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ABSTRACT
This thesis deals with the consistent description of the quark structure of hadrons and nuclei in deep
inelastic scattering, with particular emphasis on the non-perturbative region of QCD. Using a novel
new approach based on the expansion of the truncated nucleon tensor, we construct a relativistic
quark model which enables the nucleon valence quark distributions to be computed. For the sea
quarks we scrutinise a model in which the nucleon has an extended structure due to its virtual
meson and baryon components, and discuss tests that may reveal such structure experimentally.
For scattering from nuclei, we show how structure functions of composite particles can be calculated
from the truncated nucleon tensor, and relativistic nucleon—nucleus vertex functions. This allows
for a self-consistent treatment of the off-shell properties of bound nucleons. As a result we can
understand for the first time the conditions under which the convolution model of deep inelastic
scattering can be justified, however, we find that these are generally not satisfied. On the other
hand, within our formalism the traditional convolution approach is bypassed altogether. We also
calculate the corrections to nuclear structure functions due to shadowing at small Bjorken-z, within
a model in which both mesons and partons play distinct roles. Finally, we investigate the possibility
of performing (spin-dependent) inclusive hadron leptoproduction experiments as a means of testing

directly the relevance of hadronic variables in high energy reactions.
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Chapter 1

INTRODUCTION

The main unresolved problem of the Standard Model of particle physics is the description from
first principles of the strong interactions. Traditional low energy nuclear physics, where the strong
nuclear force acts at relatively large distances, is for the most part successfully described in terms
of hadronic variables — mesons and baryons. However, for a complete understanding of the strong
interactions, nuclear phenomena must be reconciled with the more fundamental theory of quarks
and gluons — Quantum Chromodynamics (QCD).

Historically, the basic interaction which we have sought to explain has been that between protons
and neutrons in the atomic nucleus. The original idea of massive particle exchange of Yukawa [1]
has been a guiding principle according to which later theories have been formulated. It was pointed
out by Wick [2] that this idea fitted in nicely with the Heisenberg Uncertainty principle, whereby
the interaction range of the nuclear force is inversely proportional to the mass of the exchanged
meson (pion). Over the years a quantitative description of the forces acting between nucleons has
been developed within a meson-exchange picture.

Following the experimental confirmation of the pion in 1947, the 1950s and 1960s saw an
explosion of newly discovered mesons and baryons, as particle accelerators were able to achieve ever
higher energies. To bring some sense of order to the profusion of new particles Gell-Mann [3] and
Zweig [4] introduced the idea of quarks, initially seen merely as useful book-keeping devices. Soon
after it was realised that a serious problem existed with the simple quark classifications, namely the
ATT. The quark model wavefunction for the A+t was predicted to be totally symmetric, however
it was known that this particle obeyed Fermi-Dirac statistics. A solution to this problem was found
by assigning extra colour quantum numbers to the quarks [5], in which baryons would have in
addition an antisymmetric colour wavefunction. By imposing local gauge invariance on the colour
fields, and including vector gluon exchange as a means by which quarks interact, one obtains the
essential elements of QCD [6].

Because QCD is an asymptotically free theory — the effective strong coupling constant de-
creases at short distances — processes involving large momentum transfers can be calculated using

perturbation theory [7, 8]. Perturbative QCD works remarkably well in its region of applicability.



In describing the distribution of hadronic jets in high energy particle collisions, for example, its
predictions are in quite spectacular agreement with experiment, even to high orders in the perturba-
tion expansion. Yet despite its successes, we are still unable to extract from QCD sufficient details
regarding its long-distance properties. This is because in the infra-red region the strong coupling
constant grows, perturbation theory breaks down, and its predictive power becomes rather limited.
A closely related problem is that of confinement of individual particles carrying colour quantum
numbers. One of the possible ways to circumvent this problem is to solve the QCD equations of
motion numerically on a space-time grid. While this is an important pursuit, in reality sufficiently
quantitative predictions are still some time away.

It is perhaps the holy grail of the Standard Model to make the leap from QCD to traditional
nuclear physics. In a sense it is ironic that the theory which arose out of the desire to understand
nuclear forces is able to explain backgrounds in jets, yet unable to answer the fundamental questions
of nuclear physics (for a review of the achievements of QCD see, for example, Ref.[9]). Arguing
that QCD can in principle explain all hadronic and nuclear phenomena is akin to being satisfied
that QED can in principle explain all of the physics of atoms, molecules and condensed matter.
One might ask whether it isn’t simply a matter of complexity — the fact that there is such a
large mismatch in energy scales between nuclear physics (with energies of a few MeV) and the
short-distance realm (tens or hundreds of GeV) of QCD. Part of the answer lies in realising that
there are still fundamental issues like confinement, chiral symmetry breaking, etc. that will need
to be resolved. At this stage the best one can do is construct “QCD-inspired” models which are
consistent with the known properties of QCD, but which can be extrapolated into the low energy
domain. Then one can hope that experimental input may shed some light on the merits of the
various approaches. It would seem sensible, if the aim is to study the frontier between quark and
hadron physics, to concentrate on those processes in which both degrees of freedom may be relevant.

One such process in which both large and small scale features of QCD can be studied is deep
inelastic scattering (DIS) of leptons from hadrons. Because the Standard Model gives such a
good account of electroweak interactions, the scattering of leptons from hadronic targets is a far
more elegant method of probing the quark substructure of hadrons than purely hadronic collisions.
Indeed, the first experimental evidence for the existence of point-like constituents of the nucleon
was obtained through DIS at the Stanford Linear Accelerator Center (SLAC) in the late 1960s [10].
Furthermore, the awarding of the 1990 Nobel prize in physics to Friedman, Kendall and Taylor [11]
recognised the important contribution to our understanding of the quark structure of matter that
has been made via this method.

Theoretically, in DIS some of the difficulties imposed by confinement can be overcome, since
here quarks and gluons (or generically partons) can be treated as if they are (quasi-) free. This is the
essence of the Quark Parton Model [12]. The experimental consequence of point-like partons is the
non-vanishing of the inelastic structure functions at very large momentum transfers, a phenomenon

known as scaling. Actually, this is only the naive expectation — refinement of this model in the



guise of QCD radiative corrections leads to small deviations from exact scaling. It is yet another
triumph of QCD that it is able to give a quantitative description of the scaling violations.

In this thesis we will mostly focus on deep inelastic scattering, and what can be learned from
this about the quark structure of hadrons and nuclei. In Chapter 2 we briefly outline the formalities
and fundamental results of inclusive deep inelastic lepton—mnucleon scattering. (The discussion will
be restricted to electromagnetic interactions only, although neutrino scattering will be mentioned
in Section 6.1.) We introduce the explicit Dirac and Lorentz structure of the truncated nucleon
tensor, and use relativistic quark—nucleon vertices to calculate the truncated structure functions
explicitly. This will enable us to construct a relativistic, covariant model of the valence quark
momentum distributions of the nucleon.

The sea component of the nucleon can of course be generated perturbatively from the QCD
evolution equations. On the other, there is some evidence to suggest the existence of a non-
perturbative component of the nucleon sea as well, and this is discussed in Chapter 3. In particular,
data from the New Muon Collaboration (NMC) at CERN on the proton and deuteron structure
functions at very low Bjorken-z suggests a significant violation of the Gottfried sum rule, a plausible
explanation of which is an asymmetry in the @ and d sectors of the proton. Such an hypothesis
necessarily implies going beyond perturbative QCD. Indeed, if this result is confirmed by future
experiments, it would be a case of devout adherence to perturbative QCD leading some physicists
astray. We concentrate on one mechanism in particular that can generate a @ — d difference, which
is due to the presence of explicit mesonic components in the nucleon wavefunction. Our approach in
calculating the scattering from this virtual cloud of mesons is based on time-ordered perturbation
theory in the infinite momentum frame. This is particularly advantageous if we wish to use the
convolution model, as here off-mass-shell ambiguities in the structure functions of virtual particles
are avoided.

The crucial uncertainty in the interpretation of the NMC data is the fact that the neutron
structure function is extracted from data taken in DIS experiments with deuterium targets. The
extraction is therefore a model-dependent procedure, since it must account for any nuclear effects
present in the deuteron. Of particular importance is the region of small Bjorken-z, where the
deuteron structure function may be ‘shadowed’ in comparison with the free nucleon structure
function. Because there are potentially significant contributions to the Gottfried sum rule from this
region, a thorough examination of the shadowing corrections to the deuteron structure function is of
the utmost importance. In Chapter 4 we calculate these corrections using a model which combines
aspects of the traditional vector meson dominance model of electromagnetic hadronic interactions,
as well as a parton-based approach incorporating the phenomenology of Pomeron exchange from
Regge theory.

From DIS experiments on heavy nuclei targets we also know that ratios of nuclear to deuteron
structure functions (per nucleon) fall significantly below unity at small z. Using realistic input for

the nuclear density distribution, we extend the above model to calculate the shadowing corrections



to structure functions of heavy nuclei as well. We show that a careful analysis can yield quite
excellent agreement with recent high-precision data taken at CERN. This serves as a further check
on the reliability of the model predictions for shadowing in deuterium.

To understand the differences between nuclear and nucleon structure functions at larger « values,
the bound nucleon properties must be properly accounted for. Chapter 5 is devoted to a rigorous
reanalysis of the traditional approach to calculating deep inelastic nuclear cross sections. Extending
the formalism introduced in Chapter 2, we show how a proper treatment of the truncated nucleon
tensor enables the structure functions of any composite particle containing off-mass-shell nucleons
to be calculated from a knowledge of relativistic nuclear vertex functions. We verify explicitly that
the formalism is gauge invariant, and gives rise to the correct scaling behaviour for the inelastic
structure functions, regardless of the production mechanism of the off-shell nucleon. Furthermore,
we examine under what conditions can one obtain the convolution model from the fully relativistic
calculation, and demonstrate that in general these are not satisfied. The essential reason for the
failure of the convolution model is that it omits antiparticles, which of course must be present in
any relativistic analysis. This is a rather serious revelation, as the majority of previous calculations
of structure functions of composite particles have relied upon the validity of this approach. On
the other hand, our new formalism enables direct computation of the scattering process, right
from the quark level. In fact, it forbids making the usual short-cut of taking nucleon structure
function input and simply smearing it with a nucleon distribution in the nucleus. We illustrate the
virtues of the new approach with several examples. Specifically, we calculate the deuteron structure
function, and compare against the convolution-type methods. In addition, we estimate the role of
off-mass-shell effects in nuclear matter, which will be important in understanding the origin of the
EMC effect [13]. Also, we revisit the case of DIS from the nucleon dressed by mesons, where we
formally demonstrate the fatal problems associated with the covariant convolution model, and thus
implicitly lend weight toward the infinite momentum frame approach of Chapter 3.

Concurrently with the inclusive DIS studies, there exists a wider, more general class of semi-
inclusive reactions, where specific hadrons in the final state are tagged. This is a somewhat less
explored subject, both theoretically and experimentally, but which has the potential to teach us
more about the non-perturbative aspects of quarks physics. Because there exists no formal operator
product expansion approach to this problem, our treatment is largely phenomenological. Our main
emphasis is on semi-inclusive production of baryons, especially in the target fragmentation region.
Firstly, we demonstrate the importance of kinematics for particles produced in this region, and show
how ignorance of these can lead to erroneous conclusions about the existence of more exotic effects.
Once the kinematics are understood, we can then proceed to study the dynamics of semi-inclusive
scattering. We construct a model for the fragmentation of quarks to baryons, and compare its
predictions with those of the one-pion-exchange model. As an extra degree of freedom, we examine
the possibility of using polarised targets and measuring the spin transfer to the final state hadron

as a means of distinguishing the different models. We find that a spin asymmetry of the polarised



baryon (A*7) yields is particularly sensitive to the production mechanism.
Finally, in Chapter 7 we round off the discussion, and outline potential future directions in

which the work presented in this thesis can be taken.



Chapter 2

INCLUSIVE DEEP INELASTIC
SCATTERING

Deep inelastic scattering has for 25 years been an extremely useful tool for studying hadronic sub-
structure, providing a wealth of information about the distribution of quarks inside the nucleon
and nuclei. In this chapter we shall be concerned with inclusive scattering of unpolarised charged
leptons from unpolarised nucleon targets. (The generalisation to weak interactions involving neu-
trino scattering is straightforward — see Refs.[14, 15].) Firstly, we introduce some notation that
will be used in this and later chapters, and then give a brief overview of some of the main results of
DIS which will be necessary in our applications. More comprehensive discussions can be found, for
example, in Refs. [14-16]. The new work in this chapter is presented in Sections 2.2 and 2.3, where
we investigate the truncated nucleon tensor, and then apply our results in a novel calculation of

the nucleon valence quark distributions.

2.1 DIS Structure Functions

The process of interest is depicted in Fig.2.1, where the charged lepton (1) of energy E scatters from
a target nucleon (), leaving a final state consisting of the scattered lepton (I') and the hadronic
debris (X) of the shattered nucleon: [N — I’X. The observables in this process are the scattered
lepton’s energy, E’, and the angle of lepton scatter, #. Alternatively, we can use the square of the
four-momentum transfer to the nucleon, Q% = —¢?(~ 4EE'sin? § for m; < E, E'), and the Bjorken
scaling variable z = Q%/2p - q (= Q?/2Mv in the target rest frame, with v = E — E’ being the
energy transferred to the target). In terms of these variables, the inclusive differential cross section’
(in the target rest frame) in the one photon exchange approximation is given by

d%o T o’

e = e HY
drdQ? Q2E* M z? LY W (2.1)



N (p)
X (py)

Figure 2.1: Deep inelastic lepton nucleon scattering.

Since we are concerned with unpolarised lepton scattering, we average over the initial, and sum

over final, lepton polarisations, in which case the lepton tensor L* is given by !
1 v
L = ST 4 mr () + )]

2
= 2 (M”Jr gz +g’“’%) : (2.2)

The hadronic tensor

W = D (2m)%6%(p + ¢ — px )(N (p)7(0)1 X (px)){X (px)| T (01N (p)) (2.3)

X
contains information on the structure of the target nucleon. Because the unpolarised lepton tensor
L* is totally symmetric in the Lorentz indices p and v, only the symmetric components of W,
can yield any information on the spin-independent structure of the nucleon.
To ensure Lorentz invariance, the hadronic tensor must be constructed from the quantities
9uv, Py and g,. From combinations of these we can form at most four independent tensors (with

four independent structure functions),

W;u/(pa q) = PT;W(pa Q) WT(p7 q) + ’PL;W‘(pa Q) WL(p’ q)
+ PGuu(pa Q) WG(pa Q) + PHuv(pa q) WH(pa q)' (2'4)

1Spinors are normalised such that

> ulp,s)alp,s) = (4 m) 5=

L

with 2u = 2m



The tensors P, are defined by

. Puby Pub
PTIW(p7 q) = Gu + —;;Ts pLM“(I’aQ) = ;2‘/7
PGW(Z), Q) = q;l,gu 3 PHuu(p’ q) = 412:2' (ﬁp,q,u. + ﬁuqﬂ) ’ (25)
q v —=qp
where g, = —gu + 4.9,/q* and B, = v, —q, V- q/q*, v, being any four-vector.

The decomposition in Eq.(2.4) of the nucleon tensor is of course not unique, however it is written

in this convenient form because the tensors P,, can be used as projectors [17], as they satisfy

PE(p,q) Pruw(p,q) = 2, P (p,q) Pru(p,q) = 1,
PE (P, Q) Pouw(pd) = 1, Py (p,q) Paw(p,q) = -2, (2.6)

and are orthogonal, P/ P;,, = 0 for ¢ # j. Hence we can project from the hadron tensor the
relevant scalar functions: P*W,, =W, (i =1T,L,G,H).

In Eq.(2.4) Wr and Wy, are proportional to the transverse and longitudinal structure functions,
respectively, which are related to the cross sections for scattering transversely and longitudinally
polarised photons from a nucleon,

K N\ oy K\ n
Wr = (41r204> A Wi, = (47r204> o] (2.7)

where K = /v + Q? is the flux of incoming virtual photons (in the Gilman convention [18]).

By Noéther’s theorem, the requirement that the Lagrangian be invariant under gauge transforma-
tions means that the electromagnetic current J, is conserved, 0*J, = 0. This has the consequence
that for any matrix element of the current operator we have ¢ (f|J,|i) = 0, which leads to two
constraint equations for the hadronic tensor, ¢*W,, = 0 = ¢"W,,,. As a result, the functions Wg
and Wy must be zero, so that in fact there are only two Lorentz and gauge invariant functions. In

more customary notation these are denoted Wy and Wy, in terms of which the nucleon tensor is

DuPy
L W, ) (28)

W;w(pv q) = gl.w Wl(pa q) +

The functions W, and W, are related to the transverse and longitudinal functions by

Wl(p7 q) = WT(p7 q)

Wa(p,q) = (Hé—i)— (Wi(p,q) + Wr(p,q)). (2.9)

The theoretical result of Bjorken [19, 20] was that in the limit where Q% — oo but z = @%/2p-¢
is fixed (therefore p-¢ = My — o0 also), now referred to as the Bjorken limit, the functions Wy
and vW, scale — that is, they become finite functions of only one variable, z. In the Bjorken limit,

the scaling functions are usually expressed in terms of the dimensionless structure functions F; and

F27

M W1 F1(93)

I/W2 = Fz((l?) (210)



Furthermore, defining Fy, = 2 x M W7y, to be the longitudinal structure function, we have
Q2
F, = F, (1 + 1/_2) —2zF. (2.11)

A consequence of the scaling property of F; and F; (and the fact that the nucleon’s constituents
have spin 1/2) is the vanishing of the longitudinal structure function, or equivalently, that F3(z) =
2z Fy () — the famous Callan-Gross relation [21].

The observation of scaling of the inelastic structure functions in the SLAC experiments of the
late 1960s [10] was a monumental step forward in our view of quarks as genuine objects, rather
than merely convenient mathematical tools, as had been widely believed previously. For one thing,

it led directly to Feynman’s parton model [12,22-24].

2.1.1 Quark Parton Model

A basic hypothesis of the parton model is that the inelastic scattering from the nucleon can, at
a deeper and more fundamental level, be described by elastic scattering from on-shell, point-like,
spin 1/2 constituents (partons) in the nucleon. It is more than tempting to associate the partons
of DIS with the quarks of the Gell-Mann and Zweig quark model (3, 4].

The validity of this simple picture of deep inelastic scattering relies on the treatment of the in-
teractions of the probe with the partons in impulse approximation. The legitimacy of the impulse
approximation rests on two assumptions — that

(i) final state interactions are neglected, and

(ii) the interaction time is less than the lifetime of the virtual state of the nucleon

as a sum of its on-shell constituents.

The former seems reasonable since in DIS the energy transferred to the parton is much greater than
the binding energy, so that the parton can be viewed as quasi-free (or asymptotically free). Whether
the latter is valid or not can best be seen in the infinite momentum frame (IMF) of the target.
Here, the momentum of the target nucleon is p, = (pr, + M?/2pr; Or, —pr), with py, — oo (or 8 =
v/c — 1), so that the photon’s four-momentum must be ¢, = (—zpr(1 — M222/Q?) + Mv/2py; Or,
zpr(1 — M%z2/Q%) + Mv/2pr). As will be seen below, the dominant contributions to the hadronic
tensor are those for which ¢-& < 1 and § ~ —£1,, where £ is the space-time distance involved in
the DIS process. Therefore ¢ - £ ~ 2M v &/pL, so that the interaction time is ~ & 2 pr/2Mv.
The lifetime of the virtual state can be obtained by a simple argument as follows: the energy of the
virtual nucleon state consisting of on-shell partons with momenta z;py, (transverse momentum is
irrelevant to the argument) and mass m; is & Y, (z;pr. + m?/2z;pr,), so that the difference between
the energies of the virtual and on-shell nucleons is ~ (3°; m?/2; — M?)/2pr,. Therefore the lifetime
of this virtual state is proportional to pr, and hence the ratio of interaction time to virtual state
lifetime ~ 1/v — 0 in the Bjorken limit.

The picture is then one of quarks with momentum fraction z; = x absorbing photons with

z = Q?/2p-q, since §((q+ z;p)?) — 6(z —x;)/2p-q. It then follows that in the quark parton model,



the structure functions are related to the quark and antiquark momentum distribution functions,
g(z) and ¢(z), by
Fy(z) = > e a(¢(z)+q(z)) = 2zF(). (2.12)
q
Note that the structure functions (and to lowest order in QCD corrections, the parton distributions)
are Torentz invariant quantities. It is only the interpretation of ¢(z)dz as the number of quarks

with momentum fraction between z and z + dz that must be seen in the context of the IMF.

2.1.2 Light-Cone Dominance

Having outlined the simple interpretation of the DIS process, we now turn to a more formal analysis
of the hadronic tensor, W),,. Using the completeness relation Y x |X){(X] = 1 and translational

invariance this can rewritten as

1 ia-
W = 5= [ di€ TENDIILOLOIN P). (2.13)
In the Bjorken limit W), receives the dominant contributions from the light-cone region, £? = 0.
This is clear when one writes the argument of the exponential in light-cone coordinates,

q¢-¢ = %Jr%—q:r-& (2.14)

where vy = vy £ vr, with v being any 4-vector. The Lorentz scalar ¢ - £, by definition, takes
the same value in any reference frame, so we can choose the target rest frame, in which ¢, =
(1/; or, —\/ITQ?) ~ (v; 07, —v — Mz), and therefore ¢-£ = —Mz (& —£1.)/2 + (2v+ Mz)(& +
€r,)/2. Obviously the largest contributions to (2.13) will be those for which the exponent oscillates
least, namely ¢ - £ ~ 0. In the Bjorken limit ¢_£; will behave like v(& + £1.), so that only when
§o = =1 will there be non-negligible contributions to W,,. Thus the DIS cross sections will be
controlled by the product of currents J,(£)J,(0) near the light cone, £% ~ 0.

2.1.3 Operator Product Expansion

In quantum field theory products of operators at the same space-time point (composite operators)
are not well defined [25]. The short distance operator product expansion (OPE) of Wilson [26],
in which the composite operators are expanded in a series of finite local operators multiplied by
singular coeflicient functions, provides a way of obtaining meaningful results.

Because in DIS it is the £2 ~ 0 region that is probed, rather than the £ ~ 0, we need an
expansion of the product of currents in Eq.(2.13) that is valid near the light-cone. (This is because
at short distances ¢ — oo, p-q/¢* — 0, while in DIS the light-cone region corresponds to the
Bjorken limit, —¢g*> — oo, p-gq/q* = O(1).) The general form of the light-cone operator product
expansion is [27, 28, 14]

JEJIO) ~ P CN(E) &y oo -Euy OFH(0) (2.15)

“N
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Wuv ~ Im Tuv

Figure 2.2: Relation between the DIS cross section and the forward virtual Compton scattering
amplitude.

where the sum is over different types of operators with spin N (i.e. they transform as tensors of
rank N under Lorentz transformations). In DIS the spin N operators O BN represent the soft,
or non-perturbative, physics, while the coefficient functions Cfv describe the hard interaction and
are calculable within perturbative QCD.

From Fig.2.2 we can see the similarity between the DIS process described by the tensor W,
and the forward virtual photon—nucleon Compton scattering amplitude, T,.. We can find the
mathematical relation between the two by firstly observing that the product of currents in (2.13)

can be expressed as a commutator,

Wi = 5= [ 4% 674N ()] 17,(6), 1,(0)) IN0)) (2.16)

since the argument in the delta function §*(¢ — p + px) for the combination J,(0)J,(£) can never
be zero. The reason is that this would require p3 = M? — 2p.q + ¢ = M2 — Q%1+ z)/z, and
since the mass of the hadronic debris must be p% > M?, the quantity Q%(1 + z)/z would have
to be negative, which is clearly unphysical. Then it is trivial to show that W, is related to the

imaginary part of 7),, via the optical theorem,
1
Wu = —Iml, (2.17)
where
T = i / d*€ e (N(p)|T Ju(€)7,(0) |N(p)). (2.18)

The formal result of the OPE of the amplitude T, is [14, 25]

T. = Z { (q2guu1gvu2 + Qs (9vi T — Guv Gy )) Cév,z(Qz)
N

N
= Gt OPA@) st (5) NGIOE S @ING) (219

where the subscripts ‘2’ and ‘L’ refer to the F} and FJ, structure functions, and the sums run over
the standard set of spin N operators of type ¢ (here, by referring to the longitudinal operators

we are pre-empting the discussion in the next section, where renormalisation of the OPE will

11



be seen to introduce scaling violations, and hence a non-zero Fp). It is useful to categorise the
operators according to their flavour properties, namely those that are invariant under SU(Ny)
flavour transformations (singlet) and those that are not (non-singlet). Examples of non-singlet
quark distributions are d —d, u — @, n = (u+1u) ~ (d+ d), while & = >,(g+q) is a singlet. In fact,
any structure function can be decomposed into a singlet and a non-singlet piece. For example, the
electromagnetic structure function of the proton F3, can be written (neglecting contributions from
strangeness and charm) as Fy, = %xﬁ + %a:n.

Since we are dealing with unpolarised processes, the operators must be completely symmetric
with respect to interchange of indices p ---puy. Furthermore, in (2.19) we have only written the
leading, twist-2, components of the operator expansion, where twist is defined as (mass dimension
— spin N) of the operators [29]. Higher twist contributions are suppressed by powers of 1/Q? in
the Bjorken limit. For lowest twist (i.e. twist 2), we can construct at most 3 kinds of composite
operators. The non-singlet operators must be bilinear in the quark fields,

iN—l

ONs Y = 5N Y (y#1 D2 ... DFN 4+ p;p; permutations) X (2.20)

where D# = O + ieA” is the covariant derivative and X are the eight generators of the flavour

SU(Ny) group. The singlet operators are [14, 25]

‘N—-1 .
Ol lN' »(y"1D*2 ... DMV 4 i, permutations) 1
SN —2
051'--MN = 22 3 (GmaDuz .. -D“N'lGZN + b b permuta.tionS)

for the quark and gluon fields, respectively, where G*# is the gluon field strength tensor, and we
have suppressed colour indices.

The matrix elements of the operators contain information about the long-distance quark struc-
ture of the nucleon, hence they are of particular interest for studying the non-perturbative aspects

of hadron physics. On general grounds they can be written as
(N(p)|O*" "N |N(p)) = AN ph PN (gHili terms). (2.21)

The terms containing the g#*#s (the so-called ‘trace terms’) are necessary to ensure that the matrix
elements are traceless (i.e. so that the composite operator has definite spin, N). When contracted
with the ¢,,q,; these give rise to terms that contain smaller powers of v? (i.e. ¢2 = O(v) instead of
(p-q)? = O(v?)) and therefore are of higher twist (these are also known as target mass corrections,
since they go like p?/q?). Combining (2.19) and (2.21) we obtain

Ty = Z ‘,ELN Agv {(_guu - 'd—2qypupv + W) Cév,i(Qz) - guvcﬁi(Qz) } - (2.22)

1,N

The expression on the right hand side of (2.22) is convergent only if 1/z < 1, which is outside the
physical region. Since T}, is an analytic function in the complex 1/z plane, with branch cuts along

the Re 1/z axis for |1/z| > 1, we can use Cauchy’s theorem to obtain

1 N2 [
ﬁng‘“’m = -—/1 d(1/2)zNImT,,

™
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Furthermore, using the fact that §, d(1/z)zN~"M = 2riéps,n_1, we can equate both sides for each
value of N to obtain the Nth moment, MN(Q?), of the structure function:

1
M@Y= [ do oV Fyuy(@,Q%) = AV Clfppi(@), (2.23)

It turns out that it is more convenient to analyse DIS in terms of the moments of structure functions,
rather than in terms of the structure functions themselves.

The virtue of the OPE is that we can unambiguously separate the target-dependent (and ¢
independent) part of the moment of the structure function, in the form of the matrix elements
AN of the composite operator, from the target-independent (and ¢?-dependent) piece contained in
the coeflicient functions C’gv . The former are of course incalculable within perturbative QCD, and
represent the main obstacle to the complete description from first principles of the DIS process.
For the latter we can use perturbation theory, and can obtain the dependence on ¢? directly from

the renormalisation group equations.

2.1.4 Renormalisation Group Equations

In an interacting field theory like QCD quantities such as coupling constants, masses, as well as
wavefunctions (operators), must be renormalised. The renormalisation procedure introduces some
arbitrary renormalisation scale u? into the theory, although of course the physics itself cannot
depend on p?.

In DIS the coefficient functions CzN depend only on the four-momentum transfer squared @2,
and as 1/Q% — 0 in the Bjorken limit, these can be evaluated from perturbative QCD. This will
introduce In Q? corrections to the structure functions, which will break the scaling expected from
the naive quark-parton model alone.

Let us consider renormalisation of the operator product expansion. Because there are two
singlet operators for each spin N (i = 1, G), the renormalisation program will introduce mixing
between these operators. There will be no such mixing in the non-singlet sector (i = N.5), and for
our purposes it will be sufficient to examine the renormalisation group equations for this case. (For
a renormalisation group analysis of the singlet sector see, for example, Ref.[25].) We shall also refer
only to the F, structure function, and drop the subscript ‘L’ and ‘2’, although the generalisation
to F, (or F1) is straightforward.

Because the unrenormalised matrix elements of the OPE are independent of the renormalisation

scale u, we have

d

E;(N(P)lJu(E)Ju(O)IN(p)) = 0. (2.24)

Defining the wavefunction renormalisation of the spin N non-singlet operator by O%S bare =

ZNs ONo . where Z¥ 4 is the renormalisation constant, £q.(2.24) can be rewritten as [14]
0 0 n N (02
Hap T 5(9)55 —ns | Cns(Q@%/p,9) =0 (2.25)
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for each spin N. This is the well-known renormalisation group equation for the coeflicient functions.
In Eq.(2.25), g is the strong coupling constant renormalised at the scale p?, 7N is the anomalous

dimension of the twist 2 operator ON¢

13}
INs = e Zys) (2.26)
w
and the S-function is given by
dg
= -, 2.27
B(9) 2 (2:27)

We have also omitted from (2.25) the anomalous dimension of the current J,, since it was shown
by Gross [30] to vanish as a result of current conservation.

The solution to (2.25) is

3(Q?) N gl
ONs@ ) = Chstrgron |- [0 a els) (2.29)

5(12) B9
where § is the effective (running) coupling c.onstant, defined by dg%/dt = g 8(g)and gt =0) = g,
with ¢ = In Q2?/p?. The calculation of the quantities CN¢(1?), YNs(g) and B(g) is straightforward

in perturbation theory [7, 8]. Expanding in a series in orders of the coupling constant, they are

given by
%)

3
B(g) = —Po 16 —=— + 0(g°) (2.29)
cNs(1,5%) = ¢ + o(gh).

TWs(g) = 71(3)5 16

Note the leading order coeflicient C( W for the longitudinal structure function is zero, so that
Fy, receives contributions only from higher orders in the coupling constant expansion. Combining
Eqs.(2.23), (2.28) and (2.29), we finally obtain the equation governing the Q2 evolution of the

moments of the structure functions (to leading order in g) {31, 32],

aS(Qz) ’YE\?;’N/QQO
=]

M3y s(Q%) MPys(p?) (2.30)

where the non-singlet anomalous dimension is [33]
(O)N — 4 & 2.31
( ]Zl J N(N + 1)) R
and B9 = 11 — 2Ny /3 for Ny active flavours in the evolution. In Eq.(2.30) we have rewritten the

strong coupling constant as

7%(@%) _ An
4 Bo 1n(Q2/A2QCD)

by putting the arbitrariness of the renormalisation scale into the new parameter Agcp, known as

the QCD scale parameter, In A} o p = In p? — 1672/ (8o g*(4?)).

aS(QZ) =

(2.32)
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The structure function at Q2 can be obtained from the moments with the help of the inverse

Mellin transform,

1 N0+l00 _
Fns(z,Q%) = 2_7m/1v ~dN 2N MPys(QY). (2.33)
0—1%00

In practice it is easier to work with the inverse Laplace transform, which can be obtained from the

inverse Mellin transform by a simple change of variables, { = —In z,
2 1 [Noico N 2
Fns(z,Q%) = %/N ~ dN exp[(N - 1)t(z)] M3)ns(QF) (2.34)
0 —100

and fixing the contour of integration to lie to the right of all singularities of MéYNS(QZ) in the
complex N plane.

Once the matrix elements A (and hence the moments) at p? are known, Eqs.(2.30) and (2.34)
can be used to give the moments and structure functions at any other value of Q2. The challenging
task, from the point of view of non-perturbative hadron physics, is to determine A. Attempts at
calculating the non-perturbative part of the DIS structure functions from various models of QCD
have been made by a numbers of authors [34—-42]. The motivation has been the prospect of making
a definite connection between the high energy parton picture of DIS on the one hand, and the
valence quark models at low energy on the other. If the nucleon behaves like three valence quarks
at some low momentum scale ~ u?, from the above discussion we see that the nucleon structure
function will necessarily evolve with @?, and therefore a description in terms of valence quarks
will no longer be accurate. An intuitive, and mathematically equivalent picture [43] for this Q2
evolution is that as Q2 increases the quarks radiate more and more gluons, which in turn split into
pairs of quarks and antiquarks, and so on. In this manner a non-valence (or sea) component of the
structure function is generated. However, the underlying philosophy has been that at order u? a
purely valence quark model may yield reliable twist two structure functions [35, 44]. These could
then be evolved to higher Q% to compare with the experimental DIS data.

In Section 2.3 we shall construct a simple, relativistic model of the valence nucleon structure
function using some of the phenomenology from the earlier model calculations. Before that, in the
next section we set up a formalism, analogous to that of the OPE, that will enable us to clearly
separate the g®-dependent and g*-independent parts of the truncated nucleon tensor, and identify
the scaling contributions. We will see in later chapters that this new formalism has extensive uses

and applications.
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Figure 2.3: Truncated nucleon tensor.

2.2 The Truncated Hadronic Tensor

The Lorentz structure of the nucleon hadronic tensor was given in Eq.(2.4). In this section we delve
deeper into the Lorentz and Dirac structure of the truncated nucleon tensor, that is, one which
has its fermion legs amputated. Because of the additional spinor degree of freedom the structure
of the truncated tensor will necessarily be more complicated than that of the full nucleon tensor,
W,.,. However, once we identify the relevant structures that contribute to the physical tensor in
the Bjorken limit, we will be able to use these in a fully relativistic, covariant calculation of the
nucleon structure function. The formalism developed here can also be extended to the case of
off-mass-shell nucleons, since the truncated tensor will generally depend upon p? as well as ¢* and
p - q. The application to off-shell nucleon scattering, for example in the calculation of the nuclear

structure functions, will be addressed more fully in Chapter 5.

2.2.1 Dirac and Lorentz Structure

We begin by observing that the nucleon tensor can be written [45]

M Wo(p,a) = 3T (64 M) W (9,0 (235)

where we have explicitly separated the nucleon spinors from the remaining interaction. This is
depicted graphically in Fig.2.3. The tensor Wuu is then related to the truncated virtual photon —
nucleon scattering amplitude ﬁw via V/I\/,“, ~ Inifm,, where the on-shell Compton amplitude 7},, is
given by T,(p, q) = #p) Tu(p, q) u(p).

In general, the tensor I//IZ“, must be constructed from the Lorentz tensors (Dirac scalars)
9uvsPu> qu and Dirac matrices I,7,,0,,,7,7s and 5. By parity considerations terms involving
Yu¥s or vs will not contribute to the spin-averaged tensor. Furthermore, terms with o, will not
contribute to W,,,, but we keep these as they may be relevant for the off-mass-shell tensor in nuclear

calculations. Then the tensor with the correct transformation properties under Lorentz and parity
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transformations can in general be written in terms of 22 independent functions,

Wulp,0) = 1 (Pruw Wi + Prw W + Pow We + Prw Wi )

? (PTW Wi + Pru WE + Pow W& + P V/VIIJ)

q (PT;W W2 + Pruw Wi + Pouw Wi + B Wf{)

Vb + 1080) W2+ (Vua0 +100,) W*

0app®? (Priw Wi + Pruw W + Pow W& + Prw Wi )

(G P+ O Bu) D WE 4 (0o Py + O Pu) ¢ W7

(Tap @ + Tav qu) P° W+ (Oap @ + O 4u) €° w? (2.36)

+ + + + + +

where each of the functions on the right hand side is a scalar function of ¢?, p- ¢ and p?, Wi =
V/I?i(p, q)= V/Vi(pz,p - ¢,q%). The projection operators P, are as defined in (2.5).
Substituting (2.36) into (2.35) gives the transverse unpolarised structure function in terms of

the functions W’( ,9),
M Wr(p,q) = 2M W§ + 2M> Wi + 2p-q Wi (2:37)

This can be viewed as a definition of Wr. Furthermore, the longitudinal and gauge non-invariant

structure functions are
_ 50 2 17l T332 4(1"(1)2 773
M Wi(p,q) = 2MWy + 2M* W + 2p-q W[ — TW (2.38)
_ 170 2 717l 772 4(1"(1)2 773 1774
M We(p,q) = 2M Wi + 2M WG+2P'qWG+"q2—W + 4p-gW* (2.39)
_ 7370 2 17l 172 4 (P"I)z 73 1174
M Wy(p,q) = 2M Wy + 2M° Wy + 2p-qWg + TW + 2p-¢ W' (2.40)

Because of gauge invariance the latter two functions must be zero, which means that not all of
the functions V/I?i(p, q) are independent. To check that this is indeed the case requires explicit
evaluation of the functions Wi(p,q), which we now do. We shall work in the Bjorken limit, and

neglect logarithmic QCD corrections, so that the function W, should also be zero.

2.2.2 Scaling Properties of the Functions w

The diagram we calculate is the ‘handbag’ diagram depicted in Fig.2.4, which represents the impulse
approximation for quarks. 2 As in the operator product expansion, we can separate out the ¢2-
dependent part of I//I\/W, denoted by r,,, from the ¢*-independent, non-perturbative part, which

will be described by the function H:

W), = [ dF I @lea T, i (2.41)

2In general the diagram with the ‘crossed’ photons can also contribute to the structure function in the small =
region, however in the subsequent model calculation where we consider only two-quark intermediate states there will

be no contribution from this diagram.
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Figure 2.4: Impulse approximation for the truncated nucleon tensor.

where

d*k (2m)6([q+ k]*> — m?)
Grf (- ma?

di = (2.42)

and the indices abed are Dirac indices. Here k is the four-momentum of the struck quark, and m
its mass.

The tensor 7, can be evaluated explicitly from the 7, coupling of the photon to the struck

quark,
rw = (K+m)y, (B+ d+m) v (F+m)
= Ryl + Ruo® (2.43)
where
Ry = m (0w + ks + 2 (kuay +hogn)) (2.44)

ko
Rp,ua = RIW R‘ + (m2 - kZ) (_Qa Guv + (k' + Q)u Yo + (k + Q)V gu,oz) .

Next we take the trace over the indices ¢,d in (2.41),
Tr[ru(k, @) [H(p,k)]at] = Ru(k,q) [G(p,k)las + Ruva(k,q) [G(p,F)lee  (2.45)

where G* and G are 4x4 maitrices transforming like a vector and a scalar, respectively. Their most

general form is

G* I (p°fi + k%f2) + ¥ 0%fs + k°fs) + B 0%fa + K%f6) + 1 F¢
+ 0%ps fs + 0P%p fo + PPKSass p* fro + PPRPops K fun (2.46)

G = Ifiu+ #fis+ 4 s + p*kou fis
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where the functions f; — fi5 are scalar functions of p and k. We have omitted contributions involving
vs to guarantee that G and G® are even under parity transformations.

To perform the integrations over d*k = d*krpdk dk_ Eq.(2.41) must be written as a sum of
products of k-independent terms containing the indices y,v and integrals of k-dependent scalars.
In general there will be three types of terms — those involving integration over k,, k, k, and

ky k, ko 7. These can be expanded as follows:

Kﬁl)(p, q) = /(H:: &y
K(2)(p,q) deHn k, = P(2)“"K(2,)/, + pupy P(2)uv ((2’)11 + o P?Ez)uuK(?)

w!

u Pl(l)u’K(}) + g P2(1)M’K(})

+ (pMQV + pu(lu) P(Z)y‘ Y K(2)
K@, (p,q) = / dk kukoka = (GuPo+ Guaby + Guaps) POV KS),

+ (g;w(Ia + Gualy + gvaqu) P(S)u K[(LSI)/’QI
+ PuPvPa P(S)_l“/ * K(a,), Tl + v 9 P(B)MI via IKI(:?I)/,O[,
+ (pp,pVQa + PuPoy + Pupaqu) P(B)u I(ft?l;a/
+ (qll-qI/pOl + uqupy + qvqap#) P(3)M oo K;(ﬁx)/’a'
Here, the projection operators are
B = i{q2 P - prgd}
1 X
1
P = —{-p-ap + P’ ¢},
where X = p%¢? — (p- q)?, for the k, terms. For the k, k, terms we have
il v v v v v
PO = = {X g™ - @ PP - ¢+ pa (PP ¢")}
2)pv
P = 2X2{—q X g™ + 3¢ p"p + (P +2(p-0)?) ¢*¢”
~ 3¢ p-q ("¢’ +0"0")}
2)pv v v v
RO = 2 Xz{ PP X g™ + (P +2(p-q)") PP+ 31" gV

~ 30" p-q (00" +7°0")}

2 1 v "
PO = o {pa 0P~ (00" 9" — 3 p-ap"p — 377 p-a g
+ (P’ +2(p- 9)*)(p"¢" + p'¢" )}-

Finally, for the k,k, ¥ terms, the projectors are

) pvo 2 voo va vo
Py 6X2{X(qB{‘ - p-4By") —- 3¢ BY
+3p%p-g By + 3¢%p-g B — (p°¢* +2(p-9)*) BL™}
P2(3)lwa 6X2 {X( —p- unua oH p2 Béwa) + 3 q p-gq Buua

_ 3p Biu/a _ (p2q2+2 (p.q)Z) Béwa + 3p2p_quua}
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P:§3)MV01 - {X( q Buua = q p- quwa) 1 5(] Buua

2 X3
+p-q(—3p 2_9(p-q)?) B — 54 p-q B + ¢ (0 +4(p-0)%) B}
P = 2X3 {X (p’p-q BY* —p* p-q BY™) + p-q (-3p°¢" — 2(p-¢)*) B
+5p B;u/o: + p (p 2+4(p-q)2) Béwa 5p p- unua}
R X3 {x 3¢%p-q B —(0**+2 (p-9)*) BY") — 15¢" p-q BY™
+3p* (V¢ +4(p 0)) BY* + 3.¢% (5°¢® +4(p- 0)®) BE** + 3p-q (=3p’¢* — 2(p- 0)*) BY"}
PO = 6X3 {X (-p’¢* - 2(p-9)*) BL"*) + 30*p-q By + 3¢ (0°¢" +4(p-0)*) BE™

—15p' p-q B + 3p-q (=3p%¢" —2(p-)%) B + 30° (0> +4(p- 0)®) BE“},

where the basis tensors are

B = ptg'™ + pYg*’ + pg* By = ¢*g"* + ¢“g* + ¢%g"
By = ptpp” B = ¢"¢"¢"
B = prpe® + p"p¢* + p°pie” B = ¢"¢'p* + ¢"¢°p" + C¢tp”.

The result is that the W' are completely defined in terms of the functions f;—fi5. Furthermore,
since the dependence on ¢? is now explicit, their scaling behaviour can be ecasily determined. The

tesults for the functions ij are as follows:

_ i ' 2, 1.2\ 2
we = /dk{((mz—k2)p'q—P'kq2)f1 - (m——tzk—)—qﬁ - mg? f12}
N ) 2_ .2y 2 gt
W= /d’“{((k Qn)" +”2§.qq)fs + (=¥ p-a=p k) f
2 2y 4 2 2 ¢t
N (k’ -|-m)q f5 (k' +m)‘Jf n f7—mq f13+ f14}
4p-q 2P

. B 2 2 Tk g? (B emd) @ pz 72
w2 /dk P e ) (mror o 2P D S G SLLLAVS SN O AT
T {(219-91 = pg ) 250 \UFTap.g) B

2 4 2 2 .4 2
2 .2 P° q p-kq m p* q mp-kgq
2 o - 2.4
(m " 2(p 92 p-gq ) fx (2(19-q)2+ p-q ) f“} P

3 2 4 Tk o? (m?— k) ¢
dk sl s B + ———J
{( 2007 pa ) 2pq
Tk g? 2 2 K24 m2) ¢ [ o g2
( -t ;)(p 2 -I-P‘k)f'm | ) 4 (p < +P'k) Ji1

P4 2p-q 2p-q 2p-q
B mp*qt mp-kq®
(2 a2 b )fls}'

Since the functions f; — f5 are g*-independent, we find that W2 and W2 are of order 1, and

+
wio= [
+

V/I?% (and also va) is of order 1/v (remember that dk involves a §-function in ¢?). Therefore all

three functions V/I}IQ_Z contribute in the Bjorken limit to the transverse nucleon structure function,

Eq.(2.37).
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For the other functions we find that all are of order 1/v, with the exception of W7 and V/[79,
which are of order 1/v%. This means that some of the terms on the right hand side of (2.38)—
(2.40) will be of the some order as Wr. However, because the functions appearing there satisfy the

following relations:

Wi = 224
q
W2 = _$W3_2W4
Wi = Wi + W
Wi = 2;’2'qv’176 (2.48)
We = 2L - 2w

WE = Wi+ w8

the leading (order 1/v) contributions will cancel ezactly in the Bjorken limit. This is sufficient to
guarantee that gauge invariance (¢“W,,(p,¢) = 0 3) and the Callan-Gross relation hold.
Essentially what we have done in the above analysis is temporarily delay calculating the soft
part of the complete diagram in Fig.2.4. By doing so we have been able to extract additional
information about the g?-dependent part of the truncated nucleon tensor. The usefulness of this
particular result will be made apparent next when we explicitly calculate the ‘non-perturbative’

functions f; — fis.

2.3 Relativistic Model of the Nucleon Structure Function

To calculate the transverse structure function of the nucleon requires a description of the soft,
non-perturbative physics, which in our case is parameterised by the functions f; — fi5. We observe
that because both the nucleon and struck quark inside the nucleon have spin 1/2, the intermediate
spectator state in Fig.2.5 will have either spin 0 or 1. In order to make an overall Lorentz scalar,
we therefore need only consider quark-nucleon vertices that transform as scalars or vectors under
Lorentz transformations. We shall be more general than is necessary in this section, in keeping p?
dependence in the nucleon—quark vertex functions. Although for a nucleon p? is of course fixed,
the full, p>-dependent vertices will be necessary when discussing scattering from composite targets,

such as nuclei, in later chapters.

2.3.1 Relativistic Vertex Functions

It is straightforward to identify the form of the vertices that are allowed by Lorentz, parity and
time-reversal invariance, however the specific momentum dependence has to be determined within
amodel. In general there will be 15 independent scalar (®7_4(k, p)) and vector (®}_,,(k, p)) vertex

functions, given by

®Note that the truncated tensor W\My(p, q) itself need not satisfy q”ﬁV\w(p, q)=0.
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Figure 2.5: Relativistic model of the valence quark distribution, in which the quark-nucleon vertex
is described by the vertex function ®5V.

VS = T8+ p&5 + KO + o,p°k° @7 (2.49)
for a scalar vertex, and

Vo= 4@ 4 pa I B + ko I®Y + oopp® ®Y + 04pk” Y
+ po BOY 4 po KO + ko POY + ko KO (2.50)
+ apspPEE p™ @Yy + ogsp’K® K> Y,

for a vector vertex. (In fact, for DIS from a free nucleon terms involving only the four-vector p will
not be present, so the number of independent vertex functions will be reduced.) From these vertex
functions the functions fi; — fi5 can then be uniquely determined. To see this, let us firstly consider
the scalar vertex. The general, non-perturbative, function from Section 2.2.2, (H(k,P))dcab, Will be
proportional to (V5)gc(VS)gp.

Using the Fierz theorem the Dirac indices can be rearranged into a form that enables the

connection with the functions f; — fi5 to be explicit:

VS)ae (r)y (V) 1—16 S THVSTVT] (0)as ()i (i oa

1 ; ,
= 73 (TVSVST) R + + TV VT Ry) (M)
= [G]ﬂb RIW =t=a EiS [Ga]ab R,u.uoz (251)

where the sum over ¢ will include the Dirac matrices I'; = I,7y,, 0. Equating terms in (2.51) we

obtain
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fi = 28785, fa = 295 @5 4,

fs = (20525 + 2p-k(35)? )56, fr = (2(95)7 - 282 (35 ) 6,

fi = (22572 - 297 (80 4, fo= (20505 + 2p-k(89)) 4,

foo= (@7 - @25 + ka5 + K- (p-k)?) (29)) 6, (2.52)
fs = —4k-(p® + k&) %4, fo=4p-(p®; + k)%,

fio = 8®3 @356, fu = 85 &7 ¢,

fr = (@) + (5 + k(@5 + (%K — (kD)) (85)* + 2p-k @5 85 ) 6,

fizs = 297 836, fua = 28] 5 6, fis = 487 &7 ¢,

where § = §([p — k]> — m%), and mp is the mass of on-shell recoil (spectator) quark system. Af
this stage an objection may be raised about assigning a finite value to the mass of a coloured
system of a nucleon with a quark removed. The usual justification for doing this is that because
the interaction time in DIS is very short (see Section 2.1.1) this spectator state will not have time
to develop into an asymptotic state with infinite mass. For the sake of simplicity we further assume
that only valence quarks are present, so that the quark spectator system may be identified with a
diquark. In a more refined calculation one could, for example, integrate over diquark masses using
some diquark spectral function.

Calculating the functions ®;_, from first principles amounts to solving the relativistic, many-
body, bound-state problem. Because present day technology does not yet allow this to be done,
one solution could be to try and relate these to quark wavefunctions taken from bag models, or
non-relativistic quark models, for example. This, however, implies approximations whose validity
can be disputed. Rather than proceed in this direction, we shall choose a single scalar vertex, say
VS = I ®, and use phenomenological input to constrain its functional form. For this particular

vertex, we find that only f; and fi2 receive contributions,
fr = fiz = (87)? 6([p— k]* — m%) [scalar vertex]. (2.53)

For the vector vertex we can repeat the above reduction, this time with many more terms on
the right hand side of (2.52), since there are many more combinations of vertex functions (total of
112/2411/2 = 66 terms!). For simplicity, we choose for the vector vertex a single form, V¥ = 7,8},

which makes the following contributions:

V2 12 a2
= aff = = = I _ 2fin 2 (% )8([p— K" = my)

= 2.
m3, 3 m, mi, (2.54)

[vector vertex].

In writing Eq.(2.54) we have assumed that the intermediate vector state has a Lorentz structure

—9ag + (Pa — ko )(ps — kg)/m?, where my is the mass of the vector diquark.
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Putting everything together we find that the quark distributions in the nucleon are given by:

1 dk? P3)?2
Qo(z) = 62 ) @ _Tm) (kz( _17)nz)2 {k% + (m+ Mm)z} (2.55)
for a scalar spectator diquark, and
! dk% ((I)Y)2 2 2 2 2 2
- k kAW + M* + 2
a(®) 1672 ) (1 —z)m% (1 —=z)? (kz'—m2)2{( T+m) ( ek + mv)

-2z (k%(M2 + mZ + m?) + m(2M?*m + 3Mm} + Qmm%/))
+ z? (k%(M2 + m? + 2md) + 6 M*m? + 2M? m} + 12Mmm} + 2m*mi + m‘%,)
— 2Mz® (2Mm? + 2Mm} + 3mm}y) + M’a* (m? +2mi ) } (2.56)

for a vector spectator diquark. In (2.55) and (2.56) we have used the fact that

6 (lk+q*-m?) = ﬂ:ﬂ (2.57)

and

6(lp— k2 —m%) = (M_;h)a (k_ ~ M- ’—Z“L_—mﬂf) (2.58)

to fix the values of k4 = —qy, and k_ = M + (k% + m%)/(ky+ — M). Note that here ¢, = —Mw,
where z = —¢?/2p - ¢ = —q4/p+.

In the massless quark limit the quark distributions reduce to the simple forms

1 dk?  (®7)?
0(@)lno = 167r2/(1 —Ta:)(k14) {Kh + M2} (2.59)

and

2 V2
3@nme = g7 [ ks T

1672 ) (1—=z) k*
kb + am? (2k3 +ami) | k3 M? 9 2 2
' 2k 2M 2.
& { mi (1 — x)? ¥ mi, ekt v (2.60)

for scalar and vector spectators, respectively.

2.3.2 Numerical Results

We can easily relate the scalar and vector distributions to the flavour distribution functions in the
proton by using an SU(4) symmetric proton wavefunction. DIS from the valence d quark requires
that the uu spectators be in a spin 1 — isospin 1 state, while for a valence u quark the spectator

can be in either spin 0 — isopin 0 or spin 1 — isospin 1 states,

dy(z)

uy ()

a1(z) (2.61)
= (@1(2) + 300(2) (2:62)

fl

where the distributions ¢g and ¢; are normalised to unity,

/01 dz qo(z) = /01 dz q1(z) =

—

(2.63)
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The k%-dependence of the functions @f’v can most easily be modelled by considering the phe-
nomenology of the nucleon structure function. To obtain the correct large-z behaviour, namely
Wr ~ (1 — )3, the leading k* dependence in the vertex functions must be 1 /K2, since the quark

four-momentum squared is

k2 T
o= - - (mk - (1- =) M?) (2.64)
k2 2
SR i L
1—2

This is clear after we also take into account the ~ 1/k* behaviour in the two quark propagators.
Furthermore, since the large-z limit is known to be dominated by u quarks, and as it is only through
DIS from valence u quarks that the scalar vertex function enters, we can conclude that &7 must
have a monopole form for its k?-dependence. The k% dependence of the vector vertex function,
®Y, can be fixed by considering the large-z limit of the dy/uy ratio, which is known to behave
as ~ (1 — z) [15]. This requires that the vertex function for DIS from d quarks have (1 — z)*, or
(k*)~5/2, behaviour (as there is an additional (1 — z)~? factor arising from the trace for the vector
diquark).

It may now seem reasonable to choose a simple monopole form for the scalar vertex function,
and an equivalent one for the vector vertex as was done, for example, in [46]. However, in this naive
approach there lurks a problem. At small values of m the quark propagator (k% — m?)~% in (2.42)
contains a pole in the physical region of k%, since the kinematic maximum for k% is (M — mg)?,
which occurs when k% = 0 and ¢ = 1 — mg/M. Obviously when the sum of the quark and
diquark masses is less than the mass of the nucleon, mg + m < M, the quark propagator becomes
singular. This is in fact an indication that the model thus far is incomplete, and the missing
ingredient is colour. Without the imposition of confinement, there is nothing in the above to stop
the nucleon from decaying into its quark and diquark constituents. One way around this problem
is to artificially assign very large masses to the interacting quark and spectator diquark to prevent
decay [46]. However, this is not a very attractive solution, since confinement occurs not because
the quark mass is large (it is only a few MeV at most), but in a dynamical way due to the nature of
the colour interaction. The only place where the information about colour confinement can enter
in this model is through the relativistic quark—nucleon vertex function. We can guarantee that the
infinite contribution from a deconfined quark is excluded by suitably choosing a numerator in QIS’V
so that the integrand in the structure function is finite at the on-shell point, k% = m?.

For the masses of the scalar and vector diquark, mg and my, the only information available to
us is that from low energy quark or bag models. There, at a scale of @2 = Q% ~ a few hundred
MeV, the diquark masses are expected to be somewhere within the range of 600 to 1100 MeV [47].
Furthermore, from the nucleon—A(1232) mass splitting we would also anticipate that my would

be some 200 MeV larger than mg [48].

25



xq(x)

Figure 2.6: Quark distribution functions for scalar and vector spectators.

The final form for the vertex functions that we use is

2 _ 2
‘I’ls(kQ) = NS{%T%)Z
() = Ny o) (2.65)

(k2 —AZ)P

with the constants Ng and Ny determined by the normalisation condition, Eq.(2.63).

As expected with these vertex functions, the quark distribution for a vector spectator is softer
than that with a scalar spectator, Fig.2.6. This figure is plotted with diquark masses of mg = 850
MeV and my = 1050 MeV. Decreasing the diquark masses makes both the scalar and vector
distributions harder, as seen in Fig.2.7. Thus smaller masses would imply having to use a lower
value of Q2 from which to evolve. There is also some sensitivity to the vertex form factor cut-offs
Agy, with the effect being that the distributions move to larger z with increasing cut-off mass.

As outlined above, on purely theoretical grounds small, or zero, quark masses are preferable in
the present context, hence we set m = 0 in our calculated distributions. Increasing the interacting
quark mass from 0 to 4-5 MeV (as would be appropriate to a current quark mass) has negligible
effect. However, large quark masses (~ 300 MeV), as in [46], would make the resulting distributions
slightly broader, Fig.2.7.

We find the best fit to the experimental nucleon distributions (as parameterised by Morfin and
Tung [50] and Owens [51] at @* = 4 GeV?) for masses mg = 850 MeV and my = 1050 MeV, and
cut-offs Ag = 1.2 GeV and Ay = 1.0 GeV (the curves are evolved from Q2 = 0.15 GeV? using
leading order QCD evolution, with Agep = 250 MeV [49]). The fits to the uy +dy = 3(qo+ ¢1)/2
valence quark distribution as well as the valence dy /uy are shown in Figs.2.8 and 2.9 respectively.

