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INTRODUCTION

Since Kakutani it has been observed that certain multi-valued mapp'ings

admit fixed points. Convex'ity of image sets of these mapp'ings has

played an essent'ial role in the development of such theorems.

Continuity assumptions are also necessary. Unlike the topolog'ica'l

properties, the role of convex'ity seems less obvious.

No: totalìy geometric proof of Kakutani's theorem has been given. One

notes that even in go'ing from R to R¡ one loses the property that all

continuous multi-valued mappìngs admit fixed points. This contrasts

dramatically with s'ingle valued mappings. One needs to restrict the

shape of the image set, or how it "changes", to provide an affirmative

answer to the fixed point problem.

One wonders how the convexity assumptions may be altered and still allow

the existence of fixed points. As a first step towards shedding light

on this question, this thesis attempts to "decouple" the two concepts.

This approach proves to be rich in possibilities as it allows, within

the context of first reflex'ive spaces and then R", to draw together a

great varìety of literature on seeming'ly unrelated topics, under

a common theme. This includes literature on non-linear optÍmization,

generalized Lagrang'ians, generaljzed derivatives, generaììzed convex'ity,

continuous lattice theory and fuzzy topologies.

Chapter One is intended as an overview of basic definitions and theorems.

It is in large intended for reference and the informed reader will
probably find it more approprìate to begin with Chapter Two. It contains

an account of various topoìogical propert'ies of multi-valued mapp'ings

and an account of basic continuous lattice theory. l,Jithin this context
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the lattice theoretic concept of "Scott continuity" provides an

alternative charactization of the concept of inner semi-continu'ity for

open set valued multi-functions. This approach, to the knowledge of

the author, is probab'ly new. Attenrpts at extending the usual con-

cepts of lower and upper semi-continuity of sing'le va'lued mappings

us'ing the lattice structure of 2" occurred early in the deveìopment

of multi-functìon theory. It was noted that these attempts could not,

in general, be interpreted as continuity with respect to some topoìogy

on 2". Continuous lattice theory facilitates a similar approach

devoid of this flaw.

Chapter Two develops various convexity concepts emphasizing the lattice

nature of convexity. Its relevance to selection prob'lems and the

continuity of multi-valued mappings is explored. This culminates in

the proof of a selection theorem for multi-valued mappings a'long the

lines of the classical result demonstrating the existence of a con-

t'inuous selection "separating" any two functions f < g upper semi-

continuous and lower seni-continuous respectiveìy. Since any weak'ly

compact convex set, in a reflexive Banach space, can be obtained by

taking intersections of closed balls, the concept of strong convexity

seems the most appropriate vehicle to obtajn such a result.

Arrigo Cellina general'ized the Kakutanj theorem by approximating, in

graph, upper ser¡i-continuous convex set valued mapp'ings with lower

semi-continuous multi-valued mappìngs. In this thesis we addrelss the

question of whether one can approximate, in graph, upper semj-continuous

multi-valued mappìngs with continuous multi-valued mappings. In

Chapter Three we pursue this line of reason'ing. The lattice theoretic

nature of the approximat'ion problem is further explored in an attempt

to elucidate the nature of possible "convexity" generat'ing subclasses.

The lattice theoretic nature of the continuity properties of multi-

valued mappings becomes more evident.
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Using a continuous multi-valued mapping one is able to marry this

approach much more strongly w'ith the theory of non-linear optìmi-

zati on. The resul tant conti nu'i ty propert'ies of the associ ated

marginal and multi-valued mapping facilitates this approach. In

Chapter Four we consider the role of constraint qua'lifications in

this approach. L'ipschitzness be'ing equivalent to a generalized form

of "d'ifferentiability" is of particulalinterest. Conditions are

derived under which the solution set of a non-linear optimization

prob'lem, treated as a multi-functÍon, is Lipschitz continuous.

When this mapping is single valued, that is the constraint set is

"select'ive", then this is equivalent to the existence of the Clarke

derivative and its extensions. Lipsch'itzness of the margína1 functjon

inp'lies the val'id'ity of the use of an augmented Lagrangian to solve

such a problem. This is expìoited to derive conditjons under which

such a marginal function has a grad'ient.

In Chapter Five the properties of continuous lattices are used to

find equivalent characterizations of various classes of functions.

This results in the proof that the lower ss¡li-continuous strictly
quasi-convex functions are "lower dense" in the class of lower sem'i-

continuous quasi-convex funct'ions (or inthe terminology of Chapter

Three, generates this class). That is, every quas'i-convex function

g is in the closure of the set {h strictly quas'i-convex h ç g}.

l.lhen the convexity requirgnents of the image sets of multi-functions

is weakened from a supremum complete lattice of sets to a topology,

the resultant class of Scott continuous funct'ions form a fuzzy

topology. l.le relate theproperty of perfect normal'ity of fuzzy

topo'logies to the selection problem of Chapter Two. Perfect normality

implies the "upper denseness" of cont'inuous, open set valued, multi-

valued mappings in the class of upper semi-continuous, closed set

valued, multi-valued mappìngs. This shows an intimate relationship
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between topol ogi ca] propert'ies and the abi I i ty to approximate wi th

continuous mult'i-valued mappings. This, of course, does not imply

the existence of a fixed point, except for when the'image sets lie
in RI. One is not assured that'the approximating continuous function

admits a fixed po'int. To deduce the existence of a fixed poìnt one

needs to impose some sort of more stringent convexity concept to

allow selectivity of the image sets. The convexity assumpt'ions are

not removed but their role redefined in this context.

In general, thjs thesis is concerned with conceptual and to a lesser

extent, methodoìogical concerns. It represents a preliminary

exploration of these questions. If a complete theory was developed,

it mosù probably would be cast in terms of continuous lattice theory.

This would provide an overall structure in which such results could be

placed in context. Proofs are given for all original results and

appropriate references are given for all results present in current

I i terature.

In particular, the following results are, to the author's knowledge,

new:

Lemmas : 2.I, 2.4, 2.5, 2.6, 2.9, Z.IO, 4.2;

Proposit'ions : 1.8, 1.9, 1.10, 1.11 , !.!2, 1.13, 1.14, 1.16, !.I7,
2.2, 2.9, 2.9, 2.r0, 3.2, 4.r, 4.11, 4.15, 5.r, 5.2,

5.5, 5.6, 5.7,5.9, 5.9, 5.10;

Theorems : 2.3, 2.6, 2.9, 3.9, 4.5, 4.6, 4.1 , 4.10, 4.15, 4.1g;

Corollaries : 2.2, 2.7, 2.91, Z.gZ, 3.2, 3.5, 3.9, 4.4, 4.b, 4.9,

4.I4,4.I7,5.2.
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CHAPTER I

The extensive and varied nature of the literature relating to continuity

concept of multi-valued mapp'ing necessitates, I feel, some sort of

summary, to familiarise the unaquainted. This chapter attempts to draw

together that part of the literature related to the fol'lowing chapters.

In order to keep th'is chapter relatively seìf-contained as an overvjew,

more detail than is probabìy necessary has been presented. Varjous

lower and upper semi-cont'inuity concepts are defined and related to

each other where possìble. The topologies on 2" which induce these

concepts, are stated and the sjtuations under which they become equivalent

are noted.

The lattice structure of 2u is insufficient in itself, to extend the

usual concepts of lower and upper semi-continuity, of ordinary real

functions, by the use of simp'le limsups and liminfs. Attempts early on

were made in this direction, but jt has been noted that the resu'lting

concepts could not, in general, be related to some topology on 2".

Continuous latt'ice theory appears to shed some l'ight on th'is approach.

A general introduction to concepts such as "way below" and "Scott

continuity" 'is given. The relationship between these and the preceeding

concepts is explored. I,Je conclude by using "rate of continuity" to

relate certain uniform semi-cont'inuitjes and their local counterparts.

51.1 Discussion of Semì-Continuity of Sing'le and Multj-valued Mappi.ngs

In the following we take U. ; i=l ,2,..., to be topoìogica'l spaces

having topologies r. ; i=I,Z,.. If U. is a metric we wi.ll denote

its metric by d. (.,.) t U, * U, + R. Lower or upper semi-contìnuity

will be abbreviated to l.s.c. and u.s.c. respectively. l^le adopt

wherever convenient, the usual abbreviations; "'iff" for if and

only if, "nbhd" for neighbourhood, "Top" for topology, "s.t."
for such that, "m.v." for multi-valued and "w"r.t.r' for wi.th

respect to.
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Definition 1.1: Ama pping f : U + R is called l.s.c. at u € U iff
V e > 0 

= 
a neighbourhood of u, N say, s.t.

f(u) - e < f(u'); V u' € N

and u.s.c. iff

f(u') <f(u)te;vu'€N.

There have been numerous different approaches to extending these

concepts to the class of mapping f : Ur * 2u2. Afull account of such

approaches can be found in references t1l (p.109-121), l2l (p.160-182),

t3l and t6l. I will give here a quick survey of definitions and

re'lati onshi ps.

If Ur and U, are sets, a mapping f of Ur ,to subsets of Uz can be

represented uniquely by its graph G(f) = {(ur,uz) r uz € f(ur)}.

Converse'ly, âhy subset P of Ut x U, defines a multi-function

f ur = {uz : (ur,ur) e P}.

One can inrnediately see here the connection multi-functions have

with relations.

If we define f-tur=1¡¡, i u2 € fur] then the usual convention is

that when B c U1 we have

IB= U

ur€B
fur and for A c Uz we take f-rA = U f -rUz = {ur: fur ftA I 0}.

u z€A

X
This is called the pre-image of A. The exponential pre-image is

defined by f -14 = {ur : lur c A} and we inunediately have
- exp

f -rA = (¡-rA" )" .
exp

X,,("i 
T 11+ t,.oÉ<tio'^ "f (<'' l<*r'afo'-rslei r<'p¡qrcç CQJ'
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Definition 1.2 : Let ur, uz be two top spaces. Then I : lJt * ?'2 is

called qpper ('lower) semi-continuous if for each open (resp. closed)

A c Uz the set I"*, tA is open (resp. closed) in Ur's topolo$] tr.
Jc.'J -cc'**ixuov-f

Equivalent'ly we have I is upper (fower)ff for each closed (open)

A S U, the set r-rA Ís closed (open in Ut).

Definition 1.3 i Ur, U, top spaces. Then t : U1 + 2"2 is said to be

u.s.c. at uf if ul € r"*-rA + ul € int(r"*o-IA) whenever A is open.

Simitarly, f is lower semi-continuous at uf if

ul e l,*n-t{A) * u! e t"*o t(A) whenever A is closed.

l,le note that I is upper (lower) semi-continuous iff f is upper

(lower) semi-continuous at each ur € Ur (ref. Í2),I, page L73).

Definjtion 1.4 : f : Ur * 2"2 is continuous at ul € Ur iffit is

both upper and lower semi-continuous at u|.

Consequently I is continuous jff it is both upper and lower semi-

conti nuous .

Definition 1.5 : I : u t -> 2o2 is locally u.s.c. at (u1,ug) if for

each nejghbourhood N of uB there is a nejghbourhood M c N s.t.

M n r is u.s.c. at uÎ.

Definition 1.6 : A multi-valued mapping I is called ô-u.s.c. at

(u1,u1) if I a nbhd M of u! s.t.

rur
M n r ul : ur I ul

r ul otherwise
I
l.

is u.s.c. at u1.



I

l.le note in passing that if Uz is regular (tr), then the u.s.c. of

I impl i es 'l ocal upper semi -conti nu írty whi ch becomes equ i val ent to

6- upper semi-continuity (Kuratowski Í2lJ,page 180).

Theorem 1.1 : I a m.v. fn frqn U 1 to U2 we denote Tur = ÏTdI.

T is u.s.c. for each u.s.c. mult.fn f into the subsets of Uz iff
U, is normal (T,,).

Proof : Reference [3], p.8.

Theorem 1.2 : If U 2 is regularand f is closed valued (i.e. T ur = f ul)

and u.s.c., then the graph G(r) is closed.

Proof : Reference l2l , I, page 175.

Theorem 1.3 : Let U, be Tz ôhd ìet P c U1 x Uz be closed. Then

I ur = {uz : (u1,u2) € P} satisfies the following for each compact

!

cK U 2

ul e l-lK+uf € r-IK.

We note that f is u.s.c. at ul itt r-r is a closed mapping at uf

(ie. for each closed set K cU2 ul e i-tf + ul € r-tK).

It follows that for.U2 compact and Ur being Tz, the m.v. mapp'ing I
is u.s.c. cìosed valued iff G(f) is closed (also ref. 1,21, II'p.57).

Definition 1.7: Suppose that f : U1 + 22, B(uB) i.s a basis of u8

and U1 and Uz ôFê topoìog'ical spaces. f said to be l.s.c. at

(uf,u9) if for each element g of B(ug) there exists a nbhd t^l of

uf s. t. f-lB > hl.
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This definition doesn't depend on the basis used. lr'le have f l.s.c.

at v(uf,u8) e e(r) iff r-rA is open for open A (i.e. r is l.s.c.

according to our previous definition L.2). The local character

of the definition l-.3 is expressed by the fact that f is l.s.c.

at ur0 (viz. definition 1.3) iff it is l.s.c. at (uto,u!) for each

uSeruf.

Definition 1.8 : A multi-valued mapping f is said to be inner semi-

continuous (i.s.c.) at uro if for each closed set F c f uro, there is

a neighbourhoo¿ (nbhd) !'l of ul such that for each ur € l,l we have

F c f u1.

0f course this is only an auxi ,ì*, notion as f js i.s.c. iff the

complementary multifunction f" is u.s.c. at a particular point ul.

0n the other hand if the space U2 is T1-space i.s.c. entails l.s.c.

Theorem I.4 : If Uz is regular. Then'¡¡ ¡r is l.s.c. at ul and fz is

u.s.c. at ul, the mapp'ing

f=fr\fz=lrn 2

is l.s.c. at uÎ.

Proof : Reference [2], page 182.

In the fo]'lowing (Uz,dz) will denote a metric space, t'¡(u!,e) the e

neighbourhood {uz : dz(u8,uz) < e} and for A c U2

N(A,e) = U N(ur,e); d(ur,A) = inf{r: N(uz,r)n Al0}.
ur.€A

Defini Lion 1.9 : A mul ti -functi on f : l)t * 2u2 is called upper

Hausdorff semi-continuous (u.H.s.c. ) at ul if v e > 0,3 a nbhd l¡J

of uro such that

f lll c N(fuf,e)

!

f is called lower Hausdorff semi-continuous (l.H.s.c) at ul it
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Ve>0 lanbhdWofufs.t.

l^l c {ur : fuf _c N(fur,e) }.

l,le note that f is l.H.s.c. at uf iff it is r.s.c. at (uf,ug) uniformly

for each ul e rul (in the sense of definition 1.3).

Now if ur and uz âFê metric'spaces the definition of lower semi-

continuity (at (ur,uz)) of a multi-function I : Ut -> Zuz may be

restated as follows: for e > 0 there is a number q(s) > 0 such that

r-lN(u z,e) > N(ur,q(s) ).

Similar definitions can be made for u.H.s.c. at uf. If f is u.H.s.c.

at ul and for each e e (0,e0)

rN(ul,q(e) ) - t't(ru1,e)

then q is the rate of u.H.s.c. at uf.

Definition 1.10: f is said to be Ls.c. uniformly at (ul,u8) it
there are e > 0, n > 0 and a function q : (0,r0) * R* such that for

each uz € N(u8,e) and each u¡ € f-Iuz 0 N(uf,n) we have

r-rN(uz,F) f, N(ur,q(r) ).

Definition 1.11 : f is ô-u.H.s.c. uniforml y at (uf,u!) if there are

e > 0, I ) 0 and a function q such that for ur € N(ul,n)

0 I rtl(u,,q(r)) n [@Ðc N(rur,r).

Theorem 1.5 : f is l.s.c. uniformì y at (uf,ul) iff r is ô-u.H.s.c.

uniformìy at (u1,uå). Besides the rates semi-continuity are the same

on an interval (O,r).

P¡oof : Reference [3], page 13.

In the following section we will develop a consequence of this

theorem.
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SL.2 Relationship Between Various Semi-Continui.ty Concepts

In this sect'ion !ì,e will explore the situations in which various

semi-continuity concepts become equivalent and relate this to the

topologies one can create on 2"2 to extend the concepts.

Theorem 1.6 : Let Ur be a metrizabìe s pace and let Uz be a topoìogical

space with a countable local.basis g(ul) at u|. If I is u.s.c. at uf,

then f is u.H.s.c. (for each metric of U2) at uf.

It may be easily deduced the converse is true provided fuf is closed.

If one does not assumed closed image sets then one loses this simple

correspondence between u.s.c, and u.H.s.c. even on very reasonable

spaces.

Suppose that f is closed valued and not u.s.c. at u|.' This signifies

the existence of an open set Q (Q 
= 

fuf) such that fl,l n Q" is not

empty for all neighbourhoods W at ul. By the Urysohn Theorem, there

is a continuous function d valued in [0,1] that vanishes on fuf and

is equa'l to 1 outside Q. Pick any metric p on U2. Then

p(uz,ür) + ld(uz) - d(ür)l is an equivalent metric for which

N(fuf,1) . Q. This contradicts the u.H.s.c. of f for all metrics

on U2. See reference 16l for characterization theorems of u.H.s.c.

for f which doesn't have closed values. t^le will quote the fol'lowing

characterizati on theorem.

Theorem 1.7 : Let Uz be complete metric and let I be a closed-value

u.H.s.c. (at uf) multi-function. The fol'lowing statements are

equival ent:

(i) r is u.s.c. at u!;
(ii) for each closed K c U2; K n f is u.H.s.c. at uf;
(iii) for each open Q; 0 n r is u.H.s.c. at u|.

Hence the equivalence of u.s.c. and u.H.s,c. can be related to

satisfactory loca'l behaviour of u.s.c. multi-functions (see
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definition 1.6 and 1.7).

The discrepancies between Hausdorff semi-continuity and the pre-

viously defined concepts is seen to arise from the topologies need

to be defined on the space 2"2 (or suitable subspaces) to generate

the continuity concepts. We will denote P(Ur) = 2"2 when con-

venient and

c(Uz) = {S € 2"t lS is compact w.r.t. rz}

K(Ur) = {S € 2"t lS is closed w.r.t. rz}

O(Uz) = {S € 2"t lS is open w.r.t. rz}

t/(Ur) = {S € 2"t lS is convex}.

When necessary we wi I I denote

KV(UL)=K(U.) nr/(U2)

the convex closed subsets of U, etc.

Definition 1.12 z The upper (lower) semi-finite topoìogy on 2"2 ]S

generated by taking as a basis (resp. sub-basis) for the open

collections in 2"2 all collections of the form {E €2"2 le c S}

(resp. {E e z"'lE n S I 0}) with S an open subset of Uz.

A multi-function I is lower (upper) semj-continuous in the sense of

definitions 1.2 and 1.3 iff f js lower (upper) semi-continuous with

the lower (upper) finite topo'logy on 2"2 (see reference l7l).

One can define a finer topology on 2"2 by forming the ioin (or sup),

in the latticeof al'l topoìogies on 2"2, of the upper and lower semi-

finite topologies. The topo'logy is known as the finite topology. A

mapping continuous with respect to this topology is both upper and

lower semi-continuous and hence continuous.

Definition 1.13 : Suppose Uz is a uniform space. Then the upper

(lower) semi-uniform structure on 2"2 is generated by the index set
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A (of the uniform structure on U2) and the neighbourhoods

N(E,o) = {FlF c Vo(E)} (resp. N(E,q) = {FlE c Vo(F)})

for E e2"2, where V.,(.) refers to the uniform structure on U2.

In the case of metric spaces, Vo(E) can be taken to be simpìy tl(E,o).

The corresponding topologies are called the upper (lower) semi-uniform

topologies. The upper (lower) semi-uniform topologies are coarser

(tiner) than the upper (lower) semi-finite topologies. In the case

of a metric we can define upper (lower) Hausdorff semi-continuity

with respect to the corresponding semi-uniform topoìogies. Hausdorff

continuity can be defined with respect to the topoìogy produced by

the uniform structure formed by the join, in the lattice of all

uniform structures on 2"2, of the semi-uniform structures. From

reference Í7) we quote:

Theorem 1.8 : If Uz is a uniform s pace then the upper (lower) semi-

uniform structures on 2"2 coincide with the upper (lower) semi-

finite topoìogies on the subspace C(Ur) of 2"2.

Hence multi functions with compact image sets are very well behaved

as al I def i ni ti ons of semi -cont'i nui ty coi nci de.

Theorem 1.9 : If U 2 is normaì, and if we induce a uniform structure

on Uz by the Stone-Cêch compactification, then the corresponding

unÍform structure on 2"2 agrees with the finite topology.

The other maior prob'lem is that the semi-uniform structure generated

by a metric on U2 generôtes a topology on 2"2 which depends on the

metric used. Fortunateìy, their restrictions to the family of non-

empty compact subsets of U2 is independent of the metric used,hence

depending only on the topolog! 'cz of Uz.

In the case of the uniform structure on the subspace f(Ur) of 2"2,
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for a metric space Uz, orìê can generate the uniform structure with a

metric o. If the metric d2 on U, is bounded, then o can be taken as

the ordinary Hausdorff metric on K(Uz), defined by

o(A,B) = inf{e > 0lA c N(B,e), B c N(A,e)}.

If dz is not bounded, one can replace o by a uniformly equivalent

bounded metric and then use the new metric to generate a Hausdorff

metri c.

l,le have from various sources the following:

Theorem 1.10 : If U2 and U1 are topological spaces and f1,fz rnulti-valued

mappÍngs from U1 to U2 s.t. frur = Izur; Vur € Ur, then we have

(i) 11 ís l.s.c. iff f2 is l.s.c.

If we nou, suppose U2 is metric, then

(ii) f1 is l.H.s.c. iff fz is l.H.s.c.

(iii) t1 is u.H.s.c. iff 12 is u.H.s.c.

(iv) tr is H-continuous iff f2 is H-continuous.

Proof :

(i) See reference t8l, page 366. - Proposition 2.3.

(ii) The proposition is equivalent to; f is l.H.s.c. iff T is

l.H.s.c..

We shall prove this instead.

Suppose f is a l.H.s.c. multi-valued mapping. Then for each uleUt

all e > 0 there exists a nbhd t.l of u! s.t.

ru! _. N(Tur,e); Vur € l.l,which 'impf ies

fu! cTuo ç N(Tur,e) = N(lur,e): Vur € }J
1-

that is,I is l.H.s.c. at ul.

Now suppose f is l.H.s.c. at ul € U1 and T is not l.H.s.c. at uÎ.

Then i e > 0 s.t. v nbhd t^l' of u! (say)



(a)

(b)
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fulfn(rut ,.) f 0 for some ur € l,J'. l^le take

l{' 
= 

{ur lrul 
= 

N(rur, e/2)} a nbhd of ul which exists by v'irtue

of the l.H.s.c. of f at uf.

As Uz is metric (a) implies 3 u! + u, uz É N(fur,e) = N(lur,e)i

u1 € t'l'_ u) e ru!..t

If we choose n sufficiently large so that dr(ui,uz) < e/2 we fínd

ui É N(fur, ¿/2), and u"2 e ruf , which contradicts (b).

(iii ) Once again we môy prove the equivalent statement that f is u.H.s.c

iff I is u.H.s.c. This is done in a similar manner to (ii).

(iv) See reference [9], Lemma 2.5, page 378.

In (iii) we note that in the 'implication, f u.H.s.c. + f u.H.s.c.,

ure use the fact that if Q is a neighbourhood of fuf then Q is a

neighbourhood of ruf in the corresponding upper semi-uniform struc-

ture, i. e.

ruf c N(rul,e) = N(rul,e)

and hence ruf - N(ruÎ,e).

This is not the case in the finite topologies on 2"2. We rea'lly

would like to say that if lul 
= 

a then Iu|. Q. In other words we

would like tul to Ue inside Q in the sense that its boundary points

avoid the boundary of Q.

In reference [6], S. Dolecki and S. Rolewicz have already noted

the importance of the behaviour of certain boundary points of a

multi-function in creating conditions for equ'ivalence of u.H.s.c.

and u.s.c.
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We wÍll not pursuethisline of thought but return to the lattices of

sets 2"2 and its subclasses. It was noted in reference 1ll that

other approaches towards extending the concepts of lower and upper

semi-continuity of ordinary reaì function to functions taking images

in 2"2, were attempted, very early oh, in terms of the lim sups and

lim infs of sets in U2 (tfrat is using the tattice structure of 2"2).

It was also noted that the results of these attempts could not, 'in

general, be interpreted as continuity with respect to some topology

on 2"2. Recently this approach has been revised and a new and rich

are of mathematics has been created with the invention of continuous

lattice theory. This has only occurred over the last twenty years

and provides another method of extending continuity ideas to 2"2

and its sub-lattices.

As it is well-known, one can rewrite the definition 1.1 to state that

f : Ur+R* is lower semi-continuous iff f-l(îc) is open for every

c€Rwhereîc= {a€R*la >c} (ie.îc= (c,þl). Asacsnsequence

f is upper semi-continuous if -f is lower semi-continuous. To extend

this type of defjnition to the lattice of subsets, we have to fjrst
define what we mean by A c B but A I B, that is,define a "strictìy
Iess than" concept.

l'Je could say that A << B if we have A c B. In other words, A avoids

the boundary points of B even via limits. In this case of a compact

Hausdorff space, this is a well-known and useful reìation (even

though forcl-opensets it is reflexive and doesn't impìy A I B). If,
on the other hand, the space is only locally compact, the relation is

not as strong as it looks.

In order to say A is "well inside" we could require that Ã= B and Ã

is compact. This means A avoids the boundary of B even in the

compactification of the space. This relation, moreover, has a purely



T7

lattice theoretic definítion since we can define it in O(Uz) as

meaning that every open cover of B has a finite sub-collection

covering A (at least this works in ,the loca'lìy compact spaces).

l.le can extend this relation from 0(U z) to 2"2 by saying A << B if
there exists C,D € O(Ur) such that A cC << D c B.

Another way of defining a "way below" relation on a linear locaììy

compact normed spaces (see Lenma 2.3) is to saythat A << B if
N(A,e) c B for some e > 0. In this case if we let C = N(4, e/3) and

D = N(A,2e/3) thenAcC<< DcB. IfA is relativelycompact

then so is c for s sufficìent'ly small and both relations coincide.

This relation has a purely lattice theoretic definition and we shall

explore this definition and a few consequences before indicating its
relevance to our discussion of lower (upper) semi-continuity.

Definition 1.14 : Let L be a complete lattice. We may say x is "way

beìow y", in symboìr r.. y, iff for directed subsets D c L (ie. every

finite subset of D has an upper bound in D) the relation y < sup D

always implies the existence of a d € D with x < d. An element satis-

fying x << x is said to be "isolated from below" or compact.

Proposition 1.1 : Tn a compìete lattice L one has the foìlowing

statements holding true for all u, x, !, z €L. l,le rotate V = sup

and Â = inf in L.

(i)
(ii )

x<<yimpliesx<y
u < x << y < z implies u << z (hence our extension of <<

from 0(Ur) to 2"2 is consistent wíth the fact that O(Uz) is

a sub-lattice of 2"2).

x << z and y << z together imply x v y << z.

o << x (o the "smallest" element of L).

(iii)
(iv)
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For a discussion of these impl'ications and more see reference [10].

l.le will write
!x = {u € L : u << x} and îx = {u € L : u >> x}

in analogy to *x = {u € L: u < x}. Combining all the above state-

ments into one we get, for x in a comptete lattice, that the set *x

is an ideal contained in *x which depends monoton'ica1'ly on x

(ie. x < y iff *x S Jy). From reference tlOl we have:

Proposition 1.2 : Let U z be a topologica'l space and let L = 0 (Ur).

(i ) If A,B € L and if there is a quasicompact set Q c U2

(ie. has the Heine-Bo/!.operty) with A c Q c B then A << B.

Suppose Uz is locally quasicompact (ie. every po'int in Uz

has a basis of quasicompact neighbourhoods). Then A << B

'in L implies that there exists a quasicompact Q s.t.

AcQcB.

(ii)

So in a Hausdorff space the relation A - Q c B for a quasicompact Q

is equivalent to Ã-c B and A is compact. Once again from reference

l10l we have the following.

Definition 1.15: A lattice L i s called continuous if L is compìete

and satisfies the axiom of approximation,

x=sup{u€L:u<<x}
=V{u€L:u<<x}=Vjx

forallx€1.

Proposition 1.3 : In a continuous lattice the way below relation

satisfies the strong interpolation property, namely, for all

xrz€L
x<<zandxlzinplies=y
s.t. x<<y<<z xf y.

See reference [10], chapters I and II for the followìng.
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Proposition 1.4 : In a continuous lattice the following conditions

are equivalent,

(i) x << y

(ii) for each directed set D of L the relation y < V D implies

the existence of d € D with x << d.

Example 1.1 : Let LSC(U)=LSC(U,R*) denote the complete lattice

of all lower semi-continuous functions on a topoìogical space u with

values in the extended real numbers R*. For any function f : U + R*

we set Gf = {(u,r) : r < f(u)}. Then f is lower semi-continuous iff
Gf is open in u x R*. we use the notion of x << y i[ R*, a continuous

lattice 'itself,to mean x < y or x = -æ.

Proposition 1.5 : Suppose U is compact space. Then the functions

f,g € LSC(U) satisfy (i )-(v) equivalently.

(i)

(ii)

(iv)

(v)

(iii)

f << g in LSC(u).

There is an open cover {S, : i € J} of U and a famiiy

{r. : i € J} in R* where f(u) < r, << g(u) tor all j e J

and u € S..
J

For each element of u € U there is an open set S in U and

an element y € R* where f(ü) < V << g(u) for all ü e S.

GfcGg inU x R*.

There is a continuous function h € C(U,R*) where for all

u € U we have f(u) < h(u) <. 9(u).

l,Je note in passing that (v) implies that any g € LSC(U) can be

approximated from below by continuous functjons.

It has been known for many years that a l.s.c. function on a regular

space can be written as a supremum of continuous functions. This

sort of approximation problem will arise under the topic of con-

tinuous selection and generalized convexity.
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Coroliaral.5: If U is a compact space, then LSC(U) is a con-

tinuous I attice.

Definition 1.16 : A subset S of a complete lattice L is called Scott

open (ie. Seo(L)) iff it satisfies the conditions

(i) S=tS and

(ii) supD€S implies D n S i 6 for all directed sets D c L.

We note that "directed" may be replaced by "ideals" in (ii).

0f course the complement of a Scott open set is Scott closed which is

equivalent to being a lower set (je. S = *S) closed under directed

sups. Interestingìy enough lx = {x} (closure wìth respect to the

Scott topology o(t) on L) for all x e L.

Proposition 1.6 : Let L be a continuous lattice. Then

(i) each point x € L has a o(L) neighbourhood basis consisting

of sets îu with u << x ;

(ii) with respect to the Scott topo'logy we have int îx = îx;
(iii) w'ith respect to o(L), we have for any subset S c L

ints=U{îu:îucS}.

We note that a function f : Ur + R* from a topological space into the

extended set of real numbers is lower semi-continuous iff it is

continuous with respect to the Scott topoìogy on R*.

Definition 1.17 : For f taking a complete lattice U into a complete

lattice T, the following are equivalent to Scott continuity of

f : U+-T:

(i) f is continuous with respect to the Scott topology, that

is f-r(S) e o(u) for all S e o(T);

(i:¡ f(VD) = Vf(D), for aìl directed sets D of U;

(i'i i ) If we def i ne I im. *, - tupi i nf, 
", ^, we have

f(l'im x, ) < lim f(x. )for any net x. in U.
J-]J
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If U and T are continuous lattices, then each of the above is

equivalent to

(iv) f (x) = V{f (w): w << x} ;

(v) y << f(x) iff for some w << x one has y << f(w).

lrJe note that Scott continuous functions are aìways monotone (not

necessari'ly vice-versa). In'the folìowing we will use the notation:

r(L) = (L,o(L)),an associated topologicaì space,where L is a compìete

lattice. For U a Ts-space we can define a partial ordering for u,

üeubyletting
u < u iff u € S implies u € S for all open sets S.

This is called the specialjzation order and we may associate with U

the poset (U,<) = CI U. As we have seen for a complete lattìce

f-¿IL=1.

Definition 1.18 : For two To-s paces Ur and Uz let [Ur,Uz] denote the

poset defined on TOP(Ur,Ur) (t¡re continuous functions from Ur to Uz)

by the pointwise order induced by Q U2.

Clear'ly IIS, IT] = [S + T] is the complete lattice of Scott-continuous

functions from S to T equipped with pointwise orderìng induced by the

order T.

Theorem 1.11 : Let U be a s pace and L a compìete non-sing'leton

lattice. Then the following are equivalent:

(i ) [U, xL] 'is a continuous lattice.

(ii) Both 0(U) and L are continuous lattices.

l,'le will make use of the follow'ing canonical pair of mutually inverse

biiections given by the formulae

q,(t)(x)(v) = f(x,y)

o (g ) (x,y) = g (x) (y)
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v'Jhere

(1" )* LxxY

Proposition 1.7 : Let U2 be Tq then the followi ng statements are

equi va ì ent:

(i) 0(Ur) is a continuous lattice.

(ii) For all continuous f : Ur + I O(Uz) the graph

Gf = {(ur,uz) : uz € f(ut)i 'is open in Ur x U.z.

(jii) For al'l spaces U and all continuous lattices L, the

canon'ical pair Q,rf induced by restriction order isomorph'isms

lUr,IlU2,ILll ? IUr x Uz, xll

As one can see, the Scott continuous functions from Ur to 0(U2) are

associated with functions with open graphs. Upper semi-continuous

functions are related to multi-valued mappings with closed graphs. llle

know that in a reguìar space every closed valued u.s.c. multi-

function has a closed graph. Since the complementary multi-function

has an open graph,we have when U2'is regular and O(Uz) a continuous

I atti ce:

{f" : t is u.s.c. and I = f] = {I: f is i.s.c: open}

c Ur, x 0(Ur)1.

For the case of U, a compact Hausdorff space we already know that

0(Ur) forms a continuous lattice. l,le also know that the class ofcom-

pact valued u.s.c. multi-functions are exactly those with closed

graphs in this case.

Proposition 1.8 : If Uz is a compact Hausdorff space, then IUr,I O(Uz)] is

equiva'lent to the cìass of open set valued i.s.c. multi-functions.

,0+
<-
til
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I : Ur * O(Uz) is open valued i.s.c,

fo: Ur * K(Uz) is closed valued u.s.c.

{u, : f"u, c A} is open if A is open and fu1 opên.

{u, : fu1. A'} is open; A and rur open.

Now, as U2 is Hausdorff cqnpact we have

ifffur€î4".

This follows from the fact that ru1 is open A" is closed and hence

there exists an open set C s.t. fur ?.C = A" with fur =C-; as Uz is

compact so is ö hence fur >> 4",. So

I : Ur * O(Uz) is open valued and is i.s.c.

iff {ur : fu1 >> B} is open for B closed. l^Je will comp'lete the proof

by showing

{ut : fu1 >> B} is open for B closed

iff {ur : fur >> C} is oPen for C open.

Suppose is open. ThenC = î B, where the B. are closed. Hence, if we
i eI

have {u1 : fur >> B. } open for i € I, then

fu1 =. A"

U {ur : fur >> B. } = {ur : fu1 >> NB Ì
i eI

= {ur : fur € î C} is open for open C..

Now suppose {ur : fur >> C} is open for open C and B is arbitrary

closed. We have

{ur : fu1 € îB} = {ur : ru1 € î c : for some open set C = B}

= U {u, : fu1 € îC} whi ch 'is open.
c>B

c open

We note that the compact Hausdorff property was used to show
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(ii)

(iii )
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ru1 c A" iff fur € î 4". In a metric space rur > A" iff
Iu1 =N(4",e)for some e > 0. One wonders whether the way below

relation defined by A >> B iff A = N(B,e)for some e > 0, which

coincides with our previous definition on compact spaces, might be

a tool for elucidating the differences between H-u.s.c. and u.s.c.

in general. l.le will not pursue this line of thought here but finish

off this section with the union and intersection properties of semi-

conti nuous mul ti -functions.

Theorem t.l2 :

The union of two u.s.c. mappings f1 U f ,; fr, f 2: U, + f((Ur)

is u.s.c.

The union of two l.s.c. functions at ul is 1.s.c. at uf.

More generally, if each r t € T (T arbitrary) 'is l.s.c. at

ul so 'is {[.
If U2 is normal lr, f z : U1 + K(Ur) u.s.c. at uf then f rflfz is
u.s.c. at uf. If Uz'is compact and'if | ìs u.s.c. t € T

(arbitrary) then n r^ is u.s.c.tt eT

(Proofs may be found in reference Í21.)

It is noted in reference tll that the intersect'ion property for l.s.c.
multi-functions does not hold. l,le may however deduce:

Corollary 1.12:

The intersection of two i.s.c. functions at ul is i.s.c. at uÎ.

Proof : Suppose f1, f2 ôFê i.s.c. at ul. Thenfi and ri are u.s.c. at

u! and r'= ri u r"z ls u.s.c. at ufl. Hence f = (ri u ri)" = fr fl fz
is i.s.c. at uf . rt

I.le note of course that f = fr fi f, 'is l.s.c. at ul.
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PropositÍon 1.9 : If Uz is a locally quasicompact space, then the inter-

section of two Scott continuous functions is Scott continuous.

Proof : f is Scott continuous iff {ur : li ur €îA} is open for open A .

Hence we deduce that

n
i=lt2

{u, : f,ur € îA} = {ur : f. ur € 1AÌn
i = l,2

is an open set by noting that

frur >> A iff I Qr quasicompact s.t. fur = Qr = ¡

and simi'larly f 2u1 >> A '¡ff 3 Q2 quasicompact with lzur-Qz=A. Hence

(rt n fz)ur >Qr fl Q, =A where Q n Qz is quasicompact. E

Proposition 1.10 : Suppose 0(Uz) is a continuous lattice and

1 € [Ur, x 0(U r)],i € I arbitrary then

u r € [Ur, r 0(Ur)].
i eI

Proof: In a continuous lattice the graph G. of fi is an open set in

Ur x Uz.

