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SI]MMARY

The flow of vibrational energy between llnearly coupled
multl-modal resonant structures can be model.led by a set of parameters
known as t1,oss Factorst. A survey of rhe llrerature on the subJect shows

that the loss facÈors have been calculated or measured for some par-
ticular cases only. Further progress on the theoreÈícaI slde is impeded
by the complexity of the problem and good experlmental evídence 1s

therefore highly desirable.

Prevlous methods for measuring the loss factors are re-
vlewed and the rin situ'method is examlned ln detall. It ls noted that
only the rin sltu'method ytelds the actual loss factors. Partlcular
atEention ís given Èo how the energy balance equatlons ar:e constructed
from speclfic measurements. Also, the questlon of the accuracy of the
rnethod 1s studied carefully; the experimental errors are ampllfied by
sensltívity eoeffÍclents larger than unlty.

The tln sítur method Ís then applled (over five octave
bands) to a test structure conslstíng of two thin steel plates welded
at rlght angles Èo each other. A digítal system is designed to carry
out these experimenÈs. The sampllng of data, the computations and
algorithms, the hardware etc. are described extenslvely. A brlef corn-
parlson ls made with a prevlous (unsuccessful) attempt which used
analogue techniques. Also, future improvements llke dedicated hardware
or more sophisticaÈed algorithms are discussed. The loss facÈors ob-
talned experímentally are Èhen examlned closely. The influence of the
sensltivlty coefficients 1s evidenced by the lnternal loss factors.
Various theoretical predlctions for the coupllng loss factors are com-
pared vrlËh Èhe values determined I in situr.

It is shov¡n how Èhe actual loss factors of a símp1e
multi-modal stucture can be determined experlmentally by means of a

dlgital syten. Large amounÈs of data and long computlng tlmes are
lnevitable. Also, experimental errors are amplifled by sensltivity
coefflcients and substantlal íuaccuracy can result. Excellent agreemenE
Ís found wÍth some Eheoretlcal predictions. Flnally, it Is suggesËed
thaE the tln sltut method is llnited to structLrres conslstlng of up

to four coupled multl-modal systems.

...ooo000ooo...
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INTRODUCTION

In practlcal problems deallng with a reaonant structure, lt ls

essential to be able to determlne the dlstrlbution and the flow of

vlbratlonal energy between the elements of that structure. This task

is well understood when only a few resonant modes play a slgniffcanÈ

role 1n storing, dlssípatíng and transferrÍng the vibrational energy.

However, when many modes take an actlve part 1n the process, an exact

analytlcal or numerical solutlon ls rarely posslble. Large or llght-

welght structures are typlcal examples of such sltuatlons, partlcularly

when driven at hlgh frequencies - e.g. a large shlp powerecl by a hlgh-

speed turblne, a space vehicle made of very flimsy elements, a turbulent

boundary layer around the wlngs of an aeroplane etc. An alternate

approach to deallng wíth such multí-modal structures is offered by a

formalism whlch 1s knoum as StatistÍcal Energy Analysls.

StatisElcal Energy Analysi-s descrlbes the flow and storage of

vlbratlonal energy between groups of slrnilar modes by a llnear syatem

of algebraíc equatlons. These equatlons express the steady-state energy

balance of each group of modes, using a set of non-negatlve parameters

called tloss factorsr. For each group of sinllar modes, the loss

factors are defined as follows. The lnternal loss factor ls the pro-

portion of the average stored energy which is dlsslpated. The coupling

loss factors are the respectlve proportfons of the average stored energy

which are transmltted to other mode groups. Thrrs. a multí-modal structure

whlch can be spl1t Ínto groups of slmllar modes is characterLzed by the

loss factors of these groups.

To date, the knowl-edge of coupling loss factors has relled on

Iùave-transmission type calculatlons or empirícal formulae. The internal

loss factors are usually obtained from decay-rate experiments or some-
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tlmes more slmply by an reducated guessl. To make more effectlve use

of Statlstlcal Energy Analysls than has been prevlously posslble' ft

would be very desirable to be able to measure the loss factors on

exlstlng structures.

Theoretically, this can be done from a knowledge of lnJected

powers and stored energles by ínvertfng the equatlons of the anal-ysis.

However, prevlous attempts to invert the equatfons and use measured or

estimated quantltles to determJ.ne unknown lnternal and coupllng loss

factors have 1ed to negatÍve valuee for these quantitles, wlth the

exceptlon of a two plate structure lnvestÍgated by Bles and Hamfd.

Negatlve values of the loss factors are an ímpossiblllty lf the energy

balance equaÈlons are to be be11eved.

Thfs proJect r.ras almed at overcomlng the dlfflculties prevlously

encountered r¿ith the 1n situ determlnatlon of the Statistical Energy

Analysis loss factors. Three stages were thought approprlate for thls

purpose :- firstly, a detailed analysls of the method, lts lnherent

drawbacks and advantages; secondly, to develop an experimental technfque

to lmplement this method on bullt-up structures; thlrdly, to apply Èhis

technique to a simple multl-modal structure, compile the experlmental

results and draw general conclusions.

In this thesls, the results obtalned durlng those three stages

are described in detail.

...ooo000ooo. ..
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REVIEI,ü OF PREVIOUS T{ORK

Resonant vibratlons do. not alerays lend themselves to a

deterministic analysis. Physlcal lrregularlties and uncertalnties

may resulÈ 1n a rather pòor knowledge of modal- quantltles' or the

number of modes may be so high as to render an analytical aPProach Èoo

cumbersome. Also, the forces acting upon Èhe resonant system may be

of a random naturer e.B. turbulent boundary layer, jet noise. Typlcal

examples are found 1n room acoustics or random vibration of llghtweight

structqres. In such cases however, a sEaÈistical approach may be

appllcable, whereby characÈeristlcs of groups of modes are examlned

ra¡her than lndividual modes. Thls is the purPose of a formallsm whlch

has become knottn as Statlstical Energy Analysls (SEA) '

Statistlcal Energy Analysis aims Èo descrlbe a resonant aystem ln

terms of the time-average flow of vibrational energy between groups of

rnodes. The advantages of such an approach are firstly, that energy 1s

readlly associated with more speclflc dynarnic varíables such as straln'

mean square pressure, radiated sound etc. Secondly, the SEA model of

the resonant system consísts simply of a set of l1near equaÈlons' one

for the energy balance of each mode group. These equations result from

theoretical calculations of the tlme-average pourer flow between llnearly

coupled osclllators drlven by broad-band white nolse.

The first such calculatíon was perforrned by Lyon and Maidanik

(Lyon and Maldanlk, 1962) and established that the tlme-average Pohter

flow was proportlonal to the difference between the uncoupled tine-

average modal energies of two weakly coupled oscllla¡ors. The

sirnpllcity of thls result hlas very appealing and it ts probably falr

to say thaÈ it lrtas that r:esult whlch tnitiated Stat:istical Energy

Analysís. NexÈ, Newland calculated the poÌter flow between t\^Io

oscillators (Newland 1966) and between tr{to groups of oscillators

(Newland 196g ). In the case of weak coupling, he foun<l the power
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flow to be proportlonal to the dlfference between the average modal

energiee and to the average shift of natural frequencles, fntroduced

by the coupllng. The l.atter result readily provided a means of

estimating the proportlonality constant. The case of strong coupling

beÈween two osclllators was solved by Scharton and Lyon (Scharton and

Lyon, 1968). They proved the tl¡ne-average power flow to be proportlonal

to the dlfference of the tine-average actual total energÍes. The result

held for two osclllators, and also for N ldentical osclllators coupled

ldentically to each other. Unlike prevlous calculatlons, the type of

coupllng was the mo6t general llnear conservatlve coupllng (1.e.

stiffness, gyroscoplc and lnertlal couPllng) and was of arbitrary

strength. Ungar presented an lnformatlve revlew of such ca1cul-atlons'

and showed how far SEA coul<l be applied to vibratíng system8 as opposed

to modes or groups of modes (Ungar, L967). An interesting point was

that the normal modes of a vibrating system could form a SEA model,

either íf the modal energies of each grouP I¡/ere equal, or if Èhe

couplings between the modes of 2 groups r^rere equal. Scharton and Lyon had

inÈroduced a nevr úray of deterrnining the proporËionalíty constant

between pol^rer flow and energy difference, uslng a wave-transmission

approach (Scharton and Lyon, f96B) . Their result \,ùaa compared wlth

Newlandts by Crandall and Lotz (Crandall and Lotz, 1971)' who found

agreement for weak coupling only. Statístical Energy Analysls, as

applied to vibratíng systems I^Ias examined by Davies 1n the case of

coupllng at discreÈe Points (Davies,1973). He found proPortlonality

between tl.me-average por^ler flow and uncoupled time-average modal energy

clifference. This proportlonallty, and various estlnlates of the pro-

portlonality constanÈ r{ere checked successfully by Lotz and Crandall

for a beam to beam and a plate to plate system (Lotz and Crandall, 1973)

coupled at a point by a weak sprlng. Similarly, Remington and Mannlng

examined a rod-sprlng-rod system under longitudlnal vibration
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(Rernington and Mannlng, L975). The SEA proportlonality consÈant they

obtalned by a wave-transmissl-on calculation compared well wlth an exact

calculatlon, both for weak and strong coupling. The transltion from

weak to strong coupllng was investlgated for coupled osclllators

(Chandiramaní, 1978) and for coupled dynamlcal systems (Smtth, 1979).

In parallel wfth these calculations, experimental evidence r{as

produced to support a statlstlcal approach. Maldanlk used a staÈ-

istical method to estimate the response of ribbed panels to acoustlc

excitation (Maidanlk, 1962). Lyon and Elchler studled the random

vlbratfon of connected structures like a beam-plate and a plate-plate

system (Lyon and Eichler, L964). Lyon and Scharton inves¡igated the

energy transmlsslon through a plate-beam-plate system (Lyon and Scharton'

1965). The actual SEA equatlons were put to the test on a multlpanel

structure by Ungar and Koronalos (Ungar and Koronalos, 1968). Another

successful example was perforrned by Crocker and Prlce Ln measurlng the

transmlsslon loss of a panel (Crocker and Price, 1969). More recently,

Swfft found good agreement. between predicted and measured energy ratios

on multlpanel structures, using a ú/ave-transmlsslon method to compute

the SBA coefflclents (Swlft, L977). StatlsEical Energy Analysls has

also been applled f.alrLy successfully to more general problems' e.g.

ship vlbratlons (pdegaard Jensen, I976). Bles and Hamld lnvesÈlgated

a two-plate structure (Bies and Hamid, 1980). They compared the steady-

state and decay-rate approaches, and measured the SEA coefflcÍents using

an tin sltur meÈhod.

The current state of SEA was compiled very thoroughly in a text on

Èhe subject by Lyon (Lyon, I975). The text includes theoretical back-

ground, experimental Èechníques and whaÈ ls surely the most exhaustive

blbliography on the subjecE. The general concluslon of the text is

that the SEA equatlons hold for systems of mode groups whlch contaln

sfmllar modee, the coupllng bets¡een the groups belng the general, llnear,

conservatlve type and of arbitrary strength. Under these condÍtions'
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the varlables are Èhe actual time-average total energíes of the mode

grouPs.

Thls result ís very appealing ln practíce: through the SEA co-

efflcients, whlch describe Ëhe loss and transfer of energy' the actual

total energles of groups of similar modes are simply related by a set

of lÍnear equaÈ1ons. The transfer coefficients have been dealt with

satísfactorlly for a few particular structures as outllned above. Às

for the coefficlents which characterlze the loss of energy' they have

been documented experlmentally and empir-lcally for typleal structural

materiale (Heckl, 1962 - Beranek, L97l - Cremer and Heckl and Ungar'

1973 - Lyon, 1975) but are liable to large uncertalntles ln actual

buílt-up atrucËures.

At present, the llmitatíon of SEA is two-fold. Flrstly' the

validlty of SEA has been establlshed theorettcally only for speclfic

condltlons, alÈhough the study of asyrnpfotlcally correct cases has

suggested a wlder range of application. Unfortunately, the analytfcal

study of multimodal systems seems to require some formldable algebra,

unless some rather drastlc slmpllflcatlons "t. *.d"1 Therefore, further

knowledge of this aspect probably depends more on experfmental evidence

than on new theories, as Fahy poinfed out (Fahy, 1974>. Secondly,

although partlcular systems have been studfed successfully (see above),

there is no general method to determine the SEA coefficients on existlng

structures. Since the accuracy of an SEA model depends on the knowledge

of these coefficlents, this 1s a seríous drawback. Several sEandard

technlques can be combined, but success depends on the particular

problem at hand (Brooks and Maidanik, 1977). Moreover, these standard

techniques do not always seem adequate, e.g. decay-rate experlmenÈs

used to determíne steady-state quantities or estimates obtalned from

uncoupled systems applied to coupled sysÈems.
+'See Appendix
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In summary, Èo make more effective use of SEA than has been

prevlously possfble, lt would be dlstlnctLy advantageous to be able

to measure Che varlous quantltfes in sftu ln exlstlng strucÈures.

Thls r^rould lmprove known models, and hopefully extend SEA technlques

to more complex and practical sÍtuations.

...ooo000ooo...
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THE LOSS FACTORS

2.I The SEA Model and Equatlons

An SEA model consists of a series of subsystems. Each sub-

system is a collection of resonanÈ modes which play signlficant and

almost idenÈical roles in the flow of vibrational energy through the

actual physlcal system. The subsystems exchange energy. They aleo

recelve energy from the outslde ¡¿orld and dlssipate some energy. If

the SEA model is to be useful, one needs simple and general expressions

for the average energy dissipated by a subsystem, and for the average

energy flow beEween two subsystems.

Multlmodal systems under broad-band excitatlon have been studled

theoretically, and experiments have supported these calculations for

sfinple resonant structures (see Chapter 1). These studÍes show that

for each subsystem, the average energy dfsslpated per unlt time ,dlss

1s proportional to the average total stored energy E,

diss
P =nû) E

c

where o_ ls the centre radlan frequency of the frequency band con-c

talning the modes, and ¡ is the rlnternal Loss Factor:f of the sub-

system over that frequency band. The same studies show that the

average porrrer transmitted between subsystems I and j 1s

trans
ijP =rl

ínj

1j E. - n.. t¡ E.r_ Jl c Jc
(¡)

where ¡.. (1 # J) 1s the rCoupllng Loss Factor'

í and J over the frequency band centred at ûJc.

balance for subsystem i is written

between subsystems

Thus, the energy

díss
i

trans
tj

M

+t
j=1
(jlr)

P
1

=p P
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lnj
P /uI c ntt Et

M

+I
J=1

(jl1)

M

J=1(jll)
n uJnjrEt

1J

rl"j is the average po\¡rer ínjected to subsystem i, M is the number of

subsystems connected to subsysÈem l, lil 1" the lnternal loss factor of

subsystem i. Note that 1n generat, lij # n¡i, rather nr, t, = n¡1 N3,

where N, and N, are the total number of modes in subsystem I and Jr-l
respectively.

These energy balance equatíons, one for each subsystem, establlsh

a llnk between the SEA model and macroscoplc quantities of the physical

structure. The SEA model can be viewed as a set of non-negatlve numbers:

the loss factors. They characterize the steady-staÈe behavlour of the

physlcal system over a certaln frequency band. The macroscoplc quan-

tlties are the average power lnjected lnto the subsystems, and the total

energy stored in the subsystems. They correspond respectively to

stimull acting on the system and to Ëhe response of 1ts varlous con-

stÍtuents. Finally, the línk itself is l1near.

Unfortunately, iÈ 1s not yet known lf the above expressions hold

for groups of modes whlch differ substantially ln terms of their

internal darnplng, frequency distribution and coupling to other modes.

Further progress ln the analytical analysis of broad-band multlmodal

lnEeractions is impeded by the unwíeldiness of the expressions ínvolved.

Further experlmental evidence ís therefore highly deslrable. In

particular, a general experimental Eechnlque, whlch could deÈermine the

loss factors of speclflc resonanÈ structures, would provide an obJective

test of SEA models. The development of such a technlque has been Èhe

purpose of this project and its general prlnciple 1s outlined 1n Section

2.3. The next section presents general comments about measurlng the loss

factors.
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2.2 Measuring the Loss Factors

The loss factors cannot be measured dlrectly. They are deduced

from measurements of other quantities, such as reverberation tíme, total

stored energy, pohrer lnj'ected, po\^rer transmltted etc... It is therefore

expected thaÈ experlmental errors wll-l comblne 1n a cumulative fashlon.

Glven a elngle subsyst.em (t,e. a group of sLmllar modee), Èhe

determination of the internal loss factor is, ín principle, a simpl-e

matter. In steady-state, the measurement of the lnjected por"t Pltj

and total stored energy E yields the internal loss factor n since

pitrJ=r ,. E

In a Èypical decay-rate situatlon,

E
c

u)n
dE
dr

A record of the decayíng stored energy E provides ¡ from the exponenÈÍal

rate of decay.

