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1. INTRODUCTION.

Research intoc constrained non-linear optimization
and Lagrangian theory has brought about the appearance
of several sub-differentiability concepts. We concern
ourselves with the following two types : the
generalized gradient of Clarke [1] and the ¢2 -
convexity sub-derivative of Dolecki and Kurcyusz
[3] . Clarke’s gradient is a generalization of

the sub-derivative of a convex function, but per se

has 1little to do with convexity . The $, -
sub—derivative and other related concepts generalize
the idea of suébort planes of convex sets . In the
context of "classical" convexity both of the
corresponding convexity and sub-differentiability
concepts are closely related . Developments in
non—differentiable optimization have seen a separation
of these concepts . This paper presents some
results relating the corresponding generalizations

of such concepts, for non-smooth functions
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It is shown that 'the existence of the Clarke
and ¢2— sub~derivatives implies , under natural
conditions, the existence of the @ € - sub—-gradient
[3] within a given neighbourhood. Furthermore, the
Clarke sub—gradient can be characterized as the convex
closure of the derivatives of the Q = convexity
sub—gradients.

These results are analogous to those of classical
convexity. Any convex function can be obtained
by taking the supremum of affine functions
#(u) = <u,b> + g. In connection with the
sub-derivative of a convex function at a point G, the
class of interest consists of all affine functioms

such that

£() > () (1) and

f(u) = #(u) (2)

Combining (1) and (2) we arrive at the condition
f(u) - f(u) » #{(u) - ¢(u) = <u - u,b>.

Denote the class of functions satisfying (1) and (2)

by Sa(a). Then the sub-derivative of the convex

function is given by

a f(u) {b e R®: f(u) - £(u) > <u - uw,b>; vu e u}

= {v ®(u): ¥(:) e sa(ﬁ)}.
With this in mind , it is natural to wiew the main

result as stating the. following



Suppose a function f(-) : R® 4 R is ¢ -
. 2

sub-differentiable everywhere in a neighbourhood of u

and also locally Liﬁschitz around u . Then there

exisis a comstant ¢ > 0 and a compact set C ¢ R” such

that

~

3f(u) = To{v »(u): » e 8§, f(ﬁ')},
where

S, £(8) = {#(.)e dy:£(3) - £(u) < #(3) - »(u);vu e RV

and

¢2 = {¢(u) = a - %uu - yh*; ae€BR; 0<c<¢<c;yecC}.

2. PRELIMINARIES.

If U, and U, are sets, a mapping I of U, to
the subsets of U, can be represented unigquely by its
graph

G(r) = {(u,,uy): wu, € r{u,)} ,
a subset of U, , U,.

When Ul and Uz are topological spaces we will
consider the‘concepts of lower semi-comtinuity
(l.s.c.) and upper semi-continuity (u.s.c.) to be
those generated by the lower and upper semi-finite
topologies on oYz~

A full treatment of these concepts is given in

([5] I, page 173 ) . See also [4] for a thorough

account. We now state some properties.



Properties 2.1 Suppose U, and U, "are
topological spaces aﬁd r, and T, are multi-valued
mappings from U, to 'U,.

(i) If ce r,(u,) = c€ ro(u,) for all u, € U,,
then we have I, is 1l.s.c. 'if and only if I, is

l.s.c.

(ii) If U, 1is a topological linear space and
r, is I.s.c. , then r, defined by r,(u,) = co rI,(u,)
for all u, € U, 1is Il.s.c. (Here and subsequently

co denotes the convex hull.)

(1ii) If U, 1is regular and I 1is closed-valued
(i.e. ce¢ r(u,) = r(u,)) and u.s.c., then the graph

G(r) is closed.

(iv) Define

m(u,) = inf {f(uy): wu, € r{(u,)} , -
where U, and U, are metric spaces , f: U, 4 U,
1s single-valued and TI(u,) # ¢ for all u, € U,.
Then m(u,) is u.s.c. at u, as a single—;alued
function if r(-) is 1l.s.c. at ﬁl and f(+) is

u.s.c. on r(ﬁl) as a single-valued function.

For proofs see (. [7] Proposition 2.3 and 2.6) for

(i) and (ii) and ([B6] chapter 5) for (iii) and (iv).



