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Abstract

This thesis is a theoretical evaluation of the (single) first photon detection (FPD) tech-

nique as a limiting case of time-resolved transillumination imaging (TI) for diagnostic

purposes. It combines analytic and Monte Carlo (MC) simulation methods to derive

the single photon statistics and to solve the radiative transfer equation (RTtr) for a

given source-medium-detector geometry.

Initially, a standard Monte Carlo (SMC) simulation algorithm for visible to infrared

photon transport through a turbid (randomly scattering and absorbing) medium such

as soft tissue is developed from first principles. This provides a time dependent so-

lution of the RTE at longer time scales. In order to efficiently simulate very early

arriving photons, an Indeterministic Monte Carlo (IMC) technique based on path in-

tegrals is devised and validated. The IMC utilises the SMC algorithm to propagate

photon trajectories and extends controlled MC techniques to accelerate and enhance

the probability of detecting shorter trajectories thereby improving the statistics.

The IMC technique provides a tool for the construction of a temporal point spread

function (TPSF) of the emerging photons for the entire time scale. The computational

procedure is validated by reproducing the published spatial resolution results associ-

ated with conventional time-gated systems over longer time scales of several hundred

picoseconds. It is then used to predict the spatial resolution of these systems for shorter

(sub-100 picosecond) time scales.

The calculation of the TPSF at short time scales for a pulse made incident onto

the medium enables the mathematical derivation of the temporal probability density

functions (p.d.f.) for the first arriving photon, Ít(t¡. This facilitates the investigation

of a first photon detection (FPD) system as applied to a diagnostic TI configuration.

IV



A FPD system produces a signal representing /t(¿) from which the mean transit time

of the first arriving photon , t1, rrray then be estimated for a sequence of incident pulses

at each scan position. By rectilinear scanning across the medium, a 2-D map of ty can

be created and displayed as a grey scale image.

The application of FPD to TI is evaluated assuming an ideal detector capable of

detecting the first arriving photon with 100% efficiency (infinite extinction coeffi.cient).

However, a model for a FPD system corresponding to a non-ideal (single first photon)

detector is also considered through the evaluation of the p.d.f. for the Iater (I"t, 2d,

. . .) arriving photons. This enables a detection time limit to be specified to eliminate

the later arriving photons and thereby overcome distortions in the first photon p.d.f.

which may be caused by any inefficiency in the response of the detector.

The trPD technique is then applied to obtain fi(f) for various laser pulse intensities.

The trPD system is also examined for the case of spherical inhomogeneities (represent-

ing tumours) embedded in the centre of an otherwise homogeneous medium. The effect

of the variations in the embedded inhomogeneity (size and optical density) and optical

properties of the medium are also studied. A heterogeneous medium which resembles

tissue more realistically is considered.

For a FPD system where the received signal does not change (one photon) per

incident pulse, the signal contrast is redefined and is examined as a function of the

incident laser power and medium absorption and scattering properties. The signal-

noise-ratio is also evaluated for the FPD system as the error in the estimation of ú1.

Based on the analysis of the SNR, the number of incident pulses (per scan position),

needed to achieve a required SNR, is also derived.

It is shown that the p.d.f. of the first arriving photon fot a - 3mm totally absorb-

ing inhomogeneity located at the mid-plane of a 50mrn thick tissue-like medium may

be distinguished (95% confidence level) from the p.d.f. of a medium without the inho-

mogeneity. This theoretical study provides an introduction aimed at assisting further

experimental research into the limits of transillumination imaging employing a first

photon detection (FPD) system.
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Chapter 1

Introduction

1.1- History and motivation

Tissue transillumination was used in the mid 1800s by British physicians to detect

lesions in tissue before Cutler [1] postulated the use of visible light as an imaging tool

to locate breast lesions in 1929. This motivated further investigation into transillumi-

nationl imaging (TI) as a clinical technique based on the propagation of light through

a turbid (randomly scattering and absorbing) medium such as soft tissue. The tech-

nique did not attract much attention initially as an imaging modality, due largely to

the success of x-rays, as well as to the lack of suitable illuminating sources and efficient

detectors.

The extension of optical monitoring of intact tissues from the visible to the near-

infrared (NIR) wavelengths range (700-1300nrn) was first reported in 1977 for the

purpose of in uiuo monitoring of cerebral and myocardial oxygen sufficiency [2]. In nor-

mally hydrated tissues, water absorbs all photons with wavelengths of above I300nm,

over a path-length of less than a few millimetres. In the visible part of the spectrum,

below 700nm, the intense absorption bands of hemoglobin (Hb) and the increasing

light scattering phenomena again prevent transmission over long path-lengths. How-

ever in the 700 to 1300nrn range of the IR, a significant amount of radiation can be

transmitted through biological tissue over long distances. It became evident [2] that

lTransillumination imaging is also referred to as diaphanography in the literature
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the much greater NIR translucency of skin and bone made it possible to reach brain

and muscÌe tissue without surgical intervention.

Interest in NIR breast imaging has been driven by certain recognized shortcomings

in x-ray mammography. While x-ray mammography can provide high spatial resolution

(- I00p,m) and has an 85-90% detection rate of breast cancer (high sensitivity), it has

low positive predictive value resulting in a high percentage of negative biopsies (low

specìficitv) [3]. While ultrasound has helped to reduce the biopsy rate by providing a

diagnostic way of distinguishing cysts from solid tumours [4], there still is difficulty in

determìning tumour grade and metabolic state. Some tumours are indistinguishable

from heaithy tissue using x-rays as the differential absorption (and scatter) is low for

x-ray photon energies. It has also been estimated that x-rays in mammography cause

0.2% of breast cancers [5]. On the other hand, TI is non-invasive and has the potential

to detect and distinguish tumours based on haemoglobin concentration and oxygen

saturation changes as well as changes in the scattering and absorption properties [6].

A high differential variation of absorption and scattering coefficients of light in the NIR

region enables visualisation of diffused tumours which are otherwise transparent to x-

rays. Concerns about the effects ofionizing radiations, the need for frequent screenings

and increased reliability (sensitivìty) of diagnosis have motivated scientists to pursue

research in TI more seriously in recent years.

Screening demands a spatial resolution of a few millimetres in order that tumours

can be distinguished from the surrounding healthy tissue while they are still small in size

before metastasis occurs. A,lmm3 breast tumour contains - 106 cells with a doubling

time of 120-150 days. It is therefore evident that, at this growth rate, early detection

of cancerous lesions increases the probability of cure. Screening mammography has

decreased the mortality rate from breast cancer by approximately 30% as a result of

diagnosis at an early stage. Although, it may not be a realistic goal to achieve the

high spatial resolution of x-ray mammography, millimetre spatial resolution, using TI,

would help the early diagnosis of tumours of low x-ray contrast. It is therefore hoped

that TI would complement current mammography and supplement it in terms of the

range of patient ages eligible for screening programs.
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t.2 Optical characterisation of human breast tissue

A mature female breast is composed of essentially four structures: lobules or mammary

glands, milk ducts, fat and connective tissue. The lobules group together into larger

units called lobes. On average there are 15-20 lobes in each breast and their distri-

bution is not even. The glandular structure of the breast is only significant during

late pregnancy and when a woman is nursing, At other times the glandular and duct

system is undeveloped and the bulk of the breast mass is attributed to the deposition

of fatty adipose tissue, with a water/lipid ratio of 21174% l7l'

The breast tissue includes chromophores; oxyhaemoglobin(Hboz), deoxyhemoglobin

(Hb), cytochromes and pigments. In the NIR spectra, absorption is principally caused

by the chromophores, oxy- and deoxyhemoglobin, and water [8, 9] whereas scatter-

ing originates from fluctuations (inhomogeneities) in the refractive index of connective

tissues (extracellular) and cell constituents (membranes, cell organelle and nucleus).

Within the photon energy range of visible to NIR (700-1300nm), absorption is

ascribed either to electronic or vibrational excitations. NIR absorption bands are

associated with transitions between molecular vibrational modes, in particular overtone

and combination bands of hydrogenic stretching and bending vibrations in C-H, N-

H and O-H bonds, with hydroxyl absorption bands of water predominating. The

probability of absorption is greatly exceeded by scattering.

Human tissue is a highly complex structure composed of tightly packed groups of

cells entrapped in a network of fibres through which water percolates. Viewed on a

microscopic scale, the constituents of tissue have no clear boundaries. They appear to

merge into a continuous structure distinguished optically only by spatial variations in

the refractive index. To model such a complicated structure as a collection of particles,

it is necessary to resort to a statistical approach. Hence, for modelling purposes soft

tissue is treated as homogeneous with at most a clearly defined layer structure.

In the radiative transfer description of transillumination imaging, light propagation

in turbid media may be characterised by the refractive index n, linear absorption,

scattering and total attenuation coefficients [Iat É¿, and pt(: l-tol t-t"), and the function

3



p(0): /(cosd)sind which describes the distribution of the scattering angle 0. f (cos0)

is referred to as the scattering phase function. þo and pl" describe the total probability

per unit path length of a photon being absorbed or scattered, respectively. Other useful

parameters are the anisotropy g, the mean cosine of the scattering angle determined by

/(cos á), the transport (or reduced) scattering coefficient þ'": p"(7 - g) and scattering

meanfreepaths, l":11þt". Avalueof gclosetol,0or-1 representsstronglyforward,

isotropic and strongly backward scattering respectively. The transport length l' : 7l p'"

is the distance over which the trajectory loses memory of its original directionality [10].

The effective attenuation coefficient ¡1,"¡¡ : JStt{lt" + y'), in the first approximation,

representstherateof theexponentialdropintheintensity, (e-u"tt "),farawayfromthe

source. Finally, for simplicity in the nomenclature, the speed of light in the medium is

denoted by c which is speed of light in vacuum divided by the refractive index.

Various forms for the phase function have been suggested lII, 12, 13]. However, ac-

cording to the similarity principle [14], turbid media that have different phase functions

but the same value of the anisotropy g and the single scattering albedo w : þsf ¡,rt¡

have approximately the same radiative characteristics. Therefore, for the purpose of

this thesis, the widely accepted Henyey-Greenstein's phase function [12,14] is used.

The optical response of tissue generally varies with the illuminating wavelength.

Methods to determine the optical parameters of human tissue both in uiuo and in ui,tro

have been extensivelyreported[7,8,9,13,15-34]. A report by Wai-Fung et al [24] provides

a summary of these methods. The optical properties are commonly evaluated by fitting

a theoretical solution of a radiative transfer model to the shape of the characteristic

function curves2. Therefore, the accuracy of the measurement depends on how well the

solution of the theoretical model describes the experimental setup. For example, using

the diffusion model and based on a curve fit to the temporal point spread (temporal

characteristic) function (TPSF), Ntziachristosa [15] demonstrated that the error in

measurement of þa and ¡;l varied depending on whether a fit to the whole or only the

zFor an homogeneous sphere of radius r, Mie theory predicts the wavelength dependence of the

scattering and the relation between scattering and sphere size [35] . However, since the exact composi-

tion of tissue is often unknown due to variations, the method of curve fitting to TPSF using diffusion

theory is more convenient.
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later part of the TPSF was used. More accurate results were obtained when only the

later part of the TPSF was used. As will be discussed, this is due to the fact that the

diffusion model does not provide an accurate description of the radiative transport in

the early part of the TPSF.

A great variation in the values of the optical parameters of breast tissue has been

observed. This may be attributed to a number of factors, for example blood glucose

concentration [36], menstruation [7], measurement techniques (e.g., in uitro or in uiuo)

and variations between test subjects (e.g. age). Furthermore, measurements in uiuo

usually sample both adipose and glandular tissue making their interpretation compli-

cated. Er uiuo measurements can be made on specific tissues but the optical properties

may be different due to sample handling and blood loss. Table 1.1 includes some of

the reported values for po, ¡-tt, an,d g for various laser wavelengths. In a breast tumour

the absorption generally increases which is often due to an increased concentration of

oxy-haemoglobin. Lower ¡;'" is expected for fluid-filÌed structures (i.e., fluid-filled cysts),

and increased scattering should occur in the case of flbrotic tissue (i.e., frbroadenoma).

The scattering coefficient is 1.3-1.4 times higher for pre- compared to post-menopausal

subjects [8]. This is attributed to the fact that pre-menopausal, highly glandular tissue

has substantial structural complexity whereas postmenopausal breast is dominated by

low water content adipose. Studies [37] show that the reduced scattering coefficient ¡;/",

decreases with increasing wavelength3. The refractive index of human tissue has been

reported to be between 1.33-1.55 [38] and for breast tissue it is expected to be close to

1.45 [39, 40].

1.3 Radiative transfer equation (RTE)

Maxwell's equations of electromagnetism describe analytically, the wave theory of en-

ergy transfer. However, seeking a solution based on Maxwell's equations for a medium

3Torricelli et al l37l have found a linear relation: tn(p',) = oln(À) * ó between the scattering

coefficient pt, and the wavelength À with d - -(0.4-1.0) and ò - 2.3-3.0 depending on the subjects

and tissue type (abdomen, arm and head). This also implies greater penetrability of NIR and hence

its suitability in TI.
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Tissue type À nTn lt"\mm - 
) u,'.lrnm - s Reference

Breast(normal)

Glandular

Adipose

Fat

Fibroglandular

Breast (tumour-Fibrodenoma)

Breast (tumour-Fibrocystic)

Breast (tumour-Carcinoma)

Dermis
(Caucasian)

Muscle

Brain(white matter)
Brain(grey matter)

Brain(tumour-glioma)
Brain (tumour-melanoma)

Whole blood

674
753
811
956
700

900
1 100

700

900
1100

700
700
700
700
674
811

956

700
900

1 100

700
900

1100

700
700

1 100

633

633
700

900
1000

633
690-800

700

900
633
633
630

630
665

685
960

0.003-0.004
0.0046+0.0014

0.003-0.004
0.008-0.010

0.047 + 0.011

0.062 + 0.005
0.06 + 0.03

0.07 + 0.008
0.075 + 0.008

0.1+ 0.03

0.004+0.001

0.0045+0.0021
0.005-0.007
0.005-0.007
0.012-0.016

0.052 + 0.047
0.072 + 0.053

0.06 + 0.03
0.022 + 0.009
0.027 + 0.011

0.05 + 0.03
0.045 + 0.012

0.05 + 0.02
0.033-0.241

0.27
0.019-0.149
0.013-0.045
0.018+0.001

0.L27
0.085 + 0.01

0.046
0.032
0.16

0.26
0.5

0.130
0.265
0.284

0.78- 1.1

0.89+0.13
0.70-0.95
0.65-0.95

7.42 + 0.30
0.99 + 0.2

o.B+0.25(0.e6+0.02)
0.86 + 0.13
0.79 + 0.11

0.65+0.25(0.e8+0.02)
0.8-1.8

0.53+0.11
0.7-r.7

0.90+0.20
0.75-0.9
0.70-0.8
0.70-0.75

0.72 + 0.77
0.53 + 0.14

0.4+0.15(0.e8+0.01)
1.34 + 0.19
0.95 + 0.17

0.73+0.3(0.98+0.01)
1.18 + 0.31

1.8 + 0.5
0.72+ 0.15(0.95 + 0.01)

2.73-3.27
3.55 (0.81)
2.32-2.68
1.63-1.18

1.1+0.1(0.85-0.e5)
0.89

0.83
0.59

o.20(0.e6)
0.7(0.88)

0.70
0.80

0.611(0.ee5)
1.413(0.ee)
0.384(0.e2)

LBI

17l

IB]

tBl

l27l
l27l
l27l
l27l
l27l
l27l
tel
[2s]
tel

[28]
t8l
t8l
t8l

127)

l27l
l27l
l27l
l27l
l27l
127)

tel
l27l

125,201
126l

[20]

120l

l20l
[20]
[41]
l20l
[20]
l2el
l2sl
[30]
[30]
[31]

l42l
[31]

Table 1.1: Optical properties of human breast tissue. Optical properties of other soft tissues
(muscle, brain and blood) have also been presented for comparison.
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such as human tissue is a cumbersome task. This is due to the highly complex struc-

tures involved and a iack of knowledge of the dielectric properties of their components'

Most theoretical models are therefore based on the particle interpretation of light. The

magnitude of the photon density in a specified direction is then assumed to be plopol-

tional to the scalar freld I, the energy radiance. This leads to the radiative transfer

mod,ei in which the equations are much simpler 1I2,43). At visible and NIR energies,

photon interactions can be considered elastic and where wave properties of the light

can be neglected, radiative transfer theory provides an accurate description of most

observable effects.

when the electromagnetic wave properties (e.g. polarization) and inelastic collisions

(change in the photon frequency) are ignored, the time-dependent radiative transfer

equation (RTE) is the most widely used transport equation in time-resolved TI' This

equation describes the behaviour of the specific intensity I(t,t,.ô), i'e', the energy,

moving in the direction .î, per unit solid angle, per unit time, and per unit area normal

to the .ô direction, with units wm-2. The RTE can be obtained by considering the total

space and time variation of the specific intensity along a direction ,ô in an elementary

volume and making this equal to the variation of specifi-c intensity due to scattering

and absorption inside the medium. The RTE is then given as lI2',441:

1 â1(r, ú,,ì)

¿ôt ,3.V1(r, ¿,.ô) - FtI(r,¿,.ô) +

lJ" /(.ô,,ô')1(r,t, 3)d2 3', f q(r, l, .ô), (1 .1)

The LHS of Eqn. 1.1 describes the variation in the intensity 1 w.r't. time' The terms

on the RHS relate the four contributions to the change in intensity: (1) change due

to intensity gradients, (2) decrease due to absorption or scatter, (3) contribution from

other scatterers and (4) presence of a source. The phase function /('î,'ô') describes the

distribution of the scattering angle in the direction of -î/ with respect to the propagation

direction .â as described before.
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t.4 Solution of RTE

The RTE in its general time dependent and three dimensional form has not been solved

either analytically or numerically. The dependence of the RTE on several variables

(seven in general) and the existence of the integral term, suggest two pathways in
solving this equation: (1) use of approximations in an effort to allow its application
to the study of realistic problems and (2) the solving of a restricted form of the RTE
directly by numerical or statistical techniques. Approximations may be:

Geometric:

- Isotropic, homogeneous media,

- Infinite or semi-infinite geometries,

- one-dimensional symmetry (plane, spherical or cylindrical),

- Periodic symmetry (Lattices).

Energy dependencea:

- One-speed approximations in which all photons are characteÅzed by a single

kinetic energy,

- Simple models of the energy dependent cross section.

Angular:

- Isotropic source,

- Isotropic scattering,

- Expansion of the collision kernels in a finite set of Legendre polynomials in angle.

In the following sub-sections some of the theoretical techniques which are commonly

employed to solve the RTE are introduced. The list is by no means comprehensive

and a more extensive review has been given by Arridge and Hebden [a5]. Because

of the very short times of flight under investigation, these techniques generally suffer

from one or more of the following drawbacks: (1) complexity of calculation (e.g. to
obtain an exact 3-D analytical solution of RTtr), (2) accuracy and/or limitations in

aNote that since the energy dependence was already eliminated in Eqn. 1.1 this listed only for
completion here.

sThe collision kerneÌ is a generalised form of the phase function which is also a function of the
photon velocity as weìl as the scattering angle.
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temporal or spatial boundary condition when approximations are applied and (3) they

a e computationally intensive. However, the Monte Carlo simulation technique proved

flexible and accurate when it was made less computationally intensive by introducing

a new variance reduction technique.

I.4.L Analytic Models

The RTE is a deterministic equation and simpler deterministic models can be derived

from it. The principle of expanding the intensity, I, source, q, and phase function,

/(cos d), in spherical harmonics and retaining only a limited number of terms is well

established 146, 471. A recent approach by Cai et al148,49] using a cumulant expansion

provides an exact solution, to an arbitrary order for an infinite medium. Further work

such as that of Arridge et al [50], Moon et al lSIl and Joblin [52] is needed to explore

the applications of this solution to a finite medium. One of the best summaries on

the analytic solutions has been provided by Kaltenbach and Kaschke [53] who derive a

hierarchy of equations, of which the simplest is the time-dependent diffusion equation.

Diffusion Approximation

By assuming that the radiation flux6 has a weak angular dependence and also that the

time variation in the current densityT is much smaller than the collision frequency [12,

54], the integro-differential RIE is converted to a partial differential equation (PDtr);

0t
: -DY2I(r, ú,.î) * q(r, f ,.î), (1.2)

where the diffusion coefficient D is defrned as

D :13(p, + /r:)l-t (1 .3)

The pulsed sources used in optical imaging are usually sufficiently close approximations

to ó-functions to make the Green function an appropriate solution of the diffusion

6Flux is defined as the magnitude of the photon density perpendicular to an element of area.
TThe photon density per unit cross sectional area is referred to as current density.

0 I (r,tT
c
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Figure 1.1: A schematic diagram of possible photon trajectories. Note that undetected
trajectories also include both specular and diffused reflections from the front r-y incident
surface.

equation (1.3). Green functions for various homogeneous geometries (slabs, cylinders

and spheres) have been published, for both the temporal and frequencys domains [50,

55]. Eason et al 156l provide analytic forms with more complex source conditions

including collimated and distributed sources. The analytic form for the Green function

of a sphere embedded in an infinite scattering domain has also been derived [57, 58, 59].

