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ABSTRACT

This thesis deals with the consistent description of the quark structure of hadrons and nuclei in deep

inelastic scattering, with particular emphasis on the non-perturbative region of QCD. Using a novel

new approach based on the expansion of the truncated nucleon tensor, we consttuct a relativistic

quark model which enables the nucleon valence quark distributions to be computed. For the sea

quarks we scrutinise a model in which the nucleon has an extended structure due to its virtual

meson and baryon components, and discuss tests that may reveal such structure experimentally.

For scattering from nuclei, we show how structure functions of composite particles can be calculated

from the truncated nucleon tensor, and relativistic nucleon-nucleus vertex functions. This a,liows

for a self-consistent treatment of the off-shell properties of bound nucleons. As a result we can

understand for the first time the conditions under which the convolution model of deep inelastic

scattering can be justified, however, we find that these are generally not satisfled. On the other

hand, within our formalism the traditional convolution approach is bypassed altogether. \Me also

calculate the corrections to nuclear structure functions due to shadowing at small Bjorken-r, within

a model in which both mesons and partons play distinct roles. Finally, we investigate the possibility

of performing (spin-dependent) inclusive hadron leptoproduction experiments as a means of testing

directly the relevance of hadronic variables in high energy reactions.
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Chapter 1

INTRODUCTION

The main unresolved problem of the Standard Model of particle physics is the description from

first principles of the strong interactions. Traditional low energy nuclear physics, where the strong

nuclear force acts at relatively large distances, is for the most part successfully described in terms

of hadronic variables - mesons and baryons. However, for a complete understanding of the strong

interactions, nuclear phenomena must be reconciled with the more fundamental theory of quarks

and gluons - Quantum Chromodynamics (QCD).

Historically, the basic interaction which we have sought to explain has been that between protons

and neutrons in the atomic nucleus. The original idea of massive particle exchange of Yukawa [1]

has been a guiding principle according to which later theories have been formuiated. It was pointed

out by Wick [2] that this idea fitted in nicely with the Heisenberg Uncertainty principle, whereby

the interaction range of the nuclear force is inversely proportional to the mass of the exchanged

meson (pion). Over the years a quantitative description of the forces acting between nucleons has

been developed within a meson-exchange picture.

Following the experimental confirmation of the pion in 1947, the 1950s and 1960s saw an

explosion of newly discovered mesons and baryoqs, as particle accelerators were able to achieve ever

higher energies. To bring some sense of order to the profusion of new particles Gell-Mann [3] and

Zweig [4] introduced the idea of quarks, initially seen merely as useful book-keeping devices. Soon

after it was realised that a serious problem existed with the simple quark classifications, namely the

A++. The quark model wavefunction for the A*t was predicted to be totally symmetric, however

it was known that this particle obeyed Fermi-Dirac statistics. A solution to this problem was found

by assigning extra colour quantum numbers to the quarks [5], in which baryons would have in

addition an antisymmetric colour wavefunction. By imposing local gauge invariance on the colour

fields, and including vector gluon exchange as a means by which quarhs interact, one obtains the

essential elements of QCD [6].

Because QCD is an asymptotically free theory - the effective strong coupling constant de-

creases at short distances - processes involving large momentum transfers can be calculated using

perturbation theory [7, 8]. Perturbative QCD works remarkably well in its region of applicability.
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In describing the distribution of hadronic jets in high energy particie collisions, for example, its

predictions are in quite spectacular agreement with experiment, even to high orders in the perturba-

tion expansion. Yet despite its successes, we are still unable to extract from QCD sufficient details

regarding its long-distance properties. This is because in the infra-red region the strong coupling

constant gtows, perturbation theory breaks down, and its predictive power becomes rather limited.

A closely related problem is that of confinement of individual particles carrying colour quantum

numbers. One of the possible ways to circumvent this problem is to solve the QCD equations of

motion numerically on a space-time grid. While this is an important pursuit, in reality sufficiently

quantitative predictions are still some time away.

It is perhaps the holy grail of the Standard Model to make the leap from QCD to traditional

nuclear physics. In a sense it is ironic that the theory which arose out of the desire to understand

nuclear forces is able to explain backgrounds in jets, yet unable to answer the fundamental questions

of nuclear physics (for a review of the achievements of QCD see, for example, Ref.[9]). Arguing

that QCD can in principle explain all hadronic and nuclear phenomena is akin to being satisfied

that QED can in principle explain ali of the physics of atoms, molecules and condensed matter.

One might ask whether it isn't simply a matter of complexity - the fact that there is such a

large mismatch in energy scales between nuclear physics (with energies of a few MeV) and the

short-distance realm (tens or hundreds of GeV) of QCD. Part of the answer lies in realising that

there are still fundamental issues like conflnement, chiral symmetry breaking, etc. that will need

to be resolved. At this stage the best one can do is construct "QCD-inspired" models which are

consistent with the known properties of QCD, but which can be extrapolated into the low energy

domain. Then one can hope that experimental input may shed some light on the merits of the

various approaches. It would seem sensible, if the aim is to study the frontier between quark and

hadron physics, to concentrate on those processes in which both degrees offreedom may be relevant.

One such process in which both large and small scale features of QCD can be studied is deep

inelastic scattering (DIS) of leptons from hadrons. Because the Standard Model gives such a

good account of electroweak interactions, the scattering of leptons from hadronic targets is a far

more elegant method of probing the quark substructure of hadrons than purely hadronic collisions.

Indeed, the first experimental evidence for the existence of point-like constituents of the nucleon

was obtained through DIS at the Stanford Linear Accelerator Center (SLAC) in the late 1960s [10].

Furthermore, the awarding of the 1-990 Nobel prize in physics to Friedman, Kendall and Taylor [11]

recognised the important contribution to our understanding of the quark structure of matter that

has been made via this method.

Theoretically, in DIS some of the difrculties imposed by confrnement can be ovetcome, since

here quarks and gluons (or generically partons) can be treated as ifthey are (quasi-) free. This is the

essence of the Quark Parton Model [12]. The experimental consequence of point-like partons is the

non-vanishing of the inelastic structure functions at very large momentum transfers, a phenomenon

known as scaling. Actually, this is only the naive expectation - refinement of this model in the
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guise of QCD radiative corrections leads to small deviations from exact scalìng. It is yet another

triumph of QCD that it is able to give a quantitative description of the scaling violations.

In this thesis we will mostly focus on deep inelastic scattering, and what can be learned from

this about the quark structure of hadrons and nuclei. In Chapter 2 we briefly outline the formalities

and fundamental results of inclusive deep inelastic lepton-nucleon scattering. (The discussion will

be restricted to electromagnetic interactions only, although neutrino scattering will be mentioned

in Section 6.1.) We introduce the explicit Dirac and Lorentz structure of the truncated nucleon

tensor, and use relativistic quark-nucleon vertices to calculate the truncated structure functions

explicitly. This will enable us to construct a relativistic, covariant model of the valence quark

momentum distributions of the nucleon.

The sea component of the nucleon can of course be generated perturbatively from the QCD

evolution equations. On the other, there is some evidence to suggest the existence of a non-

perturbative component of the nucleon sea as well, and this is discussed in Chapter 3. In particular,

data from the New Muon Collaboration (NMC) at CERN on the proton and deuteron structure

functions at very low Bjorken-r suggests a significant violation of the Gottfried sum tule, a plausible

explanation of which is an asymmetry in the z and d sectors of the proton. Such an hypothesis

necessarily implies going beyond perturbative QCD. Indeed, if this result is confirmed by future

experiments, it would be a case of devout adherence to perturbative QCD leading some physicists

astray. \Me concentrate on one mechanism in particular that can generate a u - d diference, which

is due to the presence of explicit mesonic components in the nucleon wavefunction. Our approach in

calculating the scattering from this virtual cloud of mesons is based on time-ordered perturbation

theory in the infinite momentum frame. This is particularly advantageous if we wish to use the

convolution model, as here off-mass-shel1 ambiguities in the structure functions of virtual particles

are avoided.

The crucial uncertainty in the interpretation of the NMC data is the fact that the neutron

structure function is extracted from data taken in DIS experiments with deuterium targets. The

extraction is therefore a model-dependent procedure, since it must account for any nuclear effects

present in the deuteron. Of particular importance is the region of small Bjorken-r, where the

deuteron structure function may be 'shadowed' in comparison with the free nucleon structure

function. Because there are potentially significant contributions to the Gottfried sum rule from this

region, a thorough examination of the shadowing corrections to the deuteron structure function is of

the utmost importance. In Chapter 4 we calculate these corrections using a model which combines

aspects of the traditional vector meson dominance model of electromagnetic hadronic interactions,

as well as a parton-based approach incorporating the phenomenology of Pomeron exchange from

Regge theory.

From DIS experiments on heavy nuclei targets we also know that ratios of nuclear to deuteron

structure functions (per nucleon) fall significantly below unity at small ø. Using realistic input for

the nuclear density distribution, we extend the above model to calculate the shadowing corrections
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to structure functions of heavy nuclei as wel1. \Me show that a careful analysis can yield quite

excellent agreement with recent high-precision data taken at CERN. This serves as a further check

on the reliability of the model predictions for shadowing in deuterium.

To understand the differences between nuclear and nucleon structure functions at larger r values,

the bound nucleon properties must be properly accounted for. Chapter 5 is devoted to a rigorous

reanalysis ofthe traditional approach to calculating deep inelastic nuclear cross sections. Extending

the formalism introduced in Chapter 2, we show how a proper treatment of the truncated nucleon

tensor enables the structure functions of any composite particle containing off-mass-shell nucleons

to be calculated from a knowledge of relativistic nuclear vertex functions. We verify explicitly that

the formalism is gauge invariant, and gives rise to the correct scaling behaviour for the inelastic

structure functions, regardless of the production mechanism of the off-shell nucleon. Furthermore,

we examine under what conditions can one obtain the convolution model from the fully relativistic

calculation, and demonstrate that in general these are not satisfied. The essential reason for the

failure of the convolution model is that it omits antiparticles, which of course must be present in

any relativistic analysis. This is a rather serious revelation, as the majority of previous calculations

of structure functions of composite particles have relied upon the validity of this approach. On

the other hand, our new formalism enables direct computation of the scattering process, right

from the quark level. In fact, it forbids making the usuai short-cut of taking nucleon structure

function input and simply smearing it with a nucleon distribution in the nucleus. \Me illustrate the

virtues of the new approach with several examples. Specifically, we calculate the deuteron structure

function, and'compare against the convolution-type methods. In addition, we estimate the role of

off-mass-shell effects in nuclear matter, which will be important in understanding the origin of the

BMC effect [13]. Also, we revisit the case of DIS from the nucleon dressed by mesons, where we

formally demonstrate the fatal problems associated with the covariant convolution model, and thus

implicitly lend weight toward the inflnite momentum frame approach of Chapter 3.

Concurrently with the inclusive DIS studies, there exists a wider, more general class of semi-

inclusive reactions, where specific hadrons in the flnal state are tagged. This is a somewhat less

explored subject, both theoretically and experimentally, but which has the potential to teach us

more about the non-perturbative aspects of quarks physics. Because there exists no formal operator

product expansion approach to this problem, our treatment is largely phenomenological. Our main

emphasis is on semi-inclusive production of baryons, especially in the target fragmentation region.

Firstly, we demonstrate the importance of kinematics for particles produced in this region, and show

how ignorance of these can lead to erroneous conclusions about the existence of more exotic effects.

Once the kinematics are understood, we can then proceed to study the dynamics of semi-inclusive

scattering. We construct a model for the fragmentation of quarks to baryons, and compare its

predictions with those of the one-pion-exchange model. As an extra degree of freedom, we examine

the possibility of using polarised targets and measuring the spin transfer to the final state hadron

as a means of distinguishing the different models. We find that a spin asymmetry of the polarised

4



baryon (4,++; yields is particularly sensitive to the production mechanism.

Finally, in Chapter 7 we round off the discussion, and outline potential future directions in

which the work presented in this thesis can be taken.
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Chapter 2

INCTUSIVE DEEP INETASTIC
SCATTERING

Deep inelastic scattering has for 25 years been an extremely useful tool for studying hadronic sub-

structure, providing a wealth of information about the distribution of quarks inside the nucleon

and nuclei. In this chapter we shall be concerned with inclusive scattering of unpolarised charged

leptons from unpolarised nucleon targets. (The generalisation to weak interactions involving neu-

trino scattering is straightforward - see Refs.[l4, 15].) Firstly, we introduce some notation that

will be used in this and later chapters, and then give a brief overview of some of the main results of

DIS which will be necessary in our applications. More comprehensive discussions can be found, for

example, in Refs. [14-16]. The new work in this chapter is presented in Sections 2.2 and 2.3, where

we investigate the truncated nucleon tensor, and then apply our results in a novel calculation of

the nucleon valence quark distributions.

2.L DIS Structure Fbnctions

The process of interest is depicted in Fig.2.1, where the charged lepton (/) of energy -E scatters from

a target nucleon (ff), leaving a flnal state consisting of the scattered lepton (//) and the hadronic

debris (X) of the shattered nucleon lN --+ ltX. The observables in this process are the scattered

lepton's energy, E', and the angle of lepton scatter, d. Alternatively, we can use the square of the

four-momentum transfer to the nucleon, Q' = -q'(= 4EEtsin2 0 fot m¡ K E,E'), and the Bjorken

scaling variable *: Q2l2p.q (: QzlZUu in the target rest frame, with z - E - -El being the

eneïgy transferred to the target). In terms of these variables, the inclusive differential cross section'

(in the target rest frame) in the one photon exchange approximation is given by

d2o n o' ,,
,t;dæ : 

æE' M .'Lþ'w¡"' (2'1)
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I

v* (q)

N (p)

x (px)

Figure 2.1: Deep inelastic lepton nucleon scattering

Since we are concerned with unpolarised lepton scattering, we avetage over the initial, and sum

over final, lepton polarisations, in which case the lepton tensot LP' is given by 1

t'l(/ +*t)t'(/+mt)t"l

I f

1
Lt"'

2

2 (frr"*tt'tt"+nr'+) (2.2)

The hadronic tensor

w ¡"u = l{2")" o4 (p + q - p x) (N (p)l J r(o) lx (px) ) (x (p x)l J 
"(o) I 

¡r (p) ) (2.3)
X

contains information on the structure of the target nucleon. Because the unpoiarised lepton tensor

LP" is totally symmetric in the Lorentz indices p, and u, only the symmetric componetts of W¡",

can yield any information on the spin-independent structure of the nucleon.

To ensure Lorentz invariance, the hadronic tensor must be constructed from the quantities

gpv,tpu, and qr. From combinations of these we can form at most four independent tensors (with

four independent structure functions),

tSpinors are normalised such that

Pr p,(p, q) Wr(p, q) * Pzr,,(p, q) WL(p, q)

Pcr,(p, q) Wc(p, q) + Pn ¡""(p, q) Wn(p, q)

D"@,s)n (p, s) : (ú +,") #

wr"(P,q) :
+

7

wilh uu = 2m

(2-4)



The tensorsP* are defined by

Prr"(p,,q) :

Pcr,(p,q) :

Ph,(P,q) : þ*P"
-n)p'

Wr-

Õr" I
8p%u

4r2a
W7-

4r2a

PpP,

þ2

) "r;.

1
Pørr(P, q)

'/-Fæ
(þpqþ I ñ,ep) , (2.5)

where Apr: -gp, * eu¡,f q2 and ísr- ap- Çp a'I182, 'u, being any four-vector.

The decomposition in Eq.(2.4) of the nucleon tensor is of course not unique, however it is written

in this convenient form because the tensors P¡", car- be used as projectors [17], as they satisfy

P#"(p,q) Prp,(p,q) : 2, PË'(p,q) Pu""(p,q) : r,

P'å(p,q)Pcr,(p,q) = 1, P'rí(P,4)Pnp,(P,8) : -2', (2'6)

and are orthogonalrPf' P¡¡", = 0 for i + i. Hence we can project from the hadron tensor the

relevant scalar functions: Pl'Wp, : W¿ (i = T, LrG, H).

In Eq.(2.a) W7 andWT a.re proportional to the transvetse and longitudinal structure functions,

respectively, which are related to the cross sections for scattering transversely and longitudinally

polarised photons from a nucleon,

q2

K
)'i'*

I(
(2.7)

where I( : væTQT is the flux of incoming virtual photons (in the Gilman convention [18]).

By Nöther's theorem, the requirement that the Lagrangian be invariant under gallge transforma-

tions means that the electromagnetic current.,I, is conserved,0þJ, = 0. This has the consequence

that for any matrix element of the current operator we have q' (ÍlJrli) = 0, which leads to two

constraint equations for the hadronic tensor, SpWpr: 0 : q'W¡"r. As a result, the functions Wç

andW¡¡ must be zero, so that in fact there are only two Lorentz and gauge invariant functions. In

more customary notation these are denoted W1 andW2,in terms of which the nucleon tensor is

wr,(p,q): ãt", wt(p,q) + e# wz(p,q). (2.8)

The functions W1 and W2 are related to the transverse and longitudinal functions by

\
wt(p,q) :

wz(p,q) =

wr(p,q)

The theoretical result of Bjorken [19, 20] was that in the limit where Q' - oo but * : Q'l2p.q
is fixed (therefore p'q = Mu --+ oo also), now referred to as the Bjorken limit, the functions l[
and uW2 scale - that is, they become finite functions of only one variable, r. In the Bjorken limit,

the scaling functions are usually expressed in terms of the dimensionless structure functions ,F1 and

Fz,

M Wt : Fr(n)

u Wz = Fz(*). (2.10)

(, - #)-' r*,r0, q) + wr(p, q)) (2.e)
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Furthermore, defining Ft :2 r M Wt to be the longitudinal structure function, we have

(2.11)

A consequence of the scaling property of -F.1 and -Fz (and the fact that the nucleon's constituents

have spin I12)is the vanishing of thelongitudinal structurefunction, or equivalently, that F2(r):
2rfi(r) - the famous Callan-Gross relation [21].

The observation of scaling of the inelastic structure functions in the SLAC experiments of the

late 1960s [10] was a monumental step forward in our view of quarks as genuine objects, rather

than merely convenient mathematical tools, as had been widely believed previously. For one thing,

it led directly to Feynman's parton model 112,,22-241.

2.t.L Quark Parton Model

A basic hypothesis of the parton model is that the inelastic scattering from the nucleon can, at

a deeper and more fundamental level, be described by elastic scattering from on-shell, point-like,

spin lf 2 constituents (partons) in the nucleon. It is more than tempting to associate the partons

of DIS with the quarks of the Geil-Mann and Zweig quark model [3, 4].

The validity of this simple picture of deep inelastic scattering relies on the treatment of the in-

teractions of the probe with the partons in impulse approximation. The legitimacy of the impulse

approximation rests on two assumptions - that

(i) final state interactions are neglected, and

(ii) the interaction time is less than the lifetime of the virtual state of the nucleon

as a sum of its on-shell constituents.

The former seems reasonable since in DIS the energy transferred to the parton is much greater than

the binding energy, so that the parton can be viewed as quasi-free (or asymptotically free). Whether

the latter is valid or not can best be seen in the infinite momentum frame (IMF) of the target.

Here, the momentum of the target nucleon is pp: (pr t M2lZpü Or, -pt),wilhp7 --> oo (or B :
uf c-- 1),sothatthephoton'sfour-momentummustbe gt,: (-npt(l- M2r2l8')+ Muf2p7; O7,

rpL(I - M'*' lQ2) + A, ¡Zp¿). ,ts will be seen below, the dominant contributions to the hadronic

tensor are those for which q .€ < l- and €o : -€¿, where ( is the space-time distance involved in

the DIS pïocess. Therefore q't =2M u tolW, so that the interaction time is - €o S pal2Mu.

The lifetime of the virtual state can be obtained by a simple argument as follows: the energy of the

virtual nucleon state consisting of on-shell partons with momenta r¿p; (transverse momentum is

irrelevant to the argument) and mass m; is x Ð¿(*¿pt * m2¿ l2r¿pa), so that the difference between

the energies of the virtual and on-shell nucleons, is = (!o *7 I * ¿ - M') I Zp". Therefore the lifetime

of this virtual state is proportional to p¡,, and hence the ratio of interaction time to virtual state

lifetime - llv + 0 in the Bjorken limit.

The picture is then one of quarks with momentum fraction r¿ = r absorbing photons with

* : Q' l2p. g, since ó((q + rip)2) -- 6(n - r¿) lzp. q. It then follows that in the quark parton model,

Fr,: Fz (t - %) - 2æF1

I



the structure functions are related to the quark and antiquark momentum distribution functions,

q(ø) and Q@),t:,y

Fz(*) : Ð "? 
x(q(*) + 4(ø)) : 2rh(n). (2.12)

q

Note that the structure functions (and to lowest order in QCD corrections, the parton distributions)

are Lorentz invariant quantities. It is only the interpretation of q(r)d,r as the number of quarks

with momentum fraction between n and. r * dr that must be seen in the context of the IMF.

2.1.2 Light-ConeDominance

Having outlined the simple interpretation of the DIS process, we now turn to a more formal anaþsis

of the hadronic tensor, Wr,. Using the completeness relation Dx lX)(Xl : 1 and translationa,l

invariance this can rewritten as

wp,
1

2"
d4 ¿ eia'| (N @)lJ r(Ð J 

"(o) I 
¡r(e))I (2.13)

In the Bjorken hrrlit W¡", receives the dominant contributions from the light-cone region, €2 : 0.

This is clear when one writes the argument of the exponential in light-cone coordinates,

q' t : Ç+€- * q-€+ 
- er .€r (2.t4)2'2

where a+ : I)o I uL, with u being any 4-vector. The Lorentz scalar q . €, by deflnition, takes

the same value in any reference frame, so we can choose the target rest frame, in which q, -
(rror,-t/-uz ¡q) - (u;or,-u-Mr),andthereforeq.( = -Mr(to-€t)12 I (2u*Mr)(6oa

€t)l2.Obviously the largest contributions to (2.13) will be those for which the exponent oscillates

least, namely q. t - 0. fn the Bjorken limit g-(.. will behave like z((s + (¿), so that only when

€o : -€¿ will there be non-negligible contributions to W¡r,. Thus the DIS cross sections will be

controlled by the product of currents Jþ(()J,(0) near the light cone, (' = 0.

2,L.3 Operator Product Expansron

In quantum field theory products of operators at the same space-time point (composite operators)

are not well defined [25]. The short distance operator product expansion (OPE) of Wilson [26],

in which the composite operators are expanded in a series of finite local operators multiplied by

singular coefficient functions, provides a way of obtaining meaningful results.

Because in DIS it is the (2 - 0 region that is probed, rather than the { - 0, we need an

expansion of the product of currents in Eq.(2.13) that is valid near the light-cone. (This is because

at short distances q ---+ oo, p.qlqz * 0, while in DIS the light-cone region corresponds to the

Bjorken limit, -g2 ---¡ oo, p.qlq2 = O(1).) The general form of the light-cone operator product

expansion is 127, 28, 14]

/(()/(0) N D cfl(er) €p, . . .e þN ot!l"1N (0) (2.15)
¿,¡\r

10



nq

p

q q

p p

Wuu Im Tþu

Figure 2.2: Relation between the DIS cross section and the forward virtual Compton scattering
amplitude.

where the sum is over different types of operators with spin If (i.e. they transform as tensors of
rank 1[ under Lorentz transformations). In DIS the spin 1{ operators (}t!t"'uN represent the soft,

or non-perturbative, physics, while the coefficient functions Cfl describe the hard interaction and

are calculable within perturbative QCD.

From Fig.2.2 we can see the similarity between the DIS process described by the tensot W,,,
and the forward virtual photon-nucleon Compton scattering amplittde, T¡"r. We can flnd the

mathematical relation between the two by firstly observing that the product of currents in (2.1J)

can be expressed as a commutator,

w1",: * I *, ";ø'eqN@)llJr(t),J,(0)ll¡r@)) (2.16)

since the argument in the delta function 6a(q - p + px) fot the combination "f,(0)/r({) can never

be zero. The reason is that this would require p2x : M2 -2p.qI g2 : M2 - erel r)f r, and.

since the mass of the hadronic debris must be pk > M2,the quantity Q"Q+ ø)/ø would have

to be negative, which is clearly unphysical. Then it is trivia,l to show that W¡r, is related to the

imaginary part of T* via the optical theorem,

W,, (2.t7)

where

ImT¡r,
1:
lf

Tr, : o I o^, 
"tø'¡- 

(N@)lT JtG)J,(o) l¡r(p)). (2.1s)

The formal result of the OPE of the amplitude T¡", is [14, 25]

Tr, = Ð{(o'nrrrØ,t", * 8t"r(9,t""et" - 9t,qL,z)) C{,,fq'l
i,N

- ap,eptq," cl,¿(e') j ø,". . 'Çpw (&)* w@)pr,"',.,,"(0)l¡r(p)) (z.rs)

where the subscripts'2'and'L' refer to the f'2 and f'¿ structurefunctions, and the sums run ovel
the standard set of spin /f operators of type i (here, by referring to the longitudinal operators
we are pre-empting the discussion in the next section, where renormalìsation of the OpE will

11



be seen to introduce scaling violations, and hence a non-zero F¡). h is useful to categorise the

operators according to their flavour properties, namely those that are invariant under SU(NJ)

flavour transformations (singlet) and those that are not (non-singlet). Examples of non-singlet

quark distributions are d -d,u-ú,\= (u+")-(d*d), while E: Ðr(q+4) is a singlet. In fact,

any structure function can be decomposed into a singlet and a non-singlet piece. For example, the

electromagnetic structure function of the proton F2, caî be written (neglecting contributions from

strangeness and charm) as F2r: SrX + ä*n.

Since we are dealing with unpolarised processes, the operators must be completely symmetric

with respect to interchange of indices Ft. . .¡"1¡¡. Furthermore, in (2.19) we have only written the

leading, twist-2, components of the operator expansion, where twist is defined as (mass dimension

- spin I[) of the operators [29]. Higher twist contributions aïe suppressed by powers o11,lQ2 in

the Bjorken limit. For lowest twist (i.e. twist 2), we can construct at most 3 kinds of composite

operators. The non-singlet operators must be bilinear in the quark fields,

i¡r- 1

Oqr¡;'ur't :; 
*.1þ(1P1Dtr2 

".Dt"N + pipj permutations) À t/ (2.20)

where DlL - flu I ieAu is the covariant derivative and i are the eight generators of the flavour

SU(¡fl) group. The singlet operators arc 1L4,25]

(geft"'uw
Çø (ttl1Dp2 . .'. Dt"N + tlipj permutatio rs) ú

'iíier'" Dt"2 . .. DuN-LGtrN + ttitti permutations)

for the quark and gluon fieids, respectively, where G"þ is the gluon field strength tensor, and we

have suppressed colour indices.

The matrix elements of the operators contain information about the long-distance quark struc-

ture of the nucleon, hence they are of particular interest for studying the non-perturbative aspects

of hadron physics. On general grounds they can be written as

(W(p)l2l'"'ø'¡lf(r)) = Af p" "'pt"* - (suiui terms). (2'2I)

The terms containing the guiu¡ (the so-called 'trace terms') are necessary to ensure that the matrix

elements are traceless (i.e. so that the composite operator has deflnite spin, 1{). \Mhen contracted

withthe Çp;ep¡ thesegiverisetotermsthatcontainsmallerpowers of u2 (i.e. q2:O(u) insteadof

(p.q)' : O(u2)) and therefore are of higher twist (these are also known as target mass corrections,

since they go like p2 lq2). Combining (2.19) and (2.21) we obtain

Tu, -f * ¡I 
( ( q2 , (Prq, * P,qrl\ ì

-**,, t(,-n," -d.ofo,'p"+u*1firu)ty,,fo'¡ - g,'c[,;(Q" j' (2'22)

The expression on the right hand side of (2.22) is convergent only If llr ( 1, which is outside the

physical region. Since ?¡r,, is an analytic function in the complex lf r plane, with branch cuts along

the Re lf r arosfor lllrl ) 1, we can use Cauchy's theorem to obtain

* frr,,rN - ? I,* d,(tf r)rNrmr,,

Oþ.1"'uw

t2



Furthermore, using the fact that f, d(llr)rN-M - 2oi6¡a,t/-1: we can equate both sides for each

value of 1ú to obtain the l[th moment, MN(Q'), of the structure function:

M{r"¡(e\: 
Io' 

o' rN-2 Fz@)@,Q\ : Ð Af c{r"tn(Q\. Q-2s)
x

It turns out that it is more convenient to analyse DIS in terms of the moments of structure functions,

rather than in terms of the structure functions themselves.

The virtue of the OPE is that we can unambiguously separate the target-dependent (and q2-

independent) part of the moment of the structure function, in the form of the matrix elements

A{ of the composite operator, from the target-independent (and q2-dependent) piece contained in

the coefficient functions C! . The former are of course incalculable within perturbative QCD, and

represent the main obstacle to the complete description from first principles of the DIS process.

For the latter we can use perturbation theory, and can obtain the dependence on q2 directly from

the renormalisation grollp equations.

2.L.4 Renormalisation Group Equations

In an interacting fi.eld theory like QCD quantities such as coupling constants, masses, as well as

wavefunctions (operators), must be renormalised. The tenormalisation procedure introduces some

arbitrary renormalisation scale p"2 into the theory, although of course the physics itself cannot

depend oL p2.

In DIS the coefficient functions C¿N depend only on the four-momentum transfer squared Q2,

and as |lQ" -- 0 in the Bjorken limit, these can be evaluated from perturbative QCD. This wül

introduce ln Q2 corrections to the structure functions, which will break the scaling expected from

the naive quark-parton model alone.

Let us consider renormalisation of the operator product expansion. Because there are two

singlet operators for each spin I[ (i: rþ,G), the renormalisation program will introduce mixing

between these operators. There will be no such mixing in the non-singlet sector (i : /[,5), and for

our putposes it will be sufficient to examine the renormalisation group equations for this case. (For

a renormalisation group analysis of the singlet sector see, for example, Ref.[25].) We shall also refer

only to the F2 structure function, and drop the subscript 'L' ar.d'2', although the generalisation

to F7, (ot .t.t) is straightforward.

Because the unrenormalised matrix elements of the OPE are independent of the renormalisation

scale p, we have

d
( ¡r (p) 

I 
/r(6) "r, (o) l.nr (p) ) 0 (2.24)

dp,

Defining the wavefunction renormalisation of the spin 1{ non-singlet operator lry 0{¡s bore :
ZN, ON,,",,, where 7ff, is the renormalisation constant, Eq.(2.2a) can be rewritten as [14]

(r&+ P@&- t#") c[s(Q'lt,,e) : o (2 2s)
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for each spin I{. This is the well-known renormalisation group equation for the coefficient functions.

In trq.(2.25),g is the strong coupling constant renormalised at the sca)e ¡.r2, f#s it the anomalous

dimension of the twist 2 operator (?ffg

7#s : uL*g" zNA el6)

and the B-function is given by

þ(g) (2.27)
0g

ôp,
p

We have a,lso omitted from (2.25) the anomalous dimension of the current ,I¡r, since it was shown

by Gross [30] to vanish as a result of current conservation.

The solution to (2.25) is

c[r(e'lt',s') : c#"(r, g')"'pl- Irt:: on'Wl tr.rrl

where g is the effective (running) coupling ànstant, defined by dg2ldt : A þ@) and 9(f : 0) : g,

with ú :lnQ2f tf. The calculation of the quantities C[r0t'),7#s(.s) and þ(g) is straightforward

in perturbation theory [7, 8]. Expanding in a series in orders of the coupling constant, they are

given by

l#s(e) = ",li'{#+o@')

þ(g) = -P"#+o(su) (2.2s)

c[si;^,g') : cÍ?¿tt + o(s')'

Note the leading order coefficient ClflN for the longitudinal structure function is zero, so that

F¿ receives contributions only from higher orders in the coupling constant expansion. Combining

Eqs.(2.23), (2.28) and (2.29),, we finally obtain the equation governing the Q2 evolution of the

moments of the structure functions (to leading order in 9) [31,32],

M{,*t(Q') u{ssfu') (2.30)"s(Q2)os(tt )

,\lY lzBo

'f9).'=q/^Ë1-r- (z.rt)/¡ús -t\=?_¡ "

and Bs = 11 - 2Nf 13 for 1{; active flavours in the e Eq.(2.30) we have rewritten the

strong coupling constant as

where the non-singlet anomalous dimension is [33]

os(Q') =
s'(Q') 4tr

Bsrn(e2lt\þco)
(2.32)

by putting the arbitrariness of the renormalisation scale into the new parameter /\qco, known as

the QCD scale parameter, ln {tþco - ln p, - 1612l(Bs E,0t2)).

4r
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The structure function at 82 can be obtained from the moments with the help of the inverse

Mellin transform,

Fr,xs(*,e2) : : /**0"" d,N rr-N tut{Ns(e\. (2.88)
2ri J wn-t*

In practice it is easier to work with the inverse Laplace transform, which can be obtained from the

inverse Mellin transform by a simple change of variables, t : -lnr,

Fz,Ns(*,e2) : * l::::: dIÍ exp[(r,' - r)r(ø)] M{,Ns(e\ Q.r4)

and fixing the contour of integration to lie to the right of all singularities of M{,*t(Q\ in the

complex 1Í plane.

Once the matrix elements "4 (and hence the moments) at ¡,r,2 are known, Eqs.(2.30) and (2.3a)

can be used to give the moments and structure functions at any other value of 82. The challenging

task, from the point of view of non-perturbative hadron physics, is to determine A. Attempts at

calculating the non-perturbative part of the DIS structure functions from various models of QCD

have been made by a numbers of authorc [34-42]. The motivation has been the prospect of making

a definite connection between the high energy parton picture of DIS on the one hand, and the

valence quark models at low energy on the other. If the nucleon behaves like three valence quarks

at some low momentum scale - þ2 , from the above discussion we see that the nucleon structure

function will necessarily evolve with Q2, and therefore a description in terms of valence quarks

will no longer be accurate. An intuitive, and mathematically equivalent picture [a3] for this Q2

evolution is that as 82 increases the quarks radiate more and more gluons, which in turn split into

pairs of quarks and antiquarks, and so on. In this manner a non-valence (or sea) component of the

structure function is generated. However, the underlying philosophy has been that at order p2 a

purely valence quark model may yield reliable twist two structure functions [35, 44]. These could

then be evolved to higher Q' to compare with the experimental DIS data.

In Section 2.3 we shall construct a simple, relativistic model of the valence nucleon structure

function using some of the phenomenology from the earlier model calculations. Before that, in the

next section we set up a formalism, analogous to that of the OPE, that will enable us to clearly

separate the g2-dependent and q2-independent parts of the truncated nucleon tensor, and identify

the scaling contributions. We will see in later chapters that this new formalism has extensive uses

and applications.
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Figure 2.3: Truncated nucleon tensot.

2.2 The Tbuncated Hadronic Tensor

The Lorentz structure of the nucleon hadronic tensor was given in Eq.(2.4). In this section we delve

deeper into the Lorentz and Dirac structure of the truncated nucleon tensor, that is, one which

has its fermion legs amputated. Because of the additional spinor degree of freedom the structure

of the truncated tensor will necessarily be more complicated than that of the fu-ll nucleon tensor,

Wpr. However, once we identify the relevant structures that contribute to the physical tensor in

the Bjorken limit, we will be able to use these in a fully reiativistic, covariant calculation of the

nucleon structure function. The formalism developed here can also be extended to the case of

off-mass-shell nucleons, since the truncated tensor will generally depend tpon p2 as well as q2 an.d

p. q. The application to off-shell nucleon scattering, for example in the calculation of the nuclear

structure functions, will be addressed more fully in Chapter 5.

2.2.L Dirac and Lorentz Structure

We begin by observing that the nucleon tensor can be written [45]

M wr,(p, q) : jr, 
lf l + M) frr,@, q)] (2.85)

where we have explicitly separated the nucleon spinors from the remaining interaction. This is

depicted graphically in Fig.2.3. The tensor frr, i, then related to the truncated virtual photon -
nucleon scattering amplitude i* viu frr, - Imi¡r, where the on-shell Compton amplitude T* is

given by Tr,(p,q): a(p) îr,(p,q) 
"(p).

In general, the tensor frr, mrst be constructed from the Lorentz tensors (Dirac scalars)

g¡"utp¡rrq, and Dirac matrices I,^lp¡o,vt^l p^15 and lE. By parity considerations terms involving

'lp'ys or 75 will not contribute to the spin-averaged tensor. Furthermore, terms with o,r, will not

contribute toW¡"r, but we keep these as they may be relevant for the off-mass-shell tensor in nuclear

calculations. Then the tensor with the correct transformation properties under Lorentz and parity

p
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transformations can in general be written in terms of 22 independent functions,

frr,(p,q) : t (t>rr, fr$ + PLt", frf, r Pct", fr$ + nnr, frfr)
+ ú (nrr,fr+ +PLt,frÌ,rPct,,frä +'rnr,fr]r)
+ d (nrr,fr] +PLt",frl,*Pct",fr& + nnr,frlr)
+ (''rrp, +'t,Pp) fr" + (lrq, + l,sr) frn

+ ooBposg (rrr,fr$ + PLt",frE * Pct",fr& + nnr,frfr)
+ (oot, p, * oo, pt) p" fru + (oop p, * ao, pò q' fr'
+ (oop g,l oo, q,") p' fr" + (oot" Q,l oo, qò q" frn (2.36)

where each of the functions on the right hand side is a scalar function of q2,, p . q and p', fri :
frn@,,ù:fri@2,p.Ç,q2). the projection operators Pp,u ãre as defined in (2.5).

Substituting (2.36) into (2.35) gives the transverse unpolarised structure function in terms of

the functiorL" frifu,q),

MWr(p,q): 2Mfr|+2M2fr++2p.qfr|. Q.37)

This can be viewed as a definition of Wr. Eurthermore, the longitudinal and gauge non-invariant

structure functions are

M Wz(p,q)
q¿

MWc(p,q): 2Mfr& + 2M2frä + 2p.qfrâ + +@^;q)'fr' +  p.qfrn (2.8e)
q'

MWu(p,q) : 2Mfrh + 2M2frÌ, + 2p'qfr?, * +(p'=q)'fr' + 2p-qfr4. Q.40)'q't/

Because of gauge invariance the latter two functions must be zeto, which means that not all of

the functioo" friçp,q) are independent. To check that this is indeed the case requires explicit

evaluation of the functions fro@,q), which rve now do. We shall work in the Bjorken limit, and

neglect logarithmic QCD corrections, so that the functionWt should also be zero.

2.2.2 Scaling Properties of the F\rnctions IrTl

The diagram we calculate is the 'handbag' diagram depicted in Fig.2.4, which represents the impulse

approximation for quarks. 2 As in the operator product expansion, we can separate out the q2-

dependent part of frr^ denoted by r¡"r, from the qz-independent, non-perturbative part, which

will be described by the function fI:

lfrr,@,q)l"o : .l ai, ¡rr,çn,q)1"¿ lr(k,p)l¿.oa Q.4t)

2In general the diagram with the'crossed' photons can also contribute to the structure function in the small ø

region, however in the subsequent model calculation where we consider only two-quark intermediate states there will

be no contribution {rom this diagram.
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Figure 2.4: Impulse approximation for the truncated nucleon tensor

where

T r", : Ø + ^) 
.,t," (þ+ d + *) ^'t, (ft + rn)

= RþrI + R¡"ro'fo (2.43)

where

R,, (2.44)

Next we take the trace over the indices c,din (2.47),

Tr lr r,(le, q) lH (p, k)1"ù Rþ,(le ,q) lG(p,k)la' + Rþ,o(lç,ù lG"(p,k)l"u (2'45)

where Go and G are 4x4 matrices transforming like a vector and a scalar, respectively. Their most

general form is

Go : I (p'lt r k"fz)'f tr (p"1" t k'ls) * ú(p"fn + k"la) *'y'fz
+ oþopB fa + oþolaB ls * pÊlcîoBo po Ín ¡ ç,Bk6oBt ko fl

G: Ilni lhzi dh+tp"lcbooafts

qq

kk

pp

.7 d4k (2r)6(lø+ t*1' - *')dk:ffiW Q'42)

and the indices abcd are Dirac indices. Ilere ,k is the four-momentum of the struck quark, and m

its mass.

The tensor r lrv cã,tr be evaluated explicitly from the 7, coupling of the photon to the struck

quark,

R¡"ro

= *(ø'or, + 4kt"k, ¡ 2(k,,ø,¡tt,øù)

: rr, * * (*' - n')Gø. ep, * (k + a)u e,o* (k * q), sr.)

18
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where the functions .fr -,frs are scalar functions of p and k. \Me have omitted contributions involving

7s to guarantee that G and Go are even under parity transformations.

To perform the integrations over dale = \a2k7ak*ak- Eq.(2.a1) must be written as a sum of

products of k-independent terms containing the indices ¡,tru and integrals of k-dependent scalars.

In general there will be three types of terms - those involving integration over lc¡", le , k, and

Iîþ lc, Ieo 7". These can be expanded as follows:

xf"')@,ø) =

: pt, PÍ7)P'K,!1, * o, PF)I'4çQ)

: 9u, p{2)u'"'*:"?I, I pt"p, rl2)u''' t r!, + çø, r[z)u''' urr,

+ (prq, + p,qò P[')'''' ufrI,

: (gt",po * gt"op, i g,.pt) Pl3)u'''"' utr,,,

+ (gt",qo I gt"ob, + g,.qt") Pl3)u''''' *rr,.,
+ pttpupa p(3)u'''o'uÍ|,)r,r, * ÇttgvSo¿ Pl3)u'"'"' ut ,,,

+ (prprqo I pt"poq, I p,poÇt) P!3)u'"''' t't '.'
+ (qrqrpo * qt"qopr r qrqopt) p(3)u'''o' uL1I,.,.

x["),@,q) = | d,É tct"te,ko

Here, the projection operators are

oG)Pr1

e[t)u

q2 pþ - e.q qt"\

elz)u' = *{t gþ' - q2 ppp' - p2 qþq' + p.(t(prq" +p'q\}
o(2)p, 7 ¡a2 1T\- q2 X gþ' * 3 qa ppp' + (p'q'+2(p.q)') q'q"

-3q'p'q(pPq'+p'q\\
o(2)p, I ¡13 2 xr\- p2 x g''" t (p"q'+2(p'q)2) p'p" + 3pa q'q"

- 3 p' p'q (p,q" + p'qP)\

p!2)p" : -J_ {r.q(p,q,-(p.q),)gt", - Jq, p.qpþp, - Jp'p.qqpq''4 2x2\t
r (p'q' + 2(p'q)2)(pt"q' + p'q\\ .

2(3)pva ' lX(qrBl"'- p.qBï,*) - 3 qnBË,o11 6xr\
I 3 p2 p'q Bl'o * 3 q2 p.q B{'" - (p'qt + 2(p. q)') Bt'"}

o(J)pva L ¡a 2 6 x, \x (-p.q Bl" + p' Bl'") + 3 q2 p.q B!'"

- B pn Bl"o - (p'q' +z (p.q)') Bl"' + B p' p.q BË")

q(p,(1
pK )

-p

t¡
XI
ty
xt .q pp + o' o')

where X : p2q2 - (p' q)',for the k, terms. For the k, k, terms we have

Finally, for the krk, tr terms, the projectors are
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n(3)ltva t fX G qn Bï,. + q2 p.q Bï"') + 5 q6 Bl,.13 
2 x3 \
+ p.q(-gprq, -2(p.ù\ al'" - 5 q.n p.q Bl" + q'(p'q'+a(p.q)') Bä")

o(3)¡rva I ¡r4 
2 x"\x (p"p.q Bf"" -p'p'q Bl"') + p.q(-Tp'q'-2(p-q)') Bl'"

+ 5 p6 B'n'" + p2 (p2q2 + 4@. q)') Bl" - 5 pn p'q Bt'"\
6(3)p'va I ¡rs 6xr\x (Sq'p'qB'r"' -(p'q'+2(p'q)')Bl'\ - rSqap'qB!"o

+Bp'(p'q'++(p.q)') Bï"'+ Jq'(p'q'+a(p.q)') Bl"'+ Jp.q(-gp'q'-2(p.ù') Bä'"\

o(s)¡-rva 7 Ia6 6x.\x (-p'q'-z(p.q)') aï") I 3p2 p.qBl'o * 3q2 (p'q'+q(p.q)') Pttva

- r5 pn p.q Bl" r 3 p.q (-lp'q' -2(p.q)') nl" ! 3 p2 (p'q'+ a@.q)') Bä'"\,

where the basis tensors are

The result is that the W' are completely defined in terms of the functions h-fs. Furthermore,

since the dependence on q2 is now explicit, their scaling behaviour can be easily determined. The

results for the functions Wþ arc as follows:

fr8 : I tr{(@' -k') p.q- p.k q') r, - @+)! rz - * q' t,,\

n+: lrr{("-y--ffi)n - (@,-k)p q-p k,,) l^

r (@'+*')qn\,- - &2+rr2)q2 ¡^ - -É 
*qo , I'\ ^;i-) r"+r;nrz-*q'I''"+ffir'^ì

n&: l,r{(ffi*o *) (*'-k'-'+{) s+ff('** ffi) ts

Bl'o : prg'o I p'go'l pogP"

Bg'": p'p"p"

B('o = prp"qo I p"poqþ I p"pPq'

Brr'o : qþ g'o I q'go' I qo gP"

Bl'" = q'q'qo

BX'o : q'q'po + q'qopP + q"qþp".

lz-

+(
: 

loÉ

+(

(

frF

n'L _k2 _ p' qn p'ln q' W#-"#) ,.)2 lz (2.47)
2 (p'q)'

z P2qa

p'q
p'k q'

"fs *2 (p'q)' p'q

s#Y(ffi*o *)r,,

Since the functions h - ls are g2-independent, we find that fr$ ana fr1, are of order 1, and.

fr] @na eirsofrfi) is of order Lf u (remember that dñ involves a ó-function in q2). Therefore all

three function"frfl-2 contribute in the Bjorken limit to the transverse nucleon structure function,

trq.(2.37).
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For the other functions we find that all are of order If u, with the exception of fr7 urrð.frs,

which are of order \f u2. This means that some of the terms on the right hand side of (2.38)-
(2.40) will be of the some order as W7. However, because the functions appearing there satisfy the

following relations:

2 p_q ¡z
q'

-'#fr" - zfrn

fra +'frn
2 p:q 

çø
qo

fr3 : -'#fru - 2fr"

= fr\+fr',
the ieading (order If u) contúbutions will cancel eractlg in the Bjorken limit. This is sufrcient to
guarantee that gauge invariance (qrWrr(p,Ç) = 0 3) and the Callan-Gross relation hold.

Essentially what we have done in the above analysis is temporarily delay calculating the soft

part of the complete diagram in Fig.2.4. By doing so we have been able to extract additional

information about the q2-dependent part of the truncated nucleon tensor. The usefulness of this

particular result wiil be made apparent next when we explicitly calculate the 'non-perturbative'

functions h - hs.

frT:
fra:

(2.48)

frh

2.3 Relativistic Model of the Nucleon Structure Function

To calculate the transverse structure function of the nucleon requires a description of the soft,

non-perturbative physics, which in our case is parameterised by the functions 
"f1 -.frs. We observe

that because both the nucleon and struck quark inside the nucleon have spin 7f 2,theintermediate

spectator state in Fig.2.5 will have either spin 0 or 1. In order to make an overall Lorentz scalar,

we therefore need only consider quark-nucleon vertices that transform as scalars or vectors under

Lorentz transformations. We shall be more general than is necessary in this section, in keeping p2

dependence in the nucleon-quark vertex functions. Although for a nucleon p2 is of course fixed,

the full, p2-dependent vertices will be necessary when discussing scattering from composite targets,

such as nuclei, in later chapters.

2.3.L Relativistic Vertex Fìrnctions

It is straightforward to identify the form of the vertices that are allowed by Lorentz, parity and

time-reversal invariance, however the specific momentum dependence has to be determined within
a model. In general there will be 15 independent scalar (Þtr_n@,p)) and vector (of_rr(f ,p)) vertex

functions, given by

sNote that the truncated tensor'Wr,(p,q) itself need not salisfy qpfru,(p,q):0
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Figure 2.5: Relativistic model of the valence quark distribution, in which the quark-nucleon vertex
is described by the vertex function tÞflv.

vs lof + úoî+ þal + ooBp'kBÞsn (2.4e)

for a scalar vertex, and

vy = ..t.aY + p.IaY + k, IøY I oopp?oY + o*pk?Þ{

+ p, úø{ + n. yø{ + k" !ø{ + k" ftaY

+ oBopqkï p' QYo + opñþlc6 k' ÞY,

(2.50)

for a vector vertex. (In fact, for DIS from a free nucleon terms involving only the four-vector p will

not be present, so the number of independent vertexfunctions will be reduced.) From these vertex

functions the functions .fr - fi5 can then be uniquely determined. To see this, let us firstly consider

the scalar vertex. The general, non-perturbative, function from Section2.2.2r(H(krp))a"o6, will be

proportional to (Vs)""(Vs)aa.

Using the Fierz theorem the Dirac indices can be rearranged into a form that enables the

connection with the functions h - ls to be explicit:

(v\d." (rr,)"0 ()ls)¿, = åf Tr[vsr¡vsl¿] (ri)"a (fi)r" (r¡",).a
xJ

1D (t'trsysr;J np, + 1 Tr[vs7'ysl;l Rr,*) (r'),¿

lGl"6 R¡", + + [G"]'6 Rp,a (2.51)

where the sum over i will include the Dirac matrices li: IrJ¡t7op,u. Equating terms in (2.51) we

obtain

qq

efd'u pp

k
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1_
J7

lz=
fs:
h:
1_
J8

T-
J10

r_
J72

r_
J13

2Þlol 6, fz:2of of a,

(rrî oÍ + 2p.k(of)')ó, f+: (r@Ð' - 2k2 (of)')ó,

(r(.f)' - 2p' (of)') ó, lu: (rrt, of + 2p.k(of)') á,

(fofl' - @aî + r of)' -r (p'k'-(p'k)') (of)') ó, (2.52)

(tofi' + p'(ol)' + ¿'(of)' t (p'k'-(t''p)')@tò'+ 2p'rof of )0,
zololt, Íu:zofofo, f'u: +of of o,

where d : 6(lp - kl' - rn2*), atd mp is the mass of on-shell recoil (spectator) quark system. At

this stage an objection may be raised about assigning a flnite value to the mass of a coloured

system of a nucleon with a quark removed. The usual justif.cation for doing this is that because

the interaction time in DIS is very short (see Section 2.t.1) this spectator state will not have time

to develop into an asymptotic state with inflnite mass. For the sake of simplicity we further assume

that only valence quarks are present, so that the quark spectator system may be identifled with a

diquark. In a more refined calculation one could, for example, integrate over diquark masses using

some diquark spectral function.

Calculating the functions iÞf-a from first principles amounts to solving the relativistic, many-

body, bound-state problem. Because present day technology does not yet a1low this to be done,

one solution could be to try and relate these to quark wavefunctions taken from bag models, or

non-relativistic quark models, for example. This, however, implies approximations whose validity

can be disputed. Rather than proceed in this direction, we shall choose a single scalar vertex, say

Vs : I iÞf, and use phenomenological input to constrain its functional form. For this particular

vertex, we flnd that only f7 and fi2 receive contributions,

h : hz : (of ), 6(W - kl, - *rs) [scalar vertex]. (2.53)

For the vector vertex we can repeat the above reduction, this time with many more terms on

the right hand side of (2.52), since there are many more combinations of vertex functions (total of

ll2l2+LIl2: 66 terms!). For simplicity, we choose for the vector vertex a single form, Vv = 1,QI,
which makes the following contributions:

2 (oY)26(lp - kl' - *T)
m2,lz

-4 k.(p ol + k of) of ó,

aofofo,
ls =  p.@al + kol)of ó,

fu:8ofofó,

2ln
3^T-f+ : -ls : lø : -

2lz
,

n-L'v
(2.54)

[vector vertex].

In writing Eq.(2.5a) we have assumed that the intermediate vector state has a Lorentz structure

-9aþ * (p' - k")(pB - kùl*T, where my is the mass of the vector diquark.
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Putting everything together we find that the quark distributions in the nucleon are given by:

ao(r) = # I & r-9il-r, - *,y {ri * (m-t Mr)2} {z'ss)

for a scalar spectator diquark, and

q(n) r I dk'zr (ÞY)'? 
{þ+ * *,) (ri + M2 + 2nLî)

t6r2 J (1 - ,) *T G - ù' (k' *')'
- 2 r (*i@' + *T + *') ¡ m(2M2m -t 3Mm2y + zmm'zr¡)

+ x2 (tc2rça' + *' + 2m2) r 6M2m2 + 2M2 mT r 72Mmm?, + z*2*T + *îr)

- 2Mn3 (zm*'*2Mm2y +smm?r) + M2ra (*'*r*i)) {z.sol

for a vector spectator diquark. In (2.55) and (2.56) we have used the fact that

o (lr + ql' - *")
ó (ka + ø+)

q-

#, + m2*

k+- M

(2.57)

(2.58)

(2.60)

(2.6t)

(2.62)

and

o (lo - nl' - *h) @+r¡'(r- - * -
tofixthevaluesofk¡:-Ç..,e,andle-=M+(kTtm2¡r)l(k*-M).Notethathereq..,.--Mn,
where r = -q2l2p.q= -q+lp+.

In the massless quark limit the quark distributions reduce to the simple forms

qo(r)t^=o: #lffiW{ri**'*'\ (2.be)

and

qt(r)l^, t [ Æ-W=o 1612 J (1 - ,) lî4

W +2kT +2M'?*'z\X

for scalar and vector spectators, respectively.

2.3.2 Numerical Results

We can easily relate the scalar and vector distributions to the flavour distribution functions in the

proton by using an SU(a) symmetric proton wavefunction. DIS from the valence d quark requires

that the zz spectators be in a spin 1 - isospin 1 state, while for a valence z quark the spectator

can be in either spin 0 - isopin 0 or spin 1 - isospin 1 states,

dv(r)

uv(*)

: qr(*)

= |@r@)+ 3qo(r))

where the distributions qe and g1 are normalised to unity,

t,
1

l,'d,r qs(r) =

24
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The ,k2-dependence of the functions Ofl'v .u,n most easily be modelled by considering the phe-

nomenology of the nucleon structure function. To obtain the correct large-ø behaviour, namely

Wr - (t - ,)t, the leading k2 dependence in the vertex functions must be lf k2, since the quark

four-momentum squared is

tc2: -h-#(*,^-(t-r)M2) e.64)

N _k+ + rn2, 
as r __* r.1.-n

This is clear after we also take into account the - lf lca behaviour in the two quark propagators.

Furthermore, since the large-r limit is known to be dominated by z quarks, and as it is only through

DIS from valence z quarks that the scalar vertex function entets, we can conclude that iÞf must

have a monopole form for its k2-dependence. The lc2 dependence of the vector vertex function,

iÞf, can be fixed by considering the large-z limit of the d,yf uy ratio, which is known to behave

u, - (1 - r) [fS]. This requires that the vertex function for DIS from d quarks have (1 - r)4, ot

(k2)-s12, behaviour (as there is an additional (1 - *)-' factor arising from the trace for the vector

diquark).

It may now seem reasonable to choose a simple monopole form for the scalar vertex function,

and an equivalent one for the vector vertex as was done, for example, in [46]. Howevet, in this naive

approach there lurks a problem. At small values of rn the quark propagator (k2 - Tn2)-2 in ç2.+Z)

contains a pole in the physical region of k2, since the kinematic maximum for le2 is (M - mn)2,

which occurs when k!, : 0 and r: I-rruRlM. Obviously when the sum of the quark and

diquark masses is less than the mass of the nucleon, rnRi m 1 M, the quark propagator becomes

singular. This is in fact an indication that the model thus far is incomplete, and the missing

ingredient is colour. Without the imposition of confinement, there is nothing in the above to stop

the nucleon from decaying into its quark and diquark constituents. One way around this problem

is to artifi.cially assign very large masses to the interacting quark and spectator diquark to prevent

decay [46]. However, this is not a very attractive solution, since confinement occltrs not because

the quark mass is large (it is only a few MeV at most), but in a dynamical way due to the nature of

the colour interaction. The only place where the information about colour confinement can enter

in this model is through the relativistic quark-nucleon vertex function. We can guarantee that the

inflnite contribution from a deconfined quark is excluded by suitabiy choosing a numerator in Of'v

so that the integrand in the structure function is finite at the on-shell point, lc2 : m2.

For the masses of the scalar and vector diquark, ms andmy,the only information available to

us is that from low energy quark or bag models. There, at a scale of Q2 : Q'o - a few hundred

MeV, the diquark masses are expected to be somewhere within the range of 600 to 1100 MeV [a7].

Furthermore, from the nucleon-L(I232) ma,ss splitting we would also anticipate that rny woukl

be some 200 MeV larger than rns [48].
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Figure 2.6: Quark distribution functions for scalar and vector spectators

The final form for the vertex functions that we use is

ÞlØ") rfg
(k' - *')

aY @',) Ny

k2 _ ly2ò2

(k' - *')
k2 _ LT)7/2

(2.65)

with the constants try's and /{y determined by the normalisation condition, Eq.(2.63).

As expected with these vertex functions, the quark distribution for a vector spectator is softer

than that with a scalar spectator, Fig.2.6. This figure is plotted with diquark masses of ms: 850

MeV and TrLy : 1050 MeV. Decreasing the diquark masses makes both the scalar and vector

distributions'harder, as seen in Fig.2.7. Thus smaller masses would imply having to use a lower

value of Q2o from which to evolve. There is aiso some sensitivity to the vertex form factor cut-offs

Às,y, with the effect being that the distributions move to larger r with increasing cut-off mass.

As outlined above, on purely theoretical grounds small, or zero) quark masses are preferable in

the present context, hence we set m:0 in our calculated distributions. Increasing the interacting

quark mass from 0 to 4-5 MeV (as would be appropriate to a current quark mass) has negligible

effect. However,large quark masses (- 3OO MeV), as in [46], would make the resulting distributions

slightly broader, Fi9.2.7.