Within the lite;ature there are various
inequivalent concepts of continuity of multi—valugd
mappings which bear .similar ;names. Most are
equivalent in metric spaces. The major discrepancy
occurs between u.s.c. and the requirement that G(r)
be closed. Without some extra condition' equivalence
fails te hold in general. We will call a multi-valued
mapping I closed if it has a graph G(r) -which is a
closed set in U, , U, ( endowed with the topology
induced by the spaces U, and U, ) . The multi-valued
mapping I will be called closed-valued if the set
r(u) is closed for each u € U, . A standard condition

which forces equivalence is now given

Definition 2.2

u . .
2 s said to be

A mapping I . U, 4 2
uniformly compact near u, if and only if there is a
neighbourhood N of ﬁ, such that the closure of the set

U {r(u,) : u, € N } is compact.

Proposition 2.1

Let I be uniformly compact near Gl . Then I
is closed at u, Iif and only if r(u,) is a compact

set and I' is u.s.c. at u,



A proof of the above result may be found in [12]
It is shown in [6] tﬁat for a compact valued ,u.s.c.
multi-valued mapping , on a céﬁpact set U , the set
produced by taking the union of all the image sets ,
is itself a compact set . We shall be concerned with
the multi-valued mapping

r(b) = {c»e: ¢ k(b)) ,

where _; >0 and h: R™ 4 R, 1is single-valued
(positive) . Because of the simple structure of this

multi-valued mapping there is a simple equivalence

between closure and u.s.c.

Theorem 2.1 The following are equivalent for

the mapping

r(b) = {c > 0: e h(b)} , where h: R" 4 R;
(i} r(-) is closed at b ,
(ii) r(-) is uwu.s.c. at b , and
(iii) h(:) is-l.s.c. at b as a single-valued
mapping.
Proof Since (ii) o (i) is immediate,_we need

only show (i) o (iii) and (iii) o (ii).

Suppose h(S) = 0. Since h(b) 0 for all b we

w

must have for any € > 0 that

h(b) » h(b) - & = -¢



for all b sufficiently close to b, i.e., h(:-) 1is

l.s.c. at b without any further condition.

Now suppose h(b) > 0, h{(-) not l.s.c. at b and

F(:) closed at Then for any e > 0 ,Ithere

S O

exists bn e N (b,=) such that h(bn) § h(b) - ¢ for
all n sufficiently large. Since h(b) > © thefe
must exist an e > 0 such that h(b) - ¢ > 0 and a
non-negative sequence {cn} such that

h(b ) ¢ e ¢ h(b) - ¢ < h(b) for all n.
As c, € [0, h(b)] , there must exist a convergent
subsequence and after relabelling we have

h(b ) ¢ ¢ =~ c < h(b).

That is , there exists c, € r(bn) where c,6 = ¢ as

bn - b and ¢ ¢ r(b). This contradicts r(-) being

closed at b, establishing (i) » (iii).

Now suppose h(-) 1is l.s.cx a£ b. In order to
show that (iii) =» (ii). we need to show that for any
open set A < R such that r(b) € A, there exits a
& > 0 such that

r(b) c A for every b e N(b,s).

If r(b) € A we nmust have N (r(b), e) c A for

some e > 0, whenever A 1is open. Since we have
N(r(b), ¢) = {c 3 0: ¢ 3 h(b) - e} ,

we can use the l.s.c. of h(.) at b to deduce the



existence of & > 0 such that , for all b e N(E,a),
we have
h(b) 3 h(b) - e.
This implies
r(b)

{e h(b)}

{c

v
(=]
0

w

h(b) - e}

n

v
o
0
v

n
B
=]

If (U,,d,) and (U,,d,) are metric spaces then
U, 4 Uz. has the metric
d((ulsuz)3 (G;’az)) = max {dl(ulial)) dz(uztaz)}'

As usual we define

d((uxxuz)’A) inf {d((u]_:uz)a (El,aaz)): (G,lsl-_lz) € A}

for A c le U2 . The separation of two subsets
A,B cU, , U, is given by

d*(B,A) = sup {d((u,,u,),A): (u,,u,) € B}.
We give a slightly reworded statement of part of the
content of ([8] , Theorem 1 ). In the following K(U,)

denotes the closed subsets of U,.

