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SUMMARY

In this thesis, three problems of inviscid free-surface
hydrodynamics are investigated. The behaviour of the fluid at
the free surface is governed by non-linear equations, and the
free surface of the stream is disturbed by an immersed body.
The body may be regarded as blunt, in the sense that its
forward face is somewhere perpendicular to the direction of
the flow of the oncoming stream. There is thus a stagnation
point on the forward face of the body, so that approximate
theories which involve assumptions of body slenderness may
not be applied directly.

The first of these problems is discussed in chapter one.
Here, a blunt-nosed body, such as a bridge pier, is considered
to be standing in a fast-flowing shallow stream. The non-
linear shallow water equations are used, and the bow wave
upstream of the body is regarded as a shock front (hydraulic
jump) , across which suitable jump conditions are prescribed.
The problem is then solved inversely, by assuming a known
shape for the upstream bow wave, and seeking to determine the
position and shape of the body. The flow variables are
expressed as Taylor series expansions about the bow wave, and
the computer is used to obtain numerical values for the coeff-
icients. Several singularities in the flow field are discovered
and discussed.

The second problem, discussed in chapter two, concerns
two-dimensional flow of an ideal fluid in a horizontal stream,

attached to the bottom of which is a semi-circular obstruction.



Infinitely far upstream, the fluid flows uniformly, with a
known Froude number F . A new linearized theory is presented,
which is valid for semi-circular obstructions of small radius,
and accounts for the behaviour of the fluid at the stagnation
points on the bottom. This theory predicts a train of down-
stream waves whenever the flow is subcritical (F < 1) , and

a symmetric wave-free surface profile whenever the flow is
supercritical (F > 1). The exact non-linear equations are
then solved numerically at the free surface using a boundary-
integral technique and a Newton-Raphson procedure. Non-linear
solutions possessing a train of downstream waves are obtained
for F < 1 , and solutions free of waves for F > 1 . The
non-linear results suggest that the validity of the wave-like
solution may extend into F > 1 , overlapping with the domain
of validity of the wave-free solutions.

In chapter three, the semi-circular obstruction of the
previous chapter is generalized to include the case of a semi-
elliptical body attached to the bottom. Attention is confined
to the subcritical region F < 1 , where it is shown that, for
ellipses of certain special lengths, the non-linear downstream
wave amplitude may be made to vanish, resulting in zero wave

resistance.
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CHAPTER ONE

SUPERCRITICAL FLOW ABOUT A BLUNT OBSTACLE
IN SHALLOW WATER

1.1 Introduction

The topic of the present chapter represents a direct
extension of the now classical blunt-body problem of gas-
dynamics to a similar problem arising in shallow-water theory.
Here, we consider a blunt object, such as a bridge pier,
immersed in a supercritical water stream, and supporting a
detached bow shock-wave, or bore. The problem is formulated
inversely, that is, the free-stream Froude number and the
shape of the shock-wave are specified in advance, and it is
then required to determine the values of the flow variables
downstream and the shape of the body. The shock conditions
are used to relate flow quantities on the upstream and down-
stream sides of the shock, and so serve as initial data for
the partial differential equations describing the behaviour
of the fluid in the shock layer.

The earliest attempts to solve the blunt-body problem
of gas-dynamics involved formulating the problem inversely,
as in the present study, and seeking to represent the flow
variables in the shock layer as Taylor-series expansions about
the shock-wave (see for example Cabannes (1951)). However,
it was pointed out by Van Dyke (1958a, 1958b) that these

Taylor series describe not only the region of physical interest



downstream of the shock wave, but also a physically fictitious

region upstream of the shock where there exists a singular

line, corresponding to an envelope of outgoing characteristics.

As this singular line apparently always lies closer to the
shock than does the body, the series expansions do not include
the body within their domains of convergence. Thus, attempts
to locate the body by simply summing terms in the power series
are unsuccessful, since the series themselves become divergent
in the vicinity of the body. Accurate results may neverthe-
less be obtained at the body, however, by devising some method
of analytic continuation to extend the range of usefulness of
the series downstream. Some of the earlier methods for doing
this are reviewed by Hayes and Probstein (1966) and Van Dyke
(1975) .

Solutions to the gas-dynamic blunt-body problem have
been produced more recently by Schwartz (1974a, 1975). The
problem is again formulated inversely and the flow variables
in the shock layer are expressed as Taylor-series expansions
about the shock apex. The coefficients of the Taylor-series
are computed to high order using a digital computer to perform
the necessary arithmetic, and the series are then recast as
Padé approximants (rational fractions) in order to provide the
required analytic continuation downstream. For the case of
an axisymmetric body supporting a paraboloidal bow-shock wave,
Schwartz (1974a) demonstrated that he could accurately locate
the position of the body as far as 200 shock-nose radii down-
stream, where his results showed substantial agreement with

far-field asymptotic solutions. In a later investigation

of the more general planar asymmetric Problem in which the



shock is set at an arbitrary angle of attack to the upstream
flow, Schwartz (1975) identified several singular lines within
the flow region downstream of the shock, and demonstrated that
the streamline of maximum entropy which intersects the shock
at right angles is not generally the body streamline.

It is well known that the non-linear equations of shallow-
water theory are analogous to those of gas-dynamics for an
hypothetical gas having an adiabatic exponent <Yy = 2 (Preiswerk
(1938)) *; indeed this so-called hydraulic analogy is often
used as a means of flow visualization for the supersonic blunt-
body problem of gas-dynamics (see for example Stoker (1957)
and Werlé (1973)). The shallow-water blunt-body problem is
also of interest in its own right, since it models such situ-
ations as the flow about a bridge pier in a supercritical
stream. It may also serve as a first approximation to the
flow near the bow of a non-slender ship.

Recently, Pandolfi and Zannetti (1977) reported a
numerical solution to the shallow-water blunt-body problem,
in which a body was specified and the position of the shock
found by a time-dependent iterative technique. The work
presented in this chapter aims to complement that of the above
authors, by concentrating on the mathematical structure of
these solutions, and the extent to which they differ from the

gas-dynamic blunt-body solutions.

* = there is also a very close analogy between the equations of
shallow-water theory and those describing incompressible fluid
flow in an elastic-walled tube, as is discussed by Forbes (1981).



1.2 Formulation of the Problem

Consider a cartesian coordinate system with the x- and
z-axes lying along the undisturbed free surface, and the y-
axis pointing vertically, as in Stoker (1957). The shock
apex is at the origin, and the shock nose radius is R
Upstream, the flow is uniform, with depth H_ and velocity
V_ , and makes an angle with the x—-axis. The fluid is
subject to the downward acceleration of gravity, g . This
dimensional coordinate system is shown in Fig. 1.1.

We proceed immediately to dimensionless variables, under
the shallow water approximation Hw/Rs -0 . Thus the hori-
zontal lengths x and 2z are made dimensionless with respect
to Rs , while H denotes the total depth of fluid made dimen-
sionless with respect to H_ . The x- and z-components of
velocity, U and W , are referred to the quantity V_

Under this approximation, the vertical component of velocity
is assumed to be zero, and the equations of motion in the

shock layer become (Stoker (1957))

UU_ + WU+ H /F. =0 (1.1a)
UW + WW +H /F. =0 (1.1b)
(UH)  + (WH) =0 , (1.1c)

where the upstream Froude number is given by

Vm

B = ———-—1/ ’
(g H)

and subscripts denote partial differentiation.






Equations (1.1) are now transformed to the coordinate
system of Van Dyke (1958b). The shock is assumed to be a

conic-section of the form

z? = 2x - Bx? ,
where B 1is a measure of the shock bluntness. (Thus B =0
describes a parabola, B = 1 a circle, etec.) The new ortho-

gonal curvilinear coordinate system is defined by the relations
2{1 - [(1 - BE))(L + 2Be + Be?)1"}, B #0
¥(g%2 - 2e - %) , B =0

z = E(1L + €)

Thus the shock corresponds to the line € = 0 , as shown in
Fig. 1.1. Denoting the components of velocity in the g&-
and e-directions by u and Vv respectively, equations (1l.1)

become
R (g) {(wy, + H,/F2) [CE* + (l+e)*]-viCE}
+ B (e) {vu_[CE? + (1+e)2] + uv(l+e)} = 0 (1.2a)
R () {uv, [CE2 + (L+e)?] + uvCe}

+ R(l)(e){(vve + H_/F2) [CE® + (1+e)?] - u(l+e)} =0
(1.2b)

R'®) (g) {CEHu + [CE” + (l+e)?](Hu), )

+ R () {(1+e)HY + [CE2 + (1+e)21(HV) } = 0 ,
(1.2c)



where

C=1-8B

and
RO (e) = [1 + 2Be + Be?)” (1.3a)
RO? (g) = [1 - BE21" . (1.3b)

Equations (1.2a) and (1.2b) are the &- and e-momentum equations,
and equation (l.2c) is the mass continuity equation.

The conservation of mass and momentum upon crossing the

shock results in the following conditions at € = 0
1 2 : 2 Y
H=%([1 + 8F sin 81" - 1) (1.4a)
= = 2sinb (1.4D)

[1+8F2sin®6]" - 1
u = cosb , (1l.4c)

where 6 is the angle between the shock and the free-stream
velocity vector, measured anti-clockwise from the latter.

Thus

-f sina + [l—BEz]%cosa
[1+cg21”

sinf =

Equations (1l.4) may be obtained from Wehausen and Laitone
(1960) .

Once the functions u,v and H have been determined
from equations (1.2) and (l.4), the streamfunction ¢ is

obtained by integrating

2 21%
v, =[S



subject to the boundary condition

Ecoso + %([l—BEZ]%—l)sina, B #0
Y(g,0) = { (1.6)

gcosa - %¥£%sina , B = 0.

The Y = 0 streamline is assumed to pass through the shock

apex.

1.3 Approximate solution for symmetric flow (o = 0)

Before proceeding to investigate the exact solution of
the full system of equations (1.2) and (1.4), we first present
an approximate solution for the position of the stagnation
point at the nose of the body, for the case a = 0 . This
result immediately yields the so-called standoff distance,
which is the minimum distance between the shock and the body,
since for o = 0 the standoff distance is simply the distance
between the stagnation point and the shock apex.

When o = 0 , the resulting flow field is symmetric
about the line =z = 0 , and so the body streamline is ¢ = 0
By symmetry, W, U and H are all zeroon =z =0 , and
the stagnation point is thus the point on this line for which

U=0. On z =0 , equation (l.la) becomes
2
Uu +H/F_ =0,

which may be integrated immediately to yield

H _ 2(2b%-3b+3)
F2 = (b-1)2(b+1) '

3u? + (1.7)

where b = (1 + 8F)" .



The constant on the right hand side of equation (1.7) has

been determined from the shock conditions at z = 0 . The
height of water at the stagnation point, Hstag , is found by
setting U = 0 in equation (1.7), resulting in the expression

_ 2b%? - 3b + 3
Hstag_ % b -1 -

(1.8)

Up to this point, no approximations have been introduced.
To obtain an approximate solution for the position of
the stagnation point in the flow field, we consider equation

(l.1c) evaluated along z = 0:

UxH + UHx + WZH =0 . (1.9)

The quantity WZ is a function of x along =z =0 , and

cannot be determined without reverting to the full system of

equations. However, if we suppose Wz to be approximately
constant along =z = 0 , then the shock conditions give
_ b -3
W = 5 =1 - (1.10)

Eliminating H and W from equation (1.9), by virtue of
equations (1.7) and (1.10), yields the following equation

for the determination of U along z = 0 :

aUv'U -aU +U0 -a =0, (1.11)
1 X 2 x 3
with
b-1
ar = 3(@)
4(2b2-3b+3)
as

(b=1) (b+1) (b-3)

_ 4(2b%-3b+3)
(b-1) 2 (b+1)




Equation (1.11) is a non-linear ordinary differential equation

which may be integrated by separation of variables to yield

where the constant of integration, a, , is determined from

the shock conditions to be

a, = 221 4+ 2183737 zn((b'l)/ga‘z) . (1.12)
2vVa; (b-1) Vas+2
At the stagnation point X g ! U =0 , and consequently
= ay ’ (1.13)

Xstag
with the constant a, given by equation (1.12).
As the upstream flow approaches the critical speed
(F_ = 1), the shock strength tends to zero and equations (1.8)

and (1.13) become

3
stag i E + O(Fm_l) ’

/§—l>] L, oo,

9
xstag 4 Z[l + l/§ £n</§'+l JFw—l

as F -1

Thus the body moves infinitely far downstream as F_ - 1
In the high speed limit (F_ = «) , equations (1.8) and

(1.13) become

+~ Y2F_ + 0(1),

stag

1 -1 -3/ 2
Xstag - /EF‘” + O(FW ) ! as Foo > 4

10.



so that the shock layer is of infinite height and infinitesimal

thickness for F > o,

1.4 The Series Solution

The dependent variables wu,v and H in equations (1.2)
are expressed as Taylor-series expansions about the shock apex.

For example, the velocity u 1is written
[e0]

u= )

i=o

These equations are then substituted into equations (1.2) to
yield a system of three recurrence relations, from which the
coefficients uij, vij and Hij at any order may be deter-

mined as sums of products of lower order coefficients. For

example, the e-momentum equation (1.2b) yields the system

i i]
y RPED ¢y RV =g, (1.14a)
- r ier}j. = 5 s i, j.-—s

i’j = 0,1,2,-..

where
(3) i 3 (3)
Fij = 2 Z {(l—m+l)Gmn vi —m+19j.—n+ CVm—l,n.‘ui —m,j.—n}
m=0 n=0
(1.14b)
(4) I ! (4)
Fiy = ) ) {(j_n+l)Gmn Vi—m, J—nt1 (v, um,m4?ui-m,y—n}
m=0 n=0
1 . . .
+ ﬁz{(3+l)(CHi—2,L+1 + Hi,y+1) + 23Hij + (]—l)Hi’L_l}
and
G(S) Cu + u + 2u
mn m—2,n mn m,n—l m,n—2
(1.14c)

11.
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(1)

The terms Rj (2)

and Ri are the coefficients in the
Taylor-series expansions of the functions R(l)(e) and
R(Z)(E) defined in equations (1.3). If any element has a
negative subscript, then that element takes the value zero.

