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Abstract

Artif,cial neural networks (ANNs), trained to make short term forecasts of algal
blooms in lakes and rivers, are potentially useful decision making tools for the

operational management of eutrophication. This thesis addresses the question of
whether a standardised, generic ANN model representation can be developed to
achieve this goal. It is argued that four requirements need to be addressed; i) com-
patibility of models with existing water quality monitoring regimes, ii) stability
and repeatability of training outcomes, iii) realistic and meaningful estimates of
model performance and iv) explanation of predictions.

ANN model inputs were represented as summary statistics of sliding time win-
dows. This approach was shown to increase the compatibility of typical time-
series ANN model structures with datasets compromised by missing values and

uneven sampling intervals. To improve stability, models were represented as an

ensemble of ANNs trained on bootstrap samples of data (ie bagging (Breiman,

1994)). It was shown that the average prediction of the bagging ensemble was

relatively unaffected by variance of the individual member models. Validation set

representation was maximised by use of leave-k-out methods. Comparative error
measures were devised to illustrate model performance characteristics relative to
"naive" controls. A sensitivity analysis through time approach was utilised to
explain the relative importance of input variables and to account complex interac-
tions between variables.

Training data was available from six sites including Lake Biwa (Japan), Burrin-
juck Dam (NSW Australia), Darling River (NSW, Australia), Lake Kasumigaura
(Japan), Myponga Reservoir (SA, Australia) and Lake Soyang (South Korea).
These datasets were found to differ significantly from each other in terms of
environmental characteristics and data availability. Models were developed to
make one and two week forecasts. Predicted variables included chlorophyll a

concentration and cell counts of the three most abundant algal species for each

dataset. Experimental results showed that site/output specific input layers lead to
better performance than site/output generic models. Furthermore, it is evident that
ANNs capable of non-linear processing generalise better over local (short term)
time scales, whereas perceptron models constrained to linear decision boundaries
perform better over global (long term) scales.
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Chapter 1

Introduction

Accelerated eutrophication of freshwater lakes and rivers, as a result of human

activity, leads to increased frequency and severity of algal blooms and a succession

in algal dominance towards potentially toxic cyanobacteria (Young et a1., 1996).

Algal blooms adversely affect the value of freshwaters as a natural resource by

increasing ffeatment costs for drinking water production, reducing recreational

amenity, causing adverse environmental effects such as reduced biodiversity and

causing economic loss to aquacultural and agricultural activities as a result of
toxin release by blue-green algae (Senate Standing Committee on Environment

Recreation and the Arts (Aust.), 1993). Furthermore, cyanotoxins have been

identif,ed as a direct cause of human mortality (Azevedo et al., 2002) and longer

term health risks (Freitas de Magalhõs et al., 2001; Ueno et al., 1996; Ueno

and Nagata, 7997). The growing awareness of the potential dangers to public

health posed by cyanotoxins has prompted calls to relieve the emphasis on water

treatment facilities by development of effective in-lake management tactics for
control of algal blooms (Burch and Nicholson, 2000).

Models that predict variables associated with eutrophication are useful decision

making tools for the development of management responses. They may be used

to set goals for strategies to limit nutrient loading (for example, Vollenweider
(1970)), or to carry out scenario analyses by which lake responses to competing

proposals are compared (Ferguson,7997). Also, time-series models can provide

real-time forecasts of relevant variables to ensure the correct timing of a variety

of tactical responses, such as those listed in appendix A.

French and Recknagel (1994), Recknagel et al. (1991), Maier et al. (1998) and

others suggested that artificial neural networks (ANNs) be used as an alternative

to classical empirical and deterministic approaches for modelling eutrophication
variables. ANNs have captured the interest of ecologists because of their proper-

ties as "universal approximators" (Hornik, 1993) - that is, their ability to "learn"

models without the a-priorl assumptions or simplif,cations of existing empirical

and deterministic approaches (Lae et aI., 1999; Lek and Guégan, 1999). This

1
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property promises a purely empirical modelling method that captures the real-
ism of complex deterministic models without the headaches of formalising and
parameterising process equations.

In practice, ANNs have been shown to promise equivalent or superior perfor-
mance to traditional modelling approaches for a wide range of modelling prob-
lems (Lek and Guégan, 7999). Specifically, Recknagel et al. (1997) and Reck-
nagel and'Wilson (2000) showed that ANNs applied to time-series modelling of
eutrophication variables, such as algal abundance, can outperform existing empir-
ical and deterministic models. Thus, it is clear that the power of ANNs as model
approximators is sufficient to meet the requirements of operational or strategic
decision making tools. However, Maier and Dandy (2000) points out that, in
practice, ANN models and methods are being applied in an ad-hoc manner leading
to sub-optimal performance, diff,culties in making reasonable comparisons and,
most importantly, confusion amongst potential users.

The general thrust of this thesis is to attempt to answer the question; is it possible
to develop standardised or generic ANN model representations and methodolo-
gies for forecasting phytoplankton abundance that guarantee optimum predictive
performance, repeatability and ease of use? Since the ANN development process
model consists of a number of (possible interacting) steps (Maier and Dandy,
2000), the answer to such a question depends on identification and resolution of
not one, but a range of issues. The principle issues identif,ed are as follows;

o Database Compatibility

Being empirical in nature, ANN modelling requires long (5-20 years) time-
series of relevant variables for training purposes. Database compatibility
refers to the problem of selecting appropriate input and output variables for
the ANN model from these time-series. It is argued that two issues need to
be addressed. Firstly, there is the problem of selecting a subset of input vari-
ables that have causative and/or correlative links with the output variables.
A review of six datasets (chapter 3) shows that each study site has a unique
set of monitored variables, which means that the task of input selection
must be addressed for each new model application. This thesis compares
and contrasts three approaches to this task; a generic model comprised of
the set of variables common to all datasets (chapter 5), a forward selection
approach and a backwards elimination approach based on data strip mining
(Embrechts et aL,2OOl) (chapter 6).

Secondly, there is the problem of modelling links between past, present
and future states of the system. To be useful in a tactical decision support
role ANN models should make forecøsls rather than same-day predictions
(Lee et aL,2003), meaning that they must define links between present and
future states of the system by using time delay connections. However, it
is shown in the literature review (chapter 2) and the analysis of six datasets
(chapter 3) that typical monitoring data are rarely well ordered sequences of
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observations - sampling is usually irregular and observations are frequently
missing. The usual approach to dealing with this issue is to interpolate a

large number of synthetic observations between the actual sample dates for
each variable.

It is proposed that modelled variables be represented not as values at dis-
crete dates, but as the summary statistic of a sliding window in time. It is
shown that such a representation is capable of approximating forecasting
models in the context of uninterpolated raw datasets. It is argued that, as

a means of ensuring compatibility between time-series ANN models and

typical datasets, the input-window representation has many advantages over
interpolation of data. Also, such a representation provides scope for further
exploration of alternative window summary approaches.

o Model Stability

While reasonable model approximationby ANNs on training sets is shown
to be a straightforward task, ensuring optimum generalisation to indepen-
dent population data is somewhat more difficult. Usually, this is carried
out by tuning some determinant of ANN fitting power, such as the hidden
layer size or training time, by means of cross-validation. However, Breiman
(1996b) points out that ANNs belong to a class of inference methods that
exhibit significant instability even when regularised in this way.

It is proposed that, as suggested by Breiman (1994), stabilisation is achieved

by representing the model as an ensemble of many ANNs trained on boot-
strap samples of data (ie bootstrap aggregation or bagging). Such a repre-
sentation is hypothesised to have the effect of "cancelling out" uncorrelated,
effoneous predictions and emphasising the correlated, correct predictions
by member models of the ensemble. It is shown in chapter 4 that bagging
significantly improves modelling outcomes by reducing prediction error and

reducing sensitivity of performance to overfitting.

o Performance Estimation

Accurate performance estimation is required to measure the effect of changes

to the model representation and/or methodology and to determine the suit-
ability of the model for its intended purpose. However, it is shown (chapter

2) that, in practice, performance estimation may be compromised in three

ways; poor representation of independent validation sets, the use of vali-
dation data for model selection and contamination of time-series causing
models to have unauthorised access to information from the future relative
to the current forecast period.

It is proposed that validation methods based on resampling (so calIed rota-
tion estimarors) allow use of the entire sample for model performance esti-
mation without seriously limiting training set representation. Furthermore,
it is proposed that, when used in combination with bagging, there is no need
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to use validation data in the process of model selection. Grouping validation
samples into discrete time periods and imposing a hold-out period following
each validation block, is suggested as a means to avoid contamination of
time-series information between training anci vaiiciation sets. Experiments
with two different types of rotation estimators - the leave-one-out bootstrap
(L1OB) and 20-fold blocked cross-validation (CV) - show that, in the con-
text of a time-series model, the time lag between training and validation
clata has a significant affect on performance estimation outcomes.

o Tlanspareney of Predictions

There is concern amongst ecologists regarding the black-boxîature of ANNs
- that is, the lack of accompanying explanations with predictions. Trans-
parency of the model, as well as allowing knowledge discovery, enables
further validation that the model is making reasonable inferences from the
data. Sensitivity analysis is most commonly used to determine the relative
importance of input variables. However, it is argued (chapter 2) that existing
approaches to sensitivity analysis do not account for complex interactions
between input variables and do not consider the model's characteristics
relative to the entire model input-space.

To this end, a sensitivity analysis through time technique is proposed that
takes account of the following assumptions with regards to learned models;

- Inputs are likely to have non-linear relationships with output variables.

- Inputs may have complex interactions with other input variables with
respect to relationships with output variables.

- ANNs are inherently unreliable when asked to make extrapolations
(Geman et a1.,7992).

While none of the ideas proposed are entirely original on their own, together they
represent a new approach to computational modelling based on typical environ-
mental time-series. This thesis presents a validation of this approach for a broad
range of data due to the kindness of a number of scientists and water resource
managers in donating many years of water quality monitoring data and algal
cell counts. Models are developed for a total of six sites including Burrinjuck
Dam, Myponga Reservoir and the Darling River in Australia, Lakes Biwa and
Kasumigaura in Japan and Lake Soyang in South Korea.

Organisation of Thesis

Chapter 2 introduces principles of ANN knowledge representation, supervised
learning and model development. A selection of published applications of ANNs
to time-series modelling of algal abundance is reviewed. Key issues affecting
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the development of a generic model representations are identified. Resolutions to

these issues are proposed.

Chapter 3 reviews the six datasets available for this study in terms of situa-

tion, climate, morphometry, water quality and data availability. Two models are

proposed as starting points for the modelling work conducted for this thesis -
a generic model comprised of commonly available variables and a site specific

model unique to each dataset.

Chapter 4 presents results regarding the the effect of a number of ANN "meta-
parameters" on model inference properties. Specifically, this chapter describes the

effect of training algorithm, hidden layer configuration, stopping error of training
and model aggregation through bagging (Breiman, 1994) on approximation and

generalisation characteristics.

Chapter 5 comprehensively validates the generic ANN model identified in chap-

ter 3 for all six datasets at predicting a total of 21 output variables taking into
account the findings of chapter 4. A number of standardised and comparative error
measures are introduced for performing meaningful analysis of the predictive
performance of models. Finally, results of a sensitivity analysis are presented.

Chapter 6 investigates two approaches to identif,cation of optimum site specific

models. Also, an investigation is carried out to determine the interaction between

the validation method, the input layer type and the non-linear processing capacity

of the ANN on model performance outcomes.

Chapter 7 summarises the achievements of the thesis
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Chapter 2

Development of ANN Models of
Phytoplankton Abundance

2.1 Introduction

This chapter introduces the principles of model representation and supervised

learning by ANNs. It also reviews how ANNs are being applied to the problem of
modelling the dynamics of phytoplankton abundance in lakes, rivers and marine
ecosystems. Additionally, a number of proposals are outlined for improving the

compatibility of ANN models with typical datasets, increasing the stability of
model inference and improving the accuracy of model performance estimations
and knowledge discovery.

2.2 Knowledge Representation and Inference by Ar-
tificial Neural Networks

2.2.I ANN Structure and Information Processing

ANNs are derived from theories of brain structure and function and are intended
to model:

o the ability of the brain to apply principles of parallel processing in solving
diff,cult problems such as image recognition faster than conventional serial
computing devices.

o the brain's property of self adaptation - that is, the ability to learn from
experience.

(Cheng and Titterin gton, 1994)

1
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Figure 2. 1 : Schematic of a neuron (after Cheng and Titterington ( 1 994))

Figure 2.1 shows a diagrammatic representation of the fundamental processing
unit of the brain - a neuron. Neurons are comprised of a cell body, or soma
and two types of radiating branching structures called dendrites and axons. In
the brain, neurons are highly networked with the axons and dendrites of many
neighbouring cells being interconnected by means of electro-chemical interfaces
called synapses.

The sequence of events in neural processing commences when an electrical dis-
charge through an axon (ie an action potential), causes the release of neuro-
transmitters across the synaptic cleft separating the transmitting axon from the
receiving dendrite of a connected neuron. The neurotransmitters are bound on
the receiving side of the synapse causing the induction of a small electric charge,
called a post-synaptic potential or PSP, in the relevant dendrite. Incoming PSPs

from a number of receiving synapses diffuse from the dendrites into the soma
where they have either an excitory or inhibitory effect on the total charge of the
cell. 'When the somatic potential reaches some threshold level, an action potential
is discharged through the axon stimulating the release of neurotransmitters in
"downstream" synapses. Learning is thought to be caused by the adaptability, or
plasticity of certain aspects of the brain's structure thus allowing the alteration of
neural processing as a result of experience. A key element of the brain's plasticity
is the efficiency of the synaptic interfaces between interconnected neurons (Amit,
1989).

McCulloch and Pitts (1943) formalised the theory regarding the behaviour of a
single neuron into a simple mathematical model (ie the McCulloch-Pitts neuron)

v ,o + I @¡r¡)sgn
i:1

(2.1)
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In this model, x¡ is a boolean representing the firing of a neuron connected "up-

stream", w¡ is the synaptic eff,ciency (generally called aweight) with respectto x¡,

lv¡ represents the threshold of the soma at which an action potential is fired and

y is a boolean indicating whether or not the neuron has f,red at a given time step.

The input-output form of the model neuron may be generalised as;

y: f (þ@,w)) (2.2)

Including both Q and f in the model is useful for identifying the combination

and the activation components respectively (Cheng and Titterington, 1994). O

(the combination.function) is a vector to scalar function calculating the total input
activation (or the total post synaptic charge, to follow the neuron analogy). /, (the

activationfunction), calculates the neuron output from the activation (the so-called

firing rate). In practice, Q is generally a summation, whereas / is commonly

substituted for one of any number of arbitrary linear, non-linear or step functions

including;

. f (a): sgn(a), producing binary (t1) output.

. f (") : (sgn(a) + 1) 12 producing binary (0/1) output.

. f (a) : (1 + " ")-t producing continuous non-linear output between 0 and

1.

. f (a): tanh(a) producing continuous non-linear output between -1 and 1.

. f (a): a producing linear output (the identity function).

. f (a): lal producing non-negativeoutput.

A key element of the McCulloch-Pitts model is inclusion of time in the form
of an arbitrary delay between presentation of the inputs and the processing of
the output. McCulloch ahd Pitts (1943) (cited by Amit (1989)) proposed that

when the model neurons are combined into temporal sequences, with the outputs

of one neuron feeding the inputs of another, the activity of the output neuron

will be the truth value of any binary logic operation represented at the input

neurons. More recently it has been shown that ANNs consisting of 3 or more

layers of neurons (ie an input layer, an output layer and an arbitrary number

of interceding hidden layers), where the activation functions of the hidden layer

neurons are continuous and non-linear, are capable, given sufficient hidden layer

neurons, of mapping any continuous function between inputs and outputs (Hornik,

1993). This form of ANN, called a feedforward multi-layer perceptron (MLP), is
represented diagrammatically in fr.glure 2.2.

Cannon and Whitfield (2002) mathematically represent an MLP thus;

tanhY:I
j

L*,'rtj +tb¡ 2*¡ +2b (2.3)
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input layer hidden layer t hidden layer n output layer

Figure 2.2: Feedforward multilayer perceptron (MLP)

In this model, r¡ represents the input variable, tw¡¡ and.2w¡ are the input-hidden
and the hidden-output layer weights and |b¡ and.2b are the input-hidden and
hidden-output layer biases. It is assumed that tanh is the activation function of
the hidden layer neurons and that the output layer uses the identity function,

In terms of information processing properties, a single artificial neuron (ie, a per-
ceptron) is functionally equivalent to a multiple linear regression equation (Cheng
and Titterington, 1994). Regardless of the activation function used, a perceptron
with n inputs is able to define a single decision boundary, or hyperplane, of n - |
dimensions with respect to the n-dimensional input space (wasserman, 1989). The
weights Ì4l0 to w¡ each represent the slope of the decision boundary with respect
to the respective inputs. The threshold (otherwise known as bias) represents the
intercept.

Figure 2.3 shows that the type and complexity of decision boundaries mapped
by a MLP depends on the number and conf,guration of hidden layer neurons. A
perceptron is limited to classification of linearly separable functions. Two units
in a single hidden layer allow the MLP to map open convex decision boundaries.
Three or more units in a single hidden layer allow the MLP to map closed convex
decision boundaries, where the upper limit to complexity depends on the number
of hidden units used. 'When hidden layer units are arranged into two or more
layers, the MLP can approximate concave decision boundaries. Thus, it can be
concluded that while the processing and memory of each neural processor in an
ANN is very simple, when arranged to allow parallel processing they are poten-
tially powerful computational devices capable of mapping non-linearly separable
classifications ('Wasserman, I 989; Hinton, 1992)
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Figure 2.3: Effect of MLP architecture on decision boundaries for a two input
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2.2.2 Supervised Learning by ANNs

The learning, or approximation, problem describes the task of mapping an m-
space to any /¿-space within a given distortron cnterra and tlme lrmrt ('lâkahashr,
1993). Moody (1991) defines the approximation problem as follows; given a set

of real input/output pairs E: {\' : (xi ,y');i : l, . . . ,n} generated by the "signal
plus noise model" outlined in equation 2.4, the task of the approximation exercise
is to estimate a model P(x) of ¡t(x) on the basis of training set (.

yi : p(xi) + ei (2.4)

: dependent variable
: independent variable sampled with probability density O(¡)
: independent noise sampled with density Y
: an unknown function

2.2.2.1 HistoricalContext

Rosenblatt (1962) outlined the single-unit perceptron convergence theorern show-
ing that if a training set is linearly separable by a single hyperplane into two
distinct classes, application of the generalised delta rule (Widrow and Hoff, 1960)
to updating connection weights allows a perceptron to approximate the hyperplane
in a f,nite number of steps. However, Minsky and Papert (1969) pointed out the
inability of perceptrons at mapping non-linearly separable functions, such as the
exclusive and/or (XOR) (see figure 2.4), places a limitation on their usefulness.
It was proposed that such a mapping is possible with multi-layered perceptrons
(MLPs), but at the time no suitable training algorithm had been devised for such
architectures.

This limitation was overcome by the development of an adapted version of the
generalised delta rule that was capable of addressing the approximation problem
for MLPs. This discovery was made independently by Werbos (1914), Parker
(1982) and Rumelhart et al. (1986). The latter authors succeeded in introducing
the approach, which they called backpropagation, to a wide audience leading to a
resurgence of interest in ANNs since the late 1980s (HechrNielsen, 1990).

2.2.2.2 Backpropagation

Backpropagation is a recursive technique based on the principle of gradient de-
scent. As the name suggests, gradient descent involves finding the slope of the
error with respect to the network weights and modifying the weights by an amount
in negative proportion to the slope. This process is iterated until the minimum of
the goal function with respect to the network weights is reached (ie convergence).
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Figure 2.4: Classifying the exclusive OR (XOR)

Thus, if the prediction error with respect to the weights is E(w), gradient descent

can be expressed according to the recursive rule;

w¡(t 1- r) : w¡(t)- oa¿Lw¡(r)) Qs)/'òw¡
where r is a positive integer representing the training data iteration number, p is
a small positive constant called the learning rate andòE(w¡(t)) lòw¡ is the partial
derivative of E with respect to the weight on input i. Now, given a random starting
point w(0), gradient descent implements a search strategy whereby a sequence of
weight vectors;

lr(0), w(1),w(2), . . .,w(t),

is generated such that;

(Hassoun, 1995)

Thus, as t tends to infinity and p tends to 0, gradient descent is guaranteed to

converge on a local minimum on the error surface (Hinton,1992). Backpropa-
gation applies the chain rule of differential calculus to find the slope of the goal

function with respect to the network weights. In an ANN with i inputs, j hidden
neurons and k output neurons, àE lòw¡ (ie the slope of the error with respect to
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the weight of the connection between hidden unit j and output unit /c), is calculated
as follows;

òE .-a òE òyt òot

W:"à,n* ¡a ¡n Q'6)

where a is the total input and y is the total activation of any given unit. Further
expansion to find òø lòw¡¡ (ie the slope of E with respect to the weight connecting
input unit I to hidden unit 7) can be achieved by further application of the chain
rule;

(2.1)

Calculation of partial derivatives of E with respect to connection weights, using
the chain rule, requires that the error term and the activation function are both dif-
ferentiable. Hence a continuous activation function, such as the logistic function
f (") : (1 + e- x) 1, is commonly used. Error is usually calculated thus;

u : 
Æ,)o 

- r)' (2.8)

where y is the desired output and y/ is the actual output.

Each presentation of training examples undergoes two phases. Firstly, unit acti-
vations, given a vector of input examples and the current network weights, are
propagated forwards from the input layer to the output layer. Secondly, the er-
ror derivatives, given the target values and activations, are propagated from the
output layer back to the first hidden layer (Weiss and Kulikowski, 199I). At each
backward propagation step, connection weights are updated according to equation
2.5.

2.2.2.3 Alternatives to Backpropagation

There are now many learning algorithms for feedforward MLPs that are claimed to
be considerably more efficient than conventional backpropagation. In particular,
methods that utilise second order information of the error surface (ie the curva-
ture) are theoretically able to calculate step size and direction more accurately
leading to faster training (Alpsan et a1., 1995). Pandya and Macy (1996) point
out that such second order methods eliminate some of the persistent drawbacks of
backpropagation that cause slow learning (eg local minima and shallow plateaus
on the error surface).

There are many approaches to utilising second order information. One method is
based on Newton's method;

àE - ðE àyt àop òy¡ òo¡

ãru - ln à"r'l\ ð"t ã*ü
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wt+7 : wt - H-l Yr,E (2.9)

where FI 1 is the inverse of the Hessian matrix of second derivatives. A problem

with this approach is that the memory and time requirements needed to calculate

11-l rise exponentially with the number of connection weights in the ANN (Maier

and Dandy, 2000). This processing bottleneck can be overcome by so-called

"quasi-Newton" methods that estimate Fl I in a more computationally efficient

mannef (Alpsan et a1., 1995). Alternatively, conjugate gradient methods, such as

Møller (1993), utilise line-search methods to determine the step size and analytical

techniques to determine the optimum momentum.

Whilst second order methods are theoretically more efficient than first order ap-

proaches such as backpropagation, Saarinen et aI. (7993) argues that they have

two disadvantages that may lead to slow training. Firstly, they have a higher pro-

cessing and memory overhead per iteration than backpropagation. Secondly, poor
"numerical conditioning" of many datasets may lead to bad training petformance.

2.2.3 lJnsupervised Learning

In contrast to supervised training methods, unsupervised training is not guided

by known output or "answers" in the training data. This approach stems from
the ideas of Hebb (1949), who proposed that repeated firing of a neuron would

affect the eff,ciency of firing of neighbouring neurons and that the connection

between two neurons strengthened with simultaneous firing. Examples of ANNs
that perform unsupervised learning include the Self Organising Map (SOM) (Ko-

honen, 1982), ttre Hopfield Net (Hopfield, 1982) and the Boltzmann machine
(Ackley et a1., 1985). In practice, unsupervised learning is often used to cluster

objects on the basis of perceived closeness in n-dimensional hyperspace (Lek

et a1., 2000). Examples of applications of unsupervised ANNs include Chon et al.

(1996), Foody (1999) and Brosse et al. (2001). Since the present study is focused

on time-series-models for prediction of phytoplankton abundance, the discussion

will be limited to supervised ANNs.

2.3 Developing Predictive Models - An ANN Model
Development Process-Model

It is proposed that the basic supervised ANN model development procedure, as

carried out by many practitioners, can be reduced to a series of hierarchical steps

illustrated in f,gure 2.5. This process is relatively straightforward, with a number

of decisions or outcomes at each step. The starting conditions for most applica-

tions are a database of observations and assumptions, or hypotheses, regarding
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input-output relationships between variables. In general, the desired end point of
the process is a model that may be used to generate predictions or to elucidate
knowledge. The intervening steps comprise the model inference process, which,
Î^,-Ll-- I't' 1' 'ioi iiie puiposes of thrs drscussrr-rn, have been decomposeci into approximation anci
generalisation sub-tasks. This section reviews each of the steps in the procedure
outlining the issues and problems to be dealt with.

"inputs
Outputs

.. Time component

.,,"ftllodel architecture
Training algorithm

'.... Data conditioning

Comp ex ty
Bias

Test set representation
Replication

NO

YES

Figure 2.5: A process model for ANN model development.

2.3.1 Step 1 - Model Design

This step involves selection ofindependent and dependent variables, from a database,
that will represent the input and output layers respectively of the ANN model.
In general, practitioners choose inputs that are known to have some deterministic
link with the outputs (Maier and Dandy ,2007). Scardi (2001) proposed thar inputs

Knowledge
Hypotheses Database

Model Design

Approximation

Generalisation

Validation

Acceptance?

Knowledge
discovery Predictions
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known to have a correlative rather than deterministic relationship (ie so-called "co-
predictors") may also benef,t modelling outcomes. 'Where the database used is a
time-series of observations and it is hypothesised that relationships exist between

past and present states in the data, some component representing these links needs

to be built into the model design. A commonly used approach is the "Time Delay

Neural Network" or TDNN (V/aibel, 1989) whereby the inputs were represented

with varying delays in time relative to the output variable. This enables the ANN
to learn the dynamic properties of a set of moving inputs. Figures 2.6 and 2.1

compare the structures of ANN models with and without time-delay connections.
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Figure 2.6: The "same day predictor" neural network structure.

One of the problems facing practitioners when designing ANN models is the so-

called "curse of dimensionality", whereby the state-space increases exponentially
with an increase in the dimensionality of the problem (Bellman, 1961). According
to Sarle (2001), excessive input dimensionality causes 2 problems;
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Figure 2.7: The TDNN structure with a single lag for all inputs.

1. Poor performance of ANN models as a result of being focused on irrelevant
regions of the state space.

2. Prohibitive data requirements for discovery of the relevant regions of state
space by the ANN.

According to Maier and Dandy (1991), these problems are amplified when train-
ing TDNNs since there is essentially no upper limit to the number of lags that may
be included for each input variable. These authors demonstrated empirically that
improvement in modelling outcomes can be achieved by reducing the problem
dimensionality. Suggested approaches included guiding input selection by rele-
vant domain knowledge, adding inputs in a stepwise fashion and implementing
analytical techniques to discover input relevance a-priori (such as Haugh and Box
(1e77)).

Embrechts et al. (2001) devised a feature selection method called "data strip
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mining". This approach compares the bootstrapped sensitivity of the candidate

inputs with a dummy input drawn from a random distribution. Inputs that are

less sensitive than the dummy inputs are deemed to be irrelevant to the model and

are discarded. The process is iterated until only relevant inputs remain. These

authors showed that data strip mining is capable of identifying 35 relevant inputs

from a feature set of 300-1000 variables, leading to significantly improved model

performance.

Olden and Jackson (2000) reviewed a variety of model selection methods com-

monly used for the purposes of identifying variables for multiple regression stud-

ies. These included forward selection, backwards elimination, stepwise selection,

exhaustive search and bootstrapping. They used Monte-Carlo simulation to show

that all model selection methods are biased in that they include irrelevant variables

or exclude relevant variables. They found that the nature ofbias varies according

to the quantity of data available for model inference. It was found that where

60 or more records were available, a bootstrapping approach was the least biased

approach to model selection in the context of multiple regression.

Recurrent neural networks (RNNs) (Pineda, 1981; Elman, 1990; Connors et a1.,

1994) have been proposed as a better approach to modelling sequences of data

such as time-series. RNNs implement a feedback loop that uses hidden to output
layer activations as additional inputs to the model. This provides the RNN with a

hidden "temporal context" that is supposed to improve performance in the context

of time-series data. Examples of time-series modelling applications using RNNs

to predict phytoplankton dynamics include Jeong et al. (2001), 'Walter 
et al. (2001)

and Jeong et al. (2003).

2.3.2 Step 2 - Model Approximation (Tfaining)

This step is concerned with the issue of ANN learning, which is referred to as the

approximation problerø (Moody, 1991). The general principles of ANN learning

by gradient descent based methods are described above in section 2.2.2. This

section reviews some of the key decisions to be made when configuring learning

algorithms and some of the causos for learning failure.

2.3.2|1, Numerical Conditioning

Analytic results by Saarinen et al. (1993) showed that learning by ANN training

algorithms is inhibited by numerical ill-conditioning of the Jacobian matrix (ie the

matrix of second derivatives of the prediction error with respect to the network

weights and biases). It was concluded that "rank-deficiency" of the Jacobian

causes the training algorithm to retrieve incomplete search information resulting

in prolonged training. An outcome of this conclusion is that network configu-

rations that do not solve a problem exactly are not necessarily parsimonious in
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terms of their parameterisation. Thus they may exhibit redundancy as a result of
the ill-conditioning of the problem. According to Van Der Smagt and Hirzinger
(1998), the ill-conditioning is reflected by many saddle points and flat areas on the
error ianciscapes.

Van Der Smagt and Hirzinger (1998) suggests that stochastic learning methods
can overcome the problem of ill-conditioning. However, they concede that such
methods are not well suited to problems where rapid training is required. Haykin
(1994) made the following suggestions for overcoming ill-conditioning where
gradient descent based training methods are used;

1. Every adjustable network parameter (ie weight) should have its own learn-
ing rate parameter.

2. Every learning rate parameter should be allowed to vary from one iteration
from the next.

3. Similar õw signs on consecutive iterations should cause the learning rate to
be increased.

4. Dissimilar ôw signs on consecutive iterations should cause the learnin grate
to decrease.

Sarle (2001) states that preprocessing of input data may have a positive influence
on the conditioning of Hessian and Jacobian matrices leading to superior learn-
ing performance - particularly where gradient descent based training algorithms
such as backpropagation are utilised. It is suggested that standardising inputs, so
that they have a mean of 0 and a standard deviation of 1, is beneficial to ANN
learning. This is because, providing ANN connection weights are initialised to
small random values, the hyperplanes described by the hidden layer units will
effectively pass through the data cloud thus avoiding areas on the error surface
that are not conducive to learning. Sarle (2001) concludes that Saarinen et al.
(1993) overstated the effect of ill-conditioning on ANN learning because in their
empirical investigations, they do not standardise input data.

2.3.2.2 Incremental vs Batch-Mode Tlaining

Learning is termed as being either incremental or batch-mode, depending on
the frequency of backward propagation of error derivatives. In incremental or
on-line training, back propagation steps (and thus weight updates) occur with
each presentation of a random vector from the training sample. On the other
hand, batch or off-line training conducts the backward propagation step after
presentation of the entire database of training vectors.

Haykin (1994) and Bertsekas and Tsitsiklis (1996) argue that incremental mode
training has a number of advantages over batch mode training. The stochasticity
introduced by random selection of training records makes the trajectory taken
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through weight space variable. This has the benefit of making entrapment of
training at local optima less likely. Also, incremental learning potentially has

a much lower computational overhead on large training sets than batch-mode

training leading to faster training (eg see results of Alpsan et al. (1995)). Despite

these advantages, the stochasticity of incremental training means that, unlike batch

mode methods, it is not conditionally guaranteed to converge at a minimum in the

cost function (Gori and Tesi, 1992).

2.3.2.3 Tfaining Meta-Parameters: Learning Rate and Momentum

The approximation characteristics of backpropagation are highly sensitive to the

learning rate (p) and momentum (cx) meta-parameters (Weiss and Kulikowski,
1991). Large p leads to rapid progression of learning towards the minimum of
the cost function (Adeli and Hung, 1995). However, it also causes convergence

on a "limit cycle" of oscillations around but not on the minimum (Bertsekas and

Tsitsiklis, 1996). Small p on the other hand leads to a smoother more accurate

trajectory through weight space and convergence on a limit cycle closer to the

minimum. However if p is too small, training time may be excessively long
(Haykin, 1994). Clearly there is a need to find a compromise value that enables

reasonable training times, but is not subject to unstable, oscillatory behaviour.

Most authors agree that a good value of p tends to be problem specif,c.

The performance of backpropagation is significantly improved by momentum. In
momentum training, the current weight update is the sum of the calculated weight
update and a proportion of the previous weight update as follows;

Lw¡ :-pg r a"Lw¡-.1 Q.lo)'dw
where o is the momentum coefficient. This approach (sometimes called the "heavy

ball" method (Bertsekas and Tsitsiklis, 1996)) considers second order information
about the error surface using a one step memory. This makes it computationally
far cheaper than more complex algorithms, such as Newton's method, that need

to compute matrices of second order derivatives (Alpsan et aL, 1995). Momentum
endows backpropagation with the following properties;

o Filtering of higher frequency variations of error surface thus reinforcing
overall training direction (Gallant, 1993; McClelland and Rumelhart, 1988;

Bertsekas and Tsitsiklis, 1996).

o Acceleration of learning through regions of the error surface that have sim-

ilar slope.

o Stabilisation of oscillatory behaviour in learning (Haykin, 1994).

o Avoidance of shallow local optimum on the error surface (Haykin, 1994).
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Figure 2.8: Example of global and local minima of /(-r) : sin(1/x).

2.3.2.4 Local Minima

A potentially major source of training error is caused by the fact that gradient
descent does not guarantee global optimisation of the cost function. Global op-
timisation in the context of ANN approximation can be defined as the problem
of f,nding a value of the weights w* such that the cost function E(w*) takes on
the extreme minimum value. The problem is that the surface of the cost function
E(w) may contain local optima. w* is defined as being a local optimum of E
if E(w-) < E(r) for all w such that llw* -lrll < s for some e > 0 (Hassoun,
1995). Figure 2.8 displays an example where the aim is to find the value x which
minimises f (r): sin(1/x)wherex€ [0.05,0.5]. Assumingthatagradientdescent
based method is used to flnd the minimum, if x(0) € [0.05,0.13], rhe minimum
converged on will be one of the two local minima on the left hand side of figure
2.8 and not the global minimum in the centre.

According to Gallant (1993) and McClelland and Rumelhart (1988), local optima
may present a greater problem to learning in low dimensional problems, since
higher dimensional problems permit a greater chance of escape. Furthermore,
Gori and Tesi (1992) point out that the linearity of the function underlying the
data may also affect the propensity for entrapment at local optima, since linear
functions do not have this problem.

Several approaches have been suggested for dealing with local optimum. Many
authors point out that a certain level of stochasticity in the optimisation procedure
can help "shake" the weight vector out of shallow "hollows" in the objective
function. This can be achieved by the use of "global" optimisation procedures
such as genetic algorithms or simulated annealing, in combination with "local"
methods such as gradient descent (eg Masters (199a)). Haykin (1994) poinrs

global optimum

local optima
\
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out that stochasticity introduced by incremental weight updates instead of batch

updates during gradient descent can be helpful. Another approach is to train with
many random starting conditions and allow the user to choose the best approxima-

tion. Momentum in training is able to carry training through shallow local optima
(Haykin, 1994). Gallant (1993) suggests that sufficiently high dimensionality of
the problem def,nition will make entrapment at bad optima unlikely.

2.3.3 Step 3- Generalisation

The generalisation problem describes the task of finding a model estimation that

achieves reasonable prediction accuracy on population data outside of the training

sample. Moody (1991) defines the generalisation effor as the expected error

nly/),1t@)l on new data taken over all possible training sets of size n and all
possible test sets, where p(x) is the model estimation. This author points out

that all possible training sets should be considered in estimating E because p

is estimated from a finite, noisy, training sample, meaning that it is an implicit
function of the random variables {e' ;i : 1,,. . .,n}.

The generalisation performance of ANNs is known to be influenced by the re-

lationship between the complexity of the mapping achieved and the number of
training set records available. Theoretical studies suggest that generalisation is

most likely when the quantity of training data, relative to the size or complexity

of the ANN model, is large (Abu-Mostafa,1989; Kung, 1993;Nejad and Gedeon,

1995). If this condition is not met, the ANN may exhibit a condition characterised

by accurate mapping of training set data, but poor performance on independent

population data. This behaviour, known as overfitting, is a result of high model

variance caused by the large number of parameters available to f,t the data (Geman

et a1., 1992). On the other hand, if there is insuff,cient ANN complexity for the

approximation task at hand, the model willbe underfined, leading to consistent

effors on training and test set data characteristic of prediction bias. Therefore, the

task of maximising the generalisation ability of ANN models is one of finding the

right compromise between too little or too much model complexity to optimise

the bias/variance tradeoff. This problem, described by Moody (1991) as the

minimisation of prediction risk, is illustrated in f,gure 2.9.

Traditionally the key to achieving this minimisation task has been to bias the

ANN by limiting the model complexity somehow (Cannon and Whitfield,2002).
According to Prechelt (1998), there are two widely applied approaches to limiting
model complexity to prevent overfitting;

1. Reduce the number of dimensions in the parameter space (ie reduce the

number of connection weights).

2. Reduce the size of the dimensions in the parameter space (ie reduce the

magnitudes of connection weights).
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underfitting optimum fit overfitting

low model complexity high model complexity

Figure 2.9: Minimisation of prediction risk (after Moody (1991))

A number of approaches to achieving the first of these options have been ap-
plied. According to Prechelt (1998), these include greedy constructive learning
(eg Fahlman and Lebiere (1990)), pruning (eg LeCun et al. (1990); Hassibi and
Stork (1993); Levin et al. (1994)) and weight sharing (eg Nowlan and Hinron
(1992)). Techniques for achieving the second option include regularisation by
weight decay (eg Krogh andHertz (1992); 'Weigend et al. (1991)) and early srop-
ping of training (eg Morgan and Bourlard (1990)). Prechelt (1998) states that
out of these techniques, early stopping is the most widely applied because it is
well understood and relatively easy to implement. Finnoff et aI. (1993) showed
that early stopping produces superior outcomes in terms of model performance to
other methods.

A key problem with these techniques is how to determine the optimum com-
plexity for a given dataset. Analytical work that considers quantities such as
the Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 7971), the
Akaike Information Criterion (AIC) (Akaike, 1969) or Bayesian prior probabil-
ities, have been shown to be potentially useful. However, Moody (1991) points
out that, in practice, their utility is limited by two problems; f,rstly, the calcula-
tions involved may be very difficult and secondly, they frequently give worst case
bounds of network complexity that may be inappropriate for many applications.
Practitioners are therefore generally left to determine complexity empirically by
cross-validation; either by manual "off-line" determination or by some automatic
"on-line" procedure (de la Maza,l99l).

roF
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(bias + variance)
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The criteria for empirically determining optimum parameterisation is generally

ad-hoc (Prechelt, 1998). Breiman(1996b)pointsoutthatinthecontextof limited
rlata, selection of the optimum regulariser (ie, a model smoothed by limiting
complexity) is subject to "predictive loss" arising from inaccuracies of cross-

validation. Predictive loss is defined by these authors as the difference in error

rate between the modeller's selection based on cross-validation and the "crystal

ball" selection (ie where unlimited test data is available). It is highest for unstable

inference methods, such as ANNs, where small changes in training sets and/or

learning processes can cause large changes in models (Breiman, 1996b). To

combat predictive loss and model instability in general, Breiman (1994) proposed

bootstrap aggregation, or bagging (from áootstrap aggregatton). In bagging, the

model representation is defined as an ensemble of perturbed predictors, where the

aggregation is conducted by voting or averaging the outputs of the members of
the ensemble. This proposal is summarised as follows;

Given a learning set , consisting of data {(yr,xr),n: 1 . . .N} where

y is a response variate to input .tr, we can form a predictor g(x, L).
If we are given a sequence of learning sets {l¿}, where each set is

N independent observations form the same underlying distribution as

L, it is possible to obtain a better predictor by taking the average

of q(x, L¡,) over k - ie ç¿ (x) where A denotes aggregation. Since

most applications only have a single learning set Z available without
replication, a simulated aggregation can be made by taking repeated

bootstrap samples {¿B} and forming {q(x, rB)} t.

Breiman (1994) showed that the aggregated model <pa is always better than g
in theory, although the amount of improvement depends on the extent of variation
between individual models. For unstable classif,ers, aggregation is shown to make

large improvements, whereas the improvements for relatively stable inference

methods are generally slight. According to Andersen et al. (2001), bagging works
best when errors between variables and predictions are uncorrelated, which is
most likely when using complex predictors. Cannon and Whitfield (2002) and
'Wilson and Recknagel (2001) showed that the stabilising effect of bagging on

ANN learning reduces or eliminates the problem of increasing variance caused

by overfitting. Thus, it can be hypothesised that bagging may even eliminate the

need for a model selection procedure on the basis of complexity.

Cannon and Whitf,eId (2002) proposed that bagging promotes greater data effi-

ciency by reducing the importance of cross-validation to determine stopping error

or hidden layer configurations. Furthermore, it complements the "leave-one-out

bootstrap" error estimator (Efron and Tibshiran\, 7997), where the "out of bag"

records not included in each bootstrap sample (on average,3JTo of L) arc used as

validation set data. Embrechts et al. (2001) points out that another advantage of

llt is assumed that the bootstrap distribution, taken by randomly sampling N samples from L
with replacement approximates the distribution underlying tr. See Efron and Tibshirani (1993) for
more information about bootstrap samples.
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bagging over early stopping is that it overcomes the effects of model instability
and thus variance resulting from different initialisation of network weights be-
tween runs. However, Breiman (1994) points out that the downside to the gains
in modei performance anci ciata eificiency is the ioss of a simple interpretabie
structure.

Empirical evidence from Lawrence and Giles (2000) and Alpsan et al. (1995)
suggests that the training algorithm used may also have a significant impact on
the generalisation performance achieved by an ANN. Lawrence and Giles (2000)
compared the performance of backpropagation, conjugate gradients and a polyno-
mial approximation method at undertaking a simple curve fitting exercise. They
found that backpropagation was the only algorithm to achieve good performance
over the entire function without overfitting. It was reasoned that backpropagation
is biased towards smoother solutions because of difficulties in learning the larger
connection weights required by relatively complex, discontinuous mappings. Alp-
san et al. (1995) compared many different learning algorithms at learning a real-
world medical problem and found that backpropagation trained in batch mode
produced better generalising ANNs than any more advanced algorithm such as

the "modified backpropagation algorithms" or second order training methods.

2.3.4 Step 4 - Model Validation

The empirical check of model performance is an important stage in the overall
ANN model development process. It enables the modeller to estimate perfor-
mance on newly sampled data and thus determine how well the ANN is gen-
eralised. It is emphasised by weiss and Kulikowski (1991), Flexer (1995) and
others that a resubstitution approach, whereby the model error rate is estimated
as the performance of the ANN on the training set, is not an acceptable means
of validation because it leads to an optimistically biased expectation of model
performance. Therefore, the generally recommended approach is cross-validation
(Stone, 1974), where the model effor rate reported is calculated on an independent
validation set sampled from the same distribution as the training set but held out
from training.

According to'Weiss and Kulikowski (1991) and Flexer (1995), when data is lim-
ited, splitting the sample into training and validation subsamples may result in
suboptimal performance. This is because the data requirements for a statistically
significant validation set may deplete training set representation to the point where
model inference is impaired. These authors suggest the use of a so-called rota-
tion estimator. This approach (often referred to as leave-k-out cross-validation)
divides the data into k equally sized subsamples. Each subsample is used in turn
as a validation set while the remainder are pooled as a training set.

Frequently, there is a need to empirically tune meta-parameters related to ANN
learning to obtain optimum model performance. This is particularly the case
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Table 2,1: Minimum requirements for evaluation of ANN model (after Flexer
(1ees))

1. Separate train and test set.

2. Computation of multiple runs to avoid random influences in

training set composition, trajectory through weight space and

weight initialisation.
3. A third independent validation set where parameter tuning is

performed.
4. Reporting of mean, variance and conf,dence intervals of

performance measures.

5. Computation of statistical tests (/-test) for performance compari-

son.

where "early stopping" of training is utilised to bias the ANN model, since there is

a need in this case to empirically determine the stopping criteria Prechelt (1998).

Flexer (1995) points out that such tuning necessitates the use of a third indepen-

dent dataset to assess the effect of the tuning parameters, since the use of the

validation set to choose between candidate models will make performance esti-

mations optimistically biased. Mosteller and Tukey (1911) refer to this approach

as double cross-validation, altholeh many ANN practitioners refer to it as simply
"cross-validation". Flexer (1995) further suggests that where meta-parameter

tuning is carried out, statistical inference is necessary to verify that the observed

effects on model performance are real and not due to random chance. Thus,

conclusions about meta-parameter effects must be inferred statistically from a

distribution of models.

In summary, Flexer (1995) proposes a list of minimum requirements for evaluation

of ANN models, which are outlined in table 2.1.

2.3.5 Step 5 - Knowledge Discovery

Explanation of model predictions is generally seen as a priority by ecologists. A
frequent criticism of ANNs is that they are a "black-box" approach to modelling,

since the internal state of the model is generally considered to be hidden. How-
ever, a review by Olden and Jackson (20O2) showed that a number of approaches

have been developed to elucidate knowledge from trained ANNs in an ecological
context. These authors state that since the contribution of each input variable

depends on the connection weights within the ANN, analysis of these weights,

either directly or indirectly, is the key to knowledge discovery from ANNs.
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Sensitivity analysis of trained ANNs to quantitatively determine the effect of each
input variable on the output is the most widely employed approach to knowledge
discovery. Each input is varied in turn to determine its effect on the output variable
whiie the remaining input variabies are heici or "blockeci" at set values. According
to Olden and Jackson (2002) a commonly employed form of sensitivity analysis
is Lek's algorithm (Lek et al., 7996) whereby "response curves" are determined
by varying each input across a number of intervals of that input's range. These
authors implemented this approach while holding the blocked values at 20th,
40th, 60th and 80th percentiles in order to illustrate the interactions between input
values.

Other variations of the sensitivity analysis procedure employed by ecologists in-
clude an approach by Sivonen and Jones (1999) where small quantities of white
noise were added to the input of interest, while the remaining inputs where swept
across the entire database. Schleiter et al. (1999) used a "senso-net" method
employing an additional weight for each input neuron representing the relevance
of that variable. These sensitivities were then adapted by the training process,
enabling an effective online feature reduction system. Recknagel and Wilson
(2000) used a scenario analysis technique that grouped input variables into rel-
evant subsets (such as physical or chemical conditions). The effects of changes to
these subsets on the output variable were then observed.

Statistical validation of the relationships observed by sensitivity analysis was first
performed by Baxt and'White (1995). In this application, the bootstrap sampling
was used to generate 1000 perturbed training sets from which 1000 ANN models
were trained. Sensitivity analysis of each bootstrap model created distributions of
effects. Statistical testing was then used to determine the significance of the ob-
served effects of inputs on the output variable. Embrechts et al. (2001) employed
a similar approach utilising bootstrapping to allow statistical significance testing
which is described above in section 2.3.1. Furthermore, this author extended the
sensitivity analysis procedure to account for non-monotonic relationships within
overall input sensitivity. Sensitivities of each input variable to multiple pertur-
bations across the range were observed, with blocked values held at their median
values (as per Lek's algorithm). The calculated sensitivity for a single input record
was calculated from the output responses thus;

Soås : (lRpo,l^*+ (lRpo,l**- lnr.ol)) + (lR*sl*o*I (lRn"el**- ln-r.ol))
(2.11)

Figure 2.10 shows an example of how the approach outlined above in equation
2.ll accounts for non-monotonic relationships between input and output vari-
ables.

Neural Interpretation Diagrams, initially used in an ecological application by
Özesmi and Özesmi (lg9g), enable a qualitative assessment of the effect of each
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input variable by representing the relative strengths and signs of connection weights

visually. The weights of connections are represented by the pixel weights of
lines and the sign of the connection by the colour of the line. An advantage of
this approach is that it allows determination of interactions between different
input variables through the investigation of the relative signs of input to hid-
den layer connection weights. However, Olden and Jackson (2002) points out
that interpretation can be difficult in complex ANNs and that there is no way to
differentiate between significant and insignif,cant connection weights. Garson's

method (Garson, 1991) is an approach that numerically quantifies the relative
contributions of input variables. 'While this approach is effective at determining
overall contribution of input variables, it does not differentiate between excitory
or inhibitory effects of variables.