Theorem 2.2 Suppose (U,,d,) 1is a compact

metric space and (U,,d,) is metric. If

r. U, - K(U,) 1is u.s.c. , then we can approximate T
by 1l.s.c. multi-valued mappings r.: U, - k(U,)
such that

N re (u,) = r(u,) for all wu, € U, and
e>0

d*(G(re), G(r)) < ¢ for all e > 0.
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We have discussed these concepts in vefy general
spaces and shall continue to use the corresponding
notation. As is usual.in the 1£terature we shall
however deal specifically with r® (see [1] and [101]).
As has been noted before much of the material-extends
to more generalized spaces. Generalizations of our

results will , as a consequence , be self-evident.

3. SUB-DIFFERENTIABILITY

Ever since F.H. Clarke published his paper [1] on
generalized gradients , much interest has surrounded
the development of these theories. Locally Lipschitz
functions play an important role as they imply the
existence of this type of differentiability. We use
the approach of [10] to define the sub-gradient of an
arbitrary l.s.c. function . When the function is
locally Lipschitz it will correspond to the =
sub—~gradient of Clarke . We will consider this
situation in section four

Definition 3.1 (i) For an arbitrary l.s.c.

function f(:) we define the upper sub-derivative of

f(.-) at u with respect to h as



AL

lim sup inf f(u + th’) -~ f(u)

T(a: =
£1(u;h) u e u; h’s h t
t - 0+

where u 4f;G if and only If u 5 u and f(u) - f(u)
(Obviously this will be the same as u -» u when f(.)
48 a continuous function.)

(ii). For such a function we define
the sub-gradients of f(-) at u as the set

af(u) = { z e R" : £T(a;h) » <z,h> for all h e R” )

See ([10] page 31) for a discussion of the concept
of the limit "lim sup inf" . We shall not use this
concept directly in subsequent proofs . The set is
always closed and convex . It follows that if f(-) is
locally Lipschitz , the mapping a3f(u) 1is convex
compact andﬂnon—empty and , as in the convex case ,
the mapping u -+ 8 f(u) is also an u.s.c. multi-valued
mapping . Also 3 f(u) 1is a singleton for all u e @
if and only if f(-) continuously differentiable on .
If a f(u) = {x} then v f(u) = x.

For a locally Lipschitz funtion a simpler

definition exists -. On can show for a such a function

lim sup +
(y,t) = (u,0 )

max {<x;h>: x € a f(u)}

. f(y + th) - f(y)
fc(u,h) T

It follows that fT(g;h) = fc(u;h) , providing an
alternative poceedure for defining o f(-) when f(:) is

locally Lipschitz
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Definition 3.2 We say that a l.s.c. function

f(+) is differentially regular at u if

£t (u;n) =

lim inf £(3 + th’) - f£(a)
(h’at)*(ha0+) t

for all h

Proposition 3.1 Let f: R" -+ R be a smooth

function and let h: TR"

+ R be locally Lipschitz.
Then ihe function

F(x) = f(x) + h(x)
is locally Lipschitz and

3 F(x) = {v f(x) + u; u € 3 h(x)} 4 3 hix) + v f(x).
A proof is given in ( [11], p B2 )

In the case when f(:): U 4 R 1is convex the
sub—derivative 8 f(+:) with respect to the affine
mappings coincdides with the Clarke sub-derivative at
every point in int U, for U ¢ R®. For a convex
function , the condition 0 € 3 f(u) implies that
f(-) achieves its global minimum at wu. If f(.) is
locally Lipschitz around u andlachieves a local
minimum at w , then 0 € 3 f(u).

The other type of sub-differentiability we use is
derived from generalizations of the concept of

convexity. We may generalize convexity by simply
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allowing ¢ to be a family of arbitrary real

functions which satisfy

p+rcl{r+c: ved) = o

In this situation f is ¢ - convex if
f(u) = sup{v(u): » € ¢’ < ¢}
for some sub-collection ¢’ (if P’ = ¢., then
f = -»).
Definition 3.3 For an arbitrary class ¢ s

a ¢-convex function f Is said to be ¢
sub-differentiable at u € U if there exists a ¢ € ¢
such that

f(u) = #(u) and

f(u) > #(u) for all u € U.
The set of ;11 () + ¢, where c € R and ¥ is a
subgradient of f at u is called the ¢ sub-differential
of f at wu and is denoted S¢ f(u). Equivalently
S¢ f{u) consists of all P e ¢ such that

fu) - £(u) 2 *(u) - »(u)

for all u € U.

