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INTRODUCTION

Since Kakutani it has been observed that certain multi-valued mappings
admit fixed points. Convexity of image sets of these mappings has
played an essential role in the development of such theorems.
Continuity assumptions are also necessary. Unlike the topological

properties, the role of convexity seems less obvious.

No:- totally geometric proof of Kakutani's theorem has been given. One
notes that even in going from R to R* one loses the property that all
continuous multi-valued mappings admit fixed points. This contrasts
dramatically with single valued mappings. One needs to restrict the
shape of the image set, or how it "changes", to provide an affirmative

answer to the fixed point problem.

One wonders how the convexity assumptions may be altered and still allow
the existence of fixed points. As a first step towards shedding light

on this question, this thesis attempts to "decouple" the two concepts.

This approach proves to be rich in possibilities as it allows, within
the context of first reflexive spaces and then R", to draw together a
great variety of literature on seemingly unrelated topics, under

a common theme. This includes literature on non-linear optimization,
generalized Lagrangians, generalized derivatives, generalized convexity,

continuous lattice theory and fuzzy topologies.

Chapter One is intended as an overview of basic definitions and theorems.
It is in Targe intended for reference and the informed reader will
probably find it more appropriate to begin with Chapter Two. It contains
an account of various topological properties of multi-valued mappings

and an account of basic continuous lattice theory. Within this context



the lattice theoretic concept of "Scott continuity" provides an
alternative charactization of the concept of inner semi-continuity for
open set valued multi-functions. This approach, to the knowledge of
the author, is probably new. Attempts at extending the usual con-
cepts of lower and upper semi-continuity of single valued mappings
using the lattice structure of 2" occurred early in the development

of multi-function theory. It was noted that these attempts could not,
in general, be interpreted as continuity with respect to some topology
on 2°. Continuous Tattice theory facilitates a similar approach

devoid of this flaw.

Chapter Two develops various convexity concepts emphasizing the lattice
nature of convexity. Its relevance to selection problems and the
continuity of multi-valued mappings is explored. This culminates 1in
the proof of a selection theorem for multi-valued mappings along the
lines of the classical fesu]t demonstrating the existence of a con-
tinuous selection "separating" any two functions f < g upper semi-
continuous and lower seni-continuous respectively. Since any weakly
compact convex set, in a reflexive Banach space, can be obtained by
taking intersections of closed balls, the concept of strong convexity

seems the most appropriate vehicle to obtain such a result.

Arrigo Cellina generalized the Kakutani theorem by approximating, in
graph, upper semi-continuous convex set valued mappings with Tower
semi-continuous multi-valued mappings. In this thesis we address the
question of whether one can approximate, in graph, upper semi-continuous
multi-valued mappings with continuous multi-valued mappings. In
Chapter Three we pursue this line of reasoning. The lattice theoretic
nature of the approximation problem is further explored in an attempt

to elucidate the nature of possibie "convexity" generating subclasses.
The lattice theoretic nature of the continuity properties of multi-

valued mappings becomes more evident.



Using a continuous multi-valued mapping one is able to marry this
approach much more strongly with the theory of non-linear optimi-
zation. The resultant continuity properties of the associated
marginal and multi-valued mapping facilitates this approach. In
Chapter Four we consider the role of constraint qualifications in
this approach. Lipschitzness being equivalent to a generalized form
of "differentiability" is of particular interest. Conditions are
derived under which the solution set of a non-linear optimization
problem, treated as a multi-function, is Lipschitz continuous.

When this mapping is single valued, that is the constraint set is
"selective", then this is equivalent to the existence of the Clarke
derivative and its extensions. Lipschitzness of the marginal function
implies the validity of the use of an augmented Lagrangian to solve
such a problem. This is exploited to derive conditions under which

such a marginal function has a gradient.

In Chapter Five the properties of continuous lattices are used to
find equivalent characterizatfons of various classes of functions.
This results in the proof that the lower semi-continuous strictly
quasi-convex functions are "lower dense" in the class of lower semi-
continuous quasi-convex functions (or inthe terminology of Chapter
Three, generates this class). That is, every quasi-convex function

g is in the closure of the set {h strictly quasi-convex h g gl.

When the convexity requirements of the image sets of multi-functions
is weakened from a supremum complete lattice of sets to a topology,
the resultant class of Scott continuous functions form a fuzzy
topology. We relate theproperty of perfect normality of fuzzy
topologies to the selection problem of Chapter Two. Perfect normality
implies the "upper denseness" of continuous, open set valued, multi-
valued mappings in the class of upper semi-continuous, closed set

valued, multi-valued mappings. This shows an intimate relationship
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between topological properties and the ability to approximate with
continuous multi-valued mappings. This, of course, does not imply
the existence of a fixed point, except for when the image sets lie

in R'. One is not assured that the approximating continuous function
admits a fixed point. To deduce the existence of a fixed point one
needs to impose some sort of more stringent convexity concept to
allow selectivity of the image sets. The convexity assumptions are

not removed but their role redefined in this context.

In general, this thesis is concerned with conceptual and to a lesser
extent, methodological concerns. It represents a preliminary
exploration of these questions. If a complete theory was developed,
it most probably would be cast in terms of continuous lattice theory.
This would provide an overall structure in which such results could be
placed in context. Proofs are given for all original results and
appropriate references are given for all results present in current

literature.

In particular, the following results are, to the author's knowledge,

new:

Lemmas : 2.1, 2.4, 2.5, 2.6, 2.9, 2.10, 4.2;

Propositions : 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.16, 1.17,
2.2, 2.8, 2.9, 2.10, 3.2, 4.1, 4.11, 4.15, 5.1, 5.2

H]

5.5, 5.6, 5.7, 5.8, 5.9, 5.10;
Theorems : 2.3, 2.6, 2.9, 3.9, 4.5, 4.6, 4.7, 4.10, 4.15, 4.18;

Corollaries : 2.2, 2.7, 2.91, 2.92, 3.2, 3.5, 3.9, 4.4, 4.5, 4.9,
4.14, 4.17, 5.2.



CHAPTER I )5

N

The extensive and varied nature of the literature relating to continuit}Qp
concept of multi-valued mapping necessitates, I feel, some sort of
summary, to familiarise the unaquainted. This chapter attempts to draw
together that part of the literature related to the following chapters.

In order to keep this chapter re]afive]y self-contained as an overview,
more detail than is probably necessary has been presented. Various

lower and upper semi-continuity concepts are defined and related to

each other where possible. The topologies on 2° which induce these

concepts, are stated and the situations under which they become equivalent

are noted.

The lattice structure of 2" is insufficient 1in itself, to extend the
usual concepts of Tower and upper semi-continuity, of ordinary real
functions, by the use of simple limsups and liminfs. Attempts early on
were made in this direction, but it has been noted that the resulting
concepts could not, in general, be related to some topology on 2.
Continuous lattice theory appears to shed some Tight on this approach.

A general introduction to concepts such as "way below" and "Scott
continuity" is given. The relationship between these and the preceeding
concepts is explored. We conclude by using "rate of continuity” to

relate certain uniform semi-continuities and their local counterparts.

§1.1 Discussion of Semi-Continuity of Single and Multi-valued Mappings

In the following we take Ui; i=1,2,..., to be topological spaces
having topologies T3 i1=1,2,.. . If U is a metric we will denote
its metric by di(-,-) : Ui X Ui -+~ R. Lower or upper semi-continuity
will be abbreviated to 1.s.c. and u.s.c. respectively. We adopt
wherever convenient, the usual abbreviations; "iff" for if and

only if, "nbhd" for neighbourhood, "Top" for topology, "s.t."

for such that, "m.v." for multi-valued and "w.r.t." for with

respect to.



Definition 1.1 : A mapping f : U+ R is called 1.s.c. at u € U iff

V € > 0 3 a neighbourhood of u, N say, s.t.
f(u) - e < f(u'); vu' €N

and u.s.c. iff
f(u') < f(u) + e; Vvu' €N.

There have been numerous different approaches to extending these
concepts to the class of mapping I' : U; > 2"2, Afull account of such
approaches can be found in references [1] (p.109-121), [2] (p.160-182),
[3]1 and [6]. I will give here a quick survey of definitions and

relationships.

If Uy and U, are sets, a mapping T' of U; ‘to subsets of U, can be
represented uniquely by its graph G(T) = {(uy,u2) : us € T(uy)?}.
Conversely, any subset P of U; x U, defines a multi-function

I'up = {up @ (up,up) € P}.

One can immediately see here the connection multi-functions have

with relations.

If we define I" *up ={u; : u, € Tu;} then the usual convention is
that when B = U, we have

TB= U Tu, and for Ac U, we take T''A = U T7lup = {ur: Tui NA # ¢},
u;€B uz€A

E
This is called the pre-image of A. The exponential pre-image is

defined by I "*A = {u; : Tu; = A} and we immediately have
exp

r  TA = (TTIA°)°.
P

ex

x L(r'(wj '\1\_9\ nebation of <. [Cavatewskt jeferewce TR,



Definition 1.2 : Let U, U, be two top spaces. Then T' : Uy ~ 2"% is

called ypper (lower) semi-continuous if for each open (resp. closed)

A < U the set Fexp_lA is open (resp. closed) inU:'s topology T:.

!e“{ .-cc,\-t’cru\le ¢S

Equivalently we have T' is upper (lower)/if for each closed (open)

A c U, the set I''A is closed (open in Ui).

Definition 1.3 : U;, U, top spaces. Then T' : U, » 2°% is said to be

u.s.c. at u? ifuf e qu:IA #»u? € int(I;”;IA) whenever A is open.

Similarly, I' is lower semi-continuous at uf if

ud € Pexp—l(A) =>uj € Fexp_l(A) whenever A is closed.

We note that T is upper (lower) semi-continuous iff T is upper

(lower) semi-continuous at each u; € Uy (ref. [2],I,page 173).

Definition 1.4 : T : Uy » 2°% is continuous at uj € U; iff it is

both upper and lower semi-continuous at ud.

Consequently T is continuous iff it is both upper and Tower semi-

continuous.

Definition 1.5 : T : U, -~ 2°2 is Tocally u.s.c. at (uf,u3) if for

each neighbourhood N of uj there is a neighbourhood M < N s. t.

MAT is u.s.c. at uf.

Definition 1.6 : A multi-valued mapping I' is called §-u.s.c. at

(ul,ul) if 3 a nbhd M of uj s.t.

~ MnrTud:u #uf
fu =
1 ‘L 0 .
I' uj otherwise

is u.s.c. at ul.



We note in passing that if U, is regular (T;), then the u.s.c. of
I' implies local upper semi-continuity which becomes equivalent to

6- upper semi-continuity (Kuratowski [21,1,page 180).
Theorem 1.1 : T a m.v. fn from U; to U, we denote Tu; = (T u1).

T is u.s.c. for each u.s.c. mult.fn T into the subsets of U, iff

U, is normal (T,).
Proof : Reference [3], p.8. a

Theorem 1.2 : If U, is regularand I' is closed valued (i.e. T u; = I' u;)

and u.s.c., then the graph G(T') is closed.
Proof : Reference [2], I, page 175. O

Theorem 1.3 : Let U, be T, and let P < U; x U, be closed. Then
I'up = {u, : (uy,uz) € P} satisfies the following for each compact

KEUZ

We note that T is u.s.c. at u} iff I' ! is a closed mapping at u!

(ie. for each closed set K cU, uf € T K = ud € I K).

It follows that for U, compact and U, being T», the m.v. mapping T

is u.s.c. closed valued iff G(I') is closed (also ref. [2], II,p.57).

Definition 1.7 : Suppose that T' : U; » 2*%, B(u?) is a basis of uf

and U, and U, are topological spaces. T said to be l.s.c. at
(uf,ul) if for each element B of B(ul) there exists a nbhd W of

uf s.t. I™'B o W.
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This definition doesn't depend on the basis used. We have T 1.s.c.

at v(uf,ud) € 6(r) iff I" A is open for open A (i.e. I is l.s.c.
according to our previous definition 1.2). The local character
of the definition 1.3 is expressed by the fact that I is l.s.c.

at u? (viz. definition 1.3) iff it is l.s.c. at (uf,u?) for each

Definition 1.8 : A multi-valued mapping ' is said to be inner semi-

continuous (i.s.c.) at u] if for each closed set F = T uf, there is
a neighbourhood (nbhd) W of uf such that for each u; € W we have

FEFU]_.

[4
Of course this is only an auxillhry notion as T is i.s.c. iff the
complementary multifunction I is u.s.c. at a particular point uf.

On the other hand if the space U, is T,-space i.s.c. entails l.s.c.

Theorem 1.4 : If U, is regular. Thenif Iy is l.s.c. at u{ and T, is

u.s.c. at u?, the mapping

T=T)\T,=T, nb
is 1.s.c. at uf.
Proof : Reference [2], page 182.

In the following (U,,d») will denote a metric space, N(u?,e) the ¢
neighbourhood {u, : d2(u?,uz) < €} and for A c U,
N(A,e) = U N(uz,e); d(uz,A) = inf{r : N(uz,r)n A # ¢J.

U2€A

Definition 1.9 : A mu]ti;function I : U, »2"% is called upper

Hausdorff semi-continuous (u.H.s.c.) at uy if v e > 0,3 a nbhd W

of u? such that
I' W e N(Tu?,e)

I' is called Tower Hausdorff semi-continuous (1.H.s.c) at u? if
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Ve>0 3anbhdWof u? s.t.
W< {uy : Tuf < N(Tuy,€)}.

We note that T is 1.H.s.c. at u iff it is 1.s.c. at (ud,ul) uniformly

for each u? € ru) (in the sense of definition 1.3).

Now if U, and U, are metric spaces the definition of lower semi-
continuity (at (ui,uz)) of a multi-function T : U; + 2"2 may be

restated as follows: for € > 0 there is a number q(e) > 0 such that
I *N(uz,€) = N(uy,q(e)).

Similar definitions can be made for u.H.s.c. at u!. If I is u.H.s.c.

at u and for each € € (0,g,)
IN(uf,q(e)) = N(Tuf,e)

then q is the rate of u.H.s.c. at uf.

Definition 1.10 : T is said to be 1.s.c. uniformly at (u?,ul) if
there are € > 0, n > 0 and a function q : (0,r,) - R, such that for

each u, € N(u2,e) and each u; € T *u, n N(uf,n) we have
I *N(uz,r) 2 N(u1,q(r)).

Definition 1.11 : I' is S-u.H.s.c. uniformly at (uf,ul) if there are

€ >0, n >0 and a function q such that for u; € N{(u?,n)
¢ # IN(u1,q(r)) 0 N(uj,e) = N(Tuy,r).

Theorem 1.5 : T is l.s.c. uniformly at (uf,ul) iff I is S-u.H.s.c.
uniformly at (uf,ud). Besides the rates semi-continuity are the same

on an interval (0,r).

Proof : Reference [3], page 13. O

In the following section we will develop a consequence of this

theorem.
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§1.2 Relationship Between Various Semi-Continuity Concepts

In this section we will explore the situations in which various
semi-continuity concepts become equivalent and relate this to the

topologies one can create on 22 to extend the concepts.

Theorem 1.6 : Let U; be a metrizable space and let U, be a topological
space with a countable local basis B(u?) at uy. If I is u.s.c. at uf,

then T is u.H.s.c. (for each metric of U,) at u!.

It may be easily deduced the converse is true provided Tu? is closed.
If one does not assumed closed image sets then one loses this simple
correspondence between u.s.c. and u.H.s.c. even on very reasonable

spaces.

Suppose that I' is closed valued and not u.s.c. at uf.' This signifies
the existence of an open set Q (Q o ru}) such that W n Q" is not
empty for all neighbourhoods W at u{. By the Urysohn Theorem, there
is a continuous function d valued in [0,1] that vanishes on Tu! and
is equal to 1 outside Q. Pick any metric p on U,. Then

o(uz,uz) + [d(uz) - d(Uz)| is an equivalent metric for which

N(Tuf,1) = Q. This contradicts the u.H.s.c. of T for all metrics

on U,. See reference [6] for characterization theorems of u.H.s.c.
for T which doesn't have closed values. We will quote the following

characterization theoranm.

Theorem 1.7 : Let U, be complete metric and let T' be a closed-value
u.H.s.c. (at u?) multi-function. The following statements are
equivalent:

(1) T is u.s.c. at u?;

(i) for each closed K= Up; KN T is u.H.s.c. at ul;

(iii) for each open Q; Q n I is u.H.s.c. at u?.

Hence the equivalence of u.s.c. and u.H.s.c. can be related to

satisfactory local behaviour of u.s.c. multi-functions (see
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definition 1.6 and 1.7).

The discrepancies between Hausdorff semi-continuity and the pre-
viously defined concepts is seen to arise from the topologies need
to be defined on the space 22 (or suitable subspaces) to generate

the continuity concepts. We will denote P(U:) = 2" 2 when con-

venient and

C(Up) = {S € 2°2|S is compact w.r.t. T,}
K(Uz) = {S € 2°2|S is closed w.r.t. T}
0(Uz) = {S € 2"2|S s open w.r.t. T,}
¥(Up) = {S € 2°%|S is convex}.

When necessary we will denote
KV(U,) = K(Uz) n V(Uz)
the convex closed subsets of U, etc.

Definition 1.12 : The upper (lower) semi-finite topology on 2'2 is

generated by taking as a basis (resp. sub-basis) for the open
collections in 2°2 all collections of the form {E € 2"2 |E < S}

(resp. {E € 2°2|E n S # ¢}) with S an open subset of U,.

A multi-function I' is lower (upper) semi-continuous in the sense of
definitions 1.2 and 1.3 iff I is lower (upper) semi-continuous with

the Tower (upper) finite topology on 2°2 (see reference [71).

One can define a finer topology on 2°2 by forming the join (or sup),
in the lattice of all topologies on 2°2, of the upper and lower semi-
finite topologies. The topology is known as the finite topology. A
mapping continuous with respect to this topology is both upper and

Tower semi-continuous and hence continuous.

Definition 1.13 : Suppose U, is a uniform space. Then the upper

(Tower) semi-uniform structure on 2°% is generated by the index set
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A (of the uniform structure on U,) and the neighbourhoods
N(E,a) = {F[F = V_(E)} (resp. N(E,a) = {F|E =V, (F)})
for E € 2"2, where Va(-) refers to the uniform structure on U,.
In the case of metric spaces Va(E) can be taken to be simply N(E,a).

The corresponding topo]ogies‘are called the upper (Tower) semi-uniform
topologies. The upper (lower) semi-uniform topologies are coarser
(finer) than the upper (lower) semi-finite topologies. In the case
of a metric we can define upper (lower) Hausdorff semi-continuity

with respect to the corresponding semi-uniform topologies. Hausdorff
continuity can be defined with respect to the topology produced by

the uniform structure formed by the join, in the lattice of all
uniform structures on 2°2, of the semi-uniform structures. From

reference [7] we quote:

Theorem 1.8 : If Uz is a uniform space then the upper (lower) semi-
uniform structures on 2°2 coincide with the upper (lower) semi-

finite topologies on the subspace C(U,) of 2"2.

Hence multi functions with compact image sets are very well behaved

as all definitions of semi-continuity coincide.

Theorem 1.9 : If U, is normal, and if we induce a uniform structure
on U, by the Stone-Céch compactification, then the corresponding

uniform structure on 2°2 agrees with the finite topology.

The other major problem is that the semi-uniform structure generated
by a metric on U, generates a topology on 2"2 which depends on the

metric used. Fortunately, their restrictions to the family of non-
empty compact subsets of U, is independent of the metric used,hence

depending only on the topology t, of U,.

In the case of the uniform structure on the subspace K(U,) of 2"2,



14

for a metric space Uz, one can generate the uniform structure with a
metric o. If the metric d, on U, is bounded, then ¢ can be taken as

the ordinary Hausdorff metric on K(U,), defined by
o(A,B) = inf{e > 0|A = N(B,e), B = N(A,e) 1.

If d2 is not bounded, one can replace ¢ by a uniformly equivalent
bounded metric and then use the new metric to generate a Hausdorff

metric.
We have from various sources the following:

Theorem 1.10 : If U, and U; are topological spaces and T';,T, multi-valued

mappings from U; to U, s.t. Tyu; = Tou;; Vu; € U, then we have
(1) I'y is 1.s.c. iff I', is 1l.s.c.

If we now suppose U, is metric, then

(i1) T, is 1.H.s.c. iff T, is 1.H.s.c.

(iii) Iy s u.H.s.c. iff ', is u.H.s.c.

(iv) I'y is H-continuous iff I', is H-continuous.

Proof :

(1) See reference [8], page 366. - Proposition 2.3.
(i) The proposition is equivalent to;T is 1.H.s.c. iff T is
1.H.s.c..

We shall prove this instead.

Suppose T is a 1.H.s.c. multi-valued mapping. Then for each uf €U,
all € > 0 there exists a nbhd W of u} s.t.

Tuf < N(Tu;,e)s vu; € W,which implies
Tu? STu;’ < N(Tuy,e) = N(Tuy,e): vu, €W
that is,I is 1.H.s.c. at u).

Now suppose I is 1.H.s.c. at uf € U; and T is not 1.H.s.c. at uf.

Then 3 € > 0 s.t. V nbhd W' of u} (say)
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(a) TuS\N(Tui,e) # ¢ for some u; € W'. We take
(b) W' < {u;|Tu) = N(Tuy, €/2)} a nbhd of u which exists by virtue

of the 1.H.s.c. of T at ul.

As U, is metric (a) implies 3 u3 = up, u, € N(Tuy,e) = N(Tuy,e);

u; € N', Unz € I‘Ug.

If we choose n sufficiently large so that d,(u3,u.) < €/2 we find

ub ¢ N(Tu,, €/2), and Uy € Tuf, which contradicts (b).

(iii) Once again we may prove the equivalent statement thatT is u.H.s.c.

iff T is u.H.s.c. This is done in a similar manner to (ii).
(iv) See reference [9], Lemma 2.5, page 378. O

In (iii) we note that in the implication, T u.H.s.c. = T u.H.s.c.,
we use the fact that if Q is a neighbourhood of Tu} then Q is a
neighbourhood of Tu} in the corresponding upper semi-uniform struc-

ture, i.e.
Tu < N(ruf,e) = N(Tul,e)
and hence Tu! < N(Tuf,e).

This is not the case in the finite topologies on 2°2. We really
would like to say that if Tuf < Q then Tuf = Q. In other words we
would Tike Tu! to be inside Q in the sense that its boundary points

avoid the boundary of Q.

In reference [6], S. Dolecki and S. Rolewicz have already noted
the importance of the behaviour of certain boundary points of a
multi-function in creating conditions for equivalence of u.H.s.c.

and u.s.c.
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We will not pursue this Tine of thought but return to the lattices of
sets 2"2 and its subclasses. It was noted in reference [7] that
other approaches towards extending the concepts of lower and upper
semi-continuity of ordinary real function to functions taking images
in 2°2, were attempted, very early on, in terms of the lim sups and
Tim infs of sets in U, (that is using the lattice structure of 2"2),
It was also noted that the results of these attempts could not, in
general, be interpreted as continuity with respect to some topology
on 2“2, Recently this approach has been revised and a new and rich
are of mathematics has been created with the invention of continuous
lattice theary. This has only occurred over the Tast twenty years
and provides another method of extending continuity ideas to 2"2

and its sub-lattices.

As it is well-known, one can rewrite the definition 1.1 to state that
f : U, >R* is lower semi-continuous iff f (%c) is open for every

c € R where ¢ = {a € R*|]a > c} (je. fc = (c,+]). As a consequence
f is upper semi-continuous if -f is lower semi-continuous. To extend
this type of definition to the lattice of subsets, we have to first
define what we mean by A = B but A # B, that is,define a "strictly

less than" concept.

We could say that A << B if we have A = B. In other words, A avoids
the boundary points of B even via Timits. In this case of a compact
Hausdorff space, this is a well-known and useful relation (even

though for cl-opensets it is refiexive and doesn't imply A # B). If,
on the other hand, the space is only locally compact, the relation is

not as strong as it looks.

In order to say A is "well inside" we could require that A< B and A
is compact. This means A avoids the boundary of B even in the

compactification of the space. This relation, moreover, has a purely
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lattice theoretic definition since we can define it in O(U,) as
meaning that every open cover of B has a finite sub-collection
covering A (at least this works in the locally compact spaces).
We can extend this relation from O(U,) to 2"2 by saying A << B if

there exists C,D € O(U,) such that A <C << D < B.

Another way of defining a "way below" relation on a linear locally
compact normed spaces (see Lemma 2.3) is to say that A << B if
N(A,e) = B for some € > 0. In this case if we let C = N(A, /3) and
D = N(A, 2 ¢/3) then A= C << D cB. IfA is relatively compact

then so is C for e sufficiently small and both relations coincide.

This relation has a purely lattice theoretic definition and we shall
explore this definition and a few consequences before indicating its

relevance to our discussion of lower (upper) semi-continuity.

Definitijon 1.14 : Let L be a complete lattice. We may say x is "way

below y", in symbols x << y, iff for directed subsets D =L (ie. every
finite subset of D has an upper bound in D) the relation y < sup D
always implies the existence of a d € D with x < d. An element satis-

fying x << x is said to be "isolated from below" or compact.

Proposition 1.1 : Tn a complete lattice L one has the following

statements holding true for all u, x, y, z € L. We rotate V = sup

and A = inf*in L.

(i) X << y implies x < y

(ii) U< X <<yg z implies u << z (hence our extension of <<
from 0(U,) to 2"2 s consistent with the fact that 0(U,) is
a sub-lattice of 2"2).

(iii) x << z and y << z together imply x v y << z.

(iv) 0 << x (o the "smallest" element of L).
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For a discussion of these implications and more see reference [10].

We will write

x={u€el :u<<x}tand 4x = {u €L :u> x}
in analogy to ¥x = {u € L : u ¢ x}. Combining all the above state-
ments into one we get, for x in a complete lattice, that the set yx

is an ideal contained in ¥x which depends monotonically on x

(ie. x < y iff ix EEiY)- ?rom reference [10] we have:

Proposition 1.2 : Let U, be a topological space and let L = 0(U,).

(1) If A,B €L and if there is a quasicompact set Q < U,
(ie. has the Heine—Bor)a‘g‘property) with A = Q = B then A << B.
(i1) Suppose U, is Tocally quasicompact (ie. every point in U2
has a basis of quasicompact neighbourhoods). Then A << B
in L implies that there exists a quasicompact Q s.t.

AcQcB.

So in a Hausdorff space the relation A < Q < B for a quasicompact Q
is equivalent to K.SEB and A is compact. Once again from reference

[10] we have the following.

Definition 1.15: A lattice L is called continuous if L is complete

and satisfies the axiom of approximation,

X =sup {u€l :u=<<x}

Viu €L :u<<x}=Vyx

for all x € L.

Proposition 1.3 : In a continuous lattice the way below relation
satisfies the strong interpolation property, namely, for all
X,Z €L

X << z and x # z implies 3y

s.t. x << y<z X#Yy.

See reference [10], chapters I and II for the following.
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Proposition 1.4 : In a continuous lattice the following conditions

are equivalent,
(1) X <<y
(i1) for each directed set D of L the relation y <V D implies

the existence of d € D with x << d.

Example 1.1 : Let LSC(U)=LSC(U,R*) denote the complete lattice

of all Tower semi-continuous functions on a topological space U with
values in the extended real numbers R*. For any function f : U -+ R*
we set GF = {(u,r) : r < f(u)}. Then f is lower semi-continuous iff
Gf is open in U x R*. We use the notion of x << y in R*, a continuous

lattice itself,to mean x < y or x = -,

Proposition 1.5 : Suppose U is compact space. Then the functions

f,g € LSC(U) satisfy (i)-(v) equivalently.

(1) f << g in LSC(U).

(i1) There is an open cover {Sj :J €J}) of Uand a family
{ﬂ : jJ € J} in R* where f(u) < P << g(u) for all j €d
and u € Sj,

(ii1) For each element of u € U there is an open set S in U and
an element y € R* where f(u) <y << g(u) for all u € S.

(iv) Gf = Gg inU x R*.

(v) There is a continuous function h € C{U ,R*) where for all

u € U we have f(u) < h(u) << g(u).

We note in passing that (v) implies that any g € LSC(U) can be

approximated from below by continuous functions.

It has been known for many years that a 1.s.c. function on a regular
space can be written as a supremum of continuous functions. This
sort of approximation problem will arise under the topic of con-

tinuous selection and generalized convexity.
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Corollary 1.5 : If U is a compact space, then LSC(U) 1is a con-

tinuous Tlattice.

Definition 1.16 : A subset S of a complete lattice L is called Scott

open (ie. S€o(L)) iff it satisfies the conditions
(1) S =45 and

(ii) supDeS implies D n'S # ¢ for all directed sets D < L.
We note that "directed" may be replaced by "ideals" in (ii).

Of course the complement of a Scott open set is Scott closed which is
equivalent to being a Tower set (je. S = ¥S) closed under directed
sups. Interestingly enough +x = {x} (closure with respect to the

Scott topology o(L) on L) for all x € L.

Proposition 1.6 : Let L be a continuous lattice. Then

(1) each point x € L has a o(L) neighbourhood basis consisting
of sets fu with u << x;

(i1) with respect to the Scott topology we have int 4x = #x;

(iii) with respect to o(L), we have for any subset S <L

int S = U{fu : %u < S}

We note that a function f : U; -~ R* from a topological space into the
extended set of real numbers is lower semi-continuous iff it is

continuous with respect to the Scott topology on R*.

Definition 1.17 : For f taking a complete lattice U into a complete

lattice T, the following are equivalent to Scott continuity of

f:U->T:

(i) f is continuous with respect to the Scott topology, that
is f 1(S) € o(U) for all S € o(T);

(1) f(VD) = VFf(D), for all directed sets D of U

(iii) If we define 1jmj X, = sup, 1'm°i>j X, we have

f(lim x. ) < 1im f(xj) for any net X, in U.

j —_—
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If U and T are continuous lattices, then each of the above 1is
equivalent to
(iv) f(x) = VIf(w): w << x} 3

(v) y << f(x) iff for some w << x one has y << f(w).

We note that Scott continuous functions are always monotone (not

necessarily vicé-versa). In the following we will use the notation:

(L) = (L,o(L)),an associated topological space,where L is a complete
lattice. For U a Ty-space we can define a partial ordering for u,
u € U by letting

u < u iff u € S implies u € S for all open sets S.

This is called the specialization order and we may associate with U
the poset (U,<) = @ U. As we have seen for a complete lattice

QrL =L.

Definition 1.18 : For two To-spaces U; and U, let [U;,U;] denote the

poset defined on TOP(U,,U;) (tHe continuous functions from U; to Uj)

by the pointwise order induced by Q U,.

Clearly [ZS, ZT] = [S » T] is the complete lattice of Scott-continuous
functions from S to T equipped with pointwise ordering induced by the

order T.

Theorem 1.11 : Let U be a space and L a complete non-singleton

lattice. Then the following are equivalent:
(i) [U, ZL] is a continuous lattice.

(1) Both O(U) and L are continuous lattices.

We will make use of the following canonical pair of mutually inverse

bijections given by the formulae

P (F)(x)(y) = f(x,y)
o (9)(x,y) = g(x)(y)
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where

(Ly )x \g LXX‘Y
ll) .

Proposition 1.7 : Let U, be T, then the following statements are

equivalent:

(1) 0(U,) is a continuous lattice.

(i1) For all continuous f : U, > £ 0(U,) the graph
GF = {(uy,uz) : up € f(uy)} is open in U; x U,.

(ii1) For all spaces U and all continuous lattices L, the
canonical pair ¢,y induced by restriction order isomorphisms

[U1,Z[U252L1] Z [Uy X Uy, EL]

As one can see, the Scott continuous functions fromy,; to O(U,) are
associated with functions with open graphs. Upper semi-continuous
functions are related to multi-valued mappings with closed graphs. We
know that in a regular space every closed valued u.s.c. multi-
function has a closed graph. Since the complementary multi-function

has an open graph, we have when U, is regular and 0(U,) a continuous

lattice:

{r : Tisu.s.c.and T=T}={I : T is i.s.c: open}

< Ui, Z8(Us)].

For the case of U, a compact Hausdorff space we already know that
0(U,) forms a continuous lattice. We also know that the class of com-

pact valued u.s.c. multi-functions are exactly those with closed

graphs in this case.

Proposition 1.8 : If U, is a compact Hausdorff space, then [U1,Z 0(U2)] is

equivalent to the class of open set valued i.s.c. multi-functions.



23
Proof : T' : U; ~ 0(U,) is open valued i.s.c.

c

iff I': Uy » K(U,) is closed valued u.s.c.
iff {u; : I"u; = A} is open if A is open and Tu; open.
iff {u; : Tu; 2 A°} is open; A and Tu, open.

Now, as U, is Hausdorff compact we have
Tu; o A° iff Tu; € F A° .