Olden and Jackson (2002) proposed that a randomisation approach be used to

improve aspects of both the NID interpretation and Garson's method. Specifi-

cally, it performs a signiflcance test on the connection weights of a trained ANN,
facilitating the interpretation of NID by eliminating non-significant weights, thus

reducing network complexity. It determines whether the overall contribution of
an input variable, as discovered by Garson's method, is statistically significant.
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2.4 A Review of ANN Models of Eutrophication Vari-
ables

2.4.I Introduction

As discussed in section 2.2, the properties of ANNs as universal approximators
make them a very attractive method for modelling ecosystem properties. This
is because ecosystems are known to be characterised by multivariate, non-linear
processes that are diff,cult to handle using conventional deductive and inductive
modelling approaches (Lek et al., 1996,2000). According to Lek et al. (2000),
Colasanti (1991) was the first to propose that ANNs might be a useful ecological
modelling technique due to the similarities to ecosystems. French and Recknagel
(1994) were early adopters of the technique, developing an ANN application for
the prediction of algal blooms in Lake Saidenback, Germany. Since then there has
been an increasing number of applications of ANNs and other machine learning
methods for modelling all kinds of natural resource variables; including prob-
lem domains such as taxonomy, plant physiology, pollution assessment, forestry,
weather forecasting, soil science, ornithology and others. Table 2.2 reviews the
modelled variables and study sites of 22 applications of ANNs and other machine
learning approaches to modelling eutrophication variables. These models share a
number of attributes in that;

o They consider time-series data.

o They aim to make predictions or forecasts of phytoplankton biomass or
productivity.

o They use supervised training methods - in other words, model approxima-
tion is guided by targets in the training data.

Most applications model variables in lakes and reservoirs; however 6 studies are
applied to rivers (Jeong et al. (2001); Maier et al. (1998, 2000); Recknagel er al.
(7997); Wilson and Recknagel (2001); V/hitehead et aI. (7997)) and 4 srudies are
applied to marine environments (Barciela et al. (1999); Sivonen and Jones (1999);
Scardi (2001); Lee et al. (2003)). The following sections review how the studies
presented in table 2.2 have undertaken the ANN modelling procedure outlined
above in section 2.3

2.4.2 Model Design

Table 2.2 shows that nearly all applications consider algal biomass as an output
variable; expressed either as an overall productivity indicator such as chlorophyll
d or as cell counts of individual species, genera or functional groups. The most
commonly modelled output variables are chlorophyll a concentration and cell
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counts of species of cyanobacteria. By contrast, Sivonen and Jones (1999) and

Scardi (2001) train models to predict primary productivity in terms of mg Cm 2

day 1 in marine environments.

Most applications listed in table 2.2 consider inputs known to have a deterministic
link with the model outputs. Thus they consider various chemical, physical and

biological conditions known to influence the processes of photosynthesis and

trophic interactions. The following sections review the common variables used

and how they may have a causative or correlative relationship with phytoplankton
growth and species succession.

2.4.2.1 Inputs Describing Nutrient Availability and Chemical Properties

Nearly all models reviewed in table 2.2 consider concentrations of the macronutrr-

ent elements nitrogen and phosphorus. Nitrogen is expressed as concentrations of
NO2, NO3, NH4, total dissolved nitrogen or some combination of these species.

Similarly, phosphorus is expressed as concentration of either POa, total dissolved

phosphorus, total phosphorus or a combination thereof. These two elements are

key plant macronutrients and have been well established to be frequent growth

limiting factors in lakes and rivers. Measures of the availability of these two

nutrients, particularly phosphorus, afe widely used by simple empirical models

for classifying the trophic state of waters (eg Vollenweider (1970), Vollenweider
(191 6), S akamoto ( 1 966) and Dillon and Rigler (191 4)) . Nitrogen is known to be-

come a more important growth limiting factor in tropical lakes (Harris, 1986). In-
creasing overall nutrif,cation is known to lift primary productivity and reduce the

diversity of phytoplankton species observed in favour of dominance by cyanobac-

teria (Dokulil and Teubner, 2000; Zevenboom and Mur, 1980).

As well as the extent of nutrification, dynamics of the ratio of nitrogen to phospho-

rus are known to play a key role in determining the species dominance observed

(Teubner et al., 1991; Takamura and Aizaki,7997; Takamura et a1., 1992). Low
N:P ratios tend to favour cyanobacteria for a number of reasons including;

o Certain species of cyanobacteria fix atmospheric nitrogen, giving them a

competitive advantage against non N-fixing phytoplankton. However, de-

spite this fact, low N:P ratios tend to favour even non-frxing species of
cyanobacteria over other algae (Dokulil and Teubner, 2000).

o Cyanobacteria have relatively high phosphorus requirements leading to a
competitive disadvantage in high N:P conditions.

o High nitrogen levels tend to favour faster growing species such as green

algae ('Winder and Cheng, 1995).

The species of nitrogen may also influence the species dominance observed -
for example, non N-f,xing cyanobacteria have been shown to prefer NHa, while
N-fixing species prefer NO3 (Dokulil and Teubner, 2000).
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Barciela et al. (1999)

Bobbin and Flecknagel (2001)
French and Recknagel (1994)

Jeong et al. (:]001)

Ka¡ul et al. (!1000)

Lee et al. (2O03)

Maier et al. ( 1998)
Maier et al. (2000)
Olden (2000)
Recknagel et al. (1997)

Recknagel and Wilson (2000)
Reckragel et al. (1998)
Scardi and Hardiog Jr (1999)

Scardi (2001)

Todorovski et al. (1998)
whitehead er al. (1997)

Wilson and Recknagel (1997)
Whigham anct Recknagel (2001)
Wilson and Recknagel (2001)

Waìter et al. (2001)

Wei et al. (20t)1)
Yabunaka et el. (1997)

Site

Ria de Arousa (Spanish coast)

Lake Kasumigaura (Japan)

Lake Saidenbach (Germany)

Nakdong River (Korea)

Keban, Mogan, Eymir Lakes (Turkey)
Hong Kong coast

Murray River (Ausralia)
Munay River (Australia)
Grenadier Pond (Canada)

Lake Kasumigaura, Lake Birva (Japan), Dar-
ling River (Australia), Lake Tuusulanjärvi
(Finland)
Lake Kasumigaura (Japan)

Lake Kasumigaura (Japan)

Chesapeake Bay (USA)

chl-a

3 blue-green spp.
Cyanophyceae, 3 green spp., Chloro-
phyceae, nanoplankton
chl-a

chl-a, tot. cell count,3 blue-green spp.
Chlorophyll-a, Skeleto ne ma spp.

Anabaena spp
Anabaena spp.
chl-a, phyto. cornmunity composition
blue-green spp., functional groups

3 blue-green spp.
5 blue-green spp.

Primary productivity

prcperúes

N,RPH
N, P, pH, DO

N, P, Si, PH

pH, EC
DO

N,RFE
N, P, FE

N,P
N, R Si, pH, DO,
HCO3, EC

N,P
N,P
salinity

N,P

N.P

pH, DO, COD
Si, pH, DO

temp, rad, mix depth, up-
welling
temp, trans
temp, rad, trans

temp, úans, rad, flow,
pfeclp
temp, trans
temp, rad, trans, wind,
tide, precip
temp, turb, colour, flow
temp, turb, colour, flow

temp, trans, colour, flow,
sfat, wind, cloud, depth

temp, trans, rad, depth
temp, [ans, rad, depth
temp, rad, euph. depth,
station depth, lat, long,
ext. coeff
temp, rad, depth, lat, long,
date, day length
temp
temp, rad, flo\il

mDuts

ch1-a

chl-a, zoo

zoo

zoo

Western Mediterranean, East Pacifi c

Lake Glumsoe (Denmark)
River Thames (UK)

Lake Kasumigaura (Japan)

Lake Kasumigaura (Japan)

Lake Biwa, Lake Kasumigaura (Japan),
Burrinjuck Dam, Darìing Rive¡ Myponga
Dam (Australia), Lake Soyang (Korea)
Burrinjuck Dam (Australia)

Lake Kasurnigaura (Japan)

Lake Kasurnigaura (Japan)

Primary productivity

Primary productivity
Chlorophyll-a

8 blue-green spp.
chl-a
chl-a

chl-a

4 blue-green spp.
chl-a, 5 blue-green spp.

DOpH,

lag chl-a

zoo

chl-a, zoo

cN-a, zoo

chl-a

cbl-a

zoo
upsfream

chl-a
chl-a, zoo

zoo
chl-a

P

P,

P

N
N
N

NR
NR

ôl
co

temp, rad, trans, depth
temp, tra¡s
temp, fans

temp, rad, depth, volume,
surface area

temp, turb, zoo
temp, trans zoo
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Five applications listed in table 2.2 (Jeong et al. (2001); Maier et al. (1998,2000);
Recknagel et al. (1997); Yabunaka et al. (1991)) consider one or both of the mi-
cronutrients silica and iron. Available silica is an important nutrient for the growth
of diatoms. Also cyanobacteria are known to have a higher demand for trace

elements in general (Dokulil and Teubner, 2000). Many models also consider
dissolved oxygen level, which may be be an indirect driving variable since anoxic
conditions lead to phosphorus release from sediments (Trimbee and Prepas, 1988).

Since pH determines availability of dissolved CO2 in the water column, this too
can play a role in species dominance. It has been shown that cyanobacteria
compete well in environments with relatively high pH and resultant low carbon
availability (Dokulil and Teubner, 2000).

Sivonen and Jones (1999), Scardi (2001) and Whitehead et al. (1991) do not
consider any nutrient data in their models.

2.4.2.2 Inputs Describing Physical Conditions

Temperature, considered by all models reviewed, is a key driving variable as it
determines rates of chemical and biological processes. Different species of phy-
toplankton have varying temperature optimums, with higher temperatures tending
to favour cyanobacterial growth (Dokulil and Teubner, 2000; Robarts andZohary,
1987). However, temperature alone does not determine dominance - there is
generally a complex interaction with other conditions (Robarts andZohary, 1987).

For example Takamura and Aizaki (1991) and Takamura et al. (1992) report a
succession in Lake Kasumigaura, Japan, from Microcystis spp to Oscillatoria
spp. dominance arising from an interaction between temperature and nutrient
availability. This succesion caused a drop in overall primary productivity.

Temperature can also affect other physical conditions such as the mixing regime.
Thermal stratification can act as a physical barrier separating regions of high
lighllow nutrient conditions from regions of high nutrienllow light conditions.
The presence of stratification tends to favour species of cyanobacteria adapted,

through buoyancy control, to overcoming the physical separation of light and

nutrients (Ganf and Oliver,1982; Reynolds, 1987). Recknagel et al. (7997) rep-
resents the presence of thermal stratif,cation to the model explicitly, while Jeong

et al. (2001), Lee et al. (2003), Whitehead et al. (1991), Maier et al. (1998) and

Maier et al. (2000) included variables that may affect the mixing regime such as

wind or flow rate in the case of rivers.

All models also considered one or more variables indicating the level of light
available for photosynthesis - incident solar radiation, cloud cover, secchi-disc
depth, turbidity and colour. Light availability is a key driving variable for pho-
tosynthesis and light attenuation can have a significant impact on overall primary
productivity (Ruley and Rusch,2002). Light intensity may affect species dom-
inance. For example, cyanobacteria are able to harvest low light intensities of
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wavelengths unusable by other species making them highly competitive in low
light conditions (Mur et aI., 1999). Light availability has also been shown to
interact with the level of nutrification in determining species succession. Zeven-
boom anci Mur (i980) showed that non N-fixing Osciilatoria spp. dominates over
N-fixing types in severely hypertrophic lakes even when growth is N-limited as a

result of superior low light eff,ciency.

Some applications reviewed, such as Vy'alter et al. (2001), use morphometric in-
formation such as depth, surface area and volume as inputs. This information has

been shown to have a deterministic relationship with eutrophication and species
dominance. Shallow lakes have been observed to favour dominance by filamen-
tous cyanobacteria, while deeper lakes favour colony forming types (Schreurs,

1992) (cited by Ruley and Rusch (2002)). Recruitment of cyanobacteria is as-

sumed to decrease as lake depth increases due to the reduction of the sediment
area./volume ratio (Trimbee and Prepas, 1988). Fetch, combined with wind speed,

has an effect on the mixing conditions and thus the degree of thermal stratification
within a water body.

In addition to inputs with an established deterministic relationship with photo-
synthetic or ecological processes, Scardi (2001) used "co-predictor" variables as

inputs - that is, variables known to be correlated to dynamics of the dependent
variable, but not necessary causative. It is argued that since ANNs are relatively
robust with regards to redundant inputs, extra correlative information provide a

low risk means of improve model prediction accuracy. In this study and in Sivonen
and Jones (1999), information regarding the latitude and longitude of measuring
stations, date and day length were found to be helpful for model predictions.

2.4.2.3 Inputs Describing Biological Factors

11 studies consider zooplankton abundancè in some form and 8 studies include
overall algal abundance expressed as chlorophyll a in the input layer. Zooplankton
can impose a top-down control of algal biomass through grazing and may have an

impact on species dominance, since certain species of cyanobacteria limit their
grazing mortality due to adaptations to make them inedible (Dokulil and Teubner,
2000) giving them a competitive advantage. Chlorophyll ¿ has an impact on
light availability, with higher concentrations reducing light availability through
the shading properties of algal cells. Also it may influence the chemical properties
in terms of nutrient availability (as a result of consumption) or pH.

2.4.2.4 Modelling time-serieslnteractions

Table 2.3 reviews the length and sampling interval of databases used, model han-
dling of time and the division of data into training and testing sets. It can be seen

that the lifespan of the time-series used for modelling varies considerably, from
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2 months for Todorovski et al. (1998) to 18 years for one case study outlined in
Whigham and Recknagel (2001). Most applications have between 5 and 10 years

of data available. In most cases, the sampling intervals in the time-series used is
in the order of weeks, although it varies from 4-5 days (Todorovski et al., 1998)

to I month (Wei et a1., 2001). It can be seen that the model time step is generally

more frequent than the actual sampling frequency of the databases, with daily time
steps being most commonly used. This increase in sampling frequency is achieved
by interpolation of the modelled variables between the actual sample dates. The
mode of interpolation was not described by any applications except for Yabunaka
et al. (1997), who use linear interpolation and Todorovski et al. (1998), who use

predictions by domain experts.

Out of the 22 applications reviewed, 9 trained models to make forecasts of future
phytoplankton abundance given current environmental values, while the remain-
ing models were trained to predict phytoplankton abundance on the same observa-

tion date as the input variables. Where a forecasting structure was implemented,
a TDNN structure was applied whereby the input variables lagged the outputs by
the required forecast period. This lag period was generally between I and 4 weeks

which is consistent with the real sampling frequency of the time-series used. In
some studies, such as Maier et al. (1998), Recknagel et al. (1998) and Recknagel
and'Wilson (2000), multiple lags of a single variable were used.

Jeong et aI. (2001) and V/alter et al. (2001) used a recurrent network structure
(RNN) to further extend the time dynamic behaviour of the models. The RNN
copies hidden to output layer activations at time r - 1 and uses them as inputs for
time t2. These authors state that the recurrent ANN paradigm offers a superior
structure for time-series modelling, as the activations of the recurrent connections
represent the model state at previous time steps in a manner comparable to many
deterministic modelling approaches.

In contrast with the majority of studies reviewed, Sivonen and Jones (1999),

Scardi (2001), Karul et al. (2000) and Whitehead et al. (1997) did not present
the model predictions as a time-series since there was no intention in these cases

to display the model's handling of dynamics in phytoplankton abundance over
time. This differentiates these applications from the remaining studies where the

models were explicitly trained and validated to exhibit time-dynamic behaviour.

2.4.3 Model Inference

Table 2.4 outlines technical aspects of the reviewed models including the model
structure, approximation method (ie training algorithm), a-priori bias, approach to
complexity tuning, elucidation method and controls used. The following sections

provides further description of each of these aspects of the reviewed studies.

2See Pineda (1987); Elman (1990); Connors et al. (1994) for more complete descriptions of
the methodology regarding recurrent ANNs.
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Table 2.3: ANN eutrophication models - time series information, train/test set partitioning and forecast interval

Time Forecast in-
tervalterval

setstep

Barciela et al. (1999)
Bobbin and Recknagel (2001)
French and Recknagel (1994)
Jeong et al. (2001)
Karul et al. (2000)
Maier et al. (1998)
Maie¡ et al. (2000)
Lee et al. (2003)
Olden (2000)
Recknagel et al. (1997)
Recknagel and Wilson (2000)
Recknagel et al. (1998)
Scardi and Ha¡ding Jr (1999)
Scardi (2001)
Todorovski et al. (1998)
Whitehead etal. (7997)
Wilson and Recknagel (1991)
Wligham and Recknagel
(2001)
Wilson and Recknagel (2001)
Walter et al. (2001)
Wei et at. (2001)
Yabunaka et al. (1997)

day, 1 week, season

- 4 weeks

day
day

3/3 years

9l2yeas
312 years
5/1 years

?l?l? years
6/7 years
6/1 years

10/8 years

?t2

6-1012 years
812 years
8/2 years
70O1226 rccords
7261/6301631 recods
2l2monÍhs
80Vol20Vo

10/10 years

8/2 years

3 years

I 1 years

5 yems

5 years

4 years

7 years

7 yeas
4. 18 years

1 year

8-12 years

10 years

10 years

12 years

5. 7 years

2 months
3 years

10 years

l0 years

1 week
2-4 weeks

7-10 days

I week
,|

I week
weekly
1, 2 weeks
2 weeks

1-4 weeks
2-4 weeks
2-4 weeks
1

1 day
4-5 days

I week
2-4 weeks
2-4 weeks

weekly
1 day & 1, 2 weeks
2 weeks

daily
daily
d^ily
,|

1 day
0.1 day
I week
daily
daily

0
0
1 day

0-40 days

0
1-4 weeks

1-4 weeks

l-15 days
0, 2 weeks

0, l month
I week
0
I week

1

2

I
I
?

I week

0
0
0
0
0
7,2,5
0
0
0

days

8-1 8 years

18 years

15 years

12 years

2-4 weeks

1-4 weeks
1 month
2-4 weeks

l month
1 day
1 month
7 day

8-18/8-18 years

15/3 years

10/5 years

1 1/1 years

\o
cî)
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2.4.3.L Approximation

Table 2.4 shows that most studies utilise MLP structures trained with the back-

propagation algorithm. As mentioned above, Jeong et al. (2001); Walter et al.

(2001) augment the traditional MLP approach with recurent connections to better

model time dynamics. Three studies utilised a second order training method

instead of backpropagation - Wilson and Reckna gel (1997) and Wilson and Reck-

nagel (2001) employ the conjugate gradient training method and Karul et al.

(2000) use a Levenberg-Marquardt algorithm.

Several more recent studies use alternative model representations and approxi-
mation methods. Bobbin and Recknagel (2001) apply principles of evolutionary
computation to evolve a ruleset from data to predict algal biomass. Similarly,
V/higham and Recknagel (2001) utilises the same principles to evolve equations to

achieve the same task. Todorovski et al. (1998) uses a similar approach to equation

discovery as Whigham and Recknagel (2001), the difference being that instead

of using genetic algorithms for the training process, a non-linear optimisation
technique is used. Maier et al. (2000) uses a B-spline associative network trained

using a linear optimisation method. In each of these cases, the aim is to achieve

a more transparent representation of knowledge learned from the training data

than is possible with ANNs within amodel-free approximation framework. These

approaches have been developed in response to the common criticism of ANNs
that they are an opaque means of representing knowledge compared to traditional
deductive and inductive modelling approaches.

2.4.3.2 Generalisation

A few of the models reviewed impose an a-priori bias to somehow restrict the

range of models that may be discovered during training to those that make sense

from the point of view of domain experts. Scardi (2001) achieves this by means

of a "constrained training" approach, whereby an effor penalty is applied during
training if the model approximates undesired solutions. In this case, the model was

biased towards primary productivity response surfaces that had 1 maximum and

4 minima with respect to irradiance and biomass values. It is claimed that such a

bias has the effect of restricting the complexity of the trained model thus reducing

overf,tting and ensuring that the model retained a degree of "biological sound-

ness". Todorovski et al. (1998) and Whigham and Recknagel (2001) imposed a

"declarative language bias" on their equation discovery models that restricted the

model terms and grammar that could be used to those that made ecological sense.

In addition, Todorovski et al. (1998) further biased the model by using synthetic

data predicted by domain experts for training.

All models reviewed, apart from Bobbin and Recknagel (2001) and Lee et al.

(2003), used some means of tuning the model complexity to prevent overf,tting.
The most common approach for models based on MLPs was through empirical
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Structure

MLP
Ruleset
MLP
recurrent ANN
MLP

MLP

MLP
B-spline AMN

MLP

MLP

MLP
MLP
MLP

MLP

Equations

MLP

MLP
Equations

MLP

recurrent MLP
MLP
MLP

a-priori model

hidden layer size
none

hidden layer size
hidden layer size
early stopping of training

none

hidden layer size
no. basis functions

hidden layer size, connec-
tion pmning
hidden layer size

method

none

Examination of leamed ruleset
none
sensitivity cuwes
none

sensitivity analysis, weight in-
terpretation
sensiúvity analysis
fuzzy interpretation of
B-spline basis functions
neural interpretation diagrams

sensitivity analysis

deterministic modelBa¡cieìa et al. (1999)
Bobbin and Recknagel (2001)
French and Reck¡agel (1994)
Jeong et al (2001)
Karul et al. (2000)

Lee et al. (2003)

Maier et al. t.1998)
Maier et al. {2000)

Olden (2000)

Recknagel er al. (1997)

Recknagel and Wilson (2000)
Recknagel et al. (1998)
Scardi and Fllarding Jr (1999)

Scardi (2001)

Todorovski et al. (1998)

Whitehead er al. (1997)

Wilson and Recknagel (1997)
Whigham and Recknagel (2001)

Wilson and Recknagel (2001)

Walrer er al. (2001)
Wei et al. (2001)
Yabunaka et al. (.199'7)

backprop
GA
backprop
backprop
Levenberg-
Marquardt
Backprop

Backprop
LMS

Backprop

Backprop

Backprop
Backprop
Backprop

Backprop

Levenberg-
Marquardt
Backprop

Conjugate Grad.
GA

SCG

Backprop
Backprop
Backprop

none

none

none
none
constrained train-
¡ng
constrained train-
lng
language bias,
data synthesis

hidden layer size
hidden layer size
jitter, early stopping, hid-
den layer size
jine¡ early stopping, hid-
den layer size
equation length

tralnlng üme

hidden layer size
depth of proglam tree

hidden layer size, early
stopping
early stopping
hidden layer size
hidden layer size

sensitivity, scenario analysis
none
sensitivity analysis

sensitivity surfaces

analysis of discovered equa-
tions
ext¡action of equation

none

analysis of discovered equa-

none

backprop ANN

none

empirical, deterministic,
time-series, heuristic &
fuzzy models
none
none
none

none

naive models, linear model

time series alalysis, dy-
namic mass balance model
none
none

perceptfon

deterministic model
none
none

none

none
none
none

none

none

none
none

none

none
none

none

none

none
none
none
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determination of the optimum number of hidden layer units by cross-validation. In
addition to this measure, Sivonen and Jones (1999), Scardi (2001) and Wilson and

Recknagel (2001) stopped training early as a further control against overf,tting.
Karul et al. (2000) and Walter et al. (2001), by contrast, only used early stopping

and did not perform any optimisation of hidden layer size. Olden (2000) used

an online connection pruning approach in addition to hidden layer optimisation,
where connection weights below a threshold value were pruned from the network.

Sivonen and Jones (1999) and Scardi (2001) added a small Gaussian noise com-

ponent to the input data at each training epoch with ¡r : 0 and o : 0.01 in addition
to hidden layer tuning and early stopping. This perturbation, known as 'Jitter"3,

is claimed to smooth or regularise function approximations by ANNs leading to
superior generalisation characteristics.

With respect to the alternative model structures reviewed, Maier et al. (2000)

determined the optimum number of basis functions to include in the AMN. Todor-

ovski et al. (1998) and Whigham and Recknagel (2001) defined a maximum
equation length to prevent the model getting too complex and thus overfitting
training data.

2.4.4 Validation

The flnal column in table 2.3 shows the division of data between training and

validation sets in terms of time. Most applications used 1-3 years of data for
validation and the remainder for training, with the training and validation data

being retained as discrete blocks in terms of time (such as years). In general, this

meant that the majority of the data (807o or more) was used for training. Karul
et al. (2000) and Scardi (2001) also used a third "tuning" dataset which was used

to tune the training time of the MLP (this is denoted in table 2.3 as train/tune/test

rather than train/test). Wilson and Recknagel (7991,2001) used all the data for
training and validation by means of 1O-fold-crossvalidation and the leave-one-out

bootstrap estimator respectively.

The final column in table 2.4 shows whether the machine learning model in each

case was compared to a conventional modelling approach. It can be seen that

in 6 of the 22 studies reviewed, some reference was made to other model types,

whether by direct comparison or through discussion of the calibre of performance

observed.

Barciela et al. (1999) found that MLPs were capable of more accurate predic-
tions of marine primary productivity than a deterministic model, particularly at

short time scales. It was reasoned by these authors that the performance of the

deterministic model is hampered by difficulties associated with estimating some

parameters. Maier et al. (2000) compared the prediction accuracy of B-spline

3See Györgyi (1990) for more background to this technique.
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AMN networks wilh conventional MLP networks for forecasting Anabaena spp.
biomass in the Murray river. It was concluded that the AMN networks performed
slightly better than MLPs and had the additional feature of providing a more
transparent knowiecige representation. Recknagei et aI. (i997) argued that MLPs
are capable of superior prediction accuracy than existing empirical, deterministic,
time-series, heuristic and fuzzy ruleset models due to their ability to resolve to
species level compared to chlorophyll a or functional groups and their ability to
resolve timing of growth to day or weeks compared to months, seasons or years.

Todorovski et al. (1998) compared the models developed by means of equation
discovery system LAGRAMGE with a linear model form and 2 "naive" models

- "no-change" and "same-change". The no-change model predicts that the value
of the output for the next time step will be the same value as for the current time
step (phyt(t|h)=phyt(t)). The same-change model predicts that the change in
the output will be the same as the change from the previous time step (phyt(r +
h)-phyt(t)=phy(r)-phyt(t - h)). Ir was found rhar rhe LAGRAMGE model had
superior prediction accuracy to the linear model and the no-change model. The
same-change model performed better than LAGRAMGE at small prediction in-
tervals, but was not as robust in that it did not perform as well when the prediction
interval was increased. Similarly, Wilson and Recknagel (2001) compared the
performance of MLP models with perceptron models to determine the importance
of the ability of MLPs to map non-linear decision boundaries. It was found
in a study involving forecasting chlorophyll a abundance in 5 lakes and 1 river
that the MLPs generally performed marginally better than the perceptron models,
although in 2 instances the perceptron model performed best.

V/hitehead et aI. (1997) compared the MLP model with both conventional time-
series analysis and a deterministic model for predicting chlorophyll a biomass
in the River Thames. These authors found that the MLP model performed very
similarly to the conventional modelling approach, although they commented that
the MLPs had the advantage that no "subjective information is required to de-
termine the model structure or estimate parameters". However, it was noted
that, since ANNs do not explicitly represent processes, interpretation of processes
could only be made at the most general level compared to conventional modelling
approaches. Thus, as is the general consensus regarding ANNs, these authors
found that ANNs are most useful in situations where analysis of large datasets is
required without a-priori knowledge.

2.4.5 KnowledgeDiscovery

Many studies reviewed employed some technique to elucidating knowledge from
trained models. The most common approach for the MLP models was sensitiv-
ity analysis (see section 2.3.5). Jeong et al. (2001), Scardi (2001) and 'Walter

et al. (2001) further enhance the information retrieved by reporting the sensitivity
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"surfaces" or "curves" retrieved with respect to the output when the input or
inputs of interest are varied over their entire range (ie "Lek's algorithm") enabling

elucidation of non-linear relationships. Recknagel and Wilson (2000) applied a

scenario analysis by means of observing the effect on the output by modifying
input variables in related groups. In this case, the effect on the output of4 separate

scenarios was observed where data was swapped between the 2 validation years

for the following groups of inputs - i) nutrients, ii) zooplankton, iii) physical
data, iv) chlorophyll a. This enabled the elucidation of the causes of a species

succession that occurred between the two validation years.

Several authors used a more direct approach to knowledge discovery than sen-

sitivity analysis by interpreting ANN connection weights. Olden (2000) used

neural interpretation diagrams (NID) to visualise the strongest connection weights

and thus the most important driving variables. Similarly, Lee et al. (2003) used

a method to interpret the connection weights to elucidate the driving variables.

Whitehead et al. (1997) used a method to extract an equation from the connection

weights, although the exact method of interpretation was not outlined in this case.

Where novel forms of model approximation such as GA or equation discov-

ery were used, knowledge discovery was facilitated by the transparent nature

of knowledge representation learned. In the case of the models developed by
Bobbin and Recknagel (2001), Whigham and Recknagel (2001) and Todorovski
et al. (1998), elucidation was simply a matter of interpreting either the rulesets or
equation sets discovered by training. Maier et al. (2000) used an interpretation
method to gain afuzzy ruleset from the trained associative network.

2,4.6 Discussion and Conclusions

2.4.6.I Choice of Input Variables

It is widely recognised that none of the driving variables considered by applica-

tions of ANNs and machine learning to modelling eutrophication variables can

determine primary productivity or species dominance alone. A number of studies

have illustrated complex interactions between nutrient levels, light availability,
lake morphometry and temperature with respect to the spectrum and abundance of
algal species favoured (Ruley and Rusch, 2002).It is not surprising, therefore, that

the models reviewed in table 2.2 generally utilise input layers that are highly mul-
tivariate considering input variables from each of the 3 classes specified. Indeed,

this is the type of modelling that ANNs are well suited to, since they can handle

multivariate modelling tasks where the relationships are complex and unknown.

However, there are several conflicts in approaches to model design in evidence

amongst the reviewed papers. Two studies, (Maier et a1., 1998; Lee et aL,2003),
stress the need to reduce the risk of redundant inputs being included in the model.

This is reasonable since Aussem and Hill (1999), Aoki et al. (1,999) and others
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point out that noise introduced by redundant inputs can reduce performance and
increase the likelihood of overfitting. Scardi (2001), on the other hand, states
that the robust nature of ANNs with respect to input redundancy enables a wider
range of inputs to be considereci than was previously possibie. As ciiscusseci in
section 2.3.1, there is a need to achieve the right balance between the "curse
of dimensionality" on the one hand and the flexibility to include novel input
variables on the other. The contradictions apparent in the literature with regards
to this issue suggests there is a need to determine the practical importance of this
tradeoff. Furthermore, with the issue of database compatibility in mind, a relevant
question is whether a generalised, or "generic" set of highly available inputs can
be identif,ed that can be used to create models that have similar performance to
ad-hoc, database specific architectures.

In terms of the choice of input variables, the review showed that no models
explicitly considered the possibility of interspecific competition through inclusion
of species cell counts in input layers. This is in spite of the fact that many studies
reviewed make predictions of species abundances. Therefore, the question arises
whether species succession in freshwater ecosystems is driven primarily by envi-
ronmental conditions, interspecific competition, or both? Also, it is known that
there may be considerable spatial variability in algal density in water bodies de-
pending on the extent of stratification and the effects of wind. This is particularly
the case with respect to cyanobacterial blooms which tend to be concentrated on
the surface due to overbuoyancy (Reynolds, 1987) and therefore highly vulnerable
to the effects of wind. Yet no studies reviewed explicitly included information
regarding spatial variability of algal biomass in the structure of the model, or
made mention of this factor as a possible influence on the observed data.

Given this review, the following can be concluded;

o The problem of input selection needs further investigation to determine how
robust ANNs are with regards to redundant input variables.

o There is a need to identify "generic" models compatible with a wide range
of databases, as well as application specific models.

o There is a need to investigate the importance of input variables describing
spatial variability and/or competition between species or groups of phyto-
plankton.

2.4.6.2 Modelling Time Series

Table 2.3 shows that about 507o of the models reviewed do not explicitly represent
links between past and present states in the model design, either by means of lag
inputs or by recurrent network connections. This is in spite of the fact that nearly
all models are trained using time-series data and are evaluated in terms of their
ability to handle dynamics in algal biomass over time. Lee et al. (2003) points
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out that models not designed to make forecasts are not useful in a management

sense, since they predict algal biomass for the same time as the input variables

are measured. It can also be argued that, unless a time component is explicitly
considered, a model's use as an elucidatory tool is compromised by a lack of
clarity with regards to the direction of causality being modelled. For example, it
is possible that a "same day prediction" ANN model has learned to predict algal

biomass from the consequences of high primary productivity, such as nutrient
consumption and low secchi disk depth, rather than the causes.

Many studies reviewed enforce a higher frequency model time step than the actual

sampling frequency by means of interpolation. In some cases it is stated that

interpolation creates a regular time step necessary for compatibility between the

dataset and TDNN and/or RNN structures. However, Lee et al. (2003) argues that

using interpolated data to train a TDNN model may cause a blurring of past and

future conditions giving the model access to information that, when applied to new

data, would not be available. Figure 2.11 illustrates the potential problem - it can

be seen that on the right hand side of the diagram where the lag interval falls below
the actual sample intervals, the input data is calculated from observations that are

in the future relative to the model output. This "temporal contamination" is a

particular problem where the model considers an autoregressive component, that

is, where one of the input variables is the output variable with a time lag imposed,

since, in such a case, it means that the input data has been derived from the

same real values in the time-series as the output (Lee et a1.,2003). These authors

provide an elegant demonstration of the pitfalls of this approach by showing that

an ANN with lagged inputs can model a series of interpolated random numbers

very accurately, despite there being no model underlying the real, uninterpolated

values.

Logically, the use of interpolation to enforce dataset compatibility with time-series

modelling structures such as time delay or recurrent connections raises a number

of other problem issues including;

o The method of interpolation used (linear, splines etc) will affect the model

learned by the ANN. As yet, there are no documented results known to the

author that empirically differentiate between interpolation methods for an

ANN application modelling natural resource variables.

o It adds significantly to the overall data processing task, since it necessitates

extensive, error prone preprocessing. Also, the inflation of dataset sizes by
up to 10-30 times their original record count increases training times.

o The assumptions made about the dynamics of variables between sample

dates may be incorrect - particularly for highly dynamic variables such as

phytoplankton abundance.

Given the issues raised by this discussion, it can be concluded that more research

is needed to develop a time-delay model representation that is compatible with the
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Figure 2.11: Use of lag inputs with interpolated data.

sampling structure of typical limnological datasets. Such a representation needs
to be characterised by the following qualities;

o It must reduce the probability of "temporal contamination" when used with
time delay or recuffent connections.

o It must, as far as possible, avoid assumptions or simplifications regarding
dynamics between sample dates.

2.4.6.3 Approximation and Generalisation

This review shows that a number of innovations in ANN and machine learning
techniques are being applied to the eutrophication modelling problem in recent
years. These include the use of time delay and recurrent network connections to
represent prior model states, alternative model representations and approximation
methods to either speed up learning or enable the use of more transparent knowl-
edge representations and the use of a-priori bias to guide model approximations.
These innovations are motivated by recognition of the following requirements;

o The desire to develop models that are sound from an ecological perspective.

o The desire to "peak into the black box" to gain a better explanation of the
system being modelled.

o The desire to raise the efficiency and robustness of the model approximation
process.
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The review of applications clearly shows that practitioners have few problems
obtaining reasonable model approximation in terms of mapping training data de-

spite the theoretical difficulties with ill-conditioning and local optima outlined
in section 2.3.2. Conversely, achieving reasonable generalisation evidently re-
quires greater attention since nearly every application reviewed biased modelling
outcomes by limiting complexity to prevent overfitting. With respect to ANNs,
combinations of up to 4 meta-parameters determining complexity are being tuned,

including hidden layer size, training time, weight decay and jitter. Where alter-
native model approximation methods were used, some means of limiting overall
size or complexity of outcomes was often applied.

In a review of 43 papers describing ANN application to modelling ware resource

variables, Maier and Dandy (2000) concluded that the process of choosing ANN
complexity for a task (ie stopping criteria, hidden layer geometry etc) is generally
described poorly and/or carried out inadequately leading to sub-optimal perfor-
mance and difficulty in attaining meaningful comparisons between models. It
can be argued, given the review of parameters controlling ANN generalisation
in section 2.3.3, that the reason that sub-optimal generalisation of models may
be occurring in practice is that the problem of minimising total biasfvariance is
fraught with difficulties. Analytical approaches to the problem are unwieldy and
yield loose complexity bounds (Moody, 1991) and empirical approaches based on
cross-validation are inherently effor prone in the context of an unstable classifier
such as ANNs (Breiman, 1996b).

Also, it is possible that interactions between the effects of different complexity
determining meta-parameters and/or model approximation methods further re-
duces the efficiency of this optimisation task. Studies such as Alpsan et al. (1995)

and Lawrence and Giles (2000) go some way towards determining the effects of
these issues on generalisation performance. However, with the proliferation of
methods available today, the task of searching the space of possible combinations
of methods and parameters is a task beyond even the most well equipped water
resource manager.

It can be concluded that the issue of achieving optimal ANN model generalisation
requires further research.

2.4.6.4 Validation

As stated in section 2.3.4, Flexer (1995) proposed a list of five minimum re-
quirements for evaluation of ANN models (listed in table 2.1). No applications
reviewed satisfied all five requirements, with most only satisfying the first re-
quirement for separate training and validation sets. Furthermore, for most appli-
cations, only one to two years of data expressing extreme conditions with respect

to the output variable were chosen for validation - for example, "bloom" and
"non-bloom" years. While such an approach seems reasonable for estimating
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model performance in extreme conditions, a number of obvious sholtcomings are

evident;

o No information is yielclecl regarcling model performanee r-rnder more mod-
erate output conditions.

o There is no consideration of the values of the independent variables. For
example, it may be desired to validate model performance for unusually
warm or cool years.

o For datasets where the sampling interval is high, such an approach leads to
questions about the signif,cance of the performance estimates.

o Validation data is grouped into contiguous blocks of one or two years. This
means that most validation set records will separated in time from training
set records by more than one sample interval. This does not provide a

realistic validation for a real-time forecasting application where the ANN
is constantly retrained using the most up to date data.

Few applications reviewed compare modelling outcomes of machine learning ap-
proaches with more conventional inductive or deductive approaches. It can be
argued that comparisons need to be made over a wider range of case studies in
order to put the utility of ANNs in this application in a broader context. In partic-
ular, only 2 studies, Wilson and Recknagel (2001) and Todorovski et al. (1998),
make a direct comparison between model inference constrained to multiple linear
relationships and the unconstrained, non-linear machine learning approach. This
is in spite of the fact that a key hypothesis to be investigated in any model-free
model inference application is that unconstrained model inference provides out-
comes that are superior as a result of increased flexibility.

It can be concluded that more robust approaches to validation need to be employed
that provide the following features;

o Improved validation set representation.

o Does not use validation data for model selection pu{poses.

o Enables the use of statistical tests for performance comparisons.

o Provides comparisons with conventional or naive modelling techniques to
providc a mcaningful context for performance estimates.

2.4.6.5 KnowledgeDiscovery

This review shows that sensitivity analysis is the most used approach to elucidat-
ing knowledge and that the methodology has in recent times advanced to the point
where it can illustrate non-linear relationships between input and output variables
and interactions between input variables. However, it can be observed that in most
cases, input variables besides the input under investigation are blocked at median
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values. If there are interactions between inputs with respect to their effects on
the output variable, which is a reasonable assumption given the non-linear nature
of ANNs, observed sensitivity will depend on the values of the blocked input
variables. This means that the sensitivity determined will only be relevant given a

tiny region in the input space rather than representative of the generalised effect.
Furthermore, it is possible that blocking all inputs at median values may push the

input space into a region outside that which was used to create the model, because

it is likely that in the reservoir or lake under investigation, all the environmental
variables are never observed to be at median values simultaneously. This means

that the sensitivities often reported in the literature may actually be indicative
of the model's behaviour when it is effectively extrapolating, which, as Geman
et al. (1992) explains, is when model-free inference methods such as ANNs are

inherently unreliable.

It can be concluded that there is a need to determine how sensitivity analysis can

be implemented in a way that assumes the following facts about learned models;

r Inputs are likely to have non-linear relationships with output variables.

o Inputs may have complex interactions with other input variables with re-
spect to relationships with output variables and

o ANNs and other model-free inference methods are inherently unreliable
when asked to make extrapolations.

2.5 Proposals for ANN Model Representation

The previous discussion arrived at a number of conclusions regarding require-
ments for further research. This section proposes a number of developments
to the ANN model representation and methods that are intended to overcome
the identified shortcomings of existing approaches. It is hypothesised that the

suggested changes enhance the performance, stability and compatibility of the

ANN modelling paradigm in the context of a decision support framework for
operational control of algal blooms4.

2.5.I An "Input Window" Model Representation

It is proposed that an input window model representation can ensure compatibility
between raw time-series data and TDNN models without the need to interpolate

a regular sampling frequency. This approach represents input (and/or output)
variables as summary statistics over a defined window of time relative to the

aSee appendix A for a list of operational control measures for dealing with algal blooms that
may benefit from short term forecasts.
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output date as illustrated by figure 2.12. The summary statistic may be the mean,
median, variance, range, trend, or any other appropriate statistic or model output.
It is hypothesised that such an "input-window" representation has a number of
benef,ts in the context of typicai iimnoiogical time-series, since,

o Given a sufficiently long summary interval, the technique guarantees a high
proportion of matching input records for a given output variable and lag
interval. A short summary period will be adequate where the sampling
frequency of the input variable is similar to that of the output variable.
Longcr summary periods can be used to access input variables that are
sampled less frequently than the output variable without altering the overall
data representation.

o By defining strict bounds on the time period input data is summarised, the
technique eliminates the problem identified by Lee et al. (2003) that bluned
boundaries between past, present and future states will bias performance
expectations. It can be guaranteed that the model will not access informa-
tion effectively "in the future" relative to the output date when making a

prediction unless it is explicitly intended.

o Since interpolation is no longer necessary, any bias caused by assumptions
of dynamics is eliminated. Also, the overall information processing task is
significantly reduced.

o It provides scope for experimentation with the summary method, since in-
puts can be represented quantities describing many dynamic and/or statisti-
cal properties.

2.5.2 Improving Generalisation Qualities by Bagging

It is proposed that bagging (Breiman, 1994) can be used to stabilise ANN models
to improve generalisation qualities. It is hypothesised that, as shown by Cannon
and Whitfield(2002) and'Wilson and Recknagel (2001), when bagging is applied,
model error f,rst decreases with increasing f,tting power and then stabilises at a
minimum, since aggregation effectively "cancels out" the variance component of
model error typical in the overfitting phase5. Thus, as long as sufficient fitting
power in terms of hidden layer configuration and training epochs is applied to
prevent underfitting, bagging guarantees optimum generalisation eliminating the
need for error prone analytical or empirical determination of model complexity.

sThe relative importance of bias and variance in overall prediction error with increasing fitting
power is illustrated in figure 2.9.
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2.5.3 Model Validation by Rotation Performance Estimators

It is proposed that representation of validation sets be increased by use of rotation
estimators, where multiple subsamples of training and validation sets are used to
gauge model performance. The following two approaches are suggested;

o Leave-one-out bootstrap is efficiently carried out in combination with bag-
ging. N records are randomly subsampled with replacement from a training
set of size N giving a training set of 6'77o of the available data on average

(V/eiss and Kulikowski, 1991). The "out-of-bag" records (on average,337o

of data) left behind by the subsampling process are used as validation set

records. This process of bootstrap sampling and model training and valida-
tion is repeated a number of times until a reasonable distribution of model
predictions on the out-of-bag data is obtained.

o Leave-fr-out cross-validation is conducted by dividing sample into k equally
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Table 2.5: Procedure for blocked 2O-fold-crossvalidation with bagging

Loop ior i: 3Ct replicates
Block time-series into k "sub time-series" - starting position r
Loop for k:20 blocks

Sample training pool - all data except block k
Take a bootstrap sample of training data lrom pool
Train ANN
Generate predictions on current block and save.

End block loop
t:t]_l

End replicate loop

sized subsamples each used in turn as a validation set while the remainder
are pooled as a training set.

Logically, random sampling of validation records from throughout the time-series
may lead to different expectations of performance than if the validation data is
blocked into a contiguous period. This is because non-stationarities in the time-
series may lead to differences in the ANNs ability to generalise on short term
"local" time scales as opposed to longer term "global" time scales. To investigate
this possibility, it was elected to define a blocked leave-k-out crossvalidation,
where the data is divided into k smaller time-series as illustrated in f,gure 2.13.
Furthermore, a hold-out period from both training and testing of 90 days was
designated after the final record in each block. This hold-out period was enforced
when a given block was used for validation (but not training) (see figure 2.14).
The purpose of this hold-out period is to decrease the potential for temporal
contamination of validation data by reducing the likelihood of short-term serial
correlation existing between it and data that is in the future in the time-series.

Blocked leave-k-out was combined with bagging by taking bootstrap samples of
training data and running the entire leave-k-out procedure a number of times
to get a reasonable bootstrap sample of model predictions on validation data.
With each replicate, the times at which the divisions are defined is altered to
maximise training and set variability. The entire procedure is summarised in
table 2.5. It is proposed that double cross-validation (ie use of a third "tuning"
set) is not necessary, since the bagging methodology eliminates the need to tune
complexity related meta-parameters to maximise generalisation (thus satisfying
the third requirement outlined in table 2.1). The use of bagging in combination
the rotation performance estimator effectively permits the remaining requirements
in table 2.1to be satisfied.
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2,5.4 Sensitivity Analysis Through Time

It is proposed that the sensitivity analysis method generally applied be broadened

in several ways to provide a more accurate measure of the relative importance
of inputs and to pave the way to discovering more detailed information about

interactions between inputs. To take account of the assumption that ANNs learn

non-linear relationships between input and output variables, it is proposed that the

input variable in question be swept over a range of discrete values as per Lek's
algorithm (Lek et aI., 1996). Furthermore, to gain data regarding interactions

between the effects of inputs, it is proposed to conduct the sensitivity analysis for
each input where the values of the remaining inputs are blocked at each dataset

value in turn (ie a sensitivity analysis through time).Implementation of these two
strategies is described by the procedure in table 2.6. This procedure results in a
database of model responses indexed by the input variable, perturbation value and

output date. The following information can be retrieved from this database;

o Overall model sensitivity to a defined input.

o Model sensitivity to a defined input where other inputs and outputs fall
within a given range of values.

o Model sensitivity to a defined input within a give time period where the time
period is defined either by dates, or by a relationship to other unmodelled
variables.

It is proposed that overall model sensitivity to a given input be calculated to take

account of non-monotonic relationships that may have been learned between input
and output variables. This can be achieved using the approach developed by
Embrechts et al. (2001) described by equation 2.17 in section 2.3.5.
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Table 2.6: Procedure for bagged sensitivity analysis through time

Loop for i bootstrap samples
Loop for every j test set dates

Loop for À inputs
Loop for ø perturbations

Calculate output from input for date j using model i substituting
input ft with input fr + perturbation z

End perturbation loop
End input loop

End date loop
End bootstrap loop

If bagging is employed, the sensitivities will be represented as a bootstrap distri-
bution allowing statistical signif,cance tests.

2,5.5 "LakeNet" - a. Platform for ANN Model Implementation

Implementing the model representations and methodology proposed above re-
quires repeated preparation of training and validation sets followed by ANN train-
ing and testing. This process is computationally intensive because the modelling
task considers a number of dimensions including;

o 6 datasets (see chapter 3).
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. Many possible model designs, encompassing a range of input/output vari-
ables, lag times and input windows lengths and types.

o Many ANN "meta-parameter" settings such as training algorithm, number

of hidden layer nodes and training time where experiments regarding these

features is required.

o Training of many member models to make up a bagging ensemble.

o The use of rotation performance estimators requiring multiple training and

validation samples.

o The use of the sensitivity analysis through time procedure with a number
perturbations for each date-input.

