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ST]MMARY

In this thesis, three problems of inviscid free-surface

hydrodynamics are investigat.ed. The behaviour of the fluid at

the free surface is governed by non-linear equations, and the

free surface of the stream is disturbed by an immersed body.

The body may be regarded as blunt, in the sense that its
forward face is somewhere perpendicular to the direction of

the flow of the oncoming stream. There is thus a stagnation

point on the forward face of the bodyr so that approximate

theories which involve assumptions of body slenderness may

not be applied directly.
The first of these problems is discussed in chapter one.

Here, a blunt-nosed body, such as a bridge pier, is considered

to be standing in a fast-flowing shallow stream. The non-

linear shallow water equations are used, and the bow \¡rave

upstream of the body is regarded as a shock front (hydraulic

jump), across whÍch suitable jump conditions are prescribed.

The problem is then solved inversely, by assuming a known

shape for the upstream bow wave, and. seeking to determine the

position and shape of the body. The flow variables are

expressed as Taylor series expansions about the bow vrave, and

the computer is used to obtain numerical values for the coeff-
icients. Several singularities in the flow field are discovered

and discussed.

The second problem, discussed in chapter two, concerns

two-dimensional flow of an ideal fluid in a horizontal stream,

attached to the bottom of which is a semi-circular obstruction.



Infinitely far upstream, the fluid flows uniformly, with a

known Froude number F A new linearized theory is presented,

which is valid for semi-circular obstructions of small radius,

and accounts for the behaviour of the fl-uid at the stagnat.ion

points on the bottom. This theory predicts a train of down-

stream waves whenever the flow is subcritical (f < 1) , and

a symmetric wave-free surface profile whenever the flow is
supercritical (r > 1). The exact non-linear equations are

then solved numerically at the free surface using a boundary-

integral technique and a Newton-Raphson procedure. Non-linear
solutions possessing a train of downstream waves are obtained

for F < 1, and solutions free of waves for F > 1 The

non-rinear results suggest that the validity of the wave-like

solution may extend into F > 1 , overlapping with the domain

of validity of the wave-free solutions.
In chapter three, the semi-circular obstruction of the

previous chapter is generarized to include the case of a semi-

elliptical body attached to the bottom. Attention is confined

to the subcritical region F < r , where it is shown that, for
ellipses of certain special lengths, the non-rinear d.ownstream

wave ampritude may be made to vanish, resulting in zero wave

resistance.
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I

CHAPTER ONE

SUPERCRITICAL FLOW ABOUT A BLUNT OBSTACLE

IN SHALLOW T¡üATER

1.1 Introduction

The topic of the present chapter represents a direct

extension of the now classical blunt-body problem of gas-

dynamics to a similar problem arising in shallow-water theory.

Herer \¡/ê consider a bl-unt object, such as a bridge pier,

immersed in a supercritical water stream, and supporting a

detached bow shock-wave, oI bore. The problem is formulated

inversely, that is, the free-stream Froude numloer and the

shape of the shock-wave are specified in advance, and it is

then required to determine the values of the flow variables

downstream and the shape of the body. The shock conditions

are used to relate flow quantities on the upstream and down-

stream sides of the shock, and so serve as initial data for

the partial differential equations describing the behaviour

of the fluid in the shock laYer.

The earliest attempts to solve the blunt-body problem

of gas-dynamics involved formulating the probl-em inversely,

as in the present study, and seeking to represent the flow

variables in the shock layer as Taylor-series expansions about

the shock-wave (see for example Cabannes (1951)). However'

it was pointed out by Van Dyke (I95Ba, 1958b) that these

Taylor series describe not only the region of physical interest
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downstream of the shock wave, but also a physically fictitious

region upstream of the shock where there eiists a singrular

Iine, corresponding to an envelope of outgoing characteristics.

As this singular line apparently always lies closer to the

shock than does the body, the series expansions do not include

the body within their domains of convergence. Thus' attempts

to locate the body by simply summing terms in the power series

are unsuccessful, since the series themselves become divergent

in the vicinity of the body. Accurate results may neverthe-

less be obtained at the body, ho\,rrever, by devising some method

of analytic continuation to extend the range of usefulness of

the series downstream. Some of the earlier methods for doing

this are reviewed by Hayes and Probstein (1966) and Van Dyke

(le75).

solutions to the gas-dynamic blunt-body problem have

been produced more recently by schwartz (I97b,1975) . The

problem is again formulated inversely and the flow variables

in the shock layer are expressed as Taylor-series expansions

about the shock apex. The coefficients of the Taylor-series

are computed to high order using a digital computer to perform

the necessary arithmetic, and the series are then recast as

Padé approximants (rational fractions) in order to provide the

required analytic continuation downstream. For the case of

an axisymmetric body supporting a paraboloidal bow-shock wave'

Schwartz (I97 4a) demonstrated that he coul-d accurately locate

the position of the body as far as 200 shock-nose radii down-

stream, where his results showed substantial agreement with

far-field asymptotic solutions " In a later investigation

of the more general planar asymmetric problem in which the
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shock is set at an arbitrary angle of attack to the upstream

flow, Schwartz (1975) identified several singular l-ines within

the flow region downstream of the shock, and demonstrated that

the streamline of maximum entropy which intersects the shock

at right angles is not generally the body streamline.

It is well- known that the non-linear equations of shallow-

water theory are analogous to those of gas-dynamics for an

hypothetical gas having an adiabatic exponent Y = 2 (Preiswerk

(1938))*; indeed this so-called hydraulic analogy is often

used as a means of flow visualization for the supersonic blunt-

body problem of gas-dynamics (see for example Stoker (1957)

and Werlé (1973) ) . The shallow-water blunt-body problem is

also of interest in its own right, since it models such situ-

ations as the flow about a bridge pier in a supercritical-

stream. It may also serve as a first approxj-mation to the

fl-ow near the bow of a non-sl-ender ship.

Recently, Pandolfi and Zannettí (1977) reported a

numerical solution to the shallow-water blunt-body problem,

in which a body was specifj-ed and the position of the shock

found by a time-dependent iterative technj-que. The work

presented in this chapter aims to complement that of the above

authors, by concentrating on the mathematical structure of

these solutions, and the extent to which they differ from the

gas-dynamic blunt-body solutions.

there is also a very close analogy between the equations of
shallow-water theory and those describing incompressible fluid
flow in an elastic-walled tube, as is discussed by Forbes (1981).
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L.2 Formulation of the Probl:em

Consider a cartesian coordinate system with the x- and

z-axes lying along the undisturbed free surface, and the y-

axis pointing vertically, as in Stoker (1957). The shock

apex is at the origin, and the shock nose radius is \
Upstream, Lhe flow is uniform, with depth H- and velocity

V- , and makes an angle o with the x-axis. The fluid is

subject to the downward acceleration of gravity, I This

dj-mensional coordinate system is shown ín Fig. 1.1.

We proceed immediately to dimensionless variables, under

the shallow water approximation H-/\ + 0 Thus the hori-

zontal lengths x and z arre made dimensionless with respect

to \ , while H denotes the total depth of fluid made dimen-

sionless with respect to H_ . The x- and z-components of

velocity, U and W , are referred to the quantity V-

Under this approximation, the vertical component of velocity

is assumed to be zero, and the equations of motion in the

shock layer become (Stoker (1957) )

UU +WU +H /E ( I. 1a)
x

x

z x
0

0

2

UW +VüW +H /F: ( t. lb)

( 1.Ic)

z

(uH)
x

+ (wH) 0 t
z

where the upstream Froude number is given by

V

(g H-)%
F

and subscripts denote partial differentiation.
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Figure 1.1 The dimensional coordinate system.
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Equations ( f . 1) are no\^/ transf ormed to the coordinate

system of Van Dyke (1958b). The shock is assumed to be a

conic-section of the form

22=2x-Bx2 ,

where B is a measure of the shock bluntness. (Thus B = 0

describes a parabola, B = 1 a circlet etc.) The new ortho-

gonal curvilinear coordinate system is defined by the relations

*rr - t(r - 862) (r + 2B¿ * Be ')l*j, B I o

x= {

z = g(t + E)

Thus the shock corresponds to the line e = 0 , as shown in

Fig. 1.I. Denoting the components of velocity in the E-

and e-directions by u and v respectively, equatíons (I.t)

become

R( ') ( 6) i (uur + HË /82 ) [cE2 + ( 1+e) ']-v'c1]

+ il t) (s) {vu" [cE2 (I+e)21 + uv(t+e)] = 0 (I.2a)

Z(82 2e ¿2) B=0

(1+s1 z1 u2 (t+e) ] = o

(1.2b)

,

+

R(') (q) {uv, [cE2 + (1+e) 2] + uvc6]

R(t) (e){(vv + H"/F2) ICE2 ++
€

R(') (E) {cEnu + lc|z ( I+e) 'l (sn)+ Ìt

+ R(1) (r){(l+e)Hv + lcE2 + (l+e)'l(sn) 0 I

?

e

( 1. 2c)
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\^rhere

and

R( 
t) (r)

*(t'(E)

Equations (I.2a) and (I.2b) are

and equation (1.2c) is the mass

The conservation of mass

shock results in the following

( 1.3a)

( t. 3b)

e-momentum equations,

equation.

upon crossing the

e=0:

c-1-B

[I + 2Be + Br']%

t1 eE'lh

the E- and

continuity

and. momentum

conditions at

H ,( tL + BF2 sin2ol% r) ( 1. 4a)

( 1. 4b)

(1'4c)

and the free-stream

from the latter.

2sin0v=

where 0

velocity

Thus

[1+8F2sin2 Of - I

u=cosO,

is the angle between the shock

vector, measured anti-clockwise

sin0

Equations (1.4) may be obtained

(le60).

Once the functions u'v

from equations (1.2) and (1.4),

obtained by integrating

-E sincl + t1-BE'f% "oso
Ír+cEzlv"

from Wehausen and Laitone

and H have been determined

the streamfunction V is

û e

7/^

(Hu) (1.5)
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subject to the boundary condition

6coss +

[coso -
$t rr.-" E'l%-1) sincr, B

B

0

0

I
rl(8,0) ( 1.6)

4E2 sj-na

The streamline is assumed to pass through the shock

apex.

1.3 Approximate sol-ution f or symmetric flow (o 0)

Before proceeding to investigate the exact solution of

the full system of equations (1.2) and (1.4) r \¡rê first present

an approximate solutj-on for the position of the stagnation

point at the nose of the body, for the case ot = 0 This

result immediately yields the so-called standoff distance,

which is the minimum distance between the shock and the body,

since for cr = 0 the standoff distance is simply the distance

between the stagnation point and the shock apex.

When cr = 0 , the resulting flow field is symmetric

about the line z = 0 , and so the body streamline is ú = 0

By symmetry , W, U, and H, are all zero on z = 0 , and

the stagnation point is thus the point on this line for which

[J = 0 On z = 0 , equation (1.1a) becomes

UU +H /T2x x' æ
0

which may be integrated immediately to yield

I
I

1l=0

+

b

H
pZ

2 (2b'- 3b+3¡
]5-IITETTT

+ gF2 v,where

4v2

(1

(1.7)
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The constant on

been determined

height of water

setting [J = 0

the right hand side of equation (I.7) has

from the shock conditions at z = 0 The

at the stagnation point, Hrrue , is found by

in equation (1.7), resulting in the expression

H
3b+3 (r.8)

stag b x_,

Up to this pointr ño approximations have been introduced.

To obtain an approximate solution for the position of

the stagnation point in the flow fieldr wê consider equation

(1.lc) evaluated along z = 0:

UH+UH (1.e)
x

2b2

The quantity W, is a function of x

cannot be determined without reverting

equations. However' if we suppose W

constantalong z= 0, thentheshock

along z= 0, and

to the full system of

to be approximately

conditions give

,4

+WH=0
zx

z

a
1

W

a
2

U

z

b3
b1 (1.r0)

( r.11)

Eliminating II and W, from equation (1.9), by virtue of

equations (1.7) and (1.10), yields the following equation

for the determination of U along z = 0 :

2UU 2+U 0a
3x x

with

â1

ã2

'(g+)

4 (2b'- 3b+3 )
(b-1) (b+1) (b-3)

2b2 -3b+3ê3
4
b-1 2 +
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Equation (f.11) is a non-linear ordinary differential equation

which may be integrated by separation of variables to yield

a1u * âtêg-âz ["fGt-u)- 2/ã, \ fi, +u/

( 1. 12)

where the constant of integration, â4 , is determined from

the shock conditions to be

2a.
crq - 6-I '

,Q,N
â1ê3-â2

2/ã'
(b-1) /as-2
(b-1) ,/ã.r+2

+ 0(1),

as F +1

At the stagnation Point ,U=0randconsequentlyx
s tag

X.tus = â4 , (1.13)

with the constant â4 given by equation (1.12).

As the upstream flow approaches the critical speed

(F_ = 1), the shock strength tends to zero and equations (1.8)

and (1.13) become

3-> + o(F -r),
stag 2

H

x -> ?lt . ,É n"( 'Æ-r\l r
ßillF=s tag

Thus the body moves infinitely far downstream as F- + 1

In the high speed limit (F- + o") , equations (1.8) and

(f.13) become

s tag
-> /-zp + o(l),H

x
s tag

->
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so that the shock layer is of infinite height and infinitesimal

thicknessfor F +co

L.4 The Series Sol'ution

The dependent variables urv and H in equations (I-2\

are expressed as Taylor-series expansions about the shock apex.

For example, the velocity u is writ.ten

Ei

These equations are then substituted into equations (f.2) to

yield a system of three recurrence relations, from which the

coefficients ü, j , t, j and H- at any order may be deter-

mined as sums of products of lower order coefficients. For

example, the e-momentum equation (1.2b) yields the system

æ

I u.." rJi =O

oo

Fu= L
j =o

ô

where

F

FÍ

and

m=O

m=O n=0

R
f

^( 3)
(J

mn

^(4)(:

E'(3)
t-fíl

Cu

o

'i

i
f

( 2) +

m-2 rn mn

i ¡')rÍ ol
4 s r. J.-ss=O

+

+u +2u

irj 0r712r...

