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SUMMARY

This thesis describes the measurement of oscillator strengths
and linewidths of rotational lines in the Schumann-Runge bands of
molecular oxygen, for the wavelength range 1750-2000A . A study of
the variation of absorption coefficient of molecular oxygen with
pressure and temperature was also done near the H Lyman-o. emission
line at 1215.6A . The absorption coefficient here varies rapidly,
and the form of the variation is important, as it determines to what

depth into the atmosphere the incident Lyman-o radiation penetrates.

The dispersing instrument used was a 6.65 m vacuum ultra-
violet scanning monochromator with off-plane Eagle mount, operated
in first order with a resolution of 0.04-0.06A . Light was provided
by a thyratron triggered hydrogen discharge in the case of the
Schumann-Runge bands, and by an argon discharge in the case of the

Lyman-o. work.

The cross-section measurements in the Lyman-o window were
made at 0.2A intervals in the wavelength region 1214.0A to 1218.6A
with a path length of 1.1 metres at temperatures of 294 °K, 195 °K
and 82 °K using respectively, ambient room temperature, a solid CO;
methanol slush coolant, and liquid air. The minimum value of absorption
was found to decrease with a decrease in temperature, and this minimum
also shifted slightly to longer wavelengths as the temperature decreased.
The pressure dependence of the cross-section was found to be in
agreement with earlier measurements, but the room temperature observations

were found to disagree somewhat from the previous observations.
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Rotational lines in the (1-0) to (15-0) Schumann-Runge
bands were scanned, and the integrated line areas at two different
pressures recorded. After taking into account adjacent lines,

Herzberg and Schumann-Runge continua and Oy continua (in the case of
lower bands and higher pressures), this integrated absorption area was
simulated by computer using curve of growth techniques to extract
oscillator strengths and linewidths. The (2-0) to (15-0) bands
were observed at room temperature and pressures in the range 0.02 torr
to 850 torr. The measurements for bands above (15-0) were made at

liquid air temperatures to reduce spectrum complexity.

The results of these Schumann-Runge band investigations show
previous measurements to be in error. A measure of the rotational
dependence of band strength was obtained for each vibrational band, and
a straight line fitted to the points where possible, and these were

compared with theoretical predictions.
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CHAPTER 1

1.1 Introduction

The absorption of ultra-violet light by oxygen in the wavelength
region of the Schumann-Runge bands (1750 - 2000A) has been the subject
of numerous investigations (described later in this chapter), mostly
with the view to applying the newly devised experimental results to
atmospheric problems. The Schumann-Runge bands provide all the atomic
oxygen dissociated from the molecular form in the height range near 80 kms
in the atmosphere, as well as having important consequences for the
dissociation of water vapour. Any models of the atmosphere requiring
the transmission of radiation downwards to the surface, or the production
rate of oxygen atoms, therefore requires accurate measurements of
absorption coefficients, and the Schumann-Runge results are difficult to
obtain, due to the large number of lines present, and to their small

widths preventing their direct resolution by present instruments.

Also of atmospheric interest, is the penetration of the intense
solar Lyman-o line into the atmosphere. Accurate measurements of the
absorption coefficient of oxygen in this region are vital, since this
coefficient is varying rapidly there, to determine to what depth this
radiation will penetrate, and thus remain active at dissociating various

molecular species.

Oxygen is also the classic case of predissociation, the Schumann-
Runge bands providing quantities of data on the predissociation process.
The linewidths obtained experimentally can be used to estimate crossing
points of various potential curves of states of the molecule (this will

be discussed more fully in Chapter 6).



This thesis presents both the line strengths of absorption
lines in the Schumann-Runge bands, in the form of band oscillator
strengths, and linewidths obtained indirectly from the measurements.
Also presented are the absorption coefficients of the Lyman-o absorption

window of molecular oxygen, and their temperature dependence.

1.2 Previous Experimental Work - The Schumann-Runge Bands

The Schumann-Runge band system of molecular oxygen
(B32; - xaz;) has been studied extensively. The first significant
measurements were made by Curry and Herzberg (1934) and Knauss and
Ballard (1935) who identified the various lines, assigned these lines to
bands and obtained rotational constants for the upper states, as well as
a measurement of the dissociation limit. Watanabe et al (1953) obtained
values of the absorption intensities of the bands, as well as an improved
value for the dissociation limit of the B3Z; state. Brix and Herzberg
(1954) published high resolution data for the 12-0 to 18-0 bands,
with accurate values for line positions, rotational constants and a
definitive value for the B3Zé dissociation limit., The first values of
oscillator strength for the bands were obtained photographically by
Ditchburn and Heddle (1954) assuming a Doppler line shape, but these
results were later shown to be in error by Bethke (1959), who used a
pressure broadening effect to overcome the problem of low instrumental
resolution. Oscillator strengths were also obtained by Farmer et al (1968)
using a curve of growth technique for the 2-0 to 20-0 bands, and by
Hasson et al (1970) using high resolution direct photography for the 0-0
to 3-0 bands. Halmann (1965) used a pressure broadening effect and

measured values for the 2-0 to 10-0 bands while Ackermann et al (1970)



calculated oscillator strengths from absorption measurements at the
wavelength of various narrow silicon emission lines. The experimental
results of Hudson and Carter (1968) were analysed and oscillator strengths
extracted by Hudson and Mahle (1972) using a fitting procedure on the
high resolution data. Huebner et al (1975) published oscillator strengths
for the 1-0 to 20-0 bands using electron impact studies. The

numerous oscillator strength results will be discussed fully in Chapter 6.

Predissociation in oxygen was first suggested by Flory (1935) as
being responsible for the rotational line broadening. Wilkinson and
Mulliken (1956) and Carroll (1958) obtained qualitative evidence of line
broadening, and gave an estimate of the crossing point of the potential
curves near V' = 4. Hudson and Carter (1969) confirmed the predissociation
of the v' =3 to v' = 17 bands, and Ackerman et al (1969) also
confirmed that the lines were broadened from that of the Doppler case,
using spot measurements of absorption at the wavelengths of numerous
silicon emission lines. Murrell and Taylor (1969) performed theoretical
calculations on potential curves, and showed that the observed
predissociation could be explained by a single crossing of the potential
curves of the ground and upper state near v' = 4 of the ground state,
confirming the previous work. Ackerman and Biaume (1970) made photographic
estimates of the linewidths for the 0-0 to the 19-0 bands, as well as
measuring accurately the line positions for the 0-0 to 13-0 bands
and obtaining rotational constants. Their results confirmed that the
maximum of the linewidths occurred in the 4-0 band, with a further
maximum at v' = 11 and a minimum at v' = 9 , Schaeffer and Miller
(1970) however suggested that the curve crossing was not as previously

put forward. Julienne and Krauss (1975) and Julienne (1976) discuss the



predissociation problem, as well as presenting theoretical linewidths.
Hudson and Mahle (1972) also present linewidths along with their values
of oscillator strength. The discrepancies in the linewidths are

discussed fully in Chapter 6.

Once line positions, strengths and width§ for the rotational
lines in the Schumann-Runge bands have been obtained accurately, then it
will be possible to calculate transmission through the atmosphere and
to build up atmospheric models. These atmospheric models depend critically
on the absorption coefficients and on the predissociation. Hudson et al
(1969) discuss the predissociation and its atmospheric effects, while
Kockarts (1970) presents a theoretical analysis of the absorption of the
Schumann -Runge bands in the atmosphere. Blake et al (1966) present low
resolution absorption cross-sections and discuss the validity of Beer's
law for transmission through the Schumann-Runge bands. Thompson et al
(1963) also present low resolution data for oxygen and many other gases
of atmospheric interest, as does Huffman (1968). Creek and Nicholls (1975)
re-analyse the Schumann-Runge bands, and re-assess the molecular constants
previously derived. Fang et al (1974) present a theoretical attempt to
describe transmission through the bands using opacity distribution
functions, while Blake (1978 ) presents a model using effective absorption
over 10A and 2.0A wavelength intervals. Hudson et al (1966)

investigate the effect of temperature on the absorption coefficient.

1.3 Previous Experimental Work

Lyman-o Photoabsorption by 02

Laboratory measurements of the absorption cross-section of

molecular oxygen at H Lyman-o were first done by Watanabe (1958) and



Metzger and Cook (1963), and somewhat more comprehensively by Ogawa
(1968). Ogawa and Yamawaki (1970) obtained values for the pressure
dependence in reasonable agreement with Watanabe, and the more recent
results of Dose et al (1975) confirm the pressure dependence of the
absorption coefficient. Use of the laboratory measurements to extract
molecular oxygen densities was done by Carver et al (1964). Knowledge of
the solar hydrogen Lyman-o line profile allowed refinements to be made to
the calculations of the extinction of Lyman-o radiation as it passes
through the atmosphere. Purcell and Toussey (1960) and Quessette (1970)
presented their results for the line profile. Hall (1972) took account
of the variation in the cross-section with wavelength in his calculations
of extinction. The realization that the absorption cross-section could
not be assumed to be constant soon led to the conclusion, that laboratory
room temperature measurements were inapplicable to the atmosphere (Thrane
and Johannessen (1975), Smith and Miller (1974), Weeks (1975) and Prinz
and Brueckner (1977ﬂ. The temperature dependence of the absorption
coefficient was thought to be responsible for the discrepancy between the
0, densities derived using Lyman-o extinction and other methods. It is
noted that rotational lines of the a'Z; - X3Z; of high rotational
number coincide with the long wavelength side of the minimum of the -

absorption coefficient [Alberti et al (1967), Ogawa and Yamawaki (1970ﬂ.



CHAPTER 2

ELECTRONIC TRANSITIONS IN DIATOMIC MOLECULES

2.1 Introduction

This chapter is a brief summary of the various energy levels of
diatomic molecules and the spectra resulting from transitions between
those energy levels, with particular reference to oxygen. A more
comprehensive treatment is given in "Spectra of Diatomic Molecules' by
G. Herzberg (1950). This chapter will concentrate mainly on basic quantities

and concepts necessary to discussions in later chapters.

Molecules, like atoms, have electronic energy levels between which
transitions may occur. However, molecules have the additional complexity
of possible rotational and vibrational motions, and these result in
vibrational and rotational energy levels. The total energy of the molecules
can be resolved into electronic, vibrational and rotational parts, so
that each electronic level may be considered to have vibrational fine
structure, and each vibrational level as having rotational fine structure.
The resulting spectrum can then be a complex series of bands, as for

example, in the Schumann-Runge bands.

The absorption or emission of radiation corresponds to a
transition between two different energy states, the frequency of the

transition given by

hv = AE (2.1)

where AE is the energy difference between the states, and h 1is Planck's
constant. In general, there will be a simultaneous change in electronic,
vibrational and rotational energy. Differences in energy between

vibrational energy levels are much smaller than those for electronic levels,



while rotational energy level differences are smaller still,

2.2.1 Rotational Energy

The simplest model for a rotating diatomic molecule would be
that of a rigid rotator, having solutions to the appropriate Schroedinger

equation of

2
EJ - h® J (J + 1) (2.2)
8m I
mi mz
where I = ur’ and H o= is the reduced mass and I 1is
my+my

the moment of inertia. Here EJ is the energy of the Jth rotational
level, and J 1is the rotational number. The appropriate rotational

wavefunctions WR are

WR = N, PJIM'(cos 6)eM¢

M . . .
where PJ| ,(cos ©) 1is the associated Legendre function, N, is a
normalization constant, and M 1is a second quantum number representing

the component of the angular momentum J in the direction of the z-axis

in terms of h . Equation 2.2 shows the rotational energy to be quantized,

there being only certain allowed solutions, when J 1is integer.

Transitions between the various energy levels can occur when the

transition matrix elements

7o)
I

J‘{’*M ¥ dr
X u x |

v M ¥ dr
y u 'y

=~
It

*

R . [ Yy M ¥ dr
z |

N
=

are non-zero. Here Mx’ My and MZ are the components of the rotator

dipole moments in the x, y and <z directions respectively, and Wu and

Wl are the wavefunctions of the upper and lower states respectively.



The selection rules satisfying the condition Rx = Ry = Rz =0
are AJ =+ 1 , and then only when the dipole moment of the molecule is
non-zero. For a transition, the rotational level in the lower state is
denoted by J" , while the level in the upper state is denoted by J'
(similarly for N', N" and for vibrational number v', v'' ). This
rules out pure rotation spectra for homonuclear molecules like 0, ,
where both atoms have the same charge configuration and the dipole moment
is thus zero. However, when an electronic transition takes place,
rotational transitions may then be possible. This is found to be the

case in oxygen, which has no pure rotational spectrum, but electronic

transitions are accompanied by rotational transitions.

Using equation 2.2 and J" =J' +1 (AJ=%1) then

AE = 2h° J+ 1 = 2B(J + 1 2.3
R_ 21( )"‘ ( ) (')

2

where B = 5T

is the rotational constant, and AER is the energy
separation of two adjacent rotational levels for a given electronic
vibrational state. The rotational spectrum consists of a number of
equally spaced lines in frequency Vv , so the variation with wavelength

will be slightly non-linear. For J ~ 10 , the rotational energy

difference

AE_ = 10"%22 Joules (.0006 eV)

for oxygen.

Approximating diatomic molecules with rigid rotators shows the
basic properties of the spectra one would expect to see. However,
considering a molecule as a rigid object can only be an approximation.
Some account of the centrifugal stretching of the chemical bond as the

molecule rotates faster must be taken into account. This centrifugal



force tending to stretch the bond holding the molecule together
increases with increasing rotation, so the internuclear distance and
therefore the moment of inertia, increase with increasing rotation.

That is, the quantity B 1is dependent upon J . The non-rigid rotator
model takes these factors into account. The rotational energy levels of

the non-rigid rotator are given by

E; = BJWUJ+1) -DJF (J+ 1) (2.4)

where D depends on the sharpness of the potential curve and therefore
on the vibrational frequency w , and is very much smaller than B . The

selection rule is still AJ = + 1 which gives for the energy difference
AE, = 2B(J +1)- 4D(J + 1)? (2.5)

That is, the levels are no longer equidistant with frequency, but their
separation decreases slightly for increasing J . It is found that

D < 107*B , so the rigid rotator model is often accurate enough.

2.2.2 Vibrational Energy

The simplest model for vibration of a diatomic molecule is the
simple harmonic oscillator, since for small amplitudes, the restoring
force exerted by the atoms on each other is approximately proportional
to the change in internuclear distance. This will mean a parabolic
potential energy curve, as is the case for the simple harmonic oscillator.

The energy levels of the simple harmonic oscillator are

E = hv (v+k) = wv+lh (2.6)
0OSC

That is, a series of equidistant levels, Note v = 0 does not correspond

to E=0, but to E = %hvo , the zero point energy. The vibrational

SC
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wave functions are found to be

Yo=N exp( -%ax). H(Vax) (2.6)

v

4m v
where o = ————E——EEF , and H, are the Hermite polynomials. These

have maximum amplitudes close to where the energy level meets the potential

curve. The selection rule for vibration is Av =+ 1 .

Again for molecules consisting of like atoms, such as 02 , no
pure vibrational spectrum results, but electronic transitions are

accompanied by vibrational transitions.

Comparison of observed potential curves with the parabolic
assumptions of the linear harmonic oscillator show large discrepancies
as the displacement increases. The addition of a cubic term to the

potential e.g.
= f - N - 3
U F(r -r_ ) g(r -r_ )

gives an anharmonic oscillator showing better agreement over a wider range.

The new energy levels can be written as

— 1 1 2
E, = we( v+i) - Wy xe( v+ ) (2.7)

where WX is the anharmonicity constant, and W, is a measure of

the curvature of the potential well near the minimum. The selection rules
for the anharmonic oscillator give Av = * 1 for the most intense
transitions, but Av = * 2, * 3 etc,, are also possible, although the

intensities fall off very rapidly.

The vibrational wavefunctions for the anharmonic oscillator are
very similar to those of the harmonic oscillator, with the exception that

they are no longer symmetrical. Due to the asymmetry of the potential well,
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the molecule spends longer on the shallow right hand side of the
potential well, and therefore the probability density there will be

higher.

The energy difference between transitions can be found quite

simply from the harmonic oscillator energy levels

and AE = Anhw =~ 107*° Joules (.06 eV)

2.2.3 Interaction between Energy Modes

A simultaneous vibration and rotation will mean that there will
be some interaction between the two modes of motion. A molecular vibration
means that the internuclear distance, and thus the moment of inertia is
changing, and this leads to a vibrational dependence of the rotational
constant B . The period of a rotation is considerably larger than the
period of a vibration, so during the course of a single rotation, the
molecule undergoes many vibrations, with consequent change of internuclear
distance. Therefore in the presence of vibration, some sort of mean value
of B must be used. Pauling and Wilson (1935) have shown that in a

vibrational state v , B can be written as
= - + 1
B(v) Be ae( v + ’5)

to a first approximation, while the mean centrifugal stretching constant

D can be expressed as

D(v) = D+ Be( v + %)
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The suffix e denotes values taken at the equilibrium nuclear
separation Ty in the appropriate electronic state. The energy levels

of a vibrating symmetric top can be written

vi B ROT
or E(V, J, ) = & A (v+%)" +B(W) JJ+ 1)
n=1

+ (A - BOW)ON-DW)IP(J + 1)

where A is dependent upon the moment of inertia about the internuclear
axis and is unaffected by vibration and where |A| is the electronic
angular momentum neglecting spin, and A is the quantum number of the
angular momentum of the electrons about the internuclear axis. Choosing
An to suit the potential curves takes the electronic-vibration interaction

into account.

2.3 The Diatomic Molecule as a Symmetric Top

The model of the rotation of a diatomic molecule described
earlier was based on the assumption that the moment of inertia about the
internuclear axis is zero. This is not the case, because of the electrons
revolving about the two nuclei, which produce a small moment of inertia
about the line joining the two nuclei. The resultant can be thought of as
a symmetric top. The moment of inertia I, about the internuclear axis
is very much smaller than L, but the angular momentum is comparable,
since the electrons rotate much more rapidly. The total angular
momentum J is then the sum of the angular momenta R and A

perpendicular to and along the internuclear axis respectively (see Figure
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2.1). Here R represents essentially the rotation of the nuclei alone.

That is
L = R+ 0
and J is constant in magnitude and direction. The component along the

internuclear axis is constant in magnitude, but not in direction, and is

due to the revolution of the electrons. The magnitude is

=
Il

Jd VI@+ 1D h

and also | Al A

)

Since A and J have integral values, R cannot have an integral

value, and there is no quantum number associated with R . J 1is always

larger than J , and can be written
J = A, A1, A+2, .....

The wave equation for the symmetric top was solved by Reiche
and Rademacher (1926, 1927) (see also Pauling and Wilson (1935)) and the

resulting energy levels are given by

E(J, A) BJWJ+1) + (A-B) AN

h? h?
where B = 5T and A = ET:

and where IB = yr* and IA is the moment of inertia of the electrons

about the internuclear axis. Since I is small, A is very much
larger than B . The energy levels are very similar to those for a
simple rotator except for the shift in magnitude (A-B)A* , which is
constant for a given electronic state. Levels with J < A are absent.

The non-rigid symmetric top has energy levels given by

E(J, N) =B, J(J+1) + (A - BN —DVJZ(J+1)2



UNSTABLE or ANTI-BONDING STATE

POTENTIAL

ENERGY
FIG 2.1 Rotation of the symmetric @~ F\-"7--—~~—~=———~———- 7~~~ — ———
top about J , the total angular
momentum vector. The dotted part
of the Figure gives the vector
diagram when the direction of A
is reversed.

STABLE or BONDING STATE

INTERNUCLEAR DISTANCE

FIG 2.2 A plot of the potential energy dependence upon
internuclear distance, showing a stable and an unstable
molecular state.
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where Bv and Dv are effective values of the rotational constants

which differ for different vibrational levels.

The energy levels will be degenerate, since for each value of J,
there are two values of ML =+ A, Also, M, the magnetic quantum

number giving the component of J along a given axis is

M = J, J-1, ....., -J

that is, 2J + 1 values of M are possible, giving (2J + 1) independent
eigenfunctions. Energy levels with A=0 will be non degenerate, while

levels with A #0 will have degeneracy 2( 2J + 1) .

2.4 Electronic Energy and Total Energy

Molecules, like atoms, have different possible electronic states,
depending upon which orbitals are occupied by electrons. The differences
in electronic energy levels in molecules are similar to those in atoms,
given by

-m e’ ni + n2

AE = ———— | A ( —,
8e02 h? ( ng? nzz)

and this is approximately equal to 10"'%Joules (6 eV) with n = 1,
An =1 for oxygen. That is, the ratio of electronic energy to vibrational

energy to rotational energy is 10* : 10 : 1 .

The molecule is held together by the attractions between nuclei and
electrons of the opposing atoms being greater than the repulsive forces
acting between the two nuclei and the two sets of electrons. The total
energy of the molecule consists of the potential and kinetic energy of
the electrons, and the potential and kinetic energy of the nuclei. Because
the electrons move so much faster than the nuclei, the electronic energy

when the nuclei are free to move takes up the value corresponding to the
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instantaneous positions of the nuclei. The sum of the electronic energy
and the Coulomb potential of the nuclei acts as the potential energy under
whose influence the nuclei carry out their vibrations. If the potential
energy's dependence on internuclear distance has a minimum, and only

then, will the state in question be stable., No minimum means the state

is unstable, and the molecule will break apart (see Figure 2.2).

The Schroedinger equation for a molecular system may be resolved
into two separate equations. One describes the behaviour of electrons in
the field of fixed nuclei, and the wavefunctions of this equation We are
functions of the electronic coordinates and the internuclear separation.
The second equation is for the nuclei in a potential field (Ee1 + VN),
where Ee1 is the total electronic energy and v, is the nuclear Coulomb

potential. Here the wavefunctions ¥ _ are dependent only upon the

internuclear separation.

Born and Oppenheimer (1927) showed that to a good approximation,
the total eigenfunction V¥ could be split into Te and WVR , because
the variation of We with internuclear distance r 1is slow enough to
make its first and second order derivatives with respect to r negligible,

SO we can write

Pauling and Wilson (1935) show that WQR can be divided into

R

Wv and WR , so the total wavefunction can be written

The total energy of the molecule can be considered as the sum of

electronic, vibrational and rotational energies, E = Ee +E, +E .
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2.5 Symmetry Properties of the Electronic Eigenfunctions

In a diatomic molecule, any plane through the internuclear axis
is a plane of symmetry. Therefore the electronic eigenfunction of a non-
degenerate state ( L state with A = 0) remains either unchanged or
changes sign when reflected at any plane passing through both nuclei.

If the eigenfunction remains unchanged it is called a gt state, if it
changes sign, it is a Y~ state. Herzberg (1950) shows that this

classification is redundant for states with A > 0 .

In diatomic molecules, where the nuclei have the same charge, as
in oxygen, the field in which the electrons move has a centre of symmetry.
That is, the field remains unchanged by a reflection of the nuclei about
this centre (the mid-point of the internuclear axis). The electronic
eigenfunctions remain either unchanged or change sign when reflected about
this centre. Remaining unchanged, the state is called an even state,
changing sign makes it an odd state, and these are denoted by the subscripts

g and u for even and odd respectively.

For I states, the selection rules are

The selection for even and odd states 1is

ge+———>u, g'—’L‘g, u-—/——u.
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2.6 Symmetry Properties of the Rotational Levels

2.6.1 Positive and Negative Rotational Levels

Inspection of the rotator eigenfunctions (see Section 2.2.1)
shows that for a reflection about the origin the eigenfunctions either
remain unchanged or simply change sign. For even values of J they
remain unchanged, while for odd values of J , they change to -WR 3
A rotational level is called positive or negative depending on whether
the total eigenfunction remains unchanged or changes sign upon reflection.

We have

and the vibrational component

==

Wv always remains unchanged upon
reflection. If A =0 and We remain unchanged, the parity of the

rotational levels is positive or negative if J is even or odd.

If A+#0 , we have a symmetric top, and therefore for each
value of J there is a positive and a negative rotational level of
equal energy. For dipole radiation, the selection rules are positive levels

combine only with negative and vice versa, that is
+-———-——>—,+4+‘—+,—.—/———-,

2.6.2 Symmetric and Antisymmetric Rotational Levels
for Homonuclear Molecules

For homonuclear molecules, the wave equation of the system remains
unchanged if the two nuclei are exchanged. So, for an exchange of nuclei,
the total eigenfunction either remains unchanged or simply changes its

sign. If they remain unchanged, the eigenfunctions are symmetric, if not,
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antisymmetric. For a given electronic state, either the positive
rotational levels are all symmetric, and the negative all antisymmetric
or vice versa. The levels are labelled s and a depending upon

whether they are symmetric or antisymmetric, and the selection rules are

S ~—— S, a «— a, s ~—f— a.

In a given electronic state of a molecule, either the positive
rotational levels are symmetric and the negative are anti-symmetric
throughout, or vice versa. For the case with A = 0 , either the even-
numbered levels are symmetric (s) and the odd are antisymmetric (a) ,
or the reverse is the case. Figure 2.3 shows the two alternatives for
electronic states whose Te remains unchanged upon reflection at a plane
through the internuclear axis. For electronic states where We changes

sign, both designations -, + and s, a must be reversed.

2.7 The Influence of Nuclear Spin

The nuclear spin may be non-zero, giving an angular momentum I ,
and this produces an alternation in intensity, where every second line is
weaker. There is a contribution to the statistical weights of the various

levels (Tatum (1967)), and for homonuclear molecules, can be written

I integral 21 +1) . (I +1) for a levels
QL +1) . I for a levels

I odd-half
integral (2T + 1) I for s levels

(21 +1) . (I +1) for a levels .

If the nuclear spin is zero, as is the case for 02 , then every

alternate line will be completely missing.
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2.8 Classification of Electronic States

In diatomic molecules, only the component of the orbital angular
momentum of the electrons about the internuclear axis is a constant of
the motion. This component along the axis of L 1is ML , and Mk can

take the values

In diatomic molecules, states differing only in the sign of ML have
the same energy. States with different IMLI have widely different

energies. Accordingly we define

where N\ represents the component of the electronic orbital angular
momentum along the internuclear axis, of magnitude Ah . A can take
the values A =0, 1, 2, ....L , and the states are designated I, m, A,

¢, etc., where the m, A, ¢, .... states are doubly degenerate.

In molecules, as in atoms, the spins of the electrons form a
resultant S , the corresponding quantum number S being integral or
half integral as the number of electrons is even or odd. Ms is the

component along the internuclear axis, and is denoted by I , where

5 =8, 8-1, S-2, voeu, =S

That is, there are 2S + 1 values. I can be positive or negative, and

is undefined for states with A =0 ( I states).

The total angular momentum of the electrons, denoted by § is
the sum of A and £ . Since both A and X are along the internuclear

~

axis, algebraic summing is sufficient. The total quantum number is then

Q = | A+ 2|
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Therefore an electronic term with A # 0 splits into 2S5 + 1 components,
If A =0, in the absence of rotation, no splitting occurs. The
quantity of 2S + 1 is called the multiplicity. A full electronic state

may then be written as, adding the symmetry properties

28 + 1

A+ X

and in the case of I states are written

28 + 1 .

Rl
g,u

29 Coupling of Electronic and Rotational Motion

The influence of rotational and vibrational motions upon each
other has already been discussed, as has the coupling of vibrational
and electronic motions, where the vibrational levels are chosen to fit
the potential curve of the electronic state. All that remains to consider,

is the influence of rotational and electronic motion on each other.

The different angular momenta in the molecule such as electron
spin, electronic orbital angular momentum and angular momentum of nuclear
rotation form a resultant J , the total angular momentum. If the spin
S and orbital angular momentum J of the electrons are zero, that is a'y
state, then the angular momentum of nuclear rotation is identical with
the total angular momentum J , and we have the simple rotator case. In
all other cases, there are different modes of coupling, first investigated

by Hund.
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2.9.1 Hund's case (a)

Here the interaction of the nuclear rotation with the electronic
motion (spin as well as orbital) is weak, but the electronic motion is
coupled very strongly to the line joining the two nuclei. The electronic
angular momentum § is well defined, and with R , the angular momentum

of nuclear rotation, forms the resultant J . We have

J = Q, Q+1, Q+ 2, ....

that is, levels with J <  do not occur.

2.9.2 Hund's case (b)

When A =0, and S #o0 , the spin vector S is not coupled to
the internuclear axis at all, or for light atoms with A # 0 , the coupling
may be weak, and therefore § is not defined. In this case the angular

moments A (when A # 0) and R form a resultant N (as did £ and R

in case (a) ) and where
N=A, A+1, A+2,

where N is the total angular momentum apart from spin. If A = 0 then

N =R, and is therefore perpendicular to the internuclear axis, N and
S form a resultant J , the total angular momentum. Possible values for

~

the quantum number J are

J = N+S, N+S -1, N+S -2, ..... IN-S|

Therefore in general (except when N < S) each level with a given
N consists of 2S + 1 components. Again J 1is half-integral for an
odd number of electrons, and integral for an even number of electrons.
A slight coupling of § and N produces a small splitting of the levels

with different J and equal N , which increases with increasing N .

Other coupling cases are also possible, and are dealt with more



fully in Herzberg. Hund's coupling cases (a) and (b) are the ones

most often encountered.

N.B.

The quantities N and R and the quantum
number for N , N are referred to in Herzberg

as K and N respectively, with the quantum
number of K being K . This change was made in

1953 by the International Astronomical Union,

22.
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2.10 Selection Rules

Whether a transition will take place between two particular
levels of a diatomic molecule depends on the quantum numbers and symmetry
properties of the two levels concerned. These selection rules are
obtained by calculating the matrix elements R;, of the electric dipole
moment of equation 2.8, This matrix element may turn out to be zero, in
which case the transition strength is zero, and the transition is denoted
as forbidden (at least for electronic dipole radiation). If the matrix
element is non-zero, then the transition is allowed. There are selection
rules that always apply, regardless of the two states involved, and

there are selection rules which apply to particular energy levels.

2.10.1 General Selection Rules

These selection rules apply to all states.

(1) The selection rule for the total angular momentum

quantum number J is

AJ =0, £1 with J=0 =/=J=0

That is AJ = 0 1is not allowed for Z-X transitions.

(2) Parity must change. Positive terms combine only with

negative and vice versa., This is written as

+ — - + o -<7L_._

(3) Nuclear symmetry must not change. That is, symmetric
states combine only with symmetric and antisymmetric

only with antisymmetric, and this is denoted as

S -—» S, ad -——— a4, SA+—.-a



24,

(4) Finally, for molecules with equal nuclear charge,
even electronic states combine only with odd, and

this is written as

2.10.2 Selection Rules holding in case (a) and case (b)

Some selection rules hold in Hund's case (a) and Hund's case (b),
but not in other coupling cases. These are the cases that occur most

frequently, so these selection rules are significant.
(5) AA=0, %1

(6) reflection symmetry does not change, that is
):+<-—— Z+ , L - Z—, 2+<-7L—2_
and both I' and £~ can combine with T states.

(7) AS = 0, so only states of the same multiplicity can

combine with each other.

2.10.3 Selection Rules holding for case (a)

%, the quantum number of the component of spin along the
internuclear axis is defined, so for both states belonging to case (a)
A% =0 that is, the component of spin along the internuclear axis
does not alter. Also applying are A Q=0, *+1 and A J =0 is

forbidden for 2= 0 =-—— Q=0 .

2.10.4 Selection Rules holding for case (b)

N , the total angular momentum apart from spin, is bound by the

rule on its quantum number N of

AN =0, %1

but A N=0 is forbidden for IL-X transitions.
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2.11 Selection Rules Applied to the Schumann-Runge Bands

The selection rules discussed in the previous section can be
applied to the Schumann-Runge bands. The electronic transition in

question is
X3 z; — B I,
so the selection rules
AA=0,21, 2 =—3IX , g e« u and AS=20

are obviously obeyed. The selection rules still remaining are

AJ =0, +1 and can be denoted as follows

A =+1 = Fv,(J + 1) Fv”(J) R branch
AT =0 = F,,(J) =——* Fv"(J) Q branch (2.8)
AJ=-1 = F ,(J-1) —  F, (3 P branch

Figure 2.4 shows the possible transitions for the 15-0 band of
the Schumann-Runge bands, with levels of alternate N values missing in
both the ground state and the upper state (the even-numbered N missing in
the ground state, the odd-numbered N levels missing in the upper state) due
to zero nuclear spin (see Section 2.7). This results in only symmetric
levels (s) occurring in both states, and only positive levels (+) occurring
in the ground state, and only negative levels (-) in the upper state, so
the last two selection rules s «— a, + =—e= - are automatically
fulfilled. This also means there is no Q branch for the Schumann-Runge

bands.

It should now be possible to discuss the terminology used in
later chapters. For example, the oscillator strength of the R13(2-0) may

be discussed, and this terminology contains the quantum numbers used above.
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(Reproduced from Brix and Herzberg (1954))
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That is, (2-0) means v' =2, v'" = 0. Ry3 means AJ = +1, N' = 13—
N' = 14 . The Ris line actually consists of a triplet of lines, the
R1(13), R2(13) and R3(13) , where J" = N"+ 1, N", N" -1
respectively. Similarly, the P11(5-0) line, means v' =5, v'" =0,

AJ = -1, N' =11 — N' =10, and this line is also composed of a
triplet of lines, the P;(11), P2(11) and P3(11) 1lines with N' = 11,
J"=N'"+1, N", N' -1 respectively, there are six main branches
between any two levels, and they are P; , P» , P3and Ry , Rz, Ry
There are also six allowed satellite branches, denoted by PQi2, PQzs,
?R13, R'Q21, RQaz, RQal (shown in Figure 2.4). The strengths of these
satellite branches fall off very rapidly with N , and they only play a
significant role near the band head (N <7) . The selection rule

AN = £+ 1 is not as rigorous as the other selection rules, and lines with

3 have been observed, denoted by TRal and NP13 , but they only

I+

AN =

occur weakly, for low N values.
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2.12 Transition and Transition Strength

The strengths of transitions between the various molecular
states described previously vary greatly. As shown by the previous
section, many transitions are completely forbidden. The interaction of
an electromagnetic wave with electric vector E with a molecule of
electric dipole moment M has been done by Pauling and Wilson (1935),
and for a molecule in state 1 undergoing a transition to a higher state 2
when exposed to radiation of energy hv = AE , the energy difference

between the states, it is found that

2
8 R
B12 = _’nj_l_]'_z_l_

30 4T e
5

where B3, is the Einstein transition probability of absorption, and

Ri2 1is the transition moment, written
Riz2(r) = I Y1 MY, a1 (2.9)

where Y¥; and VY2 are the total wave functions.

It is often useful to consider the components of R , where
2 2 2 2
[Riz(@)| = [Ri2(]| + [R2(y)| + [Riz(2)]

and it is to these transitions to which all quantities referring to line
strength eventually relate. The electric dipole line strength S is

defined by

i

2 2 2 2
Si2 = |Riz] [Ri2(x)| + [Ri2()]| + |R12(2)]

2 2 2 2)
& (|x1z2] + |yiz2] + |z12]

where Xxi12, Yi2 and zi2 are the electric dipole moment matrix elements.
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The strengths of transitions between states depends primarily on the
overlap integral between the two wavefunctions, given by equation 2.8.

If the matrix element is non-zero, and therefore an allowed transition,
then this matrix element or transition moment can take a range of values,
the larger the value, the greater the transition strength. Wavefunctions
which maximize this overlap, will therefore be accompanied by the strongest

transitions.

2.13 Population Numbers and the Boltzmann Distribution

The strength of a line depends not only on the transition
probability, but also upon the population of the state from which the

transition arises.