The diffusion model presented by trqn. 1.2, best describes the diffused portion of the

transmitted pulse. However, it assumes the light photons are diffused with a constant

diffusion coefficient [60]. This assumption is invalid in the case of snake photons (cf.

Fig. 1.1 and section 1.5.2) that contribute to the early part of the transmitted pulse [48,

49]. To account for this, a commonpractice is to assume that all incident photons are

initially scattered at a depth zo : ltinside the medium which is called the centre-moved

diffusion (CMD) model. But the CMD breaks the reciprocity principtee [t+] and still

fails to describe photon propagation for early times of flight 16I,62].

sThe time dependent RTE may be converted to an equation in the frequency domain by means of

Fourier transform.
eThe reciprocity principle requires the invariance of the solution under interchanging the source

and detector geometry.
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Finite difference method

The finite-difference method (F'DM) is a standard numerical technique for solving

PDtrs. A regular grid is established in the problem domain and differential opera-

tors are replaced by discrete differences. The problem then becomes one of sparse

matrix algebra. The FDM can also solve the transport equation, provided that the

angular integral over scattering directions is discretised. Hackbush [63] described a

multigrid scheme for elliptic equations (frequency-domain diffusion equation) which

has been applied to opticai tomography [64]. An optimal alternative direction implicit

scheme by Ames [65] was used by Natterer [?] to develop very efficient computation

schemes. Joblin [52] used the FDM to derive the limiting spatial resolution as applied

to time-resolved TI in the diffusion limit. Sun eú al167l have extended the FDM tech-

nique to simulate light scattering and absorption by non-spherical particles embedded

in an absorbing dielectric media.

Finite element method

The finite-element method (FEM) is more versatile than the FDM, especially in regard

to complex geometries and for modelling boundary effects [?]. BV finding an approxi-

mate solution that lies in the vector space spanned by a flnite number of basis functions,

the forward problem is reduced to one of finite matrix algebra for which efficient tech-

niques have been developed. A FEM for the transport equation is described by de

Oliveira [69] with a discrete number of scattering directions (e.g. 12). Its application

to the inverse problem was first introduced by Schweinger et al170]. Fast methods for

deriving measurement operators are described by Arridge [71].

L.4.2 Stochastic approach

Stochastic methods invoive modelling individual photon interactions either explicitly

(".g. Monte Carlo), or implicitly by deriving the probability density functions for

photon transitions (e.g. random walk or Markov random fie1d).
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Monte Carlo

In a standard Monte Carlo (SMC) simulation 154,,72,73] the trajectories of individual

photons are simulated as they undergo scattering and absorption events governed by

Iocal values of optical parameters. Photon paths are followed until they are absorbed

(or they have negligible contribution) or until they escape through the surface, thus

contributing to a measurement. Such a method offers great flexibility in modelling

arbitrarily complex geometries and parameter distributions. However, for tissue thick-

nesses of several centimetres, typical photon paths include several hundred interactions,

and many millions of photons need to be followed to obtain useful statistics for which

a very lengthy computation times is required. Variance reduction Monte Carlo models

such as controlled Monte Carlo(CMC) 1741, semi-analytical [75] and condensed [76]

Monte Carlo provide better statistics at short time scales.

Random 'Walk

Random walk (RW) theory describes the statistical behaviour of random walks in the

3D medium, constrained along the elements of a discrete lattice. Although working

within a simple cubic iattice severely restricts the number of directions in which motion

is possible, a powerful description of photon migration is achieved using a relatively

simple mathematical analysis [77]. When motion in an homogeneous space occurs with

each of the lattice directions having equal probability, RW theory can be considered

to be equivalent to a finite-difference approximation of the diffusion equation. Expres-

sions for the time-dependent transmittance through homogeneous scattering slabs have

been derived by Gandjbakhche et al178]. Their work has also provided an analytical

description of the spatial distribution of photons in the medium. A simple model for

the dependency of spatial resolution on photon flight-time has also been developed by

Gandjbakh che et al 1791.

Path Integral

This method of solving stochastic problems is based on Feynman's path integral for-

malism [80]. An application of path integrals to particle transport in turbid media was

12



flrst demonstrated by Feynman himself. More recently Perelman et al lSll have used

path integrals and the Lagrangian formalism to expiore their application to TI. The

path integral formalism states that the probability of occurrence of a photon trajectory

is governed by the action (hence the Lagrangian) evaluated along that path. As such

any path is probable. However, the classical path (which results in a minimum action)

becomes dominant with other paths deviating from this path but constrained by the

temporal and spatial boundary conditions. The path integral approach is therefore

attractive when the distribution of photon trajectories is of interest [82].

Markov randorn field method

Grünbaum and Zubelli, and also others [S3, 34] have developed a very different and

general stochastic model based on transition probabilities. Given the exact value of

the probabiiitìes and the boundaries and for an ideal noiseless system, the model can

recoveï the internal transition probabilities in the time-independent case. The method

has not been applied to real systems because of the difficulty in relating the essentially

topologically invariant analysis to real conditions.

l-.5 TYansillumination imaging techniques

Transillumination imaging aims to determine the optical response of the medium based

on absorption, scattering and polarization effects. A transillumination image is a two

dimensional map of a measurable characteristic of the transmitted intensity through

a turbid medium. The recorded distribution may then be used to infer the optical

properties of the medium. Imaging techniques are generally classifred as di,rect and

indirect [44, S5]. In a direct imaging technique the measured quantity, e.g., the trans-

mitted intensity, is directly translated into a pixel value which forms a projection

(two dimensional) image. This method assumes a one-to-one and direct, although not

necessarily perfect, correlation between the measurement and the information along

the detector line-of-sight. In the case of indirect imaging, a set of measurements of

one or more temporal or frequency characteristics of the transmitted light, e.9., mean
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flight time, is considered. This is followed by a reconstruction of the distribution of

the scattering and absorption coefficients which would yield the set based on a model

of radiative transport. Both direct and indirect imaging can be performed in either

frequency or temporal domains. The mathematical equivalence of the temporal and

frequency domaìn approaches is established through the Fourier transform of the ra-

diative transport description.

1-.5.1 Flequency domain techniques

In a frequency domain measurement, high frequency (100 MHz-10 GHz) intensity mod-

ulated laser beams illuminate the medium and create photon density waves within the

medium. For each modulation frequency, the photon density wave characteristics are

changed by propagation through the medium. The detector records the AC modula-

tion amplitude and phase shift at each modulation frequency. A continuous wave (CW)

light source can generally be utilised and hence measurements of this type involve less

cost and are simpler to perform. A frequency domain measurement of photon trans-

port in tissue was first reported by Lakowicz and Brendt [86]. The frequency domain

technique has been applied in optical imaging (tomography) [6, 87, 88, 89], fluores-

cence imaging [90], haemoglobin imaging and tissue oxygenation [8, 91], measurements

of optical properties of diseased and normal tissue 18r92,93], cancerous breast tumour

diagnosis [94], human brain imaging [95] and IR photo-thermal dental imaging [96].

The resolution in the reconstruction of the TPSF in this technique depends on the

range of modulation frequencies [97]. An observation of the phase shift for a single

frequency enables the estimation of the first moment (mean flight time) on the TPSF.

The limited availability of high frequencies has limited the temporal resolution to a few

nanoseconds. Fishkin and Gratton [97] were able to study the spatial-resolving power

of frequency domain methods. Their experimental measurements and Monte Carlo

simulations were used to confirm that the spatial resolution improves with increased

modulation frequency, The results also suggested that direct imaging would require

frequencies of several GHz in order to achieve a spatial resolution substantially better

than that obtained using simple CW intensity measurements.
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t.6.2 Temporal domain (time-resolved) techniques

Recent developments ìn the production of ultra-short laser pulses and fast detectors

have led to the advent of time-resolved TI which has high potential for use as a diag-

nostic tool in medicine [41, 45, 85].

A typical time-resolved (or gated) transillumination experiment as shown schemat-

icaily in Fig. 1.2 consists of a source-medium-detector geometry with a pulsed laser

beam made incident on the surface of a medium. As the pulse traverses the medium,

both its macroscopic (e.g., temporal and spatial) and microscopic (e.g., directionality,

coherence and polarisation) characteristics are convolved with the medium charac-

teristic function. The detector then records measurements of the transmitted signal

characteristics as a function of time. At each scan position, the number of photons

passing through a detecting aperture as a function of time is described by a temporal

point spread function (TPSF) as illustrated in Fig. 1.3. In this figure, the minimum

flight tirne L"f c marks the zero of the time scale where c is the speed of light in

the medium. In a conventional integrating time-gated system, the integration time

Lt : [0,tn] represents the time interval up to the closure of the detector. The appli-

cation of temporal gating (integration over a gating window [0,¿r]) removes the long

flight time photons which contain little or no useful information content with regard

to the scatter/absorption characteristics of the medium in the direct path between the

source and detector.

The transmitted photons can be classified \nto ballisúic (coherent), snake (quasi

straight forward) and di,ffused components. Although there is no clear distinction

between the snake and the diffused component, analytic [48, 49] and experimental [62]

results suggest that when the photon path length exceeds - I\l'lc reiative to the

ballistic tirne (L"fc), the diffusive regime may apply. Beer's law implies that the

intensity of the coherent beam, i.e., number of ballistic photons travelling along the

central axis without interacting, decreases exponentially with the thickness, L", of the

medium. It is evident that for most medical applications in which the tissue thicknesses

exceed a few tens of mean free paths, the probability of detection of ballistic photons

rapidly drops to zero in practice. Due to large deviations from the detector line-of-
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Figure 1.2: Schematic diagram for a conventional time-gated integrating system. The source-
detector (propagation) direction coincides with the positive z direction. The beam scans the
normal r-y plane and the sample (medium) thickness is trr. The detector is triggered after a
minimum ballistic time of L"f c. The detector integrates the signal within the gating window
as determined by the integrating gate delay.
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Figure 1.3: An illustration of the TPSF and the detector (gating) aperture [0, ún]. The
output from the integrating detector is the integrated intensity over [0, ún] as presented by
the shaded region.

t

Reset

Pulsed
Laser

Integrating
Detector

Start StopBallistic
TOF Delay

Integrating
Gate l)elay

Display
Signal
Analyser

16



sight, the diffused component does not provide accurate information about the medium

along this direction. On the other hand, snake photons which are least scattered

provide inherently better spatiai resolution and contrast since they propagate closest

to the detector line-of-sight. Therefore, appropriate filtering, or gating, to isolate this

component from the majority of the multiply scattered photons suggests itself as an

efficient technique for achieving improved spatial resolution. Although this filtering

can be obtained in either the temporal or frequency domain, current technological

considerations make the temporal domain more attractive. Moreover, the performance

of temporal domain direct imaging methods are relatively easy to quantify and predict.

A broad variety of gating techniques have been proposed and tested experimentally.

The sub-nanosecond time scale required to isolate snake photons from the majority of

light transmitted through thick turbid media eliminates the use mechanical shutters.

Ultrafast gates include optical and electronic shutters such as the streak camera and

time to analogue convertor (TAC) systems [98].

Martin et all99] first reported the use of a fast optical shutter consisting of a Kerr

cell [100]. A Kerr gate combined with a spatial filter was employed by Liang et allT0Il

to improve the spatial resolution. The performance of Kerr gate imaging techniques

is uitimately limited by the dynamic rangelO of the transmission opacity of the cell,

which is typically no better than 104. Thus, the shortest-flight-tirrre (snalce) photons

cannot be sampled accurately as their number is much less than the total transmitted

intensity.

The ideal time gate detector is one which can sample transmitted photons ovel

any temporal window without contaminatìon by photons arriving outside that window

(i.e. it has an infinite extinction coefficientll). The streak camera is the device closest

10The dynamic range is the range of incident intensities over which the current output from the

photodiode is linearly related to the input power. It is sometimes expressed as the ratio of the upper

and lower limit over which the detector operates.
11The extinction coefficient (or transmission ratio) , E n , for a time-gated detection system is defined

by Es - f , where rc and e are the transmission factors of the optical gating mechanism when in the

open and closed states respectively. Ideally rc ---l 1 and e ---+ 0 which would correspond to zero rise

time of the detector . En is a figure of merit for a time-resolved detection system; large En corresponds
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to this ideal and is the most commonly used gating system in TI as it provides high

temporal resolution (- 10ps) [102]. The first streak camera measurements of tissue

were described by Delpy et al1703]. A streak camera was used by Mitic [10a] to obtain a

series of breast TPSF measurements enabling i,n ui,uo optical properties of breast tissue

to be derived. Hall et al1702] used a streak camerato evaluate the spatial resolution of

time-resolved transillumination imaging. Streak cameras are disadvantaged in terms of

cost and detection sensitivity [98] when used in measurements involving thicker media

in the sub-100ps time scale where high spatial resolution is expected to be achieved.

Kirkby and Delpy [105] combine a cross-correlation technique [106] with an avalanche

photodiode detector (APD) to sample the TPSF with a resolution of 100ps using rel-

atively inexpensive components. Haller and Depeursinge [107] describe a photodiode

detector with temporal resolution of about 10ps. Other ultrafast optical gates have

been investigated. Examples include: a parametric amplifier [108], second-harmonic

generation [109] and Raman amplifier [110]. These have been assessed for their clin-

ical utility[19,88,105,111-115]. However, these reports indicate that there is room for

improvement in the spatial resolution by considering detectors with narrower time

windows.

The effectiveness of gating methods depends strongly on the thickness and degree of

scattering of the tissue. Experiments and Monte Carlo simulations [116] have demon-

strated that total depolarization of an incident beam would occur after a penetration

of about 10 transport lengths (10/'). The phase of the electromagnetic vector of the

transmitted beam is randomized rapidly in the tissue with an exponential rate of LL'".

This suggests that for thick samples coherent and polarization sensitive techniques are

not effective in time gated imaging. However, ti,me-of-fl,igl¿¿ (TOF) techniques remain

attractive but are presently limited by the lack of adequate instrumentation. This de-

ficiency has motivated the theoretical research outlined in this report which explores

the potential of the TOF technique by utilising first photon detection.

to better system performance
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Figure 1.4: Set up of the system for the MC simulation

1.6 Description of the system

1.6.1 Spatial characteristics

The simulation geometry of a time-resolved TI system used in this report consists of

a collinear source-medium-detector geometry as shown in Fig. 1.4. For the purpose of

the MC simulations, the medium is represented by a rectangular cube of dimensions

L, x Lo x L, and a ó-function source in space and time is assumed. The availability

of fast lasers capable of delivering narrow pulses of a few tens of femtoseconds allows

this assumption to be realistic. The laser beam is incident normally at the centre of

the r-y surface at z:0, i.e., (+,+,0). For the simulation of a scanning beam, this

incident point may be varied. The detector was considered to be a 100% efficient, non-

collimated disk locate d, at (!,";, 1,,) facing the incid,ent beam and forming a collinear

source-medium-detector geometry. The beam axis or the detector line-of-sight along

the z-direction is referred to as the central (or propagation) axis. For the purpose of

this report the tumour is represented by a spherical inhomogeneity of radius .Rr centred

"t (7, ?,+) on the mid-plane.
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L.6.2 Temporal characteristics

Figure 1.5 presents a schematic diagram of a possible single photon detection system.

At each scan positiorr,) a sequenceof fast laser pulses is made incident normal to the

surface of the turbid medium. For each incident pulse a delayed logic pulse initiates the

picosecond timer at a time equal to the ballistic (straight pass) flight time. Terrnina-

tion of the tirning occurs on the detection of the first photon. Are-triggering

reset by the next scanning pulse is required to eliminate the possibility of detecting the

remaining photons in the same pulse. The recorded arrival time of the first detected

photon from each pulse is then recorded and constitutes the temporal distribution for

the first arriving photon for each scan position. This distribution is characterised by

the temporal probability density function, lr(t¡., which is illustrated in Fig. 1.6. A

shift in fi(l) between two different scan positions is indicative of a change in the op-

tical characteristics of the medium. By rectilinear scanning across the mediurn, a 2-D

map of the mean arrival time of the first detected photon can be created and displayed

as a grey scale image.

L.7 Work of this thesis

The specific objective of this work is to propose and theoretically evaluate the limiting

case of time-resolved TI, namely, a (single) first photon detection (FPD) system.

Collectively, the theoretical, Monte Carlo (MC) and the experimental results sug-

gest that gating times of less than a few 10s of picoseconds are required for millimetre

spatial resolution [117, 118] for a tissue thickness of about \cm. However, the scarcity

of photons at such short times of flight [102] imposes severe constraints on the lower

timescale achievable by systems which utilise conventionaÌ time-gated integrating de-

tectors. It is therefore desirable to develop a FPD system, as a new experimental

techniques, to achieve high spatial resolution. Also, new methods of theoretical analy-

sis are implemented to achieve the objective stated above.

First, new MC methods are developed in chapter 3 to facilitate efficient simulations

to acquire accurate spatial and temporal information about the transmitted photons
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contributing to the sub-100 picosecond portion of the TPSF. This has not been achieved

previously for turbid media similar to thicker biological tissues such as human breast.

Chapter 2 outlines the standard MC procedure that forms the foundation for the

indeterministic Monte Carlo (IMC) technique described in Chapter 3. The IMC, which

is an extension of the controlled MC (CMC) [74], is a variance reduction MC technique

which is based on the modification of longer trajectories to obtain shorter ones. The

IMC along with a superposition technique is utilised in chapter 4 to fully construct the

TPSF with high precision in the early sub-100ps region. To confrrm the accuracy of the

method the spatial resolution based on a conventional integrating time-gated system

is evaluated and compared with the published experimental and theoretical results.

In chapter 5 the notion FPD is introduced and the statistics of the first detected

photon are derived mathematically. The application of FPD to TI is evaluated assum-

ìng an ideal detector capable of detecting the first arriving photon with 100% efficiency

(infinite extinction coefficient as well as zero background). The FPD system is also

examined for the case of sphericai inhomogeneities embedded in the centre of an oth-

erwise homogeneous medium. The effect of embedded inhomogeneity (with different

size and optical densities) and optical properties of the medium are also studied. A

heterogeneous medium which resembles tissue more realistically will be considered in

chapter 6. Practical and experimental considerations such as contrast and signal-noise-

ratio (SNR) are discussed in chapter 7.
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Figure 1.5: Schematic diagram for a FPD system. At each scan position a sequence of pulses
is made incident onto the sample (medium). A signal triggers (starts) the timer at a delayed
time (equivalent to the ballistic TOF). The first photon detected by the detector stops the
timer. This first photon arrival time contributes to the temporal distribution recorded by the
accumulator (see Fig. 1.6). The detector is reset by a re-trigger signal when the next pulse in
the sequence is made incident onto the sample. After a statistically sufficient number of first
photons is detected (from each pulse in the sequence), the averager produces a mean arrival
time from the temporal distribution of these first detected photons which is then converted
into a gray scale pixel.
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Figure 1.6: Illustrative curves showing the flrst arriving photon probability density function,
fi(ú), w.r.t. the early portion of the TPSF for the entire pulse.
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Chapter 2

Monte Carlo simulation

2.L Motivation

For medical diagnostic TI, the challenge is to soive the inverse problem of constructing

an image of regions of differing attenuation (tumours) in a medium (normal tissue).

Consider a fast laser pulse propagating through a turbid medium to a small detector.

The earliest arriving photons, with the shortest times of flight, are more likely to have

only interacted with the tissue close to the central propagation axis and hence poten-

tially provide good spatial resolution as well as more accurate and useful information

about the optical properties of the medium [15]. For the evaluation of snake photons,

diffusion theory is no longer appropriate as the diffusion approximation is now vio-

lated. An exact analytic solution of the RTE may be considered, however, an analytic

solution is unavailable except for extremely simplified situations [50, 44].

The Monte Carlo (MC) simulation 154,731, which draws on the probabilistic nature

of light propagation in the medium offers a flexible yet rigorous approach toward photon

transport in turbid media. It can be used without imposing simplifying assumptions

for situations where analytical methods are too difficult or unavailable.

Throughout this chapter, unless otherwise specified, a random number takes a value

uniformly distributed over the interval [0,1].
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2.2 Standard Monte Carlo (SMC) simulation

In the application of a MC simulation, a stochastic model is constructed in which the

expected value of a certain random variable, or a function of several random variables,

is equivalent to the values of a physical quantity to be determined.

In a TOF technique, the main physical quantity to be determined is the light in-

tensity at the detector as a function of time. The light intensity is also a function

of several random variables which are evaluated along each photon trajectory. These

random variables are:

- the scattering azimuthal and zenith angles (ó,0), measured w.r.t. the local photon

coordinate (see Fig. 2.1),

- free scattering path-length between the scattering sites (/) and

- reflection at the boundaries (r).