This follows from the fact that Tu;, is open A° is closed and hence
there exists an open set C s.t. Tu, oC EAc with Tu, 35; as Uy is

compact so is € hence Tu; >> A°. So
T : U, > 0(U,) is open valued and is i.s.c.

iff {u, : Tu; >>B} is open for B closed. We will complete the proof

by showing
{up; : Tu; >> B} is open for B closed
iff {uy : Tu, >> C} is open for C open.

Suppose is open. ThenC = n Bi where the B, are closed. Hence, if we
iel

have {u; : Tu; >> Bi} open for i € I, then

U {u; : Tu; > Bi} = {u; : Tu; >> n %}

iel iel
= {u; : Tu; €4 C} is open for open C.

Now suppose {u; : Tu; >> C} is open for open C and B is arbitrary
closed. We have
{u, : Tu; € #B} = {u; : Tu, € ¥C : for some open set C o B}

= U {u; : Tu; € #C} which is open. O
C >B
C open

We note that the compact Hausdorff property was used to show
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Tuy € A° iff Tu; € ¥ A°. In a metric space Tu; o A° iff

Tup 2 N(A°,e) for some € > 0. One wonders whether the way below
relation defined by A >> B iff A o N(B,e) for some € > 0, which
coincides with our previous definition on compact spaces, might be

a tool for elucidating the differences between H-u.s.c. and u.s.c.
in general. We will not pursue this line of thought here but finish
off this section with the union and intersection properties of semi-

continuous multi-functions.

Theorem 1.12 :

(1) The union of two u.s.c. mappings T; U Ty T1, T, : U; » K(U,)
is u.s.c.
(ii) The union of two 1.s.c. functions at uf is 1.s.c. at uf.

More generally, if each I t €T (T arbitrary) is 1.s.c. at
ui so is UT .

(iii) If Uy is normal Ty, Ty : U; » K(U2) u.s.c. at u? then Iynr, is
u.s.c. at uf. If U, is compact and if I isus.c.teT

(arbitrary) then n I is u.s.c.
teT

(Proofs may be found in reference [2].)

It is noted in reference [1] that the intersection property for 1.s.c.

multi-functions does not hold. We may however deduce:

Corollary 1.12 :

The intersection of two i.s.c. functions at u? is i.s.c. at ul.

Proof : Suppose Ty, T, are i.s.c. at ul. ThenT} and T are u.s.c. at
ud and I° = 17 U I% is u.s.c. at ul. Hence I = (TS U TS =T, NT,

is i.s.c. at ul. u

We note of course that T =T, N T, is 1.s.c. at u?.
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Proposition 1.9 : If U, is a locally quasicompact space, then the inter-

section of two Scott continuous functions is Scott continuous.

Proof : I is Scott continuous iff {u, : ;W €FA} is open for open A.

Hence we deduce that

n {u; : Q u, € fA} = fu; = n Q u; € %A}

i=1,2. i=1,2

is an open set by noting that

Tyu; >> A iff 3 Q; quasicompact s.t. Tup 2 Q1 oA

and similarly T,u; >> A iff 3 Qo quasicompact with I';u;2Q.2A. Hence

(I'' NTy)uy 2Q1 N Q2 oA where Q N Q, is quasicompact. |

Proposition 1.10 : Suppose 0(U,) is a continuous lattice and

I, € Wi, Z 0(U2)1,1 € T arbitrary then

U I'i € [Uls z O(UZ)]o

iel

Proof: In a continuous lattice the graph Gi of L is an open set in

U; X Us.

Now G: {(ur,us) €Uy x Uy @t up €T upd

{(uy,uz) €Uy xUp ¢ u, € Ficul}
is closed set in U; x U,

and hence F: is a closed mapping. By reference [1] page 111 we have

iel
is closed mapping. Hence
r=(nr)=ur
ier T

is open and therefore Scott continuous. O
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Interestingly if we combine propositions 1.10 and 1.8 we can deduce
the second statement of Theorem 1.12 (iii). One can see how u.s.c.

mappings fit into this picture but how do 1.s.c. mappings?

Proposition 1.11 : Suppose T : ; =+ 2°2 is 1.H.s.c. at U}. Then

ve>0
N(T(uy),e) is i.s.c. at u?.

Proof : Let F be a closed set in U, and let F < N(Tuf,e). As T is

closed 3 § > 0 s.t.
N(F,8) = N(Tu{,e),
in other words
F < N(ruf, e - 8/2), for & sufficiently small.
By the 1.H.s.c. of I at ul we have ve >0 3 §(g) > 0 s.t.

T(u?) = N(Tu;,€), vV ur € N(ui,8(g)).

If we choose € = 6/2 > O,then 3 § = §(8/2) > 0 s.t.
F < N(Tu?, € - 6/2)
< N(N(Tuy, 6/2), € - §/2)
= N(Tuy,€)
v u; € N(u?, 8),
which is the definition of i.s.c.

As we have seen,if Tu, has compact image sets then we may replace

1-H.s.c. by 1.s.c.
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It has been noted by many authors that one does not know in general
whether the intersection of two 1.s.c. multi-valued mappings yﬁsﬁ
1.s.c. We can however, using the above, approximate 1.s.c. multi-
functions with Scott continuous multi-functions. This class is

closed under intersection.

We have observed that when the jmage space is compact, a continuous
multi-function I : U, - C(U,), can be considered as a single valued
mapping taking images in the metric space Cc(Uz) (as long as U; is
metric). If U, is compact this implies that T is uniformly continuous
and hence T is both uniformly u.H.s.c. and 1.H.s.c. We complete

this section by noting some converse statements.

Proposition 1.12 : Suppose T is u.H.s.c. uniformly for u; € N(u?,n)

for some n > 0 and Diam T'(u?) < <. ThenT is §-u.H.s.c. uniformly at

(uf,ufk v u € T(ul).

Proof : For V r € (0,ro) 3 q(r) > 0 s.t. Vv u; € N(ui,n) we have
I(N(uy>q(r))) < N(T(ui),r).

Let
ug € r(uf).

Then
T(N(u1,q(r))) 0 N(u$,e) S N(T(ud),r).

A1l we need to show to satisfy the definition 1.11 is that 3 e >0

s.t.
T(N(u1,q(r))) n N(us,e) # ¢.
We choose € sufficiently large to do this.

Since u; €N(ud,n) we have
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I'(uy) < N(T(uf)sry)

for some r; > 0, If not then simply let our n get smaller as to

ensure this is so as T is u.H.s.c. at u?. Thus

T(N(u1,q(r)))e N(I'(u1),r)

< N(T(uf), ri+r)
sowe let € = rog + r; + Diam I'(ud)sfor r € (0,r,). O

Proposition 1.13 : Let us suppose T' is u.H.s.c. at u and has compact

image sets. Then
I' is §-u.H.s.c. uniformly at (ud,ul),v ud € r(ud)
iff T is u.H.s.c. uniformly for u; € N(ud,n) for some n > 0.

Proof : We need only prove necessity in view of the previous

proposition.

Now ¥ u3 € I(uf),3 >0, n>0 q: (0,ry) »R, s.t. Yu € N(uf,n)
we have
(@) T(N(ui,q(r)) nN(ui,e) = N(T(ur),r) -
T has compact image sets and {N(u,,e(up))|u, € T(u?)} is a
cover of T{u?),v e(u,) > 0. We let e(u,) be an ¢ > 0 which

satisfies (a) at u, € I'(uf). Then3 a finite sub cover

N , i
{u? : i=1,..,N}, W= U N(uz,g ) 2 T(u); g = e(uz).

i=1

Now we let § > 0 be s.t.

WoI(uy)s Vup €N(ui,s).

This exists as W is a neighbourhood of I'(u!) andI'is u.H.s.c. at
ud.  Let

n = min{d,n : i=1,..,N}

q(r) = min{q(r) : i=1,..,N} : (0,ro) ~ R,

where r, = min{r% : i=1,..,N} > 0 and

nos g o ry satisfy (a) for v, € T(u?). Then
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I(N(ur»q(r)) n N(uz.e )
< T(N(u1,q, (r))) 0 N(uz,e )

c NMr(ui)sr),v up € N(uf,8) = N(uf,n ); i =1, .., N

(we may choose & as small as we Tike). Further,
u1)54(r))) = T(N(ur,q(r))) n W
[T(N(u,a(r))) n N(uz,e, )

1

(N

N CZ —~

i

< N(T{u1)sr),v u, € N(uf,s). =

Proposition 1.14 : Suppose I' is 8-u.H.s.c. uniformly at (ud,ul)

v ul € T(uf)and r(-) has compact image sets. ThenT is u.H.s.c. at ufi.

Proof : Let €(uz) : us € T(uf) be an € which satisfies the definition

of §-u.H.s.c. - (a).

We construct a cover of T'(u}) {N(ug,ei) : i=1,..,N} as in the previous

proposition and define n, g, ro as previously. Then as u} € N(u?,n),
we have

T(N(ufsa(r))) n N(uz,e, )

< T(N(usq, (1)) n Nuhe,)

< N(T(uf),r).

I(N(uf,q(r))) = I(N(ul,q (r))) N W

oy T(N(udsq, (r)) 0 N(usse, )

Proposition 1.15 : Suppose T has compact image sets. Then T' is §-u.H.s.c.

uniformly at (u?,ul),v u? € r(ud)

iff T is u.H.s.c. uniformly for u; € N(u?,n) for some n > O.
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Proof : This follows from the last two propositions noting that we

used only the u.H.s.c. of T in the necessity of proposition 1.13. O

Proposition 1.16 : If I' has compact image sets, then T is u.H.s.c.

uniformly for u; € N(ul,n) for some n > 0

iff T is 1.s.c. uniformly at (uf,u?),v ug € r(u7).

Proof : This follows from Theorem 1.15 and Proposition 1.15. O

Proposition 1.17 : Suppose T is uniformly u.H.s.c. and T' has compact

image sets and T' : U; » C(U2); Uy compact. Then
I is 1.s.c. uniformly at (uf,ul) vul e T(ud); vud e U,

iff T is 1.H.s.c. at u? € U; uniformly with respect to u?.
Proof : Sufficiency : 3 q(r) : (0,r,) ~ R, s.t.

I (N(uz,sr)) 2 N(ui,q(r))

Vu, €U Yuz € T(uy) or Vvu, € T (uy).

Any €, n will do to satisfy the definition of 1.s.c. uniformly at

U, € T(u;)sV u; € uy.

Necessity : Let {N(uz,e(uz)) : u, € I'(u;)} be a cover of T(u;) where
e(uz) satisfies the definition of 1.s.c. uniformly at (u;,u,). There

exists a finite subcover {uz; i=1,..,N}.

Let n = min {n : i=1,...,N},
q(r) = min {q (r) : i=1,..,N}
ro = min {r% : i=1,...,N}L

N . .
Then V u, € N(I'(u;),e) = U N(u},ei) (for some ¢ > 0 where € = e(us))
i=1

and vV U, € T"*(uz) n N(uz,n)

0<n<n (a)
we have

P—I(N(UZsr)) =2 N(Gl sd-(r)):

0<r<r,
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Now U; is compact and {N(uy,n) : u; € U;} is a cover of U,V n > 0.

Let n; be sufficiently small so that
T(uy) < N(T(ui),€)s ¥ Uy € N(uz,ni) ¥V up € Uy
which is possible to find as T is uniformly u.H.s.c. .

We Tet nz(uy) = min{ny,n(u;)} where n(u;) satisfies (a) at u;. Nowas
{N(ui,n2(uz)) = up € Ui} covers Up 3 a finite subcover {uﬂ: i=1,..,M}.

Let

1
—
=
—

0 <q(r) = min{ai(r) . g
0 < ro =min{ry : i=1,...,M},

where ai(r), 7 satisfy (a) at uy. Then if
0, € T (uz) N N(ui,n)

for up € N(T(u}),e) » we have
r(01) < N(T(uY)se) 5 i=1,..,M.

If U € Uy, then 3 i s.t.
iy, € N(ul,n).

As T(U1) < N(r(ui),e) we have

r(U) U N(r(uy).e). (b)

Noting that v u; € T (up) n N(uy,r)

1

VY up, € N(T'(uy),e)

we have I (N(uz,r)) 2 N(u1.q(r)) .

We can finally say

I ' (N(uz,r) 2 N(ur,q(r))
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V iy € TTHN(T(u}),€)) n N(uy,n) i=1,....M. That is,

Q€ U IrTHN(R(uh)he)) 0 N(ud )

M M .
=T (v N(r(ui),e)) n U Nui,n)

I H(r(uy)) nuy ‘(using (b))

U

SU AUy = U -

Hence V u,; € U, we have
G, € N(uy,n) for some i

and V u, € I'(uy) g;N(P(ui),e) we have
I ' (N(uz,r)) 2 N(uy,q(r)) »

i.e. uniform T.H.s.c. . O

Theorem 1.13 : Let I' : U, - C(U,) and U; be compact.

If T is uniformly u.H.s.c. on U, then T is uniformly 1.H.s.c. on

the interior of U,.

Proof : This is a direct consequence of the Propositions 1.16 and

1.17.

Corollary 1.13 : Syppose I' : U; + C(U2) and U ds compact.

If T is uniformly u.H.s.c. on Uy then I' is Hausdorff continuouson U;.

Proof : We either use Theorem 1.13 and the uniformity or simply

note that
N(uy,q(r)) = {uy : u; € N(u,q(r))?.

Hence if V u; € N(u;,q(r)), q(r) independent of u;, we have

N(F(Jl)sr) = F(Ul),
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and it follows
v u; € N(uy,q(r)) = {ur: u; € N(U;5q(r))} it must be the case that
N(T(uy,r) 2 I'(uy). O

So we see Dolecki's theorem on &-u.H.s.c. and uniform 1.s.c. can be
related back to our initial comment about the uniform continuity of
Hausdorff continuous functions. In a sense it is a localised version

of a converse statement.

We finish by quoting a few theorems on composition of multi-valued

mappings.

Theorem 1.14 : If T is u.s.c. (resp. 1.s.c.) at u{ and A is u.s.c.

(1.s.c.) at each point in T(u,),then
AT'(uy) = U{A(up) : up € Tupl
is u.s.c. (1.s.c.) at uf.

Corollary 1. 14: If I is u.s.c. (resp. l.s.c.) at uf and r > 0 then

N(T(u1),r) is u.s.c. (1.s.c.) at uf.

Proof : Reference [4] page 58, theorem 2.5. The corollary follows

by letting
Auz) = {uz : d(uz,uz) < r}. 0

Theorem 1.15 : If T is 1.s.c. at (u?,ul) at rate q(+) and A is 1.s.c.

at (u%,ul) at rate p(+) then Ar (as above) is 1.s.c. at rate qop.

Theorem 1.16 : Let T be u.H.s.c. at uf at a rate q and Tet A be

u.H.s.c. on Tulat a rate p. Then AT is u.s.c. at u? at a rate qop.

Proofs: Reference [4] page 58, theorems 2.6 and 2.7. O
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A multi-valued mapping is said to be linearly continuous if it is

upper and lower semi-continuous at a linear rate.

For a multi-valued mapping I'(*) : U; -~ K(U,), the existence of a

K>0s.t.
dz(uz,I‘(Gl)) < kd1(U1 ,l-]z-)

for V u, € I'(u;) and u,, u; € U,is equivalent to I'(-) being uniformly

linearly continuous.

Finally we note that for closed set valued mappings we can define the

following

Definition 1.19 :

(a) 1(-) is closed at u;, iff v{ui} < U,, ul > u, and

v u3 € T(u1) s.t. uz -~ u,,we have U, € I'(u;).

(b) T(-) is open at u, iff for {u}} = Us;s uy > u; and uz2 € I'(u;)

implies 3{u3} < U, s.t. u5 € T(ul) and uy + Us.

A number of theorems are related to the continuity of "marginal®
functions and the associated set valued mappings. These will be

used in Chapters 3 and 4, so we give a brief survey here.

Theorem 1.17 : Assume U, is metrizable and complete and let Uy fulfill

the first countability axiom.

Let T be u.s.c. at U,. There is a compact subset K, of T'(u;) such

that if
f: U,»R is 1.s.c. on Kq, then
m(u;) = inf{f(uy) : u, € I'(uy)?}
is 1.s.c. at uj.

Proof : Reference [6] Theorem 10. .
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Proof : Reference [33] theorem 6.

Theorem 1.21 : Suppose U; and U, are complete metric spaces. If

r : U, - P(U,) is continuous at u, and if f : U, x U, = R is contin-
uous on u; x I'(uy), then afu;) is closed at u;.

Proof : Reference [33] theorem 8. O

Definition 1.20 : A mapping T : U, - P(U,) is said to be uniformly

compact near u; iff there is a neighbourhood N of u; s.t. the

closure of U{T'(u;) : u; € N} is compact.

Theorem 1.22 : Suppose U, and U, are complete metric and

T : U, - P(Up) is continuous at uy, f is continuous on u; xT(u1),
a{+) is non-empty and uniformly compact near u,. Then if a(u;) is

single valued it is also continuous at u;.

Proof : Reference [33] corollary 8.1.
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CHAPTER 11

The lattice structure of "classical" convexity has been noted and
exploited by many authors. Convex functions can be generated by
taking the supremum of a class of affine functions. In view of
the Hahn-Banach theorem this class consists of the proper, lower
semi-continuous convex functions, the function +~ and the function
The. fw,o}er/\‘c.r f p(eseHA, @ el g,a.ulyf(f refr in yefie=ive
-0, -In-a-reflexive-Banach-space—the convex—sets-are-weakly—closed
T vk {]xd’(‘(‘S e considei=df,
-and—hence—strongty—etosed). We begin Chapter Two by showing that
the weakly compact convex sets in a reflexive Banach space can be

generated by taking arbitrary intersections of closed balls. The

corresponding class of functions, generated by the class of mappings
@ = {P: Y(uz) = cllua-usf| - a 2 uz € Uz; @ €RI.

*
by taking arbitrary supremums, we call strongly convex and denote by

SC (Uz).

[

We pursue the line of reasoning of S. Dolecki and S. Kureyusz (reference
[11]1) and consider convexity as a general lattice property. We say

f(+) is ®-convex, for some very general class of mappings, if
f(uz) = sup{y(uz) : y € &' < ¢},

for some sub-collection ¢' of &. We show that as long as U, is compact

and such a class & (a supremum complete lattice) consists of 1.s.c.

functions (-) : U. = R then we can consider the convex

functions to be a continuous lattice.

For any given mapping h(-) : U, -~ R we can generate a multi-function
r(b) = {u, : h(u,) < b} : R > P(U,).

We show that the strongly convex functions generate such multi-functions

r(+) : B ~KV(U2),
* rufor fuu«kfj Fips wame 5 wsed elrmwhere v a offRrent «lere,
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which possess a very strong type of linear continuity. Conditions for
various types of continuity of such multi-valued mappings have been
previously derived. Quasi-convex functions (denoted QC(U,)) possess
an ability to generate u.s.c. multi-functions. Both strictly-convex
(denoted SQC(U,)) and pseudo-convex (denoted PC(U,)) functions possess
an ability to generate such multi-functions which are continuous.

Taking care of continuity assumptions we can obtain the inclusion
SC_(Uz2) = PC(U2) = SQ(U2) = QC(U2).

Corresponding to these classes of functions we have various classes

of multi-functions possessing various degrees of continuity.

The classes SCC(Uz) and QC(U,) are sup-complete but the c{asses PC(U,)
and SQ(U,) are not. We can generate any convex, weakly compact set
by taking level sets of any of the functions from these classes

(i.e. T(h)). Since the class SCC(UZ) was arrived at by using the
separation properties of affine functions, it is conjectured that an
equivalent expression of this property would be the ability of SQ(Uz)
(or PC(U2)) to generate QC(U2), by taking arbitrary supremums. This
is in fact shown to be achievable, later in Chapter Five. In order

to show this we need to consider the following.

Suppose we are given an u.s.c. multi-function FE(-) f.s.c., approximating

I'(+) an u.s.c. multi-function, both with convex image sets, for which

When we can "squeeze" a continuous multi-function inbetween these two
multi-functions. That 1is, does there exist a continuous and convex

imaged PE(-) : Uy > KV(Uy) s.t.

Fs(m) > Fs(ul) > T'(uy) for all u; € U;.
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We show that if U, is a compact subset of a metric space and U, is a
weakly compact subset of a reflexive Banach space, in which the weakly
compact subsets are "locally F-normed", we can in fact show the

existence of FE(~) s. t.
r{(ur),e) 2T (ur) 2 I(uy) for all u; € Us.

In fact this can be achieved for a mapping f(ui,uz) : Uy x Uy = R s.t.

f(u1, .) is strongly convex SC1(U.). We use the continuous lattice

structure of SC;(U2) in order to show this.

Combining these results with the work of A. Cellina (reference [14])
we can obtain varjous statements about our ability to approximate
u.s.c. multi-functions. This work has relevance to some aspects of

fixed point theory whichare explored in the following chapter.

§2.1 Generalized Convexity

We consider the following characterization of classical convexity.
Let & stand for the set of affine functions on U,. Then each convex

function f on U, can be obtained by

(a) taking f(up) = sup{y(uy) : ¥ € &' < ¢} for some sub-collection ¢'

of affine functions.

This formulation of convexity has been explored by many authors.
We will pursue the 1ine of reasoning of S. Dolecki and

S. Kureyusz (reference [11]) in their paper on & convexity

in which they generalize the convexity generating class 9.

We also have the equivalent statement.

A subset A < U, is called convex (or ®-convex) whenever

A= ﬂw€®.{u2 € Uy : P(u,) ¢ a}, that is:
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(b) A= N0, W)

where Ga(W) = {u, € Uy : ¢(up) > al @' <o and a € R.

We may generalise convexity by simply allowing & to be a family of
arbitrary real functions which satisfy & + ¢ = {y+c { ¢y € 8} = ¢. 1In
this situation f is ®-convex if (a) holds (if @' = ¢ then f = -~} and

A is ¢-convex if (b) holds (if & = ¢ then A = U,).

When & is the set of affine functions on U, we can deduce that &-con-

vex functions are just those for which
AfF(u,) + (1-A)f(uy) 3 f(u+ (1-2)u,).

Let 7(®) be the coarsest topology on U, s.t. the ®-convex sets

are closed. The following set is closed:

{up, © f(up) < al = {up : sup y(uy) < a3 y € @'}

1]

nq;eqﬂ {uz @ ¥(uy) < al.

That is,

o (f)

a

U¢€®.oa(w).1s closed if

f is @-convex.. Thus f is 1.s.c. with respect to the topology

(0).

Since u, may be viewed as a finite real function on the set &by

noting
up(¥) =9(uy) 5 up, € Uy,
we may say that a function g : & - R* is U, convex whenever

g(v) = sup{y(uz) : uz € U < Uy},
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Analogously we may define U,-convex subsets of & and so on. The roles

of U, and ¢ are fully symmetric.

In the case when ¢ consists of the affine functions, in view of the
Hahn-Banach theorem, the &#-convex functions are exactly those which
are convex, proper, lower semi-continuous functions, the function

+o and the function -». The &-convex sets are those which are closed-
convex with respect to t(®) the weak topology. The topological dual
U%¥ is a Tayer of & (a subset of those which vanish at zero). The U,-
convex sets areinthe case of U, reflexive, weakly closed as t(U,)

is the weak * topology which coincides with the weak topology.

There may be more than one class & which generate identical convex
functions. A class £ which generates the ®-convex functions is
called a basis. Let us suppose we are dealing with a reflexive

Banach space U,. From reference [12] page 36, we have

Definition 2.1 : A space is called smooth if there is at most one

supporting plane through every boundary point of the closed unit

ball.

Definition 2.2 : A Banach space is called strictly convex if any non-

identically zero continuous linear functional takes a maximum value

on the closed unit ball at one point.

In a reflexive space we always have a maximum in this case as the

closed unit ball is weakly compact (which is equivalent to being

weakly sequentially compact).

Theorem 2.1 : Let U, be a reflexive Banach space. Then there exists

an equivalent norm on U;, such that under the new norm U, and U¥%¥ are

strictly convex.

Proof : See reference [12], page 36. 0
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Theorem 2.2 : A reflexive normed space is smooth (strictly convex)

1ff its dual is strictly convex (smooth).
Proof : reference [12], page 36. .

Corollary 2.2 : If U, is a reflexive Banach space,then there exists an

equivalent normm under which U, is simultaneously smooth and strictly

convex.
Proof : This is a consequence of Theorems 2.1 and 2.2. 0O

If we let -l be this norm we may define the norm one duality mapping

on U, for each u, € U, by

J(uz) = {us € N*(0,1) S Ub:< u%, up > = lluall}

where < +, « > is the duality pairing.
From Corollary 2.2 we know that J(u,) is single-valued for all non
zero u, and in each case

Tim llu, + ol -l usll A
t+0 : % = = <J(uz),un>

(ie. grad llu,l = J(u,)).where J(+) is continuous from (U,,li+ll) into

U% with the weak topology.

Theorem 2.3 : Suppose U, is a reflexive Banach space, C; # ¢ is a

closed bounded convex set of U,, C, is a closed convex set of U, s.t.
C,nCs =9
Then 3 u, and ¢ > 0 s.t.

C; <K= {uz : lluz - uall < c}
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and
CZCch.

Proof : As C, and C, are convex sets, by the Hahn-Banach theorem 3

a linear function f on U, s.t.

C: {uz [f(up) < a} = Hs'
C, EHC:

aSC1 ﬂC2=¢.
Now Tet u, € L = {ua|f(u,) = a} attain

inf
uz€c;

inf

uz€c; d(Uz:Uz)s

d(uz,L) =
which exists due to the convexity of H', C; and the compactness of C,.
Let up € H be s.t.

N(uz,1) n'L = {u,}.

This exists and is uniquely defined by u, as N(ui,1) has only one

support plane at each point of its boundary.
We note that llu; - Uall = 1.

We define inductively

U € {up : us =n ub + (1-n)u,} nH

N(uz,n) N L = {Up)}.

We note that Jiuy - Uoll = lin u + (1-n)d, - O,
= nllul - uyll = n.

(o]

We wish to show U N(u3,n)

n=1

[}
pus o

(S).

If we can show this then we can complete our proof as follows.
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Then ¥ n,3 0% €C, s.t. uz & N(u%.n),
Now as C; is weakly

Suppose our theorem is false.
Uz €C.

that is v n, 3 U, € N (u3,n) s.t.

sequentially compact,3 a convergent sub-sequence of u3 converging to
Hence after renumbering we can say U ~ U; €C,. As

Us.

N(uz,n) = N(uz,m) for n > m

we have

s € N (u},n) < N° (uz,m) forn >m

and
Uy ~ Uy, € N (u%,m) : vm.

Therefore
mﬁl N° (u ,m)
= (T Nm)*
=y
and hence 3 U, € C s.t. U, £ H.which contradicts our choice of H.
As

We now finish by proving the statement (S)

N(uz,n) € H Vv n, we have

N(u3,n) < H.
1

g

n

To prove the reverse inequality we note that L is the tangent plane

to N(u3,n) at U,V n. Now as

hu, = (n us + (I-n)u)il < n}

N(uz,n) = {up :
= {u, : %Jpz—(nuﬂ + (1-n)uz)|| < 1}

and
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grad%ﬂuz - (nus + (T-n)u2)ly, = U,

J(uz - (n uz + (L-n)uy))/n)

J(u - uz),
by Tetting
<J(u%-uz2),uz> = b,
we have
L={u, : < Jul - uz),ux> = b}
and
H= {u, :< J(ul - U,),u> <b}.
Now J(+) is demi-continuous (ie. if U% = u then J(u%) ~ J(uz)).
Let us suppose_ﬁZ € bdd N(u3,n) and fiu3-uz| < K: v n. Then
L@y - ub) > (a2 - u)

as

Il (Uz

o
A
1
]
f o
N b=
Na”
1
Sl
e
-
I
[
]
o

- - B =
Il (up - u3) - ﬁ{uZ - Us + Uy - U2)ll

=Tz - ud) - (b, - ub) - H@ - @)

n
1 -n -
S#Wz-hHS%K+0

as n - o, noting

n(az = Ué) = (up - U;)-
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Now

2 1 - -
Uz = S{uz-U2) - (uz-Uz)

is the "direction" in which u3 lies with respect to u,, that is

Since ||-lz|| < K we must have 0 < |[C*| < K. We have |u3|| ~ 0

as n -~ < and by weak sequential compactness there must exist a

/\n

subsequence of both {U3} and {U3} s.t. both U3 ~ u, an d-T——ﬂ-A Gz,
Uz
where U, = Y272
Juz-us |

As a consequence the following limit exists;

lj}‘: J(Uz u2)s “
| (uz-u2)+t( )ll Juz-ua ||
_ 1im 1im || 2 ]
n>e t->0

| (ud=G,)+ |5 1K——2—»n-1pz-uzﬂ

= lim ]
n
o W |

Clim J(uz-lp)+0%] - [uz-u2 |
e | Ul

_vim [ 5-T5) [ fuz-e |

n-><
~n
|| u2 ]|
_ lim 1-1 _ 0.

Hence we have
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|<J(U‘12'az):anz-l-lz>|

n
~

|<0(uz-dz), €' 22—
I |

~N

€ | [<d(ub-Un)s —2—|

S

|[U% ]

M
)y 25 50, as n > =,

1 |

I
~
A
[}
—
o
[N

1

j =

that is

<J(u3-Uz)»U%> + <d(Uy-Up),lUz> @S N + oo,
We Tet b = J(%(UZ-GZ),GZ> and note that since, (ub-u,) = %(ul-ﬁz)
we have,

bn +b = <J(U12-l]2),|__12> = b.

The half space at U5

T (%) = {u, : <J(%{ﬁ$ - U%)),un> <b }>

n

has the property that if u, € H,then u, € Tn(DZ) for n sufficiently
large. If u, € H,then <J(ub - u,),u,> < b, Since we have a strict

inequality,3 6 > 0 s.t.
<J(u} - uz),u2> + & < b.
. . §
For n sufficiently large we have b - 7 < ql and
l,-n -n
<J(ﬁ(u2 - Uz));uz>
< | <J(%]-(l_1nz - ﬁnz) - J(l_llz - U2),Uz'>l + <J(U12 - az)auz>

< <J(U12 - Uz),Up> + ‘g‘< b - %S bn,

using once again the demi-continuity of J(-).
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Now if we suppose U N(ub,n) # Hsthen 3 u, € H s.t.
n=1

u, ¢ N(u3,n);v n.

We arrive at a contradiction as follows. Let GZ be the closest

point in N(uz,n) to u,, i.e..
d(UZsN(L&sn)) = “u2 = anZ“
This point is unique as N(u3,n) is strictly convex closed and

U - Ul

N

luz = W2 + Jlu; - ua|

d(UZ,N(unz’n)) + ” 62 - u2||

N

d(Uz,N(Ulzal)) + ||l_12 - Uzll

1 -
lluz - up|| + |{0z - ual|

IN

K < e,

Since u, € T;(GZ) VY n,from the above we have u, € H.which is a

contradiction. O

An immediate consequence of this Theorem is that the weakly compact

convex sets in a reflexive Banach space are generated by the class
® = {y : Y(uz) = llup - Ul - a3 U, € Up; a € R}

we define for c € R+

® = {y = Y(uy) = clluy - Uoll - a3 Uz € Upy a € R}.

c

As one may have noted by now, convexity in this context has a definite
lattice structure. We can for a general class ¢ define the convex
hull of a set A to be the intersection of all convex sets containing

A. In terms of ¢-convex functions, the convex hull of a function f



49

is the supremum of all @-convex functions majorized by f. This can
be reinterpreted according to the basis, to be the supremum of all
the members of the basis & (say) which f majorizes. Correspondingly
when we discuss ordinary convexity this corresponds to the fact that
the convex hull of A is equivalent to the intersection of all haif
spaces containing A. The above theorem indicates that when we wish
to define the closed convex hull of a bounded set, in a reflexive
Banach space, we may define it to be the intersection of all closed

balls containing the set.

Proposition 2.1 : (separation property)

(1) A function f : U, » R* is & convex iff for each u, € U, and

r < f(up) there is a Y majorized by f s.t. ¥(u,) > r.

(i1) A set A is d-convex iff for each ul ¢ A there is a function

Y €9 s.t.

woen Vluz2) < w(ug).

Proof : See reference [11] page 279. O

Lemma 2.1 : Suppose f is ¢-convex, all the ¢ € @ are 1.s.c. with respect

to the topology on U, and g : U, -~ R is u.s.c.

If g(u,) < f(uz), ¥V u, € U,,then 3 a neighbourhood N of U, and ¢ € @

for each u, € U, s.t.

g(uz) < Y(uz) Yuz €N,

P(uz) < fluz) V uz € U,.
Proof : If ¢ € & are 1.s.c. then

sup

VED Y = f is 1.s.c.

Now if we define

p(uz) = sup{s : g(uz) < f(Uz) - 6} >0,
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we can show that p(u,) is bounded away from zero on U,.

Suppose not, then 3 u; € U, s.t.

o(us) < %; vnezr.

As U, is compact there is a sub-sequence convergent to U (say). After

renumbering we can say Uy - Uj »

o(uz) < mi—* 0; n-> .

n

We know that Vv 0 < 8 < p(u,) we have
g(up) < f(uy) - 8.