The system of recurrence relations thus derived from
equations (1.2) was programmed in the FORTRAN language on a
CDC CYBER 173 computer, to obtain numerical values of the
coefficients. Accumulated roundoff error in the coefficients
was not a significant concern, since the programs were written
for the DOUBLE PRECISION mode, which provides some 28 signif-
icant figures accuracy. In order to minimize the total

computing time, several intermediate products (such as F:?)

(4)
i

and F. in equations (1.14)) were also stored along with

the desired coefficients; consequently the total running time

is proportional to the fourth power of the order to which the

coefficients are calculated. The coefficients were checked

by a separate program which resubstituted them into the original

equations and verified that these were satisfied at each order.
To begin the computation, the shock conditions (1.4) are

expanded as power-series in & , up to a chosen order N .

In the case of the depth H , for example, this yields the

coefficients Hoo'H1o""’HNo § The first application of the

recurrence relations derived from equations (1.2) then yields

the coefficients Ho1'H1

ree e Hy , the second yields

1 -1 ,1

H

H 2,H1 s e+ ,H and so on. Thus after having applied the

0 2 N-2 ,2

recurrence relations N times, a triangular array of coeffic-
ients for the variable H(&,€) is obtained. The series for

the streamfunction p is then constructed by expressing the
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right hand side of equation (1.5) in perturbation series
form, and integrating term by term with respect to ¢ .

As with the supersonic blunt body problem, the series
expansions for the dependent variables wu,v etec. fail to
converge at the body due to the presence of a limit line in
the physically fictitious upstream region, so an approximate
method of analytic continuation is required. Following
Schwartz (1975), we shall use Padé fractions for this purpose.
The double series are first reduced to single series along
lines £&/e = constant, by the following rearrangement:

P o © k j
s = 101w, dd = 1] n (8 ]
j=0 i=0 k=0%j=0
This form ensures that the most efficient use is made of our
triangular arrays of coefficients. The function H 1is now

of the form

m+ n m+n+1

2
) =] H0 + H'e + H2€ + ... +H € + 0(e

o vy

)+

m+ n

H(E;
(1.15)

where m+n = N , the order to which the coefficients are
known. This expression can be recast as an [m/n] Padé

fraction

2 m
a +a eta ¢ +...+ta ¢
0 1 2

[m/n]H<e;%> = = mn +0 (e
l+bls+bze +...+b ¢

n

m+n+1

) . (1.16)

The notation [m/n] refers to a rational fraction having m
zeros and n poles in the complex e-plane. The coefficients
a, i=20,1,...,m and bi , 1i=1,...,n are those which

make the Taylor series expansion of equation (1.16) agree
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with equation (1.15) up to order m+n+l . Padé fractions
can be calculated conveniently by the epsilon algorithm of
Wynn (1966).

To find the body corresponding to a given shock, it
is first necessary to locate the stagnation point in the flow
field, where u =v =0 . The coordinates (£&,g) of the
point satisfying this condition may be found by the two-

dimensional Newton-Raphson iteration

(uv =vu )
E = g _ € € 1
i+1 i (u v -v_u )
E e E e i
uv. =vu
€ =g - ( £ E%
i+1 i - !
i+ (uevE veug)i

using Padé fractions to sum the series for u,v and their
derivatives. Once the position of the stagnation point is
known, the value of the streamfunction and the total water
depth H may be found there. The body is then obtained by
tracing the stagnation streamline by a Newtonian iteration.

The position of the critical line in the flow field may
also be obtained from the power-series solution. If F
denotes the Froude number in the shock layer, then the critical
line is a contour along which F =1 , and is analogous to the
sonic line in the gas-dynamic blunt-body problem. From the

definition of Froude number, we have

2 'l;|.2+V2

F? i (1.17)

Thus the critical line may be found by expressing the right

hand side of equation (1.17) in perturbation series form, and
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v shock

body

0.5

critical
line

limit

line //
S
| | N
-0.5 \\ 0.5 y

-0.5

-1.0 =

Figure 1.2 The body and flow field for a parabolic shock
(B=0) with F_=10 and o =0.



tracing the contour along which F2 = 1 , by a Newtonian
iteration. The points where the critical line intersects
the shock are known from the shock conditions, and serve as

starting points for the tracing.

1.5 Presentation of Results

1.5(a) Symmetric Case (o = 0).

When the angle o between the free-stream velocity
vector and the x-axis is zero, the resultant flow field is
symmetric about 2z = 0 , and the body streamline is ¢ = 0
This is illustrated in Fig. 1.2 for the case of a parabolic
shock (B = 0) at zero angle of attack to an incident stream
with F_ = 10 . Here, the critical line and body streamline
were computed as [15/15] Padé approximants, although they
are graphically indistinguishable from results produced with
much lower order Padé fractions. The critical line has been
extended some distance into the body and into the fictitious
analytic continuation of the shock layer upstream where it
becomes tangent to the upstream limit line shown on the
diagram. The position and nature of the limit line were
determined by the graphical technique of Domb and Sykes (1957),
some examples of which will be given later. As with the super-
sonic blunt-body problem of gas-dynamics, the upstream limit
line is of the square-root type, and is indicative of a fold
in the solution surface, similar to that shown by Schwartz
(1974a). It may therefore be successfully removed by series
reversion; for example if the series for the Froude number

F is

16.
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F(E,e) = FO(E) + F;(8)e + F2(£)€2 + e

then inverting the series gives
e(&,F) = €, (F) [F-Fo(8)] + €,(F) [F-Fo(&)1% + ...

Thus the function F(£,ec), which becomes double-valued at

the upstream singular line, is transformed to the single-
valued function ¢€(&,F) . Series reversion was used to
obtain the critical line in the upstream region, and to check
on the accuracy of the body found by Newton's method.

In the blunt body problem of gas-dynamics, the density
and e-direction velocity at the shock both remain finite as
the free-stream Mach number is made infinite,provided that
the ratio of specific heats, Y , is greater than 1. As a
result, the width of the shock layer attains a finite limiting
value for infinite free-stream Mach number. This situation
is in sharp contrast to the present problem, in which the
analogous quantities, H and v , become infinite and zero
respectively at the shock as F_ » © , which may be seen from
the shock conditions (1.4). In addition, the width of the
shock layer in the present problem becomes zero for infinite
free-stream Froude number, a result already anticipated by the
approximate solution of Section 1.3.

In Table 1.1, the water depth at the stagnation point,

stog ! and the standoff distance, iﬂu , are presented as
functions of the Froude number F_ . These results were
obtained from the 30-th order solution (using [15/15] Padé
approximants) , for the case of a parabolic shock at zero angle

of attack to the upstream flow. Notice that the results for
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F_ }(stag I{stag

2 2.8291935 x 10 ! 2.7276654

3 2.3564145 x 10 ! 4.0882797

10 1.0981844 x 10 ! 1.3919285 x 10
20 6.6156103 x 10 2 2.8047687 x 10
30 4.8572147 x 10 2 4.2185315 x 10
10?2 1.8651461 x 10 2 1.4117401 x 102
103 2.6684870 x 10 ° 1.4139638 x 10°
10" 3.4808605 x 10 * 1.4141866 x 10"
10° 4.2947111 x 10 ° 1.4142111 x 10°

TABLE 1.1 Standoff distance and water depth at the
stagnation point as functions of F_, for

parabolic shock at zero angle of attack.

the stagnation depth Hstag shown in Table 1.1 agree with
the exact result (equation (1.8)) to at least seven significant
figures, indicating the degree of convergence of the Padé fractions
at the stagnation point.

Fig. 1.3 shows the standoff distance as a function of F_ ,
obtained both from the 30-th order series solution, and from
the approximate solution of Section 1.3 (equation (1.13)). For

large F_, the high-order series solution appears to be approach-

ing the result X g ™ F:l , which is predicted by the approx-
imate solution. However, as F_ ~ 1 , the behaviour xstag
(F°° - l)-1 obtained from the approximate solution is not

confirmed by the 30-th order series solution. Instead, the



log, (Standoff Distance]

Figure 1.3

Standoff Distance as a function of F_ , for

the parabolic shock. The smooth line is the

approximate solution of Section 1.3.

are the exact results.

The points




accurate results tend to suggest that the standoff distance

may possibly remain finite as F_ -+ 1 .

1.5(b) Asymmetric Case (o # 0).

We now consider those situations in which the flow-
field is asymmetric, resulting from a non-zero angle of attack
o between the free-stream velocity vector and the x-axis.

The results for five different test cases are summarized in
Table 1.2.

As described in Section 1.1, the power-series solution
technique was used by Schwartz (1975) in the blunt-body problem
of gas-dynamics to establish conclusively that the maximum
entropy streamline which intersects the shock at right angles
does not wet the body in asymmetric flows, and may lie either
to the windward or the leeward side of the stagnation stream-
line, depending on the magnitude of the shock bluntness para-
meter B . An analogous situation exists in shallow water
flows, as may be seen from Table 1.2. Here, the value of

the streamfunction at the body, , 1s contrasted with

wbody
the streamline normal to the shock, wN , by means of the
difference Ay = me - wN . Also tabulated is the difference
A between the points where these two streamlines intersect
the shock, which may be calculated from equation (1.6). As

with the gas-dynamic blunt-body problem, the normal streamline

wN passes on the upstream side of the stagnation streamline

wmm' when B < 1 (giving a positive value for Ay in Table
1.2), and on the leeward side of the stagnation streamline
when B > 1 (Ay negative). For a circular shock (B = 1),

the stagnation streamline and the normal streamline are, of

20.



Case F_ B o wN wm@ Ay A
1 5 =1 10° -=0.17917636 -0.17169835 0.00747801 0.00736883
2 5 0 10° -0.17634764 -0.17274315 0.00360449 0.00355081
3 10 2 10° -0.17106842 -0.17213020 -0.00106178 =-0.00104555
4 5 2 10° -0.17106842 -0.17439424 -0.00332582 -0.00327429
5 2 2 20° -0.32305966 -0.34863 -0.02557 -0.02390
TABLE 1.2 The normal streamline and the stagnation streamline for

the

test cases.

asymetric problem, computed for five different

"T¢C
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course, identical, by virtue of the special symmetry of the
shock in this case. Thus the circular shock case serves
as a useful check on the accuracy of our results, and we
remark that the agreement between wm@ and wN is usually
in excess of eight significant figures when B = 1.

As the Froude number F_ is increased, the stagnation

streamline and the normal streamline move closer together,

until in the limiting case F_ + « , they become indistinguish-
able. This is because the shock layer now has zero thickness,
and by equation (1.4b), v = 0 throughout. Thus the stagnation
point is simply a point on the shock for which u =0 , and

from equation (1l.4c), this is precisely the point where the
flow is incident normal to the shock.

In the paper by Forbes and Schwartz (1981), a discussion
is given of the results for case 2, a parabolic bow shock wave
at 10° to an incident stream with F_ = 5 . The body and
critical line are plotted for the 10th, 20th and 30th order
solutions, and it is determined that, although the 10th order
solution is incapable of yielding the entire critical line,
the 20th and 30th order solutions are completely indistinguish-
able at least over the subcritical region at the nose of the
body, indicating that the [10/10] Padé fractions of the 20th
order solution have converged sufficiently well to describe
the region of interest near the nose of the body.

The results for case 1 are shown in Fig. 1.4, for the
30th order solution. The flow-field produced downstream of
the shock is somewhat atypical of flow-fields obtained with
other shock shapes, since for this case, the subcritical

region on the upstream side of the body apparently extends
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Figure 1.4 The body and flow field for case C r l t I C Q l
1, an hyperbolic shock at 10° to an l i r] GE

upstream flow with F_ = 5.
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downstream to infinity, so that the critical line never
intersects the body. On the leeward side of the flow, the
body and critical line do intersect, however, due to the
asymmetry of the flow. The hyperbolic bow shock wave depicted
in Fig. 1.4 possibly represents an unrealistic situation,
since the shock always makes a non-zero angle with the
incident free-stream; consequently the amount of energy
required to maintain such a shock is presumably infinite,
because the shock strength remains finite even as z2? » o
However, it may nevertheless still be possible for the shock
to be locally hyperbolic near the nose of the body in real
situations where such flows occur.

In Fig. 1.5 we display the results for case 4, an oblate
elliptical bow shock wave at 10° to an incident stream with
F_=5. The body, the critical line and the normal stream-
line are all shown on the diagram, and were obtained with
[15/15] Padé approximants formed from a 30th order solution.

It is evident that even a solution of this high order is
incapable of locating the entire critical line within the

shock layer, due to the closeness of certain downstream
singular lines to the subcritical region. However, since
these singular lines cannot penetrate the subcritical region,
by virtue of the fact that the differential equations of motion
are of elliptic type there, we expect solutions of higher order
to be capable of yielding the critical line up to the point
where it intersects the body.