Boltzmann's formula for the ratio of the populations of two

energy levels E; and Ez in thermal equilibrium at temperature T is

No o &2 B2 - E
N, TG [ =€ KT ) ]

where g; and g, are the statistical weights of the respective states,
N; and N; are their populations and K, is Boltzmann's constant. This

can be written as

(2.10)

1
'9

F
o
2
™

1

|em
A —

int B
where N is the total number of particles, exp( - E1/KBT ) 1is the

Boltzmann factor and Q, c is the partition function given by
in

: = I . e - E./K T
Qint . g; xp ( J/ LT )
and is the sum of all the weighted Boltzmann factors. At room temperature

only the ground state vibrational level is populated to a significant

extent, although the 1st excited vibrational level has a small fraction of
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the population. The rotational levels in the ground vibrational state
are populated, since the energy available at room temperature
(~300°K) is 300 x 1,38 x 107%° = 4,2 x 107*' Joules and

= ~ ~-20 J - - -23
G(v) = AEVIB 10 Joules while F(J) = AEROT 5.7 x 10 Joules.
That is the thermal energy available at 300 °K is sufficient to excite

some of the molecules to the first vibrational level, and to a large

number of rotational levels.

Tatum (1967) gives a detailed analysis of population number for
all the different types of energy levels. Since the Schumann-Runge bands
consist of transitions between states, the following equations are

specifically for such states.

Consider a sample consisting of N molecules. The fraction of

these molecules in a particular electronic state n 1is given by

Nm) % &L - (he/KTIT, |
N (2.11)
I ge exp[ - (he/K T, ]
all states

where N(n) is the number of molecules in electronic state n , N is
the total number of molecules, Te is the electronic energy, and 8¢ is
the electronic statistical weight, given by g, = (2 - GO,A)(ZS + 1) =

(28 + 1) for I states.

The denominator in equation 2.10 is the electronic partition

function, Qel'

Of the N(n) molecules in the electronic state n , the fraction

in the vibrational level v of that state is

N o e Gy 1/ T el - S 6w 1 (2.12)
N Xp T V:oxp KT v (2.
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where G(v), the vibrational energy should be referred to the lowest
vibrational level, and not the potential minimum. The statistical weight
of vibrational levels is 1 . The denominator of equation 2.12 is the

vibrational partition function, Q, _ -

Of the molecules in that vibrational state, the fraction in the

Nth rotational 1level is

N(nvN) 2¢ hc B, he
N(nv) KT (2N + 1) exp[ - ¢ F(N) ] (2.13)
=] B
h I+1 £ 1 1 d I F ) ]
where ¢ ST1 or s evels, and sy 7 or a levels (see

section 2.7), and Bv is the rotational constant for the vth vibrational
level. The rotational partition function in equation 2.12 has been

replaced by

a good enough approximation at temperatures above 273 °K .

The number of molecules in sub-level J is N(nvN J) and is

given by

N(nvNJ) _ 2J + 1
N(nvN) =~ (25+1)(2N+1)

(2.14)
except for the N = 0 state of a I state, in which case N(nvNJ) =
N(nvN) , and where (2J + 1) is the rotational statistical weight.

Transitions involving I states are always single, and states
are always of the Hund's case (b) coupling type. The population of a

single level is then, using all the above interrelations is

NOWNT) _ 5, (29 + 1) exp[ - D& (T, + G(v) + (7)) ]

N -
Qel QVlB QROT

(2.15)
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and where the electronic statistical weight 8e is 1, since only

one state is under discussion.

The above section allows the populations of levels to be
calculated, but what is also needed, is the transition strengths of

the various allowed transitions.

2.14 Line Strengths

For a molecular line within a band, the line strength S can
be written as

2

A(Nl Jl s Nll JH) Rev (n|, vl, nll Vll)

w
1]

ANV JT L, NI . S(n' v, n'" V") (2.16)

[®]

H
wn
1

where S(n'v', n"v'") is the band strength (usually denoted p'v'v")

and is the square of the transition moment of the band. The n', n'" are
the upper and lower molecular states, and the v', v'" are the

vibrational levels in these states. The s(N' J', N" J") are related

to the Honl-London factors. The justification for the above factorization
is the Born-Oppenheimer approximation, which regards the effects of
nuclear motion as perturbations to the electronic wavefunctions. It is

possible to write the total wave function as the product

Vo= ¥ (r) Y, () ¥

Vi ROT

where the first two terms depend on the internuclear separation r ,
and the last term only has angular dependence. The radial part of the

transition moment can be written
2
S(n'v', n"v") = | I ¥, R (1) Yv"drl

*
where Re = J We M We dTt and M is the dipole moment of the
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molecule. Since both the vibrational and electronic wavefunctions are
functions of r , the integral cannot be separated exactly into two
factors. However, if Re is assumed to vary slowly with 1 over the

range in question, the approximation
S(n'v', n"v") = S(V',V"). Re2 (n|’nn)
may be made. Here &§(v',v'") is the Franck-Condon factor (usually written

Ay V"), and is a measure of the overlap integral between two vibrational
2

wave functions. That is
S(V"V") = I I \Pvf \Pvll dr |
and these factors satisfy the sum rules

L Sv,v) = I Sv,v) =1
v| V"

It would appear that the band strength Sin'v',n"v") could be determined
from the Franck-Condon factors, and a knowledge of Rez. However, Re2

has a dependence upon v' and v'" (that is, the Born-Oppenheimer
approximation is inadequate), and the Re2 term has been replaced by a
mean < Re2 > for the whole system, which is independent of v' and v'" .

This quantity is called the r-centroid, and is defined as

J ¥, ¥, rdr

v oy > =
f Y, ¥, dr

(2.17)

An electronic transition, in a homonuclear molecule such as
oxygen, is accompanied by vibrational and rotational changes of state. The
strengths of the vibrational and rotational transitions are given by the

Franck-Condon factors and the Hénl-London factors, respectively.

2.14.1 The Franck-Condon Principle

The variations in the vibrational intensity distribution can be

explained briefly as due to a maximizing of the overlap of vibrational
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wavefunctions. Franck's postulate was that an electron jump in a
molecule takes place so rapidly in comparison to the vibrational motion
that immediately after the transition the nuclei still have very nearly
the same relative positions and velocities as before. Condon showed that
this corresponds to transitions vertically upwards or downwards in the
potential energy diagram (see Figure 2.5). Since the ground state
vibrational wavefunction has its maximum at the centre of the potential
curve, whenever this centre lines up with the maximum of some other
vibrational state in the upper state, the transition with the greatest
strength will occur. Thus, Franck-Condon factors are a measure of the

overlap, and thus the strength of various vibrational transitions.

2.14.2 Hoénl-London Factors

The H8nl -London factors determine the relative intensities of
the branches within a band, in the case of the Schumann-Runge bands, the

rotational line strengths for a given vibrational transition.

The HYnl -London factors 4 (N'J',N'"J") are often normalized
so that

T4 (N'J', NJ") = 2J' +1 or 2J"+ 1
JtorJ"

respectively.

A table of Hdnl-London factors for the Hund's case (b) coupling

is given in Table 2.1. (see also Tatum (1966).

Tatum and Watson (1971) present HYnl-London factors for
intermediate coupling cases, pointing out that departures from Hund's
coupling case (b) have been observed in the Schumann-Runge bands. However,

a comparison of the two types of Hénl-London factors shows virtually exact
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P

Ri

PQi2

Ps

Rz

PQ23

RQ21

Pj

Rj

RQs2

TABLE 2.1

+ + o
- 3%7 Transitions.

N"(ZN" + 3)
2N + 1

(N'" + 1) (2N" + 5)
2N" + 3

1
'N"u

(N" - 1) (N" + 1)
N"

Nl!(N" + 2)
N + 1

N''(2N" - 3)
2N - 1

(N + 1)(2N" - 1)
2N" + 1

1
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(J" - 1)(2J" + 1)
27" -1

J'I(ZJ" + 3)

2J" + 1
1
'J_n

(Janr - 1)J" + 1)
N

Jnan + 2‘)
I+ 1

Jl|+1

=

(I" + 1)(2J" - 1)
237 + 1

(J" + 2) (23" + 1)
27+ 3

1

(N7 + 1) (2N7 + 1) (2N" + 3)

(Reproduced from Tatum (1966))

J297 - 1) (297 + 1)
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agreement for rotational levels above N'" =5, with only slight
departures below this level, so the original factors of Tatum (1966) were

used in the results analysis,

2.15 Oscillator Strength

When the Honl-London factors have been correctly normalized, then

the line strength S can be written

A(N'J' ) N"J") . S(H'V', n"v")
(2s + 1) (27 + 1)

(2.18)

for a ¥ state. The designation J in (2J + 1) should be changed

to J' or J" depending upon whether emission or absorption is being
discussed. The quantity, oscillator strength is defined as the ratio of
the number of classical oscillators N to the number of molecules N

which absorb the same amount of energy, that is

N = Nf
where f is the oscillator strength. The oscillator strength of a line
is related to the line strength S by (Thorne (1974))

8 mv. S 8™ my

J A(N'J',N"J")S(n'\f',n"V”)

fvrdry, vvJm =
3he’ 3he’ (25 + 1) (2 + 1)

(2.19)

where v, is the frequency corresponding to the energy difference
between the states.
A band oscillator strength can be defined by summing f (v'J',v"J")

over all branches of the J'" sub-levels, that is

8T mv
v

fvrum = % g, vigm = v Stvt, atv')
J! 3he (28 + 1)

where Vv is the frequency corresponding to the energy difference

between the two vibrational levels. We can write



36.

fvrar, v (23 + 1) v

f v,v)y = 5(N'TT, NI \)J
or as f (vW',v'U") = f (v',v") 4%) A
A

J

That is, there is a wavelength dependence in the summing procedure,

H

Only if the extent of the vibrational band is small, that is Av ~ A

can it be said that

- i f (v|’vll) A(NIJl, N"J") (2‘20)
fov'ar, vium) 27+ 1)

and also that

f (v',v') = L f(v'dr, viam.

That is the band f -value can be obtained from the line f -values by

summing over all transitions of lines comprising the band.
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2.16 Predissociation

Predissociation is discussed comprehensively in Herzberg (1950),
and only a short introduction, sufficient for understanding later sections
of this thesis, is given here. Transitions between different states were
discussed previously in the section on the Franck-Condon principle. The
states shown in Figure 2.5 were all bound states. If a transition should
occur between the lower state vVv''= 0 and a state v' above the level
A-B (of Figure 2.5), then dissociation of the molecule would take place,

since A-B designates the dissociation continuum level.

If the situation in Figure 2.6 is now considered, then it can be
seen that the bound states of the upper potential curve have dissociation
levels of other states below them. This means that vibrational and
rotational states of the upper electronic state, given by the upper
potential curve, can make radiationless transitions to states belonging to
the lower electronic level, and when this lower level is an unbound state,
or corresponds to a vibrational or rotational state above the dissociation
level if it is a bound, stable state, then predissociation occurs for the
molecule. The predissociation, illustrated more clearly in Figure 2.7, does
not necessarily occur immediately the molecule is in the region of the
intersection point of the two curves, but occurs with a probability that
depends on the types of states in question. The larger the overlap of
wavefunctions, as shown in Figure 2.7, the more likely is the transition
and the shorter is the predissociation lifetime Tp . This gives a
relation to the predissociated linewidth up , using the uncertainty
principle, and is discussed further in Section 3.3.3. The predissociation
lifetime Tp is usually much larger than the natural lifetime T , and
so the lines appear to be broadened, as is the case in the Schumann-Runge

bands.



POTENTIAL
ENERGY

GROUND STATE
XL

INTERNUCLEAR DISTANCE

FIG 2.6 A hypothetical example of a molecule which would
undergo predissociation, This case is very similar to oxygen,
and the upper state B>  can predissociate to the *m , °m
or *I' states, since all these states have dissociation

levels" below the stable occupied levels of the 832u state. The
various dissociation levels are denoted by the numbers 1 -5 .



POTENTIAL
ENERGY

BOUND STATE

UNBOUND STATE

INTERNUCLEAR  DISTANCE

FIG 2.7 The Franck-Condon principle in predissociation. The larger the overlap

of the eigenfunctions ¥i and Y» , the greater the probability of predissociation.
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CHAPTER 3

3.1 Absorption of Radiation by a Gas

As monochromatic radiation passes through an absorbing gas,
the intensity is attenuated in such a way that the fractional decrease
in intensity dI/I (here dI is the actual decrease in intensity, and I
is the incident intensity) is the same for each small path length dx .

This can be written as

di = -I k dx (3.1)

where k is the absorption coefficient. The way the intensity varies
over a path length x comprising a whole series of dx's is found by

integrating equation 3.1 over the path length,

E X
dr  _
o [
o 0
to give inlI -1 = -kx.
F o

Taking exponentials of both sides, the well known Beer's Law is obtained

I = Io exp( - kx ) (3.2)

F

The above derivation applied to monochromatic radiation, but a
case of more experimental interest is when the intensity is not constant
with wavelength, and it is then necessary to write I (A\) . Consider
radiation incident over a wavelength interval AX . The total intensity
I is then

I = I I(\) dA
A

and it may also be that the absorption coefficient has some wavelength
dependence, and k(A) is the absorption coefficient at wavelength A .

The intensity after passing through a length of absorber x can then be



Absorption

Coefficient

k()

Ao
Wavelength

FIG 3.1 - The variation in absorption
centred at A,. Beer's Law would be obeyed for the wavelength intervals

not for the interval AA .

coefficient with wavelength A for an absorption line
dx , but
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written

I = I I(A) dA = f I, () expl - k(M)x ] da (3.3)
AX AN

If k(\) = k, that is, is constant with wavelength then equation 3.3

again reduced to Beer's Law, that is
I = exp( -kx ) J IO(X) drx = Io exp( -kx )

Otherwise, if absorption coefficient varies with wavelength, then
Beer's Law is not valid over the wavelength interval AA , and the
intensity is a more complex function of the path length. For example,
in Figure 3.1, Beer's Law would not be obeyed over the wavelength
interval AX , but would be obeyed to a good approximation over the

interval dA .

If the wavelength region Ao * AX of Figure 3.1 is considered
again, then for small absorber thickness x, radiation will be absorbed
at all wavelengths, and the effective absorption over the wavelength
interval will be as if due to some constant absorption coefficient keff’

BheES keff ﬁ‘kaverage.

For larger absorber thicknesses however, the central regions
near ko will be completely absorbed out, and will thus no longer
contribute to continuing absorption. Only the radiation in the wings near
Ao + AX will be absorbed, and the effective absorption coefficient keff
will be approximately equal to kwings (this process is called radiation
hardening). Figure 3.6 shows an example of absorption occurring at

different wavelengths within a wavelength region as the absorption path

length changes.

Experimentally, Beer's Law is obeyed when the incident wavelength

is monochromatic, that is when extremely high resolution is used (for example
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a narrow emission line of a hollow cathode lamp), or when the absorption
coefficient k()A) is constant (a continuum). Beer's Law fails when
k(\) varies rapidly over the finite instrumental resolution wavelength
interval AX , and this is the case encountered in this thesis for the

work done on the Schumann-Runge bands.

The departures from Beer's Law occur because light detectors
looking at the incident light, measure how much light there is in the
wavelength band under inspection, and take no account of the distribution
of intensity with wavelength. Wavelength distribution of the light
changes as the beam passes through the absorber, because of the effects of
the varying absorption coefficient, and a detector looking at this final

intensity again does so independently of the wavelength distribution.

In many experiments, the absorption coefficient varies over the
small range of wavelengths given by the instrument resolution. In such a
case the intensity is made as near as is possible constant over the region
of interest, by choosing the lamp, and the lamp gas to provide a
continuum of fairly constant intensity with wavelength. This is not
always possible, and care should be taken if there are emission lines

present.

Absorption lines, the principal source of rapid variations of
absorption coefficient with wavelength, are due to atoms or molecules of
the gas absorbing radiation and undergoing transitions from one energy
state to another. In the case of molecules, electronic, vibrational and
rotational transitions are all possible, and each peak in the absorption
coefficient corresponds to radiation at that wavelength being absorbed,
and the energy used for a transition to another state. What the
experiment seeks to find is a measure of absorption coefficient at each

wavelength, and this can be accomplished if the strength and line-shape
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parameters of each transition are measured. This would be simple if the
monochromator had instrument width much less than the line widths. 1In

this ideal case, a scan across a certain wavelength region would exactly
reproduce the absorption coefficient of that region. However, as the
monochromator always has some finite resolution, the absorption coefficient

will be greatly modified.

3.2 The Effect of Instrument Resolution

Consider an ideal experimental case, where an absorption line of
some undetermined shape is to be measured. The shape of the absorption
line can be described by some function k(A). A scan across the line,
with very high resolution (a delta-function perhaps), will simply
reproduce the line shape. As the resolution is reduced, the delta-function
scan function broadens out, and this function can be denoted by g(1).

Now each point on the experimentally measured absorption curve is given by
area under the convolution of the resolution function g(A) and the
absorption of the line function k(X) . It is possible to define A(})

as the absorption at wavelength X , where
A(Ai) = exp [ - kPX k(ki) ] (3.4)

and where kpx is a path length factor.

The convolution function C(Ai) is then

A
cy) = I; g0y - A3) A dy (3.5)

A
Ideally, the integration range should be ~ to < , but experimental
limitations preclude this. This convolution, representing the
experimentally measured absorption curve will now be different from the
actual absorption coefficient, and the effect is to smear out the

absorption line, by reducing its peak height and increasing its width.
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This is illustrated in Figure 3.2 for three different values of
instrument resolution ag , where ag is the half-width of the
resolution function (full-width at half height), taken to be a Gaussian
function. If both functions g(A) and A(X) were Gaussian, then the

resultant would also be a Gaussian with width

T

o = o2 + 02
g A

where o  is the half width of the absorption function. This expression
is only accurate for the case where both functions are Gaussian, though

it can be applied to other cases to obtain qualitative results.

Irrespective of the form of A(A), if g(A\) 1is much narrower,
the resultant function C()A) will have a width comparable to. A(N),
while if g(A) is much wider (as in case (c) of Figure 3.2) then the
resultant will have a width comparable to g(A). Figure 3.2 shows the effect
of blending of two individual lines by the poor instrumental resolution
to produce an apparent single line, something which happens often in

the Schumann-Runge bands.

The area under the resolution function should be unity, since
this function should neither reduce nor add to the area of the absorption

line, but only affect its distribution. That is
I C(A) dx = { A(N) dx (3.6)

and the above integral is independent of the width of the resolution

function (see Appendix 1 ).

3.3 The Width and Shape of Spectral Lines

In considering a spectral absorption line, there are three basic
quantities which completely define the line. These quantities are the

position of the line centre Xo , the width of the line o, s and the



Case (c)

FIG 3.2

Wavelength

The effect of resolution function g(A) upon observed
absorption C()A) for a given absorption A(A), plotted as
intensity.versus wavelength. The peak height of apparent
absorption decreases as the resolution function broadens out,
and the two absorption lines are no longer resolved. The total
area beneath the function C(A) remains constant,
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line strength S . Each line is characterized by a function k(})

which completely determines the way in which the absorption will behave
as optical depth or absorption path length is increased. Common examples
of the type of function k(A) are the Gaussian or Doppler function.

A - Ao
k() = e [ - (—5—

D

)2 4 n2 ] (3.7)

and the Lorentz or Natural broadening function

1
k(A) =
(M) T2 (2 = Yo )2 (3.8)

There are other possible parameters, such as peak height kp (the height
at the line centre) and the integrated absorption coefficient I k(A) dA

but knowledge of any three parameters allows the others to be determined.

3.3.1 Doppler Broadening.

Absorption lines have a Doppler profile when the major
contribution to the width is due to random thermal motion of the atoms or
molecules under consideration. The formula for the Doppler width is

A KT ,
o B L

e T (2 )*

(3.9)

Q
I

where SR is the 1/e half width (see Figure 3.3) and T 1is
temperature in °K .

K is Boltzmann's constant

M is the mass of the molecule, and

C is the speed of light.
Equation 3.9 is derived as follows.

The Doppler effect, where there is an apparent shift in wavelength

of signal from a moving source, applies to the molecules in random motion.
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The observer will see molecules moving towards as well as away from

himself, with wavelength shift given by
A= Ao (1+v/c) (3.10)

or AAN = v/c where A) 1is positive when V is negative (away from
observer) and negative when V is positive (towards observer). There
will be a distribution of velocities given by the Maxwell distribution,
and thus a distribution of observed wavelengths, resulting in a broadened

line.

The Maxwell distribution gives

n = D o VW 4y (3:11)
v uvm

dn
where —X 1is the fraction of molecules having velocity between v and
n

v + dv along an axis, and u is the most probable velocity

u = /2kT (3.12)
M
(Thorne ( 1974 ) page 259).
This gives
inni - L= e'czmz/)‘;uz%\l; dx (3.13)
Since the absorption coefficient at A is proportional to dn the

}\ >

line profile can be written in terms of the peak value at the line centre

k as
P

k(A = kp exp [ - ¢ ()\0 - A)?Azaz ] (3.14)

The full width at half-maximum of the Doppler line o_ , is given by



k(?x)zkpexp[-(uo)l.ln 2]
o

i D

k{A)

Ao

Wavelength

FIG 3.3 A Doppler absorption line with half-width .o and 1/e width o_, plotted as
absorption coefficient versus wavelength. ® Note the rapid decrease in amplitude
with wavelength.
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. _ e 1 e
o = 2vAn2 a, = zfnz 2K T —2- (3.15)
M
and the area under a Doppler line is given by (see Appendix 2 ).
k DtD\/ﬂ
[ k(A dr = P2 = k o VT (3.16)
2V gn2 P

That is, the area under the line varies linearly with width, a not
unsurprising result. It is a property of the Doppler line, that the
intensity of the line wings falls off in a very rapid manner, and is
virtually zero beyond 2 to 3 ae . Typical Doppler widths at room
temperature in the Schumann-Runge bands were of the order of 0.004A
(0.13 ecm™') or 4.0 mA , there being a small variation with wavelength

over the range 1750A to 2000A .

3.3.2 Natural Broadening

Associated with each energy level in an atom or molecule, is
a lifetime, which is the time the energy level is in existence or is
occupied, before decaying to a lower level. From the uncertainty
principal, such a lifetime must have associated with it a spread in

energy AE , where

AE At = h (3.17)

so that the shorter the lifetime, the larger the energy spread. Since
the ground state is a stable state, with infinite lifetime, its energy

is uniquely and accurately defined. However upper states, with varying
lifetimes have varying energy spreads, and it is these energy
uncertainties which give the finite width to the transitions. Natural
widths are usually much smaller than Doppler widths (by several orders of

magnitude) at room temperature, and can only be observed with low



Absorption

Coefficient

k(A)

Wavelength A

FIG 3.4 A Lorentz absorption line, with half-width o, plotted as absorption coefficient

versus wavelength. Note the slow amplitude decay in the wings of the line.
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temperature gas samples with small Doppler widths.

The Lorentz or Natural Broadening function is

KA = L ——
1+ 4 (—2 2
aN
)\2
. B 0
where the natural width o = aﬁfzj?; (3.18)

is the full width at half maximum ( see Figure 3.4 ) and T, is the

lifetime of the state.

The area under a Lorentz line is given by (see Appendix 3 )

J k() dh = ko /2 (3.19)

That is, for the same peak height (say kp =1 ) and the same width

(a, =, ), the area under a Lorentz line-shape function is greater than
that under a Doppler line-shape function. This must be taken into
account later when a mixed function is used as an approximation to the

Voigt profile.

3.3.3 Predissociation Broadening

Predissociation broadening can be considered to be a special
case of Natural broadening. In Natural broadening, the distribution of
lifetimes results in a distribution of energy levels (because of the
uncertainty principle) and this distribution gives rise to the Natural
or Lorentz line profile. For predissociation broadening, the natural
lifetime is replaced by the predissociation lifetime Tp , which is a
measure of how long the molecule will exist in a certain state before
making a radiationless transition through dissociation to an unbound state.
This dependence on state lifetime gives predissociation broadening a

line profile of the same form as the Natural or Lorentzian shape. It is
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no longer possible, if a state 1is predissociated, to talk of a natural
lifetime, because the lifetime of the state is completely determined by
Tp . In almost all cases Tp < T, thus giving line widths for
predissociation broadening which are much greater than the natural line-
widths would have been. The predissociation linewidth up is related

to the predissociation lifetime by

Ao?
@p = amc T (3.20)
P

and in the Schumann-Runge bands was found to vary from 2.0 mA (0.06 cm™ ')

to 150 mA (4.1 cm™').

3.3.4 Pressure Broadening

This is a broadening phenomenon due to the effects produced by
pressure on the transition taking place in molecules. These effects can
be of different types, and there is no one theory which completely
describes all the effects and produces a single formula for the pressure
contribution to the linewidth. The simplification that is made is that
only actual collisions are considered. That is, if an absorption process
is taking place in a molecule, when it collides with another molecule,
thus terminating the process, then the wavelength of that process will
be altered, a situation analogous to natural broadening. The lifetime
however, must now be replaced by the mean time between collisions, and the
line width for such a pressure broadened line is given by

B 1
2 = V2nmd (3.22)
where n is the number density, and d is the diameter of the molecule.
The value that should be assigned to the diameter is uncertain, the
actual diameter of the outer electron shell being inappropriate in this

case. For this order of magnitude calculation, a diameter of 2 to 4 times
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the electron shell radius is assumed. From the ideal gas equation

PV = NKT (3.23)

an expression relating pressure to number density can be obtained, for

example

N
P = KT = nKT (3.24)

Substitution into equation 3.23 gives

KT
B

N |
S vrpTd
The most probable speed of the molecule, Vp is given by equation
2 KT
Vo= M 3.2
> (3.26)
and the collision time T, is
% 1 KT M
T= = = B (T ) (3.27)
c vp v2 Pmd 2 KT
Substitution into equation 3.21 gives
A2 V2 . 2KeT %
= 0 2 ¥ & £ B2
OLC 4Tc Ed KBT ( M)
which reduces to
A2 1 L
- 2 2
o, —SE- P d* ( ™ )
Using a value of d=5A to d=10A for 02
the above equation becomes
_ 2
a, = Z XO p (3.29)

where 2 1lies between the values 2.9 and 11.5 , and where XO is

in metres and P in atmospheres,

(3.25)

(3.28)
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The maximum pressure used during the present measurements in the
Schumann-Runge bands is 850 torr or 1.12 atmospheres (in the 1-0
and 2-0 bands near A = 2000R8) so the maximum pressure width would be

of the order of
a, = (1.3 to 5) x 107" °metres or 1.3 to 5 mA .

Collision broadening gives a line with a Lorentz core, so the total
Lorentz width o, due to natural broadening a and collision

broadening o, would be
a = 0o + O (3.30)

where both processes simply combine to give a total Lorentz shape. It
must be remembered however, that only collision induced broadening has
been taken into account. Close encounters and perturbations of
surrounding molecules, which have been neglected, produce broadened
wings. The presence of a foreign gas will increase the number of
collisions and will broaden the line-shape as well as shifting the actual

position of the line.

3.4 The Mixed Line Profile

To produce realistic line shapes in the Schumann-Runge bands,
it is necessary to use a function with a parameter which changes the line
shape from pure Doppler to pure Lorentz, since the lines in these bands
may vary in such a fashion. This parameter is called the mixing parameter

a , and is defined

o
a = =+ 1In2 (3.31)
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where o and o, are the Lorentz and Doppler full-widths at half

maximum respectively.

A line in the Schumann-Runge bands will have a certain shape
and width, due to mixing of the Doppler effect due to temperature, and
the natural and predissociation broadening effects which produce a
Lorentz line shape. Lines will therefore be a combination of all these
effects, and can be described by a Voigt width o, s and a mixing
parameter a , detailing the ratio of Lorentz to Doppler width. A line
with a = 0 will be a pure Doppler line and will have o = o , whereas

a line with a = © is a pure Lorentz line, with o, =0 .

The Voigt profile is given by (see Appendix 4 )

k() = k2 Lo zfpf va-‘ 3()2 dx (3.32)

where v = 2( i—é—ég-)wﬁﬁi' . That is, each point on the Voigt profile
requires the cachlation of an integral. Therefore a calculation of an
equivalent width requiring the integration across an absorption line
profile, first requires n integrations to obtain n k(A) points. To
speed up computing, the empirical approximations of Whiting (1968) were
used. Whiting's second approximation basically consists of a weighted
sum of the two limiting cases, the Doppler function and the Lorentz function,
with the addition of a correction term so that the final function is in
close agreement with the Voigt function. Errors in the line profile are
very small (always less than 5%, and usually less than 3%), and errors

in the equivalent width are within 1% of those given by the Voigt profile.

Whiting's second approximation can be written as
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& 2.772 Aoy & 1 +E (3.33)
k() = K, - g dewpl-2.772( —- ”*%‘1+4(7\&% 2 :
v
where
_ 0"_1. _OL_L_ ) }\_,\0 2-25_ 10
E = 0.016¢( % (1 o Y(exp[- 0.4( o ) ] 10+ CA.& T )2_25)
v
(3.34)
Jk(k) dA
and k - u'l- 0 2
P av( 1.065 + 0.447 * + 0.058()") (3.35)
Q, o,
is the peak height at the line centre Xo
a % 1+ 41n2 4
o, = umr L1 =7 (3.36)

is the Voigt width (total width of the final line). This width can also

be written as

|

o
o = §L+ \/4_.. + o (3.37)

v

There are many other approximations to the Voigt profile, which give
varying degrees of accuracy, and they are listed in Penner (1959) and
also by Armstrong (1967). Some of the properties of the second

approximation of Whiting are discussed in Appendix 5
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3.5 Equivalent Width

In considering an absorption line and the passage of radiation
of a wavelength coincident with this line through a gas, an interesting
result is obtained. Although the measured absorption at any one wave-
length point in the vicinity of the line depends upon the resolution of
the system making the measurement, the total integrated absorption across
the line is independent of system resolution (if the limits of integration
are extended far enough). The limit is reached if the resolution of
the system is so poor in comparison to the linewidth that the intensity of
the line is dispersed over such a wide region, that it becomes very

difficult to measure.

In the case of an isolated absorption line, it would be possible
to integrate right out along the wings, and a total integrated absorption
independent of instrumental resolution would be found. However in the
real case, as in the Schumann-Runge bands, the experimental conditions are
far from ideal. Lines are crowded together, so the above condition is
not satisfied. In many cases though, it still holds to a good
approximation. The further out onto the wings of a line the integration

is taken, the more closely the result approximates that for the ideal case.

For example, in the case of a Doppler line, integration onto
the line wings beyond 3o, from the line centre is unnecessary, as
adequate accuracy has been obtained by then. This is much less true of
Lorentz lines, but if the integration is taken out onto the wings far
enough to include most of the area under the line, then it is true to a
good approximation. The total integrated area under an absorbed line is
called the equivalent width (not to be confused with the total integrated

area under an absorption coefficient [k(%) d\), and is the width of a
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rectangular line with the same integrated absorption. In Figure 3.5
this is illustrated by the shaded rectangle with a given width being
equivalent to the area of absorption for the absorption line centred at
Xo .

The intensity transmitted through a gas is
I = IO exp( - kp k(A) x ) (3.38)

where I0 is the incident intensity, kp k()\) is the absorption
coefficient at wavelength A , and x is the path length. The

absorption is

L =1 -exp( - kp k(M) x )

I
0

while the equivalent width is defined as

W = J (1 -expl - kp k(A) xPdi (3.39)
0

and is thus the integrated sum of the absorption. The equivalent width
at low optical densities is linear with pressure or path length x (see

Appendix 6 ), and can be written

W o= kpX fmk(X) dx (3.40)
0
In equation 3.40, the only unknown 1is kp so this can be determined, to
give a value for line strength. In the linear limit, the equivalent width
is independent of a-value , and depends only upon the oscillator strength,
and the normalized path length X . Equation 3.39 represents the ideal
case for infinite integration range. In practice this is not possible

and the measured equivalent width is given by

A
w'=JB[1-exp(-kpk(A)x)]dx (3.41)
A

A



FIG 3.5(a)

Wavelength A

FIG 3.5(b)

1.0

T(AN)

FIG 3.5(b). Figure 3.5 Part (a) shows the variation of absorption
coefficient with wavelength while Part (b) shows the variation in
transmission T with wavelength for a particular value of optical depth.
The total area of absorption (the area between the curve and 1=1) 1is
equivalent to the shaded area of the rectangle which is the equivalent
width of a completely absorbed rectangular line.
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where the further out onto the line wings KA and XB are the closer

W' approximates W (see Appendix 7 }.



3.6 Curves of Growth

The behaviour of absorption as the path length through the
absorbing gas increases is not immediately obvious. If a smoothly
varying absorption coefficient is considered, such as a continuum, then
Beer's Law is obeyed. However, different behaviour is noted when the
absorption coefficient consists of an absorption line and its associated
wings. The variation in equivalent width as either the path length is
increased, or as pressure is increased is of great importance. Equation

3.41 for equivalent width can be written as

A
ve | B , I L AN
W [ [ 1 - exp( No 760 T © kp k(A) ) ] dr (3.42)

A

A
where N is the number density, No is Loschmidt's number and is the
number density at standard pressure and temperature (2.687 x 10*® molecules/
m), P is the pressure in torr, x 1is the actual path length in cms.
and T the temperature in °K . The term kp is introduced to fix the
values of k(\) on an absolute scale, and is simply the peak height at

the line centre. Equation 3.42 reduces to 3.41 at standard temperature

and pressure, and it is possible to re-write equation 3.42 as

A
W' o= J ®I'1 - exp( - kX k(A ] dA (3.43)
A

A

by defining X as the optical depth where

N P 273
X = N—O_ 76-0— -*:[_- X (3.44)

and is a normalized number density, path length term,

There is no analytical expression for W' (or W), in terms

of k(A) or kpX unless simplifications are made (as in the small

optical depth case in Appendix 6 ). A curve of growth can be defined as
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the growth of equivalent width as a function of optical depth kpX . The
variations of equivalent width W with kpX are plotted in Figures 3.10
and 3.11 for the pure Doppler case, and the pure Lorentz case, as

well as for intermediate cases with a-values between 0 and 100,000.

A numerical study has been made of curves of growth and the
characteristics of different a-values and widths, and is described in
Appendix 8 . A summary of the properties for the two important
limiting cases, an isolated Doppler line, and an isolated Lorentz line

follows.

For the Doppler case, equation 343 becomes

A A=A 2
W' = J (1 - exp[ - kpX exp( - (——awhg-) 44n2 ) 1) da
A

=]

(3.45)

For small optical paths, the equivalent width increases linearly with
number density. However, when the optical density (or path length) reaches
a high enough value ( > 0.1 ) the growth in the absorption area starts

to slow down, and departures from the straight line begin (cases two and
three of Figures 3.6 and 3.7). As more and more absorption takes place,
the departures from the linear become even greater (case 4 of Figure 3.6).
By the time the transmission at the line centre XO nears zero, the
increase in equivalent width with number density has become very small,

and is rapidly approaching a new constant value of increase (cases 6 and

7 of Figures 3.6 and 3.7).

The residual increase is due entirely to the Doppler wings of

the line, which fall off very rapidly with increasing wavelength from the
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FIG 3.6. Part (a) shows the variation of absorption coefficient with
wavelength for an absorption line (in this case a Doppler line)
while Part (b) shows the variation in absorption due to the
line at different values of optical depth.