Now Gl = {(ur,uz) € Ur ¡ Uz : uz Ê Iiur}

= {(ur,uz) € U1 xu, : u2 € rlut}

is closed set in U1 x Uz

and hence fi is a closed mapping. By reference t1l page L11 we have

r" n f:
IieI

is closed mapping. Hence

f-(n
i eI

=[J
i €I

f"
I

c fi

is open and therefore Scott continuous. fl
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Interestingly if we combine proposi.ti.ons 1.1.0 and 1.8 we can deduce

the second statement of Theorem L.LZ (iíi). One can see how u.s.c.

mappings fit into this picture but how do J.s.c. mappings?

Proposition 1.11 : Su ppose I : t -+ 2o2 is t.H.s.c. at Uf . Then

Ve>0

N(r(ur),e) is i.s.c. at uf.

Proof : Let F be a closed set in U2 and let F c N(Iul,r). As f is

closed3ô>0s,t.

N(F,ô) c N(ruf ,e),

in other words

F c N(ruÎ, ¿ - 6/2), for ô sufficiently small.

By the l.H.s.c. of r at ul we have v ã > 0 = õ(õ) > 0 s.t.

r(ul) c N(rur,ã), v ur e N(uf'6(t)).

If we choose ê = õ/2 > 0,then ¡ õ = õ(olz) > 0 s.t.

FcNlruf, e-6/2)

c. N(N(rur, 6/2), e - 6/2)

= N(fu1,e)

v u1 € N(ul, 6) ,

which is the definition of i.s.c.

As we have seen,if lur has compact image sets then t,',e may replace

I -ll.s.c. by 1.s.c.

tr
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It has been noted by many authors that one does not know in general

whether the intersecti.on of two l.s.c. multi-valued mappings I
l s.c. He can however, using the above, approximate l.s.c. multi-

functions with Scott continuous multi-functions. This class is

closed under intersection.

lde have observed that when tire image space ìs compact, a continuous

multi-function I : Ur * C(Uz), can be considered as a single valued

mapp'ing taking images in the metric spaceC(Ur) (as long as Uz js

metric). If Ur'is compact tiris impìies that f js uniformly continuous

and hence f is both uniformly u.H.s.c. and l.H.s.c. We compìete

this sect'ion by noting some converse statements.

Propos'ition 1.12 : Suppose f is u.H.s.c. uni ormly for ur € N(ul,n)

for some ¡ > 0 and Diam f(ul) < -. Then r is ô-u-H.s.c' un'iformly at

(uf ,u8), v ul e r(ul).

Proof : For V r € (0,r0), 
= 

q(r) t 0 s.t. V u1 € N(uÎ,n) we have

r(N(u,,q(r) )) . N(r(ul),r) .

Let

uå e r(ul).

Then

r(N(u',q(r) )) n N(u3,t) 
=. 

N(r(ul) 'r) .

All we need to show to satisfy the definition 1.11 js that 3 e > 0

s.t.

r(N (ur ,q(r))) n tl(u!,e) I Pr.

We choose e suffic'iently large to do this.

Since u1 €N(uÎ,n) we have
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r(u,) c N(r(uf),r,)

for some rr > 0. if not then simply let our n get smaller as to

ensure this is so as f is u.H.s.c. at u|. Thus

r(ru(ur ,q(r) ))g f'¡(r(ur ),r)
c N(r(ul), rr+r)

so we let e = F0 * 11 + Diam f(ul),for r € (0,r0).

Proposition 1.13 : Let us su ppose f is u.H.s.c. at u and has compact

image sets. Then

r is ô-u.H.s.c. uniformìy at (uf,u8),v u! e r(ul)

iff f is u.H.s.c. uniformly for ur € N(uÎ,n) for some ¡ > 0.

Proof : l,le need onìy

propos i ti on .

prove necessity in vjew of the previous

NowvuSer(uf),=.>0,n>0 q: (0,r0) *R+s.t. vur€ t"l(ul,n)
we have

(a) r(N(ur,q(r)) nH(u8,.)=,N(r(u,),r) .

f has compact image sets and {N(uz,e(uz))lu, e f(ui)} is a

cover of r(uf),v e(u2) > 0. l^le let e(uz) be an e > 0 which

satisfies (a) at uz e r(uf). Then¡ a finite sub cover i ,

{u', : i=l,..,N}, l,l = Ü N(u'2,r, )? r(uf ); e, = e(u'r).
i=1

Now we let ô > 0 be s.t.

l^l = r(ur); v u1 € N(u|,0),.

This exists as W is a ne'ighbourhood of f (ul) and f is u.H.s.c. at

u l. Let

n = min{ô,n.: i=1,..,N}

q(r) = min{qfr) : 'i=1,..,N} : (0,r0) * R*

where rs = min{ri, : i=l,..,N} > 0 and

i .. -
1 , g, , r's satisfy (a) for u'z e r(uf). Then

¡
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r(N(u',q(r)) n ru(u!,e, )

c r(N(ur,Çi (r))) n N(u3,r, )

c N(r(ut),r),v uI € N(ul,o) c N(uf,n ); i = 1, .., N

(we may choose ô as small as we f ike). Further,

r(N(u,),q(r))) = r(ru(u,,q(r))) n r,J

N
u tr(N(ut,q(r))) n N(u'2,e. )

i=r

c ru(r(ur ),r),y u, e N(uÎ,0).

Proposition 1.14 : Su ppose f is ô-u.H.s.c. uniformly at (uf,u8)

v uå e r(uf) and f(.) has compact image sets. Then f js u.H.s.c. at ul

Proof: Let e(uz) : u2 € r(ul) be an e which satisfies the definition

of ô-u.H.s.c. - (a).

I.le construct a cover of f(ul) {N(u'2,e. ) : i=],..,N} as in the previous

propos'ition and define t, g, Fs âs previously. Then as ul e ru(uÎ,n),
we have

r(N(ul,q(r))) n N(u'2,e. )

c N(r(uf),r).

Hence

r(N(ul,q(r))) 
= 

r(n(u1,q, (r))) n ll

r(ru(ul,c, (r)) n N(u'2,e. )

c n (r(ul,r) ).

Proposition 1.15: Su ppose f has compact image sets. Then f is ô-u.H.s.c.

uniformly at (u1,ul),v ul e r(uf)

iff I is u.ll.s.c. uniformly for ur € N(ul,n) for some ¡ > 0.

N

U

!
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Proof: This follows from the last two propositions noting that we

used only the u.H.s.c. of f in the necessity of proposition 1.13. tr

Proposition 1.16 : If f has compact image sets, then f is u.H.s.c.

uniformìy for ur € N(ul,n) for some ¡ > 0

iff r is Ls.c. uniformly at (uÎ,u!),v u9 e r(uf).

Proof : This follows from Theorem 1.15 and Proposìtion 1.15. ú

Proposìtion L.L7 z Suppose f is unìfonnly u.H.s.c. and f has compact

image sets and r : Ur * C(Ur); Ur compact. Then

r is l.s.c. uniformly at (uf,ug) v u8 e r(ul); v ul e ut

iff f is l.H.s.c. at ul e Ur uniform'ly with respect to uf .

Proof : Sufficiency : = 
q(r) : (0,r0) * R* s.t.

f-I (N(ur,r)) = t',t(ut'q(r) )

V ur € Uri v uz € f(u1) or v u1 € r-r(ur).

Any e, n will do to sat'isfy the definition of l.s.c. uniformly at

uz € f(ur),V ur € ur.

Necessity : Let {N(uz,e(uz)) | uz € r(ur)} be a cover of f(u1) where

e(ur) satisfies the definit'ion of l.s.c. uniformly at (ur ru2). There

exi sts a fì ni te subcover {u'r; i =1 , . . ,N} .

Let ñ = min {n.: i=l,...,N},

õ(r) = min {q (r) : 'i=1,. . ,N},

Fo = m'in {r'o : i=1,...rN}.

Then v u2 € N(r(ut),e) c N(u'2,e. ) (for some e > 0 where e. = e(u'r) )

and v ür € f-t(ur) n N(ut,n)

o.n<ñ
we have

r-'(N(ur,r) ) 
=,. 

N(ut ,q(r) ),

I

N

U

0 < r < Fs.

(a)
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is compact and {N(ur,n) : u1 € Ut} is a cover of U1,v ¡

be sufficiently small so that

>0

r(u-r) c N(r(ut),r); VU1 € N(ur,nt) v u1 € U1,

which is possible to find as I is uniformly u.H.s.c.

l^Je let nz(ur) = m'in{nr,n(ur)} where ¡(ur) satisfies (a) at u1. Now as

{N(ur,n2(ur)) : ur € Ur} covers U1,3 a finite subcover {u'r: i=1,..,M}.

Let

0 < q(r) = min{õ. (r) : i=l,. . . ,M} ,

0 < rs = min{Ëe : i=1,...,M} ,

where õ, (r), Ëo satisfy (a) at u'r. Then if

ür€r-I(ur)nn(ui,n)

for uz € N(r(u"),e) , we have

r(ür) s. N(r(ut,),t) i=l ,. . ,M.)

IfteUr,then=is.t.

Ur e N(u'r ,n) .

As r(üt) . n(r(u'r),e) we have

r(ur) 
=

N(f (u'r ),e) .

Not'ing that v ü, e r-I (ur) n ru(utr,r)

v u2 € ru(r(u'r),e)

we have r-1 (N(ur,r) ) 
=. 

N(ür,9(r) ) .

We can fi nal ly say

1

IvI

v
(b)

f-t (N(ur,r) = N(ur,q(r))
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v ûr € f-r(N(r(u'r),s)) n ru(u'r,n) i=1,...,M. That is,

€ tr-1 (N(r(uì),e)) n N(u'r,n)

N(r(u"),e)) n N(u'r,n)
I

= r-1 (r( u, ¡ ¡ n Ur (using (b) )

= Ur fl Ur = U1

Hence Y ü, e Ur we have

ü, e N(ui,n) for some i

and v uz € r(ü,) . N(r(ui),e) we have

r-r(N(uz,r)) . ¡t(ür,q(r)) '

ì.e. uniform l.H.s.c.

Theorem 1.13 : Let f : Ur + C(Ur) and Ur be compact.

If r is uniformly u.H.s.c. on U1 then I is uniform'ly l.H.s.c. on

the interior of U1.

Proof: This is a direct consequence of the Propositions 1.16 and

L.t7 .

Corollary 1.13 : Suppose f : Ur + C(Uz) and U ìs compact.

If f is uniform'ly u.H.s.c. on Ur then I is Hausdorffcontinuouson Ur.

Proof: We either use Theorem 1.13 and the uniform'ity or simpìy

note that

N(ur,q(r)) = {ü' : ur € t{(ü,q(r))}.

Hence if v ur € N(ür,g(r)), q(r) independent of ur, we have

ü
Ùt
U

=1

M

U

M

= f-1( u
i=1

ru(r(ür),r) 
= 

r(ur),
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and it follows

v ü, e N(ur,q(r)) = {ürr u1 € N(ür,.9(r))} it must be the case that

N(r(ür,r) ? r(u'). u

So we see Dolecki's theorem on ô-u.H.s.c. and uniform l.s.c. can be

related back to our initial conment about the uniform continuity of

Hausdorff cont'inuous functions. In a sense it is a localised version

of a converse statement.

We fin'ish by quoting a few theorems on composition of multi-valued

mappi ngs.

Theorem 1.14: If f is u.s.c. (resp. l.s.c.) at ul and A is u-s.c.

(l.s.c. ) at each point 'in f (ur ),then

Âf(ur) = u{A(uz) : u, € fur}

is u.s.c. (l.s.c.) at uf .

Corollary 1. 14:. If f is u.s.c. (resp. l.s.c.) at ul and r > 0 then

ru(r(ur),r) is u.s.c. (l.s.c.) at u1.

Proof : Reference t4l page 58, theorem 2. 5 . The corol'l ary f o'l I ows

by l ett'ing

n(uz) = {üz : d(üz,uz) < r}.

Theorem 1.15 : If f is l.s.c. at (uf,u9) at rate q(.) and Á. is l.s.c.

at (ug,u3) at rate p('), then Âf (as above) is l-s.c. at rate qop.

Theorem 1.16 : Let f be u.H.s.c. at ul at a rate q and let Â be

u.H.s.c. on fufat a rate p. Then Âf js u.s.c. at ul at a rate qop.

Proofs: Reference t4l page 58, theorsns 2.6 and 2.7. tr

n
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A multi-valued mapping is said to be linearly continuous if it is

upper and lower semi-continuous at a linear rate.

For a multi-valued mapping f(.) : U1 + K(ur), the existence of a

K > 0 s.t.

dr(ur,r(üt)) < r¿r(ur,ür)

for v uz € t(ur) and ur, ür € U,is equivalent to r(.) being uniformly

linearìy continuous.

Finally we note that for closed set valued mappings we can define the

fol I owing

Definition 1.19:

(a) r(.) is closed at ü, ltt v{uT} c Ur, ui * ü1 and

v ui e r(ui) s.t. ui * ür,we have ü, e r(ür).

(b) r(.) is open at ür iff for {ui}. Urt ur * ür ônd üz € r(ür)

'implies 
={ui} c Uz s.t. ui e r(uÏ) and ui * ü2.

A number of theorems are related to the continuity of "margina'l'

functions and the associated set valued mapp'ings. These will be

used in Chapters 3 and 4, so we give a brief survey here.

Theoron 1.17 : Assume Uz is metrizable and ccmplete and let Ur fulfill
the first countability axiom.

Let f be u.s.c. at ur

that 'if

f: Uz+R is l.s.c. on Ks, then

m(ur) = inf{f(uz) : u, € f(ut)}

is l.s.c. at ur.

There is a compact subset Ke of r(ür) such

Proof : Reference t6l Theorem 10.
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Proof : Reference I33l theorem 6.

Theorem 1.21 : Suppose Ur and Uz ôt"ê complete metric spaces. If
f : Ur * P(Uz) is continuous at ür and if f I U1 x Uz + R is contin-

uous on ür x f(ür), then o(ur) is closed at ür.

Proof : Reference t33l theorem 8.

Defìnition 1.20: Ama pping f : Ur * P(Uz) is said to be uniformìy

compact near ür iff there is a neighbourhood N of ür s.t. the

closure of U{f(ur) : u1 € N} is compact.

Theorem 1.22 ; Su ppose U1 and Uz are complete metric and

f : Ur * P(Uz) is continuous at ür, f is continuous on ür xr(ür),

o(.) is non-empty and uniformìy compact near ü1. Then it cr(üt) is

single valued it is also continuous at ür.

Proof : Reference t331 corollary 8.1.

tr

tr
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CHAPTER II

lattice structure of "classical" convexity has been noted and

loited by many authors. Convex functions can be generated by

ing the supremum of a class of affine functions. In view of

Hahn-Banach theorem this class consists of the proper, lower

j-continuous convex functions, t
Tþ çrÄ'-f S e(elel¡ç.'¿ah

vt+<l< Sl,<C<-$ e(-< ¿ëwl{

he functi on
j c-or*þcct

+- and the functi on
¡efr ìø z¿ff+rì v€

{a*A@. t,Je begin Chapter Two by showing that

the weakly compact convex sets in a reflexive Banach space can be

generated by taking arb'itrary intersections of closed balls. The

correspond'ing class of functions, generated by the class of mappings

0" = {r¡.,: rf(uz) = cllur-ürll - a : i, e Uzi a € R}.

by taking arb'itrary supremums, we call strongl, .onu.*Tnd denote by

sc" (ur).

l,Je pursue the line of reasoning of S. Dolecki and S. Kureyusz (reference

tl1l) and consider convexity as a generaì lattice property. We say

f(.) is o-convex, for some very general class of mappings, if

f(uz) = sup{rf(uz) : ú € O' c O},

for some sub-collect'ion O' of Õ. ['le show that as long as U2 is compact

and such a class 0 (a supremum complete lattice) cons'ists of l.s.c.

functions V(.) : Uz + R then we can cons'ider the convex

functions to be a cont'inuous lattice.

For any given mapping h(.) : U, -> R we can generate a multi.-function

r(b) = {u, : h(uz) < b} : R + P(Ur).

We show that the strongly convex functions generate such multì-functjons

f(.) : B + KV(uz),

¿F txußr1."""þb -Ìd-r's . <u^< ùs -.¡'.o! e(.¡'ç-|.e"'e fut < J,'flQr*"ó ç1?¡'-e.
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which possess a very strong type of linear continuity. Conditions for

various types of continuity of such multi-valued mappings have been

prev'iousìy derived. Quasi-convex functions (denoted QC(Ur)) possess

an ability to generate u.s.c. multi-functions. Both strjctly-convex

(denoted SQC(U2)) and pseudo-convex (denoted PC(Ur)) functions possess

an abiìity to generate such multi-functions which are continuous.

Tak'ing care of continuity assumptions we can obtajn the inclusion

Sc" (Ur) . PC(Ur) . SQ(Uz) 
= 

Qc(ur).

Corresponding to these classes of functions we have various classes

of multi-functions possessing various degrees of contÍnu'ity.

The classes SC"(U2) and QC(Ur) are sup-comp'lete but the classes Pc(Uz)

and SQ(U2) are not. We can generate any convex, weakly compact set

by taking level sets of any of the functions from these classes

(i.e.l(h)). Since the class SC"(Uz) was arrived at by using the

separatìon properties of affine functions, 'it is conjectured that an

equivalent expression of this property would be the ability of SQ(Uz)

(or PC(Uz)) to generate QC(Uz), by taking arbitrary supremums. This

is in fact shown to be achievable, later in Chapter Five. In order

to show this we need to consider the following.

Suppose we are given an u.s.c. multi-function rr(.) .0.s.c., approx'imating

r(.) an u.s.c. multi-function, both with convex image sets, for which

(i) re(.), r(.) : ur + KU(uz), and

(ii) rr(ur) _= r(ur) for all ur € ur.

When we can "squeeze" a continuous multi-function inbetween these two

multi-functions. That is, does there exist a cont'inuous and convex

ìmaged rÐ(.) : U1 + KV(U2) s.t.

f.(ur) _=- f-(ur) ?_ r(ut) for all u1 € U1.
eÇ
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l,le show that if Ur is a compact subset of a metric space and U, is a

weakly compact subset of a reflexive Banach space, in whjch the weakly

cotnpact subsets are "locally F-normed", we can in fact show the

existence of f (.) s.t.e'

fr((ur ),e) = T.(ur ) = r(ur.) for al I u1 € u1 .

In fact this can be achieved for a mapping f(ur,uz) : Ur x Uz + R s.t.

f(ur, .) is strongìy convex SCr(Uz). We use the continuous lattice

structure of SCr(Ur) in order to show this.

Combin'ing these results with the work of A. Cellina (reference t14l)

we can obtain various statements about our abi'lity to approximate

u.s.c. multj-functions. Thjs work has reìevance to some aspects of

fixed po'int theory whichare explored jn the following chapter.

92.I Generalized Convexity

We cons'ider the folìowing characterization of classical convexity.

Let Q stand for the set of affine functjons on U2. Then each convex

function f on Uz câh be obtained by

(a) taking f(ur) = sup{iþ(uz) : rll € O' 
= 

0} for some sub-collection Õ'

of affine functions.

Thìs formulation of convexity has been explored by many authors.

l,le will pursue the line of reasoning of S. Dolecki and

S. Kurcyusz (reference t1ll) in their paper on o convexity

in which they generalize the convexity generating c'lass 0.

We also have the equ'ivalent statement.

A subset A c Uz is called convex (or O-convex) whenever

A = nr¡ee,{u2 € U2 : ú(uz) < a}, that is:
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(b ) A = fl,¡€o, o" ({, )"

where o"(,i,) = {u2 € U, : ú(uz) > a},0' c o and a € R.

We may generalise convexity by simply allowing 0 to be a famiìy of

arbitrary real functions which satisfy 0 + c = {V+c : ql € Õ} = Q. In

this situation f is o-convex if (a) holds (if o'= 0 then f = --) and

A is o-convex if (b) holds (if o = O then A = U2).

When O is the set of affine functions on Uz w€ can deduce that O-con-

vex functions are just those for which

Àf(uz) + (1-I)f(ür) > f(Àur+ (1-À)ür).

Let r(0) be the coarsest topology on U2 s.t. the Õ-convex sets

are cl osed . The fol i ow'ing set 'i s cl osed:

{u, : f(uz) < a} = {uz : sup,lr(ur) < a; qr € o'}

oúeo, {u, : ü(uz) < a}'

That is,

o"(f) = ,,f,aa,ou(,1,), is closed if

f is O-convex.. Thus f is l.s.c. with respect to the topoìogy

r(0).

Since u2 may be viewed as a finite real function on the setÕby

noti ng

ur(ú)=ü(uz) ; vr€tJr,

we may say that a functìon g : Õ + R* is U, convex whenever

g(il,) = sup{rl(uz) : u2 € Ui c Ur}.
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Anaìogous'ly we may defìnê U2-convex subsets of 0 and so on. The roìes

of U2 and Q are fully symmetric.

In the case when Õ consists of the affine functions, jn view of the

Hahn-Banach theorem, the 0-convex functions are exactly those which

are convex, proper, lower semi-continuous functions, the function

*co and the function -*. The Q-convex sets are those which are closed-

convex with respect to t(o) tne weak topology. The topoìogical dual

Uä is a ìayer of o (a subset of those which vanìsh at zero). The U2-

convex sets areinthe case of U2 reflexìve, weakly closed as t(Ur)

is the weak * topo'logy which cojncides with the weak topology.

There may be more than one class Õ which generate identical convex

funct'ions. A class J which generates the O-convex functions is

called a basis. Let us suppose we are deal'ing with a reflex'ive

Banach space U2. From reference lI2l page 36, we have

Definition2.l:As pace is called smooth if there is at most one

supporting plane through every boundary point of the closed unit

ball.

Definition 2.2: A Banach space is called strictly convex if any non-

identicalìy zero continuous linear functional takes a maximum value

on the closed unit ball at one point.

In a reflexive space we always have a maxjmum in this case as the

closed unit ball is weak'ly compact (which is equivalent to being

weak'ly sequenti a1 ìy compact ) .

Theorem 2.1 : Let U 2 be a reflexive Banach space. Then there exists

an equivalent norm on Uz, such that under the new norm Uz and Uä are

strictly convex.

Proof : See reference ll2l, page 36.
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Theorem 2.2 z A reflexive no rmed space is smooth (strictly convex)

iff its dual is strictly convex (smooth).

Proof : reference [121, page 36.

Corollarv 2.2 : If U z is a reflexive Banach space,then there exists an

equivalent norm under which U2 is simultaneously smooth and stric¡y
convex.

Proof : This is a consequence of Theorems Z.I and Z.Z.

If we let fl.ll be this norm we may define the norm one duality mapping

on U2 for each u2 € U2 by

J(u2) = {uä € Ñ* (0,1) 
= 

Uä.. uä, uz ) = lluzll }

where ( ., . > is the duality pairing.

From corollary 2.2 we know that J(ur) is sing'le-vaìued for all non

zero uz and in each case

lim lluz + tû - ll u = <J(uz),ûz>t+0

(ie. grad llu2ll = J(ur)),where J(.) is continuous from (U2,ll.ll ) into

U! with the weak topology.

Theorem 2.3 : Suppose Uz is a reflexive Banach space, Ct t' Q is a

closed bounded convex set of Ur, C, is a closed convex set of U2 s.t.

CrflCz=Q.

Thenfü2andc>0s.t.

E

Cr c K = {uz: lluz - üzll < c}
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Suppose our theorem is false. Then v n,r ûi eCr S.t. îf" ç N(ui,n),

that is V n, = fr € N"(ui,n) s.t. ûi ect. Now as 01 is weakìy

sequentially compact,S a convergent sub-sequence of ui converging to

ûr. Hence after renumbering we can say ûi - û, € Cr. As

N(ui,n) = N(ui,m) for n > m

we have

ü e l,t" (ui,n) . N" (u!,m) for n > m

and

ûï*ûr€N"(ui,m):vm.

Therefore

ûz € ñ N"(uÏ,m)
m=1

( ü N (ui,m))"
m-r

H"

and hence I ûz € Cr s.t. ûz É H,which contradicts our choice of H.

l^le now fjnish by proving the statement (S). As

N(ui,n) -H Vn,wehave

æ
U N(ui,n) - H"

To prove the reverse inequaìity we note that L is the tangent plane

to N(ui,n) at üz,v n. Now as

I'l(uz,n) = {uz : lluz - (n u'.- + (f-n)ür)il < n}

In

and

= {uz r }l|ur-(nut, + (i-n)ür)ll < 1}
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(1-n)ü,)ilu,srad #tu, (n

= J(üz u"(n

J(uå - üz),

by 1 etti ng

+ (1-n)ü') ) /n)

U2

.J(dr-ür),ür' b t

we have

L {u, : < J(uå -uz) 
,uz> b)

{u,' r(uå üz),uz> <bÌ.

and

AS

-> Uz

H

L t'n tl r

;tuz - UzJ

Now J(.) is demi-continuous (ie. if üi + u2 then J(üi) - J(uz)).

Let us suppose üi e o¿¿ N(uä,n) and rrü!-¡"¡¡ ( K: v n. Then

( uä)

' L,-n- ñ(u,
L'-- ;tuz

. t,oi - ü,rt < |r * o

ôS ft + ær nOting

= ll (üz

ll (uz

uå)

uå)

uå) ui) -tu:-ü,)rr

0 < ll (üz L,-n- {ll"n'. ui)il

n
Uz + üz - ûz)tt

n
n (tz uå) (ü' Uz
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Now

^n 1, t -n \ r I - rUz=ñlUz-Uz)-(Uz-UzJ

is the "direction" in which üi lies with respect to ü2, that is

^n

ü!=[r+g'u2 r-o'-ilr,llt (c' = -n lûi ll)'

Since llüi-ürll . r we must have 0 . lC" | < K. we rrave [û]ll + 0

as n -r - and by weak sequentia'l compactness there must exist a

subsequence of both {üî} and {ûîl s.t. both ü} * u2 ôhd -jJ-* ûr,
ll ui ll

As a consequence the following limit exists;

where ît, = uz-uz 
.

llu'-ü' ll

<J(ul-üz), ffi,
ll (uå-¡,)+t(

lim
n+oo

lim lim
¡-+æ f,+Q

Ëilll-'tl,å-ü,ll
t

(uå-ü,t.|ûi (ÀJ - F,å-ü,
ll u, ll_ lim

_ I im tfrtttrl-ul) ll- llrl-ü,lln* 
ll,rxll

I im 1.-1 _ g.n* llüll

Hence we have
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n

= l<J(ul-ü.),cËlil

= IC" I l.¿(ut -ûr¡ -u¿--t' llûili,

= ( .J(uà-ür), èt * o, as ¡ * ær

ilûilt

that is

tJe Iet b

we have,

-' L -n -t I<,J(uà-Uz)ru2) + <J(u2-u2),uz> aS n + æ.

¿(*tui-¡i),üi, and note that since, (urr-ürl = *tui-üz)n

b,, * b = <J(rlr-üz),üz> = b.

The hal f space at üi

t" (ui) = {uz : <Jt}trl - uä)),uz> < bn} ,

hastheproperty that if u2 € H,then uz € Tn(ui) for n suffjcient'ly

large. If u2 € H,then <J(uå - ür),uz> < b, Since we have a strict
inequafity,3 ô > 0 s.t.

<J(uå - ür),uz> * ô < b

For n sufficient'ly 'large we have b - å <b and
n

.r(*(üî - üî)),u,'

< l<Jtfirl -üi) -J(ü', -uz),uz'>l +<J(r', -rz),uz>

<.J(ut, - ur):uz) * å. o - å.0'',

using once agaìn the demi-continu'ity of J(.).
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Now Íf we suppose ü N(ui,n) á H,then 3 u2 € H s.t.

uz É N(ui,n);v n

t,le arrive at a contradiction as follows. l-et üi be the closest

point in N(ui,n) to uz, i.e

d(uz,N(u},n)) = llu, - üill

Th'is po'int is unique as N(ui,n) is strictly convex closed and

n= 1

llüi - ü,ll

< llu, - ü?ll * llü, - u,ll

we define for c e R
+

0 = {qr : V(ur) = clluz - úzll - a; ü, € Uzi a € R}

= d(u,t'l(ui,n)) + ll ü. - u"ll

< d(ur,N(utr,1) ) + llü, - ur ll

< llr, - r'rll + llüz - urll

=K<-

Since u, dfn(ûä) v n,from the above we have uz Ê H,which is a

contrad'iction.

An imediate consequence of this Theorem is that the weakly compact

convex sets in a reflexive Banach space are generated by the class

Q = {,1., : ú(ur) = ll uz - úzll - at üz € Uzl a € R}

tr

c

As one may have noted by now, convexity in this context has a definite

lattice structure. we can for a general class o define the convex

huìl of a set A to be the intersection of all convex sets containing

A- In terms of o-convex functions, the convex hull of a function f
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is the supremum of all Õ-convex functions majorized by f. This can

be rejnterpreted according to the basis, to be the Supremum of all

the members of the basis O (say) wh'ich f maiorizes. Comespondingly

when we díscuss ord'inary convexity this corresponds to the fact that

the convex hull of A is equivalent to the jntersection of all half

spaces contain'ing A. The above theorem indicates that when we wish

to define the closed convex huìl of a bounded set, in a reflexìve

Banach space, we may defíne it to be the intersection of all closed

balls containing the set.

Proposition 2.1 : (se paration property)

(i) A functíon f : [.lz + R* is Õ convex iff for each u2 € U2 and

r < f(uz) there is a rf majorized by f s.t.ú(ur) t r.

(ii ) A set A is Õ-convex iff for each u! É A there is a function

tl., € 0 s.t.

sup
u z€A

ú(ur) . ,1,(u9).

Proof : See reference t11l page 279.

Lemma 2.1 : Su ppose f is O-convex, all the rf € O are l.s.c. with respect

to the topology on U2 and g : Uz + R is u.s.c.

If g(uz) < f(ur), y uz € U2,then J a neighbourhood N of üz and U € o

for each üz € Uz s.t.

S(uz) 1r¡(uz)

rp(uz) < f(uz)

V u2 € N ,

Vu2€U2.

Proof : If rf,r € 0 are l.s.c. then

sup
ifr€0 ú = f is l.s.c.

Now if we define

p(ür) = sup{ô : g(tr) . f(ür) - 6} > 0,
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v'Je can show that p(ür) is bounded away from zero on U2.

Suppose not, then = u] e U, s.t.

o(u!¡.f;vn€.2+

As uz is compact there ís a sub-sequence convergent to üz (say)

renumbering we can say unz * iz,
After

p(ui) < __> 0; n* -.L

m
n

hle know that V o < ô < p(ür) we have

s(ür).f(ür)-ô.

Let 0 < e < ô . p(ur) and as g is u.s.c. 3 a neighbourhood Nr of üz

s. t.

g(uz) < 9(ür) + e;v uz € Nr.

Let e' = !ô-e) > 0. Then I N2 s.t.

f(ür) - e' < f(ur); v uz € Nz

Hence

VUz€NrfìNz

we have

g(uz) < 9(ür) +.
.f(ür)+e-ô
= f(üz) - 2e'

< t(uz) - e'.

For n sufficient'ly ìarge we have

üä € Nr n Nz,

as Nr n N2 Ís a neighbourhood of u2 and

large, a contradjction.

p(üi) > e' v n sufficìent'ly
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As f-ô for 0 < ô < ,l[ü, p(uz) is o-convex and g(ur) < f(u2) - ð

V u2 € Uz,then f satisfies the separation property at all ü, e U,

Hence 31,€0s.t.

s(ur) < ú(ür)

and

,p(ur) < f (ur) - ô; v uz €. lJz.

Now as g is u.s.c. I a neighbourhood N3 of uz S.t.

g(uz) < 9(ür) + e; v uz € Na ,

where

o<e=fi{u{rr) -g(ur)). p(u, )
inf
Uz

forsomeneZ+

Simílarly J a ne'ighbourhood Nq of üz s.t.

ü(ür¡ - e < ü(u")i v uz € N+.

So, if we let N = N,, fl N3 a neighbourhood of üz,then V u2 € N

g(u") < 9(ür) + r = tg(ür) + mel - (m-1)e

= 9(ü21 + rf(üz) - g(ur) - (m-1)e

= V(ür) - (m-1)r. ú(ür) - e <,J,(ur)

< f(ur) - e < f(u.).

Proposition 2.2 : Su ppose f is Q-convex, all the il € 0 are l.s.c. with

respect to the topology on Uz, Uz is compact and g is u.s.c. on U2.

If

g(uz)<f(u.) vur€u2

then I {rf. : i=l ,..,f}. o and a o-convex function
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f¡(uz) = sup{ú. (uz) : i=l,..,h}
s.t.

g(uz) < h(ur) . f(ur); V uz € Uz.

Proof: This follows ímmedìately from the prev'ious lemma and the

compactness of U2.

Corollarv 2.2 : Su ppose v V € O are l.s.c. with respect to the topology

on Uz. Suppose Uz is compact, f, g O-convex and g continuous where

g(ur) . f (ur); v u, € Ur.'

Then g << f in ühe lattice of o-convex functions and if v ll, € Õ are

continuous,then this ís a continuous lattice-

Proof: Th'is is straightforward when one notes that for any directed

set D in the lattice of convex functíons !úe can produce a correspond-

ing directed set in Õ which has the same supremum, namely,

O, = U{Õ" : sup{rf € O"} = h € D}'

where sup 0' > f.

Now if we suppose V € 0 is s.t.

g(ur) <'J,(ur) . f(ur) v uz € Uz

does = 
rf ' € o' s.t. V(') < ,1,' (')? Suppose noL Then 

= ü, e U, s't'

v,p' € Õ', V'(ür) . ,1,(ür).

If this is so, then

f(ur) < sup{rf'(üz): rf ' € o'} < ü(ür)'

contradict'ing our choice of rf .

Now this particular r¡1 € orr where sup Õ" = h € D ' Hence'

g(uz) <,i.,'(ur) < h(uz)' implying g << f.
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The remark follows from the fact that if ú € +f then rf - |e gt;
Ivn€Z',so

t>sup{rl€Õ:ú<<f}

> supiqr - !, n € Z+; r! € +fÌ

=sup*f=f,

that is,sup *f = f. tr

This has some relationship to the topic of continuous selection.

we state some well-known concepts and theorems by Ernest Michael

which can all be found in reference t8l.

The central concept of E.Michael's work is that of continuous

selection. If f : lJt * 2"2 is a multifunction, then a selection f
is a continuous function f : Ur + Uz s.t.

f(u,) e f(u1) for every ur € Ur

It can easiiy be shown that if S cz"2 contains all one-point subsets

of elements of S, then the following are equivaìent;

(a) Every l.s.c. f : Ur + S admits a selection.

(b) If f : Ur * S is l.S.c., then every selectionofflA (for A c U,

closed) can be extended to a selection for f.
Both of these imply

(c) uz is an extension space with respect to u1,'ie. every continuous

g: A+Uzcôrì beextendedtoacontinuousf: Ur *Uz. Wenote

in passing that urysohn's theorem was concerned with the exten-

sion of continuous functions.
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Theorem 2.4 z The followíng properties of a Tr space are equivalent:

(a)

(b)

Ur is normal (perfectly normal).

Every l.s.c. multifunction r : ur * cu(R) (rt u1 + u(R))

admits a continuous selection.

If r : Ur + CU(Uz) (r': Ur * t/(Uz)) is a l.s.c. multifunctions

in uz, a separable Banach space, then there exists a continuous

sel ecti on.

(c)

Corollary 2.4 : Suppose U2 is normal (perfectly normal). Then for

g : U2 + R u.s.c-, f z Uz + R l-s'c', f â continuous function

h:Uz+Rs.t,

g(uz) < h(ur) < f(uz); v uz

(g(ur) . h(ur) < f(ur); v ur).

Proof : This follows immediately from the fact that

r(uz) = {x € R: g(uz) < x < t(uz)} is l-s.c. whenever g is u's'c'

and f is l.s.c. Similar'lY for

f(ur) = {x € R : g(uz) < x < f(ur)}

the above observation holds and one only needs to app'ly lheorem

?.4.

One can deduce theUrysohn Theorem from this. ÌnJe will revisit this

in the context of "tuzzy Topologies".

propositi on 2.3 : The space LSC (Uz) consists of all convex

function with respect to Õ = C(Ur),the space of continuous functions'

if u2 js normal. It is a continuous lattice if u2 is compact.

E

flproof : Follows 'immed'iately from what has been covered.
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Defin'ition 2.3 : For an arbitra ry class 0 a O-convex function f is

said to be O-sub-differentiable at úz € Uz if J (/ € o s.t.

f(ür) =,p(ür)

and

f(uz) >. þ(ur.); v uz.

l¡Je note in passing that a function h(uz) = supiü. (uz) : i=1,..,N]

defined by rJ.r. € 0 is Õ-sub-djfferentiable everywhere in U2 s'ince

if ü2 € Uz then

h(ür) = V, (ur) for some 'i=1,..,N

and

n(uz) > ü. (u z); Y uz.

[,Je say that h(.) a Õ-convex function is strictly sub-differentiable

at üz if the second ínequa'l'ity ho]ds strictìy, name'ly,

h(u') > ú. (ur); v uz I iz.

Definition 2.4: A function h ! U2 + R is called strictly quasi-

convex if

¡r(uz) . h(ür) * h(lu, + (1-À)ür) . h(ür),v À € (0,1).

Definition 2.5 : A convex subset S of a reflexive Banach space is

said to locally F-normed'if a translation-invarient metric

d(ur,ür) = d(uz - ür, o) = ll u, - üzll*

can be defined satisfying

lluzll* > 0 u2 € S

u, = 0 iff llu2ll* = [

llu2+[zll*<lluzll* +llürll*; uz,üz € S

llÀ"uzll't + 0 if À" * 0; u2 € S - S

(i )

(ii )

(iii)
(iv)
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which generates the topology of S.