+umrn-l tn ,n -2

0 ( 1. 14a),

(3)
ij

, ,.
i t ti-m+t) "l.'l'r, -,n+ 1e j,-n * cr--1, ,,.ui --, j.-, ]n=O

I
( r. r4b)

4) II { ( j-n+r) 
"li' r -m¡ j.-n * 1 (t-,, *t,n, ,* I tr -., j.-, }

+ ulr, j+r) (cH,_ 2,i.+t H,,¡.*r) + 2irii + (j-r)",,,.-r]

+V
mfl

+v
mn

Cvm-2 ,î
+2vmrn-1 fr, n-2

( 1. I4c)
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The terms Rl 
t ) and RÍ')

Jr
are the coefficients in the

Taylor-series expansions of the functions n( t) (r) and

il') (E) defined in equations (1-3) - rf any element has a

negative subscript, then that element takes the value zero.

The system of recurrence relations thus derived from

equations (1.2) \^/as programmed in the FoRTRAN language on a

CDC CYBER l-73 computer, to obtain numerical values of the

coefficients. Accumulated roundoff error in the coefficients

was not a significant concern, since the programs hlere written

for the DOUBLE PRECISION mode, which provides some 28 signif-

icant figures accuracy. In order to minimize the total

computing time, Several intermediate products (such as Fl 3)
i

and FÍ i) in equations (1.14) ) \^¡ere also stored along with
t,

the desired coefficients; consequently the total running time

is proportional to the fourth power of the order to which the

coefficients are calculated. The coefficients \^/ere checked

by a separate program which resubstituted them into the original

equations and verified that these \^/ere satisfied at each order.

To begin the computation, the shock conditions (1.4) are

expanded as po\^/er-series in E , up to a chosen order N

In the case of the depth H , for example, this yields the

coefficients Hoo rHro r... rHr,ro The first application of the

recurrence relations derived from equations (1.2) then yields

the coefficients Hor rH, t,...rHN-',1 , the second yields

Hor,Hr",... rHN-2 ,2 and so on' Thus after having, applied the

recurrence relations N times, a triangular atray of coeffic-

ients for the variable H(6,e) is obtained. The series for

the streaynfunction U is then constructed by expressing the
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right hand side of equation (1.5) in perturbation series

form, and integrating term by term with respect to e .

As with the supersonic blunt body problem, the series

expansions for the dependent variables urv etc. fail to

converge at the body due to the presence of a limit line in

the physically fictitious upstream region, so an approximate

method of analytic continuation is required. Following

Schwartz (1975), we shall use Padé fractions for this purpose.

The double series are first reduced to single series along

l-ines E/e = constant, by the following rearrangement:

i
æ

=TL
j =o

H
"(,,:) 

= Ho

tm,znl "(rr:)

H H E

t-

I
I

æ-kIII
¡=s L¡ =¡

gr k
H(6,e)

This form ensures

triangular arrays

of the form

c
¡J jrk-j

o

+ +

where m*n = N , the order to which the coefficients

known. This expression can be recast as an [m/n]

fraction

that the most efficient use is made of our

of coef f icients. The function H is no\tl

+ H e-*n + o(r-*n*t)
m+n

(1.Is)

are

Pad.é

2
+cH

2

a e+a
2me +...+a e

2 m (r'*'*t) (r.lG)
l+b etb c

2

2-n+...+b a

The notation [m/n] refers to a rational fraction having m

zeros and n poles in the complex e-p1ane. The coefficients

a, , i = 0r1r...rm and b, , i = 1r...rn are those which

make the Taylor series expansion of equation (1.16) agree

+a
0
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with equation (1.15) up to order m*n*l Padé fractions

can be calculated convenientty by the epsilon algorithm of

Wynn (1966).

To find the body corresponding to a given shock, it

is first necessary to locate the stagnation point in the flow

fie1d, where tt = v = O The coordinates (E'e) of the

point satisfying this condition may be found by the two-

dimensional Newton-Raphson iteration

(uv -vu ).€€t
(uv
'Ëe -vule

c-q-i+f i

c

(uv -vut ).
Ix

e ,i+1 UV-VUeË€l

using Padé fractions to sum the series for ürV and their

derivatives. Once the position of the stagnation point is

known, the value of the streamfunction and the total water

depth H may be found there. The body is then obtained by

tracing the stagnation streamline by a Newtonian iteration.

The position of the critical line in the flow field may

also be obtained from the power-series solution. If F

denotes the Froude number in the shock 1ayer, then the critical

line is a contour along which p = 1 , and is analogous to the

sonic line in the gas-dynamic blunt-body problem. From the

definition of Froude numberr üIê have

E2 = E2 u'Iu' (1.17)
H

Thus

hand.

the critical line may be found by expressing the right

side of equation (1.17) in perturbation series form, and
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z shock
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0.5
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The body and flow field for a parabolic shock

(¡=O) with F =10 and cx=0.

X

Figure 1.2



r6.

tracing the contour along which F2 = 1 , by a Newtonian

iteration. The poj-nts where the critical line intersects

the shock are known from the shock conditions, and serve as

starting points for the tracing.

1.5 Presentation of Results

f .5(a) Sgnnetric Case (cr = 0).

When the angle o between the free-stream velocity

vector and the x-axis is zero, the resultant flow field is

symmetric about z = 0 , and the body streamline is U = 0

This is illustrated in Fig. I.2 for the case of a parabolic

shock (B = 0) at zero ang'Ie of attack to an incident stream

with F_ = 10 . Here, the critical l-ine and body streamline

\^¡ere computed as lLs/Lsl Padé approximants, although they

are graphically indistinguishable from resufts produced with

much lower order Padé fractions. The critical line has been

extended some distance into the body and into the fictitious

analytic continuation of the shock layer upstream where it.

becomes tangent to the upstream limit line shown on the

diagram. The position and nature of the limit l-ine were

determined by the graphical technique of Domb and Sykes (1957),

some examples of which wilt be given later. As with the super-

sonic blunt-body problem of gas-dynamícs, the upstream limit

line is of the square-root type, and is indicative of a fold

in the solution surface, similar to that shown by Schwartz

(1974ä) " It may therefore be successfully removed by series

reversion; for example if the series for the Froude number

Fis
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F(E,e) Fo(E) + Fr(E)e + Ez(E) e2 +

tJ. en inverting the series gives

e(E'F) e I (F) tF-Po ( E) I + ez (F) [F-Fo (Ð ]2 +

Thus the function ¡'(E,e), which becomes double-valued at

the upstream singular 1ine, is transformed to the single-

valued function e(E,F) . Series reversion was used to

obtain the critical line in the upstream region, and to check

on the accuracy of the body found by Newton's method.

In the blunt body problem of gas-dynamics, the density

and e-direction velocity at the shock both remain finite as

the free-stream Mach number is made infinite,provided that

the ratio of specific heats, y , is greater than l-. As a

result, the width of the shock layer attains a finite limiting

value for infinite free-stream Mach number. This situation

is in sharp contrast to the present problem, in which the

analogous quantities, H and v , become infinite and zero

respectively at the shock as F_ -> oo , which may be seen from

the shock conditions (1.4). In addition, the width of the

shock layer in the present problem becomes zero for infinite

free-stream Froude number, a result already anticipated by the

approximate solution of Section 1.3.

In Table 1.1, the water depth at the stagnation point,

H. , and the standoff distance, x--, are presented asstag sfag

functions of the Froude number F_ . These resufts \^lere

obtained from the 30-th order solution (using lls/Lsl Padé

approximants), for the case of a parabolic shock at zero angle

of attack to the upstream f1ow. Notice that the results for
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TABLE 1.1 Standoff distance and water depth at the

stagnation point as functions of F- , for
parabolic shock at zero angle of attack.

the stagnation depth H.tue shown in Table l-. I agree with

the exact result (equation (1.8)) to at least seven significant

figures, indicating the degree of convergence of the Padé fractions

at the stagnation point.

Fig. 1.3 shows the standoff distance as a function of F- t

obtaj-ned both from the 30-th order series solution, and from

the approximate solution of Section I.3 (equation (1.13)). For

large F_, the high-order series solution appears to be approach-

ing the result x-. ^ - F:t , which is predicted by the approx-
stag

imate solr¡tion. However, as F + t , the behaviour x.t"g

(F- 1) -' obtained from the .plto*i*.t" solution is not

confirmed by the 30-th order series solution. Instead, the
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accurate results tend to suggest that the standoff distance

may possibly remain finite as F + I

1.5 (b) Asgnnetri c Case (cl I 0) .

VrIe no\tr consider those situations in which

field is asymmetric, resulting from

o¿ between the free-stream velocity

The results for five different test

Table I.2.

a non-zero

vector and

cases are

the flow-

angle of attack

the x-axis.

summarized in

As described in Section I.1, the power-series solution

technique \^/as used by Schwartz (1975) in the blunt-body problem

of gas-dynamics to establish conclusively that the maximum

entropy streamline which intersects the shock at right angles

does not wet the body in asymmetric flows, and may lie either

to the windward or the leeward side of the stagnation stream-

Iine, depending on the magnitude of the shock bluntness para-

meter B . An analogous situation exists in shallow water

f1ows, as may be seen from Tab1e L.2. Here, the val-ue of

the streamfunction at the body, tooo, , is contrasted with

the streamline normal to the shock, ür.¡ , by means of the

difference Arl = {ib"dy i|,rN . AIso tabulated is the difference

Ag between the points where these two streamlines intersect

the shock, which may be calculated from equation (1.6). As

with the gas-dynamic blunt-body problem, the normal streamline

ü-- passes on the upstream side of the stagnation streamline.N

ü. . when B < 1 (giving a positive value for 
^U 

in Table,bdy

L.2) , and on the leeward side of the stagnation streamline

when B > 1 (A{; negative). For a circular shock (B = 1) '
the stagnation streamline and the normal streamline are' of
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course, identical, by virtue of the special symmetry of the

shock in this case. Thus the circular shock case serves

as a useful check on the accuracy of our results, and we

remark that the agreement between ü*, and VN is usually

in excess of eight significant figures when B = 1.

As the Froude number F- is increased, the stagnation

streamline and the normal streamline move closer together'

until- in the limiting case F_ -> æ , they become indistinguish-

able. This is because the shock layer now has zero thickness'

and by equation (1.4b) t v = 0 throughout. Thus the stagnation

point is simply a point on the shock for which ll = 0 , and

from equation (1.ac), this is precisely the point where the

flow is incident normal to the shock.

In the paper by Forbes and Schwattz (1981), a discussion

is given of the results for case 2, a parabolic bow shock wave

at I0o to an incident stream with F- = 5 The body and

critical line are plotted for the tQth, 20Lh and 30th order

solutions, and it is determined that, although the tQth order

solution is incapable of yielding the entire critical line'

the 20th and 3oth order solutions are completely indistinguish-

able at least over the subcritical region at the nose of the

body, indicating that the lL!/L}l Padé fractions of the 20th

order solution have converged sufficiently well- to describe

the region of interest near the nose of the body.

The resul-ts for case I are shown in Fig. L.4, for the

30th order solution. The flow-fie1d produced downstream of

the shock is somewhat atypical of ftow-fields obtained with

other shock shapes, since for this case, the subcritical

region on the upstream side of the body apparently extends
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downstream to infinity, so that the critical line never

intersects the body. On the leeward side of the flow, the

body and critical line do intersect, however, due to the

asymmetry of the flow. The hyperbolic bow shock wave depicted

in Fig. 1.4 possibly represents an unrealistic situation,

since the shock always makes a non-zero angle with the

incident free-stream; consequently the amount of energy

required to maintain such a shock is presumably infinite,

because the shock strength remains finite even as z2 -> oo

However, it may nevertheless sti1l be possible for the shock

to be loca1ly hyperbolic near the nose of the body in real

situations where such flows occur.

In Fig. 1.5 we display the results for case 4, an oblate

elliptical bow shock \^Iave at 10o to an incident stream with

F- = 5 The body, the critical line and the normal stream-

Iine are all shown on the diagram, and were obtained with

tß/Lsl Padé approximants formed from a 30th order solution.

It is evident that even a solution of this high order is

incapable of locating the entire critical line within the

shock layer, d.ue to the closeness of certain downstream

singular lines to the subcritical region. Ho\n¡ever' since

these singular lines cannot penetrate the subcrj-tical region,

by virtue of the fact that the differential equations of motion

are of etliptic type therer \¡Iê expect solutions of higher order

to be capable of yielding the critical line up to the point

where it intersects the body.

fn an attempt to fathom the mathematical structure of

the solution for case 4, we have endeavoured to locate all

the nearest singular lines r so defining the extent of the
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region available to any inverse solution technique. To do

thisr w€ have examined the function H(E,e) evaluated along

contours E/¿ = constant , âs in equation (I.15) - Along

these lines, H becomes a function of the single independent

variable e t and accordingLY, the coef ficients Ho 
'H 1¡H21" '

in the series (1.15) for tt(e¡E/e) may be examined to find

the nature and location of the nearest singularity in the

complex e-plane. To this end, we employ the graphical

ratio test of Domb and Sykes (1957). They observed that, for

functions of the tYPe

ô

a plot of "n/"n_, against

intercept L/eo and sloPe

theorem yields

ô
( 1. 18)

0r1r2,...

I/n is linear, with vertical

-(I+ô)/eo , because the binomial

f ( e) I
n I

Igc
n

K(eo-e)

r(eo-e)

,ô

.Cn(eo-e), ô

10,1r2,...
n=O

c In l+ô \
")

I
c eon-1

for these functions. Thus if the singularity ee of the

function tl(e¡E/¿) closest to the origin in the complex

a-plane is of the type (1.18), then a ptot of Hn/Hn_, against

L/n asymptotically approaches a straight line as n + æ

From the intercept and slope of this line, the radius of

convergence es of the series and the exponent 6 of the

singularity are estimated.