The numbers on the various absorption curves correspond to the various

k X values shown in Figure 3.7 . It should be noted that Curve 1 is
identical in shape and form to the curve for absorption coefficient, since
this is in the region of low absorption.



logm( k, X)

FIG 3.7 A plot at the curves of growth of the Doppler and Lorentz absorption cases shown in
Figures 3.6 and 3.9 with the values of kpX , corresponding to the numbered absorption eurves, shown

by arrows above.
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line centre, and thus contribute little. The line centre has by now
been virtually absorbed out, and has already contributed a very large
absorption area. The small values of absorption coefficient in the wings
can produce only insignificant absorption, and the small section of the
line-shape absorption coefficient which is currently providing the
increase in equivalent width at that value of optical thickness (that is
with a transmission value neither too near zero or unity) 1is very narrow.
The transmission curves for the Doppler line pass from values near zero
(that is, completely absorbed) to unity (hardly absorbed) very quickly due
to the rapid decrease of the line wings (see Figure 3.6). Once the
transmission curve has bottomed out at A = Ao , then for a 10-fold
increase in kpX , only a small fraction is added to the equivalent
width area (cases 6 and 7 in Figure 3.6). Consequently curves of growth
of Doppler lines flatten off quickly, once the line centre has been

absorbed.

A comparison of the Lorentz and Doppler line profiles
(Figure 3.8) shows that with the same area beneath each curve, the Doppler
line (with o = 1.0, kp = 1.0) has almost all of its area within 3o
of the line centre, while the Lorentz line (with o, = 1.0, k =

1
——=—=—1) has a significant proportion of its area in the line wings.
v 2n2 P

This difference in the wings of the two lines produce differences
in the curves of growth. The Lorentz line also has its linear region. For
kpX < 0.1 , the absorption curve is proportional to the curve for
absorption coefficient at the same wavelength (that is, case 1 of Figure

3.9(b) 1is of the same type and shape as the absorption coefficient curve
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FIG 3.8. A comparison of Doppler and Lorentz line profiles. The area beneath both curves

k(A) d\ is the same, achieved by setting k for the Lorentz line to be
0.6777 k_ for the Doppler line. Both prBfiles have the same half width

1.€. Cin E CX,N .



FIG 3.9(a)

FIG 3.9 Part (a) shows the variation in absorption coefficient k(A)
with wavelength, while Part (b) shows the variation in
transmission T with wavelength for a Lorentz absorption
line. The numbers on the various absorption curves correspond
to the kpX values arrowed in Figure 3.7.
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in Figure 3.9(a)) as in the Doppler case for low kpX . Once kpX > 0.1
however, the curve of growth of a Lorentz line begins to depart from that
of the Doppler case. It remains linear for slightly longer, since its
peak height is slightly less, and therefore the zero transmission will

be reached at a slightly higher value of: kpX . The fact that the wings
extend out from the line centre and decrease at a slower rate than the
Doppler case, means that even a long way from the line centre there will
be values of absorption coefficient which are significant. Once the line
centre has been absorbed out, the equivalent width can still grow because
the wings start to contribute. This can be seen in Figure 3.9, where
increasing kpX increases the equivalent width area of the absorption
curve. The Lorentz line does not flatten off as does the Doppler case,

but continues increasing in such a way that (see Appendix 8 ).

Woa \/kp'X (3.46)

when kpX becomes large (that is following a square root law, with slope

% as in Figures 3.10 and 3.11).

It is the curves of growth shown in Figure 3.10 with constant
Voigt width o, , and constant area beneath each line profile
( J k(A) dX = constant), which more clearly show the effect of line
shape upon curve of growth. The variation in these curves is due entirely

to shape factor, denoted by a where

Q

a = &5- v n2

D
The curves are for constant o , achieved only at the expense of varying
both o and o . Figure 3.11 shows curves of growth for varying

values of a , but with o = constant (that is at constant temperature).

They were first plotted by Van der Held ( 1931 ), copied ever since



10 1 10 10 10 104 10°

k X

FIG 3.10. Curves of growth for various a - values plotted for
constant line width a .
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(for example Goody ( 1964)). These curves are slightly misleading
in that they seem to suggest that the curve of growth for the Lorentz
case ( a = ) is a straight line of slope 1, which it is not. The
curves of growth in Figure 3.11 are for lines of equal area, and for
constant Doppler width (as in the experimental case), but the Voigt

width is allowed to vary with a-value. To compensate for this increasing
width, the peak height kp must be reduced. For example, a line with

a = 1000 has a = 1000 o_ , so the height must be 1/1000 of the
Doppler peak height. This low peak height means the line will not be
absorbed out (saturated) until approximately 1000 times the value of X
than if it had kp = 1.0 (the Doppler case). That is saturation for both
cases occurs at the same value of kpX, but kp' = 1/1000kp so X!

is 1000X . In this way, a line with a = © (and therefore kp = 0)

will have an infinitely long linear region.

Very rarely in practice are either pure Doppler or Lorentz
lines encountered. Lines are usually a mixture of both, so their curves
of growth will have features of both ideal cases. The exact behaviour
is determined by mixing ratio a , since this determined how much of
each type of line is present. A line with a = 0.001 will fairly
closely follow the Doppler case (for most of the curve) while a line with
a = 100 will closely follow the Lorentz case. In general, the behaviour

of all cases is as follows.

All lines, whatever their a-value, have equivalent widths
that increase linearly for low number densities. Above kpX > 0.1 they
begin to diverge, the Doppler case diverging first, the most Lorentz case
last, and all other cases at some stage in between, cases with lower

a-value first. This is because a higher a-value means that the line has
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more Lorentz component than Doppler, and the Doppler line centre is
absorbed first, at low and medium optical depths. The Lorentz wings do
play some part, at first insignificant, but rapidly becoming greater.
Then as the number density increases, and the Doppler component has been
virtually absorbed out (leaving only the Lorentz component), the line
starts to behave like a Lorentz line, and its curve of growth starts to
follow the Lorentzian again, At very high kpX values, the wings of
the line are now the only part still absorbing, and these wings, with
their Lorentz shape, increase the equivalent width quite rapidly with

kpX (Figure 3.11).

The curves of growth in Figure 3.10 are plotted as logio W/ocv
against logio kpX and are for various values of the mixing parameter a .
Figure 3.11 shows curves of growth of various a-values plotted as
logio W/OLD against logio kpX . The division of W by o, in Figure 3.10
will change o , and thus line area. For instance, the curves of
growth of two pure Doppler lines could be compared only with difficulty,
if one line had twice the width of the other (and thus twice the area).
This would give two similar curves displaced by a small amount. The
curves can be made coincident by dividing W by the Doppler half-widths

. thus making the curves of growth of all Doppler lines coincident.

To summarize, this experiment seeks to find a curve of growth,
satisfying the conditions of equivalent width and kpX , passing through
both measured values of W, WL and Wu at the correct values of kpXL
and kpXu . Only one curve of growth can pass through the required points,

and is denoted in Figure 3.12 by a solution for the a-value of a

f
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FIG 3.12 Curves of growth of equivalent width W versus optical depth k X . The solution
curve through the two measured equivalent width values W_. and Wu , is deRoted by % and is

B L
unique.



61.

CHAPTER 4

EXPERIMENTAL APPARATUS

4.1 General Description

The various components comprising the experimental apparatus
will be described in more detail later, but the basic system consists of
an absorption cell containing the target gas, in this case oxygen, a
monochromator providing radiation of approximately one wavelength and
detectors to measure the incident and transmitted flux of radiation through
the gas (see Figure 4.1). Radiation from the discharge lamp emerges from
the exit slit of the monochromator and is incident onto a very fine wire
grid which partially transmits and partially samples the beam. The grid
has a sodium salicylate coating which absorbs the ultraviolet light and
fluoresces in the visible and this light is then passed along a light-pipe
to the monitor photomultiplier, and is thus a measure of the flux of light
incident on the cell. The light transmitted through the grid passes into
the absorption cell through an end window, usually lithium fluoride, and
then through the target gas. Radiation which reaches the other end of
the cell is incident onto another window, and then onto a perspex light-
pipe which also has a thin coating of sodium salicylate deposited on the
face nearest the exit window. Fluorescent radiation from the phosphor
then passes through this short light-pipe to the detector photomultiplier.
The outputs from the two photomultiplier detectors are used to measure a
relative transmission. This relative transmission value can be normalized
to a maximum of unity, by measuring the ratio of outputs with the cell
empty of any absorbing gas. The empty cell pressure was usually several
orders of magnitude less than the case with the cell "full", and thus

introduced very little error. The pressure in the cell was kept at a
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FIG 4.1 A diagrammatic view of the experimental system.
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constant value by an M.K.S. Baratron gauge and a Granville-Phillips
servo-controlled needle valve. The target gas was fed in through the
needle valve after being purified by passing through cold traps and
drying agents. The photomultiplier outputs in pulse counting mode were
fed through pre-amplifiers back to the multi-channel store-calculator
unit, where the results were accordingly plotted, printed or put into

visual display.

4.2 The Light Source

The light source was a thyratron triggered hydrogen, helium or
argon discharge, depending on the wavelength region required. The
repetition rate of the discharge was 1-2 KHz and pulse voltage up to
10 KV, with an average current of between 30 to 40 mA . It consisted of
a water-cooled, rectangular cross-section, capillary discharge tube
operated as a windowless system with two stage di fferential pumping
consisting of a high speed Roots blower and high speed oil booster pump

backed by rotary pumps.

4.3 Lamp Spectra

The experimental results obtained for the Schumann-Runge
continuum were done with hydrogen as the lamp gas, at a pressure of 2-4
Torr, giving a continuum in the wavelength range 1600-5000A . For the
Lyman -0, work, argon at 40 Torr was used, giving a continuum in the
wavelength range 1066-1300A . A sketch of the various possible lamp
gases and their useful wavelength ranges for continuum light are shown in

Figure 4.2.
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4.4 The Monochromator

The Adelaide University 6.65 metre monochromator was used as
the dispersing instrument, and a full description of its construction
and use is given by Carver et al (1978). This monochromator uses an
"off-plane Eagle" mounting in first order and has fixed entrance and exit
slits which always remain on the Rowland cylinder as the grating is tilted,
and are placed a small di'stance either side of the Rowland plane. The
Rowland circle is in the vertical plane so that the two sets of entrance
and exit slits are horizontally placed, an arrangement which is more
practical experimentally. The wavelength is scanned by rotating and
translating the grating so that the Rowland circle always passes through

the point bisecting the line joining the entrance and exit slits.

The monochromator is fitted with a 1200 lines per mm grating
blazed for 15002 and with a radius of curvature of 6.65 metres. It
has a ruled area of 175 mm wide and 100 mm long . The monochromator
was operated with a resolution of 0.06A with an entrance and exit slit
width of between 24 and 30 microns (107°*m) . The grating mount and slit
system as well as the main vacuum tank are supported on a massive (30 tonne)
reinforced concrete pier acting as an optical bench, 10 metres in length
and providing a rigid experimental platform. The concrete pier is
isolated from building vibrations and other disturbances by nine servo-

controlled air supports (see Figure 4.3).

Wavelength selection and increments were all controlled from the
HP 9810-A calculator, which calculates focus positions simultaneously.
Scans covering more than 4A used the coarse scan system, where the

grating is rotated and translated using electric motors. The motors were
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FIG 4.3 Schematic layout of 6.65-m monochromator showing mechanical arrangements, vacuum systems, and experimental platform. A,
——photoabsorption gas cell with temperature jacket; B, diffusion pumps and liquid nitrogen traps; C,D, light monitors and detectors: E, differential
pumping, oil booster; F, antivibration air support cylinders; G, grating: H, pressure compensation bellows; J, refrigerated cold trap; K, two-stage
refrigerator; L, lamp; M, grating mount; P, cell pressure gauges; R, differential pumping, Rootes Blower; S, isolation bellows and differential
pumping slits; 7', main vacuum tank; U, vibration isolation bellows; V, gate and butterfly valves; W, to mechanical backing pumps; X, gas

inlet and absorption cell pressure monitor; Z, light baffle.

(Reproduced from Carver et al (1978)
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driven to a position near the wavelength required, and a 10-15A scan
covering a whole vibrational band could then be done. Once the position
of the line of interest has been determined, a fine detail, high
resolution scan could be done at the correct position. The fine scans
were always done using the piezo-electric crystal stack, since this
system allows wavelength increments as small as 1 mA . This piezo-
electric system allowed a scan range of approximately 4A | using 4095
steps of 1 mA , though increments of 10 to 20 mA were almost always
used. With the piezo number on 2000, that is in the centre of its range,
the wavelength passing through the exit slit was equal to that given by

the setting of the coarse wavelength control.

4.5 The Absorption Cell

The absorption cell is shown in Figure 4.4. It consisted of an
outer vacuum chamber, enclosing a double walled cell with end-plates,
all made from stainless steel. The radiation entered through windows
mounted in the end-plates, and both windows and end-plates were
interchangeable, so that different window materials could be used. Due to
beam divergence from the monochromator, the end exit window was
necessarily larger than the entrance window ( 40 mm to 25 mm ). The
volume between the walls of the inner cell could be filled with a cooling
liquid, such as liquid air, so that absorption by cooled gas samples could
be measured. This necessitated the use of vacuum seals which would not
fail at low temperatures. Neoprene '0' rings become hard and brittle at
such low temperatures, and no longer make good contact to form vacuum
seals. The end-plates were sealed with annealled copper gaskets pinched
between metal to metal fittings, and these provided excellent vacuum

sealing for very long time periods. The gaskets were re-usable, but



ADOURF I 1IUN ULELL

light pipe cold trap filler

lithium  fluoride gele, mp \

0 u M sodium
{ /windows / l- ) -l j—r salicy late
:‘[l-l yi f/ 7 l l- /' coated
7 = /] . .
= light pipe
';'
’ 0 target gas
| )
U ] [ ] [1| perspex
I- light pipe
sodium salicylate \ ‘
coated  grid \
pumping

outlet pumping outlet

FIG 4.4 A diagrammatic view of the absorption cell used in this work.
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after about three or four compressions were no longer useful. The

windows were attached to the end plate, and used '0' rings made from
extruded indium wire. These worked satisfactorily, but generally
degraded with age, and had to be renewed. The continual changing of
pressure in the cell worked the malleable indium down, so that the windows
were held less and less tightly. Except for their finite lifetime, these

indium seals worked well.

Two end-plates with different window materials in place were used,
and these could be interchanged to allow work in a different wavelength
region. Quartz and lithium fluoride were the only window types used,
the advantage of quartz being that it was much more resistant to thermal
shock than was lithium fluoride, a definite advantage at liquid air
temperatures. The constant changing of temperature as the cell jacket
was filled in the morning and emptied at night eventually produced
cleavage lines in the lithium fluoride crystal which shattered the window
when the gas pressure was re-applied. The Lyman-o results necessitated
using lithium fluoride windows, and working at low temperatures, so

window failures were inevitable.

Gas was leaked in through an inlet pipe at the rear of the cell,
and the pressure monitored at another inlet pipe. A large screw-turn
plunger valve allowed pumping access to the cell. A small line running
from the inside of the cell to the pumping region allowed some of the
target gas to be bled off, and thus allowed gas cycling, new gas entering

to replenish the cell.
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4,6 The Light Detectors

The light detectors used were both EMI 9514S photomultipliers.
The incident ultraviolet light was converted to visible by sodium
salicylate, deposited on a partially transparent wire grid for the
monitor, and a coating on the perspex light-pipe for the detector. The
wires on the grid were set vertically, each one sampling the radiation

passing through the horizontal exit slit of the monochromator.

Some of the preliminary measurements made at Lyman-a were made
using a quartz exit window, which was replaced by a lithium fluoride
window when one of sufficient size became available. This had the
advantages that it transmitted more light, and that the salicylate coating
could be moved from the inside of the exit window to a position external to
the absorption cell, on the perspex light pipe, to minimize effects due
to interaction between the target gas and the salicylate. The transmission
of quartz at 1216A is virtually zero, so the incident light must first be
converted to visible to exit the cell if a quartz window is used. This
problem does not arise with lithium fluoride, which has a wavelength
transmission down to 1050A . Visible light produced by the salicylate

passed down 25 mm diameter light pipes to the photomultipliers.

The photomultipliers were cooled to approximately -20°C wusing a
small refrigerator. Considerable care was necessary to maintain both the
light sealing of the photomultiplier housing as well as the moisture
sealing. Any moisture condensing inside the housing tended to produce
discharges and increase the dark current. Cooling the photomultipliers

reduces the noise and dark current by a factor of between 15 and 20 .

The photomultipliers were operated in pulse counting mode, the

output passing through a preamplifier to the ORTEC counters. These had
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a discriminator set to reject the low level noise and to accept only
pulses. The counters were 'gated' to the discharge lamp, and only
counted when there was a pulse of light emitted by the lamp. The dark
current was monitored for both detectors for a length of time equal to
their count time, and this was then subtracted from the total counts,
leaving only the counts due to incident light. The detectors were
shielded with aluminium foil, and the outputs taken along co-axial cable

to prevent pickup of stray signals from the lamp power supply.

The light detectors were carefully checked for stray light,
scattered light and noise pickup from the lamp. The lamp was shielded
carefully, as was the lamp power supply, with earthed wire-mesh, and
co-axial cables with sufficient shielding were used. Precautions for
interference effects and noise pickup were considered adequate when the
dark current measured by the counters remained unchanged with the lamp on
or off. Stray light was checked by noting that, with either of the
monochromator valves shut, all incident light was removed, there being no
light counts registered on the counters. Stray light was also
eliminated from other sources, by carefully checking that all joins near the
photomultipliers were light tight, and noting no difference on the counters

with the room darkened.

Scattered light was corrected for by observing an absorption line,
and then increasing the pressure 10 to 20 times. This means that the line
will have saturated (case 5 of Figure 3.6), and that there should then no
longer be any light of wavelength Ao , the wavelength of the line centre,
incident onto the detector photomultiplier, all light of this wavelength
having been absorbed on passing through the cell. However, some light,

apparently of this wavelength, but actually consisting of scattered light
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from-the monochromator grating, was getting through. Measurements of
this residual light allowed corrections for scattered light to be made,
and these corrections were usually minimal, of the order of 0.3% or less.
The response curve of sodium salicylate with wavelength can be considered
as flat for all the wavelength intervals considered for this work (see

Samson (1967) p. 214).

It was found necessary to add a third lithium fluoride window to
the experimental system, between the monochromator exit slit, and the
first photomultiplier. This was due to the monitor photomultiplier
observing second order lines of wavelength less than 1050A of large
intensity, and moving to a non-linear region of its response curve. The
photomultiplier output became non-linear when the input light flux
became large, as was the case near intense emission lines. The second
photomultiplier, screened by the two windows thus remained linear, but
the ratio of the two detectors then became meaningless. The addition of
the third lithium fluoride window meant that the monitor photomultiplier
could then only observe light of wavelength greater than 10507 , and
thus behaved in a manner similar to the detector photomultiplier. When an
emission line of wavelength greater than 1050A was encountered, and was

thus visible to both photomultipliers, the ratio of detector counts

remained fairly stable.
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CHAPTER 5

PROCEDURE AND DATA ANALYSIS

5.1 Experimental Quantities

As will be shown in this chapter, the experimentally
derived quantities such as equivalent width, pressure, temperature,
path length and wavelength are all used in the calculation of oscillator
strengths. Each of these quantities has an associated error, and the
combination of these various errors gives a measure of the uncertainty
in the final value for oscillator strength. The two other terms in the
expression, the Hdnl-London factors and the Boltzmann factors can be
considered to be known exactly, although the Hénl-London factors will
have to be carefully considered at some other stage (see Section 2.14.2).
Each quantity is dealt with individually, its method of measurement,

and the error associated with each measurement.

5.1.1 Wavelength

The values of wavelength assigned to the various lines studied
were taken from the published values of Ackerman and Biaume (1970) for
v' < 12 and from Brix and Herzberg (1954) for v' =12 . The accuracy
quoted on these figures is 0.0002% for Ackerman and Biaume and
approximately 0.0004% for Brix and Herzberg. These figures apply to the
main lines in each scan i.e. either the Pj23 or Ri23 lines under
consideration. It will be shown later that in the theoretical analysis of
the equivalent width, weak lines of neighbouring bands lying close to the
lines under analysis, had to be accounted for, and wavelengths assigned
to these lines. The worst possible case error for these lines occurred
when a calculated value of wavelength, that is, a value using the known

molecular constants to calculate energy levels and transitions, was used,
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and was never more than .05 A° in error, that is a maximum error of
.003% . Since these lines only make minor contributions to the
equivalent width, it can be seen that wavelength errors are negligible

in comparison to other sources.

5.1.2 Temperature

The entire experiment was performed in a room in which the
temperature is controlleq so that the variation in the ambient temperature
is less than 8°C over the course of the year. The variation over any
one day would be less than 1-2°C. For room temperature results, the
target gas was assumed to be in thermal equilibrium with its surroundings,
and over any one equivalent width measurement, this temperature never
varied by more than = 1°C or * 0.3% . Some equivalent width
measurements were made with the cell cooled:by liquid air, giving a
temperature of about 82°K. Uncertainty in the cell temperature results
from variations in the nitrogen-oxygen mixture of the liquid air, the
effects of topping up the coolant container and non-uniform cooling of

the cell. The error in the temperature for this case was estimated to be

e

3

5.1.3 Absorption Path Length

The absorption path length, the distance between the inside
faces of the entrance and exit windows along the interior of the absorption
cell, was measured to an accuracy of 1-2 mm, giving an error of 0.1%
or less. This error is so small that it can be neglected in the calculation

of oscillator strength.

5.1.4 Pressure

Most of the pressure measurements were made with a capacitance

manometer (MKS Baratron) gauge. This gauge was first calibrated against a
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McLeod gauge, over the range 10"* to 2 torr. Over this range,
agreement was found to be very good, errors being no larger than * 1%.
The reference side of the Baratron gauge was always kept at a pressure
of 5 x 10°% torr or less, so that this contributed at maximum, an error

of £ 0.025% (when the cell pressure was 0.02 torr, the minimum used) .

For very high pressures, in the range 30-700 torr, a mercury
manometer was used to measure a reference pressure for the Baratron gauge,
the height of the mercury column being measured to 0.1 mms using a
telescope with attached vernier. This was necessary because the maximum
pressure difference the Baratron gauge could measure was 30 torr . The
pressure in the cell was then put equal to the Baratron gauge reading plus
the reference pressure. Typical errors in this range would therefore be
of the order of 0.1% or less. The servo-controlled needle valve
maintained a constant cell pressure to within an accuracy of 2+ 0.002 torr.
The maximum pressure error was * 1%, and occurred for very low pressure

measurements.

The oxygen pressure in the cell was assumed to be the cell

full pressure P_ minus the cell empty pressure PE , Or

p =P -P
oxygen F E

Since P_ <5 x 107% torr, this could safety be neglected, and the

e to the measure essur p = P_g
oxygen pressure put equal the measured pressures or oxygen Pe
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5.2 Experimental Procedure

Introduction

The equivalent width of a line or group of lines is measured
by observing the transmission of the gas as a function of wavelength over
a region containing the lines. Beginning at a wavelength to one side of
the region of interest, transmission is measured at a set of wavelengths
separated by small steps of wavelength AX . Each value of wavelength ki
will thus have a measured value of transmission s associated with it,
and this procedure is called a scan, some terminology which will be used

frequently. Each scan produces a value of equivalent width,

Measurements of equivalent width thus require the ability to
increment wavelength by regular, fixed amounts. As discussed previously
in Chapter 4, the Adelaide 6-metre monochromator has two wavelength
stepping procedures, a coarse wavelength shift using electric motors, and
a fine wavelength shift using a Piezo-electric grating drive. All
measurements of equivalent width used the Piezo-electric fine wavelength
control, since only this had sufficient precision to make the necessary
very small wavelength steps. The limitations of the Piezo-electric wave-
length control was its narrow wavelength range of only 4A° . This only
accommodated 3 to 4 rotational lines, so that if it was desired to scan
across more than this, such as a whole vibrational band, then it was
necessary to use the coarse wavelength stepping motors, since these have

unlimited range.
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5.3 Equivalent Width

5.3.1 Line selection and Scan Range

Before an accurate scan was done on a line doublet, the

entire band under discussion, or a section of it, was inspected first.
This consisted of doing a very quick scan, at high pressure to achieve
substantial absorption, and with sufficient counting time to allow lines
to be reasonably resolved (about 200-500 counts). The lines were then
identified by their line spacing, or by position in reference to the band
head. A comparison of line spacing of the rotational lines with those
given by Brix and Herzberg (1954) for v' = 12 and Ackerman and Biaume

(1970) for V' < 12 allowed positive identification.

With the coarse wavelength drive motors set at a fixed position
at a wavelength close to the line of interest, an accurate locating scan
was done with the Piezo-electric grating drive to position the line within
the 4A° range of the Piezo-scan system. The scan range of the equivalent
width measurement was selected to completely enclose the line, and as
much of the wings of the line as possible. This was done by choosing
limits where the absorption due to the line was negligible, that is where
the transmission was close to the value for the background. The equivalent
width is not invariant with scan range unless the integration is taken
well out onto the wings of the lines (see Appendix 7 )}, but it is true
to a good approximation if most of the area of the line is taken into
account, as is the case once the transmission value in the line wing
approaches the background or zero pressure value. When the lines were
close together, the scan range was set up so that the beginning and end
of the scan coincided with maxima in transmission between lines. If the

scan range was increased from these values, then the measurement of
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equivalent width would begin to include significant absorption from
neighbouring strong lines, which it is desirable to minimize. Decreasing
the scan range means reducing the integration limits for the equivalent

width, a quantity which should be maximized (see Figure 5.1).

5.3.2 Scan Procedure

Before each equivalent width measurement scan was made, a
pre-scan to accurately locate the rotational line was done. Care must be
taken to ensure that the line is inside the scan-range of wavelengths,
and this was accomplished by beginning the experimental run at a wave-
length below XA (of Figure 5.1), and continuing on past XB, the final
wavelength setting. Only the transmission values measured at points
between AA and AB will be used to calculate the equivalent width,
but the above precaution was found to be necessary to allow for slight
apparent wavelength shifts of the line with time, and for different
apparent linewidths at different pressures (lines appear wider at high
pressure than at low, so the scan range must be increased at high pressure),

to be sure of completely enclosing the line.

The wavelength increment AA was chosen to give sufficient
points across the apparent half-width of the line to allow accurate
determination of the equivalent width (usually never less than 10 points).
The increment was usually 20 mA° for a high pressure scan, and usually
10-20 mA° for a low pressure scan (though sometimes as small as 5 mA°).
This gave between 50-100 points per scan. The monitor-detector signal
ratio Vi (measured at wavelength Ai), was stored away in the multi-

channel store. A typical scan is shown in Figure 5.1.
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FIG . 5.1 A typical scan used for an equivalent width measurement.
The wavelength limits >\A and A_, denoted by channel
numbers 24 and 109 respective.aly, are the integration
limits.
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5.4 Background Corrections and Background Factor.

Once the monitor-detector signal ratios Yi at the various
wavelengths Ai have been recorded and stored in the multi-channel store,
values of transmission T, may be extracted. To do this, knowledge of
the background, or cell empty signal ratio Y, must be obtained. The
transmission value with the cell empty is unity (by definition), but due
to different collecting efficiencies of the light gathering systems
supplying each photomult{plier, then it will almost never be the case,
that the cell empty, monitor-detector signal ratio, Yo » will be unity.
The differences due to grid transmission at the monitor photomultiplier
not being equal to the transmission of the cell end-window near the
detector photomultiplier, different salicylate thicknesses at each
detector, different light pipe arrangements and lengths, and intrinsic
differences between the photomultipliers will ensure that Yo is not

unity. The values can be converted to true transmission values by

(5.1)
where T, is now the transmission at wavelength Ai .

The empty cell ratio of signals, Y, » was measured at a
wavelength inside the scan range AA - AB , but away from the line centre
(to minimize any absorption due to gas remaining in the cell, usually
several orders of magnitude less than the pressure at which the scan was
done). The total number of counts used for Y, Wwas made equal to the
total number of counts comprising the equivalent width measurement. If
the equivalent width was measured over 50 channels, and each channel had a
monitor count of 2000, then the equivalent width was composed of 100,000

counts, and the total number of counts used for the background, zero
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pressure ratio Yo would also be 100K (10 channels of 10K counts),

In this way each contributes equally to the total error.

It is assumed here, that the cell empty signal ratio Yo is
invariant with wavelength over a scan (found to be the case in numerous
checks). T is now the transmission value through the absorbing gas due
to absorption in the gas, and thus consists of absorption due to all
processes which may have a contribution to make at wavelength Xi. The
quantity of direct interest is the equivalent width due to absorption by
the rotational absorption line alone, and the contributions to the
absorption of any underlying continuum, and due to neighbouring lines must
be subtracted from the measured equivalent width value. The equivalent
width is given by

W=J(1-TT)d)\ (5.2)

e o]

where T 1is the transmission inside the scan range. The above integral

should actually be written

A
w.'=JB(1_TT)dA (5.3)
A

A
since the integration never extends to infinity in the experimental case.
Here W'' 1is approximately equal to W , the approximation becoming
better the more of the line is included inside the integration limits
(see Appendix 7 ). An integral can be approximated by a summation,
especially if the function being integrated does not vary too rapidly
between measured points (the reason for choosing sufficient points across

the line half-width by choosing small enough AA ). Equation 5.3 can

therefore be approximated by
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XB n

W't = J (1 - T, ) dA = (1 - T, ) A
" i=1
A

n Yi
w'e = L (1 -=—) AXx (5.4)
=1 Yo

Since Yo is a constant, equation 5.4 reduces further to

n
W'to= nax - M 3 Y (5.5)

To i=1

Here Y5 and Y, are measured experimental quantities. What is

needed is to isolate the equivalent width due to the rotational line
alone. The procedure is as follows. Other absorption lines nearby
usually have wings which contribute significant absorption inside the
scan range. A computer programme was used to calculate the absorption
coefficient due to neighbouring lines, by summing contributions from all
lines within 100 cm™' (3 to 4 A’) of the reference line (inside the scan
range), at the wavelength of the reference line, Ao . That is, a value
of the absorption coefficient kE , due to external lines was computed. To
this was added the value for the continuum absorption coefficient at that
wavelength, kc . The total absorption coefficient inside the scan

range is the sum of the three values.

kK = k +k_+ k (5.6)

where kL is the absorption coefficient due to lines inside the scan
range. The values used for kc are some extrapolated values for the
Herzberg continuum of Shardanad and Prasad Rao (1977) for the Schumann-

Runge continuum (see Section 5.8 ).

The transmission T is related to the absorption coefficient

by Beer's Law,
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T exp ( - k_l_ X ) (5.7)

T

where x is the path length. That is, T can be written

T. = exp [ - (kL + kc + kE) x ] (5.8)
or T o=exp [ - (kg + k) x]exp ( -k x), (5.9)
This reduces to
T. = T,. T where T = exp [ = (k_ + kc) x ]

Here T_ is s at wavelength Ai , SO0 equation 5.3 reduces to

n n T.
W'o= % (L-T)AM = I (1- =9 A
. L : T
i=1 i=1 B
Y3 1 n To -1
W' o= (1 - —=.,2) AA= I (—=——=) A (5.10)
Y T T
0 B i=1 13

where T, = T.l/'rB and T is computed by the background factor
programme. Division by this factor T is equivalent to subtracting

the continuum and external line contributions from the Ti values.

5.4.1 Analysis of Data

The equivalent width due to lines under consideration is

given by the area enclosed between the background transmission and the

total transmission values of Figure 5.2. The expression for equivalent
width is
n
W' =nAX - AN I T./T (5.11)
iy &5

The values of equivalent width were calculated from the values for Yy
stored in the multi-channel store, and the cell empty monitor detector

signal ratio Y, > measured either immediately before or after the
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A typical scan used to determine equivalent width., This
is a normalized version of Figure 5.1., With signal ratios
converted to transmission values.  The equivalent width is
the ruled area, the length of the lines corresponding to
Ta-T; in equation 5.10.

FIG 5.2



equivalent width scan. At the same time, the HP 9810 A calculator
computed the statistical errors associated with each equivalent width

measurement, based on the number of counts (see Section 5.5).

79.
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5.5 Statistical Errors for Equivalent Width Measurements.

Each measured value of equivalent width W has an error AW
associated with it, and this error quantity has contributions from two
main sources (see equation 5.11). Neglecting the minute consequences from
n and AA , these two sources are T_ , the background transmission

values, and the transmission values Ti 3

From Figure 5.2, the equivalent width is the sum of all
( o - T ) points, corresponding to the area between the T, line and
the various T, points., Errors in the background value correspond to
displacing the background line T of Figure 5.2, and thus changing the
area (and the equivalent width value), while errors in the T, values

result in changes to the contributing area of those points to the

equivalent width.

The contribution from the individual points T consists of
statistical errors due to counting statistics of the monitor and detector
for the signal ratios Yy and Yo Defining the monitor counts as M,

and the detector counts as D , the signal ratio Y; is
Y. = D_/M, (5.12)
1 1 1

where Mi and D. are the monitor and detector counts of the ith
il
point respectively. The counts comprise that due to the light source, and

that due to the dark current of the detector. That is, we have

M =M - M and D = D - D
D L

L L+D L+D D

where the subscripts ¢ and o refer to counts due to the light source,
and those due to dark counts respectively. The quantities of direct

interest are M and D, and the errors in those quantities.

The signal counters are gated for a short time period synchronised
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with the pulsed light source. The counts recorded in this interval

are M and D . The dark current counters are gated for an
L +D L +D

equal time period between lamp pulses, giving counts MD and DD which
are subtracted from the former counts to give ML and DL . The counts
M are much greater than M_, so the ratio M /M is very small

L +D D D L +D

(a fraction of a percent) since the dark currents are kept to a minimum.

The error in M =M - M can then be written
L L+D D
6M — 2
= v M o+ M (5.13)

where &M and OM_ are the errors in M and M_ respectively,
L+D D L D

+D

and are equal to VvV M _ and M. Equation 5,13 can then be written

M = 2 2 2
N ¥ 6ML+D 1+ (SMD /GML+D)
or (SML = 6M|.+D = ML (5.14)

The errors in ML and DL are therefore V'Mk and v DL .

Using equation 5.14, the expression for the error in Yy o Gyi can be

written as

(S'Yi 'SDi )2 (SMi 2
—_— = (.__ + (——
Yy Dy M;
which reduces to
Gyi /1 Y5
—, & VI/D, + /M, = T (5.15)
i i i

Since in almost every case, the number of monitor counts used for each
point was held constant, the Mi in equation 5.15 can be replaced by

M to give

i g o et (5.16)
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and this term gives the dependence of the equivalent width upon the

number of counts M used for each point.

The statistical error associated with the measurement of
cell empty signal ratio Yo takes the same form as equation 5.16 , and can

be written

Sy 1+ vy
il w A e (5.17)

Yo Mo¥o

Yo is measured for a total number of counts equal to MO (usually
100,000, or put equal to n M, where n is the number of channels
comprising the equivalent width, and M is the number of counts per
channel). T has no statistical error to contribute, although it does
have an error (usually small). For example, an error of 10-20% in the
value for the continuum background absorption coefficient value would
only have an 0.2-0.4% change in the value of it for a low pressure
equivalent width measurement, and an 0.6-1.0% change for a high
pressure equivalent width measurement. The value of T is calculated

from theoretical line spacings, strengths and continuum values.