The class of convexity-generating functions we
shall be concerned with is

¢2 = {¢¥{(u) = a -~ % fu - yt?; a € R; ¢ € R y € U}

L
and we shall denote the sub-differential of f at u by

S, f(u). A function f is ¢2 bounded if there exists
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*(-) € ¢, such that f(u) ) ®(u) for all u e U.

The other class of ‘interest ‘is

Qc = {¥(u) = a - %Hu - yi?: (y,a) € 8 ; S< R , R} .

“Suppose we have

f(u) = sup { a - %Hu - yit?: (y,a) € § ; § ¢ R® « R }.
Since la — yil2 = Hull2 - 2<u,y> + Hyn2z ,
we have

f(u)+-gllul|z = sup{<u,cy> + Hylt? + a:(y,a)e S;Sc Rnx R}.
a supremum of a class of affine mappings.
Thus f{.-) 1is Q C—convex if and only if
() + % -2 is convex in the ordinary sense
In this situation we know +that f(.) is
Q “-sub-differentiable at any point in int(dom f)
([2] Theoréﬁ 5.11) . The. relationship between
¢z— convexity and ¢2— sub-differentiability is not
quite as strong

n .
-+ R is lower

Proposition 3.2 Suppose f : R
semi—-continuous and ¢ - bounded . Then
2
(1) £f(+) is sub-differentiable with respect to -

the class ¢ on a dense subset of its domain y and
2

(ii) f(:) is in fact ¢ -convex
2

The statement (i) is Theorem 6.2 of {3] with
@ = 2 and X = R” while (ii) is Theorem 4.2 combined

with Proposition 4.13 of [3]
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Any lower semi~continuous function that is
¢z— sub—differentiasle at any p&int will , as a
consequence of .¢z - boundedness s, be ¢z— convex. Thig
allows us to write

f(u) = sup { ¥(w) ¢ ¥() € e}

for any u € dom(f) . This does not impiy that we may
assume anything about the compactness of the set of
parameters (c,y) geneéating the functions ¥(.) that

"~

comprise the set ¢ . The resultant ¢ - convex
2 2

function may not be sub-differentially regular . The

following almost trivial observation will give context

to Proposition 3.4

Proposition 3.3 Suppose ¥(-) is a function such

that f(u) = ¢(u) and f(u) > *(u) for all u in some
neighbourhood of u . If ¥(-) is differentiable at u ,
then z = v ¥(u) is a lower semi—gradient at u , that
is ,

f(u + th’) - f(u)

lim iaf T

(h’,t)=(h,0,)

> <z,h>

for all h e Rn

This result can be found in ([10] pages 28-29)
The following Proposition indicates when one can
characterize 9 f(:) as exactly the set of lower

semi-gradients .
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Proposition 3.4 It is always true that

3 f(u) > { z :z is a lower semi~gradient of f(.) at u}
When 23 f(ﬁ) # ¢ , one has equajity in the above if and

only if f(-) is sub-differentially regular at u
For a proof see in ([10], page 37)'.

If £f(.) is ¢2— coﬁvex , then 2o f(ﬁ)_# ¢ at
every point at which f(.) is ¢z— sub-differentiable .
We are not assured of equality in the relation
3 f(u) > co{v v(u):¥ is a @zsubderivative of f at u}.
The function f(-) is 1l.s.c. and hence 3 f(-) is
well-defined . By Propositions 2.2 and 2.4 , a3 f(.)
must be non—empty on a dense subset of dom(f)

This érompts one to ask whether it is possible to
extend the sub-differentiation by taking limits ,
rather 1like Clarke originally did to define the
sub-gradient . Unfortunately we can not use this
approach to extend sub-différentiability to the
whole of dom{(f) without assuming either u.s.c. of the
multi- function 3 f(-) , or at least closure of its
graph and the existence of bounded sequences . Uniform
compactness would seem a natural assumption to augment
closedness at some peint . This in turn would imply

"local”" compactness. of the parameter set (c,y)
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generating the functions in the class ¢z . As

we shall see this would allow us to extend
¢.-sub-differentiability to the whole of some
neighbourhood as well .It would also imply that a f(:)
"is u:.s.c.