In the case of those refìexivespaces for which the dual space has

an orthonormal set, we can immediately define such a nonn. Let

llull* =
1

l.r, u*t 
l

2'

where tui]1, is an orthonormal spanning set. The norm obviously

defines the weak topoìogy on the compact sets. The compactness of

the set is essential as this makes sure llull* < K. [,le note'in passing

that

< ll ull ,

where ll.ll is the usual norm 'i.n the Banach space. In these situ-

ations Hausdorff continuity of r(.) with respect to ll.ll would ob-

viously ímp'ly Hausdorff continuity with respect to ll.ll*. This is

in general true as the weak topology is coarser than the strong

topo'l ogy on U 2 .

We note in passing that local F-norms are similar to the para norms

of reference t151. They differ in that they on'ly define the relevant

topology locally (on the compact sets) but they still reflect a

compat'ib'i1ity wìth the linear structure within this local context.

The condition (iv) is obviousìy satisfied by any para normed space

for which the cornpact subsets satisfy the Zima cond'it'ion,namely:

(U, ll.ll*) a para normed space with S c U and f c > 0 s.t.

llÀull < cÀll ull*, for every 0 < À ( L and every u € S - S.

These structures were used in reference t151 to deduce a fixed point

theorem for convex-valued multi-valued mappings on certain topological

I inear space.

1

I

u*< i ! u
i=t 2'
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Proposition 2.4 : Let U 2 be a convex subset of a Banach space which

is local]y F-normable. Suppose h : Uz + R is strictly quasi-convex

and continuous with respect to the same topology. Then if

I(b) = {u2 : h(ur). b} I 0 and r(b) = {uz: h(uz) < b}

we havecl i(b) = f(b) and r(b) is convex.

Proof: we argue similarly to the proof of Lemma 5 of reference t131.

lole note that uz(o) = 0(ûz) + (t-o)üz * üz in the local F-norm

since,

lluz(o) - ürtl = llo(ûr - ur)tt + 0

as 0 + 0 due to cond'ition (iv) of the definition 2.6.

In this way we establish cl I(b) = t(b) which implies

bdd r(b) = r(b)\I(b)

= {uz : f(uz) = b}.

So if ür, u, € f(b)

h(üz) < b; h(ur) < b,

then

h(Àü, + (1-À)uz) < max(h(u,),h(ür)) = b

and hence tru, + (1-À)u2 € r(b).

Proposition 2.5: If Uz is a reflexive Banach space and the unit

ball's weak topology is metrizable, then h strjctìy convex,weak'ly

cont'inuous and f (5) weakly compact imply 3 b* > 6 s. t. f (b*) is

weakly compact.

Proof : Identical to Lemma 6 of reference t131 using the equivalence

of boundedness, weak compactness and sequentially weak compactness. il
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Defin'it'ion 2.6 : f : U z + R is called quasi convex 'iff the sets f (b)

areconvexVb€R.

Proposi tion 2.6 : If f is compact valued and u.s.c., the'image sets

of a compact set K in U, is a'lso compact.

Proof : Reference tll page 110.

If we assume f : Uz * R'is weakly continuous and Uz'is weakly compact

then f will be bounded. For

b* = sup {f(uz) : uz € Uz} we can defíne

B*={b<b*:r(b)lþ},

where

r(b) = {uz € uz : f(u2) < b},

which is weakly compact.

l^le note the following:

(i) B* is bounded if f js bounded.

(ii) I(b) = {u, e r(¡) : f(ur) . u} I þ if b € Int B*.

(iii) if t(b) is u.s.c. and U2 weakly compact,then r(B*) = ub€B*f(b)

ìs weakly compact (tfris follows from Proposition 2.6).

(iv) If the space Uz is separabìe reflexive then the weakly

compact sets are metrizable.

Theorenr 2. 5 :

(j) Suppose Uz is a metrizable weakly compact subset of a reflex-

ive Banach space and f : U, -> R is weakly cont'inuous then

l(b) is u.H.s.c. at V b € B* with respect to the induced

metri c.

Suppose Uz is a subset of a reflexive Banach space and

f: Uz + R is (weakly) strongly continuous, f(6) is (weakly)

strongly compact then the mapping f(b) is l.H.s.c. at 5

iff cl I(6) = r(5),

(ii)
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rvnere in the case of the weak topology the Hausdorff contin-

uities refer to those on some weakìy compact metrized space

U2 containing r(5).

Direct adaptation of the proofs of reference t131. These

origina'lly were only proved for U, = p" but go across to the

case of a reflexive Banach space. In (i) we use the equiva-

lence of weak compactness (ie. closed boundedness) and

sequential weak compactness. In (ii) we use the metrizability

of U, and the linear structure on the reflexive space. !

So if U, is (weakly)strongly compact and f : Uz + R is (weakly) strong'ly

continuous then B* js bounded and we need oniy deal with the compact

metric space f(B*), in which case r(b) is l.H.s.c. iffcì I(b) = t(b).

Now if we suppose that r(b) is always convex then the strong and weak

closures of I(b) will coincide. Since a strongly compact set is

weak'ly compact we have strong l.H.s.c. impiying weak l.H.s.c. This

is so even if we remove the necessity that f(b) is strongly compact.

The join semi-lattice SQC(Ur) of l.s. continuous strictly quasi-

convex functions from Uz to R contains the convex continuous function

and the classes o" (ceR+). The classes Õ" (ceR+) generate the

lattices of strongly convex functions SCc(Ur) (ceR+) whichare con-

tained in the class of l.s.c. quasi-convex function QC (Ur).

Definition 2.7 : A function rl(') i lJz + R is called pseudo-convex

at uz € U2 if it is differentiable at üz

lim f(üz+tuz) - f(ü,)( te.
t+0

vf(u2) € Uä

andVuz€Uz

<vf(üz),(ur-ü')> > 0 impìies f(ur) > f(ür).

l^le let PC (Ur) be the class of such functions.

t = <Vf(ür),urt exists V uz € U2)
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A full discussion of these concepts in the case U2 = R' is given in

reference t191. As usual many of the proofs go over to the case of

U, reflexive and rl(.) weakly contjnuous. Taking care with the con-

tinuity assumption on the classes one obtains the following inc'lus-

i ons.

sCc(Uz) çPC(ur) 
=SQC(Ur) =Qc(ur).

1¡e obtained the class SCc(Ur) by considerjng a separation theorem of

the same type as the Hahn-Banach theorem. One wonders if the lattice

PC(Ur) generate the latti.ce Qc(ur). The proof of thi's would corres-

pond to a ''generalizat'ion" of the Hahn Banach theorem. There may in

fact be generating cìasses which are theoretically more accessible

than these for some purposes. Possib]y the class of functions

ú(ur) = a(lluz - üzll ) - a where n(') : R+ * R+ ìs monotonica'lìy in-

creasing whjch are once aga'in in SQC(Ut) might generate QC(Uz)'

Definition 2.8 : A set S is called strongìy convex iff v û, e U¿d S

+fUz€Uz: r€R S

S c ñ(ür,r) =cl;N(üz,r)

and

û, e udd ñ(üz,r).

it'is easi'ly seen that a strongly convex set is strictly convex in

a Banach space which 'is strictly convex. This definition is prompted

by the knowledge that if f is Õ" sub-different'iable then I(b) 'is

strictlyconvexvb€B*.

Definition 2.9 : A multi-valued mapping r : P * K(Uz) is said to be

metricalìy increasing w'ith a rate n(.)if = n(.) s.t. n(0) = 0 and

II

n(.):R-*R-iffforb<6

t

clN(r(b),¡(6-b)) = ñ(r(u),n(6-b)) = r(6).
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Theorem 2.6 : Let U , be a weak'ly compact convex subset of a reflexive

space U on which we have a local F-norm. Suppose f : Uz + R is

strongly continuous. Then

(a) f is O" sub-differentiable on U2 iff

(b) l(b) is strongly conver and b * f(b) is metrically increasing

with a rate ¡(x) = å

Suppose (a) holds then = lt2 €. U, a € R s.t. for anyProof :

û'eU,
(i )

(i í )

f(ûr) =cllt2-üzll

f(ur) > clluz - ûzll

-a

-â,Vu2€U2.

As f is sub-different'iable it'is o. convex and hence strictly quasì-

convex. As Uz Í U is a Banach space we may consider our topology on

uz being given by the norm of the strong topology. As f is strongly

continuous Proposit,ion 2.4 tells us cl I(b) = f(b) Hence

bdd r(b) = {u, : f(uz) = b}. If we ter û, e U¿¿ r(b) rhen (i) and

(ii) a¡ove become equivalent to;

('i)' û, e b¿¿ N(ür,+q)

(ii)' r(b) = {u2 e U, : f (uz) < b}

- N(ü2,
b+a

c

That 'is f (b) is strongiy convex.

Now if we let

D= {(ür,a) e U x R: r¡(uz) = clluz -Jzll - a is a sub-derivative

of f(.)Ì,

).

then

f (ur) = sup{clluz - üzll - a; (ür,a) € D}.
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Í,tow r(b) = oo ñ(ür,f,), so

d(ur,r(b)) - rupo d(ur,ñ{;r,fll.

If we choose uz Ê l(b) and let b > 6, then

d(uz,t(b)) - rupo d(uz,ñ(ur,+)).

If we let D' = D(uz,b) and D" = D(ur,5) where

D(ur,b) = {(üz,a) e o ; uz { Ñ(ür,+)}, then

d(ur,r(b) ) SUD.D
,b*ar.t Uz - Uz - t . lÌ

SUpor {ilu, - üril - r+l * (¡-6)t - ftu-ol

SUporr {l u, - ürll - (b. )r - f u-ol

supor d(uz,ñ(¡r,T)) - fu-n¡

= d(ur,r(6)l - ftu-u¡

the inequalìty foi'lolving from D(ur,b) c D(ur,6). Hence

d(u,,r(b)) < d(ur,r(5)l - ftu-S¡ and

ftu-s) < d(u,,r(6)) - d(u,,r(b)).

As uz É r(b) we have d(ur,f(b)) ¡ 0, imp]yjng

ftu-ul < d(u,,r(6)).

Hence

ftu-u) < inf{d(uz,r(6)) : uz É r(b)},

te.,

ñ(r(6), f,{u-s)) =
f(b).

Still suppos'ing b ) 5 and suppos'ing uz É f(b), we have

d(ur,r(5)) = d(u ",îr)
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for some ûz e bdd t(b).

ns f(5) is closed and convex, if we let rf(uz) = cll uz-ltzll - a' be

the sub-derivative of f at ûz,then

(iii) d(ur,f(5)) = lluz - trtl - (+)

= d(ur,ñ(ir,þ¡ .

It fol lows that

d(ur,l(b)) = suPo(ur,Ñ(ür,Ec ))

> d(uz,ñ(u=2,*r,

= {,u2 _-u,rr _ (+)} -å(b_6).

t,le then have via (ii'i) that

d(uz,r(b)) > d(ur,r(6)) - ftu-S¡
0r

Hence

so that

. fru-ql.

d(u,,r(6)) - d(uz,r(b)l . |'f o-Ol.

supid(ut,r(5)) : u2 € r(b)Ì

= sup{d(uz,r(6)) : u, e l(b)/r(6)}

That is,r(b) c Ñ(r(E), 3b-6)) and hence is l.s.c.at a rate n(x) = f,'* ,

forb>b.

Now, suppose (b) holds.

As f(b)'is strongly convex it is weakly compact and as

r(b) = ñ(r(6), ftu-u¡¡

forb>b



64

the mapping b + r(b) is l.s.c. with respect to the strong topology.

Since l.s.c. with respect to the strong topo'logy implies l.s.c. with

respect to the weak topology,Theorem 2.5 (ii) tetls us, as f(.) isweakly

l.s.c. that cl I(b) = r(6); v b € B*. As I(b) is convex this

holds in both the strong and.weak topoìogies.

If we choose ì, e u, and let f (ûr) = b- then û, e ¡d¿ l(5).

As r(6) 'is strongly convex then = r € R+ and üz € U s.t.

(i) r(u) S. ñ(üz,r)

(ii) ûz € bdd ñ(üz,r).

l,le let r = (6+a)/c or a = rc - 5. We have

I(6) = {uze.)r:f(ur) <6}cN(ü2,f1.

"+Ã -

As bdd N(ur,ï) = {uz: cllu2 - u2ll - a = b},then

û, e udd ñ(ür,+) n bdd r(6)

impi i es

5=f(ûr) =cltûz-ü2il a

All we need to show to complete our proof is

a+bc ñ Uzt ): v b € B*,
c

for if we assume this and suppose that

f(ur) < clluz - üzll -a

for some u2 € U2, then

b = f(ur) e B*

f )b

and

u2 € f(b).
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But

uz É ñ(üe, a+b ),c

a contradiction. As a consequence

ctluz - üzll - a < f(u2) : Y u2 € U2

and f is 0. sub-differentiable on U2. So to round off the proof

we note

Hence

b * r(b)

is merrical'ly ìncreasing rate l; r(b) = Ñ(r(¡), |lu-u¡) for b > 6.

As r(6) - ñ(üz,fl we have

r(b) c ñ(ü,, +. ftu-o¡¡

= ñ(ür, fl.
Forb<6wehave

ñ(r(u), f,tn-u)) = r(5)

r(b) cN(ü,, + lto-utl

le.

r(b) c ñ(ür, +)
Corollary 2.7 : Let Uz be a weakìy compact subset of a reflexive

Banach space which is locally F normed. Then

(a) f ; Uz * R is 0" convex 'iff

(b) l(b) is convex and b * r(b) is metrically increasing at a

rate n(x) = .x/c.
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Proof : Suppose statement (a) holds.AsUzìs compact and aìl if € O

are continuous,we have from Corollary 2.2 that

t(uz) = suþ{h(ur) : h;0" subdiff. and h << f}

In fact Proposition 2.2 tells us, along w.ith the separabi'l'ity of U2

(as itis compactmetric),that= h. : Ur+ft; i € I,Õ-sub-differen-

t'iabl e and conti nuous s . t.

f (ur) = sup{h. (ur) = sup{rl. (uz) : j=1,..,N(i )1, i € I}.

Thus

r(b) = {ur: f(uz) s b}

= {uz : supr h (ur) < bi

o {uz : h. (rr) . b}
i eI

N(i)
=fln

i e I j = r

which,from Theorem 2.3, is convex weakly compact. l^le note also ìn

passing that any convex set may be produced in this fashion. Now as

h (.) is 0 sub-differentiable V i € I we can say
19

1 .-ñ(r (¡), Ë(6-b)) = r, (6); 6 > u

where I (b) = {uz : h. (uz) < b}. Hence

{uz r V, (uz) ( b},

ñ(r(u), f,tu-u)) = ñ(, l, r (b), f,to-ull

= 
, 1, 

ñ(r, (ul, f,(s-u¡ ¡

= n | (6) = r(5).
i eI

Now suppose (b ) frol ¿s . As r (6 ) i s al so weak'ly compact convex, the

reflexìvity of U2 and Theorem 2.3 impìy I F, € R+ s.t.



1

I

r(5) = n ñ(ü'.,r,).
I eI

a. +5
By letting r, = {_ we get
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{.u, I cllu2 - ü!l - a. ( 5}

= {uz, ;Ël ü, (ur) 
^. E}.

t(b) = n
i e I

ñ(r(u),!U-o)) = r(b); E > ¡,

b € B*,then r(b) * ø impties

Hence

ñ(r(¡),|u-o)) = l" ñ(ü",+, .

. a.+5 r
ñ(ü'.' . -{u-u))

Now as

n
i eI

r(b) = n
i eI

=fl
i e I

. a.+b
ñ(u'r, -c )

Now if we suppose b < b we have

0r

SO

ñ(r(u), |to-S¡) = r(b)

. a.+5
= n ñ(ü'r, +-* ftu-Sl) = r(u),

i eI L

ñ(u'r, +, = r(b)

l¡le have r(b) = {uze U cllü'z - uzll. sup2'i€I a. < bÌ.
I

Arguing as before, this holding for a'l'l b € B* implies

t(uz) = ìËT cllü'z - uztt - a.

and hence that f is O convex.
c
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92.2 Approximation of Multi-valued Mappings

To compl ete thís chapter we turn to the topí.c of approxÍmati on of

multi-valued mappings. This has relation to fixed po'int theorems

for multi-valued mappings. We begin with some notation and defin-

itions. If (Ur,d,) is a metric space and (lJr,dr) is a metric we

know that Ur x Uz is a metric space with a metric

d((u,,uz),(ür,ür)) = max{dlur.,ür), dz(uz,üz)}.

As usual we define,for A c Ur x Ur,

d( (ur,uz),4) = inf{d(ur,ur), (üt ,ür) ); (üt,ür) € A}.

The separation of two subsets A, B c Ur x Uz is given by

d*(B,A) = sup{d(ur,ur),A); (ur,ur) € B}.

These sets may be graphs of multi-valued mapp'ings,

'ie. ,

G = {(ut,ur) : u1 € Ur, uz € T(ur)i'

We state a sl'ightiy reworded statement of part of the content of

Theorem 1 of reference t141.

Theonem 2.7 : Suppose (Ur,d, ) 'is a compact metric space and (U r,dz)

is a metric space. If f : Ur * K(Ur) is u.s.c. (or equ'ivalently

u.H.s.c.! then we can approximate f from above by l.s.c. multi-

valued mappings

f : U1 +,((Uz) s.t. n rr(ur) = r(ur)
c

e>0
and

d*(Fe,c) < e Ve>0'

where F^ is the qraph of f- '¿''e
G is the graph of I.
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Proof : trle a.rgue identically to the first part of Theorem 1 of

reference t141. In doing so, we define

p(ur,e) = sup{6 < e/2 : f ui € N(ur,ô)

s. t.

r(N(ut,ô)) . t,t(r(ui), elz)j

and show it is bounded away from zero on ur. l.le then go on to show

that the mapping fr(u1) = c1 r(N(ur,Er)),where 0. g, < inf{p(ur,e) :

u1 € U1Ì'is l.s.c. on Ur. LJe finish by not,ing that,v ui € Ur,by the

definition of p(ur,e) we have that i ui e N(ur,Er) s.t.

rr(ur )= cl l(¡l(ur,6t )) 
= 

N(r(ui ), e/2)

and as Et < ¿/2 we have

dt (ut ,ul) < e/2.

This impìies

d*(Fe,G) = supr,e inf" max{dr (ur ,u-, ), dr(uz,ûz)}

<e/2+e/2=e' tr

l,'Ie note'in passing that,if we assume u1 is compact,by our definition

of p(ur,e) we have rr(ur) 
= 

N(r(uï), e/Z); ui € N(ur,E,). Hence

r^(ur) . N(r(n(u,,Er)), e/z)
c

. ñ(r(ñ(ut, ¿/2), e/2) : (s)

This in general does not tell us whether

lle need the fol I ow'ing .

r.(Ur) itself is compact.

Lemma 2.2 : Su ppose U is a linear, locally compact normed space Then

= r € R+; r > 0 s.t. V 0 < s < r; V u € U we have ñ(u,r) compact.
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Proof: There exists a basis of pre-compact neighbourhoods of zero

which generates the topology of the space. Let V be a compact

neighbourhood of zero. Then for r sufficiently sma'l'l N(0,r) c V and

hence 'is relatívely compact. So for 0 < e < r

Ñ(o,e) is compact and as U is normed and linear,

ñ(u,e) = u * ñ(o,e) is compact.

Lemma 2.3 : Suppose U is a ìinear, local'ly compact, normed space and

S 
=U 

is compact.Then for 0 ( E ( l^: r sufficiently small,Ñ(S,e) is

compact.

Proof : If we can show sequential compactness of Ñ(S,e) we have shown

compactness. Let {u"}i=, 
= 

Ñ(s,e ). Then 3 ü,, € S s.t. ll u,, - ü"ll ( e

v n. By the compactness of S,f a convergent subsequence, converging

to ü e s, {u"} (say) after renumbering. Now for n > N(ô) we have

llu -üil(llu -üll +ll ü -utl <e*ô<r
nnnn

for ô suffic'iently small and hence {u,, : n > N(ô)} 
= 

Ñ(u,ä*ô), a

compact set. As a consequence a convergent subsequence exists,which

is, of course, a convergent subsequence of our original sequence

{u }- -. ü
n n= I

When the condit'ions of this Lenrna hold for the spaces U1 and Uz lve

can from statement (S) deduce that the range of f, is contained in a

compact subset of Uz. If we introduce F-norms lve can say a l'ittle
more.

Propos'ition 2.7 : Suppose U and U are Banach spaces each of which

sat'isfy one of the followìng

(i) the conditions of Lemma 2.3

(ii) is reflexive and the weakly compact sets are locally F-

normabì e.

tr
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We let U, c U and I : U, + CY([).

When (i ) holds for e'ither, or both, of Ur arìd U we consider that

the corresponding space(s) Ur and/or U are endowed with the strong

topol ogy.

When (ii) holds for either, or both, of U and U we consider that

the correspond'ing space(s) U, and/or I are endowed with the weak

topoì ogy.

Suppose

(a) Ur'is compact, and

(b) f : Ur * Cy([) is an u.s.c. multi-funct'ion.

Then there exists a multi=function fe : U1 -+ cy(U) , l.s.c. with

respect to the abovetopoìogies on U, and Iwhjch approx'imates I
is the sense of Theoren 2.7.

Proof : If (i ) holds we let d, (ur,ü1) = llul - ürll and if (ji) holds

for U we let dr(ur,ür) = llur - ürll*. In any case, since f is u.s.c.

from proposition 2.4,we have f(Ur) c r_(Ur) . Ur,a convex subset of ú

compact with respect to the relevant topology

This follows from the statement (S) and Lemma 2.3 1n the case of (i)
and in the case of (i'i) from the fact that any closed bounded set is

compact. In the case of (i) Uz is already a metric space and in case

(ii) we may make it metric by ìmposing an F-norm on it since it is

weakìy compact. I'le ensure the mapping fe produced vja this process

using Theorem 2.7 is convex closed valued by taking the convex closure

of it, the resultant being once again l.s.c., It is easily seen that

this does not upset the approximation properties as f(.) is convex

closed valued as well. ú

Now take these mappings and rewrjte our approximatìon problem

as follows. As r(ur) = {uz: d(uz,f(ur)) < 0} we say equiva'lently
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9r(ur,uz) = d(ur,fr(ur)) < d(uz,f(ut)) = f(ur,uz)

and

ge+fase+0.

l.le note the following.

Theorem 2.8 : Su ppose Uz is a metric space. Let 2"2 have the topology

generated by this uniform structure (see Definition f.13).Then a nece-

ssary and sufficient condition that f : Ur * 2"2 is continuous is that

the famiìy of mappings {u1 * d(ur,f(ur)) : u2 etJ2} be equi-continuous.

Proof : Theoretn 2.L of ref erence t16l .

This opens up the question of whether we can select an

f. , U1 x [J, + qn s.t. f, looks suffic'ient'ly ]ike d(ur,Tu(ur)) and

9r(ur,uz) ( f.(ur,uz) ( f(ur,ur) ,

where the family

{u1 * f.(ur,uz) : uz € Uz}

is equi-continuous. If rl,,e can do this,then u/e can say f(ur) can be

approx'imated above, in the same sense that f, does, by a continuous

multi-valued mapping. It turns out for the case when f(.) is convex

valued that the 0. convex mapp'ings are those which look suff icient'ly

l'ike ,d(u2,Tr(ut)).

Lemma 2.4 : Su ppose C 
=U, 

is Õ^ convex set, Uz being a Banach space"

Then ñ(C,e) 'is 0" convex V e > 0.

Proof : As C ìs 0" convex,= a set D c R x Uz S.t.

Now

C = t^t{u2 : cllu, - ürll - a < o,; (a,üz) € D}.
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Ñ(c,e) = {ur: d(uz, nD{û2 : cllûz - ürtl - a < o}) < t}

= {uz t tHoo(ur,{û, : cllûz - ürll - a < o}) < t}

= {uz r SBOO(ur,ñ(úr,(q+a)/c)) < e}

= fìo{uz : d(uz,Ñ(ü2,(o+a)/c) < e }

= n^ Ñ(ü2,(q+a)/c + e)
D

= {uz t t3o clluz - üzll - a < cr * e },

a Õ convex set,
c

I]

l,le now formulate our prob'lem stated above as a selection problem.

If we define a multi-valued mappíng

rp(ur,uz) = {x € R : d(u2,re(ur)) - 2e < x < d(uz,f(ut)) - e}

= {x € R: d(ur,ñ(r.(ur),2e)) . x. d(ur,ñ(r(ur),e))}

can we select from this an approprìate function?

Lemma 2.5 : Suppose Uz is a Banach space. If C is a 0 convex

set,then uz + cd(ur,C) is o convex function.

Proof : Since C is 0" convex,f D c R x Uz s.t.

{ur t t;o cllu, - ürll - a < o} = c.

Hence letting D' = D(uz,o) we have

d(ur,C) = tilq d(ur,il(ür,+))

= t[Ptruz - üzl (+)
Thus

c.d(uz,C) = t$? .rruz - üzll - (cl+a).

Hence the natural choice of convexity is or convexity which would make

uz + d(ur,f.(ut)) - 2e; 0r conVêX.
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If we fix ur ârd suppose the conditions of proposition 2.7 hold,then

we may restrict the above function of uz to a compact domain,s'ince

f(.) would have a compact range for e sufficiently small. Supposing

this, then proposition 2.2 tells us we can, for each u1, select

mappings of the sort

sup
i=1r. rn Ituz - ü'rll â, = h(ur)

s.t. gr(ur,uz) - s < h(ur,ur). f(ur,uz). This prompts us to define

a new multi-valued mapping

,I(u,) = {h(uz) : h(uz) = ttu, - ü"tt a.
I

sup
i=lr. . ,n

s.t. h(.) is a se]ection of ,l(ur,')].

Definition 2.10 : Let Ur,Uz be metric spaces, Ú(',ur) : Ur + y(R)'

Then {,1,(.,ur) : u2 € Uz} is said to be equi-1ower semi-continuous iff

v e > 0 = o(u!) s.t.'if y e ó(uÎ,ur) then

ü(ut,ur) n N(y, ¿) I Q

v (ur,uz) e N(uf,ô) * Ur.

Proposition 2.8 : Let U, Ú satisfy the conditjons of proposition 2.7

and let Ur, Uz be compact sets Ur c Uand U2 
= 

U s.t.

f : U* rKt/(Ú) is u.s.c.

r(Ur) c U, and

f^(ut) c u2 'L-'

where f is the l.s.c. approxìmation in graph of f.
e

If 0 is defined as above,then

1,¡(.,u2) : u2 € Uz] is an equi-l-s.c. family.
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Proof : As r is u.s.c. on U1,v õ > 0 = ô(ul) > 0 s.t. v ur e N(u1,0)

r(ur) c n(r(ul),ã) 
= 

ñ(r(ul),;). Hence

d(ur,r(ur)) > d(uz,Ñ(r(ul),ã)

> d(ur,r(ul)) - ;

Vu2€U2.

Thus

{d(uz,f(ur)) : uz € Uz}

i s an equi -l . s. c. fami ly of si ngl e val ued mapp'ings . l^le can show by

an identical argument that for fe(.) l.s.c.

{d(uz,r(ut)) : uz€Uz}

is an equi-upper semi continuous family of single valued mappings,

ie. V e > 0 and u2 € tJ2; uf e Ur,f ô(ul) t0 s.t.

d(ur,rr(ul)) + õ > d(uz,fe(ut)),v ur € ru(u1,0).

If we let 6*(ul) = m'in(6(ul),6(ul)) t O,then v õ > o I ô*(ul) > 0 s.t.

for u, € N(ul,ô*)

{x : d(ur,rr(ul)) - s < x < d(ur,f(ul))}

c {x : d(ur,fr(uf)) - e - ã < x . d(uz,r(ur¡¡ + õ}

= N(p(ur,ur),ã).
Namely

U(uf,uz) tN(V(u'uz),õ); v u2€tJ2,

or for y € ü(ul,ur) we have

rf(ur,uz) n N(y,ã) I O.
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Lemma 2.6 z Let Ü þe a reflexive Banach s paceand {f.: i=I'2,3} are o"

convex function where the Dom f. = Uz (compact) i=7,2,3. Suppose fs is

continuous and f3(ur) . min{fr (u"),fr(ur)} = h(uz). Then r D c R x I s.t.

f , (ur) . tilP clluz - üzll - a < h(ur),

and in fact as U2 is compact we may choose the set D to be finite

Proof: As fr, fz ôrê Õ" convex f Dr, Dz _1 R x Ü s.t.

f,(ur) = till cllu, - üzll - clr

Hence

Let

f 
"(ur) = tH: clluz - u'ztl -t- ct.

{u, etJr: h(ur) < b}; b € B*

= {uz € Uz : mintsuPL 
Dr

(uå) uñb+a

'c-N(ü,

U2 uzll - a' tHo t u' üålt -a'] < b]

sup
Dr,Dz

min{clluz - üzll - a, cllu2 - üåll - a'} < b}

c

= {uz € U, :

oD, 
, D,

b+at.

-t

ct

D = {(a*,u}) e R " tJ : v b € B*; (a,úr) e D;

(â',uå) € Dr; ñ(uj,+) > ñ(üz,fl u Ñ(uå,d9. )Ì.

As fa is O. convex,3 Dr c R x U s.t

f¡(uz) = tB: clluz - u'lll -il-ct

Si nce

V (a",uä) € Dg wê have Y b € B*
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ru(uä,f) =ñ(;,,+) u ñ(uå,+)

for all (a,ür) e ot and (a',uå) € Dz. Hence

D

and

f , (ur) . t$p cllu, - ulll - ¿*.

Furthermore let us suppose that

f ,(ûr) = t;o cilû, - ulll - a*

for some û, e Ur. i^le let

Dc5

fg(ûz) = b

û, e ntui,f); v (a*,u|) e D

iff

tilO ."û, - ulll - a* < b = fr(ûr).

Since the assertion that = (a*,uä) € D s.t. û, ø fl-(uä,*) is equivalent

to tilp.,'u, - ulll - a* > b = fs(ûz) which we assume doesn't happen,

/ (a",u|) € D s.t. û, É Ñtui,f). By the definition of D we have

v (a*,uj) e o

(a) mçui,$) ¡ {uz € uz : h(ur) < b}

f, fr (b) u fr(b) ,

where ft(b) = {uz € tJ, : fi(uz) < b}

fr(b) = {uz € u, : fz(ur) < b}.

Now as fr(ûr) = b and f, is Õ convex, we have

(b) ûz € bdd rr(b) = {ur : fa(uz) = b}.
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Fro¡n (a) we know that uz ftuSt be inside any convex set containing

rr(b) u r2(b) and we know from (b) that ûz is on the boundary of a

particular convex set conta'ining f r (b) u f2(b). Henæû, e OaA N1U¡

the minjmal convex set containing rt(b) u 12(b). As M(b) is convex

we must have one of the following cases:

(i)

(ii)
(iii )

û, e udd r, (b) ;

û, e udd rz(b);

û, €planetouching bdd tr(b) and bdd rr(b).

iir is 1.s.c. muìti-valued mapping ,

if u € U, ü e,p(u) and V is a neighbourhood of ú in Ü,then 3 a

neiohbourhood N of u s.t- v u' € N rl(u') n V I ó.

If (i) or (ii) holds,then we have

b = fs(ûr) . minifr(ûr), fz(ûr)] < o

which is impossible. if we have (iii ) occurring, then, as fr(b) is
convex and û, € bdd rr(b),we must have this particu'lar plane as part

of the boundary of fa(U) and hence the boundary of fr(b) must touch

the boundary of both 11(b) and rr(b). That ís,3 u2 € bdd fr(b) s.t.

uz € bdd rt (b) (say), ie.,

b = fg(ur)'. min{fr(ur), fr(ur)} < ¡,

again a contradiction.

Finally we note that as U2 'is compact the 0" convex functions

form a continuous lattice and since

fr(ur) . t;P cllu! - uzll -ô*=g(uz), vuz€Uz,

where g(.) 'is a Õ" convex function,we can apply Proposition 2.2 to

deduce the existence of a finite approximation.

Lemma 2.7 : If r{.r : U * 2" then the following are equivalent:

(a)

(b)

tr
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Proof Reference t8l Proposition 2.1

Lenma 2.8 : Su PPose f : Uz + R is Õ" convex V € 0" and

B* = {b : r(b) I 0}. Then

(a) r(b) = {uz€Uz: f(ur)'< b}-{uz€Uz: ü(uz) < b},vb€B*
iff

(b) rp(uz) < f(ur); v uz € uz.

Proof: The implication (b) +(a) is obvious. Suppose (a) holds and

let uz € Uz. Then t(uz) = b € R.

If b = f(ur) . ú(uz), then uz Ê {uz : ú(ur) < b},a contradiction.

Propos'iti on 2.9 : Suppose for Ur c U and U2 ! U we have:

tr

(i )

(i i )

(iij)

(i v)

Ur 'is a compact metric space;

U2 ìs a compact subset of a reflexive Banach space endowed

with a norm (not necessarily the norm on U);

the multi-functions f, f, : U1 + KV(U2), where r(.) is

u.s.c. and fr(.) is l.s.c. with respect .to the corresponding

metrics on U1 and Uz, ôfld

r(.) . f (.).
u

ú(ut,uz) = {x e R : d(u2,re(ur)) - 2e < x < d(u2,r(ur)) - e}

lle def i ne

sup
i=l, . . ,n

û(u') = th(.) ; h(uz) = lluz - u'rll a
I

and

u', € ü ; a € R ; n € Z+ and h(.) a selection of V(ur,.)Ì.

rrren û(') is a l.s.c. multi-valued mapping from u, to the subsets of

C(Ur),the space of continuous functions on Uz endowed with the

supremum norm.
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Proof : tJe define for e > 0 a multi-valued mapping with half-open

interval image sets in R;

A(e,o,ur,uf ,uz) = ü(ur,uz) f'l N(cr(u1,uz), e),

where

cr(u1,.) € û(ul),

uÎ € ul.

As {,I;(',ur) i u2 e Uz} is equi-1.s. continuous famiìy,v e > 0

=ô(ul)>0s.t.

ú(ur,uz) n N(y,e) I O,

vy€rp(uf,uz)

and

v (ur,uz) € N(ul,ô) x uz.

Si nce

a(uf ,ur) e V(uÎ,ur); v uz € Uz

this implies,
A(e,o,ur ruf ,uz) I 0

for

(ur,uz) e U(u1,0) x lJz '

Sqif we take 0 < ô < ô we have

A(e,c¿,ur,uf ,uù f þ

on the metric space

Ñ(uf,õ)"UrcUrxUz.
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As uz + A(e,cr,ur,uf,uz) is half open interval valued in R we have

Int A(e,o,ur,ul, uz) t' þ

iff A(r¡cl¡u1,uf¡uz) I 0 . Hence we have the following;

( j )

(ii)
si nce

have;
(iii)

inf A(e,o,ur,ul,ur) . sup A(e,cL,ur,ul,uzh

inf A(e,o,ui,uf,uz) = sup{d(u2,re(u1)) - 2e, o(ul,uz)

uz + d(u2,fe(ur)) is 01 convex and

uz + cl(uf ,ur) is Q1 conVêX, so is inf A(e,q,,ur ru8,uz).

sup A(e,q,,ur ,u1,uz)

eÌ and

l.le al so

= inf {d(uz,fe(ur)) - 2e, a(uf,uz) - e}.

As a consequence, (i), (ii), (iii) and Lenrna 2.6 allow us to select

as fol I ows.

< sup A(e,cr,ur,uf ,uz)

Hence we can say

v u1 € ñ(uf,õ) f a 0r selection.

inf A(e,cl,,ur ,uf ,uz) sup
i=l,. . ,n

lluz a.
I

ü'rtl

õ(ur,') sup
i=l,..rn llu2 ü'rtl a.

I

of A(e,or,ur,ul,.) (ie. õ(ur,.) € A(e,oü,ur,uf ,.) * O). Now cr(ur,.) is a

continuous function of uz ônd as õ(ur,.) € if (ur,uz) n N(cx,(uf ,ur),e) we

have

(iv) õ(ur,uz) € ü(ur,uz); v (ur,ur) € ñ(ul,õ) * U,

q(ur,.) e û(u, ); v u1 € ñ(uf,6)

d(ut,uz) € N(o(uf ,ur),r);
v (u,.,uz) € Ñ(ul,õ) x uz

and as a consequence

õ(ut,.) e ru("(uf ,.),e); v u, € ñ(u1,0)

(v)
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v,,here N(q(u1,.),e) = {h(.) e c(ur)r tfl!lnturl - o(u1,ur)l . r}.

Hence

õ(u,.,.) e û(ur) fl N(o(u1,.),e); v u, e ñ(ul,õ).

so that

v ur e ñ(uf,õ)

ú(ur ) n N(cx,(uf ,.),e) I O

for any given o(uf,.) e û(uf) which is equivalent to l.s.c.

by Lenma 2.7 .

l.le note that the delta we provide for a given epsilon js obtained

directly from the equi-1.s. continuity of {rf(.,u2)i u2 € Uz} and

hence may depend on ul ¡ut is independent of o(ufl,.). lle no!,J concen-

trate on the class F = {h(ur) = i=ì::,¡llu, - ü'rl - ô, i {ü'r}l=, 
= 

ü

{a. }l-r c R; n € Z+} and define a concept of convexity on this class

of functions.

Definition 2.11 : For À € [0,1], uz, iz € U, ô > 0, õ t O, we let

(t-r) o N(ur,ô) e ¡ o N([r,õ)

= N((l-À)uz + tü2, (o-6)(1-À) + õ) .

So, 'if À = 0 we get Ñ(ur,ô) and if À = L we get Ñ(ü2,6) as one would

wish. Now if ft, f2 €- F, then as usual we have

rt (b) = Ñ (ü'z ,a +b)
1

n

n

m

n

and

rr(b) = ñ(û1,â +¡).
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then we have proven (a).

Suppose lluz - ûzll + 6 < ô,

llüz - ûrll + õ < ô,

which is equivajent to (i) and ìet

u! e ñ((l-¡,)uz + Àû2,.(1-l)o + rõ) ,

ie. llu! - t(1-À)u, + Àürll < (1-r)o + ¡.õ .

