operator algebras and differential geometry by the work of
numerous mathematicians.

From the inception of operator algebras in the papers of Murray and von Neu-
mann [MN], the inception and identification of C*-algebras by the works of Gelfand,
Naimark and Segal [GN] [Se], the modular theory of Tomita [To] [Tk], the development
of standard forms, crossed products of and derivations on von Neumann algebras by
Araki, Haagerup, Takesaki, Sakai [Ar] [Ha] [Tk2] [Sak1] and others, and the classifica-
tion of hyperfinite factors by Connes [C1] [C2], C*-algebras and their automorphisms
have been inherently viewed as topological and ergodic dynamics. The topological
view broadened with the development of K-theory, homology and cohomology theo-
ries for C*-algebras. The measure theoretic view broadened with the development of
non-commutative integration [Se2] and generalised Radon-Nikodym theorems. The
introduction of Dirac operators by Dirac [Dir] and the culminating index theory of
Atiyah and Singer that linked Fredholm operators associated to Dirac operators and
characteristic classes [AS] drew algebraic differential geometry into the field of op-
erator algebras. From these pieces Connes drew out a generalisation of differential
geometry and established it by a series of foundation papers [C3]-[C5] that began a
new paradigm in geometry.

This thesis, essentially, views the field of non-commutative geometry inside the
parent field of operator algebras. An overview of differential geometry in Section
1.1 presents a differential calculus as the elements of a topological space, a space of
functions on the topological space, derivation and integration of the functions, and
a metric. The remainder of chapter 1, following for the most part the approach
of Connes, describes the manner in which the field of operator algebras provides
the elements of a (generalised) differential calculus. This is done, where possible,
through collation of results in the theory of C*-algebras and von Neumann algebras,
for example Theorems 1.2.1, 1.2.8, 1.2.9, 1.2.11, 1.5.2, 1.5.6. Where necessary direct
citation of results are used as background to the theory, such as Theorems 1.2.6
(Gel’fand-Naimark-Segal), 1.2.12 (Gel’fand), 1.5.5 (Reisz-Markov), and Section 1.6.2
(Radon-Nikodym).

There are three original facets to the presentation of the background of non-
commutative geometry contained in chapter 1.
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Firstly, the presentation itself is the collation of an extensive field.

Secondly, we introduce the notion of a base representation of a C*-algebra in Defi-
nition 1.4.3. Let A be a C*-algebra. A base representation (H,r, D) of the C*-algebra
A is a separable representation (H, ) of A and a selfadjoint operator D : DomD — H.
A base representation of a C*-algebra leads to the notion of a C}-representation, a
C°-representation and an integrable representation of a C*-algebra, Definitions 1.4.4,
1.4.8 and 1.7.7 respectively. In the literature the same information is contained in
the notion of a smooth spectral triple. Retaining an explicit definition in terms of the
representation theory of the C*-algebra has notational and conceptual advantages.
As an example, Section 1.5.3 introduces the notion of disintegration of base repre-
sentations in terms of the established theory of disintegration of representations of
C*-algebras and spectral representations of the selfadjoint operator D.

Thirdly, there is a sequential presentation, through Proposition 1.3.6, Section
1.3.6, Example 1.4.13, Example 1.5.4, Example 1.5.10, Example 1.6.10, Example
1.7.17 and Example 1.8.3, of the base representation (L?(X,A*X),n;,d + d*) asso-
ciated to the C*-algebra Cp(X). Here X is a second countable metrisable locally
compact oriented manifold without boundary, Cy(X) is the C*-algebra of complex
valued functions on X that vanish at infinity, A*X is the exterior bundle of differen-
tial forms on X, d + d* is the selfadjoint extension of the signature operator and m
is the action of Co(X) on the Hilbert space L?(X,A*X) by left multiplication. This
presentation lays the framework for the original sections of Chapter 2.

The initial sections of Chapter 2, following still for the most part the approach of
Connes, describes the deeper aspects of generalising algebraic differential geometry in
the field of operator algebras. Section 2.1 introduces Zs-graded Hilbert modules over
C*-algebras. This admits the discussion of finite projective modules over C*-algebras,
Definition 2.1.4, the Serre-Swan Theorem, Example 2.1.5, and Kasparov’s bivariant
KK-theory for C*-algebras, Section 2.4. Section 2.5 introduces the Hochschild and
Cyclic homology of a C*-algebra. This admits the discussion of non-commutative
De-Rham differential forms and cohomology, Section 2.5.1 and Section 2.5.2, and
non-commutative volume forms, Section 2.5.3. The background results of Sections
2.1, 2.2, 2.4 and 2.5, as in chapter 1, contain collations or direct citation such as
Theorem 2.1.9 (Serre-Swan), Theorems 2.4.2, 2.4.5, 2.4.6 (Kasparov), and Theorems
2.4.11, 2.5.4, 2.5.5, 2.5.7, 2.5.8. The initial sections of Chapter 2 contain the following
original facets.

Section 2.3 contains an original presentation of the concept of Riemannian alge-
braic structure in non-commutative geometry. Theorems 2.3.1, 2.3.2 and 2.3.3 detail
the Zs-graded Hilbert modules associated to a second countable metrisable locally
compact oriented manifold X with no boundary. Theorem 2.3.4 identifies the con-
struction of the Hilbert modules associated to X with the standard form associated
to the base representation (L2(X,A*X),m,d + d*) of the C*-algebra Cy(X) as dis-
cussed in Remark 1.6.12 and Theorem 1.7.21. Theorem 2.3.4 in effect links Remark
1.6.12 and Theorem 1.7.21 with Theorems 2.3.2 and Theorem 2.3.3. This identifica-
tion, as discussed in Sections 2.3.3 and 2.3.4, elucidates a Riemannian structure that
generalises to base representations of arbitrary C*-algebras. The notion of a Rie-
mannian representation of a C*-algebra, Definition 2.3.5, constitutes the first major
contribution of the thesis.
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We remark that no spin or complexified spin structure is assumed in Section 2.3.
Spin representation are recovered through the notion of a Morita equivalence, when
it exists, see Definitions 2.3.7 and 2.3.8. The absence of spin structure necessitates
the reformulation of Poincaré Duality, Example 2.4.4 and Section 2.6.1, and a funda-
mental class, Section 2.4.4, distinct from the presentation of Connes [€3, C]. Section
2.4.4 contains minor original results and notions of a real grading and fundamental
class for a Riemannian representation (H,m, D) of a C*-algebra A. This involves the
introduction of an index algebra, Definition 2.4.15, intended to be the Poincaré dual
of the C*-algebra A.

In section 2.5.3 the absence of spin structure necessitates a distinct relationship be-
tween a volume form and a real grading. We note that, independent of the existence
of volume forms, parity gradings always exist for a Riemannian representation by
virtue of the standard theory of von Neumann algebras, see Proposition 2.5.12. The
relationship between volume forms and gradings is summarised in Theorem 2.5.13,
which neatly generalises Theorem 2.3.1. The notion of a real Riemannian representa-
tion, necessarily more general than the notion of reality presented in [C4], appears in
Theorem 2.5.14 and Definition 2.5.15. Section 2.5.4 includes a criteria for uniqueness
of a volume form for a Riemannian representation, Proposition 2.5.20. This result is
gained, as with the majority of the results of Section 2.3, by the direct link between
Riemannian representations and the standard theory of von Neumann algebras.

The exposition of Sections 1.2 through to 2.5, extensive as they may be, are
the required background to present the axioms of compact Riemannian geometry
in Section 2.6. The axioms, see Section 2.6.2, are closely based upon the axioms
presented in [C3] with modifications necessitated by the absence of spin structure.
The purpose of the axioms is this: a commutative unital *-algebra A should satisfy
the axioms of compact Riemannian geometry if and only if A = C(X) where X is a
metrisable compact manifold without boundary. The axioms entail the contribution
of an original axiom, the axiom of symmetry, and the necessity of this axiom is
demonstrated by Proposition 2.6.6.

We remark that Section 2.6 has been, hopefully, designed as a starting point
for the reader familiar with the extensive background of non-commutative geometry.
Section 2.6.1 summarises the contribution of a Riemannian representation, a notion
of this thesis, and back references definitions, concepts and notations to the revelant
preceding sections.

Section 2.6.3 contains the details of the statement: a commutative unital *-algebra
A should satisfy the axioms of compact Riemannian geometry if and only if A = C'(X)
where X is a metrisable compact manifold without boundary. Theorem 2.6.9 proves
the “if’ direction. This culminates the exposition of the base representation associated
to a manifold that is threaded through the thesis in the results Proposition 1.3.6, Sec-
tion 1.3.6, Example 1.4.13, Example 1.5.4, Example 1.5.10, Example 1.6.10, Example
1.7.17, Example 1.8.3, Theorem 2.3.1, Theorem 2.3.4, Theorem 2.4.21 and Example
2.5.6. The reconstruction theorem of Connes [C3] is cited, modified as necessary in
the absence of spin structure, as Theorem 2.6.10 and provides the ‘only if’ direction.

Sections 2.1 to 2.6 in addition to Sections 1.1 to 1.9 complete the presentation of
Riemannian Non-commutative Geometry as set in the field of operator algebras. We
note the key definition of a Riemannian representation (Hp,7,, D) of a C*-algebra A4,



Definition 2.3.5, involves the GNS representation (H,, 7,) associated to a faithful state
p of a von Neumann algebra R such that A C R. The GNS representation (H,,7,)
can be constructed from the abstract information (R, p). However, the selfadjoint
operator D : DomD — H, is concrete. The natural question to ask is whether
Riemannian representations can be constructed from abstract information? Section
2.7 culminates in answering the question in the affirmative when p is a trace. In
Section 2.7 the approach of a Riemannian representation finds it full application and
validation.

Section 2.7.1 discusses the established notion of a symmetric derivation § on von
Neumann algebra R, see Definition 2.7.1. Established results, collated in Theorem
2.7.3, allows the construction of triples (H,, 7, D) from the abstract information of an
inner K-cycle (R, p, §) where D is the spatial implementer of the symmetric derivation
d, see Definition 2.7.7. The definition of an inner Riemannian cycle (R, p,d) over a
C*-algebra, Definition 2.7.9, follows with the result that (H,, m,, D) is a Riemannian
representation of A, Theorem 2.7.10.

The kinds of Riemannian representations constructed from inner Riemannian cy-
cles are limited however. They do not include the base representation (L?(X, A*X), m;, d+
d*) of the C*-algebra Cy(X) discussed previously. Here X is a second countable
metrisable locally compact oriented manifold with no boundary. Section 2.7.2 con-
tains the second major contribution of the thesis. It introduces the concept of a
symmetric A-derivation on a von Neumann algebra R such that A C R, see Defi-
nition 2.7.25. Section 2.7.3 defines an abstract K-cycle (R, p,d) over a *-algebra A
where R is a von Neumann algebra A C R, p is a faithful state on R and ¢ is a sym-
metric A-derivation, see Definition 2.7.29. The GNS representation associated to an
abstract K-cycle, see Definition 2.7.31, is the field of interaction between symmetric
A-derivations, K-cycles and the standard theory of von Neumann algebras. Intrinsic
gtructural and geometric results follow in Remarks 2.7.35, 2.7.39, 2.7.44 and 2.7.48.
The highlight of the remarks is probably the notion of the Laplacian L5 associated
to a symmetric A-derivation § and the relation between positivity of the Laplacian
and the modular flow on R, see Theorem 2.7.41, Corollary 2.7.42, Remark 2.7.44 and
Theorem 2.7.47. Section 2.7.3 concludes with the result that a Riemannian represen-
tation of a C*-algebra A arising from a trace is equivalent to the GNS representation
of a tracial abstract K-cycle, see Theorem 2.7.52. This result reduces the study of
tracial Riemannian representations of a C*-algebra A to symmetric A-derivations and
traces on a'von Neumann algebra containing A.

Section 2.7.4 attempts the converse to Theorem 2.7.52. It defines a Riemannian
cycle over a C*-algebra A as an abstract K-cycle whose associated GNS represen-
tation is a Riemannian representation of A, see Definition 2.7.54. While the means
of abstractly identifying a Riemannian cycle is beyond the present treatment, a par-
tial converse to Theorem 2.7.52 is derived. Theorem 2.7.56 motivates a subclass of
Riemannian cycles called uniform positive Riemannian cycles, see Definition 2.7.57.
Theorem 2.7.59 is a generalised GNS result that constructs a Riemannian represen-
tation (H,,m,, Ds) of the C*-algebra A associated to a uniform positive Riemannian
cycle (R, p,d) over A when p is a trace. The results and notions of Sections 2.7.2,
2.7.3 and 2.7.4 are completely new as far as we know.

We remark that the notion of a symmetric A-derivation produces a natural bilin-
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ear map S5 : A X A — R where A is a Frechet pre-C*-algebra of the C*-algebra A
contained in the von Neumann algebra R, see Remark 2.7.35. The map Ss is called
the metric sheer of the A-derivation §, Definition 2.7.37. The metric sheer, a com-
pletely general notion applicable to any abstract K-cycle (R, p, §) over A, is shown to
correspond to the Riemannian metric when A = C(X) and X is a compact metrisable
oriented manifold with no boundary, see Example 2.7.61.

The thesis concludes with an example of the concepts in Section 2.7. Section
2.8 details the Riemannian geometry associated to an irrational rotation algebra
Ap. The original nature of this presentation lies in constructing a Riemannian cycle
(Mo (Ay), 8, p) associated to an irrational rotation algebra Ay, see Theorem 2.8.8. The
general construction theorems of Section 2.7 provide a Riemannian representation as-
sociated to the cycle, see Corollary 2.8.9, which is proved to admit a Riemannian
geometry, Theorem 2.8.12. The well-known spin geometry of an irrational rotation
algebra, abundant in the literature, can then be derived if necessary from the Morita
equivalence of Ay and M3(Ag), Corollary 2.8.13. Section 2.8 concludes with the proof
that the metric sheer of the Ag-derivation §, see Definition 2.7.37, provides an orthog-
onal bilinear map S5 : Ag X Ag — m,(22(Ap)) in the sense Ss(u,u) = 2m = S5(v,v)
and S5(u,v) = 0 where uv = e?™®yu, see Theorem 2.8.14. This result, coupled with
the result in Example 2.7.61 that Ss = —g for the usual commutative torus where g
is the Riemannian metric of the torus, makes the metric sheer Ss a strong candidate
for the role of metric on the non-commutative torus.

Contribution to the field

We summarise the contribution of this thesis to the field of non-commutative geometry
in the following manner.

The results of the thesis are divided into six possible categories.

The results in category one provide context or background for the topic of the
thesis. Obviously they entail no original contribution to the field and are unlisted in
the table below.

The results in category two are original collations of results in category one. The
collation and interweaving of existing results in the field are viewed as contributions,
albeit contributions of review and exposition, that may be of interest to readers.

The results in category three include new presentations or minor extensions of ex-
isting material in the field. The results in category three include preparatory lemmas
and propositions for results and notions in category four or five, and sufficiently origi-
nal presentations in an original manner that extend existing material and/or precedes
and/or elucidates results in category four or five.

The results in category four are new results and/or notions that contain a contri-
bution to the field. These results include original extensions of existing material in
the field.

The results in category five are new results and/or notions that contain a major
original contribution to the field. These results include major extensions or generali-
sations of existing material in the field and solutions to conjectures in the field. There
are four notions and two results of category five in this thesis.

The results in category six are contributions to mathematics that are field gen-
erative, field establishing or field unifying. These results include novel directions in
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mathematics, foundation theorems in a mathematical field, cross-field or para-field
results, and solutions to major conjectures in a mathematical field. There are no

results of category six in this thesis.
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Chapter 1

Elements of Non-commutative
Geometry

The ‘quantum’ or non-commutative differential calculus is at the core of Connes’ non-
commutative geometry [C, IV,VI.1]. To start with the most basic form of this calculus
we require

(i) a separable C*-algebra A,

(ii) a concrete representation of the C*-algebra A
m: A— B(H)

onto a separable Hilbert space H,

(iii) and a selfadjoint linear operator

D : DomD — H.

Demonstrating in what sense the triple (4, H, D) is a non-commutative generalisa-
tion of differential calculus is the purpose of this chapter. We review the essential
elements of commutative calculus, from our point of view, and then explain the non-
commutative emulations in the subsequent sections.

1.1 Review of Calculus and Differential Geometry

1.1.1 Basic Calculus

Consider the metric space (R, d) where the metric d is defined by d(z,y) := |z —y] for
z,y € R. The metric topology is defined by the base sets I(z, h) := {y € R|d(z,y) <
h} = (z — h,z + h) for € R,h > 0. The directed set {I(z,h)}r>0 for fixed z € R
defines a net in this topology that converges to {z}. We consider the point sets {x} the
irreducible components of the topology. Irreducible in the sense E C {z} = E = {z}.
Components in the sense F = Uzer{z} for all F CR.

Let f : R = R be a function and ~ the equivalence relation defined by z ~ y if
f(z) = f(y). Then f defines a new topological space R/~ with base sets f(I(z,h)).
By this method we gain new topological spaces and new (inequivalent) presentations

2
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of the standard interval topology. Let f : R — R be a continuous function. First of
all, a continuous function has the property of preserving convergence of nets in the
standard topology. Moreover, the condition

lim £(I(z, h)) = f({z}) = {F (@)}

quantifies a relationship between the topological spaces R and R/~ at their most irre-
ducible structural level. Specification of this relationship is exactly what a continuous
function is.

Calculus carries the same ideas to the metric structure. Let f be a continuous
function. The map (do f)(z,y) = d(f(z), f(y)) : Rx R — [0, 00) defines a continuous
semi-metric on R, a metric on the quotient space R/~, and from it the topology with
base sets f(I(z,h)). We define

iy g fl@+h)— flz—h)
Fe) = e — =R

(do f)(z+ h,z — h))
d(z + h,z — h)

= ’lli_z\rz)sgn(f(x-l—h)_f(w_h))

if it exists as the derivative of f at the limit {z}. To say a function is differentiable for
all z € R is exactly to say a proportion or relation exists between topological structures
defined by (semi)-metrics d o f and d. For any continuous function f we have the set
R¢(z) = {sgn(f(z+h) —f(x—h))%f_—;’;’f—;)hn}bo that encodes the metric relation
between the base sets of the topologies. The distinction of differentiable functions
amongst continuous functions is this relationship exists between the metric structures
at the most irreducible level of the topology. In the case of the metric topology of
R this means points {r} C R. The function f'(z) = lim,_.o Rf(z) quantifies that
relationship at each point. This is highlighted in the Leibniz notation,

4

@) = 1), &) = f(2)da.

In common terminology, the symbol df (z) is an ‘infinitesimal’ in the metric structure
do f, defined as above in proportion to the ‘infinitesimal’ dz of the metric structure
d at that point. We define the ‘length’ of the infinitesimal df () as

|df|(z) := | f'(z)|dz.

In differentiation we started with a continuous function f, and for a particular few
we obtained a function f’ that quantified a pointwise relationship between the metric
spaces (R,d) and (R/~, do f). Newton’s Fundamental Theorem of Calculus says
that any continuous function g is itself quantifying a pointwise relationship between
such spaces. In particular, there exists an anti-derivative G such that g(z) = G'(z)
is quantifying the pointwise relationship between (R, d) and (R/~, d o G). An anti-
derivative G is defined by integration,

for any fixed a € R.
The depth of this result in relation to the geometry of the real line cannot be
understated. The metric relationship existing at the irreducible level of the topology
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allows us to define a new semi-metric on R for every differentiable function f from
the integral and the derivative by,

dy(z,y) = / R / 15t

for all z,y € R Here fm,y denotes [Y if z < y and f; if £ > y in line with the
standard orientation on R. The re-presentation of the metric structure has allowed
definitions of ‘distance’ between points with greater generality. Simultaneously, as far
as pointwise proportional alteration of the metric is concerned, ‘distance’ has been
classified.

1.1.2 Multivariable Calculus

Let X = R* with metric d(z,y) = /(21 —¥1)% + ... + (zn —yn)? for z,y € R".
The standard topology is given by base sets B(z,h) := {y € R* |d(z,y) < h} for
€ R h >0 Let f:R* — R™ be a continuous function, which can be denoted
using the standard basis of R™ as f = (fi,..., fm) where f; : R® — R are continuous
functions for j = 1,..,m. Let L(R",R™) denote the continuous linear functions. As
in basic calculus we are interested in relations between (R*,d) and (R™,d o f). We
can begin to analyse the geometric consequences of the mapping f by using basic
calculus on each of the independent variables. Define the partial derivatives,

O =l FE B )= 013 o)

foralli =1,..,n,7 =1,...,m. We say [ is continuously differentiable if the partial
derivatives exist and are continuous. We denote this by f € C*(R*,R™) or the

terminology f is C'!. The m x n matrix associated to a C'-function f = (fy, ..., fm) :
R* — R™,
Je(21, 00y Bn) i= [0i (B2, ooy Tn) iz, . 1, j=1,....m

is called the Jacobian of f at (zi,...,zp) € R* [Cr, 6.4]. The Jacobian of f is the
pointwise standard matrix representation of the function

df : B* - L(R",R™)

called the derivative of f, [cr, Thm6.7,Thm6.8]. The chain rule in the multivariable
setting for go f : R* —» R™, where f : R* — RP and g: RP — R™ are differentiable,
is [Cr, 6.12]

Jfog(l'b FoLS) xn) = Jg(f(wla el "En))‘]f(xla oo wn)'

Recall the bijection L(R™,R™) = R, which introduces a metric topology on
L(R™, R™). Derivation is then a map

d: CY{R",R™) —» C(R", L(R*,R™))

and the function df € C(R", L(R",R™)), provided its partial derivatives exist, has
the derivative,
d(df) : B* — L(R®, L(R*,R™)).
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The partial derivatives of df exist and are continuous if 0;0; f exist and are continuous
for 4,5 = 1,...,n. We denote those functions such that 0;0;f exist and are continuous
for i,j = 1,...,n by C?(R*,R™). From the isomorphism L(R*, L(R*,R™)) — L(R® x
R®,R™), where the right hand side denotes multilinear maps, we have the second
derivative

d*: C*(R*,R™) - C(R*, L(R" x R*,R™)).

We can continue this process indefinitely to define CP(R*, R™) for p € N as functions
such that 9;,...0;, f exist and are continuous and

& : CP(R*,R™) - C(R", L((R*)*?, R™)).

The class of smooth or infinitely differentiable functions C*°(R"*, R™) are those such
that f € CP(R*,R™) for all p € N.

Like the derivative in basic calculus, the Jacobian of f provides a measure of
what the mapping f does to the metric relationships between the points of R" in the
context of the metric space R™. For example, the Jacobian of f contains information
on the tangent spaces, which are the multidimensional versions of the ratio f' = %
in basic calculus above. Specifically, let n < m, f : R* — R™ be differentiable
and z € R*. Then Jf(x) - (k1,...,kp) for (k1,...,kn) € R" defines vectors in the n-
dimensional tangent space to the surface f(R") C R™ at the point f(z) € R™ [Cr,
6.5].

We also use the Jacobian of f, the generalisation of the derivative of f, to define
‘infinitesimal volumes’ on f(R™). Recall from basic calculus the pointwise relationship

ldf|(z) = |f'(z)|dz

of infinitesimal lengths in (R,d) and (R/~, d o f). Similarly we want to measure
the pointwise variation in volumes under the mapping f : R* — f(R"). Let V :=
{v1,...,vn} be n vectors in R™ and M (V) be the m X n matrix formed by taking
v; as the i!-column. Let E(V) := {z € R™|z = Y0P twwi , t; € [0,1],Y,t; =
1} be the closed convex hull of {v,...,u5}. This can be intuitively thought of as
a n-dimensional parallelogram in R™. Then the volume of this region is given by
Vol(E(V)) = +/det(M(V)*M(V)) where * denotes the transpose of M (V) [sr, XI
Cor2.2]. Let e; € R* be the i*® standard basis vector. We recall that the vectors
u; = Jg(x) - £; = i®-column of J;(x) span the tangent space of f(R) at f(z). Hence
we define the infinitesimal ‘volume’ element by

|df |(z1, ...2n) = \/det(.]f(:m, ey ) (21, oy T ) ) dTy DTy,
Let x € R* and f be differentiable. We call the function
gr : R* = L(R*,R") , g¢(z) := J¢(z)* J¢ ()

the Riemannian metric of f(R). We commonly shorten the notation of infinitesimals
to |df|(z) = /det(gf(z))dz. The metric allows us, in particular, to redefine the
volume of an open set A € R* with standard orientation via [Sr, X1.3,XI Prop2.4]

/f O /A Jdet (g7 (2))do
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which is also referred to as the ‘surface area’ of f(A) C R™.

Particularly, and importantly, we can now measure distance and direction along
oriented ‘paths’ in R™. That is, orientation preserving embeddings v : R = R™ such
that +y; is piecewise continuous. The arclength distance between points on the path,
a,b € 7(R), is given by

d.(a,b :=/ d =/ Yi(z)2dz
1@ M oo V; 4

using the fact Jy(z) = (71 (2), ..., Y (2)).

There are, of course, many paths v between two points z,y € R*. If we were to
measure d,(z,y) for all such oriented paths, we would find that the straight line £
from z to y provides the ‘shortest’ path. That meaning

dﬁ(xa y) < d’)’(:va y)

for all oriented paths 7y such that z,y € y(R). In fact

d(z,y) = do(z,y) = inf d.(z,v).
(z,y) = de(z,y) e (2, )

This insight extended to surface embeddings f : R* — R™ allows us to define metrics
for subspaces of R™ not so geometrically uniform as the restriction of the standard
distance. Due to the embedding property of f, all oriented paths in the subspace
f(R*) can be defined by the composition f o« : R — R™ where v : R = R”* is an
oriented path in R". We can then define a metric for z,y € f(R*) by

dg(z,y) = igf/ |d(f o v)|

I,y

where 7 is a oriented path connecting f~(z) and f~!(y). The Jacobian of the compo-
sition function can be calculated from the chain rule, Js., = JsJ,. The introduction
of J; entails that ‘shortest distance’ on a path from f(z) to f(y) ‘along’ the surface
f(R) is not necessarily the straight line distance in R™.

Example A simple example is f : R — R® given by f(z,y) = (z,y, 7% + y?). The
image Ct = f(R?) is the positive circular paraboloid in R®. The paths of shortest
distance are straight lines in f~!(C*) = R? which become curved paths on the surface
C*t = f(R?) when mapped into the space R® under f.

We have seen that multivariable calculus involves the principles of basic calculus
of R in conjunction with linear algebra. This combination leads to a richer theory.
We can define length along one-dimensional embeddings or in the multi-dimensional
space, and surfaces have other metric related relationships between points other than
just distance such as torsion and curvature. These concepts are defined and quantified
in the theory of sub-manifolds of R™, which leads to the general abstract theory of
differentiable manifolds.
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1.1.3 Differentiable Manifolds

Let X be a second countable metrisable locally compact n-dimensional topological
manifold with a chosen locally finite atlas

Go: Uy - R*

for & € A a countable indexing set [Sr, IL.1] [St, 5]'. We recall U, are open sets,
sometimes called co-ordinate patches or just patches, such that X = U,U, and ¢, :
Uy — R™ are open and continuous injections. That X is a topological manifold means
on any overlap of patches Wj o := U, N Us the overlap maps

Wh,a = ¢ﬂ @ ¢;1 : d’a(Wﬂ,a) — ¢,3(Wﬂ,a)

are homeomorphisms. The overlap homeomorphisms wg , are maps R" — R™, hence
fall under the multivariable calculus. If the overlap maps are p-differentiable (resp.
smooth), X is called a p-differentiable (resp. smooth) manifold. If the overlap maps
preserve an orientation of R" [Sr, XI.3] then X is called an oriented manifold. Note
these designations are all with respect to the chosen locally finite atlas.

Let X be a topological manifold. Let f : X — R™ be a continuous function. Then
fog;!: R* — R™ is continuous. Let f : X — R™ be a continuous function such
that fog¢,! : R* — R™ is a differentiable function in the multivariable calculus sense
for each a € A. Define the Jacobian and metric of the function f at a point = in a
chart U, by

Ja(fyz) = Jfod,;;l (¢a(z))

and
9a(f, ) := S popst (d’a(x))*‘]fmp;l (#a(z))-

This is valid in each chart. However, in an overlap z € U, N Ug, we could define a
derivative and metric at x using the Jacobian for the function f o ¢;1 or fo ¢El. In
general the two Jacobians will not agree, of course. They are matrix representations
of a linear mapping called the derivative, hence basis dependent. However, they may
not agree even up to a change in basis. Hence the Jacobian of f at a point z € X is
potentially ambiguous. This ambiguity does not exist on a differentiable manifold X
as differentiability of the overlap function wp o ensures Jz(f,z) = Jo(dp,z)Jo(f, z)
[Cr, 6.12]. Hence, on a differentiable manifold X, we say a function f : X — R™ is
differentiable if f o ¢! : R* — R™ is a differentiable function for each @ € A. A
differentiable function f : X — R™ has a well-defined Jacobian J(z) at each point
ze X,

Let X be a second countable metrisable locally compact differentiable manifold.
Let « € X and v,w € R*. We say (U,,da,w) and (Us, ¢s,v) are equivalent if

!We recall for topological spaces: (1) second countable, locally compact and Hausdorff = Lindeldf,
locally compact and Hausdorff = o-locally compact = paracompact and every cover has a countable
locally finite subcover [FI, 10] [St, 5], and (2) second countable, locally compact and Hausdorff
= regular with o-locally finite base & metrisable [FI, 10] [St, 5]. As a result second countable
metrisable locally compact topological spaces are equivalent to second countable locally compact
Hausdorff topological spaces. We also note: (3) second countable, metrisable = paracompact with
countable base [St, 5], however (4) second countable, metrisable # locally compact.
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w = Jo(¢g, z)v. This is an equivalence relation on such triples and the equivalence
class [v] is called a tangent vector at € X. The tangent space T; X is defined to be
the set of all tangent vectors at = and proved to be a n-dimensional vector space. We
denote by L(W,V) the continuous linear functions from a topological vector space
W to a topological vector space V, and by L(W x W, V) the continuous multilinear
functions from W x W — V. We have the well defined derivative of f : X — R™,

df : x — L(T,X,R™) , df (z)[v] := Jo(f, )V

which is independent of the choice of (Uy,dq,v) € [v]. Similarly metrics are well
defined independent of the chart

9(f) 1z LT X, T X) , g(f,2)[v] := [9a(f, 2)v].

Metrics are equivalently viewed as multilinear symmetric functionals,
9(f) x> LT X x T X,R) , g(f,z)([v], [w]) = v"galf, z)w.

Let X be a second countable metrisable locally compact p-differentiable (resp. smooth)
manifold. For each z € X, let u(z) : R* — R" be a p-differentiable (resp. smooth)
bijective function. Define the p-differentiable (resp. smooth) function b : X — R* by
h(z) := w(z)(Po(z)) when z € U, for some a. We call the metric g(h) a Riemannian
metric on the p-differentiable (resp. smooth) manifold X. Henceforth we shall refer
only to Riemannian metrics of the manifold X.

Let X be a second countable metrisable locally compact differentiable manifold
and g(h) a Riemannian metric. Let f : X — R such that fog;! : R* — Ris Lebesgue
measurable for each o« € A. We can define the integral of f over an oriented patch
U, C X using multivariable calculus,

£ (2)dUq (z) = / f 0 621 (2)v/Aet(galhr 2)) dda a).
Ua ¢a(Ua)

To use this formula to obtain a linear positive definite functional on the set of all such
functions we have to (1) sum the contributions from each chart without ‘overcounting’
the contributions on the overlaps, and (2) the orientation of the patches must be
consistent so that cancellation does not occur in the summation. Let f : X — R
be such that f o ¢,! : R* — R is Lebesgue measurable for each a € A. Define the
support of the function f as supp(f) := {z € X | f(z) # 0}. As the atlas is locally
finite each £ € X is contained in the intersection of a finite number of patches and
there exists a continuous partition of unity [Sr, IT Cor3.4]. A partition of unity is a
set of continuous functions {p, : X — [0,1]} such that supp(pa) = Us and

Z pa(z) =1

{a | (IJEUa}

for all z € X. The functions p, can be chosen to be smooth if X is a smooth manifold.
The integral of f, if it exists, is defined by

L) =3 /U Pal() f (2)dUs
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and is linear and positive definite when X is an oriented manifold. An alternative
notation for this formula is

1,(f) = /X £ (2)v/3ct(g(h, 2)) de.

Let X be a second countable metrisable locally compact differentiable manifold
with Riemannian metric g(h). Let E be a Borel subset of X and denote by xz(z) the
characteristic function of E2. We refer to the measure &, defined by &,(E) := I,(xE)
as the Lebesgue measure of the pair (X, g(h)).

It is standard in differential geometry to denote the pair of a differentiable second
countable metrisable locally compact manifold and a chosen metric by (X, g(h)). We
shall not be considering changes of metric however, so after this section we shall
usually denote such a pair by X and consider the metric to be present, fixed and
denoted by g without reference to the function k. We denote the' measure £, associated
to (X, ¢) as just £, and call ¢ the Lebesgue measure of X.

With integration and derivation now defined on a differentiable manifold, distances
and directions can be defined for oriented paths v : R — X in complete analogy
with the multivariable case. This leads us to the metric distance on a differentiable
manifold. Let z,y € X, then

d(z,y) == inf,y/

T,

|dy|
Yy

for all oriented paths < such that z,y € y(R). The metric d : X x X — [0,00) is
called the geodesic metric on X.

We have overviewed the basic application of multivariable calculus in defining
calculus on a differentiable manifold. We return later to algebraic structures on a
differentiable manifold based on the calculus introduced above, see section 1.3. We
note we have taken the derivative and the integral of real-valued functions thus faxr.
We shall henceforth consider all functions to be complex valued unless explicitly
stated. As f(z) = fi(z) +if2(z) for fi, fo real-valued, differentiation and integration
are defined by linear extension. -

Non-Commutative Calculus (Part 1)

In the review above of multivariable calculus we encountered the following basic ele-
ments that, together with linear algebra, provided the theory of multivariable calculus:

(i) the second countable metrisable locally compact topological space X,

(i) the algebra of continuous complex valued functions C(X) on the space X,

*We recall the Borel sets are the elements of the algebra B(X) of subsets of X generated by
complements, countable unions and countable intersections of open subsets of X. The characteristic
function of a Borel set F is the function that is 1 on E and 0 on X \ E.
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(iii) the derivative operation on differentiable functions C'(X) C C(X),
d:CYX)— C(X,L(TX,C)),

where T'X := Ugze xT; X is the disjoint union of tangent spaces and
C(X,L(TX,C)) are the continuous functions X — L(T'X,C),

(iv) the integral of a continuous function over the space X, which can be viewed
as a linear positive definite functional

I:C(X) ~ CU {oo}.

(v) a geodesic metric derived from the integral and derivative.

In this chapter we are concerned with the emulation of the elements (i)-(v) in
the non-commutative environment of the triple (A, H, D) defined in the introduction.
In part 1 we deal with the elements (i)-(iii). Section 1.2 identifies the separable
C*-algebra A as a counterpart of the continuous vanishing at infinity complex valued
functions on a second countable metrisable locally compact topological space, and the

structure spaces of the C*-algebra PS(A) Ly 4 ke Prim(A) as the counterpart of a
second countable metrisable locally compact topological space. Section 1.3 introduces
the exterior derivative on a differentiable manifold X, which is a generalisation of the
derivative operation. Section 1.4 identifies the derivation 7(a) — [D, m(a)] for a subset
A! C A as a counterpart to the derivative operation and introduces the counterpart
to exterior derivation.

Basic Definitions

Let V and W be topological vector spaces over C. All vector spaces we consider shall
be vector spaces over the field of complex numbers C. We denote by L(V,W) the
continuous linear functions V — W. Let V*P denote the p'* Cartesian product of
V. We denote by L(V*P, W) the continuous p-multilinear functions V*? — W, and
Lo(V*P, W) the antisymmetric elements of L(V*P,W). An involution *: V' — V of a
topological vector space is a conjugate linear map such that v** = (v*)* =v Vv € V.

Let A be a vector space with product m : (a,b) — ab such that
(i) (associative) m(ab,c) = m(a,bc) Va,b,c € A,
(ii) (distributive) m: A x A — A is a multilinear function.

Then A is called an (associative) algebra over C. We define the commutator [-,] :
AxA— Aby
[a, b] := m(a,b) — m(b,a) = ab— ba.

The algebra A is called commutative (or Abelian) if the commutator map is trivial,
that is, m is symmetric or ab = ba Va,b € A. We define the centre of an algebra A
by Z(A) :=={b€ A|[a,b] =0 Ya € A}. The algebra A is called unital if there exists
an element, the unit or identity, e € A such that m(e,a) = a = m(a,e) Va € 4. A
topological algebra A is an algebra A such that A is a topological vector space and
m € L(Ax A, A). A topological algebra A is called separable if it admits a countable
basis. An involution * of a topological algebra A is an continuous involution* : A — A
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such that (ab)* = b*a* Vab € A. A topological algebra admitting an involution * is
called a topological *-algebra. A normed (*-)algebra is a topological (*-)algebra with
norm || - || (and isometric involution). A Banach (*-)algebra is a normed (*-)algebra
that is closed in the norm topology. A C*-algebra A is a Banach *-algebra A such
that ||a*a|| = ||a)|® Va € A.

A homomorphism between topological (*)-algebras A and B is map ¢ € L(A, B)
such that ¢(ab) = #(a)p(b) (and #(a*) = ¢(a)*). An isomorphism ¢ : A — A
of a topological (*)-algebra A is called a (*)-automorphism of A. The set of (*)-
automorphisms of A with the product of composition of maps and the weakest topol-
ogy making each automorphism continuous is a topological group denoted Aut(A).

A module (W, ) of a topological algebra A is a topological vector space W with a
homomorphism 7 : A — L(W, W). In this context = is referred to as a representation
of A. Injective representations are referred to as faithful representations. Represen-
tations such that 7(A)W is dense in W are called non-degenerate. A representation
m: A= L(W,W) of a topological *-algebra A shall be taken to include the con-
dition L(W,W) admits an algebraic involution t : L(W,W) — L(W,W) such that
m(a*) = m(a)! Va € A. Let A be a topological *-algebra and (W, 7) a module. The
topological *-subalgebra w(A) := {T € L(W,W)|[T,n(a)] =0 Va € A} is called the
commutant of 7(A).

Let H be Hilbert space. We say H is separable if it admits a countable orthonormal
basis. We denote by C(H) the closed linear operators on H, B(H) := L(H, H) the
C*-algebra of bounded linear operators on H, K(H) the compact operators on H,
and F'R(H) the finite rank operators on H. We recall the norm closure of FR(H) is
K(H) and the compact operators form a norm closed *-ideal of B(H) (S, Thm 1.3].
Let sp(.S) denote the spectrum of a bounded or selfadjoint linear operator on H [RS,

VI.3,VIIL1).

Let K : DomK — H be a selfadjoint linear operator. We recall if S € B(H)
has the properties SDomK C DomK and SUP, ¢ pom ||| <1 [, S]n|l < co then the

closure of the linear operator [K, S] with domain DomK is a bounded operator. We
will abusively refer to S € B(H) satisfying the conditions of the last sentence for
selfadjoint K € C(H) by the term [K, S] is bounded.

We introduce the uniform, strong, o-weak and weak operator topologies of B(H)
where H is separable. Let R be a *-subalgebra of B(H). We recall a sequence a,, of
elements of R converge to a € B(H)

(i) uniformly if [ja, —al| = 0. The uniform closure of R is a C*-subalgebra of
B(H) that we typically denote by R.

(ii) strongly if ||(a, —a)n|| — O for all n € H. The strong closure of R will be
denoted St(R) C B(H).
(iii) o-weakly if }°;  (nj, (an — a)ék) — O for all (n;,&x) € H x H such that
2o ||7]j||2, S 1€k ll? < co. The o-weak closure of R will be denoted W, (R).
(iv) weakly if (1, (a, —a)€) — 0 for all (n,£) € H x H. The weak closure of R is

a unital C*-algebra denoted by W(R). The commutant R’ of R is an example
of a weakly closed C*-algebra. The terminology R acts non-degenerately on H
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means RH is dense in H, or equivalently, the unit of W (R) is the unit of B(H).
Let R act non-degenerately on H. Then we denote the weak closure by the
double commutant R"” = (R')' = W(R). Further, the strong, o-weak and weak
closure of R are identical (though the weak topology is weaker than the o-weak
topology which is weaker than the strong topology). These results follow from
von Neumann’s bi-commutant theorem, [Ped, 2.2.2,2.2.5] [vN].

Let A be a normed *-algebra and H a Hilbert space that admits a non-degenerate
representation 7 : A — B(H). We refer to the module (H,w) as a (concrete) repre-
sentation of the normed *-algebra A. When H is separable the representation (H, )

is called separable. In this case the above topologies can be applied to 7(A) as a
*-subalgebra of B(H).

Let A be a C*-algebra. Let A1 := {a*a|a € A} denote the positive elements of
A [Mu, 2.2). We recall a weight on A is an additive mapping

7: AT = [0,00].

Since the positive elements A+ complex linearly span A [BR, 2.2.11], from any weight
we may uniquely form the linear mapping

T7:A— CU{oo}

by linear extension.

We recall any C*-algebra A possesses an approximate unit {uy}4, [Mu, 3.1.1]. That
is, a directed set A and u) € AT such that limyep ||una —al| =0 foralla € A. A
positive linear form ¢ on A is a weight such that limy o(uy) < M for all approximate
units {uy}a and some fixed M > 0.

1.2 Non-Commutative Topological Spaces

The theory of C*-algebras is often called non-commutative topology. We shall take a
C*-algebra A to be the ‘non-commutative functions’ on the ‘non-commutative space’

PS(A) Ly 4 ket Prim(A) where PS(A) is the pure state space, A the spectrum, and
Prim(A) the primitive ideals of A respectively. To understand this association we
review the structure of C*-algebras.

1.2.1 The GNS Construction

Let A be a C*-algebra. Let 7 be a positive linear form on A and define N, := {a €
A|r(a*a) = 0}. We have the following ‘GNS construction’ from Gelfand and Naimark
[GN] and Segal [Se]:

(i) The space N, is proved to be a closed left ideal of A.

(ii) We define the factor space
Ar:= A/N;,.

(iii) We let a; := a + n for a € A,n € N, denote an element a, € A;. Then

(ar,br)r = 7(a*b)
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defines an inner product on A,.
(iv) We can define the Hilbert space

H,:=A,
as the closure of the pre-Hilbert space A, in the inner product (-, ).
(v) The canonical inclusion map
1yt Ay = H;
is a linear injection with dense range, and
7o (@)tr (b5) = tr(arby)

defines a non-degenerate representation n, : A — B(H,).

In summary, to each positive linear form 7 of a (separable) C*-algebra A we
construct the associated (separable) ‘GNS representation’ (H,,m,) of A. The positive
linear form 7 and the GNS representation =, are faithful if N, = {0}.

1.2.2 Topological Spaces associated to a C*-algebra

There are three fundamental spaces associated to the structure of a C*-algebra A.

(1) Pure State Space, PS(A)

Let A be a C*-algebra. We recall the dual A* := L(A4,C) of A consists of all
continuous linear functionals

7: A= C

The dual has two topologies we consider,

(i) the norm topology from the norm

I7ll ;= sup |7(a)|
lafl<1

(ii) the weak*-topology, which is the locally convex topology generated by the
family of semi-norms
pa(7) :=|1(a)| , a € A.

The linear extension ¢ of a positive linear form
o: AT —[0,00)
has the defining property [Mu, 3.3.4]
limo(u) = o]

for all approximate units {uy}x of A. Hence o belongs to the dual A* of continuous
linear functionals. The extensions of positive linear forms on A are called positive
linear functionals on A.



14 CHAPTER 1. ELEMENTS OF NON-COMMUTATIVE GEOMETRY

Let S4(A4,C) denote the positive linear functionals on A of norm less than or
equal to one. Then S;(A,C) is a convex weak*-compact subset of A* [Dix, 2.5.5]. We
denote by Extr(S;(4,C)) the extremal points of S; (A4, C). We define the pure states
as the non-trivial extremal points,

PS(A) == Extr(S4(4,C)) \ {0}.

We give the space PS(A) of pure states the topology of the restricted weak*-topology
from A*. We recall that PS(A) separates A [Mu, 5.1.11]. This means for any non-zero
a € A there exists p € PS(A) such that p(a) # 0. This implies the weak*-topology is
Hausdorff. We recall our initial formulation of the triple (A4, H, D) involved a separable
C*-algebra.

Theorem 1.2.1 (i) Let A be a C*-algebra. Then PS(A) is a Hausdorff topological
space (given the weak*-topology). '

(ii) Let A be a separable C*-algebra. Then PS(A) is a complete second countable
metrisable topological space (given the weak*-topology) [Ped, 4.3.2].

The realisation of PS(A) as a complete second countable metrisable topologi-
cal space determines the exclusive role of separable C*-algebras in non-commutative
geometry.

(2) Spectrum, A

A representation (H, ) of a C*-algebra A is called irreducible if 7(A)' = {S €
B(H)|[n(a),S] = 0 Ya € A} = Cl1 where 1 = idg [Mu, 5.1.5]. We denote the
irreducible representations of A by Irr(A). A consequence of irreducibility is every
non-zero vector £ € H is cyclic for A, that means w(A)¢ = H [Mu, 5.1.5].

Let p € PS(A). Then the GNS representation (H),7,) associated to p is irre-
ducible [Se] [My, 5.1.6]. A cyclic vector is given by & = limy, ¢,(u,) for any approximate
unit {uy} of A,. Conversely given an irreducible representation (H, 7) with unit cyclic
vector £ € H, one can define the pure state p(a*a) := (£, m(a*a)é)y : AT — [0,00)
such that (H, ) is the GNS representation associated to p [Se] [Mu, 5.1.7]. This leads
to the following result at the core of the structure of C*-algebras,

PS(A) < Irr(4)
p o m,

We say that representations (Hy,m;) and (Ha,m2) of A are unitary equivalent if
there exists a unitary U : Hy — Hj such that Um (a)U* = mq(a) for alla € A. Unitary
equivalence is an equivalence relation on representations of A which restricts to the
irreducible representations of A. We denote unitary equivalence of two representations
of A by (Hy,m1) ~y (Ha,mg). We define the spectrum of a C*-algebra A as

A :=Trr(A)/~y

From the isomorphism PS(A) — Irr(A4) we will denote an element of the spectrum
by the class [(H,,m,)]. € A or equivalently [p], € A.
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With the identification of A as a quotient
PS(A) = PS(A)/~uer A

we can induce the quotient of the weak*-topology on A. In general A with this
topology is quasi-locally compact but not Hausdorff® [Dix, 3.3.7].

Example 1.2.2

a. Let A = Cy(R) be the C*-algebra of continuous vanishing at infinity con-
tinuous complex valued functions f : R = C. As Cy(R) is commutative it com-
mutes with itself. Hence for any representation (H,7), n(Co(R)) C 7(Co(R)) .
In particular, all irreducible representations are one-dimensional as m(Cy(R)) C
7 (Co(R))’ = Cl. From this one easily shows that

Irr(Co(R)) = {(C,mz) |z € R}

where

7zt Co(R) = C, mp(f)z = f(z)z Vz€C.
Since unitary equivalence is equality on one-dimensional representations,
PS(A) = A=R
The pure states p, are given by pointwise evaluation

pz(f) = f(z).

Hence a base for the weak*-topology on PS(A) is given by

Bi(pz,€) = {py||f(z) — f(W)| <& f € Co(R)} = B(z,6y)

where 67 > 0 is defined by y € B(z,0f) = f(y) € B(f(z),€) in the definition
of continuity of f. Hence the weak*-topology is just the standard open interval
topology on R and A + PS(A) is homeomorphic to R. These spaces are both
locally compact and Hausdorif.

b. Let A= M,(C) be the C*-algebra of n X n complex matrices.

Proposition 1.2.3 Let A = M,,(C) be the C*-algebra of nxn complex matrices.
Then

(i) PS(A4) 2PU,(C)
(i) A={1}.
where PU,(C) is the projective unitary group.