We have constructed a number of Domb-Sykes plots for the

function H(¿¡E/e) for different values of E/¿ . Two of

these are shown in Fig. 1.6. when E/e = 0.6, the coeffic-



27.

ients H, in equation (I.I5) are all of the same sign, and

so the nearest singularity lies on the positive real axis

of € t and represents a point on the upstream limit line.

The Domb-Sykes plot indicates that this singularity is of

the square-root type (ô = 0.5) and this is confirmed by the

fact that it may be successfully removed by series reversion.

When E/e - -4 , the coefficients H, have alternating

signs, and so the Domb-Sykes plot reveals a singularity

downstream of the shock which is again of the square-root

type. Two limit lines have been obtained in this fashion,

and are indicated in Fig. 1.5. The regular oscillations at

lower orders in both the Domb-Sykes plots in Fig. I.6 are due

to the existence of secondary singularities in the function

H(e;E/e).

Having thus located the primary singularity ee of

the function U(¿;E/e) for a range of values of E/¿ ' it is

often possible to increase the radius of convergence by mapping

the point es away to infinity using an Euler transformation.

This is achieved by changing to the new independent variable

g

" "o

Domb-Sykes plots may now be constructed for the new function

ft(ê¡e/e) to locate secondary singularities occurring in the

complex ë-pIane.

The Domb-Sykes plots constructed for the function

n(ê¡E/e) from the 3O-th order solution are in general imprecise,

so that the position of the new singularity can only be obtained

very approximately. The dashed lines in Fig. 1.5 indicate the

a
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suspected locations of three singular lines obtained from these

plots. A limit line is expected downstream of the shock on

the upstream side of the fl-ow at roughly the position indicated

on the diagr¿tm. A comparison of Fig. 1.5 with other similar

flows tends to suggest that this downstream limit line is most

probably of the square-root type, with ô - 0.5 . In addition,

the Domb-Sykes plots appear to indicate the existence of two

upstream limit lines distributed roughly symmetrically about

the stagnatíon streamline, and sketched in Fig. 1.5. The

value of the exponent ô along these lines cannot be determined

to within acceptable error bounds, although its sign would appear

to be negative. It is possible that this exponent may have

the approximate value ô - 0.43 found by Schwartz (1975) for

the analogous upstream limit lines in the gas-dynamic blunt-

body problem. Note that the limit lines on the leeward side

of the ftow intersect the shock at the singular point where the

shock becomes parallel to the upstream uniform flow.

Unlike the upstream timit lines which exist only in a

physically fictitious flow region, limj-t lines downstream of

the shock occur in a region of physical interest, and. indicate

the boundary of the region downstream in which the flow variables

are analytic. To proceed further downstream it is presumably

necessary to postul-ate some non-analytic behaviour in the flow

variables, such as a secondary embedded shock connecting the

two regions.
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t.6 Summary and Furth:er Remarks

The supercritical shallow-water blunt-body problem has

been sol-ved inversely by a power-series coordinate expansion,

for shocks which are assumed to be members of a one-parameter

family of conic sections. Certain similarities exist between

these flows and their gas-dynamj-c counterparts, although the

analogy with gas-dynamics is not exact, since the shock jump

conditions are different for the two problems. In particular,

in the infinite Froude number limit, the shock layer is of
j-nfinitesimal thickness and infinite height, and the normal

streamline and body streamline have become indistinguishable,

although they are normally separate and distinct for asymmetric

flows at finite Froude number.

Vlhen B > 0 , limit lines, associated with the jurnp

conditions at the shock, are apparently always present down-

stream and may become very close to the subcritical region at

the nose of the body when F_ is small and B is large.

Unlike their gas-dynamic counterparts, however, the downstream

Iimit lines in the present problem appear to move infinitely

far downstream as F_ -> æ , when the shock h/ave is parabolic

(S = 0). For hyperbolic shocks (B < 0), the shock \^/ave is

free of singular points, and so the region downstream of the

shock evidently does not possess limit lines; in fact, it

appears that the subcritical region may extend infinitely far

downstream for these cases. However, hyperbolic shocks possibly

do not represent a realistic situation, since they presumably

require an infinite amount of energy to maintain.
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In this chapterr vÍe have discussed only the flow about

b1unt, three-dimensional obstacles Ìn a shallow stream with a

flat, horizontal bottom. In principle, the t,echniques

employed in this chapter may be used to study the flow about

such obstacles in a stream with arbitrary smooth bottom topo-

graphy, although the analogy with gas dynamics would no longer

apply. In addition, some difficulty may be encountered wíth

the shock jump conditions, and the choice of realistic shock

shapes.

The equations of shallow-water theory are, of course,

unlike those of gas dynamics in that they are only an approx-

imation to the full inviscid equations of motion. The work

discussed. in this chapter therefore reveals two interesting

limiting cases where the assumptions of shallow-water theory

might not be expected to ho1d. The first such case is the

limit F_ -> æ , where the shock layer degenerates to an

infinitely thin water jet of infinite height in front of the

body. Whilst the assumption of zero vertical velocity

implicit in shallow-water theory is clearly violated, the

predictions of this theory are, however, not ent,irely unreal-

istic. Indeed, a very thin jet of great height in front of

the body is actually observed in such situations, although

this jet usually curves down and re-enters the upstre¿rm portion

of the flow. In addition, we might expect such a jet to be

sígnificantly influenced by viscosity and surface tension.

The second situation in which shallow-water theory would

appear to be inadequate is the limit F_ + I . In this case,

the standoff distance becomes large and the shock strength
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sma]I, so that the bore itself might perhaps become of the

undular type, being followed by a train of non-linear down-

stream v¡aves. Although the analysis of this situation would

undoubtedly be of great theoreticaJ- and practical interest'

the comptexity of this problem apparently places it beyond the

range of present techniques (and computers) . Specifically'

thê surface \4laves that are expected to appear within the shock

tayer as I'_ + I cannot be described by the simple shallow-

water theory of this chapter, and so some higher order theory

must be developed in which surface displacements on a scale

comparable to the water depth are taken into account. This

v/ould appear to be a difficuLt task, and it may even be nec-

essary to return to the full three-dimensional inviscid

equations of motion. In either case, it would no longer Seem

possibJ-e to impose boundary conditions at an assumed shock

\^rave upstream of the body, since the very concept of a shock

discontinuity within the flow is only valid within the context

of the shallow-water theory. The higher order theories needed

to describe the formation of waves in the region near the body

\^rould require detailed knowledge of the shock st¡ucture if

boundary conditions are to be imposed at the shock; since this

information is not kno\^rn ã priorìr being sought as part of the

solution, some atternpt would ultimately have to be made to

impose uniform flow conditions at upstream infinity.

Rather than attempt to treat this difficult problem

furtherr Wê instead retreat to the somewhat simpler, and not

entirely unrelated, consideration of two-dinensi onal flows about

submerged bodies. In the remaining chapters of this thesis,
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the non-linear surface \^¡aves

irregularity in the bed of a

generated by various tYPes of

stream will be discussed.
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CHAPTER TWO

TVIO-DIMENSIONAT GRAVITY FLOW ABOUT

A SUBMERGED SEMT-CIRCLE

2.L Introduction

In this chapterr wê consider the flow under gravity of

an incompressible, inviscid fluid in a channel, affixed to

the bottom of which is a semi-circular cylinder lying across

the channel bed at right angles to the oncoming flow. The

ftow is steady with uniform flow conditíons far upstream, and

may be regarded as two-d.imensional, since there is no variation

in flow condiÈions across the channel. The solution to this

problem may be of interest in determining the forces on a

cable lying on the ocean fJ-oor, for example. It may also

serve to indicate the mechanisms by which \^/aves are generated

by submerged loodies, such as submarines.

The motion of concentrated singularities beneath a free

surface is an o1d problem in fluid mechanics, and is closely

related to the topic of this chapter. Havelock (1927) calcul-

ated a tinearj-zed solution to the problem in which a dipole

moves with constant velocity beneath the surface of an

infinitely deep fluid at rest. He then assumed that, at some

first order of approximation, his solution would also describe

the flow about a circular cylinder beneath the surface of an

infinitely deep ftuidr âs well as the flow about a semi-circular

obstrucÈion on the bottom of an horizontal canal. Various
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other authors have presented similar linearized solutÍons to

problems of this type. The book by Kochin, Kibel' and Roze

(L964) contains detaíled and el-egant solutions for the cases

of a point vortex, a point source and a dipole moving beneath

the surface of an infinitely deep fluid. The corresponding

solutions for a fluid of fixed finite depth are given in

Wehausen and l,aitone (1960) .

The Havelock solution to the motion of a dipole beneath

a free surface was reconsidered by Tuck (1965). He showed

that the "body" produced in the fluid by the dipole is in fact

not closed, so th.at the front and back stagnation points lie

on different streamlines. Thus a linearized solution to the

present problem, to be discussed in Section 2.3, witl neces-

sarily differ from Havelockrs, since we sha1l require a closed

body aÈ all orders of approximation. In addition, Havelock's

solution results in a dispersion relation which describes waves

in an infinitely deep fluid, while the dispersion relation

resulting from our linearized solution describes a fluid of

finite depth. This fact is responsible for the existence of

a second class of solutions to our problèm, when the fluid flow

is supercriLical, which are symmetric about the semi-circle

and possess no waves.

Recently, a number of investigators have sought to retain

the free-surface condition in its exact non-Iinear form when

dealing with problems of this type. Von Kerczek and Salvesen

(L977) present a numerical solution to the two-dimensional

steady problem in which \^raves are produced on the surface of

a stream of finite depth by a given pressure distribution
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on the surface. The numerical method they ernploy is one which

they have successfully used in the solution of other similar

problems, and consists of placing a finite-difference grid over

t,he region of interest in the physical plane, and then iterating

to find the location of the free surface such that aII the flow

equations and boundary conditions are satisfied. Haussling

and Coleman (L977 ) describe the numerical solution of time-

dependent potential flow problems of great generality by a

boundary-fitting technique, in which a curvilinear coordinat,e

systern is generated numerically, so that lines in the new

coordinate system correspond to physical boundaries. Shanks

and Thompson (L977) show how this technique may be used to

solve free-surface problems numerically in which time-dependence

and even viscosity are included.

The problem of flow about a triangular wedge on the bed

of a sÈream has been investigated by Aitchison (L979)*, using

a variable finite-element technique. For subcritical flows'

solutions possessing a train of downstream waves are obtained,

while for supercritical flowsr the surface is free of waves.

In addition, a family of solutions has been obtained for which

the flow is subcritical on one side of the wedge and super-

critical on the other side.

In the present studyr wê treat the physical coordinates

as the unknowns of the motion, with the velocity potential

and streamfunction as the independent variables. Thus the

Iocation of the free surface in the inverse plane is now known.

The problem is then solved by a boundary-integral technique,

so that points in the numerical scheme need only be placed on

I express my appreciation to Dr. J.M. Aitchison for making a coPy
of her report available.
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the boundaries, rather than throughout the entire fluid region'

In addition, conformal mapping is used to transform the channel

bed into a straight Iine; consequent.ly, the boundary-integral

formulation of the problem involves only values of the flow

variables at the free surface, with the bottom condition

being satisfied automatically. As a result, it is now only

necessary to place points'in the numerical scheme at the free

surface. This formulation ensures maximum computational

efficiency when obtaining non-linear free-surface profiles'

2.2 Formulation of the Problem

we consider the steady, two-dimensional potential flow

of an inviscid, incompressible fluid. Far upstream, the

flow is uniform, with constant velocity c and fixed depth

H . The fluid is subject to the downward acceleration of

gravity g , and the radius of the disturbing semi-circle is

R"

The problem may immediately be non-dimensionalized with

respect to Èhe vel-ocity c and depth H . The velocity

potential Q and streamfunction ili are normalized with

respect to the product cH . The channel bottom is taken to

be the u - o streamline, so that the free surface is u = 1.

There is thus a two-parameter family of solutions to this

problem, dependent upon the depth-based Froude number

F

and the dimensionless circle radius
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R
co=E-'

A sketch of the non-dimensional coordinate system is given in

Fig. 2.I.
The irrotationality and incompressibility of the fluid in

Èhe interior is expressed by the usual Cauchy-Riemann equations

Ô =tf'x y

0 =-ü,yx

where the subscripts denote partial differentiation.

condition of no flow normal to the bottom y = h(x)

written

th* = v at Y = h(x)'

where

The

may be

(2.1)

(2.2)

h (x)
l"l ( o

l"l > cr

and L1 and v are the horizontal and vertical components of

velocity respectivety. At the free surface of the fluid, \¡Iê

must impose the Bernoulli equation

+82(u2+v2) + y = \82 + r (2.3)

It is convenient at this stage to introduce the complex

variables z=x+ iy and f-0+iû,andtheconjugate

complex velocity

\^/
df
M =u-rv

Now the solut,ion of the above stated problem can be greatly
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assisted by the choice of f as independent variable, rather

than z . This choice, first suggested by Stokes (IBB0), has

the obvious advantage of removing the difficulty associated with

the free-surface condition, since, although the location of the

s¡rface is unknown in the z-plane, it has the k nown location

tl,l = I in Èhe f-pIane. However, \^7e note that the Jacobian

of the transformation from the z-plane to the f-plane becomes

zêro at the two stagnation points on the semi-circ1e. These

points \^Ioul-d thus map into singularities ín the f-plane. This

undesirable situation may be avoided by first mapping the

z-p}ane into a 'r-plane in which the bottom streamline is a

straight line, free of singular points. The mapping required

is the familiar Joukowski transformation

t=+(2.+)

where the

2 .2 shows

problem.