Then

iluä - ûril < ltu! - t(l-À)u, + Àüzlil + il(1-¡,)u, + ).ltz - ûrlt

< (1-r)o + rõ + l (1-À)(u r-ìr) + À(üz-ûr)l

< (t-r)o + rõ + (1-À)ll ur-ûrtt + Àl u2-ûzl

< (r-r)o + rõ + (1-r)(ô-o) + r(ô-õ) = o.

(b) This fotlows immediately from the observation that

uz€ n co {ñ(u'r,0. ) u ñ1t'2,0, )}
r ¡J

is either a vertex,and hence must lie on the boundary of either

Ñ(u'r,ô. ) or Ñ1ü'r,0, ) for some í,j (and i.ns'ide al'l others),or

must be internal to the convex set

n õõ {ñ(u'2,ô. ) u ñ(dr,o. )1.
i'j ¡ J

In the latter case it must lie on the line segment which, can be made

"paral'leì" ('ie.in the "direction" of (u', - u'z)) to the axis of

the set õ tÑ(r'r,ô, ) u Ñ(üL,ô., ) for the i,i which obtains the

minimunr of ci(uz, bdd co {Ñ(u'r,ô. ) u Ñ(dr,ôj )}). This line segment

may then be extended so that the end points lie in Ñ(u'2,ô. ) and

ñ (ü'r, ôj ) .
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Proposit'ion 2.I0 z Let fr, fz € F ; f3 € SC'(U2 ).

(i) Iff3 ( fr and fs ( fz,then fa < (t-f) oft e À ofz

(ii) If fr < fs and f2 ( f3,then (1-À) o f, e À o fz ( fs.

Proof :

(i ) Let f1(ur) = .,=ì:?,nltr, - ü'rrl - a.

r,(url = ¡=ìTl,ntt 
uz - û'rrl - aj

fr(ur, = tü0,'uz - ü2il - a.

Now as v (a,ür) € D

t

t

lluz - u.ll - a < fr(ur) <
sup

i=1, . ,n Ituz - ü'ztl a.
I

4.,
J

wehaveVbthat

and

From Lemra 2.9 b/e can deduce

n (1-À) a¡ Ñ(ü',,u, +b) o À o ñ(ûtr,â +o)
í, j

-o{Ñ(ü'r,a. +b) u ri(û'r,â. +¡)l
r. J

Ñ(ü'r,a. +O) u ñ(û'2,â +u)t
J

. ñ(ür,a+b); v b.

ll uz - urll - a < fr(ur) <
sup

j=1r. ,flluz - ûlll

Ñ(üz,a+b) = ñ(ü;,a. +b),

ñ(ur,a+b) = n ñ(û'r,â+U).
j=t

n

n

m

I

cn
i, j

õ {
i

n

n
m

n

Hence by Lenma 2.8 and Definition Z.LZ
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(1-À) o fr(uz) o À o f2(uz) > llu2 - ü2ll -a

v (a,u-r) e o

and hence

(r-r) trfl(ur) e À af z(uz) > tfhuz - üzll - a

= fa(uz).

l,rle have

(ii) (1-r) of1(ur) * À ofr(ur)

= ì:5 lu, - {(r-r.)ü', + rû',}ll - {(l-r)a. + Àe }

. ;:5(1-À)uu, - ülrr - (1-¡,)a. + Àluz - ûtlr - lâ..

Hence

(1-À) or f1(ur) * À o fr(uz)

< (t-r){ i=ì::,¡lu, - ü',n - u, Ì * r{j=ì::,¡ru, - ûtrr - 1 t

< (1-À)f.(ur) + lfr(uz) = fe(uz).

Lerma 2.10 : Su ppose À : U1 + [0,1] is a continuous function. Then

ur * (l-À(ut)) o ft e À(ut) O f, for f1, fz € F is continuous from

Ur to C(Uz).

Proof : Suppose uÏ * ur in Ur and ìet

(1-r(ut))üt + À(ur)û', = u(r(ur))

(1-¡,(ur ) )a. * r(u, )â, = a(À(ur ) ).

Then
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sup
V2

luz - u(À(u1))l - a(À(u')) - {lu, - u(À(uÏ))l - a(r(ui))}

_ sup llu2 - u(¡.(ur))ll -lu, - u(À(u'ì))t - a(À(u')) +a(r(ui))
Uz

sup
U2

ltu2 - u(¡.(ur))lt - #uz - u(À(uï))l + la(r(ui)) - a(À(u'))l

< lu(À(u,))-u(À(ui))ll + la(À(uT)) - a(À(ur))l

< l-(À(ur) - r(u'ì))u', + (À(ur) - r(uT)ûLrr

+ l-(À(u,) - rluil)a¡ + (r(u,) - ¡,(ui))11

Theorem 2.9 : Su ppose U is reflexive locally F-normable, the cond'itions

of Proposition 2.9 are satisfied and fi(ut) is defined as before. Then

V e > 0,the mapping ur * Ñ(Q(ur),e), where the neighbourhood is taken

in C(Uz), admits a continuous selection from U1 to the space F considered
as a subset of C(Ur).

Proof : For every h € F we let

v(h) = {u, : h e ru(û(u,),e)}

= {ur : û(ur) n N(h,e) I 0}.

Now, as V is l.s,c. from Ur to C(uz) and h € C(Ur),we know V(h) is

open in Ur. As û(ur)=F; v ur € U, we know {V(h) : h € F} is an open

cover of U1 and as U1 is compact there exists a finite refinement

iV(h. ) : i=l,..,rìÌ which covers U1. Let {À. (.) : i=l,..,rì} be a par-

tition of unity subordinate to this cover. Then ur * À. (ur) is

conti nuous

À : Ur + [0,1];

À.(ur)10 iff h, €N(û(ur),e);

l=rr..,n

1

I \(ut)=1

and

(s)
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From Lemma 2.L0 we know that

ur +f(ur) = pr(ur) on, o pz(ur) oh, ... o p (ur) oh,

f : Ur * C(Uz) is a continuous function and f(ur) e f.

From Proposition 2.10 we can conclude,since

d(.,re(ur)) - 3e < h. (.) < d(.,r(ur)); V i=lr.. rfì

iff\(u')/o

and d(.,tr(ut)), d(.,r(u,)) e scr(ur),that

d(.,rr(ur)) - 3e ( t(ur) < d(.,r(ur));v ur € ur.

That i s

f (ur ) e Ñ(û(u, ),e ); v ur € ur.

Corol lary 2.9L : Su ppose the cond'ition of Theorem 2.9hold and f (.) ìs a

convex valued u.s.c. multi-valued mapping which is being approximated

above by a 'l . s . c. mul ti -val ued mapp'ing

re(.) = r(.) s.t. ¿*(Fe,G) < e.

Then 
= f : Ur * C(U2) continuous s.t. f(ur) e f,

ur + T.(ur) = {uz €tJz : f(ur)(ur) < 0}

is Hausdorff continuous convex closed valued and

t't(rr(ut ),3e ) =_ Tr(u' ) 3. r(u, ).

Proof: We choose f as Ín our previous theorem. The last assertion

follows immediately from our choice of f and the definition of û(.).
We fleed on'ly show that Ta(.) is Hausdorff continuous,which amounts

to showing Tr(.) is uniformly u.s.c. on Ur (see Corollary 1.13).
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Asve>0rô(ür)>0s.t.

lf(u,)(uz) - f(ür)(ur) 
I

< llf (ur ) - f (ür )ll < e for ur € N(ür,6) ,

{f(.,u2) : u2 € Uz} is an equi-continuous class of single valued

mappings with respect to ur. Now as Ur is compact, f : Ur * C(Uz)

must be uniform'ly continuous, and we may choose v e > 0 a ô(e) > 0

independent of üt e Ut and of course u2 € lJ2 (because of the equi-

conti nui ty) .

Henceve>01ô(e)>0s.t.

f(ür)(uz) - e ( f(ut)(ur); v u1 € N(üt,ô).

Thus

T.(ur) = {uz€Uz: f(ut)(ur) < o}

c {uz € Uz : f(üt)(ur) - e < 0}

= {uz : f(ü,)(ur) < e}

= N({uz : f(ü,)(uz) < o}, e)

= tr,t(Tr(ür),e),

the last equality following from f € F and corollary 2.7 as the cut

sets are metrical'ly íncreasing wíth a rate n(x) = x. ¡

Corollary 2.92 z Suppose all the conditions of Pro pos'i t'i on 2 .7 are sati sf i ed.

In particular, Uz sôtisfies cond'ition (ii) and f : U, - KV(IJù is

u.s.c.. Then V e > 0; 3 fe : U1 + KV(Uz) Hausdorff continuous s.t.
if c js the graph of r(.)

G. is the graph of fr(.)
then d*(Gr,G) < 4e.

Proof : This follows immediateìy from the previous corollary. tr
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CHAPTER III

Since K0kutani, it has been observed that certajn multi-valued mappings

admit fixed points. Convexity of the image sets of these mappings has

played an essential role in the development of such theorems. Little
progress has be.en made i n rel axi ng convexi ty requi rements . Conver:sely

no total'ly geometric proof of Kokutani's theorem has been given. One

notes that even in going from R to R" , one loses the .,property that

al I continuous mul t'i -val ued mapp'ings admi t f i xed po'ints . Thi s contrasts

dramatically with single valued mappings. One needs to restrict the

shape of the ìmage set, or how'it "changes", to prov'ide an affirmative

answer to the fixed point prob'lem.

The other area of mathemat'ics which uses convexity to high degree is

the theory of nonlinear opt'imization. Researchers have been much

more succedsful, in recent years, in weakeníng (and removing) convexity

assumptions jn this area. Since in the context of reflexive Banach

spaces, one can approximate upper sem'i-continuous multi-functions, at

least as well with continuous multi-functions as one can with lower

semi-continuous multj-functions, we are able to view Kokutani's

theorem as a consequence of nonlinear opt'imization. To do this v{e use

the work of Arri go Ce1 I 'ina .

This approach allows us to reduce the problem of finding a fixed point

of a multj-valued mapp'ing, to the prob'lem of finding a fixed point of

a s'ingle valued mapping. The natural question of, how large 'is the

class of problems amenable to th'is approach, arises. An attempt 'is

made to identify the essential 'ingred'ients required to app'ly th'is

approach to a general mapping. The lattice theoretic nature of con-

vex'ity enters in a natural way and continuous lattice theory proves

usefuly 'in analysing such an approach.
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Convexity assumptions are not removed but their role redefined, in

the context of the abovementioned spaces. Quasi-convexity and strictly
quas'i-convex functions enter naturally in an attempt to understand

the contribution of the "changing shape" of the image set has on the

over all "motion" of the set valued mapping. l.le show that if a

quasi-convex funct'ion can be written as the pointwise supremum of a

collection of strictìy quas'i-convex functions, then the resultant

set valued mappings 'in fact approx'imate each other in graph. This

implies that the fixed points of the approximating set valued mapp'ings

approximate the fixed points of the original.

93. 1 Fi xed Po'ints of Mul ti -Val ued Mappi ngs

Arri g o Cel I i na obs erved the fol I owi ng .

Proposit'ion 3.1 : Let U be a c ompact metric space hav'ing the fixed

point property. Let f : U + 2" be a closed multi-valued mapping.

Assume for an arbitrary e > 0 there exists a continuous mapping

f : U + U, depend'ing on e, such that if Ge and G denote the graphs

of f and f respectively, we have

d*(G.,G) < e.

Then f has a fixed poìnt in U

Proof : Reference t14l proposition 1.

He obtained generalizations of certain fixed point theorems, obtain'ing

h'is particular f by selecting from a l.s.c. approximation to

f. In relatjve 'nice' spaces we can approximate the graph of f with

the graph of a Hausdorff continuous mapping. Does this telì us any-

thing more?

Definítion 3.1 : Let g be a cont'inuous numerical function defined on

a topological space U. A family of compact sets {K :'i € I} is said

to be selective with respect to g if there exists one and on'ly one u-.
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for each i s, t. K,;g(t{)=max{g(u.)tu,€u.
I

€ K.Ì
I

In a Banach space the strongly compact convex sets are selective.

This follows by choosing g(u) = -d(O,u). In a strict'ly convex space

the sets {{u : h. (u) < b}; i e I} for h. € F are selective. This

follows from the observation that

r,(b)={u:h.(u)<b}=
m

n N u ,a¡ +b)

and that any continuous non-identically zero linear functional takes

a mìnimum on the cìosed unit bal'l at only one point. As a consequence

any linear functional non-identical zero will do for g(.), since

fi (b) is the finite intersections of closed unit balls.

Theorem 3.1 : Let f(.) i tJt -+ 2"2 be a continuous multi-valued ma ppl ng .

If the famj]y {f(ur) : ur € Ur} is selective, there is a s'ingle valued

continuous mapping o : Ur * Uz S.t. o(ur) € f(ul) ; V ur € Ur.

Proof : Reference tll theorem 3, page 117.

It has been known since Schauder that the strong'ly compact convex

subsets of a Banach space have the fixed point property for strong'ly

continuous mappìngs and the convex weakly compact subsets of a

separab'le Banach space have the fixed point property for weakìy

continuous mappings. As a consequence we can deduce the fol'lowing.

Theorem 3.2 : Suppose;

(i) U is a reflexive Banach space,

(ii) U1 c U is a convex,weakly compact locally F-normable

set in U, and

(iii) t : Ur * Ktl(Ur) is weak'ly u.s.c. (in fact, weak'ly

Hausdorff u.s.c. with respect to the F-norm).

Then f has a fixed po'int.
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Proof : This follows frorn corollaryz-gl,oroposition 3.1 and theorem 3.1

noting that ut has the fixed point property as ít is weakly compact,

convex and separable (since all compact metric spaces are separable).
tr

This forms a comp'lementary result to the Kokutani theorem in

Banach spaces. In the same fashion we could have deduced the

Kukutani theorem.

How far can we extend this approach? If one checks the proof of

Theorem 3.1 then one sees that the selection c¿ of f was obtained by

(A):

o,(ur) = {uz : u2 € f(ur) : g(uz) = [1(ur)],

U(ur) =max{g(u2) = uz € I(ur)},

where f(ur) is selective with respect to g.

The continuity of c¿ follows from the fact that in genera'l cr(ur) would

be u.s.c. multi-valued,but since it reduces to a single poìnt mapping

it is contjnuous. The scenario of the proof proceeds as follows.

First we need to decide when one can approximate an upper semi-con-

ti nuous mappi ng f rom above by conti nuous mul ti -val ued mappi ngs . l^le

need to'impose some sort of convexity restriction on the image sets

of r(') for this to happen. we will not answer thÍs question but

will reword it to emphasise the role of convexity. t,'le begin by noting

that the notions of generalized convexity can be extended from

function f : tJr + R* to mapp'ings f : U, + L where L js a continuous

I atti ce.
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Definition 3.2: Suppose L is a coñtinuous lattjce. f:Ur + L ìs

called O convex, where Q is an arbitrary set of mappingsü:Ut + ¡,

ifl0rc0s.t.

r(ur) = v ú(u, ) .llj€o'

In this way for a continuous lattice 0(Ur) tfie Scott continuous

mappings IUr, x0(Ur)] can be considered convex,since by proposition

1.10

u,e,r, (.) e [u,, x0(ur)] if v i,l (.) e [uþ xc(ur)].

The question then arises whether there exist a class O c [Ur, I0(U2)]

of cont'inuous mul t'i -val ued mappi ngs whi ch generates IUr , I0(U, )] . In

general the answer is no. t,.le need to restrict the lattice L = O(Uz)

to have any hope of a posit'ive answer. Ì^Je do this by using

L = CÕ*. (92),the continuous lattice of complements of Õ-convex sets

on a compact Hausdorff spacê Uz. Once again the class [Ur, X Co"e,(U2)]

is closed with respect to arbitrary unions if O(Ur) is a continuous

lattice,itself. This class can be considered as consisting of convex

functions in the sense of definit'ion 3.2 and hopefully by choosing

O-correctly we may find a generating class J c [Ur, XCO.F,(Ur)l which

consists of Hausdorff continuous mappings. To achieve a generalization

we need "c and 0 to satisfy two more conditions.

Fjrst, CÕoe.(Uz) must admit a generating class O which is selective

with respect to some continuous mapping g(.) and Cooo(Ur) must be

compatible with the metric on the space Uz in the follow'ing sense.

If S c Uz is 0 convex then so js A(S,r); V e > 0.

Secondly, the J we are seeking must consist of Hausdorff continuous

mappings T : Ur *A={S={uz; þ (ur) , a}; rl € o}. This amounts jn
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practice to the following problem. Our multi-valued mapping

r(.) e [ur, xco*,(ur)J is given by f(ur) = {uz'supúe',ü(ut,uz) > a},

where f (ur,ur) = suP{,6q',f (ur,uz) is most probab'ly l.s.c. with respect

to U1 x [J, (to ensure u.s.c. ) and the rf 's are continuous on Urxuz. [.le

need to know when the cìass "c = {T(ur) = {uz : ú(u t,uz) > a}; ú € o'}

is Hausdorff continuous

lrle also need to be able to shrink the image sets of our multi-valued

mapp'ings. The lattice of sets Cooo,(Ur) cannot be an arbitrary class

of open sets. T^le define for A € Cooe,(Uz) S(A,e) = tN(A",e)1", the

shrinkage of the open set A. If we shrink a set We may not be able

to recover the originai set by expanding, j.e. N(S(A,e),e) I A- For

example let A be the union of a collection of disioint balts tl(u.,|)

'i .e.

A = U N(u , firn n

This set is by definition open, but we cannot shrink it by any e > 0

without losing some of these disioint balls.

(Uz) set a small amount and beWe need to be able to shrink our C0

able to recover it again, i.e.
ps

N(S(A,g),ô) = s(R,e-ô) for 0 ( ô ( e,

for e sufficiently small. llle will call such a set shrinkab'le if
there exists an ã > 0 s.t. for 0 < e < ã, the above equaììty holds

for all 0 < ô < e. If the set A'is generated by a "constrajnt"

functìon f(.) = (ft(.),fr(.),...,f_(.)) tfre above definítjon of

the shrinkage becomes equívalent to that of reference t131.

That is, if A = {u;f(u) > 6i for some continuous functjon f('), vve

have 'in the case when

bddA = {ue clA : f, (u) = b¡, some i}
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that

S(A,e) = {u € A : d(u,bddA) > e}.

Lemma 3.1 : Su ppose U is a metric space and A is a closed set. Then

A" I 0 implies S(A",e) I O for e > 0 sufficiently small ;

S(N(A" ,e ),ô) = N(A,e-5) for 0 < ô < e; and

if, some set B and ä > 0 C= N(8,;), we have

N(S(A",e),ô) = S(4",e-ô) for 0 < 6 < e < ë.

(i )

(i i )

(i i i )

Proof : I,le begin by first showing that

S(N(U,e),ô) = N(u,e-ô),

for0<ô<e.

Si nce

N (u,e) = {ü : d(u,ü) . r},

we have

Hence

implyi ng

[(ru" (u,e),ô) - N' (u,e-ô),

that i s

S(N(u,e),ô) = N(u,e-ô).

Ñ'(n"(u,e),ô) = {u' : d(u',ü) < o and d(u,ü) > e}.

d(u',u) > d(u,ü) - d(ü,u') ) e - ô

Now suppose u' € N(u,Ê-ô).
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I'le must show that there exists a

ü e N" (u,e) s.t.

d(ü,u') > ô.

Si nce

u'eN(u,e-ô)cN(u,e)

u' É N" (u,e).

Let ü be the closest point in N'(u,r) to u'. This is unique

and ü € bdd N(u,e) = {u: d(u,ü) = e}. This implies that,

d(u,u') ¡ d(ü,u) - d(u,u')

> e - d(u,u')

>s-(e.ô)=6

and subsequently,

u' € N" (N" (u,e),ô)

= S(N(u,e),0).

l,Ie now show that for 0 < ô < e we have

S(N(A,Ê),6) = N(A,e-ô)

By wrÍting

tt(R,e) = u{N(u,e) : u € A},

we have
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N(N'(4,Ê),ô) = [(n{N"(u,e) : u € A}, ô)

= n{ñ-(N"(u,e),0) : u € A}

= fì{N"(u,e-ô) : u € A}

=(U{N(u,e-ô) :ueA})"

= N" (A,e-ô)

implying the above result.

The first result of the *Tf.tn.lation of the lemma fo1ìows by

consi deri ng

u € 4".

Since A" is open, f ô > 0 s.t.

N(u,e) 
= 

n".

Hence

S(N(u,ô),e) -- S(4" ,e)

and

u € N(u,ô-e) . S(4",e), for 0 < e < ô.

The tast part of the lemma follows almost jmmediately from what

has been done. If A" = tl(B,ã) then for 0 < e < õ we have,

s(N(8,õ),r) = N(8,ð-r).

Hence we have for 0 < ô < e . õ,

N(S(4" ,e),6) = N(9,õ-(e-o))

= S(N(9,ã),e-6)

= S(4" ,e-ô). tr
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Lenma 3.2 : Suppose U is a reflexive Banach space and A c U is

a weakly compact, convex subset.

Then there exists a set B and ã > 0 s.t.

A" = t',t(g,ã).

Proof: Choose ã > 0. Since A is weakly compact and convex jt

can be expressed as the intersection of a collection of closed

balls (see Theorem 2,3). For any such ball t'l(u',b) and

u € bdd N(u',b), there exists a ball

N(ü,;) = N'(u',b) s.t.

N-(ü,e) n i'l(u',b) = {u}.

As a consequence we can express A" as the un'ion of a collectìon

of balls of radius ã.

Let

{ru(ü ,õ); i € I}

be such a collection. lle define

B = {ü. : F(ü. ,r) n A I O} iJ S(4",ã).

Ifu€Btheneither,
(i ) u e S(4" ,;) and d(u,A) > ã, or

(ii) , = ü,, for some i € I, in which case

d(u,A) = d(ü. ,A) > õ.

Hence

N(u,ä) 
= 

A" and N(8,;) 
= 

4".
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Take u € 4", then either

(i) u € S(4",;) and u € B, or

(ii) d(u,A) < õ. In the latter case

u € N(u, ,.), for some i € I s.t.

ñ-(ü,,ã) nAlO.

That is

N(8,;) = A" .

Proposition 3.2 : Su ppose U1 and Uz ôFê compact and metric and

r(.) e [Ur, xC%, (Ur)l,which has a generating cìass J derived from

O'={V:UrxUz*R},

0 bejng compatible metnical'ly and consisting of I.s. continuous

functions. Suppose also that the COoe.(Ur) sets are shrinkable.

Let f(ur) = {u, : f(ur,uz) > a} and suppose f(ur) = {uz: ú(u1,u2) > a}

is Hausdorff continuous.

Then 3 a class of Hausdorff continuous mappings Tr(.)ocÕ.0.(uz) - con-

vex s. t.

d*(Ge,G) < e; v e > 0 and Tr(ur) << r(ur); v u1 € U1,

where G, is the graph of f"r(.) and G is the graph of f"(.).

Proof: As f(.) e [Ur, ICoop,(Ur)], U2 a compact Hausdorff space,then by

proposition 1.8 r is i.s.c. and hence f"(.) is a closed valued u.s.c.

mul ti -val ued mappi ng wi th O-convex 'image sets .

Thus 5y Theorem 2.7 there is a l.s.c. multi-valued mapping

M
Ç/2

(.) s.t.
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M./z(.) =f"(.)
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(ut),e)

and

d*(Graph M ( .), craph f" (.) ) < e/2.el2

l,Ie define

coO(A) = fl{S: Ac;S Þconvex}

and show that

coo M.r2(

is l s.c. as welì.

Foranyõt0

M./z(ur) c col4rrr(ur)

impl i es

i'l (Me/z (u, ),ã) - tT(coal/.r/Z(ur ),ã)

a O-convex set itself.

For v ã r O, f ô > 0 s.t. if ur € N(ür,ô), then

.)

M ¿/2
(ür) - N(Mel2

'imply'ing

cOQM (ü') 
=co 

o N(M (u,),ã)
¿12 el2

g N(co a M./Z(u'),ã).

Sim'ilarìV fr(ur) = Ñ(co a ¡\./zfut), e/21 is Q-convex and by

propos'ition 1.11 it is also i.s.c. and hence l's'c"
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Also d*(Graph fe(.), Graph f"(:)) < e as

Me/zfur) s N(r" (ü ), e/2)

imp'lies

co a l4e/Z(ur) g co @ N(r" (ür), e/2) c N(coÕr" (ut), e/2)

once again due to Õ's metric compatibiìity and the fact that

co o r" (ü ) = ro (ür).

By tettìng Kr(ur) = ri(ur) we obtain an u.s.c. multi-valued mapping

as rr(.) is i.s.c..

Now N(r"r(ur), e/2) = lco Õ Me/z(ur)]" S r(ur) for all ur. ]lence

fr(ur).. r(ut); ur € U1, where << Ís the way below relation on

C0 (Ur). l^le now argue similarìy to Lemma 2.1. As r(.) is generated
op

by.C,= aclassOrcOwith

or = {ú. (ur,uz); i € I} s.t.

f(.) = ,ial{rrt úJur,u.) > a}.

If we define S(r(ur ),ô) = Iñ(r" (u, ),6)l'

p(ur) = sup{ô:rr(ur).. S(r(u,),6) and

i'l(s(r(u'),ó),€) = s(r(u,),ô-ð) v o < ã < ôÌ

and note that p(u1) > 0 v ur € Ur,since r(ur) is shrinkable.

By using the compactness of ur vnrê can show p(ur) is bounded away from

zero on U1. Suppose not, then = u'ì s.t.

p(ui) < L/n; v n €z+.

By the compactness of u, there is a convergent subsequence to ü1 say.

After renumbering ui + ür and p(uT) + Q; ¡ + æ.
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l,le know that v 0 < ô < p(ür), we have rr(üt) .. S(r(ur),0). As fr(.) is

u.s.c.,if we let o < ; < ô < p(ü1),= a neighbourhood N, of ü1 s.t.

r"(ur) 
= 

N(r.(ür),ã); v u1 € N1.

Let e' = ;-.(ô-ã) > 0. Then = Nz a neighbourhood of ür s.t.

fo (ur ) 
= 

ñ(r" (ü, ),e'); v u, € Nz.

(Note that we may make e' as small as we like by letting ô be sma'l'ler. )

As

r(ur) - tÑ(r" (ür),a')1"

= S(f (üt ),r' ); v ur € N1 o N2,

we have

rr(ur ) . N(rr(ü, ),ã) << N(s(r(ü, ),6),ã)

= S(r(ü,),ô-ã) = S(r(út),Ze') = S(S(r(ür),e,),e')

c S(r(ur ),e' ).

For n sufficiently large we have ur € Ns c Nr fì Nz, where Ns is a

neighbourhood of ür. Hence p(üÏ ) > e' for n suff icient'ly large,

a contradiction.

Now as r"(.) is u.s.c. we have ñ(r"(.),ô) is u.s.c. and hence

tÑ(r" (.),0)1" = S(r(.),0) is i.s.c.. since ñ(r'(ur),ô) is o-convex

v ô > 0,we have S(r(.),0) e [Ur, xCooo.(Ur)1.

If we choose 0 < ô < 'inf{p(u,)i ur € Ur} then

rr(ur) << s(r(ur),0); v ur € ur.

By hypothesis there exists a class
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O, = {4 : U¡ x Uz + R; i € I} s.t.

uie I{u, : rf , (u1,u2) > a} = S(r(u, ),ô)

wi th

{uz :ü¡(ur,uz) >a} e [U1, ICo*,(Ur)]

Hausdorff continuous.

Since for each ür € Ur these sets are in the lattice COo*(Uz),= a

finite number, i = 1, .., N(e), s.t.

,i:r' {u2 : ú,(ür,uz) > a} >> rr(ür )

and

S(r(ur),ô) = u["r' {uz : V,(ür,uz) > a}.

l,'le I et

,r.(ür) = uf!",)tu, ,V,(ür,uz) > a]

and note that since

nr(ür) >> r.(ür), J ô, õ; o < ô,õ. ô s.t.

S(n.(ür ),6) 5 n(rr(ü' ),6).

As rr(') is u.s.c. at ü1,f a neighbourhood N,* of ür s.t.

N(re(üt ),6) = r(ut ); v ur € N¡+.

ns na(') is u.s.c. at ür,3a neíghbourhood Ns of ür s.t-

N(,L(ür),ô) 
=^a(ur); 

v ur € Ns

Hence V ur € N5 c Na 0 Nr,a neighbourhood of ür, we have
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rr(ur) 
=N(rr(ü'),õ)

(ut )c
e

c S(r(ut ),0) c r(ur ).

Th'is impìies

rr(ur) .. ^r(ut) .. r(ur); v u1 € N5,

and since ür € Ur 'is arbitrary the collection of all such neighbourhoods

forms an open-cover of U1. Since U1 is compact there exists a finite

sub-cover {N(uì); i=1,..,M}, Sâv. For each i we have a 1(ut) s.t.

fr(ur ) <. ,ir(u, ) .. r(ur ); v ur € N(ui ).

lde def ine

e

and note that

rr(ur) << Tr(ut) <. f(ur); v ur € ur,

istnce eacn 
^ e

js defined by a sub-collect'ion the mappings

{q,. (ur,.uz) : j € I},where

uj.t{u, t V, (ur,uz) t a} c S(r(ur),6) " r(ur).

For the problem, alludedto above, of findíng fixed points of mult'i-

valued mappings, we can approximate the fixed po'ints of the origÍnal
N

mapp'ing by the fixed points of a mapping fe(ur) =.0-{uz t ,ll, (ur,uz)(a}
r =l

for an appropri ate choi ce of ü, 't.

Tr(ur) =

M

U

=1
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Since these sets are o-convex and the sets {uz : ú(ur,uz) ( a} are

selective with respect to a given continuous function g(.), the image

sets of Te(.) are selective with respect to S(.) as well,since

max{g(ur) z uz € r"r(ut)}

mln
i=1r. ,N

max{g(uz) : ü. (ur,uz) < a}.

If we suppose this max is achieved at more than one point,at û, and u-,

say,then g(ûr) = g(ür).

As T"r(ur) 
= 

{u, t ú, (ur,uz) < a}; v i and as we can see from above ûz

must be the unique max of g on one of the generating sets, on set i,
say, hle have

ir, ú, € {uz: U. (ur,uz) ( a}

and hence g(ûr).9(ür) a contradiction

Acontinuous selection of T"r(ur) whereMr(ur)=max{g(ur) : uz €T"e(ur)},

ìs
crr(ur) = {uz : l4r(ur¡ = g(uz) : ü. (ur,uz) < a; v i=1,.,N}

and its fixed points can be used to approximate those of the original

problem. The problem of findjng crr(ut) for each ur is a constrained

non-linear opt'imizat'ion problem. Much work has been done on this

problem for R" = Ur = Uz. Recent'ly the constrained opt'imization

prob'lem has been Ínvestigated in more generai spaces (see reference

[5], [6], tlll ). lnJe will not deliberate on the Banach space fíxed

po'int problem any longer in this discussion, but turn to the problem

in Rn.

Even'in the case Rn the question of what continuous multi-valued

mappings admit fixed points has not been fully explored. l'le know

that in Ia,b] all continuous multi-valued mapp'ings admit fixed
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points but'in even going over to [a,b] x [ô,b] we lose this

property.

The question of selectivity of sets in R" has not been jnvestigated

except for convex sets of course, The other question of what con-

dition ensure Hausdorff continuity has been investjgated and deserves a

menti on,

Theorem 3.3 : Given a continuous function f : R" * R", supposewedefine

r(b) = {u € R" ; f(u) < b} for b € R".

(a) Then the mapping f Ís u.s.c. at 6

jff 
= 6 r 5 r.t. t(Ê) is compact

(b) rf r(b) Ís compact I(5) I O (ie. 5 e int B),

then the mapping r is l.s.c. at 6 irt c'l I(6) = l(6),

I(b)={uef;f(u)<b}.

Proof : See reference t131.

tlJe let

G(E,g) = {g : g cont., {u € R" : g(u) < 6} I 0,

j=i:i,n 'lols, (u) - s, (u)l < oo]

and define a metric on G(5,S) using

d(r,g) = ¡=iÏ,n 
tlols, (u1 - r, (u)l

and

o(g) = {u e R" : g(u) < b-} for g € G(6,g).

We can discuss upper and lower semi continuity of o(') with respect

to the metric space G(6,g) and R". As usual r(U) = 1, : õ(u) < bÌ.
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(a)

(b)

o is u.s,c. at g iff f is u.s.c. at b.

l-etI(6) ¡ O (ie. 5 e int B(g)).Theno is l.s.c. at s iff r is

l.s.c. at 5.

Proof : See reference Í201.

Theorem 3.5 : Suppose g is l.s. continuous.

(a) If g is strictly quasi convex and I(6) I Q,then cl I(b-) = r(b).

(b) Ifg(.) isquasì convex and f(5) is compact,then = õ t 5 s.t.

r(6) is compact.

Proof : Direct modification of those in reference

g is continuous instead of l.s.c..
[13],which assume

In (a)wenotethattiel.s.c. of g(.) suffices for r(6) to be a closed

set.

In (b) we note that given b,,. u + uo and g(u
nJ )<b n

then
nJ

V e > 0; n. sufficr'.ently 'large,
,J

Theorem 3.4 :-

g(uo) - e < g(u )<b

*E

ç 6 + e.
nJ nJ

Hence g(uo) < 6 + 2e and e arbitrary implies g(ug) < 5.

Corollary 3.5 : A l.s.c. function g : U * R", for U c R" convex,

is strictly quasi convex iff

(i) r(b) = {u : s(u) < b}

is cìosed convex V b, and

('ii ) for b s. t.

I(b)=1r:f(u)<bllQ

fl

we have cl I(b) = r(b).
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Proof : Because of the previous theorefn we need only to show the

conditions are sufficient.

Obviously g is quasi convex.To show strjct quasi convexity,we need to

consíder u, û e U where g(u) < g(ü).

l,Je have u € I(5) where 6 = g(ü). It follows that

u € Int r(6) = reint r(6)

si nce

cl I(6) = r(5),

where re-int stands for the relative interior of

f(5) (see reference Í231 pages 44, theorem 6.1).

As a consequence Àu + (1-À)ü € re int r(5);r € (O,l),that is,

Àu + (1-À)ü € Int r(5)

= l(6).

Hence g(Àu + (1-À)ü) .5 = g(ü) and g is strictìy quasi convex.

Theorem 3.6 : Su ppose f is l.s.c. on U c R" and quasi convex. If

I(.) is l.s.c. at b v b e B,then f is strictly quasí convex.

Proof : 0nce agaìn this is a direct adaptation of that in 1201, which

assumes that f is continuous. We note that in fact the author usès

onlya one sided inequality in his proof which is associated with the

l.s.c. of f. ¡

l,Je wish to conjecture at this point that all l.s.c. quasi convex

functions can be obtained as the supremum of l.s.c. strictly quasi

convex functions.
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Theorem 3.7 : Suppose f is lower semi continuous and defined on a

convex subset U c Rn. If f is strictly quasi convex on U,then f is

quasi convex on U but not conversely.

Proof : See reference t191 page 139. tr

The above theorem supports oúr coniecture in that the class of 1.s.c.

strictly quasi convex functions is a subclass of the quasi convex

I . s. c. functi ons.

It is eas'i1y seen that the supremum of l.s.c, quasi convex functions

is once again quasí convex l.s.c., since

r(6) = {u'ìËT i(u) < u}

= fli€I tt (6)

= fìr.r{u : f. (u) < 6}

is closed convex iff all I (b) are closed convex.
I

From coro'l'lary ?,2 we can observe that if our conjecture is correct

then for closed convex bounded sets U c R" the class

l.s.c. quasi convexÌ

js a continuous lattice generated by

SQC(U) = {f : f : U * Rn ; U c R" l.s.c. strictly quasi convex}.

As usual we would use the lattice ordering of R" je.

ie. u= (ur,..,u )< (üt,...,ü)=ü ittu.<ü.,vi=l,..,n.

!,le will justify this assumption in the'last chapter. For now we will

investigate the method of choosing a continuous selection to approxi-

mate the points of the original multi-valued mapping. l,le are deaìing

QC(U) ={f :U*R";UcR"
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with the minimization (or max. ) problem
(MP);

f. : U1 x Uz + R jointly continuous for all i=1,.. jrTL

M(ur) = sup{g(ur) : f. (ur,uz) < 5; i=1,..,ffi},

o(ur) = {uz :9(uz) = M(ur); f. (u,,ur) < 5; i=1r. . ,m].

In order to find o(ut) we use a selecting function g(uz) = -d(0,u2)

or g(.) any strictly concave function, as the following indicates.

Theorem 3.8 ' : Suppose

sup
i=1r. . ,m

f-(b) = {u2: i (ur,uz) < b]

'is a convex set and g strictly concave. if ü is a solution to (MP) then

ü is the unique solution of (MP).

Proof : See reference [19], page 73.

Theorem 3.9 : Suppose f(ut,.) is quasí-convex and

= {f, }l=r, f, : U¡ x U2 + R" iscontinuouson Ur x Uz c R", where Uz

is compact and both Ur afld Uz ârê convex.

Suppose

(a) h-[ur,uz) = f. (ut,uz) < f(.ur,uz)sup
i=l , . ,lll

where the f. (ur,u2) are strictly quasi convex ,

(b) T,,,(ur) = {u2 : h*(ur,uz) < 5}

where

T(ul) = {uz : f(ur,uz) < 6} I O

and

(c) h (ur,uz) t f(ur,uz) pointwise.
m
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Then T (ur) is Hausdorff continuous V m and
m

n_ T_(ut ) = T(ur ).

Proof: First, as the f.'s are strictly quasi continuous and

S. (ur) = {u, : f, (ut,uz).< b-} = T(ur) I O

is open, Sl (ur) = {u. : i (ut,uz) ) 5} ls u.s.c. (has a c'losed graph

and Uz'is compact). From proposition 1.8 we can conclude S. (ur) is

Scott continuous. As a consequence so is ni=rS. (rt).

As Scott continuous mappings are l.s.c. multi-valued,we have

cl n'_rS. (ur)

i s I . s. c. mul ti -val ued and

cl nl=,s, (ur) = ni=,cl S. (ur) = nl=r{ur: f. (ur,uz) ( 5} = T-(ur)

(since the f.'s are strictly quasi-convex).