The zenith angle d is sampledl72l according to

Photon traiectorv
\"

)

cos(d): ,' fr * ,, - (Ì#*)'l iÎ sl0
ifg:g

(2.1)

2x-1

where g is the anisotropy. Eqn. 2.7 rnay be derived from the distribution given by the

Henyey-Greenstein's phase function:

Laser
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f(cos.):ffi (2.2)

The azimuthal angle / which has a uniform p.d.f. is sampled according to:

Ó :2nX, (2.3)

where ¡ is a random number. The scattering angles are randomly sampled from their

p.d.f..

The distribution of the scattering free path-length / is exponential with the p.d.f.,

/(l), given as

f (D : ¡ttexp-p't,

- lJox<-
þs

(2.4)

where ¡;r is the attenuation coefficient. Given a random number, ¡, then I can be

randomly generated 172] as follows:

¿: -1"(x). (2.5)
þt

When the trajectory intercepts a boundary, / is broken into two parts. The first part

is the distance to the boundary, and the remainder is then re-evaluated by applying

an adjustment according to the local parameters of the next medium. It has been

shown [119] that it is equaily valid to discard the remaining portion and generate a

new / according to trqn. 2.5.

To model the absorption, a random number, X, is generated and the following

condition is tested [73]:

(2.6)

If the inequality holds, the photon is absorbed and the trajectory is terminated. Oth-

erwise, the photon continues to propagate.

In determining the reflection at boundaries, total internal reflection is considered

for incident angles bigger than the critical angle. In the case of normal incidence or

boundaries of equal refractive indices, the surface is assumed to be non-reflecting and
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total transmittance is applied. In all other cases, Fresnel's formula (see below) was

used to determine the reflectance, r. In order to decide on reflection or transmission, a

random number greater than r would rule that the photon crosses the boundary. On

crossing the boundary, the exit angle is evaluated according to the Snell's law. The

flow chart for a SMC algorithm is given in Fig. 2.2.

The SMC algorithm, as described above, results in the detection or loss of each

photon. In order to increase the efficiency of the SMC, the concept of a single photon

is extended to a photon package. When a trajectory is launched, it is given an initial

weight, W : 7. At each scattering site, the probability of the photon being lost

(by escape or absorption) is calculated and the weight is reduced accordingly 172]

as described below. The detected photon package then represents the probabilifu of

detection for each incident photon.

At each boundary a partial transmittance, 1-r, is calculated, where the reflectance,

r, is determined by Fresnel's formula:

I /sinz(a; - cv¿) tan2(a¡ - at)t
' : r\;F(", + ", 

+ ¡""1"0 ¡ "¡)'
where a¿ and a¡ ãra the incident and transmission angles respectively. The incident

photon weight, W¿, tedrces to W, - rW¿ for the reflected portion, which continues

to propagate within the original medium in a new direction. The transmitted portion

of the photon package is assigned a weight W¡ : (I - r)W¿. This portion will either

continue to propagate through the post-boundary medium or contribute to the signal

according to this weight if it intercepts the detector.

Similarly, at each scattering site the probability of absorption is calculated and the

photon weight is reduced according to the following:

WJ : Wie-Þ"l ,

where W¿ and W¡ are pre and post-scatter weights. When the weight drops below a

preset critical weight, W., a roulette procedure is applied to determine the fatß, of

the trajectory. A trajectory survives the roulette if a random number is bigger than

a "chance" (:0.1). In the case of survival, the weight is reduced by the value of the
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chance. Otherwise, for computational efficiency, the trajectory is terminatedl. Also,

when the trajectory exits the medium without intercepting the detector the trajectory

is terminated.

As a large fraction of the trajectories is not detected due to their escape from

the surface without contributing to detection, the above method of calculating the

absorption effect is inefficient. This is because at each scattering site, the calculation

is performed regardless of whether or not the trajectory will contribute to the detector

signal. It is therefore more efficient to calculate the absorption effect only for the

detected trajectories in the following manner. Let L be the total trajectory length,

l/, the total number of scattering events and l¿ (i e t,... , ¡/) the free path-length

between each two consequent scattering sites. If the initial photon package is assigned

a weight of unity, then the final weight is

W.f : ¿Ðl=t-u"l;: s-ttaÐlr¡t : ¿-FoL.

When inhomogeneities are present, it is straight-forward to show that:

WÍ : 
"-(ult'u+uI"t"),

where L¡1,y represent the total path-length, and ¡,r,{,1, the absorption coefficients in

the homogeneous (H) and inhomogeneous (I) parts of the medium respectively. This

suggests that, if L¡7 and Ly are updated as the photon is propagated, the effect of the

absorption can be accounted for after detection, by readjusting the weight as given

above.

2.2.L Validation of the algorithm used and computation pro-

cedure.

As the SMC algorithm forms the foundation of the Indeterministic Monte Carlo (IMC)

technique described in chapter 3, the essential components of the SMC algorithm are

validated here.
lThe roulette procedure was not used in this work as the absorption was taken into account after

the detection (see end of the present section) . Moreover, this did not introduce a bias due to a safe

value of the critical weight W" - I}-too used in this work,
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The corner stone of any MC algorithm is its (pseudo) random number generator

(RNG). As well as other requirements which will be discussed later, it was essen-

tial to take computational efficiency into account when choosing the RNG. The RNG

mzranl7 described by Marsaglia and Zarnan [120] was implemented to produce uni-

formly distributed pseudo-random numbers in the interval [0,1]. This algorithm has

been validated to perform satisfactorily under several statistical and application tests

(see for example [121]). Nevertheless, to ensure compatibility, the method of Sim and

Nitschke [119] was followed to test mzranl3. The results of the statistical and visual

tests are presented in Appendix A. Here, the sampling of the propagation angles and

scattering free path-length are considered. These are the main random variables on

which the photon propagation is based.

Application test 1: The azimuthal component (d) .f the propagation direction is

sampled uniformly as indicated by Eqn. 2.3. Therefore the uniformity tests described

in appendix A also apply to the sampling of d. The cosine of the zenith angle cos(d)

is sampled according to Eqn. 2.1. It is not obvious whether the distribution obtained

follows that dictated by the Henyey-Greenstein's phase function as given Iry Bqt.2.2.

To test this, a sample size of l/: 106 was generated for the variable cos(d). The

sample was then binned into 100 bins of equal size over the interval [-1,1]. Figure 2.3

presents the observed (sampled) and the expected (theoretical) distributions.

Application test 2: A second application test, the scattering free path-length, l,

was sampled according to Eqn. 2.5 whose distribution is expected to be exponential

described by Eqn. 2.4. Figure.2.4 compares the results of a randomly sampled / with

the expected (exponential) theoretical distribution.

A X2 test showed that the two sampled distributions of cos(d) and / are equivalent

to their respective mathematical distributions at g5% or better confidence level.
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2.2.2 Execution of the MC algorithm

To produce the results of the following chapters, each MC simulation was run in parallel

and independently on an equivalentz network up to 10 Digital UNIX 500au Personal

Workstations. The number of machines utilised depended on the number of photons

to be simulated. When more than one machine was utilised, the seeds to the RNG

were generally extracted from the clock time of each machine and the simulations

started 7 seconds apart to ensure different seeds and hence different random number

sequences. The seeds extracted from the clock time were wìthin the acceptable range

lor mzranl? ll20l. Also for reproducibility and future cross checks one of the machines

utilised the standard seed which would consistently produce the same sequence (and

hence MC results for a specified medium). It is further noted that the period length

of mzranlS is 2125. This length is sufficiently large to ensure no sampling repetition3.

2.3 Concluston

The standard Monte Carlo (SMC) simulation as applied to a turbid medium presented

by Fig. 1.4 has been described. The overall performance and validation of the SMC

algorithm as applied to solve the RTE for a given source-medium-detector geometry is

discussed in chapter 3. However, in this chapter (and Appendix A) the RNG, mzranl3,

which provides the aigorithm with a uniformly distributed random number over [0,1]

has been assessed and validated by means of statistical, visual and application tests.

2At any given time, up to 35 workstations were utilised, however, the availability of CPU time

dictated that effectiveÌy only al>oú257o of the full capacity was taken by the simulations.
3For the simulation of 10e photons, a conservatively safe sequence length of about 1gt+ 4 2rzs

is suff.cient to ensure no sampling repetition. This conservative estimate assumes about 10000 (for

þ, = 200 and L" - 5.0cm) scattering events per photon trajectory. To determine angles, free path-

lengths, reflection etc., RNG is called at most 10 times at each scattering event. Moreover, by

searching the output data for the re-occu¡rence of the first few detected events, the collected data

from a simulation of 10e photons showed no sampling repetition.
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Chapter 3

Indeterministic Monte Carlo (IMC)

Simulation

3.1 Motivation

In this chapter an Indeterministic Monte Carlo (IMC) simulation technique is proposed

for the efficient construction of the early part of the TPSF. This provides an accurate

profile of the TPSF in the short TOF region where the probability of the photon being

detected is of the order of one per pulse. The earliest arriving photons are more likely

to have interacted with the tissue close to the propagation axis and hence potentially

may provide good spatial resolution as weli as more accurate information about the

optical properties of the medium [15]. Such information can then be used to study

the limit of spatial and contrast resolution achievable with fast TOF techniques. It

also provides a useful tool for the analysis of single photon detection in TI, as will be

described in later chapters.

Consider a fast laser pulse propagating through a scattering medium to a small

detector. Beer's law suggests that the intensity decreases exponentially with the thick-

ness, .L,, of the scattering medium. Experimental studies (see Fig. 5 of [102]) have

shown that the intensity of the detected pulse also decreases approximately exponen-

tially with flight times in the region of a few hundred picoseconds from the ballistic

time, L"lc. Thethicknessof typicaltissuesamplesof interest,-\cTn, andshortgat-
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ing times result in very small detection efficiencies and a poor signal-noise-ratio (SNR).

Therefore, the probability that a photon trajectory intersects with the detector within

a given time becomes so very small that a very large number of initial trajectories is

necessary to produce reliable statistics when using the SMC simulations. This requires

extensive computational time.

Variance reduction techniques such as the semi-analytical [75], controlled (CMC) [74]

and condensed [76] Monte Carlo techniques have been introduced to reduce the compu-

tation time in Monte Cario simulations. This chapter describes a ne'vv Indeterministic

Monte Carlo (IMC) technique which is an extension of the CMC method proposed by

Chen & Bai [7a]. Chen & Bai introduced an attractive point behind the detector into

the simulation with an adjustable attractive factor that forces photons to propagate

along directions more likely to intersect with the detector. The increase in the num-

ber of trajectories intercepting the detector is compensated by reducing the incoming

photon weight, W¿ at each scattering site according to the following formula:

(3.1)

where subscripts i and / denote the initial and final states, / is the phase function and

unit vectots ei,Í denote the pre- and post-scatter propagation directions and eo is the

direction of the attractive point. P", a function of the attractive factor e, is used as a

probabilistic discriminator against unfavourable scattering directions (away from the

attractive point). A correction for absorption is applied on the basis of the final path-

length. An increase in the attractive factor forces the selection of smaller scattering

angles from the direction of the attractive point (detector), e". This results in shorter

trajectories and hence earlier times can be studied. Although a large attractive factor

will result in a distortion of the later part of the TPSF [74], its effect decreases as the

shorter times of flight are approached and the leading edge (near the ballistic time) of

the TPSF can be estimated.

The objective of this chapter is to describe a new method to improve the CMC

method of Chen & Bai by introducing the IMC which extracts shorter photon paths

from the later arriving photons. In order to assess the IMC technique, the results are

wr: #;õ I |-jtGo ''¡P'(e"'e')d'Q'¡'
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compared with those of SMC and CMC simulations in calculating the TPSF. A com-

parison is also made with the theoretical results of diffusion theory [55] and random

walk theory [79].

3.2 Theory

3.2.L The indeterministic approach

The temporal profile of the detected photons from an incident pulse (assumed to be a

ô-function in time and space) can be rescaled by the number of photons in the incident

pulse to represent the temporal probability density function, /(f), for the arrival time

of a single photon. A photon which never reaches the detector is considered as one

which arrives at a time ú -+ oo, then:

I,*
The collection of all photon paths (euents) forms a probability space [134]. The fl,ight-

time is a random variable which maps from this space to that of positive real numbers

representing the time domain. In practice, time is measured in a discrete manner.

Therefore the probability of detecting a particular photon trajectory is proportional to

the value of /(t) at a time represented by the flight-time associated with that trajectory.

Before the detection of the photon, f (t) describes the probability of a photon arriving

at the detector within a given time interval. However, after the photon is detected the

arrival time becomes definite and is referred to as the outcome of the simulation.

An already detected photon has a definite path (and flight-time) and may be consid-

ered as determi,ned. An indetermini,stic approach (i.e., not pre-determined) is to assume

that a particular detected photon with its associated trajectory, r(ú), is a superposition

of a number of components representing several other physically allowed trajectories.

Each of these trajectories is assigned a certain weight, the initially detected trajectory

being assigned the heaviest weight, that is:

p(r(l)) : Ð¿ W¿p(r¿(t)),

f (t)dt : r
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where p(.(¿)) is the probability of occurrence of a trajectory r(¿). This is similar to

the path integral technique in relation to the classical path proposed by Feynman [80].

The random variable, flight-time, is a function of these paths giving a time fr for each

path with an associated weight lztrl¿. On this assumption) once a primary photon is

detected, one can then proceed to frnd faster cornponent trajectori,es (shorter paths)

by re-initiating the propagation from the point of maximum delay in the previously

detected path (see Fig. 3.1).

3.2.2 Allocation of photon trajectory weights

For greater efficiency, the method of Chen & Bai [74] (CMC) is used initially to propa-

gate a photon. On detection, the flight-time 7¡ is recorded and a weight WIis allocated

in accordance with trqn. 3.1. The resulting trajectory is referred to as the initialtra-

jectory. The photon propagation is then re-initiated from the point of maximum deÌay

(cf. section 3.3.1) until it is detected again or its flight-time exceeds a time limit. This

may be repeated with each detection resulting in the generation of a new trajectory

referred to as the iúÀ component with i e {0,1,...} and the initial trajectory being the

0'å component.

The detected ith component photon trajectory is allocated its flight-time, T¿, a

weight, Wi (1n accordance with Eqn. 3.1) along with the total number of attempts, A;,

the path was modified before the photon is detected again. The number of attempts

for the initial trajectory is taken to be 1.

The raw results obtained in this manner need to be corrected as follows. For each

component a new weight, W! rs calculated as:

wf :wilAo, i e {0,1, ".} (3.2)

which reflects the fact that a modified path is less probable because more attempts are

required in obtaining it.

A second normalisation correction aims at the conservation of photon number. In

order to achieve this, the weighting factors W/ for all components should be scaled
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according to:

w¿ : ow!, (3.3)

such that the final weighting factors W¿ add up to the weight of the initial component.

This demands the final weighting factors satisfy the following equation:

Ð*o:w¿. (3.4)

The proportionality constant a in Eqn. 3.3 is the same for all components. This linear

scaling ensures the iinear relationship between the intensity of the incident and the

detected pulse. Solving the above equations simultaneously for a and for the final

weights, W¿, gives:

W¿

and

w¿: -#-,-wilAo. (3 b)
Ð¡WjlAi Lt

This result (Eq". 3.5) means that all trajectory components can be assumed to be the

result of real photon paths, each with a flight-time of T¿ and weight lztrl;.

Note that Eqn. 3.5 reduces to Wo : W¿ when only one (the initial) trajectory is

detected. This reflects that fact that in this case no corrections are required as is

the case with all trajectories which are produced without using the IMC technique.

This means that the IMC naturally reduced to CMC if no re-initiation of detected

trajectories is implemented.

3.3 Method

3.3.1 Description of IMC simulation and path modification

A collinear source-medium-detector geometry was simulated as shown in Fig. 3.1. The

assumptions were made that the source was a ó-function in space and time, the detector

a 100 per cent efficient non-collimated disk, and the medium was homogeneous.
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Figure 3.1: Representation of trajectories taken by components of a detected photon. The
initial (path 0) and two modifled trajectories (paths 1 and 2) arc shown. On detection,
a flight-time, weight and number of attempts, (?o,Wó,Ao), (Tt,Wl,A1) and (T2,W4,A2)
are assigned to each detected path 0, 1 and 2 respectively. In recording the history of the
trajectory, the photon (path 0), which interacts at the delay point, DP, and is scattered back
to a preceding stack is not recorded until it jumps forwards.

The flow chart in Fig. 3.2 illustrates the algorithm for the IMC technique (see also

Appendix B). The dashed sub-routines and arrows delineate the implementation of

the IMC technique. If these are skipped, the algorithm reduces to the CMC algorithm,

which in turn reduces to a SMC algorithm described in chapter 2 with expanded

flowchart presented by Fig. 2.2. A photon trajectory was simulated (Chen & Bai [7a])

through random generation of a free path-length and propagation direction at each

scattering site in the medium and the weighting factor W' was updated according to

Eqn. 3.1.

A virtual stack system which divides the medium in equally spaced slab partitions

along the direction of photon propagation was created as shown in Fig. 3.1. The first

time the trajectory advanced to a new (not necessarily neighbouring) stack along the

propagation axis, the photon (i.e., ali its parameters) was recorded. At this point, a

delay (D) was also recorded. This delay was the difference between the flight-time at

the new and the most recent stack at which the photon was previously recorded.

To find the site (within 0.1mm accuracy) where the longest delay occurred, on the

successful detection of a photon within a pre-set flight time limit (FTL), a marirnum

a
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delay (MD) was determined by comparing the recorded delays, D, along the trajectory.

The trajectory was then re-initiated, from the DeÌay Point (DP), as recorded by the

stack immediateiy prior to a point of maximum delay, where a new direction and free

path-length was generated. The Delay Point was where the photon was recorded on its

entry in the respective stack. The FTL was also re-initialised to take the value T, the

flight-time of the previously detected (parent) trajectory (component). This ensured

each newly detected trajectory had a smaller value of T than its parent component.

On launching each new photon, the value of the MD was re-initialised to take a

conservative value of the initial FTL. The latter may vary depending on the time-scale

of interest (cf. section 3.4 and chapter 4).

A trajectory was terminated if any one of the following occurred:

o the flight-time (T) exceeded the initial or updated FTL,

o the delay (D) exceeded the maximum allowable delay (initial or updated MD),

o the weight W' reached a lower limit pre-set by a critical weight,

o the number of afiempts exceeded a pre-set Attempts Limit (A), or

o the trajectory exited the medium.

For each detected photon trajectory, the algorithm outputs a flight-time T, a weight

Wt and the number of attempts A. Weight corrections were applied retrospectively to

all detected photons in accordance with Eqn. 3.5 outside of the MC simulation.

3.3.2 System parameters and simulation specifications

An infinitely thin, pulsed pencil beam, a l.\mm in diameter detector and a slab of

\cm thick tissue were simulated. The optical properties of the medium werc 124]

þo : O.Icm-r, lJ', :5cm-7, g : 0.95 and n : 1.56. The number of stacks was pre-set

to 500 (0.1 mm equivalency) and an initial attempts limft of 2000 was chosen. This

number is not critical, being a compromise between the statistical variation acceptable

and computational time (cf. Fig. 3.8). An initial FTL was set to be 520ps(: I\crn
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path-length) when each new photon was launched. An attractive factor of 0.4 was

found to result in the construction of the TPSI' in the timescale where the SMC could

produce the corresponding TPSF to facilitate comparison. The attractive point was

positioned 0.5mm behind the detector to give a 90 degree acceptance angle.

I corrected upto here because Peywan came to disturb me. If I die then it is her

fault for not having finished this. 10:47,21312003.

3.3.3 Algorithm evaluation

To evaluate the accuracy and efficiency of the IMC technique, the TPSF was generated

by IMC, CMC, SMC methods and analytical techniques of diffusion and random walk

theories. The IMC technique was bench-marked against the CMC and against the SMC

technique for the time scales for which overlap occurred (cf. trig. 3.3). The numbers

of simulated photons were 1.8 x 108 for the IMC, 6 x 108 for the CMC and 10e for the

SMC simulations. Standard deviations (ø) for the simulated TPSFs using IMC and

SMC were calculated as a function of flight-time. The standard deviations for time

intervals of 100ps centred on each point are shown in Table 3.1.

The efficiency of the IMC algorithm was compared with that of the CMC by sim-

ulating equal number of photons as well as equal computation times. To quantify the

efficiency, the number of simulated photons was reduced in the IMC simulation to yield

the same statistics in the TPSF as that of CMC for which a higher number of photons

was simulated.

The efficiency of the IMC technique was also studied by considering the average

reduction in the flight time compared with that of the initial trajectory as a function

of the number of attempts made in modifying the trajectory. The effect of the number

of stacks and the position of the attractive point were also assessed.

3.4 Results and discussron

The TPSFs presented here are normalised to represent the transmission per single

incident photon and the flight times are relative to the ballistic tirne L,f c.
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Accuracy: Figure 3.3 shows the TPSF as evaluated by both the IMC and CMC

techniques along with the results of calculations using SMC, diffusion theory [55] and

random walk [79] theory. This figure and Table 3.2 show that the SMC requires a

prohibitively long computation time to generate sufficient photon trajectories shorter

than - 350ps. In a shorter computation time (Table 3.2), the CMC can reduce this to

- 160ps while the IMC generates enough photons to provide information near 110ps

(see Fig. 3.6).