By

new variable

the mappings

'r is written as r = E + in Fig.

involved in the formulation of this

defining a new 'r-plane conjugate velocitY

df
AT U iV

wê may transform the z'p1ane equations (2.1)

'r-plane. Thus we seek an analytic function

Lhe bottom condition

w

(2.3) into the

f (t) satisfying

0onn 0

and the appropriately transformed Bernoulli equation at the

free surface.

V
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As there âre ì:rov/ no singular points either within the

fluid or on the fluid boundaries in the r-pJ-ane, \^Ie may inter-

change the roles of T and f . In the f-planer wê seek an

analyt,ic function t(f ) satisfying the bottom condition

n=0 on rl.' 0 (2 .4)

The final form of the Bernoulli equation in the f-plane is

+ rm{ z} 1 \t2 0

z-T+

(2.5)

(2.6)(r" .'o')%

dr
df

on \lJ I

where z('¡) is found from

and the bars signify complex conjugation. The branch of the

radical in equation (2.6) is chosen so that z = 2r when o = 0

We now derive an integral equation relating the real and

imaginary parts of r'(f) along the free surface V = t

Consider È,he function

x (f ) 4

This function is analytic in the f-plane strip 0 < U < I and

vanishes as Q + -co . Far downstream, its mean value is zeto.

By the bottom condition (2.4) r w€ have Tm{r'(f ) } = 0 on iþ = 0t

consequently, the strip 0 < ú < I may be êxtended by reflection

about, rf = 0 to form the augmented section -I < rf < 1. The

satisfaction of the bottom condition (2.41 then requires that

values of T' on the image strip be related to values on the

true strip by the formula
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t'(f ) - r'(f ) (2.7 )

When Cauchyrs Integral Theorem is applied Èo the function

X (f) on a recÈangular path consisting of the free surface U = t

and its image U = -l conhected by vertical J-ines at $ + * oo ,

r4le obtain

x(f)

(0,1) 4l

0+i-f

x(e-i)d0
0-0-2i

- X(e+i)det
J

LJ-ã-rl |.*
J

+

-Oo (2.8)

for points f = O + iU within the path of integration. We

now let f become a point on the true free surfacer so that

f. - 0 + i . The path of integration is as before, except that

the point f = 0 + i is bypassed by a semi-circular path of

vanishingly smaIl radíus. For points on the free surfacer \¡trê

have

x(0+i)

The desired relation is obtained by taking the real part of

equation (2.9), using (2.7) to eliminate quantities at the

image free surface. This yields

|.-
J

+

r_iI
Tl l-

(2.e)

t4
2r
1T J

IEo (0,1) Zr 6:ffi"ø
@

-æ
þ

- r, (0,1) (e-Ó)d0
(2.10)(0-0) z+4

The free-surface profile is thus obtained by solving the

Bernoulli equation (2.5) coupled with equation (2.10) and subject

to the radiation condition

+iTI I,*

'lJ
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T+lrf as Q+-oo (2.1r)

Once the shape of the free surface has been determined, all

ot,her flow quantities may be obtained. Of particular interesÈ

are the horizont.al component of the force acting on unit width

of the semi-circular cylinder (the drag) and the vertical

componenÈ (the lift). !{e shall use the symbols D and L to

dehote'thedrag and lift forces respectively, made dimensionless

by reference to the quant.ity pgíz , where p is the fluid

density. Thus

p h' (x) dx

= 4t' (u2 + v2 ) ¡¡z_-þ;ø- a"

and

L pdx

= 4v2 (u2 + v2)dx o¿F2 * I o' 2d,

":1"

f"
J

l"
l"

f"
J

where p

units of

yields

and

D = '# 
rL",

"=r#["_

is the pressure on the surface of the semi-circle (in

pgH) . Transforming these equations ìinto the t-plane

rJz E (a2 -l',)% aÇ (2.L2a)

u2 (o',-1',) aE 0F2 + \ d,2 2a (2.r2b)

these formulae becomeIn the f-plane,
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D 4
g2
dz.

0

E (o2 -8")*
Ë

0

that equation

on !.,=0

(2.L6) satisfies

By applying the

(2.I3a)

2a (2.13b)

(2.l-4\

the. bottom condition

J-inearized free-surf ace

+d

-a

(o'-E')
F>a

d0

d0 dF

and

,2L=Z:æ fo*"
J

0_o

where the quantities 0 are the solutions to the equations
ta

ã (0*o , o) 10,

2.3 The Linearized SolutÍon

In this section, we derive an approximate solution to the

equations of motion by assuming that the square of the circle

radius, d2 , is a small quantity. This solution is in fact

the first-order term in a regular series expansion ín the

parameter d,2 ; in principte, the series may be continued to

any desired order, although the complexity of the equations to

be soJ-ved becomes prohibitive for any order greater than the

first.
We express the solution t (f) as the regular perturbation

expansfon

t(f) = Ltf + o2Fr(f) + o(ok), (2.15)

and. seek to determine the function Fr (f) in the form

Fr (f ) (2.l-6)f*
= I C (rc) sin (rcf) drc

J
0

We observe

rm{Fr} = 0

condition
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."{qF + l_

F FrÌ

onu I (2 .L7 )I

the real function C(rc) is determined to be

e-" (r +
c(rc) u

rccosh ( rc ) F2
sinh (rc)

The free-surface condition (2.I7) and the assumed form of

the solution (2.:-.6) both require that. the real and imaginary

part,s of the funct.ion F r be odd and even functions of 0

respectively. However, this condition is only satisfied when

F2 > l, since in this case the function C(K) is non-singular,

and so the right hand side of equation (2.L6) is well defined.

A free-surface profile is predicted which is symmetric about

0 = 0 and possesses no \^raves.

For the critical case F2 = I , there is no solution,

since F r becomes unbounded due to a singularity in the

function C(K) at K = 0

I¡lhen F2 < I , the function c(K) possesses a singularity

at K = Ko , wherê K0 is the positive real root of the disper-

sion relaÈion

I
ú

(2.18)

and so the Fourier integral in equation (2.16) fails to exist

in the usual sense. It is thus necessary to interpret equation

(2.16) as a contour integral in the complex rc-plane, with the

path of integration bypassing the pole singularity at K0 in

a semi-circular path of vanishingly sma1l radius. The function

tanh ( rco ) F2 rco
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sin(rcf) appearíng in the integrand of equation (2.J-6) is first
written as sin(r0)cosh(rctlt) + i cos(rcÖ)sinh(rcrf) and the functions

cos(<S) and sin(rcQ) are recognized as the real- and imaginary

.parts of ei,(o ' Thus the solution (2.f5) may be written as

E - Uþ + o"2 C ( rc) cosh ( rc,lr) etn'Ó drcII (2.rel
C ( rc) sinh ( rcr¡,r) eiaø dr<II + 0(cr4).

No\^t since ütaves are expected on the downstream side of the semi-

circle, the path of integration in equations (2.I9) must be

taken to pass beneath the pole singularity at K = Ke . Thus

the integrals in equations (2.19) may be expressed as the

Cauchy Principal Value integral of the same integrand plus ni
times the residue of the integrand at K = Ke . After then

taking the indicated real and imaginary parts in equations

(2.L9) and recombining these expressions for Ç and n , the

solution (2.15) may be written in the form

^ r r- e-'( rc * #l sin(rcf ) drc
r(f) = 'éf + 4a"11' ¿s LJ rcosh ( rc ) $sinh ( rc)

(2.20)

* #lcos(rcef)

n - 4,A + d,2 R"{

|.-
)
0

r*
)
0

'*{
+ o (o'4 )

+ 0 (cl4)
Te-* o ( rco+

(t -i * n;r2)cosh(rc')

Far upstream, the two terms within the brackets in

equation (2.20) cancel, so that the radiation condition (2.11)

is satisfied. Far downstream however, the terms within the

brackets reinforce, summing to twice the value of the second

term. Thus the limiting form of equation (2.20) downstream is
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r(f) -> tøt + z sl- Ko

where the wave amplitude A1 is given by

cos(rcof) + 0(oa)as0*+-,
(2.2r)

re-* o ('rc0 * #l sinh ( ro )
(2.22)l *18" ) cosh ( rco )

A

A¡ 2a2
(r +

The free-surface profile is obtained by setting ü = I

in equation (2-20) and then using equation (2.6) to obtain

z(r) . The surface possesses a regular wave train downstream

of the bump, but is free of waves upstream. Far downstream,

equation (2.2L) yields the free-surface profile

y -> 1- A1 sin(rcox) + 0(ga) as x + + oo

Note that the wave amplitude A1 defined by equation (2.22)

is twice the value calculated by Lamb (L932, p.4I0, eq.(9)).

In Lambrs theory, a linearized solution to flow over an

"arbitrary" bump on the bed of a stream ís created from the

solution to flow over a sinusoidal bed by Fourier superposition.

Yet this solution for the flow over a sinusoidal bed already

invokes the assumption that the ratio of the amplitude of

these sinusoidal undulations to their wavelength must be a

small quantity. Thus Lamb's theory might only be expected

to provide reasonable results for smooth disturbances of small

elevation above the channel bed and of a length which is of

the same order of magnitude as the undisturbed fluid depth.

Lamb's theory is evidently not applicable to the semi-circular

bump for two reasons; firstly, the presence of stagnation

points each side of the semi-circular obstacle apparently

2F
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Iocally violates theassumption in Lamb's theory that the

flow may be regarded as a small perturbation to uniform flow,

and secondly, both the height and length of the semi-circular

bump are smalt quantities. A consequence of this second

point is that the vel-ocity at the top of the semi-circle is

approximately twice the velocity far upstream (for the bodies

treated by Lamb's theory, the two velocities are expected to

be roughty equal), which offers at least a crude explanation

as to why the amplitude of the downstream waves computed in

this section is twice that of the waves computed. by Lamb's

theory.

The linearized wave drag D is calculated by inverting

equation (2.20) to obtain a retation of the form f = f(t) ,

and then substituting into equation (2.L2a) with n:0 (V = 0).

This results in the cl-assical formula

(2.23\

which may be found in Lamb (L932, p.415).

The lift force L may similarly be calculated from

the linearized solution by inverting equation (2-20) and

substituting into equation (2.L2b) lrith n = 0 This

yields

2a L6
3

cr3F2

1

e '' (K * F;)K dK

þ=\n îl'

L ' * Io'-ctF
5
3

+ 0 (cls)

rc cosh (rc ) - iü- sr- nh(rc)

(2 .24)
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2.4 Numerical Methods

2.4(a) Evaluation of the linearized solution.

The linearized solution may be evaluated without diffi-

culty from equation (2.20) , by first truncating the semi-

infinite range of integration to an appropriately large, but

finite, rangie. The singular integral is then evaluated

numerically, using Trapezoidal Rul-e integration, and spacing

the abscissae symmetricalty about the singularity at K = K0 '
so that the effect of the singularity may be ignored by virtue

of Monacella's (L967) theorem. Equation (2-24) for the linear-

Lzeð, lift force is al-so evaluated in this fashion.

At the free surface, the expressions for I and n

simplify somewhat, and in fact the integrals may be evaluated

in closed form as sums of exponential terms that decay rapidly

provided that þ I 0 Thus, considerable computational

advantages result from exploiting this fact. At the surface,

equations (2. 19) become

dK

f*'*{)+ z

+ \ a2 *"{Í-

o,2Lrþ
0z+1 rc cosh(<) $ sinrr(r<)

I
J

d.2
iK: þe

E(0,1) 1+ F2

+ o (cr+) (2.25a)

and

We shall-

I1 and

of the

(
\

2 * 
"tuto 

d"
n ( 0,1) 1,

'z

denote

that in

O¿I
02+1 rc cosh (t< ) inh (rc )

t
-e
F2

+ o(o4) (2.25b)

the improper integral in equation (2.25a) as

equation (2.25b) as 12 ; the interpretation

integrals is exactly as described in Sectionsingular
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2.3, with the path of integration in the complex ç-plane

deformed to pass beneath the pole singularities at K = ! K0 t

where K0 is the real positive solution to the dispersion

rel-ation ( 2.18) .

The integrals 11 and 12 may be eval-uated by the

residue theorem, following exactly the same procedure descrj-bed

by Lamb (1932, Art. 245). For example, the imaginary part

of the integral 11 in equation (2.25a) may be written

2n
¡nó

eil 0<0,

co

I
I 2 (1 F2m2

4ncos ( rco 0)
I

) cosh (,rc0 )E2

-móe r'

2 (1 Ezm2 l_ )cos(m )
f

r ¡f) cos {m )

rm{rr} (1 * E'*î (2 .26)

+ 2t¡

¡

i f 0 0
I

¡ 5'2

where the quantity

equation

m is the appropriate solution to the

2tan (m )¡ F m

which may be found without difficulty using Newton's method.

Note that for F2 > 1 , the term involving Ke in equation

(2.26) vanishes and the sums start at r = I . For þ I 0,

convergence to ten-figure accuracy is usually obtained by

including only three or four terms of the series. When

0 - 0 however, the linearized solution at the surface must

be evaluated numerically from equation (2.20) .
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2.4(b) Solution of the non-linear prob)em.

We now consider the numerical solution of the non-Ii-near

system of equations (2.5), (2.10) and (2.t1) at N + 1 equally

spaced surface points 0o ,0, , . . . ,0* The quantities 0o and

0N are chosen to represent -oo and +oo respectively.