In an attempt to fathom the mathematical structure of

the solution for case 4, we have endeavoured to locate all

the nearest singular lines, so defining the extent of the
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Figure 1.5 The body and flow field supporting an oblate elliptical shock
(B =2) with o =10° and F_ = 5. The locations of five

different singular lines are also indicated.
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region available to any inverse solution technique. To do
this, we have examined the function H(E,¢€) evaluated along
contours £/ = constant , as in equation (1.15). Along
these lines, H becomes a function of the single independent
variable ¢ , and accordingly, the coefficients Hy,H;,Hz,...
in the series (1.15) for H(eg;&/e) may be examined to find
the nature and location of the nearest singularity in the
complex e-plane. To this end, we employ the graphical
ratio test of Domb and Sykes (1957). They observed that, for
functions of the type
. B © S IK(EO—E)S , 8 #0,1,2,...
(e) = ) ce = 5 (1.18)
= K(eo—-€) An(eg-e), § = 0,1,2,...
a plot of cn/cn_1 against 1/n is linear, with vertical
intercept 1/eo, and slope =-(1+§8)/e, , because the binomial

theorem yields

n =-—l-"<l—l+6)
n

for these functions. Thus if the singularity &, of the
function H(e;&/e) closest to the origin in the complex
e-plane is of the type (1.18), then a plot of Hn/Hn_1 against
1/n asymptotically approaches a straight line as n > « .
From the intercept and slope of this line, the radius of
convergence €, of the series and the exponent & of the
singularity are estimated.

We have constructed a number of Domb-Sykes plots for the
function H(e;&/¢g) for different values of §&/¢ . Two of

these are shown in Fig. 1.6. When &/ = - 0.6, the coeffic-



ients H in equation (1.15) are all of the same sign, and
so the nearest singularity lies on the positive real axis
of ¢ , and represents a point on the upstream limit line.
The Domb-Sykes plot indicates that this singularity is of
the square-root type (6 = 0.5) and this is confirmed by the
fact that it may be successfully removed by series reversion.
When ¢£&/e = -4 , the coefficients Hi have alternating
signs, and so the Domb-Sykes plot reveals a singularity
downstream of the shock which is again of the square-root
type. Two limit lines have been obtained in this fashion,
and are indicated in Fig. 1.5. The regular oscillations at
lower orders in both the Domb-Sykes plots in Fig. 1.6 are due
to the existence of secondary singularities in the function
H(e;&/¢) .

Having thus located the primary singularity e, of
the function H(e;&/e) for a range of values of &/ , it is
often possible to increase the radius of convergence by mapping
the point ¢, away to infinity using an Euler transformation.

This is achieved by changing to the new independent variable

Domb-Sykes plots may now be constructed for the new function
H(e;£/e) to locate secondary singularities occurring in the
complex E—plane.

The Domb-Sykes plots constructed for the function
H(e;&/e) from the 30-th order solution are in general imprecise,
so that the position of the new singularity can only be obtained

very approximately. The dashed lines in Fig. 1.5 indicate the
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suspected locations of three singular lines obtained from these
plots. A limit line is expected downstream of the shock on
the upstream side of the flow at roughly the position indicated
on the diagram. A comparison of Fig. 1.5 with other similar
flows tends to suggest that this downstream limit line is most
probably of the square-root type, with ¢ = 0.5 . In addition,
the Domb-Sykes plots appear to indicate the existence of two
upstream limit lines distributed roughly symmetrically about
the stagnation streamline, and sketched in Fig. 1.5. The
value of the exponent & along these lines cannot be determined
to within acceptable error bounds, although its sign would appear
to be negative. It is possible that this exponent may have
the approximate value § = - 0.43 found by Schwartz (1975) for
the analogous upstream limit lines in the gas-dynamic blunt-
body problem. Note that the limit lines on the leeward side
of the flow intersect the shock at the singular point where the
shock becomes parallel to the upstream uniform flow.

Unlike the upstream limit lines which exist only in a
physically fictitious flow region, limit lines downstream of
the shock occur in a region of physical interest, and indicate
the boundary of the region downstream in which the flow variables
are analytic. To proceed further downstream it is presumably
necessary to postulate some non-analytic behaviour in the flow
variables, such as a secondary embedded shock connecting the

two regions.



1.6 Summary and Further Remarks

The supercritical shallow-water blunt-body problem has
been solved inversely by a power-series coordinate expansion,
for shocks which are assumed to be members of a one-parameter
family of conic sections. Certain similarities exist between
these flows and their gas-dynamic counterparts, although the
analogy with gas~dynamics is not exact, since the shock jump
conditions are different for the two problems. In particular,
in the infinite Froude number limit, the shock layer is of
infinitesimal thickness and infinite height, and the normal
streamline and body streamline have become indistinguishable,
although they are normally separate and distinct for asymmetric
flows at finite Froude number.

When B =2 0 , limit lines, associated with the jump
conditions at the shock, are apparently always present down-
stream and may become very close to the subcritical region at
the nose of the body when F_  is small and B 1is large.
Unlike their gas-dynamic counterparts, however, the downstream
limit lines in the present problem appear to move infinitely
far downstream as F_ - « , when the shock wave is parabolic
(B = 0). For hyperbolic shocks (B < 0), the shock wave is
free of singular points, and so the region downstream of the
shock evidently does not possess limit lines; in fact, it

appears that the subcritical region may extend infinitely far

downstream for these cases. However, hyperbolic shocks possibly

do not represent a realistic situation, since they presumably

require an infinite amount of energy to maintain.
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In this chapter, we have discussed only the flow about
blunt, three-dimensional obstacles in a shallow stream with a
flat, horizontal bottom. In principle, the technigues
employed in this chapter may be used to study the flow about
such obstacles in a stream with arbitrary smooth bottom topo-
graphy, although the analogy with gas dynamics would no longer
apply. In addition, some difficulty may be encountered with
the shock jump conditions, and the choice of realistic shock
shapes.

The equations of shallow-water theory are, of course,
unlike those of gas dynamics in that they are only an approx-
imation to the full inviscid equations of motion. The work
discussed in this chapter therefore reveals two interesting
limiting cases where the assumptions of shallow-water theory
might not be expected to hold. The first such case is the
limit F_ » « , where the shock layer degenerates to an
infinitely thin water jet of infinite height in front of the
body. Whilst the assumption of zero vertical velocity
implicit in shallow-water theory is clearly violated, the
predictions of this theory are, however, not entirely unreal-
istic. Indeed, a very thin jet of great height in front of
the body is actually observed in such situations, although
this jet usually curves down and re-enters the upstream portion
of the flow. In addition, we might expect such a jet to be
significantly influenced by viscosity and surface tension.

The second situation in which shallow-water theory would
appear to be inadequate is the limit F_ -+ 1 . In this case,

the standoff distance becomes large and the shock strength
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small, so that the bore itself might perhaps become of the
undular type, being followed by a train of non-linear down-
stream waves. Although the analysis of this situation would
undoubtedly be of great theoretical and practical interest,
the complexity of this problem apparently places it beyond the
range of present techniques (and computers). Specifically,
the surface waves that are expected to appear within the shock
layer as F_ -+ 1 cannot be described by the simple shallow-
water theory of this chapter, and so some higher order theory
must be developed in which surface displacements on a scale
comparable to the water depth are taken into account. This
would appear to be a difficult task, and it may even be nec-
essary to return to the full three-dimensional inviscid
equations of motion. In either case, it would no longer seem
possible to impose boundary conditions at an assumed shock
wave upstream of the body, since the very concept of a shock
discontinuity within the flow is only valid within the context
of the shallow-water theory. The higher order theories needed
to describe the formation of waves in the region near the body
would reguire detailed knowledge of the shock structure if
boundary conditions are to be imposed at the shock; since this
information is not known 3 priori, being sought as part of the
solution, some attempt would ultimately have to be made to
impose uniform flow conditions at upstream infinity.

Rather than attempt to treat this difficult problem
further, we instead retreat to the somewhat simpler, and not
entirely unrelated, consideration of two-dimensional flows about

submerged bodies. In the remaining chapters of this thesis,



the non-linear surface waves generated by various types of

irregularity in the bed of a stream will be discussed.

33.
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CHAPTER TWO

TWO-DIMENSIONAL GRAVITY FLOW ABOUT
A SUBMERGED SEMI-CIRCLE

2.1 Introduction

In this chapter, we consider the flow under gravity of
an incompressible, inviscid fluid in a channel, affixed to
the bottom of which is a semi-circular cylinder lying across
the channel bed at right angles to the oncoming flow. The
flow is steady with uniform flow conditions far upstream, and
may be regarded as two-dimensional, since there is no variation
in flow conditions across the channel. The solution to this
problem may be of interest in determining the forces on a
cable lying on the ocean floor, for example. It may also
serve to indicate the mechanisms by which waves are generated
by submerged bodies, such as submarines.

The motion of concentrated singularities beneath a free
surface is an o0ld problem in fluid mechanics, and is closely
related to the topic of this chapter. Havelock (1927) calcul-
ated a linearized solution to the problem in which a dipole
moves with constant velocity beneath the surface of an
infinitely deep fluid at rest. He then assumed that, at some
first order of approximation, his solution would also describe
the flow about a circular cylinder beneath the surface of an
infinitely deep fluid, as well as the flow about a semi-circular

obstruction on the bottom of an horizontal canal. Various



other authors have presented similar linearized solutions to
problems of this type. The book by Kochin, Kibel' and Roze
(1964) contains detailed and elegant solutions for the cases
of a point vortex, a point source and a dipole moving beneath
the surface of an infinitely deep fluid. The corresponding
solutions for a fluid of fixed finite depth are given in
Wehausen and Laitone (1960).

The Havelock solution to the motion of a dipole beneath
a free surface was reconsidered by Tuck (1965). He showed
that the "body" produced in the fluid by the dipole is in fact
not closed, so that the front and back stagnation points lie
on different streamlines. Thus a linearized solution to the
present problem, to be discussed in Section 2.3, will neces-
sarily differ from Havelock's, since we shall require a closed
body at all orders of approximation. In addition, Havelock's
solution results in a dispersion relation which describes waves
in an infinitely deep fluid, while the dispersion relation
resulting from our linearized solution describes a fluid of
finite depth. This fact is responsible for the existence of
a second class of solutions to our problem, when the fluid flow
is supercritical, which are symmetric about the semi-circle
and possess no waves.

Recently, a number of investigators have sought to retain
the free-surface condition in its exact non-linear form when
dealing with problems of this type. Von Kerczek and Salvesen
(1977) present a numerical solution to the two-dimensional
steady problem in which waves are produced on the surface of

a stream of finite depth by a given pressure distribution

35.



on the surface. The numerical method they employ is one which
they have successfully used in the solution of other similar
problems, and consists of placing a finite-difference grid over
the region of interest in the physical plane, and then iterating
to find the location of the free surface such that all the flow
equations and boundary conditions are satisfied. Haussling
and Coleman (1977) describe the numerical solution of time-
dependent potential flow problems of great generality by a
boundary-fitting technique, in which a curvilinear coordinate
system is generated numerically, so that lines in the new
coordinate system correspond to physical boundaries. Shanks
and Thompson (1977) show how this technique may be used to
solve free-surface problems numerically in which time-dependence
and even viscosity are included.

The problem of flow about a triangular wedge on the bed
of a stream has been investigated by Aitchison (1979)%*, using
a variable finite-—-element technique. For subcritical flows,
solutions possessing a train of downstream waves are obtained,
while for supercritical flows, the surface is free of waves.
In addition, a family of solutions has been obtained for which
the flow is subcritical on one side of the wedge and super-
critical on the other side.

In the present study, we treat the physical coordinates
as the unknowns of the motion, with the velocity potential
and streamfunction as the independent variables. Thus the
location of the free surface in the inverse plane is now known.
The problem is then solved by a boundary-integral technique,

so that points in the numerical scheme need only be placed on

* - I express my appreciation to Dr. J.M. Aitchison for making a copy
of her report available.
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the boundaries, rather than throughout the entire fluid region.
Tn addition, conformal mapping is used to transform the channel
bed into a straight line; consequently, the boundary-integral
formulation of the problem involves only values of the flow
variables at the free surface, with the bottom condition

being satisfied automatically. As a result, it is now only
necessary to place points in the numerical scheme at the free
surface. This formulation ensures maximum computational

efficiency when obtaining non-linear free-surface profiles.

2.2 Formulation of the Problem

We consider the steady, two-dimensional potential flow
of an inviscid, incompressible fluid. Far upstream, the
flow is uniform, with constant velocity ¢ and fixed depth
H . The fluid is subject to the downward acceleration of
gravity g , and the radius of the disturbing semi-circle is
Rc

The problem may immediately be non-dimensionalized with
respect to the velocity ¢ and depth H . The velocity
potential ¢ and streamfunction ¢ are normalized with
respect to the product <cH . The channel bottom is taken to
be the V¥ = 0 streamline, so that the free surface is ¢y = 1.

There is thus a two-parameter family of solutions to this

problem, dependent upon the depth-based Froude number

and the dimensionless circle radius
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A sketch of the non-dimensional coordinate system is given in
Fig. 2.1.
The irrotationality and incompressibility of the fluid in

the interior is expressed by the usual Cauchy-Riemann equations

¢, =¥,
(by = _q)xl (2.1)
where the subscripts denote partial differentiation. The

condition of no flow normal to the bottom y = h(x) may be

written
uhx =v at y = h(x), (2.2)
where
(o 2-x2)", x| < o
h(x) = {
0 ;x| >«

and u and v are the horizontal and vertical components of
velocity respectively. At the free surface of the fluid, we

must impose the Bernoulli equation

LF2 (u?+v?) +y = ¥F2 + 1 . (2.3)

It is convenient at this stage to introduce the complex
variables z = x + iy and £ = ¢ + iy , and the conjugate

complex velocity

Now the solution of the above stated problem can be greatly
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Figure 2.1 The non-dimensionalized problem and coordinate system.
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Figure 2.2 The various coordinate systems used in the formulation of
the problem.



assisted by the choice of £ as independent variable, rather
than 2z . This choice, first suggested by Stokes (1880), has
the obvious advantage of removing the difficulty associated with
the free-surface condition, since, although the location of the
surface is unknown in the z-plane, it has the known location

Yy = 1 in the f-plane. However, we note that the Jacobian

of the transformation from the z-plane to the f-plane becomes
zero at the two stagnation points on the semi-circle. These
points would thus map into singularities in the f-plane. This
undesirable situation may be avoided by first mapping the
z-plane into a t-plane in which the bottom streamline is a
straight line, free of singular points. The mapping required

is the familiar Joukowski transformation

2
_ (¢
T = Li(Z + —Z } ’

where the new variable T is written as 1 = & + in . Fig.
2.2 shows the mappings involved in the formulation of this
problem.