As is pointed out in ([10] pages 47-48) ,
directional Lipschitzness is closely related to‘the
closqre of the graph 6f 3 f{(+-). The reader is referred
to ( [10] pages 49-50 ) for +two characterizations
of 8 f(+) in terms of limits of lower semi—-gradients
One <class of lower semi-gradients is generated by a
¢, — like class . We now consider what sort of compact
set of parameters (c,y) will allow one to deduce
Q@ “~subdifferentiability from a dense ¢2 - like

sub-differentiability

Theorem 3.1 Suppose f(:): U+ R 1is

continuous and ¢, sub-differentiable on a dense

subset of U with respect to . the sub-class

2
2
where the compact set C has the property that

¢ = {®(u) = a -5 llu - yii?; aeR; 0 ¢cgc;yecC}

y! = u - (e¢/c)(u - y) € C for any uevu
whenever 0 ¢ ¢ { c {( ¢ and y € C .
Then (i) f(-) 1Is sub-differentiable everywhere

with respect to the class Q € for some

c > 0.
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(ii) We may identify a sub-derivative
*(u) = a - g fu — yll* with the pair

(c,y). Then the multi-valued mappings

Szf(a) = {(c,y):(c,y) is a ¢.-sub—~deriv. of f at u}
“and
Scf(ﬁ) = {y: yeC; (c,y) is a Q°-sub-deriv. of f at u}

are both non-empty and u.s.c. on U
(iii) The following holds
{ ey - u): y e Co S, f(u)}

=co { c(y - u): (c,y)e 8 f(u) } # ¢

Proof We take a sequence u - uedvy where,

A

for each n, f(.) is ¢ sub—differentiable at u

For each n there exists 0 ¢ c_ ¢ ¢ and vy, € C such

n
that , for all u € U , we have
“n
— - 2 _ . 2
f(u) f(un) > —— [llun ynu Nu ynu 1.

There exist convergent subsequences of (cn,yn)

tending to some (c,y) where 0 ¢ c [4 g and vy € C.
When the appropriate limit is taken in the above
inequality , ‘the continuity of f(.) gives
fu) - f(u) > % [hu - yiz = Hu - ynz)
for all u € U
This establishes that S, f(u) # ¢. Since f(.) is
densely $2 sub-differentiable we have extended this

sub-differentiability to the whole of dom f . This

also establishes that the multi-valued mapping



19

S,f(u) 1is closed at u . Since S, f(ﬁ)lg [0,;] s & ,
the images are compact and hence the multi-valued
mapping is.u.s.c. as ﬁell . Nof confusion can be
created by identifying the functions ¥(-) with the

“ordered pairs (c,y). Any limit of such functions will

correspond to a limit in the topology of R+ x R® . as

a consequence the notions are interchangeable

~

We now show that ¢ sub-differentiability implies
2

Q © sub-differentiability. Take (c,y) e s, f(u) ,

where 0 < c < ¢ ¢ ¢ and hence

flu) - f(u) 3 g [Hu - yuz - ju - yuz]

for all u e€ U. First we show that (E,y‘) € 8, f(u) .
where
y' = u - (c/e)(u -y ).

Since we have f(.) ¢ - subdifferentiable at any u ,
2

A

and for any ¢ sub—derivative (c,y) with ¢ > ¢
2

ther® must exist y* € C such tﬂgt (c,y') e 8, f(u) ,
we will as a result establish (i)

By hypothesis any such y! belongs to C , and by

.

using ¢y = cu - cu + cy! we have

f(u) - f(u)
> % [Hun? - 2<u,y> + Hynz - gun? + 2<u,y> - Hyn2]
= g [hanz - nun2] + <u - u, cy>
= g [Hun? - yun?] + <u - u, cu - ou + oy?>
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= <u - u, cy*> + g [nunz - nun?]
+ (3 - ¢) [nunz - <u, wi.
We now show that
g [Wan? - nun?l] + (c - e) [nan? - <u, ud]
> c [nul2 = npunzj.