The integrodifferential equation (2.10) is first

truncated upstream and downstream at the points 0o and 0N

The error introduced by this process will be discussed in

Section 2.5. Now the singularity is subtracted from the

Cauchy Principal Value integral, leaving a non-singular integral
plus a natural logarithm term. Thus the integrodifferential

equation (2.I0) takes the approximate form

tE'(0) zt

N N

|.Ô*
J

0o

?
T

0+J*"
0o

¡0
J

0o

IE'(o)

+{
n'(e)-n'(0)^

-;---T_

u-9
n' ( o) ( o-0) de

( o-0) 2+4

(2.271

where the primes denote differentiation with respect to argument,

along U = 1

To obtain a numerical- approximation to equatj-on (2.27) ,

the functions g' ( 0) and n' ( 0) at the free surface !,r - 1

are represented by the vectors of unknown discrete function

values Er' and lr' (i = 0,Ir...,N) at the free-surface

points 0o rô, ,...,ô¡ . Equation (2.27 ) is now discretized

in a manner which allows freedom to specify conditions at

the first point 0o in accordance with the radiation condition

(2.11). This is achieved by evaluating the integrodifferential

f n'(o)tr"(l#)
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equation (2.27 ) at the N midpoints þu_* , k = I,... rN

After discretizationr \¡/ê obtain a matrix system of the form

tEí-" a.. Iq.'KJ J
h1

1 b (n
IT

d.. . lE.'KJ J

'4+ H n

^N¿1
)

lTu j =o

nk
c

-NI.
),TI L

j =o
k

'41

N

¡
, ,

n k -Yz0

I
1,n k 1r...rN (2.28)n

TT k -Yz

The coeffic'ients êuj , bu, and 
"uj 

are known functions of

ó. .. and ö. , and depend upon the quadrature formula used
'k-Y2 'j

to discretize the integrals. We have used Simpson's Rule

for this purpose. The quantities Ei._u" and ti_* are no\^/

written in terms of val-ues of E'(0) and n'(0) at neigh-

bouring whole points 0*-r, 0r, 0u*, etc. by means of a

three-point interpolation formula. This interpolation

formula must be chosen to be consistent with the parabolae

fitted by the Simpson's Rul-e integration used ín obtaining

equatlon (2.28) , otherwise unacceptably large errors may

result. Equation (2.28) becomes

,

e
N
\'
L

j =oo

N

I '41 k f,...rN (2.29)

assumed known, equation (2.29) may be

solution

,
nk

If rf
ço

inverted

and n; are

to yield the

,_
E

N

¡
* 

"r r**, IEJ hl+H ni rN+2
f

rJ

I 1r... rN

o

( 2.30)
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In practice, we usually obtain n;, lo and q0 from the

linearized solution, and then calculate E; from the

Bernoulli equation (2.5) evaluated at the first point 0o

The vectors Ei and ni are no\^t obtained by numerical

integration, using Gregory's correction to the Trapezoidal

RuIe. Thus

(2.31)

F -F +-i -o
j

N

I
=o

w

N

I w.
I

E

j lj" i = fr...rN,ni no+

where the correction steP A

equation

o

where the rs,r. . are appropriate weights.
rJ

The Bernoulli equation (2.5) evaluated at each of the

N points ô, , . . . ,0* yields a system of N non-linear

algebraic equations in the N unknowns ní,. - - 'ni , after

the functions E' ,E and n have all been eliminated using

equations (2.30) and (2.31). This system is then solved by

a modified. Newton iteration scheme. Denoting the pressure

at the i-th free-surface point by P, r wê seek to solve

0, irj 1r...rN{ni )P

VrIe begin the iteration process with suitable estimates for

the unkno\,vns ní . These are usually provided by the linear-

ized solution. The estimate rì.'(*) at the k-th iteration is'j

updated according to the formula

,( k+ 1) .'(k) + A
J

( k)
n n !'

(k)
j is the solution to the matrix
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k

^

N
T
I

âP ( k)
I
I
L

l
I

P
( k)

ân t

The elements of the Jacobian matrix ðP. /ðnr' may be obtained

either approximately, by replacing the derivatives with finite-

difference approximations t ot exactly, by differentiation of

the function= P, , í = 1r... rN Of course the solution

obtained is unaffected by the method used in obtaining these

derivatives, and in general the convergence rates are the same

for both methods. However, in marginal cases \^/here convergence

of Newton's method is uncertain, the Jacobian matrix must be

known accurately, and thus the use of exact derivatives is

preferable ín these cases.

If at some iteration in the Newton process a \^Iorse

estimate of the solution is obtained than before, in the

sense that nlj,.t' t 
"li] 

where P,-, is the root-mean-

squared residual Pressure

then the correction step A1 
o' is halved and the iteration is

J

repeated. However, if the step oÍu' has been halved more

than a certain specified number of times stitl with no

reduction of Pr,r, over its value at the previous iteration,

then the Newton process j-s stopped and a diagnostic is issued.

The above scheme has usually been found to be quadrat-

ically convergent; typically, a converged non-linear solution

with pr,r,, < 10-to is obtained from the linearized solution

in five iterations. When 131 points are used' the process

P
N

I=*(lns

2

rP
r

of obtaining the linearized solution and the converged non-
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Iinear solution requires about three minutes of computing

time on a CDC CYBER 173 machine.

For large values of the circle radius cl , it is often

not possible to obtain a converged non-linear solution using

the linearized results as an initial approximation in the

Newton_scheme. For these cases, a previously-computed non-

Iinear solution is used instead.

2.4(c) Conputation of the non-linear drag and lift'

The wave drag D and lift L are computed from the

converged non-Iinear free-surface profile using equation (2'B)

to generate values of E' at points along the bottom v = 0

These values are then integrated to obtain E at the points

on the bottom, using the Iinearized solution result for

E(0,0) at the first point upstream. A cubic spline is then

fitted through these values of E so that equations (2"I4)

may be solved f.or 0* o by Newton's method. once these

quantities are known, the drag and lift are evaluated from

equations (2.13) using Simpson's Rule integration.

2.5 Presentation of Results

2.5(a) Subcrjtical case. (F < I)

In Fig. 2.3, the linearized and non-linear solutions for

p = 0.5, cf, = 0.2 are compared. The linearized free surface

possesses a wave-free regíon upstr-eam of the semi-circufar

bump, followed by a regular \^lave train downstream. These

general features are confirmed by the non-linear result,

although the amplitude of the non-linear waves downstream is
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considerably larger than that predicted by linearized theory'

In addition, the non-Iinear waves are noticeably non-sinusoidal,

with narrow crests and broad troughs. The mean height of

the free surface downstream of the semi-circle is shown for

the non-Iinear case, and will be discussed in Section 2'6'

For the non-linear waves in Fig . 2.3, the steepness

(¿.e., the ratio of peak-to-trough wave height to the wave-

Iength) is approximately 0.091. Since Newton's method fails

to converge for larger values of the circle radius ¡¿ , these

are the steepest \^7aves that we are presently able to compute

at this value of the Froude number. By contrast, the steep-

ness of the Stokes wave of maximum theoretical height at

F - 0.5 is known to be approximately 0.14 (see, for example,

Cokelet(1977)).Thisinabilityofthepresentschemeto

compute very steep \á/aves is simply a consequence of the

relatively small- number of free-surface points (about 20

points per \,\rave cycle) to which we are restricted by the

storage limits of the computer, and the inclusion of more

points at the free surface would doubtless al-Iow \^/aves of

much greater steepness to be obtained.

In addition to the downstream \/tlaves, the non-linear

surface profite in Fig. 2.3 exhibits a smal1 \,vave traín

upst ream of the semi-circl-e. This is a numerical error

caused by the truncation of the integrodifferential equation

(2.r0) at the point Öo , and the subsequent imposition of

the radiation condition (2.11) there. The amplitude of

these Spurious upstream waves, although extremely small, can

be altered by making smal-I changes to the values of lorl'o etc.
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imposed at the first point Öo , while the downstream portion

of the flow remains unchanged. The presence of the upstream

waves in the numerical solution seems to be mainly due to

the fact that the imposition of the radiation condition (2.1I),

at the point 0o does not correctly account for the local

rise in the free-surface level ahead of the semi-circular

bump (see Benjamin (1970)). Consequently, it is to be

expected that the upstream wave amplitude may be reduced

somewhat by increasing îo slightty above the value suggested

by equation (2.1-I) , and the amplitude of the upstream waves

in Fig . 2.3 has indeed been controlled in precisely this

fashion. The non-linear surface profile of Fig. 2.3 also

exhibits a small error due to the truncation of the integro-

differentiat equation (2.f0) at the l-ast point 0* downstream.

The effects of this appear to be very slight, however, being

confined to the last quarter wavelength or so downstream, and

do not affect the rest of the surface profile.

Figs. 2.4 show the dependence of the orag D and l-ift

L upon the circle radius o , for F - 0.5. In Fig. 2.4(al

the linearized drag, calculated from equation (2.23) , is

compared with the drag obtained from the non-l-inear solution,

using equation (2.I3a). The lj-nearized and non-Iinear results

agree weII up until a circle radius of about 0.I2 is reached.

Thereafter, non-linear effects dominate, producing a force

on the semi-circl-e which is well in excess of the predictions

of linearized theory.

The lift force acting on the semi-circle is shown in

Fig. 2.4(b) This is the force due only to the motion of
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the fluid and to gravity, and does not take into account any

buoyancy properties that the semi-circle itself may

(Thus, instances in which the semi-circular bump is

fiIled balloon, for example I are not considered.)

convenience, the reference value

possess.

a gas-

For

L_=åot'*Io' 2a

has been subtracted from the overall lift force. The

quantity L_ is the lift that would be observed if the

solution were simply f = 2'r (which is the solution for

flow about a circle in a fluid of infinite extent) . The

lineari4ed lift force, calculated from equation (2.24\, appears

to provide a reasonable approximation over the entire range of

values of cr shown in Fig. 2-4(b).

The pressure on the surface of the circle for the non-

linear solution is shown as a function of y in Fig . 2.5,

for the case considered in Fig . 2.3. The drag and lift

forces acting on the semi-circle for this case may be found

from Figs. 2.4 (cr = 0.2'). To show more clearly the differ-

ences between the pressure distributions on the upstream and

downstream portions of the semi-circle, the pressure has been

subtracted from the reference value

E2 (a" -x') (o'-*')h+r+'482P âz ,æ

which is the pressure that would be observed on the surface

of the semi-circle if the strearnline v = I had the same

shape as is obtained for two-dimensional potential flow about

a circle inaninfinite fluid (f = 2r) - Since P is
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symmetric about x = 0 , it makes no contribution to the wave

drag D , which is therefore the area enclosed by the curve

in Fig. 2.5.

In Fig. 2.6(a), the wave drag is shown as a function

of F , for o¿ = 0.1. when the Froude number is small,

the linearized and non-linear results are in good agreement,

but the difference between them becomes steadily greater as

the Froude number is brought closer to the critical value

p = I . Note that the linearized drag has the limiting

behaviour

D * i r2a"4 as F+1t

even though the linearized wavelength and wave height become

infinite at this value of the Froude number'

Fig. 2.6(b\ shows the tift force acting on the semi-

circle as a function of F , for 0 = 0.1-. The quantity L-

has again been subtracted to show more clearly the differ-

ences between the linearized and non-linear results- For

Iow values of the Froude number, the linearized solution

provid.es a good estimate of the lift, although the effects of

non-Iinearity appear to become more significant for Froude

numbers greater than about 0.5.

2.5(b) SuPercritical case (F > l)

Inthelinearizedtheory,thecriticalvalueF_1is

associated with the emergence of a fundamentally different

type of solution, symmetric about x = 0 and possessing no

waves. The non-línear results confirm the existence of

such a solution. Despite its appearance, this solution bears
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no relation to the solitary wave, since it reduces to uniform

fl-ow as cl¿ + 0

In Fig. 2.7, non-linear free-surface profiles are

presented at F = 2.I, and for the three different circle

radii or = 0.7, cx = 1.1 and or = I.32. The last of theSe

values is the largest circle radius for which Ner,vton's method

converged at this value of the Froude number- Thus it appears

that, unlike the linearized solution, non-linear results may

only be obtained within a certain range of values of c[ t

for each value of the Froude number'

The physical mechanism which prevents non-linear solutions

of this type from being found when o¿ is larger than some

critical value is apparently the formation of a sharp crest

at the surface, with an includ.ed angle of L20", exactly as

in the case of Stokes waves. Indeed, Stokes' (1880) original

analysis is local to the crest, and takes no account of whether

or not the rest of the fluid contains waves. The crest is

a stagnation point, ât which the fluid velocity is zeto, so

that by Bernoulli's equation (2.3), Lhe height of the surface

there attains the maximum value Y** = hF' + 1 A portion

of the conjectured limiting profile, with its included angle

of L20", is sketched in Fig- 2.7. Of course, the present

numerical technique is not capable of resolving such a region

of very high curvature in the vicinity of the crest, but it

is possible that this difficulty may be overcome by spacing

points unevenly at the free surface, with a high concentration

of points near the crest. This possibility is presently

being explored.
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2.6 Some Remarks on the Propertie's of 'the Downstream

!{ave Train.

.In this sectionr \dê examine the effects of non-linearity

upon the wavelength of the downstream \^Iaves, and upon the mean

level of the free surface downstream.

The unsteady problem in which a body beneath the free

surface is impulsively started from rest in a stationary

fluid has been considered by Benjamin (1970). By applying

the mass and momentum conservation eguations, Benjamin

demonstrated that non-linear effects result in a forward surge

ahead of the body, and a corresponding drop in the mean free-

surface level behind the body, in the region in which the

waves are present. The flow in a certain region near the

body may be regarded as steady, although outside this region'

the upstream surge continues to propagate further upstream,

and waves are continually being added to the downstream \^Iave

train. After the passage of an infinite amount of time,

the free surface ahead of the bump is expected to be uniformly

elevated, whilst on the downstream side, the wave train extends

inf initely f ar, and the mean level of the f luid in this l¡Iave

train is expected to be lower than in the undisturbed f1uid.

The effects of non-Iinearity on the downstream wave-

Iength have been discussed by Salvesen and von Kerczek (1978).