As U, is compact and the graph of T,"(.) is closed,T-(u1) must also be

u.s.c. and hence Hausdorff continuous.

The last statement folìows from

n-T-( ) = {u, , tÏo f, (rt,uz) < 6}

= {tJz : f (ur,uz) < 5} = T(ut ).

This demonstrates the generalized convexity nature of the problem. As

with what we have seen,we are most interested in the convexity gener-

ating class J = {f : f : Ur * R" continuous; cl I(b) = r(b)

v b €'int Bi for U, - R' convex and compact.

n
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Corollary 3.9 : If we make the assumptions of Theorem 3.9 and also

assume U1 to be compact,then = M s.t. for m > M we have

d*(c ,G) < e
m

where G_ is the graph of T-(.)

and G is the graph of T(.).

Proof : Let the generating class of O be

t, = {þ : U, x Uz + R continuous

!,(ut,.) strictly quasi convex V ul € Ur] .

Then all the assumptions of proposition 3.2 are satjsfied and we are

assured of the existence of a Tr(.) e [Ur, traoo,(ur)l s.t. d*(Gr,G)<e

where G, is the graph of Tr(.)

and G is the graph of T(.).

Since we have also

Tr(ur) .. T" (ur); v u1 € U1,

where Te(.) is Hausdorff continuous ,

all that remains to be shown is that for m suffjciently ìarge

T^(ur) -T (ut) -T"(ur); v ur € Ur
u-ùl

where T (ur) is defi.ned as i.n Theorem 3.9.
m

Since T-(ür) € xCooo,(Ur) and u*T"(ür) = T"(ür) we can defíne a

directed set D in

rcooe,(u2) bv {rl_,T" (ü, ¡; k=L,2,. .}

for whi ch

u{A € D} = T" (üt ).
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As

Tr(ür ) .. T" (ü, ),

there exists a finite k s.t

T" (ür ) t' { (ü, ) = ui= rqtU, ) >> rr(ür ).

As a consequence 
=¡ 

ô > 0 s.t

s(T; (ü1),ô)' N(Te(ü,),ô),

where

s(T;(ür),ô) tñ(r* (ür ),ô)1"

and

N(s({ (u-, ),ô),ô) = ri (ür ) ,

due to the openess of fi (ùr ).

Since T (.)
I

N(ür) say,

rs u.s.c.

urthere must exist a neíghbourhood of ü1,

as a con-

is u,s.c. at

for which

Tr(ur ) - N(rr(ür ),0); v u1 € Nr (ür ) ,

in which case we have

Tr(ur) - s(ri (ür ),0); v ur € Nr (ür ).

Since T (.) at ü1,ñ$u[r,),ô) r's u.s.c. at ü¡,andk

sequence

s(ri (u' ),ô)

1S 1 S C

tñ(rn (ut ),0)l'
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since {(ür) tt s(T;(ür),ô),3 õ r 0 s.t. (o < õ < o)

ri(ü') >' n(s({(ür),ô),6)

that is

{(ü1) : ñ(s({ (ü,),ô),õ).

By the defjnition of i.s.c.,3 ô neighbour Nr(üt) s.t. v ur € N2(ür)

ri (ur) = ñ(s({ (ü,),ô),6)

= N(S(T- (ü, ),0),õ).

If we tet Nr(üt).-Nr(üt) n Nz(ür) be a neighbourhood of ür,we have

ri (ur) = S({(ür),ô) 
=.Tr(ur); 

v ur € N(ú1).

Now k depends orì u1 at this point,but s'ince U1 is compact there exists

a fin'ite sub cover to the cover

{N(ur) t Tr(ut) 
=. 

Ti(ur); for some k(üt); ür € Ur},

{N(ui) : e=t,..,g}, sôJ.

For each u"1 there is a k(ui) = k s.t

T.(ur) . Ti" (ut); v u1 € N(ui).

Weletm=max{k : e=1,..,g] and note that

u{ri" (ur ) : e=l r. . ,g}

. suD= {uz r .=iil,q hn" (ur,uz) > 5}

e

. sup' i=1r.,m= {u,

= T" (ur ).

f. (ur,uz) > 5Ì
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If we 1et u1 € Ur be arbitrary there must exist an e s.t. ur € ru(ui).

Hen ce

Tr(ur) s. Ti" (u') s Tl(ur) 
= 

T" (ur)

and our result is proven.

In the quas'i convex case one could also conjecture that the pseudo-

convex functions are in fact good enough to approximate the l.s.c.
quasi convex functions (see definition 2.7). If so, this is
advantageous because of their simp'le differentiabje characterization.

l,Je note.

Theorem 3.10 : Let U c R" be a convex set and g a numerical function

defined on an open set containing U. If g'is pseudo-convex on U

then g is *rictly quasi convex on U and hence quasi convex.

The converse is not true.

Proof : Reference [19], page 143.
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CHAPTER IV

l,le have considered the approximation,'in graph, of upper semi-continuous,

convex-imaged multi-functions wi th continuous, convex-'imaged multi-

functions. This enables what is usual'ly a fixed point matter to be

pì aced i n the context of non-l i near opt'im'i zat'ion . The cont'i nui ty of the

"constraint set" or multi-function is essential in order to produce a

suffic'ient'ly smooth problem for this to be'impìemented. Thus the

conditions under which a constraint set, depending on a particular

parameter, can be considered to be a continuous multi-function, is

of interest.

In this Chapter, we begin by reviewing the work of M.H. Stern and

D.M. Topkis on rates of continuity of such multi-valued mappings,

as arise in non-linear optimization. We go on to extend these

results to a broader class depend'ing on a more general parametrizatjon.

In the'ir work in reference [24] the above authors consider a multi-

val ued mappi ng

f(b) = {u, : g. (ur) . o.; i=1,..,m} and show that
J-t

the Cottle constra'int qua'lif ication p'lays an important role in producìng,

not only continuity, but ìn fact, local l'inear continu'ity. We show that

under very simì I ar assumpti ons the mul ti -val ued mappì ng

g * f(g,6) = {uz : 9(uz) < 6i

can be considered to be a locally,linearly cont'inuous multi-function,

mapping, from the Banach space of continuously differentiable functions 'into

to c(U2). These propertìes flow on to produce local'ly Lipsch'itz

marg i na I mapp'i ngs

g * M(g,b) = max {f(uz) : u2 € r(g,5)}
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and e-optimal set mappings

g + o(g,5,e) = {uz : g. (uz) < bt j=1,...,rr; f(u) > M(g,5) - e}

It tur:ns out to be much harder to establish local linear continu'ity

of the mapping b + cr(g,b,O). l.le are not assured of local ljnear

upper semi-cont'inuity even when f(.) is linear and the Slater

constraint qualification holds. Local l'inear lower semi-continuity

may ex'ist in this case but remains an open question. We show that

local linear upper semi-contìnuìty, plus the usual constraint

qualifjcation assumptions used to produce the local ljnear

continuity of f(g,b), imply the local linear lower semi -contjnuity

of cx,(g,b,0). In fact the rate of local uniform upper semi -conti nui ty

js related to the rate of local uniform lower semi-continuity (as

was indicated in Chapter One).

Desp'ite the di ff i cul ty i n establ i shi ng the I ower sem'i -conti nu'ity of

5 * o(S,b,0) we are able to show that, when o(g,b,O) is uniformly

compact near 5 and o(g,6,0) consists only of isolated local mjn'ima,

then we have the lower semi-cont'inu'ity of b + o(g,b,0) at 6. Lower

semi-continuity turns out to be crucjal in showing the equivalence

of the marg'inal mappìng b + M(g,b) and the localized version

b * û(g,b) = max{f (u2) : u2 € r(g,b) n N-(ür,ô)},

in some ne'ighbourhood of 6, when üz ìs a local optìmum.

Th'is property i s used when showi ng a Lagrange mul ti p1 i eris , i n

fact, a solution to the dual prob'lem of an augmented Lagrangian.

The augmented Lagrangian we deal with is that investigated by

R.T. Rockafellar and D.P. Bertsekas in references 1221, [28] and

132). This Lagrangian is useful in shedding iight on the

"generalized differentjabiI'ity" properties of the non-linear

opt'imization problem we have described above.
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As has been shown by various authors, the local Lipsch'itzness of

single (and multi-valued) mapp'ings implies a very general type of

different'iabif ity. J. Gauvin showed in references l27l and l29l

that the Clarke derivative of the marginal mapping exists under

certain conditions, which include the Cottle constra'int qualificatjon.

He goes on to show that the Clarke derivative can be contained in

the convex hull of elements, produced by evaluating the gradient of

the usual Lagrangian at all optimal solutions and associated Lagrange

multiplìers. These theorems can be vjewed as a first step

towards producing technìques to solve problems such as

m(ü' ) = m'in{llu1-ur ll' : uz € r(u' )i

where

f(ur) = {uz : g, (ur,uz) a 5, t i=l,..,rfl}.

0f course when m(ur) = 0 we have found a fixed point of the multi-

functìon f(ur). For this reason the characterizatjon of the Clarke

derivative is of interest.

When we deal with the simp'ler prob'lem b + m(b), where

m(b) = min{f(uz) : u2 € r(g,b)}

the theorem of J. Gauvin can be stated as

Am(b) - co{-y : = üz satjsfy'ing with y the Kuhn-Tucker cond'itions}.

t'le do not attempt to show equivalence of the Clark derivatjve âñ(6) to

thjs set but deal with the alternative set of optimal dual solutions

to our augmented Lagrangian. That is, we look at the solutions (t,c)

to the dual problem, for the Lagrangian
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m

L(uz,V,c) = f(uz) + I ij =r
{s-, (uz)-E, ]max c

. (å) max2{õ. (ur)
J

= f(ur) + (
2C

where

ü(a,B) = [max2{0,ß+ccr} - ß']

l,le show that under some very general conditions, which include

local order two Lipschitzness of b + m(U), we have that

am(b) = {-y: (i,ð) is a solution of the dual probìem

forsomeõ>0].

Since the dual variable !, associated with some opt'imal solutiorì u2,

always satisfies the Kuhn-Tucker conditiong we have t'ightened

the previous inclusion by removing the convex closure. There

is no guarantee that equìvalence can be forced in the former

relation and as a consequence, the dual solutjons can be thought

of as a more "ref ined" set of Lagrange muìt'ip'liers.

m

¡

m)I
j=

1
ú(õ, (ur) - bj, y' ),

6j
l.
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94.1 Rates of Continuit.y in Nonlinear Proqramminq

Definítion 4.L : Let gj : U + R ; U . R"; i=l,..,m be m functions.

For b € R" we can define

r(b) = {u € u ; g(u) < bi where

g(u) = (gr (u), . .. , 9 (u))
m

and for u € f(b) we let b = (br, .., b*) and J(u,b) = {i, 9, (u) = b, }

We say the Cottle constraint quaìification is satisfied at ü e r(6)

for differentiabìe g. : j=l,..,m iff

I r.,^(u)=o
- - 

/1. vY.

jeJ (u,b) ' r

has no semi-positive (ie. non zero, non negative) solutions in the

À's. It is said to hold at 6 lf it holds for each ü € t(6).

Defini t-ton 4.2 : The Slater constraint qualification holds at ü e r(6)

'if g (u) ìs pseudo-convex for each j € J(ü,5) and there exists a u

s.t. g. (û) . 6 for each j € J(u,b).
t

It'is well known that'if the Slater constraint qua'l'ificatjon holds

then the Cottle constraint qualìfication holds.

The Cottle constra'int qualification is known to be equiva'lent to the

existence of a vector e such that

.vg. (ü), er . g for all i € J(ü,5).

This was used as the constraint quaìification in reference 1271.

Si nce these are equi val ent we wi I I quote, When referenci ng J . Gauvi.n 's

results, the Cottle constraint qualificatjon. The next result

follows from this equivalence.
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Theorem 4.1 : If the Cottle constraint qualification holds for 5,

then cl I(5) = r(6).

Proof : Reference Í24) , Theorem 1.3.

For a particular g- = (gt, ...., d_) vle let B(g) = tb :{u : õ(u) < 6} I O}

To obtain results on the unjform linear cqnt'inuÍty of f(:) we look to

the work of Stern and Topkis (reference t?4l). To obtain such results

they first investigated a lower bound on

j€J
ï
rurb)

À, vg (u) 
I

in terms of lll, where 1,.

is in a prescribed set,

> 0; À = 0 for j É J(u,b); u € r(b) and b

l,Je let (--,6'l = {b € R- : b < 6}.

Lemma 4.1 : lf r(6) is bounded,then B(õ) n (--,61 is compact.

Proof : Reference ¡241 Lenma 2.1..

I,le let Oo(n) be the space of functions with p bounded and uniformly

continuous derivatives. It can be viewed as a Banach space with

the norm

ilgil = o.ii|.o iËå tvog(u)I

where l*l denotes the Euclidean norm on R', l"l = crl * .- * on,

aog (u )and Vog(u) =

â0t u, â
c[

n u
n

!'le shall discuss. the continuity of a lower bound on

ij€J(u,b)
À, vg (u)l

with respect to the funct'ions g
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Theorem 4.2 : Suppose 9 € Dr(l(6)) B is a closed subset of B(g)'

there exists 6 such that ftôl is bounded and the Cottle constraint

qualìfication holds for b in Ê n (--,61. Then these exists K > 0

such that

I I À, vs¡(u)l->KlÀl' j€5(u,b)

for all u € r(b); b € â n (--,ìl ,and lÀl=.1,À t 0; À¡

j € J(u,b).

Proof : Theorem 2.I of reference 12\.

The lower bound on K(g) is obtained in the followÍng way

= 0 for all

= 0 if i É J].

tr

K(g) = min{Kr(s) : J c {1,..,m}; J l0}'

r (g) = {tnttl ,è, 
À, vg' (u) l; (u'b'À) e T' (s)}'

L+- otherwi se

where

r,(s) ={(u,b,À) :g(u) <u,b€Ên(--,61 ,

g,(u) =bforallj€J, lrl =1,À>0
t

and À
i

One could consider Tr(.) being a function of g and hence Kr(.) and

K(.) functions of g. In passÍng we note that K(.),consÍdered as a

function of b, for fixed g, (in a silnilar way) is monotonically

decreas i ng .

Quìte often it is easy to deduce that a multi-valued mapp'ing is closed

but much harder to deduce upper-semi-continuity- If the image sets

are contained jn a compact space then closedness immediately ímplíes
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upper ssni-conttnuity. A weaker assumption which replaces upper

semi-continui.ty at a point is thaú the mapping is c'losed and "unifonnìy

compact" at that point. That is; given u * e(u), then 0(.) is
uniform'ly compact near ü if there ís a neighbourhood N of ü such that

the closure of the set U{f¿(u) : u € N} Ís compact.

Lenma 4.2 :

Suppose the condjtion of 'Theorem 4.2 hold for ô - int B(g-), õ e pr(R")

and that f(g,6) is bounded for 6 > 6.Then K(.) is lower sem'i-continuous

at g in the space Ot(R").

Proof : In view of lheorem 1.18 and the fact that I .I_ tr, vg. (u)l' i€J t r

is continuous in (u,b,À,9) jointly, we only need to show that the

multi-valued mapping Tr (.) is non-empty in a 21(n") neighbourhood of

õ, closed and unifonnly compact near !.

First of all we need to show fr(S) js non-empty in a neighbourhood of

g, If int B(g) can be shown to be i.s.c.,then Ê'- int B(g) wÍll imply

ô. B(g) for g € N(0,ô) (some 6 > 0), in which case r. (S) I O.

ble have

(int B(s))" = (int {b : r(g,b) I O})"

= cl {b : r(g,b) I þ}'

= cl {b : r(g,b) = 0}.

Nowt(g,b)=çiff

inf{g.(u):u€U}>b.
JJ

for some j

Hence b € cl tU : f(g,b) = 0Ì íft

r, (s) = inf{9. (u) ; u € U} > b for some i,
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that Í s,

(int B(g))" = ü {o : F. (g) > b. }.
j=r J I

For a fixed u € U;g + g, (u) is continuous in 2r(R'). As a conse-

quence

9*int{g.(u):u€U}
I

is u.s.c. in D¡(R'),being an infimum of a class of continuous mappings

The mappìng g * {b : F, (S) > b, } is clearly u.s.c. multi-valued and

so ís ü t¡ : F, (g) r b, ],being a finite un'ion of u.s.c. multj-valued
j=r t

mappings. This establishes the non-emptiness of T, (.) jn a neighbour-

hood of g.

In order to establish the unjform compactness we note that

ô n (--,ûl . B(S) n (--,ôl is compact,as r(õ,Û) is bounded and that

the À*s are always conta'ined in a compact set. If we can establjsh

that r(g,6) is contained in a compact set for all g in a neighbourhood

ot g then so will be T- (.).

Since l(g,6) is bounded, S > ô,we have,using lheorem 3.3., shown

r(d,ô) to be upper semí-continuous at ô. Using Theorem 3.4 we can

deduce the upper semi-continuity of g + r(g,6) at õ. Let N(0,0) be

a neighbourhood of þ for whicfr â 
= 

g(S). Since (8,Ê) is bounded

so is N(r(g,6),u). By the u.s.c. of r(g,6) at ! we have

r(g,Ê) 
=N(r(õ,Û),r) 

for v g € N(g,o),for some ô sufficiently small.

l,Je let

S={À:}>0; lfl'=
I

and note that

ï Àl = t]
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u{Tr(s):g€N(g,o)l

cZ x (Ê n (--,ûl) x S,

which is compact.

One can easÍ1y verify that Tr(.) is closed to complete the proof. ¡

Theorem 4.3 : Suppose the Cottle constraint qualification holds at 6 e B,

there exists 6 t 5 such that r(6) is bounded, and each g. (u) has

continuous second derivatives on R". Then there exists ô > 0 such that

t(b) is uniformly linearly continuous on B(g) n ¡l(5,ô) with a constant

z/K(d), ie.

d(r(b), r(b')) (Zr1s1¡ . lo-u'l

for all b, b' € B(g) n N(6,ô).

Proof : Reference t24), theorem 3.2. tr

Corollary 4.3 : Su ppose each g-.; j=1,..,ffi are pseudo-convex and have

continuous second derivatives on n". Then r(b) is locally uniformly

f inearly continuous on

int B(g) n {b € Rn: t(b) is bounded}

Proof: The Cottle constraint quai'ification holds for all b € int B(g)

as the Slater cond'ition holds (i.e. gj are pseudo-convex). As the

gj are strictly quas'i-convex, Theorems 3.5(b) and 4.3 establish the

resul t. !

The function f = R'* R is said to satisy a Lipschitz condition order

ß > 0 if there exists some L > 0 such that

= g (say).
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Ir(u) - r(û) I < Ll ,-ûll ß.

In the followjng we investigate the properties of M(b) = max{f(u):uer(b)}.

Theorem 4.4 : Suppose

(i )

(i i )

(iii)
(iv)

the Cottle constraìnt qualification holds at 5 e g(g),

there exists û t 5 such that r(6) is bounded,

each g. (.) has continuous second derivatives on R" and
J

f(.) satisfies a Lipschttz condition order ß > O on r(6).

Then there exists ô > 0 such that M(O) satisfies a Lipschitz condition

order ß > 0 on B(õ) n n(U,o).

Proof: A direct adaptation of Corollary 4.2 and Theorem 4.1 of

reference t24l with the obvious mod'ifications.

I,Je let for b, b € R'

(--,Êl={x€R^:x<'b}
and

tb,6l = {x € R- : b < x and x < 6}.

Corollary 4.4 : Su ppose r(Ê) is bounded for ô e R', each g. ;

j=1,..,rTr is pseudo-convex and has continuous second derivatives on

R^. Suppose a'lso that f(.) satisfies a Lipschitz condition order

ß > 1. Then M(.) satisfying a Lipschitz condition order ß on

e(g) n (--,b1 .

Proof: From Lemma 4.1 we know B(õ) n (-*,bl is compact. Now

b € B(g) = {u : r(g,b) I ó}

if = u s.t. s(u) b

If we restrict b < 6,th.n u € f(õ,Ê), u compact set. In this case

b € B(s) iff
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6 = min{g'(u) : u € r(1,6)}

=inf{0(u) :ueR"}<b.

l,Je have

g(g) = t6,+-¡

a convex set and

s(s) n (--,ôl

= ¡6. +*) n (--,61 a convex set.

Obvìously for b > 6 we have b € int B(O). For [b,ô] th.t" exists a

finite sub-cover of the cover S = {N(b,6) : b € int B(õ); U('¡ is

locally Lipschitz order ß on B(g) n N(b,ô); 6 > 0 and b e B(g) n (-*,61]

of B(õ) n (--,61. Suppose

s' = {N(\,ô, ), i=l ,..,L}

is the sub-cover. For b, 5 e [b,Ê] we let

p = {b, € R" : b' = Àb + (1_À)6,À e t0,11}.

Then :l b = bo, br, ..., h = 6 € P s.t. b, = À. b

for ¡=9,1,..,k-1 and b,, b,*, € N(b.,0. ) for some b. € {1,.,.a,} v j.

This follows from the fact that P is compact, connected and hence

chainable, using also the openess of the ba]1s N(b. ,6.

k-1
I lr - À I = 1.

¡!o' j*t j'

+ (1-r. )5; ¡,. < À. _

J J J+I

) . lde note that

If

then

Q = max{( ; the Lipschitz constant on N(b. ,ô )}t¡i
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l¡l(¡) - u(5)l = t(0, * r) - M(bj )l

¡N{u,.,) - N(0, )l
j=o

k-r
II
j=o

k-l
I

k_1
< Q b - 6p( I À. . - À. )

j=o j+r i

k 1

< Q I u¡
p

b I

j=o t1t
-1

I, l^, *, r Àj lpttu - SttP

= Qilb - 5ilP

us'ing 1 > lÀ,r, - 
^, 

1 t l^,*, - À, lu,ut g, t.

lrJe could have equiva'lently assumed that the Cottle constrajnt

qua'lification holds at all b e int B(g).

Obviousìy we have trouble at 6 since

5 = min {0(u) : u € R"}

= min {g(u) : u € r(õ,ô)l

k

a

fl

implying the minimum is attained at the points S = {u : g(u) = 6;

u € f(õ,6)t. That is for u e S all the constraints are active since

gfu) = 5 and since Vg¡ (u) = 0, v j = 1,...,m the Cottle constraint

qual if ication could not poss'ib'ly hold at 6.

Lenma 4.3 : Suppose the Cottle constraint quaì'ification holds at

6 e B and there exists u ô t 6 such that f(g,Êl 'is bounded. Then

3 ô > 0 s.t. the Cottle constra'int qua'lifÍcation holds at 6 for all

9 € Gz(6,0,ô) where

c2(6,õ,6) = {g e oz(rtg,ô)) : r(g,6) f 0; lg-õl , < ô}

and

r(9,6) = {u : 9(u) < 6}
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proof: First we show that f(g,6) is bounded for ô sufficient'ly small.

I'le I et

A(g,õ) = (tTolg,(u) - g,(u)1, ...,tlolg-(u) - g"'(u)l)

and show

r(õ,5 - ¡(g,g)) 
=r(s,6) = 

r(s,6 + ¡(g 'g) ) '

Let u € l(9,6 - A(g,õ)). Then since g(u) < 5 - A(g,g-) we have

g(u) < õ(u) + A(g,õ) < -b implyins

g(u)<6 and u€r(g,¡).

Similarìy if u € r(g,5) then g(u) < 6. Since g(u) - ¡(g'ö) < g(u)

we have d(u) < 6 + n(g,g) and u e l(g,5 + a(g'g)).

As r(g,b) is bounded for ô t 5 we choose 0 < ô t 6 - 5 and

v g € Gr(6,d,0) we have t(g,6) bounded.

l,Je now argue in a similar manner to Lenma 2.2 of Reference [24]'

Suppose the contrary is true; that is there exists a sequence

gu e G(6,õ,0) witn ltu gn = g- in tz(R" ) such that the Cottle

constraint qual'ification doesn't hold for any gk at 6. Thus f u*

such that gn(un) < 6 J(un,6) is non-empty, = 
trk > 0, lÀ- | = 1;

Ài = 0, v i É J(u*,6) uno 
,.rtl*,0) 

ll v si (un) = 0. As f(9n,6)

.is bounded for k 1arge, un e f(gn,61 and lfu| = 1for a'll , there

ex'ists a convergent subsequence of (6,u*,Àk) wjth limit (6,ú'I)

such that J(un,5) = ¡ und Àl = 0 for i É ¡ for all k jn the sub-

sequence. Then I > O' lll = 1 and \ = 0 for i É ¡'

By continuity J c J(ü,6). For if we supPose i É J(ü'5) tfren

Oj (ü) < 5, whìch 'impf ies for k large sf (un) ' 5' S'ince

¡è, L võ, (ü) = 0 we have a contradiction'
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*
Theorem 4.5 : Suppose

(i )

(ii)
(iii )

The Cottle constraint qualification holds at 6 e B(g),

there exists ô r 5 such that r(û) is bounded, and

eac¡r õ. (u) 'is twice continuously differentiable on R".

Then the multi-valued mapp'ing.g + f(g,6) c R" is uniformly linear

continuous for some õ > O on Gz(g,5,ô), i.e., if we choose

R(s) >z/K(õ),=ô>os.t.

d(r(s,6), f (ô,5)) < K(s)rrg - ôrr ";v 
g,ô e Gr(õ,6,0).

Proof : First we show that for K < %K(g),= õ > 0 s.t.

v g € G(s,6,¡)

b € N (5,õ)

d(r(g,b), r(g,6))R < lb - 6l

and then let K(g) = 1/ft. Suppose not. Then for R. tf(g)

-ô = 1/k * o,r gk € G (d,6;1/k)

s. t.

d(r(sk,b), r(su,6))t > l\- 6[ for some . . . (1)

bn e N(6, L/k).

As K(g) is l.s.c. at g (Lemma 3.2), by letting 0 < a . t"K(d) - 'K,

we have %f(S*) > tK(d)- r t R to. k sufficiently large.

Hence (1) implies

o(r(gk,b), r(g*,5)) tK(go) > lbu- bl for some . . .(2)

bk e N(6, I/k) and k sufficiently 1arge.

6.e- ( rowX t, t l: l-r"P a'=1Ø * f f<-r"À'o'r

f7.ee'/"eÊ{ &.-:- <vc ç-[-l:ø/ þ ¡-('ea're^¿.t of
f'z?J 

"

* lf ü*s
k.? 4 ud
CatJ a \t c(

)f-> L<*+tlt1

¡< Êrr.et*q"-r



732

At gn e t"(R") it has continuous second derivatives and by Lemma 4.3

the Cottle constraint quaìification holds for gk at 5 for k sufficientìy

large. If we let 6. Ë. û,th"n as in Lenrna 4.3 we have

r(g* ,ñ) - r(d, ñ * A(gn ,g)).

At gu e Gr(õ,6, 1/k) for k sufficient'ly ìarge, we have

and hence r(gnrõ) is bounded for 6. Ë and hence bounded at 5. All con-

ditions ofTheorem 4.3 hold for gk for k sufficientìy large hence (2)

constitutes a contradiction and the result is established.

lle note the f ol I owi ng . Let

¡(g,ô) = (Tolg, (r) - ô, (u)1, ..., Tols*(u) - ô-(u)l) .

Then jf bo = 6 + l(g,ô), we have

luo-u¡ = l¡(g,ô)l ='lolg-ôl

. o.jåi.z 
sul 

lvcrs(u)-vô(u) I

,K
b + a(g ,g) <b

= ,gi {rr ,.

Hence'if g,g € er(g,5,0) we have

r(g,6) . r(ô,u + l($,g))

= r(0,b0); bo as above

c N(r(ô,6); 1/R lb0 - 6ll

c N(r(ô,6),t/R ltg- ,).

Due to the symmetry between 9,ô v,,e may interchange g,ô to obtain the

q

resu I t.
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Corollary 4.5 : Su ppose each g-. ; i=l,..,fr arepseudo-convex and have

continuous second derivatives on R', r(g,6) bounded. Then t(g,6) is

un'iformly finearly continuous on some G2(g;6,ô) whenever 5 e int B(g).

Proof: The Cottle constraint qualification holds at 5 e int B(g) as the

Slater condition holds. At 4 is quasi convex,Theorems 3.5(b) and 4.4

establish the result. 11

Theorem 4.6 : Su ppose

The Cottle constraint qualification holds at 5 e B,

there exists ô , 5 such that l(g,û) is bounded

each g (.) is twice continuously differentiable, and

the function f(.) satisfies a Lìpschitz cond'ition order

ß > o on r(g,6).

( j )

(i i )

(iii)
(iv)

Then M(g) = max{f(u) : u € r(g,5)} satisfies a LipschÍtz condition

order ß > 0 on Gr(õ,6,0) for some ô > 0.

Proof: From our previous theorsn u,e have ô > 0 s.t.

v g,ô e cz(g,6,6)

d(u,r(ô,6)) < r(q)lls - 0t z, v u e r(g,5).

As r(g,b) - r(9,6 + ¡(g,d)) if we take ô < ¡(g,g) . Û - ¡ then f is

Lipsch'itz on all r(9,6) for 9 € Gz(d,6,ô) with constant L.

Pick g,ô e Gr(g,6,0). without loss of generality we may assume

M(ô) < M(g). Pick u e r(g,5) such that M(g) = f(u). Then pick

û e r(ô,6) so thar

d(u,r(0,5)) = llu - ûtt .

Hence lr'4(g) - M(ô) I = N(g) - M(û) = r(u) - M(û) < t(u) - r(û)

< Lllu - tlP, so
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lN(g) - r,r(0) 
I

< Lllu - ûlu = Lld(u,r(ô,6))lP

< LR(õ)pilg - ûrå. tr

Theorem 4.7 : Suppose each õ, ; i=1, . . ,trì are pseudo-convex and

have continuous second derjvat'ives on R", r(g=,6) bounded for

b e int B(õ) an¿ -f(.) pseudo-convex and also twice continuously

differentiable. Then v e > 0

a(g,e) = {u : 9¡ (u) < 5; j=L,.,rTEf (u) > M(g) - e}

is uniformly linearly continuous on Gr(g,6,ô) for some 6 > 0.

Proof : First we choose ô1 sufficiently small so that

v g € Gr(g,b,6t) we have

r ((g,-f ), (6,-M(g)+r)) 1 0,

which is poss'ible since the napping g * M(g) js continuous'

Let M(g) = max{f (u) , g, (u) . O, ; i=l,..,ffi} and

F(9t,..,g ,g ,.) =.(gr¡...,rg rg_..+M(gr,..,g-) - M(gr,..,g-)).
in m*1 f¡i m+l m

Then g + F(g) is t-ipschitz continuous, from Theorem 4.5, as the

cottle constrai.nt quaiification holds ana r(g,Û) is bounded for some

6' t -¡, since g is quasi convex.

As f Ís continously differentiable and r(g,6) is bounded, f is

Lipschitz on r(g,ô) implying M(.) is Lipschitz locally with some

constant L > 0.
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l¡Je now apply Theorem 4. 5 to the mul ti :val ued mappi ng (we actual ly

holdf constant in the final analysis)

l((gt,.. ,g-,gn* ,), (5t,.. ,5*,-M(g)+e))

to deduce its local linear continuÍty (as a function of

(gt ,. ,9-,g,, *, ) ). Hence

d(r((g,9*+1), (6,-M(6)+e) ), r((0,ô_*r),(5,-N(õ)*r)))

a ç (g,õ,,, 
*r )ll (g,9-., )-(ô,ô,, *, )ll,

v (g,9,'*,),(ô,ô,"*,) e Gr((g,-f),(6,-M(õ)+e),ô2).

Since cr(g,e) = l(F((g,-f)), (6,-N(õ)+e)),tfris'implies

d ("(g, a) , cr(f , e) )

. K. (g,-f )l r(g,-t) - F(ô,-f )l z

= \(sr-r)(lte - ôt¡ , * lN(g)-M(ô) l)

* K. (õ,-f )(rrs - ù, + Liln - $rr ,)

= K. (õ,-t)(t+t)lts - Ût ,

v g,û e cr(õ,6,ô) for o < õ < ô,

sufficiently small so that M( ) is locally L'ipschitz and

F(g,-f), F(ô,-f) € Gr((s,-f), (-N(g)+e),ôz).

It was demonstrated in reference l24l via numerous counter examples

that there is little hope of prov'ing a similar result to thi.s re-

plac'ing pseudo-convexity by any weaker a notion" It has remained

an open question whether the sì.mpler problem b -+ o(b,0) , 'involv'ing
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the variation in b, would be linear'ly lower semi-continuous if
g(.) satisfies the Slater condition and -f(.) is linear or convex.

It appears to be much harder to establish results when t = 0,

especially lower semi-continuity. It is still possible that

b * o(b,e) may be, in some circumstances, local]y upper semi-

continuous at some uniform rate g(.) which is strictly increasing

and continuous. Possibly the conditions of Theorem 4.6 wouìd

imply this.

In the following we call;

u(b,o) = {u : -f(u) < -M(b); u € l(b)}

M(b) = max {f(u) : u € l(b)}

and

f (b) = {u : g. (u) < b. ; j=1,.-,ffi}.
JJ

Theorem 4.8 : Su ppose

(i) r(b) is uniform'ly linear continuous with a constant K

^forb€B,and
f(.) satisfies a L'ipschitz condition with a constant M on

u{r(b); ¡ e Ê}.

(ii)

Then

d(ü, o(b,2t(\4lb-b' I ))< Klb-b' 
I

for each b, b' e ô, e > 0 and u e o(b',0).

Proof : Reference [24] Theorem 5.4.

Combin'ing this w'ith prev'ious results we have.

¡
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Theorem 4.9 : Su ppose

The Cottle constraint quaìificatÍon holds at 6 e e(g),

there exists 6 t 6 such that r(6) is bounded,

each g. (.) has continuous second derivatives on R", and
t

f(.) satisfies a Lipschitz condition on r(6).

(i )

(ii)
('iii)
(iv)

Then = K > 0, M > 0 and ô > 0 such that

d (ü, cr(b, K I b-b' I )) < M'l b-b' 
I

for each b', b € B(õ¡ n N(5,0) and ü e o(b',0).

Proof : Reference l24l Corollary 5.2 with e = 0.

This looks very much l'ike a sort of lower semi-continu'ity at b = 5.

Unfortunately, we requ'ire more to achieve this.

Corol'lary 4.9 : Suppose the conclusion of Theorem 4.9 holds and

suppose also that the multi-valued mapp'ihg e + o(b,e) js unjformly

iinearìy upper semi-cont'inuous at e = 0, locally around õ (i.e.,

for b € B(g) n -N(6,ô)). Then the multi-valued mapping

b * q,(b,0)

is loca'11y, ìinear'ly lower semi-continuous around õ and hence

locally, linearly continuous there.

Proof: The conclusion of Theorem 4.8 can be written as

d*(cr(b',0), cl(b,Klb-b' I )) < Mlb-b' 
I

for b', b € B(õ) n Ñ-(5,0).

The assumption of linear upper semi-continujty, locally around b,

'impìies that for any r > 0 there exists ô' > 0 and L > 0 s.t.
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for b € B(0) n [(5,ô'), we have

cr(b,N-(o,Lr) ) = cr(b,Lr)

we have, after letting r = {þlU-U,1,

a(b,Klb-b, l) c ñ'(cr(b,01, tþlu-u' I l.

That is,

d*(o(b,Klb-b'l), cr(u,0)) < tfl lu-u,l

Finally for b, b' e [(6,6"), where ô" = min(ô,6'), we have

d*(q(b' ,0) , o(b,0) )

< d*(cr(b' ,o), o(b,Klb-b' l) )

+ d*(cr(b,Klb-b' | ), a(b,0))

< Mlb-b'l - (!L)lb-b'l

= (M+þlo-u'1,

'implying the required result.

The local nature of the upper semi-continuity would follow naturally

if conditions for the linear upper semi-continuity of e + a(b-,e), at
e = 0, could be established. Our previous results are unfortUnate'ly

useless when addressing this prob'lem. The strict interior of

cr(6'o) is empty. The cottle constraint qualification cannot

possibly hold at (5,0) for the problem (Rp) involvìng constraints

gj (ü) . 5, r i=l,..,rlr

-f(ü)+M(6)=s.
and
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For the problem (p) we demand the cottle constraint qualificatÍon

to hold at 5. Hence there exists a Lagrange multiplier and.

¡e¡f¡,') 
À, vg (ü) = vf(ü). For any vector e s.t. .vg, (ü),e> < 0

for j € J(ü,6), we necessari'ly have <Vf (u),ê> = À. <Vg. (ü),et
'Jj€J Ur 6)

implying <-Vf(u),e> > 0.

fication cannot hold.

Hence (AP ) ' s Cottl e constrai nt qual 'i -

Many of the counter examples exploit the disconnectedness of the

'images of o(6,0). Convexity requirements or uniqueness may avoid

these probì ems.

Weaker requirernents for the un'iform upper semi-continuity are

requi red i n order to obtai n s'imp'l e I ower semi -contÍ nui ty.

Theorem 4.10 : Su ppose

(i) the Cottle constraint qualification holds at 5 e e(d),

(i j ) there exists Ê t 5 such that r(6') 'is bounded,

(i'ii) each g. (.) has continuous second derivatives on Rn,
t

(iv) f (.) satìsfies a Lipsch'itz condition on t(û),
(v) e * cx,(b,e) is upper semi-continuous at e = 0, locally

around E, at a uniform rate q(.) : (0,r0) * R*, and

(vi) q(.) has a continuous inverse.

Then b * o(b,0) is lower sem'i-continuous, locally around 6.

Proof : Arguing as in Corol'lary 4.8, we have the exjstence

of ô'> 0 s.t. for b € B(g) n u(6,ô'),o,(¡,q(r)¡=N(cr(b,0),r).

By letting r = q-t (K,lb-b' l ) we obtain

d*(o(b,Klb-b' l), o(b,0)) < q-'(Klb-b' | ).