It is remarkable that such a simple model for the vertex functions reproduces the data so well.

26



z(qy+q,)

Figure 2.7: Comparison of the total uy+dy valence quark distribution, for (i) Agy) = 1.2(1.0) GeV,
mg(vy = 850(1050) MeV, and m = 0; (ii) increasing the vertex function cut-offs to Agyy = 1.5(1.3)
GeV; (iii) decreasing the spectator masses to mgyy = 650(850) MeV; (iv) using a very large quark
mass m = 300 MeV.

To conclude this chapter, let us point out again the new developments that have been made in
the calculation of nucleon structure functions. With the expansion of the truncated nucleon tensor
we have been able to unambiguously identify the scaling components by calculating the ‘handbag’
diagram, Fig.2.4. The formalism allows a clear separation of the @*-dependent quantities from
those which describe the non-perturbative, quark-nucleon interaction. This is consistent with
the operator product expansion for the total nucleon tensor. By simple choice for the form of the
nucleon—quark vertex and parameterisations of the vertex functions, we have been able to accurately
reproduce the experimental valence quark distributions. One element that is missing, however, is
the sea distributions. These can of course be generated perturbatively via the QCD evolution
equations in Section 2.1.4. However, an interesting possibility is that there may in fact exist a
non-perturbative sea component of the nucleon, which cannot be generated by QCD evolution.
That is, there may be an intrinsic antiquark component of the nucleon at low Q2. This will be the

subject of the next chapter.
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Figure 2.8: Total uy + dy valence quark distribution, evolved from Q3 = 0.15 GeV? (dashed curve)
to Q2 = 4 GeV? (solid curve). The data (dotted curve) are from recent parameterisations of world
data.
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Figure 2.9: Valence dy /uy ratio, evolved from Q2 = 0.15 GeV? (dashed) to Q? = 4 GeV? (solid),
and compared with a parameterisations of world data (dotted).
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Chapter 3

FLAVOUR CONTENT OF THE
PROTON

From the successes of quark models we view many properties of the nucleon as arising from its
simple valence quark structure. Models such as the non-relativistic quark model, or the various
bag or soliton models can be thought of as describing the valence structure of the nucleon at small
momentum scales, @ ~ few hundred MeV. At larger @2, however, the total nucleon structure
function becomes softer (i.e. grows at small z and becomes smaller at large z). As we saw in
Chapter 2, this phenomenon is quite nicely described by perturbative QCD — quarks radiate
gluons, which then split into pairs of sea quarks and antiquarks [43]. Therefore the number of
quarks increases, but since momentum must be conserved, the average momentum carried by these
quarks decreases. Thus, while at low Q% valence quarks should carry most (if not all) of the
nucleon’s momentum (in an infinite momentum frame), at Q? ~ few GeV? they carry only some
30% of the total momentum, with the remainder residing on the sea quarks (and gluons).
Successful as perturbative QCD is in describing the @? evolution of the quark and antiquark
distributions, we are still unable to calculate from first principles the distributions themselves. Some
progress in connecting low energy valence quark models with the valence quark distributions in DIS
has been made [35-42], although, less is known about how to calculate the sea quark distributions
non-perturbatively. While it is possible for all of the sea to be generated via QCD evolution, there
are nevertheless a number of good reasons for having a non-perturbative sea in the nucleon. It was
pointed out by Signal and Thomas [38], using the formalism developed by Jaffe and others [52],
that even in a simple model like the MIT bag, there should be a component of the total quark
distribution which is non-valence, and that an intrinsic antiquark component should be present as
well. Furthermore, some of the properties of this intrinsic sea, such as an asymmetry between the
d and @ quark distributions, are very different from those expected from perturbative QCD alone.
In this chapter we discuss a specific model (Section 3.1) in which the physical nucleon is seen as
a superposition of bare nucleon and virtual meson and baryon states, the latter which contribute

to the non-valence quark distributions. In Sections 3.2 and 3.3 we follow this up with comparisons
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of some of the predictions of this model with recent data on the nucleon deep inelastic structure

functions, as well as a survey of possible future experiments.

3.1 Mesons in the Nucleon — A Model of the Nucleon Sea

Simply on the basis of the Heisenberg uncertainty principle we know that the long range structure
of the nucleon must involve a pion cloud. For example, the non-zero value for the neutron charge
radius can be easily understood in terms of the emission from a neutron of a light, negatively
charged virtual pion, n — p + =~ . Furthermore, from PCAC, and from the tremendous successes
of chiral quark models [53-56] we expect that the nucleon should have a pion cloud. In addition,
because there is no scale at which chiral symmetry can be ignored, the nucleon properties will have
pionic corrections at all Q2.

The possible relevance of the extended pionic structure of the nucleon in high energy processes,
such deep inelastic scattering, was first suggested by Sullivan in the early 1970s [57]. It was shown
that the contribution to the inclusive virtual photon—nucleon cross section from pion exchange
between the virtual photon and the nucleon scales in the Bjorken limit. The reason for this is that,
in contrast to processes such as exclusive pion-production which are suppressed by O(1/ @Q?) form
factors, here it is the inelastic structure function of the pion itself that is probed.

Using this picture of the physical nucleon, it was later noticed [58] that the pion cloud could be
responsible for generating an asymmetry between the @ and d quark content of the proton, through
the preferred proton dissociation into a neutron and x*. Furthermore, deep inelastic scattering
data on the momentum fractions carried by antiquarks were used to obtain an upper limit on this
non-perturbative pionic component [58, 59]. More recently it has been hypothesised [47,60-63]
that this asymmetry could account for some of the apparent discrepancy between the naive parton
model prediction for the Gottfried sum rule [64] and its recently determined experimental value
[65].

Since it has by far the smallest mass, the pion was the first meson whose contributions to
the nucleon structure function were investigated [66, 67]. However, just as other mesons can be
included to give corrections to low energy nucleon properties, such as the electromagnetic nucleon
form factors or magnetic moments [68], an extended mesonic structure of the nucleon may also be
relevant in deep inelastic scattering. This idea has been taken seriously, for example, by Speth and
collaborators [62, 69], who have argued that the entire nucleon sea can be understood in terms of
DIS from its virtual meson components, even at moderate Q2.

In this section we shall give a detailed account of the calculation of the virtual meson and
baryon contributions to the nucleon structure functions. Furthermore, we will use recent DIS data
to examine the extent to which such a picture may be relevant in high energy reactions.

The basic hypothesis of this model, in which the nucleon has internal meson and baryon degrees

of freedom, is that the physical nucleon state (in an infinite momentum frame) can be expanded (in
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Figure 3.1: Deep inelastic scattering from the virtual (a) meson and (b) baryon components of a
physical nucleon.
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the one-meson approximation) in a series involving bare nucleon and two-particle meson—baryon

states

|N)phys = ﬁ {|N>bare
+ Z/dy 4’k goppy dMB(Y, k) |M(y,k7); B(1—y,~kr)) }.  (3.1)
MB

Here, ¢aprp(y, kr) is the probability amplitude for the physical nucleon to be in a state consisting
of a meson M and baryon B, having transverse momenta kr and —kr, and carrying longitudinal
momentum fractions y and 1 — y, respectively. Z is the bare nucleon probability. Although we
shall work in the one-meson approximation, we shall include higher order vertex corrections to
the bare coupling constants go,, .. Ilustrated in Fig.3.1 is the deep inelastic scattering of the
virtual photon from the two-particle state |M; B). In Fig.3.1(a) the photon interacts with a quark
or antiquark inside the exchanged meson, while in Fig.3.1(b) the scattering is from a quark in the
baryon component of the physical nucleon.

According to (3.1), the probability to find a meson inside a nucleon with momentum fraction

y(=k-q/p-q=ky/py)is (to leading order in the coupling constant)

M) =Z 98,0 /d2kT |éarB(y, k)l (3.2)

This must also be the probability to find a baryon inside a nucleon with momentum fraction 1 —y.
The baryon distribution function, fear(y’), where ' = p’ - ¢/p - q, is probed directly through the
process in Fig.3.1(b), and should be related to the meson distribution function by

Ime(y) = fem(1~y) (3.3)

for all y, if the above interpretation is valid. We also demand equal numbers of mesons emit-

ted by the nucleon, (n)yp = fol dy fms(y), and virtual baryons accompanying them, (n)pp =
Jo dy' Fem(y'):

(nymMB = (n)BM. (3.4)



This is just a statement of charge conservation. Momentum conservation imposes the further

requirement that
()M + (¥)BM = (n)MB (3.5)

where (y)arB = [y dy y fu(y) and (y)sm = Jsdy' v’ fem(y') are the average momentum fractions
carried by meson M and the virtual baryon B, respectively. Equations (3.4) and (3.5), and in fact
similar relations for all higher moments of f(y), follow automatically from (3.3).

In what follows we shall explicitly evaluate the functions fyp and fpum, and examine the
conditions under which (3.3) is satisfied. The results will be used to calculate the contributions
to the nucleon structure function from the extended mesonic structure of the nucleon, which are
expressed as convolutions of the functions f(y) with the structure functions of the struck meson or

baryon:

MO E(a) = [ dy fun(y) Faselon) (3.6)
§EMPyn(z) = /ldy' fem(y') Fap(zB) (3.7)

with ar = /y and zp = z/y', and ¢ = —q*/2p- ¢ being the Bjorken variable, Note that Eqs.(3.6)
and (3.7) are correct when physical (renormalised) meson—baryon coupling constants are used
in the functions fyrp and fpur (see Section 3.1.5 for a discussion on this point). By comparing
against the experimental structure functions, we will ultimately test the reliability of the expansion
in (3.1), and also the relative importance of the states involving heavier mesons compared with the

pion states.

3.1.1 Pions — Covariant Formulation

Let us firstly review the previous calculations of the contribution to Fyy from the pion cloud.
Following the original method of Sullivan, the approach has been to simply treat the diagram
in Fig.3.1(a) as a Feynman diagram. With a pseudoscalar 7N coupling, g-nn%(p) i7su(P), the

contribution from this diagram to the hadronic tensor of the physical nucleon can be written

S (P = [ s (‘]’C’;N_N% )> STE[(P 4+ M) s WE (ko) (44 M) ivs] - (3.8)

where the hadronic tensor for the virtual pion is expressed as

m?

Wy = §¥Wir + War (3.9)

and where g2y (k?) is the interaction strength. 1 1t is customary to isolate the k% dependence

of g2y n(k?) into the TN N form factor: i.e. g2yn(k*) = g2yn Frn(k?*), where gryn is now the

1Since only tree order diagrams are ever considered, the pseudoscalar interaction is equivalent to that with a
pseudovector coupling (fryn/m=) @(p) ivavs u(P) k*, providing the coupling constants are related by fryy =
grNN ('m,r/ZM).
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coupling constant at the pion pole (Frn(—m2) = 1). To get the contributions to the nucleon struc-
ture functions W; or Wy we can use the projection operators defined in Chapter 2. Alternatively,
and equivalently, we can observe that one obtains the same results for Wi (and hence W3 by the
Callan-Gross relation) by collecting §,, (or simply ¢g**) terms on both sides of (3.8) [70] to obtain
an expression like that in (3.6).

Performing the elementary trace gives a factor 2P - p — 2M?* = —k?%, so that the distribution

function of a virtual pion accompanied by a recoiling nucleon is [58, 67]

392NN /k?"” 2 Fan(k?)(=F?)

= = dk* —=Z . 3.10
f'rrN(y) G2 ) " (k2 _ mzr)z ( )
Here, k? = k2, — k%/(1 — y) is the 4-momentum squared of the virtual pion, with a kinematic
maximum given by k2, = —M?y?/(1—y), and k% is the pion transverse momentum squared. We

have also included a factor 3 by taking account of the different charge states of the nucleon (namely
2 for the dissociation process p — nwt and 1 for p — pr°). In a covariant formulation the form
factor, Frn, parameterising the T NN vertex, at which only the pion is off-mass-shell, can only
depend on k2. In the literature this is most often parameterised by a simple monopole or dipole

function,
n
Fen(k?) = (%{%) (3.11)
for n = 1 and 2, respectively.

Because we integrate over the recoiling particle’s momentum, in principle we could also have
contributions from processes where a baryon other than a nucleon (e.g. a A isobar) is left in the
final state in Fig.3.1(a), and which subsequently decays to a nucleon and a pion. It is expected that
contributions from the higher mass baryons will be suppressed relative to the nucleon, since the
maximum value of k? for which energy and momentum can be conserved when a higher mass baryon
is produced decreases rapidly as the mass of the baryon increases. Nevertheless, the importance of
the A-resonance is well known in pion physics. In any quark model the coupling to the N and A
would enter on the same footing.

The process where the nucleon emits a pion and leaves behind an on-shell A was previously
calculated in Refs.[59, 63, 71], using the effective interaction (fxna/mx) Ga(p) k& u(P), where
u(p) is the spin 3/2 Rarita-Schwinger spinor-vector [72], which can be formed by combining the
spin 1/2 Dirac spinor u(p, s) with vectors €,(A):

u(p,S) = Y <gS |1m,%s> ea(m) u(p, s). (3.12)
m
The vectors €, can be parameterised, in a frame where p = (po; cos @ sin 6 |p|, sin ¢sin @ |p|, cosé |p|),

by

1
ea(0) = M——(|p|, cos psin 6 po, sin @sin @ pg, cosb pp)
A
1
(1) = E(O; F cospcosf + isinp, Fsingpcosd —icosp, sinb). (3.13)
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The energy projection operator for the Rarita-Schwinger spinor-vector is [73]

3 ualp, S)ip(p, §) = Aap(p) (3.14)
S
where
YoV |, YoPp — V8Pa |, 2 PaPp
Aap(p) = Ma) | —9a + + : 3.15

Eq.(3.15) can be verified by using the explicit parameterisation in (3.13). Using this projection

operator, we can therefore proceed to evaluate the TA trace factor, which in this case is
1
ST [Aap(p) KoR? W2 (k,q) (#+ 1) (3.16)

and arrive at the distribution function for a pion with a A recoil:

g2 Kz 2, (K Ma)? — k) (M — Ma)* — K?
31672 m2 ° J_ oo (k2 — m2)? 6 Mx
where now the kinematic upper limit on k2 is k2,,, = —(M3 — (1 —y) M?) y/(1 —y). Note that

a dipole function for the # N A form factor is necessary to suppress contributions from large |&2|.

Contributions from higher mass baryon resonances can all be computed from the above since
the lower lying states all have spin 1/2 or 3/2. For the (spin 1/2) Roper resonance, which with a
mass Mgp = 1440 MeV is the next heaviest state after the A, the trace factor is

ST + M) ins (B+ M) ins) = —k + (M — M) (3.18)

With a 7N R coupling constant of g2y g/47 ~ 5.4 [74] the integral over y of the pion distribution
function for a.recoil Roper resonance comes to about 10% of that with a nucleon recoil for the same
cut-off parameter. Furthermore, the pion distribution function with a Roper recoil appears at
somewhat smaller y than fry or fra, which means that the convolution in Eq.(3.6) with the Roper
distribution function will only be potentially relevant at very small z. Furthermore, because the
Roper has the same quantum numbers as the nucleon, its inclusion as an incoherent contribution
is somewhat less justified. In what follows we shall therefore restrict ourselves to the nucleon and
A baryons only.

In order to conserve momentum and charge, we must also allow for the incident photon to
scatter from the recoiling N or A after a pion has been emitted, Fig.3.1(b). Previous attempts
at calculating the contributions from these processes within a covariant framework were made by
several authors, including Hwang et al. [62], Mulders et al. [17], and Dmitrasinovi¢ et al. [75],
although all obtained different results. Partly because there is less phenomenological experience
with so-called sideways form-factors (where the nucleon, rather than the pion, is off-mass-shell)
some early work [47, 63, 76] simply defined fy,(y') through (3.3). However, this is unsatisfactory
from a theoretical point of view, and ideally we should be able to verify explicitly that within our

model the functions frn and fi satisfy Eq.(3.3). In historical terms, it was the careful examination
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of this process that opened up a whole Pandora’s box of problems, and led to the realisation of the
terminal shortcomings of the covariant convolution model. We shall go more deeply into this issue
in Chapter 5, but for now let us briefly summarise the origin of the problem.

Clearly the treatment of deep inelastic scattering from an interacting nucleon is considerably
more involved than that from a free nucleon. As we saw in Chapter 2, the truncated nucleon tensor
V/[Z“, which enters this calculation can be written as a linear combination of three independent
terms. Initial calculations [17] assumed that only the term involving the operator ¢ was relevant.
For pointlike nucleons this operator would indeed be the only one present, just as it is for a point-
like quark inside a nucleon [52]. Treating the diagram in Fig.3.1(b) as a Feynman diagram, the
contribution to the on-shell nucleon tensor from DIS off the virtual (structured) nucleon with a
pion in the final state can be written
- / FRa(P?)

(27r)3 Qko) (p? — M?)?

XS [(P 4 M) i35 (B+ M) Wi (py0) (4 M) ins]  (3.19)

sNTWH (P, q)

with the tensor W]’\‘,V(p,q) as defined in (2.36). Using only the operator ¢ leads to the virtual
nucleon distribution function of Ref.[17], namely

gﬂ_ pma..r f - 2 1-— ¢
fNﬂ'(y,) = 16]7:5\] y / 2 N 55—2))2 (_m'?r - Ty(pz - M2) (320)

where p? = p2,,. — p%/(1 — y') is the 4-momentum squared of the virtual nucleon, with the upper
limit now given by p2,,, = M?y'—m2y'/(1—y'), and p% denotes the nucleon’s transverse momentum
squared. Apart from possible differences in the form factors, (3.10) and (3.20) are clearly related
by an interchange ¢’ < 1 — v.

The large-|p?| suppression for the N7 N vertex is introduced by the form factor Fn,, which is

usually parameterised by a monopole or dipole function [17, 77, 78]
A2 — M2 L
Fax p2 — (___NW > 3.21
(p°) A%, — p? (3.21)

for n = 1 and 2, respectively. However to satisfy (3.4), the cut-off parameter Ay, will in general
have to be different from the cut-off A,y regulating the # NN vertex form factor in (3.10), and a
different Ay, again to satisfy (3.5). Furthermore, because the k% and p% dependence in the form
factors in Eqgs.(3.11) and (3.21) are clearly different, the calculated distribution functions frny and
fnr will in general not satisfy (3.3). In Fig.3.2 we plot frn(y) and fy.(1 — y) for dipole form
factors, and cut-offs Ayy = 1 GeV and Ay, = 1475 MeV, respectively (to give the same values
for (n)xn and (n)nr, namely ~ 0.235. Clearly the shapes are quite different, the most obvious
difference being that fy,(1 — y) is finite at y = 1.

By using only one operator ¢ in (3.19) we are of course assuming that the entire structure
function of the virtual nucleon can be represented by the function W% in (2.36). As we saw in

Section 2.3 in the model calculation of the nucleon structure function, using simple quark—nucleon
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Figure 3.2: Distribution functions fry(y) and fy.(1 — y) with dipole form factors, and cut-offs
Ay =1 GeV and Ay, = 1475 MeV chosen to give (n),n = (n)nr = 0.235.

relativistic vertex functions generally leads to non-zero scaling contributions from other functions
as well. For example, for the scalar quark—nucleon vertex considered there, the contribution from
the I//I\/Il, term was (for m = 0) o« 2z2M?, while the W% piece was « k% — 2>M?. Combined,
they give the full result, namely k% + 22M?2, Eq.(2.59). But simply keeping the qW% term would
give non-physical answers at small k7 and large z — negative contributions! In practice, what is
usually done is that the experimental nucleon structure function is inserted in (3.7), rather than
any calculated function. Furthermore, choosing a different operator form for W]f,” can also lead
to unphysical results. For example, with an operator involving I rather than ¢ the trace factor in
(3.19) is proportional to —mZ (i.e. negative). This appears to have been done in [75], although in
view of this it is rather perplexing that their final result appears positive.

Problems also arise for the emission of scalar mesons, for which the trace factor in fa,(y’)
for the structure ¢ is 4M2% — m2 + (M? — p?)(1 — y')/y’, which is clearly related to the trace in
fon(y) (namely k? + 4M?) when written in terms of the transverse momentum squared — apart
from the form factor. For an operator I, the trace factor in fn,(y') is 2p%2 + 2M? — m2, which not
only violates baryon number conservation but also leads to an unphysical (negative) cross section.
For the DIS from a virtual A component, these same difficulties will also be present, since the A
hadronic tensor will have a non-trivial spinor structure, similar to that for the nucleon.

These are the first hints of problems with the covariant approach to calculating DIS processes
involving virtual nucleons. Indeed, the convolution formula in (3.7) appears to be a very special
case that cannot be easily obtained from the above considerations. The prescription of ignoring

some of the structures in I//I\/I‘\‘,V is clearly unsatisfactory, as in principle all should be used. Another
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important assumption in the covariant convolution model is that the dependence of the virtual
meson and baryon structure functions in (3.6) and (3.7) on the particles’ invariant mass squared
is negligible. The argument usually made is that the vertex form factor suppresses contributions
from the far off-mass-shell configurations (i.e. for k| R 10 M? [63]). However, strictly speaking,
in this approach even the identification of the off-shell structure functions themselves is not very
clear. Some suggestions about how to relate the off-shell functions to the on-shell ones were made
[79, 80] in the context of DIS from nuclei, although these were more ad hoc prescriptions rather
than theoretical derivations. More importantly, a covariant treatment of DIS from virtual nucleons
essentially involves both nucleon and antinucleon degrees of freedom. In contrast to this, the Fock
state expansion in (3.1), and in particular the interpretation of f(y) as meson and baryon probability
functions, is only meaningful in the IMF. Thus, simply put, the difficulties encountered in trying to
obtain sensible results from the covariant calculation of f(y) result from an incompatibility of the
covariant formalism with the initial hypothesis that the physical nucleon state can be expanded as
in Eq.(3.1).

A full investigation of the off-mass-shell effects in deep inelastic structure functions of composite
objects will be the subject of Chapter 5, where we discuss how to calculate structure functions of
composite particles in a covariant formalism, without making any on-shell approximations. How-
ever, it is clear that a naive application of Feynman rules to the process involving DIS from an
off-shell nucleon is highly problematic, and certainly requires great care. The challenge is therefore
to formulate the problem self-consistently, using a single formalism. Since we would like to study
the relevance of the virtual meson cloud of the nucleon, the most economical solution would be to
keep the Fock state expansion in (3.1), and reformulate the rest of the problem in time-ordered
perturbation theory (TOPT), where Eq.(3.1) is well defined. In fact, an early calculation of the
function frx(y) in TOPT was performed some time ago by Giittner et al. [81], in the context
of pion electroproduction. More recently the merits of this approach were expounded by Zoller
[82], who demonstrated that the distribution functions for the 7.V and wA states calculated in this
fashion could satisfy (3.3).

3.1.2 Pions — TOPT in the IMF

An alternative to the use of covariant Feynman diagrams, in the form of ‘old-fashioned’ time-
ordered perturbation theory in the IMF, was proposed some time ago by Weinberg [83] for scalar
particles. This was later extended by Drell, Levy and Yan [84] to the 7N system in deep inelastic
scattering. The main virtues of this approach are that off-mass-shell ambiguities in the structure
functions of virtual particles can be avoided, and that the meson and baryon distribution functions
can be shown to satisfy (3.3) exactly. We firstly review the results for the pion cloud, and then
compare these with the previous, covariant calculations.

In the time-ordered theory the analogue of Fig.3.1(a) will now involve two diagrams in which

the pion moves forwards and backwards in time, Fig.3.3. However, in a frame of reference where
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Figure 3.3: Time-ordered diagrams for pions moving (a) forwards and (b) backwards in time. Time
is increasing from left to right.

the target nucleon is moving fast in the z direction with longitudinal momentum Pr(— o), only
that diagram involving a forward moving pion gives a non-zero contribution. In the IMF the target

nucleon of momentum P = (07, Pr) has energy.

M? 1
— P, _ — 1. .22
P, P+ 5P; + 0 (Plzl) (3 )

Following Weinberg [83] we write the pion 3-momentum as
k = yP+kr (3.23)
where k7 - P = 0, and conservation of momentum demands that the recoil nucleon momentum be
P = (1-y)P—kr (3.24)

Since all particles are on their mass shells the energies of the intermediate meson and baryon must

be

k% + m?2 i
ko = P+ 70— 2
0 ly| Pr, + 2 WIPs + (Pg) (3.25)
k2 + M? 1
Po 11—yl L+2|1_y|PL+O(——Pz) (3.26)

For forward moving particles, Fig.3.3(a), y and 1 — y are positive, and applying the rules of TOPT

[83] the contribution to the hadronic tensor of the physical nucleon can be written

- / d*k gann(k)
(27)3(2po)(2k0)? (Po — po — ko)?

X %Tr (P + M) ivs W™ (p,q) ($+ M) is). (3.27)

W (P, q)

The energy denominator in (3.27) can be rewritten as (Po — po — ko) = (M? — s;N)/2Pr, where

k% +m2 ki + M?
+
(] 1-y

sev = san(khyy) = (Pot ko) — (P +K) = (3.28)

is the centre of mass energy squared of the intermediate 7N state. Changing the variables of

integration from d®k to dy and dk%, all powers of Pr, are seen to cancel when combined with
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Figure 3.4: Time-ordered diagrams for nucleons moving (a) forwards and (b) backwards in time.

the vertex factors, (2po)~' and (2ko)~?, leading to a result that is Pr-independent. Equating

coeflicients of g,,, we find that the r distribution function with an N recoil is

392 © k2 F2y(8x k2 4+ 4?2 M?

1672 (1—y)y (M2 —sng)? 1—vy
which means that the result of (3.10) is reproduced, form factor aside. Obviously because here all
particles are on-mass-shell, we cannot use the same k2-dependent form factor as in the covariant
case. In the time-ordered calculation, it is quite natural to choose the form factor to be a function
of the centre of mass energy squared of the 7 N system, sy, as was done by Zoller [82]. For the

functional form of F,n(sxn) we choose a dipole parameterisation,

A2_I_M2
P??}) (3.30)

FxN (31rN ) e (
normalised so that the coupling constant g,yy has its standard value at the pole (F(M?) = 1).
Previously, in Refs.[82, 85] an exponential function was used

A2

M? -
Frn(sen) = exp (—SW—N—) (3.31)
although Ref.[82] in addition followed an unconventional normalisation.

For a backward moving meson, Fig.3.3(b), y is negative, and in this case the energy denominator
becomes (Py — po — ko) = 2yPr, + O(1/Pr). Therefore in the P;, — oo limit this time-ordering is
suppressed by a power of 1/P#, and so does not contribute.

For an interacting nucleon with a pion recoil, Fig.3.4, the contribution to the nucleon hadronic

tensor is

/ d’p 92nn(p)
(27)3(2p0)*(2ko) (Po — po — ko)?

xSTe [(P+ M) ins (44 M) W (p,0) (B4 M) ins] - (3.32)

sNTWH(P,q) =

The kinematics here are similar to those described above, namely the nucleon and pion move with

3-momenta

= ¢y P-kr (3.33)
= (1-y)P+kr (3.34)
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and have energies

k2 + M? 1
= | Prdl—— 4.0 == 3.35
Do ly'| P+ 2 /1P; +( 77 (3.35)
_ k2 + m2 1
ko = [1=9| P+ —L2"—Z% 1+0[— 3.36

respectively. Then direct evaluation of the trace in (3.32) gives

2 (2P p — 2M?) [§* (2MWE + 2M°W} + 2p-q WE) + ..
= 2(2P-p — 2M?) " Win(p,q) + - (3.37)

where now the exact on-shell nucleon structure function appears, and automatically factorises.

For a backward moving nucleon, Fig.3.4(b), v’ is negative, and 2P-p—2M?* = —4y' P +0(1/ Pr),
so that the numerator becomes large in the P, — oo limit. Technically this is due to the ‘badness’
of the operator 75, which mixes upper and lower components of the nucleon spinors. The energy
denominator here is (P — po — ko) = 2y'Pr, + O(1/Py), and when squared and combined with the
1'/P£ from the integration and vertex factors, the contribution from this diagram vanishes when
Py, is infinite. Therefore we need only evaluate the diagram with the forward moving nucleon,
Fig.3.4(a), which gives the result

2 (o) 2 2 2 1— 4 2M2
fN'/r(y,) — 3g7rNN / dkT ‘FNW(SN‘”) kT + ( y) (338)
1672 Jo (1—=9y)y (M?—snr)? y'

with

K4 M? k3 m?
yl 1_yl

sne(k7,y) = san(kp,1-9'). = (3.39)

Notice that the integrand is identical to that in (3.20), when p? there is written in terms of p% (or
k%), except perhaps for the form factor. It was shown in [82] that within this approach there is
an explicit symmetry between the processes in which the intermediate pion and the intermediate

nucleon are struck if the form factor in fy, is taken to be

‘FN‘IF(SNW) = er(SwN)- (340)

Then as long as the same cut-off mass parameter is used in both vertex functions, Eq.(3.3) is
automatically satisfied. ? In Fig.3.5 we plot the function frn(y) evaluated in the IMF, with both
the y-dependent exponential, Eq.(3.31), and dipole, Eq.(3.30), form factors, and compare this with
the function evaluated in the covariant approach, with the k2-dependent dipole form factor in
Eq.(3.11). In order to make the comparison meaningful the cut-offs have been chosen to yield the
same pion multiplicity (n),ny (= 0.235), for which the cut-offs are Ay =1 GeV, A, = 1380 MeV
and A = 1425 MeV. With the y-dependent exponential form factor frn(y) is a little broader and

peaks at around y = 0.3, compared with y ~ 0.2 for the covariant convolution model with a dipole

2The form factor in Eq.(3.30) may also reduce the number of free parameters in models of NN or NN scattering

[86], where currently different form factors are necessary for the meson- and baryon-exchange diagrams.
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Figure 3.5: Distribution functions frn(y) evaluated using covariant and time-ordered perturbation
theory. The covariant function is as in Fig.3.2. The TOPT functions are evaluated with exponential
and dipole form factors, with cut-offs A, = 1380 MeV and A = 1425 MeV, respectively, to give the
same value for (n),n = 0.235.

form factor. The y-dependent dipole form factor yields a distribution which is a little broader still.
The consequence of this will be that the convolution of frn(y) with Fps for the y-dependent form
factors will have a slightly smaller peak and extend to marginally larger @ (see Section 3.1.4).
The processes involving DIS from 7 A states can also be calculated in the IMF, although some
care must be taken when describing the # N A interaction vertex in TOPT. Namely, in TOPT the
relevant vertex is o (p) (P —p)® u(P), rather than %,(p) k* u(P) as in the covariant theory, where
of course the two are (trivially) identical. Using the same formalism as for calculating frn, and
with the kinematics as given by Eqs.(3.22) to (3.26), but with M — Ma, we find that the pion

distribution function with a A left in the final stafe is
4 f2 oo k2 F2, (s,
Fealy) = _wag/ T A (8ra) 5
31672 Jo (1—9) y (8xa — M)

LR (M = (1= yp)M)?] (K + (Ma + (1 - y) M)
6 M3 (1-9)°

(3.41)

where s;a = $;N(M — Ma), and we take the same functional form for the 7 NA form factor as
for the 7N N form factor in (3.30).

For an interacting A with a pion recoil we need additional information on the truncated A
hadronic tensor, which in this case will involve additional Lorentz indices stemming from the fact

that the A has spin 3/2. For an on-shell A the hadronic tensor can be represented as [87]

Wo(p,q) = %Tr [A°P(p) Whyap(p, )] (3.42)

with A%(p) the A energy projector, Eq.(3.15). Assuming the simplest structure for the truncated
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A tensor, namely [82]

Whas(P @) = —gap Wi (pq) (3.43)

where W‘ﬁ, has the same Dirac and Lorentz structure as the truncated nucleon tensor, gives the

result
WA a) = 2(MaWR + MAWA + p-gWi) G + - (3.44)

so that by comparing coefficients of g,, we can use the term in parentheses to define the on-shell
A structure function. Utilising the form (3.43) for the truncated A tensor, we can then evaluate

the trace

%Tr (8 + M) (P = p)oc A% (9) Wiap(p,0) A7 (p) (P = p)g]
1 2 / 2 2 . ! 2 B
= W(kT'i'(MA‘yM) ) (kT+(MA+yM) )

(@MaWE + MEWA +p - gW3) G + ) (3.45)

so that the on-shell A structure function factorises to give Eq.(3.7), with the virtual A distribution

function given by

2 00 dk? F2 (g .
fan(y) = ANA /0 T Ar(8ar)

gm,% 1672 11—y (sar — M)?
LRE + (Mo —y'MY?] [k + (Ma +y' M)
6 M3 y® )

(3.46)

Clearly this is related to fra(y) by (3.3) if Fra(sza) = Far(sar), where sar = spa(M — Ma).

In Fig.3.6 we compare the function fra(y), calculated in the IMF, with the function given by
Eq.(3.17). The k%-dependent form factor in the covariant formulation is a dipole form (Ara =1
GeV), while the s,a-dependent form factors are dipole (A = 1512 MeV) and exponential (A, = 1565
MeV), with all functions normalised to give the same (n),a (& 0.114). Whereas for f,n(y) the y-
dependent form factors produced a slight hardening of the distributions when compared with the
covariant form factor, here we see a marked difference between the two calculations, in which the
distributions calculated in the IMF are considerably broader and extend to larger y.

Having found a useful method for obtaining the pion distributions in a self-consistent manner,
we next apply the TOPT/IMF formalism to non-pseudoscalar mesons. As mentioned above, and in
Ref.[69] for example, the difficulties encountered in attempting to compute the contributions from
vector mesons make the covariant approach to this problem very problematic, so from a technical
point of view we would like to see if the vector mesons can be handled adequately in the IMF.
From a physical point of view, our aim will be to test the relevance or otherwise of the higher mass
meson states in the physical nucleon. We focus primarily on the vector mesons, but also briefly

re-examine the importance of kaons in the time-ordered formalism.
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Figure 3.6: Distribution functions fra(y) evaluated using covariant and time-ordered perturbation
theory. The covariant function is evaluated with a dipole form factor with cut-off mass A,ao =1
GeV. The TOPT functions have exponential and dipole form factors, with cut-offs A, = 1565 MeV
and A = 1512 MeV, respectively, to give the same value for (n),n = 0.114.

3.1.3 Heavier Mesons

Vector Mesons

The importance of vector mesons in nuclear physics is well known. In the context of meson
exchange models of the NN force in nuclear physics, it has long been realised that vector mesons
play a vital role [86,88-93]. For example, the isovector p meson is needed to provide sufficient
cancellation of the tensor force generated by m meson exchange, which would otherwise be too large.
On the other hand, the isoscalar w meson, through its large vector coupling, is responsible for the
short range N N repulsive force, and also provides most of the spin-orbit interaction. Traditionally
it has been necessary to use hard vector meson—nucleon form factors in order to fit the N N phase
shifts [86]. However, alternative approaches have recently been developed in which the NN data
can be fitted with quite soft form factors [93-95].

From another direction, the vector meson dominance model of the elastic electromagnetic nu-
cleon form factors, in which an isovector photon couples to the nucleon via a p meson, provides a
natural explanation of the dipole 2 behaviour of the YN N vertex function. Recent analyses [93]
have shown that a pN N vertex parameterised by a soft monopole form factor (Amonopole ~ 800
MeV) provides a good description of the ? dependence of the Dirac and Pauli form factors. The
effect of vector mesons upon nucleon electromagnetic form factors has also been explored [68] in
the cloudy bag model [54], and in various soliton models [96].

The possible role played by vector (as well as other) mesons in DIS was first investigated by

Speth and collaborators [62, 69], who calculated the vector meson distribution functions within

43



p B p, 11yl @ P
(@

Figure 3.7: Time-ordered diagrams for the DIS from (a) vector mesons and (b) nucleons with recoil

vector mesons, that are non-zero in the IMF.

a covariant framework, but with the assumption that the vector meson and nucleon intermediate
states were on-mass-shell. In this section we extend the analysis of pions in Section 3.1.2 to the
vector meson sector. Specifically, we shall demonstrate that the vector meson functions, calculated
within the TOPT/IMF formalism, can be made to satisfy the relation (3.3) exactly.

For the effective V N N interaction we include both a vector, gy yn @(p)y%enu(P), and a tensor,
fynn/(4M) a(p) ia*P[( Py — pa)es — (Ps — pp)eq]u(P), coupling, where V = p or w, and €,(]) is
the polarisation vector for a spin 1 meson with helicity A. In the calculation of the vector meson
distributions in Ref.[85] the tensor coupling was taken to be ~ u(p)ioc*Fkyegu(P) [86]. In our
treatment of the T A states in the previous section, the derivative interaction was constructed from
baryon momenta, P, — p,, rather than from the pion momentum k,. For overall consistency in
calculating contributions from all the meson—baryon states, we therefore use the above interaction
for the tensor VNN vertex also [97]. In both cases, however, one can explicitly verify that the
probability conservation condition, Eq.(3.3), is satisfied [85].

The contribution from the diagram with backward moving vector mesons is suppressed in the
IMF by the energy denominators, just as for pions. Therefore we only need to evaluate the diagram
in Fig.3.7(a) with forward moving vector mesons, which gives the following contribution to the

nucleon hadronic tensor

(VN) g v _ d°k 1
MW P) = [ S O T TP
X% Z Tr [(F + M) (gVNN(k) ,yoz’ + ﬂ/Z—JI\\;(k)QiO'a”a’ (Pan — pau))

AN

(B+ M) etr(NealX) WP (k,q) (N )epr(X)
: (gvmv(k) 7¥ + f"i’—i"ﬁ%aﬁ”ﬂ' (Pgn — pﬁ”))] . (3.47)

Evaluating the trace gives

(912/NN(’“) Aap + fonn(k) Bag + gvnn(k) fynn(k) Caﬂ) (3.48)

where
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Aug = (P—p)®gap + 2 (Papp + paFp)

1 P-p
Bapg = (P—p)’ gap ~ (PaPps+ papp) — 5(Pa—pa)(Pﬁ—Pﬁ) £ 2M2(Pa+Pa)(Pﬁ + pg)
Capg = 2(P=p)" gap ~ (Pu—pp) (Ps—Pa) (3.49)

are the VN N vertex trace factors for the vector, tensor and vector—tensor interference couplings,

respectively. For an on-mass-shell vector meson, the spin 1 tensor W{}mﬂ , symmetric under the
interchange of p < v and a « (3, is given by
uvaf ~uy ”;M EV ~of
Wy (kg) = |3 Wiv(k,q) + —5— Wav(k,q) | 3°°. (3.50)
1%

This form guarantees that the vector current is conserved, ka(ﬁ)Wﬁuo‘ﬁ =0= qu(,,)W{,waﬁ . Fur-
thermore, it reproduces the correct unpolarised on-shell spin 1 tensor when contracted with the

meson polarisation vectors (ea(ﬂ)) and summed over the V helicity, A [98]:

Wi (kyq) = 3 €M k) ea(N, k) Wi P (k, q)
A

kak 1404
= (—gas + 2232) W= ) (3.51)

14

N k* k
x g* Wiv(k,q) + — Way (k, q).
14

In the case of DIS from a vector particle emitted by a nucleon, Fig.3.7(a), contracting the spin 1

tensor W§“*” with the VN N vertex trace factors in (3.49) gives for the trace factor in (3.48)

{g%,NN(k) (—6 M? + ﬁ-m’zﬂ +2P -p)
14
2 o (P-p—3M* 2 2 2y, (P+p)-k) P-
- Fow® (1) (ZT) - o (s evp) + DR (1, 2
— gvnn(k) funn(k) (4 (P-p)? + mi%/ (P—-p)- k)z) } wy” (k, q). (3.52)

Equating coefficients of g, in (3.47), and using the same IMF kinematics as for the 7N system,
except with m, — my, together with the Callan-Gross relation for the nucleon and vector meson,
enables the contribution to Fyy from vector mesons to be written as a convolution of the vector
meson distribution function fyn(y) with the on-shell vector meson structure function Fyy(z/y),

as in (3.6), where now

cy co dk‘% f‘z/N(SVN)

v = g (1-y)y (M2 —syn)?
k2 2M2 2 k.2 2M2 1 _ 2,2 k‘2 2M2
X{Q%/NN((-T-H/ +mV2(T+y2 +( y)mv)_l_ Tty —4M2)
y2(1 - y)m} 1-y
(k3 + y2M? — (1—y)m})* 4 (k& +y*M?)
+ gvnn funN (— =5t + =)
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o (@ouP (4P M2 4 (L= y)mb)” (kh+ (40~ 1) + y)M?)
s 16y2(1 — y)3M2mi,
_ (K +y*M?) (k7 + (—4(1 +y) +9°) M)
41— g2 M2
(B yPM2 4 (- yPmd)? (K yPM2 + m})’ (3.53)
2y%(1 — y)?m?% 2y%mi, '

where ¢y = 1 4 26y, is the isospin factor (here 4 is the Kronecker-§ symbol). The VN centre of
mass energy squared is syny = $yy(m, — my), and we take the same form factor for both the
vector and tensor couplings, gynn(svn) = gvnn Fvn(svn) and fynn(svn) = funn Fvn(svn),
with Fyn(svn) defined analogously to (3.30).

For the vector meson recoil process, Fig.3.7(b), we evaluate the distribution function fyv(y’)
using the full spinor structure of V/V]’\‘,” in (2.36):

d3p 1
(21)%(2po)?(2ko) (Fo — po — ko)?
1 o VNN . ol Y

X3 ST [P+ M) (gvtr) 7+ LEMPigets(py o)) (54 30) WE 0,0) (B+ M)

A

sNIWH(P,q) =

iM

(ovwwe) 2 + LA iy — pp)) e (Nea(M) | (3.50)

Here the trace is given by

(g%/NN(p) Aop + fonn(®) Bap + gvnn(p) fynn(p) caﬂ)
x §°7 (24 WO(p,q) +2M* W'(p, ) +2p- 4 W*(p, 1) (3.55)

where the tensors A, B and C are as in (3.49). Performing the contractions over the indices a, 8
leads to the convolution integral of Eq.(3.7), with the nucleon distribution function with a vector

meson recoil given by

N o ev [ dk&  FRy(swv)
Inv(v) = 167r2/0 (1-9)y (M? - syy)?

E2 4 (1 — o \2 M2 2\ (1.2 N2 A2 4 2002 2 N2 a2
X{Q%’NN((T-I_( Y M+ miy) (k7 + (1 - y)*M? + ¢y mi) + kr+(1—y)"M* 4M2>

yl(l _ y/)2m%/ y/
(k3 + (1 - y)?M? — y'm%)’ LA+ (- y')ZM?))

2y12m%/ yr

+ gvnnN fynn (—

4 oy (RO PME 4y (k4 (49 + (1= ¢))MP) (149
VNN 16(1 — y/)2y S M2m2
_ (k2 + (0 —y)’M?) (k7 + (-4 + (1 - ¢)")M?)
4y’2M2
_ (bR (= y)PMP 4y mb)” (k4 (L= )P M )" (3.56)
2(1 - y")*y*mi 2(1 - y')*my, ' '

and where syv(k%,y") = syn(k%,1—y'). Again, we have evaluated only the diagram with forward
moving nucleons which is non-zero in the IMF. It is clear therefore from (3.53) and (3.56) that the
probability distributions for the VN intermediate states are related by fyv(y') = fyn(1—9).
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One should observe that the trace factor inside the braces in fyn(y) is divergent in the limit
y — 0. To illustrate one of the problems with the covariant approach to calculating fyn, consider
a form factor o exp [y (M? — syn)]. Since k2 = —(k% + M?y?)/(1 — y), this form factor would
correspond to a k%-dependent covariant form factor o exp [k? — m¥]. With such a form factor,
§(VN )F2N(x) would approach a finite value as z — 0, much like a perturbative sea distribution.
However, there are several problems with accepting such a result, the most obvious of which is that
it would violate charge and momentum conservation very badly, since fxv(y’) — 0 for ¥’ — 1 and
— constant as y' — 0 for a form factor « exp [y/(M? — syv)], which in the covariant formalism
corresponds to exp [p? — M?]. Furthermore, it would lead to a gross violation of the Adler sum
rule, which integrates the flavour combination « — % — d + d, and such a violation has not been
observed in the range 1 < Q% < 40 GeV? [99]. This gives further evidence for the preference of the
IMF approach together with the y-dependent form factor in (3.30) or (3.31).

To complete our discussion of vector mesons, we give the results for the functions describing
the VA states. We saw in the previous section that the contributions from the A states were
certainly not negligible in comparison with the 7N components of the physical nucleon. For the
vector mesons, we would also like to examine whether the A isobar is of any importance. Since the
w meson is isoscalar, the only vector meson able to couple to a nucleon and A is the p, and for this
we use a pseudovector coupling [86], (fona/m,) @(P) ivs7*uP (p) (P —p)acs— (P —p)gea). Again,
we drop those diagrams which give order 1/P} contributions in IMF (i.e. for backward moving p
mesons or A). The contribution from scattering from a p meson with a A recoil is obtained by

evaluating the following trace:

YT [ 4 M) 5y AT (9) (P~ Placis(Near(3) = (P = P (Near (V)
A

WEB (k, q) ivsy” ((P - p)pregn(Nea(N) — (P —P)ﬂGZ"(/\')Gﬂ'(/\')) ]
= %Tr (P + M) {7570 (Nap(P) 1578 — Aap(p) 15781)
~ 157 (Aap(P) 1578 + Aarp(p) 1575)}]
X(P = p)*' (P = p)” WO (k,q) (3.57)

where W} @B is the p meson structure tensor, as given in (3.50). The resulting probability distri-

bution to find a p in the physical nucleon with a A recoil is therefore

foaly) = 4 Jona /°° kg Foa(sen)
’ 3mJ 1672 Jo (1-y)y (M? - s,n)?
4 MMa 2 2 4 MMa 9
x{— — (2M3 + MMa +2M?) - g (P —p)-k)
4 4P-p
" w2 (ME(P- k) + M%(p- k)?) + (2MZ +4MMa + M?) (3.58)

4P-p M? 2P -kp-k P-p
k) 1-=—] - 4(P-p)?|1- —
R ( Mg) () (1 3mIME  3M3

P

with the kinematics as given in Eqs.(3.22) through (3.26), except with m, — m, and M — Ma.
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Figure 3.8: Vector meson distribution functions in the nucleon. The (dipole) form factor cut-off is
A =700 MeV for all curves.

For the DIS off a virtual A with a p meson recoil, we need to evaluate the trace
1 . a o o ax
5%ﬁﬂw+MM%w(@—MGYM—@—MG(M)

wrar(p) WP (p,q) Agnr(p)
-wﬂﬁ«P—mﬁﬁuer—m%ﬁuD]

A MM
- {_% (zMg + MMa + 2M2) - —é‘%—A (P —p)-k)?
p
P.
(MA(P B2+ M(p-k)?) + i (2M% +4M M + M?) (3.59)

3
2
¥ 431;,, (0 k) (1 - Aj‘j_A) — 4 (Ppp? (1 ) 2§m%2k ) fMé’)}Wlﬁ/(p,q)-
It’s then straightforward to show, using the kinematics of (3.33) to (3.36) that fa,(y') = foa(1—y),
when the form factors satisfy Foa(s,a) = Fas(sap)-

In Fig.3.8 we plot the vector meson distribution functions f,n, fun and f,a as a function of
y, for the dipole form factor of the form in (3.30), with A = 700 MeV in all cases. The dominant
contributions come from the tensor (derivative) couplings, which is reflected in the larger pN and
pA distributions in comparison with the wN. Also, the vector distribution functions tend to peak
at slightly larger y values (y ~ 0.5) in comparison with the 7N and 7A functions.

Strange Mesons

Finally we conclude the discussion of heavy mesons by reinvestigating the DIS process from
the kaon cloud of the nucleon using the the time-ordered formalism in the IMF. The role of kaons

was first examined by Signal and Thomas [100], however, within a covariant, Feynman diagram
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Figure 3.9: Kaon distribution functions in the nucleon, with ¥ and A recoil. The (dipole) form
factor cut-off is A = 1.2 GeV for all curves.

approach. Through the proton dissociation processes p — K°%L(A%) and p —» KX~ the virtual
photon will probe the quark structure of the virtual strange mesons and hyperons. Such a process
will naturally generate a non-perturbative strange quark component of the nucleon, as well as a
different antistrange sea, thereby breaking SU(3) flavour symmetry of the sea in the process.
Taking a pseudoscalar coupling for the K N H vertex, where the hyperon H = X or A, the kaon
distribution function is similar to the pion distribution function f,n(y), except the mass of the

recoil state is now different,
9knm [© dkt  Fip(skn)
1672 0 (1 - y) Y (M2 - SKH)2
y (k% +y*M? + (My — M)(My ~ (1 - 2y)M))
1-y

fkuly) = cm

(3.60)

where the isospin factor is cg = 14 26gx. Similarly for the DIS from a strange baryon with a
spectator K, repeating the calculation of Section 3.1.2, the hyperon distribution function is found

to be

g2 0 k2 Feells
fux(y) = cu JJ-;NHfo T K (SHK)

1672 (1_y/) y/ (MZ—SHK)Q
) (g;%. +(1—y')2M? + (MHy/_ M)(Mp + (1 - Qy')M)) (3.61)

In Fig.3.9 we show the strange meson distribution functions, fxx(y) and fxa(y), for a dipole
form factor with a cut-off A = 1.2 GeV. Notice the scale as compared with Fig.3.8 for the vector
mesons and Fig.3.5 for the pions.

The relatively small size of the kaon contributions is also clear from Figs.3.10 and 3.11, where

we compare the average number of all mesons considered, {n)arp, and the average momentum they
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Figure 3.10: Calculated average meson multiplicities in the nucleon, as a function of the (dipole)
meson-nucleon form factor cut-off.
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Figure 3.11: Average momentum carried by mesons in the nucleon as a function of the (dipole)
form factor cut-off A.
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carry in an infinite momentum frame, (y)arp, as a function of the dipole form factor cut-off A. For
relatively small cut-off masses, A S 0.7 GeV, the dominant contribution is from the 7 N component.
However, the rapid growth with A of the p meson multiplicities and momentum fractions means
that for large A (ZJ 1.2 —1.3 GeV) the vector mesons become as important numerically as pions. In
fact, the strong k7 dependence in f,n(y) and f,a(y) implies that for A R 1.4 GeV both (n),n and
(n),a actually exceed (n),n. (A similar behaviour was found in Ref.[85] with a 0®Fk,es tensor
pN N coupling, in which the dependence on A was only marginally weaker.)

Note that for the 7N component, A = (600,1000,1400) MeV corresponds to an exponential
cut-off A, ~ (580,1130,1360) MeV, and a covariant dipole form factor cut-off A, ~ (590, 760,980)
MeV for the same (n),n. In many nuclear physics calculations quite hard form factors of the k2-
dependent type are often used, for example in NN potential models, where cut-offs of the order
of 1.5—2 GeV are typical. Clearly such large cut-offs would imply an extremely large number of
pions and an even larger number of vector mesons. Whether or not it is reasonable to accept such
large heavy meson components in nucleon DIS is debatable, but obviously we would like some data
to tell us whether this is so.

Up until now the cut-off A has been a free parameter. Indeed, because quantities such as
the average number of mesons in the nucleon are not directly (or unambiguously) extracted from
experiment, we cannot draw any conclusions about the size of A from the functions fasrp(y) alone.
However, we may be able to restrict the range of allowable values of A by comparing the calculated
meson and baryon contributions with the experimental structure functions, or quark distributions.

This is what we turn our attention to next.

3.1.4 Nucleon Quark Distributions

With the functions fasp and fgas now calculated, we are at last able to compute the contributions
to the quark and antiquark distributions of the proton from the DIS from its virtual meson and
baryon components. The total contribution to a quark distribution in the proton from this process
is

ba(x) = 3 (6MBlg(z) + 6EMq(z)) (3.62)

M,B

and similarly for the antiquark distribution. Using the Clebsch-Gordan coefficients for the vari-
ous charge states of the meson-baryon combinations we can easily obtain the individual flavour

distributions. For DIS from virtual mesons we have the following contributions:

§trle Ny(g) = /@f,r/p ~(y) (EU"O(@“M)-F Zqur(70M)> = /qu_yfvr/P N(l/)%VM(fv/?/)

§0r/e Ng(g) = f1r/P N(y)( u" (»’vM)-I- 2ar (-'L'M)) - /@fw/l’ N(?/)EVM(“’M)
§/e Nd(z) = fw/p N(?l)< d™ (zm) + 3 207 )> /dyfw/p N(?/) sV (em) (3.63)
50 0dw) = [ L w) (387 @)+ 30 @w)) = [y, N<y)§VM(wM)
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o) = [ Lhn) wou) = [ Lhn(s) 5V (an)

M) = [ L@ @) = [ L) 3V (@m0
$Mdz) = [ Liant) o) = [ Liont) 3V (@m) (364
5d@) = [ L i) o) = [ Lhns) 3V (am)

§(rle By(z) = /i/_yfw/p a(y) (lu"_(mM) + %UWO(CIJM) + lu7r+(‘”M)) /d—;fr/p A(y)lvM(xM)

§n/p Ng(z) = ]@fﬂ/pA(y)( T(zm) + ;u” (zm) + u” (a:M> = yfw/p A(y) VM (zn)
/P D g(z) = fw/p A(y)( d (mM)-}—%d" (zm) + d”+(x )) ?fw/p A(y)gvM(f”M)
§rl/e D(z) = / Frlo A(y)( - (:L'M)+;d" (em) + d”(:c )) %fw/p A(y)%VM(wM)
(3.65)
S0P y(z) = d—nyz(y)luK*(wM) = [ LrrnwzV " em)
§EDg(g) = /dnyz(y) (2 / Y fies(y)5V M (our) (3.66)
56950) = [ L fics(u) (35 G+ 55°ean)) = [ Lies)V¥ o)
§ENy(z) = /d?yfm(y) uK (zpg) = /%fm(y) VM(zar)
o6Ns(a) = [ Leieats) 5 am) = [ “Lhcaw) V¥ (a) (3.67)

where zps = z/y. For simplicity we have assumed here the same meson valence quark distribution

VM(zpr) for all mesons (sea components of the meson distributions themselves are not included),

wHet = grtlet 9, m® e _ 9um®/0fw — 9 /e%fw _ 9gr®le®/w

= of" = gf = = K = yM (3.68)

and have used SU(3) flavour symmetry to obtain the others.

In practical applications, for VM we can use the experimental pion valence distribution, which
has been determined from Drell-Yan proton—pion scattering [101, 102]. The pion valence quark
distribution was found to be consistent with a behaviour zVM(z) ~ z944(1 — 3)%8% at Q2 ~ 4
GeVZ [101]. This is in fairly good agreement with the behaviour expected from large-z (~ (1 — z))
counting rules [103] and small-z (~ z/2) Regge behaviour [104]. Tt was also found in [105] that
the ratio of kaon to pion valence quark distributions was consistent with unity over most of the 2
range, although dropping slightly at large z, VX /V™ ~ (1 — £)018+0-07 Unfortunately, the vector
meson valence distribution has not yet been determined experimentally. As a first approximation

it may seem reasonable to assume that its z-dependence resembles that of the 7 meson. Deviations
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from this may be expected on theoretical grounds, if one assumes that a spin flip for one of the
quarks in a spin 1 meson induces an additional power of (1 — z) at large = [103].
For the meson recoil diagrams, the contributions from DIS from a virtual baryon B are as

follows:
SOV T () = / W W/p(y)( up(xB)Jr = (3,8)) f“y In /0 .‘;)(lu(lB)-l' gd(:mg))

S dw) = [ Wiy ) (30em) + 5 d(as)) = [ Lt apo) (Fan) + Ju(en)
(3.69)

§Ny(z) = / dy—“{'wa(y') w(zp)
s g(g) = / (Z—?{wa(y') d(zp) (3.70)

dy' 1 1 b mo dy’ =
§A my(z) = ./—yy,—fA oY) (§UA++ (zB) + §UA+ (zB) + EUA (mB)) = /y_y/fA e )§d(x3)

5@ az) = [ W gy ) (36 on) + 30 om) + 502 @)) = [ Bda wgas)3an)
(3.71)
59u(e) = [ Lpsuy) (337 @)+ 507 @0) = [ Dfor()gu(en)

594) = [ L fore(v)3%(an) = [ L for)gutan) (372)
595(e) = [ L oy <5320($3)+§32+($B)> = [ oxt)) (Guton) + )

§A () = /%y;ifAK(y') uh(zp) = /dy fax ()3 “(wB)
9de) = | dy—?{'fAK(y') dM(ap)

/ %yT,fAK(y') sh(zB)

/ 7fAK(y')§u(:DB) (3.73)

§49s(z) [ L sasv)5u(en)

ll
(l

where zg = z/y/, and all baryon quark distributions have been related to the proton distributions.
For the neutron this is trivial if one assumes isospin symmetry. Since the A has spin and isospin
3/2, from the SU(6) quark model we expect that the valence spectator diquark in a A will have
spin and isospin of 1. Using this fact we can relate the valence quark distributions in the A to
the d quark distribution in the proton (since the spectator wu diquark in the proton has the same

At %uA+ =345 = 3d, with the distributions for the other charge states

quantum numbers),
obtained from isospin symmetry. Similarly for the ¥ and A hyperons, according to SU(3) flavour
symmetry we would expect &7 =dand v = 2q20 =2¢4 =

For our numerical results we use experimentally determined coupling constants, all of which
are referred to the nucleon pole. For the T NN coupling we use the recently determined value

92y /4T = 13.6 [106], which is marginally smaller than the ‘traditional’ value [107]. The vector

meson—nucleon couplings are obtained from analyses of 7N scattering data, gZNN/47r = 0.55,
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fonN/gonn = 6.1[108], and g2y /4™ = 8.1, funn/gunn = 0[109]. For the kaon—hyperon-nucleon
couplings we use g% n, /47 = 13.1 and g% 5 /47 = 3.7, as in Ref.[100] (although this K N3 coupling
is somewhat larger than the ones determined from K N forward dispersion relations [110] or in some
hyperon—nucleon potentials [111], however even so the strange contributions are still very small).
Finally, we use the quark model to relate the 7 NA and pNA couplings to other experimentally
measured omes [112], fiva = (72/25)fnn, and fina = (Finalfinn) goww (mp/2M)? (1 +

foNn/9oNN)?