The error in W' , written JW' can then be obtained as
follows,

owr 2 = owr .2 2 owr .2 z
L Uy i o) e G 81

(5.18)

where %%— is the partial derivative of the equivalent width with respect

i ,

to the various signal ratios, %%— is the partial derivative of the
0

equivalent width with respect to the zero pressure signal ratio and

1
%g—- is the partial derivative with respect to the background transmission
B
. . L W ow!
due to continuum and external lines. The quantities o By’ and
i 0
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L]
el are a measure of the rate of change of equivalent width W' with

9T
B

change in signal ratio Y; » 2ero pressure signal ratio Yo and

background contribution respectively.

oW oW ; oW
The terms 3. and 3?; are used in preference to e to

eliminate cross-product derivatives in equation 5.18 and simplify the

calculation. Since the expression for equivalent width is

n
W' o=en Ak - 22 1oy
YoTB i=1 *
then
n
W' _ My
BYO Yoz T, j=1 1 (5.19)
ow! AX
—_— = - (5.20)
ayi Yo T,
and W' A D
R Lo, (5.21)
B o B 1i=1

Substitution of equations 5.19 to 5.21 into 5.18 yields

2 . L+y. n 2 2
AN 2 2 v AX 2
(5w|) - ( = ) Y. 1 ) + (_._._,__ ( X Y.) § T
i=1 TB YO 1 ( MYl YO T;) =il 1 B
(doy (M T
4 ) (v} v
MY, Yg T, jop 1 0
and this reduces further to
n 2
g L ( 1+ v, ) 1+Y ST
2 AX = T =1 Y i o
W) = Sp LI v = )+ = ]
Yo Ta i=1 1 M8y LA T’

The above expression may be written as

f
2
X
- D3 ﬁ”o , d=m Yy Uy S T
IRV Yi My n 2t T
o 8 i=l oo M( X Ys) B
i=1 1
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and this gives a final result for dJW' of

n
5 2
1+y o T, (14 T.) 8t
ax B o _i=1 74 o'i B
! = - —
SW T 'Z Ti My + T 5 + T2 (5.22)
B i=1 0o : Myo (z 1) B
i=1
5.6 Computer Simulation of Experiment

An important part of the results analysis is the theoretical
simulation of the experimentally measured equivalent widths. A computer
programme first built up a theoretical total absorption coefficient
using line positions, strengths and widths, and this was then used to
compute the absorption at all the different wavelengths across the scan
using a small increment SA (usually 1 or 2 mA ), This computed
absorption (a function of wavelength denoted by A(A) ) was then
convoluted with the instrument resolution function, g(A), and the
area of this new absorption function, C(A) was summed and compared with
the measured experimental equivalent width values WL (the value
measured at low pressure) and Wu (the value measured at high pressure).
This process was repeated with varying values of the optical density
until the theoretical equivalent width absorption areas agreed with the
experimentally determined equivalent widths WL and Wu at the correct

value of pressure ratio Y , where
Y = Pu/PL (5.23)

and where PL and Pu are the pressures used to measure WL and Wu
respectively. The line broadening parameter a is varied during the

computation, to obtain the best fit to the two measured equivalent widths.

5.6.1 The Theoretical Absorption Coefficient

To build up a model of the absorption coefficient in a
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certain wavelength region, three basic parameters are required. These
are the wavelengths of the lines Am , line strengths Sm , and a.
where a, is the ratio of Lorentz to Doppler broadening of line m .

The line width is related to this a-value by equation 3.38. The
absorption coefficient at wavelength Ai inside the scan range is the
sum of all the contributions from the various lines at that wavelength.
This coefficient is stored in a matrix used by the computer programme,
and may be used a number of times during the course of a calculation.
Each scan usually contained a P and an R branch rotational line,

each consisting of a triplet of lines ( Py , P, and Py , and Ry, Ro ~and
Rs ), as well as a number of weaker lines, usually from neighbouring bands
or from bands of the first vibrational level. If it is not possible to
resolve the individual triplet components, as is often the case in the
lower bands, the three triplet components were combined to form one line
of approximately 3 times the strength at the wavelength given by

Ackerman and Biaume (1970). When separate wavelengths are given for the
components, these are then used in the programme. The wavelengths of
lines from v' = 1 , and forbidden transitions, and from neighbouring
bands were calculated by a computer programme using level constants and
splitting parameters of Bergeman and Wofsy (1972) to calculate energy

levels and wavenumbers of transitions.

The strengths of the individual triplet components are
calculated using Boltzmann factors, Honl-London factors, and theoretical

oscillator strengths of Allison, which are used as initial starting values.

Line strength S'm is given by

S'm = AJf (5.24)
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where o is the weighted Boltzmann factor, A, is the Honl -London
factor and f 1is the oscillator strength. One line was chosen as the
reference line (usually the P, component) and assigned a strength

of 1.0 , and the other lines were adjusted so that their strengths

were

(5.25)

where Sm' is the strength of line m , and SR' is the calculated
strength of the reference line. After this normalization, an
oscillator strength is obtained from the computed value of kpX for
this reference line. The variation in a-value during the computation
produces a solution % the final value of a , which produces a
curve of growth passing through both WL and Wu . As a first estimate
for the values of a. s linewidths of Hudson and Mahle (1972) were
used. An example of a theoretical absorption coefficient built up

using known parameters is shown in Figure 5.3,

5.6.2 Instrument Resolution Function

The absorption coefficient at wavelength Ki is used to
calculate the absorption at this wavelength by using the variable kpX

which is a measure of the absorption path length. Beer's Law gives
I = IO exp [ - kpX k(ki)]

where I 1is the final intensity after passing through an amount of
absorber length X , and k(Ai) is a function representing the
absorption coefficient at wavelength Ai . The actual value of
absorption coefficient at any wavelength Ai is kpk(li), where kp

is the peak height at the line centre. It is usual to write I0 as

independent of wavelength, as the lamp provides a continuum, which



SCAN RANGE

S1=SR1 +SR2+SR3

Intensity

FIG 5.3. An example of a theoretical absorption coefficient built up by computer simulation.
The three triplet components near A; and A, are combined to form a single line,
of strength S; and S, . The width of the combined lines are o and o,

. V2
where dvl and uvz are the widths of each of the triplet componenfs. _
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is multiplied in turn by

all the g(lj—ki) points to the left of Ai as E(Aj-ki) sweeps past.
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has a relatively constant value over wavelength intervals which
are larger than any used to scan equivalent widths. However, some
wavelength dependence will be introduced by the instrument resolution
function g()A) . This instrument resolution function was assumed to be
a Gaussian function, of the form

D S

g = g e [ - (——) 4n2] (5.26)
g

where the half-width (full width at half height) ag was 0.05A ,

Before the equivalent width can be calculated, the theoretical absorption
must be convoluted with the instrument function. This then produces an
absorption spectrum, which should closely resemble the one obtained
experimentally. Convolution of the absorption A(A) with the instrument

function g(\) produces a convoluted absorption spectrum, C(A) where

cry) = Jb ALY g0y - ) dk (5.27)

a

and this can be written as

cr) = E

; A()\j) . g()\j - >\.1) AX (5.28)

1

Here A(aj) = exp [ - k(Aj) kpX ] and C(Ai)

is the value of the convolution at wavelength Ai, A(§j) is the value
of the absorption at wavelength Aj , and g()\:j - Xi) is the value of
the instrument function at Aj (see Figure 5.4). The instrument function

g(A) 1is normalized so that

J g(A\) dr = 1.0 (5.29)

which can be written

™ g

g(A. - X)) Ax = 1.0.
j i

j=1

This is simply a statement of fact that all light incident on the slit
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area passes through the slit, and the only effect of the resolution
function is to redistribute some of the light to different wavelengths.

The equivalent width W' is now given by
>\B
1 =
W [ C(Ai) dki (5.30)

L
or more relevantly by W' = I C(Xi) AX, where X and L are

i=K
integers corresponding to AA and AB in Figures 52 and 5.3
The convolution method consists of centring the resolution

function at wavelength Xi , and convoluting with the absorption A(% )

using (see Figure 5.4)

1}
N mo~M3

ew) AOY) . g0y - ) B

j=1
Here the variable is j (or Aj) , the computer programme multiplies

the various different values of A(Aj) by the value of the resolution
function at that wavelength g()\.j - %i) when it is centred at Ai , and
then takes the sum over all values of %i for which the resolution function
has a significant value. The resolution function is then moved to Ai+1 A
and the process repeated. In this way, the values of the convolution
function C(Ai) are obtained, and the equivalent width is then the sum

of all these values. That is

n

W' = I C(X)AX=
. i .
i=1 i

[
n~Ms

ALY g(h - A)ax (5.31)
j j i

1 j=1

and this value will be a good approximation to the ideal case of infinite

scan and the true value W , if the scan encloses most of the line. Here

=

1
N ™ 8
n™ 8

AL ) g - A A (5.32)
i=1 j=1 7 ;o1
and the above expression is independent of g(% - Ai), since the

summation signs can be interchanged as follows
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W o= % A(QL) T g(h -Adax=ZL A(A)Alusing
j:]_ J i=1 ] 1 j:l J

I g0, -A) = I gh -A) = Lo
i=1 J j=1 J 1

In a typical computation, the above method would involve
about 800 wavelength points Ai across the entire scan range, with
AX of 1 or 2 mA , and 200 points across the resolution function
g(A - A¢) . This means at each wavelength Ai’ 200 multiplications of
A(% ) . g(Aj - Xi) must be done, and this must be repeated 800 times
acgoss the scan range from AA to XB , giving a total of 160,000
multiplications for each value of kPX . The above procedure can be
visualized as sliding the resolution function across the absorption
function to produce the convolution function, the convolution being done

at each point A, between X and A .
1 A B

The reason a number as small as 200 can be used for the number
of data points comprising the resolution function is because it is Gaussian,
and a property of Gaussian functions is that the amplitudes fall to zero
very quickly. If the half-width ag is 50 mA , then by 100 steps of
1 mA out onto the line wings, the amplitude will be negligible. Thus a
Gaussian curve of 50 mA half-width can be adequately represented by

200 data points separated by 1 mA .

There is an alternative convolution method, which uses this
very rapid amplitude decay property of the Gaussian function to greatly
reduce computing time. If the half-width of the Gaussian ag is 50 mA ,
then the 1/e half-width o is 30 mA . If A and A, are the
limits of the scan range, then the interval AA - 3@e to AB + Sué

encloses virtually all of the contribution to the measured equivalent width.
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In the ideal case of equation 5.32 we have

R g(Aj - A )BA (5.33)

A(A,)
) =1

and this is identical to choosing a fixed value of the absorption
function A(Aj) and multiplying it in turn by the various values of
g()\j - Ai) as the resolution function sweeps across that wavelength

Xi (see Figure 5.5). This is equivalent to multiplying this absorption
value by the area beneathfa Gaussian function, or by part of that area
if the entire resolution function does not sweep across that wavelength,

as is the case near the edges of a scan. This has the advantage that

the area required is given simply by the error function, erf(x) , where

X 2
Bl = o f ot dt (5.34)

(l
(o}

Some of the properties of this function are described in
Appendix 9 . The term igl g()\j - Ai) in the expression for
equivalent width can then be replaced by erf(x) , where x 1is a variable
depending upon where in the scan range the wavelength Aj is. If Aj is
equal to AA or AB , then that value of absorption function A(Aj) will
be multiplied by % , since one-half of the points g()\,j - Ai) will be
multiplied by A(Aj) as the function g(A) sweéps past (half the area
contributes). Values of A(Xj) well inside the scan range (between D and
E in Figure 5.6) will be multiplied by 1.0, since this value of A(% )
will be multiplied by each and every value of g(% - Xi) in turn as
g(\) sweeps past (see Figure 5.5). Any point more than 3ce inside the
edges of the scan, AA : AB , will have this multiplication value of 1.0,

and any point more than 3ue outside the scan range will have the

multiplication value zero, since the amplitude of g(A) outside these
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FIG 5.6. g(kj - Xi), the instrument resolution function sweeps across A(A) from AA to AB.

Any wavelength between D and E will be mltiplied by every value of g(}j-% ), in other words by
the full area. Points outside D and E will be multiplied by some function of the area given by
the relationship between distance from the scan edge KA or A , @ (where o_ is the half-width
of the resolution function) and the error function. 8 g
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limits is negligible. In this way, a scan function S(Xi) can be

built up, showing the effect on spectral intensity across the scan range.
The rate of rise and fall of this scan function (shown in Figure 5.7)

at the integration limit edges XA s XB is a characteristic of
instrument resolution. If the resolution function was not Gaussian, but
instead consisted of a delta function (the infinite resolution case), the
scan function would then consist of a rectangular block between AA and
A, s with value 1.0 between those limits and zero outside them. The more
precise the resolution, the faster the scan function rises to the value

1.0 from 0 at AA , AB (see Figure 5/7).

Some approximations are made in this analysis, such as the
assumption that g(A - Ao) is negligible when | A - Ao | > 3ue and

that the measured equivalent width

n
W' L

g(A., - X, )A) is equal to
i=1 J =

i
TR

ACY))
j

j=1

©0

=
0
n o8

A(x) g(h., - XA
j j i

j=1 i=1

or more explicitly

00

ALY . g(h - Adm= B AQL . g(h - A)MA
J ] 1 J=1 J J 1

m
C(Ai) - E
which is true to a good approximation, since the scan range encloses
most of the line. The area obtained using this error function
approximation, is equal to that obtained using the convolution process,
so both will give the same answer for theoretical equivalent width.
However, only the convolution process produces a picture of what the real

absorption spectrum would look like. The use of the error function

approximation cuts the number of multiplications needed to calculate a
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FIG 5.7 Examples of scan functions S(A). The solid line corresponds
to a scan function of twice the resolution of the dashed line,
and consequently rises and falls faster near )\.A and >‘B .
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theoretical equivalent width from 160,000 to 800, and thereby
considerably improves computing time, with no real loss of accuracy.

This was checked by comparing answers obtained using both methods.

5.6.3 Calculation of Oscillator Strengths and Linewidths

The oscillator strength was extracted from the measured results
as follows. After the equivalent widths had been adjusted to take account
of the continuum contribution, they were used as input data for a
computer programme, which varied the optical depth kpX for the lower
pressure case until the theoretical equivalent width produced by the

programme

A

W= )[B (1 -exp [ -kX Kk Aa) 1) da (5.35)
A
A

agreed with the experimental quantity, LA The notation k(A,a) is

used here because the absorption coefficient, as well as being a function

of wavelength, is also a function of a-value, which is allowed to vary

in an effort to find a solution. The value of kpX which produced this

agreement, denoted by kp X , was then multiplied by the pressure ratio

of the two scans, Y, to give kp Xu , wWhere

Y £ P/P (5.36)

where Pu is the pressure used for the upper equivalent width
measurement, and a is the pressure used for the lower equivalent width
measurement, kpXL was found to be almost independent of a-value ,
since the equivalent width was deliberately chosen in this region of the

curve of growth. The a-value parameter was then varied so that the
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value of equivalent width obtained at this new value kp)(u

A
B8
1 = - -
W u [ [1 -exp ( kpxu k(A,a) ) ] dx (5.37)
A
A
agreed with the experimental quantity, Wu . A new value of kpXL was
then calculated for this new a-value and the cycle repeated until a
curve of growth was obtained that passed through both equivalent width
values and with kpXu =Y kpXL . That is, a curve of growth is fitted

to the pair of points (k X , W ) and (Y k. X , W) , as discussed
pl. L pl- u

previously in Chapter 3 (see Section 3.6 and Figure 3.12).

The two experimentally measured quantities WL and Wu are
thus used to give two quantities of direct theoretical interest, the
oscillator strength f and the linewidth, given indirectly by a . These
two quantities completely describe the rotational line at a given
temperature. The oscillator strength is calculated from the equation

(see Thorne (1974). (Sections 9.5 to 9.6)).

e mc?

f = ai.mz Jk(k) dA (5.38)
J

where in all cases, k(A) has been normalized so that i

Ik(x) dr = kpv‘r? o, (5.39)
A £ E’ 1
and where 0, = —%— V/-——ir—- (5.40)

is the 1/e Doppler half-width, N = P/KBT is the number of molecules
per unit volume, Xo is the wavelength of the line maximum, c¢ is the

velocity of light, Kj is Boltzmann's constant, M is the mass of the 02
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molecule, T 1is the temperature in °K , g, is the free space
permittivity constant, m is the mass of an electron, e is the
electronic charge and aT is the Boltzmann factor of the state in
question, so that aJN gives the total number of molecules in that
state. The above equation reduces to (see Appendix 10 )

1.577 x 107* k. X 172
f (V,, V” S Nll s JH) = p

P(W) A (A°) R(cms) o

-~

and is the line oscillator strength, and where P(u) is the pressure
of 0, in microns, A° (A°) 1is the wavelength of the line centre in A |

and %(cms) is the path length in cms.

A more useful quantity is the band oscillator strength f (v', v , N )

and this is related to the line oscillator strength by

f (v', v, N*, J") (ZJ" +1)

f (v', v, N") (5.41)
A n
J
where AJ” is the Honl-London factor of the line. We can therefore write
1.577 x 107 k X T72
f (V', i s Nll ) - P (5.42)

P(u) A(A") Z(cms) an 50

5.7 Errors

The expression for the oscillator strength given by equation
5.42 shows which quantities (and thus their associated errors) will
contribute to the error of the oscillator strength. The contribution to
the error from the wavelength would be very small, as discussed in
Section 5.1.1. This wavelength dependence of the oscillator strength

shows itself in the final equation because of the dependence of Doppler
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width upon wavelength, there being a small, steady change of Doppler
width with wavelength over the range of the Schumann-Runge bands. At
constant temperature (near room temperature) the Doppler width varied

from 4.4 mA near 2000A to 3.8 mA near 1750 .

As a check on the uncertainties in wavelength of the
neighbouring lines which are included during a calculation of kpx .
these wavelengths were allowed to vary by 10 - 20 mA  to observe the effect
on values of kpX and é . The errors associated with these lines would
certainly be less than 10 mA , and as the effects produced by shifts of this
magnitude were very small (fractions of a percent), they can be

neglected. The errors in pressure and path length have already been

discussed previously (see Sections 5.1.3 and 5.1.4).

The contribution of temperature error to the error in
oscillator strength was carefully examined. A rotational line and its
associated experimental equivalent widths were chosen at random, and
the results analysed at different values of temperature. The final values
for the oscillator strength and line broadening parameter a were
compared at different values of temperature, and were found to vary by
only small amounts (see Figure 5.8 and 5.9). The variation of kpX for
a 1% change in temperature (about = 3°K) was only =* 0.6% , while at
the same time, the line-broadening parameter a changed by about * 0.5% .
The effect at liquid air temperature would be more marked, and would
begin to become significant for higher rotational states. However, at

room temperature, the temperature error would not introduce much error.

The worst possible case error would occur when the temperature
of the low pressure result was in error in one direction (too large or
too small), while that for the high pressure result was in the opposite

direction (too small or too large). Since the oscillator strength
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determination is only dependent upon the low pressure equivalent

width measurement, this worst possible case error would only -affect the
a-value . The very slight dependence upon a-value that the oscillator
strength determination usually has is negligible. The result is a
maximum uncertainty in the oscillator strength of * 0.2% due to
temperature (accurate to 1°X), but the a-value, dependent as it is
upon both measured values of equivalent width, will have a maximum

possible error of approximately * 0.4% .

The temperature error will also have some effect upon the
Boltzmann factor Oy . Although each factor is known to a high degree of
accuracy as a function of temperature, the temperature has an uncertainty,
and may be in error by * 1°K , meaning that a slightly different
Boltzmann factor Oy should have been used in the analysis. A 1% change
in temperature, will produce different percentage changes in Boltzmann
factor, depending upon the rotational number. In almost all cases,
J( or N'') was 21 or less, and at this value of 21, a 2.2% error
would be introduced by a 1% change in temperature. However, for lines
with between 7 and 15 (as was usually the case), a 1% change produces
a change of 0.6% or less (see Figure 5.10). The rapid rise in error
for the high rotational numbers is due to the fact that these levels are
sparsely populated, and even a small temperature change will add a
significant amount to the population, and thus produce a relatively large
change. The Boltzmann distribution has maxima near J = 9, 11 or 13, and

this means a population change for these levels is relatively small, as

can be seen from Figure 5.10.

The most significant contribution to the error in oscillator
strength is the error in kpX . The error in kpX ) GkPX can be

written as
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FIG 5.10. The variation in population of a rotational level with rotational

number, plotted as percentage change of population in the level versus
rotational number N'' .
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2 9k X 2 2

(6kp)() = (Tslv.vL) sw * (—gLa ) Sa (5.43)
kK X 2 2 k X 2 o °
= / P _P y Ga (5.44)

or ( kaX ) ( i ) SW o+ ( g )

ok X
where is the rate of change of k X with equivalent width W ,

oW p
ok_X
e is the rate of change of kpX with a-value , &W is the error

in W (also written as “AW); and &8a is the error in a . For almost

all bands (the exceptions are the 1-0 and 2-0 bands), gg- is a

variation of 10% or less, and this coupled with a very small value of

9k X
daa ’

in a region where the a-value dependence of kpX is small, produces an

since the oscillator strength determination is deliberately done

error which is small compared to that due to equivalent width. It was
found that a 10-20% change in a-value produced a change of 1% or less
in the value of kpX . Thus, the term

ok X 2
( —5%— ) da in equation 5.44

can be neglected, since the term

8kX2 2
( —5%—-) oW

is of the order of 6-10% , and this outweighs the other term. Equation

5.44 can safely be reduced to

ok X 1
kpX ~ —3%—- W = EWT- AW (5.45)
dk X
where E%HY is the slope of the tangent to the curve of growth at kpX .
P

Thus, the error in kpX is basically due to the error

AWL in W o, the lower value of equivalent width. A value of dkpX is
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obtained using the results of iterations towards the solution for kpX

to extract the value of the slope to the curve of growth. In Figure 5.11 ,
the curve of growth near the low pressure equivalent width is plotted
(that is, near the linear region of the curve of growth). The measured
equivalent width is w t AWL , and the corresponding value of kpXL

is obtained from the computer simulation. The error 6kpX (or AkpX) s

is related to AW and the slope of the tangent to the curve of growth

aw
d_kpx L7
aw AW
kX~ AKX (5.46)
P P

Use of the iteration points (k pX, W), in particular, a point falling
near the value WL - AWL (in this case, W; of Figure 5.12) allows an
estimate of the slope to be calculated. This slope

W - Wi

e can be used as —ﬂ
kX -k X3 dk X
pt P P

and can thus give value for AkpX .
Because of the curvature of the curve of growth, the error AkpX is
slightly asymmetric, there tending to be a slightly larger Akpx on the
upper side of kpX . However, the difference was usually negligible

when compared to the size of AkpX for most of the lines analysed, so

it was neglected.

AW
Since WL was of the order of 5%, and since Jﬁig' had values between
- Ak X P
1 and 2, the error kpX was between 5-10%, and was thus the major
pL

contribution to error in the oscillator strength.

One error quantity which is not apparent from equation 5.42,
but which may play a significant role is that of instrumental resolution.
For all the lines analysed, an instrumental half-width of either 50 or 60 mA

was used. The uncertainties in this quantity would be no greater than



kX, KX,
kX
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slightly asymmetric.
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10 mA , and Figure 5.13 shows the variation in kpx with resolution.

A large change in resolution (25%) produces only a 0.18% change in the
value of k X . Similarly for the line-broadening parameter a ,

shown in Figure 5.14. Here a 25% change in resolution, produces only an

0.07% change in a .

The error in g-value requires a little more calculation.
Figure 5.15 shows a series of curves of growth with different ¢g-values
passing through the allowed range of equivalent widths. The two basic
errors important in the a-value determination are AWu and Akpxu .
AkpXu is directly proportional to AkpXL , being related by the ratio of
the two pressures at which the two equivalent widths W and Wu were

measured. We have therefore that Akpxu = YAkpXL (from equation 5.23).

The line-broadening parameter is dependent upon only two
quantities, the equivalent width and the index of absorption, kpX i
Holding the equivalent width constant, and varying kpX (by an amount
Akpxu say) will allow a variation in a-value . Similarly, holding
k Xu constant, and varying the allowed equivalent width, also allows a

variation in a . The total variation in a due to both quantities

varying simultaneously can be written

2 5 2 2 Ya e ?
$ = ez f = [ 5.

CO@) = (gl x & + (ot S0, (5.47)
where ( gﬁa) ) is the variation in ag-value with equivalent width

k X

P
for a fixed value of kpX , and ( ggf%r-) is the variation of a -value

pw

with kpX for a fixed equivalent width. Equation 5.47 can be approximated

by

2 Aa 2 2 Aa 2 2
G@) = CEy) M, Cgex) (d%,)



1900
1898

1896
kX

1894

1892

1830

35

FIG

40

45 50 55

RESOLUTION (mA)

5.13.

The variation of optical depth

kpX with instrumental resolution ag . A

* large charge in ag produces a small change

in kpX and thus oscillator strength.

60

5.60
558

5.56

a-value
554

552

550
35 40

FIG 5.14.

L5 50 55 60
RE SOLUTION (mA)

The variation in a-value with

instrumental resolution ag produces a small

change in a-value.



\A(J+lvab
EQUIVALENT
WIDTH

W a;

: B

WU-AWU// /// ;

ke xu' Ak, X, KX, kPXu"' a kPXU

FIG 5.15. The range of possible values of a which fit the upper equivalent
width W_ and its associated error, and corresponding k Xu value. The value
a is the first solution given by the computer iterations.




100.

where 6(a) is the error in a, Aa and AW are obtained from the
computer printout of iterations towards a final solution, as are AQ
and AkpX . Values of &8a were calculated for each line analysed,
and

since will vary from line to line depending upon pressure,

da 8a
oW ok X
P

number of background lines and scan range.

A further complication to the uncertainty in a-value
determination was caused .by a combination of factors which became
important in the 1-0 and 2-0 bands. Firstly, the rotational lines
become weaker as rotational number increases, requiring a gradual increase
in pressure at which the lower value of equivalent width W was
measured. Near the band head, this pressure was 161 torr (for the 2-0
band), and it increased to 500 torr for the R2;Pi1s (2-0) line group. Since
the maximum pressure attainable in the cell was 850 torr, this meant a
gradual decrease in the pressure ratio along the band, declining from
Y = 5.28 near the band head to Y = 1.70 for the higher lines. The
pressure ratio was almost always 10.0 for the other bands, although
this may not have been quite the optimum value in many cases. As shown
in Figure 5.16, two equivalent width measurements with the same error
bars, but separated by different ratios Y , will produce widely differing
errors in a-value . These errors are usually taken into account by the
terms

( %%")k ; and ( §§Eir~); in equation 5.47,
p P
and in case 1 of Figure 5.16, the error dJa will be extremely large,

while case 2 will have a much smaller error d&a .

A simultaneous effect, which coupled with the above pressure

ratio behaviour, makes the determination of a-values for higher
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rotational lines in the 1-0 and 2-0 bands unreliable is that due to

the underlying continuum. As mentioned above, the rotational line

strength decreases with increasing rotational number (for N'" >9), the

higher numbered lines producing progressively smaller amounts of

absorption, at the maximum pressure of 850 torr. The amount of absorption
produced by the lines under examination becomes comparable to that produced

by the continuum for high rotational number (N" >13). It thus becomes

very important to set the amount of absorption due to the continuum accurately,

so that the amount actually due to the absorption lines can be determined.

The valuesof the absorption coefficient of the underlying
continuum, in this case the Herzberg continuum, have not been measured
accurately in this wavelength region inside the bands. Experimental
measurements of the Herzberg continuum extend down to 2000A , the
beginning of the Schumann-Runge bands. To overcome this problem a
theoretical extrapolation of these experimental results was used,
extending down to 1750A . These continuum cross-sections, and those of
the Schumann-Runge continuum ( as shown in Figure 5.17) were
used to calculate background contributions for all lines in each band,
and were found to work satisfactorily. This was because, with the
exception of the 1-0, 2-0 and 3-0 bands, all the results were taken at
relatively low pressures. However, for the 1-0 and 2-0 bands, taken
at higher pressures, the Herzberg continuum values failed to give

solutions when applied to line analyses.
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5.8 The Pressure Dependent Absorption Continuum

The failure of the Herzberg continuum values to provide solutions
in the 1-0 and 2-0 bands was due to the fact, that these bands had
their high pressure equivalent width values, Wu , measured at pressures
of 1 atmosphere or greater. The absorption cross-section in the Herzberg
continuum has been observed to be pressure dependent, and at pressures of
850 torr, this can have the effect of more than doubling the effective
continuum cross-section (in comparison to pressures near zero). This
dependence has been measured by Shardanand and Prasad Rao (1977) for the
wavelength range 2000-2500A , They interpret the increase in absorption
coefficient as due to the formation of 0, at high pressure, and list
their values of the continuum absorption of 0, at S50A intervals,
and these results closely parallel the results of the 02 continuum cross-

section in the same wavelength region (see Figure 5.17).

The ratio of 0Og4u/0p2 does not vary much in the wavelength range
2000-2500A , and use is made of this fact to extrapolate the 0y continuym
cross-section to lower wavelengths. The continuum absorption values of
Jarmain § Nicholls (1967) for the Herzberg continuum have been
renormalized to bring them into agreement with the more recent measurements
of Shardanand and Prasad Rao (1977), and the shape of the curve of their
values in the range 1750-2000A was used to extrapolate a similar curve
for 04 continuum cross-sections by using the relation Cg4/0¢2 = constant.
The results are plotted in Figure 5:17. The extrapolated results for Ou
continuum cross-section can then be combined with the 02 continuum cross-
section to give a total effective cross-section using the equation of

Shardanand and Prasad Rao

cM) = Og2(A) + knGyy (A) (5.48)
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FIG 5.17 The absorption measurements of Shardanand and Prasad Rao (1977)
extrapolated to lower wavelengths. The values of Jarmain and Nicholls (1967)
have been scaled to fit those of Shardanand and Prasad Rao at 20004,
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where Ty2()A) and Y94(X) are the continuum cross-section of 0, and
0, at wavelength A respectively, and n is the number density of O03.
The constant k was found by Shardanand and Prasad Rao to be

2.6 x 107%? cm®/molecule, and this value was adopted for this work.,

Irrespective of whether Shardanand and Prasad Rao are correct in
their assumption of the formation of an 0y dimer , their experimental

results can be assumed to be correct, and thus

o (\) = To2(d) + nA (5.49 )

is a correct description of the total effective cross-section. Here
A = kOos(\) is a directly measured quantity, and neither k mnor Ogu(A)

need to be known separately, to use the results.

This new value of total effective continuum cross-section was
then used to calculate a background contribution. In the case of the 1-0
and 2-0 bands this had the effect of reducing the amount of high pressure
equivalent width attributed to the absorption lines. The a-value
iteration was then able to find a solution, which had previously eluded it,
due to the Wu values being too large, and falling outside the range of

allowed values.

The 3-0 results were also re-analysed using the new 04 corrected,
continuum background contribution, and there was some effect, the new
values of oscillator strength and line-broadening differing slightly from
the previous values derived using only the 02 Herzberg continuum
background correction. Compared with the 2-0 and 1-0 bands, the
effect in the 3-0 is smaller, and it becomes negligible in the 4-0 and
5.0 bands. This is because, in moving from the 2-0 band through to the
5-0 , the lines become stronger when compared to the continuum, and thus

less dependent upon the continuum corrections, and because the pressures
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at which the measurements are made become lower, and thus the pressure
dependent contribution decreases, and also because the actual value of the
continuum cross-section begins to fall off with wavelength, again

resulting in a less significant contribution.

The effect of 0, continuum is to change equivalent width
values, and since the errors in the Oy continuum cross-section values
will be substantial, due to the approximations made (that Oou/To2 is
constant in the wavelength range 1750-2000A , and Ogy2 are only
extrapolated theoretical values), this will introduce substantial
uncertainties to the values WL and Wu (more importantly Wu). In
addition to the statistical uncertainties, there will be uncertainties
of 10-20% in the value of Wu, and the effects of these uncertainties will
be greater, the smaller the pressure factor (that is, the closer to case 1
in Figure 516 the situation becomes). The net effect is to make a-value
determinations of high numbered rotatiocnal lines unreliable in the 1-0

and 2-0 bands.

Oy



) Rotational Dependence of Oscillator Strength -

Calculation of Slopes and Intercepts.

The least squares fit formula for a straight line of the form

f=f9+BX

to describe the form of the rotational variation of the oscillator
strength f , where x is related to the rotational number (c.f. equation
6.1), can be derived as follows. The points (xi, fi) are to be fitted

to the line of slope B and intercept fo , and the errors in fo, 8§ fo ,
and B, 8§ B are required from the errors in X, and fi . The error

in fi s O fi , is simply the statistical error in the oscillator

strength f , and the error in X, $ X; is assumed to be zero, since

the number of a rotational line is a known integer.
The sum square deviation of the fi from the straight line
f =fo + Bx is

n 2
Q = 3 [f; - (B +fo)]

2

n
= X [ (f. -fo ) - Bx. ]

1 1

Solving -g—e =0 and %%T 0 gives

B(lez) + .fO (le) = leyi

and B(in) + fo(m) = Zyi

Solving for B and fo gives

IX.Y. - LX, LY.
8 = n[ —i S (5.50)
n inz - (}in)z ‘
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and

Ex.lz Ty; - Ix; LX, Y;
fo = [ 1 (5.51)

2 2
n in = (in)

Since 6xi = 0 , then the errors in B and f, are dependent only

upon Gfi and are

2 N (SB 2 2
(58" = Ilgr, ) (8
2 2 2
(o) = zC Loy qor))
&f .
i
%fﬁ and o can be obtained from equations 5.50 and 5.51
i Gfi
and so
2
68 - 5 o[ Lx; 1 (6F3) (5.52)
< 2 _ 2
i=1 anj (ij)
n Ix. - X, IX, 2o(sf,)? 5 53
(o) = £ [——ibid ] i (5.53)

i=1 nIx.? - (Zx.)?
; ( J)
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CHAPTER 6

RESULTS — SCHUMANN-RUNGE BANDS

6.1 Introduction

The results presented in this chapter are split into two main
parts, the first covering oscillator strengths, the second covering line
width measurements. Oscillator strengths for the same vibrational band
were often calculated at slightly different values of a , the line
broadening parameter. This occurred because the experimental results
used in the computations almost invariably produced a slight difference
in the value of a, for each line, and the oscillator strength quoted is

f

for this value of af . The a-value was allowed to vary in this manner
because it was hoped to present results for the variation of linewidth
with rotational number, and the quantity af is required if this is to

be done. However, the error associated with each measurement of linewidth
was usually larger than any differences noticed between the various
rotational lines, so no real width dependence on rotational number could

be determined. The individual linewidths and a-values for each rotational

line, and their accompanying oscillator strength are listed in Appendix 11.

N.B. For Figures in thig@hesis, a point corresponding to,
for example, 1.0 on a vertical axis labelled f x 10° is actually a value
f =1.0x 100° . The term x 10° means values in the Figure are multiplied
by 10° and then plotted. Some of the Figures reproduced from other
works use the alternative notation x 10° to mean that all points plotted

in the Figure are of the order of magnitude 10° .
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6.2 Previous Experimental Results

The first oscillator strength measurements for the Schumann-
Runge bands of molecular oxygen were obtained by Ditchburn and Heddle
(1954) for the (0-0) to (20-0) bands using photographic techniques.
They used an indirect analysis technique, combining line broadening,
spectrograph parameters and observed line intensities. However, their
results were shown to be in error by Bethke (1959), and subsequently by
other investigators. Bethke overcame the problem of low instrumental
resolution by pressure broadening the absorption lines with argon.
Allowance for 0, continuum was made by subtracting the pressure
dependent continuum from the integrated area. From Table 6.1, it can be
seen that Bethke's results (2-0) to (17-0) compare reasonably with

other more recent investigators.