\Me flnd the best fit to the experimental nucleon distributions (as parameterised by Morfln and

Tung [50] and Owens [51] at Q2 : 4 GeV2) for masses TrLs = 850 MeV and my : 1050 MeV, and

cut-offs Âs = 1.2 GeV and Ày = 1.0 GeV (the curves are evolved ftom Qf;: 0.15 GeV2 using

leadingorderQCDevolution,withÂqcl =250 MeV[a9]). Thefitstothe uv*dv:3(qotqt)12
valence quark distribution as well as the valence dv luv are shown in Figs.2.8 and 2.9 respectively.

It is remarkable that such a simple model for the vertex functions reproduces the data so well.

-(qo+q1)/2

go

q1
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Figure 2.7: Compatison of the totaluvidy valence quark distribution, for (i) Âs(v) : 1'2(1.0) GeV,

rnsY): 850(1050) MeV, arrd m = 0; (ii) increasing the vertex function cut-offs to Às1y¡ : 1'5(1.3)

GeV; (iii) decreasing the spectatoï masses to msly¡ = 650(850) MeV; (iv) using a very large quark

mass ?r¿:300 MeV.

To conclude this chapter,let us point out again the new developments that have been made in

the calculation of nucleon structure functions. With the expansion of the truncated nucleon tensor

we have been able to unambiguously identify the scaling components by calculating the 'handbag'

diagram, Fig.2.4. The formalism allows a clear separation of the Q2-dependent quantities from

those which describe the non-perturbative, quark-nucleon interaction. This is consistent with

the operator product expansion for the total nucleon tensor. By simple choice for the form of the

nucleon-quark vertex and parameterisations of the vertex functions, we have been able to accurately

reproduce the experimental valence quark distributions. One element that is missing, however, is

the sea distributions. These can of course be generated perturbatively via the QCD evolution

equations in Section 2.1.4. However, an interesting possibility is that there may in fact exist a

non-perturbative sea component of the nucleon, which cannot be generated by QCD evolution.

That is, there may be an intrinsic antiquark component of the nucleon at low ç2. this will be the

subject of the next chapter.

(i)
(ii)
(ur)
(i")
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Figure 2.8: Total uv*dv valence quark distribution, evolved ftomQ2s:0.15 GeV2 (dashed curve)

to Q2 = 4 GeV2 (solid curve). The data (dotted curve) are from recent para,meterisations of world
data.
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Figure 2.9: Valence d,yfuy ratio, evolved ftomQf; = 0.15 GeV2 (dashed) to 82 =4 GeV2 (solid),

and compared with a parameterisations of world data (dotted).
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Chapter 3

FTAVOUR CONTENT OF THE

PROTON

From the successes of quark models we view many properties of the nucleon as arising from its

simple valence quark structure. Models such as the non-relativistic quark model, or the various

bag or soliton models can be thought of as describing the valence structure of the nucleon at small

momentum scales, I - few hundred MeV. At larger Q2, however, the total nucleon structure

function becomes softer (i.e. grows at small r and becomes smaller at large r). As we saw in

Chapter 2, this phenomenon is quite niceþ described by perturbative QCD - quarks radiate

gluons, which then split into pairs of sea quarks and antiquarks [43]. Therefore the number of

quarks increases, but since momentum must be conserved, the average momentum carried by these

quarks decreases. Thus, while at low Q2 valence quarks should carry most (if not all) of the

nucleon's momentum (in an infinite momentum frame), àI 82 - few GeVz they carry only some

30% of the total momentum, with the remainder residing on the sea quarks (and gluons).

Successful as perturbative QCD is in describing the Q2 evolution of the quark and antiquark

distributions, we are still unable to calculate from first principles the distributions themselves. Some

progress in connecting low energy valence quark models with the valence quark distributions in DIS

has been made [35-42], although, less is known about how to calculate the sea quark distributions

non-perturbatively. \Mhile it is possible for all of the sea to be generated via QCD evolution, there

are nevertheless a number of good reasons for having a non-perturbati,ue seain the nucleon. It was

pointed out by Signal and Thomas [38], using the formalism developed by Jaffe and others [52],

that even in a simple model like the MIT bag, there should be a component of the total quark

distribution which is non-valence, and that an intrinsic antiquark component should be present as

well. Furthermore, some of the properties of this intrinsic sea, such as an asymmetry between the

d, and rr quark distributions, are very different from those expected from perturbative QCD alone.

In this chapter we discuss a specif.c model (Section 3.1) in which the physical nucleon is seen as

a superposition of bare nucleon and virtual meson and baryon states, the latter which contribute

to the non-valence quark distributions. In Sections 3.2 and 3.3 we follow this up with comparisons

29



of some of the predictions of this model with recent data on the nucleon deep inelastic structure

functions, as well as a survey of possible future experiments.

3.1 Mesons in the Nucleon - A Model of the Nucleon Sea

Simply on the basis of the Heisenberg uncertainty principle we know that the long range structure

of the nucleon must involve a pion cloud. For example, the non-zero value for the neutron charge

radius can be easily understood in terms of the emission from a neutron of a light, negatively

charged virtual pion, n -- p+ zr-. Furthermore, from PCAC, and from the tremendous successes

of chiral quark models [53-56] we expect that the nucleon should have a pion cloud. In addition,

because there is no scale at which chiral symmetry can be ignored, the nucleon properties will have

pionic corrections at ùJ. Q2.

The possible relevance of the extended pionic structure of the nucleon in high energy processes,

such deep inelastic scattering, was first suggested by Sullivan in the early 1970s [57]. It was shown

that the contribution to the inclusive virtual photon-nucleon cross section from pion exchange

between the virtual photon and the nucleon scales in the Bjorken limit. The reason for this is that,

in contrast to processes such as exclusive pion-production which aïe suppressed by O(71Q2) forrn

factors, here it is the inelastic structure function of the pion itself that is probed.

Using this picture of the physical nucleon, it was later noticed [58] that the pion cloud could be

responsible for generating an asymmetry between the z and d quark content of the proton, through

the preferred proton dissociation into a neutron and n*. Furthermore, deep inelastic scattering

data on the momentum fractions carried by antiquarks were used to obtain an upper limit on this

non-perturbative pionic component [5S, 59]. More recently it has been hypothesised [47,60-63]

that this asymmetry could account for some of the apparent discrepancy between the naive parton

model prediction for the Gottfried sum rule [64] and its recently determined experimental value

[65].

Since it has by far the smallest mass, the pion was the first meson whose contributions to

the nucleon structure function were investigated [66, 67]. However, just as other mesons can be

included to give corrections to low energy nucleon properties, such as the electromagnetic nucleon

form factors or magnetic moments [68], an extended mesonic structure of the nucleon may also be

relevant in deep inelastic scattering. This idea has been taken seriously, for example, by Speth and

collaborators [62, 69], who have argued that the entire nucleon sea can be understood in terms of

DIS from its virtual meson components, even at moderate Q2.

In this section we shall give a detailed account of the ca,lculation of the virtual meson and

baryon contributions to the nucleon structure functions. Furthermore, we will use recent DIS data

to examine the extent to which such a picture may be relevant in high energy reactions.

The basic hypothesis of this mode1, in which the nucleon has internal meson and baryon degrees

of freedom, is that the physical nucleon state (in an infinite momentum frame) can be expanded (in
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Figure 3.1: Deep inelastic scattering from the virtual (a) meson and (b) baryon components of a
physical nucleon.

the one-meson approximation) in a series involving bare nucleon and two-particle meson-baryon

states

lr[)nr,y" : JZ {lu)o*"
+ Ð | ay a'U, ¡o¡,,re* óue(y,kr) lM(y,ka);B(1 - g/, -kr)) Ì. (3.1)

Here, S¡4p(y,kr) is the probability amplitude for the physical nucleon to be in a state consisting

of ameson M and baryon B, having transverse momenta k7 and -k7, and carrying longitudinal

momentum fractions y and | - y, respectively. Z is the bare nucleon probability. Although we

shall work in the one-meson approximation, we shall include higher order vertex corrections to

the bare coupling constants gouaw. Illustrated in Fig.3.1 is the deep inelastic scattering of the

virtual photon from the two-particle state lM;B).In Fig.3.1(a) the photon interacts with a quark

or antiquark inside the exchanged meson, while in Fig.3.1(b) the scattering is from a quark in the

baryon component of the physical nucleon.

According to (3.1), the probability to flnd a meson inside a nucleon with momentum fraction

u (: k'qlp'q: k+lp+) is (to ieading order in the coupling constant)

fue@) = z s3*"* I o'u, lóva(y,kr)l'. Q.2)

This must also be the probabil-ity to find a baryon inside a nücleon with momentum fraction 1- y.

The baryon distribution function, fnu(y'), where A' : p' .qlp. g, is probed directly through the

process in Fig.3.1(b), and should be related to the meson distribution function by

lup(y) fsM\ - y) (3.3)

for all y, if the above interpretation is valid. We also demand equal numbers of mesons emit-

ted by the nucleon, \n)ue: ïidy fmn@), and virtual baryons accompanying them, (nlp¡a:

ß av' rBu(E'),

=
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This is just a statement of charge conservation. Momentum conservation imposes the further

requirement that

fulmn + (Y)Bu : (nlua (3'5)

where (y)ntn = ït d,y u fma@)ar,d(g)am = [i dg'y' Ínu(y') aretheaveïagemomentumfractions

carried by meson M and. the virtual baryon B, respectively. Equations (3.4) and (3'5), and in fact

similar relations for all higher moments of l@), follow automatically from (3.3).

In what follows we shall explicitly evaluate the functions fun and f6¡a, and examine the

conditions under which (3.3) is satisfled. The results will be used to calculate the contributions

to the nucleon structure function from the extended mesonic structure of the nucleon, which are

expressed as convolutions of the functions /(g) with the structure functions of the struck meson or

baryon:

6@B)Fzx(r) =

o@M)Fzw(r) :
l,t o, lurn(y) Fzu(ru)

Lt 
o'' rn¡'t(Y') Fza('s)

(3.6)

(3.7)

withr¡¡a:*fyandrs:nlg',andc:-S2l2p.gbeingtheBjorkenvariable,NotethatEqs.(3.6)
and (3.7) are correct when physical (renormalised) meson-baryon coupling constants are used

in the functions lrun and Ínm (see Section 3.1.5 for a discussion on this point). By comparing

against the experimental structure functions, we will ultimately test the reliability of the expansion

in (3.1), and also the relative importance of the states involving heavier mesons compared with the

pion states.

3.1.1 Pions - Covariant Formulation

Let us firstly review the previous calculations of the contribution to F27¡ from the pion cloud.

Following the original method of Sullivan, the approach has been to simply treat the diagram

in Fig.3.l(a) as a Feynman diagram. With a pseudoscalar rI{ couplin1, 7n¡tuú(P) ilsu(P),, the

contribution from this diagram to the hadronic tensor of the physical nucleon can be written

5¡'rN)1ryuuçp,q) = I &ñ##Ir,nu + M) fiswf'(k,q) (ú+ M) hul (s.8)

where the hadronic tensor for the virtual pion is expressed as

W#' : ñtruw.-*Y!: õ'"wv + m? 
wr" (3'9)

and where g?w'Ø\ is the interaction strength. 1 It is customary to isolate the k2 dependence

of g2*r,{r,{(k2) into the rlVN form factor: i.e. g2,¡¡¡¡(k"): g?rrr' F,¡v(k'), where grNN is now the

lSince only tree order diagrams are ever considered, the pseudoscalar interaction is equivalent to that with a

pseudovector coupling (f"wxlm^) ú(p) il.lu u(P) k', providing the coupling constants are related by "f'¡vw =
grvN (rn"f2M)'
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coupling constant at the pion pole (f"x(-*?) : 1). To get the contributions to the nucleon struc-

ture functionsWl orW2 we can use the projection operators defined in.Chapter 2. Alternatively,

and equivalently, we can observe that one obtains the same results for W1 (and hence W2 by the

Callan-Gross relation) by collectinE ãr, (ot simply gp")terms on both sides of (3.8) [70] to obtain

an expression like that in (3.6).

Performing the elementary trace gives a factor 2P . p - 2M2 - -h', so that the distribution

function of a virtual pion accompanied by a recoiling nucleon is [58, 67]

r*N@): W,l*^*o*'ffi. (3.10)

Here, k2 : kz^o,-kTlG - g) ir the 4-momentum squared of the virtual pion, with a kinematic

maximum given by k2^or: -U'y'l(1- y), and kfr is the pion transverse momentum squared. \Me

have also included a factor 3 by taking account of the different charge states of the nucleon (namely

2 for the dissociation process p ---+ nr+ and 1 for 7t -- pzrO). In a covariant formulation the form

factor, f,7ç, parameterising the r-lüN vettex, at which only the pion is off-mass-shell, can only

depend on le2. In the literature this is most often parameterised by a simple monopole or dipole

function,

Fnw(ir, (tt?*--Al" 
1r.rr;\; ) : \E;_ø)

for n:1 and 2, respectively.

Because we integrate over the recoiling particle's momentum, in principle we could also have

contributions from processes where a baryon other than a nucleon (".g. u A isobar) is left in the

final state in Fig.3.1(a), and which subsequently decays to a nucleon and a pion. It is expected that

contributions from the higher mass baryons will be suppressed relative to the nucleon, since the

maximum value of lc2 for which eneïgy and momentum can be consetved when a higher mass baryon

is produced decreases rapidly as the mass of the baryon increases. Nevertheless, the importance of

the A-resonance is well known in pion physics. In any quark model the coupling to the tr{ and A

would enter on the same footing.

The process where the nucleon emits a pion and leaves behind an on-shell A was previously

calculated in Refs.[59,63,7L],, using the effective interaction (l"Ntlm*) a,(p) k' u(P), where

u,(p) is the spin 3/2 Rarita-schwinger spinor-vector 1721, which can be formed by combining the

spin 7f 2 Dirac spinor u(p, s) with vectors e,(À):

u'(P, S) t t*.!",2 e.(m) u(p,,s).s(; )
(3.12)

Thevectors60 canbeparameterised,inaframewhere p= (po; costpsind lpl, sin gsin0lpl, cosd lpl),

by

1

^(lnl; 
cosgsin0 pg, singsin0 po, cos0 po)

I

^n(Ot 
+cospcosd+ ising,, Isingcosd- icosg, tsind)'

€"(0) =

e,(*1) :
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The energy projection operator for the Rarita-Schwinger spinor-vector is [73]

Ðu.(0, S)aB@, S) lY"B(p) (3.14)
s

where

Ìv*B@): (ú+uù (-n.o+ry*þw-';n*). (3 15)

Bq.(3.15) can be verified by using the explicit parameterisation in (3.13). Using this projection

operator, we can therefore proceed to evaluate the zrA trace factor, which in this case is

jr,/t,pça) *"tB w#"(k,ø) U + a¡) (3.16)

and arrive at the distribution function for a pion with a A recoil:

dk2
flo&') l@ + M6 ¡z

6

u - M6)2 -k2l2 2

l"(y) -- v (k2 - nL2)2
(3.17)

A

where now the kinematic upper limit on k2 is I*^o, = -(MZ - (1- u) M2) al\ - 9). Note that

a dipole function for the ¡'NA form factor is necessary to suppress contributions from large lk2l.

Contributions from higher mass baryon resonances can all be computed from the above since

the lower lying states all have spin 1,12 ot 312. For the (spin 1/2) Roper resonance, which with a

mass M¿ - 1440 MeV is the next heaviest state after the A, the trace factor is

1

¡rrKF + M) 4s (ú+ Mn) its) = -k2 + (Mn- M)'. (3.18)

With a z'-lü-B coupling constant of g2**^f 4r x 5.41741the integral over I of the pion distribution

function for a.recoil Roper resonance comes to about 70% of that with a nucleon recoil for the same

cut-off parameter. Furthermore, the pion distribution function with a Roper recoil appears at

somewhat smaller y than lrN or /,a, which means that the convolution in Eq.(3.6) with the Roper

distribution function will only be potentially relevant at very small r. Furthermore, because the

Roper has the same quantum numbers as the nucleon, its inclusion as an incoherent contribution

is somewhat less justified. In what follows we shall therefore restrict ourselves to the nucleon and

A baryons only.

In order to conserve momentum and charge, we must also allow for the incident photon to

scatter from the recoiling 1{ or A after a pion has been emitted, Fig.3.1(b). Previous attempts

at calculating the contributions from these processes within a covariant framework were made by

several authors, including Hwang et al. [62], Mulders et al. [17], and Dmitraðinovió et al. [75],

although all obtained different results. Partly because there is less phenomenoiogical experience

with so-called sideways form-factors (where the nucleon, rather than the pion, is off-mass-shell)

some early work [47,63,76] simply defined fN"@') through (3.3). However, this is unsatisfactory

from a theoretical point of view, and ideally we should be able to verify explicitly that within our

model the functions .f,¡,¡ and /.¡y, satisfy Eq.(3.3). In historical terms, it was the careful examination
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of this process that opened up a whole Pandora's box of problems, and led to the realisation of the

terminal shortcomings of the covariant convolution model. We shall go more deeply into this issue

in Chapter 5, but for now let us briefly summarise the origin of the problem.

Clearly the treatment of deep inelastic scattering from an interacting nucleon is considerably

more involved than that from a free nucleon. As we saw in Chapter 2, th.e truncated nucleon tensor

fr,r, which enters this calculation can be written as a linear combination of three independent

terms. Initial calculations [17] assumed that only the term involving the operator frwas relevant.

For pointlike nucleons this operator would indeed be the only one present, just as it is for a point-

like quark inside a nucleon [52]. Treating the diagram in Fig.3.1(b) as a Feynman diagram, the

contribution to the on-shell nucleon tensor from DIS off the virtual (structured) nucleon with a

pion in the final state can be written

5@")1ryu" (p,q) glNr,r
d3k F'*,(p')

(2tr)3(2ks) (p2 _ M2)2

* jr, ltf + *¡ itu (l+ M)frKí@,q) (ú+ u) ¿''tu] (3.1e)

with the tensor frKí@,g) as defi.ned in (2.36). Using only the operator fi Ieads to the virtual

nucleon distribution function of Ref.[17], namely

rw*(y,) : Wr, l'_: oo, ##p(*Z-!--{-ç0,-*\) (r.20)

where p2 : p2*o, - pTlQ - g') is the 4-momentum squared of the virtual nucleon, with the upper

limit now given by p2*o, : M'y' -*?y' l(l-y'), and p2, denotes the nucleon's ttansverse momentum

squared. Apart from possible differences in the form factors, (3.10) and (3.20) are clearly related

by an interchange g' * | - y.

The large-lp2l suppression for the N¡'1{ vertex is introduced by the form factor f¡¡,r, which is

usually parameterised by a monopole or dipole function lI7, 77, 78]

,¡v*(:" ( L'**- t:\" 
çr.rr'¡u): \M_F)

for n : 1 and 2, respectively. However to satisfy (3.4), the cut-off parameter r\¡¡, will in general

have to be different from the cut-off Â,,¡¡ regulating the zrl{1[ vertex form factor in (3.10), and a

different r\.7y,. again to satisfy (3.5). Furthermore, because the k27 and 7t27 dependence in the form

factors in Eqs.(3.11) and (3.21) are clearly different, the calculated distribution functions /,.¡¡ and

/¡¡, will in general not satisfy (3.3). In Fig.3.2 we plot T"¡v(y) and fiy,(1 - g) for dipole form

factors, and cut-offs Âr.N : 1 GeV and Â.¡yr, -- 1475 MeV, respectively (to give the same values

for (n),lr and (n)1,r,,-, namely ev 0.235. Clearly the shapes are quite different, the most obvious

difference being that "fiv"(l- y) i. finite at A : I.

By using only one operator / in (3.19) we are of course assuming that the entire structure

function of the virtual nucleon can be represented by the function fr4 t" (2.36). As we saw in

Section 2.3 in the model calculation of the nucleon structure function, using simple quark-nucleon

I
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Figure 3.2: Distribution functions /,.¡¡(g) and "fi¡"(f - g) with dipole form factors, and cut-offs
Â,JV = l GeV and -4.¡¡r. =1475 MeV chosen togive (n)"N: (n)iv,:0.235.

relativistic vertex functions generally leads to non-zero scaling contributions from other functions

as well. For example, for the scalar quark-nucleon vertex considered there, the contribution from

tnefr$ term was (for m: 0) oc 2n2M2, while the fr] pr"." was o( k?, - r2M2. Combined,

they give the full result, namely kT + n2 M2, Eq.(2.59). But simply keeping tne /fu] term would

give non-physical answers at small lc7 and large r - negative contributions! In practice, what is

usually done is that the experìmental nucleon structure function is inserted in (3.7), rather than

any calculated function. Furthermore, choosing a different operator form for frfi ,un also lead

to unphysical results. For example, with an operator involving l rather than y'the trace factor in

(3.19) is proportional to -m2" (i.e. negative). This appears to have been done in [75], although in

view of this it is rather perplexing that their final result appears positive.

Problems also arise for the emission of scalar mesons, for which the trace factor in fN"(y')
for the structure ( is 4M2 - rnl + (M' - p2)(l - g')ly', which is clearly related to the trace in

l"x(g) (namely k2 ¡ +lVt2) when written in terms of the transverse momentum squared - apart

from the form factor. For an operator 1, the trace factor in lN"(y') is 2p2 +2M2 - rn|, which not

only violates baryon number conservation but also leads to an unphysical (negative) cross section.

For the DIS from a virtual A component, these same difrculties will also be present, since the A

hadronic tensor will have a non-trivial spinor structure, similar to that for the nucleon.

These are the first hints of probiems with the covariant approach to calculating DIS processes

involving virtual nucleons. Indeed, the convolution formula in (3.7) appears to be a very special

case that cannot be easily obtained from the above considerations. The prescription of ignoring

some of the structures in fr¡; i" cleariy unsatisfactory, as in principle all should be used. Another

_ fn*fu)
- - Íwn(r-a)
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important assumption in the covariant convolution model is that the dependence of the virtual

meson and baryon structure functions in (3.6) and (3.7) on the particles'invariant mass squared

is negligible. The argument usually made is that the vertex form factor suppresses contributions

from the far off-mass-shell configurations (i.e. for lk2l à n U'[63]). However, strictly speaking,

in this approach even the identification of the off-shell structure functions themselves is not very

clear. Some suggestions about how to relate the off-shell functions to the on-shell ones were made

[79, 80] in the context of DIS from nuclei, although these were rnore ad äoc prescriptions rather

than theoretical derivations. More importantly, a covariant treatment of DIS from virtual nucleons

essentially involves both nucleon and antinucleon degrees of freedom. In contrast to this, the Fock

state expansion in (e.t), and in particular the interpretation 
"f l@) as meson and baryon probability

functions, is only meaningful in the IMF. Thus, simply put, the difficulties encountered in trying to

obtain sensible results from the covariant calculation of f @) result from an incompatibility of the

covariant formalism with the initial hypothesis that the physical nucleon state can be expanded as

in Eq.(3.1).

A full investigation of the off-mass-shell effects in deep inelastic structure functions of composite

objects will be the subject of Chapter 5, where we discuss how to calculate structure functions of

composite particles in a covariant formalism, without making any on-shell approximations. How-

ever, it is clear that a naive application of Feynman rules to the process involving DIS from an

off-shell nucleon is highly problematic, and certainly requires great care. The challenge is therefore

to formulate the problem self-consistently, using a single formalism. Since we would like to study

the relevance of the virtual meson cloud of the nucleon, the most economical solution would be to

keep the Fock state expansion in (3.1), and reformulate the rest of the probiem in time-ordered

perturbation theory (TOPT), where Eq.(3.1) is well defined. In fact, an early calculation of the

function f"x@) in TOPT was performed some time ago by Güttner et al. [81], in the context

of pion electroproduction. More recently the merits of this approach were expounded by Zoller

[82], who demonstrated that the distribution functions for the n1ú and zlA states calculated in this

fashion could satisfy (3.3).

3.1.2 Pions - TOPT in the IMF

An alternative to the use of covariant Feynman diagrams, in the form of 'old-fashioned' time-

ordered perturbation theory in the IMF, was proposed some time ago by Weinberg [83] for scalar

particles. This was later extended by Drell, Levy and Yan [8a] to the zrN system in deep inelastic

scattering. The main virtues of this approach are that off-mass-shell ambiguities in the structure

functions of virtual particles can be avoided, and that the meson and baryon distribution functions

can be shown to satisfy (3.3) exactly. \Me firstly review the results for the pion cloud, and then

compare these with the previous, covariant calculations.

In the time-ordered theory the analogue of Fig.3.l(a) will now involve two diagrams in which

the pion moves forwards and backwards in time, Fig.3.3. However, in a frame of reference where
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Figure 3.3: Time-ordered diagrams for pions moving (a) forwards and (b) backwa,rds in time. Time
is increasing from left to right.

the target nucleon is moving fast in the z direction with longitudinal momentum Pt(- oo), only

that diagram involving a forward moving pion gives a non-zero contribution. In the IMF the target

nucleon of momentum P : (0r, P¿) has energy,

Ps : n"* #,- " (+)
Following Weinberg [83] we write the pion 3-momentum as

k = yP|kr

(3.22)

(3.23)

where kr .P : 0, and conservation of momentum demands that the recoil nucleon momentum be

p (t-s)P-kr (3.24)

Since all particles are on their mass shells the energies of the intermediate meson and baryon must

be

ks = tut Pr.-+#-" (*-L) (s.2b)

Po : rr-vt ,"*ffffi-"(+) (326)

For forward moving particles, Fig.3.3(a), y and I- y arc positive, and applying the rules of TOPT

[83] the contribution to the hadronic tensor of the physical nucleon can be written

56N)yruv(p,q)
d3k g?N^r(k)

(2r)3(2ps)(2ko)2 (Po - po - lco)2

1

x irr l@ + a¡ 4s W#" (p,q) (ú + M) itsl. (3.27)

The energy denominator in (3.27) can be rewritten as (Ps - po - ks) = (M2 - s*¡¡)f 2P7, where

surry = snw(kT,ù=(po+ko)2-(n+t¡' : kT+m7*r\*y' 
(3'28)y 7-y \----l

is the centre of mass energy squared of the intermediate r-ð[ state. Changing the variables of

integration from d3k to dy and dkl, all powers of P7 are seen to cancel when combined with

I
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Figure 3.4: Time-ordered diagrams for nucleons moving (a) forwards and (b) backwards in time.

the vertex factors, (2po)-'and (2ks)-2, leading to a result that is P¿-independent. Equating

coefficients of gp,, we find that the ¡' distribution function with an I{ recoil is

l"¡v(y)
d,k, F]¡uG"r,t)

(3.2e)
(t - y) y (M'- srv,,.)2

which means that the result of (3.10) is reproduced, form factor aside. Obviously because here all

particles aïe on-mass-shell, we cannot use the same k2-dependent form factor as in the covariant

case. In the time-ordered calculation, it is quite natural to choose the form factor to be a function

of the centre of mass energy squared of the n-ll systemt sNr¡ as was done by Zollet [82]. For the

functional form of Fn¡v(tny) we choose a dipole parameterisation,

rnNGnN) : (##) (B3o)

normalised so that the coupling constant grlvN has its standard value at the pole (f (M2) : 7).

Previously, in Refs.[82, 85] an exponential function was used

r,rv(s"¡¿) = ""r (4æ-) (8.s1)

although Ref.[82] in addition followed an unconventional normalisation.

For a backward moving meson, Fig.3.3(b), y is negative, and in this case the energy denominator

becomes (Po - po - ko) : 2yPt + O(llPL). Therefore in the Pt - oo limit this time-ordering is

suppressed by a power o17lPt', and so does not contribute.

For an interacting nucleon with a pion recoil, Fig.3.4, the contribution to the nucleon hadronic

tensor is

5@")yru, (p,q)
dtp s?^rN@)

(2tr)3(2ps)2(2ko) (Po - po - lco)2

*|r, l@ + *¡ hu (ú+ M)fr,ní@,q) (ú+ ut) ¿tu]. (s.s2)

The kinematics here are similar to those described above, namely the nucleon and pion move with

3-momenta

p = y'P -kr (3.39)

k : (I-y')P*kr (3.34)

3g'*NN [*
t6n' Jo eyr)

I
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and have energies

(3.35)

(å)

respectiveiy. Then direct evaluation of the trace in (3.32) gives

2(2P'p - 2M2)V" Qufr$ + 2M2fr+ + 2p'0fr4) + ...]

: 2 (2P .p - 2M2) 7'" wr¡v(p,q) + '.. (3.37)

where now the exact on-shell nucleon structure function appears, and automaticaliy factorises'

For abackward moving nucleon, Fig.3.a(b), y/ is negative, and 2P.p-2M2 : -4y'P?,lO(1,lPL)'

so that the numerator becomes large in the Pr * oo limit. Technically this is due to the 'badness'

of the operator 75, which mixes upper and lower components of the nucleon spinors. The energy

denominator here is (Pe - po - ko) :2y'Pr ¡ O(IlPr,), and when squared and combined with the

t¡e| to the integration and vertex factors, the contribution from this diagram vanishes when

P¿ is infinite. Therefore we need only evaluate the diagram with the forward moving nucleon,

Fig.3.4(a), which gives the result

fx*(y,) = W [* ,orT, Ti'uGN*)--(nT+Q-v')'u'\ (8.r8)' - 16", lo fl _ tl>y, Attz - s¡¿")2 \ A,

Po

ko (3.36)

with

"x*(kT,y') = sn¡¡(rcl,r - s'). = *T :,* + k\ + ry? (3.s9)yt ' r-y'

Notice that the integrand is identical to that in (3.20), when p2 there is written in terms of p27 @r

k27), except perhaps for the form factor. It was shown in 182] that within this approach there is

an explicit symmetry between the processes in which the intermediate pion and the intermediate

nucleon are struck if the form factor io "fiv, is taken to be

f¡,r'(s¡¡*) : fn¡v(snN). (3'40)

Then as long as the same cut-off mass parameter is used in both vertex functions, Eq.(3.3) is

automatically satisf.ed. 2 In Fig.3.5 we plot the function f"N(y) evaluated in the IMF, with both

the y-dependent exponential, Eq.(3.31), and dipole, Eq.(3.30), form factors, and compare this with

the function evaluated in the covariant approach, with the k2-dependent dipole form factor in

Eq.(3.11). In order to make the comparison meaningful the cut-offs have been chosen to yield the

same pion multiplicity (n),x (- 0.235), for which the cut-offs are ,A',,7y : 1 GeV, Â" : 1380 MeV

and .4. : 1425 MeV, With the 3r-dependent exponential form factor l"N(y) is a little broader and

peaks at around y : 0.3, compared with y - 0.2 for the covariant convolution model with a dipole

2The form factor in Eq.(3.30) may also reduce the number of free paramete¡s in models of N/{ or N.ly' scattering

[86], where currently difierent form factors are necessary for the meson- and baryon-exchange diagrams.
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Figure 3.5: Distribution functions /r,ry(y) evaluated using covariant and time-ordered perturbation
theory. The covariant function is as in Fig.3.2. The TOPT functions are evaluated with exponential
and dipole form factors, with cut-offs À" : 1380 MeV and l\ = 1425 MeV, respectively, to give the
same value for (n)rl¡ : 0.235.

form factor. The g-dependent dipole form factor yields a distribution which is a little broader still.

The consequence of this will be that the convolution of f"x(y) with. Fznr for the g-dependent form

factors will have a slightly smaller peak and extend to marginally larger r (see Section 3.1.4).

The processes involving DIS from zrA states can also be calculated in the IMF, although some

care must be taken when describing the zr.fy'A interaction vertex in TOPT. Nameiy, in TOPT the

relevant vertex is u"(p) (P - p)" u(P), rather than u"(p) k" u(P) as in the covariant theory, where

of course the two are (trivially) identical. Using the same formalism as for calculating fn¡¡, and

with the kinematics as given by Eqs.(3.22) to (3.26), but with M -- M^, we find that the pion

distribution function with a A left in the final state is

a

l"¿,(v)
a flx¡ [*
3 16"' J"

d,kT -otítls"t)
(t-y)u(sn¿,-M)'
lkl + (ut - (1 - y)M)'l lk+ + (M^+ (1 - y)M)'l'

X (3.41)
6 M"^ (1 - s),

where szra : snN(M - Mr.), and we take the same functional form for the ¡1úA form factor as

for the ¡'1Í1{ form factor in (3.30).

For an interacting A with a pion recoil we need additional information on the truncated A

hadronic tensor, which in this case will involve additional Lorentz indices stemming from the fact

that the A has spin 3f 2. For an on-shell A the hadronic tensor can be represented as [87]

wr^,@,ø) = f;t /t"açn) frî,,'@,q)] e.42)

with r\.*B(p) the A energy projector, Eq.(3.15). Assuming the simplest structure for the truncated
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A tensor, namely [82]

frî,.8@,q) : -g,B frï,@,q) (3.43)

where frf, n"" the same Dirac and Lorentz structure as the truncated nucleon tensot, gives the

result

wþ(a,ù : z(uafrX + MîfrL + p.qfrA) a,, * ... (8.44)

so that by comparing coeff.cients of g¡,tv we can use the term in parentheses to define the on-shell

A structure function. Utilising the form (3.43) for the truncated A tensor, we can then evaluate

the trace

1r
þ'lff + M) (P - p), 

^"'(p) 
frr,ol(p,q) LB'B@) Q - ùB)

= , --T" þî * (M¿, - y'M)') (*', * (Mt'+ y'M)')'

.({zuofrg+MZfrL+p.qfr'z^)a,, +...) (3.4b)

so that the on-shell Â structure function factorises to give trq.(3.7), with the virtual A distribution

function given by

I / -.tr^*@): i#ffi:J &#:ù
*lkT + (Mt - v'M)21LkT ! (ut + v'u)212. (8.46). 

6 MAy,"

Clearly this is related to T"úy) by (3.3) iÎ fn6(sn6): f¡'("a,.), where sazr: snA(M -. Mo).

In Fig.3.6 we compare the function f"6(y), calculated in the IMF, with the function given by

Eq.(3.17). The k2-dependent form factor in the covariant formulation is a dipole form (rL,a - 1

GeV), whiie the s,.4-dependent form factors are dipole (^ : 1512 MeV) and exponential (Á." : 1565

MeV), with all functions normalised to give the same (n)"1(= 0.114). Whereas for f"¡¡(g) the g-

dependent form factors produced a slight hardening of the distributions when compared with the

covariant form factor, here we see a marked difference between the two calcu-lations, in which the

distributions calculated in the IMF are considerably broader and extend to larger g.

Having found a useful method for obtaining the pion distributions in a self-consistent mannet,

we next apply the TOPT/IMF formalism to non-pseudoscalar mesons. As mentioned above, and in

Ref.[69] for example, the difficulties encountered in attempting to compute the contributions from

vector mesons make the covariant approach to this problem very problematic, so from a technical

point of view we would like to see if the vector mesons can be handled adequately in the IMF.

From a physical point of view, our aim will be to test the relevance or otherwise of the higher mass

meson states in the physical nucleon. We focus primarily on the vector mesons, but also briefly

re-examine the importance of kaons in the time-ordered formalism.
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Figure 3.6: Distribution functions /-a(g) evaluated using covariant and time-ordered perturbation
theory. The covariant function is evaluated with a dipole form factor with cut-off mass Á.,.6 : I
GeV. The TOPT functions have exponential and dipole form factors, with cut-offs Â" = 1565 MeV
and Â :1572 MeV, respectively, to give the same value for (n)rlr:0.114.

3.1.3 Heavier Mesons

Vector Mesons

The importance of vector mesons in nuclear physics is well known. In the context of meson

exchange models of the l[ly' force in nuclear physics, it has long been realised that vector mesons

play a vital role [86,88-93]. For example, the isovector p meson is needed to provide sufficient

cancellation of the tensor force generated by 7r meson exchange, which would otherwise be too large.

On the other hand, the isoscalar c.l meson, through its large vector coupling, is responsible for the

short range I{Iú repulsive force, and also provides most of the spin-orbit interaction. Traditionally

it has been necessary to use hard vector meson-nucleon form factors in order to f,t the /útr/ phase

shifts [86]. However, alternative approaches have recently been developed in which the lÍN data

can be fitted with quite soft form factors [93-95]

From another direction, the vector meson dominance model of the elastic electromagnetic nu-

cleon form factors, in which an isovector photon couples to the nucleon via a p meson, provides a

natural explanation of the dipole Q2 behaviour of the 1NN vertexfunction. Recent analyses [93]

have shown that a plflf vertex parameterised by a soft monopole form factor (À-o'opol" - 800

MeV) provides a good description of the Q2 dependence of the Dirac and Pauli form factors. The

effect of vector mesons upon nucleon electromagnetic form factors has also been explored [68] in

the cloudy bag model [54], and in various soliton models [96].

The possible role played by vector (as well as other) mesons in DIS was first investigated by

Speth and collaborators [62,69], who calculated the vector meson distribution functions within

a
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Figure 3.7: Time-ordered diagrams for the DIS from (a) vector mesons and (b) nucleons with recoil
vector mesons, that are non-zero in the IMF.

a covariant framework, but with the assumption that the vector meson and nucleon intermediate

states were on-mass-shel1. In this section we extend the analysis of pions in Section 3.1.2 to the

vector meson sector. Specifically, we shall demonstrate that the vector meson functions, calculated

within the TOPT/IMF formalism, can be made to satisfy the relation (3.3) exactly.

For the effective V N N interaction we include both a vector, gv N N u(p)1" e.u(P), and a tensor,

fvNNlØM)¿(p)io'þl(P.-po)eB-QB-pfie"]u(P),coupling,whereV:porc.r,ande.(À)is
the polarisation vector for a spin 1- meson with helicity À. In the calculation of the vector meson

distributions in Ref.[85] the tensor coupling was taken to be - u(p)io'þk"eBu(P) 186]. In our

treatment of the zrÄ states in the previous section, the derivative interaction was constructed from

baryon momenta, Po - po, rather than from the pion momentum ko. For overall consistency in

calculating contributions from all the meson-baryon states, we therefore use the above interaction

for the tensor VNN vertex also [97]. In both cases, however, one can explicitly verify that the

probability conservation condition, Eq.(3.3), is satisfied [85].

The contribution from the diagram with backward moving vector mesons is suppressed in the

IMF by the energy denominators, just as for pions. Therefore we only need to evaluate the diagram

in Fig.3.7(a) .with forward moving vector mesons, which gives the following contribution to the

nucleon hadronic tensor

5(vN)yru, (P,q) : I @#øæ6 _*_W
- 

* ; 
r' 

l(/ + M) (øl,rr(r) ','' * lvlt'!(k) 2.oo"o' (Po,, - p.,,))

.(ú+ u¡ e|,(À)e,(À) w#'"þ(k,q) eþ(À')eB,(À')

' (ø,rtr.,(r) ,o' * rvlry(k)2ioþ"þ' (PB" - eu'ù)l (3.47)

Evaluating the trace gives

(siwN@) Aop * f?rNN(:'") Bop r gvNN(k) Ív¡v¡,t(k) C.B)

where
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Aoþ

Boþ

Caþ

(P-p)'9aþ l2(P,pB + p.PB)

(P-p)'eoþ - (P.pB+p.pò - *ro.-p,)(pp-pp) + '#rr,+p.)(PB+pB)
2 (P - p)' soB - (P. - pù (PB - p,) (3.49)

are the VNN vertex trace factors for the vector, tensor and vector-tensor interference couplings,

respectively. For an on-mass-shell vectoï meson, the spin 1 tensor W#"8, symmetric under the

interchange of p, <-+ u ar'd a è þ, is given by

w#"P(tr,q) : (o* w'r{n,q) + Wwzv(t,,øl) fP. (3.b0)

This form guarantees that the vector current is conserve d",, krp¡Wfivaþ : 0 : qr@)W#'oþ . F-rr-

thermore, it reproduces the correct unpolarised on-shell spin 1 tensor when contracted with the

meson polarisation vectors (."(B)) and summed over the I/ helicity, À [98]:

W#"(k,q) = 
T.å(^, 

k) eB(À,k)W#'"P(k,q)

= (-n.o -ry)w#"'þ(k,q) (8.51)

kt' lç'o( ãP'Ww(k,q) +
m2y

Wzv(k,q)

In the case of DIS from a vector particle emitted by a nucleon, Fig.3.7(a), contracting the spin 1

tensor W#"^P with the VNN vertex trace factors in (3.a9) gives for the trace factor in (3.a8)

{ni**rrt (-u *' - t!#-! + 2P 'e)

- fi,xw@) (,'-,y(L#) +(tr Ð,+(p tù,)-{t#tQ-'#))
- sv^r^(k) tvxN(k) (n ,. - p), + hU, - o¡.q,)j*r,r*,nr. (a.b2)

Equating coef,Êcients of gp, in (3.47), and using the same IMF kinematics as for the zrlf system,

except with rnr. ---+ Inv¡ together with the Callan-Gross relation for the nucleon and vector meson,

enables the contribution to -Fzrv from vector mesons to be written as a convolution of the vector

meson distribution function lvN(y) with the on-shell vector meson structure function Frv(*ly),
as in (3.6), where now

rvtr(y): #|,*ffiffi*y
*{sT*, ((n++v2M2+* 

+kT+v2M2 _4Mr\
( o\ - 1-r -+tvr 

)

* svw, lv ¡v* ( _@', + v'tw' - (t -^y)*T)' * 
q @? + y'?u'z)\

vrv .r Y rvrY 
\ 2e - fi2)m2, ' (1 _ g) )
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22-y + y2M2 + I-y 2t
( + (4(1 - y) + y')tw')2

+ fiNw l6y2(l - y)zUz

(kT + y'M') (ki + (-4(1+ e) + y')M')
4(r - s)2M2

(kT + y2 M2 + (1 - y)'*T)'
2y2(r - y)2*T

(3.53)

(3.55)

4M2

where cv: lI26vp is the isospin factor (here ó is the Kronecker-ó symbol). The VN centre of

mass energy squared is sy¡y : srN(Tnn --+ rnv), and we take the same form factor for both the

vector and tensor couplings, gvtvl,r(syry): gvNN fvy(sv¡) and /y7y¡¡(syry) : fvxy Fv¡v("v¡,¡),

with fvru(sy1y) defined analogously to (3.30).

For the vector meson recoil process, Fig.3.7(b), we evaluate the distribution function luv(g')
using the fuil spinor structure otfrff in (2.36):

d"p 1

(2tr)3(2ps )'(2ko) (Po - po - ko)'
5@v)yru" çp,q)

r,l@ + ut
À

1
X_

2 ) (au"(r) f + tt#rooo'o(Po, - oò) Ø+ u¡ frlí@,ø) (ú + trtr¡

' (tr**@) tB + l"#rooÞ'e(PB, - ro,))€å(À)€B(À) ] 
. (8.54)

Here the trace is given by

(sT**@) Aop I f?NN@) BoB t gvr^r(p) fvxr(p) C'B)

x øoP (zu froçn,q) + 2M2 frt@,q) + 2p . q fr'@,ù)

where the tensors A, B and C ate as in (3.49). Performing the contractions over the indices a, B

leads to the convolution integral of Eq.(3.7), with the nucleon distribution function with a vector

meson recoil given by

fxv@') =
cv [*

1612 Jo (l - y') s' (M2 - tyv)'
fkrG*r)d,kT

(kT + (r - y')'M' + *T) (kT + G - y')' M' + a'2*T) kT+G-v')'M'
v'

X gTwN +

I gvv¡v fv¡vt'¡

+ fir¡w
(kT + (r - y')',M', + y'*T)' (kT + (+a' + 0 - a)\Mz) (r + y',)2

16(1 - ,r¡zrts¡¡¡z*z
(kT + (r - y')',M") (hT + G+y'+ (1 - y')')M')

4gtz P¡z

_ (tcT + G - y,)2M2 -t y,2mT)2 (kT + e - y,)2M2 + mT)2\)
2(r-yt)2yt2m2y 4r:#)l (3'56)

and where twv(kT,y') = svw(kT,I - y/). Again, we have evaluated only the diagram with forward

moving nucleons which is non-zero in the IMF. It is clear therefore from (3.53) and (3.56) that the

probabiäty distributions for the V.ðú intermediate states are related by lxv(A') : fv¡v(l - A').
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One should observe that the trace factor inside the braces in "fvry(g) is divergent in the limit

A ---+ 0. To illustrate one of the problems with the covariant approach to calculatitg fy¡¡, consider

aformfactoro( exply(Mt -sy¡/)]. Since tr2,: -(kT+M"y2)l(l-y), thisformfactorwould

correspond to a k2-dependent covariant form factor o( exp lk' - *Tl. With such a form factor,

6VN)FzN(n) would approach a finite value as r ---+ 0, much like a perturbative sea distribution.

However, there are several problems with accepting such a result, the most obvious of which is that

it would violate charge and momentum conservation very badly, since /¡¡y(y') t 0 fot yt -- 1 and

--+ constant as yt -- 0 for a form factor o( exp ly'(M' - sryy)], which in the covariant formalism

corresponds to exp lp2 - M'1. Furthermore, it would lead to a gross violation of the Adler sum

rule,whichintegratestheflavourcombinatiotru-u-dldrar'dsuchaviolationhasnotbeen

observed in the range I < 82 < 40 GeV2 [99]. This gives further evidence for the preference of the

IMF approach together with the y-dependent form factor in (3.30) or (3.31).

To complete our discussion of vector mesons, we give the results for the functions describing

the IzA states. We saw in the previous section that the contributions from the rA states were

certainly not negligible in comparison with the zrN components of the physical nucleon. For the

vector mesons, we would also like to examine whether the A isobar is of any importance. Since the

c.r meson is isoscalar, the only vector meson able to couple to a nucleon and A is the p, and for this

we use a pseudovector coupling [86], UoNtl^ò u(P) fis1""P (p) ((p - p),€þ - (P - p)Bro). Again,

we drop those diagrams which give order Lf Pf contributions in IMF (i.e. for backward moving p

mesons or A). The contribution from scattering from a p meson with a A recoil is obtained by

evaluating the following trace:

* I t' lff * *¡ i.,ts.,to L''þ'(p) ((P - p),e\,(À)e*,,(À) - (P - p),,r|(À)e.,,(À))
o 

À,s'

.w;'o"o" rr,q) 1slþ (i" - p¡B,rþ,,(À').8(À') - (P - p)Beþ,,(À).B,(À')) 
]

1: ir, Ktr + M) {-yu^to,(Ìy"8,@) -y;tp - ly"B@) -tsjB,)

- 'Ys1." (lr,,B,(p) "ts1B I 1¡,,8(p)'1flp,)\l

x(P - p)'' (P - p)B' WI"'B (k,q) (3.57)

where 14¡uva0 is the p meson structure tensor, as given in (3.50). The resulting probability distri-

bution to find a p in the physical nucleon with a A recoil is therefore

r , \ + IzpNn /* d,kT f2oaGra)
rpt\u) : 3.IIi16, J, O _õiTMr_;ñ
* [ - o ry*" þ*kt MMt +2M2) W((p - p).k),

t 4 '¡ û@' Ð') * T (r*"^ t 4M Mt + M') (3.58)- n'i\u""çP 'k)" + Il

4P.p, ,,.,(. M,\ ,, 1. 2P.kp.k p.p\ì+ ,fftn.*).(,t_Mil _ 4(p.e)"[,1 __WW_@Ì
with the kinematics as given in Eqs.(3.22) through (3.26), except with mn --+ n'tp and M --+ Md,
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. i^ts''tB (f. - o¡0'rÞç\ - (P -p)B.B'(À))]

: { ryY (r*'^+ MMt+zu') ry#((P - p) k)'

- #,(rilf, 'k)' + a'@'Ð') * ry (rr'^ t 4MMt + *') (3.5e)

*ffiø *r,(' #r) - 4e or,(' '+å# ffi)\*r,,,,
It's then straightforward to show, using the kinematics of (3.33) to (3.36) that f 6o(yt¡ : f o6(l-U),
when the form factors satisfy f onþpn) : Ftp("tp).

In Fig.3.B we plot the vector meson distribution functions lpN, l.x and lpt as a function of

y, for the dipole form factor of the form in (3.30), with ,4, = 700 MeV in all cases. The dominant

contributions come from the tensor (derivative) couplings, which is reflected in the larger p.ð[ and

pA distributions in comparison with the c.rl{. AIso, the vector distribution functions tend to peak

at süghtly larger g values (y - 0.5) in comparison with the zll[ and zrÄ functions.

Strange Mesons

Figure 3.8: Vector meson distribution functions in the nucleon. The (dipole) form factor cut-off is
Â : 700 MeV for a,ll curves.

For the DIS off a virtual A with a p meson recoil, we need to evaluate the trace

Finally we conclude the discussion of heavy mesons by reinvestigating the DIS process from

the kaon cloud of the nucleon using the the time-ordered formalism in the IMF. The role of kaons

was first examined by Signal and Thomas [100], however, within a covariant, Feynman diagram

_pN
uN
pL
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Figure 3.9: Kaon distribution functions in the nucleon, with E and A. recoil. The (dipole) form
factor cut-off is Â : 1.2 GeV for all curves.

approach. Through the proton dissociation processes p -- KoEo(.ô.O) and p --+ I{+E-, the virtual

photon will probe the quark structure of the virtual strange mesons and hyperons. Such a process

will naturally generate a non-perturbative strange quark component of the nucleon, as well as a

different antistrange sea, thereby breaking SU(3) flavour symmetry of the sea in the process.

Taking a pseudoscalar coupling for the I( N H vertex, where the hyperon H : E or Ä, the kaon

distribution function is similar to the pion distribution function f"¡¡(y), except the mass of the

recoil state is now different,

tNn(y): ",n#1"*ffi;#*y
"( ) 

(s6o)

where the isospin factor is c7¡ - | * 26n>. Similarly for the DIS from a strange baryon with a

spectator 1l, repeating the calculation of Section 3.1.2, the hyperon distribution function is found

to be

d,kT

X

(I - y') y' (M2 - sHK)2

+ I-y' M2 + (Mø - M)(Mn + (1- 2y')M)
yl

(3.61)

In Fig.3.9 we show the strange meson distribution functions, fxz(y) and fq¡¡(y), for a dipole

form factor with a cut-off l\ : I.2 GeV. Notice the scale as compared with Fig.3.8 for the vector

mesons and Fig.3.5 for the pions.

The relatively small size of the kaon contributions is also clear from Figs.3.10 and 3.11, where

we compare the average number of all mesons considered, \nlun, and the average momentum they

KA

_IA
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Figure 3.1.0: Calculated average meson multiplicities in the nucleon, as a function of the (dipole)
meson-nucleon form factor cut-off.
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carry in an infinite momentum frame, (A) ru n, as a function of the dipole form factor cut-off .4.. For

relatively small'cut-off masses, ¡, 5 O.Z GeV, the dominant contribution is from the zrl{ component.

However, the rapid growth with Â of the p meson multiplicities and momentum fractions means

that for large r\. (à t.Z- 1.3 GeV) the vector mesons become as important numerically as pions. In

fact, the strong k7 dependence in f oN@) md lo¿,@) implies that for n I f .¿ GeV both (n)r7y and

(n)ra actually exceed (z)*7v. (A similar behaviour was found in Ref.[85] with a oo?koeB tensor

pfflÍ coupling, in which the dependence on Â was only marginally weaker.)

Note that for the zrlú component, Â : (600,1000,1400) MeV corresponds to an exponential

cut-off r\" - (580, 1130, 1360) MeV, and a covariant dipole form factor cut-off Â,,N : (590, 760,980)

MeV for the same (n)"N. In many nuclear physics calculations quite hard form factors of the ,k2-

dependent type are often used, for example in trí/{ potential models, where cut-offs of the order

of I.5-2 GeV are typical. Clearly such large cut-offs would imply an extremely large number of

pions and an even larger number of vector mesons. Whether or not it is reasonable to accept such

large heavy meson components in nucleon DIS is debatable, but obviously we would like some data

to tell us whether this is so.

Up until now the cut-off À has been a free parameter. Indeed, because quantities such as

the average number of mesons in the nucleon are not directly (or unambiguously) extracted from

experiment, we cannot draw any conclusions about the size of .4. from the functions fma(g) alone.

However, \Me may be able to restrict the range of allowable values of Â by comparing the calculated

meson and baryon contributions with the experimental structure functions, or quark distributions.

This is what we turn our attention to next.

3.L.4 Nucleon Quark Distributions

\Mith the functions f¡aB and fs¡4 now calculated, we are at last able to compute the contributions

to the quark and antiquark distributions of the proton from the DIS from its virtual meson and

baryon components. The total contribution to a quark distribution in the proton from this process

is

6q(*) : Ð (o{ual q@) + 5tntur)qqù) (s.62)
M,B

and similarly for the antiquark distribution. Using the Clebsch-Gordan coefficients for the vari-

ous charge states of the meson-baryon combinations we can easily obtain the individual flavour

distributions. For DIS from virtual mesons we have the following contributions:

5@/o w)uç*¡

5l-./o t't)¿çr¡

6@/c N)¿ç*¡

56/o N)¿ç*¡
'))
ù)

2
_L_,3

2+5
2+5
2+5

:l+
:I+
:I+
=l+

f*¡o N@) (1""" r.*,

r,tp N@) (!r"'r.*,

l*/o ¡v@) (I0"" ,,*,

r*/o ¡v@) (!*'o*,

: I#t",, N@)lvM@lv)

: | #'",0 rT (ùluvM ç*'¡

: I #'",0 N@)ruvMç**¡

: I #,",0 N@)lvMç*,¡

u"* 1*ñ)

,"* ç*ù)
fd"'(,

-!d"'(*
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$'N)u@)

o@N)a@)

o@N) ¿@)

o@N)¿@)

5k/o t)uç*¡

56/o t)¿ç*¡

5(-./o t)¿ç*¡

5@/o Ðrtç*¡

Í"¡o Áu)

l"¡, a,@)

vM(**)

v*(*r)

vM(*r)

v* (*r)

f x¡(v) vM (*m)

lx¡(y) vM (*u)

: I #r,.@) 
u'(*u) = | T,.,@ f,

: I #r..n u'(*u) : | *,.*@|: I #r,.@) 
d'(*u) : ll,,*@)1,

: llr,.ø) d'(**) = 11,,.@;

to ÁY)

f"/o ¿,(y)

l*

:l+
fdYJT

=l+
:l+

(*""- (*nt) + 
tiu"" (**) + lu"* ç*

(**- @¡,,t) + Ir"" ,**, + [a"* ç*

(*0"- o*, *t¡0" (*u) +lo"r (.ò) : I #t",c Áù25vMç*r¡

(lo- o*, *:n'@¡,t) +!u*- ø,¡) : I #t",0 o(ù15v'ç,¡o¡

-)) : l*r",, n@)r1vMç*,¡

')) : l*,",0 Áù25vM1*,¡

(3.64)

(3.65)

(3.66)

d(.lrE)u@) :

o@E) ¿@) =

¿(Kt)s(r) =

t@Ðu{",)

o(K^)s(r)

(v) u** (rtt) :

I
I
I

!r""øltguK+ 
(u¡a¡ = l#t""nr5v*ç**¡

l |t""nzsv'ç*,¡!t""øl'1d,Ko ç*¡a¡ :
4!r*,@) (å*- @m) +?'o" (*r) Ø ror@)v* (*u)

g

dy"
-JKAv

):I
t+
t+

:T
:T dy fxúù sK+ 7r¡a¡ : (3.67)

u

where rM: rf y. For simplicity we have assumed here the same meson valence quark distribution

V'(*u) for all mesons (sea components of the meson distributions themselves are not included),

un+ /p+ : F* /o* = 2uno /po /, : 2uno /po /. - 2d"o /oo /. : 2d"o /po /,

: uK* = ¿Ko : SK* : s-Ko : VM (8.6g)

and have used SU(3) flavour symmetry to obtain the others.

In practical applications, for VM we can use the experimental pion valence distribution, which

has been determined from Drell-Yan proton-pion scattering [101, 102]. The pion valence quark

distribution was found to be consistent with a behaviour rVM(r) - *o'+4(1- ø)o's0 at Q2 - 4

GeV2 [101]. This is in fairly good agreement with the behaviour expected from large-r (- (1- r))
counting rules [103] and small-ø (- ,t/') Regge behaviour [104]. It was also found in [105] that

the ratio of kaon to pion valence quark distributions was consistent with unity over most of the z

range, although dropping slightly at large r,VK fvn - (1 - ø)0'18t0'oz. Unfortunateþ, the vector

meson valence distribution has not yet been determined experimentally. As a f.rst approximation

it may seem reasonable to assume that its r-dependence resembles that of the 7r meson. Deviations
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from this may be expected on theoretical grounds, if one assumes that a spin flip for one of the

quarks in a spin 1 meson induces an additional power of (1 - r) at iarge r [103].

For the meson recoil diagrams, the contributions from DIS from a virtual baryon B are as

follows:

5Q't */o)uq*¡

6@ "/o)¿ç*¡

ilN') u@)

t@,)¿@)

5(t "/o) uç*¡

5(n "/o) ¿ç*¡

oQK)u(r)

6QK) d@)

o(tK)"(r)

oØK)u(*)

6@K) d@)

¿(^K)s(ø)

ffr. */o(v') 'l,Ln

d"

(!"øa *?

(to'øa *?y')*/o("f¡,t

:l
:l
:l
=l

I'(ra) +!uo
3

!¿o
3

(T"o..('¡) +

(To"-- (*n) +*/o(Y')

:l
:l
:T
:l
=I
:l
:l
=l

ds'

(

(

(}"r""t *?oø¿)

(Ioo", +""øa)
(3.6e)

v'

fft*,@') 
u(nn)

fft*,@') 
d(*n)

ffn */o(v')

It

Trc(v') u^ç*p¡ :

l¡x(v') d^(rp) :

lm(y')"^(16;:

lffwru)|u6"¡
lffr^"ra)|u@s¡

lffr*ra)|uç*"¡

'(,r)) = |
.Ð):l

(u't (],"'('s) + ?,"- (."¡) : I YnN@)lu@p¡

dy' ,
yt JEK

(3.70)

ua
dy'

Ío *to@)Id@p)
v'

da'a
' (*B) + d^ fo,to@)?d@n)

v'
(3.71)

l>N(u)|u@s) (3.72)

@'l (!"ç.r) +2Uaç.*¡)

1

6

1

6

t)

(
dy'

u'

dy'

v'
da'

v'
dy'

v'

dy'
g'
dy'

a'
dy'

v'

lrx(u')15a"0(r") : ly
fzx

f>x (rs) +?r'* (*")s'0
,s"

1

ã
y')( )=l

(3.73)

where r B = r I y' , and all baryon quark distributions have been related to the proton distributions.