These authors consider the case in which the disturbance

beneath the free surface ís a point vortex, and solve the

resulting non-linear problem both by a perturbation technique,

and by a direct numerical approach. Their results appear

to indicate that, as the downstream wave height is increased
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(by increasing the vortex strength), the downstream wavelength

decreases for F < 0.75, but increases for F > 0.75. However,

the accuracy of their results is uncertain beyond p = 0.75,

and they remark that, for large values of F , the vravelength

may perhaps increase inítially and then decrease as the down-

stream vrave height is made to increase.

The steady problem formulated and solved in this chapter

differs in one respect from the problem considered by Benjamin.

In the present problem, the upstream depth and velocity are

assumed to be known, and are taken as reference quantities

for the other variables in the problem. However, in Benjamin's

problem, the upstream conditions after infinite time has elapsed

are no longer known. Thus the upstream depth in the present

probl-em is presumably the sum of Benjamin's undisturbed depth

plus the height of the forward surge which has advanced upstream.

AccordingLy, the free-stream Froude number in the present problem

possibly differs slightly from Benjamin's.

To compute the mean free-surface height and the wavelength

of the downstream \^raves from our numerically obtained free-

surface profile (x(0,I), y(0,1) ) , a cubic spline function

y, (x) is fitted through the points (xo ,yo ) , (x, ,y, ) ,.. . ,

(xon,y*) . The positions "l 
t' and "lt' of two successive

\^/ave troughs are found- by solving

dys

dx

by Newton's method and

spline function V, (x)

(x l_ l'2 ,

exact differentiation

. The wavelength is

of the cubic

thus

(i )
0
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À=x ( 2) ( r)x tt
(2.32)

t

and the mean level of the free surface is

x( 2)

Y
t- ydx ( 2.33)

mea n (1)

The integral in equation (2.33) is evaluated using the Trape-

zoidal Rule.

T\n/o ngn-linear free-surface profiles are shown in Fig.

2.8, for F - 0.9 and the two values of the circle radius

o¿ = 0.I and cr = O .15. These solutions exhibit a strong

non-linear rise in the free-surface level ahead of the obstacle.

However, unlike the problem considered. by Benjamin, the free

surface here must ultimately return to the equilibrium position

y = I as x + - ó, in accordance with the upstream condition

( 2. 11) . Nevertheless, the imposition of either the linearized

solution or uniform flow conditions at the first point 0o

ceases to be an acceptable approximation for this high value

of the Froude number and so, in order to control the size of

the upstream waves, the value of rìo imposed at this point

must be increased significantly aloove the value suggested by

l-inearized theory. fn view of the relatively small number of

free-surface points in the numerical scheme to which we are

restricted by the storage limits of the computer, it has not

been possible to cluster a sufficient number of points about

the very sharp \^7ave crests obtained f or the case o¿ = 0.15 t

and consequently, the solution for this val-ue of o¿ is

slightly affected by numerical error. This value of the

Froude number (F = 0.9) is possibly the largest value of F

1l-rJ
xt
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F o{. T v v (Ben j amin)
lnean nlett

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.9

0.02

0.04

0.06

0.08

0.1-

0.L2

0.14

0 .15

7 .28

7 .24

7 .r9

7 .L4

7. r0

6.89

6.77

6.7r

r.000

1.00r

1 .001

0.999

0.995

0.990

0.985

0.980

0.99999

0 .9996 4

0.99816

0.99415

0 .9 8570

0.97036

0.94507

0 .927 6r

TASLE 2.1: The effecÈ of non-linearity on wavelength and

mean depth. Results obtained from the formula

of Benjamin are also shown.

for which accurate non-linear solutions may be obtained \^/ith

the present number of free-surface points, and to proceed to

higher values of F would undoubtedly require many more

points at the free surface.

In Table 2.L, the dOWnstream wavelength and mean free-

surface level- are presented aS functions of the circle radius

o¿ , for F = 0.9. A]SO tabulated is the mean' free-surface

level approximated from the formula of Benjamin (1970) - For

the mean level of the fluid in the wave train, Benjamin gives

the expression

I 6 +F I _1) (2.34)A t
2

I( +F) 1-yF

(
\

where

Yme ¿fl

Y z 1+
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and the quantity K s is related to the Froude number F

by the dispersion relation (2.f8). The symbol A1 in equation

(2.34) denotes the linearized downstream wave amplitude, and

is defined in equation (2.22) .

The results presented by salvesen and von Kerczek (I978)

for a Froude number of 0.87I suggest that the wavelength

jncreases with increasing disturbance strength. This trend

is not observed in the results displayed in Table 2.I, for

the very similar value of Froude number F - 0.9. Instead,

the wavelength computed from our converged non-linear surface

profiJ-es by means of equation (2.32) is observed to decrease

monotonicalty as the disturbance strength ct is increased.

A shortening of the wavelength with increasing c, is also

evident in Fig. 2.8.

From Table 2.L, it is evident that Benjamin's formula

(2.34) for the mean free-surface leveI downstream gives

results which are consistently lower than the value of Y,,r.u,

obtained from the numerical results. Of course, equation

(2.34) is only val-id to second order in the u/ave amplitude,

and So possibly ceases to be applicable to the cases in which

ct, is large. More importantly, however, the quantity Y,,,"u,,

is influenced by two opposing non-linear effects ' one of which

has been ignored by Benjamin. The first such effect is

described by Benjamin, and results in the tendency f.or the

mean free-surface level to be lower than the undisturbed level,

detailed in equation (2.34). There is, however, a second

consequence of non-linearity, ignored by Benjamin, which tend's

to ¡ajse the mean free-surface l-evel. This effect, which is

also of second order in the wave amplitude, is a property of
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all Stokes waves, and. is described by Schwartz (1974b) and

Cokelet (1977). For low values of the Froude number, this

second effect dominates, resulting in a nett rise in the

mean surface level- downstream. Such a situation exists for

the solution presented in Fig 2.3, for example.

2.7 The possibility of multiple solutions

In Fig. 2.9, wê display the range of values of the

independent parameters F and o¿ for which it has been

possible to compute non-linear solutions possessing a train

of downstream u/aves. The highest values of 6¡ for which

the Newton process converged are marked on the diagram' for

a range of different Froude numbers. It has not been possible

to obtain solutions for very small Froude numbers (F < 0.3),

since the extremely short wavelength of the downstream waves

in this instance renders it impossible to maintain a suffic-

ient number of free-surface points per wavelength while stilI

including an appropriate section of the free surface upstream

and downstream of the semi-circle. Similar1y, results for

F > 0.9 are of doubtful accuracy, since we are unabfe to

provide a sufficient number of points at the free surface

to describe adequately the very sharp wave crests formed in

this case.

The dashed l_ine in Fig . 2.9 indicates the approximate

position of the boundary of the region within which we

conjecture the existence of non-linear solutions possessing

a train of downstream \^/aves. The position of this line was

determined by assuming that the Froude number of the down-
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stream Stokes wave train is the same as the free-stream

Froude number F ; this is an excellent approximation for

smal1 F and we expect it to provicle reasonabl-e resul-ts

over the range of Froud.e numbers 0 .3 < F < 0 .9 5 for which

numerical results have been presented in Fig. 2.9. However,

for Iarger values of the Froude number F , the approximation

may perhaps cease to be as good, by virtue of the tendency

of the mean free-surface level downstream to drop when the

downstream wave amplitude is larger ês described in Section

2.6. The portion of the dashed l-ine in Fig.2.9 lying in the

region F < 1 was obtained from our numerical- results by

extrapolating plots of wave height yersus s.2 up to the

maximum wave height for Stokes waves, with approximate Froude

number F , computed by Schwartz (L974b) and. Cokelet (:-.977).

Note that the region in which solutions are conjectured to

exist extends well into the supercritical regime F > I ,

and in Fig.2.9 it is shown as terminating at F - I.286,

which is Yamadars (L957 ) result for the highest solitary wave.

However, since the downstream Froude number is not the same

as the free-stream Froude number F , it is likely that this

region actually terminates at a slightly smaller value of

F than this.

The region of the parameter space (F,o) in which non-

linear solutions may be found is similarly restrj-cted for the

supercritical wave-free branch of solutions described in

Section 2.5(b). In Fig. 2.I0, the highest values of o for

which the Newton process converged are shown for a range of

different Froude numbers. The dashed line on this diagram

indicates the approximate position of the boundary of the region
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within which non-linear sol-utions are conjectured to exist.

Solutions for which the parameters F and o¿ describe a

point on this line are expected to possess a sharp crest at

the free surface,where the fluid is at rest at the maximum

height y..,u* = LP' + 1 This dashed line has been obtained

from our numerical results by extrapolating plots of maximum

free-surface el-evation ve-rsus a"2 up to the height Y,rru* at

which the crest occurs. As with the linearized solution,

non-linear solutions of this type appear only to exist for

F > 1.

A comparison of Fig. 2.9 and Fig. 2.I0 indicates that,

in a portion of the supercritical flow regime F > l- , there

exists a region of overlap between the regions within which

the two different branches of solution are conjectured to

exist. It would therefore appear that, in this portion of

the supercritical flow regime, there is a lack of uniqueness

in the solutions to this problem, since both the symmetric

wave-free solution and a solution containing a train of Stokes

waves downstream are both possible outcomes.

Of course, there is no guarantee that these two branches

of solution are the onlg possible outcomes in this situation.

Other types of solution are perhaps possible¡ for example'

i-t may be possible to compute solutions of the type obtained

by Aitchison (1979) , in which the flow is subcritical on one

side of the semi-circular bump and supercritical on the other

sid.e, although we have not so far obtained such results. The

computation of such a family of solutions would most probably

involve a differeirt numerical formulation to that described in

this chapter.
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2.8 Summary and Discussi,on

In this chapter, two-dimensional fluid flow over a

submerged semi-circle has been investigated. The solution
is facilitated by the choice of the complex potential
f - 0 + iV , rather than physical- plane coordinates, as

the independent variable.

A linearízed solution has been developed by retaining
the first term of a regular series expansion in the square

of the circle radius, cr2 . For subcritical flow F < 1 ,

a wave-free region is pred,icted upstream, followed by a

regular wave train downstream. For supercritical fl-ow

F ¡ 1, a symmetric wave-free solution is predicted. There

is no solution for F - 1.

The exact non-linear equations are solved numerically

at the free surface, by a process of Newtonian iteration.

In the subcritical- case F < l- r ârr essentially wave-free

region is obtained upstream, followed by a train of non-linear

Stokes waves downstream. The accuracy of these results is
confirmed by observing that the free-surface profile obtained

is largely insensitive to further reductions in the size of

the spacing between points at the free surface. In addition,

the downstream \^/ave train is unaffected by the choice of

downstream truncation point, except within a distance of

about half a wavelength upstream of this point. However,

due to the relatively small number of free-surface points to

which we are restricted, r,¡/e are unable to compute the very

steep waves obtained when cx is large or F is close to one.

The major disadvantage of the present method, in which 0 is
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chosen to be the independent variable at the free surface,

is that points in the numerical scheme tend' to cluster

unnecessarily ttorrt the wave troughs, but are distributed

very sparseÌy at the wave crests, where they are most needed.

when cl is large, the linearized theory severely under-

predicts the value of the drag force on the semi-circ]e,

indicating the importance of non-linear effects in these

cases.

In the supercritical- case F ;' l, the symmetric \¡/ave-

free profile preclicted by the linearized solution is confirmed

by the non-Iinear results. However, the physical existence

of a stabl-e solution of this type seems somewhat implausible.

It appears that the non-Iinear free-surface profile is

ultirnately limited by the formation of a sharp crest with

sides that enclose an angle of 120" '

Although the linearized solution fails to exist for

F - I, there is no reason to suppose à priori that the non-

linear solution should likewise fail at this value of the

Froude number, fot finite downstream wave amplitude (although

the linearized solution must become asymptotically correct as

o + 0). Indeed we expect that non-linear solutions possessing

a train of downstream Stokes waves may be found both for p = 1

and, also in a portion of the supercritical flow regime F > 1.

Since the symmetric wave-free solution also exists for F > I '

there is thus the possibility that a lack of uniqueness may

exist in the non-linear solutions to this problem, lor certain

values of the ind,ependent variables F and o¿ . In addition,

other branches of solution might perhaps be possible, such as

those described by Aitchison (1979).
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CI{APTER TiiREE

TT{O-DIMENSIONAL GRAVITY FLOW

ABOUT A SUBMERGED SEMI-ELLIPSE

3.1 Introduction

The problem to be examined in this chapter concerns

the steady two-dimensional flow of an ideal- fluid in a

horizontal stream, attached to the bottom of which is a

semi-eltiptical body. This problem,represents an obvious

extension of the work presented in the previous chapter, and

accordinglyrresults from chapter two will be utilized through-

out.

When the free-stream Froude number F is less than

unity, the surface downstream of the semi-ellipse is generally

expected to consist of a train of waves extending infinitely

far downstream. The energy radiated away to infinity by

this vTave train is exactly balanced by a horizontal force

component (the wave resistance) acting upon the semi-ellipse.

When F > 1 , a branch of solutions exists for which no

downstream \^/aves are present. In this regard, solutions

to the present problem are similar to those obtained in

chapter two, for flow about a submerged semi-circle.

However, non-linear sol-utions to the present problem for

F < I appear to exhibit the additional property that , f.ox

ellipses of certain special lengths, the downstream wave

train may be made to vanish, resulting in zero r¡/ave resist-
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ance experienced by the body. This result may be of

significance in the design of certain underwater craft,

for example. In the present chapter, attention will be

focussed on the subcritical regime F 4 1, with particular

emphasis on those solutions for which the downstream \^Iave

train apparentlY vanishes.

A linearized solution to the present problem was

developed by Lamb (L932, p.409) and will be discussed in

Section 3.3(b). One of the features of this linearized

solution is that, fot a given value of the upstream Froude

number, the free surface is predicted to be free of down-

stream waves for ellipses of certain special lengths,

resulting in zero drag force acting on the ellipse in

these cases. In fact, the plot of wave resistance ve-rsus

ellipse length for fixed upstream Froude number and ellipse

height is undulatory and passes through zero infinitely

often, giving rise to a countabJ-y infinite set of ellipse

Iengths for which the wave resistance is zero, ât each

value of the upstream Froude number.