This implies for
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Þ,b'€N(6,ô) (someôt0)

d*(q(b',0), o(b,0)) < Mlb-b'l * q-'(Klb-b'l) * 0 as b + b'. !

Establishing a uniform local upper semi-continuity is not an easy

task either. I,le certainly cannot be guaranteed of Iinear upper

semi-cont'inuity, even when the Slater condition holds and f(.) is

linear!

In chapter one, we established a close relationship between ô-u.H.s.c.

and local, uniform u.H.s.c.. Proposition 1.5 states that in the

case of compact image sets, the uniform ô-u.H.s.c. of f(.) at

every (üt,üz), for all üz € I(ur), is equ'ivalent to the local,

uniform u.H.s.c. of r(.) around ür. It is not hard to see that if
we could establish linear ô-u.H.s.c. at every (ür,ür) such that

ü, e r(ut) then local, linear u.H.s.c. of f(.) would follow.

s. Dolecki and S. Rolewicz derive various conditions which jmpry

the linear 6-u.H.s.c. of f(.) at a point (ur,ür), jn reference t9l.

Proposition 4.1 : Su ppose f(b) is continuous at 6 and f(.) is con-

tinuous on 5 " r(5). Suppose also that cr(b,O) 'is uniformly compact

near 6 and u(5,0) consists of a collection of isolated local maxima

for the probìem.

Then b * cr(b,O) is lower semi-continuous at 6.

Proof : l^le know from Theorem 1.22 that b * q(b,) is closed at 6.

The uniform boundedness establishes the u.s.c. of the multi-function

at 6. we establish the lower semi-continuity by first noting that

for any open set Q, b * o(b,O) n 8 ìs u.H.s.c. at 5. In fact

Theorem r.7 indicates that this property "characterises" u.s.c.

as dist'inct from u.H.s.c.
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Since cr(-b,0) consists of a collect'ion of isolated local maxima,

for each ü, e cr(E,O) there exists a neighbourhood Q such that

o(5,0) rl 0= {üz}. We can deduce the l.s.c. at 6 as follows.

Letb"+Swhere

ui e o(b",0) n 0.

Necessarily ul + üz and hence for n sufficiently large

ü, € N(ui,t).

That is cr(E,0) n 0 = {üz} - N(cl(b",0) n 0,e),which is the definition

of l.H.s.c.. Since l.H.s.c. imp'lies l.s.c. we have a localised

l.s.c. By Theorem 1.12 part (ìi) we know that

b * Wcr(b,O) n 0: {ür1 = cr(6,0) n 0 for anbhd Q of

ü, e o(6,0)]

c c'l cr,(b,0) = cl(b,0)

is lower semi-continuous at 6. This multi-function is of course

equaì to o(6,0) at 6. It is in fact equa'l to o(b,O) for b sufficiently

close to 5.

Since cr(b,O) is u.s.c. at 5 and W = U{Q : {üz} = o(U,O) n Q-tor

a nbhd of ùz € cl(6,0)] is a neighbourhood of o(5,0), we must

have cr,(b,0) 
= 

l^l for b sufficìently close to 5. That is

cx,(b,0) =cr(b,0) nl,J

= uiq(b,o) n Q : {ür} = q(6,0) n 0

for a nbhd of üz € cr(5,0)Ì

imp'ly the l.s.c. of b + cl o(b,0) at 6. Using Theorem 1.10 ('i) we

can deduce the l.s.c. of b * cr(b,O) at 5. û

The conditions which ensure the local continuity of r(b) around 5

involve the boundedness of f(6) tor some ô t 5. This in itself
would ìmply the uniform compactness of cr(b,0) near b in Rn.
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It seerns unlikely that linear lower semi-cont'inuity wi'11 be a very

common a property for cx,(b,0) to possess. Simple lower semi-continuity

is most probably a much more common phenomena. The Slater condition

p'lus some sort of assumption about the behaviour of the function

f(.) near the critical set, would probably suffice as wel1.

94.2 The Differentiability Properties of Locallv Lipschitz Mappinqs

Ever since F.H. Clarke published his papers on the theory of

generalized gradients (see reference l29l), much interest has

surrounded the development of these theories. Local'ly Lipschitz

functions play an important role due to their equivalience to a

type of differentiability. We begin by reviewing some aspects

of the theory's present state.

We let for f(.) : R' * R'

A € L(R",R*)

and

u,h € R"; t > 0

(i )

Ur(u;h,t) = (f(u+th) - t(u))/t,

0r,n(u;h) = llf(u+h) - t(u) - A.hil.

Definition 4.3 : l,'le cal I

f'(u,h) € R- the one sided dÍrectional derivative of f(.) :

R" * R'if

f'(u,n) = l]ä- ur(u;h,t)

the linear mapping A e t(R",R1 the Gâteaux derivative of

f(.) : R'* R^ at u e R" if

(ii)

A-h = f'(x,h) for any h € R"
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(iii) the linear mapp'ing A e L(R",R-) the'Fr6chet derivatÍve of

f(.):R'*R-atu€R"if
lim
h*0 0

frA
(u;h)/ltntl = o

and the strict Fr6chetderivative at u € R" if
lim

(t,r'i*io,o) or, o(ü;h)/lttrtl = Q'

Definìtion 4.4: For the set valued mapping (u,h,t) * {Ur(u;h,t)}

or any other set valued mapping

F: Y*p(R')

we use

]5 trt F(i) = {u e R', o Vr * yl I ur . r(yu):uu * u}

i]i tto F(t) = {u e R' r r yn * y; v rn € F(yu):un + u}.

l¡le cal I

(i) the set valued mapping Kf(u;h) Kf : R'x Ro * p(R.) defined

bv Rt(u;h) = flli>CñiE*){u,(u;g,t)} the contÍnsenr or r and

the mapping pf : * x R' * p(R') defined by

pr(u;n) = (¡,å]ir.'rrlilTo-l {uf (t;g,r)}

the paratingent.

I'Je cal I

Kf(u;h) = co Rt(u;fr)

Pf(u;h) = co Þt(u;h)

the convex contingent and convex parat'ingent respectiveìy.
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(ii) The upper parat'ingential derivative at u € R" in the direction

h€R"is

r* (u;h) = rrlåT.>rrlillo.l u,(v;s,r).

(iii) The clarke directional derivative at u € R" in the directÍon
nh€R ls

+ lim sup
f'(u,n) = (n,t)*(u,o*) ur(v;h,t¡.

As it turns out the Jocar Lipschitzness of f is crucial for many of
these to be well defined.

Proposition 4.22 Su ppose f(.): R"*R^ is continuous in a nejghbourhood

of u € R". Then the paratingent Pt(u;h) -is a non-emptJ bounded set for
any h e R if and on]y if f (.) ìs locally Lipschi tz at u. In this
case Þf (u,.) : R' * t/(Rl"¡ is Lipsch.itz sub linear syrmetric multi-

functi on

('ie. Þt[u,-fr) = -Pt(u,n) (s¡rnunetric) and

Pt(u; h) = tÞ(u;h)

Þf[u;hr+hz) . Þt(u;h,) + Pt(u;hz) (sub-tinear))

and is given by

Þt(u;n) = dli) - (;:3.) {u, (y,h,t)}.

Proof : Reference Í251 page 1348, prop. 3.11. !

Proposition 4.3 : Let f : R" * R , u € R" and let f+(u;h) be defined
p

as in Definition 4.4for any h € R". Then f+(u;h) is finite for any

h € R" iff f(.) is local'ly Lipschitz at U. In this event t+(u;f¡)

coincides with the clark directional derivative, f*(u;h). lrloreover

t+(u;') : R'* R is the support function of the convex paratingent

Pf(u;.). Hence we have
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pf (u;h) = f -tj(u,-h), t+(u;r¡)l for any h € R".

Proof : Reference t25l page 1348, Prop. 3.L2.

It has been shown (see Reference t25l ) that whenever the paratingent

is a non-empty báunded set (ie. f(.) locally LipschÍtz) the convex

paratingent pf(u;.) is generated by a set of linear mappings.

Moreover, if min(n,m) > L then Pf(u;') may be generated by different

sets of linear mappings.

These results are based on Rademach.É tneorem stating that if
f(.) R" * R- is locally Lipschitz in an open ne'ighbourhood of u € R"

G (say), then f(.) is a.e. Fréchet differentiableonGandmoreover, its

derivat.ive, f'(.) : G + L(R",R') is a measurable and bounded mapping

Two such sets of linear mappings are

(j) Jf(u) = co{A € L(R',R-)' f *u * u; f f:(x*) -'A}

the generalized Jacobian of Clarke and

(ii) Pourciau's generalized derivative defjned by

¡pf(u) = co{A L(R",R^): f ru € L(f'(.)), *n * u, f'(xu) * A}

where L(f'(.)) is the set of Lebesque points of f'(.).

0bviously .tp f (u) c Jf (u) and in both cases

Pf(u;h) = sup{A.h : A € Jf(u)}

=sup{A.h:Ae¡Pr(u)}.

F.H. Clarke (reference t29l) defìned, jn the case m=l, the Clarke

directjonal derivative f'(u;h) using the above technique.



Definition 4.5 : The genera'lized gradient of f at u, denoted af(u),

is the convex hull of the set of limits of the form

lim Vf(u+h. ), where h. + 0 as i * -.

It follows that vf(u) is convex compact and non-empty if f(.) is

locally Lipschitz. As in the convex case the mapp'ing u + Af(u)

is upper semi-continuous. Also ðf(u) is a Singìeton for a'll u € f)

if and on'ly if f € P'(ç¿). If af (u) = {x} then Vf(u) = x.

He proceeds to show that
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t"+(u;h) = (r,rllfr,o*l

=max{<x;h>:x€ðf(u)}

and that in fact if

<x;h> <
f u+th -f u

for all h e R" then x e af(u).

A function f (.) is sa'id to be Clarke regular if f '(u;h) (tf¡e

directional derivative) exists and equaìs t+(u;h) for every h € R".

F.H. Clarke proves also that a(fr+¡r)(u). ðfr(u) + afr(u), for

suitable functions f, and f2. R.S. Womersley proved the following

in reference [31].

Lemma 4.4 z Let f : R' * R be a smooth function and let h : R" * R

be locally Lipschitz. Then the funct'ion F(x) = f(x) + h(x) is

locally Lipschitz and

âF(x) = {Vf(x) + u : u € ah(x)}

= âh(x) + vf (x).

l'im su
t*0,+

p
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Proof : Reference [31], pp.62.

This approach to genera'lized derivatives is inspired by the following

theorem on the sub-derivative of a convex function h(.),

Ah(u) = {u*: h(x) - h(u) > <u*¡X-u) for all x}.

Theorem 4.11 : Let h (.) Ue lower semi-continuous, bounded below and

not identically +-. Suppose also that u € int(domh).

Then

ðh(u) = co S(u)

where S(u) is the set of all limits of sequences {vh(u. )}:, such

that h is differentiable at u. and u. tends to u.

Proof: Reference [23], Theorem 25.6. !

For a convex function the condition 0 e ah(u) 'implies h(.) achi.eves

its global minimum at u.

ln the case f(.) : R'* R, jf f is convex äf(u) = Jf(u) = Jnf(u) the

convex sub-differential with respect to the class of affine mappìngs

and in the case f Gâteaux differentiable

af(u) = Jf(u) = Jpf(u) = {A} where A.h = t'(u;h).

This is the real pov'rer of the theory at present. l¡lhenever stronger

forms of differentiability exist then the weaker form reduces to the

s tronger.

One can also define derivatives of set valued mappings.

Def in'ition 4.6 ; Suppose we let for F(.), O(.) : Rn -' C(R-)

0Fr0
(u,h) = d(F(u+h),F(u)+ö(h))
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ol,, (v,h)/llrrll = o,
lim

(y, h )*(u ,0 )

lim
(y , h )-'(u ,0 )

0f,, (u;h) = max{d*(r(u+fr),r(u)+ó(h)), d*(r(u). F(u+h)-O(rr) )}

(obviously 0f,r(u;h) < 0",r(u;h)).rnenó(.) : R'* cu(RI a posìtively

homogeneous u.s.c. multi-function is said to be

(i) an upper strict prederivative of F(.) at u if

(ii) a strict prederi.vative of F(.) at u if

0 (v,h)/llr¡ll = Q.F'd

The prederi.vatives are not unique but one may define the j.nfimum and

mini.mal (when i.t exi.s.ts) prederìvatives with respect to the lattice

índuced by set inclusi.on on CU(R-).

Proposi.tion 4.4 : The set valued ma pping F(.) : R' * c(R-) has a upper

strict prederivative iff it'is local'ly Lipschitz at the relevant point

u € R".

Proof : Reference t25l page 1354, Prop. 4.L5. fI

Proposition 4.5 : Suppose that f(.):R"*R- defines a set

valued mapping F(.) = {f(.)}. Then F(.) has a strict prederivative

O(.) : R'* cu(R') at u € Rn iff f is stríct'ly Fr6chet d'ifferentiable.

In thjs case, f'(u) e L(R",R*) satjsfies ó(h) = {f '(u).rr} = {f '(u; rr)}

for any h e R" where f'(u;h)'is the paratíngential derivative

limf'(u;h) =
p (y,g,t)*(u,h,0+) u, (v;g,t).

Proof : Reference t25l page 1363, Prop. 6.2.

Particular'ly regular is the behaviour of the directional derivatives

of the convex functions f(.) : R'* R for wh'ich

!
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f '(u;h) = f1(u;h) = fl (u;h) = fl(u;h). lle also have that if f isppc

strictly , Fr6chet differentiable f '(u;h) = f"+(u;tr):

Propos'ition 4.6 : If f (. ) : R'* R'' is locally Lipschitz at u then its

convex paratingent Pf(u;.) is continuous and is the mÍnìmal (unique)

upper strict prederivative of F(u) = {f(u)i.

Proof : Reference l25l page 1354.

0f course b/e are not always assured of a strict prederivative in the

case of local Lipschitzness but this indícates how regular the problem

is in Theorem 4.6.

Oneneeds only to introduce stronger convexÍ,ty assumpti.onsto

obtai.n condi.tíons for the exi.stence of the one sided directional

derÍvative for the problem;

M(ut) = sup {f (u, ,uz)i g, (ur,uz) ( b; i=1,..,m}

cr(ur) = {uz : M(ur) < f(ut,Ltzh g. (ur,uz) < b. i=1,..,m}

ll'le let

Y(u, ) = {! > o: L(u,,y) = Jlå L(u,,y)}

L(ur,v) = rlËürtr(ur,uz) -<v.g(u,,ur)>+ .v,b>].

Theorem 4.12 : Su ppose

Uz is a closed convex set,

-f(ür,.) and g, (ür,.); i € {1,..,m} are convex on Uz for

ür € Ur , continuous'ly d'ifferentiabl e on Uz x N(ür ) where

N(ut ) is some ne'ighbourhood of úr,

cr(üt) is non-empty and bounded,

M(ut) is finite and

there is a point û, e U, such that g(ü,,ûr).0.

(i)

(ii)

(iii)
(iv )

(v)
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Then

(a) M'(ür;h) exists and is fjnite for all h € R" and

M'(ü';h) = ,,Ëåi¡, I ,.iii, ¡{<vrr(ür ,uz)h>

- y'Vrg(ür,uz)h]

where f : Ur x Uz * R; g = (gr,..,g*).

(b) If a(ü,) s inr uz then

max
14' (ür;h) = uz€cx,(ü1) i<vrt(ür,uz),h> * <Vzf(ü,,ur),w>]

w,z€R

subject to

z9(ür,uz) + <Vrg(ür,uz),w> ( -<Vrg(ür,uz),hr.

Proof : See Reference t16j, Theorem 2.

J. Gauvìn and F. Dubeau extended th'is result in reference lzgl.

Theorem 4.13 : Su ppose

(i ) a(ü' ) is non-empty,

(ii) o(ur) is uniformly compact near ü, and

(iìi) the Cottle constra'int qua'lification holds at 6.

Then

aM(ür) c co{ Vrf(ür,ü2) Y'Vrg(ür,ür)

ü. e c¿(u1) and y e K(ü1,ür)]

where K(ür,ü2) 'is the compact convex set of Lagrange multipliers

associ ated wi th the opt'imaì sol uti on ü, at ü r .

Proof : Theorem 5.3 of reference l2gl.

Equality constraints are actuaì]y expìicitly treated in this paper.

we have and will continue to state such results, referring on'ly to

the inequality constraint problem we have been dealing wjth in this
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Chapter. J. Dauvin and F. Dubeau go on to deduce the following coroìlary

Corollary 4.13 : If in Theorem 4.13, the assumption (iii) is

replaced by the assumption of linear independence of the gradients

{v2g. (ü,,ü.); j=1,..,rfl} for every ü, e a(ür), then
t

âM(ür) = co{ vrf(ur,ür) i'vtg(ür,ür) : üz e o(ur)}

where y 'i s the uni que Lagrange mu I ti pl 'ier assoc j ated wi th üz .

Furthermore, l4(u r ) i s Cl arke regul ar at ür .

Proof : Corollary 5.4 reference [29]. !

Such conditions are a first step towards finding techniques

to solve problems like the foìlowing

m(ur) = min{llur-uzll 2 : uz e r(ur)}

where

r(ur ) = {uz : g, (ur ,uz) ( 6, ; j=l,. . ,h}.

Naturally we are assuming m=n and ur, uz € R". This will have a

solution ü, even if there exists no fixed point for the multi-valued

mapp'ing f(.) but of course, whenever m(üz) = 0 our solution is a

fixed po'int. For this reason the criteria whjch imply an equívalence

are of interest.

Convexity plays its role'in reformulating the constrained optimization

problem as an unconstraíned Lagrang'ian problem. Many Lagrang'ian

methods exist for non-convex problems now.

We will be usi.ng the one characterized in references [11], l2I)'

l2?1, [28] and 1321.

In the work on alternate Lagrangians, researchers first looked at the

prob'l em:
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(PL) : min f(ur)

subject to h. (uz) = 0; i=1r..,mi usÍng the Lagrangian

mc.
L(uz¡yn,.n) =f(uz) + I v*h.(ur¡ +ffrr fur)lr.

i=1 Á

The Lagrangian L is minimized over u z for a sequencg (yn,cn ); co ) 0,

which is updated via y**, = yn *.*h(ui), where ul it the result of the

kth min'imizatÍon of ¡ (cn monotonica]!y increases). 0n supposing ü2

is an opt'imal solution of (PL) in order to get a complete theory,one

makes the follow'ing assumptions concerning the nature of f and h. in

an open ball around ü2.

(A) The point üz together wíth a unique Lagrange multip'lier vector

y satisfies the standard second order sufficiency conditions for üz

to be a local minimum.

To elucidate the meaning of this statement,we reiterate some well-known

propositions. For the moment we assume m < n.

ProposÍti on 4.7 : Suppose uz is a local minimum of (pt_) and f and h

are continuously differentiable locally around ü2. llle let

Lo (ur,y) = L(uz,y,0)

and suppose vht(ür) , vh*(üz) are linear independent. Then

there exists a unique vector ! such that

VzLo(ü2,.i) = 0

and if in additi'on f and h are twjce continuously differentiable
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around uz we have

w'.V! Lo(ür,V)w > 0,

V w € R'" wjth Vh(ür)'w = 0.

Proof : Reference t32l Proposition 1.23.

Proposition 4.8 : Let ü z be such that h(ür) = 0 and suppose f and h

are twice continuousìy differentiable. Assume there exjsts a vector

! e R" such that

V2Lo(ü2,y) = 0

and

w'vfLo(ür,y)w>0;Vwlo

with Vh(ür)'w = 0. Thenf a > 0 s.t.

f(ür) . f(ur); v u, € N(üz,e) uz I û2.

Proof : Reference t3zl Proposition L.24

In other words we can restate (A) as follows:

(41) The functions f , hi , i=1,..,m are tw1ce continuously

differentiable within a ball around ü2.

(A?) The gradients Vh. (ür); i=l,..,m are linear independent and

there exists a unique Lagrange multipìier ! such that

tr

tr

vzf(ür) + f vrr,. (ür) = o

m

I

(43) The Hessian matríx of the Lagrangian Lo(uz,V) satisfies

w'vlLo(ür,y)w > 0 for all w € R'' w I 0 with w'Vzh, (üz) = 0.

To get a complete theory we also assume:
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(B) The Hessian J¡latrices V2f and.V2h are Li.pschitz continuous i.n

an open bal 1 of ü2.

It can be shown that i.f Y (usua|ry assumed bounded) contains ! in

its interior, the generated sequence {v*} remains in the interjor of

Y (or at least can be arranged to by leaving yr unchanged if v¡*r É y).

If the penalty parameter is sufficiently iapge (ie. .*).*) andu! isthe
minimum of L(.,yn,cn ) closest to û2, then un, * tt, and yk * !. If
.* * d < - then convergence is linear (see Reference t}gl and t32l).

Inequality constraints can be treated in a simp]e way by introduci.ng

slack variables, as the problem;

(P) min{f(uz) : 9i (ur) s 5,; i=l,..,m}

is equivalent to

min{f (ur) : 9, (ur) * ,: = E, I i=l,...,n}

where z. are additional variables. It is easÍly shown that

is an optimal solution to this problem (together with t) satisfying
A and B, if we demand the inequality constraint probìem to satisfy
'instead of (A) the assumptions

(A') The function f,g.; i=1,..,m are twice continuously differentiable

around ü2. The gradients{vg. (ür); j € J(ür)}where

J(ü'¡ = i¡ : 9. (ür) = 5. Ì,
)J

are linear ìndependent. !'le have a Lagrange mult'iplier s.t.

y'ts,(ür) -bjl=0,

vf(ür) +
m

I y'vg¡(ür)=o andy'>o
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l'/i th

y >oiff¡eJ(üz)

Furthermore, we requi re

w' tvlf (ü") +

mln
z

-y' vTs, (u, )l w > o

m

I I

for all w / 0 such that w' VS, (ür) = 0 for all j e J(ür).

If we carry out first the minimization of the ínequa'lÍty constraint

Lagrangian wíth respect to z¡, ..., z nameìy,

t(u ,r,y ,r) = f [u ) +
m

I y' tg. (r)
=l 

)
b-j + l22

i

z?
JI

m

ì ts, (u) - bj + l2+ clz

we get L(u,y,c) = Pin i(u,z,y,c) where
z

û1u,.,y,c) = f(u) - *,!,*,n,,u, - 6j,y' ) and

V(o,ß) = max(0,ß+cq)'- g'.

The optimaì value of the z. are given in terms of (u,y,c) by

z?(u,y,c) = maxtO, -y' lc - g: (u) + 6, I j=1...,ffi.

Minimization of L(u,J,c) w'ith respect to u yields u(y,c), and the

multiplier method iteration takes the form

4 * . [9; (u(y*,c) - 5, ] + z? lu(vn,c),yn,cJ

= max [0,yr+cg¡ (u (yo ,c)) - b, .f ¡ j=1,. . ,m.

Proposition 4.9 : Suppose üz sat'isfies g(üz) ( 5 and

that (A') holds then ü, is a strict local minimum of the problem

(P)ie.fe>0s.t.

j
Yn*,
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f(ür) . f(u.); v uz € N(ü2,e) û, f u".

Proof : Reference t32l Proposition 1.31

If the assumption (A') is satisfied ¡V (p), then the condition (A) is

satisfied by the problern above. As a consequence there exists a

unique Lagrange multipfier (yt,..,i-) which is the solution to the

system of equat'ions, given in the first part of the fo1'lowing

(these equations are known as the Kuhn Tucker condit'ions).

Proposition 4.10: Let üz be a local minimum of (P) and assume that

f and g.; i=1,..,m are continuously differentiable'in a neighbour-

hood of üz and that the gradients Vg. (ür); j € J(üz) are linearly

independent. Then there exists a unìque vector ! such that

vzL(u2,.i) = 0

Ì > o; Ì ts, (ür) - bj I = oi v i=l,..,nì

If in addition f and g;, j=l,..,rlr are twice continuously differentiable

Ín a neighbourhood of üz,then for all w € R* satisfying

Vg.(ü.)'w=0;j€J(ür),
I

we have

w'VåL (ü z ,y )w > 0.

Proof : Reference l32l Proposrltion I.29 tr

There always exists a Lagrange multiplier, satisfying the first
equations of Proposition 4.10, when ü, is a regular point. Any

su'itable constra'int qualificat'ion, such as the Cottle constra'int

quaf ification, implies regularity. In this situation though, we

do not necessarily have unìqueness.
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0f course all theorems for the equaìity constraint problem are

app'l 'icabl e to the i nequa'l i ty probl em sati sfyi ng suff i ci ency

assumptions (A').

!'le in fact can replace the assumption that the grad'ients Vg. (ur);

i € J(üz) are ìinearly'independent by the assumption that ü, is
strict locaì minimum and a regular point. In do'ing so we still
retain this equivalence (see reference t32l).

If we assume the grad'ients Vg. (ür); j € J(üz) are 'linear'ly independent

then the Cottle constraint qualification must hold at ü2. That is

there exists no multipliers, not all zero, such that

j€Jlü,)Y, e' (ü') = o (4 ) o or not) '

If we assume the Cottle constraìnt qua'lification holds then we

immediateìy have the regularity of û, for the problem (p).

Suppose we let

rî1u¡ = min{f (uz) r g.¡ (uz) + ti - 6, ; j=1r. . ,llli

(uz,z) e u((ür,Z),ô

= m(b+6)

Under condition (A') we can use the implicit function theorem to

get Vñ(0) = vm(6) = - t, the unique Lagrange multiplier associated

with the strict local m'inimum ü2. In fact ñ(.) is twice continuously

differentiable in a ne'ighbourhood of zero (see reference t21l).

The localization of the minimization allows us to do this. It is

somewhat instructive to see how this may be done, but first we

investigate the role of the multi-valued mapp'ing

]

b.
t

)

q(b) = {uz : uz€r(b); r(uz) < m(u)l
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where

f(b) = {uz: g, (ur) < 6, + b, ; j=],..,m}

and m(b) = inf{f(uz); u, €r(b)}.

l,Jhen o(0) consists of a collection of isolated minima (which is the

case for strict local minima) we know that b * cr(b) is lower sem'i-

continuous at 6 (see Proposition 4.1).

Proposition 4.11 : Suppose f (.) and gj (.)i i=l,..,tì't are conti.nuous

functions. Suppose also that the multi-valued mapping b * o(b)

'is lower semi-continuous at b = 0.

Then m(b) = ¡î(b) for b € N(0,ô), for some ô > 0.

Proof : Fi rst we note that

ñ(u) = min{f (uz) : 9, (u ) + zl = 6,

(uz,z) € N( (ür,2) ,õ) Ì

+ bri i=l,..,m1

= min{f (uz) : g. (ur) + zl = -b, * b, t j=1,..,nìi

(uz,z?,. .,ri) e ru ((ir,2?,. .,2:), (o,r) ]

for a suitable 6, e > 0. Hence

ñ(b) > mín{f (uz) : g, (ur) +

uz € N(ür,ô)).

z2
i

+ b. ; j=l,..,mi
t

6
i

If we let (ur,z?) be s.t.

g. (uz) + z +b

s, (uz).

2-
j 6

J

then

+

For e > 0 as above we can choose E t 0 s.t. for uz e ru(ür,ô);

V j=l,. . ,m

zl = (6, b,)
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s, (uz) rj <g(ür)<g(ur)*.r,

+ g(ur)

Hence

( bj )b.
t

bj

ej

\< + g (ür)

ie.' zl e.
I

z2j + ee.t
J

ie., (z?,. . ,22) € N((z?,..,7r),r).

(

9, (u2) * 
=:

<(6,+b,)-

€ N (ü, ,Z? ,. . ,r'^), (o,r) ).(ur,z?)
J

6.
I

)

b.
t

5
t

<2.r<
t

b.
t

g(uz) + 9.,
t

+ j=lr. . . ,nri

.m

So for ô sufficientìy small u, € N(ür,ô), and 2.2 s.t

+ j=lr. . ,ffi ,

we have Hence

(m b) < min{f(uz)

u2 € N(ür,ô)]

g (u, ) + z?
J

ô sufficiently small, ie.

bj6
i ,

for

¡î(u) = min{f (uz) : 9¡ (ur) < +b uz € N(ür,ô)].

By assumption b * cr(b,O) is lower semi-contuous at b 0

From the definition of l.s.c. at b = 0 we have f 6* > 0 s,t.

N(0,ô*) c {b : cr(b) n N(ü2,ô) I O}.

Hence for b € N(o,ô*I l

t(uz) = ¡i(¡) ,

rhar is,ñ(u) = ñ(b).

Uz € N(ü2,ô) s.r
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In reference [22] Rockafellar stud'ies

p(b) = inf{F(uz,b)i uz € Uz}

where for each (ur,b) € U2 x ft-;

f g, {rr) < 5, + b, ; i=l,. . ,rni

F(ur,b) =

*æ otherwise.

0f course we aìways have p(b) = m(U) whenever 6 + b e gtõ). In fact

if 6 e int B(õ) then p(b) = m(b) for b € N(0,ô), for 6 sufficiently

small. Rockafellar goes on to define the concept of stabil'ity

degree 2.

Definition 4.7 : If there exists a twice continuousl y differentiable

function q.,(.) : N(0,ô) * R, for some ô > 0, s.t.

1f(ur)

(a)

(b)

m(b) > ú(b); v b € N(0,ô)

m(o) = qr(o)

then m(.) is said to be stable degree 2 or alternatively the prob'lem

(P) is said to be stable degree 2.

If m(b) is sub-differentiable at zero with respect to the class

oz = {ü(b) = q - rtlb-6tl '; q € R, r € R*, 6 e R'"}

then obviously it js stable degree 2. It is not hard to see that

if p(.) is Oz bounded (i.e.minorized by an element of Qz) and

stable degree 2 at zero then it is sub-differentiable there with
aq

respect to the above class (see Proposition 5.6 of reference LLfl).

?aIn reference tl.fl this lvas exp'loited to h'igh degree. We can combine

a number of very general results from this reference to obtain the

foì I owi ng ;
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Proposition 4.12 : Su ppose p(.) : R'* R is lower semi-continuous

and 0z-bounded then it is in fact Qz-corìvêX.

Proof : Reference l22l Theorem 4.2, Propos'ition 4.13 and example

4.15. tr

The cìass

or. = {ü(b) = a - ctlu-6tt ': a € R and b € R-i

Q" is of interest to us.

If p(.) is Q" convex then

p(b) = sup{-cllb-6lt t + a; (6,u) € S, S c R* x R}.

Si nce

lu-6tt 2 = ilbil2 - 2<b,Ê> + llÊil2

we have

p(b) +cll bll 2=sup{<6,b>+ã: (5,ã) €S'cR-xR}

which is the supremum of a class of affine mappings.

Thus p(.) is Q'-convex iff p(.) + cll .ll 2 'is convex in the ord'inary

sense. In th'is situation we know that p(.) is Q' sub-djfferentiable

at any point in int(dom f) (reference [11] Theorem 5.11). l,le have

alsowhenc>0;

Proposition 4.13 : Su ppose h(.) is Frá chet differentiable and h'(.)
Lipschitz contìnuous on an open convex set B.

Then there exists a õ > 0 s.t. h(.) + õt¡.ll ' is a convex function on

B and hence h(.) is Qt convex on B.

Proof : Reference [11] Corollary 5.14.
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In reference l22l Rockafellar uses the following:

L(ur,y,c) = inf{F(uz,b) + <y.ut + ttUt '; b € R*}

t,t(y,c) = inf{p(o) + <y.nt + !tntt '; b € R-}.

In the case when p(.) is twice continuously differentiable in a

neighbourhood of zero then p(b) +<y.b>is Q" convex on the interior of

a quasi-compact neighbourhood. This is unlikely in general, but we

will be interested in whether

b * P(b) + <y.b> + tr utr '

can be made convex on a quasi-compact neighbourhood of zero.

l.le need the following in order to investigate this question later.

Theorem 4.I4 : Su ppose h(.) : R^ * R is lower semi-continuous and

Qz bounded. Then h(.) is sub-differentiable on a dense sub-set of

its domain.

Proof : Reference [11], Theoren 6.2 with c¿ = 2 and X = Bn

uniform'ly convex) .

(obviousìy

Theorem 4. L5 : Su ppose p(b) is Õ2 bounded and is stable degree 2.

l¡ e¡"dg¡ that ú" e U, is an optimal solution to the problem (P),

it is necessary and sufficient that there exists

(t,õ) € T = R- x (0,+-¡ s.t.

L(ur,.7,¿) > L(úr,1,õ) > L(üz,J,c)

for al1 uz € lJzi (y,c) e l. lr{oreover, this condition is satisf ied by

(i,õ) iff (t,õ) is optimal for rhe dual probl em

(D): supr t inf
U2

In other words,

L(uz,y,c)l = suprtl(y,c) where I,l(y,c) = infu2L(uz,y,c).
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m(0) suprL(uz,y,c)inf
U2

max
T

inf
U2

L(uz,y,c).

Indeed (t,õ) ís an optima'l solution of (D) for some õ > Oitt
! = -vrf(0) for some function.rf as in the definition of stability

degree 2 and in fact (i,c) is optimat for(D) when c > õ.

Proof : Reference l27l Theorem 5 and Corollary 5.2.

Let us suppose b € int B(g) and m(.) is differentiable twice

continuousìy around zero..Then for any qr(.) satisfying the definition

of stabiìity degree 2 we have the function r,(b) = m(b) - ú(b) > 0

takìng a local minimum at b = 0. Tit'is 'impìies

V[(0) =0=Vm(g) -V{,(0)

and hence

-Vm(0) = -v,1;(O) = -Y.

Corollary 4.15 : Suppose

the Cottle constraint qualifjcation holds at b e int B(g);

there exists a 6 r 0 such that r(ô) js bounded;

the optimal set cr(6) consists of isolated local minima, and

the condition (A') is satisfied by a particular ü" e o(6¡.

Then (t,õ) are the only solutions of the dual probìem, lvhere õ > O

is sufficiently large and y is the unique Lagrange multipf ier

associated with ü2. In fact vti(O) = -y.

Proof : For our particular optìmaì solution ü2 we have

m(O) = ñ(U) = min{f(uz) : uz € r(b) n ñ'(ü2,ô)} localìy around b = 0.

This foìlows from Theorem 4.1, Propositions 4.L,4.9 and 4.11.

(i )

(ii )

(i ii )

(iv)
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Since (R') f¡olds we have a unique Lagrange multipl'ier i associated

with ü2. The ìmpf icit funct'ion theorem 'imp'lies under the conditions

(A') that ñ(b) is twice cont'inuousìy differentiable around b = 0

and Vñ(0) = ñ(O) = -V. Theorem 4.15 allows us to deduce that

(t,õ) is a solut'ion of the dual and the above comment allows us to

deduce that (J,õ) are the only solutjons when õ is sufficientìy

large. tr

l.le note that the following conditions (i ), (ji ),and (v) are sufficient

(and "almost necessary") for ü, to be an isolated local optimaì

solution of (P).

Theorem 4.16 : Su ppose the fol'lowing assumptions are satisfied:

(i )

(iii)
(iv)

(ii)

(v)

the functions f and g-. i j=l,..,m are tw'ice cont'inuously

di fferenti abl e;

the Cottl e constrai nt qual 'if i cati on hol ds for g-, ( ' ) ;

j=1,..,m at 5 e int B(õ);

r(6) = lur: q(u) - E .îrt i=1,..,mÌ is bounded for û >0;

the functÍon p(.) is Õ2 bounded. For each optimal

solution ü, there exists a Lagrange multip'l'ier t (satisfying

the Kuhn-Tucker conditions) for which we have;

the Hessian matrix of L(ür,!,0)

vTL(uz,.l,o) = v|f(ür) +

verifies the inequaììty

w'vfL(ür,J,0)w > 0

forallwl0s.t.
(a) *'vzdi (ür) = 0 for

j € Jo(ür) = {j :

(¡)w'vzg,(ü2) < o for

I ,.v\s. (ür) i

j € J'(ü') = {j : 9-. (üz) = o, y, = 0].

Then (P) is stable degree 2 and for õ suffic'iently'large the pair

(t,õ) is an optima'l solution of the dual (0).

j =r

gj ( Uz = 0, > 0Ì andyj
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Proof: The conditions (v) are sufficient for üz to be an isolated

locally optimal solution. Assumption (ii) impìies the existence

of a Lagrange mult'ipì'ier. Assumptions (ii) an¿ (iii) ensure that

b * f (b) 'is continuous locally around 5 and unjformly compact

near 6. The conditions of Proposition 4.1 are met and we can

deduce the lower semi-continuity of b + cr(¡) at zero. The conditions

of Proposit'ion 4.11 are satisfied and we have locally around zero

pt(b) =m(u) =rî(u)

= inf{f(uz) i u2 € N(ür,o); !, (uz)

for ¡=1,..,ffiÌ,

<b.
J

+ b.
J

for some ô > 0, where ür'is anyjsolated optimaì solution of (P).

l.le can now, in an identical fashion to R.T. Rockafellar, construct

a function r(.) twice continuous differentiable in a neighbourhood

of zero s.t.

(a)

(b)

(c)

¡î(n) > r(b) in a neighbourhood of zero,

'î(o) = n(o), and

vn(o) = -i.

We refer the reader to Theorem 6 of reference l22l for the details

of this construction. The conditions of Theorem 4.15 are now

satisfied and our result is established. ¡

Much interest has been directed towards interpretÍng the Clarke

derivative of the marginal mapping m(b) at b = 0. The general-

ization of the relation, wh'ich holds in the convex case, name'ly

am(O) = {-Y: 3 üz satisfying with y the Kuhn-Tucker conditions},

is hoped to hold more generally. J. Gauvin in reference l27l has

proved a weaker result.
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Theorem 4.17 : Suppose o(O) is non-empty, cr(b) is un'iformly compact

near zero, and the Cottle constraint qualification holds at 6.

Then

ðm(0) g_ coi-t : : ü2 satisfiying with t the Kuhn-Tucker conditions].

Proof : Reference 1271, Theorem 3

We will not pursue thìs part'icular relation but prove the followÍng

equival ence:

ðñ(0) = {-t: (t,õ) is a solution of the dual of problem (p)

forsomeõen*Ì.