Let 0 < € < & < p(Up) and as g is u.s.c. 3 a neighbourhood Ni of U

s.t.
g(uz) < guz) +€3vV up € Ny.
let €' = 2(s-¢) > 0. Then3 N, s.t.
fluy) - €' < f(uz); VY uz € Na .

Hence
V uz € N; N N2

we have
g(uz) < glup) + ¢
< f(up,) + € -8
= f(az) - 2¢'
< f(UZ) - ¢!

For n sufficiently large we have
GZENlnNZs

as N; N N, is a neighbourhood of u, and o(U3) > €' ¥ n sufficiently

large, acontradiction.
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Y u, € U,,then f satisfies the separation property at all u, € U.

Hence Y € 9 s.t.

g(az) < Y(uy)
and

P(us) < Fup) - 83 Y up € U,.

Now as g is u.s.c. 3 a neighbourhood N; of u, s.t.

g(uz) < Q(Uz) + g5 VUuz € N;,

where
N - inf
0 <e=v(uz) - gluz)) < pluz)
3 i Uz
for some m € Z+.
Similarly 3 a neighbourhood N, of u, s.t.
W(az) - e < Y(uy); Y u, €N,.
So, if we let N = Ny N N3 a neighbourhood of u,,then V u, € N
g(uy) < gluy) + & = [g(u,) + mel - (m-1)e
= g(uz) + ¥(uz) - g(uz) - (m-1)e
= W(az) - (m-1)e < w(az) - € < P(uy)

< f(u,)

€ < f(UZ). O

Proposition 2.2 : Suppose f is @-convex, all the y € & are 1.s.c. with

respect to the topology on U,, U, is compact and g is u.s.c. on U,.

If
g(UZ) < f(Uz) v UZ € Uz

then 3 {wi : i=1,..,n} < & and a d-convex function
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h(uz) = sup{wi(uz) : i=1,..,n}
s.t.

g(up) < h(uz) < fuz); Vv uz € Us.

Proof : This follows immediately from the previous lemma and the

compactness of U,. O

Corollary 2.2 : Suppose ¥ ¢ € & are 1.s.c. with respect to the topology

on U,. Suppose U, is compact, f, g ®-convex and g continuous where

glu,) < fluy)s Vu, €Uy,
Then g << f in the lattice of &-convex functions and if v ¢y € ¢ are

continuous, then this is a continuous lattice.

Proof : This is straightforward when one notes that for any directed
set D in the lattice of convex functions we can produce a correspond-

ing directed set in & which has the same supremum, namely,
o' = u{e" : sup{y € ¢"} = h € D}>

where sup &' > f.

Now if we suppose ¢ € & is s.t.
g(uz) < P(uz) < Fluzh vV uz €Uz

does 3 Y* € &' s.t. w(-)'g p* (+)? Suppose not Then 3 u, € U, s.t.
vt e e, p'(ug) < v(up)-

If this is so, then
f(U,) < sup{y'(uz): ¢' € 0"} < P(uz2)»

contradicting our choice of y.

Now this particular y* € @" where sup ¢" = h € D. Hence

g(uz) < Wuz) < h(uz)s implying g << f.
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The remark follows from the fact that if ¥ € +f then y - %—6 Ifs

+
YneZ,so

—h
v

sup{y € & : ¥ << f}

W

sup{wé%:nezJ’;weW}

sup vf = f,
that is,sup f = f.
This has some relationship to the topic of continuous selection.

We state some well-known concepts and theorems by Ernest Michael

which can all be found in reference [8].

The central concept of E.Michael's work is that of continuous
selection. If T' : U; - 2"2 s a multifunction, then a selection T

is a continuous function f : U; » U, s.t.

f(u;) € T(uy) for every u; € U;.

It can easily be shown that if S < 2" contains all one-point subsets

of elements of S, then the following are equivalent;

(a) Every 1.s.c. T : U; >~ S admits a selection.

(b) If T : Uy >Sis l.s.c., then every selectionof I'|A (for A < U,

closed) can be extended to a selection for T.

Both of these imply

(c) Uz is an extension space with respect to U;» ie. every continuous

g : A~> U, can be extended to a continuous f : U; -~ U,. We note

in passing that Urysohn's theorem was concerned with the exten-

sion of continuous functions.
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Theorem 2.4 : The following properties of a T, space are equivalent:

(a) U, is normal (perfectly normal).

(b) Every l.s.c. multifunction I : U; - CV(R) (T : U; ~ V(R))
admits a continuous selection.

(¢) If I : Uy »CV(U,) (T': Uy~ V(Uz)) is a 1.s.c. multifunctions
in U, a separable Banach space, then there exists a continuous

selection.

Corollary 2.4 : Suppose U, is normal (perfectly normal). Then for

g:U,>Ru.s.c., f:U,~>R1.s.c.,3a continuous function

h:Uz—*RS.t.

g(uy) < h(u,) < f(uy); VY uy

(g(uz) < h(uy) < fluz); ¥V uz).

Proof : This follows immediately from the fact that
I'(up) = {x € R : glup) < x ¢ f(uz)} is T.s.c. whenever g is u.s.c.

and f is 1.s.c. Similarly for

T(uz) = {x € R : g(uz) < x < f(uz)}

the above observation holds and one only needs to apply Theorem

2.4. -

One can deduce thelUrysohn Theorem from this. We will revisit this

in the context of "Fuzzy Topologies".

Proposition 2.3 : The space LSC (U,) consists of all convex

function with respect to ¢ = C(Uz),the space of continuous functions,

if U, is normal. It is a continuous lattice if U, is compact.

Proof : Follows immediately from what has been covered. a
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Definition 2.3 : For an arbitrary class ® a ®&-convex function f is

said to be ¢-sub-differentiable at u, € U, if 3 ¢y € ¢ s.t.

fluz) 2 v(uz); V u,.

We note in passing that a function h(u,) = sup{wi(ug) :i=1,..,N}
defined by b €9 is ®-sub-differentiable everywhere in U, since

if az € U2 then

h(d,) = wi(uz) for some i=1,..,N

and

h(uz) > Wi(uz); v ous-
We say that h(+) a ®-convex function is strictly sub-differentiable
at u, if the second inequality holds strictly, namely,

h(uz) > Wi(uz); Y up # Uz.

Definition 2.4 : A function h : U, -~ R is called strictly quasi-

convex if
h(uz) < h(lz) = h(Auz + (1-))uz) < h{uz2),¥ A € (0,1).

Definition 2.5 : A convex subset S of a reflexive Banach space is

said to Tocally F-normed if a translation-invarient metric

d(ua,Uz) = d(uz - Uz, 0) = fluz - uall*
can be defined satisfying
(i) lusll* > 0 U, €5
(i1) U, = 0 iff llul* = 0
(i13)  Nua*Uall *chuall* Hiuoll*; uz,up €S

(iv) HAHUZH* +~ 0 if A 0; u, € S-S
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which generates the topology of S.

In the case of those reflexivespaces for which the dual space has

an orthonormal set, we can immediately define such a norm. Let

fful* =

i

e~ 8

= uurs|
1 2 !
where {uf}jll is an orthonormal spanning set. The norm obviously
defines the weak topology on the compact sets. The compactness of

the set is essential as this makes sure llull* < K. We note in passing

that
lull* < ) Lojul
i=1 2
< lul s

where (l+l is the usual norm in the Banach space. In these situ-

ations Hausdorff continuity of T(-) with respect to ll-ll would ob-
viously imply Hausdorff continuity with respect to ll«ll*. This is
in general true as the weak topology is coarser than the strong

topology on U,.

We note in passing that local F-norms are similar to the para norms
of reference [15]. They differ in that they only define the relevant
topology locally (on the compact sets) but they still reflect a

compatibility with the linear structure within this local context.

The condition (iv) is obviously satisfied by any para normed space

for which the compact subsets satisfy the Zima condition,namely;
(U, li-II*) a para normed space with S<Uand 3 c > 0 s.t.
faull < cMlull*, for every 0 < X < 1 and every u € S - S.

These structures were used in reference [15] to deduce a fixed point
theorem for convex-valued multi-valued mappings on certain topological

linear space.
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Proposition 2.4 : Let U, be a convex subset of a Banach space which
is locally F-normable. Suppose h : U, ~ R is strictly quasi-convex

and continuous with respect to the same topology. Then if
I(b) = {up : h(uz) < b} # ¢ and T(b) = {u, : h(u,) < b}
we haveclI(b) = I'(b) and I'(b) is convex.

Proof : We argue similarly to the proof of Lemma 5 of reference [13]
We notethat ux(8) = 6(U,) + (1-8)u, > U, in the local F-norm

since,

Hua(8) = Uoll = li6(U, - Ul > O
as 6 ~ 0 due to condition (iv) of the definition 2.6.

In this way we establish ¢1I(b) = I'(b) which implies

bdd T(b) = T'(b)\I(b)

{u, : f(uy) = bl.
So if u,, u, € T'(b)

h(az) < bs h(UZ) < bs
then

h(Aup + (1-A)uz) < max(h(uy),h(uz)) = b
and hence Au, + (1-A)u, € TI'(b). O

Proposition 2.5 : If U, is a reflexive Banach space and the unit

ball's weak topology is metrizable, then h strictly convex,weakly
continuous and I'(b) weakly compact imply 3 b* > b s.t. T(b*) is

weakly compact.

Proof : Identical to Lemma 6 of reference [13] using the equivalence

of boundedness, weak compactness and sequentially weak compactness. O
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Definition 2.6 : f : U, ~ R is called quasi convex iff the sets T'(b)

are convex vV b € R.

Proposition 2.6 : If I' is compact valued and u.s.c., the image sets

of a compact set K in U; is also compact.

Proof : Reference [1] page 110. O

If we assume f : U, ~ R is weakly continuous and U, is weakly compact

then f will be bounded. For

b* = sup {f(uz) : u, € Uy} wecan define
B* = {b < b* : 7(b) # ¢},
where

I'(b) = {u, € U, : f(uz) < b},
which is weakly compact.

We note the following:

(1) B* is bounded if f is bounded.

(1) I(b) = {u, € T(b) : f(u,) < b} # ¢ if b € Int B*.

(iii) If T(b) is u.s.c. and U, weakly compact,then I'(B*) = UbEB*F(b)
is weakly compact (this follows from Proposition 2.6).

(iv) If the space U, is separable reflexive then the weakly

compact sets are metrizable.

Theorem 2.5 :

(1) Suppose U, is a metrizable weakly compact subset of a reflex-
ive Banach space and f : U; » R is weakly continuous then
I'(b) is u.H.s.c. at v b € B* with respect to the induced
metric.

(i1) Suppose U, is a subset of a reflexive Banach space and
f : Uy » R is (weakly) strongly continuous, T'(b) is (weakly)
strongly compact then the mapping T(b) is 1.H.s.c. at b

iff c11(b) = 1(b),
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29

wnere in the case of the weak topology the Hausdorff contin-
uities refer to those on some weakly compact metrized space

U, containing r(b).

Direct adaptation of the proofs of reference [13]. These
originally were only proved for U, = R" but go across to the
case of a reflexive Banach spéce. In (i) we use the equiva-
lence of weak compactness (ie. closed boundedness) and
sequential weak compactness. In (ii) we use the metrizability

of U, and the Tinear structure on the reflexive space. a

So if Uy is (weakly)strongly compactand f:Uz > R is (weakly) strongly
continuous then B* is bounded and we need only deal with the compact
metric space T'(B*), in which case I'(b) is 1.H.s.c. iffcl I(b) = T(b).
Now if we suppose that I'(b) is always convex then the strong and weak
closures of I(b) will coincide. Since a strongly compact set is
weakly compact we have strong 1.H.s.c. implying weak 1.H.s.c. This

is so even if we remove the necessity that I'(b) is strongly compact.

The join semi-lattice SQC(U,) of 1.s. continuous strictly quasi-
convex functions from U, to R contains the convex continuous function
and the classes 3 (CER+). The classes @ (cER+) generate the
lattices of strongly convex functions SCc(U,) (c€R+) whichare con-

tained in the class of 1.s.c. quasi-convex function QC (U,).

Definition 2.7 : A function y(+) : U, - R is called pseudo-convex

at U, € U, if it is differentiable at U,

Tim f(uy+tu,) - f(

(fe. £50 2 Uz) _ <Vf(Uz),us> exists V up, € U,)

Vf(u,) € U

and V u, € U,

<Vf(uz),(uz-uz2)> > 0 implies f(u,) > f(u,).

We Tet PC (U,) be the class of such functions.
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A full discussion of these concepts in the case U, = R" is given in
reference [19]. As usual many of the proofs go over to the case of
U, reflexive and y(-) weakly continuous. Taking care with the con-
tinuity assumption on the classes one obtains the following inclus-

ions.
SCc(U,) < PC(U;) = SQC(U2) = QC(Uz).

We obtained the class SCc(U,) by considering a separation theorem of

the same type as the Hahn-Banach theorem. One wonders if the lattice

PC(U,) generate the lattice QC(U,). The proof of this would corres-
pond to a "generalization" of the Hahn Banach theorem. There may in
fact be generating classes which are theoretically more accessible
than these for some purposes. Possibly the class of functions

p(uz) = n(luz - U2ll) - a where n(+) : R > R" is monotonically in-

creasing which are once again in SQC(U.) might generate QC(U2).

Definition 2.8 : A set S is called strongly convex iff Vv U, € bdd S

- +
Ju, €U, : reR s.t.

S < N{uz,r) =cIN(uz,r)
and

U, € bdd N(U,,r).

It is easily seen that a strongly convex set is strictly convex in
a Banach space which is strictly convex. This definition is prompted
by the knowledge that if f is @ sub-differentiable then T'(b) is

strictly convex vV b € B*.

Definition 2.9 : A multi-valued mapping I : R ~ K(U,) is said to be

metrically increasing with a rate n(+)if 3 n(+) s.t. n(0) = 0 and
n(+) : R" »R" iff for b < b

cIN(r(b),n(b-b)) = N(r(b),n(b-b)) = r(b).



61

Theorem 2.6 : Let U, be a weakly compact convex subset of a reflexive
space U on which we have a local F-norm. Suppose f : U, - R is

strongly continuous. Then

(a) f is ¢ sub-differentiable on U, iff

(b) r(b) is strongly convex and b + I'(b) is metrically increasing

with a rate n(x) = %—.

Proof : Suppose (a) holds then 3 u, € U, a € R s.t. for any
U, € U,
(1) f(0,) = cll, - Uoll - a

('l'l) f(uZ) 2 cllup, - 62” - a, YU, € U,.

As f is sub-differentiable it is ¢ convex and hence strictly quasi-
convex. As U = U is a Banach space we may consider our topology on
U being given by the norm of the strong topology. As f is strongly
continuous Proposition 2.4 tells us c¢1I(b) = r'(b). Hence

bdd T'(b) = {uz : f(uz) = b}. If we let U, € bdd T(b) then (i) and

(ii) above become eguivalent to;

la)

(i)' G € bdd N(i,, 22

(ii)*  1(b)

{uz € Uy : f(uz) < b}

- b+a)

N(Uz,_'(—:—

In

That is T'(b) is strongly convex.

Now if we let

D= {(uz,a) €U xR : yY(uz) =cllus - uzll - a s a sub-derivative
Of f(')} )

then

f(uy) = sup{cliuz - uall - a; (u,,a) € D}.



Now T'(b) = Ny N(Gz,ggi),so

d(uz,T(b)) = sup, d(uz,f(d,,22)).
If we choose u, € I'(b) and let b 3 b, then

d(uz,I'(b)) = sup, d(UZ,N(gz,E%i)).

If we let D' = D(uz,b) and D" = D(u2,b) where

D(uz,b) = ((dz,a) €D : Uz ¢ R(H2,2n2)}, then

supD.{Huz -»Gz" - (E%i)}

I

d(uz,T(b))

n

supyr {luz - Ul - (bza) ¥ (b;b)} - %(b—E)

SUPDu {“Uz - l_lel - (Blca‘)} = _(b"b)

N

supD“ d(uz,N(Gz,EEQJ) - %{b-B)
= d(uz,T(B)) - L(b-5)

the inequality following from D(u,,b) < D(u,,b). Hence

d(u,,T(b)) < d(uz,T(B)) - %(b-B) and

=

Lib-6) < d(uzsI(B)) - d(us,T(b)).

As u, ¢ I'(b) we have d(u,,I'(b)) > 0, implying

Hb-B) < d(uz,T(B))-

Hence

il

=(b-B) < inf{d(uz,T(b)) = uz € T(b),

ie.

b

A(r(B), 2(b-6)) = T(b).
Still supposing b > b and supposing u, ¢ T'(b), we have

d(u,,T(B)) = d(us,U,)
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for some U, € bdd T(b).
As T(b) is closed and convex, if we let p(u,) = clup-usll - a* be
the sub-derivative of f at U, then

5+a‘)

lu, = Uoll -
luz - uall - (=

(iii)  d(uz,T(B))

A(u, R (G5, 220) .

It follows that

SUDD (UZsN(GZ :E::i))

d(uz,T(b))

> d(ugs (i, 222))

{luy - uall - (

b+a' 1, r
: )} - E(b—b).
We then have via (iii) that

d(uz,T(b)) 3 d(uz,T(B)) - {b-6)
or

d(u2,T(B)) - d(uz,T(b)). < ¢(b-B).
Hence
sup{d(uz,T(b)) : u» € T(b)}
= sup{d(uz,T(b)) : u, € I'(b)/T(b)}

<

O

(b-B).

That 1is,T(b) = N(I'(B), =(b-b)) and hence is 1.s.c.at a rate n(x) = %—-x,

Qﬁf

so that
r(b) = A(r(B), £(b-B)) for b  b.
Now, suppose (b) holds.

As T(b) is strongly convex it is weakly compact and as

1

r(b) = N(r(b), E(b-B)) for b > b
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the mapping b -~ I'(b) is T.s.c. with respect to the strong topology.

Since 1.s.c. with respect to the strong topology implies 1.s.c. with
respect to the weak topology,Theorem 2.5 (ii) tells us, as T(+) isweakly
1.s.c. that cl1I(b) =TI(b); vbe B*. As I(b) is convex this

holds in both the strong and weak topologies.

If we choose U, € U, and let f(U,) = b then U, € bdd T'(b).
As T'(b) is strongly convex then 3 r € R and u, €U s.t.
(i) r(b) = N(uz,r)

(i) U, € bdd N(uz,r).

We let r = (b+a)/c or a = rc - b. We have
r(b) = {up, € U, : f(uz) < b} g;N(Gz,EEQ).
As bdd N(GZ,EEPJ = {up : clup - Ggll - a = b}, then

U, € bdd N(GZ,EEEJ n bdd T(b)

implies

b= f(u,) = clll, - Ul - a.
A1l we need to show to complete our proof is

r(b) < (i, 52

vV b € B*,
for if we assume this and suppose that
fluy) < cllu, - uzll - a

for some u, € U,, then

b= f(u,) € B*
and

U, € I‘(b) .



65

But

co=  at
u, £ N(Uzsicﬁ) s

a contradiction. As a consequence
clluz - Gz“ -a < f(uz) T Vu, €U,

and f is @c sub-differentiable on U,. So to round off the proof

we note
b - r(b)

is metrically increasing rate %; r(b) = N(r(b), %(b-E)) for b 3 b.

As 1(b) < N(ua,b—za—) we have

For b < b we have

N(r(b), %(B-b)) = 1(b)

- +b
-~ N(Uz, 'a?b—
Hence
- +b -
r(b) < N(iz, Z2 - 2(-b))
ie.
r(b) < N(iz» 2P,

Corollary 2.7 : Let U, be a weakly compact subset of a reflexive

Banach space which is locally F normed. Then

(a) f : U, >R is 3 convex iff

(b) T(b) is convex and b - T(b) is metrically increasing at a

rate n(x) = x/c.
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Proof : Suppose statement (a) holds.As U, is compact and all y € @

are continuousswe have from Corollary 2.2 that

f(uz) = sup{h(u,) : h; & subdiff. and h << f}.

In fact Proposition 2.2 tells us, along with the separability of U,
(as it is compact metric), that 3 hi : U, >R ;i€ I,@e-sub-differen—

tiable and continuous s.t.
f(up) =supth, (u2) = sup{y, (uz2) : J=1,..,N(i)}: i € I}

Thus

r(b)

{UZ = f(UZ) < b}

{uz = sup h (uz) < b}

N {uz : h (uz) < b}
iel
N(i)
n n {u, : Y (uz) < b},

iel j=1

which, from Theorem 2.3, 1is convex weakly compact. We note also in
passing that any convex set may be produced in this fashion. Now as

hi(-) is ¢ sub-differentiable v i € I we can say

where Fi(b) = {u, : hi(uz) < b}. Hence

1,-
E(b_b))

=
—
—
—
(o
~——
v
|
—
7
O
~—
~—
]

N( n ri(b),

iel

= 0 (5, (b), £(6-b))

N ri(B) = 7(b).

iel
Now suppose (b) holds. As T'(b) is also weakly compact convex, the

reflexivity of U, and Theorem 2.3 imply 13 r. € R+ s.t.
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r(6) = n R(i%r, ).
iel
a +b

c

By letting r we get

T(B) = n {uy : clluy - Uoll - a < b}
iel ° ’ ’
- . Sup ©
= {uz = fer ¥, (u2) < B
Now as

N(T(b), <(6-b)) = T(); b » b,

b € B*,then T'(b) # ¢ implies

A(T(b), HB-b)) = n W(dy, ~) .
iel
Hence
= =i ai+5 1,
r(b) = n N(uj,, == E{b-b))
iel
=, 1 ai+b
= 0 A, =)
iel

Now if we suppose b < b we have

B(r(5), (b-B)) = r(v)

or

— e ai-l-5 1
N(C N N(us, —7;-9, E(b-B)) = I(b)
iel
o ai+5 1
- 0 R, S+ H6eB) - 1),
SO
o ai+b
n N(UZ, C ) = 1—|(l:))
iel

We have T(b) = {u€ U, : 328 Iy - uall - a < b

Arguing as before, this holding for all b € B* implies

f(up) = ?g? cldy - ull - a

and hence that f is @c convex.
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§2.2 Approximation of Multi-valued Mappings

To complete this chapter we turn to the topic of approximation of
multi-valued mappings. This has relation to fixed point theorems
for multi-valued mappings. We begin with some notation and defin-
jtions. If (U,,d,) is a metric space and (U,,d,) is a metric we

know that U; x U, is a metric space with a metric

d((uy,uz), (Uy,02)) = maxtdy(uy,ur), da(uz,uz)l.
As usual we define,for A c U, x U,,
d((ui,uz),A) = inf{d(ui,uz),(Ui,Uz))s (ui,uz) € AL
The separation of two subsets A, B = U, x U, is given by
d*(B,A) = sup{d(ui,uz),A); (ui,u>) € B}.

These sets may be graphs of multi-valued mappings,
ie.,

G = {(uisuz) : uy €Uy, us € I'(uy)}.

We state a slightly reworded statement of part of the content of

Theorem 1 of reference [14].

Theovem 2.7 : Suppose (Uj,dy) is a compact metric space and (U.,d:)
is a metric space. If I' : U; » K(U,) is u.s.c. (or equivalently
u.H.s.c.) then we can approximate I' from above by 1.s.c. multi-
valued mappings
r : Uy »K(U,) s.t. 0 T (u1) = T(u)
€ €
e>0
and

d*(FE,G) <e Ve>0,

where FE is the graph of FE s

G 1is the graph of T.
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Proof : We argue identically to the first part of Theorem 1 of

reference [14]. In doing so, we define

p(ui,e) = sup{s < €/2 : 3 u} € N(u;,8)
s.t.

T(N(u1,8)) = N(r(ui), €/2)}

and show it is bounded away from zero on U,. We then go on to show
that the mapping Pe(ul) = ¢l I'(N(ui,51)),where 0 < &; < inf{p(u;,e) :
u € Uyt is T.s.c. on U;. We finish by noting that,V u, € U;,by the

definition of p(u;,e) we have that 3 ui € N(ui,&1) s.t.
I (ur)=c1r(N(u1,€1)) < N(T(ui), €/2)

and as &; < /2 we have
di(uy,ul) < /2.

This implies

d*(F_,6) = sup,_ inf, max{di(u1,i1),d2(uz,i2)}

Fg
£ e/2 + ¢/2 = €, O

We note in passing that,if we assume U; is compact,by our definition

of p(ui,e) we have Fs(ul) < N(I'(ui), €/2); ul € N(uy,&:1). Hence
PE(UI) < N(T(N(Uy,E1)), €/2)
< N(r(N(u,, €/2), €/2) 2 (S).

This in general does not tell us whether FE(Ul) itself is compact.

We need the following.

Lemma 2.2 : Suppose U is a linear, Tocally compact normed space Then

Ire€ R+; r>0s.t. vOge<r; Yue€Uwe have N(u,e) compact.
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Proof : There exists a basis of pre-compact neighbourhoods of zero

which generates the topology of the space. Let V be a compact
neighbourhood of zero. Then for r sufficiently small N(O,r) <V and
hence is relatively compact. So for 0 < e < r

N(0,e) is compact and as U is normed and linear,

N(u,e) = u + N(0,e) is compact. O

Lemma 2.3 : Suppose U is a linear, locally compact, normed space and
S < U is compact.Then for 0 < € < r, r sufficiently small,N(S,€) is

compact.

Proof : If we can show sequential compactness of N(S,e) we have shown
compactness. Let {un}:’z1 c N(S,e). Then3 u_ €S s.t. llu - ull <e
vV n. By the compactness of S,3 a convergent subsequence, converging

tou €S, {Gn} (say) after renumbering. Now for n x N(S) we have

fu -ul <llu —ull +llu -ul <e+8<r
13 n n n

for § sufficiently small and hence {u_: n > N(8)} = N(u,e+d), a
compact set. As a consequence a convergent subsequence exists,which

is,of course,a convergent subsequence of our original sequence

When the conditions of this Lemma hold for the spaces U; and U, we
can from statement (S) deduce that the range of FE is contained in a

compact subset of U,. If we introduce F-norms we can say a lTittle

more.

Proposition 2.7 : Suppose U and U are Banach spaces each of which

satisfy one of the following
(1) the conditions of Lemma 2.3

(i1) is reflexive and the weakly compact sets are locally F-

normable.
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We let U, c U and T : U, » CV(U).

When (i) holds for either, or both, of U; and U we consider that
the corresponding space(s) U, and/or U are endowed with the strong

topology.

When (ii) holds for either, or both, of U and U we consider that
the corresponding space(s) U; and/or U are endowed with the weak

topology.

Suppose
(a) U, is compact, and

(b) T : U, »cV(U) is an u.s.c. multi-function.

Then there exists a multi=function I_ : U, -~ cV(U), 1.s.c. with

respect to the above topologies on U, and U, which approximates T

is the sense of Theorem 2.7.

Proof : If (i) holds we let d;(ui,u;) = lluy - uyll and if (ii) holds
for U we let d;(u;,u;) = lluy - uyll*. In any case since T is u.s.c.
from proposition 2.4, we have T'(U;) SZFE(Ul) c Uy a convex subset of {

compact with respect to the relevant topology.

This follows from the statement (S) and Lemma 2.3 in the case of (i)
and in the case of (ii1) from the fact that any closed bounded set is
compact. In the case of (i) U, is already a metric space and in case
(ii) we may make it metric by imposing an F-norm on it since it is
weakly compact. We ensure the mapping FE produced via this process
using Theorem 2.7 is convex closed valued by taking the convex closure
of it, the resultant being once again 1.s.c.. It is easily seen that
this does not upset the approximation properties as I'(-) is convex

closed valued as well. ad

Now take these mappings and rewrite our approximation problem

as follows. As I'(uy) = {u, : d(u,,T(u;)) < 0} we say equivalently
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g_(ui,uz) = d(uz,T_(ur)) < d(uz,T(ur)) = fui,ue)

and

9 + f as € » 0.

We note the following.

Theorem 2.8 : Suppose U, is a metric space. Let 22 have the topology
generated by this uniform structure (see Definition 1.13). Then a nece-

ssary and sufficient condition that T : U; -~ 2°2 is continuous is that

the family of mappings {u; - d(u,,T'(u;)) : u, € U,} be equi-continuous.
Proof : Theorem 2.1 of reference [16]. O

This opens up the question of whether we can select an

foo Uy xUp > R" s.t. f_ Tooks sufficiently Tike d(uz,T_(u1)) and

ge(uuuz) < fe(ulauz) < flup,uy),
where the family
{Ul - fe(ul ,Uz) T Uy € Uz}

is equi-continuous. If we can do this,then we can say T'(u;) can be
approximated above, in the same sense that F8 does, by a continuous
multi-valued mapping. It turns out for the case when I'(+) is convex
valued that the ¢ convex mappings are those which Took sufficiently

like Ad(uz,Tg(ul)).

Lemma 2.4 : Suppose C < Uy 1is ® convex set, U, being a Banach space.

Then N(C,¢€) is ¢ convex ¥ e > 0.
Proof : As C is @ convex,3 a set D =R x U, s.t.
C=n{u, : cllu, - ull - a < a; (a,uz) € D}.

Now
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N(C,e)

{us = d(us, nD{Gz s clli, - Ul - a < a}) < €}

{u, : sgpd(uz,{ﬁz s clliy, - Ul - a < a}) < €}

{uz : Sde(UZ,N(ﬁz,(Ma)/c)) < e}

n{u, : d(u,,N(uz,(ata)/c) < € }

ny f(iiz, (a#a)/c + €)

s -
gp ciu, - Ul —a <o +el,

{UZ B

a @c convex set.

We now formulate our problem stated above as a selection problem.
If we define a multi-valued mapping

Pluisuz) = {x € Rz d(uz,T_(ur)) - 28 < x < d(uz,T(uy)) - el

{x € R : d(uz,N(T_(u1),2¢e)) < x < d(uz,N(T(u1),e))}
can we select from this an appropriate function?

Lemma 2.5 : Suppose U, is a Banach space. If Cis a @c convex

set,then u, > cd(u,,C) is ¢ convex function.

Proof : Since C is ¢ convex,3 D =R x U, s.t.

sup

D cllu, - Ul -a<a} =cC.

{UZ 5

Hence letting D' = D(u,,a) we have

d(uz,C) = SR d(uy, H(02,252))

D c
= +
= sg?uuz - Ul - (QEEJ-
Thus
c.d(uy,C) = Sg? clluy - Usll - (oa).

Hence the natural choice of convexity is &, convexity which would make

U, ~ d(uz,Fe(u1)) - 2e3 &, convex.



74
If we fix u1 and suppose the conditions of proposition 2.7 hold, then
we may restrict the above function of u, to a compact domain,since
I'(+) would have a compact range for ¢ sufficiently small. Supposing

this, then proposition 2.2 tells us we can, for each u;, select

mappings of the sort

sup

- .
i=1,..n fuz - uxll - a = h(uz)

s.t. gE(ul,UZ) - € < h(uy,uz) < f(uy,uz). This prompts us to define

a new muiti-valued mapping

W(uy) = {h(uz) = h(up) = (3P e - Tl - g

s.t. h(+) is a selection of ¢(uy,*)}.

Definition 2.10 : Let U;,U, be metric spaces, y(+,up) : U; ~ V(R).

Then {y(-,u,) : up € Uy} is said to be equi-Tower semi-continuous iff

Ve>038d) s.t. ify € d(ud,uy) then
‘~P(U1sU2) N N(y,e) # ¢
V (ur,uz) € N(ui,8) x Us,.

Proposition 2.8 : Let U, U satisfy the conditions of proposition 2.7

and Tet U;, U, be compact sets U; < Uand U, = U s.t.

I : U= KV(U) s u.s.c.
r(U;) U, and
Fe(Ul) cUy»

where Pg is the 1.s.c. approximation in graph of T.
If ¢ is defined as above then

{(+,uz) : uz € Uz} is an equi-l.s.c. family.
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Proof : As I' is u.s.c. on U;,V € > 0 3 8§(ud) >0 s.t. Vv u; € N(u?,s)

T(uy) = N(T(uf),e) = N(T(uf),e). Hence

d(uz,T(u1)) > d(uz,R(T(u?),e)

> d(up,T(uf)) - ¢
Y u, € U,.
Thus
{d(uzsT(uy)) : uz € Uz}
is an equi-1.s.c. family of single valued mappings. We can show by
an identical argument that for PE(-) 1.s.c.
{d(uz,T(uy)) : ux € Uz}

is an equi-upper semi continuous family of single valued mappings,

je. Ve >0 and u, € Up; ul € 1,3 $(ud) >0 s.t.
d(uz,T_(u1)) + € > d(uzT (u1)), ¥ ur € N(ui,8).