2 .
On subtracting the right side of the inequality from

the left we obtain, since ¢ > ¢, that

(= ) yguz + £829) yyye 4 (c - ¢) [nun? - <u,ud]

) = ié—%—fl nane + 87 C) e
+ (¢ - ¢e) [nunz - pgun nui]

= ﬁE_%_El [Huliz — gul? + 2uun? - 20un wan]

B CEEY [wan - nun]z » 0.

Hence .
flu) ~ f(u) g [nanz - fun?j + <u - u, cy!>
= % (hu - y*n2 - pu - y*nz]

for all u € U, establishing (i). -

We derive the remaining part of (ii) as follows.

Select u »u and y_e€S_ f(u ) such that y_ =
n n c n n
y . By taking limits in the inequality
- c — 2 _ - 2
f(u) f(un) 2 3 [uun vl ha v i ],

we show y € Sc f(u). This establishes the closure of
the graph and also proves that SC f(ﬁ) is a closed

set . Since Scf(a) is contained in € it must also be

compact. Hence co Sc f(u) is a compact set and the
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corresponding multi-valued mappings must be u.s.c. as

well

We now establish (iii) , that is
2 € {c(y - w: 'y e co sl f(u))

co {v #(u): *#(-) e S, £(1)}.

Since y € co Sg f(ﬁ)_, there exists y, y! € Sz-f(ﬁ)

and .0 ¢ A ¢ 1 such that y = Ay + (1 - A)y! and
cly ~ W) =4 e(F - W) + (1 -4 ely! - w).

As Sg f(u) c Sz(ﬁ) the inclusion of the set @ is

implied

Suppose (c,y), (c,y) € 5, f(u). Then there exist
sub-derivatives ¥,(-) and ¥®,(+) corresponding to these
vectors . If either of E,c is less than 2 , then there
must exist vy’, y" € ¢ for which

(¥ - W) = c(y" - W)  and
cly - @) = e(y’ ~ )
The pairs -(g,y’) and (g,y") correspond to
sub—-derivatives and we have
A v e, (u) + (1 ~a)vwe,(a)
= A c(y —u) + (1-a)c(y -uw
= A e(y’ - @) + (1 -a) ely" - @)
se((ay + (1= y) -0,

establishing the other inclusion.



- 22

The closure of the set 2 is obviously

{ ¢c(y - u) : y € Co S; f(u) }, hence we have (iii) . o

4 . LOCALLY LIPSCHITZ FUNCTIONS

We now show the strength of éssuming local
¢, - sub-differentiability of a locally Lipschitz
function . Under thesé conditions we have a locally
@ ©- subdifferentiable functiom . That is , Wwe can

force such a function to become convex over some

neibourhood , in the usual sense , by adding =a
fixed "penalty function” . We require the following
results.

Lgmma.4.1 Let f{u) = max { ?y(ﬁ) tyeM 3},
where M is a compact space . Suppose each ?y(-) is
locally Lipschitz on Rn, the function y - ?y(u) is
upper semi—-continuous , and the multi<function
(y,u) - 2 ?#(u) is upper semi-continuous and also
locally bounded .

For any point u , let

M(u)

{yeM: ?Y(G) = f(u) } .
Then a f(u) cco { ?y(ﬁ) : y € M(u) }
If the functions ?y(-) are sub-differentially regqular
at u , then so is f(-) and equal ity holds in the above

relation
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The precise statement above was ‘takem from
([10] page 69) but it is a restatement of ([1l] Theorem
2.1) . Of course when each }y(-) is continuously
differentiable they are differentially regular and the

“ lemma reduces to Danskin’s theorem

Theorem 4.1 Suppose f(-): R® 4 R is ¢;
sub-differentiable everywhere in a neighbourhood of u

and also locally Lipschitz around u

Then there exists a constant ¢ > 0 and a compact
set € , such that f(.) Is sub-differentiable with

respect to the class

2

everywhere on a sufficiently small neighbourhood of u,

Q@ ¢ = {¥(u) = a - S ju - yll?2; a e R, vy e C}

and further

3 f(u) { ¢(y - u): y e Co 5, f(u)}
= co { c(y - a): (c,y) € Szf(u)} LI

our function f(.) being differentially regular at u

"Proof Let N(u,5) be a neighbourhood of u
for which @ f(:) exists as a compact convex set and
f(:) 1is ¢2 sub-differentiable at every u € N(u,5).