The question of whether a \dave-making disturbance may

ever give rise to a non-linea-r \^lave resistance of precisely

zero has been investigated recently by schwartz (1981) .

He considered the problem of rlrraves induced in a fluid of

infinite depth by a moving pressure distribution applied

to the free surface, and dernonstrated that, for certain

va'lues of the pressure length, the non-linear wave resistance

obtained was indeed extremely small, with a val-ue of the

order of 10-s times the maximum resistance olctained with

the same vafue of non-dimensional overpressure. The
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corresponding problem for a fluid of fixed finite depth was

considered by von Kerczek and salvesen (L977) . Their

results also appear to indicate vely small values of wave

resistance for certain pressure lengths.

In the present study, the problem is formulated as in

chapter two, using conformal mapping to transform the bottom

into a straight line, free of singular points. The velocity

potential and streamfunction are treated as the independent

variables, and a boundary-integral technique is used to

obtain non-linear free-surface profiles.

3.2 Formulation of the Probl-em

we consider two-dimensional, steady flow of an ideal

fluid in a channel in which the flow infinitely far upstream

is uniform, with depth H and velocity c The fluid

flows from left to right. A semi-elliptical object of

Iength 2R* and height R" is attached to the channel bed,

which is otherwise flat and horizontal-, and is placed

symmetrically about the y-axis, which points vertically.

The fluid is subject to the downward acceleration of gravity, g.

The problem is expressed in terms of dimensionless variables

forthv¡ith, by referencing all lengths and velocities to the

quantities H and c respecÇivelyr âs in section 2.2. The

velocity potential $ and streamfunction ü are non-dimen-

sionalized with respect to the quantity cH ; in terms of

dimensionless variables, the bottom is chosen to be the

streamline 1., = O , and the free surface is thus tþ = I

Solutions to this problem are thus dependent upon the three

dimensionless parameters
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(gH) v,

Rx
H

and ß

The quantity F is the upstream depth-based Froude number,

and o and $ are respectively the dimensionless ellipse

half-length and the eÌlipse height. The non-dimensional

flow situation is depicted in Fig. 3.1.

Since the fluid is incompressible and flows without

rotation, it follows that the velocity potential and stream-

function obey the Cauchy-Riemann equations (2.1'\ in the

fluid interior. Thus the complex function f - 0 + iÜ is

to be sought as an analytic function of the variabl-e z = x +iy.

The motion of the fluid at the free surface is governed by the

BernoulIi equation

'¿P2wlt ( 3.1)

where

w=

c
R

Y

H
F c!,

*y=rF2+1

df
ú =ll-l-Vt

and rf ¡v

velocity.

condition

are the horizontal and vertical components of

The bar denotes complex conjugation. The

of no flow normal to the bottom is expressed as

u

where the bottom y IS descríbed by the equatíon

dh
ãx vony h (x) (3.2)

h (x)

2
op

ct

0

xI
l.

h (x)
2

)v' l"l <

l"l >

0 CT

The bottom is nor¡I

using conformal mapping,

transformed into a straight line,

A new variableas in chapter trvo

cL
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t- g + in is defined by the relation

z=r+q
0,

(-" - o" )% ,

qB t4E2 + I

(3.3)

(3.4)

(3.s)

Far

radiation

(3.6)

which is a straightforward generalization of the Joukowski

transformation (2.6). Thus the complex potential f is

now to be sought as an analytic function of r , subject to

the appropriately transformed Bernoulli equation (3.I) and

bottom condition (3. 2) .

Since the bottom is now free of stagnation points in

the 'r-p1ane, the roles of 't and f may again be inter-

changed, as in chapter two. The analytic function t(f)

is thus required to satisfy the f-plane bottom condition

n 0onü 0,

and the Bernoulli equation

'4F2
cr2 142 +B 2 

¡ffi

where we have defined

I

as0

onv

cI,

1

+n+

t

ø
1T

a

(r'-o'')* =A*iB

and the subscripts denote partial differentiation.

upstream, the flow is uniform, which results in the

condition

r+t(t.*)' +-æ

The

parts of

integral equation relating the

r'(f) along the free surface

real and r-ma9anary

derivedü=1 ]-S
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exactly as in chapter two- The f-plane strip 0 < V < I

is first extended by reflection about the bottom rì = 0 to

form an augmented section -1 < !., < I The bottom condition

(3.4) is satisfied automatically, bY requiring values of rl

on the image strip -l < v < 0 to be related to values on

the true strip 0 < tl., < I by means of equation (2.7). Cauchy's

Integral Theorem is now applied to the analytic function

x(f) dt
df (' . t)-

æ
2
T

1+ß(0,1)

(0-0 +

along the same path of integration in the f-plane as before.

Taking the real part of the resutting equation gives

. å)-']('le. to,tl t

J IO¿

I

ir,
-æ

æ no (o,r)do - r, ( 0,1) ( e-0) de
+ (3.7)

0-0
-æ -æ

This equation is an obvious generalizatíon of equation (2.f0).

The free-surface profile is thus found parametrically

in the form (E(0,1), n(0,1)) by solving the system of

equations (3.5), (3.6) and (3.7). The varj-ables x and y

may be recovered from equation (3-3).

The wave drag D and the lift L are computed by

integrating the product of the pressure p with the approp-

riate component of the normal vector over the surface of

the ellipse. Here, Þ has been made dimensionless by

reference to the quantity pgH , whilst D and L are

referred to the quantity pgH2 The density of the fluid

is p . Thus
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D- ph'(x) dx

pdx

€(a2-E:)" ( d6

l"
J

-d

=kl zB (u2+v2 )
x

(o'-*')%
l"
l"

dx ( 3 .8a)
ot

and

and

and

L-

| = '"r'X I
-û

L=%F2

L = '¿F2

t(åI -'ltz*oz\

o'-E'

(3.9a)

Lzog 2a

(3.eb)

(3.I0a)

2a

( 3.10b)

ot

f

J

= ,_rE2 1u2+v2)dx - crr2 + |crß 2a ( 3. 8b)

Transforming these equations into the 'r-plane yields

l"
J

(#l=, dE oF2 +

Finally, these equations are transformed into the f-plane,

where they become

Io* "
J

0_o

þ = t"r't

L(å)'-'l t 2+u2Jt. 
"

0_o
* 

u* cxF2 * Lzog

The functions E and Eø in equations (3.10) are to be

evaluated along the bottom V = 0 , and the quantities

are the solutions to the equations

ó
'fd

E(0.o 'o) = icr ( 3.11)
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3.3 Two linearized theories

3.3(a) An essentiallg ci¡cular eIJ-rpse

If the ellipse is small- and has an aspect

ft = B/d of order I, a linearized theory may be

after the fashion of Section 2.3,' by expanding

r(f) in a regular perturbation expansion with

meter' o"2 , and retaining only terms of first

this quantity.

The solution r(f) is taken to be of the

r(f) f (l-+R)-I + a2Fr(f) + o(cI4).

Inserting equation (3.L2) into the Bernoulli

and retaining only terms of first order in

in the linearized free-surface condition

ratio

developed

the solution

small para-

order in

form

( 3.12)

equation (3.5)

a.2 results

( 3. 13)

Re
dFr
df

l.
I 2F

J
t

I+ Fr
E2 +

R

0

R*z

on u I

The function Fr(f) is to be sought as a Fourier integral'

of the form

Fr (f) C(rc)sin(<f)dr , ( 3. 14)

and the real function C(rc) is determined by substituting

equation ( 3.14) into equation ( 3. 13) . Thus

-k -e (rc + I
tZ )

c(r<)

It is evident

( 3. 14) differs only

r cosh ( rc)

the function

factor of R

# =inh(rc)

R=- 2

that
bya

c(rc)

from

in equation

the expression
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obtained in Section 2.3. Thus the interpretation of the

integral in equation (3.14) has already been discussed in

that section. For F > 1, a symmetric' wave-free solution

is obtained. There is no solution for F = 1. For F < 1

a wave-free region is predicted upstream of the ellipse'

f ollowed by a train of linear, downstream \^laves. In this

case, the solution ( 3. 12) may be written

f(l+R)-1 +
e-* (rc + $l sin(<f ) drc

u**'{[*r(f)

TTE
-Ko

(1

where Ks is determined

Far downstream, equation

profile

rccosh ( r) - $sinh (rc )
n

+
(rcs+ $l """(rcof¡ + o(cra), (3.15)
I
lr *îF" ) cosh ( ro )+

from the dispersion relation (2.18) .

(3.15) yields the free-surface

A1 sin(rcox) + 0(oa) as x + * æry->1

where the wave amplitude A1 is given by

An expression for the línearized wave drag D ís

derived as in Section 2.3, by inverting equation (3.15) to

obtain a rel-ation of the form f - f(t) , and then substituting

into equation (3.9a) , with rì = 0 (i¡.r = 0). This results in

the classical formula

Ar o2n1t+n¡
n"-*o (r o * ,,Ll sinh (rc o )

(t - #. "18')cosh(rc0)

( 3. 16)

;l' 2Ks
sinh(2ro) +D r4A o (cr6 ) (3.17)
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given by Lamb (L932), in which the wave amplitude Ar is

obtained from equatj-on (3.f6) .

The linearized lift force L is likewise obtained

from equation (3.15) by inverting and substituting into

equation (3.9b), with n = 0 This yields

* $l*-K ,e (r drc

L %cr ( 1+n) 2E2r %cl'n(t+R) 3F2r I
0

2
FR2-

rc cosh ( rc)
I

-épt2 inh ( rc)

clF2 + i"e

1-(1-R2)%
l+(I-32¡z ,R<I

( 3.18)

(3.re)

2a + O(os) I

where

+ u"(

I
2 arctan 1pz-L¡Y' , R > II-RZ +

In the limit o¿ + 0 , the semi-elliptical body

degenerates to a vertical plate of height p and zero

thickness attached to the bottom. This plate stilI disturbs

the upstream uniform flow, and thus generates a downstream

wave train. The wave resistance experienced by the plate is

obtained from equation (3.17) by allowing cl + 0(R + *¡ , and

takes the finite value

,'*|.-no (rc0 + I
2FD-> t4ß4 Ez as o+0I

E2
*îF')cosh(ro)

The lift

the limit cx, ->

edge s ucxi on

(1 +

experienced by the ellipse is also finite in

O , as a consequence of the effects of leading

In this limiting case, the ellipse has beconie
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a vertical plate of zero thickness, upon the surface of

which the fluid velocity has infinite magnitude. By

Bernoulli's equation, the pressure on the surface of this

plate is negative infinite, but acts on a body of zero

width, resulting in a finite upward lift force acting on the

plate. The magnitude of this lift force is obtained from

the present linearized solution by altowing o + 0 (n + -¡ in

equation (3.18). Thus

e-* (r + )rc drc
I

æ

I
0 $ sinh ( <)

yt2
¡, -> La$rFz

'¿93 t¡82
r cosh(<)

as d,+0

3.3(b) A long, thin elliPse.

The linearized theory appropriate in this case is

derived by regarding ß as a small parameter and expressing

the solution r(f) as a regular perturbation expansion in

this quantity. Upon substituting into the flow equations

and retaining only l-owest order terms in ß , a linear

system of equations is obtained which, however, appears to

be too difficult to solve in closed form. Accordingly,

this theory will not be pursued further.

An alternative approach has been adopted by Lamb((L932,

p.409), and was mentioned in Section 2.3- In this theory,

it is assumed that the solution may be expressed as a small

perturbation to the uniform flow f. - z . This assumption

is obviously not val-id near the stagnation points at z = !ç¡,

and the consequent failure of this theory for smal-l oú has

already been described in Section 2.3. For the solution

f (z) , Lambrs theorY gives
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Jr (orc)
I

ED- sr-n(Kz-rK) + ir cos(rc2-irc)
drc.

(3.20)
K K cosh (rc)

-c
y'2 inh ( rc)

The free-surface elevation may be obtained from Lamb ( (1932) ,

p.410, êg. (B)). With the present choice of coordinate

system, this becomes

J O¿K cos KX dr (3.21)
< cosh (rc) F sinh (rc)

The function J1 appearing in equations (3-20) and (3.21)

is the first kind Bessel function of order one-

The interpretation of integrals of the type shown in

equations (3.20) and (3.21) has already been discussed in

Sections 2.3 and 3.3(a). For F > I , a symmetríc, \¡7ave-

free solution is predicted. There is no solution for F = 1.

When F < I , the integrands in equations (3.20) and (3.21)

possess singularities at K = Ke , where the positive real

number Ko is the solution to the dispersion relation (2.18).

Thus the solution (3.20) may be written
T

f-z ;r (o<) tz sin(<z-irc) + ir cos(rc2-irc)
drc

K r cosh ( <)
IP sinh ( rc)

If=z-ßi
J

0

y=1+ß
0

u {l-
0

$ """(rcoz-iro)nJr (clrco)
K¡

irc e sin (rc 6 z-ir< s )

+ ItI + F2r<fr lcosh(rc0)E2

and the free-surface elevaLion (3.2I) becomes

J c[K cos KX

rc cosh (rc) p2 sinh ( rc)

TTJ o¿K sin(rc x)

u{f-
0

(3.22)

v 1+

[1 + n2rfr tz lcosh(rce)

drc

(3.23)
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For F 4 1, the free surface thus consists of a \^/ave-free

region upstream of the semi-e1Iipse, followed in general by

a train of downstream sine !üaves. Far downstream, equation

(3.23) indicates that the free-surface elevation is of the

form

y+I

I

tl + t2rc20

Ar sin(rcox) as x -à * ær

in which the wave amplitude A1 is given by

Ar
2rß J c)¿K

The wave drag D and lift L for this linearized

theory are computed by substituting equation (3.22) into

equations (3.8a) and (3.8b) respectively, resulting in the

expressions

E2 lcosh(rc0)
(3.24)

(3.25a)

sinh(rc) lsin(crr)

D

L

r4A2

T
- 2rc0 .,

sinh(2ro) + o(ß3)

@

and

Jr (crrc) t*!' cosrr(rc) -rc

i"ø 2o" 2gF2 I
0 " * cosh(rc) ;| sinh(r)

+ 0(ß2) (3.25b)

A remarkable feature of this theory is that the wave

amplitude A1 and linearized wave resistance D may become

zero. This occurs each time the ellipse half-length o¿ takes

the value

1rsc[= S 0r1r...,
j

Ko
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\^rhere i is the s-th zero of the Bessel function J¡
- IrS

Note thatr âs ct + 0 , the wave amplitude A1 and drag D

predicted by this theory also become zeto.