As reported by Chen & Bai [7a], Fig. 3.3 suggests that some distortion introduced by

the CMC occurs in the later part of the TPSF. However, the accuracy of this technique

is better than 10% for trajectories with an excess flight time of less than 800ps. This

time range, over which the CMC and SMC agree, decreases as iarger attractive factors

are used. This reduction is compensated by improved statistics in the earlier part of

TPSF. Table 3.1 shows that in the range 350 - 750ps where the IMC and SMC data

sets may be compared, the difference is within 2o. Beyond 750ps the IMC differs from

the SMC by more than 2o. While random walk and diffusion theories model the later

part of TPSF with better accuracy, the results produced by the IMC technique are

clearly more satisfactory for the earlier parts for which the excess time, Af < 400ps.

Precision: Table 3.1 presents standard deviations for the IMC and SMC tech-

niques for the results presented in Fig. 3.3. The figure demonstrates that the standard

deviations of the IMC technique are less that those of SMC for a flight time of less

than 700ps. The results presented in Figs. 3.4 and 3.5 compare the IMC (thick line)

and CMC methods of simulation with an expanded time scale in the early part of

the temporal profile. Figure 3.4 shows the result of using an equal number of pho-

tons (1.8 x 108) for both methods. For equal number of photons the IMC technique

extends the data set from 190ps to 110ps. Figure 3.6 compares the same results of

IMC technique as in Fig. 3.4 with that of the CMC for which an increased number of

input photons, 6 x 108, was used. A comparison of the two figures shows that the IMC

method is capable of extracting early arriving photons from those taking longer paths

and calculates the TPSF more precisely.

Efficiency: Figure 3.6 also compares the results obtained over equal computation
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Simulation method Photons simulated Comp. time (h) Time scale (ps

IMC
CMC

4xI0(
6x108

L67

700

0-260

0-260

CMC
SMC

7 xl}'
10e

82

2200

0-800
0-800

Table 3.2: Comparison of the computation time for the IMC, CMC and SMC methods. The
number of simulated photons where chosen to yield the same statistics (cf. Figs. 3.3 and 3.5).

The time scale refers to the excess flight time w.r.t. L"f c.

times with 1.8 x 108 photons used in IMC. The corresponding number of photons for

the CMC method was found to be 6 x 108 (cf. Table 3.2). Again, the superiority

of the IMC technique in predicting the TPSF in the shorter time scales is clearly

demonstrated over the time scale of 160ps down to 110ps. In order to compare the

time efficiencies, the number of simulated photons in the IMC simulation was reduced

(a x 10?) to yield the same statistics (cut-off) in TPSF as that of CMC with 6 x 108

simulated photons. The results are shown in Fig. 3.5 and Table 3.2. The significant

reduction (by u factor of 15) of photons simulated gives rise to a reduction by a factor

of at least 4 in computation time. The results of Figs. 3.4 and 3.5 and Table 3.2 for

a given computation time demonstrate the ability of the IMC technique to extend the

CMC method and predict the TPSF in the shorter time scales.
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IMC(*) and CMC(*) techniques. The IMC becomes computationally less efficient as longer
initial FTL is used.

Influence of flight time limit (FTL) and number of attempts limit: Fig-

ure 3.7 compares the computation time taken for the simulation of 107 photons as a

function of the initial FTL (also used as a limit in CMC method). In performing these

simulations a network of 10 work stations (Digital Unix, PWS 500au) was utilized and

the results present the total simulations time from all machines. The extra time taken

by the IMC as indicated in this figure is offset by increased statistics in the earlier time

scale. This was demonstrated by the results of Fig. 3.6 in which the efficiency of the

IMC was assessed based on equal computation times.

Figure 3.8 presents the average reduction in the flight time compared with that of

the initial trajectory as a function of the number of attempts. The figure shows that

the beneficial reduction decreases as a function of the number of attempts. This is

because as the FTL reduces, the maximum delay is on average smaller (as photons

have less time to wander around the medium) and hence more attempts are required

to modify an already relatively short path.

The results of Fig. 3.7 together with those of Fig. 3.8 also indicate that a choice of

a large initial FTL decreases efficiency. This is due to the fact that longer trajectories

are most likely to have their delay point far from the detector, possibly in the first few

stacks. On the other hand, a smaller initial FTL results in a reduction in the detected
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Figure 3.8: The average reduction in the flight time obtained as a function of attempts limit
and an initial flight time limit of 260ps. The smooth curve is the least square frt to the data.

trajectories and hence reduces the applicability of IMC technique. Figure 3.8 suggests

that the efficiency decreases as larger attemqtts limits are used. A small atternpts limit

is, however, not very useful as shorter components will not be found when the FTL is

large. The optimal choice of the attempts limit and initial FTL depends on the system

parameters and geometry.

Influence of number of stacks: The computation time for the IMC technique

was found to decrease as the number of stacks increases. Finer stacks locate the delay

point (DP) more precisely which prevents either un-necessary backtracking or possibly

missing delay points that are too close. For example, the computation time was found

to decrease by a factor of 0.72 when the number of stacks were increased from 50 to

500. A stack width of less that the mean free path-length is not efficient. Moreover,

too small stack width increases the computation time as this increases the time spent

in recording the photons and searching back for the delay point.

Influence of attractive point position: The position of the attractive factor was

found to be optimal at a distance equivalent to the the radius of detector and directly

behind it. This position, comparable with the detector size, gives the attractive point

a 90 degree field of view. A position too far behind the detector would result in the

loss of trajectories that have been followed and just miss the detector.
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3.5 Conclusron

An indeterministic approach to the trajectories taken by the photons after they haue

been detectedhas been demonstrated to lead to an efficient techniquefor the extraction

of shorter trajectories (faster components). This facilitates the accurate construction

of the very early part of the temporal profile of a fast laser pulse transmitted through a

turbid medium. For the given geometry and attractive factor (0.4), the IMC technique

reduces the computation time by a factor of at least four compared to the Controlled

MC method of Chen & Bai. This is significant when simulation time can be reduced

from weeks to days.

Although a CMC method was employed to provide the initial unmodified photon

paths, the proposed IMC method can be used independently of other variance reduction

techniques. However, it is more efficient when used in conjunction with methods such

as the one of Chen & Bai because the IMC technique relies on a modification of (and

hence existence of) an already detected trajectory to find a faster one.
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Chapter 4

Validation of IMC: Spatial

resolution ln conventional

integrating time-resolved TI.

4.L Motivation

The objectives of the present chapter are: (a) to validate the IMC technique. This

is achieved by re-evaluation of the spatial resolution associated with a conventional

integrating time-gated system for longer time scales and then bench marking the results

against the experimental results of Hebden et al 1122,, 123], (b) to assess the spatial

resolution potentially achievabie in an integrating time-resolved TI for short times of

flight (< 200ps) and (c) to fully construct the TPSF for the time scale of 10ps and

longer.

The spatial resolution Az of an imaging system is related to its spatial frequency

resolving power which is assessed based on the limiting spatial frequency resolvable by

the observer (human or non-human). Previously a USAF resolution test chart [124]

consisting of parallel bars of diminishing frequency was the standard tool to assess

this resolving power. In simple terms, two bars will be resolved if the dip in central

image density is greater than some threshold quantity determined by the totai noise.

On replacing the bars with slits, this leads to consideration of the line spread function
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(LSF). The modulation transfer function (MTF) which is the Fourier transform of the

LSF acts as a weighting function for any particular spatial frequency. The spatial

resolution is commonly deflned as the value corresponding to a 70% response on the

MTF Ï124,125]. Bentzen [126] noted that the value of the spatial resolution obtained

in this manner relates to the edge response function (ERF).

Geometrical symmetry and other investigations [127] suggest that the worst spatial

resolution in time-resolved TI occurs at the mid-plane of the medium (cf. Fig. 1.a).

Therefore this is where the spatial resolution is evaluated.

A number of analytic approximations and models have been published calculating

the transmitted pulse and associated spatial resolution of fast TL To a first approxi-

mation, the spatial resolution Ar and the gating-time Aú (over which period the signal

is integrated) are related according to Ar x L*12 when various models such as the

path integral [82], random walk [79] and diffusion approximation [51] are used. Fur-

thermore, Hee et al l1l7l demonstrated that the normalised resolution, Lr f L", lalls

between the worst case geometric limit (2cLtlL,)t12 ll28] and a linear degradation,

cLtf L", where c is the speed of light in the medium and L" is the mediumthickness.

Second order approximations to the random walk model have been suggested using

scaling arguments [129]. Existing theoretical models are still inadequate when short

detection times and spatial boundary conditions are imposed. In order to overcome

some of these probiems, approximate techniques such as multiple images [55] and ex-

tended boundary conditions [130] have been applied. However, the results of these

techniques lack accuracy in the short time scales.

Hebden et al 1122, 123] (also Hebden and Gandjbakhche [118]) have conducted

experiments on time-resolved TI using an aqueous suspension of latex micro-spheres as

a medium and a streak camera as a detector. They have evaluated the spatial resolution

as a function of both gating time and medium thickness in a series of reports. Hebden eú

al1122] used the diffusion theory (Patterson et all55]) to extrapolate their experimental

results to the shorter gating times. Several other experimental techniques have been

applied to measure the spatial resolution of time-resolved TI such as those of Cia et al

(1999), Grosenick et al ll9] and de Haller et all707l.
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A rapid decrease in the number of transmitted photons as the integration time

decreases, leads to statistical uncertainty in the experimental results for the time range

below 200ps. This effect becomes more marked as the tissue thickness is increased. The

IMC technique is applied in this paper to accurately evaluate the spatial resolution (in

the mid-plane) theoretically achievabie for times of flight less than - 200ps. A simple

and accurate theoretical fit to the edge response function (ERF) is proposed from which

the spatial resolution is then determined.

4.2 System description

The simulation geometry was an homogeneous, tissue equivalent medium of dimensions

15 x 10 x 5.Lcm that matched the experimental configuration of Hebden et al ll22).

The set up geometry is similar to that shown in Fig, 1.4 without the presence of the

spherical inhomogeneity at the centre.

The results reported here are for a medium thickness of L" : 5.lcm, refractive

index, n : 1.33 and ¡,r,o :0.lcm-r. Values of ¡-t', of 2cm-L (p, :28.6cm-r, g : 0.93)

and Scrr¿-l (1", : 98cm-r, g : 0.918) were used to facilitate validation by comparing

the results with the experimental results of Hebden et al1122,123] respectively for the

two values of þ'". The effect of exponential absorption in the medium was included

after the MC simulation by considering the final path-length of individual trajectories,

as described in section 2.2.

4.3 Method

From their time-resolved optical imaging experiments, Hebden et al and also Sassaroli

et al evahtated the spatial resolution using a method proposed by Bentzen [126] which

is based on an estimate of the line spread function (LSF). The LSF is related to the

trRF [124] which Hebden et al measttred experimentally. Here a similar but more direct

and simple approach is taken to evaluate the spatial resolution from the LSF.

From the results of the IMC technique, the ERF is obtained from the distribution of
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the trajectories as they cross the mid-plane (normal to the propagation axis). The sim-

ulation provides the minimum and maximum radial offset positions of the trajectories

from the propagation axis. From this spatial information and the temporal constraint,

an ERF was obtained for each gating time Aú in increments of 5ps. Each ERF was

obtained by moving a completely absorbing knife-edge along the mid-plane and mea-

suring the integrated detected intensity profile due to only the trajectories whose flight

times fell within A¿. In obtaining the trRF for each gating time, the trajectories with

equal flight times (within 1ps) were assigned a mean weight. This reflects the fact that

an exact solution of the radiative transport equation (RTE) [12] would yield a definite

value of the intensity at a point (detector) as a function of flight time given a specified

set of medium characteristics.

4.3.t Full construction of the TPSF

The IMC algorithm was used to produce the data required for the evaluation of the

spatial resolution. To avoid the effect of the attractive point on the directions of

the photons as they encounter the boundary where both transmission and internal

reflection occur, the IMC was not implemented when the trajectories were within a

transport scattering length from the boundaries.

Chen and Bai lTal pointed out that large attractive factors introduce distortion

at the later part of the TPSF, with the start of the distortion being related to the

magnitude of the attractive factor. The distortion causes the calculated curve to fall

below the correct TPSF. Too small an attractive factor however reduces the efficiency

of the simulation. Calculation of the TPSF with a given attractive factor is only

accurate over a limited range, determined by the statistical fluctuations at early times

and distortion at the later times. This restricted range of validity also flows on to the

IMC technique when the CMC technique is used to generate the initial trajectories.

Therefore, to accurately construct the TPSF over the wider range, upto 800ps, separate

segments of the temporal profile were produced with increasing attractive factors and

were later combined as follows. The TPSFs were calculated using attractive factors in

the range 0.3-16.0. Starting with the TPSF associated with an attractive factor of 0.3,
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Figure 4.1: A comparison of the temporal point spread functions calculated by the SMC
simulation (thin noisy curve) and IMC simulation (thick curve) with attractive factor : 0.4

and, ¡t'" : \cm-r. The region between the dotted lines is where both simulations may be

compared to within 5% standard deviation.

the standard deviations for 50ps time intervals were obtained by comparing the data

with a smooth fit to similar data with a higher attractivefactor (see Fig. 4.1), using a

Gaussian-quadratic method of curve fit [131]. The upper end of a segment was limited

by a deviation of 5% from the curve fit. It was necessary to decrease the initial 50ps

time intervals over which the standard deviations were calculated as higher attractive

factors were approached to match the standard deviations. The lower end was chosen

where the TPSF with a higher attractive factor began to fluctuate by more than 5%

from the smooth curve. The location of this boundary was not critical due to coverage

of the region by the TPSF of the lower attractive factor over the overlapping region.

The TPSF obtained from a standard Monte Carlo simulation (i.e., "deterministic"

with attractive factor of 0), together with the IMC results are shown in Fig. 4.1. The

dotted vertical line on the left marks the lower limit in the time scale below which

the SMC simulation did not yield statistically significant results within the allowed

simulation time. The dotted line on the right marks the upper limit beyond which

time the IMC technique is not valid due to distortion.

Finally, these acceptable segments were superimposed and averaged where they

overlapped, to yield the complete TPSF as shown in Fig. 4.2. The extension of the

TPSF to a time scale, as small as 10ps, is noted in this figure which is due to highest
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Figure 4.2: Temporal point spread functions (TPSF) through a slab of thickness of L" -
5.7cm with p/" :2cm-L (upper curve) and ¡.r,t":8cm-r (lower curve).

attractive factors.

4.3.2 Calculation of image spatial resolution

The image spatial resolution, Ar, defined by the value corresponding to a70% response

on the MTF, is obtained from the point spread functionl(PsF) [124, 127] evaluated at

the mid-pl arre) z : L" 12, where maximum spread of the beam occurs, with z being the

propagation axis. For an homogeneous medium and a pencil beam described by a ô-

function in space and time, the PSF can be approximated by a 2-dimensional Gaussian

distribution [79], expressed in terms of a single radial variable, r. For a point source

located at the origin, the PSF is described by:

P(r): :!-"-#, (4'1)
z1T O

where Co is a constant. The LSF can then be expressed [124] as,

L(r) : [* ,çr¡çr' - ,')ïrd,, : *"-*, Ø.2)J, ' t/2no

with a constant C. For a linear system the BRF is then found to be

E(x): [* ,ç*'¡0"' :?fZ [' "-Ja*'+ r]. (4.3)
J_, 2,1/2no Jo

lThe (spatial) PSF should not be mistaken with TPSF
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With a change of variable , t : *' ltÆø and the identification of the error function one

finds

E(r):f;v,rrft) + 11. Ø'4)

Bentzen [126] noted a similar expression to Eqn. 4'3, E(r): CtÍ(i) ¡ Cz, where C1,2

are constants and Í("): j* e-'''lzdr'. However, they approximated /(r), using an

inverse polynomial rather than an exact analytic form.

To enable comparison with the experiments the spatial resolution Ar as defined

equates to:

A,r x 2.93o (4.5)

However, F,qn. 4.4 suggests that the ERF from either experiment or MC simulations

may be fitted with an analytic expression using the error function with a vary,ing

parameter, ø. A least squares flt by trqn. 4.4 was made to the simulated ERtr by

varying ø. Using this best fit value for o, the spatial resolution was evaluated as a

function of A¿ from Eqn. 4.5.

Figure 4.3 shows the normalised ERFs obtained from the IMC simulation and

the theoretical fit given by Eqn. 4.4 for the case of p'" -- 2cm-r. The results shown

correspond to gating times, Aú, of 10, 150 and 750 picoseconds and illustrate the

sharpening of the trRF and hence improvement in the spatial resolution as the gating

time is reduced.

The spatial resolutions as a function of gating time for the cases þ'" :Zcm-l and

þ', : Bcm-l are presented in Fig. 4.4 and Tabie 4.1. For comparison, experimental

measurements obtained by Hebden 1122, l23l and theoretical curves calculated from

random walk theory [79], also Hebden and Gandjbakhche [118] and random walk with

scaling considerations [129] are also shown. The experimental results of Hebden eú

at ll22l (p'" : 8cm-1) and Hebden [123] (þ', :2cm-1) correspond to an incident laser

beam of less than lmm in diameter and a wavelength of 790nm and 600nrn respectively.

The errors in the calculation of the spatial resolution from the IMC technique as

presented in Table 4.1 incorporate the following:
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evaluated from the data presented in Fig.4.2 (dotted curve) as obtained from both spatial
and temporal information provided by the IMC simulation for þ', : 2cm- 1. The theoretical
fit (solid curve) represents the ERF as evaluated by trqn. 4.4.
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IMC E"p IMC E*p.
i0
20

30

40

50
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150

200

300
400

500

600
650

4.3+ < 0.5
6.0+ < 0.5
8.2+ < 0.5

9.5+ < 0.5
11.2 + 0.5

15.8 + 0.6
18.5 + 0.8
20.3 + 1.0

23.7 +t.5
26.3 + 1.6

28.2 +7.5
29.6 +2.3
30.r +2.7

5.2 +2.8
5.3 + 2.8

6.5 + 2.8

8.6 + 2.8

tt.z +2.8
13.3 + 2.5

15.5 + 2.0

18.0 + 1.2

22.5 + 0.8
26.2 +7.2
28.2 +1.2
29.5 +1.2
29.7 +r.2

2.2I - L.0

3.5+ < 0.5
4.2+ < 0.5
4.9+ < 0.5

5.7+ < 0.5

8.1 + 0.5

9.7 +0.7
11.0 + 0.6
13.1 + 1.0

L4.6 +r.2
15.8 + 1.6

76.7 +2.2
t7.t +2.r

4.8 +2.7

5.1 + 1.6

7.0 + 0.6

8.0 + 0.5
11.0 + 1.0

13.0 + 1.0

14.1 + 0.6
16.0 + 0.4
16.7 + 0.3
17.3 + 0.3

Table 4.1: Spatial resolution and precision as shown in Fig. 4.4compared with the experi-

mental data of Hebden 1723] (p,t, - 2cm-t) and Hebden et al17221 (pt, - 8cm-L).

o The uncertainty in the value of ø when the theoretical fit to the ERF was deter-

mined.

o Multiple passes of photon trajectories through the mid-plane, particuiarly those

associated with longer flight times (l 200ps). The maximum axial distance in this

plane produces the worse resolution while the minimum yields better resolution.

The average was taken.

o The variation in the weights of the trajectories with equal times of flight (within

lps). To estimate the influence of this factor, the spatial resolution was evaluated

by allowing the trajectory weights to vary within one standard deviation of the

mean

4.4 Discussion

The results of Fig. 4.4 and Table 4.1 demonstrate that the IMC technique yields a

good flt to the data of Hebden et al 1L22, 123] and thereby imply the accuracy of
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the temporal and spatial distribution of photon trajectories with times of flight (j
400ps) for which the technique is most efficient. The apparent disagreement with the

experimental results between 100-300ps for the case of þ'" : 2cm-t -uy be reÌated

to an unexplained experimental effect acknowledged by Hebden ([123], figure 6) as

warranting further investigation. Based on this comparison, it can also be inferred

that the IMC technique provides accurate information about the TPSF as presented in

trig. 4.2. The experimental results by Hebden et al are assumed to determine the spatial

resolution accurately for time scales of greater than 200 and 400ps for p,t" :2cm-r and

8cm-r respectively. Hall et al ll02l also studied the effect of medium thickness on both

the spatial resolution and transmittance. However, the errors in their measurements

increase as shorter time scales are approached. These experiments face challenges

common to all present time-gated integrating systems: low detection sensitivity and

poor SNR. Hebden et allI22] and Hall et al1702] used diffusion theory to extrapolate

their experimentai results and this does not have sufficient accuracy. Nevertheless, the

experimental data are useful in that they provide a bench mark for validation of the

IMC results in the longer timescales(l a00ps).