The above set of dual variables is always a convex set. This can be

deduced using the following theorem. If we can show this equivalencethen

we have shown the compactness of the set.

Theorem 4.18 : The functions L (u",y,c) and w(y,c) are concave and

upper semi-continuous in (y,c) € R- x R* and non-decreas'ing ìn c € R*,

nowhere +-. Furthermore, whenever c > s > 0 one has

W(y,c) > max{W(z,s) - lly-zl2/2 (c-s); z € Rn'}.

Proof : Reference 1221, Theorem 1. !

One can also deduce from this that if (t,õ) is a solution of the

dual then (y,c) will be a solution if c > õ. We always have

W(y,c) < p (0).

Proposi t'ion 4. 15 : Suppose

!

(i )

(ii)
(iii)

p(.) is o, bounded,

ñ(.) is locally Lipsch'itz order 2 around b = 0, and

E e int B(g).

Then the folìowing are equjvalent:
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(i) zero is a local minimum of b + p(b) + .!,bt + !tntt 
t

for all c sufficìently large;

(ii) (t,õ) is a solution of the dual for somà c > 0.

Proof : We know that

l^l(y,c) = inf{p(b) +..!,bt + 
trbrl ', b € Rn'}

so we restrict our attention to

{b e R- : p(U) + <i,b> + tf bil' = ¡¡(.i,c)}.

This is in fact the set of global minima of p(b) + ..i,bt + !t Utt '.
Sjnce m(.) is local'ly L'ipschitz order 2 at b = 0 and 5 e int B(õ)

we have,

(a)

( b)

p(o) = m(o), and

p(b) = ñ(b) > m(0) - Mllbll 2, localiy around b = 0 (for some

Lipsch'itz constant M > 0).

Thus we establish stabif ity degree 2 by letting {,(b) = m(b) - Mllbll 2.

Since p(.) 'is Qr-bounded Theorem 4.15 applies. Hence for õ > 0,

sufficientìy ìarge, we have

p(o) = m(o) = maxr l,l(y,c) = hl(t,õ)

iff

b * p(b) + ..i,b' + ttutt 
,

is minimized at b = 0.

The implication (ii) * (i) is immediate. To show (j) * (iÍ) we need

to show

0 € {b € R- : p(b) +.y,bt * !f Uff t = W(y,õ)}

for c suff i ci ently 'l arge.
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Now

{b e R' : p(b) *.J,ur * tt Ut 
2 = t't(y,c)}

.{beB(g) :a-trurr ,*.!,bt+tr 
urr 

,<m(0)}

= S(c),

wherep(b)>a-

boundedness).

We can express

fr Ut ' for all b € R' (because of p(:)'s o,

s(c) = {oea(s) 'f¡m(0)-a) -+H-r>ilb -T,#t ,}.

Choose e1 > 0 and ¿z > 0. l-le can choose c to be sufficiently'large

(c, õ, say) as to ensure that 0. 
ClOfm(o)-a) 

< e, and

llyll I ez.

l,le have

s(c) c{beg(g) iÊ1 reZ>.|u-ffir ,l

That is, if b € S(c), we have

ilbil < ilb - f.hl, * rr1¡{Ðrl < (e1+e! )* * t,

forc>c.

Now s'ince zero is a local min'imum we have

p (0) = 'i(o) . p(b) + .!,b' + tlUr,

for all b € N(0,a), for some e > 0. By ensuring that ð is

suffìciently large that

0< (el.¿|)**.rrr,

we have
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t.t(t,ð) = p(b) +..i,b' +ltntt'

for some b € N(O,e) and

p(0) = t(o) . !ü(t,ð).

This implies zero ís a global. mjnimum and (!,õ) is a so]ution of the

dual. ¡

Theorem 4.1.9 : Su ppose

(i )

(ii)
(ii i)

6 e int B(g)

¡ * m(b) is ìocally Lipschitz order 2 around b = 0, and

p(.) is Õz bounded.

Then

añ(0) = ap(0)

= {-y: (t,õ) is a solution of the dual problem (O)

forsomeõ>o].

Proof : l,le first show that

b * p(b) + <i,b> * 
|rurr 

,

convex on the interior of a quasi-compact neighbourhood of zero

for õ sufficiently large. Suppose N(0,ô) is a quasi-compact

neìghbourhood of zero on which ¡ * ñ(b) is local'ly order 2

Lipschitz. From Theorem 4.12 we know that b + p(b) = m(b) js oz

sub-differentiable on a dense sub-set of N-(0,6) and from Proposition

4.12 Qz-convex.

Let G be a dense sub-set of N(O,o) s.t. tor 6 € G we have some r > 0

b b> m(6)m(b) in
2 for all b € Ñ(0,0).
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l,'le let

H(6) = {r > o ' !ru-6rr '> m(6) - m(b)

forall b€N(o,o)Ì

and

F(U1 = inf{r : r > 2M and r e H(6)1.

l,le proceed to show that for Ê e g, ¡ * F(b) is upper semi-continuous

at û if M is the Lipschitz constant of b * ñ(b). Due to Theorem 1.21

this amounts to showing that

b*{r:r>2MandreH(b)}

= H(b) rì [2M,+-)

is open at any given ô e e. That is, given

(i) r e H(ô) n tzM,*-),

(iÍ) bn € G s.t. b" * 6,

we must show there exists

rn € H(b") n ¡2M,+-¡ s.t.

rt*r.

l.le let

r'= sup{ ttÊ-ur + rtu" -Êlr b € N'(0,ô)Ì
ll b" -ul 2

and note that;

(iii) lb"-bl 2< (rrÛ-¡tr +lbt-ôtl)'

which implies r' > r > ?M',

(iv) forblô

2

" r(tt Ê-ull + l bn -Êu )'t- =--t-r ãS ir-E
ll b" -bll 2

(v) forb=b
r¡' = r for all n.

and
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We are given that

Ir

Hence

lr

V

< r(6) - ñ(b) + Mtb"-ôl 2

< rn(û) - m(b) * tru"-ûr

. t" u-Êlt ' + lrb"-61 ')

r (lr o-6ll + n b" -61 ) 
,

for alt b € N'(0,ô).

ll b" -bll 2

¡-ô , > m(ô)

m(b )ñ(b" )

m( b)

2

i r"llb" -blt ' for all b € ñ-(o,o)

lt b" -bil

b € G.

Since rn e H(b" ) n tZN,r*), we have established the u.s.c. of
^b * r(b) at b.

Now for each b € G we f¡ave F(ô) < *- ôrd in tact F(6) is bounded on

G since an upper semi-continuous function attains its supremum on

the compact set G. Hence

is sub-differentiable with respect to q"/z on G for any õ sufficìently
'large so that

m(.)

6t¡ c

The continuity of m(.) extends this to all of N-(0,ô). As a conse-

quence m(.) i, Qo/' convex on [(0,ô) and

m(b) = sup{rp(b) = ,i(û) - tr u-6rr ,; î e N-(o,o)}.

Hence for all b € ñ-(0,ô)
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p(b) + .!,b' + trur 
,

= sup{(m(ô) - ir6rr 
z) + <y+õÊ,b, * (c:ð),,6,, ,.

ô e ñ-(0, o) )

the supremum of a collection of convex functions in b for c > c.

[,le can define a proper, ]ower semi-continuous, convex function on

R* by letting

h(b) =

forc>õ.

Theorem 4.lf is appìicable and h(b) achieves its gìobal minimum when

ft,o, 
* ..i,u' + trur 

,; ir b € ñ-(o,o)

[*-

0 € ah(b),

where Ah(b), the convex function's sub-derivative, coincides wjth the

Clarke generalized derivative if

b € N(0,6)

We now apply Lemma 4.4, after first noting that 5 € int B(d)an¿hence

that p(U) = m(U) locally around zero. We have, due to its local

Li psch'i tzness (i .e. I ocal Li pschi tz order 2 imp'l i es I ocal L'ipschi tz

order 1), the existence of ! s.t.

-v e am(o).

For any such !

0 € âñ(0) + .i = â(m(b) * .y,b> * tr urr ')lo=o

= à(p(b) + <.7,b' + 
trnrr 

,) 
lo=o

= ðh(b) lo=o

= ah(0).
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For for c > õ this implies h(.) attains its globa'l minimum at b = 0,

that is

b + p(b) + .J,bt + tlott '

attains its local minimur at b = 0 for any c > c.

Propos'ition 4.15 appìies and (t,c) is a solution of the dual problem.

To obtain the reversed inclusion we note that since Theorem 4.15 is

applicable we have for õ sufficiently large

p(0) = m(o¡ = max, t.J(y,c) = l,J(t,c)

for any y = -Vif(O), tor any function satisfying the definition of

stability degree 2.

Suppose we have such a function qr(.) : R* * R sat'isfying

(vi ) p(0) = m(0) = ,f (0),

(viì) p(b) = m(b) > ú(b) for b € N(0,0) (for some ô > 0).

Thi s 'impl i es that

ìim sup p(te)-p(0)
t+0, t-t'

- lim sup !.,(te)-ú(0)zt*o+-t

_ 1im sup
t+0.+

lim
t+O

{,(re)-u(0)
t

p(te)-,f(o)
t

+

= <vü(o),et.
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S'ince this holds for all e € R- we have

ftJ;(0) e ôp(0) = ãm(0).

Theorem 4.4 gives conditions under which m(.) will be locally

Lipsch'itz order 2 around b = 0. The role of Oz-boundedness is

obviously crucial to the above proof and as a consequence needs

further exploration. It would be of interest to know what con-

ditions on the functjons f(.), n, (.); i=1,..,m would imply az-

boundedness. R.T. Rockafellar referred to this boundedness as

the quadratic growth condjtion. He gives in reference l22l

the followìng condition

lim
ll bll++- p(b)/ll bll 2 > --

which is obviousìy equiva'lent to 0r-boundedness. He goes on to

note that this condition holds if and only'if W(y,c) is not

ident'ical]y -æ on T, or, in other words, jf and only if (D) has

"feasible solutions". The quadratic growth condition Ís a'lso

equiva'lent to the condition that for some ! € R'(not necessarily

y = 0) and some õ > 0, the infimum of L(ur,.i,õ ) over all uz €. Uz

is not --.

The interesting thìng about this equ'ivalence is that even though

ðm(0) is, under very generaly cond'itions, contained in the convex

closure of the Lagrange multip'l'iers (see Theorem 4.I7), it ìs not

necessariìy equivalent to thjs set. Theorem 4.i6 gives conditions

under wh'i ch a Lagrange mul t'ip'l 'ier associ ated wi th an optima'l

sol ut'ion woul d be contai ned i n am ( 0) .

interestjngly enough, the inclusion of am(O) in the set of Lagrange

multipliers follows under the conditions of Theorem 4.19 if we

assume U2 'is open and the functions f(.) and gj (-); i=l,..,m are
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continuously differentiable. That is, if üz € Uz and (V,õ) e f
satisfy the saddle point relation of Theorem 4.15, we have;

o = #0.,!,õ) = max{9-. (ür), -v, ftt, for j=l,'',m,

g = yrl(ú ,,-y,ê)

= vzf(üz) + I max{o,! *õõ (ü')}vrq (ü.)
J I

implyi ng

and

R.T. Rockafellar also notes that if the functions f (.), S-, (.);
j=l,..,m are twice continuous'ly differentiable one has the condition

(v) of Theorem 4.16 almost satisfied jn the sense that the'inequa'lity

w'våL(ü ,!,õ)w > o,

is weakened to

w'vfL(ür,!,õ)w > 0.

Corollary 4.19 : Suppose;

+ õ max{g-. (ür), -v, /ctlvrgj (ür)
m

= vzf(uz) + I tv,
j =1 

J

gj (ür) < 0; ¿ " 0t !,4 (ü') = 0, for i=1,..,m

vzf Gtz) * 
, =I, 

n, orq (ür) = o.

(i)

(ii )

(iìi)
(iv)

b€ e(s);int

U. m(b) is locally L'ipschitz order 2 around b = 0;

p(.) is oz bounded;

the functions f(.), i, (.); j=1,..,m, are continuous'ly

differentiable on Uz and

Uz is an open set.(v)
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Then am(O) 
= 

{-V : i üz sat'isfying with y the Kuhn-Tucker cond'itions}.

Proof : Theorem 4.19 and the above comments.

In a way the dual solutions can be thought of as a more "refined" set

of Lagrange mu1 t'ip'l i ers.
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CHAPTER V

Fuzzy sets have been around for a number of years. They were deveìoped

to model the concept of "impression". For instance what do we mean by

the set of "tall" people? How do we quafify degree of closeness?

Initially an extension of ord'inary set theory was achieved by extending

the jdea of the characteristic functjon I(A)(.) of a set A c U. The

characteristic function takes U onto {0,1} and is'interpreted as assigning

a degree of membership. L.A. Zadeh replaced {0,1} w'ith the unit interval

[0,1] giving a continuum of degree of membership. 0ther authors later

replaced [0,1] with much more general lattices. More precisely, (1,<," )

a complete d'istributive lattice with order reversing involution.

Bruce Hutton (see references [36] and t3il) discussed various separation

axiom of the fuzzy topo'log'ica1 spaces induced by this "extended" set

theory. i'lormality being one of the few separation axioms which can be

defined purely 'in terms of the propert'ies of open and closed sets (i.e.

no mention of points) is of some interest. Bruce Hutton characterised

normality jn terms of a "Urysohn" type'lenuna and introduced the fuzzy

until 'interval, which plays the role of the ordinary un'it interval jn

this context.

As we have noted, the original Urysohn lemma js related to the probìem

of extension of continuous functions (see the comments before Theorem

2.4). Theorems on continuous select'ion deal with spaces which

necessarily are extension spaces with respect to each other, name'ly if
A c Ui and g : A + Uz wê say Uz is an extension space with respect to

Ur if we can extend any continuous functjon g(.) to a continuous

f(.) : Ur * Uz. As we will see the mult'i-valued mappings we have

dealt with in prevìous chapters can be considered to be members of a
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particular fuzzy topoìogy. It seems very natural that the concept of

fuzzy normality should shed light on the seìection probìem, involving

multi-valued mappings, to which we have devoted much time to in prev'ious

chapters. It turns out to be also natural to deal with less general

lattices for L and restrict ourselves to continuous lattices which

reflect the continuum properties of the unit interval nlore closely.

In the first part of chapter five we extend slíghtly some of the

representational theorems of continuous lattice theor"y in the sense

that we deal with cont'inuous lattices of sets whjch are not necessarily

topoì og'ies. l.le go on to establ i sh a dual i somorph'i sm of conti nuous

lattices which is closely related to the L-flow theory of C.V. Nego'ita

and D.A. Rolesca (see reference t34l). Using thjs we can show that

every quasi-convex function, taking a compact set U into R", can be

expressed as the po'int wise limit of a class of strictly quasi-convex

functions. More specifìcal'ly, the strict'ly quasi-convex functions are

"lower dense" in the lattice of quasi-convex functions.

tr.Je go onto consider the following probiem. Given a class of O-convex

sets which are closed under finjte infimums, when will the resulting

fuzzy topology .c' = [Ur, I . 0oo. (Ur)], admit the fo]ìowjng? The exis-

tenceof an open-cìosed set T(.), for any closed set K(.) and open set

U(.) where K(.) . U(.), such that

K(.) . T(.) - u(. ).

This of course imp'lies normality of the correspond'ing fuzzy topology

!'. l.Je conclude by showing that the normality of f implies the

ability to achìeve the above for some set T(.), corresponding to a

continuous multi -valued mappìng.
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Thispartìcu]arsituationisc]oselyrelatedtothecontentof
proposition 3.2. It is of interest because perfect.normality is equivalent

to the existence of a generating class of [Ur,'E o(Ur)]' when U2 is a

compact Hausdorf space. Since [Ur' I O(Uz)] will consist of i's'

continuousfunctions,thecomplementsofu.s.continuousfunctìons,the

cïosed fuzzy set K(.) is an upper.semi-continuous multi:function and

U(.) will be a lower semi-continuous multi-function' The mapping T(')

is contìnuous and perfect normality wjì'l imply an arbìtrarily close

graph approxìmat'ion by continuous multi-functions' Th'is demostrates that

such a property may be possessed by a large cìass of probìems'

IS
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all {cl, }teI S L'we can generate f'low subsets via these functions.

Thís was used in reference t34l to obtain an equivalent representation

for fuzzy sets. we will derive a variant of this by using a slightly
different concept.

Definition 5.2 z An L-deflow subset of a set U is a family

f = (E(*))oeL; E(cr) c u; v * € L

s.t.

E(vD)=u{E(d);de0}

for all directed subsets D c L.

If we let t and L be continuous and comp'lete lattices then comp'lete

we know (oefinition L.I7)

[L;'t] = {f : L +'r; f(VD) = u{f(d) : d e D}for all directed sets

DcL]
is the complete continuous lattice of Scott continuous functions.

We can restrict the class [L + rJ as follows

[L + tJo = {f € [L + t]; f(o) = 0]

where o is the minimal element of L. This is of course a comp'lete

cont'inuous lattice. This follows immediately from the completeness

and continuity of [L + tJ and the fact that supremrlm of a subset of

[L + tl q is once again 'in [L + t] q, that is for f. € [L + t] o

(V, f, )(o) = u. f (cr).

The supremum is defined point wise with respect to t and hence

(v, f, )(o) = u. f(o) = u,0 = 0.



181

If we let r be a topology on a topological space u we have of course

[L + r]o = [IL, I.r]

and

I L + rl o = [ IL, X'r] o (with the obvious interpretat'ion)

l^le will wrjte I(A)(.) = A.

Definition5.3:Afu zzy topological space is pair (U,r), ¿ . Jr(U)

s.t
(i ) 0,1 € "c where 0 is the minimal element of ,"(U) and 1 the

maximal element,

Á,geJlmpliesÃnõe¡.
(0,)t€Igt imp'lies rr.,4 €r,.

(i i )

(rltJ

Before we restríct ourselves to the class of fuzzy sets we will
consider a s'l'ightìy more general class, namely, the fuzzy classes

which are closed under arbitrary supremums, i.e. J. is closed

under supremums if {Ã ; i € I} c J' imp'lies Ura, 4 €. t,. As usual

one can defl'ne the ínfímum as foì1ows,

\9, =v{g : g € t'; g< g, i oial}

and hence derive a complete lattice J'. We denote, for any crisp set A,

crl o (A) (y) =

Proposition 5.1 : Su ppose L and r are sup-complete and hence (via

the above trick) complete lattices. For r c p(U),where Q € t ìs

the minimum element and u € r is the maximal element, we defìne;

t' = {f : U + L s.t. ft (îcr) € .r; cr e L}.

Then if L and r are continuous lattice so is J' and if (U,t) is
a topoìogicaì space then J' = [U, IL]. If we have on'ly r c T

t{
ct

0 't se
€A
herw

v
ot
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where (U,f) is a topological space,then

J'clU, rll.

Proof : The second assertíon follows immediately from the obser-

vation that Trheorem 1.11 is applicable. Since any Scott open set,

by Proposition 1.6(iii ),

S = Uiîcr : cr € S] = int S, then

for f € j' we have that

f ''(s) = u{f ''(î"); o € S}.

This is obviously open when 'r c T and hence

J¡ c IU, IL].

When t is a topology we have equafity since îo'is open and hence

for f € [U, rL] we have f t(îcr) €'r, the open sets.

To prove the first assertion we need to characterise the way below

relation on J'. lrle suppose f << g in -c', we 1et t = Vig(u): u € U]

and take two directed sets

Dr={S:S<<t} cL

Dz={V€'r:V<<U} cr

We form a nev4/ directed set in J'

Ds = {S Io(V) : S e D, and V € D2}.

0bviously V D, > g and here there exists S € Di and V € D2 s.t.

S Io(V) >f. Sjnce I'(V)(u) =0foruÉVwemusthavef(u) = 0

for u d V. This prompts us to 'investigate the functions crlr(V¡1.¡

forV€t.



183

By definition

oo(f) = f 
''(îo) e r; v 0.

Hence ois(o*(f))(u) .. f(u); v u € U which in turn imp'lies

V{oI¡(oo(f)); a e l-}(u).< f(u); v u € U

Wehaveu€o (f) for ß .. f(u). That is
ß

V{crIe(oo(f)); o e l-}(u) > ß

for all ß << f(u). Hence

V{crIo(oo(f)): cr € l-}(u) > V{ß : ß << f(u)} = f(u),

s'ince L is continuous.

For each cr, oo(f) €'r and v u € oo(f) we have cr << f(u). This

prompts us to look at the funct'ions crlr(V)(.) s.t. V e t, a € L

and

o,<<f(u);Vu€V

[,le note that

f(u) = V{crIs(or(f)): a € l-}(u)

< V{crIo(V); V e t and o << ¡{f(u): u € V}}(u)

< f (u) ; u € u'

This follows from the observation that

(i) if ß € L, for v u € o'(f) €'¡, we have

ß.< f(u) (i.e. ß < f(u); v u e oß(f))
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(ii) 4{f(u):ueo'(f)}

V{x : x < f(u); v u e o (f)Ì implying
ß

ß<¡{f(u): ueo'(f)}

because

ß€{x:x<f(u);vu€o (f) ] and
ß

(iii) the fact that L is a continuous lattice allows us to take

0<<4{f(u):u€o
ß
(f )].

The functions aIo(V) € "c' for V € t since

0;ße(+o)"
{u : crls(V)(u) >> ß} = U ; ß is the minimal elernent of L

V ; otherwise.

Finalìy we characterise the way below re]ation for such functions.

l,Je have crlo(v).. ßto(u) if o << ß and v << M in these respective

I attices.

Suppose we have a directed set D = {h : U + L; h € J,} s.t.
VD > ßIo(M). Suppose also that o << ß and V << M. If 0 js the

minimal element of L we define

Vn={u:h(u)*ol

={u:h(u) el-\+0i.

Now * 0 is Scott closed and hence L \ + 0 is Scott open and

L \ { 0 = U{îx ; x f..t. 0}.

Th'is implies

V = h-r
h

(r r + 0) = u{rr'l(îx) : x d. * o} € t.



l,le define also ch = 4{h(u) : u e V}.

From VD > ßIo(M) we can deduce that V{Vn : h e D} . M. First

we let K(.) = V{h : h € D}(.) and note that {u : K(u) I O} = U.

Suppose h(u) = 0, v h € D. ThenV{h(u) : h e D} = 0, that is,

K(u) =9. HenceK(u) l0impìíes 3h€Ds.t. h(u) 10,i.e.,

V{V
h

: h e DÌ > {u : K(u) I O}' t'1.

SinceM >>V andV{Vn : h e D}=_Mwemust have Vn =V for some
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h € D.

!'le can also deduce that V{o : h e D} > ß. First we note that
n

CT
n

=V{x:h(u)>x;vu€V}

=V{x:h(u)trx;Vu€V}

=V{x:{u:h(u)eîx}=V},

since L is continuous.

Now'if Uo{u : h(u) e î x} >> V,then: h e D s.t. iu h(u)eîxÌ.V,
since {u : h(u) e î x} e r is directed. Hence I h € D s.t.

{x : Uo{u : h(u) e î x} >> V}

c{x:{u:h(u)eî¡}=V},

that is,

Vix : Uo{u : h(u) e î x} >> V}

-< Vo V{x :{u : h(u) e î ¡} ¡ V}

=[ cx,Dn
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Since Vo h(u) e î x implies f h € D s.t. h(u) tt x (see Proposition

1.4) we have {u : Vo h(u) e i ¡} c Uo{u : h(u) > x}. Hence

{x:{u:Voh(u)eîx}>>V}

c {x : uo{u : h(u) tt x} >> v}.

Thi s impl 'ies

V{x:{u:Voh(u)Eîx}>> V}

< V{x : Uo{u : h(u) >> x} >> V}

= V{x : Uo{u : h(u) e î x} >> V},

since L is continuous,

Finally since

K(u) = vo h(u) > g for all u €M >> v,

and we have

{x:{u:K(u)eîx}>>V}

={x:ß>>x}.

tr.le can deduce that

ß= V{x : ß >> x} < V{x : {u : K(u) e î x} >>V}

< V{x : Uo{u : h(u) e î x} >> V}

( Voon

The relation ß >> o implìes the existence of a h'€ D s.t.

o,.' > o. l,le have already shown that there exists a h" € D s.t.
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\,,={u:h"(u)lo}=v.

Since D is directed we have h > h'Vh", h € D s.t.

crlo(v)(u) . \Io(v)(u) < h(u); v u € u,

that i s,

oIo(v) < h

in J'. This 'implies

crlo(V) .. ßro(¡'t) in "cr.

The continuity of "c' follows from the continuity of L and'r,after

noting that

f = VicrloÛ) : V e 'r and cr << ¡{f(u)': u € V}}

= V{oIo(V) : V,M € r and V << M where cx, << ¡{f(u) : u € Mi=ß}

that i s,

f = V{qIo(V) : oIs(V) e J' and sIo(V) << f}

=V{g:g€Írandg<<f}.

It is rarely the case that L rnd Loo., the latt'ice induced by

reversing the order on L, are both continuous lattices. It is

true for [0,1] with the comp'lement of r e [0,1] being r' = 1 - r
since t0,11' = [0,1]. It is true for L = (R")" with the order

reversing operation of multip'lication by -1.

The way below relation on these lattices differs slìght1y from

strictly less than i.n the following sense. For [0,1] or R* we

let 0 be the ominimal' element and note that x << y'iff either

x < y or x = y = 0. In (R*)" we have (xr,..,*,,).. (y.,..,V,,)

iff x. .. { V i = 1,..,n. I.le always have 0 << g; V ß € L.
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Proposition 5.2 : Suppose r, L-__ and L are supremum complete
ops

continuous lattices for which t satisfìes,

(E) If u e Ke r then I 0 er s.t. u € 0 << K;

and L satisfies,

If g l0 then o >> ß'in L imp'lìes ß ..oo.o in Loo"

ß > 0 in L iff ß ..o0,0 in Loo..

(F) (i )

(ii )

Then there is a dua'l isomorphism of compìete continuous lattices

between [L + r] o and "C'.ops

Proof : We wi I I refer to the order on L
_ 

oot

and ¡ I'le define O(A) = f by{ps

f(cr) = oo(A) = {u € U : I(A)(u) tt o} e . forql0

and

f(o) = {u e u : I(Ã)(u) > o}

={u€U:I(A)(u) l0}

= {u € u : I(A)(u) e I \ { 0} € t

for any g'iven A € J'. We note that

f(1) = {u e U: 1<< l(Ã)(u)} = 0,

since 1 is the maximal elenlent of L.

In terms of L 1 is the minimal element and hence all we need
o ps'

to do to show that

ur 10. which generates

v<<ops o ps

t(') e I Lon. ,'rl o



is to investigate {u :âd¡ .. I(Ã)(u)} when $¡ l0 and

{u : 
^q 

. I(Ã)(u)} when lq = [.

Now

^o¿. 
=V{ß:ß<s.;Vi}

-i I

= V{ß : ß >
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cr.; V i]
¡ops

> 0,. ; v i.
o ps r

Hence

^0,.-¡ ops
V
o ps

0.
I

or <V
op

0.sl
^cx,.

From

we have

ops

^cl.-¡
and

V o.>ops .l ops r

V q ( q.; V i'

which in turn implies Voo, o, Hence V
ops

c[
t ^cI.-¡

From this it follows that if 4q f 0, then iu: 
^cr. 

<< I(A)(u)Ì= f(Vo^ o,)
_ -1

and {u : 
^cx,. 

< I(A)(u)} = f(Voo, o, ) if 4o, = Q.

In the first case if

u e {u : cr. .. l(Ã)(u)l for some i,

then

0i << I(A)(u)

so

u € {u : Aq << I(A)(u)},
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Vops ct,¡

U. {u : o,, << I(A)(u)}

c {u : 
^0,.

l,le have the fol'lowing three cases.

(i) When nq. = 0 and o. f 0, v i then

t(o,, ) = {u : 0, << r(Ã)(u)}

,,oo, (Ã) . {u : o < l(Ã)(u)}.

(ii) If a, = 0 for any i then

u,f(o, ) = f(o) = {u : o < I(Ã)(u)}

r (Ã)(u) Ì.

c{u: o<I(Ã)(u)}=f(o)

That is we have 0. o, << I(A)(u) , implying

)

(iìi) Next we show

u{oß(Ã) : B >> ao. }

= {u : l0r .. t(Ã)(u)t

when ncr. lO,where ou(Ã) = {u : ß << I(Ã)(u)} Obviously

utou(Ã) : g >> rcr. Ì

S {u : 4t .. I(Ã)(u)}.

If u € {u € U : Ao¡ .. I(Ã)(u)},then by the strong inter-

poìation property (Proposition 1.3) there exists a ß >> 1cr, s't'

â0i << ß << I (A) (u); ¡o, f ß ,

i.e.,

u e {u : ß << t(Ã)(u)}.
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Now if ¡cr. = 0 we show
-l

U{o (A): ß>0Ì
ß

= {u : 0 < l(Ã)(u)1.

It is aìways the case that

c{u:0<I(n)(u)},

since 0 < ß << I(Ã)(u) imp'lies 0 < I(Ã)(u).

0 < I(Ã)(u),then 0 << I(Ã)(u) and 0 f r(Ãl(rl.

6 (A) = {u ß << I(A)(u)]
ß

(Ã) .o

By the strong interpolation property we have the existence of

a ßs.t.0<< ß.. I(Ã)(u) and olg. Now 0<<ßimplies 0<ß

but sìnce ß I 0 we have 0 < $. Hence

u{ou(Ã) : ß>o}

>{u:o<I(Ã)(u)}.

Supposs Aoi l0 and u e {u: 
^o,i 

.. I(Ã)(u)} e t. Then by property

(E)10€rs.t.

u € o << {u : 
^oü. 

.. I(Ã)(u)} e r.
-t

Sjnce each oU(A) €'r,there must exist ß >>,rct s.t.

u€0<o

By property F(i ), g >> loi 'imp'lis5 ß <<op" lG, = Voo. o, and the

directedness of {cu : i € I} implies the existence of cr. s.t.

ß < cr., i.e. ß € t 0.. That is,' ops i r

If

(Ã )
ß

A( )

and

u€0<o
ß 0,

I
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U. {u : cr. .. I(Ã)(u)} = {u : l0¡

impìyi ng f(v o, ) = U, f (cr, ).

.< I(A)(u)]

Now suppose 
^o¿i 

= 0 and u € {u : 0 < f(Ã)(u)} e t. Then by propertY

(r) i o € r s.t.

u € 0 << {u : 0 < I(A)(u)} e t.

Since each oU(Ã) e 'r,theremust exist ß > 0 s.t. u € 0-oU(Ã).

Byproperty F(i'i); ß>0impl'ies ß((op, 0= Aoi= Voo.o, and

the directedness of {cr. : i € I} implies the existence of cr. s.t.

ß< 0. i.e.,ß€tq. ThatistosaY' ops ¡ I

ops

(Ã)

and

Let us show that Q is onto.

aÃer's.t.

u€0.<o <o (A), if cr, f 0,op ct
I

U.{u: cx,. << I(Ã)(u)}

= iu 4o, << I(A)(u)]. This implies

f(voo, o, ) = u, f (cr, ).

If cr,. =0then
I

f(voo* o, ) = f(o) = f(cr, ) < U. f(cr. )

implying again f(Voo. o, ) = U, f(q ).

Hence t(.) e I Lops ,r] o. We note that cr > ß implies f(s) > f(ß).
ops

If f € [1, r] o we must construct
ops

and

o (Ã) = f(o); cl I o
ct

{u : 0 < I(A)(u)} = f(0).

For u € U we let
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I(u)={ß€L:u€f(ß)}.

l,le dëfi ne

I (Ã) (u) = vr (u)

Now I et us prove that

o(Ã) = f (").

Suppose o I 0, we wish to show oo(A) = f (cr).

Let u e oo(Ã). lhen I(Ã)(u) = vl(u) >> o. l-þnce 3 ß € I(u) s.t.

ß 2 d,since I(u) = +I(u) is a directed set. As ß € I(u),we have

u € f(ß) and as o < ß we have o )oo, ß and u e f(g) < f(o),

'implyingu€f(o).

If u € f(cr) then cr e I(u) and a'11 that is needed is to show that

I (u) = *l (Ã) (u) .

As f € [ Loe. * .r] o,we know from Definition 1.17 that

0 << f(o) iff for some ß ..o0, o one has 0 << f(ß).

Letus suppose u € f(oo) where oo = I(Á)(u).1hen from property (E)

there exists 0 € t s.t. 0 << f(q,o) and u € 0. For some

ß << cxe,orìê has u € 0 << f(ß). Th'is contradicts the definit'ion
ops

of o,s, namely

cxe = VI(u) = V{ß : u € f(ß)}

=
'̂o ps

{ß:u€f(ß)},

Since the postulate that u € f(cre) ìmpiies

0o=Â {ß:u€f(ß)}< ß<<oo{ps ops
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Suppose p << as = VI(u).

lcr€I(u)s.t.ß<aorß>

u€f(o)<f(ß)soß€I(u).

Supposecl =0and

u € {u : 0 < I(A)(u)} e t.

Then we have

U{o
ß
(Ã) : ß > oÌ = {u : o < I(Ã)(u)}

Then since L is continuous

cl and
ps

ß
(A).

and (by property (E)) 
= 

0 €'r s.t.

u€0<<{u:0<t(Ã)(u)l

Thus we must have a ß > 0 s.t. u € 0 c o

Thatis,forß< 0wehave
ops

u€f(g) .f(0).

Now suppose u € f(0) €'r. By propertv (E) there exists a set

0€ts.t.

u€0..f(0)

Hence for some ß << 0rorìê has u € 0 << f(ß). That is,ß € I(u)

for ß <<
ops

Hence

ops

O,which according to property F(ii) implies ß > 0.

I(Ã)(u) = vI(u) > ß t o

and

u € {u : I(Ã)(u) > o}.

Final'ly we show Q is 1-1. Suppose A I B and o(Ã) = o(B)

= ü e u s.t.

Then
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(i )

r(Ã)(ü) t t (B)(ü).

195

forql0and

{u:I(B)(u)>o}.

oo(ã)oo(A)

l¡le I et qo I(Ã)(ü) and supþose first that cx,s 0. Since

(Íi) {u : I(A)(u) > o}

I(B)(ü) I oo,

we must have

ü e {u : I(B)(u) 0Ì {u : l(Ã)(u) 0Ì

which implies l(Ã)(ü) > o, a contradiction.

0n the other hand supposê cre r(Ã)(ü) * o

I^le note that if o¿ (( cro then o.. I(A)(ú). Thus

o << I(B)(u); V q (( cro¡

üI(B)(ü) = gos.

Since L is continuous,

I . ê. ¡

vúr (ã)(ü) vüoo 0o

u€o )A( oo{ã),
ct

or

I (B) (u)

r (ã) (ü)

r (ã)(u)

r (Ã) (ü) = c[0.

which imp'lies

In a similar way we can show I(õ)(ü)

a contradiction

r (Ã) (ü).

I(Ã)(ü) and arrjve at

u
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The type of lattice we are dealing with here is like (R*)' in that

it has an order reversing involution, namely multip'lication by -1,

which preserves the lattice continu'ity. It also satisfies property

(F) since

(i) q, >> ß and ß I 0 implies cr, > ß and o .oo, ß

(ii) ß > 0 impìies ß.o0,'0 namely ß..o0,0.

The type of lattic we use forT could be a locally compact topology

or, as the next proposition shows, the class of open concave sets

in a compact space. If U is a compact convex subset of a locally

convex topological vector space, we denote by Con (U) tf¡e latt'ice

of all closed convex subsets of U (includ'ing the empty set). Re-

cal'l that Con (U)oo, is the lattice with reverse ordering.

Proposition 5.3 : The lattice Con 'is a continuous lattice,

the interior beingin which we have A << B iff B < int A,

taken in the relative topoìogy of U.

Proof : Reference [10] Proposition 1 .2?.I.

0f course set complementation is an isomorphism of continuous

lattices and the proposition implies that the sup complete con-

tinuous lattìce

.r = {K n U r f" c U is convex, closed}

has a way be'low relation which will satìsfy property (F). This

follows directly from the HahnBanach theorem in the case when

U'is a compact subset of a normed vector space. 0f course U,

Q € r since U, q € Con (ULo. .

Corollary 5.2 : Su ppose U 
= 

(R*¡" is compact convex and let

r = con (u)"0,. Then. there 'is a dual ìsomorphism of continuous

lattices between

(u)
o ps
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t(R*)' +tlo = {f :
ops

+r:f(+-) =4(R*)"
ops

f(voo, D) = u{f(d) : d e D} D a directed set in (R")lr, }

and

tt = {f : U + (n*)" : f'r(îcr) e .r; o¿ € (R*)"}.

Proof : This 'is a direct consequence of Proposition 5.2.

For f e ¡' we have oi(f) = {u € U : f(u) < a} closed and

eonvex V cr € R' and for o I æ wê have oi(f) = U which is

cl osed and convex. Hence f i s .1,. s. c. and a quas'i -convex f uncti on

from U to R".

The corol'lary tells us that there is a very close association between

these functions and¡ (R*);0, + rl o. Let us spec'ify a function

f : (R*)" + r s.t.' 'ops

(i) f(+-) =6

(ii) f($) =u{f(d):d€D}
for di rected sets D c (R*);0..

Then there corresponds a lower semj-continuous quasì.-convex

function. In fact tbere 'is exactly one!

t,.le could instead spec'ify,of course,f : (R*)" * Con (U).

Con (U) = {K 
= 

U : K is closed and convex} s-t-

(i)
(ii)

f(+-) =g

f(N) =n{f(d):d€D}
for all filtered sets D c (R*¡".
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Proposition 5.4 : Suppose Ã. t(U),l = [0,1] and

oo(Ã) = {u € u : I(A)(u) , o}. Define

1;ueoo(A)
to(oo(Ð) =

0 ; otherwise.

Then Ã = u{q . oo(Ã) : cr € [0,1]] where o'oo(Ã) is the fuzzy

set given by

I (cr.oo(Ã) ) (u) = cx,.I s(oo(A) ) (u).

Proof : Reference [ 34] theorsn 3.