Such a procedure requires training of thousands of individual ANNs with unique

training and test sets. Even with access to fast computers, this is a huge computa-

tional and data management task. Such an undertaking would be time consuming

and error prone using an interactive approach, where data preprocessing is done

using spreadsheet applications and ANNs are trained using desktop software ap-

plications.

It is proposed that the middleware application "LakeNet" be developed to facil-
itate the information processing task. Middleware is software designed to be an

intermediary between a client program and a database server. LakeNet performs

the task of retrieving and preprocessing data and messaging the ANN client with
appropriate control information and data. This messaging is achieved by means of
the application programming interface (API) of the ANN client software. At the

completion of training, validation and sensitivity analysis, LakeNet then retrieves

the corresponding predictions from the ANN client and, after performing any

necessary post-processing, inserts the information back into the database. It is
proposed that LakeNet be implemented in the Java language (Sun Microsystems

Inc., 2001) to maximise platform independence.

For the purposes of LakeNet, it is proposed that all data, including monitoring data

from each of the study sites, configuration data for experiments and ANN clients
and model predictions, be stored in tables in a relational database management

system (RDBMS)6. Storing datain a RDBMS permits data to be defined in terms

of its relationships to certain keys. This means that, unlike a "flat f,le" system

such as a spreadsheet or text f,le, the positional information of a record or piece

of information is not relevant. Compared to a flat frle system, a RDBMS has the

following advantages;

6In the present study, MySQL version 3.23.41MySQL AB (2002) was used as the database

platform and the command line client of SNNS version 4.1 was used as the ANN simulator.
Any other RDBMS software that supports Structured Query Language (SQL), such as Microsoft
Access, Oracle, or Postgres, would also be suitable.



54 CHAPTER 2. ANN MODEL DEVELOPMENT
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Figure 2.75: Database entity relationship diagram (ERD)

o The structure is much more flexible with respect to the insertion of new
records or variables, since the interface with retrieving applications is kept
constant.

o There is less risk of errors being made with respect to data manipulation or
retrieval.

Figure 2.15 shows an entity relationship diagram describing the tables used to
store water quality data.

2.6 Conclusion

ANNs are very flexible model representations that;

o May approximate a decision surfaces characterised by non-linear decision
boundaries.

o In the context of a suitable training algorithm and proper "data condition-
ing", may learn decision surfaces from data within specified distortion cri-
teria.

These properties are particularly useful when tackling modelling tasks for which
there is a lack of sufficient domain knowledge to apply conventional modelling
approaches. In addition, unlike conventional empirical models, they are not con-
strained by simplifying assumptions with respect to the data such as normality or
linearity. The process model for developing models using supervised ANNs is
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well established and it has been proven that ANNs can be used to develop models

with prediction accuracy comparable or superior to conventional models.

However, it was argued that a number of practical issues concerning compatibility
of time-series representations with typical historical datasets, stability of model

inference, perþrmance estimation and knowledge discovery affect use of ANNs
in a decision support role. The following changes to model representation and

approximation were proposed with respect to each of these issues;

o Representation of inputs as sliding time windows rather than discrete lags to

increase the compatibility of TDNN structures with "typical" environmental

datasets without extensive data preprocessing.

o Representation of models as bootstrap ensembles by bagging to increase

the stability of model inference and increase resistence to the effects of
overfitting.

o Use of rotation performance estimators such as k-fold cross-validation or
the leave-one-out bootstrap to improve the accuracy of performance esti-

mation leading to better judgements about the model's usefulness and more

accurate tuning of parameters that effect model performance.

o Use of the sensitivity analysis through time to yield more accurate informa-
tion regarding the relative importance of model inputs.

This thesis will investigate the utility of each of these proposals.
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Chapter 3

Study Sites and Data

3.L Introduction

One of the aspects that sets the present study apart from other related studies is

that, through the kindness of a number of many scientists and ecologists, there is

a wide range of datasets available from which ANN models can be trained and

validated. This is fortunate, since, as the aim of the present study is to develop

more generalised "compatible" approaches to ANN modelling, it is important
to that the methods be tested on the widest possible range of data. This allows

determination of interactions between the effects of model design and site specif,c
properties such as eutrophication, the morphometry and residence time of the
water body, various chemical attributes of the water, climate, the regularity and

span of monitoring and other relevant attributes. Historical data collected by water
quality management authorities was donated from 6 sites, including;

o Lake Biwa, Japan

o Burrinjuck Dam, New South'Wales, Australia

o Darling River, New South Wales, Australia

o Lake Kasumigaura, Japan

o Myponga reservoir, South Australia

o Lake Soyang, South Korea

Sections 3.2.7 to 3.2.6bnefly review the conditions of each of these water bodies

and the characteristics of the available data. Section 3.3 compares the trophic
states of each site discovered by investigation of the available data. Section 3.4
proposes site generic and site specffic model designs for ANNs based on the

observed data availability.
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Table 3.1: Six freshwater bodies: water quality, monitoring, and database informations
a
z
v')
t¡
H
q

a
Þ
F-
v)

c.i

tÐ
Hù

U

Lake Biwa
(Japan)

Lake
(NSW Australia)

Reservoir
(SA, Australia)

Lake Soyang
(South Korea)

Darling River Lake Kasumigaura
(NSV/, Australia) (Japan)

Water Quality
mean Chl a@eI)
max Chl a (pg/l)
std dev Chl a (ggll)
mean annual min temp ('C)
mean annual max temp ('C)
mean transparency

Morphometry
max depth (m)
mean depth (m)
area (kmz)
volume (106 m3)
retention time (years)

Database
lifespan of database

no. chl-a sample dates

approx. sampling interval (days)

no. variables sampled
no. sample sites

depth of sampling?

9.32
38.5

6.5

4.9
29.5

1.76 m**

103

4T

6',70

27800
5.5

r984-9t
151

t7
3t
I

no

15.8

5',79

28;7
9.r

25.6

1.55 m**

63.5

56.6

4.2

756
>2

20100*
28 1000*
26100*

9.7
27.2

101 NTU***

0.002

1918-93

60.s
280

42.5
4.5

28.8
0.84 m**

1.45
4r.6
6.77
9.7

22.3
5.09 NTU***

4.30
98

6.81
5.1

27.0
3.9 m**

nla
nla
nla
nla

628
9

65

1

no

7

4
220

900
0.55

36
not avail.
not avail.
26.8

<1

118

35.3
46.5

1650
o;77

1978-91
330
22
56
t3

yes

r978-93
725
47
105

J

no

1970-97
646
I6

236
2

no

1984-95
r20
5t
2I

1

yes

Ø
tr)

x Chlorophyl a data not available. Total cells/ml used instead.
x* Depth of secchi disk.
x * * Turbidity
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3.2 Study Sites

3.2.1 Lake Biwa

Lake Biwa, located on the island of Honshu approximately 10 km from the city
of Kyoto, is the largest freshwater lake in Japan. As one of the oldest freshwater

lakes in the world, it has attracted considerable scientif,c interest on account of
its unique biota and fossil rich sediments. It is of great economic importance to
the surrounding Shiga prefecture as the host of Japan's largest freshwater fishery

and an important source of freshwater for domestic, industrial and agricultural
purposss.

Figure 3.1 shows that the morphometry of Lake Biwa is comprised of two basins
joinedby a 1.3 km wide narrows. The northern or "main" basin is the largest

and has an average depth of 43 metres making it the second deepest lake in this

study (see comparison in table 3.1). The southern or "secondary" basin has an

avera1e depth of only 4 metres. The two basins have considerably different water
quality and biological conditions as a result of the different morphometry. The

large surface area of 610 km2 and high average depth mean that lake Biwa has

a volume of approximately 27800 x 196 -3 which is by far the largest of all the

lakes studied. Also it has the longest water retention time of 5.5 years.

River

Àdrtga'uva R,ir,er

Ë,tigew'ä Rivðt
N¡

59

Ynsug*wa

t*--r*-J
iûlrm

$etagawa [ìiv*r

Figure 3.1: Lake Biwa (Japan).

This lake was once considered oligotrophic. Many wetlands and smaller lakes

surrounding Lake Biwa have had a beneficial effect on water quality. However,

since World War 2, increasing land reclamation of the wetlands and industrialisa-
tion in surrounding areas have caused a decline in water quality to the point that

it is now considered meso-eutrophic. In recent years, "red-tides" resulting from

'o-1

'c*B
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dinoflagellate blooms and potentially toxic cyanobacterial blooms have become a
regular occurrence.

Figure 3.2 shows that the summer elimate of Kyoto near Lake Biwa is sub-tropical
with high rainfall and relatively warm maximum and minimum temperatures. The
winter months however are cool to cold with average minimum temperatures from
December to February near freezing point.
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Figure 3.2: Average temperature and precipitation - Lake Biwa

A total of 31 measured variables were available for this lake measured over an

eight year period from 1984 to 1991. Table 3.2 shows that the database for lake
Biwa contains commonly measured chemical water quality parameters including
plant macro-nutrients (nitrate and phosphate), dissolved oxygen, pH and a sin-
gle micro-nutrient (Si). Physical information is represented by temperature and
underwater light penetration (Secchi disk depth). In addition to these common
physical variables, there is basic information on weather conditions such as wind
speed and a trinary variable indicating f,ne, cloudy and rainy conditions.

The biological variables include chlorophyll a as a measure of total algal biomass.
Phytoplankton data (see table 3.3) are resolved to species level. The average,
maximum and standard deviation information regarding cell densities indicate that
the mixotrophic flagellate Euglena americana is the most abundant and dynamic
phytoplankton species in Lake Biwa. This species is known to form an algal
bloom every spring when phosphorus becomes limiting (Urabe et al., 7999). Other
dominant algae include species of diatoms (eg Melosira granulata) and green
algae (eg Pediastrum biwae).

Table 3.2 shows that there were between 104 and 190 unique sampling dates.
Chemical properties such as NO3, POa and Si were the least well represented
with 104 dates. Chlorophyll ø measurements are present for 151 dates and the re-
maining variables are available for 190 dates. For months when observations were

Avg Max Temp

Avg Min Temp

Avg Prec¡pitation
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Table 3.2: Lake Biwa: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo.

Water quality & physical variables

Chlorophyll a

Dissolved oxygen
No¡
Po¿
pH
Secchi depth
Si
'Water temperature
Weather (0 fine 05 cloudy I rain)
Wind speed

Phytoplankton

Ankistrodesmus fal v mirabile
Asterionella formosa
Coelastrum cambricum
Cyclotella glomerata
Euglena americana
Melosira granulata
Micractínium pusillum
Pediastrum biwae
Planktosphaeria spp.

Rhodomonas spp.

t984-91
1984-91
1984-91
1984-91
1984-91
1984-91
1984-9t
t984-91
1984-91
1984-91

1984-91
1984-91
1984-91
1984-9r
1984-91
1984-91
1984-91
t984-9t
1984-9t
1984-91

151

190

t04
104

190

190

ro4
190

190

190

1,6

2.0
1.1

1.1

2.O

2.0
1.1

2.0
2.0
2.O

96
96
96
96
96
96
96
96
96
96

96
96
96
96
96
96
96
96
96
96

190

190

190

190

190

190

190

190

190

190

2.0
2.0
2.O

2.0
2.0
2.0
2.0
2.0
2.O

2.O

Table 3.3: Lake Biwa: 10 most abundant phytoplankton species (cells/ml)

Var. name av. var. stdev. var. max. var.

Euglena americana
Melosira granulata
Pediastrum biwae
Asterionella formosa
Ankistrodesmus fal v mirqbile
Rhodomonas spp.

Coelastrum cambricum
Dictyosphaerium spp.
Cyclotella glomerata
Micractinium pusillum

549
304
t4t
128
120

89

88

8l
77
48

1789
618
555
525
279
205
572
230
r63
135

I 8780
3345
5056
4400
2526
I 838
6000
2175

963
1300
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conducted, there was an average sampling rate of between 1.1 and 2 observations
per month.

3.2.2 Burrinjuck Reservoir

YASS River

Riverv iew

Good Hope

Woo lg¡r A luo W6rroo creek
M!rrtuñb¡doeè

River

l1O3) troli

YASS
Tã ema i
Bridgc

MURBUM BIDGEE
ÂRM

Sk illens
Flals

MAI N

ARM

(rz )

5u rrín juck GOODRÀDIGBEE
Wat Er9
Pa rk

ARM

MAIN
BAs IN

Burr
Dã

Wee
Jqspcr

1O Km

Figure 3.3:Lake Burrinjuck (NSVi, Australia)

Lake Burrinjuck is a major storage for the Murrumbidgee Irrigation Area in New
South'Wales, Australia. It was created in 1908 by damming the Murrimbidgee
river downstream of the junctions with the Yass and Goodradigbee rivers. It is
located approximately 340 km southwest of Sydney near the township of Yass. As
well as being an important water supply for irrigators, it is popular for recreational
activities such as fishing, boating and water-skiing. Figure 3.3 shows that Lake
Burrinjuck is dendritic in shape with the main basin being joined by several long,
naffow arms coffesponding to the Goodradigbee, Murrimbidgee and Yass rivers.

3

(roo )

50
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There are many small bays and inlets along its edges. This lake is considered to be

meso- to eutrophic and has experienced recurrent algal blooms since the 1960's.

Figure 3.4 shows that Lake Buninjuck has a warm temperate climate with more
precipitation occurring in winter months than summer months. Whilst the average

summer maximum temperatures are similar to those of the 3 Asian lakes fea-

tured in this work, the summer minimum temperatures are considerably warmer.
'Winters in South Eastern Australia are relatively mild with average maximum
temperatures in the mid teens and minimum temperatures above freezing.
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Figure 3.4: Average temperature and precipitation - Lake Burrinjuck

A total of 56 variables were available for this lake measured over a2Zyear period
from 1976 to 7991 . Table 3.4 shows that the chemical information in the database

includes several representations of both phosphorus and nitrogen including dis-
solved and total phosphorus, ammonia, oxidised nitrogen and total nitrogen. Also
included are data for dissolved oxygen. However, there are no data for important
micro-nutrients such as silica. The physical data includes variables describing
water temperature, underwater light (Secchi depth) weather information (sunshine

hours, precipitation, wind and evaporation) and water inflow rates from a number
of tributary streams and rivers ("Ginnind & Charnwood", "Goodradigbee", "Mo-
longlo Coppins", "Mountain Creek", "Muffum Mt McD", "Yass" and all variables
commencing with "S410"). Also there is data for the lake volume and surface area

- information particularly relevant for this site given the large fluctuations in water
level caused by irrigation drawdown and evaporation in summer.

The biologicaldata (see table 3.5) include variables describing total algal biomass
(chlorophylI a) and abundance of a number of families of zooplankton and a

single macro-invertebrate group (nymphs). Phytoplankton abundance is resolved
at functional group level rather than species level. It is clear from this table

cyanobacteria are by far the most productive and dynamic phytoplankton group

Avg Max Temp

Avg Min Temp

f_l nug Precipitation
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Table 3.4: Burrinjuck Dam: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo.
Water quality & physical variables
Air temp - maximum
Air temp - minimum
A¡ea
Chlorophyll a
Dirn 900
Dissolved oxygen
Dissolved phosphorous

Evaporation
Ginnind & Charnwood
Goodradigbee
Molonglo Coppins
Mountain Creek
MurumMtMcD
NH¿
NO¡
Precipitation
Relative humidity 1500
Relative humidity 900
s410008
s410700
s410731
s410745
s4l076l
Secchi depth
Stratification
Sunshine hours
TKN
Total nitrogen
Total phosphorous

Volume
Water level
Water temperature
Wind speed 1500
Wind speed 900
Yass

1,916 96
1976-96
r97Ç96
1977-9'l
1916-91
1978-97
1977-97
l9't6-96
t9'76-97
t9't6-96
t9'7Ç9'l
l9'76-96
1916-91
t9'7'7-9'7
t97'7-9'7

1976-96
1976 96
1976-96
1976-96
1976-97
1976-97
1976-97
19't6-9'7

t9'79-9'7
l9't7-91
1976-96
1982-96
197'7-97
t97't-97
197Ç96
1976-97
rg't7-97
19'76-96
t9'76-96
1976-96

t97'7-97
1985-97
t97'Ì-97
t977-97
t985-97
1977-97
1985-9'7

7055
7236
'16'7r

283
2515

207
359

7455
76'73

76'71
7673
767 I
1673

353
363

7572
76't 1

'76'71

76'71
'r673

7673
1673
7673

173
295

'7640

165

50
358

7671
7672
350

6916
'7090
'7671

295
126
295
289
113

302
114

45

tt6
tt3
106

38

134
80

135

28.2
28.9
30,4

1.5

28.3
1.3

1.8

30.2
30.3
30.4
30.3
30.4
30.3

t.1
1.8

30.3
30.4
30.4
30.4
30.3
30.3
30.3
30.3

1.2

1.5

30.4
1.3

1.2
1.8

30.4
30.3

1.8
27.7
28.4
30.4

250
250
252
190

89
162
205
24'7

253
252
253
252
253
207
207

250
252
252

252
253
253
253
253
r43
193
251
129
42

204
252
253
200
250
250
252

193
105

t92
195

94
196
93

1.5
1.2

1.5

1.5

1.2
1.5

1.2

Phytoplankton
Chlorophyta
Chrysophyta
Cyanophyta
Diatoms
Euglenophyta
Total Algae
Xanthophyta

Zooplankton
Ciliophora
Cladocera
Copepoda Calanoida
Copepoda Cyclopoida
Copepoda Harpacticoida
Nymphs
Rotifera
Total zooplankton

1984-97
t982-97
t985-97
1985-97
1993-97
1982-97
1983-97
1982-97

4t
106

101

97
34

122
'74

123

1.1

1.1

1.l
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Table 3.5: Burrinjuck Dam: Most abundant phytoplankton groups (cells/ml)

Var. name av. var. stdev. var. max. var.

65

Cyanophyta
Chlorophyta
Diatoms
Chrysophyta
Euglenophyta
Xanthophyta

624228
8983
3496
3039

228
84

21499
2612
1527

1162
30
l0

34122240
386640
7',l100
11 100

8253
1500

in this reservoir. Also, the maximum values column indicates the occurrence of
significant blooms of green algae and diatoms during the monitoring period.

Table 3.4 shows that data availability varies from 38 dates in 34 months for
Copepoda Harpacticoida to over 6900 dates in approximately 250 months for
variables describing meterological conditions and inflow. The observation density
ranges from 1.1 to 1.8 dates per month for most water quality variables including
phytoplankton, to an average of 1 observation per day for the data describing
meterological conditions and inflow.

3.2.3 Darling River

The Darling riveris a signif,cantpart of the Murray-Darling system, which at 3780
km in total combined length is Australia's largest and the world's forth largest,

river system. This river system drains the Murray Darling Basin which is a region
of approximately I million km2 comprising a variety of alpine, temperate and

arid landscapes to north and west of the Great Dividing Range. This area has

great economic importance to Australia as it supports a large pastoral, cropping
and irrigationbased agricultural industry. Also, itprovides domestic and industrial
water supply to many towns and cities - the most significantbeing Adelaide which
derives approximately 50Vo of its domestic water supply from the Murray River
(McKay and Moeller, 2007).

The Darling River drains the north part of the Murray-Darling basin including
much of northern NSW and southern Queensland. It is a major source of water
for urban, industrial and agricultural purposes throughout this region. The Darling
river joins the Murray river close to the township of Mildura which is on the

western part of the border between Victoria and NSW. At this juncture it has an

average annual flow rate of 1890 GL (V/eston, 1987).

The Darling River has a number of water quality problems including taste, salin-
ity, turbidity and occasional cyanobacterial blooms. In 1991, the Darling River
experienced the world's largest recorded algal bloom, with floating scums of
cyanobacteria being observed over a 1000km length of the river (McKay and
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Moeller, 2001). In general, these problems are attributed to poor quality water
flowing from tributaries arising from excessive soil erosion and agricultural runoff
and natural salinity compounded by high evaporation rates (Weston, 1987).

Figure 3.5 shows the climate information for Wentworth, NS'W which is ap-
proximately 60 km south of Burtundy where the data used in this study was
collected. This region of Australia is warm and arid with low average rainfall and
high summer maximum temperatures. 'Winters 

are mild with average maximum
temperatures in the teens.
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Figure 3.5: Average temperature and precipitation - Darling River (location
Wentworth NSW)

A total of 65 variables were available in the Darling River database measured
over 16 years from 1918 to 1993. Table 3.6 shows that macro-nutrient data is
represented by dissolved and total phosphorus, oxidised nitrogen and TKN. Also
it is clear that salinity is a particular concern in the Darling river as there is data
for electrical conductivity and a number of relevant ions. Silica concentration
and pH are also represented, but no dissolved oxygen data is available. Physical
variables include temperature, but not Secchi disk depth. Instead, underwater
light conditions are represented by turbidity and colour. The presence of flow data
distinguishes this water body as a river rather than a lake. There are no weather
data available.

Chlorophyll ¿ concentration is not represented amongst the biological variables
in this database. However, unlike the other databases, heterocyst counts are avall-
able indicating the innoculum levels for certain species of cyanobacteria. Phy-
toplankton data, represented by functional groups rather than species (see table
3.7), shows that the Darling River is equally dominated by cyanobacteria and
chlorophyta. These two groups were responsible for approximately double the
overall phytoplankton biomass of flagellates which were the next most dominant

Avg Max Temp
--------- Avg Min Temp

f l nuS Precipitat¡on



3.2. STUDY S/TES 67

Table 3.6: Darling River: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo

Water quality & physical variables

Bicarbonate
Calcium
Chloride
Colour
E.C. - field
E.C. - lab
Flow
Magnesium
NOr
pH - field
pH - lab
Potassium
Silica
Sodium
SRP
Sulphate
'Water temperature
TKN
Total phosphorous
Turbidity

1978-93
1978-93
1978-93
1979-93
1918-93
1918-93
1918-93
t9'78-93
t9t8-93
1978-93
t9'78-93
1978-93
1918-93
1978-93
1978-93
1978-93
1978-92
1919-9r
1918-93
1978-93

1980-92
1980-92
t980-92
t980-92
t980-92
t980-92
t980-92
1980-92
1980-92
1980-92

390
513
494
175
121

662
5419
513
600
lto
574
510
611

572
529
398
656
454
613
744

115
t64
176
140
tt2
110
180

164
117

175
166
164
t'77
t64
t64
115
159

t39
178

178

2.2
3.1

2.8
1.3

4.2
3.9

30.4
3.1

3.4
4.1

3.5

3.1

3.5

3.1

3.2
2.3

4.1

3.3

3.4
4.2

Phytoplankton

Chlorococcales
Chlorophyta
Cyanophyta
Centric diatoms
Unicellular diatoms
Ditomophyta
Flagellates
Planctonema spp.

Scenedesmus spp.

Ulothricales spp.

4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2
4.2

628
628
628
628
628
628
628
628
628
628

148

148

148

148

148

148

148

148

148
148
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Table 3.7: Darling River: 10 most abundant phytoplankton groups (cells/ml)

Var. name av. var. stdev. var. max. var

Cyanophyta
Chlorophyta
Flagellates
Ulothricales spp.

Chlorococcales
Planctonema spp.

Ditomophyceae
Centric diatoms
Unicellular diatoms
Scenedesmus spp.

3541
3t'70
1658

1414
1 195

972
923
154
668
551

5896
5887
2398
5063
1103
4543
1465
1351

1141

883

67533
63233
25000
62129
19125
62129
1 1388

r 1388

9689
I 3280

group. The maximum value column in table 3.7 indicates that significant blooms
of the flagellates, ulothricales and planctonema have also occuffed at some point
in the time-series.

Table 3.6 shows that the data availability varies from 175 observations over 140
months for colour, to 5419 observations over 180 months for flow. Most vari-
ables, including phytoplankton data, have a reasonably high sampling density of
between 3 and 4.2 observations per month. Flow rate was observed every day.

3.2.4 Lake Kasumigaura

Lake Kasumigaura, located on the Kanto plain 50km north-east of Tokyo, is the
second largest lake in Japan after Lake Biwa. It has had high economic importance
as a fishery throughout the twentieth century (Otsuki et al., 1981) and is also
popular for recreational uses such as boating. The lake is large and shallow with
an average depth of 4m and a surface area of 17lkm2.It is very low lying with
an elevation of only lm. Figure 3.6 shows that it comprises a main basin of
approximately 20 km length and 10 km wide at the widest points. There are

two bays approximately 10 km length and widths ranging from I to 5 km. The
shallow depth means that significant thermal stratification is a rare event in this
lake.

This lake has become a highly eutrophic water body over the course of the twenti-
eth century, especially following industrialisation and urbanisation in the vicinity
after 'World War 2, the introduction of net pen carp culture in 1965 and flow
regulation with the construction of a dam in 7974. Cyanobacteria such as Micro-
cystis, Anabaena andAphanizomenon were observed as early as 1910 and became
dominant after succee ding Melosira in I95l (Takamura et al., 1987 ). A succession
in dominance from Microcystis to Oscillatoria occuned in 1987 (Takamura and
Aizaki, 1991). In general, cyanobacterial blooms start forming in both of the bays
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Figure 3.6: Lake Kasumigaura (Japan)

in late spring and early summer and eventually spread out over the entire lake by
late summer (Otsuki et al,, 7987).

Table 3.7 shows that Tokyo (approx 60 km south west of Lake Kasumigaura) has

a subtropical climate with a warm summer and high summer and autumn rain-
fall. However, like Lake Biwa, this area has mild to cool winters with minimum
temperatures close to freezing.

A total of 105 variables were available in the Lake Kasumigaura database mea-

sured over a 16 year period from 1978 to 1993 in the case ofphytoplankton and

from the early 1980's to 1993 for the remaining variables. Table 3.8 shows macro-
nutrient data being represented by NO2, NO3, NH4, dissolved inorganic nitrogen,
total nitrogen, orthophosphate, dissolved total phosphorus and total phosphorus.

Also among the available chemical variables are silica, pH and dissolved oxygen.
The physical variables include transparency (Secchi depth), water temperature and

water depth data. Weather information is also present with rainfall, radiation time
and intensity variables available from a number of stations in the vicinity of the

lake. Wind information is not present.

The biological database for this lake is relatively rich with data available for
chlorophyll ø, a number of groups of zooplankton and phytoplankton cell counts

resolved to either species or genus level (see table 3.9). The phytoplankton data

indicates that Lake Kasumigaura is hypertrophic with very high average and max-
imum cell counts for numerous species of cyanobacteria (in particular Micro-
cystis spp. and Oscillatoria spp.). Diatoms and flagellates are also important

g.

I
ï
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Table 3.8: Lake Kasumigaura: Sampling Frequency

Lifespan Obs. dates Obs months Obs. per mo

Water quality & physical variables

Chl-a
Water depth
Dissolved inorganic nitrogen
Dissolved oxygen
Dissolved total phosphorous
Light
NH+
Noz
NO:
pH 0m
Po+
Radiation time (Kashima)
Radiation time (Tsuchiura)
Rain (Kashima)
Rain (Tsuchiura)
Total silica
Total nitrogen
Total phosphorous

Water temperature

Phytoplankton

Anabaena flos-aquae
Cyclotella sp. I
Gomphosphaeria spp.

Merispodeia spp.

Microcystis aerugino sa

Microcystis wesen

Ochromonas spp.

Oscillatoria spp.

Phormidium spp.

Synedra rumpens

Zooplankton

Bosminafatalis
Cladocera
Copepoda
D íaphano s o ma b rachy urum
Rotifera
Total zooplankton

118
178

118
118
178

178
178

178
178

t'78

1.6

1.6

1.6

1.6

1.6

t.6
1.6

1.6

1.6

1.6

2tt
2lt
2lt
211
2tt
211

136
t36
136
136
136
136

1.6

1.6

1.6

1.6

1.6

t.6

1983-93
1983-93
1981-92
1983-93
1983-93
t98t-93
1983-93
1983-93
1 983-93
1 983-93
7983-93
1981-92
t98t-92
1981-92
t98t-92
t98t-92
1983-93
1983-93
1983-93

1978-93
1918-93
1978-93
t9'78-93
1978-93
tg't8-93
1978-93
r918-93
1918-93
1918-93

7981-92
t98t-92
l98t-92
t98t-92
t98t-92
t98t-92

125
93

155

127

135

222
135

128
128
124

135

4299
4299
4299
4299

155

134
135

t34

122

88

140
tt9
125
155

125
120
120
116

125
144
144
144
144
140
t2s
125
124

1.0

1.1

1.1

1.1

1.1

1.4

1.1

1.1

1.1

1.1

l.l
29.9
29.9
29.9
29.9

1

I
1

1

277
21',7

271
277
27',|

211
211
271
27',|

27',l
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Figure 3.7: Average temperature and precipitation - Lake Kasumigaura

Table 3.9: Lake Kasumigaura: 10 most abundant phytoplankton species (cells/ml)

Var. name av. var. stdev. var. max. var.

Micro cy stis ae rugino sa

Oscillatoria spp.

Gomphosphaeria spp.

Phormidium spp.

Anabaena flo s -aquae spp.

Ochromonas spp.

Synedra rumpens
Merismopedia spp.

Cyclotella spp. I
Microcystis wesen

36899
t8302
9773
9097
4247
326',7

3149
2738
2403
1767

81193
s3049
31204
31920
18073
8294

10913
26926

7556
70414

670000
502320
331240
385476
230000
121399
143634
604250
15420

t47232

- 
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groups with high maximum cell counts indicating blooms of Synedra spp. and
Ochromonas spp.taking place during the time-series.

Table 3.8 shows data availability varying from 93 dates in 88 months for water
depth to 4299 dates in 144 months for rain and radiation time. Most water quality
data availability is in the region of 120-150 dates and measurements of phyto-
plankton were made on 2'll dates. The sampling density varies between 1 and
1.6 observations per month, although the density for rain and radiation time is
approximately once per day.

3.2.5 Myponga Reservoir

${yponga
Èlvqr

t)üÉi \Rll
()üll$r

ì,J
j

È

LtiGFNl)

l'9 Smrpl\
IùÇ:åtìr)ss

* ¿\ùrstor

N

ñ

Met*crclrçie+t
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Sr¡fse* mixs¡

50û rn

Figure 3.8: Myponga Reservoir (SA, Australia) (from Lewis et al. (2002))

Myponga Reservoir, located approximately 60 km south of Adelaide, South Aus-
tralia, was constructed in l962by damming the Myponga river in order to provide
reticulated water supply to the towns and industries in the region from the town-
ship of Myponga to the southern metropolitan area of Adelaide. The catchment
area for this reservoir is 125 square kilometres of predominantly agricultural land
which takes in the township of Myponga (Government of South Australia, 1962).
V/ith an area of 3.2 x 102 m2 and a volume of 26.8 x 106 m3, Myponga reservoir
is the smallest of the lakes investigated in this study. Figure 3.8 shows that the
reservoir is a dendritic shape with a number of bays extending from the main
basin. The long arm coffesponds to the inundated path of the Myponga River.

The water quality has been characterised by high colour and recurrent cyanobac-
terial blooms since the dam's construction (Harvey, 1992; Velzeboer et a1., l99l).
Copper sulphate has been applied up to 3 times a year since 7963 to combat the
cyanobacterial blooms and the associated water quality problems (McAuliffe and
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Rosich, 1989). Artificial destratification by means of aeration was commenced in

1980 primarily to prevent problems with phantom midge larvae entering the retic-

ulated water supply. Unfortunately this has had no significant effect on cyanobac-

terial growth (Harvey, 1992).

Figure 3.9 shows that the Myponga reservoir experiences a Mediterranean climate

with warm dry summers and mild wet winters. The Myponga region has the

coolest summers of all the lakes studied with average maximum temperatures

in the mid to high twenties. Like the other Australian lakes, winter minimum
temperatures are relatively mild being not less than 5 degrees Celsius.
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Figure 3.9: Average temperature and precipitation - Myponga Reservoir

In terms of the number of variables measured, Myponga presents the richest

database in this study with 236 fields. However a number of fields contained

less than 20 observations making them unsuitable for use for ANN modelling
pu{poses. Table 3.10 shows the better represented variables with 20 or more

records. It can be seen that sampling occurred from 1970 to 7991 for a few

variables such as turbidity, although the database is richest in the period from
1984 to 1997 .

Macro-nutrient data include variables representing NH:, NO2, NO3, TKN, or-

thophosphate and total phosphorus. A range of trace elements are recorded includ-

ing aluminium, iron and manganese but not silica. Copper data is also available

which is to be expected in light of the regular copper sulphate dosing to control
phytoplankton growth. Other chemical variables include pH, dissolved oxygen

and dissolved organic carbon data. Also there is a number of variables alluding to

taste or odour not listed in table 3.10 ("geranium", "sweetish", "fishy", "earthy",

"peaty", "musty", "mouldy", "odour" and "vegetable"). Amongst the physical

data, information is available for temperature and underwater light properties

- 
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Table 3.10: Myponga reservoir: Sampling Frequency

Water quality & physical variables

E. coli
Aluminium - soluble
Aluminium - total
Chlorophyll a
Chlorophyll ú

Coliforms
Colour - true (395nm)
Colour - true (456nm)
Conducitvity
Copper - soluble
Copper - total
Cyclopoida
Dissolved organic carbon
Dissolved oxygen
Iron - soluble
Iron - total
Iron - total
Manganese - soluble
Manganese - total

NH¿
Noz
No¡
Odour - cold
Odour - hot
pH
Secchi depth
TKN
Total dissolved solids
Total organic carbon
Total pho,sphorous

Turbidity
Water temperature

1970-9'7
1984-97
t984-97
1985-97
1 985-97
1970-9'7

t97t-91
1991-97
t98+92
1984-97
1984-97
197 l-:78
1984-97
1992-9'7
1984 97
1984-97
r984-97
1984-9'7

1984-97
1984-97
t98+97
1984-97
t97o_97
t970-97
1984-97
1981-85
1984-97
1984-92
t984-90
198+97
t97t-97
1983-97

1991-97
1972-90
1988-96
1989-9'l
1984-97
t972-97
1988-95
1975-93
1992-97
t97t-97

560
148

148

64s
643
365

1066
273

92
148

148

30
145
t75
205
204
185

185

204
194
205
206

1326
t259

76
1'76

186

92

67
205

1329
630

9l
32

163

96

50
444
24

109

20

379

136

147

t47
143
143

9'7

240
IJ
'76

147

141

25
136

61

t47
148

148

148

t48
140
148

148

309
302
'75

46
147

76
62

t4'1
308
160

4.1
1.0

1.0
4.5
4.5
3.8
4.4
a-t
1.2
1.0

1.0
1.2

t.l
2.9
1.4.

7.4
1.3

1.3

1.4
1.4

1.4
1.4
4.3

4.2
1.0

3.8
1.3

1.2
1.1

1.4
+-3

3.9

Phytoplankton

Anabaena circinalis
Anabaena spp.
Ankistrodesmus sp, I
Ankistrodesmus sp, 2
Chlorella spp.

Dictyosphaerium spp.
Dictyosphaerium very small sp.

Microcystis spp.
Pseudanabaena spp,

Scenedesmus spp.

39

26
24
39
JJ

20
rt4

12

48
10

138

3.5
1.3

4.2
2.9

2.5

2.O

2.3

2.O

2.7
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Table 3.11: Myponga reservoir: 10 most abundant phytoplankton species

(cells/ml)

Var. name av. var. stdev. var. max. var.

Chlorella spp.

Scenedesmus spp.

Anabaena spp.

Microcystis spp.

Ankistrodesmus sp I
Ankistrodesmus sp 2

Pseudanabaena spp.

Dictyosphaerium very small spp.

Dictyosphaerium spp.

Anabaena circinalis

10416
7530
5216
3633
161 4
I 360
162
749
642
588

2',7123

r8444
24295
12288
2862
2811
2431
3lzt
1568

1488

170000
139392
150000
114200
20160
21714
10500
t'7136
22102
I 1400

(Secchi depth, turbidity and colour) and weather data including radiation and wind
direction.

The biological database includes total algal biomass (chlorophyll a and b) and

individual numbers of several zooplankton groups. However, compared to other

variables, zooplankton data is relatively poorly represented with less than 35

records available from a short time span in the 1970's. E. Coli presence is well
represented over the entire time-series. The phytoplankton'data (see table 3.11)

is resolved to genus or species level. It is evident that the Myponga reservoir

experisnces significant blooms of green algae (Chlorella spp. and Scenedesmus

spp.) and cyanobacteia (Anabaena spp. and MicrocyStis spp.). Unfortunately,
Chlorella spp. and Anabaena spp. are not well represented in this database with
only 52 and 33 records respectively.

Table 3.10 shows that data availability is highly variable between fields, with some

variables measured over a long period of time, such as turbidity and colour, having

over 1000 sampling dates. The sampling density ranges from 1 ob'servation per

month to 4.5 observations per month in the case of chlorophyll ø.

3.2.6 Lake Soyang

Lake Soyang is the largest and deepest reservoir in Korea. It is situated approxi-
mately 100 km to the north east of Seoul in the far north of South Korea. It was

constructed by damming the North Han river in 7913. 9O7o of the lake inflow
comes from the Soyang river. It is of great importance as a supply of drinking
water and it has, at times, been host to a net cage fish farming industry (Kim et al.,

2000).
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The morphometry of Lake Soyang is a complex dendritic structure with one main
arm and many branching inlets of up to 5 km in length (see f,gure 3.10). It is a
deep lake with a mean depth oT 42m and a maximum depth of 110m. It has a
retention time of 0.7 years which is the highest of South Korea's freshwater lakes.
Much of the inflow into Lake Soyang occurs in the monsoonal months of July and
August, when over 50To of the region's annual rainfall occurs.

lñfl dr

Þ¡fl

?Eh txtn__J tr{r

Figure 3.10: Lake Soyang (South Korea).

Nutrient loadings to Lake Soyang originate from non-point agricultural sources
and the fish farming industry. By contrast there is an insignificant level of in-
dustrial influence on the reservoir. The lake is considered meso-eutrophic, with
significant "monsoonal eutrophication" regularly occurring in the summer months
as a result of several precipitation events of > 100 mmday-l (Kim et a1., 2000).
Like most Korean lakes, cyanobacteria are the dominant phytoplankton species in
Lake Soyang during the summer months (Kim et aI., 1997). Kim et al. (1999)
observed that by late summer in the years 1996 - 98, large surface crops of
Anabaena had formed.

Figure 3.11 shows that, like Biwa and Kasumigaura,Lake Soyang is under the
influence of a monsoonal climate with high summer temperatures and rainfall.
The winters are the coldest of all the lakes investigated with average maximum
temperatures in January close to freezing and minimum temperatures well below
freezing.

A total of 34vaiables were available in the Lake Soyang database measured from
1984 to 2000. Table 3.12 shows that macro-nutrient availability is represented by
NO3 and orthophosphate concentration. No micro-nutrient, pH, or dissolved oxy-
gen data is available, although there is data for electrical conductivity. Amongst
the physical variables there is data for underwater light (Secchi depth), tempera-
ture and climatic data including rainfall and radiation. As with Lake Burrinjuck,

g

¿
{l+l}
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Table 3.72: Lake Soyang: Sampling Frequency

Lifespan Obs. dates Obs per mo.

Water quality & physical variables

Alkalinity
Biological oxygen demand
Chlorophyll a

COD
Cosmarium bioculatum (0m)
Dissolved inorganic phosphorous

Dissolved organic carbon
Dissolved oxygen
Dissolved total phosphorous

Electrical conductivity
Elevation
Inflow
NOr
NH:
NO:
Outflow
pH
POC
POCÆOC
Productivity
Radiation
Rainfall
Rainfall (chun)
Rainfall (inje)
Secchi depth
Soluble reactive phosophorous

Stratification
Suspended solids
TCO2
Total nitrogen
Total organic carbon
Total phosphorous

Turbidity
'Water temperature

1993-00
1987-00
1984-00
t990-91
1984-89
1987-00
1995-99
1987-00
1990-00
1984-00
1990-99
1984-99
1984-89
1981-91
1984-00
1990-99
1987-00
1995-00
1995-00
1987-00
1984-95
1984-99
1990-99
1990-99
1984-00
1984-95
1984-9s
1993-00
1993-00
1988-00
1995-00
1987-00
1987--00
1984-00

101

136
339

84
39

28'l
t36
294
238
351

3485
3641

39
111

343
3550

301
135

96
158

2162
3633
3569
3536

360
r28
155

94
101

278
ro4
282
310
355

85

122

183

49
39

148

51

158

r20
116
116

168

39
82

111

119

155

51

39
743
729
178

118

tt7
185

111

116

13

85

133
4l

134
158

t'79

1.2

1.1

r.9
t.l
1.0

t.9
2.7
1.9

2.0
2.0

30.0
21.1

1.0

1.4

1.9

29.8
2.0
2.6
2.5
1.1

16.8

20.4
30.2
30.2

1.9

t.2
t.3
t.3
1.2

2.1

2.5
2.1

2.0
2,0
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Figure 3.1 1: Average temperature and precipitation - Lake Soyang

Table 3.13: Lake Soyang: 10 most abundant phytoplankton species: (cells/ml)

Var. name Var. lifespan o. av. var. stdev. var. max. yar.
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Anabaena macrospor0
Fragilaria crotonensis
A ste rione lla gracillima
Mic ro cystis aerugino sa

Eudorina elegans

Sphae ro cystis schroete ri
Cosmarium bioculatum

1984-89
1984-89
1984-89
1984-89
1984-89
1984-89
1984-89

3342
4747
to64
2',702

1857

1000
561

39
39
39
39
39
39
39

82

52
51

42
2t
t9
9

428
440
t39
270
174
111

67
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there is a field describing inflow. This is potentially important for the biological
conditions in this reservoir as it is known that "monsoonal eutrophication" in
the summer months is directly related to increases in in-flowing water bringing
nutrients (Bomchul Kim, pers. comm.).

Total algal biomass of this reservoir is represented by chlorophyll a concentration,

total number of species observed and a variable of unknown units describing
productivity. Phytoplankton data (see table 3.13) is resolved to species level.

However its usefulness for modelling purposes is limited by poor representation

with only 39 observations present for the time-series. The data indicate that com-
pared to the other reservoirs in this study, Soyang is relatively oligotrophic with
low average and maximum cell counts for all species. Cyanobacteria, diatoms and

green algae are amongst those present in this reservoir.

Table 3.12 shows that data availability is highly variable, with over 3500 records

for rainfall, elevation, inflow and outflow and less than 100 records for 5 fields.

Sampling density is between 1 observation per month and 1 observation per day.

Chlorophyll a was measured 1.9 times per month on average.

3.3 A Comparison of Trophic State

Forsberg and Ryding (1980) recommends a multi-dimensional approach to classr-

fying trophic state where multiple water quality variables are considered. Tables

3 .14, 3 .75 and 3. 1 6 illustrate classif,cation standards according to Ryding and Rast

(1989), Vollenweider and Kerekes (1982) and Forsberg and Ryding (1980). It can

be observed that each of these standards considers levels of plant macro-nutrients

and algal biomass as indicated by chlorophyll d concentration and secchi disc

depth. The German classification standard (Ryding and Rast, 1989) also considers

pH in the epilimnion and dissolved oxygen levels in the hypolimnion.

Table 3.17 shows the data from each of the 6 water bodies investigated as it
corresponds to the variables outlined in the standards in tables 3.14, 3.15 and

3.16. Note that in many cases, missing data prevents assessment using all of the

variables available in the standards. However, there is sufficient data available to

achieve a reasonable comparison of trophic states in each case. Table 3.18 shows

the relevant classifications for the 5 lakes investigated given all the variables in
each of the 3 classification systems. It can be seen from this table that a distinct
hierarchy of trophic state emerges amongst the case studies with Lake Soyang

being the least eutrophic and Kasumigaura the most eutrophic.

Soyang is considered as mesotrophic according to most variables, although there

is a very high concentration of inorganic nitrogen. This is possibly a result of the

net cage fish farming activities that have been conducted in the lake. The high
maximum chlorophyll ¿ values and low minimum secchi depths indicates that the

lake has, at times, been subjected to substantial algal blooms. Myponga is the next
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Table 3.14: German lake classif,cation standard (after Ryding and Rast (1989))

2
Quality class

3a 3b 4 5

Orthophosphate (mgll)
DIN (mgll-)
Cltlorophyll a* (¡tglL)
Secchi depth (m)
pH - epilimnion
02 @glL) - hypolimnion

Trophic state

0-0.002
< 0.01
<3
>6

6.s-8
>6

0-0.00s
< 0.03

<10
>4

7-8.5
>l

0-0.1
< 0.1

10-20 2040
>1

1-9 1-9.s
anaerobic

> 0.1 > 0.5
> 0.1 > 0.5
40-60 > 60
> 0.5 < 0.5
6.s-10 6-tt

nla

oligo- meso- eu- poly- hyper-eu-
strat. unstrat.

x Average in warmer 6 months of year

Table 3.15: OECD lake classification standard (after Vollenweider and Kerekes
(1e82))

Trophic category mean max chl mean secchi min secchi

Ultra-oligotrophic
Oligotrophic
Mesotrophic
Eutrophic
Hypertrophic

<4.0
< 10.0
10-35

35-100
> 100

< 1.0

<2.5
2.5-8
8-25
>25

<2.5
< 8.0
82s
25-75
>15

> t2.o
> 6.0
6-3

3-1.5
< 1.5

> 6.0
> 3.0
3-1.5

1.5-0.7
<0.1

note

Oligotrophic
Mesotrophic
Eutrophic
Hypertrophic

secchi refers to secchi depth (m)
chl refers to chlorophyll a (pglL)
TP refers to in-lake total phosphorous (pgll-)

Table 3.16: Trophic levels according to Forsberg and Ryding (1980)

Trophicstate Chtorophy@

<3
3-l
140
>40

> 4.0
254.0
1.0-2.5
< 1.0



3.3. A COMPARISON OF TROPHIC STATE

Table 3.17: Observed water quality

81

Variable Biwa Burr. Darl. Kasu. Mypo. Soya.

Chl a (¡tg[-) mean
max

9.32
38.5

9.4',7

15.8

519.0
15.3

60.s
280.0

15.6summer

nla
nla
nla

0.157
nla

1.0

nla
nla

1.45
41.6
1.34

4.30
98.0

6.21

0.925
nla

266.0

PO¿ (mg/L)
TP (mg/L)

NO: (mg/L)
TN (mgil)
NO:ÆO+

0.00319
nla

0.0210
0.622

0.0109
0.0995

0.00348mean
mean

0.157
0.311

0.0180
o.0631 nla

mean
mean

ratio

0.102
nla

31.2

1.82

0.70

0.541
t.7l

25.8

o.463
1.42

42.3

0.125
nla

6.94

Secchi (m) mean
mln

1.36

0.72
0.81

0.20
1.85

0.90
3.11

0.40

pH mean 7.3 nla 1.9 8.6 nla nla

most eutrophic lake, with meso-eutrophic scores according to most classiflcations.

Biwa can be considered a little more eutrophic than Myponga with a greater

number of eutrophic scores. Buninjuck is eutrophic to hypertrophic with an equal

number of each of these scores, while Lake Kasumigaura is clearly suffers the

worst water quality of all the lakes investigated being considered hypertrophic by
most classifications. The average NO3/PO¿ ratios show that the Darling River and

Myponga reservoir are generally nitrogen limited and that Lake Soyang and to a
certain extent, Lake Kasumigaura, are likely to exhibit phosphorus limitation.

Figure 3.12 compares the distributions of chlorophyll a data for the 5 lakes us-

ing box and whisker plots (Tukey, 7971; McGill et al., 1978) to represent the

distributions of observations (see appendix B for a more complete description of
box-and-whisker plots.). The data expressed in this plot takes into account all
measuring sites and dates for each lake. It can be seen that Lake Kasumigaura has

by far the highest chlorophyll ¿ concentration of all the lakes as indicated by the

fact that the lower quartile is aligned with the maximum of the ranges observed for
the other studies. Also, this plot shows that while Lake Buninjuck has a similar
median chlorophyll a levels to the other lakes in this study, the large number of
circles above the box-plot indicate a number of outliers in this data. It is likely
these are the result of occasional severe algal blooms leading to chlorophyll a

levels much higher than normal.