For the neutron this is trivial if one assumes isospin symmetry. Since the A has spin and isospin

3f2,ftom the SU(6) quark model we expect that the valence spectator diquark in a A will have

spin and isospin of 1. Using this fact we can relate the valence quark distributions in the A to
the d quark distribution in the proton (since the spectator u'u, diquark in the proton has the same

quantum numbers), ua++ - l,uo* : ïd,L+ - 3d, with the distributions for the other charge states

obtained from isospin symmetry. Similarly for the Ð and À hyperons, according to SU(3) flavour

symmetry we would expect 
"x* - d, and, uE* - 2qEo :2qL : u.

For our numerical results we use experimentally determined coupling constants, aJl of which

are referred to the nucleon pole. For the rNN coupling we use the recently determined value

g?^r'l4o: 13.6 [106], which is marginaily smaller than the'traditional'vaLue [107]. The vector

meson-nucleon couplings are obtained from analyses of zrlf scattering data, gzpw^rlaT - 0.55,
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lptvN f gpww: 6.1 [108], and g2,*Nl4tr : 8.1, l-xnf g.NN : 0 [109]. For the kaon-hyperon-nucleon

couplings we use Skr,r¡lar = 13.1 ar'd gfu^r2l4r : 3.7, as in Ref.[100] (although this K NE coupling

is somewhat larger than the ones determined from.KN forward dispersion relations [110] or in some

hyperon-nucleon potentials [111], however even so the strange contributions are still very small).

Finally, we use the quark model to relate the zrlfA and p.l[A couplings to other experimentally

measured ones [112], f]Nt : Q2l2Ðf:N¡¡, and f]Na, : U]xtlf]¡uÐ g3** (molzM)2 (l +

f ,x¡v f g o¡vN)' .

Apart from the coupling constants, the only other parameters in the model are the meson-

baryon form factor cut-offs, À. The first suggestion about how one might use DIS data to constrain

-A was made by Thomas [SA], who compared (U)un with the measured momentum fractions carried

by the antiquarks. Similar analyses were later repeated by Frankfurt et al. [59], Kumano [71] and

Hwang et al. [02]. nven more stringent constraints can be achieved by also demanding that the

shape of the meson exchange contributions to q(z), (i.e. 6@n)q(r)) be consistent with the shape

of the experimental antiquark distribution [59, 61].

As mentioned in the previous section, the fact that the old /"¡¡(g) calculated in a covariant

framework peaked more sharply and at smaller gt compared with the /r';y calcuiated in the IMF

means that the quark distributions in (3.63)-(3.73) will also peak at smaller u for the covariant

k2-dependent form factor. This is evident in Fig.3.12 where the calculated SU(2) antiquark con-

tribution b 6ØN) Fzp(z) is compared with some recent empirical data (as parameterised by Morfin

and Tung [50], Owens [51], Eichten et al. [15] and Diemoz et al. [113]) for (a+d)12 at Q2 = 4 GeYz.

Because the TOPT/IMF formulation generally gives broader antiquark distributions, the limits on

the cut-offs will be more severe than for the covariant case, since at intermediate r 1r I O.Z) ttLe

TOPT/IMF distributions are still large compared with the experimental data.

Figure 3.13 shows the contributions to the SU(2) antiquark distribution n(a * d)12 ftom all.

of the meson-baryon components of the nucleon, for Â = 700 and 900 MeV. AIso shown are the

calculated results (for,4.: 700 MeV) for the zrlÍ and TN + rA states alone. CIearIy the SU(2)

q content of the nucleon is well saturated for r\ = 700 MeV in the intermediate-r region when all

meson-baryon components are included. The main contributions in this region come from the pÌ{

and pA states, since the distribution functions /rlr1a¡(U) generaily extend to larger g compared

with the pion distributions. As mentioned above, one uncertainty in the treatment of the vector

meson contributions arises from the fact the structure function for a spin 1 meson may deviate

at large r from the behaviour observed for the pion structure function. In Fig.3.14 we illustrate

the effect on the pIú contribution to *(r+ d)12 of including an extra power of (1 - r) in the p

meson structure function. The result is a slightly softer distribution, so that this would allow for a

marginally larger cut-off mass when comparing against the data in Fig.3.13. If only the zrl[ states

are included, slightly harder form factors could also be accommodated, with around Â ev 1 GeV.

In either case, for the zrI[I[ vertex this corresponds to a dipole form factor cut-off in the covariant

formulation of À,,ry - 700 - 800 MeV (to give the same value of (n)"ry - 0.10 - 0.15), which is still
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Figure 3.12: Proton SU(2) flavour antiquark distributions for DIS on the rl{ component of the
nucleon, evaluated using different form factors. The values of the cut-off masses are chosen to yield
the same average number of pions, (n),n (- 0.175). For the TOPT/IMF calculation with a dipole
form factor Â : 1000 MeV; with an exponential form lt. = 1240 MeV; and for a covariant dipole
form factor Àrrru : 870 MeV. The dotted curves are parameterisations of the DIS data (see text).
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Figure 3.13: Proton SU(2) flavour antiquark distributions for DIS on the various meson-baryon
components of the nucleon. The dot-dashed and dashed curves represent the contributions from
r'1{ and rN*rA states, respectively, for À : 700 MeV. The solid curves are the total contributions
from all meson-baryon states, for Á. : 700 MeV (lower curve) and 900 MeV (upper curve). The
data are as in Fig.3.12.
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Figure 3.14: Contribution to the antiquark distributions from the pil states (with À : 700 MeV),
for different vector meson valence structure functions.

considerably smaller than that used by many authors.

3.1.5 Renormalisation, Incoherence

A subtle, but nonetheless important, point that needs to be made concerns the renormalisation

of the total quark distributions in the presence of mesons. The meson and baryon exchange dia-

grams in Fig.3.1 describe physicai processes (inclusive baryon and meson leptoproduction) whose

cross sections involve physical (renormalised) coupling constants. When integrated over the recoil

particles' momenta these yield the inclusive DIS cross sections, which are proportional to the total

quark (and antiquark) distributions

q(*): zq6u..(n)* D(o{ørlq@)r5,.aM)qçù). Q.T4)
M,B

Therefore 5@B)q@) urrd 6@M)q(r), and the convolution integrals in (3-6) and (3.7), are expressed

in terms of renormalised coupling constants contained in the functions lmn(y) and fu¡¡(y'). From

(3.74) we also determine the bare nucleon'probability

Z : 1- l(")rt (3.75)
M,B

by demanding that the valence number and momentum sum rules are satisfied. \Me emphasise that

all quantities in Eqs.(3.74) an<l (3.75) are evaluated using renormalised coupling constants.

\Me could, of course, choose to work at a given order in the bare coupling constant, and explicitly

verify that the various sum rules are satisf,ed. For example, to lowest order (gfr) the total quark

- 
NA10

- - - *fl *,,1i (1-*)
*fl*V' ( t -*)2

pN
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distributions would be [1la]

Z

with

q(r)
{*'".(r) 

+ D(o(uatn,o,1 r) ¡ 6@m'0,.,(r))} (order 9o2) (3.76)

(3.77)
M'B

where the subscript (0) indicates that the functions /(g) here are evaluated using bare couplings.

Eqs.(3.74) and (3.75) are easily recovered since the bare couplings, to this order, are defined by

g'o : g3.-lZ. It would, however, be inconsistent to use (3.76) and (3.77) with renormalised coupling

constants, especially with large form factor cut-offs. As long as the form factors are soft, the

difference between the bare and renormalised couplings is not very large. However, with large

cut-off masses the bare couplings would need to be substantially bigger than the physical ones.

(In fact, the form factor cut-off dependence of the bare r1{ coupling constant in the cloudy bag

model [55] showed some 40% difference for very hard form factors - or small bag radii, - 0.6 fm.)

In addition, with large values of 1L the higher order diagrams involving more than one meson in

the intermediate state would become non-negligible, and the initial assumption that the series in

(3.1) can be truncated at the one-meson level would be seriously in doubt. Fortunately, we need

not consider the multi-meson contributions, since Fig.3.13 clearly demonstrates the difficulty in

reconciling the empirical data with quark distributions calculated with such large cut-offs.

Finally, we need to make some additional comments regarding the justiflcation of our calcula-

tion in terms of an incoherent summation of cross sections (rather than amplitudes) for the various

meson exchange processes. A possible breakdown of incoherence may arise when there are different

exchange processes leading to the same final state. For nucleon final states, because of the pseu-

doscalar nature of the r N N vertex, there will be no interference between 7r meson and vector meson

exchange. Furthermore, no mixing will take place between the ø and p exchange configurations due

to their different isospins. In fact, all of the meson exchange processes with a recoil 1[ considered

in this analysis can be added incoherently. For a A recoil, the only mesons coupling to 1{ and A

are the zr and p, but since they have different G-parities, interference effects from these will again

be excluded. However, the possibility exists in the pion exchange process that the decay products

of a A recoil, namely n and .l{, may mix with the state containing an /[ recoil together with a

n from the hadronic debris X of the shattered exchanged pion. Interference between the zr'lV and

rA states could therefore occur if the zr from the debris had very low momentum, enabling the

combined system to have an invariant mass squared - M2A. However, as we shall discuss more fu-lly

in Chapter 6, the vast majority of semi-inclusive, meson events in lepton-nucleon DIS are those with

high momentum mesons (slow hadrons are almost exclusively baryons), so that the probabiÏty of

interference arising from such processes will not be large. A similar argument can be given for the

potential interference from hyperon decay into 1[z-.

Z
-1

1+ D (np¡)nre (order 902)
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For the baryon exchange processes, the requirement of the same recoil meson eliminates inter-

ference from most states, except from DIS off N and A with r (or p) in the frnal state, and from

DIS of a E0 and Âo with a If* recoil. For the latter, the different isospin quantum numbers of the

^(1 
: 0) and E(/ : 1) rule out interference, just as for the plú and c¿.1{ states. A similar argument

can be made for excluding interference contributions from ¡f(I= 112) and A(1: 3/2) exchange.

However, as in the meson exchange case, the possibility of vector meson or kaon decay into pions

(".S. p ---+ 2r, Ko -- 2r) may introduce coherent effects when these meson recoil states (with an

exchanged ff, A or hyperon) are added with those containing a zr recoil. But the fact that the

decay products of the recoil mesons have low momentum, while the pions from the hadronic debris

are fast, will again reduce the size of any interference effects here.

Therefore we see that by considering only the lowest lying meson and baryon states (i.e. by

excluding resonance having the same quantum numbers as the mesons and baryons considered

here) we can avoid potential problems with interference, and certainly for the values of .4. allowed

by the data, the only relevant states are those with the lowest masses.

3.2 Flavour Asyrnmetry in the Proton Sea

From Eqs.(3.63) to (3.73) it is clear that the predicted contributions from DIS offvirtual mesons and

baryons to the u, d and s quark (and the corresponding antiquark) distributions in the proton will

be different. Because the contributions to s and s from DIS from kaons and hyperons are very much

smaller than those from the non-strange mesons and baryons to the u, and d distributions (mainly

because mx Þ mn) we see that the meson model produces signiflcant SU(3) flavour symmetry

violation. Furthermore, it is apparent that the contributions to the z and d (and u ar.d d) quark

distributions themselves are not the same, so that SU(2) flavour symmetry of the proton sea is also

broken. In the case of the pion cloud, the simple origin of this is asymmetry is the predominance

of the dissociation process p --+ ntr+ over p -- pro. In the former, the zr* valence quark content

is du, while in the latter the ratio of u to d quarks is the same. This process certainly respects

isospin symmetry, which simply says that the dissociation p ---+ nrr is as likely as ?¿ --+ pr- , or at

the quark level, z -- d(ud) is as likely in the proton as d ---+ u(da) in the neutron. But it clearly

implies an excess of d quarks in the proton, and an equal excess of z quarks in the neutton.

If the masses of quarks were identical (i.e. SU(3) flavour symmetry limit) then the ratio of

strange to non-strange antiquark distributions in the proton would be 1:2. From neutrino ex-

periments (ut Q' - 4 GeV2) the measured ratio was found to be about 1:4 [115], which can be

understood semi-quantitatively from the the heavier mass of the strange quark. On the other hand,

because charge symmetry is such a good symmetry in strong interaction physics, it was naively

expected that SU(2) flavour symmetry of the sea would be an excellent approximation. Indeed, this

expectation has been built into almost all of the analyses of the nucleon structure function data.

The main redson was believing this has been the simple picture, motivated by perturbative QCD,
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Figure 3.15: Calculated d - z difference from the various meson-baryon states. For the dotted,
dashed and lower solid curves a dipole form factor cut-off of Â : 700 MeV is used, while the upper
solid curve is calculated with .4. : 900 MeV.

in which the mechanism for producing antiquarks is gluon splitting into qg pairs. However, unless

isospin symmetry is genuinely violated (by giving a non-zero mass difference between the u and d

quarks), the perturbative process g --+ qq should be SU(2) flavour symmetric, as the gluons of QCD

areflavour-blind. Therefore a d-a ditrerence cannot be produced by perturbative QCD.Actually,

this statement should be qualified by saying that at lowest order in as there is no asymmetry. A

higher order perturbative QCD calculation of d - z was performed some time ago by Ross and

Sachrajda [116], who found a non-zero result for this difference, although the absolute value was

very small. This means that the calculated d - z difference will be preserved in QCD evolution.

But the fact that we get a non-zero d, - A ditrerence in the meson-baryon model is not surprising,

since this is a non-perturbative model, and its predictions are not in conflict with QCD, nor with

isospin symmetry.

In Figs.3.15 and 3.16 we plot the d- a ditrerence, and the ratio @- ø)l@ f z), respectively,

calculated within the meson-exchange model of the nucleon. Fig.3.15 shows that the inclusion of

rA states (with Â = 700 MeV) eliminates some of the d excess, since here the dominant process

is p ---+ A**zr-, which at the quark level, d ; u(da), is seen to produce a z excess. However,

adding the vector meson components (lower solid curve) restores the original d excess at small r,
and enhances the excess at larger r. At larger values of Â (: 900 MeV) the d - ¿ difference is

larger still (upper solid curve), although the ratio @- t)l@ -l u) is smaller, Fig.3.16.

On similar grounds the processes p --+ KoE+ and p --+ K+EO(À) will introduce not only a

different strange quark content of the proton than a non-strange, but also a different s distribution

as well. This is clear from Fig.3.17, where we show both the sum of the calculated rs and rs

I

H
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--- rN f nA
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Figure 3.16: Ratio of the difference and sum of the calculated SU(2) antiquark distributions in the
proton. The cut-off for the dotted, dashed and upper solid curves is À : 700 MeV, while the lower

solid curve is calculated with Â = 900 MeV.

distributions and their difference. Although not obvious from the flgure, the integral over s - s is

zero, since the proton has no net strangeness. Since at large z the hyperon structure function is

suppressed by about two powers of (1- r) compared with the kaon structure function, the excess of

s over F is concentrated at very small r @ S 0.01). Atthough these are quite interesting predictions

of the model, because of the very small magnitude of the strange contributions (notice the scale on

the verticai axis) it will be difficult for such effects to be observed in DIS experiments in the near

future.

Of course the idea of an asymmetric proton sea is not a new one. The earliest, and perhaps

most obvious, suggestion for why we should expect lt + d was made by Feynman and Field [117].

Because the proton has an unequal number of valence u and d quarks, by the Pauli exclusion

principle we would therefore expect creation of additional gq pairs inside the proton to be sensitive

to the number of quarks of each flavour already in the proton. Since there are 2 valence z quarks in

the proton cogrpared with only 1 valence d quark, we therefore expect a larger d sea since uu patr

creation will be suppressed reiative to dd. In [117] the d and z distributions were parameterised

by rd: 0.17(1 - *)' and ru = 0.17(1- r)to, see Fig.3.18. With these, the integrated difference

is I du(d, - u) :0.057. An early calculation of the z and d sea quark probabilities in the proton,

incorporating the effects due to the Pauli principle, was made by Donoghue and Golowich [118] using

the MIT bag model nucleon wavefunction. More recently, work by Signal and Thomas [38] on the

calculation of quark distribution functions in the MIT bag model suggested a quantitative method

of calculating the ø-dependence of the Pauli d - z difference as well. tr'ollowing the earlier formal

analysis by Jaffe of the twist-2 quark and antiquark distributions [52], Signal and Thomas showed

0.6
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Figure 3.17: Strange & antistrange content of the proton, calculated from DIS off virtual I( and

hyperon components of the nucleon. The form factor cut-off.4. is 900 MeV.

that the valence quark distributions could be calculated from a sum of distributions representing

2 q, and 3qil4 intermediate states. On the other hand, the antiquark distributions arose only from

4 q intermediate bag states. Thus the d distribution required the intermediate state to consist of

2 u and 2 d quarks, while DIS from a u, quark implied a 3u* ld intermediate state, which, because

of the Pauli principle, has a smaller probability. Furthermote, in Ref.[38] the d excess associated

with the Pauli effect was equal to the d excess and satisfied the condition

ft ¡l ¡7
I d* d"*..,(r) = | dr 1d,",çr) - u."u(r)) : / dr p¡¡(r): Pw. (3.78)

Jo 
v^vvue, 

Jo Jo

Here, p¡¡(r) denotes the piece of the valence quark distribution associated with a four quark inter-

mediate state (allin a 1s state), while 1-2¡¡ is the integral over the distribution function associated

with a two quark intermediate state. In Ref.[38] the calculated distributions were found to peak

at n - l- M¿*¡f M, where M¿n¿is the mass of the intermediate spectator state. Since the 4-quark

intermediate states have mass greater tha.n M, the antiquark distributions will peak at negative ø.

Therefore in the physical region (, ) 0), pN(n) should resemble a typical sea quark distribution,

namely be finite at n :0 while dropping rapidly to zeto by u - 0.2 - 0.3. For simplicity, we can

parameterise the large r behaviour by a p¡¡(z) o( (1 - r)7 form [15, 63]. On theoretical grounds,

we can also expect that due to the lack of Regge Í - Az exchange degeneracy, at small r the d, - u

difference should be proportional to pry(u ) - td, where a(- 0.5) is the Regge intercept [119, 104].

The overall normalisation 2¡¡ was calculated in Ref.[47] to be less than about 0.25 for bag ra<1ii

A,l o.s tm.

In Fig.3.18 we compare the Feynman & Field parameterisation with the function piv(r), nor-

malised so that P¡v :0.05,0.15 and 0.25. Also shown is the effect of using a slightly more singular

- 
n(s + s)/2

--- ø(s - s)
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Figure 3.18: Difference between d and u, quark distributions in the proton, for the Feynman and

Field parameterisation [117], and a parameterisation of the function pN(r) - 10'62(7 - r)7, with
normalisation Piv : 0.05,0.15 and 0.25.

small r behaviour, a = 0.62, as suggested by the recent NMC data on F2, - Fzn (see Section 3.3).

Apart from the Pauli exclusion principle, and the proton's meson cloud, several other suggestions

have been made for possible sources of SU(2) flavour symmetry breaking in the proton sea. One

possibility is that isospin symmetry is genuinely violated to a signiflcant extent. Of course in

the real world isospin is not a perfect symmetry - it is certainly violated by the electromagnetic

interactions. However, since the proton-neutron mass difference is of the order of 0.1% we can

expect that its effects on u- d should be negligible. Furthermore, since the mass of the d quark is

believed to be slightly larger than the z quark mass, the sign of d - z should actually be negative,

since in that case the gluon splitting into dd pairs would be suppressed relative to uu creation.

A curious extension of this idea was put forryard by Ma et al. [120] who postulated that isospin

may be violated but that flavour SU(2) symmetry could remain unbroken. In such a scenario, one

would ha,ve up : d,p in the proton, brt up f d. However, since the only reason that the d content

of the neutron differs from the t¿ content of the proton is that TrLd, ) ntu¡ it is difficult to imagine

how in the proton the same isospin violating mechanism,, g + qQ, can produce equal amounts of

uu and dd^

Unfortunately at the present time there are not sufficient data on d - u to make def,nitive

conclusions about these various mechanisms for SU(2) flavour symmetry breaking. However, there

have been a number of interesting suggestions for experiments that could directly probe the light

sea quark content of the proton, and we briefly review these now.

Recently it was suggested by Martin, Stirling and Roberts [121] that one could learn about

the SU(2) sea by observing the lr7-boson asymmetries in pp collisions, pp + W+X. The simple

Ê
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idea is that a z(d) quark in a proton interacts with a d(Z) antiquark in an antiproton to produce

a W+(W- ) boson. Because the z(z) quark in the proton (antiproton) carries more momentum

(lies at larger r) than the d(d) quark, W+(W-) bosons will be predominantly produced in the

proton (antiproton) direction. However, in addition there will beW+(W-)-bosons produced by

the annihilation of d(Z) quarks in the proton with d(z) quarks in the antiproton. Thus at large

energies the asymmetry in the l\l-boson rapidity (gly) ditttibution

A(sw) : or - o- _ u(r)d(rz) + d(nùã(*r) - d(r)u(r2) - d(r2)d(r1)
(3.7e)

u(r 1) d(r 2) t d(r 1) u(r z) + d(r y) u(* r) + d(r 2) d(r 1)

where o+ : doldvw(W+),would be sensitive to the antiquark distributions in the proton. Here,

l¿r,2 : Myrll/íexp(+g), s is the centre of mass energy squared, and the lZ-boson rapidity is

defined by yw : (712) I"(q-lq+), with q the l,Z-boson momentum. Furthermore, since only left-

handed quarks (right-handed antiquarks) couple to l{-bosons, in the resulting l[,/ ---+ eu decay the

electron (positron) distribution will generally follow the direction of the incoming proton (antipro-

ton). It was suggested in [121] that the experimental e+ asymmetry, A(u"): (dof dg.+@"*¡ -
do f dy"-(y.-Ð I @" I dy.+(y.+) | d,o I dy.-(A"-)), could then serve as an independent check on the z

and il distributions in the proton. The claim in Ref.[121] was that their existing parameterisations

with no SU(2) flavour asymmetry are consistent with the data on A.(y") taken at the Collider

Detector at Fermilab (CDF) [122]. However, the error bars in this experiment are quite large, and

the data at present will have difficulty in discriminating between SU(2) flavour symmetric param-

eterisations, and those with a small d - z difference, such as that suggested by the meson model

in the previous section. On the other hand, a large d - u difference, such as that arising from the

meson model with large form factor cut-offs Â, may well introduce a detectable difference.

In another experiment, performed some than 10 years ago by the E288 Collaboration at FNAL

[123], the slope of the rapidity distribution for proton-nucleus Drell-Yan production was measuted,

and found to be sensitive to the uld ratio. In that experiment, the quantity

o+*o-

ln
d

dy
(3.80)

a=O

was measured as a function of Jr, where , : M?*rls. It was found that a parameterisation with

d> u improved the quaüty of the frt11241. However, since the analysis of this experiment required

the quark and antiquark distributions in the nucleus, any conclusions reached about the nucleon

sea distributions were obviously dependent upon any nuclear assumptions made. In fact, it was

later shown by Ericson and Thomas [125] that a similar improvement in the fit could be made by

assuming a smal1 difference between the g distributions in the nucleon and in a nucleus.

Proton-nucleus Drell-Yan production was also studied recently by the 8772 Collaboration at

Fermilab. It was found that by comparing the yield per nucleon in a proton collision with a neutron-

rich target such as tungsten with that for an isoscalar nucleus, the resulting ratio would also be

sensitive to the d - z difference. However, it has since been argued by Eichten et al. [126] that this
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too may not be a sensitive enough experiment for a small non-zero d- z difference to be discernable

from no difference.

Perhaps the experiment that is most sensitive to the light sea quark distributions was that

recently proposed by Ellis & Stirling [127], who suggested measuring the asymmetry between

the pn and pp Drell-Yan production (i.e. pI{ -- l+l- X) cross sections at zero rapidity, Aoy =
(onn - op'o)f (opp * op"), where oPN x d2oeN ld\FdUla=o.Neglecting terms involving annihiiation

of sea quarks in the (beam) proton and (target) nucleon, the cross sections can be written

, (4Àv - 1)(Às - 1) + (Àv - 1X4Às - 1)Aov : (3.91)

where \v : uvldv and Às : uf d,. The advantage of measuring this ratio is that it would be

free from any nuclear dilution effects, and the complete asymmetry could be determined from

ratios of valence and sea quark distributions alone. Since the dvluv ratio is well determined, Apy

would then serve as an accurate indicator of À5. In Fig.3.19 we plot this Drell-Yan asymmetry

as a function of yE : JqT with s - 1500 GeV2 (corresponding to a proton beam energy of

about 800 GeV) calculated using the quark and antiquark distributions of the meson model (with

t\. = 700 MeV). This is compared with the asymmetry arising from the parameterisation of Morfrn

& Tung [50] for the valence quarks (dotted curve), and from lhe d,yf uy ratio flxed at 0.57(1- z)

[15] (dashed curve), with Às:1in both cases. It is clear that even small deviations of uf dftom

unity will have a big impact upon ,4.¿ry.

An extension of this ideawas discussed in Ref.[128], whereit was arguedthat one could directly

measure the difference d - z by going to large projectile momentum fractions 11, but small target

fractions 12. In that case the term in Apy involving the product of projectile sea and target valence

distributions could be neglected and the asymmetry reduced to

Aov È
4Àv-I Às-1

(3.82)(aÀv*rxÀs+r)
Unfortunately, there are as yet no data on Apy, although a proposal has been made [129] for an

experiment to measure the Drell-Yan cross sections for hydrogen and deuterium targets. Such data

would be eagerly anticipated.

Finally, an interesting observation was made by Levelt, Mulders and Schreiber [130], who found

that semi-inclusive charged-hadron production could be used to obtain information on the inte-

grated d - ¿ difference. Following earlier work by Gronau et al. [131] and Field and Feynman [117]

on the parton model for semi-inclusive DIS, Levelt et al. showed that the integrated difference

should be proportional to the measured difference between the charged pion and kaon production

rates from DIS on protons and neutrons. However, the available data from the EM Collaboration

at CERN on semi-inclusive charged-meson production [132] are not yet sufficiently accurate to

discriminate between SU(2) flavour symmetry and asymmetry. (For a more detailed discussion of

semi-inclusive DIS see Chapter 6.)

However, the most important impact on the question of SU(2) flavour symmetry in the proton

sea, and certainly the stimulus for the close attention this question has received in recent times, has
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Figure 3.19: Asymmetry for pp a,nd pn Drell-Yan production. The u : d, predictions, with the
valence quark parameterisation of Morfin and Tung [50] (dotted) and with a fixed valence ratio
dvlrv = 0.57(1-u) [15], are compared with the mesonmodel calculation with ¿ I d(fot r\':700
MeV).

come from the measurement by the New Muon Collaboration at CERN of the difference between

F2,p and F2^ 1651, and the consequent determination of the Gottfried sum rule. We will now discuss

the issues involved in this experiment more fully.

3.3 Gottfried Sum Rule

The Gottfried sum rule [64] is perhaps the most famous consequence of SU(2) flavour symmetry

of the sea. Because this measures the r-integrated difference between the proton and neutron

structure functions, it is sensitive only to the non-singlet SU(2) content of the nucleon. Let us

firstly define the quantity

sç(r,r) : I,' y (Fro@) - Fr^(*')). (4.8s)

Relating the proton and neutron structure functions to the quark distributions in the proton (i.e.

using charge symmetry), we have

.9ç(r,1) : dn' (u(r') + n(*') I d(rt) + d(r')) (3.84)
1

3

1

5

t:
1",

d,r' (uy(æt) - d,r(*')) * 
? Lt d,nt (d(rt) - a(*')) (3.8b)

where the valence quark distributions are defined by qv = q - q. Since the number of valence

quarks in a hadron does not change, we obtain the Gottfried sum rule

1

5
,9c = Sc(O,1) :
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provid.ed we make the additional assumption ft dn d : [] ar a, as would be expected in the

quark-parton model (QPM).

The early experimental data for ,56(r,1) did in fact suggest a value lower than 1/3, but with

errors large enough to be consistent with it. Howevet, armed with the theoretical expectation of

SU(2) flavour symmetry, most authors believed that ,5c would tend to Il3 as the accuracy of the

data improved. To the surprise of many, the recent, accurate determination of ,Sc by the New

Muon Collaboration appears to support the idea that z # d 165,133]. Neglecting nuclear effects,

the NMC found

S c(* 
^¿n, 

I) : 0.ZZg + 0.0157 (3.87)

where rrn,in = 0.004. Included in (3.87) is an extrapolation from r = 0.8 to 1, the contribution

from which was estimated to be 0.002 + 0.001 if a smooth extrapolation of F2of F2^ to lf 4 at r : I

is assumed. From the unmeasured region (ø < 0.004), using the extrapolation

Fzp(r) - Fz^(*) 
-) 

a *þ as / ---+ 0 (3.88)

with a - 0.21,,þ:0.62, the contribution was found. to be ^9ç(0,n^in): (olÐ *þ*nn:0.011.

With the conventional Regge theory assumption thai B - 0.5, ^9c(0, r^¿n) wottld be 0.014. The

combined integral over the whole range of ø was therefore

Sc 0.240 + 0.016 INMCI (3.8e)

with errors added in quadrature.

Although not the only one, the most natural explanation for the smaller than expected value

of ,56 is that d(r) # a(*) (see later for a discussion of other possibilities). Taken at face value, the

NMC result would imply that

l"
1

d,r (d(r) - n(*)) 0.14 + 0.06 (3.e0)

The various mechanisms discussed in Section 3.2 are then potential candidates for generating such

a difference 3. Before turning to more exotic explanations, it seems more sensible that the sim-

plest possibilities should be exhausted first. The mqst compelling, and most economical from the

theoretical point of view, appear to be those based on the Pauli exclusion principle, and on the

presence of a small pion (and perhaps other meson) cloud.

We therefore begin with the meson model, described in Section 3.1. From the mesonic and

baryonic corrections to the quark and antiquark distribution functions in Eqs.(3.63)-(3.73), the

3In addition to the possibilities discussed there, another explanation for the smaller value of ^96, based in isospin

symmetry breaking, was proposed by Walliser and Holzwarth [134]. They showed that within the soliton model the

value of 5c deviates from 1/3 by a factor (Me - M.)l('¡nu - m¿), so that based on current knowledge of the d - ø

quark mass difierence, the sum rule should be some 30% sma.ller.
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total contribution from all mesons to the Gottfried sum can be written

^9c

tt - +nl ar (t@B)u ¡ 6@B)n - 6(ma)¿ - 5(røs)¿ ¡ 5(em)u - 6@M)d)

= L(t
3\

(nlN^
3

(n)N,
3

5(z)a"
3

5(nl np

3
+ + * (n)ru, * (r)rr * (n)lrx (3.e1)

Note, however, that because the non-strange baryon recoil contributions to the quark and antiquark

distributions are related by

A(MB)u(r): 6@B)d@), d@B)a@): 6(MB)u(r) lM: non - strange] (3.92)

the contributions to ,9c from DIS from a pion or a vector meson would cancel (see Eq.(3.94) below).

The presence of an apparent 1l and isoscalar c^l component in (3.91) should not be misconstrued.

When the renormalisation factor Z is expanded, Z :1- (n),ni" - (n)n" - (n)¡¡o- (n)r.r, - (n)to-
(n)rc - (n)rrr, these contributions vanish, so that the total effect upon 56r from mesons can be

written as

(3.e3)

In Fig.3.20 we show the effect of the meson correction on the Gottfried sum rule, and compare

with the quoted experimental value. It is clear that the net effect of the virtual meson-baryon

states is to decrease ^96r. The r.lf state alone can reproduce the quoted value of ,56 for r\ - 1.3

GeV. The addition of rA components would require a slightly larger cut-off (since this produces

an excess of z over d, which cancels some of the d excess generated by the z-ll states). Including

the pN state however restores, and actually enhancesrthe d excess, although some of this is again

cancelled by the pA states. With all components included, we find that the NMC value of 55r can

be reproduced with ,4. = 1.1 - 1.2 GeV. For ,4. 5 ZOO MeV, as suggested by the antiquark data in

the previous section, mesons can generate only about half of the asymmetry required to satisfy the

experimental sum rule.

As well as examining the effect of the meson cloud on the Gottfried sum rule, we may be able to

learn more by observing its effect upon the shape of the structure function difference F2r(r)- F2"(r).

From (3.63)-(3.73) we readily obtain

Fzp(r)- Fz.(*) = ({*ur(*)- rdy(r)) + Ð_ \(orun+nm)@@)- d(r)))
M,BU'

( @ur(*) - rd,v(r)) * I l,' o, (-I¡""(ù + rN¡@)) ,rvM (*u)

Bu( (3.e4)

Sc

-!r*-@') - rg.,*o@) * rN,@') +25tr"@))

tgr*-{r') 
+ !r*,@') - rN,@')+ fro'{u) + !

å(

r*Tl'*'(
r t¡ 

I,' or' (

*t)

rtr@') rpu(rp)

Note that kaons and c.r mesons contribute to the structure functions themselves, even though their

contributions cancel when the structure functions are integrated over z. Actually, we include the
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Figure 3.20: Mesonic corrections to the Gottfried sum ,9c(0,1), as a function of the dipole cut-off
t\: (i) zrlf only, (ii) rff and zrA, (iii) rlf and pff, (iv) zrlú, zrA and pN, and (v) rN, z'4, pIÍ and
pA, compared with the NMC data [65] (thick solid lines, including upper and lower limit of errors).
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Figure 3.21: Proton-neutron structure function difference for varying meson-baryon form factor
cut-off À. The dotted curve is the recent (leading order) Morfin and Tung [50] parameterisation of
(uv - dv)13, in which d,: u.

þ

N
E

I

I
!

c,
N\

0.08

0.06

0.04

T

'ìì--

(

(

(

(

(

1/3

III )

in)
v)

i)
ii)

i
à

t
/^

I

+

$

r
I

.a NMC data

----- MT

r\=0.7GeV
Â.=0.8GeV
Â=0.9 GeV

68



t
ÀI

,h

0

1

Mr(Lo)
----7TN

nI/*nA
all rnesons I

Å

.a NMC data

o.12

0.1 0

o.o2

0.00
0.001 0.01 0 0.1 00 1.000

Figure 3.22: Prcton-neutron structure function difference as a function of r. Shown is the effect
of the zrlf states alone, ?rN + zrA states, and all mesons (with À = 700 MeV). The data is as in
Fig.3.21.

K and c¿ contributions only for the sake of completeness. Numerically, we find that dropping them

altogether has negligible consequences.

In Fig.3.21we show the effects on F2r- Fzn of including contributions from DIS offthe virtual

meson-baryon components for varying .4., and compare with the predictions of existing parameter-

isations of (uy - dv)13 which have d: z. The most noticeable consequence of the meson cloud

is a decrease in the peak value of F2o - Fzn at r - 0.3. Since here the parameterisation clearly

overestimates the NMC data, the effect of mesons is to move the curve in the right direction. At

the same time, however, the structure function difference becomes larger for r 5 0.1. Because the

parameterisation is already too large in this region compared with the NMC data, it's clear that

mesons alone cannot improve the fit at small u.

At large r the meson-corrected curves consistently lie beneath the NMC data points. This is a

consequence of the original parameterisation [50] underestimating the NMC Fzp - l'2," results (in

fact most other parameterisations [15, 51] also have this property). If we had a parameterisation

which could better reproduce the large-r data, the quality ofthe fits for the corrected curves would

naturally improve. We should add, however, that the NMC did not report much data at r à 0.4.

In any case, the discrepancy between the NMC data and the quark parameterisations at large ø is

unrelated to the failure of the Gottfried sum rule, and is therefore not our primary concern.

Figure 3.22 shows the effects of the individual meson contributions (for .[ = 700 MeV). The

action of the zrl{ states is to decrease F2o - Fzn at small r, while adding the rA tends to do the

opposite. Howevet, it is only with the addition of the vector mesons that there is an increase over

the parameterisation in this region.
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Figure 3.23: Gottfried sum rule integrand, integrated from r to 1. The solid curve is the parame-
terisation of Morfin & Tung [50] with d, : u, while the dashed curve includes mesonic corrections
with À :700MeV. The dotted curve is a best fit to the NMC data.

In Fig.3.23 we show the value of S6(r,,1) as a function of r, for the d : z parameterisation, and

for the meson-corrected curves with r\, : 700 MeV. The parameterisation (solid curve) is clearly

too large for r 5 0.1. With the addition of the meson correction (dashed curve), the fit is clearly

improved, but still overestimates the NMC data at very small ¿. To improve the F2o - Fzn frt at

small z, and at the same time generate the rest of the d - ø asymmetry required to reproduce the

NMC ^9c value, we must therefore look to other mechanisms. One candidate is the asymmetry

generated by the Pauli exclusion principle.

First let us examine the combined effects of the meson cloud and the exclusion principle on

the shape of F2o - Fzn. For the strange mesons and baryons, the Pauli blocking effect should be

present in DIS from virtual I(o , K+ and X+, since these contain unequal numbers of u(n) and d(d,)

quarks. It will not be present in DIS from Ð0 or Á.0. This raises the interesting possibility that

we may pick up a non-zero strange quark contribution to 55r from the Pauli principle, if the Pauli

effect in DIS from K with Ð recoil and in DIS from Ð with 1l recoil are different (and in principle

they should be), which would spoil the cancellation of these components. However, having seen

that the role of strange mesons in the DIS process is negligible, we can be fairly confident that by

dropping the strange contributions our results will not be signiflcantly affected.

What may be more significant is the possibility that the shape of the Pauli d - z contribution

from DIS off a virtual A, with r or p recoil (labelled pa(r)) may differ from the shape of the

Pauli difference from DIS off a nucleon with a r or p recoil, pN(n). In principle these should be

different because the spins of the 4-quark intermediate states (which arise when the u or d quarks

are probed) in the nucleon and A are different. This means that, for example, while a quark
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inserted into a (spin 1/2) proton can produce a state with spin 0 or 1, one inserted into a (spin

312) L+ could produce either a spin 1or spin 2 intermediate state. One way to make spin 0, 1or

2 four-quark states is to construct them from spin 0 or spin 1 diquarks, and since a vector diquark

is more massive than a scalar diquark (see Section 2.3, and Ref.[a8]), and therefore has a softer

r-distribution, the result is that the Pauli blocking function py(r) should have a softer shape than

p¡¡(r). Furthermore, the integral over pa(z) (denoted Pa) need not necessarily equal 2¡¡. Having

said this, it is probably also true that the uncertainty introduced in taking these to be the same

will be much smaller than the overall uncertainty in the absolute normalisation of d - u due to

Pauli blocking in the nucleon.

The final expression fot F2r- F2n, including meson and Pauli effects, is

Fzo@) - Fz.(r) = 
Z5 

@ur(*) - rd.y(r) - 2rp¡¡(r))

dy' (f x"@'¡ + fxr@') - 3fN"@')) (rBuy(r9) - rpd.y(rn) - 2rBp*(*a))

dy' (lm(y') + ltr(s')) (rpd'y(rB) - 2nBp6(nB)) (3.e5)

d,y'Í>x(s') (;."""r (ra) - zrBey(rÐ)

dy (fr>@) - }lx¡,(yÐ (**v'çnM) - 2r¡apy(r¡fi)

which, making the above approximations, reduces to

1

dy' (lv"(y') + "f¡rp) 
(rsuy(rp) - rpd'y(rs) - 2rBp¡¡(r6))

1

dy' f ¿,m(y') (rBd,y(np) - 2*npN(rn)) . (3.96)

The resulting z distribution is plotted in Fig.3.24. The Pauli correction is largest in the small

r region, for 0.01 I , S 0.1. By reducing the absolute value of F2, - Fzn at small ø the Pauli

correction brings the parameterisation (with d : z) into better agreement with the data in that

region. However, for larger r (0.1 S * S 0.3) the peak in the distributions is still too large to be

consistent with the NMC data. On the other hand, when combined with a small mesonic correction

(for Â : 700 MeV), a very good fit is possible with ?ru = 0.1.

Integrating the structure function difference between r and 1, we plot in Fig.3.25 the function

Sc(*,1) including both meson and Pauli effects. Clearly the quality of the fit is improved with the

addition of Pauli blocking. In particuiar, the apparent saturation of the sum rule below r = 0.01

is better fitted by including the Pauli term. (In a more recent experiment, the E665 Collaboration

at Fermilab reported an even more dramatic saturation of the Gottfried sum rule for * S 0.125,

J;:rtri rtr(F2o- Fz*)l*: -0.07 + 0.07 t135].) In the intermediate-r region 1r I O.a) the meson-

corrected curves appear to underestimate the NMC data. This can be understood from the shape

of the original Fzp - f'2r, distributions in Fig.3.24, where for r above - 0.3 the curves tend to lie

beneath the NMC data points.
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Figure 3.24: Efrect of the Pauli exclusion principle on the proton - neutron structure function

difference, as a function of r. The dotted (without meson corrections) and solid (with À = 700

MeV meson corrections) curves are for P :0 (largest curves) 0.05,0.1, and 0.15 (smallest curves).
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Figure 3.26: Gottfried sum rule with mesonic and Pauli corrections. The solid curves represent

Pauli normalisation of Px:0.05 (Iargest),0.1 and 0.15 (smallest).

For the Gottfried sum, from (3.95) we obtain

sc : sYt (r-zPw) + i(Px-Pù((n)m-r(r)¡r)
t2+ 
fr triu iPx - aPv) (nlvv + i@N - Prc) (rl¡'x (3.e7)

where S{B is the sum rule with meson/baryon corrections only, as given by Eq.(3.93). Again,

dropping the negligible strange contributions, and assuming that the difference between the Pau1i

blocking in the nucleon and A is not large, we obtain

sc È syBQ-zPx). (3.e8)

This last result that the mesonic and Pauli contributions factorise was f,rst presented by Signal,

Schreiber and Thomas [47] (afthough there only the zrJV and zrA states were considered). In Fig.3.26

we show the variation of .9ç with both À and Plv. For À = 0.7 GeV, the experimental sum rule

can be obtained with 2ry t 0.1.

To summarise the results of this sectiÕn, we have seen that the NMC measurement of the

Gottfried sum rule suggests a sizeable difference between the d and u quark distributions in the

proton. We have examined two fairly obvious sollrces of such an asymmetry, namely that arising

from the meson cloud of the nucleon, and that due to the Pauli exclusion principle. For consistency

with the total antiquark data, as well as the shape of F2, - Fzn at small and intermediate r, the

value of the meson-nucleon form factor cut-off Â (determining the size of the meson contributions)

needs to be less that about 700 MeV. This is enough to give at most about half of the asymmetry

required for agreement with the experimental sum rule. With a small amount of Pauli blocking
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(PN - 0.1) we find that the combined mechanisms can easily reproduce the NMC result. While

it is possible for a larger amount of Pauli blocking (Pw = 0.15) to produce the entire sum rule

discrepancy, the resulting F2r(r) - Fr^(*) is too large at intermediate r, and is underestimated

at small r, without any mesonic component. Thus various phenomenological constraints seem to

imply the need for both mechanisms.

The fact that our flts do not precisely reproduce the large r data is not very surprising. Apart

from the fact that the input valence parameterisation itself disagrees with the NMC data at large

o, our own model is not entirely self-consistent. We take as our starting points the valence quark

distributions which aïe parameterised under the assumption of flavour SU(2) symmetry in the sea,

which is naturally broken by mesons, as well as by the Pauli effect. A fully consistent approach

would be to readjust the full valence distributions, so that with the d - u conections included they

reproduce the data to which they were originally fitted. However, the effect of this correction is

unlikely to be very large. No such ambiguity exists for the integrated distributions, in the Gottfried

sum itself.

Before finishing this discussion, we should mention some alternative explanations for the Got-

tfried sum rule violation. It was suggested by Martin, Stirling and Roberts [121] that there may

not be any violation of the quark-parton model ,9c prediction at all, if large contributions to the

Gottfried integral come from the unmeasured, ø < 0.004, region. By parameterising their valence

quark distributions to be more singular at small r than what would otherwise be expected from

Regge theory (namely, qv - r-o'5), and also compared with what the NMC used in their r --+ 0

extrapolation, it was shown in Ref.[121] that a value of 1/3 could be recovered. Aithough this more

singular behaviour seems rather artificial, without data at such small r it remains a possibility.

However, one problem with this hypothesis of late onset (in the sense of decreasing z) of Regge

behaviour is the data from the E665 Collaboration [135], which suggests early saturation of the

Gottfried sum rule, and would therefore tend to rule out this option.

It was also suggested by Kaptari and Umnikov [136] that nuclear effects in deuterium may

introduce errors in the extraction ofthe neutron structure function from the deuteron DIS data. In

particular, it was claimed that meson exchange currents in the deuteron could lead to substantial

antishadowing corrections, so that F2n extracted in a naive manner would be overestimated. With

this correction taken into account, it was argued that a vaiue roughly consistent with 1/3 could

again be recovered.

Furthermore, although expected to be small, genuine nuclear shadowing in deuterium could

also introduce corrections to the naively-extracted neutron structure function. The nuclear effects

thus represent potentially the most significant corrections to the proton-neutron structure function

difference, and to the Gottfried sum rule. It is therefore critical for the question of flavour symmetry

in the proton sea that we have a reliable estimate of F2n. In the next chapter we sha,ll examine in

some detail the nuclear effects in deuterium.
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Chapter 4

SHADOWING IN NUCTEAR DIS

We saw at the end of the last chapter that the Gottfried sum rule is sensitive to the small-r

behaviour of the neutron structure function, F2rr. Unfortunately, the absence of free neutron

targets means that deuterium has to be used in order to extract data on F2n. Traditionaliy in

DIS on the deuteron, in which the proton and neutron are held together very weakly, nuclear

effects have been ignored, and the total lepton-deuteron cross section assumed to be the sum of

the lepton-proton and lepton-neutron cross sections. However, any nuclear effects present in the

deuteron would introduce corrections to the F2n extracted under the simple additivity assumption.

Furthermore, even a very weak nuclear dependence at small r could have a siþnificant impact upon

the proton-neutron structure function difference, and any conclusions about the mechanisms of

SU(2) flavour symmetry breaking in the proton sea reached from the naive NMC experimental

value of the Gottfried sum rule.

From DIS experiments on heavy nuclei, a deviation from linearity has been observed [137] in

the nuclear EMC effect for the ratio of cross sections for scattering from a heavy nucleus and

from deuterium (in other words, for a mass number ,4. nucleus, oA + A oN). In particular, what

those experiments confirmed was a dramatic decrease in the nuclear cross section (or structure

function) per nucleon in the region of small r 1137,138], aphenomenon referred to as shadowing.

Whether appreciable shadowing exists in d,euteron DIS will be the primary focus of this chapter.

Partly motivated by some conflicting claims in the literature regarding the magnitude of this effect

[82, 139, 140], we perform a detailed analysis of the shadowing correction to F2p and examine the

sensitivity of the calculation to any model dependent parameters.

Nuclear shadowing is naturally a very interesting and important subject in its own right. (At

small r we are of course probing the long-distance structure of the hadronic tensor - see Eq.(Z.i+).)

Furthermore, any realistic model of shadowing in D should, when adequately extended for larger

A, be able to predict the shadowing effect in heavy nuclei as well. Following our discussion of the

deuteron, we will use the same model to study the small-ø dependence of the DIS structure functions

of heavy nuclei. We start, though, with a discussion of the physics behind nuclear shadowing, and

review some formalism which will be used in the subsequent calculations.
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4.L Physics of Shadowing

Stimulated by earlier work of Bell on the application of the Adler PCAC relation to nuclei [141],

Stodolsky was the first to predict shadowing in electromagnetic processes as long ago as L967 11,42].

Generalising the ideas of shadowing applicable to pureiy hadronic reactions, Stodolsky used an

argument based on the vector meson dominance model to show that the real photon-nucleus

cross section should deviate from the simple oc ,4. behaviour.

Since that time, and especially since the experimental discovery of shadowing of virtual photons

in nuclear DIS, our understanding of the phenomenon has greatly increased, even though a definitive

quantitative description from first principles is still lacking. \Mhat is well known is that the essential

origin of the deviations from linearity of the nuclear cross section is the finite probability that a

projectile scattering from a nucleus can interact with more than one nucleon as it traverses the

nuclear medium. Virtually all calculations of shadowing then amount to describing this process,

and the model dependence only arises from different treatments of the interaction mechanisms.

The formal way to quantify the shadowing effect in high-energy nuclear processes is the muitiple

scattering expansion developed by Glauber [1a3] (see also Sitenko [laa]). This was flrst done by

several authors, including Gribov [145], Brodsky & Pumplin [146], Gottfried & Yennie [147], and

others (for a review see Ref.[148]).

4.L.L Glauber Multiple Scattering Formalism

The basic assumption of the multiple scattering formalism is that one can represent the interaction

of a high-energy projectile with a nucleus in terms of projectile-nucleon ampLitudes. One further

makes use of the eikonal approximation, in which the interaction of the projectile with the nucleons

is presumed not to affect the projectile's trajectory through the nucleus. This approximation will

be valid if, in the target rest frame, the momentum of the projectile is much greater than the

momenta of any of the nucleons in the nucleus (or equivalently that the energy transfer is much

less than the incident energy [149]).

More formally, we write the elastic scattering amplitude for scattering a high-energy projectile

from a target nucleus (A) near the forward direction as

I ¿lql t -"-Ft = # .l d'zb Iá(b) exp[i(q - q')'b] (4.1)

where q and q' are the 3-momenta of the incident and scattered particles, and la(b) - 1 -
exp[iX¿(b)] is the profile function, with ¡a(b) the phase shift associated with impact parameter

b. This expression can be obtained by writing the scattering amplitude in a series of spherical

harmonics, and expressing the associated Legendre functions for small scattering angles in terms

of Bessei functions, and finally replacing the summation over angular momenta by an integral over

b [149]. Eq.(4.1) is valid for small scattering angles, which is a good approximation in high-energy,

nearly-forward elastic scattering. In DIS, we can therefore use this scattering amplitude (since
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q : q/) for the virtual photon Compton scattering amplitude (which as we saw in Chapter 2 was

related by the optical theorem to the DIS hadronic tensor).

Treating I as an operator which we can sandwich between initial and final states, and inserting

complete sets of states, we can express (4.1) in terms of the nuclear wavefunctions in coordinate

space, rþ ¿(rrr..., r,4),

r¿,(q,,q')
ilql / 

'2b 
d3r,

2tr J
'dtra ,þhþt,"., rd) I¿(b, 11,'.., tt) ú¡(rr,.'., r,4)

x exp[i(q - q') .b] (4.2)

where r1r...;r¿ denote the coordinates of the nucleons. The next, and crucial, step is to assume

that the phase shifts X¡ produced by each nucleon can be added incoherently, so that the total

phase shift X¿ accumulated by the projectile as it passes through A car- be written

A

xd(b,rr, ..., r¿) : I x¡(b - "¡) (4.3)
j=l

where s"i : (rj .û) ô, with ô : U7¡U¡. The above assumption amounts to admitting only two-body

interactions iir the scattering pÌocess. As a consequence of (4.3), the nuclear profrle function can

now be written

A A

T¿ 1- - exp i!x¡(b - sr) : II(t - r¡)
J

AAA:Ðrr-Df¡r¿+f r¡r¡r¡ -(-r)'rt...r¿ (4.4)
j j<k j<k<t

where l¡ = 1 - exp[iX¡(b - sj)] are the nucleon profile functions. With this expansion, E,q.@.2)

now describes all the possible ways that a projectile can be (multiply) scattered from the nucleus.

Applying this to DIS, we represent this multiple scattering expansion in Fig.4.1. It's clear that the

lst, 2nd, ... term on the right hand side of (4.4) correspond to the single, double, ... scattering

diagrams, respectively. The frrst term in the series is the impulse approximation for nucleons,

and gives the nuclear cross section as a simple sum of nucleon cross sections (aside from Fermi

motion effects). The second and subsequent terms introduce deviations from this linearity. Since

the contributions from higher order terms are expected to be sma,ller than the preceding ones, the

series is usually truncated after several terms. In calculations of nuclear shadowing, typically only

the double scattering diagram is kept. The different models of nuclear shadowing then essentially

correspond to different dynamical details of the photon-nucleon 'blob' in the double scattering

diagram.

J
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4.1.2 Hadronic Structure of 7*

It has long been established that photon-hadron processes have many remarkable similarities with

purely hadronic reactions. The most simple and natural explanation of this phenomenon is that the

photon itself has a hadronic structure. In particular, the physical photon state can be considered

to be a superposition of a bare photon state and a virtual hadronic component (c.f. Eq.(3.1) for

the physical nucleon state in terms of bare nucleon and virtual baryon-meson components). Then

the complete photon-hadron process can be viewed as taking place through interaction of the

photon's hadronic fluctuations with the target hadron. Since the photon has JPC : 1--, the

hadronic states with the correct quantum numbers can only be vector mesons, V. Furthermore,

by the Heisenberg uncertainty principle, only the lowest mass vector mesons (V : po,urþ) arc

expected to play a signiflcant role in low and medium energy processes. This is the basis of the

vector meson dominance (VMD) model. The phenomenological successes of this approach are

numerous (e.g. the total 71[ cross section, the copious vector meson photoproduction, etc.), and

we refer the reader to the many comprehensive review articles on the subject, for example, Refs.

[150-152].

The extension of the VMD idea to virtual photons, such as those in deep inelastic lepton-

nucleus scattering, can be made quite easily, although strictly speaking it's incorrect to talk of

'bare' virtual 7 states. This is done in the literature because the analysis of 7* interactions is a

simple extension of real 7 processes. Thus the VMD hypothesis is that the virtual photon state

can be written

lz.)
V=po ruró

where Z is the bare photon probability, L,E : r./ - Ey, with , : J&- Q2 being the energy of

the virtual photon and Ey = q2 + Ml. The Hamiltonian H.r"y describes the electromagnetic

interaction between the 7* and vector meson V. Formally, with this expansion the total T*-nucleus

amplitude is a sum of two contributions, the bare photon-nucleus amplitude ('one-step' process)

and the vector meson-nucleus amplitude ('two-step' process). At high energy, the destructive

interference between these two gives the famous result that the one-step amplitude is cancelled by

a term in the two-step amplitude [1a8]. The end result is then proportional to the amplitude for

V-nucleus scattering only.

That this is the case can readily be seen if we consider this process in time-ordered perturbation

theory in the target rest frame. Here we have two time-ordered diagrams - one in which the

photon converts into a vector meson which then interacts with the target (or equivalently, the

photon interacts with a vector meson travelling backwards in time after being emitted from the

target), and one where the photon interacts with a forward moving I/ after it has been emitted

from the nucleus. The former can be seen as an interaction of the state lV) with the target, while

the latter as an interaction between l7-) and the target. In the target rest frame one can easily

show [150] from the structure of the energy denominator in Eq.(4.5) that at high energy (z -- oo)

{z nË*"> + t (4.5)
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the contribution from the diagram with the forward moving V is of order If u compared with the

backward moving I/. Hence the conclusion that the state lZ.) it not important in high-energy

interactions. (Note that this is the opposite to what occurs in the IMF, as we saw in Chapter 3')

For the diagram in which the V is produced before the hadronic interaction, the energy de-

nominator is AE = -(Q2 + Mþ) I Zu . Choosing the normalisation of the state lV) to be 1/ 4tr a I fy ,

where /y is the 7*I/ coupling constant, and excluding non-diagonal vector meson transitions, the

total f A cross section in the VMD modei is

O.y*A

Having outlined the basic ideas behind the VMD model, we now turn to its description of

shadowing. tr'or real photons the VMD modei is known to give a very good description of the

shadowing of photoproduction cross sections, which occtlrs at high photon energies, , à t - 2 GeV

[153]. This suggests that in deep inelastic scattering, at least at low Q2, the same mechanism may

also be responsible for the shadowing of the inelastic nuclear structure functions.

The physical origin of shadowing in the VMD model can be understood by considering the

following space-time picture. \Mhen the virtual photon fluctuates into a virtual meson, the prop-

agation distance of the virtual hadronic state is A,d, - llLE x 2ul(Q2 + M?r). If Ld exceeds

the inter-nucleon separation, 2R¡¡ - 2 fm, then the hadronic state can interact with two differ-

ent nucleons as it passes through the nucleus. In terms of the Glauber multiple scattering series,

this would correspond to the double scattering diagram in Fig.a.l(b). Furthermore, if the vector

meson-nucleon amplìtude were purely imaginary, one would automatically obtain a reduction of

the total 7*A cross section. For large u (u Þ My),the propagation length of the hadronic fluc-

tuation becomes Ld, - (*M)-t Z 2Êm, where r:82f2M2, so that shadowing should start to

appear atrlr¡=0.1.
In the VMD model the correction 6o.r'¡ to the total 7*A cross section can be related to the

V,4 shadowing correction,6oy¡, using an expression similar to (a.6). Consequently the vanishing

of shadowing at large Q2 stems directly from the presence of the vector meson propagator" (Q' +

M?r)-'. Phenomenologically, this is quite important as far as testing models of nuclear shadowing,

since in DIS the photon's virtuality can be varied to probe the Q2 dependence of this effect. Because

the study of the small-r behaviour of structure functions in the larye-Q2 region requires very large

energy transfers, the early DIS experiments were inconclusive in their results for the Q2 dependence

of shadowing. In the last decade or so, as lepton beams with ever greater energies have become

available, nuclear structure functions at sma1l r have been explored at larger Q2. Indeed, it has

become clear that the d,epletion of the nuclear to nucleon cross section ratios at r S 0.1 does not

disappear wíth Q2, but rather exhibits scaling behaviour. The inevitable conclusion is that there

must be other mechanisms responsible for the large-Q2 behaviour of shadowing.