Since t 0,11 and R* are homomorphic the same holds in R*. This

gives a stronger indicat'ion of how the correspondence works. I^Je

can exploit this correspondence in a number of ways.

Proposition 5.5 : Let f be .r,.s.c. quasi-convex and f : U * f,

whóre U c R" is conrpact. Then 3 fU : U * R"; .Î,.s.c. strictly

quasi-convex s.t. fô I f point-wise as ô * 0.

Proof : First we note from Theorem 3.6 that if fô'is quasi-

convex and t(b) = {u e U ; fu(u) < b} is.e,.s.c. multi-valued'

then fU is strictly quasi-convex.

From our Preamble we know that there'is a 1-1 correspondence

between f and 'its b-cuts, namely l(b) whjch satisfy

f(+-) =¡
r(lD) =n{r(d) :d€D}
for any filtered set D c R'.

(i)
(ii)

Now jf r(b) < rô(b) : vb, then

fô(-) < f(-)
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Since f is.q,.s.continuous quasi-convex and f(b) is compact,then

by theorem 3.5 r(') is u.s.c. at b e R"-

As U'is bounded,we can assune the domair U1 c R' of f(')

is compact and hence the range Uz = U{f(b) : b € Ur} is a'lso

compact.

Using Corollary 2.92 we can conclude that = a Hausdorff con-

tinuous mult'i-valued mapping n,(') : U1 + KV(Ur) approx'imating

r(b) trom above, 'i . e.,

oôr0n6(¡) = r(u)

and aìsoapproximating r(b) in graph-

Now

¡"(O)=r(b),vb€Ur
(J-

f (+-¡ = U c Uu ,r.(b) .- nU(+-) - U,

Thís'impìies nU.(+-) = U. However we don't know whether (ii1 holds.

Since nU(') 'is continuous it is uniformly 1,.s.cont'inuous (seeTheo-

rem 1.13). Hencev e > 0; lã- > 0 independent of Ê s't'

nu(b) - N(n5(¡),t)

Vb€N

Let 5 e R" be arbitrary. By not'ing that this holds v ô > b-,

we have

ntnu(6),ô>5Ì

cn{Ñ(¡"(b),e): b>b'
o

for all b' € N(6,õ).

(b,6).



200

so if we call rô(6) - n{^ô(ô); Û > 6} we have

rô(6) c_ n{N(,ru(6),t); Û > b'}

= lt(n{,ru(ôlr ô > b'},e)

= Ñ-(ro(b'),e) v b' €'N(5,õ) .

Hence b * fu(b) is lower semi continuous. S'ince

,tu(b) = l(b); v ô,ru(6) = n{nu(b); b > 5} =, n{r(b); b > b} = r(5).

Obviously for b > 6,ru(u) = ru(ô)and so (i) must be satisfied.
Tri vi a'l ly (i i ) hol ds .

We have rU(.) corresponding to a unique quas'i convex function

fU, saY, which must be strictly quasi-convex due to Theorem 3.6.

AsvbeR"

? nor'ro(o) = r(b),

we know that

f lfasô*0poìntwìse.

r(b) = nuronu(b)

ô

In our previous proof nu(') : U1 + KV(Ur) approximates r(b) from

above and in graph, i.ê.,

¿*(ce,G) < e

for ô sufficiently small,where Gu is the graph of.tu(') and G is

the graph of r(. ).

I^Je defi ne

rô(5)=n{nu(Ê),6r6}

and so,
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rô(6) c,16(5); v b.

Since G! 
=G5, 

where Gi is the graph of fO(.) we have

¿*(Go',,q) < ¿*(co,G) < e;

for ô small.

In fact since

r.(6) = r(5); v 6, we haveu-'

Gô'?G and d*(G,G6') = o.

That is

d(Gô"G) =d*(Gu"G) .e; for 6 small,

Gô' = {(uz,b); fo(uz) < b},

G = {(ur,b); f(ur) < b}.

This sort of approximation is important in the theory of convex

functions and recently has been used to rewrite the Stone

Approx'imation theorem for the lattice of upper-semi-continuous

function on a compact metric space (see reference t 351 ).

For an upper-semí-continuous function g(.), the hypo-graph of g is
defìned to be

hypo g = {(u2,0): cl < g(ur)}.

For a .Q,.s.continuous function f we have

G={(ur,b):f(ur)<U}

Hence

= {(ur,b) : -b < -f(ur)}.
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d(Gô,G) < s

would imply d(hypo(-fo), hypo(-t)) . .

¿r(-fO,-f) < e, in the notation of reference t351.

The condition of the Stone theorem that a subìatti.ce f¿ of u.s.

continuous functions "isolates points" actually characterises

the sub-lattice which is "upper dense", i.êo for Which each U.s.c.

g is in the closure of {g': g' > g and g' € r-¿}.

Theorem 5.1 : Let f¿ be a lattice of u.s.c. functions on a compact

metric space U, that isolates points ti.e. if (uz,b), (ur',b')

are such that either u z f uz' ot" Llz = Uz âhd b < b', there exjsts

O€A suchthat

(ur,b) € int hypo,i,r

(uz',b') É hypo rpJ.

If g is u.s.c. then there exists {he} jn CI convergent to f from

above in the metric dr.

Proof : See reference [35], theorem 1, page 8. u

Our Proposition 5.4 can be thought of as a kjnd of Stone approx'i-

mation theorern. The general quest'ion of what characterises a

lattice as beìng upper or lower dense in another lattice is the

general subject at hand. Conversely,in what lattjce ¡1ould the

class .c = {f : f : Ur * R continuous and cl I(b) = r(b);

V b € int Bi be a lower dense sub-latt'ice?
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Due to Proposition 3.2 we actually onìy require point-wise

convergence of f6 + f to derive Corolìary 3.9, namely that'if

r(u,,uz) = ìë? t (u,,u,) ,

f(ut,. ) quasi -convex ,

f. (ur,') strictly quasi-convex and f, (',')

continuous on the compact set Ut x Uz then

d(G-,G) < e for m suffic'iently large,

where G_ is the graph of

sup
i=1 ,. ,m

T (ur ) = {ur: f. (ur,ur) < b] and

G the graph of r(ur) = {ur: f(ur,uz) < b}.

Convexity seems important 'in passing the graph approximation

propert'ies of f(üt,.), consjdered as a function of b, across to

f(.,6) considered as a function of u1.

Proposì t'ion 3.2 deal t w'ith approximati on of

r(.) e tUr, rctoo. (ur)l

where L = C o (Uz) is the continuous lattice of compìements of
o ps

Õ-convex sets on a compact Hausdorff space. It is interesting

to consider this problem in the case when the O-convex sets are

closed under finite union. In this case IUr, ICo"e (U2)] can be

considered to be a fuzzy topolog'ical space. It'is always closed

under arbitrary supremums and will be closed with respect to

finite infimums in this case. This follows from Theorem 1.12 (i)

and the fact that IUr, rCooo. (Ur)] w'ill consist of i.s. contin-

uous functions, the complements of u.s.continuous functions.
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This condition will be fulfilled if o defines a

fuzzy topology itself, in which case 0 wil'l be closed under

finite infimums. That is, given

f(')=v{f.(')eo;i€I},

g(.) = v{s, (') e o; j € J},

we have that

f(.)¡g(.) = Vifi (.),.g, (.) e o; i € I; j e J]

is 0- convex.

Essentially P¡eposition 3.2 states that g'iven an open fuzzy set

U(') € tUl, r c ooo.(Ur)l contain'ing a closed fuzzy set K('),

thene exists an open-closed fuzzy set T(') s.t.

r(') s.r(') =u(').
The set U(.) is i.s.continuous and as a consequence K(') is

upper-semi-continuous. The set T(') is open-c'losed and hence

T(.) considered as a multi-valued mapping is continuous. In

the proposition v u1

K(ur), T(ur), U(ur) e C too. (ur).

Since a "closed" set is the comp'lement of an "open" set for

f(.) € tur, r c ooo, (ur)l ,

we have

r" (ur) e co(uz)

If a closed fuzzy set ¡(.) can be approxjmated from above by a

countable intersection of open sets r, ('); i € I,then any finite
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intersection will be open since n,'=, r, (.) will be open. This

follows from Froposition 1.9. The topoìogy defined by th'is

lattice must be perfect'ly normal since any "closed" C o(Uz)

set is the countable intersection of "open" C Ooo, (Ue) sets.

The " fuzzy" topol ogy defì ned by

lUr, xCQ (Ur)l
ops

can be considered perfectly normal as well. Instead of treating

the quest'ion of lower denseness of continuous multi-valued

mapp'ings,!ve concl ude thi s chapter wi th a bri ef d'i scuss ion of

fuzzy normality.

This top'ic differs from the question of lower approximatìon 'in

that go'ing from a sup-complete lattice 0 to a fuzzy topology

one doubts whether in general we can infer the existence of a

generating class 0 s.t.

T(ur) = {u, : ü(ur,uz) > a}

is Hausdorff continuous. l^le know that T(.) is i.s.c. and hence

a finite intersection is 'i .S.c., i.e. ,

Tr (ur ) n Tr(ut) = {u, : ú., (ur,uz) ¡ úz(ur,uz) > a}

is the complement of a u.s.c. mapping

{u, : úr(ur,u2) ¡ rfr(ur,uz) < a}

However, we can't be sure that thís mapping is .t.s.c..

Proposition 5.6 : S uppose 0 consìsts of functions rf : Ur x Uz + R

continuously, Uz is a compact subset of R" and Ur 'is metric. For

if € Õ let
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I(6) = iu, : V(ür,uz) < 6Ì I 0.

Define r(¡) = {u, r ü(ür,ur) -< 6}.

Then cl t(6) = r(5)

implies T(ur) = {uz : ü(ur,uz) < 6} ls.[.s.c. at ür.

Proof : First we show that {{;(ur,uz) i uz € Uz} is an equi-

continuous class of cont'inuous mapp'ings ur * ü(ur,uz).

t^le define for a given e > 0

ôr(uz) = sup{ô > 0 : l,p(ur,uz) -,t,(ur,uz)l < e

whenever d(u1,Út) . ôÌ

and show 6r(uz) is bounded away from zero on Uz. If we suppose

not,then = ui e Uz s.t. 6Ê(uä). * and since Uz is compact there

exists a convergent subsequence. After renumberjng we can say

ui*üz €Uz. Foranye>0anduz €Uzwehaveôr(uz) >0. l.le

arrive at a contract'ion by show'ing

or(ui)tôt0 fornìarge

where

0 < ô < ô.74(ur).

Now

lü(u',u!) - ,l;(ür,u?) 
|

< l,l,r(ur,u?) - qi(ur,ùr)l

+ lrp(ür,ür) - ú(ul,ui) I

+ lü(u,,ir) -ú(ü,,ür)l . I * I * I .'
for n sufficiently ìarge . Also d(ur,u-r) < O where 0 < ô . 6./4(ut).
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Theorem 3.3(b) implies r(b) is f,.s.c. at 6 and Theorem 3.4(b)

implies T(ur) is 0.s.c. at ür in the metric space

G(5,ur) = {ur : {u, : ú(ur,uz) < 5} I 0

sup{lü(ur,uz) - ,p(-ur,uz)l : uz € Uz} < -}

with the metric

d(ur,ûr) = sup{lü(ur,uz) - ú(ûr,ur) I i uz € Uz}.

The .Q,.s.c. of T(ur) in the metric of Ur follows from the fact that

V ô > O,

d(ur,út). ô'

i mp'l i es

sup{l{,(ur,uz) -,1,(ür,uz)l: uz€tJz} < ô for ô' > 0 tr
sufficientlY smal l.

As we have seen the concept of convexity'is essential when

attempting to ensure cl I(5) = l(5). One cannot be certain

that

cl{uz : rf r(ur,uz) n rl.,z(ut,ur) . a}

= {uz : ür(ur,uz) ¡þz(ur,ur) < a}

even though

cl Ir(a) = fr(a) and

cl Ir(a) = fz(a).

This is certa'inly not the case for strictly quas'i-convex

functions. It remains an unanswered quest'ion as to

whether criteria for cl I(b) = ¡15¡ can be found which does

not involve convex'ity (of the usual type) of the b-cuts.
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55.2 Fuzz.y Normal i ty

Ì^le note that if S and L are continuous lattices then I S * L]

is a continuous lattice. Moreover, the functions which are

elements of IS + L] are monotone. Bruce Hutton in reference

t36l found it necessary to define a "fuzzy unit interval" in

order to prove an equivalent statement of the Urysohn lemma.

He defi ned i t as fol I ows.

Definjtion 5.4 : The fuzzy unit interval [0,1] (L) is the set

of all monotonically decreasing maps À : R + L satisfying:

(1) À(t)=1fort<o;t€R
(2) 

^(t)=ofort>1;t€R
after the identification of À : R + L and u : R + L if for

every t € R

À(t-) = inf{À(s); s< t} = u(t-)

and

l,(t+) = sup{a,(s); s> t} = u(t+).

['le can defi ne a sl i ght variati on of thi s .

Definition 5.5 : The ri ght open fuzzy i nterval s [ 0, 1] *( L) are

the set of Scott continuous mappings 'in il0,11oo,

to R v'ia (1) and (2)'À(t) = 0; t > 1.

* Ll extended

The continuous lattice [ 0,1]oo, 'is the unit interval [ 0'1]

endowed with the reversed ordering. We identify u('), f(') e t0,1lL

if for all t € R;

u(t¡ = À(t).

Since u(.) and À(.) are Scott continuous we have
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^(t) 
= sup{À(S) :s<< r]

o ps

and

u(t) = sup{u(s) : S << t].
ops

The i nterval [ 0,1] bei ng a chai ¡ llìêilrìs

S > t oF S = t = 1. This in. turn implies

thatS<< tiff
ops

r(t) = sup{À(S) : s > t} = r(t+) for t I 1

and

À(1) = sup{À(S) : S > 1} = 0.

Thís class 'is a subset of monotone mapp'ings on [ 0,1] consist'ing

of those continuous from the right for al1 points in the'interval

[0,1] and also satìsfy'ing (1) and (2)'. We ident'ify À(.) and

u(') via the criteria À(t+) = u(t+)(=u(t)),which is only one

si ded.

The Scott topoìogy on [ 0,1] consists of the sets
o ps

r = {[0,o) ; cl € [0,1) and [0,1]]

which is an ordinary topology of haìf open intervals on [0,1].

l,le may consider ([0,1], r) a topological space in which the

open sets t form a cont'inuous lattice. From our discussion

after Þfinition 1.18 we note that we can associate

[ [ 0,1] -+ Ll = [[0,1], rll ,ops

where [0,1] is considered as a topological space endowed with

the topo'logy t. From lheorem 1.11 we know that this is a con-

tinuous lattice itself as long as L 'is cont'inuous. The lattice

t 0,11R(L) is an assocjated lattice with the ordering induced

by the poìntwìse order on L and as a consequence is also con-

ti nuous .
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for r € [0,1]

R(t)=1't<r
and

R(t)>o;t>r.

t^le note that for any continuous latticê, [ 0,1]R(L) is obvìously

closed with respect to unions and is in fact closed with respect

to finite intersections if L is also.

Proposition 5.7 : S uppose À, u € t0,1lR(L) then the pointwise

(with respect to the ordering on L) infimum

y(.) = 1(.) n u(.) e t0,1lR(L)

i f L 'is cl osed w'ith respect to fi nì te i nfimums.

Proof : Since we always have

(1) À(t)=t=u(t)fort<o
and

(2) À(t)=o=u(t)fort>1
we al so have

À(t)^u(t)=1
À(t)nu(t)=g

?rc

fort<0
for t > 1.

It only remains to verify the Scott continu'ity in the interval

[0,1].

l,'lhent=1,

0 = À(1) n u(1) = y(1) = sup{À(S) n u(S); S > f}

so v',e only need to verify right continuity at points t € [0,1).
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Given S, w > t,because of the monotonicity of À, u we have

l,(.q,) ¡u(l) >À(S) ¡u(w)

where

.0 = S ¡ w > t.

Hence

sup{À([) n u(L); !, > t] > À(S) ¡ u(w) for all S, w > t

Since limr*aÀ(S) = 1(t+) = À(t),we have by,letting Svt and then

w{t, that

sup{r(.q,) ¡u(¿) :e"> t}>À(t) nu(t).

0f course we aìways have u(t) > u(¿) and À(t) > u([) for.c > t
so that

¡,(t) ¡u(t) >u(,a,) ¡À(l) ;forL>t,
that 'is 

,

r(t) n u(t) > sup{u(t) ¡ r(¿) : r > t}.

Thus for t € [0,1] we have

y(t) =¡,(t) nu(t¡ =sup{u(ø) ¡À(.0) :.Q,>r},

ìmply'ing y( . ) i s ri ght conti nuous.

hle now consider the situatìon when L = C 0 (Uz), where the O-
ops

convex sets are compact

Proposition 5.8 : S uppose L = C Õ (Ur) forms a continuous
ops

latt'ice ef open sets in the Euclidean topology of g, c 1R",a

0 -convex set,where the Õ-convex sets are compact in the

Eucl idean topology.
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À : [0,1) c0 (u,) 
'ops

considered as a multi-valued mapping into Uz endowed with the

metric Euclidean topology is i.s.c. Moreover, there is a function

f e t, = {f z U2 -> [0,1] s.t. V o €[0,1]

ft(îcr) €ceoo,(ur)]

such that

À(q) ={uz:f(uz)>q}eC (ur).
o ps

Proof :

If À i s right conti nuous, monotonì cal'ly decreasi ng ,then À" i s

monotonically increasing and right continuous, i.ê.,

À" (t+) =
lim
sVt ¡,"(s) = n{À"(s) : s > t}

=tU{À(s):s>t}1"

= )." (t).

If we can show À"(-) is u.s. continuous then we have the i.s.
continuityof À(.). Foranygiven e >0 there exists a h > 0s.t.
t<s<t+himplies

À" (s) c N(À" (t),r).

This follows from the right continuity of À" (.) and the fact that

À" (.) is a closed set in the Euclidean topology.

Now suppose s € (t-h,t+h), and define

s {
S

2t-s
:s>t
:s<t
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Note that t < s' < t + h and hence À"(s'). N(r"(t),s). However,

si nce s < s', we have

À" (s) < À" (s') g. N(¡," (t),e).

Finally condition ( F) of Pl"oposition 5.2 is satisfiedby [0,1] since

[0,1] and [0,1] are both'continuous lattices and for ß I 0,
ops

cl >> ß is equivalent to cr, > ß in tO,Ll, nameliy o.oo,ß in

[0,1] Condition (E) is satisfied,since the C Õ (Ur)-ops ops

sets are open in the Euclidean (and hence Hausdorff) topo'logy

and also form a continuous lattice.

The lattice ¡¡0,1J.n, * CQoo. (Ur)lo is iust the lattice of

functions À(.) € [0,1]R(L) restricted to [0,1]. Proposition 5.2

is applicable and we conclude that the above lattice is equivalent

to

tt = {f(.) : u2 + [0,1]; f-1(îo) e c aoo, (ur) for all cx, € t0,11].

For q, e [0,1] we have

o(f) = À(cl) = {uz : f(uz) t o} € c o___ (ur) , r
ops

since << is equivalent to <.

Propos'ition 5.8 does not assume that L = C ooo, (Ur) is closed with

respect finite infimums However, in the case when C Ooe,(U2) forms a

topology, by Proposition 5.1 we have

f € [u2, r[0,1] l.

Dèfinition 5.6 :

Suppose

f (-) : U1 + P(Ur) is multi-valued mapping.

We deffne the interior to be

ro(.) = u{¡\(.) : 
^(.) 

. r(-) and n(.) € [ur, rc oon. (Ur)]],
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and the cl osure to be

T(.) = n{^(.) : Ä(.) = r(.) and n"(-) e tu1, rc.oo, (ur)l}.

Obviously

ro(.) . r(.) . f(.) and

ur * f0(ur) is Scott continuous ( Proposition 1.10) imp'lying

ro(.) € [ur, x c ooo.(ur)],

the lattice being sup complete. Similarly,

is upper-semi-continuous whenever the Scott cont'inuous functions

are ìnner-semi-continuous. We note also in passing that

Proposition 1.f impìies that

r-(.) = t(r" (.))ol"

tfr(-) n rr(.)lo

= rl(,) n r!1.¡

= u{/\(.) € [ur, r c ooe.(u2)] : 
^(.) 

-rt(') n rr(')]

= u{Ar(.) n 
^r(.) 

€ [ur, r C o"n, (Uz)J :

^r(') = rr(')]

Ät(') r1(-)c

Recall that a normal space is one such that for every closed set

K(.) contained in an open set M(.) there exists a set V(') s.t.

K c V0 c V c M. In reference [36] Bruce Hutton proves the following

Theorem 5.2 z

A fuzzy topological space is perfect'ly normal if and onìy if it
is normal and every closed set is a countable interection of

open sets.
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Progf :

Reference [36] Theorern 2.

In our situation we have a fuzzy topo'logy

[ur, r c o (ur)] c {r(.) : u, + P(ur)}.
ops

l,Je are interested in the s'ituation when it is a perfect'ly

normal fuzzy topology and hence any i.s.c. mapping in this

topology is the intersection of a countable collection of

upper-semì-continuous o-convex imaged set valued mappings.

t{e can define a fuzzy topoìogy on [0,1]R(l-) as follows.

tet L, (À) = \ (t-) and I (À) = r(t) and take a sub-base

{q , Lt : t € R} to generate a topology "cL on tO,llR(L).

For tlJ € J, we have !'l : [0,1]R(L) * P(Uz).

Definition 5.7 :

If (X,Tr) and (Y,'rr) are fuzzy topological spaces then a

mapp'ing f : X + Y is said to be continuous if for every 12

open set l,J

f-'(!'t)(.) = ti(f(i)) e.,.

l.Je note that both the sub-bases are fuzzy topoìogies on

t0,llR(L). Take {R. : t € R}. We note that for À € [0,1]R(L)

and 6 < 0 we have À(t) n À(t+ô) = I(t) because À(t+'ô) > À(t).

If we take

R €{R
9"tP

R : t€R]
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and suppose p < l, i.êr p - .C < 0,then

Rr(r) 
^ 

Re(À) = (R¿ lr Re)(À)

= r(s) 
^ 

).(¿ + (p-t))

= ¡.(r) € [o,t]R(L),

thatis,Ru.t\Rn e {Rr: t€R}. Finallyif TcRwe candefine

S={[:.Q,>tit€T]

= Ur{.0 : .Q, > t}

= {1, : .1, > l1, T}.

Since À(.) is right continuous we have

VrÀ(t) =Vr{À([) : 1, > t]

= V.),(!,)

=V[À(,e,) : [>LT]

= l(nT).

This in turn implies

vtelR,(l) = vtelÀ(t) = À(^T)

and

Vt€TR.(.) €{Rr: t€R}.

A similar argument using the left continuity of Lr(f) = I"(t-)
establishes that {1,(.) : t € R} is a fuzzy topoìogy on [0,1]R(L).
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Proposi t'ion 5. 9 :

Suppose Uz c R", f : Uz * [0,1] is lower semi-cont'inuous and that

f"(t) = {uz : f(uz) < t} is compact valued. Then the lower semi-

continujty of À" (.) at t, as a multi-valued mapping, 'implies, in

the case when {uz : f(ur) . t} I qtlrat cl{uz : f(uz) . îl = r"(î).

Proof:

This follows via a directadaptatjon of the second part of Theorem 2

of reference [13]. The multi-valued mapping I" (') is closed valued

due to the iower semi-continuity of f(') and hence

cl{uz : f(uz) < t} c ¡,"(t). Since r"(t) is compact valued all

definitions of semj-continuity coincìde (see comment after Theorem

1.8) and we may treat I" (t) as being l.-H-semi-contìnuous. If
û, e l" 1î¡ then either

or

f(ûr) = t.

suf f i c'iently 'l arge

û, e t(t) = {r, : f (uz) . ît, 'irnplying ûz € cl I(î),

Suppose ì, Ê T(î) an¿ select e > 0. Since ltîl * 0 then for n

f(î-fi1*0.

The l.s. continuity of À" (t) at î implies

À' (t) c N(À tî - fr1, rl for n 'larse.

This means that ; ü2 € r" (î - ln) such that û, e n(üz,e), that is

ü, e ru(ûz,e). Thus in every neighbourhood of û2, there is a

ü, e I(î) wrrich implles ûz e cl I(1). !

We now argue'in a similar fashion to Bruce Hutton in reference [36].
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Propositþ¡__1.l9:

Suppose U1 is a topoìogical space and U2 c R" a o-convex set.

Suppose also that the Q-convex sets are compact and that COoe,(U2)

forms a topology coarser than the Euclidean topology on R". I^le

consider U1 to be a fuzzy topological space with the topology

!' = [Ur, x C 0oo,(Ur): (and [0,1]R(L) a fuzzy topo'logical space

endowed with f").

Then the fuzzy topo'logy J' is normal iff for every closed set

K(.) and open set M(.) such that K c M there is a fuzzy continuous

function h I U1 + tO,llR(L) such that for every ur € Ur,

K(u') S h(ur)(1-) S h(u')(0+) 
= 

M(ur).

Furthermore for any fuzzy continuous function h(.) satisfy'ing the

above we have the existence of

f(ur)(.) e [uz, r[0,1]l s.t.

h(ur)(t) = {uz € uz : f(ur)(ur) > t}

where

h" (ur)(t) = {u, : f (ur)(ur) < t}

is a continuous multi-valued mapping at each ur s.t. h"(ur)(t-) I ô.

Proof:

Suppose we have a continuous h : Ur + [0,1]R(L). By proposition

5.8 for each ur € Ur there must exist a function

f (u, )(. ) € [u2, x[0,1] I s. t.

tr(ur)(t) = {u.: f(ut)(ur) > t}.

We also note that t * h(ut)(t) is i.s.c. for t € [0,1) and that

h"(ur)(t) is compact in the Euclidean topo'logy for t € [0,1].

Since the topology generated by C 0oo,(Uz) is coarser than the



279

Eucl'idean topology the compactness of h" (ur)(t) in Euclidean

topo'logy implies the compactness in the topology C Õon,(Uz).

Similar'ly,since f € [U2, X [0,1]J imp'lies l.s.c. from Uz

(endowed with the topology C Õ"0,(Uz)) to [0,1]owe must also

have l.s.c. with respect to the Euclidean topology.

Now if

K(ur) c h(u')(1-) . h(u')(0+) c M(ur),

we have for any t € (0,1) that

K(ur) c h(u')(t) . h(ut)(t-) c M(ur).

Now

h-t(1", )(u, ) = 1",(h(ur)(.))

= h(ur)(t-)

and

¡-t(R,)(u,) = R,(h(u,)(.))

= h(ut ) (t).

Since f is continuous we have f-t(1",) is closed and hence js the

complement of an inner semi-continuous mapp'ing, that'is, it is upper-

semì-continuous. Simiìar1y, f-1(Rt) is open and hence'inner-sem'i-

continuous (implying l.s.c.). Now

h(ur)(t-) = nr.t{u, : f(ut)(ur) t si

{u, : f(ut)(ur) > t}

is upper-semì-cont'inuous, impìyìng that h' (ur )(t-) 'is i .s.continuous.

All the conditions of Proposit'ion 5.9 are satisfied and hence

cl{uz e uz : f(ut)(ur) < t} = h" (ur)(t)

whenever
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{uz : f(u,)(ur) < t} = h" (ur)(t-) I O.

Due to Theorem 1.10('i) we can deduce the l.s.continuity of

cl h" (ur)(t-) = h" (ur)(t). By construction h" (ur)(t) is a'lways

u.s.continuous and hence is contìnuous in this case.

In any case we have

K(ur) - h-1(R )(ur) c r'-t(ll )(ut) c M(ur),
t-¡-

implying [Uz, I C O o.(Uz)J is a normal topology.

Let us now suppose [Ur, rC o"e,(U2)] is normal. This allows us to

contruct {V : r € (0,1)} such that
I

K(.) . V.(.) . M(.),

where for r < S, V c Yo we define
s ¡

f(ur ) (t) = U

r>t
Vo(ur).

By hoposition 1.10 we know that ur * f(ur)(t) is Scott continuous

and hence

t(R u f(u,)(s)f ) )t s>t

U

s>t
U Vo(ur)

r>s

U Vo(ut) = f(ur)(t).
Ir>t

Nowfors>r

vo(.) .V (.)s-s (

implyi ng

N U VO

r<t s>r s
(.) c n V (.).-r<t'
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Forr<s < ttheremustexist.Q,s.t. r<s <l< t: Hence

'impì ies

U

s>r

forr<.1,<t

N UV
rct s>r

V,t(.) = Vt(.)

This in turn shows that

and hence that

Ð vu (.)
t

NU
r<t s>r

0 n
L<

n f(.) (r)
r<t

v,o(.) = NV (
rrct

Since ur * V,(ur) is u.s. continuous and has o-convex images

(i.e. closed and compact) by Theorem I.72 ('i'i'i) we know that

r-t{r",)(.) is an u.s.cont'inuous multi-valued mapping.

Clearly K(ur) c f(u,)(1-) . f(u,)(o+) c M(u1),where f-r(R,)(')
'is open (i.s.c.) and r-t1r-i)(.) is closed (u.s.c.), implying f
is continuous. D

For mone material on this sort of theorem one should consult

reference t371.

This shows the intimate connectjon between the properties of the

topology C ooo, (Ur) and the ability to approximate with continuous

mappings. This does not of course imply the existence of a fixed

point since, except for when n = I, one is not assured that the

approximating continuous function admits a fixed point.

r-'(L: )(.) =



222

The situation of perfect normal'ity is of interest since this

implies that we can approximate from above u.s.c. multi-valued

mappings with i.s.c. multi-valued mappings. This in turn under

reasonable circumstances,would imply that we can approx'imate with

continuous multi-valued mappìngs. That is, under the conditions

of Proposition 5.10 the normality of [Ur, IC O,e.(U2)] implies the

folìowing. If K(.) is closed valued (i.e. o-convex) and u.s.c.,

M(') € lur, xc ooo,([Jz)] an¿ M" (') g K" (')- there must exist a

cont'inuous mapping h(.)(t) for t € (0,1) such that

N" (rt) - h(ut)(t) c K'(ut); v u1 € u1;

If we suppose K(ut) I Q for all ur, then

h"(u,)(t-) = K(ur) I 0

for any u1 € U1 ând t € (0,1). This in turn means ur + h'(ut)(t)

i s a cont'i nuous mul t'i-val ued mappì ng for any t € (0 ,1) and

M(.) . h"(.)(t) c K(.)

for any t € (0,1).

Since we can squeeze a continuous mappìng between any u.s.c.

mapping contained ìn an i.s.c. mapping, the abil'ity to approx'imate

by i . s . c. mappi ngs can be dupl i cated by conti nuous mul ti -val ued

mappings. In the case whenTheorem 2.7 is applicable, the

ability to approximate K(.) in graph by a l.s.c. multi-valued

mapping Kr(.) can be mirrored by an i.s.c. multi-valued mapp'ing

wi th open image sets, namely N( Ke( . ) ,e) . The i .s . c. of N( Kr( ') ,e)

follows from Proposit'ion 1.11.

Arguments along these lines indicate that perfect normalìty of

the fuzzy topoìogicaì space [U1, ICooo, (Ur)] is closely related
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to our ability to approximate u.s.c. mappings by continuous

multi-valued mappings. To deduce the existence of a fixed

point we then have to impose some sort of more stringent con-

vexity concept to allow selectivity of theiimage sets.
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CONCLUSI ON

This thesis represents a prelim'inary enquiry into the extent to which

the concepts of generaì'ized convexity and continuous lattice theory

heìp to unify seemingly unrelated areas of mathematics, under a

common theme. To what extent these concepts facilitate such an

approach remains unclear, but what this thesis does show is that

the properti es of "class'ical " convexi ty are qui te consi stent w'ith

this approach. Conversely, many questions are generated by the

text and demand further investigatìon. We do show though, that

upper semi-continuous, closed and convex imaged, multi-funct'ions

behave partì cul arly wel I .

Under fairly genera'l cond'itions we can approxìmate any such mult'i-

function from above and 'in graph by a continuous, convex imaged

mult'i-funct'ion. As was indicated in chapter five, this ability to

approximate, in graph, is closeìy related to the approx'imation

propert'ies of the possible classes of functions, which generate

such multi-functions. The quasi-convex functions f(.) are able to

generate upper semi-cont'inuous multi-functions, via

r(b)={ur:f(uz)<b}.

In a similar fashion the strictìy quasi-convex functjons generate

continuous multi-functjons. The abovementjoned ability to approximate

multi-functions, in graph, ìs equivalent to an ability to approxìmate

quasi-concave function, by strictly quasi-concave funct'ion,'in hypo

graph. Conversely, the ability to write any quasi-convex function

as the po'intwise supremum of a class of strictly quasi-convex functions,

'impl i es 'in very general ci rcumstances, a graph approximat'ion of the

correspond'ing muìti-functions generated. In fact if
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f(ur,uz) = sup{fi(ur,uz) : i € I}

f. (ur,') strictly quasi-convex, and

f, (.,.) continuous on the compact set Ur x Uz then

d(G_,G) < e

where G,,, is the graph of

T-(ur) = {u, f. (ur,uz) < bÌ. sup' i=1,. rm

and G is the graph of

f(ur,b) = {u. : f(ur,ur) ( b}.

We obta'in in this fashion a graph approx'imation from a simp'le poìnt-

wise limit. The graph approximation ability of f(-ur,.), considered

as a funct'ion of b, is carried across to r(.,5), considered as a

function of ur. As was demonstrated in chapter four, the continu'ity

properties of l(ur,.) are closely related to the cont'inuity properties

of f(.,b). The classes of functions for which such correspondences

exist are of importance. Since, the fixed point problem is, at least

in part, related to the abiìity to approximate multi-functions in

graph, the generalized convexìty concept which facilitates such a

correspondence,as stated above, are of interest.

In this way the Kukutani fixed point theorem and a slightly weaker

version can be viewed as a consequence of the selectivity of convex

sets. Thìs approach reduces the problem of finding a fixed point

of a multi-functìon, to that of finding a fixed point of a sing'le

valued mapping. It also forms a bridge between the area of fixed

point theory and the area of non-linear optimization. The degree

to whjch th'is connect'ion can be used to derive new fixed poìnt

theorems is unclear (specificalìy those involving non-convex image

sets) but it seems quite likely that in time, techniques for fìnd'ing
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solutions to such problems, in appljed contexts, could be wrought

using ideas from this area. In particular, the areas of generalized

derivatives and generaìized Lagrangians could play an important

part in this pursuit. The connection between the generalized

derivative of the marginal mapp'ing and the solutions to the dual

problem of our particular augmented Lagrangian, may prove useful

i n devel opi ng al gori thms.

As was indicated'in chapter five, we may be able to "pointwise"

approximate an upper semi-cont'inuous mult'i-function with a continuous

multi-function, in very generaì circumstances. The conceptuaì

clarity of formulating this problem in terms of fuzzy set theory

indicates the virtue of the approach. Both fuzz.y set theory and

continuous lattice theory, cou'ld provide a framework for a recasting

of part of the theory of multi-valued mapp'ings. Both formulations

could be more "intuit'ive" and help gain jnsights into various

anomal ies i n this area.

A number of questions arise from this work and remain unanswered.

I iterate a number of these for the interest of the reader. Does

the concept of "way be'low" as def ined by

A>>BiffA=N(B,e)

for some e > 0, as compared with the lattice theoretic definition

of the usual concept of way below, help compare the concepts of

upper Hausdorf semi-continuity and upper semi-continuity? How do

the rates of local-uniform upper/lower semi-continuity and ô-upper

Hausdorf semi-continuity (at points in the graph of f(.)) compare?

Under what conditions do we have the local, uniform, upper semi-

continuity of a mult'i-function, at a uniform rate q(.) which has a

continuous inverse? Do we have the lower semi-cont'inuity of the
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optimal solution set mappihg, b + a(b,0) at a point 5, when the Slater

condition holds and f(.), the function be'ing maximl'zed, is convex

or strjctly convex? Is b + o(b,0) linearly lower semi-continuous if
g(.) satisfies the Slater condition and -f(.) is convex or linear?

Do we ever have local linear continuity of b + o(b,O) in a non-linear

context?

Could we use the techn'iques of non-linear optimization to derive

fixed point theorems (even in R') which do not rely on the convex'ity

of image sets of multi-valued mapp'ings? In passìng we speculate

whether there are convexity generating classes 0, defined on a

topologica'l space U, for which one could demonstrate some sort of

reflexivìty of the space U? In this context this property could

determine the topological nature of the space on which a partjcular

genera'l i zed convex'imaged u.s.c. mul ti-function mi ght behave wel I . 0ne

wonders whether a stronger connection between Hahn-Banach type

theorems and generalized convexity could be wrought.

There are many possible connections between generalized convexity and

conti nuous I atti ce theory . At the I eas t, cont'i nuous I atti ce theory

could prov'ide a very useful tool in the development of the area of

generafized convexìt¡r. Converseìy does the area of fuzzy topoìogy

bear any relationship to the area of contjnuous lattice theory?

Could this be useful in determ'in'ing when J' = [Ur, I Cooe,(U2)] is

normal or perfectly normal? Does the stabiìity of a class of multi-

funct'ions imply the continuity of the lattice of functions, generating

such multi-funct'ions? In what lattice would

where

-c = {f : f : U + R continuous and cl I(U) = r(O) for b e'int B},



228

I(b¡ = 1u : f(u) < bÌ and

r(U¡ = 1, : f(u) < b],

be a I ower dense set?

Many questions remain unanswered which arise from the work in chapter

four. Do there exist non-differentiable constraint qualifications

which impìy local Lipsch'itzness of the marginaì mapping? Could one

show that the marginal mapping

M(ur"6) = sup{f(ür,uz) : uz € f(ilt,5)},

where

f(ûr,6) = {ur : 9(ur,uz) ( 6},

has a Clark derivative? If so is it the case that,

ðrM(ur,6) = co{vrf(ür,üz) + y'vrg(úr,úz):

üz € o(ür ) and y' € â2M(üt ,5) ]

where

q(üt) = {üz € r(ür,6) : f(ür,úr) > M(ür,5)}l
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