These apparently stralght-forward proeedures deserve further

comnents.

a) If Èhe rslmilart modes of the subsystem have subst.antlally

different danping coefficlents, Èhe two approaches should in general

yield different loss factors, unless the distribution of disslpated

energy among t.he modes ín the steady-state siEuation is ldentical to

that in the raveraget decay-rate situatíon.

b) The measurement of injected pohrer can prove qulte a challenge,

e.g. loudspeaker ln a reverberant room.

c) It 1s not always easy to decipher a multimode decay-rate curve.

Consequently, is ís not always qulte clear which method should

þe used, and often the choice results from practlcal consfderatlons.

Conslder noür several subsystems coupled together. Thls tlme, the

energy balance equations contaln several loss factors together. Decay-

rate exPerimenÈs lead to a linear system of first order differentlal
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equatlons. Sleady-state experlments lead to an al-gebralc system.

A combination of both technlques has been suggested (Brooks and

Maidanlk, 1977) involving ratios of steady-state energies and ratlos

of decaying energies. l[ purely steady-state apProach seems simpler

to lmplement. Measurements of the steady-state lnjected powers and

st.ored energles, for varlous power inJectÍon conflguratfons, result ln

a llnear algebraic system, which can theoretlcally be solved to flnd

all the loss factors of the system under examinatíon. Also, lt seems

more conaistent to estlmate steady-state guantíties from steady-sÈate

situatlons, slnce 1t fs not clear when the steady-state loss factors

can be used in decay-rate situations and více versa (Bies and Hamld,

1980). In some cases' one can isolate certain subsystems (e.9. by

severing or blocking the oÈher subsystems) in order to estimate the

internal loss factors from measurements on a single system' but this

fs not always physically possíble' nor justlfled.

In short, the so-called energy balance rnethod, whereby all loss

fact,ors are determlned from a steady-state energy balance system of

equations, should provide an attractlve and conslstent apProach to the

deEermination of the steady-state SEA parameters.

Unfortunately, earlier atÈemps have lead to negatlve loss factors

(a physical impossibllity of course), probably because of experímental

error accumulation (Lyon, 1975 p 2fB). In fact' to quote R.H. Lyon:

"The procedure for parameter evaluatlon just descrlbed 1s not an

establlshed rnethod... There ís no reported analysls of the senslEivity

of the derlved parameter values to small errors 1n measured energy and

input power values." The only successful evldence of this method was

glven by Hamid (Bies and Hamid, 1980 - Hamid' 1981). Thís evidence

seemed sufficlently encouraglng to justlfy a more systematic approacþ,

lnvolving in parÈicular the deslgn of a general experimental metho{ and

a sensitivity analysis. The next chapters are devoted to the presen-



tatlon of this work,

sectlon.

t2.
while the basic principle 1s outllned fn the next

2.3 DeducÈl-on of Loss Factors from Eners,y Balance Equatlons

The energy balance equatlons can be written 1n a general matrix

f orm,

(E) (n) = (r/ur")

For a system of order two, 1.e. conslsÈ1ng of two subsystems:

E -E n Plu
II I c

lll
-E E Plw2c2

n
2

[,'

T2

I

0

E
2

n
2I

n
22

If one is to deduce the loss facÈors from measurements of Ur, Ez,

P and P , four llnearly independent equations have to be constructed
T2

from the general case above. These four equations can result from

two different po!üer injection configurations. For a system of order N,

N2 linearly independent equations are requi-red to determine the N2 loss

factors, thusN differenE por^rer injecËion configurations must be analysed.

The loss factors are the solutions ilf the linear algebralc system of N2

equations. If the model has good physical slgniflcance, thls system

should never be Íll-defined. However, the system results from experl-

mental measurements of the injected powers P, rs and stored energíes

E, rs, and 1s therefore only an approximation Èo the actual system.t'
Consequent.ly, the solutlons of Èhat system are, 1n turn, approximations

of Ëhe loss factors. The relative error" + have the general form
rl

An

n
=a

AE

E
+b AP

P

-AEvlhere T- and are the relatíve errors on the average storedAP

P

energles and the average injected por^rers respectively. The experímental
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errors are ampllfled by the sensltlvlty coefficlent.s a and b. These

sensltlvity coefficlents are greater than unlty and depend on the loss

factors (they also depend on the experimental procedure, i.e. the power

injectíon confl-guration.) ttris means that certaln systems will be

harder to analyse than oËhers. In fact some systems mlght prove lm-

possible to resolve, when the SEA model fa1ls to represent the physlcal

reallty (Brooks and Maldanik, L977). The sensitívity coefflclents are

derived 1n the next chapter for a system of order two.

Alternatively, system [1] can be solved for E, and E, and the

relatlve errors on the average stored energies expressed Ëhus

The new sensitlvlty coefficients c and d indicate how the response E

of the sysÈem fs affected by the characteristfcs of the system itself

(f.e. the loss factors) and by the outslde world (1.e. injected power).

In other words, c and d determine whether or not the model l-s able to

AE

E
c

Àn

n

AP

P
d+

predict E accurately, gíven a knowledge & and AP

nP of the system.

Note ÈhaÈ here agaln, the sensJ.tívity coefficients depend on the loss

factors and the por4rer injectlon conflguratlon.

In sumrnary, the loss factors can, theoretically, be obtained from

the energy balance equatlons, provÍded that Èhe lnjected power and

stored energy can be measured for each subsystem. The limitatlon lles

ln the sensitivity coefflcÍents which amplify the experimental errors.

...ooo000ooo...



t4
EXPERIMENTAL PROCEDURE

3.1. The Baslc Prlnc1ple

Given a SEA system of order N (1.e. N subsystems), N2 linearly

l-ndependenÈ energy balanie equaÈlons are requlred to determfne the N2

loss factors from measurements of average broad-band lnjected powers ancl

sËored energles. Generally, one should measure N lnJected powers and

N stored energies simultaneously, and this should be performed for N

llnearly independent siÈuations. The latter condtÈl-on is achieved by

choosing N dlfferent power lnjectlon conflgurations.

A good cholce for Èhe N dlfferent por^rer lnJectlon conflguratlons 1s

Èo injecË porÀrer lnto only one subsystem at a tlme. Firstly, the N2

energy balance equations obtalned in this r,lay are obvlously llnearly

Índependent. Secondly, N - I fnput por¡/ers are known to be zero, and

this leaves only one input pohler to be measured. Thlrdly, if all lnput

porders are equal Eo zero but one, only one stored energy and the non-

zero lnJected por^rer need be measured sirnultaneously. Thls ls readily

proved by notlng that, although the values of Èhe stored energies depend

on Èhe non-zero lnjected por¡rer, the distributlon of these stored energies

does noÈ. Consequently, a por¡ter injection conflguratÍon, llke the one

just descrlbed, ís fully investlgated, simply by perforrnlng N dual

measurements, each consisÈing of the non-zero input por^rer together with

a stored energy E' where í = 1, .. N.

For a system of order 2, the 4 linearly independent equatlons

whlch result from the above method are:

/p n I/u
I

0/P/P -EEE
I

0EE lP'
2

EIP

-E' lP'26 26

E. lP.26 26

tl

Elp

n 2l

E. IP'

l0 2gI I c
0

0

(Iü ß

-E /p 28 Iß 2B tB
n

l2
0

l0 lcr

I 2
YYY

0

0
I

Y

-E' lP'lY2 ï

lP

26 26
n

22
r/u

c

t21
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where the subscrl-pts c,ßry and ô refer to dlstinct experiments, the

subscri-pts I and 2 ref.ex to a subsystem, the non-primed quanÈltles

correspond to the por^rer conflguratlon P, = 0, and the prlrned quantitles

to the porder configuratlon PI = 0.

It was the alm of thls proJect to construct systems llke system [2]

for a given resonant sÈructure. However, before dealíng wlth the

experimental aspects of this investigaÈion, Èhe next secÈion ís devoted

to t,he sensltlvity coefffcients arising from systen [2].

3,2. The Sensítivity Coefflcients

For the purpose of thlssectlon, system [2] can be rewrltten usÍng

a condensed notation:

-E

E

I
E

t
E

0 -E

E

2

-t!
2

I

0

0

E

n

n

II

T2

2l

I 2

nE

2

t31

E

TI

I

I

I
0

E

n 0

I0-E
2

A
n

L2A

^

n
22A

2 2

The solutlons of systern [3J are as follows:
E.-E22

t

E

n

n

E

2

E _8.
1tI

2I

where [= EE' -EE'.L2 2L

2
x

The loss factors, ¡ fl rI2
n and n are

22

E>.8'II
a function of other random varlables

x = f (urvrw ...)

can be approxímated by (Bevlngton, 1969):

2I
t I

greater than or equal to zero, and therefore

A>0; E'r.E t22
Conslder a random variable x,

urvrhl etc....

,The variance of x, o
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õz = o2 ¡ðx¡z a ozxu-du-v

+ 2o2u ,#, ,#, + 20

(*)' + "3<#12 
+ ....

,*,,#, * r+ tf"rtþ,12 +
U!ì7

where o'u, o?, and o2 are the varlances of u, v and w, and o3.r, o],o

2and o the covarfances between u, v and w.

The 4 loss factot" nrr, \Lz, nr, "tO nr_, ^r" functlons of 4

measured quantlt.ies: Er, Ur, Uí and E' . These quantltles are obtalned

by identical experimental procedures, and therefore present identlcal

statistical characteristlcs :

2 o2E
')

Uoo2
E

ú2
E E. E

t 2 I 2

E2 92 E'2 E'2 E2
l2l2

Moreover, these êxperiments are performed over diff,êrent tLme lntervalet

and are therefore uncorrelated. Thus, the varlous covarlances between

the 4 random varlables Ur, Ur, E' and B' are equal to zero. ltith these

slrnpllflcations, the varlances of the loss factors can be calculated,

and thelr relaÈive errors estimated as follows:

oz =onij

o2 tþj

[ry]'."n,[ff]'*2
E
I

+.[,\tr,]' *nu.þ]'
l' l' 2u 2'

n. .='al - E:ztlu]' - E''-r I lar. I -r 2
- L-

2o 2
E

xAE

E

n..'1J tt,rj E2 n\

g
1

X

I
ntj

,4



The sensltlvlty coefflclents, S' are Èhen given by

+82
2

f,n,..,
lâE,2
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,4

S

s

tll 22

of values b

resulÈs:

]'
I

nrJ
+

1j

Now define:

flrz \Zl
b

n n
II 22

These dlmenslonless parameters lndlcate the coupllng strength (fn the

SEA sense) between one subsystem and the other. For each subsystem'

they provlde a measure of the relatlve lmportance betr¡een the average

energy dfsslpated internally (as indÍcaËed by the l-nternal- l-oss factor

nii), and the average energy transmitted Èo the other subsystem (as

indlcated by the coupllng Loss factor nr, ) .

After some elementary (but tedlous) algebra, the sensltl-vlty

coefficlents are expressed thus:

b
2

b (1+b)
1I

(r+b)+b
T2

(1+b)
2

4b
I

+2

t+2
22

S S

S S andS

S
t (1+bi)(r+b2)-bl o r)'

b (1+b (1+bì)+b2(r+b2) ,4
) b

2

2TT2

{
l+2

S

l( 
r+br) ( r+b2) -br o r)'

(1+br) (t+b2) 
[r1+br) 

(1+or)*oro,

[cI+br)(1+b2)-oror]'

are dlsplayed in Figure 1 for a reallstle range

Several interesting points arlse from these
T2 2T

and bL2
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s1I

12

6

3

s22

bt-lo ' o

br-3 . O

E1 .0
.3

to.

10. 0

b .I

bI=0. I
b1-1 . O

br-10, O

bt=10 ' o

bt'3.0

I
3I3

I

6

3

t2

stz'set

30 1.0 3.0

L2

9

6

3

l¡,.I. O

ul-0. I
bI=O. I

0.3 1.0 3.0 10.0

Fíg. I Sensitivity CoefficlenÈs versus coupling strength b2

bI = 1I2 / TILI b2 = t2t / nzz
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a)

b)

c)

S and s
I1

S =S
t2

The S. .1l

are always larger than 1.
22

1s a1-ways larger than / 3
2T
ts are small for b, and b, small. They are large for

large.
2

d) S is very sensltlve to b r¿hen b 1s larger than 1. It fs
II I I

not sensitlve Èo b , even for b large. Slmllar results aPply
2T

for S
22

e)

b andbi

S S ís sensltlve to b or b band
12 2I

larger Èhan 1. Thus

small.

I
ifb orbt2

, 
only if b

ls small, S

are

remalns
2I

l2
S

2T

A general conclusion ís that the loss factors of strongly coupled

subsystems (1.". Orand b, large) cannot be resolved. A1so, 1f only one

eubsystem fs strongly coupled, ln the aense of havfng a large b, the

corresponding lnternal loss facÈor has a rnuch larger aensltlvity co-

efficfent than the other three loss factors.

Unfortunately, for systems v¡lth more than two subsystems, the

analytical determinatlon of the sensitlvlty coefficfents becomes very

cumbersome so that any generallzation to N subsystems does not seem

possible. A computer slmulation might provide the answer, but thís

was beyond the scope of this project. However, the general Ërends,

established for a system of order two, should prove useful when

dealing with more complex systems.

3.3. A Descrlption of the Experiments

3.3.1.

The experimental principle described in Sectlon 3.1. üIas applied

to a slmple mechanlcal system under broad-band excitatlon. The system

chosen consisted of two thin steel plates welded along two edges aÈ

rlght angles to each other (the system is described in SecËlon 3.4).

The two subsystems considered were the flexural modes of each plate,
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taken f rom a f requency band Ar¡ centrecl at ûJc.

The stored energies q/ere deduced from the mean transverse square

acceleration, according to:

M <a2 (o) >
x t[=

62

where E is the average flexural energy stored ln a thfn homogeneous

plate of mass M at a radian frequency ur, <a2(o)t*ra t" the space and

time average of the Èransverse square acceleration. <42(uJ)t*ra t""

estlmated from measurements of the transverse acceleratlon, using

accelerometers, at m polnts spread randomly over the surface of the

plates, according to:

.a2 (o) t
xrt

The lnjected powers P were deduced from the poinË-force f and

poÍnt-acceleration a at the point of excltation, according to:

P=<f [".dtta

f and a !Íere supplled by a force-acceleration transducer lnserted

between the elecÈro-mechanical power source and the polnt of excltatl-on

on the plate. In order to obÈaln meanlngful average quantltles, power

hlas successively lnjected at 5 different locatlons on each plate

(Cremer and Heckl and Ungar, 1975 pp. 291-297>.

3.3.2.

In a first attempt to measulîc the Ínjccted pcr¡rers and stored

energles, analog technlques hrere used. A substantial amount of tlme

was devoted to this approach, but for reasons glven below, 1t was

evenÈually abandoned. It 1s therefore felt, that only a brief account

of the techniques used, and the problems encountered, 1s justlfled.

The point-acceleration was integrated, then multiplled by the

point-force to provlde the instantaneous inJected po!üer. The sguafe

m1.* rlr
.aî (r¡) r r.



2r.
Èransverse acceleratlon was slrnply obtained by squarlng the transverse

acceleration. Both operatlons (i.e. rnultíplylng and squarlng) were

performed by AD 530 integrated clrcuits (rAnalog Devlces' serfes). The

instanÈaneous lnjected power and square tranaverse acceleratlon were

then tirne-averaged through long tlme-constanÈ lntegrators. These slowly

varylng signals hrere then sampled and averaged by an Intel - 8080

mlcroprocessor.

As one would expecÈ, Èhe main problem encountered rras associated

with Èhe measurement of Èhe injected power. The signal to noise ratlo

was rather poor after lntegration of the point-acceleratlon, even though

the original, severalmlllt-Volts strong, point-acceleratlon r¡/as first

anplifíed, then integrated, and flnally high-pass fíltered. A1-so, the

1nÈegrator lntroduced a small phase shift which could only be approxlm-

ately compensated. In comparison, Èhe point-force signal, typical-ly one

Volt strong, reached the mulÈiplier in fts original conditlon. There

were other problems assoclated with thls technique. From a practlcal

viewpolnt, the same experiment had to be repeated as many tlmes as there

were frequency bands of lnterest, since the frequency resolutfon was

equal to the bandwidth of the injected pohrer. Another repetftion factor

was imposed by the llmited nurnber of analog channels availabl-e. In short,

the flnal result !ùas a rather tedíous and inaccurate procedure.

Nonetheless, this procedure was applied to the two-plate system

descrlbed in Section 3.4. Eleven l/3-Octave bands centred at 2OO Hz,

250 Hz, 315 Hz, 1600 Hz and 2000 Hz wete investigated. In these

bands the mode count ranged frorn 20 modes in the 2OO Hz band to 200

modes Ín Ehe 2OOO Hz band. On each plate, power was lnjected at 5

dlfferent locatlons and the transverse acceleratlon r¡tas measured at

16 different locations. The ti¡ne averagcs were performed over 20 second

lntervals. Only 2 anaLog channels were avaflable, one for the lnJected

pohrer and the other for a single transverse acceleratíon. Consequently,
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19.6 hours of acÈual- sarnpling üIere required. The energy balance

equations obtalned in this htay are presented in Table 1, and the

resulting loss factors in Table 2. Upon examination of Table 2, the

2OO Hz and 250 Hz bands seem plauslbte. The 315 Hz, 4OO Hz and 630 Hz

bands appear rather doubtful in conjuncÈion wfth the flrst two bands.