The VMD model can be extended by inciuding additional hadronic states (heavier vector

mesons), ot a qQ continuum, in the expansion (4.5). Such extensions of the VMD model are

+T(
M?

ttt!, + Q2

2

ovA. (4.6)
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referred to as generalised vector meson dominance (GVMD) [151, 154]. Models of nuclear shadow-

ing based on this approach have been used by several authors, including Bilchak, Schildknecht and

Stroughair [155], Piller & Weise [156], and Shaw [157]. Alternatively, it may be preferable when

discussing DIS phenomena at high Q2 to use a partonic description. This is certainly advantageous

when describing the scaling behaviour of the inelastic nucleon structure functions, as in the parton

model.

4.1.3 Diffractive Scattering from Partons

The description of nuclear shadowing in terms of partons can be understood with the help of a

simple physical argument. Consider DIS from a nucleus which is moving with very large speed in the

z direction (e.g. one in the IMF). The longitudinal size of the nucleus as seen from the target rest

frame will be (by length contraction) Lr¿, = \/- þ2 L4, where Lr7*= 2 R¡is the longitudinal

length of the nucleus with radius Rn at rest (i.e. the'proper'length)' Here B:1f | + MzAlP2A ,

where P¿ and M¡ are the longitudinal momentum and mass of the nucleus, respectively, which

means that Lz¡ x 2 Rt M.qlP¿. By the Heisenberg uncertainty principle the longitudinal length

(intheIMF)ofapartoninthenucleusisAz: lflc",wherelc":rP¡fAistheparton'slongitudinal

momentum (r is the fraction of the target nucleus momentum carried by the parton, normalised

to one nucleon). Now, when A,z ) L,z¡ the conditions will be just right for partons to overlap

spatially in the z-direction inside the nucleus. Furthermore, if the transverse dimensions of the

partons b - 7lt/Ø are similar, then these may interact and recombine. Specif,cally, this will occur

whenl/ø >2R¿,U,qlA.Infact,thisconditioncorrespondstocompleteshadowing,wherepartons

overlap with other partons in the whole nucleus. Incomplete shadowing will occur when partons

in one nucleon overlap with partons from only some other nucleons, and the onset of shadowing

should occur when partons from neighbouring nucleons only overlap. To determine when shadowing

should start to appear, consider the longitudinai size of a nucleon. As seen from the rest frame,

this will be Az¡¡ : 2 A R¡¡ M I Pa. Then partons from adjacent nucleons can overlap whenever

y''zw < L.z, or r { rs = (2 RN M)-t = 0.1 - precisely the same value as that obtained in the

VMD model.

The possibility of antishadowing was also discussed some time ago by Nikolaev 8¿ Zakharov

[158]. Their argument was based on the hypothesis that the total momentum carried by partons

was not changed by parton interactions, but only redistributed. If partons with a given r recombine

and annihilate, the overall parton density at this r will be depleted, but the newly created partons

will enhance the total parton density at larger r. The onset of antishadowing was also discussed

in [158], using an argument similar to the above. Specifically, it was argued that if the parton's

longitudinal size L,z exceeded the inter-nucleon separation, Adru¡r, then the partons from adjacent

nucleons could also overlap spatially and interact. In the IMF (or in the Breit frame [158]), Ad¡¡¡,, -
'/T -F Adfur, where Adir¡,r - | lmn is the average separation between adjacent nucleons in the

rest frame of the nucleus. Therefore neighbouring nucleons are contained in the parton localisation
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volume when Az - Al@Pt), or r ! ro : Amnf M¡ - rrùnlM - 0.15. Then shadowing in a

nucleus would be expected to arise when L,z exceeds the nuclear tadius, * S *'o: roA-r/3.

In both of these arguments the value of rs (and zfi) is independent of Q2. The clear implication

is that, in contrast to the situation in the VMD model, shadowing and antishadowing should be

present at high Q2. Exper\mentally this indeed appears to be the case, although the data are not

as unambiguous regarding the Q2 dependence of antishadowing [137, 138].

In the parton model the origin of scaling of the inelastic nucleon structure functions is the direct

coupling of the virtual photon to spin I f 2, point-ltke partons in the nucleon. In other words, scaling

depends only on the hard part of the interaction, and is independent of the details of the purely

hadronic interaction (which is completely independent of g2). For this reason the contributions

from all of the diagrams in the Glauber scattering series wiil scaie (modulo perturbative QCD

corrections).

In the Bjorken limit the parton model description of diffractive (Ilr 2 1) deep inelastic pro-

cesses corresponds to the Regge limit (s : (p+ q)' = Q'(ll* - l) + M2 x Q2l* > 8'). Conse-

quently some phenomenology from Regge theory has been used to describe the small-r behaviour

of DIS structure functions. Regge theory was originally developed in the 1960s in order to describe

had.ronic reactions at high energies. It was found that, for example, the approximate energy-

independence of total hadronic cross sections could be accommodated within this formalism. By

analytically continuing angular momentum into the complex plane it was discovered that poles in

the ú-channel partial wave amplitudes could account for the small-ú (or forward) elastic scattering

(i.e. diffractive) processes. In hadron-nucleon scattering, some of these poles were found to cor-

respond to known mesons. Experimentally, it was also discovered that there existed sequences of

mesons having the same quantum numbers, differing only in their spins. Hence it was assumed that

all mesons lying on the same mass-spin trajectory were exchanged. Other poles, however, like

the Pomeroo (P), which had the quantum numbers of the vacuum, did not correspond to known

particles. In parton language, it is now generally believed that the Pomeron may really be a system

of gluons [159-161] (at least two, in order to construct a spinless object), although there is as yet

no QCD-based derivation of the properties of the reactions described by Pomeron exchange. (Some

attempts at modelling the properties of the Pomeron have been made, for example, in Ref.[159],

where hadron-hadron scattering was described in terms of gluon exchange between MIT bags,

while in Ref.[161] gluon-ladder techniques weïe used to calculate deep inelastic structure functions

of hadrons at low ø.)

A central result of Regge theory is that the elastic scattering amplitude behaves like "4(s, t) -
so(¿) at high energy, where o(t) is a function describing the meson trajectory. The amplitude

corresponding to forward scattering (A(s,t = 0)) then determines (via the optical theorem) the

total cross section, otot - lnAls - "o(o)-r. 
Now, the intercepts of Regge poles associated with

known mesons are generally a(0) æ 0.5, which rules them out as candidates to explain the constancy

of total cross sections. However, since the Pomeron has intercept ap(0) æ 1, it is believed to be
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Figure 4.2: Pomeron structure function in diffractive lepton-nucleon scattering

responsible for the (approximately) energy-independent cross sections.

Applying these ideas to the Regge limit of the total virtual photon-nucleon cross section, we

can attribute the (constant) small-r behaviour of the nucleon structure functions (at fixed 8') to

Pomeron exchange, since I'2¡¡ - *t-ap(o¡ þ x Q2 lr for r --+ 0). (The exchange of Regge poles with

the p meson quantum numbers leads to the - r-r/2 behaviour of the valence quark distributions.)

Thus deep inelastic scattering at small z can be viewed in terms of virtual photon interactions with

the Pomeron structure of the nucleon, as depicted in Fig.4.2. If the momentum transfer between

the photon and nucleon is small, the nucleon will most likely remain intact, in which case there

will only be exchange of vacuum quantum numbers. Such processes can be studied experimentally

in semi-inclusive inelastic scattering (see Chapter 6), in which events are 'tagged' by u flnal state

nucleon possessing a large fraction (l SOø) of the target nucleon's momentum in the centre of

mass frame. Since the virtual photon probes the parton structure of the Pomeron, such processes

can actually measuïe the 'structure function' of the Pometon, F2e 1762-164], which is deflned in

terms of the cross section for 1*P diffractive scattering,

Fzp = !lo,.r. (4.7)
411'A

There have been several attempts to calculate the Pomeron structure function [162-165] (i.e.

the fP'blob'in Fig.4.2). Usually two contributions to F2p are inciuded, from the quark-antiquark

box diagram, Fig.4.3(a), and from the triple Pomeron interaction, Fig. .3(b)

Frp(*p,e') : FIT')@r,q\ + pll)@r,e\ (4.8)

and normalised such that

Fzp : lqql ¿zpÍ¿¡¡ |

\*) *îfl,=, ' (4'e)

Here y : k . slp . g : r(I + Mk lQ') x M], I s is fraction of the nucleon momentum carried by the

Pomeron, Mk:(k+q)2 isthemassof thehadronicdebrisX,and rp:rlg isdefinedtobethe

fraction of the Pomeron's momentum carried by the struck quark. Also ú x -k2,, and the function

q

k k^t k

p,p
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Figure 4.3: Pomeron structure function. (a) quark-antiquark box contribution, (b) triple-Pomeron

contribution.

fiitt ," the diffractive structure function, describing semi-inclusive diffractive lepton-nucleon DIS,

in which the recoil nucleon and the hadronic state X are separated by a large rapidity [16a]'

The Pomeron structure function arising from the quark box diagram , F:!;4, has been calculated

by Donnachie and Landshoff [164]

p[Tù@r,g\ : GzEtc) P3 ne(t-re). (4.10)
opp

Herc, Bf; = 3.4GeV-2 is the quark-Pomeron coupling constant [166], and we assume the same

strength for urd quark and antiquark-Pomeron couplings, but a weaker coupling to the strange

quark: Eq" : (10+2À")/9 with À" - 0.5. According to the Particle Data Group [167], the proton-

proton total cross section øoo is approximately 40 mb. The parameter C is determined by the r ---+ 0

behaviour of the nucleon sea distribution, uq""o(r --+ 0) --+ Ç¡7-ap(o)' At Q' = 4 GeV2' recent

parameterisations of world DIS, Drell-Yan and prompt photon data [50, 51, 168] give C - 0'15.

More recently, Nikolaev and Zakharov [165] have calculated the box diagram contributionto F2p,,

based on a perturbative QCD analysis of qq fluctuations of the virtual photon. The rp dependence

of their F:!;") parameterisation ( Mk lQ' + Mk)" , since Q2 + Mk : Q2 l*p from the definition

of rp ) is the same (despite the conclusions in Ref.[165]) as that in (4.10), providing the same

normalisation is used (the normalisations in Ref.[164] and Refs.[165, 169] differ by an overall factor

I _ nP).

The triple Pomeron part of the P structure function,

p[?@o,q\ : XlhWl,=o)r;íi{*p,e\ (4 11)

follows from

=t,.d'll.iJÍl = 7 d,2oþe:nxl 
in.rr¡F;ü dtd,y l,=o ohp dtd's l,=o

and the Regge theory expression for the diffractive differential cross section [170]

d2on??nx 
= 

þnp(t) þ'pz(t) gtp(t) 
,L-2ap(t) (4.18)

d,tdg 16r

84



0.01 0

g
þ
a-

r-N

0.020

0.01 5

0.005

0.000
0.0 0.2 0,4 0.6

,g
0.8 1.0

Figure 4.4: Triple-P and qQbox contributions to the Pomeron structure function, with the nucleon

sea distributions given by the (Ieading order) parameterisations of Morfin & Tung [50] and Owens

[51] at Q2 :4 GeV2.

where ap(t) È 1+ 0.25t.In the Regge model the total åp cross section is also given in terms of the

hadron-Pomeron couplings, þnp: onp: þnp(0) þrp(O).It is then evident that the combination

r d,2oþe=!,x I = þre(9) g"e(o) g.M)
ohp dtdy lr=o I6ry

is independent of hadron ñ,. From experiments on the diffractive dissociation of zr* rI{*rP arrd þ

on hydrogen, the triple Pomeron coupling constant was found to be 1¡3r!) - 0.364 ^6t/2 ll7l],
independent of ú, and indeed of the hadron type fr,.

For the sea part of the nucleon structure function, Fìü@,,Q'):\r(u"+u+d"+dt2(si
S)15)llB, we use recent parameterisations of the data [50, 51]. In Ref.[la0], a constant value of

0.3 was used for Ffff at q2 = 4GeY2 together with an empirical Iow-Q2 dependence [164]' With

the above triple Pomeron coupl-ing constant, Eq.(4.11) gives a 32 component which is about 40%

smaller than that obtained in Ref.[82]. However, this is not very signif,cant for the total Pomeron

structure function, rio." ,fjfl) is very much smaller than the quark-antiquark 'box' contribution,

F:!;'), as illustrated in Fig.4.4.

Quite recently the UA8 Collaboration at the CERN SpFS Collider observed what appears to

be a very hard component of the Pomeron structure function [172]. As well as confirming a hard,

(l - *p) structure, in agreement with the above P structure function, there was also some 30%

ó-function like contribution at np ---+ 1. However, the effect of such a component would only be

noticeable for r x g, or from the definition of g,, at Q2 --+ oo for frnife M2y. At flnite Q2, where

we will calculate the shadowing corrections for comparison with experiment, rp wilJ always be less

than 1. The exception might be when the mass My of the hadronic debris is very small, however

for such My it is probably more reasonable to describe the scattering in terms of the VMD model.

In the specific calculations which follow, we shall evaluate the double scattering diagram in

Fig. .l(b) using the VMD, as well as the Pomeron exchange mechanisms. A synthesis of the two

qø

BOX

MT

Owens
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approaches is quite sensible if we are to investigate the transition region between small and large

Qr. In the parton picture, the virtual photon interacts with the hadronic target via its fluctuations

iúo qQ pairs. If the virtuality of the photon is large the fluctuation is short-lived, and a description

(in the form of Pomeron interactions) seems appropriate. If the virtuality is smaller, the virtual qq

pair will have time to evolve into a state which may resemble a vector meson' which would then

enable a VMD-base,il description to be used as an approximation. In this sense our approach is

similar to that adopted recently by Badelek & Kwiecinski [140] and Nikolaev k ZolTer [139]. A

marriage of the VMD and parton descriptions for photon processes was also discussed in some

detail recently by Schuler & Sjöstrand [152].

4.2 Shadowing in Deuterium

As well as the potential sensitivity of the Gottfried sum rule to shadowing corrections in deuterium,

there are other reasons why a precise determination of the neutron structure function is highly

desirable. The extraction of information about the difference between nuclear structure functions

and those for the free nucleon from the observed nucleus/deuterium ratios is sensitive to any nuclear

effects in D. Conclusions made about nucleon parton distributions based on the nuclear/deuteron

structure function ratios (e.g. for the proton antiquark distributions in the Drell-Yan process [173])

at small r ¡¡1a,y have to be modified once shadowing is taken into account. It is necessary therefore

to check for nuclear shadowing effects in deuterium and include this correction in the extraction of

F2n ftom F2p.

\Me begin our analysis by observing that the Glauber formalism for f D scattering involves just

the first two diagrams in the multiple scattering series in Fig.4.1. Inserting the first two terms in

(4.4) into the f D scattering amplitude in (4.2), we obtain

r-,.o(q-q') = # ld?b 
d3r,þbG) (t",0* å,1+r,(b- |"1 -fo(b+ js)r,(b- å",) 

,þo(,)

x expfi(q - q') 'b]. (4.15)

Taking the Fourier transform of the 7"I{ amplitude,

r¡r(b) = ;:Ã | o'r, fr.ru(c) e-i b.t (4.16)

and defining

.9¿(k) = | a", 
"ik'* lrþo(r)l' Ø.tT)

it is then a simple matter to show that for forward scattering (q: q')

f1.o(0) = fr.o(0) +.F?.'(0)

+ 
"r=, 

I o'u, ^1¡(k) f-,.r(-k) F.,.*(k) (4'18)

since ^9¿(0) 
: t. The doubie scattering term, shown in Fig.4.5, then gives rise to shadowing in

deuterium.

86



q

p

p'
PP

s, sD

Figure 4.5: Double scattering term gives rise to shadowing in deuterium.

Taking imaginary parts of (4.18) and multiplying by a"llql, we obtain

ofD : afp*o1*nl

where we have used the optical theorem,

o:!n.r. (4.20)
lql

Furthermore, by assuming that f1.1.(k) = fr.¡¡(0) for small k, and that the 7*I[ amplitude is

primarily imaginary, Re-F.r*¡¡ ( Imf.r-¡¡, we finally obtain the tota,l 7*D cross section including

contributions from single and double scattering,

o1"D : o.r,p * o¡n i 6o,r*p (4.27)

where

q

# | o'ur,sr(k) Rer.,.r(-k) r.y.,(k) (4.1e)

6 o.r* ¡1
O.r*pO1*n

8tr2
a2u7 S¡1(k2)I

= + | a* n,sp(k,) (4.22)

with k = lkl. The above assumptions are expected to be quite accurate because contributions to

6o.r'p from large k will be suppressed by the deuteron form factor S¿(k), and for forward scattering

the real part of the amplitude is generally small. IMe will also assume that ,5¿ is a function of k2

only (i.e. that it is independent of the azimuthal angle).

4.2.t Low Mass Contributions

As mentioned in Section 4.l.4rin the Iow-Q2 region it seems appropriate to describe the shadowing

in terms of the VMD model, see Fig.4.6. Since most of the formalism needed has been developed

in the preceding sections, we can simply write down the formula for the shadowing correction to

the 7*D cross section in the VMD model. Combining Eqs.(a.6) and (4.22), we find 1

6(v)o.r,n = \- 4"=" 
1,f,øolu** 6ovo. Ø.23)

1Not" that the fine structure constant evaluated ot Q' - O(lGeV'z) is a æ 1/130, although the error introduced

by this is probably less than that associated with using /fl, which is obtained from the decay of meson o with time-like

Q2 , lor the coupling to a photon with space-like Q2.
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Writing this in terms of the deuteron structure function 2, FrD, we have

6v)Fzo(n): %+Hå#/"fr

-# I o'ur.'¿(k').

(4.24)

where now

6ovn (4.25)

In our numerical calculations, the photon-vector meson coupling constants

r? : _{ rrry_ 
Ø.26)4r ' 3ly-.+¿-

are equal to 2.28,26.14 and 14.91 for po,a and /, respectiveþ [167]. The tota,l vector meson-

nucleon cross sectiorrs) ovN, can be related to the total r1ú and I(1ú cross sections via the quark

model. For V = p0 and ar, these are approximately equal to 24 rrrb, and 14.5 mb for V = Ó

(see [174, 175]). The energy dependence of the total cross sections (for Vp -- X) was recently

parameterised by Donnachie and Landshoff in a way that reflects their origin within Regge theory

[176],

opop N o.p N |{o**r+ o.,-p) = 13.63 s'+ 31.79 s-?

aóp N o6+o i oK-p - on-p N 10.01 s' - 1.51 s-a (4.27)

where e æ 0.0808 and 4 x 0.4525. For the range of s in current shadowing experiments, and for

the range in which we calculate, the differences between using the s-dependent and constant values

are small.

For the deuteron form factor ^Îp(k') we take the electric monopole body form factor [177]

^eo(k') : lo* 
o, (r'(r) + w'ze¡) io(kr) (4.28)

where u(r)rw(r) are the ,5,D-wave deuteron wavefunctions, notmalised such that / dr (u2(r) *
,'(r)): 1, and where js is the spherical Bessel function. The square of the 3-momentum transfer

to the interacting nucleon is k2 = (p - p')' = k2r+lc27,wherc kL = M2*2(t+ tWþlQ2)2 (since

Mk : M?). In Fig.4.7 we plot the D form factor using wavefunctions obtained from several

realistic 1[1[ potential models, namely Paris [90], Bonn (OBEPQ) [86] and Bochum [93]. Ail of

these wavefunctions produce a troughin /c.9p(k2) at lc x 3.5 fm-l (because the Bessel function is

negative at large kr), as well as a rapid fall-off with k for k ì 6 fm-1. Also shown is the model of

2In terms ofthe totat cross section for the photo-absorption ofvirtual photons on an unpolarised deuterott, c.1tDt

the deuteron structure function is

w:KQ"¿D: 
41t2a e+ u261'D

where K : Jr'+Q'is the flux of incoming virt,ual photons (in the Gihnan convention), so that in the Bjorken

limit
^Q,I2D : ;-';-C1rD.
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Figure 4.6: Vector meson dominance model of the double scattering mechanism.
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Figure 4.7: Deuteron form factor, as determined from several N/V potential models. Also shown

is the parameterisation due to Franco & Varma [178] which was used in Refs.[139].

Franco and Varma [178], which was used in [82, 139], for which the form factor, parameterised by

a sum of Gaussians, has no large-k tail at all. The differences in the large-k (ì Z f--t) behaviour

of the form factor arise from the various treatments of the small-r behaviour of z(r) and a.'(r). In

Fig.4.8 we also plot the Fourier transform of the deuteron wavefunctions for the different potential

models. At small momenta (large r) there is general agreement between the models, and the

differences only start to appear for p ì 2 fm-r. The large variation in tu(p) reflects the poor

knowledge of the D-wave component

At 82 : 4 GeV2 the VMD model shadowing predictions are given in Fig.4.9 for the various

model deuteron form factors. By far the largest contribution (æ S0%) to 6V) Fzo comes from the p0

meson. The magnitude of OV)Fzn(r) decreases with r because the lower limit of the k-integration

in (4.25), kmin = k¡, \s an increasing function of r, and the integrand peaks at small values of

k (x 0.7 f--t). It is not surprising to see the differences in the calculated 6U)Fzn given the

P P
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Figure 4.8: Deuteron ,1 and D-wave wavefunctions, from the Paris [90], Bonn (OBEPQ) [86] and

Bochum [93] ¡rrlf potential models.
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Figure 4.9: Shadowing correction to the deuteron structure function within the VMD model. The

cuïves are evaluated using deuteron form factors from the Bochum, Bonn (OBEPQ) and Paris
potential models, as well as the parameterisation of Franco & Varma.
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Figure 4.10: Pomeron (zig-zag line) exchange model of the double scattering mechanism which

produces shadowing in deuterium.

variation in ^9p evident in Fig.4.7. Because the form factor with the Paris wavefunction has the

'deepest'trough, the resulta* 6V)Fzo is x 25% smaller for r 5 0.01 than with the Franco and

Varma form factor. The trough is also responsible for the antishadowing in the region * Z O.Z.

4.2.2 Pomeron Exchange Contributions

With the VMD model, the spectrum of masse" MT includes only the lowest mass vector mesons.

For a complete description of shadowing, the large M2y contributions must also be included. One

way to do this is simply to extend the VMD model by including higher mass vector mesons, and the

high mass gq continuum (as in the GVMD model). Howevet, for reasons outlined in Section 4.I.3,

a parton-based description of the double interaction mechanism, in terms of Pomeron exchange (as

in Fig.4.10) is more efficient.

The contribution to the .F2p structure function from multiple diffractive scattering with P

exchange can be written as a convolution of an exchange-Z function, fp(y), with the 2 structure

function of Bq.(4.8),

ilP) Fzo(*) = f d,u fp@) Fzp(*p) (4.2s)
J a*in

where

rp@): -#Tlo'ur,s¡(k') (4.80)

and k27 - M'y'. Note that the function fp@) should not be interpreted as a probability distribution

function, since there is no probabilistic interpretation of the double scattering diagram from which

it arises. Fig.4.11 illustrates the g-dependence "f fp(y), including fhe Ily divergence for 3t + 0.

The rapid fall off with g is testament to the very small contribution coming from the large-g region.

In formulating a complete description of shadowing which includes more than one mechanism

care must be taken to avoid possible double counting. Because of this concern some authors [140]
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Figure 4.11: y-dependence of the Pomeron function Íp(y) as a function of y) with several different

deuteron form factors.

have restricted the Pomeron exchange process to the ïegion of M2¡¡ above the highest mass of

the vector mesons contributing to the VMD process, Mk >- Mk" - 1.5GeV2, and consequently

have taken the lower bound on the integral in (a.29) to be y^¿n : r(l + Mk"lQ'), The VMD

contribution, which is essentially a higher twist (llQ2) effect, may compete with that part of the

diagram in Fig.4.10 which contains low-My singie particle intermediate states. By keeping only

the leading twist piece of the structure function F2p,this contribution can in principle be excluded

since it involves extra factorc of lf Q2 from the electromagnetic form factors. (Although in practice

a decomposition of F2p in terms of different twist components has not yet been done.) Nevertheless,

we can test the sensitivity of the numerical results to the cut-off procedure by varying M2yo, say

from 0 to 2 GeV2. For low ø we find a difference over this range of only some 5% of the total

2 exchange contribution to 12¿r. For larger Q2 the separation into separate My regions becomes

irrelevant since y*¿n --+ r in the Bjorken limit.

Since the function fp@) is independent of Q2,the scaling behaviour of the P-exchange mecha-

nism will be determined by the scaling behaviour of the P structure function, and from Eqs.(a.10)-

(4.14) it is clear that 6@)Fz¿ will be finite as Q2 -- oo. The individual 'box'and 3P contributions

to 6Q) Fzo, with the deuteron form factor obtained from the Bochum wavefunction, are shown in

Fig.4.l2for Q2 = 4 GeV2. The dependence of 6{Ë)Fzn on .f¡(k2) is illustrated in Fig.4.13. Again,

as in the case of the VMD model, the large-k, negative tail of the form factor produces a large (some

30-40%) difference between different models for r 5 0.05. For * Z O.Z the presence or absence of

antishadowing will be determined by the model deuteron wavefunction.

s.\'
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Figure 4.12: Quark-antiquark box and triple-P contributions to the total deuteron structure func-
tion, with the D form factor calculated from the Bochum model wavefunctions.
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Figure 4.13: Deuteron form factor dependence of the P-exchange contribution to the structure
function of the deuteron.
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Figure 4.14: Double scattering diagram with meson exchange'

4.2.3 Shadowing by Mesons

Another potential source of shadowing arising from the double scattering mechanism is one which

involves the exchange of mesons, Fig.4.14. It has previously been suggested 1136] that this can

lead to substantial antishadowing corrections to Fzo(r), thereby cancelling some of the shadowing

produced by the VMD and 2-exchange mechanisms. Using a non-relativistic formalism, the total

contribution to the deuteron structure function from meson exchange currents is written [179]

ilM) Fzo(r) da fu@) Fzu(*u)

A t/(

q

)CùrOTE,Pkk

PP

f

(4.31)

where M : r,p,e,o,and y : k. qlp' q = (ko + kL)lM with r¡a : rlg. The exchange-meson

distribution functions f m@) are obtained from the non-relativistic reduction of the nucleon-meson

interaction,

d"p d"p' F?*N*(k')
fu@) 4c¡a M y (2")" (¡çz - m2¡)2t

. 
{* Ð 

ìúi(p, r,) v¡wN¡,r ú(p' , r,) 
} 

, {, - 
!t#) . Ø.s2)

The deuteron wavefunction is deflned by

ú(p,r,) = ø(^r-,fo)W) ,i. (4.3r)

where z(p) and to(p) are its 
^1 

and D-wave components, normalised so that Ï dpp' (u2(p)+u2(p)) =
1, with þ'= plp and p = lpl, and ,912 is the tensor operator: Sn(þ): 3 ø1 'þ ot-þ - ot . o2. The

deuteron spin wavefunction is denoted bV X!i, where I is the total angular momentum projection.

In (4.32), k2 : kB - k2, where ks : Mp - JMTTF -
meson, and k - p - p' is its 3-momentum.

In trq.(4.32) the nucleon-meson interactions are given by [86]

M2 + p'2 is the energy of the off-shell
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V¡NN

V,NN

+

+

-!Å"# or.k 02.k
rni

n;" 
ft 

* #, - Y-r* - o1' ",# *
k2

- M - o7'oz

(4.34)

(4.35)

VoNN -g2"N^r

-ot .o2 k2 + q.k øz . k]

3o2 k2 k2
1+ 1M, - gM, - 01 'o'+Mr l

l,-#.#]

r2
J pNN

4W

Vt¡-iVN g2rÌ,rN (4.36)

(4.37)

whereq=å(p+p').TermsproportionaltoS.kxq,whereS:û1 +02)areomittedastheydo

not contribute to fu(y).
Evaluation of (a32) requires the identities

åÐ*t,o, J,) v(pt,J,) = fifufo> u(p')+.(p).(p')P2(cos 0) P2(coslt)l

+ / dependent terms (4.38)

1

3 D vt(p, J,) o, . o2 ú(pt , J")
J.

å Ð 
*t,o, J,) or.k oz.k ìú(p',.I,) : # {å lu' -, p pt sin| sinl'!lu@) u(p')

- #ln o o' cos g cos 0' sin2 0' + 4 p'2 cos2 0' sin2 0'

(p' + p'2) P2(ro"0') + 2 (p2 cosz 0 + p'2 cos2 0') P2(coslt)

p p' cos| cosltP2(cos 0)] u@) w(e')

#Vp'gt cosl' cos| sin20+ 4p2cos2 0 sin20

(p'' + p2) P2(cos 0) + 2 (p'2 cos2 0' + p2 cos2 0) P2(cos 0)

p' p coslt cos| P2(cose)] w@) u(e')

[(o .or 0 + p' cos0')2 Pz(cos 0) P2(coslt)

- 2 (p'sin2 0 + p'2 sin2 0t) P2(cosl) P2(cosÎt)

* 3 (p'cos2 0 sin2 0 + p p' cos| cosît sin20) P2(cosÎt)

* 3 (p't cosz 0' sinz 0' + p' p cosd' cos 0 sin2 0t) P2(cosl)

2-5
8+5

2-5
8+5

1-5

* I op' cos o coso' ,io'o "i'.'r.']
1 / dependent terms.

(4.3e)
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The terms in (4.38)-(4.39) which depend on the azimuthal angle (/) vanish after integration. The

factors cM ale due to isospin, and are equal to Sfor M : TrP¡ and 1 fot M : o))o.

Note that the functions lu(y), just like the functiol fp@) in the previous section, are not to

be interpreted as meson distribution functions (c.f. the functions frun in Chapter 3 which were

interpreted as virtual meson probability distributions) because a probabilistic interpretation cannot

be applied to the double scattering diagram from which they arise. Furthermore, since here we deal

with covariant kinematics, the use of the real meson structure function in the convolution formula

in (a.31) relies on the assumption of weak ,k2 dependence in the function Fzu. In the next chapter

we shall argue why the convolution formula in a relativistic treatment of DIS from nuclei is invalid.

However, since our treatment of the meson-exchange currents is entirely non-relativistic, and the

total meson-exchange correction is sma,ll anyway, we shall assume that this formula is reliable in

this application. For the meson structure function, F2¡4rwe therefore take the parameterisation of

the (real) pion structure function from Drell-Yan production [101].

In our non-relativistic approach, we parameterise the M N N vertex form factor f¡a¡¡¡¡(k2) by

a dipole form

ru¡*x(kz\ : (nlr^- ryly\' . (4.40)\e,, \nîr_k, )

In non-relativistic -lftrf potential models, the high-momentum cut-offs r\.¡4 range from 5 1 GeV in

models with soft form factors [93, 95] to - 1.7 -- 2 GeV when hard form factors are employed [86].

In principle, the meson-nucleon form factor should be universal, and the cut-off Â¡¿ that is used

in the deuteron should be the same as that used in Chapter 3 in the discussion on meson-baryon

vertices in lepton-nucleon DIS. However, since different formalisms are used in the two cases, it's

not clear what, if any, relation exists between the two sets of form factors. We therefore evaluate

the shadowing correction from meson exchange cutrents for a range of cut-offs.

Fig.4.15 shows the individual meson exchange contributions b 6(M)Fzp, for the wavefunction

of the Bonn model, and with a universal dipole cut-ofl of lt ¡a : 1.7 GeV for all mesons. As could

be expected, pion exchange is the dominant process. We also include the fictitious o meson, but

with a mass (= 800 MeV) that is larger than that used to represent 2n exchange in 1{1ü scattering.

Both of these produce antishadowing for small ø. The exchange of vector mesons (p, ,) cancels

some of this antishadowing, although the magnitude of these contributions is smaller. In fact, for

Iyu S 1.3 GeV a1l contributions other than that of the pion are totally negligible.

Fig.4.16 shows the dependence of the total 6(M)Fzo on L¡4 for the Bonn model wavefunction.

There is approximately a factor of 2 difference between the amount of shadowing with soft (À¡a : 1

GeV, lower solid line) and hard (Â¡¿ : 1.7 GeV, upper solid line) form factors. We also consider

the effect of the modei momentum-space deuteron wavefunction on 6(M)Fz¿r. Although the model

wavefunctions differ substantially at large momenta @Z Z fm-1 - see Fig.4.B), this variation will

be largely suppressed by the meson-nucleon form factor. The Bochum and Paris wavefunctions

are generally larger than the Bonn wavefunction, and this is reflected in a larger 6@)Fzo.
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Figure 4.15: Comparison of individual meson exchange contributions to the deuteron structure
function, for the Bonn (OBEPQ), Bochum and Paris wavefunctions, with a form factor cut-off of
l\tw = 1.7 GeV. Note the mass of the effective o meson is taken to be p 800 MeV.
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Figure 4.16: Deuteron wavefunction and form factor cut-off dependence of the total meson-exchange

correction. The Bochum and Paris curves are evaluated with lvu : 1.3 GeV, while the Bonn
(OBEPQ) cllrves have Á.¡¿ - 1.0,1.3 and 1.7 GeV, with the larger cut-offs giving more overall
antishadowing.
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Figure 4.17: Comparison between the VMD, Pomeron and meson exchange corrections to F2p at

Q" = 4 GeV2 . All curves are calculated with the Bochum wavefunction for r\.¡4 : 1.3 GeV.

We also comment here on the issue raised in the previous section, nameþ double counting, this

time between the meson exchange and the other mechanisms. It should be clear that since the

? contribution involves the exchange of vacuum quantum numbers, there will be no interference

between this and the exchange of pseudoscalar pions or vector mesons. The scalar o meson,

introduced as an effective description of two-pion I{A excitations, does not correspond to actual

exchange of a spin 0 particle. By restricting the meson structure function to only the leading twist

component (ou F2y is determined at Q2 : 25 GeV2 where this assumption seems reasonable)

we may view the VMD process as a desciiption of higher twist effects. Stili, imposing any low-

My aú on the meson exchange term has numerically insignificant consequences, largely because

Fzv(*lU) ---+ 0 as y --+ r.

4.2.4 Consequences for F2n arrd. the Gottfried Sum Rule

The total deuteron structure function is defined by

Fzo(*) = Fzp(r) + Fz"(r) t 6Û2p(r) (4.47)

where the shadowing correction is a sum of the VMD, Pomeron and meson exchange contributions,

6F2p(r) = 6V) Fzn(*) ¡ o(e) go(n¡ + 6@) Fzn(r). (4.42)

In Fig.4.17 we compare the contributions to 6F2p(n) from the three mechanisms considered. For

r 5 0.t the magnitude of the (negative) Pomeron/VMD shadowing is larger than the (positive)

meson-exchange contribution, so that the total 6 F2p is negative. The fact that shadowing is present

in this region of z does not depend on the model deuteron wavefunction. For larger r (t 0.1 - 0.2)

H

a
Nt\

¿a'

T

- 

VMD
,,-- -- -. Porneron

Meson

98



0.002

-0.000

1 -0.002
q
Nr-

.o -0.004

-0.006

-0.008
0.001 0.010 0.1 00 1 .000

Figure 4.18: Dependence of total shadowing correction on the deuteron wavefunction and the

meson-nucleon form factor cut-off.4.¡a. For the Bochum and Paris cllrves l\M :1.3 GeV, while

the Bonn cuïves are calculated with l\M : 1.0, 1.3 and 1.7 GeV, with the largest cut-off giving the
smallest overall shadowing correction.

there is a small amount of antishadowing, which is due mainly to the VMD contribution. The

dependence of the total shadowing correclion 6F2¡1 on the deuteron wavefunction and on the

meson-nucleon form factor is shown in Fig.4.18 for Q2 : 4 GeV2. We point out that the magnitude

of 6F2p is about 4 times smaller [180] than that obtained in Ref.[82,139], and about 2 times smaller

compared with the result of Ref.[140]. The most important reasons for our smaller results are the

inclusion of meson exchange contributions which produce antishadowing at smallr, and the use of

rea,listic deuteron wavefunctions which lead to smaller P exchange and VMD contributions.

Finally we can consider the consequences ofthe shadowing correction for the neutron structure

function. From the NMC measurement of F2, and F2p [65, 181], the neutron structure function

was extracted assuming no nuclear effects in D, so that

Fzo (7 - (F2pl F2o - t\\ : 2F2'p- F2p = (Fzr- Fzn)¡v¡,tc. Ø.43)

The actual difference between the p ar.d n structure functions should be, after the shadowing

correction is included,

Fzo - Fzn (Frr- Fzn)¡vuc * 6Fzo (4.44)

and this is shown in Fig.4.19. The dotted line is a best flt to the NMC data, and includes the small-

r extrapolation used in [65] (see Eq.(3.88)). The other curves include the shadowing corrections

to the NMC data parameterisation. It is not clear whether F2, - Fzn will become negative at

, 5 0.004, and it will be interesting to see whether this cross-over occrlrs when additional data at

smaller r become available.
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Figure 4.19: Proton-neutron structure function difference with shadowing corrections to the NMC
data at Q2 : 4 GeV2. The dotted line is a parameterisation of the data.
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Figure 4.20: Shadowing corrections to the Gottfried integral Sc(r,1). The corrections to the NMC
data parameterisation (dotted curve) are for the Bochum, Bonn (OBEPQ) and Paris deuteron
wavefunctions, and the meson antishadowing correction is calculated with l\M :1.3 GeV.
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0.019 0.5Bonn (À¡a: t.7GeV) 0.2L90.2170.002

0.002 0.5Bonn (,4.¡a : t.gGeV) 0.2140.000 0.2r4

Bonn (À¡a: t.3GeV) 0.0010.011 0.5 0.2t70.2r5

Paris (r\,¡a: 1.3GeV) 0.0070.052 0.5 0.2300.224

Bochum (lYm :1.3GeV) 0.0050.043 0.5 0.2270.222

0.62

0.5

0.21

0.109

NMC [65] 0.2290.011

0.014

\0.240 + 0.01

0.243

Model p Sç(0rr*¿^) S6(r*¿nrl) 56(0,1)a

Table 4.1: Small-z extrapolation parameters for Fzp - Fzn(= o,aÞ) and the contributions to the

Gottfried sum from different z-regions.

The shadowing corrections to the Gottfried integral

.16(r, 1) : I^,0 (log ø') (Fzo@) - Fr*(*')) (4.45)

are shown in Fig.4.20 for r down to rrn¿n: 0.004. The only noticeable effects appear at very small

r @ S 0.01), and. are largest for the Bonn model wavefunctions.

In Table 4.1 we give the values of ,9ç including shadowing corrections, and also the r 1 r^¿n

extrapolation palameters (Fzp - Fzn --+ arþ). For simplicity we íake B - 0.5, and adjust a to

achieve a smooth transition between the r ) r.nlin arld r I x:*¿n regions. The overall correction

to the NMC value for ,5c(0,1) is found to be between -0.010 and -0.026. This is to be compared

with between -0.07 and -0.088 obtained in [82, 139, 169].

Having obtained the corrected values for 56r, \ile can now examine the consequences for the

question of flavour asymmetry in the proton sea. Despite the model-dependence of the total shad-

owing correction, we can conclude that the experimental value for 5c should be lowered from 0.24

to x 0.22 when the 'true' neutron structure function is used. Within the model of the previous

chapter such a decrease can easily be accommodated by increasing the Pauli blocking correction

from 2¡,' = 0.1 to = 0.15, if the meson-baryon form factor cut-off is kept at the same value

(À = 0.7 GeV). Of course a larger .4. could also produce a smaller 5ç, but, as we saw in Chapter

3, increasing r\, would also produce a depletion in F2, - Fzn at intermediate r, together with an

increase at small u. This would be contrary to the behaviour of the shadowing-corrected proton-

neutron structure function difference seen in Fig.4.19. A reduction of F2, - Fzn at r S 0.3 can

only be explained by a larger Pauli blocking correction, such as the one required to reproduce the

corrected 5ç.

In Fig.4.21 we also show the ratio of neutron structure functions with and without shadowing

corrections,

Fzn 
1 _ 6!:o (t :!er:!e?òxu"\ Ø.46)(F^l-r": '- F*\-TFr;¡FrJ.r, )

where the NMC neutron/proton ratio was defined as (F2,f F2o)Nmc = F2pf F2o - 1. There is an
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Figure 4.21: Ratio of neutron structure functions with and without shadowing corrections at Q2 - 4

GeV2. The meson exchange current contribution is evaluated with l\M:1.3 GeV.

overall 7 - 2% increase in the neutron structure function due to shadowing for r 5 0.01. As a

fraction of the total F2p(r) [65], the shadowing correction thus amounts to (0.5-1.0%,0.4-0.870,

0.0-0.3%) at n = (0.004,0.01,0.1), while the antishadowing is less than 02% of F2p at r æ 0.2.

Finally, we illustrate in Fig.4.22 the dependence tpon Q2 of the total shadowing correction,

6F2p(r,Q2). As expected, the VMD term vanishes rapidly with increasing Q2,,leaving the two

scaling contributions from P arrd meson exchange to largely cancel each other for Q2 - 25 GeY2.

However, we should add a note of caution about comparing shadowing corrections at very large

values of Q2. In the parton recombination model [132-184] the fusion of quarks and gluons from

different nucleons introduces additional terms [182] in the equations governingthe Q2 evolution of

the parton distributions. At very small r and large Q2, stch as those attainable at the DESY ep

collider HERA, this can lead to signifi.cant corrections [140] to the 6F2p(r,Q2) evolved without

these terms, although the exact magnitude of these is sensitive to the small-r behaviour of the input

nucleon gluon distribution. For the moderate range of 82 and not too low r values in Fig.4.22,,

however, we expect the indicat ed 82 behaviour to be reliable.

To summarise, we have estimated the nuclear shadowing in lepton-deuteron DIS from the

double scattering mechanism in Fig.4.5. Our approach is similar to that of Refs.[140] and [139], in

describing the interaction in terms of the VMD model, together with Pomeron exchange at larger

M2r. However, we have also included contributions from the exchange of mesons which effectively

cancel as much as half of the shadowing from the VMD/2-exchange mechanisms a,lone. Numerically,

there is some dependence on the model deuteron wavefunction, and also on the meson-nucleon

form factor for the meson-exchange process. The net effect is a 5 1% reduction of FzD for r -
0.004, or equivalently 5 2% increase in the neutron structure function over the uncorrected -t'2,'.

Bonn
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Figure 4.22: Dependence of total shadowing correction or Q2. The mesonic correction is calculated
with the Bochum D wavefunction and I\¡¡ -- 1.3 GeV.

Consequently, the shadowing correction to the Gottfried sum ,96(0,1) is between -0.010 and -
0.026 (or between 4 and I0% of the NMC value), which is about 5 times smaller than in previous

estimates, but still not negligible. Nevertheless, it seems clear that the shadowing correction will not

alter drastically our conclusions from Chapter 3 about the mechanisms of SU(2) flavour symmetry

violation in the proton sea.

To accurately test the descriptions of shadowing in the deuteron it is necessary to obtain model-

independent information on the neutron structure function at low r. Even at HERA energies this

is not possible with electron scattering alone. However, when combined with high-precision data

from neutrino-proton experiments the individual flavour distributions can be determined, and

the neutron structure function inferred from charge symmetry. For this to happen, however, the

statistics on the neutrino data need to be improved, and the range extended into the smaller-

ø region. In the meantime, one can still test the validity of the modei used in this section by

examining other processes, such as shadowing in heavy nuclei. By now a large body of data has

been accumuiated for the nuclear structure functions, including at small ø. In the next section we

therefore extend the above model in a calculation of the shadowing corrections to nuclear structure

functions, and compare this with the latest high-precision CERN data.

/,--

Q2=¿ceû
Q2=1oGeY2
Q2=25GeY2
Q2=25Gev2
no VMD
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4.3 Shadowing in Heavy Nuclei

With the help of the multiple scattering expansion in Section 4.1.1 one can easily extend the above

model, based on the two-phase hadronic (Iow Q2) and partonic (high Ç2) picture, to calculate

the shadowing corrections to structure functions of heavy nuclei. One obvious difference here is

the presence of additional terms in the multiple scattering series, when only two terms existed for

deuterium. Another difference is the nuclear wavefunction. For the deuteron this is now fairly

well determined, however, for heavy nuclei we are forced to use nuclear matter density functions to

describe the distribution of nucleons in the nucleus.

As well as the VMD and Pomeron exchange contributions, in the deuteron we also found that

taking into account meson exchange currents produced a non-negligible correction to the total

Fzo. We may also think of calculating the same meson-exchange contributions to the nuclear

structure function, F2¿. Models of the nucleus in which meson effects are explicitly taken into

account when calculating nuclear structure functions have been considered, for example, by Berger

et al. [76], Ericson & Thomas [125], Kaptari et a,l. [185] and others. In the model of Ref.[125], it

was suggested that a larger pion cloud in the nucleus, compared with that associated with a free

nucleon, could produce a small enhancement of the nuclear to nucleon structure function ratio in

the region z - 0.1. However, the conclusions there were strongly dependent upon the Landau-

Migdal parameter, which characterises the strength of the short-range repulsive N1{, /{A and

AA interactions. In calculating the meson-exchange corrections to nuclear structure functions,

one would also need to include such excitations. In view of the difficulty in reliably calculating

these effects in nuclei, we shall follow the 'conventional' approach and compute the contributions

from VMD and Pomeron-exchange models alone. Since there are now high-statistics data on the

shadowing of nuclear structure functions, a failure of these to reproduce the experimental results

could then perhaps be seen as evidence for the presence of other mechanisms.

4.3.L Nuclear Matter Density

The complete Glauber scattering series can be computed if we know all of the n-body nuclear

density functions for each n-body scattering diagram, up to and including the diagram in which all A

nucleons participate in the scattering. This last term will give a shadowing correction proportional

to [186, 156]

-,4! Re I oto d,21...d,2¡p('4)(b, zr¡...t2¡) expfik¡("r- rt)l (4.47)

where pØ)(b,rt,t...¡za)is the,A-body nuclear density function [148]. Following Foldy & Walecka

[187], the complete .A-body density can be expanded in terms of single body densities p(b, z¿) and

two-body correlation functions L,(b, z¡,, z¡),

p(A)(b,zt¡...¡zA,) = lrþ¡l' : p(b,zù'..p(b,zt) * D¡(U,:7,22)p(b,zs)...p(b,r¡)
perln

+ I n(U, a, 22) A'(b,4,2ù p(b, ru) " 'p(b, z¡) + " ' . (4.48)
Perrn
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The two-body correlation function is defined by

L,(b, z¿, z¡) : p(2)(b, zi, zj) - p(b,, z¿) p(b, z¡) (4.49)

where pQ) is the two-body density function, normalised so that

[ ¿"r, p(2)(r;,rz) : p(r1) (4.50)
.t

while the single particle density p has normalisation

| 0", p(r) = | o', d,z p(b,z) : 1. (4.51)

Keeping only the first term in pØ) (i.e. no correlations) corresponds to an independent particle

model. In principle the effects of all two-body correlation terms in (a.aS) could be included. In

previous calculations of scattering from nuclei it has been found that the two-body correlation

terms introduce S n% corrections to the single particle density approximation. Although we do

not expect the effects of two-body correlations to be large, we shall nevertheless include them in

our calculation. However, since we consider nuclei no heavier thataoCa, we shall neglect terms of

order 42. (trssentially nothing is known about the size of the three- and higher-body correlations

in real nuclei, although one would reasonably expect that the effects of many-body correlations

are not large in comparison with the two-body terms.) In this case we only need to calculate the

two-particle density function p(2), which \rye can write in the form 3

p(2)(b,4) 22) : Nc p(b, zù p(b, rr) (r - c(", - ,t)) (4.52)

where the function C(22 - z1) must take into account the short-range repulsion of the I{N force,

c(r)------,
1 as r ---+ 0 and

0 as r ---+ oo.
(4.53)

(4.54)

Such a behaviour can be modelled, for example,

C(22-21) = (

by

3j{n(22 - ,t))
n(22 - z1) )'

where j1 is the Bessel function, and rc : 3.6 fm-l is chosen to reproduce a'hole'in the two-body

density which is = 0.5 fm wide (at Il2 maximum density).

For the single particle nuclear density, as a first approximation we may consider a constant

density function,

pc(b,z) = poc oO2 - R'¡) (4.55)

where 12 : b2 I z2 and poc:T1@rrf, A), and where RA = rs Arls is the nuclear radius with

rs x 1.2 fm. However, for heavy nuclei (A à 16) the Woods-Saxon (or Fermi) density is known to

be a better approximation,

Pws(b, z) (4.56)pWs lfexp r-Rws
c )l

-1

sEquivalently, we may define A(b, rr,"r): -p(b,z)p(b,z)eþ2 - z1), so that the two-body density becomes

p() : p(b,zr)p(b,zz)(l -C(rr- zr)) where ii" now related to Cby e :1- Nc(\ -C).
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where c: 0.57 fm the surface thickness parameter, and the central density is norma,Iised so that

n / -2-2\-1
P?,rs : ,r,T"lt *'frrr) (4'57)

where Rpb: (ZOZ¡rts rs is the radius of 2o7Pb. The \Moods-Saxon radius, Rws, is then found by

solving the equation

l(Rws):'+ Í(Rpa) (4.58)

where

)(
3

(*.
p2

4(*.

12c2r+M -1
f (Rws):

4r Rla¡s

This can be solved analytically to give

-r/3

(4.5e)

Rws
16c6

-I
27 1

r6c6 ß2

- 

-L'-27'4

2/3

+ (4.60)

where þ : Ar3 | Atr2 c2rsf (207)2/3.

For light nuclei 1a 5 fO; the Woods-Saxon density is not a good approximation, and in this

case a harmonic oscillator (shell model) density is more appropriate,

pno(b, z) : pono (t - O# 
å) "", (-,' t^'r) (4.61)

where the shell model radius is .R5 = \Fll R¡, and the normalisation constant is

pono: jfl;aA-. @.62)

In Fig.4.23 we show p(2) with and without two-nucleon correlations, for an A : 40 nucleus.

Note that the curves are not to scale, as we merely highlight differences between the shapes.

4.3.2 VMD Model of f A Scattering

where ftori;_ (4.47) we have

Because of the finite energy of projectile beams (and hence energy transfer to the nucleus), much of

the data on nuclear shadowing at low ø taken so far has been at low and intermediate Ç2 (between

- 0.1 and 10 GeV2). In this kinematic region we expect that there should be non-negligible

contributions from the scattering of vector mesons off nuclei. From the discussions in Sections 4.1.1

and 4.7.2 the contribution to the nuclear structure function from the double scattering diagram in

the VMD model is

ív)Fzt(r) : 8't- 
= ,, 

6or!, =,. (4.68)r I f?e+e,lM?,),

d,2b dz1 d,z2 0(22 - zr¡ p(2)çarzt,z2) coslkT(22 - tt)]. (4.64)6ov.t
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Figure 4.23: Two-particle nuclear density functions, OØQ) : p(2)(b : 0,zt : 0,22: r), for
constant (dotted), Woods-Saxon (solid) and harmonic oscillator (dashed) single-particle densities,
with and without two-nucleon correlations. The curves for the three densities are in arbitrary units,
as we merely emphasise the shapes.
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Figure 4.24: Q2 dependence of the shadowing correction to the nuclear structure function in the
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In the model of Ref.[188] the possibility of reabsorption of the vector meson intermediate state

while it ttaverses the nuclear medium was a,lso considered. Classically, one would expect an incident

wave to be attenuated according to exp (- [ d,zlL), where -[ is the classical mean free path [148].

In [188] the reabsorption in DIS was modelled by introducing an additional exponential factor

""p(-å t::dzlLv) inEq.(4.64),where Ly=(oy¡¡ p(b,"))-tisthemeanfreepathofthevecror

meson in the nucleus. Numerically, we find that the inclusion of this contribution has very Jittle

effect upon the flnal nuclear to nucleon structure function ratio, which can be seen as an indication

that the higher order rescattering terms in the Glauber series do not contribute significantly.

From trq.(4.63) it is clear that the vector meson dominance contribution is a non-leading twist

effect. To illustrate the strong Q2-dependence of the shadowing predicted in the VMD model, we

plot 6V)FrÁ, nolmalised to one nucleon, inFig.4.24fot A:40 and pQ) : pþ. tA,e VMD model

predicts maximum shadowing at 82 - 1 GeV2. For Q2 ---+ 0 the shadowing disappears due to the

vanishing of the total F2¡ (as required by gauge invariance - see Eq.(4.67) below). However, for

Iarge Q2, 6V) Fzt also vanishes due to the presence of the vector meson propagators in (4.63). The

amount of shadowing generated via this mechanism dies of fairly rapidly between Q2 - l and 10

GeV2, so that Tor Q2 à t0 GuV2 it is almost negügible. Experimentally, however, the data [138]

indicate that the deep inelastic nuclear cross sections are shadowed even at quite large Q2 (- lO

GeV2). Even though the VMD contribution wili be important when comparing with the small-Q2

data, clearly for large Q2 the VMD model cannot be the whole story.

4.3.3 Pomeron Exchange in Nuclei

In the deuteron, because of the scaling property of the Pomeron structure function, the Pomeron

exchange contributionto 6F2p was finite in the Bjorken limit. Therefore it is quite likely that the

same mechanism is also responsible for the scaling of the nuclear shadowing. The total contribution

from P-exchange to the shadowing correction to F2a is

6@)Fzt(*,e2) : [^ cfu I,q@) Fzp(*p,e,) (4.65)
J a*in

where Fzp(rp , Q') i" the Pomeron structure function, defined in Section 4. 1, and ÍÁy) is given by

[186]

I.q(y) : -A(A -r) 
ïtr 

I o'o d,z1 d,z2 pl)(b,zt,zz) cos[k7(22 - ,r)]. (4.66)

In Ref.[188] the rescattering of the diffractively produced system within the nucleus was mod-

elled by introducing a factor 
""p (-å î:: dzlLx), where Ly : (oy¡¡ p(b,z))-r is the mean free

path of the hadronic state X inside the nucleus. The assumptions made are that, as in the VMD
case, the tota,l cross section, o¡¡¡, for the interaction of the state X with a nucleon is independent

of the mass My, and that non-diagonal transitions aïe suppressed. For ø¡¡¡ x 20 mb, as suggested

in [188], the effects of this are quite small, and can for practical purposes be neglected.

For fixed urthe small r region corresponds also to small Q'. tt current energies, this means

that probing structure functions at r 5 0.001 can only be done for Q'S Ol GeV2, which is well
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below the scaling region. Since the Q2 dependence of F2p is determined by the behaviour with Q2

of Ffff (see Eqs.(4.10) & (4.11)), we therefore need to extrapolate the nucleon structure function

down to Iow Q2. While a rigorous theoretical basis for quark distributions at very small Q2 is

still outstanding, there have been several phenomenological parameterisations of F2, in this region

[166, 189, 190]. Clearly any low-Q2 parameterisation must incorporate the photoproduction Jimit,

4r2a
o1*N = ffrr* 

------+ o1N as Q2 ---+ Q. (4.67)

The simplest, and most common, way to include this low-Q2 behaviour is to introduce a factor

@'l@'+ Ml))'+', with the parameter e taken from Regge theory. More recently, Schuler and

Sjöstrand [152] made a detailed study of the low-z and low-Q2 extrapolation. The low-Qz region

in their analysis was modelled by demanding an analytical behaviour of the modified distributions

in the r,Q2 - 0limit for fixed *1Q2, with the normalisation and the mass parameter Mþ frxed

by matching the photoproduction and deep inelastic regions. For r ) ro : 0.0069, their small-Q2

extrapolation was taken as

rq""o(r,e2) : (+ * yât,q^tr) 
t*' 

'0""o 
(*,e'o) (4.68)

\t + Mþ/a, )
and

rq,"o(n,e2) : (å) 
-' (*+n)*

" ft" Q + aþ ¡q'o)'*' *on"""(*o,e\) + 0.044(1 - ¡"") 'r'] (4.6e)

for u ( ø0, where /[" : 1- (1 - rlrs)(I- Q'lQ'ò, and the other parameters are Q3: S GeV2,

Ml :0.38 GeV2 and e : -0.08. In Fig.4.25 we plot r8".o(r,Q2) (using the input parameterisation

from Ref.[51] at large Q') u, a function of r and Q2.

The dependence of 6Q)Fzt oL Q2, shown in Fig.4.26, is then solely dependent on the Q2

dependence of the sea quark distributions. Below Q2 - 0.5 GeV2 the shadowing is almost negligible

for all but the very small r values. At higher Q2, however, the larger nucleon sea quark distribution

gives rise to a large shadowing correction, so that above Q2 - 5 GeV2 the P-exchange component

exceeds the VMD component (see Fig.4.24), and starts to dominatelor Q2 ì lO GuV2.

The combined effect of the VMD and P-exchange mechanisms lot Q2 between - 0.5 and 10

GeV2 is that the total shadowing correction varies little in this region - see Fig.4.27. Calcuiating

the 2-exchange contribution at larger Q2 would give rise to an increasing 6Q)Fz¿. However, as

pointed out at the end of Section 4.2.4, the recombination of partons from different nucleons in the

nucleus may modify [182] the QCD evolution equations governing the behaviour of the sea quark

distributions with Q2 (see also Section 2.1.4). At very small r and large Q2 this can introduce

non-negligible corrections [140, 188], although these will also depend on the small-r behaviour of

the input gluon distribution in the nucleon. However, since the data on shadowing at small z were

taken at low to moderat. Q' (S 10 GeV2), the exclusion of this will not play a major role in our

region ofinterest.
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Figure 4.25: Nucleon sea quark distribution as a function of Q2, for z : 0.001,0.01 and 0.1. The
input distribution is from Owens [51], modified to include the small Q2 extrapolation of Ref.[152].

0.00

-0.02

-0.04

-0.06

0.01 0.1 0 1 .00 10.00

Figure 4.26: Q2 dependence of the shadowing correction to the nuclear structure function from
Pomeron exchange lor A = 40. The parameters are as inFig.4.24.
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Figure 4.27: Q2 dependence of the total shadowing correction to the nuclear structure function
from VMD and Z-exchange, for A: 40. The parameters are as in Fig.4.24.

4.3.4 Cornparison with Experiment

Finally we can consider the shadowing effect on the ratios of nuclear to deuteron structure functions.