Then for any u’ € N(u,5) there exists (c,y) such
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that the fuﬁction

u o~ f(u) + 3 Mu - yn?
attains a global miniﬁum at u’.
Hence

0 € 3a(f(u)

+
a0

’ - 2

flu vl )|u?u,

f(u’) + c(u’ - y) ,

by Proposition 3.1. This implies that for some ¢
we have

y € {E +u’: x € 3 f(u’); u’ € N(u,8)}.

For ¢ > 0, e > 0 and &6 sufficiently small , we

define C{(c) to be the set

A

{E + u':x € N(a f(u), e); u' e N(u, 8); x = 0; ¢ > ¢}.
For ¢ > 0 , the set C{(c) is compact. This follows

from the compactness of N(u, 5), a f(u) and the

consequent compactness of N(a f(u), €). Take a

sequence {yn} in C€(c) . Then there exists X s €

and u; such that

Y, = xn/cn + u; i where

>

X, € N(a f(u), e), c, 2

, —
u) € N(u,s8).

, and

\'
0

There must exist a convergent subsequence of (xn,u;)
tending to (x,u’) with x € N(a f(u), e) and

u’ € N(u, 5) .
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Two cases arise

I. c = ®- In this event

-_ -, ’ — - ~

Y, = X,/c, tu -+ u e N(u, 8) < C(c).
II. Suppose <, remains bounded. 1In this case there
"exists a convergent sub-sequence of (cn;xn,u;)
tending to (c,x,u’) . With relabelling we have
— H ] ~

Y, = xn/cn f u' - x/c + u’ € C(c),

where c, * ¢ > c

In either case C(é) is sequentially compact and

hence compact.

For &6 sufficiently small we have
o f(u) € N(a £(3), ¢) € N (a £(a), €)
for all uw e N(u,58). Hence if (c,y) determines a
sub-derivative of f{(:-) at u , we must have

-~

v € C{(c). Whenever ¢ < ¢ we may, as before, increase

c to ¢ and move y to y! =u - (¢c/ c)(u-y) to
produce a new sub-derivative at u. Since y = x/c + u,
we have
1 = - X
yt = u - (¢/ e){u -7 - u

u + x/ ¢ € 6(c).

~

That is, for any u € N(u,5) there exist ¢ ¢ and

v

vy € C{ec) such that (c,y) produces a sub-derivative
of f(-) at wu. This result is independent of how
large we make ¢ > 0. As a consequence

~

S f(u) = {(c,¥): ¢ 2 ¢c, y € C(Z) and (c,y) € S¢,f(u)},



T 26

where
S¢p.f(u) = {(c,y) :(c,y) is a ¢.~ sub-deriv. of f at u}
is a closed non—empty'multi—valued mapping on ﬁ(ﬁ,&):

Define

H(u) = {c: 3y s.£. (c,y) € 8 f(u)}
and let '
h(u) = inf {c¢: ¢ € H(u)}.

We note that h(u) < ® for all u € N(u,5) and prove
that the multi-valued mapping H(u) must be closed at
any u € N(u,58). Suppose u e N(u,5), u. - u and
c, € H(un) . We must show that ¢ € H(u) whenever
c = c

Since c € H(un) , there must exist Y, € C(g) such
that (cn,yn) € S¢zf(un) with a convergent sub-sequence
tending to (c,y) € S¢éf(u), where v € C(;) and
c > g. That is, ¢ belongs to H(u) establishing
closure . As a bonus this also establishes that H(u)‘
is a closed set for all u € N(u,s&)

If ¢ e H{(u) , then for any ¢ ? ¢ we have
¢ € H(u). Hence _
H(u) = {c¢ > 0: ¢ 2 h(u)}
for all u € N(u,6). By Theorem 2.1 , H(-) is u.s.c

on N(u,58) and h(-) is 1l.s.c. on N(u,s).