If we Tet 6*(u?) = min(8(ud),8(u?)) > 0,then v e > 03 &*(u?) > 0 s.t.

for u; € N(u?,s*)
{x 1 d(uz,T_(u)) - & < x < d(uz,T(ul))}

c {x : d(uz,FE(uf)) -e-¢€<x<d{us,T(uy)) + €}

= N(Y(u1,uz),€) -
Namely

w(Uf,uz) SﬁN(W(Ulsuz)sé)§ Yu, €Uz»

or for y € y(uf,us) we have

Y(ui,uz) N N(y,e) # 6. =
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Lemma 2.6 :Let U bea reflexive Banach spaceand {f, : i=1,2,3} are @
convex function where the Dom fi = U, (compact) i=1,2,3. Suppose fs is

continuous and f3(u,) < min{f,(uz),fa(u2)} = h(uy). Then 3 D <R x U s.t.
fa(uy) < sgp CHuz'— usll - a < h(uz),
and in fact as U, is compact'we may choose the set D to be finite.

Proof: As fi, f, are ¢ convex 3 Dy, D, =R x U s.t.

fi(uz) = SBT cllu, - uLll - a,
falup) = SBZ clluz - usll - a'.
Hence

{u, € U, : h(uy) < b}; b € B*

= {u, € U, : min{sgp clluy - uzll - a, sgp cllup - usll -a'} < b}
1 2
= {u, € Us : Df“gz min{clu, - ol - a, cllup - Gl -a'}< b}

b+al)

= N (1 b_+_a__ N 1
= nDl,Dz N(UZ, c ) U N(U2,

Let

D = {(a*,u*) €eRx [ : VbeB* (a,u,) € D;

= *+b =, atb =, a'th
(a',uj) € Dy N(u;‘,ac ) 2 N(d2,—) U Nuz,~— )}
As fs is @ convex, 3 Dy R x Us.t.
f3(uz) = 5P cllu, - ugl - a".
3
Since

fa(uz) < min{fi(uz),f2(uz)}, YV us € Uz,

v (a",uy) € D3 we have y b € B*
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n 1
N(ug, 2 0 v A(us,2D)

) = N(GZa“?;_

for all (a,up) € D; and (a',us) € D,. Hence

sup

- y*Il - a*
p Cltuy, - u3l ax,

fi(uz) <
Furthermore let us suppose that

~ s A
f3(U) = ° 7 I, - ull - a*

for some U, € Up. We let
fa(az) = b

a*+b

U, € N(u¥,—=); v (a*,u*) €D

iff

sup

D cld, - ufl - a* < b= f3(u.).

a*+b
c

Since the assertion that 3 (a*,u¥) € D s.t. Gz ¢ N(u%, ) is equivalent

to SUP cliu, - u¥l - a* > b = f;(0,) which we assume doesn't happen,

D
~ = a*+b
A (a*,u¥) € D s.t. us £ N(u%, . ).

By the definition of D we have

v (a*,u%¥) € D

* a*+b)

(a) (us, 2

2.{U2 € U, : h(Uz) < b}

Y

T (b) U Tp(b) »

{u, € Uy @ fi(uz) < b}

where T;(b)

rz(b) {Uz €U, : fz(Uz) < b}

Now as f,(U,) = b and f; is @ convex, we have

(b) U, € bdd Ts(b) = {u, : f3{uz) = b}.
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From (a) we know that Gz must be inside any convex set containing
T1(b) U T2(b) and we know from (b) that U, is on the boundary of a
particular convex set containing I;(b) U I';(b). Henceu, € bdd M(b)
the minimal convex set containing I';(b) U P;(b). As M(b) is convex

we must have one of the following cases:

(i) U, € bdd T, (b);
(ii) U, € bdd T»(b);

(iii) U, €plane touching bdd I'y(b) and bdd T,(b).
If (i) or (ii) holds, then we have
b = fa(az) < min{fl(ﬁz), fz(az)} £b

which is impossible. If we have (iii) occurring, then, as I's(b) is

convex and U, € bdd I's(b),we must have this particular plane as part

of the boundary of T3(b) and hence the boundary of T';(b) must touch
the boundary of both T';(b) and T,(b). That is,3 u, € bdd T'3(b) s.t.
u, € bdd I';(b) (say), ie.,

b= fa(uz) < min{fi(uz), f2(u2)} < b,
again a contradiction.

Finally we note that as U, is compact, the & convex functions

form a continuous lattice and since

fa(u,) < sgp cllu - uall - a* = g(u,), Vu, €Uy,

where g(-) is a @ convex function,we can apply Proposition 2.2 to
deduce the existence of a finite approximation. O

Lemma 2.7 : If ¢ : U~ 2" then the following are equivalent :

(a) ¢ is l.s.c. multi-valued mapping ,

(b) if u €U, u € y(u) and V is a neighbourhood of u in U,then 3 a

neiahbourhood N of u s.t. v u' € N wlu'Y nV # ¢.
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Proof : Reference [8] Proposition 2.1. O

Lemma 2.8 : Suppose f : U, +~ R is @c convex y € o and

B* = {b : T(b) # ¢}. Then

(@) T(b) = {us €Uz : f(uz) < b} = {u, € Uy : P(up) < b},V b € B*
iff
(b) w(uz) < f(uz); ¥ uz € U,

Proof : The implication (b) ~(a) is obvious. Suppose (a) holds and

let U, € Uz Then f(Uz) = b € R.

If b= f(uz) < ¢(uz), then uy ¢ {u, : ¥(u,) < b},a contradiction.
m

Proposition 2.9 : Suppose for U, < U and U, = U we have:

(i) U, is a compact metric space;

(i1) U, is a compact subset of a reflexive Banach space endowed
with a norm (not necessarily the norm on U);

(iii)  the multi-functions T, T : U; » KV(U,), where T(+) is
u.s.c. and Fe(-) is 1.s.c. with respect to the corresponding
metrics on U, and U,, and

(iv) T(:) =T _(-).
We define

Y(uy,uz) = {x €R : d(uz,Fe(ul)) - 2e < x € d{uz,T(uy)) - €}

and

@(ul) = {h(') 5 h(U2) N 1=i??. n "U2 - U;” - %

uz €U ;a€eR;ne€ 7" and h(-) a selection of y(u,,-)}.
Then $(+) is a 1.s.c. multi-valued mapping from U, to the subsets of

C(Uz), the space of continuous functions on U, endowed with the

supremum norm.
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Proof : We define for € > 0 a multi-valued mapping with half-open
interval image sets in R;
A(E,O'-,Unuf,uz) = IP(UnUz) n N(d(u?suz)s 8)3
where

a(ud,*) € 9(ul),

U? € U1.

As {W(,us) : up € Uy}is equi-1.s. continuous family,v € > 0

3 §(u?) >0 s.t.

P(uisuz) N N(y,e) # ¢,

vy € p(uf,uz)
and

v (ulfuz) € N(uy,8) x U,
Since

a(ul,uz) € Y(ul,uz)s v u, € Uy
this implies,

A(esa,uysul,uz) # ¢

for

(ui,uz) € N(ui,8) x Uy -
Soif we take 0 < § < § we have
A(e,a,uisufsuz) # ¢
on the metric space

N(U?,S) x U, _C_U1 X Us.
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As up +~ A(e,a,uy,uf,uz) is half open interval valued in R we have

Int A(Eaaaulauf:uz) # ¢

iff A(e,a,u;,ufsu,) # ¢ . Hence we have the following;

(1) inf Ale,a,u;y,u,us) < sup Ale,a,ur,ud,us);

(ii) inf A(e,a,uysuf,us) = sup{d(uz,Fe(ul)) - 2, a(u?,u,) - e}and
since u, » d(uz,FE(ul)) is ®; convex and

h uz » af(ul,uz) is ®; convex, so is inf A(e,a,uy,ud,uz). We also
ave;

(i11)  sup A(e,a,u;,ul,uz)

= inf {d(uz,Fe(ul)) - 2e, a(u?,uz) - €}.

As a consequence, (i), (ii), (iii) and Lemma 2.6 allow us to select

as follows.

sup

inf A(e,o,up,ud,uz) < .
( aslhpli] sUl s 2) 1=1’..,n

lu, = Upll - a

< sup A(e,a,upsuf,us)

Hence we can say

v u, € N(u),8) 3 a &, selection.

sup

- =i
a(uy,e) = i=1,..n Uz = Ul - a

of A(e,o,usui,-) (fe. alui,*) € Ae,a,ui,uf,=) # ¢). Now a(us,+) is a
continuous function of u, and as a(u;,+) € ¥(ui,uz) N N(a(ud,u,),e) we

have

(iv) a(ui,uz) € Ylui,uz)s v (ui,uz) € N(ud,3) x U,

aluy,*) € @(Ul); vV u; € N(u?,s)

(V) &(ulsuz) € N(“(U?suz)aE);

A4 (Ul,UZ) € N(u?,g) x Uz

and as a consequence

&(u1)°) € N(d(U?,'),E); Yu € N(U?,S)
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where N(a(u?,«),e) = {h(-) € C(U,): sﬂzlh(UZ) - a(uf,uz)| < e}

Hence

alui,=) € P(uy) n N(afud,+),e)l v u; € N(u?,d).
so that

Y u; € N(u?f,d)

Plur) 0 N(a(ud,+).e) # ¢

for any given o(ul,+) € {(ud) which is equivalent to 1.s.c.

by Lemma 2.7. O

We note that the delta we provide for a given epsilon is obtained
directly from the equi-1.s. continuity of {y(-,u,): u, € U,} and
hence may depend on u? but is independent of a(ul,). We now concen-
trate on the class F = {h(u2) = i=i??,nuu2 - Ul - a3 {GZ}?z
{ai}f'_1 cR; neE Z+} and define a concept of convexity on this class

g <6

of functions.

Definition 2.11 : For A € [Q0,11, uz, uz € U, § >0, § > 0, we let

(1-1) ® N(u,,8) @ X © N(u,,8)
= N((1-A)u, + AUz, (8-8)(1-2) + §).

So, if A = 0 we get N(u;,8) and if A = 1 we get N(u,,8) as one would

wish. Now if f;, f, € F, then as usual we have

ri(b) = n M(dz,a, +b)

i=1

and

N(ajz,aj +b) .

1

I,(b)

1]
[ =

i
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Definition 2.12 : For I';(-), I',(+) as above we let

(1-2) © T1(b) @ A @ Ty(b)

n (1-1) ® W(ﬁiz,b+aj Je x @ N"(ﬁ"z,b+aj )

i,j

{u, : ?“guuz - H{1-3)T, + AN - (2, -8 )(1-2) + 31 < b}

Definition 2.13 : f;, f, € F; X € [0,1] we let

(1-2) © f1(uz) @ A @ fu(uy)

) ?u? lu, - [(1-A)T, + o1 - [(a -2 )(1-2) + % 1 €F

where
filuz) = . 3% e, - T -
—_ Sup _ ~j _ A
fz(uz) = j=1,..n I uz ull aj .

Lemma 2.9 : Suppose U is a reflexive Banach space on which we have a

smooth, strictly convex norm. Then
(a) N(@ -Muz + Auz, (1-2)8 + A3)
< €0 {N(uz,8) U N(u,,8)},
(b) N o {N(uz,s) u N(i,5 )}
i,i
= co {n M(uz,8) un R(@,,5 )3,

where co denotes the convex closure.

Proof :

(@) As N(uz,8) U N(u,,8) is a bounded set in a reflexive Banach
space,we may interpret the co operation to be the intersection

of all closed balls containing the set. So if
(i) N(uz,8) U N(GZ,S) E.N(Gz,g)imp]ies

N(1-A)uz + Az, (1-1)8 + A8) < (0,.8) .
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then we have proven (a).
Suppose llup - Uall + & < 8
Uy, - Uoll + 3 < 8

which is equivalent to (i) and let

uf € N((1-A)up + Az, . (1-2)6 + AS) »
fe. ux - [(1-2)uz + AUl < (1-2)8 + A3 .
Then

luf - Uall < lu% - [(1-A)up + A2l + 1 (1-A)up + Al - Oyl

N

(1-X)8 + A8 + 11 {(1-1) (uz-02) + A(Ua-G2)I

(1-2)8 + A8 + (1-AMua-Uall + MlUy=0,ll

IA

(1-2)8 + A8 + (1-2)(3-8) + A(8-3) = s.

N

(b) This follows immediately from the observation that
uz € 0 co {f(uz,8) U R(T,8 )}
i,
is either a vertex,and hence must lie on the boundary of either

N(us,8 ) or N(ﬁt,g ) for some i,j (and inside all others),or

must be internal to the convex set
n o {N(u>,8) U N(uz,aj)}.
i
In the latter case it must lie on the line segment which can be made
"parallel" (ie. in the "direction" of (W, - up)) to the axis of
the set 55-{N(u2,6i) U N(Gi,aj) for the 1i,j which obtains the
minimum of d(u,, bdd EE'{N(uZ,Gi) U N(u&,dj)}). This line segment

may then be extended so that the end points lie in N(uz,éi) and

N(T>,6, ).



85

Proposition 2.10 : Let f,, f, € F 3 f3 € SC1(Uy).

(1) If f3 < f, and 3 < fo.then f3 < (1-A) @ f, ® A @ f,

(i1) If f, < f3 and f, < fysthen (1-)) @ f, @ A @ f, < fj.

Proof :

(1) et fi(us) = ;70 hup - Ul - a
fa(uz) = j=it‘?,nllu2 AT a
Fa(uz) = 5P, - ol - a.

Now as V (a,u,) €D

- su i
huz = Uoll - a < Fa(uz) < . 9P Jup - Tall - a
1—1,-,n 1
and
. Su Aj ~
Hu, - Uall - a < Faluz) < . 2% Ju, - O - &,
J_ls-sn J

we have vV b that

N(Gz,a+b) 2 0 R(0z,a, +b),

[
-

S8 1

N(a23a+b) _?_
j

N(sz,ﬁj +b).

-

From Lemma 2.9 we can deduce
n (1-2) © A(i%,a +b) © X © (.3, +b)
i,

c N colfi(is,a +b) U A(T2,4 +b))

i,

[

N(U,,a +b) U N
1 i i=1

EE{.

1

N(E‘\]'Zsla\j +b)}
c N(uz,atb); V b.

Hence by Lemma 2.8 and Definition 2.12
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(1-)) © fi(uz) @ X @© fa(uz) > lluy - uall -a
v (a,l-lz) € D

and hence
uq)@ﬂmg®x@fﬂm);%%w-aﬂ-a
= fa(Uz)-

We have

(ii) (1-)) © fi(uz) @ X © f2(u2z)

SR, - 1T AT - (1)) + 08

N

?”?(1-A)uu2 T AT (1-\)a + A, - uoll - xaf

Hence
(1-1) © f1(uz) @ X © f,(uy)
¢ (LA g P hua - B2l -3 )+ x{jzif?,nuuz - @ - 33

< (1-X)f3(uz) + Afs(uz) = fa(uz). o

Lemma 2.10 : Suppose A : U; ~+[0,1] is a continuous function. Then
ur > (1-A(uy)) © f, @ A(u;) © f, for f;, f, € F is continuous from

U, to C(Uz).

Proof : Suppose u} =+ u; in U; and let

(1-2(u))dz + A(up)ds = u(h(uy))

(1-2(ur))a, + A(ur)d = a(h(u)).

Then
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Sﬁg‘uuz - u(ua)) - a(a(u)) - {luz - u(A(ui)) - a(x(ui))}[

Sﬁz|uu2 = u( U =tz - u(AD - a(A(ui)) + a(k(u?))|

sup
Uz

N

luz = u(A(uy))

fuz - u(A@uIDN] + Ja(a(ul)) - a(x(uy))]

N

Bu(A(uy )= u((u))-+ Ja(a(ul)) - a(a(uy)) ]|

H-(A(uy) = A + (A(uy) - A(u})dol

IN

A

e 1= - Aty + () - AW

IA(up) = AT, - Gl + [A(up) - A(ud)

N

% -a|,. »0.0O

Theorem 2.9 : Suppose U is reflexive locally F-normable, the conditions
of Proposition 2.9 are satisfied and §(u;) is defined as before. Then
V € > 0,the mapping uy ~ N(¥(u1),e), where the neighbourhood is taken

in C(Uy), admits a continuous selection from U; to the space F considered
as a subset of C(U,).

Proof : For every h € F we let

V(h) = {u; : h € N(®(u1),e)}

{uy ¢ @(U1) N N(h,e) # ¢}.

Now, as ¢ is T.s.c. from U, to C(U,) and h € C(U,)>we know V(h) is
open in U;. As $(uy) =F; V u, € U; we know {V(h) : h € F} is an open
cover of U; and as U; is compact there exists a finite refinement
{V(hi) : i=1,..,n} which covers U;. Let {Ai(-) : i=1,..,n} be a par-
tition of unity subordinate to this cover. Then u; » xi(ul) is
continuous

AUy > (0,105

i

I~ P

}\i (u) =1

1

and

AAw) #0 GfF b€ N({ui),e);

i=1,..,n (S).
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From Lemma 2.10 we know that

up + f(uy) = p1(ui) © hy ® py(uy) ©h, ... @ pn(ul) ©h,
f : U, > C(U,) is a continuous function and f{u;) € F.
From Proposition 2.10 we can_conc]ude,since

d(-,Pe(ul)) - 3e < hi(-) < d(+,I(uy)); vi=l,...n

iff ki(ul) £ 0
and d(-,PE(ul)), d(+,T(u1)) € SCy(Uz),that

d(-,T_(u1)) - 3e < flu1) < d(+,T(u1));V us € Us.
That is

f(uy) € N(P(u1)se); Y up € Uy. O

Corollary 2.91 : Suppose the condition of Theorem2.9 hold and I'(+) is a

convex valued u.s.c. multi-valued mapping which is being approximated

above by a 1.s.c. multi-valued mapping

re(-) o I(-) s.t. d*(Fé,G) < €.

Then3 f : U; -~ C(U,) continuous s.t. f(u.) € F,
up > Te(ul) = {uz € Uz = f(u1)(uz2) < 0}

is Hausdorff continuous convex closed valued and
N(T_(u1),3¢) 2T _(u1) 2 I'(uy).

Proof : We choose f as in our previous theorem. The last assertion
follows immediately from our choice of f and the definition of {(-).
We need only show that TE(-) is Hausdorff continuous,which amounts

to showing TE(-) is uniformly u.s.c. on U: (see Corollary 1.13).
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As Ve >03 &(u;) >0 s.t.
|f(U1)(Uz) - f(al)(uz)l
< If(uy) - Flug)ll < € for uy € N(u;,8)»

{f(*5uz) : uy € Up} is an equi-continuous class of single valued

mappings with respect to ul.. Now as U; is compact, f : Uy =+ C(U,)
must be uniformly continuous, and we may choose Ve >0 a 8(e) >0
independent of u, € U, and of course u, € U, (because of the equi-

continuity).

Hence V€ > 0 3 8(e) > 0 s.t.
fluy)(uz) - e < flup)(uz)s ¥ ur € N(uy,8).
Thus
T (u1) = {uz €Uz : fur)(uz) < 0}
< {uz € Uz & f(ui)(uz) - € < 0}
= {uy : f(uy)(uz) < €}
= N({uz s f(ui)(uz) < 0}, €)

= N(T (i), e),

the last equality following from f € F and corollary 2.7 as the cut

sets are metrically increasing with a rate n(x) = x. O

Corollary 2.92 : Supposeall the conditions of Proposition 2.7 are satisfied.

In particular, U, satisfies condition (ii) and T : U, > KV(U,) is
u.s.c.. ThenVv e >0; 3 e : U, » KV(U;) Hausdorff continuous s.t.
if G is the graph of I'(-)

Ge is the graph of FE(-)
then d*(GE,G) < de.

Proof : This follows immediately from the previous corollary. O
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CHAPTER III

Since Kakutani, it has been observed that certain multi-valued mappings
adnit fixed points. Convexity of the image sets of these mappings has
played an essential role in the development of such theorems. Little
progress has been made in relaxing convexity requirements. Conversely
no totally geometric proof of Kakutani's theorem has been given. One
notes that even in going from R to R", one loses the ,property that

all continuous multi-valued mappings admit fixed points. This contrasts
dramatically with single valued mappings. One needs to restrict the
shape of the image set, or how it "changes", to provide an affirmative

answer to the fixed point problem.

The other area of mathematics which uses convexity to high degree is
the theory of nonlinear optimization. Researchers have been much

more successful, in recent years, in weakening (and removing) convexity
assumptions in this area. Since in the context of reflexive Banhach
spaces, one can approximate upper semi-continuous multi-functions, at
least as well with continuous multi-functions as one can with lower
semi-continuous multi-functions, we are able to view Kakutani's

theorem as a consequence of nonlinear optimization. To do this we use

the work of Arrigo Cellina.

This approach allows us to reduce the problem of finding a fixed point
of a multi-valued mapping, to the problem of finding a fixed point of
a single valued mapping. The natural question of, how large is the
class of problems amenable to this approach, arises. An attempt is
made to identify the essential ingredients required to apply this
approach to a general mapping. The lattice theoretic nature of con-
vexity enters in a natural way and continuous lattice theory proves

usefuly in analysing such an approach.
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Convexity assumptions are not removed but their role redefined, in
the context of the abovementioned spaces. Quasi-convexity and strictly
quasi-convex functions enter naturally in an attempt to understand
the contribution of the "changing shape" of the image set has on the
over all "motion" of the set valued mapping. We show that if a
quasi-convex function can be written as the pointwise supremum of a
collection of strictly quasi-convex functions, then the resultant
set valued mappings in fact approximate each other in graph. This
implies that the fixed points of the approximating set valued mappings

approximate the fixed points of the original.

§3.1 Fixed Points of Multi-Valued Mappings

Arrigo Cellina observed the following.

Proposition 3.1 : Let U be a compact metric space having the fixed

point property. Let I' : U+ 2" be a closed multi-valued mapping.
Assume for an arbitrary € > 0 there exists a continuous mapping
f : U~» U, depending on €, such that if G€ and G denote the graphs

of f and T respectively, we have
*
d (GE,G) < g.
Then T has a fixed point in U.
Proof : Reference [14] proposition 1. O

He obtained generalizations of certain fixed point theorems, obtaining
his particular f by selecting from a 1.s.c. approximation to

I'.  In relative 'nice' spaces we can approximate the graph of I with
the graph of a Hausdorff continuous mapping. Does this tell us any-

thing more?

Definition 3.1 : Let g be a continuous numerical function defined on

a topological space U. A family of compact sets {Ki : 1 €1} is said

to be selective with respect to g if there exists one and only one q
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for each i s.t. Gi €K 3 g(@ ) = max{g(u ) : u €K I

In a Banach space the strongly compact convex sets are selective.
This follows by choosing g(u) = -d(O,u). In a strictly convex space
the sets {{u : hi(u) < b}; 1 € I} for h €F are selective. This

follows from the observation that

I (b) = {u: hi(u) < b}

1

N(uj,aj+b)

1

tl
o8

i
and that any continuous non-identically zero linear functional takes
a minimum on the closed unit ball at only one point. As a consequence

any Tinear functional non-identical zero will do for g(+), since

Fi(b) is the finite intersections of closed unit balls.

Theorem 3.1 : Let I'(*) : U, » 2"% be a continuous multi-valued mapping.
If the family {T'(u;) : u; € Uy} is selective, there is a single valued

continuous mapping o : U; = U, s.t. ofur) € T'(uz) 3 Y u; € U;.
Proof : Reference [1] theorem 3, page 117. (=

It has been known since Schauder that the strongly compact convex
subsets of a Banach space have the fixed point property for strongly
continuous mappings and the convex weakly compact subsets of a
separable Banach space have the fixed point property for weakly

continuous mappings. As a consequence we can deduce the following.

Theorem 3.2 : Suppose;

(1) U is a reflexive Banach space,

(i1) Uy = U is a convex,weakly compact locally F-normable
set in U, and

(iii) T : U, > KV(U,) is weakly u.s.c. (in fact, weakly
Hausdorff u.s.c. with respect to the F-norm).

Then T has a fixed point.
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Proof: This follows from corollary 2.91,proposition 3.1 and theorem 3.1
noting that U; has the fixed point property as it is weakly compact,

convex and separable (since all compact metric spaces are separable).
O

This forms a complementary résult to the Kakutani theorem in

Banach spaces. In the same fashion we could have deduced the

Kokutani theorem.

How far can we extend this approach? If one checks the proof of
Theorem 3.1 then one sees that the selection o of T was obtained by

(A):
ofuy) ={uy = up € T(uy) : g(uz) = M{uy)},
M(uy) =max{g(uz) =u, € I'(uy)},

where T(u;) is selective with respect to g.

The continuity of o follows from the fact that in general a(u;) would
be u.s.c. multi-valued,but since it reduces to a single point mapping

it is continuous. The scenario of the proof proceeds as follows.

First we need to decide when one can approximate an upper semi-con-
tinuous mapping from above by continuous multi-valued mappings. We
need to impose some sort of convexity restriction on the image sets

of T'(+) for this to happen. We will not answer this question but

will reword it to emphasise the role of convexity. We begin by noting
that the notions of generalized convexity can be extended from
function f : U, > R* to mappings T' : U; - L where L is a continuous

lattice.
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Definition 3.2 : Suppose L is a continuous lattice. T:U; > L is

called & convex, where ¢ is an arbitrary set of mappings v:U; - L,
if 39" <@ s.t.

F(U1) - Vll)e@' \U(UZ)-

In this way for a continuous lattice Q(U,) the Scott continuous
mappings [Ui, Z0(U,)] can be considered convex,since by proposition

1.10

U, I (+) € Uy, 20(U,)] if v i, T () € U, 20(U,)).

The question then arises whether there exist a class ¢ < [U;, Z0(U,)]
of continuous multi-valued mappings which generates [U;, Z0(U,)]. In
general the answer is no. We need to restrict the lattice L = 0(U,)

to have any hope of a positive answer. We do this by using

L = Cqms(uz),the continuous Tattice of complements of ®-convex sets

on a compact Hausdorff space U,. Once again the class [U;, I €8 (U)]
is closed with respect to arbitrary unions . if 0(U;) is a continuous
lattice,itself. This class can be considered as consisting of convex
functions in the sense of definition 3.2 and hopefully by choosing
¢-correctly we may find a generating class £ < [U;, ZC¢5E(U2)] which
consists of Hausdorff continuous mappings. To achieve a generalization

we need £ and ¢ to satisfy two more conditions.

First, Co, (Uz) must admit a generating class & which is selective
with respect to some continuous mapping g(-) and cq}p(uz) must be
compatible with the metric on the space U, in the following sense.

If S<c Uz is & convex then so is A(S,e); Vv € > 0.

Secondly, the £ we are seeking must consist of Hausdorff continuous

mappings T : Uy > A={S={us : ¢ W,) > a}; v € 8}. This amounts in
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practice to the following problem. Our multi-valued mapping

r(+) € [U1, ZC@OPS(Uz)] is given by T(u;) = {u, : supweq,[w(ul,uz) > al,
where f(ui,uy) = Supw€®|¢(u1,uz) is most probably 1.s.c. with respect
to U; x U, (to ensure u.s.c.) and the y'sare continuous on U;xU,. We
need to know when the class £ = {T(u;) = {u, : ¥(ui,u) > a}l; vy € ¢'}

is Hausdorff continuous.

We also need to be able to shrink the image sets of our multi-valued
mappings. The lattice of sets CQDN(UZ) cannot be an arbitrary class
of open sets. We define for A € cqﬂm(uz) 'S(A,e) = [N(A" ,e)1°, the
shrinkage of the open set A. If we shrink a set we may not be able
to recover the original set by expanding, i.e. N(S(A,e),e) # A. For

)

example let A be the union of a collection of disjoint balls N(un,

S

i.e.

A=1U N(un,

n

Sl

).

This set is by definition open, but we cannot shrink it by any € > 0

without losing some of these disjoint balls.

We need to be able to shrink our Cq}m(Uz) set a small amount and be

able to recover it again, i.e.
N(S(A,e),8) = S(A,e-8) for 0 < § < &,

for e sufficiently small. We will call such a set shrinkable if
there exists an € > 0 s.t. for 0 < € < €, the above equality holds

for all 0 < & < €. If the set A is generated by a "constraint"

function f(+) (fl(-),fz(-),...,fm(-)) the above definition of

the shrinkage becomes equivalent to that of reference [13].

That is, if A = {u;f(u) > b} for some continuous function f(-), we

have in the case when

bddA = {u€ clA : ﬂ (u) = q , some j}



96

that
S(A,e) = {u € A : d(u,bddA) > €}.

Lemma 3.1 : Suppose U is a metric space and A is a closed set. Then
(i) A* # ¢ implies S(A°,e) # ¢ for € > 0 sufficiently small;
(ii)  S(N(A°,e),8) = N(A,e=8) for 0 < § < €; and

(iii) if, some set B and € > 0 A°= N(B,e), we have

N(S(A°,e).8) = S(A°,e-8) for 0 < & < & < E.

Proof : We begin by first showing that

S(N(u,e),8) = N(u,e-8),
for 0 < § < &.
Since

N(u,e) = {u : d(u,u) < €},
we have

N(N° (u,e),8) = {u' : d(u',u) < & and d(u,u) > €}.
Hence

d(u',u) > d(u,u) - d(u,u') 3¢ - &
implying

N(N® (u,e),8) SNc(u,e-ﬁ),
that is

S(N(u,e),8) 2 N(u,e-8).

Now suppose u' € N(u,e-8).



97

We must show that there exists a
a €N (u,e) s.t.
d(u,u') > 6.
Since
u' € N(u,e-8) = N(u,e)
u' ¢ N (u,e).

Let U be the closest point in N° (u,e) to u'. This is unique

and u € bdd N(u,e) = {u : d(u,u) = €}. This implies that,
d(usu') » d(u,u) - d(u,u')
> e - d(u,u')
>e - (e=8) = 6
and subsequently,
ut € N°(N° (u,e),8)
= S(N(u,e),s).
We now show that for 0 < § < € we have
S(N(A,e),8) = N(A,e-6).
By writing
N(A,e) = U{N(u,e) : U € A},

we have
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N(N° (A,€),86)

N(N{N® (u,e) : u € A}, 6)

N{N(N° (u,e),8) : u € A}

n{N° (u,e-8) : u € A}

(U{N(u,e-8) : u € A})°

N (A,e-8)

implying the above result.

The first result of the aﬁgbunciation of the Temma follows by

considering
uehn.
Since A° is open, 36 > 0 s.t.
N(u,e) < A,
Hence
S(N(u.8),e) = S(A° ,g)
and

u € N(u,6-e) = S(A°,e), for 0 < e < 6.

The last part of the lemma follows almost immediately from what

has been done. If A° = N(B,e) then for 0 < € < £ we have,
S(N(B,€).c) = N(B,e-€).
Hence we have for 0 < § < € < €,

N(S(A" ,€),8)

N(B,e-(e-8))

S(N(B,e),e-6)
S(A° ,e-8).



99

Lemma 3.2 : Suppose U is a reflexive Banach space and A c U is

a weakly compact, convex subset.
Then there exists a set B and € > 0 s.t.
A = N(B,e).

Proof : Choose € > 0. Since A is weakly compact and convex it
can be expressed as the intersection of a collection of closed
balls (see Theorem 2.3). For any such ball N(u',b) and
u € bdd N(u',b), there exists a ball

N(u,e) =i (u',b) s.t.

N(u,e) n W(u',b) = {u}.

As a consequence we can express A° as the union of a collection

of balls of radius e.
Let
{N(u ,€); i €1}
be such a collection. We define
B ={u : N(u ,e) nA# ¢} uS(A,E).

If u € B then either,
(i) u € S(A°,e) and d(u,A) > &, or

(i) u = Gi, for some i € I, in which case

d(u,A) = d(ii ,A) > E.
Hence

N(u,e) < A° and N(B,e) < A°.
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Take u € A°, then either
(i) u € S(A°,e) and u € B, or

(i) d{u,A) < €. 1In the latter case
ue N(Gi,é), for some i €1 s.t.
N(u ,€) N A# ¢.

That is

N(B,e) = A". u|

Proposition 3.2 : Suppose U; and U, are compact and metric and

() € U, ZC@;S(UZ)],Which has a generating class £ derived from
o' = {y : Uy x Up »~ R},

® being compatible metrically and consisting of 1.s. continuous

functions. Suppose also that the CQHB(UI) sets are shrinkable.

Let T(u1) = {up : f(ui,uz) > a} and suppose T(u;) = {u, : P(ui,up) > a}

is Hausdorff continuous.

Then 3 a class of Hausdorff continuous mappings TE(-),CQ (y2) - con-

ops

vex s.t.
d*(6_,6) < €3 Ve >0 and TE(U1) << T(uy); Yu; € Ups
where G_ is the graph of T;(-) and G is the graph of I (-).

Proof : As I(+) € [Uy, IC&,,(Uz2)1, U, a compact Hausdorff space,then by
proposition 1.8 T' is i.s.c. and hence I° () is a closed valued u.s.c.

multi-valued mapping with ®&-convex image sets.

Thus by Theorem 2.7 there is a 1.s.c. multi-valued mapping

M 6/2(.) s.t.
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M 8/2(.) Erc(')

and

d*(Graph ME/Z(-), Graph I° (+)) < e/2.