Since the magnitude of the shadowing correction to the D structure function was found to be very

small (the total correction per nucleon in D, Fig.4.1B, is - 20 times smaller than that in noCo,,

Fig.a.27) we shall use the isoscalar nucleon structure function in our comparisons,

Fz¡ (ZFr, + (A - Z)Fz" t 6Fz¿,)

ñ 
: AF,w l*'i'7

where FzN = (Fro + Fzn)12, Fzn x Fzn - F271, and. 6F2¡ : 6V) Fz;. ¡ 6(n) Fra. In calculating this

ratio, for F2o and F2p we use the recent parameterisation from Ref.[191] (valid down to Q2 :0.5
GeV2),

Fzp(r,e,):^@)(ffiffi)'''' FW) @Tr)

(and similarly for Fzl) where the functions A, B and C are expressed as series in ø with the

coefrcients determined by fitting the combined NMC [191], SIAC [192] and BCDMS [193] data.

Fig.4.28 shows the model predictions for a Z - 20,A:40 nucleus, compared with the high-

precision data on the aoCa to deuteron structure function ratio from the NMC [tSa], as well as

with the previous EMC data [137]. Note that the data at each ø are taken at a different average

value of Q2, tangirrg from (Q'l = 0.6 GeV2 at r : 0.0035 t" (Q'l æ 10 GeV2 a,t r : 0.1, and

the curves in Fig.4.28 have been calculated at the specific experimental values. Not surprisingly,

at small r the largest contribution is from the scattering of vector mesons, which is about twice as

large as the Pomeron exchange contribution. When both mechanisms are included, we find very

good agreement between model and experiment over the entire range of ø between = 0.004 and

g2

--- - rr=0.08
.. r--O.04

- - - r=O.O2

- 
t-O.OOZ
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Figure 4.28: Shadowing of the 4oCa strrcture function. The dashed curve is the P-exchange
contribution, while the dotted is the VMD model prediction, and the full curve represents the sum
of the two. The data arefromthe BMC [137] and the NMC [138].

0.1. The curves are calculated using the \Moods-Saxon single particle density and the two-particle

correlation function in (a.5a). To separate the low- andhigh-M2y regions, and avoid any possibility

of double counting between the different mechanisms, we impose a cut of M2x > M'xo :1.5 GeV2

for the 2-exchange contribution, as suggested in [186]. The sensitivity to the cut-offmass M]o is

demonstrated in Fig.4.2g. At r S 0.01, for no cut-off (Mko:0) the calculated curve (dashed) lies

below the one with a cut-off of Mlo: 1.5 GeV2 (solid), however there is little difference between

the curves at larger r. By way of illustration, in Fi9.4.29 we also show the effect of using a constant

single-particle density rather than a Woods-Saxon shape. With a constant density the amount of

shadowing is generally predicted to be some 25-30% larger. It is also evident from Fig.4.29 that

the role of two-particle correlations (dotted curve) is not significant lor aoCa. It is apparent that

the best fit corresponds to the curve with the most realistic parameters (solid curve).

As mentioned, at the finite values of energy transfer u,the data at small r necessarily correspond

to lower Q2. Therefore the structure function ratios should be calculated at the experimental Q2

values. In particular, owing to the non-negligible Q2-dependence of shadowing at small Q2 , it would

seem inappropriate to compare the small-ø data points with structure function ratios calculated

at some fixed Q2, as appears to have been done in [169, 153]. Indeed, the results at fixed Q2 are

quite different from those at the correct Q2 values, as evident from Fig.4.30. Furthermore, it seems

przzhng how one can draw conclusions about the merits of models of shadowing from comparing

the data with predictions at fixed 82 [153].

The NMC also measured the 12C structure function, and this is reproduced in Fig.4.31, together

with the model predictions. Again, the VMD model (dotted curve) predicts larger shadowing
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Figure 4.29: Shadowing of the aoCa strrcture function. Solid line is the total shadowing correction
with the Woods-Saxon single-particle density, including two-particle correlations, and a cut in
Mzx > 1.5 GeV2 for the P contribution; dotted curve is with no two-particle correlations; dashed

curve is with no Mþ c;ut and dash-dotted curve is for a constant nuclear density, with correlations
and an M2y cttt. The data are as in Fig.4.28.
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Figure 4.30: Ratio of aoCa to isoscalar nucleon structure functions, evaluated at fixed values of Q2
(dashed and dotted curves), and at the experimental Q2 values (solid curve).
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Figure 4.31: Shadowing of the 12C structure function. Solid line is the total shadowing correction
with the harmonic oscillator (shell model) single-particle density; dashed and dotted curves are the
VMD and P-exchange contributions; and dot-dashed curve is for a constant nuclear density. The
data are from Ref.[138].

corrections to F2ç than does the P-exchange mechanism (dashed curve). With the combined

effects, and with an harmonic oscillator (shell model) single-particle density, the data can be frtted

reasonably well (solid curve). \Mith a constant nuclear density (dot-dashed) the modei generaliy

predicts too much shadowing. (Note that we use the same radius parameter ?"0 - I.2 fm as for
aoca 

- increasing this to x I.4 fm [186] wouid reduce the magnitude of shadowing to give even

better agreement.)

In all, the agreement with the data is very good when both the VMD and P-exchange mecha-

nisms are inciuded. What is also clear is that at low r and Low Q2 most of the observed shadowing

comes from the scattering of low-My vector mesons, which serves to highlight the importance of

hadronic degrees of freedom at small Q'. Wu would expect, however, that as the energies of lepton

beams increase, and more small-r data taken at larger Q2,, the P-exchange process should become

more important. Such data would further enable us to test the relevance of the two mechanisms.

We should also emphasise that the above model of nuclear shadowing has very few adjustable

parameters. For the nuclear densities we use the most realistic shapes appropriate to the various

nuclei (i.e. Fermi distribution for large A nuclei, shell model for smaller Á nuclei). Furthermore,

the nuclear radius parameter rs is fixed to be r L.2 Îm [194], even though the results could be

made smaller (or larger) by increasing (or decreasing) this by a few percent. The other parameter

to which our results are sensitive at very small r is the cut-off mass Mþo. At large Q2 the cut-off

is irrelevant, however at small Q'io the sma,ll-r region this will be important, and we set this to

the value suggested in [186]. All other inputs (2 structure function, total Vl{ cross sections, etc.)

t
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are as specifled in Section 4.2in the discussion on shadowing in D. Therefore the good agreement

with the present nuclear data should give us some conf.dence in the model predictions for 6F2p.In

particular, our conclusions in the previous chapter, in the analysis of the Gottfried sum rule and

the question of flavour asymmetry, should also remain intact.

One word of caution needs to be made about the multiple scattering formalism used in this

chapter. Along with the other assumptions inherent in the Glauber theory (i.e. eikonal approx-

imation, additivity of phase shifts, etc.), by assuming that the scattering from a nucleus can be

described in terms of scattering from individual free nucleons, this formalism ignores the effects

that may arise when the nucleon virtuality is taken into account. While for the deuteron there may

be some justification for neglecting the off-shell aspects of bound nucleons, since there the nucleons

are only weakly bound, this may not be the case for heavy nuclei. In the next chapter we shall

investigate in detail the off-shell properties of nucleons within a relativistic, covariant formalism,

and examine the implications for the calculation of nuclear structure functions. In particular, it

will be important to understand the consequences of taking into account the nucleons' virtuality

in the region of interest for shadowing, namely at small r, although off-shell effects may well be

important for all ø. We briefly touched on this issue in Chapter 3, in the discussion of DIS from

virtual baryon components of a physical nucleon, where our findings forecast potentially serious

problems with the usual treatment of DIS from composite particles when relativistic effects are

included. In what follows we shall generalise this discussion, and see that a proper treatment of

the scattering from off-shell nucleons has far-reaching consequences.
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Chapter 5

OFF-SI{ELL EFFECTS IN DIS

FR,OM COMPOSITE PARTICTES

In the previous chapter we saw how at very small r the nuclear structure function F2¡ is modifled

so that it no ionger equals the incoherent sum of proton and neutron structure functions. In this

chapter we examine how F2¿ is affected by the fact that the nucleons are bound (and therefore

off-mass-shen, p2 + M'). Extending the formalism introduced in Chapter 2, we develop a method

of calculating structure functions of composite particles, which will be relevant not only in nuclear

DIS, but also in any other process which involves scattering from off-shell nucleons [195].

While it is true that in most calculations of nuclear structure functions the off-shell aspects

of the nucleon have been neglected, a few authors have tried to take some of these into account.

In the earliest attempts (see, for example, Kusno and Moravcsik [196]) a scheme called 'off-shell

kinematics - on-shell dynamics' was used, in which the Lorentz structure of the off-shell nucleon

tensor was assumed to be the same as for the on-shell tensor, and in addition the dependence on

p2 was presumed to be negligible. Later, Bodek and Ritchie [79] used a similar method in order

to extract the structure function of the neutron from that of the deuteron. To account for the

nucleon virtuality, it was suggested there that the on- and off-shell structure functions could be

related via a shift in energy transfer, u --+ u i (p' - M') I 2,, as long as the structure functions were

independent of q2 and s. In another calculation, Dunne and Thomas [80] used an ansatz in which

the matrix elements of the hadronic operators in the operator product expansion were assumed

to be independent of p2. The result was a nucleon structure function that was to be evaluated

at a shifted value of q2(- e(p2,q')q',, where ( is the 92 rescaling parameter). This result was

mathematically equivalent to the dynamical rescaling model of Close, Roberts and Ross [197] and

Nachtmann and Pirner [1OS], in which the shift in q2 was attributed to a change in confi.nement

radius for nucleons bound inside a nucleus.

Virtually all of the conventional calculations have used, in one form or another, the simple con-

volution model [52], in which the bound nucleon structure function is folded with the momentum

distribution function of the nucleons inside the composite particle. The justification for the convo-
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lution approach has been the belief in the validity of the assumption that the form of the off-shell

nucleon tensor (frr,) is the same as the on-shell one [tg9]. However, faced with the flndings from

Chapter 2 that in the Bjorken limit more than one operator is relevant, we could be excused for

having grave fears for this assumption. The appearance of additional operator structures essen-

tially arises from the presence of antiparticle degrees of freedom, which are unavoidable in any

relativistic treatment of DIS. Although relativistic calculations have also been attempted in the

past, for example by Nakano [200] and Gross and Liuti [201], these too suffer from the fact that

critical assumptions need to be made about the nucleon off-shell behaviour in order to derive the

convolution model. In fact, to our knowledge, all attempts to derive the simple covariant convo-

lution model result have ultimately resorted to some prescription to account for the fact that the

nucleon lnas p.2 + M'. Without performing a full calculation which self-consistently accounts for

the nucleon virtuality, all such ad hoc prescriptions must remain in doubt.

Of course there do exist alternative, non-covariant, methods which don't suffer from the same

off-mass-shell ambiguities that have plagued the covariant formulations. We saw in Chapter 3 that

time-ordered perturbation theory in the IMF has advantages when calculating virtual meson and

baryon distributions in the nucleon. The instant form of dynamics was also used by Johnson and

Speth [202] and Heller and Thomas [203] to ca,lculate structure functions of nuclei (see also Ma

[204]). Since nuclear wavefunctions are not known in the IMF, these calculations were necessarily

performed in the target rest frame, although in this case the neglect of antinucieons is not strictly

valid. Alternatively, for the nuclear EMC effect Berger, Coester & Wiringa [76] used light-front

dynamics to calculate the nuclear structure functions. Here all particles are on-mass-shell, trans-

verse momentum and the light-cone variable p+ : po I pt, are conserved at each vertex, while

p- : po - p¡, is not. Although this is an elegant method, its practical use is limited by the fact

that nuclear wavefunctions on the light-cone have not been calculated. A review of some of the

problems with atl these approaches can be found in Refs.[205, 206].

The advantage of the covariant method in nuclear calculations is that Lorentz invariance is man-

ifest. Perhaps the main reason why a proper treatment of the off-shell problem has not been made

up to now has been the perceived complexity involved with including the extra antinucleon degrees

of freedom. However, having calculated. the off-shell tensor frrrio Chapter 2, we can now use this

to describe any process which involves scattering from off-shell nucleons, without making unnec-

essary off-shell assumptions. In the formalism developed here, all of the soft, non-perturbative,

physics will be contained in a set of relativistic quark-nucleon and nucleon-nucleus vertex func-

tions. Of course these are not calculable from first principles, and eventually phenomenological, or

model-dependent, input needs to be used to obtain the complete structure function of the physi

cal composite particle. However, regardless of the non-perturbative inputs, we wiil show that the

modei is gauge invariant and respects the Callan-Gross relation in the Bjorken limit.
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P
Figure 5.1: Scattering from an off-shell nucleon in a composite target. The functions A¿ describe

the nucleon-composite target interaction.

5.1 Structure Functions of Composite Particles

The usefulness of the truncated tensor W,r, in calculating deep inelastic structure functions of

composite particles will be made apparent in this section. Diagrammatically, the procedure will

be simply to attach the truncated (off-shell) nucleon legs to whatever nuclear interaction is being

considered, as in Fig.5.1. We will analyse this diagram in detail, with particular emphasis placed on

keeping the full p2 dependence throughout the calculation. Even though this is the simplest diagram

out of the multiple scattering series of the previous chapter (i.e. the usual impulse approximation

for nucleons), and something that is usually thought to have been well and truly understood, we

will see that a rigorous, relativistic treatment of this leads to some surprising results.

Let us begin by writing the full (unpolarised) hadronic tensor for a composite particle, labelled

A, with momentum P. Since this tensor can depend only on P¡",8u and gr^ it can be written, in

analogy with the hadronic tensor for a free nucleon in Eq.(2.a), in the form

wî,(P,q) = Prr,(P,q) wle,q) I Prp,e,ù wf e,q)
+ Pcr,(P,q) wâ(P,q) * Pnp,e,ù wfie,ù (5.1)

where the functions W!(P,g) are the transverse, longitudinal, and the gauge non-invariant struc-

ture functions of the composite particlerfot i = TrLrG and 11, respectively, and lheP¿p, are the

projectors deflned in (2.5). Our goal is to identify the combinations of 'truncated' functions Ø
which contribute to these four functions. To do so we flrst need to relate the Lorentz structure of

frr,(p,g) to that of Wr4,Q,q). Since the truncated nucleon tensor frr, hu" spinor indices, the q2-

independent nucleon-target 'blob' in Fig.5.1 (into which the truncated nucleon legs are inserted)

will also be described by a 4x4 matrix in Dirac space. In general, this interaction can be written

AS

I Ao(p,P) + t, Aî(p,P) + o.B,+iB@,r) (5.2)

q fruu

pp

A.
I

P
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where Ao, At and A2 are scalar functions of p and P. (Note that since we dea,l with spin-independent

processes we exclude 75 terms - these would be zero when contracted with the unpolarised tensor

frr,.) The full tensor can then be written

MA wtar(P,q) I oU ,' l(t oo(0, p) i t, Ai@, p) r o,B AîP (p, Ð) fr*@, ù) (5.3)

where M¡ a,nd M¡7 are the masses of the target and target recoil systems, respectively. Implicit

in the functions Ao-Az is a sum over all excited target recoil states, or equivalently an integration

over the masses M¿ weighted by some target recoil spectral function. In (5.3) df is given by

dl dap 2tr6 (lP - pl' - M'")
(2n)n (p2 _ M2)2

da d'pr
(5.4)2(r-u)(p2-M2)2

where p2:p+p--p},i.thenucleon'sfour-momentumsquared, y:p.qlP'q:p+lP+isitslight-
cone momentum fraction, and the d-function has been used to flx p- - M¡ + @A+pT) l@+- Mt)
upon taking the imaginary part of the Compton amplitude in Fig.5.1.

To see which Dirac structures in frrr(p,q) are relevant for the structure of the composite

particle, we can project from the right hand side of (5.3) the contributions to each of the four

structure functions Wf ,, as was done for the on-shell nucleon structure functions in Chapter 2. For

this purpose the utility of the projectors P¿r, becomes apparent - in the Bjorken limit (in which

we always work) these projectors also satisfy the relations Pl'(P,q) P¿rr(p,q):2,1,1 and -1 for

i = T,,L.G and -l'1, respectively, for different momenta P and p, and furthermore they are still

orthogonal. Therefore, applying the projectors to the truncated nucleon tensor frr,(p,q) gives the

following contributions:

1^'rr#"(r,ùfr,,@,q) : fr$ + lfrï + dfu| + o,Bp'qþ frF

- #æ (n'-zun' P +a'P')lfrt * úfr| + øfri, + o.Bp'qB frf,l

+l

Pl'(p,ùfrr,(p,r¡-=l

- ú+vr+F"e'p-yP') /ø" (5.5)

yP" +
P'p-y'P2)

P,q lr.oou 
fru + lp' - uP'lo*pQþ fr7

fri, + lfrL + øfri, + o.Bp"qe frÍ,

, #* (n'-zun' P +v'P')1fr+ * lfri + dfrl + o.Bp'q| frfi)

'# dfr" - ffo*or'qþ fru - 2 y ooBpoqp frz (5.6)

pä"(p,q)fr,,@,q) : fr|+ øfrä+ dfr& *'# dfr" + 2 dfrn

+ oopPosþ l*¿ * 
zl+ø" + 2fr8f (5.7)
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-T"rí r'' q) fr,'@' s) fri,+ lfrÌ,+ dfrh.rydfr"+ dfrn

ooppoeþ l*t * 
zt+ø" * Ø']

oopPoqþ 
lrO' * h*"1 (5.8)

Although there appear to be many functions W' in the above expressions, having calculated the

scaling behaviour of these functions in Chapter 2 we can automatically see which (if any) terms

survive in the Bjorken limit. (In fact, as we shall see explicitly below, to leading order in u only

four functions contribute to the transverse structure function of the composite particle, and overall

there are no contributions to any of the others.)

The transverse structure function of the composite particle is obtained by taking the trace of

the nuclear functions in (5.2) with the 'projected' nucleon tensor in (5.5), and integrating over the

four-momentum p of the nucleon,

MA wÊ(P' q) 
: I i r':",')î;f;r'1,, * p A,(p, p) nt(p, q) + s A,(p, p) nt(p,s)

r (p, qp - pp q.)AîB@,ÐfrÍ@,q) + o (å)). (5.e)

This result is of particular importance. Compare this with the expression in (2.37) for the on-shell

nucleon structure function. It is obvious that in that case a different combination of function"fri

appears to that in (5.9). This is aside from the fact that there are four scaling functions in (5.9)

compared with only three in (2.37) - for most vertices only .4.6 and A1 will contribute, while A2

will arise typically as an interference term when more than one type of vertex is used. Therefore,

even for the simplest nucleon-nucleus interactions no part of the right hand side of (5.9) can be be

identified with the nucleon structure function, unless of course the functions Ai conspire to give a

result proportional to the combination of the fri *Iri"happears in (2.37). This result has significant

bearing upon the convolution model of nuclear DIS, which has been a common feature of almost

every calculation of structure functions of composite particles until now. In the next section we

consider the çonsequences for the convolution model more fully, and exhaust the possible ways in

which this model can be obtained from the full result.

Before we do that it is also important to check that the above formalism is gauge invariant,

and that it respects the Callan-Gross relation (vanishing of the longitudinal structure function) in

the Bjorken limit. Taking the trace of (5.6) with the nuclear-nucleon interaction in (5.2) we flnd

that the longitudinal structure function is

M¡Pl'(P,q) Wr,(P,11)

+ | aø{ø.At(p,Ð (frZrr,q) - '# fr'@,q)) (5.10)

* (p,qB - ppq*)AîB@,p) (*Err,t) - '#fru@,ø)) + 
" G)\

:

+

+

MAWî(P,q)
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Furthermore, for the non gange-invariant structure functions, we frnd

a¿ wþe, q) : M¿ Pfi'(P,q) Wr"(P,q)

: nloø{o.At(p,,4 (fraro,q) + z-t#fr"tn,q) + zfr^@,q))

r (p.qB - pBq*)AiB(p,p) (æto,q) + 'z#fru@,,q) + 2fr"@,q))

- 
" (i)) tu ''r

u¡ wfiçr,q¡ -Try rr, q) w,,(P, q)

n loø{n.At(p,Ð (frAfo,q) * ffø"fr,q) + fr^@,q))

i (p,qB - pBqòAiB(p,P) frh@,q) + fru(p,ù + fr"@,q)

*ol1)Ì. (5.12)'"\rr)J'
Substituting the relations between the non-transverse functions in (2.a8) in the Bjorken limit the

right hand sides in Eqs.(5.10)-(5.12) become zero,

wf;(p,q) -) o, i: L,G,H. (5.13)

Hence the Callan-Gross relation, as well as gauge invariance (qrwrar: 0), are assured. This result is

trte independent of the production mechanism of the off-shell parti,cle, or equivalently, independent

of As-A2. Hence it confirms the consistency of our model with the operator product expansion of

Chapter 2.

5.2 Convolution Model

The most common application of the convolution model has been in calculations of the deep inelastic

structure functions of nuclei. In the convolution model of DIS the structure function of a nucleus

containing bound nucleons is expressed in terms of a one-dimensional integral, over the nucleon

momentum, of the structure function of the bound nucleon with some momentum distribution

function of the nucleons in the nucleus [52]. Indeed, its simplicity of interpretation and ease of use

made it the standard approach to calculating structure functions of composite particles.

Although it has generally been understood [205] that the convolution model result relies on

some critical assumptions about the off-shell behaviour of the nucleon structure function, and the

form of the off-shell tensor itself, still the general philosophy has been that without evidence to the

contrary, the model could be used as an approximation to the full result. Having obtained the full

result in the previous section, we are now in the unique position of being able to critically test for

the flrst time these hypotheses.

Let us outline the usual arguments made in deriving the convolution model. First of all, the

assumption is made that the nuclear structure function can be written in factorised form, in terms

2 p'q
q2
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of the nucleon structure function, W{ , and the nucleon distribution function, g,

wf (*,e\ : I oo I o'o, e(Ao,At,Az) wl@ly,Q',pr). (5.14)

Furthermore, to obtain the one-dimensional convolution formula [52], in addition it is assumed that

Wf is independent of p7 (or equivalently p2),

wl@,e\ : lon 
qø wf @la,Q\ (5.15)

where now the integral over p?' is absorbed into the deflnition of þ. The question is can the

factorisation assumptions be justified rigorously? To answer this, let us consider how (5.14) may

arise from the full result in (5.9). This can happen if any of the following cases ate true:

¡ CASE (a): If all but one of the functio"" frþ (i = O - 2,5) are zero in the Bjorken limit.

Most authors adopt this choice, as this corresponds to assuming that the form of the off-shell

nucleon tensor is the same as that for a pointlike fermion, where only the lfrl t"t^ contributes

152, 17,199]. However, as was proved in Section 2.I.2, all four functions fr¡i" principle scale in

the Bjorken limit, which means that the only way that these can vanish is if some of the functions /
in (2.a7) are zero. But, as we saw in Section 2.3.1 (Bqs.(2.53) and (2.54)),even the simplest vertex

functions lead to a large number of non-zero functions /. In that case, even for massless quarks,

there were scaling contributions to both of the functions fr$ ana frl. f"t more complicated q--l[

vertices, even moïe of the /s (and hence fr$ anafrl 
"" 

well) will be non-zero.

¡ CASE (b): If more than one of thefrfi is non-zero, but the non-zero ones are proportional

to each other. For exampi", -fr - M fa and, all other /s equal to zero would imply fr$ : Mfr+,

and so (5.14) would be obtained. In general, such a behaviour will not arise from quark-nucleon

vertices, as we found in Chapter 2.

¡ CASE (c): If the non-zero nucleon-target functions ,4.¿ multiplying the fr$ ut. proportional

to each other. An example of this would be if -4.s and Al were non-zero and related by Ao :
p.hlM = 8.At Mlp. q, which would then give (5.14). Such an assumption is made for example

in Ref.[201]. However, in general this will not be true unless the p2 : M2limit is artificially taken

inside the functions A¿. (We will give some examples of this when we consider specific processes in

the following sections.)

\Me emphasise that none of the conditions (a) - (c) are generally satisf,ed in a self-consistent,

fully relativistic, calculation. Consequently the conuolution model interpretation of the nuclear

structure function'in terms of bound nucleon structure Juncti,ons is inconsistent within the couariant

formalism. This difficulty is intrinsically related to the presence of antinucleon degrees of freedom

in the relativistic calculation. While it may have been expected that effects such as final state

interactions, higher twists, etc. could also spoil the factorisation property of the convolution model,

it was not anticipated that the simplest, impulse approximation, result would also fail to satisfy

this.

Furthermore, in the absence of the convolution model, the common practice of extracting nu-

cleon strttcture functions from nuclear DIS data is not strictly valid. Indeed, the very concept of a
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'bound nucleon structure function' is ill-defined within a covariant formulation. \Mhile the failure

of the convolution model may appear to be an unwelcome complication, it is clear that in any theo-

retically self-consistent calculation which takes off-mass-shell effects into account it is an inevitable

one. Nevertheless, it should also be clear that what we do have now is a new and powerful method

of calculating nuclear structure functions, right down from the quark level. Indeed, this can be

seen as a strength of the formalism, since now we are forced, to consider quarle and nuclear degrees

of freedom in the one calculation.

In the following sections we shall use the relativistic formalism in several applications. Using

Eq.(5.9) we will also compare numerically the exact result with that obtained using the convolution

model, Eq.(5.15). We should also notice that the functions fr¡ ut" independent of the nature of

the composite target (i.e. there are no P- or g-dependent terms in (5.5) in the Bjorken limit).

Therefore by selecting various targets (i.e. by varying Ao - Az) the relative contributions from the

functions frþ corld, be probed, provided, of course, we know the functions As - A2 sufficiently well.

Conversely, once thefrþ have been determined for one process, they may in principle be used for

all other processes.

5.3 Deuteron Structure Function

We examine nuclear DIS from a deuteron for several teasons. Firstly, it is critical to know the

size of the off-mass-shell corrections to the deuteron structure function if ultìmately the nuclear

EMC data (which is in the form of ratios of nuclear to deuterium structure functions) is to be

used to draw conclusions about the differences between quark distributions in free nucleons and

those bound in nuclei. Secondly, in the absence of high-statistics neutrino data, the neutron

structure function is often inferred from the deuteron structure function using the naive assumption

of additivity of bound proton and neutron structure functions. As was discussed in the previous

chapter, the deviations from additivity due to shadowing can introduce small, but nonetheless

noticeable, corrections to F2n at r --+ 0. Of course, due to Fermi motion the deuteron structure

function can also extend beyond oN : 1 (r¡r = (MplM) z) to :üN : AolM. In this section

we investigate the corrections to F2p due to off-mass-shell effects, which are not restricted to any

particular region of r.
The calculation of DIS from the deuteron is more straightforward and reliable than for other nu-

clei, since the relativistic deuteron-nucleon vertex is reasonably well understood. The treatment of

the deuteron recoil state is also simplified by the fact that most of the time this will be an on-shell nu-

cleon (since this can be expected to dominate contributions from processes with a recoil A or Roper

resonance, or a higher mass state). The structure of the general D N N vertex, with one nucleon on-

shell, was first derived by Blankenbecler and Cook 12071, (Nlú¡¡lD) o (ú- M)-tl! e" Cnr(e -p),
where the D/ÍIù vertex function is [20S]

r?(p') : n F(p) r (i"-e-) G@) + #lutor^,. * #) (å" -^)] (5.16)
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arLd C is the charge conjugation operator. The functions d G, H andl are related to the 3 51,3 D1,t P1

and 3P1 deuteron wavefunctions LL, roru" a"Ld o¿, respectively, via the relations [209]

p(p) = "t/zMn (2Ep - MD)

G(p) : "tEMo (2Ep - Mp)

fi',rtotl

,(rpr) ry*rlt#,,trnu)
rpr) + "ryÐry * ß *{rf,trnu)

M
Ep+ M

n@) = rJzuo E-"Y
lpl

t(p) : -"JrM" Y\M,

(5.17)

(2Ep - Mo)(Ep + 2M)'¿(lpl)
p2 t/,

+ (lpl)

where Ep : JM,T/-. The relativistic deuteron wavefunctions have been calculated, for ex-

ample, in the model of Buck and Gross [209]. In the numerical work below we use the wave-

functions calculated with a purely pseudovector zr exchange interaction (although wavefunctions

with pseudoscalar and pseudoscalar-pseudovector combinations were also given in [209]). For the

spin-averaged deuteron hadronic tensor we therefore need to evaluate the trace (which appears in

nq.(5.3))

D.*'(À, r) eÞ(x,p) rr lff'- lr + a) cr|@\ Ø + u¡ fr,,(p,q) (ú + M) cr?@\] (5.18)
À

where e'(À,P) is the polarisation vector for a deuteron with helicity À, and i3 : ro ff,l fo. fnit
yields the following deuteron-nucleon functions ,4.f;:

A3@\ : M 4F2 4 M2 + 2 M"D - (o'- *') )l-2+
p2-Mz

Mb

8FG 4M2 - a'" + roM2-M'D+2p2-W)l
çz
M2

(p'

A?"(pt) : 4 F2

BFG

+
l{n 

*' - *h)' - (r" - *') (n *t - 5 p'- rt M2 -'f#)

M2 -t2H2 (o'-*')+4FH1y1z (p' ¡¡42
2

-bM2 - 2M'D + p2 + Mh

-4 12 +B H I +76F1

(p' - M')
M(n *' + 2 M'?D) 'p, -

l{n 
*' - M'o) o. +

(p' - M')
M2 (

+16crr +8 -,O-P)]\ (5.1e)

+
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Q, 

- W)tp. - p.t+ 8 11 r (p, - *,rV. - H")
*'l'o'*('-W)"

(5.20)

(5.21)A?"8@') 0

With the nuclear functions Af; rro* determined, we need only one more ingredient in order to

calculate the complete DIS process. In Chapter 2 we described DIS from an on-shell nucleon in

terms of the truncated nucleon functions fr\, which in general are functions of q2 rp.q and also p2,

although the p2 dependence in that case was trivial. For off-shell nucleons we naturally need to know

the specific dependence of fri (and. hence of the functions fù onp2. \Alithin the model of Chapter

2 the functions f¿(p,,k) were related to the quark-nucleon vertex functions Of't(k,p), whose k2

dependence was parameterised by a simple form that reflected the phenomenology of nucleon DIS.

In the nuclear case, for the quark-off-shell nucleon vertex we need to know in addition the p2

dependence of the vertex functions. In general this is more difrcult to obtain because the p2

dependence is not restricted to the quark nucleon verticcs alonc, but is also bc prcscnt in thc

nucleon-nucleus vertices (functions A¿(p,P)). This in turn introduces an inherent uncertainty

in its determination. Nevertheless, since they are defined within the impulse approximation, the

functions Ol'uQr,p) do not depend on the nuclear target - that information is contained entirely

in the functions A¿. This means that if the p2 dependence in Of'v(p, k) could be determined in

one process, the results could then be used in all other processes. Since for the deuteron the p2

dependence of the DNN vertex is known reasonably accurately through (5.18)-(5.21), we can

therefore use deuteron DIS data to constrain this universal p2 dependence of the quark nucleon

vertex functions.

As for the real nucleon case, we restrict our discussion to valence quarks only, and use lepton-

deuteron data from NMC, BCDMS and SLAC [191] at intermediate and large ø ir I O.a), where

valence quarks dominate. Because of isospin symmetry (u' : dD) only a single experìmental

quantity for the deuteron, namely FzD : r(4uD + d\19:\r(u+ d)lg, where uD, dD and u, d

are the up and down quark distributions in the deuteron and proton respectively, can be used to

constrain the g-trf vertex. Thus we cannot differentiate between the p2 dependence in Of and that

in Of . (This is in contrast to the nucleon case, where two sources of information, z I d and df u,

could be used to constrain both the scalar and vector g-,f{ vertex functions.) We can therefore
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choose a simple monopole form and use the same cut-off mass, Âr, in both functions,

al(k',p') N,S
lc2 - m2 (M' - 

^3)(k2_L )' (p'- L7)
(5.22)

s

oY Qr',,p',) Ní/
(k, _ *r) (M, _ L7)

(5.23)
(k2 - LT)?/z (p2 - LZr)'

A detailed comparison between the model and data for r 5 0.3 would require separation of the

valence and sea components of F2p. Although in principle this could be done by analysing the

uD and ,D DIS data, in practice those data suffer from poor statistics. Furthermore, typically

only the extracted quark distributions in the nucleon are presented [210], and these depend on the

theoretical assumptions made to treat binding and Fermi motion corrections.

Because of the additional p2 dependence in (5.22) and (5.23), there is no reason for the nor-

malisation constants ,n/l,y to be the same as those determined by normalising the on-shell nucleon

quark distributions, I{.s,y in (2.65). Note that this would still be true even if the cut-off t\o were

infinite (which would restore the functional form of iÞs'v to that for on-shell nucleons), since there

is 'implicit' dependence on p2 coming from the k2-dependent part,

te2 : k+k_ _ kT = ,*" 
Q_ 

_ t ,n*?|Iïh) _ kT 6.24)

with p- as given by the d-function in Bq.(5.a). Therefore we can a.lso use the deuteron data to fix

the overall normalisation constants (e.g. to give baryon number two) for the p2-dependent scalar

and vector vertex functions, although obviously different normalisation constants will be needed

for different values of r\o. After determining the normalisation constants for a particular Á.o, in

principle the same values may then be used in all other nuclear calculations. In practice, however,

the fact that we are only considering the six-valence quark (i.e. two-nucleon) component of the

total deuteron wavefunction, and neglecting other Fock states (e.g. with meson components) means

that the normalisation will not necessarily be automatic, so that /ül,y will in general need to be

modified to give the correct normalisation.

In Fig.5.2 we compare the experimental F2p a,t Q2 : l0 GeV2 with the calculated total valence

quark distribution in the deuteron, (51})r(uytdy), evolved from the same value of Q2o : 0.I5 GeV2

(since we use the same spectator diquark masses) as for the free nucleon distributions in Chapter

2. Clearly there is very good agreement between the model calculation (solid curve) and the data

for u à 0.3. (The results obtained using the wavefunctions of the Bochum model [211], in which

there is no triplet P state wavefunction, are almost identical to those in Fig.5.2.) The result of the

full calculation is virtually independent of the value of Â, used, after the normalisation constants

for the vertex functions have been determined by the baryon number conservation condition. This

is becanse the p7 distribution is strongly peaked at small transverse momenta, pr - 25 \{eV, so

that modiflcation of the Iatge-p7 (or large-lp2l) behaviour by altering the form factor cut-off is

irrelevant. This in turn produces a E-dependence which peaks strongly at around y:0.5, Fig.5.3,

which indicates that the deuteron is mostly a two-nucleon system. (We should add that the quality
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Figure 5.2: Valence part of the deuteron structure function: solid line is the full calculation with
Âp: æi dashed line is with the p2 : M2 approximation in Ao,At (with Âo = æ), with same

normalisation constant as in full curve; dotted line is the convolution model using only the W$
operator, together with the full nucleon structure function, normalised to baryon number one. The
curves have been evolved ftom Qf : 0.15 GeV2 to Q' : 10 GeV2 for comparison against the
experimental F2p(r,82 : 10GeV2) [191].

of fit in Fig.5.2 could certainly be improved even more by choosing more sophisticated q-/f vertex

functions than the very simple parameterisations in (5.22) and (5.23).)

Having calculated the deuteron structure function using the formalism in which the explicit

p2 dependence is kept throughout, we now compare these results with those of earlier calculations

that have made use of convolution-like formulas. Firstly we can notice that by taking the on-

shell limit (p' -- M2) for the kinematic factors in A! and A! in (5.19) and (5.20), we obtain

Ag lM = p.A? lM' : q. A? lp.g, thereby satisfying condition (c) in Section 5.2 for the convolution

model (although this limit need not be taken in the functions F,G,II,1 themselves). The result

of this approximation is shown in the dashed curve of Fig.5.2, where we have used the same

normalisation constants (for Âp : oo) as determined in the full calculation. The effect is a reduction

in the absolute value of the structure function, without much affect on the shape. By artiflcially

normalising the new distribution so that the final result conserves baryon number, this curve

becomes almost indistinguishable from the full result. However, since the p2 : M2 limit is taken

in the nuclear part of the diagram, and thus does not affect the quark-off-shell nucleon vertex, it

would seem that in principle the same normalisation as in the full curve should be used.

In other calculations using the convolution model for deuterium, the most common prescription

1212,2I3] has been to drop all terms At tfr$ in the expansion of frr, (in Eq.(5.18)), and to

replace fr$ Ut the experimental, on-shell structure function of the nucleon. In Fig.5.2 the dotted

curve shows the result after renormalisation to ensure baryon number two for the deuteron. It
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Figure 5.3: Shape of the g-distribution in the deuteron cross section o(n,y)1or various r, whete

I d,y o(r,g) x F2p(r). (Shown is only the unevolved scalar diquark component, and the vertical
axis is in arbitrary units.)

is somewhat surprising that the difference in shape between the full result and this ansatz is as

small as it is. Still, a discrepancy of - 20% is quite significant in a system as loosely bound as the

deuteron.

Any numericaliy significant difference between the convolution approach and the exact calcu-

lation is of particular importance for the common procedure of extracting the neutron structure

function from the deuteron data via the convolution method. Indeed, in view of the problems with

the convolution model outlined above, it is rather worrying than our knowledge of F2n is based

on this. As seen in Fig.5.2, depending on the approximation or ansatz taken in calculating Fzn,

the deviation from the full, p2-dependent result, will vary. Still, although unsatisfactory from a

theoretical point of view, by artificially renormalising the deuteron structure function by hand so

that it respects baryon number conservation, the differences can be reduced.

A similar situation also arises in calculations of the nuclear EMC effect, in which differences

between nuclear and deuteron structure functions are explored. Clearly for any accurate description

of this effect we need firstly to have a reliable method of calculating the deuteron structure function.

As we have seen, we may compensate for the off-sheil effects that are ignored in the deuteron by

suitably renormalising the final result. Whether this can a,lso be done in other, heavier nuclei is

not clear. Certainly in heavy nuclei we would expect off-shell effects to play some role. To date

these have not been adequately treated, and this is what we turn to next.

ì\
ì\

\
\
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5.4 Off-Shell Effects in Heavy Nuclei

For any nucleus we can easily repeat the above calculation if we know the relativistic nucleon-

nucleus vertex functions. Unfortunately, for heavy nuclei these are presently not at all well known.

One solution would be to simply parameterise the vertex functions and make some assumptions

about the nuclear recoil state. Alternatively, as is done in most calculations of nuclear structure

functions, non-relativistic models could be used for the nucleon distribution within the nucleus.

However, in this approach it is not clear how one could then incorporate any effects from o -mass-

shell nucleons.

There have been some previous attempts at using a relativistic formalism to calculate structure

functions of heavy nuclei. For example, Gross & Liuti [201] considered a model of a spin 0 nucleus,

in which it was assumed that the recoil (spin 1/2) nuclear state can be described by a simple fermion

propagator (like for the deuteron recoil state). For a scalar nucleon-nucleus vertex function (o 1),

the trace factor in (5.3) would be

r' [Ø + M) (f - ú r Mn) (ú + tw¡ fr*@,ù] (5.25)

which gives the following nucleon-nucleus functions

a[s=o)1p, r;
.q\:;o) (p, p)

'+\t¡o) {n, e)

:(

: (*l - MA - M2 + 2M MR) po t (M' - p2)P,

:0.

M'zA - MA- M2 + 2M Mn - (pt - r',) (' - #)) -
(5.26)

Rather than evaluate the structure function with the full expression in (5.26) it was postulated

in [201] that the relativistic density matrix of an off-shell nucleon can be approximated by an on-

shell matrix multiplied by some nuclear spectral function. This amounts to inserting the condition

p2 : M2 into (5.26), so that factorisation, and the convolution model, are obtained courtesy of

the fact that condition (c) in Section 5.2 is now satisfied. However, while it may be argued from a

physical point of view that such an approximation may be valid for light nuclei, where the nuclear

binding is not too strong, in heavy nuclei there is little reason for this assumption to remain valid.

For the calculation of F2¡ in the model of Nakano [200] it was assumed, as usual, that the

structure of the of-shell hadronic tensor is the same as that for a real nucleon. Implicit in this

model is the assumption that the relevant tensor operator infr¡", is tfrfl,which, as we have already

seen, is not the only operator that contributes in the Bjorken limit. Thus, while this model starts

with a Feynman diagrammatic formulation, the advantages of the Lorentz covariant treatment are

soon lost when the various approximations are taken.

The simplest way to avoid making on-shell approximations is to consider a nucleon embedded

in nuclear matter. In this type of calculation the off-shell effects are parameterised in the effective

nucleon mass, M ---> M*, Experimentally, the effective nucleon mass at nuclear matter density (-
0.15 fm-3) is found to be - 0.7 M [214]. Theoretically, there is a large number of models for nuclear
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IMPULSE APPROXIMATION
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Figure 5.4: Nucleon structure function in nuclear matter in the impulse approximation, for a tange

of effective nucleon masses, evolved from Qf;: 0.15 GeV2 to Q2 = 4 GeV2'

matter, which predict a wide range of effective nucleon masses. The Quantum Hadrodynamics

model of Walecka and Serot l2l4), in which pointlike nucleons (in the mean field approximation)

are bound by the exchange of scalar (o) and vector (cr) mesons, predicts rather small effective

masses, M*f M - 0.56 - 0.6. Somewhat larger masses are obtained when explicit quark degrees

of freedom are introduced. For example, in the Guichon model [215], where the ø and ar mesons

are allowed to couple directly to quarks inside the nucleons, the value of M* is typically -0.9 M.

Even larger values are obtained if one includes centre-of-mass corrections and self-coupling of the

scalar fields [216, 217]. Rather than choose a speciflc model for nuclear matter, we let M* be a

parameter and examine the effect of its variation upon the nucleon structure function, defined in

Eq.(2.37).

Because the quark-nucleon vertex function will now also depend on the effective mass, it would

be inappropriate to use the same normalisation constants in (5.22) and (5.23) as those determined

by normalising the on-shell nucleon distributions, Eq.(2.65). Therefore the normalisation constants

in this case must be determined by normalising the calculated quark distributions in nuclear matter,

lor p2 - M*2, so that their first moments are unity.

In Fig.5.4 we show the isoscalar (valence) nucleon structure function, F27¡, = FzN(*,p2 - M*2)

xr(uy(r,p2: M*2) + dv(r,p2: M*2)),forarangeof effectivemasses, M*lM - 0.5-1. There

is clearly quite significant softening of the structure function, with the most prominent effects

a,ppearing for 0.2 5 r 5 O.¡.

Howevet, before taking these results too seriously, one must realise that they are specific to

the impulse approximation within which we have worked thus far. In particular, it was found by
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FINAL STATE INTERACTIONS
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Figure 5.5: As in Fig.5.4, but including the effects of interaction of the spectator diquark with the
nuclear medium.

Saito, Michels and Thomas [216] that neglecting interactions between the spectator quarks and the

surrounding nucleons leads to a significant overestimate of the suppression of the nuclear valence

quark distributions.

A simple means by which effects due to fina,l state interactions can be included is to assume that

the scalar and vector potential acts directly on the quarks (therefore the strength ofthe interaction

of the nuclear medium with the diquark is2l3 that with the nucleon), and is independent of the

mass of the diquark. In that case the diquark mass is modified by *n ---+ rnþ, where

mþ
2mn- 
J

(M - M.) (5.27)

for both scalar and vector diquarks. The effect of the spectator interactions, shown in Fig.5.5, is

to make the quark distributions harder, which more than compensates for the softening produced

by the off-shell effects alone. The main ,ilifferences are then localised in the large z region (r à
0.4), where the modified distributions (for M*lM:0.7) are up to - 20 -30% larger than the

distributions in a free nucleon. This hardening is even more dramatic if one looks at the ratio

F2¡¡,(u)lF2N as a function of z, Fig.5.6.

We should also comment on the importance of off-shell (and final state interaction) effects

in the shadowing region, r < 0.1. From Fig.5.7 it can be seen that the impact on the calculated

valence quark distributions in nuclear matter is almost negligible at small r. However, since nuclear

shadowing is primarily a sea phenomenon, to be sure that these effects do not modify the total

nucleon structure function one would need to explicitly ca,iculate the sea quark distributions, using

appropriate sea-quark-nucleon vettex functions. Unfortunately, this is beyond the scope of the

present model, but such an extension can easily be made in future.
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5.5 DIS from Dressed Nucleons

Finally, we return to the application of the relativistic formalism to the process discussed in Chapter

2, namely DIS from a virtual baryon component of a physical nucleon. Here we shall restrict

ourselves to virtual nucleons and recoil pions, as this will be sufrcient to illustrate the problems

encountered by combining the covariant formalism with the convolution model.

With a pseudoscalar (i75) r/f/ù coupling, the relevant trace in Eq.(5.3) for DIS from a virtual

nucleon with a pion recoil can be written (see also Eq.(3.t9))

T' l(f + M) i'ysn¡vn(pz) (ú + u¡ frr,(p, ù (ú + M) fisrl¡*(p\] (5.28)

where the rNtrf form factor FN*(p') is parameterised by a simple monopole form, as in Eq.(3.21),

with a cut-offmass.A¡¡,, - 1.4 GeV [17]. Rearranging the trace in Eq.(5.28) in the form (5.3), we

find that for a pseudoscalar rNN vertex the functions Af," ale

AT@,P):
AÏ".(p,P):

AI".B(P,P) :

g2r^ru

g2*IrrN

(-*'" M) rî,.@')

(-*? po * (p' - a\(p. - Pò) Fk*@') (5.2e)

0

By inserting p2 - M2 in Ali we can satisfy case (c) in Section 5.2 for the convolution model.

However, the structure function in this case is proportionalto -m2, M (i.e. negative), which is

clearly unphysicai.

With a pseudovector (ls(ú- /)) coupling, the functions Af,u arc

A3" (p, P) g2*NN ^? (P'+ M')
2M

F"N*@')+

Al",(P, P)

AI"*B(P, P)

g

0

¡NN
2 -*'* P* + r'N*@\ (5.80)

Again, each of the terms can be made proportional to each other by inserting the p2 : M2 condition,

but at the expense of a negative overall result. Thus great care needs to be taken to ensure that

any approximations made do not lead to nonsensical results.

It is naturally of interest to compare the result of the full calculation with the various convolution

models used by previous authors, if only to understand the theoretical foundations on which they

stand. In previous covariant calculations of this process 147,60,63,71] the same assumptions have

been made as for the nuclear calculations, namely factorisation of the bound nucleon structure

function, and the lack of any dependence of this on p2 (ot oL pT). In the slightly more formal

attempt in Ref.[17] at deriving the convolution model, the assumption was made that the off-shell

nucleon tensor is the same as that of a point-like fermion [52], in which case the relevant operator

infr¡", i" Ñ4.,A's we have seen already, this is only part of the complete expression in the Bjorken

limit. In fact the model of Ref.[17] can only be otrtained from the full result if the following steps are
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Figure 5.8: Contribution to the structure function of a nucleon from DIS off a virtual nucleon
dressed by pions. The convolution model of Ref.[17] (dashed) is compared with the full calculation
(for A, = -), using the same normalisation for the off-shell N - q vertex as for the on-shell vertex
(solid), and normalising the full result (dotted) to give the same first moment as for the convolution
curve. All curves are evolved ftom Q2o = 0.15 GeV2 to Q2 :4 GeV2.

taken: frrstly the trace in (5.2S) evaluated with the ful strttcture; then to obtain factorisation the

limits pr : 0 and p2 = M2 taken in the 'nucleon structure function' (i.e. k-dependent) parts; and

finally the full structure of the on-shell nucleon function used, as in (2.37),, rather than just keeping

tnefr] term. The necessity of the last point is clear, since for the on-shell structure function the

individual functions fr¡ ut.not necessarily positive defi,nite, although the sum is positive of course.

Other authors [75] have impücitly assumed that the relevant operator to be used in the frr, of

(5.28) is tfr$ (similar to what was done in [200, 2I2)for the deuteron). However, even with the

subsequent replacement otfr$ by the ful1 on-shell nucleon structure function in the convolution

expression, the result (with a pseudoscalar zr1ü coupling) will be proportional to -rn] since the

coefficient otfr$ is Áfl". Thus it appears that the result of [75] can only be obtained by taking the

modulus of a negative structure function.

In all, it should now be abundantly clear that none of the scenarios described in Section 5.3

(cases (")-(.)) for obtaining the convolution model are applicable here. As in the deuteron case,

the convolution model for dressed nucleons is therefore not derivable from the exact result.

In Fig.5.8 we compare the contribution to the on-shell nucleon structure function from this

process, calculated including the full p2 dependence (with the q-1[ vertex function evaluated with

Ap : æ), with the result of the convolution model of Ref.[17]. For the full caicuiation we use the

same normalisation constants for the scalar and vector quark-nucleon vertices as determined from

the on-shell nucleon. The results indicate that the full, p2-dependent calculation gives somewhat
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Figure 5.9: Same as in Fig.5.8, except for a pseudovectot zrlf coupling

smaller results compared with those of the convolution model (although the shapes are quite similar

as can be from the dotted curve, where the scalar and vector vertex functions are normalised to

the same first moment as in the convolution model). For the pseudovector rNN vertex, we f,nd

an even larger difference, Fig.5.9.

Such a difference might have been surprising had the convolution expression been a simple ap-

proximation to the full result, in which case we may well have expected small off-shell corrections.

Unfortunately, this calculation is more difficult to check since there is no clear normalisation con-

dition for the structure function. Comparing the first moment of the calculated distributions with

the average number of pions in the intermediate state, which can be calculated by considering DIS

from the virtual pion, is ambiguous due to the presence of antiparticles in the covariant formulation.

A convolution formula such as (5.14) can be written for DIS from virtual pions, since there are no

spinor degrees of freedom to spoil this factorisation. However, ambiguities in the p2 dependence of

the 'off-shell pion structure function' would sti11 remain. Therefore this fact merely illustrates the

absence of a firm foundation for the covariant convolution model for DIS from dressed nucleons,

and the preference for the non-covariant approach taken in Chapter 2.

full ln-vector)
_ _ _ cortvolution

. full (norrn.)
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5.6 Summary

Finally, let us reiterate the main findings of this chapter, ãs these represent perhaps the most

significant new developments in the study of structure functions of hadrons which are discussed in

this thesis.

Starting with an investigation of the truncated nucleon tensot, fr¡"r, we have been able to put

the calculation of structure functions of composite particles on an more solid theoretical footing.

This has also enabled us to understand the assumptions that need to go into the derivation of

the covariant convolution model of DIS. It has also led to the realisation that even in the impulse

approximation a fully relativistic treatment of deep inelastic processes does not yield the convolution

model, unless specific on-shell limits are taken at various stages in the derivation. Furthermore,

strictly speaking it is incorrect to speak of the 'bound nucleon structure function', as this is an

ill-defined quantity within a covariant formulation. This has wide-ranging consequences, as almost

all calculations of composite particle structure functions (e.g. nuclei, for the EMC effect) have

relied upon the validity of the simple convolution motlel.

Numericaliy, we have studied the differences between the full and convolution model results

by using models of the relativistic nucleon-quark and nucleon-nucleus vertex functions. In the

simplest case of DIS from the deuteron, making various assumptions for the off-shell nucleons

naturally introduces deviations from the exact result. However, by suitably renormalising the

results to ensure baryon number conservation (as was done in most previous calculations) the

differences between the exact results and those of the convolution model can be minimised. Thus,

from a phenomenological point of view, the consequences of neglecting the nucleon off-shell effects

in the deuteron may not be too great.

Perhaps the most important phenomenological repercussions of neglecting nucleon off-shell ef-

fects are found in the structure functions of heavy nuclei. We find quite significant effects in the

intermediate r region when the nuclear medium acts to decrease the effective nucleon mass. After

including the possibility of interactions of the spectator diquark with the medium, the net effect (for

M*lM - 0.7) is to make the structure function in nuclear matter some 20-30%hardet compared

with the on-shell result. (The latter affect is a confirmation of the fact that the usual impulse

approximation is a rather poor approximation in nuclear matter.)

The other important application which we examine is DIS from the virtual nucleon component

of a physical (or dressed) nucleon, where we also find quite signiflcant differences between the full

result and the convolution model. As well as its relevance to the question of flavour asymmetry

in the proton sea, this process can also be used to describe the nucleon's spin-dependent structure

functions, in particular the neutron spin structure function gu(r) [f t+]. Indeed, an obvious exten-

sion of the formalism used in this chapter would be to consider next the DIS of polarised leptons

from polarised targets. In that case there wiil naturally be more terms in the general expansion

of the polarised truncated nucleon tensor (in fact, à ZO io all!). Furthermore, we can expect the

usual convolution approach to calculating the polarised structure functions of nuclei to break down
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as well. This may well be of importance for the extraction of g1n from the polarised deuteron

(or helium) structure function 9n (h.¡7"), and to the whole question of the spin of the proton

1218,2791.

In the next chapter we will say more about the spin structure of the nucleon, in the context

of semi-inclusive DIS from polarised targets. Having discussed inclusive DIS in some detail in the

preceding chapters, we shall examine there semi-inclusive processes, in which specific mesons or

baryons are identifled out of the complete final hadronic state, with the aim of obtaining additional

information on the quark structure of hadrons. For example, we mentioned in the Chapter 4 that in

diffractive deep inelastic scattering by 'tagging'final state nucleons carrying a iarge fraction of the

initial nucleon's centre of mass momentum, we could actually measure the structure function of the

Pomeron. FurthermoreT we may be able to learn more about the nucleon at larger r by searching

for low momentum hadrons produced by DIS off the virtual meson or baryon components of the

physical nucleon, as in the model of Section 3.1. Because much of the interest in semi-inclusive

DIS is in the non-perturbative regime, namely the (long-distance) formation of hadronic states

out of quarks and gluons, the discussion there (in contrast to that in this chapter) will be largely

phenomenological.
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Chapter 6

SEMI-INCTUSIVE DEEP

INETASTIC SCATTER,ING

Much has been learned about the internal structure of the nucleon and nuclei from unpolarised in-

clusive deep inelastic scattering experiments. Some aspects of the substructure observed in inclusive

DIS have been discussed at length in the preceding chapters. In this chapter we will extend those

discussions to the case of semi-inclusiuedeep inelastic scattering [220], in which specific hadrons in

the flnal state are observed in coincidence with the scattered lepton. The scaling behaviour of the

semi-inclusive cross sections was considered some time ago by Ellis l22ll and Stack 1222]. As in the

case of inclusive structure functions, only higher order QCD effects give rise to any Q2 dependence

of the semi-inclusive structure functions (or 'fragmentation functions').

Central to this process is understanding how quarks fragment to form speciflc flnal state mesons

and baryons. Because this is a non-perturbative process, describing soft (Ç2-independent) physics,

the treatment of hadronisation has necessarily been model-dependent and largely phenomenologi-

cal. Nevertheless, by testing models of fragmentation we can hope to learn more about long-distance

quark physics. We will consider scattering from nucleon targets only, since the dynamics of frag-

mentation will only be diluted by the greater probability of final state interactions in DIS from

nuclei.

In our discussions we will focus attention particularly on the production of baryons. It has been

unambiguously demonstrated experimentally 1223-225] that the baryon yield is higher by about

an order of magnitude for those baryons produced in the backward hemisphere of the probe-

target centre of mass frame (so-called target fragmentation region (TFR)), than for forward baryons

(current fragmentation region (CFR)). The CFR baryons have predominantly large laboratory

momenta (ì reveral GeV), while the baryons produced in the backward centre of mass jet are

generally slow. Our concern here will be with such low momentum baryons, and we shall therefore

negiect the process which gives rise to the forward baryons (quark --+ baryon fragmentation).

Although their rate of production is generally high, the efficiency with which low momentum

baryons can be accurately identifled is low [225]. Nevertheless, detection ofsuch particles is possible,
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Figure 6.1: Semi-inclusive deep inelastic scattering from a nucleon, with baryon B in the flnal state.

for example with the CtrRN EMC spectrometer using muon beams 12251, or potentially at CEBAF

with a somewhat lower energy electron beam. For scattering by (anti)neutrinos, bubble chambers

(such as the Fermilab Freon Bubble Chamber 12261) arc employed for hadron identification.

As an extension to unpolarised semi-inclusive scattering, we shall investigate the possibility of

obtaining new information from the spin-dependent fragmentation process involving lepton scat-

tering from polarised targets, with subsequent measurement of the recoiling baryon polarisation.

The additional spin degrees of freedom may enable differentiation between some models of the

fragmentation process, in particular the meson cloud model of the nucleon discussed in Chapter 3.

6.1- Kinematics of Target trYagmentation

Consider the production of baryon B as indicated in Fig.6.1. In semi-inclusive processes we consider

the DIS cross sections not only as a function of ø, but also a function of the baryon's longitudinal

(p¿) an¿ transverse (pr) momenta. For baryons produced in the TFR these momenta in the

target rest frame will generally be small. Consequently, such baryons will be characterised by

a small four-momentum transfer squared between the initial and final particles, t = (p - P)' :

Gpi-G-()(M'B-M'(Dle,where(:p.qlP.gisthelight-conefractionofthetarget
proton's momentum carried by the secondary baryon, and M and Mg are the nucleon and flnal

state baryon masses, respectively. The requirement that the transverse momentum squared of

the produced baryon be non-negative, p27 ) 0, leads to a kinematic upper limit on ú, namely

t*," = -(1 - e)@3 - M'?eDl(. More specifically, the three-momentum of TFR baryons is given

in terms of f by

(Mr+M3-t)z-4¡¡¡z¡¡421
lpl 2M

(6.1)

so that the slowest baryons are those for which ú --+ 0, which occurs when ( -' 1. Clearly as the

upper limit on ( is 1 - r, slow baryon production also corresponds to the r ---+ 0 limit, and the
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slowest possible baryons produced at e - 1 (at r = 0) have momentum lp*¿*l = (M3 - M2) lzM .

Thus, for example, fi.nal state nucleons can be produced with momenta down to 0 MeV, while the

slowest A isobars have lp-¿,rl = 340 MeV.