Proof Lectures Notes [ReL]. O

*We recall that a topological space X is quasi-locally compact if every point £ € X has a quasi-
compact open neighbourhood U. An open set U C X is quasi-compact if every open cover of U has
a finite subcover. A quasi-compact open set U is called compact if it is satisfies the Ty separation
axiom [FI].
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(3) Primitive Spectrum, Prim(A)
Define a set of closed two sided ideals of A called the primitive ideals,
Prim(A) := {kerm, | p € PS(A)}.

The relation p ~, o if kerw, = ker7, is an equivalence relation on PS(A) that
commutes with ~,. We distinguish the equivalence classes of p € PS(A) where
necessary by [p], and [p],. A C*-algebra A has the sequence of surjective maps and
quotients,

ps(a) 8 4 X prim(a)

p + [(Hp,m)w — kerm,.

We will define a topology on Prim(A). Let I be a closed ideal of A and define
hull(I) := {y € Prim(A) | I C y}.
For a subset Y C Prim(A) define
kernel(Y') := Nyeyy

which is a closed ideal of A. Then there exists a unique topology such that hullr‘(kernel(Y))
defines the closure of Y’ C Prim(A) [Mu, 5.4.6]. The topology is called the Jacobson
topology. The induced Jacobson topology on A is the weakest topology such that

i k . . .
A =% Prim(A) is continuous.

Remark 1.2.4 The map I — hull(]) is a bijection between closed ideals of A and the
closed subsets of Prim(A), and inverts the partial order, Iy C I iff hull(l3) C hull(l;)
[Mu, 5.4.7].

Example 1.2.5  As an example, consider the C*-algebra Cp(R). We recall R was
homeomorphic to PS(Co(R)) = {pz|pz(f) = f(z)} given the weak*-topology.
Now

Prim(Co(R)) = {kermy, } = {I, = {f € Co(R)| f(z) = 0}}

Clearly f € I; # f €Iy and f € I #% f € I; for £ # y. Hence the the map
R — Prim(Cy(R)) , z = I,
is a bijection. Let Y C R and Iy = {I;|z € Y}. Then
kernel(Iy) = Ngev Lz = Noey {f € Co(R) | f(z) = 0} = {f € Co(R) | f(z) =0 Vz € ¥}
where Y denotes the closure of Y in the usual topology on R. Hence
Ty = hull(kernel(Iy)) = {I; € Prim(4) | I; D {f € Co(R) | f(z) =0 Vz € Y}} = I
The bijection R — Prim(Cy(R)) is a homeomorphism. We also see
PS(Cy(R)) = Co(R) = Prim(Co(R))

as topological spaces. This is not true for a general C*-algebra A. We shall see
that PS(A) = Prim(A) if and only if A is a commutative C*-algebra.
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Let A be a C*-algebra. Then PS(A) separates A. In particular for a € A there
exists p € PS(A) such that p(a) = ||a|| [Mu, 5.1.11). Hence m,(a) # 0. We note
if mp(a) # 0, which occurs iff 7,(a) ¢ kerm,, then m;(a) # 0 for any o € [p], by
construction. Hence PS(A) separates A implies Prim(A) (and so A) separates A in
this sense.

We can now realise the structure of C*-algebras with the following decomposition
theorem [Mu, 3.4.1] [GN],

Theorem 1.2.6 (Gelfand-Naimark Theorem) Let A be a C*-algebra. Let H :=
EB[p]ue/i H, and 7 := DA Then (H, ) is a faithful representation of A.

Remark 1.2.7 (H, ) is called the universal representation of A. It is unique up to
unitary equivalence. There is some degeneracy in the universal representation, in the
sense we use a representative of the unitary equivalence class [p], to obtain a faithful
representation, where all that was needed was a representative of [p], since Prim(A)
separates A. Let o, € [p], for each p € PS(A). Then H' := @,,H,, and 7' := &,,75,
defines a faithful representation (H',7’) of A. However, this representation is not
uniquely determined up to unitary equivalence. Two representations (H,,,75,) and
(H, os wa;,) where o, a;, € [plp may have the same kernel but not be unitary equivalent.

This occurs as A — Prim(A) is only a surjection in general.

There is significant structural difference when A — Prim(A) is a bijection. A
C*-algebra such that A — Prim(A) is a bijection is called postliminal.

Theorem 1.2.8 Let A be a C*-algebra. Then
(i) the surjection PS(A) — A is continuous and open,
(ii) the surjection PS(A) — Prim(A) , p — kerm, is continuous and open,
(iii) the quotient topology on A as a quotient A = PS(A)/~y and the induced
Jacobson topology on A from A g Prim(A) agree.

Proof (i) [pix, 3.4.11] (ii) [Ped, 4.3.3] (iii) [Dix, 3.4.11] o

Theorem 1.2.9 Let A be a C*-algebra. Then
(i) Prim(A) is a locally compact Ty-space,
(i) A is a locally quasi-compact space,
(iii) A is a locally compact Ty-space, iff A Ker, Prim(A) is an isomorphism,
(iv) A is unital = A and Prim(A) are compact.

Proof [Dix, 3.1.6] (iv) [Mu, 5.4.8] 0

Note the converse of (iv) is false [Mu, 5.4.8]. For non-unital simple C*-algebras
Prim(A) = {0} is a one-point space, and a particular example is the compact operators

A

on a Hilbert space H where [(H,1d)], = K(H) & Prim(K(H)) = {0}.
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Theorem 1.2.10 Let A be a C*-algebra and Z(A) = {b € A|[a,b] =0 Va € A} be
the centre of A. Then the following are equivalent

(i) Prim(A) is a locally compact Hausdorff space,
(i) Z(A) = Cy(Prim(4)).

Proof (i) = (ii) that Z(A) C Co(Prim(A)) is a closed *-subalgebra is established by
[Ped,4.4.4]. Let f € Co(Prim(A)) and A € Prim(4). Let A C A denote the set such
that ker[7](A) = X. Then s(f) = ®xcprim(4) ®a f(A) is a central element of my(A)
where (Hy,my) is the faithful universal representation of A (Gelfand-Naimark Theo-
rem). Clearly & is a a faithful representation such that my7(Z(A)) D k(Co(Prim(A4))).
(ii) = (i) By the Gelfand Theorem in the next section Z(A) = Cy(X) for a locally com-
pact Hausdorff space X. Hence Cy(2) = Co(Prim(A)) which implies 3 and Prim(A)
are homeomorphic. m|

To summarise, the structure of a C*-algebra is encoded in the triple of topological
spaces

PS(4) 18 4 X5 prim(a)

where PS(A) is Hausdorff but not locally compact in general, and Prim(A4) is locally

compact but not Hausdorff in general. The triple PS(A) [—]-1>‘ AY Prim(A) is consid-
ered the ‘non-commutative space’ associated to the C*-algebra A. This interpretation

comes from the form of the sequence PS(A) Uy 4 ke Prim(A) in the sub-theory of
commutative C*-algebras.

1.2.3 Commutative C*-algebras

~ ker

Let A be a commutative algebra C*-algebra and PS(A) Uy 4 ket Prim(A) the pure
state space of A, the spectrum of A and primitive ideals of A respectively. The
fundamental property of a commutative ‘non-commutative space’ is PS(A) Uy 4 ke
Prim(A) resolves to the single locally compact Hausdorff space ¥(A).

Theorem 1.2.11 Let A be a C*-algebra. Then A is commutative iff the continuous
and open surjections

PS(4) 1% 4 X5 prim(a)
are homeomorphisms.

Proof (=) Since A is commutative, then for any irreducible representation 7 :
A — B(H) we have m(A) C m(A)’ C Cl. Hence any irreducible representation is one
dimensional, and unitary equivalence ~, restricted to Irr(A) just becomes equality.
Further, ker  has co-dimension one, hence ker m; = ker my iff 1 = .

(<) The isomorphism implies [r,] = m, for p € PS(A). Then Un,(a)U* =
my(a) = [m,(a),U] = 0 for all a € A and U € B(H,). Since B(H,) is a C*-algebra,
then every element in B(H,) decomposes as a linear combination of four unitaries,
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[BR, 2.2.14]. Hence m,(A) C B(H,)' = Cl, and , is one-dimensional (so commuta-
tive) for every p € PS(A). Using the Gelfand-Naimark Theorem we have a faithful
commutative representation ™ = @,cpg(a)7T, of A. Hence A is commutative. a

When A is a commutative C*-algebra we speak of ‘the’ spectrum S(A4) := A =
PS(A) = Prim(A). Since the locally compact Hausdorff space 3(A) is central to
the structure of the C*-algebra A, we can determine the form of all commutative
C*-algebras [Mu, 1.3.5,2.1.10].

Theorem 1.2.12 (Gelfand Theorem) Let A be a commutative C*-algebra with
spectrum L(A). Define the Gelfand transform

a > fq

where the function f, : ©(A) — C is defined by fo([plu) := p(a) for p € PS(A). Then
the Gelfand transform provides an isomorphism of C*-algebras,

A — Cy(X(4))

Conversely, for any locally compact Hausdorff space X, Cp(X) is a C*-algebra
and X = X(Cy(X)), [Mu, 1.1.3,2.1.2]. This provides the theorem,

Theorem 1.2.13 There is a bijective correspondence between locally compact Haus-
dorff spaces and continuous vanishing at infinity functions on them (X, Co(X)), and
commutative C*-algebras and their spectrums (X(4), A),

(X, Co(X)) «— (2(4), 4)

Example 1.2.14 We have already seen the correspondence (R,Cj(R)) as an
example last section. We apply the result of the Gelfand-Naimark Theorem in
this case. We recall the pure states of Cy(IR) are given by p,(f) = f(z), and the
irreducible representations (C, ¢;) by

¢y i Co(R) = C, (cu(f)2) = f(z)z Vz €C.
The spectrum R is defined by the isomorphisms

{z} = py = cx = kercy = {f € Cy(R) | f(z) = 0}.

The universal representation Hilbert space is given by
LR =PcC
R
and the universal representation

¢c=®rcs , (c(f)g)(z) = f(2)9(z) Vg€ L*(R).
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1.2.4 Non-Commutative Topological Spaces

It is the bijective correspondence
(X, Co(X)) ¢— (E(4), 4)

between locally compact Hausdorff spaces X and commutative C*-algebras A which

leads to the view general non-commutative C*-algebras A are the ‘non-commutative

continuous functions’ on the ‘non-commutative topological space’ PS(A) [—]1)‘ AY

Prim(A4). We shall take this view. Hence a C*-algebra A and the structure spaces

PS(A) Uy 4% Prim(A) provide the basic elements of (i) a ‘topological space’, (ii)
‘continuous functions’ on that space, in non-commutative geometry.

Remark 1.2.15 (i) Does the terminology ‘non-commutative continuous functions’
have more than a conceptual meaning? In the sense explained below, every non-
commutative C*-algebra with Prim(A) Hausdorff is an algebra of continuous operator-
valued functions. Recall Theorem 1.2.10, Z(A) = Cy(C) for any C*-algebra A such
that C := Prim(A) is Hausdorfl. The elements of the C*-algebra can then be viewed
as ‘operator valued continuous functions on’ or ‘continuous sections of a bundle of
simple C*-algebras over’ the locally compact Hausdorff space C,

a:c— 7(a)

where a € A and (H, ) € ker~(c) is irreducible? [Ped] [Dix]. Note that this view is
not unique up to unitary equivalence. If further,

(a) (Postliminal) A ko Prim(A) is an isomorphism, then A4 is viewed as ‘con-
tinuous sections of a bundle of simple C*-algebras’ over the locally compact
Hausdorff space C,

a:c— m(a)

where (H,n) € ker~!(c) = [(H,n)],. This presentation is unique up to unitary
equivalence [Dix],

(b) (Liminal) 7(A) = K(H) for each (H,w) € Irr(A), then A can be considered
as ‘compact operator valued functions’ over the locally compact Hausdorft
space Prim(A) [Dix].

Commutative ‘non-commutative continuous functions’, which are continuous func-
tions on C in the ordinary sense, are the trivial case where each fibre is the one-
dimensional simple C*-algebra C. The simplest non-commutative example of the
above situations is the C*-algebra A = Co(X) ® M, (C) = Co(X, Mp(C)) where X is
a locally compact Hausdorff space.

(ii) As our last point on ‘non-commutative continuous spaces’, we remark on C*-
algebras such that Prim(A) is not Hausdorff. An ‘operator valued function’ view can
be determined as in (i) above, but one needs to consider bounded Borel sections over

4If the reader has not encountered the terminology section and bundle, see [Sr, I.1,II1.1], or 1.3.2
Vector Bundles.
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the space of unitary equivalence classes of factor representations of the von Neumann
closure m(A)". These are deeper results in the theory of C*-algebras, [Ped, Dix).

However, that Prim(A) is locally compact but non-Hausdorff in general is one of
the deepest generalising points of non-commutative topology. A. Connes has used this
viewpoint to perform ‘geometry’ on non-Hausdorff spaces. These spaces are typically
pathological and outside the reach of classical methods. Examples are in the work of
Connes, the space of Penrose Tilings [C, I1.3], the dual of non-type I discrete groups
[, I1.4] and foliations [C7].

1.3 Exterior Derivation on Differentiable Manifolds

Let A be a separable C*-algebra. We have the ‘non-commutative second count-

able metrisable topological space’ PS(A) Ly j ke Prim(A) and its algebra of ‘non-
commutative continuous functions’ A from the previous section. What should consti-
tute the derivative of a ‘non-commutative function’?

As an initial guide we reduce the derivative in basic calculus on R to algebraic
terms. Denote the polynomial functions by P[z]. Define a linear map § : P[z] — P|z]
by

8(anz™ + ... + @17 + ag) := nanz™ L + (n - Dap_12" 2 + ... + a1.

We note that ¢ is completely determined by the relation

d(pq) = pé(q) + d(p)g Vp,q € Plz]

and 6(x) = 1. The map § is an example of a derivation (definition below). Define
norms on P[z],

Pl = sup |p(w)l+ sup [6(p)(@)| +...+ sup |6*(p)(=)|

z€[—m,m)| z€[—m,m] z€[—-m,m)|
We make the convention §°(p) = p. We say a sequence of polynomials is k-Cauchy if
it is Cauchy in the norm ||.||}* for all m. We denote by Ci(P[z]) the set of k-Cauchy

sequences of P[z] and by p; & f the limit f of the k-Cauchy sequence {p;}. The
result Co(P[z]) = C(R) is a consequence of the Stone-Weierstrass Theorem. It can be

shown Cy(P[z]) = C*(R). Explicitly, if p; % f then 6 (p;) & ). Differentiation is
hence defined as the continuous closure

3 : C1(P[z]) = Co(Pz))
of § : Plz] — P[z], and & is a derivation C1(R) — C(R).

Hence an immediate candidate for the role of differentiation in non-commutative
calculus are derivations on C*-algebras. Derivations on C*-algebras is a well estab-
lished theory [BR, 3.2].

Definition 1.3.1 [BR, 3.2.21, 3.2.54]

(i) A symmetric norm-dense derivation 6 of a C*-algebra A is a linear oper-
ator & : Domdé — A with norm dense domain Domé such that §(a)* = 6(a*) and
d(ab) = é6(a)b+ ad(b) for all a,b € Domd.
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(ii) A symmetric derivation § of a C*-algebra A is said to be spatially implemented
by a symmetric operator D on a Hilbert space H if there exists a representation (H, )
of A such that n(6(a)) = —i[D,n(a)].

Example 1.3.2 Let C}(R) denote the continuous compactly supported func-
tions R = C with continuous derivative. Then the derivative operation

d:CHR) = Ce(R) , f s f'
is a derivation of the C*-algebra Cj(R) with norm-dense domain C}(R). Let us

examine a spatial implementer of d. Define the linear operator

i OHB) = Co(R) , f(o) > f'(z).

As CH(R) is L?-dense in L%(R, ¢), this operator has a unique selfadjoint extension
as an unbounded linear operator [RS, VIII.1]

d d
’I,E : DOTTL’L'(E — L (R, {)

We recall the representation (L2(R,£), ) of the commutative C*-algebra Cy(R)
m : Co(R) — B(LA(R,€)) , (m(f)g)(z) = f(2)g(z) E&-ae. Vg€ L*(R,E)
where £ is the Lebesgue measure on R

Proposition 1.3.3 Let f € C}(R). Then

—i[i%,m(f)] = m(f').

Proof Let f,g € C}(R) and D = i-L. Then Dm(f)g = D(fg) =if'g+fDg (*).
Now, for g € DomD we have g, € Ci(R) such that g, — g in the graph norm.
Clearly m(f)gn — m(f)g in the graph norm from (*). Hence m(f)DomD C
DomD. Furthermore from (*),

Dm(f)g —m(f)Dg =if'g =1im(f')g

for g € DomD. Thus [i- m(f)] = im(f') on DomD and, as f' is compactly
supported and continuous, im;(f’) is norm bounded on DomD. Hence it extends
as a bounded operator on all of L*(R, ¢). a

All the elements of basic calculus have been encoded in the triple

(Co(®), L (R, £), i),

which is of the form (A, H, D) as described in the introduction to this chapter. We
have the separable C*-algebra A = Cy(R), a faithful representation (L?(R, &), ;)
of Cyp(R), and a selfadjoint linear operator D = i% on L%(R,¢) that spatially
implements the symmetric derivation

d() = ~ili-=,]: CAR) = Cu(R) , d(m(f)) = m(f").
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The example above was the one-dimensional case. In the multivariable case,
d: CH(R) = C.(R*, L(R*,C))

and on the differentiable manifold X
d:CHX) = C.(X,L(TX,C)).

The map d still satisfies the Leibniz relation

d(fg)=dfg + fdg Vfg€CHX)

but is clearly not a derivation of Cy(X) in general. To develop a counterpart in
non-commutative geometry to the derivative of a differentiable function f on a dif-
ferentiable manifold X we review exterior differentiation on X. A summary of the
algebraic structures involved in exterior differentiation appears in section 1.3.6. Sec-
tion 1.4 develops a counterpart of exterior differentiation in the non-commutative
calculus.

1.3.1 Exterior and Clifford Algebras

Let V be a vector space over C. Let T*(V) = V®! be the i*" tensor product. Let
T(V) = @2,T*(V) be the tensor algebra of V and I the ideal generated by the
elements {v ® w +w @ v|v,w € V}. The exterior algebra of V is defined as the
quotient [BGY, 3.1]

A(V) :=T(V)/I,

and has the natural N-grading A*(V) = T*(V)/(I N T*(V)). The quotient product,
denoted A, is the called the exterior product and has the property

vAw+wAv=0.

Let V' be finite dimensional with dimV = n and L,(V*P,C) denote anti-symmetric
multilinear functionals on VP. We recall the isomorphism [Sr, V.3]

A(V) = Lo(VX™,©).

Suppose V' admits an inner product g: V x V' — C. Let I; be the ideal generated by
the set of elements of the form {v ® w + w ® v + 2¢(v,w) |v,w € V}. The Clifford
algebra of V' (generated by ¢) is defined as the quotient algebra [BGV, Prop 3.2]

CH(V, q) = T(V)/1I,

The quotient product, denoted -, is called the Clifford product or Clifford multiplica-
tion and has the property

vow4wev = -2q(v,w).

With a quadratic form one can introduce the interior product on the exterior algebra,

n
vT (Wi A Awy) = Z(—l)iq(v,wi)wl Ao AWi—y Awipr Ao Awy, Yo, w; € V.

i=1
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The homomorphism
v : Cliff(V, q) — A(V)

defined by
t(v-w) = o(v) A v(w) + o(v) T e(w)

is a linear isomorphism [BGV, 3.1]. We call the action
wi(u) = o(w - 1™ (u))

the left action of w € Cliff(V,q) on u € A(V), and

the right action of w € Cliff(V,q) on u € A(V).
The Clifford and Exterior algebras are linearly isomorphic as graded vector spaces
by giving the Clifford algebra the grading [BGV, Prop 3.6]

k
CLEF(V, q) == €D+ (A (V).
i=0
We point out the surjection ¢ : Cliff*(V, q) = AF(V) defined by
Ly iUl Vg =LA AV YU, 0, €V

is not an isomorphism. The kernel of this map is Cliff*~2(V, q). Finally we define an
inner product on A*(V) by

gi(wy A . Awg,vr A Ag) i= det{[g(wm, Vn)lmn=1,...)-

We extend this to an inner product of A(V) by ¢(v,w) = ¢;(v,w) if v,w € A¥(V) and
g(v,w) = 0 otherwise.

1.3.2 Vector Bundles

Let X be a locally compact Hausdorff space. Let e : E — X be a vector bundle. We
recall this means there exists a topological space E, a topological vector space V' and
open covering {Uy} of X such that [Sr, ITL1]

(i) (local triviality) there is a homeomorphism (U, X V' is given the product topol-

ogy)
Oo:e H(Uy) 2 Ua XV

that commutes with the canonical projection p : U, X V' — U,. In particular
there is the isomorphism

oo(z) 1 e Hz) = V.
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(ii) (transition functions) the map U,NUg — L(V, V) given by z > og(z)ocs ()1
is a morphism. In particular, for £ € U, N Up we have

og(z) oog(z) LV =V

is an isomorphism.

The vector space E; = e~!(z) is called the fibre over x. A section s of a vector
bundle e : E — X is a function s : X — E such that e o s(z) = z. We denote
continuous sections of e : E — X by C(X,E) and the continuous sections with
compact support by Cc(X,E). Let us suppose each fibre E; admits a norm |||,
then we may define a norm on sections,

l|sl| := sup ||s(z)|l,-
zeX

The closure of C(X, E) in this norm is the Banach space Cy(X, E) of continuous
sections that vanish at infinity. Let us suppose further that each fibre E, is a Hilbert
space with inner product (-,-);. Then

= /X (51(x), 52())o/d0b(g)dz

defines an inner product on C,(X, E). The closure of C.(X, E) in the associated norm
is a Hilbert space L%(X, E) called the square integrable sections of the vector bundle
e: E — X. Finally, suppose the fibre E; is an algebra for each z. Then C,(X, E) is
an algebra when given the product

(s182) : X = B, (s182)(z) = s1(z)s2(x) Vs1,82 € Co(X, E).

Consequently one shows Cy(X, F) is a Banach algebra.

We shall mean by the term ‘Hermitian’ vector bundle a vector bundle whose fibres
are separable Hilbert spaces.

From a Hermitian vector bundle e : E — X we can define another vector bundle
et : L(E,E) - X with fibres

er, : L(E;, Ey) — x.

We note the C*-algebra Cy(X, L(E, E)) has a natural concrete faithful representation
(L3(X, E), ), where

A: Co(X, L(E, B)) —» B(LX(X, E)) , (A\(s)9)(e) = s(2)(g(x)) ¥g € L*(X, E).

As Co(X) = Co(X)Idg C Co(X, L(E, E)), the representation ) restricts to a faithful
representation (L2(X, E), m;) where

m : Co(X) = B(L*(X, B)) , (m(f)g)(z) = f(2)ldp, (g(x)) Vg € L*(X, E).

We say the vector bundlee : E — X is finite dimensional if V is finite dimensional.
Then E, = RY for some N. Hence we can apply the multivariable calculus, If the
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transition functions og(z) o (7)1 : RY — RV are p-differentiable (resp. smooth),
we say e : B — X is a p-differentiable (resp. smooth) bundle.

Let X be a p-differentiable (resp. smooth) second countable metrisable locally
compact manifold and e: E =+ X a p-differentiable (resp. smooth) Hermitian vector
bundle. A section s : X — FE is called p-differentiable (resp. smooth) if the functions
Oq © ¢El(-)(s o ¢El()) : R* = RV are p-differentiable (resp. smooth) for all o, 8
where o, are the trivialising maps for the vector bundle e : E — X and ¢p are the
co-ordinate maps for X. We denote the p-differentiable sections of a Hermitian vector
bundle ¢ : E — X by CP(X, E) and smooth sections by C®(X, E).

We note, for notation purposes, that the sections of the trivial Hermitian bundle
X x C = X that are continuous and vanishing at infinity, square integrable, or
smooth, define the functions on the manifold X that are continuous and vanishing at
infinity, square integrable, or smooth respectively.

1.3.3 Exterior and Clifford Bundles

Let X be a second countable metrisable locally compact n-dimensional differentiable
manifold with metric g. Let T, X be the n-dimensional tangent space at z € X.
The dual space of continuous linear functionals T, X* = L(T,X,C) is also an n-
dimensional vector space, called the cotangent space at z € X 5. Let f : X — C be
differentiable, then df (z) € L(T;X,C) = T} X. By construction, if z € U, for a chart

(Ua,¢a = ({b(ll, ,¢Z)) then
Tx*X = Spa'n(C{dd’(lx(w)) o d(ﬁZ(:L‘)}

There exists a isomorphism between the tangent and cotangent spaces at z € X
provided by the metric,

kg : [v] = g(2)([v], ),

and we define an inner product on T; X by

ge(z): Ty X xTyX —»C
(v,w) = gy(2) (v, w) := g(z) (85" (v), i7" (w)).

We form the exterior algebra A(T;X) and Clifford algebra ClLiff(T7 X, g4(z)) of the
n-dimensional vector space T; X with inner products g,(z) as in Section 1.3.1.

Take the chosen atlas {U,} over X as an open covering, and define the disjoint
unions,

TX = UgexT, X
T*X = UgexT; X
NX = UpexA(T}X)
CUX,4)) = UaexCE(TLX, gy(2))

®The standard notation of the cotangent space at z is Ty X.
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and maps

er: TX > X, T, Xz

ep»: T*X > X, T} X~z

en: NX X, ATEX)—x

ec: ClX,q) = X, Clff(T; X, qy(z)) » =

Then er : TX — X,er» : T*X — X,ep : A*X — X and ec : Cl(X,qy) = X

are Hermitian vector bundles over X [Se, III.1], called the tangent bundle, cotangent
bundle, exterior bundle and the Clifford bundle respectively. When X is a smooth
manifold then the the tangent bundle, cotangent bundle, exterior bundle and the

Clifford bundle are smooth. We can extend the natural linear identification of the
exterior and Clifford algebras fibrewise to the bundles,

v: Cl(X,qy) = A*X , Clfl(T}, qe(x)) = A(T}).
This provides the canonical inclusions
C.(X,Cl(X,qq)) = Cc(X,L(A* X, A* X))
called the left action,
wi(z)(u) = vw(e) - (w)  Vw e Ce(X, OU(X, qp)),u € AT X)
and right action
we(2)(u) = (7 (w) - w(z))  Yw € Co(X,CUX, gq)),u € A(T; X)

respectively.

Warning: henceforth we consider only connected, oriented, geodesically complete
manifolds with no boundary. That a manifold is oriented is equivalent to the state-
ment that there exists a non-vanishing continuous section in C(X,A4™X X), That
the manifold is connected implies Cp(X) contains no proper projections and the di-
mension of the fibres in any Hermitian vector bundle over X is constant.

1.3.4 Covariant Derivatives and Exterior Differentiation

Let X be a second countable metrisable locally compact n-dimensional p-differentiable
manifold. We recall the operation of k*P-differentiation,

d* : CR(X) = C,(X, L(TX**,0)),

for k < p. The k*-derivatives of a function in C¥(X) is seldom used in differential
geometry. Instead we consider a co-ordinate independent form of partial or directional
differentiation, called a covariant derivative. A covariant derivative then defines a
fundamental graded derivation

d: CHX, Ly (TX** =D C)) - Co(X, Lo(TX**,C)),

called an exterior derivative.
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Let F — X be a Hermitian vector bundle. A covariant derivative on £ — X
V:CHX,TX ® E) = C,(X,E)
is a map v ® 0 = V0 with the properties
(i) (linearity) Viyigw = fVe+gVy VY, g€ CHX),
(i) (Leibniz) V,fo = fVyo +df(v)o V[ € CHX).
The Leibniz rule is equivalently stated [V,, f] = df (v) V f € C}(X).

Let (Uy, ¢a = (¢, ..., 7)) be a local trivialising chart of X for the vector bundle
E. Denote the ‘local coordinates’ of U, by z; = ¢(U,) i = 1,..,n. Then the
local frame 9; = % spans TU,. Let V be a covariant derivative on F — X. We

consider V; := V, a generalised i*P-partial derivative. Defining grad := (V1, ..., Vp)
then V, = Y v;V; = (v1,...,vn) - grad is a generalised directional derivative where
vy, = >_; vil;.
We dualise a covariant derivative on E' — X as the map
V:CHX,E) — Cyo(X, T*X ® E)
by defining
V(o)(v) = V(v ®0) Yv € CHX,TX),0 € CX(X, E).
Then V has the form Vo = ¥, Vic where locally
Vio =dz; ® V0 Vo € CL(X, E).

In this form V is called a connection on E — X. We shall henceforth drop the dual
notation and denote a connection or a covariant derivative by V. A connection V on
E — X is a linear map C} (X, E) = C.(X,T* X ® E) and satisfies the Leibniz rule

[V,flo=df ® 0 Vf € CX(X),0 € C}X, E).
We can extend a connection on F — X to a linear map
V:C0HX,A*X ® E) = Co(X, A X @ E)

as follows. We define
d: CHX,A*X) = C,(X, AP+ X)
by the rule in a local frame {dz;}i=1,..n of T*U,
d(fdzi, A ... ANdzy) == df ANdxy, A ... Adx;,,

for a multi:index i; € {1,..., nl ,j =1,...,k. Then there exists a unique extension v
such that Vijoxgr = V and V satisfies a Leibniz rule

V,ulyo =dw®0c Yw® o € CHX,A\*X ® E).
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Here [S, T]x := ST + (—1)¥TS is the graded commutator. Henceforth we denote the

extended connection V and the extended dual covariant derivative by just V.

Let v € Co(X,A*X) and w € C,(X, AV X). Let m denote the antisymmetrisation
map m(v ® w) := v Aw. Let V be a covariant derivative on the tangent bundle
TX — X. We define the exterior derivative associated to V by

dy :=moV:CHX,A*X) = C.(X, A" X).
This is illustrated by the action of dy in a local frame {dz;}i=1,.. n of T*U,,

dyw =Y dz; AVaw VYw € CH(X,A*X).

Let X be a smooth manifold. Then
dy : C®(X,A*X) = C®(X, A" X).
Applying this to map simultaneously to each exterior power yields the linear operator
dv : CP(X, A" X) - CP(X,A* X)

with the properties [Sr, V Prop 3.3]
(i) (graded derivation) dy (v A w) = dyv A w + (—1)9%8% A dyw,
(ii) (nilpotency) d% = 0.
Let v € Co(X,AFX) and w € C¢(X,A7X). Let m; denote the interior contraction
map m;(v ® w) :=v T w. We define the interior derivative associated to V
d% :=mq; oV : CHX,AFX) = C.(X, AP 1X).
This is illustrated by the action of dy, in a local frame {dz;}i=1,. n of T*U,,

dyw = dei TViw Ywe CHX, AR X).

The interior derivative d¥; is also a linear operator
dy : CP(X,A"X) - CP(X,A"X)

such that dt? = 0 and d% is a graded derivation. In fact dy is the adjoint of dy for
the inner product [R, 4.2.3]

4o(v,w) = /X 45(@) (v(2),w(2))y/detgds Vv, € C2(X, A*X).

Let X be a smooth second countable metrisable locally manifold. Then there exists
a unique covariant derivative V' on the tangent bundle TX — X such that dy» = d
[BGY, Prop 1.22]. The connection associated to V' is called the Levi-Cevita connection
and the operators d and d* are usually called ‘the’ exterior and interior derivative.
Elements of C$°(X, A*X) are called the compactly supported smooth exterior differ-
ential forms on X.
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Remark 1.3.4 The exterior derivative and the exterior differential forms on a second
countable locally compact smooth manifold X are fundamental objects in the study
of differential geometry. We leave the theory of differential geometry at this point
however. We are concerned with emulating the structure of the exterior derivative and
the exterior differential forms primarily before we consider emulating their geometric
consequences.

The exterior derivative d : C°(X,A*X) = C®(X,A*X) on a second countable
metrisable locally compact smooth manifold X and its metric adjoint d* define two
fundamental operators.

1.3.5 The Laplacian and the Signature operator
The Laplacian

Let X be a second countable metrisable locally compact smooth manifold with exte-
rior derivative d and interior derivative d*. We define the Laplacian operator

A= (d+d")?: CP(X, AP X) - CX(X, A% X).

The Laplacian operator derives the name Laplacian from the following identifica-
tion. Let (Uy,da = (¢$L,..., 7)) be a chart of X with z; := ¢, the local co-
ordinates and {dz;};=1,..n & frame of T*U,. We define the ‘components of the

metric’ on U, as the functions g (z) := qq(z)(dzi,dz;) (which provide the matrix
a9\
1,5=1,...,n

representation of the metric gq(z) = [gd () ). We can then identify from

(h,Af) = (dh,df) V f,h € C°(X) [R, 1.2.3],

Af = =, Vdetga™ 9j(gd Vaetgatif)
= %9400 +(Xijv detge " (994 v/detga) (8:f)

= —;;940:0;f + first order derivatives.

When g,(z) = id € L(T, X, Tz X) Vz € U,, for instance when X = R" with standard
metric, then A is the usual Laplacian on R*.

Remark 1.3.5 The form of the ‘generalised Laplacian’ above is central to the phi-
losophy of non-commutative geometry. From the form of the Laplacian, it could be
considered that the metrics g,(z) determine A. However, the converse is equally
valid. The metrics g,(z) are determined by A and C$°(X). Explicitely,

i = ~Aziz; = =318, e(wi)) ()

where z; = ¢!, for the chart (Ua, ¢ = (43, ..., %)) [BGV, Prop 2.3]. Non-commutative
geometry is not formulated in terms of co-ordinate charts or Riemannian metrics,
a non-commutative space may have none of these. Non-commutative geometry is
formulated in operator algebra theory, hence it takes operators as its fundamental
objects. Hence, conceptually, an unbounded linear operator we take as the ‘Laplacian
operator’ A and a separable C*-algebra A determines a geometric structure on the

non-commutative space PS(A) Uy 4 ke Prim(A). We reiterate this is a conceptual
view.
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The signature operator

Let X be a second countable metrisable locally compact smooth manifold with exte-
rior derivative d and interior derivative d*. The signature operator is defined by the
linear combination,

d+d": CP(X,A*X) - CF(X, A X).
This operator is essentially selfadjoint considered as a linear operator
d+d*: C®(X,A*X) - CP(X,A*X) C L?(X,A*X)
and has an unbounded selfadjoint closure [LM, II Thmb.7)
D : DomD — L*(X,A*X)

such that A = C®°(X,A*X) is an invariant core for D, D|y = d + d* and D?|;, = A.
We shall often abuse notation and write D = d+d* and call D the signature operator.

For the purposes of Section 1.4, where a counterpart to the exterior derivative
d and the compactly supported smooth exterior differential forms C°(X,A*X) is
derived in the non-commutative calculus, we discuss how the operation of exterior
derivation d is transferred to the *-algebra C5°(X, Cl(X, q,)). We follow the treatment
of Connes in [c, VI.1]. Define d, := :71d.,

Ce(X,Clifff(X,q,)) = COX(X,AFX)
d, | ld
C®(X, CLF+L(X, q,)) % CX(X,AM1X).
We recall the left Clifford action on the exterior bundle in section 1.3.3,
wy : Co(X, CUX, qq)) = Co(X, L(A* X, A* X))
and the canonical representation (L?(X, A*X),)\) in section 1.3.2 where
A: Co(X, L(A* X, A* X)) = B(L*(X,A*X)).

The composition 7; := Aow; forms a faithful concrete representation (L?(X, A*X), m;)
of the C*-closure Cyp(X, CI(X, g,)).

Proposition 1.3.6 [LM, II Lemma 5.5] Let X be a second countable metrisable locally
compact smooth manifold with signature operator d 4 d*. Then

[d+d*, m(f)] = m(df)
for all f € Cc(X).
Remark 1.3.7 We note that
d+d*=(m+m;)oV=coV
where ¢ denotes Clifford multiplication and V is the Levi-Civita connection. Hence
[d+d*, m(f)] = m(d,f)

is an equivalent statement of the Leibniz rule. The signature operator in the form
d +d* = coV is a Dirac operator [LM].
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Define a *-subalgebra of B(L?(X, A* X)),
Qara- (C° (X)) := (m(C(X)) , [d+d",m(CZ(X))])

generated by m(f),[d+ d*,m(g)] Vf,g € CX(X). From Proposition 1.3.6 and [C,
VL1 Lemma 6]
Quya (C (X)) = m(C (X, CU(X, g4))),

and there exists a canonical isomorphism,
i Qayar (C2(X)) = CP(X, CUX, g5))
given by ﬂ’l—l : Wl(fo)[d + d*,m(fl)]...[d + d*,m(fk)] = fod,f1-... - d, fr.

Hence we can reconstruct C°(X, CI(X,gy)) given just the signature operator d + d*
and the C*-algebra Cp(X). What about the exterior derivative?

Define
05,4+ (C(X)) = {m(fo)ld + &, m(f1)]--[d + d*, m(fx)) | fo, s fi € CE(X)},
and a’ linear map
8a: Uy (C2(X) = QT3 (G (X))

by
ba(m(fo)ld -+ &', m(F))-[d + & m(fi)]) = [d+ &, m(Fo)lld + &%, m(fo)].[d + &, ()]
We note wl_l(Q’jer*(Cé"’(X))) is not

C® (X, CLiff* (X, q;)) := ¢ H(OX(X, BE_A X)).
Hence

dgom # mod,.
To rectify this, we recall the map from section 1.3.1
bt Wyt e wi > {w1) A A L(wg)  Ywr, ., we € CO(X, T X)
is a surjection. Hence the surjective map
o L Ok L (CR(X)) = C(X, AFX),

defines a quotient algebra

A (O (X)) 1= Dy e (O (X)) Ker g o

Then the following diagram commutes, moreover the top and bottom surjections are
isomorphisms [C, IV.1 Lemma 6},

Ak L (CP(X) = m(CP(X,AFX))
bd $d
AL (CR(X)) — m(CE(X, AF1X)).

Hence this treatment of Connes has captured exterior differentation on a manifold.
The map 64 we can generalise in section 1.4.1 to the non-commutative situation, the
map d, we cannot since it relies on anti-commutation relations specific to the Clifford
algebra.



1.3. EXTERIOR DERIVATION ON DIFFERENTIABLE MANIFOLDS 33

1.3.6 Summary of Riemannian Structure

We recall the term Riemannian manifold refers to a second countable, metrisable,
locally compact, connected, oriented, geodesically complete smooth manifold with no
boundary and given Riemannian metric g. Let X be a Riemannian manifold. Then
section 1.3.1 through to section 1.3.5 have discussed the following structures:

(i) the map
gg: Ce(X, T*X) x Co(X, T*X) — Co(X)

defined by g,(v, w)(z) = g4(z)(v(z), w(z)) Yv,w € C(X,T*X). The map
qq is often called the metric (since the matrix representation of the metric g
at z is the inverse of the matrix of co-efficients of g4(z) as an inner product),
see Section 1.3.3,

(ii) the Hilbert space L?(X,A*X) defined as the closure of C.(X,A*X) in the
inner product, see Section 1.3.2,

(he, ha) = /X 4y (h1, h2) (2)/Aok(g)dz ¥ he, hy € ColX, A*X),

(iii) the faithful representation (L?(X, A*X),m;) of the C*-algebra Cp(X, CL(X, g,))
defined by 7; := X o wy, see Section 1.3.5,

(iv) from the inclusion Cp(X) — Co(X,Cl(X,q,)) we obtain the representation
(L3(X,A*X), ) of the C*-algebra Cy(X) referred to as ‘representation by

multiplication operators’,

(v) the signature operator d+d* which is an unbounded selfadjoint linear operator
d+d*: Dom(d+ d*) = L*(X,A*X)
that implements differentiation, see Section 1.3.5,
[d+d",m(f)l =m(d.f) VfeCXX),

(vi) the Laplacian A = (d + d*)? determines the metric g, and hence the geometry
of X, see Section 1.3.5.

Let X be a Riemannian manifold. Analagous to Example 1.3.2, the above in-
formation provides the triple (Co(X), L2(X,A*X),d | d*) of o scparablc C*-algcbra
Co(X), a representation (L?(X,A*X), m) of Cy(X) and a selfadjoint linear operator
d+d* : Dom(d+d*) — L*(X,A*X). Hence, as in Example 1.3.2, differential calculus
on a Riemannian manifold is encoded in the triple

(CO(X)aL2(X, A*X)vd + d*)

which is of the form (A4, H, D) described in the introduction to this chapter. In the lit-
erature the triple (Co(X), L?(X, A*X), d+d*) is referred to as the spectral triple of the
Riemannian manifold X. We prefer to consider the information (L?(X,A*X),m;, d +
d*) as a representation for the separable C*-algebra Cy(X) which generates differential
geometry on the spectrum X = ¥(Cy(X)). This non-standard view aids considera-
tions to follow. Hence we shall retain it and reiterate we make distinct definitions
from [c3].



34 CHAPTER 1. ELEMENTS OF NON-COMMUTATIVE GEOMETRY

1.4 Exterior Derivation on C*-algebras

1.4.1 Non-Commutative Differential Forms

The purpose of last section was to review the structure of the exterior derivative on
a differentiable manifold as a guide to how we could conceive an exterior derivative
in non-commutative geometry. We introduce in this section a variant of Connes’
non-commutative counterpart to section 1.3.5 above.

Let A be a C*-algebra. Let P(X) denote the power set of a set X. Define a map
supp : A — P(Prim(4)) , a > supp(a) := {kerm,|p € PS(A),a € ker7,}
called the support map.

Definition 1.4.1 We say a € A has compact support if supp(a) is contained in a
compact subset of Prim(A).

Let A. denote the subset of A consisting of all elements of compact support. If
Prim(A) is compact then 4 = A,.

Theorem 1.4.2 Let A be a C*-algebra. Then A; is a norm dense two-sided *-ideal
of A.

Proof Leta € A; and p € PS(A) such that m,(a) = 0. Then 7,(a*) = m,(a)* =0
and m,(ab) = m,(a)m,(b) = 0 = m,(b)my(a) = m,(ba) Vb € A. This proves A, is a two-
sided *-ideal. Let C' = Prim(A) and ¢ € C. Let [a]. denote the class of a € AT in the
quotient A/c. Define a function f, : Prim(4) — [0,00) by f,(c) := ||[a]c]|. The map
a — fq extends to an isomorphism Z(M(A)) — Cy(C) where M(A) is the multiplier
algebra of A and C}, denotes continuous bounded functions (Dauns-Hofmann Theorem
[Ped, Cor 4.4.8]). Let {f,} be a net of continuous bounded functions with compact
support such that |[(1 — f,)f]] = 0 for all f € Cy(C). Let {up} be an approximate
unit of A. Then {f,ux} is a compactly supported approximate unit for A. This is
sufficient for norm density of A.. m|

Definition 1.4.3 Let (H,n) be a non-degenerate separable concrete representation
of a normed *-algebra A. Let D be a (bounded or unbounded) selfadjoint operator
D : DomD — H. Then we call (H,m,D) a base representation of the normed *-
algebra A.

Definition 1.4.4 [C3] Let (H, w, D) be a base representation of a C*-algebra A. Then
we call (H,n,D) a Cl-representation if there evists a norm-dense *-subalgebra Al of
A, such that

(i) mw(a)DomD C DomD for a € AL,
(ii) [D,w(a)] is norm bounded on DomD for a € AL.
There exists a unique bounded operator extending [D,m(a)] for a € Al. We

abuse notation and denote the extension [D,m(a)] as well. Let (H,m,D) be a Cl-
representation of a C*-algebra A. We define

Qp(A) =< 7(4) , [D,m(A)] >
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as the *-subalgebra of B(H) generated by (a),[D,n(b)] for all a,b € AL. We can
Z-grade this algebra by Q°(AL) := m;(Al) and

05 (4L) := {we Qp(Al)|w is degree k in [D, w(AL)] tfarms}
= {m(ao)[D,n(a1)]...[D,m(ax)]] ao,...,ax € AL}.

for £ > 1 where fig is the unitisation of Al 8. We view the operation
[D, -]: m(4g) = Qp(A;)
as ‘differentiation’. We extend this to

6p : O (A) — Q5 (42)

given by p (n(ao)[D, (ay)]...[D, w(ak)]) = [D, m(ao)][D, (a1)] .. . [D, w(ax)]-

The map dp is designed to be the generalised exterior derivative. It satisfies
6%, = 0 by construction. However, it is not a graded derivation in general. Following
[c, VI.1] we will quotient the algebra Q% (Al) by the obstruction to 6p being a graded
derivation, and hence obtain the generalisation of differential forms. Let us calculate
the obstruction.

The universal graded differential algebra (Q(B), d) of a unital associative algebra

B is given by

(i) @°(B):=B,

(ii) QY(B):=ker{a®b+> abla,b€ B} C B® B,
(iii) the derivation 4 : B — Q}(B) defined hy 4(h) ;=10 h—-bR 1,

(iv) QF(B):=QY(B)op...0p Q! (B) for k > 2,

k
(v) the unique graded derivation 6 : Q*¥(B) — QFt!(B) that extends § : B —
QL(B) [sb, IT Lemma, 1.1.2)

(vi) Q(B) := @g>0Q*(B) with multiplication by tensor product over B.

Let B be the unitisation of a non-unital *-algebra B. We then define the universal
graded differential algebra of B by

Q(B) := Ba (&72,9%(B)).
Let (H,w, D) be a Cl-representation of a C*-algebra A. The map

mp : QF(Al) - Qb (4)), 6= bp

®The equality between the sets defining % (A2) is not a triviality. For instance, consider w €
Qp (A7) given by w = w(ao)[D, 7(a1)]m(az) for ao,a1,az € AL. This is of degree 1 in [D,w(AL)]
terms. The fundamental relation

[D, n(@)n(b)] = m(a)[D, n(b)) + [D, n(a)]n(b) Va,be A

provides the form w = n(ao)[D, m(a1a2)] + w(aoa1)[D, w(az)].
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defined by

mp(ap ® 6(a1) @ ... ® §(ag)) := m(ag)[D,w(a1)]...[D,n(ax)]

is an algebraic homomorphism [c, Pg 186]. We use the terminology (2p(A}),ép) is
a representation of the universal graded differential algebra (QF(Al), ). However, it
is not differential as mp o § # ép o mp in general.

Example 1.4.5 The universal graded differential algebra of an associative alge-
bra B is universal in the following sense. Let M = @, MF be a graded B-bimodule
with M® = B and graded derivation d : M* — M**+1 such that d2> =0 7. Then
there exists a graded bimodule homomorphism 8 : (B) — M such that 6§ = df
[JL] [P, 7.1,7.2].

For example, on a Riemannian manifold X there exist homomorphisms p;, py
QCr(X))

y 48 D2

¥ N
Ce(X,Cl(X, g)) —  CP(X,A*X)

such that tp; = po, p16 = d,p1 and p20 = dps. Let D = d 4 d* and define the
surjection

p3 1 C°(X, CLff*(X, g4)) — O5(C(X)) , d. — ép.

Then p3d, # dpp3. This is due to the existence of elements w € ker p3 such that
d,w ¢ kerps. As an example, an element with local representation in a chart
Uy of X with the form, wy(z) = f(z)m(dz1)...m(dzk—1) such that 9;f = 0 for
i=1,...,k—1and Oyf #0. As Q*¥(C°(X)) is universal then p3p; = mp. Hence
mpd # dpmp as mpd = p3pi16 = pa3d,p1 # dpp3p1 = SpTp.

We can identify the obstruction to mp being a differential representation. Define for
k>0,

JE(AL) = {wy + 6(wy) | w1 € QF(AL), we € QF1(AL), 7p(w1) = 7p(ws) = 0}
The algebra Jp(Al) := @ymp(J¥(AL)) is a graded differential two sided ideal of
Qp(A}) [c, VL1 Prop 4]. Define

Ap(47) == 2p(A;)/Ip(Ac)
then
8p : Ap(AD) = ABFH(47)
has the properties
(i) ép is a graded derivation on Ap(A}),
(i) =0,

that generalise the properties of the exterior derivative.