The six remalnlng bands exhlbit negative loss factors, without any

distinct paÈtern, and were therefore definítely unsuccessful.

Clearly, there !ùas room for irnprovement. The analog clrcuitry

needed to be revfewecl, wlth partlcular attentlon to low frequency nolse

and phase dístortion. Also, more channels were requlred. However, the

lack of flexibility in the frequency domaln seemed unavoldable. These

r.rere serlous obstacles to overcome, for posslbly lltÈle beneflt. It was

therefore resolved to abandon the analog approach, and d1glÈal technlquea

were adopted.

3. 3. 3.

This new approach had many advantages over the prevlous one. The

complex analog clrcuiËry was replaced by a serles of arnplifiers, one

for each channel. The ampllfied analog slgnals (the polnt-force'

polnt-acceleration and transverse accelerations) were then digltlzed

by a multi-channel data acquisition aystem. The spectra of the injected

porÀrer and square transverse acceleratlons were obtalned from these

digitized signals by a series of computatlons. Slnce Èhe spectral

quantities qrere available, the frequency resolution could be made less

than the bandwidth of the injected po\¡/er, thus reducing conslderably

the required number of experiments.

The data acquisition and data processing system is descrlbed in

Chapter 4, and its performance is analyzed in Chapter 5. It was applied

to the test structure of Sectíon 3.4, and loss factors \t¡ere deduced

successfully from the energy balance equaÈions, over a frequency

range of 5 Octave bands.
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Ll3 - octave

Band [I1z]

TABLE I

ENERGY BALANCE EQUATIONS

E [s]
2

x10

E'I s]
I

x10

E'I s]
2

x10

E Is]
I

xl0

200

250

31s

400

500

630

800

1000

1250

1600

2000

N.B. Dlvide sol-utlons by ur to find loss factors.
c

3.89

3.20

3.44

3.06

2.58

4. r1

2.24

2.80

5.52

2.LO

2.78

3. 07

2.45

3.47

3. 10

2.86

2.43

I .8t

L. 50

r .38

I .48

r.4s

L.79

1-. 55

3.34

2.90

3. 30

I .49

o,79

L.73

10.37

20.80

6. 85

L.92

r.43

2.66

L.94

t-. s8

1. 36

2.82

1. 19

L,22

1.00

t.28
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Ll3 - octavè

Band lnr)

200

250

315

400

s00

630

800

1000

r250

r600

2000

n tl
x 1000

1.9

2.O

1.3

1.1

t.4

0. 87

t.2

TABLE 2

LOSS FACTORS

1.8

1.ó

4.4

2.0

2.3

0.43

3.1

0.87

\rz

x 1000

t.2L.7

L.7

5.6

3.0

4.8

o.47

0. 87

1.3

1.0

0.21

o.22

0.30

1.1

2.3

1.1

x

x

x

x

X

x

X

x

x

XXx

n
T2

x 1000

n
2T

x 1000

N.B. a txr indlcates a negatlve value.

o.94
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3.4. A Descrlptlon of the Test Structure

The test structure consisted of two rectangular thin steel plateg

welded along two edges, at rlght angles to each other. The plates are

described in Table 3.

TABLE 3

Plate 1 Plate 2

Size z L.2m x l.2m

Area : I.44n2

Thfckness : t.00mur

Mass : 11.10 kg

Modal denslty : 0.49 modefHz

Critical frequeney : 12.7 klHz

,, : 89.80 tgls *

Density z 7700 kgln3

.L : 5050 m/ s tr*

Size : 0. 9rn x 0. 6m

Area : 0. 54rn2

Thickness : 0.40rnm

Mass : 1.66 kg

Modal density z 0.46 modeflHz

Critical frequency : 31.8 kHz

Z^ z L4.37 kg/s x
P

Density z 77OO kg/rn3

"L : 5050 rn/ s ,r*

:t Zn is the space and frequency-average polnt-ínput-lrnpedance (Beranek,

I97I). *o., ís the speed of longitudinal hraves.

The common join between both plates !ùas 0.9rn long and included one

corner of plate I and one edge of plate 2. Two strings r¡rere attached

to an edge of plate I in such a r¡/ay as to have both plates hanging

vertícally. The plates ú/ere not constrained in any other hray. The

configuration is i-llustrated in Flgure 2. Five holes r^rere drllled at
random ln each plate to provide attachment points for the power lnjection
device. Another 16 holes l¡/ere drllled at. random in each plate Èo provide

attachment poínts for the accelerometers. By rdrilled at randomr is
meanÈ that no specific location was chosen, although two criterions were

used to determine the overall pattern. The first hras that no t\^ro holes

would be closer to each other than lO cm. The second was that alL holee
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$rould be aÈ least l0 cm away from the plaÈe edges. All holes were

4 rnm in dlameter,

The accelerometers and Èhe poü/er lnjectlon devlce were bo1Èed

to the plates. Nelther plate üras artlffclally damped.

.. .ooo000ooo...
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DATA ACQUISITION AND DATA PROCESSING

4.L. Analog Slgnals

Two physlcal quantitles hrere to be measured slmulÈaneously: the

average broad-band point-lnjeeËed Pol^rer and the average broad-band

stored energy. The injected por^rer P was deduced from the point-force

f.. and point-acceleratlon a. sensed by the force-acceleratlon trana-tr Er

ducer. I'or a glven radian frequency 0)t

P (o) <Í. (o, t) I aar(urrt). da tatr

r.¡here . tt l" a tirne-average quantity.

The stored energy E was estimated from the average of the trans-

verse aceelerattor" 
"Or_, 

recorded on a plate as follows:

E (o) M lP
I

c lIì
l-= I "01-, 

(ur, t)
È

M ls the total mass of Èhe correspondlng plate. The plates were driven

with white nol-se ln octave bands centred at 125 Hz, 250 Hz, 500 Hz, 1 kHz

and 2 kHz. It was consldered that B transverse acceleratlons (i.e. ¡n = 8)

would provlde an adequate average. Hence a total of 10 analog slgnals

nere consldered wiÈh frequencies ranging frot $ = 88 Hz to 2000 * {2 =
/z

2,8 k]J.z.

4.2. The Hardware

A lO-channel, B-bit analog to digital (A/D) converter with a

maximum sampling rate of 6250 Hz per channel was used to dlglÈlze the

10 analog signals. B-bit accuracy was thor.rght ample for the Purpose'

and 6250 Hz being greater than 2 times the highest frequency component

(i.e. 2 x 2.8 kHz = 5.6 kllz), no aliasing resulted. the A/D converter

was actlvated by a l6-bit word rníni-computer: LSI - lI/02 with RT - 11

operating system. The total core memory available r¿as 24 K words, (N'B.

lK = 1024 = 2I0) equlvale-nt to 48 K sarnples by packlng two 8-blt samples
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in one word (i.e. one sample per byte). Mass storage was on single-sided

double-density 8-tnch floppy disks, each provldlng space for IO times

the core memory. For processing purposes, the data was copíed from

floppy dlsk to 9-track magneÈic tape and transferred to the 60-blÈ word

hfgh-speed unfversity conputer: cyBER - 173 wlth a Network operatlng

Systern/Batch Envíronmenr (NOS/BE) .

4.3. The Softw"r" t

4.3. 1.

The spectra of the average injected po!üer and the mean square

¿rcceleratf on were estlmatccl From the tlutcr serles, ustng a Fast l¡ourler

Transform algorithm (FFT) 1n conjuncËion with a Kalser-Bessel window.

The Fast Fouríer Transform ís a well known approximatÍon to the contlnuous

Fourier Transform, and together with aKaíser-Bessel wíndor¿, tleakaget ls
reduced to a mlnlmum.

4.3.2.

The mean square acceleratlon specÈrum is given by the power

spectral densíty (PSD).

PSD(ur) = . ^r1(,r,t)tr
or

PSD (rr.l) = Re{Apl (o)

using the complex vector notation, and where r*r clenotes the complex

conjugate operator.

Consider X,, p = 0,1... N-l (N a power of 2), the FFT of x ,P 
\_. _ rv.rv4 an r r vr 

m

fr = 0,1... N-1, whi-ch is Èhe time series obtalned by sarnplíng aor(ort).
Apt(r) is approxirnated ¡y xp Èhus:

An1(o) = xo Apr(no)=r*o P= N/2

f.
s

P=P*T ( f" = sarnpling rate)

_L
2

Ao, (ur)'kÌ

I'2...

0

It follor¡s that:
'l
See Appendix for more detalls



PSD (o) + ne {Aor(o) Apr(o)*} = } *" i*o "oo 
]

pp

30

169)

ls

PSD(r¿p) =]n"{Apr(np) * *
oot (n ) Ì =2Re {xp

x ]

Xn 1s computed uslng an N/2 - long FFT computation (Brlgham, 1974 p,

at the expense of some rearranging of the resulÈs. Finally, PSD(CIp)

multiplied by a quantlty called tparsevalr, in order to satisfy

Parsevalts theorem whlch states that

N-1
l*rlz = I X 2

p=0

and to make up for the loss of energy lmparted when windowíng the signal.

rparsevalr ls then given by

N-1

p
_t

N2

. N-1Ir.
ñ ,"lo

N-1
T

m=0
x

m
parseval

x
m

. wlndow (*) 12

where window (m) represents a value of the wlndow functlon.

4. 3. 3.

The average lnjected power for a glven radlan frequency rrr ls

P (ur) = . f a, 
(r¡, t) I ^rr(rrr, 

t) . da t,

Thi-s can be rewrltten, using the complex vector notatlon and Fourler

Transforms,withi=Ã

I 2

1

N2

m=0

t Aa. (t^r)I
u)

1

2

*
P (o) ne{¡' (u, ) )tr

Consider Fp "rd Ap, p = 0,1... N-l (N a power of 2), the FFTrs

of f and a , rn = 0,1... N-l which are the time series obtained bymm'
sarnpllng f a. 

(o, t) "rd .a, (t¡, È) respectlvely. Fa, (tr) and Aa, (rrl) are

and A thus:ppapproximated by F



31.

F , (o) Fot

(

Arr (o) A
o

)=2A Pp t,2. . . N/2

t

trr(no) = ,to

f
f¿ =PX

A(nÈr' p

s
NP

It f ollor¿s that,

P (r¿P) =**" {zu¿p
j
CI

p
oo)*\ =2Re{ro.(#Ap)*}2

F and
P

p = 1,2... N/2

A are comDuterl from f and a . using one N-long FFT computaÈion,P ' m ----m'

at the cost of some sortfng of the results (Brigharn, Lg74 p. L67).

Finally P(ap) 1s rnultipli.ecl by (parseval r x parsevat 2)h in order to

satlsfy Parsevalfs theorem, and to make good the loss of energy

imparted when windowing the sígnals, where

2

parseval I = I
N2

f
N-1
I mom=

N-1
I mm-0

a 2

parseval 2 =
N2

| "* wlndor¡ (t) l2

4.3.4.

The choice of a partlcular wlndow has a conslderable influence on

the final result of an FFT computation. Fundamental aspects hrere

found 1n various texts on signal processing (Brigham, Lg74 - stanley,

1975 - Tretter, L976). A very detailed review of data wlndows r¿as

given by Harris (Harris, 1978). Essentlally, the best choíce amounts

to a reasonably narror{ main-lobe and very small_ side-lobes. This ls

illustrated 1n Figure 3. One such windor¿ ís the Kaiser-Bessel window,

f. window (r) l2

N-1
i m

m=0I
N-1

I
L

m=0
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ürlth a paramerer of 3 (Harrls , L978 - Tretter, ]-976>. Thls wlndow

hras used throughout this project.

4.3.5.

The ¡nodal cleneity'of a thin homogeneous plate does not depend on

frequency. Thls motivated the cholce of a constant freguency resolu-

tlon. The wldth of one tbint, or frequency polnt of an FFT spectrum'
f.

ls glven by t' where f" ls the sampllng rate and N ts the number of

samples. Thus the htghest constant frequency resolutlon was dlctated

by the largesE number of sample", N,o.* (a power of Èwo because of

the FFT algorlthm), compaÈíble with the LSI -l1/02 memory sIze.

Bearfng 1n mind that 48 K samples could be stored ln the mlni-cornputer'

and thaE l0 channels were required, Nrr* was found equal to 212 = 4096.

Consequently, time series as recorded in Table 4 were used. The width

of one tbint r¿as 1.5 Hz 1n all cases.

TABLE 4

Number of Samples

N

4096

2048

ro24

5L2

256

Octave Band

Centre Frequency [Hz]

2000

1000

500

250

125

6250

3L25

1560

780

390

Sampllng Rate

f 
" 

[ttz]
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Unfortunately, the htidth of one btn is far from being the

frequency resoluLion of a sPectrum derived front an FFT computaÈ1on.

Firstly, the window has a certain bandwidth, typically 3 bins (Harris'

1978). Secondly, owÍ-ng to the random nature of the measured slgnals,

and the poor varlance of the FFT spe-ctral estimator' many sPectra

computed from uncorrelated time serles must be averaged ln order to

approach the mean r^lith a reasonable degree of confidence. The number

of such specÈra can be reduced by grouping several blns together.

Clearly a compromise must be sought, slnce a high frequency resolutlon

and a small amount of data are mulually excluslve.

4.4. ComputatÍonst

Consfder one tlme record as the samplíng of the l0 channels:

I tíme serles for the transducerrs point-force, l for the transducerts

polnt-acceleration and 8 for the 8 transverse accelerations. The FFTrs

of the t¡¡o time aeries from the transducer I^/eIe combined in the

frequency domaln, as explalned in section 4.3.3., to yíeld one FFT

spectral esÈlmate of the injected power. The PSD!s of the B time

series recorded on one plate, computed as outlíned ln sectíon 4.3.2.,

\^rere averaged to yíeld one FFT spe-ctral estimate of Èhe 8-point stored

energy. Thus, one time record produced an estímate of boÈh the

injected poüIer and the B-point stored energy. A maxÍmum resolution

of 20 modes r4ras thought appropriate, which meant that a minímum of

30 l¡íns could be grouped together as each platers modal density was

about 0.5 mode/Hz. Even then, it was found that about l-00 time records

r¡/ere required for the arithmetic averages of both spectral estimates

to fall within 2.5% of their mean. Such a measurement of the lnjected

poqrer and B-poinE stored energy (i.e.100 time records) v¡as referred

to as one experimenEal poínt, when performed over the 5 Octave bands

of interest. It was made up of 5 x I0O ttine recordsr, or 5 x 100 x

10 | tíme series | .

+'See Appendlx
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The ratios of the store<l energy sPectrum over the corresponding

ínjected por¡rer spectrum, were then averaged over the ffve drívíng

poinÈs of each plate. This Iì/as done four times, as explained 1n the

previous chapter (section 3.1), and the corresPonding four sPectra

hrere used to generaÈe one linear system of four equations for each

frequency poinÈ. The solutlons of one such system \Àlere the four

loss factors ü/hich characterized the flow of energy over the correspond-

ing frequency band (i.e. the band contalníng the blns which were

grouped together).

The sequence of operations jrrst descrlbed was fmplemented fn six

steps (some of the computer programs, written tn PASCALT are glven Ín

appendix) :

f) Together with information relevant to the actual experiment

(e.g. sarnpling rate, arnplifier gains etc ...) 96 tirne records hTere

collected on floppy dlsks for each octave band tn turn, usfng an

LSI - LL/02 computer. This amounted to 7.6 l"lbytes (one sample per byte)

per experimental point, which fitted on 16 floppy dlsk sldes. The

computer tÍme for one experimental point was about 55 rnins, which

included only 5 rnins 16 secs of actual sampling, the difference belng

the time taken to l^rrite on disk. The 20 experimental polnts took a

t.otal of 18 hours 20 mins computer time and amounted to I52 Mbytes

of data.

2) The rar¿ data was copied frorn floppy disk to 9-track magnetic

tape at a densíty of 800 BPI. One experlmental point (7.6 Mbytes)

fitted comfortably on a 2400-ft tape, using 512-byte blocks.

3) Each data tape t^/as then copied (in dupllcate) on the CYBER.

Each copying operation used 18.5 secs CP (Central Processor) and about

27 mins 30 secs PP (Peripheral Processor). This step naturall-y required

tr^ro tape units (this takes time on a multi-user systeml).
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4) Each experlmental polnt r^r¿s Èr¿lnsferr:ecl from 9-track tape

to the CYBER's mass storage, and the 16-blt 2rs complement lntegers

hrere converted to 60-blt inÈegers in the process. Each transfer took

3 mins 51 secs CP and'about 15 mlns PP.