Equivalently, one can observe the spectrum of baryons as a function of the laboratory angle a

between the produced baryon and the direction of the probe, which is given by

cosa : MB+Q-zÒu2-t 
(6.2)@

It is easy to show that a will vary from 0 up to a maximum given by

dma'x : alccos
1

MB
MA - M2e2 (6.3)

Thus nucleons can be produced for all angles (o*o, : r l2), while the kinematic boundary for A

isobars is at a - 50o. For a given angle a, the integration limits of ú are given by

t,n¿n/*o,(a) = *| (ufisin2 a - ut2(t -2r lcos2o)

+ 2Mcosa M2(l - ,), - MrB sin2 a (6.4)

At small angles baryons are produced over essentially the entire range of f (and therefore (),

however the number will fali off rapidly as o --+ ut..ot (* MrB-X¡z(7-f-2) because of the

fast convergence of the uppeÌ and lower bounds on ú, until no particles are produced beyond the

kinematic boundary at t^o, : tmin -- - (M!O * ,) - M'(l - r)) lQ' - r).

The importance of the above kinematic restrictions was demonstrated recently in two experi-

ments 1226,2271in which slow proton production was studied in vN and uA scattering. Before

we turn to questions of dynamical details of the fragmentation process, we shall describe how the

above kinematics is manifested in semi-inclusive leptoproduction of baryons in the TFR. This will

serve to illustrate the point that simple things must to be accounted for before one starts invoking

more exotic explanations.

In the original experiment performed by the E745 Collaboration 12261 a peculiar dependence

was observed of the deep inelastic cross section for neutrino scattering off freon gas on the number

of secondary protons (or 'stubst) at the interaction vertex. The principle effect seen there was

a dramatic softening of the nuclear z-distribution in the stub-containing events. This led to the

speculation that an undiluted nuclear EMC effect [228] had in fact been observed (e.g. Kumano &

Close [229] and Castorina & Donnachie [230] took this as evidence for a stronger EMC effect for

deeply bound nucleons and for 2,4. collisions at small impact parameters).

Following those initial experiments, the BEBC Collaborationl22T) demonstrated an even stronger

depletion at large r in uH2 and uD scattering. InRef.l227] it was correctly concluded that this

observation invalidated any nuclear interpretation of the 8745 effect. fn fact, a careful analysis

of the kinematics of target fragmentation in DIS can quantitatively explain the 'nuclear' effect in

kef.l227l. In particular, it can be shown that a softening of the cross section for protons with
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Figure 6.2: Target debris fragmentation into a baryon in the quark parton model.

momentum less than p-o, (equal to several hundred MeV in these experiments) arises directly

from the absence of interactions at r ) ïmax¡ where

Tmar : 
'-Po*o']--lP^o'l' 

(6'5)-M

This limit can most easily be understood by transforming to the Breit frame, in which the probe

(I4l-boson in this case) of zero energy, but finite three-momentum,

q : (0; 0,0,_81), (6.6)

scatters from a parton with fraction r of the target proton's momentum, see Fig.6.2. The struck

parton has a momentum q7f2 which. changes sign after the collision. From the deflnition of r it
follows then that the proton's longitudinal momentum is P7 = q7f2r, so that and the proton's

debris carries momentum Pt -TqL : Pt (l-r). In this reference frame (or in an IMF) the spectrum

of the fragmentation products can be analysed in terms the light-cone variable z lIl7, 2311,

p'q p-z : G: ùP. q = G;E (6'7)

which can be interpreted here as the ratio of the produced particle's momentum to that of the

nucleon debris. Furthermore, the ratio of the recoiling proton's momentum to that of the target

nucleon is z(l-r) : (, and since z ( 1, in the laboratory frame (for fixed r) the secondary protons

have longitudinal momenta bounded from below,

P¡, = u'?n - lt7|'? 
+ ei ) pL*in (6.8)

2Me

where

P

_ MrB - Mr(t - r)2 t nTPLrnin: zuçt _ 4
(6.e)

Solving this for o, we see that only interactions at

1:L

t4r

(6.10)
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where po = J M' +F is the proton energy, can contribute to events having protons with momenta

below lpl. This is turn introduces signiflcant bias into the r-distribution for the stub-containing

events. For example, for pT : 0 this corresponds to r < 0.31 and 0.45 for the BBBC proton

momentum upper cuts of 350 and 600 MeV, respectively. Graphically, this boundary is illustrated

in Fig.6.3, where in addition we show the kinematic boundaries for flnal state A baryons.

The above kinematic limits were aJ.so discussed in various contexts by Ishii et al. 12321 (who

in addition tried to account for the 8745 nuclear data 1226]), Strikman et al. [233], and Bosveld

et al. fßal. In the following we demonstrate that the r-dependence of the BEBC effect can be

quantitatively attributed to the fragmentation bias in (6.10). The 'nuclear' effect in 12261is likely to

be dominated by the diluted BEBC etrect 12271, the dilution coming from a significant contribution

of intranuclear cascading to the production of stubs ('gt"y tracks'in the experiment) off the nucleus.

Within the quark parton model [12], the differential cross section fot u(u)p scattering is (in

units of G2ME,p¡f n) 1717,231]

0 500

(6.11)

Here, the neutrino- and antineutrino-proton 'structure functions', integrated over energy transfer

u) aTe

¿z ou(t)p

dr dz dpl

F,p = z. (aç*¡+ ]af'l)

r,@)p(r) ñl-oQ,pT)

(6.12)

and

r,p: r. (I"Or+ d=(')) (6.13)

where sin2 0ç and heavy flavours have been ignored. In writing (6.11) we have assumed factorisa-

tion of the primary interaction (z dependence) and fragmentation (z dependence), which is only

-B=N
____B=Ä
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spoiled by higher order QCD processes. For simplicity, we have also assumed factorised p7 and

z distributions [231, 235], ñee-q(z,pT): D'o-oQ) ç@T), where D'o-nQ) is the target debris (i.e.

proton with a quark removed) --+ proton fragmentation function, and ç(pÐ gives the recoil proton

transverse momentum distribution. (The factorisation assumption of the transverse and longitu-

dinal components of the baryon momentum will be subject to further comment in Section 6.2.1in

spin-dependent fragmentation.)

In the IMF (or Breit frame) the fragmentation function nf-r(z) gives the probability that once

the photon strikes a quark q (with momentum fraction r) in the proton, the remaining spectator

system of a proton with a quark removed (with momentum fraction 1 - ") decays to a baryon -B

carrying a fraction z of the spectator system's momentum, Fig.6.2. At all but very small z, the

spectator system wili be mostly a diquark. Furthermore, we also take the fragmentation function

to be independent of the struck parton.

As mentioned above, fragmentation products emanating from the struck quark (spectator sys-

tem) are dominant in the l4-boson - p center of mass system forward (backward) hemisphere, and

the data 1223,2241confirms that protons are predominantly produced in the backward hemisphere.

We shall therefore neglect the struck quark --+ proton fragmentation. For estimation purposes v/e

can take a flat fragmentation function

A(o 
- 

o \
Df,-nQ): # (6.14)

-rnxn )

where zmin : M2 + pT I " corresponds to the boundary between the forward and backward

hemispheres in the centre of mass system, and s is the tr4l-boson - target centre of mass energy

squared. Such a fragmentation function is broadly consistent with the EMC data 1223,2241, and

is also suggested by nucleon fragmentation in hadronic collisions [236]. For comparison, we also

consider a quadratic form,

Dl-"|ò=610-('-'^ov)(z - z^,-)(t- r). (6.15)up-q\P) - (l _ ,*,n)" ,' 'rnzrL

(In Section 6.2 we shall considet more sophisticated fragmentation functions where we will require

accurate predictions for the absoiute DIS cross sections.)

The transverse momentum distribution function ç(pT) can be parameterised by a Gaussian

form [235,237,238],

@T):exP(-PTl-< 
PT >) 

.= -:'7ø;- ' (6'16)

with ( pþ > being the mean transverse momentum squared, typical values of which are of order

0.2-0.3 GeV2 [ZeS]. For comparison purposes we also consider an exponential parameterisation

lzstl ç@T): exp(-p" I < pT rt/\ I Q < pT ).
In Fig.6.4 we show the differential cross section d2oldrd,lpl, divided by the lpl-integrated cross

section, for neutrino-proton scattering. The effect of the stub momentum cut-otr in (6.10) is un-

mistakable. Fig.6.5 also shows the absolute differential cross section, in which the large-lpl tail is
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e.3%8.0Yr.3%0.28EHLQ-

13.0%r0.3%2.7%0.28EHrQ

150<lpl <600MeVStructure

Function

<pT>
GeV2

150<lpl <350MeV 350<lpl <600MeV

t0%7.7%2.3%BEBC experiment

Table 6.1: Fractions of momentum-restricted to unrestricted neutrino-proton events. In all cases

the constant fragmentation function in (6.14) is used, except in that marked (*), for which the
quadratic f'orm in (6.15) is taken.

killed off by the structure function at large z (we use the EHLQ parameterisation of the proton

structure function [15]). Integration of the differential cross section, Eq.(6.11), subject to cut-offs

150 < lpl < 350 MeV and 350 < lpl < 600 MeV, gives fractions

N"(')
o"@)(Lp)

ov\v )
(6.17)

of the proton-, ot 'stub'-, containing events, which are given in Tables 6.1 and 6.2. For the quark

distributions of Ref.[15], and with the fragmentation function of (6.14), we find (for a Gaussian

p7 distribution with < pT >:0.28 GeV2) the following ratios: 2.7% (up),2.4% (up), and 10.3%

(up),93% (up) for the lower and higher momentum cuts, respectively. These numbers are to be

compared with the experimental fractions of the stub events found inFief.l227], namely 2.3% (up),

2.5% (rp), and 7.7% (up),5.7% (up) for the lower and higher limits.

The fragmentation functions in (6.la) and (6.15) correspond to one proton being present in any

final state. In hadronic collisions target protons are known to fragment into neutrons in about Il3 o1

all events, with a higher charge exchange probability at large z. After allowance is made for similar

p ---+ n charge exchange in neutrino interactions, there is even better agreement with experiment.

Notice that at fixed r, small lpl corresponds to the hmit z * 1 (see nq.(0.4)). Therefore, for

the quadratic fragmentation function of Eq.(6.15) we obtain slightly lower percentages: I.4% (up),

1.3% (up) and 8.1% (up),7.3% (zp), respectively, with a greater reduction for lower cuts. There is

some obvious kinematic sensitivity to the transverse momentum of the proton - smaller (larger)

< pT > values of - 0.16 (0.36) GeV2 give about a 40% increase (2070 decrease) in N"@). Also, an

exponential p7 distribution enhances the Iarge p7 tail and gives rise to smaller (- 60%) ratios for

the same < pT >.

The sensitivity of the integrated cross section to the parton distribution functions is shown in
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76.7%12.8%3.8%0.16trHrQ
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8.4%n 
^(Yt.¿/0t.2%0.28EHLQ*

rt.B%s.3%2A%0.28EHLQ

150<lpl <350MeV 350<lpl <600MeV 150<lpl <600MeV<pT>
GeV2

Structure

Function

Table 6.2: Same as in Tab1e 6.1 except for antineutrino-proton events

Tables 6.1 and 6.2, where several different parameterisations are considered. With the universal

fragmentation functions (Eqs.(6.14) and (6.15)), we flnd that with the DFLM(O) quark distribution

[113] ¡f"(t) remains virtually unaltered, while with the HMRS(B) [168] and KMRS(B0) [184] distri-

butions the stub ratios are between 20 and 30% larger, compared with the distributions of Ref.[15].

Such a deviation can be simply understood by considering the relative differences in the valence

and sea distributions between the various parameterisations. For instance, while the KMRS(B0)

and EHLQ valence distributions are comparable, the momentum carried by the SU(2) sea is about

40Yo larger for the former parameterisation, which gives approximately the difference cited above.

In a more sophisticated model one would allow different fragmentation functions for valence and

sea quark interactions (see Section 6.2).

The ratio of the normalised r-distributions for events with and without protons in the momen-

tum range Ap,

p,@@): doldr(r'Lp)lo(Lp) . (6.18)
d,of dr(r,t - Ap) / ø(t - Ap)

is plotted in Figs.6.6-6.8 for various momentum cuts Ap (here 1 - Ap refers to the complement

of the momentum interval Ap). The gross features of the experimental data are reproduced fairly

well. There is very little effect upon A"(z)(r) from varying the mean transverse momentum between

< pT >:0.16 and 0.36 GeV2, or from using an exponential, rather than Gaussian, p7 distribution.

The curves in Figs.6.6-6.8 have been evaluated with the EHLQ parameterisation of the quark

distributions [15], and with the simple fragmentation function in (6.14). Atty difference between

the various structure function parameterisations manifests itself only in the small-r region, where

allofthe p"@)@)curvesdifferbvanoverallfactor of N"@) (becauseoffactorisationof thestructure

function dependence in the differential cross section, trq.(6.11)). At large z there is higher sensitivity

to fragmentation functions at, z --+ 1, as we have discussed above, and this can be seen in the

difference between the curves in Fig.6.9 computed with the constant, trq.(6.14), and quadratic,
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Figure 6.6: Ratio of normalised z-distributions for events with and without protons in the momen-

tum range 150 < p < 600 MeV. The data are from Ref.[239].
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Figure 6.7: Ratio of normalised r-distributions for neutrino events with and without protons in
momentum ranges 150 < lpl < 350 MeV, and 350 < lpl < 600 MeV. The data are from Ref.[227].
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Figure 6.8: Same as in Fig.6.8, but for antineutrino events.

Eq.(6. 15), fragmentation functions.

The curves lot B@) (r) have also been smeared in z to correct for possible kinematic uncertainty

in the experimental reconstruction of r. The need for this arises from the fact that only charged

particles are measured in BtrBC, while the momentum of neutral particles needed to reconstruct

u and Q2 , and then z, is reconstructed from the transverse momentum balance. On an event-by-

event basis one thus has an inherent uncertainty in the determination of r. The impact of this

uncertainty is estimated by smearing the calculated cross sections,

Þ

q

a"""fi)'çr¡
d€s(€) *+f!9 (6.1e)

dr

Forsimplicity,wetakeastep-likesmearingfunction,S(€) =1for1-A€<{<1fAf,and
use A( nv 0.5 in Figs.6.6-6.8. (Using a Gaussian distribution instead, S(€) o exp[-(€ - 1)2], has

little effect on the final results). The curves with no smearing tend to lie systematically below

the data points at n à 0.3, for all stub momentum cuts, as seen in Fig.6.9, where (for a constant

fragmentation function) the curves have been eva,luated with A{ : 0,0.25 and 0.5. For larger r,
corresponding to smaller values of s, the uncertainty in z should be bigger, but the effect can only

be quantified by a careful analysis of the actual data.

Another possible source of error is that associated with the precision of the momentum cuts

themselves, the lower 150 MeV limit especially will have a sizeable uncertainty. For larger (smaller)

momentum intervals the ratio p'Q)@) will be flatter (steeper). Assuming a (rough) t50 MeV

error for both the upper and lower limits, an extended interval of 100 < lpl < 650 MeV brings the

P"(t)@) curve to better agreement with the large-r data, while the opposite is true for the more

restricted, 200 < lpl < 550, interval. However, the effect of this oo ¿'(r)(r) is numerically small.

In all, we have good quantitative agreement of our simple model with the normalised cross sec-

tions for (anti)neutrino events with and without slow protons. The description of the r dependence

up
. _ 350<p<600MeV
o -.-..--- 150<p<350MeV
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Figure 6.9: Ratio of normalised r-distributions for antineutrino events with and without protons

in momentum ranges 150 < lpl < 600 MeV, for a constant and quadratic fragmentation function,
and smearing corrections for the former.

of the ratios p(t)@) is virtually parameter free, which therefore unambiguously demonstrates the

dominance of kinematics in this process. Therefore the fragmentation bias follows essentially from

four-momentum conservation, and additional dynamical effects are likeiy to be of minor importance.

One such dynamical effect that one might suggest could play a role is that due to DIS from

the non-perturbative pion (or other meson) cloud of the target proton (as in Chapter 3), leaving a

low-momentum proton (or A, with subsequent decay to ptr) exclusive final state. The main virtue

of the pion model is its very specific predictions for the target fragmentation into protons. In

particular, the r and z distributions in this case no longer factorise. Since the pion cloud of the

proton is known to contribute only at small r (n - 0.1), the effect upon the cross section ratio will

be restricted to this region only. However, as was shown in 1240], the kinematics dominate this

process so much that effects due pion exchange oo P'Q)(r) are of minor significance. \Mhere pions

may play a more important role is in polarised semi-inclusive DIS, which we discuss next.

6.2 Spin-Dependent FYagmentation

The process under investigation involves an unpolarisedbeam scattering from a polarised target,

so that we are not sensitive to the polarised proton structure functions gt,z(r), measurement of

which requires both iepton and target polarisation. For simplicity, we consider charged-lepton

scattering from a polarised proton, with subsequent production of a polarised A++. We require

the target proton to be initia,lly iongitudinally polarised with respect to the photon direction, with

the spin of the produced A quantised along its direction of motion. The polarisation of such As

can be reconstructed in a straightforward manner from their decay into 1Ír with an invariant mass

near the A resonance mass. Detecting polarised final state protons, for example, would be more

+

-+

up 150<p<600 MeV

- 
çs¡¡5{.. D(.)
Ae :0.25

- - - a€:o'5

-.- qwad. D(z)
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difficult experimentally as one would need to remove additional backgrounds from L, --+ ptr decays.

Furthermore, because of the simple va,lence flavour structure of the A++, the diquark --t A**
fragmentation functions are easier to model compared with multi-flavoured baryons.

Assuming factorisation of the r and z (ot () dependence, the semi-inclusive cross section for

deep inelastic charged-lepton A-production from a polarised proton can be generically written in

the quark parton model (QPM) as l24Ll

¿+oQPM îrr(*,A\ DorÏrríz,pT) (6.20)
dædQ2dzdp2,

o(

Here, the fragmentation functioo D(r,p|,) gives the probability for the polaris"d (pÎ minus qll;
spectator system to fragment into the polarised baryon. The function Fr¡(r,8') i" proportional

to the spin-weighted interacting-quark momentum distribution functions, qîI(*), where 1l denote

quark spins parallel or antiparallel to the spin of the target proton.

In one of the earliest modeis for the spin-dependence of the momentum density functions, Catlttz

and Kaur 1242] worked under the assumption that the contribution to the proton polarisation from

sea quarks is negligible. In their model, the limiting behaviours as r -> 0 and r, ---+ I were used to

parameterise the polarised valence distributions as

"l)@)

¿I)@)

;(

;(

uy(r)(lt cos d¿r (r) ) + 
2gart*)cos 

dr (r))

r + j.o, r,r¿) d,v(*).

The spin dilution factor, cos|p(r), was introduced to model interactions between valence quarks

and the unpolarised sea quarks and gluons, with the constraint of satisfving the Bjorken sum

rule [19]. In the limit as * --+ 0, interactions with sea partons would become signiflcant, so that

if we assume that the valence quark spin is transferred equally among the sea quarks and glu-

ons, cos îp(r) ---+ 0. The SU(6) Iimit, where only valence quarks are present, is recovered with

cos?p(r) -* l- as r --+ L.

Schafer [243] extended this idea by allowing for additional flavour dependence of the spin dilution

factor, taking into account the spin dependence of one-gluon exchange, and hence the A - p mass

difference (see also Close and Thomas [48]). For convenience, the quantities ,Afi(r) : uy(r)-ldv(*)
añ A?r(r) : |ar@) are defined to be the interacting quark distributions in the proton when

accompanied by a diquark system in an isospin 0 and 1 state, respectively. In terms of these, the

SU(6) wavefunction for the target proton is written 1242-244)

(6.2r)

Ai,@) (6.22)

1 u(ud,)o (1 (1J),) tlofø¡

(l-ur'(uu), - 1f!r, ç,0¡,) (,Æ t (11)' - rÆ 1 (1i),)

p

+

where the spectator diquark state has total spin and isospin equal to 0 and 1 in the first and second

tetms, respectively. The polarised valence quark distributions were then parameterised in [243] as
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2rarç*¡¡oçt; *¡

f"(o; r)

(6.23)

where fo(j";z) denotes the spin dilution factor for scattering from quark q with the spectator

diquark having spin projection j,. Again, the SU(6) limit is obtained when fn(j,;r) --+ 1 as

r ---+ l. (Note that the starting distributions qy in (6.23) do not correspond exactly to the valence

distributions defined às qv - qt + ølr.)

We should a.lso add a note of caution that in both of these models the effects of the U(1) axial

anomaly are neglected [219]. For comparison with (future) high-precision data a more rigorous

theoretical treatment may indeed be needed. For now, in the absence of such data, we seek only a,

broad estimate of the QPM polarisation cross section, and in particular to contrast this with the

predictions of the pion exchange model which will be discussed in Section 6.2.2.

6.2.L FYagmentation F\rnctions

In Section 6.1 we assumed for simplicity that the fragmentation into unpolarised baryons, given

by the fragmentation function ñQ,p2r), could be factorised into unpolarised transverse and lon-

gitudinal components. Furthermore, for the fragmentation function we took some rrery simple

parameterisations, primarily because our concern was the ratio of cross sections, and because the

effect illustrated there was so dominated by kinematics. On the other hand, if one is trying to cal-

culate absolute cross sections then clearly more sophisticated fragmentation functions are needed.

Because the fragmentation functions describe soft, non-perturbative parton physics, and since a

reliable calculation from first principles in QCD is some time away, a number of phenomenological

models have been developed. Many of these 1245, 2461have followed the basic approach that

was originally formulated by Field and Feynman 1117,241.1, whose quark jet fragmentation model

involved recursive qQ paft creation (cascade) out of the colour field between the scattered and

spectator partons, and subsequent recombination into colour neutral hadrons. In the original

analysis of [117] only quark -) meson fragmentation functions were modelled. Later this approach

was extended by Bartl et al. l2a5] by also allowing for q --+ B and qq -, B decays. Another

approach was pioneered by the Lund group 12471, who considered additional fragmentation into

hadrons of the gluon string connecting the coloured partons. (The experimental observation of

the subsequent 3-jet events was one of the prime pieces of evidence in favour of QCD.) Analytic

expressions for the fragmentation functions can be obtained by constraining their limiting behaviour

at the asymptotic limits. The z --+ 0limit requires aIf zbehaviour for D(z)in order to reproduce
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the observed logarithmic increase in hadron multiplicity as s ---+ oo'

1np ) dz D(z) lns (6.24)

where zmin 6 l/s (see below). A common practice l2a8l for the z ---+ 1 limit is to apply dimensional

counting rules, using essentially the same arguments as for the r ---+ I limit of the structure functions

[103]. In all cases, however, the overall normalisation of the fragmentation functions has had to be

fixed by the data.

The above models are a1l specific to the valence quark fragmentation functionr, Dlror(z), which

describe the spectator system --+ baryon B fragmentation for scattering ftom valence quarks. At

small z, where the probability of interaction with a sea quark or antiquark is large, we also need

to know how systems such as qvqvqvqs or qvqvqyg fragment to baryons. In general, there is no

reason why these more complicated systems should decay at the same rate as the valence diquark.

In our region of interest, however, the fragment baryon is required to carry most of the parent

system's momentum (z ---+ 7), and for this to occur the baryon must contain all of the spectator

valence quarks of the appropriate flavour. At large z Q Z 0.6) model calculations [2a5] indicate

that by far the most important contributions to the fragmentation functions come from the process

whereby the baryon is formed after only orLe qq pair creation. In the case of the A++, all of the

valence z quarks in the spectator system must be present in the final state baryon. For interactions

with ds anð. d, quarks, we would therefore expect tnat Of)jrduãQ) = Do,lÏrora"Q) = OîJjrQ).

Similarly for scattering from zs and z quarks, we have Dîljrorr(r) - Dî;:r¿uur(z) - nîJÌ"Q).
Note that if a uy quark is struck, the probability of producing a A** is smaller than if it is a z5

quark, Oîjjr/) < OîJJ.Q). Numerically, at Q2 = 4 GeV2 the sea constitutes at most - 20% of

the cross section at z - 0.1.

Usually, in semi-inclusive experiments 1225)the longitudinal momentum dependence is measured

as a function of the Feynman variable u¡, deflned as the ratio of the centre of mass longitudinal

momentum to its maximum allowed value, rF : pLlpL*o, = 2lp.llt ru | - M'"1", where My is

the mass of the inclusive hadronic debris, and the asterisk (*) denotes centre of mass momenta.

This variable can be related to the light-cone variable z via

M'B+pT+"*'pl4-tß*r12
(6.25)

f 
"'^,^

a-
s

Note that for z -- I, rF - z if sÞ M'"+p?r. Xhe TFR (CFR) corresponds to z¡ < 0 (u¡'> 0),

and the boundary between the regions at rp: 0 corresponds to Çmin: MB + eTls

For the fragmentation of quark systems with net polarisation into polarised baryons we need

to know how the polarised spectator system (d-iquark for z --+ 1) transfers its polarisation to the

produced baryon. \Mhile there exists a small quantity of literature on polarised quark ---+ polarised

baryon fragmentation 1249,250], the spectator (diquark) --+ baryon process has received almost

no attention. (One early calculation was made by Bigi [251] who, however, considered only spin-

dependent fragmentation in polarised baryon production via the scattering of polarised leptons
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from unpolarised protons.) We follow the approach taken by Bartl et al. in their study of polarised

quark -+ baryon fragmentation [250], by assuming that the diquark retains its helicity during its

decay. We also assume that the qQ pair creation probability is independent of the heJicity state of

the quark g. This means that at leading order the produced baryon will contain the helicity of the

diquark, so that, for example, a At or A1 can emerge from a qÎgÎ diquutk, whereas a A$ cannot.

îor p27 : 0 we define the spin quantisation axes of the target proton and fragment A to
be collinear, for which the calculation of the leading spin-dependent fragmentation functions is

relatively straightforward. The overall normalisation of the spin-dependent fragmentation functions

is fixed by the condition

s@ n";i e) + q@) D^;; Ø : qtç*¡ o^^*!o¡e) + qtl*¡ nfiln,ç"¡

+ qrl*¡ ofi!{re) + qtçr¡ n^,|:-rçz¡ (6.26)

where

+3/2

Do*r (r) : t D^*r "("). (6.27)
s--3/2

In relating the.production rates for various polarised A** we employ simple SU(6) spin-flavour

wavefunctions,

uI (uu)1.,r¡

l"; (uu),@) * l!r"'(uz)r(+r)

l"t"' (zz),(o) * l!r" (az)r(-r)

uI (uu)11-1¡.

where the diquark qqj1) is in a spin j (spin projection jr) state. Note that this is true only when

the spin projections of the diquark and A are in the same direction.

From these wavefunctions v/e can deduce simple relations among the valence spectator diquark

--+ A (spin projection s) fragmentation functions, nfii,;r(r).Clearly the leading functions will be

those which can form the correct spin and flavour quantum numbers (to form a A** ") by picking

up a single quark from a qQ pair in the vacuum, and these are related by

nîj,i|ø: B Dä;*,ål e) = Toîj,l.lf,¡ = To""j,lrlf¿ (6.2e)

with normalisation determined from (6.26) -(6.27 )

oîj.ilr,t :
The non-leading fragmentation functions are those which require at least two qQ pairs, namely

Dî:,i{/+, Dî:,:u:/u, D^+o+t/Î/Itu, oîi',-rl/'/Ilu, and oî;,*rl,',', and those which require J such

pairs, Dâ,:¿T 
""d DfliåT. Except at very small z (5 O.Z) the fragmentation functions requiring 3

¡++ll N

4++1 N

4++l N

4++{l N

loîJ. r'¡'

(6.28)

(6.30)
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gq pairs are consistent with zero in the model of Ref.[245]. Since our region of interest is that in

which there is a high yield of slow A baryons in the TFR, namely , à 0.6, we can safely neglect

the latter functions. For the 2 qQ part fragmentation functions, we also expect that Dâ+råfQ) :
O""jri*f¿. For z à O.Z the unpolarised model fragmentation functions of [245] requiring 2 qQ

pairs (e.g. Do,;* (z)) were quite small compared with the leading fragmentation functions, and

related approximately by D"";r Q) - 0.7 Dî:* (z). For larger z (l 0.6) we expect that these non-

leading fragmentation functions are also negligible compared with the leading functions. For the

spin-dependent fragmentation functions, we therefore expect a similar behaviour for those decay

probabilities requiring two qQ pairs created in order to form the flnal state with the correct spin

quantum numbers. This then allows for a complete description of the spin fragmentation at large

z in terms of only the 4 fragmentation functions of (6.29).

As mentioned. above, the spin-dependent qq ---> L transition probabilitier, Ofåiir(z), canbe

related via the SU(6) wavefunctions of the A only if the spins of the diquark and A are quantised

along the same axis. For As produced in the target rest frame with p27: 0 (relative to the z-axis

as defined by the 7* direction) the analysis in terms of the above spin-dependent fragmentation

functions is valid as long as the proton spin is also along the z-axis. This is no longer the case

for specific polarised baryons with non-zero transverse moment:um, p2, I 0. We can see this

more clearly by considering the qq¡ç"¡ --+ ¿\**s transition amplitudes, Ann¡(,,) (a), where the A

momentum direction a (relative the the z-ans) is also the angle between the diquark and A

spins (for longitudinally polarised As). Then Dof;r+,j)¡ - lAä0,<j,)(0)l'. However, to describe the

fragmentation into a A with polarisation at angle a + 0 in terms of the amplitudes Aånr1¡"¡(o),

we must begin the fragmentation process from a diquark with spin in the a direction. Thus we

need to know the spin projection of the diquark onto the axis given by angle o. This can be done

by taking a ünear combination of qq states with spin quantised along the z-axts,, weighted by the

spin rotation functions dl:,rj,@), where io is the diquark spin projection in the a-direction, and

i = 1 is the total spin of the uu diquark in the L: Ð j" dl:,1j"@)Aäqj(j,). However, in this case the

square of the transition amplitude will contain 'non-diagonal' terms, for which an interpretation in

terms of fragmentation functions will no longer be possible. For the spin-dependent fragmentation

of quarks to baryons with pl I 0 an ansatz was made in Ref.[250] in which the 'non-diagonal'

functions were expressed as products of an empirical transverse momentum distribution and some

unknown function of z. OnIy simple guesses were made for the z-dependence of these functions,

and without accurate measutements of final state A polarisation, which would enable these to be

determined, such prescriptions must remain speculative.

This problem will simplify somewhat because we have some knowledge of the spin state of the

diquark from the spin of the struck quark. For example, with the SU(6) proton and A wavefunctions

in (6.22) and (6.23), a photon striking a dl quark will leave a zu diquark with j(j,) :1(1). Then to

make a Afl in the a direction, only the amplitude Af.,rrrl will contribute, so that the fragmentation

function in this case will be x (dl,r( "¡)" nîJril. However, for a A1 there will be two transition
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d3oQPM

drdQ2d(

X

amplitudes , A[rur1o¡ and Alrrtrl, and therefore two unknown terms for the fragmentation function

into A1 at angle a. A possible way around this could be to approximate, for small laboratory

angles a (since the production cross section in strongly peaked around a r: 0), the fragmentation

function by the same functi"n, Df;f)"r(z), as given by SU(6) symmetry. Our approach, however,

wili be to work in a frame of reference in which the target proton has large momentum, and to

consider only the longitudinal momentum dependence of the fragmentation functions - that is, we

will assume, as in the unpolarised case, that the transverse momentum distribution of the polarised

A can also be factored, ñi¡-n¡¡Q,nT) = Di¡-o¡ír) ç@Ð. This then will enable us to use the

model described above (Bqs.(6.26)-(6.30)) without ambiguity.

\Me therefore write the p7-integrated QPM differential cross section for the leptoproduction of

a Al+ with spin s as

)

(3"niå; *

(?otj'.,; *

where the fragmentation functions OiÌ,ii, are evaluated, at z: e lQ - r). In our calculations we

parameterise the (very limited) available data obtained by the EM Collaboration 1225] in a recent

analysis of (unpolarised) A++ muon production in the TFR for z -- 7. We further assume that

the large z ltmit is dominated by the fragmentation lt'u, --+ A++, and parameterise the leading

unpolarised function as DA,j+ Q --+ l) = a(I - òb. Converting from the ø¡ dependence of the

observed normalised hadron distribution, (IlNr*,ù d¡fa++ ld*p, we obtain ¿ æ 0.68 and ó = 0.3,

albeit with large uncertainty. From (6.29) and (6.30) we can then finally obtain the polarised

fragmentation functions necessary to calculate the polarised A production cross section in (6.31).

An alternative description of this semi-inclusive process can be made in terms of the one pion

exchange model discussed in Chapter 3. Since the production of final state As involves small four-

momentum transfers ú, one might expect that the ú-channel exchange of pions could be used to

describe the process, in at least part of the kinematic range.

6.2.2 A++ Leptoproduction via One Pion Exchange

Despite the various phenomenological successes of nucleon models which incorporate pionic degrees

of freedom (see the discussion in Chapter 3), as yet there has been no direct experimental evidence

to unambiguously point to the existence of a pion cloud in high energy reactions. It is part of our

purpose to investigate the possibility of obtaining a clear signature in semi-inclusive DIS, which

would be distinct from the QPM background described in the previous section.

The relevant process is illustrated in Fig.6.10, where the dissociation of a physical nucleon into

a pion and a A is explicitly witnessed by the probing photon. Following our earlier discussions of

the pion model, we can write down the one pion exchange (OPB) differential cross section for the

( )(#. 4M282

Q4
(6.31)

å"fiå;)

å"âiå;)

(-#u #)
lT Qç'nil+zat
+[(aln-t|,*r",+2il

+ ul,nfi+ul + zat

+ alro^"j,i", + 2d,t
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Figure 6.10: Semi-inclusive leptoproduction of polarised A** baryons via one pion exchange

reaction lp -- 16++ X as 166,, 252]

duoo,t _ ( ", \ /ír" Ts '(Ð rlo | , n\

where t=(p- P)': ?pT - (1- e)@'^-CM')) f (,and /is the azimuthal angle. The tensors

L* andW!', describing the leptonic and hadronic vertices, are given in (2.2) and (3.9).

For the zrtr/A form factor, Fna, we may use a dipole function

I

I

^
I
I
I

I

r"ñt) (6.33)

as in (3.11). Alternatively, we can also take a form suggested in our earlier analysis of the proton's

pion cloud in the infinite momentum frame (Section 3.1.2), in which we used the time-ordered

(non-covariant) kinematics to evaluate only the diagram in which the exchanged meson travelled

forwards in time. A similar analysis of the semi-inclusive DIS process in the IMF would yield the

same results, but would allow us to take the form factor as

r"úpT,Ò : ¡z ¡ lltz
r\2 * sr.¡

t

(6.34)

where szra r (*? + pÐl\ - () + (MZ + pÐlC. Furthermore, as discussed at length in Chapter

3, the formulation in the IMF would remove some of the ambiguities associated with using the

experimental structure function of the pion [101, 102] for the virtual pion structure function F2n in

Eq.(6.32). (In addition, the form factors could be different for different polarisation states of the

proton and A, however, we neglect such differences here.)

The functionTs "(t) is obtained by evaluating the trace over the target nucleon spinor and the

Rarita-Schwinger spinor-vector zo for the recoil A,

Tt '(t) Tr lu(P, S)u(P, S) u.(p,s)uB(p,")l (p - P)" (p - P)P (6.35)

where the Rarita-Schwinger spinor-vector uo(prs) was given in (3.12). We define, as before, the

target nucleon polarisation vector to lie in the z-direction (parallel to the 7* direction), and the spin
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of the produced A is quantised along its direction of motion. Because the A is emitted collinearly

with the pion, production of A baryons with spin projection J.3l2 is forbiddel, Ts +t1t; : O.

This is confirmed by explicit evaluation of the trace in (6.35), if we recall that for polarised fermion

spinors the spin projection is u(P,S)a(P,S): (1 +ls Ê) (P + U¡¡2. It can also be shown that

the yield of spin projection I1l2 A,s is given by

T+' +'" 7 r',-i(t) : tqlf* - uo)'-t] lfm + mo)' -4' (t* cosa) (6.86)

where a is the angle between the polarisation vectors 5 and s. Furthermore, because the production

of A baryons is limited to forward laboratory angles, the presence of the (1*cos a) factor associated

with the frnal state polarisation will signiflcantly suppress the s : -ll2 yield relative to that of

s = +lf2 final states. As will be seen in the next section when we discuss the numerical results,

this suppression leads to strikingly different predictions for the polarisation asymmetry compared

with those of the QPM.

6.2.3 Nurnerical Results and Drscussron

Since the OPE contribution to the inclusive nucleon structure function peaked at n - 0.05 - 0.1

(see Fig.3.12 for example), this will be the region in which any direct pion exchange mechanism for

A production is most likely to be visible.

The (-dependence of the p7-integrated unpolarised differential cross section, Q2d3of drdQ2d,e ,

is plotted in Fig.6.11,for r - 0.1, Q2 :4 GeV2 and Æ: 100 GeV. (Note the kinematic boundary

at ( - 1 - t.) Clearly, the model predictions are dramatically different, with the OPE cross section

being dominant at large (, while the quark parton models are rather rnore flat and tend to rise at

smaller ( (see Eq.(0.2+)). Using the fragmentation functions extracted from the trMC data [225]

on muon induced A++ production, the QPM model prediction is shown by the dashed curve. For

estimation purposes, for the QPM calculation we use the polarised quark distributions of Carlitz &

Kaw 1242], with the input unpolarised distributions from Ref.[51]. For comparison, we also show

the results of the fragmentation model of Bartl et al. [245], which predicts significantly smaller

yields of A++ baryons. (However, in that analysis the flavour coefficients in the parameterisation

of the qq ---+ batyon fragmentation functions appear to be inconsistent with those expected from

SU(3) flavour symmetry, so that this modei may not be reliable.)

For the OPE model, we show in Fig.6.11 the predictions with two different form factors, namely

the ú-dependent dipole form factor (dotted curve), Eq.(6.33), and the pry- and (-dependent form

factor (solid curve) in Eq.(6.3a). The two curves for each of these form factors correspond to

different form factor cut-offs, namely À¡a = 700 and 1000 MeV for the ú-dependent form factor,

and r\. = 535 and 675 MeV for the (-dependent form factor, with the cut-offs chosen to give the

same value of < n )-a (= 0.017 and 0.037, respectively). With the ú-dependent form factor the

cross section peaks at higher (, while for the (-dependent form it is quite a bit broader. This is

consistent with the g dependence of the function Í"n(y) observed in Fig.3.6 for these form factors.
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Figure 6.11: Differential cross section for leptoproduction of (unpolarised) A++, for r : 0.1,

Q2 : 4 GeV2 and initial lepton energy E : 100 GeV. OPE(i) is the one 7r exchange model with
the (-dependent form factor in Eq.(6.34), with À : 700 (lower curve) and 1000 MeV (higher curve).
OPE(2) is the n exchange model with the f-dependent form factor in Eq.(6.33), with A¡a : 535
and 675 MeV chosen to give the same values of < n >r.4. The QPM curves use fragmentation
functions extracted from the EMC data 1225], and from the model of Ref.[2a5].

Nevertheless, it appears that the unpolarised cross sections for both OPE curves lie below the QPM

'background' for the range of Â considered. In such a case it would be difrcult to observe the OPB

contribution above this background. Of course with larger À the OPE cross section could be made

to exceed that of the QPM, although this would bring us into conflict with the upper limits on Â

obtained in Section 3.1.4.

The predictions for the individual polarisation states of the produced 4++ (for DIS from a

proton with ,5 = I1l2) are shown in Fig.6.12. As mentioned in Section 6.2.2, the spectrum of

As in the OPtr model is one in which the polarisations of the target proton and recoil A** are

highly correlated, and this is clearly visible in the figure (the OPE cross sections are evaluated

using the form factor in Eq.(6.34) with Â: 700 MeV).In particular, there are no s: 13l2 states,

and mostly s: l7f 2 states. The QPM model shown in Fig.6.12 uses the fragmentation function

extracted from the EMC data [225]. Note that there are no baryons with s : -312 predicted in the

leading fragmentation function approximation at z --+ I (( -- t - r). In fact, the ratio of polarised

As in the QPM is s: *312: lll2: -ll2: -312x3:2:1:0.
The dramatic difference between the OPE and QPM predictions for the polarised A spectra

can be utilised by taking differences of cross sections for As with different polarisations. In Fig.6.13

we show the difference ø* - o-) where or: qz¿zld,rdQ2d((s: IIl2), for the different models

(the OPE models have f- and (-dependent form factors, with Ar.a = 535 MeV and Â = 700 MeV,

respectively). Contrary to the situation for the unpolarised case, here the OPE cross sections are

clearly discernible above the QPM background, even for the relatively small cut-offs used.

t
\
\

_ oPE( 1)
. oPE(z)

_ _ _ QPM(EMC)
_ _ QPM(EFM)
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Figure 6.12: Differential leptoproduction cross section for various poiarisation states of the A+*.
The OPB curve is the prediction of the one zr exchange model, with the form factor given in
Eq.(6.3a), with cut-off mass À = 700 MeV. The QPM curve is the quark parton model prediction
with the fragmentation function extracted from the EMC data, as in Fig.6.11.

The spin asymmetry is even more dramatic when one looks at the ratio of polarisation cross

sections. In Fig.6.14 the difference o* - ø- is divided by the total predicted unpolarised cross

section. The resulting ( distribution is almost flat, but strikingly different for the quark model

of Section 6.2.1 and the pion exchange mechanism (the latter is almost independent of the form

factor, or of the cut-off mass). A measurement of this ratio would thus be particularly useful in

testing the relevance of pions in the DIS process. Such experiments can in principle be performed,

as all that is required is a severa,l GeV lepton beam, of sufficiently high luminosity, and detectors

capable of observing final state protons and zr* mesons.

\Me may aiso ask whether there will be fragmentation into baryons from the hadronic debris

(X) in Fig.6.10, in addition to the A produced at the hadronic vertex. What we know from the

ideas in Section 6.2.1 is that large-( baryons originate from two (or more) quark systems. The

CFR of the pion will be dominated by meson production. However, the TFR of the pion will also

contain mostly mesons, in contrast to the TFR of baryons. Thus the only significant source of

low-momentum baryons, with pion-exchange, will be from the purely hadronic vertex in Fig.6.10.

Note that we can also calculate the yield of pions resulting from the scatter off the virtual

nucleon or A components of the physical proton, with an on-shell meson in the fi.nal state. The (
dependence of this process would be somewhat different to the baryon recoil case, namely the peak

in the cross section would occur for small (, so that both the TFR and CFR would be populated

by such pions. As a possible extension of this work it may be useful to compare the predictions of

the nucleon (or A) exchange process for pion production with the much more abundant data on

meson leptoproduction.
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for semi-inclusive A++ production. The OPE(1) and OPB(2) curves are as in Fig.6.11, with form
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Chapter 7

CONCTUSION AND OUTTOOK

In this thesis we have investigated aspects of the deep inelastic scattering of leptons from hadronic

targets, with a view of obtaining a consistent description of the internal structure of nucleons and

nuclei. In the context of QCD, deep inelastic scattering is only a partially understood process, since

only the hard scattering of the photon (or l/-boson) from partons can be analysed perturbatively.

DIS therefore provides an opportunity to study the non-perturbative regime of QCD. Our emphasis

has been on the region of intermediate momentum transfersrQ2, where the transition takes place

from hadronic to partonic variables as those appropriate to describe the strong interactions.

As a first step we would like to have an accurate description of deep inelastic scattering from

nucleons, in particular to use it to probe the soft part of the interaction, between the partons

and the parent nucleon. Progress in this direction has already been made by connecting quark

distributions in DIS with low-energy models of the nucleon. Unfortunately, most of these models

have been non-relativistic, and one would naturally like to include relativistic corrections. We have

seen that a relativistic description of the nucleon quark distributions is possible if one constructs the

scattering amplitude from the truncated nucleon tensor, fr¡"r, which itself can be determined from

relativistic quark-nucleon vertices. At this stage it is not clear how the relativistic vertex functions

can be related to the ordinary quark wavefunctions obtained from the non-relativistic models. For

this reason we have used phenomenological input to parameterise the momentum dependence in

the vertex functions. With a minimum of parameters (essentially the high momentum cut-offs and

the spectator diquark masses) quite excellent agreement with the valence quark distribution data

can be achieved.

The advantage of working with the truncated nucleon tensor is made apparent when one con-

siders nuclear DIS. Specifically, incorporating the off-mass-shell dependence of the virtual nucleon

structure functions, û', b".o-es straightforward. The only additional input necessary to com-

pietely determine the nuclear structure functions are the functions giving the four-momentum (p)

dependence in the relativistic nucleon-nucleus vertices. Although relativistic calculations of nu-

clear structure functions have previously been attempted, these have all relied on specific on-shell

approximations for the virtual nucleon tensor in order to formulate the problem in terms of the

161



convolution model. Within the present method, it has been possible to systematically derive the

conditions under which the convolution approach could possibly be justified, and to demonstrate

that in general these are not satisfied. Hence we have established that the convolution model is

incompatible with the covariant formalism when the full off-shell structure of the nucleon tensor is

retained. From a more general perspective, our new formalism can be seen as a positive develop-

ment since it makes clear the necessity of using both quark and nuclear degrees of freedom within

a single framework.

An obvious extension of this formalism wouid be to calculate the polarised structure functions of

nucleons and nuclei. As in the spin averaged case, we would expect the factorisation (convolution)

hypothesis to break down here as well. This could then have potentially signifi.cant consequences

for the extraction of the polarised neutron structure function from the polarised deuterium and

helium data, and to the whole argument about the proton spin.

Unfortunately, for practical applications, the relativistic nucleon-nucleus vertex functions are

as yet unknown, save for the lightest nuclei like deuterium. As could be expected for the deuteron,

we found that the results of the full, p2-dependent calculation differ little from those obtained by

making on-shell approximations, when the results are normalised to conserve baryon number. Of

greater interest, however, and especially for understanding the nuclear EMC effect, are the off-

shell corrections in heavy nuclei. An estimate of the size of the off-shell deviations was made by

considering a nucleon immersed in nuclear matter. Here, the off-shell effects were parameterised

in the form of an effective nucleon mass for the interacting nucleon. In addition, we found non-

negligible consequences arising from flnal state interactions between the spectator diquarks and

the nuclear medium. Combined, these effects give some 20-30% harder structure functions for

interacting nucleons at r à 0.4 compared with the free nucleon results.

Although we have modelled only the valence component of the nucleon (and nuclear) structure

functions, it should be possible in future to extend the analysis to the sea quark sector. This will

require additional model-dependent input for the sea-quark-nucleon vertex functions and for the

four- (or more) quark spectator state. Alternatively, we can simply assume that the entire sea can

be generated perturbatively. The only flaw in this approach is the possibility that there exists in

addition an intrinsic, non-perturbative sea in the nucleon. \Me have investigated this cornponent by

taking a model in which part of the sea originates through interactions of the high energy probe with

the extended virtual meson and baryon structure of the nucleon. This model warrants study not

only as a possible source of the nucleon sea, but also for its prediction of a flavour asymmetry in the

sea of the proton - a topic of much recent debate, especially since the experimental determination

of the Gottfried sum rule by the NMC. Our technical treatment of this process has been to use the

infinite momentum frame formulation of the the instant form of dynamics. This approach, contrary

to the covarialt formalism, enables the consistent use of the convolution formula, and ensures that

ambiguities in the structure functions of virtual particles can be avoided.

An important parameter in this model is the relative size of the meson cloud surrounding the
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nucleon. \Mithin the limits imposed on the mesonic contributions by the experimental antiquark

distributions (namely, a fairly soft meson-nucleon form factor, with a cut-off À = 700 MeV), we

found that typically less than about half of the apparent discrepancy between the measured and

quark parton model values for the Gottfried sum rule can be accommodated. It is likely that other

mechanisms, Such as Pauli blocking, do play at least as important a role in generating the flavour

asymmetry. fn fact, careful examination of the shape of the proton-neutron structure function

difference as a function of Bjorken-z suggests the presence of both the mesonic and Pauli effects.

The inherent model-dependence in the extraction of the neutron structure function from deuteron

DIS data introduces the largest uncertainty in the interpretation of the Gottfried sum rule data.

Although generally small, the nuclear effects in deuterium could be magnifled when one is consid-

ering diflerences of cross sections, especially at small z. With this in mind, we have calculated the

shadowing corrections to the total virtual photon-deuteron cross section, using a model which

incorporates both vector -åroo (which are important at low Q2) and,parton (high Q2) degrees of

freedom. \Me found subsequent corrections of the order of I -2% to the neutron structure function

for r S 0.01, with the biggest uncertainty arising from the model d.euteron wavefunction. Con-

sequentlg one should expect - $ - 10% reduction of the value of the Gottfried sum rule due to

shadowing. It would be quite valuable for the resolution of the question of shadowing in deuterium

(and of SU(2) sea flavour symmetry) to have high quality data at smaller ø on the proton structure

functions from neutrino scattering, since this would enable the individual flavour distributions to

be determined and the neutron structure function deduced from charge symmetry.

To check the consistency of our model of shadowing we also calculated the corrections to the

structure functions of heavy nuclei at small r. Using realistic nuclear density parameters, we found

good agreement of the model with the latest high-precision data from muon scattering experiments

at CERN. In particular, what can be learned is that the rescattering of vector mesons plays an

important role at smalJ,Q2, where much of the small r datais taken. (Of course the approximate

scaling property of shadowing at large Q2 is accounted for by the Pomeron exchange mechanism.)

A future refinement of the model may come from a better determination of the ineiastic diffractive

scattering cross section, parameterised in the form of the Pomeron (structure function'. Progress

in this direction is sure to be made shortly when new data at small r (ø 5 1g-+ at Q2 - 10 GeV2)

from HERA becomes available.

As an extension of the present calculation, it would be useful to model the region of very small ø

and small 82 1253]. A recent Fermiiab experiment [254] measured the deuteron to proton structure

function ratio down to r x 2 x l0-5 (^t Q, I O.O1). Shadowing corrections to the deuteron

data should therefore be estimated in this region. Also, data from the E665 Collaboration [255]

observed what appeared to be saturation at very low r of the shadowing in the cross section ratio
of Xe and deuterium. From theQ2 dependence of the shadowing corrections discussed in Section

4.3 such saturation will be accommodated within the present model so long as there is a smooth

extrapolation to the photoproduction limit.

163



In addition, the nucleon off-shell effects should also be included in the shadowing calculations.

For this it will be necessary to have a relativistic description of the sea component of the nucleon

structure functions, which is another reason to extend the model of Chapters 2 k 5, However, a

rigorous and self-consistent treatment of the off-shell effects may be challenging if one is to use

the Glauber scattering formalism, since the derivation of the multiple scattering expansion relies

critically on the on-shell approximation for the bound nucleons. Also, despite the uncertainties in

the model parameters, it may be useful to obtain an estimate of the effects due to meson exchange

currents in heavy nuciei.

Finally, as another potentially rich source of information on the long-distance quark dynamics,

we have studied the process of semi-inclusive hadron leptoproduction. In particular, we found that

the fragmentation into polarised A++ baryons in the target fragmentation region offers a striking

contrast between the predictions of the one-pion-exchange model, and a formulation in terms of

diquark ---+ baryon fragmentation functions. Furthermore, this reaction is experimentally feasible,

and some input from our experimental colleagues in the near future would be very valuable.
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PHYSICAL REVIEW D I MAY 1993

Department of physics and Mathematical Physics, Uniuersity of Adeloide, Box 498 G.P.O., Adelaide, South Australia 5A01, Australio
(Received 3t August 1992)

We calculate nuclear shadowing in leptondeuteron deep-inelastic scattering, which arises from the

double scattering of the virtual photon from both nucleons in the deuteron. The total correction to the

deuteron structure function is found to be I l/o at small x, but dependent on the model deuteron wave

function. The resulting increase in the corrected neutron structure function is -l-2Vo lor x -0.@4,
which leads to a 4-l0Vo decrease in the value olthe Gottfried sum obtained recently by the New Muon

Collaboration.

PACS number(s): ll.ó0.Hb, l}.4O.Gg, 12.'lO.Vv

I. INTRODI-,'CTION

The quark structure of the nucleon is one of the most
fundamental aspects of hadron physics. Deep-inelastic
scattering (DIS) oi leptons from hydrogen has yielded a

wealth o[ inlormation on the deep-inelastic structure of
the proton. However, the absence of free neutron targets
has lorced one to use deuterium in order to extract data
on the neutron structure functions. Traditionally in DIS
on the deuteron, in which the proton and neutron are
held together very weakly, nuclear effects have been ig-
nored, and the total leptondeuteron cross section as-

sumed to be the sum of the lepton-proton and lepton-
neutron cross sections. It is the deviation from this sim-
ple relation in the region of small Bjorken ¡ (x S0. l)
which is known as shadowing.

Experimentally, a deviation from linearity has been ob-
served Il] in the so-called nuclear European Muon Colla-
boration (EMC) effect for the ratio of DIS cross sections
(or structure functions) for lepton scattering from a nu-
cleus and from deuterium. A dramatic decrease in the
nuclear structure function per nucleon in the region of
small ¡ confirmed earlier predictions [2] that shadowing
should be present in DIS. Furthermore, the shadowing
was found to be only weakly dependent on Q2.The ex-
traction o[ information about the difference between nu-
clear structure functions and those for the free nucleon
from the observed nucleus/deuterium ratios is sensitive
to any nuclear effects in the deuteron. Conclusions made
about nucleon parton distributions based on the
nuclear,/deuteron structure function ratios (e.g., for the
proton antiquark distributions in the Drell-Yan process

[3]) at small x may have to be modified once shadowing is
taken into account.

A precise knowledge of the neutron structure function
.Frn is essential for the determination of the Gottfried
sum rule, and the corresponding resolution of the ques-
tion of flavor symmetry violation in the proton sea. It is
necessary therelore to check for nuclear shadowing
effects in deuterium and include this correction in the ex-
traction of F.n from the deuteron structure function,
Fro. Some recent estimates [4,5] have suggestd a

significant amount of shadowing in deuterium þJp lo 4Eol
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for x S 0. l. Other calculations [6] have predicted a less

dramatic effect ( =2Vol.
The cross section for lepton-deuteron DIS' Fig. l, is re-

lated to the forward 7'D scattering amplitude. In the

impulse approximation, Fig. 2, the virtual photon in-

teracts with one of the nucleons in the nucleus. The dou-

ble scattering diagram, Fig. 3, in which both nucleons

palicipate in the interaction, is the origin of the shadow-

ing in a nucleus.

II. VECTOR MESON DOMINANCE

A. Hsdron-deuteron Glauber scattering

Glauber theory [7,8] for hadron-deuteron scattering
gives the total l¡D cross section as a sum of the åy'V cross
sections, and a screening term arising from the double
scattering of both nucleons:

ohD:2ohN*ôø¡p, (l)

where

" oìnr
ooho--r ¡d2krso{k2)Arr' -

o2h¡t 
":_ .,", ldkksD(k2) , (21

4¡r J

with k:l¡1. In deriving ôø¡p, the assumption is made
that the hadron-nucleon scattering amplitude 7¡.¡' is pri-
marily imaginary, Re7¡¡ <<Im7¡¡, and approximately
independent of k2 for small k2. [Contributions to ôo¡p
from large k2 will be suppressed by the deuteron form
factor Sp(k2).] Then from the forward double scattering
amplitude [9]

ô7,¡p: *d/a2t.sott',l7rotk',)y/,À(k2), 
(3)

where q is the momentum of the projectile, Eq. (2) fol-
lows via the optical theorem:

4t-o: 
- 

lm,.l
lqi

47 3783 O1993 The American Physical Society



3784 W. MELNITCHOUK AND A. W. THOMAS !

Y (q)

x (R*)

o (Ro)

FIG l. Lepton-deuteron deep-inelastic scattering.

B. ftDscattering

Assuming that the Glauber formalism can be applied
to 7tD scattering, the shadowing correction to the /.D
cross section was originally calculated in rerms of the
vector meson dominance (VMD) model, where the virtual
photon dissociates into its hadronic components (vector
mesons) before interacting with the nucleon-see Fig. 4.
In this model the shadowing cross section is given bV [10]

6(rro,'o:+i¡+*ôo'o' (4)

where u :p0, ø, Q, and the photon-vector-mcson cou-
pling constants are Il l]

fi o2M,
(5)4¡ lI-

U-e e

(equal. to 228,26.14, and 14.91 lor p0, ar, and ó, respec-
tivelyl). Writing (4) in terms of the deureron srructure
lunction2'Fro we have

ô'"'F,o{x r: + fitt+g2tujì'
ôouo

(6)

U

FIG. 2. Virtual photon-deuteron scattering in the impulse
approxr mallon.

where now

^ o?,N ,ôø,o:- 
*Ja2t.sott2) . (71

The total vector meson-nucleon cross sectlons ru,v are re-
lated to the total ¡ìy' and KN cross sections via the quark
model, and are set to 24 mb for u :p0 and a, and 14.5 mb
for u :ó (see [10, l2]). The deuteron lorm facror SD(k2)
is given by the electric monopole body lorm factor [13]

.sD(k2) : Io- ar¡r2lrl+w2{rly6(kr) , (8)

where u (r), u:(r) are the S, D-wave deuteron wave lunc-
tions, normalized such that I drlu2( r)+u'r( r)]: l, and

where jo is the spherical Bessel lunction. The square of
the three-momentum transfer to the interacting nucleon
is k2:kzr+kÌ, where kl:mznxztt+.+r,l /ç111, and

x : Q2 /2p .q.

fNote that the fine-structure constant eraluated at Q)-l
GcVz is a:e1 /4r-=1,/130, although the error inrroduced by

this is probably less than that associated wirh using /.r, which is

obtained from the decay of meson u with timelike Q2, for the

coupling to a photon with spacelike Q2.
2ln terms of the total cross section for the phoroabsorption of

virtual photons on an unpolarized deuteron, o,.o, the deuteron

structure function is

w:K Q'w zD: 4ì" A+ rlo ,'D ,

where K :y'v2+Q2 is the flux ol incoming rinual phorons (in

the Gilman convention), so that in the Bjorken Iimit

61
L-:--¡ rD 4rlo" ,to

q
(ì

P

p
P

P

FIG. l. Double scattering of virtual photons from thc dcute-
rons in which both nucleons take part in rhe interaction.

q

p

p

FIG. 4. Double scattering mechanism in the vector meson
dominance model. The virtual photon dissociates into a vector
meson which then scatters from the nucleon.
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From Eq. (6) it can be seen that the VMD shadowing
correction to the deuteron structure function decreases as

l/Q2forQ2-*.
At 9z:4 GeV2 the VMD model shadowing predic-

tions are given in Fig. 5 for deuteron form factors ob-

tained Potential models. BY far
the lar ) to ô(nFro comes from
the po of ô(nFro(x) decreases

with x because the lower limit of the & integration in Eq.
(7), k.in:k¿, is an increasing function of x, and the in-
t.g."ttä'p."kt "t 

small values sf þ(=0J fm-r). The
model dependence arises from the differences in the
large-k(12 fm-r) behavior of the form factor, Fig. 6,

which itself is determined by the small-r behavior of
u(r),w( r). All of the deuteron wave functions obtained
from realistic NN potential modes [namely Paris [14]'
Bonn [one-boson-exchange potential in g space (OBEPQ)]

[5],;d Bochum [6]llroduce a trough in kSo(k2) at

k =3.5 fm-l (because the Bessel function is negative at

large kr\, and a rapid falloffwith k for k l6 fm-1. Also
shown is the model of Franco and Varma [17], which was

used in [4,5], for which the form factor, parametrized by
a sum of Gaussians, has no large-k tail at all. The form
factor with the Paris wave function, which has the

"deepest" trough, leads to ôtn'Fro which is =257o small-

er for ¡ 50.01 than with the Franco and Varma form
factor. The trough is also responsible for the antishadow-
ing in the region x >-0.2.