Oscillator strengths were also obtained by Halmann (1966) for the
(2-0) to (10-0) bands, again using a pressure broadening technique with
argon to overcome the instrument resolution problem. Farmer et al (1968)
used curve of growth techniques similar to the present work to obtain
oscillator strengths for the (2-0) to (20-0) bands. Absorption
measurements were made at low values of absorption (in the linear region
of the curve of growth), so that the integrated areas were directly

proportional to the oscillator strengths.

Hasson et al (1970) obtained oscillator strengths for the (0-0)
to (3-0) bands, as well as the (2-1) to (5-1) bands, by measuring
absorption in air. Ackerman et al (1970) present a comprehensive list of

oscillator strengths for (0-0) to the (19-0) bands obtained



BAND DITCHBURN BETHKE FARMER HASSON HALMAN HUDSON ACKERMAN HUEBNER THIS WORK
& HEDDLE et al et al § MAHLE et al et al

0-0 1.55 x 10°° 3.3 x10°'° 2.62 x 107'° 3,44 x 107'°

1-0 1.89 x 1077 3.5 x10°° 3.05 x 107° 3.897 x 10°° 2.7 x10°° (8.75 £ 0.73) x 107
2-0 1.18 x 107 2.3 x 10 2.69 x 10°° 1,99 x 1072 2.6 x107* 2.7 x10°° 2.37 x 10°* 6.2 x10°° (2.45 * 0.09 x 107
3-0 8.35 x 107¢ 7.4 x 107 1.54 x 1007 6.8 x 10% 8.2 x 10°° 7.1 x 10°° 9.88 x 10°° 5.6 x 107" (1.01 * 0.037) x 107
4-0 2.76 x 10°° 2.74 x 1077 7.11 x 1077 2.4 x 1077 2.5 x 1077 3.21 x 1077 2.97 x 1077 (2.70 £ 0.12) x 10°°
5-0 6.65 x 10~% 7.28 x 1077 2.80 x 107 7.48 x 107" 6.1 x 1077 .51 x 107" 7.39 x 107 (7.72 £ 0.19) x 107
6-0 1.37 x 107* 1.73 x 10°* 4.40 x 107 1.77 x 107¢ 1.7 x10°* 1.91 x 10°¢ 1.70 x 107 (1.75 £ 0.07) x 107
7-0 3.53 x 107° 3.56 x 107° 8.15 x 107¢ 4.24 x 10°° 3.5 x10°° 3.81 x10 3.50 x 107° (3.85 * 0.16) x 107°
8-0 5.94 x 100*  6.75 x 100° 1.2 x 10°° 6.59 x 107 6.0 x107°  6.68 x 10 6.85 x 107 (7.53 * 0.3) x 107
9-0 6.40 x 107* 1.07 x 10°% 1.50 x 107° 1.13 x 107° 1.0 x107° 1.06 x10°° 1.05 x 107° (1.32 * 0.07) x 107°
10-0 9.45 x 107* 1.56 x 107 2.05 x 107° 1.42 x 10°° 1.6 x107° 1.57 x 10 1.60 x 107° (1.84 * 0.05) x 107°
11-0 1.44 x 107° 2.16 x 10°° 2.74 x 107% 1.7 x10°° 2.09 x 107 2.26 x 107° (2.60 * 0.16) x 10°°
12-0 1.31 x 10 2.81 x 1C°°  2.58 x 18°° 2.5 x107°  2.53 x10° 2.88 x 107° (3.21 * 0.10) x 307
13-0 4.04 x 107 3,17 x 1078 3.66 x 107% 4.5 x107° | 2.88 x10°° 3.41 x 10°° (3.65 * 0.15) x 10°°
14-0 8.12 x 107* 3.24 x 10°° 3.69 x 107 5.0 x10°° 3.03 x10°° 3.77 x 107° (4.46 * 0.10) x107°
15-0 2.79 x 1073 3.26 x 107° 3.77 x 10°% 3.1 x107* 2.91 x10°° 3.73 x 107° (3.45 * 0.10) x 10°°
16-0 5.55 x 1073 3.16 x 10°° 3.31 x 1077 2.5 x10°° 2.59 x 10 3.53 x 107° (3.4 *0.15) x 107°
17-0 6.63 x 107° 2.95 x 107° 3.16 x 107° 2.94 x 107° 2.23 x 107° 3.03 x 107° (2.58 * 0.13) x 107°
18-0 6.93 x 107 2.03 x 10°* 2.57 x 10°° 1.83 x 10°° 2.72 x 10°° (1.69 * 0.19) x 107°
19-0 7.58 x 107 1.74 x 10°7° 1.96 x 10°° 1.43 x10°° 1.98 x 1077
20-0 8.25 x 1073 1.35 x 107° 1.64 x 10°°

TABLE 6.1 A comparison of the results of this work with those of previous experimenters.

*60T1
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photographically. Hudson and Mahle (1975) used a fitting procedure on
their photometrically obtained results, to deduce oscillator strengths
for the (0-0) to the (19-0) bands. Their results were used as a
first estimate in the present work. All the results mentioned above are
compared with those obtained by electron impact studies of Huebner et al

(1975) and the present results for band oscillator strength in Table 6.1.

Allison (1975) has theoretically calculated the variation in band
oscillator strength across a band as the rotational number N" is varied.
His theoretical estimates will be compared with the present results for
the 1-0 to 15-0 bands. A typical example of the rotational dependence
of the band oscillator strength from the theoretical calculations of
Allison is shown in Figure 6.1 for the 9-0 band of the Schumann-Runge
bands. The present experiment attempts to find the values of fo, the
oscillator strength for zero rotational number, and the rate of rotational
dependence B , by fitting the measured oscillator strengths to a straight

line of the form
f( V',V",N") = fo(V',V") - B(V')(N" + l)N" (6.1)

where f(v',v",N'") is the oscillator strength of the N'" rotational line
of the v' vibrational band, and where the subscript v' for fo and 8

refers to those quantities for the v' vibrational band.

It should be noted that Allison's theoretical predictions are not
exactly straight lines. The P branch rotational dependence departs from
the linear at very low N'" values, flattening off somewhat, while the R
branch rotational dependence has an ever increasing value of slope towards
lower N" values, rising away from the linear towards the value for the
P branch fe value. The accuracy of the results obtained in this

experiment allow estimates of the fo oscillator strength values, and the
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FIG. 6.1 A plot of Allison's predicted variation of oscillator strength
with rotational number, N" , in this case for the 9-0 band. The intercepts
for zero rotational number are denoted by foP and fo_ .
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slope parameters for a linear fit to be evaluated, but is insufficient
for much minor variations as shown by Figure 6.1 for low N'" to be
determined as well. For such small variations to be detected, errors in
the individual oscillator strength would need to be 1% or less, accuracy
unattainable by this experiment. No experimental determination of
variation of band oscillator strength with rotational number has been

attempted before.

6.3 The Present Results

Oscillator strengths and linewidths were obtained for the 3-0
to 14-0 bands, the operating conditions obtainable for the absorption
cell allowing these measurements to be made to good accuracy. Results
were also obtained for the 2-0 and 15-0 bands, but not to the same
accuracy, and some results for the 16-0, 17-0, 18-0 and 1-0 bands
were also obtained, though these results should be considered no more
than qualitative. The variation in band oscillator strength with
rotational number for the 1-0 to 15-0 bands are plotted in Figures 6.5
to 6.19 , and are compared with Allison's theoretical predictions. Each
band will be compared with these theoretical predictions and discussed
fully later, but the general trend is that Allison's predictions are too
low, and in most cases the variation of band oscillator strength with

rotational number measured experimentally is more pronounced than predicted.

The oscillator strengths quoted in the tables are those calculated
using the final solutions to the curve of growth fitting the experimental
equivalent widths. Each pair of equivalent widths usually produce a
solution, a . That is, using the value of line-broadening parameter a
the curve of growth of the lines in question pass through the two equivalent
widths, WL N Wu at the right values of pressure. This final value of

% is then used to extract a kpX , from which the oscillator strength is
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calculated. The exceptions to this are the 1-0, 2-0 and 16-0 bands.
The oscillator strengths quoted for those bands are all calculated at

the same value of a for each line. In the case of the 1-0 band, the
value of a chosen is the average of the first two lines in the band.

In the case of the 2-0 band, the first four lines had their a-values
averaged, and then this average value of a was used to extract a value
of k X for each line, and this value was then used to calculate
oscillator strengths. This procedure tends to reduce random scatter due to
different a-value solutions being used to extract kpX values. In the
bands 3-0 to 15-0 , the scatter in a-value was not too pronounced,

but in the 2-0 band especially, a-value determinations become unreliable

at high rotational number.

6.4 Comparison with Previous Experimental Results

Before any comparison can be made between the present work, and
that of previous experimenters, the quantity required for comparison,
namely mean band oscillator strength f (v',v"), must first be calculated.
The results obtained in this work are band oscillator strengths f (v',v",N"),
and are listed in Appendix 11 for all the various rotational lines for which
they were measured. The results for each band have been fitted to a
straight line of the form given in equation 6.1. A weighted mean band
oscillator strength fv'v'' can then be calculated from this straight line

fit, using the following equation

T f(v',v",N") o (v',N",T)

fQvr,v) = Ll (6.2)

L a(v',N,T)
NH

where f (v',v",N'") is the band oscillator strength obtained from equation
6.1 and a(v',N",T) is the total relative population for the N"

rotational line of the v' vibrational band at temperature T (that is



113.

S is the sum of the relative populations of the three triplet components).
The weighted mean band oscillator strength obtained in this way would then
be comparable to that measured by other experimenters using pressure
broadening to measure the total absorption area of a whole band, since each
line contributes an oscillator strength proportional to its population,
which is related to its Boltzmann factor and its associated statistical
weight. Use of equation 6.2 to calculate the weighted mean band oscillator
strengths gives an answer f(v',v'") identical to the band oscillator
strength for the P11 line of each band, that is by N'" =11 in equation

6.1.

A comparison of the weighted mean band oscillator strengths of
this work with those of previous experimenters, in particular Bethke (1959)
Hudson and Mahle (1972) and Ackerman et al (1970) is shown in Figures 6.2
and 6.3 and Table 6.1. The results of other experimenters are also shown
in the table, but the above mentioned group, plus the electron impact
measurements of Huebner et al (1975) form the basis for comparison.
Figure 6.2 shows the results for this weighted mean band oscillator strength
to be in fair agreement, for v' =2 to v' =8 . For the purpose of
clarity, where the oscillator strengths of different experimenters have the
same value, or are in very good agreement for some value of v' , the
plotted points in Figures 6.2 and 6.3 are displaced slightly in the
horizontal direction to improve visibility. Figure 6.3 shows the results
of this work tend to be slightly higher than most of the other measurements,
the difference between the values of this work and those of other
investigators being a maximum at v' = 14, Values of weighted mean band
oscillator strength quoted for the 16-0, 17-0 and 18-0 bands are

only approximate, the value actually being an average of the oscillator
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FIG 6.2 A comparison of mean band oscillator strength fv',v" (in
this case fv'o) for the Schumann-Runge bands 1-0 to 8-0 , for
various experimenters listed in Table 6.1.
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FIG 6.3 A comparison of the mean band oscillator strength fv',v'" for the
Schumann-Runge bands 6-0 to 19-0 for various experimenters listed in
Table 6.1
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strengths obtained rather than a weighted mean, there being insufficient
points measured for these bands, to realistically calculate a mean band
oscillator strength. For the 16-0 band, the band oscillator strength
for the P;1 1line, found to be equal to the weighted mean band oscillator
strength for the other bands, is quoted. For the 17-0 band, a weighted
mean of the three line oscillator strengths is used, while for the 18-0
band, with only a single measurement, the band oscillator strength for the

line in question is quoted.

6.5 Comparison with Theoretical Predictions

A comparison of the mean band oscillator strengths of this work
with the theoretical predictions of Allison (1975) is made in Table 6.2
and also in Figure 6.3. Between the 7-0 to 16-0 bands, the predictions
of Allison are all lower than the results obtained in this work, the maximum
difference occurring at v' = 14, as for the previous experimental results,

upon which Allison's work must be based.

Also shown in Table 6.2 are the fo (v') , the oscillator strengths
for N'" = 0, for both the P branch and the R branch where possible,
calculated from a straight line fit to Allison's values, and also for the
results of this work. To make the comparison valid, fo(v') and B(v')
values were calculated from Allison's theoretical results, but only
theoretical oscillator strengths corresponding to rotational lines which
were also used in the calculation of fop(v') and f%?(v') values for
this work, were used. In this work, values obtained for f% (v') and
f%%(v') are only independent above the 8-0 band, since only for v = 8
can sufficient lines be resolved to use R branch oscillator strengths in

a calculation of fo (v') and B (v') . In the range 8-0 to 15-0,
R R
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Allison predicts

foP(V')/foR(V') = 1,02

whereas the results over the same range for this experiment are

fo (v')

B — = 1.06 £ 0.014
fo (v')

The small error in the experimental result arises from counting
statistics, but there will be a small additional error because of the

assumed linear dependence in equation 6.1.

Allison's predictions for the slope are compared with the results
obtained in this work in Table 6.2. The results for the bands 1-0 to
4-0 are subject to large errors, and refinements to the experimental
system, and also to the analysis are needed, before further attempts at
measurements in this region are performe&. From the 5-0 band onwards,
however the results obtained for the slope of the oscillator strength with
rotational number, B , are sufficiently accurate to allow comparison.

In the range 8-0 to 15-0 , Allison predicts

BR / BP = 1.23

whereas the results of this work give

B /B =1.03 % 0.05

R P
That is, the prediction of Allison that the dependence of R branch
oscillator strength on rotational number is greater than for the P branch

is not verified by this experiment.

Figure 6.4 shows a comparison of the rate of decrease of oscillator

strength for this work and for Allison's theoretical predictions, The
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AN fo, fo,
BAND ALLISON THIS WORK ALLISON THIS WORK ALLISON
1-0 3,26 x 10°° (8.75 ¢ 0.73) x 107° 3.32 x 1077 (8.77 * 0.22) x 10°° 3,29 x 10°°
2-0 1.99 x 107° (2.45 % 0.09 x 10 ~* 2,04 x 10°° (2.35 * 0.05) x 107° 2.01 » 107"
3-0 $.47 x 107* (1.01 t 0.37) x 107" 8.68 x 107* (1.03 £ 0,02) x 1077 8.52 x 107°
4-0 2.81 x 1077 (2.70 £ 0,12) x 107" 2.88 x 1077 (2,65 % 0.07) x 1077 2,83 x 1077
5-0 7.71 x 1077 (7.72  0.19) x 1077 7.92 x 1077 (7.98 * 0,18) x 1077 7.79 x 1077
6-0 1.80 x 10°* (1.75 ¢ 0.07) x 10°° 1.86 x 10°° (1.84 * 0.05) x 107° 1.83 x 107*
7-0 3,66 x 107° (3.85 * 0.16) x 107° 3.77 x 107° (4.10 % 0,11) x 107° 3.70 x 10°°
B-0 6.54 x 10°° (7.53+ 0.31) x 107° 6.74 x 107* (8.12  0,21) x 107° 6.63 x 10°°
9-0 1,05 x 107° (1.33 t 0.07) x 10°* 1.08 x 10°° (1.46 £ 0.05) x 107° 1.07 x 107°
10-0 1.53 x 107° (1.84 £ 0.05) x 10°° 1.59 x 10°° (1.98 £ 0,04) x 10°° 1.56 x 10°*
11-0 2.06 x 107* (2.60 t 0.16) x 107* 2,15 x 107* (2.89 £ 0.10) x 107° 2.11 x 107°
12-0 2.56 x 107° (3.21 £ 0,10) x 107} 2.68 x 10°° (3.49 * 0.09) x 107° 2,62 x 107°
13-0 2.93 x 107° (3.65 * 0.15) x 107° 3.09 x 10°° (4.04  0,12) x 107° 3,03 x 107°
14-0 3.08 x 107° (4.46 1 0.10) x 107% 3.27 x 107° (4,90 ¢+ 0.07) x 107° 3.17 x 10°°
15-0 2.98 x 10°* (3.45 £ 0.10) x 107° 3.18 x 107° (4.81 * 0.49) x 107° 3,14 x 10°°
16-0 2.73 x 1or? (3.40 % 0.15) x 107°
17-0 2.34 x 107° (2.58 * 0.13) x 107°
18-0 1.89 x 10°° (1.69 * 0.19) x 107°
fo, 8, 5"
BAND THIS WORK ALLISON THIS WORK ALLISON THIS WORK
1-0 4.68 x 10°'3 (1,06 + 3,9 ) x 10°!? 9,56 x 10-1?
2-0 3,58 x 10°'?  (-7.89 t 3.0 ) x 10°'? 5.36 x 10-'?
3-0 1.67 x 107" (1.65 + 1.1 ) x 10~"? 2,27 x 10-%!
4-0 5.76 x 10~'°  (-3.68 & 3,65) x 10-'! 8.19 x 10~
5-0 1.70 x 10°'° (1.93 ¢ 0.08) x 10°!° 2.29 x 107'°
6-0 4.19 x 10°'° (6.21 £ 1,83) x 10°'° 5.35 x 10-'®
7-0 8.71 x 10°'° (1.94 ¢ 0.41) x 10°° 1.09 x 10-°
8-0 (8.06 + 0.20) x 10™° 1.60 x 10°° (4.50 £ 0.77) x 10°° 2,03 x 10°° (4.89 £ 0.53) x 10°*°
9-0 (1.44 * 0.06) x 10°° 2.70 x 10°° (9.99 + 1,67) x 10°° 3.49 x 10°° (9.92 + 1,91) x 10°°
10-0 1.89 % 0.05) x 107* 4.32 x 10°° (1.12 ¢ 0.08) x 10°° 5.17 x 10°° (1.16 ¢+ 0.09) x 10°°
11-0  (2.74 + 0.10) x 10°° 6.72 x 10°° (2.28 * 0.41) x 10°° 8.31 x 10°° (1.57 + 0.34) x 10°*
12-0  (3.44 £ 0.09) x 107° - 9.45 x 10°° (2.11 £ 0.25) x 10~® 1.10 x 10°* (2.38 + 0,24) x 10°°
130 (3.81 ¢ 0.27) x 10°¢ 1.24 x 10°* (2.89 ¢ 0,28) x 10°° 1.57 x 10°° (2.25 & 1.24) x 1or®
14-0 (4.45 = 0,06) x 10°* 1.48 x 10°° (3.31 £ 0.17) x 10°° 1.66 x 107® (2.96 + 0,14) x 10°°
15-0 (4.27 £ 1.1 ) x 1078 1.68 x 107" (1.04 £ 0.36) x 1077 2.19 x 10°® (7.75 + 0.74) x 10°*
16-0
17-0
18-0
TABLE 6.2 A comparison of the theoretical results of Allison for

slope parameter

B and intercept fo

with those of this work.
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quantity

fo(v') -1 (v',v'",N")
fol(v')

(6.3)

is calculated for the bands v' =1 to 14, with N'" = 15 . The
experimentally determined results do not confirm Allison's predicted
variation. Between v' = 6 to v' = 14, Allison's predicted results are
too low, showing that the‘slopes assigned to the rotational dependence
by Allison are too small (this will be compared for individual bands in
the next section). Allison's predicted slopes are represented by the
dashed lines in Figures 6.5 to 6.19, while the results of this work are

represented by the solid line.

6.6 Discussion

For the purpose of this work, the results will be discussed in
sections. The first section consists of the lower bands, comprising the
1-0 to 5-0 bands. The second section comprises the bands from 6-0
to 14-0 , and the third and last section describes the 15-0 to 18-0

bands.

6.6.1 The Lower Bands: 1-0 to 5-0

The accuracy of these results improves steadily from the 1-0
through to the 5-0 bands, increasing with increasing band oscillator
strength. The band oscillator strength obtained for the 1-0 band is
higher by a factor of 2 than that obtained by most of the other experimenters,
and this discrepancy is almost certainly due to the weakness of the lines
in comparison to the Herzberg continuum in the region of the measurements
(discussed in Section 5). The large error is due to the large

uncertainty in a-value, which means that the term

ok_X o
( —2 ) da
da
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of equation 5.43 is no longer negligible as it is for most of the

other bands (the 2-0 band is the other exception).

Attempts to work out slope parameters B (see equation 6.1)
for these low bands were not overly successful. Although values were
obtained, the errors were so large (with the exception of the 5-0 band)
that the values were almost meaningless. This was basically due to the
fact that lines of high rotational number were so difficult to measure
for these low bands, either because the strengths were so low, or because
of overlap with neighbouring bands, or both, and the omission of these

lines makes the slope determination difficult.

‘The pressure ratio Y decreases for the higher rotational lines
in the 1-0 and 2-0 bands, because the limitations of the absorption
cell rule out pressures greater than 850 Torr for the high pressure
measurement, while the low pressure value must increase due to the
weakness of the lines (see Section 5.7 ). This means that the two results
obtained from the measured equivalent widths, f and a are no longer
independent., The limiting case would be if only one equivalent width
measurement were possible, in which case f and a would be completely
dependent. This smaller value of pressure ratio Y means a larger error
in the a-value determination. Some idea of the dependence of oscillator
strength on a-value can be seen in Figures 6.5 and 6.6 for the 1-0 and
2-0 bands respectively. Oscillator strengths for the various lines are
plotted for the final a-value solution for each line, a for the final
band average a-value ( a = 0.53 for the 1-0 band, and a = 3.8 for the

2-0 band), and for one other a-value.

The band oscillator strengths for the 2-0, 3-0, 4-0 and 5-0
are in reasonable agreement with those of previous experimenters, the

results of this work tending to be slightly higher. The 2-0, 4-0 and
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5-0 bands exhibit the characteristic of having the oscillator strengths
for low N" near the band head, somewhat lower than those of intermediate
N" . That is, oscillator strengths seem to increase with rotational
number, attain a maximum, and then decrease with N'" ., This observed

effect was also noted for the 7-0, 10-0 and 11-0 bands.

No attempt has been made to calculate independent R-branch
oscillator strengths for the 1-0 to 5-0 bands, because in each band,
only the last few lines visible could be resolved into separate R and P
lines. In these cases the ratio of P and R oscillator strengths of
Allison were assigned, and the calculations done to give a P branch
oscillator strength, although R branch values could just as easily have

been calculated instead.

6.6.2 The Middle Region: 6-0 to 14-0 Bands

A comparison of the weighted mean band oscillator strengths of
this work with those of the previous experimenters (Figure 6.3 and Table 6.1)
shows the present results to be larger over the range 6-0 to 14-0 . There
appears to be a gradual increase along the bands in the difference between
these results and the previous values, the maximum difference occurring at

v' = 14 , which is also the largest value of band oscillator strength.

Comparing these results with those of Bethke (1959), who used a
pressure broadening technique, and obtained oscillator strengths from
overall integrated band absorption coefficients, shows his results to be
consistently lower. The explanation for this may be due to uncertainty

introduced in trying to take account of overlap between bands.

Ackerman et al (1970) have assumed linewidths which appear too

large at the higher values of v' , and the effect of this is to lower the



120.

value of oscillator strength obtained. Hudson and Mahle used a method
examining individual lines at high resolution, and then used an

analytical technique similar to that used in the present work. The
variability of their results may be due to the dependence of band
oscillator strength on N'" , the relatively high values they obtained
perhaps coming from lines of low N'" , and their relatively low values of
oscillator strength perhaps coming from lines of high N'" . No details

of which lines were studied is given by Hudson and Mahle., If this
rotational dependence is the correct explanation, then Hudson and Mahle's
results may not be inconsistent with those of this work, and tend to
support yvalues higher than obtained by other experimenters. The agreement
with the low resolution electron impact results of Huebner et al (1975) is

slightly better than with the other results near v' = 13 and 14 .

Figures 6.10 to 6.18 show the present results for oscillator
strengths for differing rotational number N" . For v' =8 , the P
and R branch lines become separated enough to allow both high and low
pressure absorption measurements to be made individually for both branches.
This then allows independent measurement of the R branch oscillator
strengths and the slopes associated with the rotational dependence. The
straight line fit to the individual results of the rotational lines of
this work is denoted in Figures 6,10 to 6.18 by the solid lines, and the
theoretical predictions of Allison are denoted by the dashed lines. Table
6.2 lists and compares the present results with those of Allison. In
almost all cases, the absolute values for the weighted mean band oscillator
strengths of this work are higher, while the theoretical predictions of
Allison for the rotational dependence of the oscillator strength are found

to be too low.
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6.6.3 The Upper Bands: 15-0 to 18-0

Above the 15-0 band, perturbations due to curve crossings of
the molecular state potential curves in oxygen result in an increase in
the complexity of the spectrum, and make the taking of useful measurements
difficult. The 15-0, 16-0, 17-0 and 18-0 bands were observed with
the target gas at liquid air temperature (82 °K) to reduce spectrum
complexity. Due to the curve crossing perturbations, energy levels were
shifted, resulting in a shift in wavelength of rotational lines, thus
making line identification difficult. The energy level shifts also
affect Honl-London factors, so theoretical line strengths for the
perturbed lines cannot be calculated. Therefore, only useful measurements
could be made when a rotational line of a given band could be identified,
and when it was separated sufficiently from neighbouring lines for these
to have little effect on a measured equivalent width. This reduced the
number of available lines for these higher bands, and made calculation of
a weighted mean band oscillator strength impossible.

Appendix 11 1lists the results for the 15-0 to 18-0 bands,
and Figure 6.19 shows the variation in oscillator strength with rotational
number for the 15-0 band, the only one with sufficient rotational lines
visibly measurable. These errors assigned to the slopes of the rotational
dependence for the oscillator strength for this band are large because

no lines of high N'" could be measured.
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6.7 Predissociation and Rotational Linewidths

It was first suggested by Flory(1935) that the rotational lines
in the Schumann-Runge bands underwent predissociation broadening. He
based this conclusion on the apparent diffuse-ness of rotational lines
above the v' = 2 1level, and on the absence of emission from vibrational
levels with v' > 2 . To account for the predissociation, he postulated
that the aﬂu state potential curve crossed that of the 32; on the
outer limb between the v' =2 and v' = 3 vibrational levels, the
transition 32; > aﬂu being an allowed one (see Figure 6.20). Feast
(1948) concluded that the experimental evidence was against predissociation
but Wilkinson and Mulliken (1956) found some evidence for the 12-0 band
being predissociated, since the lines there were observed to be visibly
more diffuse than those of the neighbouring 13-0 band. They ruled out
the possibility of the 3ﬂu potential curve crossing that of the 32; in

two places, on the right limb at v' = 4 , and on the left limb at v' = 12

(see Figure 6.21).

Carroll (1958) re-examined some high resolution plates of the
Schumann -Runge bands, and obtained a qualitative measure of the line
broadening for some of the bands. Even allowing for blending of the
triplet components increasing the apparent widths, instrumental broadening,
and pressure broadening it was impossible to attribute the large widths
in some cases to these factors alone. From close observations of micro-
densitometer tracings, Carroll concludes that the 4-0 band is
definitely predissociated, more strongly than either the 3-0 or the 5-0
bands, though these too, show broadening. He also concludes that
Wilkinson and Mulliken's results must be modified, in that though the

12-0 band is predissociated, the 11-0 band is much more diffuse. Carroll
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lists the bands with associated broadening as follows. The 11-0 band
is more diffuse than the 12-0 ; the 10-0 is more diffuse than the
12-0 but less than 11-0 ; the 9-0 is slightly diffuse, approximately
the same as the 12-0 ; the 8-0 is more diffuse than 9-0 ; but less
than the 4-0 . There seem to be two maxima in the broadening process,
one at 4-0, and the other at 11-0 . Carroll is undecided as to whether
this implies two predissociations, and thus two curve crossings, or whether
it can be explained by one crossing point at v' = 4, with the subsidiary
maximum at v' = 11 and the minimum at v' = 9 corresponding to varying
overlap integrals between the 3ﬂu , 32; states which are obtained using
the Franck-Condon principle. If two predissociations are present, Carroll
suggests that one of the other repulsive states, perhaps the lwu s 52&
or sﬂu could be the cause, crossing the curve near v' = 11 . He
suggests the most likely possibility is that of one potential curve crossing
point, on the inner limb of the 32; , as suggested by Wilkinson and
Mulliken, but with v' changed from v' =12 to v' = 4 ., Murrell and
Taylor (1968) showed that predissociation probabilities could be explained
by a single crossing at v' = 4, with several subsidiary maxima above this.
They give an expression for the repulsive curve, and discuss the different
possible types of crossings. Their calculations show that the 32; - 3ﬂu
crossing in 0, is of the type (i) in Figure 6.22.

Hudson and Carter (1969) confirmed the predissociation of the
332; state for v' =3 to v' =17 . They noted a definite increase in
line width of the 3-0 band compared to the 2-0 band, but did not rule
out the possibility of predissociation in the 2-0 band. They suggested

3

the intersection of the ﬂu and B3Z; states could be between V' = 2

and v' = 3 rather than between v' =3 and v' =4
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Ackerman and Biaume (1970) as well as measuring line positions,
also observed apparent line half-widths appearing on the spectra, and
their results are compared with the predictions of Murrell and Taylor in
Figure 6.23. Ackerman, Biaume and Kockarts (1970) obtained line-width
values, and these are listed in Table 6.1 for comparison with later
experimenters. They conclude that the line shapes and widths in the
Schumann-Runge bands can only be explained by predissociation. Schaeffer
and Miller (1971) perform some theoretical calculations, and conclude

that the 3ﬂu state crosses the 32& state on the inner limb, and that

the 'Wu crosses too low to be the second state in question. They do not

rule out the possibility that the sﬂu or SZ; states may cross near

The most complete papers on predissociation in the Schumann-Runge
bands of 0, are those by Julienne and Krauss (1975) and Julienne (1976) .
Julienne and Krauss deduced the position of the dominant repulsive curve by
a deperturbation of the level shift in the second vibrational difference.
Their use of ab initio results combined with information contained in
available experimental data, allowed them to calculate level shifts and
linewidths for each repulsive state. They stated that the level shift
provides better contact between theory and experiment than linewidths,
which were not available to enough accuracy. They decided that the dominant

state in the predissociation was the Sﬂu state, although the lﬂu and

3Wu states contribute slightly as well. Their predictions of linewidths
agreed well with experimental data for v' =2 to v' = 4, and for v' =12
(since the spin splitting of the rotational lines is resolvable here),

but agreement for v' =5 to v' =1l was poor. Their results are shown

in Figure 6.25. Also shown in Figure 6.24 are the deduced crossing points

for the potential curves. They conclude the levels v =0 and v' =1,
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and to a lesser extent v' = 2 are predissociated by the lﬂu state,

but that the dominating predissociation of the Sﬂu state causes the
linewidths to rise rapidly for v' = 2 to 4 . Here, their theory and
experiment agree well. The levels v' = 12 to 16 also give good agreement

between theory and experiment, showing that the sﬂu state predissociation

is substantially correct. The lﬂu and aﬁu states also contribute to

the linewidths above v' = 12, the 3ﬂu state being more important.

32; - 3ﬂu coupling should produce different widths for the three
different triplet components. The lack of agreement between the

theoretical and experimental linewidths for v' =5 to v' = 11 resulted
in a theoretical paper by Juliemne: (1976). He took account of the
interaction of the 23Z: state, which contributes to the widths of

v' > 6 levels. Julienne also examined whether it was possible for the
line-shapes to be non-Lorentzian, and concluded that slight departures could
occur for low J lines ( J < 3 ) near band origins, but that P and R
triplets could adequately be represented by non-interfering Lorentzian
profiles. The variation of width with J-value only affects the Fi and

F; levels, and is strongest for the low J values, and also depends

upon which states are interacting. He concludes that the J-variation is

quite complex, since there are several sources of possible variation.

+ 3
u >

1

Each of the four states °m_, °>Z and ' contribute to the

(i
u u
width, and the total width is simply the sum of the various contributions.

Julienne's results are also plotted in Figure 6.25.

6.8 The Present Results

The results of the present work confirm that the rotational lines

in the Schumann-Runge bands are predissociation broadened. The maximum of
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TABLE 6.3
Band Ackerman  Hudson Ackerman Julienne Julienne This Work
§ Biaume § Mahle et al & Krauss

0-0 1-0 0.001 1.00 0.1 0.06 -

1-0 1.2 0.002 1.10 0.39 0.45 0.07 = 0.006

2-0 1.2 0.34 1.20 0.25 0.27 0.50 * 0.013

3-0 2.15 1.25 2.20 1.26 1.30 1.12 = 0.03
4-0 3.8 3.30 3.70 3.00 2.93 2.95 = 0,10

5-0 2rS 2.20 2.30 1.19 1.33 1.87 = 0.05

6-0 1.85 1,70 1.90 1.12 1.80 1.57 £ 0.04

7-0 2.2 2.25 2,20 0.74 1.90 1.51 = 0.04

8-0 2.1 2.21 2.00 1.26 1.59 1.28 = 0.02

9-0 1.2 0.72 1.10 0.32 0.89 0.55 = 0.013
10-0 1.7 0.34 1.70 0.49 0.67 0.58 £ 0.012
11-0 2.0 1.80 1.70 0.88 1.30 0.77 + 0.016
12-0 1.0 0.48 1.00 0.49 ; 0.70 0.54 + 0.014
13-0 0.55 0.08 0.60 0.14 0.20 0.10 + 0.003
14-0 0.5 0.06 0.50 0.07 0.20 0.068 * 0.003
15-0 0.6 0.20 0.50 0.13 0.29 0.13 = 0.004
16-0 0.25 0.50 0,18 0.29 0.14 £ 0.014
17-0 0.40 0.50 0.42 * 0.006
18-0 0.40 0.50 0.20 £ 0.043
19-0 0.40 0.50

20-0

A Comparison of the previous experimental results for
rotational linewidths with those of this work.

* The error quoted is a statistical error. A more realistic

error would be * 0.05. (see Section 5.8)
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this predissociation broadening occurs at v' =4 with a subsidiary
maximum at v' = 11 , and a minimum at v' = 9 . Some predissociation
may occur for the 1-0 band, the non-Doppler component of the linewidth
being comparable to the pressure-broadened width, thus making an exact
evaluation of the width due to only predissociation very difficult. For
all bands above the 1-0 , predissociation definitely occurs, though in
varying amounts. The individual linewidth results are listed in Appendix

11 , while the band average linewidths are listed in Table 6.3.

Variations in predissociation linewidths along a vibrational band
occurred, but the variation was less than the error in most cases, soO no
attempt has been made to plot the variation in line-width with ‘rotational

number.

6.9 Comparison with Previous Experimental Work

The present results are compared with the results given by
Ackerman and Biaume (1970), Hudson and Mahle (1972) and Ackerman et al
(1970) in Table 6.3 and Figure 6.25. The results of this work are
consistently less than those obtained by the other experimenters, and are
more closely in agreement with those of Hudson and Mahle in the range 1-0
to 18-0 than with those of Ackerman et al (1970) or Ackerman and Biaume
(the exception being the 7-0, 8-0 and 11-0 bands). The reason for
this appears to be that Ackerman and Biaume have listed apparent half-widths,
and have thus not taken any effects due to instrument resolution and
triplet splitting into account. Similarly, Ackerman et al have obtained
linewidths which are based on those obtained previously by Ackerman and
Biaume (1970), but which have been modified by comparison with absorption
coefficients measured at the wavelengths of narrow silicon emission lines.

Their results obtained in this way are not markedly different from
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those of Ackerman and Biaume (1970). Failure to take instrument
resolution into account may explain why the linewidths so obtained are
too large in comparison to both Hudson and Mahle's results, and the
results of the present work, and why the apparent linewidths obtained for
the 14-0 to 18-0 bands are all 0.5 cm , a width comparable to the

instrument resolution.