5) The tlme records r^/ere processed and averaged. Each experl-

mental point took I hour 26 mins CP and about lB mins 45 sec PP'

givlng a total oÍ 28 hours 40 mlns CP for the 20 Polnts (thls however,

included the unpacking of the data).

6) The linear systems were constructed and solved.

The programs which performed these 6 steps were mainly wrltten

ln PASCAL (cf. Appendix). Although the efficiency of the code generaterd

by a present-day PASCAL compíler is not. as good as' say' an optimised

FORTRAN compíler, the c.omputer tlmes quoted above are representatlve

of the amounÈ of tnumber crunchingr required.

In spite of the many months spent to reach this partlcular hard-

hrare-software combination, it is believed that these computer tlmes

are only upper bounds of what can be done. Dedicated hardware, machine

language, improvecl software techniqtres, faster processors etc

of fer at.tractlve future lmprovements. Consr:quently, 1E seclllls approp-

rla¡e to conclude this chapter by dlscusslng some :Lmprovenents whlch

readily come to mind.

4 .5 . Discussion - Improveme-nt s

Stepl-2

Most of the tlme I^las sPent outputting the sampled data to a

storage medium. The total sarnpling time was less than 2 hours for the

whole experlment (compare this \nrith the U2É t,orrts of the t analog

rnethodt ). Thus a good lO-channel analog tape recorder could reduce

the time spent tin situ' to a few hours. The sarnpling device (i.e.

the LSI - n/Oz) coulcl be fitted wlth a digltal tape unlt, thus avolding

the tedlous re¡tlacemerìt o.F flo¡r¡ry dlskg and suppresslng etep 2 erntlrerly.
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Step3-4

5l2-byte blocks were used on all magnetic taPes. Longer blocks

would fmprove the storage capaclty of the tapes by reduclng the number

of IRGrs (Inter Record Gaps). The unpacklng and lnteger converslon

could be wrl-tten 1n machlne language and performed togeÈher at this

stage. This would probably reduce Lhe processing tlmes of step 5'

which íncludes the unpacking, by as much as 25%.

Step 5

The essence of this step is to deduce spectral quantlties

accurately from the least amount of data ln the shortest posslble tlme.

Using the FFT algorlthm ls a well-known, fast and efflcient way of

approximating the conÈlnuous Fourier Transform. A reputedly good

wíndow was used throughout the computatlons, namely a Kaiser-Bessel

wlndow. Unfortunately, when dealing wtth non-determlnlstic quantltles,

the number of uncorrelated time serles required to reduce the variance

of an FFT-bas'ed estimator ls very large. The use of overlapplng tlme

series could reduce the amount of data significantly, provlded thaÈ

the overlapping records are almost uncorrelated. For instance ' 5O7"

overlap, and yet less than l0% correlatlon, can be achfeved with a

suitable wlndow, e.g. Kalser-Bessel 3 (Harrís, 1978). In the case of

the P.S.D., where the phase inforrnatíon is not needed in the frequency

domaln, the Maximum EnÈropy Method (MEM) could be used successfully.

The Maximum Entropy Method provldes a P.S.D. estlmator of beËter

variance and frequency resolution than its FFT counterPart (Haykln'

L978). However, the computation must be performecl in real arithmetic'

and this 1s a dlsadvanEage Íf a high-speed computer is not avallable.

The Maximurn Entropy Method v/as never actually used when processíng the

data for thls project, basically for two reaaons. Firstly, the FFT

algorithm 1s at present more familiar to the engíneering eommunlty.

Secondly, an FFT computation \¡/as required anyr^tay to evaluate the injected

por^rer. However, Èhe l"laximum Entropy MeÈhod was considered at an earlier
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stage, and deserves a brlef mentlon hefe. A programtbt".d on the

comprehensive (and sirnple) fl.owchart by Andersen (Andersen, 1.974>,

was developed to galn some understandlng of thís method, The power

spectra obÈained by MEl"l were smoother, with a better variance and

accuracy than those obtained by FFT, especially when dealing wÍth

random signals. Ffgure 4 shows FFT and MBM at qTork on some slmple

slgnals.

Step 6

The ratfos of the stor:ed energy to the injected pohler, E/P ' 
qlere

averaged over the 5 driving locatíons of each plate 1n order to

construct the energy balance equations. Instead, one eould use the

least squares prínclple to flnd the system which flts the set of data

best (Bles and Hamld, 1980). This was tried on one of the flve Octave

bands, as explalned ln section 5.4. Dlfferences of less than l0% ln

the loss facÈors resr¡lted.

4,6. Summary

A digital rnethod ÌÀ7ãs developed to measure the spectra of the in-

jected por^¡er and the 8-poirrt stored energy. The method used the Fast

Fouri-er Transform algorithm to compute Èhe deslred spectral quantltfes

from sampled tlme series. It was applied to the two-plate structure

of section 3.4. About 150 Mbytes of data htere coll-ected in 20 hours

on a mlnl-compuLer, and processed 1n 30 hours on a Ìrlgh-speed computer.

The data processlng lnc1-uded 86,400 FFT computaÈlons. Consequently,

large amounts of data and long computing times seem ínevitable, and the

practicability of the method clearly depends on the availabilfty of fast

data logging and data processing facílities. Hence it 1s hoped that the

hardware and ¡he software presented in this chapter, as an experirnental

tool, will provide an lnformaÈive startlng point for future lnvestiga-

tions. Havíng now dealt with the ímplementation of this digital

+
See Appendix
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t,echnique, the followlng chapter 1s dedfcaÈed to the examfnatfon

of the guantltative results. In particular, the loss factors w111

be examined in detafl.

...ooo000ooo.. .
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EXPERIMENTAL RESULTS

5.1. Tíme Variance

As explained in the previous chapter (section 4.3.5.), given a

frequency resolution, many uncorrelated spectral estimates must be

averaged in order to achleve reasonabl.e accuracy. The higher the

desired frequency resolutlon, the larger the amount of data requlred.

The quantlties measured on the test structure were of a random

nature and thelr spectra exhlblted resonant peaks. These two

attríbutes htere responsible for the large amount of data. A frequency

resolution of 30 bins was chosen, which corresPonded to 20 modes.

This guaranteed a good statisllcal average of the modal quantities 
'

wlthouÈ loosing much ln terms of frequency resolutlon. The required

amount of data I^IaS determined in Lhe following manner. Power was

injected ínto plate 1, and X time records !üere sampled on plate I for

each of the five Octave bands, according to Table 4 of the prevíous

chapter. After some computations (see section 4.4), X spectra of the

power P inJected into plate 1 and X sPectra of the 8-poínt energy E

stored in plate 1 were avaÍlable, wíth about 25 - 30 bins grouped

together. Consider Aor, the average of n uncorrelated spectra, then

1im
m+@

lin
m*-

A
rrrl lim

m->æx I00
AI m

ô 0
A

m

A=Am actual-

m

or

In other words, A* is an asymptotically unbiased estlmator. Table 5

presents the behaviour of ô,n correspondíng to the averages of the X

spectra of E and P for the five Octave bands. Taktng a deviation of

up to 5% as an acceptable error on the ratio E/P corresponds to the

ô = 2.5% errtry irt Table 5. Thls deCermlned the cholce of about 100

Ëi¡ne records.
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5.2. Space Variance

Each plate of the tesÈ structure was drlven at five different

points. The energy balance equatlons Írere constructed from the

four (22) average válues of the correspondfng five E/P ratlos. As

mentioned earl-1er, one rntght prefer to constrrrct the llnear aystem

which fits the avallable data best, in the least aquares sense.

Thls approach will be examlned briefly ln a followlng sectlon. !ühich-

ever r{tay is chosen, five E/P ratlos \^rere determlned experimentally,

thelr on1¡z dlfference being thr: power lnjection locatlon, and lt 1s

tnformaÈive to examine the spread of these flve ratlos around thelr

mean. Before however, iÈ must be reminded that, glven a frequency

resolutlon of r blns the E/P ratlos are given by

. <E>

<P> r

and not by

E

'Ptt

where <>- indicates that r blns are averaged together. The normalizedr
Btandard deviatlons oo of the flve E/P ratLos are presented ln Table 6,

uslng the condensed notatlon of sectlon 3.2. (see systern [¡], Chapter 3).

oo(x) being defined as follows:

.mlr
= - ) x.* tlt r-

x

" 
(*) = [* ,i, (xi ,r,)'

o 
(x) o (x) x rooo

x

5.3. The Loss Factors

5.3.1.

As a result of the experimenÈs outline,d in the previous chapters,

the tesÈ structurets energy baLance equations were determined over
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Frequency

LHzl

oo(E, )

I7"l

o (E)
ol oo E

2 o 2

Izl

tt0
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r99
241
287
33r
376
420
464
508
552
s97
64r
68s
7ll
778
825
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919
966

r0l4
l0óI
I to8
I r55
1202
t249
t296
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I t9r
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I6l 3
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*
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7
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5
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a
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5
7

3
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4
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9
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4
7
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6
7
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I
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I
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1.4
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Frequency

lP.zl

oo (ur))
t

(E
o

TABLE 6.b.

40 ¡nodes (60 bins) together

o

I,T¿I l%l

I ,r t : between 25 and 30

r**t:over30

)(Eo
o

oo (E -)
2

133
221
309
398
486
575
663
751
840
928

1016
I 105
I 193
t282
I 370
1458
Is47
1635
1724
IBT2
1900
1 989
2077
2166
2254
2342
243r
2519
2607
2696
2784

t%) liÁ)

10.

16.
11.
14.
15.
15.
18.
t7.
15.

5

7

4
2

8
7

4
1
4
9
7

I
0
7

6
2

7

l_

7

2

.7

.3

.8

.5

.5

.3

.7

.8
,2
.2
.9

9
7

r4

16
l0
26
28
37
23
13

II
9
6

r4
23

7

22
t4
r4
19
T2
16

*
*

?k*

5.7
12.8
5.8

r8. 6
L3.2
2.9

t7 .9
1r.1
14.3
2L.7
15.7
10.1
9.0
6.L

T2.B
13.2
16. 6
2.I

12,2
6.7
8.0

15.8
* 26.2

t3.7
9.5

23.6
t6.7
2r.4
6.9

13.4
14.5

5.0
L2.O
5.3

r0. 6
13. 5
8.8

10. 1
13. 5
18. 7

* 26.0
13.9
14.6
LO.4
11.4
15.0
1I.I
10.0
9.r

L7 .7
14. 5
19 .0
9.4

L4.3
r< 25.6

9.7
22.3
18. 6
10. 5
L6.2
t4.6
11 .5

9.8
L6.7
2r.o
9.2

13.2
22.5
r8.9
2r,6
27 .2
20. 8
13. B

22.L
11.1
6.3
5.7

22.r
16. 9
14.2
14.I
26 .:)
18.8
13. 6
11.3
2t.9
20.7
11 .9
30.0
3.1

IT.4
Itt.9
IB.6

*

*

**
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Frequency

lnzl

265

442

6L9

796

972

LL49

t326

1503

1680

1856

2033

22IO

2387

2563

2740

o E)

1,7"1

(Eo(

TABLE 6.c.

80 modes (120 blns) together

o (E' )I

l%l I%l

between 15 and 20

over 20

) o (E')
2

Í%l

7.5

8.3

14.2
¡b* 23. 5

¡r. 19. 1

7.9

ll.2
* I5.6

r3.9
8.4
7.4

L4.3

13.9

4,6
s.5

o I oo2o

l*l

l**l

10.6

'k 18.4
?t 15. 4

5.6
lt_. 9

23.3

9.9

**

7

I
7

5

5.

13.

11 .8

5.8
lr'r, 24 . I
** 23.0
rt 15.

tz.

9.1
13.5

7.2

7,I
10.8

7.9

5.5

9.1

s.8
s.4

tt 19.2

9.7
* tB.1

t2.9
8.1

8.5

9.5

7.3

6.9
¿t 17 .2

10. 4

I?_.3

9.7
11.8

10. 3

8.0
14. I

¡k 18. 5

4.0
9.0
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the flve Octave bands centred at I25 llz, 25O Hz, 500 Hz, 1000 Hz

and 2000 Hz. Groups oL 20 modes were considered first (i.e. the

maximum frequency resolution), then groups of 40 modes and 80 modes.

The energy balance equatlons and the resu1ting loss factors are

presented in Table 7 and B respectlvely. Note that the solutions of

the energy balance equatlons (see system [3], Chapter 3) presented in

Table 7 musL be divlded by rr-r., the cenLre radlan frequency of the band,

ln order to obtain the loss factors of Table B.

5.3.2.

The fírst poÍnt of interest hras that the group slze dld not

affect the loss factors substantially. The resulÈs obtained for B0

mode groups (Table 8.c) are approxlmately the arithmetic average of the

results obtafned for 40 mode groups (Table 8.b), and simll-arly, 40 ¡node

groups correspond to the average of 20 mode groups (Table 8.a). The

80 ¡node group loss factors (Table 8.c) are presented graphtcally in

Figure 5. Note the use of llnear scales. A few remarkable points

are apparent from Table I and Flgure 5.

a) All loss factors have the same order of magnftude and do

not. exhLblÈ a strong frequency dependence.

b) There are some negative results, but for nrr_g-¡rly. (1.e. the

lnternal loss factor of the large plate) . Moreover, except for one

isolated section, the negalive values are concentrated in the 2O0O Hz

band.

c) The loss factors present a rpeak' in the 700 - 1000 Hz

interval. n-- presents some negative values in this range.
1I

d) n decreases steadily from 1.5 x l0-3 to 0.5 x lO-3 over
t1

the frequency range I25 - 1500 Hz, and is the smallest loss factor.

e) n^ does not diverge much from an average value of about
22

2.0 x 10-3 and ls the largest loss factor.
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ENERGY

141!!E-L.¡.-

EouATroNs l2o modes tocether)

Ftequency

IHz I

E Is]L
E [s] 't

I
E'Icl

2 2

rl0
r55
199
243
287
33t
376
420
464
508
s52
597
64r
685
73L
77t)
825
872
9t9
966

l0l4
l0ór
I t08
I r55
1202
1249
1296
rt44
I l9l
t4t6
r4B1
t525
ts69
t6l3
165 7

I 701
t746
r790
1834
1878
t922
t967
201 r
2055
2099
2t4t
2 188
2232
2216
2320
2164
2409
2451
2497
2s4t
2585
2630
2674
27 L8
2762
280ó

ó,8
5.3
5.0
4.4
4.f
J.6
2,8
3.5
3.9
2.Ít
3.3
2.3
2.6
2.4
2.4
2.fi
2.8
t.9
1.7
1.4
1.5
1.8
2,L
1.6
1.8
1.6
z.L
1.9
2.0
l.l
1.7
r,ó
1.8
1.5
1.5
2,o
1.8
t.8
t.7
l.l
1.7
1.5
1..5
l.l
1,2
t,2
0-90
0.9 7

o. 82
0. 99
L.2
l.t
1.0
l.I
t.o
0,91
t.0
o. 92
l.I
0.91
l.l

5.2
4.2
1.8
2.2
2.3

1.3
t-4
1.7
1.3
1.5
1.3
o.82
0. ó3
o.24
o.44
o.34
0.80

2.O
1.9
0.90
t.l
t,2
r.l
o,85
0, 69
o.7t
0. 60
o.7l
0.65
0.75
0.67
0.64
0. 91
o.7 4
0. s9
o. 40
0.46
0. 54
0.48
0. 5ó
o.62
0. 58
0, 55
0.67
0.45
0. 59
0. 39
0.43
o. 48
0.5ó
o.57
0.46
0. 50
o.62
0.57
0. 44
o.47
0.48
0. 53
o.52
0.65
0. 55
o.4q
0.50
0.68
0. 50
0.61
0.63
0. 53
0. 78
0.70
0. 49
0. ó3
0.57
0,66
0. 55
0.79
o. ó0

4.4
4.7
2.2
2,4
2.9
2.9
t.7
1.6
r.5
t.2
t,2
1.3
1.1
0.85
0. 3l
0.37
o.7 4
0.89
0.39
0. 58
o.69
o. 7l
0.94
o,15
0. 79
o,67
o,l9
0. 35
0. 58
o. 65
o.50
o,42
o, ó6

0. óo
0.8ó
0.6ó
o.76
o.83
0 .65
0. 68
0. 6l
o.52
o.41
o.62
0.45
o.62
o. 52
o.40
o. s5
0, 38
0 .45
o.!2
o.30
0. 3l
o.27
o.29
0. 40
0.39
0, 11
o. 28
o. 33
0.38
o. 30
0. 26
o. l3
o,29
0. 30
o. 20
o.32
o.21

0.5s
o, 43
0.45
0.51
o.47
0. ftó
o.4l
0. 36

0. 26
o,2l
o.2t
0.18
o.16
0.25

o.43
0, 50
0.39
o,4t
0, 46
0.t3
0. 59
o. 48
0. 50
0. 54
0.41
o,52
0.50
0. 40
0.40
0.45
0.60
0.4ó
0.43
0. 39
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TABLE 7.b.