The theoretical results of random walk theory have also been included in Fig. 4.4

(dotted lines). To a first order approximation, the random walk theory provides a

spatial resolution of:

Ar : 1.19
cLt

(4.6)
p s

derived from a Gaussian fit to the point spread function [79, 118]. Chernomordik eú

al 1132] have also published a depth dependence version of Eqn. 4.6 which reduces to

this equation for a depth evaluated at mid-plane. A second order approximation has

also been suggested for the random walk results based on scaling relations [129] as:

r/2

cLtAr : 1.19 (4.7)

p"(7 - g)

This formula has been presented by the solid curves in Fig. 4.4. The results here

show that the second order approximation is only valid for higher values of transport

58



coefficient and longer (- ,") time scales.

The IMC gives rise to better statistics and higher precision in the early part of the

TPSF. However, the code is less efficient for smaller attractive factors. The increased

noise in the IMC results (cf. Fig. 4.4) above - 400ps is due to the decreased detection

effi,ciency as the attractive factor is decreased. For instance, in the case of p'" : 2cm-1,

the detection efficiency for an attractive factor of 16 is about 0.04 per incident photon

per picosecond time interval, whereas the corresponding efficiency for a factor of 0.3 is

approximately 10-6. Therefore the number of simulated photons must be increased to

maintain the quality of the signal over the entire timescale.

The results of Fig. 4.4 and Table 4.1 show that the spatial resolution continues

to improve as the photon flight times are restricted to times shorter than a few 10s

of picoseconds. For an integration time of 10ps, the resolution obtained was - 2mm

with transport coefficient ¡.tt":\cm-r for a medium of thickness L, :5.lcm. Al-

though the simulated incident beam is described by a ô-function in time and space,

in practice the spatial resolution will be influenced by the spatial and temporal profile

of the incident beam. The detector size used in the simulations is comparable with

the resolution obtained and the outcome is a convolution of the ideal resolution with

the detector. Joblin [133] has extensively explored the effect of the system size and

the results may be applied here. At present, SNR may make it difficult to achieve

these limits experimentally with conventional integrating detectors. However, multiple

sampling techniques can give improved signal to noise ratios.

It is further noted from Fig. 4.4 that better spatial resolution can be achieved when

scattering coefficient is higher. This is because, for higher a scattering coefficient and

a given transit time, the detection probability of a trajectory which deviates from the

direct line-of-sight becomes smaller.

Figure 4.5 shows the effect of the absorption in the medium on the TPSF and the

spatial resolution in the case of þ', : 2cm-1. These results are consistent with the

findings of simulations performed by Hebden and Kruger ll27) who suggested that an

increased absorption improves the spatial resolution for a given integration time. This

can be explained as follows. As the probability of absorption increases, the trajectory
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weight decreases exponentially dependìng on the absorption coefficient. Longer flight

paths therefore carry less weight as the absorption coefficient increases. Therefore a

gated detector for a flxed gating time would, statistically, count a smaller number of

long trajectorìes and more of the shorter ones leading to an improved spatial resolution.

The improved spatial resolution as the absorption increases, is achieved at the cost of

a decrease in the detected signal. The figure also shows the spatial resolution is not

significantly affected by the absorption for short gating times. This suggests that the

resolution performance of TI is improved for smaller values of the absorption coefficient

as this enhances the detected signal without compromising the resolution.
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4.5 Conclusion

The indeterministic Monte Carlo (IMC) simulation technique was used to evaluate the

spatial resolution (at the mid-plane of a turbid medium) achievable with integrating

time-resolved TI in the sub-100 picoseconds range. The calculation shows that a spa-

tial resolution of about 2mm is theoretically achievable for an optically thick medium

(- ícm). To obtain this result, the TPSF was fully constructed and an edge response

function (trRF') was estimated. The results are in agreement with the published ex-

perimental data for longer times of flight. An increased absorption within the range

of interest has a minimal effect on the spatial resolution but would significantly affect

SNR. The results obtained with this technique correspond more closely with the ex-

perimental data than the published analytical results. The MC technique also has the

flexibility to readily incorporate inhomogeneities within the turbid medium.
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Chapter 5

First photon detection (FPD)

5.1 Motivation

In this chapter, a limiting case of time-resolved TI systems, fi,rst photon detection

(FPD), is studied by considering the first detected photons from a sequence of incident

laser pulses. The spatial and temporal specifications of the system were described

in section 1.6 with Figs. 1.4 and 1.5 showing schematic diagrams of the spatial and

temporal characteristics of the system. At each scan position, - 103 laser pulses of

( lps in width and with - lMHz repetition rate are made incident onto the surface of

the turbid medium. The first arriving photon from each pulse is detected. The recorded

arrival times of the first detected photons then form the temporal distribution for the

first arriving photon for each scan position

Assuming an ideal single photon detector, an analytic method of deriving the tem-

poral probability density functions (p.d.f.) for the first arriving photon from the TPSF

is presented. The potential performance of the FPD system is evaluated through MC

simulation. Initially, an ideal detector capable of detecting the first arriving photon

with 100% efficiency is assumed. With this ideal detector, the FPD technique is then

applied to obtain the first photon p.d.f. for different laser pulse intensities incident

on an homogeneous medium. The variation in the mean arrival time of the the first

detected photon is then assessed as a function of the thickness, absorption and scat-

ter coefficients of the medium and introduced inhomogeneities. The technique is also
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applicable to the derivation of the p.d.f. of the second and later arriving photons,

enabling a detection time limit to be specified to eliminate the later arriving photons

and thereby overcome distortions of the first photon p.d.f. caused by any inefficiency

of the single first photon detectors.

5.2 Theory: Statistics of the first arriving photon

Let Ä/o be the number of photons in an incident pulse and let l/ be the total number

of detected photons arriving at any time within [0, oo) with the TPSF represented by

?(ú). The flight time ú is calculated relative to the minimum flight time of the ballistic

photon, L"1., and hence represents the delay time of each photon trajectory. This

implies:

l"* T(t) dt : N (5.1)

On normalization to one photon per incident pulse, i.e., when lVo -+ 1, T(t) becomes

f (t) : T(t)lNo which is the probability density functi,on (p.d.f) for the detection of

øny single incident photon with the corresponding cumulati,ue (probabi,li,ty) di,stribution

function (c.d.f.) F(l). One then writes:

I,
oo

r(t) dt: NlNo. (5.2)

Now, let l¿ be the gating time of the detector integrating from I : 0. The number

of detected photons ¡/(¿¿) within [0, ú¿] is not fixed from one incident pulse to the other.

This is due to the stochastic nature of the process dictated by the turbid properties

of the medium. However, the average number of detected photons ¡ú(¿o) within [0, ]¿],

approaches the erpectation ualue (or average) of the detected photons, (¡f(¿r)) within

[0, ¿¿], given by:

(¡r(¿¿)) : Ii yJt:l,tfLl ¿t - ['" ,çr¡ or, (5.3)ji r(t)dt lo
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This is simply denoted bV 
^¡¿. 

The second equality follows from the definition of the

TPSF. One may then say that, for every gating time t¿ there corresponds a positive

number 
^¡d 

< ly' such that the expectation value of the detected number of photons

within [0,¿¿) is ÄI¿. One also notes that for any tto ( l¿, it is found that l/j < 
^¡d,

which is a restatement of the requirement that the c.d.f. be piecewise-continuous,

monotonically increasing [135]. By induction, this argument can be extended down to

ÄL : 1 and a corresponding time 11 for which

^rd 
: [" ,çr¡or:,. (5.4)

Jo

It then follows that for times t\: tr*ôú, on average, less (-) or more (+) than one

photon is erpected to be detected within [0,ri). It is clear that when a finite number

of pulses is incident, not always exactly one photon is detected within [0,¿t). The

probability of detecting one photon within [0, ¿t) is evaluated by knowing the p.d.f

fi(f) for the first arriving photon. This follows because one photon being detected

within [0, t¿] implies that it is the first photon.

In deriving f r(t¡ , let p be the probability that the first photon arrives within [0, ¿t ) .

Then the probability of the first photon not arriving within that time would be q : l-0.
The value of q can be evaluated as follows: let q/ be the probability that any sitgle

photon arrives within llr,oo), i.e., not before f1, and hence is determined by:

, 1,7 r!\dt ^/^ 
ræø':ffit:iJ,, ï(t)dt. (55)

Assume that the arrival time of each photon is an independ,enú event (i.e., no photon-

photon interactions) then q is equivalent to the probability of ø// N photons arriving

after ú1. Therefore Q : Q'N, and hence the probability of the first photon arriving

within [0, ¿1) is

p:7_ q'N-1-
^¡o¡/

oo N

I, Í(t) dt (5.6)

It is noted [135] that p has the characteristics of a c.d.f.. The c.d.f., Ft(t),for the

arrival time of the first detected photon is therefore given as:

Fr(t) :r - if l,* r{Ð or). , þ T)
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and the p.d.f. for the first arriving photon, h(t¡, normalised to unity, is given by:

r,(t¡: #ru, (5.8)

Substitution of Eqn. 5.7 in Eqn. 5.8 and using Eqn. 5.2 yields:

f'(t) -¡/o l,*
N-1

r(t') dt' ¡/r/(¿)

*(#- l"'rØdt)l+

I,*^¡o¡r

IÏ

r(t') dt'
¡r- 1

¡/

T(t',) dt'

with a = lry]t *, large l/. The numerator in ø integrates the tail end of the

¡'/- 1

¡\r
r(t)

a r(t),

TPSF from / onwards. When ú is small (ú ---+ 0),

(5.e)

- 1,

ur ffT(t)dt: l/. This implies fi(t) is closeto (or is equal to) the TPSF, T(t)fort
near 0. For larger I values than zero lf f çt'¡at' < ¡y' (total possible detected photons),

and hence:

a, (#)

1

which implies

/ lÏ rft'\¿t'\N
':(=T,J ro'

and this makes fi(f) drop to zero as f increases. This has been demonstrated in

Fig. 5.12.

The above formulation shows that, given ÄIo and T(t), one is able to derive the

c.d.f. and hence p.d.f. for the first arriving photon of an incident pulse. Given that

the pulses within a sequence are equivalent within statistical variations, the p.d.f so

obtained describes the temporal distribution of the first detected photon from each

pulse. An FPD system, as previously described in section 1.6 would produce the

density function given by Eqn. 5.9.
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5.3 Monte Carlo (MC) simulation

As indicated by Eqns. 5.7 and 5.9, a full construction of the TPSF is necessary both

to evaluate ly' and also to determine the TPSF in the early time scale which most

contrìbutes to fi(t). In this study, the normalised TPSF, /(ú), was obtained through

the IMC simulation technique.

With a reference to the possible FPD system configuration outlined in section 1.6,

the simulation modelled a collinear source-detector combination positioned on opposite

sides of an homogeneous medium representing the normal tissue. tr'or the simulation,

while constant values of 1.45 and 0.95 were adopted for n and g respectively, the values

attributed to the thickness L", the absorption and scatter coefficient, ¡,r,o and þst wlte

varied as per simulations outlined below. However, the values were consistent with

typical values for breast tissue [8,24| The detector active collection area corresponds

to a disk of 0.\mm in radius. However, to reduce the computation time, the detection

efficiency was increased by doubling the detector radius when simulating segments

for the later (> 800ps) portion of the TPSF. A (detection) area correction was then

applied to the flnal photon weights by a multiplication factor of 0.25. The accuracy

of this method was verified by examination of the transmittance profile across the

exit surface near the detector. Figure 5.1 shows the results. These confirms that the

physical situation is that the late-arriving (diffused) photons have an approximately

uniform fluence over the exit surface near the detector. Moreover, it was found that

the discrepancy in the total number of detected photons, .|y', was less than l.5To after

the correction. Since the late part of the TPSF only influences /y', this method of

increased detection area for longer time scales was considered valid. A 3-point median

filter was also applied to the TPSF for smoothing before Fr(/) and fi(f) were evaluated

as represented by Eqns. 5.7 and 5.9 respectively.

The p.d.f. for all detected photons, /(l) (normalised TPSF to one incident photon)

and the corresponding c.d.f., F(Í), are shown in Fig. 5.2(a) for times of flight up to

3000ps. Figure 5.2(b) expands the first 200ps time scale in which the first arriving

photon contributes most to the TPSF and demonstrates that the IMC technique is
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Figure 5.1: The transmittance per unit area at the exit surface near the detector. The
reduced noise towards larger radii is due to larger collection areas (rings) associated with a
given radius which resulted in improved statistics.

well conditioned at very short times in excess of the ballistic TOF.

For each of the simulations described below, a separate simulation was carried out

for each scattering coefficient and medium thickness. The absorption was evaluated as

described in section 2.2.

5.4 Number of photons per incident pulse (laser

po\Mer)

For a given number of photons, ÀIs, per incident pulse, there is a unique ú1 (up to the

statistical variation and measurement tolerance) such that ft(¿t) : 1, i.e., the first

photon arrives almost definitely withinl [0,¿r]. Now, let ¡ff(:10k1/0, k: I,2,"')
represent the number of photons per incident pulse for an increasing sequence of laser

powers w.r.t. a reference laser power containing ÄIs photons. In an ideal case the

linearity of Eqn.5.1 dictates that the ratio NtlNr remains constant where I/k is the

corresponding total number of detected photons. From Eqn. 5.7, it is evident that the

c.d.f. for the first arriving photon approaches unity faster as k increases. This means

lMore precisely, úr is the inflmum of a time interval, þ, oo] , for which F1 (f) is sufficiently close to

unity within a tolerance limit.
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that the probability density function integrates to unity within a time interval [0,¿f],

where tf. < tt is a decreasing sequence. Physically, this reflects the expectation for

the first photon to arrive earlier as the laser power is increased. The relationship is

however non-linear and depends on the form of the TPSF, a characteristic function

of the medium. For example, if the gradient of the TPSF is steep, the points in the

sequence ff are closer together.

By varying ÄIs, the number of photons per pulse, a range of incident laser powers

on an homogeneous medium with specific p.d.f., /(ú), was simulated. The change in

ly's resulted in a corresponding change in N (trqn. 5.9) and subsequently in Fr(l) and

ft(t). For a pulsed laser with an average power of - I\mW, a repetition rate of lMHz

and a wavelength of lpm, Ä/o would be - 1011 photons per pulse. A repetition rate

of lMHz would avoid any cross talk between pulses as the TPSF typically extends to

only a few nanoseconds.

The application of Eqns. 5.7 and 5.9 to the TPSF curves results in the p.d.f. for the

transition time of the first arriving photons. Figure 5.3 shows the p.d.f. for different

values of laser power l/o (the smooth curves are Gaussian-quadratic fits to the MC

data). The right hand curve of Fig. 5.3 represents Ä16 : 1011 photons per pulse. ÀIs

increases by one order of magnitude for each curve towards the shorter time scales,

equating to a range of powers from lOrnW-lMW. Whilst a mega\4/att of power is

impractical, the curves demonstrate that the p.d.f. for the first arriving photon ap-

proaches a delta function at t : 0 as the laser power increases infinitely. Therefore,

an increase in laser power produces a corresponding decrease in the mean arrival time

which implies improved spatial resolution as well as faster response time requirement

for the detector. However, for a pulse repetition of lMHz and detector area of about

Imm2,, the maximum permissible exposure2 (MPtr) of I5mW3 is equivalent to about

2This maximum permissible exposure limit has been evaluated according to the Australian and

New Zealand laser standards [136].
3The MPE due to a single pulse within a train is calculated via, MPE¿ro¿n=MPE"¡nn¿" x C1 where

Ct - N-0 25 is the correction factor and l[ is the number of pulses in the train. MPEr¿nn¡. -
5 x 106 x C2 x Ce x Cq wherc C2 - 3, C2 - 1 for ), - lltm and C+is the proportion of the total

integral sum of the pulse widths and the exposure time.
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Figure 5.3: The first arriving photon p.d.f., fi(l) for a range of laser po'\Mers. The curves
represent different input laser intensities from 1011 photons per pulse (RHS) to 101e (LHS).
The smooth curves are fits to the data.

1011 photons per incident pulse

A limiting case: When Ä16 is large (high laser power) or when the medium is thin,

giving rise to a very large number detected photons lú, Eqn. 5.7 characterises an impor-

tant physical phenomenon, namely a sharp increase in the probability of the detection

of a number of (first) photons immediately after the ballistic flight time. This can be

seen by noting that [J- f (t') dt'lt . 1 and hence lim;y--¡- llï f (t') dt'fN :0 and, in

the limit when 1/ -+ oo it follows that:

0

I

o

o

Øp<

>'
Ø

.é

o
h

Ê.

40

Fr(t) -1
-0

forl)0
forf:0

which forces fi(t) to approach a ô-function.

5.5 Medium thickness and optical properties

The TPSF and subsequent fi(l) were evaluated under conditions of changes in the

medium thickness, tr,. Media with three values of L" - 4.0, 5.0 and 6.0cm were

simulated. Simulations were carried with constant absorption and transport coefficients

of ¡,ro :O.lcm-r and p"t" : \cm-L.
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Figure 5.4: The variation in the flrst photon p.d.f. versus thickness of the homogeneous

medium.

The decrease in the thickness of the medium results in a decrease in the (mean)

arrival time of the first photon as shown in Fig. 5.4. This is not simply due to the

reduced path-length, as I represents the delay time w.r.t. the ballistic TOF. This

decrease in the arrival time is attributed to the increase in the total detected number

of photons, ly'. As was previously demonstrated a decrease in Iy' results in an increased

first photon transit time.

The first photon p.d.f, lt(t), was also evaluated as the scattering and absorption

coefficient of the medium were varied, Simulations with different transport coeffi.cients

of ¡,r,t" -9,8, and l\cm-r and fixed absorptìon (p,:0.lcm-t) were performed as well

as with a fixed transport coefficient (lcm-t) and variable absorption (0.1, 0.15, 0.2 and

0.25cm-L).

The results are presented by Figs. 5.5 and 5.6. The shift for an increase of p'" from

5.0 to 70.0cm-r results in a mean transit time change of approximately 200ps whilst an

increase in po from 0.1 to 0.25cm-1 causes a mean transit time shift of approximately

10ps. An increased absorption results in smaller detection probability and hence a

decrease in ,^/. Also, an increase in the scattering coefficient results in a decrease in the

reduced mean free path, l', and hence increased optical thickness which in turn implies

a reduction in l/. These, again supports the prediction of the theory, i.e., increase in

the first arriving photon mean transit time as ly' decreases.
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Figure 5.7: The p.d.f.s for the first arriving photon corresponding to the presence of totally
absorbing spherical inhomogeneities with varying diameters in an otherwise homogeneous

medium. The results are shown for totally absorbing inhomogeneities located at the centre
of the medium.

5.6 Introduced inhomogeneities

MC simulations were undertaken to determine the TPSF when a spherical inhomo-

geneity was introduced at the mid-plane. A separate simulation was computed for

each totally absorbing sphere within the diameter range of 2-1Omm. Similarly, further

simulations were performed with sphere having a fixed diameter (6mm) and constant

absorption (p" : O.Icm-t) over a range of transport coefficients (pi : 7.5-2.5crn-1), as

well as one having a fi.xed transport coefficient (7.1cm-t) with the absorption coefficient

varying (0. 1-4.0crn-1 ).

The p.d.f. of the first arriving photons with totally absorbing spherical inhomo-

geneities of increasing diameter,located at the centre of mid-plane, are shown in Fig. 5,7

for an incident pulse of 1011 photons. Figure 5.8 plots the increase in the mean arrival,

t1 time for the p.d.f.s of Fig. 5.7 against the diameter of the inhomogeneity.

The mean arrival time is an average over the flight time of a number of possible

("snalce") trajectories which zigzag to the detector, but not necessarily along the geo-

metric shortest path. At each scan position, the first arriving photons from a sequence

of incident pulses may be thought of as a photon cloud [a8] with the leading edge

being the ballistic photon (or that which follows the geometric shortest path). The

- 

Homogenous medium
d:zmm
d:4mm
d:6mm
d:€lmm
d:lOmm
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Figure 5.8: Mean (arrival) time of the first photon density function corresponding to spherical
inhomogeneities with varying diameters as presented in Fig. 5.7 (o). The solid smooth curve
is a parabolic fit to the data.

Diameter(mm) 2.0 3.5 4.0 >4.0
P-value 0.46 0.05 0.001 <0.0001

Table 5.1: P-values corresponding to significance test on the p.d.f.s presented by Fig. 5.7

remainder consists of photon trajectories within a volume bounded by the source and

the detector around the most likely classical path as described by the path integrals of

Feynman [80]. The classical path is the ballistic trajectory only for the case when the

detector is perfectly collimated. For measurements of the early part of the TPSF, it is

not practical to utilise such a detector, as this significantly reduces the flux.

A significance T-test was performed on the results of Fig. 5.7 to assess the null

hypothesis that the spherical inhomogeneities do not have an effect on the fi.rst photon

p.d.f.. Table 5.1 present the results of the significance test. The P-value corresponding

to a 3.5mm inhomogeneity was evaluated by extrapolation using the parabolic fit to
the data presented in Fig. 5.8. It is concluded that a totally absorbing spherical

inhomogeneity, S.Smm in diameter, is distinguishable from the the uniform medium at

lhe 95% confidence level.