6.10 Comparison with Theoretical Predictions

The theoretical predictions of Julienne and Krauss (1975) and the
more recent work of Julienne (1976) are compared with the present results
in Figure 6.25. Overall agreement in the range 1-0 to 18-0 1is quite
good for both theoretical works in comparison to the present results, the
positions of maxima and minima in linewidths corresponding closely.
Agreement with Julienne and Krauss is closer over the range 8-0 to 16-0,
while agreement with Julienne is better over the range 5-0 to 7-0 .

The two theoretical works differ because the interaction of the 32: state
with the B3Z; state is taken into account in the latter work. This has
meant an increase in the theoretically predicted widths in the range 5-0
to 11-0 , the region where the discrepancy between the previous

theoretical papers was largest,

The present result for the 1-0 band linewidth due to
predissociation is very uncertain, but both the previous experimental
measurements of Ackerman et al and the theoretical predictions of Julienne
appear to be too large. The value obtained by Hudson and Mahle for the

1-0 1linewidth is quite low, as is that of tlie present work.
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6.11 Conclusions

The theoretical predictions of Julienne and Krauss (1975) and
Julienne (1976) based on the deperturbation of the second vibrational
differences appear to be basically correct. The addition of the 232;
interaction had improved agreement between the present experimental results
and the theoretical predictions in the range 5-0 to 7-0 , but has made
the agreement worse in the range 8-0 to 16-0 , by increasing the
theoretically predicted widths there slightly. So the predictions of
Julienne and Krauss are correct, and although some of the 23Z; - B32;

interaction discussed must be added in, a better agreement could be obtained

if the interaction was weaker than predicted by Julienne.

The good agreement between this work and the predictions of
Julienne and Krauss suggests that their analysis is correct, and that
the curve crossings of the various molecular state shown in Figure 6.24
are fairly accurate. The exception may be that the intersection point of
the 3Wu state on the left-hand side of the 3Zé state be moved upwards

to a position above the lst vibrational level, in order to reduce the

predissociation there.
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CHAPTER 7
RESULTS — LYMAN- o REGION
7.1 Measurement of Expérimental Quantities

The measurement of temperature, wavelength and pressure for
the 0, Lyman-o. absorption coefficients was identical to the procedure
for the Schumann-Runge bands described in Chapter 5 (Section 5.1). One
major difference between the experimental cases was the much greater
care required to purify the oxygen before entry into the absorption cell
for the Lyman-o work. Because the cross-section of water vapour at
Lyman-a is so high compared to that for molecular oxygen (1.4 x 1077 en?
as compared to 1072° cm® for oxygen), even a small amount of water vapour
impurity will greatly affect the results. For this reason, additional
vapour traps were used. The medical grade oxygen was first passed through
two test tubes containing drying agents, and then through two test tubes
immersed in a cold slush mixture of carbon tetra-chloride and chloroform,
to condense out the water vapour impurity. The absorption cell was also
pumped continuously, when not in use, to remove impurities adhering to the

walls. Any exposure to the air for maintenance purposes meant a few

days continuous pumping of the cell to clean off surface impurities.

The Lyman-0 line emitted by the laboratory discharge source
consists of a doublet, due to self absorption by hydrogen removing the
central core of the emission line. The wavelengths of the peaks and
minimum are known to a high degree of accuracy, and the wavelength
calibration was checked against the minimum in the Lyman-o line at
1215.67A. The absolute errors for the wavelengths quoted in this chapter

are less than 0.06A4,

The pressures used for the measurements varied between 0.2 and
30 Torr, giving pressure errors of approximately 1% or less. Since the

cross-section is a smoothly varying one, the scan procedures used in the
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case of the Schumann-Runge bands were not used here. The chosen
wavelength was selected, the pressure stabilized at the desired value,

and a number of measurements of transmission T were made, again using

T o= Y/,

where Yy is the monitor detector signal ratio at the pressure of the

measurement, and g is the signal ratio at zero pressure., We have

P 273
T = Y/YO = €Xp ( = 760 kx T )
1 76 T
or k = fn (Y/YO) X P 2_73‘ = 4n (Y/YO) 1/X

where k is the absorption coefficient, x is the actual path length,

P is the pressure in torr. T is the temperature in °K , and X is

the path length normalised to S.T.P.  The measurement of transmission T
at various values of pressure allowed the calculation of the pressure
dependence of the cross-section. Transmission measurements were repeated
at wavelength intervals of 0.2A , and also at temperatures of 294°K and
82°K using respectively room temperature, a dry ice-methanol slush and

liquid air in the cell coolant jacket.
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2 The Statistical Error in Transmission

The error in the absorption coefficient is related to the error
in transmission, &t , and can be expressed as

2

(6K)? = (%‘%) 5K+ (%1;-) ST (7.1)

where &k is the error in the absorption coefficient, &X is the error

in the path length, and %;— and %%— are the rates of change of

absorption coefficient k with path length and transmission respectively.

Equation 7.1 becomes

2 B 2 6)(2 12 5’[2
) = Gnn (F) o+ (g) (=) (7.2)
and, since §§- is very small, this term can be neglected. The above
equation can be written as
1 ¢t
sk = T (7.3)
Y
where g%- = V/; ° IM; h{
o Yo
is obtained from equation 5.17. The relative error §%— can be written
as
1+ y h
I B m Dk, b (7.4)
k X MO Yo My nt ’

Setting M = M0 , that is putting the number of counts used for Yy and

Yo equal to each other, equation 7.4 becomes
Sk 1 v/ 1+ 7T ‘ 1
|| = | = Vv2+ (55 5z (7.5)
v/ MO o}

A plot of the above is shown in Figure 7.1 for fixed Mo for various

values of Yo 3 T is varied. The minimum error in the value of
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absorption coefficient k for fixed counting time and fixed Y, oeccurs

for transmission values near T = 0.1. This meant the experiment would

have achieved optimum performance if this condition could have been met.
It was not always possible however, due to the fixed cell-length, and

the limitations of the Baratron gauge used for the experiment restricting
the pressure to 30 torr or below. Most of the measurements carried out
were done with transmission values of close to 0.5 , and the error does

not vary markedly for values of T below this.

7.3 The Previous Experimental Work

The absorption coefficient of molecular oxygen at Lyman-a is
important for two main reasons. Since Lyman-o is one of the most intense
emission lines in the solar spectrum, it has an important role to play in
dissociation processes in the atmosphere, in particular the dissociation
of molecular oxygen in the height range 75-105 km, to form atomic oxygen.
Accurate measurements of the absorption coefficient are therefore
necessary to determine to what height significant amounts of Lyman-o
radiation will penetrate. Many measurements of the molecular oxygen
density in the atmosphere have been made by observing the absorption of
solar Lyman-a as it passes down through the atmosphere. A discrepancy
between these measurements and those made by other techniques indicated
that the laboratory derived absorption coefficients were in error, and
it was in an attempt to resolve these discrepancies that the present

measurements were taken.

The first laboratory measurements of the absorption cross-section

of molecular oxygen at Lyman-o were made by Watanabe (1958) and Metzger

1

and Cook (1963), and they obtained 0.27 and 0.28 cm respectively at

A = 1215.7A. Watanabe obtained a number of other values at nearby wave-
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lengths, and his results are in good agreement with the present work.
Watanabe also obtained a measure of the pressure dependence of the
absorption coefficient at Lyman-a. Ogawa (1968) obtained values of the
absorption coefficient at 0.2A intervals near 1215.7A , and attempted
to measure the pressure dependence of the coefficient, but due to the

low pressures used in his experiment was unable to find a measurable
pressure dependence. However, the more recent results of Dose et al
(1975) and Ogawa and Yamawaki (1970) confirm the pressure dependence of
the absorption coefficient. These laboratory measurements have been used

to analyse the extinction of Lyman-a radiation in the atmosphere.

Early rocket measurements, such as those of Carver et al (1964),
were all analysed by assuming a constant cross-section for molecular
oxygen, in particular the one obtained by Watanabe of 1.0 x 107%° cm?
(0.27 cm™'). Hall (1972) showed that the variation in the molecular oxygen
cross-section over the width of the Lyman-o line, which coincides with a
deep minimum in the cross-section (see Figure 7.2), has a significant
effect on the analysis of results of the rocket observations. Using the
measurements of Ogawa (1968), he showed that there is some 'hardening"
of the radiation as it passes through the atmosphere, the lower wavelength
limb being absorbed more strongly than the right limb, and consequently
the effective absorption coefficient will be height dependent. Smith and
Miller (1974) came to the conclusion that the laboratory derived
absorption cross-section for molecular oxygen was either in error, or did
not apply to atmospheric measurements because of a marked temperature
dependence. They based this conclusion on the fact that the molecular
oxygen densities derived from the Lyman-o extinction method were in
disagreement with those madé using three other independent techniques;

grenades, falling sphere and Pitot tube, while these three methods were in

agreement.
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Thrane and Johannessen (1974), with their measurements of
the Lyman-o extinction in the Arctic mesosphere, also came to the
conclusion that the laboratory derived measurements were inapplicable to
atmospheric results. Weeks (1975) ascribed the major uncertainties in
the extinction results to uncertainty in the behaviour of the 02 cross-
section with temperature, and to over-estimates of the densities due to
absorption by nitric oxide and water vapour. Later work by Prinz and
Brueckner (1977) obtained cross-section versus wavelength measurements from
rocket observations, and had values agreeing well with Ogawa in the wave-
length range 1215 - 1217.8A , but they also had better agreement with the
values of Watanabe on the short wavelength side of Lyman-o down to

A = 1214.4A (see Figure 7.3).



136.

7.4 Results and Discussion

7.4.1 Pressure Dependence

Watanabe (1958) and Ogawa and Yamawaki (1970) had obtained
values for the pressure dependence of the cross-section of molecular
oxygen at Lyman-o at high pressures (20-500 Torr) of about + 2 x 10723 em’® /
torr. Values of this order would explain why Ogawa (1968) found no
noticeable effect of pressure dependence in the pressure range he used for
his experiment (1.2 - 6.3 torr), the differences being too slight to show
through his experimental error. The present measurements, taken at room
temperature, over the pressure range 5-30 torr, and at wavelengths of
1215.63A and 1215.72R corresponding to the peaks of the Lyman-o line
emitted by the discharge lamp used in these experiments, are plotted in
Figure 7.4. As shown in Table 7.1, these results are in satisfactory
agreement with those of previous investigators, although their measurements
were done at higher pressure. This indicates that the linear dependence
of cross-section on pressure extends down to pressures of about 5 torr. The
error bars on the points plotted decrease because a large part of the error
for each point is a pressure error, which decreases as the pressure
increases. There is no reason to believe that the pressure dependence is a
strong function of wavelength near 1216A, and the pressure dependence
shown in Figure 7.4 has been used to correct all the measured room temperature
cross-sections to zero pressure. Since 30 Torr was the maximum pressure
used, these corrections were never more than 5%, and over most of the
range were less than 2%. The uncertainties in making a correction to
zero pressure make a negligible contribution to the overall error. There

is a small absolute error of approximately 2% due to uncertainties in the
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TABLE 7.1

PRESSURE DEPENDENCE OF MOLECULAR OXYGEN PHOTO-

ABSORPTION CROSS SECTIONS NEAR LYMAN-O..

do

Investigator b x1023 (cmz/torr) Wavelength (AY | Pressure Range (torr)
This work 2.14 + 0.33 1215.72 5 - 30
This work 2.15 t 0,37 1215.63 5 -~ 30
Ogawa and Yamawaki 1.60 1215.72 10 = 200
[1970] 1.56 1215.63 10 - 200

. . 2.5 t 1.5 1.215.73
Dose et al. [1975] 3.0 + 0.8 1215.70
Watanabe et al. 1.9 1215.7 20 - 500
[1958]
Shardanand [1967] 1.7 1215.7 25 - 400
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measurement of cell temperature, cell length and pressure. Random error

in the results is due predominantly to counting statistics of 1-3%.

7.4.2 Temperature Dependence

Room temperature cross-sections measured in this work are
displayed in Figure 7.5 versus wavelength at 0.2A intervals, and the
values are given in Table 7.2, The previous measurements of Watanabe
(1958), Ogawa (1968) and Dose et al (1975) are also shown in Figure 7.5,
and as can be seen, all the results are in good agreement near the minimum
in the absorption cross-section at 1216.0A . At shorter wavelengths, the
present results lie significantly below those of Ogawa, and the
measurements of Watanabe, though more widely separated, are in better
agreement with the present ones. The present results also lie below those
of Ogawa on the long wavelength side of the minimum, and the results of
Dose et al (1975) above 12182 have been calculated from their analytical

curve, and are also above those of this work.

Figure 7.6 shows the variation of the absorption cross-sections
with temperature in the wavelength range 1214.0 to 1218.6A . Each set
of points represents a variation with wavelength at one of the
experimental temperatures 294 °K, 195 °K or 82 °K. The temperature
dependence is significant, and varies with wavelength, the greatest
dependence being on the long wavelength side of the minimum, which

1 3
includes high-order rotational lines (J=25 to 33) of the « Z: - Xz

g
band of molecular oxygen [Ogawa and Yamawaki (1969), Alberti et al (1967) and

Dose et al (1957)]. The minimum of the absorption cross-section at 294 °K
is at 1216.0A, but has shifted to 1216.4A at 82 °K, while at the same

time decreasing to 60% of its room temperature value. The Lyman-o profile
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TABLE 7.2

MEASURED MOLECULAR OXYGEN PHOTOABSORPTION COEFFICIENTS AS

A FUNCTION OF TEMPERATURE AND WAVELENGTH NEAR LYMAN-Q.

The errors listed are statistical errors; there is an
additional error of + 2% in the absolate calibration
arising from uncertainties in pressure, temperature and
cell length.

wavelength (A)| 0x10%°(cm?),=294"K |0x10?° (cm?),T=195°K ox10%°% (cm’) , T=82°K

1214.0 5.58 + 0.11 5.69 + 0.15 5.50 + 0.15
1214.2 4.50 + 0.11 4.57 + 0.15 4.76 + 0.11
1214.4 3.90 + 0.11 3.83 + 0.07 3.64 + 0.07
1214.6 3.19 % 0.07 3.27 + 0.07 3.23 £ 0.07
1214.8 2.49 + 0.04 2.60 t 0.07 2.53 + 0.07
1215.0 1.96 + 0.03 2.08 + 0.07 1.82 + 0.04
1215.2 1.50 + 0.04 1.42 + 0.05 1.35 + 0.03
1215.4 1.22 + 0.02 1.25 + 0.03 1.06 + 0.03
1215.6 1.06 + 0.02 0.92 + 0.03 0.90 * 0.03
1215.63 1.052% 0,011

1215.72 0.959% 0.007

1215.8 0.933% 0.015 0.78 + 0.04 0.73 + 0.03
1216.0 0.877% 0.007 0.66 *+ 0.03 0.67 * 0.02
1216.2 0.900% 0.015 0.68 + 0.04 0.56 + 0.03
1216.4 0.929% 0.015 0.79 + 0.03 0.53 % 0.03
1216.6 1.02 + 0.02 0.77 + 0.05 0.60 t 0.03
1216.8 1.28 + 0.02 0.96 * 0.04 0.67 + 0.03
1217.0 1.46 t 0.02 1.08 *+ 0.05 0.82 + 0.03
1217.2 1.74 + 0.02 1.37 + 0.04 0.96 £ 0.04
1217.4 1.94 t 0.05 1.64 * 0.06 1.17 £ 0.07
1217.6 2.24 + 0.04 1.90 + 0.05 1.43 + 0.07
1217.8 2.62 * 0.05 2.20 + 0.06 1.51 * 0.07
1218.0 3.03 + 0.02 2.44 + 0.10 1.90 £ 0.04
1218.2 3.46 t 0.11 2.83 + 0.11 2.38 * 0.05
1218.4 3.83 + 0.11 3.16 % G.07 2.79 * 0.07
1218.6 4.35 t 0.07 3.72 + 0.07 3.31 + 0.07
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in Figure 7.5 is based on the work of Purcell and Tousey (1960).

7.5 Absorption of Solar Lyman-o Radiation in the Atmosphere

Figure 7.5 clearly shows that the molecular oxygen absorption
cross-section varies significantly over the width of the Lyman-o profile.
The exact amount of this variation will depend upon the temperature. The
temperature of the atmosphere varies with height (see Figure 7.7), so
laboratory measurements at room temperature can be expected to yield
incorrect results, when applied to the atmosphere. The following
calculation illustrates the importance of taking the temperature
dependence into account, for example, the case of a rocket probe carrying
a Lyman-a detector. Some assumptions necessary for the calculation are
that the detector has a flat response over the width of the Lyman-a line,
that the detector has a negligible response to radiation of other wave-
lengths (not always a safe assumption), and that absorption by other species
in the wavelength region is either negligible or correctable [Carver (1964),
Hall (1972)]. Provided the solar zenith angle is not too large ( X < 75%),
then the attenuation of the solar flux J over a height interval d is
given by exp( - ond sec X ) where 0 is the effective absorption cross-
section and n 1is the molecular oxygen number density. A knowledge of the

detector current allows n at altitude =z to be determined as follows

1 1 d4J
n(z) 0(z) sec x J dz (7.6)
The effective absorption cross-section at altitude z 1is given by
_ o(A) ¢ (A, z) dA

I o(A,z) dA

where o(\) is the oxygen absorption cross-section at wavelength A,
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¢ (A,z) is the Lyman-o flux at altitude z , and the integration extends
over the full width of the Lyman-o line. If N(z) 1s the total column

density of oxygen molecules above altitude z , then

¢ (A, z) = ¢ (A @ exp[ -N(z) o (3) ] (7.8)

where ¢ (A, ©) is the solar flux at Lyman-o incident on the atmosphere.

It should be noted that the shape of the Lyman-o line, ¢ (A, z) , changes
as the radiation penetrates to lower altitudes =z (the radiation 'hardens')
owing to the variation of o(A) over the width of the line. o(z) has
been evaluated from (7.7) using the cross-section measurements of Table 7.2.
The results are expressed versus the extinction j(z), of the integrated
Lyman-a flux, in the atmosphere, where

I o(A, z) dA
i = 3 -

(7.9)

I d(A,®) dA

Figure 7.8 and Table 7.3 show effective molecular photoabsorption cross-
sections 0(z) calculated as functions of the integrated Lyman-a extinction
j(z) . These effective cross-sections have been calculated for

atmospheric temperatures of 82, 195 and 294 °K, together with the

solar Lyman-o profile of Purcell and Tousey (1960). To show that the
calculated effective cross-sections are not very sensitive to the Lyman-o
line profile used, the results using Quessette's profile (1970) are compared,
and can be seen to be not very different from that of Purcell and Tousey
(Figure 7.8). Also shown for comparison, is the effective molecular

oxygen cross-section calculated using the Ogawa (1968) cross-section values,
and these are identical to those derived by Hall (1972). Figure 7.8 shows
the present results lead to effective cross-sections differing

significantly from those based on Ogawa's room temperature measurements.



TABLE 7.3

EFFECTIVE MOLECULAR OXYGEN PHOTOABSORPTION CROSS SECTTIONS
E(z) CALCULATED AS FUNCTIONS OF THE INTEGRATED LYMAN-0

EXTINCTION j(z), FOR VARIOUS TEMPERATURES AND SOLAR LYMAN-(

142,

PROFILES.
j(z) o(z)x102° (cm?)
burosst i Toubny (1300 |dueasette (1570
T = 294°K T = 195°K T = 82°K T = 195°K
1 1.10 0.99 0.91 L.04
0.9 1.09 0.98 0.91 1.02
0.8 1.08 0.96 0.90 1.00
0.7 1.08 0.95 0.89 0.99
0.6 1.07 0.94 0.88 0.97
0.5 1.06 0.93 0.87 0.95
0.4 1.06 0.91 0.85 0.92
0.3 1.05 0.89 0.84 0.90
0.2 1.03 0.86 0.82 0.86
0.1 1.01 0.83 0.79 0.82
0.05 1.00 0.80 0.77 0.79
0.01 0.97 0.76 0.72 0.74
0.001 0.95 0.72 0.69 0.71
0 0.88 0.66 0.53 0.66




14

13

12

06

05

] i Ll i L3 i L} T L L]

SOLAR L-a PROFILES USED
P = PURCELL AND TOUSEY [1960]
Q= QUESSETTE [1970]

OGAWA [1868]P -

THIS
WORK

W =

— 294°K,P]
__L-195°K,Q

SHABED AREA-
RANGE OF VALUES
. OF SMITH AND MILLER
[1974 )

| 1 1 1 1 1 | | | |

0 01 02 03 04 05 06 07 08 08 10

jlz)

Fig 7.8 Effective molecular oxygen photoabsorption cross-

section for the integrated solar Lyman-a line as functions of

the integrated Lyman-o extinction. Effective cross-sections
calculated by using the cross-sections measured by Ogawa (1968)
are also shown for comparison.
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The empirical effective cross-sections deduced by Smith and
Miller (1974) in their attempt to bring their atmospheric molecular
oxygen concentrations derived from the Lyman-a extinction measurements
into agreement with those obtained using the other three techniques are
also shown in Figure 7.7. The agreement between their range of values
(the shaded area) and the effective cross-section derived using the
present results and a temperature of 195 °K is quite reasonable, and is
definitely better than between this work at 294 °K and Smith and Miller,

or Ogawa's room temperature measurements, and Smith and Miller.

7.6 Conclusion

The conclusion to be drawn from these results is that the
assumption of Smith and Miller that room temperature absorption cross-
sections are inappropriate for application to atmospheric transmission
problems is basically correct, since it resolves almost all of the
discrepancy between the molecular oxygen densities derived by different
methods. It is essential to take account of temperature and wavelength
dependence of the molecular oxygen absorption cross-section if satisfactory
oxygen densities are to be deduced from the Lyman-o extinction measurements
by rockets in the atmosphere. The marked effect of temperature on the
long wavelength side of the Lyman-a window seems to be due to the
rotational lines known to be there, the populations of states of high
rotational number depending critically upon temperature. Rotational lines
of the ahE:— X*L” system exist at wavelengths near Lyman-o, and while
none were observed by this experiment below 1218A , some of the lines
above 1220RA were observed, due to their larger strengths. The rotational
number varies between 21 and 33 between 1218A and 1214A , and so a

temperature change would be expected to have a significant effect, since
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levels with such high rotational numbers would be sparsely populated,

and therefore subject to large variations with temperature. The variation
in absorption cross-section with temperature decreased with decreasing
wavelength, and this could be explained by a decrease in population of

rotational levels as the temperature decreased.
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CHAPTER 8

Application of the Results

8.1 Theoretical Absorption Models

Attempts to build theoretical models of absorption of incident
solar radiation at different heights in the atmosphere in different
wavelength regions require a knowledge of the real absorption behaviour
of the gases under discussion. This is especially difficult for band
structure, where the fine structure of the bands is not directly
resolvable by the present measuring instruments, as is the case with the
Schumann-Runge bands. The present results provide the most accurate
measurements of parameters required in an analysis of transmission of
light through these bands, and as such provide the 'real' absorptions and
transmissions to which all simplified or approximate absorption models

should tend.

Theoretical absorption models are basically necessary because of
the breakdown of Beer's Law, due to structure present in the absorption
coefficient over the wavelength range of interest (discussed more fully
in Chapter 3). In order for Beer's Law to be valid over the range of the
Schumann-Runge bands, a very narrow wavelength interval would be required,
and therefore at least 10,000 data points are necessary at any given
temperature to adequately describe these bands. To simplify the
calculations, various band models have been devised. Some of the band
models in Goody (1964) for the calculation of transmission in the infra-
red region are useful, in that they provide a simple expression for the
calculation of absorption or transmission as a function of the column

density or optical depth,
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Brinkman (1971), and Turco (1975) have calculated atmospheric
photodissociation rates using the absorption cross-section measurements
of Blake et al (1966) as well as the square root law associated with the
absorption by the wings of a Lorentzian line. Blake et al (1966) showed
that Beer's Law was not valid for the Schumann-Runge bands for wavelength

intervals of 1 to 2A , but that a square root law of the form

T = exp(-CVN) (8.1)

where T is the transmission, and N is the number density of the

absorbing species is a valid approximation.

Fang et al (1974) produced opacity distribution functions for
various wavenumber ranges, with different sets of coefficients for
different temperatures. Their method requires the numerical integration
of the functions to obtain the transmission through an oxygen column.
Several models have used constructions of detailed absorption cross-sections
for the Schumann-Runge band region. The cross-section at any wavelength
is computed by using the molecular constants to sum the contributions at
that wavelength from all nearby absorption lines. A contributioﬁ due to
the underlying continuum must also be added in. Using a resolution of
0.5 cm™' , Kockarts (1971) has calculated photodissociation rates by

integrating a theoretical cross-section.

Hudson and Mahle (1972) have calculated average transmissions
for wavelength intervals between successive v' - 0 band heads.
Kockarts (1976) has computed coefficients for the mean transmission as a
function of absorber thickness for intervals covering a whole band,

500 cm™' , and 10A . The transmission for each interval is directly
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described by a function with eight coefficients. Blake (1978) modified
the random band model, and expresses the transmission versus optical path

or number density as a function of B = §/2md , the ratio of line spacing

to linewidth, and X = 5/3 , the mean line strength to average line spacing.

That is, T , the mean transmission is

-~ exp,-XN

T = o )
(\/ = ) (8.2)

and for B << 1 the above expression tends to Beer's Law, and for @

large, it tends to equation 8.1.

In order to apply any of the theoretical models to the problems
associated with the atmosphere, such as photodissociation rates of
various molecular species or transmission of radiation versus height in
the atmosphere, knowledge of the number densities of the numerous
atmospheric gases is required. Chapter 7 has dealt with the problem of
determination of 02 number density by using Lyman-o absorption
measurements. Most of the more recent models take some account of the
temperature profile of the atmosphere for their calculations. Use of the
models to give photodissociation rates, allows calculations on atmospheric

photochemistry to be performed (see Blake and Carver (1977)).

8.2 Atmospheric Evolution : A Statement of the Problem

Knowledge of the photodissociation rates and photochemistry of
the present atmosphere allows improved models of past atmospheres to be
devised. It is generally accepted that the present atmosphere is a
secondary atmosphere, and the earth's primary atmosphere consisting of the
gases hydrogen, helium, neon, argon 36, krypton and xenon was completely
lost. This is inferred from the deficiency of all these gaseous elements

on earth relative to the cosmic abundances of these same elements. The
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question of how the earth went from a state of no atmosphere to one

consisting of nitrogen and oxygen is still very much under investigation.

The atmosphere and oceans were produced by discharge of volcanic
gases over a long period of time. Amounts of various compounds and vapours
produced by efflux from volcanoes have been measured from Hawaiian
volcano eruptions. It is found that oxygen in its free state does not
exist in volcanic gases. Leaving aside the problem of the growth of
nitrogen in the earth's atmosphere, which is not as simple as the 1-38%
amount present in volcanic effluent might suggest, we will concentrate on
the growth in the amount of oxygen in the atmosphere. The transition
from this primitive (anoxygenic) reducing atmosphere of volcanic gases to
the present oxidizing atmosphere should be derivable from predictable

sources and known reactions and with a definite timetable.

The origin of the oxygen in the atmosphere has been suggested
as due to the photodissociation of water vapour by ultraviolet radiation.
Berkner and Marshall (1965) were amongst the first to look into this

problem.

The photodissociation of water vapour to produce oxygen is
limited by the very oxygen it produces. This was first pointed out by
Urey (1959), and is due to the shielding effect of the oxygen produced.
That is, although incident radiation may at first dissociate the water
vapour, once enough oxygen is produced it absorbs the radiation and no
more water vapour is dissociated to form oxygen. The oxygen concentration
possible by this method is therefore limited. Oxygen is distributed
exponentially above the surface, while water vapour falls to very low
concentrations above the base of the stratosphere due to the stratospheric

cold trap. That is, the content of water vapour in the atmosphere is
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limited to regions below the super-cooling temperature limit, -40 °c ,
which occurs at a height of approximately 10 kilometres. The content of
water vapour above this diminishes rapidly and the stratospheric cold trap
prevents significant convective circulation upwards above 10 kms. This
means that the oxygen produced is mostly above the water vapour and thus

can more effectively shield it.

Berkner and Marshall thus reach the conclusion that a
concentration of oxygen in the primitive atmosphere greater than 10'3P.A.L.*
would be impossible due to the "Urey self-regulating effect'". As well as
this, strong photodissociation of 0, and production of 0 and 03 ,
which are very reactive, close to the surface where they will react quickly
to form surface oxides, giving a large loss rate further reduces the 02
level. Therefore water vapour dissociation cannot explain the oxygen level

of the present atmosphere and was a minor factor in the past.

Berkner and Marshall then ask the question of whether it is
possible for dissociation of water vapour to have supplied all the oxygen
required to oxidize the surface layers of the earth. They draw the
conclusion that the oxides of the crust could have been produced by active
species of oxygen dissociated photochemically from H»0 in an oxygen

atmosphere less than 10> of the present atmospheric level.

8.2.1 Photosynthesis

Berkner and Marshall then put forward the argument that oxygen
in the atmosphere is due to photosynthesis. Photosynthesis seems to have
begun about 2.7 billion years ago, and would be a feasible method of
producing the large amounts of oxygen required, and of maintaining the
oxygen balance. To give some idea of the rate at which oxygen can be
produced by photosynthesis, the replacement times of various gases are as

follows. Carbon dioxide is totally consumed and replaced in 300-400 years,

* Present Atmospheric Level.
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oxygen in a little over 2000 years, and the entire waters of the ocean
are passed through the biological process in about 2 million years. So

photosynthesis can very quickly supply oxygen to the system.

Berkner and Marshall conclude that the oxygen density in the
past atmosphere has been steadily rising, there being two sharp increases,
called by them the first and second critical levels. These critical
levels coincide with the Cambrian period, and the Upper Silurian period
of geological time. The increase in oxygen density at these times was
apparently due to the increase in the amount of space available for life,
the oceans supposedly becoming a shielded habitat during the Cambrian
period, and the land safe from damaging ultraviolet light during the Upper
Silurian period.

A serious correction which must be applied, and one that has been
overlooked by Berkner and Marshall is the dependence of the effective
absorption coefficient on path length. This correction is very important
for the Schumann-Runge bands, the individual rotational lines of which are
much narrower than the instrumental resolution. These lines have natural
(Lorentz) widths, and can be considered as purely Lorentzian when
investigated with an instrumental resolution of about 2A , as was the
case with the results used by Berkner and Marshall. Under such conditions
the "effective absorption coefficient" for a single line varies very
nearly as the inverse square root of the number density N (equation 8.1).
Blake et al (1966) have shown that in the vicinity of 1800A the
absorption coefficients within the Schumann-Runge bands obey the simple

square root scaling law for a single line.

Brinkman (1969) does a calculation using the incident solar flux
and calculates transmissions and absorptions versus wavelength. Since

nearly every absorption by H»0 below 2000A results in dissociation,
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the curve for H,0 can be taken as the photodissociation rate.
Appreciable water vapour dissociation occurs over a wide altitude range,
and about half is produced by photons in the narrow wavelength range
1775-1830A . CO, absorption occurs somewhat lower in the atmosphere
and at longer wavelengths. Ozone absorbs most strongly at the longest

wavelengths and quite low in the atmosphere.

Only the wavelength range 1750-2000A has been considered
because radiation of longer wavelengths does not dissociate water vapour
and radiation of shorter wavelengths is absorbed by atomic and molecular
oxygen and nitrogen before it can reach the H,0 . Even the intense
Lyman-o. line of the sun cannot penetrate into the atmosphere far enough,
and is appreciably absorbed above 80 kilometres. To neglect the
contribution to dissociation of Lyman-a will be to slightly underestimate

the 0, production rate by this method.

Brinkman concludes that the level of oxygen in the past may have
reached an appreciable fraction of the present amount in the absence of
-biological activity, and quotes a value of 0, density greater than 0.27

P.A.L. (present atmosphere level) over 99% of geologic time.

Two things which could have very major effects on the validity of
the result are that the H»0 mixing ratio in the past may have been
different, and the escape efficiency of hydrogen from the atmosphere is
unknown. There is a net production of oxygen from H,0 only if the
hydrogen can be removed. The mixing ratio could have been less than now

if the '"cold trap" temperature at the tropopause were lower.

As for the escape of hydrogen, the problem is largely unsolved.

Knowledge of Hz0, , HO, and other such species is very poor, and the
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reaction rates and mechanisms of the dissociation problem are complex.
Brinkmann can only say that the possibility that a large fraction of

the liberated H atoms survive long enough to escape cannot be ruled
out. The escape rate is proportional to hydrogen density at the critical
level (which occurs at about 500 kms. in the earth's atmosphere). The
temperature at the critical level changes appreciably during the day.
Clarification of the problem awaits reliable measurements of the hydrogen

atom density.

Brinkmann concludes by saying that the calculations of Berkner
and Marshall are in error because (1) they assume the photodissociation
of H,0 becomes inefficient as an oxygen producing mechanism when the
fraction of photons absorbed by 02 becomes larger than the fraction
absorbed by H20 , and (2) they have not allowed for the path length

dependence of the oxygen absorption coefficient.

8.2.2 The Problem of Hydrogen Loss

The present view of the problem of oxygen evolution is that
neither Berkner and Marshall, nor Brinkmann are totally correct. While
Brinkmann's work is an improvement on that of Berkner and Marshall, it
too has its inconsistencies, the most obvious being that of the hydrogen
escape factor. Brinkmann assumed that half of the hydrogen produced by
the dissociation of water vapour escapes from the earth's atmosphere.
This estimate is much too high, as it does not take into account the

recombination of the hydrogen with other reactive species e.g.

H + OH —= Hp0" or Hy + 0 —H + OH .

Other reactions are also possible. It is only when hydrogen escapes from

the atmosphere, and is therefore removed from the system, that there can
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be a net production of oxygen. To escape from the atmosphere, most of

the hydrogen must diffuse from a height of 30 kms, where it is formed to

a height of about 500 kms, near the exobase from which it can escape.

This diffusion process allows many opportunities to recombine and react
with other species. Once the hydrogen reaches the critical level (the
level where the mean free path equals the scale height) in the exosphere,
escape is possible. A better estimate of the escape factor might be 1/10th

or less.

Molecules or atoms can escape from the earth's atmosphere if
their velocity component vertical to the earth's surface is greater than
the escape velocity. Usually, atmospheric molecules collide with other
molecules before they can escape. It is only in the exosphere where the
collision frequency is low and the mean free path long that the possibility
of escape becomes appreciable. The rate of loss of the species is
determined by the velocity distribution, which is basically Maxwellian.
Brinkmann (1971) proposed a modification to the Maxwellian distribution due
to the depletion of the high energy tail, that is due to depletion of
the faster atoms and the finite time required for collisions to replace
the high energy component. He proposed the escape flux be multiplied by
a factor of 0.73 to allow for the depletion. Most of the factors
required in the calculation of the escape flux are well known, but two
are difficult to determine. The number density of the escaping atoms at
the exobase, and the temperature of the gas at the exobase are these
critical quantities. The temperature term is very important since it
occurs in the calculations as an exponential term. The exobase temperature
is very variable, the range of possible values being 600 °K - 2500 °K .

An average temperature of 1500 °K is usually assumed.
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Values of the escape flux have been obtained from observations
of Lyman-a dayglow (Maier and Mange (1973)). Tinsley i969) puts an upper
limit on the hydrogen escape flux, an order of magnitude lower than that
assigned by Brinkmann (1969). He (Tinsley) calculates that enough
hydrogen could have been lost to give an amount of oxygen equivalent to
75% of the present atmosphere, in agreement with a calculation by Hunter
and Strobel (1974) and Hunton (1973) who calculate a loss of hydrogen
sufficient to give an amount of 02 half that at present in the

atmosphere.