III. DTFFRACTIVE SCATTERING FROM PARTONS

At low 92, it is most natural to evaluate the 7'D sha-

dowing in terms of the VMD model. At higher energies

a parton picture may be more relevant. An alternative
description of the double interaction mechanism in Fig. 3

in the high-energy limit is in terms of Pomeron (?\ ex-
change, Fig. 7. If the momentum transfer between the
photon and nucleon is small, the nucleon will most likely
remain intact, in which case there will only be exchange
of vacuum quantum numbers. Although there is as yet
no QCD-based derivation of the properties of the reac-
tions described by Pomeron exchange (e.g., constant ha-
dronic cross sections), there have been óuggestions

[18,19,20] that the Pomeron represents a system of
gluons. (In Ref. [18] hadron-hadron scattering is

modeled in terms of gluon exchange between MIT bags'

while in Ref. [20] gluon-ladder techniques are used to cal-
culate deep-inelastic structure functions of hadrons at
low x.)

In Fig. 7 the virtual photon probes the parton struc-
ture of the Pomeron, which is parametrized by the Pome-
ron structure function F zp l2l ,22) (de fined in terms of the

cross section for 7'-Pomeron diffraction scattering):

Q,
4Ìa

(e)Fyp(xl: o y'?

The contribution to the F2o structure function from mul-
tiple diffractive scattering with ? exchange can be written
as a convolution of an exchange-? distribution function

FIG. 5. VMD contribution to the total deuteron structure

function at Q2=4 GeV2, for different model deutcron form fac-

tors.
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f .p(yl with the ? structure function:

ô(P)Fro{x r: I;^,^0, f pgl F2.p(x.p) , uo)

where

.f eu\: - #;/ a2trso{12) u r)

is expressed as a function of the momentum fraction of
the nucleon carried_ by t!" P-omeron, y:k.q/p,q
-- x ( I + M j / 22 ) = t't ] / s I, M tr -- p tr, t : ( p * q )2 l, a;d- w;
define xr:¡ /y. Figure 8 illustrates the y dependence of
_f p(y), including the I /y divergence for y -*0. The rapid
falloff with y is testament to the very small contribution
coming from the large-y region.

In formulating a complete description of shadowing
which includes more than one mechanism care must be
taken to avoid possible double counting. Because of this
concern some authors [6] have restricted the Pomeron ex-
change process to the region of M| above the highest
mass of the vector mesons contributing to the VMD pro-
cess: M] aUtro= 1.5 GeVz, and consiquently have tak-
en the lower bound on the integral in Eq. (10) to be
¡l.in:r (l+M2xo/Q2). ftte VMDcontribution, which is

essentially a higher twist ( | /Q2l etræt may compete
with that part of the diagram in Fig. 7 which contains
low-M* single particle intermediate states. By keeping
only the leading twist piece of the structure function F2p,
we can exclude this contribution since it involves extra
factors of | /Q2 from the electromagnetic form factors.
Nevertheless, we have tested the sensitivity of our numer-
ical results to the cutoff procedure by varying M2rofrom O

to 2 GeV2. For low x we find a difference over this range
of only some SVo of the total ? exchange contribution to
f'ro. For larger Q2 the separation into separate Mx re-
gions becomes irrelevant since yr,n-¡ in the Bjorken
limit.

For the Pomeron structure function we include contri-
butions from the quark-antiquark box diagram, Fig. 9(a),
and from the triple Pomeron interaction, Fig. 9(b) (see

Refs. [23,24]):

F2,p(x.p):.F!þ"){r, )+ F\)f,) .:.rt ltz)

normalized such that'

- t l6z.y I ¿'Pltn 
Iryp:l-l , I (13)¿r 

I "* ) dt dt l,=o'
where I = -k2, and Flitr is the diffractive structure func-
tion, describing semi-inclusive diffractive lepton-nucleon
DIS, in which the recoil nucleon and the hadronic state X
X are separated by a large rapidity [22].

The Pomeron structure function arising from the
quark box diagram, F!F-', has been calculated by Don-
nachie and Landshotr l22l:

,l2>-1N*)ßà
F\f't(x,r): --f x,p(t-xp). il4)

The quark-Pomeron coupling consrant is pfr:f.+ GeV-2
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FIG. 8. Exchange-Pomeron distribution function, l/e(y)l
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=
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FIG. 9. (a) Quark-antiquark box contribution to the Pome-
ron structure function, where the Pomeron couples to the virtu-
al photon via a quark-antiquark pair. (b) Triple Pomeron con-
tribution to the Pomeron structure function.
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[25], and we assume the same strength lor u,d quark and
antiquark-Pomeron couplings, but a weaker coupling to
the strange quarks: Xoz:(10+2À,)/9 with À,=0.5.
According to the Particle Data Group Il l], the proton-
proton total cross section o oo ís approximately tl0 mb.

The parameter N*n is determined by the x *0 behavior
of the nucleon sea distribution, xq..,(x.-0)-N*"xo.
Recent parametnzations of world DIS, Drell-Yan, and
prompt photon data 126,27,28] give N-" -0. 15, and a ap-
proximately 0. Note that the overall normalization of the
right-hand side of Eq. (14) is slightly smaller than in [6]
due to our smaller sea parameter N*" (cf. N*":0. l7 in
t6]) and suppression of strange-Pomeron couplings.
More recently, Nikolaev and Zakharov l24l have calcu-
lated the box diagram contribution to F,p, based on a

perturbative QCD analysis of qÇ fluctuations of the virtu-
al photon. The x.p dependence of their F!þ') parametriz-
ation is rhe same as that in Eq. (la): M)/(QI+MìP
(since Qr*Mi:Q2 /x,p from the defrnition of x.p), pro-
viding the same normalization is used (the normalizations
in [22] and [24,29] differ by an overall factor I -x,p).

The triple Pomeron part o[ the P structure function,

(o)

:

t

I
I
I
i
L

' Boctrum
Box
39

- 0 00 t 0 i- 
-- 

-----i
o 00I 0.010 0.100 I 000

T

(b)

-0 004

-0.006

-0.o08
0.00 l 0.0r0 0.to0 I 000

FIG. I l. (a) Quark-antiquark box and 3P contributions to
the total deuteron structure function. The deuteron form factor
is given by the Bochum model wave function. (b) Deuteron
form-factor dependence of the Pomeron exchange contribution
to the deuteron structure function.

Fi/i dt dy ¡:0 ohp dt dy ,:0

where a,/l)= I +0.25t. In the Regge model the total hp
cross section is also given in terms of the hadron-
Pomeron couplings; B¡.p: o¡p:Bhpúlßp",(O).. It is then
evident that the combination

d2o

Hoclt t¡ ¡¡r

lìorr rr

['ar ¡s

l'ratrco

rf{ttxrl: 
" --l

)¿

ohp

d2o
-hx

dt dy

I dzo

,=0

-hx

x

follows from

I d'Fortn

and the Regge theory expression for the diffractive
differential cross section [30],

d'o_^o-^, _B^,l,tlÎ2od,tlsyp(t) yt-2epttt,'7)
dt dy 16¡

ohp dtdy l:0

is independent of hadron å. From experiments on the
diffractive dissociation of rx, Kt, p, and p on hydrogen,
the triple Pomeron coupling constant was found to be
glp(0)-0.364 mbr/? ¡3 11, independent of r, and indeed of
the hadron type ir.

For the sea part of the nucleon structure function,
Fä:5" lu,-tu +d,+A +2(s 1-l)/51l18, we use recenr
parametrizations of the data ar. Qz:4 GeVl [27,28]. In
the calculation of Ref. [6], a constant value of 0.3 was
used for .Fff, together with an empirical tow-Q2 depen-
dence [22]. With the above triple Pomeron coupling con-
stant, Eq. (15) gives a 3'P component which is about 407¿
smaller than that obtained in [a]. However, this is not

very significant for the total Pomeron structure function,

since,F!f)is very much smaller than the quark-antiquark

"box" contribution f!þ-), rig. to.
The scaling behavior of the ?-exchange mechanism is

determined by the scaling behavior of the P structure

function, and from eqs. tl+l-tlA) it is clear that, ô(2rF2D

wilf scale as Qz-co. At Q2:4 GeV2, Fig. ll(a) shows

the individual "box" an¿ lP contributions to ô(P)F2p,

with the deuteron form factor obtained from the Bochum
wave function. The dependence of ô(P)Fro on So(k2) is

illustrated in Fig. llb). Again, as in the case of the
VMD model, the large-k negative tail of the fiorm factor
produces a Iarge (some 30-4O Vo) difference between
different models for x 50.05. For x 10.2 the presence or
absence of antishadowing will be determined by the mod-
el deuteron wave function.

IV. SHADOWING BY MESONS

Another potential source of shadowing arising lrom
the double scattering mechanism is one which involves
the exchange of mesons, Fig. 12. It has previously been
suggested [32] that this leads to substantial antishadow-
ing corrections to Fro(x). The total contribution to the

-hx _ fl¿c(ols¡e(ol
l6ry
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deuteron structure function from meson exchange is writ-
ten

W. MELNITCHOT'K AND A. W. TTIOMAS

q

+ I pNN f pnn

2^x

q

47

Q4l

where ll:î,p,(Ð,o, ! : k.S /p.C --(ko* krl /my and
tt,:x /y. For the virtual meson structure function F2u
we take the parametrization of the (real) pion structure
function lrom Drell-Yan production [33]. The
exchange-meson distribution functions f ,(yl are oþ
tained from the nonrelativistic reduction ol the nucleon-
meson lnteractlon:

ô(tr)Fro{x):2 [i"'^ro, f rU) F2u''r\ , 09)
p

nucleon-meson interactions are given bv [15]

^1

Y nxN 
: - L4{o .-k o2-k ,m;

k,{

FIG. 12. Double scattering mechanism with meson ex-
change. The dotted line represents mesons Í, p, a) t.

(20)

p

p
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PD

f,(t):4cumrtWP#rl
The deuteron wave function is defrned by

*> *r,o,r,)vu¡rvv(o',r, 
Ìu þ 

-+ 
l

t(p)-*otff)/;, (2r)V(o.J-): -! l,v4r I

where u(p) and w(p) are its S- and D-wave components, normalized so that Idpp'l,rtlp)+wzlpl1:1, with î=p/p
pl,andS,2isthe,tensoroperator: S¡2(p):3o¡þo¡þ-ot'Ø2. Thedeuteronspinwavefunctionisdenotedby

where J, is the total angular momentum projection. In Eg. (20), k2:k2o-k2, where

ko:mo - ^h+p2- ^'N+p'z 
is the energy of the off-shell meson, and k:p-p'is its 3-momentum. The
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FIG. 13. Individual meson exchange contributions to the

deuteron structure function, for the wave function of the Bonn
(OBEPQ) model with a universal form-factor cutoff Àu:1.7
GeV. Note the mass of the efective t meson is = 800 MeV.
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FIG. 14. Deuteron wave function and pffN form-factor

dependence of the total meson exchange correction' The Bo
chum (solid) and Paris (dashed) curves are evaluated with
Âu: 1.3 GeV, while the Bonn (dotted) curves have Àr: 1.0' 1.3'

and 1.7 GeV, with the larger cutoffgivrng more overall antisha-

dowing.
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Q6)

Qs)Vo.v^: -g2"pn [,-*.#l

*ì
*,,t r' o cos0'cos0 P2 ( cos0) 

lut 
t olu f o' )

(p cosl*p'cosg')2Pr(cosd)P2(cosg')-2(p2sin20+p'2sin2g')P2(cos0)P2(cosg')

*3(p2cos29 sinz0+pp'cosocos9'sin2g)P2(cos€')*3(p'2cos20'si nz0'+p'pcosg'cosgsin29')P,(cosg)

+ | ne'.osecosg'sin2g sin' u'1, Vlrtr' I 
| 
+ ø dependent terms .

Evaluation of Eq. (20) requires the identities

]¡vttn,r )v(p',J,r:*u(plu(p')*w(p)w(p')prkos|)p2(coso')l*/-dependenr terms

= l¡vttn,.r lo,-o2\'(p',J,),

l¡wtt n,.l )o,-ko r-kv(p',J,)

:; 
{}f 

t 2_ 2PP'sinosino'lu (P)uQ')

'I- # l+w' 
cosecosg'sin29' * 4p'2coszd's in2 0' -3, ot * p'2 )p, ( cosg' )

* 2( p2cos20 * p'2cosr0' )P2 ( cosg' ) + ]lf 'cos0 cosO'P, ( cosg' l), t ol, t e' I

'I-àl+n'ncose'rosásin20+4p2cos2gsin¿a- lro':.*p2)Pr(cosg)*2(p'2cos2d'+prcosrg)p,(cosd)

_1
3

The terms in Eqs. (26) and (27) which depend on the az-
imuthal angle (/ ) vanish after integration. The factors cu
are due to isospin: c o: c p:-3, c r: c o: - l. The pNi/
vertex form factors TuNN(ktl are parametrized by a di-
pole form

A?u- ^',
L'r- k'

with the high-momentum cutoffs r\, ranging from - I
GeV in models with soft form factors [34,16] to -1.7-2
GeV when hard form factors are employed [15].

Figure 13 shows the individual meson exchange contri-
butions to ô(Y)F2p, for the wave function of the Bonn
model, and u,ith a universal dipole cutoff of ltr:1.7
GeV. As could be expected, pion exchange is the dom-
rnant process. We also include the fictitious ø meson, but
with a mass ( = 800 MeV) that is larger than that used to
represent 2n exchange in Nl{ scattering. Both of these
produce antishadowing for small x. The exchange of vec-
tor mesons (p,a-l) cancels some of this antishadowing, al-
though the magnitude of these contributions is smaller.
In fact, for Â.,51.3 GeV all contributions other than
that of the pion are totally negligible.

Figure l4 shows the dependence of the total õ'''Fro
on Âu fior the Bonn model wave function. There is ap-

Ju,v¡,(k2): (28)

Q7)

proximately a factor of 2 difference between the amount
of shadowing with soft (Âr:l GeV, lower dotted line)
and hard (Âu:1.7 GeV, upper dotted line) form factors.
In lepton-nucleon DIS it is well known [35] that the
meson cloud of the nucleon, with a hard ¡rNN form fac-
tor, gives nucleon sea distributions that are several times
larger than the empirical ones. In fact, to be consistent
with the lepton-nucleon DIS data humust be S0.8-0.9
GeV. We also consider the effect of the- model
momentum-space deuteron wave function on ô(M)Fro.
Although the model wave functions differ substantially at
large momentaQ-2 fm-l), this variation will be largely
suppressed by the pNN form factor. The Bochum and
Paris wave functions are generally larger than the Bonn
wave function, and this is reflected in a larger ô't'Fro.

We also comment here on the issue raised in the previ-
ous section, namely, double counting, this time between
the meson exchange and the other mechanisms. lt
should be clear that since the ? contribution involves the
exchange of vacuum quantum numbers, there will be no
interference between this and the exchange of pseudosca-
Iar pions or vector mesons. The scalar o meson, intro-
duced as an effective description of two-pion iúÂ excita-
tions, does not correspond to actual exchange of a spin-O
particle. By restricting the meson structure function to
only the leading twist component (our F2u is determined



at Qz:25 GeV2 where this assumption is reasonable) we
may view the VMD process as a description of higher
twist effects. Still, imposing any low-Mt cut on the
meson exchange term has numerically insignificant conse-
quences, largely because F2r(x /y)-0 as y .*x.

V. COMBINED SHADOWING EFFECTS
ÄND THE GOTTFRIED SUM RULE

The total deuteron structure function is defined by

Fro(xl:F2r(x)*F2,(x)*ôFrp(x) , (29\

where the shadowing correction is a sum of the VMD,
Pomeron, and meson exchange contributions:

ôFro(x):ô(nFrolx)+ô(P)f'ro{x)+ô('v).F,o{x) . (30)

In Fig. l5 we compare the contributions to ôFro(x) from
the three mechanisms considered. For x S0. I the magni-
tude of the (negative) Pomeron/yVD shadowing is
larger than the (positive) meson-exchange contribution,
so that the total ôF2p is negative. The fact that shadow-
ing is present in this region of x does not depend on the
model deuteron wave function. For larger x( =0. I -0.2)
there is a small amount o.f antishadowing, which is due
mainly to the VMD contribution. The dependence of the
total shadowing correction on the deuteron wave func-
tion and on thepifi/form factor is shown in Fig. 16 for
Q2:4 GeY2. We point out that the magnitude of
ôFtp(x) is about 4 times smaller than that obtained in
Ref. [4], and about 2 times smaller compared with the re-
sult of Ref. [6]. The most important reasons for our
smaller results are the inclusion of meson exchange con-
tributions which produce antishadowing at small x, and
the use of realistic deuteron wave functions which le¿d to
smaller P exchange and VMD contributions.

Recently the New Muon Collaboration (NMC) has
measured Fro and F2D Í36,371 down to very small values
of x(:x.¡n:0.0O4). The neutron structure function
was then extracted from Fro in order to test the
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Gottfried sum rule [38]. However, by assuming that

F2p(t-(F2p/F2P-lll
l+(F¿D/F2p- I ) 

:2Fzo- F'¡:(F'o -F:n )Nuc

(3 l)

the NMC ignored any nuclear shadowing effects in D
which may alter the F2n values. The actual difference be-

tween the p and n structure functions should be

Fro- Frn-1Fze -.F'2n )NMc+ôF2p , (32)

and this is shown in Fig. 17. The dotted line is a best ût
to the NMC data, and includes the small-x extrapolation
used in [37]:

F2o(x)- F,n(r),:o*u (33)

with a:0.21, 9:O.62. The other curves include the
shadowing corrections to the NMC data parametrization.
It is not clear whether F2r- F2n will become negative at
¡ 50.0O1, and it will be interesting to see whether this
crossover occurs when additional data at smaller x be-
come available.
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FIG. l5- Comparison between the VMD, Pomeron, and
meson exchange corrections to the deuteron structure function
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x

The Gottfried integral

- r F2o(x'l- F2n(x'l
S6(x, I ): J,' dx' 

-;-=:--
: f ' dlnx')lF2o(x'l- F2,(x')) (34)

J x'=x

is given in Fig. 18 for x down to 0.004. In the naive
quark model, Sc(O, ll:l /3. Ignoring nuclear effects, the

NMC obtained Sc(rmin,ll:O.229. From the unmea-

sured region (¡ <0.üX), using the above extraPolation'
the contribution was found to be S6(0,x.¡):(a/
BlxF^.^:0.011. With the conventional Regge theory as-

sumption that p:9.5, S6(0,x.¡n) would be 0.014. In
Table I we give the values of 56 including shadowing

co[ections, and also the x (x-¡n extrapolation Parame-
ters. For simplicity we take p:0.5, and adjust a to
achieve a smooth transition between the x >x.¡n and

r (rn,¡n regions. The overall correction to the NMC
value for Sc(0,1) is found to be between -0.010 and

-0.026. This is to be compared with -0.07 to -0.088
obtained in [4,5,29].

As a fraction of the total F2p(x) [37], the shadowing
correction amounts to (0.5-1.0 Vo,0.4-0.8Vo,
O.O-O-3 Vol at x :(0.0O4,0.01,0. l), while the anti-
shadowing is less than O.2Vo of F2e at x =0.2.

In Fig. l9 we show the ratio of neutron strubture func-
tions with and without shadowing corections:

Fzn :1- ôFro 
f 
t*,at"lo+l*^t. 

ì . (35)
(F2nly¡¡ç - Fzo [ (rr" /Fzp)NMc 

J

where the NMC neutron,/proton.ratio was defined as

(Fzr/F2p)¡yç=F2p,/Fzn - l. There is an overall
l-2Vo increase in the neutron structure function due to
shadowing for x 50.01.

Finally, we illustrate in Fig. 20 the dependence upon

Q2 of tbe total shadowing correction ôF2p(x,Q2). As ex-

pected, the VMD term vanishes rapidly with increasing

Q2, leaving the two scaling contributions from ? and
*"ron 

"t"h"ng" 
to largely cancet each other for Q2-25

GeV2. However, we should add a note of caution about
comparing shadowing corrections at very large values of
Q'. In the parton recombination model [2,39,40] the
fusion of quarks and gluons from different nucleons intro-
duces additional terms [39] in the Altarelli-Parisi equa-
tions governing the QCD evolution of the pafton distri-
butions. At very small ¡ and large Qt, such as those at-
tainable at energies reached at the DESY ep collider
HERA, this can lead to significant corrections [6] to the
õFr,.(x,Q2) evolved without these terms, although the
exact magnitude of these is sensitive to thc small-x behav-
ior of the input nucleon gluon distribution. For the
moderate range of Q2 and not too low ¡ values in Fig. 20,

however, we expect the indicated Q2 behavior to be reli-
able.

VI. CONCLUSION

In summary, we have estimated the nuclear shadowing
in lepton-deuteron DIS from the double scattering mech-
anism in Fig. 3. Our approach is similar to that of Refs.

[5] and [6], in describing the interaction in terms of the

TABLE I. Small-¡ extrapolation parameters for F2o-Fr,(:øxq) and the contributions to the

Gottfried sum from different x

Model d B S6(0,x.¡n ) S6(x.¡.,1) Sc(O, I )

- 

Bochum
Bonn

---- Paris
(^ = l.3cev),p

Bonn :1.7 GeV)

0.62
0.5

0.5
0.5

0.5

0.5

0.5

0.222
0.224
0.215

0.214
0.2t7

NMc [37]

Bochum (Â":1.3 GeV)
Paris (Âr:1.3 GeV)
Bonn (Âu:1.3 GeV)
Bonn (Âr:1.0 GeV)

0.21

0.109
0.041
0.052
0.01r
0.002
0.019

0.01I
0.014
0.005

0.007

0.001

0.000
0.002

o.229 0.240+0.01ó
0.243
o.22'l
0.230

0.211

0.214
0.219
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meson-nucleon form factor for the meson-exchange pro-
cess. The net effect is a SlVo reduction of F2¡ for
x -0.0O4, or equivalently a S2Vo increase in the neutron
structure function over the uncorrected F2¿. Conse-

quently, the shadowing correction to the Gottfried sum

Sc(O,1) is between -0.010 and -0.026 (or about 4 and
lOVo of the NMC value), which is about 5 times smaller
than in previous estimates.

To accurately test the descriptions of shadowing in the
deuteron it is necessary to obtain model-independent in-
formation on the neutron structure function at low ¡.
Even at HERA energies this is not possible with electron
scattering alone. However, when combined with high-
precision data from neutrino-proton experiments the in-
dividual flavor distributions can be determined, and the
neutron structure function inferred from charge symme-
try. For this to happen, however, the statistics on the
neutrino data need to be improved, and the range extend-
ed into the smaller-x region.
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j -o oozl
N
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02
,i1
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- 0.00{

0.00 r 0.0r0 0.100 r.000
-0.006 

-- x

FIG. 20. Q2 dependence of the total shadowing correction to
F2e. Curves represent the shadowing corrections at 4, 10, and

25 GeY2, with the Bochum model wave lunction and with
Â:1.3 GeV. Atso shown is the correction at Q2:25 çryz
without the VMD contribution.

VMD model, together with Pomeron (P) exchange.
However we have also included contributions from the
exchange of mesons which effectively cancel as much as

half of the shadowing from the YMD/?-exchange mech-
anisms alone. Numerically, there is some dependence on
the model deuteron wave function, and also on the
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The possible role played by vector mesons in inclusive deep-inelastic lepton-nucleon scattering is rn-

vestigated. In the context of the convolution model, we calculate sell-consistently the scaling contribu-
tion to the nucleon structure function using the formalism of time-ordered perturbation theory in the

inñnite momentum frame. Our results indicate potentially significant effects only when the vector-

meson-nucleon form factor is very hard. Agreement with the experimental antiquark distributions,

however, requires relatively solt form lactors [or the r¡N, pN, and ø.fy' vertices.

PACS number(s): l3.6O.Hb, 12.38.Lg, l2.1O.Aa

I. INTRODUCTION

In the context of meson-exchange models ol the NN
force in nuclear physics, it has long been realized that
vector.mesons play a vital role [1,2]. For example, the
isovector p meson is needed to provide sufficient cancella-
tion of the tensor force generated by 7r meson exchange,
which would otherwise be too large. On the other hand,
the isoscalar ar meson, through its large vector coupling,
is responsible for the short range Nll repulsive force, and
also provides most öf the spin-orbit interaction. Tradi-
tionally it has been necessary to use hard vector-
meson-nucleon form factors in order to frt the l{N phase
shifts [2]. However, alternative approaches have recently
been developed in which the NN data can be fitted with
quite soft form factors [3,4].

From another direction, the vector-meson dominance
model of the elastic electromagnetic nucleon form fac-
tors, in which an isovector photon couples to the nucleon
via a p meson, provides a natural explanation o[ the di-
pole Q2 behavior of the 7NN vertex function. Recent
analyses [3] have shown that a pN¡/ vertex parameterized
by a soft monopole form factor (^t-80O MeV) provides
a good description of the Q2 dependence ol the Dirac and
Pauli form factors. The effect of vector mesons upon nu-
cleon electromagnetic form factors has also been explored

[5] in the cloudy bag model [6], and in various soliton
models [7].

In this paper we investigate the possible role played by
vector mesons in high-Q2 inelastic inclusive scattering of
leptons from nucleohs, in the context of the so-called con-
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volution model, in which the deep-inelastic process is de-
scribed in terms olboth quark and explicit meson-baryon
degrees of freedom. More specifically, the scaling proper-
ty of the meson- and baryon-exchange contributions to
the inclusive cross section allows us to probe the extend-
ed mesonic structure of nucleons.

Quite naturally the pion, being by far the lightest
meson, was the first meson whose contributions to the
nucleon structure function were investigated [8]. It was

later noticed [9] that the pion cloud could be responsible
for generating an asymmetry between the Í- and d-quark
content of the proton sea, through the preferred proton
dissociation into a neutron and n+. Furthermore, deep-
inelastic scattering (DIS) data on the momentum frac-
tions carried by antiquarks were used to obtain an upper
limit on this nonperturbative pionic component [9,10].
An enhancement of d over u resulting from this process
was also postulated as one explanation for the slope of
the rapidity distribution in p-nucleus Drell-Yan produc-
tion Ill]. More recently it has been hypothesized that
this asymmetry could account for some of the apparent
discrepancy between the naive parton model prediction
for the Gottfried sum rule [12] and its recently deter-
mined experimental value [13], and indeed this has result-
ed in the greater attention that the convolution model of
lepton-nucleon scattering has received [14-21].

In a model in which the nucleon has internal meson
and baryon degrees of freedom, the physical nucleon
state in an infinite momentum frame can be expanded (in

the one-meson approximation) in a series involving bare
nucleon and two-particle meson-baryon states:

0)

inelastic scattering o[ the virtual photon from the two-
particle state lM;B ). I:r Fig. l(a) the photon interacts
with a quark or antiquark inside the exchanged meson,
while in Fig. l(b) the scattering is from a quark in the
baryon component of the physical nucleon.

According to Eq. (l), the probability to find a meson
inside a nucleon with momentum fraction y(:k'q /p'q)
is (to leading order in the coupling constant)

lN ) ,6r,:{ Z lir)0",.+ 2 [ ¿y dtk, gouuró.va(y,kr |uty,k¡);B ( I -y, -k¡))
,TB

Here, ö,ys(y,k¡) is the probability amplitude lor the
physical nucleon to be in a state consisting of a meson M
and baryon B, having transverse momenta k¡ and -k¡,
and carrying longitudinal momentum fractions y and
I -y, respectively. Z is the bare nucleon probability. Al-
though we work in the one-meson approximation, we will
include higher-order vertex corrections to the bare cou-
pling constants Sorrrr. Illustrated in Fig. I is the deep-
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(o) (b)

FIG. l. Deep-inelastic scattering lrom the virtual (a) meson

and (b) baryon components of a physical nucleon.

Iva(y\=ZBàur, I a2urlóurly,k¡)l]. This must also be

the probability to find a baryon inside a nucleon with
momentum fraction I -¡. The baryon distribution func-
tíon f sìú(y'), where y' : p''q /p.q, is probed directly
through the process in Fig. l(b), and should be related to
the mesôn distribution function by

f nn(Y):.f au(l - Y) Q)

for all y, if the above i¡terpretation is valid. We also
demand equal numbers of mesons emitted by the nucleon,
(nlur: Ià¿y fyn(y\, and virtual baryons accompany-

ing them, (n) sy: [[ay'¡urty'l'
(n)¡as:(n)su. (3)

This is just a statement of charge conservation. Momen-
tum conservation imposes the further requirement that

(y) ,r* (yl nu-- (n) ¡ae (4)

where (y) rr: I to¿y y f us\) and (y) ru
: ['ody'y'f t¡aQ'l are the average momentum fractions
carried by meson M and the virtual baryon .8, respective-
ly. Equations (3) and (4), and in fact similar relations lor
all higher moments of f (y), follow automatically lrom
Eq. (2).

In what follows we shall explicitly evaluate the func-
tions f ¡as and f sy, and examine the conditions under
which Eq. (2) is satisfred. The results will be used to cal-
culate the contributions to the nucleon structure function
from the extended mesonic structure of the nucleon,
which are expressed as convolutions of the functions / (y )

with the stnrcture fi¡nctions of the stn¡ck meson or
baryon:

ô( Fz¡ dy f ¡as(y)F2y(x /y) , (5)

dy'f ,¡1(y"lFrr(x /y') , (6)

with x: -q2/Zp.q being the Bjorken variable. Note
that Eqs. (5) and (6) are correct when physical (renormal-
ized) meson-baryon coupling constants are used in the
functions .f us and f ¡¡1 ßee Sec. IV for details). By com-
paring against the experimental structure functions, we
will ultimately test the reliability of the expansion in Eq.
(l), and in particular the relative importance of the states
involving vector mesons compared with the pion states.
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II. THE PIÓN-NUCLEON CONTRIBUTTON

A. Cova¡iant formulation

Traditionally the effects upon .Fr¡(x) of the 7r meson
cloud have been studied most intensely. The distribution
function of a virtual pion accompanied by a recoiling nu-
cleon has been calculated in a covariant framework [8.9]
AS

3g'".rn, .,,ì'", - t-tV|,*(tl
J'.xU): 

-yl 
dt---+. (7)

tbÍ' v-€ \t-m1)'
Here, f :k':f 

,1., -kl/(l -y) is the four-momentum
squared of the virtual pion, with a kinematic maximum
given by ril",: - m2r.y2 /t I -y), and kI is the pion trans-
verse momentum squared. In a covariant formulation
the form factor 7-,r. parametrizing the aN;! vertex, at

which only the pion is off-mass-shell; can only depend on
1.

Contributions from processes in which the virtual nu-
cleon (accompanied by a recoiling pion) is struck have
been calculated by several authors [18,20,221, although
not all agree. Partly because there is less phenomenologi-
cal experience with socalled sideways form factors
(where the nucleon, rather than the pion, is off-mass-
shell), some early work [23,15,17] simply defined -f ¡r,(y'l
through Eq. (2). However, this is unsatisfactory from a

theoretical point of view, and ideally we would like to
verify explicitly that the functions /o;y and f,¡o satisfy
Eq. (2).

Clearly the treatment of deep-inelastic scattering from
an interacting nucleon is considerably more involved
than that from a real nucleon, which is described by the
usual hadronic tensor

I(fi"(p,q):PP"W1¡q(p,q)*pPp"llrrn(p,q), (8)

where gPv: -g4v+q'q"/q2 and pts:pF-q+p.q/q2"
The hadronic vertex factor for the diagram of Fig. l(b) in
this case will be

Trl(l * m¡¡liy 5Q'+mNlful;Q',c)V'*m¡¡liy 51, (9)

where ùF*"(p',q ) is a matrix in Dirac space representing
the hadronic tensor for an interacting nucleon, anil is re-
lated to the hadronic tensor for real nucleons by [2a]

Wf¡"(p,q): lTrtll + mr)fufi"tp,q)) . (10)

If the struck nucleon is treated as an elementary fermion
[25] the relevanr operator in fuK"(p',q) is | /2p;.q, which
leads to [22]

ROLE OF VECTOR MESONS IN HIGH-Q2 LEPTON-NUCLEON

Y*(q ) Y*(g )

x (p\.) x (pr)

B(p')

I\i ( p)

v\tG) )

l-v

\(p) BtP )

MBI

BM)ô F z¡,

x

x

[.'
[.' f ¡u,(y' | 

: # r' I'-'r'^ o, '-! ,,' - mll

X

- m'1"-

Jzr,lt'l
(t' - mzu¡z '

(11)

where f '=p'2:r'L^^-p'I(l-l') is the four-momentum
squared of the virtual nucleon, with the upper limit no*,
given by t'-;^^: ^íy' - m2¿' /(l - y'), and p'i denotes
the nucleon's transverse momentum squared. Apart f,rom

v
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the form factors, Eqs. (7) and (ll) are clearly related by
an interchan ge y' <-rl - y.

Note that choosing a different operator form for fuf,"
may lead to unphysical results. For example, with an
operator involving .[ rather than I the trace factor in Eq.
(ll) is proportional to -m2,. Problems also arise for the
emission of scalar or vector mesons [26]. A full investiga-
tion of the off-mass-shell effects in deep-inelastic struc-
ture functions of composite objects will be the subject of a

future publication [27J.
The large-r' suppression for the Nø,fl vertex is intro-

duced by the form factor Tx* which is usually
parametrized by a monopole or dipole function

I A'n,- 
^1, l^Jyo(t'.): I - |- itt'- ' 

I A'no-t' 
I

for ¿ : I and 2, respectively. However, to satisfy Eq. (3),

the cutoff parameter r\¡y, will in general have to be

differe¡rt from the cutoff Âr¡ regulating the ¡rNN vertex
form factor in Eq. (7):

d ,.,- [ lt',n-^', l^rnN(t): t;*;l
In general a differint Â,¡ would be required to satisfy
Eq. (4), and it would not be possible to guarantee Eq. (2).

Another important assumption in the covariant convo-
lution modcl is that the dependence of the virtual meson
and baryon structure functions in Eqs- (5) and (6) on the
invariant mass squared is negligible. The argument usu-
ally made is that the vertex form factor suppresses contri-
butions from the far off-mass-shell configurations (i.e., for
lrl:lOmi tl7]). However, in this approach even the
identification of the off-shell structure functions them-
selves is not very clear. Some suggestions about how to
relate the off-shell functions to the on-shell ones were
made [28] in the context of DIS from nuclei, although
these were morc ad åoc prescriptions rather than theoret-
ical derivations. Attempts to simplify this situation were
made in Ref. [29], where it was proposed that the instant
form of dynamics, where only on-mass-shell particles are
encountered, be used to calculate the nuclear structure
functions. Along similar lines was the light-front ap-
proach of Bêrger et al. 1231. Actually these two tech-
niques are the same' if one works in the infinite momen-
tum frame. The instant form of dynamics was previously
used by Güttner et al. l3}l in the calculation of the func-
tion /"¡(y) for the case of pion electroproduction, and
more recently by Zoller [20] in the DIS of charged lep-
tons from nucleons.

B. Infinite momentum frame states

An alternative to the use of covariant Feynman dia-
grams, in the form of "old-fashioned" time-ordered per-
turbation theory in the infinite momentum frame (IMF),
was proposed some time ago by Weinberg [3 l] for scalar
particles. This was later extended by Drell, Levy, and
Yan [32] to the ø'N system in deep-inelastic scattering.
The main virtues of this approach are that off-mass-shell
ambiguities in the structure functions of virtual particles
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can be avoided, and that the meson and baryon distribu-
tion functions can be shown to satisfy Eq- (2)'exactly'

In the time-ordered theory the analogue of Fig. l(a)
will now involve two diagrams in which the ø moves for-
wards and backwards in time, Fig. 2. However, in a

frame of reference where the target nucleon is moving
fast along the z direction with longitudinal momentum
pt(- æ ), only that diagram involving a forward moving
pion gives a nonzero contribution. In tbe IMF the target
nucleon has energy

mi Ir ìPo:Pt*;-" 
lrr I

Following Weinberg [31] we write the pion'three-
momentum as

k:yp*k¡ ,

where kr'p:0, and conservation of momentum demands

that the recoil nucleon momentum be

p':( I -Y)P-kr '

Since all particles are on their mass shells the energies of
the intermediate ø and N must be

kl+m1 f r ì
ko:lylP'+ iyb: *o 

lo,, l,
t<l+mzn,

2lr- ylp r
p'o: lr - ylpL+ +o

For forward moving particles [Fig. 2(a)] y and I - y are
positive, and according to the rules of the time-ordered
perturbation theory the energy denominator appearing
in the calculation of f ,y(y) is (ps- p'o- ks)

I

,Ì

q

(o) i

k, lyl ¡

P

-9

P*

P', ll -Yl

q

p

q

å
(b)

p

k, -lYl \
',j P'

I

l+ lyl P

FIG. 2. Time-ordered diagrams for pions moving (a) for-
wards and (b) backwards in time. Time is increasing from left to
right.
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:(^'n - s oyl /2p ¡, where

s nn 
: s oy(kl,y): e[+ &o )2 - ( p' + k )2

k|+ m'z" nl+ m'zn

v l-y
is the center-of-mass energy squared of the intermediate
ølf state. Changing the variables of integration frorn d 3k

to dy and dk|, all powers of p, are seen to cancel when
combined with the appropriate vertex factors {op'sl-l
and (2k6)-2. However, for a backward moving pion

[Fig. 2(b)] y is negative, and the energy denominator be-
comes (po-p|-ks):2yp¡*O(l /p1). Therefore in the
pL-æ limit this time ordering does not contribute, and
the result of Eq. (7) is reproduced, form lacror aside.

For an interacting nucleon with z recoil, Fig. 3, the
kinematics are similar to the above, namely the nucleon
and pion move with three-momenta

P'- l'P-kr ,

k:(l -l')p*kr ,

and have energies

*l + m?.p'o:ly'lpt+ffi+o
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and qtt'v- The functions frsJ,2 are related to the on-
mass-shell structure function Wwby Eq. (10):

wrn(p,q):2(mafuo+mL¡¡fu1+p.qfu) . 04)

Then direct evaluation of the trace in Eq. (9) gives

4Qp -p' - 2^illg4"(m ¡¡fuo+ ^'nfu , 
+ p'.qfu ,)+ . . . l

:2(2p.p' 
-2m2n)g,'" w r*(p',q l* - - -

where now the exact on-shell nucleon structure function
appears, and there is no off-shell ambiguity.

For a backward moving nucleon [Fig. 3{b)] y' is nega-
tive, and 2p.p'-2mzy:-4y'pL*O(l/p¿), so that the
numerator becomes large in the p¿ .* oo limit. Technical-
ly this is due to the "badness" of the operator /s, which
mixes upper and lower components of the nucleon spi-
nors. The e nergy denominator here is
(po- p'o- ko):2y'pL+O(l /p¿1, ar¡d when squared and
combined with the I /pl îrom the integrati'on and vertex
faclors, the contribution from this diagram vanishes
when p¿ is infinite.

Therefore we need only evaluate the diagram with the
forward movíng nucleon, Fig. 3(a), which gives the result
of Eq. (l I ):

rx,u'):#[o'aoll*+-l
X

**"tk|,y'l
( l5)y'(l-y'l(m.i-rn,)' '

with sn.,( kl,y'):s,xlkl,l-y'), except that the form
factor is now unknown. It is quite natural to choose the
form factor to be a function of the center-of-mass energy
squared of the øff system, J/vr, as was done by Zoller
[20]. The only difference bctween our treatment and that
in Ref. [20] is that we follow the conventional normaliza-
tion so that the coupling constant go,r,u has its standard
value at the pole:

_ Ârr*-1020 MeV

---Â=1400MeV

00
0.0 0.2 0.4 0.6 0.8 1.0

v

FlG. 4. nÀy'distribution function for a dipole form factor and
that given in Eq. (17). The cutoffs are chosen so that
(n )"'=0.25 in both cases.
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p 2
L

kf,+ m2-ko:ll-y'lpt+fi:Vfi+o

respectively. The general structure of the tcnsor describ-
ing a nonelementary interacting nucleon can be written
AS

ful*"lp,q):gr"(fuo+1fu,+¡fur)+..., ¡3)
where we have omitted terms proportional only to pr''"

9-q
P*

tul
(o)

(b)

P', lY'l
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104i-
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i
O 2t
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k
>
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FIG. 3. Time-ordered diagrams for nucleons moving (a) for-
wards and (b) backr¡'ards in time
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Within this approach there is an explicit symmetry be-

tween the processes in which the intermediate pion and

the intermediate nucleon are struck, provided we take the
form factor in /ry as

l,y(kl,y ) : I n,l k!, | - yl (17)

Then as long as the same mass parameter 
^ 

is used in
both vertex functions, Eq. (2) is automatically satisfied.

In Fig. 4 we compare f ,¡,¡(y\ with a dipole form factor
and with the form factor in Eq. (17). In order to make
the comparison meaningful the cutoffs have been chosen
to yield the same value of (n)",u{ =0.25). With the y-
dependent form factor in Eq. (17\ f "¡¡(yl 

is a little
broader and peaks at around y :0.3, compared with
y =O-2 for the covariant lormulation with a dipole form
factor. ConsequentlY.the convolution of /o¡(y) with Fro

for the y-dependent form factor will have a slightly small-
er peak and extend to marginally larger x. This is evident
in Fig. 5, where we show the calculated SU(2) antiquark
contribution to
empirical data at Qz

6{rrv I Fzp

-4
(x), compared with some recent

GeV2

where

k, ll -y'l

FIG. 6. Timc-ordered diagrams for the DIS from (a) vector

mesons and þ) nucleons with recoil vector mesons, that are

nonzero in thc IMF.

III. VECTOR MLSON CONTENT
OFTHENUCLEON

In this s€ction we extend the convolution model
analysis to the vector-meson sector. Our approacb is

similar to that describcd in Sec. II B, namely we use

time-ordered perturbation theory to evaluate those dia-
grams which are nonzero in the IMF. Previous calcula-
tions [18,19] of the vector-meson contributions were
made in a covariant framework, but with the assumption
that the vector-meson and nucleon intermediate states

were on-mass-shell. In our approach we self-consistently
calculate both the contribution from a struck vector
meson [Fig. 6(a)] and from a struck nucleon with a

vector-meson recoil [Fig. 6(b)], and show explicitly that
the distribution functions for these obey the relation in
Eq. (2) exactly.

Starting from the effective ZNN interaction (see, e.g.,

Ref. [2]), where V:p or ø, we write in full the vector-
meson contribution (with a nucleon recoil) to the nucleon
hadronic tensor:

l¡¡"&l,y' ):exp 06)

ttvNtwt u(p,q¡:r, [ 
"F#ø¡ |

s2vruu A"u* 
#Boa*snr* o*,*l#ffi,ï'0(k,q), (I8)

A 
"p: 

2( m,2, - p. p' )g oF *2p ¿b l2p'¿ p,
B 

"p 
:,t[( m', 

^'* - zp' k p'' k + 
^'n 

p' p' )g ø - ( ml * p' p' )k ok p

- mzv( p 
"p'ß 

* p Bp o) I p'' k ( p,k p t p pk o) * p' k ( p'"k B 
+ p þk ")1,

c*:2(p'k - p"klgoF-(p,kB*' p pko)*þ',k pr p's\< "l

09)
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(23)

are the YNN vettex trace factors for the vector, tensor, and vector-tensor interference couplings, respectively. The iso-
spin factor cv is êqual to 3 and I for isovector and isoscalar mesons, respectively. For an on-mass-shell vector meson,
the spin-l tensor lltsuoþ, symmetric under the interchange of p"*v and q.èp,is given by

Lyþ""q1k,q): l¡r' Ly t u( k,q) + È,t'F.'Ht 2y( k,q)l1"s . (2o)

This form guarantees that the vector current is conserved, ko,uil/uuoï:o:qp,"¡ywa|. Furthermore, it reproduces the
correct unpolarized on-shell spin-l tensor when contracted wii-h the meson pófarization vectors (eo,p) and summed over
the I/helicity, À [33]:

w ff" ( k, q I : )eiÀ,, k ) e p( )., k ) ví/ l,oB ( k, q ) : 
[-, *. + J, 

l"'o t O, n I

e gþ"w1y(k,¡+F.t'E"wry(k,q) . l¿ll

In the case of DIS from a vector particle emitted by a nucleon, Fig. 6(a), contracting the spin-l tensor yyuta| with thezÀ'N vertex trace factors in Eq. 09), and equating coefficients olgp-" givei

6']'\'w,*{p,q):ct,/ .^ '.,1lu , ' I
t2rlttZp'u X 2ko )r 

I

i

_6^.rr* 4p-k p'.k r2p.p
2
zt.\

[ -r^1,¡ lP'k P''* - ^"P'P' I

lm2"mlj
ó t ,\.\

mi. 2

,, 
u g v.vrf v.:v¡;[p .

Using the IMF kinematics (which are similar to those for the nN system, except that m ,-ñy), together with the
Callan-Gross relation for the nucleon ancl vector meson, enables the contribution io Frn from vector mesons to be writ-
tenasaconvolutionof thevector-mesondistributionfunction lr¡rU\withtheon-qhelivector-mesonstructurefunction
Frr.(x /yl, as in Eq. (5), where nou'

rvuu):fr[,-ooi{r,r"" t .Ël\-r^;]
Iki+ y,m2N + mT]tkl--ryr^fl +l -y)zm2r)+.f 2r.r.,

* 39 rv...f 
".r,.,

zyztt - ylmþ

kl+y2m2N-l-ylm2v
l-y

The VNN form factor is defined analogously to Eq. 07),

7 yy(kl-,y):exp
ml - tr¡,

^2
and the Zi{center-of-mass energy squared is

Q4)

srn:syu(kj.,rr: 
ul*,..^I * oi,* 

li . (25)y l-y
Suppression of backward moving vector mesons is achieved in the IMF by the energy denominators, as for pions. The
vector-meson structure function F.r, is not known experimentally, so in our numerical calculation, *. 

"rru,,.'e 
that its x

dependence resembles that of the z meson structure lunction, which has been determined experimentally [34].For the vector-meson recoil process, Fig.6(b), we evaluate the distribution function .fir¡') usin! ifr.-fuU spinor
strucrure of ful' in Eq. il3):

6'nn'W r.r(p,q):c,, f d'P' I r
v J e,)\ñ(2fr0) ls;',, 

n"u* #ïBo.t,vx¡ #L"tl
72r,t t<l,y') 

^x)ej{ i,.k)ep(À.k),^---_,,,r (2mnl1/o+2m.\¡¡fu, rZp'-qfurl,
i. \po-po-ko). Q6)
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tkl+l - y')zml¡ + mzvltkl+(r- y')zmz¡¡ + y',^,r) m'zr1*l+ tt + y')zmþl

2y'(l-y')2m2¡¡ 4y'^'n
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-m)

Q7\

where the tensors A, B,anð, Care as in Eq. (19). Performing the contractions over the indices a,p leads to the convo-
lution integral of Eq. (6), with the nucleon distribution function with a vector-meson recoil given by

rx,(y'):f, ;o-o0,,fr,,r,I .Ê:YYL-o..i 
I

+.fl¡tN

i 38vxNf nyx

and where syy(kl,y'):sy¡¡(k]-,1 -y'). Again, we have
evaluated only the diagram with forward moving nu-
cleons which is nonzero in the IMF. It is clear therefore
from Eqs. (23) and (27) that the probability distributions
for the l/N intermediate states are related by
I xv(y'l:.f ,u(l - y').

Our numerical results, which are discussed below, rely
upon the physical vector-meson-nucleon coupling con-
stants whose values are taken at the poles, as

ob of ¡N scattering data:

ti_ : ó. I [35], and gz,xn /+r

TV. RBSULTS AND DISCUSSION

Figure 7 shows the meson distribution functions /"¡,
f ox, aîd, /o¡ (scaled by a factor ]) for the same vertex
cutoff parameter Â ( : 1.4 GeV). Thc vector-meson com-
ponent will only be relevant when very hard form factors
are employed. To make this point more explicit, we plot
in Fig. 8 the average multiplicities (n ) yy and (n )o¡ as
a function of /r. The dependence on À is much stronger
for thep than for ø'mesons. For 

^51.4 
GeV, (n )p¡, is

considerably smaller than (n )orn, and it is only'with
much larger cutoffs (^ Z 1.8 GeV) that the p multiplicity
becomes comparable with that of the r¡. Note that
Â:( 1000, 1,100, 1800) MeV corresponds to a dipole
Âo,v=(650, 1020, l4l0) MeV for the same (r),n.

One should observe that the trace factor inside the
braces in f yy(y) is divergent in the limit y*9, so that
use of a form lactor c< expþ(mþ-Jy,v)], which corre-
sponds to a r-dependent covariant form factor
explt - m2r), would make ô( 

vvtFrnlx) approach a finite
value as ¡ *0, much like for a perturbative sea distribu-
tion. However, there are several problems with accepting
such a result, the most obvious of which is that it would
violate charge and momentum conservation very badly,
since f yy(y')-0 for y'-l and +const as Jr'+0 for a

form factor -expþ'(mi-s¡r)1, which in the covariant
formalism corresponds to exp[r'-m]]. Furtnermore, it
would lead to a gross violation of the Adlcr sum rule,
which integrates the flavor combination u-u-d*d,
and. such a violation has not been observed in the range
l<'Qt<40 GeV2 [37]. This gives further evidence for
the preference of the IMF approach together with the
form factor in Eq. (24). Note, however, that because the
baryon recoil contributioás to the quark and antiquark
distributions are related by

6{MBtr(x):ô(M¡)ã(x) ,

ô(Mr)d(x ): ôtMBtu(xl

the divergent contributions would cancel for the
Gottfried (which depends on the combination
u *l -d -d'l and Gross-Llewellyn-Smith (u -û

(28)

0.20

0- l5

Â= l.4GeV

zrN/3

-pNC,'Nà
z O.lO

0.05

0.00
0.0 0.2 0.4 0.6 0. B I .0

FIG. 7. Meson distribution funcrions f ,¡¡(yl, f .¡t(yl, and
f ,n(y), for Â:1.4 GeV. Note the pion distribution is scaled by
a factor of |.

FIG. 8. Average number densities for the ø, p, and a mesons

in a nucleon, as a function ol the meson-nucleon form factor
cutoff.
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+d -d ) sum rules.
In previous studies [9,10] restrictions have been ob-

taincd on the magnitude of the form factor cutoffs by

comparing (ylun with the measured momentum frac-

tions carried by the antiquarks. Even more stringent

constraints can be achieved by also demanding that the

shapc of the meson-exchange contributions to Ç(x),

3801

the recoil particles' momenta these yield the inclusive
DIS cross sections, which are proportional to the total
quark (and antiquark) distributions

q(xl:Zqru.(x)*)[ô(Mttq(x)*ô(BM)g(x)] . (30)

M8

Therefore ôq(x) and the convolution integrals in Eqs' (5)'

(6), and (29) are expressed in terms of renormalized cou-

pling constants contained in the functions /(y). From
Eq. (30) we also determine the bare nucleon probability

Z:r-)(nl yo (3t)
MD

by demanding that the valence number and momentum
sum rules are satisfied. We emphasize that all quantities
in Eqs. (30) and (31) are evaluated using renormalized

coupling constants.
rily'e could, of course, choose to worf at a given order in

the bare coupling constant, and explicitly verify that the

various sum rules are satisfied. For example, to lowest

order (gl ) the total quark distributions would be [39]
( ,,.^. ì

q( x\ : Z 
.| ç0.,.(t ) + ) [ 6{MBre1e,(x ) * ô(8M)q,s'(x ) ] [ìt'l

(order gfr ) (32)

with

z:

ROLE OF VECTOR MESONS IN HIGH-C2 LEPTON-NUCLEON '

(29)

bc consistent with the shape of the experimental anti-
quark distribution [10,16]. Figure 9 shows the calculated
antiquark distributions from the t7 component of the nu-

cleon alone and from the pion plus veclor-meson struc-
ture of the nucleon, for Â:1.2 and 1.4 GeV. Clearly the

SU(2) g content of the nucleon (as paramelrized by

Owens, Morfin and Tung, Eichten et al., and Diemoz
et al. [38]) is saturated for ll^=1.2 GeV in the

intermediate-x region. For the a'NN vertex this corre-
sponds to a dipole form factor cutoff Âo¡r=830 MeV-
considerably smaller than that used by many authors.
We can conclude therefore that for the range of form fac-

tor cutoffs allowed by thç data, vector mesons play only a
marginal role in the DIS process. The maximum value of
Â would have to be even smaller with the inclusion of øA

states in the nucleon, as it has been shown previously

[15-18] that these give non-negligible contributions to
the nucleon structure function. The zA states would aìso

be of relevance to the calculated d -F difference (and to
the Gottfried sum rule) resulting from DIS from the nN
and plV components, which will be partly canceled by this
contribution.

At this point we would like to clarify an issue that has

been the cause of some confusion recently in the litera-
ture. The meson- and baryon-exchange diagrams in Fig.
I describe physical processes (inclusive baryon and meson

leptoproduction) whose cross sections involve physical
(renormalized) coupling constants. When integrated over

0.15

Q2 =4Gev2

õtn'tltÐ: [ ,'lf uoU)qu(x /Ð ,

-l
(33)

MD

where the subscript (0) indicates that the functions /(y)
here are evaluated using bare couplings. Equations (30)

and (31) are easily recovered since the bare couplings, to
this order, are defined by g8:s!.,/Z- lt would, howev-

er, be inconsistent to use Eqs. (32) and (33) with renor-
malized coupling constants, especially with large form
factoi cutoffs. As long as the form factors are soft, the

difference between the bare and renormalized couplings is
quite small. However, with large cutoff masses the bare

couplings would need to be substantially bigger than the
physical ones. (In fact, the form factor cutoffdependence
of the bare ølÍ coupling constant in the cloudy bag model

[,lO] showed some 4OVo difference for very hard form
factors-or small bag radii, -0.6 fm.) In addition, with
Iarge values of À, the higher-order diagrams involving
more than one meson in the intermediate state would be-

come non-negligible, and the initial assumption that the

series in Eq. (l) can be truncated at the one-meson level

would be seriously in doubt. Fortunately, we need not
consider the multiple-meson contributions, since Fig. 9

clearly demonstrates the difficulty in reconciling the

empirical data with quark distributions calculated with
such large cutoffs.

Finally, we make some additional comments regarding
this justification of our calculation in terms of an in-
coherent summation of cross sections for the various
meson-exchange processes. Because of the pseudoscalar
(or pseudovector) nature of the ø-l{N vertex, there is no

interference between tr meson and vector-meson ex-

change. Furthermore, there will be no mixing betwee¡r

l+>(nrc¡)un (order gfr ) ,

I
l
I

I

I

1

l
-.'j5

- 

n, p, c)

-- n onlY
0.10

N d ata
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+
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x

0.00
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FIG. 9. Proton SU(2) antiquark distributions, calculated wilh

r and r*p*ar components in the nucleon. The lower (upper)

solid and dashed curves correspond to Â:1.2 (1-4) GeV' The

data are from Ref. [38].
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the ¿¡ and p exchange configurations due to their different
isospins. In fact, all of the processes considered in this
analysis can be added incoherently. The question
remains, however, whether it will be possible to identify
an explicit vector-meson contribution to Fr"(x) in an
unambiguous way in deep-inelastic scattering experi-
ments. While it may be feasible to search for one-pion
exchange by observing the distribution of the produced
low-momentum baryon spectrum [41], because of the
smaller absolute vector-meson cross section it will be
difficult to separate this component from both the pertur-
bative background and from that due to other mesons.
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We derive the general structu¡e of the hadronic t,ensor required to describc deepinelastic scatter-
ing from an ofr-shell nucleon within a covariant formalisrn. Of the large nurnber of possible ofl-shell
structure functions we find that only four contribut,e in the Bjorken limit. In our approach the usu¿rl
a"mbiguities which are encountered when discussing problems related to of[-shellness in deepin<:la-sl,ic
scattering are not present. The formula.tion therefore provides a clear framervork within which one
can discuss the various approximations and assumptions which have beerr usecl i1 earìier wo¡k. ¡\s
examples, we investigate scattering ftom the deuteron, nuclea¡ matter and clressecl nucleorrs. 'lhe
results of the full calculation are compared with those where various aspects of the of[-shell structrrre
are neglected, a-s well as rvith those of the convolution model.

PACS numbers: 13.60.Hb, 12.38.Lg, 2S.J0.Fj

I. INTRODUCTION

The gen-eral structure of the hadronic tensor relevant to deep-inelastic scattering (DIS) frorn an or-m¿ìss-slìell
par.ticle (pz = M2) which transforms cortectly under proper Lorentz transforrnatio.rrl th" párity trarrs[ormation irncl
which is gauge invariant is well known. In the Bjorken li nit the two possible stmcture functions collapse to onc, so
that, in the case of one flavour, deep-inelastic scaùtering may be expressed in terms of just on. quu.k distribut,ion
which is a function of only one variable. (All these statements refer to spin independent scattering, to which we
restrict ourselves throughout this paper.)