"Bimodules of associative algebras are discussed in Section 2.1.1.
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1.4.2 Smooth Non-Commutative Differential Forms

Last section we defined the non-commutative exterior differential forms and non-
commutative exterior differentiation associated to the Cl-representation (H,m, D) of
a C*-algebra A as the differential representation (Ap(Al),p) of the universal graded
differential algebra (Q%(AL), ). The only detraction of this construction is the inca-
pacity to define degrees of differentiability. The nilpotency of the ‘exterior derivative’
dp prevents repeated derivation of a function from determining degree of differentia-
bility. We recall from Section 1.3.4 that covariant derivatives provided the analogue of
partial or directional derivatives on a Riemannian manifold. A. Connes treatment of
‘non-commutative covariant derivation’ in [C5, CM] involves a non-commutative pseudo-
differential calculus of a C}-representation (H,w, D) of a C*-algebra A. We outline
the definition of smooth non-commutative differential operators in this calculus.

Let (H,w, D) be a Cl-representation of a C*-algebra A. Define the subspaces of
the Hilbert space H, 8

H’ = Dom|D|*

for all s > 0. We define op®" as the linear space of continuous operators
op®” : H® - H*™"
for all s > 7> 0. Let fo(z) = (1+2%)"2,2 € R,s > 0. Introduce the norm
T, := sup{l|fs(D)T fi(D) I} | s + = 7}.
Define the normed space
op” = {T € op*" |||T, < oo}.

We will consider the operators in opy? Vs > p to be the ptP-differential operators in
the calculus of (H,, D).

Remark 1.4.6 We have op®® = opd® = B(H). A zeroth order operator T is
bounded and T € L(Dom|D|*, Dom|D|*) for all s > 0. The operators D,|D| &
opf;’1 Vs > 1 and are considered ‘first order’. The Laplacian D? € opf;’2 Vs> 2is
second order. A first order operator thal is central in Connes local index formula is
the ‘covariant derivative’ [C5, CM]

Vg = %[Dg,w(a)]

for a € Al that are zeroth order. Connes’ definition of a covariant derivative provides
generators of the ‘non-commutative geodesic flow’ and generalisations of the Levi-
Civita connection, see [C5, Section 6].

®Let A : R — C be a bounded Borel function, then h(D) will denote the operator defined by
the spectral theorem for selfadjoint operators [RS, Thm VIIL5]. The spectral theorem extends to
unbounded Borel functions in the following sense. Let h, be bounded and Borel and h, — h
pointwise. Then there exists an unbounded closed operator h(D) such that h,(D) — h(D) in the
strong resolvent sense (Spectral Theorem with Trotter-Kato and Trotter Theorems [RS, VIIL.21-22]).
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Define the covariant derivation,
1
V(w) := §[D2,w]

and the derivation
5|D|(w) := [|D|, w]

for w € m(AL) or w € Q5 (AL) that are zeroth order.

Proposition 1.4.7 [¢5, Lemma 1, Cor 1, Lemma 2]
Let w € m(AL) or w € QL(AL) be zeroth order and p € N. Then

w € Domijp m=1,...,p < V™w) € op)"™ m=1,...,p.
The result identifies p-differentiability of differential forms and the domain ﬂfnzlél"f)l.

Definition 1.4.8 [C3] Let (H,m, D) be a base representation of a C*-algebra A. We
say (H,m, D) is a C°-representation if there exists a norm-dense *-subalgebra AP of
A. such that

(i) m(a)DomD C DomD for a € AP,
(it [D,n(a)] is norm bounded on DomD for a € AP,
(iii) w(a),[D,n(a)] € Domél"’D| Vk €N forae AY.

Let (H,m, D) be a C-representation of a C*-algebra A. As a consequence of the
definition above 2p(A%°) C op%® for each s > 0. In otherwords, defining

H® :=Ng>oH® = Ng>9Dom| DY,
then
Qp(AX) C L(H™, H®).
We define a locally convex topology on Qp(A%°) by the family of semi-norms [BR, V.1]
pm(w) := ||6|’f)|(w)|| , m=0,1,2,...

with the convention 6IOD|(T) = T for T € B(H). We denote this locally convex
topology Sp and the closure of a set O C Ny Domd™ by Sp(0). We define a stronger
locally convex topology on A2° by the family of semi-norms

(@) = 1678, (@) 5 pr(a) = 11673 (D, m(@)D]} , m=10,1,2,...

with the convention 6|°D|(T) = T for T € B(H). We denote this locally convex
topology Si, and the closure of a set O C NpDomdé™ by SL(0). We have not
specified that A2° be closed in the locally convex topology Sll).

Let (H,m, D) be a C¢°-representation of a C*-algebra A. We introduce the notion
of smoothness in the non-commutative calculus associated to the C:°-representation
(H,w, D). Define

Az :={a € A|pp(n(a)) <oo,n=0,1,m=0,1,2,...}.
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Proposition 1.4.9 The *-algebra A, as above has the properties,
(i) the topology S) on A, is metrisable,
(ii)
(iii)
(

iv) Ay is norm dense in A.

Ay is closed in Sh,
A

~ 48 closed in the holomorphic functional calculus,

Proof Checking that A, is a *-algebra is straightforward. (i) S} is generated by a
countable family of semi-norms [RS, Thm V.5]. (ii) By construction.

(iii) This result is well known, and the same concept as [C, Lemma 6]. We outline
the proof. Let m(a) € A. Let f(m(a)) = [5 f(A)(m(a) — X\)~1dX where C is a closed
contour with sp(a) interior to C' and f is holomorphic on a region containing C' and
its interior. Let M(C,sp(a)) = inf,ccwesp(a) [12 — w|| and L(C) = arclength of C.
From [T, (m(a) — A\)~!] = —(w(a) — \) 7T, n(a)](n(a) — \)~!. we obtain

IIT, £ (x (@)l < T, w(a)]l| max] f|M(C,sp(a)) “*L(C).

This proves p(f(m(a))),p(f(7(a))) < oo letting T = |D|,D. Similar arguments
provide the same result for the semi-norms p},, where n = 0,1 and m = 0,1,2,....
Hence f(m(a)) € A;.

(iv) There exists a norm dense sub-algebra A%° C A, by definition. a

A locally convex space that is closed and metrisable is called a Frechet space [Jn].
In the literature a smooth algebra is defined to be a Frechet *-algebra stable under
the holomorphic functional calculus. A pre-C*-algebra is defined to be a norm dense
*-subalgebra of a C*-algebra stable under the holomorphic functional calculus.

Corollary 1.4.10 The pre-C*-algebra A, of A is smooth.
The *-algebra of multipliers,
M(A) :={a € M(A)|ab,ba € A, Vbe A,},

is a pre-C*-algebra of the multiplier algebra M (A) that is closed in the non-metrisable
locally convex topology given by the family of seminorms

Pmp *= P (ab) + ), (ba) , b € Ar,n=0,1,m =0,1,2,...

We denote this locally convex topology by MS}, and the closure of O C M(A,) by
MSL(0).

The locally convex topology S, can be placed on the *-algebra
M(A)ﬂ' = {a e M(A) Ip?n(ﬂ-(a’)) < m’n = 0’ l’m = 07 1727 "'},
making it a Frechet C*-subalgebra of the multiplier algebra M(A).

Lemma 1.4.11 Let M(A),. and M(A,) be the closed locally convez *-algebras as
above. Then

MSH(Ar) C M(A), C M(Ay)
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with Sb << MS}.

Proof Let X = MS}H(As), Y = M(A), and Z = M(A;). Let a € Y. Then (¥)

Psla) = (at) + 2500 < 3 (7 ) GF @A) + O (0) < .
=0

Hence a € Z. Moreover, let {a;} C Y such that a; = a in the topology SL. Then
Pmplai —a) — 0 for each b € A; by (*). Hence SL << M8}, and Y is closed in
MSL,. Then X C Y since A, CY. ]

Theorem 1.4.12 Let M(A), and M(Ay) be the closed locally convez *-algebras as
above. Then the following statements are equivalent

(i)
MSD(Ar) = M(A), = M(Aqr),

(ii) the smooth *-algebra A, admits an approzimate unit {uy}aca for the C*-
algebra A such that pp,(uy) — 0 for all m,n # 0.

Proof Let X = M(A),, Y = M(A;) and Z = MSH(Ar). ,

(i) = (i) We have 1 € Z and by hypothesis there exists a sequence {u;};en C Ay
such that py, ,(u;—1) — Oforallb € Ay,n=0,1,m =0,1,2,.... Fix (m,n) € Z;xZo.
Let u; = b as above. Then there exists j(z,m,n) € N such that Vj > j(i,m,n),
p?n(u,-ugui) < P, (uj) < i71. Then {u;; = uiuﬁui}ieN C Ay is an approximate
unit such that pl (u; ;) — 0 as i — oo for any j > j(¢,m,n). Now define v} := u;
for any j > max{j(i,k,n)|n = 0,1,k = 0,1,...,p}. Then {ul}; yenxn C Ar is an
approximate unit such that p? (u}) — 0 as ¢,p — oo.

(i1) = (i) The result follows from the previous lemma if we establish Z C X. Let
a € Z. Then ab,ba € A, for all b € A,;. By hypothesis there exists an approximate
unit {uy}rea C Ay such that p?, (aupb — ab) — 0 and p}}, (bauy — ba) — 0 for all n =
0,1,m =0,1,2,.... Hence there exists a sequence {aux} C Ay such that py, ,(au) —
a) > 0forallbe 4,;,n=0,1,m=0,1,2,... Thena € X. ]

An approximate unit {uy}rep C Ay is called a smooth approximate unit for the
C*-algebra A if p* (ux) — 0 for all m,n # 0. In the absence of A, admitting a
smooth approximate unit for A we consider the largest *-algebra M(A;) as the pre-
C*-algebra of smooth multipliers. A corollary of Theorem 1.4.12 is that M(A;) is
a smooth *-algebra admitting the topology S} if and only if A, admits a smooth
approximate unit for A.

ker

Let A be a C*-algebra and ¥,(A4) := PS(A) by g Lo Prim(A) the associated
non-commutative space. In summary, we have introduced the algebras in the non-
commutative smooth differential calculus associated to the C¢°-representation (H, w, D)
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coincident with the following intuitive scheme

dense

A% ‘non-commutative C°(%,)’
Ac.NA; = ‘non-commutative G3°(%,)’
Ar = ‘non-commutative C§°(%,)’
M(A;) = ‘non-commutative C5°(%,)’
Ac = ‘non-commutative C¢(X,)’

A = ‘non-commutative Cp(%,)’
M(A) = ‘non-commutative Cy(Z,)’.

The next example demonstrates the algebras above are the counterparts to smooth,
compactly supported and continuous functions on a Riemannian manifold.

Example 1.4.13 Let X be a Riemannian manifold.

Proposition 1.4.14 Let (L?(X,A*X), m,d + d*) be the base representation of
the commutative C*-algebra A = Cy(X) defined in section 1.3.6. Then the base
representation (L2(X,A*X),m,d + d*) is a CP-representation of Co(X). In
particular A, = Cc(X), Ar, = C§°(X) and M(Ar) = C3°(X).

Proof Let m := m. It is trivial that C.(X) = Cp(X). by Prim(Cp(X)) = X.
Let f € C§°(X) which is norm-dense in Cy(X). We refer to [cCM, Theorem
1.1] for the proof that [|d + d*|,[|d + d*|,...,[|d + d*|,T)..]] for T = m(f) or
[d+ d*,m(f)] = m(df) are zero order because the principal symbol of |d + d*| is
scalar. The same proof holds for any bounded smooth function C§°(X). Then
C°(X) C Ay C Cp(X) and CP°(X) C M(A), C M(Ay) C Cp(X).

Equally it is an exercise in differential geometry to determine V(df) := %[A, m(f)]
indeed defines a covariant derivative up to scalar terms. Then ||[V*(f)||, < oo
implies the partial derivatives of f in any chart all exist and are continuous.
Hence A, C C§°(X) and M(A)r C C§°(X). Otherwise one may use the sym-
bol calculus to obtain the partial derivatives as co-efficients of [|d + d*|,[|d +
d*|,...,[|d + d*|,m(f)]..]], such as [Re, 4.3] or the proof of [CM, Theorem 1.1]. O

Non-Commutative Calculus (Part 2)

We recall the following basic elements that, together with linear algebra, provided
the theory of multivariable calculus:

(i) the second countable metrisable locally compact topological space X,
(ii) the algebra of continuous complex valued functions C'(X) on the space X,

(ili) the derivative operation on differentiable functions C*(X) c C(X),

d:0Y(X) = C(X,L(TX,C)),
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(iv) the integral of a continuous function over the space X, which can be viewed
as a linear positive definite functional

I:C0(X)— CuU {0}
(v) a geodesic metric derived from the integral and derivative.

In this chapter we are concerned with the emulation of the elements (i)-(v) in the non-
commutative environment of the triple (A, H, D) defined in the introduction. In part
2 we deal with the elements (iv)-(v). Section 1.5 identifies the predual of a von Neu-
mann envelope of a separable C*-algebra A as the counterpart of the space of linear
positive definite functionals on integrable functions. Section 1.6 extends the theory of
non-commutative integration by introducing generalised Radon-Nikodym derivatives.
Section 1.6 also introduces a foundation structural theory of von Neumann algebras
called the Tomita-Takesaki or Modular theory. The Tomita-Takesaki theory is shown
to have a fundamental link to the spectral triple (Co(X), L3(X,A*X),d + d*) of a
Riemannian manifold X. Section 1.7 introduces A. Connes formulation of the inte-
gral calculus associated to a base representation (H,m,D) of a C*-algebra A. We
remark Connes formulation is not coincident with the established non-commutative
integration theory of normal semi-finite weights on von Neumann algebras discussed
in Section 1.5 and Section 1.6. Section 1.8 develops the counterpart of geodesic metric.
Section 1.9 summarises the non-commutative calculus associated to a C;°- and inte-
grable representation (H,m, D) of a C*-algebra A as developed in Section 1.2 through
to Section 1.8.

Basic Definitions

Let X be a topological space and p a Borel measure. We call the pair (X, 1) a (Borel)
measure space. We recall a Borel subset B of X is defined by

B =U{C ¢ B|C is compact} =N{B C O|O is open}.
A regular Borel measure on X is a Borel measure p such that for all Borel sets B,
= = i f O
u(B) o w(C) = inf 1(0)

where O are open and C are compact and Borel. A Borel measure p is called o-finite if
there exists a countable collection of Borel sets { Ep, }nen such that p(E,) < oo Vn €N
and U, E, = X. A Borel measure p is called finite if 4(X) < co. When the topology
on X is metrisable every finite measure is regular.

A Borel set B is called a null set for p if u(B) = 0. Let p and v be Borel
measures on X. Then v is absolutely continuous with respect to p, denoted v << p,
if v(B) = 0 < p(B) = 0 for a Borel set B. The Borel measures v and u are called
equivalent, denoted v = p, if ¥ << p and p << v.

1.5 Non-Commutative Measure Theory

Let X be a locally compact Hausdorff space and p a regular Borel measure on X. In
the following sections we shall show a bijective correspondence

(X, 1) <= (W(4),7)
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between regular Borel measure spaces (X, ) and commutative von Neumann algebras
and normal semifinite weights (W (A), 7). The existence of this bijective correspon-
dence leads to the generalised theory of von Neumann algebras and normal semifinite
weights being called ‘non-commutative measure theory’.

1.5.1 Measure Theory on R

Let u be a regular Borel measure on R. Let L'(R, 4) be the Banach space of integrable
functions and L*°(R, 1) the Banach space of essentially bounded functions. Let f €
L*®(R, p). The correspondence

Fes TS, ), T, g) = /R Fodu ¥g € I'(R )

defines a linear isometry
LR, p) +— L'(R, p)*

between essentially bounded functions and the dual of L*(R,u). However, letting
g € L'(R, 1), the correspondence

g+ T g) , TH(f,g) = /R Fodu ¥ f € L®(R, 1)

defines a linear isometry of L'(R,u) onto a proper closed subspace L*®(R, u)s of
L (R, p)*,
LI(R, 1) — L°(R ).

We call L*°(R, )« the pre-dual of L®(R, ). The Radon-Nikodym Theorem identifies
L*®(R, p), with the finite Borel measures v absolutely continuous to u,

V(E) = Tu(XE: f)a

where xg is the characteristic function of a Borel set E. The ultraweak topology on
L*®(R, 1) is the weak*-topology induced on L>®(R, 1) as the dual of L!(R, p),

fo = f = T"(fn,9) > T*(f,9) Vg € L'(R, p).

The equivalences

finite Borel measure v << p on R
— T”("f) € Loo(Ra /J,)*,
Borel measurable sets F s.t. u(E) >0
<= characteristic functions xg in L (R, u),
<= the non-zero projections in L*°(RR, u1),
regularity of a finite Borel measure v <<
<= ultraweak continuity of T#(-, f) € L*°(R, u)« on the
unit ball of L>(R, i),
Borel measurable sets constructed from the topology of R
<= L*(R,p) is the ultraweak closure of Cy(R),
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transfer measure theory from Borel sets and measures to the Banach space L (R, i)
and the predual L (R, u)x.

We convert the Banach space concepts above into operator algebra theory. The
Banach space L™(R, i) is a *-algebra given the involution of complex conjugation
and the product (fg)(z) = f(z)g(z) p-a.e. Then L*®(R, ) is a C*-algebra. It has a
faithful representation (L?(R, u), ;) where

m : L®°(R, p) = B(L*(R, 1)) , m(f)g(z) = f(z)g(z) p-ae. Vg€ L (R, p).

The continuous linear functionals L™ (R, u)* = L(L*®(R, u), C) play the same role
as section 1.2 in the structure of the C*-algebra L*°(R, u). However o : L®(R, ) — C,
while continuous in the ||.||,,-norm sense

o(fo) = o(f) when |fo = fllc =0,

is not necessarily continuous in an ultraweak sense
o(fa) = o(f) when fo — f ultraweakly.

Hence the weaker topology on L™ (R, i) prescribes a restricted class of (norm-)continuous
linear functionals and a new facet to the analysis:

Let {fo} be any bounded monotonically increasing net of positive essentially
bounded functions such that f, —+ f ultraweakly. Then a continuous linear func-
tional ¢ € L(L*°(R, 1), C) is called normal if lim, o(fa) = o(f). The normal linear
functionals are denoted L,{L*(R, n), C).

Theorem 1.5.1 Let 1 be a Borel measure on R. Then
(1) L®°(R,p) is ultraweakly closed,

(ii) the pre-dual consists of normal linear functionals,
LR, p)s = L (L® (R, 1), C)

Proof (i) The dual of a Banach space is closed in the weak*-topology. (ii) [Ped, Cor
3.5.6, Thm 3.6.4)]. ]

The normal linear functionals on L*°(R, u) are equivalent to the finite regular
Radon measures in the measure theory on L (R, p1).

1.5.2 Von Neumann Algebras and Weights

Theorem 1.5.1 is the basis for the generalisation of measure theory to general operator
algebras.

Let H be a Hilbert space. A von Neumann algebra R is a weakly closed C*-
subalgebra of B(H). For any C*-algebra A we have denoted by L(A,C) the contin-
uous linear functionals on A and L™ (4,C) the positive linear functionals. Let {aq}
be any bounded monotonically increasing net of positive elements of R such that
ao — a weakly. Then a continuous linear functional o € L(R,C) is called normal if
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lim, 0(aq) = o{a). The normal linear functionals are denoted L.(R,C). The space of
normal linear functionals on a von Neumann algebra R is also denoted R, and called
the pre-dual of R °. The pre-dual R, is, conceptually, the space of non-commutative
finite regular Radon measures on R.

Von Neumann algebras with separable pre-dual

Theorem 1.5.2 Let R be a von Neumann algebra on a separable Hilbert space. Then
there exists a separable C*-algebra A such that

(i) ms(A)" = R, where (H,,7,) is the separable representation associated to a
faithful positive linear functional o € Lt (A,C),

(ii) R 1is isomorphic as a Banach space to the second dual A**,

(iii) the pre-dual R, = A* is separable.

Proof (i) The proof of [Ped, Prop 3.8.4] (ii) [Ped, Prop 3.7.8] (iii) [Ped, Thm 3.9.8]
O

The statements (i)-(iii) of Theorem 1.5.2 are equivalent and provide the form of
all von Neumann algebras with separable pre-dual.

Let A be a separable C*-algebra. We recall the structure spaces PS(A) Ly 4 ke
Prim(A) of A, and that PS(A) is a complete second countable metrisable Haus-
dorff topological space given the weak*-topology, see Theorem 1.2.1. We are not
interested in generalised measure theory per se, but the ‘non-commutative measure
space(s)’ arising from a ‘second countable metrisable non-commutative topological

space’ PS(A) g 4 ke Prim(A4). Theorem 1.5.2 hence restricts our study to von
Neumann algebras with separable pre-dual. Let (H, w) be a separable representation
of A. We shall call 7(A4)" the von Neumann envelope of A associated to (H,n) 1°.

Remark 1.5.3 The fundamental relation PS(A) ¢ Irr(A) identifies PS(A) as non-
commutative ‘point’ measures for the ‘points’ given by the irreducible representations
of the algebra. The pre-dual of the von Neumann envelope is generated by the closure
of linear combinations of ‘point’ measures in the weak*-topology. This is precisely the
case on R, where the Dirac measures p, for z € R generate the finite Radon measures
on L (R, 1) [RS, variant problem 41, IV].

Relevant examples of Von Neumann algebras

Example 1.5.4

Let B be a Banach space. The pre-dual B, is the unique closed subspace of the dual B* such
that B is the dual of B.. A Banach space is called reflexive if B. = B*. The spaces we deal with
are not reflexive in general. For example, L™ (R, u)» = L'(R, ) # L°(R, u)*. For a von Neumann
algebra one identifies the normal linear functionals with the pre-dual [Ped, Cor 3.5.6, Thm 3.6.4].

18A von Neumann algebra with separable pre-dual will suffice as non-commutative measure theory
for us. However, there are deeper reasons why hyperfinite von Neumann algebras are considered
regular measure theory. Connes’ early work completes the classification of hyperfinite von Neumann
algebras [C1]. Amenable ( = hyperfinite) von Neumann algebras arise by replacing separable C*-
algebras in Theorem 1.5.2 with separable nuclear C*-algebras [EC].
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a. Commutative von Neumann Envelopes

Let A be a commutative C*-algebra. Hence A = Cy(X) for a locally compact
Hausdorff space ¥ [Gelfand Theorem, Thm 1.2.12]. The space of positive linear
functionals on Cy(X) are the finite regular Radon measures [RS, IV.18]

Theorem 1.5.5 (Riesz-Markov Theorem) Let 3 be a locally compact Haus-
dorff space. Then every p € LT (Co(X),C) is of the form p,(f) = [ fdu for some
finite regular Borel measure L.

Denote by M(X) the space of complex finite regular Borel measures on 3.

Theorem 1.5.6 Let A be a commutative C*-algebra with spectrum X. Then
(i) M(Z)=L(4,C) = A7,

(ii) the representation by multiplication operators
T, A= LA(Z, p),
provides the GNS representation associated to p, for p € M(X),
(ili) m,(A)" = Lo(X,p) for p € M(X).

Proof (i) Riesz-Markov (ii),(iii) [Ped, 3.4.1, 3.4.4, 3.4.5] O

b. Essentially bounded sections

Let X be a Riemannian manifold and p: F — X be a Hermitian vector bundle.
We recall from section 1.3.2 we have

(i) the Hilbert space L%(X, E) with inner product
(01,09 = / (01(%), 72(2))s/detgde Yoy,05 € LA(X, E)
X

(ii) the C*-algebra Cy(X, L(E, E)) with norm

1T = sup | T(z)ll,

zeX
and representation (L2(X, E), \) where
(\T)o)(2) = T(z)(o(z)) VT € Co(X, L(E, E)),0 € B(L*(X, E)).

Let ¢ denote the Lebesgue measure of X, see Section 1.1.3. We define an es-
sentially bounded sections of endomorphisms on E as a sections S taking values
in L(E, E) such that ess-sup||S(z)||, < co. We denote the space of essentially
bounded sections of endomorphisms on E by L*°(X, L(E, E)).

Proposition 1.5.7 A\(Co(X, L(E, E)))" = L*(X, L(E, E)).

Proof For convenience let R = L*®(X,L(E,E)), C = Cy(X,L(E, E)) and
H = L?(X,E). Both R and C act faithfully on the separable Hilbert space H
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by left multiplication operators. Let us consider the commutant of R and C.
As L(E;, E) = Z(L(E;, E;)) = C then R' = C' & m(L*(X,¢)) ® id where
id: z — id,; and ¢ : L®(X,€) — B(L?*(X,¢)). Now (m(L®(X,¢)) ®id) = R
as m(L°(X,&)) is weakly closed. Hence R = R" = C”. By von Neumann’s
bi-commutant theorem R is weakly closed [Ped, 2.2] [vN]. O

Let V be a choice of Hilbert space such that V' = E,. Let A be a C*-algebra
that admits a representation (V,n). Then for each z € X there exists the rep-
resentation (Ey,7;) where m, : A — L(E;, E;). We define a C*-subbundle
A(E) of the vector bundle L(E, E) to be the vector subbundle of X — L(E, E)
defined by the map p; : m;(A) — z. Let A(E) be a C*-subbundle of L(E, E).
Then A”(E) denotes the associated C*-subbundle of L(E, E) defined by the map
D2 T (A) — .

Corollary 1.5.8 Let A(E) be a C*-subbundle of L(E, E). Then A\(Co(X, A(E)))" =
L>®(X, A"(E)).

Note A"(E) = A(E) when V is finite dimensional. This follows as the weak and
uniform topologies agree on the finite dimensional representation (V,7) of the
C*-algebra A.

Weights on von Neumann algebras

Let A be a separable C*-algebra. with separable representation (H, ). Let $,(A4);=

PS(A) Ly 4 ker Prim(A). Define the ‘volume’ of ¥,(A) with respect to the ‘measure’
o € m(A)] by
Vol (3,(4)) := o(1).

Elements of the pre-dual m(A)! are considered ‘finite measures’ as o(1) < co. This

occurs for any linear functional. To generalise to ‘non-finite measures’ we introduce
the notion of a weight on the von Neumann envelope m(A)".

Definition-Lemma 1.5.9 [Ped, 5.1.1,5.1.2]
Let R be a C*-algebra.
(i) A weight p on R is an additive form p: Rt — [0, 00].
(i) A trace weight is a weight p such that p(a*a) = p(aa*) for all a € R.

(iii) The positive support of p, Rf = {a € R |p(a) < oo}, is a hereditary sub-
space of Rt.

(iv) The support of p, Ry = Span¢(R}), is a two-sided ideal of R.
(v) A weight p on a von Neumann algebra R is called

(a) faithful if p(a*a) =0 = a =0,

(b) semifinite if R, is o-weakly dense in R,

(c) mnormal if there is a set {po} C R such that p(a) = sup, pa(a) for all
a € R,.

(vi) A weight p is a positive linear form if and only if 1 € R,.
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The GNS construction can be performed for semifinite weights, exactly as in
section 1.2.2, replacing the C*-algebra R by the o-weakly dense two-sided ideal R,
[Ped, 5.1.6). We will denote faithful normal semifinite by the acronym fns.

Example 1.5.10 Lebesgue Integration on R and Absolute Continuity

Let ¢ denote the Lebesgue measure on R. Let Cy(R) be the C*-algebra of vanish-
ing at infinity complex valued functions with representation (L2(R,&),m) given
by multiplication operators m; : Co(R) — B(L%(R,€)) as in Example 1.3.2. Let
Cy (R) denote the non-negative continuous functions. Define the Lebesgue inte-
gral of a non-negative continuous function f by

A(f) = /R f(2)de ().

Proposition 1.5.11

(i) The integral ) is a faithful normal semifinite weight on the von Neumann
algebra L (R, £).

(ii) The representation (L2(R, &), m) of L°(R,&) is the GNS representation
associated to the integral \.

Proof (i) By Theorem 1.5.6 m(Co(R))” = L*(R,£). Hence L*(R,{) is a
von Neumann algebra. Let R = L®(R,¢) and f : R — [0,00) be essentially
bounded. Faithfulness of X\ follows from A(f) = 0 iff f = 0 £-a.e. The support
Ry = {f € L®(R, &) | A\(|f]) < oo} = LY(R, &) N L®(R,§) is strong dense in R,
hence o-weak dense. For normality, let xg(z) be the characteristic function for
a Borel set E € R. Define

n
M) = [ Xnm(@f@da= | S,

bt
which is finite for any non-negative essentially bounded function. Hence A, is’
a positive linear functional. Let f, — f be an bounded increasing net of pos-
itive functions in L®(R,£) that converge weakly to f. Then x(_pnfa(z) —
X[-nn)f(z) -ae. for fixed n. Hence the Lebesgue Dominated Convergence
Theorem implies ), is normal. As A(f) = sup, An(f) then X is a normal
weight. (i) The support of X is Ry = L}(R,¢) N L®(R,€). For f,g € Ry,
Mf*9) = Jx f(x)g(x)dE. Hence Ry = L2(R, &) and the associated representation
is multiplication functions. Apply Theorem 1.5.6(ii). a

Let p be a Borel measure on R and

1= Pac + Hs + Mpp

be the Lebesgue decomposition of u . The Hilbert space L?(R, ) decomposes
as the summand

L2(R, 1) = L*(R, ptac) ® L(R, pis) & L* (R, pipp)-

11 Any Borel measure i on R decomposes as pt = ftac + fts + pipp Where piac is absolutely continuous
with respect to £, us is singular with respect to £ but points are null sets, and ppp is a pure point
measure [RS, Lebesgue Decomposition Theorem, 1.14].
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Hence the GNS representation 7, of Cy(R) given by Theorem 1.5.6 decomposes
into
T = Mpae ® Tpss ® T pipp+

Definition 1.5.12 Let A be a C*-algebra with representation (H,n). The rep-
resentation (H,m) is called an absolutely continuous representation if for all self-
adjoint elements a of A the Borel set sp(m(a)) C R is a null set for all singular
and pure point Borel measures on R.

Theorem 1.5.6 implies for any Borel measure i on R there exists the GNS repre-
sentation (L%(R, 1), 7,) of Co(R). In Proposition 1.5.11 the Lebesgue measure ¢
distinguished the representation (L?(R,¢), ;) as the GNS representation arising
from the Lebesgue integral. In the reverse direction, what identifies the Lebesgue
measure £ among GNS representations of Cy(IR)?

Theorem 1.5.13 (Absolute Continuity) Let Co(R) be the commutative C*-
algebra of continuous vanishing at infinity functions on R. Up to equivalence of
measures there ezists a unique Borel measure & on R such that the representation
by multiplication operators

m : Co(R) — B(L*(R,¢€))

provides a faithful absolutely continuous GNS representation (L?(R €),m) of
Co(R).

Proof By Theorem 1.5.6 every GNS representation of Cy(RR) is of the form
(L2(R, p),m,) for some regular Borel measure . By the Lebesgue decomposition
theorem there exists elements of the C*-algebra m,(Cp(RR)) that have singular
spectrums with respect to Lebesgue measure, unless 7, & 7, , = U. Hence p is
absolutely continuous. If y is absolutely continuous but inequivalent to £, there
exists some open set O such that 4(O) = 0. Hence 7,(f) = 0 for any f € C}(R)
with support in O. Then 7, is not faithful. Hence x must be equivalent to £&. O

The results of this example can be extended to the Lebesgue measure on R”,
subsequently to Lebesgue measure on a Riemannian manifold X. In Example
1.6.10 we discuss a similar result to Proposition 1.5.11 for Hermitian vector
bundles over X.

1.5.3 Remark - Structure of Ci°-representations
Disintegration of Representations

Let A be a C*-algebra. In section 1.2.2 we reviewed the decomposition theory of

a C*-algebra A over its structure space PS(A) Uy 4 ke Prim(A). In particular, we

found the universal representation of the C*-algebra A disintegrated into a direct sum
of irreducible GNS representations (H),, 7,) associated to the pure states p € PS(A).
We describe below, following [Ped] and [Dix], the more sophisticated situation of the
disintegration of any non-degenerate separable representation (H, ) of a separable
C*-algebra A.
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Let A be a C*-algebra. Denote by A” the von Neumann envelope associated to the
universal representation (Hy,ny) given by Theorem 1.2.6. We call A” the universal
von Neumann envelope of A. We recall the statement of the Dauns-Hofmann Theorem
[Ped, 3.12]: Let A be a C*-algebra and M(A) the multiplier algebra of A. Then
there exists an isomorphism f : a — f, from Z(M(A)) to the bounded continuous
functions on A [Ped, 4.4.7,4.4.8]. As Z(A)" = Z(M(A))" = Z(M(A))** there exists
an isomorphism f : Z(A)" — Cy(A)**, and Z(A)" corresponds to some class of
functions on A. We define a D-Borel subset F' C A as the support of a characteristic
function f, where a € Z(A)" is a projection. Hence we have a bijective correspondence
between central projections of A” and the D-Borel structure on A. We will denote a
central projection by pr € Z(A4)". Let p € L}(A",C) and define the central measure

po(F) := p(pr) on A.

Theorem 1.5.14 Let A be a separable C*-algebra and A" the universal von Neumann
envelope. Then

(i) for each p € L}(A",C) there is an isomorphism between L®(A,p,) and
Z(mp(A))".

(i1) two separable representations of A are unitarily equivalent if and only if
they have the same D-Borel null sets in A,

(ii1) there exists a bijective correspondence between classes of separable repre-
sentations and central projections. In particular (H,n) ~, (prHy,prTupr)
for some support F € A.

Proof (i) [Ped, Prop 4.7.6], (ii) [Ped, Thm 4.7.10] (iii) [Ped, Thm 3.8.2] u]

Let A be a separable C*-algebra. We define the support of p € L] (A", C), or indeed
any semifinite weight p on A" as the central projection associated to the support
of the equivalence class of the GNS representation (H,,n,). The previous theorem
classifies the equivalence classes of separable representations in term of the D-Borel
structure on A. However, unless A is postliminal [Dix], then the D-Borel structure
on A is insufficient to disintegrate the class of a representation (H,7) in terms of
the support F C A, see [Ped, 4.8.1]. The larger space required is called the factor or
quasi-spectrum.

Let A be a separable C*-algebra. A factor representation (H, ) of A is a represen-
tation such that Z(n(A)) = C. Define the quasi-spectrum A to be the space of unitary
equivalence classes of factor representation of A. Each irreducible representation is a
factor representation, hence Ac A Using an argument similar to above there exists
an isomorphism between Z(A)” and a class of functions on A. The D-Borel structure
on A is defined such that the characteristic function of a D-Borel set corresponds to
a projection in Z(A)"”. As above associate a central measure p,(F') := p(pr) for a
D-Borel set F C A to each p € L} (4",C).

We recall from [Ped, 4.11] and [Dix, 8.1] the concept of a Borel field of Hilbert
spaces { H }te over a Borel space T' and the direct integral Hilbert space f;? Hydp(t)
for a bounded Borel measure 2 on T'. Let C; denote the scalars of the Hilbert space H;.
A diagonalisable operator Y is an operator of the form f;? A(t)du(t) where A\(t) € C;
for p-almost all . Let Y denote the set of diagonalisable operators. An operator
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Ce B(f;? Hidu(t)) is called decomposable if C' = f,ﬁ) C(t)du(t) where C(t) € B(Hy)
for p-almost all t. Equivalently C € )’ [Dix, (A80)]. An unbounded selfadjoint
operator S : DomS — B( f;? Hidu(t)) is called decomposable if S is affiliated to ).

Theorem 1.5.15 Let (H,n) be a non-degenerate separable representation of a sep-
arable C*-algebra A. Then there exists a central measure pu on A, a D-Borel subset
Fr C A and a D-Borel field of factor representations {(Hy,m)}, 4 such that

5% (&)
Hew | Hadu(t), 7~ / mdu(t).
Fy b4

Proof [Ped, Thm 4.12.4]. DO

Disintegration of Base Representations

Let (H,m, D) be a C°-representation of a separable C*-algebra A as in Definition
1.4.8. The kind of disintegration in Theorem 1.5.15 cannot be performed in general
for (H, m, D). The simple obstruction is the decomposition of D with respect to the D-
Borel space (Fy, ). Here (Fy, p) is the pair associated to the representation (H, ) as
in Theorem 1.5.15. There exist two extreme cases of the possible decomposition of D
with respect to (Fy, ut), (1) it is completely indecomposable, or (2) it is decomposable.

Definition 1.5.16 Let (H,w, D) be a base representation of a C*-algebra A as in
Definition 1.4.3. Then (H,m,D) is called base-irreducible if [D,m(p)] # 0 for any
proper central projection p € Z(A)".

Let (H,m, D) be a base representation of a separable C*-algebra A. Let (Fy, u) be
the Borel space corresponding to the representation (H, ) of A. As a consequence of
base-irreducibility D is not decomposable for any pair (F,v) C (Fy, ) where v << p.
Hence base-irreducibility corresponds to the case (1).

Proposition 1.5.17 Let (H,m, D) be a C®-representation of a separable C*-algebra
A and (Fr,p) be the corresponding D-Borel space given by Theorem 1.5.15. ‘I'he
following statements are equivalent

(i) [D,w(p)] =0 for all central projections p € Z(A)",

(ii) there exists a D-Borel field of factor C®-representations {(Hz, 7, Di) by g
such that

o @ o
HNH/F Hidu(t) , 1r~u/ medp(t) , D~y . Didp(t).

Proof (i) < (ii) Both statements are equivalent to the statement D is decomposable
with respect to (Fy, u). |
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Spectral Representations

Let (H,m, D) be a CS°-representation of a C*-algebra A.

Lemma 1.5.18 Let (H,m,D) be a C®-representation of a C*-algebra A. Then any
representative (H', ') of the class [(H, w)]y provides a CP-representation (H',n', D')
of the C*-algebra A. In particular,

(H',n',D") = (UH,UnU*,UDU*)
where U : H — H' is unitary.

Proof Define DomD' := UDomD, then D' : DomD’ — H' is an unbounded self-
adjoint operator and |D'| = U|D|U*. The completion of the proof is straightforward.
O

Lemma 1.5.18 implies that C{°-representation is a property of the unitary equiv-
alence class [(H,7)],. This point of view leads to several points to consider:

(i) Let (H,m) be a separable representation of a separable C*-algebra A. Define
the outer C2°-basespace of the unitary equivalence class [(H, )]y,

D([(H,m)}y) :={D € C(H)\ B(H) | (H,m, D) is a C°-representation of A.}

Note D([(H,7)],) is defined using a fixed representative of [(H, )]y, but is
independent of which representative is chosen. The study of D([(H,m)].)
is of central interest in non-commutative geometry. Considerations include
D([(H,7)]u) # 0 (existence of C°-representations where D is unbounded),
unitary equivalence classes in D([(H, 7)],) (gauge transformations), and topolo-
gies and extremal points of D([(H,7)]y)-

(ii) We have observed C°-representation is a property of the class [(H, 7)], para-
metrised by the space D([(H, )]y). The natural question of a canonical repre-
sentative in [(H, )], for D € D([(H,r)|,) arises. The spectral representation
is an immediate candidate. We recall the statement of the Spectral Theorem
for selfadjoint operators. There exists a measure space (M, ) and a unitary
Up : H — L?(M, p) such that UpDU}, = m(p) where p: M — R is a mea-
surable real-valued function on the measure space (M, u) and (m;(p)g)(m) =
p(m)g(m) Vg € L?(M,p) is the usual representation by left multiplication.
Let Hp = UpH and np = UpnUj,. Then by Lemma 1.5.18,

(H,ﬂ’, D) ~u (HD,WD,Wl(p))'

Hence (Hp,np) € [(H, )]y 18 a canonical representative for D € D([(H, )]y).

1.6 Modular Theory and the Radon-Nikodym Theorem

Von Neumann algebras and normal semifinite weights have incredible structure theo-
rems associated to them. We shall review the Tomita-Takesaki Modular Theory and
the non-commutative Radon-Nikodym Theorem.
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Basic Definitions

Let H be a Hilbert space and R be a *-subalgebra of B(H). We recall a cyclic vector
¢ € H for R is a vector such that R = H. A separating vector £ € H for R is a
vector a§ = 0 = a = 0 for a € R. A cyclic and separating vector ¢ € H for R is a
vector that is both cyclic and separating.

1.6.1 Modular Theory
Theorem 1.6.1 (Tomita-Takesaki) [Ha, Thm 1.6] [BR, Thm 2.7.14]

Let R be a von Neumann algebra. Then R is isomorphic to a von Neumann algebra
in standard form (n(R),H,J,A,P). Here w(R) is a von Neumann algebra on the
Hilbert space H which admits the following structures

(i) (modular conjugation) a conjugate linear isometric involution J : H — H,
(i1) (modular operator) a positive operator A : DomA — H,
(iii) (positive cone) a self-dual cone P in H,
with the properties
(iv) (symmetry) Jx(R)J = 7(R)’ and Jr(a)J = 7(a)* iff a € Z(R),
(v) (modular automorphism) A%n(R)A™* = n(R) fort € R,
(vi) (reality) Jn=mn for all n € P.

The information (7(R), H, J, A, P) is called a standard form of R. There is an
associated standard form to every fns weight on a von Neumann algebra R.

Theorem 1.6.2 Let R be a von Neumann algebra with fns weight p. Then there
exists an associated standard form (w,(R), H,, Jp, Dy, Pp) where (H,,7,) is the GNS
representation associated to p. Let 1, be the dense injection 1, : R, — H, given by
the GNS construction. Then we have the further properties,

(i) Pp={mp(@) ey (a) [a € By} = A0, (B)

(ii) tp(R,) C DomA, and J,A, 2, to(a) = 1p(a*) for a € R,
(iii) if p is a trace then A, =1
(

iv) if1 € R, then 1,(1) € H, is a separating and cyclic vector.

Proof The closure of R, in the inner product (-, ), provides an achieved left Hilbert
algebra H,. Hence, by the original Tomita-Takesaki theory, H, admits a standard
form. For the properties (i)-(iv), see [BR] or [Ha]. O

The one-parameter family of automorphisms of R
of(a) := A’t ()A;it VaeR teR

is called the modular automorphism group associated to p. The modular automor-
phism group is fundamental in Connes’ classification of hyperfinite factors [C1]. It
has deep physical consequences, such as links to KMS states [Tk, Wn] and time flow in
thermodynamic systems [C11].
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1.6.2 Generalised Radon-Nikodym Theorems

Let R be a von Neumann algebra with fns weight p. Then there exists an associated
standard form (7,(R), Hp, J,,A,, P,) where (H,,7,) is the GNS representation asso-
ciated to p. Elements of the positive cone P, are considered the generalised ‘positive’
L?-functions associated to the fns weight p [Ha, Lemma, 2.2],

Theorem 1.6.3 (Radon-Nikodym Theorem, positive cone version)
Let (m(R), H,J,A, P) be a standard form. The map n — (n,n) is a homeomorphism

of P onto R}, the normal positive linear functionals.

The Radon-Nikodym theorem induces (unique) unitary equivalence of standard
forms [Ha, Thm 2.3],

Theorem 1.6.4 (Radon-Nikodym Theorem, standard form version)

Let (R,H,J,A,P) and (¢(R),H',J',A",P') be two standard forms where ¢ is an
isomorphism. Then there exists a unique unitary U : H — H' such that ©'(¢(a)) =
Un(a)U* for alla € R, J' = UJU*, A = UA'U* and P' = UP.

Connes’ Radon-Nikodym Theorem associates the modular automorphlsm groups
arising from fns weights (stated as appears [C1]),
Theorem 1.6.5 (Connes’ Radon-Nikodym Theorem, cocycle version)

Let R be a von Neumann algebra and U(R) the unitary group of R equipped with the
o-weak topology. Let p be a fns weights on R. Then

(i) for each fns weight T there ezists a unique continuous map u : R — U(R)
such that

usyt = (0 (us))uz Vs, t eR,
o7 (a) = wol(a)u; Vte Ra €R
and
7(a) = p(uipauj;)  Va€ R
(i) for each continuous map u: R — U(R) such that
syt = (0F (ug))ug Vs, t €R
there ezists a unique fns weight T with the properties of (i).

Remark 1.6.6 The operator u;/; of Theorem 1.6.5(i) is ambiguous as stated. Let f,
be a compactly supported approximate unit of Cy(C). Then f,,(u1)¥/? and fp(u})¥/? =
(fn(u1)¥/?)* are normal. We then realise the operator uj2 = lim, Fnlu1)¥? as a strong
resolvent limit in any faithful representation (H,w) of R '2. The equality stated in
the theorem is shorthand for

7(a) = lim p(fn(uis2)afn(uis2)").

2Every normal (bounded) operator on B(H) where H is separable can be written a = b+ ic where
b, ¢ are selfadjoint and commute. Hence the spectral representations for b and ¢ coincide and there
exists a unique operator g(a), a complex measure space L®(M, 1) and unitary U : H — L*(M, p)
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The Radon-Nikodym derivatives in the standard form version and cocycle version
of the Radon-Nikodym Theorem correspond to equivalences of measures. Let p and
7 be normal semifinite weights on a von Neumann algebra R. We denote 7 << p if
T(@) =0=p(a) =0fora>0. Wesay T=pifr << pand p<<T.

Corollary 1.6.7 (Radon-Nikodym Theorem, derivative version)

Let p, 7 be normal semifinite weights of a von Neumann algebra R.

(i) Let 7 << p. Then there exists an operator u affiliated to R such that
7(a) = p(pap).

(i1) Let p be a normal semifinite trace-weight and 7 << p. Then there exists a
positive operator p*p = (7 : p) affiliated with R such that 7(a) = p((7 : p) a).

Proof (i) Let p, and p, be the central support projections for 7 and p [Ped, Thm
3.8.2], see Section 1.5.3. As 7 << p then p,p, = p,. Define p,(-) := p(p;-). Then
pr and 7 are fns weight on p,R. One applies Connes’ RN-Theorem to get unitaries
us € prR and hence partial isometries u;p;, € R with the results of Connes’ RN-
Theorem(i) for the fns weights p; and 7. In particular, the corollary is proven by
setting p = u;/op,. (ii) obvious from the tracial property and Remark 1.6.6. O

We note Corollary 1.6.7 (ii) is the original non-commutative Radon-Nikodym the-
orem, developed well before Tomita-Takesaki Theory and Connes’ cocycle generalisa-
tion. For instance, see [Se2] or various formulations in [Ped, 5.3].

1.6.3 Modular Theory for von Neumann algebras with separable
pre-dual

We introduced the general modular theory last section. For von Neumann algebras
with separable pre-dual the theory can be formulated in terms of cyclic and separating
vectors. This was the original exposition in the papers €8] and [Ar]. A von Neumann
algebra R is called countably generated if each set of pairwise orthogonal projections
in R is countable.

Theorem 1.6.8 The following are equivalent
(i) R is a von Neumann algebra with separable pre-dual,

(ii) R is a countably generated von Neumann algebra with a faithful normal
state v, 13

such that (Ug(a)U" f)(m) = go F(m)f(m) where g: C — C is Borel and bounded and F is complex
valued. When a is unbounded and a** = a, then we say a is normal if the selfadjoint operators
b=a+a" and ¢ = —i(a —a”) commute. That is, they have the same spectral representations. Then
a can be written a = b+ic and the functional calculus can be defined on a using the spectral theory of
b and ¢. An equivalent definition of affiliation of a selfadjoint operator m to a von Neumann algebra
R is f(m) € R for all bounded Borel functions f. When @ is normal and a = b+ ic, then b and
c affiliated to R implies a is affiliated to R in the same sense. It can be shown u,/9 is normal and
affiliated to R in the senses above.

13A state v on a C*-algebra A is a positive linear functional with |Jv|| = 1. Alternatively,
limy v(us) = 1 for any approximate unit uy of A. States correspond to probability measures, since
1 = ||v|| = 'volume’ of the non-commutative space L, (A).
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(iii) R is isomorphic to a von Neumann algebra m(R) on a separable Hilbert
space H that admits a cyclic and separating vector for R,

Proof (i) =(ii) =-(iii) = (i) is contained in [Ped, 3.8.4,3.9.9] 0O

Corollary 1.6.9 (Radon-Nikodym Theorem) Let v be a faithful normal state
on a von Neumann algebra R with separable pre-dual. Let (w(R),H,J,A,P) be a
standard form. Then (w(R), H,J,A,P) is unitary equivalent to a standard form
(my(R), Hy, Jy, Ay, Py) with a cyclic and separating vector 1,(1) € P,.