By defining a new tT-plane conjugate velocity

_daf _ _
W—H?—U iv ,
we may transform the z-plane equations (2.1) - (2.3) into the
T-plane. Thus we seek an analytic function £(t1) satisfying

the bottom condition

v=0 on n==0,

and the appropriately transformed Bernoulli equation at the

free surface.



As there are now no singular points either within the
fluid or on the fluid boundaries in the T-plane, we may inter-
change the roles of 1 and £ . In the f-plane, we seek an

analytic function T(f) satisfying the bottom condition
n=0 on ¢=20 . (2.4)

The final form of the Bernoulli equation in the f-plane is

1.2(2z%-0?) (z2-a?)

(ZE)Z(€;+H;}

+ Im{z} - 1 - 3F%2 =0

on Yy =1, (2.5)
where z(t) is found from
z =1 + (12-02)" (2.6)
and the bars signify complex conjugation. The branch of the
radical in equation (2.6) is chosen so that z = 2t when o = 0.

We now derive an integral equation relating the real and
imaginary parts of 1’ (f) along the free surface ¢ =1

Congider the function

This function is analytic in the f-plane strip 0 < ¥y < 1 and
vanishes as ¢ =+ -« . Far downstream, its mean value is zero.

By the bottom condition (2.4), we have Im{t’(f)} =0 on ¢ = 0;

N

consequently, the strip O P < 1 may be extended by reflection
about P = 0 to form the augmented section -1 < y < 1. The
satisfaction of the bottom condition (2.4) then requires that

values of 1 on the image strip be related to values on the

true strip by the formula

41.



I (E) = T'(f) . (2.7)

When Cauchy's Integral Theorem is applied to the function
¥ (f) on a rectangular path consisting of the free surface y =1
and its image ¢ = -1 connected by vertical lines at ¢ » % =,

we obtain

1 [T xte+idas , (7 x(e-i)as)
(2.8)
for points f = ¢ + iy within the path of integration. We

now let f become a point on the true free surface, so that
=¢ + 1 . The path of integration is as before, except that

the point f = ¢ + i 1is bypassed by a semi-circular path of

vanishingly small radius. For points on the free surface, we
have
: (0+1)do ® x(6-1)de
X ($+1) = { f =l f Xé:$:%z—} g
(2.9)

The desired relation is obtained by taking the real part of
equation (2.9), using (2.7) to eliminate guantities at the

image free surface. This yields

% ae
(g, (6,1) - 3lggyzsz

SRS
| Y——

8

(€, (¢,1) - %1 -

nte 1)de (= m, (8,1) (8-0)de
“{f | e - (2100

-0
The free-surface profile is thus obtained by solving the

Bernoulli equation (2.5) coupled with equation (2.10) and subject

to the radiation condition



T > %f as ¢ > = o ,

(2.11)
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Once the shape of the free surface has been determined, all

other flow quantities may be obtained. Of particular interest

are the horizontal component of the force acting on unit width

of the semi-circular cylinder (the drag) and the vertical

component (the lift). We shall use the symbols
denote the drag and lift forces respectively, made
by reference to the quantity pgH? , where p 1is

density. Thus

= yF?2 { (u? + VZ)TETTEYTW

and

= Lp?2 { (u? + v2?)dx - oF?

i
4+ =
20(.

and L to

dimensionless

the fluid

2 - 20(.,

where p 1is the pressure on the surface of the semi-circle (in

units of pgH). Transforming these equations into the T-plane
yields
i A
D = %5z | U® g(a®-£%)"dg (2.12a)
and
F2 ra T .
L = %'oc_z_l U*(a®-£2)dE - oF® + 3 a® - 20 . (2.12b)

24

In the f-plane, these formulae become
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¢ %
D = 1F2 J vo E(02-E) 44 (2.13a)
o2 E,
Bz
and
¢
L = %E; [Tra (a?-£%) ap - oF2 + T 92 - 20 , (2.13b)
0 | £, 2
¢

where the guantities ¢ta are the solutions to the equations

E(d. ,0) = za . (2.14)

ta

2.3 The Linearized Solution

In this section, we derive an approximate solution to the
equations of motion by assuming that the square of the circle
radius, a? , is a small guantity. This solution is in fact
the first-order term in a regular series expansion in the
parameter o2 ; in principle, the series may be continued to

any desired order, although the complexity of the equations to

be solved becomes prohibitive for any order greater than the

first.
We express the solution 1(f) as the regular perturbation
expansion
T(£) = %f + a?F (£) + 0(a™), (2.15)
and. seek to determine the function F;(f) in the form
Fi(f) = } C(k)sin(kf)dk . (2.16)
0

We observe that equation (2.16) satisfies the bottom condition
Im{F;} =0 on ¢y =0 . By applying the linearized free-surface

condition
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1 1-¢2
SFI(GZFIY T F(674I) 2

on y = 1, (2.17)

the real function C(k) 1is determined to be

-K

e™ (k + o)
kcosh (k) - %% sinh (x)

The free-surface condition (2.17) and the assumed form of
the solution (2.16) both require that the real and imaginary
parts of the function F; be odd and even functions of ¢
respectively. However, this condition is only satisfied when
F2 > 1 , since in this case the function C(x) is non-singular,
and so the right hand side of equation (2.16) is well defined.

A free-surface profile is predicted which is symmetric about
¢ = 0 and possesses no waves.

For the critical case F? =1 , there is no solution,
since F; becomes unbounded due to a singularity in the
function C(k) at k=0

When F2 < 1 , the function C(k) possesses a singularity
at = ko + Where 3 1is the positive real root of the disper-

sion relation
tanh(k,) = F?k, ., (2.18)

and so the Fourier integral in equation (2.16) fails to exist
in the usual sense. It is thus necessary to interpret equation
(2.16) as a contour integral in the complex K-plane, with the
path of integration bypassing the pole singularity at Ky in

a semi-circular path of vanishingly small radius. The function
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sin(kf) appearing in the integrand of equation (2.16) is first
written as sin(k¢)cosh(ky) + i cos(x¢)sinh(ky) and the functions

cos(k¢) and sin(kd) are recognized as the real and imaginary

parts of e ? - Thus the solution (2.15) may be written as
E = %¢ + a2 Im{f C(k)COSh(KW)eM¢ dK} + 0(a™)
o (2.19)
n =%y + o? Re{{ C(K)sinh(K¢)€K¢ dK} + 0(a™).
0

Now since waves are expected on the downstream side of the semi-
circle, the path of integration in equations (2.19) must be
taken to pass beneath the pole singularity at «k = Kk, . Thus
the integrals in equations (2.19) may be expressed as the
Cauchy Principal Value integral of the same integrand plus i
times the residue of the integrand at « = k; . After then

taking the indicated real and imaginary parts in equations

(2.19) and recombining these expressions for £ and n , the
solution (2.15) may be written in the form
[m e_F(K + f%)sin(Kf)dK
T(f) = %¥f + %OLZ{J il
kcosh (k) - Fysinh(K)
(2.20)
-, 1
+ Te (kg + F—z-)COS(Kof)
T } + 0(a®) .
(1 - §5 + ®:F?)cosh(k)

Far upstream, the two terms within the brackets in
equation (2.20) cancel, so that the radiation condition (2.11)
is satisfied. Far downstream however, the terms within the
brackets reinforce, summing to twice the value of the second

term. Thus the limiting form of equation (2.20) downstream is
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A, 4
L | L. — oo
T(f) » %f + % SIRE(T o) cos(kof) + 0(a') as ¢ > + :
(2.21)
where the wave amplitude A; is given by
-x . 1 i
me "¢ (ko + 77) sinh (ko)
A, = 202 i — (2.22)
(1 - 3 + KoF )cosh(Ko)

The free-surface profile is obtained by setting ¢ =1
in equation (2.20) and then using equation (2.6) to obtain
z(T) . The surface possesses a regular wave train downstream
of the bump, but is free of waves upstream. Far downstream,

equation (2.21) yields the free-surface profile
y >+ 1 - A; sin(kox) + 0(a*) as x » + =

Note that the wave amplitude A; defined by equation (2.22)
is twice the value calculated by Lamb (1932, p.410, eq.(9)).
In Lamb's theory, a linearized solution to flow over an
"arbitrary" bump on the bed of a stream is created from the
solution to flow over a sinusoidal bed by Fourier superposition.
Yet this solution for the flow over a sinusoidal bed already
invokes the assumption that the ratio of the amplitude of
these sinusoidal undulations to their wavelength must be a
small quantity. Thus Lamb's theory might only be expected

to provide reasonable results for smooth disturbances of small
elevation above the channel bed and of a length which is of
the same order of magnitude as the undisturbed fluid depth.
Lamb's theory is evidently not applicable to the semi-circular
bump for two reasons; firstly, the presence of stagnation

points each side of the semi-circular obstacle apparently
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locally violates the assumption in Lamb's theory that the

flow may be regarded as a small perturbation to uniform flow,
and secondly, both the height and length of the semi-circular
bump are small quantities. A consequence of this second
point is that the velocity at the top of the semi-circle is
approximately twice the velocity far upstream (for the bodies
treated by Lamb's theory, the two velocities are expected to
be roughly equal), which offers at least a crude explanation
as to why the amplitude of the downstream waves computed in
this section is twice that of the waves computed by Lamb's
theory.

The linearized wave drag D is calculated by inverting

equation (2.20) to obtain a relation of the form f = £(1) ,
and then substituting into equation (2.12a) with n =0 (¢ = 0).
This results in the classical formula
D = % Az[l - g (2.23)
1| sinh(2kg) | '

which may be found in Lamb (1932, p.415).
The lift force L may similarly be calculated from

the linearized solution by inverting equation (2.20) and

substituting into equation (2.12b) with n = 0 . This
yields
oo e 1
e (kK + =)k dk
L:EOLF2+1T_(X2_2OL.__]£OL3F2 2 "
3 2 3 1 .
k cosh(k) - 7z sinh (k)

+ 0(a®) . (2.24)



2.4 Numerical Methods

2.4(a) Evaluation of the linearized solution.

The linearized solution may be evaluated without diffi-
culty from equation (2.20), by first truncating the semi-
infinite range of integration to an appropriately large, but
finite, range. The singular integral is then evaluated
numerically, using Trapezoidal Rule integration, and spacing
the abscissae symmetrically about the singularity at « = ko
so that the effect of the singularity may be ignored by virtue
of Monacella's (1967) theorem. Equation (2.24) for the linear-
ized 1lift force is also evaluated in this fashion.

At the free surface, the expressions for & and n
simplify somewhat, and in fact the integrals may be evaluated
in closed form as sums of exponential terms that decay rapidly
provided that ¢ # 0 . Thus, considerable computational
advantages result from exploiting this fact. At the surface,

equations (2.19) become

2 2 R ik ¢
dk
E(qbll) = %d)(l + _0!,___) + % o Im{J e }
e o k cosh(k) - f% sinh (k)
+ 0(a") (2.25a)
and
2 0 ikip .
n(¢,1) = 1’2(1 = g"'l ) +l40('2 Re{J[‘ Ke dk ; }
N Ze € cosh(k) - = sinh (k)

+ 0(a*) . (2.25Db)

We shall denote the improper integral in equation (2.25a) as
I; and that in equation (2.25b) as I, ; the interpretation

of the singular integrals is exactly as described in Section
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2.3, with the path of integration in the complex g-plane
deformed to pass beneath the pole singularities at «k = % ko .
where kp 1s the real positive solution to the dispersion
relation (2.18) .

The integrals I; and I, may be evaluated by the
residue theorem, following exactly the same procedure described
by Lamb (1932, Art. 245). For example, the imaginary part

of the integral 1I; in equation (2.25a) may be written

{ % n &

r=2 (1 - Fsz - F;)coshm)
_ 4dmcos(Kgd)
ImInd = (1 + p22 - ) cosh(xo) (2.26)
oo e—mrq)
+ 21 ) = 1 P O > 0,
r=2 (1 - F’m’> - )cos(m )
\

where the quantity m is the appropriate solution to the
equation

2

tan(mr) =Fm ,

which may be found without difficulty using Newton's method.
Note that for F? > 1 , the term involving kg 1in equation
(2.26) vanishes and the sums start at r =1 . For ¢ # 0 ,
convergence to ten-figure accuracy is usually obtained by
including only three or four terms of the series. When

¢ = 0 however, the linearized solution at the surface must

be evaluated numerically from equation (2.20).
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2.4 (b) Solution of the non-linear problem.

We now consider the numerical solution of the non-linear
system of equations (2.5), (2.10) and (2.11) at N + 1 equally
spaced surface points ¢0,¢1,...,¢N i The guantities ¢0 and
¢N are chosen to represent - and +* respectively.