We define

cod(A) = n{S : A ;S &-convex}

and show that

cod Me/z(')

is 1.s.c. as well.
For any € > 0
ME/Z(ul) = cor4€/2(u1)
implies
N(ME/Z(ul)sE) EW(COQME/z(Ul)aE)
a ®-convex set itself.
For ve>0,36>0s.t. if up € N(u;,8), then
ME/Z(UI) EN(ME/Z(UI)’E)
implying
co<DM€/2(u1) < co ¢ N(Me/z(ul),s)

< N(co & Me/z(ul),é)_

Similarly Fe(ul) = N(co & Me/z(U1), €/2] is ®-convex and by

proposition 1.11 it is also i.s.c. and hence 1.s.c..
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Also d*(Graph T_(-), Graph I°(+)) <€ as
M p(ur) < N(T (1), €/2)
implies
co d Me/z(ul) < co @ N(I° (uy), €/2) < N(codI’ (i), e/2)
once again due to ¢'s metric compatibility and the fact that
co @ FC(G.) = I° (4,).

By letting Ks(ul) = F;(ul) we obtain an u.s.c. multi-valued mapping

as FE(-) is i.s.c..

Now N(P;(ul), €/2) = [co ® M€/2(u1)]c < I'(uy) for all u;. Hence

FE(ul) << T(up)s; u; € Uy, where << is the way below relation on

Coé (Uy). We now argue similarly to Lemma 2.1. As I'(+) is generated
op

by £, 3 a class &' < & with
o' = {% (Ui,uz); i € I} s.t.
() = U, qlue: blui,uz) > al.

If we define S(I'(u1),8) = [N(T° (u;),8)1°
p(uy) = sup{d:ra(ul) << §(r(uy),8) and

I\l(S(F(Ul),(S),-E) = S(F(ul),é-é) Y 0 < E < S}
and note that p(u;) > 0 v u; € Uy, since I'(u;) is shrinkable.
By using the compactness of U, we can show p(u1) is bounded away from
zero on U;. Suppose not, then 3 u] s.t.
n +
p(ui) < 1/n; vnez.

By the compactness of U; there is a convergent subsequence to G, say.

After renumbering up = u; and p(uﬁ) > 0; n > o,
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We know that v 0 < § < p(u;), we have PE(G1) << S(T'(uy),8). As FE(-) is

u.s.c.,if we let o < € < § < p(u,)»3 a neighbourhood N, of u; s.t.

PE(U1) giN(PE(Gl),E); Y u; €N;.
Let ' = 3(8-e) > 0. Then 3 N, a neighbourhood of U, s.t.
I (u) < N(r® (U1),€e")s Vv up € Ny

(Note that we may make €' as small as we like by Tetting § be smaller.)

As

c

I(uy) 2 [N(T" (Uy),e')]
= S(I(uy),e' )3V u, €N, NN,
we have
r(ur) e N(T_(uy),e) << N(S(T(d1),8),E)
= S(r(u1),6-€) = S(r(u1),2e") = S(S(T(TU1),e'),e')

< S(T{u1),e").

For n sufficiently large we have u; € N3 < N; n Ny, where N; is a
neighbourhood of u,. Hence p(i}) » €' for n sufficiently large,

a contradiction.

Now as I°(+) is u.s.c. we have N(I"(-),8) is u.s.c. and hence
IN(T® (+),8)1° = S(T(+),8) is i.s.c.. Since N(I"(ui),s8) is @-convex

v § > 0,we have S(r(-),8) € [U,, ZC%DSULJ].
If we choose 0 < § < inf{p(ui): u: € U} then
Fe(ul) << S(T(uy)»8); V up € Us.

By hypothesis there exists a class
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<I>'={1J)i Uy xU; >Ry i € I}s.t.

Uiel{uz 2 ¥, (uy,uz) > al = S(r'(u,),s)
with

{uz :¥,(ur,u2) >al € Uy, zCo (U,)]
Hausdorff continuous.

Since for each u; € U, these sets are in the lattice CQqu(UZ)’a a

finite number, i =1, .., N(g), s.t.

U0 s 1 y(l1,u2) > a) >> T ()
and

S(r(u1),8) 2 UL s 1y (H1,uz) > al.
We Tet

Ae(ﬁl) = U?ii){uz 2y (Ur,uz2) > a}

i
and note that since

A

/\E(a1) >> I'e(l-jl) . 38, §;0 < g,g < § s.t.

S(,(01),8) 2 N(T_(@),3).

As PE(-) is u.s.c. at u;,3 a neighbourhood N, of u; s.t.
N(Fg(ﬁl),g) o I{uy)s ¥V up € Ny.

As AZ(') is u.s.c. at ui,3a neighbourhood Ns of u; s.t.
N(K;(ﬁl),ﬁ) EEA;(ul); Y u; €Ns .

Hence v u; € Ng¢ = Ny N Ns,a neighbourhood of u, we have
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r_(ur) < N(T_(i1),8)
< S(a (U1),9)
< a_(u1)
< $(T(u1),8) = Tuy).
This implies
F(ur) << a(ur) << T(up)s vV up € N,

and since uy € U: is arbitrary the collection of all such neighbourhoods
forms an open-cover of U;. Since U; is compact there exists a finite

sub-cover {N(ua); i=1,..,M}, say. For each i we have a AL(Ul) s.t.
I (up) << AL(UI) << T{up)s v up € N(Uy).
We define
M
TE(Ul) . g A
and note that
TE(Ul) << TE(Ul) << T(up)s Y up € Uy,

since each A; is defined by a sub-collection the mappings

{Wj(ul;uz) : j € I},where

Userluz @ 9 (uisuz) > ab o S(r(u),8) << Tu). s

For the problem, alluded to above, of finding fixed points of multi-

valued mappings, we can approximate the fixed points of the original

4

mapping by the fixed points of a mapping T;(ul) =0 {u, : v, (uy,uz)<al
i=1

for an appropriate choice of % 's.
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Since these sets are &-convex and the sets {u, : ¢(u;,us) < a} are
selective with respect to a given continuous function g(+), the image

sets of TZ(-) are selective with respect to g(-) as well,since

max{g(uz) : uz € T;(UI)}

= 1.=T1;'_"N max{g(uz) : ¥, (u1,uz) < a}.

If we suppose this max is achieved at more than one point, at U, and

say,then g(uz2) = g(u2).

As TZ(ul) < {uz : ¥ (ur,u2) < al; Vi and as we can see from above Uz
must be the unique max of g on one of the generating sets, on set i,

say. We have
GZ’ GZ € {UZ: Wi (ul :u2) < a}
and hence g(U,) < g(l,) a contradiction.

Acontinuousse]ectionofTZ(ul)whereME(ul)=nmx{g(u2): UZETZ(ul)},
is

aE(ul) = {u, : Ms(ul) = g(uz) = ¥ (ur,uz2) < a3 ¥ i=1,.,N}
and its fixed points can be used to approximate those of the original
problem. The problem of finding as(ul) for each u; is a constrained
non-linear optimization problem. Much work has been done on this
problem for R® = U; = U,. Recently the constrained optimization

problem has been investigated in more general spaces (see reference

[8], [6], [11]1). We will not deliberate on the Banach space fixed
point problem any longer in this discussion, but turn to the problem

in R".

Even in the case R" the question of what continuous multi-valued
mappings admit fixed points has not been fully explored. We know

that in [a,b] all continuous multi-valued mappings admit fixed
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points but in even going over to [a,b] x [a,b] we Tose this

property.

The question of selectivity of sets in R" has not been investigated
except for convex sets of course. The other question of what con-
dition ensure Hausdorff continuity has been investigated and deserves a

mention.
Theorem 3.3 : Given a continuous function f : R" - R, suppose we define
T(b) = {u € R" ; f(u) < b} for b € R".

(a) Then the mapping T is u.s.c. at b

iff 3b>5s.t. T(b) is compact

(b) 1f T(b) is compact I(b) # ¢ (ie. b € int B),
then the mapping T is 1.s.c. at b iff c1 I(b) = r(b),

I(b) = {u e R" ; f(u) < b}.

Proof ; See reference [13]. [

G(b,g) = {g : g cont., {u € R" : g(u) < b} # ¢,

max

su b
j=13-3n uplg] (U) - gl (U)l < °°}

and  define a metric on G(b,g) using
d(f.9) = .10 o S le () - (u)]

j=1,.,n

and
o(g) = {u € R* : g(u) < b} for g € G(b,g).

We can discuss upper and lower semi continuity of o(+) with respect

to the metric space G(b,g) and R®. As usual T'(b) = {u : g(u) < b}.
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Theorem 3.4 :
(a) o is u.s.c. at g iff T is u.s.c. at b.
(b) LetI(b) # ¢ (ie. b € int B(g)). Theno is 1.s.c. at g iff T is

1.s.c. at b.
Proof : See reference [20]. .

Theorem 3.5 : Suppose g is 1.s. continuous.
(a) Ifgisstrictlyquasi convex and I(b) # ¢,then c¢1 I(b) = r(b).
(b) Ifg(-)isquasiconvex and I'(b) is compact,then 3 b>bs.t.

r(b) is compact.

Proof : Direct modification of those in reference [13],which assume

g is continuous instead of l.s.c..

In (a) we note that thel.s.c. of g(-) suffices for I'(b) to be a closed

set.

In (b) we note that given bnj > b,unj + Ug and g(u , ) < bnj, then

nj

Y e > O;W sufficiently large,

9ue) - e<glu ) <b <b+e.

nj

Hence g(u,) < b + 2¢ and ¢ arbitrary implies g(uo) < b.

Corollary 3.5 : A l.s.c. function g : U ~R", for U < R" convex,

is strictly quasi convex iff

(i) T(b) = {u : g{(u) < b}
is closed convex V b, and

(ii) for b s.t.

I(b) = {u : f(u) < b} # ¢

we have c1I(b) = r(b).
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Proof : Because of the previous theorem we need only to show the

conditions are sufficient.

Obviously g is quasi convex.To show strict quasi convexity,we need to

consider u, U € U where g(u) < g(u).

We have u € I(b) where b = g(u). It follows that
u € Int r(b) = reint r(b)

since
cl 1(b) = 1(b),

where re-int stands for the relative interior of

r(b) (see reference [23] pages 44, theorem 6.1).
As a consequence Au + (1-A)u € re int T(b);x € (0,1),that is,

au + (1-2)u € Int T(b)

1(b).

Hence g(iu + (1-A)u) < b = g(u) and g is strictly quasi convex. O

Theorem 3.6 : Suppose f is 1.s.c. on U < R' and quasi convex. If

T(+) is 1.s.c. at b v b € B,then f is strictly quasi convex.

Proof : Once again this is a direct adaptation of that in [201, which
assumes that f is continuous. We note that in fact the author usés
only a one sided inequality in his proof which is associated with the

1.s.c. of f. O

We wish to conjecture at this point that all 1.s.c. quasi convex
functions can be obtained as the supremum of 1.s.c. strictly quasi

convex functions.
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Theorem 3.7 : Suppose f is lower semi continuous and defined on a
convex subset U< R'. If f is strictly quasi convex on U,then f is

quasi convex on U butnot conversely.
Proof : See reference [19] page 139. O

The above theorem supports our conjecture in that the class of 1.s.c.
strictly quasi convex functions is a subclass of the quasi convex

1.s.c. functions.

It is easily seen that the supremum of 1.s.c. quasi convex functions

is once again quasi convex 1.s.c., since

- _ . sup -
r(6) = {u: 50 f, (u) < B)

= MNer T (b)

niEI{u : ﬂ (u) < b}
is closed convex iff all Q (b) are closed convex.

From corollary 2.2 we can observe that if our conjecture is correct

then for closed convex bounded sets U giRn the class
QC(U) = {f : U>R" ; U= R" T1.s.c. quasi convex}
is a continuous lattice generated by
SQC(U) = {f : f : U>R" 3 Uc R l.s.c. strictly quasi convex}.

As usual we would use the lattice ordering of R" ie.

fe. u= (u,..,u) < (Gl,...,ﬁn) =u iff u < Gi‘v i=1,..,n.

We will justify this assumption in the last chapter. For now we will
investigate the method of choosing a continuous selection to approxi-

mate the points of the original multi-valued mapping. We are dealing
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with the minimization (or max.) problem
(MP);

f U xU2~>R jointly continuous for all i=1,..,m,

1

M(uy) = sup{g(ui) : f, (ussuz2) < B3 i=1,..,m},
o(ur) = {uz : gluz) = M(uy); f (U1 uz) < b; i=1,..,m}.
In order to find a(u;) we use a selecting function g(uz) = -d(0,u,)

or g(-) any strictly concave function, as the following indicates.

Theorem 3.8 : Suppose

r(b) = fuz : yq7 0 1 f (u1,us) < b}

is a convex set and g strictly concave If u is a solution to (MP) then

u is the unique solution of (MP).
Proof : See reference [19], page 73. O

Theorem 3.9 : Suppose f(u;,*) is quasi-convex and
3 {f, }::1, fo: Uy xUp > R" is continuous on Y1 x U2 = R', where U,

is compact and both U; and U, are convex.

Suppose

(a) hm(Ul;Uz) = i=§f?,m fi(Ulguz) < fui,uz)

where the fi(ul,uz) are strictly quasi convex,

(b) Tm(Ul) = {u, : hm(ul,uz) < b}
where

T(ui) = {up : f(ui,us) < b} # ¢

and

(c) hm(ul,uz) + f(uy,u,) pointwise.
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Then Tm(ul) is Hausdorff continuous VvV m and
n T (u) = T(uy).

Proof : First, as the f 's are strictly quasi continuous and
S, (u1) = {uz : f, (u1,u2).< b} o T(uy) # ¢

is open, Sf(ul) = {uy : fi(ul,uz) > b} is u.s.c. (has a closed graph
and U, is compact). From proposition 1.8 we can conclude Si(U1) is

Scott continuous. As a consequence SO is n 1S,(ul).
1= 1

As Scott continuous mappings are 1.s.c. multi-valued,we have
cl S, (uy)

i=11i

is 1.s.c. multi-valued and
cl S (u) = ' ¢l S (us) =N {up: f (us,u2) < B} =T (uy)

(since the fi's are strictly quasi-convex).

As U, is compact and the graph of T () is c]osed,Tm(ul) must also be

u.s.c. and hence Hausdorff continuous.

The last statement follows from

NT ()= {up : °5P f (ui,uz) < B}

{uz : fui,uz) < b} = T(uy). O

This demonstrates the generalized convexity nature of the problem. As
with what we have seen,we are most interested in the convexity gener-
ating class £ = {f : f : U; > R" continuous; c1 I(b) = T'(b)

vV b € int B} for U, = R" convex and compact.
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Corollary 3.9 : If we make the assumptions of Theorem 3.9 and also

assume U; to be compact,then 3 M s.t. for m > M we have
d*(Gm,G) < €

where G_ is the graph of T ()
and G is the graph of T(-).

Proof : Let the generating class of ¢ be

£ ={y : U, x U, » R continuous

P(uy,+) strictly quasi convex V u; € U} .

Then all the assumptions of proposition 3.2 are satisfied and we are

assured of the existence of a TE(-) € [Uy, 2CO® (U,)] s.t. d*(GE,G)<e
ops -

where G_ is the graph of TZ(-)
and G is the graph of T(-).

Since we have also
Té(ul) < T (uy); Yui € Us,

where Te(') is Hausdorff continuous |

all that remains to be shown is that for m sufficiently large

TE(U1) [= Tm(ul) ETC (up); vu; €Uy

where Tm(ul) is defined as in Theorem 3.9.

Since T;(Gl) € xCo_ (U,) and UmT;(al) = T°(U1) we can define a

directed set D in
2004, (Uz) by (U T°(0,); k=1,2,..}
for which

U{A € D} = T (u,1).
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As

T (u1) << T (),
there exists a finite k s.t.

T (@) > T2 () = U T (@) > T ()
As a consequence 3 § > 0 s.t.

S(T, (01),8) 2 N(T_(U),6),

where

S(T; (61)36) = [N(Tk (1_411)96)]c

and

N(S(T, (41),6),8) = T, (4y),
due to the openess of T;(ﬁl).

Since Ts(-) is u.s.c. at u,there must exist a neighbourhood of U,

N(u:) say, for which
Te(ul) EN(TE(al)sa); YV up € Ny(ui),
in which case we have

TE(U1) c S(T; (u1),8); Yu, € Ni(up).

Since Tk(-) is u.s.c. at ﬁl,N(I;(ul),ﬁ) is u.s.c. at u;7and as a con-

sequence

S(T, (u1),8) = (N(T,_(u1),8)1°

is i.s.c..
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Since T (i) >> S(T° (d1),6),3 8 > 0 s.t. (0< &< )
T (01) >> N(S(T (8,),6),8)

that is
T (31) 2 N(S(TE (01),6),3).

By the definition of i.s.c.,3 a neighbour N,(u;) s.t. V u; € Np(u;)
T (uy) 2 N(S(T; (61),6),8)

2 N(S(T, (1),6),3)-

If we let Ns(u1) = Ni(ui) n N2(uy) be a neighbourhood of ui,we have

T;(ul) ES(T;(Gl),S) 2T€(u1); Vv u; € N(uy).

Now k depends on u, at this point but since U; is compact there exists

a finite sub cover to the cover
{N(u,) : T_(u1) E;T;(ul); for some k{(uy); u; € Ui,
{N(u}) : e=1,..,q}, say.

k s.t.

e

For each u} there is a k(u})
T () T (w)s vu €Nuy).

We Tet m = max{ke : e=1,..,q} and note that

U{T;e (ui) : e=1:- .»q}

= {up : e=if?,q h, (u1,uz) > b}
s -
= Uz 1 1P L F (uug) > B

T;(Ul).
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If we Tet u; € U, be arbitrary there must exist an e s.t. u; € N(u}):

Hence
T (uw) eT (1) =T () =T (u)
and our result is proven. ' O

In the quasi convex case one could also conjecture that the pseudo-
convex functions are in fact good enough to approximate the 1.s.c.
quasi convex functions (see definition 2.7). 1If so, this is
advantageous because of their simple differentiable characterization.

We note,

Theorem 3.10 : Let U< R" be a convex set and g a numerical function

defined on an open set containing U. If g is pseudo-convex on U

then g is strictly quasi convex on U and hence quasi convex.
The converse is not true.

Proof : Reference [19], page 143.
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CHAPTER IV

We have considered the approximation, in graph, of upper semi-continuous,
convex-imaged multi-functions with continuous, convex-imaged multi-
functions. This enables what is usually a fixed point matter to be
placed in the context of non-linear optimization. The continuity of the
"constraint set" or mu]ti-functiﬁn is essential in order to produce a
sufficiently smooth problem for this to be implemented. Thus the
conditions under which a constraint set, depending on a particular

parameter, can be considered to be a continuous multi-function, is

of interest.

In this Chapter, we begin by reviewing the work of M.H. Stern and

D.M. Topkis on rates of continuity of such multi-valued mappings,

as arise in non-linear optimization. We go on to extend these

results to a broader class depending on a more general parametrization.

In their work in reference [24] the above authors consider a multi-

valued mapping

r(b) = {uz : gj(uz) g_g; j=1,..,m} and show that

the Cottle constraint qualification plays an important role in producing,
not only continuity, but in fact, Tocal linear continuity. We show that

under very similar assumptions the multi-valued mapping

g > r'(g,b) = {uz : g(uz) < b}

can be considered to be a locally,linearly continuous multi-function,
mapping, from the Banach space of continuously differentiable functions into

to C(U,). These properties flow on to produce locally Lipschitz

marginal mappings

g -~ M(g,b) = max {f(uz2) : u, € I'(g,b)}
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and e-optimal set mappings

g » al(g,b,e) = {uy : gj(uz) < by j=1,...,m; f(u) » M(g,b) - €}

It turns out to be much harder to establish local Tinear continuity
of the mapping b + a(g,b,0). We are not assured of local linear
upper semi-continuity even when’f(-) is linear and the Slater
constraint qualification holds. Local linear lower semi-continuity
may exist in this case but remains an open question. We show that
local Tinear upper semi-continuity, plus the usual constraint
qualification assumptions  used to produce the local Tinear
continuity of T'(g,b), imply the local linear Tlower semi-continuity
of a(g,b,0). 1In fact the rate of local uniform upper semi-continuity
is related to the rate of local uniform Tower semi-continuity (as

was indicated in Chapter One).

Despite the difficulty in estabiishing the Tower semi-continuity of
b + a(g,b,0) we are able to show that, when a(g,b,0) is uniformly
compact near b and a(g,b,0) consists only of isolated local minima,
then we have the Tower semi-continuity of b - a{g,b,0) at b. Lower
semi-continuity turns out to be crucial in showing the equivalence

of the marginal mapping b -~ M(g,b) and the localized version
b+ M(g,b) = max{f(u,) : u, €T(g,b) n N(uz,8)},
in some neighbourhood of b, when u, is a local optimum.

This property is used when showing a Lagrange multiplier is, in
fact, a solution to the dual problem of an augmented Lagrangian.
The augmented Lagrangian we deal with 1is that investigated by
R.T. Rockafellar and D.P. Bertsekas in references [22], [28] and
[32]. This Lagrangian is useful in shedding 1ight on the

"generalized differentiability" properties of the non-linear

optimization problem we have described above.
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As has been shown by various authors, the local Lipschitzness of
single (and multi-valued) mappings implies a very general type of
differentiability. J. Gauvin showed in references [27] and [29]

that the Clarke derivative of the marginal mapping exists under
certain conditions, which include the Cottle constraint qualification.
He goes on to show that the Clarke derivative can be contained in
the convex hull of elements, produced by evaluating the gradient of
the usual Lagrangian at all optimal solutions and associated Lagrange
multipliers. These theorems can be viewed as a first step

towards producing techniques to solve problems such as

m(u;) = min{||uy-uz||®: uz € T(uy)}

where

I'(uy) = {up g, (up,uz) < b5 =1,...m}.

0f course when m(u;) = 0 we have found a fixed point of the multi-

function T'(u,;). For this reason the characterization of the Clarke

derivative is of interest.
When we deal with the simpler problem b » m(b), where
m(b) = min{f(u,) : u, € T(g,b)}
the theorem of J. Gauvin can be stated as
am(b) = co{-y : 3 U, satisfying with ¥ the Kuhn-Tucker conditions}.

We do not attempt to show equivalence of the Clark derivative am(b) to
this set but deal with the alternative set of optimal dual solutions
to our augmented Lagrangian. That is, we look at the solutions (y.c)

to the dual problem, for the Lagrangian
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L(uz,y,c) = flux) + Z y max{g (uz) - b —%i&

j=1

&

) Z maxz{g (up) - % : :%L}

i=1

N O

- fluz) + () )19l () - 5, 0,
where

¥(a,B) = [max?{0,B+ca} - B8%1.

We show that under some very general conditions, which include

Tocal order two Lipschitzness of b - m(b), we have that

am(b) = {-y : (y,c) is a solution of the dual problem

for some c > Q}.

Since the dual variable y, associated with some optimal solution u.,
always satisfies  the Kuhn-Tucker conditions, we have tightened

the previous inclusion by removing the convex closure. There

is no guarantee that equivalence can be forced in the former
relation and as a consequence, the dual solutions can be thought

of as a more "refined" set of Lagrange multipliers.



121

§4.1 Rates of Continuity in Nonlinear Programming

Definition 4.1 : Let g : U~>R; U = R'; j=1,..,m be m functions.

For b € R" we can define

—
—~
o
~—
]

{u€euU; g(u) < b} where

[{=]
—

[ ==
~—

il

(gl(u)s ceey gm(u))
and for u € I'(b) we let b = (b1, .., bm) and J(u,b) = {j : gj(u) = E 1

We say the Cottle constraint qualification is satisfied at u € r(b)

for differentiable g, : j=1,..,m iff

L avg (W) =0
jed (u,b)
has no semi-positive (ie. non zero, non negative) solutions in the

A's. It is said to hold at b if it holds for each u € T'(b).

Definition 4.2 : The Slater constraint qualification holds at u € T'(b)

if gj(u) is pseudo-convex for each j € J(u,b) and there exists a u

s.t. gj(ﬁ) < b for each j € J(u,b).

It is well known that if the Slater constraint qualification holds

then the Cottle constraint qualification holds.

The Cottle constraint qualification is known to be equivalent to the

existence of a vector e such that
<ng(G), e>< 0 for all j € J(u,b).

This was used as the constraint qualification in reference [27].
Since these are equivalent we will quote, when referencing J. Gauvin's
results, the Cottle constraint qualification. The next result

follows from this equivalence.
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Theorem 4.1 : If the Cottle constraint qualification holds for b,
then c11(b) = T(b).

Proof : Reference [24], Theorem 1.3. O

For a particular g = (gis ..., §m) we let B(g) = {b :{u : g(u) <b} # ¢}.
To obtain results on the uniform linear continuity of TI'(-) we look to
the work of Stern and Topkis (reference [24]). To obtain such results

they first investigated a Tower bound on
% A Vg (u)]
jed{u,b) U
in terms of [X|, where % 50; A =0 for j ¢ J(u,b); u € T(b) and b

is in a prescribed set. We let (-»,b] = {b € R™ : b < by.
Lemma 4.1 : If r(b) is bounded,then B(g) n (-=,b] is compact.

Proof : Reference [24] Lemma 2.1. O

We Tet Dp(Q) be the space of functions with p bounded and uniformly
continuous derivatives. It can be viewed as a Banach space with

the norm

_ max sup ;.o
191, = oc|o|<p ue |V 901

. m
where |x| denotes the Euclidean norm on R", |a| = o1 + .. +

(64
and vg(u) = = 9 g(u)a .
3 u; .. 9 nu

We shall discuss the continuity of a Tower bound on

Ao Vg (u) |
jed(u,b)

with respect to the functions g.
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Theorem 4.2 : Suppose g € D,(r(b)) B is a closed subset of B(g),
there exists b such that P(B) is bounded and the Cottle constraint
qualification holds for b in § n (-w,B]. Then these exists K > 0

such that

| ¥ A Vg (u)|-> K|A|
j€d(u,b) 7

for all u € T(b); b € B n (-=,bl.and p[=1,% = 05 A =0 for all

j € J(u,b).
Proof : Theorem 2.1 of reference [24]. O
The lower bound on K(g) is obtained in the following way

K(g) = min{KJ(g) :dc{l,...m}; J # ¢}

fnfl I A g (s (ub) € T (9)3,

+o  otherwise

—

Lo

©

S
|

= {{u,sbs1) : g(u) < b, b €Bn (,b1,

[{=]
—

| =
~—

1]

b for all j €J, |A] =1, A >0 and Ao=0idf ¢ J}.

One could consider TJ(-) being a function of g and hence KJ(-) and
K(+) functions of g. In passing we note that K(-), considered as a
function of b, for fixed g, (in a similar way) is monotonically

decreasing.

Quite often it is easy to deduce that a multi-valued mapping is closed

but much harder to deduce upper-semi-continuity. If the image sets

are contained in a compact space then closedness immediately implies
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upper semi-continuity. A weaker assumption which replaces upper
semi-continuity at a point is that the mapping is closed and "uniformly
compact" at that point. That is; given u > Q(u), then Q(+) is
uniformly compact near u if there is a neighbourhood N of u such that

the closure of the set U{Q(u) : u € N} is compact.

Lemma 4.2 :

Suppose the condition of Theorem 4.2 hold for B c int B(g), g € D;(R")
and that r(g,5) is bounded for b > b. Then K(+) is lower semi-continuous
at g in the space D, (R").

Proof : In view of Theorem 1.18 and the fact that | _éd AV, (u)]

is continuous in (u,b,A,g) jointly, we only need to sﬁow that the
multi-valued mapping TJ(-) is non-empty in a D;(R") neighbourhood of

g, closed and uniformly compact near g.

First of all we need to show T,(g) is non-empty in a neighbourhood of

If int B(g) can be shown to be i.s.c.,then B < int B(g) will imply

o> i

< B(g) for g € N(3,8) (some § > 0), in which case Tj(g) # 0.

We have

(int B(g))* = (int {b : T(g,b) # ¢})°

n

cl {b : r(g,b) # ¢}°

cl {b : T(g,b) = ¢}.
Now T'(g,b) = ¢ iff

inf{g (u) : u€ U} >b for some j.
Hence b € c1 {b : I'(g,b) = ¢} iff

F. (g9) = inf{gj(u) s u €U} > q for some j,
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that is,

A

(int B(g))" =

J

{o : ﬂ (9) > % 1.

N

1

For a fixed u € Usg » g (u) is continuous in D,(R"). As a conse-

quence
g -~ inf{gj(u) :u € U}
is u.s.c. in Dl(R")’being an infimum of a class of continuous mappings.

The mapping g -~ {b : Fj(g) > H } is clearly u.s.c. multi-valued and

sois U {b : ﬂ (g) = % }sbeing a finite union of u.s.c. multi-valued
i=1

mappings. This establishes the non-emptiness of TJ(-) in a neighbour-

hood of g.

In order to establish the uniform compactness we note that
B n (-0, b] = B(g) n (-w,B] is compact,as I'(J,b) is bounded and that
the A's are always contained in a compact set. If we can establish

that P(g,B) is contained in a compact set for all g in a neighbourhood

of § then so willbe T ().

Since TI'(g,b) is bounded, b > B,we have,using Theorem 3.3., shown
r(3,b) to be upper semi-continuous at b. Using Theorem 3.4 we can
deduce the upper semi-continuity of g - I'(g,b) at §. Let N(§,s) be
a neighbourhood of g for which B < B(g). Since (Q,B) is bounded

so is N(r(g,b),s). By the u.s.c. of r'(g,b) at g we have

T(g,B) g;N(F(é,B),e) for v g € N(g,6), for some & sufficiently small.

We let
S={ 2305 [A]*= ] A =1}
i=1

and note that



126

uiT, (g) : g € N(g,8)}
=z x (Bn (-,b]) % S,
which is compact.
One can easily verify that T,(‘) is closed to complete the proof. O

Theorem 4.3 :Suppose the Cottle constraint qualification holds at b € B,
there exists b > b such that T'(b) is bounded, and each gj(u) has

continuous second derivatives on R%. Then there exists 6 > 0 such that

r'(b) is uniformly linearly continuous on B(g) n N(b,8) with a constant

2/K(g), ie.
d(r(b), T(b')) (4K(g)) < lb-b*|
for all b, b' € B(g) n N(b,8).

Proof : Reference [24], theorem 3.2. O

Corollary 4.3 : Suppose each i ; j=1,..,m are pseudo-convex and have
continuous second derivatives on R. Then I'(b) is locally uniformly

linearly continuous on

int B(g) n {b € R*: r(b) is bounded}

= B (say).

Proof : The Cottle constraint qualification holds for all b € int B(g)
as the Slater condition holds (i.e. §j are pseudo-convex). As the

g, are strictly quasi-convex, Theorems 3.5(b) and 4.3 establish the

result. O

The function f = R® > R is said to satisy a Lipschitz condition order

B > 0 if there exists some L > 0 such that



127
1£(u) - F(0)| < Liu-an®.
In the following we investigate the properties of M(b) = max{f(u):uer(b)}.

Theorem 4.4 : Suppose

(i) the Cottle constraint qualification holds at b € B(g),
(ii) there exists B > b such that T(b) is bounded,

(iii) each gj(-) has continuous second derivatives on R" and

(iv) f(-) satisfies a Lipschitz condition order g > 0 on r(b).

Then there exists § > 0 such that M(b) satisfies a Lipschitz condition

order 8 > 0 on B(g) n N(b,s).

Proof : A direct adaptation of Corollary 4.2 and Theorem 4.1 of

reference [24] with the obvious modifications. O
We let for b, b € R™

(-0,b1 = {x € R™ : x % b}
and

[b,6]1 = {x € R"™ : b < x and x < b}.

Corollary 4.4 : Suppose r(b) is bounded for b € R™, each g, 3
j=1,..,m is pseudo-convex and has continuous second derivatives on
R™. Suppose also that f(.) satisfies a Lipschitz condition order

8 > 1. Then M(-) satisfying a Lipschitz condition order 8 on

B(§) N (~,b].

Proof : From Lemma 4.1 we know B(g) n (-m,G] is compact. Now
b € B(g) = {b : T'(g,b) # ¢}

if 3 us.t. g(u) < b.

If we restrict b < bsthen u € F(§,B), a compact set. In this case

b € B(g) iff
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b = min{g(u) : u € T(g,b)}
= inf{g(u) : u €R"} < b.
We have
B(g) = [b,+)

a convex set and
B(3) N (~,b]
= [b.+=) N (-=,b] a convex set.

Obviously for b > b we have b € int B(g). For [b,b] there exists a
finite sub-cover of the cover S = {N(b,8) : b € int B(g); M(-) is
locally Lipschitz order B on B(g) n N(b,8); & > 0 and b € B(g) n (-0,b1}

of B(g) n (-=,bl. Suppose

St = {N(Q ,g ), i=1,..,4%}
is the sub-cover. For b, b € Lb,B] we let
P=1{b" €R" : b =xb+ (1-A)b,x € [0,1]}.

Then 3 b = by, by, ..., b =be€Ps.t. b =xb + (1-x )b; A <2
b b J ]

jt+1

for j=0,1,..,k-1 and % . %-+1 € N(bi,di) for some b € {1,.,2} Vv j.