ENERGY BALANCE EQUAT IONS (40 rnodes together)

Frequency E [s]
I

E [s]
2

E-[s]
I

E'Is]
2

lHzl

133
22r
309
398
486
s75
663
75r
840
928

l0 16
1 105
r 193
L282
I 370
1458
1547
1635
1724
lB 12
r900
1989
2077
2166
2254
2342
2431
25t9
2607
2696
2784

4.4
2.3
2.9
1.6
T.4
r.2
0.98
0. 36
0. 68
o.4s
o,67
0.90
o.7 4
0. 70
0. 56
0.56
o.54
0. 50
0.48
o.47
0. 39
o.46
0.40
0.51
0. 54
o.52
o .47
0. 45
o.42
0. s4
o.42

6.1
4.8
4.1
3.2
3.5
2.8
2.5
2.5
2.4
1.5
r.6
2.O
1.6
2.0
1.9
t.7
r.7
1.6
1.9
1.8
1.5
1.5
r.2
1.1
0.90
1.1
1.0
1.1
0. 98
0.99
1.0 72

9
95
2
78
6B

4I
52
53
56

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

47
60
62

o.67
o.72
0. 73
0.67
0.43
0.50
0. 58
o.57
0.61
0. 50

1.
o.
1.
0.
0.

67
61
60
61

50
57
53
60

4.8
2.O
2.5
1.4
1.5
1.4
0. 58
0. 34
o.44
o.64
0.78
o.77
0.68
0.55
o.52
o .57
o .47
o.47
0. 37
0.30
0. 2B
0. 39
0. 30
0.36
0. 2B
0. 31
o.26
0. 28
o.25
o.20
0. 20
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TABLE 7.c.

BALAT{CE modes t

Frequency E [s]
I

E [s]
2

E.[S]
I

E'[s ]
2

lEzl

265

442

619

796

972

I 149

r326

1503

1680

I856

2033

22tO

2387

2563

2740

2.4
1.5

t_.1

0. 45

0.51

0. 82

o.64

0.55

o.49

0.43

o.43

0. 52

0. 50

o.44

0.49

1.0

o,74

0. 69

0.69

o.4s

o.s7

0. 57

0. 48

0. 54

0.49

0. 58

0. 53

o.64

0. 61-

0. 65

4.6

3.3

2.7

2.4

1.6

1.8

2.O

L.7

L.7

t.7
r.4
0. 99

1.1

r.0
1.0

2.O

t.4
1.0

0. 37

0.68

o,72

0. 54

0. 51_

o.42

o.29

0.35

o.32

o.29

o.26

0.20
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LOSS !'ACTORS (20 rnodct totether)

51.

Frequency

IHzl

¡I
x 1000

- 2.0 x 10-6

- -3.6 x l0-s

- -1.2 x l0-5

n n
L2

x l0o0

n2l
x IOOO

n
22

x l0OO

ll0
r55
r99
243
287
33t
376
420
464
508
552
597
64I
ó85
73t
778
825
872
9r9
966

lol4
t0ó I
I to8
I 155
L202
t249
r796
t}h4
r 39l
14 1ó
r48l
I 525
r569
16r3
ró5 7

I 701
n46
r 790
t834
r878
r922
r967
201I
2055
2099
2t4)
2r88
22t2
2276
2320
2364
2409
2453
2497
254L
2585
2ólo
2674
27 t8
2762
2806

1.2
o. ó5
2.1
t.7
l.l
o. 58
1.8
t.7
L7
1.9
1.9
t.l
1.9
o. 26
7,9
7.9
2,6
t,7
4.5
2.2
t.9
t.,
t.2
t.7
1.5
r.1
1.5
2.t
2.O
l.5
2.O
2.7
1.5
t,8
2.3
2.2
1,9
2,O
r.9
2,1
2,5
2,O
1.6
2.1
2.1
l.ó
l.l
1.3
1.5
t.5
r.3
r.8
1.4
I.5
1.7
2.O
1.5
1.0
1.3
1.6
r.7

n

n

0.85
0.67
o .1't
t.0
0. 5t)
0.55
().75
o.12
0. 80
0.84
0. 90
2,tt
't.3
0, 78
0. 87
t.7
1.. 7

I.2
o.77
0.52
l.o
0.73
0. 97
o, 6I
0. 65
o. 84
0. 46
0. 83
1,3
0. 58
l.o
0, 90
o.12
0. 78
0.75
0. 60
0.97
0. 83
0. 98
0.74
2,'l
t.2
0.77
t.2
r.3
t.3
1.4
0.97
1.2
r.4
1.4
1.0
2.tJ
1.0
o. 97
0.84
1,7
l.'2

1.5
l.l
0.78

-0. 04
-0. 05
-0. 08
-0. 14
-0. rl
o.o2

-0. r2
-0.2t
-0. t8
-0.03
-o,94
-0,11

0 .0'J
0. 09

-0. l5
-0. 05
-0, 26

-0.14
-o,26
-o .41
-0.40
-0. 19
-0. 70
-o,22
-0. 09
-0. 14
-o.17
-0.4r

*
o.4l
**
0.45
o. 35
0.37
o, 35
o.22
o.26
0. 20
0. 11
0. 14
***
o. 30
o. r2

-0. 17
o. r.l

1.8
t.7
l.l
l.Ì
o.97
1.2
o. 96
o. 7l
0, 5rì
0, 69
0. 46
0. 85
0.40
o.24

-1. 2

-t.9

3.8
2,6
1.6
t.7
r.3
t.7
l.ó
t.2
1.3
t,ó
1.4
r.7
o.92
0.57
0. 9r
l.ó
0.37
t.2
2,5
J.2
r.5
t.2
o.78
l'l
0.86
l.l
0.48
0.68
o, 89
0. 52
L.2
1.4
o,42
0.99
0. 74
0. ó5
0.40
0.40
0.4 t
0. 56
o.5l
0. 75
0. 54
l.l
o. 61
o.57
0.96
0.56
0. 69
o.76
o.45
o,67
0. ló
0. 64
O.t 7
0. 82
0. 4l
0. tl
o.27
0. l5
0. 49

*

*t

t** n

ll
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TABLE 8.b.

LOSS FACTORS (40 modes tosether)

Frequency

lHzl

n II
x 1000

n l2
x 1000

n
2T

x 1000

n
22

x 1000

133
221
309
398
486
57s
663
75L
840
928

1016
I 105
r 193
1282
1370
1458
Ls47
1635
1724
r8t2
r900
r989
2077
2L66
2254
2342
2431
2519
2607
2696
2784

0. 98
2.3
0.92
1.8
t-.7
1.5
2.3
7.r
2.8
3.7
1.9
1.3
1.6
L.7
2.O
r.7
1.9
2.O
2.O
l_.9
2.3
r.8
2.3
L.4
t.4
r.4
1.6
L.6
r.7
1.1
r.7

1.3
0.76
o.67
0.76
0.59
0. 73
0. B5
2.4
0.94
t.7
1.1
o.64
0.91
o.69
0.72
o.64
0. 81
0.98
o.74
0.65
0. B7
0. 83
1.6
0.93
1.3
r.2
L.4
L.2
t.4
0.87
1.5

1.6
1.1
1.0
0. 83
0.60
o.62
0. 31

-r.2
0.02
0.10
0.39
0. 35
0.27
0. r0
0.08
o.22
0.03

-0.06
-0. 11
-0.04
-0. 1_6

-0.10
-0.54

0. 07
-0. l3
-0.20
-0.42
-0. 3I
-0.41
-0. r0
-0.64

3.1
1.6
L.4
1.3
1.3
1.5
o.69
1.1
0.62
2.6
1.8
0. 85
1.1
0.63
0.74
0. 8B
0.73
0.87
o.49
0. 39
o.52
o.62
o.79
0. 7r
0.61
o.57
0.53
0.5s
0.56
0.28
o.42
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TABLE 8.c.

LOSS FACTORS (80 nodes toeeÈher)

Frequency

[nr]

265

442

6r9

796

972

II49

r326

1503

1680

1856

2033

22tO

2387

2563

2740

n II

x 1000

n l2

x 1000 x 1000

n
22

x 1000

L.7

L.7

1.9

4.9

3.0

r.4

1.8

1.8

2.O

2.O

2.O

L.4

1.5

1.6

1.3

n
2 I

1.4

L.2

1.1

0.89

2.3

0.93

0.66

0.80

0.6s

o.44

0.69

0.66

0. s6

0. s4

0.32

0. 69

o.65

0. 76

L.7

1.5

0. 75

0. 70

0.75

0. 85

0.73

1.1

1.I

1.3

t.3

1.1

0.93

o.7L

0.48

-0. 58

0.19

0.32

0.09

0. 11

-0.08

-0.08

-o.25

-0.01

-0. 28

-0. 34

-o.26
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f) n has a small upward Èrend wlth frequency'
L2

sma1l downward trend. They rmeett bett{een 1200 Hz and

and n
2I

1700 Hz.

a

s. 3. 3.

It r¿as shown ín Chapter 3 how sensltlviÈy coefficienÈs of the

varlous loss factors depended on the followíng two parameters (see

Figure I, Chapter 3):
n n

L2 2l
b

n
22II

Examinatíon of Figure 5 shows that b2 ls approximately equal to 0.5.

b is approxlmately equal to t. O for frequencles lower Èhan 700 Hz 'I
and approximately equal to 5.0 for higher frequencles. At frequencies

where spurious results htere obtained for nrr, it ts hlghly probable

that b is also larger than unity. Of course, the loss factors of
I

Figure 5 are estimates of the actual loss factors, distorted by

experimental errors, and amplified by the aetual sensítivity coefficlents.

Using these estlmates to deduce sensítlvity coeffÍcients w111 naturally

yield only approxímate values. However, these approxlmate values lead

to the interesting conclusion that n' n." a much larger sensltivlty

coefflclent than the o¡her three l.oss factors (see I'igure l, Chapter 3) '

Thls large sensltlvity coeffictent and the fact that a slgniflcant

systematic error l^ras introduced i.n the 2000 Hz band ( see A/l

converter in Appendix ), explain why spurious results were

obtained for n only, and why they were concentrated in the 2000 Hz
1I

band. f

5.4. The Radiatlon Loss Factor

The radiaEion loss did not contrlbute slgnificantly to the

total internal loss. This 1s readlly verlfled by computi.ng the

radiatlon loss nra.l for each plate and comparíng it r¿ith the internal

loss factors deduced from Ehe energy balance equatlons. 1.u.1 l"

obtalned from the coupling loss factor between a panel and an lnfinlte

b
2I n

f See also section 5.6
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acoustlc space as follows (Lyon, 1975 p. 300):

nr"a (')
Rrrd (f)

trlM

where o 1e the radl-an frequency, f ls the frequency, R

radiation reslstance, M i-s the Èotal mass of the panel.

(the crltical frequency), Rrad ls given by

- is the
acl

Forfcf c

4pcÀ P
-l(f) c ß sín G/f c)'rad

r¡here p is the densfty of alr, c ls the speed of sorrnd ln alrr À. fs

the wavelength at Èhe crfùlcal frequency fc, P is the perlmeter of

the panel, Ê ls a coefflclent Èaken equal co I for a free panel. The

crltical frequency f" 1s approximated by

f - 12500
thlckness Irnrn]

l}lzl

The radlaÈlon losees obtalned from these expresslons are shown ln

Table 9. They are smaller than the total internal loss factors by

one order of magnitude.

R
,r2

c

TABLE 9

Radiation Loss Factors

n
1l-rad nFrequency

[Hz]

t25

250

500

1000

22-rad

2,8 x

2.0 x

I.4 x

1.0 x

7.1 x

1 0-4

10-4

10r

10-4

1 0-s

2.7 x l}-a

1.9 x l0-4

1.3 x lO-a

9.5 x 1O-5

6.9 x 10-s2000
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5. 5. The Theoretical Coupling Loss Factors

¡Iave-transmlssion caLcul-ations provlde theoretlcal estimates

of the coupling loss factors. The coupllng loss factor between

two Joined plaÈes is given by (Ødegaard Jensen, L976):

c Lrj
nrJ ei * tlj

(¡)tS
].

where 
"gf 

1" the group veloclty 1n plate t, LtJ ls the length of

the junctlon between plates i ancl j, S. 1s the area of plate 1, and

tfj is the transmission efflciency between plates i and j across the

junctlon. For a homogeneous plate of rectangular cross-section' cU1

is approxlnately glven by (Cremer and Heckl and Ungar, 1973):

c 2 (1.8 c, t f)'4gt L

where c, is the speed of longltudlnal hlavesr t, ls the thickness of

the plaÈe and f the frequency.

Clearl-y, such calculation of the coupllng loss factor depends

on h ow t* is estlmated. The test-structure had a right-angle

corner junetlon (see sectlon 3.4). In flrst approximatlon, a htave

normally lncident to the junctl.on was consiclered. However, this

normal íncidence transmlssion efflclency tr, (o) can be a rather

prirnltive estimate (Plunt, 1980). A better estimate (or at least

more sophlsticated) is the average transmission efficiency across

the juncÈion [, where the average 1s taken over all posslble-1J

angles of lncidence. t* i" computed thus:
1J

ttj ij (0) d(sino) t4l

where rr, (0) is the oblique incidence transmlssion efficiency for an

angle of incidence 0. After some lengthy computations, Cremer and

Heckl arri-ved at the following expressíon (Cremer and Heckl and Ungar'

I=!,
0
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1973, p. 401):

2\l [<* s2) (r -s2_ \l\
tt, (o)

*r3 * vrrt [{rr! + s2) (t + e2)] [("13-"2)(t-s2)] fJ+ ]+r 2

where s = sín 0. If the panels 1 and j are made of the same homogeneoue

eubstance,

t

".? =
r_J

1

j
and Yt 1j

where t. and t. are the thicknesses of panels I and j respectl-vely.1l

.fj was evaluated from equatlon [4] on a pocket calculaÈor'

uslng Simpsonr s rule. Note Èhat Èhe integrand is zero fot angles larger

Èhan the total reflectlon angle. The resulÈs are presented in Table 10.

TABLE 10

Transmlssion Ef f iclency

t=
I

2Kl2 = 2.5

0.4

-31.0 x 10 m; t 0.4 x 10

a(o) =

(o) =
I

-3 m

0.167

o.L67

2

Y12 = 0.16 rl rr2

1
2T

= O.L24

= 0.0785)
2L

v
2L

6.25 ; r
2

The theoretical coupling loss factors r^rere given by:

II.92xIO xr xn
I

,/rl2 t2

11
n = 3.23xI0 xr x:2r zr ,/t

.L.L
These are tabulated in Table 11 for both normal (n and n- ) and't2 2L

¿¿
average oblique incidence (n I and n^l). The theoretical coupling lose

12 2L

fact.ors are compared wlth those deduced from the energy balance equat.ions

in Fígure 6. The agreement 1s striking between n^ - measured in situ
2T

and n calculated for an average oblique incldence (except for the
2T
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TABLE 11

THEORETICAL COIJPLING LOSS FACTORS

Frequency

[n"]

133

265

442

6L9

796

972

TL49

1326

I503

1680

r_856

2033

22LO

2387

2563

2740

I
n

L2

x 1000

-L
n

2T

x 1000

nll2
x 1000

n*
2L

x 1000

2.2

1.6

r.2

1.0

0.90

0. 81

o,75

0.70

0. 65

o.62

0. 59

0. 56

0.54

o.52

0.50

0. 48

2.L

t_.5

1.1

o.96

0.84

o.76

0. 70

0.65

0.61

0.58

0. 55

0.53

0. st_

o.49

0.47

0. 4s

4.7

3.3

2.6

2.2

1.9

r.7

1.6

1.5

r.4

1.3

1.3

L.2

1.1

1.1

1.1

1.0

2.8

2,O

1.5

1.3

1.1

1.0

o.94

0.88

0.83

0. 78

o.7 4

0.71

0.68

0.66

0. 63

0.61
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unexplalned peak).

5.6. Flexural Èo Longltudinal l^Iave Transformatlon

The loss factors were deduced from energy balance equations

which were based on the energy stored ln the flexural modes of the

test-structure. The energy stored ln the longitudlnal modes was

neglected. The following consideratlons deal with the valfdlty of

this approxlmation.

Consider a flexural wave of unít energy, normally incldent

at the rlght angle corner between two plates. A fractlon t"O of

thls unlt energy lncldenÈ wave ls transmltted across the Junctlon

as a flexural r^rave, and similarly, a fracttot¡ PFF ls reflected. A

fractlon tFL of the unit energy lncldent wave Ís transmítted as a

longltudinal !Íave, and sirnllarly a fraction p is reflected.
FL

Evldently,

rFF +prr *.FL *Prl = 1

Cremer and Heck] (Cremer and Heckl and Ungar, 1973 pp 316-334) have

derived expresslons to compute these transmission and reflectlon

efflciencles. A computer program was written to evaluate these

(rather compllcaËed) expressions. The results are plotted on Flgure 7,

coverlng the five Octave bands of interest for the test-structure.

As can be seen f rom I'lgure 7, |r-rngttudtnal waves are only llkely to

play a sígnificant role in the 2 kEz Octave band.