The integrodifferential equation (2.10) is first
truncated upstream and downstream at the points ¢0 and ¢N .
The error introduced by this process will be discussed in
Section 2.5. Now the singularity is subtracted from the
Cauchy Principal Value integral, leaving a non-singular integral
plus a natural logarithm term. Thus the integrodifferential

equation (2.10) takes the approximate form

:
e (o) -1 - 2 I e - nSte
¢0

- Y (*wn’(6)-n"(0) 44 J¢N 50(8) (og) o)

ml ) 6-9 (6-¢) 2+4

¢0 ¢0
1, /¢N_¢\
== (¢)gn\¢_¢0} , (2.27)

where the primes denote differentiation with respect to argument,
along Y =1
To obtain a numerical approximation to equation (2.27),
the functions £’ (¢) and n' (¢) at the free surface Y =1
are represented by the vectors of unknown discrete function
values g; and n; (1 =0,1,...,N) at the free-surface
points ¢0,¢1,...,¢N i Equation (2.27) is now discretized
in a manner which allows freedom to specify conditions at

the first point ¢y in accordance with the radiation condition

(2.11) . This is achieved by evaluating the integrodifferential
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equation (2.27) at the N midpoints ¢k , k=1,...,N .

-%

After discretization, we obtain a matrix system of the form

5 N
’ - 1 = r 1
[Ek—l/z 5] T 2 akj [EJ 5]
j=0
N N
— 1 r = ’ _ _:_L_ r
a T L b, (nj nk—%) T z i
j=0 j=0
¢ .=
-2 o, m(H) P kB L, ,N (2.28)
k—-% 0
The coefficients akj, bkj and ckj are known functions of

¢k_% and ¢j, and depend upon the quadrature formula used

to discretize the integrals. We have used Simpson's Rule
for this purpose. The quantities Eé_y and né_y are now

written in terms of values of E&’'(¢) and n’'(¢) at neigh-
bouring whole points ¢k_1, ¢k, ¢k+1 etc. by means of a
three-point interpolation formula. This interpolation
formula must be chosen to be consistent with the parabolae
fitted by the Simpson's Rule integration used in obtaining

equation (2.28), otherwise unacceptably large errors may

result. Equation (2.28) becomes
N N
T oY) = ’ =
I a,[g =% = ] e ;n' , k=1,...,N . (2.29)
i=o i=o

If Eé and né are assumed known, equation (2.29) may be

inverted to yield the solution

N
r -1 ’ 1 4
E" c Z Hi j nj u Hi , N+ 1 [gO ‘/2] + Hi ,N+2n0 !

i=1,...,N. (2.30)



In practice, we usually obtain n;, no and EO from the
linearized solution, and then calculate E; from the
Bernoulli equation (2.5) evaluated at the first point ¢,

The vectors Ei and n, are now obtained by numerical

integration, using Gregory's correction to the Trapezoidal

Rule. Thus
N
=8 Lo,
i=o0
(2.31)
N
n, = 1, +‘Z woon', 1= 1,08,
i=o
where the LA are appropriate weights.

The Bernoulli equation (2.5) evaluated at each of the
N points ¢1,...,¢N yields a system of N non-linear

algebraic equations in the N unknowns n{,...,né , after

the functions £’,£ and n have all been eliminated using

equations (2.30) and (2.31). This system is then solved by
a modified Newton iteration scheme. Denoting the pressure
at the i-th free-surface point by Pi , we seek to solve

Pi (nj’) =0, i,3=1,...,N.

We begin the iteration process with suitable estimates for

the unknowns n; . These are usually provided by the linear-

ized solution. The estimate n;(k) at the k-th iteration is

updated according to the formula

k+ 1
n ) =1
J b

f(k) + A;k),

(k)

where the correction step Aj is the solution to the matrix

equation
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The elements of the Jacobian matrix BPi/Bn; may be obtained
either approximately, by replacing the derivatives with finite-
difference approximations, or exactly, by differentiation of
the functions Pi , 1 =1,...,N . Of course the solution
obtained is unaffected by the method used in obtaining these

derivatives, and in general the convergence rates are the same

for both methods. However, in marginal cases where convergence

of Newton's method is uncertain, the Jacobian matrix must be
known accurately, and thus the use of exact derivatives 1is
preferable in these cases.

If at some iteration in the Newton process a worse

estimate of the solution is obtained than before, in the

P(k)

rms

(k+1)

sense that P >
rms

where le is the root-mean-
T

squared residual pressure

1
o ﬁ(

: k’
then the correction step A; )

N 21/2
Ioe)

is halved and the iteration is

)

repeated. However, if the step A;k has been halved more

than a certain specified number of times still with no

reduction of P over its value at the previous iteration,

rims

then the Newton process is stopped and a diagnostic is issued.
The above scheme has usually been found to be quadrat-

ically convergent; typically, a converged non-linear solution

with Prms < 10_10 is obtained from the linearized solution

in five iterations. When 131 points are used, the process

of obtaining the linearized solution and the converged non-
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linear solution requires about three minutes of computing
time on a CDC CYBER 173 machine.

For large values of the circle radius o , it is often
not possible to obtain a converged non-linear solution using
the linearized results as an initial approximation in the
Newton scheme. For these cases, a previously-computed non-

linear solution is used instead.

2.4(c) Computation of the non-linear drag and 1ift.

The wave drag D and lift L are computed from the
converged non-linear free-surface profile using equation (2.8)
to generate values of £’ at points along the bottom Yy = 0
These values are then integrated to obtain & at the points
on the bottom, using the linearized solution result for
£E(¢p,0) at the first point upstream. A cubic spline is then
fitted through these values of & so that equations (2.14)
may be solved for ¢ta by Newton's method. Once these
quantities are known, the drag and 1lift are evaluated from

equations (2.13) using Simpson's Rule integration.

2.5 Presentation of Results

2.5(a) Subcritical case. (F < 1)

In Fig. 2.3, the linearized and non-linear solutions for
F =0.5, o« = 0.2 are compared. The linearized free surface
possesses a wave-freeé region upstream of the semi-circular
bump, followed by a regular wave train downstream. These
general features are confirmed by the non-linear result,

although the amplitude of the non-linear waves downstream is
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considerably larger than that predicted by linearized theory.

In addition, the non-linear waves are noticeably non-sinusoidal,
with narrow crests and broad troughs. The mean height of

the free surface downstream of the semi-circle is shown for

the non-linear case, and will be discussed in Section 2.6.

For the non-linear waves in Fig. 2.3, the steepness
(i.e., the ratio of peak-to-trough wave height to the wave-
length) is approximately 0.091. Since Newton's method fails
to converge for larger values of the circle radius o , these
are the steepest waves that we are presently able to compute
at this value of the Froude number. By contrast, the steep-
ness of the Stokes wave of maximum theoretical height at
F . 0.5 is known to be approximately 0.14 (see, for example,
Cokelet (1977)) . This inability of the present scheme to
compute very steep waves is simply a consequence of the
relatively small number of free-surface points (about 20
points per wave cycle) to which we are restricted by the
storage limits of the computer, and the inclusion of more
points at the free surface would doubtless allow waves of
much greater steepness to be obtained.

In addition to the downstream waves, the non-linear
surface profile in Fig. 2.3 exhibits a small wave train
upstream of the semi-circle. This is a numerical error
caused by the truncation of the integrodifferential equation
(2.10) at the point ¢ , and the subsequent imposition of
the radiation condition (2.11) there. The amplitude of
these spurious upstream waves, although extremely small, can

be altered by making small changes to the values of no,né etc.
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imposed at the first point ¢, , while the downstream portion
of the flow remains unchanged. The presence of the upstream
waves in the numerical solution seems to be mainly due to
the fact that the imposition of the radiation condition (2.11)
at the point ¢, does not correctly account for the local
rise in the free-surface level ahead of the semi-circular
bump (see Benjamin (1970)). Consequently, it is to be
expected that the upstream wave amplitude may be reduced
somewhat by increasing n, slightly above the value suggested
by equation (2.11), and the amplitude of the upstream waves
in Fig. 2.3 has indeed been controlled in precisely this
fashion. The non-linear surface profile of Fig. 2.3 also
exhibits a small error due to the truncation of the integro-
differential equation (2.10) at the last point ¢N downstream.
The effects of this appear to be very slight, however, being
confined to the last quarter wavelength or so downstream, and
do not affect the rest of the surface profile.

Figs. 2.4 show the dependence of the drag D and lift
L upon the circle radius o , for F = 0.5. In Fig. 2.4(a)
the linearized drag, calculated from equation (2.23), is
compared with the drag obtained from the non-linear solution,
using equation (2.13a). The linearized and non-linear results
agree well up until a circle radius of about 0.12 is reached.
Thereafter, non-linear effects dominate, producing a force
on the semi-circle which is well in excess of the predictions
of linearized theory.

The lift force acting on the semi-circle is shown in

Fig. 2.4(b) . This is the force due only to the motion of
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the fluid and to gravity, and does not take into account any
buoyancy properties that the semi-circle itself may possess.
(Thus, instances in which the semi-circular bump is a gas-
filled balloon, for example, are not considered.) For

convenience, the reference value

has been subtracted from the overall 1lift force. The

guantity IL_ is the 1lift that would be observed if the

solution were simply f = 21 (which is the solution for
flow about a circle in a fluid of infinite extent). The
linearigzed lift force, calculated from equation (2.24), appears

to provide a reasonable approximation over the entire range of
values of o shown in Fig. 2.4(b).

The pressure on the surface of the circle for the non-
linear solution is shown as a function of y in Fig. 2.5,
for the case considered in Fig. 2.3. The drag and 1lift
forces acting on the semi-circle for this case may be found
from Figs. 2.4 (a = 0.2). To show more clearly the differ-
ences between the pressure distributions on the upstream and
downstream portions of the semi-circle, the pressure has been

subtracted from the reference value

2 Y,
p = - 2 5 (a%-x%) - (02-x2)" + 1 + LF? ,
which is the pressure that would be observed on the surface
of the semi-circle if the streamline ¢ = 1 had the same
shape as is obtained for two-dimensional potential flow about

a circle in aninfinite fluid (f = 21). Since P is
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symmetric about x = 0 , it makes no contribution to the wave
drag D , which is therefore the area enclosed by the curve
in Fig. 2.5.

In Fig. 2.6(a), the wave drag is shown as a function
of F , for o = 0.1. When the Froude number is small,
the linearized and non-linear results are in good agreement,
but the difference between them becomes steadily greater as
the Froude number is brought closer to the critical value
F=1. Note that the linearized drag has the limiting

behaviour
D ~+ % m2a% as F > 1,

even though the linearized wavelength and wave height become
infinite at this value of the Froude number.

Fig. 2.6(b) shows the 1ift force acting on the semi-
circle as a function of F , for o = 0.1. The gquantity L
has again been subtracted to show more clearly the differ-
ences between the linearized and non-linear results. For
low values of the Froude number, the linearized solution
provides a good estimate of the 1ift, although the effects of
non-linearity appear to become more significant for Froude

numbers greater than about 0.5.

2.5(b) Supercritical case (F > 1)

In the linearized theory, the critical value F =1 is
associated with the emergence of a fundamentally different
type of solution, symmetric about x = 0 and possessing no

waves. The non-linear results confirm the existence of

such a solution. Despite its appearance, this solution bears
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no relation to the solitary wave, since it reduces to uniform
flow as o ~ 0

In Fig. 2.7, non-linear free-surface profiles are
presented at F = 2.1, and for the three different circle
radii o =0.7, a = 1.1 and o = 1.32. The last of these
values is the largest circle radius for which Newton's method
converged at this value of the Froude number. Thus it appears
that, unlike the linearized solution, non-linear results may
only be obtained within a certain range of values of a ,
for each value of the Froude number.

The physical mechanism which prevents non-linear solutions
of this type from being found when « is larger than some
critical value is apparently the formation of a sharp crest
at the surface, with an included angle of 120°, exactly as
in the case of Stokes waves. Indeed, Stokes' (1880) original
analysis is local to the crest, and takes no account of whether
or not the rest of the fluid contains waves. The crest is
a stagnation point, at which the fluid velocity is zero, sO
that by Bernoulli's equation (2.3), the height of the surface
there attains the maximum value e = %F2 + 1 . A portion
of the conjectured limiting profile, with its included angle
of 120°, is sketched in Fig. 2.7. O0f course, the present
numerical technique is not capable of resolving such a region
of very high curvature in the vicinity of the crest, but it
is possible that this difficulty may be overcome by spacing
points unevenly at the free surface, with a high concentration

of points near the crest. This possibility is presently

being explored.



Figure 2.7

Non-linear solutions for

F=2.1, and o =0.7, 1.1, 1.32.

A portion of the conjectured limiting profile with a 120°

angle at the crest is also shown.
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2.6 Some Remarks on the Properties of the Downstream

Wave Train.

.In this section, we examine the effects of non-linearity
upon the wavelength of the downstream waves, and upon the mean
level of the free surface downstream.

The unsteady problem in which a body beneath the free
surface is impulsively started from rest in a stationary
fluid has been considered by Benjamin (1970). By applying
the mass and momentum conservation equations, Benjamin
demonstrated that non-linear effects result in a forward surge
ahead of the body, and a corresponding drop in the mean free-
surface level behind the body, in the region in which the
waves are present. The flow in a certain region near the
body may be regarded as steady, although outside this region,
the upstream surge continues to propagate further upstream,
and waves are continually being added to the downstream wave
train. After the passage of an infinite amount of time,
the free surface ahead of the bump is expected to be uniformly
elevated, whilst on the downstream side, the wave train extends
infinitely far, and the mean level of the fluid in this wave
train is expected to be lower than in the undisturbed fluid.