Apart from the coupling constants, the only other parameters in the model are the meson—
baryon form factor cut-offs, A. The first suggestion about how one might use DIS data to constrain
A was made by Thomas [58], who compared (y)arp with the measured momentum fractions carried
by the antiquarks. Similar analyses were later repeated by Frankfurt et al. [59], Kumano {71] and
Hwang et al. [62]. Even more stringent constraints can be achieved by also demanding that the
shape of the meson exchange contributions to ¢(z), (i.e. §MB)g(z)) be consistent with the shape
of the experimental antiquark distribution [59, 61].

As mentioned in the previous section, the fact that the old frny(y) calculated in a covariant
framework peaked more sharply and at smaller y compared with the f;n calculated in the IMF
means that the quark distributions in (3.63)—(3.73) will also peak at smaller z for the covariant
k%-dependent form factor. This is evident in Fig.3.12 where the calculated SU(2) antiquark con-
tribution to §(™N )ng(m) is compared with some recent empirical data (as parameterised by Morfin
and Tung [50], Owens [51], Eichten et al. [15] and Diemoz et al. [113]) for (z+d)/2 at Q2 = 4 GeVZ.
Because the TOPT/IMF formulation generally gives broader antiquark distributions, the limits on
the cut-offs will be more severe than for the covariant case, since at intermediate = (z R 0.2) the
TOPT/IMF distributions are still large compared with the experimental data.

Figure 3.13 shows the contributions to the SU(2) antiquark distribution (@ + d)/2 from all
of the meson—baryon components of the nucleon, for A = 700 and 900 MeV. Also shown are the
calculated results (for A = 700 MeV) for the 7N and 7N + 7A states alone. Clearly the SU(2)
¢ content of the nucleon is well saturated for A =~ 700 MeV in the intermediate-z region when all
meson—baryon components are included. The main contributions in this region come from the p N
and pA states, since the distribution functions f,n A)(y) generally extend to larger y compared
with the pion distributions. As mentioned above, one uncertainty in the treatment of the vector
meson contributions arises from the fact the structure function for a spin 1 meson may deviate
at large = from the behaviour observed for the pion structure function. In Fig.3.14 we illustrate
the effect on the pN contribution to z(@ + d)/2 of including an extra power of (1 — z) in the p
meson structure function. The result is a slightly softer distribution, so that this would allow for a
marginally larger cut-off mass when comparing against the data in Fig.3.13. If only the 7N states
are included, slightly harder form factors could also be accommodated, with around A = 1 GeV.
In either case, for the 7 N N vertex this corresponds to a dipole form factor cut-off in the covariant

formulation of Ay ~ 700 — 800 MeV (to give the same value of (n),n ~ 0.10 — 0.15), which is still
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Figure 3.12: Proton SU(2) flavour antiquark distributions for DIS on the 7N component of the
nucleon, evaluated using different form factors. The values of the cut-off masses are chosen to yield
the same average number of pions, (n),n (~ 0.175). For the TOPT/IMF calculation with a dipole
form factor A = 1000 MeV; with an exponential form A, = 1240 MeV; and for a covariant dipole
form factor Ay = 870 MeV. The dotted curves are parameterisations of the DIS data (see text).
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Figure 3.13: Proton SU(2) flavour antiquark distributions for DIS on the various meson-baryon
components of the nucleon. The dot-dashed and dashed curves represent the contributions from
mN and 7N +7A states, respectively, for A = 700 MeV. The solid curves are the total contributions
from all meson-baryon states, for A = 700 MeV (lower curve) and 900 MeV (upper curve). The
data are as in Fig.3.12.
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Figure 3.14: Contribution to the antiquark distributions from the pN states (with A = 700 MeV),
for different vector meson valence structure functions.

considerably smaller than that used by many authors.

3.1.5 Renormalisation, Incoherence

A subtle, but nonetheless important, point that needs to be made concerns the renormalisation
of the total quark distributions in the presence of mesons. The meson and baryon exchange dia-
grams in Fig.3.1 describe physical processes (inclusive baryon and meson leptoproduction) whose
cross sections involve physical (renormalised) coupling constants. When integrated over the recoil
particles’ momenta these yield the inclusive DIS cross sections, which are proportional to the total

quark (and antiquark) distributions

0(2) = Z goarelz) + 3 ((MBlg(z) + 6FMq()). (3.74)

M,B
Therefore §(MBg(z) and §(FM)g(z), and the convolution integrals in (3.6) and (3.7), are expressed
in terms of renormalised coupling constants contained in the functions fasp(y) and fam(y'). From

(3.74) we also determine the bare nucleon probability
Z = 1= (n)mB (3.75)
M,B
by demanding that the valence number and momentum sum rules are satisfied. We emphasise that
all quantities in Eqs.(3.74) and (3.75) are evaluated using renormalised coupling constants.

We could, of course, choose to work at a given order in the bare coupling constant, and explicitly

verify that the various sum rules are satisfied. For example, to lowest order (¢g2) the total quark

56



distributions would be [114]

g(¢) = Z {Qbare(w) + > (6(MB)Q(0)(96) + 5(BM)Q(0)($))} (order g5) (3.76)
M,B

with

Z = (1+ Z(n(o))MB) (order g¢2) (3.77)
M,B

where the subscript (0) indicates that the functions f(y) here are evaluated using bare couplings.
Eqgs.(3.74) and (3.75) are easily recovered since the bare couplings, to this order, are defined by
g2 = gL./Z. 1t would, however, be inconsistent to use (3.76) and (3.77) with renormalised coupling
constants, especially with large form factor cut-offs. As long as the form factors are soft, the
difference between the bare and renormalised couplings is not very large. However, with large
cut-off masses the bare couplings would need to be substantially bigger than the physical ones.
(In fact, the form factor cut-off dependence of the bare 7N coupling constant in the cloudy bag
model [55] showed some 40% difference for very hard form factors — or small bag radii, ~ 0.6 fm.)
In addition, with large values of A the higher order diagrams involving more than one meson in
the intermediate state would become non-negligible, and the initial assumption that the series in
(3.1) can be truncated at the one-meson level would be seriously in doubt. Fortunately, we need
not consider the multi-meson contributions, since Fig.3.13 clearly demonstrates the difficulty in
reconciling the empirical data with quark distributions calculated with such large cut-offs.
Finally, we need to make some additional comments regarding the justification of our calcula-
tion in terms of an incoherent summation of cross sections (rather than amplitudes) for the various
meson exchange processes. A possible breakdown of incoherence may arise when there are different
exchange processes leading to the same final state. For nucleon final states, because of the pseu-
doscalar nature of the 7 NV N vertex, there will be no interference between = meson and vector meson
exchange. Furthermore, no mixing will take place between the w and p exchange configurations due
to their different isospins. In fact, all of the meson exchange processes with a recoil N considered
in this analysis can be added incoherently. For a A recoil, the only mesons coupling to N and A
are the 7 and p, but since they have different G-parities, interference effects from these will again
be excluded. However, the possibility exists in the pion exchange process that the decay products
of a A recoil, namely 7 and N, may mix with the state containing an N recoil together with a
7 from the hadronic debris X of the shattered exchanged pion. Interference between the N and
mA states could therefore occur if the = from the debris had very low momentum, enabling the
combined system to have an invariant mass squared ~ M3. However, as we shall discuss more fully
in Chapter 6, the vast majority of semi-inclusive meson events in lepton—nucleon DIS are those with
high momentum mesons (slow hadrons are almost exclusively baryons), so that the probability of
interference arising from such processes will not be large. A similar argument can be given for the

potential interference from hyperon decay into Nr.
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For the baryon exchange processes, the requirement of the same recoil meson eliminates inter-
ference from most states, except from DIS off N and A with 7 (or p) in the final state, and from
DIS off a £° and A° with a K7 recoil. For the latter, the different isospin quantum numbers of the
A(I = 0) and %(I = 1) rule out interference, just as for the pN and wNN states. A similar argument
can be made for excluding interference contributions from N(If = 1/2) and A(I = 3/2) exchange.
However, as in the meson exchange case, the possibility of vector meson or kaon decay into pions
(e.g. p — 2m, K° — 2m) may introduce coherent effects when these meson recoil states (with an
exchanged N, A or hyperon) are added with those containing a 7 recoil. But the fact that the
decay products of the recoil mesons have low momentum, while the pions from the hadronic debris
are fast, will again reduce the size of any interference effects here.

Therefore we see that by considering only the lowest lying meson and baryon states (i.e. by
excluding resonance having the same quantum numbers as the mesons and baryons considered
here) we can avoid potential problems with interference, and certainly for the values of A allowed

by the data, the only relevant states are those with the lowest masses.

3.2 Flavour Asymmetry in the Proton Sea

From Eqgs.(3.63) to (3.73) it is clear that the predicted contributions from DIS off virtual mesons and
baryons to the u, d and s quark (and the corresponding antiquark) distributions in the proton will
be different. Because the contributions to s and 3 from DIS from kaons and hyperons are very much
smaller than those from the non-strange mesons and baryons to the » and d distributions (mainly
because mg > m,) we see that the meson model produces significant SU(3) flavour symmetry
violation. Furthermore, it is apparent that the contributions to the u and d (and @ and d) quark
distributions themselves are not the same, so that SU(2) flavour symmetry of the proton sea is also
broken. In the case of the pion cloud, the simple origin of this is asymmetry is the predominance
of the dissociation process p — nrt over p — pn°. In the former, the 7t valence quark content
is du, while in the latter the ratio of @ to d quarks is the same. This process certainly respects
isospin symmetry, which simply says that the dissociation p — nx¥ is as likely as n — pr~, or at
the quark level, u — d(ud) is as likely in the proton as d — u(d#) in the neutron. But it clearly
implies an excess of d quarks in the proton, and an equal excess of % quarks in the neutron.

If the masses of quarks were identical (i.e. SU(3) flavour symmetry limit) then the ratio of
strange to non-strange antiquark distributions in the proton would be 1:2. From neutrino ex-
periments (at @2 ~ 4 GeV?) the measured ratio was found to be about 1:4 [115], which can be
understood semi-quantitatively from the the heavier mass of the strange quark. On the other hand,
because charge symmetry is such a good symmetry in strong interaction physics, it was naively
expected that SU(2) flavour symmetry of the sea would be an excellent approximation. Indeed, this
expectation has been built into almost all of the analyses of the nucleon structure function data.

The main reason was believing this has been the simple picture, motivated by perturbative QCD,
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Figure 3.15: Calculated d — @ difference from the various meson-baryon states. For the dotted,
dashed and lower solid curves a dipole form factor cut-off of A = 700 MeV is used, while the upper
solid curve is calculated with A = 900 MeV.

in which the mechanism for producing antiquarks is gluon splitting into ¢g pairs. However, unless
isospin symmetry is genuinely violated (by giving a non-zero mass difference between the u and d
quarks), the perturbative process ¢ — ¢g should be SU(2) flavour symmetric, as the gluons of QCD
are flavour-blind. Therefore a d — % difference cannot be produced by perturbative QCD. Actually,
this statement should be qualified by saying that at lowest order in ag there is no asymmetry. A
higher order perturbative QCD calculation of d — @ was performed some time ago by Ross and
Sachrajda [116], who found a non-zero result for this difference, although the absolute value was
very small. This means that the calculated d — @ difference will be preserved in QCD evolution.
But the fact that we get a non-zero d — @ difference in the meson-baryon model is not surprising,
since this is a non-perturbative model, and its predictions are not in conflict with QCD, nor with
isospin symmetry. .

In Figs.3.15 and 3.16 we plot the d — @ difference, and the ratio (d — @)/(d + @), respectively,
calculated within the meson-exchange model of the nucleon. Fig.3.15 shows that the inclusion of
mA states (with A = 700 MeV) eliminates some of the d excess, since here the dominant process
is p — At*r~ which at the quark level, d — u(d#), is seen to produce a % excess. However,
adding the vector meson components (lower solid curve) restores the original d excess at small z,
and enhances the excess at larger . At larger values of A (= 900 MeV) the d — @ difference is
larger still (upper solid curve), although the ratio (d — @)/(d + %) is smaller, Fig.3.16.

On similar grounds the processes p — K°St and p — K*TX°(A) will introduce not only a
different strange quark content of the proton than a non-strange, but also a different § distribution

as well. This is clear from Fig.3.17, where we show both the sum of the calculated zs and z3
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Figure 3.16: Ratio of the difference and sum of the calculated SU(2) antiquark distributions in the
proton. The cut-off for the dotted, dashed and upper solid curves is A = 700 MeV, while the lower
solid curve is calculated with A = 900 MeV.

distributions and their difference. Although not obvious from the figure, the integral over s — 5 is
zero, since the proton has no net strangeness. Since at large z the hyperon structure function is
suppressed by about two powers of (1 —z) compared with the kaon structure function, the excess of
s over § is concentrated at very small z (z S 0.01). Although these are quite interesting predictions
of the model, because of the very small magnitude of the strange contributions (notice the scale on
the vertical axis) it will be difficult for such effects to be observed in DIS experiments in the near
future.

Of course the idea of an asymmetric proton sea is not a new one. The earliest, and perhaps
most obvious, suggestion for why we should expect % # d was made by Feynman and Field [117].
Because the proton has an unequal number of valence u and d quarks, by the Pauli exclusion
principle we would therefore expect creation of additional ¢q pairs inside the proton to be sensitive
to the number of quarks of each flavour already in the proton. Since there are 2 valence u quarks in
the proton compared with only 1 valence d quark, we therefore expect a larger d sea since ui pair
creation will be suppressed relative to dd. In [117] the d and % distributions were parameterised
by zd = 0.17(1 — z)7 and z@ = 0.17(1 — z)°, see Fig.3.18. With these, the integrated difference
is [dxz(d — ) = 0.057. An early calculation of the u and d sea quark probabilities in the proton,
incorporating the effects due to the Pauli principle, was made by Donoghue and Golowich [118] using
the MIT bag model nucleon wavefunction. More recently, work by Signal and Thomas [38] on the
calculation of quark distribution functions in the MIT bag model suggested a quantitative method
of calculating the z-dependence of the Pauli d — @ difference as well. Following the earlier formal

analysis by Jaffe of the twist-2 quark and antiquark distributions [52], Signal and Thomas showed
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Figure 3.17: Strange & antistrange content of the proton, calculated from DIS off virtual K and
hyperon components of the nucleon. The form factor cut-off A is 900 MeV.

that the valence quark distributions could be calculated from a sum of distributions representing
2 ¢, and 3¢+ 17 intermediate states. On the other hand, the antiquark distributions arose only from
4 q intermediate bag states. Thus the d distribution required the intermediate state to consist of
2 u and 2 d quarks, while DIS from a % quark implied a 3u + 1d intermediate state, which, because
of the Pauli principle, has a smaller probability. Furthermore, in Ref.[38] the d excess associated
with the Pauli effect was equal to the d excess and satisfied the condition

/01 AT dexcess(T) = /01 dz (dsea(T) — Useal)) = /01 dz py(z) = Pn. (3.78)

Here, py(z) denotes the piece of the valence quark distribution associated with a four quark inter-
mediate state (all in a 1s state), while 1—Py is the integral over the distribution function associated
with a two quark intermediate state. In Ref.[38] the calculated distributions were found to peak
at  ~ 1 — M /M, where M,y is the mass of the intermediate spectator state. Since the 4-quark
intermediate states have mass greater than M, the antiquark distributions will peak at negative z.
Therefore in the physical region (z > 0), py(z) should resemble a typical sea quark distribution,
namely be finite at z = 0 while dropping rapidly to zero by z ~ 0.2 — 0.3. For simplicity, we can
parameterise the large = behaviour by a py(z) o (1 — z)” form [15, 63]. On theoretical grounds,
we can also expect that due to the lack of Regge f — Az exchange degeneracy, at small z the d — @
difference should be proportional to py(z) ~ %, where a(~ 0.5) is the Regge intercept [119, 104].
The overall normalisation Py was calculated in Ref.[47] to be less than about 0.25 for bag radii
RS0.8fm.

In Fig.3.18 we compare the Feynman & Field parameterisation with the function py(z), nor-

malised so that Px = 0.05,0.15 and 0.25. Also shown is the effect of using a slightly more singular

61



0.08 : ' ' ‘ R '
' Pauli blocking

__ Feynman & Field
________ (), a=0.5

0.06

0.02 |

0.00
0.0

Figure 3.18: Difference between d and @ quark distributions in the proton, for the Feynman and
Field parameterisation [117], and a parameterisation of the function py(z) ~ z%%%(1 — z)?, with
normalisation Py = 0.05,0.15 and 0.25.

small z behaviour, a = 0.62, as suggested by the recent NMC data on Fy, — Fy, (see Section 3.3).
Apart from the Pauli exclusion principle, and the proton’s meson cloud, several other suggestions
have been made for possible sources of SU(2) flavour symmetry breaking in the proton sea. One
possibility is that isospin symmetry is genuinely violated to a significant extent. Of course in
the real world isospin is not a perfect symmetry — it is certainly violated by the electromagnetic
interactions. However, since the proton—neutron mass difference is of the order of 0.1% we can
expect that its effects on @ — d should be negligible. Furthermore, since the mass of the d quark is
believed to be slightly larger than the u quark mass, the sign of d — % should actually be negative,
since in that case the gluon splitting into dd pairs would be suppressed relative to u@ creation.

A curious extension of this idea was put forward by Ma et al. [120] who postulated that isospin
may be violated but that flavour SU(2) symmetry could remain unbroken. In such a scenario, one
would have %P = dP in the proton, but #? # d". However, since the only reason that the d content
of the neutron differs from the % content of the proton is that mg > my, it is difficult to imagine
how in the proton the same isospin violating mechanism, ¢ — ¢g, can produce equal amounts of
u@ and dd.

Unfortunately at the present time there are not sufficient data on d — % to make definitive
conclusions about these various mechanisms for SU(2) flavour symmetry breaking. However, there
have been a number of interesting suggestions for experiments that could directly probe the light
sea quark content of the proton, and we briefly review these now.

Recently it was suggested by Martin, Stirling and Roberts [121] that one could learn about
the SU(2) sea by observing the W-boson asymmetries in pp collisions, pp — W=X. The simple
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idea is that a u(d) quark in a proton interacts with a d(#) antiquark in an antiproton to produce
a WT(W~) boson. Because the u(@) quark in the proton (antiproton) carries more momentum
(lies at larger z) than the d(d) quark, W+(W~) bosons will be predominantly produced in the
proton (antiproton) direction. However, in addition there will be W+ (W ~)-bosons produced by
the annihilation of cz(ﬂ) quarks in the proton with d(u) quarks in the antiproton. Thus at large

energies the asymmetry in the W-boson rapidity (yw ) distribution

B ot —o~ (g )d(zg) + J(:Lj)(j(m) — d(z)u(z2) — d_(m)d(ml)
Alyw) = ot +o=  u(z)d(zs) + d(z1)u(z2) + d(z1)u(z2) + d(22)d(21) )

where 0% = do/dyw(W*), would be sensitive to the antiquark distributions in the proton. Here,
12 = Mw/+/sexp(Fy), s is the centre of mass energy squared, and the W-boson rapidity is
defined by yw = (1/2) In(g—/q4+), with ¢ the W-boson momentum. Furthermore, since only left-
handed quarks (right-handed antiquarks) couple to W-bosons, in the resulting W — ev decay the
electron (positron) distribution will generally follow the direction of the incoming proton (antipro-
ton). It was suggested in [121] that the experimental e* asymmetry, A(y.) = (do/dyc+(Ye+ ) —
do [dye—(ye-))/(do /dye+ (Ye+ ) + do /dy.—(ye-)), could then serve as an independent check on the @
and d distributions in the proton. The claim in Ref.[121] was that their existing parameterisations
with no SU(2) flavour asymmetry are consistent with the data on A.(y.) taken at the Collider
Detector at Fermilab (CDF) [122]. However, the error bars in this experiment are quite large, and
the data at present will have difficulty in discriminating between SU(2) flavour symmetric param-
eterisations, and those with a small d — @ difference, such as that suggested by the meson model
in the previous section. On the other hand, a large d — @ difference, such as that arising from the
meson model with large form factor cut-offs A, may well introduce a detectable difference.

In another experiment, performed some than 10 years ago by the E288 Collaboration at FNAL
[123], the slope of the rapidity distribution for proton—nucleus Drell-Yan production was measured,

and found to be sensitive to the @/d ratio. In that experiment, the quantity

2L 1o (e22 (3.80)
ay " \"avrdy) _, '

was measured as a function of /7, where 7 = M2,_/s. It was found that a parameterisation with
d > i improved the quality of the fit [124]. However, since the analysis of this experiment required
the quark and antiquark distributions in the nucleus, any conclusions reached about the nucleon
sea distributions were obviously dependent upon any nuclear assumptions made. In fact, it was
later shown by Ericson and Thomas [125] that a similar improvement in the fit could be made by
assuming a small difference between the g distributions in the nucleon and in a nucleus.
Proton—nucleus Drell-Yan production was also studied recently by the E772 Collaboration at
Fermilab. It was found that by comparing the yield per nucleon in a proton collision with a neutron-
rich target such as tungsten with that for an isoscalar nucleus, the resulting ratio would also be

sensitive to the d — @ difference. However, it has since been argued by Eichten et al. [126] that this
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too may not be a sensitive enough experiment for a small non-zero d — @ difference to be discernable
from no difference.

Perhaps the experiment that is most sensitive to the light sea quark distributions was that
recently proposed by Ellis & Stirling [127], who suggested measuring the asymmetry between
the pn and pp Drell-Yan production (i.e. pN — [*]~X) cross sections at zero rapidity, Apy =
(oPP — aP™)/(aPP + oP™), where 0PV o d%0PN [d.\/Tdy|,=0. Neglecting terms involving annihilation
of sea quarks in the (beam) proton and (target) nucleon, the cross sections can be written

(4)\V — 1)(/\5 - 1)+ (Ay = 1)(4As — 1)
(4/\V + 1)(/\5 + 1) + ()\V + 1)(4)\5 + 1)

where A\yy = uy/dy and Ag = 4/d. The advantage of measuring this ratio is that it would be

Apy (3.81)

free from any nuclear dilution effects, and the complete asymmetry could be determined from
ratios of valence and sea quark distributions alone. Since the dy /uy ratio is well determined, Apy
would then serve as an accurate indicator of Ag. In Fig.3.19 we plot this Drell-Yan asymmetry
as a function of /7 = \/Q2/s with s ~ 1500 GeV? (corresponding to a proton beam energy of
about 800 GeV) calculated using the quark and antiquark distributions of the meson model (with
A =700 MeV). This is compared with the asymmetry arising from the parameterisation of Morfin
& Tung [50] for the valence quarks (dotted curve), and from the dy /uy ratio fixed at 0.57(1 — z)
[15] (dashed curve), with Ag = 1 in both cases. It is clear that even small deviations of %/d from
unity will have a big impact upon Apy.

An extension of this idea was discussed in Ref.[128], where it was argued that one could directly
measure the difference d — % by going to large projectile momentum fractions zy, but small target
fractions z2. In that case the term in Apy involving the product of projectile sea and target valence
distributions could be neglected and the asymmetry reduced to
42y —1)(As—1)
4y + D)(As+ 1)

Unfortunately, there are as yet no data on Apy, although a proposal has been made [129] for an

Apy (3.82)

experiment to measure the Drell-Yan cross sections for hydrogen and deuterium targets. Such data
would be eagerly anticipated.

Finally, an interesting observation was made by Levelt, Mulders and Schreiber [130], who found
that semi-inclusive charged-hadron production could be used to obtain information on the inte-
grated d — 4 difference. Following earlier work by Gronau et al. [131] and Field and Feynman [117]
on the parton model for semi-inclusive DIS, Levelt et al. showed that the integrated difference
should be proportional to the measured difference between the charged pion and kaon production
rates from DIS on protons and neutrons. However, the available data from the EM Collaboration
at CERN on semi-inclusive charged-meson production [132] are not yet sufficiently accurate to
discriminate between SU(2) flavour symmetry and asymmetry. (For a more detailed discussion of
semi-inclusive DIS see Chapter 6.)

However, the most important impact on the question of SU(2) flavour symmetry in the proton

sea, and certainly the stimulus for the close attention this question has received in recent times, has

64



0.4 [T e T T B LR
0.2 |- B I
i d =u __,,—-——:__T_.’.,.’--—’---‘--T--_-' e T
9 _
— d#u j
_0_2 s —
04 L, o e s W
0.10 0.20 0.30 0.40 0.50 0.60

VT

Figure 3.19: Asymmetry for pp and pn Drell-Yan production. The & = d predictions, with the
valence quark parameterisation of Morfin and Tung [50] (dotted) and with a fixed valence ratio
dy /uy = 0.57(1 — z) [15], are compared with the meson model calculation with % # d (for A = 700
MeV).

come from the measurement by the New Muon Collaboration at CERN of the difference between
F,, and Fy,, [65], and the consequent determination of the Gottfried sum rule. We will now discuss

the issues involved in this experiment more fully.

3.3 Gottfried Sum Rule

The Gottfried sum rule [64] is perhaps the most famous consequence of SU(2) flavour symmetry
of the sea. Because this measures the z-integrated difference between the proton and neutron
structure functions, it is sensitive only to the non-singlet SU(2) content of the nucleon. Let us

firstly define the quantity

1 dz!
Se(e,1) = [ =

(Fap(z') — Fan(2')) . (3.83)

Relating the proton and neutron structure functions to the quark distributions in the proton (i.e.

using charge symmetry), we have
1 ]
Sa(z,1) = 3 /x do’ (u(z') + a(a") + d(a') + (")) (3.84)
= % /z " de! (uy(a") — dy(s)) + % / " de! (') — 3(a") (3.85)

where the valence quark distributions are defined by ¢y = ¢ — ¢. Since the number of valence

quarks in a hadron does not change, we obtain the Gottfried sum rule

Se = Se(0,1) = % (QPM] (3.86)
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provided we make the additional assumption fol de d = fol dz u, as would be expected in the
quark-parton model (QPM).

The early experimental data for Sg(z,1) did in fact suggest a value lower than 1/3, but with
errors large enough to be consistent with it. However, armed with the theoretical expectation of
SU(2) flavour symmetry, most authors believed that Sg would tend to 1/3 as the accuracy of the
data improved. To the surprise of many, the recent, accurate determination of S¢ by the New
Muon Collaboration appears to support the idea that @ # d [65, 133]. Neglecting nuclear effects,
the NMC found

Sc(Zmin, 1) = 0.229 £ 0.0157 (3.87)

where Zn = 0.004. Included in (3.87) is an extrapolation from z = 0.8 to 1, the contribution
from which was estimated to be 0.002 +0.001 if a smooth extrapolation of Fy,/Fy, to 1/4 at z =1

is assumed. From the unmeasured region (z < 0.004), using the extrapolation
Fap(z) — Fop(z) — a2 asz — 0 (3.88)

with a = 0.21,8 = 0.62, the contribution was found to be Sg(0,Zmin) = (a/0) :vfmn = 0.011.
With the conventional Regge theory assumption that 8 = 0.5, Sq(0, £min) would be 0.014. The

combined integral over the whole range of z was therefore
Se¢ = 0.240%0.016 [NMC] (3.89)

with errors added in quadrature.

Although not the only one, the most natural explanation for the smaller than expected value
of Sg is that d(z) # 4(z) (see later for a discussion of other possibilities). Taken at face value, the
NMC result would imply that

/Olda: (d(z) — a(z)) = 0.14 % 0.06. (3.90)

The various mechanisms discussed in Section 3.2 are then potential candidates for generating such

3. Before turning to more exotic explanations, it seems more sensjble that the sim-

a difference
plest possibilities should be exhausted first. The most compelling, and most economical from the
theoretical point of view, appear to be those based on the Pauli exclusion principle, and on the
presence of a small pion (and perhaps other meson) cloud.

We therefore begin with the meson model, described in Section 3.1. From the mesonic and

baryonic corrections to the quark and antiquark distribution functions in Eqs.(3.63)-(3.73), the

3In addition to the possibilities discussed there, another explanation for the smaller value of S, based in isospin
symmetry breaking, was proposed by Walliser and Holzwarth [134]. They showed that within the soliton model the
value of Sg deviates from 1/3 by a factor (Mp — My)/(™mu — ma), so that based on current knowledge of the d — u

quark mass difference, the sum rule should be some 30% smaller.
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total contribution from all mesons to the Gottfried sum can be written
Sa = g + 1 E /dm (5(MB)u+ §(MB)y _ s(MB)g _ s(MB)g 4 §(BM), _ 6(BM)d)
3 3 )

5(n)a,
3 3 3 + 3

3

1 (Z _ {ndne (MmN n 5(n) Ar + (n)Nw + (R)zx + (")AK)- (3.91)

Note, however, that because the non-strange baryon recoil contributions to the quark and antiquark

distributions are related by
§MBly(z) = 6MB)g(z), §MB)j(z) = §MB)y(z) [M = non — strange] (3.92)

the contributions to S from DIS from a pion or a vector meson would cancel (see Eq.(3.94) below).
The presence of an apparent K and isoscalar w component in (3.91) should not be misconstrued.
When the renormalisation factor Z is expanded; Z = 1 — (n)nr — (n)ar — (R)Np — (R)Nw — () Ap —
(nyax — (n)ax, these contributions vanish, so that the total effect upon S from mesons can be

written as

; ; 2<"3)A“ + 2@“") . (3.93)
In Fig.3.20 we show the effect of the meson correction on the Gottfried sum rule, and compare
with the quoted experimental value. It is clear that the net effect of the virtual meson—baryon
states is to decrease Sg. The N state alone can reproduce the quoted value of Sg for A ~ 1.3
GeV. The addition of TA components would require a slightly larger cut-off (since this produces
an excess of @ over d, which cancels some of the d excess generated by the 7N states). Including
the pN state however restores, and actually enhances, the d excess, although some of this is again
cancelled by the pA states. With all components included, we find that the NMC value of Sg can
be reproduced with A =~ 1.1 — 1.2 GeV. For A < 700 MeV, as suggested by the antiquark data in
the previous section, mesons can generate only about half of the asymmetry required to satisfy the
experimental sum rule.

As well as examining the effect of the meson cloud on the Gottfried sum rule, we may be able to
learn more by observing its effect upon the shape of the structure function difference Fo,(z)—Fon ().

From (3.63)—(3.73) we readily obtain
Fop(e) = Fan(z) = g(muv(w) —2dy(@)) + 3 5 ((MBHEM(u(z) - d(2)))
i
= 2 uv@) —2dv(e)) + 3 [ dy(~3Fxs0) + ra@)) 2V M (o)
3 [ (—3 ) = 5+ o) + Ssxc)) omulen)  (399)
b3 [ (3Ie) + 5008 — S + 2aa6) + 20, wmu(as)

Note that kaons and w mesons contribute to the structure functions themselves, even though their

contributions cancel when the structure functions are integrated over . Actually, we include the
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Figure 3.20: Mesonic corrections to the Gottfried sum S¢(0,1), as a function of the dipole cut-off
A: (i) 7N only, (ii) 7NV and 7A, (iii) 7N and pN, (iv) 7N, A and pN, and (v) 7N, A, pN and
pA, compared with the NMC data [65] (thick solid lines, including upper and lower limit of errors).

e2x NMC data

(@] o
—_ —_
o N
L B
|
Ly i

o
o
(00}
|
=
—
N e 4
NS
5 J{/
——
| | L

= ;

&8 \i
csl [ — A=0.7GeV "’;‘/‘ A 1
~ L A=0.8GeV ¢ N
006 A=0.9GeV . { |
N 2 ' N
Q b
N ! i

I T | |

0.001 0.010 0.100 1.000

Figure 3.21: Proton—neutron structure function difference for varying meson—baryon form factor
cut-off A. The dotted curve is the recent (leading order) Morfin and Tung [50] parameterisation of
(uv — dv)/3, in which d = 4.

68



0.12 ' !
0.10 |- es NMC data
& i MT(LO)
~go0.08F
& - -——-T7N
~ - —— TN+TA
,l\ 0.06 I~ all mesons
n L
~a,0.04
S i
R,
0.02
0.00

0.001 .000

Figure 3.22: Proton—neutron structure function difference as a function of z. Shown is the effect
of the TN states alone, TN + TA states, and all mesons (with A = 700 MeV). The data is as in
Fig.3.21.

K and w contributions only for the sake of completeness. Numerically, we find that dropping them
altogether has negligible consequences.

In Fig.3.21 we show the effects on Fy, — F3,, of including contributions from DIS off the virtual
meson—baryon components for varying A, and compare with the predictions of existing parameter-
isations of (uy — dy')/3 which have d = 4. The most noticeable consequence of the meson cloud
is a decrease in the peak value of Iy, — Fy, at © ~ 0.3. Since here the parameterisation clearly
overestimates the NMC data, the effect of mesons is to move the curve in the right direction. At
the same time, however, the structure function difference becomes larger for z < 0.1. Because the
parameterisation is already too large in this region compared with the NMC data, it’s clear that
mesons alone cannot improve the fit at small z.

At large = the meson-corrected curves consistently lie beneath the NMC data points. This is a
consequence of the original parameterisation [50] underestimating the NMC F, — Fy, results (in
fact most other parameterisations [15, 51] also have this property). If we had a parameterisation
which could better reproduce the large-z data, the quality of the fits for the corrected curves would
naturally improve. We should add, however, that the NMC did not report much data at = R 0.4.
In any case, the discrepancy between the NMC data and the quark parameterisations at large z is
unrelated to the failure of the Gottfried sum rule, and is therefore not our primary concern.

Figure 3.22 shows the effects of the individual meson contributions (for A = 700 MeV). The
action of the mV states is to decrease Fy, — Fy, at small z, while adding the 7 A tends to do the
opposite. However, it is only with the addition of the vector mesons that there is an increase over

the parameterisation in this region.
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Figure 3.23: Gottfried sum rule integrand, integrated from 2 to 1. The solid curve is the parame-
terisation of Morfin & Tung [50] with d = %, while the dashed curve includes mesonic corrections
with A = 700MeV. The dotted curve is a best fit to the NMC data.

In Fig.3.23 we show the value of Sg(z,1) as a function of z, for the d = @ parameterisation, and
for the meson-corrected curves with A = 700 MeV. The parameterisation (solid curve) is clearly
too large for < 0.1. With the addition of the meson correction (dashed curve), the fit is clearly
improved, but still overestimates the NMC data at very small . To improve the Fy, — F5, fit at
small z, and at the same time generate the rest of the d — % asymmetry required to reproduce the
NMC Sg value, we must therefore look to other mechanisms. One candidate is the asymmetry
generated by the Pauli exclusion principle.

First let us examine the combined effects of the meson cloud and the exclusion principle on
the shape of Fy, — Fy,. For the strange mesons and baryons, the Pauli blocking effect should be
present in DIS from virtual K° Kt and X1, since these contain unequal numbers of u(%) and d(J)
quarks. It will not be present in DIS from ¥° or A°. This raises the interesting possibility that
we may pick up a non-zero strange quark contribution to Sg from the Pauli principle, if the Pauli
effect in DIS from K with X recoil and in DIS from ¥ with K recoil are different (and in principle
they should be), which would spoil the cancellation of these components. However, having seen
that the role of strange mesons in the DIS process is negligible, we can be fairly confident that by
dropping the strange contributions our results will not be significantly affected.

What may be more significant is the possibility that the shape of the Pauli d — @ contribution
from DIS off a virtual A, with 7 or p recoil (labelled pa(z)) may differ from the shape of the
Pauli difference from DIS off a nucleon with a 7 or p recoil, py(z). In principle these should be
different because the spins of the 4-quark intermediate states (which arise when the @ or d quarks

are probed) in the nucleon and A are different. This means that, for example, while a quark
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inserted into a (spin 1/2) proton can produce a state with spin 0 or 1, one inserted into a (spin
3/2) A* could produce either a spin 1 or spin 2 intermediate state. One way to make spin 0, 1 or
2 four-quark states is to construct them from spin 0 or spin 1 diquarks, and since a vector diquark
is more massive than a scalar diquark (see Section 2.3, and Ref.[48]), and therefore has a softer
z-distribution, the result is that the Pauli blocking function pa(z) should have a softer shape than
pn(2). Furthermore, the integral over pa(z) (denoted Pa) need not necessarily equal Py. Having
said this, it is probably also true that the uncertainty introduced in taking these to be the same
will be much smaller than the overall uncertainty in the absolute normalisation of d — % due to
Pauli blocking in the nucleon.

The final expression for Fy, — Fyy,, including meson and Pauli effects, is
Z
Fp(z) — Fop(z) = 3 (zuy(z) — ady(z) — 2zpn(z))

1 71

- §/z dy' (fn=(y') + fvo(y') — 3fnx(¥) (zBuv(2B) — zBdv(2B) — 22BPN(ZB))
5 r1

+ §/x dy' (far(¥') + fa,(¥)) (zBdv(2B) — 22Bpa(2B)) (3.95)
4 1 / n (1 =+

i 5/ dy' fex (') g%BU (zB) — 2zBps(2B)

— 5 [y Urs) = 3ea) (saV ™ (2 aa) ~ 2eprc(an)

which, making the above approximations, reduces to
Z
Fop(z) — Fon(z) = 3 (zuy(z) — zdy(z) — 2zpn(2))
1 1
= §/ dy' (fn=(y") + fno) (@Buy(2B) — ¢Bdv(zB) — 2¢BPN(2B))

+ g/: dy' fam(y') (zpdv(zp) — 2zBpN(2B)). (3.96)

The resulting = distribution is plotted in Fig.3.24. The Pauli correction is largest in the small
z region, for 0.01 & z S 0.1. By reducing the absolute value of Fy, — Fy, at small z the Pauli
correction brings the parameterisation (with d = @) into better agreement with the data in that
region. However, for larger z (0.1 Sz s 0.3) the peak in the distributions is still too large to be
consistent with the NMC data. On the other hand, when combined with a small mesonic correction
(for A = 700 MeV), a very good fit is possible with Py =~ 0.1.

Integrating the structure function difference between z and 1, we plot in Fig.3.25 the function
Sc(z,1) including both meson and Pauli effects. Clearly the quality of the fit is improved with the
addition of Pauli blocking. In particular, the apparent saturation of the sum rule below z =~ 0.01
is better fitted by including the Pauli term. (In a more recent experiment, the E665 Collaboration
at Fermilab reported an even more dramatic saturation of the Gottfried sum rule for & < 0.125,
Jool de(Fyy — Fy,)/z = —0.07 £ 0.07 [135].) In the intermediate-z region (z < 0.3) the meson-
corrected curves appear to underestimate the NMC data. This can be understood from the shape
of the original F,, — Fy, distributions in Fig.3.24, where for z above ~ 0.3 the curves tend to lie
beneath the NMC data points.
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Figure 3.24: Effect of the Pauli exclusion principle on the proton — neutron structure function
difference, as a function of z. The dotted (without meson corrections) and solid (with A = 700
MeV meson corrections) curves are for P = 0 (largest curves) 0.05, 0.1, and 0.15 (smallest curves).
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Figure 3.25: Effect of Pauli blocking on the Gottfried sum integrand with no mesons (solid curves),
and with mesons for A = 700 MeV (dotted curves). The three curves in each case are for Py = 0
(largest curves), 0.05 and 0.10 (smallest curves).
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Figure 3.26: Gottfried sum rule with mesonic and Pauli corrections. The solid curves represent
Pauli normalisation of Py = 0.05 (largest), 0.1 and 0.15 (smallest).

For the Gottfried sum, from (3.95) we obtain

E

9
2 2

i 9 (3PN + Pk — 4Ps) (n)sk + 3 (Pn — Pk) (n)ar (3.97)

Se¢ = S¥P (1-2Pn) + = (Pv—Pa)((n)ar+(n)ap)

where ngB is the sum rule with meson/baryon corrections only, as given by Eq.(3.93). Again,
dropping the negligible strange contributions, and assuming that the difference between the Pauli

blocking in the nucleon and A is not large, we obtain
Sq¢ ~ S¥B(1-2Py). (3.98)

This last result that the mesonic and Pauli contributions factorise was first presented by Signal,
Schreiber and Thomas [47] (although there only the 7 N and 7 A states were considered). In Fig.3.26
we show the variation of S¢ with both A and Py. For A = 0.7 GeV, the experimental sum rule
can be obtained with Py =~ 0.1,

To summarise the results of this section, we have seen that the NMC measurement of the
Gottfried sum rule suggests a sizeable difference between the d and @ quark distributions in the
proton. We have examined two fairly obvious sources of such an asymmetry, namely that arising
from the meson cloud of the nucleon, and that due to the Pauli exclusion principle. For consistency
with the total antiquark data, as well as the shape of Fy, — Fy, at small and intermediate z, the
value of the meson—nucleon form factor cut-off A (determining the size of the meson contributions)
needs to be less that about 700 MeV. This is enough to give at most about half of the asymmetry

required for agreement with the experimental sum rule. With a small amount of Pauli blocking
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(Py = 0.1) we find that the combined mechanisms can easily reproduce the NMC result. While
it is possible for a larger amount of Pauli blocking (Py ~ 0.15) to produce the entire sum rule
discrepancy, the resulting Fy,(2) — Fa,(z) is too large at intermediate z, and is underestimated
at small z, without any mesonic component. Thus various phenomenological constraints seem to
imply the need for both mechanisms.

The fact that our fits do not precisely reproduce the large z data is not very surprising. Apart
from the fact that the input valence parameterisation itself disagrees with the NMC data at large
z, our own model is not entirely self-consistent. We take as our starting points the valence quark
distributions which are parameterised under the assumption of flavour SU(2) symmetry in the sea,
which is naturally broken by mesons, as well as by the Pauli effect. A fully consistent approach
would be to readjust the full valence distributions, so that with the d — @ corrections included they
reproduce the data to which they were originally fitted. However, the effect of this correction is
unlikely to be very large. No such ambiguity exists for the integrated distributions, in the Gottfried
sum itself.

Before finishing this discussion, we should mention some alternative explanations for the Got-
tfried sum rule violation. It was suggested by Martin, Stirling and Roberts [121] that there may
not be any violation of the quark-parton model S prediction at all, if large contributions to the
Gottfried integral come from the unmeasured, z < 0.004, region. By parameterising their valence
quark distributions to be more singular at small z than what would otherwise be expected from
Regge theory (namely, gv ~ z7%%), and also compared with what the NMC used in theirz — 0
extrapolation, it was shown in Ref.[121] that a value of 1/3 could be recovered. Although this more
singular behaviour seems rather artificial, without data at such small z it remains a possibility.
However, one problem with this hypothesis of late onset (in the sense of decreasing z) of Regge
behaviour is the data from the E665 Collaboration [135], which suggests early saturation of the
Gottfried sum rule, and would therefore tend to rule out this option.

It was also suggested by Kaptari and Umnikov [136] that nuclear effects in deuterium may
introduce errors in the extraction of the neutron structure function from the deuteron DIS data. In
particular, it was claimed that meson exchange currents in the deuteron could lead to substantial
antishadowing corrections, so that Fy, extracted in a naive manner would be overestimated. With
this correction taken into account, it was argued that a value roughly consistent with 1/3 could
again be recovered.

Furthermore, although expected to be small, genuine nuclear shadowing in deuterium could
also introduce corrections to the naively-extracted neutron structure function. The nuclear effects
thus represent potentially the most significant corrections to the proton—neutron structure function
difference, and to the Gottfried sum rule. It is therefore critical for the question of flavour symmetry
in the proton sea that we have a reliable estimate of Fy,. In the next chapter we shall examine in

some detail the nuclear effects in deuterium.
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Chapter 4

SHADOWING IN NUCLEAR DIS

We saw at the end of the last chapter that the Gottfried sum rule is sensitive to the small-z
behaviour of the neutron structure function, Fj,. Unfortunately, the absence of free neutron
targets means that deuterium has to be used in order to extract data on Fy,. Traditionally in
DIS on the deuteron, in which the proton and neutron are held together very weakly, nuclear
effects have been ignored, and the total lepton—deuteron cross section assumed to be the sum of
the lepton—proton and lepton—neutron cross sections. However, any nuclear effects present in the
deuteron would introduce corrections to the Fy, extracted under the simple additivity assumption.
Furthermore, even a very weak nuclear dependence at small 2 could have a significant impact upon
the proton—neutron structure function difference, and any conclusions about the mechanisms of
SU(2) flavour symmetry breaking in the proton sea reached from the naive NMC experimental
value of the Gottfried sum rule.

From DIS experiments on heavy nuclei, a deviation from linearity has been observed [137] in
the nuclear EMC effect for the ratio of cross sections for scattering from a heavy nucleus and
from deuterium (in other words, for a mass number A nucleus, 04 # A oy). In particular, what
those experiments confirmed was a dramatic decrease in the nuclear cross section (or structure
function) per nucleon in the region of small & [137, 138}, a phenomenon referred to as shadowing.
Whether appreciable shadowing exists in deuteron DIS will be the primary focus of this chapter.
Partly motivated by some conflicting claims in the literature regarding the magnitude of this effect
[82, 139, 140], we perform a detailed analysis of the shadowing correction to F3p and examine the
sensitivity of the calculation to any model dependent parameters.

Nuclear shadowing is naturally a very interesting and important subject in its own right. (At
small z we are of course probing the long-distance structure of the hadronic tensor — see Eq.(2.14).)
Furthermore, any realistic model of shadowing in D should, when adequately extended for larger
A, be able to predict the shadowing effect in heavy nuclei as well. Following our discussion of the
deuteron, we will use the same model to study the small-z dependence of the DIS structure functions
of heavy nuclei. We start, though, with a discussion of the physics behind nuclear shadowing, and

review some formalism which will be used in the subsequent calculations.
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4.1 Physics of Shadowing

Stimulated by earlier work of Bell on the application of the Adler PCAC relation to nuclei [141],
Stodolsky was the first to predict shadowing in electromagnetic processes as long ago as 1967 [142].
Generalising the ideas of shadowing applicable to purely hadronic reactions, Stodolsky used an
argument based on the vector meson dominance model to show that the real photon—nucleus
cross section should deviate from the simple o« A behaviour.

Since that time, and especially since the experimental discovery of shadowing of virtual photons
in nuclear DIS, our understanding of the phenomenon has greatly increased, even though a definitive
quantitative description from first principles is still lacking. What is well known is that the essential
origin of the deviations from linearity of the nuclear cross section is the finite probability that a
projectile scattering from a nucleus can interact with more than one nucleon as it traverses the
nuclear medium. Virtually all calculations of shadowing then amount to describing this process,
and the model dependence only arises from different treatments of the interaction mechanisms.

The formal way to quantify the shadowing effect in high-energy nuclear processes is the multiple
scattering expansion developed by Glauber [143] (see also Sitenko [144]). This was first done by
several authors, including Gribov [145], Brodsky & Pumplin [146], Gottfried & Yennie [147], and
others (for a review see Ref.[148]).

4.1.1 Glauber Multiple Scattering Formalism

The basic assumption of the multiple scattering formalism is that one can represent the interaction
of a high-energy projectile with a nucleus in terms of projectile—nucleon amplitudes. One further
makes use of the eikonal approximation, in which the interaction of the projectile with the nucleons
is presumed not to affect the projectile’s trajectory through the nucleus. This approximation will
be valid if, in the target rest frame, the momentum of the projectile is much greater than the
momenta of any of the nucleons in the nucleus (or equivalently that the energy transfer is much
less than the incident energy [149]).

More formally, we write the elastic scattering amplitude for scattering a high-energy projectile

from a target nucleus (A) near the forward direction as
. M 2 g _ rl
Fa = 5 [d°b I'4(b) expli(q—q') - b] (4.1)

where q and q' are the 3-momenta of the incident and scattered particles, and I'4(b) = 1 —
exp[ixa(b)] is the profile function, with x4(b) the phase shift associated with impact parameter
b. This expression can be obtained by writing the scattering amplitude in a series of spherical
harmonics, and expressing the associated Legendre functions for small scattering angles in terms
of Bessel functions, and finally replacing the summation over angular momenta by an integral over
b [149]. Eq.(4.1) is valid for small scattering angles, which is a good approximation in high-energy,

nearly-forward elastic scattering. In DIS, we can therefore use this scattering amplitude (since
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q = q') for the virtual photon Compton scattering amplitude (which as we saw in Chapter 2 was
related by the optical theorem to the DIS hadronic tensor).
Treating I' as an operator which we can sandwich between initial and final states, and inserting

complete sets of states, we can express (4.1) in terms of the nuclear wavefunctions in coordinate
space, ’l,bA(I‘l, ooa) rA)a

]:A(q>ql) = 7/2|—(7[1_l/d2b d31‘1 * "d3rA 1/):1(1'1,...,1'14) FA(barlv"',rA) ¢A(r17"'arA)

x expli(q — q') - b] (4.2)

where rq, ...,r4 denote the coordinates of the nucleons. The next, and crucial, step is to assume
that the phase shifts x; produced by each nucleon can be added incoherently, so that the total

phase shift x4 accumulated by the projectile as it passes through A can be written
A
xa(b,ri,.ta) = Y x;i(b—s;j) (4.3)
i=t

where s; = (r; 13) b, with b = b/|b|. The above assumption amounts to admitting only two-body
interactions in the scattering process. As a consequence of (4.3), the nuclear profile function can

now be written

A A
'y = 1—exp [iZXj(b—Sj)] & H(l - Ty)

A A A
= Y0 - Y ITe + > DGIGDy = -- = (1)%Ty---Ty (4.4)
J <k J<k<l

where T'; = 1 — exp[ix;(b — s;)] are the nucleon profile functions. With this expansion, Eq.(4.2)
now describes all the possible ways that a projectile can be (multiply) scattered from the nucleus.
Applying this to DIS, we represent this multiple scattering expansion in Fig.4.1. It’s clear that the
1st, 2nd, ... term on the right hand side of (4.4) correspond to the single, double, ... scattering
diagrams, respectively. The first term in the series is the impulse approximation for nucleons,
and gives the nuclear cross section as a simple sum of nucleon cross sections (aside from Fermi
motion effects). The second and subsequent terms introduce deviations from this linearity. Since
the contributions from higher order terms are expected to be smaller than the preceding ones, the
series is usually truncated after several terms. In calculations of nuclear shadowing, typically only
the double scattering diagram is kept. The different models of nuclear shadowing then essentially
correspond to different dynamical details of the photon—nucleon ‘blob’ in the double scattering

diagram.

17



Figure 4.1: Glauber multiple scattering expansion.

78



4.1.2 Hadronic Structure of v*

It has long been established that photon—hadron processes have many remarkable similarities with
purely hadronic reactions. The most simple and natural explanation of this phenomenon is that the
photon itself has a hadronic structure. In particular, the physical photon state can be considered
to be a superposition of a bare photon state and a virtual hadronic component (c.f. Eq.(3.1) for
the physical nucleon state in terms of bare nucleon and virtual baryon—meson components). Then
the complete photon—hadron process can be viewed as taking place through interaction of the
photon’s hadronic fluctuations with the target hadron. Since the photon has JFC = 17—, the
hadronic states with the correct quantum numbers can only be vector mesons, V. Furthermore,
by the Heisenberg uncertainty principle, only the lowest mass vector mesons (V = p% w, ) are
expected to play a significant role in low and medium energy processes. This is the basis of the
vector meson dominance (VMD) model. The phenomenological successes of this approach are
numerous (e.g. the total YN cross section, the copious vector meson photoproduction, etc.), and
we refer the reader to the many comprehensive review articles on the subject, for example, Refs.
[150-152].

The extension of the VMD idea to virtual photons, such as those in deep inelastic lepton—
nucleus scattering, can be made quite easily, although strictly speaking it’s incorrect to talk of
‘bare’ virtual v states. This is done in the literature because the analysis of y* interactions is a
simple extension of real ¥ processes. Thus the VMD hypothesis is that the virtual photon state

can be written

VIH.» X e
) = VEied + Y Vv |y (4.5)
V=pw,p Al

where Z is the bare photon probability, AE = v — Ey, with v = \/q%? — Q2 being the energy of
the virtual photon and Ev = y/q% + MZ. The Hamiltonian H.+y describes the electromagnetic
interaction between the v* and vector meson V. Formally, with this expansion the total y*—nucleus
amplitude is a sum of two contributions, the bare photon—nucleus amplitude (‘one-step’ process)
and the vector meson—nucleus amplitude (‘two-step’ process). At high energy, the destructive
interference between these two gives the famous result that the one-step amplitude is cancelled by
a term in the two-step amplitude [148]. The end result is then proportional to the amplitude for
V—nucleus scattering only.

That this is the case can readily be seen if we consider this process in time-ordered perturbation
theory in the target rest frame. Here we have two time-ordered diagrams — one in which the
photon converts into a vector meson which then interacts with the target (or equivalently, the
photon interacts with a vector meson travelling backwards in time after being emitted from the
target), and one where the photon interacts with a forward moving V after it has been emitted
from the nucleus. The former can be seen as an interaction of the state |V) with the target, while
the latter as an interaction between |y*) and the target. In the target rest frame one can easily

show [150] from the structure of the energy denominator in Eq.(4.5) that at high energy (v — 00)
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the contribution from the diagram with the forward moving V' is of order 1/v compared with the
backward moving V. Hence the conclusion that the state |y*) is not important in high-energy
interactions. (Note that this is the opposite to what occurs in the IMF, as we saw in Chapter 3.)

For the diagram in which the V is produced before the hadronic interaction, the energy de-
nominator is AE ~ —(Q? 4+ M%)/2v. Choosing the normalisation of the state [V') to be Viara/ fv,
where fy is the ¥*V coupling constant, and excluding non-diagonal vector meson transitions, the

total v*A cross section in the VMD model is

2

4o M‘2/ )

Ovpg = OVA. (4.6)
K ZV: e (M%+Q2

Having outlined the basic ideas behind the VMD model, we now turn to its description of
shadowing. For real photons the VMD model is known to give a very good description of the
shadowing of photoproduction cross sections, which occurs at high photon energies, v R 1-2 GeV
[153]. This suggests that in deep inelastic scattering, at least at low (?, the same mechanism may
also be responsible for the shadowing of the inelastic nuclear structure functions.

The physical origin of shadowing in the VMD model can be understood by considering the
following space-time picture. When the virtual photon fluctuates into a virtual meson, the prop-
agation distance of the virtual hadronic state is Ad ~ 1/AE = 2v/(Q* + M%). If Ad exceeds
the inter-nucleon separation, 2Ry ~ 2 fm, then the hadronic state can interact with two differ-
ent nucleons as it passes through the nucleus. In terms of the Glauber multiple scattering series,
this would correspond to the double scattering diagram in Fig.4.1(b). Furthermore, if the vector
meson—nucleon amplitude were purely imaginary, one would automatically obtain a reduction of
the total 7*A cross section. For large v (v > My ), the propagation length of the hadronic fluc-
tuation becomes Ad ~ (zM)~! R 2 fm, where z = Q%/2Mv, so that shadowing should start to
appear at z S zg ~ 0.1.

In the VMD model the correction o4 to the total v*A cross section can be related to the
V A shadowing correction, oy 4, using an expression similar to (4.6). Consequently the vanishing
of shadowing at large Q? stems directly from the presence of the vector meson propagators (Q% +
MZ)~2. Phenomenologically, this is quite important as far as testing models of nuclear shadowing,
since in DIS the photon’s virtuality can be varied to probe the Q% dependence of this effect. Because
the study of the small-z behaviour of structure functions in the large-Q? region requires very large
energy transfers, the early DIS experiments were inconclusive in their results for the (? dependence
of shadowing. In the last decade or so, as lepton beams with ever greater energies have become
available, nuclear structure functions at small # have been explored at larger Q2. Indeed, it has
become clear that the depletion of the nuclear to nucleon cross section ratios at z < 0.1 does not
disappear with 2%, but rather exhibits scaling behaviour. The inevitable conclusion is that there
must be other mechanisms responsible for the large-Q? behaviour of shadowing.

The VMD model can be extended by including additional hadronic states (heavier vector

mesons), or a ¢¢ continuum, in the expansion (4.5). Such extensions of the VMD model are
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referred to as generalised vector meson dominance (GVMD) [151, 154]. Models of nuclear shadow-
ing based on this approach have been used by several authors, including Bilchak, Schildknecht and
Stroughair [155], Piller & Weise [156], and Shaw [157]. Alternatively, it may be preferable when
discussing DIS phenomena at high Q2 to use a partonic description. This is certainly advantageous
when describing the scaling behaviour of the inelastic nucleon structure functions, as in the parton

model.