Figures.5.9 and 5.10 show the shift towards longer transit times due to an increase

in the transport scattering (7.5-25cm-1) and absorption (0.t-4.Ocm-l) coefficient re-

spectively, of a fixed 6mm diameter spherical inhomogeneity. The increase in the mean

95% Confidence lewel

ogenous (DC) s
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Figure 5.9: The effect of the variation in the transport scattering coefficient ¡.r,/" associated

with a 6mm in diameter spherical inhomogeneity located at the centre of the medium. The

absorption coefficient was fixed at po - 0.Icm-r. The solid curve represents an homogeneous

medium wilh p,o : O.lcm-Land LL', : \cm-r.

arrivai time highlighted by these figures reflects an increase in the effective path-length

due to either more scattering within the spherical medium or to travelling around it.

It can be deduced that inhomogeneities with smaller scattering and absorption coeffi-

cients than the medium, resuit in a shift towards the left of the p.d.f. representing the

homogeneous medium. As most tumours have higher values of scatter and absorption

coefficients [27] than normal tissue, the maximum differentiai in the TOF is offered by

the totally absorbing inhomogeneity.

The results as shown in Figs. 5.9 and 5.10 in combination with those of Fig. 5.8

indicate that solution of the inverse problem (i.e., determining the characteristics of an

inhomogeneity from the increase in transit time) may be non-unique. For example, a

medium with a 6mm spherical inhomogeneity with lower scatter/absorption coefficients

than a totally absorbing sphere may result in a shift equal to that of a 4mm one with

higher values of scattering/absorption coefficients. However, Fig. 5.8 suggests that a

shift above a threshold specified by the g5% confidence level guarantees the presence

of a spherical inhomogeneity of at least 3.\mm in diameter.

The detectability of a specific inhomogeneity within an homogeneous medium is

indicated through examination of Figs. 5.5 and 5.6. The shift in the mean transit time,

while consistent with those indicated by Figs. 5.9 and 5.10, are of greater magnitude
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due to the larger volume occupied by the medium of high scattering coefficients through

which the trajectories propagate.

5.7 The effect of a non-ideal detector

A single photon detector is unlikely to be 100% efficient and hence will detect some later

arriving photons. Assuming no photon-photon interactions and that the arrival time

of each photon is an independent event, the effect of missing the first arriving photon

by the detector may be evaluated by removing its contribution to the TPSF. The

remaining signal would then have the second photon of the originally detected signal

as its first photon. The 2"d photon p.d.f. may therefore be obtained by subtracting

fi(f) from 7(f) and applying the above calculations (Eqns. 5.7 and 5.9) to the remaining

signal. This technique can be extended to the 3"d and later arriving photons.

For a less than 700% efficient detector, 2d and later orders of photon may be

detected. The p.d.f.s for these later arriving photons , f "(t),, 
were calculated as described

above, from the simulated TPSF of an homogeneous medium with ¡,r"t" 
: \cm-r.

A model for the first photon p.d.f. f,,(t) corresponding to a non-ideal (realistic)

/o



detectora may be considered as

f,,U): t a, l,(t),
N

n=l

(5. 1o)

'sNwhere D;:, en : 1 with the characteristic efficiency response factors a,, being real

positive numbers that characterise the detector efficiency with respect to the detection

of the n¿å arriving photon. The a, may be a function of several technical factors,

consideration of all of which is beyond this theoretical evaluation. It is however noted

that high values of a1 and a fast decreasing sequence of a, is indicative of an efficient

detector.

Figures 5.11 shows the p.d.f.s for the nrh arriving photons, while Fig. 5.12 shows the

integrated first n arriving photons statistics. The results also present the contribution of

the integrated number of first arriving photons to the TPSF. Figure 5.12 also confirms

the expected results that the temporal distribution of the integrated first n arriving

photons follows the TPSF. Based on the results of Figs. 5.11 and 5.12, a detector with

an efficiency of less than 100% will (a) always have a finite and increasing chance of

detecting the second or later arriving photons unless the gating time is limited or the

first photon is detected within less than 103ps, and (b) not be able to readily resolve

the later orders of arriving photons due to the fast rising TPSF. Without knowing

the characteristic efficiency response of the detector, an accurate prediction of the

proportions of first, second and third order content of the final measured p.d.f. cannot

be made. However, with an upper acceptance limit of 140ps, photons of the fourth

order and above will be eliminated and the relative proportions of the first, second and

third order will be, at worst, the relative areas under the curves up to that time limit.

5.8 Concluslon

A method for determining the temporal p.d.f., f{t¡,, of the first arriving photon at

a detector from laser pulses incident on a turbid medium has been developed. The

aThe subscript, r in /,, (f) reflects the first photon p.d.f. output of a realistic (non-ideal) detector
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potential information content of fi (t) and the possibility of its use to form a basis of a

first photon detection (FPD) TI system has been theoretically assessed. For a tissue-like

medium of about \cm in thickness, the p.d.f. for the first arriving photon of an incident

pulse constitutes the sub-150 picosecond portion of the TPSF. Under ideal conditions,

a system based on first photon detection can discriminate a totally absorbing sphere of

3.5mm in diameter in an homogeneous medium, when a laser power of about L\mW

at lMHz repetition rate is utilised. The FPD system also demonstrates significant

sensitivity with variations in the optical properties of the homogeneous medium as

well as the presence of inhomogeneities.
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Chapter 6

Heterogeneous medium

6.1 Motivation

The FPD system described in chapter 5 assumed an homogeneous medium with no

spatial variation in its optical properties. Although useful in demonstrating a theoret-

ical basis for FPD, it is an idealised case. In this chapter the effect of heterogeneity in

the medium is considered.

A heterogeneous medium is one in which the optical density varies spatially(here,

with an emphasis on the scattering coefficient). A 5 x 5 x 5cr¿ medium was divided

into a three dimensional 11 x 11 x 11 array of cubic cellsl. These cells have a size that

approximates the size of the lobules in the breast. Over a number of simulations the

cells were assigned random values of scattering coeficients with a mean of L\\cm-t,

uniformly distributed between 70-I30cm-1. For computational efficiency the cells were

each assumed to have the same refractive index, n : I.45, and anisotloPY, I : 0.95.

1A choice of an odd number of cells in each dimension avoids the central propagation axis coinciding

with the adjoining line of column cells in the propagation direction.
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6.2 Effect of heterogeneity on the first photon mean

arrival time

With a reference to the same model set-up as shown in Fig. 1.4, the TPSF was computed

for source-detector positions along the x-axis between r :25-34mm at lmm intervals.

This interval covers the distance between the centre of three adjacent cell columns

including and parallel to the central axis. This range allows consideration of variation

in the optical properties of the medium as seen by the first arriving photon, i.e., close

to the central axis.

At each position, the FPD technique was applied to calculate the first photon

p.d.f., f{t), and consequently, the first photon mean arrival time, 11. Figure 6.1 plots

11 as a function of source-detector x-position in which a variation of about 10ps is

observed. As the source-detector moves, the trajectories which contribute to fi(t)
scatter through different regions (as well as the overlapping regions associated with the

previous position). Therefore the 10ps variation reflects the (random) variations in the

heterogeneous medium along the detector iine-of-sight. An analysis of this variation

will be included in later sections (6.5).
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6.3 Embedded inhomogeneity

A heterogeneous medium with embedded totally and partially absorbing spherical in-

homogeneities was simulated following the same procedures as described in section 5.6.

The minimum inhomogeneity sphere size was 3mm in diameter as a 2mm one was not

expected to be temporally resolved within an acceptable confidence level as shown in

Fig. 5.S. Figure 6.2(a) plots ú1 as a function of inhomogeneity diameter.

To compare the results of Fig. 6.2(a) with those of Fig. 5.8 corresponding to an

homogeneous medium, the results of the two figures ale over-plotted as shown in

Fig. 6.2(b). In order to consider only the effect of embedded inhomogeneities, this

figure plots the first photon mean arrival time w.r.t. that of the corresponding medium

(heterogeneous or homogeneous) without the presence of inhomogeneity. The results

of Fig. 6.2(b) indicate that, the heterogeneous medium is equivalent to that of an ho-

mogeneous one with its optical properties averaged over the local variations along the

trajectories. In other words, an inhomogeneity causes the same shift in 11, so long as

the surrounding media have the same average optical properties near and close to the

propagation axis.

Following the above, 11, here corresponding to the (heterogeneous) medium in the

absence of an embedded heterogeneity constitutes the "backgrounû'. In the case of the

3 and 4mm inhomogeneities,ll was also obtained for source-detector positions between

r :25-30mm and r:25-32mrnz respectively2, at lmm intervals along the x-axis. The

data of Fig. 6.1 were used to mark the background and Fig. 6.3 shows the results

relative to this background, both for totally and partially absorbing cases.

Figs. 6.1 suggests that the variation in the background signal due to medium het-

erogeneity is of the order of 10ps. This variation is larger than the observed shift in lr

due to the presence of a spherical inhomogeneity (> 3mm in diameter). Tomographic

techniques may be utilised to resolve the variations due to the heterogeneity and detect

the shift in f r due to the inhomogeneity. However, the implementability of tomographic

techniques in a FPD system will be out of the scope of this report.

2The upper limit for the range of æ marks the position for which ú1 drops to within 0.5ps of the

background (i.e. medium without the embedded inhomogeneity) .
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6.4 Scattering coefficient and flight time

Theoretical studies ll2,77l propose that the detected photons with short times of flight

undergo a smaller number of scattering events. This implies that the scattering cross

section effectiuely decreases with a decrease in the flight time limit imposed by the

detector. However, this has not been previously investigated quantitatively, due to

theoretical as well as experimental dificulties in measurements involving short photon

times of flight. In order to assess the response of the FPD system as a function of

medium optical characteristics, one needs to accurately measure the effective optical

properties of the medium for the applicable time scale.

In a simulation of an homogeneous medium the number of scatterings was recorded

for each detected trajectory, which enabled the evaluation of number of scatterings per

unit length experienced by the photon, here referred to as the effectiue scattering coef-

ficient3. This quantity may then be plotted as a function of the trajectory flight time,

as presented by Fig. 6.4. In producing these results a nominal scattering coefficient of

p,, : I00cm-1 was used and each trajectory contributed according to its weight.

It is evident from Fig. 6.4 that the effective scattering coefficient approaches the

sThe effectivê scattering coefficient as defined here should not be mistaken with the effective at-

tenuation coefficient, þ.J j = \/ff"Tp;TfiJ commonlyused in the literature (described also in sec-

tion 1.2).
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nominal value for longer time scales. However, in the short flight time regime it drops

rapidly, as it is expected that the number of scattering approach zeto for the ballistic

photons (i.e., the plot of Fig. 6.4 is expected to go through the origin). Figure 6.4

suggests that the considered effect is mainly evident for photon trajectories with flight

times less than 300ps. As ú1 is expected to correlate with the optical properties of the

medium, this effect may be significant for the FPD system as the first photon mean

arrival time, ú1, is near 100ps for a laser power of I\mW (cf. Fig. 5.3).

The mean of the effective scattering coefficient for the first arriving photon may

then be evaluated as:

I,* (6. 1)|f,": ¡t"(t) f{t) dt,

where ¡;,(ú) is the effective scattering coefficient as a function of the flight time and

its value is obtained from the plot of Fig. 6.4. ¡-r" is the expectation value, (p"),

considering the non-uniform distribution of the first photon arrival time, 11. Therefore,

the trajectories contribute to this mean according to fi(t) as highlighted by Eqn. 6.1.

This simply means that trajectory flight times which have a higher probability of

occurrence contribute more heavily to ¡-1". Equivalent results may be obtained for a

heterogeneous medium in a similar fashion. The results presented in the rest of this

chapter will be based on the determined values of lt".

6.5 Effect of the variations in scatter and absorp-

tion of heterogeneity on ú1

In chapter 5 the sensitivity of the FPD system was assessed for uniform media of

different optical density (cf. Figs. 5.5 and 5.6). It is, however, necessary to examine the

FPD system w.r.t. heterogeneous media, as they better represent the small variations

in the optical densities of a soft tissue such as the breast.

Random values of scattering coefficients, uniformly distributed between 70-I30cm-r ,

were assigned to cubical cells constituting 7 different heterogeneous media, each as de-

scribed in section 6.1. The TPSF, fr(t), and the corresponding mean transit time, f1,
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were obtained for each configuration. In addition, the TPSF's (obtained at various

x-positions) from section 6.3 for a heterogeneous medium without inhomogeneity were

also used in producing the results of this section.

Figure 6.5 plots the mean arrival time of the first photon, ú1, against the mean

effective scattering coefficient, þ", corresponding to different values of lro. This fi.gure

demonstrates a strong correlation (with correlation coefficient [131], r > 0.99) between

11 and ¡-l". This implies a strong correlation displayed by the FPD system in detect-

ing variations in the optical properties of the medium close to the propagation axis

(detector line-of-sight) as encountered by the first arriving photon.

From the results of Fig. 5.6 of the previous chapter, it can be concluded that a

stronger or weaker dependence of absorption on the scatter may result in larger or

smaller shifts in 11. However, quantitative assessment of the possible outcome, when

no clear relationship between the absorption and scatter is available, is out of the scope

of the present paper.

The above results confirm those of chapter 5, in suggesting an increase in ú1, as

¡;" and þa ate increased. The linear fit to the data of Fig. 6.5 for þo : 0.1cm-t pt"-
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Figure 6.6: First photon mean arrival time, ú1 versus p". The results of Fig.6.5 (group of
points) have been combined with those corresponding to lower values of p"-50 and 75cm-r.

dicts fi :200 and 300ps (+10%) corresponding to scatter coefficient values of 160 and

200cm-r. This is in agreement with the previously obtained results of Fig. 5.5. How-

ever, it is noted that this linear flt does not intersect the origin. The intersection with

the origin reflects the requirement that for the unscattered trajectories (e.g., a medium

with p" :\cm-r) the delay should vanish as all trajectories become ballistic. Homo-

geneous media with scattering coefficients of 50 and 75cm-r were therefore simulated.

The results are presented in Fig. 6.6.

The data of Fig. 6.6 was fitted with a quadratic curve. From the fitted curves it

was found that, for a laser power of L\mW, the following equation describes ú1:

tt : 0.07 tt' " * 0.0109¡;"2 (6.2)

Equation 6.2 was evaluated based on þra:0.1cm-1. Although this equation accu-

rately describes the dependence of tl or p"t it over estimates the results for a medium

with higher values of the scattering coefficient. It is therefore concluded that the

quadratic and the linear models should be used for mean scattering coefficients of

below and above ¡t"" x 700cm-1 respectively.

o 20 +o 60 ao
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6.6 The FPD versus the integrating system

In order to compare the ability of the FPD and conventional integrating systems in

detecting small variations in the optical densities along the detector line-of-sight, two

cell arrangements of sectìon 6.5 were re-examined and are referred to as arrangements

1 and 2, It is noted that the rea rangement of cells ensured the same global average

scattering coefficient for the two media. This is analogous to two tissues of the same

type but different subjects.

Figures 6.7(a) and (b) show the integrated intensity (c.d.f., F(t)) and the normalised

TPSF, f (t), for the two arrangements, while Fig. 6.7(c) is a graph of the effective

scattering coefficient as a function of trajectory flight times. The data of Fig. 6.7(c)

demonstrates that the two media are indeed different along and near the propagation

axis, the most likely region for shorter times of flight. The merging of the curves

reflects the fact that, globally, the two media exhibit similar optical characteristics.

In particular Fig. 6.7(a) indicates that for times of flight longer than about 220ps

(corresponding to log(F(t)) : -8.5), the two media become indistinguishable for an

conventional integrating system whose output is the integrated intensity based on the

graph of F(t).

The two arrangements, 1 and 2, were also represented by the two data points on

trig. 6.5 ut (tt",út)t : (94.7,,98.0) and (tt",tt), : (98.2, 106.4) where the subscripts

mark the corresponding aïrangement. Assuming a temporal resolution of 1ps for the

FPD system, these two points are clearly distinct from one another on the 11 scale, i.e.,

yielding a difference of 8.4ps in f1.

The above results indicate the superiority of the FPD system over a conventional

integrating system in detecting variations in the optical properties of the medium of

the order of a few percents. It is noted that this difference in the two media becomes

more significant and hence detectable at or below - 100ps which is typically the mean

arrival time of the first detected photon. It is also observed that near this time scale

a significant difference is also observed in the integrated intensities as presented by

trig.6.7(a). However, current integrated systems fail to detect (less than) single or
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partial photonsa. Therefore, although the two cuïves of Fig. 6.7(a) may differ by a

factor of - 3 in F(l), at - 100ps, this does not reflect the ability of a conventional

integrating system in differentiating between the two media.

aA partial photon represents the probability of detection of a single photon per incident pulse

within the detection time.
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6.7 Conclusron

For a FPD system, it has been shown that a heterogeneous medium may be regarded as

the homogeneous medium with the spatial variations in the optical properties averaged

over the trajectory path. Back-projection techniques may be applied using measured

mean transit time of the first arriving photon, t1, to resolve these variations which

are averaged over the detector line-of-sight for each projection angle. A high degree

of positive correlation between ¡r" and the variation in the optical properties, ¡to, a,nd

ú1, suggests high sensitivity w.r.t. the small variations in the optical properties of

the medium as required in TI. This strong positive correlation, particularly with ¡;o,

provides a basis for a high contrast resolution which will be discussed in the following

chapter.
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Contrast and signal-noise-ratio

Chapter 7

7.1, Motivation

In this chapter, a concise account is given for the evaluation of the contrast and signal-

noise-ratio (SNR) for a FPD system. Based on an analysis of the SNR, the number of

incident pulses per scan position needed to achieve a required SNR is also derived.

7.2 Contrast

For a conventional integrating time-gated TI system, the contrast C"onu. is defined [107]

as the difference in the signal intensity transmission per unit length and with reference

to Fig. 7.1a,

c"n-.,:":". (2.1))nu. _ 
L"

However, for a FPD system where the received signal does not change (one photon

per pulse) this definition of contrast cannot be used. Instead, the contrast Cppp (or

just C) is defined to be the difference in Tnean transmission time (of the first arriving

photon) per unit length, i.e.,

C -tt-tz.r : -l:. 9.2)

In Fig. 7.1 where the tissue types are homogeneous, f1 does not have a spatial

dependence except close to the boundaries. For the contrast to be a meaningful pa-
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rameter, it is also expected that C varies continuously with smooth variations in the

optical properties. Therefore, a measurement of mean arrival time, f1, is expected to

correlate with the optical properties and provide information about the contrast.

7.2.L Contrast and medium optical properties

Instead of the step function configuration illustrated in Fig. 7.1, assume a medium with

a continuously varying optical properties (",g., p") from left to right, in an FPD system,

with a fixed laser power. Then, the horizontal (spatial) axis of Fig. 7.1 would correspond

to variations in the optical properties. This configuration would be equivalent to that

of Fig. 6.5 in the sense that úì was evaluated as a function of variation in the optical

properties ¡;". Each point on Fig. 6.5 essentially represented a different medium (tissue

typ"). Given the medium thickness L",, the contrast C for any two tissue types is

the difference in the time coordinates corresponding to a pair of points on Fig. 6.5.

With reference to Fig. 6.5, as an example, for a fixed iaser power of I\mW, L" :

5.0cm and two media (tissue types) with (p", þ"): (94.5,0.1) and (97.5,0.2)cm-1,

the corresponding f1s are 98 and 113ps respectively whìch results in a contrast of

C :3.0ps cm-|.

For each value of the absorption coefficient, it is noted that the slope of the linear

flt to the data of Fig. 6.5 increases with increased value of the absorption coeficient.

This implies that better contrast is achieved for higher values of absorption coefficient.

However, the limitations in the temporal resolution of the system should be considered

when assessìng the contrast. For example, for a fixed value of p,o:0.Icm-r of Fig. 6.5,

the slope of the fitted curve is - 5.8ps crn. Which means that for a temporal resolution

of 1ps the minimum detectable differential in the mean scattering coefficient, /.¿1, is

I.7cm-r which closely corresponds to the same differential in Lt".

7,2.2 Contrast and laser po\Mer

It was shown in Fig. 5.3 that f1, and hence differential in ú1, decreases with increased

laser power. Combined with Eqn. 7.2, it is therefore expected that contrast is also
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affected by the laser powerl

With a reference to Fig. 6.6, to study the effect of the laser power on the contrast,

the number of photons per incident pulse, Iúo (laser power) was increased and the

corresponding "ft(l)'s and the corresponding úrs of Fig. 6.6 were calculated. Figure 7.2

presents the results. This figure suggests that the system contrast degrades as the

laser power is increased. This may be deduced from the decrease in the gradients of

the fitted curve fits2 corresponding to higher laser powers. A decrease in the gradient

implies smaller time differential for a given pair of optical properties (".g., ir1).