The effects of non-linearity on the downstream wave-
length have been discussed by Salvesen and von Kerczek (1978).
These authors consider the case in which the disturbance
beneath the free surface is a point vortex, and solve the
resulting non-linear problem both by a perturbation technique,
and by a direct numerical approach. Their results appear

to indicate that, as the downstream wave height is increased
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(by increasing the vortex strength), the downstream wavelength
decreases for F < 0.75, but increases for F > 0.75. However,
the accuracy of their results is uncertain beyond F = 0.75,
and they remark that, for large values of F , the wavelength
may perhaps increase initially and then decrease as the down-
stream wave height is made to increase.

The steady problem formulated and solved in this chapter
differs in one respect from the problem considered by Benjamin.
In the present problem, the upstream depth and velocity are
assumed to be known, and are taken as reference quantities
for the other variables in the problem. However, in Benjamin's
problem, the upstream conditions after infinite time has elapsed
are no longer known. Thus the upstream depth in the present
problem is presumably the sum of Benjamin's undisturbed depth
plus the height of the forward surge which has advanced upstream.
Accordingly, the free-stream Froude number in the present problem
possibly differs slightly from Benjamin's.

To compute the mean free-surface height and the wavelength
of the downstream waves from our numerically obtained free-
surface profile (x(¢,1), y(¢,1)), a cubic spline function

ys(x) is fitted through the points (xo,yo) ’ (xl,yl),...,

(xN,yN) . The positions xil) and x:2) of two successive
wave troughs are found by solving
dy .
s (i), _ o
K (Xl ) =0 , 1 1,2 ’

by Newton's method and exact differentiation of the cubic

spline function ys(x) ) The wavelength is thus
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A=xi” —xil) , (2.32)

and the mean level of the free surface is

(2)
1 xt
Yy = 3 y dx . (2.33)

mean

K —

(1)
t

The integral in equation (2.33) is evaluated using the Trape-
zoidal Rule.

Two non-linear free-surface profiles are shown in Fig.
2.8, for F = 0.9 and the two values of the circle radius
o =0.1 and o = 0.15. These solutions exhibit a strong
non-linear rise in the free-surface level ahead of the obstacle.
However, unlike the problem considered by Benjamin, the free
surface here must ultimately return to the equilibrium position
y =1 as X > - ® , in accordance with the upstream condition
(2.11) . Nevertheless, the imposition of either the linearized
solution or uniform flow conditions at the first point ¢
ceases to be an acceptable approximation for this high value
of the Froude number and so, in order to control the size of
the upstream waves, the value of nyg imposed at this point
must be increased significantly above the value suggested by
linearized theory. In view of the relatively small number of
free-surface points in the numerical scheme to which we are
restricted by the storage limits of the computer, it has not
been possible to cluster a sufficient number of points about
the very sharp wave crests obtained for the case o = 0.15 ,
and consequently, the solution for this value of a 1is
slightly affected by numerical error. This value of the

Froude number (F = 0.9) is possibly the largest value of F
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Figure 2.8 Non-linear solutions.for F = 0.9, and o = 0.1, 0.15. The mean levels
of the downstream wave trains are also indicated.
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F o A W Y om (Benjamin)
0.9 0.02 7.28 1.000 0.99999
0.9 0.04 7.24 1.001 0.99964
0.9 0.06 7.19 1.001 0.99816
0.9 0.08 7.14 0.999 0.99415
0.9 0.1 7.10 0.995 0.98570
0.9 0.12 6.89 0.990 0.97036
0.9 0.14 6.77 0.985 0.94507
0.9 0.15 6.71 0.980 0.92761

TABLE 2.1: The effect of non-linearity on wavelength and
mean depth. Results obtained from the formula

of Benjamin are also shown.

for which accurate non-linear solutions may be obtained with
the present number of free-surface points, and to proceed to
higher values of F would undoubtedly require many more
points at the free surface.

In Table 2.1, the downstream wavelength and mean free-
surface level are presented as functions of the circle radius
o , for F = 0.9. Also tabulated is the mean free-surface
level approximated from the formula of Benjamin (1970) . For
the mean level of the fluid in the wave train, Benjamin gives

the expression

. ey+F(1-y) (2y-1) 4o
ymem =1 8 (1+F) {l—YF) A1 ’

(2.34)

where

2k
— ;,/ ... N
Yy =5l sinh{2K0))



and the quantity K, 1s related to the Froude number F

by the dispersion relation (2.18). The symbol A; in equation
(2.34) denotes the linearized downstream wave amplitude, and

is defined in equation (2.22).

The results presented by Salvesen and von Kerczek (1978)
for a Froude number of 0.871 suggest that the wavelength
increases with increasing disturbance strength. This trend
is not observed in the results displayed in Table 2.1, for
the very similar value of Froude number F = 0.9. Instead,
the wavelength computed from our converged non-linear surface
profiles by means of equation (2.32) is observed to decrease
monotonically as the disturbance strength o is increased.

A shortening of the wavelength with increasing o is also
evident in Fig. 2.8.

From Table 2.1, it is evident that Benjamin's formula
(2.34) for the mean free-surface level downstream gives
results which are consistently lower than the value of WA
obtained from the numerical results. Of course, equation
(2.34) is only valid to second order in the wave amplitude,
and so possibly ceases to be applicable to the cases in which
o 1is large. More importantly, however, the quantity Yoiean
is influenced by two opposing non-linear effects, one of which
has been ignored by Benjamin. The first such effect is
described by Benjamin, and results in the tendency for the
mean free-surface level to be lower than the undisturbed level,
detailed in equation (2.34). There is, however, a second
consequence of non-linearity, ignored by Benjamin, which tends
to raise the mean free-surface level. This effect, which is

also of second order in the wave amplitude, is a property of
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all Stokes waves, and is described by Schwartz (1974b) and
Cokelet (1977). For low values of the Froude number, this
second effect dominates, resulting in a nett rise in the
mean surface level downstream. Such a situation exists for

the solution presented in Fig 2.3, for example.

2.7 The possibility of multiple solutions

In Fig. 2.9, we display the range of values of the
independent parameters F and o for which it has been
possible to compute non-linear solutions possessing a train
of downstream waves. The highest values of o for which
the Newton process converged are marked on the diagram, for
a range of different Froude numbers. It has not been possible
to obtain solutions for very small Froude numbers (F < 0.3),
since the extremely short wavelength of the downstream waves
in this instance renders it impossible to maintain a suffic-
ient number of free-surface points per wavelength while still
including an appropriate section of the free surface upstream
and downstream of the semi-circle. Similarly, results for
F > 0.9 are of doubtful accuracy, since we are unable to
provide a sufficient number of points at the free surface
to describe adequately the very sharp wave crests formed in
this case.

The dashed line in Fig. 2.9 indicates the approximate
position of the boundary of the region within which we
conjecture the existence of non-linear solutions possessing
a train of downstream waves. The position of this line was

determined by assuming that the Froude number of the down-
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stream Stokes wave train is the same as the free-stream
Froude number F ; this is an excellent approximation for
small F and we expect it to provide reasonable results

over the range of Froude numbers 0.3 < F < 0.95 for which
numerical results have been presented in Fig. 2.9. However,
for larger values of the Froude number F , the approximation
may perhaps cease to be as good, by virtue of the tendency

of the mean free-surface level downstream to drop when the
downstream wave amplitude is large, as described in Section
2.6. The portion of the dashed line in Fig. 2.9 lying in the
region F < 1 was obtained from our numerical results by
extrapolating plots of wave height versus o2 up to the
maximum wave height for Stokes waves, with approximate Froude
number F , computed by Schwartz (1974b) and Cokelet (1977).
Note that the region in which solutions are conjectured to
exist extends well into the supercritical regime F > 1 ,

and in Fig. 2.9 it is shown as terminating at F = 1.286,
which is Yamada's (1957) result for the highest solitary wave.
However, since the downstream Frgude number is not the same
as the free-stream Froude number F , it is 1likely that this
region actually terminates at a slightly smaller value of

F than this.

The region of the parameter space (F,a) in which non-
linear solutions may be found is similarly restricted for the
supercritical wave-free branch of solutions described in
Section 2.5(b). In Fig. 2.10, the highest values of o for
which the Newton process converged are shown for a range of
different Froude numbers. The dashed line on this diagram

indicates the approximate position of the boundary of the region
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within which non-linear solutions are conjectured to exist.
Solutions for which the parameters F and o describe a
point on this line are expected to possess a sharp crest at
the free surface,where the fluid is at rest at the maximum
height y__ = YF2 + 1 . This dashed line has been obtained
from our numerical results by extrapolating plots of maximum
free-surface elevation versus a? up to the height - at
which the crest occurs. As with the linearized solution,
non-linear solutions of this type appear only to exist for

F > 1.

A comparison of Fig. 2.9 and Fig. 2.10 indicates that,
in a portion of the supercritical flow regime F > 1 , there
exists a region of overlap between the regions within which
the two different branches of solution are conjectured to
exist. It would therefore appear that, in this portion of
the supercritical flow regime, there is a lack of unigueness
in the solutions to this problem, since both the symmetric
wave-free solution and a solution containing a train of Stokes
waves downstream are both possible outcomes.

Of course, there is no guarantee that these two branches
of solution are the only possible outcomes in this situation.
Other types of solution are perhaps possible; for example,
it may be possible to compute solutions of the type obtained
by Aitchison (1979), in which the flow is subcritical on one
side of the semi-circular bump and supercritical on the other
side, although we have not so far obtained such results. The
computation of such a family of solutions would most probably
involve a different numerical formulation to that described in

this chapter.
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2.8 Summary and Discussion

In this chapter, two-dimensional fluid flow over a
submerged semi-circle has been investigated. The solution
is facilitated by the choice of the complex potential
f=¢ + iy , rather than physical plane coordinates, as
the independent variable.

A linearized solution has been developed by retaining
the first term of a regular series expansion in the square

2

of the circle radius, o° . For subcritical flow F < 1 ,

a wave-free region is predicted upstream, followed by a

regular wave train downstream. For supercritical flow
F > 1, a symmetric wave-free solution is predicted. There
is no solution for F = 1.

The exact non-linear equations are solved numerically
at the free surface, by a process of Newtonian iteration.
In the subcritical case F < 1 , an essentially wave-free
region is obtained upstream, followed by a train of non-linear
Stokes waves downstream. The accuracy of these results is
confirmed by observing that the free-surface profile obtained
is largely insensitive to further reductions in the size of
the spacing between points at the free surface. In addition,
the downstream wave train is unaffected by the choice of
downstream truncation point, except within a distance of
about half a wavelength upstream of this point. However,
due to the relatively small number of free-surface points to
which we are restricted, we are unable to compute the very
steep waves obtained when o is large or F 1is close to one.

The major disadvantage of the present method, in which ¢ is
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chosen to be the independent variable at the free surface,

is that points in the numerical scheme tend to cluster
unnecessarily about the wave troughs, but are distributed
very sparsely at the wave crests, where they are most needed.
When o is large, the linearized theory severely under-
predicts the value of the drag force on the semi-circle,
indicating the importance of non-linear effects in these
cases.

In the supercritical case F > 1, the symmetric wave-
free profile predicted by the linearized solution is confirmed
by the non-linear results. However, the physical existence
of a stable solution of this type seems somewhat implausible.
It appears that the non-linear free-surface profile is
ultimately limited by the formation of a sharp crest with
sides that enclose an angle of 120°.

Although the linearized solution fails to exist for
F = 1, there is no reason to suppose a priori that the non-
linear solution should likewise fail at this value of the
Froude number, for finite downstream wave amplitude (although
the linearized solution must become asymptotically correct as

o > 0). Indeed we expect that non-linear solutions possessing

a train of downstream Stokes waves may be found both for F 1
and also in a portion of the supercritical flow regime F > 1.
Since the symmetric wave-free gsolution alsc exists for F > 1 ,
there is thus the possibility that a lack of uniqueness may
exist in the non-linear solutions to this problem, for certain
values of the independent variables F and o . In addition,

other branches of solution might perhaps be possible, such as

those described by Aitchison (1979).



CHAPTER THREE

TWO-DIMENSTIONAL GRAVITY FLOW
ABOUT A SUBMERGED SEMI-ELLIPSE

3.1 Introduction

The problem to be examined in this chapter concerns
the steady two-dimensional flow of an ideal fluid in a
horizontal stream, attached to the bottom of which is a
semi-elliptical body. This problem represents an obvious
extension of the work presented in the previous chapter, and
accordingly,results from chapter two will be utilized through-
out.

When the free-stream Froude number F 1is less than
unity, the surface downstream of the semi-ellipse is generally
expected to consist of a train of waves extending infinitely
far downstream. The energy radiated away to infinity by
this wave train is exactly balanced by a horizontal force
component (the wave resistance) acting upon the semi-ellipse.
When F > 1 , a branch of solutions exists for which no
downstream waves are present. In this regard, solutions
to the present problem are similar to those obtained in
chapter two, for flow about a submerged semi-circle.

However, non-linear solutions to the present problem for
F < 1 appear to exhibit the additional property that, for
ellipses of certain special lengths, the downstream wave

train may be made to vanish, resulting in zero wave resist-
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ance experienced by the body. This result may be of
significance in the design of certain underwater craft,
for example. In the present chapter, attention will be
focussed on the subcritical regime F < 1, with particular
emphasis on those solutions for which the downstream wave
train apparently vanishes.

A linearized solution to the present problem was
developed by Lamb (1932, p.409) and will be discussed in
Section 3.3(b). One of the features of this linearized
solution is that, for a given value of the upstream Froude
number, the free surface is predicted to be free of down-
stream waves for ellipses of certain special lengths,
resulting in zero drag force acting on the ellipse in
these cases. In fact, the plot of wave resistance versus
ellipse length for fixed upstream Froude number and ellipse
height is undulatory and passes through zero infinitely
often, giving rise to a countably infinite set of ellipse
lengths for which the wave resistance is zero, at each
value of the upstream Froude number.