4.1.3 Diffractive Scattering from Partons

The description of nuclear shadowing in terms of partons can be understood with the help of a
simple physical argument. Consider DIS from a nucleus which is moving with very large speed in the
z direction (e.g. one in the IMF). The longitudinal size of the nucleus as seen from the target rest
frame will be (by length contraction) Azg = /1 — 8% Az}, where Az} & 2 Ry is the longitudinal
length of the nucleus with radius R, at rest (i.e. the ‘proper’ length). Here 8 = 1/4/14+ M35/P% ,
where P4 and M, are the longitudinal momentum and mass of the nucleus, respectively, which
means that Azq ~ 2 Ry M/ Pa. By the Heisenberg uncertainty principle the longitudinal length
(in the IMF) of a parton in the nucleus is Az = 1/k,, where k, = 2P4/A is the parton’s longitudinal
momentum (z is the fraction of the target nucleus momentum carried by the parton, normalised
to one nucleon). Now, when Az > Azy the conditions will be just right for partons to overlap
spatially in the z-direction inside the nucleus. Furthermore, if the transverse dimensions of the
partons b ~ 1/ \/Q? are similar, then these may interact and recombine. Specifically, this will occur
when 1/z > 2 R4 M4 /A. In fact, this condition corresponds to complete shadowing, where partons
overlap with other partons in the whole nucleus. Incomplete shadowing will occur when partons
in one nucleon overlap with partons from only some other nucleons, and the onset of shadowing
should occur when partons from neighbouring nucleons only overlap. To determine when shadowing
should start to appear, consider the longitudinal size of a nucleon. As seen from the rest frame,
this will be Azy = 2 A Ry M/P4. Then partons from adjacent nucleons can overlap whenever
Azy < Az,orz < zg = (2 Ry M)™' =~ 0.1 — precisely the same value as that obtained in the
VMD model.

The possibility of antishadowing was also discussed some time ago by Nikolaev & Zakharov
[158]. Their argument was based on the hypothesis that the total momentum carried by partons
was not changed by parton interactions, but only redistributed. If partons with a given z recombine
and annihilate, the overall parton density at this z will be depleted, but the newly created partons
will enhance the total parton density at larger z. The onset of antishadowing was also discussed
in [158], using an argument similar to the above. Specifically, it was argued that if the parton’s
longitudinal size Az exceeded the inter-nucleon separation, Adyp, then the partons from adjacent
nucleons could also overlap spatially and interact. In the IMF (or in the Breit frame [158]), Adyy =
V1-p62 Adypy, where Adyy ~ 1/m, is the average separation between adjacent nucleons in the

rest frame of the nucleus. Therefore neighbouring nucleons are contained in the parton localisation
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volume when Az ~ A/(xPa), or = S zo = Amg /My ~ mg/M ~ 0.15. Then shadowing in a
nucleus would be expected to arise when Az exceeds the nuclear radius, « S T zo A3,

In both of these arguments the value of zg (and xg) is independent of Q?. The clear implication
is that, in contrast to the situation in the VMD model, shadowing and antishadowing should be
present at high Q2. Experimentally this indeed appears to be the case, although the data are not
as unambiguous regarding the @ dependence of antishadowing [137, 138].

In the parton model the origin of scaling of the inelastic nucleon structure functions is the direct
coupling of the virtual photon to spin 1/2, point-like partons in the nucleon. In other words, scaling
depends only on the hard part of the interaction, and is independent 61" the details of the purely
hadronic interaction (which is completely independent of ¢?). For this reason the contributions
from all of the diagrams in the Glauber scattering series will scale (modulo perturbative QCD
corrections).

In the Bjorken limit the parton model description of diffractive (1/z > 1) deep inelastic pro-
cesses corresponds to the Regge limit (s = (p+ q)? = Q2(1/z — 1) + M? = Q*/z > Q?). Conse-
quently some phenomenology from Regge theory has been used to describe the small-z behaviour
of DIS structure functions. Regge theory was originally developed in the 1960s in order to describe
hadronic reactions at high energies. It was found that, for example, the approximate energy-
independence of total hadronic cross sections could be accommodated within this formalism. By
analytically continuing angular momentum into the complex plane it was discovered that poles in
the t-channel partial wave amplitudes could account for the small-t (or forward) elastic scattering
(i.e. diffractive) processes. In hadron—nucleon scattering, some of these poles were found to cor-
respond to known mesons. Experimentally, it was also discovered that there existed sequences of
mesons having the same quantum numbers, differing only in their spins. Hence it was assumed that
all mesons lying on the same mass—spin trajectory were exchanged. Other poles, however, like
the Pomeron (P), which had the quantum numbers of the vacuum, did not correspond to known
particles. In parton language, it is now generally believed that the Pomeron may really be a system
of gluons [159-161] (at least two, in order to construct a spinless object), although there is as yet
no QCD-based derivation of the properties of the reactions described by Pomeron exchange. (Some
attempts at modelling the properties of the Pomeron have been made, for example, in Ref.[159],
where hadron—hadron scattering was described in terms of gluon exchange between MIT bags,
while in Ref.[161] gluon-ladder techniques were used to calculate deep inelastic structure functions
of hadrons at low z.)

A central result of Regge theory is that the elastic scattering amplitude behaves like A(s,t) ~
s*() at high energy, where a(t) is a function describing the meson trajectory. The amplitude
corresponding to forward scattering (A(s,t = 0)) then determines (via the optical theorem) the
total cross section, o4, ~ ImA/s ~ s*(0)-1  Now, the intercepts of Regge poles associated with
known mesons are generally a(0) ~ 0.5, which rules them out as candidates to explain the constancy

of total cross sections. However, since the Pomeron has intercept ap(0) = 1, it is believed to be
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Figure 4.2: Pomeron structure function in diffractive lepton—nucleon scattering.

responsible for the (approximately) energy-independent cross sections.

Applying these ideas to the Regge limit of the total virtual photon—nucleon cross section, we
can attribute the (constant) small-z behaviour of the nucleon structure functions (at fixed Q?) to
Pomeron exchange, since Fyny ~ 21727 (s & Q?/z for  — 0). (The exchange of Regge poles with
the p meson quantum numbers leads to the ~ 2~ 1/2 behaviour of the valence quark distributions.)
Thus deep inelastic scattering at small z can be viewed in terms of virtual photon interactions with
the Pomeron structure of the nucleon, as depicted in Fig.4.2. If the momentum transfer between
the photon and nucleon is small, the nucleon will most likely remain intact, in which case there
will only be exchange of vacuum quantum numbers. Such processes can be studied experimentally
in semi-inclusive inelastic scattering (see Chapter 6), in which events are ‘tagged’ by a final state
nucleon possessing a large fraction (24 90%) of the target nucleon’s momentum in the centre of
mass frame. Since the virtual photon probes the parton structure of the Pomeron, such processes
can actually measure the ‘structure function’ of the Pomeron, Fyp [162-164], which is defined in
terms of the cross section for y*P diffractive scattering,

2
Fp = 4—?—2507*1:. (4.7)

There have been several attempts to calculate the Pomeron structure function [162-165] (i.e.
the v*P ‘blob’ in Fig.4.2). Usually two contributions to Fpp are included, from the quark—antiquark
box diagram, Fig.4.3(a), and from the triple Pomeron interaction, Fig.4.3(b)

F2’P(m7’7Q2) = Fz(%ox)(mpsz) + Fz(%P)@PaQZ) (48)

and normalised such that

167y d2FESS
Fyp = ( y) 2 (4.9)

Tpp dt dy

1=0
Here y =k -q/p-q=z(1+ M%/Q?) ~ M%/s is fraction of the nucleon momentum carried by the
Pomeron, M% = (k + ¢)? is the mass of the hadronic debris X, and zp = z/y is defined to be the

fraction of the Pomeron’s momentum carried by the struck quark. Also ¢ ~ —k?2, and the function
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Figure 4.3: Pomeron structure function. (a) quark-antiquark box contribution, (b) triple-Pomeron
contribution.

Féi i1 is the diffractive structure function, describing semi-inclusive diffractive lepton—nucleon DIS,
in which the recoil nucleon and the hadronic state X are separated by a large rapidity [164].

The Pomeron structure function arising from the quark box diagram, FQ(;’,M) , has been calculated
by Donnachie and Landshoff [164]
(12%,: C) B3

pp

F& (2p,Q%) = op(l—zp). (4.10)

Here, 82 = 3.4GeV~2 is the quark—Pomeron coupling constant [166], and we assume the same
strength for u,d quark and antiquark—Pomeron couplings, but a weaker coupling to the strange
quark: .2 = (10+2X,)/9 with A; =~ 0.5. According to the Particle Data Group [167], the proton—
proton total cross section oy, is approximately 40 mb. The parameter C is determined by thez — 0
behaviour of the nucleon sea distribution, zgse.(z — 0) — Czl=er(0), At Q? ~ 4 GeV?, recent
parameterisations of world DIS, Drell-Yan and prompt photon data [50, 51, 168] give C' ~ 0.15.
More recently, Nikolaev and Zakharov [165] have calculated the box diagram contribution to Fap,
based on a perturbative QCD analysis of ¢g fluctuations of the virtual photon. The zp dependence
of their Fz(;’,w) parameterisation ( M%/(Q? + M%)3, since Q? + M% = Q*/zp from the definition
of zp ) is the same (despite the conclusions in Ref.[165]) as that in (4.10), providing the same
normalisation is used (the normalisations in Ref.[164] and Refs.[165, 169] differ by an overall factor
1—zp).

The triple Pomeron part of the P structure function,

167 | 9 d20h,—hX
FCPgp,Q?) = —= | L ZZheohX ) peeaip, @2 411
2p (2P, Q) T (o1 didy |, on (TP, Q) (4.11)
follows from
1 d2F2diff 1 d20'hp-+hX 419
R didy |, ohp  dtdy o (4.12)
and the Regge theory expression for the diffractive differential cross section [170]
2 2
d Ohp—hX — ﬁh’P(t) ﬂpP(t) g3'P(t) yl—Za'p(t) (413)
dtdy 167
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Figure 4.4: Triple—P and ¢g box contributions to the Pomeron structure function, with the nucleon
sea distributions given by the (leading order) parameterisations of Morfin & Tung [50] and Owens
[51] at Q2 = 4 GeVZ.

where ap(t) &~ 14 0.25¢. In the Regge model the total hp cross section is also given in terms of the
hadron—Pomeron couplings, Brp: ohp = Brp(0) Bpp(0). It is then evident that the combination

1 dompnx|  _ PBpp(0) 93p(0)

4.14
Ohp  didy 167y ( )

=0
is independent of hadron h. From experiments on the diffractive dissociation of 7, K* pand p
on hydrogen, the triple Pomeron coupling constant was found to be gap(0) ~ 0.364 mb1/2 [171],
independent of ¢, and indeed of the hadron type h.

For the sea part of the nucleon structure function, F55#(z,Q?) = 5z(us + @ + ds + d + 2(s +
5)/5)/18, we use recent parameterisations of the data [50, 51]. In Ref.[140], a constant value of
0.3 was used for F3§¢ at Q% = 4GeV? together with an empirical low-Q? dependence [164]. With
the above triple Pomeron coupling constant, Eq.(4.11) gives a 3P component which is about 40%
smaller than that obtained in Ref.[82]. However, this is not very significant for the total Pomeron
structure function, since Fz(:;,p) is very much smaller than the quark-antiquark ‘box’ contribution,
Fé;’,ox), as illustrated in Fig.4.4.

Quite recently the UA8 Collaboration at the CERN SppS Collider observed what appears to
be a very hard component of the Pomeron structure function [172]. As well as confirming a hard,
(1 — 2p) structure, in agreement with the above P structure function, there was also some 30%
§-function like contribution at zp — 1. However, the effect of such a component would only be
noticeable for z & y, or {from the definition of y, at Q® — oo for finite M%. At finite Q?, where
we will calculate the shadowing corrections for comparison with experiment, zp will always be less
than 1. The exception might be when the mass Mx of the hadronic debris is very small, however
for such My it is probably more reasonable to describe the scattering in terms of the VMD model.

In the specific calculations which follow, we shall evaluate the double scattering diagram in

Fig.4.1(b) using the VMD, as well as the Pomeron exchange mechanisms. A synthesis of the two
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approaches is quite sensible if we are to investigate the transition region between small and large
Q2. In the parton picture, the virtual photon interacts with the hadronic target via its fluctuations
into qq pairs. If the virtuality of the photon is large the fluctuation is short-lived, and a description
(in the form of Pomeron interactions) seems appropriate. If the virtuality is smaller, the virtual ¢g
pair will have time to evolve into a state which may resemble a vector meson, which would then
enable a VMD-based description to be used as an approximation. In this sense our approach is
similar to that adopted recently by Badelek & Kwiecinski [140] and Nikolaev & Zoller [139]. A
marriage of the VMD and parton descriptions for photon processes was also discussed in some

detail recently by Schuler & Sjostrand [152)].

4.2 Shadowing in Deuterium

As well as the potential sensitivity of the Gottfried sum rule to shadowing corrections in deuterium,
there are other reasons why a precise determination of the neutron structure function is highly
desirable. The extraction of information about the difference between nuclear structure functions
and those for the free nucleon from the observed nucleus/deuterium ratios is sensitive to any nuclear
effects in D. Conclusions made about nucleon parton distributions based on the nuclear/deuteron
structure function ratios (e.g. for the proton antiquark distributions in the Drell-Yan process [173])
at small z may have to be modified once shadowing is taken into account. It is necessary therefore
to check for nuclear shadowing effects in deuterium and include this correction in the extraction of
Fy,, from Fsp.

We begin our analysis by observing that the Glauber formalism for v*D scattering involves just
the first two diagrams in the multiple scattering series in Fig.4.1. Inserting the first two terms in

(4.4) into the v*D scattering amplitude in (4.2), we obtain
i . 1 1 1 1
Frola-a) = 94 [ @b @ () (Ty(b+ 3)+ Tu(b = 58) = Ty(b + go)Tulb - 39)) ¥o(x)
x expli(q — q') - b]. (4.15)
Taking the Fourier transform of the v*/N amplitude,
1 .
b) = 2 N —i bq ]
Tn(®) = g [ dar Frewla) e (4.16)
and defining
Sp(k) = / &Pr 5T [ (r)[? (4.17)
it is then a simple matter to show that for forward scattering (q = q')

Fyp(0) = fwt‘p(o) + Fyn(0)
t o [ ke Sp(K) Fyepl(=K) Fron(l0) (4.18)

2r|q
since Sp(0) = 1. The double scattering term, shown in Fig.4.5, then gives rise to shadowing in

deuterium.

86



Figure 4.5: Double scattering term gives rise to shadowing in deuterium.

Taking imaginary parts of (4.18) and multiplying by 47/|q|, we obtain

2
0D = oyptornt o / Py Sp(k) ReFyp(—k) Fyon(k) (4.19)
where we have used the optical theorem,
o= tmF. (4.20)
lal

Furthermore, by assuming that Fyy(k) = Fy«n(0) for small k, and that the y*N amplitude is
primarily imaginary, ReFy sy < ImF,+y, we finally obtain the total v*D cross section including

contributions from single and double scattering,

Oy*D = Oytp + Ty*n + 60’,7*[) ‘ (421)
where
_ 9% [ g2 2
e /d kr Sp(k?)
0'2...N
= - Z / dk k Sp(k?) (4.22)
™

with £ = |k|. The above assumptions are expected to be quite accurate because contributions to
§o.+p from large k will be suppressed by the deuteron form factor Sp(k), and for forward scattering
the real part of the amplitude is generally small. We will also assume that Sp is a function of k?

only (i.e. that it is independent of the azimuthal angle).

4.2.1 Low Mass Contributions

As mentioned in Section 4.1.4, in the low-Q? region it seems appropriate to describe the shadowing
in terms of the VMD model, see Fig.4.6. Since most of the formalism needed has been developed
in the preceding sections, we can simply write down the formula for the shadowing correction to

the v*D cross section in the VMD model. Combining Eqs.(4.6) and (4.22), we find !

dra 1
Map = Sovp. 4.93
o = L ey P )

!Note that the fine structure constant evaluated at Q* = O(1GeV?) is o &2 1/130, although the error introduced

by this is probably less than that associated with using f2, which is obtained from the decay of meson v with time-like

Q?, for the coupling to a photon with space-like Q2.
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Writing this in terms of the deuteron structure function %, Fyp, we have

2
v) _ @ bavp
§V) Fyp(z) - ;f3(1+Q2/M{‘})2 (4.24)
where now
2
bovp = - / Pk Sp(k?). (4.25)

In our numerical calculations, the photon—vector meson coupling constants

ﬁ _ o My

= = W 4.26
4w 3 Ty etem ( )

are equal to 2.28, 26.14 and 14.91 for p°,w and ¢, respectively [167]. The total vector meson—
nucleon cross sections, oy, can be related to the total # N and KN cross sections via the quark
model. For V = p% and w, these are approximately equal to 24 mb, and 14.5 mb for V = ¢
(see [174, 175]). The energy dependence of the total cross sections (for Vp — X)) was recently

parameterised by Donnachie and Landshoff in a way that reflects their origin within Regge theory

[176],

1
Tpop R Oup R §(a,r+p + Op-p) R 13.63 s+ 31.79 s77

Top N Tkt + Ok —p = Opmp & 10.01 8¢ — 1.51 577 (4.27)

where € ~ 0.0808 and 7 =~ 0.4525. For the range of s in current shadowing experiments, and for
the range in which we calculate, the differences between using the s-dependent and constant values
are small.

For the deuteron form factor Sp(k?) we take the electric monopole body form factor [177]

Sp(k?) = /0 " dr (wX(r) + w¥(r)) folkr) (4.28)

where u(r),w(r) are the S, D-wave deuteron wavefunctions, normalised such that [dr (u?(r) +
w?(r)) = 1, and where jo is the spherical Bessel function. The square of the 3-momentum transfer
to the interacting nucleon is k? = (p — p’)? = k% + k%, where k2 = MZ%z%(1 + M%/Q?)* (since
M% = MZ). In Fig.4.7 we plot the D form factor using wavefunctions obtained from several
realistic NN potential models, namely Paris [90], Bonn (OBEPQ) [86] and Bochum [93]. All of
these wavefunctions produce a trough in kSp(k?) at k ~ 3.5 fm~! (because the Bessel function is

negative at large kr), as well as a rapid fall-off with k for & R 6 fm~1. Also shown is the model of

2In terms of the total cross section for the photo-absorption of virtual photons on an unpolarised deuteron, o+ p,

the deuteron structure function is
K Q?
= — 0 ~*
4m20 Q2 402 " .
where K = 1/v? 4+ @2 is the flux of incoming virtual photons (in the Gilman convention), so that in the Bjorken
limit

Wb

2

Fp = gy*D.

Ao
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Figure 4.6: Vector meson dominance model of the double scattering mechanism.
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Figure 4.7: Deuteron form factor, as determined from several N N potential models. Also shown
is the parameterisation due to Franco & Varma [178] which was used in Refs.[139].

Franco and Varma [178], which was used in [82, 139], for which the form factor, parameterised by
a sum of Gaussians, has no large-k tail at all. The differences in the large-k (24 2 fm~1) behaviour
of the form factor arise from the various treatments of the small-» behaviour of u(r) and w(r). In
Fig.4.8 we also plot the Fourier transform of the deuteron wavefunctions for the different potential
models. At small momenta (large r) there is general agreement between the models, and the
differences only start to appear for p R 2 fm~1. The large variation in w(p) reflects the poor
knowledge of the D-wave component.

At Q% = 4 GeV? the VMD model shadowing predictions are given in Fig.4.9 for the various
model deuteron form factors. By far the largest contribution (~ 80%) to é (V) Fyp comes from the p°
meson. The magnitude of §() F3p(z) decreases with z because the lower limit of the k-integration

in (4.25), kpmin = kL, is an increasing function of z, and the integrand peaks at small values of

k (~ 0.7 fm™!). It is not surprising to see the differences in the calculated §V)F,p given the
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Bochum [93] NN potential models.
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Figure 4.9: Shadowing correction to the deuteron structure function within the VMD model. The
curves are evaluated using deuteron form factors from the Bochum, Bonn (OBEPQ) and Paris
potential models, as well as the parameterisation of Franco & Varma.
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Figure 4.10: Pomeron (zig-zag line) exchange model of the double scattering mechanism which
produces shadowing in deuterium.

variation in Sp evident in Fig.4.7. Because the form factor with the Paris wavefunction has the
‘deepest’ trough, the resultant §VIFyp is = 25% smaller for < 0.01 than with the Franco and

Varma form factor. The trough is also responsible for the antishadowing in the region z R 0.2.

4.2.2 Pomeron Exchange Contributions

With the VMD model, the spectrum of masses M includes only the lowest mass vector mesons.
For a complete description of shadowing, the large M% contributions must also be included. One
way to do this is simply to extend the VMD model by including higher mass vector mesons, and the
high mass ¢q continuum (as in the GVMD model). However, for reasons outlined in Section 4.1.3,
a parton-based description of the double interaction mechanism, in terms of Pomeron exchange (as
in Fig.4.10) is more efficient.

The contribution to the Fyp structure function from multiple diffractive scattering with P
exchange can be written as a convolution of an exchange-P function, fp(y), with the P structure

function of Eq.(4.8),

2
P Fap(e) = [ dy fp(y) Far(ar) (4.29)
Ymin
where
folv) = —3% = [ e Sp(e) (4.30)

and k2 = M?y%. Note that the function fp(y) should not be interpreted as a probability distribution
function, since there is no probabilistic interpretation of the double scattering diagram from which
it arises. Fig.4.11 illustrates the y-dependence of fp(y), including the 1/y divergence for y — 0.
The rapid fall off with y is testament to the very small contribution coming from the large-y region.

In formulating a complete description of shadowing which includes more than one mechanism

care must be taken to avoid possible double counting. Because of this concern some authors [140]
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Figure 4.11: y-dependence of the Pomeron function fp(y) as a function of y, with several different
deuteron form factors.

have restricted the Pomeron exchange process to the region of M% above the highest mass of
the vector mesons contributing to the VMD process, M3 > sz(o ~ 1.5GeV?, and consequently
have taken the lower bound on the integral in (4.29) to be ymin = z(1+ M% /Q?). The VMD
contribution, which is essentially a higher twist (1/Q?) effect, may compete with that part of the
diagram in Fig.4.10 which contains low-Mx single particle intermediate states. By keeping only
the leading twist piece of the structure function Fyp, this contribution can in principle be excluded
since it involves extra factors of 1/Q? from the electromagnetic form factors. (Although in practice
a decomposition of Fyp in terms of different twist components has not yet been done.) Nevertheless,
we can test the sensitivity of the numerical results to the cut-off procedure by varying M;z(o, say
from 0 to 2 GeV2. For low z we find a difference over this range of only some 5% of the total
P exchange contribution to Fp. For larger Q? the separation into separate Mx regions becomes
irrelevant since ¥, — « in the Bjorken limit.

Since the function fp(y) is independent of @2, the scaling behaviour of the P-exchange mecha-
nism will be determined by the scaling behaviour of the P structure function, and from Eqs.(4.10)—
(4.14) it is clear that 6(P) Fyp will be finite as Q2 — oo. The individual ‘box’ and 3P contributions
to §(P)F,p, with the deuteron form factor obtained from the Bochum wavefunction, are shown in
Fig.4.12 for Q? = 4 GeV?2. The dependence of §F) Fyp on Sp(k?) is illustrated in Fig.4.13. Again,
as in the case of the VMD model, the large-k, negative tail of the form factor produces a large (some
30-40%) difference between different models for z 2 0.05. For z & 0.2 the presence or absence of

antishadowing will be determined by the model deuteron wavefunction.
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Figure 4.12: Quark—antiquark box and triple-P contributions to the total deuteron structure func-
tion, with the D form factor calculated from the Bochum model wavefunctions.
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Figure 4.13: Deuteron form factor dependence of the P-exchange contribution to the structure
function of the deuteron.
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Figure 4.14: Double scattering diagram with meson exchange.

4.2.3 Shadowing by Mesons

Another potential source of shadowing arising from the double scattering mechanism is one which
involves the exchange of mesons, Fig.4.14. It has previously been suggested [136] that this can
lead to substantial antishadowing corrections to Fop(z), thereby cancelling some of the shadowing
produced by the VMD and P-exchange mechanisms. Using a non-relativistic formalism, the total

contribution to the deuteron structure function from meson exchange currents is written [179]
2
M Ep) = 3 / dy Fur(y) Fane(enr) (4.31)
M T

where M = 7,p,w,0,and y = k-q/p-q = (ko + k1)/M with zpr = z/y. The exchange-meson
distribution functions fas(y) are obtained from the non-relativistic reduction of the nucleon—meson
interaction,

&p &Pp’ Fiynn(k?)
(27)3 (k% —mi)?

. { ; S (e, ) Vaawy ¥(' ) }6 (v-2). a)

fm(y) = 4deqy My

The deuteron wavefunction is defined by

¥, ) = o= (u) - v ) 1 (4.33)

where u(p) and w(p) are its § and D-wave components, normalised so that [ dp p? (u?(p)+w?(p)) =

1, with p = p/p and p = |p|, and Sy, is the tensor operator: S12(p) =3 01 p 01 -p — 01 - 02. The
deuteron spin wavefunction is denoted by Xl‘Iz, where J, is the total angular momentum projection.
In (4.32), k? = k% — k?, where kg = Mp — /M? + p? — \/M?2 4 p'? is the energy of the off-shell
meson, and k = p — p’ is its 3-momentum.

In Eq.(4.32) the nucleon—meson interactions are given by [86]
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2
NN

Vann = —T-5 01 ‘koy-k (4.34)
32 k2 k2  o3-koy-k
2
VoNN = 9NN [1 + 52 T ’MZ oy - 024M2 + A
gpNprNN _l_cz_ ) E oy -k oy-k
T T om wo eyt T (4.35)
fonn : .
T A2 [—01'02 k’+o01-koy: ]
3q2 k2 k2 o1-kog-k
o 2 3q°  k*
VuNN = GuNN [1 T T T Pae T T e (4.36)
2 2
= 2 q k
VoNN = —95NN [1 “omet Wl (4.37)

where q = %(p + p’). Terms proportional to S - k x q, where S = 01 4 03, are omitted as they do
not contribute to far(y).

Evaluation of (4.32) requires the identities

1 1
LS Wi, ) U(BL L) = o [up) ) + w(p) w(r!) Pa(cosd) Pa(cos#)
Jz
+ ¢ dependent terms (4.38)
1
= 3 ;\Iﬁ (p,J2) 0102 ¥(p', J2)
12 Ui(p,J,) o1 -koy-kU(p',J,) = L {1 [k2 —2pp sinf sind ] u(p) u(p)
3 i ’ ’ 4r L3

- % [4 pp cosf cosf sin?8 + 4 p'’cos?d sin? ¢
- % (p® + %) Py(cos®) + 2 (p?cos? 8+ p'*cos® @) Py(cos ')

+ gpp' cos @ cos @' Py(cos 0')] u(p) w(p")
1

7 [4 p' p cos® cosf sin?@+ 4 p’cos?f sin?4
— % (p" + p?) Py(cosf) + 2 (p? cos? ' + p? cos? §) Py(cos 6)
+ gp' p cosf’ cos Py(cos 0)] w(p) u(p’)
1
-3 [(p cosf 4 p' cos8')? Py(cos) Py(cos’)
— 2 (p%sin?0 4 p'sin? 6') Py(cosb) Py(cosb')
+ 3 (pcos?8 sin?0 4+ p p’ cosf cos@ sin®@) Py(cosd’)
+3 (p'2 cos? @' sin? 0 +p' p cos# cos@ sin@') Py(cosb)
+ gpp' cosf cos® sin?@ sin’ 0'] w(p) w(p')} (4.39)
+ ¢ dependent terms.
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The terms in (4.38)—(4.39) which depend on the azimuthal angle (¢) vanish after integration. The
factors cps are due to isospin, and are equal to 3 for M = 7,p, and 1 for M = w, 0.

Note that the functions fas(y), just like the function fp(y) in the previous section, are not to
be interpreted as meson distribution functions (c.f. the functions farp in Chapter 3 which were
interpreted as virtual meson probability distributions) because a probabilistic interpretation cannot
be applied to the double scattering diagram from which they arise. Furthermore, since here we deal
with covariant kinematics, the use of the real meson structure function in the convolution formula
in (4.31) relies on the assumption of weak k? dependence in the function Fzps. In the next chapter
we shall argue why the convolution formula in a relativistic treatment of DIS from nuclei is invalid.
However, since our treatment of the meson-exchange currents is entirely non-relativistic, and the
total meson-exchange correction is small anyway, we shall assume that this formula is reliable in
this application. For the meson structure function, Fypr, we therefore take the parameterisation of
the (real) pion structure function from Drell-Yan production [101].

In our non-relativistic approach, we parameterise the M NN vertex form factor F, mnn(k?) by
a dipole form

A2, — m2.\?
Funn(k?) = (%) : (4.40)

In non-relativistic NN potential models, the high-momentum cut-offs Aps range from <1 GeVin
models with soft form factors [93, 95] to ~ 1.7 — 2 GeV when hard form factors are employed [86].
In principle, the meson—nucleon form factor should be universal, and the cut-off Aps that is used
in the deuteron should be the same as that used in Chapter 3 in the discussion on meson—baryon
vertices in lepton—nucleon DIS. However, since different formalisms are used in the two cases, it’s
not clear what, if any, relation exists between the two sets of form factors. We therefore evaluate
the shadowing correction from meson exchange currents for a range of cut-offs.

Fig.4.15 shows the individual meson exchange contributions to §MF, D, for the wavefunction
of the Bonn model, and with a universal dipole cut-off of Aps = 1.7 GeV for all mesons. As could
be expected, pion exchange is the dominant process. We also include the fictitious o meson, but
with a mass (=~ 800 MeV) that is larger than that used to represent 27 exchange in NN scattering.
Both of these produce antishadowing for small z. The exchange of vector mesons (p, w) cancels
some of this antishadowing, although the magnitude of these contributions is smaller. In fact, for
Ay X 1.3 GeV all contributions other than that of the pion are totally negligible.

Fig.4.16 shows the dependence of the total §M) Eyh on Aps for the Bonn model wavefunction.
There is approximately a factor of 2 difference between the amount of shadowing with soft (Apr = 1
GeV, lower solid line) and hard (Apr = 1.7 GeV, upper solid line) form factors. We also consider
the effect of the model momentum-space deuteron wavefunction on §ME, . Although the model
wavefunctions differ substantially at large momenta (p R 2fm™1 — see Fig.4.8), this variation will
be largely suppressed by the meson—nucleon form factor. The Bochum and Paris wavefunctions

are generally larger than the Bonn wavefunction, and this is reflected in a larger §M Fyp.
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Figure 4.15: Comparison of individual meson exchange contributions to the deuteron structure
function, for the Bonn (OBEPQ), Bochum and Paris wavefunctions, with a form factor cut-off of
Ay = 1.7 GeV. Note the mass of the effective o meson is taken to be = 800 MeV.
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Figure 4.16: Deuteron wavefunction and form factor cut-off dependence of the total meson-exchange
correction. The Bochum and Paris curves are evaluated with Ay = 1.3 GeV, while the Bonn
(OBEPQ) curves have Ay = 1.0,1.3 and 1.7 GeV, with the larger cut-offs giving more overall
antishadowing.
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Figure 4.17: Comparison between the VMD, Pomeron and meson exchange corrections to Fyp at
@? = 4 GeV2. All curves are calculated with the Bochum wavefunction for Ay = 1.3 GeV.

We also comment here on the issue raised in the previous section, namely double counting, this
time between the meson exchange and the other mechanisms. It should be clear that since the
P contribution involves the exchange of vacuum quantum numbers, there will be no interference
between this and the exchange of pseudoscalar pions or vector mesons. The scalar o meson,
introduced as an effective description of two-pion NA excitations, does not correspond to actual
exchange of a spin 0 particle. By restricting the meson structure function to only the leading twist
component (our Fyps is determined at Q2 = 25 GeV? where this assumption seems reasonable)
we may view the VMD process as a description of higher twist effects. Still, imposing any low-
Myx cut on the meson exchange term has numerically insignificant consequences, largely because

Fan(a/y) = 0 as y — a.
4.2.4 Consequences for F,, and the Gottfried Sum Rule
The total deuteron structure function is defined by
Fp(z) = ng(:p) + Fon(z) + 6 Fop(2) (4.41)
where the shadowing correction is a sum of the VMD, Pomeron and meson exchange contributions,
§Fyp(z) = WM Fp(z)+ 6P Eyp(e) + 6M Fyp(e). (4.42)

In Fig.4.17 we compare the contributions to é F3p(z) from the three mechanisms considered. For
z < 0.1 the magnitude of the (negative) Pomeron/VMD shadowing is larger than the (positive)
meson-exchange contribution, so that the total § F5p is negative. The fact that shadowing is present

in this region of z does not depend on the model deuteron wavefunction. For larger z (= 0.1 —0.2)
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Figure 4.18: Dependence of total shadowing correction on the deuteron wavefunction and the
meson—nucleon form factor cut-off Aps. For the Bochum and Paris curves Apr = 1.3 GeV, while
the Bonn curves are calculated with Aps = 1.0,1.3 and 1.7 GeV, with the largest cut-off giving the
smallest overall shadowing correction.

there is a small amount of antishadowing, which is due mainly to the VMD contribution. The
dependence of the total shadowing correction §F;p on the deuteron wavefunction and on the
meson—nucleon form factor is shown in Fig.4.18 for Q% = 4 GeV?2. We point out that the magnitude
of § F5p is about 4 times smaller {180] than that obtained in Ref.[82, 139], and about 2 times smaller
compared with the result of Ref.[140]. The most important reasons for our smaller results are the
inclusion of meson exchange contributions which produce antishadowing at small z, and the use of
realistic deuteron wavefunctions which lead to smaller P exchange and VMD contributions.

Finally we can consider the consequences of the shadowing correction for the neutron structure
function. From the NMC measurement of Fy, and Fpp [65, 181], the neutron structure function
was extracted assuming no nuclear effects in D, so that

Fop (1 = (Fap/Fyp — 1))
(1+ (Fp/Fap - 1))

The actual differenice between the p and n structure functions should be, after the shadowing

2F2p - FQD = (ng . FQn)NMC. (443)

correction is included,

Fypy— Fy, = (Fop — Fon)nme + 6F2p (4.44)

and this is shown in Fig.4.19. The dotted line is a best fit to the NMC data, and includes the small-
z extrapolation used in [65] (see Eq.(3.88)). The other curves include the shadowing corrections
to the NMC data parameterisation. It is not clear whether Fy, — Fj, will become negative at
z < 0.004, and it will be interesting to see whether this cross-over occurs when additional data at

smaller £ become available.
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Figure 4.19: Proton—neutron structure function difference with shadowing corrections to the NMC
data at Q2 = 4 GeV?. The dotted line is a parameterisation of the data.
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Figure 4.20: Shadowing corrections to the Gottfried integral Sg(z,1). The corrections to the NMC
data parameterisation (dotted curve) are for the Bochum, Bonn (OBEPQ) and Paris deuteron
wavefunctions, and the meson antishadowing correction is calculated with Ajs = 1.3 GeV.
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q_g\“" 1,?“‘
Model 5 8 | $6(0,2min) | Sc(@minr1) | S6(0,1)  (Z i
NMC [65] 0.21 0.62 | 0.011 0.229 0.240 £+ 0.01 \ ‘\E’BR;\'FS
0.109 0.5 0.014 0.243
Bochum (Ajr = 1.3GeV) || 0.043 0.5 | 0.005 0.222 0.227
Paris (Ay = 1.3GeV) 0.052 0.5 | 0.007 0.224 0.230
Bonn (Ap = 1.3GeV) [ 0.011 0.5 | 0.001 0.215 0.217
Bonn (Ap = 1.0GeV) 0.002 0.5 | 0.000 0.214 0.214
Bonn (Ap = 1.7GeV) 0.019 0.5 | 0.002 0.217 0.219

Table 4.1: Small-z extrapolation parameters for Fy, — Fa,(= aa”) and the contributions to the
Gottfried sum from different z-regions.

The shadowing corrections to the Gottfried integral

Sa(z,1) = /:w d (logz') (Fpp(z’) — Fan(2')) (4.45)

are shown in Fig.4.20 for 2 down to Zy,;n, = 0.004. The only noticeable effects appear at very small
z (z  0.01), and are largest for the Bonn model wavefunctions.

In Table 4.1 we give the values of Sg including shadowing corrections, and also the z < Zsmin
extrapolation parameters (Iyp — Fop — az?). For simplicity we take § = 0.5, and adjust o to
achieve a smooth transition between the & > Tpmin and z < ZTns, regions. The overall correction
to the NMC value for S¢(0,1) is found to be between —0.010 and —0.026. This is to be compared
with between —0.07 and —0.088 obtained in [82, 139, 169].

Having obtained the corrected values for Sg, we can now examine the consequences for the
question of flavour asymmetry in the proton sea. Despite the model-dependence of the total shad-
owing correction, we can conclude that the experimental value for S¢ should be lowered from 0.24
to =~ 0.22 when the ‘true’ neutron structure function is used. Within the model of the previous
chapter such a decrease can easily be accommodated by increasing the Pauli blocking correction
from Py =~ 0.1 to ~ 0.15, if the meson—baryon form factor cut-off is kept at the same value
(A = 0.7 GeV). Of course a larger A could also produce a smaller Sg, but, as we saw in Chapter
3, increasing A would also produce a depletion in Fy, — Fy, at intermediate z, together with an
increase at small z. This would be contrary to the behaviour of the shadowing-corrected proton—
neutron structure function difference seen in Fig.4.19. A reduction of Fy, — Fy, at z < 0.3 can
only be explained by a larger Pauli blocking correction, such as the one required to reproduce the
corrected S¢.

In Fig.4.21 we also show the ratio of neutron structure functions with and without shadowing

corrections,

Fy, §Fap (1 + (Fon/ sz)NMO) (4.46)

= 1
(Fan/Fap)nMc

(Fon)NMmC - Fp
where the NMC neutron/proton ratio was defined as (Fan/Fap)Nmc = Fap/Fap — 1. There is an
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Figure 4.21: Ratio of neutron structure functions with and without shadowing corrections at Q2 = 4
GeV?. The meson exchange current contribution is evaluated with Apr = 1.3 GeV.

overall 1 — 2% increase in the neutron structure function due to shadowing for z 2 0.01. As a
fraction of the total Fyp(z) [65], the shadowing correction thus amounts to (0.5-1.0%, 0.4-0.8%,
0.0-0.3%) at = = (0.004,0.01,0.1), while the antishadowing is less than 0.2% of Fp at z = 0.2.

Finally, we illustrate in Fig.4.22 the dependence upon Q2 of the total shadowing correction,
6Fyp(z,Q%). As expected, the VMD term vanishes rapidly with increasing Q?, leaving the two
scaling contributions from P and meson exchange to largely cancel each other for Q? ~ 25 GeV?2.
However, we should add a note of caution about comparing shadowing corrections at very large
values of Q2. In the parton recombination model [182-184] the fusion of quarks and gluons from
different nucleons introduces additional terms [182] in the equations governing the Q? evolution of
the parton distributions. At very small z and large @2, such as those attainable at the DESY ep
collider HERA, this can lead to significant corrections [140] to the §Fyp(z,Q*) evolved without
these terms, although the exact magnitude of these is sensitive to the small-z behaviour of the input
nucleon gluon distribution. For the moderate range of Q% and not too low z values in Fig.4.22,
however, we expect the indicated @2 behaviour to be reliable.

To suminarise, we have estimated the nuclear shadowing in lepton—deuteron DIS from the
double scattering mechanism in Fig.4.5. Our approach is similar to that of Refs.[140] and [139], in
describing the interaction in terms of the VMD model, together with Pomeron exchange at larger
M?%. However, we have also included contributions from the exchange of mesons which eflectively
cancel as much as half of the shadowing from the VMD /P-exchange mechanisms alone. Numerically,
there is some dependence on the model deuteron wavefunction, and also on the meson—nucleon
form factor for the meson-exchange process. The net effect is a S 1% reduction of Fyp for z ~

0.004, or equivalently < 2% increase in the neutron structure function over the uncorrected F,.
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Figure 4.22: Dependence of total shadowing correction on Q2. The mesonic correction is calculated
with the Bochum D wavefunction and Ay = 1.3 GeV.

Consequently, the shadowing correction to the Gottfried sum S¢(0,1) is between —0.010 and -
0.026 (or between 4 and 10% of the NMC value), which is about 5 times smaller than in previous
estimates, but still not negligible. Nevertheless, it seems clear that the shadowing correction will not
alter drastically our conclusions from Chapter 3 about the mechanisms of SU(2) flavour symmetry
violation in the proton sea.

To accurately test the descriptions of shadowing in the deuteron it is necessary to obtain model-
independent information on the neutron structure functibn at low . Even at HERA energies this
is not possible with electron scattering alone. However, when combined with high-precision data
from neutrino—proton experiments the individual flavour distributions can be determined, and
the neutron structure function inferred from charge symmetry. For this to happen, however, the
statistics on the neutrino data need to be improved, and the range extended into the smaller-
2 region. In the meantime, one can still test the validity of the model used in this section by
examining other processes, such as shadowing in heavy nuclei. By now a large body of data has
been accumulated for the nuclear structure functions, including at small z. In the next section we
therefore extend the above model in a calculation of the shadowing corrections to nuclear structure

functions, and compare this with the latest high-precision CERN data.
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4.3 Shadowing in Heavy Nuclei

With the help of the multiple scattering expansion in Section 4.1.1 one can easily extend the above
model, based on the two-phase hadronic (low Q?) and partonic (high Q?) picture, to calculate
the shadowing corrections to structure functions of heavy nuclei. One obvious difference here is
the presence of additional terms in the multiple scattering series, when only two terms existed for
deuterium. Another difference is the nuclear wavefunction. For the deuteron this is now fairly
well determined, however, for heavy nuclei we are forced to use nuclear matter density functions to
describe the distribution of nucleons in the nucleus.

As well as the VMD and Pomeron exchange contributions, in the deuteron we also found that
taking into account meson exchange currents produced a non-negligible correction to the total
F;p. We may also think of calculating the same meson-exchange contributions to the nuclear
structure function, Fy4. Models of the nucleus in which meson effects are explicitly taken into
account when calculating nuclear structure functions have been considered, for example, by Berger
et al. [76], Ericson & Thomas [125], Kaptari et al. [185] and others. In the model of Ref.[125], it
was suggested that a larger pion cloud in the nucleus, compared with that associated with a free
nucleon, could produce a small enhancement of the nuclear to nucleon structure function ratio in
the region ¢ ~ 0.1. However, the conclusions there were strongly dependent upon the Landau-
Migdal parameter, which characterises the strength of the short-range repulsive NN, NA and
AA interactions. In calculating the meson-exchange corrections to nuclear structure functions,
one would also need to include such excitations. In view of the difficulty in reliably calculating
these effects in nuclei, we shall follow the ‘conventional’ approach and compute the contributions
from VMD and Pomeron-exchange models alone. Since there are now high-statistics data on the
shadowing of nuclear structure functions, a failure of these to reproduce the experimental results

could then perhaps be seen as evidence for the presence of other mechanisms.

4.3.1 Nuclear Matter Density

The complete Glauber scattering series can be computed if we know all of the n-body nuclear
density functions for each n-body scattering diagram, up to and including the diagram in which all A
nucleons participate in the scattering. This last term will give a shadowing correction proportional

to [186, 156]
—Al Re/ d*b dz...dza p(A)(b,zl, ey 24) explikr(z1 — 24)] (4.47)

where p(4)(b; 2, ..., 24) is the A-body nuclear density function [148]. Following Foldy & Walecka
[187], the complete A-body density can be expanded in terms of single body densities p(b, z;) and

two-body correlation functions A(b, z;, 2;),

pW(b, 21,y 24) = [Pal> = p(b,zg)--p(b,z4) + Y A(b,21,22) p(b,2) - - p(b, 2)
perm
+ Y A(b,z1,23) A(b, 23,24) p(b, 25) -+ p(b,24) + -+ (4.48)
perm
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The two-body correlation function is defined by
A(b,zi,2) = pPB(b,z,2) — p(b,z) p(b,z) (4.49)
where p(?) is the two-body density function, normalised so that

/d3r2 pA(r1,r5) = p(r1) (4.50)

while the single particle density p has normalisation

/dSr p(r) = /dzb dz p(b,z) = 1. (4.51)

Keeping only the first term in pA) (i.e. no correlations) corresponds to an independent particle
model. In principle the effects of all two-body correlation terms in (4.48) could be included. In
previous calculations of scattering from nuclei it has been found that the two-body correlation
terms introduce ~ 10% corrections to the single particle density approximation. Although we do
not expect the effects of two-body correlations to be large, we shall nevertheless include them in
our calculation. However, since we consider nuclei no heavier than “°Ca, we shall neglect terms of
order A2. (Essentially nothing is known about the size of the three- and higher-body correlations
in real nuclei, although one would reasonably expect that the effects of many-body correlations
are not large in comparison with the two-body terms.) In this case we only need to calculate the

two-particle density function p(2), which we can write in the form 3

pA(b,z1,25) = Ne p(b,z) p(b,z) (1—-C(22 —21)) (4.52)

where the function C(z; — z1) must take into account the short-range repulsion of the NN force,

1 0 and
C(r)—>{ awrmE ol (4.53)

0 asr— oo.

Such a behaviour can be modelled, for example, by
3j1(h7(22 . 21)))2
Clzg— ) = (——- 4.54
( 2 ) I‘.’,(Zg _ zl) ( )
where j; is the Bessel function, and k = 3.6 fm~! is chosen to reproduce a ‘hole’ in the two-body
density which is ~ 0.5 fm wide (at 1/2 maximum density).
For the single particle nuclear density, as a first approximation we may consider a constant

density function,
polb,z) = p% B(r* — BY) (4.55)

where 72 = b2 4 2% and p% = 3/(47r3 A), and where R4 = 1o A'/? is the nuclear radius with
ro ~ 1.2 fm. However, for heavy nuclei (A 2 16) the Woods-Saxon (or Fermi) density is known to

be a better approximation,

_ -1
pws(b,z) = plys [1 + exp (@)] (4.56)

Equivalently, we may define A(b,z1,22) = —p(b, 21)p(b, 22)C(22 — z1), so that the two-body density becomes
p® = p(b, z1)p(b, 22)(1 — €(z2 — 71)) where € is now related to € by € =1 — N¢(1 - C).
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where ¢ = 0.57 fm the surface thickness parameter, and the central density is normalised so that

3 m2c? =
D em—m——— = — 4.57
Pws 4rrd A (1 * ngb) ( )
where Rpp = (207)'/3 7y is the radius of 27 Pb. The Woods-Saxon radius, Ry s, is then found by

solving the equation

f(Rws) = 2 (k) (4.58)
where
=1l
F(Rws) = (ﬁ) (1+ Z;Z) . (4.59)
This can be solved analytically to give
Jo] 78c8 (32 e w2c? ¢ 8c8 (2 i
Rws = (5 + 97 + 7 == + (5 i o7 + Z) (4.60)

where 8 = Ard + An2c?ro/(207)2/3.
For light nuclei (A N 16) the Woods-Saxon density is not a good approximation, and in this

case a harmonic oscillator (shell model) density is more appropriate,

pro(b,2) = Ao (1+(A; 4);—;) exp (~12/3) (4.61)

where the shell model radius is Rs = 1/2/5 R4, and the normalisation constant is

Mo = 5 (ViRs) ™. (4.62)

In Fig.4.23 we show p(?) with and without two-nucleon correlations, for an A = 40 nucleus.

Note that the curves are not to scale, as we merely highlight differences between the shapes.

4.3.2 VMD Model of v*A Scattering

Because of the finite energy of projectile beams (and hence energy transfer to the nucleus), much of
the data on nuclear shadowing at low z taken so far has been at low and intermediate @? (between
~ 0.1 and 10 GeV?). In this kinematic region we expect that there should be non-negligible
contributions from the scattering of vector mesons off nuclei. From the discussions in Sections 4.1.1
and 4.1.2 the contribution to the nuclear structure function from the double scattering diagram in
the VMD model is

) ,
W E@e) = L Lediss Y
24() = ;fﬁ(HQwM%P (4.63)

where from (4.47) we have

— ’ 2
boya = _w'/dzb dz1 dz 6(z5 — 71) pP(b, 21, 2) coslkr(ze —z)]. (4.64)
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Figure 4.23: Two-particle nuclear density functions, p(J(r) = p®(b = 0,21 = 0,2 = r), for
constant (dotted), Woods-Saxon (solid) and harmonic oscillator (dashed) single-particle densities,
with and without two-nucleon correlations. The curves for the three densities are in arbitrary units,
as we merely emphasise the shapes.
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Figure 4.24: Q? dependence of the shadowing correction to the nuclear structure function in the
VMD model for A = 40 and p(®) = p2.
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In the model of Ref.[188] the possibility of reabsorption of the vector meson intermediate state
while it traverses the nuclear medium was also considered. Classically, one would expect an incident
wave to be attenuated according to exp (— [ dz/L), where L is the classical mean free path [148].
In [188] the reabsorption in DIS was modelled by introducing an additional exponential factor
exp (——% [ dz/LV) in Eq.(4.64), where Ly = (ovn p(b,2))~! is the mean free path of the vector
meson in the nucleus. Numerically, we find that the inclusion of this contribution has very little
effect upon the final nuclear to nucleon structure function ratio, which can be seen as an indication
that the higher order rescattering terms in the Glauber series do not contribute significantly.

From Eq.(4.63) it is clear that the vector meson dominance contribution is a non-leading twist
effect. To illustrate the strong @)*-dependence of the shadowing predicted in the VMD model, we
plot 6(V)Fy4, normalised to one nucleon, in Fig.4.24 for A = 40 and p(?) = p%. The VMD model
predicts maximum shadowing at @% ~ 1 GeV?. For Q% — 0 the shadowing disappears due to the
vanishing of the total F;4 (as required by gauge invariance — see Eq.(4.67) below). However, for
large Q2?, 6(V) Fy 4 also vanishes due to the presence of the vector meson propagators in (4.63). The
amount of shadowing generated via this mechanism dies off fairly rapidly between Q2 ~ 1 and 10
GeV2, so that for Q2 R 10 GeV? it is almost negligible. Experimentally, however, the data [138]
indicate that the deep inelastic nuclear cross sections are shadowed even at quite large Q% (~ 10
GeV?). Even though the VMD contribution will be important when comparing with the small-Q2
data, clearly for large Q% the VMD model cannot be the whole story.

4.3.3 Pomeron Exchange in Nuclei

In the deuteron, because of the scaling property of the Pomeron structure function, the Pomeron
exchange contribution to § F3p was finite in the Bjorken limit. Therefore it is quite likely that the
same mechanism is also responsible for the scaling of the nuclear shadowing. The total contribution

from P-exchange to the shadowing correction to Fy4 is
P 2 A 2
6P Fa@,Q") = [ dy fa(y) Fap(ep, @) (4.65)
Ymin
where Fpp(2p,Q?) is the Pomeron structure function, defined in Section 4.1, and fa(y) is given by
[186]
A(A-1)8

——(—%/dzb dz dzy p(z)(b,zl,zz) cos [kr(z2 — #1)] - (4.66)
In Ref.[188] the rescattering of the diffractively produced system within the nucleus was mod-

faly) =

elled by introducing a factor exp (—% [ dz/LX), where Ly = (oxn p(b,2))7! is the mean free
path of the hadronic state X inside the nucleus. The assumptions made are that, as in the VMD
case, the total cross section, ox v, for the interaction of the state X with a nucleon is independent
of the mass Mx, and that non-diagonal transitions are suppressed. For oxy &~ 20 mb, as suggested
in [188], the effects of this are quite small, and can for practical purposes be neglected.

For fixed v, the small z region corresponds also to small Q2. At current energies, this means

that probing structure functions at ¢ ~ 0.001 can only be done for Q? <01 GeV?, which is well
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below the scaling region. Since the Q? dependence of Fyp is determined by the behaviour with Q?
of F55¢ (see Eqs.(4.10) & (4.11)), we therefore need to extrapolate the nucleon structure function
down to low Q2. While a rigorous theoretical basis for quark distributions at very small Q? is
still outstanding, there have been several phenomenological parameterisations of Fy, in this region

(166, 189, 190]. Clearly any low-Q? parameterisation must incorporate the photoproduction limit,

4m20
IvN = " Fyy — o as Q% — 0. (4.67)

The simplest, and most common, way to include this low-Q? behaviour is to introduce a factor
(Q2/(Q? + M3))'*¢, with the parameter € taken from Regge theory. More recently, Schuler and
Sjostrand [152] made a detailed study of the low-z and low-Q? extrapolation. The low-Q? region
in their analysis was modelled by demanding an analytical behaviour of the modified distributions
in the z,Q?% — 0 limit for fixed z/Q?%, with the normalisation and the mass parameter M% fixed
by matching the photoproduction and deep inelastic regions. For z > z¢ = 0.0069, their small-Q?

extrapolation was taken as

2 /2 1te
quea(xan) = (%) $QSea($7Q(2)) (4'68)

and

1+€
o _ [(&EN\C 1
$QSea(~TaQ ) - <$0> (1+M723/Q2>
X [Ns (1+M%/Q3)1+6 Togsea(To, Q2) + 0.044(1— N,) a:(;E] (4.69)

for < xg, where Ny = 1 — (1 — z/z0)(1 — Q%/Q2), and the other parameters are Q% = 5 GeV?,
M3 = 0.38 GeV? and € = —0.08. In Fig.4.25 we plot 2¢seq (2, Q?) (using the input parameterisation
from Ref.[51] at large Q%) as a function of z and Q2.

The dependence of §(P)F,4 on Q2, shown in Fig.4.26, is then solely dependent on the Q2
dependence of the sea quark distributions. Below Q? ~ 0.5 GeV? the shadowing is almost negligible
for all but the very small z values. At higher )%, however, the larger nucleon sea quark distribution
gives rise to a large shadowing correction, so that above Q% ~ 5 GeV? the P-exchange component
exceeds the VMD component (see Fig.4.24), and starts to dominate for Q* R 10 GeV2.

The combined effect of the VMD and P-exchange mechanisms for Q2 between ~ 0.5 and 10
GeV? is that the total shadowing correction varies little in this region — see Fig.4.27. Calculating
the P-exchange contribution at larger Q2 would give rise to an increasing 6(P)F,4. However, as
pointed out at the end of Section 4.2.4, the recombination of partons from different nucleons in the
nucleus may modify [182] the QCD evolution equations governing the behaviour of the sea quark
distributions with Q2 (see also Section 2.1.4). At very small z and large Q2 this can introduce
non-negligible corrections [140, 188], although these will also depend on the small-z behaviour of
the input gluon distribution in the nucleon. However, since the data on shadowing at small z were
taken at low to moderate (? (5 10 GeV?), the exclusion of this will not play a major role in our

region of interest.
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Figure 4.25: Nucleon sea quark distribution as a function of @2, for z = 0.001,0.01 and 0.1. The
input distribution is from Owens [51], modified to include the small Q% extrapolation of Ref.[152].
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Figure 4.26: @2 dependence of the shadowing correction to the nuclear structure function from
Pomeron exchange for A = 40. The parameters are as in Fig.4.24.
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Figure 4.27: ? dependence of the total shadowing correction to the nuclear structure function
from VMD and P-exchange, for A = 40. The parameters are as in Fig.4.24.

4.3.4 Comparison with Experiment

Finally we can consider the shadowing effect on the ratios of nuclear to deuteron structure functions.
Since the magnitude of the shadowing correction to the D structure function was found to be very
small (the total correction per nucleon in D, Fig.4.18, is ~ 20 times smaller than that in “°Ca,

Fig.4.27) we shall use the isoscalar nucleon structure function in our comparisons,

Foa (ZFyp+ (A= Z)Fy + 6F4)
A F2N - A F2N

(4.70)

where Fon = (Fop + Fon)/2, Fon, = Fop — Fp, and 6854 = My + 6P Ky, Tn calculating this
ratio, for F3, and Fop we use the recent parameterisation from Ref.[191] (valid down to Q? = 0.5
GeV?),

(02 /A2 B(z) ;v

(and similarly for F,p) where the functions A, B and C are expressed as series in x with the
coeflicients determined by fitting the combined NMC [191], SLAC [192] and BCDMS [193] data.
Fig.4.28 shows the model predictions for a Z = 20, A = 40 nucleus, compared with the high-
precision data on the °Ca to deuteron structure function ratio from the NMC [138], as well as
with the previous EMC data [137]. Note that the data at each z are taken at a different average
value of Q2%, ranging from (Q?) = 0.6 GeV? at z = 0.0035 to (Q%) ~ 10 GeV? at z = 0.1, and
the curves in Fig.4.28 have been calculated at the specific experimental values. Not surprisingly,
at small z the largest contribution is from the scattering of vector mesons, which is about twice as
large as the Pomeron exchange contribution. When both mechanisms are included, we find very

good agreement between model and experiment over the entire range of z between = 0.004 and
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Figure 4.28: Shadowing of the “°Ca structure function. The dashed curve is the P-exchange
contribution, while the dotted is the VMD model prediction, and the full curve represents the sum
of the two. The data are from the EMC [137] and the NMC [138].