Figure 3.13 shows a plot of chlorophyll a levels where Kasumigaura data was

excluded. Also, all outliers above 35 pglml were excluded to reduce the range of
the y-axis in order to gain a clearer compa.rison. It can be seen that lake Soyang

has the lowest chlorophyll ø levels as indicated by the median values, interquartile
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Table 3.18: Trophic state classifications

Biwa Kasumigaura Myponga

German Ryding and Rast (1989)
Po+
DINx
Summer Chl a

Secchi
pH

OECD Vollenweider and Kerekes (1982)
TP
Chl a
Max chl a
Secchi
Min secchi

Forsberg and Ryding (1980)
Chl a
Secchi

All va¡iables are mean values unless stated.
x Classified according to NO3 fraction.

mesotrophic
eutrophic
mesotrophic
eutrophic
oligotrophic

eutrophic
hypertrophic
eutrophic
eutrophic
nla

mesotrophic
polytrophic
hypertrophic
polytrophic
) eutrophic

mesotrophic
polytrophic
mesotrophic
eutrophic
nla

eutrophic
mesotrophic
eutrophic
eutrophic
eutrophic

Soyang

mesotrophic
hypertrophic
mesotrophic
mesotrophic
nla

nla
mesotrophic
hypertrophic
mesotrophic
hypetrophic

mesotrophic
mesotrophic

nla
eutrophic
eutrophic
eutrophic
eutrophic

eutrophic
eutrophic

hypertrophic
eutrophic
hypertrophic
hypertrophic
hypertrophic

eu-hypertrophic
hypertrophic
hypertrophic
hypertrophic
hypetrophic

eutrophic
eutrophic

hypertrophic
hypertrophic

eutrophic
meso--eutrophic

cì
oo
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ranges and total ranges. The remaining lakes have more similar productivity
ranges, but it is clear that Myponga is less eutrophic in general than Lake Biwa and

Burrinjuck Dam as it has significantly lower median chlorophyll a as indicated by
the non-overlapping notches of the box-plots and a comparatively reduced lower
quartile value.

Biwa Buninjuck Kasumigaura Myponga

Lake

Soyang

Figure 3.12: Total algal biomass - a comparison of 5 lakes

o
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Biwa Burrinjuck Myponga Soyang

Lake

Figure 3. I 3: Total algal biomass - a comparison of 4 lakes

The comparison of the distributions of secchi disk depth data illustrated in figure
3.14 shows that Soyang enjoys by far clearest water with higher median and

interquartile ranges. However, it can be seen that the secchi depth data for this
lake covers a large range indicating high variability of trophic state over time.
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Biwa and Myponga have the next highest readings with median values falling
between 1.5 and 2 m and reasonably compact interquartile ranges. Burrinjuck has

median values of approximate 1 m, while Kasumigaura has the least transparent
water with a median value between 0.5 and 1 m.

Biwa Burrinjuck Kasumig. Myponga Soyang

Lake

Figure 3.14: Secchi disk depth - a comparison of 5 lakes

Biwa Bunin. Darling Kasum. Mypon. Soyang

Lake

Figure 3.15: Phosphorous concentration - a comparison of 6 lakes and I river

Figure 3.15 compares the 6 case studies with regards to orthophosphate concen-
tration. This comparison shows that the Darling River has levels of bioavailable
phosphorus that are an order of magnitude higher than any of the lakes. For
purposes of clarity, figure 3.16 shows the orthophosphate data with the Darling
River excluded and the y-axis limited to a maximum range of 0.055 mgl[-. This
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plot shows a distinct hierarchy of orthophosphate levels with Myponga being the

highest, followed by Burrinjuck, Kasumigaura, Biwa and f,nally Soyang.

Biwa Buninjuck Kasumig

Lake

Myponga Soyang

Figure 3.16: Phosphorous concentration - a comparison of 5 lakes

Figure 3.17 compares nitrogen levels in the 6 case studies. Nitrogen was expressed

as mgll- NO3 for all lakes except Burrinjuck and the Darling River where it
was expressed as mE/I- NO". Since it is probable that total oxidised nitrogen is
dominated by the nitrate faction, it is reasonable to compare these units. There are

a large number of high outliers in the data for lake Burrinjuck, so in the interests of
clarity, they-axis was limitedto arange of 2mglI-.Itcanbe seen thatLake Soyang

has significantly higher nitrogen levels than the other case studies. Burrinjuck and

KasumigauÍa are the next highest. Biwa, Darling and Myponga have significantly
lower concentrations of nitrogen than the other case studies.

3.3.L Discussion and Conclusions

According to the classif,cation systems, it is clear that Lake Kasumigaura and

Burrinjuck can be considered, on average, hypertrophic water bodies. However
examination of the box-plot of chlorophyll ø values for Lake Burrinjuck shows

that the average value for this lake is probably somewhat skewed by a number of
extremely high values. Therefore, it is likely that the eutrophication in Burrin-
juck is of a more intermittent, "acute" nature than the more "chronic" conditions
observed in Kasumigaura. The data shows that these two lakes share a number

of features contributing to eutrophication. They both tend towards P limitation,
although they have relatively high orthophosphate concentrations. They are also

have reasonably high nitrate concentrations as well. With an average depth of 4m,

Lake Kasumigaura is very shallow meaning that it may suffer from significant
internal nutrient loadings as a result of the high sediment area to volume ratio and
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Biwa Burrin.. Darling- Kasumig. Myponga Soyang

Lake

Figure 3.17: Nitrogen concentration - a comparison of 5 lakes and 1 river

(x mg/L NO,)

a low dilution factor. While Burrinjuck Dam has a deeper mean depth of 57 m, it
is likely to be significantly shallower at the end of summer as a result of irrigation
draw down and dry conditions. Thus it can be hypothesised that the intermittent
extreme eutrophication in this lake is a result of occasional shallow conditions and
high temperatures intensifying the effect of internal and external nutrient loadings.

Lake Biwa and Myponga Reservoir are somewhat less productive with a meso-
eutrophic classification according to most standards. Both of these reservoirs
have lower NO3 concentrations than the two hypertrophic lakes and Biwa has
lower POa levels as well. Myponga is most likely N limited for much of the
time, while Biwa is more likely to be P limited. Interestingly, while Myponga
has higher concentrations of macro-nutrients than Biwa and has a lower mean
depth and volume, it is generally classified as being a little less eutrophic than
Lake Biwa with lower chlorophyll a concentrations. A possible reason for this
observation is that Myponga reservoir is more intensively managed with the aim of
deterring algal growth with regular CuSO+ doses and aeration. Also, a comparison
of climate conditions in these two lakes (see figures 3.2 and 3.9) shows that
Myponga has lower summer temperatures and precipitation than the lake Biwa
region meaning i) cyanobacteria may not be as well favoured and ii) less nutrient
inflow in the summer months to fertilise algal blooms.

Lake Soyang is clearly the least eutrophic lake to be included in this study with
a mesotrophic classification according to most indices. The nutrient data clearly
shows that algal growth is likely to be severely P limited. However, the classif,-
cations and the plots of secchi depth and chlorophyll a concentrations show that
this lake suffers occasional periods of intense eutrophication. This may be a result
of nutrient inflow as a result of strong monsoonal rains in the summer months.
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Another feature of this reservoir is the very high NO3 concentrations. This may
arise from fish farming activities that were carried out in this water body over
certain periods and also a lack of flux into the organic N pool as a result of the
strong P limitation.

The Darling River, while not being classified according to the standards in tables
3.14, 3.75 and 3.76, can probably be considered highly eutrophic with average
and peak total algal cell counts of 20100 and 281000 cells/ml respectively. It
is worth noting that table 3.71 and plot 3.15 shows that the POa levels in this
river are in general an order of magnitude higher than those experienced in the
lakes. This is reasonable given that a river has a very short comparative residence
time meaning that P will not be lost as a result of sedimentation processes. Also,
the Darling River has a vast catchment compared to the lakes in this study that
includes numerous point and non-point sources of P such as towns, industries,
intensive agriculture and areas of signif,cant soil erosion. Furthermore the lower
reaches of the Darling river system are in highly arid regions with high evaporation
rates compounding problems of P loading and salinity.

3.4 Model Design

3.4.I A Generic ANN Model Design

Choice of inputs to ANN models can be seen as a compromise between hypothe-
ses of causal relationships between available data and the output variable/s and
the abundance of records for likely input and output variables that are matching in
time. The analysis of the water quality databases in this chapter revealed there is
abundant data in all case studies for variables describing bioavailable phosphorus
and nitrogen, 'water transparency and temperature. These parameters are known to
be important driving variables for algal growth and are widely used as independent
variables in other eutrophication models (eg Benndorf and Recknagel (1982);
French and Recknagel (1994); Maier et al. (1998)). Wilson and Recknagel (2001)
suggested these variables form a generic ANN structure that is widely compatible
with available data.

The "generic ANN model template" is illustrated in figure 3.18 showing these 4
inputs and a "feedback" input comprising the output variable in each case. Table
3.19 shows the actual input layers used for each dataset. Note that there are

differences in the expression of nitrogen availability and transparency between
different case studies, with NO" being used instead of NO3 for the Burrinjuck
and Darling models and turbidity being used instead of secchi disk depth for the
Darling and Myponga models. These differences are result of variations in data
availability. However, it must be stressed that the "deterministic intent" of the
inputs sets remains the same for all datasets. In addition to the generic model
inputs, flow was added as an input to the Darling model since it has been shown
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_ algal abundance (cells/ml)* 
1ãweeks ahead) 

'

hidden layer
(non-linear transfer f unc.)

output layer
(2 week average)

Figure 3.18: Generic ANN design for 2 week forecasts of algal abundance

Table 3.19: Input layers for the generic model

Biwa
Burrinjuck
Darling
Kasumigaura
Myponga
Soyang

POa, NO3, secchi depth, water temp.
POa, NOr, secchi depth, water temp.
POa, NO¡, turbidity, water temp., flow
POa, NO3, secchi depth, water temp.
POa, NO3, turbidity, water temp.
PO+, NO:, secchi depth, water temp.

in the ANN modelling'work reported by Recknagel st al. (1997), Maier et al.
(1998) and Jeong et al. (2001) to be an important factor influencing phytoplankton
productivity in rivers.

As proposed in section 2.3.7, time-series dependencies are modelled using the

TDNN structure, whereby input variables lag the output by the forecast interval.
The proposed "input window" approach to defining model inputs described in
section 2.5.1 is utilised meaning that inputs to the ANN were average values of
each of the driving variables falling between 2 and 4 weeks prior to the output date.

The summary period was chosen to maximise compatibility with the 6 datasets

available for this study.

It is proposed that models be developed predicting a measure of overall algal
abundance and the 3 most abundant algal species/functional groups in terms of
averags cell counts. Chlorophyll ø concentration in pgll is used to indicate total
abundance for all datasets except the Darling River, where the total algal cell
count is used instead. The remaining 3 outputs for each dataset are listed in table
3.20. Note that species abundance models are developed for Lake Biwa, genera

abundance models are developed for Lake Kasumigaura and Myponga Reservoir
and functional group abundance models are trained for Burrinjuck Dam and the



3.4. MODELDESIGN 89

Table 3.20: Model outputs

Site Outputs

Total abundance
All except Darling
Darling

Site specific outputs
Biwa
Buninjuck
Darling
Kasumigaura
Myponga
Soyang

chlorophyll a

total cell count

Euglena amerícana, M elosira graru.tlata, Pediastrum Bíwae

Cyanophyta, Chlorophyta, Diatoms
Cyanophyta, Chlorophyta, Flagellates
Microcystis spp., Oscillatoria spp., Gomphosphaeria spp.

Anki s tro de smus s p p., S c e ne de s mu s s p p., Dicty o s phae rium s p p.

nla

Darling River. In the case of Lake Soyang, there was only data available for a

total abundance model. Table 3.27 compares the number of records available for
modelling using the generic model definition outlined.

A generic model design may have the following benef,ts;

o Meaningful comparisons between models developed for different lakes us-

ing established elucidation techniques for ANNs such as sensitivity analy-
sis.

o It provides scope for increasingly general ANN eutrophication models trained
with data aggregated from many lakes or classes of lakes.

o It potentially reduces modelling effort through rationalisation of monitor-
ing, database and modelling approaches.

3.4.2 Case Specific ANN Model Design

It is reasonable to hypothesise that, for best performance, input layers should
be specific to both output and dataset and that all variables known to have a

causative relationship with the output variable should be considered. Furthermore,

co-predictors with a correlative relationship with modelled variables may also be

useful, as may be multiple lags of certain variables.

The choice of variables for inclusion as inputs in dataset specific models is con-
strained by the availability of data with matching measurement dates to the output
variable. Tables 3.2,3.4,3.6, 3.8, 3.10 and 3.12 compare the variables measured

and data availability for each variable for the 6 datasets used in this study. These

tables show that different sets of variables were measured in each case meaning
that, unlike the generic model, specific models will be dataset specific. Addition-
ally, these tables compare the time spans of measurement, the number of discrete
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Table 3.21: Sampling frequency

dataset output count mean mln max
(days between samples)

Biwa chlorophyll a 88 22 31.6 7 ll9
Euglena americana 172 15 25.4 6 11
Melosira granulata 112 15 25.4 6 77
Pediastum biwae 112 15 25.4 6 77

Burrinjuck chlorophyll a
chlorophyta
cyanophyta
diatoms

total phytoplankton
chlorophyta
cyanophyta
flagellates

chlorophyll a
Gomphosphaeria spp.

Mícro cystis aerugino s a
Oscillatoria spp.

chlorophyll a
Ankístrodesmus spp.

Dictyosphaerium spp.

Scenedesmus spp.

28
28
28
28

76.8
75.0
17.7
19.6

6 1084
6 1084
6 1084
6 1084

8.8

8.8

8.8

8.8

70
87

87

87

51.7

43.4
43.4
43.4

182
182
182
182

428
108

213
136

739
129
550
431

85

87

84

82

508
508
508
508

J

J

J

J

l
l
7

1

224
224
224
224

Darling

Kasumigaura

Myponga

55

28

28

28

t4
I
I
1

1

2
1

1

2Soyang chlorophyll a 222

10.1

71.3

22.2
34.1

22.1 634

1

6

5

7

8
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Table 3.22: Inpú summary periods for different sampling densities.

Av. obs per mo. length Summary lag period

91

7 -37 days
7 -21 days
7 - 14 days
7 - 67 days

measurement dates and months and the average data density in months where
measurements took place. Comparison of these properties permits determination
of the "time compatibility" of each variable with the output variable, where time
compatibility is defined as agreement to the following points;

o Start and end date of variable lifespan overlaps that of output variable.

o No observation months is ) no. observation months of output.

o Few months with missing data.

In terms of of the input summary def,nition, it was elected to def,ne the end of
all input windows 7 days prior to the output date making the model capable of 7
day forecasts. Howeve¡ a question arises regarding how long the input window
should be to achieve reasonable representation of data. The answer to this question

depends on the sampling density with respect to each input. The column showing
the average number of samples per month in tables 3.2,3.4,3.6, 3.8, 3.10 and3.l2
show that, in months when data was collected, sampling frequency varied from
once per day to once per month. Thus, in order maximise data representation, the

length of the input window needs to be specific to each variable to account for
differences in data density. Table 3.22 shows the policy used to choose window
lengths.

It was elected to utilise the maximum possible number of variables as model
inputs for each of the respective datasets. This means that many variables may
be included that would not normally be considered by a strictly deterministic
modelling approach. However, it is reasonable to hypothesise that such variables
may be considered co-predictors (Scardi, 2001), since they were collected with the

intention of gaining insight into water quality in each case. Tables J.1 to J.6 show

the starting models for each dataset given the model selection policies outlined.
These models are characterised by a number of noteworthy features;

o The starting models have large input layers compared to previously pub-
lished ANN models (see table 3.23).

o Variables describing abundance of algal species or functional groups are

included in models developed for Biwa, Burrinjuck, Darling and Kasumi-
gaura datasets to investigate hypotheses of competition and/or mutualism.

< 3.0
< 8.0
> 8.0
all

30 days
l4 days
7 days

60 days
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Table 3.23: Comparison of starting model input layer sizes

DataseI No. inputs

Lake Biwa
Burrinjuck Dam
Darling River
Lake Kasumigaura
Myponga Reservoir
Lake Soyang

40
68

60
10
38

28

o Variables describing inflow volume are present for models developed for
the Burinjuck and Soyang datasets. This may have a bearing on the water
residence time and thus the effect of flushing on the lake ecosystem.

o Variables describing zooplankton abundance are included in models de-
veloped for Lake Kasumigaura. Zooplankton exert top down control of
phytoplankton abundance thro ugh gr azing.

o Variables describing concentration of silica are present in the Biwa, Darling
and Kasumigaura datasets. Availability of silica is thought to have an effect
on the biology of diatoms.

o Variables describing various aspects of weather information are included
in models developed for Biwa, Burrinjuck, Kasumigaura and Soyang. The
weather affects light availability for photosynthesis, the mixing conditions
in the water body and the likelihood of significant inflow events.

o Variables describing concentrations of a number of heavy metals and trace
elements are included in models developed for the Myponga dataset. Of
particular interest in this case is data for copper concentration, since regular
CUSO¿ dosing for control of phytoplankton abundance is a feature of this
reservoir.

o pH is included as an input for models developed for the Biwa, Darling,
Kasumigaura and Soyang datasets. pH is known to be correlated to the
structure of phytoplankton communities, with cyanobacteria favouring high
pH conditions (Reynolds, 1984; Harris, 1986; Shapiro, 1990).

Table 3.24 compares the data availability for each output given the input layers
def,ned in tables J.l to J.6. As with the generic model (see table 3.27), the data
availability in terms of the total number of records available and the time interval
between samples varies between datasets and outputs. The Darling River models
enjoy the most abundant data with 388 records per model, while the Burrinjuck
models only have t 100 records per model available for training and validation.
The median sampling interval shows that, when data is available, sampling was
carried out approximately monthly in Burrinjuck Dam and Lake Kasumigaura,
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Table 3.24: Sampling frequency.

count medianoutput

chlorophy ct

Euglena americana
Melosira granulata
Pediastum biwae

chlorophyll a

chlorophyta
cyanophyta
diatoms

total phytoplankton
chlorophyta
cyanophyta
flagellates

chlorophyll a

Gomphosphaeria spp.

Mic ro cy stis aerugino sa

Oscillatoria spp.

chlorophyll o

Ankistrodesmus spp.

Dictyosphaerium spp.

Scenedesmus spp.

mean mln max
between samples)

I 105

2 105
I 510
2 352

(

Biwa

Burrinjuck

Darling

Kasumigaura

Myponga

146
183

183

183

15

t4
\4
14

19.8

15.8

15.8

15.8

31
28
28
28

99
102
99

100

55.4

53.8
55.4
54.9

388
388
388
388

11.3

I 1.3

I 1.3

1 1.3

3 273
3 273
3 273
3 213

89

111

t1l
1lt

39.6
31.8
31.8
31.8

154
141

t4l
147

519
tt2
243
155

8.1

10.9

11.2

27.0

1

6
6
6

7

6

6

6

448
448
448
448

28
27
27
27

7

7
'7

1

29
28

28

28

t4
2
2
2

1

6
4
l

Soyang chlorophyll a 187 11 18.6 2 25t

fortnightly in Lake Biwa and weekly in the Darling River, Myponga Reservoir
and Lake Soyang. Comparison of the median, mean, minimum and maximum
sampling intervals shows that there are large gaps, or holes in the time-series
for some models. In the case of Myponga, the data have low median sampling
intervals of < 7 days, but relatively high average and maximum sampling intervals
indicating frequent sampling indispersed with long breaks.

3.5 Conclusion

Six datasets are available for the present study. Three originated from Australia,
two from Japan and one from South Korea. This chapter showed that these

datasets vary significantly in terms of climate, situation, catchment and mor-
phometry. Also, an analysis of the data showed wide variation in trophic state.

Lake Soyang was demonstrated to be mesotrophic, Lake Biwa and Myponga
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Reservoir are meso-eutrophic, while Burrinjuck Dam, the Darling River and Lake
Kasumigaura are eutrophic to hypertrophic.

Model design for ANNs depends on the hypothesised relationships (oither corel-
ative or causative) between variables and data availability. It was found that the
datasets varied considerably in terms of the variables measured, the frequency of
measurement and the time over which monitoring took place. In terms of outputs,
it was elected to specify a measure of total phytoplankton abundance, such as

chlorophyll a and the three most abundant species/generulfunctional groups for
each dataset.

With respect to inputs, it was elected to define two input layers as starting points
for model design. The generic model, comprising variables describing bioavail-
able nitrogen and phosphorus, 'water temperature, secchi disk depth and a lag input
for algal abundance, is compatible with all six datasets. The specific model rep-
resents the maximum possible input parameterisation for each dataset assuming
an input-window TDNN structure that will achieve reasonable (ie > 80 records)
representation.



Chapter 4

Model Complexity and Bootstrap
Aggregation

4.1 Introduction

In chapter 2, it was found that generalisation of ANN models predicting phyto-
plankton abundance is usually "tuned" by selection of parameters affecting model

complexity - for example, hidden layer configuration, training time, jitter, weight
decay or other parameters that influence the number and weight of network con-

nections. However, it was concluded in section 2.4.6.3 that optimisation of these

parameters is a difficult task meaning that, in practice, many applications may

be characterised by sub-optimal performance. According to Maier and Dandy
(2000), there is a lack of clear guidelines with respect to configuration of these

and other aspects of ANN training.

In section 2.5.2, it was proposed that adoption of bagging may be a solution to

this problem, since it reduces the variance component of model generalisation

effor associated with overfitting. Thus it can be proposed that application of
bagging minimises the total (bias * variance) model error, providing the following
conditions have been satisfied;

o There is sufficient ANN model "parameterisation" in terms of hidden layer

units for the problem at hand,

o The learning algorithm is able to approximate a reasonable mapping of the

training data and

o A sufficiently large number of "bootstrap models" are trained in order to
simulate the probability distribution underlying population data.

If bagging is proven to be effective at minimising generalisation effor for an

ANN modelling problem, there is no longer a need for analytic or empirical
model "complexity tuning". This will lead to greater confidence in modelling

95
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outcomes and improved data efficiency, since there is no need to perform "double
cross-validation" where a second validation set is held out from training to tune
complexity parameters.

Also, it was concluded in section 2.4.6.3 that the training algorithm used may
influence the generalisation properties of ANN models. Lawrence and Giles
(2000) suggested that less efficient algorithms, such as backpropagation, may ac-
tually result in better performing ANN models on independent data than so-called
"second order" algorithms because ineff,ciencies in approximation may result in
a smoother, more regularised model.

This chapter presents the results of experiments designed to determine the effects
of the following on validation performance of ANN models;

o Number of hidden layer units.

o Stopping error of training.

o First order versus second order training algorithms.

o Validation methodology.

Thus the aim of this work is to obtain data leading to specific recommendations
regarding each of these parameters. In particular, it is hypothesised that applica-
tion of bagging reduces model sensitivity to these parameters thus eliminating the
requirement for cross-validation to determine an optimum ANN configuration for
a modelling task.

4.2 Methods

4.2.1 Model Inputs and Outputs

7 models were specified for forecasting phytoplankton abundance. Table 4.1
summarises the design of each of the 7 models with respect to inputs, outputs,
the site from which data was retrieved, the number of inputs and the number of
records available for training and validation. The "generic" input layers refer
to the generic model template discussed in chapter 3 and illustrated in figure
3.18. The models that only consider the generic structure are supported by all
six datasets available for this study. The 10 input models (ie generic + input 1 ...
input n) represent designs that are supported only by data from their respective
sites.

Four models were developed predicting chlorophyll a abundance, while the re-
maining three models predict occulrence of either phytoplankton genera or species.
Chlorophyll ø was expressed as pglI while the genera and species were expressed
as cells/ml. The range of models were chosen to highlight interactions between
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Table 4.1: Model designs

Site, Output and Inputs o.

1

2

J

4

5

6

7

site = Lake Kasumigaura (site 9)
output = chlorophyll ø

inputs = generic

site = Myponga Reservoir
output = chlorophyll a
inputs = generic

site = Lake Soyang
output = chlorophyll ø
inputs = generic

site = Lake Kasumigaura (site 3)
output = Microcystis aeruginosa
inputs = generic + pH, DO, Si, Rotifers, Cladocera, Copepoda

site = Lake Kasumigaura (site 9)
output = Oscillatoria spp.

inputs = generic + pH, DO, Si, Rotifers, Cladocera, Copepoda

site = Lake Kasumigaura (site 3)
output = chlorophyll a
inputs = generic + pH, DO, Si, Rotifers, Cladocera, Copepoda

site = Myponga Reservorr

output = Scenedesmus spp.

inputs = generic

5 606

5 82

5 87

10 725

10 72

10 102

5 228
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model design, study site and the experimental treatments. However, due to restric-
tions in data processing availability, it was not intended to conduct experiments
for all datasets/models outlined in chapter 3.

Note that data from two sampling sites (stations 3 and 9) were retrieved for the
Lake Kasumigaura models.

The input window input representation in combination with the TDNN model
structure is used for all models (see section 2.5.1). Thus, each input is defined
as the average values falling within a time window between a start and end lag
with respect to the output variable. The "window end" date lags the output date
by 14 days meaning that the models are trained to forecast algal biomass 2 weeks
in advance. The inputs were defined as the average conditions over a 30 day
summary period prior to the window end date meaning that the window start date
lags the output date by 44 days.

4.2.2 Model Inference

It can be concluded from the review in section 2.3 that the prerequisites for rea-
sonable model approximation given training data using ANNs are;

1. A training algorithm capable of adapting the ANN structure such that pre-
diction effor can be minimised within a reasonable time period.

2. Conditioning of data such that it is compatible with the ANN structure and
learning algorithm.

3. Suff,cient "degrees of freedom" in the ANN structure relative to the state
space of the problem permitting the mapping of appropriate decision bound-
aries.

The following provides a brief review of the choices arrived at for each of these
prerequisites.

4.2.2.1 Tfaining Algorithms

Ideally, training algorithms should have the following qualities;

o Highly eff,cient convergence properties allowing rapid training with mini-
mal computational overhead.

o Stability, meaning the ability to converge to a reasonable mapping regard-
less of initial connection weights (Alpsan et a1., 1995).

o Robustness, meaning adequate convergence properties given a range of tech-
nique related meta-parameters and database dimensions (Alpsan et al., 1995)

o Capable of producing models with good generalisation characteristics.
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There are too many training algorithms in existence claiming to meet these re-
quirements to permit an exhaustive search. Preliminary experimentation using the

algorithms available in the Stuttgart Neural Network Simulator (SNNS) software
package (University of Stuttgart, 1999) reached a number of conclusions. Firstly,
it was found that batch mode backpropagation (see section 2.3.2.2) was effective
at learning training sets, but was much slower than incremental mode backpropa-
gation. This was also the conclusion of Alpsan et al. (1995). Also, it was shown
that novel approaches to training such as QuickProp (Fahlman, 1988), RProp
(Riedmiller and Braun, 7992; Braun and RiedmllIer, 1992) and scaled conjugate
gradients (SCG) (Møller, 1993) are efficient training algorithms that can reach a

target error rate on training data signif,cantly more quickly than backpropagation.
Furthermore, it was shown that the SCG approach can perform effectively without
the need to tune any algorithm related "meta-parametsrs". On the basis of this
preliminary work, it was elected to compare incremental mode backpropagation
and SCG for all model training conducted in the present study.

Where backpropagation was applied, it was used in incremental weight update

mode with a learning rate of 0.15 and a momentum of 0.9, which was found
to achieve reasonable mappings of training data in preliminary experiments. By
contrast the SCG algorithm requires no such parameters.

4.2.2.2 Numerical Conditioning

The review presented in section 2.3.2.1shows that "numerical conditioning" can

have a signiflcant influence on the convergence properties of ANNs. Preliminary
experimentation found that the convergence properties of ANNs was greatly en-

hanced by conditioning the input data such that each input had a mean of 0 and a

standard deviation of 1. Training times decreased dramatically and the accuracy of
the converged models was much improved. Therefore, input data was standardised

in this way prior to training all models. Similarly, all output data was scaled to lie
within the range of the activation functions of the hidden units.

4.2.2.3 Hidden Layer Configuration

As discussed in section2.3, specif,cation of ANN hidden layer neurons are the
generally accepted approach to achieving a structure capable of mapping training
data, since Hornik (1993) showed that an ANN with a single hidden layer with
a sufficient number of units is capable of mapping any continuous input-output
function within given distortion criteria. Preliminary experiments using a variety
of data and hidden layer sizes showed that, in the context of the data and model
designs implemented in the present study, 20 hidden layer units in a single layer
was sufflcient for achieving model approximations with negligible error on train-
ing sets. Therefore, 20 hidden layer units was set as the upper limit for network
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size for all models trained in this study. 0 hidden unit ANNs (ie perceptrons)
are the functional equivalent of a multiple linear regression, since they may only
map linear decision boundaries (Cheng and Titterington,1994). Therefore, it was
eiecteci to train 0 hi<i<ien unit models as controls for all expenments.

Why Not use Recurrent Connections? RNNs utilise activations from the hid-
den to output layer as an extra set of inputs. Such recunent connections are

argued to enhance ANN performance at modelling time-selies because they leam
a hidden "temporal context" or time delay. It has been shown by Jeong et al.
(2001), Walter et al. (2001) and Jeong et aI. (2003) that RNNs are effective for
time-series modelling of phytoplankton dynamics. However, maintaining the
integrity of the temporal context learned by the recurrent connections requires
that training pairs be processed in time order. In the context of the present study,
the sequence of training data may be disturbed by;

o implementation of bagging, where ANNs are trained on bootstrap samples
of training pairs from the time-series and

. uneven sampling intervals and missing values in the datasets.

Thus it was elected not to use recunent connections and rely only on explicit links
between past and present states defined by the lags between input and output data.

4.2.3 Model Validation

The blocked bootstrapped 2O-fold cross-validation performance estimator was
utilised for all experimental treatments, except where the leave-one-out bootstrap
estimator was used to determine the effect of validation method on model per-
formance. The methodology for each of these approaches is outlined in section
2.5.3. To determine the bagged model performance, predictions of member ANNs
(ie individual bootstrap ANNs) were aggregated by averaging and the aggregate
prediction compared with observed values. Observations of model performance
constituted the following;

1. Variance of bootstrap model predictions on training and validation data.

2. RMSE of model predictions on training and validation data for member
models.

3. RMSE of model predictions on training and validation data for the ensem-
ble, or bagged model.

4. Observations of the timing and magnitude of model predictions of algal
blooms compared to observed events judged on the basis of visual exami-
nation of time-series plots.
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4.2.4 Computational Platform

As suggested in section2.5.5, three layers of software were used for experimen-

tation;

1. Database storage

2. Middleware

3. ANN simulator client

As discussed in section 2.5.5, all data is stored in a relational database. MySQL
v 3.23 was used as the relational database engine in the present study. The

middleware facilitates communication between the database layer and the appli-
cation layer. It permits automation of the data pre and post-processing stages.

The middleware application used for the present study, "LakeNet", was pu{pose

built using the Java programming language. An "off-the-shelf" ANN simulator
software package was used in preference to a custom designed program. The

Stuttgart Neural Network Simulator (SNNS) (University of Stuttgart, 1999) was

chosen as a platform for all experimentation. This software provides many ANN
architectures and training algorithms. Also, messaging between the client and

middleware is facilitated using the "Batchman" command line client. SNNS is
distributed under the conditions of an "open-source" license meaning that the

source code can be examined to check its method of operation.

For the purposes of this work, all experimentation was conducted on PCs running
the Linux operating system. The hardware included an Intel Pentium IlI733MHz
workstation with256 MBytes of RAM and an AMD Athlon 1800XP (1535 MHz)
workstation with 512 MBytes of RAM. Running allthe experiments documented

in this chapter took several weeks.

4.2.5 Experimental T[eatments

Table 4.2 shows the range of treatments applied to each of the models defined for
this experiment. The experiment is factorial in design meaning that all combina-

tions of learning algorithms, stopping error and hidden layer conflgurations were

trained.

Early stopping of training was implemented by checking model prediction error
on training set data after each training iteration. If it is less than or equal to the

designated stopping error, training was halted. Note that SCG is a batch mode

training algorithm and BP was implemented in this experiment in incremental
mode. This means that the training set error will be checked after presentation of
each record in the BP experiments and after presentation of the entire training set

for SCG.
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Table 4.2: Summary of experimental clesign.

Treatments

Learning algorithms

Stopping error
No. hidden nodes

SCG (MøIler,1993)
Backprop with momentum (Rumelhart et al., 1986)
0-4
0,5, 10,20

The stopping errors applied were unique to each model design/dataset. This
is because preliminary experiments showed that the stopping error required for
reasonable model approximation on training sets within a reasonable time limit
varied according to both the model design and the database used.

4.2.6 Summary

The methodology with respect to model structure, inference, validation and com-
putation is summarised in table 4.3.

4.3 Results and Discussion

4.3.1 Effect of Model Complexity

4.3.1.1 Model Error Rates

The co-plot feature of the R package for statistical computing The R Development
Core Team (2001) was used to illustrate interactions between different treatment
effects. Figures C.1 to C.7 illustrate the effects of stopping error on the distribution
of model prediction error rates given the number of hidden layer units and model
aggregation (bagging) for all 7 models. Part A of these plots shows the training
error and part B shows validation set error.

With respect to training effor, it can be seen from all these plots that the ANNs
with 0 hidden units perform very differently from those with 5, 70 or 2O hidden
units. In general, without a hidden layer, the stopping error of training had little
influence on the f,nal training set errorl. However, where hidden layer units
were present, there is a close relationship between the stopping error and the
training error, with lower stopping effors leading to reduced prediction effors on

lTraining and stopping errors have different units because the stopping error is calculated
from scaled data, whereas the training and validation error rates have been calculated once the
predictions have been rescaled.
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Table 4.3: Summary of general methodology and computational platform.

103

Model
No. inputs
No. outputs per model
Time component
Input window stat.

Output representation

Model approximation
No. hidden layers
No. hidden layer units
Trans. func. -hidden
Trans. func. - output
Architecture
Learning algorithms

Data preprocessing

No. training epochs

Validation
Method
No. replicates

C omputational P latfo rm
Database
Middleware
ANN Simulator
Operating System
Hardware

model defined
I
TDNN with input windows
average
identity

1

<20
logistic
identity
feedforward MLP
incremental BP with momentum (Rumelhart et al., 1986)
Scaled conjugate gradients (Møller, 1993)
inputs - standardised mean = 0, stdev. = I
outputs - scaled, min. = 0.1, max. = 0.9
< 10000

Bootstrapped blocked 20-fold--crossvalidation
30 per block

MySQL v 3.23
LakeNet
Stuttgart Neural Network Simulator (SNNS) v 4.1

Linux kernel 2.4.x
1 Intel Petium III133MHz,256 MBytes RAM
1 AMD Athlon 1800XP, 512 MBytes RAM
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the training set. 'With the exception of model 2 (see figure C.2), a training error
close to 0 was achieved where suff,cient hidden layer units were present and the

stopping error was 0. 5 hidden units was sufficient to achieve close to 0 training
eror f.or models 4, 5, 6, (figures C.4, C.5 and C.6) while l0 units were required
for models 1 and 3 (figures C.1 and C.3) and 20 hidden units was required for
model7 (figure C.7). The bagged model predictions were generally characterised
by lower training error than the unaggregated models2.

These results indicate that the number of hidden layer units serves to define the
maximum model complexity possible for a given input-output structure. Thus,
where the number of hidden layer units is low relative to the data availability,
the minimum training error will be significantly higher than 0. However, where
suff,cient hidden units exist, the minimum training error is close to 0. Thus,
insofar as the present models and methods are concerned, obtaining a suitably
bias free model approximation (ie 0 training error) is simply a matter of ensuring
sufficient hidden layer units are present. This indicates that the training algorithms
used (BP and SCG) have been configured correctly as they are able to fully exploit
ANN structures. Also, it is clear that bad local optima do not appear to be
interfering with model approximation.

Part B of figures C.1 to C.7 show that when models are not bagged, there is a

strong interaction between effects of the number of hidden units and stopping
error on validation performance. ANNs without a hidden layer appear almost
completely insensitive to the effects of stopping error. However, ANNs with
a hidden layer have sharply rising validation error rates at low stopping effors.
In the case of models 2, 6 and 7 (figures C.2, C.6 and C.7), the effect of stop-
ping error is dependent on the size of the hidden layer, with more hidden units
leading to greater validation set error rates at low training effor. Models 1, 2
and'7 (figures C.7, C.2 and C.7) show the classic "underfitting - optimum -
overfitting" response to training effor as it was decreased where hidden units were
present. The remaining ANNs with hidden units simply suffered ever increasing
validation error with reduced training errors. These results show that the hidden
layer configuration has very little impact on model generalisation as opposed to
approximation.lnstead, where hidden units are present, stopping error of training
is a much more important determinant of validation error rate. Specifically, it was

observed that;

o Overfitting occurs at low stopping effors regardless of the size of the hidden
layer (where hidden units were present).

o Optimum validation set error rates with respect to training effor were very
similar for all hidden layer configurations.

2'lhere are two points for the aggregated plots since they represent the error rates of the models
trained by BP and SCG.
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o The training error at which the validation error optimum occuts is the same

for each hidden layer configuration above 0 units for each model respec-

tively.

These observations tend to support the notion that the size of the connection

weights between artificial neurons is more important for determining ANN gen-

eralisation rather than the number of weights where a hidden layer is present. In
other words, the magnitude of the dimensions in the model parameter space play

a greater role than the number of dimensions. It can be concluded, as stated by
Finnoff et al. (1993), that overf,tting cannotbe prevented by adjustments to hidden

layer size alone - measures to control the parameter sizes must also be employed.

4.3.1.2 The 0 Hidden Unit Models

Clearly, the behaviour of the 0 hidden unit model (ie the perceptron) compared to

the multi-hidden unit model (ie multi-layer perceptron or MLP) indicates that it
is a different class of inference method. Cheng and Titterington(1994) stated that

perceptrons are functionally equivalent to multiple linear regression estimation

meaning that linear decision boundaries are assumed with respect to the model

inputs. From the results, it can be concluded that such a simplifying assumption

means that, while model approximation by perceptrons is not as accurate as by
MLPs, they do not sufÏer from overf,tting. However, as Paruelo and Tomasel
(1991) demonstrated, linear regression starts to suffer overfitting with increasing

input dimensionality. Thus it is likely that the input layers of the models investi-
gated in the present study are too small to cause overfitting by perceptrons.

A surprising result of these experiments is that, in general, the MLPs do not
generalise better than perceptrons despite lower training effors. Thus, it follows
that any non-linear relationships being learned from the data in the context of
the present study are no more valid than the linear relationships inferred by the

perceptron. This finding contrasts with the majority of applications of ANNs to

ecosystem modelling showing the superiority of the MLP approach due to their
ability to generalise non-linear relationships. However, Hwarng and Ang (2001)

demonstrated using simulated data that perceptrons may be superior to MLPs
for both linear and non-linear time-series modelling. This issue clearly warrants
further investigation using a greater variety of models and data than utilised in this

chapter.

4.3.1,.3 Model Variance

Figures 4.1 to 4.3 plot a number of model performance statistics with respect to

the stopping error for the 20 hidden layer unit models. The upper 3 traces on

each plot show the unbagged validation error, the bagged validation error and the

unbagged training error. The lower 2 traces plot the average standard deviation of
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Figure 4.2: A, RMSE v Stop error - model4. B RMSE v Stop error - model 5. C
RMSE v Stop effor - model 6.

Aooooo
N

O
oon

Lrl ^<Dó
=OcÉ5

oooo

o

05

ooo
O
@

Oooo
@

Hc>9
ccV

oooo
N

o

0520

uJ
U)

É

o
@

o
@

o

N

o

0520

+ Test err - unbagged
Test er - bagged
Train err - unbagged

+ Teslslddev
O- Traìn slddev

v

+

x

o

V

o

x<

+
x

Testerr-unbagged --À- Teststddev
Iester-bagged -O- fralnslddev
lrain err - unbagged

ø- --- Æ-ë--=:

V
^

+
+

^

V

V

r -- -- __+- --t- __ - -"

o

+ Test err - unbagged
x Test srr - bagged

-v- Trainer-unbagged

--Á- Teststddev
-g- irâin slddev +

Xv

o ^
v̂



108 CHAPTER 4. MODEL COMPLEXITY AND BAGGING

uJ
ct)

E

Ooo
O

ooooo

o
O
Oo
N

o
Ooo

O

20 15 1.0 0.5

Stopping error

Figure 4.3: RMSE v stopping effor - model T.

0.0

bootstrap model predictions over the entire time-series of training and validation
set data respectively. These plots show that, for every model, as the complexity
of the ANN increases (ie stopping effor decreases), the validation set error rates
of the unbagged models first decreases, or is unchanged and then rises sharply at
some threshold stopping effor. The validation error of the bagged model appears
correlated with that of the unbagged model, although it is apparent that the effects
of overfitting are less pronounced as the effect of stopping error is far lower.
Meanwhile, training set error appears well correlated with stopping error.

In every case, the average standard deviation of the bootstrap model predictions
on validation data is almost perfectly correlated with the validation error rates.
This suggests that the sharp increase in validation effor at lower training error is
caused by an increase in the variance component of overall (ie bias f variance)
prediction error. This observation corresponds with conclusions of Moody (1991)
and Geman et aI. (1992). The average standard deviation of model predictions on
training data declines with decreasing stopping error for all models except model
2 where it remains constant.

The observation of the correlation between validation error and model variance is
important in that it signals that prediction variance may be used in some way as a
goal function for optimising ANN complexity. In other words, instead of optimis-
ing the stopping error (or any other regularisation parameter) by observation of
its effect on validation set enor rate, it is possible instead to identify the point at
which model variance starts to increase rapidly to signify the commencement of
the overf,tting phase. An advantage of using variance instead of RMSE is that the
target values for predictions do not have to be known. Thus the perceived indepen-
dence of the validation data is maintained eliminating the need for data inefficient
"double crossvalidation" where a second validation set is used to estimate real
world performance of the complexity tuned ANN.
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4.3.1.4 The Overfitting Index

An "overf,tting index" can be calculated by comparison of the average variance

of model predictions with the variance of the observed output variable;

mean stdev of predictions
^E_

stdev of observed data
(4.1)

where the numerator refers to the mean of the standard deviation of the bootstrap

model predictions for each example in the validation set. The idea of this index is

to indicate whether the variance of the models trained is small or large relative to

the variance in the output variable. If OF is large, model variance is relatively high
and thus is likely to be in an overf,tting phase. It is hypothesised that, since this

effectively produces a statistic that can be described as the "standardised model

variance", it may be possible to identify a universal value that indicates whether

or not the model is overfitting.

Figures 4.4 to 4.6 plot OF and bagged validation set RMSE with respect to the

stopping error of training for 2O hidden unit models trained by the SCG training
algorithm. The patterns of both validation RMSE and OF are corelated with
RMSE and test set standard deviation results in f,gures 4.7 to 4.3. These results are

characteristic of the classic underf,t - optimum - overfit pattern of total prediction
error with increasing ANN complexity. With respect to OF it is apparent that the

threshold for the transition to the overfitting stage generally occurs in the region

of 0.35 to 0.5. Thus it can be concluded that OF values > 0.5 indicate that the

model is overfitting.

It must be conceded that these results are of a preliminary nature and that experi-

mentation with more models and data is warranted to further explore the properties

of OF. If OF is proven to be a reliable guide to the occuffence of overf,tting, it has

the same aforementioned advantages as model variance for use as a goal function
in the optimisation of ANN complexity parameters. However, unlike variance, it
would not be necessary to plot a curve of variance versus training error to identify
the threshold at which overfitting commences, since the number itself conveys the

relevant information.

4.3.I.5 Reservations

It may be noted that, with only three hidden layer conf,gurations in this experiment
(5, 10 and20 units), the search of the space of possible conf,gurations was hardly
exhaustive. However, given the fact that the results were repeated for 7 models

with different input-output layer structures and training set sizes, it seems likely
that the conclusions are valid. Furthermore, as Prechelt (1998) points out, prac-

titioners have generally found it more convenient to search the space of stopping
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Figure 4.6: RMSE and OF v Stop Error - Model T.

errors than hidden layer configurations for the simple reason that early stopping
does not necessitate time consuming convergence of training.

4.3.2 Model Aggregation

4.3.2.I Effect of Bagging on Model Performance

Part B of figures C.1 to C.7 show that error rates of the bagged models on val-
idation data are less sensitive to the effects of stopping error or hidden layer
configuration than the unaggregated models. This is particularly so for ANNs
with hidden layer units trained to low training effors. Figure 4.7 shows the effect
of decreasing training effor on the predictions of the unaggregated and aggregated
models by plotting observed values of chlorophyll a abundance versus time and
superimposing boxplots of the distributions of validation set predictions made by
model 1. Part A of this plot shows the predictions by the model with a stopping
error of I for a 20 hidden unit ANN and part B shows predictions made by the
same ANN trained with a stopping error of 0. It can be observed from the wider
boxplots of part B that training the model "harder" leads to much greater variance
of model predictions. The bagged model prediction is indicated by the centre line
of the box plots. It can be seen that the bagged model has a similar trajectory
in both parts A and B showing that model aggregation neutralises, or cancels out,
much of the random variance in bootstrap model predictions caused by overfitting.

However, despite the reduced sensitivity of the bagged model to overfitting, it is
stillpossible to discern a shallow optimum validation error with respect to training
error where hidden units are present (see figures 4.1 to 4.3 for a clearer represen-
tation). For example, in the case of model 1 (figure C.1), where 5 or more hidden
units have been used, an optimum exists where the stopping error is 1. As model
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complexity is increased beyond the optimal level (ie training error is reduced),

overfitting starts to impact performance of the aggregated model. This means

that bagging has failed to completely eliminate the need to tune model complexity
parameters in order to obtain the best performance on validation data. Thus, whiie
bagging is clearly helpful to prediction accuracy, optimum validation error for a

given model can only be achieved by stopping training prior to convergence.

In order determine the significance of the observed emor rate optima in terms of
model predictions, figures D.1 to D.7 plot the observed algal abundance versus

time with the bagged model predictions superimposed. Part A and B of these

diagrams plot the training and validation mode predictions respectively for the op-

timum ANN configurations identified with respect to hidden layer configuration,
stopping error and training algorithm. Parts C and D plot training and validation
mode predictions for ANN models trained to the "theoretical maximum model

complexity" -thatis, 20 hidden layer units and 0 stopping error (note that the use

of a rotation validation method means that while the same data appears for both

training and validation, the validation data is completely independent from that

used for training). These plots show that allowing the maximum dimensionality
of the ANN to be used in terms of both the number of hidden layer units and the

stopping criteria leads to perfect, or near perfect model performance on training
sets. By contrast, the models with optimum complexity are clearly not able

to perfectly predict the training sets, with over and under predictions of actual

biomass being evidenced and some missed predictions on specific events. This
observation is consistent with the notion that penalising ANN complexity biases

the model. The predictions of the models on validation set data show that allowing
full exploitation of the ANN structure does not improve the model's predictions

on independent data despite improving performance on training data. Indeed,

predictive performance at 0 stopping error has been degraded in all cases with
an increase in the number of false positive predictions. Thus it can be concluded

that the subjective appraisal of bagged model predictions further emphasises the

need to tune the stopping error of training for each model application, despite

implementation of bagging, to prevent overf,tting from reducing model accuracy

on independent data.

This conclusion conflicts with results published by Cannon and Whitfield (2002)

showing that, as the number of hidden units and training iterations are increased,

the prediction ability of bagged ANNs "plateaus", meaning that bagging elim-
inates prediction risk posed by overfitting. There are important differences be-

tween the demonstration of Cannon and'Whitfield (2002) and the present study;

1. Cannon and WhitfieId (2002) developed models using much larger training
databases drawn from daily observations over a period from 1965-1998.

This gives a potential training set size of over 11000 records compared to

between '72 and 606 records for the present study. It is generally known that

the severity of overfltting is reduced when the size of the training set is large
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Figure 4.7: Model No. 1. Time series plots of observed and predicted algal
abundance - 20 hidden unit ANN. A Stopping error = 1.0. B Stopping error = 0.
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relative to the size of the parameter space of ANN models (Abu-Mostafa,

1989; Kung, 1993; Nejad and Gedeon, 1995).

2. Cannon and Whitf,eld(2002) gives no information regarding the training al-
gorithm used in their demonstration. Lawrence and Giles (2000) concluded

that ineff,cient training algorithms may reduce the propensity of ANNs to

overf,tting.

3. The ensemble (bagged) model of Cannon and WhitfieId (2002) consisted

of 50 member ANNs compared to 30 ANNs for the present study. 'While

Breiman (1996a) suggests that errors due to an insufflcient number of mem-

ber models tends to become insignif,cant where there are ) 25 replicates, it
is conceivable that more replicates may improve performance of the bagged

models when the member models are overfitting in the context of the present

study.