Example 1.6.10  This example is a continuation of Example 1.5.4(b).

Proposition 1.6.11 Let X be a Riemannian manifold with Lebesgue measure
€. Letp: E — X be a Hermitian vector bundle over X. Let A(E) be a C*-
subbundle of L(E, E). Suppose there exists a section n € L®(X, E) such that
n(z) € E; is a cyclic and separating vector for wy(A)". Then

(i) The weight
L x(0) = /X (n(s), o(@)n(z)) o dE

is a faithful semifinite normal weight on L>°(X, A"(E)).

(ii) The faithful representation (L%(X, E),m) of L°(X, A"(E)) as in Ezample
1.5.4(b)(ii) is the GNS representation associated to I x.

Proof (i) The form I x is linear. Let o € L*°(X, A”(E)). Since

(n(z), o(2)* o (@)n(2))s = (o(x)n(z),0(2)n(2))z = llo(2)n()|5,4,
the form is positive. Moreover, the section 7 is separating, so I x(¢0*0) = 0 iff
o = 0 &-ae. Hence I x is faithful. Let ||n|| = K. By the Cauchy-Schwartz
inequality, (n(z),o(z)n(z)); < K?||o(z)||,- Hence the support of I, x con-
tains L'(X, A”(E)) N L*®°(X, A"(E)), which is strong dense in L®(X, A"(E)).
Hence I, x is semifinite. Let Uy be a countable set of compact subsets of X.
Let xx be the characteristic function of the set Ugx. An argument identical
to the proof in Proposition 1.5.11 implies Iy, (0) = I x(xxo) is a positive
normal linear functional for each k. Hence normality of I, x follows from o-
compactness of the Riemannian manifold. Let X = UgUy where Uy C Ug41
are compact. Then I, x (o) = sup Iy, (o) for non-negative sections o. (ii) Let
Rr = LY(X, A(E)) N L®(X, A(E)). Then the closure Ry in the inner product
I, x(t*0) is L*(X, A(E)¢) = L*(X, E) by the cyclic property of £. By the GNS
construction the representation is given by left multiplication operators. a

For any Hermitian bundle E — X and C*-subbundle A(F) satisfying the hypoth-
esis of Proposition 1.6.11, Theorem 1.6.2 provides a standard form associated to
the fns weight I, x

(WZ(LOO(Xa A”(E)))aLZ(Xv E)a Jna An,Pn)~

Remark 1.6.12 (Riemannian Structure)
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Let X be a n-dimensional Riemannian manifold. Let Cliff(V,q) be the Clif-
ford algebra for a n-dimensional vector space V as in Section 1.3.1. The ex-
terior bundle A*X — X is the unique Hermitian bundle over X, up to iso-
morphism, that satisfies the conditions of Proposition 1.6.11 for the C*-algebra
A = Cliff(V, q). Consequently there exists a unique Hilbert space L%(X, A*X),
up to isomorphism, which admits a standard form for the von Neumann algebra
R = L*(X, Cl(X, g4)),

Riem = (L™(X,Cl(X, q,)), L*(X,A*X), J,1, L*(X, A* X)™).

Proposition 1.6.11 further implies the standard form Riem is constructed from
R using the fns trace weight A given by the Lebesgue integral and the metric gg,

Mw) = /X 45 (1, m(w)1)(2)\/det(g)dz Vw € L®(X, CI(X, ;).

The standard form Riem, and its construction from R using the fns weight A,
characterises the representation (L?(X,A*X), ) amongst all other representa-
tions (H, ) of the C*-algebra Cy(X).

1.7 Non-Commutative Integral Calculus

We have introduced C°-representations (H,, D) of a C*-algebra A in the role of
differential calculus, see Section 1.4.1 and Section 1.4.2. The representation (H,w)
provides a generalised measure theory of semifinite weights on the von Neumann en-
velope 7(A)" as seen in Section 1.5 and Section 1.6. However, it is not apparent that
a general semifinite weight constitutes an ‘integral’ in the calculus sense (a summa-
tion of ‘infinitesimals distances’ in the sense of Sections 1.1.1 and Section 1.1.2). A
generalisation of infinitesimals and summation procedures on them is contained in
the theory of what are termed symmetric functionals. Symmetric functionals are still
an area of active research [DPSSS] [DPSSS2] [LSS].

Basic Definitions

Let S € B(H). The projection pg := 1 — B g = PyygL is called the support
projection of §.

1.7.1 Symmetric Norm Ideals

Let a € K(H) and pp(a),cy denote the sequence of the singular values of a (the
decreasing rearrangement of the eigenvalues of |a|). Let é be a symmetric norm on
£ [5]. Define ¢(a) i= $(m(a), u2(a),...), I(p) := {a € K(H)|$(a) < oo}, and
Iy(¢) := {a € K(H)| limy, ¢(a — am) = 0 for some {am}men € FR(H)}.

Theorem 1.7.1 [S, Theorem 2.7]

(i) ¢ is a norm on I(¢) such that ¢(abm;) < |la|lc[|$(b) and $(b) > ||bll$(1,0, ...
for b€ I(¢) and a,c € B(H).
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(ii) I(#) and Io(¢) are Banach spaces in the norm ¢. For any a € Iy(¢) its
canonical decomposition as a compact operator converges in ¢.

(iii) (Non-commutative Fatou Lemma) Let a,, € I(¢), ar, = a weakly and
sup,, ¢(an) < oco. Then a € I(¢) and ¢(a) < sup,, ¢(am)

For brevity we also call the norm ¢ on the two sided *-ideal I(¢) of K(H) a
symmetric norm. The symmetric norm ¢ is called regular if I(¢) = Iy(¢).

Example 1.7.2  Let a € K(H) with singular values u,(a)
(i) The uniform operator norm
¢(a) := ||a|| = sup; pi(a)
is a regular symmetric norm [S]. The associated ideal is the compact operators
themselves K(H) = I(]|.|) = Lo(]|.]])-
(ii) The norm

neN’

1
¢(a) := llall, = (25; ni(a)?)?
is a regular symmetric norm [S]. The associated ideals, the Schatten ideals [s],
are denoted Ly := I(|.||,) = Io(||.|| ). If a € Ly then |a|” € L; and

lall, = Tr(af?)*/? (1.1)

(iii) Define the sequences for p € [1, 00)

N
a(a) = {fp, Mm@} (1:2)
=1

where f(1,N) := (InN)~! and f(p, N) := N5 for p > 1. Then the norm

¢(a’) e Ha’”p,oo = SuPap(a)

defines non-regular symmetric norms for all p € [1,00). The associated ideals,
the weak ideals [S], are denoted by Ly := I(||.|l, ) and LJ o = Io(l]-1l,00)-
The non-regularity of [|. |, ,, allows the definition of a distinct semi-norm on L, o

Pp,co(a) := limsup ay(a).
The semi-norm py, o, vanishes exactly on Lg,oo and induces a norm on the factor

space Lp oo/ L oo

Let ¢ be a symmetric norm. Neither weak operator convergence, strong operator
convergence, nor uniform operator convergence of a sequence of compact operators
am — a will guarantee ¢(am —a) — 0 in general.

1.7.2 Symmetric Functionals

Let ¢ be a symmetric norm. A positive linear functional 7 on a two-sided *-ideal I(¢)
of B(H) is called a hypertrace if 7(aT) = 7(T'a) for all a € I(¢) and T € B(H).



1.7. NON-COMMUTATIVE INTEGRAL CALCULUS 59

Definition 1.7.3 We call a positive linear functional 7 on I(¢) such that |7(a)|] <
$(a) for all a € I(p) a symmetric functional. We call a symmetric functional on I(¢)
that is a hypertrace a symmetric hypertrace.

Example 1.7.4 (a) The canonical trace Tr is a symmetric hypertrace on L;.

(b) Let w be a dilation and translation invariant positive linear functional on £
such that w(1) = 1. Then
Try(a) := w(ai(a))

defines a symmetric hypertrace on Ly o [C, LSS]. These symmetric hypertraces
are called Dixmier traces after their discovery by J. Dixmier [Dix]. The symmetric
hypertrace Tr,, relates to the seminorm p; o, rather that the symmetric norm
[LSS, Theorem 6.4]

P1o0(a) = Sngm(IaD-

That p;,c0(a) vanishes on FR(H) C L; C LY implies every Dixmier trace is a

1,00
non-normal trace on the factor B(H) and singular to the canonical trace T'r.

1.7.3 Symmetric Measures

Definition 1.7.5 Let 7 be a symmetric hypertrace associated to a symmetric norm
¢. Let K be a fized positive bounded operator with trivial kernel. Define the spaces

I™Y7,K):={S € B(H)|SK,KS € I{(¢)}

and
I7°(7,K) :={S € B(H)|pjs; € I"'(7,K)}

with norm

¢k (5) := $(SK).

We call the pair (1, K) o symmetric measure. We say the symmetric measure (1, K)
is finite if K € I(¢).

The linear functional on I71(7, K)
Tk (S) = 7(SK)

is positive on I=¢(7, K) and positive on I~1(7, K) when I(¢) a geometrically stable
symmetric norm ideal [K1, k2] *4. The Shatten ideals L, and their weak variants L, o
are geometrically stable.

Definition 1.7.6 Let (7, K) be a symmetric measure. The linear functional Tx on
I7Y(1,K) defined by Tx(S) := 7(SK) is called o weighted symmetric functional. A
weighted symmetric functional Ty that is a trace is called a weighted symmetric trace.

"This result and results on the spaces I~'(r, K) and I~°(r, K) are discussed in the paper [LS).
They are not considered relevant here since the predominant situation in this thesis involves K € I{¢),
for which the results become greatly simplified.
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Definition 1.7.7

(A) Let A be a C*-algebra. Let
(i) (H,m, K) be a base representation of A such that K > 0,
(if) (7, K) be a symmetric measure associated to a symmetric norm ¢.
(ili) w(A.) C I7(r, K) for the ideal A, C A as in Definition 1.4.1.
Then (H,m) is called a (1, K)-integrable representation of the C*-algebra A:

(B) Let A be a C*-algebra. Let
i) (H,w, D) be a base representation of A,

(i
(ii) f:R — (0,00) be bounded and Borel measurable,
(

iit) (r, f(D)) be a symmetric measure associated to a symmetric norm ¢.
(iv) w(A.) C I"Y(r, f(D)) for the ideal A, C A as in Definition 1.4.1.

Then (H, 7, D) is called a (1, f(D))-integrable base representation of the C*-algebra
A.

Corollary 1.7.8 Let (H,m, D) be a (7, f(D))-integrable base representation of a sep-
arable C*-algebra A. Then w(A)" admits a semifinite weight p such that p(w(a)) =
Trpy(m(a)) for all a > 0.

Proof By definition 7 is a positive linear functional in I(#). Define p(S) = 7¢(p)(5)
for § > 0. We prove p : m(A)} — [0,00] and is additive. By Theorem 1.7.1(ii)
I(¢) and Iy(¢) are Banach spaces. Hence they are geometrically stable by [K1,
3.2). It follows from [K2, 2.6] that 7(S) = 7(T) for any S € I(¢) such that T
has the same eigenvalues with multiplicity as S. As SK and K 1/28K1/2 have the
same eigenvalues with multiplicity for S positive and K positive with trivial kernel,
7(Sf(D)) = 7(f(D)Y28f(D)}?). Positivity and additivity of 74(p) now follows from
positivity and additivity of .

Hence p is a positive linear functional on 7(A4)” N I~(r, K). Let R, = 7(A)" N
I71(r,K). Norm density of A, in A, from Theorem 1.4.2, implies 7(A.) is o-weak
dense in 7(A4)” by von Neumann’s bi-commutant and density theorem. As m(A;) C
w(A)" N I71(7, K) by Definition 1.7.7(B)(iv), R, is o-weak dense in 7(A)". Hence p
is semifinite. O

Definition 1.7.9 Let (H,m, D) be a (7, f(D))-integrable representation of a separable
C*-algebra A. Then the support of the symmetric measure (7, f(D)) and the support
of the weighted symmetric functional Ty py shall identically mean the central support
projection p € A" of the semifinite weight p on w(A)" in Corollary 1.7.8.

The next result displays the fundamental role of the canonical trace and the trace
class operators in the theory of von Neumann algebras with separable pre-dual.

Theorem 1.7.10 (Characterisation of the pre-dual) [Ped, 3.6.4]

Let R be a von Neumann algebra on a separable Hilbert space H. Let p € R*. Then
the following are equivalent:
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(i) p€R.,

(ii) p s weakly continuous on the unit ball of R,

(i) p is o-weakly continuous on R,

(iv) there is an operator k, € Ly such that p(a) = Tr(ak,) for all a € R.
In particular, k, > 0 if p € R}.

The result can be rephrased. Define
SMy :={(Tr,k) |k >0,k € L}
SF1 = {TT‘k | (T’f‘, k) € SMl}

Corollary 1.7.11 Let R be a von Neumann algebra on a separable Hilbert space H.
Then R} C SF;.

Corollary 1.7.12 Let A be a separable C*-algebra. Let o € L1(A,C). Then there
ezists a finite symmetric measure (Tr, k) € SMy such that

(i) the GNS representation (H,n) is (Tr, k)-integrable,

(ii) o(a) =Tri(n(a)) Va € A.

The results indicate the non-commutative integration theory of von Neumann algebras
with separable pre-dual discussed in section 1.5 and section 1.6 is equivalent to the
symmetric measures SM;. A. Connes’ non-commutative calculus does not involve
symmetric measures from SM;.

1.7.4 Connes’ Non-commutative Integral

Let D; be the set of dilation and translation invariant positive linear functionals w
on £ such that w(1) = 1. Then

1 < 00
Tro(e) = o({ 7 L@}, _,)

defines a Dixmier trace for w € D, (see Example 1.7.4(b)). Define the set of finite
symmetric measures

SMi,c0 := {(T7w, K) |w € Dg, K > 0, K € L1 o0}

Then Connes’ integral is a weighted symmetric trace resulting from a measure in
SM1, as follows.

Let fo(z) := (1 +2%)~"/2. Let (H,, D) be a (Try, fo(D))-integrable base repre-
sentation of a unital separable C*-algebra A. Then the positive linear functional on
(4)",

Tw(a) := Try(n(a) fn(D)),

is considered a non-commutative integrall®.

1%We note that there are alternate definitions of integrability that lead to the same integral. The
condition of (Try, fn(D))-integrable is generally the weakest.
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Remark 1.7.13 (a) The separable C*-algebra A is taken to be unital. It is im-
mediate that A, = A when A is unital. This implies f,(D) € L; « as required for
(Trw, fa(D)) € SM1,00. We note that results using Connes’ integral exist only in final
form for the case A unital'S.

(b) The functionals 7, are not necessarily normal linear functionals on m(A)". This is
a difficulty, but not a weakness of the theory. In some cases it provides a conceptual
evolution, demonstrated by Connes in [C, IV.3]. We denote by (H,,m,) the GNS
representation of A associated to the semifinite weight 7, for w € D,. By construction
Ty 18 a faithful normal semifinite weight on 7, (A)".

Results on Connes’ Integral

Lemma 1.7.14 Let (1, K) be a finite symmetric measure associated to a symmetric
norm ¢. Then the weighted symmetric functional Tx is a uniformly continuous linear
functional on B(H).

Proof Let S € B(H). Then SK € I(¢) as K € I(¢). Hence I"(7, K) = B(H).
Let S, — S uniformly where S,,, S € B(H). Then

Thm1.7.1(i)
[Tk (S — ) < (S —S)K) < [|Sn — Sl|B(K).

Hence 7 (Sy) — 7k (S5). ]

Theorem 1.7.15 [c, IV.2.6.15] Let (H,, D) be a CL-representation of a unital sep-
arable C*-algebra A. Let fo(z) = (1 + 22)™™2 and fo(D) € L1 for some n > 1.
Let w € Dg. Then

(i) the C*-algebra A admits a trace state,
(i) (H,nw, D) is (Try, fo(D))-integrable and

Tw(a) = T"'w("r(a')fn(D))

s a positive trace on A,

(iii) Let p € N\ {1}, a1,...,ap be commuting selfadjoint elements of A, and
E,. CRP the absolutely continuous support of their joint spectral measure .
Let pa. be the Radon measure given by pac,

Pac(f) = /l‘ f(w)d:uac Vfe CO(RP)'

Define the measure

Tw(f) = Tw(f(a’la "-aan))
for f € Co(RP). Then pac << Ty

16Bquivalent results for non-unital C*-algebras are still being finalised. Conditions such as local
approximate units [Re3] have allowed non-unital versions of the local index theorem and Theorem
1.7.15, see [Re, LII] [Re4].
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Proof Note [C, IV.2.6.15] considers the pre-C*-algebra A! = {a € A|||[D,n(a)]|| <
oo} and smooth functions f € C°(R). However, the functional 7, is uniformly
continuous by Lemma 1.7.14. So the result, once established for A! and f € C°(R),
can be extended by uniform continuity to A and f € Cy(R). The original statement
also involves the operator | D|~P, which requires | D| have trivial kernel. Connes refined
argument appears in [C6] using f,(D). (i) The trace state here is not necessarily 7.
The trace 7, is possibly trivial (for instance, f,(D) € L), is not excluded). If it is
zero, one uses the fact fn41(D) € Ly and [c9, Thm 8]. (ii) [cGS] (iii) section 2.4 of [C,
Iv]. 0

Corollary 1.7.16 Let (H,n, D) be a (Try, fn(D))-integrable C.-representation of a
unital separable C*-algebra A for n € N\ {1} for any w € D;. Let © be absolutely
continuous as in Definition 1.5.12. Let aq,...,ar, be commuting selfadjoint elements
of A. Then 1, = X on the commutative C*-subalgebra C*(aq, ..., an) = C(Fyc), where
A is the Lebesgue integral as in Ezample 1.5.10.

Proof Let f be positive and continuous on E,.. Suppose A(f) = 0. Then f =0 by
absolutely continuity of the representation 7 and continuity of f. Hence 7,(f) = 0.
This implies 7, << A. Theorem 1.7.15(iii) provides A << 7. a

The relationship between the weighted symmetric function 7, associated to a
(Try, fn(D))-integrable C°-representation (H,w, D) of a unital C*-algebra A and
the Lebesgue measure on the commutative C*-subalgebra C*(ay, ...,a,) is very deep.
Connes views the integer n such that f,(D) € L+ as the (finite) dimension of the

non-commutative space PS(A) Uy 4 ke Prim(A) 7. We complete the correlation

suggested by Corollary 1.7.16.
Example 1.7.17 Lebesgue Integration and the Laplacian

Let X be a compact Riemannian manifold of dimension n. Let C'(X) denote the
continuous complex-valued functions on X. Then (L?(X,A*X),m,d + d*) is a
CgP-representation of the unital separable C*-algebra C(X), see Example 1.4.13.

Theorem 1.7.18 (Hodge Theorem and Decomposition)

Let X be a compact Riemannian manifold. Let A*X — X be the exterior bundle.
Then the eigenvectors of the Laplacian A : DomA — L?(X,A*X) form an
orthonormal basis of L2(X,A*X). Each of the eigenvalues are positive, of finite
multiplicity and they accumulate only at infinity.

Let A := C®(X,A*X) C L*(X,A*X). Then the eigenvectors of A belong to A
and we have the identification

A =ker(d+ d*|p) ® im(d + d*|5)
"Infinite dimensional spaces correspond to (T'r, E:(D))-integrability for all ¢, where the function
2
Ei(z) = e™*®". This condition is called §-summability. We shall not consider #-summability in this
thesis. The extension to f-summable geometry is natural and necessary. Connes shows in [C9, Thm
16,Thm 19] there exist discrete groups G with no (Tr., f»(D))-integrable C}-representations for the

reduced group C*-algebra. See [C, IV.7-9] for the properties of §-summability and links to quantum
field theory.
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or in terms of the closure of d + d*|p

A= ﬂszoDom(d + d*)s.

Proof The statement of the first paragraph and first identification are from the
reference [R, Thm 1.30, Thm 1.37], and an instructive proof using the spectral
theory of d + d* is contained in [R, Ex 34]. Let £ > 0 and Hjy be the kth
Sobolev space for sections of the bundle A*X [R, 1.3.3]. We know d 4 d* :
Hyy1 = H, = Hy = L*(X,A*X) is continuous for p € N. In fact, we have the
Garding inequality [R, Thm 2.44]; there exists a constant C' such that |jw|,,; <
C(llwll, +I(d + d*)wl|,) for all w € Hpt1,p € N. We use this to prove the second
identification. Let w € Hp and w € ﬂ’zleDom(d + d*)P. Then by induction
using the Garding inequality, w € Hjy. Hence NpenDom(d + d*)P C NpenHp.
The Sobolev embedding theorem on a compact Riemannian manifold has the
following corollary w € NpenHp, = w € C™(X,A*X) [R, 1.3.3]. Hence
NpenDom(d + d*)? C A. From the definition of d + d* it is clear NyenDom(d +
d*)? O A. This provides the equality with intersection over the natural numbers.
To extend to s > 0, we know from the spectral calculus that Dom(d + d*)* C
Dom(d + d*)" for s € (n,n+1],n € N. O

Corollary 1.7.19 Let X be a compact Riemannian manifold, A denote the
Laplacian A : DomA — L*(X,A*X) and f € Co(sp(A)). Then f(A) is a
compact operator.

Proof Let f € Co(sp(A)). The spectral theorem for unbounded selfadjoint
operators provides a bounded operator f(A) on H = L?(X, A* X) with spectrum
sp(f(A)) = f(sp(A)). Hence the spectrum of f(A) is a set with zero the only
limit point, identifying f(A) as a compact operator [S, Thm 1.1]. O

Lemma 1.7.20 Let X be a compact Riemannian manifold of dimension n. Let
fo(@) = 1+ 22) P2 € Cy(R) and (d + d*)? = A : DomA — L*(X,A*X) be the
Laplacian. Then

() fpld+d*)=01+A)y %€l for p>n.
({l) fald+d)=(1+A)"2 €L\ L.
Moreover for any w € Dy,
Tro((1+A)"2) = C(n)Vol(X)
where C(n) = n~ 2T (% + 1)L,

Proof Let Ay be the N* eigenvalue of A listed in increasing order with
multiplicity. We have the following statement of Weyl’s theorem [BGV, Cor 2.43],

. —n/2ar VO](X)
NN = ey

Let ¢(n) = Vol(X)(w"/zl"(% + 1))~L. Since limy_;00 )\;,"/2(1 + A% =1 we
have limy_o0(1 4+ Ay)"™2N = ¢(n). Let ay(n) = (1 + Ay)"™2N. Then
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a(n) = {ay{(n)}y is a bounded, convergent sequence with strictly positive terms,
an(n) > 0 VN, and strictly positive limit c¢(n) > 0. Hence a(n) has a positive
supremum U and positive infinum L. Let Uy = supy>ian(n) < U and Ly =
infy>g an(n) > L. -

Let 6 > 0 and define gs(z) = (1 +2)~7(+%, Then g5 € Cy([0, 00)) for all § > 0.
As g is monotonically decreasing the value gs(A\") is the N*!-singular value of the
compact operator g;(A). From continuity of the function z1t% on the interval
[Z,U]

lim gs(AN)NH = ¢(n)!*?,
N—oo

This sequence has supremum U'*? and infinum L%, Using
QJ(AM) — (gg(}\M)Ml-H;)M—(l-M)

we derive (*)

N N
LHf(N) Y M < f(v Z o) UM F(N) Y0 M0+
M=1 M=1 M=1

where f(N) =1 or f(N) = (In(1+ N))™L.
When 6 > 0, then limpy Z M~ (+0) = Fy < 0o is convergent. Let f =1 and
take the limit as N — oo in ( ) Then

LY Fs < Tr(gs(A)) < UMY F

using . The compact operator gs(A) is trace class. This completes the proof of
().

Let § — 0. The harmonic series 2112[421 M1 is logarithunically divergenl but not
convergent. Let Fy = |[{M1}$5_,]l,+ < oo and recall limy m S _ M=
1. Taking the supremum over N in (¥*),

lgo(A)ll1+ < UFo

and go(A) € Li+. Considering

N N
L Z M—l < Z go()\l\fl)
M=1 M=1

and taking the limit N — oo implies go(A) is not trace class.
Let us show the Dixmier trace of go(A) does not vanish. We have

1 1
lim ———————~ oy = lim ———— ap
N—oo 1n(1+N) I\/Izzl N—o0 ll’l(1+N) ]VIZ:IC
for any k € N and any {apr} € L1+. We can re-derive (*)

N
1 " 1 »
)] 1+N) Z ST+ Zg“ O <Upmsm A;kM '
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Taking the limit as N — oo,

N—ooo In

N
1
< i —_ e .
Lk_ lim (1+N)A4Z:1go()\ )_Uk

It follows the limit exists and is given by ¢(n) as limy Ly = ¢(n) = lim, U. O

Let g, = (1+%)~™2 for £ € R. Define the weighted symmetric traces on C (X)

Tu(f) = Tro(m(f)ga(d + d*)) Vf € C(X)

for w € D,. Lemma 1.7.14 implies 7, € C(X)*. Theorem 1.5.2 provides the
normal extension 7, of 7, to L*°(X,¢) = m(C(X))",

Tu(f) == linmf'w(fm) when fp, € C(X) s.t. frn = f € L®(R) ultraweakly.

Hence, to clarify'®, we consider the weighted symmetric trace
Ty € C(X)*
and consider the normal extension on the von Neumann closure
Tw € L®(X, £)4.
These traces are distinguished by the following result.

Theorem 1.7.21 (Riemannian Structure)

Let (X,g) be a compact Riemannian manifold of dimension n with Lebesgue
measure £. Let C1(X) := CI(X, q,). Let w € Ds. Then

(i) the C°-representation (L2(X,A*X),n;,d + d*) of the unital separable C*-
algebra C(X) is (Try, fn(d + d*))-integrable,
(ii) 7o is a faithful normal trace on L=(X,€) = m(C(X))". Moreover

fulm(f)) = C(n) /X f(2)dé ()
where

C(n) :w_%l"(z

+1)71

for all f € L*(X,§),

8 Define the weighted symmetric trace on L (X, £),

To(f) = Tro(m(f)ga(d+d")) ¥ f € LZ(R, ).

Lemma 1.7.14 implies 7, € L*°(X, £)*. However, nowhere in the literature is it demonstrated 7, €
L*™(X, £).. The possibility,

(rw — 7u)(f) #0, for some f € L=(X,€)\ C(X),

remains nethier confirmed nor denied at present.
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(iif) Qgpar (CP(X)) = m(C*(X, CL(X))),

(iv) the von Neumann algebra Qg q«(C®(X))" = L®(X, Cl(X)) has a cyclic
and separating vector given by the one-section 1 € L®(X,A*X), and
admits the faithful normal trace

Fu(m(w)) = Fulgy(1,w 1)) = C(n) /X 4o (1(2), w(2)1(2)) (2)d€ (),

(v) the representation (L*(X,A*X),m) of Qgrq+(C®(X))" is the GNS rep-
resentation associated to T,

(vi) the trace 7, is the unique faithful normal trace (up to Radon-Nikodym
derivatives) on the finite hyperfinite von Neumann algebra L*®(X, Cl(X)).

Proof Let D:=d+d*. (i) Lemma 1.7.20

(i) Let n # 1. Theorem 1.5.14 and Corollary 1.7.16 identifies 7,, = £ as measures
on C(X). The identification m(C(X))" = L*°(X,§) is Theorem 1.5.6. Since the
Lebesgue integral is a fns trace when extended to m(C(X))"” then 7, = £ as
measures on L®(R,{). The further identification of %, as a scalar multiple of
the Lebesgue integral can be proven as follows (including the case n = 1). In
[c10, Thm 1] it is shown

N—=oo

R
Trom()(+ A7) = i i S (1)1 A7)
for f € C*°(X) and any w € D;. Then (see the proof of Proposition 1.2 [CM])
/ (@)de(w) L timGrt) TTr(m(7)e=) D w0+ D) Tro(m(£)(1 + 2)7?)

for f > 0 and smooth. Equality (i) is the consequence of the asymptotics of
the heat kernel of the Laplacian on the bundle A*X [R, 3.3], and equality (ii) is
proven in [CPS, Thm 5.3]. This proves 7, is a scalar multiple of the Lebesgue
integral on C(X). The result follow from uniqueness of normal extensions of
elements of C(X)* to L*®(X, ¢),.
(iii) [c, VI.1 Lemma 6]
(iv),(v) using norm density of C*°(X) in C(X), QD(O°°(X)) Qp(C(X)) =
m(C(X,Cl(X)))". Then we have m;(C(X, Cl(X)))" = L=(X, Cl( )) from Corol-
lary 1.5.8 where E = A*X is finite-dimensional and C(E) = Cl(X).
As X is oriented, A*X admits a one-section. Clearly 1(z) € A(T;X) is a sep-
arating and cyclic vector for the canonical left action w; of ClLff(T};,¢,(x)) on
A(T;X) by the isomorphism ¢ (section 1.3.3). We apply Proposition 1.6.11 to
obtain 7p is a faithful normal state. The tracial property follows as g4(z)(A) :=
(1(z), Al(z))(x) equivalent to the matrix trace on CLff(Ty, g (z)).
(vi) Uniqueness of 7p as a faithful trace on L*°(X,Cl(X)) up to positive L>2-
functions is a consequence of Corollary 1.6.7(ii). Since Z(C(X, Cl(X))) = C(X) =
Z(C(X)), then C(X,Cl(X)) and C(X) have the same factor representations. In-
deed the space of unitary equivalence classes of factor representations of C(X)
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~

is exactly its spectrum C(X) = X. Hence the quasi-spectrum of C(X, Cl(X))
is the spectrum X and the central factor decomposition of L*°(X,Cl(X)) is
given as a direct integral over X [Ped, Thm 4.12.4, Cor 4.12.5]. One need
only prove the factor L®(X,Cl(X)), over z € X is hyperfinite and finite for
L*®(X,Cl(X)) to be hyperfinite and finite [C, V.7.a] [Ped, Thm 5.8.9]. As
L*®(X,Cl(X)), = Clfl(Ty X, ¢,) is finite dimensional, finiteness and hyperfinite-
ness of the factor is trivial. O

Remark 1.7.22 Remark 1.3.5 discussed the capacity of the Laplacian A and
the C*-algebra m(C(X)) to determine the Riemannian metric, and so all the
local geometric information. We have seen in Theorem 1.7.21 the equally deep
capacity of the Laplacian operator to produce the measure class of the Lebesgue
measure, and infact the Lebesgue integral, from its spectral properties.

1.8 The metric on pure states

Definition 1.8.1 Let (H,w, D) be a Cl-representation of a separable C*-algebra A.
We call (H,m, D) geometrically irreducible if the set

Bp(4) = {a € A\C|||[D,7(a)]l| <1}
is norm bounded in w(A).

Theorem 1.8.2 Let (H,n, D) be a Cl-representation of a separable C*-algebra A.
Let (H,m, D) be geometrically irreducible. Then

(1) (H,m, D) is base irreducible in the sense of Definition 1.5.17,
(ii)
d(p1, p2) = sup{|p1(a) — p2(a)||a € A\ G, ||[D, 7 (a)]]| <1}

defines a metric on PS(A), the pure state space of A,

(iil) the metric topology induced by the metric d on PS(A) is stronger than the
weak*-topology on PS(A).

(iv) (PS(A),d) is a complete metric space.

Proof (i) Let [D,n(a)] = 0 for any a € A\ C. Then [D,n(Aa)] = 0 for any
A € C. This contradicts the hypothesis on Bp(A) as a norm-bounded subset of A.
Consequently [D,n(a)] # 0 for all non-scalar a € Z(A). Since any proper central
projection is a spectral projection of some a € Z(A), this imples [D, 7(p)] # 0 for a
proper central projection p.

(ii) [c9, Prop 3]

(iii) Let po — p in the metric topology. Let a € AL. Then o’ = [|[D,n(a)]|| "o €
Bp(A) and |ps(a’) — p(a’)] — 0. Hence |pa(a) — p(a)] — 0. By hypothesis Al is
norm dense in A. Let b € A and {a,,} be a sequence of Al such that a,, — b. Then
|pa(b) — p(B)] < |palam — b)| + |palam) — plam)| + [pa(am — b)] — 0. Hence po — p
in the weak*-topology.

(iv) By Theorem 1.2.1(ii) PS(A) is complete in the weak*-topology. Hence, by
(iii), it is complete in the metric topology. a
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Note all that is required for Theorem 1.8.2 is a Cl-representation. This theorem
appeared as [C9, Prop 3] and the next example is [C9, Rem 2]. For a non-commutative
example [C9, Lemma 5].

Example 1.8.3 Let X be a Riemannian manifold. Let (L%(X,¢),m,d + d*)
be the geometrically irreducible C}-representation of the C*-algebra Co(X) from
Example 1.4.13. We recall from Remark 1.5.3 that the elements of PS(Cy(X)) =
X are the Dirac point measures on X. Then we have the equality of metrics

d(ps, py) = dy(2,Y) V pz, py € PS(Co(R))

where d,(z,y) is the geodesic distance between z,y € X.

1.9 Summary of Non-Commutative Calculus
We summarise our introduction to the non-commutative calculus.

Definition 1.9.1 Let (H, 7, D) be a (T'ry,, fn(D))-integrable C®-representation of a
C*-algebra A, see Definition 1.4.8 and Definition 1.4.9. Then we call (H,7,D) a
C® -representation of the C*-algebra A.

Motivation and Philosophy

Through various examples we have seen the signature operator d4+-d* on a Riemannian
manifold is a realisation of the philosophy of a Cz’*-representation of a C*-algebra
A. That philosophy explicitly:

the addition of the concrete selfadjoint linear operator D : DomD — H
to the representation (H, ) of the C*-algebra A provides local differential
geometry, through exterior derivations as in Section 1.4, and global integra-
tion, through weighted symmetric functionals as in Section 1.7.

Let (H,m, D) be a C¢"*-representation of a separable C*-algebra A.

The metric space

The structure space of the C*-algebra A

,(4) := PS(4) % 4 Prim(4)
is considered a non-commutative space. It involves a triple of topological spaces
linked by continuous and open surjections. The pure state space PS(A) is a complete
second countable metrisable topological space in the weak*-topology and Prim(A) is
locally compact in the Jacobson topology. With geometric irreducibility the operator
D induces a metric on PS(A4),

d(p1, p2) = sup{|p1(a) — p2(a)[|a € A\ G, [|[D, x(a)]]| <1}

and (PS(A),d) is a complete metric space.
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Differential Forms

Define the seminorms

Po(T) 2= 137 (D), Ph(T) = 13732, DI, m =0,1,2,...
with the convention (5|D|( y=Tfor T € B(H) such that T € NZ2 DomJlD| and
[D,T] is bounded. Define the *-algebra
Ar i ={a € A|p}(7(a)) <oo,n=0,1,m=0,1,2,..}.
Let S}, be the metrisable locally convex topology generated by the seminorms p;7,
n=0,1,m=0,1,2,.... Then A is a Frechet pre-C*-subalgebra of A in the topology
st
We form the graded *-subalgebra of B(H),
Qp(Ar) == Ar @ 2,05 (Ar)
where ./L, is the unitisation of A, and for k > 1
Ok (Ar) = {m(ao)[D, 7(a1)}...[D, 7(ar)] | ag, a1, -, ax € Az}

We view the operation

D, -]:7(Ar) = Q5 (Ar)
as ‘differentiation’. We extend this to

5p : V% (Ar) = Q5 (AL)
given by

dplm(ao)[D,n(a1)]...[D, w(ak)]) = [D, 7(a0)][D,w(a1)]...[D,n(ak)].
The pair (Q2p(Ar),dp) is a representation mp of the universal graded differential
algebra (2(A,), §) that is not differential in general
Tpo ) 7/—' (5D oOTmp.

Quotienting by the obstruction to a differential representation we obtain the *-algebra
of exterior differential forms Ap(.A,) and a graded differential representation

A : (Q(Ar),0) = (Ap(Ar),dp).

Integration

The normal semifinite weights on the von Neumann algebra A” provide the regular
non-commutative Radon measure theory on A.

We consider the integral calculus as particular measures constructed from the spec-
tral properties of D. The condition of (T'r,, fn(D))-integrability for some smallest
n € [1,00) introduces the notion of finite dimensionality and provides the weighted
symmetric traces 7, on the norm dense ideal A,

Tw(a) := Try(m(a) fa(D)) Va€ A

for any w € D,. There potentially exists multiple measure classes defined by an
integral calculus.

Let (H,,7,) be the GNS representation of A associated to any w € D;.
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Analytic Regime

A. Connes introduction of non-commutative differential calculus via C7**-representations
of C*-algebras spans the existing analytic regime in operator algebra theory:

algebra : Frechet pre-C*-algebra C*-algebra von Neumann algebra
regime smooth topological measure
notation : Ay C A C o, (A)"

topology : Sk -1 weak



Chapter 2

Riemannian Non-Commutative
Geometry

We recall the theory of C*-algebras had the bijective correspondence
(X, Co(X)) «— (2(4), 4)

between the pair of a locally compact Hausdorff spaces X and the vanishing at infinity
continuous functions Cy(X) on X, and a commutative C*-algebras A and its spectrum
»(A), see Theorem 1.2.12. This was the basis for considering general C*-algebras

A and their structure spaces PS(A) Uy 4 ker Prim(A) to be the theory of non-
commutative topology.
In the theory of von Neumann algebras we had the bijective correspondence

(L=(X, u), M(p)) «— (W(A), W(A).)

between the pair of essentially bounded functions on a Borel measure space (X, )
and the finite regular Borel measures absolutely continuous to u and the pair of
a commutative von Neumann algebra W(A) and its predual W(A),, see Theorem
1.5.6. This was the basis for considering general von Neumann algebras W(A) and
their preduals W(A), to be non-commutative measure theory.

However, we do not have a bijective correspondence

(Co(X), X, (L*(X, A" X),m, d + d")) «— (A, E(4), (H,m, D))

between the triple associated to a Riemannian manifold X and the triple associated to
a base-irreducible faithful Ce*®-representation (H,m, D) of a commutative separable
C*-algebra A. Hence, though we have a non-commutative calculus, it is not considered
that C*-algebras and C¢"*°-representations constitute the theory of non-commutative
differential manifolds.

Last chapter we introduced the non-commutative calculus of Connes. The initial
sections of this chapter will be involved with more advanced aspects of generalising
differentiable manifolds to operator algebra theory. We shall discuss Hilbert modules
and finite projective modules (‘non-commutative vector bundles’), Kasparov’s KK-
theory (‘non-commutative algebraic topology’), and Hochschild and cyclic homology

72
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(‘non-commutative Kahler-de Rham complex and cohomology of exterior differential
forms’). In this framework Connes introduced a list of sufficient conditions on a
C¢"™-representation of a unital C*-algebra that defined a non-commutative compact
manifold. We shall follow the ‘axiomatic’ treatment presented in [c3, C4]. How-
ever, we shall not introduce the axioms that result in a correspondence with compact
spin manifolds!. We define a Riemannian representation of a C*-algebra based upon
the Riemannian structure detailed in Theorem 1.7.21, Theorem 2.3.2 and Theorem
2.3.3. We adjust the axiomatic approach to these representations to gain a corre-
spondence with compact Riemannian manifolds, no spin structure assumed. One of
the advantages of a Riemannian representation is the introduction of the modular
theory of von Neumann algebras, which plays a central part in naturalising some of
the ‘axioms’. Indeed, we can construct Riemannian representations from abstract
information called a Riemannian cycle using the modular theory and the theory of
A-symmetric derivations of a C*-algebra A. The chapter is concluded by introducing
a Riemannian cycle associated to the irrational rotation C*-algebra Ay and deriving
the Riemannian geometry of the non-commutative torus.

2.1 Hilbert Modules

Henceforth we shall be concerned with both C*-algebras and norm dense Frechet pre-
C*-algebras. Let .4 be a Frechet *-algebra stable under the holomorphic functional
calculus. We shall consider only those locally convex topologies such that one of the
semi-norms is a C*-norm ||.||. Let A be the C*-closure of A in ||.||. Consequently A is
a pre-C*-algebra of A. Hence there is an equivalence between the Frechet *-algebras
we consider and Frechet pre-C*-algebras.

Let A be a (Frechet pre-)C*-algebra. In this section we introdnce (pre-)Hilbert
A-modules. A Hilbert A-module will provide a generalisation of the concrete rep-
resentation theory of the C*-algebra A. Hilbert A-modules shall also provide 'non-
commutative vector bundles’ and 'non-commutative algebraic topology’ in the form
of finite projective A-modules and the KK-theory of A.

Tensor Products

The tensor product A ® B of C*-algebras A and B shall always denote the spatial
tensor product [Lc]. That is, the closure of the algebraic product A® B in the spatial
C*-norm |la ® b|| = ||all 4||bll 5 where a € A, b € B and ||.|| 4, ]|.|| g are the respective
C*-norms on A and B. Let A®" denote the n'! spatial tensor product of a C*-algebra
A.

The tensor product A® B of Frechet pre-C*-algebras A and B shall always denote
the projective tensor product. That is, the closure of the algebraic product A® B
in the locally convex topology generated by the family of semi-norms p,, x(a ® b) =
max{p/(a),pE ()} Ya € A,b € B where {pA} and {pP} are the seminorms that
generate the locally convex topologies on A and B respectively. Let A®™ denote the
nth projective tensor product of a Frechet pre-C*-algebra A.

'For the notion of a spin manifold see [LM].
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2.1.1 Definition of Hilbert Modules

Let A be a topological algebra. Let ¢ : A — A be the identity homeomorphism.
Denote by A°P the topological vector space t(A) given the product ¢(a) x 1(b) + ¢(ba).
Then A°P is a topological algebra homeomorphic to A such that Z(A) = Z(A°P). Let
A have an involution. Then A°P has an involution. In particular if A is a Frechet
*_algebra, a C*-algebra or a von Neumann algebras, then A is a Frechet *-algebra, a
C*-algebra or a von Neumann algebra respectively. We call A°P the opposite algebra
of A.

We have already denoted the continuous linear functions between topological vec-
tor spaces V and W by L(V,W). We recall a module W of a topological algebra A
is a topological vector space W with a continuous representation 7 : A — L(W,W).
We will denote A-modules by (W, 7). An A-module (W, 7) has a basis {wq} if for
any w € W, w =Y m(aq)we for some ’co-ordinates’ {as} C A.

Let (V,m) and (W, m2) be A-modules. We will denote the continuous module
homomorphisms

Ea((V,m), (W,m2)) = {f € L(V,W)|m2(a)f = fri(a) Ve € A}.

Let E4(W,n) denote E4((W,n),(W,n)). We call an A°’-module (W,7) a right A-
module and hence an A-module is called a left A-module by default. We will some-
times denote a right A-module (W, 7°P), indicating an opposite (product reversing)
representation of A is involved.

Let A and B be topological algebras. Let (W, 75) be a B-module and (W, n%7) be
a right A-module. We say (W,np, %) is a B-A-bimodule if m5(B) C Ea(W, 7°P).
Alternatively, when A, B are (Frechet pre-)C*-algebras, a B-A-bimodule is an B® A°P-
module (W, 75 ® 7} ). We refer to an A-A-bimodule as an A-bimodule.

Definition 2.1.1 Let A be a topological *-algebra that admits a C*-norm. A pre-
Hilbert A-module (W, 7°P) is a right A-module with an ’A-valued inner product’. That
is, a sesquilinear function (-,-)a: W x W — A with the properties [Pa]

(i) (v,7°P(a)w)a = (v,w)aa VacAdv,weW,
(i) (v,w)a = (w,v)%y Yv,weW,
(iii) (w,w)s >0, (w,w)a =0 iff w=0 VYweW.

Define a norm on W by ||lw|| = +/[[(w, w)al]. The completion of W is called a Hilbert
A-module.

Define supp(W) as the closure of Spanc{(v,w)4 |v,w € W} in the topology of A.
The pre-Hilbert A-module is called (1) full if supp(W) = A and (2) separable if it
admits a countable basis as an A-module.

Let (V,m1) and (W, m2) be pre-Hilbert A-modules with A-valued inner products
(-,-)1 and {.,-)o respectively. A map f : V — W is adjointable if there exists a
map f* : W — V such that (v, f*w)1 = (fv,w)s for allv € Viw € W. We will
denote the adjointable continuous module homomorphisms by B4((V,m1), (W, m2)) C
E4((V,m1),(W,m3)). We denote by B4(W,n°P), or sometimes B4(W), the elements
of E4(W, n°P) that are adjointable. Given the operator norm B4(W) is a (pre-)C*-
algebra [B1, Prop 13.2.2].
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Let A and B be (Frechet pre-)C*-algebras. Let (W, mg, 7y ) be a B-A-bimodule
such that (W,7%}) is a (pre-)Hilbert A-module and 7g : B — B(W,7°) is a *-
representation. Then we call (W, g, 7}) a B-A-(pre-)C*-bimodule.

Remark 2.1.2

(i) Hilbert A-modules and B-A-C*-bimodules generalise Hilbert spaces and concrete
representations of C*-algebras on Hilbert spaces respectively. (Separable) Hilbert C-
modules are exactly (separable) Hilbert spaces and a B-C-C*-bimodule (H,, )) is
equivalent to a concrete representation (H, ) of the C*-algebra B.

(ii) Let A be a Frechet pre-C*-algebra, A the C*-closure of .4 and (W, 7) a pre-Hilbert
A-module. Then the closure (W, #) is a Hilbert A-module [Lc2].

(iii) Let (W;,m) be a countable family of (pre-)Hilbert A-modules with A-valued
inner products (,);. The direct sum (®;W;, ®n;) is a pre-Hilbert A-module with
A-valued inner product (Qv;, dw;) = Y, (vi, wi)i, [Lc2].

(iv) Many of the standard notions of Hilbert spaces carry through to Hilbert A-
modules. Let (V,m) and (W, m3) be Hilbert A-modules.

An operator U € Bu((V, m1), (W, mg)) such that U*U = idy, UU* = idy is called a
unitary. We denote (V, m1) ~,, (W, m2) if there exists a unitary U € Ba((V, 1), (W, m2)).

Let (W,n°P) be a Hilbert A-module. Let v,w € W. We define an operator
Fyw(2) = m°P((w, z)4)v. Then FRA(W) = Spanc{F, |v,w € W} is a two-sided
*-ideal of B4(W), considered finite rank operators. The operator norm closure of
FR4(W) is denoted K 4(W) and considered compact operators [Lc2].

Let M(A) be the multiplier algebra of a C*-algebra A. Then we hzve the result
M(KA(W)) = Bo(W) [B1, Thm 13.4.1].

Example 2.1.3

(i) A closed two-sided *-ideal I of a (Frechet pre-)C*-algebra A provides a
canonical A-bimodule. The representation 7 : A ® A°? — By(I) is given by
7(a ® b°P)c = achb Va,be A,ce I.

Hence a closed two-sided *-ideal I provides a (pre-)Hilbert A-module and an
A-A-C*-bimodule with the A-valued inner product (c,d); = c*d Vc,d € I.

(ii) Let I be a closed two-sided *-ideal of a (Frechet pre-)C*-algebra A. We
denote by I* the direct sum pre-Hilbert A-module EszlI and I* the completion.
We note that Ka(I*) = My(I) and B4(I*) = My(M(I)) where M(B) is the
multiplier algebra of a C*-algebra B, [B1, Cor 13.4.2). Here I* is considered to
consist of I-valued column vectors and the matrices My (M(I)) act on the left

by matrix multiplication.
Let A be a C*-algebra. The Hilbert A-module H4 defined by
Hy = {®2,v; | (®v;, ®v;) = Z(vi,vi)i converges in A}.
1

is called the Hilbert space of A [Lc2]. There exists a projection p* € B(H4) such
that p*Hq = A* for each k¥ € N. The submodules A* are fully complemented
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in the sense (1 — p*)Ha4 ~y, H4. Indeed, any countably generated Hilbert A-
module (W, ) is unitarily equivalent to a fully complemented submodule of Hy4
[Lc2, Thm 6.2, Cor 6.3)].