The question of whether a wave-making disturbance may
ever give rise to a non-linear wave resistance of precisely
zero has been investigated recently by Schwartz (1981).

He considered the problem of waves induced in a fluid of
infinite depth by a moving pressure distribution applied

to the free surface, and demonstrated that, for certain
values of the pressure length, the non-linear wave resistance
obtained was indeed extremely small, with a value of the
order of 10~5 times the maximum resistance obtained with

the same value of non-dimensional overpressure. The



corresponding problem for a fluid of fixed finite depth was
considered by von Kerczek and Salvesen (1977). Their
results also appear to indicate very small values of wave
resistance for certain pressure lengths.

In the present study, the problem is formulated as in
chapter two, using conformal mapping to transform the bottom
into a straight line, free of singular points. The velocity
potential and streamfunction are treated as the independent
variables, and a boundary-integral technique is used to

obtain non-linear free-surface profiles.

3.2 Formulation of the Problem

We consider two-dimensional, steady flow of an ideal
fluid in a channel in which the flow infinitely far upstream
is uniform, with depth H and velocity c¢ . The fluid
flows from left to right. A semi-elliptical object of
length 2RX and height RY is attached to the channel bed,
which is otherwise flat and horizontal, and is placed

symmetrically about the y-axis, which points vertically.

The fluid is subject to the downward acceleration of gravity, g.
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The problem is expressed in terms of dimensionless variables

forthwith, by referencing all lengths and velocities to the
quantities H and ¢ respectively, as in Section 2.2. The
velocity potential ¢ and streamfunction ¢ are non-dimen-
sionalized with respect to the quantity <cH ; in terms of

dimensionless variables, the bottom is chosen to be the

streamline ¢ = 0 , and the free surface is thus 1
Solutions to this problem are thus dependent upon the three

dimensionless parameters
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& RX R

F = wr O= and B = T;
(gH)

H

The quantity F 1is the upstream depth-based Froude number,
and o and B are respectively the dimensionless ellipse
half-length and the ellipse height. The non-dimensional
flow situation is depicted in Fig. 3.1.

Since the fluid is incompressible and flows without
rotation, it follows that the velocity potential and stream-
function obey the Cauchy-Riemann equations (2.1) in the
fluid interior. Thus the complex function £ = ¢ + iy is
to be sought as an analytic function of the variable z = x+1iy.
The motion of the fluid at the free surface is governed by the

Bernoulli equation

LF2ww + vy = 4F2 + 1 (3.1)
where
= 9f oy - v
W= 3z !

and u,v are the horizontal and vertical components of
velocity. The bar denotes complex conjugation. The

condition of no flow normal to the bottom is expressed as

u-=—=vVv on y = h(x) , (3.2)

where the bottom y = h(x) is described by the equation

The bottom is now transformed into a straight line,

using conformal mapping, as in chapter two. A new variable



Figure 3.1 The non-dimensional flow situation in the z-plane.
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T = & + in is defined by the relation

z = T + %(TZ—OLZ)I/2 , (3.3)

which is a straightforward generalization of the Joukowski
transformation (2.6) . Thus the complex potential £ is
now to be sought as an analytic function of 1 , subject to
the appropriately transformed Bernoulli equation (3.1) and
bottom condition (3.2).

Since the bottom is now free of stagnation points in
the t-plane, the roles of 1 and f may again be inter-
changed, as in chapter two. The analytic function 1(£)

is thus required to satisfy the f-plane bottom condition
n=0 on =20, (3.4)

and the Bernoulli equation

2 2 2
L2 a? (A%+B?) 1 B _ rpo
F (0A+RE) 2+ (aB+Bn) ? : = ot aB = BF* + 1
o o
on ¥ =1, (3.5)

where we have defined
(t2-a2)" = A + iB ,

and the subscripts denote partial differentiation. Far
upstream, the flow is uniform, which results in the radiation

condition
|
o f(l+—g> as ¢ > —w . (3.6)

The integral equation relating the real and imaginary

parts of tT’(f) along the free surface Y =1 is derived



exactly as in chapter two. The f-plane strip 0 < ¢y < 1
is first extended by reflection about the bottom n = 0 to
form an augmented section -1 < ¢y < 1 . The bottom condition

(3.4) is satisfied automatically, by requiring values of 1’
on the image strip -1 < ¥ < 0 to be related to values on
the true strip 0 < ¢y < 1 by means of equation (2.7). Cauchy's

Integral Theorem is now applied to the analytic function

- (08

x(£) =

o

along the same path of integration in the f-plane as before.

Taking the real part of the resulting equation gives

) [ - 6 e
[E¢(¢,l) (l+a} } ] £, (6,1) 1+3 ](8—¢1}2+4

=00

= n, (6,1)ae (e 1>de n, (6,1) (6-¢)do
'{} K J (6-¢) 2+4 } o 43.7)

-—00

ERLS]

8

This equation is an obvious generalization of equation (2.10).

The free-surface profile is thus found parametrically
in the form (£(¢,1), n(¢,1)) by solving the system of
equations (3.5), (3.6) and (3.7). The variables x and ¥y
may be recovered from equation (3.3).

The wave drag D and the lift L are computed by
integrating the product of the pressure p with the approp-
riate component of the normal vector over the surface of
the ellipse. Here, P has been made dimensionless by
reference to the quantity pgH , whilst D and L are
referred to the quantity pgH? . The density of the fluid

is p . Thus



86.

D = { ph’ (x) dx

= LF? % j (u?+v?) ——— dx (3.8a)

and

[+
= LF? { (u?4v?)dx - oF? + %as - 20 . (3.8b)

-

Transforming these equations into the T-plane yields

_ 2B [ _Ela2-EH” /asg)’
D ZF a J [<§2_1]£2+a2\a£n=0 dE (3.98.)
e o

and

_ {3¢Y 2 m
L = LF — dg - oF° + FaB - 20
: \(E)E-ljgz+“2 Xt 4=o 2
% (3.9Db)

Finally, these equations are transformed into the f-plane,

where they become

¢+oz 2-E2 ” l
D = ngg I [(ESg 1€gl+ - d¢ (3.10a)
A ] = 7
and
¢+oz OLZ-EZ 1 ™
L=1/2F2J B2 g—'de—OLFz-i'iOLB—ZOL
o L(G) e B

(3.10b)

The functions § and £¢ in equations (3.10) are to be
evaluated along the bottom ¢ = 0 , and the quantities b, .

are the solutions to the equations

e(ed,, »0) = za . (3.11)



3.3 Two linearized theories

3.3(a) An essentially circular ellipse

If the ellipse is small and has an aspect ratio
R = B/a of order 1, a linearized theory may be developed
after the fashion of Section 2.3, by expanding the solution
7(f) in a regular perturbation expansion with small para-
meter a? , and retaining only terms of first order in

this quantity.

The solution T(f) is taken to be of the form

T(f) = £(1+R) ™! + o?F;(f) + 0(a®). (3.12)

Inserting equation (3.12) into the Bernoulli equation (3.5)

and retaining only terms of first order in a? results

in the linearized free-surface condition

Re{ng_fl' K 'Fl_z Fl} - 2Fi($2+l) + 3 (qj;?;z
on Y = :‘L . (3.13)
The function F;(£f) is to be sought as a Fourier integral,
of the form
Fi(f) = !m C(k)sin(kf)dk , (3.14)

and the real function C(k) is determined by substituting

equation (3.14) into equation (3.13). Thus

-K

1
e (k + =)
C(k) = P

N[

k cosh(k) - f% sinh (k)

It is evident that the function C(k) in equation

(3.14) differs only by a factor of R from the expression
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cbtained in Section 2.3. Thus the interpretation of the
integral in equation (3.14) has already been discussed in
that section. For F > 1 , a symmetric, wave-free solution
is obtained. There is no solution for F = 1. For F <1,
a wave-free region is predicted upstream of the ellipse,
followed by a train of linear, downstream waves. In this
case, the solution (3.12) may be written

e—K(K'Ff%)Sin(Kf)dK

T(f) = £(1+4R) ! + %Raz{f T
KCOSh(K)"FTSinh(K)

me " (ko+ %%)COS(Kof) 1
T + 0(a*), (3.15)

+
(l i~ Fz' + Kng)COSh(Ko)‘[

where k, 1is determined from the dispersion relation (2.18) .
Far downstream, equation (3.15) yields the free-surface

profile

v » 1 - A, sin(kex) + 0(a") as x > + «,

where the wave amplitude A; is given by

Te " (kg + ﬁ%)sinh(Ko)
A; = a?R(1+R) T . (3.16)
(1 - 55 + KﬁFZ)COSh(Ko)

An expression for the linearized wave drag D is
derived as in Section 2.3, by inverting equation (3.15) to
obtain a relation of the form f = f(t1) , and then substituting
into equation (3.9a), with n =0 (¢ = 0). This results in

the classical formula

2|<0

= L 2[ — el
D = %A1~ Sinh(2¢,)

} + 0(a®) , (3.17)
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given by Lamb (1932), in which the wave amplitude A, 1is
obtained from equation (3.16).

The linearized 1lift force L 1is likewise obtained
from equation (3.15) by inverting and substituting into
equation (3.9b), with n = 0 . This yields

—-K

1
oo e Kk + =)k dk
— 1 2m21+ _ 1.3 32 ( F2)
I. = 0(1+R) “F°I Lo °R(1+R) °F°I

1 .
;< cosh(k) - 7 sinh(x)
- oF2 + zaB - 2a + 0(a®) , (3.18)
where
| 2 + R® in l_(l_Rz)% R <1
T-RZ. " (1-R2)3/2 1+(1-RO%) '
I = | (3.19)
2 1

15;2 + (R23§)3fﬁ arctan (R?-1)" , R > 1

\

In the limit o = 0 , the semi-elliptical body
degenerates to a vertical plate of height § and zero
thickness attached to the bottom. This plate still disturbs
the upstream uniform flow, and thus generates a downstream
wave train. The wave resistance experienced by the plate is
obtained from equation (3.17) by allowing o = O(R > «) , and

takes the finite value

m2k2e 0 (ko + ;L)
- 0 F2
D~ %" F i as a =~ 0

(1= g5 + k2F?) cosh (ko)

The 1ift experienced by the ellipse is also finite in
the limit o > 0 , as a consequence of the effects of leading

edge suction . In this limiting case, the ellipse has become



a vertical plate of zero thickness, upon the surface of
which the fluid velocity has infinite magnitude. By
Bernoulli's equation, the pressure on the surface of this
plate is negative infinite, but acts on a body of zero
width, resulting in a finite upward 1lift force acting on the
plate. The magnitude of this 1lift force is obtained from
the present linearized solution by allowing o ~» 0(R~>x) in

equation (3.185. Thus

Yk dk

I, + LenF? - LR37F?2

i

sinh (k)

as o > 0 .

3.3(b) A long, thin ellipse.

The linearized theory appropriate in this case is
derived by regarding B as a small parameter and expressing
the solution T(f) as a regular perturbation expansion in
this quantity. Upon substituting into the flow equations
and retaining only lowest order terms in B , a linear
system of equations is obtained which, however, appears to
be too difficult to solve in closed form. Accordingly,
this theory will not be pursued further.

An alternative approach has been adopted by Lamb((1932,
p.409), and was mentioned in Section 2.3. In this theory,
it is assumed that the solution may be expressed as a small
perturbation to the uniform flow £ = z . This assumption
is obviously not valid near the stagnation points at =z = to,
and the consequent failure of this theory for small o has
already been described in Section 2.3. For the solution

f(z) , Lamb's theory gives
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rmJ (oK) f% sin(kz-ik) + ik cos(kz-ik)
f:z—BJ lK 1 dk.
k cosh(k) - 7z sinh (k) (3.20)

The free-surface elevation may be obtained from Lamb ((1932),
p-410, eq.(8)). With the present choice of coordinate

system, this becomes

y=1+8 Jm J1 (oK) cos (kx) de . (3.21)
Kk cosh(k) = ﬁ% sinh (k)

The function J; appearing in equations (3.20) and (3.21)
is the first kind Bessel function of order one.

.The interpretation of integrals of the type shown in
equations (3.20) and (3.21) has already been discussed in
Sections 2.3 and 3.3(a). For F > 1 , a symmetric, wave-
free solution is predicted. There is no solution for F = 1.
When F < 1 , the integrands in equations (3.20) and (3.21)
possess singularities at « = ko, , where the positive real
number Kk, is the solution to the dispersion relation (2.18).

Thus the solution (3.20) may be written

e -j% sin(kz-ik) + ix cos(kz-ik)
=i w B{% J;(ok) F =P,

K 1 ;
5 k cosh(k) 77 sinh (k)
1 cos(kgz—ixy) - ikgsin(kgz-ikg)
L mIi(ake) F2 : g 0 0 0 }

K 1 !

g [1 + F?k} = 771 cosh (ko)

(3.22)
and the free-surface elevation (3.21) becomes
y=1+ Bf} J1(dK)C?ﬁ(KX) o

k cosh(k) - =% sinh(k)
0 F

mJ ;1 (0K g) sin(Kgx) 1 (3.23)

[1 + F?k? = gzlcosh(k,)



For F < 1, the free surface thus consists of a wave-free
region upstream of the semi-ellipse, followed in general by
a train of downstream sine waves. Far downstream, equation
(3.23) indicates that the free-surface elevation is of the

form
y » 1 = A1 sin(KX) as x - + o,

in which the wave amplitude A; 1is given by

A, = 2mB J, (aKg) . (3.24)

[1 + Fzmﬁ - g%]COSh(KO)

The wave drag D and lift L for this linearized
theory are computed by substituting equation (3.22) into

equations (3.8a) and (3.8b) respectively, resulting in the

expressions
2K
__1/2 _ 0 3

D = hAl[l EIEHTEE;T] + 0(B7) (3.25a)

and
. © J;(ax) [y cosh(k)-k sinh(k)]sin(ax)
L = 5@8 - 20, - 2RF? * dK
K 1 .
i) k cosh(k) = == sinh(k)
F2
+ 0(B?) . (3.25b)

A remarkable feature of this theory is that the wave
amplitude A; and linearized wave resistance D may become
zZero. This occurs each time the ellipse half-length o takes

the value
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where j1S is the s-th zero of the Bessel function J; .