0.1. The curves are calculated using the Woods-Saxon single particle density and the two-particle
correlation function in (4.54). To separate the low- and high-M% regions, and avoid any possibility
of double counting between the different mechanisms, we impose a cut of Mf( > M )2(0 = 1.5 GeV?
for the P-exchange contribution, as suggested in [186]. The sensitivity to the cut-off mass M )2(0 is
demonstrated in Fig.4.29. At & < 0.01, for no cut-off (M%, = 0) the calculated curve (dashed) lies
below the one with a cut-off of M% = 1.5 GeV? (solid), however there is little difference between
the curves at larger . By way of illustration, in Fig.4.29 we also show the effect of using a constant
single-particle density rather than a Woods-Saxon shape. With a constant density the amount of
shadowing is generally predicted to be some 25-30% larger. It is also evident from Fig.4.29 that
the role of two-particle correlations (dotted curve) is not significant for “°Ca. It is apparent that
the best fit corresponds to the curve with the most realistic parameters (solid curve).

As mentioned, at the finite values of energy transfer v, the data at small z necessarily correspond
to lower Q2. Therefore the structure function ratios should be calculated at the experimental @2
values. In particular, owing to the non-negligible )2-dependence of shadowing at small @2, it would
seem inappropriate to compare the small-z data points with structure function ratios calculated
at some fixed @2, as appears to have been done in [169, 153]. Indeed, the results at fixed Q2 are
quite different from those at the correct Q2 values, as evident from Fig.4.30. Furthermore, it seems
puzzling how one can draw conclusions about the merits of models of shadowing from comparing
the data with predictions at fixed Q2 [153].

The NMC also measured the 2C structure function, and this is reproduced in Fig.4.31, together
with the model predictions. Again, the VMD model (dotted curve) predicts larger shadowing
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Figure 4.29: Shadowing of the “°Ca structure function. Solid line is the total shadowing correction
with the Woods-Saxon single-particle density, including two-particle correlations, and a cut in
M?% > 1.5 GeV? for the P contribution; dotted curve is with no two-particle correlations; dashed
curve is with no M% cut; and dash-dotted curve is for a constant nuclear density, with correlations
and an M% cut. The data are as in Fig.4.28.
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Figure 4.30: Ratio of 4°Ca to isoscalar nucleon structure functions, evaluated at fixed values of (2
(dashed and dotted curves), and at the experimental Q% values (solid curve).
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Figure 4.31: Shadowing of the 12C structure function. Solid line is the total shadowing correction
with the harmonic oscillator (shell model) single-particle density; dashed and dotted curves are the
VMD and P-exchange contributions; and dot-dashed curve is for a constant nuclear density. The
data are from Ref.[138].

corrections to Fpc than does the P-exchange mechanism (dashed curve). With the combined
effects, and with an harmonic oscillator (shell model) single-particle density, the data can be fitted
reasonably well (solid curve). With a constant nuclear density (dot-dashed) the model generally
predicts too much shadowing. (Note that we use the same radius parameter rg = 1.2 fm as for
%0Ca — increasing this to ~ 1.4 fm [186] would reduce the magnitude of shadowing to give even
better agreement.)

In all, the agreement with the data is very good when both the VMD and P-exchange mecha-
nisms are included. What is also clear is that at low z and low ©? most of the observed shadowing
comes from the scattering of low-Mx vector mesons, which serves to highlight the importance of
hadronic degrees of freedom at small Q2. We would expect, however, that as the energies of lepton
beams increase, and more small-z data taken at larger @2, the P-exchange process should become
more important. Such data would further enable us to test the relevance of the two mechanisms.

We should also emphasise that the above model of nuclear shadowing has very few adjustable
parameters. For the nuclear densities we use the most realistic shapes appropriate to the various
nuclei (i.e. Fermi distribution for large A nuclei, shell model for smaller A nuclei). Furthermore,
the nuclear radius parameter r¢ is fixed to be & 1.2 fm [194], even though the results could be
made smaller (or larger) by increasing (or decreasing) this by a few percent. The other parameter
to which our results are sensitive at very small z is the cut-off mass sz{o. At large @? the cut-off
is irrelevant, however at small @? in the small-z region this will be important, and we set this to

the value suggested in [186]. All other inputs (P structure function, total VN cross sections, etc.)
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are as specified in Section 4.2 in the discussion on shadowing in D. Therefore the good agreement
with the present nuclear data should give us some confidence in the model predictions for 6 F5p. In
particular, our conclusions in the previous chapter, in the analysis of the Gottfried sum rule and
the question of flavour asymmetry, should also remain intact.

One word of caution needs to be made about the multiple scattering formalism used in this
chapter. Along with the other assumptions inherent in the Glauber theory (i.e. eikonal approx-
imation, additivity of phase shifts, etc.), by assuming that the scattering from a nucleus can be
described in terms of scattering from individual free nucleons, this formalism ignores the effects
that may arise when the nucleon virtuality is taken into account. While for the deuteron there may
be some justification for neglecting the off-shell aspects of bound nucleons, since there the nucleons
are only weakly bound, this may not be the case for heavy nuclei. In the next chapter we shall
investigate in detail the off-shell properties of nucleons within a relativistic, covariant formalism,
and examine the implications for the calculation of nuclear structure functions. In particular, it
will be important to understand the consequences of taking into account the nucleons’ virtuality
in the region of interest for shadowing, namely at small z, although off-shell effects may well be
important for all . We briefly touched on this issue in Chapter 3, in the discussion of DIS from
virtual baryon components of a physical nucleon, where our findings forecast potentially serious
problems with the usual treatment of DIS from composite particles when relativistic effects are
included. In what follows we shall generalise this discussion, and see that a proper treatment of

the scattering from off-shell nucleons has far-reaching consequences.
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Chapter 5

OFF-SHELL EFFECTS IN DIS
FROM COMPOSITE PARTICLES

In the previous chapter we saw how at very small z the nuclear structure function Fy4 is modified
so that it no longer equals the incoherent sum of proton and neutron structure functions. In this
chapter we examine how Fy4 is affected by the fact that the nucleons are bound (and therefore
off-mass-shell, p* # M?). Extending the formalism introduced in Chapter 2, we develop a method
of calculating structure functions of composite particles, which will be relevant not only in nuclear
DIS, but also in any other process which involves scattering from off-shell nucleons [195].

While it is true that in most calculations of nuclear structure functions the off-shell aspects
of the nucleon have been neglected, a few authors have tried to take some of these into account.
In the earliest attempts (see, for example, Kusno and Moravesik [196]) a scheme called ‘off-shell
kinematics — on-shell dynamics’ was used, in which the Lorentz structure of the off-shell nucleon
tensor was assumed to be the same as for the on-shell tensor, and in addition the dependence on
p? was presumed to be negligible. Later, Bodek and Ritchie [79] used a similar method in order
to extract the structure function of the neutron from that of the deuteron. To account for the
nucleon virtuality, it was suggested there that the on- and off-shell structure functions could be
related via a shift in energy transfer, v — v + (p? — M?)/2, as long as the structure functions were
independent of ¢2 and s. In another calculation, Dunne and Thomas [80] used an ansatz in which
the matrix elements of the hadronic operators in the operator product expansion were assumed
to be independent of p?. The result was a nucleon structure function that was to be evaluated
at a shifted value of ¢*(— &(p?,¢%)¢?, where £ is the ¢? rescaling parameter). This result was
mathematically equivalent to the dynamical rescaling model of Close, Roberts and Ross [197] and
Nachtmann and Pirner [198], in which the shift in ¢? was attributed to a change in confinement
radius for nucleons bound inside a nucleus.

Virtually all of the conventional calculations have used, in one form or another, the simple con-
volution model [52], in which the bound nucleon structure function is folded with the momentum

distribution function of the nucleons inside the composite particle. The justification for the convo-
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lution approach has been the belief in the validity of the assumption that the form of the off-shell
nucleon tensor (I//I?,“,) is the same as the on-shell one [199]. However, faced with the findings from
Chapter 2 that in the Bjorken limit more than one operator is relevant, we could be excused for
having grave fears for this assumption. The appearance of additional operator structures essen-
tially arises from the presence of antiparticle degrees of freedom, which are unavoidable in any
relativistic treatment of DIS. Although relativistic calculations have also been attempted in the
past, for example by Nakano [200] and Gross and Liuti [201], these too suffer from the fact that
critical assumptions need to be made about the nucleon off-shell behaviour in order to derive the
convolution model. In fact, to our knowledge, all attempts to derive the simple covariant convo-
lution model result have ultimately resorted to some prescription to account for the fact that the
nucleon has p? # M?%. Without performing a full calculation which self-consistently accounts for
the nucleon virtuality, all such ad hoc prescriptions must remain in doubt.

Of course there do exist alternative, non-covariant, methods which don’t suffer from the same
off-mass-shell ambiguities that have plagued the covariant formulations. We saw in Chapter 3 that
time-ordered perturbation theory in the IMF has advantages when calculating virtual meson and
baryon distributions in the nucleon. The instant form of dynamics was also used by Johnson and
Speth [202] and Heller and Thomas [203] to calculate structure functions of nuclei (see also Ma
[204]). Since nuclear wavefunctions are not known in the IMF, these calculations were necessarily
performed in the target rest frame, although in this case the neglect of antinucleons is not strictly
valid. Alternatively, for the nuclear EMC effect Berger, Coester & Wiringa [76] used light-front
dynamics to calculate the nuclear structure functions. Here all particles are on-mass-shell, trans-
verse momentum and the light-cone variable p, = pg + pr are conserved at each vertex, while
p_— = po — pr, is not. Although this is an elegant method, its practical use is limited by the fact
that nuclear wavefunctions on the light-cone have not been calculated. A review of some of the
problems with all these approaches can be found in Refs.[205, 206].

The advantage of the covariant method in nuclear calculations is that Lorentz invariance is man-
ifest. Perhaps the main reason why a proper treatment of the off-shell problem has not been made
up to now has been the perceived complexity involved with including the extra antinucleon degrees
of freedom. However, having calculated the off-shell tensor WMV in Chapter 2, we can now use this
to describe any process which involves scattering from off-shell nucleons, without making unnec-
essary off-shell assumptions. In the formalism developed here, all of the soft, non-perturbative,
physics will be contained in a set of relativistic quark—mnucleon and nucleon—nucleus vertex func-
tions. Of course these are not calculable from first principles, and eventually phenomenological, or
model-dependent, input needs to be used to obtain the complete structure function of the physi-
cal composite particle. However, regardless of the non-perturbative inputs, we will show that the

model is gauge invariant and respects the Callan-Gross relation in the Bjorken limit.
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Figure 5.1: Scattering from an off-shell nucleon in a composite target. The functions A; describe
the nucleon—composite target interaction.

5.1 Structure Functions of Composite Particles

The usefulness of the truncated tensor V/[ZW in calculating deep inelastic structure functions of
composite particles will be made apparent in this section. Diagrammatically, the procedure will
be simply to attach the truncated (off-shell) nucleon legs to whatever nuclear interaction is being
considered, as in Fig.5.1. We will analyse this diagram in detail, with particular emphasis placed on
keeping the full p? dependence throughout the calculation. Even though this is the simplest diagram
out of the multiple scattering series of the previous chapter (i.e. the usual impulse approximation
for nucleons), and something that is usually thought to have been well and truly understood, we
will see that a rigorous, relativistic treatment of this leads to some surprising results.

Let us begin by writing the full (unpolarised) hadronic tensor for a composite particle, labelled
A, with momentum P. Since this tensor can depend only on P,, ¢, and g,,, it can be written, in

analogy with the hadronic tensor for a free nucleon in Eq.(2.4), in the form

WA(P,q) = Pru(P,q) W#(P,q) + Pru(P,q) Wi(P,q)
+ Pouw(P,q) WA(P,q) + Pru(P,q) WiH(P,q) (5.1)

where the functions VViA(P, q) are the transverse, longitudinal, and the gauge non-invariant struc-
ture functions of the composite particle, for 1 = T, L, G and H, respectively, and the P;,, are the
projectors defined in (2.5). Our goal is to identify the combinations of ‘truncated’ functions w
which contribute to these four functions. To do so we first need to relate the Lorentz structure of
V/T?W(p, q) to that of Wlﬁ,(P, q). Since the truncated nucleon tensor V/[\/,“, has spinor indices, the ¢*-
independent nucleon—target ‘blob’ in Fig.5.1 (into which the truncated nucleon legs are inserted)
will also be described by a 4x4 matrix in Dirac space. In general, this interaction can be written

as
I Ao(D, P) + 7o A%(p, P) + 0ap AS (p, P) (5.2)
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where Ag, Ay and A, are scalar functions of p and P. (Note that since we deal with spin-independent
processes we exclude 75 terms — these would be zero when contracted with the unpolarised tensor

T//I\/W.) The full tensor can then be written

MaWAPD) = [d5Te[(T Ao(p, P)+ 70 AZ(p, P)+ 0 45°(0, P)) Wanlp,0)]  (5.3)

where M4 and Mp are the masses of the target and target recoil systems, respectively. Implicit
in the functions Ag—A; is a sum over all excited target recoil states, or equivalently an integration
over the masses Mp weighted by some target recoil spectral function. In (5.3) dp is given by
d*p 278 ([P — p]* — M})
(2m)* (p? — M?)?
1 dy d*pr
(27)32(1 — y)(p® — M?)?

dp

(5.4)

where p? = p,p_ —pZ is the nucleon’s four-momentum squared, y = p-q/P-q = p4 /Py is its light-
cone momentum fraction, and the §-function has been used to fix p_ = M4 + (M2+p%)/(p+—Ma)
upon taking the imaginary part of the Compton amplitude in Fig.5.1.

To see which Dirac structures in V/I\/m,(p,q) are relevant for the structure of the composite
particle, we can project from the right hand side of (5.3) the contributions to each of the four
structure functions W/, as was done for the on-shell nucleon structure functions in Chapter 2. For
this purpose the utility of the projectors P;,, becomes apparent — in the Bjorken limit (in which
we always work) these projectors also satisfy the relations P/*(P,q) Py (p,q) = 2,1,1 and -1 for
t = T,L,G and H, respectively, for different momenta P and p, and furthermore they are still
orthogonal. Therefore, applying the projectors to the truncated nucleon tensor Wm,(p, ¢) gives the

following contributions:

1., _ _ . . .
PP Wa(pg) = W+ pWh+ Wi + aas0°¢® Wi

2
+ ﬁ (p2—2yp-15+y2P2) (W2 + pWE+ 4 WE + oupp” Wi ]
i [—If+yF+P%q(P-p-—yP2) ;I]W" (5.5)
~ [y pe 4 P.p;.yq- PZ)qg] oop® WO + [0 — yP*| oagg® W7
PL(Pq) Wulpa) = W2+ $Wh+ dWE + oappe® W
i @?2)2 (p* - 20p- P +9?P?) W+ PWE+ 4 W + cupp™e® W |
- 222'(1 ;{W‘g _ 2 q;qaagp"‘q wé ~ 2 Yy cro,ﬁP"‘qﬂ w7 (5.6)
PE(P,q) Wu(p,q) = WE+ pWs+ (W + 22’2” WS + 2 4 W
b ousp®d® [WG + 21;;%76 + 2@8] (5.7)
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1 v — — — P 2p-q — —
=5Pi (Psa) W (P, q) WS+ pWh+ Wh + p fW + 4 W*

_ 20 . q o~ .
+ Oapp®d® [W}SI + —I; quG + WS]

—— 2 ——
b oupPod [y - P—q_awg]. (5.5)

Although there appear to be many functions Wi in the above expressions, having calculated the
scaling behaviour of these functions in Chapter 2 we can automatically see which (if any) terms
survive in the Bjorken limit. (In fact, as we shall see explicitly below, to leading order in v only
four functions contribute to the transverse structure function of the composite particle, and overall
there are no contributions to any of the others.)

The transverse structure function of the composite particle is obtained by taking the trace of
the nuclear functions in (5.2) with the ‘projected’ nucleon tensor in (5.5), and integrating over the

four-momentum p of the nucleon,

My

My Wflé(Pa Q) = 7 Il"w(Paq) W;ﬁ/(Pa q)
N 4/d1'5{Ao(p,P) W2(p,q) + p- Ai(p, P) Wi(p,q) + ¢ Ai(p, P) Wi(p,q)

+ (Pa 48 — Dp 90)AS2(p, P) Wi(p,q) + O (:—2>} (5.9)

This result is of particular importance. Compare this with the expression in (2.37) for the on-shell
nucleon structure function. It is obvious that in that case a different combination of functions W*
appears to that in (5.9). This is aside from the fact that there are four scaling functions in (5.9)
compared with only three in (2.37) — for most vertices only Ao and A; will contribute, while A,
will arise typically as an interference term when more than one type of vertex is used. Therefore,
even for the simplest nucleon—nucleus interactions no part of the right hand side of (5.9) can be be
identified with the nucleon structure function, unless of course the functions A; conspire to give a
result proportional to the combination of the W* which appears in (2.37). This result has significant
bearing upon the convolution model of nuclear DIS, which has been a common feature of almost
every calculation of structure functions of composite particles until now. In the next section we
consider the consequences for the convolution model more fully, and exhaust the possible ways in
which this model can be obtained from the full result.

Before we do that it is also important to check that the above formalism is gauge invariant,
and that it respects the Callan-Gross relation (vanishing of the longitudinal structure function) in
the Bjorken limit. Taking the trace of (5.6) with the nuclear—nucleon interaction in (5.2) we find

that the longitudinal structure function is
Mo Wi (P,q) = My PL(P,q) Wi (P,q)
5 — Vpeq —~
s [ar{a- Mo, P) (Wi0,0) ~ “Lr2 Wo(0.0) (5.10)

o I 2p-¢ 1
+ (Patp — Pea)A5° (D, P) (Wi(p,Q) - 52 Twe(p, q)) + 0 (;)}
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Furthermore, for the non gauge-invariant structure functions, we find

Mg WE(P,q) = My PE(P,q) Wu(P,q)
_ — 2p.q— _
= 4/dp{q-A1(p,P) (Wcz;(p,q) + 52 W3 (p,q) + 2W4(p,q))

N . 2p-q— e
T (pags - ppaa)AS5(p, P) (Wg(p,q) + 2T, + wa(p,q))

o (L)) s

MA v
MA WI}}(Paq) = _T }}‘I(Pa‘I) Wu.u(P7Q)

- 4/d]’5{q-A1(p,P) (Wﬁz(p, q) + 25—2'%7‘73(1)&) + W4(Pa‘1))

+ (Patp — Psda) A5 (p, P) (VAVE(IJ, Q) + 3%1’/‘76(10, Q) + I’T’S(p,q)>
+0 (712>} . (5.12)

Substituting the relations between the non—transverse functions in (2.48) in the Bjorken limit the

right hand sides in Eqs.(5.10)—(5.12) become zero,
WA(P,q) — 0, i=L,G,H. (5.13)

Hence the Callan-Gross relation, as well as gauge invariance (q“Wlﬁ, = 0), are assured. This result is
true independent of the production mechanism of the off-shell particle, or equivalently, independent
of Ap—A;y. Hence it confirms the consistency of our model with the operator product expansion of

Chapter 2.

5.2 Convolution Model

The most common application of the convolution model has been in calculations of the deep inelastic
structure functions of nuclei. In the convolution model of DIS the structure function of a nucleus
containing bound nucleons is expressed in terms of a one-dimensional integral, over the nucleon
momentum, of the structure function of the bound nucleon with some momentum distribution
function of the nucleons in the nucleus [52]. Indeed, its simplicity of interpretation and ease of use
made it the standard approach to calculating structure functions of composite particles.

Although it has generally been understood [205] that the convolution model result relies on
some critical assumptions about the off-shell behaviour of the nucleon structure function, and the
form of the off-shell tensor itself, still the general philosophy has been that without evidence to the
contrary, the model could be used as an approximation to the full result. Having obtained the full
result in the previous section, we are now in the unique position of being able to critically test for
the first time these hypotheses.

Let us outline the usual arguments made in deriving the convolution model. First of all, the

assumption is made that the nuclear structure function can be written in factorised form, in terms
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of the nucleon structure function, WIN , and the nucleon distribution function, ¢,

Wi@,Q%) = [dy [dpr e(a0, 4, 40) WH(2/y,Q%pr). (5.14)

Furthermore, to obtain the one-dimensional convolution formula [52], in addition it is assumed that

WQN is independent of pr (or equivalently p?),
Wi@,QY) = [dyd) Wi (a/y,Q) (5.15)

where now the integral over py is absorbed into the definition of . The question is can the
factorisation assumptions be justified rigorously? To answer this, let us consider how (5.14) may
arise from the full result in (5.9). This can happen if any of the following cases are true:

e CASE (a): If all but one of the functions Wf‘ (1 = 0 — 2,5) are zero in the Bjorken limit.
Most authors adopt this choice, as this corresponds to assuming that the form of the off-shell
nucleon tensor is the same as that for a pointlike fermion, where only the 41//17121 term contributes
[52, 17, 199]. However, as was proved in Section 2.1.2, all four functions I//I\/} in principle scale in
the Bjorken limit, which means that the only way that these can vanish is if some of the functions f
in (2.47) are zero. But, as we saw in Section 2.3.1 (Eqs.(2.53) and (2.54)), even the simplest vertex
functions lead to a large number of non-zero functions f. In that case, even for massless quarks,
there were scaling contributions to both of the functions W% and V/I?% For more complicated ¢—-N
vertices, even more of the fs (and hence WIO« and VT/;;E as well) will be non-zero.

e CASE (b): If more than one of the V/I?% is non-zero, but the non-zero ones are proportional
to each other. For example, f; = M f; and all other fs equal to zero would imply W% = MW},
and so (5.14) would be obtained. In general, such a behaviour will not arise from quark—nucleon
vertices, as we found in Chapter 2.

e CASE (c¢): If the non-zero nucleon—target functions A; multiplying the I//I?,} are proportional
to each other. An example of this would be if Ay and A; were non-zero and related by Ay =
p-A1/M = q-A; M/p-q, which would then give (5.14). Such an assumption is made for example
in Ref.[201]. However, in general this will not be true unless the p? = M? limit is artificially taken
inside the functions A;. (We will give some examples of this when we consider specific processes in
the following sections.)

We emphasise that none of the conditions (a) - (c) are generally satisfied in a self-consistent,
fully relativistic, calculation. Consequently the convolution model interpretation of the nuclear
structure function in terms of bound nucleon structure functions is inconsistent within the covariant
formalism. This difficulty is intrinsically related to the presence of antinucleon degrees of freedom
in the relativistic calculation. While it may have been expected that effects such as final state
interactions, higher twists, etc. could also spoil the factorisation property of the convolution model,
it was not anticipated that the simplest, impulse approximation, result would also fail to satisfy
this.

Furthermore, in the absence of the convolution model, the common practice of extracting nu-

cleon structure functions from nuclear DIS data is not strictly valid. Indeed, the very concept of a
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‘bound nucleon structure function’ is ill-defined within a covariant formulation. While the failure
of the convolution model may appear to be an unwelcome complication, it is clear that in any theo-
retically self-consistent calculation which takes off-mass-shell effects into account it is an inevitable
one. Nevertheless, it should also be clear that what we do have now is a new and powerful method
of calculating nuclear structure functions, right down from the quark level. Indeed, this can be
seen as a strength of the formalism, since now we are forced to consider quark and nuclear degrees
of freedom in the one calculation.

In the following sections we shall use the relativistic formalism in several applications. Using
Eq.(5.9) we will also compare numerically the exact result with that obtained using the convolution
model, Eq.(5.15). We should also notice that the functions V/I\/} are independent of the nature of
the composite target (i.e. there are no P- or y-dependent terms in (5.5) in the Bjorken limit).
Therefore by selecting various targets (i.e. by varying Ag — Az) the relative contributions from the
functions ij could be probed, provided, of course, we know the functions Ag — A2 sufficiently well.
Conversely, once the V/I\/j« have been determined for one process, they may in principle be used for

all other processes.

5.3 Deuteron Structure Function

We examine nuclear DIS from a deuteron for several reasons. Firstly, it is critical to know the
size of the off-mass-shell corrections to the deuteron structure function if ultimately the nuclear
EMC data (which is in the form of ratios of nuclear to deuterium structure functions) is to be
used to draw conclusions about the differences between quark distributions in free nucleons and
those bound in nuclei. Secondly, in the absence of high-statistics neutrino data, the neutron
structure function is often inferred from the deuteron structure function using the naive assumption
of additivity of bound proton and neutron structure functions. As was discussed in the previous
chapter, the deviations from additivity due to shadowing can introduce small, but nonetheless
noticeable, corrections to Fy, at © — 0. Of course, due to Fermi motion the deuteron structure
function can also extend beyond zy = 1 (zx = (Mp/M) z) to ey = Mp/M. In this section
we investigate the corrections to Fyp due to off-mass-shell effects, which are not restricted to any
particular region of z.

The calculation of DIS from the deuteron is more straightforward and reliable than for other nu-
clei, since the relativistic deuteron—nucleon vertex is reasonably well understood. The treatment of
the deuteron recoil state is also simplified by the fact that most of the time this will be an on-shell nu-
cleon (since this can be expected to dominate contributions from processes with a recoil A or Roper
resonance, or a higher mass state). The structure of the general DN N vertex, with one nucleon on-
shell, was first derived by Blankenbecler and Cook [207], (N |¢n|D) « (§— M)™1TD e cal(P —p),
where the DN N vertex function is [208]

2% = 7. F(p) + (%Pa—pa) G(p) + ﬁ;MA{ H(p)Ye + %(%Pa—p(x)] (5.16)
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and C is the charge conjugation operator. The functions F, G, H and I arerelated to the 351, D, P,

and 3P; deuteron wavefunctions u,w, v, and v;, respectively, via the relations [209]

F(p) = m2Mp (2Ep - Mp) (u(|p|> - wllpl) @%m(llﬂ))

\/5
G) = =/3Mp (2Bp - Mp) (Ep]‘fMuup|)+M(”fj;+ = wgg')ﬂ/%mupn)
H(p) = nv2Mp =2 \[5 udip) (517)
M? (2FE, - Mp (2Ep — Mp)(Ep + 2M) w(|p|) V3M
Ie) = —xvaMp MD( o M) v T U”(lpl)>

where Ep = VM? + p?. The relativistic deuteron wavefunctions have been calculated, for ex-
ample, in the model of Buck and Gross [209]. In the numerical work below we use the wave-
functions calculated with a purely pseudovector m exchange interaction (although wavefunctions
with pseudoscalar and pseudoscalar-pseudovector combinations were also given in [209]). For the

spin-averaged deuteron hadronic tensor we therefore need to evaluate the trace (which appears in

Eq.(5.3))

S (A, P) SN, P) Te [(P7— 7+ M) CTR(0) ($+ M) W (p,0) (+ M) CTE(p)] (5.18)
A

where €¢*(, P) is the polarisation vector for a deuteron with helicity A, and f‘g =70 I‘gT vo- This
yields the following deuteron—nucleon functions AP :
p2 _ M2
APu? = M {4 F? [4 M? + 2 Mp — (p?- M?) (—2+ 42)]
MD
(»* — M?)
4M?

8FG[4M2 - M} +

4 2,2 _ .4
(10M2—M12)+2p2—|-3M 2 M7p p)]

Mp,

G? o 2pt — 2 M
+ = l(4M2—M%> - (p2—M2) (4M}3—5p2—11M2+—Mg—

_ %Tﬂljl[_mfﬂ (pz—M2)+4FH (—5M2—2M1%+p2+(—pf——M—%L2)i)
4 (p?_ (Zg)z) ((”2;4;”2) (-4P+8HI)+ 16 F 1
+16 G H +8G I (P'p_$2_p2))]} (5.19)
AD (P = 4 F? l(4 M? + 2 MB) po— (p* - M?) (%pﬁ (2—%—542)) Pa)]
- 8FG[(4M2 ~ M}) pa+t <(1—%—2j42))pa+§dg)]

= % [(4 M?* - M3’ pa - (v - M?) ((M,%-4M2) (2—”2]‘_4—5‘42) Pa

4 (pz _ (PM§)2) Paﬂ
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. oM ;lﬁw) {4 H? (p* — M?) [pa - (2 - p—zﬂ_lé”z) Pa]

2 _ aAr2 .p)2 P
D

M? M2 M2
2 2
_ 2 _p-M
e fins (o221 o]
(p* = M*)? 2 a2 (PP M)
+4FT|(3M*+p* - —— | po— PP+ M ————" | P,
( i i
2 Jw?
+8GH l(M2+pz—P.p)pa+ (pz—p%ﬁp.p> pa]
, (P-p)? |
+8G I (p‘! _ Mg) ) [~2pu + I’a]} (5.20)
ARp(P) = 0. (5.21)

With the nuclear functions AP now determined, we need only one more ingredient in order to
calculate the complete DIS process. In Chapter 2 we described DIS from an on-shell nucleon in
terms of the truncated nucleon functions Wi}, which in general are functions of g2, p- ¢ and also p?,
although the p? dependence in that case was trivial. For off-shell nucleong we naturally need to know
the specific dependence of W' (and hence of the functions f;) on p?. Within the model of Chapter
2 the functions f;(p, k) were related to the quark—nucleon vertex functions @f’v(k‘, p), whose k?
dependence was parameterised by a simple form that reflected the phenomenology of nucleon DIS.
In the nuclear case, for the quark—off-shell nucleon vertex we need to know in addition the p?
dependence of the vertex functions. In general this is more difficult to obtain because the p?
dependence is not restricted to the quark—nucleon vertices alone, but is also be present in the
nucleon—nucleus vertices (functions A;(p, P)). This in turn introduces an inherent uncertainty
in its determination. Nevertheless, since they are defined within the impulse approximation, the
functions @‘f’v(k‘, p) do not depend on the nuclear target — that information is contained entirely
in the functions A;. This means that if the p? dependence in <I>15’V(p, k) could be determined in
one process, the results could then be used in all other processes. Since for the deuteron the p?
dependence of the DN N vertex is known reasonably accurately through (5.18)—(5.21), we can
therefore use deuteron DIS data to constrain this universal p? dependence of the quark—mnucleon
vertex functions.

As for the real nucleon case, we restrict our discussion to valence quarks only, and use lepton—
deuteron data from NMC, BCDMS and SLAC [191] at intermediate and large  (z & 0.3), where
valence quarks dominate. Because of isospin symmetry (uD = dP) only a single experimental
quantity for the deuteron, namely Fyp = z(4uP + dP)/9 = 5z(u 4 d)/9, where uP, dP and u, d
are the up and down quark distributions in the deuteron and proton respectively, can be used to
constrain the ¢—N vertex. Thus we cannot differentiate between the p? dependence in &7 and that
in ®. (This is in contrast to the nucleon case, where two sources of information, u + d and d/u,

could be used to constrain both the scalar and vector ¢—IV vertex functions.) We can therefore
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choose a simple monopole form and use the same cut-off mass, A,, in both functions,
2 _ 2 M2 _ A2
‘I’ig(kz,l’z) = Ng (kz le )2 ( 2 2p)
(k - AS) (p = Ap)

(K= m?) (M?=A)
(W= RGP = A2)

(5.22)

oY (k% p*) = Ny (5.23)
A detailed comparison between the model and data for z < 0.3 would require separation of the
valence and sea components of Fop. Although in principle this could be done by analysing the
vD and »D DIS data, in practice those data suffer from poor statistics. Furthermore, typically
only the extracted quark distributions in the nucleon are presented [210], and these depend on the
theoretical assumptions made to treat binding and Fermi motion corrections.

Because of the additional p? dependence in (5.22) and (5.23), there is no reason for the nor-
malisation constants N§y to be the same as those determined by normalising the on-shell nucleon
quark distributions, Ngy in (2.65). Note that this would still be true even if the cut-off A, were
infinite (which would restore the functional form of ®%V to that for on-shell nucleons), since there

is ‘implicit’ dependence on p? coming from the k2-dependent part,

K = kyk.— k3 = zMp (p__ (PTMD(:;)_ - R) ~ k2 (5.24)

with p_ as given by the é-function in Eq.(5.4). Therefore we can also use the deuteron data to fix
the overall normalisation constants (e.g. to give baryon number two) for the p?-dependent scalar
and vector vertex functions, although obviously different normalisation constants will be needed
for different values of A,. After determining the normalisation constants for a particular A,, in
principle the same values may then be used in all other nuclear calculations. In practice, however,
the fact that we are only considering the six-valence quark (i.e. two-nucleon) component of the
total deuteron wavefunction, and neglecting other Fock states (e.g. with meson components) means
that the normalisation will not necessarily be automatic, so that N é’v will in general need to be
modified to give the correct normalisation.

In Fig.5.2 we compare the experimental Fyp at Q? = 10 GeV? with the calculated total valence
quark distribution in the deuteron, (5/9)z(uy+dy ), evolved from the same value of Q2 = 0.15 GeV?
(since we use the same spectator diquark masses) as for the free nucleon distributions in Chapter
2. Clearly there is very good agreement between the model calculation (solid curve) and the data
for z R 0.3. (The results obtained using the wavefunctions of the Bochum model [211], in which
there is no triplet P state wavefunction, are almost identical to those in Fig.5.2.) The result of the
full calculation is virtually independent of the value of A, used, after the normalisation constants
for the vertex functions have been determined by the baryon number conservation condition. This
is because the pr distribution is strongly peaked at small transverse momenta, pr ~ 25 MeV, so
that modification of the large-pr (or large-|p?|) behaviour by altering the form factor cut-off is
irrelevant. This in turn produces a y-dependence which peaks strongly at around y = 0.5, Fig.5.3,

which indicates that the deuteron is mostly a two-nucleon system. (We should add that the quality
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Figure 5.2: Valence part of the deuteron structure function: solid line is the full calculation with
A, = oo; dashed line is with the p? = M? approximation in Ag, 4; (with A, = o), with same
normalisation constant as in full curve; dotted line is the convolution model using only the V/I?,?
operator, together with the full nucleon structure function, normalised to baryon number one. The
curves have been evolved from Q2 = 0.15 GeV? to Q% = 10 GeV? for comparison against the
experimental Fyp(z, Q% = 10GeV?) [191].

of fit in Fig.5.2 could certainly be improved even more by choosing more sophisticated ¢—N vertex
functions than the very simple parameterisations in (5.22) and (5.23).)

Having calculated the deuteron structure function using the formalism in which the explicit
p? dependence is kept throughout, we now compare these results with those of earlier calculations
that have made use of convolution-like formulas. Firstly we can notice that by taking the on-
shell limit (p? — M?) for the kinematic factors in AF and AP in (5.19) and (5.20), we obtain
AP /M = p- AP /M? = q- AP /p-q, thereby satisfying condition (c) in Section 5.2 for the convolution
model (although this limit need not be taken in the functions F,G, H, I themselves). The result
of this approximation is shown in the dashed curve of Fig.5.2, where we have used the same
normalisation constants (for A, = o) as determined in the full calculation. The effect is a reduction
in the absolute value of the structure function, without much affect on the shape. By artificially
normalising the new distribution so that the final result conserves baryon number, this curve
becomes almost indistinguishable from the full result. However, since the p?> = M? limit is taken
in the nuclear part of the diagram, and thus does not affect the quark—off-shell nucleon vertex, it
would seem that in principle the same normalisation as in the full curve should be used.

In other calculations using the convolution model for deuterium, the most common prescription
[212, 213] has been to drop all terms but IV/I\/% in the expansion of V/VM,, (in Eq.(5.18)), and to
replace I//I\/jq by the experimental, on-shell structure function of the nucleon. In Fig.5.2 the dotted

curve shows the result after renormalisation to ensure baryon number two for the deuteron. It
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Figure 5.3: Shape of the y-distribution in the deuteron cross section o(z,y) for various =, where
[dy o(z,y) x Fap(z). (Shown is only the unevolved scalar diquark component, and the vertical
axis is in arbitrary units.)

is somewhat surprising that the difference in shape between the full result and this ansatz is as
small as it is. Still, a discrepancy of ~ 20% is quite significant in a system as loosely bound as the
deuteron.

Any numerically significant difference between the convolution approach and the exact calcu-
lation is of particular importance for the common procedure of extracting the neutron structure
function from the deuteron data via the convolution method. Indeed, in view of the problems with
the convolution model outlined above, it is rather worrying than our knowledge of Fj, is based
on this. As seen in Fig.5.2, depending on the approximation or ansatz taken in calculating Fp,
the deviation from the full, p*-dependent result, will vary. Still, although unsatisfactory from a
theoretical point of view, by artificially renormalising the deuteron structure function by hand so
that it respects baryon number conservation, the differences can be reduced.

A similar situation also arises in calculations of the nuclear EMC effect, in which differences
between nuclear and deuteron structure functioﬁs are explored. Clearly for any accurate description
of this effect we need firstly to have a reliable method of calculating the deuteron structure function.
As we have seen, we may compensate for the off-shell effects that are ignored in the deuteron by
suitably renormalising the final result. Whether this can also be done in other, heavier nuclei is
not clear. Certainly in heavy nuclei we would expect off-shell effects to play some role. To date

these have not been adequately treated, and this is what we turn to next.
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5.4 Off-Shell Effects in Heavy Nuclei

For any nucleus we can easily repeat the above calculation if we know the relativistic nucleon—
nucleus vertex functions. Unfortunately, for heavy nuclei these are presently not at all well known.
One solution would be to simply parameterise the vertex functions and make some assumptions
about the nuclear recoil state. Alternatively, as is done in most calculations of nuclear structure
functions, non-relativistic models could be used for the nucleon distribution within the nucleus.
However, in this approach it is not clear how one could then incorporate any effects from off-mass-
shell nucleons.

There have been some previous attempts at using a relativistic formalism to calculate structure
functions of heavy nuclei. For example, Gross & Liuti [201] considered a model of a spin 0 nucleus,
in which it was assumed that the recoil (spin 1/2) nuclear state can be described by a simple fermion
propagator (like for the deuteron recoil state). For a scalar nucleon—nucleus vertex function (« I),

the trace factor in (5.3) would be

Te [(8+ M) (P— £+ Mp) ($+ M) Wou(p:0)] (5.25)

which gives the following nucleon—nucleus functions

- M
AP p,P) = (Mi—M}%—M2+2MMR—(p2—M2)(1—WR»M
A3, p) = (Mﬁ—Mﬁ—M2+2MMR)pa + (M? - p*)P, (5.26)

A8 (p, P) 0.

Rather than evaluate the structure function with the full expression in (5.26) it was postulated
in [201] that the relativistic density matrix of an off-shell nucleon can be approximated by an on-
shell matrix multiplied by some nuclear spectral function. This amounts to inserting the condition
p? = M? into (5.26), so that factorisation, and the convolution model, are obtained courtesy of
the fact that condition (c) in Section 5.2 is now satisfied. However, while it may be argued from a
physical point of view that such an approximation may be valid for light nuclei, where the nuclear
binding is not too strong, in heavy nuclei there is little reason for this assumption to remain valid.

For the calculation of Fy4 in the model of Nakano [200] it was assumed, as usual, that the
structure of the off-shell hadronic tensor is the same as that for a real nucleon. Implicit in this
model is the assumption that the relevant tensor operator in Wuv is I VT/:%, which, as we have already
seen, is not the only operator that contributes in the Bjorken limit. Thus, while this model starts
with a Feynman diagrammatic formulation, the advantages of the Lorentz covariant treatment are
soon lost when the various approximations are taken.

The simplest way to avoid making on-shell approximations is to consider a nucleon embedded
in nuclear matter. In this type of calculation the off-shell effects are parameterised in the effective
nucleon mass, M — M*. Experimentally, the effective nucleon mass at nuclear matter density (~

0.15 fm~3) is found to be ~ 0.7 M [214]. Theoretically, there is a large number of models for nuclear
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Figure 5.4: Nucleon structure function in nuclear matter in the impulse approximation, for a range
of effective nucleon masses, evolved from QZ = 0.15 GeV? to Q% = 4 GeVZ.

matter, which predict a wide range of effective nucleon masses. The Quantum Hadrodynamics
model of Walecka and Serot [214], in which pointlike nucleons (in the mean field approximation)
are bound by the exchange of scalar () and vector (w) mesons, predicts rather small effective
masses, M*/M ~ 0.56 — 0.6. Somewhat larger masses are obtained when explicit quark degrees
of freedom are introduced. For example, in the Guichon model [215], where the ¢ and w mesons
are allowed to couple directly to quarks inside the nucleons, the value of M™* is typically ~ 0.9 M.
Even larger values are obtained if one includes centre-of-mass corrections and self-coupling of the
scalar fields [216, 217]. Rather than choose a specific model for nuclear matter, we let M* be a
parameter and examine the effect of its variation upon the nucleon structure function, defined in
Eq.(2.37).

Because the quark-nucleon vertex function will now also depend on the effective mass, it would
be inappropriate to use the same normalisation constants in (5.22) and (5.23) as those determined
by normalising the on-shell nucleon distributions, Eq.(2.65). Therefore the normalisation constants
in this case must be determined by normalising the calculated quark distributions in nuclear matter,
for p? = M*?, so that their first moments are unity.

In Fig.5.4 we show the isoscalar (valence) nucleon structure function, Fons = Fon(z, p? = M*?)
x z (uy(z,p? = M*?) + dy(z,p? = M*?)), for a range of effective masses, M*/M ~ 0.5—1. There
is clearly quite significant softening of the structure function, with the most prominent effects
appearing for 0.2 Sz R0.5.

However, before taking these results too seriously, one must realise that they are specific to

the impulse approximation within which we have worked thus far. In particular, it was found by
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Figure 5.5: As in Fig.5.4, but including the effects of interaction of the spectator diquark with the
nuclear medium.

Saito, Michels and Thomas [216] that neglecting interactions between the spectator quarks and the
surrounding nucleons leads to a significant overestimate of the suppression of the nuclear valence
quark distributions.

A simple means by which effects due to final state interactions can be included is to assume that
the scalar and vector potential acts directly on the quarks (therefore the strength of the interaction
of the nuclear medium with the diquark is 2/3 that with the nucleon), and is independent of the

mass of the diquark. In that case the diquark mass is modified by mr — m}, where
% 2 *
MR = MR-3 (M - M™) (5.27)

for both scalar and vector diquarks. The effect of the spectator interactions, shown in Fig.5.5, is
to make the quark distributions harder, which more than compensates for the softening produced
by the off-shell effects alone. The main differences are then localised in the large z region (z R
0.4), where the modified distributions (for M*/M = 0.7) are up to ~ 20 — 30% larger than the
distributions in a free nucleon. This hardening is even more dramatic if one looks at the ratio
Fon«(2)/ Fan as a function of z, Fig.5.6.

We should also comment on the importance of off-shell (and final state interaction) effects
in the shadowing region, < 0.1. From Fig.5.7 it can be seen that the impact on the calculated
valence quark distributions in nuclear matter is almost negligible at small z. However, since nuclear
shadowing is primarily a sea phenomenon, to be sure that these effects do not modify the total
nucleon structure function one would need to explicitly calculate the sea quark distributions, using
appropriate sea-quark—nucleon vertex functions. Unfortunately, this is beyond the scope of the

present model, but such an extension can easily be made in future.
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Figure 5.6: Ratio of nucleon valence structure function in nuclear matter to that for a free nucleon.
Included are effects due to final state interactions.
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Figure 5.7: Valence quark distribution in nuclear matter at small z for different effective nucleon
masses (shown are the unevolved distributions).
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5.5 DIS from Dressed Nucleons

Finally, we return to the application of the relativistic formalism to the process discussed in Chapter
2, namely DIS from a virtual baryon component of a physical nucleon. Here we shall restrict
ourselves to virtual nucleons and recoil pions, as this will be sufficient to illustrate the problems
encountered by combining the covariant formalism with the convolution model.

With a pseudoscalar (iy5) NN coupling, the relevant trace in Eq.(5.3) for DIS from a virtual

nucleon with a pion recoil can be written (see also Eq.(3.19))

Te [( + M) ivsFivn(0?) (B + M) W (pr0) (B4 M) i95Fa(p?)] (5:28)

where the 7 NN form factor Fn,(p?) is parameterised by a simple monopole form, as in Eq.(3.21),
with a cut-off mass Ay, ~ 1.4 GeV [17]. Rearranging the trace in Eq.(5.28) in the form (5.3), we

find that for a pseudoscalar 7 NN vertex the functions A?® are

AP (P, P) = giyw (-mE M) Fo(p?)
Azl)sa(pa P) = ngrNN (_m72r Pa + (p2 - Mz)(pa - Pa)) ]:]2\Ivr(p2) (5.29)
Agsaﬁ(p7P) = 0.

By inserting p? — M? in A} we can satisfy case (c) in Section 5.2 for the convolution model.
However, the structure function in this case is proportional to —m2 M (i.e. negative), which is
clearly unphysical.

With a pseudovector (y5(#— #)) coupling, the functions A" are

v m72r ‘p2_|_M2 }_-;2_ ‘M?.Jfa
A (p,P) = ginn (* (2M ) + ( ¥ Fx(p?)
Y 2 M2 2
AzlJ a(p,P) = g72rNN (_'mfr Pa + %(pa - a)) ‘7:]2\11r(p2) (5'30)

Agvaﬁ(p’P) = 0.

Again, each of the terms can be made proportional to each other by inserting the p? = M? condition,
but at the expense of a negative overall result. Thus great care needs to be taken to ensure that
any approximations made do not lead to nonsensical results.

It is naturally of interest to compare the result of the full calculation with the various convolution
models used by previous authors, if only to understand the theoretical foundations on which they
stand. In previous covariant calculations of this process [47, 60, 63, 71] the same assumptions have
been made as for the nuclear calculations, namely factorisation of the bound nucleon structure
function, and the lack of any dependence of this on p? (or on pr). In the slightly more formal
attempt in Ref.[17] at deriving the convolution model, the assumption was made that the off-shell
nucleon tensor is the same as that of a point-like fermion [52], in which case the relevant operator
in I//I\/,w is ;[/[/I\/% As we have seen already, this is only part of the complete expression in the Bjorken

limit. In fact the model of Ref.[17] can only be obtained from the full result if the following steps are
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Figure 5.8: Contribution to the structure function of a nucleon from DIS off a virtual nucleon
dressed by pions. The convolution model of Ref.[17] (dashed) is compared with the full calculation
(for A, = o0), using the same normalisation for the off-shell N — ¢ vertex as for the on-shell vertex
(solid), and normalising the full result (dotted) to give the same first moment as for the convolution
curve. All curves are evolved from Q2% = 0.15 GeV? to Q2 = 4 GeV2,

taken: firstly the trace in (5.28) evaluated with the ;{W% structure; then to obtain factorisation the
limits pr = 0 and p? = M? taken in the ‘nucleon structure function’ (i.e. k-dependent) parts; and
finally the full structure of the on-shell nucleon function used, as in (2.37), rather than just keeping
the V/I?:,% term. The necessity of the last point is clear, since for the on-shell structure function the
individual functions Wﬁ« are not necessarily positive definite, although the sum is positive of course.

Other authors [75] have implicitly assumed that the relevant operator to be used in the Ww, of
(5.28) is I Wr_? (similar to what was done in [200, 212] for the deuteron). However, even with the

subsequent replacement of V/I}IO« by the full on-shell nucleon structure function in the convolution

2

2 since the

expression, the result (with a pseudoscalar 7N coupling) will be proportional to —m
coefficient of I//I\/jo, is AE’. Thus it appears that the result of [75] can only be obtained by taking the
modulus of a negative structure function.

In all, it should now be abundantly clear that none of the scenarios described in Section 5.3
(cases (a)—(c)) for obtaining the convolution model are applicable here. As in the deuteron case,
the convolution model for dressed nucleons is therefore not derivable from the exact result.

In Fig.5.8 we compare the contribution to the on-shell nucleon structure function from this
process, calculated including the full p? dependence (with the ¢—N vertex function evaluated with
Ap = 00), with the result of the convolution model of Ref.[17]. For the full calculation we use the

same normalisation constants for the scalar and vector quark-—mnucleon vertices as determined from

the on-shell nucleon. The results indicate that the full, p*-dependent calculation gives somewhat
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Figure 5.9: Same as in Fig.5.8, except for a pseudovector 7N coupling.

smaller results compared with those of the convolution model (although the shapes are quite similar
as can be from the dotted curve, where the scalar and vector vertex functions are normalised to
the same first moment as in the convolution model). For the pseudovector TN N vertex, we find
an even larger difference, Fig.5.9.

Such a difference might have been surprising had the convolution expression been a simple ap-
proximation to the full result, in which case we may well have expected small off-shell corrections.
Unfortunately, this calculation is more difficult to check since there is no clear normalisation con-
dition for the structure function. Comparing the first moment of the calculated distributions with
the average number of pions in the intermediate state, which can be calculated by considering DIS
from the virtual pion, is ambiguous due to the presence of antiparticles in the covariant formulation.
A convolution formula such as (5.14) can be written for DIS from virtual pions, since there are no
spinor degrees of freedom to spoil this factorisation. However, ambiguities in the p? dependence of
the ‘off-shell pion structure function’ would still remain. Therefore this fact merely illustrates the
absence of a firm foundation for the covariant convolution model for DIS from dressed nucleons,

and the preference for the non-covariant approach taken in Chapter 2.
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5.6 Summary

Finally, let us reiterate the main findings of this chapter, as these represent perhaps the most
significant new developments in the study of structure functions of hadrons which are discussed in
this thesis.

Starting with an investigation of the truncated nucleon tensor, I//I?W, we have been able to put
the calculation of structure functions of composite particles on an more solid theoretical footing.
This has also enabled us to understand the assumptions that need to go into the derivation of
the covariant convolution model of DIS. It has also led to the realisation that even in the impulse
approximation a fully relativistic treatment of deep inelastic processes does not yield the convolution
model, unless specific on-shell limits are taken at various stages in the derivation. Furthermore,
strictly speaking it is incorrect to speak of the ‘bound nucleon structure function’, as this is an
ill-defined quantity within a covariant formulation. This has wide-ranging consequences, as almost
all calculations of composite particle structure functions (e.g. nuclei, for the EMC effect) have
relied upon the validity of the simple convolution model.

Numerically, we have studied the differences between the full and convolution model results
by using models of the relativistic nucleon—quark and nucleon-nucleus vertex functions. In the
simplest case of DIS from the deuteron, making various assumptions for the off-shell nucleons
naturally introduces deviations from the exact result. However, by suitably renormalising the
results to ensure baryon number conservation (as was done in most previous calculations) the
differences between the exact results and those of the convolution model can be minimised. Thus,
from a phenomenological point of view, the consequences of neglecting the nucleon off-shell effects
in the deuteron may not be too great.

Perhaps the most important phenomenological repercussions of neglecting nucleon off-shell ef-
fects are found in the structure functions of heavy nuclei. We find quite significant effects in the
intermediate z region when the nuclear medium acts to decrease the effective nucleon mass. After
including the possibility of interactions of the spectator diquark with the medium, the net effect (for
M*/M ~ 0.7) is to make the structure function in nuclear matter some 20-30% harder compared
with the on-shell result. (The latter affect is a confirmation of the fact that the usual impulse
approximation is a rather poor approximation in nuclear matter.)

The other important application which we examine is DIS from the virtual nucleon component
of a physical (or dressed) nucleon, where we also find quite significant differences between the full
result and the convolution model. As well as its relevance to the question of flavour asymmetry
in the proton sea, this process can also be used to describe the nucleon’s spin-dependent structure
functions, in particular the neutron spin structure function gy, () [114]. Indeed, an obvious exten-
sion of the formalism used in this chapter would be to consider next the DIS of polarised leptons
from polarised targets. In that case there will naturally be more terms in the general expansion
of the polarised truncated nucleon tensor (in fact, R 70 in all!). Furthermore, we can expect the

usual convolution approach to calculating the polarised structure functions of nuclei to break down
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as well. This may well be of importance for the extraction of gy, from the polarised deuteron
(or helium) structure function ¢g1p (g sf.), and to the whole question of the spin of the proton
[218, 219].

In the next chapter we will say more about the spin structure of the nucleon, in the context
of semi-inclusive DIS from polarised targets. Having discussed inclusive DIS in some detail in the
preceding chapters, we shall examine there semi-inclusive processes, in which specific mesons or
baryons are identified out of the complete final hadronic state, with the aim of obtaining additional
information on the quark structure of hadrons. For example, we mentioned in the Chapter 4 that in
diffractive deep inelastic scattering by ‘tagging’ final state nucleons carrying a large fraction of the
initial nucleon’s centre of mass momentum, we could actually measure the structure function of the
Pomeron. Furthermore, we may be able to learn more about the nucleon at larger z by searching
for low momentum hadrons produced by DIS off the virtual meson or baryon components of the
physical nucleon, as in the model of Section 3.1. Because much of the interest in semi-inclusive
DIS is in the non-perturbative regime, namely the (long-distance) formation of hadronic states
out of quarks and gluons, the discussion there (in contrast to that in this chapter) will be largely

phenomenological.
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Chapter 6

SEMI-INCLUSIVE DEEP
INELASTIC SCATTERING

Much has been learned about the internal structure of the nucleon and nuclei from unpolarised in-
clusive deep inelastic scattering experiments. Some aspects of the substructure observed in inclusive
DIS have been discussed at length in the preceding chapters. In this chapter we will extend those
discussions to the case of semi-inclusive deep inelastic scattering {220}, in which specific hadrons in
the final state are observed in coincidence with the scattered lepton. The scaling behaviour of the
semi-inclusive cross sections was considered some time ago by Ellis [221] and Stack [222]. As in the
case of inclusive structure functions, only higher order QCD effects give rise to any @? dependence
of the semi-inclusive structure functions (or ‘fragmentation functions’).

Central to this process is understanding how quarks fragment to form specific final state mesons
and baryons. Because this is a non-perturbative process, describing soft (Q2-independent) physics,
the treatment of hadronisation has necessarily been model-dependent and largely phenomenologi-
cal. Nevertheless, by testing models of fragmentation we can hope to learn more about long-distance
quark physics. We will consider scattering from nucleon targets only, since the dynamics of frag-
mentation will only be diluted by the greater probability of final state interactions in DIS from
nuclei.

In our discussions we will focus attention particularly on the production of baryons. It has been
unambiguously demonstrated experimentally [223-225] that the baryon yield is higher by about
an order of magnitude for those baryons produced in the backward hemisphere of the probe—
target centre of mass frame (so-called target fragmentation region (TFR)), than for forward baryons
(current fragmentation region (CFR)). The CFR baryons have predominantly large laboratory
momenta, (24 several GeV), while the baryons produced in the backward centre of mass jet are
generally slow. Our concern here will be with such low momentum baryons, and we shall therefore
neglect the process which gives rise to the forward baryons (quark — baryon fragmentation).

Although their rate of production is generally high, the efficiency with which low momentum

baryons can be accurately identified is low [225]. Nevertheless, detection of such particles is possible,
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Figure 6.1: Semi-inclusive deep inelastic scattering from a nucleon, with baryon B in the final state.

for example with the CERN EMC spectrometer using muon beams [225], or potentially at CEBAF
with a somewhat lower energy electron beam. For scattering by (anti)neutrinos, bubble chambers
(such as the Fermilab Freon Bubble Chamber [226]) are employed for hadron identification.

As an extension to unpolarised semi-inclusive scattering, we shall investigate the possibility of
obtaining new information from the spin-dependent fragmentation process involving lepton scat-
tering from polarised targets, with subsequent measurement of the recoiling baryon polarisation.
The additional spin degrees of freedom may enable differentiation between some models of the

fragmentation process, in particular the meson cloud model of the nucleon discussed in Chapter 3.

6.1 Kinematics of Target Fragmentation

Consider the production of baryon B as indicated in Fig.6.1. In semi-inclusive processes we consider
the DIS cross sections not only as a function of z, but also a function of the baryon’s longitudinal
(pr) and transverse (pr) momenta. For baryons produced in the TFR these momenta in the
target rest frame will generally be small. Consequently, such baryons will be characterised by
a small four-momentum transfer squared between the initial and final particles, t = (p — P)? =
(=p% — (1 = O)(ME — M%())/¢, where ( = p- q/P - q is the light-cone fraction of the target
proton’s momentum carried by the secondary baryon, and M and Mp are the nucleon and final
state baryon masses, respectively. The requirement that the transverse momentum squared of
the produced baryon be non-negative, p3 > 0, leads to a kinematic upper limit on ¢, namely
tmaz = —(1 — ()(M3 — M?())/¢. More specifically, the three-momentum of TFR baryons is given

in terms of ¢ by

1
Pl = /(M2 + ME - 0)? — 42 M}, (6.1)

so that the slowest baryons are those for which ¢ — 0, which occurs when { — 1. Clearly as the

upper limit on ¢ is 1 — &, slow baryon production also corresponds to the z — 0 limit, and the
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slowest possible baryons produced at ¢ = 1 (at z = 0) have momentum |pmin| = (M3 — M?)/2M.
Thus, for example, final state nucleons can be produced with momenta down to 0 MeV, while the
slowest A isobars have |pmn| = 340 MeV.
Equivalently, one can observe the spectrum of baryons as a function of the laboratory angle «
between the produced baryon and the direction of the probe, which is given by
ME+(1-20)M> 1
V(M3 — M2 — 1) — AM?t

(6.2)

cosa =

It is easy to show that a will vary from 0 up to a maximum given by

1
Omar = Arccos (—U’M]% - M2§2) . (6.3)
Mg

Thus nucleons can be produced for all angles (@pq; = 7/2), while the kinematic boundary for A

isobars is at o ~ 50°. For a given angle «, the integration limits of ¢ are given by

1
tmin/maz(Q) = o (M,z:,» sin® o — M2(1 — 22 + cos® a)
+ 2M cos ay/M2(1 — z)? — M} sin? ) : (6.4)

At small angles baryons are produced over essentially the entire range of ¢ (and therefore (),

however the number will fall off rapidly as @ — arccos (MLB\/M 2 - M?(1- mz)) because of the

fast convergence of the upper and lower bounds on ¢, until no particles are produced beyond the
kinematic boundary at tymap = tmin = — (M3(14+2) - M%3(1 -2)) /(1 —2).