- 27

Since U, = N(u,5) is a compact metric space and
H(-): U, -+ K(R) is u.s.c. , we can invoke Theorem
2.2 to deduce the existence of a 1l.s.c. multi—vélued .
mapping He(-) approximating H(:) in graph, i.e.,

a*(G(H,), G(H)) ¢ ¢  for all e > 0.
Thus for all e > 0 and u € N(u,5) , there exists
u! € N(u,e) such that
He(ui c N(H(u!), e).
We may take He(u) to be a closed, convex set . For
otherwise we could replace it by <co He(u) .
Proposition 2.1 parts (i) and (ii) , ensure that
co He(-) is still 1l.s.c. on N(u,8). Since H(-) is
closed and convex we must have for all e > 0 and
u € N(u,5) the existence of u! e N(u,e) such that
‘ co He(u)-g N(H(u'), e).
The mapping co He(-) will still approximate H{-) in
graph
Let
h;(u) = inf {c: ¢ € co He(u)} s
and note that
co He‘u) = {c: ¢ he(u)}. N
By Proposition 2.1 , part (iv) , he(-) is u.s.c. on
ﬁ(ﬁ,&) and , since H(u) < He(u) for all u € N(u,s) ,
we must have also

he(u) < h(u) for all u € N(u,5).
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Putting this all together , we have for u € N(u,s5)
the existence of u! € N(u,e) such that

~

o > h{u) > h;(u) 2 h(d‘) - € )Yc - e
for all e > 0 . By letting
M = sup {h_(u) | u e N(u,s)},
we establish that for any e > 0 and u e N(u,5) there
exists u' € N(u,e) such that o > M + ¢ > h(u;)

The constant M 1is finite since he(-). is u.s.c. and

N(u,s8) is compact.

We show that this in turn implies the existence of
(c,y) € 8 f(u) where M » ¢ 3 c. The arbitrariness of
u € N(u,8) establishes a ¢ -type sub-differentiability

2

on N(u.s).

Let ¢ = 1/n , where n € Z+. Take u € N(u,e) , and
for each n choose u; as above . As n -+ ® ,necessarily
u; - u .If c, = h(u;) > ¢ there must exist for each

. .
n  some y_ such that (cn,yn) € 8§ f(un) . Since
M+ 1/n > <, > ¢ and Y, € C(c) , there must exist a

convergent sub-sequence converging to (c,y) € § f(u),

by the closed mapping property of 8 f(-.).

Take C = C{(c) . Then we have established

sub—-differentiability with respect ta

~

¢, = {#(u) = a —-guu - yli?2: a e R; 0 < ¢ < M; v € C}.
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The set C has the required properties and hence an
application of Theorem 3.1 to the function f : U 4 R ,
where U = N(u,8s), establishes all except the equalityl

of 3 f(-) with its sub-gradients .

We now complete our proof by hoting that for

u € N(u,8) = U ,
f(u). = sup{¥(u):®(-) is a %2—sub—deriv. of f at ue U}.
The set M = U { S,f(u) u € U} 1is compact since
5,f(-) is u.s.c. and U is compact . Hence for u € U

f{u) = sup { () = a - % Hu - ylh2 : (c,y) € M }
and an application of lLemma 4.1 gives

3 f(u) = € { v #(u) = c(y - u) : (c,y) e 5,f() },
where S§,f(u) = {(c,y) : (c,y) € M and ¥(u) = f(u) }.

Using (iii) of Theorem 3.1 , we arrive at

3 f(u) {c(y —u) : y € co s f(u)}

co {c(y - w) : (c,y) e s_f(w},

which concludes the proof . - o
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Symbol Name . first appearance
® Greek u.c phi p. 1
B Greek l.c.beta p. 3

< 5 2 angle brackets p. 3
b 2 Greek l.c. psi . P. 3
v universal quantifier p. 3
v gradient / nabla P- 3
€ membership P- 3

. < class containment p. 4
3 del p. 4
r u.s. Greek gamma p. 4
% multiplication P- 4
® empty set/l.c. Greek phi p. 5
U set union p. 6
8 l.c. Greek delta p. 8
3 l.c. Greek epsilomn p. 7
n set intersection p. 9 .
Q u.c. Greek omega p-11
4 definition p.12
A l.c. Greek lambda p.21
3 existence quantifier p.26