7.3 Signal-noise ratio (SNR)

A comprehensive discussion of SNR has been given by Joblin [133] for a conventional

integrating system where the calculations are based on the detection probability of

1In an extreme case, it is also intuitive that a very high laser power cannot diferentiate between dif-

ferenttissuestypesasfi(t) approachesad-functionneart=0. Thiswouldthenimplythat,regardless

of the tissue type, no detectable variation in fi(i) and consequently ú1 may be observed.
2Note that the quadratic curve fits of Fig. 7.2 do not obviously all have the same coeff.cient, c1 and

c2 in the quadratic relation tt = ctl.t, + czl,t"2, as described in section 6.5. It was found empirically

that, more generally, cr = 0.01 remains a constant whereas cz = 0.00425 * 0.6(1010p) -o'r77e, with p

measured in milliwatts. The factor 1010p represents the number of photons l/o in the incident pulse.

The quadratic curves of Fig. 7.2have been evaluated based on pa = 0.Icm-| .

Laser power (mw)
.1

.5

. 10

.20

.5o

. 1OO
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a photon within the integration time of the detector. For FPD system this method

does not apply, as the detector detects one and only one photon from each pulse. The

FPD signal is an estimation of a mean value 11, calculated for the first arriving photon

from a train of incident pulses. This mean value constitutes the signaÌ, and the noise

contributes to the error in the estimation of this mean. The SNR, being a function of

the noise in the signal, would subsequently depend on the standard deviation of the

mean, ø1 and is given by:

SNR: lr/aì (7.3)

Let n, be the number of incident pulses per scan positìon or equivalently the number

of detected first photons contributing to the signal. One then arrives at the following

question: How large should n be to achieae a required SNR?

From Eqn. 7.3, it becomes a question of reducing ø1 to a value which ensures a SNR

greater than that required. For the purpose of producing a pixel value for a planar

projection, the mean ú1 (or ø1) is the sufficient moment to be estimated for fi(l).
However, it may also be useful to derive other moments which characterise skewness

and kurtosis (flatness). In this case the method of moments3 can be used to estimate

n. This involves continued sampling until the moments remain unchanged within a

given tolerance limit.

Before a numerical estimate of the SNR is given, it is noted that no functional form

is known for the normalised TPSF, f(t),to make possible the analytic evaluation of

o1. The first arrìving photon p.d.f., ft(t¡, is therefore approximated to a Gaussian

p.d.f. with a mean fr : 100ps and a standard deviation o :20. This is typically close

to fi(t) for an homogeneous medium with þ, : I\\cffi-r, lf,o : 0.Icm-r and a laser

power of l\mW. For a Gaussian p.d.f., it is known [137] that the error in the mean,

ot, : o lt/n, and hence:

SNR : t/" tt
o

(7.4)

3Method of moments is based on the fact that two equivalent distributions produce equal moments

In practice the first four moments sufficiently specify a distribution.
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logro(n) tr O1 SNR Skewness Kurtosis
exact 100.00 0.00 oo 0.0 3.00

1.0

2.0

3.0

4.0
5.0

102.50

99.40

99.64

99.51
99.41

7.51

2.07

0.62

0.19
0.06

13.63

47.86

159.18

501.26
1569.73

0.32

-0.24
0.02

0.01

-0.01

2.47

2.90

3. i9
3.09

3.01

Table 7.1: Comparison of various parameters associated with that of an exact Gaussian

distribution (top row) as a function of n, the number of incident pulses per scan position.

Table 7.1 presents the results for the associated parameters corresponding to various

values of n, the number of incident pulses per scan position. Requiring a temporal

resolution of better than 1ps, Table 7.1, suggests a value of n:103-104. It is further

noted that this range of n values guarantees obtaining the third moment (skewness) to

within less than t% and flatnessa to within 5%.

Furthermore, it is also possible to estimate n without considering an approximate

Gaussian p.d.f.. This is done by replacing the estimation of the noise, characterised by

o1, with some specified confidence interval (CI). The CI corresponds to a confidence

level, CL (e.g., 95%), for the estimation of the population mean 11. Here, ft(t), ø and

11 are all unknown as in the case of a real scanning situation. However, a sample mean,

here also noted as fi, and a sample standard deviation s for the flight times of the

first arriving photons can be evaluated while the data is being collected at each scan

position. The confidence interval boundaries would be [137]:

t1 t Ar; : lt Lt;,*-f lJn,, (7.5)

for CL: 100(1 - o)%. The statistic t¡..,n-r is the Student's t-distribution with n - I

degrees of freedom and parameter |a. For a required SNR (or equivalently L,6), n

may then be adjusted such that the confidence interval given by Eqn. 7.5 is contained

within lr+¡t which ensures a SNR greater than that specifled. For CL:95%, temporal

resolution of better than 1ps (ør ( 0.5 or SNR>200) and s:20, Eqn. 7.5 suggestss a

4Kurtosis, being a measure of flatness does not have as direct relevance to the estimation of the

mean compared to the lower moments.
sFor values of n)- 120 and CL:9\To, tlo,r-r - 1,96.
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value of n - 6400 which is again in agreement with that suggested by the Gaussian

approximation approach.

7.4 Conclusion

It has been shown that the system contrast improves with an increase in the medium

absorption and degrades with an increase in the incident laser power. The SNR anal-

ysis suggests that in order to achieve a temporal resolution of better than 1ps, 103-104

photons per incident pulse are required for each scan position. For a laser pulse repe-

tition of 1MHz, this does not pose insurmountable time constraints on the clinical use

of the FPD system.
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Chapter 8

Conclusion

8.1 Milestones achieved

It has been demonstrated that a higher spatial resolution in time-resolved transillumi-

nation imaging (TI) may be achievable by employing time-of-flight (TOF) measurement

of the first detected photon from each incident pulse. The initial step in a feasibility

study of a first photon detection (FPD) system was to devise an indeterministic Monte

Carlo (IMC) technique which was validated against published experimental results.

The IMC enabled simulation of early arriving photons for source-medium-detector ge-

ometries similar in optical properties and dimensions to those of clinical interest. This

allowed the full construction of the temporal point spread function (TPSF) from which

the statistics of the single early arriving photons were derived analytically, with an

emphasis on the first arriving photon. Finally, the FPD technique was applied to

both homogeneous and heterogeneous media with, and without embedded spherical

inhomogeneities.

8.2 Resolution, Contrast and SNR

It was shown that a spherical inhomogeneity, Smm in diameter may be distinguished

from the background medium (i.e., medium without the presence of the inhomogeneity).

Figure 8.1 shows 2-D planar images obtained in the presence of inhomogeneities. These
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images are based on the data presented in Fig. 6.3, assuming radial symmetryl and

added normally distributed noise with a standard deviation of lps2 reflecting the error

in determining 11 for a homogeneous medium. A preliminary observation based on these

images confi.rms the distinguishability of a 3mm totally absorbing inhomogeneity. It

should, however, be mentioned that this does not exactly reflect the spatial resolution

of the system. In order to evaluate the system spatial resolution, one needs to follow

the analysis presented in chapter 4.

Assume that it is possible to perform a continuous integration of the TPSF for

time scales within the first photon arrival time, i.e., the time scale for which the c.d.f,

Ft(t),, is less than unity. Then in order to derive the spatial resolution as a function of

the "gating" time from the ERF (cf. Fig 4.3 and section 4.3.2), one needs to rescale

the TPSF according to the flrst photon p.d.f., fr(t¡, and repeat the analysis as per

chapter 4.

The above assumption is invalid as a sub-single photon integration is not possible

for a single pulse. Although, measurements over a number of incident pulses may lead

to an estimate, this approach was not pursued and needs further investigation.

The results of chapter 4 (fig. 4.4) suggested that a spatial resolution of - Zmm is

theoretically achievable when þ'" :8cm-1. Howe.rer, ìn chapters 5 and 6 it was found

that the mean arrival time of the first detected photon is - 100ps with p! : 5cm-1.

This means that the theoretical - 2mm spatial resolution may only be achieved ìf the

acceptance time window of the FPD system is reduced to - 10ps which implies no

photon would be detected for a number of incident pulses at each scan position. This

would then require significantly higher number of incident pulses per scan position to

achieve a required SNR.

The contrast of the FPD system as evaluated based on a definition given by Eqn.7 .2

reflects the sensitivity in response to small changes in the optical characteristics of the

lHere, for simplicity a radial symmetry was assumed. It is however clear that, although this

assumption is valid in the case of the spherical inhomogeneity, it is invalid for the surrounding (het-

erogeneous medium) . In practice, a proper 2-D scan is therefore required to asses the image quality.
2The 1ps standard deviation reflects accuracy of the data in estimating f1 and also the sub-

picosecond temporal resolution requirement of the FPD system.
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Figure 8.1: A 2-D planar projections of spherical inhomogeneities embedded in a heteroge-

neous medium constructed based on the data presented in Fig. 6.3. The images correspond
to 4mm (top) and 3mm (botlom) in diameter, totally (right) and partially (left) absorbing
inhomogeneities. The noise has been added at twice the spatial frequency.
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medium close to the detector line-of-sight. Given an ideal detector and sub-picosecond

temporal resolution, the results (cf. Fig 6.5) indicate that changes of the order of one

scattering per centimetre in p,s rnay be detected. The differential in the effective scat-

tering coefficient is quite distinct at times ( 150ps achievable with FPD as compared

to minimal time achievable with the conventional integrating system (cf. Fig. 6.7). For

a conventional integrating system the variance in the detected optical characteristics

is large due to the inclusion of long photon trajectories which do not accurately map

the optical characteristics of the system along the detector line-of-sight.

The definition for the SNR was based on the accuracy in the estimation of the first

photon mean arrival time. Based on the SNR analysis, it was possible to determine

the number of pulses (per scan position) required to estimate the first photon mean

arrival tìme to within an acceptable accuracy determined by a confidence level (95%).

8.3 Limitations

The system noise and its influence on the results presented was not studied and an

ideal system was considered. Although, this was partially due to limitations in the

scope of the study, it was important to assess a noise free system to enable evaluation

of its full potentials and theoretical strength.

Deviations from an ideal system are broadly characterised by the noise. The noise

may be due to either thermal (statistical) fluctuations or detector inefficiency. The

thermal noise characterises the noise in the laser and the detector output, in the absence

of the signal. While the thermal noise is general and typical of any TI system, the

noise representing the detector inefficiency, in detecting only the first arriving photon,

is specific of a FPD system. Therefore, here, this type of noise is referred to as FPD

noise. Although, the efrciency of the FPD system (and hence the FPD noise) was

characterised in the form of Eqn. 5.10, the characteristic efficiencyresponse factors a,,

are yet to be determined for a physical system.

The key issue in the assessment of a FPD system has been the dependence of the

flight time of the detected single photons on the system performance. As such, due
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to possible inclusion of the later arriving photons, the FPD noise would degrade the

spatial resolution. The statistics of the second or later arriving photons involve complex

order statistics which is out of the scope of the present script. The thermal noise, on

the other hand, puts limitations on the upper limit for the SNR. This may lead to an

optimisation of the number of incident pulses per scan position as per section 7.3.

Finally, the types of media and inhomogeneities studied in this report are not

comprehensive. Other factors, such as variations in the medium geometrical shape,

refractive index and the anisotropy may also impact on the performance of a FPD

system.

8.4 Future direction

From the experimental point of view the FPD approach faces a few challenges. This

system would require an uitrashort laser pulse and an ultrafast detector with high

extinction coefficient which would oniy record the first arriving photon. Presently,

lasers capable of producing pulses of the order of 10's of femtosecond are available. The

1ps () 10/s) temporal resolution requirement relaxes the need for the modification

of the derived theoretical results to accommodate deviations from ô-function temporal

profile of the beam. The challenge therefore shifts towards the availability of a suitable

detector. Research into developing a suitable detector is therefore suggested.

Given the technological constraints are removed, with a reference to Fig. 1.5 the

specifications listed in Table 8.1 are recommended for a FPD system to be realised

experimentally for clinical purposes3.

For 104 pulses per scan position, the intrinsic scan time is expected to be about

1 second per cm2 at lMHz pulse repetition when a single beam is used. Although,

multiple beam-detector geometry may be adopted, technical difficulties associated with

3The values listed in table have been calculated based on the maximum permissible exposure of

the order of I\mW as required by the Australian and New Zealand standards [136]. This laser power

is equivalent to about 1011 photons per incident pulse.
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Pulse width
Repetition rate
No. pulses per scan position
Detector temporal resolution

< 100/s

- lMHz
103 - 104

( 1ps

Table 8.1: Temporal requirements for a FPD system

system scan controls are to be taken into consideration which may increase the scan

time.

The maximumpermissibleexposure (MPE)is about 70mWf mm'z [136]. This means

that if the beam size is Imm2 the maximum average laser power may be about I\mW.

For this laser power and a pulse repetitìon of lMHz a pulse separation of 1000ns may be

achieved which is sufficiently longer than 7-1Ons, the typical duration of the TPStr. This

allows sufficient delay in re-triggering which insures no cross talk between consecutive

pulses at a scan position. The response time of the system should however be taken

into account. For example, while 50MHz pulse repetition may also be considered,

this allows the system otly 20ns to reset for the next pulse. In case this is not a

sufficient time and some pulses would be missed, it is not a useful exercise to increase

the pulse repetition. More importantly, for a pulse repetition of lMHz (at 70mW) the

first photon arrives withìn 150ps. If the pulse repetition is increased (for a fixed laser

power), this timescale shifts toward longer times, as is expected, because the number

of photons per incident pulse would decrease (cf. section 5.4).

While there is more scope for continued theoretical examination of the FPD system

as highlighted above (mainly the FPD noise quantification), the work of this study

indicates it is worthwhile pursuing the experimental and clinical realisation of a F PD

system.
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Appendix A

Statistical tests on the RNG

A range of tests described by Sim and Nitschike [119] are performed on the pseudo-

ranclom number generator (RNG) mzranlS due to Marsaglia and Zaman [120]. These

tests include application tests (cf., chapter 3) ancl statistical tests: unifolmitl, (over

[0,1]), randomness and seriality lv.r.t. both numbers and constituent digits.

Visual test (Number)

The visual test provides a subjective indication of any serial correlation between suc-

cessive pairs of numbers. A sample size of 105 was divided in two successive pairs of

numbers and usecl as the coordinate values of points on a 2-D plot.'

The results are presented in Fig. 4.1. Appearance of a line or considerable clus-

ter(s) of dark or light regions would indicate seriai corlelation. Here, no obvions serial

correlation is observed.

Flequency test (Number)

A ¡2 test [137] was carriecl as a measure of gooclness of fit to test the null hypothesis

of equivalency of the sample distribution and that of a uniform distribution. The unit

interval [0,1] was divided into n : 100 equal bins. For a sequence of lengthr ly' : 106,

lsample sizes chosen here are sufficient to produce the distribution.with stable moments (up to
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Figure 4.1: The visual test on random numbers generated by mzrctnl7. The coordinates of
each point on the plot represent two consecutively generated landom numbers.
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1st 2nd 3rd 4th bth
Expectation
Observation

.50000

.50009
33333
33343

25000

25009

.20000

.20009

76667

16675

Table 4.1: Moments test for the RNG, mzran1?.

the statistics, /, given below is expected to be X2 with (n-1) degrees of freedom

r:Ð (oo - "o)'
eii=l

where e¿(: Nln) is the expected sample size per bin and o¿ is the corresponding

observed value. A y2 of 87.89 for 99 degrees of freedom suggest that result is not sig-

nificant at the 5 per cent level and the null hypothesis is accepted with 95% or better

confidence level.

Moments test (Number)

It is expected that moments of the distribution of the generated random numbers follow

those of a uniform distribution over the interval [0,1] given by:

k'ämom"nt : 1\- fxl* : -1-
N Lx--'t I+k

where 1{ is the sample size, and X¿ is the i¿h sample element, and the last equality is

due to the distribution being uniform. Table 4.1 compares the expected and observed

leading five moments with l/ : 106.

FYequency test (Digit)

From a sample size of lú : 5 x 106 generated random digits2, each digit is expected to

occur with a frequency of 0.1,n/ or a 0.1 relative probability. The following probabilities

were observed corresponding to digits from 0 to 9 respectively.

the fourth order) . This means that the first four moments would not change significantly if larger

samples were taken.
2106 numbers were generated for each of which 5 digits were recorded.
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Gap size 0 1 2 4 6 7 I 10 >10

Exp. Freq

Obs. Freq.

1

.0992

09

0898

.081

.08 10

.o792

.073

0656

o662 059

.053 1

0528

.0478

.048 1

.0430

.04 30

0387

0387

0349

0346

.3138

Table 4.2: Relative expected and observed frequency of a gap size between occurrence of
any digit (0-9).

Serial test (Digit)

Similar to the visual (number) test a the seriality test is performed to check for (un-

bias) relative frequency of occurrence of specific pairs of digits. The probability of

occurrence of any digit after a specific one is expected to be 0.1. The results presented

below show the occurrence of each digit (0-9) following the occurrence of an arbitrarily

chosen digit (in this case 2) respectively.

0.10007

0.09998

0.10003

0.09991

0.0996

0.0991

0.09995

0.10008

0.1 003

0.0992

0.10006

0.09994

0.0997

0.1002

0.1005

0.1004

0.1010

0.0998

0.0997

0.0998

Gap test (Digit)

The relative expected and observed frequency of a gap size between occurrence of any

digit (0-9) is presented in Table 
^.2. 

A gap size of 0 indicate successive occurrence.

Poker test (Digit)

Consecutive sets of five digits were considered to present a "poker hand" for a sample

size of l/ : 5 x 106 with the relative expected and observed frequencies as presented

by Table 4.3,
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Hand Expected Freq Observed Freq
1 pair
2 pairs

3 of a kind
Full house(3 of a kind * 1 pair)

4 of a kind
5 of a kind

Bust(none of the above)

0.5040
0.1080

0.0720
0.0090

0.0045

0.0001
0.3024

0.5029

0.1084

0.0720
0.0090

0.0045
0.0001

0.3029

Table 4.3: Expected and observed frequency of each set of 5 digits (poker hand)

The results of the above statisticai tests along with the application tests outline in

chapter 2 show that the observed distributions generated by mzranl? are within 1%

of the expected distributions and hence indicate that this RNG is sufficiently good for

the purpose of MC simulation of light propagation in a turbid media.
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Appendix B

Algorithm for the IMC simulation

The following is a simplified version of the C code for the IMC algorithm. The struc-

ture of the code was adopted from the code written by Wang and Jacques l72l but the

routines were rewritten by the author. Here, only the parts which are specific to the

source used to produce the results of this work are included. For clarity, those compo-

nents common to a SMC simulation and other components such as those dealing with

the extraction and allocation of filenames and input specifications have been omitted.

Also the output parameters have been reduced to only those needed to perform the

calculation outlined in section 3.2, i.e., the flight time, weight and the number of at-

tempts. The various C structures used in the following subroutines are also included

following the C algorithms.