5.7 . The Least Squares Method

The energy balance equations can be written in a general form

n Ei
Jjpí=l

j

where n. is the loss factor bet\./een subsystem j and i (i-e. a coupllng
l

loss factor r¿hen j # t, and lnternal loss factor when j = i), and

oi- Itj is the energy stored in subsystem j when P' is injected lnto sub-
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0.8

0.6

0.4

0.2

0.4

0.2

0.4

0.2

2OO llz

'L' 'z

FF

lIz 400 llz

11- 0.4 mm

t2' l'o nm

tFr

PFF

8OO Hz

PFr

800

16OO llz

1 Hz

T FL

2

I

ó

I

6

Èa- 1,0 un

cr- 0.4 nrn

FL

t 
Fl,

p
FF

2OO llz l'Ir 800 Hz 1600 Hz

Theoretlcal transrnlsslon efflclency and reflectlon efftcfency

across à corner luncÈton. f, stands for long,ltud1nal, F for flexural

l.

Flg. 7
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system l.

Consider

P
1

E1
J

Appl-ylng the least squared prlncfpl-e ylelde the following k equattons:

nJI
J^i

d
0

or

This syrnmetrlc system of k equaÈlons can be solved to flnd the k loss

factors. A program ldas developed to construct such a system from

the data recorded on the test structure. Thls was appl-ied to the

500 Hz Octave band, taklng 80 modes togeÈher. The resultlng loss

factors (Tabl-e 12) were not substantl-ally different from those

obtalned prevlously (Table 8) . Thus, the simpler procedure of

averaging the reeults appears qulte adeguaÈe.

...ooo000ooo.. .

a

nJI
J
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TABLE 12

LEAST SQUARES FIT (500 Hz Octave Band)

3.2

3.2

-1.1
0.0

2.1

2,L

-o.7 4

0.0

3.2

6.5

-2.3
-1. I

2.1

4.r
-1. 5

-o.7 4

-1. I
-2.3
1.5

0.73

-o.74
-1.5
0. 87

o.44

0.0

-l_.1
0. 73

0. 73

0.0

-o,7 4

o.44

o.44

I .98

L.72

3.26

4.67

8.2

4.8
2.0
3.9

n II
x 1000

n
L2

x 1000

1.91

2.7L

3. 89

7. r_0

n
2L

x 1000

n
22

x 1000

r.7
1.8

6.7

4,2
1.1

2.8

Frequency

ßt"f

442

6L9

N.B. The loss factors are the solutlons to the above gyst.emF,

divlded bI oc.

2

0

I

1

0.62

0.70

o.7r
0.49
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CONCLUSION

The statlstícal Energy Analysis (sEA) loss factors of slmple

¡nultl-rnodal structures can be determíned rin sítur by solvlng the

energy balance equations of the sEA rnodel. These energy balance

equations result from spectral estimates of energies stored in, and

polders lnjected lnto the varÍous elements (1.e. groups of slmilar modes)

of the model. It is therefore essential to include in the model all
signlficant forms of vi-brational energy, and to be able to measure

accurately the corresponding stored energies and injected powers.

The loss factors are obtained indl-reetly from measured quantltles,

and experímental errors are therefore rnagnlfied by sensltlvity coef-

ficíents greater than uníty. In general each loss factor has a dlffer-
ent sensitlvity coefficient. consequently, some loss factors can be

determlned more accurately than oÈhers. Also, the sensltlvi_ty coef-

ficients depend on the acÈual loss factors. A deÈailed analysis of

two coupled systems showed how the sensitÍvity coefflcients compare with
each other. In brief, the lnÈernal loss factors have larger sensiÈivity

coefficients than the coupling loss factors.

The rln situr method was applled to a test-structure conslsting

of two thin steel plates welded aÈ right angles to each other. The SEA

model consisted of the flexural modes of each plate, f.e. two coupled

multf-modal systems. rn order to determlne the stored energles and

injected poÌÍers wlth good accuracy, a large number of measurements was

found Èo be lnevftable. As one would expect, a dellcate aspect üras the

measurement of the injected poü/er. Analogue technlques $rere found to

be very tedious, lnf1exíble and fa1rly lnaccurate. Consequently, a dlgital
system was deslgned to perform the experlment. This system llved up to
expectatlons, and the test-structure was analysecl over five Octave-bands

by usfng a sizeable amounÈ of data and computlng tlme.
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Possl-ble J-mprovernents on the hardware as well as the software

asPects were dlscussed ln some deta1l. rn the lfght of thfs dLscusslon,

1t appeared that the Ìin sltuf method is llrnited to only a few coupled

multl-modal systems. Thls ls because the complexlty of the method ls
dlrectly proportional to the square of the number of systems. An upper

lf¡nit of four coupled systems is suggested, but this is arguable. At
any rate' it seems quite certaln that the rin sltur approach is not

applícable to complex structures wÍth say one hundred multi-rnodal

systems e'g' a very large shlp. However, such complex structures could
perhaps be broken down into smaller structures, and these analysed

separately.

The data collected on the test-structure r¡/as processed to
provide sorne indicatíon on the spread of the measured quantít1-es around

thelr mean. The stored energy (obtained from an averâge of eight trans-
verse acceleratíons) rdas averaged over flve drtvlng polnts. A rather
wide spread was observed for these fr-ve estimates. consequently, the

space-average of the varíous quanti-ties could be further improved at
the cost of an even rarger amount of data - e.g. twelve transverse

accelerations and ten drivíng poÍnts. An accurate tirne-average of the

spectral quantitles üras f.ound to requlre approxímately one hundred

uncorrelated estimates (N.s. dependlng on the deslred frequency resol-
ution). Thls nurnber could be reduced by using more sophlsticated

algorithms and techniques.

The loss factors measured rin situt on the test-strucÈure presented

some Ínteresting properties -- the detrimental effect of the sensitivity
coefficients was crearly demonstrated -- the rin sltur coupllng loss
factors and thelr theoretical predictions were 1n good agreement. rn

fact, excellent agreement was found betr¡een one coupling loss factor
and the average-obllque-incidence \^rave- transrniss ion predictíon.
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rn summary' a dtgital system whlch lmplements the rln sÍtur

nethod has been developed and applled Èo a test-Btructure. Loss factors
were determlned successfulry over ftve octave-bands. The rln sltur
method uras found to have two inherent drawbacks : a certafn degree of
fnaccuracy and the necegeity for very large numbers of measurenenta.

However, when theoretical predlctlone are not available or cannot be

fully trusted, thls method is probabry the best sufted to provfde all
steady-state loss factors at once.

rt 1s hoped that the technr-ques and results outlined in thts
thesfs wllL provlde useful lnformatlon for future applicatlons of
Statlstical Energy Analysis to engineerLng proJects.

...ooo000ooo...
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APPENDIX A

EQUIPMENT

Noise Source

The nolse source used throughout this project lsas a Bruel- & KJaer

Random Noise generator type 1402. The random noise was fed through an

analogue Bruel & KJaer: Band-pass fllter set type 1612. The resulting

Octave-band whlÈe noise was then applíed to a Bruel & Kjaer Mlnl-shaker

type 4810.

Force-acceleratíon Transducer

The acceleration slgnal was supplied by a Bruel & KJaer (B&K)

minlaÈure accelerometer type 4344 (serial number 378473), the force

signal by a ptezo-electrfc crysËal under compresslon. Both the accelero-

meter and the crystal ürere mounted in a compact form as shotrn l-n Figure

Al whlch represents the force-acceleration transducer schematícally.

The tensionlng nut ü/as adjusted to ensure llnearity of the force

s1gnal. The force and acceleratlon signafs remalnecl ln phase when

driving the transducer wlthout load or wlth a mass-load at frequencfes

ranging from 80 Hz to 3 kHz. Thls proved the internal loss of the

transducer to be negllglble for all practical purposes.

Calibratlon hras performecl by measuring Èhe forcef acceleration ratio

at the fíve Octave-band centre frequencies for a range of mass-loads

(see Table Al). For each frequency, a línear regresslon líne was fitted

through Èhe experímental data. These five equatlons were then averaged.

The voltage sensitivity of the transducerrs accelerometer being known,

the force callbratlon constant r^ras easlly deduced. These stePs are

shown in Table 42.

The driven side and the dríving síde of the transducer were bolted

respectlvely to the B&K mlni-shaker and the test-structure.
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TABLE A1

TABLE A2

Average Equationz f /a = 2.00 x m[gr] + 60.2

Acceleration Callbration Constant: 0.301+
for accelerometer 11378473

71.

-ômV/ms ' or 3.29 m. 
"-2 /^v

Force Calibration Constant: 0.304 x 2.00 = 0.610 V/tl or
fox piezo-electrlc crystal

I.64 N/V

17 t.3

145. 3

L48.9

165.3

146.4

rzt.3

108.3

110. 8

113. 5

110.6

97.2

83. 9

86.7

87.9

85.2

66.6

s7 .7

60.0

60. 5

58. 9

t25

250

500

1000

2000

f/a
47.2 gr Load

t/a
27 gr load

r /a.
no load

r/a
14 gr load

f [Hz]

0.99840

0. 99998

o.99999

0. 99718

0. 99978

f f a = 2.2O x m[gr]

f /a = 1.86 x m[er]

ffa=1.88xm[gr]

tf ¿ = 2.22 x rnlgr]

ffa=1.86xm[gr]

+

+

+

+

+

65.6

s7 .9

60. I

s7 .9

s9. 3

r25

250

500

1000

2000

Linear Regresslon Correlatfon
Coefflcientf [Hz]
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Accelerometers

The mean-square acceleratíon of each plate r^Ias obtained by

averaglng several (eight) polnt acceleratlons. These point acceleratlons

rdere supplled by B&K nfniature accelerometers rype 4344, bol-ted to the

plates. The frequency response of these accelerometers wldely covers

the flve Octave-bands of interest (centred frorn 125 Hz to 2 kÉz). Each

accelerometer weighed about 2.7 gr and ln view of the plaEesr thlcknesses

correction for mass-loading was applted according to the following

formula :

Z+ (r)m
aactual ameasured x

Z

where o 1s the angular frequency, m the mass of the acceleromeÈer and

Z th.e space- and frequency-average point-lnpuÈ ímpedance (Beranek,

197r).

Only the origi-nal cables \^rere connected to the accelerometers,

hence no correctlon for cable capacltance r¡ras needed and the factory

callbratlon constanÈs r^rere appllcable, as shown fn Table 43.

Ampllfiers

Ten pre-ampllfÍers and ten arnpllflers hrere speclally bullt to be

able to measure the slgnals issued by the nine B&K 4344 accelerometers

and by the piezo-eleetric force sensor. These ampllfíers ütere

callbrated to $rlthin 27. relatlve error over the frequency range of

interest -1.e.80 Hz to 3 kHz.

Analogue/Digltal Converter

A l0-channel B-bit A/D converter \^ras used to dlgitize the signals

sensed on the test sËructure. The -5V Èo *5V range I^ras covered by

llnearly spaced lntegers ranglng from -128 to +I27,
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TABLE A3

CALIBRATION CONSTANTS FOR BRT]EL & KJAER ACCELEROMETERS TYPE 4344

Serial //

Serial /l

Serlal /l

Sertal ll

Serlal /l

Sertal /l

Serlal /l

Serlal /l

o.324

o.26L

o.287

0.269

0.320

0.312

o.299

o.292

rnv/*. "-2
-)mV/m.s -

-2mV/m. s

-2mV/n. s

urv/m. s -

mV/m. s

-tmV/m. s -

mv/m. s-2

3. 78

4.66

4.24

4.52

3. 85

3.92

4.O9

4.20

-.-2m.s

-2m.s

-2m.s

-2m.s

-2m.s

-2m.s

-2m.s

-2m.s

820

820

820

820

820

820

820

820

473

477

478

479

480

481

482

484

/nv

/mv

/mv

/nY

lmv

/mv

/mV

/mv
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A characterlstic of random noise 1s the presence of spikes and

sudden aurges 1n amplltude. This rneant Èhat on average only six to

seven blts were significant in order to avoid truncatlng these spikes

and surges.

A systematic error on the inJected polùer resulËed at high

frequencles because of the A/D converterrs operatlng mode. Glven a

sampllng rate f" [Hz], a rstart converslon' slgnal wae lssued by a clock
Ievery i [s]. Upon receipt of thls signal, the converter would sample
s

the ten channels sequentially at 6.2 Vs intervals, then transfer the

results to compuÈer memory, and then wait for the next clock signal.

The force and acceleration sígnals íssued by the transducer r¡lere always

connected to the flrst and second channel respectively, which meant a

lag of 6.2 Vs between these two slgnals. The relatlve error E lntro-

duced on the average product of the force F and the velocíty V (tirne

lntegration of the acceleration) can be estimated as follows,

(0+2nf.Ât)-f.osOFV
cos

2þ=
FV
f- cos Q

where $ ls the actual phase, f the frequency and At the time lag. Thus'

f,= cos (2nf.At) - tg(0) x sin (2nf.At) I

and wi-th 2nf .At < 2r x 3000 x 6.2 x 10-6 = 0.1169

E < 0.0068 + te(o) x 0.1166 = O.I2 x tg 0

In concluslon, the error ís likely to be signífícant at high frequencíes

(í.e. in the 2 kHz Octave-band) íf Q ls close to 90o (which corresponds

Eo zeto injected power).

...ooo000ooo...
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APPENDIX B

COMPUTER PROGRAMS

Programs whieh performed general purpose tasks are not presented

here -e.g. standard devlatÍon, plottlng, averaglng, solving a llnear

system of algebraic equatíons etc. Programs which performed speciallsed

operatlons are also omitted -e.g. data unpacking, data transfer to and

from magnetlc tapes, least-squares fit to the data as an alternate r^Iay

to construct the energy balance equatlons ete. It was thought that

only three computer programs should be described here: the sarnpllng

program, the processíng program and a program to c.ompute a llnear

predictÍon filt,er.

The sampllng program rnras used to collect the data from the test-

structure. As such ít shows how the rin situr experiment r^tas actually

performed. The processing program \^ras responslble for most of the

tnumber crunchingt. This was where callbration constants, experimental

daÈa, Fast Fouríer Transform etc.¡ al1 came together. The llnear pre-

diction fllter program was used to compute Èhe Maxímum Entropy PSD.

As one of the most obvfous ancl promising lmprovements discussed in

Secti-on 4.5, 1t is not felt out of place here.

The sËructure of a r^'ell-written PASCAI program lmmediately tells

how the problem is solved. The ridentlfÍers (i.e. the names of variables,

procedures, types etc.) speak for themselves. Also the structured var-

iables designed by the prograflìner indícate what tools are used. For

example -- constanÈ memory = 20480 -- variable core : array [1.. rnemory]

of lntege r -- procedure flllcore(core). To study a PASCAL procedure
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(a program Ís also a procedure), one starts with the 'heading'

which contalns the variables, types and constants defined wltt¡1n that

procedure. Next one takes the tbodyr whlch is the sequence of operatlons

performed by the procedure. Each of the followlng three Program.s ehould

be examined according to this rnethod.

Program I samplet

Program rsamplet collects binary data from an A,/n converter and

storea it in fil-e tdatat on a floppy disk. Since the data cannot always

fÍÈ on a singl-e disk, the program lnterrupts after ftll1ng one disk wlth

a large fíle, waitlng for a ne\âI mass storage volume to be lnserted.

DaÈa relevant Èo Èhe experÍment, such as arnplffier gain, sampl-1ng rate

eÈc. ls appended to each flle. Note that each B-bit sample is stored

i-n one half l6-blt word.

Procedure ttunet lssues an audlble slgnal when a new mass stor-

age volume 1s requl-red. Procedure I arget | ls the machlne language

external procedure whlch drives the A/D converter. Procedure Inextnamer

increments the flle name attribute by one when the current mass storage

volume 1s full -e.g. "MYDATA.IO4" becomes "MYDATA.105". Note that lt is

up to the experimenÈer to make sure that the number of daËa records

(1.e. Inuminl-otr) will fit on a single mass storage volume.

Program t process t

Program tprocessr computes Ëhe ínjected por{er and the 8-point

stored energy. The input file rdata' contains InumínloÈt time records

(see Section 4.4). The external file '"y"' contains the physical-

characteristícs of the test-structure. After computation, the outPut

f tles t por t and t energ t contaln I numinlot ' lnj ected pol^rers and 8-poi-nt

stored energies respectively.
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Procedure lgetreadyr computes varlous quantltles such as

arnpllfler gaine, point-lnput lmpedance, frequency seperation etc.

needed by the program. Procedure finltr computes the Kaíser-Bessel

window, usíng the external function MMBSIO which returns the Io Bessel

function. linpowerl i-nputs the transducerts force and acceleration

data. TFFT2C' ls an external functlon whlch performs a Fast Fourler

Transform accor:dlng to the followlng l=clrnrula :

N-1 2ni É"N
X I *k p = 0,1. . N-I (j 'Ã ).e

k=0

routpowert f lnds the average injected por^Ter (see Section 4.3.3) . tscpowt

scales the lnJected power according to the calibration constants,

amplifler galns and A/l converter sensltivity. rlnpsdr inputs the trans-

verse acceleratíon data. routpsd' finds the power: sPectrum of the

Èransverse accelerat.ion (see Section 4.3.2). tacengyt scales Èhe power

spectrum of the transverse acceleration to obtain the point energy stored

in the plate aceording to calibratlon constants, arnplifier gains' 
^/D

converter sensitlvity and mass-loadlng correctlon.