This follows from the fact that P is compact, connected and hence

chainable, using also the openess of the balls N(bi,Gi). We note that
k-1
,ELT*j+1 - Al =L

If
Q= max{K ; the Lipschitz constant on N(q 6, )}

then
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M(b) - M(B)] M(b, , ) - M(b )]

IN 1]
o~ 8
= I~

M(b,, ) - Wb, )|

j =0
k=1
<Q Jub -b1f
. B i+1 i
j =0 .
S g = 8
=Q jZ;'*j+1 - A ["Ib - B

n

k-1
Qb - BIPC T (A, - A
j =0

J

Qb - BI*

using 1 » IA;+1 S DY

oy |8
j cer T A Fas B 2 1. O

We could have equivalently assumed that the Cottle constraint

qualification holds at all b € int B(g).

Obviously we have trouble at b since

b

min {g(u) : u € R"}

~

min {g(u) : u € I'(g,b)}

implying the minimum is attained at the points S = {u : g{(u) = b;
u € F(§,B)}. That is for u € S all the constraints are active since

glu) = b and since ng(u) =0, Vj

1,...,m the Cottle constraint

qualification could not possibly hold at b.

Lemma 4.3 : Suppose the Cottle constraint qualification holds at

B € B and there exists a b > b such that F(§,B) is bounded. Then
36 >0 s.t. the Cottle constraint qualification holds at b for all
g € G,(b,g,8) where

G2(5,3,8) = {g € Do(T(3,b)) : I'(g,B) # ¢3 llg-gil, < &}

and

I'(g,b) = {u : g(u) < b}.
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Proof : First we show that T'(g,b) is bounded for ¢ sufficiently small.

We let

Mg.8) = CP13 () - @ulu)]s -oes 20 18,(0) - gu(u)])
and show
r(3,b - 4(g,3)) =Tr(g,b) = T(3.b + 4(g,9)).
Let u € T(g,b - A(g,g)). Then since g(u) < b - A(g,3) we have
g(u) < g(u) + 4(g,g) < b implying
g(u) < B and u € T(g,b).

Similarly if u € I'(g,b) then g(u) < b. Since g(u) - Ag,g9) < glu)

we have g(u) < b + A(g,3) and u € I(g,b + A(g,9)).

As T(g,b) is bounded for B > b we choose 0 < § < b - b and

V g € G»(b,g,8) we have I'(g,b) bounded.

We now argue in a similar manner to Lemma 2.2 of Reference [24].

Suppose the contrary is true; that 1is there exists a sequence
Tim
koo

¢ € 6(b,3,8) with ¢ = g in D,(R") such that the Cottle

constraint qualification doesn't hold for any gk at b. Thus 3 u

such that gk(uk) < b J(u ,b) is non-empty, 3 ¥ s 0, [A] =1

k _ . = k k _ .
A =0, Vg du,b)and I N Vg (u) =0 As r(g, »b)
j€d(u, ,b)

is bounded for k large, u,_ € r(g*,b) and IXkl = 1 for all , there
exists a convergent subsequence of (B,uk,xk) with limit (B,0,X)
such that J(uk,B) = J and A? =0 for j ¢ J for all k in the sub-

sequence. Then X > 0, |X| =1 and X =0 for j £ J.

By continuity J < J(u,b). For if we suppose J £ J(u,b) then
§j(ﬁ) < b, which implies for k large g?(uk) < b. Since

) Xj V§j(ﬁ) = 0 we have a contradiction. O
jed
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*
Theorem 4.5 : Suppose
(i) The Cottle constraint qualification holds at b € B(g),
(ii) there exists b > b such that T'(b) is bounded, and

(iii) each Ej(u) is twice continuously differentiable on R".

Then the multi-valued mapping g - I'(g,b) = R® is uniformly Tinear
continuous for some & > 0 on G,{(g,b,8), i.e., if we choose

K(g) > 2/K(g), 3 6 > 0 s.t.
d(r(g35)s T(a,E)) S K(é)”g - §HZ;V g=§ € 62(535:6)-
Proof : First we show that for K < L4K(g),3 § >0 s.t.

v g € G(g,b, )
b € N(b,3)

d(r(g:b)s I'(g:B))k\S lb - BI
and then let K(g) = l/ﬁ. Suppose not. Then for K < %K(g)

§=1/k » 0,3 g €6 (3,b;1/k)

d(r(g",b), T(g“,b))K » |b - B| for some ... (1)
b€ N(b, 1/k).

As K(g) is 1.s.c. at § (Lemma 3.2), by letting 0 < e < %K(g) - K.

we have %K(g%) > 4K(g) - ¢ > K for k sufficiently large.

Hence (1) implies

k

d(T(g*,b), T(g",B))*%K(g" ) > |b - B| for some ... {2)

b, € N(b, 1/k) and k sufficiently large.

7 ((‘ kes Eeeu éfot&j‘;( "0 Hee M’m@& ?61‘&5‘&"% 18y L ertmd
k? avd Theovew v ave vetalect b [Teerems of refereness
(38] awel [397,
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As gk € D,(R") it has continuous second derivatives and by Lemma 4.3
the Cottle constraint qualification holds for gk at b for k sufficiently

large. If we let b < b < E,then as in Lemma 4.3 we have
Kk v . k -
r{g ,b) = T(g, b + A(g ,9)).
As gk € G»(g,b, 1/k) for k sufficiently large, we have

b+ A(g",3) < b

and hence P(gk,B) is bounded for b < b and hence bounded at 5. A1l con-
ditions of Theorem 4.3 hold for gk for k sufficiently large hence (2)

constitutes a contradiction and the result is established.

We note the following. Let

8(g,9) = CPlas(u) - ()], «.os Plg (W) - § (W) .

Then if b°

b+ A(9,§L we have

b°-b| = |8(g,9)| = *P|g-q|

N

max  Sup;.o A
oclal<e u |V 9(u)-Va(u)]

g, - gl
Hence if g,g9 € G,(g,b,8) we have

r(g,b) = r(g,b + A(3,9))

r(§,b%); b° as above
<= N(r(g,b); 1/K |b° - B|)
= N(F(Q,B),l/kll% : @112).

Due to the symmetry between g,J we may interchange g,§ to obtain the

result. o
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Corollary 4.5 : Suppose each i ; j=1,..,M arepseudo-convex and have
continuous second derivatives on R", r'(g,b) bounded. Then T(g,b) is

uniformly linearly continuous on some G,(g;b,s) whenever b € int B(g).

Proof : The Cottle constraint qualification holds at b € int B(g) as the
Slater condition holds. As §j is quasi convex,Theorems 3.5(b) and 4.4

establish the result. O

Theorem 4.6 : Suppose

(1) The Cottle constraint qualification holds at b € B,
(i) there exists b > b such that T'(g,b) is bounded

(iii) each §j(-) is twice continuously differentiable, and
(iv) the function f(-) satisfies a Lipschitz condition order

B > 0 on T(g,b).

Then M(g) = max{f(u) : u € T(g,b)} satisfies a Lipschitz condition

order B > 0 on G,(g,b,8) for some § > 0.
Proof : From our previous theorem we have ¢ > 0 s.t.
V 4,9 E‘G2(§,5,6)

d(u,T(g,b)) < K(@g - g2, v u € r(g,b).

As T(g,b) = r(g,b + A(g,3)) if we take § < A(g,3) < b - b then f is

Lipschitz on all T'(g,b) for g € G,(g,b,8) with constant L.

Pick 9,4 € G,(d,b,8). Without loss of generality we may assume
M(g) < M(g). Pick u € T(g,b) such that M(g) = f(u). Then pick
0 € r(g,b) so that

d(u,r(g,b)) = llu - ul.

Hence [M(g) - M(§)] = M(g) - M(3) = F(u) - M(@) < f(u) - F(1)

< Uu - &, so
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[M(g) - M(8)|
< Uu - al° = Lid(u,r(§,5))1°
< LR(3)1g - a1 | -

Theorem 4.7 : Suppose each §j ; j=1,..,m are pseudo-convex and
have continuous second derivatives on R", 1(g,b) bounded for
b € int B(g) and -f(+) pseudo-convex and also twice continuously

differentiable. Then v e >0

alg,e) = {u : g (u) < b; j=1,.,mf(u) = M(g) - €}

}

is uniformly Tinearly continuous on G,(g,b,s) for some & > 0.
Proof : First we choose §, sufficiently small so that

VY g € G2(g,b,8:) we have

F((g’_f)s (Bs'M(§)+€)) # d)s

which is possible since the mapping g - M(g) 1is continuous.

Let M(g) = max{f(u) : gj(u) < E ; j=1,..,m} and

F.(gl""g_.’g +1) =,(91:---,:gmagm +M,(.gls--agm) - M,(.§1,--,g ))

+1

Then g » F(g) is Lipschitz continuous, from Theorem 4.5, as the
Cottle constraint qualification holds and T(g,b) is bounded for some

6 > b, since g is quasi convex.

As f is continously differentiable and I'(g,b) is bounded, f is
Lipschitz on P(Q,B) implying M(+) is Lipschitz locally with some

constant L > 0.
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We now apply Theorem 4.5 to the multi-valued mapping (we actually

hold f constant in the final analysis)

I1((gl 3« sgmsgm 1)3(513- . ’Bm:'M(§)+€))

to deduce its Tocal linear continuity (as a function of

('91,--',gm,gm+l)). Hence

d(r((g,g_, )»(b,-M(g)+e)), T((3,g__ ),(b,-M(g)+e)))

m +1

< K (3.9, MW{g9_,)-(g.9_, )2
)a(63§m+1) € GZ((és"f)s(Es'M(§)+€)362)-
Since a(g,e) = T'(F((g,-f)), (b,-M(g)+e)),this implies

N

d(a(g,e), al(g,e))

N

Re (é,-f)” F(g,'f) - F(a"f)" 2

R (3,-F)(lg - gia + [M(g)-M(g)])

IN

R (§,-f)(lIig - gz + Lig - i)

K (g,-T)(L+1)lig - Gi»
Y q,9 € G,(g,b,8) for 0 < 8 < &
sufficiently small so that M( ) is locally Lipschitz and
F(g,-f), F(g,-f) € 62((§,-f), (-M(g)+e),82). =

It was demonstrated in reference [24] via numerous counter examples
that there is little hope of proving a similar result to this re-
placing pseudo-convexity by any weaker a notion. It has remained

an open question whether the simpler problem b + a(b,0), involving
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the variation in b, would be linearly lower semi-continuous if
g(+) satisfies the Slater condition and -f(-) is linear or convex.
It appears to be much harder to establish results when € = 0,
especially lower semi-continuity. It is still possible that

b - a(b,e) may be, in some circumstances, locally upper semi-
continuous at some uniform rate g(-) which is strictly increasing
and continuous. Possibly the conditions of Theorem 4.6 would

imply this.
In the following we call;

a(b,0) = {u : -fF(u) < -M(b); u € T(b)}

=
—
o
~—
]

max {f(u) : u € T'(b)}

—
—
o
~~
I

{u:g (u) < b. 3 j=1,...m}.

Theorem 4.8 : Suppose

(1) T(b) is uniformly linear continuous with a constant K
for b € §, and

(ii) f(-) satisfies a Lipschitz condition with a constant M on

u{r(b); b € BJ.
Then
d(u, a(b,2kM|b-b"'|))< K|b-b*]
for each b, b' € B, € > 0 and u € a(b',0).
Proof : Reference [24] Theorem 5.4.

Combining this with previous results we have.
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Theorem 4.9 : Suppose
(i) The Cottle constraint qualification holds at b € B(g),
(i) there exists b > b such that T(b) is bounded,
(iii) each §j(-) has continuous second derivatives on R', and

(iv) f(+) satisfies a Lipschitz condition on r(b).
Then 3 K> 0, M > 0 and & > O such that
d(d, a(b,K|b-b*|)) < M{b-b"|
for each b', b € B(g) n N(b,s) and u € o(b',0).
Proof : Reference [24] Corollary 5.2 with € = 0. O

This looks very much like a sort of lower semi-continuity at b = b.

Unfortunately, we require more to achieve this.

Corollary 4.9 : Suppose the conclusion of Theorem 4.9 holds and
suppose also that the multi-valued mapping € -+ a(b,e) is uniformly
linearly upper semi-continuous at € = 0, locally around b (i.e.,

for b € B(g) n N(b,8)). Then the multi-valued mapping

b » a(b,0)

is locally, linearly lower semi-continuous around b and hence

locally, Tinearly continuous there.

Proof : The conclusion of Theorem 4.8 can be written as
d*(a(b',0), a(b,K|b-b"|)) < M|b-b"]|

for b', b € B(g) n N(b,s).

The assumption of Tinear upper semi-continuity, locally around b,

jmplies that for any r > 0 there exists ¢' >0and L >0 s.t.
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for b € B(g) n N(b,s'), we have
a(b,N(0,Lr)) = a(b,Lr)
we have, after letting r = %-]b b'|,
a(b,K|b-b'|) = N(a(b,0), |bb|)
That is,
*(a(b, K[b-b' [)s a(b,0)) [b -b'|.
Finally for b, b' € N(b,8"), where §" = min(8,8'), we have

d*(a(b',0), a(b,0))

A

d*(a(b',0), a(b,K|b-b"[))

+ d*(a(b,K|b-b"|), a(b,0))

IA

M|b-b'| + (§)|b-b'[

K '
(M + [Jlb-b |5
implying the required result. O

The Tlocal nature of the upper semi-continuity would follow naturally
if conditions for the linear upper semi-continuity of € + a(b,e), at
€ = 0, could be established. Qur previous results are unfortunately
useless when addressing this problem. The strict interior of
a(b,0) is empty. The Cottle constraint qualification cannot

possibly hold at (b,0) for the problem (AP) involving constraints

g, () < b 5 j=1,...m
and

-f(u) + M(b) = 0.
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For the problem (P) we demand the Cottle constraint qualification
to hold at b. Hence there exists a Lagrange multiplier and

%‘ _ A vg (u) = vf(u). For any vector e s.t. <vg. (u),e> < 0
jed(u,b) * ! !

for j € J(u,b), we necessarily have <Vf(u),e> = % A <Vg (u),e>
je&d

u,b)’
implying <-Vf(u),e> > 0. Hence (AP)'s Cottle constraint quali-

fication cannot hold.

Many of the counter examples exploit the disconnectedness of the

images of a(b,0). Convexity requirements or uniqueness may avoid

these problems.

Weaker requirements for the uniform upper semi-continuity are

required in order to obtain simple lower semi-continuity.

Theorem 4.10 : Suppose

(i) the Cottle constraint qualification holds at b € B(g),

(i) there exists b > b such that r(h) is bounded,

(iii) each i (+) has continuous second derivatives on R",

(iv)  f(-) satisfies a Lipschitz condition on T(b),

(v) e + a(b,e) 1s upper semi-continuous at € = 0, Tocally
around b, at a uniform rate q(-) : (0,r,) - R,» and

(vi) g(+) has a continuous inverse.
Then b + a(b,0) is Tower semi-continuous, locally around b.

Proof : Arguing as in Corollary 4.8, we have the existence

of 8" > 0 s.t. for b € B(g) n N(b,8"'),a(b,q(r)) = N(a(b,0),r).
By letting r = q_l(K1b—b'|) we obtain
d*(a(b,K|b-b"|), a(b,0)) < q ' (K|b-b']).

This implies for



140

b,b' € N(b,s8) (some § > 0)
d*(a(b',0), a(b,0)) < M|b-b'| + ¢~ '(K|b-b'|) ~0 as b >b'. O

Establishing a uniform local upper semi-continuity is not an easy
task either. We certainly cannot be guaranteed of Tinear upper
semi-continuity, even when the Slater condition holds and f(-) is

Tinear!

In Chapter one, we established a close relationship between 6-u.H.s.c.
and local, uniform u.H.s.c.. Proposition 1.5 states that in the

case of compact image sets, the uniform &-u.H.s.c. of I'(-) at

every (u;,uz), for all u, € I'(u;), is equivalent to the local,

uniform u.H.s.c. of I'(+) around u,. It is not hard to see that if

we could establish Tinear 6-u.H.s.c. at every (u;,u,) such that

uz € I'(uy) then local, linear u.H.s.c. of T(+) would follow.

S. Dotecki and S. Rolewicz derive various conditions which imply

the Tinear &-u.H.s.c. of T'(+) at a point (u,,u,), in reference [9].

Proposition 4.1 : Suppose T'(b) is continuous at b and f(-) is con-

tinuous on b x T'(b). Suppose also that a(b,0) is uniformly compact
near b and a(b,0) consists of a collection of isolated local maxima

for the problem.
Then b -~ a(b,0) is Tower semi-continuous at b.

Proof : We know from Theorem 1.22 that b - a(b,) is closed at b.

The uniform boundedness establishes the u.s.c. of the multi-function
at b. We establish the lower semi-continuity by first noting that
for any open set Q, b + a(b,0) n Q is u.H.s.c. at b. In fact
Theorem 1.7 indicates that this property "characterises" u.s.c.

as distinct from u.H.s.c.
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Since a(b,0) consists of a collection of isolated Tocal maxima,
for each u, € a(b,0) there exists a neighbourhood Q such that

a(b,0) N § = {uz}. We can deduce the 1.s.c. at b as follows.

Let b" - b where

uz € a(b",0) n Q.

Necessarily u3 + u, and hence for n sufficiently large

l-iz € N(UZ,E).

That is a(b,0) n Q = {u,} = N(a(b",0) n Q,e),which is the definition
of 1.H.s.c.. Since 1.H.s.c. implies 1.s.c. we have a localised

1.s.c. By Theorem 1.12 part (ii) we know that

b ~ U{a(b,0) N Q : {u,} = a(b,0) N § for anbhd Q of
az € Q(B,O)}
< cl a(b,0) = &(b,0)

is Tower semi-continuous at b. This multi-function is of course

equal to a(b,0) at b. It is in fact equal to a(b,0) for b sufficiently

close to b.

Since a(b,0) is u.s.c. at b and W = U{Q : {u,} = o(b,0) n Q for
a nbhd of u, € a(b,0)} is a neighbourhood of a(b,0), we must

have a(b,0) = W for b sufficiently close to b. That is

a(b,0) = a(b,0) N W
= U{a(b,O) n Q : {62} = d(B,O) n 6
for a nbhd of u, € o(b,0)}

imply the 1.s.c. of b > ¢l a(b,0) at b. Using Theorem 1.10 (i) we

can deduce the 1.s.c. of b + a(b,0) at b. O

The conditions which ensure the local continuity of T'(b) around b
involve the boundedness of T(b) for some b > b. This in itself

would imply the uniform compactness of o(b,0) near b in R".
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It seems unlikely that ]inéar lower semi-continuity will be a very
common a property for a(b,0) to possess. Simple Tower semi-continuity
is most probably a much more common phenomena. The Slater condition
plus some sort of assumption about the behaviour of the function

f(+) near the critical set, would probably suffice as well.

84.2 The Differentiability Properties of Locally Lipschitz Mappings

Ever since F.H. Clarke published his papers on the theory of
generalized gradients (see reference [291), much interest has
surrounded the development of these theories. Locally Lipschitz
functions play an important role due to their equivalience to a
type of differentiability. We begin by reviewing some aspects

of the theory's present state.
We let for f(.) : R® = R™

A € L(R",R™
and

u,h € R"; t >0

U (ush,t) = (F(u+th) - f(u))/t,

0. (u;h)

£, A

Il f(u+h) - f(u) - A.hi.

Definition 4.3 : We call

(i) f'(u,h) € R™ the one sided directional derivative of f(-) :
R" + R™ if
1 _ Tim .
f (U,h) - t->0- Uf(u’hst)

(i1) the Tinear mapping A € L(Rn,Rn3 the Gateaux derivative of
f(«) : R" >R™at u € R if

A.h = f'(x,h) for any h € R®
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(1i1)  the Tlinear mapping A € L(R",R™) the -Fréchet derivative of
f () :R">R"atuer”if

1]
o

Tim :
ho0 O, a(ush) /il

and the strict Fréchetderivative atu e R if

(s h])lr?o 0) O, A(T:h)/IhI =

Definition 4.4 : For the set valued mapping (u,h,t) - {Uf(u;h,t)}

or any other set valued mapping

F:Y~PRY
we use
lim inf F(y) = {u € R™ 1 v >y; 3u €F(y )iu ~ u}
oy INFF(y PVY, Ty 3 ¥, )iy,
lim o, F(y) ={ueR" :3y »y; Yu €F(y )iu - u}
¥y pry u SEAY 7Y k Vi 12U .
We call

(1) the set valued mapping Kf(u;h) Kf : R® x R® » P(R™) defined

by Kf(u;h) = (]1m)+(h O+){U (usg,t)} the contingent of f and

the mapping Pf : R x R® » P(R™) defined by

T:)-"L‘(u:'h) = ( ,;.”E)-*(USE 0+) {Uf( usg, t)}

the paratingent.

We call

Kf(ush) = co Kf(u3h)

co Pf(uzh)

Pf(ush)

the convex contingent and convex paratingent respectively.
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(i1) The upper paratingential derivative at u € R" in the direction
heR is
o0y - 1im sup .
fp (U,h) (y,g,t)—>(u,h,0"') Uf(y,g,t).

(iii) The Clarke directional derivative at u € R" in the direction
her”is

lim  sup

Ch) = o) U shat).

As it turns out the local Lipschitzness of f is crucial for many of

these to be well defined.

Proposition 4.2: Suppose f(+): R"»R™ is continuous in a neighbourhood

of u € R. Then the paratingent Pf(u;h) is a non-empty bounded set for
any h € R if and only if f(.) is locally Lipschitz at u- In this

case Pf(u,-) : R = V(RW) is Lipschitz sub Tinear symmetric multi-

function

(ie. Pf(u,-h) = -Pf(u,h) (symmetric) and
Pf(u; ) = tP(u;h)
Pf(ushi+h,) < Pf(ushy) + Pf(ushz) (sub-Tinear))

and is given by

sy o 1im sup
Pf(u,h) = (_y,t) = (u, .|..) {Uf(y,h,t)}.
Proof : Reference [25] page 1348, Prop. 3.11. O

Proposition 4.3 : Let f : R® = R, u € R" and Tlet f:(u;h) be defined
as in Definition 4.4 for any h € R". Then f:(u;h) is finite for any
h € R" iff f(+) is locally Lipschitz at u. In this event f:(u;h)
coincides with the Clark directional derivative, f:(u;h). Moreover

+

f;(u;-) : R > R is the support function of the convex paratingent

Pf(us;+). Hence we have
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Pf(ush) = [—f:(u,—h), f:(u;h)] for any h € R".
Proof : Reference [25] page 1348, Prop. 3.12. O

It has been shown (see Reference [25]) that whenever the paratingent
is a non-empty bounded set (ie. f(-) locally Lipschitz) the convex
paratingent Pf(u;-) is generated by a set of linear mappings .

Moreover, if min(n,m) > 1, then Pf(u;-) may be generated by different

sets of linear mappings.

These results are based on Rademaches theorem stating that if
f(.) k" - R™ is locally Lipschitz in an open neighbourhood of u € R"
G (say), then f(.) isa.e. Fréchet differentiableonGandmoreover, its

derivative, f*(+) : G » L(R",R™) is a measurable and bounded mapping
Two such sets of Tinear mappings are

(i) Jf(u) = cofA € L(R",R™): 3 x> u3 3 f(x ) » A}

the generalized Jacobian of Clarke and
(ii) Pourciau's generalized derivative defined by
Ff(u) = cofA  L(R,R™): 3 x_ € L(f' (), x_»u, f'(x) ~ A}

where L(f'(+)) is the set of Lebesque points of f'(-).

Obviously J°f(u) < Jf(u) and in both cases

Pf(ush) = sup{A.h : A € Jf(u)}

sup{A.h : A € J"f(u)}.

F.H. Clarke (reference [29]) defined, in the case m=1, the Clarke

directional derivative f:(u;h) using the above technique.
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Definition 4.5 : The generalized gradient of f at u, denoted 3f(u),

is the convex hull of the set of 1imits of the form
Tim Vf(u+hi), where h. >0 as i -+ =,

It follows that vf(u) is convex compact and non-empty if f(-) is
locally Lipschitz. As in the convex case the mapping u - 3f(u)
is upper semi-continuous. Also 3f(u) is a Singleton for all u € Q

if andonly if f € D,(Q). If 3f(u) = {x} then Vf(u) = x.

He proceeds to show that

f:(u;h) Tim f(y+t2)-f(y)

(y>t)=(u,0")

t

max{<x3;h> : x € 3f(u)}

and that in fact if

Tim sup f(u+th)-f(u)
t0, t

<x;h> g
for all h € R* then x € 3f(u).

A function f(-) is said to be Clarke regular if f'(ush) (the

directional derivative) exists and equals f:(u;h) for every h € R".

F.H. Clarke proves also that 3(f,+f,)(u) < af,(u) + 5f,(u), for
suitable functions f, and f,. R.S. Womersley proved the following

in reference [31].

n

Lemma 4.4 : Let £ : R® ~ R be a smooth function and Tet h : R® = R
be locally Lipschitz. Then the function F(x) = f(x) + h(x) is

locally Lipschitz and

3F(x)

{vf(x) + u : u € 3h(x)}

ah(x) + vf(x).
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Proof : Reference [31], pp.62. O

This approach to generalized derivatives is inspired by the following

theorem on the sub-derivative of a convex function h(-),
oh(u) = {u* : h(x) - h(u) > <u*,x-u> for all x}.

Theorem 4.11 : Let h(+) be lower semi-continuous, bounded below and

not identically +~. Suppose also that u € int(domh).
Then
dh(u) = co S(u)

where S(u) is the set of all limits of sequences {vh(,ui)};”=1 such

that h is differentiable at U and u, tends to u.

Proof : Reference [23], Theorem 25.6. O

For a convex function the condition 0 € dh(u) implies h(-) achieves

its global minimum at u.

In the case f(-) : R® = R, if f is convex af(u) = Jf(u) = J°f(u) the
convex sub-differential with respect to the class of affine mappings

and in the case f Gateaux differentiable
of (u) = Jf(u) = I°f(u) = {A} where A.h = f'(u3h).

This is the real power of the theory at present. Whenever stronger

forms of differentiability exist then the weaker form reduces to the

stronger.

One can also define derivatives of set valued mappings.

Definition 4.6 : Suppose we let for E(.), ¢(+) : R" + C(R™)

0, , (ush) = d(F(uth),F(u)+e(h))
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and

0 , (ush) = max{d*(F(uth),F(u)+¢(h)), d*(F(u).F(u+h)-¢(h))}

(obviously 0* ¢(u;h) <0 ¢(u;h))- Then¢(+) : R" » cV(R™) a positively

homogeneous u.s.c. multi-function is said to be

(i) an upper strict prederivative of F(-) at u if

(y,h;iTu,o) 0f , (ysh)/ihil = 0,
(ii) a strict prederivative of F(-) at u if

(y,h}iTu,o) 0., {ysh)/iihil = 0.
The prederivatives are not unique but one may define the infimum and
minimal (when it exists) prederivatives with respect to the lattice

induced by set inclusion on CV(R™).

Proposition 4.4 : The set valued mapping F(+) : R* - C(R") has a upper

strict prederivative iff it is Tocally Lipschitz at the relevant point

n

ueR.
Proof : Reference [25] page 1354, Prop. 4.15. [}
Proposition 4.5 : Suppose that f(+):R">R™ defines a set

valued mapping F(-) = {f(-)}. Then F(.) has a strict prederivative
o(+) : R" > CV(R™) at u € R* iff f is strictly Fréchet differentiable.
In this case,  f*(u) € L(R",R") satisfies ¢(h) = {f'(u).h} = {f;(u;h)}

for any h € R" where f;(u;h) is the paratingential derivative

L . - Tim ]
fp (U,h) (y,g,t)->(u,h,0+) Uf(ysg:t)'
Proof : Reference [25] page 1363, Prop. 6.2. O

Particularly regular is the behaviour of the directional derivatives

of the convex functions f(:) : R" > R for which
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f'(uzh) = f:(u;h) = f;(u;h) = f:(u;h). We also have that if f is
strictly . Fréchet differentiable f;(u;h) = f:(u;h):

Proposition 4.6 : If f(+) : R® > R™ is locally Lipschitz at u then its

convex paratingent Pf(u;+) is continuous and is the minimal (unique)

upper strict prederivative of F(u) = {f(u)J.
Proof : Reference [25] page 1354. O

Of course we are not always assured of a strict prederivative in the

case of local Lipschitzness but this indicates how regular the problem

is in Theorem 4.6.

Oneneeds only to introduce stronger convexity assumptionsto

obtain conditions for the existence of the one sided directional

derivative for the problem;

M(uy) = sup {f(uy,u,); gi(u1,uz) < by i=1,..,m}
aur) = {uy @ M(uy) < fluy,us); g (up,up) < by i=1,..,ml
We Tet

M) = 47 3 0 L(u,d) = )07 L(usy))

S \ .
L(ussy) = el (F(unue) -<y.glun,uz)> + <y,55).

Theorem 4.12 : Suppose

(1) U, is a closed convex set,

(i) -f(uy,+) and gj(ﬁl,-); j € {1,..,m} are convex on U, for
U, € Uy, continuously differentiable on U, x N{u,) where
N(d,) is some neighbourhood of u,,

(iii)  «(Uy) is non-empty and bounded,

(iv) M(u,) is finite and

(v) there is a point U, € U, such that g(d; ,Up) < O.
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Then

(a) M'(U,;h) exists and is finite for all h € R" and

V(oY = max_ min -
M) = oea(d) yer(,) (T f(Eu)h>

- y'V1g(Gl,u2)h}

where f : U; x U, - R; g=(g1,..,9 ).

(b) If a(u;) < int Uz then

max

M'(uish) = uz€a(u;) {<Vif(uy,uz),h> + <Va2f(Uy ,Uz),w>}
W,ZER

subject to

zg(uy ,uz) + <V,g(U; 5Uz),W> < =<V, g(dy,usz),h>.

Proof : See Reference [26], Theorem 2. 2

J. Gauvin and F. Dubeau extended this result in reference [29].

Theorem 4.13 : Suppose
(1) a(U;) is non-empty,
(i1) a(u1) is uniformly compact near u, and

(i11)  the Cottle constraint qualification holds at b.
Then
M(uy) < col Vif(ur,uz) =  y'vig(Ui,uz)
U, € ofu;) and y € K(l,,u2)}

where K(u;,u,) is the compact convex set of Lagrange multipliers

associated with the optimal solution u, at 0,.
Proof : Theorem 5.3 of reference [29]. a

Equality constraints are actually explicitly treated in this paper.
We have and will continue to state such results, referring only to

the inequality constraint problem we have been dealing with in this
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Chapter. J. Dauvin and F. Dubeau go on to deduce the following corollary.

Corollary 4.13 : If in Theorem 4.13, the assumption (iii) is

replaced by the assumption of linear independence of the gradients

{Vz% (G, ,uz); j=1,..,m} for every u, € a(u,), then
M(ur) = col Vif(ur,uz) = ¥y Vig(Uy,uz) : uz € afup)}

where y is the unique Lagrange multiplier associated with u2.

Furthermore, M(u;) is Clarke regular at u;.
Proof : Corollary 5.4 reference [29]. O

Such conditions are a first step towards finding techniques

to solve problems 1like the following

mi(uy) = min{liui-ual 2 : u, € T(u;)}

where

T(uy) {u, : gj (up,uz) < 5,-; j=1,...,n}h

Naturally we are assuming m=n and u;, u, € R". This will have a
solution u, even if there exists no fixed point for the multi-valued
mapping T'(-) but of course, whenever m(u,) = 0 our solution is a

fixed point. For this reason the criteria which imply an equivalence

are of interest.

Convexity plays its role in reformulating the constrained optimization
problem as an unconstrained Lagrangian problem. Many Lagrangian

methods exist for non-convex problems now.

We will be using the one characterized in references [11], [21],

[22], [28] and [32].

In the work on alternate Lagrangians, researchers first looked at the

problem:
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(PL) : min f(u,)

subject to hi(uz) = 0; i=1,..,m; using the Lagrangian
m Ck )
L(uz,y, »c, ) = f(uz) + Z h(u,) + —-th (uz2)1%.

The Lagrangian L is minimized over u, for a sequence (yk,ck); ¢ 20,
which is updated via Yooy =¥ ¥ ckh(uz), where u is the result of the
K™ minimization of L (ck monotonically increases). On supposing u,
is an optimal solution of (PL) in order to get a complete theory, one

makes the following assumptions concerning the nature of f and m in

an open ball around u,.

(A) The point Uz together with a unique Lagrange multiplier vector
y satisfies the standard second order sufficiency conditions for u»

to be a Tocal minimum.

To elucidate the meaning of this statement,we reiterate some well-known

propositions. For the moment we assume m < n.