Let A be a C*-algebra and K the C*-algebra of compact operators on a Hilbert
space. Then [Lc2, 6]
Ki(Hy) 2 AQ K,

and
Ba(Hj) X M(A®K).

(iii) Let I be as in (ii). Let p € M;ch(f))~ be a (self-adjoint) projection. Then

pI* is a sub-module of I* such that If =pl*® (idg —p)I*. Moreover Bu(pl*) =
pBa(I¥)p = pMy(M(I))p and Ka(pI*) = pKa(I*)p = pMy(I)p.

Definition 2.1.4 Let A be a C*-algebra and M(A) the multiplier algebra of A. We
call o Hilbert A-module (W, ) a finite projective A-module if (W, 1) ~y, pA¥ for some
projection p € Mi(M(A)).

Let A be a Frechet pre-C*-algebra with C*-closure A. We call a pre-Hilbert A-
module (W, 7) a finite projective A-module if (W, 7) is a finite projective A-module.

Example 2.1.5 The Serre-Swan Theorem
Let X be a locally compact Hausdorff space. Let Cp(X) be the C*-algebra of
continuous vanishing at infinity functions on X. Let E — X be a Hermitian
vector bundle with fibres E, isometric to a Hilbert space H (see Section 1.3.2).
Let ¢ : E; — H denote the isometric isomorphism between E; and the Hilbert
space H. Let 0,0’ be continuous sections of E — X with compact support.
Then

(0,0")(2) = (¢e(0(2)), d= (0" (2)))

defines a continuous function of compact support on X. It is immediate (o, o’} de-
fines a sesquilinear function (-,-) : Co(X, E) x Co(X, E) — Cp(X). Let Co(X, E)
be the C*-algebra of vanishing at infinity sections on E. Define the representation
7 : Co(X) — L(Co(X, E),Co(X, E)) given by

7. (f)o(z) = o(z)f(z) V[ € Co(X),0 € Cy(X, E).

Lemma 2.1.6 Let X be a locally compact Hausdorff space and E — X a Her-
mitian vector bundle. Then (Co(X, E), ;) is a full Hilbert Co(X)-module.

Proof Denote (Co(X, E),n,) by (C,7) for convenience. That (C, ) is a pre-
Hilbert Co(X)-module is discussed in [Sw]. We check that (C,7) is full and
complete.

Suppose f € Co(X) \ Span(C) exists. Let Y be the closure of supp(f). Then
Iy = {f € Co(X)| f(z) =0 Yz € Y} is a proper closed ideal of Co(X). As
Span(C) C Iy this implies from the positive definite property of the Cp(X)-
valued inner product that C C Iy = {0 € C|o(z) =0 Vz € Y}. This implies
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C is contained in a proper closed ideal of itself, which is a contradication. Hence
f € Co(X) \ Span(C) does not exist.
The norm ||.||; induced on C' as a pre-Hilbert Cp(X)-module is given by

lollc = , [sup{o,0)(z) = sup /(0,0)(z) = ||o|| 4.
zeX z€X

Hence ||| and |||, are identical. So C is complete. O

Lemma 2.1.7 Let X be a locally compact Hausdorff space and E — X a Her-
mitian vector bundle. Let (W, ) be a Hilbert Co(X)-module such that (W, ) ~y,
(Co(X, E),m;). Then there exists a Hermitian vector bundle F — X such that
W = Cy(X, F).

Proof Let Cg := Co(X,E). Let z € X and consider the ideal I, = {f €
Co(X) | f(z) = 0}. There exists the corresponding submodule

I, = 71'7'(Ialz)cwE . CO(X \ {‘/E}aElX\{x})

The quotient module 3
Cg/l, 2 E, =2 H,

where f € Co(X) acts on e € E, by c¥ (f)(e) = f(z)e [Dix].

Define the submodule J; = 7(I;)W. Define the quotient module W, = W/J,
Let U € Bg,y(x)(Cg, W) be unitary. Then Un(f)ow = 7(f)U*c = U*n.(f)o.
Hence U, (I;)Cg = n(I;)UCg = w(I;)W. Explicitly UI, = J,. Hence the
quotient map is well defined U(Cg/I;) = UCy/Ul, = W/J, = W,. Hence
define the bundle by the disjoint union F' = Uyecx W, with fibres

W, = Cg/I, = E, = H.

It is immediate that F' has the same trivialising charts as F and that W =
Co(X, F) as Cy(X)-modules by [Dix]. |

A Hermitian vector bundle with finite dimensional fibres means H is finite di-
mensional.

Lemma 2.1.8 Let X be a locally compact Hausdorff space and E — X a Her-

mitian vector bundle with finite trivialising cover and finite dimensional fibres.
Then (Co(X, E),m,) is a finite projective Cy(X)-module.

Proof Let {U'}}_, be the finite trivialising cover of E. Let T : E — TE
be the map defined by T'|y: : Ey: — U x H where H is finite dimensional.
From the definition of a vector bundle [Sr] we obtain a fibrewise isometric iso-
morphism 7|, : E; — T'E,. This provides a unitary equivalence as follows. Let
{e:} be an orthonormal basis of H and define e;(z) := ¢;!(e;). By definition
T|zei(x) = ;. Hence T|go(z) = 3, \Tei(z) = >, Miei. Then T|,(c(z)f(z)) =
(T|s0())f(z). Hence T defines a unitary element of Bg,(x)(CE,Crg) and
(Cg,m) ~y (CrE, 7,) as Co(X)-modules.

77
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We now show Crg = pCo(X)* for a projection p € My(M(Co(X)). Note
M(Cy(X)) = Cp(X) by the Dauns-Hoffman Theorem [Ped, Cor 4.4.8]. Con-
sider a continuous partition of unity {p;} of X subordinate to the finite cover
{U*}. Let N be the dimension of the Hilbert space H. Define the diago-
nal matrix P, € My(Cy(X)) by P, = p;idy. Define the selfadjoint matrix
P e Mp(MN(Cb(X))) by P = \/P,'Pj- for 5,7 = 1,..,p. Let K = Np. One
checks the property 3 P; = idy implies P2 = P. Hence there exists a projection
Pe Mk(Cb(X)) e Mk(M(Co(X))) such that Crg = PCo(X)k. O

The main result about (full) finite projective Cy(X)-modules is their one-to-one
correspondence with Hermitian vector bundles £ — X with a finite trivialising
cover and finite dimensional fibres.

Theorem 2.1.9 (Serre-Swan) Let X be a locally compact Hausdorff space.
Let (W,n) be a full Co(X)-Hilbert module. Then (W, ) is finite projective if
and only if W = Cy(X, E) for some Hermitian vector bundle E — X with finite
trivialising cover and finite dimensional fibres.

Remark 2.1.10 The above theorem is a generalisation of the original statement
of the Serre-Swan theorem [Sw]. The original statement for compact Hausdorff
spaces is recovered from the fact that every Hermitian vector bundle on a com-
pact Hausdorff space has a finite trivialising cover. The finite trivialising cover
condition for a locally compact Hausdorff space appeared in [Sw] and [HgR] as
remarks and a detailed discussed appears in [Re3].

2.1.2 Zj-graded C*-algebras

Let A be a C*-algebra. Denote by Auty(A) the continuous *-automorphisms « of A
such that o? = id.

Definition 2.1.11 A Zy-graded C*-algebra is the pair (A, ) of a C*-algebra A and
a € Auty(A4).

We introduce notions and notations,

1. Let A be a C*-algebra. Then the Zo-graded C*-algebra (A4, id) is called a trivially
graded C*-algebra, and A is referred to as trivially graded.

2. Let A be a C*-algebra. A Zs-grading o € Auty is unitary implemented if there
exists a unitary u € M(A) such that a(a) = uau*.

3. An isomorphism of Zs-graded C*-algebras (A,«) and (B, ) is an isomorphism
¢: A— B such that goa=p.

4. Let A be a Zo-graded C*-algebra. Define
(i) the even elements, A° = {a € A|a(a) = a},
(ii) the odd elements, A° = {a € A|a(a) = —a},

We say a € A is even if a € A® and odd if a € A°. Any a € A has a unique
decomposition
a = Qe + Qo,
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where a. = 1(a + a(a)) € A° and a, = +(a — a(a)) € A°. We call a € A homoge-
neous if it is even or odd. From the decomposition above we can define properties
on the homogeneous elements and extend by linearity to all of A. Let a be a
homogeneous elements. Then deg(a) € {0,1} is defined by a(a) = (—1)d&®)q,
Define the graded commutator on homogeneous elements of A by

[a, b]g =ab— (—l)deg(a)deg(b) ba,
and extend it linearly to a bilinear map A x A — A.

5. Let (W, 0°P) be a Hilbert B-module for any C*-algebra B. A grading element I'
is an adjointable operator T' € L(W, W) such that I'2 = 1. We have a similar
decomposition of W as above

(i) the even elements, W®¢ = {w € W |Tw = w},
(ii) the odd elements, W° = {w € W |Tw = —w},
(iil) w = we+w, Vw € W where w, = w+T'w € Weand w, = w—Tw €
we.
An element w € W is called homogeneous if it is even or odd. For a homogeneous
element w € W define deg(w) € {0,1} by I'w = (—1)36®)yy,

6. Let (W,0°P) be a Hilbert B-module for any C*-algebra B. Let (4, ) be a Zo-
graded C*-algebra. Then (m,T") : A — Bg(W) is a graded representation of A if
m: A — Bp(W) is a representation of A and T is a selfadjoint grading element
such that adr o 7(a) = moa(a) Va € A.

Definition 2.1.12 Let (4, ) and (B, ) be Zs-graded C*-algebras. Then a graded
Hilbert B-module (W,0°P,T') is a Hilbert B-module (W, 0°P) with selfadjoint grading
element T' such that To°P(b)w = o°P(B(b))Tw Vb € B,w € W. A graded A-B-
C*-bimodule (W, 7,0°°, T, T) is a graded Hilbert B-module (W,c°°,Y) and a graded
representation (m,I') : A — Bp(W) such that [, Y] = 0, [[,0°P(b)] = 0 Vb € B,
[7(a),T] =0 Va € A. '

2.1.3 Tensor Products of Hilbert modules
Let (A, a) and (B, 8) be Zy-graded C*-algebras.

Graded Tensor Products of C*-algebras
The spatial tensor product A ® B has the natural Z,-grading

(e ®b) = afa) ® B(b).

However, the graded C*-algebra typically used is the skew-commutative tensor prod-
uct AQB, defined as follows. Let (A ® B,7) be the graded algebraic tensor product.
Define a product and involution on homogeneous elements that extends linearly to
A0© B,
(a0b)d oY) = (_1)deg(a’)deg(b) ad' © by
(a ® b)* — (_l)deg(a)deg(b) a* ©b*
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The closure in the graded spatial C*-norm [Ksi, 2.6] is the Zs-graded C*-algebra
(A®B, 7).

Let A or B be trivially graded. Then A®B = A® B [Ks1, 2.6).

Exterior Tensor Product of Hilbert modules

Let (W,n°P,T') and (Y,0°P, T) be graded Hilbert modules of A and B respectively.

Let W © Y be the algebraic tensor product with grading element ® =T © Y.
Then (W ® Y, ®) forms a graded pre-Hilbert A ® B-module with the representation
(for homogeneous element extended linearly)

(7P P a0 b)(woy) = (—1)de8@)dee(a) 7P (4)1y © 0P (b)y,
and A © B-valued inner product (for homogeneous element extended linearly)
(w O y,w Oy) = (—1)*eWe)+dE®) (4, o) & (y,1).

The closure of W ®© Y yields the Hilbert A®B-module (W&Y, n°°&c°P) [Ks1, 9].

There is a continuous injection [Ks1, 9]
Bs(W)®Bg(Y) = B,gp(W&Y),
and a continuous isomorphism

KaW)®Kp(Y) = K 55(WRY).

Let W or Y be trivially graded (implying A or B are trivially graded). Then the
skew-commutative tensor product ® reduces to the construction involving the tensor
product ® detailed in [Lc2, 4].

Interior Tensor Product of Hilbert modules

Let (W, 7°P,T) be a graded Hilbert A-module and (Y,7,0°P,I",T) be a graded A-
B-C*-bimodule. The interior product W®,Y is designed to yield a graded Hilbert
B-module.

Define the subspace Z, of the algebraic tensor product W ®Y above
Zry =(mP(a)w @y —wOT(a)y | weW,y €Y a € A).
Define the grading element on W @Y by ® =T O I'Y. As ®Z, = Z,, then
Wo, Y=WoY/Z,
is a graded right B-module
% (b)(w ©r y) = w O e (b)y.
with B-valued inner product [Lc2, 4.5]

(w OF y,w Or yl) = (y, 7({w, w,))yl)-
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The closure of (W @, Y,07") defines the Hilbert B-module (W&, Y, o).

The correspondence T' — T ® 1 induces a graded representation [Lc2, 4] [Ks1, 2.8]

Ty : BA(W) = Bg(W&,Y).

The statements of this section apply equally to Frechet pre-C*-algebras A and B
with the substitution of the phrase (Frechet pre-C*) for (C*).

2.1.4 Morita Equivalence
Basic Definitions

Let A be a C*-algebra. Then A is called o-unital if it admits a countable approximate
unit. Indeed, A is o-unital if and only if A is countably generated as an A-module
[Lc2, 6]. It follows every separable C*-algebra is o-unital.

Let K be the C*-algebra of compact operators on a Hilbert space. The stabilisation
of a C*-algebra A is the C*-algebra Ax = A® K. A C*-algebra A is called stable if
A= Ay,

(Strong) Morita Equivalence

Definition 2.1.13 Let A and B be C*-algebras. Then A is Morita equivalent to B,
denoted A ~pr B, if there exists a full Hilbert A-module (W, n°P) such that B =
Ka(W).

Morita equivalence is an equivalence relation [Lc2, Prop 7.5], and sometimes called
strong Morita equivalence.

Theorem 2.1.14 [BGR] Let A and B be o-unital C*-algebras. Then A ~p B if
and only if Ax = Bg.

Example 2.1.15  Let A be a C*-algebra and £ € N. Consider the full Hilbert
A-modules A* and Hy4 as in Example 2.1.3(i),(ii). Then
(1) My(A) ~n A as Mi(A) = Ka(4Y),
(i) Ak ~yAas Ak =AQK = K4(Hy).

Graded Morita Equivalence

There exists an extended notion of Morita equivalence for Zo-graded C*-algebras.

Definition 2.1.16 Let (A, o) and (B, 8) be Zy-graded C*-algebras. Then A is graded
Morita equivalent to B, denoted A ~jp; B, if there exists a full graded C*-A-B-
bimodule (W, n,0%,T',T) such that (A,a) & (Kg(W),adr).
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Example 2.1.17 Graded Morita equivalence of A and M;(A)
Let A be a Zs-graded C*-algebra and u a selfadjoint unitary in M(A). Recall
from Section 2.1.2 that ad, € Aut2(A) where ady,(a) = uau* Va € A. Define
the operations Iy, T, : A2 — A% by

Ty(a,a’) = (ua,—ud’) Va,a' € A
I'(a,a') = (au,—d'u) Va,d €A

Lemma 2.1.18 Let (A,ad,) and T, be as above. Then (A%,T)) is a graded
Hilbert A-module.

Proof Let u € M(A) be unitary and selfadjoint. Then u = u* and u?
1. Hence I'?(a,a') = (au?,(~1)%2a'u?) = (a,d') Va,a' € A and I'? =
Now I',b°P(a,a’) = (abu, —a'bu) = (auuby, —d'uubu) = (au(ubu), —a'(ubu))
(ubu)°P(au, a'u) = ady (b)°PT),(a,a’) Va,a’ € A.

o =

Let u € M(A) be a selfadjoint unitary. Let 7, be the selfadjoint unitary in
My(M(A)) = M(M32(A)) defined by

_uO
Yu 0 —u |

Theorem 2.1.19 Let A be a C*-algebra and u € M(A) be a selfadjoint unitary.
Then (A,ady) ~p (M2(A),ad,,) as Zy-graded C*-algebras.

Proof From Lemma 2.1.18 (A% T") is a graded Hilbert A-module. From
Example 2.1.15(i), M3(A) = Ka(A?%). The proof is complete if it is shown
'y = 7u. Note I'y € Bg(A?) = M3(M(A)) is immediate from its definition.
Moreover I'2 = 1 and (T'y(a,d’), (b,¥)) = (ua)*b + (ua')*b' = a*ub + a*ud/ =
{(a,a’),T",(b,b')). Hence I is a selfadjoint unitary of Ma(M(A)). It is immediate
from using an approximate unit of A that the matrix representation of I'y is .
|

2.2 Non-commutative Vector Bundles

Let X be a locally compact Hausdorff space. The Serre-Swan Theorem (Theo-
rem 2.1.9) asserted the one-to-one correspondence between finite projective Cop(X)-
modules and Hermitian vector bundles F — X with finite dimensional fibres and
finite trivialising cover. When X is compact every Hermitian vector bundle has a
finite trivialising cover. This leads to the definition in the literature,

Definition A non-commutative vector bundle of a unital C*-algebra A is a finite
projective A-module.
2.3 Graded Hilbert Modules in Riemannian Geometry

Let X be a Riemannian manifold and Cy(X) be the C*-algebra of continuous vanish-
ing at infinity functions on X. Graded Hilbert Cy(X)-modules provide examples of
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the concepts in section 2.1 which are of central importance in the generalisation of
Riemannian structure to non-commutative geometry.
Basic Definitions

The two-dimensional Clifford algebra C; is abstractly defined by
Cr={M+hX| M, 2 €C A2 =1}

with a Zy-grading 8 : A1 + hAda = A\ — hX2. A concrete graded representation
c1: Cy = B(C?) = My(C) is provided by

/\iHl,\i 0}, H[01]’ﬂ|_>{1 0]_[1 0}_
0 X\ 10 0 —1 0 -1

2.3.1 Structure and Gradings on the Clifford Bundle

Let A*X and Cl(X) denote the exterior bundle and Clifford bundles of X respectively
as in Section 1.3.3.

Parity and the Volume Form

Let V' be a n-dimensional vector space with inner product ¢ and {v;}?_, be an or-
thonormal basis of V. We recall from Section 1.3.1 the Clifford algebra Cliff(V, q)
with Clifford product - satisfying w-v + v - w = —2¢(w,v) Yv,w € V. Define the
parity map ey on homogeneous elements of Cliff(V, q) by

ev(viy * o vy;) 1= (=1)w;; - ... -V

and extend it linearly to be an order two automorphism ey of Cliff(V, q). We define
the volume form vy € Cliff*(V, q) by

Yy =0 v U

The relations v - yy = (=1)""lyy v for all v € V and vy - vv = 1 follow from
the Clifford product. This implies vy is a central element when n is odd. We note

cev(imw) = (=1)"w.
Extend the parity map to the C*-algebra Cy(X, Cl(X)) of continuous vanishing
at infinity sections of the Clifford bundle by
e(w)(z) := e x(w(z)) Yw € Co(X, CL(X)).

Then € is an order two *-automorphism of the C*-algebra Cy(X,Cl(X)). Hence
(Co(X,Cl(X)),¢€) is a Zy-graded C*-algebra. The C*-algebra Cy(X) inherits a trivial
Zy-grading by the restriction of € to Co(X) C Cp(X, CL(X)).

The complex volume form of a n-dimensional Riemannian manifold X is the ele-
ment vy € Cy(X, C1(X)) = M(Cy(X,CL(X))) defined by

’Y(ﬂﬂ) =T X
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The complex volume form has the properties e(y) = (-1)*y, v = v*, v+ v = 1,
y-f =f-yforall feCy(X)andv-y=(=1)""ty-v for all v € Cy(X,T*X). Note
v € Z(Cy(X,Cl(X))) when dim X is odd.

Define a unitarily implemented Z,-grading a of the C*-algebra Cyp(X, C1(X)) by

a(w) =5 -w-7.

The relationship between the Zo-gradings € and « is summarised in the next theorem.
We recall the two-dimensional Clifford algebra

C1 = {M+ 2B A, A €C, B =1}
is Zo-graded by the map A + A28 = A1 — A28.

Theorem 2.3.1 Let X be an n-dimensional Riemannian manifold. Let € be the
parity map on Co(X,ClY(X)) and v € Cp(X, Cl{X)) be the complez volume form.

Let dim X be even. Then

(i) € is unitarily implemented by v,
e(w) =7y w-y

for all w € Cy(X, CI(X)),
(if) Z(Co(X,Cl(X))) = Co(X),
(iii) € is trivial on the centre Z(Co(X, CH(X)))
Let dim X be odd. Then
(iv) v is a central element of Cp(X,Cl(X)), hence a is a trivial Zo-grading,
(v) €(y) = —, hence € is a non-trivial Za-grading,

(vi) Z(Co(X,CUX))) = {f1+ fov| f1, f2 € Co(X)} = Co(X) ® C1 where C; is
the graded two-dimensional Clifford algebra.

(vii) € provides the Za-grading on Z(Co(X, Cl(X))) = Co(X) ® Ci.

Proof Straightforward from the properties of the volume form and the Clifford
algebra. m|

2.3.2 Graded Representations

We consider representations of the C*-algebras M(Cy(X)) and M (Cy(X, CI(X))) into
the space L(Cp(X, A*X), Co(X,A*X)). We recall from section 1.3.1 and section 1.3.3
the left and right actions of the Clifford bundle on the Exterior bundle. The left
action provides a representation

m e M(Co(X, CI(X))) - L(Co(X,A*X),Co(X,A*X))

given by

(m(w)u)(2) = vw(z) -+ (u(2)))
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for all w € M(Co(X, Cl(X))),u € Co(X,A*X). The right action provides an opposite
representation

Ty M(Co(X, CI(X))) = L(Oo(X, A*X),CO(X, A*X))

given by

(mr (w)u)(z) = o(7 (u(z) - w(z))

for all w € M(Co(X,ClX))),u € Co(X,A*X). We note [m,(w), m(v)] = 0 for all
w,v € M(Cy(X,Cl(X))) from associativity of the Clifford product. We denote the
restricted representation to the centre Z(Cy(X, Cl(X))) by m; as well and

m : Z(Co(X, CUX))) = L(Co(X, A*X), Co(X, A* X)).

Note m(w) = m(w) for all w € Z(Cy(X,Cl(X))). Then m is a representation of
Co(X) as Co(X) C Z(Cy(X,Cl(X))). As mentioned in section 1.3.6 the represen-
tation 7, extends to a concrete representation (L?(X,A*X),m) of the C*-algebra
M(Cy(X,Cl(X))) and Co(X) by restriction. Let m(y) and 7(7y) be the representa-
tives of the volume form v € M(Cy(X, C1(X))) of the Riemannian manifold X.

Theorem 2.3.2 (Riemannian Structure)

Let X be an even dimensional Riemannian manifold. Then
(i) (Co(X,A*X),m,) is a Hilbert Co(X)-module, that is finite projective if X is
compact, such that the Riemannian metric q, defines the Co(X)-valued inner
product,
(i) (Co(X,A*X),mr,mr (7)) 19 a graded finite projective Co(X, Cl(X))-Hilbert
module,
(iii) (Co(X,A*X),m,m,) is a Co(X)-Co(X)-C*-bimodule,
(iv) (Co(X,A*X),m, mr, 7 (7)) is a graded Co(X)-Co(X,Cl(X))-C*-bimodule,
(v) (Co(X,A*X),m, mr, m (7)) is a graded Co(X, Cl(X))-Co(X)-C*-bimodule,
(vi) (Co(X,A*X),m,mp, m(7y), 7 (7)) is a graded
Co(X, C1(X))-Co (X, CL(X))-C* -bimodule,
(vii) (Z(X, A*X), 1 ® Ty, m(y)m (7)) i @ graded
Co(X, Cl(X)) ® Cy(X, CI(X))°P-C-C* -bimodule.

Proof (i) Lemma 2.1.6, Theorem 2.1.9 and Section 1.3.6. (ii) Define the Cy (X, C1(X))-
valued inner product on Cy(X,A*X) by (u,z) = v(u)*1(2) for all u,z € Cp(X, A*X).
The module Cy(X, A* X) is full in this inner product. Since Co(X, A*X) = Cy(X, CI(X))
linearly it is clearly a finite and projective Cy(X, Cl(X))-module. That the grading
element required is 7, (7y) follows from 7,.(y)? = 1 and ()7 (w) = 7. (e(w)) 7, (7)
by Theorem 2.3.1. (vi) Follows from m;(7)? = 1 = m,.(7)2, m(y)m(w)m(y) = m(e(w))
and [m(w), 7, ()] = 0 = [m(y), 7 (w)] for all w € Co(X,CLX)). (iii),(iv),(v) fol-
low directly from (vi). (viii) Follows from (vi) by restricting to compactly supported
sections and closing in the inner product of section 1.3.6(ii). O
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Let X be a Riemannian manifold with odd dimension. We recall from Theorem
2.3.1 that m(y) = mr(7y) is a central element and that

Z(m(Co(X, Cl(X))) = Spang,(x) (L, m(7)) = Co(X) ® C,

where C is the graded two-dimensional Clifford algebra. Any grading induced by
m(y) will be a trivial grading. We cannot obtain a graded representation of the
Zo-graded C*-algebra (Co(X,Cl(X)),€) on the module (Co(X,A*X),n,) using the
complex volume form.

Let V be a n-dimensional vector space with inner product ¢ and orthonormal basis
{vi}™_,. We recall from Section 1.3.1 the Exterior algebra A(V)) with exterior product
satisfying w Av+v Aw =0 Yov,w € V. Define the parity map ey on homogeneous
elements of A(V') by

ev(viy A Awyy) = (—l)jvi1 Ao Ay

and extend it linearly to be an order two automorphism ey of A(V). Let A®Ve™(V)
denote the even elements of A(V') with respect to the parity grading and A°%(V) the
odd elements. The grading ey splits the exterior algebra into a direct sum

A(V) = A™(V) @ A°Y(V)

and ey has the matrix representation

1 0
£y = i
V=10 <1

It is immediate from the form of the left action
wi(u) = o(w - e (u))
of w € Cliff(V, q) on u € A(V) that
WS (AT (V) = ATVR (V) wodd(A0d (1)) = Asven(y)
wpdd (A (V7)) = A (V) | wfven (A2 (V7)) = ACSd(V),
Identical relations hold for the right action
wr () 1= (7 (u) - w)

of w € Cliff(V, q) on u € A(V'). Hence the matrix representation of the left action of
w € Cliff(V, q) on A(V') with respect to the grading ey is

even odd
- odd even |’
wy &y

and
adey, (wi) = (ev(w)).



2.3. GRADED HILBERT MODULES IN RIEMANNIAN GEOMETRY 87

Identical relations hold for the right action. Then -y has the matrix representation
in the left action or right action of Cliff(V,q) on A(V),

_ [ 0 (W)r ]
(W)r 0

adey, (W) = —w.

_1 0 (wh
"= [ (wh 0

and

Extend the parity grading ey to the Cy(X)-Hilbert module (Co(X, A*X), 7,.) by
e(u)(z) == emr x(u(z)) Yu e Co(X,A*X).

Then ¢ is a grading element of (Cy(X, A*X), 7,) that is Cy(X)-linear. The direct sum
decomposition into sub Cy(X)-Hilbert modules is given by

Co(X, A*X) = Co(X, AT (X)) ® Co(X, A°¥(X)).

The matrix representation of ¢ is given by

and

with
ade(m (7)) = —m(7).

Let U denote the unitary operator on the Hilbert space L2(X,A*X) such that U =¢
on the dense subspace Cp(X, A*X) 2.

Theorem 2.3.3 (Riemannian Structure)

Let X be an odd dimensional Riemannian manifold and C; be the graded two dimen-
sional Clifford algebra. Then

(i) (Co(X,A*X),n,) is a Hilbert Co(X)-module, that is finite projective if X is
compact, such that the Riemannian metric q, defines the Cy(X)-valued inner
product,

(il) (Co(X,A*X), 7., €) is a graded Hilbert Co(X) ® Cy-module

(iil) (Co(X,A*X), 7y, €) is a graded finite projective Co(X, C1(X))-Hilbert mod-
ule,

(iv) (Co(X,A*X),m,7r,€) is a graded Co(X)-Cy(X) ® C1-C*-bimodule,
(v) (Co(X,A*X), m, 7€) is a graded Co(X) ® C1-Co(X)-C*-bimodule,
(vi) (Co(X,A*X),m, 7y, €) is a graded Co(X, Cl(X))-Co(X)-C*-bimodule,

®The existence of U is detailed in Theorem 2.3.4(iv) and Lemma 2.5.18.
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(vii) (L%(X,A*X),m ® 7., U) is a graded
Co(X, Cl(X)) @ Cp(X, CI(X))°P-C-C* -bimodule.

Proof (i) Lemma 2.1.6, Theorem 2.1.9 and Section 1.3.6. (iii) Same argument as the
proof of Theorem 2.3.2(ii) except for the grading. That ad¢(m,(w)) = m(e(w)) follows
from the statements preceding the theorem. (ii) Follows from (iii) since Cy(X)®C; =
Z(Co(X,CI(X))). (iv),(v),(vi) Straightforward. (vii) Follows from (vi) and (iii) by
restricting to compactly supported sections and closing in the inner product of section
1.3.6(i1). The existence of U we defer to Theorem 2.3.4(iv). Note that U = U* and
Um @ mp(w)U = m @ 7y (e(w)). ]

2.3.3 Riemannian Structure

Let X be a Riemannian manifold. Remark 1.6.2, Theorem 1.7.21, Theorem 2.3.2 and
Theorem 2.3.3 have been labeled ‘Riemannian Structure’. We compare the results
and emphasise their unification and generalisation in the Tomita-Takesaki modular
theory.

The finite projective Cp(X)-module (Co(X,A*X), m,) can be determined, by Remark
1.6.12 with Theorem 2.3.2 and Theorem 2.3.3, amongst other Hilbert Cy(X)-modules
by its properties as a graded Cy(X, C1(X))-bimodule. In particular, (Co(X, A*X), )
is a free graded finite Cy(X, Cl(X))-module of module dimension one and a graded
Co(X, Cl(X))-Co(X)-C*-bimodule. Equivalently:

Riem': The representation (L?(X,A*X),m) of the C*-algebra Cp(X) is the
unique graded Co(X, CI(X)) ® Cy(X, C(X))°P- C-C*-bimodule that ad-
mits a dense subspace isomorphic to C.(X, C1{X)).

Compare the statement Riem’ to Remark 1.6.12. That there exists exactly a unique
Hilbert space L?(X, A* X) which admits a standard form for the von Neumann algebra
L>(X, Cl(X)),

Riem = (L*®(X, Cl(X)), L*(X,A*X), J,1, L?(X,A* X)T)
and the standard form Riem is constructed from the pair of the von Neumann algebra

L®(X,CI(X)) and the fns trace weight A given by the Lebesgue integral and the
metric gqg,

Aw) = /Xqg(l,m(w)l)(w)\/det(g)dx Vw e L*(X, Cl(X)).

Define
e(w)(z) := er» x(w(z)) Yw € L¥(X, ClI(X)).

Then € is an order two *-automorphism of the von Neumann algebra L (X, C1(X)).
We claim the standard form Riem contains the statement Riem'.

Theorem 2.3.4 Let Riem be the standard form as above.
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(i) The GNS representation associated to the Lebesgue integral
™ : L®(X, Cl(X)) = B(L*(X,A* X))
restricts identically to the representation
m : Co(X, Cl(X)) = L(Ce(X,A* X), Co( X, A* X))

on Cy(X, Cl(X)) C L®(X, Cl(X)) and C.(X,A*X) C L*(X,A*X).

(ii) The opposite representation of L™ (X, CY(X)) provided by the Tomita
conjugation operator
7y (w) 1= Jmy(w)*J

for all w € L°(X, Cl(X)) restricts identically to the right representation
7r  Co(X, CI(X))P = L(C,(X, A* X), Co(X, A* X))
on Co(X, C1(X)) € L®(X, CI(X)) and Co(X, A*X) C L3(X, A*X).
(iii) The representation
T @ m°P 1 L%°(X,Cl(X)) ® L™®(X,Cl(X)) = B(L3(X,A*X))

provided by
T @ my (w ® u) := my(w)Jmy(u)*J

restricts tdentically to the representation
m ® 7+ Co(X, Cl(X)) ® Co(X, C1(X))® — Bey(x)(Ce(X, A* X))

on Co(X, CI(X)) € L=(X, CL(X)) and Cu(X,A*X) © T2(X, A*X).

(iv) Let o € Auto(L®°(X,Cl(X))). Then there exists a selfadjoint unitary
U, € B(L?(X,A* X)) such that

ady, (ma(w)) = mx(e(w))
for all w € L*® (X, Cl(X)) and
(7o, J] = 0.

Let o be the parity automorphism e. Then U, = ¢ when restricted to the
subspace Co(X,A*X) C L?(X, A*X).

(v) The GNS inclusion map
oo LHX, CI(X)) N L®(X, CI(X)) - L(X, A*X)

induces a dense subspace 1\(Co(X, Cl(X))) of L?(X,A*X) isomorphic to
C.(X, Cl(X)).

Proof (i),(ii),(iii) Immediate from Theorem 1.6.1 and Proposition 1.6.11. (iv) The-
orem 1.6.4 with Riem and Riem as the two standards forms and « the isomorphism.
(v) Immediate from Section 1.2.1 and Definition-Lemma 1.5.9. a
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The moral of Remark 1.6.12 and Theorem 2.3.4 is that one obtains the statement
Riem’, indeed one constructs the graded finite Co(X, C1(X))-bimodule
(L3(X,A*X),m.) complete with grading element U, from the Zo-graded von Neu-
mann algebra (L°(X,Cl(X)),e) with semifinite faithful normal trace A using the
GNS construction and Tomita-Takesaki theory.

Let X be a compact Riemannian manifold. The moral of A. Connes viewpoint
and Theorem 1.7.21 is one constructs the von Neumann algebra L*(X,Cl(X)) and
the trace provided by the Lebesgue integral A from the Frechet pre-C*-algebra C*°(X)
and the signature operator d + d* (statements (ii), (iii) and (iv) of Theorem 1.7.21).
Hence the statement Riem' reaches its most general form for a compact Riemannian
manifold X in statement (v) of Theorem 1.7.21:

The representation (L?(X, A*X),m) of Qgyg (C®(X))" is the GNS rep-
resentation associated to the trace 7.

This statement characterises the representation (L2(X,A*X),m;) amongst all other
representations (H,m) of the C*-algebra C(X). It also a statement that we can
generalise to an arbitrary C*-algebra.

2.3.4 Riemannian Representations

Let (H,w, D) be a C®-representation of a C*-algebra A. Let A, be the ‘smooth
elements’ of A for this representation (the Frechet pre-C*-subalgebra of A defined
in Section 1.4.2). Let (Qp(Ax),dp) be the representation 7 of the universal graded
differential algebra (2(Ay),d) as in Section 1.4.1. The universal differential algebra
(Q(Ar),d) has the natural parity grading

enlagdar...dag) == (—l)kaoéal...(Sak
and the direct sum decomposition

Q(.A/,r) — Qeven(Aw) D QOdd(Aqr).

This parity grading cannot be transferred to the representation (Q2p(Ax),dp) in gen-
eral 3. We say the representation 7 of (2(A,), ) is parity preserving if the map

e(m(ao)[D, m(a1)]...[D, m(ak)]) := (=1)*7(ao)[D, w(a1)]-..[D, m(ax)]
is well defined on Qp(Ay).

Definition 2.3.5 Let R be a von Neumann algebra with separable pre-dual and (H,, 7))
be the GNS representation associated to a faithful normal semifinite weight p on R.
Let A be a C*-subalgebra of R.

If there ezists a selfadjoint operator D : DomD — H, such that
(i) (Hp,mp, D) is a C°-representation of A,
() (Hp,m,, D) is a C&"®-representation of A,

3For example, if D is bounded and D € M{A,) then [D, n(a)] € Ax for all a € Ar. The parity
grading with .4, even and Q} (Ax) odd is then not well defined.
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(ii) 7,(Q(Ax,)) is a weak dense *-subalgebra of m,(R), and

(ili) 7, is parity preserving,
then we call (Hp, 7y, D) (1) a Riemannian representation of the C*-algebra A when
conditions (i), (i), and (iii) are satisfied, and (2) an n-dimensional Riemannian rep-
resentation of the C*-algebra A when conditions (i'), (ii), and (iii) are satisfied.

A base representation (H,,m,, D) of a C*-algebra A is called an ungraded Rie-
mannian representation if it satisfies Definition 2.3.5 and conditions (i) and (ii) alone.
We shall seldom use the ungraded notion until section 2.7.

Remark 2.3.6 Associated to each Riemannian representation of a C*-algebra A is
the standard form (see Section 1.6.2)

Riem(A4, p) = (p(Ax,)", Hp, Jp, Ay, Pp).

Hence Riemannian representations are intimately bound to the Tomita-Takesaki mod-
ular theory of von Neumann algebras?.

2.3.5 Spinc Representations

Let V be a n-dimensional vector space with inner product ¢ and {v;}j-; be an or-
thonormal basis of V. Define the function

m(n) _ { 2% n even

n—1

272 nodd.

Then the Clifford algebra Cliff(V, ¢) has a unique irreducible representation (C"™"), ®)
such that ¢(Cliff(V, q)) = My, (C) °. Note ¢ is an isomorphism when n is even. The
representation is not faithful in the odd case. Let n be odd. The volume element
vv and the identity 1 generate the centre of Cliff(V,q) which is trivialised in any
irreducible representation. Then Cliff(V, q) & M,,(,)(C) ® C1 where C; is the two-
dimensional Clifford algebra.

These irreducible representations cannot always be transferred fibrewise to the
Clifford bundle on a Riemannian manifold.

Let X be a n-dimensional Riemannian manifold. Then X is called a Riemannian
spinc manifold if there exists a Hermitian vector bundle § — X with a repre-
sentation ¢ : Co(X,Cl(X)) — L(Co(X,S),Co(X,S)) such that Cp(X,Cl(X))) =
Keyx)(@c) (Co(X, S)(®C?)). Here Cy is the graded two dimensional Clifford algebra
and (®C) is added when dim X is odd. This implies Co(X, C1{X)) ~pr Co(X)(®CH)
where ~ s denotes strong Morita equivalence. The converse is also true, [HP, Lemma
3, Theorem 8(ii)].

“The relationship between the operators D, J,, A, is a very interesting question. It is a direction
of further research.
5The details of the representation ¢ are not relevant here, see [LM].
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Definition 2.3.7 Let X be Riemannian manifold. We call X a Riemannian spinc
manifold if the C*-algebras Co(X)(®C1) and Co(X, Cl(X)) are strong Morita equiva-
lent. Here C1 is the graded two dimensional Clifford algebra and (®Ch) is added when
dim X s odd.

This definition of sping¢ structure on a Riemannian manifold we can generalise to
an arbitrary C*-algebra.

Definition 2.3.8 Let A be a C*-algebra. Let (H,,m,, D) be a Riemannian repre-
sentation of the C*-algebra A. Then we call (H,,mp, D) an even (resp. odd) sping
representation of A if Ay ~n Qp(Ar) (resp. Ar @ C1 ~p Qp(Ax)).

Remark 2.3.9 Let X be a Riemannian manifold. The statements of this section
(Section 2.3) can be applied to the pre-C*-algebras C§°(X) and C§°(X, Cl(X)) and
the C§°(X)-module C§°(X,A*X) by replacing verbatim C* for C, pre-Hilbert for
Hilbert and pre-C* for C*.

2.4 Poincaré Duality in KK-theory

2.4.1 The elements of KK-theory

We refer the reader to the sources [Ks1] and [Ks2] for the detailed definitions and
results of this theory. It is designed specifically for C*-algebras A and B (equivalently
for pre-C*-algebras by using pre-Hilbert modules).

Definition 2.4.1 A Kasparov A-B-bimodule is a triple (E, F, ) involving

(i) a countably generated graded Hilbert B-module (E, o) with a graded represen-
tation m: A — Bp(FE),

(ii) an operator F € Bp(E) such that F is odd with respect to o and m(a)(F —
F*),m(a)(F? — 1g), [F,7(a)]y are elements of Kg(E) for all a € A.

Here [-,], is the graded commutator with respect to a. The Kasparov bimodule
is called degenerate if 7(a)(F — F*) = 0 = w(a)(F? — 1g) = [F,n(a)]y- The col-
lection £(A, B) of Kasparov A-B-bimodules and D(A, B) of degenerate Kasparov
A-B-bimodules are closed under the direct sum (E; @ Es, Fi @ Fy, a1 ® ag) of two
Kasparov A-B-bimodules (E;, F;, «;),1 = 1,2.

Theorem 2.4.2 Let KK(A,B) = (5(A,B)/’D(A, B))/ ~ where the equivalence
relation ~ is defined by homotopy equivalence. Then (KK(A,B),®) is an Abelian
group.

For separable C*-algebras A1, A; and D there exists an associative bilinear prod-

uct,
®p: KK(A1,31®D) X KK(D@AQ,BQ) — KK(A1®A2,31®32)

called the intersection product. It is functorial in all possible senses given morphisms
between C*-algebras, contravariant in A;, A, and covariant in By, Bz. Note the pres-
ence of the graded tensor product & of section 2.1.3. We recall from that section
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A®B = A® B when A is a trivially graded C*-algebra. If we restrict to B = C
and A always trivially graded Kasparov’s KK-theory reduces to the K-theory and
K-homology of the C*-algebra A,

Ko(A) = KK(C, A) , K°(4) = KK(A,C).

Here Ky(A) consists of stable classes of finite projective .4-modules and K°(A) con-
sists of homotopy classes of Fredholm modules over A. For a pre-C*-algebra A C A we
use the K-theory and K-homology of its norm closure. They are equivalent since the
inclusion map ¢ : A — A provides an isomorphism in K-theory, ¢, : K,(A) = K,(A)
and homotopy classes of Fredholm modules over A extend uniquely to A, [C6, App3].
Higher KK-groups are defined by KK"(A, B) = KK(A®C,,B) and KK, (A, B) =
KK"(A, BRCy). Here Cy, is the graded Clifford algebra over C* 5. Then

K.(A) = KK,.(C,A) , K*(4) = KK*(A,C)
when A is trivially graded. Formal Bott periodicity,
KK, (C,A) = KKy moa2(C, 4) , KK™(A,C) = KK"™42(4, C)

follows from functoriality of the KK-groups and the order 2 periodicity of the graded
complexified Clifford algebras under graded tensor product. We note that KK-theory
has the property of stability,

KK(A,C)=KK(A® K,C)
and hence
KK(A,C)=KK(A®Q K,C) = KK(B® K,C) = KK(B,C)

for strong Morita equivalent C*-algebras A and B. The intersection product includes
the usual K-theory cap product,

®4 : KK,(C, A) x KK"(A® B,C) - KK*t"mod2(B ()
for C*-algebras A and B. Hence the intersection product enables a generalisation of
the index theory of Atiyah-Singer and Poincaré Duality.

2.4.2 Poincaré Duality in KK-theory

Let A be a trivially graded unital C*-algebra, B a C*-algebra and v € KK(A® B, C).
The intersection product defines a group homomorphism,

®av: KK,(C,A) - KK*(B,C) , e eQav

The v-index of e € KK,(C, A) is defined to be the index of the K-homology class
e®4v 7. An isomorphism ® ov between the K-theory of 4 and the K-homology of B
is an example of Poincaré duality in KK-theory.

°The grading of the Clifford algebras over C* used here are detailed in [Ks1]
"See Section 7.2, Section 8.7, Section 9.7 and Section 11.4 of [HgR] to trace the v-index as the
generalisation of the Atiyah-Singer index theory.
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Definition 2.4.3 Let v € KK(A ® B,C) such that @ 4v is an isomorphism. Then
we say the C*-algebras A and B are Poincaré dual.

See [c5], VI.4.8 for a discussion of Poincaré Duality. The next example is of
central importance in understanding the generalisation of Poincaré Duality to non-
commutative geometry.

Example 2.4.4 Poincaré Duality for compact Riemannian manifolds

Let X be a compact n-dimensional Riemannian manifold. Let (L2(X, A*X), m, d+
d*) be the C;>*°-representation of the C*-algebra C'(X) of Example 1.7.17. Let

f(z) = z(1 4+ 22)~'/2 for z € R and define Fy = f(d + d*). We recall from
Section 2.3.2 that (L2(X,A*X), m ® m,, Ue) is a graded C(X) ® C(X, CI(X))-C-

C*-bimodule.

Theorem 2.4.5 (Kasparov) The triple (L(X,A*X), Fy,Ue) as above consti-
tutes a Kasparov C(X) ® C(X, Cl{X))-C-bimodule.

Proof Definition-Lemma 4.2 of [Ks2]. son, O

We denote the homotopy class of the Kasparov C(X)® C(X, C1(X))-C-bimodule
(L?(X,A* X), Fy,Ue) by

[d] := [(L*(X,A*X), F4,Ue)] € KK(C(X) ® C(X, CI(X)),0).

The class [d] is called either the Dirac element or the fundamental class of the
compact Riemannian manifold X.

Theorem 2.4.6 (Kasparov) Let [d] be the fundamental class of a compact
Riemannian manifold X. Then we have the following isomorphism given by the
intersection product,

Proof Theorem 4.8 or Corollary 4.11 of [Ks2]. O

The statement of Poincaré duality for a Riemannian manifold is the isomorphism
in Theorem 2.4.6

®o(x)ld] : KK.(C,C(X)) - KK*(C(X, CI(X)),C).

Hence we regard Poincaré duality on a compact Riemannian manifold as Poincaré
duality of the C*-algebras C(X) and C(X, CI(X)).

Remark 2.4.7 The situation when X is a Riemannian spinc manifold is con-
ceptually different. We detail this in Example 2.4.9 below.
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2.4.3 KK-equivalence
The intersection product possesses an identity,
i:KK(A,C) ®c KK(C,C) » KK(A,C).

The class i = [H;, T, o] is described fully in Theorem 4.5 of [Ks1] or Proposition 9.3.1 of
[HgR]. It involves a Zy-graded Hilbert space H; and an odd operator T arising from an
index 1 Fredholm operator H” — H?. Take a class [E, F] € KK(A,C). The rank
one projection aspect of T' is used to transform EQ H into (EQC)®(E® H;") such that
the Kasparov product F#,T becomes just ' ® 1 on the first direct summand, and is
degenerate on the second. Hence, we recover the same class as (E, F) = (EQC, F®1).
For a Zj-graded C*-algebra B we set

ip = [B&®H;,19T] € KK(B, B).
This element provides the identity for
ip: KK(A,B)®p KK(B,B) -+ KK(A, B)

A KK-equivalence between KK (A,C) and KK(B,C) is given by elements a €
KK(A,B) and 8 € KK(B, A) such that « ®3 8 = i4 and S ®4 o = ig. Then
the intersection product provides the isomorphism o ® g KK (B,C) = KK(A,C)
with inverse f ® 4 KK(A,C) = KK(B,C).

Example 2.4.8 KK-equivalence of A and M;(A)

Let A be a C*-algebra and u be a unitary in M(A). We recall from Theorem
2.1.19 that (A4, ady) ~ar (M2(A),ad,,) as Zo-graded C*-algebras. We recall from
Lemma 2.1.18 and the proof of Theorem 2.1.19 that (A2, T",) is the graded Hilbert

Y

A-module such that (My(4),ad,,) = (Ka(A42),adr, ). Let
k= (A%T)

By similar considerations it is easily shown (A42,T,) is a graded Hilbert M,(A)-
module such that (4,ad,) = (Kpz,(4)(A?),adr,). Let

K°P = (A2, T,).
Define
i(k) = [A2® H;,1 ®T,T", ® a] € KK(M>(A), A)

and

i(k°P) = [A’ @ H;,1 ® T, T, ® o] € KK (A, My(A)).
Then

1(6) @uy(a) Hk) = [A® H, 1 ® T, ady ® o) = ia.
In reverse,

i(k) ®4 i(KP) = [Ma(A)®H;,1 ® T, ad,, ® a] = ipa).
Hence we have a KK-equivalence between KK (A,C) and KK (M3(A),C).
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Example 2.4.8 demonstrates the general procedure how every strong Morita equiv-
alence between C*-algebras gives rise to a KK-equivalence. The next example com-
pletes the discussion of Poincaré duality on Riemannian manifolds in Example 2.4.4.