Meadows (1972) reviews the stability of the earth's atmosphere,
and compares the atmospheres of the Earth, Venus and Mars. He concludes
that a consistent model of their evolution can be obtained on the basis
of degassing from the solid planet. Ratner and Walker (1972) use a simple
photochemical model to evaluate ozone densities in atmospheres similar
to the present one, but containing less oxygen. They conclude that very
little atmospheric oxygen ( 107> PAL) 1is required to produce a biologically
effective ozone screen. Blake and Carver (1977) obtain results in

agreement with Ratner and Walker.

The present view is therefore that while Berkner and Marshall's
values are too low, Brinkmann's value is too high, and an intermediate
value would be the most likely. Before the theories can be accepted with
confidence, a number of quantities such as the hydrogen escape rate,
accurate number densities of present atmospheric molecular species and
better estimates of the amount of free oxygen in past atmospheres (from

oxide layers of ancient rocks) are required.
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8.3 Suggestions for Future Work

The present experimental system has enabled measurements of
good accuracy to be made for oscillator strengths and linewidths in the
Schumann -Runge bands of oxygen for the range of bands 3-0 to 15-0. In
order to measure these quantities for the 0-0 to 2-0 bands, a much
longer absorption cell is required, to circumvent the problem of pressure
broadening encountered in this work. If the pressure in the present
experimental system could be increased to 10 atmospheres or more, then
enough absorption would take place to allow reliable measurements in
these low bands, but the pressure broadened width would generally exceed
the predicted predissociation width, and would thus effectively mask the
required values. An increase in the length of the cell used would allow
measurements to be made in a pressure range where pressure broadening

was relatively unimportant.

A longer cell would also enable measurements of the Herzberg
continuum to be made, and the effects of pressure and temperature on the
absorption cross-section could be studied. Knowledge of these effects
would give some insight into the mechanism responsible for the absorption

(and allow a determination of whether 0, dimers actually exist).

A shorter cell would enable pressure measurements to be made in
the most sensitive region of the present pressure gauge, and thus allow
more accurage measurements of oscillator strengths and linewidths for the
bands 16-0 to 20-0 . Revised Honl-London factors and splitting
parameters must first be computed due to the perturbations in these bands,

to enable the present programme to analyse the results.
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A shorter cell would also allow measurements of the 0 Schumann-
Runge continuum cross-section, and the temperature dependence of these
cross-sections. It is also proposed to investigate the oxygen absorption
coefficients at various transmission windows between Lyman-o and the
Schumann -Runge continuum, and to make high resolution studies of the

structure in this region,
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APPENDIX 1

The Independence of Equivalent Width with respect to Resolution

The equivalent width of an absorption line is given by
W = [ A(CA) dx
where A()A) 1is the actual absorption at wavelength A . The observed

absorption at wavelength X , C(A) is given by the convolution of A(A)

with the instrument resolution function g(A) , that is by

[g(% - NIDAX)AX

[g(l— XN I(X)dX

cy = (1)

where I()A) is the intensity of the incident light at wavelength A .
If I(A) is a continuum, and therefore independent of wavelength, then
equation 1 reduces to

C(\) = Jg(k - HAX)axX

The apparent observed equivalent width W' 1is given by

W JC(A)dX

or W?

Jc Jg(x - DA dX)dX (2)

Since it is true that

Jg(x - Xdx = [g(% - XdX = 1.0
equation 2 reduces to

W = JA(X)dX Jg(x - N)da
which reduces further to

W' = fA(X)dX =W

irrespective of g(A - ),
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APPENDIX 2

The Integrated Absorption Coefficient Under a Doppler Line

The area beneath the Doppler line shown below can be calculated
as follows. The line profile is given by

A=A, 2
— ) 41n2) (3.7 )

)
D

k() = kp exp( - (

k(\)

where k(A) is kp/2 when A - AO = aD/Z , and o is the full width

at half maximum. The error function erf(x), gives the relation
2 —
re'tdt VT (5.34 )
-0

and putting 41“3(A - Ao)z = t* into equation 5.34 , it follows that
o .

D

A - Ao 2
kp Iiwexp( - 41n2(-—7§———) )dAa

D

f k(A)dA

(the term Ik(l)dk has been used repeatedly in the text as a convenient

and simple way to describe a term which, if written in full, would be

r KO- A A - A) ) .
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41n2 2 _ L2 41n2 t B d
Now = (r - )\o) = t° reduces to \/—H—oc R S W an
D D 6]
differentiating both sides with respect to A and t gives dA = e
v41n2/ocD2
0 A - A 2 (6} 2 2
o ~ b -t
so I_wkp exp( - 4In2( T ) )dA = Eokp \/4——1n2 e = dt
or [ k(A)dA = kp OLD\/_’!T— (using equation 5.34 ).

2+ 1n2



A4,

APPENDIX 3

The Integrated Absorption Coefficient Under a Lorentz Line

The area beneath the Lorentz line shown below can be calculated

as follows. The line profile is given by
1

1+ (

( 3.8 )

kO = kg AT
N

k(A)

where A - Ao = aN/Z sets k(A) = kp/2 , and o, is full width at

half maximum. A well known integral is

1 = Sal
. T__;___i_z_.dx = arctan x ] =T
00
A=A

0
aN/Z )

o
and using the substitution x* = ( and Eﬁdx = dA (obtained

A=A,

0 ) .
) ), 1in equation 3.8 , and

by differentiating *x* = (
o /2

integrating we get

k drx = k =—d
o P A - >\o 2 —w P 1+ 2 *
1+ ( aN/2;)

Q
N

2

[k(l)dk = kp
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The Voigt Profile

The Voigt profile, given by equation 3.32 is

k(A = k a f " _exp (-x) dx

0T ) o at+(v-x)?

where v = 2( A—:—Aﬂ-)‘v 1n2 , and represents the true line profile
o P

N

of an absorption line undergoing a Doppler broadening and a Lorentz
broadening simultaneously. It has the disadvantage that each point on
the line profile requires an integration to obtain the profile value.
To speed up computing time, the second approximation of Whiting (1968)
is used. Tables of the Voigt profile are given by Posener (1959), and
a comparison of the Voigt profile kv and that of Whiting is shown in

Figure 1.
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FIG1 A plot of the difference between the Voigt line profile k  and
the line profile given by Whiting's second approximation as a function of
distance from the line centre for three different a-values.
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APPENDIX 5

Whiting's 2nd Approximation to the Voigt Profile

In considering line profiles, Whiting's 2nd approximation to the
Voigt profile can be seen to consist of a weighted combination of Doppler
and Lorentz profiles wi?h the addition of a correction term, which improves
accuracy in comparison to the lst approximation markedly. The general
applicability of Whiting's 2nd approximation, and the low errors involved
in its use, make it a very useful tool in the calculation of absorption

coefficient line profiles. Its associated errors are plotted in Figures
1 -4.

The basic line shape is given by

o D a

0 1
(1 - 7-) ex( - 2.772( - o)

) )+ —
v LY % 1 + 4¢ 1#;___)
OLV

and this reduces to the Doppler case for o = 0 and to the Lorentz case

for a = o, - The correction term

% % )"xo 223 10
0.016( &=~ )(1 - =) (exp( - 0.4( ——) - T 2 2s)
v v v 10 + ( —2)
o

v

follows the difference between the Voigt profile and the lst approximation
of Whiting, and its inclusion reduces errors by a factor of about 10. The

expression for k_ is

Lk()\) (<9

k =

P a a2
av( 1.065 + 0.447 &;-+ 0.058( &:-) )

and is used to correct the area. For a pure Doppler line of width a = 1.0

I k(2 dr = ko, VT [y = 1-065 if k= 1.0
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For a Lorentz line
J k(x) dA» =k —— = 1.,5708 if a = 1.0 and k =1.0.
p . P

If any meaningful treatment of absorption and curves of growth
is to be made, then all lines compared must have the same area, so the
function-:
Of.L OLL 2
1.065 + 0.447 — + 0,058( — )
o o,
\'4 \'4
is used. It is basically a polynomial fitted to the area beneath an
absorption line, and for o =.0, the Doppler case, takes the value 1.065,
while for a =09, , the Lorentz case, takes the value Tr/2 = 1.5708 (see

Figure 6 ). The approximation to the Voigt profile can also be written

as a function of a, using the relations

o
a = el Vv 1n2
(xD
B = 1+(1+41§12)l/2
a
0tl.
o = 2/5

v
That is, the approximation can be written as

g2 1
E
a262)+2/8(1+4( 2822)-'.
a” B

k) = Kk, (1-2/8) exp( - 2.772

A=A
where E is the correction term, and — = EE.,
o a
v
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Accuracy of second approximation 1o Voigt profile.

FIG 1 (Reproduced from Whiting (1968))
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Comparison of curves-of-growth computed from first and second approximations with those

computed from exact Voigt profile. (Notation from Ref. 1)

(Reproduced from Whiting (1968))
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FIG 5 A plot of the area beneath a line given by the 2nd
approximation of Whiting versus a-value for constant peak
height k_ , and a plot of peak height versus a-value for
constant area.
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P
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FIG 6 A plot of the area beneath a line versus a-value for
Whiting's 2nd approximation.
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APPENDIX 6

The Linear Region of the Curve of Growth

The curves of growth for all lines, irrespective of line
profile, all have a linear region. The linear region occurs where the
equivalent width W of an absorption line follows a straight line of

slope 1 for all optical depths kpX < 0.1.
The expression for equivalent width W can be written as

W = I (1 -exp( - kpX k(A))) dr .

If the term kpX is small (usually less than 0.1 , since k()

usually takes values between 0 and 1), then the approximation

exp( -t) = 1-t¢t for t small, holds to a high

degree of accuracy. The equivalent width W can then be written as

W o~ | kX k() dx =~ kX [ k() dxr.
Ip (M) pJ()

Since J k(A) dA is constant for all lines, then

WakX
P

that is, the equivalent width is proportional to optical depth.
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APPENDIX 7

Equivalent Width Versus Scan Range

The ideal value of equivalent width W is obtained when the
scan range is infinite, and has the property that W is independent
of resolution (see Appendix 1). However, in the Schumann-Runge bands,
it is quite usual to have a scan range of between 5 and 10 times the
line half-width. The effect this has depends upon the type of line
being examined, and how much Doppler component it contains. The more
Doppler-like the line, the less effect a narrow scan range has on the

equivalent width (see Figure 1).

The effect of instrument resolution is always taken into account
during results computation, so the equivalent widths measured
experimentally should compare with those generated theoretically. The
effect due to scan range will only become important if the scan function
is left out altogether, and the differences plotted below are ‘then a
measure of the error this will introduce. For Doppler-like lines, the
effect is minimal, but for Lorentz-like lines, it can be significant.
Reasonable results, approximating the true equivalent width would still

be obtained to 10% accuracy in most cases.
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FIG 1. A plot of the ratio of the measured equivalent width to total
Teal equivalent width versus scan range in units of half-width a_ (or uN).

The total real equivalent width W is that obtained for infinite scan
range.
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APPENDIX 8

Curve of Growth Study

The behaviour of curves of growth for various a-values as
the optical depth kpX varies is shown in Figures 3.10 and 3.11.
These Figures both show the linear increase in equivalent width with
k X for low kpX , where all the curves of growth for different a-values
are almost coincident, and they show the departures from the linear once
k_X becomes appreciable. Lines with any amount of Lorentz component,

no matter how small will evenfually follow an increase of the form

Wov kpX

which is due entirely to the Lorentzian wings of the line.

Studies were also made in the growth of equivalent width for
fixed scan range. In certain circumstances, it was possible for the curve
of growth of one a-value, say a , to lie below that of another a-value,
say a» , where ai > az . In the ideal case, of infinite scan range,
this would have been impossible. It also means that it is possible to
obtain two solutions to the a-value iteration, usually separated by many
orders of magnitude. Only one of the solutions will be a correct one, and
it will be apparent in most cases which solutio; is the answer. None of
the scans done in this work produced two solutions, although one or two
did not produce answers due to two solutions being available, and to the

iteration procedure oscillating between them.

A sketch of logio equivalent width versus logio a-value 1is
shown in Figure 1. For any one value of equivalent width, there are two
solutions of a at a given kpX . The equivalent width begins to fall off

with a-value for a fixed kpX , for a fixed scan range, again, something
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not expected from the ideal, infinite scan range case.

This leads to the possibility of optimizing the experiment.

It should now be possible to predict a value of kpX for which %}

would be a maximum, in order to determine the correct a-value to the
greatest accuracy. This corresponds to the tangent to the curves of
Figure 1 being as far from horizontal as possible, When the experiment
was first done, calculations of this sort were impossible, due to the
long computing time of the programme, but by the end of the project,
refinements of this type were'possible, due to the improved computer
programmes. This allows more accurate results to be obtained in

shorter counting times.

The expression W =/ kbx for kpX large can be obtained

as follows. The equivalent width W is given by

1
W= J (1 -exp[ - kX 1D din-x)
P (k - A;)2+ 1
aNj
Use of the substitutions
k X
p-
and
tan(8/2) = L&—?—g
N
gives
Cx‘N
W = J{ 1 -exp[ - (y +y cosB)]} —E-d(tan 8/2)

and this reduces to (Pemner 1969 , Page 43)

W= o k Xm .
P



K LOG10 a-value =

FIG 1. A log-log plot of equivalent width versus a-value
for fixed values of kpXJ The curve for kPX = 10° is

virtually flat because for such a large value of k X, the
equivalent width is simply the completely absorbed prectangle
corresponding to the scan range for almost all values of a .

"9TV
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APPENDIX 9

The Error Function

The error function is defined as

X 2
erf x = —2— J e tdt (5.34)

vt
and basically consists of the area beneath the Gaussian or Doppler
function from the centre at t = 0 to a position at t = x (see Figure
1 ). A list of the values of the error function can be found in

"Handbook of Mathematical Functions' by Abramowitz and Segun. A plot of

Figure 1

t=Xx

the values is shown above in Figure 2

The error function has been used in this work because of its
relation to the Gaussian or Doppler function. The alternate convolution
method of Section 5.6.2 makes extensive use of the error function. Since
no error function is directly available for use in a computer programme,
an approximation listed in Abramowitz and Segun (1968) was used. This

consisted of
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L 6316 + E(X)

erf x =1 >
(1 + a1x + 22X +,...36X )

where |€(x)| < 3 x 1077 , sufficient accuracy for this work.

The constants are

a; = .0705230784 a; = .0422820123
as = .,0092705272 a, = .0001520143
as = .0002765672 ag = ,0000430638

10 20 30
X

FIG 2 A plot of erf x for the range 0 <Sxs< 3.
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APPENDIX 10

The Relation between Oscillator Strength and kpX

A well known equation relating oscillator strength to the

integrated area beneath a line profile, Jk(X)dA is Thorne (1974)

4 €9 m c? J
Po- L c” Ik (A)dA 5.38
o, Ne? M2 ( )

This work, where most discussions use wavelength, adopts the form

Jk(l)dk , whereas most books use Ik(v)dv where V = %-.
The two integrals are related by
|k(k)dx !k(v)dv k (w)dw
X - V - w
where W ='}§ . The integrated line area is defined as
k(A)dxr = k_ vV
J (A)d o b ae
AT 1 :
where o, = ¢ M is the Y Doppler width.
The ideal gas equation PV = N'K T gives
P R N where N 1is the ber of
T v - i number o

B
molecules per volume.
Use of equation 5.16 and N = P/KBT in equation 5,38

2K T
B
M

4 €y mc? KeT ke v/ 1 &
C

ives f
& aJ Pe? A

which reduces further to

72
4V 2T €5 mc K.B72 kPX 1 _ o
e* VM o P(MKS) A(MKS) 2(ME3S)
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For convenience, since the pressure measurements are made in non-MKS
units, as are the wavelength and temperature, the above equation can be

converted to

, kpX 1‘72
f = 1.577 x 10 &P XA E(ens)
o gl 1 _ 760000 1 _ 10t
Y £ PMKS) ~ 101300 P’ AMKS) ~ A(K)
and .—1___.._ = __LO_:__
2(MKS) —  2(cms)

Use of equation 2.20 then gives the final relation

k_ X T72

_ -3 P -
f 1.577 x 107" a0 X&) % (cms) o b

where fL = f(v', v, n", J) is the line oscillator strength,

and f is the equivalent band oscillator strength for the Jth rotational

line.
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APPENDIX 11

The results listed in this Appendix are for all the individual
lines observed, and show a-value (at a temperature specified),
predissociation width and associated equivalent band oscillator strengths.

The a-value and linewidth are related by

. 1
a =a [1# (A2 Ine +a4 1n 2 47 (3.37)

o
2
v/ 1n2

and o = o -0
P v D

where h is the predissociation width, o, is the total linewidth

and o is the Doppler width (at the specified temperature).
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Band Line Oscillator a-value Predissociation
Strength (294° K) Width
1-0 RP, 6.01 £ 0.19 0.49 + 0.07 0.06 + 0.014"
R7P5 12,6 = 1.2 0.41 £ 0.10 0.05 = 0.013**
R9P7 8.63 £ 0.47 0.69 * 0.09 0.09 % 0.012**
R11P9 7.55 £ 0.24 - N
R13P11 9.01 £ 0.49 - -
2-0 R5P3 2,39 + 0.10 3.70 £ 0.26 0.48 * 0.034
R7P5 2.23 £ 0.08 3.74 £ 0.12 0.49 * 0.02
R9P7 2.16 £ 0.07 5.18 + 0.42 0.68 = 0.06
R11P9 2.22 + 0.09 3.59 + 0.24 0.47 = 0,03
R13P11 2.59 = 0.06 3.58 £ 0.10 0.47 £ 0.01
R15p13 3.04 + 0.08 2,84 + 0.14 0.37 % 0.02*
R17P15 2,60 + 0.10 1.46 £ 0.11 0.19 % 0.01*
RigP ,  2.85 % 0.11 2.68 + 0.28" 0.35 + 0.04
R21Plg 2,18 £ 0.13 1.15 + 0.08 0.15 £ 0.01*
3-0 R7P5 11.4 = 0.40 6.66 * 0.38 0.89 = 0.05
R9P7 8.9Y £ 0.29 10.42 * 0.62 1.39 £ 0,08
Rllpg 10.4 + 0.40 9.86 * 0.61 1.31 = 0.08
R13P11 10.8 = 0.40 8.59 = 0.48 1.14 = 0.06
R15P13 9,41 = 0,37 10.8 * 0.99 1.44 * 0.13
R17P15 9.70 £ 0.56 15.1 * 1.45 2.00 = 0.20
R19P17 8.68 + 0.44 8.77 * 1.58 1.16 * 0,21
R21P19 11.2 + 0,07 5.62 * 0.93 0.75 + 0.12
R23P2l 9,72 = 0.49 8.30 * 2.0 1.10 = 0.27
** Total non-Doppler component - includes pressure broadening

These

a-values

discarded because pressure factor too small



A23.

‘Band Line Oscillator a-value Predissociation
Strength (294° X) Width

4-0 R.P. (2.72 + 0.16)x1077 18.4 * 2.48 2.48 + 0.33
R7P5 2.58 + 0,12 x1077 19.3 + 1.67 2.61 + 0.23
R9P7 2.56 £ 0,11 " 26.4 + 3.69 3.56 + 0.50
Rllpg 2.71 £ 0.11 ¢ 30.4 + 5.00 4,10 + 1.89
Ri<P1p 2.87 + 0.15 " 17.1 £ 1.51 2.30 + 0.20
RicPy3 2.77 + 0.16 " 26.8 + 1.43 3.61 £ 0.19
Ri-Pis 2.54 + 0,13 " 25.6 £ 2.16 3.45 + 0.30
R1gP17 2.96 * 0,17 " 28.9 *12.0 3.88 + 1.61

+ n - -
Ry3P1g 2.70 = 0.11
(297° K)

5-0 R5P3 (7.08 + 0.33)x1077 - -
R7P5 7.61 + 0.39 " 12.9 + 0.9 1.77 + 0.12
RpP7 7.93 £ 0,32 " 9.57 £ 0.87 1.31 £ 0.12
Rlng 8.15 + 0.33 18.9 + 1.15 2.60 £ 0.16
R13P11 8.07 = 0.37 13.9 + 1,50 1.91 £ 0.21
RicPi3 7.88 + 0,34 17.4 + 1,58 2.38 + 0.22
Ry -Pis 8.61 £ 0,38 12.6 * 0.83 1.73 + 0.11
RygP 7 7.23 + 0.42 21.5 + 1.94 2.93 + 0.27
R21P19 6.91 + 0.41 17.2 = 2.73 2.34 £ 0.37

6.67 + 0.40 13.1 = 2.0 1.79 + 0.27

Ry3Po1



A24,

Band Line Oscillator a-value Predissociation
Strength (297°K) Width

6-0 R.P. (1.89 + 0.10)x10°° 9.26 + 0.62 1.28 + 0,09
RPc 1.84 + 0.08 " 8.79 + 0.60 1.22 + 0.08
RgP, 1.61 + 0.09 " 10.8 + 0.99 1.50 + 0,14
Ri1Pg 1.73 + 0,08 " 13.6 * 0.93 1.89 + 0,13
Ri<P1; 2,03 + 0.12 " 8.98 + 1.33 1.24 + 0.18
RycPy3 1.66 £ 0,09 " 10.8 + 1.15 1.50 + 0.16
R ,Pg 11,70 £ 0.08 " 13.8 + 0.79 1.91 + 0.11
RygP ;7 1.54 £ 0.08 " 14,1 * 0.92 1.95 £ 0.13
R,1P1g 1.60 + 0,08 18.0 + 1,70 2.48 * 0,23
RyaPsy 1.59 + 0.08 18.5 * 1.60 2.54 + 0.22

7-0 RcP. (3.68 + 0,18)x107° = -
R.Pc 4.02 £ 0.20 " 10.0 * 0.58 1.40 + 0.08
RoP-, 4,37 £ 0.25 " 9.06  0.54 1.27 + 0,08
R;1Pg 3.98 + 0.20 " 10.4 + 0.57 1.45 + 0.08
RizP1; 3.97 £ 0,22 " 11.8 + 0.72 1.65 + 0.10
RcPz 3.91 £ 0,29 " 13.8 + 0.90 1.93 + 0.13
R, -Pis 3.31 £ 0,23 13.7 % 0.90 1.91 + 0,13
RioP17 3.48 + 0,22 " 11.4 £ 1.43 1.60 + 0.20
R,1P1g 3.56 £ 0,16 " 10.5 * 0.82 1.46 + 0.11

I+

3.10 £ 0.17 " - -

R23P21



A25,

Band Line Oscillator a-value Predissociation
Strength (297°K) Width
8-0 R P (8.60 £ 0.46)x107° 6.30 * 0.42 0.89 £ 0.06
RP 7.85 £ 0.40 " 6.81 + 0.39 0.96 + 0.06
RyP., 7.45 £ 0.39 " 9,92 + 0.50 1.40 + 0.07
RyyPg 8.08 + 0.38 " 8.99 £ 0.46 1.27 £ 0.06
R <P g 7.29 + 0.45 v 9.74 £ 0.47 1.37 £ 0.07
Ry cPys 6.96 + 0.38 " 10.3 + 0.50 1.45 + 0.07
Ry -Pc 7.28 + 0,42 v 9.97 £ 0.50 1.40 = 0.07
RigP 5 6.47 t 0,35 " 11.5 £ 0.60 1.61  0.08
e 6.68 £ 0.27 " 12.0 * 1.06 1.69 £ 0.15
R, 5.29 + 0,33 " 17.8 * 3,38 2.49 £ 0.48
+ 1 = -
Pos 6.06 + 0.31
+ " B S
R, 5.77 + 0.38
9-0 RcP (12.8 * 0.60)x107° - .
R7P5 15.0 % 1.00 " 3.15 + .22 0.45 + 0.03
+ t _ =
RgP 13.6 + 1.50
R 1Pg 16.0 + 0,90 " 3.09 + 0.17 0.44 + 0.02
P1y 12.4 * 0.60 " 5.44 + 0.45 0.77 + 0.08
R, 11.9 +0.70 " 5.73 * 0.44 0.82 + 0.06
P s 13.5 + 0.90 " 3.49 + 0.32 0.50 £ 0.04
Ree 9,76 £ 0.60 " 4.42 + 0.34 0.63 + 0.05
Pe 12.0 + 0.80 " 5.61 * 0.38 0.80 + 0.05
R, 13.5 * 0.90 2.93 + 0.32 0.42 + 0.05
L 11.0 * 0.80 " 5.12 = 0.90 073 + 0.13
Rig 9.12 +* 0.50 " 5.99 * 0.87 0.85 + 0.12
Pr g 10.7 + 0.60 5.98 + 0.59 0.85 + 0.08
R,y 10.3 + 0.70 " 5.47 £ 0.63 0.78 £ 0.09
P 10.1 * 0.50 " 4.63 = 0.37 0.66 £ 0.05



A20,

Band Line Oscillator a-value Predissociation
Strengths (297° K) Width (cm™)
10-0 RP (1.71 + 0.11)x10°° . .

n - _
R7P5 1.68 + 0.10
P7 1.83 + 0.10 u 5.21 + 0.41 0.75 + 0,06
R9 1.66 + 0,09 by 5.27 +0.39 0.76 + 0.06
P9 1.69 + 0.10 Y 5.86 + 0.68 0.84 + 0.10
R11 2.02 + 013 u 4.74 + 0.37 0.68 + 0,05
P11 2.12 + 0,11 i 5.32 + 0.39 0.76 + 0,06
R13 2.14 + 0,15 n 2.40 + 0,23 0.34 + 0.03
Pl3 2.20 + 0.16 0y 3,18 + 0,23 0.46 + 0,03
R15 1.51 + 0.10 " 4.41 + 0.37 0.63 + 0,05
P15 1.82 + 0,13 " 4,77 + 0,58 0.68 + 0.08
R17 1.44 + 0.10 B 3.20 + 0.45 0.46 + 0.06
P17 1.68 + 0.10 i 4.92 + 0.41 0.70 + 0.06
ng 1.51 + 0,08 i 2,92 + 0.24 0.42 + 0.03
P19 1.71 + 0.10 n 4,98 + 0.49 0.71 + 0.07
R21 1.33 + 0.08 il 5.93 + 0.56 0.85 + 0.08

it - -
P21 1.45 + 0.09

" =4 =
R25 0.95 + 0.06

" - -
R29 0.90 + 0.05
p 0.70 + 0,05 1 - -



A27.

Band Line Oscillator u-value Predissociation
Strength (297°K) Width (cwm™')
11-0 RP. (2.60 £ 0,17)x10"° 6.30 £+ 0.78 0.91 + 0.11
P, 2,66 £ 0,16 " 4,06 + 0.37 0.59 + 0.05
Ry 2.8 £ 0.17 " 3,64 + 0.22 0.53 + 0.03
Py 2.89 + 0,18 " 5.69 + 0.48 0.82 + 0.07
Riq 2.42 + 0.08 M. 6.55 % 0.42 0.95 + 0.06
Py 2.73 + 0.12 v 7.63 + 1.00 1.10 + 0.14
R s 2.39 + 0,15 v 6.78 + 0.45 0.98 + 0.07
Pk 2.67 £ 0.14 v 6.61 + 0.30 0.95 + 0.04
Ry< 2.50 £ 0.15 "™ 6.70 + 0.45 0.97 + 0.07
Pis 2.36 * 0,19 " 5.95 £ 0.55 0.86 £ 0.08
R, 2.22 + 0.21 ¢ 5.16 + 0.56 0.74 + 0.08
P s 2,11+ o0.,11 v 8.66 £ 0.70 1.25 + 0.10
R g 2.12 £+ 0,11 " 5.88 t 0,78 0.85 + 0.11
Plg 2.01 £ 0.09 " 7.62 + 0.60 1.10 £+ 0.09
Ry, 2.03 + 0.07 " 4,23 + 0.30 0.61 + 0.04
P 1.40 £ 0.08 " = -



Band Line Oscillator a-value Predissociation
Strength (297° K) Width (em™)

12-0 P (3.19 + 0.17)x107°
R7 3,12 ¢ 0.19 N
P7 3.83 £ 0.22 " 3.28 + 0.26 0.48 = 0.04
R9 2.88 & 0.14 u 3,70 £ 0.27 0.54 £ 0,04
P9 3.00 £ 0.16 i 4,28 £ 0.35 0.62 + 0.05
Rll 3.31 £ 0.16 " 2,52 + 0,23 0.37 £ 0.03
Pll 3.17 £+ 0.19 " 4.00 £ 0.31 0.58 = 0.05
Rl3 3.15 £ 0.15 2 4.38 = 0.39 0.64 £ 0.006
P13 3.07 £ 0.17 i 4,34 £ 0.36 0.63 + 0.05
R15 2.87 £ 0.16 " 4.13 £ 0,38 0.60 = 0.06
P15 2.94 £ 0.16 " 4,56 £ 0.40 0.66 + 0.07
R17 3.16 £+ 0,17 " 5.10 £ 1.26 0.74 £ 0.18
P17 3,14 + 0.19 " 3.98 £ 0,30 0.58 £ 0.04
ng 2.47 £ 0.13 " 4.50 £ 0.55 0.65 + 0.08
R25 1.70 = 0.08 " - -

P25 2,03 + 0,10 " - -

13-0 P5 (4.02 £ 0.24)x107° 0.66 + 0.06 0.10 £ 0.009
R7 4.62 + 0.40 " 0.50 = 0.05 0.07 £+ 0.007
P7 3.72 £ 0.21 " 0.91 + 0.11 0.13 £+ 0.016
R9 3,10 £ 0.21 N 1.00 + 0,12 0.15 £ 0.018
P9 3.17 £+ 0.21 " 1.13 £+ 0.14 0.16 £+ 0.020
Rll 2.79 £ 0.21 " 1.23 £ 0.15 0.18 =+ 0,022
Pll 4,05 + 0.27 N 0.78 £+ 0.12 0.11 £ 0.018
R13 3.60 + 0.25 " 0.94 = 0.10 0.14 £ 0.015
P13 3.91 = 0.25 " 0.61 & 0.05 0.09 £ 0.007
R15 2.90 £ 0.17 e 1.64 £ 0.28 0,24 £ 0.041
P15 3.3 + 0.19 " 1.05 + 0.08 0.15 = 0,012
R17 3,58 + 0.17 " 1.13 + 0.08 0.16 £+ 0.012
p 2,06 £ 0.11 " - -

A28.



A29.

Band Line Oscillator a-value Predissociation
Strength (297°K) Width (cm ')

14 -0 Be (5.14 = 0.33)x107° - -
R7 3.74 * 0.20 " 0.90 £ 0,11 0.13 + 0.016
P7 5.57 + 0.42 " 0.43 + 0.04 0.06 ¥ 0.000
R9 5.58 * 0.38 N 0.37 +* 0.05 0,05 & 0.007
Pg 3.84 = 0.25 N 0.95 + 0.10 0.14 £ 0.015
R11 3.85 + 0.25 " 0.65 * 0.10 0.10 £ 0,015
Pll 3,78 £ 0.22 . 1.00 * 0.10 0.15 £ 0.015
R13 3.45 £ 0.20 1 0.81 * 0.09 0.12 £ 0.013
P13 4,40 £ 0,25 " 0.22 * 0.05 0.03 £ 0.007
RlS 3.46 £ 0.22 " 0.48 = 0.05 0.07 £ 0.607
P15 4,36 + 0,29 " 0.44 = 0.06 0.06 £ 0.009
R2l 3,07 £ 0.19 v = -
P21 2,97 £ 0.18 it = »
R27 2.33 £ 0.17 v - -
P27 2.66 £ 0.18 i -

(82°K)

15-0 R7 (4.42 £ 1,00)x107° 1.62 £ 0.16 0.13 £ 0.012
P7 4.60 £ 0.44 " 1.62 £ 0.13 0,13 £ 0,010
Rg 2.40 £ 0,18 " 3.46 = 0.49 0.27 £ 0,038
P9 3.22 £ 0.21 i 3.36 = 0.26 0.26 £ 0.020
Rl1 5.52 £ 0.42 " 2.50 = 0.19 0.19 % 0.015
P11 3,74 = 0.75 " 1.12 = 0.09 0.09 £ 0.007
R13 2,76 + 0,25 " 1.71 = 0,16 0.13 £ 0.012
P11 2.93 £ 0.26 " B
R, 3.47 + 0.23 " 0,96 * 0.10 0.14 £ 0.015

**  Done at Room Temperature



A30.