3.4 Numerical Methods

To evaluate the linearized solution for an essentially

circular e]lipse, described in Section 3.3(a), it is necessary

to obtain numerical values for the integral on the right hand

side of equation (3.f5). This integral is identical to the

integral in equation (2.20), and may thus be evaluated at

the surface by the technique described in Section 2-4(a).

Lamb's solutj-on for a long, thin ellipse, described

in Section 3.3 (b) , is evaluated from equations (3.22) and

(3.23) by truncating the semi-infinite range of integration

to a 1arge, finite range. The Cauchy Principal Value integrals

are then evaluated using the Trapezoidal RuIe and MonacelIa's

(L967) theorem, spacing points symmetricall-y about the sing-

ularity at K = Ko so that the effect of the singularity

may be ignored. Accurate polynomial approximations to the

Bessel function Jr are given in Abramowitz and Stegun (1972).

The numerical solution of the non-linear equations (3.5) 
'

(3.6) and (3.7) is exactly as described in Section 2-4(b) -

A vector of discrete function vafues (¡o',n'r,...,ní) is used

to represent the function no (0,1) at the N + l- equally

spaced free-surface points 0o ,0 r,...,0,0 The integro-

differential equation (3.7) differs only trivially from

equation (2.10), and the same process is therefore used to

reduce it to a matrix equation for the quantities 6'r,...,9í
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in terms of the unknowns Tl'r,...,ní The radiation

condition is no\^r imposed at the first point 0o upstream;

thus the quantities Eo, rìo and nó are obtained from

equation (3.6) and the Bernoulli equation (3.5) then gives

16 . Finally, the Bernoulli equation (3.S) evaluated at

each of the points 0 ,,. . . ,0* gives a system of N non-

Iinear, algebraic equations ín the N unknowns n'1, . . . rl( '
which is solved by a process of Newtonian iteration. Solutions

are usually obtained rapidly, due to the quadratic convergence

of Newton's method, and when N - l-30, converged non-linear

free-surface profiles are usually obtained in five iterations,

and requj-re about two minutes of computing time on a CDC CYBER

I73 machine. It is often sufficient to start the iteration

process with an initially flat profite (n' = 0) ' although

occasionalty, a previously-computed non-linear solution is

used for this purpose.

The wave resistance D and l-ift L experienced by

the semi-elliptical body are computed from the non-linear

free-surface profile using Cauchy's Integral Theorem to

generate values of E' at points along the bottom U = 0

These values are numerically integrated to obtain E , using

equation (3.6) to suppty the value of I at the first point

0o upstream. Equations (3.11) are now solved by cubic-

spline interpolation and Newton's method, and the drag D

and lift L are evaluated from equations (3.10a) and (3.10b)

respectively, using Simpson's RuIe integration.
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3.5 Presentation of Results

When F < 1 , the l-inearized theorj-es of Section 3.3

predict a surface profile free of waves upstream of the semi-

ellipse, and in general possessing a downstream wave train.

For F > 1 , holtrever, the surf ace is predicted to be symmetric

about x = 0 , and to possess no waves. These general features

are confirmed by the non-linear results; in particular, a

symmetric non-linear solution which is free of waves exists

in a portion of the supercritical flow regime F > 1 , and

is similar to the sol-utions described in Section 2.5(b). !{e

shall not consider these solutions further.

Tn Fig. 3.2(a), the wave drag D is shown as a function

of the ellipse half-length 0, , for an ellipse of height ß = 0.02

in a stream with p = 0.8. The dotted line indicates the pre-

dictions of the linearized theory of Section 3.3(a), in which

the ellipse is assumed to be small and roughly circular, and

\^/as obtained from equation (3.17) , whilst the results of Lamb's

theory, computed from equation (3'25a) ' are indicated with a

dashed l-ine on the diagram. The points represent values of

the drag computed from converged non-linear free-surface

profiles, obtained for 36 different values of 6r . when cl

is 1arge, the non-linear drag curve exhibits a marked shift

to the right, which is in agreement with previously observed

trends (see Schwartz (1981) and von Kerczek and Salvesen

(1977) ) . Note that the non-linear drag is very small indeed

at the two minima indicated on the diagram.

The lift L is shown as a function of o¿ in Fig.

3.2(b), for both the linearized theories of section 3.3, and

for the 36 values of o¿ at which the non-linear'solution
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\^/as computed, with F = 0.8 and ß = 0.02. To show more

clearly the difference between the non-linear results and

those of the two l-inearized theories, the reference value

o¿F 
2 + Lraø 2a- ,u*(r + $) r'r ,L

where I is the quantity defined in equation (3.19), has

been subtracted from the overall tift force. The quantity

L_ is the lift that would be experienced by the semi-ellipse

if the fl-ow were the same as for flow about an ellipse in a

fluid of infinite extent, for which the solution is

f - r(1 + B/o"). Note that

L- -> ra$rE2 as o¿ + O

Lamb's theory, which has already been seen to fail- for small

cr , predicts a lif t f orce of zero in the limit ct + 0.

However, this result is not confirmed by either the linearized

solution of Section 3.3(a) or apparently by the non-linear

results; instead, these both predíct a finite upward lift

force as o¿ -à O , as a consequence of the effects of leading

edge suction. The non-linear lift force appears to exhibit

l-ocal maxima at about the same values of cx for which the

non-l-inear drag vanishes.

In Fig. 3.3, the extent to which the non-Iinear down-

stream wave train may be made to vanish for special choices

of cr¡ p and F is investigated. Here, F = 0-B and

ß - 0.02, ês in Figs. 3.2. In Fig. 3.3, three non-l-inear

free-surface profiles have been plotted; when o¿ = I-6, the

downstream vlave amptitude, and hence also the wave drag in
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Fig. 3.2(a), attains its maximum value for these values of

F and ß , whilst the downstream wave amplitude is at a

minimum for o, - 3.95 and o - 6.6. As with the solutions

obtained in chapter two, the three non-Iinear solutions in

Fig. 3.3 all exhibit a very sma1l wave train upstream of

the semi-eIlipse. Again, this numerical- error results

from the truncation of the integrodifferential equation

(3.2¡ at the first point 0o , and the subsequent imposition

of the radiation condition (3.6) there. The amplitude of

the spurious upstream v/aves f or the solution with cr = 1.6

in Fig. 3.3 has been reduced as far as possibl-e by making

small changes to the value of Io imposed at the first

point 0o , exactly as described in Section 2.5(a). The

free-surface profile for o = 1.6 is al-so slightly in error

over the l-ast quarter of a wavelength or so downstream, due

to the truncation of the integrodifferential- equation at

the last point 0N downstream. However, as with the

solutions obtaj-ned in chapter two, errors from this source

do not discernibly affect the remainder of the free-surface

profile. Note that the mean level of the free surface

downstream, computed by the technique described in Section

2.6, lies well above the undisturbed 1eve1 y = I for the

case c[ = I.6 .

The amplitude of the downstream waves for the cases

cI = 3.95 and cx = 6.6 shown in Fig. 3.3 is extremely smal1,

being roughly the same size as the amplitude of the spurious

upstream waves. Indeed, we bel-ieve that the presence of

downstream waves is due only to the existence of the upstream
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\^raves, and have no doubt that a surface profile totally

without waves may be obtained by eliminating the small,

numerically produced, üpstream v/aves. Thus the non-linear

drag curve of Fig. 3.2(a) is expected to pass through zero

at o - 3.95 and again at oú - 6.6. However, the non-

linear drag in Fig. 9.2(a) is shown to vanish at slightly

smaller values of o than these. This is due to a smaIl

numerical error in the procedure for computing the non-

Iinear drag (described at the end of Section 3.4), which

is again a consequence of imposing the radiation condition

(3.6) at the point f = 0o on the bottom. Thus, although

the non-linear drag may be computed without difficulty for

small o , the results are more subject to error as cll

becomes large and F becomes smaIl.

The non-linear effects of the ellipse height p upon

the downstream peak-to-trough wave height are investigated

in Fig. 3.4. Results are presented for ß = 0.05 and for

ß - 0.I, at F = 0.5. The predictions of Lamb's linearized

theory, computed from equation (3.24), are indicated by

dashed lines, whilst in the non-linear case, results r.^Iere

obtained for 36 different values of q when ß = 0.5 , and

for 39 values of o¿ when ß = 0.1 , and are indicated by

points in Fig. 3.4. The wave drag is not shown for these

cases, since the error which occurs in the computation of

the non-linear wave resistance at large values of cL renders

the accuracy of the results uncertain.

According to Lamb's linearized theory, described in

Section 3.3(b) , the val-ues of o at which the wave height

becomes zero are functions only of F , and do not depend
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on ß However, the non-linear results in Fig. 3.4 show

a strong dependence upon ß For ß : 0.05 , the non-

linear wave height takes its first minimum at a value of

o which is about 20 per cent larger than the value predicted

by Lamb's theory, and for ß = 0.1, the value of o at

which the first minimum occurs is some 50 per cent greater

than Lambrs linearizecl resul-t. At this value of the Froude

number, surface profiles have again been computed for which

the height of the downstream waves is extremely small, and

we do not doubt that it may be made to vanish altogether

by eliminating the spurious waves from the upstream portion

of the f l-ow.

In the limit cx + 0 , the elJ-ipse degenerates to a

vertical plate of zero thickness and height $ attached

to the bottom of the stream. Lamb's theory ceases to be

valid for small o¿ , and predicts that the downstream v/ave

train vanishes as cr -+ 0 Of course, the non-linear results

in Fig. 3.4 do not confirm this prediction, and indicate

instead that the dov¡nstream \^/ave height remains finite as

c¿ + 0 The linearized theory of Section 3.3(a), in which

the ellipse is assumed to be small and roughly circular,

appears to provide a reasonably good estimate for the down-

stream wave height in this limiting case; allowing o¿ to

become zero in equation (3.16) gives a peak-to-trough wave

height 2At of 2.32 x I0-3 for ß - 0.05 and 9.27 x 1O-3

for ß=0.I,when F=0.5.
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3.6 Summary and Further Remarks

The prob1em investigated in chapter two has been

generalized in a straightforward manner to include the case

of two-dimensional steady fl-ow about a submerged semi-

ellipse. The problem is again formulated using the complex

potential f. - 0 + ill as the independent variable, and is
solved using the boundary-J-ntegral technique of chapter two.

Two linearized theories have been discussed. The

first of these is a straightforward general-ization of the

linear theory of chapter two, and is derived under the

assumption that the ellipse is an essentially circularly-
shapeci object. However, it also appears to provide

reasonable results for ellipses of very high aspect ratio
R - B/a. , although it ceases to be valid for ellipses for

which o is large. The second linearized theory which was

investigated is based upon the classical- solution of Lamb,

and requires the ellipse to be a 1ong, thin obstacl-e.

According to this theory, the amplitude of the downstream

\^/ave train, and hence also the wave drag, may become zero

for ellipses of certain special lengths. However, the assump-

tions implicit in this theory are 1oca1ly violated in the

neighbourhood of the stagnation points at each end of the

semi-elliptical body, and, apparently as a consequence of

this, the theory f ails for small clc

The exact non-linear equations of motion are solved

numericalfy, using a Newtonian iteration scheme to obtain

the free-surface profiles. For F > I , the symmetric,

wave-free profile predicted by the linearized solutions i-s
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confirmed by the non-linear results. For F < 1 , the

non-linear surface profile is essentially free of waves

upstream, and generally possesses a train of Stokes \^/aves

downstream. The remarks made in chapter two concerning the

possible non-uniqueness of non-linear solutions are doubtless

applicable here also; there exists the possibility of a

region of overlap in the supercritical flow regime F > I t

in which both the symmetric wave-free sol-ution and a sol-ution

possessing a downstream wave train exist simultaneously.

In addition, it is possible that solutions of the type

described by Aitchison (I979) may al-so be found.

As with Lamb's Linearized solution, the non-Iinear

results also appear to indicate that the downstream wave

height and the wave resistance may both become zero for

certain ellipse lengths. These special ellipse lengths are

functions only of the Froude number F in Lamb's theory,

although they also become strongly dependent upon the ellipse

height ß when the effects of non-Iinearity are included.

Although free-surface profiles for F < t have been

obtained in which the downstream h/ave height is extremely

smal1, strê have not yet observed it to vanish completely.

This appears to be due to the necessity of the present

numerical- method to impose a radiation condition at the

first point upstream. Consequently, a spurious, numerically-

produced wave train is present upstream, and it appears that

the very small downstream waves which are obtained may only

be made to vanish completely by ridding the free surface of

the spurious upstream \{aves. To search for configurations
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having exactly zero drag, it may perhaps be possible to
formulate the problem differently, taking advantage of

the symmetry of the solution about x = 0 for these cases,

and allowing all the free-surface points to vary. The

parameter o, would presumably be an unknown quantity, to

be obtained along with the free-surface profile in the

Newton's method solution of the problem. Work is presently

continuing on this non-linear eigenvalue problem.
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