In regards to the first two of these diff'erences, the f'ollowing points can be made;

o In the present study, performance of bagged models with the most training
data - models 2 andT - appeared to be just as affected by overf,tting as the

remaining models. More data may be needed to determine whether training
set size does influence the sensitivity of the bagged model to overf,tting.

o The results clearly show that "penalising" ANNs by early stopping reduces

overfitting. It follows that the use of inefficient training algorithms will have

the same effect.

The effect of the number of member ANNs on the sensitivity of the bagged model

to overfitting can be checked by a simple experiment. 70 more replicates of model
1 were trained increasing the total number of replicates to 100. SCG training was

used and results were recorded for the stopping errors 0,0.1, 0.5, 1.0,2.0 and

20 hidden units. Figure 4.8 shows that for most training errors, the 100 member

ensemble performs marginally better than the 30 member model. However, there

is still a distinct optimum for the 100 member model. This result suggests that

increasing the size of the ensemble will not overcome the effect of overfltting
on bagged models in the context of the present study. Thus it seems likely that

the failure to reproduce the results of Cannon and V/hitfield (2002) is related to

differences in the size of the training set and/or the type of training algorithm
employed.

4.3.2.2 Effect of Bootstrapping on Model Performance

As shown in section 4.3.1.3, overfitting is characterised by a sharp increase in
variance in members of an ANN ensemble. Possible sources of variance include;

o Random measurement errors of input and output variables.
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Figure 4.8: Model No. l. Comparing validation error of bagged model with 30
and 100 member models.

o Fluctuations in ANN training caused by random initialisation of weights,
rounding effors during training, entrapment at local optimum etc.

o Sampling errors when selecting training sets.

The effect of sampling errors is easily investigated by comparison of models with
and without bootstrap sampling of training sets, since bootstrapping deliberately
introduces a source of variance. This was done by retraining model 1 utilising a 20
hidden unit ANN and the SCG training algorithm. 20-fold blocked crossvalidation
was used as previously, except that training sets were the complete training sample
and not bootstrap subsamples meaning that each model replicate has identical
training sets. 30 replicates of models trained to similar stopping errors used
previously (ie 0, 0.1, 0.5, 1.0, 2.0).

Part A of figure 4.9 compares average standard deviation of predictions for models
trained with and without bootstrap sampling of training data, while parts B and C
compare unbagged and bagged validation set error respectively for the two sam-
pling methods. It can be seen from part A that bootstrapping leads to considerably
higher variance at higher training effors than the non-bootstrap model. However
both models are characterised by sharply increasing variance at lower training
errors, with similar variance being exhibited. It appears that when ANNs overf,t
training data, the sample variance introduced by bootstrapping contributes little
to the observed increase in overall model variance. Thus, bootstrapping does not
appear to be introducing a source of variance that worsens the effect of overfitting.
Part B shows that, when left unaggregated, the non-bootstrapped models generally
perform somewhat better than the bootstrapped models at higher stopping effors.
This observation is reasonable in light of the fact that the non-bootstrap models
display lower variance at high training effors. As training error is reduced, both

!?
(\

-0)Þo
F-n
8rñ
o)
(ú
_o

ulcD u?

cÉ

q
@

20

A- 100 replicates
- +- 30 replicates

+
A)¡

+

A

A

+

+
A

_+



4.3. RESULTS AND DISCUSS/ON 711

models show a similar sharp increase in validation error, Part C shows that when
the models are aggregated, the bootstrap and non-bootstrap models have very
similar optimum validation error rates at a stopping error of 1.0. However, the

bootstrap model is considerably better behaved at lower training effors. Andersen
et al. (2001) points out that bagging works best when the errors between member
ANNs are uncoffelated and the correct responses are correlated. Thus, a likely
explanation for the superiority of the bootstrap bagged model at low training error
is that bootstrapping "decorrelates" some erors caused by overfitting.

4.3.2.3 Reservations

A drawback of bagging is that it imposes a greater processing cost on model
development because of the manifold increase in the number of ANNs that are

trained (a 30-fold increase in the present study). The increased costs include that
time taken to train extra ANNs and the increased data preparation and analysis
requirements. However it is likely that these problems will become less important
in time as the power of computer hardware continues to advance. In this study, the

longest recorded training time for a single bagging run using 30 bootstraps and

20-fold-crossvalidation was approximately 8 hours on an desktop PC equipped
with a 133 lll4}Jz Intel Pentium III CPU and 256 megabytes of RAM. This cost is
clearly justifiable in the context of the benefits achieved.

4.3.3 Effect of the TFaining Algorithm and Model Complexity

Figures E.1 to E.7 illustrate the effects of stopping error on model prediction error
rates given the training algorithm and the number of hidden layer units for all
7 models, with part A showing training error and part B showing validation set

error. Note that the single low outlier in many of these plots corresponds to the

error rate for the bagged model, whilst the remainder of the points correspond to
the unaggregated models. Part A of these plots shows that in most cases the SCG
algorithm leads to slightly lower training error rates regardless of the number of
hidden layer units used or the stopping error of training. Part B of these plots
indicates, in most cases, that the distributions of validation error rates appear

similar for the two algorithms. However, in the cases of models 2, 4, 6 and'l
(figures 8.2,8.4, E.6 and E.l) it is apparent that the SCG algorithm achieves a
slightly lower validation error rate for ANNs without hidden layer units. Similar
interactions between the effects of stopping error and the number of hidden layer
units are present to those observed in figures C.1 to C.7.

Figures 4.10 to 4.72 compare the effect of stopping error on validation perfor-
mance of the 20 hidden unit bagged model over a range of stopping effors. It
can be seen from these plots that the relative performance of the two training
algorithms depends on the stopping error and the model. Comparing optimum
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results, BP performs best for models 6 and 7, SCG performs best for models

1, 4 and 5 and similar performance was achieved for models 2 and 3. These

optima where achieved at similar stopping effors for models 1,3,4,5 andJ,
while different optima were observed for models 2 and 6.

Evidently, it is difficult to judge the superiority of a training algorithm on the

basis of validation performance. Clearly there is some interaction between the

data and model designs. Also, in most cases, the differences in RMSE are small
enough to be judged insignificant. This finding does not suppoft the argument by
Lawrence and Giles (2000), nor the empirical f,ndings of Alpsan et al. (1995), that
"simpler" training algorithms such as BP produce superior results on independent

data than quasi-second order approaches such as SCG. Contrary to the suggestion

of Lawrence and Giles (2000), BP appeared to be just as susceptible to overfitting
as SCG as indicated by the sharply rising validation error with decreased training
error (where hidden units are present). One possible reason for disagreements is

that the studies of Alpsan et al. (1995); Lawrence and Giles (2000) draw conclu-
sions on the basis of results from a single model compared to multiple models in
the present study.

Contrastingly, in terms of training set error, it is clear that SCG has a slight, but
consistently reproduced advantage over BP indicating that it is indeed a more

eff,cient training algorithm. This conclusion is further emphasised by consider-

ation of the time taken by each algorithm to reach the desired stopping error of
training. Figure 4.13 plots the training time v the number of hidden units for 3

models trained to a stopping effor of 0. The time axis represents the total CPU

time taken to train a total of 600 ANNs required by the experimental design (ie

2O-fold-crossvalidation repeat 30 times). The plots show that SCG is generally

faster to train than BP. Furthermore, there appears to be an interaction between the

ANN size and the effect of the training algorithm. The training time for BP scales

linearly to model size whereas SCG appears to train slower with intermediate size

networks of 5 or 10 hidden units than for ANNs with 0 or 20 units.

4.3.4 Validation Method

Table 4.4 compares validation error rates for optimal ANN conflgurations vah-

dated using the leave-one-out bootstrap and blocked bootstrapped 2O-fold cross-

validation. Models 7,3,4,5 and 6 have similar effor rates for both validation
methods. However, substantial improvements in error rates are observed for mod-
els 2 and 7 when the leave-one-out bootstrap method is used. These 2 models

forecast variables in the Myponga Reservoir, which, as indicated by table 4.4,has
significantly better data availability and higher sampling frequency than the other

sites investigated in this experiment.
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Figure 4.10: Comparison of BP and SCG for 20 hidden unit ANN. A RMSE v
Stop error - model 1. B RMSE v Stop error - model 2. C RMSE v Stop effor -
model3.
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Figure 4.72: Comparison of BP and SCG for 20 hidden unit ANN. RMSE v Stop
error - model7.

Table 4.4: Comparing leave-one-out bootstrap and bootstrapped blocked 2}-fold-
crossvalidation.
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As explained in section 2.5.3, the 20-fold crossvalidation method used in this
experiment employs the following techniques to reduce the effect of time-series
correlations between training and validation sets;

o Rotation of 20 hold-out blocks contiguous in time as validation sets.

o A 90 day hold-out period after each validation set not used for training or
perfolmance estimation.

Ry comparison, the leave-one-out bootstrap estimator permits records that are 1

sample interval before or after a each validation record to exist in the training
set. Furthermore, since it uses the "out-of-bag" sample for validation, no data
is held out from possible training set selection meaning that it will have greater
data availability for training. The results in table 4.4 support the conclusion that,
at some threshold sampling density, allowing records close in time to be spread
across training and validation sets improves the perceived model performance.
However, there is no indication that the improved data availability in training
sets afforded by the leave-one-out bootstrap method has any affect on model
performance, since the models characterised by low data density and availability
indicated similar performance using both methods.

The leave-one-out bootstrap estimator has the advantage that it is significantly
less resource intensive to perform than the cross-validation method applied in this
experiment, since only 30 ANNs have to be trained compared to 600 ANNs (ie
30 bootstrap samples *' 20 train/test sets). Thus, it is more convenient to apply in
situations where resources are limited or training times are likely to be long.

4.4 Conclusion

The evidence of the experimental results supports the following conclusions and
recommendations regarding the application of ANNs to limnological modelling
tasks.

4.4.1 ModelApproximation

It was shown that both incremental BP and SCG are efficient at approximation
tasks since they were both able to fully exploit ANN architectures in the context
of the models trained. However, it can be recommended that SCG be used for
ANN modelling applications since it is significantly faster than BP while offering
similar generalisation characteristics. Additionally, SCG is more convenient for
practitioners since there are no parameters such as learning rate or momentum that
need optimisation.
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4.4.2 ModelGeneralisation

A surprising result from this experiment is that, for all but 1 model, perceptrons

achieved similar validation error rates to MLPs. This means that the ability of
MLPs to generalise non-linear relationships rarely confer an advantage over in-
ference methods constrained to linearity in the context of the models developed in
this work. This finding contrasts with a large body of work showing superiority
of MLPs for ecosystem modelling applications due to their ability to handle non-

linear relationships. rü/hile further research is waranted to explore this f,nding,
it is recommended that all future experimentation with ANN applications should

use perceptrons as a control.

The results clearly show that training error is a far more powerful parameter than

the hidden layer size for controlling MLP generalisation characteristics. Indeed,
it appears that hidden layer configuration should never be considered in isolation
since it has little effect on overfitting behaviour. Furthermore, stopping error is a
more convenient parameter because it does not require that ANNs be trained to
convergence, which may, in the context of some models and datasets, be com-
putationally expensive. Thus a clear recommendation from this work is that

future MLP modelling applications should specify excess hidden layer units and

optimise stopping error to reduce generalisation error.

The MLPs trained in this experiment displayed the underfit - optimum - overf,t
pattern with decreasing training set effor. In addition, it was shown that the over-
fitting phase of ANN performance is characterised by an increase in the variance
component of prediction effor. These two observations are consistent with widely
held expectations from the literature. It was proposed that model variance be used

as a goal function for optimising stopping effor of training because it is closely
correlated with validation error and, unlike error, does not require access to the
target values for prediction of the validation set. This eliminates the need for dou-

ble crossvalidation to determine an unbiased estimation of model performance.

An overfitting index based on model variance was proposed as a universal, unit
free measure of overfitting. More work is needed to further explore the properties

of this quantity.

4.4.3 ModelAggregation

It was shown that bagged models have significantly reduced sensitivity to over-

fitting and lower validation error than the individual member ANNs of the en-

semble. This effect is consistent with expectations from the literature. However,
it was shown that bagging does not completely eliminate the need for tuning of
training error since overfitting can still impact the performance of the aggregate

model. It was shown that bootstrap sampling of training data does not contribute
signif,cantly to increased model variance of overfitted ANNs. Instead, it tends
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to limit the effect of overfitting on ensemble models by possibly decorrelating
prediction errors. Thus it is recommended that bagging should be applied in all
future modelling work, but that for optimal model performance, early stopping of
training should also be applied.

4,4.4 Model Validation

It was observed that the use of the leave-one-out bootstrap estimator leads to better
perceived validation error rates than the blocked 20-fold cross-validation estimator
when data availability and/or sampling density of the time-series are high. This
is probably due to the former method not eliminating time-series correlations
existing between training and validation data. Decisions regarding the choice of
performance estimation method depend on the specific requirements of the appli-
cation. However, it should be noted that the leave-one-out bootstrap estimator is
less computationally expensive than the blocked 2O-fold crossvalidation approach
developed for this work.



Chapter 5

The Generic ANN Model

5.L Introduction

The review in sections 2.3.7 and2.4.2 showed that input layer designs for super-

vised ANN models predicting phytoplankton abundance generally considered one

or more of the following factors;

o Theories regarding the causes of algal growth.

o Serial correlation of time-series data.

o Outcomes of data analysis or previous modelling work.

o Availability of variables in historical water quality monitoring database.

It can be concluded from the review in chapter 2 that input layer designs are,

in practice, being implemented in an ad-hoc nature depending on data availabil-
ity. However, it was shown in chapter 3 that variables expressing nitrogen and

phosphorus bioavailability, water temperature and underwater light penetration

are common to all six datasets available for the present study. These variables

are widely used by modelling applications in the literature such as those reviewed
in chapter 2. It was proposed by Wilson and Recknagel (2001) that these four
variables comprise a generic ANN model; the beneflts of which are:

o Compatibility with existing "typical" datasets.

o Potential rationalisation of future data collection efforts.

o Facilitation of direct comparisons between models/datasets

r Compaction of ANN size leading to a reduction of overheads associated

with data pre- and post-processing and model training.

o Aggregation of data from multiple sites to permit the training of increas-
ingly generic "mega-models".

721
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This chapter aims to validate the generic model structure in the context of the
following;

o The six datasets reviewed in ehapter 3.

o 21 output variables identified in chapter 3.

o The input-window model structure proposed in section 2.5.1.

o Bootstrap aggregation as suggested by Breiman (1994).

o Blocked 2}-foId cross-validation as proposed in section 2.5.3.

o Findings with respect to model approximation, generalisation and complex-
ity discovered in chapter 4.

In addition to validation of the generic model design, this chapter aims to explore a

number of error measures for realistically quantifying and comparing ANN model
performance where different ranges and units of the output variable are used.

5.2 Methods

5.2.1 ANN Models

The generic model design investigated in this chapter is described in section 3.4.1.
As indicated, four model outputs were specified for each of the datasets, except
Soyang, where one model was specified resulting in a total of 21 models (see

table 3.20). The "generic ANN model template" is illustrated in figure 3.18
showing the four inputs and a "feedback" input comprising the output variable
in each case. Table 3.19 shows the actual input layers used for each dataset.
Time series dependencies were modelled using the TDNN structure, with input
variables lagged the output by two weeks. The "input window" approach to
representing model inputs, described in section 2.5.7, was utilised meaning that
inputs to the ANN were average values of each of the driving variables falling
between two and four weeks prior to the output date.

5.2.2 Model Inference

A three layer feed-forward multi-layer perceptron consisting of an input, hidden
and output layer was used as the underlying structure for all models. As in chapter
4, ANNs with zero and 20 hidden layer units were compared to determine the
importance of non-linear decision boundaries to all the modelled outputs. The
methodology with respect to the architecture of neural processing, data condi-
tioning, the maximum number of training epochs, validation and computation is
identical to that used in the experiments in chapter 4 (see table 4.3).
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Since the experimental evidence presented in chapter 4 showed the Scaled Con-
jugate Gradient method (MBller, 1993) to be an efficient learning algorithm, it
was used for training all models. Model predictions were stabilised by bagging,
with the bagged model ensemble consisting of 30 member models in each case.

The models were further stabilised by stopping of training early. It was found, as

discussed in chapter 4, that there was a correlation between the average standard

deviation of model predictions and the bagged model effor rate. Thus the stopping
error chosen was the error at which the average standard deviation of predictions

started to increase dramatically.

5.2.3 Model Validation

The blocked bootstrapped 2O-fold-crossvalidation performance estimator, described
in section 2.5.3, was utilised for all model outputs. Note that in every case, model
performance refers to the bagged model ensemble, not to individual member
models. In order to compare the model performance given variation in the range of
the output values, a number of unit free error measures were investigated. These

are described below.

5.2.3.1 Continuous Error Measures

Tables 5.1 to 5.6 compare performance of the optimised generic ANN models to
similarly conf,gured perceptron models (ie ANNs without a hidden layer). The
effor measures include;

o RMSE. This measure is the goal function of ANN training. Note that
the square term tends to emphasise the importance of large discrepancies

between modelled and observed values over small ones.

c Ul - Theil's inequality type 1 Theil (1961) is a standardised RMSE mea-

sure. A U1 error rate of 0 indicates perfect agreement, while I indicates
perfect disagreement.

It(y" - yp)2
U7:

Izy?+ TL,,,

where yo is the observed value and y, is the model predicted value.

o U2 - Theil's inequality type2 is a comparative error rate comparing the root
means square error (RMSE) of the ANN with that of a naive model where
the naive model is expressed as y¡ : !t-7. U2 < I indicate that the ANN
model is performing better than the naive model. According to Armstrong

(s.1)
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and Collopy (1992), U2 is a useful measure for time-series where large
changes occur over the forecast horizon. :

o Correlation coefficient (R2) is the proportion of covariance between the
observed and predicted values.

Sensitivitv - 
TPP

" TPP+FNP

(5.2)

(5.3)
2

R2

where o is the standard deviation and y is the mean.

IJ7,IJz and R2 are unit free measures thus facilitating meaningful comparison
between models with different ranges in the output variable.

5.2.3.2 Classification Error Measures

Tables G.1 to G.2l compare the performance of the ANN models as classifiers.
Classif,cation errors were calculated as "confusion matrices" given the models'
ability to classify "bloom" and "non-bloom" events. These matrices contain counts
of each of 4 different classification outcomes - true positive predictions (TPP),
true negative predictions (TNP), false positive predictions (FPP) and false negative
predictions (FNP). These attributes were calculated for 5 different thresholds for
defining bloom events for each model, since it is known that the value of the
threshold can have a large effect on perceived performance. The values of the
thresholds are data specific and were chosen such that there were approximately
equal numbers of records in each of the classifications. The statistics presented
were calculated as follows;

o Prevalence - the proportion of positive (ie "bloom") classifications in the
observed data.

o Sensitivity - the conditional probability that a bloom case is classified by
the model.

(s.4)

o Specificity - the conditional probability that a non-bloom case is classified
by the model.

, TNP
Snecificitv : 

-

TNP + FPP
(s.s)
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o Positive predictive power - the conditional probability that a bloom pre-
diction is actually present.

(5.6)

r Kappa - an estimation of the proportion of agreement between the model
and the observed data after removal of the proportion of agreement due to
chance. For example, K : 0.5 suggests 5O7o better classification accuracy

than a naive model making random classifications. K is a robust measure

of classification accuracy that allows valid comparisons between different
datasets since it provides reasonable weighting against conditions of very
low or high prevalence. Agreement is generally considered weak where
r < 0.4, moderate where 0.4 < r < 0.75 and strong where K > 0.75.

l(: Q p p +r N p) - (((r p P + F N P) Q P P + F P P) + (F P P +r N P) (F N P +r N P)) I N (s.7)N (((r p p + F N P) (r P P +F P P) + (F P P +r N P) (F N P +r N P)) I N

5.2.4 Computational Platform

All experiments were run using the same software and hardware used in chapter
4 (section 4.2.4). Thus MySQL was used for data storage, SNNS v 4.1 was used

for ANN simulation and all communication between the database and application
layers was handled by LakeNet. As previously, standard desktop PCs utilising
Intel Pentium III and AMD Athlon XP CPUs were used for data processing and

ANN training.

5.3 Validation Set Performance

5.3.1 Model PerformanceEvaluation

Figures F.1 to F.6 illustrate time-series plots of observed values and bagged model
predictions of outputs on validation data. Note that individual observations have

been joined by interpolated lines to emphasise the trajectory of the modelled and

observed values through time. The following section contrasts the "subjective"
performance of the ANN models according to the time-series plots with the con-
tinuous error measures documented in tables 5.1 to 5.6 and the classification error
rates documented in tables G.1 to G.27.

TPP
PPP:

TPP + FPP
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Table 5.1: Generic model effor rates. Lake Biwa.

RMSE Ul U2
a t3

20 6.21 0.293 0.831 0.061

Euglena americana 0
20

0
20

0
20

1194
1048

0.010
o.233

0.621
0.461

0.175
0.680

Melosira granulata

Pediasftum biwae

0.840
o.8ll

0.147
0.131

682
712

0.503
0.491

310
284

0.412
0.406

0;t41
0.680

0.405
o.454

Table 5.2: Generic model error rates. Burrinjuck Dam.

Output Hid. RMSE UI U2 R2

Chlorophyll ø

Chlorophyta

Diatoms

20.6
19.3

4150
4050

0 100000
20 78800

0
20

t940
2040

0
20

0
20

0.370
o.326

0.534
0.501

0.512
0.568

0.570
0.541

0.754
o.136

0.004
0.010

Cyanophyta o.622
0.518

0.986
0.771

0.035
0.1 95

0.426
0.455

0.867
0.912

0.300
0.236

Table 5.3: Generic model effor rates. Darling River.

Output Hid. RMSE Ul U2 P!
Total phytoplankton

Chlorophyta

Flagellates

0 22500
20 24100

s000
52tO

0
20

0
20

0
20

0.381

0.431
1.049
r.126

0.293
0.1 86

7.061
1.112

1870
1840

0993
0.975

0.450
0.500

o.274
0.272

0.3t2
0.340

0.315
0.363

1.055

t.t40
Cyanophyta 5110

5520
0.452
0.509

0.236
0.110
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Table 5.4: Generic model error rates. Lake Kasumigaura.

Output Hid. RMSE UI U2
Chlorophyll ø 0.825

0.860

133

0
20

43.4
45.3

0.248
0.257

0.190
0.1 57

0.589
0.595

o.133
0.814

0.085
0.045

Oscillatoria spp.

Microcy stis ae rugino sa

Gomphosphaeria spp.

0 s0600
20 56200

0 89100
20 82400

0322
0.301

o.753
o.691

0.570
o.626

o 24100
20 2s100

0.419
0.458

0.426
0.348

0.844
0.901

Table 5.5: Generic model error rates. Myponga Reservoir.

Hid. RMSE Ul U2

Chlorophyll ø 0.917 0.469
20 4.69 0.265 1.007 0.436

0

Ankistrodesmus spp.

Dictyosphaeríum spp.

3390
3360

0.252
0.118

0
20

0
20

0.642
0.538

0.949
0.942

1520
A6A

0.589
0.570

0.011
0.029

0.445
0.507

0.9s9
o.922

1.204
1.324

0.321
0.199

Scenedesmus spp.

Table 5.6: Generic model effor rates. Lake Soyang

Output Hid. RMSE Ul U2

0 17500
20 t9200

0
20

0.385
0.389

Chlorophyll a r.7'7
r.79

0.810
0.823

0.305
0.281
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5.3.1.1 Lake Biwa

The chlorophyll a model (figure F.1 part A) features mixed measured performance
with poor R2 and r (0.071 and 0.3 respectively), but good Ul and.IJ2 error rates
(0.293 and 0.831 respectively). The time-series plot shows that the model fails to
capture most of the observed dynamics of this variable. The good U2 result can
be explained by bad performance of the no-change model due to the short term
dynamics in the observed data. However, the good U1 result is difficult to explain
in the context of the poor model performance evident from the the other error
measures and the time-series plots. Table 5.1 shows that the ANN model per-
forms somewhat better than the perceptron model according to all error measures
indicating that generalisation of non-linear relationships is advantageous.

The Euglena americanø (figure F.1 part B) model generally performs somewhat
better than the chlorophyll a model. It has a mixed measured performance with
poor R2 and U1 (0.233 and 0.467 respectively) but good U2 and r (0.680 and
< 0.61). The time-series plot shows an annual pattern with short lived blooms
occurring in spring and an absence of biomass for the remainder of the year. The
ANN model successfully predicted the timing of most events, but failed to predict
the 1987 and 1988 blooms. In general the ANN tended to underpredict observed
peak magnitudes of bloom events. Table G.2 shows a curious balance of results
with respect to K where values of 1 0.32 are exhibited for all but the highest
threshold of 1000 cells/ml where K:0.61. At this threshold, both sensitivity
and specificity are good with values of 0.79 and 0.92 respectively. However,
at lower thresholds model performance is marred by low specif,city indicating
a poor resistance to false positive predictions. The time-series plot confirms these
observations. Table 5.1 shows that the ANN performs considerably better than the
perceptron.

Mixed measured performance was also observed for Melosira granulata (figure
F.1 part C) with poor R2 and Ul (0.137 and 0.491 respectively), but moderate U2
and r (0.811 and { 0.46 respectively). Once again the good U2 result can be
attributed to very poor no-change model performance caused by extreme short
term dynamics. With respect to K, table G.3 shows that, unlike the Euglena
americana model, performance is better at low thresholds (< 46 cells/ml) than
higher thresholds. The time-series plot appears to support this finding, as it is
clear that the ANN model predicts the presence/absence of this species reason-
ably well. However, the poorer performance at high thresholds (in particularly,
low sensitivity indicating false negative predictions) is reflected by the failure to
predict the timing of events in 1985, 1988 and 1989. The ANN performs better
according to U1, whereas RMSE, rJ2 andR2 indicate better performance by the
perceptron for this output.

The Pediastrum Biwae model achieved moderate measured performance for this
dataset with Ã2 : 0.454, U1 = 0.406, IJ2 = 0.831 and r < 0.44. The time-
series plot (figure F.l part D) shows that the ANN is able to predict the timing
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of the bloom events in 1984 - 1987 and a minor event in 1989. Furthermore,

the model resists false positive predictions in other years. However, the mag-

nitudes of predictions are characterised by under-predictions in 1984 and 1987

and over-predictions in 1985 and 1986. TheU2 error rate indicates a reasonable

improvement in RMSE over the no-change model. The classification statistics

in table G.4 show that the model performs best at intermediate threshold values

where reasonably high sensitivity and specificity values are observed. However,

at the highest threshold (150 cells/ml), the model has high specificity but poor

sensitivity indicating a tendency for false negative predictions. This may be due

to a failure to predict the 1987 event and the commencement of the 1984 event.

Table 5.1 shows the ANN delivers slight but consistently better performance than

the perceptron for this output.

5.3J1,.2 Burrinjuck Dam

The chlorophyll a model achieved the best measured performance for this dataset

with R2 : 0.568, tJl = 0.326,IJ2 = 0.501 and r < 0.40. Figure F.2 part A shows

that the time-series is dominated by 2 severe blooms in 1980 and 1983 and is

relatively featureless for the remaining years. The ANN model predicts the timing
and magnitude of the 1983 event perfectly and under-predicts the 1980 event.

The small scale dynamics in 1981 and 1982 are also well forecast by the model.

A slight false prediction may be observed in 1994. This model had a U2 error

rate of 0.501 indicating very much better performance than the no-change model.

The classification statistics in table G.5 show that the model performs best at the

second highest threshold (10.55 pgtL). Note that the maximum threshold value of
16 is low relative to the maximum observed value of x 225 because of the low
prevalence of very severe bloom events. Table 5.2 shows that the ANN delivers

consistently better performance than the perceptron for this output.

The chlorophyta model (figure F.2 part B) had relatively poor measured perfor-

mance with R2 :0.010, rJl = 0.541 and r < 0.29. However, U2 was reasonable

with a value of 0.736 reflecting poor no-change model performance. The time-
series plot shows that the poor effor measures are justified as the model is clearly

unable to predict the algal bloom events. Table 5.2 shows that the ANN performs

slightly, but consistently better than the perceptron for this output.

Like chlorophyll a, figure F.2 part C shows that cyanophyta dynamics are dom-

inated by 3 extreme events in excess of 1 * 10s cells/ml, whilst the remainder of
the time-series is featureless. However, this model has a much poorer measured

performance than the chlorophyll a model with R2 :0.195, U1=0.518 and r (
0.32. Once again, U2 was reasonable (0.171). The time-series plot shows that

the model predicts the 1996 event quite well, but under-predicts the 1980 event

and overpredicts the 1982 event. Additionally there is a false positive prediction

extending over much of 1983. The classification statistics in table G.7 show

that the model performs best at the highest threshold values where reasonable
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sensitivity and specificity values of > 0.73 are observed. However, the very
low prevalence of extreme bloom events means that the maximum threshold of
10000 cells/ml is very much lower than the maximum observed value of x'7 ,o 70s
cellsiml. Table 5.2 shows that the ANN performs considerably better than the
perceptron for this output with t 20To pertormance improvement according to
most indices.

The Diatoms model (f,gure F.2 part D) achieves moderate measured performance
with R2 : 0.236,LI1 = 0.4-5-5,L12 = 0.9 l}and r < 0.48. The time-series plot shows
that the model predicts the major bloom events in most years, but with erors in
timing and magnitude. Also there is a significant false positive prediction evident
in 1986-1987. The classification statistics for this model (table G.8) indicate that
the model performs best at low to moderate thresholds of 300 and 700 cells/ml,
at which the model has a sensitivity of 0.9 indicating a high probability of cor-
rectly classifying bloom events, although specificity is moderate atO.64 indicating
a signiflcant risk of false positives. At the highest threshold of 2000 cells/ml
the specificity dramatically improves, but sensitivity drops to 0.50 indicating a
tendency to false negative predictions These conclusions are supported by the
time-series plots. Table 5.2 indicates that the perceptron performs better than the
ANN for this output indicating that constraint to linearity is most appropriate for
this model.

5.3.1.3 Darling River

The total phytoplankton model (f,gure F.3 part A) achieved moderate to poor
measured performance with R2 :0.186, Ul = 0.437,1J2 = 7.726 and r < 0.42.
The time-series plot shows that the ANN fails to predict algal abundances higher
than 40000 cells/ml and only predicts some of the lower level dynamics. The
classification statistics in table G.9 show that model performs best at the relatively
low threshold of 21000 cells/ml. At a higher threshold, rhe model has a good
specificity, but is compromised by poor sensitivity indicating a resistance to false
positive predictions but a tendency to false negatives. These conclusions support
observations of the time-series plots. Also, a U2 enor rate ) 1 indicates that the
ANN performs significantly worse than the no-change model. As discussed below
in section 5.3.1.7 , this is a result of the high sampling density causing relatively
good no-change model RMSE error rates. Table 5.3 shows that the perceptron
performs somewhat better than the ANN for this output.

The chlorophyta model (figure F.3 part B) had similar measured performance
to the total phytoplankton model, with R2 : 0.272, U1 = 0.500, IJ2 = 1.112
and r < 0.42. The time-series plot shows that the dynamics of chlorophyta ars
highly correlated with total phytoplankton, with peak events coinciding in 1980-
87, 7982, 1985-86 and 1987-88. Clearly, chlorophyta contribute significantly to
the total algal cell count. The observed performance of the ANN was almost
identical to that of the total algal cell count model described above. Thus the
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model was unable to model larger scale dynamics, but performed reasonably well
at modelling lower level events. Once again the U2 error rate indicated that the

ANN had higher RMSE than the no-change model. Table 5.3 shows that the

perceptron performs significantly better than the ANN for this output.

The cyanophyta model (figure F.3 part C) had similar measured performance

to both the total phytoplankton and the chlorophyta models (R2:0.110, Ul =
0.509, IJ2 = 7.140 and K < 0.21). The time-series plots shows that the dynamics

of cyanophyta in the Darling River are closely correlated with both chlorophyta
and the total cell count. This indicates that, like chlorophyta, cyanophyta is a

significant fraction of the river microflora. However, the time-series plots also

show that the generic ANN model performs worse than the chlorophyta or total
phytoplankton models being less able to accurately model low or high level dy-
namics in the time-series. The classification error rate data (table G.11) shows

that model predictions are either characterised by high sensitivity but low speci-

ficity, or low sensitivity but high specif,city. Table 5.3 shows that the perceptron

performs signif,cantly better than the ANN for this output.

The flagellates model for the Darling River is the best performing with R2 : 0.340,

U1=0.363 and r < 0.56. Figure F.3 part D shows good general correspondence

between observations and model predictions. The model appears to be particularly
highly accurate at forecasting the low level dynamics in algal abundance occurring
from 1989 onwards. However, it can be seen that the model is not able to forecast

the extreme events -particularly those > 5000 cells/ml occurring in 1981, 1982

and 1985 - 1981. This inability to meet extremes may explain why table G.12

shows that K is higher for intermediate bloom thresholds than for the highest

threshold. At intermediate thresholds of 800 and 1900 cells/ml, predictions are

characterised by reasonable sensitivity and specificity. However, at the highest

threshold of 3500 cells/ml, the sensitivity drops to 0.44 indicating a tendency for
false negative predictions. These observations reflect findings from the time-series

plots. Table 5.3 shows that the ANN performs slightly better than the perceptron

according to all indices.

5.3.1.4 LakeKasumigaura

The chlorophyll a model (figure F.4 part A) has mixed measured performance

with poor R2 of 0.151, but reasonably good remaining measurements (U1=0.257,

U2 = 0.860, r ( 0.41). The time-series plot shows a regular periodicity to the data

with peak events in the summer and autumn months of most years. The model is

clearly able to capture the periodicity, but does not appeff to predict the year to

year variations in concentration particularly well. For example, the model does

not predict the higher peak values in 1983, 7984, 1985 and 1986 compared to

the rest of the time-series. The classification statistics (table G.13) show that the

model only achieves reasonable r values at the lowest threshold value (30 pg[-)
indicating that at higher thresholds the model does not perform a great deal better
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than chance. However, even at the lowest threshold, the model has extremely good
sensitivity (0.98) but poor specif,city (0.33). The intermediare ro high thresholds
are classified by low sensitivity which is reflective of an inability to meet the peak
events. Table 5.4 shows that the perceptron model performs slightly better than
the ANN according to all indices.

The Gomphosphaeria spp. model (figure F.4 part B) measures relatively poorly
with R2 : 0.348, Ul = 0.458, IJ2 = 0.901 and r < 0.34. The time-series plot
shows that clynamics of this genera aÍe ate largely featureless with occasional
explosive events in 1983, 7981, 1990 and 1992. The ANN model is capable of
predicting to some extent each of the dominant events. However, the magnitudes
are generally somewhat under-predicted and there are several significant false
positive predictions. Note that the extremely low prevalence of cell counts > 0
in this time-series meant that only 4 thresholds were def,ned. The classification
statistics (table G.I4) show that best performance was achieved at the highest
threshold of 35000 cells/ml where very high specificity, but low sensitivity is
observed. This indicates that the model tends to resist false positives at this
threshold, but has a tendency to make false negative predictions. Table 5.4 shows
that the perceptron model performs somewhat better than the ANN for this output.

The ANN forecasting Microcystis aeruginosa inLake Kasumigaura is shown by
the error measures to be one of the best performing models, with R2 :0.626, IJI =
0.301, U2 = 0.691 and r < 0.69. Figure F.4 part C shows that the ANN is capable
of forecasting the timing an magnitude of the bloom events observed in 1983,
1984, 1985 and 1992 with reasonable accuracy, although there appears to be a
slight delay between the prediction and the observation. The model fails to predict
the event in 1986, overpredicts in 1988 and underpredicts in 1989. However, false
positive predictions in other years appear to be well resisted by the model. The
classif,cation statistics show best performance for the 3 intermediate threshold
values (2000, 13000 and 65000 cells/ml) with high r, sensitivity and specificity
values. Sensitivity is reduced at the highest threshold of 160000 indicating an
increased chance of false negative predictions. Table 5.4 shows that the ANN
model performs significantly better than the perceptron for this output.

The Oscillatoria spp. model (f,gure F.4 part C) measures poorly with R2 : 0.045,
U1=0.595, U2=0.814 and r < 0.31. The time-series plot shows that Oscillatoria
spp. abundance is dominated by a single intense bloom (= 5 * 10s cells/ml) in late
1987 and some lower level dynamics in 1992-93. The model predicts the timing
of the 1987 event well, but significantly underestimates the magnitude. The low
level events in 1992 and 7993 are captured to some extent. A signif,cant false
positive prediction occurs in early 1983. The classification statistics show that
the model performs best at the highest threshold value (40000 cells/ml), although
performance at this threshold is characterised by low sensitivity indicating a like-
lihood of false positive predictions. Table 5.4 shows that the perceptron model
performs signif,cantly better than the ANN for this output.
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5.3.1.5 MypongaReservoir

The ANN forecasting chlorophyll a achieved reasonable measured performance

with R2 :0.436, U1 = 0.241,IJ2 = 1.007 and K < 0.51. Figure F.5 part A
shows close correspondence between model output and observed values with ev-

ery major event being predicted by the model and no significant false positive

predictions. The model predicts magnitudes reasonably well, although there is

generally an underprediction of peak events. The r values (table G.17) show that

the model performed well for most threshold values, although best performance

was observed at intermediate thresholds (5.5 and 8.4 pgil,) where high sensitivity,

specificity and PPP values were observed. At the highest threshold (12 ¡tg/L),
the sensitivity falls to 0.41 indicating an increased likelihood of false negative

predictions. Interestingly, a U2 value of = 1 indicates that the ANN does not

achieve a better RMSE on validation data than the no-change model. The time-
series plots indicate a slight delay between the onset of an observed bloom event

and the model prediction indicating that the model is predicting some events too

late. This delay may be the reason that the ANN performance is no better than the

no-change model, which would have a similar delay in predicting bloom events.

Table 5.5 shows that the perceptron model performs slightly better than the ANN
for this output.

The Ankistrodesmus spp. model (f,gure F.5 part B) has very poor measured per-

formance with R2 :0.118, U1 = 0.538, IJ2 = 0.942 and r ( 0! These numbers

are reflected in the time-series plot that clearly shows that the ANN model has

failed to generalise any of the observed dynamics in the time-series. Similarly,
the Dictyosphaerium spp. model (figure F.5 part C) also measures very poorly

with R2 : 0.029, U1=0.570, rJ2=0.922 and r < 0.18. Like the Ankistrodesmus

spp. model, these measurss are reflected in the time-series plot by a clear failure

of the model to capture the observed dynamics. Table 5.5 shows that the ANN
performs somewhat better than the perceptron for these outputs.

The Scenedesmus spp. model (figure F.5 part D) is somewhat better performing

with R2 : 0.029, U1= 0.507, IJ2=1.324 and r < 0.46. The time-series plot
indicates that Scenedesmus spp. are absent from Myponga Reservoir until 1990,

after which they become an annual feature. The biggest peaks are observed at

the end of 1991 and in 1993. Note that sampling of this variable was sporadic

as indicated by the intense short term dynamics separated by long straight lines.

The plot shows that the ANN captures the dynamics to a certain extent being able

to predict the timing of most events. However the 1993 event is under-predicted

whilst the 7994 event is significantly over-predicted. The classification statistics

in table G.20 show that the model performs best at the highest threshold value

of 10000 cells/ml with reasonable sensitivity and specificity values. Table 5.5

shows that the perceptron model performs significantly better than the ANN for
this output.
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5.3.1.6 Lake Soyang

The chlorophyll a model (f,gure F.6) has moderate performance with R2 :0.281,
Ui = 0.389,U2=0.823 and r < 0.40. The time-series plot shows that sampling of
this lake intensified in 1995 as indicated by the increasing short term dynamics in
the observed trace. The ANN model appears to perform well from 1995 onwards
being able predict peak events on an annual basis, although the magnitude of the
1995 event is signif,cantly under-predicted. Prior to 1995 the model appears to
perform much worse in that it does not appear to model the observed dynamics.
The classification statistics in table G.21 indicate that the model performs best at
an intermediate threshold of 1 .45 pgtL. Table 5.6 shows that the perceptron model
performs slightly better than the ANN for this output.

5.3.1.7 Summary of Model Performance

Tables 5.1 to 5.6 show that R2 values range from a minimum of = 0.01 for 3
model outputs/datasets to a maximum of 0.626 for the ANN model forecasting
Microcystis aeruginosa in Lake Kasumigaura. 14 out of 21 models had R2 values
of < 0.3 indicating that, for these models, over 7O7o of the prediction variance did
not correspond with variance in the validation data. Only two models achieved
R2 values of > 0.5 - models predicting chlorophyll a concentration in Burrinjuck
Dam and Microcystis aeruginosa in Lake Kasumigaura. A generally negative cor-
relation was observed between U1 error rates and R2, with higher U1 error tending
to correspond to lower rR2 values. A minimum disagreement value of 0.248 was
observed for the perceptron forecasting chlorophyll a inLake Kasumigaura and a
maximum of disagreement value of 0.642 was noted for the perceptron forecasting
Ankistrodesmus spp. in Myponga Reservoir. In most cases, Ul fell between 0.3
and 0.5.

Tables G.1 to G.21 show that the Kappa statistic r varied according to the thresh-
old value, although there was no clear trend observed between r and threshold.
As with the continuous effor measures, r also varied according to dataset and
output. In general, models shown to be better performing by Ul and R2 values
tended to have higher r values as well. 13 out of 21 models achieved values of
> 0.4 for at least one threshold value indicating moderate agreement. Of these, 10
models achieved such a value for at least 1 of the 2 highest thresholds indicating
that the model is a reasonable predictor of more extreme bloom events. Thus the
remaining 1 1 models could be considered relatively unreliable for classifying such
events.

Sensitivity of the models tends to drop as the bloom threshold rises, while the
specif,city rises. This means that with a higher threshold, models are less likely
to correctly classify bloom cases and more likely to correctly classify non-bloom
cases. The PPP (positive predictive power) of the models, like sensitivity, tended
to drop as the threshold rises. This indicates that the likelihood of a positive
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prediction being matched by an observation decreases with increased threshold.

For many models, PPP dropped below 0.5 at the highest threshold indicating that

positive predictions of the model were more likely to be incorect than otherwise.

It can be observed that where r ) 0.4, sensitivity, specificity and PPP values are

simultaneously high, whereas if one of these statistics is ( 0.5, K tends to be less

than 0.4.

It can be observed that a subjective appraisal of the time-series plots corresponds

to a certain degree with expectations of performance based on the U1 and R2

error rates presented in tables 5.1 to 5.6 and the classification error rates presented

in tables G.1 to G.21. Thus models with relatively low U1, high R2 and good

classification statistics tend to show correspondence between the traces for the

observed and modelled data. Conversely, high Ul and low R2 and r values are

generally associated with poor correspondences between the two traces. However,

it can be observed that all models had clearly evident false negative and false

positive predictions and that there were often discrepancies in the timing of bloom

events.

U2 error rates are ( 1 for most models developed for the Biwa, Burrinjuck,
Kasumigaura and Soyang datasets indicating that, in these cases, ANNs perform

better on validation data than the naive "no-change" model. However, most ANNs
trained on the Darling and Myponga datasets are characterised by U2 error rates

>1.

In general, it can be observed that there is little correlation between U2 and

the other unit-free error measures. The cause for this observation is that U2
depends on the RMSE of both the ANN and the naive "no-change" model (see

equation 5.2). The performance of the no-change model is influenced by the

degree of autocorrelation in the output variable which is, in turn, affected by both

sampling density and the magnitude of short term dynamics experienced in the

time-series. High sampling density and./or low short dynamics leads to increased

autocorrelation and thus good no-change model performance. This in turn is

likely to lead to increased U2 error rates. Conversely lower sampling density

and/or high short term dynamics would be characterised by less autocorrelation,

poor no-change model performance and thus lower U2 error rates. Table 3.21

compares the sampling intervals of the data retrieved to train and validate each

model. It can be seen that the datasets for which the highest U2 error rates

where observed, Myponga and Darling, also had the lowest median and mean

sampling intervals with median values of x'7 days compared to 15-30 days for
the remaining datasetsl.

tTable 3.21 shows that the chlorophyll a model for Lake Soyang was also trained with
data having a relatively low median sampling interval. However, the sampling density for this

dataset abruptly changed approximately half way through the time-series leading to a higher mean

sampling interval.
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Tables 5.1 to 5.6 show that ANNs achieved superior performance to perceptrons
for 10 out of 21 models according to the continuous error rates, while the percep-
trons perform best for the remaining 11. This means that for approximately half of
the models trained, there was a distinct advantage conferred by the ability to gen-
eralise non-linear relationships between inputs and outputs compared to a model
constrained to linearity. This result contrasts with the results presented in chapter
4 where the perceptron generalised as well as, or better than, the ANN model for
nearly all models. It can be observed that a hidden layer was advantageous for
outputs f'or which the best generalisation was achieved in the case of the Biwa,
Burrinjuck, Darling and Kasumigaura datasets.

In summary, the error measures and time-series plots show the following;

o The generic model structure generally achieves poor to moderately good
performance.

o There were no cases where model performance was very good, since the er-
ror measures and time-series plots clearly indicate conditions of substantial
prediction error in every case.

o There is little evidence of interaction between model performance and the
dataset, since ANNs exhibiting both good and poor generalisation character-
istics were observed for each site despite variations in sampling variability
and density illustrated in table 3.21.

o There is little evidence of an interaction between output type (ie chlorophyll
a, functional group, or species) and model performance.

5.3.2 Effect of Forecast Interval

As described in section 5.3.1.J, U2 enor rates indicate that the comparative ad-
vantage of the ANN model over the no-change model tends to diminish as the
sampling frequency of the output variable increases. Indeed, the results presented
in tables 5.1 to 5.6 indicate that the no-change model would, in general, be a better
guide to future algal abundance than the generic ANN model in cases where the
median sample interval is = 7 days. However, the comparison between the two
models for these datasets may be unfairly biased against the ANN, because the
ANN is constrained to making a 2 week forecast, whereas the no-change model
def,ned makes use of the most recent observation of the output variable. Thus in
the case of the Darling and Myponga datasets, the no-change model may have a
forecast interval of 5 to 6 days compared with a 74 day forecast for the ANN.

To investigate the effect of forecast interval onUT error rates, the forecast interval
was reduced from 2 to 7 week(s) for all ANN models developed for the Darling,
Myponga and Soyang datasets. Note that, according to table 3.21, a reduction in
forecast interval is not supported by the sampling density of the Biwa, Burrinjuck
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Table 5.7: Generic model error rates; Darling River - Comparing7,74 day

forecasts.

Output F.cast No. obs RMSE U1 U2
total phytoplankton 1

t4
22900
24rOO

0.316
0.431

L074
1.126

510
s08

510
508

0.21o
0.1 86

Chlorophyceae

Flagellates

Cyanophyce

0.434
0.500

1.043
t.tlz

0.299
0.21214

7

1

1

t4

4880
5210

510
s08

t7l0
I 840

0.410
0.340

0.343
0.363

0.897
0.915

510
508

5340
5520

l.108
1.140

0.1 66
0.110

0.473
0.s09t4

Table 5.8: Generic model effor rates; Myponga Reservoir - ComparingT,14 day

forecasts.

Output F.cast No. obs RMSE Ul U2 Rz

Chlorophyll a 427
428

4.34
4.69

0.241
0.265

1.062
1.007

0.476
0.436

7

t4

7

14

Ankistrodesmus spp.

Dictyosphaerium spp. l
t4

103

r08
0.449
0.538

0.941
0.942

0.019
0.118

l62l
1460

0.540
0.570

0.849
0.922

221

273

1688

3360

t4669
t9200

0.084
o.029

0.323
0.199

Scenedesmus spp.

t4

and Kasumigaura datasets without interpolation of existing data. The model de-

sign, inference and validation methodology was identical to that of the 2 week

models (see section 5.2).

It can be seen from comparisons of continuous effor measures in tables 5.7 to
5.9 that reduction of the forecast interval improves generalisation performance

in most cases. Similarly, tables H.1 to H.9 show that classification error rates

have also been improved. However, there are no cases whereU2 enor rates have

been reduced to < I by the I week structure where they were ) I for the 2 week

structure. Thus it appears that with respect to a number of outputs, the generic

ANN is likely to be out-performed by the no-change model when the median

sampling interval of the dataset is = 7 days.