Proposition 4.7 : Suppose uz is a local minimum of (PL) and f and h

are continuously differentiable locally around G,. We let
LO(“Z:Y) = L(Uz,y,O)

and suppose vh; (uz), ..., th(ﬁz) are linear independent. Then

there exists a unique vector y such that
VZLO(GZ:y) =0

and if in addition f and h are twice continuously differentiable
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around U, we have

W3 Lo(lz,y)w % 0,
vV wER" with Vh(iz2)'w = 0.
Proof : Reference [32] Proposition 1.23. .

Proposition 4.8 : Let u, be such that h(i2) = 0 and suppose f and h

are twice continuously differentiable. Assume there exists a vector

y € R" such that

Volo(uz,y) = 0
and

W'V3Lo(Us,y)w > 0; Vw # 0
with Vh(u,)'w = 0- Theng ¢ > 0 s.t.

fuz) < f(u2); Vv uy € N(Uz,€)  up # Us.
Proof : Reference [32] Proposition 1.24.
In other words we can restate (A) as follows:

(A1) The functions f, hi, i=1,..,m are twice continuously

differentiable within a ball around u,.

(A2) The gradients Vhi(ﬁz); i=1,..,m are linear independent and

there exists a unique Lagrange multiplier y such that
Vf(l,) + ] ¥ Voh (d,) = 0
i=1
(A3) The Hessian matrix of the Lagrangian Lo(us,y) satisfies
w'V3Lo(uz,y)w > 0 for all w € R™ w # 0 with W'Vzhi(az) = 0.

To get a complete theory we also assume:
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(B) The Hessian matrices V2f and V2h are Lipschitz continuous in

an open ball of uU,.

It can be shown that if Y (usually assumed bounded) contains y in
its interior, the generated sequence {yk} remains in the interior of

Y (or at Teast can be arranged to by leaving y  unchanged if Yeoi V).

. k .
If the penalty parameter is sufficiently large (ie. ckzc*) and u, is the
minimum of L(-,yk,ck) closest to U,, then u§ » U, and v ~y. If

c C < = then convergence is linear (see Reference [28] and [321).

Inequality constraints can be treated in a simple way by introducing

slack variables, as the problem;

(P) min{f(u,) : g, (uz) < Bi; i=1,..,m}

is equivalent to
min{f(u,) : gi(uz) + zf = Ei; i=1,...,m}

where z are additional variables. It is easily shown that
(Up,v-g1 (Up)+B1, ..., /lgm(62)+5m)

is an optimal solution to this problem (together with §) satisfying

A and B, if we demand the inequality constraint problem to satisfy

instead of (A) the assumptions

(A*) The function f,g ; i=1,..,m are twice continuously differentiable

around U,. The gradients{Vgi(Gz); j € J(uy)} where
J(u,) = {j : gj(ﬁz) = % s

are linear independent. We have a Lagrange multiplier s.t.
¥ g (G2) - B1 =0,

Vf(u,) +

i

&ngj(ﬁz) =0 and ¥ » 0

Il ~8
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with
¥ >0 iff § € 3(0,).
Furthermore, we require

w [Vaf(uz) + ) ijv%% (Ug)]w >0

i=1

for all w 7 0 such that w“ng(Gz) = 0 for all j € J(u,).

If we carry out first the minimization of the inequality constraint

Lagrangian with respect to z;, ..., z_ namely,

C(u,zoy,c) = flu) + § [g; (u) - B, + 27

i=1..

+c/2 } [9, (u) - ﬁ + zjg]2

i=1

we get L(u,y.,c) = m;" C(u,z,y,c) where

ino~ Il F j
min = 2 -
o Lluszayse) = f(u) + 5= T (g (u) - b ,y) and
P(a,8) = max(0,B+ca)? - 2.
The optimal value of the z are given in terms of (u,y,c) by
z*(u,y,c) = max {0, -y /e - g (u) + b} J=l....m

Minimization of L(u,y,c) with respect to u yields u(y,c), and the

multiplier method iteration takes the form

1

Yo

Y, *clg (uly,»e) - B 1+ 22Tuly, »c),y, »cl

max [0,y, +cg, (uly, ,c)) - b cl: j=1,..,m.

Proposition 4.9 : Suppose u, satisfies g(uz) < b and

that  (A') holds then u, is a strict local minimum of the problem

(P) ije. 3 € > 0 s.t.
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f(uz) < fluz); Yu, € N(uz,€) U, # us.

Proof : Reference [32] Proposition 1.31 . O

If the assumption (A') is satisfied by (P), then the condition (A) is
satisfied by the problem above. As a consequence there exists a
unique Lagrange multiplier (&1,..,§m) which is the solution to the
system of equations, given in the first part of the following

(these equations are known as the Kuhn Tucker conditions).

Proposition 4.10 : Let uz be a local minimum of (P) and assume that

f and g, i=1,..,m are continuously differentiable in a neighbour-
hood of u, and that the gradients ng(ﬁz); j € J(u,) are linearly

independent. Then there exists a unique vector y such that
VZL(GZ:S/) = 0
¥ 305 ¥ (g, () - B1 =05V j=1,...m.

If in addition f and g » j=1,..,m are twice continuously differentiable

in a neighbourhood of U,>then for all w € R™ satisfying
Vg (d2)'w = 05 § € 3(dz),
we have
w V3L (uz,y)w > 0.
Proof : Reference ([32] Proposition 1.29. O

There always exists a Lagrange multiplier, satisfying the first
equations of Proposition 4.10, when uz is a regular point. Any
suitable constraint qualification, such as the Cottle constraint
qualification, implies regularity. In this situation though, we

do not necessarily have uniqueness.
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Of course all theorems for the equality constraint probliem are
applicable to the inequality problem satisfying sufficiency

assumptions (A').

We in fact can replace the assumption that the gradients V% (Us)s
j € J(uz2) are linearly independent by the assumption that u, is
strict Tocal minimum and a regular point. In doing so we still

retain this equivalence (see reference [32]).

If we assume the gradients ng(ﬁz); j € J(uy) are linearly independent
then the Cottle constraint qualification must hold at u,. That. is
there exists no multipliers, not all zero, such that
%_ y. g (uz) =0 (y. = 0 or not).
j€d(u,) ’ !
If we assume the Cottle constraint qualification holds then we

immediately have the regularity of u, for the problem (P).

Suppose we let

min{f(u,) : gj(uz) + zf - Ej = b5 J=1,...m;

(UZsZ) € N((Gz,i),é)}

m(b)

m{b+b).

Under condition (A') we can use the implicit function theorem to
get Vm(0) = vm(b) = - ¥, the unique Lagrange multiplier associated
with the strict local minimum u,. In fact m(+) is twice continuously

differentiable in a neighbourhood of zero (see reference [21]).

The localization of the minimization allows us to do this. It is
somewhat instructive to see how this may be done, but first we

investigate the role of the multi-valued mapping

a(b) = {uz : u2 €T(b); f(u,) < m(b)}
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where
r(b) = {uz: g (u2) < b + b3 j=1,..,m}
and m(b) = inf{f(uz); u2€r(b)}.

When o(0) consists of a collection of isolated minima (which is the
case for strict local minima) we know that b - a(b) is lower semi-

continuous at b (see Proposition 4.1).

Proposition 4.11 : Suppose f(+) and gj(-); j=1,..,m are continuous

functions. Suppose also that the multi-valued mapping b - a(b)

is lower semi-continuous at b = 0.

Then f(b) = m(b) for b € N(0,8), for some § > O.

Proof : First we note that

=
—
o
~—

1

min{f(uz) : gj(uz) + zf B q + %; j=1,..,m;
(UZ’Z) € N((6252)5g)}
= m'ln{f(U2) . gj (UZ) + ij = b_] + bj s J 19--sm;

(uz2,2f,..,2%) € N((Uz,23,..,22),(8,¢e)}

for a suitable 8§, € > 0. Hence

m(b) 3 min{f(u,) :,gj(uz) + zf =B +b; j=1,...m;

Uo € N(Gz,é)]“
If we let (uz,zf) be s.t.

g (up) + z2 =0+ b,

] ] } ]

then

z2 = (b +b) - g (uz).

j i i

For e > 0 as above we can choose & > 0 s.t. for u, € N(ﬁ2,§);

v j=1,..,m
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g, (us) - €, < g(uy) < g(uz) + € .
i Js

3

Hence

(E + % ) = g(uy) - g

< (B +b)-gis) < (B +b)-glu) +e,

ie, 27 - e <22 gz + e,

J ] ] J b
ie., (2h,..,22) € N((Z,...52),e).
So for & sufficiently small u, € N(ﬁz,§x and zf s.t.

2 2 =3 « 4=

gj(u ) + z E + g 5 j=1,..,m,

we have (uz,zf) € N(Gz,i%,..,ii),(a,e)) Hence

m(b) < min{f(u,) : gj(uz) + zf = bj + H s j=1,...,m;

Us € N(az,§)}
for § sufficiently small, ije.
m(b) = min{fuz) : g (uz) < B +b 5 us €N(Uz,8)}.

By assumption b > a(b,0) is lower semi-contuous at b = 0.

From the definition of 1.s.c. at b = 0 we have 3 6* > 0 s.t.
N(0,8*%) = {b : a(b) n N(u,,8) # ¢}.
Hence for b € N(0,8*), 3 u, € N(u,9) s.t.

f(Uz) Iﬁ(b):v

that is,m(b) = m(b).
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In reference [22] Rockafellar studies
p(b) = inf{F(uz,b); uz € Uy}

where for each (u,,b) € U, x R™;

I flu,) if §j(u2) < @ + g s j=1,..,m;
F(us,b) = '

+oo otherwise.

Of course we always have p(b) = m(b) whenever b + b € B(g). In fact
if b € int B(g) then p(b) = m(b) for b € N(0,8), for & sufficiently
small. Rockafellar goes on to define the concept of stability

degree 2.

Definition 4.7 : If there exists a twice continuously differentiable

function y(-) : N(0,8) -~ R, for some § > 0, s.t.

(a) m(b) > ¢(b); v b € N(0,8)
(b) m(0) = y(0)

then m(-) is said to be stable degree 2 or alternatively the problem

(P) is said to be stable degree 2.
If m(b) is sub-differentiable at zero with respect to the class
o2 = {y(b) = q - rib-bi*; q € R, r € R,, b € R}

then obviously it is stable degree 2. It is not hard to see that
if p(+) is &2 bounded (i.e. minorized by an element of &,) and
stable degree 2 at zero then it is sub-differentiable there with

2R
respect to the above class (see Proposition 5.6 of reference [1%]).

¥\
In reference [1¥] this was exploited to high degree. We can combine
a number of very general results from this reference to obtain the

following;
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Proposition 4.12 : Suppose p(+) : R™ - R is lower semi-continuous

and &,-bounded then it is in fact ®:-convex.

Proof : Reference [22] Theorem 4.2, Proposition 4.13 and example

4.15. ‘ O
The class

{y(b) = a - clib-bll2: a € R and b € R™}

o
1]

Ll

Q° is of interest to us.
If p(+) is Q° convex then

p(b) = sup{-clb-bii2 + a; (b,a) €S, S < R™ x R}.
Since

Ib-bil 2 = b2 - 2<b,b> + b2
we have

p(b) + clibl? = sup{<b,b> + a: (b,3) € $* < R" x R}

which is the supremum of a class of affine mappings.

Thus p(+) is Q -convex iff p(+) + cll-I? is convex in the ordinary
sense. In this situation we know that p(:) is Q° sub-differentiable

at any point in int(dom f) (reference [11] Theorem 5.11). We have

also when c > 0;

Proposition 4.13 : Suppose h(+) is Fré chet differentiable and h'(-)

Lipschitz continuous on an open convex set B.

Then there exists a ¢ > 0 s.t. h(+) + cli*ll2 is a convex function on

B and hence h(-) ig QE convex on B.

Proof : Reference [11] Corollary 5.14. O
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In reference [22] Rockafellar uses the following:

L(uzsysc) = inf{F(u,,b) + <y.b> + —2°+| bil 2; b € R™}

W(y,c) = inf{p(b) + <y.b> + %Hbllz; b € R™}.

In the case when p(+) is twice continuously differentiable in a
neighbourhood of zero then p(b) +<y.b>is Qa convex on the interior of
a quasi-compact neighbourhood. This is unlikely in general, but we

will be interested in whether
b + P(b) + <y.b> + %n bil 2
can be made convex on a quasi-compact neighbourhood of zero.
We need the following in order to investigate this question later.

Theorem 4.14 : Suppose h(+) : R" + R is lower semi-continuous and

®, bounded. Then h(-) is sub-differentiable on a dense sub-set of

its domain.

Proof : Reference [11], Theorem 6.2 with o = 2 and X = B" (obviously

uniformly convex). O

Theorem 4.15 : Suppose p(b) is &, bounded and is stable degree 2.
In order that Uy, € U, is an optimal solution to the probiem (P),
it is necessary and sufficient that there exists

m

(y,¢) € T = R” x (0,+=) s.t.
L(uz,y,c) » L(U2,y,c) > L(Uz2,y,C)

for all u, € Uz; (y,c) € T. Moreover, this condition is satisfied by

(y,c) iff (y,c) is optimal for the dual problem

(D):SUPT[ 18: L(uz,y,c)] = supTw(y,c) where W(y,c) = infuzL(uz,y,c).

In other words,
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i(0) = 07 sup L(us,ysc)

inf
max, . Lluz.y.e).

Indeed (y,c) is an optimal solution of (D) for some ¢ > 0 iff
y = -vyp(0) for some function.w as in the definition of stability

degree 2 and in fact (y,c) is optimal for (D) when ¢ > c.
Proof : Reference [27] Theorem 5 and Corollary 5.2. O

Let us suppose b € int B(g) and m(-) is differentiable twice
continuously around zero. Then for any ¥(+) satisfying the definition
of stability degree 2 we have the function 2(b) = m(b) - y(b) > 0

taking a Tocal minimum at b = 0. This implies
v2(0) = 0 = vm(0) - wy(0)
and hence

-vm(0) = -w(0) = -y.

Corollary 4.15 : Suppose

(i) the Cottle constraint qualification holds at b € int B(g);
(i) there exists a b > 0 such that T'(b) is bounded;
(iii) the optimal set a(b) consists of isolated local minima, and

(iv) the condition (A') is satisfied by a particular u, € a(b).

Then (y,c) are the only solutions of the dual problem, where ¢ > 0
is sufficiently large and y is the unique Lagrange multiplier

associated with u,. In fact vm(0Q) = -y.

Proof : For our particular optimal solution u, we have
m(b) = m(b) = min{f(uz) : uz € T(b) N N(Gz,d)} Tocally around b = 0.

This follows from Theorem 4.1, Propositions 4.1, 4.9 and 4.11.
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Since (A') holds we have a unique Lagrange multiplier y associated
with u,. The implicit function theorem implies under the conditions
(A') that m(b) is twice continuously differentiable around b = 0

and vm(0) = m(0) = -y. Theorem 4.15 allows us to deduce that

(y,c) is a solution of the dual and the above comment allows us to
deduce that (y.c) are the only solutions when ¢ is sufficiently

large. O

We note that the following conditions (i), (ii).,and(v) aresufficient
(and "almost necessary") for u, to be an isolated local optimal

solution of (P).

Theorem 4.16 : Suppose the following assumptions are satisfied:
(1) the functions f and §j; j=1,..,m are twice continuously
differentiable;
(i1) the Cottle constraint qualification holds for i (+)s
j=1,..,m at b € int B(g);
(iii) (b)) = {us : i (u) - Ej < Bj; j=1,..,m} is bounded for b > 0;
(iv) the function p(+) is &, bounded. For each optimal
solution U, there exists a Lagrange multiplier y (satisfying
the Kuhn-Tucker conditions) for which we have;
(v) the Hessian matrix of L(u,,y,0)
VEL(i2,5.0) = V3F(E2) + ] 7,V9, (@2)!
verifies the inequality J_l
w'viL(U,,y,0)w > 0

for all w# 0 s.t.

(a) W'Vzﬁj(ﬁz) = 0 for

Jjedo(uy) =13 : §j(ﬁz) =0, y >0} and
(b) w'vzgj(ﬁz) < 0 for

jedi(uz) = {J:g(U2) =0,y =0}

Then (P) is stable degree 2 and for c sufficiently large the pair

(y,c) is an optimal solution of the dua]I(D).
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Proof : The conditions (v) are sufficient for u, to be an isolated
locally optimal solution. Assumption (ii) implies the existence

of a Lagrange multiplier. Assumptions (ii) and (iii) ensure that

b ~ T'(b) is continuous locally around b and uniformly compact

near b. The conditions of Proposition 4.1 are met and we can

deduce the lower semi-continuity of b » a(b) at zero. The conditions

of Proposition 4.11 are satisfied and we have locally around zero

m(b)

p:(b) = m(b)

inf{f(uz) = vz € N(uz2,8)5 g (u2) < b +b

i j

for j=1,..,m},
for some § > 0, where u, is any isolated optimal solution of (P).

We can now, in an identical fashion to R.T. Rockafellar, construct

a function m(-+) twice continuous differentiable in a neighbourhood

of zero s.t.

(a) m(b) » w(b) in a neighbourhood of zero,
(b) m(0) = w(0), and
(c) wvm(0) = -y.

We refer the reader to Theorem 6 of reference [22] for the details
of this construction. The conditions of Theorem 4.15 are now

satisfied and our result is established. O

Much interest has been directed towards interpreting the Clarke
derivative of the marginal mapping m(b) at b = 0. The general-

ization of the relation, which holds in the convex case, namely

am(0) = {-y : 3 u, satisfying with y the Kuhn-Tucker conditions},

is hoped to hold more generally. J. Gauvin in reference [27] has

proved a weaker result.
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Theorem 4.17 : Suppose o(0) is non-empty, o(b) is uniformly compact

near zero, and the Cottle constraint qualification holds at b.

Then

om(0) = co{-y : 3 U, satisfiying with y the Kuhn-Tucker conditions}.
Proof : Reference [27], Theorem 3. .

We will not pursue this particular relation but prove the following

equivalence:

am(0) = {-y : (y,c) is a solution of the dual of problem (P)

for some ¢ € R+}.

The above set of dual variables is always a convex set. This can be
deduced using the following theorem. If we can show this equivalence then

we have shown the compactness of the set.

Theorem 4.18 : The functions L(u,,y,c) and w(y,c) are concave and

upper semi-continuous in (y,c) € R* x R, and non-decreasing in ¢ € R,

nowhere +«=. Furthermore, whenever ¢ > s » 0 one has
W(y,c) » max{W(z,s) - Nly-zl2/2 (c-s); z € R"}.
Proof : Reference [22], Theorem 1. O

One can also deduce from this that if (y,c) is a solution of the
dual then (y,c) will be a solution if ¢ > c. We always have

W(y,c) < p(0).

Proposition 4.15 : Suppose

(1) p(+) is &, bounded,
(i1) m(+) is locally Lipschitz order 2 around b = 0, and

(ii1) b € int B(q).

Then the following are equivalent:
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(i) zero is a local minimum of b » p(b) + <y,b> + %%Ibll2
for all c sufficiently large;

(i1) (y.¢) is a solution of the dual for some ¢ > 0.

Proof : We know that

W(y,c) = inf{p(b) + <y,b> + %H bi2; b € R"}

so we restrict our attention to
{b e R™ = p(b) + <F,b> + SHibi2 = W(F,c)}.

This is in fact the set of global minima of p(b) + <y,b> + %Hbuz.

Since m(+) is locally Lipschitz order 2 at b = 0 and b € int B(g)

we have,

(a) p(0)
(b) p(b) = m(b) > m(0) - Mibll?, locally around b = 0 (for some

m(0), and

Lipschitz constant M > Q).

Thus we establish stability degree 2 by letting y(b) = m(b) - Mibi 2.
Since p(+) is ®,-bounded Theorem 4.15 applies. Hence for ¢ > 0,

sufficiently large, we have

p(0) = m(0) = max_ W(y,c) = W(y,c)
iff

b + p(b) + <y,b> + -Sm bll 2

is minimized at b = 0.

The implication (ii) - (i) is immediate. To show (i) » (ii) we need

to show

0€{beR™: p(b) + <j,b> + %nt»u2 = W(y,c)}

for ¢ sufficiently large.
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Now
{b € R™ : p(b) + <y,b> + HbI 2 = W(y,c)}

c{beB(g) :a- %ubu2 + <y,b> + %ﬂbll2 < m(0)}

= 5{c),

where p(b) > a - %Hbll2 for all b € R™ (because of p(s)'s &,

boundedness).

We can express

S{c) = {b € B(g) : TE%FT(ﬁ(O)_a) + (%g%;z-; b - (c:r [2}.

Choose €; > 0 and €, > 0. We can choose ¢ to be sufficiently large

(c > ¢, say) as to ensure that 0 < -—3——(6(0)-a) < g and

(c-r)
- L
(I(!ZJ_(I‘I”] = (C—Y‘) Iyl < €5.

We have

S(c) c{b€B(g) : ex +eZx1b - TE’%FY"ZL
That is, if b € S(c), we have

ibli < Ib - ngFﬂl + nzgg;ju < (elfeg)% + £,
for ¢ > c.
Now since zero is a local minimum we have

p(0) = m(0) < p(b) + <¥,b> + bl?

for all b € N(0,e), for some € > 0. By ensuring that c is

sufficiently large that
0 < (e1+e3)” + ;5 < ¢,

we have
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W(y,c) = p(b) + <y,b> + —gﬂ bij 2

for some b € N(0,g) and
p(0) = m(0) < W(y,c).

This implies zero is a global minimum and (y.,c) is a solution of the

dual. |

Theorem 4.19 : Suppose

(1) b € int B(g)
(ii) b »~ m(b) is locally Lipschitz order 2 around b = 0, and

(ii1) p(+) is &, bounded.

Then

am(0) = 5p(0)

{-y : (y,c) is a solution of the dual problem (D)

for some ¢ > 0}.
Proof : We first show that

b > p(b) + <y,b> + %u bil 2

convex on the interior of a quasi-compact neighbourhood of zero

for ¢ sufficiently large. Suppose N(0,8) is a quasi-compact
neighbourhood of zero on which b + m(b) is locally order 2
Lipschitz. From Theorem 4.12 we know that b + p(b) = m(b) is @,
sub-differentiable on a dense sub-set of N(0,8) and from Proposition

4.12 d,-convex.
Let G be a dense sub-set of N(0,8) s.t. for b € G we have some r > 0

m(b) » M(p) - gub-Bu2 for all b € N(0,6).
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We let
H(B) = {r >0 : gub-su2 > m(B) - m(b)
for a1l b € N(0,8)}
and
F(B) = inf{r : r > 2M and r € H(b)}.

We proceed to show that for b € G, b + r(b) is upper semi-continuous
at b if M is the Lipschitz constant of b + m(b). Due to Theorem 1.21

this amounts to showing that

b>{r :r >2Mand r € H(b)}
= H(b) N [2M,+x)

is open at any given b €6G. That is, given
(1) r e H(b) n [2M,+),
(i) b" €6 s.t. b* > b,

we must show there exists

r € H(b") n [2M,+=) s.t.
ros oy,
We let
Pal n A 2 _
E. sup{r(ub-bu + b -bll) . b € N(0,8)}

Il b -bil 2

and note that;

(1i1)  Ib"-biZ < (Ib-bi + Wb bl )2
which implies r" > r > 2M;

(iv) for b # b

o r(ib-bl_+ 16" -bi)?
Ib" -bil 2

~

(v) for b=1b

- Yr,as n->o«o and

rt =r for all n.
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We are given that

Zib-bi 2 > A(b) - m(b)  for all b € N(0,8).

Hence

m(b") - m(b)
< m(b) - m(b) + MIb"-by 2

A

m(b) - m(b) + %ub“-Bu2

N

§<ub-8u2 + b bl 2)

r(ib-bll + 1" -bll )2
Il b" -blj

1

< 5[ 11 b" -b) 2

r"iIb"-bi 2 for all b € N(0,6).

N
Nj =

Since r" € H(b") n [2M,+°), we have established the u.s.c. of

T > -~~~

b > r(b) at

Now for each b € G we have F(B) < 4+~ and in fact F(B) is bounded on
G  since an upper semi-continuous function attains its supremum on

the compact set G. Hence
m(-)

is sub-differentiable with respect to Qc/2 on G for any c sufficiently

large so that
F(B) < ¢ Vb €ea.

The continuity of m(+) extends this to all of N(0,8). As a conse-

quence m(-) is Qc—’2 convex on N(0,8) and

m(b) = sup{w(b) = m(b) - Sib-Bi2; b € N(0,8)}.

N O

Hence for all b € N(0,8)



172

p(b) + <y,b> + gnbu2

= sup{(m(b) - %HBHZ) + <y+Cb,b> + iEéglﬂbuz:

b € N(0,68)}

the supremum of a collection of convex functions in b for ¢ > c.

We can define a proper, lower semi-continuous, convex function on
R™ by letting
m(b) + <y,b> + bl %; if b € N(0,6)
h(b) =
o0

for ¢ > C.

Theorem 4.11 is applicable and h(b) achieves its global minimum when
0 € 5h(b),

where d5h(b), the convex function's sub-derivative, coincides with the

Clarke generalized derivative if
b € N(0,6).

We now apply Lemma 4.4, after first noting that b € int B(g) and hence
that p(b) = m(b) Tocally around zero. We have, due to its local
Lipschitzness (i.e. local Lipschitz order 2 implies local Lipschitz

order 1), the existence of y s.t.
-y € am(0).
For any such y

0 € am(0) + y

- - c
a(m(b) + <y,b> + ZbIZ)|

- y c 2
= 3(p(b) + <y,b> + FAbIZ)[ _

ah(b) |

b=0

ah(0).
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For for ¢ > ¢ this implies h(+) attains its global minimum at b = 0,

that is
b + p(b) + <¥,b> + bl 2
attains its local minimum at b = 0 for any c > c.

Proposition 4.15 applies and (y,c) is a solution of the dual problem.

To obtain the reversed inclusion we note that since Theorem 4.15 is

applicable we have for c¢ sufficiently large
p(0) = m(0) = max_ W(y,c) = W(y,c)

for any y = -V(0), for any function satisfying the definition of

stability degree 2.

Suppose we have such a function y(-) : R" > R satisfying

(vi)  p(0)
(vii)  p(b)

m(0) = ¥(0),
m(b) > y(b) for b € N(0,8) (for some & > 0).

This implies that

1im sup p(te)-p(0)
t

+

_ 1im sup p(te)-y(0)
t—>0+ t

Tim sup y(te)-y(0)
t

t+0+

v

_ lim y(te)-y(0)
t—>0+ t

<y (0),e>.
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Since this holds for all e € R™ we have
vw(0) € 3p(0) = am(0). 0

Theorem 4.4 gives conditions under which m(-) will be locally
Lipschitz order 2 around b = 0. The role of ®,-boundedness is
obviously crucial to the aone proof and as a consequence needs
further exploration. It would be of interest to know what con-
ditions on the functions f(-), gj(-); j=1,..,m would imply ®,-
boundedness. R.T. Rockafellar referred to this boundedness as
the quadratic growth condition. He gives in reference [22]
the following condition

I b]uﬂm p(b)/libli 2 > e

which is obviously equivalent to &,-boundedness. He goes on to
note that this condition holds if and only if W(y,c) is not
identically -~ on T, or, in other words, if and only if (D) has
"feasible solutions". The quadratic growth condition is also
equivalent to the condition that for some y € R™ (not necessarily
y = 0) and some € 3 0, the infimum of L(u.,y.,c ) over all u, € U,

is not -«,

The interesting thing about this equivalence is that even though
am(0) is, under very generaly conditions, contained in the convex
closure of the Lagrange multipliers (see Theorem 4.17), it is not
necessarily equivalent to this set. Theorem 4.16 gives conditions
under which a Lagrange multiplier associated with an optimal

solution would be contained in am(0).

Interestingly enough, the inclusion of am(0) in the set of Lagrange
multipliers follows under the conditions of Theorem 4.19 if we

assume U, is open and the functions f(+) and §j(-); j=1,..,m are
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continuously differentiable. That is, if u, € U, and (y,c) € T

satisfy the saddle point relation of Theorem 4.15, we have;

0= %(62a5/96) = max{éj (l_lz): -‘;lj /E}s for j=13--’m’
j

0 = VoL (i2,5,¢)
- VoF (i) + .'fl max{0,§ +53 (d2)192§, (i2)
,i
= Vaf(ua) + .fl[yj + € max{g (d2)s -, /EHV3, (i)
;]
implying

g (Uz) = 0, for j=1,..,m

gj(Uz)sO;yj A

and
Vaf(l2) + ] ¥ V4 (G2) = 0.
i=1

R.T. Rockafellar also notes that if the functions f(-), i ()3
j=1,..,m are twice continuously differentiable one has the condition

(v) of Theorem 4.16 almost satisfied in the sense that the inequality
w'ViL(u ,y.c)w > 0,

is weakened to
w'vaL(u,,y,c)w > 0.

Corollary 4.19 : Suppose;

(1) b € int B(9);

(i) b - m(b) is locally Lipschitz order 2 around b = 0;

(iii) p(+) is @, bounded;

(iv) the functions f(-), §j(-); j=1,..,m, are continuously
differentiable on U, and

(v) U, is an open set.
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Then am(0) < {-y : 3 u, satisfying with y the Kuhn-Tucker conditions}.
Proof : Theorem 4.19 and the above comments. ]

In a way the dual solutions can be thought of as a more "refined" set

of Lagrange multipliers.
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CHAPTER V

Fuzzy sets have been around for a number of years. They were developed

to model the concept of "impression". For instance what do we mean by

the set of "tall" people? How do we qualify degree of closeness?
Initially an extension of ordinary set theory was achieved by extending
the idea of the characteristic function I(A)(.) of a set AcU. The
characteristic function takes U onto {0,1} and is interpreted as assigning
a degree of membership. L.A. Zadeh replaced {0,1} with the unit interval
[0,1] giving a continuum of degree of membership. Other authors later
replaced [0,1] with much more genera]y]attices. More precisely, (L,<,")

a complete distributive lattice with order reversing involution.

Bruce Hutton (see references [36] and [37]) discussed various separation
axiom of the fuzzy topological spaces induced by this "extended" set
theory. WNormality being one of the few separation axioms which can be
defined purely in terms of the properties of open and closed sets (i.e.
no mention of points) is of some interest. Bruce Hutton characterised
normality in terms of a "Urysohn" type lemma and introduced the fuzzy
until interval, which plays the role of the ordinary unit interval in

this context.

As we have noted, the original Urysohn lemma is related to the problem
of extension of continuous functions (see the comments before Theorem
2.4). Theorems on continuous selection deal with spaces which
necessarily are extension spaces with respect to each other, namely if
AcU, and g : A~ U, we say U, is an extension space with respect to
U, if we can extend any continuous function g(+) to a continuous

f(+) : Up > U2. As we will see the multi-valued mappings we have

dealt with in previous chapters can be considered to be members of a
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particular fuzzy topology. It seems very natural that the concept of
fuzzy normality should shed Tight on the selection problem, involving
multi-valued mappings, to which we have devoted much time to in previous
chapters. It turns out to be also natural to deal with Tess general
lattices for L and restrict ourselves to continuous lattices which

reflect the continuum properties of the unit interval more closely.

In the first part of chapter five we extend slightly some of the
representational theorems of continuous Tlattice theory in the sense
that we deal with continuous lattices of sets which are not necessarily
topologies. We go on to establish a dual isomorphism of continuous
lattices which is closely related to the L-flow theory of C.V. Negoita
and D.A. Rolesca (see reference [34]). Using this we can show that
every quasi-convex function, taking a compact set U into R", can be
expressed as the point wise 1imit of a class of strictly quasi-convex
functions. More specifically, the strictly quasi-convex functions are

"Tower dense" in the lattice of quasi-convex functions.

We go onto consider the following problem. Given a class of ®-convex
sets which are closed under finite infimums, when will the resulting
fuzzy topology £' = [U,, T ¢ g'm (U,)1, admit the following? The exis-
tence of an open-closed set T(+), for any closed set K(+) and open set

U(-) where K(+) < U(+), such that

This of course implies normality of the corresponding fuzzy topology
£'. We conclude by showing that the normality of £' implies the
ability to achieve the above for some set T(-), corresponding to a

continuous multi-valued mapping.
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This particu]ar situation is closely related to the content of
Proposition 3.2. It is of interest because perfect normality is equivalent
to the existence of a generating class of [u,» T 0(U,)1, when U; is a
cbﬁpact Hausdorf space. Since [Up, I 0(U,)1 will consist of i.s. =
contihqus functians, the complements of u.s. continuous functions, the
closed fuzzy set K(¢) is an upper .semi-continuous mu]tirfunttion and
U(-) will be a Tower semi—continuous.multi—function, The mapping T(-)
is continuous and perfect normality will imply an arbitrarily close
graph approximation by continuous multi-functions. This demostrates that

such a property may be possessed by a large class of problems.
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§5.1 Representation of L-fuzzy sets

The usual power set P(U) can be identified with the indicator functions
{I(A) : U~ {0,1}; A € P(U)}. If this is done then a "natural" exten-
sion is to replace {0,1} by-a more general lattice reflecting the
degree of membership. More precisely, we use (L,<,c) a complete
lattice with order reversing involution. The L-fuzzy sets are then

the mappings {I(A) : U L} = £ (u).