Example 2.4.9 Riemannian spinc manifolds

Let X be a Riemannian manifold. Let E — X be a Hermitian vector bundle
with E; = H. Then there exists a Hermitian vector bundle E* — X, called
the dual bundle of E, such that the fibres E} are isomorphic to the dual Hilbert
space H* [Sr, IIL.4].

Let X be a Riemannian spin¢c manifold as in section 2.3.5. Then Cy(X)(®C1) ~m
Co(X, Cl(X)). Here C is the graded two dimensional Clifford algebra and (®C})
is added if dim X is odd. Let y be the complex volume form of X. The com-
plexified spinor bundle S — X provides a graded Hilbert Cy(X)(®C1)-module
(Co(X, 5)(®C?), ¢(®c1), $(7)(®P)) such that

Co(X, CUX)) 2 Key(x)(@01)(Co(X, §)(®C)).

The dual of the complexified spinor bundle $* — X provides a Hilbert Cp(X, C1(X))-
module (Co(X, 5*)(®C?), ¢*(®ec1), ¢* (7)(®6)) such that

Co(X)(®C1) = Keyx,01(x)) (Co(X, S*)(®C?)).

Define
i(k) = [Co(X, S)(®C?) ® H;, 1(®1) ® T, $(7)(®B) ® a].

Then i(k) € KK(Co(X, CI(X)), Co(X)(®C1)). Define
i(k°P) = [Co(X, S*)(®C?) ® H;,1(®1) ® T, ¢*(7)(®B) ® al.
Then i(x%P) € KK (Co(X)(®C1), Co(X, CL(X))). The relations
(&) ®cy(x,ci(x)) HK) = icy(x)(@C1)

and
(k) ®cy(x)®er) UKT) = loy(x,c1(x)

follow. As in the last example, the strong Morita equivalence provides a KK-
equivalence between KK (Co(X)(®C1),C) and KK (Cyh(X, Cl(X)),C).

Poincaré Duality on a Riemannian spin¢ manifold

Let X be a n-dimensional compact Riemannian sping manifold. Following Ex-
ample 2.4.4 we can define, since X is a compact Riemannian manifold, the fun-
damental class

[d] = [(L*(M, A* X), Fy,Ue)] € KK(C(X) ® C(X, Cl(X)), C).
We have the isomorphism

®c(x)ld] : KK(C, C(X)) — KK(C(X,Cl(X)),C)
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from Theorem 2.4.6. A sping structure is a strong Morita equivalence C(X) ~ s
C(X,Cl(X)) when n is even and C(X) ® C; ~p C(X,ClX)) when n is odd.
The KK-equivalence above provides the isomorphism

i(k°P) Rcx,c1x)) - : KK(C(X,Cl(X)),C) — KK(C(X)(®C1),C).
Hence, if n is even the class
p=i(kP) ®c(x,cix)) [d] € KK(C(X) ® C(X),C) =2 K°(C(X))

provides the isomorphism,

Ko(C(X)) b KK(C(X,01(X)),0)

N i(sP)

#  KK(C(X),0) = K°(C(X)),
in terms of the intersection product,

Baxym : Ko(C(X)) = K°(C(X)).
Similarly there is a triangle showing the isomorphism Qcx)k + K1(C(X)) —
Kl(C(X)).
When n is odd, then
b = i(5) @cx,aicny ) € KK(C(X) © O(X) © €, ) = K(C(X))

provides the isomorphism

K(C(x)  KK(O(X,C1x)),0)

N (k)

b KK(C(X)®(C,C) = KL{C(X)),
in terms of the intersection product,

®cx)b : Ko(C(X)) = KH(C(X)).
Similarly there is a triangle showing the isomorphism Qcxyp = K1(C(X)) —
K%C(Xx)).
Hence Poincaré duality on the compact Riemannian manifold X descends to the
usual cap product statement in K-theory through the Morita equivaleuce given
by the spin¢ structure. Note that the class u = i(k°P) ®c(x,cix)) ] is called
the K-orientation (or sometimes called the fundamental class) of the Riemannian
spinc manifold X. The K-orientation is also known to be the homotopy class of
the Fredholm module (L%(X, S), Fp, ¢(v)),
[D] = [(L2(X7 S)a FD; ¢(’y))]a

where D is the Dirac operator on the complexified spinor bundle § — X and
Fp = D(1 + D?)~'/2 [ugR, Definition 11.2.10]). Explicitly, the link between the
fundamental class and the K-orientation is the relations

(k) ®c(x)(ecy) [D] = [d]
(k) ®c(a,cix)) [d] = [D).

97
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2.4.4 Fundamental Class of a Riemannian Representation

A. Connes, in the foundation paper [C4], considered Poincaré Duality an essential
indicator of smooth manifold structure. To generalise the statement of Poincaré Du-
ality to non-commutative geometry involves generalising the notion of a fundamental
class.

Graded Representations and Unbounded Kasparov Bimodules

Definition 2.4.10 Let A be a C*-algebra. Let (H,w, D) be a base representation of
a C*-algebra A with a selfadjoint operator T' € B(H) such that T? = 1, {T',D} =0,
and [I',w(a)] = 0. Then (H,nw,D,T") is called a graded base representation of A.

Let Fp := f(D) where f(z) = z(1 4+ 2?)~1/2.

Theorem 2.4.11 Let (H,m,D,T) be a graded Cl-representation of a C*-algebra A
such that w(a)(D — \)™! € K(H) for alla € A and A € C\R. Then (H,Fp,T') is a
Kasparov A-C-bimodule.

Proof See [BJ] or [HgR, 10.9.15]. a

Corollary 2.4.12 Let (H,n,D,T') be a graded Cc"™ -representation of a C*-algebra
A. Then (H, Fp,T) is a Kasparov A-C-bimodule.

Proof Immediate from Definition 1.9.1, Theorem A.1.1 of the appendix and Theo-
rem 2.4.11. O

The graded C7’*°-representation (H,w,D,T') of the C*-algebra A is an example
of an unbounded Kasparov A-C-bimodule [BJ].

The Index Algebra

Let (H,,m,, D) be a Riemannian representation of a C*-algebra A with associated
standard form Riem(A4, p) = (Qp(Ax,)", Hy, Jp, Ap, Pp).

Definition 2.4.13 Let (H,,7,,D,T") be a graded Riemannian representation of a
C*-algebra A and Riem(A, p) be the standard form as above. Then I is called a real
grading element if [I', J,] = 0.

Theorem 2.4.14 Let (H,,7,, D) be a Riemannian representation of a C*-algebra
A. Then the real graded elements associated to this representation, if they exist, are
parameterised by the group of unitaries {U € U(Z(Q2p(Ax,))")|[D,U] = 0}.

Proof Let R=Qp(A,,)". LetI',I" be real grading elements. Consider the unitary
U =TI'. Then U € R’ such that [U,J,] = 0. Hence U € Z(R) by (iv) Theorem
1.6.1. That [D,U] = 0 is immediate from Definition 2.4.10. O

Define the opposite action of the von Neumann algebra Qp(Az,)” by

w?® = J,w*J,.
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Then (Qp(Ar,)")P = Qp(Ar,)" by the Tomita-Takesaki theorem. Hence (H,,m,) is
an )p(Ar,) ® Qp(Ar,)°P-C-bimodule using the representation

w @ w'? —» wwP,
A grading element I' implements the parity automorphism
adp(w) = e(w).

The opposite grading element I'; := J,I'J, implements the parity automorphism on
the opposite representation
adr, (wP) = e(w)°P.

A real grading element I' = I'; implements the parity automorphism simultaneously
adp(wwP) = e(w)e(w)P

and hence allows (H,,m,,I') the structure of a graded Qp(Ar,) ® Qp(Ayx,)°P-C-
bimodule.

Definition 2.4.15 Let (H,, m,, D) be a Riemannian representation of a C*-algebra
A. Then we define the index algebra By, as the uniform closure of the set B, =
{wP € Qp(Ax, )P | I[D, w*]|| < oo}

Proposition 2.4.16 Let (H,,7,, D) be a Riemannian representation of a separable
C*-algebra A. Then the index algebra By, is a separable C*-subalgebra of the von
Neumann algebra Qp(Az,) that contains AN J,AJ,.

Proof Let {a;}{2; be the countable set of elements in A, that generate A. Then
Qp(Ar,) contains the set {a;,[D,a;]}$°; that generates C, the uniform closure of
Qp(Az,). Hence C is a separable C*-algebra and By, is a C*-subalgebra of the
separable C*-algebra C°P? = JC*J. As A,, N JpAr,Jp C By, then the norm closure
AN J,AJ, C By, 0

This implies By, is non-empty when A is unital.

Fundamental Class of a Riemannian representation

Theorem 2.4.17 Let (H,, 7,, D) be a n-dimensional Riemannian representation of

a C* algebra A with non-cmpty index algebra and real grading element T'. Then
(Hp, Fp,T) is an A® By,-C-Kasparov bimodule.

Proof It is immediate that (H,,m,,I') is a graded A ® Br,-C-C*-bimodule. Since
[D, mp(a)wP] is bounded for the norm dense set a ® wP € Ay, ® By, it follows from
[BJ] that 7,(a)w®(D — A)~ = wPr,(a)(D — N\)"! € K(H) for alla € A, A € C\ R
and w’® € By, that wPn(a)(1 — F3),[Fp,m(a)w’®] € K(H). To transfer to the
graded commutator requires a trivial adjustment to the opposite representation. Let
WP := wPT define the right adjusted opposite representation for w € Qp(A4)”. Then
adr (0°P) = T'wP = ¢(w°P)T = e(lv)Op. Hence the right adjusted opposite representa-
tion is still a graded representation such that wPr(a)(1— F3) = wPI'r(a)(1 - F%) =
wn(a)(1-F3)T € K(H) and [Fp, 7(a)W], = [Fp,n(a)wPT), = [Fp,m(a)wP]l" €
K(H). O
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By the notation [(H, Fp,I'})] we shall mean the K-homology class of the Kasparov
A ® By,-C-bimodule (H, Fp,T') in KK(A ® By,,C). The following definition shall
apply only to unital separable C*-algebras.

Definition 2.4.18 Let (H,,7,, D) be a n-dimensional Riemannian representation of
a unital separable C*-algebra A with real grading element I'. Then the class

A, :=[(H,, Fp,T)] € KK(A® B;,,C)
is called the fundamental class associated to this representation.

Remark 2.4.19 Let I', I” be real grading elements for the n-dimensional Riemannian
representation (Hp,7,, D) of a unital separable C*-algebra A. Then I' = UT" for a
central unitary such that [D, U] = 0 by Theorem 2.4.14. Hence [Fp,U] = 0 and there
exists a homotopy (H,, Fp,T) ~ (H,, Fp,I"). Hence A’ is independent of the real
grading element chosen.

Example 2.4.20 Riemannian Manifold

Let X be an n-dimensional compact Riemannian manifold. Let C(X) be the sep-
arable C*-algebra of continuous functions on X. Let (L2(X,A*X), m,d + d*, U,)
be the graded C'(X, Cl(X)) ® C(X, C1(X))°P-C-C*-bimodule studied in Theorem
2.3.4 and Theorem 1.7.21.

Theorem 2.4.21 Let X be a n-dimensional compact Riemannian manifold.
Then

(i) (L*(X,A*X),m,d+ d*,U,) is an n-dimensional Riemannian representa-
tion of the C*-algebra C(X) with real grading element U,

(ii) the indez algebra of this representation is
B, = C(X,Cl(X)),

(iii) the fundamental class A_y of this representation is the fundamental class
of the Riemannian manifold X

Ay = [d]a
(iv) the C*-algebras C(X) and C(X,ClX)) are Poincaré dual. In particular,
®c(x)r-1: KK(C,C(X)) - KK(C(X, Cl(X)),C)

s an isomorphism.

Proof (i) Immediate from Theorem 2.3.4 and Theorem 1.7.21. (ii) Let D =
d+d*. As m(f)°° = m.(f) = m(f) then [D,m(f)°Plw = m(df)(w) = df - w for
all f € C*®(X) and w € C%®(X,Cl(X)). Similarly [D, m(f)]°w = 7 (df )(w) =
w - df. Then

[D, [D, m(f)]Plw = D(w - df) — (Dw) - df.
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for w € C*°(X,Cl(X)). Working in a chart U with local tangent bundle ba-
sis {0;(x)}j=, and local cotangent bundle basis {dz;(z)}!, for z € U then
D = Yl dxi(z) - Vo). Hence D(w - df)(z) = (Dw)(z) - df (z) + 3, dzi(z) -
w(x) - V,(z)df (z) and

[D,[D, m(f)|Plw(z) = 32; dzi(z) - w(z) - Vo,(5)df ()
extends to a bounded operator (w, not df, is what we are acting upon). Then
[D, m(f)°P] and [D, [D, m;(f)]°P] are bounded for all f € C*°(X). Hence
C*(X,ClX))®? C By, C C(X,Cl(X))°P. By norm density of C*(X, Cl(X)) in
the C*-algebra C'(X, Cl(X)) the result follows.
(iii) follows from (ii) and (i)
(iv) the right adjusted right action, &, of the C*-algebra C(X, Cl(X)) is the
representation A. + A% used in Kasparov, [Ks2] Definition-lemma 4.2. Hence
Theorem 2.4.6 applies. o

2.5 Non-commutative Volume Form

Basic Definitions

Let A be a unital associative algebra (over C). We denote the k-fold algebraic tensor
product
Cr(A)=A0CAG...0A.
k

Let C — A be the canonical inclusion A — A1 for all A € C. Let A = coker{C — A}.
Define
Cr(A)=A4040...04.
k

We denote by (£2(A),d) the universal graded differential algebra of section 1.4. We
recall the A-bimodule Q!(A) with derivation § : A — Q'(A) has the following property
of universality. Let M be any A-bimodule with a derivation d5s : A — M. Then there
exists a unique element o € E4(Q(A4), M) such that 6y = od.

Let A be a unital commutative associative algebra. We denote Q% = A and by Q}
we denote the symmetric A-bimodule with derivation 64 : A — Q4 with the property
that for any symmetric A-bimodule M with derivation dp; : A — M there exists a
unique element o € E4(Q, M) such that 63; = 064 [Ma, Pg 180]. Define the exterior
algebra Q4 := A(Q}) with unique exterior derivative d4 : A*¥(QYL) — A%T1(QL)
extending 64 : A — Q. Then the complex (Q4,84) is called the complex of Kahler
de-Rham differential forms on the unital commutative associative algebra A.

2.5.1 Non-commutative De-Rham Complexes

Let A be a unital associative algebra and (£2(A),d) the universal graded differential
algebra of A. Define

[2(A4), Q(A)] := Sk>0[2(A), AA)k
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where
[2(4), Ak = D {wpwg — (—1)Pwywy | wp € DP(A),wy € QI(A)}.
ptq=k

Define
AQ(4) := Q(4)/[2(A4), 2(A)].

As 3([QA), Q(A4)])) C [Q(A),Q(A)] [sb, JL] the quotient derivative § : AFQ(A) —
AFH1QO(A) is well defined and we have the exact sequence of complexes [Sb, JL]

0 = ([2(4), Q(A)], 8) - (2(4),8) — (AQ(4),6) = 0.

The complex (A2(A), §) is called the complex of non-commutative de-Rham exterior
differential forms on A.

Remark 2.5.1 We remark on the distinction between the non-commutative exte-
rior differential forms in the sense of Connes’ non-commutative calculus® and non-
commutative de-Rham exterior differential forms as above. The complex (AQ(A), 9)
is a purely algebraic construction, independent of the representation theory of any
C*-envelope of A, and is a differential complex that is not a representation of Q(A)
in general [Sb, Pg 94].

The first two terms in the non-commutative de-Rham complex of a unital asso-
ciative algebra are: (1) The commutatisation or symmetrisation of A,

A°Q(A) = A/Com(A)

since

[Q(4), 2(A)]o = {[a,b]|a,b € A} = Com(A).
(2) The symmetric A-bimodule,
AQ(A) = Q(A)/{ad(b) — s(b)a|a,b € A}

since

[Q(A), A(A))1 = {ab(b) — 5(b)ala,b € A}.

The symmetric A-bimodule A'Q(A) is viewed as the symmetrisation of Q!(A4) as an
A-bimodule.

Corollary 2.5.2 [II Remark 1.1.8, IT Consequence 1.1.13, Sb] Let A be a commuta-
tive unital associative algebra. Then

A=AQ(4) = QY

8Let (H,w, D) be a C'-representation of a unital C"-algebra B. Let A be any unital associative
subalgebra of A'. Then Connes, as in section 1.4, defines the differential representation (Ap(A4),dp)
of the universal differential algebra (£2(A),d). The differential representation (Ap(A4),dp) is also,
confusingly, called the exterior differential forms on A.



2.5. NON-COMMUTATIVE VOLUME FORM 103

and

Q1 (A)/[A), UAL = A'Q(4) = 0},
however

QP(A)/[QA), AA)]2 = A*Q(A) # O
in general.

The complex of Kéhler de-Rham exterior differential forms can only be defined on
a commutative unital associative algebra. The consequence of Corollary 2.5.2 is that
the non-commutative de-Rham complex of exterior differential forms (AQ(A), §) over
a unital associative algebra A is not the appropriate generalisation of the complex
of Kahler de-Rham exterior differential forms. The search for the appropriate non-
commutative generalisation of the Kahler de-Rham exterior differential complex and
Kahler de-Rham cohomology led to cyclic homology and the situation as follows
[Sb, JL] which we outline in the next section,

(i) The Hochschild homology H,(A) of a unital associative algebra A is the non-
commutative generalisation of the Kidhler de-Rham complex of exterior differ-
ential forms,

(ii) The cohomology H*(A(A), ) of the complex of non-commutative de-Rham
differential forms is a component of the cyclic homology HC\(A) of a unital
associative algebra A and is the non-commutative generalisation of the Kahler
de-Rham cohomology.

2.5.2 Hochschild and Cyclic Homology
Let A be a unital associative algebra. Define the maps b: O 1(A) = Ck(A),

>
iy

bag®a1®...Qak) := » (—1)'ar®...0aiai41®...Qak+(—1) apao®a:1 ®. . .Qag_1,

@
Il
=)

and B : Ck+1(A) — Ck+2(A),

Blay®a1®...®a;):= S (-1)*106;8...0a, Qa0 ®...®a;i_1 +

b o(-1)*0,810011®...0a,®a ®...Q ai_1.

Then (Ci(A),b, B) is a mixed complex® [sb, 1.2.3, 1.2.4]. We define an associated
chain complex (Cx(A),dy) by

Ci(A) :=Cx(A)® Cr2(A)® Cr_y(A) @...
di(Cky Ck—2, Ck—4, - - -) == (beg, + Beg—g, bex—2 + Beg—_q,beg—g + Begs, - . ).

The Hochschild homology H.(A) of a unital associative algebra A is defined to be
the homology of the complex (Ci(A),b). The cyclic homology HC,(A) of a unital
associative algebra A is defined to be the homology of the complex (Cy(A4), dy).

®meaning b> = B? = bB + Bb = 0.
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An explicit relationship between Hochschild and cyclic homology can be derived
in terms of a long exact sequence as follows [C, JL, Sb]. We define the shift of chain
complexes

S+ (Ck(A),dx) — (Cx—2(A4),dx—2)
by projecting out the first direct summand
S:C(A) P Cr2(4) ®Cr-u(A)®... 5> Cr2(A)BCry(A) @ ...
We define the inclusion map of chain complexes
I: (Cr(A),b) = (Cx(A), dx)

by
I:Cr(A) > Cr(A), ctk 2 ctP000...

clearly with Ibcy = dilIc; for all chains ¢ € Ci(A). Immediately from the above
definitions of S and I we have the exact sequence of chain complexes

0= (C(A),b) 5 (Ch,di) > (Chz,di—2) = 0.

This exact sequence of chain complexes induces a long exact sequence in homology
where the connecting map is exactly the map induced in homology by B,

B: (Ck_z(A),dk_z) — (Ck—l(A)ab)

defined by
B:Cr_2(A) = Cr-1(A) , ch—2®ck—a4®... = Beg_o.

Theorem 2.5.3 [CN,JL,Sb] Let A be a unital associative algebra. Let H,(A) be the
Hochschild homology of A, HC.(A) be the cyclic homology of A and the maps I,S
and B be as above. Then there is a long exact sequence in homology

o o Hy(A) S HCWA) S HC_o(4) B Hy_1(A) > ...
where the connecting map is induced by B.
A corollary to the theorem is that the combination
Hy(4) 5 HOW(A) B Bin(4)
yields a cochain complex (H,(A), B). The resultant cohomology H*(H.(A), B) can

be seen to be a component of the reduced cyclic cohomology HC™4(A) as follows.
Let (Dg(A), b, B) be the mixed subcomplex defined by Di(A4) = {ao®a1®...Qay | a; =
1 some ¢ = 1,...,k} [Sb, [.2.5]. Define the quotient mixed complex

(Cx(4),b, B) := (Cx(A),b, B)/(Dx(A), b, B).
The map B : C(A) = Cki1(A) is simplified in the quotient to

k
B(a0®a1®...ak)=Z(—l)ikl®ai®...ak®ao®...®ai_1.
i=0
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Let C — A be the canonical inclusion A — A1 for all A € C. Then we have an induced
homomorphism of mixed complexes

C.(C) : - 0 = 0 = C
! 1 1 \ \:
C.(4) % Thd) » A4 — 4

Define the quotient mixed complex
(CE**(A),b, B) := (Cx(A),b, B)/(Ck(C), b, B).

Then C§*d(A) = A and Ci*4(A) = Cr(A) Yk > 1. The Hochschild homology HTed(A)
and the cyclic homology HCI( A) of the mixed complex (C5*4(A),b, B) are called the
reduced Hochschild homology and reduced cyclic homology of the unital associative
algebra A respectively.

Theorem 2.5.4 Let A be a unital associative algebra. Then there exists an inclusion
map
H(I) : H*(Hy(A), B) = HC(A)

such that Bo H(I) =0 for all k > 1.

Proof The Hochschild homology H,(A) is the homology of the complex (Cj(A), b)
[sb, I Prop 2.5.3]. Let Zy = {cx € Ck(A)|bck = 0,Bcy = bcgyo some cppg €
Q/H_Q(A)}/{mk € gk(A) | my = bmyy1} and By = {Bek_l € Cx(A) |bex_1 =0,e51 €
Ck_l(A)}/{mk € Ck(A) l mg = bmk+1}. Let M = {Ck € C,rced(A) |dkck = 0}/{mk €
Cred(A) |my, = dgpmps1}. Consider the map a; : Cx(A) — cred(A)

a1 :cg+mp = (—cpqo + Bmps1) ® (ck +my) 0D ... 50

for k > 1. Then dy 001 (cx +my) = (—begta + Be +bBmy1y + Bmy,) @ (bey, + bmy) @
06...00 = (bB+Bb)mp11®0#...40 = 0. And o (ck+mg) = —cr12Dcr®0D...H0+
Bmyp1@©bmp1©000...00 = —c4 20Dk ®0D... 00+ di13(0®mp11 606...40). Hence
the map oy : Zy — My, given by ay : [c] = [—ck12Pcr DOD ... 0] is well defined.
Now, suppose ¢, = Beg_1 for k > 2 such that beg_q = 0. Then Bey = B2e,_1 =0
and ay : [Bek_l] — [0 Bep_19000...8 0] =[dk13(0D 0B e 190D ... D 0)] = 0.
When k =1 then ¢; = Ba = (1,[a]) = B[a] and [Ba] — [d3(0,0, [a])] = 0. Hence the
map g : Zy/By — My is well defined for k > 1. The combination H(I) := Sas :
Zy /By, — My for k > 1 is injective as Sag[cg] = 0 if and only if [cg] = 0. Clearly
BH(I) = BSas = 0 by Theorem 2.5.3. o

Hence the cohomology H*(H,(A), B) is a component of ker B C HC™4(A). The
final result that motivates Hochschild and cyclic homology is the identification of
ker B. Let § be the map induced by the isomorphisms

O : QF(A) = Cr(A)

given by 0y : apda;...0ar — ap®a1 Q... a.
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Theorem 2.5.5 [Sb, IT Thereom 1.1.18] Let A be a unital associative algebra. Then
there exists an exact sequence

0 — H*(AQ(A),8) & HORA(4) B H# (4) » 0
forall k> 1.

Example 2.5.6 Kihler De-Rham Differential Forms

Let A be a commutative unital associative algebra. Let (€24,04) be the cochain
complex of Kahler de-Rham exterior differential forms on A and Hpj(4) :=
H*(Q4,04) the Kahler de-Rham cohomology of A. Define the map

ﬂ:-é-k(A)—}QA, a®a, ®...0ar — agday A ... Adag.

Theorem 2.5.7 [Sb, IT Complement 1.2.14] Let A be a commutative unital as-
sociative algebra. Then we have the epimorphism of cochain complezes

u: (H*(A)aB) - (QAa(SA)
induced by the map fi above.

Let A be a commutative unital associative algebra. Then A is called C-smooth
if for every prime ideal P of A the local ring Ap is formally smooth over C.

Theorem 2.5.8 [Sb, II Corollary 1.2.17] Let A be a commutative unital asso-
ciative algebra. Then the following statements are equivalent.

(i) p:HCR(A) — Qk/dOF @ HE2(A) @ HEZY(A) @... s an isomorphism
forallk >0,

(ii) p: Hg(A) — Q% is an isomorphism for all k > 0,
(iii) H.(A) is an esterior algebra over Hq(A),
(iv) A is C-smooth.

Corollary 2.5.9 Let A be a commutative unital associative algebra that is a
C-smooth. Then H¥p(A) = H*(H,(A),B) = H*(AQ(A),9).

Proof By Theorem 2.5.5 and Theorem 2.5.8 we have
H*(AQ(A),6) =ker B = p~ H* (04, 64) = p~ ' uH*(Hy(4), B).
0

Theorem 2.5.10 Let X be an n-dimensional compact Riemannian manifold.
Then we have the isomorphism of cochain complezes

p (Ho(C®(X)), B) — (A" X, d)
where d is the exterior derivative and the isomorphism of cohomologies

p: H'(H(C®(X)), B) = Hpr(X)
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where H{yp (X) is the de-Rham cohomology of the compact Riemannian manifold
X.

Proof The result is immediate from Theorem 2.5.8, Corollary 2.5.9 and the
definition of the Kahler de-Rham complex as C*°(X) is C-smooth. o

As a result of Example 2.5.6 the Hochschild homology H,(A) of a unital associative
algebra A is considered the space of non-commutative Kahler de-Rham exterior dif-
ferential forms on A and the cohomology H*(AQ(A),§) the non-commutative Kahler
de-Rham cohomology of A.

2.5.3 Volume Form

Let (H,, T, D) be a n-dimensional Riemannian representation of a unital C*-algebra
A. Let Ay, be the smooth unital pre-C*-algebra of A. The results of Section 2.5.2
indicate the Hochschild cycles Z,(A,) are the non-commutative generalisation of the
highest power smooth exterior differential forms. The Hochschild cycles Z,(A,,) are
hence the candidates for non-commutative complex volume forms.

Define the linear representation 7, := rpf; " : Cy (Ar,) — Q% (Ar,). Explicitly
To{ao ® a1 ® ... ® ag) = my(ao)[D, my(a1)] . .. [D, mp(ag)]
for all £ > 1. Define

(a0 ®a1 ®@...Qa)? = J, (ﬂ'p(ao)[D, mp(a1)]...[D, Wp(ak)])*Jp.

Definition 2.5.11 Let (H,,m,, D) be an n-dimensional Riemannian representation
of a unital C*-algebra A. Then we call (H,,7,, D) an oriented n-dimensional Rie-
mannian representation of the unital C*-algebra A if there exists a Hochschild cycle
¢ € Zyn(Ar,) such that

(i) my(c) is a self-adjoint unitary,
(ii) [m,(c),mp(a)] =0 for alla € A, and
(iii) Dmy(c) = (=1)"1m,(c)D.
The element my(c) € Q}(Ar,) is called a (non-commutative) volume form for this

representation.

Proposition 2.5.12 Let (H,,m,, D) be a Riemannian representation of a C*-algebra
A. Then there exist a selfadjoint unitary T € U(H,) such that e(w) = T'wl' for all
w € Qp(Ay,)" and [T, J,] = 0.

Proof See Lemma 2.5.18 below. O

Let Parity(p, 4, D) denote the non-empty set of selfadjoint unitaries I' € U(H,)
as in Proposition 2.5.12. Recall the two-dimensional Clifford algebra C is abstractly
defined by

Cr={M+hX|A, A2 €CA2 =1}

with a Zp-grading 8 : Ay + hA2 — A1 — hAg. Compare the following result with
Theorem 2.3.1.
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Theorem 2.5.13 (Riemannian Orientations and Gradings)

Let (Hp,mp, D) be an oriented n-dimensional Riemannian representation of a unital
C*-algebra A with volume form m,(c). Let T' € Parity(p, A, D). Then, when n is
even

(i) my(c) is a grading element for this Riemannian representation,
(ii)
I € Parity(p, 4, D) = { Vr(e)m,(c)® |V? =1,V € Z(Qp(Ar,))"},

(iii) adr = € 1s trivial on the centre Z(Qp(Ax,))",
and when n is odd

(iv) my(c) is a central element of Qp(Ar,)", hence not a grading element for this
Riemannian representation,

(v)
adr(my(c)) = T'mp(c)T" = —my(c),

hence adr = € is not trivial on the centre Z(Qp(Ax,))",

(vi) the Hilbert space H, is a graded A ® C1-C-C*-bimodule. In particular we
have the representation A ® Cy — Qp(w,(A))" given by,

a; — my(a;) , h—= mp(c) , B> adp

The proof of Theorem 2.5.13 shall be comprised of the lemmas and propositions
of Section 2.5.4. That section collects related results on orientations and grading as
well as provide the proof.

Theorem 2.5.14 Let (H,,m,, D) be an oriented n-dimensional Riemannian repre-
sentation of a unital C*-algebra A with volume form w,(c). Then the following sets
are equivalent:

(i) the set of T' € Parity(p, A, D) such that [D?,T] =0,
(ii) the set of T' € Parity(p, A, D) such that {D,I'} = 0.

Proof (ii) = (i) is immediate. (i) = (ii) Let I € Parity(p, A, D). Hence [T, m,(a)] =
0 and {I,[D,m,(a)]} = 0 for all a € A,,. The relation [[',|D[} = 0 follows from
(T|D|T)? = T'|D|T = TD?T = D? = |D|? and uniqueness of the positive square root
of a positive operator. Hence T' preserves the dense domains DomD™ = Dom|D|™
for m € N and the selfadjoint operator {D,I'} has dense domain. Let £ € N, DomD™.
Then [{D, T}, m(a))é = {T, [D, mp(a)]}¢ = 0 and {D, I}, [D, ()]l = [IT, D%}, my(a)]€ =
0 for all @ € A,,. Using density of the subset Ny DomD™ C H,, [{D,T'},m,(a)] =
0 = [{D,T},[D,m,(a)]] for all a € A,,. Hence [{D,I'},m,(c)] = 0. However,
{{D,T'},m,(c)} = 0 as I'n(c) = (=1)"n(c)T" and D7(c) = (=1)""ln(c)D. Hence
{D,T} =0. O

Definition 2.5.15 A Riemannian representation (H,,7,, D) of a C*-algebra A is
called a real Riemannian representation if there exists I' € Parity(p, A, D) such that
[D2,T] = 0.
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Corollary 2.5.16 Let (H,, m,, D) be an oriented n-dimensional Riemannian repre-
sentation of a unital C*-algebra A. Then there exists a real grading element T for this
Riemannian representation if and only if the Riemannian representation is real.

Proof Immediate from Theorem 2.5.14 and Definition 2.5.15. O

Remark 2.5.17 Let (H),, 7,, D) be a real oriented n-dimensional Riemannian repre-
sentation of a unital C*-algebra A. Then this representation has a fundamental class
A-1=[(H,,Fp,T')] € KK(A® By,,C) where By, is the index algebra.

2.5.4 Riemannian Orientations and Gradings

Let (H,,m,, D) be a Riemannian representation of C*-algebra A. Let Riem(4, p) =
(Qp(Ag,)", Hp, J,, Ay, P,) be the associated standard form. Let R = Qp (Ar,)" and
tp(R,) be the dense image of the p-finite elements R, in H,.

Lemma 2.5.18 There exists a selfadjoint unitary ' € U(H,) such that e(w) = TwT
for all w € R and [I,J,] = 0. Moreover, if p is a trace, there exists ' such that
Lip(r) = tp(e(r)) for all r € R,

Proof Let (R, H,,J,,A,, P,) and (e(R), H,, J,, A, P') be two standard forms. Let
I' be the unitary given by Theorem 1.6.4. Existence follows from setting A’ = A,
and P' = P,.

Let p be a trace. Define 'vy(r) := 1,(e(r)) for all r € R,. By density of ¢,(R)
the linear operator I' extends to a selfadjoint unitary operator on H,. Moreover
Twliy(r) = Tip(we(r)) = e(w)iy(r) for all w € R,r € R,. Hence T' implements the
parity automorphism on R. As A, =1 then P, = 1,(R}) by Theorem 1.6.2. Hence
JpLep(r*r) = Jpiplc(r)*c(r)) = tp(c(r)*c(r)) = Lip(r*r) = TJpip(r*r) for allr € I,
by Theorem 1.6.1 (vi). Then [J,,I'|P, = 0 and [J,,I']H, = 0 by linearity. Hence
[/, T]=0. 0

Lemma 2.5.19 Let (Hp,m,, D) be an oriented odd-dimensional Riemannian repre-
sentation of a unital C*-algebra A. Then each volume form n(c) belongs to Z(Qp(A)).

Proof Follows as [D,m(c)] = 0 = [n(c),n(a)] for all a € A. O

Define the *-algebra closed under the holomorphic functional calculus, Q%°"(A,,) =
{w € Qp(Ag,) | e(w) = w}.

Proposition 2.5.20 Let (H,,n,, D) be an oriented n-dimensional Riemannian rep-
resentation of a unital C*-algebra A.

(i) The space of volume forms for this representation is parameterised by a
subset of the group

{U € U(Z(Q5*(Ar,))) |U* = 1,[D,U] = 0}.

(i) The volume form for this representation is unique if one of the following
conditions hold
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a) Z(Q9*"(Ar,)) contains no proper projections,

b) Prim(Q§"(Ar,)) is connected,

c) Z(QP*(Ar,)) = Z(Ar,) and Z(A) contains no proper projections,
d) Z(QF*(Ax,)) = Z(Ar,) and Prim(A) is connected,

e) Z(QF*"(Ar,))" = Z(A)" and (H,,m,, D) is base irreducible.

o~ TN e TN

Proof (i) Let R = Qp(Ar,)". Let ¢,c’ € Z,(Ar,) such that m,(c), 7p(c’) are volume
forms. Let U = 7,(c)m,(c’) € Q3'(Ax,). Then U*U = UU* = 1 is unitary. Moreover,
[D,U] = [rp(a),U] =0 for all a € A. Hence U € R' and U € U(Z(R)). This implies
[U,m,(c)] = 0 and hence [m,(c'),m,(c)] = 0. Then U? = m,(c)m,(c)my(c)mp(c)) = 1.
So U is a selfadjoint unitary.

(ii) There is a bijective correspondence between self-adjoint unitaries U and pro-
jections P via the formula U = 1 — 2P. Since [D,U] = 0 & [D, P] = 0 then the
statements imply the group in (i) is the trivial group {1}. This follows from the proof
of Theorem 1.2.10 and Definition 1.5.17. o

Note that Z(Q3*(Ar,)) = Z(82p(Ar,)) under the hypothesis of Proposition
2.5.20 with n even. This follows from Theorem 2.5.13(iii).

Lemma 2.5.21 Let (H,,n,, D) be an oriented even-dimensional Riemannian repre-
sentation of a unital C*-algebra A. Then I is a selfadjoint unitary such as in Lemma
2.5.18 if and only if ' = Vr(c)n(c)°P for some selfadjoint unitary V € U(Z(R)"). If
p is a trace, then I'up(r) = 1,(e(r)) for all 7 € R, if and only if T' = m(c)m(c)°P.

Proof Let I’ be as in Lemma 2.5.18. Consider U = I'n(¢). Then U* = n(c)I' =
I'n(c) = U. Hence U is a selfadjoint unitary. Moreover [U, m,(a)] = 0 and [U, [D, m,(a)]] =
0 for all @ € A;,. Hence U € R'. Then we have two selfadjoint unitaries Jm(c)J
and U in R'. Let V = Jr(c)JU € R’ One checks that [U, Jr(c)J] = 0. Hence
V2 = 1. Now JVJ = w(c)T'Jn(c)J = UJn(c)J = V. Hence V € Z(R)". Fi-
nally I' = Vr(c)m(c)°P. Conversely, let V € Z(R)" such that V2 = 1. Since
[r(c), Jm(c)J] = 0 then T' = Vr(c)m(c)°P is a selfadjoint unitary that implements the
parity automorphism on R. Moreover [J,T] =0 as [J,V] = 0 and J(7(c)Jn(c)J) =
Jr(c)Jn(c)J = (w(c)Jm(c)J)J.

Let p be a trace and T'tp(r) = ¢,(e(r)). Consider Jr(c)J —'n(c) € R'. In
particular (Jr(c)J —T'7(c))ep(r) = Jr(c)e(r*) —m(c)Tep(r) = (rm(c)) —m(c)e,(e(r)) =
n(c)(t(e(r)) — t(e(r))) = 0 for all r € R,. Hence n(c)Jm(c)J — T = 0. The reverse
implication is obvious. o

2.6 Connes’ Axioms of Non-commutative Geometry

We recall a faithful state p on a von Neumann algebra R is a faithful normal semifinite
weight such that p(1) = 1.
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2.6.1 Structure of Riemannian Representations

Let (H,,m,, D) be a Riemannian representation of a unital C*-algebra A with asso-
ciated standard form Riem(4, p) = (Qp(Ax,)", Hp, J,, Ap, Pp), see Definition 2.3.5.
Let p be a faithful state and v, : Qp(Ax,)" — H, the injection given by the GNS
construction.

Define
Ap = 1,(Qp (»Aqrp))

which is a dense subset of H,. We recall the results of Section 1.4.1. We have a
concrete representation

(2p(Ar,),0p) : (2(Ar,), ) — B(L*(A,))
and a graded differential representation
(Ap(Ar,),0D) : ((Ar,),6) = A,

of the universal differential algebra. The unital *-algebra Qp(Ay,) is naturally a
Qp(Ar,) ® Qp(As,)°P-C*-bimodule, and hence an A,, ® Az>-bimodule, by left and
right multiplication. This structure is transferred faithfully to the set A, by the
representations 7, and 7,° where

wP = Jow*J,

for w € Qp(Ar,)". There exists a selfadjoint unitary parity grading T’ by Proposition
2.5.12 that grades A, by parity of differential forms and adr implements the auto-
morphism of parity of differential forms on Qp(Ay,). This structure generalises the
situation on a Riemannian manifold as in Theorem 2.3.3 and Theorem 2.3.4.

Let II7® — Nyp>1Dom|D|™. These elements are considered the smooth elements
of the Hilbert space H,. A Riemannian representation is a C°-representation, see
Definition 1.4.8, hence

Qp(Ar,) s HY® = H®.

By the GNS construction
QD(.A,,rp) 5 Ap — Ap.

There is no reason in gencral why A, C H° and hence why A, are non-commutative
smooth exterior differential forms.

Remark 2.6.1 As p is a faithful state the vector ,(1) is a cyclic and separating
vector for 2p(Ar,)". A necessary and sufficient condition for A, C Hg® is 1,(1) €
NymDomD™.

We will assume A, = Hp®. We recall from section 1.4.2 the locally convex topology
Sp generated by the seminorms p,,.

Proposition 2.6.2 Let (H,, 7y, D) be a Riemannian representation of a C*-algebra
A such that p is a faithful state and A, = HY. Then

Qp(Ar,) ={we QD(-AWP)” | pm(w) < 0o,m € N}
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and hence is a smooth *-algebra in the locally convex topology Sp.

Proof Let R= Qp(As,). Let T € R" such that p,(T) < oo for all m € N. Then
Tip(1) € NpDom|D|™ by Proposition B.2. Hence Tt,(1) = 1p(r) = re,(1) for some
r € R. Then T' = r as 1,(1) is a separating and cyclic vector on R". O

The space A, is completely generalised as a space of non-commutative smooth sec-
tions of the Hermitian non-commutative vector bundle of non-commutative exterior
differential forms when we assume the right A, -module A, is finitely generated and
projective, see Definition 2.1.4. We can define an A, -valued Hermitian structure

(5)p i Ay x Ay = A,
by the equality [v2, 11.3],

p((tp(w1), tp(w2)),) 1= plwiws)

for w,wy € Qp(Ay,). Through the isomorphism ¢, : 2p(As,) — A, the right
Ar,-module Qp(Az,) is finitely generated and projective with Hermitian structure
(w1, w2) = (p(wr), Lp(w2)),-

Let the Riemannian representation (H,,m,, D) of the unital C*-algebra A be n-
dimensional. Let D, be the set of dilation and translation invariant states on £°°.
Then a non-commutative integral 7, € A* is given by 7,(a) := Try(w(a)fn(D))
where fn(z) = (1 + 22)"™2 and w € D;, see Section 1.7.4. Assume that p provides
the measure class of a non-commutative integral. In mathematics, p = 7, in A* for
some w € D;, see section 1.6.2. Then the inner product on the GNS Hilbert space
H, is identified on the dense subspace A, as

(m,m) = Tw((m,nz)p dp,m)

where d, -, is the positive invertible Radon-Nikodym derivative (p : 7,) of Corol-
lary 1.6.7 and n; = ¢,(wy) € tp(Qp(Ag,)) for i = 1,2. The Hilbert space H,
is completely generalised as a space of non-commutative L2-sections of the Hermi-
tian non-commutative vector bundle of non-commutative exterior differential forms
H, = L?(A,,7,) with the assumption p = 7, in A* for some w € D;.

Compare the paragraphs above to the structure of a Riemannian manifold in
Section 1.3.6 (i) and (ii).

Let m,(c) be a volume form for a real n-dimensional Riemannian representation
(Hp, 7y, D) of the separable unital C*-algebra A, see Definition 2.5.11 and Definition
2.5.15. Then we recall there exists a non-empty separable C*-subalgebra By, of the
commutant p(Ay,)’ and a real grading element T such that [(H),, Fp,T')] € KK(A®
Br,,C), see Proposition 2.4.6 and Theorem 2.5.7. We recall that the intersection
product ® 4 induces a group homomorphism

- ®a ((Hp, Fp,T)] : KK(C, A) = KK(B,,,C),

see section 2.4.1 and 2.4.2.
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2.6.2 The Axioms of Riemannian Geometry

The following axioms, derived from those detailed by Connes in [C3] [C4], were put
forward as determining the structure of (compact) Riemannian differential geometry.

Basic Definitions

Let A be a unital associative *-algebra. Then A is a C*-algebra if it is a Banach
*-algebra with norm || - || that satisfies ||a*a|| = ||al|® for all @ € A, see the preamble
to section 1.2. A C*-algebra A is called separable if it admits a countable basis. Let
(H,,m,, D) be a real n-dimensional Riemannian representation of a separable unital
C*-algebra A, see Definition 2.3.5. A Riemannian representation is called irreducible
if it is base irreducible in the sense of Definition 1.5.7. Let Ay, be the Frechet pre-C*-
algebra of smooth elements, see Proposition 1.4.9. When p is a faithful state let A,
tpy p(Ar,), H3®, T, Ds, my(c), By, and ®4 be as described in section 2.6.1 above.

The Axioms of Compact Riemannian Geometry

Let A be a unital associative *-algebra.

R1. Axiom of Second Countable Metrisable Compact Topology
The unital *-algebra A is a separable C*-algebra.

R2. Axiom of Riemannian Structure

There exists an irreducible real Riemannian representation (H),m,, D) of A
such that p is a faithful state, and

R3. Axiom of Symmetry
The centre 7,(Z(A)) belongs to the centre Z(Qp(Ax,))".

R4. Axiom of Finiteness and Smoothness
The right Ay, -module A, := 1,(Q2p(Ay,)) is finite projective and A, = Hy°.

R5. Axiom of Absolute Continuity

The Riemannian representation is n-dimensional and there exists w € D, such
that p = 7, in A*.

R6. Axiom of Orientation
There exists a Hochschild cycle ¢ € Z,(Ar,) such that m,(c) is a volume form.

R7. Axiom of Poincaré Duality
A and the index algebra B;, are Poincaré dual. In particular, the map

- ®a [(Hp, Fp,T)] : KK(C, A) — KK(B;,,C),
is a group isomorphism.

Riemannian Geometries and Symmetry

The axioms constitute a formulation which at no point requires commutivity of the
*-algebra, A. The purpose of the axioms is this: a commutative unital *-algebra A
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should satisfy the axioms of compact Riemannian geometry if and only if A = C(X)
where X is a compact Riemannian manifold!°.

Definition 2.6.3 Let A be a unital *-algebra that satisfies the azioms R1, R2, RS,
R4, R5, R6 and R7. We call

(i) the unital *-algebra A a unital Connes-Riemann- or CR-algebra,

(ii) the information (A, Hp, 7y, D,c)r a Riemannian geometry associated to the
CR-algebra A,

(iii) the information PS(A) Ly 4 ker Prim(A) a compact Riemannian manifold.

Remark 2.6.4 A Riemannian geometry (A, H,,7,, D,c)r has an associated stan-
dard form

Riem(4,p) = (QD(A’IFP)“, Hy,, Jy, A;o”Pp)

by the Tomita-Takesaki theory.

Let R be a von Neumann algebra. Then A C Z(R) implies A is commutative but the
converse is false. ‘

Proposition 2.6.5 Let R be a von Neumann algebra. Then the following statements
are equivalent

(i) AC Z(R) < A is a commutative *-subalgebra of R,

(ii) R is commutative.

Proof (ii) = (i) is immediate. (i) = (ii) Let r € R. Then the C*-algebra generated
by 7, C*(r), is a commutative *-subalgebra. Hence C*(r) C Z(R) and r € Z(R).
Then Z(R) = R. a

This demonstrates that the axiom of symmetry is not a tautology. The next
result demonstrates the necessity of the axiom of symmetry. Let Hy(A) denote the
k*h Hochschild homology group of a unital associative algebra A.

Proposition 2.6.6 Let (A, H,,m,, D,c)r be a Riemannian geometry. Then the fol-
lowing statements are equivalent

(i) 7(4) C Z(Qp(4r,))",
(ii) the maps
mp: Ho(Ar,) = Qb (Axr,)

10We revisit the opening discussion of this chapter. Compare the statement: a commutative unital
*_algebra A should satisfy the axioms of compact Riemannian geometry if and only if A = C(X)
where X is a compact Riemannian manifold; which, with the terminology of definition 2.6.3, is stated:
a commutative unital *-algebra A is a C'R-algebra if and only if A = C(X) where X is a compact
Riemannian manifold; to the statement: a commutative unital *-algebra A is a C*-algebra if and
only if A = C(X) where X is a compact Hausdorff space; and the statement: a commutative unital
*_algebra A is a von Neumann algebra if and only if A = L* (M, u) where M is a measure space and
1 a finite regular Borel measure on M.
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T+ Hi(Ar,) = Qb (Anr,)

exist and are isomorphisms.

Proof Let B be a unital associative algebra. The homology group Hy(B) =
B/Com(B). Then B = Hy(B) iff B is commutative. Let Z; = {a®b|a,b € B, [a,b] =
0}. Then Z; = Cy(B) iff B is commutative. Let B be commutative. Let I; =
{bob1®b2—b0®b1b2+b2bo®b1 | by, b1, by € B}. Then H;(B) = Cl(B)/Il. Let B = Aqrp
and 7, = 7. The linear map « : C1(B) — QL,(B) given by n(a ®b) = m(a)[D, n(b)] is
an isomorphism. This follows as the Riemannian representation is irreducible and = is
faithful representation of B. Hence 7 : H1(B) — Q},(B) exists and is an isomorphism
iff w(I1) = {0}. Consider 7(boby ® by — by ® b1ba + baby ® b1) = 7(bo)7(b1)[D, w(ba)] —
m{bo)(D, w(b1 ) (b)) + 7(52)m(b0)[D, (b)) = m(bo) (w(62)[ D, w(b2)]~ [D, m{bu)l (b))
Hence n(I;) = {0} iff n(a)[D, 7(b)] = [D, 7(b)]n(a) for all a,b € B.