1 146
t36

t.t40
1.324

0.486
0.507
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Table 5.9
forecasts.
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Generic model error rates; Lake Soyang - Comparing 7, 14 day

Output F.cast No. obs RMSE Ul IJz R¿

Chlorophyll a '7 200
222

1.782
r.79

0.875
0.823

0.412
0.389

0.29',7

0.281t4

5.3.3 Comparison with ANN Models from the Literature

All of the models developed in the present study are novel in terms of the model
design, inference and validation method and the datasets used for training. How-
ever, there are a number of outputs/datasets modelled in the present study that have
also been modelled by other authors using some machine learning method. Table
5.10 presents a comparison of these models with the generic models made on the
basis of visual appraisal of time-series plots of predictions. The "best timing"
and "best mag." columns show which model is able to best meet the timing
and magnitude of bloom events respectively in the observed data, where "pub"
indicates the published model, "generic" indicates the generic model developed
in the present study and "equal" indicates that there is little difference in the
performance of the two models.

It can be observed that the published models are generally considered to per-
form as well as, or better than, the generic models reported in the present study.
However, table 5.10 highlights a number of key differences between previously
published machine learning models and the generic ANN models;

o The generic model makes 14 day ahead forecasts, whereas all published
models reviewed make same day predictions, except for Walter et al. (2001)
where 7 day ahead forecasts are made.

o All models reviewed consider at least double the number of inputs of the
generic ANN. They typically have access to data regarding zooplankton
availability, solar radiation, micronutrient availability, pH etc. These extra
variables are potential driving variables for algal growth.

o All models reviewed consider only 2 or 3 validation years instead of all
the available data. Thus, it is possible that validation data has been "hand-
picked" to show the best possible performance.

Thus it can be concluded on the basis of this evidence that;

o Choosing "case-specific" input layers that consider all possible driving vari-
ables leads to better generalisation,

and/or



Table 5.10: Comparison of performance of ANN models in literature with generic ANN model.

Dataset

Bobbin and Recknagel (2003) Kasumigaura chlorophyll a
Microcystís aer.

Oscillatoria spp.

Mod. type F.cast No. years Best timing Best

!^
þ

ñt-
U
Þ
Ê
o
z
(t)
ll]I
t
t'd

ï
o
?

zo
\rl

equal
pub
pub

Biwa
Kasumigaura

Melosira gra.
Microcystis aer.

Oscillatoria spp.

t2
I2
12

1986,93
1986,93
1986, 93

l0
11

11

Recknagel etal. (1997)

Recknagel et al. (1998)

Walter et al. (2001)

* Genetic Programming
*,x Recurrent ANN

GPx
GP
GP

0
0
0

0
0
0

0
0
0

equal
pub
pub

ANN
ANN
ANN

1986-87
1986,93
t986,93

equal
pub
equal

pub.
pub
equal

Kasumigaura Gomphosphaeria spp.

Microcystis a.

Oscillatoria spp.

Burrinjuck chlorophyll ø

I2
I2
t2

1986,93
t986,93
1986,93

ANN
ANN
ANN

pub
pub
pub

pub

pub
pub
pub

rec. ANN** 7 days 10 1979-82 generic

Þ(¡
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feedback temperature phosphate av. nitrogen av. transparency

Figure 5.1: Comparison of absolute total sensitivity for each input - all models.

o Decreasing the temporal difference, as deflned by the forecast interval, be-
tween input and output layers leads to better generalisation.

5.4 SensitivityAnalyses

Tables 1.1 toL27 show statistics regarding the sensitivity of each of the 21 models
to the input variables. The "serìs." column lists the proportion of the total average
absolute sensitivity of the bagged model with respect to each input variable (see
section 2.5.4 for a discussion on the sensitivity analysis procedure used). This
value can be interpreted as the relative importance of inputs with respect to the
driving the output variable. The correlation column shows the correlation co-
efficient calculated between the value of the input perturbation and the model re-
sponse2. The sign of this value indicates whether the general relationship between
the relevant input and output variable is positive or negative. The magnitude of this
value reflects the likely linearity or "complexity" of the relationship. Values close
to 1 indicate that the model's response to an input was relatively uniform with
respect to the perturbation indicating a relatively linear, "simple" relationship with
other modelled variables. Values close to 0 indicate that the model's response was
highly variable indicating a non-linear, "complex" relationship. There are three
likely sources of complexity;

o The relevant input has a non-linear relationship with the output variable.

2As explained in section 2.5.4, the sensitivity analysis procedure determined the model's
response to 8 discrete levels, or perturbations of each input variable.
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feedback temperature phosphate av. nitrogen av. transparency

Figure 5.2: Comparison of R values for each input - all models.

o There is a non-linear interaction between the input variables with respect

to their relationship with the output variables. For example, the model's re-
sponse to high nutrient levels may be different at low and high temperatures.

o Variance between member models in the model ensemble caused by sam-
pling errors or overfitting.

Figures 5.1 and 5.2 use boxplots to depict the distribution of sensitivity and R val-
ues presented in tables I.l to I.2l with respect to each of the inputs of the generic
ANN model3. Figure 5.1 shows that, in general, ANNs were most sensitive to the
"feedback" or lagged output variable. On average, this accounted for 3OVo of the
total observed sensitivity of the model. The models are significantly less sensitive
to the remaining 4 model inputs (ie temperature, P, N, secchi). The boxplots
indicate somewhat similar ranges of sensitivity for these inputs, although it may
be tentatively concluded that water temperature and nitrogen availability are the
most and least important inputs respectively. The data presented in tables I.1 to
I.21 shows that model responses tend to be case specific - particularly for the less

sensitive inputs.

Figure 5.2 shows that the feedback input and to a somewhat lesser extent, water
temperature, had generally high positive R values indicating that increases of these

inputs causes an increased prediction of algal abundance in the forecast period.
Also, the fact that the absolute value of the R values were highest for these 2
inputs indicates that the relationship between these variables and the model output
is likely to be a straightforward positive correlation. However, the lower R values

3The R values for turbidity in the case of the Darling River and Myponga Reservoir models
in figure 5.2 were inversed, so that positive R values indicated an increase in algal biomass with
higher transparency.

0
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observed for temperature indicate that model response to this input are likely to
be characterised by a greater degree of complexity than to feedback.

There were 3 exceptions with respect to the observed relationships with water tem-
perature - flagellates (Darling river), Gomphosphaeria spp. (Lake Kasumigaura)
and Ankistrodesmus spp. (Myponga Reservoir) all showed a negative response
to this variable. This means that increasing temperature will lead to reduced
predictions of algal abundance in the forecast period and, logically, that decreased
temperature will lead to increased predicted values. The sensitivity analysis of
the Ankistrodesmus spp. model can probably be disregarded, as the error rate data
and time-series plots show a failure to generalise. Examination of the time-series
plots of abundance for flagellates in figure F.3 part D and Gomphosphaeria spp.
in figure F.4 part B reveals that most bloom events commence in late winter or
spring and tend to dissipate in summer.

It can be observed that most models (16 out of 21) define a negative relationship
between phosphorus availability and the output variable. This means that, for
these models, increasing phosphorus availability will lead to reduced predictions
of algal biomass in the forecast period. This observation is somewhat counter-
intuitive, as it would be expected that the opposite relationship would be more
likely since phosphorus availability has been identified as having pivotal role in
precipitating eutrophication events. However, it is important to note that R values
were close to 0 for a number of models indicating a complex relationship that
may be dependent on other factors. An exception to these general findings was
the model predicting chlorophyll ¿ concentration in Lake Kasumigaura, which
had an R value of +0.46 indicating a positive corelation.

The boxplots depicting the distributions of R values for nitrogen availability and
secchi disk depth are wider than those for feedback and temperature and they
extend over both positive and negative values. Tables 5.1 to 5.6 confirm that
the R values for these inputs tends to be case specific. The fact that the median
values indicated by the boxplots are close to 0 indicates that many models define
complex relationships with respect to these two variables. One interpretation of
this observation is that the model's responses to either of these two variables is
dependent on the values of the other variables.

All Darling River models show a negative relationship with flow. Thus, as flow
is increased, algal abundance in the forecast period of the model is reduced. This
finding corresponds well with similar findings from ANN models of phytoplank-
ton abundance in rivers reported by Recknagel et al. (1991); Maier et al. (1998)
and Jeong et al. (2001).
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5.5 f)iscussion and Conclusions

5.5.1 Performance of the Generic ANN Model

The evidence of the experimental results presented in this chapter show that the

generic ANN model successfully generalises on independent validation datasets,

since;

o The time-series plots show correspondence between the observations and
predictions with respect to the timing and magnitude of some or most bloom
events.

o In nearly all cases, the r statistics indicate that the ANN is able to classify
"bloom" and "non-bloom" events in independent data better than a naive
random classifier.

o The continuous error rates show some level of agreement between predic-
tions and observations in nearly all cases.

o A prediction advantage was confered by the presence of a hidden layer
for half of all ANNs trained indicating that non-linear interactions between
modelled variables was being generalised.

However, despite these observations, the results indicate a number of shortcom-
ings with respect to the performance of the generic ANN model.

o The success of the model clearly varies according to the model output and

the dataset, with some models performing very poorly. Thus there can be

no guarantee of a minimum performance level.

o No model achieves better than moderate performance. The time-series plots
and error rate statistics clearly show signif,cant prediction effors in every

case.

o In conditions where the sampling frequency of the monitoring datasets rs

relatively high (ie È every 7 days), a naive lt : !t_1 model performs better
than the generic ANN in most cases.

Despite the observed variations in the performance of the model depending on

the output and dataset, no clear trends were evident with respect to either of these

factors. Thus it is not clear whether the generic model is better suited to a certain
type of output. Nor is it clear that data availability, either in terms of the total
number of records or the sampling frequency of the output, has a consistent effect
on model performance.

However, the results from section 5.3.2 show that model performance is sensitive
to the forecast interval defined as the time lag between inputs and outputs. Clearly,
as the forecast interval is decreased, the model performance increases. The same
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conclusion could be made on the basis of comparisons with ANN model appli-
cations in the literature (see section 5.3.3). Indeed, it has been shown by Maier
et al. (1998) and Recknagel et al. (1998) that ANN models consideration of input
variables with multiple lags is beneficial to performance.

Comparing the generic ANN with ANN models from the literature also points
to potentially the most profound shortcoming of the model - that is, that it is
too simplistic. By only including 5 to 6 input variables, it only considers a
small subset of the possible forcing functions of phytoplankton growth in lakes
and rivers. Thus the model provides no clear account of many factors likely to
influence phytoplankton growth and community structures. For example;

o Top down control of algal abundance through grazing by zooplankton Hos-
per (1998); Gragnani et al. (1999).

o The effect of nutrients other than nitrogen and phosphorus, such as silica
and trace elements.

o The effect ofhigh pH on the abundance ofcertain species ofcyanobacteria
Shapiro (1990); Reynolds (1984).

o The effect of vertical and horizontal spatial variability on lake conditions.
The generic model assumes uniform conditions and yet there known to be
profound effects on phytoplankton communities caused by;

- Thermal stratification imposing a physical barrier between regions of
high nutrient and light availability Ganf and Oliver (1982); Reynolds
et al. (1984); Burns (1994)

- The onset of "over-buoy ancy" of certain species of blooming cyanobac-
teria leading to intense concentration of abundance in surface waters
Reynolds (1987).

- Horizontal variability caused by wind, currents, lake morphometry,
physical barriers etc.

o Relatively slow growth rates of cyanobacteria Reynolds (1987), meaning
that longer term temporal links between input and output variables may
need to be considered.

o Competition and/or mutualism exhibited between different species of phy-
toplankton.

o Human induced biomanipulations of lake ecosystems caused by herbicide
dosing, introduction of f,sh, regulation of residence time, etc.

o The morphometry of the lake - the ecology of shallow, mixed lakes is
different from deep stratified lakes.

o More detailed consideration of internal nutrient cycling, release from sedi-
ments etc.
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Reduction of the size of the input layer to a "generic" model was an explicitly
stated design decision in the case of the present study. Since the results show

that the generic model is highly case-speciflc in its success, it may be concluded

that the ad-hoc approach to model design evident in the literature may be justi-
fied. Chapter 6 investigates the hypothesis that ANN model performance can be

improved by using a dataset and output specif,c approach to model identification.

5.5.2 Error Measures

General agreement between subjective performance evaluatiofr, R2, Ul and r
indicates that the unit free effor measures are useful for quantifying model perfor-
mance and for comparison of performance between model outputs and datasets.

The classiflcation error measures permit further characterisation of malpredictions

by identifying conditions when error is dominated by false positive or false neg-

ative predictions. Furthermore, classification emor rates showed that perceived

performance varies according to the deflnition of the threshold at which a "bloom"
condition is defined. This may be important should a model be implemented in an

operational capacity, since resource managers may be specifically interested in the

model's performance within certain critical ranges of the output variable. TheU2
and the K effor rates serve a different function from the other error measures used

in that they identify the model's performance compared to a "naive" predictor. The

use of such comparative effor measures provides a further degree of objectivity
when assessing the models' performance.

5.5.3 SensitivityAnalysis

The sensitivity analyses method used allows quantification of both the relative
importance of an input to the model and the complexity of the relationship that

an input has with the other modelled variables. It should be noted that trust
in the outcomes of sensitivity analyses is dependent on the quality of model
generalisation. In general, it was found that the generic ANN model was mostly
driven by the lagged output variable, indicating that previous algal abundance

is the most important factor in determining current algal abundance. This is
consistent with the structure of a typical time-series model. Also it was found that,

in general, the models have a positive sensitivity to water temperature indicating
that algal growth rates increase with increasing temperature. This is consistent

with the observations that algal abundance (particularly cyanobacteria) is Ereater
in the summer and autumn months.

Relationships with other modelled variables were shown to be more complex.

This may be because the response of phytoplankton to nutrient availability and

transparency is dependent on both water temperature and existing algal abun-

dance. Interestingly, many models displayed a negative rssponse to phosphorus
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availability, indicating that increased growth follows a reduction in P levels. A
hypothesis for this observation is that the model is considering consumption,
where low P levels are indicative of high consumption and thus high growth rates.



Chapter 6

Identification of Lake Specific ANN
Models

6.1 Introduction

It was concluded in chapter 5 that the generic ANN model has a number of
shortcomings in terms of predictive ability. Specif,cally;

o There are significant prediction errors in every case according to both sub-
jective and objective analyses.

o Performance is worse than the naive y¡ : !t-r model when the sampling

frequency of the output variable was È 7 days.

It was hypothesised that a likely reason for the observed shortcomings in accuracy

is that the generic model is too simplistic on two counts;

1. It considers a small subset of variables likely to be deterministically or
correlatively linked with algal abundance.

2. It only considers a n¿urow lange of lag data from 2 to 4 weeks prior to the

output date.

With respect to the first issue, a range of variables present in existing datasets

hypothesised to be linked to algal growth in some way were proposed in section

5.5.1. While some of these variables are not deterministically linked to specific

phytoplankton abundance, Scardi (2001) has demonstrated that "co-predictors",
that is, variables correlatively rather than causatively linked, can also lead to

improved ANN models. With respect to the second of the above issues, Recknagel

et al. (1998) and Maier et al. (1998) have shown that including inputs with a range

of lag times relative to the output variable is useful to modelling outcomes. Specif-

ically, given the slow growth rate of many species of cyanobacteria (Reynolds,

153
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1981), it is reasonable to hypothesise that longer term lags than those used in the
generic model may be predictive of algal abundance in some cases.

Since the set of variables that are potentially predietive of alga-l biomass is large, it
is probable that ANNs configured with all the available inputs and a range of input
lag times will be very large indeed. As a consequence, it may be hypothesised that
model inference in the context of a large, case specific, ANN may be impacted by
the curse of dimensionality (Bellman, 196l) - that is, that the exponential increase
in the number of potential solutions with the increase in model size will make it
increasingly difficult for the ANN to identify general relationships in the data.
Indeed, Maier and Dandy (2000) point out that model identification is a particular
problem when dealing with time-series applications, since there is effectively no
upper limit to the potential number of lag times that may be utilised for a given
input.

To combat the problem of model selection in the context of a large number of
candidate input variables, a number of feature selection approaches have been
devised, which have been briefly reviewed in section 2.3.1. For the present chap-
ter, it was elected to compare the outcomes of a supervised and a non-supervised
feature selection method, where the supervised method is guided by model error
rates on independent data and the non-supervised method is guided by sensitivity
analyses as an indicator of the model's internal structure after training. The
non-supervised approach has the advantage that no access to independent data
is required for model selection making it more data efficient to validate in a real
world application. The two feature selection methods compared are;

o Data strip-mining (Embrechts et al., 2001). This method starts with all
available inputs and performs a backwards elimination of inputs using input
sensitivity as the goal function.

o Forward selection (Olden and Jackson, 2000). This method starts with a

minimally configured input layer and iteratively adds variables using gen-
eralisation effor as the goal function.

In investigating these model selection approaches, it is expected that the following
hypotheses can be tested;

o Feature selection eliminates irrelevant variables leading to lower model er-
ror rates compared to complete model input layers.

and

o The ability to select "case-specific" ANN models will bring improved per-
formance over the generic models developed in chapter 5 since they can
form links with a greater range of relevant variables.

The methods section describes the two feature selection methods employed and
the the following sections describe the outcomes of experiments with models
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comprising the same 21 output variables from the 6 datasets used for training
the generic ANN models in chapter 5.

6.2 Methods

6.2.1 DataStrip-Mining

The strip-mining approach to model identification, explained by Embrechts et al.

(2001), is straightforward. Figure 6.1 summarises the method. The starting model
represents a set of variables hypothesised to be predictive of the output variable in
some way. An ANN model is trained and a bootstrapped sensitivity analysis per-

formed to estimate the relative importance of the input variables in predicting the

output. Inputs deemed to be irrelevant to the model by the sensitivity analysis are

dropped leaving a reduced feature set. The process of ANN training, sensitivity
analysis and feature reduction is iterated until no inputs are shown to be irrelevant.

The advantages of this approach to model identification are;

o It is "model-free" in that selection is not biased by a-priori assumptions of
relevance. Thus it is consistent with the spirit of machine learning.

o The goal function of the optimisation task is relative input sensitivity, not
model error rate. This means that no access to target variables is needed

eliminating the need for double cross-validationl.

o Bootstrapping of the sensitivity analysis eliminates uncorrelated errors caused

by sampling effors, ANN initialisation, local optima and other errors caused

by random chance.

V/hilst this methodology is straightfor\./ard, it is clear that outcomes are dependent

on the following;

o The choice of variables in the initial "starting model".

o The accuracy of the sensitivity analysis technique at estimating the relative
importance of input variables to an ANN model.

o The criteria used for determining whether or not an input is relevant to the

model.

lDouble cross-validation, as explained in section 2.3.4, involves the use of two independent

datasets apart from training during model inference. The first set, the validation or tuning set, is

used to calibrate model parameters, while the second set is used to estimate model performance
on population data
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Figure 6.1: Methodology for model identification by strip mining.

6.2.1.1 The Initial Model

The choice of variables for inclusion as inputs in the initial model is constrained
by the availability of data with matching measurement dates to the output vari-
able. Data availability for each of the six datasets is reviewed in chapter 3. The
identification procedure followed to determine initial models is outlined in section
3.4.2. The input layer designs of the initial model are illustrated in tables J.1 to
J.6. The outputs are the same as those predicted by the generic model in chapter
4 (see table3.2O).

6.2.1.2 Feature Set Reduction

As in chapter 5, sensitivity analysis of trained ANN models was used to determine
the relative importance of input variables in predicting the output. The sensitivity
analysis method is described in detail in section 2.5.4. As explained previously,
the sensitivity analysis method used is more comprehensive than previously used
approaches, as it seeks to account for;

o Non-linear and non-monotonic relationships between inputs and outputs.

o Non-linear interactions between the effects of inputs on the outputs.

For each model, 50 ANNs trained with bootstrap sub-samples of the datasets were
used to generate the sensitivity data. The input sensitivities of the bagged model
was taken to be the average input sensitivities of the 50 model ensemble gener-
ated during the bootstrapping aggregation bagging procedure. This replication
provides greater confidence in the outcome since uncorrelated effors caused by
sampling errors, ANN initialisation etc are cancelled out.
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Two dummy variables drawn from random uniform and Gaussian distributions
respectively were included in each of the starting models. It was assumed that
inputs with bagged sensitivity < bagged sensitivity of the least sensitive dummy
input variable is irrelevant to the ANN model. Thus feature set reduction was

achieved by discarding these inputs.

6.2.2 ANN Model Identification by Modified Forward Selec-

tion

A dataset specif,c model was constructed for each dataset/output by means of a
simplified forward selection procedure. Model selection by forward selection is

carried out by adding every available model input in turn and selecting the most
statistically significant for inclusion into the model (Olden and Jackson, 2000).
Since the large number of models and potential input variables makes this process

very computationally expensive in the context of the present study, it was elected

to perform a simplified approach as follows;

1. The generic 5 input model (ie N, P, water temperature, secchi depth and a
feedback input) was trained and validated for each dataset/output and the

effor rates observed (note that flow was also included in the generic model
for the Darling River dataset).

2. The additional inputs available for each dataset were grouped according to
the mechanism of their likely ecological impact. These groupings are listed
in table 6.1.

3. Each of the input groupings was added to the generic model in turn. The
models were trained and the error rates observed. Thus the performance
of the generic+input 1, generic+inpú 2 ... generic+input n models was

obtained to determine the performance impact of each input grouping.

4. A "combination" model including all the input groups that improved per-
formance relative to the generic model on its own was constructed, trained
and validated.

5. The outcome of this process is then the best performing model according to
a vote of the 5 error measures observed.

The choice and number of inputs comprising each of the groupings outlined in
table 6.1 is different for each dataset due to variations in data availability. Tables

J.1 to J.6 outline the composition of each of the input groups for each dataset.

Note that, due to constraints of time and computing resou¡ces, not all variables
are allocated to input groups - instead only the variables deemed to be most likely
to be relevant to determining dynamics of the output variable are included in the

forward selection process.
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Table 6.1: Functional groups of input variables for forward selection

Biwa 7-60 day lag gcncric inputs
3 species

pH
weather

Silica

Burrinjuck 7-60 day lag generic inputs
3 algal functional groups
weather

inflow
stratification

water depth

Darling 7-60 day lag generic inputs
3 algal functional groups
pH
Silica

Lake Kasumigaura 7-60 day lag generic inputs
3 algal genera
pH
zooplankton
weather

Silica

Myponga

long tcrm dynamics
competition and/or mutualism
cyanobacterial abundance
light availability, nutrient in-
flow, water column stability
nutrient for diatoms

long term dynamics
competition and/or mutualism
light availability, nutrient in-
flow, water column stability
nutrient enrichment
separation of light / nutrient
availability
nutrient concentration, water
column stability

+spe

+wea

+lag

+pH

+si

+lag
+spe
+wea

+inf
+str

+dep

+Si

7-60 day lag generic inputs +lag
heavy metals +hea

7-60 day lag generic inputs +lag
pH +pH
weather +wea

long term dynamics
competition and/or mutualism
cyanobacterial abundance
nutrient for diatoms

long term dynamics
competition and/or mutualism
cyanobacterial abundance
gr azrng of phytoplankton
light availability, nutrient in-
flow, water column stability
nutrient for diatoms

long term dynamics
presence of algicide, redox en-
vironment

long term dynamics
cyanobacterial abundance
light availability, nutrient in-
flow, water column stability
nutrient enrichment

+lag
+spe
+pH
+si

+lag
+spe
+wea
+zoo
+'rvea

Soyang

inflow +inf
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It is important to note the differences between this approach and conventional
"forward-selection" approaches generally applied in the context of multiple linear
regression;

o The goal function in this case is validation set error rate, not some measure

of input significance. This means that error estimates of the f,nal model aris-
ing from this procedure may be optimistically biased, since the validation
set data was effectively used in the model selection process.

o The grouping of inputs means that, as a model selection process, this method
is somewhat "course". Better results may be achievable if inputs are added

discretely to reduce the risk of irrelevant inputs being added to the model.

o The mandatory inclusion of the generic model as the "platform" from which
the model selection process is initiated adds a deterministic component to
the model selection process, since it is always assumed that these 5 inputs
are fundamental in driving algal dynamics.

6.2.3 Model Inference, Validation and Computation

As in chapters 4 and 5, all models were based on three layer feed-forward multi-
layer perceptrons consisting of an input, hidden and output layers. As in chapter
4, ANNs with zero and 2O hidden layer units were compared to determine the

importance of non-linear decision boundaries to all the modelled outputs. The
methodology with respect to the architecture of neural processing, data condi-
tioning, the maximum number of training epochs, validation and computation
is identical to that used in the experiments in chapter 4 (see table 4.3). The
Scaled Conjugate Gradient training algorithm was used for training all models.
As in previous chapters, models were stabilised by bootstrap aggregation and by
stopping training prior to convergence.

The comprehensive nature of the sensitivity analysis causes a very large quantity
of data to be generated with each model replicate. This is because a model
output is calculated for each input, record and input perturbation. For example,
in the case of the Darling River models, there are 60 inputs, 388 sample dates

and 8 input perturbations. This results in 60 * 388 * 8 : 786240 records each

replication. If the blocked 20-fold-crossvalidation method is used in combination
with bagging, 50 replicates would result in 50 * 186240:9372000 records to be

stored and analysed making the experimental procedure data intensive. Thus,
in order to "keep the lid on" the processing task, the leave-one-out bootstrap
validation procedure (see section 2.5.3) with 50 replications was used instead
of 20-fold-crossvalidation. In the case of the Darling River models, this brings
the total number of records generated by the sensitivity analysis down to a more
manageable level, since 50 ANNs are trained instead of 50 * 20 : 1000 ANNs.



160 CHAPTER 6. IDENTIFICATION OF LAKE SPECIFIC ANNMODELS

6.2.4 Experimental Treatments

The aim of the experiments conducted in this chapter is to contrast the modelling
outcomes of the data strip-mining and forward selection model selection meth-
ods. The performance of all models is compared using the flve effor measures
discussed in section 5.2.3, that is, RMSE, IJ7,IJ2, R2 andthe classif,cation error.
For the pu{poses of this experiment, classif,cation error is expressed as average r
calculated for all classification thresholds defined for each output in chapter 5.

The outcomes of the data-strip mining procedure is, for each output, a series of
ANN models with incrementally smaller input layer sizes until no input is shown
to have equal or lower sensitivity than the two dummy variables. For the purposes
of this experiment, the following models arising from this series are compared;

o The starting model - the ANN prior to removal of redundant inputs.

o The first pass model - the ANN after a single pass of the strip-mining
procedure (ie removal of inputs identified to have lower sensitivity than the
dummy variables).

o Thefinal pass model - the ANN following iteration of the strip mining pro-
cedure until its conclusion (ie no inputs identified as having lower sensitivity
than the dummy variables).

Performance of these three model types is compared with a generic 5-input model
used as a control (defined in chapter 5) and the "combo" model identif,ed by the
forward selection procedure outlined above. This comparison is carried out for
21 model outputs from the 6 datasets outlined in table 3.24. Note that all results
quoted are for models where dummy input variables have been removed and the
model retrained and validated.

6.3 Experimental Results - Data Strip-Mining

Table 6.2 shows the number of feature reduction (or stripping) passes that was
carried out for each of the modelled outputs before the minimum input sensitivity
was greater than the sensitivity of the least sensitive dummy input. The number of
stripping passes varied according to the model from a minimum of 2for 5 different
model outputs to a maximum of 16 in the case of Scenedesmus spp. in Myponga
Reservoir.

6.3.1 Model Error Rates

Tables K.l to K.6 compare the number of inputs variables and validation set error
rates, using the leave-l-out bootstrap estimator and with the two dummy inputs
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Table 6.2: Input summary periods for different sampling densities.

Dataset No.

Biwa

Burrinjuck

Darling

Kasumigaura Chlorophyll ø

Gomphosphaeria spp.

Microcystis aerugino sa

Oscillatoria spp.

Myponga Chlorophyll ø

Ankistrodesmus spp.

Dictyosphaerium spp.

Scenedesmus spp.

Soyang Chlorophyllc

't6r

2

t3
4
5

4
9
6

2

3

4
5

2

8

5

5

8

2
4
2
16

5
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removed, for all outputs given the starting models, the f,rst pass model, the final
pass model and the generic model. Note that the enor rate in boldface type is
the best error rate achieved by the input stripping process (with the generic model
being excluded from the comparison).

6.3.1.1 Lake Biwa

In the case of the Lake Biwa rrrotlels (table K.1), the sl"zrLing rnotlcl (ie all inpul"s)
produced the best performing ANN for predicting chlorophyll a according to all
effor rates except average r, which indicated the f,nal model to be best. Eu-
glena americana and Melosira granulata weÍe best predicted by the "single pass"
model, while Pediastrum biwae was best predicted by the "final pass" model.

The choice of input layer had a large effect on enor rates for the Euglena ameri-
cana model, with an x 3O7o difference between RMSE between the best and worst
input layer. Significant effects of input layer choice wsre also observed for the
chlorophyll a and Pediastrum biwae models with a 1O-2OVo diffelence between the
worst and best performing for many error rates. However, the Melosira granulata
model appeared less affected by the choice of input layer. In general, least 2 of
the "specific" type input layers brought better performance than the generic input
layer for all model outputs.

6.3.1.2 Burrinjuck Dam

The error rates for the Buninjuck Dam models (table K.2) show disagreement
between different error measures in deciding the best input layer for all4 outputs.
In the case of the chlorophyll a, cyanophyta and diatom models, 4 out of 5 error
measures indicate the first pass input layer as being the best performing. The final
pass input layer was the best for the chlorophyta models according to 3 output of
5 error measures, with U2 and average r preferring the starting model.

There was a 2O-30Vo difference in performance between the best and worst per-
forming input layer for all the modelled variables. Also, at least one of the specif,c
input layer types performed better than the generic model for all outputs.

6.3.1.3 Darling River

The error rates for the Darling River models (table K.3) show disagreement be-
tween the error measures in deciding the best input layer for 3 out of 4 outputs.
3 out of 5 measures indicate that the starting model is best for the chlorophyta
and cyanophyta models, while RMSE and average r indicate that the first pass

input layer is best. All error measures except U2 indicate that the starting model
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is best for the flagellates model, while all 5 error measures indicate that the f,rst
pass model is best for predicting total phytoplankton.

Interestingly, there was no effor measure that indicated that the final pass model
was best for any of the modelled variables. In general the difference in perfor-
mance between the starting and first pass models was relatively small (< 107o)

in all cases except according the the average K measure that bigger differences in
the case of chlorophyta, cyanophyta and flagellate models. By comparison, the

final pass models were considerably worse performing. The specific input layers
brought better performance than the generic inputs for all models according to all
error measures with the exception of the flagellates model, where according to
RMSE the generic model is best performing.

6.3.1.4 Lake Kasumigaura

The eror rate comparison for Lake Kasumigaura (table K.4) show disagreement
between the error measures in deciding the best input layer for all modelled vari-
ables. 4 out of 5 error measures showed the first pass models to be best for
predicting chlorophyll a, Gomphosphaeria spp. and Oscillatoria spp., with the

dissenting measures being R2 for chlorophyll a and RMSE for the remaining
2 outputs. 3 out of 5 error measures showed the starting model to be best for
predicting Microcystis aeruginosa, with RMSE preferring the final pass model

and average r preferring the first strip model.

As with the Darling River models, the emor measures overwhelmingly favoured

the starting and first pass models, with only 2 effor measures (out of 20) preferring
the final pass model. The differences between indicated performance between
input layers varied according to the output and the effor measure, with significant
differences in performance (> 107o) observed between the worst and best models.
Interestingly, the generic model achieved better measured performance than all
specific input layers according to RMSE. However, the superiority of the generic

model was not unanimous according to the remaining 4 enor measures.

6.3.1.5 MypongaReservoir

The error rate comparison for Myponga reservoir (table K.5) shows that the start-
ing input layer brings best performance to the chlorophyll ø model according to
all 5 error measures. The first pass input layer is unanimously voted as best for
predicting both Dictyosphaerium spp. and Scenedesmus spp., while the final pass

is favoured for the Ankistrodesmus spp. model by 4 out of 5 error measures (with
RMSE preferring the starting model).

The differences in performance between the 3 speciflc input layers were rela-
tively small according to most error measures for the Ankistrodesmus spp., Dic-
tyosphaerium spp. and Scenedesmus spp.. However, it is clear that the starting
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start single.pass allpass

lnput Layer

Figure 6.2: RMSE - grouped by data strip-mining model type.

model is superior by a significant margin for prediction of chlorophyll a. The
specif,c model types generally do better than the generic model at predicting
chlorophyll a and Dictyosphaerium. However, it is clear the generic model is
considerably better at predicting Ankistrodesmus spp. and is similar in its ability
to predict Scenedesmus spp..

6.3.1.6 Lake Soyang

The error rate comparison for Lake Soyang (table K.6) shows that the first pass

model is best according to all error measures except average r, which prefers
the starting model. The results clearly show that the generic model performs
somewhat better than the first pass model, although the margin is small according
to most error measures.

6.3.1.7 Effect of Input Layer

The box and whisker plots illustrated in figures 6.2 to 6.6 compare percentage
change in model error rates from the generic model for the starting, single pass

and f,nal pass models with each plot illustrating the comparison for each of the
5 error measures used respectively. The results are grouped by input layer only
to gain an overall comparison of the effect of the different input layers on model
performance without considering the effect the output or dataset. Note that, for
RMSE, Ul and U2, a lower number compared to the generic model indicates
improved performance, whereas for R2 and average K, a higher number indicates
improved performance.
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Figure 6.3: Ul - grouped by data strip-mining model type.
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Figure 6.4: U2 - grouped by data strip-mining model type.
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start single.pass allpass

lnput Layer

Figure 6.5: R2 - grouped by data strip-mining model type.
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Figure 6.2 shows that, with respect to RMSE, the start model on average per-

formed similarly to the generic model, while the single pass model performed
better and the final pass model performed worse. With respect to the U1, U2 and

R2 error measures, (figures 6.3, 6.4 and 6.5 respectively), both start and single
pass models perform better than the generic model on average whereas the final
pass model performs worse. For average r (f,gure 6.6), only the single pass model
performs better than the generic model on average, while both start and all pass

models perform worse.

The height of the boxplots illustrated in figures 6.2 to 6.6 show considerable
variability in the results which can be attributed to interactions with the effects

of the dataset and model output. This finding is reflected by the observations with
respect to error rates made from tables K.1 to K.6 above. In the case of RMSE,

U1 and R2, the notches in all boxplots overlap meaning that the input layers are

not significantly difference in terms of performance at the 95Vo confidence level.
However, for U2 and average K, it is clear that the final pass model performs

signif,cantly worse than the start and single pass models since the notches of the

former box do not overlap those of the latter two. While the single pass model is
consistently voted by the 5 error measures to be better performing than the generic

model, it must be pointed out that in every case the box part of the box and whisker
plot still straddles the dotted zero Iine meaning that at least257o of all single pass

models have worse performance. Thus it cannot be concluded categorically that a
single pass of the input stripping procedure improves model performance.

In summary, the evidence of figures 6.2 to 6.6 and tables K.1 to K.6 supports the

following conclusions ;

o The single pass model tends to perform better than the generic, start and

final pass model types. However, based on the current analysis, it cannot be

concluded that such an effect is statistically significant.

o Allowing the input stripping process to iterate until no more inputs are

indicated to be insignificant degrades error rates relative to other model
types.

o There is considerable interaction between the effectiveness of the data strip
mining procedure and the dataset / output.

6.3.2 Model Structure

Tables K.1 to K.6 show that, for each output, the stripping procedure significantly
reduced the number of input variables in the model. Iterating the stripping process

until all inputs were more sensitive than the dummy variables resulted in smaller
input layers than the generic input layer for 11 out of the 2l models. In the case

of models predicting Oscillatoria spp. in Lake Kasumigaura and cyanophyta
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in Burrinjuck Dam, the "final" model had only a single input. The f,nal model
predicting total phytoplankton model in the Darling river was left with no inputs.

6.4 Forward Selection

Tables L.1 to L.6 compare performance of the different lake specif,c input layers
constructed in the course of the forward selection exercise. The enor lates in bold
indicate the best performance for a given output, effor measure and dataset. The
last row of eror rates for each model output is that of the "combo model" - that
is, the model constructed using the generic inputs and the input groupings that
lead to an improvement in performance over the generic model. Note that in cases
where only one of the input groupings leads to improved results there is no combo
model.

6.4.1 Model Error Rates

6.4.1.1 Lake Biwa

The results for lake Biwa (table L.1) show that according to 18 out of 20 error
measures, a lake specific input layer leads to better performance than the generic
model. In the case of the model predicting chlorophyll a, aII5 error measures
showed that the input layer combining both species abundances and lag data was
the best performing. The Euglena americana and Melosira granulald outputs
were shown to be best predicted by the +species +lag combination by a vote of
3 and 4 out of 5 error measures respectively. The Pediastrum biwae model was
shown to be best predicted by the +lag model according to 3 error measures, with
U1 preferring the +species +lag model and average r indicating the generic model.
The combination models were not voted best by any of the error measures for any
of the model outputs. In the case of models predicting Melosira granulata and
Pediastrum biwae, many error rates indicated worse performance on the combi-
nation model than the generic model, despite the individual input groups leading
to better performance than the generic model on their own.

6.4.1.2 Burrinjuck Dam

Table L.2 shows that the +lag models are voted best for prediction of chlorophyll
a and cyanophyta by 4 error measures out of 5 in both cases. In each case,
the dissenting error measure was average r, which preferred the +species +lag
model in the case of chlorophyll a and the +stratification +depth model in the
case of cyanophyta. The +species model were indicated the best for prediction
of chlorophyta and diatoms by all effor measures except average r again, with
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the latter error measure voting for +lag in the case of the chlorophyta model
and the combination model in the case of diatoms. The best specific models
were generally only 5-70%o better performing than the generic model in many
cases. Furthermore, there were many specific models that actually performed
worse than the generic model indicating that the Burrinjuck dataset is sensitive
to the presence of irelevant inputs. As with Lake Biwa, the combination model
performed relatively poorly, with only a single vote out of 20 as best model.

6.4.1.3 Darling River

Table L.3 shows that the combination model was best for prediction of total
phytoplankton by all 5 error measures. The +pH model was voted best for pre-
diction of chlorophyta by 4 out of 5 error measures, although the margin of
difference between it and the generic model is negligible with respect to all error
measures. The +pH model and the +species model are equally as effective at
predicting cyanophyta with 3 votes a piece (identical R2 values were achieved).
Both of these models show a modest but consistent improvement over the generic
model. The +species input layer is best for prediction of flagellates according to
4 error measures, although the margin in performance between it and the generic
and a number of other specific models is relatively small. Apart from the total
phytoplankton model, the combination model did not appear to perform well
relative to either the generic model or the other specif,c models.

6.4.1.4 Lake Kasumigaura

Table L.4 shows that the combination model is best for predicting chlorophyll a
concentration by 4 out of 5 error measures (with average r preferring the +zoo-
plankton model). The margin in performance between the combination model
and the generic model was signif,cant > 707o according to most error measures.
Gomphosphaeria spp. was best predicted by the +Si model according to 4 out of
5 error measures. This model was signif,cantly better than the generic model and
all other specific models except for the combination model (which included +Si).
The Microcystis aeruginosø model was best predicted by the +lag model by a large
margin according to 4 error measures, with average r indicating the generic model
to be best. Oscillatoria spp.is voted best by 3 error measures, with the remaining
2 enor measures favouring the generic model. The combination input layer per-
formed relatively well compared to the generic input layer for models predicting
chlorophylL a, Gomphosphaeria spp. and Microcystis aeruginosa. However, the
combination model for Oscillatoria spp. was significantly degraded relative to the
generic model.
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6.4.1,.5 Myponga reservoir

Table L.5 shows that the combination model was best for three model outputs.

The combination model was unanimously voted best for predicting chlorophyll a,

with moderate margins of between 10 and 757o improvement in performance over

the generic model. Ankistrodesmus spp. was best predicted by the +heavy metals

input layer, although performance of all 3 models was very similar. Note that

no combination model was trainedfor Ankistrodesmus spp. since the +lag model
failed to register an improvement in performance over the generic model. The

Dictyosphaerium model clearly favoured by the combination input layer gaining

all 5 votes. As with chlorophyll a, there was a solid improvement in performance

over the generic model. Very similar performance for all 3 models predicting
Scenedesmus spp. was observed, although the combination model was indicated
best by 4 out of 5 error measurss.

6.4.1.6 Lake Soyang

Table L.6 shows that very similar performance at predicting chlorophyll a was

achieved by all 6 input layers. The +pH model was considered best by 3 out of 5
effor measures, with U 1 indicating +weather to be best and ayerage r indicating
the combination model to be best.

6.4.1,7 Effect of Input Layer

The box and whisker plots illustrated in f,gures 6.7 to 6.11 compare percent-

age change in model error rates from the generic model for the +species, +lag,

+species+1ag, +pH, +weather, +Si and combo models, with each successive plot
showing the comparison for each of the error measures. The error rates in these

plots are grouped by input layer only to gain an overall comparison of the effect
of the different input layers on model performance without considering the effect
the output or dataset.

Figures 6.1 to 6.1 1 show that, with respect to most error measures, the +lag, +strat,

+heavy and the +combo models tended to perform better than the generic model.

In these cases, the entire box is placed below the zero line indicating that at least

75Vo of the observed models achieved better validation set performance than the

generic model. As shown in table 6.1, the +lag and +combo inputs are available

for all datasets and outputs, while the +strat input group is exclusive to Burrinjuck
and +heavy is exclusive to Myponga. Conversely, it is clear that the +inflow mod-
els (exclusive to Burrinjuck and Soyang) suffered reduced performance compared

to the control. The remaining models did not appear to perform significantly
differently on average from the generic model, since the boxplots straddle the zero

line. However, in many cases, wide boxplots indicated a high degree of variability
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Figure 6.7: RMSE - grouped by forward selection model type.

in performance relative to the generic model that may be attributed to interactions
with the dataset or the output variable.

Based on the evidence presented in tables L.1 to L.6 and figures 6.1 to 6.11, the
following conclusions can be drawn from the forward selection experiment;

r Inclusion of long 7-67 day lags in addition to the short 7-x day lags brings
a general improvement to the generic 5 variable ANN model.

o Inclusion of stratification and data for metal ion concentration variables in
addition to the 5 input generic model appears to significantly improve ANN
models for those datasets where data is available.

o Input groups proven to increase performance individually also signif,cantly
improve model performance when combined into a single model. However,
this leads to a model that is dataset and output specific rather than generic.

o Inclusion of inflow variables appears to be highly detrimental to model
performance where this data is available.

o A great deal of variability exists with respect to the effect of some input
groupings such as zooplankton, weather and Si. Clearly, the presence of
these groupings strongly interacts with the dataset or output variable.
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Figure 6.8: U1 - grouped by forward selection model type.
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Figure 6.9: U2 - grouped by forward selection model type.
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Figure 6.10: R2 - grouped by forward selection model type.
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6.5 Comparing Performance of Model Selection Ap-
proaches

The box and whisker plots in flgures 6.12 to 6.16 compare percentage change
in model error rates from the generic model for the first pass data strip-mining
model, the +lag, the +lag +heavy +stratification model (labelled "enhanced") and
the combo model (labelled "specific"), with each successive plot showing the
comparison for each of the error measures. The error rates in these plots are
grouped by input layer to gain an overall comparison of the effect of the different
input layers on model performance without considering the effect the output or
dataset.

These plots show that all four of the models have median performance levels that
are better than the generic 5 input model according to all emor measures. The most
improvement is achieved by the combo or speciflc model which clearly performs
significantly better than the generic model. It also performs better than the other
model types with a higher median improvement relative to the generic model
according all error measures except RMSE. In general, the median improvement
over the generic model for the specif,c model is in the order of 5-707o for RMSE,
IJ7,IJ2 and average rc and 4O-5OVo for R2.

The single pass, +lag and enhanced models appear to perform very similarly
in terms of median improvement over the generic model, with similar median
improvements and overlapping notches. The improvement was approximately 57o

for RMSE, rJ7,rJ2 and. R2 and.lo-2ovo for ^R2. The box-plots of the single pass
model were wider than those for the +lag and enhanced models indicating greater
variability in performance. This was particularly the case for RMSE. Also, the
boxplots of the single pass model crossed the zerc line for all error measures
indicating a consistent agreement that at Ieast25Vo of this model type performed
worse than the generic model. Thus it can be concluded that the data-strip mining
method is somewhat less reliable in its outcomes than the models identif,ed by
forward selection.

6.6 Validation Set Performance of the Specific Model

Since it has been demonstrated that the forward selection approach identifies
consistently better performing ANN models than the data strip mining approach,
this section will discuss the performance of the specific models identified by
forward selection. Figures M.l to M.6 illustrate time-series plots of observed
values and bagged specific model predictions of outputs on validation data. As
with figures plotting predictions of generic models in chapter 5 (see flgures F.1 to
F.6), observations are joined by interpolated lines to emphasise the trajectory of
the modelled and observed values through time. Unlike figures F.1 to F.6, the plots
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single.pass lag enhanced specific
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Figure 6.12: RMSE - grouped by model type.
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single.pass lag enhanced specific

lnput Layer

Figure 6.14: UZ - grouped by model type.
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Figure 6.15: R2 - grouped by model type.
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single.pass lag enhanced specific

lnput Layer

Figure 6.16: K - grouped by model type

show model output where the leave-one-out bootstrap validation method has been

employed instead of 2O-fold cross-validation. The following section contrasts the

subjective performance of the ANN models according to the time-series plots with
the error rates for the combo models documented in tables summarised in table

6.3.

6.6.1, Model Performance Evaluation

6.6.1.1 Lake Biwa

The chlorophyll a model (f,gure M.l part A) features mixed measured perfor-
mance with good Ul and U2 (0.213 and 0.834 respectively) but poor R2 and r
(0.2 and 0.324 respectively). The time-series plot shows that the ANN model

captures the observed dynamics over time of the observed values, but that there

tends to be under-predictions of extreme events (eg, in 1985, 1988) and some false

positive predictions (eg 1986).

The Euglena americana model (figure M.1 part B) has poor measured perfor-
mance (Ul = 0.558, R2 = 0.123, r = 0.286), although the model clearly performs

better than the no-change model as indicated by a U2 error of O.827. The time-
series plot indicates this species to be characterised by explosive bloom events in
spring and an absence of biomass the remainder of the year. The model appears

able to match the timing of bloom events very well and there are no significant
false positive predictions. The magnitudes of most events, except 1985 and 1990,

appe¿ìr well matched leading to the conclusion that the error measures are perhaps

unrealistically harsh in this case.
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Table 6.3: Error rates of specific (combo) model

Output Inputs RMSE Ul U2 Avr

Biwa
Chlorophyll a
Euglena americana
Melosira granulata
Pediastrum biwae

Burrinjuck
Chlorophyll o
Chlorophyta
Cyanophyta
Diatoms

Darling
Totaì phytoplankton
Chlorophyta
Cyanophyta
Flagellates

Kasumigaura
Chlorophyll a
Gomphosphaeria spp.
Micro cy stis aeru gino sa

Oscillatoria spp.

Myponga
Chlorophyll ø

Ankistrodesmus spp.

Dicryosphaerium spp.
Scenedesmus spp.

Soyang
Chlorophyll a

t6
l6
18

t4

0.213
0.558
0.422
0.604

0.834
0.827
0:882
0.953

23

16

t4
20

0.383
0.481
0.588
0.350

t2
8

t9
10

0.312
0.367
0.402
0.308

0.568
0.508
0.468
o.448

6.07
l 780
s62
557

18.9

3540
68400
1 660

19300
4380
4850
1680

46.9
23700
87500
45200

0.200
0.123
o.290
0.094

0.324
0.286
0.426
0.324

0.255
0.523
0.307
0.502

0.480
o.435
0.326
o.465

o.272
0.194
0.599
0.222

0.306
0.268
0.536
0.348

0.654
0.306
0.226
0.476

0.608
o.tt4
0.178
0.927

0.901
0.937
0.998
0.880

0.824
0.919
0.104
0.940

0.901
0.829
0.944
0;134

0.431
0.098
0.122
0.480

0.338
0.192
0.334
0.434

22
15

t7
9

18

t4
20
20

0.1 87

0.509
0.448
0.238

0.695
0.050
o.2l'7
o.756

3.52
2250
1650
10300

6 2.09 0.367 0.946 0.274 0.278
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The Melosira granulatamodel (f,gure M.1 part C) also has reasonably poor mea-

sured performance according to U1 and. R2 (0.422 and 0.290 respectively), but
r and U2 indicate reasonable predictive ability compared to naive models (0.882

and0.426 respectively). The time-series plot shows that while the model correctly
predicts the timing and magnitude of most bloom events reasonably well, there are

several false positive predictions (1984, 1989) and a failure to meet the magnitude

of some events (eg 1986, 1988, 1991). Like Euglena americana, this species can

be considered reasonably difficult to model, since it is characterised by occasional

explosive events with very little apparent autocorrelation of values.