Program t línpred'

Program tlinpredt finds a Linear Predíction filter which fits the

time serles contained in fíle rdata'. The fílter coefficients ak

k= 1r2.. rorderr and the error pos/er tpott are output on file rf1lr.

The computations proceed according to An<lersents flowchart (Andersen,

1974). The order of the filter (i.e. the number of coefflcients) is

determined by the Final PredictloÊ*error criteríon (FPE) as given

by Haykin (Haykin, I97g).

Given a time series x n = 1,2.. N, a linear prediction fllter
n

p

of order m has the followlng properti-es:



x s x - = a x . i a x ^ + .... t a xn Drr I n-I 2 n-¿ m n-m

n = ml-l , tn+z, ..N (forward operation)

xsx xn*1 *ax
2 n*2 + .la xm ntm ak xn+kn ntb

n = 1r2.. N-m (backward operatíon)

r¿here the fllter coefflcients aO k=1r2 ..m are chosen ln order to

mlnfmlze the forward and backward error por^rera P, and P, glven by

m

= ul, 
ak *"-k
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n

m=Ia
1ft=

Nt, = 
.,!* t unlr = x

N

I (*.r, , ) 2

2

nn=tlÌl- I

nxPt
N-m

I
n=1

e2
nrb

N-rn

"lr 
(Ï",' )

The Maxlmum Entropy Power Spectral Density PSDMEM of the time series x

n = 1,2 .. N is then glven by (Þtayktn, 1979) :

PSDMEM(f )
I pow t /fs

t order I 2
kf
r

s
-2ni

1- "k ei
k=l

where f is the frequency, tpovnr is the error por'rer as computed by

program tllnpredt, f" 1s the sampllng rate of xrr, "k k= 1r2.. rordert

are the llnear predietlon fll-ter coeffl-cients as cornputed by tlfnpredl

and J 1s GL.



79.program sample

const
namelen = 15 ;
hlordnum = 5 ;
memory = 20480
field = 6 ;

var
data : fíle of integer ;
core : 

"rrrITT..memoryl 
of fnteger ;

name : array[0..name1en] of char ;
dot : O..namelen ;
samplesrchannelsrwordsrtotalwords : integer
gaJ-nrsamplratercount : lnteger ;
galns : array[1..f0] of fnteger ;
wordcountrsamplecount : lnteger ;
numoflotsrnuminlot : lnteger ;
lotcountrrecordcount : lnteger ;
ch : char ;

procedure ask

begin {ask}
writeln ; writeln ;
write(rsampling rate ?') ;
break(output) ; readln(samplrate) ;
wriÈe(rhow many samples ?t) ;
break(output) ; readln(samples) ;
r¿rite(rhow many channels ?r) i
break(output) ; readln(channels) ;
wri-teln ;
for count := I to channels do begin

-write('ds 
gain for channeil'lãóGt: 2,'

break(outpuÈ) ; readln(gaín) t
galns[count] := gain ;

end ;
rntriteln ;
¡¿rlte ('/l of data f iles ? ' ) i
break(output) ; readln(numoflots) ;
r¿ríte('ll of records in 1 data f ile ?r) ;
break(output) ; readln (numlnlot) ;
end {ask} ;

)

procedure display t

begln {dísplay}
writeln ; wrlteln ;
wrfteln(rsamplíng rate ----
writeln('ll of samples
for count := 1 to ctrannels do begin

writeln('gain f or channel-,ã-ouit: 2, '
end
wrlteln('ll of. data files -------
wrlteln('ll of records 1n 1 data f1le ---
writeln ;
r¿-rite('first data f1le name is : t) ;
count := 0 ;

: r rsarnplrate:field) ;
: t ,samp1-es : field) ;

: I ,numoflots: field)
: t,numlnlot:fleld)

: r, gainsIcount] : field)
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repeat

hrrite (argv [ 2 ] I I count ] ) ;
count := succ(count) ;

untll argv[2]tIcount] = chr(0)
end {dlsplay} ;

procedure nextname

begÍn {nextnane}
counÈ := 0 ;
repeelE count := succ(count) until argv[2]tIcount]
if argv[2]t[count+3] <> r9r then begin
-argv[2]t [count+3J := succ(ãrg"t2]+ tcount+31 ;
end else begln

arÑl2þ [countt3] := '0' I

1f argv[2]tlcount+2f <> '9' then begin

-"te.r[ã]t Icount+2] := succtargvtZTtTãounÈ+21 ;
end else begln

argv [ 2 ] t I count*2 ] : = ' 0' i
argv[2]1[qount+l] := succ(argv[2]+ [count*l] ;

end ;
e4d ;
end {nextname}

proeedure arget

,

(var samples : Ínteger ;
var coïe : array[l..memory] of l-nteger
var totah,rrords : integer) ; forÈran ;

t

procedure tune ;

var
count : lnteger ;

procedure pause(t : ínteger)

const
a=I.0

var
re : real ;
cl : integer

end ;
end {pause} ;

procedure ring ;

const
be1l = chr(7)

begín {rlng}
write(be11);
break(output)
end {rlng};

begin {pause}
for cl := 1 to t do begín

-re : = ¿¡"xlu*^lix^-iuxi¡^x^



81.beCln {tune}
count := 0 ;
repeat

courrt := succ(count)
pause (10000)
pause (2500)
pause (2500)
pauae (1500)
pause (1500)
pause(2800)
pause (fSOO¡
pause(1500)
pause (1500)
pause (2500)
pause (1500)

rrnt'l 1 COUnt =
end {tune} ;

; ring ;
rlng ;
rÍng ;
rlng ;
rlng t
ring ;
rÍng ;
rfng ;
ring ;
ring ;
ríng ;
t

t

,
,
t

t

,

procedure doit ;

begin {aoft}
dot:=0;
repeat dot := succ(dot) untÍl argv[2]t[do¡] = t.' i
fo! l-otcount := 1 to numof lots do l¡eein

writeln ; wrlteln ;
wrlte(rlnsert new volume ! ! ! t) ;
break(output) ; tune, ; readln(ch) ;
rewrlte(data,argv[2]t) i
datat := samplrate ; put(data) ;
datat := samples ; put(data) ;
dataf := channels ; put(data) ;
for seun¡ := I f'g- channels -dO begtn

dataô :- gaíns[count] ; put(data) ;
end ;
datat := numlnl-ot ; put(data) ;
lor recordcount := I to numinloÈ 1þ begin

arget (samples , core , totalwords) ;
l¡r wordcount := 1 -t.q words slo begin

for samplecount := 0 to samples-I do begín
datal := coreIsamplecount * wordnum * wordcountl put (data)

end ;
end ;
writeln(trecorcl t rrecordcount: l, I 1n data file r rlotcount:I)
break(output) ;

en¡ì ;
for sesn¡ := 0 to- namelen do name[countJ := argvt2]+lcount] t
nameIdotf4] := chr(0) i
reset (data, name) ;
nextname ;

end ;
.end {aoir} i

begin {main}
ask ;
words := channels d:Lv_ 2 i channels mod 2

totalwords := samples * wordnum ;
dlsplay ;
wri-teln ; writeln ;
wrlÈe(rall oK ?r) ;
bre-ak(output) ; readln(ch) ;



82.

I

I

i

I

I

i

I

f! ch = 'Y' !@ begin
doft ;

end else beFln
wrfteLn ; wrlteln ;
writeln( tÍlrong entry. Try again t!!t) ;

end
end

N.B. program rsanplet was written for the NBS-Paecal compller. As guch

Ít presenta Bome Inon-etarldardr features :-
a) external flle varlabl-es can be omftted from the Program

decl-aration

b) external ffle namês are found 1n an atray of pointers

called targvt

c) functlon tbreak(filevarlable) I emPtle8 the flle buffer

d) structured constanta are allowed

e) procedure and functfon declaratlons al-low a type

declaratlon lnstead of an identLfier
etc.



program process(datarPow, cner8, eYSr input' outPut)

of real

83.

lnteger ;

const
bitunit = 0.0390625
transaccel = 3290.0
transforc = I.64 ;
accelmass = 2.7 i

; {v/bi¡-; tm.s
{u/v}

{er}.

it
2 lvj

p1 =
accl
acc2
acc3
acc4
acc5
acc6
accT
accS

3.14159 ;
= 3.78 ;
= 4.66 ;
= 4.24 ;
= 4.52 ;
= 3.85 ;
= 3.92 ;
= 4.O9 |
= 4.2O i

{m. s-2lurv}

,
; {maxrecordl2}
{power of two of maxrecord}

kaiserparam = 3.0
maxrecord = 4O96
wlndowlen = 2048
maxpowtwo = 12 ;

type
plate = record

last
mass
area
thick
dens
speed

end ;

var

const
shift = 5

var

boolean
real ;
real ;
real ;

real ;
real

{ rnm}

tks/m3Ì
{m/s}

t
{
{ råÌ

complex = (rel, lurag) ;
workvector = q4yII. .maxrecord] of arrayIrel. .irnag]
scrapvector = array[0..rnaxpowtwo] of ínteger ;
wfndowtype = grraJ[O. .windowlen] of real ;
buffer = arrayll..windowlen] of real ;
blokflle = _srglnen!-ed f11e of real t

xx : workvector ;
iwk : scrapvector ;
wíndpow,windener : wíndowtype ;
s amp les, samp 1 ediv2, samp led iv4, s ra E e, channe I s, numinl o t' polttwo
parsevalrparsevallrparseval2 : real ;
ímpedance,scalerÈemplrtemp2,fqunit : real i
gains : arral[l..10] of real ;
thlsplate : plate ;
system : lnteger i
sys : file of plate ;
daÈa : file of lnteger i
outbuf,averag : buffer ;

PoI¡I, energ : blokf ile ;
cntrecrcnt : integer ;

function findgaín(dB : integer) : real

temp : real

{Iants design}
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besin {ftndgain}
remp := (dB - shift) / 2O.O ;
ftndgain := exp(temp * 1n(f0))
end {flngain} ;

procedure getready

var
count : integer i

begln {getready}
writeln(rwhich system?r ) ;
read(systern);
for count := I Èo system-l do get(sys) ;
thÍsplate := syst ;
srate := datat ; get(data) ;
samples := datat ; get(data) ;
channels := daÈat ; get(data) i
for count := 1 E channels do

galnsIcount] := findgain(datal) ;
get(dâta) ;

end ;
numinlot := daÈat ; get(data) i
portlthto := 0 ;
sampledlv2 := samples ;
repeaÈ

sarnplediv2 := samplediv2 div 2 ,
pov/t\^ro := succ(powtwo) ;

untllsampledlv2=Ii
sampledlv2 := samples dlv 2 ;
sampledlv4 := samples div 4 ;

"".i. := sgr(bftunft) *-Et"rr"t"ce1 * transforc / gains[1] / ealns[2]
lmpedance := thfsplate.dens * chfsPlaÈe.speed

* sqr(thtsPlate.thÍck * 0.00f) ;

ímpedance := lmpedance * 4.O I sqrt(3) ;
templ z= 2.0 * pi ¡rc accelmass * 0.001 / ímpedance;
temp2 := sqr(bitunit) * thisplate.mass / Z.O / pL ;

fqunit := srate / sarnples ;
end {getready} ;

procedure inlt(length : ínteger var windor¿ : w{ndowtyPe)

var
tableentry, tablelnterval , templ, temp2 , param : real ;

count : lnteger i
iopt,ler : lnteger ; {parameters for Bessel funetion}

function MMBSIO(vaf fopt : Ínteger: ;
var arg : real t
var ier : integer) : real i

begin {lnlt}
param := kalserparam * pl ;
lopt := 1 ;
templ := MMBSIO(iopt,paramrier)
tableentry := 0.0 ;
tableínterval := pi / lengÈh ;

fortran
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for count := 0 Lo length do begln

tenp2 := param * sqrt(l.O - sqr(count / length - 1.0)) ;
windowIcount] := MMBSI0(iopt,temp2,ier) / templ ,

tableentry := tableenËry * tableinterval i
end ;
end {fntt} ; 

r

procedure inpower(var xx : workvector ; vaï window : windowtype)

var
numl, num2, denoml , denom2
count : lnteger ;
realpart, imagpart ¡ temp :

real

real

begin {lnpower}
numl := 0.0 ; num2 := 0.0 ;
denoml := 0.0 ; denom2 := 0.0 ;
for count := 1 to samples clo begln

if count-l <= samplediv2 then temp
else temp

realpart := datat ; get(data) ;
numl := numl t sqr(realpart) ;
realpart := realpart * temp ;
xx[countrrel] := realpart ;
denoml := denoml + sgr(realpart) ;

end ;
for count := I -E samples do begin

Íf count-l <- samplediv2 then temp
else temp

irnagpart := -datat ; get(data) ;
num2 := num2 t sqr(irnagpart) ;
ímagpart := lmagpart * temp ;
xxIcount,imag] := imagpart ;
denom2 := denom2 I sqr(imagpart) ;

end ;
parsevall := numl / denornl j
parseval2 := num2 / detom2 ;
end {lnpower} ;

:= wÍndowIcount-l]
: = wlndor¿[ samples-count*l]

:= windowIcount-l]
: = winclowI samples-counttl]

procedure outpower(var xx : workvector ; !'ar- cut : buffer)

var
countrshift : integer i
reallrreal2,ímagl,Lmag2 : reaL
freqríncr : real ;

begin {outpower}
parsevatt := parsevai-l- / sqr(samples) ;
parseval2 := parseval? / sqr(samples) ;
parseval := 0.5 * sqrt(parsevall * parseval2)
outll] := 0.0 ; {no DC allowed}
incr := srate * 2.0 * pí / samples ;
freq := 0.0 ;
for count z= 2 to samplediv2 do begín

freq := freq * incr ;
shlft := sarnples t 2 - count ;
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reall := xxlcount,rcl.] ; rc.aIz := xx[shift,rel] ;
lmagl := xxIcount,lmag] ; lmag2 := xxIshlft,lmag] ;
outIcount] := abs(parseval / freq

,r (-sqr(reall) * sqr(rea12) - sqr(trnagl) * sqr(lrnae2)))

procedure scpow(var out : buffer)

end
end

;
{ ouÈp ioÍrer

var
count : ínteger t

begin {scpow}
for count := 1 to samplediv2 do out[count]
."4 tscpowÌ ;

:= out[count] * scale ;

procedure zero (var av : buffer) ;

var
count : integer

begin {zero}
f,or_ count := 1 to eampledlv2 do av[count] := 0.O

""¿ t zexol i

procedure lnpsd(var xx : workvector ; var wlndow : wJ.ndowtype) |

var
numrdenom : real ;
count : lnteger ;
realpartrlmagpart,temp : real

beeín {tnpsa}
num := 0.0 ; denom := 0.0 ;
for count := 1 E sarnplediv2 do Þegfn

if count <= sanpledlv4 then temp := wlndow[count-l]
else temp := window[samplediv2-counttl]

realpart := datat ; get(data) ;
imagpart := -datat ; get(data) ;
num := num t sqr(realpart) + sqr(imagpart) ;
realpart := realpart * temp ',

imagpart := ímagpart * temp ;
xxIcountrrel] := realpart ;
xxIcotrntrimag] := lmagpart ;
denom := denom * sqr(realpart) * sqr(lmagpart) ;

end ;
parseval := num / denom ;
end {1npsd} t

procedure ou tpsd(var xx : workvecÈor ; var out : buffer) t

var
count,shífÈ : integer ;
reall, r eaL2, 1magl, imag2, sine, cosine
arg, íncr, realpart , lmagpart : real ;

real
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begÍn {outpsd}
parseval := parsevaL / scLr (sarnples) ;
realpart := xx[l,re1] * xxllrirnag] ;
lmagpart := 0.0 ;
ouÈ[1] := parseval * (sqr(realpart) * sqr(lmagpart)) ;
íncr := pi / samplediv2 ;
arg := 0.0 ;
parseval ¡= parsêval / 2.0 i
for count := 2 Eo samplediv2 do begin

-atg 
:= arg + tncr ;

shift := sampledLvZ I 2 - count t
rea1l := xxlcount,rel] ; reaL2 := xxIshift,rel] ;
lmagl := -xx[count,imag] ; í.nag? := -xx[shlft,fmag] ;

cosine := cos(arg) ; sine := sÍn("rg) ;
realpart := reall t reaL2 I "":li: i []::ll : lä:i;ì ;
lmagpart := lmagl - Imag2 - sine :t (tmagl t lmag'2)