In summary B = Hy(B) iff B is commutative and when B is commutative 7 :
Hy(B) — 0%,(B) exists and is an isomorphism iff 7(a)[D, 7(b)] = [D, 7(b)]r(a) for all
a,b € B.

(i) = (ii) The hypothesis implies B is commutative and 7 (a)[D, 7 (b)] = [D, 7(b)]7(a)
for all a,b € B.

(ii) = (i) The hypotheses imply B is commutative and «(a)[D, n(b)] = [D, 7 (b)]7(a)
for all a,b € B. Hence m(a)w = wmn(a) for all @ € B and w € Qp(B). Hence
n(B) € Z(2p(B))". The result follows as B is norm dense in A. O

Remark 2.6.7 The term symmetry comes from the fact
QlZ(.A,.-p) = Hl(Z(Avrp)) = QID(Z(AWP))

is the universal symmetric Z (A, )-bimodule with a derivation 6 : Z(A,,) — le( Ar):
p

Sping Geometries

Let C; denote the two-dimensional Clifford algebra. We recall section 2.3.5 and
Definition 2.3.8 of sping structure. This allows a definition of spingy geometries.

Definition 2.6.8 Let (A, Hp, 14, D, c)r be a Riemannian geometry of dimension n.
Then (A, Hy,mp, D,c)R is a Riemannian sping geometry if Ay, (®C1) ~um Qp(Ar,)
where (RC1) is added if n is odd.

2.6.3 Reconstruction Theorem

The following results demonstrate the sufficiency of the axioms. We recall that we use
the term compact Riemannian manifold to denote a metrisable, compact, connected,
orientated smooth manifold without boundary.

Theorem 2.6.9 Let (X, g) be an n-dimensional compact Riemannian manifold, C(X)
be the unital *-algebra of continuous functions on X, the essentially selfadjoint op-
erator d + d* : C®(X,A*X) - C®(X,A*X) be the signature operator and v €
C®(X,A™(X)) be the complex volume form. Then
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plw) 1= [ a,(1,0)(e) /Aoty s,

where qq is the metric, is a faithful state on the von Neumann algebra
L*(X,Cl(X)),

(i) (L%(X,A*X),m) is the faithful GNS representation of L>°(X,Cl(X))
associated to p where m is the left multiplication representation,

(iif) C(X) is a unital CR-algebra,
(iv) (C(X),L*(X,A\*X),n,d+d*,¥)R is a compact Riemannian geometry.

Proof (i) Theorem 1.7.21(iv). (ii) Theorem 1.7.21(iv),(v). (iii) (R1) As X is a
second countable metrisable compact space, C(X) is a separable unital C*-algebra.
(R2) Theorem 2.4.21, (ii) and (i) imply R2. Irreducibility follows from Proposition
2.6.2 and Proposition 1.1.14 as any central projection p € L (X) must lie in C®(X).
As X is connected by hypothesis C*°(X) has no projections. Reality follows as
the Laplacian A is an even differential operator, hence commutes with the parity
grading U.. (R3) It follows from Theorem 2.3.1 that Z(L*°(X,Cl(X))) = L*®(X)
when n is even or Z(L*°(X,Cl(X))) = L*°(X) ® C; when n is odd. (R4) Theorem
1.7.18 and Theorem 2.1.9. (R5) Theorem 1.7.21(ii) (R6) Theorem 2.5.10 implies v €
Zp(C*®°(X)). The selfadjoint properties and commutivity with C*°(X) are immediate
from Section 2.3.1. For the relation with d 4+ d*, see [LM]. (R7) Theorem 2.4.21. (iv)
Follows from the proof of (iii). m

We recall the spectrum X(A) of a commutative C*-algebra A from section 1.2.3
and Theorem 1.2.12.

Theorem 2.6.10 (Connes’ Reconstruction Theorem [C3])

Let A be a unital commutative C R-algebra with associated n-dimensional Riemannian
geometry (A, H,,m,, D,c)g. Then

(i) 2(A) is a compact n-dimensional Riemannian manifold with geodesic metric
dr($,9) = Slelg{|¢(a) — (@) I[D; mp(a)]|] < 1}
a

for ¢, € L(A), and
we have the identifications
(i) A=C(5(4)), Ar, = C*(X(4)) and Qp(Ar,) = C°(2(A), Cl(2(4))) act-
ing by left multiplication on the Hilbert space H, = L?(%(A), A*S(A)),
(iii) the selfadjoint operator D is given by d+d* + E where E is an operation by
one forms. When n is even (resp. odd) then E € C®(Z(A), Cl1(2(A))) (resp.
E = E; + JE}J where Ey, E, € C®(2(A), CIL(Z(4)))),

(iv) the Hochschild cycle c € Z,(Ay,) is the complez volume form ~ for T(A).

[[ (v) Let D(E) (resp. D(Ey, E;)) denote the space of selfadjoint operators given
by d + d* + E as in (ili) above. Let n > 2. Then WRes(|D|>*™™), where
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WRes denotes the Wodzicki residue, is a positive quadratic form on D(E) (resp.
D(E1,0)) with unique minimum D, = d + d*. In particular, for all w € Dy,

Tro(D2(1+ D2)™/2) = Wres(|Dy ") = —c(n/2) / R\/detgds
X
where R is the scalar curvature of 2(A) and

o(z) = 5z~ 1)@ T(@) ™. ]

Proof The proof of this theorem is a thesis in itself. The extension and proof of
Connes’ original formulation for spin geometry was undertaken in [Re, Re2]. We do
not attempt the proof here. a

We shall not discuss the Wodzicki residue here. Hence the brackets around [[(v)]]
to indicate this result is included for completeness and intended only for the specialist
reader.

Corollary 2.6.11 Let A be a unital C R-algebra. Then A is commutative if and only
if A= C(X) where X is a compact Riemannian manifold.

Proof Theorem 2.6.9 and Theorem 2.6.10. ]

Corollary 2.6.12 Let A be a unital CR-algebra that admits a Riemannian sping
geometry. Then A is commutative if and only if A = C(X) where X is a compact
Riemannian spingc manifold.

Proof Theorem 2.6.9, Theorem 2.6.10 and Definition 2.3.7. a

2.7 Symmetric Derivations and Riemannian Cycles

The theory of C*-algebras and von Neumann algebras has an abstract basis inde-
pendent of their concrete representation on Hilbert space!!. The relation between
abstract and concrete is the GNS construction, which is a function from the state
space of a C*-algebra or the pre-dual of a von Neumann algebra to concrete repre-
sentations.

The algebraic core of compact Riemannian structure is a Riemannian representa-
tion (H,,m,, D) of a unital C*-algebra A where p is a faithful state on a von Neumann
algebra R with A C R. The representation (H,,7,) is the GNS representation of R
associated to p but the selfadjoint operator D is concrete. It is natural to con-
sider the question of construction of a Riemannian representation of a C*-algebra
A from abstract considerations on a von Neumann algebra R that contains A as a
C*-subalgebra.

11 Abstract von Neumann algebras were studied under the title of W*-algebras by Sakai, [Sak2]
[Sak1].
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2.7.1 Symmetric Derivations

The study of derivations on von Neumann algebras is extensive [Sak1] [Kad] [BR]. The
relevance of the theory to our situation is the existence of a selfadjoint unbounded
operator on a concrete representation that spatially implements an unbounded deriva-
tion. This is detailed as follows.

Definition 2.7.1 (BR, 3.2.21, 3.2.54) (i) A symmetric derivation d of a C*-algebra
A with domain Domé C A is a linear operator § : Domé — A such that 6(a)* = §(a*)
and 6(ab) = 6(a)b+ ad(b) for all a,b € Domé.

(ii) A symmetric derivation § is spatially implemented by a symmetric operator
D on a Hilbert space H if there exists a representation m : A — B(H) such that
n(Domd)DomD C DomD and n(6(a)) = i[D,n(a)].

A symmetric derivation § : Domd — A is called bounded if there exists M < oo
such that ||6(a)|| < M]||a| for all a € Domé.

Theorem 2.7.2 (BR, 3.2.47) Let § be a bounded symmetric derivation of a von Neu-

mann algebra R such that Domd is norm dense in R. Then there exists a self-adjoint
operator D € R such that 6(r) = i[D,r] for all r € R.

Hence bounded symmetric derivations correspond to bounded spatial implementers.
A symmetric derivation § : Domd — R of a von Neumann algebra R is called o-weak
closed if r; — r and §(r;) — ¢ converge o-weakly in R implies 7 € Domd and
d(r) = t. A symmetric derivation 6 : Domé — R is called o-weak closable if there
exists a closed symmetric derivation & : Domd — R such that Domd C Domé and
5(r) =6(r) Yr € Doms.

Theorem 2.7.3 (BR, 3.2.27, 3.2.28, 3.2.61) Let 6 : Domé — R be a symmetric
derivation of a von Neumann algebra R such that Domé is o-weak dense in R. Let p
be a faithful state of R and (H,,m,) be the GNS representation of R associated to p.
Assume (p,0) satisfies the condition

p(6(a)) =0

for all a € Domé. Then

(i) 6 is o-weak closable,

(ii) there exists a self-adjoint operator D on H, such that
(a) tp(Domd) C DomD is a core for D,
(b) mo(d(a)) =i[D,m,(a)] Ya € Domd,
(c) if1 € Domd, Di,(1) =0,

(iii) the following statements are equivalent
(a) €*Pry(R)e P = m,(R) for allt € R
(b) D and A, commute strongly, that is ABDA™S =D for all s € R.
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Remark 2.7.4 We remark that A, = 1 if p is a trace. Hence the result (iii)(a) is
automatic and the self-adjoint operator D is the generator of a o-weak-continuous
one-parameter family of automorphisms of R.

A relevant notion is the analytic elements of a derivation.

Definition 2.7.5 (BR, 3.1.17, 3.1.5) The analytic elements of a symmetric deriva-
tion 0 : Domé — R are those a € R such that a € Domd™ for all m and the function

Zm
fa:C—>C, 20 ) — ™ (@)l
meN

1s entire. Let Rs denote the analytic elements in R for 6.

Corollary 2.7.6 Let the triple (R, p,8) satisfy the conditions of Theorem 2.7.3. such
that D and A, strongly commute. Then Rj is o-weak dense in R.

Proof Since J generates a o-weak-continuous family of automorphisms, then the
analytic elements are o-dense by [BR] Proposition 2.5.22. O

Definition 2.7.7 Let § be a symmetric derivation of a von Neumann algebra R such
that Domd is o-weak dense and p a faithful state on R. We call (1) the triple (R, p, )
an inner K-cycle if it satisfies the condition

p(é(r)) =0

for all r € Domd, and (2) the triple (H,,m,, Ds) the GNS representation associated
to an inner K-cycle (R, p,8) where Ds is the selfadjoint operator given by Theorem
2.7.8.

Let (R, p,9) be an inner K-cycle and A C R a C*-subalgebra. Define A := AN R;
where Rj are the analytic elements for §. Define {5(A) :=< A, 5(A) >.

Lemma 2.7.8 Let (R,p,8), A and R; be as above. Then (1) A is a *-algebra
closed under the holomorphic functional calculus, and (2) Qs(A) is a *-subalgebra
of Ny Domdé™.

Proof Follows from calculations involving linearity, symmetry and the derivation
property of 4. a

Definition 2.7.9 Let (R, p,d) be an inner K-cycle and A C R be a C*-subalgebra.
Then (R, p,0) is called an inner Riemannian cycle over the C*-algebra A if the fol-
lowing conditions are satisfied (1) A= AN R is norm dense in A, and (2) Qs(.A) is
o-weak dense in R.

The following theorem establishes a construction function with domain an inner
Riemannian cycle (R, p,d) of a C*-algebra A and range an ungraded Riemannian
representation of A.
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Theorem 2.7.10 [GNS Construction]

Let (R, p,0) be an inner Riemannian cycle over a C*-algebra A. Then the associated
GNS representation (H,,m,, Ds) is an ungraded Riemannian representation of the
C*-algebra A such that

(i) [Ds,mp(a)] = —im,(8(a)) for all a € A,
(i) Qps(mp(A4)) = 7,(Q(A)),
(iil) A, :=1,(Q(A)) C HY® := N Dom|Ds|™.

Proof (i) and (iii) follow immediately from Theorem 2.7.3. (i) follows from (i). All
properties are immediate from (i), (ii) and Theorem 2.7.3 except for the C*°-property
of the representation. Let D := Dy, ¢ := ip, and for simplicity let r stand for m,(r)
where 7 € R. By construction Du(r) := —id(r)e(1) for all r € Ny Domé™. Note that
D = 1(Domd™) = DomD™ is dense in H, and (1) is a separating and cyclic vector.
Define V(r) := [D?,r] for r € NyDomé™. Then V(r)i,(s) = D2u(rs) — rD%u(s) =
—(62(rs) + r&%(s))e(1) = —(6%(r)s + 26(r)d(s))e(1) = —6&%(r)e(s) — 2i8(r)Du(s) =
—(8%(r) + 2i6(r)D). Further [D,5(r)] = —id?(r) as D is the spatial implementer.
Hence on D
V(r) = —6%(r) — 2i6(r)D = 6%(r) — 2iD4(r).

Let f(x) = (142%)71/2. Then || f(D)V(r)l+[V(r) f(D)I| < 218 (r)l| +4[1(r)]| < co.
Hence ||[|D],r]|| < oo by Proposition 1.4.7. One continues in this method to find
r € N2"_, Domd™ implies ||5|7?)|(r)|| < oo for m = 1,...,n. Hence, as by hypothesis
and the previous lemma A, Q5(A) C Ny, Domé™, the representation is C'°. O

Remark 2.7.11 It is immediate that a graded Riemannian representation, one such
that Qp,(m,(A)) admits the order 2 automorphism of parity of differential forms,
can be recovered by adding to Definition 2.7.9 the condition: (3) the map e(a) =
a , €(8(a)) = —b(a) is well defined on Q;(.A) for all a € A.

Remark 2.7.12 Ultimately we are searching for the ‘geometric pre-dual’ of a C*-
algebra A and the ‘GNS function’ from the geometric pre-dual to Riemannian rep-
resentations. The pre-dual of a von Neumann algebra R contains the information
necessary to construct all the concrete representations of R via the GNS construction
and decomposition theory. In analogy we are searching for the abstract informa-
tion and the process necessary to construct all the Riemannian representations of a
C*-algebra A.

The theory of unbounded derivations on von Neumann algebras is insufficient
to provide the ‘geometric pre-dual’. One need only consider the example of the
Riemannian representation (L2(X, A* X), m;, d+d*) of the C*-algebra C'(X) where X is
a compact Riemannian manifold to find a representation that is not constructed from
an inner Riemannian cycle. This follows as 62(f) is unbounded where f € C™®(X)
and 6(f) = i[d+d*, f]. Hence Domé is not o-weak dense in the von Neumann algebra
L>(X, Cl(X)).

The more general construction involves, surprisingly, not symmetric derivations on
the C*-algebra A contained in a von Neumann algebra R, but symmetric derivations
from R°P to an A-linear R°P-bimodule.
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2.7.2 Symmetric A-derivations
Basic Definitions

Let R be a von Neumann algebra. Let R°P denote the opposite algebra of R. Then
R°P is a von Neumann algebra!?.

Let A and B be a topological *-algebras. We recall the definitions of section 2.1.1.
Let (W, 7°P) be a right A-module. Then E4(W) are the elements of E € L(W, W) such
that Eom®P(a) = 7°P(a)oE for alla € A. Then (W, , 7°P) is an B- A-bimodule if there
exists a representation 7 : B — L(W, W) satisfying [r(b), 7°P(a)] =0 Va € A,b € B.
Then m(B) C B4(W).

Let R be a von Neumann algebra. Then R is a C*-algebra. In the theory of
Hilbert modules L(R, R) denotes the continuous linear operators R — R where the
topology on R in consideration is the uniform topology. This implies E € L(R, R) is
bounded in the norm

I} := sup [|E(r)]l.
llrfl<1

As an example let s € R and define m,(r) := sr Yr € R and mgP(r) :=rs Vr € R.
Then m : R — L(R,R) and m° : R°? — L(R, R) such that ||ms| = [|[m3P|| = ||s|.
An element E € L(R, R) is called adjointable if there exists E* € L(R, R) such that
(E*(r))*s =r*E(s) Vr,s € R. This condition implies E is adjointable if and only if
E = my for some s € R.

We diverge from the above treatment.

Linear Operators on von Neumann algebras

Let R be a von Neumann algebra. Let Lin(R, R) denote the linear operators R — R.
Let p € R, be a faithful statc.

Definition 2.7.13 An element E € Lin(R, R) is called
(i) p-adjointable if there exists E* € Lin(R, R) such that
p((E*(r))*s) = p(r*E(s)) Vr,s € R,
(ii) p-selfadjoint if E is p-adjointable and E = E*,
(iii) p-positive if E is p-selfadjoint and p(r*E(r)) >0 Vr € R,
(iv) p-bounded if 1Ell, = sup{p(|E(r)]2)% |7 € R, p(|r|?) < 1} is finite.
Definition 2.7.14 Denote the linear operators R — R that are
(i) p-adjointable by C°(R, R),
(ii) p-selfadjoint by DP(R, R),
(iii) p-bounded and p-adjointable by BP(R).
We define on C?(R, R) the weakest topology such that p(E,(1)) — p(E(1)) is

continuous. Define a state on C?(R, R) to be a p-positive continuous linear functional
7 on C*(R, R) such that 7(1) = 1.

2Every von Neumann algebra admits a faithful normal semi-finite weight, hence admits a standard
form (R, H,J, A, P) and hence an isomorphism between R° and the commutant R’'.
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Proposition 2.7.15 Let p € R, be a faithful state. Then
(i) Let E € C*°(R,R). Then E*E and EE* are p-positive,
(ii) A state p on CP(R, R) is defined by p(E) := p(E(1)),

(iii) ||, is a C*-norm.

Proof (i) As E and E* are adjointable, p((E* E(r))*s) = p(E(r)*E(s)) = p(r*E*E(s)).
Hence E*E is p-selfadjoint and p(r*E*E(r)) = p(E(r)*E(r)) > 0 as p is positive on
R. Similar argument for EE*. (ii) Define p(E) := p(E(1)) = p(1E(1)) > 0 for all
p-positive E. Let E, — E, then p(Eq — E) = p(Eq(l) — E(1)) — 0. The other prop-
erties are immediate. (iii) Positivity and scalar properties of a norm are immediate.
For instance || E||, = 0 if and only if p(|E(r)|?) = 0 for r # 0 as E(0) = 0 by linearity
which occurs if and only if E(r) = 0 Vr € R. The triangle inequality follow from
the Cauchy-Schwartz inequality The submultiplicative property follows as ||AB||
p(ABE)ME p(BE)?)E B(r
supyep AEBEIE BELE < up, p 2L sup, ﬂﬁ)—} = 141,118,
p(E(r)*E(r)) = p(r*E*E(r)) we have IP( ( ) ))|22 < p(r T)P((E*E(T))*E*E( ))
by the Cauchy-Schwartz inequality. Hence JJ—(liTz-l)—zL < _(E(l_}_ﬂ;%)_lf and ||E||
|E*E||,- Similarly ||E'*||i < |EE*||,, Combining this with the submultlpllcatlve
property (1) | E|5 < ||E*||, || B, and hence || E||, < [|E*||,, and (2) |E*|l; < | EIl I E*]l,
and hence ||E*|, < |E||,. This finally proves | E||, = || E*||, and ||E’||§ = ||E*Ej|,.
O

Let H be a Hilbert space. Denote by C(H) the closable linear operators on H
and D(H) the essentially selfadjoint linear operators on H.

Proposition 2.7.16 Let (H,,7,) be the GNS representation of R associated to p.
Then there exists a faithful *-representation

(i) #,:CP(R,R) = C(H,),
(i) #,: D?(R,R) > D(H,),
(iii) #,: B?(R, R) — B(H,) such that | E|, = |#,(B)]-

Proof Let:: R — H, be the dense linear injection given by the GNS construction
and m : R — B(H),) the GNS representation. As p is a faithful state then (1) is a
cyclic and separating vector. Let E € C?(R, R). Define 7(E)¢(r) := «(E(r)) for all
r € R. Then w(E) is a densely define linear operator on H, such that 7(E) : ¢(R) —
t(R). Note that (t(r1), m(E)(ra)) = (¢(r1), (E(r2))) = p(r{E(r2)) for all r1,72 € R
by the GNS construction. Hence (u(r1), m(E)e(r2)) = p(riE(r2)) = p((E*(r1)re) =
(r(E*)e(r1),t(rq)) for all 71,72 € R. Hence 7(E*) is closable with 7(E*) = 7(E)* on
t(R) and 7(F) is closable with 7(E) = m(E)** on ¢(R). This follows from [RS, Theorem
VIIL.1] as +(R) is dense. Let E = E*. The domain of 7(E)** is the completion of
t(R) in the norm |[|¢(r)|| g = ||e(r)|| + |[e(E(r))||. Similarly, as m(E) : 1(R) — ¢«(R), the
domain of w(E)* is the completion of ¢(R) in the norm ||¢(r)||z. Hence the domains
are equal and 7(E)* = w(E)**.

Note that ||7(E)u(r)||? = p(|E(r)|?). Hence ||7(E)i(r)]| = 0 for all r iff E(r) =
0 Vr. Hence 7 is faithful by density of +(R). The product homomorphism is given
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by T7(EF)u(r) = «(EF(r)) = «(E(F(r))) = n(E)u(F(r)) = m(E)n(F)i(r). The identi-
fication of the norms ||.|| , and the operator norm ||.|| on B(H) is immediate from the
construction of H, from p. m]

Remark 2.7.17 Let 1, : R — H, be the dense linear injection given by the GNS
construction. Let E € C?(R, R). Then the definition

To(E)tp(r) := (E(r))

implies that
A(E) = (1p(1), #(E)rp(1))

where 1,(1) € H, is the canonical separating and cyclic vector for R. This construc-
tion of closable linear operators on a GNS Hilbert space H, is an extended GNS
construction. The construction was used in Proposition 3.2.28 of [BR] to obtain the
selfadjoint operator of Theorem 2.7.3.

Remark 2.7.18 It is immediate that .(R) is a core for the selfadjoint closure #,(E)
of E € D?(R,R) as 7,(E) Nury = #o(E).

Example 2.7.19 Let s € R. Define my(r) := sr and ms®(r) := rs Vr €
R. Then m,,ms® € Lin(R, R) and the following properties can be derived (1)
(ms)* = mg« Vs € R, (2) m; is p-positive if and only if s is positive, and (3)
Imsll, = lmsPll, = lIsll Vs € R.

The following definition is independent of the normal state p on R.

Definition 2.7.20 Let R be a von Neumann algebra and Si(R) C R, the set of
normal faithful states on R. Then we call a linear operator E : R — R (1) R,-
adjointable if E € Cy(R, R) where C«(R, R) = Nycg,(r)C*(R, R), and (2) R,-bounded
if B € B(R) where By(R) := Nyeg,(r) B (R).

Remark 2.7.21 A R,-adjointable (resp. R-bounded) linear operator F : R — R
has a GNS representative #,(E) in C(H,), (resp. B(H,)) for every faithful state
p € R.. Hence it is clearly stronger to be R,-adjointable (resp. R.-bounded) than
p-adjointable (resp. p-bounded).

Remark 2.7.22 Let R, be a o-weak dense unital *-subalgebra of R. Then one may
replace R by R, verbatim in the results of this section. This is possible since t(R,,)
is dense in H), for any o-weak algebra R,, and any state p € R,.

Symmetric A-derivations

Let R be a von Neumann algebra and p € R, be a faithful state. Let R,, be a o-weak
dense unital *-subalgebra of R and A be a *-subalgebra of R,,. Then define

C%(Ruw, Ry) := {E € C°(Ry, Ry)| E(a) = aE(1) Ya € A}
with subspace

Bli(Rw) := {E € B’(Ry) | E(a) = aE(1) Va € A}.
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An element E € C4(Ru, Ry) is called left A-linear. Define the natural multiplication
map ° : R — CP(Ry,Ry) by r°(s) = mP(s) = sr Vs € Ry,r € Ry. Define
C*(Rw,Rw, A) = anS*(R)Cﬁ(RU))Rw) and B*(Rw,A) = ﬂpES*(R)Bfl(R’w)'

Lemma 2.7.23 Let Ry, p, B«(Ry, A) and ° be as above. Then®: Ry — By(Ry, A4).

Proof Leta € A,r,s € Ry. Then r°(a) = ar = ar®(1). Hence r° is A-linear.
It follows from the Cauchy-Schwartz inequality that p(|sr|?) < p(|r|?)p(|s|)?. Hence
Irll, < oo Vp € Si(R). O

We note that my; € B,(Ry, A) for s € Ry, if and only if [s,a] =0 for all a € A.

Definition 2.7.24 Let R, be a o-weak dense unital *-subalgebra of a von Neumann
algebra R and p € R, be a faithful state. Let A be a *-subalgebra of R. Then a
bounded symmetric A-derivation on Ry is a linear map

5 : R — B%(Ry)

such that (1) 6(r°Ps°P)(t) = (r°8(s°P) + 4(r°P)s®)(t) for all r,s,t € Ry, and (2)
3((r°P)*) = §(r°P)* for all r € Ry,.

Definition 2.7.25 Let Ry, be a o-weak dense unital *-subalgebra of a von Neumann
algebra R and p € R, be a faithful state. Let A be a *-subalgebra of Ry. -Then a
symmetric A-derivation on Ry is a linear map

§: RP — C4(Rw, Ruw)

such that (1) 6(r°Ps°P)(t) = (r°6(s°P) + 8(r°P)s°)(t) for all ,s,t € Ry, and (2)
8((r°P)*) = §(r°P)* for all r € Ry,.

Lemma 2.7.26 Let R, be a o-weak dense unital *-subalgebra of a von Neumann
algebra R, p € R, be a faithful state, A be a *-subalgebra of Ry, and & be a symmetric
A-derivation on Ry’ . Then §(1)(s) =0 for all s € R.

Proof Let s € R. Then 6(1)(s) = &§(1.1)(s) = (1°6(1) + 8(1)1°)(s) = 6(1)(s)1 +
8(1)(s1) = 28(1)(s). Hence 6(1)(s) = 0. o

Remark 2.7.27 The definition of an A-linear element of C*(R,,, R,,) can be modified
to E(ar) = aE(r) VYa € A,r € R, when R,, is non-unital. This allows a definition
of a symmetric A-derivation § : Ry — C%(Ry,Ry) when Ry is non-unital. The
definitions can also be made independent of p, but more restrictive, by replacing
C?(Ry, Ry) by the R,-adjointable elements Cy(Ry, Ry)-

Remark 2.7.28 Let & : R — C4(Ry, Ry) be an A-symmetric derivation. Let E €
C%(Rw, Ry) and define the evaluation map ¢; : C4 (Ru, Rw) — Ry by 1 (E) = E(1).
We can repeat the derivation in the following manner

® 2y C%(Ruy,Ru)
Noda

op Rw
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Let vy = op oty o 8. Define §™(r°P) := §(y™1(r°P)). As an example 62(r°P)(s) :=
5(6(r°P)(1)°P)(s) for all s € R,. We remark that we have defined symmetric A-
derivations ¢ such that R7 is the invariant domain for 6™, m € N. The definition of
an A-symmetric derivation can be generalised by considering ¢ as a map é : R°P —
C?(Ry, R) where C?(R,, R) are the p-adjointable linear maps B,, — R 1. Then one
defines r°P € Domd™ if ¥9(r°?) € Ry, for j = 1,...,m — 1.

We highlight that the condition §(r°?) € C%4(Ry,Ry) for all 7 € R,, implies
d(r°P)(a) = ad(r°P)(1) for all @ € A.

2.7.3 Abstract K-cycles

The definition of a symmetric A-derivation on the von Neumann algebra R°P allows
us to abstractly classify Riemannian representations arising from a faithful trace.

Definition 2.7.29 Let R be a von Neumann algebra with faithful state p. Let A
be a *-subalgebra of a o-weak dense unital *-subalgebra Ry, of R. Let § : Ry —
C%(Rw, Ry) be an A-symmetric derivation on RiY. Then we call the triple (Ry, p, )
an abstract K-cycle over A if it satisfies the condition

p(a(rP)) =0

for all r € Ry,.

Let (Ry,p,0) be an abstract K-cycle over a *-algebra A C R,,. Let (H,,m,) be
the GNS representation of R associated to p with dense linear injection ¢, : Ry, — H,.
On the dense subspace 1,(R) define

ng(r) 1= =17, (6(r°P))e,(1)

Lemma 2.7.30 Let (Ry,p,d) be an abstract K-cycle over a *-algebra A C Ry,. Let
Ds be defined as above. Then Dj is an essentially selfadjoint operator Ds : 1(Ry) —
t(Ry) such that [Ds,mp(a)] : t(Ry) = t(Ry) is norm bounded on t(Ry).

Proof Let 7 := 7, 1 := 1, and D := D;s. We first note that D : i(R,) — ¢(Ry) by

13and ‘p-closable’. In general the operators #,(D”(Ruw, R)) would be a space of symmetric linear
operators on H, instead of essentially selfadjoint operators.
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construction. Secondly, that D¢(1) = 0. Let s,7 € Ry,. Then

((8); Du(r)) = (u(s), 1(=id(rP)(1)))
p(s*(=i6(r°P)(1)))
p((=i6(r°P)*(s))*1)
p(8((r°P)*)(1s)*
p((8((roP)*)s°(1
i(—p((ro)*6(s°P)(1)) + 8((roP)*s°?)(1)))
r*6(s°P)(1)) + ip(8(((s7*)°P)*) (1))

—
—
N

,\
-
=

~—

I
-,

I
-.

=,

Where at (i) we used the definition of p-adjoint, at (ii) the symmetry of 4, at (iii) we
used the definition of derivation, at (iv) we used the definition of p-adjoint to obtain
((r°)*(s))* = ((r°)*(s))*1 = s*r°(1) = s*1r = s*r and hence (r°)*(s) = (s*r)* =r*s,
and at (v) closure of the derivation with respect to the state p on C*(R,,, R,,)-"Hence
D is symmetric, with a closed adjoint with dense domain. As in Proposition 2.7.17
invariance of D : t(R,) — ¢(Ry) on the dense domain 1(R,,) provides the equality of
D* = D** on the closure of t(R) in the norm ||¢(r)|| = p(|r|?)¥/? + p(|6(r°P)|?)!/2.
As w(a)i(r) = t(ar) then 7(a) : t(Ry) — t(Ry) for all a € A. Consider

m(a)Di(r) = —im(a)m(8(r°P))e(1)
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where we used the A-linearity property at (), and

Dr(a)i(r) = Di(ar) = «(—16((ar)P)(1)) = ¢(—16(r°?aP)(1)).
Hence
[D, m(a)]e(r) = —ie(8(a’®)(1)r)

Then
I[D, m(@)]e(r)]| = p(r*|6(a®P))(1)[*r)/? < [|6(aP) (V)| [}o(r)]]

by a consequence of the Cauchy-Schwartz inequality [BR, Prop 2.3.11(c)]. Hence
(I[D, 7(a)]|l < ||6(a®P)(1)|| when taken over a supremum of r € R,,. O
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Let Ds denote the unique selfadjoint closure of Dg. Note that t(Ry) is an invariant
core for Ds and m,(r) : Ny DomD™ — NpDomD™ for all r € Ry, and m € N as a
consequence of the proof and Remark 2.7.28.

Definition 2.7.31 Let (Ry,p,6) be an abstract K-cycle over a *-algebra A C Ry,.
Then (Hp, 7,5, Ds) is called the GNS representation associated to (Ry, p,9).

Remark 2.7.32 We remark that the construction involves a faithful state p on the
von Neumann algebra R!,. Hence each GNS representation has an associated standard
form (R, H,, J,,A,, P,) as in Section 1.6.1.

Let C*(A) denote the C*-closure of A in R. Let Q5(4) :=< A°(1),6(A4°)(1) >
denote the *-algebra of R generated by the operators 1(a®) = a, +1(6(b°P)) = 6(6°P)(1)
for a,b € A.

Corollary 2.7.33 Let (Ry,p,d) be an abstract K-cycle over a unital *-algebra A C
Ry, with associated GNS representation (H,, 7y, Ds). Then

(i) (Hp,,mp, Ds) is a Cl-representation of the unital C*-algebra C*(A), and
(ii) Q2p,(mp(A4)) = my(Q(A4))

Proof (i) Immediate from Lemma, 2.7.30. (ii) Let D := Dj, m := mp, ¢ :=t,. Then
from the proof of Lemma 2.7.30 we have [D, 7r( a)lep(r) = 1(6(aP)(1)r) for all r € R.
This provides a linear isomorphism and w(a)[D,n(b)]e,(r) = m(a)(6(b°P)(1)r) =
1(ad(b°P)(1)r) with [D, w(a)][D, 7(b)]ey (r) = [D, m(a)]e(8(6°P)(1)r) = +(8(a’P)3(b%P)(1)r)
for all a,b € A and r € R extends the linear isomorphism to Qp,(7,(4)). O

Remark 2.7.34 Let (R, 4, p) be a inner K-cycle such that the derivation § has a
o-weak dense invariant domain R, = Ny, Domd™. Let (H,, m,, Ds) be the GNS
representation associated to the inner K-cycle (R, 4§, p), see Definition 2.7.7. Define
the map 6° : Ry — CP(Ry, Ry) by 6°(r°P)(s) = sé(r). Then it is easily verified
that (Ry, 8% p) is an abstract K-cycle with identical GNS representation (Hp, m,, Dj).
Hence abstract K-cycles extend inner K-cycles.

Remark 2.7.35 Outer sheer of a symmetric A-derivation

We highlight a distinction between abstract and inner K-cycles. In section 2.7.1 we
saw an inner K-cycle (R, p, §) with associated GNS representation (H), 7,, Ds) has, in
general, an unbounded coderivation V(r) = 1[D?,7,(r)] however [Djs, [Ds,,(r)]] =
m(62(r)) was bounded for all » € Domd?. This restricted the application of inner
K-cycles in the theory of generalised differential geometry. This is not the case for
an abstract K-cycle (Ry, d, p) over a *-algebra A and we identify the obstruction to
(Ds, [Ds, mp(a)]] being bounded for a € A.

Proposition 2.7.36 Let (R, d,p) be an abstract K-cycle over a *-algebra A with
associated GNS representation (H,,7,, D). Then

(D5, [Ds, mp(@) lep(r) = —1p(2(a) (1)r) — 1, (5(rP)(3(a) (1)) — 5(a) (1)3(rP)(1) )
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and
[DF, m(a)]ep(r) = —1,(6*(a°P)()r) — ¢, (5(T°p)(5(a°")(1)) + 5(a°")(1)5(r°p)(1))
for all r € Ry,.

Proof Let m,:=m, 1:=1, and D := D;s. Then

D[D,m(a)]e(r) = —iDu(8(a*?)(1)r) = —+(8((8(aP)(1)r)°P)(1)).
We have §(r°Pd(a®)(1)°P)(1) = r°6(8(a")(1)°P)(1) + 6(r°P)(6(aP)(1)). Hence
D[D,m(a)]e(r) = —4(8(8(a®)(1)°P)(1)r) — (6(r°P)(3(a")(1))).

In the other direction, [D, 7(a)]|Di(r) = —i[D, n(a)]e(d(r°P)(1)) = —e(6(a®P)(1)d(r°P)(1))
as 6(r°?)(1) € R,. The second formula follows from [D? 7(a)] = D[D,n(a)] +
[D,n(a)]D. O

The first term in the expressions in Proposition 2.7.36 is uniformly bounded

e (6% () (1)) < 116%(@*P) (D)l llep ()]]-

Hence the second terms in the expression in Proposition 2.7.36 contain the obstruc-
tions of interest.

Definition 2.7.37 Let (Ry,p,0) be an abstract K-cycle over a *-algebra A C R,,.
We call the map Is: A X Ry — Ry given by

I(a,7) 1= 5 (56°7) (6(aP)(1)) — 6(a) ()57} (1))

the outer sheer of the symmetric A-derivation §. We call the map S5 : AX Ry — Ry,
given by

Sa(a,r) = 5 (6 P)6(aP) (1) + 6(aP) ()EP)(1))

the metric sheer of the symmetric A-derivation 6.

On the dense subspace ¢,(R,) C H, the operators in Proposition 2.7.36 have the
form

[Ds,[Ds, mp(a)]] = —m,(8(a*) (1)) — 2t (s(a, )

and

[D3,m(a)] = —m,(62(a’?)(1)) = 2, (Ss(a, )

for a € A. Hence the first operator is uniformly bounded if and only if

llep (L5 (@, ) ~ O(le, ()1

for all r € R,. We note that Is(a,r) = 0 for all » € Ry, if § is §(A°P)(1)-linear,
meaning §(r°P)(s) = s6(r°P)(1) for all s € §(A°P)(1). This condition of linearity is
satisfied when § = 6° for a symmetric derivation & on the von Neumann algebra R.
There is a partial converse.
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Theorem 2.7.38 Let (R, p,8) be an abstract K-cycle over a *-algebra A such that
Q5(4) :==< A,5(AP)(1) > C Ry, is o-weak dense in Ry. Then the following state-
ments are equivalent

(1) (Ruw,p,?) is an inner K-cycle over A where § = §°.
(1) Is(a,7) =0 for alla € A, r € R,,.

Proof (i) = (ii) Let § = §°. Then §(r°P)(s) = s8(r) = s16(r) = s6(r°P)(1). Then
I5(a,7) = 0 using s = §(a°P)(1).

(ii) = (i) Let Is(a,7) = 0. Then §(r°?)(6(a°®(1)) = &(a®®)(1)6(r°P)(1). Hence
6(r°?)(ad(a?)(1)) = ad(a®®)(1)4(r°P) using A-linearity and the derivation property
of 4. Similarly §(r°P)(s) = s6(r°P)(1) for all s € Q5(A). The result follows since
8(r) := 6(r°P)(1) defines an inner derivation on R with domain R, and Q5(A) is
o-weak dense in R. ]

To conclude the remark we note the previous result indicates essentially three
categories of abstract K-cycles over a unital *-algebra A that are distinguished by the
outer sheer I; of the symmetric A-derivation 4.

abstract K-cycle outer sheer [Ds, [Ds, my(a)]] = —m,p(62(a®P)(1)) + M
inner Is=0 M=0
essentially inner Lp(r) = tp(I5(a,)) bounded M bounded
outer tp(r) = t,(I5(a,r)) unbounded M unbounded

Remark 2.7.39 Reality of a symmetric A-derivation

Let (Ry,p,8) be an abstract K-cycle over a *-algebra A C R,, with associated GNS
representation (Hp,7,, Ds). Define the positive elements of Ry, as the space R}, =
{r € Ry|r =s*s,s € Ry}. We recall a linear mapping « : Ry, — R, is called positive
definite if a : R}, — R}.

Lemma 2.7.40 Let (Ry,p,0), A and (H,,m,,Ds) be as above. Then the following
conditions are equivalent

(1) Ls:7— —8%(r°P)(1) is positive definite,
(i) p(J(rOp)(J(s"p)(l)) - 5(r°p)(1)5((s*)°p)(1)*) =0 for all 1,5 € Ry.

Proof Let m,:=m, t:=1,, §:=5, and D := D;. Let r,s € R,,. We have

pE*(rP)(1)s) = p(sPd2(r°P)(1))
D p(3(sP5(ro) (1)°) (1) — 8(s°P) (5(rP) (1))
= p(8(s°Pa(r°P)(1)P)(1)) — p(6(s°P)(6(r°P)(1)))

D p(a(s)(3(r°P) (1))
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where (i) used the derivation property of 6 and (ii) used the cycle condition p(d(s°P)(1))
0 for all s € R,,. Moreover

(8> ((r*)°P)(1)*s)
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where (iii) used the fact § is p-adjointable and (iv) used symmetry of 6. Let r € Ry.
Hence (*)

p(8(rP)(1)s) = p(82((r*)*")(1)"s)

if and only if (**)

p(8(s°P)(8(r°P) (1)) = p(&(s°P)(1)8((r*)**)(1)7).

for all s € Ry. As p is a faithful state then (*) is equivalent to §2((r*)°P)(1)* =
82(r°P)(1) by setting s = (62((r*)°?)(1)* — §2(r°P)(1))*. We note that §2((\r +
ps)°P)(1) = A&%(r°P)(1) + pd?(s°P)(1) for all A,p € C and r,s € R, from linear-
ity of 6. Hence the condition 62(r°P)(1) > 0 for all r > 0,7 € R,, is necessary and
sufficient for the result 62((r*)°P)(1)* — §2(r°P)(1). O

Let (R, H,,Jp, Ay, Pp) be a standard form associated to Ry, p,d) as in Remark
2.7.32. We recall from the Tomita-Takesaki theory, see Theorem 1.6.2(ii), that the
modular conjugation J, and the modular operator A, are derived from the unbounded

anti-linear operator S, := J,,,A‘,l,/2 t4p(r) = 1p(r*) for all 7 € Ry,

Theorem 2.7.41 Let (Ry,p,d) be an abstract K-cycle over a unital *-algebra A C
Ry. Let (H,,m,, Ds) be the associated GNS representation and (R, Hy, Jp, A, Pp) be
an associated standard form. Then the following conditions are equivalent

() Ls:r— —62(r°P)(1) is positive definite,
(i) p(5(roP)(3(27) (1)) — SrP)(1)6((s*)P)(1)") =0 for all 7,5 € R,
(i) (D2, 5] = 0.

Proof Let::=t(,, S:=S,and D := Ds. Let r € Ry, and note Si(r) = ¢(r*). Then
(D*S — SD?)u(r) = D*u(r*) — Se(—82(rP) (1)) = —0(52((7‘*)0")(1) - 52(?“"’)(1)*)-
Since ¢ is an isomorphism (D?S — SD?)u(r) = 0 for all r € R, if and only if
62((r*)°P)(1) = 462(r°P)(1)*. This is equivalent to the statements in Lemma 2.7.40

by the proof of Lemma 2.7.40. Note that S preserves Cauchy sequences in the graph
norm of D2. Hence S preserves DomD? and we take [D?, §] defined on DomD?. O
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Corollary 2.7.42 Let (R, p,d) be an abstract K-cycle over a *-algebra A C R,, such
that p € Ry is a faithful trace. Let (H,,m,, Ds) be the associated GNS representation

and (R, H,, J,,1,1,(Rt)) the associated standard form. Then the following conditions
are equivalent

(i) Ls:r— —82(r°P)(1) is positive definite,
(ii) p(d(rof’)(é(s‘)p)(l)) — 6((3*)°p)(1)*5(r°p)(1)) =0 for allr,s € Ry,
(i) (D7, = 0.

Proof (ii) Follows by using the trace property. (iii) Immediate from Theorem 2.7.41
as A, =1. O

Remark 2.7.43 We remark on the content of the equivalent conditions. Example
2.7.61 suggests the linear map L; is the appropriate generalisation of the Laplacian
operator. Hence the results suggest a deep relationship between the positivity of the
Laplacian and the modular theory. This is demonstrated further by the next example.

Remark 2.7.44 Modular Dynamics of a symmetric A-derivation

Let (Ry, p,0) be an abstract K-cycle over a unital *-algebra A C R,,.
Let (H,,m,, D) be the GNS representation associated to (Ry, p,d). Define

Vs(-) = [D3, -]

as tlie covariaut derivation associated to the abstract K-cycle (Ry, p,6) (c.f. Section
1.4.2). Associated to the derivation V; is a one-parameter family of unitaries e~isDj .
H, — H, that induce a one-parameter family of automorphisms on N,, DomV™

. 2 ] 2
geo(T) := e *PsTetDs

for s € R and T' € N, DomV™. We call the family geos the geodesic flow associated
to (Ry, p,d). This name is derived from parallels with geodesic flow on a manifold as
discussed in [C5, Section 6].

Let (R, H,, J,, A, P,) be the standard form associated to (Ry, p, 6) as in Remark
2.7.32. Then there exists another one-parameter family of automorphisms given by
the modular flow

ah(r) = A AY

for t € R and r € R, see Section 1.6.1. The modular flow has been associated to time
flow in thermodynamic systems [C11].

Given the physical context of the two one-parameter families, the coupling of the
geodesic flow geo,; and the modular flow o, is of great interest. In particular they are
decoupled if [D?, A,] = 0 and intertwined if [D2,A,] # 0. We remark here on some
details of the coupling as a consequence of Theorem 2.7.41.
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Lemma 2.7.45 Let (Ry, p,0), (Hp,mp, Ds) and (R, H,, Jp, Ay, P,) be as above such
that L5 : r — —62(r°P)(1) is positive definite. Then (1) if J, : DomDi™ —
Dong(m_l) then A},/z : Dongm — Dong(m_l) for any m € N. Suppose
J, : DomD} — DomD3? and define Rs, = [D3,J,)J, in this case. Then (2)
(D2, AY?] = Rs , A% and {Rs,, A5} =0 on 1(Ry).

Proof Let D:=D;, J:=J,, A=A, 5:= JAY? and H := H,.

(1) Note A2 = JS as J! = 1. By Theorem 2.7.41 [D? S] = 0. Hence S :
DomD?™ — DomD?™ for any m € N. Then A'/2: DomD?*™ — JDomD?™,

With the supposition [D?, J]J = JD?J — D2J% = JD?J — D? is a densely defined
linear operator DomD* — H. Note it is immediate J : DomD? — H as J is a
bounded anti-linear operator. Hence R;, is well defined. With (1) and the supposi-
tion the densely defined linear operator [D?, Al 2] : DomD* — H is well defined as
A2 : DomD* - DomD? and DomD? — H.

(2) Note A/2 = JS as J?2 = 1. Hence [D? AY?] = [D%,JS] = J[D? 8] +
[D?,J]8 = [D? J]S from Theorem 2.7.41. Note that [D? 5] = 0 by Theorem
9.7.41 and JS = §*J. Hence S*[D2,J] = [D?,J]S. This implies A/2J[D2,J] =
[D?, J]JAY2, Hence AY?[D? J|J = —[D? J|JAY? as J[D?,J] = —[D?%,J]J from
J?2=1 i

Lemma 2.7.46 Let (Ry,p,0), (H,,mp, Ds) and (R, Hy, J,, Ay, Py) be as above. Let
P,s = DomD? NP,. Then J, : DomD? — Dong‘ if and only if P,s is a closed
positive cone of Dong.

Proof Let D := Ds, J:=J,, m:=m,, 1:=1, and P := P,. We recall from Theorem
1.6.2 that P is the closure of the set P = {w(r)Ju(r)|r € Ry} and from Theorem
1.6.1 that JP = P. Here R,, can be used in place of R due to o-weak density.

(=) Let r € Ry. Then i(r) € DomD? and n(r) : DomD? — DomD3 by con-
struction. Hence m(r)Ju(r) € DomD% as J : DomD? — DomD?. Hence P C P,;.
As the linear span of P is densely defined, then the linear span of P, s is densely
defined. Hence the closure of the linear span of P, is Dong by uniqueness of the
closure of a selfadjoint operator.

(<) Suppose the linear span of P, 5 = PN DomD? is DomD?. Then JDomD} =
Dong as JP,5 = P, 5 by Theorem 1.6.1 and anti-linearity of J. a

Theorem 2.7.47 Let (Ry,p,0) be an abstract K-cycle over a *-algebra A C Ry,
Let (H,,m,,D5) be the associated GNS representation and (R, Hp, J5, 8, Pp) be an
associated standard form such that

(i) Ls:r— —6%(r°P)(1) is positive definite, and
(ii) J, preserves the domain of D3.
Then
[Dga AP] =0
on ty(Ry).