Other parameters which the algorithms included below may output are: Number of

photon interactions (Photon. ints), maximum and minimum radial distance from the

propagation axis at the mid-plane (Photon.rmidmax and Photon.rmidmax), photon

exit co-ordinates (Photon.x, Photon.y and Photon.z) and photon exit directions

(Photon.x-dir, Photon.y-dir and Photon.z-dír).
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/******,t ********'ßt<***>F****++***+*++*+****+,r.***++**+********************+*/
/++* p¡e¡on (trajectory) structure ***/
typedef struct {

long photonlD; / * nunber being simulated */
double x,y ,z ,r; /* photon x,y ,z position */
double xinit,yinit,zínit; /* initial (beam) x,y,z position */
double xmax,ymax,zmaxi /* max x,Y,z position undergone */
double rmax,rmidmin,rmidmax; /* max & mid-plane radial distance */
double x-dir,y-dir,z-dír; /* x, y and z +/
double x-dirinit,y-dirinit,z-dirinit; /* initial (beam) x, y arrd z *f
double w; /* weight. */
Boolean dead,slow,detectedt /* status */
int P-Mediurn,F-Medium; /*. present and future host medium */
double s; /* current step síze */
double sLeft; /* remaining step size */
double FlightTime; /* current flight time */
double TimeToDetector; /* ballistic time to detector */
double TimeToAP; /* ballistic time to attr. point */
double F1ightDelay; /* delay time in stacks */
doubl-e Tunour-FT; /* flight time in tumour */
long ints,Tumour-ints; /* interactions in tissue & tumour +/
int part i /* stack al-location part */
double !,lasHere' / * recorded (presence) at a stack */

] Photonstruct;

/************'F*****+'F*'t ***********,k****************'F*****'F*******i.+******/
/*** Photon package (stack) structure ***/

/*********'F*********************,F{<*********{<**{<*****>F'******t *************/

/*r,* Medium parameter structure ***/

typedef struct {
PhotonStruct * PhotonPackageSpecs;
Ínt PhotonPartPtr;
int DelayingStack;

Ì PhotonPackageStruct ;

typedef struct {
double n;
double mua;
double mus;
double g;
double x,y ,z,T;

) Mediumstruct;

/* photon */
/,r. photon at each stack */
/* delaying stack */

/+ refractive index of a Medium. */
/* absorption coefficient */
/* scattering coefficient */
/* anisotropy +/
/x dimensision (position and radius if sherical) */
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/****+*********>F***'F'F****'F***,r.**t<******************+>F*******+****,t *******/
/x** $ysf,em (source, medium, detector) structu¡s ***/

typedef struct {
double R-source;
double P-source;
double R-detector,xdet,ydet,zdet ;

double Timelirnit;
double xap,yap,zapi
char CNGfnane [StRtgl¡] ;

double CNGAtractfactor ;

char RandomMusfilename [StntEN] ;

int NumStacks;
Iong Attemptslimit;
int num-Mediums;
MediumStruct * Mediumspecs;

) SysStruct;

/* beam radius */
/* beam position */
/* detector radius and position */
/* detection time limit */
/* x,y,z position of attractive point */
/* filename: attr. fact. w correction */
/* attractive factor*/
/* filename: mu-s (hetro. nedium cells) */
/* number of stacks */
/* tímit on number of attempts */
/* number of Media. */
/* medium parameters. */

/,t ************'F****,F,ß*********,1.************************+{.*******xx*x,t **x,t /
/**x Main subroutin¿ **+/

void Sinulate(InputStruct * In-Ptr, SysStruct * Sys-Ptr)
{

PhotonStruct Photon, Refl-Photon ;

PhotonPackageStruct PhotonPackage, SpecialPhotonPackage ;

BdryStruct Bdry;
double Timelimit=Sys-Ptr-)Timelimit,TimeToDetector,

R-det ect or=Sys -Ptr- )R-det ect or,
xdet, ydet, zdet,xinit,yinit,zinít ;

double InitRef 1= Specular-Ref 1 (Sys-Ptr->Mediumspecs) ;

register long i-photon,Attempts=0,AttemptsLimit=2000 ;

double x=Photon. x, y=Photon . ] r z=Photon,z;
double x-dir=Photon . x-dir, y-dir=Photon . y-dir ,z-dír=Photon .z-dir;
doubl-e Lx=Sys-Ptr-)Mediumspecs [1] . x,

Ly=Sys-Ptr-)Mediunspecs [1J . y,
Lz=Sys-Ptr-)Medíumspecs ltl . z ;

int Stack,NumStacks;
double r,xap,yap,zap,AllFlightDelay=O.,ThisFIightDelay=O. ;

double norms [36 1] , *normsptr, RandomMus IZOOO] , *RandomMusptr ;

FILE *outf i1e, *normsf i1e, *tnpf iIe, *RandomMusf iIe ;

double o1d-x, o1d-y, o1d-z,midx,midy,midz,midr,tmpf ;

int tmpi=0, i;

NumSt acks=Sys -Ptr-)NumSt acks ;
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/*Source coordinates*/
xinit=Lx/2 . 0+Sys-Ptr-)P-source ;

yínit=Ly/2.0;
zinit=O.0;
/*Detector coordinates*/
Sys-Ptr-)xdet=xdet=xinit ;

Sys -Ptr- )ydet=ydet=yinit ;

Sy s - Pt r - ) zdet=zdet =Lz :,

/*Attractive point coordinates*/
Sy s -Ptr- )xap=xap=xinit ;

Sys -Ptr- )yap=yap=yinit ;

Sy s _ Pt r- ) zap=zap=Lz+R- det e ct or ;

normsf i1e=fopen(Sys-Ptr-)CNGfname, "r") ;

for (i=o; i<361; i++) {
norms [i]=0.0; fscanf (normsfiIe,"%1f", &norms ti] ) ;

]fclose (normsf ile) ; normsptr=norms ;

RandomMusf i 1 e=f open (Sys -Ptr-)RandomMusf iI ename, rr rrr )'
for (i=0; i<2000; i++) {

RandomMus [i]=O.0; f scanf (Ra¡domMusf ile, "7olf ", &Randoml"tus [i] );
Ìf close (RandonMusf ile) ; RandomMusptr=RandomMus ;

outfile= fopen(In-Ptr->out-fname, "w") ;

fclose(outfile) ;

InitRefl = Specular-Refl(Sys-Ptr-)Mediurnspecs) ;

InitRef1 =0.0 i

Photon . photonlD=In-Ptr-)nun-photons ;

do{ /*for all photons*/

if (Photon.photonÏD==-1) goto AllDone;
LaunchPhoton(InitRefl,Sys-Ptr-)Mediumspecs,&Photon,Sys-Ptr,&PhotonPackage);

tmpi=0;
Timelimit=(Sys-Ptr-)Timelinit ! =0. 0)*Sys-Ptr-)Timelimit ;

Atteurpts =0;
AllFl ightDelay= (Sys-Ptr-)Timelimit | =0 . 0 ) *Sys-ptr-)Timelimit+

(Sys-Ptr-)Tinelimit == 0 .0)*2.+Lz;
SamePhoton:

if (Numstacks !=0) {
Phot onPackage . Phot onPackageSpecs [0] . !üasHere= 1 ;

Attempts +=1;

Ì

113



do{ /*for one photon*/
old-x=Photon.x; old-y=Photon .y ; old-z=Photon. z;
Refl-Phot on=Photon ;

Propagate(&Photon,&Ref1-Photon,&Bdry,normsptr,RandomMusptr,Sys-Ptr);

Photon . r= (r=sqrt ( (Photon. x-xinit) * (Photon . x-xinit) +

(Photon. y-yinit) * (Photon. y-yinit) ) ) ;

if (Timelimit | =0.0){
if (r < R-detector)

Photon. TimeToDetector=fabs (Lz-Photon. z) ;

else if (r )= R-detector)
Photon . TimeToDet ector=

sqrt ( (r-R-detector) * (r-R-detector)+
f abs (Lz-Photon . z) *f abs (Lz-Phot o rL. z) ) ;

if ( (piroton.FlightTime+Photon.TimeToDetector) > Timelimit){
Photon. slow=1 ; Photon.dead=l ;

Ì
)

if ((ptroton.z )= Lz/2. &,&, old_z < Lz/2.) ll
(Photon.z 1= Lz/2. &,&, old_z > tz/2.))

{
tmpf = (tz/2.-ol-d_z) / (ptroton. s*Photon .z_dir) ;

nidx=ol"d-x+Photon. s*tnpf *Phot on . x-dir ;

midy=e1¿-y+Photon. s*tmPf *Photon. y-dir ;

mídz=Lz/2. t

midr=sqrt ( (midx-xinit) * (midx-xinit) +(midy-yinit) * (rnidy-yinit) ) ;

if (midr ( Photon.rmidnin) Photon.rmidmin=midr;
if (midr )= Photon.rmidmax) Photon.rmidmax=midr;

Ì

if (r > Photon.rmax) {
Photon. rmax=r;
Photon. zmax=Photon. z ;

Ì

Photon. ints +=1;
if (Numstacks !=0){

i=(Photon.z*Numstacks/ (Lz) ) PhotonPackage.PhotonPartPtr) ?

Photon. z*Numstacks/ (Lz) : PhotonPackage. PhotonPartPtr;
if (PhotonPackage.PhotonPartPtr <i 8t8t !Photon.dead && !Photon.slow){

Thi sFl ightDel ay= (Phot on . Fl ightTime+Phot on . TimeToDet ect or-
(Phot onPackage . PhotonPackageSpecs [Phot onPackage . PhotonPartPtr]

FlightTime+
Phot onPackage . Phot onPackageSpec s [Phot onPackage . Phot onPart Ptr] .
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TimeToDetector) ) /
( i-PhotonPackage . PhotonPartPtr) ;

if (ttrisft:.ghtDelay )= A1tFlightDe1ay && Attempts ( Attemptslimit){
Photon=

PhotonPackage. PhotonPackageSpecs [PhotonPackage . PhotonPartPtr] ;

goto SanePhoton;
)
else {

Phot onPackage . Phot onPackageSpecs Ii] =Phot on ;

PhotonPackage . PhotonPackageSpecs Ii] . !üasHere=1 . ;

PhotonPackage . PhotonPackageSpecs [PhotonPackage . PhotonPartPtr] .

FI ightDel aI=Thi sFI ightDel aY ;

Phot onPackage . Phot onPartPtr=i ;

)
Ì

Ì
if (Photon.w < CRITICALhJEIGHT) Photon.dead =1;

]while ( ! Photon. dead) ;

/**i. DETECTI0N *.*,r./

if ((r <= R-detector I I R-detector==0.0)
&& Photon. slow==O
&& Photon.P-Medium ==0
&& Photon .z-d:-r > 0.0
&& Bdry.bdryNo==6
)

{
outfile= fopen(In-Ptr->out-fname, "a") ;

f printf (outf ile ,"0/05 .3f %5 . 2e%d\n" , Photon . Fl ightTime , Phot on . w, Att empts) ;

fclose(outfile) ;

Photon. detected=1 ;

)
else Photon=Ref 1-Photon ;

if ((Numstacks !=0) tA (Attempts ( Attemptslinit)){
if (Photon.detected){

Spec i alPhot onPackage=Phot onPackage ;

Timelimit=Photon . FlightTime ;

Phot onPackage . Del ayingSt ack=0 ;

AllFlightDelay=O .0;
tmp i=PhotonPackage . PhotonPartPtr ;

for (i=PhotonPackage.DelayingStack; i(tmpi; i++){
if (PhotonPackage.PhotonPackageSpecs [i] .tlasHere >O &,&,

PhotonPackage. PhotonPackageSpecs [iJ . ff igntDelay )
AlIFlightDelay) {
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A1 1F1 ightDelay=p¡ot onPackage . Phot onPackageSpec s [i] . FI ightDel ay ;

Phot onPackage . Phot onPartPtr= (Spec ialPhot onPackage . DelayingSt ack=i ) ;

)
]

)
elseif(Attempts>1){

Phot onPackage=Spec ialPhot onPackage ;

Phot onPackage . Phot onPart Ptr=Phot onPackage . De1 ayingSt ack ;

]
else goto Hopeless;
Photon=PhotonPackage.PhotonPackageSpecs[PhotonPackage.PhotonPartPtr];
for(i=PhotonPackage.PhotonPartPtr+1; i <= Numstacks; i++){

PhotonPackage . PhotonPackageSpecs [i] . frlasHere=O . 0;
PhotonPackage . PhotonPackageSpecs [iJ . ff igntDelay=Q . I'

)
goto SamePhoton;

)
Hopeless:

Attempts=0;
free (PhotonPackage. PhotonPackageSpecs) ;

--Photon. photonlD;
] while(Photon.photonID) ;

AllDone:
FreeData(Sys-Ptr) ;

fclose(outfile);
)

/**,t *****++*******************************************{<***'F**'F*,t ********i./
/*,t* This routine specifies the initial parameters for a new photon ***/
void LaunchPhoton (double Specular-Ref1,

MediumStruct * Mediumspecs-Ptr,
PhotonStruct * Photon-Ptr,
SysStruct * Sys_Ptr,
PhotonPackageStruct * PhotonPackage)

{
double x=Photon-Ptr-)x, ]=Photon-Ptr-)y, z=Photon-Ptr-)z;
double x-dir=Photon-Ptr-)x-dir=O . 0,

y_dir=Photon-Ptr-)y-dir=0 . 0 ,

z_dir=Photon-Ptr- ) z -dir=! . 0 t

double Lx=Sys-Ptr-)Mediumspecs ItJ . x,
Ly=Sys-Ptr-)Mediumspecs [1J . y,
Lz=Sys-Ptr-)Mediunspecs ltf . z ;

double R-source=Sys-Ptr->R-source ;

double mua = Sys-Ptr-)Mediumspecs[1] .mua;
double mus = Sys-Ptr-)Mediurnspecs[1] .mus;
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Ì

Photon-Ptr-)w= 1.0 - Specular-Refl;
Photon-Ptr-)xmax=0 . 0 ; Photon-Ptr-)ymax=0. 0 ; Photon-Ptr-)zmax=O. 0 ;

Photon-Ptr-)rmax=O . 0 ; Photon-Ptr-)rmidmin=Lx+Lv ; Photon-Ptr-)rmidmax=O . 0 ;

Photon-Ptr-)Tumour-ints = 0 ;

Photon-Ptr-)Tumour-FT = 0.0;
Photon-Ptr-)slow=0 ; Photon-Ptr-)dead=O ; Photon-Ptr-)detected=O ;

Photon-Ptr->P-Medium= 1; Photon-Ptr-)F-Medium=O;
Photon-Ptr-)s=0 .0; Photon-Ptr-)s1eft=0 .0 ;

Photon-Ptr->FlightTime = 0.0;
Photon-Ptr-)r=0. ;

Photon_Ptr-)TimeTo AP = Lzi
Photon-Ptr-)TimeToDetector= Lz ;

Photon-Ptr->FIightDe1ay =0.0i
Photon_Ptr-) int s=0 ;
Photon-Ptr-)!,lasHere = 0. ;

phot on_ptr_ )x=x=phot on_ptr_)xinit = (Lx / 2 . 0) ;

Phot on-Ptr- )y=y=p¡ot on-Ptr-)yinit = (ty / Z. 0+Sys -Ptr-)P- source) ;

Phot on-Ptr-)zinit =z=Phot on-Ptr -)z=I. / (mus+mua) ;

Phot on-Ptr-)P-Medium=whichregion (Sys-Ptr, x ,y ,z) i
if (x>Lx ll y>Ly ll z)Lz ll x(0.0 ll y<0.0 ll z<0.0)

nrerror("!,lrong beam position") ;

InitPhotonPackage (Sys-Ptr , Phot on-Ptr, &Phot onPackage-)PhotonPackageSpecs ,

&Phot onPackage-)Phot onPartPtr, &PhotonPackage-)Del ayingStack) ;

/,f *,f *****{<****'1.***********'k*********{<*****+'F*****************'F***+*+*****/

/**'¡ This routine initialises the stacks ***/
void InitPhotonPackage(SysStruct * Sys-Ptr,

PhotonStruct * Photon-Ptr,
PhotonStruct ** PhotonPackageSpecs,
int * PhotonPartPtr,
int * DelayingStack)

{
char nsgISTRLENJ;
int i=0;
double z = O.Oi /* z coordinate of the current Medium. */
int * PhotonPart;
int NumStacks=Sys-Ptr-)NumStacks ;

*PhotonPackageSpecs = (PhotonStruct +)

malloc ( (unsigned) (Numstacks+1) *sizeof (PhotonStruct) ) ;

if ( ! (*PhotonPackageSpecs))
nrerror("allocation failure in InitPhotonPackageO ") ;

for(i=Q; i(=Nunstacks; i++){
(*PhotonPackageSpecs) [i] =*Photon-Ptr;
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(*PhotonPackageSpecs) [i] . part=i ;

)
*PhotonPartPtr=Photon_Ptr-)zinitxNumstacks/(Sys_Ptr-)Mediumspecs[1].2);
i.Delayingstack=Photon_Ptr-)zinit*Nunstacks/ (Sys_Ptr-)Mediurnspecs [1] . z) ;

]

/*******************,k****'F'kt<***,F************+t<**t<**********,F*********,t ,t **/

/*** This routine propagates the photon x**/
void Propagate( PhotonStruct * Photon-Ptr,

PhotonStruct * Refl-Photon-Ptr,
BdryStruct * Bdry-Ptr,
double *norms,
double *RandomMus,

SysStruct * Sys-Ptr)
{

int prnt=O;
int i,j,k;
double x-dir=Photon-Ptr-)x-dir,

y-d ir=Photon-Ptr- )y-dir,
z-dir=Photon-Ptr- ) z -dir ;

double x=Photon-Ptr-)x, f=Photon-Ptr-)y, z=Photon-Ptr-)z;
double Lx=Sys-Ptr-)Mediumspecs hJ . x ,

Ly=Sys-Ptr-)Mediumspecs [1J . y,
Lz=Sys-Ptr-)Mediumspecs ltl . z ;

int íx,íz;

DeterminDirection(Photon-Ptr, Sys-Ptr-)Mediumspecs lPhoton-Ptr-)P-MediumJ . g,
norms,Sys-Ptr) ;

Det erminSt eps ize (Phot on-Ptr, Sys-Ptr, RandomMus ) ;

if (HitBoundary (Photon-Ptr , Sys-Ptr , Bdry-Ptr , RandomMus) ) {
Cross0rNot( Photon-Ptr, Sys-Ptr,Bdry-Ptr) ;

]
else {

Bdry-Ptr-)xBdry=0 ; Bdry-Ptr-)zBdry=Q ;

]
Ì
/*****************'F****+****************'F*******************'F'F***********/
/*** This routine calculates the new direction using *,r*f
/+** g¡sn & Bai's method and recalculates the photon weight ***/

void Deter¡nínDirection(PhotonStruct * Photon-Ptr,
double g,
double *norms,
SysStruct * Sys-Ptr)
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/* dtap: distance to attractive poínt +/
/+ 0itttength: distance withing which attractive point is not used */
/* ox(,y,2)-dir: original x(,y,2) directíon */
/+ x(,y,z)ap: x(,y,=) coordinates of the attractive factor +/
/* cost and sint: cosine and sine of the zenith angle */
/* cosp: cosine of the azimuthal angle *./
/* theia and thefa: initial & final direction of attractive factor */

int i,BdryAway=1;
double cost, sint, cospr sinp, psi;
double Difflength;
double ox-dir=O.,oy-dir=O.,o2-dir=1. ;

double x-dir=(ox-dir=Photon-Ptr->x-dir), f-dir=(oy-dir=Photon-Ptr->y-dir),
z _dir= ( oz-dir=Phot on-Ptr->z-dir) ;

double x=Photon-Ptr-)x, !=Photon-Ptr-)y, z=Photon-Ptr-)z;
double Lx=Sys-Ptr-)Mediumspecs If] . x, Ly=Sys-Ptr-)Mediumspecs hl .y,

Lz=Sys-Ptr-)Mediumspecs lt) . z ;

int P-Medium=Photon-Ptr-)P-Mediurn ;

doubl-e mua = Sys-Ptr-)Mediurnspecs [P-Medium] .nua;
double mus = Sys-Ptr-)Mediumspecs[P-Mediun] .mus;
doubl e dt ap, xap=Sys-Ptr-)xap, yap=Sys -Ptr- )yap, zap=Sys -Ptr- >zap,

AtractFact or=Sys-Ptr->CNGAtractf act or, Pe=1 ., theia, thef a, cia, cf a ;

double rand-pe=O. 0,tmp ;

/*Don)t use attractive point within a Difflength form the boundaries*/
Difflength=t .0 / (mus* (1 . 0-g) ) ;

if ((x > Lx-Difflength) ll (x < Difflength) ll
(y > Ly-Difflength) ll (y < Diftlength) ll
(z> Lz-Difflength) ll Q <Dífflength)) BdryAway=O;

Photon_Ptr-)TimeToAP= (dtap=sqrt ( (zap-z) * (zap-z) +

(xap-x) * (xap-x) + (yap-y) * (yap-y) ) ) ;

if (AtractFactor ) 0 && Bdryl,way)
cia= ( (xap-x) *ox-dir+ (yap-y) *oy-dir+ (zap-z) *oz-dir) / dtap;
theia=acos(cia);

Ì
do{

tmp = (1 .0-g*g) / (t.O-g+2.O+g*RandomNumO ) ;

cost = (t.O+g*g - tmp,tt¡¡p)/(2.9*g); if (cost == -1.0) cost *=C0S90D;

sint = sqrt(1.0 - cost*cost);
psi = 2.O*PI*RandonNumO ;

cosp=cos(psi);
if (psi< PI) sinp=sqrt(f.O - cosp*casp) '

else sinp=-sqrt (f. O - cosp*casp) '

if (fabs(oz-dir) > COSZER0){

119



x-dir=sint*cosp i y-dir=sint*sinp i z-dir=cost*SIGN(oz-dir) ;

Ì
else{

tmp=sqrt (1 . 0-oz-dir*oz-dir) ;

x-dir =sint* (ox-dir*oz-dir*cosp-oy-dir*sinp) /tmp+ox-dir*cost ;

y-dir =sint* (oy-dir*oz-dir*cosp+ox-dir*sinp) /tmp+oy-dir*cost ;

z _dír =-sint *co sp*tmp+e2_dir*co st ;

]
if (AtractFactor ) 0 && BdryAway) {

cf a= ( (xap-x) *x_dir+ (yap-y),r.y_dir+ (zap-z) *z_dir) / atap;
Pe= ( 1 .O+cf a) /2 . ;
if (Pe < C0S90D) Pe=C0S90D;
Pg=pow (Pe , AtractFact or) ;

rand-pe=RandomNun O ;

)
ÌwhiIe(tabs(x-dir)>1.01 ltabs(y-dir)>1.01 ltabs(z_dir)>1.0 I I rand-pe)Pe);
Photon_Ptr-)x_dir=x_dir; Photon_Ptr->y_dir=y_dir; Photon_Ptr-)z_dir=z_dirl
if (AtractFactor > 0 &.&. BdryAway) {

í=(2 .o*theia*180 . /pI+o .5) / t;
photon_ptr_)w *= (* (norns+i) ) /pe ;

Ì
Ì
/* *** ****t<,F*'Ft<*'F* * *** 'F* *** ** * 'r.*'F**** * ****** **** * ****+ ******** * ** *** *** ** * /
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