The situation is considerably more complex if one is considering, in a covariant formulation, DIS from an off-
mass-shell (p' -* ¡ø") hadronic constituenL within a composite target. This situation arises, for example, irr many
calculations relevant to the EMC effect, where an off-shell nucleon contained in a nucleus interacts with a hiih .rr,,.gy

:om a nucleon dressed by a meson cloud. Indeed, bec:ruse

ìi nïJ:,ïÌi.î,li:,i;ff iii.Tli ;T:'å:fi: ï1,ï:î
a one-dimensional convolurion berween a consrir,,"ot 1.,.rïå;î,llii1Ï:'ï:åìÏ'Ïldå'ln""tilf;:,T"ä'Ïi:î"i
distribution within the constituent [1].

We shall consider scattering from an off-mass-shell nucleon without making these approximations. The purpose
is to develop a theoretical framework which is exact, thus keeping the model-dlp"ndeni approximations to u, lut" ,
stage as possible. It is important to realise that the change in the structure of the off-sh"lí t".rro. is by no means a
trivial matter. There are several distinct diferences from lhe on-shell tensor:

I Most obviously, the dependence on the four-momentum squared of the nucleon is no longer trivial, as it
is in the ca,se where the target is on-shell.

II In a covariant formalism the off-shell fermion tensor is a 4x4 matrix in the external fermion legs. This
corresponds to the fact that in a relativistic theory it is necessary to consistently incorporate the antiparticle
degreès of freedom. Because of this matrix structure the tensor involves, at llast in principle, -ury ¡no."
independent functions than in the on-shell case.

'Address after 1 September 199 : Institut für Theoretische Physik, Universität Regensburg, D-9J040 Regensburg, Germany.
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III Because the incoming particles are off-mass-shell ihe gauge invariance condition for this tensor is not the

same as in the on-shell case'

To slrow this tast point, consider the truncated forrvard virtrial Compton amplitude' îur(p,q), which satisfies the

well-known generalised Ward identity [2]

qp îu,(p,q)=-r{s-t(p)s(p+q)f,(p+(t'p) - r,(p,p-q)s(p-q)s-t(p)}, (1)

where f r(p*q,p) is the 1,NN vertex function and,9(p) is the fermion propagator' For an on-shell nucleon' the full

Cornpton amplitucle is

Tr,(p, q1 = n1fl?,''tt(n) (2)

so that inserting Eq.(1) into Bq'(2), and using the Dira¡: t:t¡ttation' lcads to

rlt'T,,,(P,r¡) = 0' (3)

Note that the same eqrration does not hold lor the off-shell trìrìsor ir, çi". thc right hantl sicle ol Et1.(1) is non-zero)

- even for the case whcre the targeb is a free llointlikc ft,'¡nriorr'

Although in calc'lat,ions of nuclear structure lunc[ions t,he o[l-shell aspt-'cts of [hr: ntrclt:olt s[rttcIure function have

'sually 
been ignorecl, a lerv partial atteurpls have been rnadc to try to accouttt lor these eflìrcts unfort'unately, these

calculations are not ì"itn."i ambiguities [3,4]. Iiusno a.cl ]loravcsik [5] userl lhe so-ciLllecl 'ofÏ-shell kinematics -
herisor is evaluated at the sarne energy transler ¡u aucl four-

t,he virLuality of the nucleon. Ilodek and Ritchie [6] used

I structure lunctio¡ts could bc irlentified with the on-shell

etrergy squared s = (P { q)2, arrd he

las [7] , on the otltcr hand, rrsed ¿ru

ro<ltrct e-x¡llrttsicltt u't'te a'sstttlt':tl to Ll

' evalrr¿t,r:{ at ¿r shifì.t:tl valrrc ol ,12(-

is the q? rescaling parameber). This result was mathenrltically equivalent^to lh,: tlynarrrir:¿t[ rescaling model of Close,

ãou".t, and RosJþ] o.ra Nr.htmr.rn and pirner [g] , in rvhrch the shift iu qr rv;x ¿rtt,ributetl to a change in confinetilent

radius for nucleons bound inside a nucleus'

A¡ of the above treatments use, in one form or other, bhe familiar convolution flor'rula [l], rvhich amounts to

constituent with the cotrstituent momenium distribution in

t blre form of t,he olf-shell nrrclcon bensor (i.e. the structtrre

]. Ilorvever, as we sltow in Scctions II alld III, more than

rto a priori reasolì for this lc¡ be a valid assumption' The

onnccle<ì with the aDtiparticlc degrees of freedom arising

in doubt. In short, the naive convolution formula is not a sound starting point for discussing off-shell effects and we

make no use of it.
There exist all,er'¿r[ive approaches to thcsc just describccì rvhich clo not suffer from off-mass-shell ambiguities' For

l,¡e 
'uclear 

EMC "ft'J;, 
B;;g". et al. [14] used light-front dynamics to calculate the nuclear structure functions' Here

ancl the light-cone variable P+ : Po * pr arc conserved at

>hnson and Speth [3] and Heller and Thomas [4] used old-

amics, where particles are on-mass-shell, three-moment'um
boih of these approaches, the off-mass-shell ambiguities in

ly replaced by off-energy-shell ambiguities [15]' A review of

some of the problems with these approaches may be founcl in Refs. [16,17].

The advantage of the covariant method in nuclear calcula',,ions is that Loieritz invariance is manifest. I{owever'

for a consistent treatment within this framework one has to include the antiparticle degrees of freedom, which has

not been done up to now- we will set up the formalism in such a way that the structure functions of the physical

target ,." ""p."rr"d 
in terms of fully r"luiiuisti. quark-nucleon and'ucleon-target vertex functions. This will enable

us to ensure gauge invariance, the Callan-Gross relation and an unambiguous identificaiion of the scaling variables'
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All model approximations will be contained entirely in the vertex functions themselves, which, of course, we cannot
calculate from first principles.

This paper is organised as follows: In Section II we define the general structure of the oÊshell tensor in terms of a
suitable set ofstructure functions. In Section III we explicitly calculate the scaling properties ofthese functions. As we
shall see, only 4 of 22 possible functions contribute in the Bjorken limit. In Secti,on IV we discuss how our formalism
can be used to calculate structure functions of composite particles and discuss the limits in which the conventional
convolution model may be obtained. In Section V we use some sirnple parameterisations of the relativistic vertex
functions to calculate the nucleon valence quark distributions. Using these same vertex functions we then calculate
in Section VI the structure functions of composite targets containing ofËshell nucleons.

II. GENERAL STRUCTURE OF THE OFF-SHELL NUCLEON TENSOR-

The process in which we are inte¡ested is depicted in Fig.1, with the photon momentumq and the off-shell nucleon
rnomentump marked. The conesponding off-shell tensor Xpy with the co¡rect transformation properties under proper
Lorentz and parity transformations is a 4x4 matrix depending on p and q, and may in general be wribten in terms of
22 firnctions:

Xp,(p,Q) = xo,,,(p,q) + I xL,@,q) + I xzr,(p,q) -l ^tttp,] x3(p,q) * t{pq,} x4(p,rt)
+ ooþp"rr'J xl,,(p,q) * oo{p p,}po x6(p,tl) t oolt, nr¡a' x7(n,l)

on1, r¡,t,¡to y8(p, q) * aolp q,jq" xe(p,(ù, (4)

wlre¡e the braces {...} arourrd tlrt: srtbscripts indicate the syrnmetric ¡ru combination. Here, ytrr(p, q) are the most
general tensors o[ rank two rvhiclr rrra-v be constnrcted out of q and p,

x'p,(p,q) = Pt't,,(p,q) xl(p,q) * Prp,(p,q) xL(p,q)

¡ Pqr,(p,,t) xþ(n,q) * Pqr,¡,,@,,ù x'qÁn,ù, i:0,r,2,5.
Tlre¡"sontherighthandsideoilìq.(5),aswell æX3,X4 and¡6--¡einDq.(4),arescalarfunctionsof qandp
tensors PP' are defined by

P4'@, 11) - ¡r" + P+,
p'

Pä'(p,,t) = {+,
-q-

where !r, : -9t,u * qpq,/q2 and ã, - ap Qp a.q/q2, with a, being any four-vector.
The above decomposition of the off-shell tensor is of course not unique. It is written in this convenient form because

the tensors Ppv ttrn out to be projection operators [11] and satisfy
'Pl'(p,q) 

Prt,(p,q) = 2, Pï,"(p,q) Ptt,,(p,g) : 1,

r$'@,q) Pqp,(p,s) = 1, PäL@,q) Pqr.p,(p,q) = -2, (T)

with alÌ other combinations vanishing. It is important to note that in the Bjorken limit these relations are also true
for projectors involving different rnomenta. That is, the projectors are still orthogonal in this limit and

P#'(Pr,q) Prp,(Pz,q) = 2 etc. (s)

.In general, Fig.l is a subdiagram of Fig.2, where P is the on-shell momentum of the composite target (tabelted
,4)' As will be discussed more fully in Sections IV and V, the hadron tensor for the complei" pro."r{ Wî,(p,q),
involves an integral over the nucleon momentump of the tensor Xp,(p,q), traced with anothår 4xi matri* *igii"iilg
in the soft target-constituent part of the diagram.. Hence tto "*p".i-.nt measures the ofl-shell tensor b"y itsef,
so it is not possible to measure all the functions Xi separately. Only combinations thereof give rise to observable
experimental quantities. Using the above projectors, we can determine which combinations of off-shell structure
functions contribute to the physical ones. In particular, the operators pfi'(p,q),pl'(p,q),p$,(p,q) and e6;çi,ø)
project from the composite target tensor wf;,(P,q) the transverse, longitudinal and the two possible guni".rorr-
invariant contributions, respectively, in terms of the scalar functions xt(p,q).

Pl,' (p, q) =
øt'p'

p2

(5)

The

(6)PgL@,t)
I

(puq' + ñ'qP) ,

-q2ñ2

.)



Not all of the functions ¡i will in fact be independent, as the gauge invariance of the theory requires that the latter

two contributions vanish. Èurthermore, the longitudinal function must also be zero in the Bjorken limit (P 'q, Q2 =
-q2 - æ, t : e2 /2p. q fixed), if the Callan-Gross relation is to be satisfied. That this is indeed the case is shown

"*pti.itty 
in the Àppendix. For the remaining physical (transverse) contribution we obtain for the coefficients of the

I t--xs.
.l

'rr''(r,q) xt,,(p,q) = xl@,ù + ú xTþ,ù + I xT@,e) * oopp"qp xl@,s)

(p - aP)' lxo"(p,q) + ú xL@,q) -f I x't(p,q) + oopP"qB xu"(p,q) l

p - aPz) ø] x'(r' a)

o")o,uro ro(¡,,,¡) + þ" - uP')ooBqþ x7(p, q) ,

r+fi(r
P'(p-aP)

(e)

Pq

r'lrcre r¡ = p.qlP .q = p+lP+ is I,hr: consbitucnt's light-cortc tìlouì(-'tìtutn fraction. In thc nexl Section we cìerive

tl," r.ji,rg beliaviour ol thå hinct,ions ltusing the parlon nl<;<lt:1, lry scparat,iug the hard, q2 deptrnclent, part of

tlre tr'nc¿ited amplitu¿e xt,r(p,q) lronr the so[t, non-pert,urb:rl,ivt: cornponent. We rviìl see that f']q.(9) simplifies

consiclerzrbly, as ntatìy terms rlo not conl,ribut,c in Iltc Bjorken lir¡it.
r\ speciaic¿xe of the abovc lornralism is DIS from an on-shell rìu(:l(ron, dt:scribed by the tensor rvhich we denote by

fVX,(i,q). In this case the contribution to the nucleon tensor is givr'n by Eq.(9) traced with (l + ùl)12,wheteP=p
ond no integration ovú p is perforlne<l:

^,t 
w'\,(p,q;p2 : 

^Ê) 
= I'rrU r+ .t/ ) i,,,(p,'1)l . (10)

This givcs lhe lransve¡se rr¡poltrrisecl on-shell strr¡ctrrrc frrn<:tions irr lcntrs ol the on-shell lirnirs ol tlre hrnctions ¡t
(id(p',1) =xi(P,q;P2 = ÌvI2)):

T*f ro,ù = tú xî@,q) ¡ ,1r2 rl'(¿,,/) -r p'q ñî(p,q) (11)

Simila¡ expressions can also be founrl for the other functions (i.c. longitudinal and non gauge-invariant), but again

these vanish in the Bjorken limit.

III. SCALING BEHAVIOUR OF THE OI.F-SHELL FUNCTIONS X

We shall now calculate the leading bwist contribution to the off-sliell stmcture functions in the quark-parton model.
'Ihis is given by the imaginary part of the forward scattering amplitude depicted in Fig.3, i'e.

lxu,(p,q)]o¿ = r'lru,(k,q)l"olrI(k,p)l¿"oo (12)

where 7 is the integral operator

t -- I *+ht[t+ n12 -,,,') (r3)

ancl the Dirac matrix structure has been made explicit. (The complete forward scattering amplitude in addition

contains the crossed photon diagram, which we do not explicitly take into account. All the formal resulbs of Sections

I to IV remain valid upon inclusion of this diagram. Numerically, it can make a small contributiorr in the small ø

region, however in theìubsequent model calculation in which we consider only two-quark intermediate states there

will ¡e no contribution.) In Eq.(13) k is the parton's four-momentum and rn its (current) mass. In the following we

will drop quark mass terrns as lhe difference between the rr¿ = 0 results and those for nz ^- lêw MeV is negligible.

(We shall return to the question of quark masses in Section V.) The non-perturbative part of the structure function
iì contained in the function 11, while the perturbative, calculable part is contained inrpr,

rr,(lc,q)= k'(qogr,- (ku+qrr) l,Jo)7" + þ(f sp,+4ktk,-12k1¡,a,¡) ' (14)
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The trace over the indices c, d in Eq.(12) may be performed and the results written as

Trlr¡,,[H)"a] = lk' (8,Qu, - Ør, + c{/,) 9,},) * ko (q'su, + 4kttlcv +2k{t q,})llG"(p,k)l¿¡. (15)

As Go is a 4x4 matrix which transforms like a vector and must be even under parity transformations, its most general
form is

G" = (po h + k" fz)r i (p" l" + k' Ís) þ + @ fn+ fr""f6) ú + f fz
+ oþ"pp fB + cþ"kp fg + f k6opa po -frc + f kõaBa lro Ítt, (16)

where the functions /¡ are scalar functions ofp and È.
The integrals over ,t can be done in a standard way. For example, for an integrand containing one free ko, contractingwith po and qo enables us to rnake the replacement

r . ko -r .{pt p' * pz q'} (12)

Similarly for k"kþ terms,

T.kokþ -I.

and for k" kP l¿ terms,

r.k"kp þ-T
lPt

i.ptt-q rgf@,ù ( 18)
-q2 ø2

( 1e)

(22a)

{n 
ei' 0,. q) + p2 p? P|P @, q) + þ{ egP @, t)

e' (orat" ¡ rrot') roj + p"(p, ú+ p' {) Piþ@,q)

h + p2p\)lo - -¡ t]* ffø'r, il) e;oçr,o¡

{

(r ,2

(k.u\
+ ï (k qø ú + ¡n . apz * 2psl ,l) PöP (e, q)

# (to o* + þ2p?l ú+þ'n,Ø, + k. qpz) - e q-: q 

e,] Ò raf,*,r\,

lvhere

i, .ø
Pt = --=;

p'
k'q p'qk'p

p2 = -;- - ------;---:;- (20)q" p"

,"=T?i,,*ø,n?).
The a"s are then completely defined in terms of the the photonmomentum q is now explicit, tleir scaling be nd tirat X$

3_"d Xä a¡e of order 1, while all other ¡gi's-ar€ o rd,er If v2.Hence we find that deep-inelastic scattering fr r functions,
1

ir#'(r,q) xp,(p,ù =xl@,q) + þ xlr@,q) + I xT@,q) t oopp"qp xî(p,q). (2r)

The complete expressions for the functions y!, are

=r {- (k'p-q+ q'k'p) rt&,p) - ffr,ø,rl}
:r . 

{- (k'p q + q'k .n) (r"@,ù - ffinr*,ol)
-ry(r.{*,o) -*ou,r)) + finrr,rtl

0
TX q)(p,

xI@,q

5

(22b)



xT(p,q) =r (#,+r r) (þ'. ++)rz(k,p)*
- tt' fr(k,p)\

q'
2p' q ln' fr@,ù+z fzUc,p)l

xT@,q):' {-(#*o ,) (f1rxr,ø*l ,, P'kq2,c +- ]r',ir, ø+ ffin(È,p))p

(22c)

(22d)+k2 f¿(k, p)
q.'

fs(n 
' 
P¡2p'q

q

For the other ¡'s it can be easily demonstrated (see the Appendix for details) thab for each of the arbitrary frnctions

/¿, there ar".*ncellations at leading order in v in the expressions lor Pl'(P,q)xp,(p,q), Pä'(P,q)xt,,(p,q) and

p|'r(p,q)Xur(p,q) in the Bjorken limit. Hence the Callan-Gross reìation, a^s well as gauge invariance (q"Wî,:0),

"riïr"i",1, independent of the nabure of the target-constituent part of the diagrarn. This resulI is conrpletely gr:nccal,

so that model clependent approximations for the vertex functions do not aflect these ¡r:sults.

IV. CONVOLUTION MODEL

Before we move on to making model dependent assumptions tbr the vertex ftttrctions, we need to rvrile do*'rr tlte

on-shell tensor Wlr(p,q) for the target,4 in terms of the ofl-shell tensor yp,(p,rl). 'I'he full tenso¡ for rhe c.orrtposit,e

target is given by

M7 wf;,(P,q) =
216 lP - pl'- Mir)

)'
r. 

[ 
(ra, 1e, 

p) + n Aî (p, P) + o, p Aîþ (p,p)) x,, þ, ù], (23)I (p'
dnp

aæ
rvhere 46,,41 and A2 are functions describing tbe target-constituent part olthe conrplete diagrarll in Irig.2,;rrrtl ;1'/¡

an¿ M¡¡ are the masses of the target and target recoil systems, res¡rectively. lrlplicit in the lunctions .'10 - .13 is a

sum over all excited target recoil sta[es, or equivalently an inbegration ove¡ the masses tVf¿ wcighted by sorrrt-r Larget

recoil spectral function.
For rnost vertices only Ae and .41 will contribute, while ,42 will arise typically aæ an interference ternt rvl¡c:tt lrtorc

than one type of vertex is used. Using the transverse projecbion operator defined in Eq.(6), we get

Mr w\(P,,1): Yoi'(r,q) wî,(P,q)

= i ,= ,",.00 
or'roî 

.roru {,qo,.,P) xî@,q) + p' Ar(p,P) xï@,q) + q' Ar(p,P) xîþ,'t)- J Qr)3(r - a)(P2 - tvtt )'
* (p, qp - pp rtàAî" (p,'P) xù@,,ù\ , Q4)

rvherep2 =p+p--pT, p+=UP+,andrvehaveusedtheófunctiontofix p-=Mr + (Mh.- pT)l(p++I'!'t-)
The convoiution módei may only be derived from Eq.(24) if we make sorrte acldibit-rrral assumptiotrs. First o[ all, we

need to assume that the target structure function can be written in factorised form, in terms of the nucleon structure
function, W{, and some nucleon distribution function, rp:

w\þ,Q\= I * I d2pr s(Ao,At,Az) WiY(xly,8',,pr). (25)

Furthermore, to obtain the usual one-dimensional convolution formula [1,11] lve must assume that W{ is indepentlent

of p7 (or equivalently p2):

w\@,A\= ldvþ@) 
w{(,ly,e'), (26)

where now the integral over p? has been absorbed into the definition of þ.
There are several ways in which the first assumption might be valid:
CASE (a): If all but one of the functions Xï (i - 0 - 2,5) are zero in the Bjorken limit. Most authors (see for

example È"tr. ¡t,tO,tl]) adopt this choice, *ìtri. is the case for a pointlike fermion (where only yþ contributes).

Howeìer, u. *.r shown in Section III, all four functions Xþ in principle contribute in ihe Bjorken limit, so that one
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nish or cancel.,We know of no reason why this should be
on vertex functions which we consider in the next section

uü the non-zero ones are proportional to each other. For
imply.¡$ = MXI, and so Eq.(2b) is obtainecl. Again, in
behaviour.
o - Az multiplying the functions ¡þ are proportional to

iï:i;'':ïg'! î;, ;;^i,Ji#1,*,ox,i:,yJi,,;:¿
In short, none ofthe above conditions are generally satisfiecl in aself-consistent, fully covariant (relabivistic) calcula-tion' consequently the convolution model interpretation, Eq.(26), of the nuclea. ,t.nãtrr." function i' terms of boundnucleon structure functions is inconsistent within this for ¿

o[ antinucleon degrees of freedom, which are not account
e convolution mode
d. Indeed, the very
d to consider quark

vertex functions, the exact resurt with those obtained by
his we rvill do in the next Section. As;r final comment,
made by the use of the model in the first place (i.e. no
of the physical target, and depenrì only on the àucleon

;{2) the relative contribut,ions frorn the [unct,ions ¡i,arget-constituent functions /s _ A2 sufficiently welî.
they may be used for all other processes.

V. CALCULATION OF THE NUCLEON STRUCTURE FUNCTION

lo calculate the transverse structure function of the cornplete target requires two sets of functio's clescribing thesoft, non-perturbative physics, namely the quark-nu.leon functiois h - ftt, an¿ the nucleon-[arget-functions
Ao - Az. Here we concentrate on the former set.

lVe observe that because both the constituent nucleon and struck quark jnside the nucleon have spin If2, theintermediate spectator state will have either spin 0 or 1. In order to make an overall Lorentz scalar, rve thereforeneed only consider quark-nucleon vertices that transform as a scalar or vector under Lorentz transformations. It isstraightforward to identify the form of the vertices that are allowed by Lorentz, parity and time-reversal invariance,however the specific momentum dependence has to be determined within a moclel. There will be 15 inclependentscalar (Õrs-n@,p)) and vector (of-rr(,t,p)) vertex functions appearing in the general expression

vs=Iøtr+úosr+þes3+o,pp'kpal 
eT)

for a scalar vertex, and

V! =ru ol + p. I AY + ko r ol + ,,gf øl + c,pkB e{
+p, þol + p" þoT + k, úoJ + k, lta{ (2s)
+ opaf k6 p" @Yo + opaf k6 k. ey,

for a vector vertex. 
_ fi1 in Eq'( y determined from these vertex functions. To see this, let usscalar vertex' t-constituent function from Section tU fati*,;j\r;:;: will be
)'"(Ps)¿¿' Usi m the Dirac indices can be rearranged into a form that enablesthe functions

h:2ofofa, fz:2ofofA,
re=2 (of oí rp.k(of),) á, fq=2 (ioij, -kz@sò2)6,
ls=2 ((of), - p, @l)r) 6, .fa = 2 (of oí _t p.k (Õf)r) 6,

/' : ((of )' - (p ol + À of ), * (prk, - (p.k)r) (of )r) ó, (2e)
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f¿:-4k.(pos, + ÈÕf)Õfó, fs = 4p'@al + koå)ofó,
fio=8ofo$0, f¡= 8ofofó,

where t:6 (lp- k]'- ræ!) and rn5 is the mass of the scalar spectator system.

Calculating the functions Õf_a from first principles amounts to solving the relativistic, many-body bound state

problem. Asi¡is is presently nãt possible one could resort to models such a,rq the MIT bag model. It is not our aim to

ão this in this paper. Rather, *" rhrll choose a single scalar vertex, _say Vs - I Of , and use phenomenological input

to constrain its fúnctional form. From Eq.(29) we find that the / Õf vertex contributes only to fi:

/t = (of )' a (W- k)' - *'r) [scalar vertex]. (30)

Similarly we choose for the vector vertex a single form, Vv = loQY , and find that this makes the following contribu-

tions:

2 @Y)' 6 (lp - kl" - *T)
m2,

(31)
') f-

l¡=-Iq = _ ls = fa = -;f [vector vertex]

rvhere ræy is b¡c nrass of t,he vector spectator state. In wribing Eq.(31) we have assumed that the intermecliate vector

state lras a [,orr,:nbz structure _ gop I (p" - k"lØo - kp)l*I. For the sake oIsimplicity we further ¿Ìssume thab only

valence r1u;rrks are present, so llrat the scalar or vecbor spectator may be iderrt.ified with a diquark. I¡r a more rcfined

calculatiån <.,¡,: co¡irl , lor e.xample, integratr: over diquark m¿Isses using sotrte diquark spectral function.

Irrorn lìc1s.(30) and (31) rvc see that everr rlrtr simplesb vertex functions lead [o a large_ number of non-zero funcbions

f¡. This i,i t,r.n i,¡plies ihat there are scaling contributions to both of the firncbions Xf, and ¡f. in Eqs.(22), thereby

iailingtos:rtisfysccna¡ios.(a) and(c)inSectionlVforthederivationoftheconvolutionmodel. Formorecomplicated

N - (l verticr's, cvctì ruorc of the /'s (and hence X$ and Xf' as well) will be non-zefo.

Thc fr? (l(ì[)(ìrì(lcnce ol thr: [unctio,rr Õf'v c¿rn be rnost easily modelled by considering the on-shell nucleon strttcture

function (i.r: rvc shall approxinratc the quark's off-shell depen<lence to be the same in on- and off-sheìl nucleons. We

discuss tlìis 1.,oint [ur[her i¡ Secbion VL'\.) -ilre large-c limit is known to be clominated by valence u quarks, which

implies t¡at, t,l.re scalar vcrte.x tlorninates at large ø [19]. I ow note that, as thc spectator state is on-mass-shell, lhe

quark four-molnenbum will behave as È2 - (-!.r', _ kï)l\l - e) at large c. In order to obtain the correcb large-r
belraviour of b¡c slructure fuuction, narnel¡' llT - (1- r)t, the k2 clependence i¡r bhe scalar verbex function must be

1/È2, a[t,:r rye also take into accounb bhe trv<-r tltrark propagators, as well as bhe facto. (-1 - t) arising froln the clelta

function ó (hr- klt - ^ro) 
lor the on-shell cìicluark state of mass rnR (: -r or rny) [18].

We fix t¡e large À2 behaviour of the vecto¡ vertex function in a similar way, this time by requiring that we obtain

the correct yale¡ce dyf uy ratio at large r, rramely - (1 - ø). This means that the vertex function for DIS from

valeuce r/y quarks hus io go like (l - "Í lor large r, i.e. like (Ë2)-slz (there is an additional (1 - ø¡-z factor arising

from the trace lor the vector cliquark).
It may Ììow see¡1 rea^sonable to choose asirnple rnouopoleformfor the scalar vertex function, and atr equivaleDt one

for the vector vertex as was clone, lor example, in Refs. [18,11] . We do not do this, however, for the followingteason.

The quark propagabor, (k' - *')-' , in Eq. (13 ) contains a pole. Because the kinematic maximum for k2 is (M - mn)z ,

this pole is i¡ thã physical region of k2 when Ìnn * m < M . The origin of this pole is clear - the model, so far, is

not confining and the proton may dissociate into its quark and diquark constituents. One solution would be to make

the sum of fhe quark and diquark ma^sses so large that this cannot occur. However, we do not believe that this is
desirable - confinement occurs not because bhe quark mass is large (it is only a few MeV), but in a dynamicaì way

associated rvith the nature of the colour interaction. The only place where the information about colour confinement

can enter in this mo{el is through the relativistic quark-nucleon vertex function. A c_onvenient way to ensure that

L¡e co¡[riL¡uLie¡ from a dcconfincd quarh is excluded ia to choosc a numerator in of'v so that the integrand in the

structurc function remains finite at the on-shell poínt, k2 : m2.

For the masses of the scalar and vector dicluark, rn5 and my, lhe only information available to us is that from
low energy moclels, such as the bag model or the non-relativistic quark model. There, at a scale (Q') "f order a

few hunclied MeV2, the diquark masses are expected to be somewhere within the range of 600 to 1100 MeV [19,20]'
Furthermore, from the nucleon-^(1232) mass splitting we also anticipate that rny would be some 200 MeV larger

than rns.
The p2 clepenclence of the vertex functions is of course more difficult to obtain, since for this purpose data on nuclear

s[ructure functions must be used, Tn l]ris case i,he p2 ,lependerrce will noi be resbric[ed io'"he quark nucleon verl,cx

function alone, but will also be present in the nucleon-nucleus vertices, which introduces an inherent uncertainty in

the determinaiion of the former. Nevertheless, the functions Of'"(,t,p) do not depend on the nuclear target - that
information is containecl entirely in the functions ,4e - A2 . Since for the deuteron the p2 dependence of the relativistic
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D¡rN vertex can be related to known deuteron wavefunctions [21-23] , we may use deuteron DIS clata to constrain
this universal p2 dependence of the quark-nucleon vertex functìons.

In order to obtain the valence quark distribution for the deuteron, we
for o ) 0.3, where valence quarks are known to dominate. Because of
experimental quantity for the deuteron (compared with two - u + d.
namely FzD = x(4uD + d\/9 = 5x(u+ d)lg, where uD, ¿D and, u, d
the deuteron and proton, respectively. IIence we cannot differentiate between the p2 dependence in Õf anct that inof W: therefore choose a simple monopoleform and use the same cut-offma.ss, Àp, in both functions. A ¿etailed
comparison between the model and data for ø 5 0.3 would require separation of the valence and sea cornponents of
-F2¿. Although in principle this could be done by analysing the u - D ancl u - D DIS data, i¡ pracbice ihose clata
sufer f¡om poor statistics. Furthermore, typically only the extracted quark clistributions in the nucleon ace presented
[24], and these depend on the theoretical assumptions made to t¡eat bincling and Fermi motion corrections.

To summarise, the verúex functions that we use are given by

of (p, r) o<
(k2 - *z (M'z - 

^3) (32a)(k' - L? (p'- Lì)

ay o),kr o ,=(!' -,?,'),=Vl - n;lt)x 
W - Lîyn@ -q (32b)

We find the best fit to the experimental nucleon distributions at Q2 - 4CleV? (rve evolve the curyes lrom el = 0.lb
GeV2 using le ion, with hqco = 250 MeV [25]) for,r,Àr". m5 - 850 NIeV ¿rn<l rny - l0b0
MeV, and cut Àv = 1.0 GeV, which *" fii tá the recent parameterisations by Nlorfin an¿
Tirng [26] and the uv *dv valence quark distribution * ru"ll as the valence dy-f uy ratio are
shown in Figs is remarkable that such simple fo¡ms for the vertex functions r,rpro¿uce the
data so well.

llaving parameterised the free nucleon vertices, we are now ready to consicler the specific cases ol t)lS frorn the
deuteron, from nuclear matter, and from dressed nucleons. Tlrroughoub, rve consicler tire isoscala¡ v¿rlerc:. st¡rrclure
function, xW7 x x(uv !dv) =312 x(qs+ql), where qs and ql are the c¡uark clistributions arising irr corruection rvith
the scalar and vector diquarks, respectively, normalised so that their first moments are unit-v (lronr the spin-fl,.vour
wavefunction of the proton we have dv = qt and uy = (qr + 3qo)12).

VI. CALCULATION OF COMPOSITE TAIiGET STRUCTURE FUNCTIONS

A. DIS frorn the Deute¡on

lVe examine nuclear DIS from a deuteron for severaÌ reasons. Firstly, it is critical to knorv the size of bhe ofi-
mass-shell corrections to the deuteron structure function if ultimately the EMC data (which usually rneastrres theratio of nuclear to deute¡ium structure functions) is to be used to draw conclusions about the clifferences betweenquark distributions in free nucleons and those bound in nuclei. Secondly, in the absence of high-statistics neutrino
data, the neutron structure function is often inferred from the deuteron structure function using the naive assumptionof additivity of the bound proton and neutron structure functions. Apart from the of-mass-shell effects which we
consider here, several other effects spoil this simple assumption. For example, nuclear shadowing is important as n * 0
[28-31], and of course the deuteron structure function extends beyond r-w - | (rr: Wtol¡ù) r) io r*: Mn/M.
Hence deviations from additivity occur over much of the range of ¿. For a reliabie extraàtion of the neutron structu¡efunction a systematic computation of these effects is clearly"valuable.

The calculation of DIS from the deuteron is more straightforward ancl reliable than for heavier nuclei, since therelativistic deuteron-nucleon vertex is reasonably well uiderstood. The treatment of the deuteron recoil state issimplified by the fact that most of the time this wiìl be an < e expected to clominate thecontributions from processes with a recoil A or Roper
The structure of the general pNN vertex, with one by Blankenbecler and Cook

[32], (¡rlú¡yl D) o (ú - M)-tr? e" Car (p - p), where

rD,@'):t. F(p) -r (*r"-r.) 
"@ 

* #lurorr, * # (;r"-o")] , (33)

and C is the charge conjugation operator. The functions F,G,fI and l are related to the t.9r,trr,1p1 and 3p1
deuteron wavefunctions, u,?r,tr, and ur, respectively, by
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F(p) = olzun (2Eo -ø,1 (,rtnt ) - ry* ,f,ffi*rr"u)

G(p): oJz¡øo (28, - -a (ffi,,cpr)+ "pfÐry* fiffi,,rrou)

H(p) = ntTw "# lr,,cpt)
r(p) = -o{ztøo #, (ry#,lpr)- --.#*{rnr))p2

(3aa)

(34b)

(3ac)

(34d)

(36a)

where ,Eo = JMT+-F. For the deuteron rvavelunctions we use the modcl of Buck and Gross [21] , with a pseude

vector zr exclizrnge interaction.
For thc spin-averaged deuteron hadronic tensor lve thercfore need to ev¿tluate the t¡ace

I."(À, p) eÞ(l,p)'r'rl(F'- n'r' ¡,vt) crîþ') (tt+ t,t) xtr,(rr,q) (ú+ tut¡ crD"1p2¡1, (35)

À

rvlrere e'(1, P) is the polarisabion vector lor a tlt:rtteron rvith helit:it,y À, aucl l'ì = n f lT rc.This yields the follorving
deuterotr -ttttcleorl functions:

't|b\= u{'a r'l't nr" + z.tr'i, - b'-ivt') (-r*'+#)]
- 8 F c;la ,vt' - ,\t,t, n (r''' . 'll'') (to u'- tt'i,+'2 p'' rs 'ttt -z Y2p2 - pa\]

L 
- 1'\t' \ru 

rr¡ M" )l

. #ltn r,' - ,vi)' - (p'' _-') (', i'tzp - 5 p' - II M2 .'4#)l
-sM2 -'t,vti, + p'' + 

(Pt - M')'\
--MT- )

(2 -Mp +

-t2 I'12 (p2 - ,vt2) + 4 r' II

* (o' \#)e#a?qÎ+B'.1 r)+ 16F r

+16G'r +8 "'t-#)]\
A?,(p,)-4F21{n*, + 2M,D) r,o- (p,-u')(Wr"*(, W)r")]

-8F cl{+ur'- M',) o"* ((t W)o,*æ)l
. #ltn *' - M'o)' p, - (p' - M') (rr'" - 4 M') (, -'+{:) r"

- 4 12 r+ (r, -t'-.:r) rr" - p") * 8 H r (p, - M,)þ" -Wr"]

-8¡'HM2þr"*(

)r"-

(nt - ¡'¡'
M2

_ Mr)
lvI2

+ 4 F tl(t*'+p'-gÅÏ
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+ 8 c, l{r, + p2 - p . p) p, * (o' -
+8c rQ,-W)?zp,+p,t\

p' + arI'
M,D

P.p
)""]

A?.p(p') = o

(36b)

(36c)

(37)

As mentioned in the previous section, we constrain the c rt-off parameter Âo in the quark-(off-shell) n'cleon vertex
functions defined in Eqs.(32) by fitbing our full, p2 dependent åalculatecl dístribution ro the experimental cleuteron
st¡ucture function, using the lepton-deuteron data from NMC, llcDx,,IS and SLAC [34]. Ilorvwer, rve stillneed tofixthenormalisationco^nstantsinBqs.(32). Naturally,thesewillbehrnctionsof thecut-offÅ0. Act'ally,iItheexact
nucleon-quark vertex functions were known, they would be the same for the off-shell as for the o'-shcll nucleon. We
do not assume this, however, as the vertex functions which rve use ¿rrc olly appro.ximations to the cx¿rcL results. For
exarnple, the arguments given in Section V, relating to the counting rules "'tri.À giu" the,t2 cìepend";¡,; 

"¡1h. vertexfunctions, are based on quark distributions in an on-shell nuclcon. In ¿rrr ofl-shell nucleon the conrrr:cIion bctrveen r
and k2 is given by the modified expression

k2=Ìc+k--k2r = "luto
(pz'-ki')?+nrft

.ll ¡¡(q - .r.)
('-- ki.

with p- norv constrained by the ó fLrnctiotr lo¡ the on-shcll nuclcar recoil st¿Ltt: (see Section I\'). l' principle, ûheasymptotic 't2 dependence for the ofl-shell nrtcleon-quark vcrticr,,s r:.rpcclcrl f¡onr corrnti¡rg rulcs crrl,l lrt: rlr,:[crr'ined
after integration ovêr the nucleon's ntomentum. Clearly this is a,,ru.l r,ro." cornplicatetì t,ask t¡arr rv¿rs l¡e case forthe on-shell nucleon, and we do not believe our sinrple ansatz for the verlices rvar¡ants such a trc¿ì"trrent,, in which
case we shall simply normalise by cornparing with the data.

In Fig.6 we compare the experimental F2¿ at Q2 - l0 GeVl rviLìr tlrc c¿rlcrrl¿rtc<l total yal¡¡c. tlrr;rrk rlistribut,io.in the deuteton, Sfgc(uv * d'v), evolved from the same valut: ol'Ql :0.1ó CieV? (sincc rve ,,r,,' r1,,, sarrrc diquark
masses) as for the free nucleon distributions in Section V.'I'he resuli'ol tlLe full calcularion is ¿rlrrr<-,st ilrlepenclent of
bhe value.of r\o used, after the normalisation constants ¡r the verle.x lu¡rctions have been determi¡rt:tl by the charge
cotrservation condition. This is because the p7 distributi rn is strongly peakecl at small transversc rrror.er'ta, pr - 25MeV, so that modification of the large pr (or large lp2l) behaviouJby altering the fornr lacLor cur,-olt ¡as negligible
consequences. Clearly there is very good agreement between the n-rodel calculat,ion and the cla[a lor .r ] 0.3.

From the discussion in Sections tV and V it should be clear th¿rt it is not possible to justity t,lre co,vJlution model
t to corrrpare our res'lts with those or prr:vi'us carculations

",lg!i!" thar by raking rhe on_shcll tirnir (p2 - tut2)
AK /A,t = p. A? /M, = q . A? lp. g, r,hereby satisfying
this approximation need not be taken in the functions

spirit of that used in Ref. [13] for bhe n'crear structurefunctions' The result of this approximation is shown in the dashed curve of Fig.6, rvhere we have use¿ the same
determinecl in the full carcuration. The effect is a reduction

affect on the shape. By artificially norrnalising the new
his curve becomes armost indistinguishabre froir the fuil

"i'iili:ï:i1i::ïliî1,ï:;iJ:ä:ï",î'r;,liîi:93;
In other calculations using the convolution model for deuterium, the most common prescription has been to drop alltermsbub lxliythgexpansionof yu, (inEq.(3b)), andto."pro."'¡$ br;h;;;;;;,*J;;i,;ffi;Il;;;.;function

of th-e nucleon [5,35],In Fig.6 the dotted 
"u.,r" 

rho*. the result aft-er renormajisation to ensure baryon number twofor the deuteron' It is,somewhat surprising that the difference in shape between the full result and this ansatz is assmall as it is' Still, a discrepancy of - 20Ti\s quite significant in a system as loosely bouncl as the deuteron.A numerically significant difference between the convolutio
importance if one recalls that the neutron structure functi
as deuterium, using the convolution model. Indeed, in
worrying than our knowledge of F2n is based on this.
taken in calculating F2p, the deviation from the correct, p
from a theoretical point of view, by artificialìy ."_no.-,
respects baryon number conservation, the differences can be reduced.
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A similar situation arises in calculations of the nuclear DMC effect, in lvhich differences between nuclear and

deuteron structure functions are explored. Clearly for any accurate description of this effect we need firstly to have a

reliable method of calculating the deuteron sbructure function. As we have seen, the off-shell effects that are ignored
in the deuteron may be compensatecl for by suitably renormalising the final result. Whether this can also be done in
other, heavier, nuclei is not clear. Certainly in heavy nuclei we would expect off-shell effects to play some role. To
date thcse have not been adequately accountcd for, and this is lvhal, lvc tuin to next.

B. Nuclear Matter

l'or any nucleus we can easily repeat bhe above calculation if we knorv the relativistic nucleon-nucleus vertex
fultctions. Unfortunately, at the present birrre these are not at all well ltrtown for heavy nuclei. A solution to this
proble¡r rvorrìd be to simply pararneterise t,lit¡ vertex functions, and to nt¿rke some assumptions for the nuclear recoil
state. r\lternntively, il one tried to r¡se non-rclativistic nuclear models as an apptoximation, it would 

-be dilficult to
i¡corpor.ate the ofl-shell nucleon strrrctult' 'l'htr best way is to consider first Lhe simpler case of a nucleon enrbedded

i¡ ¡uclcar matter. In bhis type of t:alcrr]atic.lr the off-shell effects are paratrteterised in the effective nucleott mass,

I,[ - lvt- .

Expcrimentally, the effcctive nrrcleon nrass ab nuclear matber density (- 0.15 fm-3) is found to be - 0.7 M [36] .

Theorct,ically, lhere is a large ¡runrbe r clf rrrorlcls lor tluclear mal,ter, whiclr predict a wide range of effectivc nucleon

rn¿Lssc.s. 'lhc Quanturn Iladrodyna¡rrics rrr,rtit:l o[ lValecka a¡rd Serot [lt0] , in ivIiich pointlike nucleons (in the ruean field
approxinraLion) are bound by the exc[rarrgr: of scalar (a) ancl vector (ø) trr,'sous, predicts rather small eflective nì¿ìsses,

lvt'/lV - 0.56 - 0.6. Somervhat larger lrr¿ì.sscs are obtained rvhen explicil tluark degrees of freedom are inlroduced.
For e.xanrple, in the Guiqhon ¡nodcl [l]7] , rvherc the ø and t.l mesons are ¿llorved to couple directly to quarks inside
tlre rrucleons, the value of jl,I- is lypicall¡ - rJ.9 M. Even larger values are obtained if one includes centre-of-mass
correct ions and self-corrpling ol t.hc sc¿rlal fit'lrls [38,39] . R¿rther than choosc a specifìc nuclear model , rve let, rV[- be a
par¿rnìetcr an<l r:x¿rr¡ri¡re tlre r:flecb ol its r;rn;Lti<>tr upon the rlucleou strrtcttrrt: furrction, defined in Eq.(11).

Bcc¡ruse thc quark nuclcon vertcx l'rrrrct,iorr r.vill now also dc¡rend on lhe cflective mass, it rvould be inappropriate
bo use thc same nornialisatiorÌ corìst,;rrìts in lìqs.(iì2) as those deternrinctl by normalising the on-shell nucleon distri-
butions. 'I'herclore the noru.ralisation corrst¿Lnt,s in this case must, be detcrlninecl by normalising the calculatecl quark
distrilrutions i¡r nr¡clear rnatter, lor ¡r2 - l/'2. so that their first monrents are unity.

Fig.7 slrorvs t,he isoscalar valetrce 11¡¡¡;lr',rrr sfrttcture function, r ('uy(a,, p2 = lvl*2) ldv(x,p" = M-')), for a range
of effective rnasses, M'llvÍ - 0.5 - I 'L'lrcrr: is clearly quite significant soltening of the structure function, rvith the
most pronrinent effects appearing lo¡ 0.2 f ¿ I 0.6.

Ilorvcvcr, it should be remernl.¡ererl tlr;rt, our lormalism neglects interactions between the spectator quarks and the
surrouncling nucleons in the nuclear rncriirrnr (i e. it assumes the impulse approximation). This has been fotrnd to be

quite a poor approximation [38] for nrrclt:¿rr nrat,ter. A simple way to estimat,e lhe importance of final state int,eractions
is to assrrme that the strengtìr ol t,hc int,cra<:t,iorr of the spectator diquark rvit,[r the nuclear medium is 2/3 that of t,he

nucleon interaction, and that it is indepe:nilenl ol the mass of the diquar:k [n that case the diquark tnass is rnodified
by -¡¿ - mh, where

t.
ntj1-m¡¡-Sttt-M.) (38)

for both scalar and vector diquarks. The eflect of this is shown in Fig.8. As can be seen, interactions of the spectator
diquark lead to a hardening of the quark dislribution, typically of the same order of magnitude as the nucleon off-shell
effects. Combined with the off-shell effects, this gives a structure function which (for M- lM x 0.7) is - 20 -30%
larger than the on-shell result for z ì O.¿. Por quantibativc comparison against dccp inclastic scattcring data on
nuclcar structure functions ib rvould l,herefore be very valuable to develop a consistent formalisll incorporating both
effects.

C, DIS trYom Dressed Nucleons

Models of the nucleon which incorporate PCAC by including a pion cloud have been used in DIS, among other
things, to estimate the size of ihe zrl/lV lbrnr tacior [40,41], and to caicuÌate the flavour symmetry-breaking in
the proton sea - the possibility of which was recently suggested by the result of the New Muon Collaboration's
measuremenb of the Gottfried sum rule [42] . Previous covariant calculations [43-46] have all relied upon the same
assumptions as for the nuclear calcuÌations, narnely the validity of the convolution formula in the first place, and the
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lack of any dependence of the bound nucleon structure function on p2 and pr. In this Section we apply the formalism
we have developed for dealing with off-shell efects to the part of this problem where the virtual photon hits the virtual
nucleon, with its spectator pion left on-mass-shell.

In order to calculate this contribution the only additional ingredient which we need is the 'sideways' urilN form
factor, Ioruiv(p2), where one nucleon is oÊmass-shell. For this we use the same monopoleform that is usually used
in the literature [11] (see also [47,48])

f"ivx(p') o(p'-^?r)-t, (39)

with.t\o¡¡ - 1.4 GeV and a pseudoscalar zrN coupling. With this, we can rearrange the relevant tr¿rce in Eq.(23),

nlff * M) filt*NN(pz) U+ M) Xp,(p,q) (ú+ M) i75t,¡¡¡¡(p2)1, (40)

to obtain the nucleon-pion functions Afl$,

Ai* @,") = (-rnz" u)t?NN@'z) (aia)

AT\@,P) = (-m2" p, * (p2 - M')(p, -P")) r?""(p') (41b)

AiNoB(p,P) = o. (alc)

Again, as was the case for the deuteron, by inserting p2 - L,[2 in ,rlff we can satisly the corrclilions o[ case
(c) in Section IV, Ilowever, bhe structure function this time is proportionalto -m2, (i.e. negativc), rvhich is clearly
unphysical. This illustrates the fact that even though the one dimensional convolution formula may indeed be obtained
from the exact result by certain approximations (e.g. on-shell limit), there is no guarantee that these approximations
are physically meaningful.

As was shown in [11], the convolution model may be derived if, amongst other things, one assumes th¿rt, lhe off-shell
nrtcleott structure is the same as that, of apoint-likeferrnion [1], in x'hich c¿rse the relevatrt opertrtor in ¡,,, is tlXtr,@,q).
t\s rve have seen above, this is only part of the complete expression in the Bjorken limit il one assuru(-'s t;he nucleon
quark vertex to be of the form in Secbion V. Nevertheless, the model of [11] can be obtained using thc.sc vertices if the
folìowing steps are taken: firstly the trace in Eq.(40) evaluated with the gf¡f' structure; then to obt¿rin lactorisation
the limitspz = 0 andpz = M2 taken in the'nucleon strucbure function'(i.e. k dependent) parts; and fìnally the full
structure of the on-shell nucleon function used, as in Eq.(11), rather than just keeping fhe y2, ternr. The necessity of
the last point is clear, since for the on-shell structure function the indiaidualfunctions Xl7 are not necessarily positive
definite, although the sum of course is positive.

Other authors [49] have implicitly assumed that the relevant operator to be used in the X' of Eq.(a0) is 1¡$, similar
to what was done in the convolution model calculation for the deuteron discussed in Section VI A. Uowever, even
with the subsequent replacement of x$ by the full on-shell nucleon structure function in the convolution expression,
tlre result will be proportionalto -rn2, since the coefûcient of x$ is,4[tr. Thus it appears that the result of [49] can
only be obtained by taking the modulus of a negative structure function.

Clearìy, the aboye procedures are somewhat arbitrary. It is a reflection of the fact that none of the scenarios described
in Section IV (namely cases (a)-(c)) for obtaining the convolution model are applicable. As in the deuteron case,
the convolution model for dressed nucleons is not derivable from thc exact result.

In Fig.9 we show the result of the convolution model of [11]. This is compared with the result of the calculation
including the full p2 dependence, with the quark-nucleon vertex function evaluated with .tto = oo, as for the deuteron.
For the full calculation we use the same normalisation constaìnts for the quark-nucleon vertices as determined from the
on-shell nucleon calculation in Section V. The results indicate that the full, p2 dependent calculation gives somewhat
smaller results compared with those of the convolution model (although the shapes are quite similar, as can be seen
from the dotted curve, where we normalise the scalar and vector vertex functions to give the same first moments as in
the convolution model). Such a difference might have been surprising had the convolution expression been a simple
approximation to the full result, in which case we may well have expected small off-shell corrections. Unfortunately,
this calculation is more difficult to check since there is no clear normalisation condition for the structure function.
Comparing the first moment of the calculated distributions with the average number of pions in the intermediate state,
which can be calculated by considering DIS from the virtual pion, is ambiguous due to the presence of antiparticles
in the covariant formulation. (A convolution formulasuch as Eq.(25) can be written for DIS from virtual pions, since
there are no spinor degrees of freedom to spoil this factorisation. However, ambiguities in the p2 dependence of the
'off-shell pion structure function'.would still remain.) We therefore believe that this fact illustrates the absence of
a firm foundation for the covariant convolution model for DIS from dressed nucleons (see [50,51] for an alternative
approach to this calculation).
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VII. CONCLUSION

We have investigated within a covariant framework the deep-inelastic scattering from composite particles containingvirtual nucleon constituents. The scattering has been treated as a two-step p.o...., in which the off-shell n'cleon intlte target interacts with the high energy probe. The treatment amounts to ueglecting final state interact,ions. Wehave constructed the truncated photon-nucleon amplitude from 22 general, iiclepenãent f'.inctions, a¡rcì i¡secl ôheparton moclel to show that only 4 of these are relevant in describing the cleep-i.,"1*ti. structure functions in theBjorken limit. The calculation explicitly ersures current conservationãnd the Callan-Gross relation.
Within this framework we can unambiguously examine under what concliiions the conventional convol'tion 

'roclelbreaks dolvn' Furthermore' we use some simple models of the relativistic nucleon-quark and nucleus-'ucleo' vertex
functions to investigate this breakdown numerically. While the failure ol the convtlution mor.lel 

'ray 
appear to beatt unwelcorne complication, it is clear that in any theoretically self-consistent calculation which takes ofI-r'ass shell

effects into account it is an inevitable one. In<ìeed, the'bouná nucleon struchrrre function'is a. ill-clcfi.ecl tluantitywithi' This I onsequences, as alrtrost all calculatiou, ol .orr,fosit," torgerstructtr for the relied upon bhe valirlity of the sirnplc convolrrt,ìon rno<lel.lVe I ate the function withorrt ,,roiing alìy assurìlptio¡rs ¿LboLrb t¡e p?clepend ctions, reelncnt rvith Lhc' ri¿rta irithe ."gion oi ¡: rr.hr:ri: orrr rrrt¡rlcl
is applicable (, I 0.3)' Making various zlssumpl.ious for the off-shell nuclt;ons lr;rl.ur.¿ll¡, introtluccs tle'i¿rt,io.s t'ror. thc
exact resrtlt" Ilowever, by suitably reno¡lnalising the approximatecl curv(ls [>y'h:rncl h<, c¡sure baryo. .rrrbcr corìsc.rv^-lion (a,s tvas done in most previous calculations) the differences betrvecn t,ht¡ r¡,y¿ç¡ rcsuIts ¿ltrl thosc ol Lht: corrx>lul,ion
ansatz ;trc nlinimised. Aìthough this is most unsatisfactory from a theo¡r:t,ic¿rl point ol vielv, p¡cuorrrcnologic.lly b¡e
consequences of neglecting the nucleon off-shell effects in the deuteron nì¿ry not be too great.

To unrlerstand the conEequences of the off-shell effects in heavy nuclei, rve considerejasimple moclel ola nucleon
embetl<lecl in nuclear matter. We found quite a significant softening olthr: strt¡cture function at inte¡nre<li¿r[e ¿ wbentìie nrrc:ltrar lncclium acts to dec¡ease the eflective nucleon rnass. Florvevcr, j¡¡1,.r.-,.¡ions ol the spe,ctaror <li<¡u:rrk stalr:wiblr the sur|ouncling medium tend to ll¿rke the overall structure firnctiorr sorrre 20 - J0% h,,rcl"r -r, 1,,,.¡j"'r,'(r: ¿ 0 .l),tor Àt' f tll x, 0.7, compared rvith the on-shell result.

Thr: obher application which has been e.xamined is DIS frcm the-virtual nucleorr com¡ronent ola physical, or tlrtssecl,nucleotr' rvhere we also find quite signific¿rnt differences betwee¡r the full result and thË convolubion 
'rotlel. ,\ cletaileclquantitative understanding of this effect is neecled in order to be able to clescribt-'the ¿ cìistributions lor aìì ¡rrocessesrvherc lhr: nttcleon's dissociation irito a virt'ual nucleon ancl meson is e-xpccbe<ì to be ol ir'port,ance. suc¡ as in thenìeasltrclìlent of the asymmetry in the light sea quark sector of the proton ancl neutron, as well as bhe .eutrorr spinsbrrrc.turr: [unction g n(x).

ACKNOI^/LEDGMENTS

This rvork was supported by the Australian Research Council. One ol us (AWS) rvould like to acknou,lcdge thel<ind hospitality extended bo him by the theory group during his visit to l\delaìde, where this rvork rvas commencecl.

APPENDIX: GAUGE INVARIÀNCN AND THE LONGITUDINÂL STRUCTURE FUT{CTIOT.I

Here rve give the full details regarding bhe vanishing of the longitudinal ancl non gauge-invariant structure firncbions.
Using tÌre proìection operators defined in Section u *e p.oje.t from the truncJteJ.rucl"on tensor ¡u, the contri-butions to the longitudinal (wf) and non gauge-invariant'(w$,w$r,) f.nctions:

pï,''(p,q) xt,(p,ù = xT@,q) + ú xL@,q) * I xL(p,q) r oottporf xZ@,s)
o2

+ Gfu þ - u'P)' [xT@,q) + ú xT@,q) + I xI@,q)

i oopporlÞ xT@,q)l

-'# I x"(p,ù - "U:IîopL,o(tþ x6(p,q) - 2 y coppoqþ x7(p,q) fAla)

Pö'(P,q)xp,(p,ù=xoq(p,q)+ úx'q@,q)+ lxä(p,ù +':Ë lxi(p,,r) + z lxn(p,q)

t4



(A1b)

-iräLrr,q) xu,(p,rrl"r"íl*',u orl"oo ,or',":, ,r:-'r':'^irl)*,*rr':t'4 t x"(p,ù + t x.(p,q)

*ooppoqþ 
l*to"fo,ù 

+ ry+xu@,q) + xu(r,ø)]

+ ooBPo qþ 
la 

x'@, o * fir'(r, ø) ] 
. (Arc)

Follorving the_procedure described in Section III we find that all the x(p,q)'" in Eqs.(41) are of order 1/2, with the
exception of X'(p,q)and xn(p,q),whichareof or<ìer If u2.fleoceinthenj".t"nlimiiEqs.(41)becomes

PÏ'(P,q)xu,(p,ù = ,l (rL@,ù -'z#,r'{r,ø))

¡ ooB¡totl, (x?Þ, , -T.'(r,øl) (A2a)

r['(p,q) x,,(p,ù: ,l (*äfn, A * 'ffx"þ,q) + z x''1p,,1¡)

*o,,þp"qþ (räfo, ø * lxo@,,t) * zr*(o,o))

-ïíä'"rr, q) xr,(p, q) = I (*'orto,,ù +'z#x"þ,,r) + x*(i,, ø))

+ ,¡n,tp,.,f (*roru.,q) +. 'z:f xo(p,,t) + xr{o, o))

Furt,he¡more, for the functions Xþ,q) rvt: fi¡rcl th¿rt at lea<ling order in z,

(A2b)

(i\2c)

(A3)

(Aaa)

(A4b)

(Aac)

xrr.(p,q) =2ffx"hr,ul,

x'q@, t) = -'#r" (p, q) - 2 xo (p, q),

x'q 
"(p, 

ù = xþ@, ù + xa (r.,,,ù,

st , '2P',1 6,rå(p,q) = t'r"@,u),
tt , 2P'q

x'q(n,+) -- -":ïxu(p,q) - 2 x"(p,q),

x$"(n, q) = xtq(r,,,ù + x](p,q),
x'r,q,qr(P,q) = o, i = o, I

Substituting these expressions into Eqs.(r\2) 1;herefore leads to vanishing results lor each of the longituclinal ancl .on
gauge-invariant functions. This result is true independenü of the production mechanism of the off-shell particle, that
is, independent of the functions .zls - ,zl2 as defined in Section IV. For the special case of an on-shell nucleon the
longitudinal and gauge non-invariant structure functions are

lrlro,q)= M xot@,q) + M2 xL@,q) + p.qñ?(p,q) - 'e#Ír(p,q)-0

#*iro,q)=M ñoq(p,q) + Mz ñb@,q) * p.qxä@,,ù.?þf xr@,q) * 2p.,tñnL(p,Q)*0

{w{"(n,q)=M xoqr.@,q) + M'x'qL@,q) + p.tñ3qL@,q) +'z-þfx"þ,q) + p.cña(p,q)-o

where the zero results follow directly from (A'3)
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