- cosine rt (reall - rea1-Z) i
outIcounÈ] := parseval * (sqr(realpart) * sqr(lmagpart))

end ;
tpsd ]ouend {

procedure acengy(accel: integer ; var out : buffer)

var
sensítivity, massloading, f req, temp
count : integer ;

real

procedure select(number : integer ; var sens : real) ;

begin {select}
case number of

accl
acc2
acc3
acc4
acc5
acc6
accT
accS

I
2
3
4
5
6
7

I
end

sens
sens
SENS
sens
sens
sens
SENS

sens

sens := sens tt 1000.0
end {select} ;

begín {acengy}
select (acce1, sensitivÍty) ;

out[1] := 0.0;
freq := 0.0 i
temp := Èemp2 * sqr(sensitivity / gains[acce1+2]) ;
for count z= 2 to sampledív2 do Þç&!q

freq := freq * fqunít ;
massloadlng := 1.0 + sqr(ternpl * freq) ;
out[count] := out[count] * temp * massloading / sqr(freq)

end ;
end {acengy} ;
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procedure add (var out,av : buffer)

var
count : lnteger ;

begin {add}
for count := 1 to samplefliv2 do av[counÈ]
end {add} |

procedure FFT2C(va¡ a : workvector ;
yarm:integer;
var iwk : scrapvector)

:= avlcount] f outIcount]

/ 8.o t

fortran

reset(sys);

t

procedure divide (var av : buffer)

var
count : Ínteger

begln {¿tvr¿e}
for count := 1 to samplediv2 do av[count] := av[count]
ãã- {¿r.'r¿"} ;

procedure copy(var buf : buffer ; var fi1 : blokfile) ;

var
count : lnt.eger

besln {copy}
for count := 1 to sampledlv2 do begin

f111 := bufIcount] ;
put(fil) ;

end ;
putseg(fl1) |
end {copy};

besfn {main}
reset(data) ; rewríte(pow) ; rewriÈe(energ)
getready ;
ínit ( sampledív2 , wíndpow) ;
init ( sampledlv4 , windener) ;
for cntrec := 1 to numinlot do begln

lnpower (xx, windpow) ;
FFT2C (xx, powtwo, iwk) ;
outpower(xx,outbuf) a

scpow(outbuf);
copy (outbuf , pow) ;
por^/È.hro ¡ = pred (powtwo) ;
zero(averag) ;
for cnt := I to B do beglrn

Ínpsd(xxrwindener) i
FFT2C (xx,powtwo, íwlc) i
outpsd(xx,outbuf) ;
acengy(cnt,ouÈbuf) ;
add (outbuf, averag) ;

end ;
poqrtrtro : = succ (powtwo) ;
divíde(averag) ;
copy(averagrenerg) i
writeln(tdone record r rcntrec:1) ;

end ;
end.
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program linpred (data,Í1-l,output)

const
samplemax = 4096
ordermax = 100 i

var
data : file of lnteger ;
fil : fil-e of real ;
coeffroldcoeff z arrêy[1..ordermax] of real
forwrbackw : arrayll..samplemax] of real ;
orderrcountrsamplenum : ínteger ;
Pow : real ;

procedu¡c filter

var
fpe,oldfpe : real ;
exitout : boolean ;

procedure lnitialize

var
cnt : integer ;

besln {lnitialíze}
pot^r := 0.0 i
samPlenum := 0 ;
whlle not eof(data) dq beeíq

samplenum := succ(samplenum) i
forw[samplenurn] := datat ; get(data) ;
pow := pon t sqr(forw[samplenum]) ;

end ;
pohr := pow / samplenum ;
for cnt z= 2 Eo samplenum do begin

backwIcnt-l] := forwIcnt] i
end ;
order := 1 ;
fpe := pow zt (samplenum f order * 1) / (samplenum - order - 1) ;
end {initialize} ;

procedure por¡rer ;

var
numrdenom : real
cnt : ínt,eger a

begi-q {power}
num := 0.0 ; denom := 0.0 ;
for cnt := 1 to samplenum-order do begin

num := num * forwlcnt] * backw[cnt] t
denom := denom f sqr(forw[cnt]) t sqr(backwlcnt]) ;

end ;
coeff [order] .= 2.0 * num / denorn ;
por/ := por^r * (1.0 - sqr(coefflorder])) ;
oldfpe := fpe ;
fpe := pold * (samplenum * order * 1) / (sarnplenum - order - 1)
end {power};
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procedure error

var
cnt : lnteger ;

begln {error}
6T-cnt := 1 Eo order-l do oldcoeff [cnt] := coeff [cnt] ;
Eî cnt := I 6 samplenum:order do begin

-forwlcnt] 
:ã-forw[cnt] - backwls.nt1 * coeff Iorder-l] ;

backwIcnt] := backwIcnt+l] - forwIcnttl] * coeffIorder-l]
end ;
end {

procedure coef ficients

,

Ì;error

t

var
cnt : ínteger i

begln {coefflcients}
for cnt := I to order-l do begln
--ãoeff Icnt] lE oldcoerrT-cntTToldcoeff Iorder-cnt] * coeff Iorder]
end ,
end {coefficients} ;

begln {f1lter}
lnitlallze ;
pohrer ;
exitout := false ;
repeat

order := order * I ;

error ;
power ;
coefflcients ;

1t f p. > oldfpe gþ_en exitout : = true
untfl exltout ;
ãTrrlterÌ ;

begln {rnain}
reser(dara) ;
filter ;
rewrite(f11) ;
f1lf := samplenum ; put(fíl) ;
filt := order ; put(fiI) i
fÍlt := por¡ ; put(f1l) ;
for count := I tg order do begin

tfft := coeff-[count] ;
pur(f11) ;

end ;
end

...ooo000ooo...
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APPENDIX C

STATISTICAL ENERGY ANAI,YSIS OF COUPLED MULTI-MODAL STRUCTURES

An attempt 1s made here to sÈudy analytlcally two linear:ly coupled

¡nulti-moda] sÈruc¡ures. The steady-state modal responses to pure-tone

excitatlon are solutíons to a system of línear algebraLc equatíons.

This system can be solved analytically 1n two sfmple cases :- flrstly

when only few modes are lnvolved e.g. a one-mode system coupled to a

two-mode system; secondly when the lnter-modal coupllngs and the modal

forces are equal. The flrst case 1s falrly obvious slnce 1t amounts

to solving a small linear system of equation. The,second ls non-trlvlal

since a ntm by n+m system has Èo be solved (n and m are the number of

modes in each systen). The solution of this second case is presented

here 1n deta1l.

The actual Statlstlcal Energy Analysis equations are obtalned by

lntegratlng over the frequc'ncy varíable the sums of moclal response

complex products whlch correspond to average sLorecl energles, average

transmltted energies and average dl"ssipated energles. In the slmplest

case (í.e. one mode coupl.ed ro one mode), the al-gebra ls heavy, but

manageable(Lyon, Ig75). The seconcl slmplest case however (i.e. one mode

coupled Èo two modes), very qulckly produces some formidable algebra,

and the case of identical couplings and identical modal forces liker¿1se-.

Consequently, the analytical calculations üIere not pursued any further,

and only the general procedure 1s outlined here. IÈ is belíeved that

a computer simulatíon of these equations would yteld some interesting

results. This however, r¡ras judged to be well beyond the scope of this

proj eet.



Conslder two linearly coupled systems a and ß. Under fairly

general assumptfons (Lyon, 1975), the steacly-state modal amplítudes

Xon and *ßO ao a pure-tone excltatíon at angular frequency ur satlsfy

the following system of equatlons (the subscripts a and ß refer to

system a and B respectively, i = ÃT) :

-]
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XMc
(ur - ,2) * ir¡ôak *Êojt - ttoßojk) + ir'rYpo¡

ßJ
2

m1II
j=r 

L
-] xok = F (

0 ak

k = 1,2.. n

M - ,2) f ir¡lô X F(r¡
gt, B'.. ß g'..

I c1]

o ßj t. ,lK
t(¡-o

sßj I ) + ir,ry
aßJ

X
ctJ- it

J=11
9.Ê

2 (

9, = L,2.. m

System cr of total mas Mo has n modes with resonance frequencl"" ,ok

and lnternal darnpings ôon. System ß of mass MU has m modes .a tß,,

wlth damplne 6UO. rc 1s an elastic force coefficlent, o an lnertial

force coefficíent and y a gyroscopic foree coefflclent. The subscripts

of these force coefficients read as follor¡s: *ßojt is the elastlc force

coeffícent from mode j of system ß to mode k of system cr. FoU ls the

arnplítude of a modal excitation force.

It ls important to bear in mind the physical meaning of these

modal quantities. Using the mode shapes úoU (r) k = 1,2,. n and rJ.'UU (r)

.C = 1 ,2. .m(which satisfy the boundary conditíons plus the usual orthog-

onality relationships) where r stands for the space coordlnates, the

coupling coefflclents are given by
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*oÊki - nCSoU(r). U

Junctton

ncs6a (r) . ü

J unctlon

(r). ú (r). dr
ok ßr,

(r). ü (r). drak Be.
*Bork

where nCSoU (r) 1s the elastic coupllng strength between o and ß

(N.¡. the Junctlon between o and Ê 1s lrnpllelty deflned as the regíon

of space where ECS'Ê (r) I 0). SirnLlar expresslons can be written

for the o and y coefficlents. Also, the modal forces Fon satlsfY

F (t) = f (r,t). ú (r). drqk cl, clk
0

where f (rrt) 1e the external- force acting on syetem c, wfth
C

ftrltr'k(t) = Fok .e

in the case of pure-tone excltatlon at angular frequency o. Fínally,

the steady-state modal amplÍtudes Xon(t) are related to the general-tzed

d.lsplacement Eo(rrt) of system a in Èhe usual way:

ct
X (t). 

'I
(r)(r, t) =

crk ak

with
fu¡t

X*k(t)=Xok."

1n the case of pure-tone excltatfon at trt. Clearly, simllar relations

hold for systen P.

E

1

n
I

tç=
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In the caee of conservatlve coupllng (1.e. no energy dlsslpated

by the coupl-1ng elements) 1t ls easfl-y shohtn (force from mode B0 to mode

ok tlmes veloclty of qk equals force from mode ak to mode Ê0 times

velocl-Èy of ßl') that KcrßJ.r, = Kpa.t,5, ooßJl, = oßcl.J and Yc¡ßJ¿ = -YÊogJ'

System Cl can now be rewrltten

""ftro; - 
ûP)+ fi,,ôakJ xok - t*n - 

,Ï
(r

t kJ ,2okJl + rrvnr] x

lc2l

BJ

"uI gt

n?
I l<"

J=1L
ge.

F*ßo

k = 1 12..n

9,1

9,, = Lr2..m

^2osJL 
* rrvu]xol(t¡ 2

ßs
- ,2) f 1urô

or ln a matrix form

0

2

.0'Àn

II In

I
l,

0

0

0

0

xc

X

x
EI

F
I Ict

I

FnI nm 0n Cln
l c3l

FÊ,
I

0
u

2

tr . t*0mt Inn
x F0 u'm ßn Bn
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l

I

I

I

I

vrlrh

Àk - Mo[(rqk2 -.r2) + lt^r ôonl

f,(, = Mp[(tuu2 - uz) + rur ôugl

tkg = [ ("tf, - u2 on') f frrr vnrl

and where r*r denotes the complex conjugaÈe operator.

It 1s cleqr that a general solution of system C3 cannot eaefly

be found. However, as mentloned earller, tÌro slmplLfled cases can be

examlned wlth some hope of success.

Flrst conslder the (now well-known) case wÍth two modes (Lyon,

L975). SysÈern C3 fs reduced to

À T

Ë:
"ß

Fcl

F
Êr

A=Àu-lrl'

T

À-Fr*
ct

:,]

X
CT

u

[:

or
I II

1:k
1l u I

Then

and

Y _1
crA

F

F
ß

F

F.
þ

*u=*

ct
T

u

Fou - FUt

A

À tßo
A1*

The time averages of energy quantities l1ke the transmttted pohrer, Èhe

dissipated power etc. are given by expressions like :-

porrer rransmlrred from a to B = | n" { (-t*xo) (xß)*}
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Pohrer transmiÈted from ß to q, =

å u. , (-r*xq) (-rurx[) ]

j n. { (-txu) {io)*i

j n. { (-rxu) (-r,x*) }

t

t

power dlsefpated by o E 
|*.

{ (foôoMüx') (xa)*}

I
2

Re { (iurôoMoXo) (-fr,rx't¡ 1

The Statistlcal Energy Analysls Energy Balance equatlons are

then obtained by 1nÈegrating these energy quanÈlties (expressed as the

real part of complex products) over the frequency varlable l1ke

pohrer flow (white nolse) poü/er f low (o) . dtr-r

These integrals can theoretically be evaluated from tabulated expresslons

(Gradshteyn & Ryzhik, 1980, p. 2I8-2I9). In this slrnple case, the

compuÈatlon can, actually be carried out analyticall-y (See Lyon, 1975).

Next, consider three modes. System C3 is reduced to

À T T X
0

F
I

1*
tl ßr

cl 1

ßr

Bz

II L2 I

0u X F

F

1

1:t
2t

0 u X
2 Bz

"or, 
Xß,. ".U "ß, 

can easíly be found, but the complex products whlch

correspond to the average energy quanÈlÈies are extremely cumbersome and

the integrals over the frequency varíable are formidable. Consequentlyr



97.

the calculatlon was abandoned, thus leaving thls case unresolved.

Finally, consider the case where all couplÍng coefflcients

and modal forces are equal (see above for physical meanlng). System

C3 now reduces to

0̂
0 0

0
Àn

a*

T F
ctd,

X

Xdn

I

0..........:0
1*

0,

gI

F

F
t c4l

0 o X

0u X

t Ê

0

r:t ¡Jc l'
m ßm

Thls system can be solved ana1.ytical1-y as follows. Develop Èhe

determinant along the flrst ror{ :

0

A=À
0.... ..0 À

n

-* -*I p0

B

^002

0

I
0

0
0u

m
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0

0

À0
?

0

0

0 Àn
Tn+ (-1) T

n+1+ (- 1) T

T¡b.............T,. 0.........0

.0u0
2

0

0

0

0À
n

aik

ort

À0 0

0

T

T

u

0

T

T

o

0

J-

T* 0.

0

0

u
m
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0À0
z

I

T

Í

u

0

0

0

À0

T

0 T

0

0

n+m-1.. .+ (-1) T

or

À=1.

m

t*.. q Tir 0

0 o um-l

0

¡1 +

r:t r¡t

(-1)nrol + (-1)t*1.o1 +......+ (-t)nh-lro
I2

I
mt

I
A^ fs siurllar to Â and therefore inl-tlates a recurslon.

The other m determinants can be written in the same form after approprlate

ror¡r permutatlons :

0 À 0........0 T
2

'0

0Àn T

(- 1)
k- k = 112..m

-* -*
Dl

T

T

0

u

0

0

0
1

u0



Now computatlon of O,|- also Ínltfates a recurslon slnce ft can bek

developed along the flrst row aa

0

100.

I zero terms = -À Dí

+...+

À0
3

0

0

0

0

À

t

1:t

T T

Dl

and

[= (À À
l2

0 n
r* rzt

T

0

u

0

1
=-)

2 2

0u
m

where the remafnlng terms are zeto by virtue of havLng two fdentfcal rows.

Now we have

r:k flv

A
I

Al = ....

I=ÀA + (-t)nt(ol+¡1 +...+o1l
12m

Dl

Dï=

-t Dí
2

These recursÍve formulae produce, after some manípulatlons, the followlng

result

I
u

m
+1

u
2

2
uÀo) (u, u*) t' )l

a = nootFo
m

olr "uu
nl'' I

k=1

or

1fak
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where

TI ...x

1f u x u x ...x ut 2

'fi x ì x ...x
I

Now from sysÈem lc¿rl, x fs expressed asal

F 0 0

=| x À x ÀnI

À

00

B0

qk

2

Àk-r * Àk+l * "'* Àr,

* u, * ...x t¿_l * u.C+l * ...* .llm*ß¿ = !I

I

o
À

2
0

0

x
ct

I
ôI

0

0u
m

0

t*

F
ct

tß

uß

0 0^

I

t¡t 0

Computation of X,,, proceeds fn fdentLcal" fashlon to Ârs : develop the

determfnant along the first row and flnd two reeursíve relaËlonshlps.

Ffnally, one obtalns for the steady-ståte modal- responses :

m

Fonßo-'u'rlt 1T A
=11 .X;qJA

tÊ

m

oo olrn

n, L,
xoJ = 'll

0J
x

roonßo T

lç= 1
gt,



LOz.

FqFßtoo - 1:t
n

ln
ft=

ak
B= nÊJ "rnqorFo - mrak I nÊu

&=1k=1

These results could be used to compute the complex products whlch

correspond to average energy guantities, and r¿hich could be surmned

over the total number of modes, then lntegrated over the frequency

varlable from -- to +ó using tables of integrals (see above).

...ooo000ooo...

I*ßJ = tÊJ *
l.l' Ï
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