The importance of the above kinematic restrictions was demonstrated recently in two experi-
ments [226, 227] in which slow proton production was studied in N and vA scattering. Before
we turn to questions of dynamical details of the fragmentation process, we shall describe how the
above kinematics is manifested in semi-inclusive leptoproduction of baryons in the TFR. This will
serve to illustrate the point that simple things must to be accounted for before one starts invoking
more exotic explanations.

In the original experiment performed by the E745 Collaboration [226] a peculiar dependence
was observed of the deep inelastic cross section for neutrino scattering off freon gas on the number
of secondary protons (or ‘stubs’) at the interaction vertex. The principle effect seen there was
a dramatic softening of the nuclear z-distribution in the stub-containing events. This led to the
speculation that an undiluted nuclear EMC effect [228] had in fact been observed (e.g. Kumano &
Close [229] and Castorina & Donnachie [230] took this as evidence for a stronger EMC effect for
deeply bound nucleons and for v A collisions at small impact parameters).

Following those initial experiments, the BEBC Collaboration [227] demonstrated an even stronger
depletion at large ¢ in vHy and vD scattering.. In Ref.[227] it was correctly concluded that this
observation invalidated any nuclear interpretation of the E745 effect. In fact, a careful analysis
of the kinematics of target fragmentation in DIS can quantitatively explain the ‘nuclear’ effect in

Ref.[227]. In particular, it can be shown that a softening of the cross section for protons with
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Figure 6.2: Target debris fragmentation into a baryon in the quark parton model.

momentum less than pyq. (equal to several hundred MeV in these experiments) arises directly

from the absence of interactions at £ > Z,,q,, Where

Tomas = 1 — Pomazx J"—J‘pmaacl ) (65)

This limit can most easily be understood by transforming to the Breit frame, in which the probe

(W-boson in this case) of zero energy, but finite three-momentum,

q= (0§0,0,—(IL), (66)

scatters from a parton with fraction z of the target proton’s momentum, see Fig.6.2. The struck
parton has a momentum gr,/2 which changes sign after the collision. From the definition of z it
follows then that the proton’s longitudinal momentum is Pr, = ¢r/2z, so that and the proton’s
debris carries momentum PL—%qL = Pr(1—=z). In this reference frame (or in an IMF) the spectrum

of the fragmentation products can be analysed in terms the light-cone variable z [117, 231},

_ pPq _ P-
T U—oP-q¢ @{-2)P (6-7)

which can be interpreted here as the ratio of the produced particle’s momentum to that of the
nucleon debris. Furthermore, the ratio of the recoiling proton’s momentum to that of the target
nucleon is 2(1—z) = {, and since z < 1, in the laboratory frame (for fixed z) the secondary protons
have longitudinal momenta bounded from below,

ME — M*C + pf

> 3 .
L 2MC 2 PLmin (6 8)
where
M3 - M*(1-2)*+ p%
PLmin = 2M(1 _ x) . (69)
Solving this for ¢, we see that only interactions at
¢ < 142 (6.10)
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Figure 6.3: Kinematic relation between final state baryon B momentum and maximum value of z
allowed. For B = N (solid) and B = A (dashed) the upper and lower curves are for p2 = 0 and
0.5 GeV?2, respectively.

where pg = /M? + p? is the proton energy, can contribute to events having protons with momenta
below |p|. This is turn introduces significant bias into the z-distribution for the stub-containing
events. For example, for py = 0 this corresponds to 2z < 0.31 and 0.45 for the BEBC proton
momentum upper cuts of 350 and 600 MeV, respectively. Graphically, this boundary is illustrated
in Fig.6.3, where in addition we show the kinematic boundaries for final state A baryons.

The above kinematic limits were also discussed in various contexts by Ishii et al. [232] (who
in addition tried to account for the E745 nuclear data [226]), Strikman et al. [233], and Bosveld
et al. [234]. In the following we demonétrate that the z-dependence of the BEBC effect can be
quantitatively attributed to the fragmentation bias in (6.10). The ‘nuclear’ effect in [226] is likely to
be dominated by the diluted BEBC effect [227], the dilution coming from a significant contribution
of intranuclear cascading to the production of stubs (‘grey tracks’ in the experiment) off the nucleus.

Within the quark parton model [12], the differential cross section for v(7)p scattering is (in
units of G2M E, (5 /7) [117, 231]

3 (v
o = Fuonla) D) (6.11)
Here, the neutrino- and antineutrino-proton ‘structure functions’, integrated over energy transfer

Fip =20 (d(a)+ 3u(2)) (6.12)
and
Fop =20 (Gu(e) + d(z) (6.13)

where sin? fc and heavy flavours have been ignored. In writing (6.11) we have assumed factorisa-

tion of the primary interaction (z dependence) and fragmentation (2 dependence), which is only
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spoiled by higher order QCD processes. For simplicity, we have also assumed factorised pr and
z distributions [231, 235], ﬁg_q(z,pgp) = DY_.(z) ¢(p%), where D}_ () is the target debris (i.e.
proton with a quark removed) — proton fragmentation function, and ¢(p%) gives the recoil proton
transverse momentum distribution. (The factorisation assumption of the transverse and longitu-
dinal components of the baryon momentum will be subject to further comment in Section 6.2.1 in
spin-dependent fragmentation.)

In the IMF (or Breit frame) the fragmentation function Df_q(z) gives the probability that once
the photon strikes a quark ¢ (with momentum fraction z) in the proton, the remaining spectator
system of a proton with a quark removed (with momentum fraction 1 — z) decays to a baryon B
carrying a fraction z of the spectator system’s momentum, Fig.6.2. At all but very small z, the
spectator system will be mostly a diquark. Furthermore, we also take the fragmentation function
to be independent of the struck parton.

As mentioned above, fragmentation products emanating from the struck quark (spectator sys-
tem) are dominant in the W-boson — p center of mass system forward (backward) hemisphere, and
the data [223, 224] confirms that protons are predominantly produced in the backward hemisphere.
We shall therefore neglect the struck quark — proton fragmentation. For estimation purposes we
can take a flat fragmentation function
0(2 — Zmin)

Dg_q(Z) - (1 - zmin)

(6.14)
where Zmi, = \/M?+ pk [ s corresponds to the boundary between the forward and backward
hemispheres in the centre of mass system, and s is the W-boson — target centre of mass energy
squared. Such a fragmentation function is broadly consistent with the EMC data [223, 224}, and
is also suggested by nucleon fragmentation in hadronic collisions [236]. For comparison, we also
consider a quadratic form,

_60(2— 2min)

- (1 - Zmin)3

(In Section 6.2 we shall consider more sophisticated fragmentation functions where we will require

D} _,(2) (2 = Zmin)(1 — 2). (6.15)

accurate predictions for the absolute DIS cross sections.)
The transverse momentum distribution function ¢(p%) can be parameterised by a Gaussian
form [235, 237, 238],

exp(—pf/ < pF >)
<pk>

e(rr) = : (6.16)

with < p% > being the mean transverse momentum squared, typical values of which are of order
0.2—0.3 GeV? [235]. For comparison purposes we also consider an exponential parameterisation
[237] @(p}) = exp(—pr/ < p} >?) [ (2 < p} >).

In Fig.6.4 we show the differential cross section d?c/dzd|p|, divided by the |p|-integrated cross
section, for neutrino-proton scattering. The effect of the stub momentum cut-off in (6.10) is un-

mistakable. Fig.6.5 also shows the absolute differential cross section, in which the large-|p| tail is
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Structure <ph> 150 < |p| < 350MeV | 350 < |p| < 600MeV | 150 < |p| < 600MeV
Function GeV?

EHLQ 0.28 2.7% 10.3% 13.0%
EHLQ* 0.28 1.3% 8.0% 9.3%
DFLM(0) 0.28 2.7% 10.3% 13.0%
HMRS(B) 0.28 3.4% 11.7% 15.1%
KMRS(BO0) 0.28 3.5% 11.9% 15.4%
EHLQ 0.16 4.3% 14.0% 18.3%
EHLQ 0.36 2.2% 8.6% 10.8%
EHLQ 0.28 expon 1.1% 4.2% 5.6%
BEBC experiment 2.3% 7.7% 10%

Table 6.1: Fractions of momentum-restricted to unrestricted neutrino—proton events. In all cases
the constant fragmentation function in (6.14) is used, except in that marked (*), for which the
quadratic form in (6.15) is taken.

killed off by the structure function at large 2 (we use the EHLQ parameterisation of the proton
structure function [15]). Integration of the differential cross section, Eq.(6.11), subject to cut-offs
150 < |p| < 350 MeV and 350 < |p| < 600 MeV, gives fractions

av(?) (Ap)

— (6.17)

Nv(®)

of the proton-, or ‘stub’-, containing events, which are given in Tables 6.1 and 6.2. For the quark
distributions of Ref.[15], and with the fragmentation function of (6.14), we find (for a Gaussian
pr distribution with < p% >= 0.28 GeV?) the following ratios: 2.7% (vp), 2.4% (vp), and 10.3%
(vp), 9.3% (p) for the lower and higher momentum cuts, respectively. These numbers are to be
compared with the experimental fractions of the stub events found in Ref.[227], namely 2.3% (vp),
2.5% (#p), and 7.7% (vp), 5.7% (¥p) for the lower and higher limits.

The fragmentation functions in (6.14) and (6.15) correspond to one proton being present in any
final state. In hadronic collisions target protons are known to fragment into neutrons in about 1/3 of
all events, with a higher charge exchange probability at large z. After allowance is made for similar
p — n charge exchange in neutrino interactions, there is even better agreement with experiment.
Notice that at fixed z, small |p| corresponds to the limit z — 1 (see Eq.(6.8)). Therefore, for
the quadratic fragmentation function of Eq.(6.15) we obtain slightly lower percentages: 1.4% (vp),
1.3% (7p) and 8.1% (vp), 7.3% (¥p), respectively, with a greater reduction for lower cuts. There is
some obvious kinematic sensitivity to the transverse momentum of the proton — smaller (larger)
< p% > values of ~ 0.16 (0.36) GeV? give about a 40% increase (20% decrease) in N*(), Also, an
exponential pr distribution enhances the large pr tail and gives rise to smaller (~ 60%) ratios for
the same < p2 >.

The sensitivity of the integrated cross section to the parton distribution functions is shown in
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Structure <p%> | 150 < |p| < 350MeV | 350 < |p| < 600MeV | 150 < |p| < 600MeV
Function GeV?

EHLQ 0.28 2.4% 9.3% 11.8%
EHLQ* 0.28 1.2% 7.2% 8.4%
DFLM(0) 0.28 2.5% 9.5% 12.0%
HMRS(B) 0.28 3.3% 11.1% 14.4%
KMRS(B0) 0.28 3.3% 11.1% 14.4%
EHLQ 0.16 3.8% 12.8% 16.7%
EHLQ 0.36 1.9% 7.9% 9.8%
EHLQ 0.28 expon 1.0% 3.8% 4.8%
BEBC experiment 2.5% 5.7% 8%

Table 6.2: Same as in Table 6.1 except for antineutrino—proton events.

Tables 6.1 and 6.2, where several different parameterisations are considered. With the universal
fragmentation functions (Eqs.(6.14) and (6.15)), we find that with the DFLM(0) quark distribution
[113] N¥(®) remains virtually unaltered, while with the HMRS(B) [168] and KMRS(B0) [184] distri-
butions the stub ratios are between 20 and 30% larger, compared with the distributions of Ref.[15].
Such a deviation can be simply understood by considering the relative differences in the valence
and sea distributions between the various parameterisations. For instance, while the KMRS(BO0)
and EHLQ valence distributions are comparable, the momentum carried by the SU(2) sea is about
40% larger for the former parameterisation, which gives approximately the difference cited above.
In a more sophisticated model one would allow different fragmentation functions for valence and
sea quark interactions (see Section 6.2).

The ratio of the normalised z-distributions for events with and without protons in the momen-

tum range Ap,

do/dz(z,Ap) [ o(Ap)
do/dz(z,1—- Ap) / o(1 — Ap)

is plotted in Figs.6.6—6.8 for various momentum cuts Ap (here 1 — Ap refers to the complement

R")(z) (6.18)

of the momentum interval Ap). The gross features of the experimental data are reproduced fairly
well. There is very little effect upon R¥(” )(:v) from varying the mean transverse momentum between
< p% >=0.16 and 0.36 GeV?, or from using an exponential, rather than Gaussian, pr distribution.
The curves in Figs.6.6—6.8 have been evaluated with the EHLQ parameterisation of the quark
distributions [15], and with the simple fragmentation function in (6.14). Any difference between
the various structure function parameterisations manifests itself only in the small-2 region, where
all of the R*(®)(z) curves differ by an overall factor of N*(®) (because of factorisation of the structure
function dependence in the differential cross section, Eq.(6.11)). Atlarge = there is higher sensitivity
to fragmentation functions at 2 — 1, as we have discussed above, and this can be seen in the

difference between the curves in Fig.6.9 computed with the constant, Eq.(6.14), and quadratic,
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Figure 6.6: Ratio of normalised z-distributions for events with and without protons in the momen-

tum range 150 < p < 600 MeV. The data are from Ref.[239].
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Figure 6.7: Ratio of normalised z-distributions for neutrino events with and without protons in
momentum ranges 150 < |p| < 350 MeV, and 350 < |p| < 600 MeV. The data are from Ref.[227].

147



2.5F + vp .

20k & o e 150<P<350MeV ]

R(x)

ool e N T
0.0 0.2 0.4 0.6

Figure 6.8: Same as in Fig.6.8, but for antineutrino events.

Eq.(6.15), fragmentation functions.

The curves for R¥(* )(w) have also been smeared in z to correct for possible kinematic uncertainty
in the experimental reconstruction of . The need for this arises from the fact that only charged
particles are measured in BEBC, while the momentum of neutral particles needed to reconstruct
v and @2, and then z, is reconstructed from the transverse momentum balance. On an event-by-
event basis one thus has an inherent uncertainty in the determination of z. The impact of this
uncertainty is estimated by smearing the calculated cross sections,

dosi(w) da"(")p(a: /&)

0 = [aes

For simplicity, we take a step-like smearing function, S(§) = 1 for 1 — A¢ < £ < 14 A, and
use A¢ ~ 0.5 in Figs.6.6—6.8. (Using a Gaussian distribution instead, S(¢) oc exp[—(¢ — 1)?], has

(6.19)

little effect on the final results). The curves with no smearing tend to lie systematically below
the data points at x R 0.3, for all stub momentum cuts, as seen in Fig.6.9, where (for a constant
fragmentation function) the curves have been evaluated with A¢ = 0,0.25 and 0.5. For larger =z,
corresponding to smaller values of s, the uncertainty in z should be bigger, but the effect can only
be quantified by a careful analysis of the actual data.

Another possible source of error is that associated with the precision of the momentum cuts
themselves, the lower 150 MeV limit especially will have a sizeable uncertainty. For larger (smaller)
momentum intervals the ratio R¥(*)(z) will be flatter (steeper). Assuming a (rough) +£50 MeV
error for both the upper and lower limits, an extended interval of 100 < |p| < 650 MeV brings the
RY ('7)(:1:) curve to better agreement with the large-z data, while the opposite is true for the more
restricted, 200 < |p| < 550, interval. However, the effect of this on R*(* )(:c) is numerically small.

In all, we have good quantitative agreement of our simple model with the normalised cross sec-

tions for (anti)neutrino events with and without slow protons. The description of the z dependence
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Figure 6.9: Ratio of normalised z-distributions for antineutrino events with and without protons
in momentum ranges 150 < |p| < 600 MeV, for a constant and quadratic fragmentation function,
and smearing corrections for the former.

of the ratios R"(D)(w) is virtually parameter free, which therefore unambiguously demonstrates the
dominance of kinematics in this process. Therefore the fragmentation bias follows essentially from
four-momentum conservation, and additional dynamical effects are likely to be of minor importance.

One such dynamical effect that one might suggest could play a role is that due to DIS from
the non-perturbative pion (or other meson) cloud of the target proton (as in Chapter 3), leaving a
low-momentum proton (or A, with subsequent decay to pm) exclusive final state. The main virtue
of the pion model is its very specific predictions for the target fragmentation into protons. In
particular, the 2 and z distributions in this case no longer factorise. Since the pion cloud of the
proton is known to contribute only at small z (¢ ~ 0.1), the effect upon the cross section ratio will
be restricted to this region only. However, as was shown in [240], the kinematics dominate this
process so much that effects due pion exchange on R*(” )(w) are of minor significance. Where pions

may play a more important role is in polarised semi-inclusive DIS, which we discuss next.

6.2 Spin-Dependent Fragmentation

The process under investigation involves an unpolarised beam scattering from a polarised target,
so that we are not sensitive to the polarised proton structure functions gq o(z), measurement of
which requires both lepton and target polarisation. For simplicity, we consider charged-lepton
scattering from a polarised proton, with subsequent production of a polarised A*t*. We require
the target proton to be initially longitudinally polarised with respect to the photon direction, with
the spin of the produced A quantised along its direction of motion. The polarisation of such As
can be reconstructed in a straightforward manner from their decay into N7 with an invariant mass

near the A resonance mass. Detecting polarised final state protons, for example, would be more
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difficult experimentally as one would need to remove additional backgrounds from A — pr decays.
Furthermore, because of the simple valence flavour structure of the AT+, the diquark — AT+
fragmentation functions are easier to model compared with multi-flavoured baryons.

Assuming factorisation of the z and z (or () dependence, the semi-inclusive cross section for
deep inelastic charged-lepton A-production from a polarised proton can be generically written in
the quark parton model (QPM) as [241]

d40.QPM

2y patt 2
TdQidzaps, & TP Q) Dor-n(zp7)- (6.20)

Here, the fragmentation function ﬁ(z,p%«) gives the probability for the polarised (p! minus ¢™)
spectator system to fragment into the polarised baryon. The function pr(a:,Q2) is proportional
to the spin-weighted interacting-quark momentum distribution functions, ¢'!(z), where ™! denote
quark spins parallel or antiparallel to the spin of the target proton.

In one of the earliest models for the spin-dependence of the momentum density functions, Carlitz
and Kaur [242] worked under the assumption that the contribution to the proton polarisation from
sea quarks is negligible. In their model, the limiting behaviours as z — 0 and & — 1 were used to

parameterise the polarised valence distributions as

u%,l(:/v) = % (uv(x)(l + cosfOp(z)) F %dv(a:) cos 0D(:1:)>
dii(z) = % (1 = %cos 9D(x)> dv (). (6.21)

The spin dilution factor, cosfp(z), was introduced to model interactions between valence quarks
and the unpolarised sea quarks and gluons, with the constraint of satisfying the Bjorken sum
rule [19]. In the limit as z — 0, interactions with sea partons would become significant, so that
if we assume that the valence quark spin is transferred equally among the sea quarks and glu-
ons, cos p(z) — 0. The SU(6) limit, where only valence quarks are present, is recovered with
cosfp(z) - lasz — 1.

Schafer [243] extended this idea by allowing for additional flavour dependence of the spin dilution
factor, taking into account the spin dependence of one-gluon exchange, and hence the A — p mass
difference (see also Close and Thomas [48]). For convenience, the quantities Af(z) = uy (z)—4dy(z)
and Af(z) = 2dy(z) are defined to be the interacting quark distributions in the proton when
accompanied by a diquark system in an isospin 0 and 1 state, respectively. In terms of these, the

SU(6) wavefunction for the target proton is written [242-244]
p' = u(ud)o (1 (11)o) 1/Ab(2)

" (\/gd (uu)l—\/gu (ud)l) (\/g mm—@ T(ml) VA (6:22)

where the spectator diquark state has total spin and isospin equal to 0 and 1 in the first and second

terms, respectively. The polarised valence quark distributions were then parameterised in [243] as
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@) = (wie) - 3av(e)) ful0i0)

whe) = sdv(@)fu(1ia)

dh(z) = 3dv()ful0;) (6.23)
dh@) = sdv(z)full;a)

where fy(jz;2) denotes the spin dilution factor for scattering from quark q with the spectator
diquark having spin projection j,. Again, the SU(6) limit is obtained when f,(j,;2) — 1 as
z — 1. (Note that the starting distributions gy in (6.23) do not correspond exactly to the valence
distributions defined as qy = q‘T, + q‘l,)

We should also add a note of caution that in both of these models the effects of the U(1) axial
anomaly are neglected [219]. For comparison with (future) high-precision data a more rigorous
theoretical treatment may indeed be needed. For now, in the absence of such data, we seek only a
broad estimate of the QPM polarisation cross section, and in particular to contrast this with the

predictions of the pion exchange model which will be discussed in Section 6.2.2.

6.2.1 Fragmentation Functions

In Section 6.1 we assumed for simplicity that the fragmentation into unpolarised baryons, given
by the fragmentation function 1~)(z, p%), could be factorised into unpolarised transverse and lon-
gitudinal components. Furthermore, for the fragmentation function we took some very simple
parameterisations, primarily because our concern was the ratio of cross sections, and because the
effect illustrated there was so dominated by kinematics. On the other hand, if one is trying to cal-
culate absolute cross sections then clearly more sophisticated fragmentation functions are needed.

Because the fragmentation functions describe soft, non-perturbative parton physics, and since a
reliable calculation from first principles in QCD is some time away, a number of phenomenological
models have been developed. Many of these [245, 246] have followed the basic approach that
was originally formulated by Field and Feynman [117, 241], whose quark jet fragmentation model
involved recursive ¢ pair creation (cascade) out of the colour field between the scattered and
spectator partons, and subsequent recombination into colour neutral hadrons. In the original
analysis of [117] only quark — meson fragmentation functions were modelled. Later this approach
was extended by Bartl et al. [245] by also allowing for ¢ — B and gq¢ — B decays. Another
approach was pioneered by the Lund group [247], who considered additional fragmentation into
hadrons of the gluon string connecting the coloured partons. (The experimental observation of
the subsequent 3-jet events was one of the prime pieces of evidence in favour of QCD.) Analytic
expressions for the fragmentation functions can be obtained by constraining their limiting behaviour

at the asymptotic limits. The z — 0 limit requires a 1/z behaviour for D(z) in order to reproduce
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the observed logarithmic increase in hadron multiplicity as s — oo,
1
<nB> = / dz D(z) ~ lIns (6.24)
Zmen

where zi, o< 1/s (see below). A common practice {248] for the z — 1 limit is to apply dimensional
counting rules, using essentially the same arguments as for the z — 1 limit of the structure functions
[103]. In all cases, however, the overall normalisation of the fragmentation functions has had to be
fixed by the data.

The above models are all specific to the valence quark fragmentation functions, DqBv v (2), which
describe the spectator system — baryon B fragmentation for scattering from valence quarks. At
small z, where the probability of interaction with a sea quark or antiquark is large, we also need
to know how systems such as qyqvqvgs or gvqyqvq fragment to baryons. In general, there is no
reason why these more complicated systems should decay at the same rate as the valence diquark.
In our region of interest, however, the fragment baryon is required to carry most of the parent
system’s momentum (z — 1), and for this to occur the baryon must contain all of the spectator
valence quarks of the appropriate flavour. At large z (2 R 0.6) model calculations [245] indicate
that by far the most important contributions to the fragmentation functions come from the process
whereby the baryon is formed after only one g7 pair creation. In the case of the A*T, all of the
valence u quarks in the spectator system must be present in the final state baryon. For interactions
with dg and d quarks, we would therefore expect that Df::vdvj(z) o Ds::vdvds(z) o Dﬁ::v(z).

Similarly for scattering from ug and 4@ quarks, we have Df::vdvﬂ(z) ~ Df::vdvus(z) ~ Df;:v(z).

Note that if a uy quark is struck, the probability of producing a AT is smaller than if it is a ug

A+
Ly vy

quark, Dﬁ:;v(z) <D (2). Numerically, at @2 ~ 4 GeV? the sea constitutes at most ~ 20% of
the cross section at z ~ 0.1.

Usually, in semi-inclusive experiments [225] the longitudinal momentum dependence is measured
as a function of the Feynman variable zz, defined as the ratio of the centre of mass longitudinal
momentum to its maximum allowed value, zF = p}/p},... = 2|P*|/s = 1 — M% /s, where Mx is
the mass of the inclusive hadronic debris, and the asterisk (*) denotes centre of mass momenta.

This variable can be related to the light-cone variable z via

VME + b+ s oh/4— /5 ar/2
= 75 ;
Note that for 2 — 1, 25 ~ 2z if s > M3 -I—p%. The TFR (CFR) corresponds to zg < 0 (zF > 0),
and the boundary between the regions at zp = 0 corresponds to {min = /M3 + p%/s.

For the fragmentation of quark systems with net polarisation into polarised baryons we need

zZ

(6.25)

to know how the polarised spectator system (diquark for z — 1) transfers its polarisation to the
produced baryon. While there exists a small quantity of literature on polarised quark — polarised
baryon fragmentation [249, 250], the spectator (diquark) — baryon process has received almost
no attention. (One early calculation was made by Bigi [251] who, however, considered only spin-

dependent fragmentation in polarised baryon production via the scattering of polarised leptons
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from unpolarised protons.) We follow the approach taken by Bartl et al. in their study of polarised
quark — baryon fragmentation [250], by assuming that the diquark retains its helicity during its
decay. We also assume that the ¢ pair creation probability is independent of the helicity state of
the quark g. This means that at leading order the produced baryon will contain the helicity of the
diquark, so that, for example, a A" or AT can emerge from a ¢'q" diquark, whereas a A¥ cannot.

For p% = 0 we define the spin quantisation axes of the target proton and fragment A to
be collinear, for which the calculation of the leading spin-dependent fragmentation functions is
relatively straightforward. The overall normalisation of the spin-dependent fragmentation functions

is fixed by the condition

q(z) DA (2) + a(z) DAY (2) = ¢'(2) DETH(2) + ¢*(=) DA, (2)
+ q'(x) DpT—cﬂ(z) + (=) DpT ql(z) (6.26)
where
+3/2
DA () = Y DAMT(e). (6.27)
s=—3/2

In relating the.production rates for various polarised ATt we employ simple SU(6) spin-flavour

wavefunctions,

AT~ ] (vw)1(41)

2 1
AT~ \/;“T (uu)i(0) + \/;ul (uu)1(+41)
2 1
AT+ o \/;ul (uu)l(o) + \/;UT (uu)l(—l) (6.28)

A++U ~ ul (uu)l(_l).

where the diquark q9;(;,) 1s in a spin j (spin projection j,) state. Note that this is true only when
the spin projections of the diquark and A are in the same direction.

From these wavefunctions we can deduce simple relations among the valence spectator diquark

DA t+t,

— A (spin projection s) fragmentation functions, D, oy

(#). Clearly the leading functions will be
those which can form the correct spin and flavour quantum numbers (to form a A+ ¢) by picking
up a single quark from a ¢q pair in the vacuum, and these are related by

DAMN(z) =3 DA () = SDAMI(2) = S DAM1(2) (6.29)

uul(l) uul(l) Uul(o) 'U/U-l(o)

with normalisation determined from (6.26)—(6.27):

A+t 3 A+t
D (?) = 1Dw (2). (6.30)

The non-leading fragmentation functions are those which require at least two ¢¢ pairs, namely

At A+t A+t ++ ++ i .
Duul(oﬁ/u, Duu1(1§/u’ Dudo(o?”/l/u, Dfl(O?/T/UU, and Df 1(1;}””, and those which require 3 such

pairs, Dﬁul (1l)} and Dfd il Except at very small 2z (~ 0.2) the fragmentation functions requiring 3
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qq pairs are consistent with zero in the model of Ref.[245]. Since our region of interest is that in
which there is a high yield of slow A baryons in the TFR, namely 2 R 0.6, we can safely neglect

the latter functions. For the 2 ¢¢ pair fragmentation functions, we also expect that Dfutjo?(z) =

Dfutjol)}(z). For z & 0.2 the unpolarised model fragmentation functions of [245] requiring 2 ¢

pairs (e.g. Dde(z)) were quite small compared with the leading fragmentation functions, and

related approximately by Dﬁd++ (2) ~0.1 Dfu-H'

(z). For larger z (R 0.6) we expect that these non-
leading fragmentation functions are also negligible compared with the leading functions. For the
spin-dependent fragmentation functions, we therefore expect a similar behaviour for those decay
probabilities requiring two ¢ pairs created in order to form the final state with the correct spin
quantum numbers. This then allows for a complete description of the spin fragmentation at large

z in terms of only the 4 fragmentation functions of (6.29).

Atts
995(4z)

related via the SU(6) wavefunctions of the A only if the spins of the diquark and A are quantised

As mentioned above, the spin-dependent ¢q¢ — A transition probabilities, D (2), can be
along the same axis. For As produced in the target rest frame with p% = 0 (relative to the z-axis
as defined by the 4™ direction) the analysis in terms of the above spin-dependent fragmentation
functions is valid as long as the proton spin is also along the z-axis. This is no longer the case
for specific polarised baryons with non-zero transverse momentum, p% # 0. We can see this
more clearly by considering the gg;(;,) — AT+® transition amph’tudes, quj(jz)(a), where the A
momentum direction o (relative the the z-axis) is also the angle between the diquark and A
spins (for longitudinally polarised As). Then Dﬁ‘;(j:) ~ |quj(jz)(0)|2. However, to describe the
fragmentation into a A with polarisation at angle @ # 0 in terms of the amplitudes quj(jz)(a),
we must begin the fragmentation process from a diquark with spin in the a direction. Thus we
need to know the spin projection of the diquark onto the axis given by angle a. This can be done
by taking a linear combination of ¢q states with spin quantised along the z-axis, weighted by the
spin rotation functions dj::';z(a), where j, is the diquark spin projection in the a-direction, and
j = 1is the total spin of the uu diquark in the A: 37, dj::;z(a)A;qj Gy’ However, in this case the
square of the transition amplitude will contain ‘non-diagonal’ terms, for which an interpretation in
terms of fragmentation functions will no longer be possible. For the spin-dependent fragmentation
of quarks to baryons with p% # 0 an ansatz was made in Ref.[250] in which the ‘non-diagonal’
functions were expressed as products of an empirical transverse momentum distribution and some
unknown function of z. Only simple guesses were made for the z-dependence of these functions,
and without accurate measurements of final state A polarisation, which would enable these to be
determined, such prescriptions must remain speculative.

This problem will simplify somewhat because we have some knowledge of the spin state of the
diquark from the spin of the struck quark. For example, with the SU(6) proton and A wavefunctions
in (6.22) and (6.23), a photon striking a d! quark will leave a uu diquark with 5(j,) = 1(1). Then to
make a AT in the a direction, only the amplitude Aﬁul - will contribute, so that the fragmentation

2
function in this case will be o (dil(a)> Dﬁ;:lf; However, for a AT there will be two transition
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amplitudes, Auu 0 and Auu TN and therefore two unknown terms for the fragmentation function
into AT at angle a. A possible way around this could be to approximate, for small laboratory
angles a (since the production cross section in strongly peaked around a = 0), the fragmentation
function by the same function, Dﬁ (+ )(z), as given by SU(6) symmetry. Our approach, however,
will be to work in a frame of reference in which the target proton has large momentum, and to
consider only the longitudinal momentum dependence of the fragmentation functions — that is, we
will assume, as in the unpolarised case, that the transverse momentum distribution of the polarised
A can also be factored, ]_N)f,T_qu(z,p%p) = Dpy_1,(2) ©(p%). This then will enable us to use the
model described above (Eqgs.(6.26)—(6.30)) without ambiguity.

We therefore write the pr-integrated QPM differential cross section for the leptoproduction of

a ATT with spin s as

d3o9FM B 2ra’ 1 4 4AM?E? 1 Q? B Q_2 (6.31)
dedQ?d¢ ~ \ M2E%z(1-—z)) \ 222 Q* IMExz 4E? '
4z Atts | o 1 (2 hatts LAt DAt | At+s Atts
X [ 9 (uVDudl(o) + 24 (B-D““lﬁj i EDmllw? +u udl(l) + 2u Duul(l) St 3Duu1(o)

+E (dT DAY | ogt (ZDAHs-E- 1 patts )-{-d‘l,DAHS—I-QJl (5DA++S+1DA++ ))]

uul(o) 3 UU(1) 3 uul(u) uul(l) uul(l) 3 uul(o)

where the fragmentation functions qu e s) are evaluated at z = (/(1 — ). In our calculations we
parameterise the (very limited) available data obtained by the EM Collaboration [225] in a recent
analysis of (unpolarised) A*tt muon production in the TFR for z — 1. We further assume that
the large 2 limit is dominated by the fragmentation uu — AT, and parameterise the leading
unpolarised function as DA™ (z — 1) = a(1 — z)’. Converting from the ¢z dependence of the
observed normalised hadron distribution, (1/N¢star) ANATY /dzF, we obtain ¢ ~ 0.68 and b = 0.3,
albeit with large uncertainty. From (6.29) and (6.30) we can then finally obtain the polarised
fragmentation functions necessary to calculate the polarised A production cross section in (6.31).

An alternative description of this semi-inclusive process can be made in terms of the one pion
exchange model discussed in Chapter 3. Since the production of final state As involves small four-

momentum transfers ¢, one might expect that the ¢-channel exchange of pions could be used to

describe the process, in at least part of the kinematic range.

6.2.2 A*t Leptoproduction via One Pion Exchange

Despite the various phenomenological successes of nucleon models which incorporate pionic degrees
of freedom (see the discussion in Chapter 3), as yet there has been no direct experimental evidence
to unambiguously point to the existence of a pion cloud in high energy reactions. It is part of our
purpose to investigate the possibility of obtaining a clear signature in semi-inclusive DIS, which
would be distinct from the QPM background described in the previous section.

The relevant process is illustrated in Fig.6.10, where the dissociation of a physical nucleon into
a pion and a A is explicitly witnessed by the probing photon. Following our earlier discussions of

the pion model, we can write down the one pion exchange (OPE) differential cross section for the
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Figure 6.10: Semi-inclusive leptoproduction of polarised AT+ baryons via one pion exchange.
reaction Ip — IATHX as [66, 252]

d5a'OPE o 2NA TS s(t) ]:2A
- x A o (1,q) W (k,q) (6.32
dzdQ2dCdpEdd (M E? g2 4 c) Tonzmz (= mzy  Lw(b@) Wi (k,a) (6:32)

where t = (p — P)? = (—p% — (1 - {)(ME — (M?)) /¢, and ¢ is the azimuthal angle. The tensors
L,, and W describing the leptonic and hadronic vertices, are given in (2.2) and (3.9).
For the # N A form factor, Fra, we may use a dipole function

A2, —m? ?
Fealt) = (—Kga_t) (6.33)

as in (3.11). Alternatively, we can also take a form suggested in our earlier analysis of the proton’s
pion cloud in the infinite momentum frame (Section 3.1.2), in which we used the time-ordered
(non-covariant) kinematics to evaluate only the diagram in which the exchanged meson travelled
forwards in time. A similar analysis of the semi-inclusive DIS process in the IMF would yield the

same results, but would allow us to take the form factor as

(6.34)

AZ 4+ M2\?
A2+31rA>

Fra (p%, () = (
where s;a = (m2 + p3)/(1 - ¢) + (M2 + p%)/(. Furthermore, as discussed at length in Chapter
3, the formulation in the IMF would remove some of the ambiguities associated with using the
experimental structure function of the pion [101, 102] for the virtual pion structure function Fy, in
Eq.(6.32). (In addition, the form factors could be different for different polarisation states of the
proton and A, however, we neglect such differences here.)

The function 75 *(t) is obtained by evaluating the trace over the target nucleon spinor and the

Rarita-Schwinger spinor-vector u, for the recoil A,
7% (1) = Tr [u(P,S5)u(P,S) ualp, s)ug(p,s)] (p— P)* (p- P)ﬁ (6.35)

where the Rarita-Schwinger spinor-vector u,(p,s) was given in (3.12). We define, as before, the

target nucleon polarisation vector to lie in the z-direction (parallel to the v* direction), and the spin
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of the produced A is quantised along its direction of motion. Because the A is emitted collinearly
with the pion, production of A baryons with spin projection +3/2 is forbidden, T5 i%(t) = 0.
This is confirmed by explicit evaluation of the trace in (6.35), if we recall that for polarised fermion
spinors the spin projection is w(P,S)@(P,S) = (1 +v5 B) (P + M)/2. It can also be shown that
the yield of spin projection £1/2 As is given by

T+ *5() = ﬁ (M = MaY? 1] [(M + Ma)? - t]2 (14 cosa) (6.36)

where « is the angle between the polarisation vectors S and s. Furthermore, because the production
of A baryons is limited to forward laboratory angles, the presence of the (14 cos &) factor associated
with the final state polarisation will significantly suppress the s = —1/2 yield relative to that of
s = +1/2 final states. As will be seen in the next section when we discuss the numerical results,

this suppression leads to strikingly different predictions for the polarisation asymmetry compared

with those of the QPM.

6.2.3 Numerical Results and Discussion

Since the OPFE contribution to the inclusive nucleon structure function peaked at z ~ 0.05 — 0.1
(see Fig.3.12 for example), this will be the region in which any direct pion exchange mechanism for
A production is most likely to be visible.

The (-dependence of the pr-integrated unpolarised differential cross section, Q2d3c/dzdQ?%d(,
is plotted in Fig.6.11, for z = 0.1, Q% = 4 GeV? and E = 100 GeV. (Note the kinematic boundary
at ( = 1—=z.) Clearly, the model predictions are dramatically different, with the OPE cross section
being dominant at large ¢, while the quark parton models are rather more flat and tend to rise at
smaller { (see Eq.(6.24)). Using the fragmentation functions extracted from the EMC data [225]
on muon induced ATt production, the QPM model prediction is shown by the dashed curve. For
estimation purposes, for the QPM calculation we use the polarised quark distributions of Carlitz &
Kaur [242], with the input unpolarised distributions from Ref.[51]. For comparison, we also show
the results of the fragmentation model of Bartl et al. [245], which predicts significantly smaller
yields of ATT baryons. (However, in that analysis the flavour coefficients in the parameterisation
of the gg — baryon fragmentation functions appear to be inconsistent with those expected from
SU(3) flavour symmetry, so that this model may not be reliable.)

For the OPE model, we show in Fig.6.11 the predictions with two different form factors, namely
the t-dependent dipole form factor (dotted curve), Eq.(6.33), and the ppr- and (-dependent form
factor (solid curve) in Eq.(6.34). The two curves for each of these form factors correspond to
different form factor cut-offs, namely A a = 700 and 1000 MeV for the t-dependent form factor,
and A = 535 and 675 MeV for the (-dependent form factor, with the cut-offs chosen to give the
same value of < n >,a (= 0.017 and 0.037, respectively). With the t-dependent form factor the
cross section peaks at higher (, while for the (-dependent form it is quite a bit broader. This is

consistent with the y dependence of the function fra(y) observed in Fig.3.6 for these form factors.
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Figure 6.11: Differential cross section for leptoproduction of (unpolarised) A*+, for ¢ = 0.1,
@? = 4 GeV? and initial lepton energy E = 100 GeV. OPE(1) is the one 7 exchange model with
the (-dependent form factor in Eq.(6.34), with A = 700 (lower curve) and 1000 MeV (higher curve).
OPE(2) is the 7 exchange model with the t-dependent form factor in Eq.(6.33), with Aya = 535
and 675 MeV chosen to give the same values of < n >,A. The QPM curves use fragmentation
functions extracted from the EMC data [225], and from the model of Ref.[245].

Nevertheless, it appears that the unpolarised cross sections for both OPE curves lie below the QPM
‘background’ for the range of A considered. In such a case it would be difficult to observe the OPE
contribution above this background. Of course with larger A the OPE cross section could be made
to exceed that of the QPM, although this would bring us into conflict with the upper limits on A
obtained in Section 3.1.4.

The predictions for the individual polarisation states of the produced A** (for DIS from a
proton with § = +1/2) are shown in Fig.6.12. As mentioned in Section 6.2.2, the spectrum of
As in the OPE model is one in which the polarisations of the target proton and recoil A*t+ are
highly correlated, and this is clearly visible in the figure (the OPE cross sections are evaluated
using the form factor in Eq.(6.34) with A = 700 MeV). In particular, there are no s = £:3/2 states,
and mostly s = +1/2 states. The QPM model shown in Fig.6.12 uses the fragmentation function
extracted from the EMC data [225]. Note that there are no baryons with s = —3/2 predicted in the
leading fragmentation function approximation at z — 1 ({ — 1 — ). In fact, the ratio of polarised
As in the QPM is s = +3/2: +1/2:-1/2:-3/2~3:2:1:0.

The dramatic difference between the OPE and QPM predictions for the polarised A spectra
can be utilised by taking differences of cross sections for As with different polarisations. In Fig.6.13
we show the difference ot — o=, where 0% = Q2d®/dzdQ?d((s = £1/2), for the different models
(the OPE models have t- and (-dependent form factors, with Aya = 535 MeV and A = 700 MeV,
respectively).- Contrary to the situation for the unpolarised case, here the OPE cross sections are

clearly discernible above the QPM background, even for the relatively small cut-offs used.
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Figure 6.12: Differential leptoproduction cross section for various polarisation states of the At+,
The OPE curve is the prediction of the one 7 exchange model, with the form factor given in
Eq.(6.34), with cut-off mass A = 700 MeV. The QPM curve is the quark parton model prediction
with the fragmentation function extracted from the EMC data, as in Fig.6.11.

The spin asymmetry is even more dramatic when one looks at the ratio of polarisation cross
sections. In Fig.6.14 the difference 0% — 0~ is divided by the total predicted unpolarised cross
section. The resulting ¢ distribution is almost flat, but strikingly different for the quark model
of Section 6.2.1 and the pion exchange mechanism (the latter is almost independent of the form
factor, or of the cut-off mass). A measurement of this ratio would thus be particularly useful in
testing the relevance of pions in the DIS process. Such experiments can in principle be performed,
as all that is required is a several GeV lepton beam, of sufficiently high luminosity, and detectors
capable of observing final state protons and 71 mesons.

We may also ask whether there will be fragmentation into baryons from the hadronic debris
(X) in Fig.6.10, in addition to the A produced at the hadronic vertex. What we know from the
ideas in Section 6.2.1 is that large-{ baryons originate from two (or more) quark systems. The
CFR of the pion will be dominated by meson production. However, the TFR of the pion will also
contain mostly mesons, in contrast to the TFR of baryons. Thus the only significant source of
low-momentum baryons, with pion-exchange, will be from the purely hadronic vertex in Fig.6.10.

Note that we can also calculate the yield of pions resulting from the scatter off the virtual
nucleon or A components of the physical proton, with an on-shell meson in the final state. The ¢
dependence of this process would be somewhat different to the baryon recoil case, namely the peak
in the cross section would occur for small {, so that both the TFR and CFR would be populated
by such pions. As a possible extension of this work it may be useful to compare the predictions of
the nucleon (or A) exchange process for pion production with the much more abundant data on

meson leptoproduction.
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Figure 6.14: Polarisation asymmetry for semi-inclusive A*t production, with o as defined in
Fig.6.13 and oy is the sum over all polarisation states. The model curves are as in Fig.6.13.
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Chapter 7

CONCLUSION AND OUTLOOK

In this thesis we have investigated aspects of the deep inelastic scattering of leptons from hadronic
targets, with a view of obtaining a consistent description of the internal structure of nucleons and
nuclei. In the context of QCD, deep inelastic scattering is only a partially understood process, since
only the hard scattering of the photon (or W-boson) from partons can be analysed perturbatively.
DIS therefore provides an opportunity to study the non-perturbative regime of QCD. Our emphasis
has been on the region of intermediate momentum transfers, @2, where the transition takes place
from hadronic to partonic variables as those appropriate to describe the strong interactions.

As a first step we would like to have an accurate description of deep inelastic scattering from
nucleons, in particular to use it to probe the soft part of the interaction, between the partons
and the parent nucleon. Progress in this direction has already been made by connecting quark
distributions in DIS with low-energy models of the nucleon. Unfortunately, most of these models
have been non-relativistic, and one would naturally like to include relativistic corrections. We have
seen that a relativistic description of the nucleon quark distributions is possible if one constructs the
scattering amplitude from the truncated nucleon tensor, WW, which itself can be determined from
relativistic quark—mnucleon vertices. At this stage it is not clear how the relativistic vertex functions
can be related to the ordinary quark wavefunctions obtained from the non-relativistic models. For
this reason we have used phenomenological input to parameterise the momentum dependence in
the vertex functions. With a minimum of parameters (essentially the high momentum cut-offs and
the spectator diquark masses) quite excellent agreement with the valence quark distribution data
can be achieved.

The advantage of working with the truncated nucleon tensor is made apparent when one con-
siders nuclear DIS. Specifically, incorporating the off-mass-shell dependence of the virtual nucleon
structure functions, Wi, becomes straightforward. The only additional input necessary to com-
pletely determine the nuclear structure functions are the functions giving the four-momentum (p)
dependence in the relativistic nucleon—nucleus vertices. Although relativistic calculations of nu-
clear structure functions have previously been attempted, these have all relied on specific on-shell

approximations for the virtual nucleon tensor in order to formulate the problem in terms of the
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convolution model. Within the present method, it has been possible to systematically derive the
conditions under which the convolution approach could possibly be justified, and to demonstrate
that in general these are not satisfied. Hence we have established that the convolution model is
incompatible with the covariant formalism when the full off-shell structure of the nucleon tensor is
retained. From a more general perspective, our new formalism can be seen as a positive develop-
ment since it makes clear the necessity of using both quark and nuclear degrees of freedom within
a single framework.

An obvious extension of this formalism would be to calculate the polarised structure functions of
nucleons and nuclei. As in the spin averaged case, we would expect the factorisation (convolution)
hypothesis to break down here as well. This could then have potentially significant consequences
for the extraction of the polarised neutron structure function from the polarised deuterium and
helium data, and to the whole argument about the proton spin.

Unfortunately, for practical applications, the relativistic nucleon—mnucleus vertex functions are
as yet unknown, save for the lightest nuclei like deuterium. As could be expected for the deuteron,
we found that the results of the full, p?-dependent calculation differ little from those obtained by
making on-shell approximations, when the results are normalised to conserve baryon number. Of
greater interest, however, and especially for understanding the nuclear EMC effect, are the off-
shell corrections in heavy nuclei. An estimate of the size of the off-shell deviations was made by
considering a nucleon immersed in nuclear matter. Here, the off-shell effects were parameterised
in the form of an effective nucleon mass for the interacting nucleon. In addition, we found non-
negligible consequences arising from final state interactions between the spectator diquarks and
the nuclear medium. Combined, these effects give some 20-30% harder structure functions for
interacting nucleons at z & 0.4 compared with the free nucleon results.

Although we have modelled only the valence component of the nucleon (and nuclear) structure
functions, it should be possible in future to extend the analysis to the sea quark sector. This will
require additional model-dependent input for the sea-quark—nucleon vertex functions and for the
four- (or more) quark spectator state. Alternatively, we can simply assume that the entire sea can
be generated perturbatively. The only flaw in this approach is the possibility that there exists in
addition an intrinsic, non-perturbative sea in the nucleon. We have investigated this component by
taking a model in which part of the sea originates through interactions of the high energy probe with
the extended virtual meson and baryon structure of the nucleon. This model warrants study not
only as a possible source of the nucleon sea, but also for its prediction of a flavour asymmetry in the
sea of the proton -— a topic of much recent debate, especially since the experimental determination
of the Gottfried sum rule by the NMC. Our technical treatment of this process has been to use the
infinite momentum frame formulation of the the instant form of dynamics. This approach, contrary
to the covariant formalism, enables the consistent use of the convolution formula, and ensures that
ambiguities in the structure functions of virtual particles can be avoided.

An important parameter in this model is the relative size of the meson cloud surrounding the
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nucleon. Within the limits imposed on the mesonic contributions by the experimental antiquark
distributions (namely, a fairly soft meson—nucleon form factor, with a cut-off A ~ 700 MeV), we
found that typically less than about half of the apparent discrepancy between the measured and
quark parton model values for the Gottfried sum rule can be accommodated. It is likely that other
mechanisms, such as Pauli blocking, do play at least as important a role in generating the flavour
asymmetry. In fact, careful examination of the shape of the proton—neutron structure function
difference as a function of Bjorken-z suggests the presence of both the mesonic and Pauli effects.

The inherent model-dependence in the extraction of the neutron structure function from deuteron
DIS data introduces the largest uncertainty in the interpretation of the Gottfried sum rule data.
Although generally small, the nuclear effects in deuterium could be magnified when one is consid-
ering differences of cross sections, especially at small z. With this in mind, we have calculated the
shadowing corrections to the total virtual photon-—deuteron cross section, using a model which
incorporates both vector m;:son (which are important at low ©?) and parton (high Q%) degrees of
freedom. We found subsequent corrections of the order of 1 — 2% to the neutron structure function
for z < 0.01, with the biggest uncertainty arising from the model deuteron wavefunction. Con-
sequently, one should expect ~ 5 — 10% reduction of the value of the Gottfried sum rule due to
shadowing. It would be quite valuable for the resolution of the question of shadowing in deuterium
(and of SU(2) sea flavour symmetry) to have high quality data at smaller & on the proton structure
functions from neutrino scattering, since this would enable the individual flavour distributions to
be determined and the neutron structure function deduced from charge symmetry.

To check the consistency of our model of shadowing we also calculated the corrections to the
structure functions of heavy nuclei at small . Using realistic nuclear density parameters, we found
good agreement of the model with the latest high-precision data from muon scattering experiments
at CERN. In particular, what can be learned is that the rescattering of vector mesons plays an
important role at small Q?, where much of the small z data is taken. (Of course the approximate
scaling property of shadowing at large Q2 is accounted for by the Pomeron exchange mechanism.)
A future refinement of the model may come from a better determination of the inelastic diffractive
scattering cross section, parameterised in the form of the Pomeron ‘structure function’. Progress
in this direction is sure to be made shortly when new data at small z (z S 1074 at Q% ~ 10 GeV?)
from HERA becomes available.

As an extension of the present calculation, it would be useful to model the region of very small z
and small 2 [253]. A recent Fermilab experiment [254] measured the deuteron to proton structure
function ratio down to 2z = 2 x 1075 (at Q2 R 0.01). Shadowing corrections to the deuteron
data should therefore be estimated in this region. Also, data from the E665 Collaboration [255]
observed what appeared to be saturation at very low z of the shadowing in the cross section ratio
of Xe and deuterium. From the Q% dependence of the shadowing corrections discussed in Section
4.3 such saturation will be accommodated within the present model so long as there is a smooth

extrapolation to the photoproduction limit.
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In addition, the nucleon off-shell effects should also be included in the shadowing calculations.
For this it will be necessary to have a relativistic description of the sea component of the nucleon
structure functions, which is another reason to extend the model of Chapters 2 & 5. However, a
rigorous and self-consistent treatment of the off-shell effects may be challenging if one is to use
the Glauber scattering formalism, since the derivation of the multiple scattering expansion relies
critically on the on-shell approximation for the bound nucleons. Also, despite the uncertainties in
the model parameters, it may be useful to obtain an estimate of the effects due to meson exchange
currents in heavy nuclei.

Finally, as another potentially rich source of information on the long-distance quark dynamics,
we have studied the process of semi-inclusive hadron leptoproduction. In particular, we found that
the fragmentation into polarised At baryons in the target fragmentation region offers a striking
contrast between the predictions of the one-pion-exchange model, and a formulation in terms of
diquark — baryon fragmentation functions. Furthermore, this reaction is experimentally feasible,

and some input from our experimental colleagues in the near future would be very valuable.
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Shadowing in deuterium
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Department of Physics and Mathematical Physics, University of Adelaide, Box 498 G.P.O., Adelaide, South Australia 5001, Australia
(Received 31 August 1992)

We calculate nuclear shadowing in lepton-deuteron deep-inelastic scattering, which arises from the
double scattering of the virtual photon from both nucleons in the deuteron. The total correction to the
deuteron structure function is found to be < 1% at small x, but dependent on the model deuteron wave
function. The resulting increase in the corrected neutron structure function is ~1-2% for x =0.004,
which leads to a 4—10 % decrease in the value of the Gottfried sum obtained recently by the New Muon

Collaboration.

PACS number(s): 13.60.Hb, 12.40.Gg, 12.40.Vv

I. INTRODUCTION

The quark structure of the nucleon is one of the most
fundamental aspects of hadron physics. Deep-inelastic
scattering (DIS) of leptons from hydrogen has yielded a
wealth of information on the deep-inelastic structure of
the proton. However, the absence of free neutron targets
has forced one to use deuterium in order to extract data
on the neutron structure functions. Traditionally in DIS
on the deuteron, in which the proton and neutron are
held together very weakly, nuclear effects have been ig-
nored, and the total lepton-deuteron cross section as-
sumed to be the sum of the lepton-proton and lepton-
neutron cross sections. It is the deviation from this sim-
ple relation in the region of small Bjorken x (x £0.1)
which is known as shadowing.

Experimentally, a deviation from linearity has been ob-
served [1] in the so-called nuclear European Muon Colla-
boration (EMC) effect for the ratio of DIS cross sections
(or structure functions) for lepton scattering from a nu-
cleus and from deuterium. A dramatic decrease in the
nuclear structure function per nucleon in the region of
small x confirmed earlier predictions [2] that shadowing
should be present in DIS. Furthermore, the shadowing
was found to be only weakly dependent on Q2 The ex-
traction of information about the difference between nu-
clear structure functions and those for the free nucleon
from the observed nucleus/deuterium ratios is sensitive
to any nuclear effects in the deuteron. Conclusions made
about nucleon parton distributions based on the
nuclear/deuteron structure function ratios {e.g., for the
proton antiquark distributions in the Drell-Yan process
(3]) at small x may have to be modified once shadowing is
taken into account.

A precise knowledge of the neutron structure function
F,, is essential for the determination of the Gottfried
sum rule, and the corresponding resolution of the ques-
tion of flavor symmetry violation in the proton sea. It is
necessary therefore to check for nuclear shadowing
effects in deuterium and include this correction in the ex-
traction of F,, from the deuteron structure function,
F,n. Some recent estimates [4,5] have suggested a
significant amount of shadowing in deuterium (up to 4%)
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for x £0.1. Other calculations [6] have predicted a less
dramatic effect ( =2%). .

The cross section for lepton-deuteron DIS, Fig. 1, is re-
lated to the forward y*D scattering amplitude. In the
impulse approximation, Fig. 2, the virtual photon in-
teracts with one of the nucleons in the nucieus. The dou-
ble scattering diagram, Fig. 3, in which both nucleons
participate in the interaction, is the origin of the shadow-
ing in a nucleus.

II. VECTOR MESON DOMINANCE

A. Hadron-deuteron Glauber scattering

Glauber theory [7,8] for hadron-deuteron scattering
gives the total AD cross section as a sum of the AN cross
sections, and a screening term arising from the double
scattering of both nucleons:

UhDZZOhN+80hD s (1)
where
2
[og
80 4p=— 8:;’ [d%;Spk?)
2
__Ow 2
——?fdkkSD(k e (2)

with k =|k|. In deriving 80, the assumption is made
that the hadron-nucleon scattering amplitude ¥,y is pri-
marily imaginary, Re¥,y <<Im%,,, and approximately
independent of k? for small k*>. [Contributions to 80,
from large k? will be suppressed by the deuteron form
factor Sp(k?).] Then from the forward double scattering
amplitude [9]

§F o= —— [ d%7Sp()F,, (K)Fy (K2
= Tr7al [ d% SpDF,, (K1 F (k) ()

where q is the momentum of the projectile, Eq. (2) fol-
lows via the optical theorem:
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3784 W. MELNITCHOUK AND A. W. THOMAS 47

e Y*(q)

/ \_.
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FIG. 1. Lepton-deuteron deep-inelastic scattering.

FIG. 2. Virtual photon-deuteron scattering in the impulse
approximation.

FIG. 3. Double scattering of virtual photons from the deute-
rons in which both nucleons take part in the interaction.

.

FIG. 4. Double scattering mechanism in the vector meson
dominance model. The virtual photon dissociates into a vector
meson which then scatters from the nucleon.

B. y°D scattering

Assuming that the Glauber formalism can be applied
to y*D scattering, the shadowing correction to the y*p
cross section was originally calculated in terms of the
vector meson dominance (VMD) model, where the virtua]
photon dissociates into its hadronic components (vector
mesons) before interacting with the nucleon —see Fig. 4.
In this model the shadowing cross section is given by {10]

5(")(7 ‘D E 1

78 ) |
< 2 (1+Q2/M2) ‘i &

where v=p0, , ¢, and the photon-vector-meson couy-
pling constants are [11]
f2 a*M

v v

47 30 . - 3)

—~e e

(equal to 2.28, 26.14, and 14.91 for p , ©, and &, respec.-

tively)). Writing (4) in terms of the deuteron structure
function® F,p we have
2 b0 ,.p
8V, (x )~Q~ , 3
v 2 fH1+Q /M2)~ ’
where now
o
60,p= — o dekTSD (k) . )

The total vector meson-nucleon cross sections o are re-
lated to the total 7N and KN cross sections via the quark
model, and are set to 24 mb for v =p" and w, and 14.5 mb
for v =¢ (see [10,12]). The deuteron form factor Sp(k?)
is given by the electric monopole body form factor [13]

Sph)= [ “dr[ulri+wn]jokr | (8)

where u(r), w(r) are the S, D-wave deuteron wave func-
tions, normalized such that fdr[uz(r)+u'2(r)]= I, and
where j, is the spherical Besse!l function. The square of
the three-momentum transfer to the interacting nucleon
is k’=ki+k}, where k}=mix1+M>/Q%?, and
x=Q%/2p-q.