The Pediastrum biwae model (figure M.l part D) is not flattered by Ul, R2 and r
values of 0.604, 0.094 and 0.324 respectively, although U2 offers some redemp-

tion with a value of 0.953 indicating better performance than a no-change model.

The time-series plot shows that the model accurately predicts the timing of the 4

major events occurring in 1984, 1985, 1986 and 1987. However, it fails to predict
the magnitude of the 1984 and 1985 blooms. There are no significant false positive
predictions by this model.

6.6.I.2 Burrinjuck Dam

The model predicting Chlorophyll a (figure M.2 part A) has mediocre measured

performance according to U1 , R2 and r with values of 0.383, 0.431 and 0.338

respectively. However, U2 = 0.608 shows that the model is significantly better

than a naive no-change model. The time-series plot indicates good performance

with the major events in 1979-80,7982 and 1983 being well matched and a lack of
false positive predictions in the remainder of the time-series. However, the model
fails to predict the peak of the 1980 event.

Chlorophyta (figure M2 part B) is not well handled by the model as indicated

by both poor measured performance and poorly matched predictions with obser-

vations in the time-series plot. U1, R2 and r (0.487, 0.098 and 0.192) highlight
the inability of the ANN to correctly model this output. However, the highly
dynamic nature of the observed cell counts over time means that the no-change

model also performs very poorly resulting in a relatively good U2 enor rate of
0.714. The time-series plot shows that many of the large scale dynamics are not
captured (eg 1983) although some smaller scaled events later in the time-series

appear matched quite well (1992 - 1996). The presence of long straight lines in
the observations in the years 1919, 7983 - l99l indicate long intervals between

measurements at these times. It appears that more frequent and regular sampling

from 7992 onwards had a positive effect on model predictions during this time.

The cyanophyta model (figure M.2 part C) again achieves poor measured per-

formance according to U1, R2 and K (0.588, 0.722 and 0.334 respectively) but
good U2 performance (0.778) indicating better RMSE than the corresponding

no-change model. The time-series plot shows that the "shape" of the cyanophyta
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dynamics over time is very similar to that of chlorophyll a (part A) with significant
bloom events in l9l9-80,1982 and 1983 and very little activity for the rest of the
time-series. This suggests that, in terms of abundance, Burrinjuck Dam is dom-
inated by cyanobacteria. The model matches the 3 observed events reasonably
well in terms of timing, but fails to predicting the magnitude of the 1980 event.
Also, there is a significant false-positive prediction occurring over much of 1983.

The diatoms model (figure M.2 part D) achieves reasonable measured perfor-
mance. with LT1, IJz, Rz and rc values of 0.35, 0.92'1,0.48 and 0.434 respectively.
Similarly, the time-series plot shows good performance, with the dynamics of
algal abundance well predicted - particularly in terms of short term dynamics.
Despite this, there are significant prediction errors that evidently preclude a bet-
ter measured performance such as a false positive prediction in 1984 and false
negative predictions in 1980 and 1995.

6.6.1.3 Darling River

The total phytoplankton model (figure M.3 part A) is characterised with good
measured performance (Ul = 0.372,1J2 = 0.901, R2 = 0.480 and r = 0.568).
The time-series plot indicates that the model is highly accurate at predicting the
observed dynamics with little deviation between the model prediction and the
observation. However, it is possible to note underprediction of extreme events in
1980, 1981 and 1988. Also, a slight delay is evident in the model's prediction of
the onset and decay ofthe 1980-81 bloom event.

The chlorophyta model (figure M.3 part B) achieves reasonable, but not excellent,
measured performance (Ul = 0.36J, IJ2 = 0.962, R2 = 0.435, r = 0.508). The
time-series plot indicates that the model captures all the major dynamics in the
observed variable over time. However there is underprediction of the peak events
in 1980-81 and 1988. Also, as with the total phytoplankton model, the ANN
appears to have a slight time delay in prediction of the more signif,cant events.

The cyanophyta model (f,gure M.3 part C) achieves mediocre measured perfor-
mance according to Ul, IJ2 and. R2 (0.402,0.998 and0.326 respectively) but a
good r value of 0.468 suggests reasonable classification performance. However,
cursorary examination of the time-series plot suggests very good performance, as

all major dynamics appear well matched and there are no false positive predic-
tions. However, more careful examination reveals under prediction of the peak
events in l98l and a delay in predicting the onset and decay of the 1981 event.

The flagellates model (f,gure M.3 part D) has reasonably good measured perfor-
mance with U1 = 0.308, U2 = 0.880, R2 = 0.465 and r = 0.448. This is reflected
by the time-series plot which shows that the model appears to predict the many
and large short term dynamics of this variable highly accurately. However, as with
the other models for this dataset, some peak events, such as 1982 and 1987-88 are
under-predicted.
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6.6,1.4 Lake Kasumigaura

The chlorophyll a model (figure M.4 part A) performs well according to Ul and
rJz (0.255,0.824)but poorly according to R2 and K(0.212,0.306). The time-series
plot shows that chlorophyll a dynamics are characterised by an annual periodicity
with peak values in spring autumn and troughs in winter months. These events are

punctuated by many shorter term dynamics. The ANN model appears to capture

the annual periodicity well, with the onset and decay of chlorophyll a being well
timed. However, shorter term dynamics are not always predicted - for example,

the bloom events in 1983 and 1986.

The Gomphosphaeria spp. model (figure M.4 part B) has quite poor measured

performance with IJI = 0.523, R2 = 0J94 and rc = 0.268. However, alJ2 value
of 0.919 indicates that it still performs better than the no-change model. The

time-series plot shows that all bloom events are predicted to some extent by the

model. However, the 1983, 1986 and 1990 events are under-predicted and their
onset is predicted late. There are no significant false positive predictions.

The Microcystis aeruginosa model (figure M.4 part C) has relatively good mea-

sured performance (U1 = 0.309, IJ2 = 0.104, R2 = 0.599, r = 0.536). The time-
series plot shows that the timing and magnitudes of bloom events are predicted

reasonably well, although there is underprediction of the severe 1986 bloom. The

model makes a false positive prediction in 1991 when it incorrectly estimates that

a bloom characterised by cell counts of 200,000 cells per ml will occur.

The Oscillatoria spp. model (figure M.4 part D) has poor measured performance

according to Ul, R2 and K (0.502, 0.222,0.348), but a U2 value of 0.940 shows

that the ANN still makes better predictions than the no-change model. The time-
series plot shows Oscillatoria to be a particularly difficult output to model, since

there is zero abundance for much of the time-series punctuated by occasional

bloom events. In particular, the time-series is dominated by a single, very se-

vere, bloom in 1987-88. Despite the poor measured performance, the plot shows

that all events are predicted, with the latter smaller events from 1990 onwards

being handled reasonably well. The 1987 event is predicted a month late and the

magnitude is under-estimated. Also, there is a significant false positive prediction
for 1983.

6.6.1.5 MypongaReservoir

The chlorophyll a model (f,gure M.5 part A) measures very well according to Ul,
R2 and r (0.187, 0.695, 0.654). However, aIJ2 value of 0.901, while indicating
better performance than the naive model, does not reflect the excellence of the

other measures. The time-series plot mirrors the measured performance showing

that the model is highly accurate in its ability to forecast the dynamics of this

variable.
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By contrast, the Ankistrodesmus spp. model (f,gure M.5 part B) is very poor
performing with U1 , R2 and r values of 0.509, 0.050 and 0.306 respectively. The
U2 value of 0.829 shows that the ANN still performs well relative to the no-change
modei. The time-series plot shows that the ANN captures some of the short term,
smaller dynamics, but fails to comectly model larger events in 1989 and 1990.

Similarly, the Dictyosphaerium spp. model (f,gure M.5 part C) measures poorly
with Ul = 0.448, TJ2 = 0.944, R2 = 0.217 and r = 0.226. The time-series plot
reflects the sporaclic sampling of this variable with periods of very high short term
dynamics indispersed with long straight lines indicating a lack of sampling. The
ANN is able lo capture some of the dynamics, but under-predicts peak events and
makes a number of false positive predictions.

The Scenedesmus spp. model (f,gure M.5 part D) is one of the best performing
ANNs with U1 = 0.238,1J2 = 0.734, R2 = 0.156 and r = 0.476. The time-series
plot reflects the good measured performance of the model showing that all events
are very accurately forecast and no significant false positive predictions.

6.6.1.6 Lake Soyang

The chlorophyll a model (f,gure M.6) has reasonably poor measured performance
with U1 = 0.3J9,1J2 = 0.963, R2 = 0.236 and r = 0.294. The time-series plot
shows that the sampling regime abruptly changes in 1995 at which point it be-
comes much more dense. Performance before 1993 appears mediocre, with most
dynamics not well modelled. In 7993 and 7994, the model successfully forecasts
the major dynamics, although it is characterised by early predictions. From 1995
onwards, the performance of the model appe¿ìrs to improve dramatically with
the very short term dynamics being handled well and a lack of signiflcant false
positive predictions.

6.6.1.7 Summary of Model Performance

Table 6.3 shows that Ul values ranged from a minimum of 0.187 for the model
predicting chlorophyll a in the Myponga reservoir, to a maximum of 0.604 for
Pediastrumbiwae in Lake Biwa. Overall,4 models had Ul values < 0.3, 11

were < 0.4 and 6 were > 0.5. R2 values ranged from a minimum of 0.050 for
Ankistrodesmus spp. (Myponga) to a maximum of 0.756 for Scenedesmus spp.
(Myponga again). 12 models hadR2 values of < 0.3 indicating, in these cases, that
over J07o of prediction variance does not correspond with variance in validation
data. This is a slight improvement over the generic model, where 14 models had
R2 values < 0.3. 3 models had good R2 values > 0.5. Average r ranged from a
minimum of 0.192 for chlorophyta in Buninjuck Dam to a maximum of 0.654 for
chlorophyll ø in Myponga Reservoir. 9 out of the 21 models had average K values
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> 0.4 indicating that, for these models, good performance was achieved relative
to a random classifler for a range of threshold values.

In general, measured performance according to Ul, R2 and average r appeared

to be partially correlated with subjective visual appraisal of the time-series plots,

with the good performing models appearing to forecast the timing and magnitude

of bloom events well and to be resistant to false positive predictions. Howevet,

models ranked harshly by the error measures, such as Pediastrum biwae and

Euglena americana in lake Biwa for example, did not appear to be particularly
bad performing according to the time-series plots. Also, some models, such

as chlorophyll a in Soyang and chlorophyta in Burrinjuck, were shown by the

prediction plots to perform well over part, but not all, of the time-series. This
indicates that the error measures, while useful as a general guide to performance,

cannot be substituted for a time-series plot in these cases for characterising model
performance.

U2 values were < 1 for all specific model outputs. This indicates that the specific

ANN models perform better than the naive no-change model, suggesting that the

ANN is able to model the processes of growth and decay over time to some extent.

As was found for the generic models, U2 does not always conelate well with other

error measures or subjective performance of the time-series plots - a corollary of
being dependent on the RMSE of the naive model in addition to the ANN. These

results are a significant improvement over the generic models described in chapter

5, where U2 values ) 1 were observed for 3 outputs in the Darling dataset and2
outputs in the Myponga dataset.

6.6.2 Interaction of the effects of Input Layer, Hidden Layer
and Validation Method on Model Performance

It was concluded from experiments carried out in chapters 4 and 5 that;

o Model error estimations may be affected by the type of validation method

used.

o A perceptron (ie 0 hidden unit ANN) should be used as a control for all
ANN modelling exercises to determine the effect of non-linear processing

properties on model performance.

To determine the effect of validation method and the presence / absence of a

hidden layer on the performance of the specific ANN model identif,ed by forward
selection, a factorial experiment was run with the following treatments;

o Model input layer - specific (ie combo) and generic.

o Hidden layer - 0 and 20 units.
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c)

GEN/CV GEN/L1OB SPEC/CV SPEC/LIOB GEN/CV SPEC/CV SPEC/LIOB

0 hidden units
Model

20 hidden units

Figure 6.17: RMSE - comparing input layer, hidden Iayer, validation mode.

o Validation model - 20-fo1d blocked cross-validation and the leave-one-out
bootstrap.

Thus, there was effectively 8 model treatments (2 input layer types x 2 hidden
layer conf,gurations * 2 validation modes).

Model inference was carried out as previously and error rates were calculated for
the bagged model comprised of 50 member ANNs. The same 21 output/dataset
combinations were used for training the ANNs as previously. The error rates
for the treatments were compared by calculating the percentage change in error
from an ANN control configuration for each model outpuldataset. The designated
control model was the generic 5 input ANN model for each output with a 20 unit
hidden layer and validated by means of the leave-one-out bootstrap estimator. The
box and whisker plots in figures 6.17 to 6.27 compare the percentage change in
error rate from the control model for each of the respective effor measures. The
x-axis denotes the model treatment, where "GEN" and "SPEC" refer to generic
and specific models respectively and "CV" and "LIOB" refer to 2O-fold blocked
cross-validation and the leave-one-out bootstrap respectively. Note that the box
and whisker plots only show 7 treatments, since one was used as a control against
which to compare the results.

It can be seen from figure 6.7J, that in terms of RMSE, there appears to be an
interaction between the effect of the hidden layer configuration and the effects
of the other treatments. As was observed in chapter 4, the presence of a hidden
layer makes model error rates sensitive to the effects of the remaining treatments,
whereas for the perceptron models, the other treatments have little effect. In
general, the perceptron models have similar RMSE to the control model. The
20 unit ANN models, on the other hand, respond to both validation method and
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GEN/CV GEN/L1OB SPEC/CV SPEC/L1OB GEN/CV SPEC/CV SPEC/LIOB

0 hidden units 20 hidden units
Model

Figure 6.18: Ul - comparing input layer, hidden layer, validation mode.
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Figure 6.79: U2 - comparing input layer, hidden layer, validation mode.
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Figure 6.20 R2 - comparing input layer, hidden layer, validation mode.
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input layer. Clearly the L1OB validation models return lower RMSE than the CV
models and the specifrc models tend to perform better than the generic models.

This general pattern of experience, where the perceptrons appear relatively un-

affected by either validation method or input layer type, is also reflected by the

remaining four eror measures portrayed in figures 6.18 to 6.21. However, there

are some noteworthy features of these remaining plots. The Ul plot (f,gure 6.18)

shows that all models, excepting the2O unit specific L1OB model, have higher
error rates than the control. Similarly, the results for average t< in figure 6.21 show

that, relative to the control, the 20 unit specific L1OB model is the only model

that has better classification than the control.

In summary;

o The use of a perceptron makes model performance insensitive to the effects

of both input layer and validation method.

o 'Where 
a hidden layer is present, the following effects can be observed;

- CV reports higher error rates than L1OB.

- The specific input layer leads to better model performance than the

generic input layer.

o The ANN only performs consistently better than the perceptron in the con-

text of the specific input layer and the leave-one-out bootstrap validation
method.

6.7 f)iscussion

6.7.I Data Strip Mining

The outcomes of the data strip-mining experiments partially matched expecta-

tions. It was hypothesised that the final-pass model should have better perfor-
mance than both the generic model and the starting model because;

o It may choose from a broader range of variables than is available for the

generic model increasing the chances of discovering general relationships

between input and output variables.

o The "stripping" of redundant inputs reduces the search space of possible

solutions increasing the probability that a general model will be discovered.

However, it was found that, while a single pass of the input stripping procedure

reduced error somewhat, continued iteration until all redundant inputs were re-

moved increased error rates over both the starting model and the generic (5 input)
control model for most outputs (the exception being Pediastrum biwae in Lake
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Biwa). Clearly, continued stripping was causing relevant variables to be removed
and/or redundant variables to be retained. Possible explanations for this behaviour
include;

o Inference of the starting model is impacted by redundant input variables
leading to inappropriate ranking of input relevance by the sensitivity analy-
sis.

o The sensitivity analysis procedure itself does not accurately rank relevance
of input variables.

If the former scenario is true, it suggests that a "catch 22" situation exists with
respect to model selection in the context of a large number of potential inputs

- the presence of too many inputs reduces the ability of sensitivity analyses to
discern which variables are redundant and need to be dropped from the model.
One way to alleviate this situation is to drop inputs deemed to be most redundant
according to domain experts so as to improve the chance that the importance of
remaining inputs may be correctly ranked. However, this adds to the user effort
required to create ANN models. If the latter case is true, further investigation is
needed to identify accurate techniques for gauging input relevance. It should be
noted, however, that the sensitivity analysis procedure carried out in the context
of the present study is very rigorous in comparison to procedures documented in
the literature.

The results of this study are not entirely consistent with experimental results
presented by Embrechts et al. (2001), where significantly improved performance
resulted from "convergence" of data strip-mining on a minimally sized model.
This is in spite of the fact that the methodology of the present study, with respect
to model aggregation, sensitivity analysis and the use of early stopping to stabilise
ANN learning, is similar to that prior study. However, there are a number of of
differences between the two studies that may be the cause for the discrepancies in
outcomes;

o ANN models of Embrechts et al. (2001) are developed for a bio-informatic
application of in-silico drug design. The data used are molecular structure
descriptors. This data is likely to be less noisy and more precise that that
used for the present CEO-informatics ANN application making it easier to
discover truly relevant relationships between variables.

o The present study compares the effects of data strip-mining on ANN mod-
elling for 2l outputs from 6 datasets. By contrast, Embrechts et al. (2001)
demonstrates the procedure on a single model. Thus it can be argued that
the present study provides a somewhat larger sample size from which to
judge the success of the technique.

o The models developed by the present study are complicated by consider-
ation of time-series interactions as opposed to the steady state models of
Embrechts et al. (2001).
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o The criteria for feature reduction used by Embrechts et al. (2001) - that is,

where sensitivity of an input falls below that of a dummy input, could be

seen to be more aggressive in nature than that used in the present study,

where an input was only removed when it's sensitivity fellbelow that of 2
dummy inputs.

6.7.2 Forward Selection

It can be concluded that the forward selection method consistently identified the

best performing models, since the results show that the "combo" models consis-

tently achieve lower validation error rates than the generic and single-pass strip
mining models. Two possible reasons for this outcome include;

o Forward selection, as it was practised in the present study, is supervised by
observation of the effect of adding each input grouping on generalisation

performance. Data strip-mining is not supervised in this way.

o Forward selection starts with a small starting model known to be valid and

grows it by adding inputs. Data strip-mining on the other hand starts with a

large model whose inference is possible impaired by redundant inputs.

Given these observations, an interesting study would be to perform an unsu-
pervised form of forward selection by retaining added inputs on the basis of
sensitivity relative to dummy inputs instead of the effect on generalisation error.

This may yield a superior non-supervised model selection approach that is not
hampered from the beginning by a swathe of redundant input variables and, unlike
the present approach, does not need access to target variables in independent

datasets for the purposes of supervision.

In terms of performance, the specific "combo" model identified by forward selec-

tion achieved impressive performance gains over the generic model predictions

described in chapter 4. There were improvements in all error rates and generally

better subjective performance2. Of particular note is the fact thatIJ2 effors were

reduced to < 1 for all models, including those from Darling and Myponga, mean-

ing that at all times the ANN was capable of better predictions than the no-change

model.

6.7.3 Insights Regarding Time Series ANN Modelling

6.7.3.1 Modelling Time Series Interactions

The results for the forward selection experiments clearly showed that inclusion
of the long (r -'7 to t - 67 day) input windows for the 5 generic inputs leads

2As shown in section 6.6.2,this may also be due to differences in the validation method.
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to a general improvement in model performance over the generic control. This
result is not unexpected, since, as Cortez et al. (2002) states, time-series models
assume that prior patterns will be repeated in the future. Increasing the length
of the input window evidently increases the likelihood that repeating patterns
will be identified and learned by the ANN. Furthermore, it suggests that further
experiments with input window lengths and lag periods may lead to even better
results. This possibility was remarked on by Maier and Dandy (2000), who
pointed out that selection of the coffect lag times has an important influence the
performance of time-series ANN models.

As explained in section2.5.7, the way in which lags are expressed to the ANN
in the present study is novel. All previous ANN applications have defined lags
as discrete observations at a time in the past compared to the output variable,
whereas the present study defines lags as the summary of a sliding window in
time. While the input window technique was specifically intended as a means of
casting an irregularly sampled time-series into a forecasting ANN structure, it has
the benefit that it provides scope for experimentation not for just lag length and
window length, but the window summary method as well. In the present study,
the ANNs were trained on the average of the input variable records falling within
the input window. However, it may be beneficial to use some other summary
statistic such as the median, variance, trend, or even the outcome of some process
equation to drive the model. Similarly, this approach to data representation could
be extended to the output layer as well so that the model can be trained to predict
trends, variance or some other statistic describing the distribution of the dependent
variable within the output window.

6.7.3.2 The "Curse of Dimensionality"

The experimental results show that the "curse of dimensionality" does indeed
impact the ability of the ANN to identify general relationships given data. In
general, it was found that both strip-mining and forward selection approaches
identified models that performed better than the complete model (ie the starting
model for the strip-mining experiments). However, it should be conceded that
the effect was relatively benign since the performance improvement wrought by
model selection is generally small (approximately 5-707o lower error measures
on average). Also, the fact that the generic and the full input layers had similar
performance on average and the extreme nature of many of the models in terms
of the ratio of the number of inputs to the number of training records, underscores
the robustness of the ANN approach with respect to input dimensionality.

A number of ANN applications in the literature have presented results showing the
effect of removing redundant input variables from ANN models. It is generally
noted that increasing the size of the input layer makes the ANN easier to train
(eg, Levine et aI. (1996)). This is expected, since with more inputs, there are more
solutions present in the search space that satisfy the training set. Also, as expected,



6.7. DISCUSSION 191

many authors find that ANN generalisation is improved by dropping irrelevant
inputs. For example, Lee et al. (2003) performed backwards elimination of avail-
able variables to select inputs for an ANN forecasting chlorophyll a concentration

one week in advance in a Hong Kong bay. Despite having 10 input variables

describing a variety of environmental conditions deemed by domain experts to

influence algal growth, it was found that the best model only considered lag

chlorophyll a. Similarly, experiments reported by Maier et al. (1998); Aoki et al.

(1999); Ball et al. (1998); Schaap and Bouten (1996) and Schleiter et al. (1999)

found that taking steps to ensure the most parsimonious input layers improved
generalisation performance of ANNs trained to model a raîge of environmental

and ecological variables. However, what is noteworthy about most of these results

is that the authors commented on the relatively minor nature of the improvement.

Indeed, Walley and Fontama (1998), in training ANNs predict biodiversity in
unpolluted river sites in Britain, found that stepwise removal of redundant input
variables did not improve performance over maximally sized input sets.

Clearly, while the "curse of dimensionality" does have real implications for the

task of identifying input variables for ANN models, it can be concluded that the

effect appears to be relatively modest. This means that Scardi (2001)'s proposition
that the robustness of ANNs with respect to redundant inputs provides scope for
experimentation with input layer design in the hope that better performance can be

achieved appears to be a valid one. The present results back this assertion, since it
was found that in some cases, the best model discovered was the full model despite

the undoubted presence of redundant inputs (eg, the model predicting diatoms in
Lake Burrinjuck). The dataset and output specific nature of the results suggests

that judgements about the value of elaborate input selection methods need to be

made on a case by case basis, since there did not appear to be any clear patterns

emerging linking effects of input reduction with factors such as data availability,
sample density, or output variable.

6.7.3.3 Effect of Validation Method

The results show that the LIOB estimator tends to be a more optimistic observer

of ANN model performance than CV. One possible reason for the differences

is that L1OB is more data efficient than CV. As explained in section 2.5.3, CV
entails the holding out of discrete blocks of samples in time from the pool of data

available for bootstrap selection of training sets. As a result, training sets using

LIOB will be on average 5-707o larger than when using the CV estimator leading

to somewhat more accurate model inference.

Another possible reason for the differences is that use of the L1OB estimator

brings better representation of "clusters" of data across training and validation
sets. This is because LIOB causes validation records to be spread approximately
evenly throughout the time-series on each bootstrap training run. As a result,

it is likely that validation and training set records will be neighbours in terms
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of their temporal position within the sample. Thus trends or non-stationarities
in the dataset will be effectively represented in both training and validation sets
decreasing the likelihood that the ANN will have to extrapolate when making
predictions on validation data, since it will be mole likely to be "in range" of
the training set. This outcome is not unexpected, as Maier and Dandy (2000)
pointed to i) the presence of non-stationarities in data as being a major impediment
to the development of ANN time-series models and ii) the need for adequate
representation of "classes" of data in both training and validation sets.

It could be argued that use of L1OB leads to unrealistic validation in the context
of a time-series model because, when in training mode, the ANN may be exposed
to training records in the near future relative to validation records. This is akin
to being able to travel forwards in time 2 months to sample data for the purposes
of training a model predicting ahead 1 month. So, a question arising is, how
important is this effect in distorting estimates of modelling outcomes?

It can be argued that the answer to this question depends on the intended use of the
model. Clearly, if an ANN model is applied in a real time forecasting application,
best performance will be achieved if it is regularly retrained with the most up
to date data to reduce the probability that trends cause the model to be "out of
range" when making forecasts. In this context, the LlOB estimation method may
be more realistic than a conventional cross-validation approach, since it allows
better representation of trends in the data during training than where data is held
out in large, contiguous blocks.

To date, all published ANN applications to time-series modelling of algal abun-
dance hold out blocks of data l-2 yearc in length for validation. The results of
the present study would suggest this leads to overly pessimistic estimations of
model performance. The present study highlights the need for further empirical
assessment of the realism of different validation techniques in the context of real
time forecasting applications.

6.7.3.4 The Effect of Hidden Layer Configuration

The results showing the interaction between the effects of hidden layer config-
uration, validation method and the input layer design are unexpected, because,
under most conditions, the ANNs do not perform better in validation mode than
the perceptrons. Indeed, the only conditions under which ANNs are clearly su-
perior is when validated by L1OB and when configured with the larger, specific,
input layers. What is most surprising is that ANNs never perform better when
validated by the CV approach. Since all applications to time-series modelling of
phytoplankton referred to in the literature use a simple form of cross-validation, as

opposed to LlOB, the results suggest that these authors may have achieved better
f,ts using a model inference approach constrained to linear decision boundaries!
Note that these conclusions do not apply to performance on training sets, where,
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without exception, the ANNs were found to be far superior to perceptrons (see

chapter 4 for comparisons). Thus, the results show that ANNs are limited by their
g eneralis ation rather fhan app roximation capabilities.

The fact that ANNs perform better than perceptrons with larger input layers is ex-

pected, since it is known that performance of linear regression estimation degrades

as the dimensionality of the data increases. The reason for the interaction between

the validation method and the hidden layer configuration is not so clear. A possible

explanation is that ANNs may be generalising learned relationships over local
rather than global time scales. Thus, records in the validation set close in time to
records in the training set are better predicted by the ANN than by the perceptron.

Since, as discussed previously, LlOB allows records in the validation set to be

close in time to records in the training set, it takes advantage of this "local"
generalisation. CV by comparison, results in greater time separation between

training and validation set records meaning that the ANN must rely instead on

"global" generalisation. If this is the case, it would be reasonable to suggest that

the time-series datasets used are characterised by trends or non-stationarities that

make global generalisation by ANNs difficult.

V/hile the superiority of ANNs over linear methods for modelling ecological vari-
ables has been widely demonstrated, several studies have hinted at limitations of
the ANN approach under certain conditions. Hwarng and Ang (2001) showed that

single layer perceptrons nearly always performed better at modelling a synthetic

time-series than multi layer perceptrons (MLPs). These authors used conventional

cross-validation rather than Ll OB to arrive at this conclusion. Geman et al. (1992)
presents an in-depth tutorial of the generalisation properties of tabula rasa (ie
model-free) inference methods such as ANNs, GAs, CART etc. These authors

concluded that;

Inferring ... complexity from examples, that is learning it, although

theoretically achievable, is, for all practical matters, not feasible: too
many examples would be needed. Important properties must be built-
in or "hard-wired," perhaps to be tuned later by experience, but not
learned in any statistically meaningful way.

Further more, they argued that examples where ANNs had been successful at

learning from data, or more specifically, where they had been able to achieve an

inference task not possible with a conventional constrained approach, tended to be

characterised by either unlimited data, or were essentially tasks of interpolation
rather than extrapolation. It may be reasoned that the present results and those

of Hwarng and Ang (2001), can be explained by the hypothesis that perceptrons

are "hard-wired" to generalisation on a global time scale by being constrained to
linear decision boundaries. Conversely, ANNs perform well on local time scales

because this allows them to be interpolating rather than extrapolating in a non-

trivial way. Clearly, more research is needed to determine the validity of these

hypotheses.
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6.7.3.5 The Effect of Data Availability

The results clearly show that ANNs trained on datasets characterised by high
availability of training records (ie short sample period and/or large number of
records) generally perform significantly better than ANNs trained for datasets
characterised by low availability (ie long sample period and/or low number of
records). The time-series plots show very high correlation between predicted and
observed values for most Darling River and Myponga Reservoir models which,
with generally short sample periods (ie x 7 days for the output variable) and a

large number of training records (ie 200 - 400), classify as relatively "data rich"
datasets.

A question raised by these observations is, which aspect of data availability is
more important in determining model performance - sampling period or number
of records? The performance of the model predicting chlorophyll a in Lake
Soyang provides a clue to this question, because the sampling frequency for the
output variable and many input variables abruptly changes from monthly to weekly
half way through the time-series. The plot of prediction and observations in f,gure
M.6 shows that the model performs relatively poorly in the sparsely sampled
region prior to 1993, but dramatically improves as the sampling regime is in-
tensified. Since, obviously enough, the same quantity of training data is available
to the ANN when making predictions throughout the time-series, this evidence
suggests that it is sampling density that is more important to modelling outcomes.

Possibly, reduction of the sample interval strengthens time-series interactions be-
tween neighbouring samples. Thus the value of a variable at sample time r is
more dependent on the value at sample / * I as the time unit r is shortened. Also,
as suggested previously, it is possible that time-series of limnological and water
quality observations are generally characterised by single or multi-dimensional
non-stationarities, since shorter sample intervals and more data means that the
ANN is more likely to be able to generalise relationships learned over short time
periods.

6.7,4 Reservations about Models and Methods

6.7.4.1 Data Strip Mining

The results showed that, in general, at least one of the output specific models,
that is, either the starting, single pass or final pass model, was likely to be better
performing than the generic model. A criticism of the present study may be
that even better performance could have been achieved if the best model was
selected from the entire sequence of models generated during the strip-mining
process. This is no doubt the case, but the problem with such an approach is
that the selection would have to be made on the basis of generalisation error,
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meaning that the validation data is used in the modelling process and is no longer
independent. This effectively turns what was an unsupervised model selection
method into a supervised one. Instead, it was intended to identify a methodology
that, if applied the same way for every output and dataset, would have a high
chance of approaching optimal performance.

6.7.4.2 Forward Selection

As stated in section 6.2.2, the forward selection technique used was coarse in that
input selection is performed on functional groups of inputs rather than individual
inputs. It must therefore be conceded that a more comprehensive forward selection
experiment may better modelling outcomes. Thus further work is required to
determine if this is indeed the case.

6.7.4.3 Alternative Model Selection Methods

Olden and Jackson (2000) performed Monte Carlo simulations to compare the
performance of eight model selection techniques at identifying the correct in-
dependent variables for a synthetic multiple regression task. They found that
all approaches erroneously included or excluded predictor variables, but that the
relative performance of each method depended on the sample size. Obviously,
the present study does not provide an exhaustive search of selection methods.
However, it does served to show that a supervised method does perform better
than a more recently introduced unsupervised approach. Clearly, more research
is needed to investigate further selection methods in the context of the types of
inference approaches and datasets used in the present study. However, it should be

noted that, as discussed previously, ANNs are generally more robust with respect
to redundant variables than the regression approaches investigated by Olden and
Jackson (2000) meaning that the differences between competing methods may be
relatively minor.

6.7.4.4 Consideration of Spatial Information

The review of ANN applications to modelling phytoplankton in the literature in
chapter 2 concluded that a feature of existing applications is a lack of consid-
eration of spatial variability of conditions in lake ecosystems. This is despite
clear evidence in the literature regarding the effect of factors such as thermal
stratification and wind on both water quality monitoring and ecosystem processes.
This issue was not addressed in the present study. However, it needs to be pointed
out that the input window technique employed in the present study could easily
be extended to summarise spatial as well as temporal dimensions as a means of
simplifying input data representation. This would enable experimentation with a
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range of summary statistics - for example it may be possible to consider variance
and gradients over an area or volume in addition to average values.

6.8 ConclusionsandRecommendations

With respect to the hypotheses posed in section 6.1, it can be concluded that
both featule selection methods investigated identif,ed input layers that performed
better than the generic 5-variable and fully parameterised models. Given this
outcome, it can be concluded that elimination of redundant variables and retention
of relevant variables to achieve the most predictive and yet parsimonious input
layer is beneficial to modelling outcomes in the context of the inference methods
and data used in the present study. This finding is consistent with the experience of
the literature on the subject. However, it needs to be further noted that the results
also support the suggestion of Scardi (2001) that ANNs are robust with respect to
the presence of redundant inputs, since reasonable performance was achieved for
several models that had more inputs than training records!

The results have also raised a number of issues that deserve further attention;

o While the supervised forward selection method performed better than the
unsupervised strip mining method in terms of resultant model performance,
it is reasonable to hypothesise that an unsupervised forward selection ap-
proach may yield comparable results since "starting" model inference will
not be hampered by an excessive number of redundant input variables.

o It is clear that the validation method interacts with perceived model perfor-
mance in a non-trivial way, with methods that place a high percentage of
validation records close in time to training set data leading to better results.

Further research is needed to investigate the presence of trends and non-
stationarities in data and the degree to which different validation methods
cause cross-contamination of training and independent subsamples.

o It was found that perceptrons tended to indicate better prediction accuracy

when validated by CV but that ANNs appear better when validated by
L1OB. It was hypothesised that CV tests "global" generalisation abilities,
while L1OB places a greater emphasis on "local" generalisation. Further
research is needed to identify the properties of model inference techniques
affecting local and global generalisation respectively.

o The fact that ANNs only performed better than perceptrons under limited
conditions puts a new perspective on the value of tabula rasa model in-
ference in the context of the present application. This finding emphasises

the need for constrained models to be considered as a control for all ANN
modelling applications.
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o Sampling period and/or dataset size emerges as the most important factor
in determining the performance of ANN models. This prompts a clear

recommendation to water management authorities that real time forecasting

applications will benefit from frequent and consistent water quality moni-
toring.

o The results showed that the use of longer lags was universally beneficial.

This suggests that longer term time-series interactions than previously sup-

posed exist in the data. It can be concluded, as per Maier and Dandy (2000),

that more work to resolve useful lags may bring further improvements to

model performance.

o The input window method provides scope for alternative data representa-

tions that describe the properties of distributions of independent or depen-

dent variables in space or time. More research is needed to determine how

alternative data representations will affect modelling outcomes.
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Chapter 7

Conclusion

This thesis has addressed the ongoing need for computer models that can aid deci-
sion making in the implementation of eutrophication control options. Working on
the premise that, as far as possible, "machine learning" techniques should operate

autonomously, the goal has been to identify generic ANN model representations

and methodologies that reduce the need for user intervention on a case by case

basis. The approach taken has been to identify the "bottlenecks" that require
signif,cant decisions to be made by users at each step of the model development
process. It is concluded that the methodologies discussed in this thesis make a
signif,cant contribution towards a mors generic ANN methodology for modelling
phytoplankton dynamics in lakes.

The most profound innovation presented is the representation of model inputs
as summary statistics of sliding time windows. The added flexibility of this ap-

proach makes reconciliation of time-series ANN model structures with available
datasets easier on two counts. Firstly, it allows variables that differ in sampling
frequency to be used in the same model. This means that a greater selection of
variables may be available to be included in a model for a given dataset than
previously. Secondly, it eliminates the need for interpolation of data to a constant
sampling interval in order to "fit" the length of time delay connections in the

ANN structure. This significantly reduces the total information processing task
on the part of users, since data preprocessing is simplified and overall training
times are reduced. No decisions need to be made by users regarding the mode
of interpolation. Also, it reduces the risk that performance expectations will be

biased by "data contamination" between past and future statesl.

It was demonstrated (chapter 4) that bagging significantly decreased ANN model
sensitivity to overfrtting. It was concluded that the bagged model is relatively
unaffected by the increase in the variance component of model error during over-
fitting because uncorrelated predictions between individual member models of the

ll-ee et al. (2003) demonstrated how interpolation can blur information between time periods

leading to unrealistic model performance expectations.

199
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bagging ensemble tend to cancel each other out. When used in combination with
efficient model approximation techniques2, bagging mostly eliminates the need
for user intervention to optimise the approximation and generalisation character-
istics of the model. This removes a major technical headache so fär as users are
concerned, since optimising arcane parameters such as learning rate, momentum,
hidden layer conf,guration, training time, weight decay, jitter et ceterais a difficult
and eror prone task3.

Rotation estimators, such as leave-k-out cross-validation, have been used for val-
idating all ANN models. This approach makes all records in a given dataset
available for validation without significantly degrading training set representa-
tion. No user decisions are required regarding division of data into training and
validation sets. This eliminates a possible bias from the methodology, since
practitioners are prevented from "coaching" performance outcomes by selecting
validation data to emphasise or hide certain model characteristics. It can be
proposed that rotation estimators, when used in combination with bagging, lead
to repeatable modelling outcomes. This is because it cannot be claimed that
performance has been influenced by random or intentional variations in either
training and validation data.

This thesis has also highlighted steps in the model development process-model
that are, as yet, difficult to apply generic methodologies to. It was demonstrated
(chapter 6) that input layer selection is best done on a case by case basis because;

o Datasets from different lakes are unique in terms of the feature set available
for modelling.

o Dataset/output specific models performed significantly better than models
restricted to commonly available variables.

o Including all available variables as inputs does not result in the best mod-
elling outcomes - redundant inputs degrade performance.

Two approaches to automated selection of case-specific input layers were applied
and demonstrated to be moderately successful. It is clear that including a mix
of short and longer term lags for crucial input variables improves performance.
However, there was still considerable variation in outcomes between individual
models. Thus it can be concluded that the generic ANN modelling approach
presented in this thesis would benef,t from future research on generalised input
selection methods or heuristics.

2It was shown (chapter 4) that the Scaled Conjugate Gradient (SCG) (Møller, 1993) and
incremental mode backpropagation (BP) are effective training algorithms. However, SCG
observed to be significantly faster and does not require tuning of learning rate or momentum
coefficients.

3Breiman (1996b) states that, even when properly regularised, unstable inference methods such
as ANNs may still not perform optimally.
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Models were developed to forecast 21 output variables in 6 datasets. Several

observations were made in the course of this modelling work that may have pro-
found implications. It was observed that MLPs did not always perform better
at predicting validation data than perceptrons, despite being demonstrated to be

consistently better at learning training sets. Furthermore, it was found (chapter

6) that there is a significant interaction between the ANN architecture and the

validation method; MLPs consistently outperformed perceptrons when validated
using the leave-one-out bootstrap, whereas perceptrons performed better when
validated by blocked 20-fold cross-validation. These two validation methods
differ from each other in one important respect - the leave-one-out bootstrap
permits every record in the validation set to be bounded by training set records
in the time-series. Thus it can be concluded that MLPs generalise well over
short-term "local" time scales, but not over longer term "global" time scales.

Clearly research is waranted to further characterise the effect of time on the
generalisation characteristics of ANN models.

In terms of performance, it is demonstrated that feedforward ANNs can be cred-
ibly used to make one to two week forecasts of the abundance of chlorophyll
a or phytoplankton species/functional groups using datasets typical in structure

- that is, with irregular sampling intervals, different sample dates for input and

output variables and long periods of missing data. It can be concluded that the

best validation set performance is returned when the model is configured with
output/dataset specific input layers, 20 hidden layer units and validated using the

leave-one-out bootstrap. The time-series plots showed moderate to good agree-

ment between the observed and predicted abundance. Furthermore,U2 error rates
{ 1 showed this configuration performed better than the "no-change" model (¡,'r :
y¡-1) and positive average K values indicated better classification performance
than a random classif,er.

7.1 Summary of Findings and Recommendations

Selection of Model Inputs:

o The generic input layer, comprising oxidised nitrogen, orthophosphate, wa-
ter temperature and secchi disk depth, is compatible with typical monitoring
datasets and is a useful starting point for identif,cation of ANN models.

o For optimum performance, output specific input layers need to be selected.

Selection approaches based on forward selection appear to perform better
than backwards elimination.

o Elimination of redundant variables identif,ed by sensitivity analysis yields
moderate performance gains.
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. Input layers should consider a mixture of short and long term lags, although
more research is needed to identify a selection of lag intervals for inputs
likely to generalise for many outputs and datasets.

Representation of Time Series Interactions:

o Model generalisation was possible using the input-window approach, even
when sampling intervals wele variable or there were long periods of rnissing
data.

o As a means of ensuring compatibility with existing datasets, the input-
window model representation is arguably superior to interpolation. It strictly
defines the "temporal definition" of the model meaning that issues relat-
ing to data contamination (ie the model having access to information it
shouldn't) identif,ed by Lee et al. (2003) can be minimised. It also signifi-
cantly reduces the information processing task, both during model inference
and data preprocessing.

o The input-window model representation provides scope for further research
determining the effects of different approaches to summarising or prepro-
cessing input (and/or output) window conditions.

TFaining Algorithms:

o SCG is a signif,cantly more efficient approximator than BP because it re-
quires no tuning of learning rate or momentum coefficients and it is faster
to train large networks.

o There were no differences between BP and SCG in terms of generalising
ability. While not an exhaustive test of all approaches to supervised training,
the results suggest that algorithms should be selected on the basis of their
approximation properties rather than generalisation capabilities.

Model Complexity:

o Distinct underf,tting, optimum and overfitting phases were observed for all
models with increasing model complexity.

o Bagging greatly reduced increased prediction error due to overf,tting. How-
ever, contrary to results of Cannon and Whitfield (2002), there was still
a slight increase in validation error in the overf,tting phase meaning that
tuning fitting power by cross-validation is still necessary for optimum model
performance.

o 'Where tuning of model complexity is deemed necessary, training effor was
shown to be a far more convenient parameter than the number of hidden
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layer units. Thus, specif,cation of hidden layer size should only be guided

by the approximation requirements of the dataset.

o The results show that indices derived from model variance may be useful as

a goal functions for tuning ANN complexity.

Model Validation:

o Rotation estimators provide a more robust model performance evaluation in
data limited applications than conventional splirplot cross-validation since

they allow better validation set representation without reduction of training
set representation.

o L1OB returns more optimistic model performance estimates than blocked
CV. It was hypothesised that Ll OB permits training and validation set records

to be closer in time, thus increasing the probability of o'local" generalisation

over short time scales.

o Further research is needed to clarify the properties of different rotation
estimators in terms of;

- resisting temporal contamination of training sets,

- accounting for the effects of local versus global generalisation in the

context of time-series data and

- dataefficiency.

Error Measures:

o Visual assessment of time-series plots and classiflcation statistics are a use-

ful way to characterise different aspects of model performance such as

resistance to false positive or negative predictions.

o Objective error measures are useful for developing approaches to model

selection or algorithm tuning.

o Normalised error measures are useful for comparison of model performance

between different outputs/datasets.

o Theil's inequality type 2 (U2), which indicates comparative RMSE perfor-
mance of the ANN model and a naive no-change model, is a useful "reality
check" where other performance measures indicate very high performance.

o Further consultation with domain experts, water resource managers and

process engineers is needed to develop effor measures that are useful for
describing the meaning of the model performance to interested parties.



204 CHAPTER 7. CONCLUSION

Knowledge Discovery:

o The correlation between the input perturbation and the output response
can be used to quantify the overall complexity and polarity of the of the
correlation between a given input variable and the output.

o Sensitivity analysis identif,es redundant inputs that can be dropped from the
model sfucture to improve performance.

o Further work is required to analyse the sensitivity analysis data gained in
this work in order to characterise complex interactions between the effects
of input variables on the output that may have been learned.

o Further research is needed to investigate the potential of using the sensitivity
analysis through time feature as a means of deriving management decisions
for water resource process engineers.

7.2 The Future

There are many ways in which the generic ANN methodology developed in the
present study could be extended or improved. The review of existing ANN ap-
plications (chapter 2) showed that no models have taken account of the effect
of spatial variability of conditions. The input-window approach could easily be
extended, where data is available, to define summary windows in space as well
as time. Also, the present study only considered the average of the input-window
conditions. Other summary statistics such as the range, minimum, maximum,
trend over time, variance etc may be useful. Similarly, outputs as well as inputs
could be represented as the summary statistic of a time window.

V/hile a "sensitivity analysis through time" procedure was described and imple-
mented, the results presented (chapter 5) only described the relative importance
and complexity of interactions between the inputs and the output variables. There
is still a need to explore ways of expressing interactions between the effects of
input variables. It is proposed that the timing of sensitive periods for a particular
input variable may yield information that can be exploited when designing tactical
responses to predicted algal blooms. Similarly, validation data could be mined to
identify the ranges of certain variables when the model is likely to perform well
and when the model is likely to perform poorly. This would provide a measure of
conf,dence in model predictions.

The reviews of Recknagel (2003) and Jqgensen (1999) suggest that the future
of research in the ecological informatics domain is likely to be focused on two
issues;

o Increasing the transparency inductive modelling techniques by development
of adaptive knowledge representations that make sense to ecologists (eg
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Todorovski et al. (1998), Bobbin and Recknagel (2001), Maier et al. (2001),

Recknagel et aI. (2002)).

o Incorporation of structural dynamic properties in models to account for the

adaptive nature of ecosystem processes and parameters through time (see

proposals of Recknagel (2002)).

Thus the "cutting edge" of research into computational modelling of ecosystem

variables appears to be shifting attention from ANNs to novel machine learning

techniques that are able to learn model representations consistent with the above

goals. It should be pointed out the methods implemented in the present study

(ie use of input-windows, bootstrap aggregation and k-fold cross-validation) are

appropriate for any type of regression estimation, regardless of the estimation
method or model structure. Indeed it can be argued that bagging is particularly ap-

propriate to novel computation modelling techniques that are unstable4. However,

it must be commented that the approaches advocated by this thesis are computa-

tionally intensive because ensembles of models are required to make predictions

and perform validation. This may particularly be the case for algorithms that are

relatively slow to converge, such as those based on genetic algorithms.

4ceman et al. (1992) argues that any model-free approach to regression estimation is

characterised by high variance.
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Table 4.1 : Examples of tactical controls that may benefit from short term forecasts
of algal abundance.

Type Response Reference

a-príori Algicide application (eg CuSOa) Whitaker et al. (1918);
Burch (1990)

Reynolds et al. (198a);
Burns (1994)

Intermittent destratification to prevent
domination by r- or k- selected algal
specles

Barley straw application to promote Everall and Lees (1996)
herbivorous zooplankton and produce
phytogenic compounds

Nutrient precipitation Hall et al. (1995)

a-posterrcrt

Flushing with low nutrient, low biomass
water

Opportunistic water usage. Bloom
affected reservoirs taken "off-line".

eg Senate Standing Commit-
tee on Environment Recre-
ation and the A¡ts (Aust.)
(tee3)

Whitehead and Hornberger
(1e84)

Alert levels and an appropriate response
framework

Burch (1993)

Cyanotoxin removal during water treat- Burch and Nicholson (2000)
ment using adsorption and oxidation
techniques

Deployment of booms around offtakes.
Alteration of offtake depth.



Appendix B

Box and Whisker Plots

Box and whisker plots (Tukey,1977; McGill et aI., 79'78) are a convenient method

for displaying and comparing distributions in graphical form. Examples of notched

box-and-whisker plots are used in section 3.3 to compare water quality parame-

ters. They convey the following information;

o Range is indicated by the whiskers extending from each side of the box.

o Median prediction is indicated by the central line in the box.

o (Jpper and lower quartiles are indicated by the upper and lower sides of
the box. These are the median values of the upper and lower halves of the

distribution respectively.

o 95Vo confidence intervals around the median is indicated by the notch.

c Outliers are indicated by circles beyond the reaches of the whiskers.