Note that, as o > 0 , the wave amplitude A; and drag D

predicted by this theory also become zero.

3.4 Numerical Methods

To evaluate the linearized solution for an essentially
circular ellipse, described in Section 3.3(a), it is necessary
to obtain numerical values for the integral on the right hand
side of equation (3.15). This integral is identical to the
integral in equation (2.20), and may thus be evaluated at
the surface by the technique described in Section 2.4(a).

Lamb's solution for a long, thin ellipse, described
in Section 3.3(b), is evaluated from equations (3.22) and
(3.23) by truncating the semi-infinite range of integration
to a large, finite range. The Cauchy Principal Value integrals
are then evaluated using the Trapezoidal Rule and Monacella's
(1967) theorem, spacing points symmetrically about the sing-
ularity at k =k, so that the effect of the singularity
may be ignored. Accurate polynomial approximations to the
Bessel function J; are given in Abramowitz and Stegun (1972).

The numerical solution of the non-linear equations (3.5),
(3.6) and (3.7) is exactly as described in Section 2.4(b).

"y is used

A vector of discrete function values (q;,n;,...,nN

to represent the function n¢(¢,l) at the N + 1 equally
spaced free-surface points % ,¢1,...,¢N . The integro-
differential equation (3.7) differs only trivially from
equation (2.10), and the same process is therefore used to

reduce it to a matrix equation for the gquantities Eg,...,ié
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’

N The radiation

in terms of the unknowns n;,...,n
condition is now imposed at the first point ¢, upstream;
thus the quantities £&,, ny, and ng are obtained from

equation (3.6) and the Bernoulli equation (3.5) then gives

£§ . Finally, the Bernoulli equation (3.5) evaluated at
each of the points ¢1,...,¢N gives a system of N non-
linear, algebraic equations in the N unknowns n;,...,né,

which is solved by a process of Newtonian iteration. Solutions
are usually obtained rapidly, due to the quadratic convergence
of Newton's method, and when N = 130, converged non-linear
free-surface profiles are usually obtained in five iterations,
and require about two minutes of computing time on a CDC CYBER
173 machine. It is often sufficient to start the iteration
process with an initially flat profile (n’ = 0), although
occasionally, a previously-computed non-linear solution is
used for this purpose.

The wave resistance D and lift L experienced by
the semi-elliptical body are computed from the non-linear
free-surface profile using Cauchy's Integral Theorem to
generate values of &’ at points along the bottom ¢y = 0
These values are numerically integrated to obtain £ , using
equation (3.6) to supply the value of & at the first point
¢y upstream. Equations (3.11l) are now solved by cubic-
spline interpolation and Newton's method, and the drag D
and 1lift L are evaluated from equations (3.10a) and (3.10b)

respectively, using Simpson's Rule integration.
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3.5 Presentation of Results

When F < 1 , the linearized theories of Section 3.3
predict a surface profile free of waves upstream of the semi-
ellipse, and in general possessing a downstream wave train.

For F > 1 , however, the surface is predicted to be symmetric
about x = 0 , and to possess no waves. These general features
are confirmed by the non-linear results; in particular, a
symmetric non-linear solution which is free of waves exists

in a portion of the supercritical flow regime F > 1 , and

is similar to the solutions described in Section 2.5(b). We
shall not consider these solutions further.

In Fig. 3.2(a), the wave drag D is shown as a function
of the ellipse half-length a , for an ellipse of height B = 0.02
in a stream with F = 0.8. The dotted line indicates the pre-
dictions of the linearized theory of Section 3.3(a), in which
the ellipse is assumed to be small and roughly circular, and
was obtained from equation (3.17), whilst the results of Lamb's
theory, computed from equation (3.25a), are indicated with a
dashed line on the diagram. The points represent values of
the drag computed from converged non-linear free-surface
profiles, obtained for 36 different values of o . When o
is large, the non-linear drag curve exhibits a marked shift
to the right, which is in agreement with previously observed
trends (see Schwartz (1981) and von Kerczek and Salvesen
(1977)). Note that the non-linear drag is very small indeed
at the two minima indicated on the diagram.

The 1ift L is shown as a function of o in Fig.
3.2(b), for both the linearized theories of Section 3.3, and

for the 36 values of o at which the non-linear solution
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Figure 3.2(a)

Wave drag D as a function of a,
for F=0.8 and B = 0.02. Results

obtained from the two linearized

O . .
theories of Section 3.3 are shown.

The points indicate results obtained

from converged non-linear surface

O profiles.
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was computed, with F = 0.8 and B = 0.02. To show more
clearly the difference between the non-linear results and

those of the two linearized theories, the reference value
2
= L ( ﬁ\ 2+ _ 2 n =
L zu\l + a/ F°I oaF“ + 2&8 20

where I is the quantity defined in equation (3.19), has
been subtracted from the overall 1lift force. The quantity
L_ 1is the 1ift that would be experienced by the semi-ellipse
if the flow were the same as for flow about an ellipse in a
fluid of infinite extent, for which the solution is

f=1(1+ B/a). Note that
L_ -~ LATF?2 as o > 0

Lamb's theory, which has already been seen to fail for small
o , predicts a lift force of zero in the limit o -+ 0.
However, this result is not confirmed by either the linearized

solution of Section 3.3(a) or apparently by the non-linear

results; instead, these both predict a finite upward 1lift
force as o - 0 , as a consequence of the effects of leading
edge suction. The non-linear lift force appears to exhibit

local maxima at about the same values of o for which the
non-linear drag vanishes.
In Fig. 3.3, the extent to which the non-linear down-

stream wave train may be made to vanish for special choices

of o, B and F 1is investigated. Here, F = 0.8 and
B = 0.02, as in Figs. 3.2. In Fig. 3.3, three non-linear
free-surface profiles have been plotted; when o = 1.6, the

downstream wave amplitude, and hence also the wave drag in
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Fig. 3.2(a), attains its maximum value for these values of
F and £ , whilst the downstream wave amplitude is at a
minimum for o ~ 3.95 and o ~ 6.6. As with the solutions
obtained in chapter two, the three non-linear solutions in
Fig. 3.3 all exhibit a very small wave train upstream of
the semi-ellipse. Again, this numerical error results
from the truncation of the integrodifferential equation
(3.7) at the first point ¢, , and the subsequent imposition
of the radiation condition (3.6) there. The amplitude of
the spurious upstream waves for the solution with o = 1.6
in Fig. 3.3 has been reduced as far as possible by making
small changes to the value of n, imposed at the first
point ¢, , exactly as described in Section 2.5(a). The
free-surface profile for o = 1.6 is also slightly in error
over the last guarter of a wavelength or so downstream, due
to the truncation of the integrodifferential equation at
the last point ¢N downstream. However, as with the
solutions obtained in chapter two, errors from this source
do not discernibly affect the remainder of the free-surface
profile. Note that the mean level of the free surface
downstream, computed by the technique described in Section
2.6, lies well above the undisturbed level vy = 1 for the
case o = 1.6.

The amplitude of the downstream waves for the cases
o = 3.95 and o = 6.6 shown in Fig. 3.3 is extremely small,
being roughly the same size as the amplitude of the spurious
upstream waves. Indeed, we believe that the presence of

downstream waves is due only to the existence of the upstream
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waves, and have no doubt that a surface profile totally
without waves may be obtained by eliminating the small,
numerically produced, upstream waves. Thus the non-linear
drag curve of Fig. 3.2(a) is expected to pass through zero
at o ~ 3.95 and again at o ~ 6.6. However, the non-
linear drag in Fig. 3.2(a) is shown to vanish at slightly
smaller values of «a than these. This is due to a small
numerical error in the procedure for computing the non-
linear drag (described at the end of Section 3.4), which
is again a consequence of imposing the radiation condition
(3.6) at the point £ = ¢, on the bottom. Thus, although
the non-linear drag may be computed without difficulty for
small o , the results are more subject to error as «
becomes large and F Dbecomes small.

The non-linear effects of the ellipse height B upon
the downstream peak-to~trough wave height are investigated
in Fig. 3.4. Results are presented for B8 = 0.05 and for
g =0.1, at F = 0.5. The predictions of Lamb's linearized
theory, computed from equation (3.24), are indicated by

dashed lines, whilst in the non-linear case, results were

obtained for 36 different values of o when B = 0.5 , and
for 39 values of o when B = 0.1 , and are indicated by
points in Fig. 3.4. The wave drag is not shown for these

cases, since the error which occurs in the computation of
the non-linear wave resistance at large values of o renders
the accuracy of the results uncertain.

According to Lamb's linearized theory, described in
Section 3.3(b) , the values of o at which the wave height

becomes zero are functions only of F , and do not depend
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on B . However, the non-linear results in Fig. 3.4 show
a strong dependence upon f . For B = 0.05 , the non-
linear wave height takes its first minimum at a value of
oo which is about 20 per cent larger than the value predicted
by Lamb's theory, and for B = 0.1 , the value of o at
which the first minimum occurs is some 50 per cent greater
than Lamb's linearized result. At this value of the Froude
number, surface profiles have again been computed for which
the height of the downstream waves is extremely small, and
we do not doubt that it may be made to vanish altogether
by eliminating the spurious waves from the upstream portion
of the flow.

In the limit o - 0 , the ellipse degenerates to a
vertical plate of zero thickness and height g attached
to the bottom of the stream. Lamb's theory ceases to be
valid for small o , and predicts that the downstream wave
train vanishes as o > 0 . Of course, the non-linear results
in Fig. 3.4 do not confirm this prediction, and indicate
instead that the downstream wave height remains finite as
oo +* 0 . The linearized theory of Section 3.3(a), in which
the ellipse is assumed to be small and roughly circular,
appears to provide a reasonably good estimate for the down-
stream wave height in this limiting case; allowing o to
become zero in equation (3.16) gives a peak-to-trough wave
height 22, of 2.32 x 10~ for B8 = 0.05 and 9.27 x 10-3%

for B = 0.1, when F = 0.5.

102.



103.

3.6 Summary and Further Remarks

The problem investigated in chapter two has been
generalized in a straightforward manner to include the case
of two-dimensional steady flow about a submerged semi-
ellipse. The problem is again formulated using the complex
potential £f = ¢ + iy as the independent variable, and is
solved using the boundary-integral technique of chapter two.

Two linearized theories have been discussed. The
first of these is a straightforward generalization of the
linear theory of chapter two, and is derived under the
assumption that the ellipse is an essentially circularly-
shaped object. However, it also appears to provide
reasonable results for ellipses of very high aspect ratio
R = B/a , although it ceases to be valid for ellipses for
which o 1is large. The second linearized theory which was
investigated is based upon the classical solution of Lamb,
and requires the ellipse to be a long, thin obstacle.
According to this theory, the amplitude of the downstream
wave train, and hence also the wave drag, may become zero
for ellipses of certain special lengths. However, the assump-
tions implicit in this theory are locally violated in the
neighbourhood of the stagnation points at each end of the
semi-elliptical body, and, apparently as a consequence of
this, the theory fails for small ao .

The exact non-linear equations of motion are solved
numerically, using a Newtonian iteration scheme to obtain
the free-surface profiles. For F > 1 , the symmetric,

wave-free profile predicted by the linearized solutions is



confirmed by the non-linear results. For F < 1 , the
non-linear surface profile is essentially free of waves
upstream, and generally possesses a train of Stokes waves
downstream. The remarks made in chapter two concerning the
possible non-unigqueness of non-linear solutions are doubtless
applicable here also; there exists the possibility of a
region of overlap in the supercritical flow regime F > 1 ,
in which both the symmetric wave-free solution and a solution
possessing a downstream wave train exist simultaneously.

In addition, it is possible that solutions of the type
described by Aitchison (1979) may also be found.

As with Lamb's linearized solution, the non-linear
results also appear to indicate that the downstream wave
height and the wave resistance may both become zero for
certain ellipse lengths. These special ellipse lengths are
functions only of the Froude number F in Lamb's theory,
although they also become strongly dependent upon the ellipse
height B when the effects of non-linearity are included.

Although free-surface profiles for F < 1 have been
obtained in which the downstream wave height is extremely
small, we have not yet observed it to vanish completely.

This appears to be due to the necessity of the present
numerical method to impose a radiation condition at the

first point upstream. Consequently, a spurious, numerically-
produced wave train is present upstream, and it appears that
the very small downstream waves which are obtained may only
be made to vanish completely by ridding the free surface of

the spurious upstream waves. To search for configurations
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having exactly zero drag, it may perhaps be possible to
formulate the problem differently, taking advantage of

the symmetry of the solution about x = 0 for these cases,
and allowing all the free-surface points to vary. The
parameter o would presumably be an unknown quantity, to

be obtained along with the free-surface profile in the
Newton's method solution of the problem. Work is presently

continuing on this non-linear eigenvalue problem.
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