'Note that the fine-structure constant evaluated at Q~1
GeV?is a=e?/4w=1/130, although the error introduced by
this is probably less than that associated with using f, which is
obtained from the decay of meson v with timelike Q?, for the
coupling to a photon with spacelike Q.

’In terms of the total cross section for the photoabsorption of
virtual photons on an unpolarized deuteron, T ep the deuteron

structure function is
__K
Wy @i v
where K =V'v?+ Q% is the flux of incoming virtual photons (in
the Gilman convention), so that in the Bjorken limit

.o
Fip= g .
P 4y rTD
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From Egq. (6) it can be seen that the VMD shadowing
correction to the deuteron structure function decreases as
1/Q%for Q*— .

At 0?=4 GeV? the VMD model shadowing predic-
tions are given in Fig. 5 for deuteron form factors ob-
tained from several different NN potential models. By far
the largest contribution (=~80%) to &' Y)F,p comes from
the p° meson. The magnitude of 8'VF,p(x) decreases
with x because the lower limit of the k integration in Eq.
(7), ki =k, is an increasing function of x, and the in-
tegrand peaks at small values of k(=0.7 fm™'). The
model dependence arises from the differences in the
large-k (22 fm™!) behavior of the form factor, Fig. 6,
which itself is determined by the small-r behavior of
u(r),w(r). All of the deuteron wave functions obtained
from realistic NN potential modes [namely Paris [14],
Bonn [one-boson-exchange potential in g space (OBEPQ)]
[15], and Bochum [16]] produce a trough in kSp(k?) at
k=3.5 fm~! (because the Bessel function is negative at
large kr), and a rapid falloff with k for k % 6 fm~'. Also
shown is the model of Franco and Varma [17], which was
used in [4,5], for which the form factor, parametrized by
a sum of Gaussians, has no large-k tail at all. The form
factor with the Paris wave function, which has the
“deepest” trough, leads to 8'"'F,p which is =25% small-
er for x $0.01 than with the Franco and Varma form
factor. The trough is also responsible for the antishadow-
ing in the region x £ 0.2.

III. DIFFRACTIVE SCATTERING FROM PARTONS

At low Q2 it is most natural to evaluate the y*D sha-
dowing in terms of the VMD model. At higher energies
a parton picture may be more relevant. An alternative
description of the double interaction mechanism in Fig. 3
in the high-energy limit is in terms of Pomeron (?) ex-
change, Fig. 7. If the momentum transfer between the
photon and nucleon is small, the nucleon will most likely
remain intact, in which case there will only be exchange
of vacuum quantum numbers. Although there is as yet
no QCD-based derivation of the properties of the reac-
tions described by Pomeron exchange (e.g., constant ha-
dronic cross sections), there have been suggestions
[18,19,20] that the Pomeron represents a system of
gluons. (In Ref. [18] hadron-hadron scattering is
modeled in terms of gluon exchange between MIT bags,
while in Ref. [20] gluon-ladder techniques are used to cal-
culate deep-inelastic structure functions of hadrons at
low x.)

In Fig. 7 the virtual photon probes the parton struc-
ture of the Pomeron, which is parametrized by the Pome-
ron structure function F,p [21,22] (defined in terms of the
cross section for y *-Pomeron diffraction scattering):

9)

The contribution to the F,p structure function from mul-
tiple diffractive scattering with ? exchange can be written
as a convolution of an exchange-? distribution function
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Sp(y) with the P structure function:

as"'°’1~"2,)(x>=fy2 dy [p(y) Fyplxp) , (10)
where
(o4
f«p(y)=—8—”;;1fd2kTSD(kz) (1
e

is expressed as a function of the momentum fraction of
the nucleon carried by the Pomeron, y =k-q/p-q
=x(1+M3/Q%)=M3}/s [M3=p},s=(p+q)*], and we
define xp=x/y. Figure 8 illustrates the y dependence of
S2(y), including the 1/y divergence for y —0. The rapid
falloff with y is testament to the very small contribution
coming from the large-y region.

In formulating a complete description of shadowing
which includes more than one mechanism care must be
taken to avoid possible double counting. Because of this
concern some authors {6] have restricted the Pomeron ex-
change process to the region of M2 above the highest
mass of the vector mesons contributing to the VMD pro-
cess: Mj>M }0 =~1.5 GeV? and consequently have tak-

en the lower bound on the integral in Eq. (10) to be
Yemin =X (1 +M)2(0 /Q?). The VMD contribution, which is

essentially a higher twist (1/Q?) effect, may compete
with that part of the diagram in Fig. 7 which contains
low-My single particle intermediate states. By keeping
only the leading twist piece of the structure function F,p,
we can exclude this contribution since it involves extra
factors of 1/Q? from the electromagnetic form factors.
Nevertheless, we have tested the sensitivity of our numer-
ical results to the cutoff procedure by varying M }0 from O

to 2 GeV>. For low x we find a difference over this range
of only some 5% of the total ? exchange contribution to
F,p. For larger Q? the separation into separate M x T€-
gions becomes irrelevant since y_;, —x in the Bjorken
limit.

For the Pomeron structure function we include contri-
butions from the quark-antiquark box diagram, Fig. 9(a),
and from the triple Pomeron interaction, Fig. 9(b) (see
Refs. [23,24)):

Fop(xp)=FE" (xp)+ F3 (xp) (12)
normalized such that ©
szgiﬂ
dt dy

16wy

Opp

Fyp= : (13)

where 1 = ~k?, and Fgm is the diffractive structure func-
tion, describing semi-inclusive diffractive lepton-nucleon
DIS, in which the recoil nucleon and the hadronic state X
X are separated by a large rapidity [22)].

The Pomeron structure function arising from the
quark box diagram, FY$*), has been calculated by Don-

nachie and Landshoff [22}:

(122 N, )B}
Fi¥ (xp)=—9 s (1—xp) . (14)

. pPp

The quark-Pomeron coupling constant is 83=3.4 GeV 2
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FIG. 9. (a) Quark-antiquark box contribution to the Pome-
ron structure function, where the Pomeron couples to the virtu-
al photon via a quark-antiquark pair. (b) Triple Pomeron con-
tribution to the Pomeron structure function.
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FIG. 10. x, dependence of the “box” and 3P contributions
to Fyp(xp) for the quark distribution function parametrizations
of Owens [27] and Morfin and Tung (28] at Q?=4 GeV?2.
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[25], and we assume the same strength for u,d quark and
antiquark-Pomeron couplings, but a weaker coupling to
the strange quarks: 2 ,=(10+2A,)/9 with A, =~0.5.
According to the Particle Data Group [11], the proton-
proton total cross section o,, is approximately 40 mb.
The parameter N, is determined by the x —0 behavior
of the nucleon sea distribution, xg.,(x ~0)—N_ x°.
Recent parametrizations of world DIS, Drell-Yan, and
prompt photon data [26,27,28] give N, =~0.15, and a ap-
proximately 0. Note that the overall normalization of the
right-hand side of Eq. (14) is slightly smaller than in {6]
due to our smaller sea parameter N, (cf. N, =0.17 in
[6)) and suppression of strange-Pomeron couplings.
More recently, Nikolaev and Zakharov [24] have calcu-
lated the box diagram contribution to F,p, based on a
perturbative QCD analysis of ¢g fluctuations of the virtu-
al photon. The x, dependence of their FY¢*’ parametriz-
ation is the same as that in Eq. (14): M3/(Q*+M})
(since Q2+ M;=Q?/x, from the definition of x.,), pro-
viding the same normalization is used (the normalizations
in [22] and [24,29] differ by an overall factor 1 —x ).
The triple Pomeron part of the 2 structure function,

2
167 d°G hp—hx
F(}?)(x‘ y)=— _'L——F—-—- Fs“v(x-p,Qz)
2 Xp Op |Th dtdy |- 2
(15)
follows from
v drdy | o, oy didy |

and the Regge theory expression for the diffractive
differential cross section [30],

_ Bupl By 0g3p() 1-2an an
dt dy 167 ¢ ’

2
d T hp—hx

where ap(1)=1+0.25t. In the Regge model the total hp
cross section is also given in terms of the hadron-
Pomeron couplings; Byp: 0, =B,p(0)B,5(0). It is then
evident that the combination

1 dzohp—-hX _ B,#0)g3p(0) (18)
o dtdy | 16y

is independent of hadron k. From experiments on the
diffractive dissociation of #*, K*, p, and p on hydrogen,
the triple Pomeron coupling constant was found to be
g3p(0)=0.364 mb'/? [31], independent of ¢, and indeed of
the hadron type .

For the sea part of the nucleon structure function,

sv=5x[u,+ua+d +d+2(s +5)/5]/18, we use recent
parametrizations of the data at Q?=4 GeV*® [27,28]. In
the calculation of Ref. [6], a constant value of 0.3 was
used for F5% together with an empirical low-Q? depen-
dence [22). With the above triple Pomeron coupling con-
stant, Eq. (15) gives a 37 component which is about 40%
smaller than that obtained in [4]. However, this is not
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FIG. 11. (a) Quark-antiquark box and 37 contributions to
the total deuteron structure function. The deuteron form factor
is given by the Bochum model wave function. (b) Deuteron
form-factor dependence of the Pomeron exchange contribution
to the deuteron structure function.

very significant for the total Pomeron structure function,
since F(Z%;P’ is very much smaller than the quark-antiquark
“box” contribution Fys*, Fig. 10.

The scaling behavior of the P-exchange mechanism is
determined by the scaling behavior of the ? structure
function, and from Eqgs. (14)-(18) it is clear that 87'F.p
will scale as Q*— . At Q?=4 GeV?, Fig. 11(a) shows
the individual “box” and 3P contributions to 8'”'F,p,
with the deuteron form factor obtained from the Bochum
wave function. The dependence of 8'7'F,p on Sp(k?) is
illustrated in Fig. 11(b). Again, as in the case of the
VMD model, the large-k negative tail of the form factor
produces a large (some 30-40 %) difference between
different models for x £0.05. For x 2 0.2 the presence or
absence of antishadowing will be determined by the mod-
el deuteron wave function.

IV. SHADOWING BY MESONS

Another potential source of shadowing arising from
the double scattering mechanism is one which involves
the exchange of mesons, Fig. 12. It has previously been
suggested [32] that this leads to substantial antishadow-
ing corrections to F,p{x). The total contribution to the
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deuteron structure function from meson exchange is writ- q q
ten '
§MF(x)= fx dy f,(p) Fylx,), (19 : :
u kA 'G' k
where p=mp,w,0, y=k-q/p-g=(ky+k.)/my and p AN
. . -~ s ~
x,=x/y. For the virtual meson structure function F,, /;/J S e
we take the parametrization of the (real) pion structure —‘,’—r«f P —~ '-;’“
function from Drell-Yan production [33]. The ’ °
exchange-meson distribution functions f,(y) are ob-
tained from the nonrelativistic reduction of the nucleon- FIG. 12. Double scattering mechanism with meson ex-
meson interaction: change. The dotted line represents mesons 7, p, w, 0.
d’pd’p’ Fonntk?) [} + kotky,
Suy)=dc, m, =3 ¥(p,J, )V ww¥(p J) 6|y —— (20)
H M Vf (2,”,)3 (kZ_m‘Z‘)zy 3% p uNN pP./; my
The deuteron wave function is defined by
1 Spp) |
W(p,J,)=—== |u(p)—w(p) - @2n
p.J; \/47T 14 P "/'é Xl

where u(p) and w(p) are its S- and D-wave components, normalized so that fdppz[uz(p)+w2(p)]= 1, with p=p/p
and p =|p|, and S, is the-tensor operator: S,,(p)=30,-po,-p —0-0;,. The deuteron spin wave function is denoted by
Y\, where J; is the total angular momentum projection. In Eq. (20), k*=k2—k?, where
ko=mp, -V mk+p’—V m}+p? is the energy of the off-shell meson, and k=p—p’ is its 3-momentum. The
nucleon-meson interactions are given by [15]

2
NN
cvﬂNN: - 2 al'k Uz'k > (22)
mﬂ
. . 2 . .
o _gz 1+_332_ k? o k? oykoyk g,,NNf,,NN _Lz__a - k +0,k0'2k 25
NN — 5 pNN - —0,'0, % L
. - 2m}  8my, 4mp am}, 2my my my ny
2
NN
+ = —0g,0,k*+0,'ko,k],
4 2 1 2 1 2
mpy
2 ko.,k
3¢ k? k orko,
C\/(‘JNN:gi)NN 1+ 2 - ) _U].UZ 2 + 2 ¥ (24)
2my  8my dmy 4my
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FIG. 14. Deuteron wave function and puNN form-factor

dependence of the total meson exchange correction. The Bo-

FIG. 13. Individual meson exchange contributions to the chum (solid) and Paris (dashed) curves are evaluated with

deuteron structure function, for the wave function of the Bonn A, =13 GeV, while the Bonn (dotted) curves have A, =1.0, 1.3,

(OBEPQ) model with a universal form-factor cutoff A,=1.7  and 1.7 GeV, with the larger cutoff giving more overall antisha-
GeV. Note the mass of the effective 0 meson is =800 MeV. dowing.
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2 2
k
Voun=—82ww |[1—- 3=+ ,
NN 8NN 2m} | 8m} (25)
Evaluation of Eq. (20) requires the identities
1 . ! .
gz‘l’f(p,JZN’(p s )=E[u (plu(p’)tw(plw(p’)P,(cosO)P,(cosd’' )]+ ¢-dependent terms
J.
_1 t '
—312\1/ (p,J,)o,-0,%(p',J,), (26)

1
§E\P+(p,.]z Jo, ko, k¥(p',J,)
J.

ZTI— %[k2—2pp'sin0 sind'Ju (plu(p’)
s

V2

4pp'cosf cos@'sin’0’ + 4p *cos?@'sin’0’ — %( p>+p?)P,(cosd’)

+2(pZcos’+ pcos’d )P, lcosf’) + %pp ‘cosf cosf'P,(cos8’) (ulplw(p’)

V2

ils %p’p cosB'cos8 P,(cost)

_1
3

wiplu(p’)

4p’pcosf’cosh sin’0+4pcos?@sin’— %( p’2+p?)P,(cosf) +2(picos’d’ + picos’h)P,(cosh)

(p cos@+p'cos’ 2P, (cosf)P,(cos8' ) —2( p2sin?@ + p %sin?8' ) P, (cosO)P, (cosd’)

+3(p2cos?0 sin?0 + pp’cosd cos’sin?6) P, (cos@’ ) + 3(p 2cos’d'sin6’ +p'pcosf'cosB sin’6' )P, (cosh)

+ %pp 'cosB cosd’sin’0 sinZ6’

The terms in Eqs. (26) and (27) which depend on the az-
imuthal angle (¢) vanish after integration. The factors ¢
are due to isospin: ¢,=c,=3, ¢,=c,=—1. The uNN
vertex form factors 7#NN(k2) are parametrized by a di-
pole form

Al—m? 2
¢ 2y © M
Fuank?) remry (B (28)
2 :

with the high-momentum cutoffs A, ranging from ~1
GeV in models with soft form factors [34,16] to ~1.7—2
GeV when hard form factors are employed [15].

Figure 13 shows the individual meson exchange contri-
butions to 8'*'F,p, for the wave function of the Bonn
model, and with a universal dipole cutoff of A#=l.7
GeV. As could be expected, pion exchange is the dom-
inant process. We also include the fictitious ¢ meson, but
with a mass (=800 MeV) that is larger than that used to
represent 27 exchange in VN scattering. Both of these
produce antishadowing for small x. The exchange of vec-
tor mesons (p,w) cancels some of this antishadowing, al-
though the magnitude of these contributions is smaller.
In fact, for A,=1.3 GeV all contributions other than
that of the pion are totally negligible.

Figure 14 shows the dependence of the total 8'M'F,
on A, for the Bonn model wave function. There is ap-

w(phwip’')

+¢ dependent terms .

(27

I

proximately a factor of 2 difference between the amount
of shadowing with soft (A,=1 GeV, lower dotted line)
and hard (A,=1.7 GeV, upper dotted line) form factors.
In lepton-nucleon DIS it is well known [35] that the
meson cloud of the nucleon, with a hard uNN form fac-
tor, gives nucleon sea distributions that are several times
larger than the empirical ones. In fact, to be consistent
with the lepton-nucleon DIS data A, must be £0.8—0.9
GeV. We also consider the effect of the model
momentum-space deuteron wave function on §'™'F,.
Although the model wave functions differ substantially at
large momenta (p X2 fm '), this variation will be largely
suppressed by the uNN form factor. The Bochum and
Paris wave functions are generally larger than the Bonn
wave function, and this is reflected in a larger 8 M'F, .
We also comment here on the issue raised in the previ-
ous section, namely, double counting, this time between
the meson exchange and the other mechanisms. It
should be clear that since the ? contribution involves the
exchange of vacuum quantum numbers, there will be no
intzrference between this and the exchange of pseudosca-
lar pions or vector mesons. The scalar ¢ meson, intro-
duced as an effective description of two-pion NA excita-
tions, does not correspond to actual exchange of a spin-0
particle. By restricting the meson structure function to
only the leading twist component (our F,,, is determined
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at Q2=25 GeV? where this assumption is reasonable) we
may view the VMD process as a description of higher
twist effects. Still, imposing any low-M, cut on the
meson exchange term has numerically insignificant conse-
quences, largely because F,,(x /y)—0asy —x.

V. COMBINED SHADOWING EFFECTS
AND THE GOTTFRIED SUM RULE

The total deuteron structure function is defined by
FZD(X)=F2P(X)+F2n(x)+5FZD(x) y (29)

where the shadowing correction is a sum of the VMD,
Pomeron, and meson exchange contributions:

8F,p(x)=8""F,n(x)+ 8P Fn(x) +8'MFyp(x) . (30)

In Fig. 15 we compare the contributions to 8F,p(x) from
the three mechanisms considered. For x £0.1 the magni-
tude of the (negative) Pomeron/VYMD shadowing is
larger than the (positive) meson-exchange contribution,
so that the total 8F,, is negative. The fact that shadow-
ing is present in this region of x does not depend on the
model deuteron wave function. For larger x(=<0.1-0.2)
there is a small amount of antishadowing, which is due
mainly to the VMD contribution. The dependence of the
total shadowing correction on the deuteron wave func-
tion and on the uNN form factor is shown in Fig. 16 for
Q?=4 GeV:. We point out that the magnitude of
OF,p(x) 1s about 4 times smaller than that obtained in
Ref. [4)], and about 2 times smaller compared with the re-
sult of Ref. [6]. The most important reasons for our
smaller results are the inclusion of meson exchange con-
tributions which produce antishadowing at small x, and
the use of realistic deuteron wave functions which lead to
smaller 7 exchange and VMD contributions.

Recently the New Muon Collaboration (NMC) has
measured F,, and F,p [36,37] down to very small values
of x(=x,,,=0.004). The neutron structure function
was then extracted from F,5 in order to test the
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FIG. 15. Comparison between the VMD, Pomeron, and
meson exchange corrections to the deuteron structure function
at Q*=4 GeV? (for the Bochum wave function, and a form fac-
tor cutoff A,=1.3 GeV for the meson exchange process).
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dependence of the total shadowing correction. For the Bochum
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lated with A,=1.0, 1.3, and 1.7 GeV, with the larger cutoff giv-
ing less overall shadowing.

Gottfried sum rule {38]. However, by assuming that
FZD“_(FZD/FZp_l))
1+(F)p/Fy, —1)

=2F,;, —Fyp=(F;, = Fy, )nmc

(31)

the NMC ignored any nuclear shadowing effects in D
which may alter the F,, values. The actual difference be-
tween the p and n structure functions should be

Fop = Fyn=(F3, = Fy )nmct8Fp (32)

and this is shown in Fig. 17. The dotted line is a best fit
to the NMC data, and includes the small-x extrapolation
used in [37]:

Fy,(x)=F,,(x) ~ ax? (33)
x —0

with ¢=0.21, B=0.62. The other curves include the
shadowing corrections to the NMC data parametrization.
It is not clear whether F,, —F,, will become negative at
x £0.004, and it will be interesting to see whether this
crossover occurs when additional data at smaller x be-
come available.

0o o. NMC data 0o

NMC param. J *

____ Bochum / 1
_ . . Bonn ‘,

Paris /

(3= 1.3GeV) / 1;

0.100 1.000

FIG. 17. Difference between the proton and neutron struc-
ture functions, with shadowing corrections to the NMC data at
Q=4 GeV.?
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FIG. 18. Gottfried sum, with shadowing corrections to the
NMC data.

The Gottfried integral

Fyp(x*)—Fy(x")
Selx, 1= [ 'dx'—2 N :

="' dlnx)[Fyy(x')=Fy(x")] (34)

is given in Fig. 18 for x down to 0.004. In the naive
quark model, S;(0,1)=1/3. Ignoring nuclear effects, the
NMC obtained Sg(xp,,1)=0.229. From the unmea-
sured region (x <0.004), using the above extrapolation,
the contribution was found to be Sg(0,x,)=(a/
B)xB. =0.011. With the conventional Regge theory as-
sumption that 8=0.5, S;(0,x;,) would be 0.014. In
Table 1 we give the values of S; including shadowing
corrections, and also the x <x;, extrapolation parame-
ters. For simplicity we take f=0.5, and adjust a to
achieve a smooth transition between the x >x.;, and
X <x;, regions. The overall correction to the NMC
value for S;(0,1) is found to be between —0.010 and
—0.026. This is to be compared with —0.07 to —0.088
obtained in [4,5,29].

As a fraction of the total F,n(x) [37], the shadowing
correction amounts to (0.5-1.0%,0.4-0.8 %,
0.0-0.3%) at x =(0.004,0.01,0.1), while the anti-
shadowing is less than 0.2% of F,p, at x =~0.2.

In Fig. 19 we show the ratio of neutron structure func-
tions with and without shadowing corrections:

F2n _ _SFZD 1-*-(Irln/FZp)NMC
(F2n /F2p )NMC

, (33
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FIG. 19. Neutron structure function ratio, with and without
shadowing corrections (at 02=4 GeV?).

where the NMC neutron/proton, ratio was defined as
(F3, /Fyp)nmc=Fyp/Fy,—1. There is an overall
1 —2 % increase in the neutron structure function due to
shadowing for x <0.01.

Finally, we illustrate in Fig. 20 the dependence upon
Q? of the total shadowing correction 8F,p(x,Q?%). As ex-
pected, the VMD term vanishes rapidly with increasing
Q?, leaving the two scaling contributions from ? and
meson exchange to largely cancel each other for Q?~25
GeV2, However, we should add a note of caution about
comparing shadowing corrections at very large values of
Q% In the parton recombination model [2,39,40] the
fusion of quarks and gluons from different nucleons intro-
duces additional terms [39] in the Altarelli-Parisi equa-
tions governing the QCD evolution of the parton distri-
butions. At very small x and large Q?, such as those at-
tainable at energies reached at the DESY ep collider
HERA, this can lead to significant corrections [6] to the
8F,p(x,Q?) evolved without these terms, although the
exact magnitude of these is sensitive to the small-x behav-
ior of the input nucleon gluon distribution. For the
moderate range of Q% and not too low x values in Fig. 20,
however, we expect the indicated Q? behavior to be reli-
able.

VI. CONCLUSION

In summary, we have estimated the nuclear shadowing
in lepton-deuteron DIS from the double scattering mech-
anism in Fig. 3. Our approach is similar to that of Refs.
[5] and [6], in describing the interaction in terms of the

TABLE I. Small-x extrapolation parameters for F,, —F,,(=ax®) and the contributions to the

Gottfried sum from different x regions.

Model a B 56(0,% pin ) Se(Xmnr1) 56(0,1)
NMC [37)] 0.21 0.62 0011 0.229 0.24010.016
0.109 0.5 0.014 0.243
Bochum (A,=1.3 GeV) 0.043 0.5 0.005 0.222 0.227
Paris (A,=1.3 GeV) 0.052 0.5 0.007 0.224 0.230
Bonn (A,=1.3 GeV) 0.011 0.5 0.001 0215 0217
Bonn (A, =1.0 GeV) 0.002 0.5 0.000 0214 0214
Bonn (A,=1.7 GeV) 0.019 0.5 0.002 0.217 0.219
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Q?=4Gev?
Q2=10Gey
~0.004 - Q2=25GeV
) Q% =25Gey
g no VMD
-0.006 . R
0.001 0.010 0.100 1.000

FIG. 20. Q? dependence of the total shadowing correction to
F,p. Curves represent the shadowing corrections at 4, 10, and
25 GeV?, with the Bochum model wave function and with
A=1.3 GeV. Also shown is the correction at Q?=25 GeV?
without the VMD contribution.

VMD model, together with Pomeron (?) exchange.
However we have also included contributions from the
exchange of mesons which effectively cancel as much as
half of the shadowing from the VMD/?-exchange mech-
anisms alone. Numerically, there is some dependence on
the model deuteron wave function, and also on the
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meson-nucleon form factor for the meson-exchange pro-
cess. The net effect is a <1% reduction of F,, for
x ~0.004, or equivalently a $2% increase in the neutron
structure function over the uncorrected F,,. Conse-
quently, the shadowing correction to the Gottfried sum
S(0,1) is between —0.010 and —0.026 (or about 4 and
10% of the NMC value), which is about 5 times smaller
than in previous estimates.

To accurately test the descriptions of shadowing in the
deuteron it is necessary to obtain model-independent in-
formation on the neutron structure function at low x.
Even at HERA energies this is not possible with electron
scattering alone. However, when combined with high-
precision data from neutrino-proton experiments the in-
dividual flavor distributions can be determined, and the
neutron structure function inferred from charge symme-
try. For this to happen, however, the statistics on the
neutrino data need to be improved, and the range extend-
ed into the smaller-x region.
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The possible role played by vector mesons in inclusive deep-inelastic lepton-nucleon scattering is in-
vestigated. In the context of the convolution model, we calculate self-consistently the scaling contribu-
tion to the nucleon structure function using the formalism of time-ordered perturbation theory in the
infinite momentum frame. Our results indicate potentially significant effects only when the vector-
meson-nucleon form factor is very hard. Agreement with the experimental antiquark distributions,
however, requires relatively soft form factors for the 7V, pN, and wq vertices.
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1. INTRODUCTION

In the context of meson-exchange models of the NN
force in nuclear physics, it has long been realized that
vector mesons play a vital role [1,2]). For example, the
isovector p meson is needed to provide sufficient cancella-
tion of the tensor force generated by m meson exchange,
which would otherwise be too large. On the other hand,
the isoscalar w meson, through its large vector coupling,
is responsible for the short range NN repulsive force, and
also provides most 6f the spin-orbit interaction. Tradi-
tionally 1t has been necessary to use hard vector-
meson—nucleon form factors in order to fit the NN phase
shifts [2]. However, alternative approaches have recently
been developed in which the NN data can be fitted with
quite soft form factors [3,4].

From another direction, the vector-meson dominance
model of the elastic electromagnetic nucleon form fac-
tors, in which an isovector photon couples to the nucleon
via a p meson, provides a natural explanation of the di-
pole Q2 behavior of the Y NN vertex function. Recent
analyses [3] have shown that a p VN vertex parameterized
by a soft monopole form factor (A, ~800 MeV) provides
a good description of the Q2 dependence of the Dirac and
Pauli form factors. The effect of vector mesons upon nu-
cleon electromagnetic form factors has also been explored
{5] in the cloudy bag model [6], and in various soliton
models {7].

In this paper we investigate the possible role played by
vector mesons in high-Q? inelastic inclusive scattering of

leptons from nucleons, in the context of the so-called con-
|

}N)physz‘/-z IN)barc+2 fdydszgO
MB

Susy,k

MBY

Here, ¢4y, k) is the probability amphtude for the
physical nucleon to be in a state consisting of a meson M
and baryon B, having transverse momenta k; and —k,
and carrying longitudinal momentum fractions y and
1 —y, respectively. Z is the bare nucleon probability. Al-
though we work in the one-meson approximation, we will
include higher-order vertex corrections to the bare cou-
pling constants 80y Illustrated in Fig. 1 is the deep-
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volution model, in which the deep-inelastic process is de-
scribed in terms of both quark and explicit meson-baryon
degrees of freedom. More specifically, the scaling proper-
ty of the meson- and baryon-exchange contributions to
the inclusive cross section allows us to probe the extend-
ed mesonic structure of nucleons.

Quite naturally the pion, being by far the lightest
meson, was the first meson whose contributions to the
nucleon structure function were investigated [8]. It was
later noticed [9] that the pion cloud could be responsible
for generating an asymmetry between the - and d-quark
content of the proton sea, through the preferred proton
dissociation into a neutron and 7*. Furthermore, deep-
inelastic scattering (DIS) data on the momentum frac-
tions carried by antiquarks were used to obtain an upper
limit on this nonperturbative pionic component [9,10].
An enhancement of d over & resulting from this process
was also postulated as one explanation for the slope of
the rapidity distribution in p-nucleus Drell-Yan produc-
tion [11]. More recently it has been hypothesized that
this asymmetry could account for some of the apparent
discrepancy between the naive parton model prediction
for the Gottfried sum rule [12] and its recently deter-
mined experimental value {13], and indeed this has result-
ed in the greater attention that the convolution model of
lepton-nucleon scattering has received [14-21].

In a model in which the nucleon has internal meson
and baryon degrees of freedom, the physical nucleon
state in an infinite momentum frame can be expanded (in
the one-meson approximation) in a series involving bare
nucleon and two-particle meson-baryon states:

My kB (1—y, —k)) | . (1)

[

inelastic scattering of the virtual photon from the two-
particle state {M;B). In Fig. 1(a) the photon interacts
with a quark or antiquark inside the exchanged meson,
while in Fig. 1(b) the scattering is from a quark in the
baryon component of the physical nucleon.

According to Eq. (1), the probability to find a meson
inside a nucleon with momentum fraction y(=k-q/p-q)
is (to leading order in the coupling constant)

3794 ©1993 The American Physical Society
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FIG. 1. Deep-inelastic scattering from the virtual (a) meson

and (b) baryon components of a physical nucleon.

f},,,(y)zzggm_\ Jd*krldyp(y,kp)I*. This must also be

the probability to find a2 baryon inside a nucleon with
momentum fraction 1—y. The baryon distribution func-
tion fgp(y'), where y'=p’-q/p-q, is probed directly
through the process in Fig. 1(b), and should be related to
the meson distribution function by

S Y)=fgull—y) (2)

for all y, if the above interpretation is valid. We also
demand equal numbers of mesons emitted by the nucleon,
(nYys=[ody fus(y), and virtual baryons accompany-

ing them, {n ) gy = [ ldy fap(p'):
<n>MB:<n)BM' (3)

This is just a statement of charge conservation. Momen-
tum conservation imposes the further requirement that

(n)usp {4)

where Y= fodynyB(y) and () am
=f(')dy’y "femly’) are the average momentum fractions
carried by meson M and the virtual baryon B, respective-
ly. Equations (3) and (4), and in fact similar relations for
all higher moments of f(y), follow automatically from
Eq. (2).

In what follows we shall explicitly evaluate the func-
tions fyp and fg,, and examine the conditions under
which Eq. (2} is satisfied. The results will be used to cal-
culate the contributions to the nucleon structure function
from the extended mesonic structure of the nucleon,
which are expressed as convolutions of the functions f(y)
with the structure functions of the struck meson or
baryon:

SMBF, (x)= [ 'dy FrpFpp(x /y) (5)

(y )MB +<}’ )BM

8%, )= [ 'y fany' Fap(x 1y) ©

with x = —¢?%/2p-q being the Bjorken variable. Note
that Egs. (5) and (6) are correct when physical (renormal-
ized) meson-baryon coupling constants are used in the
functions f 5 and fj,, (see Sec. IV for details). By com-
paring against the experimental structure functions, we
will ultimately test the reliability of the expansion in Eq.
(1), and in particular the relative importance of the states
involving vector mesons compared with the pion states.
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II. THE PION-NUCLEON CONTRIBUTION

A. Covariant formulation

Traditionally the effects upon F,y(x) of the 7 meson
cloud have been studied most intensely. The distribution
function of a virtual pion accompanied by a recoiling nu-
cleon has been calculated in a covariant framework [8,9]
as

gn'w\ mal [)‘7 (t)
~)= S a (7)
Sanly 167 yf 2y
Here, r—kz—r;:,ax—k%/(l—y) ts the four-momentum

squared of the virtual pion, with a kmematnc maximum
given by t» =—mly?/(1—yp), and k2 is the pion trans-
verse momentum squared. In a covariant formulation
the form factor F_, parametrizing the 7NN vertex, at
which only the pton 1s off-mass-shell; can only depend on
.

Contributions from processes in which the virtual nu-
cleon (accompanied by a recoiling pion) is struck have
been calculated by several authors [18,20,22], although
not all agree. Partly because there is less phenomenologi-
cal experience with so-called sideways form factors
(where the nucleon, rather than the pion, is off-mass-
shell), some early work {23,15,17] simply defined f (")
through Eq. (2). However, this 1s unsatisfactory from a
theoretical point of view, and ideally we would like to
verify explicitly that the functions f_, and fy, satisfy
Eq. (2).

Clearly the treatment of deep-inelastic scattering from
an interacting nucleon is considerably more involved
than that from a real nucleon, which is described by the
usual hadronic tensor

Wi(p,g)=g""W x(p.q)

where g*'=—g""+¢%q"/q? and p*=p*—q"p-q/q".
The hadronic vertex factor for the diagram of Fig. 1(b) in
this case will be

Te[(f+mpy)iys(g +my W (p'.q) B’ +my)ivs], (9

+p* P Wan(p.g) (8)

where W&"(p',q) is a matrix in Dirac space representing
the hadronic tensor for an interacting nucleon, and is re-
lated to the hadronic tensor for real nucleons by [24]

WE(p,q)= LT[ (B +my)WE"(p,q)] . (10)

If the struck nucleon is treated as an elementary fermion
(25] the relevant operator in W&"(p’,q) is 4 /2p’-q, which
leads to [22]

N’\ mu , l—yl B 2
,,( )— ——{"—my)
f'V y 167 2 y f y N
y%t’rr(t,)
(=2 (an
(’ —m‘\.-)
where t'=p'?=¢'T  —p'Z(1—p’) is the four-momentum

squared of the virtual nucleon, with the upper limit now
given by t'T. =miy'—miy'/(1—y'), and p’} denotes
the nucleon’s transverse momentum squared. Apart from
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the form factors, Egs. (7) and (11) are clearly related by
aninterchange y'«»1—y. '

Note that choosing a different operator form for W}
may lead to unphysical results. For example, with an
operator involving I rather than 4 the trace factor in Eq.
(11) is proportional to —m2. Problems also arise for the
emission of scalar or vector mesons [26]. A full investiga-
tion of the off-mass-shell effects in deep-inelastic struc-
ture functions of composite objects will be the subject of a
future publication [27].

The large-t’ suppression for the N7 vertex is intro-
duced by the form factor ¥y, which is usually
parametrized by a monopole or dipole function

2 _,,2 |7
I ()= _AN"—mN
Nl )= 2

N1rt

for n =1 and 2, respectively. However, to satisfy Eq. (3),
the cutoff parameter Ay, will in general have to be
different from the cutoff Ay regulating the 7NN vertex
form factor in Eq. (7):

A,z, —m,z,, !
Foult)= | —5—=
A”N—!

In general a differént A,y would be required to satisfy
Eq. (4), and it would not be possible to guarantee Eq. (2).

Another important assumption in the covariant convo-
lution model is that the dependence of the virtual meson
and baryon structure functions in Eqgs. (5) and (6) on the
invariant mass squared is negligible. The argument usu-
ally made is that the vertex form factor suppresses contri-
butions from the far off-mass-shell configurations (i.e., for
[t| 210m? [17]). However, in this approach even the
identification of the off-shell structure functions them-
selves is not very clear. Some suggestions about how to
relate the off-shell functions to the on-shell ones were
made (28] in the context of DIS from nuclei, although
these were more ad hoc prescriptions rather than theoret-
ical derivations. Attempts to simplify this situation were
made in Ref. [29], where it was proposed that the instant
form of dynamics, where only on-mass-shell particles are
encountered, be used to calculate the nuclear structure
functions. Along similar lines was the light-front ap-
proach of Berger et al. [23). Actually these two tech-
niques are the same if one works in the infinite momen-
tum frame. The instant form of dynamics was previously
used by Giittner et al. [30] in the calculation of the func-
tion f n{p) for the case of pion electroproduction, and
more recently by Zoller [20] in the DIS of charged lep-
tons from nucleons.

B. Infinite momentum frame states

An alternative to the use of covariant Feynman dia-
grams, in the form of “old-fashioned” time-ordered per-
turbation theory in the infinite momentum frame (IMF),
was proposed some time ago by Weinberg [31] for scalar
particles. This was later extended by Drell, Levy, and
Yan [32] to the #N system in deep-inelastic scattering.
The main virtues of this approach are that off-mass-shell
ambiguities in the structure functions of virtual particles
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can be avoided, and that the meson and baryon distribu-
tion functions can be shown to satisfy Eq. (2) exactly.

In the time-ordered theory the analogue of Fig. 1(a)
will now involve two diagrams in which the = moves for-
wards and backwards in time, Fig. 2. However, in a
frame of reference where the target nucleon is moving
fast along the z direction with longitudinal momentum
p1(— ), only that diagram involving a forward moving
pion gives a nonzero contribution. In the IMF the target
nucleon has energy

m2

N
=p, +——+0
Po~PL 20,

1

pi

Following Weinberg [31] we write the pion " three-
momentum as

k=yp+kr,

where k-p=0, and conservation of momentum demands
that the recoil nucleon momentum be

p=U1—yp—kr.

Since all particles are on their mass shells the energies of
the intermediate 7 and N must be

k72-+m,2, 1
ko=|ylp, + ———=+0 |— |,
0 yp[. 2|y|p[_ pz

k%+m},z 1
Po=ll—y|pL+——‘—2“_ylpL "
L

For forward moving particles [Fig. 2(a)] y and 1—y are
positive, and according to the rules of the time-ordered
perturbation theory the energy denominator appearing
in the calculation of f_y(y) is (po—po—ko)

p p’, -yl p

e
R =]
y 8

P 1+ lyl P

FIG. 2. Time-ordered diagrams for pions moving (a) for-
wards and (b) backwards in time. Time is increasing from left to
right.
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=(m} —s,y)/2p,, where
Son =S nk3,p)=(po+ko)—(p' +k)?
)<2+m3, kZ+m}
— L~ (12)
y 1—y

is the center-of-mass energy squared of the intermediate
N state. Changing the variables of integration from d°k
to dy and dk}, all powers of p, are seen to cancel when
combined with the appropriate vertex factors (2pgy)~!
and (2ky)”% However, for a backward moving pion
(Fig. 2(b)] y is negative, and the energy denominator be-
comes (py—po—ko)=2yp; +O(1/p, ). Therefore in the
pr— o limit this time ordering does not contribute, and
the result of Eq. (7) is reproduced, form factor aside.

For an interacting nucleon with 7 recoil, Fig. 3, the
kinematics are similar to the above, namely the nucleon
and pion move with three-momenta

p=y'p—kr,
k=(1—yp')p+kr,

and have energies

k}+m} |
po=ylpr+————+0|—
0 L 2lylp, p}
k12-+m2 i
ko=1=y'lpp+=——"—+0|— |,
) Lo ali—ylp, pi

respectively. The general structure of the tensor describ-
ing a nonelementary interacting nucleon can be written
as

Wi (p,q)=g" (Wo+pW, +4W,)+ -, (13)

where we have omitted terms proportional only to p*"

p Kk, l-y'l p
. q q
- Px ~J
(b) !— /
Pyt ¥
K/
3 g S = .
P 1+ 1yl P

FIG. 3. Time-ordered diagrams for nucleons moving (a) for-
wards and (b) backwards in time
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and ¢**. The functions Wo,l,z are related to the on-
mass-shell structure function W,y by Eq. (10):

Winp,g)=2myWo+miW,+p-qW,) . (14)
Then direct evaluation of the trace in Eq. (9) gives
42p-p' —2mE) g myWo+miW, +p-qW,)+ -+ ]

=22p-p'—2my)g"" W (p'.q)+ - -

where now the exact on-shell nucleon structure function
appears, and there is no off-shell ambiguity.

For a backward moving nucleon [Fig. 3(b)] y’ is nega-
tive, and 2p-p’—2mj=—4y'p} +0(1/p,), so that the
numerator becomes large in the p; — o limit. Technical-
ly this is due to the *‘badness” of the operator ys, which
mixes upper and lower components of the nucleon spi-
nors. The energy denominator here is
(po—Po—ko)=2p'py +O(1/p, ), amd when squared and
combined with the 1/p} from the integration and vertex
factors, the contribution from this diagram vanishes
when p; is infinite.

Therefore we need only evaluate the diagram with the
forward moving nucleon, Fig. 3(a), which gives the result

of Eq. (11):
k2+(1—y'V’m}
y'
Fralkf,y’)
}"( 1 _y,)(mﬁ'—SN"

fNﬂ(y’)

grrNN
1672 f

R

with sy (k7,y")=s,y(k% 1—y’), except that the form
factor is now unknown. It is quite natural to choose the
form factor to be a function of the center-of-mass energy
squared of the N system, s,., as was done by Zoller
{20]. The only difference between our treatment and that
in Ref. [20] is that we follow the conventional normaliza-
tion so that the coupling constant g, has its standard
value at the pole:

A N=1020 MeV |

.
o

__-.A=1400 MeV

N0

[ o
n -
s arpia ats e ait ety e S S e A
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\

iy N ™, i
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0.0 0.2 0.4 0.6 0.8 1.0
y

FIG. 4. =N distribution function for a dipole form factor and
that given in Eq. (17). The cutoffs are chosen so that
(n),x=0.25 in both cases.
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FIG. 5. Proton SU(2) antiquark distributions from DIS on
the 7N component of the nucleon, evaluated for the different
N form factors, as in Fig. 4. The data (dotted curves) are the
parametrizations of Owens, Morfin and Tung, Eichten et al.,
and Diemoz et al. [38].

FnalkE,y' ) =exp = (16)

m 5 “SNa l

Within this approach there is an explicit symmetry be-
tween the processes in which the intermediate pion and
the intermediate nucleon are struck, provided we take the
form factor in f_ as

yrrN(k';'Ly):gNlr(sz'!l_y) v (17)

Then as long as the same mass parameter A is used in
both vertex functions, Eq. (2) is automatically satisfied.

In Fig. 4 we compare f_y(y) with a dipole form factor
and with the form factor in Eq. (17). In order to make
the comparison meaningful the cutoffs have been chosen
to yield the same value of (n ), ,(=0.25). With the y-
dependent form factor in Eq. (17) f,x(p) is a little
broader and peaks at around y =0.3, compared with
y=0.2 for the covariant formulation with a dipole form
factor. Consequently, the convolution of f,x(y) with Fy,
for the y-dependent form factor will have a slightly small-
er peak and extend to marginally larger x. This is evident
in Fig. 5, where we show the calculated SU(2) antiquark
contribution to §' ”N’sz(x), compared with some recent

empirical data at Q?=4 GeV?>. i

4’k ,

S(VN)W“V(p,q)=cyf v Aggt

where

Ag=2my—p-p'Ig8.g+2ppp+2poPp »

2
f VNN

B+ C
(2nP2pyN2ke P |° (a7 Db T8N
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FIG. 6. Time-ordered diagrams for the DIS from (a) vector
mesons and (b) nucleons with recoil vector mesons, that are
nonzero in the IMF.

III. VECTOR MESON CONTENT
OF THE NUCLEON

In this section we extend the convolution model
analysis to the vector-meson sector. Our approach is
similar to that described in Sec. II B, namely we use
time-ordered perturbation theory to evaluate those dia-
grams which are nonzero in the IMF. Previous calcula-
tions [18,19] of the vector-meson contributions were
made in a covariant framework, but with the assumption
that the vector-meson and nucleon intermediate states
were on-mass-shell. In our approach we self-consistently
calculate both the contribution from a struck vector
meson [Fig. 6(a)] and from a struck nucleon with a
vector-meson recoil [Fig. 6(b)], and show explicitly that
the distribution functions for these obey the relation in
Eq. (2) exactly.

Starting from the effective VNN interaction (see, e.g.,
Ref. [2]), where V'=p or w, we write in full the vector-
meson contribution (with a nucleon recoil) to the nucleon
hadronic tensor:

. zwv(kiz‘r}’)
aff '
(Po—pPo— ko y

f VNN

WEBk,q), (18)

Bog=3lmimy—2p-kp-k+mip-p')gas—(mi+p-plkakg

—my(papytpape)tp-k(pgkgt+pgky)+p-kipoksg+pgky)), (19)

Cop=2p-k—p'kigg—(pakgtpgk,)+ipkgt+pgk,)
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are the VNN vertex trace factors for the vector, tensor, and vector-tensor interference couplings, respectively. The iso-
spin factor ¢, is equal to 3 and 1 for isovector and isoscalar mesons, respectively. For an on-mass-shell vector meson,
the spin-1 tensor W**®, symmetric under the interchange of u«»v and a«»B, is given by

WP, )= (8" Wk, )+ RPE W, (e q) g . 20)
This form guarantees that the vector current is conserved, k,p W‘“’"‘g=0=qﬂ'v W#va8_ Furthermore, it reproduces the

correct unpolarized on-shell spin-1 tensor when contracted with the meson polarization vectors (€4,5) and summed over
the Vhelicity, A [33]:

_gaB+ kZ

Wﬁvaﬁ( k,q)

Wik, g) = ex(X, kleg A, k) WE Bk, q)=
A

. Q1
< gH Wk, q) KPR W,k q)

In the case of DIS from a vector particle emitted by a nucleon, Fig. 6(a), contracting the spin-1 tensor W***® with the
VNN vertex trace factors in Eq. (19), and equating coefficients of g gives

d’k s dpkptk Pxx 4p-kp'-k _mipp’
8t W,,N(p,q):c,vf 3y T 181N 1_6m‘§'+‘L‘jL+2P'P' - mlz’+J ‘f - 3
(27 (2p 5 2k,) mjp 2 my my
Finlki,p)
—6g8ywwSywnlp-k —p'k) ;s Wivlk,q) . (22)

4
(my—suy)

v
12

Using the IMF kinematics (which are similar to those for the 7N system, except that m_—m,), together with the
Callan-Gross relation for the nucleon and vector meson, enables the contribution to F,, from vector mesons to be writ-
ten as a convolution of the vector-meson distribution function JSvx(p) with the on-shell vector-meson structure function
F,,(x /y), as in Eq. (5), where now

Fonly)= Cy fxdkz , [k%+y2m§»+m,2,][k,2-+y2m,3+(1—y)2m,2,] N ki+yim} a2
VN 1672 4o T 18Vnn yz(l—y)m,z, 1—y N
o (ki+y’my+mPlki+y’mi+(1=pPm}]  mi(k}+Q2—pPm}] |
. - . —my
e pA1—y)m} 41 =yIm} v
ki+yimi—(1—pm? Fnlkd,p)
+3gyna Sy = (23)
- -y yUl=p)mpy —syy)
The VNN form factor is defined analogously to Eq. (17),
2
Mo —Snr
Fynlkd,y)=exp l ‘”AZ 4.8 (24)
and the VN center-of-mass energy squared is
ki+ml kitml
Syn =Spn (ki p)= L Lt a (25)

=y

Suppression of backward moving vector mesons is achieved in the IMF by the energy denominators, as for pions. The
vector-meson structure function F,, is not known experimentally, so in our numerical calculations we assume that its x
dependence resembles that of the 7 meson structure function, which has been determined experimentally [34].

For the vector-meson recoil process, Fig. 6(b), we evaluate the distribution function Sav(y’) using the full spinor
structure of W{"in Eq. (13):

f lz’N.-\' + f VNN é:
(4m~ )2 . BT 4m_’\' e

Faplki,p’) N .
”“Ty)z(zm‘x Wo+2miW, +2p"-qW,) 26)

d3pz

(NV) ==
5 Wl.\"”‘”*”f(2m3(2p6)3‘2"'0’

g ;Z'N.\' A gt

X > er(h,kleglh, k)
) g (po—pPo —ko
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where the tensors 4, B, and C are as in Eq. (19). Performing the contractions over the indices a, S leads to the convo-
lution integral of Eq. (6), with the nucleon distribution function with a vector-meson recoil given by

w v oo, [ KEH(=y PmE+mE kR 1=y Pm} 4y iml ] k;+(1—y')2m,3. R
Swrly 1672 fo dkz ‘gVNN Y (1—y'VPm? Iz —4my
. (k7 + 1=y Pmi+mplki+(1—y' Pmi+y?m}]  mplki+(1+y ) mi] i
2" (1—y" )V m} 4y'my
+3gvnn S van k%+(l_y']2m§_y’m5 ] Ttk 27)
T 1=y’ Y (1= mb—syy )

and where sy (kf,y’)=syy(k2,1—y'). Again, we have
evaluated only the diagram with forward moving nu-
cleons which is nonzero in the IMF. It is clear therefore
from Eqs. (23) and (27) that the probability distributions
for the VN intermediate states are related by
Sy I=fyun(1—y").

Our numerical results, which are discussed below, rely
upon the physical vector-meson—nucleon coupling con-
stants whose values are taken at the poles, as
obtained from analyses of =N scattering data:
8ann /4m=0.55 S onn/8pouy=6.1 [35), and glyn/4m

=8.1,funn /8 unn =0 [36].

IV. RESULTS AND DISCUSSION

Figure 7 shows the meson distribution functions Sfon
fon> and fy (scaled by a factor 1) for the same venex
cutoff parameter A (=1.4 GeV). The vector-meson com-
ponent will only be relevant when very hard form factors
are employed. To make this point more explicit, we plot
in Fig. 8 the average multiplicities {n ),y and (n ),y as
a function of A. The dependence on A is much stronger
for the p than for = mesons. For A< 1.4 GeV, (n) oN 18
considerably smaller than (n),y, and it is only wnth
much larger cutoffs (A X 1.8 GeV) that the p multiplicity
becomes comparable with that of the m. Note that
A=(1000,1400,1800) MeV corresponds to a dipole
A,y =(650,1020,1410) MeV for the same (n ).

0.201 ! i

t * A=1.4GeV 1

0.15 b s J
___ pN E

s | e U
L S SN
[ / . “ :
o [

0. ool i / ; S !

0.2 0.4 0.6 0.8 1.0
y

FIG. 7. Meson distribution functions f,y(y), f,nx(y), and
San(y), for A=1.4 GeV. Note the pion distribution is scaled by
a factor of 1.

One should observe that the trace factor inside the
braces in fy(y) is divergent in the limit y —0, so that
use of a form factor xexp[y(mp—syy)], which corre-
sponds to a t-dependent covariant form factor
exp[t —m}], would make 8'"¥'F,y(x) approach a finite
value as x —0, much like for a perturbative sea distribu-
tion. However, there are several problems with accepting
such a result, the most obvious of which is that it would
violate charge and momentum conservation very badly,
since fyy(y’)—0 for y’—1 and —const as y'—0 for a
form factor <exp[y'(m?—syy )], which in the covariant
formalism corresponds to exp{t'—m}]. Furthermore, it
would lead to a gross violation of the Adler sum rule,
which integrates the flavor combination u —7 —d +d,
and such a violation has not been observed in the range
1<Q2<40 GeV? [37]. This gives further evidence for
the preference of the IMF approach together with the
form factor in Eq. (24). Note, however, that because the
baryon recoil contributions to the quark and antiquark
distributions are related by

§'MBly (x)=8'MB\d(x) ,

(28)

8'MP'd(x) =8Pz (x)
the divergent contributions would cancel for the
Gottfried (which depends on the combination

u+i—d—d) and Gross—Llewellyn-Smith (v —a

0.50: S

0.30% il g

<n>

0.20° 7 PN

0.8 1.0 1.2 1.4 1.6 1.8 2.0
AMGeV)

FIG. 8. Average number densities for the m, p, and w mesons
in a nucleon, as a function of the meson-nucleon form factor
cutoff.
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+d —d) sum rules.

In previous studies [9,10] restrictions have been ob-
tained on the magnitude of the form factor cutoffs by
comparing {y ),y with the measured momentum frac-
tions carried by the antiquarks. Even more stringent
constraints can be achieved by also demanding that the
shape of the meson-exchange contributions to g{x),

5‘”3’6(x)=f“—inyMB(y)@M(x/y), (29)

be consistent with the shape of the experimental anti-
quark distribution [10,16]. Figure 9 shows the calculated
antiquark distributions from the 7 component of the nu-
cleon alone and from the pion plus vector-meson struc-
ture of the nucleon, for A=1.2 and 1.4 GeV. Clearly the
SU(2) g content of the nucleon (as parametrized by
Owens, Morfin and Tung, Eichten er al., and Diemoz
et al. [38)) is saturated for A=1.2 GeV in the
intermediate-x region. For the wNN vertex this corre-
sponds to a dipole form factor cutoff A, =830 MeV —
considerably smaller than that used by many authors.
We can conclude therefore that for the range of form fac-
tor cutoffs allowed by the data, vector mesons play only a
marginal role in the DIS process. The maximum value of
A would have to be even smaller with the inclusion of 7&
states in the nucleon, as it has been shown previously
[15-18] that these give non-negligible contributions to
the nucleon structure function. The 74 states would also
be of relevance to the calculated d — difference (and to
the Gottfried sum rule) resulting from DIS from the 7N
and pN components, which will be partly canceled by this
contribution.

At this point we would like to clarify an issue that has
been the cause of some confusion recently in the litera-
ture. The meson- and baryon-exchange diagrams in Fig.
1 describe physical processes (inclusive baryon and meson
leptoproduction) whose cross sections involve physical
(renormalized) coupling constants. When integrated over

0.15
P Q%=4GeV? :
.[ H'J -- ' —=ll 2 S J
0101/ omonly
S J[ ] '\ data
ro l,u 1
+ H ¢ 1
1= |I."- . |
= g - ;
0.05 ¥ N +
~ K
5 i
o.00l Pl
0.0 0.2 0.4 0.6

FIG. 9. Proton SU(2) antiquark distributions, calculated with
7 and 7+ p+w components in the nucleon. The lower (upper)
solid and dashed curves correspond to A=1.2 (1.4) GeV. The
data are from Ref. [38].
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the recoil particles’ momenta these yield the inclusive
DIS cross sections, which are proportional to the total
quark (and antiquark) distributions

@(X)=Zgpae(x)+ 3 [8MPg(x) +8Mg(x)) . (30)
MB

Therefore 8q (x) and the convolution integrals in Egs. (5),
(6), and (29) are expressed in terms of renormalized cou-
pling constants contained in the functions f(y). From
Eq. (30) we also determine the bare nucleon probability

Z=1-3(n)ys 31
MB

by demanding that the valence number and momentum
sum rules are satisfied. We emphasize that all quantities
in Eqgs. (30) and (31) are evaluated using renormalized
coupling constants.

We could, of course, choose to work at a given order in
the bare coupling constant, and explicitly verify that the
various sum rules are satisfied. For example, to lowest
order (g3) the total quark distributions would be [39]

g(X)=Z |quaex)+ 3 [6HMFg 4, (x) +8' Mg 4,(x)]
MB
(order g3) (32)
with
Z=[1+S(nedus | (ordergd), (33)

MB

where the subscript (0) indicates that the functions f(y)
here are evaluated using bare couplings. Equations (30)
and (31) are easily recovered since the bare couplings, to
this order, are defined by g2 =g, /Z. It would, howev-
er, be inconsistent to use Eqs. (32) and (33) with renor-
malized coupling constants, especially with large form
factor cutoffs. As long as the form factors are soft, the
difference between the bare and renormalized couplings is
quite small. However, with large cutoff masses the bare
couplings would need to be substantially bigger than the
physical ones. (In fact, the form factor cutoff dependence
of the bare 7N coupling constant in the cloudy bag model
[40] showed some 40% difference for very hard form
factors—or small bag radii, ~0.6 fm.) In addition, with
large values of A, the higher-order diagrams involving
more than one meson in the intermediate state would be-
come non-negligible, and the initial assumption that the
series in Eq. (1) can be truncated at the one-meson level
would be seriously in doubt. Fortunately, we need not
consider the multiple-meson contributions, since Fig. 9
clearly demonstrates the difficulty in reconciling the
empirical data with quark distributions calculated with
such large cutoffs.