Proof Let D := Dsand A := A,. The equivalence of the condition follows from
Lemma 2.7.46. By Lemma 2.7.45 A : DomD? — DomD? and the linear opera-
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tor [D?,A] : DomD* — H is well defined. Moreover [D?, A] = Al/2[D2? Al/2]
[D?, AY2|AY2 = {[D? Al/?],A}/2}, Hence by Lemma 2.7.45 we have on (Ry),
{[DZ,Al/Q],Al/z} — {Rd,pA1/2, A1/2} — {'Rg’p,Alﬂ}Alﬁ =0, ]

Remark 2.7.48 Real Gradings of a symmetric A-derivation

Let (Ry,p,d) be an abstract K-cycle over a *-algebra A C R,,. Define Q35(4) :=<
A, 5(AP)(1) >. We say (Ry,p,d) is an abstract K-cycle over A with parity € if the
von Neumann algebra R admits an order two *-automorphism € € Aut(R) such that
€(a) = a and €(6(a°?(1)) = —8(a®P)(1) for all @ € A. Compare the following result
with Theorem 2.5.14.

Lemma 2.7.49 Let (R, p,0), A and Q5(A) be as above where (Ry,, p,d) has parity
€. Then the following conditions are equivalent

(i) €(8(s°P)(1)) = ~d(e(s)°P)(1) for all s € Qs(A),

(i) €(6%(a®P)(s)) = &6%(a®P)(e(s)) for all s € Qs(A).

Proof Let s € A. By construction d(e(a)®?)(1) = 6(a°P)(1) = —(—3(a°P)(1)) =
—€(6(a®P)(1)). Now consider

3(e(ad(b°P)(1))°P)(1) = —4(6(6)(1)Pa)(1) = —4(b°P)(1)d(a’?)(1) — 6?(5°P) (a)

and

e(5((ad(6)(1))P)(1)) = 8(b°)(1)8(aP)(1) + €(d2(b%)(a)).

If statement (i) is true for s € Q}(A) then (ii) is true for ¢ € A. If statement (ii) is
true for ¢ € A then (i) is true for s € Q}(A). Similarly

3(e(ad(vP)(1)5(c*P)(1))P)(1) = 8(c*P)(1)8(bP)(1)5(aP)(1)
+6(c%P)(1)8%(6°P) () + 6(c*P) (a8 (°P) (1))

and

e(8((ad(P)()(eP)D)PY(1)) = —8(cP)(1)8(b)(1)8(a)(1)
—6(cP)(1)8%(6%) (a) + c(d%(c°P) (ad (6°)(1))).

If statement (i) is true for s € Q2(A) then (ii) is true for ¢t € Q}(A). If statement (ii)
is true for t € Q}(A) then (i) is true for s € Q2(A). The proof proceeds by induction.
0

Definition 2.7.50 Let (Ry,p,8) be an abstract K-cycle over a *-algebra A C R,
with parity €. Then we say (Ry,p,0) is a real abstract K-cycle over A C Ry, if
€(6%(aP)(s)) = 6%(a®®)(e(s)) for all a € A and s € Q5(A).

Theorem 2.7.51 Let (Ry,p,8) be a real abstract K-cycle over a *-algebra A C Ry,
with parity € such that (1) p € Ry is a trace and (2) Q5(A) is o-weak dense in Ry,.
Let (H,,m,, Ds) be the associated GNS representation. Then there exists a selfadjoint
unitary I' € B(H,) such that
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(1) mp(e(s)) =Tmp(s)I' for all s € Q5(A),

(ii) Ds and T’ anticommute.

Proof Let D := Ds and ¢ := ¢,. The existence of I' and the proof of (i) follows

from Lemma 2.5.18. Let s € Q5(A). Then DT'w(s) = Du(e(s)) = —it(d(e(s)°P)(1) @)
+i1(e(6(s°P)(1))) = I'ie(d(s°P)(1)) = —I'De(s). Here (a) used the hypothesis of reality
contained in Definition 2.7.50 and Lemma, 2.7.49. The result follows from density of
t(Q25(A)) in Hy,. a

In the terminology of Section 2.4.4 the unitary T is a real grading for the GNS
representation (H,,m,, Ds) associated to (Ry, p, ).

The next result culminates Section 2.7.3. It classifies the Riemannian representa-
tions of a C*-algebra arising from a trace by abstract K-cycles over the C*-algebra.

Theorem 2.7.52 Let (H,, 7y, D) be a Riemannian representation of a C*-algebra A
such that

(i) p € Rx is a faithful trace on Qp(Az,)",
(i) ¢p(Qp(Ax,)) C H® is an invariant core for D.

Then there exists an abstract K-cycle (p(Ar,),p,0) over Ay, with associated GNS
representation (Hp,,m,, Ds) such that

D=Dj+w
where w € Qp(Az,) and

Qp(Ar,) = Qps(Ar,) = mp(Qs(Ar,))-

Proof Let Ry := Qp(Ay,), ¢ := tp and A = Ar,. Let r? € RP. Define
8(r°P)(s) = 151 (i[D,r°Pe(s)) for all s € R,. This is well defined since Ry is
an invariant subspace for the operators r°? and D. Hence §(r°?) : Ry, — Ry,
Note that [D,r°P)u(a) = [D,r°P]n(a)e(l) = n(a)[D,r°Pl(1) + [n(a),[D,r®]l(1) =
m(a)[D,r°P]e(1)+[[D, 7 (a)],r°P](1) = m(a)[D,r°P]s(1) as r°? € R'. Hence §(r°P)(a) =
7(a)d(r°?)(1) is A-linear. It is clear that ¢ is a derivation and linear. The sym-
metric property follows as D is selfadjoint. Since D : ((Ry) — t(Ry,) there exists
w € Ry, such that Di(1) = wi(l). Conmsider p(6(r°P)(1)) = (u(1),4[D,r°PL(1)) =
(Di(1),ir°P(1)) — (r°Ps(1), De(1)) = (¢(1),4(wr —rw)e(1)) = 0 as p is a trace. Hence
(Ry, p, 6) is an abstract K-cycle. Let Ds be the associated selfadjoint operator. The
result follow from the identification of D. Let r € «(R,,) which is an invariant core
for D. Then, using the tracial property, Di(r) = Dr°Py(1) = [D,r°P]s(1) + r°PDu(1).
Hence Di(r) = [D,7°P]u(1) +r°Pwi(l) = o(—id(r°P)(1)) + wr®Pi(1) = Dse(r) +wi(r) =
(Ds + w)i(r) for all r € 1(Ry). O

Remark 2.7.53 The conditions of Theorem 2.7.52 require that (H,, ,, D) be a Rie-
mannian representation of a C*-algebra A such that p € R, is a faithful trace. We
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remark on the difficulty when p € R, is not a trace. Let (H,,7,, D) be a Riemannian
representation of a C*-algebra A and Ry, := Qp(As,). Let s € Ry. When p is not a
trace then there exists sy € R such that s°Pu,(r) = (A + A,)"Li,(rsy) for any A > 0
[BR, Lemma 2.5.12]. The resolvent of the modular operator A, ‘twists’ the opposite
representation. Let a € Ar,. Then sP[Ds, m,(a)]eo(r) = (A + Ap) " [Ds, mo(a)] (A +
A,)s%Pu,(r). This prevents the identification of [Ds,m,(a)] € R without further as-
sumptions and hence prevents the construction of a symmetric A-linear derivation.

2.7.4 Riemannian cycles

Let C*(A) denote the C*-closure of a unital *-subalgebra A of a von Neumann algebra
R. Let (Ry,p,d) be an abstract K-cycle and A C R a C*-subalgebra. The result of
Theorem 2.7.52 introduces the following definition.

Definition 2.7.54 Let (R, p,d) be an abstract K-cycle over a unital *-algebra A C
Ry. Then we call (Ry,p,d0) a Riemannian cycle over the C*-algebra C*(A) if the
associated GNS representation (H,, m,, Ds) is a Riemannian representation of C*(A).

Remark 2.7.55 We note that Theorem 2.7.38 provides the result that a Riemannian
cycle (Ry, p,0) over a C*-algebra A is an inner Riemannian cycle if and only if the
outer sheer I5(a,r) vanishes for all a € A and r € R,,.

To define a Riemannian cycle abstractly requires the converse of Theorem 2.7.52.
At present, however, the converse of Theorem 2.7.52 is beyond our treatment. The
following results culminate in a partial converse to Theorem 2.7.52.

Theorem 2.7.56 Let (R, p,0d) be an abstract K-cycle over a unital *-algebra A ¢
R, with the hypothesis

(1) p € Ry is a faithful trace,

(ii) Ls5:7— —38%(r°P)(1) is positive definite,

(iii) 0™[a0p : AP — BL(Ry) for allm €N, and

(1v) Qg (mp(4)) = 7,(2s(4))

Then the GNS representation (H,, 7,, Ds) associated to (Ry, p,0) is a C° representation
of the unital C*-algebra C*(A4).

Proof That the conditions of Definition 1.4.8 are satisfied by (H,,w,, Ds) follows
from Lemma 2.7.30 with the exception of Definition 1.4.8(iii). Let 7, := m, ¢ 1= 1,
J = J,, D := D;, and fn(z) := (1 + 22)~™2. We recall that 7(s)u(r) = i(sr) and
7P (s)e(r) = u(rs) for all s,r € Ry, as p is a trace.

We are required to show [| D), t] is bounded where ¢t = 7(a) or [D, 7(a)].

1) We obtain an equivalent statement. By Proposition 1.4.7 we are required to
prove f1(D)[D?,t] is bounded where t = m(a) or [D,n(a)]. We note [D,n(a)] =
—im(6(a’®)(1)) by condition (iii) of the hypothesis and Corollary 2.7.33. We also
note f1(D)[D?, s*] is bounded if and only if J(f;(D)[D?, s*])*J @ [D?, s°P]f1(D) is
bounded where s € R,,. The equality (a) is given by Corollary 2.7.42 since hypothesis
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(i) and (ii) result in [D?,J] = 0. Combining the above remarks, we are reduced to
showing [D?,t°P]f1(D) is bounded where t = w(a) or 7(8(a?)(1)).
2) Let r,s € Ry. We show that [D?, n%P(s)] = —i{D, m,(6(s°P))}. Consider

[D2,7r°p(s)]/,(r) = D% (rs) — L(—02(r°P)(1)s) = —L((Sz((T‘S)Op)(].) — 52(7"01’)(1)3).
We have

B ((rs)®)(1) = 8(8(s°ProP)(1)°P) (1)
= 6((5r°P)(1)s + (s°P) (1)) ) (1)
= 6(s°6(r°) (1)°P)(1) + 8(5(s°P) (r)°P (1)
= 82(rP)s -+ 6(s%P)(8(r°P) (1)) + 8(3(s°P)(r)P (1)

by repeated use of the derivation property of 4. Hence

8%((rs)*®)(1) — 82(r°P)(1)s = 8(s°P)(8(r°P)(1)) + 6(8(s°P) (r)°P)(1)
and
(D27 (s))u(r) = —(8(s%) ((roP) (1)) + (3(s%P) (r)°) (1))
= —imy(§(s°P)) Du(r) — iDmy(8(s°P))u(r)
= —i{D,my(6(s°P)) }e(r).

3) Let T be a bounded operator such that [D,T] is bounded. Then {D,T} =
9DT + [T, D] = 2TD + [D, T]. Hence f1(D){D,T} = 2f,(D)DT + f1(D)[T, D] and
{D,T}f1(D) =2TDf(D) + [T, D] f1(D) are bounded.

4) We show that [D, 7 (8(s°?))] is bounded where s = a or §(a®®)(1). Consider

[D, m°P(s)]e(r) = Du(rs) — w°P(s)Du(r)
= o —i8(soProP)(1) + ié(r°p)3>
= o —i8(roP)(1)s — i8(s%P)(r) + iJ(r"p)s)
= —it(8(s°P)(r)) = —im,(6(sP))e(r).

Hence [D,n°P(s)] is bounded iff §(s°?) € B%(R,). By hypothesis (iii) §(a°?) and
§2(a°P) = 6(6(a?)(1)°P) belong to B (Ry).

The combination of 1,2,3,4 prove that [| D}, 7(a)] and [| D|, [D, 7(a)]] is bounded for
all @ € A. One continues in this method, with increasingly complicated calculations,
to find 6™ (a%®) € B4(Ry) for m =1,...,2n implies 67, (w(a)) and &7, ([D,7(a)]) are
bounded for m = 1,...,n for alla € A O

Let (Ry,p,6) be an abstract K-cycle and A C R a C*-subalgebra. Define A :=
{a € AN R, |8™(aP) € B4(Ry) Vm € N} and Q5(A) :=< A,6(AP)(1) >C Ry.

Definition 2.7.57 Let (R, p,d) be an abstract K-cycle over the unital *-algebra A C
A. Then (Ry, p,8) is called a uniform positive Riemannian cycle over the C*-algebra
A if the following conditions are satisfied (1) A is norm dense in A, (2) Q5(A) = Ry
and (3) Ls:r — —62(r°P)(1) is positive definite.
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Remark 2.7.58 We remark that the index algebra By, of the GNS representation
(H,,mp, Ds) associated to a tracial Riemannian cycle (Ry,p, ) over the unital C*-
algebra A is the C*-algebra

Br, = C*({mP(r) |r € Ry, 8(r°?) € B4 (Ruw)}).

In particular for a uniform positive Riemannian cycle, from the proof of Theorem
2.7.56, By, = C*(m,(025(A))).

The following theorem establishes a construction function with domain a tracial
uniform positive Riemannian cycle (R, p, §) of a C*-algebra A and range an ungraded
Riemannian representation of A. It extends Theorem 2.7.10.

Theorem 2.7.59 [GNS Construction]

Let (Ry,p,08) be a uniform positive Riemannian cycle over a C*-algebra A such that
p € Ry is a faithful trace. Then the associated GNS representation (H,,m,, Ds) is an
ungraded Riemannian representation of the C*-algebra A such that

(i) [Ds,mp(a)] = —im,(6(a®P)(1)) for all a € A,
(i) 2py(mp(A)) = my(Qs(A)) = my(Ru),
(iii) Ap == p(Qs(A)) C H® := NypDom|Ds|™.

Proof Let D := Ds, 7 = m, and ¢ := 1,. We prove the representation is Rie-
mannian. Combining Theorem 2.7.36 and Corollary 2.7.32 leaves only the condi-
tion Qp,(my(A))” = R. From Lemma 2.7.30 and Corollary 2.7.32 [D, w(a)]¢(r) =
—it(6(a®P)(1)r). Let s°P € R'. Then

sP[D,m(a)]s(r) = —is°Pe(8(a®)(1)r)
—it(6(a®P)(1)rs)

= [D,m(@)]urs) € [D,n(a)]sPu(r)

—~
o
N

where (i) and (ii) used the tracial property. This implies [D,7(a)] € R". Hence
[D,m(a)] = —im(6(a®P)(1)) as t,(1) is a separating and cyclic vector for R”. This
proves statement (i) and statements (ii) and (iii) are immediate. As Qp(n(A)) =
7(Ry) then Qp(m(A)) is o-weak dense in 7(K) = K. O

Remark 2.7.60 We remark that one can amend the prefix ungraded in Theorem
2.7.38 by assuming the uniform positive Riemannian cycle is with parity as an abstract
K-cycle. Similarly one can add the prefix real by assuming the uniform positive
Riemannian cycle is real as an abstract K-cycle.

Example 2.7.61 Riemannian Manifold

Let X be an n-dimensional compact Riemannian manifold. We apply Theo-
rem 2.7.40 to the Riemannian representation (L?(X,A*X),m, d + d*) of the C*-
algebra C'(X), see Theorem 2.4.21 and Theorem 2.6.9. Let

C*™(Ql) := C*°(X, Cl(X)),
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A(w) :=/ gq(1, w)(z)+/det g dz,
X
where g, is the metric, and

8a(wP)(w) := o5 (—ild + d*, P (w)]ea ()

for all w,u € C%®(Cl) where ¢y : C®°(Cl) — L?(X, A*X) is the linear injection of
Theorem 2.3.4(v).

Theorem 2.7.62 Let C*®(Cl), A and 04 be as above. Then (C*(Cl), ), 4) de-
fines a Riemannian cycle on the smooth unital *-subalgebra C*(X) C L*°(X,Cl(X))
with associated GNS representation (L?(X,A*X),m,d + d*).

Proof By construction of the selfadjoint operator d+d* and Theorem 2.4.21 the
hypothesis of Theorem 2.7.52 is satisfied for A = C'(X). The triple (C*°(Cl), A, d4)
is exactly the triple constructed by Theorem 2.7.52. We note (d + d*)¢)(1) = 0.
Hence w = 0 in the statement of Theorem 2.7.52. a

We examine the explicit form of the symmetric C°°(X)-derivation §4 and the
metric sheer for this example.

We recall from the proof of Theorem 2.4.21 that
P (Flea(u) = a(uf),
P (df)ea(u) = ea(u - df),
—i[d + d*, mP (f)]ea(w) = m(df)ea(u) = ex(df - u)

for all f € C®°(X) and u € C*°(Cl). Hence §4 : C*°(Cl)°P? — Bém(x)(Cm(Cl))
restricted to zero- and one-forms is given by

53(f)(w) = uf,
8a(f)(u) = df - u
for all f € C*®(X) and u € C*®(Cl). In particular
5N = f,
da(f)(1) = df

for all f € C®(X). In a chart U with local tangent bundle basis {9;(z)};-; and
local cotangent bundle basis {dz;(z)}, for z € U we have

—i[d + d*, —im; P (df ) (z)]ex (u = —1) Zan z)dz;(z) - u(z) - dzj(z))

for all f € C*°(X) by the proof of Theorem 2.4.21(ii). Hence

5¢2i(.f)( )(z) := 64(0a(f)°P Zauf )dzi(z) - u(z) - dzj(z)
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and

82(f Za,Jf Ydai(z) - dzj(z Za”f ) = ~Af(z)

where A is the generalised Laplacian given by the Levi-Civita connection on X.
We note we could continue to higher powers of the symmetric C°°(X)-derivation
d¢ and demonstrate that (C*°(Cl), A, d4) infact defines a uniform positive Rie-
mannian cycle over C(X). The differentiability of functions on the manifold is
hence related to the domain of d + d* as a spatial implementer of a derivation
with domain in the commutant C*°(Cl)’. This is conceptually and in practical
calculations more appealing than dealing with the derivations implemented by
|d + d¥|.

Finally we consider the metric sheer Sy := S5, associated to the symmetric
C*(X)-derivation 4 as in Definition 2.7.37. We identify a restriction of the
metric sheer Sy : C%°(X) x C®(X) — 02, ,.(C®(X)). Let f,h € C®(X). Then
we have

Salf,h) = E(8a(h)(Ba(1)) + 8a(F)(DFa()(1) )
= L(dh - df + df - dh)

= —g(df, dh)

where g is the metric of the Riemannian manifold X.

2.8 Example - Riemannian Geometry of the Torus

We provide an example of a Riemannian geometry (Ay, H;, 7,, D, c)g where Ag is an
irrational rotation algebra.
2.8.1 The rotation algebra A,

The u,v be unitary operators such that vu = €*™yy for some § € R. Let F(Z?)
denote the set of double sequences {a,s} such that (r,s) € F where F is a finite
subset of Z2. Define the unital *-algebra

Fg:={a= z:a,’surfus | {ars} € F(Z%)}.

7,8

with product and involution
ab:= 3 . (zn,m ar_n,m)\m"bn,s_m) u"v®
a* = Y (N _s)u'v
where A := €2™%, Define a linear functional 7' : Fy — C by
7'(a) 1= ag
Lemma 2.8.1 Let Fy and 7' be as above. Then 7'(a*a) > 0 for all a # 0.

Proof Leta € Fy. Then'(a*a) = Zn m A " O A" Ay = Zn,m |an,—m|? >0
and is equal to zero iff |a, _m| =0 Vn,m which occurs iff a = 0. O
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Hence (a,b) = 7'(a*b) defines an inner product on Fy. Denote by H, the closure
of the pre-Hilbert space (Fy, (.,.)). Let a € Fy. Let 7(a) : Fy — Fy denote the linear
operator defined by m(a)b = ab for all b € Fj.

Lemma 2.8.2 The faithful representation 7 : Fy — L(Fy, Fy) exstends to a faithful
*_representation m, : Fy — B(H;).

Proof Define 7.(a)b = ab for the dense subset Fyp C H,. Clearly 7, (ab) = m-(a)7,(b)
and (m;(a*)b,c) = 7'((a*b)*c) = 7'(b*ac) = (b, m;(a)c) for all b,c € Fy. If m (a)b =0
for all b € Fy then ab = 0 for all b € Fy. Letting b = 1 € Fy proves a = 0. Hence
the proof is complete by density of Fy in H, once we demonstrate 7(a) is uni-
formly bounded in norm. This follows as l|7rT(a)b||3 = 7'((ab)*ad) < 7'(a*a)7T'(b*b) =
||a||3||b||3 by the Cauchy-Schwartz inequality. O

Let Ay be the closure of Fy in the uniform topology of B(H;). Let Aj be the
closure of Fy in the weak topology of B(H,).

Corollary 2.8.3 Let Fy and 7' be as above. Then
(i) Ag is a separable unital C*-algebra,
il) Af is a von Neumann algebra with separable pre-dual,

(

(iii) Fp is norm dense in Ag and o-weak dense in Ay,

iv) there exists a normal faithful trace state 7 on A) such that 7|p, =7,
0 [

(

v) (H;,m;) is the GNS representation of Ay associated to T.

Proof (i) and (ii) are immediate as Fy is countably generated. (iii) Follows from the
von Neumann density theorem. (iv) Define 7/(a) = (1,7, (a)1) for a € Aj. Normal-
ity is immediate from construction. The properties of state, trace, and faithfulness
are then immediate by o-weak density of Fy in Aj. (v) Immediate from the GNS
construction. O

Let 6 € Q. Then the spectrum Ag is isomorphic to the torus T2 and Ay ~pr C(T?)
[Ri2]. Hence, in terms of the non-commutative topological features, the rational and
integer case are equivalent.

Let & Q. Then Ay is called an irrational rotation algebra. We recall a simple
C*-algebra is a C*-algebra that has no proper two-sided closed ideals.

Theorem 2.8.4 The following statements are equivalent.
(1) 0 is irrational,
(ii) Ap is a simple C*-algebra,
(ili) 7 4s the unique normal faithful trace state on Ajp,
(

iv) Aj is isomorphic to the unique hyperfinite type Il factor.

Proof Theorem 1.10 and Corollary 1.16 [Bo). O
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We define two symmetric derivations on Aj by the linear extension and closure of
the maps 4y, 6, : Fy — Fy defined by the assignments

Ou(arsu™v®) 1= 2¢/mira, su™v®

0y (ar su™v®) 1= 2y/Tisay su v,
Note that 4,(1) = 6,(1) = 0.

Lemma 2.8.5 Leta = u,v and (4y,7,dq) be as above. Then (Aj,T,8,) and (4}, T,8,)
are inner Riemannian cycles over the unital C*-algebra Ag.

Proof We check the conditions of Definition 2.7.9. A simple calculation reveals 6,
and &, are symmetric derivations. As Fyp € Domd: N Domdj, for all 4,5 € N, then the
derivations have o-weak dense domains by Corollary 2.8.3(iii). Let a € Fy. Clearly
(6a(a))o,0 = 0 for o = u,v. Hence 7(d4(a)) = 0 for o = u,v. Let a € Fy with support
f € F(Z?%. Let k = sup(; sy (4, 5)]]. Then [|63*(a)|| < k™|laf| for all m € N and
a = u,v. Hence Fy contains analytic elements for §, and §,. Hence AgNFy = Fy is a
subset of analytic elements norm dense in Ag. Finally Q4(Fy) = Fy is o-weak dense
in Aj. O

Let S(Z?) denote the double sequences of rapid decay. Define

Ag:={a= Zamurvs | {ars} € S(Z2)}.

s

Lemma 2.8.6 Let Ay be as above. Then Ay is a unital *-algebra such that
(i) Ag is a Frechet pre-C*-algebra of Ag
(i) Ap=4ynN ( N Domd&") N (ﬂm Domdan), and

(iii) Ag is o-weak dense in Aj.

Proof Define the seminorms pJ'(a) := [|6™(a)|| for m = 0,1,2, ..., a = u, v.

(i) Let @ = 7,  arsu"v® be of rapid decay. Then for each k € N there ex-
ists a constant Cp > 0 and ny € N such that |a,s] < Cp(1 + || + |s|)~* for
all |r|,|s| > ng. Let m € NU {0}. Consider 6™(a) = >orsTarsu"v®.  Then
162 (@)l < Cmia 3o IrI™ (A + ||+ |S|)_m_2+zl'r|,|s|§nm+2 lars| < co. Similarly for
0. Hence a € (ﬁm Doméﬂ') N (mm Domé,’f).

Let b € A} such that that br,s is not of rapid decay. Then there exists & such that
[rkbr.s| > || for all [r| > 7y or |s¥b,,| > |s| for all |s| > so. Hence pk(b) or pk(b) is
not finite. Then b ¢ ( N Domd?) 01 (N Domd7r).

(i) Result (ii) implies Ay is a *-algebra closed in the metrisable locally con-
vex topology generated by the countable family of seminorms p and in the holo-
morphic functional calculus. Let a € Ag\ Fy. Let Fy := {(r,s) € Z2||as,| >
(1+|s| + |r])=*=2}. Then Fy is a finite subset of Z? as a is of rapid decay. Define
ag = Z(r,s)EFk ar,survs S Fg. Then Ha — ak|| < Z(r,s)ng lar,sl < E(r,s)ng(l + Isl +
Ir)) 752 < M max(, sy¢p, (1+|s|+|r])~* for a constant M > 0. Hence limy ||a — az|| =
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0 by the condition a & Fy. The inclusion Fy C Ay then implies Ay is norm dense in
Ag.
(iii) follows from Fy C A and Corollary 2.8.3(iii). a

2.8.2 A Riemannian Cycle on Ay

Let A be a unital *-algebra. Define M2(A) := A Q® M>(C). Then M3(A) is a unital
*-algebra. We canonically identify A with A ® Iz where I is the identity of M5(C).
Let T'r denote the normalised A-valued matrix trace on My(A). We recall that My (C)
has a basis given by the Pauli-sigma matrices

10 01 0o i 1 0
an = ,0'= g9 = ,= .
1o 1 S T T L PR T lo -1

Define the linear functional p : Ma(A4y) — C by
p(E) :=71oTr(E) YE € My(Ay).
Define the opposite representation m°P : My(Aj) — L(M,(Ap), M2(Aj)) by
E®(F)=FE YE,F e M(Al).
Define linear maps dy, d, : Ma(Ag) = Ms(Ap) by
Ay (D250 @i0i) = =g ulai)oi
dy (3420 @i0i) = ;-0 0v(ai)oi.

Formally we may consider these maps as d, = 6, ® I» and d, = §, ® I,. Then define
the linear map & : M2(Ap)°P — L(Ma2(Ayg), Ma(Ap)) by

(E°P)(F) := 01Fdy(E) + 02 Fd,(E)
for E, F € M5(Ap). We note that
§(a’®)(1) = bu(a)or + by (a)o2
for all a € Ay.

Lemma 2.8.7 Let Ay, p and § be as above. Then (Ms(Ay),p,d) is an abstract K-
cycle over Ag such that §™(EP) € BY (M2(Ap)) Ym €N VE € My(Ap).

Proof We check the conditions of Definition 2.7.29. (1) May(Ap) is a unital o-
weak dense *-subalgebra of the von Neumann algebra My(Aj) such that Ay ® I C
M, (Ag) by Lemma 2.8.6. Moreover p is a normal faithful trace state on M(Ajy) by
construction.

(2) Let E = ¥ ,a;0;i € Ma(Ag). Then p(§(E°P)(1)) = 57(d4(a1) + 6y(a1)) =
$7(8u(a1)) + 37(64(a1)) = 0.
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(3) It is an exercise to check that do(EF) = Edo(F)+do(E)F for E, F € My(Ay)
and o = u,v. Hence
J(Ei)pEgp)(F) = Uleu(EgEl) + O'QFdU(EzEl)
ES UlFEzdu(El) + JzFEgdv(El) + Uleu(Ez)El + O'Qde(EQ)El
= O(E{")(Ey"F) + E\P6(Ey")(F).
We have §(E°P)(aoy) = 01a0¢8,(E) + 02a006,(E) = aog(0164(F) + 026,(E)) =

aood(E°P)(1) as [o1,00] = 0 = [03,00]. This has shown § is an Ag-derivation. We
have

da(E*) e da(z a;ro'i) = Z Ja(a;)ai = Z‘sa(ai)*ai = (Z (5(1(0:1;)0'1;)* = da(E)*

for all E € M,(Ap) and o = u,v. Hence

p((o1Fidy(E)* + 03 F1dy(E)*)* Fy)

p(6((E°P)")(F1)"F2) = p(

p(du(E)Fflez + dU(E)FfO'QFg)
(
(

—
o,
—

P Fl*(O'ngdu(E) + 0'2F2dv(E)))
p(FTO(EP)(F2))

where we used the tracial property of p at (i). Hence 4 is p-adjointable and symmetric.

(4) Let E = 3. a,0; € My(Ap). Then d*d}(E) € Ma(Ag) for all m,n € N as
a; € Ag. Now 6(E°P)(F) = 01Fd,(E) + 02Fd,(E) is clearly a bounded operation as
dy(E),d,(E) € My(Ag). We have

(s((s(F}Op)(])Op)(F’) = m qu(n‘ldu(E) + Hgdv(E)) + cTdeU((Tldu(E) + CTQdU(E))
= 01F(01d}(E) + 02dydy(E)) + 02F(01dydy(E) + 09d2(E))
for all E, F € My(Ag). Hence 62( E°P) is a bounded operator as d2(E), d2(E), d,d,(E) =
dydy(E) € Ms(Ag). The proof E°° € Domd™ for all m € N follows from induction.
We note from above that
(52(E0p)(1) = Ul(Ulda(E) + o9d,d, (E)) + Uz(O‘ldUdu(E) + Ugd%(E))
= di(E) + d(E).

Hence 62((-)°P)(1) is the natural positive Laplacian on Mj(Ag). a

Theorem 2.8.8 Let Ag, p and 0 be as above. Then (Ma(Ag),p,08) is a uniform
positive Riemannian cycle over the C*-algebra Ay.

Proof Follows from Lemma 2.8.7 with the exception of the condition Q5(A;) =
M3(Ayp). This condition follows from [C, Section VI.3 Lemma 12] with the identifica-
tion §(a?)(1) = dyu(a)oy + 6,(a)os. O

Let (Hp, 7, Ds) be the GNS representation associated to the Riemannian cycle
(Ms(Ayp), p,6) over Ag.



144 CHAPTER 2. RIEMANNIAN NON-COMMUTATIVE GEOMETRY

Corollary 2.8.9 Let (Ms(Ap),p,d) be the Riemannian cycle over the C*-algebra Ag
as above. Then (H,,m,, Ds) is an irreducible Riemannian representation of the C*-
algebra Ay such that

(i) [Ds,mp(a)] = —i(m,(du(a))or + m,(8y(a))o2) for all a € Ay,
(if) Qps(me(Ag)) = mp(Ma(Ap)),
(iii) A, := 1p(Ma(Ag)) = HY® := Ny Dom|Ds|™.

Proof Let::=1,and D := D;. Theresult follows from Theorem 2.8.8 and Theorem
2.7.59 as p is a trace, with the exceptions of irreducibility and HZ° C A,. Let p be
a central projection in Mp(Aj). Let § € Q. Then [D,p] = 0 implies p € Ay C Ayp.
However Ay has no proper central projections. Let 6 ¢ Q. Then M3(Ajp) is a factor.
Hence there exist no proper central projections. This proves the representation is
base irreducible in the sense of Definition 1.5.17.

Let E =Y, a'0; € My(Ag). Consider ||o(E )||D =||¢ ( )| + | De(E)||. Notice that

() l(B)I* = p(B*E) = 32, 37((a")*a") = 32, s lat,s|*. Moreover (*¥)
|ID(B)||* = p(B*D*(E)) = —p(E*(d3(E) + dy(E)))

by definition of D and the proof of Lemma 2.8.7. Now d2(E) = Y, 2(a;)o; and
d2(E) =Y, 6%(as)oi. Hence

Tr(E*(d%(E) + d2(B 22( )762(a:) + (o) 62 (as))
Then (**¥)
~p(B*(d3(E) + dy(E))) = —5 355 7((a") 6 (as) + (a¥)*63(as))

— 5 2i((a")*62(a:))o,0 + ((a*)* 82 (as))o,0
= 27rzr,sﬂ-(r + 5%)|ars|?

Il

as by (a’) = —4rw W r?al uv® and &y (a Y= —4r dorsi$ 2a% ;u"v®. Hence if E(n) is a
sequence in My(Ap) such that lim, , ||«(E(p) — E(n))||p =0 ‘then la(p )r,s —a(n)i | —
0 and (r? + 32)1/2|a(p)£’s a(n)i | = 0 by (¥) (**) and (***) for all i =1,2,3,4 and
r,s € Z%. One continues by induction on the graph norms |[¢(E)||pm = ||t(E)|| +
|D™(E)|| to find that that ||.(E(p) — E(n))| pm —> 0 implies |a(p)% , — a(n)i | =0
and (r2 4 s2)™2|a(p )i, —a(n)i] — 0 for all i = 1,2,3,4 and 1,5 € Z2. Hence,
if «(E(n)) is Cauchy in the graph norms ||. ||Dm for all m € NU {0} then E(n) is

Cauchy in the seminorms of rapid decay, (r* + s%)™2|a*(p), s — a(n n)s | — 0 for all
r,s € Z? and m € NU {0}. Hence, by closure of Ay in the seminorms of rapid decay,
a’(n) = a* € Ag for all n € N,i = 1,2,3,4. Hence E(n) - E € My(Aj) where
E = Y, d‘0;. In summary, for any Cauchy sequence ((E(n)) C ¢(Ma(Ap)) in the
locally convex topology determined by the graph norms ||.|| ;m for all m € N U {0}
there exists £ € My (Ag) such that t(E(n)) — +(E). Hence Hg°, which is the closure of
the invariant core Ms(Ay) in the locally convex topology of graph norms, is contained
in (Ma(Ag)). O



2.8. EXAMPLE - RIEMANNIAN GEOMETRY OF THE TORUS 145

2.8.3 The Riemannian Geometry of A,.

Let @ be irrational. The following lemmas will enable us to prove the irrational
rotation C*-algebra Ay satisfies the axioms of compact Riemannian geometry. They
are basic modifications of the statements in [C3] and establish the GNS representation
(H,,mp, Ds) of the Riemannian cycle (Mz(Ay), p, §) over Ag is 2-dimensional.

Lemma 2.8.10 Let (H,, 7,5, D) and Ay be as above and f(z) = (1+22)~L. Then
(i) f(Ds) € L1,00, and
(ii) Try(af(Dg)) =7(a) for alla € Ap and all w € D;.

Proof Let A:= Ay, D := Ds and ¢, := 1. Let E € M,(A). Consider D%.(E) =
—((8401 + 6409)2E) = «(—(62I, + 62L,)E). The spectrum of D? is hence reduced
to the spectrum of A = —42 — §2. We follow [Vr, 4]. It is easily computed that,
for each pair (r,s) € Z, A has discrete eigenvalues 47w (r? + s2) with eigenelements
cru"v® + cou” v + c3u"v ™8 + cquT"v™® for constants ¢y, cg, c3,cs. Note that the zero
value has eigenspace spanned by 1. Hence A~1, defined as 0 on the finite dimensional
kernel of A, is compact as it has discrete eigenvalues of multiplicity 4 with limit point
zero. Then D=2, defined as zero on the finite dimensional kernel of D2, has the same
discrete eigenvalues with multiplicity 16. Let Ay be the eigenvalues of D2 listed
in decreasing order with multiplicity. Let Sk be the circle of radius R. Let Ng be
the number of eigenvalues, listed with multiplicity, such that 72 + s2 < R2. Then
4R? < Ng < 4(2R)%. Hence 2log(R) + 4log(2) < log(Ng) < 2log(R) + 8log(2).
Then

llmN_NX) ﬁﬁ ZN )\N = 4llmR_)oo Qlol—gR ETZ-I—-SZSRz (471')_1(’)"2 + 32)—1
= (27[')_1 llmR_;oo m‘ Er2+.q2§R2 (7'2 + 82)_1
(2m)~12r =1

by the calculation in [Vr, 4]. Hence D2 € L o and Tr,(D%) =1 for all w € D,.
As (1+2%) ' —27% = (1 4+ 2%)72272 then f(D) € Ly, by the spectral theorem.
Moreover f(D) ~ D=2 € L; by the Holder inequality for L, «-spaces [S]. Hence
Tr,(aD™2?) = Try(af(D)) for all a € A and w € D;. Let k(a) := Try(af(D)) for
all a € A and some w € D,. Then k is a continuous trace on A by [CGS] and Lemma
L.7.14. We now show x = 7. Consider k(u"v*) = r(v*vu™v®) = r(v*u v*tl) =
2™ k(v yuTv®) = 2™ i (uTv*). Hence k(u"v*)(1 — ™) = 0. However, e2mi07 £ 1
for all » € Z \ {0} as 0 is irrational. Hence x(u"v®) = 0 for all » € Z \ {0} and
s € Z. Similarly x(u®v®) = 0 for all s € Z\ {0} and r € Z. Let a € Fyp. Then
k(a) = H(Z(m)ef arsu'v®) = Z(r,s)ef arsk(u"v®) = agpk(l) = agp. Hence k = 7
restricted to Fy and k = 7 on A by continuity. a

The other factor to dimension is the orientation. There exists a Hochschild cycle
¢ € Z(Ap) given by [c3]

1
ci= -—_(v_lu_1 uev—-—ulvleue u)
8mi

that provides a volume form.
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Lemma 2.8.11 Let ¢ € Zy(Ap) be as above. Then m,(c) = o3.

Proof Let D := Dsand m, := . Then 7(u)*[D,n(u)] = 2/mioy and 7(v)*[D, 7 (v)] =
2y/mioy. Hence m(v)*n(u)[D, 7(u)][D, 7(v)]—m(u)*m (v )[D m(0)][D; ()] =—47r0102+
droq0q = 8mios. d

Theorem 2.8.12 Let Ay be the irrational rotation algebra as above. Then Ay satis-
fies the azioms of compact Riemannian geometry.

Proof (R1,R2) Follow from Corollary 2.8.3, Corollary 2.8.9 and Lemma 2.8.11.
We note that I' € U(H,) defined densely by I'E = m,(c)m,(c)°PE = o03FE03 for all
E € M>(Ay) is a real grading element. (R3) Immediate as Aj is a factor. (R4) Follows
as A, = 1(Mp(Ap)) is a rank 4 free Ayp-module such that A, = HZ° by Corollary 2.8.9.
(R5) Lemma 2.8.10. (R6) Lemma 2.8.11. (R7) Lemma 2.8.7 and Remark 2.7.58
establish that the index algebra B = M2(Ap). Hence Ay ~pr B by Example 2.1.17.
The result follows as the C*-algebra Ay is Poincaré dual to itself [C3]. o

Corollary 2.8.13 The information (Ag, H,, ,, Ds, c) constitutes a compact Rieman-
nian sping geometry.

Proof Immediate from Theorem 2.8.12 and Corollary 2.8.9(ii) as M2(Ag) ~nm As.
O

As a final remark we compute the restriction of the metric sheer S5 for the sym-
metric Ap-derivation § as defined in Definition 2.7.37. Let a,b € Ay. Then we denote
by

9s(da, db) := —%(5(a°p)(1)5(b°p)(1) + 6(6°P)(1)6(a")(1))
the ‘commutative metric’,

Theorem 2.8.14 Let (Ag, H,, 7y, Dj,c) be the compact Riemannian geometry of the
irrational rotation C*-algebra as above. Then

SJ((I, b) . _gﬁ(dav db) + 05(0'7 b)

where

O, 8) = 500 ([6u(a), Bu(b)] + [50(), 5, (8)]) + Fios ([6u(0), 80 (0] = (3 (@), 8u(B)])-
for all a,b € Ay.

Proof We have 6(b°P)(6(a°P)(1)) = o1(016u(a) + 0204(a))du(b) + o2(016u(a) +
020,(a))dy(b). The commutation factors arise by commuting d,(b) through ég(a)
for o, 8 = u,v. a

Let a = u and b = v. Then gs5(du,dv) = —2wio3[u,v]). Hence g5(du, dv) # 0 for
the irrational rotation algebra. We compute the metric sheer. From §,(u) = 2/,
dp(u) = 0, 6,(v) —Oandd()—2fszeobta1n205(ab)=wg[(5 ( ),85(B)] =
i03[2y/Tiu, 2¢/miv] = i(2y/7i)%03[u,v] = —4mios[u,v]. Let a,b = u or a,b = v. Then
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9s(du,du) = =21 = g5(dv,dv) and Cs(u,u) = 0 = Cs(v,v). Hence the restriction of
the metric sheer provides a bilinear form

5'5 : Ag X Ag - Fp(Qg(.Ag))

such that
S5(u,v) = 2mwios[u, v] — 2wios[u,v] =0

and
Ss(u, u) = S5(v,v) = 2.



Appendix A

A.1 A Result used for the Fundamental Class

Let (H,w,D) be a base representation of a C*-algebra A. Let A. be the norm
dense ideal of finite supported elements in A of Theorem 1.4.2. Then we defined
p-integrability of a base representation in Definition 1.7.7 and Definition 1.9.1 as the
condition m(a)(1+ D?)~P/2 € Ly for all a € A,. In this small section we shall prove
the following result.

Theorem A.1.1 Let p > 1. Let (H,n,D) be a base representation of a C*-algebra
A such that w(a)(1 + D?)"P/2 € Ly« for all a € A.. Then w(a)(D —X)~! € K(H)
foralla € A and A€ C\ R

The proof consists of the following propositions and lemmas.

Lemma A.1.2 Let I be a two-sided *-ideal of K(H). Let D : DomD — H be
selfadjoint and S € B(H). Then the following statements are equivalent

() S(D+i)tel,
(i) S(D—N"telforalAeC\R

Proof (ii) = (i) is obvious. (i) = (ii) Let A € C\ R By the spectral theorem
(D —))~! is bounded. Moreover (D —\)"! = (D +i)~ 1+ (i+A) (D +i)"1(D - )7L
The result follows from left multiplication by S and the ideal properties of I. a

Proposition A.1.3 Let p > 0. Let S(1 + D?)7?/2 € K(H) where S € B(H) and
D:DomD — H. Then S(D—))"! € K(H) for all A€ C\R.

Proof Let n be the least integer greater than p. By hypothesis S(1 + D?)™" =
S(1+ D?)~?(1 + D?)~("7) is compact. Hence S(D —4)™"(D +1i)™™ = S(1+ D?)™"
is compact. Now (D —i)(D +i)™! = 1+ 2i(D +4)~! € B(H) by the proof of the
Lemma A.1.2. Hence (D —4)*(D + i)™ = ((D —i)(D 4+ i)~1)" is bounded and
S(1 + D?)™(D — §)"(D +4)™™ = S(D + 1)™?" is compact. By multiplication by
phases |S||D + i|~2" is compact. The square root of a compact operator is compact
hence ||S||D+i|™"| = +/|S||D + i|~?*|S| is compact. Multiplication by phases implies
|S||D + 4|~™ is compact. The square root of a compact operator is compact hence
||S||D + 4|=™?| = +/|S[|D +14|~"|5] is compact. Multiplication by phases implies
|S||D + i|~™? is compact. We continue by induction to the smallest m such that

148
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2™ > n. Then |S||D +i| "% is compact. Multiplication on the right by the bounded
operator [D + 4§|~'*2m implies |S||D + i|~! is compact. Multiplication by phases
provides S(D +4)~! is compact. The result follows from Lemma A.1.2. a

The proof of Theorem A.1.1 now follows from Proposition A.1.3 and norm density
of A, in A.
A.2 Relation of the Fundamental and Signature Classes

A.2.1 Basic Definitions
We recall the Clifford algebra C; is defined by
Ci={M +hAa| A, X2 €EC,AZ =1}

with a Zp-grading 3 : Ay + hAs = Ay — hXs. A concrete representation of C) in
B(C?) = M,(C), is provided by

RS R |
0 X 10 0 -1 0 -1

Note that 3 is implemented by the grading element

=[o )

Let A be a unital C*-algebra. Define

Let (H,F) be the pair of a concrete representation (H,7) of A and an operator
F € B(H) such that F — F* , F? — 1,[F,n(a)] € K(H). Then (H®C?,FQ F,,1®V)
defines a Kasparov A ® C;-C-bimodule. By default (H ® C?>, F® F.,1® V) defines a
Kasparov A-C-bimodule by the inclusion A -+ A®1 C AR C.

A.2.2 The Signature Class

Let (H,,m,, D) be areal oriented n-dimensional Riemannian representation of a unital
C*-algebra A with volume form m,(c). We recall there exists a K-homology class
M= [(H,, Fp,T)] € KK(A,C) called the fundamental class of this representation,
see Remark 2.5.17. As a result of Definition 2.5.11 a volume form n(c) provides a
grading element in the sense of Definition 2.4.10 when 7 is even and a trivial grading
when 7 is odd, see Theorem 2.5.13.

Definition A.2.1 Let (H,, 7y, D) be an oriented n-dimensional Riemannian repre-
sentation of a C*-algebra A with volume form m,(c). Then define the signature class
of € KK(A,C) by of := [(H,, D,7,(c))] when n is even and o° := [(H, ® C2,D ®
Fe,1® V)] when n is odd.
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Remark A.2.2 That the signature class ¢” is independent of the choice of volume
form for this representation is immediate from Proposition 2.5.20(i).

Theorem A.2.3 Let (H,,m,, D) be a real oriented n-dimensional Riemannian rep-
resentation of a C*-algebra A. Then o? = (1 + (n mod 2))A’,.

The proof shall consist of the following two propositions.

Proposition A.2.4 Let n be odd. Then o” =2)?,.

Proof Leta € A Let my(c) =W and 7, = 7. Then [W,m(a)] = 0. Let I be a real
grading element. Then {I', W} = 0. Hence (H,, W,T') with representation 7 forms a
degenerate Kasparov A-C-bimodule.

01
Let h = L o in the concrete representation of C; into M2(C). From degen-

eracy [(H, ® C2,W ® h,T’ ® 1)] is the identity of KK(A,C). Hence
[(H,®C?, Fp®F,10V)| = [(H,®C*, Fp® F,1®V)|®[(H,® C*, W ®h, T ®1)].
Tt is more convenient to write the RHS in matrix form as [(H, ® C*, F,U)] where

0
-1

0 iFp 0 0
—iF 0O O

Fo | D O U =
0 0 0o w

o o0 w 0

o o o
o H o o
H o o ©

with representation p of a € A given by diag(n(a)). Let S; = iFpcost+ Wsint and
S; = W cost+iFpsint. Now consider the norm continuous map [0, 5] — B(H, ® C*)
given by

0 S 0 0
S 0 0 0
Fe=|"" \
o 0 0 &

0 0 S 0

Clearly we have Fo = F with F; — Ff, (%, p(a)] € K(H,®C*) and {F;,U} = 0. One
checks that F2 — 1 € K(H, ® C*) using S;S; = F3cos?t + sin’¢ as [W, Fp] = 0.
Similarly for S;. The result is we have an operator homotopy from (H ,®CY F,U) to
(H,9C,WQRh1V)a (H,®C?, Fp ® F;,I' ® 1) where the first direct summand
is degenerate. Then

[(Hp@czaFD®FC’1®V)] = [(HP®C27FD®F07F®1)] = [(HPaFD’F)]@[(HmFDaF)]

by a trivial homotopy of F; to 1 since the grading I' ® 1 is independent of F.. d
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Proposition A.2.5 Let n be even. Then o? = N? .

Proof Let m(c) = W. Then [I',W] = 0 and {I', D} = 0 = {W, D}. Hence define
the Kasparov A-C-bimodule (Hjy, Fy, U;) with representation my = m, by

Hy=H,, F;=Fp, Uy =cos(t)T" +sin(t)W

for t € [0, §]. This provides an operator homotopy between (H,, Fp,T') and (H,, Fp, W).
O
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