Band Line Oscillator a-value Iredissociation
Strength (82° K) Width (em ')
16-0 P (5.60 *+ 0,56)x107? ’ o
Rg 3.45 *+ 0.45 " 0.78 +  0.10 0.11 + 0,015
y 2 " _
Rll 3.56 + 0.33
Pll 3.43 + 0,30 i 1.99 + 0.24 0.29 £ 0,035
17-0 R (2.88 + 0.20)x107° 3.07 t 0.65 0.45 £ 0.10
R9 2.%37 * 0.17 " 2,76 £ 0.47 0.41 = 0,07
P9 2,31 1 0.21 . - -
18-0 R_P (1.69 + 0.19)x107% 1.35 % 0.29 0.20 * 0.043



Appendix 12

Computer Programme Listing



PROGRAM FNL29¢ (INPUT,OUTPUT)
DIMENSION XA (B20) s ¥YN(820) «ER(220) 1Y (820) s YE(S20)+X(H20)+5M(820)
DIMENSION IRAY (5) vWE{2) oW (10)sAP(10) sF (1O} sWW(2) 4P (2)9AL(6) s KX{g)
DIMENSION ALA(20)9ABL (20) »ASFF (20) v 1JXA(2092) 9NV (2)
DATA IRAY/6%(-0)/
IRAY (4)=0
CALL SYSTEMC(1154IRAY)
CALL MODERRI(0)
PREbpOBBRRBOD VARIABLE SECTION aupa Lt e
READ 770Ny NKoJ< s AF 9 XSS
770 FORMAT{IZ2+8Xy13s7Xs12+8XsFBy2x9F8)
KEAD TS4sNV (1) 9NV (2) ¢NLyNY
754 FORMAT(2(16)4+2(12))
READ 760swE(1)swE(2)
760 FORMAT (FB.2X,F8)
750 FORMAT(&(FE,2X))
READ 7504 (ALA(T) 41=1,N)
READ 7505 (ABL (1) 4I=14N)
READ 7509 (ASFF (1) sI=1sN)
READ 4999 IJUKA(1,1)51JKA(1,2)
499 FORMAT(I4,6X,14)
IF(NJEG.11970,971
971 CONTINUE
DO 7S1 LMN=1,2
DO 752 I=24N
ALP=(ABL(1)-ABL(I))®]1000/XSS
TJKA (I ,LMN) =TUKA (19 LMN) <INT (ALP)
752 CONTINUE
751 CONTINUE
970 CONTINUE
AP (1)=ALA(NL) & AP(2)=ALA(NL)/2.0
BF=2.1628E=-3
F(l)=0.1
LMN=1
BRINT S66,WE(1)swE (2)
S66 FORMAT(10X9s6HWE (11=9E10,495Xe6HWE(2)=¢E1Q.4)
PRINT 700, (ALA(T)eI=1sN)
700 FORMAT(10X»9(FB,393X))
PRINT 701, (ABL(I)sI=1sN)
701 FORMAT(10X99(FB8.292%X))
PRINT 702¢ (ASFF(I)sI=1yN)
702 FORMAT(10X+9(FBs592X))
PRINT 7034 (IUKA(T91)sI=]1,N)
703 FORMAT(SX,9(Tt,y3Xx))
PRINT 7044 (IJKA(I»2) s1=14N)
704 FORMAT (S5K49(14s3X))
PRINT 567sNV (1) eNV(2)sNLsNU
567 FORMAT(4(1442X))
[T 22 XA A4 R g VARIABLF SECTION #énercenaes
GEH=36.0
XS=xS5/GEH
SCAN FUNCTION CALCULATION = ER 1S THE ZRROR FUNCTION FOR THE S_ITS
SM IS THE MATRIX IN ®HICH THE SCAN FUNCTION OF THE MONCHROUATOR IS ST
56 CONTINUE
IF(LMN,EG,1) 30531
30 NN=NVI(1) % GO T30 34
31 NN=NVI(2)
34 CONTINUE

DO 50 I=14NN
NAM=] % xA(I)=AM
S0 CONTINUE
NNKK=NK=1 % NUSNN=NK< 3 NJJ=2#NK $ NKNZNV=NK=NKK b NJINSNKN+ L
CALL ERFS(ERsXSyNX)
NKK=NK~1 % NJ=NN=-NKK $ NJJ=2¢NK b NCN=NN=NK=N<K % NIN=NAN+]
D0 2 I=lsNK
I11=1-1 % NI1=NK-I1 3 SM(T)=(1=ER(N1)) /2.0
2 CONTINUE
Du 3 I=leNKK
N2=TeNK % ITI=Is1 % SMIN2)=(1+ER(II1))/2,0
3 CONTINUE
DO & I=NJJsNKN
SM({1)=1.0
4 CONTINUE
DO & I=laeNK
11=1-1 % NJ_L=NKN¢I % NK?=NK=I1 $ SMINJL)=(1+ER(NK2)) /2.0
6 CONTINUE
I1=1-1 ¥ NJL=NKN+I $ NK2=NK-I1 3 SMINJLY=(1+ER(NK2)) /2.0
D0 A I=1sNKK
N3=NJ+1 $ IJ=1+1 & SM{N3)=(1-ER(IJ)) /2.0
8 CONTINUE
THIS SECTION CALCCULATES THE LINESHAPES FOR THE SCAN
YN [S THE MATRIX OF THE TOTaL ABSORPTION COEFFICIENT CALCULATED USING
WHITING#£S SECOND APPROXIMATION



40 CONTINUE
DO S I=1sNN
YN(I)=0
5 CONTINUE
DO 22 M=1,.N
A=ALA(M) § BL=ABL(M) % SFF=ASFF{M) 3 TJIK=TJIKA (MsLMN)
23 CONTINUE
GFF=.69315 & BD=BL*BF $ GF=,832555 3 CD=XSS5%2.0%GF/80D
XC=xSS
AG=A%#A 5 3T=1.,0+4e0%AL0G(2.0)/AG $ 3=1.0+35QRT(BT) % AB=Ae3
8B=p48 § BA=2,0/08
BB=B#B % BA=p2.0/3 $ ABC=14773364132/(A%3%(1065¢0.894/B¢0.232/88))
I=1 :
20 CONTINUE
I1=1JK-1
ATI=11 % CcI=ABS(ATI) § EA=CI=CD $ tAA=EA#EA § Z=EAA/AB/A3
27==-2.77258942 § TA=(1e0-BAYHEXP(ZL) § TB=BA#(1.0/{10¢4.027))
ZA=(EA/AB)#%#2,235 b ZB==0.4%ZA
TC=0.016#(1=-BA)#BA®(EXP(2B)=10/(10+ZA))} & TF=TA«T3+TC
ATF=ABC®TF#qFF 5 AAC=YN(I)} $ YN(I)=ATF+AAC
I[=1+1
IF(T.6GTaNN)21420
21 CONTINUE
22 CONTINUE
CALL SIMPS(YNsXCsYGSTsNN)
PRINT S5S5,YGST
555 FORMAT (L0Xy6HYGST= +F10.4)
A=ALA (NL)
ITERATION FOR PzX VALUES FOR P#£X ARE STORED IN MATRIX F
P#X VvALIES ARE CHANGED UNTIL THE valLuts OF EQUIVALENT WIDTH STORED IW
MATRIX w AGREE WITH THE EXPERIMENTAL VALUE IN wE (1)
IF (LMN.EG,1)80,81
80 CONTINUE
J=e
PRINT 615,A
615 FORMAT (SXyF10.4,5%s18H P#X ITERATION )
72 CONTINUE -

DO 70 I=14NN
JJ=d=1 % AK=F(JJ) & XK==YN(I)®#AK % Yy (])=EXP(xX)
70 CONTINUE
DO 10 I=1sNN
YE(I)=le0=-YW(I)
10 CONTINUE
DO 7 I=1eNN
YW(T)=YE(])®#SM(])
T CONTINUE
CALL SIMPS(YWeXCoWSTaNN)
GGST=WST § SL=ALEGLO(GGST) $ JJdJd=J=1 & 5J=F (JJJ)
sJL=ALOGLO (SJ)
PRINT 14,A3JJJeSJeGGST
WiJJ)=GOST $ wA3=wE(1)=w(JJ) $ wBA=ABS(4AB)
IF(WBALLT,.1E-2)36985
BS IF(JeGTeJdX)B6sAT
87 IF(J.,EQ.2)83984
A3 F(J)=WEL)/ZWi(L)RF (L) % U<e)l $ 50 TD 72
B84 CONTINUE
IL=J=2 $ FUASW(JL)=WE(Ll) & FAJ=W(JL)=W(Ju; % FPA=F(JL)=F (I
F(D=F(JL)=FJA/FAJHFPA
IF(F(J) +LT.0)183.18¢6
183 F(J)=F(JJ) /2.0
184 J=J+1 § GO TO 72
B6 CONTINUE
P(l)=F(JJU) & wWW(I)=W(JJ) % LMN=2 B J=2 § GU 71O S6
ITERATION FOR A-vAL JE P#X VALUE IS GIVEN IN P(2)
A-VALUES ARE STORED IN MATRIX AP THE FIRST ONE IS GUESSED aAND THZ
SECOND VALUE 1S TAKEN AT HALF OF THE FIRST TO GIVE TwD ITERATIvVZ ROINT
A-VALUFS ARE STORED 1IN MATRIX AP THE FIRST ONE IS GUESSED AND THZI
WHEN A VALUE OF A +HAS BEEN FOUND THE ITERATION FOR P#X IS5 DINZ AGAIN
81 CONTINUE
P(2)=P (1) ®AF
92 CONTINUE
DO 90 I=1,NN
JJd=J=1 & AK=P(2) % XK==YN(I)®*AK $ YA (])=gXP(XK)
90 CONTINUE
DO 110 I=1sNN
YE(I)=1e0=-YW(I)
110 CONTINUE
DO 107 I=}4NN
YW(T)=YE(I)®SM(])
107 CONTINUE
CALL SIMPS(YWeXCsAdSTeNN)
GGST=WST & JJ=Jd=1 b SL=ALOGL0(GGST) $ JJd=Jd=1 % SJ=P(2)
SJL=ALOGl0(SJ)
PRINT 169JJ9AsSJs006ST
16 FORMAT(10XpJhe2Xe4H AS WEL1D 424X sDH22X= +E1D.4sGXs4H W= »210,4)



W(JJI=GGST 3 WA3=WAE(2)-w(JJ) I WBAZABS(wAB)
IF(WBALT, 0,5)95+35
95 IF(JeGTeuK) 96,97
97 1F(J.EQe2)93494
93 N0 11 I=NLWNU
svaeen THIS IS A yaxRIABLE PKOGRAM sTt? SHOULD BE CHANGED WITH EACH
ALA(I)=ALA(I) /2.0
sossee THIS IS A VARKIARLFE PROGRAM STf2 SHOULD BF NHANGED WITH EACH
11 CONTINUE
PRINT 6l4+¢AsPL(2)
616 FORMAT(S5X9F10,445X9F10.495X920H A VALUE TTERATION ]
J=Jdel ® GO TO 40
94 CONTINUE
JL=Jd=2 5 AwJUsw(JL)=#E(2) % AWLEW(JL)=W(JJ) B aPW=AP(JL)=AP(JJ)
IF(AWLEQ,0)96976
76 CONTINUE
AP{J} sAP (JLY AWI/ZBsL#APY
APJ=AP(J)
IF(APJ.LT.0)T78,709
78 AP () =AP (JJ)
79 CONTINUE
DO 12 I=NLWNU
ALA(])=AP ()
12 CONTINUE
‘ JsJel % Jd=J=1 % 50 TO 40
96 CONTINUE
WW({2)=W(JJ) $ LYMN=1 % AP(1)=A 5 AP(2)=A/2,0
IF(J.EQ:s2)99+98
98 CONTINUE
PRINT 126
126 FORMAT (10Xy4H]25 )
GO 7O S6
99 CONTINUE
P1=P(1) % P2=P(2) % wWW]l=wiW(]l) P ww2=wawl2)
PRINT 1004P14P2oWNlswnwcoA
100 FORMAT(10Xe4H 10095(EL0,445X))
PRINT 800sAsCDsBr*ABsABC
800 FORMAT(LIO0Xe3HA= sE10,495X94HCD= sEL10.495X9v3HB=9sE10%95Xs4An3= o
2eE10.,%95Xs5HABC=,E10,4)
15 FORMAT(1H0»20X920M® CURVE OF GROWTH ® 95X92HA=vE10.%95X43HCO=
1 Elped)
14 FORMAT(SXe3HAZ ¢FlO0.495XsT4sSXeSHPEXS 9F10e495Xe34W= oF10e4)
CALL QIKPLT(XAsYWeNNy1sl4HEWAVE LEINGTH® yLaH® INTENSITY® )
44 CONTINUE
55 CONTINUE
200 CONTINUE
sTOP $ END
SUBROUTINE STMPS (XeXCDsGSTeNN)
DIMENSION X(820)
#enses THIS IS A VASRIABLE PROGRAM STt? SHOULD BE CHANGED WITH EACH
THE SIMPSON#S RULE SUBPROGRAM EXCHANSGES MATRICES WITH X AND INTES
USING STEP SIZE TRANSFERRED THRU XCD AND NUMBER OF STEPS NN
ANSWER GIVEN IN 5ST
NNN=NN $ CC=1.07/3.0%XC0O & ST=p % I=1
61 IF(I.EQDNNN,62’53
63 IF(1.EQel)O4y85
64 CONTINUE .
S=X(1) % ST=ST+S $ I=l+1 & GO TU 61
65 VI=1 $ Vv=VI/2 % II=INT(VV) $ VA=vVVv-1]
IF(VAEQ,0)66+,67
66 CONTINULE
S=X({I) $ ST=STeu#d % I=J¢]1 & GO TO 51
67 CONTINUE
S=X(I) $ ST=ST+2¢S % I=I+1 $ GO TO 51
62 CONTINUE
S=X{I) % ST=ST+S5 B ST=ST#CC % GST=ST
RETURN
END
SUBROUTINE ERFS(ERR¢XSyNK)
DIMENSION ERR(720) s AA(6) # XX (6)
sopese THIS IS A VARIARLE PROGRAM STE? SHOULD BE CHANGED wWITH EACH
THE ERROR FUNCTION SJBPROGRAM LUSES THE GAJSSIAN SLIT FUNCTION OF
THE MONQOCHROMATOR TO CALCULATE ERRUR FUNCI1UN VALUJES FUR THE SCAN FUNZ
AA(1)=.0705230784 % AA(2)=.0422820123 % AA(3)=,0092705272
AA(4)=,00015201643 % AA(S)=,0002765672 % AA(6)=,0000430638
DU 170 I=1sNK
1I=1-1 $ Al=11 & KI=AI%xS
xX(1)=XI & xx(2)y=X12XI % XxX(3)=xx{2)®&x]
XX(g)=XXK(2)#XX(2) 3 XX(S)=XX{(4)ex] B XX(6)=XX(3)exX(3)
XAa=].0
00172 J=146
XAA=XAA+AA(J) #XX (J)
172 CONTINUE
X1=xAA*XADL % x2=sx1%X] $ x3=x2%x2 b x6e=zX3¥X3 % xB=1.0/X4
ERR(I)=1.0-xB
170 CONTINUE
RETURN
END



BIBLIOGRAPHY

Abramowitz, M. § Segun, I.A. "Handbook of Mathematical Functions'

Dover Publications, New York (1968)

Ackerman, N., Biaume, F. & Nicolet, M. '"Absorption in the spectral
range of the Schumann-Runge bands'" Can. J. Chem. Vol. 41

P 1834-1840

Ackerman, M. § Biaume, F. '"Structure of the Schumann-Runge Bands
from the 0-0 to the 13-0 Band" J. Mol. Spelt. 35 73-82

(1970)

Ackerman, M., Biaume, F. § Kockarts, G. 'Absorption Cross-Sections of
the Schumann-Runge Bands of Molecular Oxygen' Planet. Space. Sci.

Vol. 18, p 1639-1651, (1970)

Alberti, F., Ashby, R.A, § Douglas, A.E. '"Absorption Spectra of 0, in
the a'Ag, b'Z; and XaZé States'" Can. J. of Phys. Vol. 46,
p 337-342, (1968)

Allison, A.C. (Private Communication) (1975)

Allison, A.C., Dalgarno, A. § Pasachoff, N.W. '"Absorption of
Vibrationally Excited Molecular Oxygen in the Schumann-Runge

Continuum" Planet. Space Sci. Vol. 19, p 1463-1473, (1971)

Armstrong, B.H. '"Spectrum Line Profiles : The Voigt Function'" J. Quant,

Spectrosc. Radiat. Transfer, Vol. 7, p 61-88, (1967)

Beer, T. 'The Aerospace Environment" Wykeham Publications (London) Ltd.

(1976)

Bergeman, T.H. & Wofsy, S.C. "The Fine Structure of 03 (BSZ;)” Chem.

Phys. Lett. Vol. 15, No. 1, p 104-107, (1972)



Berkner, L.V. § Marshall, L.C. "On the Origin and Rise of Oxygen
Concentration in the Earth's Atmosphere' J. of the Atmos. Sci.

Vol. 22, No. 3, p 225-261, (1965)

Bethke, G.W. '"Oscillator Strengths in the Far Ultraviolet. II. Oxygen
Schumann-Runge Bands'" J. Chem. Phys. Vol. 31, No. 3, p 669-673,

(1956)

Blake, A.J., Carver. J.H._§ Haddad, G.N. 'Photoabsorption Cross Sections
of Molecular Oxygen between 1250A and 2350A" J.Q.S.R.T. Vol. 6,

p 451-459, (1966)

Blake, A.J. § Carver, J.H. '"The Evolutionary Role of Atmospheric Ozone"

J. of the Atmos. Sci. Vol. 34, No. 5, p 720-728, (1977)

Blake, A.J. "An Atmospheric Absorption Model for the Schumann-Runge

Bands of Oxygen'" (In Press)

Breene (Jr) R.G. 'Oscillator Strengths in certain air Molecule Systems -
I. The 0 Schumann-Runge System" J.Q.S.R.T. Vol. 11, p 3741,

(1970)

Brinkmann, R.T. 'Dissociation of Water Vapour and Evolution of Oxygen
in the Terrestrial Atmosphere'" J.G.R. Vol. 74, No. 23, p 5355-

5368, (1969)

Brinkmann, R.T. 'Photochemistry and the Escape Efficiency of Terrestrial
Hydrogen'" Fiocco (Ed) Mesospheric Models and Related Experiments,

p 82-102, (1971)

Brix, P. § Herzberg, G. '"Fine Structure of the Schumann-Runge Band near
the Convergence Limit and the Dissociation Energy of the Oxygen

Molecule' Can. J. Phys. Vol, 32, p 110-135, (1951)



Buenker, R.J., Peyerimhoff, S.D. & Peric, M. '"Ab Initio Vibrational
Analysis of the Schumann-Runge Bands and the Neighbouring
Absorption Region of Molecular Oxygen'' Chem. Phys. Lett., Vol.

42, p 383-389, (1976)

Carroll, P.K. "Predissociation in the Schumann-Runge Band of Oxygen"

Astrophys. Journ. 129, p 794-800.

Carver, J.H., Mitchell, P,, Murray, E.L. § Hunt, B.G. 'Molecular
Oxygen Density and Lyman-o. Absorption in the Upper Atmosphere'

J.G.R., Vol. 69, No. 17, p 3755-3756, (1964)

Carver, J.H. "The Origin of Atmospheric Oxygen' Search, Vol. 5, No. 4,

p 130-135, (1974)

Carver, J.H. "The Atmospheric Density of Molecular Oxygen'" 1I.Q.S.Y.

Data Review, Space Research : 4, Vol. 6, Paper 16.

Carver, J.H., Gies, H.P.F., Hobbs, T.I., Lewis, B.R. and McCoy, D.G.
"Temperature Dependence of the Molecular Oxygen Photoabsorption
Cross-Section near the H Lyman-oa Line" J. Geophys. Res. Vol. 82,
No. 13, p. 1955-1959, (1977)

Carver, J.H., Haddad, G.N., Hobbs, T.I., Lewis, B.R. and McCoy, D.G.
"Vacuum Ultraviolet 6m Monochromator" Applied Optics, Vol. 17,
p. 420-429, (1978)

Creek, D.M. § Nicholls, R.W. "A Comprehensive Re-analysis of the
02(B32; E x3zé) Schumann-Runge Band System" Proc. R. Soc.

London. A. 341, p 517-536, (1975)

Curry, J. & Herzberg, G. '"Uber de ultravioletten Absorptionsbanden
des Sauerstoffs (Schumann-Runge-Banden)'' Annal. der Physik,

Vol. 5, No. 19, p 800-807, (1934)



Dawson, L.H. § Hulbert, E.O. "The Absorption of Ultraviolet and
visible Light by Water" J. Opt. Soc. Am. Vol. 24, p 175-77,

(1934)

Ditchburn, R.W. § Heddle, D.W.D. "Absorption cross-sections in the
Vacuum Ultraviolet. ' The Schumann-Runge Bands of Oxygen
(2000 - 17508)" Proc. Roy. Soc. (London) A. 220 - No. 6, p 509-

521.

AN

Ditchburn, R.W. & Young, P.A. "The Absorption of Molecular Oxygen
between 1850 and 2500A" J. of Atmos & Terrest. Phys. Vol. 24,

p 127-139, (1962)

Dose, V., Schmocker, U. & Sele, G. "Photoabsorption Coefficient of
Molecular Oxygen in the Vicinity of the Hydrogen Lyman-o

Line'" Z. Physik. A. Vol. 274, p. 1-8 (1975)

Fang, T.M., Wofsy, S.C. & Dalgarno, A. '"Density Distribution Functions
and Absorption in the Schumann-Runge Bands of Molecular Oxygen'"

Planet. Space Sci. Vol. 27, No. 2, p. 511-519, (1974)

Farmer, A.J.D., Fabian, W., Lewis, B.R., Lokan ; K.,H. § Haddad, G.N.
"Experimental Oscillator Strengths for the Schumann-Runge Band

System in Oxygen'" J.Q.S.R.T., Vol. &, p. 1739-1746 (1968)

Feast, M.W. "On the Schumann-Runge 02 Bands emitted at Atmospheric
Pressure' Proc. Phys. Soc. Vol. 62, Part 2-A p. 114-121,
(1949)

Finn, G.D. § Mugglestone, D. 'Tables of the Line Broadening Function
H( @, v)" Mon. Not. R, Ast. Soc. Vol. 129, No. 2, p. 221-235
(1965)

Flory, P.J. 'Predissociation of the Oxygen Molecule" J. Chem. Phys.

Vol. 4, p. 23-27, (1936)



Goldstein, R. § Mastrup, F.N. '"Absorption Coefficients of He 0
Schumann -Rungé Continuum from 1270A-1745A using a New Continuum

Source" J. Opt. Soc. Am. Vol. 56, No. 6, p. 765-769, (1966)

Granath, L.P. '"The Absorption of Ultraviolet Light by Oxygen, Water

Vapour and Quartz'" Phys. Rev. Vol. 34, p. 1045-1048, (1929)

Goody, R.M. 1Atmospheric Radiation™ Oxford University Press. (1964)

N

Hall, J.E. '"Atmospheric pressure, density and scale height calculated
from H Lyman-o Absorption allowing for the variation in cross-
section with wavelength" J. of Atmos & Terrest. Phys. Vol. 34,

p. 1337-1348, (1972)

Halmann, M. '"Isotope Effects on Franck-Condon Factors. VI. Pressure-
Broadened Absorption Intensities of the Schumann-Runge Bands of
160, and '®02" J. Chem. Phys. Vol. 44, No. 6, p. 2406-2408,

(1966)

Hasson, V., Hebert, G.R. & Nicholls, R.W. "Measured Transition
Probabilities for bands of the Schumann-Runge (B32; - xﬁzé) band
system of Molecular Oxygen'" J. Phys. B. - Mol. Phys. Vol. 3,

p. 1188-1191, (1970)

van der Held, E.F.H. (in Utrecht) "Intensitat und naturliche Breite von

Spektrallinien" Zeitschrift fur Physik. Bd. 70, p. 508-515, (1931)

Herzberg, G. ''Spectra of Diatomic Molecules" van Nostrand. (1950)

Holland, H.D. "The History of Ocean Water and its effect on the Chemistry

of the Atmosphere'" N.A.S. Symposium, Vol. 53, p. 1173-1183, (1965)

Hudson, R.D., Carter, V.L. & Breig, E.L. "Predissociation in the Schumann-
Runge Band System of 02 : Laboratory Measurements and
Atmospheric Effects" J. Geophys. Res. Space Phys. Vol. 74, No. 16,

p. 4079-88, (1969)



Hudson, R.D., Carter, V.L. & Stein, J.A. '"An Investigation of the Effect
of Temperature on the Schumann-Runge Absorption Continuum of
Oxygen, 1580 - 1950A" J. Geophys. Res. Vol. 72, No. 9, p. 2295-2298,

(1966)

Hudson, R.D. "Critical Review of Ultraviolet Photoabsorption Cross
Sections for Molecules of Astrophysical and Aeronomic Interest"

Revs. of Geophys. & Space Phys., Vol. 9, No. 2, p. 305-407, (1971)

.

Hudscen, R.D. § Carter, V.L. "Absorption of Oxygen at Elevated
Temperatures (300-900 °K) in the Schumann-Runge System"

J. Opt. Soc. Am., Vol. 58, p. 1621-1629, (1968)

Hudson, R.D. & Carter, V.L. 'Predissociation in Nz and 03" Can. J.

Chem., Vol. 47, p. 1840-1845, (1969)

Hudson, R.D. & Mahle, S.H. 'Photodissociation Rates of Molecular Oxygen
in the Mesosphere and Lower Thermosphere' J. Geophys. Res.,

Vol. 77, No. 16, P. 2902-2904, (1972)

Huebner, R.H., Celotta , R.J., Mielczarek § Kuyatt, C.E. "Apparent
oscillator strengths for Molecular Oxygen derived from electron
energy -loss Measurements' J. Chem. Phys., Vol. 63, No. 1,

p. 241-248, (1975)

Huffman, R.E. '"Absorption cross-sections of atmospheric gases for use

in aeronomy' Can. J. Chem., Vol. 47, p. 1823-1824, (1969)

van de Hulst, H.C. § Reesink, J.J.M. '"Line Breadths and Voigt Profiles"

Ap. J. Phys., Vol. 137, p.1302 - (1963)

Hunten, D.M. "The Escape of Light Gases from Planetary Atmospheres"

Journ. of Atmos. Sciences. Vol. 30, No. 8, p. 1481-1494, (1973)

Hunten, D.M. § Strobel, D.F. '"Production and Escape of Terrestrial
Hydrogen'" Journ. of Atmos. Sciences. Vol. 31, No. 2, p. 305 -

317, (1974)



Jansson, P.A. § Korb, C.L. "A Table of the Equivalent Widths of Isolated
Lines with Combined Doppler and Collision Broadened Profiles"

J.Q.S.R.T. Vol. 8, p. 1399-1409, (1968)

Jarmain, W.R. '"Franck-Condon Factors from Klein-Dunham Potentials for
the V" = 0 Progression of the Schumann-Runge System of 02" Can.

J. Phys. Vol. 41, p. 1926-1929, (1963)

Jarmain, W.R. § Nicholls, R.W. "A Theoretical Study of the v'-0,1,2
progressions of Bands and adjoining Photodissociation Continua
of the 02 Herzberg I System" Proc. Phys. Soc. Vol. 90, p. 545-

553, (1967)

Johns, J.W.C. § Lepard, D.W. '"Calculation of Rotation-Electronic Energies
and Relative Transition Intensities in Diatomic Molecules'" J.

Mol. Spect. Vol. 55, p. 374-406, (1975)

Julienne, P.S. § Krauss, M. 'Predissociation of the Schumann-Runge

Bands of 02" J. Mol. Spectr., Vol. 56, p. 270-308, (1975)

Julienne, P.S. " 32; - 32; Coupling in the 0 B32; predissociation"

J. Mol. Spectr., Vol. 63, p 60-79. (1976)

Kavanagh, R.W. § Penner, S.A. "Nomogram for the Evolution of Blackbody
Radiancy and of Peak and Total Intensities for Spectral Lines with
Lorentz Countour'" J. Opt. Soc. Am., Vol. 43, No. 5, p. 383-389,

(1953)

Kavanagh, R.W., Bjarnerud, E.K. § Penner, S.S. "Nomogram for the
Evaluation of Blackbody Radiancy and of Peak and Total Intensities
for Spectral Lines with Doppler Countour" J. Opt. Soc. Am., Vol. 43,

No. 5, p. 380-384, (1953)

Kielkopf, J.F. 'New Approximation to the Voigt Function with applications
to Spectral-Line Profile Analysis" J. Opt. Soc. Am., Vol. 63, No. 8,

p. 987-995, (1973)



Kockarts, G. 'Penetration of Solar Radiation in the Schumann-Runge Bands
of Molecular Oxygen' Book Title: 'Mesospheric Models and Related

Experiments'" Fiocco (Ed) p. 160-176, (1971)

Kopfermann, H. & Ladenburg, R. (in Berlin-Dahlem) 'Untersuchungen Uber
die Anomole Dispersion angeregter Gase. V. Teil. Negative Dispersion
in angeregtem Neon" Neits f. Physik. Vol. 65, p. 167-188, (1930)
Knauss, H.D. § Ballard, S.S. 'Rotational Structure of the Schumann-Runge

Bands of Oxygen in the Vacuum Region'" Phys. Reviews., :Vol. 48,

P. 796-799, (1935)

Ladenburg, R. § Reiche, F. "Selektive Absorption" Annln. Phys. Vol. 42,

p. 181-209, (1911)

Lawrence, G.M. § McEwan, M.J. "Production of 0('S) from Photodissociation

of 02" J. Geophys. Res. Vol. 78, No. 34, p. 8314-8319, (1973)

Lee, P. "Photodissociation and Photoionization of Oxygen (02) as Inferred
from Measured Absorption Coefficients'" J. Opt. Soc. Am. Vol. 45,
No. 9, p. 703-709, (1955)

Lewis, B.R., Carver, J.H., Hobbs, T.I., McCoy, D.G. and Gies, H.P.F.
"Experimentally Determined Oscillator Strengths and Linewidths
for the Schumann-Runge Band System of Molecular Oxygen - I.
The 6-0 - 14-0 Bands' J. Quant, Spectrosc. Radiat. Transf. Vol. 20,

No. 2, p. 191-203, (1978)

Lewis, B.R., Carver, J.H., Hobbs, T.I., McCoy, D.G. and Gies, H.P.F.
"Experimentally Determined Oscillator Strengths and Linewidths
for the Schumann-Runge Band System of Molecular Oxygen - 11

The 2-0 - 5-0 Bands. (In Press)

Meadows, A.J. ''The Atmospheres of the Earth and the Terrestrial Planets :
Their Origin and Evolution' Physics Reports (Section C of Phys.

Letters). Vol. 5, No. 4, p. 197-236, (1972)



Metzger, P.M. § Cook, G.R. '"A Re-Investigation of the Absorption Cross-
Sections of Molecular Oxygen in the 1050-1800A Region" J.Q.S.R.T.

Vol. 4, p. 107-116, (1964)

Minzner, R.A. "The 1976 Standard Atmosphere and its Relationship to
Earlier Standards" Revs. of Geophys. & Space Phys., Vol. 15,

No. 3, (1977)

Mitchell, A.C.G. & Zemansky, M.W. 'Resonance Radiation and Excited Atoms"

Cambridge Univ. Press (1934)

Murrell, J.N., & Taylor, J.M. 'Predissociation in diatomic spectra with
special reference to the Schumann-Runge Bands of 02" Molecular

Physics, Vol. 16, No. 6, p. 609-621, (1969)

Nicolet, M. "Stratospheric Ozone : An Introduction to its Study" Revs. of
Geophys. & Space Phys., Vol. 13, No. 5, p. 593-635, (1975)
Nielsen, J. Rud., Thornton, V. § Dale, E. Brock. 'The Absorption Laws
for Gases in the Infra-Red'' Reviews of Modern Physics. Vol. 16,

Nos 3 & 4, p. 307-324, (1944)

Ogawa, M. & Yamawaki, K.R. '"Absorption Coefficients of 0, at the Lyman-a
Line and of other 02 Transmission Windows' Applied Optics,

Vol. 9, No. 7, p. 1709-1711, (1970)

Ogawa, M. "Absorption Coefficients of 02 at the Lyman-a Line and its
Vicinity'" J.G.R. (Space Physics) Vol, 73, No. 21, p. 6759-

6763, (1968)

Ogawa, M. & Yamawaki, K.R. '"Forbidden Absorption Bands of 0, in the
Argon Continuum Region" Can. J. Phys. Vol. 47, p. 1805-1811,

(1969)

Olivero, J.J. & Longbothum, R.L. "Empirical Fits to the Voigt Line Width :

A Brief Review" J.Q.S.R.T. Vol. 17, p. 233-236, (1977)



Pauling, L. and Wilson, E.B. '"Introduction to Quantum Mechanics"

McGraw Hill (1935)

Penner, S.S. '"Quantitative Molecular Spectroscopy and Gas Emmissivities"

Addison-Wesley (1959)

Penner, S.S. & Kavanagh, R.W. '"Radiation from Isolated Spectral Lines with
Combined Doppler and Lorentz Broadening'" Journ. Opt. Soc. Am.

Vol. 43, No. 5, p. 385, (1953)

Plass, G.N. § Fivel, D.I. "Influence of Doppler Effect and Damping on
Line Absorption Coefficient and Atmospheric Radiation Transfer"

Astrophys. J. Vol. 117, p. 225 - {(1953)

Posener, D.W. "The Shape of Spectral Lines : Tables of the Voigt Profile

o 2
e” dy  Aust. J. Phys. Vol. 12, p. 184-196, (1959)
p
—00 3.2 + (v_y)z

3

Prinz, D.K. & Brueckner, G.E. 'Observations of the 0, Colum Density
between 120 and 70 km and Absorption Cross Section in the
Vicinity of the H Lyman-o' J.G.R. Vol. 82, No. 10, p. 1481-

1486, (1977)

Purcell, J.D. § Tousey, R. "The Profile of Solar Hydrogen Lyman-o''" J.G.R.

Vol. 65, No. 1, p. 370-372, (1960)

Quessette, J.A. '"On the Measurement of Molecular Oxygen Concentration by
Absorption Spectroscopy" J.G.R. (Space Phys) Vol. 75, No. 4,

p. 839-844, (1970)

Raff, R.A. § Meaburn, G.M. 'Photochemical Reaction Mechanisms for
Production of Organic Compounds in a Primitive Earth Atmosphere'

Nature, Vol. 221, p. 459-460, (1969)

Ratner, M.I. § Walker, J.C.G. '"Atmospheric Ozone and the History of Life"

Journ. Atmos. Sciences. Vol. 29, No. 5, p. 803-808, (1972)



Rubey, W.W. '"Geologic History of Sea Water" Bulletin of the Geologic

Soc. of Am. Vol. 62, p. 1111-1148, (1951)

Samson, J.A.R. '"Techniques of Vacuum Ultraviolet Spectroscopy' John

Wiley § Sons, (New York) (1967)

Schaefer III H.F., § Miller, W.H. '"Curve Crossing of the BaZ; and 3ﬂu
States of 0. and its Relation to Predissociation in the
Schumann-Runge Bands' J. Chem. Phys., Vol. 55, No. 8, p. 4107~

4115, (1971)

Shardanand § Prasad Rao, A.D. '"Collision Induced Absorption of 0 1in

the Herzberg Continuum'" J.Q.S.R.T. Vol. 17, p. 433-439, (1977)

Shardanand "Absorption Cross Sections of 02 and 0, between 2000
and 2800A" Phys. Rev. Vol, 186, No. 1, p. 5-9 (1969)
Smith, L.G. § Miller, K.L. "The Measurement of 0, Number Density
by Absorption of Lyman-o'" J.G.R. Vol. 79, No. 13,

p. 1965-1968, (1974)

Tatum, J.B. & Watson, J.K.G. "Rotational Line Strengths in

+ - + e .
% %" Transitions with Intermediate Coupling" Can. J.

Phys. Vol. 49, p. 2694-2703, (1971)

Tatum, J.B. "Honl-London Factors for 3Zi - 3Zi Transitions"
Can. J. Phys., Vol. 44, ©p. 2944-2946, (1966)
Tatum, J.B. 'The Interpretation of Intensities in Diatomic Molecular
Spectra' Astrophys. Journal, Supplement Series, Vol. 14,
p. 21-56, (1967)

Thompson, B.A., Harteck, P. § Reeves, R.R. (Jnr) "Ultraviolet
Absorption Coefficients of C€O2, CO, 02, H»0, N0, NHz, NO,
S0, and CH, between 1850 and 4000A" J.G.R. Vol. 68,

No. 24, p. 6431-6436, (1963)

Thorne, A.P. '"Spectrophysics'" Chapman J. Hall, London (1974)



Thrane, E.V. § Johannessen, A. '"A Measurement of the Extinction of
Solar Hydrogen Lyman-o radiation in the Summer Arctic Mesosphere"

Jourm. Atmos. Terres. Phys. Vol. 37, p. 655-667, (1975)

Turco, R.P. '"Photodissociation Rates in the Atmosphere below 100 km'"

Geophysical Surveys 2 p. 153-192, (1975)

Veseth, L. § Lofthus, A. "Fine Structure and Centrifugal Distortion in
the Electronic and Microwave Spectra of 0, and SO2" Mol.

Phys. Vol. 27, No. 2, p. 511-519, (1974)

Watanabe, K., Inn, E.C.Y. § Zelikoff, M, '"Absorption Coefficients of
Oxygen in the Vacuum Ultraviolet'" J. Chem. Phys. p. 1026-1030,
(1935)

Weeks, L.H. 'Determination of 0z Density from Lyman-o Ion Chambers"

J.G.R. Vol. 80, No. 25, p. 3655-3660, (1975)

Weissler, G.L. § Lee, P.O, '"Absorption Coefficients of Oxygen in the
Vacuum Ultraviolet'" JJ. Opt. Soc. Am. Vol. 42, No. 3,

p. 200-203, (1952)

Wilkinson, A.G. § Mulliken, R.S. 'Dissociation Processes in Oxygen

above 1750A" Astrophys. Journ. No. 125, p. 595-600, (1957)

Yamada, H.Y. "Total Radiances and Equivalent Widths of Isolated Lines
with Combined Doppler and Collision Broadened Profiles' J. Quant.

Spectrosc. Radiat. Transfer, Vol. 8, p. 1463-1473, (1968)

Young, C. '"Calculation of the Absorption Coefficient for Lines with
Combined Doppler and Lorentz Broadening" J. Quant. Spectrosc.

Radiat. Transfer. Vol. 5, p. 549-552, (1965)