The calculation of 957o confrdence interval is shown in equation B.1 where IQR
corresponds to the interquartile range. This approximation is only strictly valid
if the distribution of data is normal. Velleman and Hoaglin (1981) gives further

information regarding this conf,dence interval calculation including derivation of
the 1.58 constant.

1.58 * IQR
957oCI: medianf (8.1)

no. obs

Boxplots may be used to provide basic model diagnostics when used to display

distributions of predictions from a bagging ensemble (for example, see figute 4.7).

The width of the boxplots is indicative of variance. Very wide boxplots will tend

to indicate that overf,tting is occurring or that the input data for that record is not

well represented in training data. Also, the size of the notch and the position of the

median line in the box provides information about the normality of the distribution

of model predictions. If the notch is not central it indicates that the distribution is

209
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probably skewed, and if the notch is very wide, it is likely that the distribution of
predictions is strongly multi-modal indicating several distinct "classes" of model
being generated.
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Lake Soyang. Output = Chlorophyll a
A

q)
f

B

?

1 985

1 985

19A7 1988 1989 1990 1991 1992 1993 1994 1995

=o,
f

N

Time

'1991

Time

Time

1990 1991

Time

o)
f

N

'1 987 1 988 1 989 .t 990

1987 1988 1989

1 992 1 993 1 994 1 995

'1992 1993 1994 1995

19A7 1988 1989 1990 1991 1992 1993 .1994 1995

D

o,
l

N

o

'1985

Figure D.3: Model no. 3 - Time series plots of observed and predicted algal
abundance. a optimum complexity - training. B optimum complexity -
validation. C Maximum complexity - training. f) Maximum complexity -
validation.

Obssrued
Prsd¡cted

Optimum complexity - lraining

- 
Obs€rved

- - Predicted
Optimum complexity - testing

Observed
Prsdicled

Maximum complexity - training

Obs€rved
Predlcted

Maximum complexity - testing

i\

ll



223

A

E
-9.
0.)o

ô

+

+

+

+

+

+
N

+

+

+

+

?
-q

ô

+

+
N

+

Lake Kasumigaura - site 3. Output = Microcystis sPP.

Time

1988 1989
Time

1983 1 985 1 986 ',l 987 ',l 988 1 989 1 990 1 991 1 992 1 993

B

E
_U)

c)

1983

1983

Time

1 983

vTime

Figure D.4: Model no. 4 - Time series plots of observed and predicted algal

abundance. A Optimum complexity - training. B Optimum complexity -
validation. C Maximum complexity - training. D Maximum complexity -
validation.

c

1 S85 1 986 ',l 987 'I 990 1 991 1 992 1 993

1s8s 1986 ',1987 1988 1989 1990 1991 1992 1993

'1985 1986 1987 1988 1989 1990 |99',1 1992 ',l993

E
I
o)o

D

E
.9,õo

- 
obserued
Prediclsd

complexity - trainingOptim

Obserued
Predicted

complexity - testing

t\

Observed
Prsdicted

Maximum complexity - training

Observed
Pred¡cted

ll
tl
tl
tl

Maximum complexity - testing

I
I
tt

tt
tt

t\



224 APPENDIX D. EFFECT OF MODEL COMPLEXITY

1 988 1989 '1990 1991 1992 1 993

Time

1988 1989

Lake Kasum gaura - s te 3. Output = Osc alor a
A

E
I
o)o

Bo

N

=3
-øPõo

I

ëN

.9
c)()o

1986 1987

1 986 I 987

1986 1987 1988 1989

'1986 't9A7 '1988 1989

1990
Time

1990

Time

't990

Time

1 991

1991

1991

1992

'1992

1992

1 993

'1993

1 993

c

D

E
.t
õ()

oo
N

Figure D.5: Model no. 5 - Time series plots of observed and predicted algal
abundance. a optimum complexity - training. B optimum complexity -
validation. c Maximum complexity - training. D Maximum complexity -
validation.

- 
Obsorued
Pred¡cted

Optimum complexity - training

Observed
Pred¡cted

mum complexity - testing

Obserued
Predictêd

Maximum complexity - lraining

Observed
Prsdlcted

Maximum complexity - testing



225

A
Lake Kasumigaura - site 3. Output = Chlorophyll a

Time

N

O)o5o

1 983

1 983

1 983

1 985 '1 986 1 987 1 988 ',l 989 1 990 1 991 1 992 1 993

B

=o)5

c

N

N

=o)
f

N

N

Dg

N

N

ola

'1 985 1 986 1 987

1 985 1 986 1 987

1988 1989
Time

Time

1 988 1 989

Time

'1990 199'1 1992 ',1993

1 990 1 991 I 992 I 993

1 983 1 s8s I 986 1 987 1 988 1 989 ',l 990 1 99í ',l 992 1 993

Figure D.6: Model no. 6 - Time series plots of observed and predicted algal

abundance. A Optimum complexity - training. B Optimum complexity -
validation. C Maximum complexity - training. D Maximum complexity -
validation.

Observed
Predicted

Optimum complexity - training

Obserued
Pred¡cted

Optimum complexily - testing

I

\
¡t
tl

Observed
Predicted

Max complexity - training

- 
Obserusd
Predict€d

Max complexity - test¡ng

I
lt

ll
lt



226 APPENDIX D. EFFECT OF MODEL COMPLEXITY

Myponga reservoir. Output = Scenedesmus spp.
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Figure F.2: Burrinjuck Dam. Generic input layer. A Chlorophyll a. B
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Figure F.3: Darling River. Generic input layer. A Total phytoplankton. B
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Table G.1: Classif,cation error rates. Lake Biwa - Chlorophyll a

Threshold Prev. Sens. Spec. PPP Kappa
4.5 0.86 0.96 0.00 0.86 -0.06
s.4 0.69 0.93 0.26 0.74 0.23

1.r5 0.57 0.84 0.45 0.67 0.30
8.6 0.42 0J6 0.5s 0.55 0.29

10.8 0.21 0.54 0.17 0.46 0.29

Table G.2: Classification error rates. Lake Biwa - Euglena americana.

Prev. Sens PPP Kappa
0. 0.35 0.65 03220

30
110

300
r000

0.33
0.4s
0.64
0.92

0.53
0.44
0.39
0.58

0.24
0.21

0.29
0.61

o.46
0.35
0.24
o.t2

0.92
0.79
0.14
0.19

Table G.3: Classif,cation error rates. Lake Biwa - Melosira granulata.

Threshold Prev. Sens. Spec. PPP Kappa
o.2 0.87 0.84 0.4'.7 0.91 0.25
t4 0.69 0.88 0.s4 0.81 0.45
46 0.52 0.88 0.51 0.69 0.46

110 0.33 0.86 0.s9 0.51 0.38
700 0.1s 0.41 0.84 0.35 0.21

Table G.4: Classification error rates. Lake Biwa - Pediastrum biwae.

Threshold Prev. Sens. Spec. PPP Kappa
0.25 0.46 0.81 0.41 0.57 0.27

5 0.38 0.86 0.51 0.55 0.38
30 0.29 0.73 0.13 0.53 0.42
50 0.20 0.17 0.78 0.46 0.44

150 0.11 0.50 0.90 0.38 0.35
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Table G.5: Classification error rates. Burrinjuck Dam - Chlorophyll a.

Threshold Prev. Sens. Spec. PPP Kappa

3.1 0.8s 0.96 0.00 0.84 -0.06
s.3 0.68 0.88 0.33 0;74 0.24
7 0.s2 0.84 0.49 0.64 0.33

10.55 0.34 0.16 0.68 O.ss 0.40
t6 0.18 0.53 0.86 0.44 0.36

Table G.6: Classif,cation error rates. Burrinjuck Dam - Chlorophyta.

Threshold Prev. Sens. Spec. PPP Kappa

310
525
950

1850
2900

0.82
0.66
0.49
0.34
o.t7

0.99
0.98
0.93
0.73
0.61

0.00
0.00
0.18
0.60
0.12

0.81
0.65
0.53
0.49
0.33

-0.02
-0.02
0.11

0.29
0.28

Table G.7: Classification error rates. Burrinjuck Dam - Cyanophyta.

Threshold Prev, PPP Kappa
10

6s
300

1300
10000

o.64
0.51

0.39
o.25
0.11

0.61
0.63
0.70
0.90
0.89

0.50
o,44
o.47
0.54
0:73

o.1l
0.54
0.46
0.40
o,29

0.16
0.07
0.15
0.31
0.32

Table G.8: Classification effor rates. Burrinjuck Dam - Diatoms

Prev. Sens. PPP

30 0.82 0.85 1

135

300
700

2000

0.67
0.49
0.35
0.20

0.89
0.90
0.90
0.50

o,44
0.50
0.64
0.86

0.77
0.63
0.58
o.47

o.31
0.40
0.48
0.36
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Table G.9: Classification error rates. Darling River - Total Phytoplankton.

Threshold Prev. Sens. Spec. PPP Kappa
3000
6500

13000
21000
35000

0.84
0.61
o.49
0.33
0.16

0.97
0.96
o.92
0.68
0.35

o.22
0.2'7

0.41
0.76
0.95

0.87
0.73
0.63
0.59
0.55

0.26
0.21
0.39
0.42
0.3s

Table G.10: Classification error rates. Darling River - Chlorophyta.

Threshold Prev. Sens. Spec. PPP Kappa
165

45s
1000
2300
6000

0.84
0.66
0.50
0.34
0.15

0.97
o.97
0.92
0.83
0.41

0.29 0.88 0.34
0.26 0.72 0.28
0.37 0.59 0.29
0.64 0.54 0.42
0.93 0.51 0.37

Table G.1 1: Classification error rates. Darling River - Cyanophyta.

Threshold Prev, PPP Kappa
400

1000
1800
3150
5500

0.84
0.61
0.50
0.33
0.ts

1.00
1.00

1.00
0.83
0.24

0.00 0.84 0.00
0.07 0.68 0.09
0.l3 0.53 0.13
0.50 0.45 0.27
0.93 0.36 0.20

Table G.l2: Classification effor rates. Darling River - Flagellates

Threshold Sens. PPP Kappa
100

375
800

1900
3500

0.66
0.50
0.32
0.16

0.91

0.87
0.74
0.44

0.22
0.69
0.81
0.93

0.15
0.56
0.53
0.41

0.83 0.05
0.70
0.14
0.65
0.55



241

Table G.13: Classification error rates. Lake Kasumigaura - ChlorophyII a

Prev pec. PPP Kappa
30
55

70
92

120

0.83
0.69
o.49
0.31

o.t7

0.98
0.85
0.68
0.50
o.25

0.33
0.45
0.47
0.6s
0.91

0.88
0.77
0.55
0.39
0.60

0.41

0.33
0. l5
0.t4
0.28

Table G.l4: Classification effor rates. Lake Kasumigaura- Gomphosphaeria spp

Threshold Prev. Sens. Spec. PPP Kappa
100

5000
10000
35000

Table G.15: Classif,cation error rates. Lake Kasumigaura
aeruginosa.

Microcystis

Threshold Prev. Sens. Spec. PPP Kappa
100

2000
13000
65000

160000

Table G.16: Classification error rates. Lake Kasumigaura- Oscillatoria spp.

Threshold Prev. Sens. Spec. PPP Kappa

0.20
0.16
0.11
0.08

0.11
0.51
0.50
0.43

0.31
0.78
0.83
0.94

o.21
0.33
0.28
0.38

0.04
0.zl
0.25
0.34

0.55
0.44
0.34
0.23
0.13

0.94
1.00
1.00
0.80
0.55

0.59
0.63
0.60
0.91
0.92

0.14
0.68
0.51
0.13
0.s0

0.54
0.60
0.50
0.69
0.45

500
3500
6000

15000
40000

0.37
0.31
0.23
0. l5
0.08

0.78
0.70
0.65
0.46
0.43

0.16
0.50
0.61
0.84
0.93

0.35
0.39
0.33
0.33
0.33

-0.04
o.t7
0.20
0.26
0.31
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Table G.17: Classiflcation effor rates. Myponga Reservoir - Chlorophyll a.

Threshold Prev. Sens. Spec. PPP Kappa
r.4 0.84 0.98 0.22 0.87 0.21
2.8 0.68 0.91 0.42 0.78 0.45
5.5 0.50 0.86 0.6s 0.7t 0.51
8.4 0.34 0.66 0.84 0.61 0.50
12 0.1'7 0.41 0.93 0.51 0.42

Table G.18: Classification effor rates. Myponga Reservoir - Ankistrodesmus spp.

Threshold Prev. Sens. Spec. PPP Kappa
150

400
800

1300
2500

0.83
0.67
0.51
0.35
o.t7

1.00
1.00
1.00
1.00
0.78

0.00
0.00
0.00
0.00
0.o2

0.83
0.67
0.5 r
0.35
0.14

0.00
0.00
0.00
0.00

-0.07

Table G.19: Classification error rates. Myponga Reservoir - Dictyosphaerium
spp.

Threshold Prev. Sens. Spec. PPP Kappa
3

100

220
460

I 100

0.81
o.64
0.50
0.35
0.16

0.05
0.03
0.15
0.38
0;79

0.98
0.91
0.97
0.84
0.40

0.82
0.64
0.53
0.43
o.21

0.04
-0.00
o.t2
0.18
0.16

Table G.20: Classif,cation effor rates. Myponga Reservoir - Scenedesmus spp.

Threshold Prev. Sens. Spec. PPP Kappa
20

100

750
2500

10000

0.84
0.68
0.51
0.35
0.18

0.86
0.87
0.90
0.11
0.64

0.50
0.35
0.40
o.49
0.86

0.33
0.24
0.30
0.22
0.46

0.90
0.74
0.61
0.45
0.52

Table G.2l: Classif,cation effor rates. Lake Soyang - Chlorophyll ø.

Threshold Prev. Sens. Spec. PPP Kappa
0.47
0.66
0.93
1.45

2.3

0.84
0.68
0.57
0.59
o.4r

0.03
0.09
0.19
0.40
0.30

0.84
0.67
0.51
0.32
0.16

0.99
0.95
0.88
0.61
0.42

0.03
o.t2
0.31
0.79
0.88
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Table H.1: Classification effor rates.
phytoplankton.

Darling - 7 day forecast - Total

Prev. Sens. Spec.

0.84 0.91 0.21 0.
6500

13000
21000
35000

0.68
0.49
0.34
0.r6

0.21
0.50
0.11
0.92

0.26
0.31
0.42
o.4'7

0.95
0.87
0.66
0.s6

0.73
0.63
0.59
0.56

Table H.2: classif,cation error rates. Darling -7 day forecast - chlorophyta.

Threshold Prev. Sens PPP

455
1000

2300
6000

0.95
0.94
0.91

0.19
0.54

0.39
0.33
0.33
o.52
0.44

0.84
0.67
0.50
0.34
0.15

0.34
0.41
o.t6
0.91

0.74
0.61
0.63
0.51

0

Table H.3: classif,cation error rates. Darling -7 day forecast - cyanophyta.

Threshold Prev. Sens. PPP
400

1000
1800

3 150

5500

0.84
0.67
0.s0
o.34
0.15

0.98
0.9s
0.90
0.58
o.49

0.28
0.42
0.17
0.92

0.33
0.2'l
0.32
0.34
o.43

0.88
0.73
0.61
0.56
0.53

Table H.4: classification error rates. Darling -7 day forecast - Flagellates

Threshold Prev. Sens. Spec. PPP Kappa

3t5 0.66 0.92 0.20 0.69 0.13
800 0.50 0.88 0.71 0.75 0.59

1900 032 0.16 0.83 0.68 0.58
3500 0.15 0.52 0.94 0.60 0.4S
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Table H.5: Classification effor rates. Myponga -7 day forecast - Chlorophyll a.

Threshold Prev. Sens. Spec. PPP

0.50
0.58
0.59
0.54
0.40

2.8
5.5

8.4
t2

0.8s
0.68
o.52
o.34
0.17

0.9s
0.95
0.89
0.16
0.44

0.52
0.57
0.70
0.80
0.93

0.92
0.82
0.76
0.66
0.55

Table H.6: Classification error rates. Myponga -7 day forecast - Ankistrodesmus

spp.

Prev. Sens. PPP Kappa

150

400
800

1300
2500

0.83
0.68
0.5 r

o.31
o.11

0.94
0.89
0.91
0.19
0.11

0.12
0.50
0.62
0.82

0.83
0.68
0.66
0.55
0.12

-0.08
0.01
0.41
0.31

-0.07

Table H.7: Classif,cation error rates

Dictyosphaerium spp.

Prev. Sens.

3 0.80 0.98

Myponga 7 day forecast

PPP Kappa
0.80 -0.03

100

220
460

l 100

0.64
0.49
0.36
0.16

0.91
0.92
0.86
0.53

0.10
o.23
0.49
0.81

0.66
0.53
0.48
0.35

0.09
0.14
0.30
0.21

Table H.8: Classification error rates. Myponga - 7 day forecast - Scenedesmus

spp.

Threshold Prev. Sens. Spec. PPP Kappa

20
100
'750

2500
10000

0.84
0.68
0.51
0.35
0.19

0.92
0.92
0.96
0.90
0.54

0.26
0.19
0.31
0.59
0.91

0.87
0.71
0.59
0.54
0.s8

0.20
0.13
0.21
0.43
o.45
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Table H.9: classification error rates. soyang -7 day forecast - chlorophyll a

Threshold Prev. Sens. pec. PPP

0.41 0.82 0.98 0.1
0.66
0.93
1.45

2.3

0.65
0.49
o.29
0.14

0.91

0.19
0.67
0.41

0.24
0.52
0.82
0.92

0.69
0.61
0.61
0.48

0.13
0.t]
0.30
0.48
0.36
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Table I.1: Sensitivity Analysis. Lake Biwa - chlorophyll a.

Input Sens. R
chlorophyll a
nitrate
orthophosphate
water temperature
secchi depth

0.24
0.22
0.20
0.19
0.15

0.48
-0.4s
-0.t2
0.28
0.03

Table I.2: Sensitivity Analysis. Lake Biwa - Euglena americana.

Input Sens. R
Euglena americana 0.29 0.47
water temperature 0.23 O.20
nrtrate 0.20 0.48
orthophosphate 0.15 -O.32

secchi depth O.l2 -0.10

Table I.3: Sensitivity Analysis. Lake Biwa - Melosira granulata.

Input Sens. R
Melosira granulata
water temperature
secchi depth
orthophosphate
nitrate

Table I.4: Sensitivity Analysis. Lake Biwa - Pediastrum biwae

Input Sens. R
Pediastrum biwae 0.63 O.l4
orthophosphate 0.11 O.l7
secchi depth 0.09 0.30
water temperature 0.09 0.46
nitrate 0.07 -0.05

0.26
0.25
0.18
0.15
0.15

0.31
o.49

-0.24
-0.10
-0.11
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Table L5: Sensitivity Analysis. Burrinjuck Dam - chlorophylla.

Sens. R

chlorophyll a

water temperature
total oxidised nitrogen
dissolved inorganic phosphorous

secchi depth

.36 0.46
0.38

-0.0s
0.06
0.09

0.19
0.18
0.15
o.t2

Table I.6: Sensitivity Analysis. Buninjuck Dam - chlorophyta.

Sens. R

chlorophyta
secchi depth
water temperature
total oxidised nitrogen
dissolved inorganic phosphorous

0.32
0.22
0.18
0.15
0.14

0.40
0.06
0.03
-0.41
-0.22

Table I.7: Sensitivity Analysis. Burrinjuck Dam - cyanophyta.

Input R

cyanophyta
water temperature
total oxidised nitrogen
secchi depth
dissolved inorganic phosphorous

0.56
0.1s
o.t2
0.10
0.07

0.65
0.49
0.42
-0.29
-0.23

Table I.8: Sensitivity Analysis. Burrinjuck Dam - diatoms

Sens. R
diatoms
dissolved inorganic phosphorous

water temperature
secchi depth
total oxidised nitrogen

0.

0.23
0.18
0.17
o.l2

-0.68
0.53
-0.51
o.22
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Table I.9: Sensitivity Analysis. Darling River - chlorophyta.

Input Sens. R
chlorophyta
water temperature
turbidity
total oxidised nitrogen
soluble reactive phosphorous
flow

0.33
0.tl
0.14
0.13
o.l2
0.11

0.58
0.29

-0.30
-0.48
-0.34
-0.43

Table I.10: Sensitivity Analysis. Darling River - cyanophyta.

Sens. R
cyanophyta
water temperature
soluble reactive phosphorous
turbidity
total oxidised nltrogen
flow

0.18
0.15
0.12
0.10
0.09

0.10
0.32

-0.28
-0.36
-0,39
-0.31

Table I.1 1: Sensitivity Analysis. Darling River - flagellates.

Input Sens.
flagellates
total oxidised nitrogen
watgr temperature
turbidity
soluble reactive phosphorous
flow

0.22
0.r8
o.t7
0.16
o.t4
0.12

0.44
0.ll

-0.l8
-o.14
-0.20
-0.06

Table I.12: Sensitivity Analysis. Darling River - total phytoplankton.

Input Sens. R
total phytoplankton
water temperature
soluble reactive phosphorous
turbidity
flow
total oxidised nitrogen

0.31
o.t]
0.14
0.14
0.12
o.t2

0.42
0.30

-0.45
-0.47
-0.46
-0.4s
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Table I.13: Sensitivity Analysis. Lake Kasumigaura - chloropbyll a

Input Sens. R
orthophosphate
secchi depth
chlorophyll a

nitrate
water temperature

0.24
0.20
0.20
0.r9
0.17

0.46
0.24
0.51

-0.36
0.18

Table I.14: Sensitivity Analysis. Lake Kasumigauta- Gomphosphaeria spp.

Input Sens R

Gomphosphaeria spp.

orthophosphate
nitrate
secchi depth
water temperature

0.41
0.15
0.13
0.13
0.12

0.7s
0.35

-0.35
0.03

-0.31

Table I.15: Sensitivity Analysis. Lake Kasumigauru- Microcystis aeruginosa.

Input Sens R
aefugrnosa

orthophosphate
water temperature
secchi depth
nitrate

0.48
0.16
0.15
o.t2
0.08

0.78
-0.04
0.38
0.31

-0.15

Table I.16: Sensitivity Analysis. Lake Kasumigaura- Oscillatoria spp.

Sens.

Oscillatoria spp. 0.38

secchi depth
orthophosphate
water temperature
nitrate

o.22
0.16
0.15
0.09

-0.29
-0.34

0.11
-0.13
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Table I.17: sensitivity Analysis. Myponga Reservoir - Ankistrodesmus spp.

Input Sens. R
nltrate
water temperature
turbidity
filter reactive phosphorous
Ankistrodesmus spp.

0.26
0.23
0.20
0.19
0.14

-0.03
-0.07

0.07
0.09
0.13

7

Table I.18: Sensitivity Analysis. Myponga Reservoir - chlorophyll a.

Input Sens. R
water temperature
nitrate
turbidity
fi lter reactive phosphorous
chlorophyll a

0.22
0.21

o.20
0.19
0. l8

0.25
0.10

-0.06
-0.16
0.45

Table I.19: Sensitivity Analysis. Myponga Reservoir - Dictyosphaerium spp.

R
0.26
0.22
0.21

o.t7
0.13

Table I.20: sensitivity Analysis. Myponga Reservoir - scenedesmus spp.

Input Sens. R
Scenedesmus spp.
water temperature
turbidity
fi lter reactive phosphorous
nitrate

Table I.21: Sensitivity Analysis. Lake Soyang - chlorophyll a

Input Sens. R

water temperature 0.24 0.31
dissolved inorganic phosphorous 0.20 -0.31
secchi depth 0.15 -0.35
nitrate 0.13 O.Z0

nltrate
fi lter reactive phosphorous
Dictyosphaerium spp.
water temperature

0.26
-0.18
0.03
0.23

0.40 0.7s
0.19 0.30
0. r6 0.30
0.13 -0.36
0.12 -0.07
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Table J.1: Staring model - Lake Biwa

In. grp.
.Window 

start

Water quality & physical conditions

Input variable

Chlorophyll ø

Dissolved oxygen
Nitrate
Orthophosphate
pH
Secchi depth
si
'Water temperature
'Weather (fine, cloudy, rain)
Wind speed

Phytoplankton

Euglenø americana
Melosira granuløta
Cyclotella glomerata
Asterionella formosa
Rhodomonas spp.
Micractinium pusillum
Dictyosphaerium sp
Ankistrodesmus fal v mirabile
Pediastrumbiwae
Coelastrum cambrícum

+gen
+gen
+pH
+gen
+si
+gen
+wea
+wea

+gen

+spe
+spe

+spe

-7

-7
-7
-7
1

-7
1

-tt
-37
-37
-37
-37
-37
-Jt
-37
-37
-37

-l
-7
-7
-7
-7
-7
-7
-7
-'7

-7

-37
-3',7

-37
-37
-37
-37
-37
-37
-3',1

-37

All inputs repeated for -7 - -67 window.
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Input variable

Table J.2: Staring model - Buninjuck Dam

In. grp. end Window start

Water quality & physical conditions

Area
Chlorophyll a
Dissolved P
Dissolved oxygen
Evaporation
Precipitation
Relative humidity 900
Relative humidity 1500

Secchi depth
Wind speed 900
Wind speed 1500

Stratification
Sunshine hrs

Water temperature
Air temp, max
Air temp, min
Total P
Total oxidised N
Volume
Water level

Inflow
Ginnind & Charnwood
Goodradigbee
Molonglo Coppins
Mountain Creek
Murrum MtMcD
s410008
s410700
s41073 I
s41074s
s410761
Yass

Phytoplankton

Chlorophyta
Cyanophyta
Diatoms

+gen
+gen

-14
-3t
-5 I
--'t I

-14
-14
-14
-14
-37
-14
-14
-3 I

-14
-31
-t4
-14
-5 I

-37
-t4
-t4

+wea
+wea
+wea
+wea
+gen
+wea
+wea
+str
+wea
+gen
+wea
+wea

1

n

1

1

-1
-1
1

-,7

-l

1

1

1

1

1

1
,7

1
.7

1

1
,1

1

1

-7

1

-7

-1

+gen

+dep

+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf
+inf

+spe
+spe
+spe

-14
-r4
-74
-t4
-t4
-14
-t4
-14
-t4
-t4
-14

-7
-7
-7

-37
-37
-31

All inputs repeated for -7 - -67 window.
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Table J.3: Staring model - Darling river

Input variable In. grp. Window end start

f,
Water quality & physical conditions

Bicarbonate
Calcium
Chloride
Colour
E.C. - Field
E.C. - Lab
Flow
Magnesium
NO
pH - Field
pH - Lab
Potassium
Silica
Sodium
Sol React Phosphorus
Sulphate
Temperature
Tot Phosphorus
Turbidity

+gen

+gen
+pH

+Si

+gen

+gen

+gen

+spe
+spe

+spe

+gen

a

1

-l
1

1

1

-l

-
1

1

-7

-7

1

-37
-21
-37
-37
-21
-21
-14
-21
-2r
-21
-21
-21
-21
-2t
-21

-37
-21
-21

-27

-21
-21
-21

-21
-21
-21
-21
-21
-21
-21
-21

Phytoplankton

Centric diatoms
Chlorococcales
Chlorophyta
Cyanophyta
Diatoms unicellular
Ditomophyta
Flagellates
Planctonema
Scenedesmus

Total phytoplankton
Ulothricales

All inputs repeated for -7 - -67 window
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Input variable

Table J.4: Staring model - Lake Kasumigaura

In. grp. Window end starI

Water quality & physical conditions

Chlorophyll a
Dissolved inorganic N
Dissolved oxygen
Dissolved total P
Light
NH¿
Noz
NO:
pH
Po+
Radiation Time (Kashima)
Radiation Time (Tsuchiura)
Rain (Kashima)
Rain (Tsuchiura)
Si
Total N
Total P
Secchi depth
'Water 

temperature

+gen

+gen
+wea

+gen
+pH
+gen
+wea
+wea
+wea
+wea
+Si

+gen
+gen

-37
-3 I

-at
-5 I

-)t
-31
-3 I

-37
-37
-3t
-14
-14
-14
-r4
-31
-3 I

-31
-3 I

-3t

-5 I

-5 I

-37
-.7 I

-31
-31
-5 I

-37
-5 I

--'" I

,7

1

1

1

1

1
,7

,1

-1
-7
1

1

1

1
.7

1

n

-1

Phytoplankton

Merismopedia spp.

Oscillatoria spp.

Phormidíum spp.

Cyclotella sp. I
Synedra rumpens
Anabaenaflos-aquae
Ochromonas spp.

Microcy stis ae rugino sa

Microcystís wesen

Gomphosphaeria spp.

Zooplankton

Bosminafatalis
Cladocera
Copepoda
D iaphano s oma b rachyurum
Rotifera
Total zooplankton

+spe

+spe

+spe

+zoo
+zoo
+zoo
+zoo
+zoo
+zoo

-1
-7
1

-7
-1
-1
-1
-7

-
n

-7

-3 I
-3 I

-37
-37
-37

-37

All inputs repeated for -J - -67 window
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Table J.5: Staring model - Myponga reservoir

Input variable In. grp. Window end \Vindow start

Water quality & physical conditions

Aluminium - soluble
Aluminium - total
NH¿
Chlorophyll a
Chlorophyll ú
Copper - soluble
Copper - dissolved
Dissolved organic carbon
Iron - soluble
Iron - total
Manganese - soluble
Manganese - total
Noz
Nos
Odour - cold
Odour - hot
Total phosophorous
'Water temperature
Turbidity

+hea
+hea

-37
-31
-5 I

-21
-21
-5 I
-3t
-5 I

-5 I
-37
-3 I
-31
-Jt
-31
-21
-21

-3t
-21
-2'l

+gen

+hea
+hea

+hea
+hea
+hea
+hea

+gen

+gen
+gen
+gen

.1

1

-l
-1

.1

a

1

1

-1
-7
-l
-1
1
.7

,1

1

-1
,1

-l

All inputs repeated for -7 - -67 window.

Table J.6: Staring model - Lake Soyang

Input variable In. grp. Window end rüindow start

Water quality & physical conditions

Inflow
Rainfall
Chlorophyll a
Conductivity
Dissolved inorganic P
Dissolved oxygen
No¡
pH
Productivity
Secchi depth
'Water temperature
Total N
Toral P
Turbidity

+inf
+wea
+gen

+gen

+gen
+pH

-14
-14
-5 I

-3 I
-37
-37
-37
-5 I
-37
-37
-37

-5 I
-37
-3t

+gen
+gen

,|

.1

.7

-7

.7

-1
1

-,7

_'l

1

1

1

All inputs repeated for -7 - -67 window.
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Table K.l: Effect of "data strip-mining" on model error rates. Lake Biwa.

Output Inputs RMSE Ul U2 R¿ Av r
chlorophyll a

all inputs
first strip
last strip
(generic)

Euglena americana
all inputs
first strip
last strip
(generic)

40
18

8

5

40
JJ

J

6

6.36
6.48
'7.02

6.96

0.874
0.891
0.965
0.95',7

0.250
o.176
0.266
0.120

0.282
0.289
o.296
0.303

0.603
0.547
0.658
0.560

0.189
o.142
0.131
0.087

40
29
l4
6

1830
1690
2100
1950

0.853
0.784
1.26t
0.910

0.060
0.160
0.000
0.095

0.204
0.231
0.178
0.195

0.202
0.222
0.098
0.350

0.326
0.378
0.326
0.400

607

s92
625
609

o.457
0.444
0.46s
0.461

0.951
0.929
0.980
0.950

Melosira granulata
all inputs
first strip
last strip
(generic)

Pediastrum biwae
all inputs
first strip
last strip
(generic

555
515
471
554

o.126
0.191
0.304
0.106

40
26

5

6

0.566
0.533
0.483
0.593

0.950
0.887
0.817
0.948

o.252
o.242
0.298
0.438
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Table K.2: Effect of "data strip-mining" on model error rates. Burrinjuck Dam.

Output Inputs RMSE U1 U2 Avr
chlorophyll a

all inputs
first strip
last strip
(generic)

chlorophyta
all inputs
first strip
last strip
(generic)

4040
43tO
3420
3670

0.525
0.556
0.4s3
0.489

68
45
l6

5

24.2
18.5
23.0
19.4

0.490
0.373
0.490
0.399

0.815
0.650
0.799
0.626

0.141
0.391
0.144
0.394

0.302
o.294
0.228
0.346

68
54

2
6

68
49
32

6

0.637
0.615
0.699
0.605

0.911
0.802
0.862
0.750

0.039
0.010
0.062

0.0735

0.043
0.083
0.043
0.139

0.170
0.156
0.084
0.130

0.268
0.320
0.166
0.296

0.840
0.908
0.864
0.810

cyanophyta
all inputs
first strip
last strip
(generic)

68 75800
45 54000
1 49900
6 68300

1450
1420
t740
1870

diatoms
all inputs
first strip
last strip
(generic)

0.319
0.306
0.356
o.409

1.019
1.01

1.250
1.05

0.556
0.591
0.419
0.318

o.354
0.374
0.384
0.372
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Table K.3: Effect of "data strip-mining" on model effor rates. Darling River.

RMSE U1 U2 Av tc

total
all inputs
first strip
last strip
(generic)

chlorophyta
all inputs
first strip
last strþ
(generic)

cyanophyta
all inputs
first strip
last strip
(generic)

flagellates
all inputs
first strþ
last strip
(generic)

60 19800
16 19100
0 n/a
6 22lOO

4300
4140
4690
4430

4440
4380
4720
4940

1850
1990
2150
1780

60

60

0.3r7
0.310

nla
0.345

0.343
o.352
0.374
o.367

0.989
0.979

nla
t.04

0.477
0.480

nla
0.351

0.542
0.582

nla
0.500

1.00
1.03

1.16
0.950

0.500
o.475
0.389
0.435

0.484
0.584
0.484
0.5r2

3l
8

7

38

4
7

60
8

3

7

0.361
0.381
0.376
0.390

0.318
0.391
0.423
0.330

1.00
t.04

1.008
LOz

0.442
0.389
0.379
0.331

0.436
0.526
0.396
0.448

0.910
0.881
0.954
0.930

0.454
0.303
0.206
0.400

0.520
0.410
0.284
o.452



269

Table K.4: Effect of "data strip-mining" on model error rates. Lake Kasumigaura.

Output Inputs RMSE Ul U2 Avr
chlorophyll a

all inputs
first strip
last strip
(generic)

Gomphosphaeria spp.

all inputs
first strip
last strip
(generic)

10
68

2
5

10
27

2
6

51.3

56.7

61.4
s4.0

0.304
0.303
0.352
0.291

0.952
0.946
t.216
0.990

0.113
0.104
0.000
0.109

0.148
0.179
0.006

0.0884

0.178
0.188
0.062
0.214

0.16s
0.240
0.073
o.205

0.518
0.544
0.398
0.636

26200
27500
28400
26100

0.532
0.497
0.626
0.588

r.031
1.00

1.249
1.08

Micro cy stis aerugino s a
all inputs
first strip
last strip
(generic)

10
53
18

6

1 10000
I I 3000
L06000

99700

0.341
0.354
0.368
0.376

0.800
0.840
0.878
0.820

0.485
0.449
0.433
0.460

Oscillatoría spp.

all inputs
first strip
last strip
(generic)

'to 58100
48300
40800
4s800

0.623
0.500
0.758
o.476

1.103

0.966
t.034
0.950

0.034
0.191
0.000
0.243

0.206
0.428
0.003
0.268

16

1

6
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Table K.5
Reservoir.

Effect of "data strip-mining" on model error rates. Myponga

Inputs RMSE Ul U2 AvrOutput

f,

chlorophyll a
all inputs
first strip
last strip
(generic)

3.51
3.10
3.98
3.92

27tt
2160
2886
2240

40 11701

38 11600
9 11124
6 10800

0.711
0.706
0.682
0.614

0.016
0.017
0.102

0.0352

38

16

ll
5

0.184
0.1 89

0.t97
0.212

0.728
0.666
0.660
0.632

0.868
0.915
0.99s

1.00

0902
0.919
0.874
0.830

0.332
0.356
0.402
0.250

Ankistrodesmus spp.

all inputs
first strip
last strip
(generic)

Dictyosphaeríum spp.
all inputs
first strip
last strip
(generic)

Scenedesmus spp.
all inputs
first strip
last strip
(generic)

11 t6
1640
1645
I 860

0.1 18

0.148
0.r23
0.123

40 0.554
0.546
0.509
0.528

3l
5

6

40
31

35
6

0.498
0.482
o.496
0.481

1.046
1.00

t.o02
1.01

0.222
0.232
0.194
o.144

0.253
0.240
0.219
0.255

0.738
0.748
0.673
0.726

0.755
0.746
0.918
0.780

0.446
0.4s4
0.358
0.448

Table K.6: Effect of "data strip-mining" on model error rates. Lake Soyang.

Output Inputs RMSE Ul U2 Avr

chlorophyll a
all inputs
first strip
last strip
(generic)

28
t9
6

5

2.3s
2.26
2.63
2.14

0.315
0.354
0.421
0.3t5

0.923
0.903
r,126
o.976

0.252
0.297
0.102
o.242

0.242
0.1 88

0.170
0.260
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Table L.1: Performance comparison - extended generic models. Lake Biwa.

Output Inputs RMSE Ul U2 Avr
Chlorophyll a

genenc
+species
+lag
+species +lag
+pH
+weather
+Si
+spe +lag + pH +wea

Euglena americana
genenc
+species
+lag
+species +lag
+pH
+weather
+Si
+lag +pH + wea + Si

1950
20to
1790
1690
r 860
I 890
1830
1780

0.560
0.555
o.541
0.542
0.540
0.562
0.563
0.558

0.910
0.930
0.834
0.785
0.867
0.819
0.850
0.821

6

7

6

l6

5

8

l0
t6

6

9

t2
18

7

8

l

6.96
6.37
6.29
5.93
6.83
6.63
7.05
6.O1

609
6s5
601

562
617

634
615

0.303
0.282
0.219
0.262
0.295
0.281
0.308
0.273

0.461
0.492
0.463
0.422
0.452
o.495
0.47'.7

0.9s7
0.871
0.864
0.815
0.940
0.912
0.969
0.834

0.087
0.170
0.1 84

0.247
0.112
o.146
0.078
0.200

o.120
o.2lo
0.210
0.342
0.208
o.240
o.712
o.324

0.350
0.302
0.224
0.290
o.294
0.248
0.284
o.286

0.400
0.416
0.460
o.426
0.384
o.392
0.390

0.438
0.346
0.362
0.308
0.406
0.346
0.390
0.324

6

9

l2
18

7

8

1

16

0.095
o.o976

0.121
0.168
0.129
0.093
0.104
0.123

Melosira granulata
generlc
+species
+lag
+species +lag
+pH
+weather
+Si

Pediastrum biwae
generic
+specres

+lag
+species +lag
+pH
+weather
+Si
+lag +wea

0.950
1.03

0.942
0.882
0.961
0.994
0.964

0.195
0.132
0.198
0.290
o.2tt
0.128
0.161

6

9

I2
18

7

8

1

14

5s4
579
528
568
s66
549
586
s57

0.593
0.613
0.572
0.565
0.586
0.618
0.587
0.604

0.948
0.990
0.904
0.912
0.968
0.939

1.00
0.953

0.106
0.0686

0.155
0.122
0.097
0.094
0.084
0.094
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Table L.2: Performance comparison - extended generic models. Burrinjuck Dam.

genenc
+species
+lag
+species +lag
+weather
+inflow
+stratification + depth
+lag +inf +str +dep

Chlorophyta
genenc
+specles
+lag
+species +lag
+weather
+inflow
+stratification + depth
+lag +spe +str +dep

Cyanophyta
generic

+species
+lag
+species +lag
+weather
+inflow
+stratification + depth
+lag +str +dep

5

8

10

t6
t4
16

1

23

19.4

2t.t
18.0
21.9
21.2
18.9

18.2
18.9

0.399
o.441
0.370
0.452
0.419
0.387
0.376
0.383

0.626
0.670
0.581
0.69s
0.649
0.610
0.586
0.608

0.810
0.740
o.159
0.181
0.194
0.893
0.751
0.114

0.750
0.800
0.750
o:753
0.870
o.841
o.110
0.718

0.394
0.302
0.478
0.262
0.353
o.424
0.461
0.431

0.0735
0.145
0.126
0.091
0.041
0.021
0.098
0.098

0.139
0.151
0.200
0.149
0.079
0.058
0.1 66
o.122

0.318
0.494
0.308
0.448
0.385
0.249
0.366
0.480

0.346
0.356
o.364
0.394
0.322
0.304
0.370
0.338

0.1 30
0.178
0.328
0.278
0.140
0.1 58

0.224
0.192

o.296
0.254
0.298
0.268
o.294
0.206
0.370
0.334

0.312
0.384
0.400
0.356
0.374
0.406
0.394
0.434

6

9

t2
l8
l5
t]

8

16

6

9

12

t8
l5
11

8

I4

3610
3390
3430
3600
3120
4040
3390
3540

68300
12600
67400
68600
80600
74500
61600
68400

1870
1610
1870
1650
I 800
2too
1820
1660

0.489
0.463
0.470
0.489
0.516
0.530
0.495
0.487

0.605
0.554
0.534
0.588
0.588
0.613
0.545
0.588

Diatoms
generic
+specles
+lag
+species +lag
+weather
+inflow
+stratification + depth
+spe +wea +str +dep

6

9

72

18

15

fl
8

20

0.409
0.341
0.419
0.362
0.388
0.434
0.390
0.350

1.05

0.900
r.05

0.921
1.02
1.18

1.02
0.927
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Table L.3: Performance comparison - extended generic models. Darling River.

Output Inputs RMSE Ul U2 Avr
Total phytoplankton

generrc
+species
+lag
+species +lag
+pH
+Si
+pH +spe +Si

Chlorophyta
geneflc
+species
+lag
+species +lag
+pH
+Si

6

9

I2
l8
7

7

12

7

10

t4
20

8

8

22tOO
19900
21200
21300
2ttoo
21300
19300

4430
4530
4120
4660
4380
4530

4940
4570
4850
4130
46s0
4800
4850

1780
1680
1690
t'720
1900
1870

0.345
0.32t
0.341
0.344
0.336
0.330
0.312

0.367
0.314
o.394
0.400
0.367
o.3lt

1.04
0.930
0.990
0.999
0.992
0.995
0.901

0.351
0.444
0.312
0.391
0.386
o.404
0.480

0.500
0.512
0.518
0.s40
0.502
0.530
0.s68

0.950
0.910

1.01

0.991
0.937
0.962

0.435
0.415
0.369
o.372
0.43s
o.421

o.5t2
0.492
0.506
0.s16
0.508
0.484

Cyanophyta
generic
+species
+lag
+species +lag
+pH
+Si
+spe +lag +pH +Si

Flagellates
generic

+species
+lag
+species +lag
+pH
+si

7

10

t4
20

8

8

t9

0.390
0.368
0.403
0.391
0.364
o.376
0.402

1.02
0.948

1.01

0.980
0.965
0.987
0.998

0.930
0.880
0.887
0.904
0.998
0.911

0.331
0.396
0.319
0.352
0.396
0.368
o.326

0.448
0.410
0.460
o.494
0.s06
0.486
0.468

7

l0
t4
20

8

8

0.330
0.308
0.312
0.319
0.343
0342

0.400
0.465
0.454
0.438
0.351
0.360

0.4s2
0.448
0.530
0.528
0.458
0.436
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TabIe L.4: Performance comparison - extended generic models. Lake

Kasumigaura.

Output Inputs RMSE Ul Uz Avr
Chlorophyll a

genenc
+species
+lag
+species +lag
+pH
+zoo
+weather
+Si
+lag +zoo +Si +wea

Gomphosphaeria spp.

generlc
+species
+lag
+species +lag
+pH
+zoo
+weather
+Si
+zoo +Si +spe

0.205
0.198
0.260
o.220
0.135
0.205
0.150
0.240
0.268

5

8

10

t6
6

11

l0
6

22

54.0
54.3

48.9

49.6
53.2

41.8
49.3

50.7

46.9

26r00
25100
26800
26500
27900
25800
28200
22400
23100

0.291
0.289
0.272
0.212
0.289
0.264
0.277
0.280
0.255

0.990
0.984
0.896
0.896
0.953
0.863
0.904
0.912
0.824

1.08

1.04
1.11

1.10
l.l6
1.04

l.t4
0.883
0.919

0.820
0.810
0.690
0.727
0.789
0.839
0.146
0.802
0.704

0.109
0.129
0.199
0.166
0.129
0.257
0.115
0.17 1

0.272

0.0884
0.119
0.103
0.126
0.019
0.160
0.094
0.230
o.t94

0.460
0.485
0.622
0.579
0.493
o.456
0.549
0.484
0.599

0.214
0.210
o.292
0.304
0.284
0.380
0.294
0.332
0.306

0.636
0.632
0.572
0.562
0.596
0.528
0.554
0.s42
0.536

6

9
t2
l8

,7

t2
11

7
15

6
9

l2
18

1

l2
11

,7

tl

6
9

t2
18

1

l2
11

7

0.588
0.518
0.5s9
0.544
0.571
0.534
0.558
0.518
0.523

Micro cystis aeruginosa
genenc
+specles
+lag
+species +lag
+pH
+zoo
+weather
+Si
+lag +wea

Oscillatoria spp.

genenc

+specles
+lag
+species +lag
+pH
+zoo
+weather
+Si

99100
99200
83700
88700
99600

105000
92700

101000
87500

45800
45200
5s000
52100
48500
49100
49500
49800

0.316
0.352
0.302
0.319
0.351
0.360
0.331
0.354
0.309

0.476
0.502
0.521
0.542
0.509
0.512
0.494
0.515

0.950
0.940
r.t4
1.08

0.982
0.988

1.01

1.01

0.243
0.222
0.r31
0.111
0.197
0.188
0.189
0.1 85

0.268
0.348
0.282
0.254
0.300
0.298
0.304
0.336
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Table L.5
Reservoir.

APPENDIX L. FORWARD SELECUON

Performance comparison - extended generic models. Myponga

Inputs RMSE Ul U2 AvKOutput
Chlorophyll a

genenc
+lag
+heavy metals
+lag +hea

5

10

t3
l8

3.92
3.s3
3.76
3.52

0.632
0.646
0.632
0.654

2240
2340
2250

o.212
0.190
0.191
0.187

0.528
0.543
0.509

1,00
0.903
0.961
0.901

0.830
0.865
0.829

0.614
0.685
0.661
0.695

o.o3s2
0.023
0.0s0

0.250
0.342
0.306

Ankistrodesmus spp.
genefic
+lag
+heavy metals

Dictyosphaeríum spp.

generic
+lag
+heavy metals
+lag +hea

Scenedesmus spp.
generrc
+lag
+heavy metals
+lag +hea

6

t2
t4
20

1860
t720
1820
1650

0.123
0.158
0.158
0.217

6

l2
14

6
t2
t4
20

0.780
0.749
0.161
0.734

10800
10440
10700
10300

0.255
0.249
0.241
0.238

0.126
o.145
0.131
0.756

0.487
0.472
0.469
0.448

1.07

0.992
1.04

0.944

0.144
0.210
0.164
o.226

0.448
0.542
0.446
0.4'76

Table L.6: comparison of starting and f,nal model error rates. Lake soyang

Output Inputs RMSE Ul U2 R¿ Av r

Chlorophyll a
generic

+lag
+pH
+weather
+inflow
+lag +pH

5

10

6

6

6

11

2.14
2.09
2.09
2.24
2.30
2.t2

0.315
0.371
0.367
0.365
0.316
0.319

0.916
0.954
0.946
0.95s
0.986
0.963

0.242
0.261
0.274
0.273
0.238
0.236

0.260
0.290
0.278
0.172
0.1 88

0.294
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Figure M.1: Lake Biwa. specific input layer. a chlorophyll a. B Euglena
americana. C Melosira granulata. D Pediastrum biwa.
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Figure M.2: Burrinjuck Dam. Specific input layer. A ChlorophyIl a' B

Chlorophyta. C Cyanophyta. D Diatoms.
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Figure M.3: Darling River. Speciflc input layer. A Total phytoplankton. B
Chlorophyta. C Cyanophyta. D Flagellates.
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Figure M.4: Lake Kasumigaura. Specific input layer. A Chlorophyll a. B

Gomphosphaeria spp. C Microcystis aeruginosa. D Oscillatoria spp-
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Figure M.5: Myponga Reservoir. Specif,c input layer. A chlorphyr a. B
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