Finally, we make some additional comments regarding
this justification of our calculation in terms of an in-
coherent summation of cross sections for the various
meson-exchange processes. Because of the pseudoscalar
(or pseudovector) nature of the 7NN vertex, there is no
interference between 7 meson and vector-meson ex-
change. Furthermore, there will be no mixing between
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the w and p exchange configurations due to their different
isospins. In fact, all of the processes considered in this
analysis can be added incoherently. The question
remains, however, whether it will be possible to identify
an explicit vector-meson contribution to F,y(x) in an
unambiguous way in deep-inelastic scattering experi-
ments. While it may be feasible to search for one-pion
exchange by observing the distribution of the produced
low-momentum baryon spectrum [41], because of the
smaller absolute vector-meson cross section it will be
difficult to separate this component from both the pertur-
bative background and from that due to other mesons.
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We derive the general structure of the hadronic tensor required to describe deep-inelastic scatter-
ing from an off-shell nucleon within a covariant formalism. Of the large number of possible off-shell
structure functions we find that only four contribute in the Bjorken limit. In our approach the usual
ambiguities which are encountered when discussing problems related to off-shellness in deep-inelaslic
scattering are not present. The formulation therefore provides a clear framework within which one
can discuss the various approximations and assumptions which have been used in earlier work. As
examples, we investigate scattering from the deuteron, nuclear matter and dressed nucleons. The
results of the full calculation are compared with those where various aspects of the off-shell structure
are neglected, as well as with those of the convolution model.

PACS numbers: 13.60.Hb, 12.38.Lg, 25.30.F;j

I. INTRODUCTION

The general structure of the hadronic tensor relevant to deep-inelastic scattering (DIS) from an on-mass-shell
particle (p? = M?) which transforms correctly under proper Lorentz transformations, the parity transformation and
which is gauge invariant is well known. In the Bjorken limit the two possible structure functions collapse to one, so
that, in the case of one flavour, deep-inelastic scattering may be expressed in terms of just one quark distribution
which is a function of only one variable. (All these statements refer to spin independent scattering, to which we
restrict ourselves throughout this paper.)

The situation is considerably more complex if one is considering, in a covariant formulation, DIS from an off-
mass-shell (p? # M?) hadronic constituent within a composite target. This situation arises, for example, in many
calculations relevant to the EMC effect, where an off-shell nucleon contained in a nucleus interacts with a high energy
probe. Another application of interest is the scattering from a nucleon dressed by a meson cloud. Indeed, because
of the added complexity, many calculations ignore the issue completely in the hope that the effects are not large.
Typically one neglects not only the possible p*> dependence in the structure functions, but also assumes no change in
the structure of the off-shell hadron tensor. Only in this case can the structure function of the target be written as
a one-dimensional convolution between a constituent (nucleon) distribution function within the target and a quark
distribution within the constituent [1].

We shall consider scattering from an off-mass-shell nucleon without making these approximations. The purpose
1s to develop a theoretical framework which is exact, thus keeping the model-dependent approximations to as late a
stage as possible. It is important to realise that the change in the structure of the off-shell tensor is by no means a
trivial matter. There are several distinct differences from the on-shell tensor:

I Most obviously, the dependence on the four-momentum squared of the nucleon is no longer trivial, as it
1s in the case where the target is on-shell.

IT In a covariant formalism the off-shell fermion tensor is a 4x4 matrix in the external fermion legs. This
corresponds to the fact that in a relativistic theory it is necessary to consistently incorporate the antiparticle
degrees of freedom. Because of this matrix structure the tensor involves, at least in principle, many more
independent functions than in the on-shell case.

*Address after 1 September 1993: Institut fiir Theoretische Physik, Universitit Regensburg, D-93040 Regensburg, Germany.



III Because the incoming particles are off-mass-shell the gauge invariance condition for this tensor is not the
same as in the on-shell case.

To show this last point, consider the truncated forward virtual Compton amplitude, T,‘,,(p,q), which satisfies the
well-known generalised Ward identity [2]

¢* Tw(p,q) = —e{ST (PSP +a)Lu(p+1.p) — L,(p,p—q)S(p—0)S7(p)} (1)

where T, (p + g, p) is the YN N vertex function and S(p) is the fermion propagator. For an on-shell nucleon, the full
Compton amplitude is

Tpu(p) (I) = ﬁ(:p)T,wu(p) (2)
so that inserting Eq.(1) into Eq.(2), and using the Dirac equation, leads to
" T (p, q) = 0. (3)

Note that the same equation does not hold for the off-shell tensor T,,,, (ie. the right hand side of Eq.(1) s non-zero)
—_ even for the case where the target is a free pointlike fermion.

Although in calculations of nuclear structure functions the off-shell aspects of the nucleon structure function have
usually been ignored, a few partial attenipts have been made to try to account for these effects, Unfortunately, these
calculations are not without ambiguities [3,4]. Kusno and Moravesik [5] used the so-called -off-shell kinematics —
on-shell dynamics’ scheme, in which the off-shell nucleon tensor is evaluated at the same energy transfer v and four-
momentum transfer ¢ ai the on-shell one, independent of the virtuality of the nucleon. Bodek and Ritchie [6] used
a similar scheme, however they suggested that the off-shell structure functions could be identified with the on-shell
ones, evaluated for the same values of q% and centre of mass energy squared s = (p + ¢)?, and henee a different value
of energy transfer, v — v+ (p* — M?)/2. Dunne and Thomas (7], on the other hand, used an ansatz in which the
matrix elements ol the hadronic operators in the operator product expansion were assumed to be independent of p*.
The result was a nuclcon structure function that was to be evaluated at a shifted value of ¢*(— &(p*, ¢%)q”, where €
is the ¢2 rescaling parameter). This result was mathematically equivalent to the dynamical rescaling model of Close,
Roberts and Ross [8] and Nachtmann and Pirner [9], in which the shift in ¢ was attributed to a change in confinement
radius for nucleons bound inside a nucleus.

All of the above treatments use, in one form or other, the familiar convolution formula [1], which amounts to
folding the quark momentum distribution in the off-shell constituent with the constituent momentum distribution in
the target. In order to derive this formulait is assumed that the form of the off-shell nucleon tensor (i.e. the structure
in its Dirac indices) is the same as the on-shell one [10,11]. However, as we show in Scctions II and III, more than
one opetator contributes in the Bjorken limit, so there i5 no a priori reason for this to be a valid assumption. The
appearance of these other operator structures is closely connected with the antiparticle degrees of freedom arising
in any relativistic treatment and constitutes an important part of the off-shell effects. Relativistic calculations have
been attempted in the past by Nakano [12] and Gross and Liuti [13], however their derivations of the convolution
model also rely critically on assumptions about the off-shell tensor, and the relativistic bound nucleon density matrix,
respectively. In fact, to our knowledge, all attempts Lo derive the simple covariant convolution model have ultimately
resorted to some prescription to account for the fact that the nucleon has p? # M*. Without performing a full
caleulation which self-consistently accounts for the nucleon virtuality, all such ad hoc approximations must remain
in doubt. In short, the naive convolution formula is not a sound starting point for discussing off-shell effects and we
make no use of it.

There exist allernalive approaches to these just described which do not suffer from off-mass-shell ambiguities. For
the nuclear EMC effect, Berger et al. [14] used light-front dynamics to calculate the nuclear structure functions. Here
all particles are on-mass-shell, the transverse momentum and the light-cone variable py = po + pL are conserved at
each vertex, while p_ = po — pg is not. Alternatively, Johnson and Speth [3] and Heller and Thomas [4] used old-
fashioned perturbation theory with the instant form of dynamics, where particles are on-mass-shell, three-momentum
is conserved, but not necessarily energy. Unfortunately, in both of these approaches, the off-mass-shell ambiguities in
the definition of the off-shell structure functions are simply replaced by off-energy-shell ambiguities [15]. A review of
some of the problems with these approaches may be found in Refs. [16,17].

The advantage of the covariant method in nuclear calculations is that Lorentz invariance is manifest. However,
for a consistent treatment within this framework one has to include the antiparticle degrees of freedom, which has
not been done up to now. We will set up the formalism in such a way that the structure functions of the physical
target are expressed in terms of fully relativistic quark-nucleon and nucleon—target vertex functions. This will enable
us to ensure gauge invariance, the Callan-Gross relation and an unambiguous identification of the scaling variables.



All model approximations will be contained entirely in the vertex functions themselves, which, of course, we cannot
calculate from first principles.

This paper is organised as follows: In Section IT we define the general structure of the off-shell tensor in terms of a
suitable set of structure functions. In Section III we explicitly calculate the scaling properties of these functions. As we
shall see, only 4 of 22 possible functions contribute in the Bjorken limit. In Section IV we discuss how our formalism
can be used to calculate structure functions of composite particles and discuss the limits in which the conventional
convolution model may be obtained. In Section V we use some simple parameterisations of the relativistic vertex
functions to calculate the nucleon valence quark distributions. Using these same vertex functions we then calculate
in Section VI the structure functions of composite targets containing off-shell nucleons.

II. GENERAL STRUCTURE OF THE OFF-SHELL NUCLEON TENSOR.

The process in which we are interested is depicted in Fig.1, with the photon momentum q and the off-shell nucleon
momentum p marked. The corresponding off-shell tensor x,, with the correct transformation properties under proper
Lorentz and parity transformations is a 4x4 matrix depending on p and ¢, and may in general be written in terms of
22 functions:

X (P,0) = X (D) + X (P 0) + X200 + 1000y X2(0.0) + 70y X2(P) )

+ 0app™ 1" X5y (P, Q) + Cafu Pu3p™ X0(p @) + Gaiw Prya® X (2 9)

+ Tatn 41p" (P, 0) + Tatu 010% X (p,0), (4)
where the braces {...} around the subscripts indicate the symmetric uv combination. Here, xL,,(p, q) are the most
general tensors of rank two which may be constructed out of ¢ and p,

X (P1@) = Pruv(p.0) X (P, 0) + Pru(p,q) X4 (p,q)
+ Pour (P 1) xg(p,a) + Poruw(p 9) xgL(p. ), 1=0,1,2,5. (5)

The x*’s on the right hand side of Eq.(5), as well as x3, x* and x®—x® in Eq.(4), are scalar functions of ¢ and p. The
tensors P*¥ are defined by

. p*p¥ p*p¥
Pr(p,q) = 3" + —-, Pr(pq) = —5-,
p p
phv _ pH Spop SV o 6
e (p4) = 2 oL(P,9) = ——_qTﬁ?(Pfl +5"¢"), (6)
where §u, = —gu + quq./q% and G, = ay —qu a-q/q*, with a, being any four-vector.

The above decomposition of the off-shell tensor is of course not unique. It is written in this convenient form because
the tensors P#” turn out to be projection operators [11] and satisfy

Pr’(p,q) Pruv(p,q) = 2, Py (p,q) PLu(p,@) = 1,
Po"(p,0) Pouv(p,g) =1, P1(p, @) PorLu(p,q) = -2, (7

with all other combinations vanishing. It is important to note that in the Bjorken limit these relations are also true
for projectors involving different momenta. That is, the projectors are still orthogonal in this limit and

PTI'W(Pl, 7) Pruv(p2,q) =2 etc. (8)

In general, Fig.1 is a subdiagram of Fig.2, where P is the on-shell momentum of the composite target (labelled
A). As will be discussed more fully in Sections IV and V, the hadron tensor for the complete process, W}ﬁ, (P,q),
involves an integral over the nucleon momentum p of the tensor Xuv(p, ¢), traced with another 4x4 matrix originating
in the soft target-constituent part of the diagram. Hence no experiment measures the off-shell tensor by itself,
so 1t is not possible to measure all the functions x? separately. Only combinations thereof give rise to observable
experimental quantities. Using the above projectors, we can determine which combinations of off-shell structure
functions contribute to the physical ones. In particular, the operators PLY(P,q), PEY (P, q), PY(P,q) and P4L(P,q)
project from the composite target tensor Wlﬁ,(’P,q) the transverse, longitudinal and the two possible gauge non-
invariant contributions, respectively, in terms of the scalar functions X' (p,q).



Not all of the functions x* will in fact be independent, as the gauge invariance of the theory requires that the latter
two contributions vanish. Furthermore, the longitudinal function must also be zero in the Bjorken limit (P - g, Q?=
—q? — 00, = Q?/2P - q fixed), if the Callan-Gross relation is to be satisfied. That this is indeed the case is shown
explicitly in the Appendix. For the remaining physical (transverse) contribution we obtain for the coefficients of the

x'’s:

%P%‘”(P,q) X (P, 0) = X3(p, @) + P xp(P,0) + 4 X3 0) + 0app®d’ X2(p,9)
+ 2(—:? P-yP)’ DA a) + Pxbp o)+ dxi(pa) + 0app®d® Xilp,0) |
+ [— pHup+ 51,—(1 (P-p—yP?) ;1] (p.g) (9)
E [.u P+ ?%-P—)Q“] gapt® X°(p.0) + [P% — yP)oasd® X (p0)

where y = p - q/P - q = py /Py is the constituent’s light-cone momentum fraction. In the next Section we derive
the scaling behaviour of the functions y! using the parton model, by scparating the hard, q° dependent, part of
the truncated amplitude X, (p, ¢) from the soft, non-perturbalive component. We will see that FEq.(9) simplifies
considerably, as many terms do not contribute in the Bjorken limit.

A special case of the above formalism is DIS from an on-shell nucleon, described by the tensor which we denote by
[/Vﬁ,(p, q). In this case the contribution to the nucleon tensor is given by Eq.(9) traced with (p+ M)/2, where P=p
and no integration over p is performed:

i o 1 )
MW (pg;p*=M?) = 51T (A+ M) Vwlp )] (10)

This gives the transverse unpolarised on-shell structure functions in terms of the on-shell limirs of the functions x'
(X'(p,9) = X' (p, 9% = M?)):

M — 9 - -~
—Q-W%V(p.q) =M ¥%(p,g) + M* \p(pog) + p-a Xz (p,q)- (11)

Similar expressions can also be found for the other functions (i.e. longitudinal and non gauge-invariant), but again
these vanish in the Bjorken limit.

III. SCALING BEHAVIOUR OF THE OFF-SHELL FUNCTIONS x

We shall now calculate the leading twist contribution to the off-shell structure functions in the quark-parton model.
This is given by the imaginary part of the forward scattering amplitude depicted in Fig.3, 1.e.

Dtur (P, @)y = T - v (ks @)y (H (ks P)acas (12)

where T is the integral operator

d4k 2 2 )

and the Dirac matrix structure has been made explicit. (The complete forward scattering amplitude in addition
contains the crossed photon diagram, which we do not explicitly take into account. All the formal results of Sections
I to IV remain valid upon inclusion of this diagram. Numerically, it can make a small contribution in the small
region, however in the subsequent model calculation in which we consider only two-quark intermediate states there
will be no contribution.) In Eq.(13) k is the parton’s four-momentum and m its (current) mass. In the following we
will drop quark mass terms as the difference between the m = 0 results and those for m ~ few MeV is negligible.
(We shall return to the question of quark masses in Section V.) The non-perturbative part of the structure function
is contained in the function H, while the perturbative, calculable part is contained in 7y,

ruv(k,q) = k? (thgtw - (k{# + q{u) gV}a) 7"+ ]é(qu,“, + 4kuky, + 2"’{uqv}) : (14)



The trace over the indices ¢, d in Eq.(12) may be performed and the results written-@s

T [ruw (o] = [k (agir = (K + a1u) 901a) + ko (090 + Ahuky + 2k(,0,))] [G%(p, K- (15)

As G* is a 4x4 matrix which transforms like a vector and must be even under parity transformations, its most general
form is

G¥= (@ i + kL) T+ (0" fa + b f5) K+ (0% fa + £ fs) B+ 7% f«
+0%%py fs + oP%kp fo + PPRPops P fro + PP kCogs k™ fia, (16)
where the functions f; are scalar functions of p and k.

The integrals over k can be done in a standard way. For example, for an integrand containing one free k¢, contracting
with pe and g, enables us to make the replacement

Ik =TI {p1p™+p2q”} (17)
Similarly for £%k” terms,
a ~ a k- 5 a Z;'ﬁ k'Q‘ a
T-kK — T oy PR (0.0 + %07 2o, g+ Sl paep, g - E2E U pes (18)
q __q2 p2

and for k®kP ¥ terms,

T-k*kP 1. {—p;; (plp{" +pzq{°‘) 7)o+ p3(p1 B+ p2 o) P’Fﬁ(P, q)
-2 9 : k(I~ [+
+ m ([2/73 +P'PI] [15‘ % Sf} + Q_QPQPl 4) PLﬂ(p' q) (19)

+ (kq',_,q) (k-qp1 P+ Tk -gpa +2p3] f) P5°(p,q)

1 . N P-qgk-q o
- \/h_Q—ﬁ—v ([’»”QPs +P2Pﬂ P+ [Pzpl(/)s +k-gp2) — q—zps] !f) qu(P, Q)},
2 2
where

b= kB
72
keq pqk-p

Pr= T T o (20)

q* p?
1/, - g
ps=13 (—kz +pzpf) :

q

The x*’s are then completely defined in terms of the functions fi—fi;, and as all the dependence on the photon
momentum ¢ is now explicit, their scaling behaviour may be derived in a straightforward manner. We find that x>
and x7. are of order 1, while all other yi’s are of order 1/v, with the exception of x” and x?, which are of order 1/12.
Hence we find that deep-inelastic scattering from an off-shell nucleon may be expressed in terms of just four functions,

1 .
2P0 (P, @) xw(0,9) = x2(P.0) + PXE(.0) + 4X3(P,0) + capp®e® x(p,q). (21)

The complete expressions for the functions x% are

212
xr(pa) =T {— (*p-q+ ¢’k - p) fu(k,p) - %fz(k,p)} (22a)
2
xr(p,q) =T - {— (k*p-q+ ¢’k - p) (f4(lc,p) - 2;_ qfs(hp))
q2k2 q2 q4
g (5000 5 k) + gtk (22)



2 2 - 2
=1 {- (B +k ) ([ + 2L fom + 5 8 sty +2 (k)

-k f7(k‘,p)} (22¢)
2 2 2 , kg? ) k202
X7 (p,9) =1 - {— (;?q +p-k> (p—q_—qfs(k,p)+ [Ic + pp_g } frolk, p) + 2p('1qfll(k»p))
2
e (fs(k,p) 5L qu(k,m)} | (224)

For the other y’s it can be easily demonstrated (see the Appendix for details) that for each of the arbitrary functions
f;, there are cancellations at leading order in v in the expressions for Pr"(P,q)xuv(p, 4), P (P, @)X uw (P, q) and
P57(P,q)Xuv(p,q) in the Bjorken limit. Hence the Callan-Gross relation, as well as gauge invariance (¢*W;, = 0),
are assured, independent of the nature of the target-constituent part of the diagram. This result is completely gencral,

so that model dependent approximations for the vertex functions do not affect these results.

IV. CONVOLUTION MODEL

Before we move on to making model dependent assumptions for the vertex functions, we need to write down the
on-shell tensor W,ﬁ, (P, q) for the target A in terms of the off-shell tensor Xuv (P, q). The full tensor for the composite

target is given by

ap 26 ([P — pl* — M)
@nt (b7 - M2

My Wi, (P,q) = Te [ (T4o(p, P) + 12 A5 (7, P) + 0ap AT (9, P)) X (po0)] . (23)

where Ag, A; and A, are functions describing the target—constituent part of the complete diagram in Fig.2, and My
and Mg are the masses of the target and target recoil systems, respectively. Implicit in the functions Ag — .1s 15 A
sum over all excited target recoil states, or equivalently an integration over the masses Mp weighted by some target
recoil spectral function.

For most vertices only Ag and A; will contribute, while A, will arise typically as an interference term when more
than one type of vertex is used. Using the transverse projection operator defined in Eq.(6), we get

Mr v
—TP;“ (PaQ) W:“,(P, q)

2
dy d? .,
=/(2,r)3(1_yy)(§;_ ME)? {Ao(p,P) X3(p,9) + p- AP, P) xz(p,0) + ¢ Aulp,P) x7(p, 1)

+ (a1 — Pp 404572, P) XE (P 0) } (24)

where p? = pyp_ — p%, p4 = yP4, and we have used the § function to fix p_ = My + (M3 —p2)/(ps + M7).

The convolution model may only be derived from Eq.(24) if we make some additional assumptions. First of all, we
need to assume that the target structure function can be written in factorised form, in terms of the nucleon structure
function, WTJ'V, and some nucleon distribution function, ¢:

qu’(w,Qz)I/dy /dsz o(Ao, Ay, Az) Wi (z/y, Q% pr). (25)

Furthermore, to obtain the usual one-dimensional convolution formula [1,11] we must assume that WZ is independent
of pr (or equivalently p?):

Wi, @) = [y 5w) WH (/9. @"), (26)

where now the integral over pr has been absorbed into the definition of ¢.

There are several ways in which the first assumption might be valid:

CASE (a): If all but one of the functions x% (i = 0 — 2,5) are zero in the Bjorken limit. Most authors (see for
example Refs. [1,10,11]) adopt this choice, as this is the case for a pointlike fermion (where only x2 contributes).
However, as was shown in Section III, all four functions x% in principle contribute in the Bjorken limit, so that one



would require that some of the functions f in Eqs.(22) vanish or cancel.: We know of no reason why this should be
the case — indeed even the extremely simple quark-nucleon vertex functions which we consider in the next Section
give rise to more than one nonvanishing x?.

CASE (b): If more than one of the x4 ’s is non-zero, but the non-zero ones are proportional to each other. For
example, fy = M fy and all other f’s equal to zero would imply X7 = Mxk, and so Eq.(25) is obtained. Again, in
general there doesn’t seem to be any reason to expect this behaviour.

CASE (c): If the non-zero nucleon — target functions Ay — Az multiplying the functions % are proportional to
each other. An example of this would be if Ay and A; were non-zero and if Ap = p-A/M = q-A M/p-q,
which would then give Eq.(25). In general this will not be true unless the p? = M? limit is taken inside the functions
Ay — Ag.

In short, none of the above conditions are generally satisfied in a self-consistent, fully covariant (relativistic) calcula-
tion. Consequently the convolution model interpretation, Eq.(26), of the nuclear structure function in terms of bound
nucleon structure functions is inconsistent within this formalism. This difficulty is intrinsically related to the presence
of antinucleon degrees of freedom, which are not accounted for in the traditional convolution model. Furthermore,
in the absence of the convolution model, the common practice of extracting nucleon structure functions from nuclear
DIS data is not valid. Indeed, the very concept of a structure function of a nucleon bound within a nucleus looses its
utility. One is forced to consider quark and nuclear degrees of freedom side by side in the calculation of the nuclear
structure functions.

Using Eq.(24) directly we may compare, for some simple vertex functions, the exact result with those obtained by
making the convolution model approximation, Fq.(26). This we will do in the next Section. As a final comment,
it should be noted that, within the physical assumptions made by the use of the model in the first place (i.e. no
final state interactions), the functions X} are independent of the physical target, and depend only on the nucleon
constituent. By selecting various targets (i.e. by varying Ag — A,) the relative contributions from the functions Xk
could in principle be probed, provided, of course, we know the target—constituent functions Ag - A» sufficiently well.
Conversely, once the y’s have been determined for one process, they may be used for all other processes.

V. CALCULATION OF THE NUCLEON STRUCTURE FUNCTION

To calculate the transverse structure function of the complete target requires two sets of functions dcscrib'ing the
soft, non-perturbative physics, namely the quark—nucleon functions f; — fi,, and the nucleon—target functions
Ap — Aa. Here we concentrate on the former set.

We observe that because both the constituent nucleon and struck quark Jnside the nucleon have spin 1/2, the
intermediate spectator state will have either spin 0 or 1. In order to make an overall Lorentz scalar, we therefore
need only consider quark—nucleon vertices that transform as a scalar or vector under Lorentz transformations. It is
straightforward to identify the form of the vertices that are allowed by Lorentz, parity and time-reversal invariance,
however the specific momentum dependence has to be determined within a model. There will be 15 independent
scalar (®3_4(k,p)) and vector (®Y_,1(k, p)) vertex functions appearing in the general expression

VI=187 + @5 + KD + 0opp”k? &S (27)
for a scalar vertex, and

Ve =7 @ + pa I ®) + ko IOY + oapp’ @ + oapk” Y
+Pa £P5 + Pa KBY + ko FOY + ko KOV (28)
+ ops?’k® p* BYy + opsp kS k> DY,

for a vector vertex.

The functions f; — fi1 in Eq.(16) can be uniquely determined from these vertex functions. To see this, let us
firstly consider the scalar vertex. The general target—constituent function from Section III, (H(k,P))dcas, will be
proportional to (VS)M(VS)db. Using the Fierz theorem the Dirac indices can be rearranged into a form that enableg
the connection with the functions J; to be explicit:

fi=28% &5 5, f2 = 297 @3 6,

f3=2 (@5 &5 + p-k (23)?) 5, fa =2 (@) — k% (25)?) 6,

fs=2 ((95)* - p* (@5)?) s, Jo =2 (25 95 + p-k ()% 6,

fr=((®0)" = (085 + k852 + B2k — (p- k)?) (85)?) 6, (29)



fs=—4k-(p D3 + k@3) P55, fo = 4p-(p®; + k ®3) 25§,
fio =8 @5 @5 6, fi = 85 @F 5,

where § = 6 ([p — k] — m%) and mg is the mass of the scalar spectator system.

Calculating the functions ®y_, from first principles amounts to solving the relativistic, many-body bound state
problem. As this is presently not possible one could resort to models such as the MIT bag model. It is not our aim to
do this in this paper. Rather, we shall choose a single scalar vertex, say V5 = I ®7, and use phenomenological input
to constrain its functional form. From Eq.(29) we find that the I ®7 vertex contributes only to f7:

fr=(®3)? 6(p— k)" — m%) [scalar vertex]. (30)

Similarly we choose for the vector vertex a single form, VW = 7,®Y, and find that this makes the following contribu-
tions:

2 2 (®Y)? 6 ([p— k)> — mi

fom—fi = —f = fo = —20r o 2L v)

2 2
m 7 mv

[vector vertex] (31)

where my is the mass of the vector spectator state. In writing Eq.(31) we have assumed that the intermediate vector
state has a Lorentz structure —gag + (pa — ko )(ps — kg)/mi . For the sake of simplicity we further assume that only
valence quarks are present, so that the scalar or vector spectator may be identified with a diquark. In a more refined
caleulation one could, for example, integrate over diquark masses using some diquark spectral function.

From Eqs.(30) and (31) we see that even the simplest vertex functions lead to a large number of non-zero functions
f;. This in turn implies that there are scaling contributions to both of the functions x4+ and x% in Eqgs.(22), thereby
failing to satisfy scenarios. (a) and (c) in Section IV for the derivation of the convolution model. For more complicated
N — ¢ vertices, even more of the f’s (and hence Yy and x% as well) will be non-zero.

The £° dependence of the functions Qf'v can be most easily modelled by considering the on-shell nucleon structure
function (i.c. we shall approximate the quark’s off-shell dependence to be the same in on- and off-shell nucleons. We
discuss this point further in Section VI.A.) The large-z limit is known to be dominated by valence u quarks, which
implies that the scalar vertex dominates at large x [19]. Now note that, as the spectator state is on-mass-shell, the
quark four-momentum will behave as k2 ~ (—m% — k#)/(1 — z) at large z. In order to obtain the correct large-z
behaviour of the structure function, namely Wy ~ (1 — )3, the k% dependence in the scalar vertex function must be
1/k?, after we also take into account the two quark propagators, as well as the factor (1 — z) arising from the delta
function 6 ([p — k]* — m%) for the on-shell diquark state of mass mg (= ms or my) [18].

We fix the large k2 behaviour of the vector vertex function in a similar way, this time by requiring that we obtain
the correct valence dy /uy ratio at large z, namely ~ (1 — z). This means that the vertex function for DIS from
valence dy quarks has to go like (1 — z)* for large z, i.e. like (k?)%/2 (there is an additional (1 — z)~? factor arising
from the trace for the vector diquark).

It may now seem reasonable to choose a simple monopole form for the scalar vertex function, and an equivalent one
for the vector vertex as was done, for example, in Refs. [18,11]. We do not do this, however, for the following reason.
The quark propagator, (k* —m?)~2, in Eq.(13) contains a pole. Because the kinematic maximum for k% is (M —mpg)?,
this pole is in the physical region of k? when mp + m < M. The origin of this pole is clear — the model, so far, 1s
not confining and the proton may dissociate into its quark and diquark constituents. One solution would be to make
the sum of the quark and diquark masses so large that this cannot occur. However, we do not believe that this 1s
desirable — confinement occurs not because the quark mass is large (it is only a few MeV), but in a dynamical way
associated with the nature of the colour interaction. The only place where the information about colour confinement
can enter in this model is through the relativistic quark—nucleon vertex function. A convenient way to ensure that
the contribution from a deconfined quark is excluded is to choosc a numerator in fbf’v so that the integrand in the
structurc function remains finite at the on-shell point, k% = m?.

For the masses of the scalar and vector diquark, mg and my, the only information available to us is that from
low energy models, such as the bag model or the non-relativistic quark model. There, at a scale (Q?) of order a
few hundred MeV?, the diquark masses are expected to be somewhere within the range of 600 to 1100 MeV [19,20].
Furthermore, from the nucleon—A(1232) mass splitting we also anticipate that my would be some 200 MeV larger
than mg. :

The p? dependence of the vertex functions is of course more difficult to obtain, since for this purpose data on nuclear
structure functions must be used. In this case the p? dependence will not be restricted to the quark—nucleon vertex
function alone, but will also be present in the nucleon—nucleus vertices, which introduces an inherent uncertainty in
the determination of the former. Nevertheless, the functions Qf’v(k,p) do not depend on the nuclear target — that
information is contained entirely in the functions Ag —A2. Since for the deuteron the p? dependence of the relativistic



DNN vertex can be related to known deuteron wavefunctions [21-23], we may use deuteron DIS data to constrain
this universal p? dependence of the quark—nucleon vertex functions.

In order to obtain the valence quark distribution for the deuteron, we will use data obtained from muon scabtering
for x > 0.3, where valence quarks are known to dominate. Because of isospin symmetry (u? = d”) only a single
experimental quantity for the deuteron (compared with two — u + d and d/u — for the nucleon) is meaningful,
namely Fop = z(4u® + dP)/9 = 5z(u + d)/9, where uP, dP and u, d are the up and down quark distributions in
the deuteron and proton, respectively. Hence we cannot differentiate between the p? dependence in ®7 and that in
Y. We therefore choose a simple monopole form and use the same cut-off mass, Ap, in both functions. A detailed
comparison between the model and data for z < 0.3 would require separation of the valence and sea components of
F>p. Although in principle this could be done by analysing the v — D and v — D DIS data, in practice those data
suffer from poor statistics. Furthermore, typically only the extracted quark distributions in the nucleon are presented
[24], and these depend on the theoretical assumptions made to treat binding and Fermi motion corrections.

To summarise, the vertex functions that we use are given by

(k? —m?) (M* - A})
(k2 — AZ)* (p* — A7)
(k2 —m?) (M*-A))

(B2 — AL (02— AD)

<I>‘f(p, k) (32a)

®y (p, k) o (32b)

We find the best fit to the experimental nucleon distributions at Q% = 4GeV? (we evolve the curves from Q3=0.15
GeV? using leading order QCD evolution, with Agcp = 250 MeV [25]) for masses mg = 850 MeV and my = 1050
MeV, and cut-offs As = 1.2 GeV and Ay = 1.0 GeV, which we fit to the recent parameterisations by Morfin and
Tung [26] and Owens [27]. The fits to the uy + dy valence quark distribution as well as the valence dv /uy ratio are
shown in Figs.4 and 5 respectively. It is remarkable that such simple forms for the vertex functions reproduce the
data so well.

Having parameterised the free nucleon vertices, we are now ready to consider the specific cases of DIS from the
deuteron, from nuclear matter, and from dressed nucleons. Throughout, we consider the isoscalar valence structure
function, tWr « z(uy +dv) = 3/2 (g + q1), where go and q; are the quark distributions arising in connection with
the scalar and vector diquarks, respectively, normalised so that their first moments are unity (from the spin-flavour
wavefunction of the proton we have dy = ¢; and uy = (¢ + 310)/2).

VI. CALCULATION OF COMPOSITE TARGET STRUCTURE FUNCTIONS
A. DIS from the Deuteron

We examine nuclear DIS from a deuteron for several reasons. Firstly, it is critical to know the size of the off-
mass-shell corrections to the deuteron structure function if ultimately the EMC data (which usually measures the
ratio of nuclear to deuterium structure functions) is to be used to draw conclusions about the differences between
quark distributions in free nucleons and those bound in nuclei. Secondly, in the absence of high-statistics neutrino
data, the neutron structure function is often inferred from the deuteron structure function using the naive assumption
of additivity of the bound proton and neutron structure functions. Apart from the off-mass-shell effects which we
consider here, several other effects spoil this simple assumption. For example, nuclear shadowing is important as £ — 0
[28-31], and of course the deuteron structure function extends beyond zy =1 (25 = (Mp/M) z) to zn = Mp/M.
Hence deviations from additivity occur over much of the range of z. For a reliable extraction of the neutron structure
function a systematic computation of these effects is clearly valuable.

The calculation of DIS from the deuteron is more straightforward and reliable than for heavier nuclei, since the
relativistic deuteron—nucleon vertex is reasonably well understood. The treatment of the deuteron recoil state is
simplified by the fact that most of the time this will be an on-shell nucleon, as this can be expected to dominate the
contributions from processes with a recoil A or Roper resonance, or a higher mass state.

The structure of the general DN N vertex, with one nucleon on-shell, was first derived by Blankenbecler and Cook
(32, (N|¢n|D) o (p— M)~1T2 e caT(P —p), where the DN N vertex function is [33]

L2 (%) =7« F(p) + (%Pa—pa) G(p) + ? &M H(p)va + % <%Pa— pa>], (33)

and C is the charge conjugation operator. The functions F,G, H and I are related to the 351,32 D1,' P, and 3P,
deuteron wavefunctions, u, w, v, and v, respectively, by



F(p) = m/2Mp (2E, — Mp) (U(lpl) . % + \/g%vt(lpl)) (34a)

G(p) = 7/2p (265, — M) (%—Afﬁuupb 4 M CEr M), \/g%w(lpn) (34b)
E,M [3
H(p) = mv/2Mp ﬁl— \/; v((pl) (34c)
. M? (2E, - Mp (268, — Mp)(E, + 2M) w(lp]) = V3M
J(p) = =mv/2Mp 7= <—E';;+—M“("")‘ i VAT v,(upl)) (34d)

where E, = /M? + p2. For the deuteron wavefunctions we use the model of Buck and Gross [21], with a pseudo-

vector m exchange interaction.
For the spin-averaged deuteron hadronic tensor we thercfore need to evaluate the trace

ST e (A P) (0 P) T [(PT— 47 + M) CLR(P”) (B+ M) xw(p,0) (F+ M) CTZ ("], (35)
A

where €”(\, P) is the polarisation vector for a deuteron with helicity A, and lr‘g =70 th “10. This ylelds the following
deuteron-—nucleon functions:

. ) 2 M?
AP =M {;4 F? [4 M? + 2 Mp - (pP—M?) (—2 + ”—M—>]
YD

. 2 0 (1’2 — M) 2 v L, o2, 93 Mt =2 M?*p* —p*
-8 F G [4 M= — My + T WM —Mp+2p° + -/‘/[12) )
G? ) . ) ) 5 ) ,  2pt—2M1
+ 277 (4M>—Mp) — (" —M*) (4 Mp —5p -1t M +T
2 2 2 22
(r* ~ M?) o g2 (2 2 . 2 gag2 ., (p _M)
- [—12 H® (p"—M)+4F H (—5M —2Mp+p +M—12)

5 2 2_M? )
- <p-_(P”,f) ) <(” e )(—4 J+8HJ)+ 16FJ
YD

Pop—M?—p?
A5G H +8G s P))” (362)

M}
(P* — M?) P-p

D
G?‘ pZ o M2

+ o [@ms ) o - ) (o1 - %) (2 T ) e

M2
(- Gg7)7)]

AD (p?) = 4 F? [(4 M?* + 2 M}) pa— (p° — M?) (Mp“ fa (2 B %ﬂﬁ)) P">]

M2
2 2 2
4P =M A, (Pop) - 2 nr2 _Pp
47— (p 73] [pa —Pa] + 8 H J (p* = M?) |pa __—Mlz)’pa
W =g
Csra o (- 252 n)
D
2 2\2 2 272
R Wk
D D
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2 ]\/[2
+8GH[(M2+p2—P'P)Pa+(Pz—p—ﬁtﬁ—Pm)PaJ
D

+8GJ <p2 . %) [—2pa + PQ]} (36b)
Azep(®®) = 0. (36¢)

As mentioned in the previous section, we constrain the cut-off parameter A, in the quark—(off-shell) nucleon vertex
functions defined in Eqs.(32) by fitting our full, p? dependent calculated distribution to the experimental deuteron
structure function, using the lepton—deuteron data from NMC, BCDMS and SLAC (34]. However, we still need to
fix the normalisation constants in Eqgs.(32). Naturally, these will be functions of the cut-off Ap. Actually, if the exact
nucleon—quark vertex functions were known, they would be the same for the off-shell as for the on-shell nucleon. We
do not assume this, however, as the vertex functions which we use arc only approximations to the exact results. For
example, the arguments given in Section V, relating to the counting rules which give the k? dependence of the vertex
functions, are based on quark distributions in an on-shell nucleon. In an off-shell nucleon the connection between
and k? is given by the modified expression

(37)

2} ‘—k" 5 ',2 o
k2:k'+k_—l;§v = zMp <p_— (p1 r) +mR) — ky,

Mp(y—z)

with p_ now constrained by the & function for the on-shell nuclear recoil state (see Section IV). In principle, the
asymptotic k? dependence for the off-shell nucleon—quark vertices expected from counting rules could be determined
after integration over the nucleon’s momentum. Clearly this is a much more complicated task than was the case for
the on-shell nucleon, and we do not believe our simple ansatz for the vertices warrants such a treatinent, in which
case we shall simply normalise by comparing with the data.

In Fig.6 we compare the experimental Fyp at Q% = 10 GeV? with the calculated total valence (uark distribution
in the deuteron, 5/9z(uy + dv), evolved from the same value of QF = 0.15 GeV? (since we use the same diquark
masses) as for the free nucleon distributions in Section V. The result of the full calculation is almost independent of
the value of A used, after the normalisation constants for the vertex functions have been determined by the charge
conservation condition. This is because the pp distribution is strongly peaked at small transverse momenta, pp ~ 25
MeV, so that modification of the large pr (or large |p?|) behaviour by altering the form factor cut-off has negligible
consequences. Clearly there is very good agreement between the model calculation and the data for =z 2 0.3.

From the discussion in Sections IV and V it should be clear that it is not possible to justify the convolution model
for deuteron deep-inelastic scattering. Still, it is of interest to comipare our results with those of previous calculations
that have made use of convolution-like formulas. Firstly we can notice that by taking the on-shell limit (p? — M?)
for the kinematic factors in AF and AP in Bqs.(36), we obtain AP /M = p. AP/M? = q- AP [p- g, \hereby satisfying
condition (c¢) in Section IV for the convolution model (although this approximation need not be taken in the functions
F,G,H,J themselves). Such an approximation is in the spirit of that used in Ref. [13] for the nuclear structure
functions. The result of this approximation is shown in the dashed curve of Fig.6, where we have used the same
normalisation constants in Eqs.(32) (for Ap = 00) as those determined in the full calculation. The effect is a reduction
in the absolute value of the structure function, without much affect on the shape. By artificially normalising the new
distribution so that the final result conserves baryon number, this curve becomes almost indistinguishable from the full
result. However, there is no good reason for using different normalisation constants in this approximation, since the
p® = M? limit is taken in the nuclear part of the diagram and thus should not in principle affect the quark—off-shell
nucleon vertex.

In other calculations using the convolution model for deuterium, the most common prescription has been to drop all
terms but I3 in the expansion of Xuv (in Eq.(35)), and to replace X7 by the experimental, on-shell structure function
of the nucleon [5,35], In Fig.6 the dotted curve shows the result after renormalisation to ensure baryon number two
for the deuteron. It is somewhat surprising that the difference in shape between the full result and this ansatz is as
small as it is. Still, a discrepancy of ~ 20% is quite significant in a system as loosely bound as the deuteron.

A numerically significant difference between the convolution approach and the exact calculation is of particular
importance if one recalls that the neutron structure function is extracted from structure functions of light nuclei, such
as deuterium, using the convolution model. Indeed, in view of the problems which we have just described, it is rather
worrying than our knowledge of Fy, is based on this. As seen in Fig.6, depending on the approximation or ansatz
taken in calculating Fyp, the deviation from the correct, p*-dependent result, will vary. Still, although unsatisfactory
from a theoretical point of view, by artificially re-normalising the deuteron structure function by hand so that it
respects baryon number conservation, the differences can be reduced.
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A similar situation arises in calculations of the nuclear EMC effect, in which differences between nuclear and
deuteron structure functions are explored. Clearly for any accurate description of this effect we need firstly to have a
reliable method of calculating the deuteron structure function. As we have seen, the off-shell effects that are ignored
in the deuteron may be compensated for by suitably renormalising the final result. Whether this can also be done in
other, heavier, nuclei is not clear. Certainly in heavy nuclei we would expect off-shell effects to play some role. To
date these have not been adequately accounted for, and this is what we turn to next.

B. Nuclear Matter

For any nucleus we can easily repeat the above calculation if we know the relativistic nucleon—nucleus vertex
functions. Unfortunately, at the present time these are not at all well known for heavy nuclei. A solution to this
problem would be to simply parameterise the vertex functions, and to make some assumptions for the nuclear recoil
state. Alternatively, if one tried to use nou-relativistic nuclear models as an approximation, it would be difficult to
incorporate the off-shell nucleon structure., The best way is to consider first the simpler case of a nucleon embedded
in nuclear matter. In this type of calculation the off-shell eflects are parameterised in the effective nucleon mass,
M — M.

Experimentally, the effective nucleon mass at nuclear matter density (~ 0.15 fm=3) is found to be ~ 0.7 M [36].
Theoretically, there is a large number of wodels for nuclear matter, which predict a wide range of effective nucleon
masscs. The Quantum Hadrodynamics imodel of Walecka and Serot [36], in which pointlike nucleons (in the mean field
approximation) are bound by the exchange of scalar (¢) and vector (w) mesons, predicts rather small effective masses,
M*/M ~ 0.56 — 0.6. Somewhat larger inasscs are obtained when explicit quark degrees of freedom are introduced.
For example, in the Guichon model [37], where the o and w mesons are allowed to couple directly to quarks inside
the nucleons, the value of M" is typically ~ 0.9 M. Even larger values are obtained if one includes centre-of-mass
corrections and self-coupling of the scalar ficlds [38,39]. Rather than choose a specific nuclear model, we let. M~ be a
parameter and examine the effect of its variation upon the nucleon structure function, defined in Eq.(11).

Because the quark—nucleon vertex fuuction will now also depend on the cffective mass, it would be inappropriate
to use the same normalisation constants in Fqs.(32) as those determined by normalising the on-shell nucleon distri-
butions. Therefore the normalisation constants in this case must be deterimined by normalising the calculated quark
distributions in nuclear matter, for p> = /"%, so that their first moments are unity.

Fig.7 shows the isoscalar valence nucleon structure function,  (uy (z,p? = M*?) +dy(=,p? = M~?)), for a range
of effective masses, M*/M ~ 0.5 — 1. There is clearly quite significant softening of the structure function, with the
most prominent effects appearing for 0.2 < = < 0.6.

However, it should be remembered that our formalism neglects interactions between the spectator quarks and the
surrounding nucleons in the nuclear medium (i.e. it assumes the impulse approximation). This has been found to be
quite a poor approximation [38] for nuclcar matter. A simple way to estimate the importance of final state interactions
is to assume that the strength of the interaction of the spectator diquark with the nuclear medium is 2/3 that of the
nucleon interaction, and that it is independent of the mass of the diquark. In that case the diquark mass is modified
by mgp — mp, where

2 :
mp = mp — 3 (M - M7) (38)

for both scalar and vector diquarks. The effect of this is shown in Fig.8. As can be seen, interactions of the spectator
diquark lead to a hardening of the quark distribution, typically of the same order of magnitude as the nucleon off-shell
effects. Combined with the off-shell effects, this gives a structure function which (for M*/M =~ 0.7) is ~ 20 — 30%
larger than the on-shell result for 2 0.4. For quantitative comparison against decp-inclastic scattering data on
nuclecar structure functions it would therefore be very valuable to develop a consistent formalism incorporating both
effects.

C. DIS From Dressed Nucleons

Models of the nucleon which incorporate PCAC by including a pion cloud have been used in DIS, among other
things, to estimate the size of the 7NN form factor [40,41], and to calculate the flavour symmetry breaking in
the proton sea — the possibility of which was recently suggested by the result of the New Muon Collaboration’s
measurement of the Gottfried sum rule [42]. Previous covariant calculations [43-46] have all relied upon the same
assumptions as for the nuclear calculations, namely the validity of the convolution formula in the first place, and the
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lack of any dependence of the bound nucleon structure function on p? and pz. In this Section we apply the formalism
we have developed for dealing with off-shell effects to the part of this problem where the virtual photon hits the virtual
nucleon, with its spectator pion left on-mass-shell.

In order to calculate this contribution the only additional ingredient which we need is the ‘sideways’ NN form
factor, T'zy v (p?), where one nucleon is off-mass-shell. For this we use the same monopole form that is usually used
in the literature [11] (see also [47,48])

-1
Tewvn(p?) o (P2 — A2y) 7, (39)
with Azny ~ 1.4 GeV and a pseudoscalar #N coupling. With this, we can rearrange the relevant trace in Eq.(23),
Tt [(P + M) ivsTann (p?) (B+ M) xuu(p, @) ($+ M) ivsTann (p?)] (40)

to obtain the nucleon—pion functions Aj%,,

AgN(P:p) = (_m12r M) FferN(pZ) (41a)
AT (p,P) = (=m2 pa + (P* = M?*)(po — Pa)) T2nn(P%) (41b)
Pes(p,P)=0. (41c)

Again, as was the case for the deuteron, by inserting p? — AM? in AT we can satisfy the conditions of case
(c) in Section IV. However, the structure function this time is proportional to —m?2 (i.e. negative), which is clearly
unphysical. This illustrates the fact that even though the one dimensional convolution formula may indeed be obtained
from the exact result by certain approximations (e.g. on-shell limit), there is no guarantee that these approximations
are physically meaningful.

As was shown in [11], the convolution model may be derived if, amongst other things, one assumes that the off-shell
nucleon structure is the same as that of a point-like fermion [1], in which case the relevant operator in \ ., is fx3(p, q).
As we have seen above, this is only part of the complete expression in the Bjorken limit if one assuimes the nucleon
quark vertex to be of the form in Section V. Nevertheless, the model of [11] can be obtained using these vertices if the
following steps are taken: firstly the trace in Eq.(40) evaluated with the fx% structure; then to obtain factorisation
the limits pr = 0 and p®> = M? taken in the ‘nucleon structure function’ (i.e. k dependent) parts; and finally the full
structure of the on-shell nucleon function used, as in Eq.(11), rather than just keeping the x2 term. The necessity of
the last point is clear, since for the on-shell structure function the individual functions xi;,. are not necessarily positive
definite, although the sum of course is positive.

Other authors [49] have implicitly assumed that the relevant operator to be used in the x,, of Eq.(40) is Ix%, similar
to what was done in the convolution model calculation for the deuteron discussed in Section VI A. However, even
with the subsequent replacement of x% by the full on-shell nucleon structure function in the convolution expression,
the result will be proportional to —m?2 since the coefficient of x3 is AJY. Thus it appears that the result of [49] can
only be obtained by taking the modulus of a negative structure function.

Clearly, the above procedures are somewhat arbitrary. It is a reflection of the fact that none of the scenarios described
in Section IV (namely cases (a)—(c)) for obtaining the convolution model are applicable. As in the deuteron case,
the convolution model for dressed nucleons is not derivable from the exact result.

In Fig.9 we show the result of the convolution model of [11]. This is compared with the result of the calculation
including the full p? dependence, with the quark—nucleon vertex function evaluated with Ap = 00, as for the deuteron.
For the full calculation we use the same normalisation constants for the quark—nucleon vertices as determined from the
on-shell nucleon calculation in Section V. The results indicate that the full, p? dependent calculation gives somewhat
smaller results compared with those of the convolution model (although the shapes are quite similar, as can be seen
from the dotted curve, where we normalise the scalar and vector vertex functions to give the same first moments as in
the convolution model). Such a difference might have been surprising had the convolution expression been a simple
approximation to the full result, in which case we may well have expected small off-shell corrections. Unfortunately,
this calculation is more difficult to check since there is no clear normalisation condition for the structure function.
Comparing the first moment of the calculated distributions with the average number of pions in the intermediate state,
which can be calculated by considering DIS from the virtual pion, is ambiguous due to the presence of antiparticles
in the covariant formulation. (A convolution formula such as Eq.(25) can be written for DIS from virtual pions, since
there are no spinor degrees of freedom to spoil this factorisation. However, ambiguities in the p? dependence of the
‘off-shell pion structure function’ would still remain.) We therefore believe that this fact illustrates the absence of
a firm foundation for the covariant convolution model for DIS from dressed nucleons (see [50,51] for an alternative
approach to this calculation).
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VII. CONCLUSION

We have investigated within a covariant framework the deep-inelastic scattering from composite particles containing
virtual nucleon constituents. The scattering has been treated as a two-step process, in which the off-shell nucleon in
the target interacts with the high energy probe. The treatment amounts to neglecting final state interactions. We
have constructed the truncated photon—nucleon amplitude from 22 general, independent functions, and used the
parton model to show that only 4 of these are relevant in describing the deep-inelastic structure functions in the
Bjorken limit. The calculation explicitly ensures current conservation and the Callan-Cross relation.

Within this framework we can unambiguously examine under what conditions the conventional convolution model
breaks down. Furthermore, we use some simple models of the relativistic nucleon—quark and nucleus—nucleon vertex
functions to investigate this breakdown numerically. While the failure of the convolution model may appear to be
an unwelcome complication, it is clear that in any theoretically self-consistent calculation which takes off-mass-shell
effects into account it is an inevitable one. Indeed, the ‘bound nucleon structure function’ is an ill-defined quantity
within a covariant formulation. This has wide-ranging consequences, as almost all calculations of composite targel
structure functions (e.g. nuclei, for the EMC effect) have relied upon the validity of the simple convolution model.

We have heen able to calculate the deuteron structure function without making any assumptions about the p®
dependence of the structure functions, and find excellent agreement with Lhe data in the region of  where our model
is applicable (£ 2 0.3). Making various assurptions for the off-shell nucleons naturally introduces deviations froimn the
exact result. Ilowever, by suitably renormalising the approximated curves by hand to ensure baryon number conserva-
tion (as was done in most previous calculations) the differences between the sxact results and those of the convolution
ansatz arc minimised. Although this is most unsatisfactory from a theoretical point of view, phenoruenologically the
consequences of neglecting the nucleon off-shell effects in the deuteron may not be too great.

To understand the consequences of the off-shell effects in heavy nuclei, we considered a simple model of a nucleon
embedded in nuclear matter. We found quite a significant softening of the structure function at intermediate » when
the nuclear imedium acts to decrease the effective nucleon mass. However, interactions of the spectator diquark state
with the surrounding medium tend to make the overall structure function some 20 — 30% harder at large (¢ = 0.4),
for A" /M = 0.7, compared with the on-shell result.

The other application which has been examined is DIS from the virtual nucleon component of a physical, or dressed,
nucleon, where we also find quite significant differences between the full result and the convolution model. A detailed
quantitative understanding of this effect is needed in order to be able to describe the z distributions for all processes
where Lhe nucleon’s dissociation into a virtual nucleon and meson is expected to be of importance, such as in the
measurcment of the asymmetry in the light sea quark sector of the proton and neutron, as well as the neutron spin
structure function gy,(z).
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APPENDIX: GAUGE INVARIANCE AND THE LONGITUDINAL STRUCTURE FUNCTION

Here we give the full details regarding the vanishing of the longitudinal and non gauge-invariant structure functions.
Using the projection operators defined in Section II we project from the truncated nucleon tensor Xuv the contri-
butions to the longitudinal (W#) and non gauge-invariant (Wé‘, W(?r,) functions:

PP, a) X (P 0) = X2 (0,0 + BXL(P0) + 4 X2 0) + 0app®d X(0,q)

2
q )
+ (-q)? (p— yP)2 [X%(Pa 9+ p X%(P, q) + dx%(p, q)
+ 0asp®e® X7 (p,q) ]
2p-q 2p-q . v
- 4x°(p,q) - 2 0app®e® X°(0,0) ~ 2y 0asPd® X(p,q) (Ala)

P’ (P,@) xuw(p,0) = x3(p,0) + B x§(p,0) + 4 xh(p,q) + 252'(1 (X p,0) + 2 4 x"(p,q)
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% - 1
+ 0app®q” [xsq(p, 9 + I; 2xf(p,9) + 23, 9) (Alb)

| ' 2p-q
—5Por (P, ) Xur (P, @) = xQu(p, ) + $ xor(pd) + o xor(p.0) + e 4x*p.9)+ 4x*.q)

2p-q ]
+ oapp®q’ [x%L(p, 9 + Z xX°(p. ) + x*(p,q)

2

q
P.-q

+ 0asP¢’ [y X'(p,g) + xg(p,q)] : (Alc)

Following the procedure described in Section III we find that all the x(p, ¢)’s in Eqs.(A1) are of order 1/v, with the
exception of x7(p, ¢) and x°(p, ¢), which are of order 1/v2. Hence in the Bjorken limit Eqgs.(Al) becomes

PE (P, @)Xuv (@) = 4 (x'i(P.fI) 2 52' qx3(p,q))

o 2p-
+ oapp™’ (Xi(p.q) - qqus(p.q)) (A2a)

v " 2 b /
PSY(P,q) xuv(p,q) = <\'b(p,q) + 52 () + 2 x‘(p,q)>

o 2p-q ¢ . .
+ oapp”q” (x%(p,q) + Tx"(p. q7) + 2 xs(p,q)> (A2b)

1 Duw 2 2p-q
—5FQL(P,a) Xur(p.0) = 4 (xbL(p,q) t = Clpa) + x4(p.q)>
o 3 5 2 P16 8 5
+oasp™e” | xorL(p,q) + X (ra) + x%(p.q) | . (A2c)

Furthermore, for the functions x(p, q) we find that at leading order in v,

2p-q . 2p-q
xi(p.q) = 7z X0, 9), Xp(pq) = e (v, 9),
2p-g ) 2p-q
xé(p,q)z—q*?xs(p, 9) — 2xp,q), xolp,q) = — e X°*(a) — 2x%(p,q), (A3)
Xor(® 9) = x5(p,0) + X' (p, 1), xor(pa) = xo(p 1) + X3(p,9),

XIIL,Q,QL(p) (1) = 0, 1= O, 1

Substituting these expressions into Eqgs.(A2) therefore leads to vanishing results for each of the longitudinal and non
gauge-invariant functions. This result is true independent of the production mechanism of the off-shell particle, that
is, independent of the functions Ay — Ay as defined in Section IV. For the special case of an on-shell nucleon the
longitudinal and gauge non-invariant structure functions are

M~ ~0 2 ~1 ~2 2 (P"I)z ~3

SWrpa)=MXi(p,9) + M* %p(p.0) + P g xi(p.g) — —F X (p,q) =0 (Ada)
M . 0 . . 2(p-q)?% _ .

W (0.0) =M X4(p,q) + M X4(p,q) + p-a %5 0) + —(qu) Xpa) + 2p-q % (pg) =0 (Adb)

M - - . 2(p-¢)?. -
WP, @) =M 3gr(p,q) + M* Xpr(p,a) + p-q X5(p,a) + %Xs(p,q) + 2 9% (g >0 (Adc)

where the zero results follow directly from (A3).
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FI1G. 1. The truncated nucleon tensor x,,.
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FIG. 2. Scattering from an off-shell nucleon in a composite target. The functions A; describe

the nucleon — composite target interaction.
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FIG. 3. Leading twist contribution to the off-shell tensor x,,. The function H(p,k) describes

the soft, non-perturbative physics.
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FIG. 4. Valence uy + dy quark distribution in the nucleon, evolved from Q2 = 0.15 GeV?

(dashed curve) to @* = 4 GeV? (solid curve), and compared against parameterisations (dotted
curves) of world data [26,27].
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FIG. 5. Valence dy fuy ratio, evolved from Q2% = 0.15 GeV? (dashed curve) to Q% = 4 GeV?

(solid curve), and compared against parameterisations (dotted curves) of world data [26,27].
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FIG. 6. Valence part of the deuteron structure function: the solid line is the {ull calculation
(with A, = 00); the dashed line is with the p? = M? approximation in Ag, /4y (case (c) in Section
IV), with the same normalisation constants as in the full curve; the dotted line is the convolution
model using only the x3(p, ¢) operator, together with the full nucleon structure function, normalised
to baryon number one. The curves have been evolved from Q% =0.15 GeV? to Q? = 10 GeV? for

comparison against the cxperimental Fop(z,Q? = 10GeV?) [34].
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FIG. 7. Nucleon structure function in nuclear matter, in the impulse approximation, for a range

of effective nucleon masses, evolved from Q3 = 0.15 GeV? to Q? = 4 GeV?2,
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nuclear medium.
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F1G. 9. Contribution to the structure function of a nucleon from DIS off 'a virtual nucleon
dressed by pions. The convolution model of Ref. [11] (dashed) is compared with the full calculation
(for A, = oc), using the same normalisation for the off-shell N - g vertices as for the on-shell vertices
(solid), and normalising the full result (dotted) to give the same first moment as for the convolution

curve. All curves are evolved from Q3 = 0.15 GeV? to Q? = 4 GeV?2.