The usual practice with fuzzy sets is to identify unions, inter-

sections and complements as follows

I{u A )(u) = VI(A )(u) = UA

I(n, A )(u) = A I(A )(u) = NA
(A )(u) = I(A)(u)°= A°.

One can, under certain situations, show that there exists a lattice

isomorphism between the L-fuzzy sets, lattice and the lattice of L-flow

sets.

Definition 5.1 : An L-flow subset of a set U is a family

Fu= (E(@)) g5 Ela) cUs va el

s.t.

E(Vioci) = U E(oci)‘; Vv{oci; i€el}lcl.

If we consider f : L - P(U) with the property f(ﬂ(% ) = U f(% ) for
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all {di}iel < L, we can generate flow subsets via these functions.
This was used in reference [34] to obtain an equivalent representation

for fuzzy sets. We will derive a variant of this by using a slightly

different concept.

Definition 5.2 : An L-deflow subset of a set U is a family

F - (E(0)) o3 E@) cUs Va €L
s.t.
E(vD) = U{E(d); d € D}
for all directed subsets D < L.

If we let T and L be continuous and complete lattices then complete

we know (Definition 1.17)

[L>1]={f:L~>1; fVD) = U{f(d) : d € D} for all directed sets
D <L}

is the complete continuous lattice of Scott continuous functions.

We can restrict the class [L - 7] as follows
[L>71lg={f€L~>1l; flo) = ¢}

where o is the minimal element of L. This is of course a complete
continuous lattice. This follows immediately from the completeness
and continuity of [L -+ t] and the fact that supremum of a subset of

[L ~ t]o is once again in [L - t],, that is for fi € [L > 1)o
(Vifi)(a) = Uif(a).
The supremum is defined point wise with respect to T and hence

(V. f )(0) = u f(o) = U ¢ =¢.

1
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If we let T be a topology on a topological space U we have of course

[L~>tl, =[ZL, Z1]

and
[L>1, =[3L, 211, (with the obvious interpretation).

We will write I(A)(+) = A.

Definition 5.3 : A fuzzy topological space is pair (U,L), £ < £(U)

s. t.

(i) 0,1 € £ where 0 is the minimal element of(EJlD and 1 the
maximal element.

(ii) A, Be £ implies AnB e <.

(iii) (A Jier S £ mplies U._

I Ai €L,

Before we restrict ourselves to the class of fuzzy sets we will
consider a slightly more general class, namely, the fuzzy classes
which are closed under arbitrary supremums, i.e. £' is closed

under supremums if {Ki; i€I}cL' implies L%E Ri € £'. Asuysual

I
one can define the infimum as follows,

A9 =Vig:ges'y gcg; v, .}

i€l
and hence derive a complete lattice £'. We denote, for any crisp set A,

alg(A)(y) =,a; ye A
{ 0 otherwise,

Proposition 5.1 : Suppose L and T are sup-complete and hence (via

the above trick) complete lattices. For t < P(U), where ¢ € T is

the minimum element and U € t is the maximal element, we define;
L' ={f:U~>Ls.t. £ (%) € 1; o € L}.

Then if L and 1 are continuous lattice so is £' and if (U,T) is

a topological space then £' = [U, zL]. If we have only TcT
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where (U,T) is a topological space,then
£ <[U, IL].

Proof : The second assertion follows immediately from the obser-

vation that Theorem 1.11 is applicablie. Since any Scott open set,

by Proposition 1.6(iii),
S=U{fa : o € S} = int S, then

for f € L' we have that
£7(s) = U{f 7 (Ra); @ € S}

This is obviously open when t = T and hence
L' < [U, IL].

When 1T is a topology we have equality since Yo is open and hence

for f € [U, ZL] we have f’1($a) € T, the open sets.

To prove the first assertion we need to characterise the way below
relation on £'. We suppose f << g in £', we let t = V{g(u): u € U}

and take two directed sets

D,

{S:S<<t} clL

D, ={Ver:Vl} cr.

We form a new directed set in L'
Dy = {SIo(V) : SeD;and V € D,}.

Obviously V D; > g and here there exists S € D; and V € D, s.t.
S Io(V) » f. Since I,(V)(u) = 0 for u ¢ V we must have f(u) = 0
for u € V. This prompts us to investigate the functions ale(V)(*)

for V € T.
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By definition
oa(f) = £ (%a) € T3 V o.
Hence an(oa(f))(u) << f(u); v u € U which in turn implies
V{aTo(o (f)); o € L}(u).< f(u)s v u € U.
We have u € OB(f) for B << f(u). That is
V{alo(oa(f)); o € L}(u) > 8
for all B << f(u). Hence
V{an(oa(f)): o € L} (u) = V(B = B << f(u)} = f(u)s

since L is continuous.

For each a, od(f) € Tand Vu € oa(f) we have a << f(u). This
prompts us to look at the functions alo(V)(+) s.t. V€ 1, a €L

and
a << f(u); Yue€eyV.
We note that

f(u)

V{aIO(Od(f)): a € L} (u)

n

V{aIo(V); V € T and a << aA{f(u): u € V}}(u)
< f(u) ; u €U,

This follows from the observation that

(i) if e L, forvue€ oB(f) € T, we have

g << f(u) (i.e. B< f(u); Vue GB(f))
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(ii) Q{f(u) U € oB(f)}
= V{x: x<flu); vue oB(f)} implying
B < aA{f(u) : u EOB(f)}
because
BeE{x:xgf(u); vuce oB(f)} and
(iii) the fact that L is a continuous lattice allows us to take
o << A{f(u) 1 ue oB(f)}.
The functions alo(V) € £* for V € 7 since

o ; BE (ioc)c
{u : ale(V){u) >> B} =4 U ; B is the minimal element of L

V ; otherwise.

Finally we characterise the way below relation for such functions.
We have alo(V) << BIo(M) if o << B and V << M in these respective

lattices.

Suppose we have a directed set D =+{h : U~>L; h € L'} s.t.
VD > BI,(M). Suppose also that a << g and V << M. If 0 is the

minimal element of L we define

L=t
]

{u : h(u) # 0}
= {u: h(u) €L\ + 0}
Now + O is Scott closed and hence L \ ¢ 0 is Scott open and
LN v 0=0U{* : x¢+0}.
This implies

Vo= h™' (LN v+ 0) = Uuth™"(Ax) : x ¢ + 0} € .
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We define also o = alh(u) : u € V]

From VD > BI;(M) we can deduce that V{Vh : heD} oM First
we let K(+) = V{h : h € D}(-) and note that {u : K(u) # 0} o M.
Suppose h(u) = 0, V h € D. ThenV{h{(u) : h € D} = 0, that is,
K(u) = 0. Hence K(u) # O implies 3 h € D s.t. h(u) # 0,i.e.,

VIV : h €D} 2 {u: K(u) # 0} o M.

Since M >> V and VIV, : h € D} o M we must have V, =V for some

h € D.

We can also deduce that V{O‘n : he€eDbD} =R First we note that

V{x : h(u) > x; YuE€\V}

e
I

V{x : h(u) >> x; Yue€eV}

Vix : {u: h(u) € % x} oV},
since L is continuous.

Now if UD{u : h{u) € } x} >> V,then 3 h € D s.t. {u: h{u) € ¥ x} oV,

since {u : h(u) € 3 x} € 1 is directed. Hence 3 h € D s.t.

{x : Udu: h{u) €% x} >V}

D

c {x : {u: h(u) €t x}oVl,
that is,

Vix : U {u : h(u) € T x} >> vV}

< Vo Vix :{u : h(u) €t x}oV}
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Since V_ h(u) € + x implies 3 h € D s.t. h(u) > x (see Proposition

1.4) we have {u : V_ h(u) € T x} < U {u : h(u) > x}. Hence
{x:{u:Vv h(u) € + x} > V)

c {x : UD{u : h(u) >>x} >> V}.

This implies

Vix : {u:V_h(u)€ T x} > V)

N

V{x : U {u : h(u) >> x} >> V}

D

11

Vix : U {u : h(u) € ¥ x} >V},
since L is continuous.
Finally since

K(u) = v h(u) > 8 for all u € M >> V,
and we have

{(x : {u: K(u) €t x} > V}

o> {x : B> x}.

We can deduce that

™
It

Vix : B > x} < Vix : {u : K(u) € % x} >> V}

< V{x : U {u: h(u) € % x} > V}

D

< Vnuh'

The relation B >> o implies the existence of a h' € D s.t.

an' > 0. MWe have already shown that there exists a h" € D s.t.
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V., ={u: h"(u) # 0} o V.

i

Since D is directed we have h > h'Vh", h € D s.t.
alo(V)(u) < o To(V)(u) < h(u); Yu €U,

that is,
alo(V) < h

in £'. This implies
alo(V) << BIo(M) in £°.

The continuity of £* follows from the continuity of L and t,after

noting that

f=V{alo(V) : V€ 1 and a << A{f(u) 'z u € V}}
= V{alo(V) : V,M € T and V << M where o << A{f(u) : u € M}=B}
that is,
f=V{alg(V) : alo(V) € £* and alo(V) << f}

V{ig : g € £' and g << f}. |

It is rarely the case that L and Hms, the lattice induced by
reversing the order on L, are both continuous lattices. It is
true for [0,1] with the complement of r € [0,1] being r* =1 - v
since [0,1]* = [0,1]1. It is true for L = (R*)" with the order

reversing operation of multiplication by -1.

The way below relation on these lattices differs slightly from
strictly Tess than in the following sense. For [0,1] or R* we
let 0 be the "minimal’ element and note that x << y iff either
x <yorx=y=0. In(R¥)" we have (xl,..,xn)<< (¥ 5--sy)

iff X << YV i=1,..,n. We always have 0 << 8; v B € L.
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Proposition 5.2 : Suppose T, me and L are supremum complete

continuous lattices for which t satisfies,

(E) IfueKe tthen 30€1s.t. u€l<<K;

and L satisfies,

(F) (i) If 8 # 0 then o >> g in L implies B << ain L
(ii) B>0in L iff p<c OinlL .

S

Then there is a dual isomorphism of complete continuous lattices

between [H”m > 1], and £°.

Proof : We will refer to the order on prs as < which generates

V<< and A s We define @(R) = f by

ops ops

o (A) = {ueu: 1(A)(u) >> a} € T for a # O

fla)

and

f(0)

"

fuel: I(A)(u) > O}

{ueU: I(A)(u) # 0}

H

{fu€eU: I(A)(uyeL\N y0l et

~

for any given A € £'. We note that

f(1) = ueU :1 << I(A)(u)

s

since 1 is the maximal element of L.

In terms of Lopy 1 is the minimal element and hence all we need

to do to show that

f(') € [prs sT] Q
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is to investigate {u : aq << I(A)(u)} when ao, # 0 and

{u: aa < I(R)(u)} when aq = O.

Now
_/_\Oti'-'V{B:BSOLi;V'i}
=V{g: B3 a3 Vil
ops i
> o 3 Vi
ops i
Hence
AO, 2 o or Ao, £ o, -«
-1 ops ops i - i ops 1
From

0, Soci;vi,

ops 1

which in turn implies %”m o < aa. Hence v o = aq .
-1

ops i -1

From this it follows that if Ao # 0, then {u:ao <<I(A)(u)}=f(V _ o)
and {u : a0 < I(A)(u)} = F(V o) if a0 = 0.

In the first case if
ue€{u:o << I(A)(u)} for some i,

then

A% <o << 1(A) (u)

and
u€{u: g << 1(A)(u)},

SO
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U fu s o << T(A)(u))

~

c{u : Ao << I(A)(u)l.

We have tne following three cases.
(i) When a0, = 0 and o # 0, V i then

~

f(o‘i) ={uz:ao << 1(A){u)}

c{u: 0<I(A)(u)} = £(0)
That is we have 0 < o << I(A)(u) , implying
U o, (A) = {u : 0 < I(A)(u)}.

(i1) If o = 0 for any i then

U f(o) = £(0) = {u: 0 < I(A)(u)}

(i4i) Next we show
U{oB(Z\) : B >> Aq )
= {u: Ag << 1(A)(u)}
when ao # 0> where oB(ﬂ) = {u: B << I(A)(u)} . Obviously
U{oB(T\) : B >> Ag b
c {u: po << I(A)(u)} .

—t

If .~ u€{u€el: ar << I(R)(u)}, then by the strong inter-
polation property (Proposition 1.3) there exists a B >> Ac, s. t.
ao, << B << T(A)(u); aoy 7 B,

i.e.,

ue {u:p << I(A)(u)l.
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Now if Ao, = 0 we show
U{oB(A) . 8> 0}

= {u:0<I(A)(u)}.

It is always the case that .

-~

og(R) = {u : B << I(A)(u)}
S (u: 0 < I(A)(u)l,
since 0 < B << I(A)(u) implies 0 < I(A)(u).
If 0 < I(R)(u)> then 0 << I(A)(u) and 0 # I(A)(u).

By the strong interpolation property we have the existence of
aps.t. 0<<pB<<I(A)(u) and 0 # B- Now 0 << g implies 0 < B

but since B # 0 we have 0 < B. Hence
U{OB(K) : g > 0}

S{u: 0 < I(A)(u)l.

Suppose ac. # 0 and u € {u: o << I(A)(u)} € T. Then by property
(E) 30¢€ts.t.

u€o<<{u:ag << I(A)(u)} € .

Since each o A) € T1,there must exist B >> AQ, s.t.

g

ueaocx cB(A).

By property F(i), B >> A0, implies B << e A =V o and the

i ops

directedness of {o : i € I} implies the existence of o, s.t.

B o, i.e. BE 4o . That is,
ops i i

and
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U {u: o << I(R)(u)} 2 {u : Ao << T(A)(u)}

1

implying f(Vops o ) = Ui f(oci ).

~

Now suppose aa = 0 and u € {u : 0 < I(A)(u)} € t. Then by property

(E) 3 0€ts.t.

~

u€oo<<{us:0<I(A)(u)} €r.

~

Since each 06(7\) € T,there must exist g > 0 s.t. u €0 _C_oB(A).

By property F(ii); 8 > 0 implies B << s 0= Ao = Vops o and
the directedness of {oci : 1 € I} implies the existence of o s.t.

B .o i.e.,B €4 . That is to say

ops

ueaocx OB(A) <oy (A), if o # 0,

1

and

Ufu:a << I(A)(u)}

1

~

2{u : po << I(A)(u)}. This implies

f(Vv o) = Uif(oci I

ops i

If o = 0 then

implying again f(V. o ) = U f(a ).

ops i i i

Hence f(+) € [L,, »Tlo. We note that o > 8 implies f(a) > f(B).

Let us show that & is onto. If f € [Lops , T1 o we must construct

aAeEcL s.t.

o (R) = f(a); o # 0
and

{u:0<I(A) (W} = f(0).

For u € U we let
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I(u) = {B € L: ue€f(p)l.
We défine
I(R)(u) = VI(u).
Now let us prove that
8(R) = f(a).
Suppose o # 0, we wish to show oa(ﬂ) = f(a).

Let u € oa(A)-Then I(A)(u) = VI(u) >> a.Hence 3 B € I(u) s.t.
B > o,since I(u) = +I(u) is a directed set. As B € I(u),we have
u € f(g) and as a < B we have a % B and u € f(B) < fla),

implying u € f(a).

If u € f(a) then o € I(u) and all that is needed is to show that
I(u) = $I(A)(u).

As f € [Lops + 1] 9,we know from Definition 1.17 that

0 << f(a) iff for some g <<, o one has 0 << f(B).

Let us suppose u € f(a,) where o, = I(A)(u). Then from property (E)
there exists 0 € T s.t. 0 << f(ay) and u € 0. For some

B <<, ao,0ne has u € 0 << f(B). This contradicts the definition

of oy, namely

= VI(u) = V{B : u € f(B)}

= A {R:ue€ef(p)}

-0 ps

Since the postulate that u € f(ao) implies

0 = A {B:ue€ef(p)} < s B << ap .

-0 ps
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Suppose B << ag = VI(u). Then since L is continuous
30 € I{(u) s.t. BgaorB > o and

ps

u € f(a) < f(B) so B € I(u).
Suppose oo = 0 and
u€fu:0<I(A)(u)lrer.
Then we have
U{OB(A) :8>0}={u:0<I(A)(u)
and (by property (E)) 30 € 1 s.t.

u€o<<{u:o<I(A)(u)l

(A).

Thus we must have a B > 0 s.t. u €0 S 9

That issfor B im 0 we have

s

u € f(B) = f(0).

Now suppose u € f(0) € . By property (E) there exists a set

0 € 1s.t.
u € 0 << f(0)
Hence for some B < 0,one has u € 0 << f(B). That is,B € I(u)

for B << 0,which according to property F(ii) implies g > O.

Hence

I(A)(u) = VI(u) > B >0
and

ue {u: I(A)Y(u) > 0}.

Finally we show ® is 1-1. Suppose A # B and @(A) = ®(B). Then

3 ue€euUs.t.
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1(R)(u) # 1(B)(W) .
But
(i) oy(A) = Oa(E) for a # 0 and

(ii) {u : I(A)(u) > 0} = {u : I(B)(u) > O}.

i

We let ao = I(A)(u) and suppose first that o, = 0. Since

I(B)(U) # aos

we must have

G€e{u: I(B)(u) >0} ={u: I(A)(u) > 0}

~

which implies I(A)(u) > 0, a contradiction.

On the other hand suppose o, = I(A)(d) # O.

-

We note that if o << ap then o << I(A)(u). Thus

~

u € oa(A) = oa(ﬁ), i.e.,

a << I(ﬁ)(ﬁ); Y o << Ogs
or

$1(B) (@) 2 yao.
Since L is continuous,

1(B) (G) = V§I(B)(U) > Voo = oo
which implies

I(B)(G) » I(A)(Q) = oo.

In a similar way we can show I(B)(u) < I(A)(u) and arrive at

a contradiction

1(B) (@) = 1(A)(@).
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The type of lattice we are dealing with here is Tike (R*)" in that

it has an order reversing involution, namely multiplication by -1,

which preserves the lattice continuity. It also satisfies property

(F) since
(i) o >>8and B # 0 implies o > pand a < B
(i1) B > 0 implies B <bps'0 namely B < s 0.

The type of lattic we use for T could be a locally compact topology
or, as the next proposition shows, the class of open concave sets
in a compact space. If U is a compact convex subset of a locally
convex topological vector space, we denote by Con (U) the Tattice
of all closed convex subsets of U (including the empty set). Re-

call that Con (U)ops is the lattice with reverse ordering.

Proposition 5.3 : The lattice Con (U)ops is a continuous lattice,

in which we have A << B iff B < int A, the interior being

taken in the relative topology of U.
Proof : Reference [10] Proposition 1.22.1. O

0f course set complementation is an isomorphism of continuous
lattices and the proposition implies that the sup complete con-

tinuous Tlattice
t={KnU: K cUis convex, closed}

has a way below relation which will satisfy property (F). This
follows directly from the Hahn-Banach theorem in the case when
U is a compact subset of a normed vector space. Of course U,

¢ € T since U, ¢ € Con (ULPS.

Corollary 5.2 : Suppose U = (R*)" is compact convex and let

T = Con (U)opy Then. there is a dual isomorphism of continuous

lattices between
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[R*)) > xle = {f 0 (R¥)) > 1 f(3) = ¢
f(vops D) = U{f(d) : d € D} D a directed set in (R*):ps }
and
= {f tU> (RY)" : £ (%) € 13 0 € (R¥)").
Proof : This is a direct consequence of Proposition 5.2. o
For f € L' we have o';(f) ={uedl : f(u) < a} closed and
convex V o € R" and for o = o we have o;(f) =y which is

closed and convex. Hence f is %.s.c. and a quasi-convex function

from U to R".

The corollary tells us that there is a very close association between

these functions and[ (R*):ps + 1] ,. Let us specify a function

f . (R*):ps + T s.t.

[l

(1) £ ()
(i1)  f(aD)

¢
U{f(d) : d € D}

1l

for directed sets D<= (R*)"

ops

Then there corresponds a lowsr semi-continuous quasi-convex

function. In fact there is exactly one!

We could instead specify,of course,f : (R*)" - Con (U).

Con (U) = {K<cU: Kis closed and convex} s.t.
(1) f+w) = U
(i)  f(aD) = n{f(d) : d € D}

for all filtered sets D < (R*)".
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Proposition 5.4 : Suppose A€ £L(U),L = [0,1] and
ou(ﬂ) ={u €U : I(A)(u) > a}. Define

1;uceE oa(ﬂ)
Lo(o (M) -

0 ; otherwise.

Then A = U{o - od(ﬂ) : o € [0,1]1} where a-oa(ﬂ) is the fuzzy

set given by

(o (R)) (u) = aTo(g (A))(u).

Proof : Reference [34] theorem 3.

Since [0,1]1 and R* are homomorphic the same holds in R*. This
gives a stronger indication of how the correspondence works. We

can exploit this correspondence in a number of ways.

Tl

Proposition 5.5 : Let f be %.s.c. quasi-convex and f : U~ R,

n

where U < R* is compact. Then3 fg : U > R'; .s.c. strictly

quasi-convex s.t. f(S 4+ f point-wise as § ~ 0.

Proof : First we note from Theorem 3.6 that if f6 is quasi-
convex and I'(b) = {u e U ; fs(u) < b} is 2.s.c. multi-valued,

then f(S is strictly quasi-convex.

From our Preamble we know that there is a 1-1 correspondence

between f and its b-cuts, namely T(b) which satisfy

(i)  T(+)
(ii)  r(aD)

U

n{r(d) : d € D}

for any filtered set D c R .

Now if I'(b) < Fa(b) : vb, then
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Since f is %.s.continuous quasi-convex and TI'(b) is compact,then

by Theorem 3.5 T'(-) is u.s.c. at b € R".

As U is bounded,we can assume the domain U, = R" of T(-)
is compact and hence the range Uz = U{T(b) : b € U1} is also

compact.

Using Corollary 2.92 we can conclude that 3 a Hausdorff con-
tinuous multi-valued mapping AG(') : U; » KV(U,) approximating

r(b) from above, i.e.
n6>0A6(b) = T(b)
and alsoapproximating r'(b) in graph.
Now
Aa(b) o> T(b), vbel
(=) = Uc U Aglb) € aslte) U,
This implies A3(+w) = U. However we don't know whether (ii) holds.

Since AG(') is continuous it is uniformly %.s.continuous (seeTheo-

rem 1.13). Hencev ¢ > 0; 3§ > 0 independent of bs.t.
/\é(b) EN_(AG(b),S)
v b € N(b,3).

Let b € R* be arbitrary. By noting that this holds ¥ 6 »b,

we have
n{ag(b) = b > B}
= ﬂ{N-(AG(b),E) :bx>b'}

for all b' € N(b,S).
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So if we call TS(B) = ﬂ{AG(B); b > B} we have

PS(E) = ﬂ{W(AG(B),E); bxb'}

N(n{As(B); b s b'},e)

N(rg(b'),e) v b' €N(b,3),

Hence b - Ps(b) is lower semi continuous. Since

A(S(b) o rI(b); vo,r (b) = n{AG(b); b > b} o n{T'(b); b > b} = I'(b).

Obviously for b > B,Fé(b) ST
Trivially (ii) holds.
We have Fd(') corresponding to a unique quasi convex function

6(B)and so (i) must be satisfied.

fd’ say, which must be strictly quasi-convex due to Theorem 3.6.
As v b eR
r(b) = n6>0A6(b)
= 05>0F6(b) o> T'(b),
we know that

f. 4 fas § »~ 0 pointwise. a

§
In our previous proof AG(') : U;-~ KV(U,) approximates T'(b) from
above and in graph, i.e.,

d*(Gg,6) < e

for & sufficiently small,where G, is the graph of AG(') and G is

§
the graph of T(-).

We define

rs(b) = n{Aa(B) : b > b}

and so,
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P(S(b) < A
Since G; < Gy, where Gé is the graph of PS(') we have

d*((:‘a‘,G_) < d*(G63G) < g5

for § small.

In fact since

—
[on ]
~—
u
—
—
(oa]
~——
"
<€
(oa]

T's o ; » we have

G.' G and d*(G,Ga') = Q.

That is
d(GG',G) = d*(GG',G) < ¢g; for ¢ small,
65" = {(uz,b)3 Fyluz) < b3,

G = {(uz,b); f(uz) < b}.

This sort of approximation is important in the theory of convex
functions and recently has been used to rewrite the Stone
Approximation theorem for the lattice of upper-semi-continuous

function on a compact metric space (see reference [35]).

For an upper-semi-continuous function g(+), the hypo-graph of g 1is
defined to be

hypo g = {(uz,a): a < g(uy)}.
For a %2.s.continuous function f we have
G = {(Uz,b) : f(uZ) < b}

{(uz,b) : -b < -f(u,)}.

Hence
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d(Ga,G) <€

would imply d(hypo(-f), hypo(-f)) < e

da(-fé,'f) < €, 1in the notation of reference [35].

The condition of the Stone theorem that a sublattice Q of u.s.
continuous functions "isolates points" actually characterises
the sub-lattice which is "upper dense", i.e, for which each u.s.c.

g is in the closure of {g': g' > g and g' € Q}.

Theorem 5.1 : Let Q be a lattice of u.s.c. functions on a compact
metric space U, that isolates points [i.e. if (uz,b), (uz*,b")
are such that either us # uz' or u, = u, and b < b', there exists

¢ € Q such that
(uz,b) € int hypo ¢
(u2',b') ¢ hypo ¥l

If g is u.s.c. then there exists {hp} in Q convergent to f from

above in the metric d,.
Proof : See reference [35], theorem 1, page 8. U

Our Proposition 5.4 can be thought of as a kind of Stone approxi-
mation theorem. The general question of what characterises a
lattice as being upper or lower dense in another lattice is the
general subject at hand. Conversely,in what lattice would the
class £ = {f : f : U, > R continuous and c1 I(b) = T(b);

v b € int B} be a lower dense sub-Tattice?
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Due to Proposition 3.2 we actually only require point-wise

convergence of fd + f to derive Corollary 3.9, namely that if

f(Ul,Uz) = ?2? fi(ulsuz)a

f(uy,+) quasi-convex,
fi(ul,-) strictly quasi-convex and f, (+,*)

continuous on the compact set U; x U, then
d(6 ,G6) < e for m sufficiently large,
where Gm is the graph of

Tm(ul) = {u,: 12??. n fi(ul,uz) < bl and

G the graph of T'(u;) = {up: f(ui,uz) < b}.

Convexity seems important in passing the graph approximation
properties of T(u,,+), considered as a function of b, across to

r'(-,b) considered as a function of u;.
Proposition 3.2 dealt with approximation of
r{-) €Uy, zCe  (Uy)]

where L = C q)ps(Uz) is the continuous lattice of complements of
®-convex sets on a compact Hausdorff space. It is interesting

to consider this problem in the case when the ®-convex sets are
closed under finite union. In this case [Ui, ZC¢ (Up)] can be
considered to be a fuzzy topological space. It is always closed
under arbitrary supremums and will be closed with respect to
finite infimums in this case. This follows from Theorem 1.12 (i)

and the fact that [U;, ZC ? (U,)] will consist of i.s. contin-

uous functions, the complements of u.s.continuous functions.
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This condition will be fulfilled if ® defines a

fuzzy topology itself, in which case ¢ will be closed under

finite infimums . That is, given

f(-) V{fi(-) € ¢; i €1},

g(+) = vig, (+) € &; j e‘J},

we have that
f(+)ag(+) = V{fi(-)Agi(-) € d; i €I; €I}
is §- convex.

Essentially Proposition 3.2 states that given an open fuzzy set
U(-) efU;, £ C q)m(Uz)] containing a closed fuzzy set K(-),

there exists an open-closed fuzzy set T(-) s.t.
K(-) = T(+) < U(-).

The set U(-) is i.s.continuous and as a consequence K(-) is
upper-semi-continuous. The set T(+) is open-closed and hence
T(+) considered as a multi-valued mapping is continuous. In

the proposition V u,
K (uy), T(up), U(u,) €C %ps(uz).

Since a "closed" set is the complement of an "open" set for
r(-) €Uy, 2C e (U1,

we have

Fc (Ul) € C@(Uz).

If a closed fuzzy set A(+) can be approximated from above by a

countable intersection of open sets Fi(-); i € I,then any finite
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intersection will be open since n:=1 L (+) will be open. This
follows from Proposition 1.9. The topology defined by this
lattice must be perfectly normal since any "closed" C &(U,)

set is the countable intersection of "open" C %ps(Uz) sets.
The "fuzzy" topology defined by
[Up, ZC cI>ops(Uz)]

can be considered perfectly normal as well. Instead of treating
the question of lower denseness of continuous multi-valued
mappings,we conclude this chapter with a brief discussion of

fuzzy normality.

This topic differs from the question of Tower approximation in
that going from a sup-complete lattice ¢ to a fuzzy topology
one doubts whether in general we can infer the existence of a

generating class ¢ s.t.
T(uy) = {uz : P(us,uz) > a}

is Hausdorff continuous. We know that T(+¢) is i.s.c. and hence

a finite intersection is i.s.c., i.e.,

Ti(uy) n Taui) = {uz @ ¥i(ursuz) A Yo(u,,uz) > al
is the complement of a u.s.c. mapping

{u, : Y1(ui,uz) A Pa(ur,uz) < alk.
However, we can't be sure that this mapping is %.s.c..

Proposition 5.6 : Suppose & consists of functions ¢y : U, x Uy »~ R

continuously, U, is a compact subset of R® and U, is metric. For

Y € d let
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I(b) = {uz : W(ui,uz2) < B} # ¢-
Define T(b) = {u, : w(u,,u,) < b}.
Then c1 I(b) = T'(b)
implies T(uy) = {uz : W(ui,uz) < b} is 2.s.c. at u;.

Proof : First we show that {¢(u;,u2) : u; € Uy} is an equi-

continuous class of continuous mappings u; - Y(u,uz).

We define for a given € > 0

5€(U2) = sup{8 > 0 : |[Y(uy,uz) - Ylug,ux)| < ¢

whenever d(uj,u,) < &}

and show Ge(uz) is bounded away from zero on U,. If we suppose

not,then 3 u3 € U, s.t. ag(uZ) < % and since U, is compact there
exists a convergent subsequence. After renumbering we can say
Uz >~ Uz € Up. For any € > 0 and up € U, we have §_(uz) > 0. MWe

arrive at a contractionby showing

6€(u$) >8>0 for n large
where

0<6< 68/4(61).
Now
[(u1,uz) - v(ug,uz)|
< Jw(ursuz) - $uy,uz)|
+ o(Un,uz) - 9(Uy,uz) |
+ plunsls) - w(ln,la)] <7 +7+7<c¢

for n sufficiently large. Also d{ui,u;) < & where 0 < § < 68/4(61).
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Theorem 3.3(b) implies I'(b) is %.s.c. at b and Theorem 3.4(b)

implies T(u;y) is &.s.c. at u; in the metric space
G(b,u1) = {uy = {uz @ W(uy,up) < b} # ¢
SUP{Iw(Ul,Uz) - Y(ur,uz)| : Uz € Up}l < }

with the metric

d(u1,Uy) = sup{|Y(ui,uz) - $(d1,uz)| ¢ uz € Uzl.

The %.s.c. of T(uy) inthe metric of U; follows from the fact that

vé >0,

d(UI,al) < ¢!
implies

sup{|y(uy,uz) - Y(ui,uz)|: up € Uz} <& for §' >0 O
sufficiently small.

As we have seen the concept of convexity is essential when
attempting to ensure c1 I(b) = r'(b). One cannot be certain

that
cl{uz : ¥1(ui,uz) A Yo(ug,up) < al
= {uz : Y1lui,uz) A Pa(ui,uz) < al

even though

cl I,(a) = Ir'y1(a) and

cl Iz(a) I'z(a).

This is certainly not the case for strictly quasi-convex
functions. It remains an unanswered question as to
whether criteria for cl I(b) = I'(b) can be found which does

not involve convexity (of the usual type) of the b-cuts.
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§5.2 Fuzzy Normality

We note that if S and L are continuous lattices then [S - L]
is a continuous lattice. Moreover, the functions which are

elements of [S -~ L] are monotone. Bruce Hutton in reference
[36] found it necessary to define a "fuzzy unit interval" in
order to prove an equiva]enf statement of the Urysohn Temma.

He defined it as follows.

Definition 5.4 : The fuzzy unit interval [0,1] (L) is the set

of all monotonically decreasing maps A : R -~ L satisfying:

(1) At)

I

1 for t <0; teR

(2) AMt)=0Ffort>1, teR
after the identification of A : R~ L and u : R~> L if for
every t € R
A(t-) = inf{A(s); s < t} = u(t-)
and
A(t+) = sup{a(s); s> t} = u(t+).

We can define a slight variation of this.

Definition 5.5 : The right open fuzzy intervals [0,1]R(L) are

the set of Scott continuous mappings in [[0,1]Ops -+ L] extended

to R via (1) and (2) A(t) =0; t > 1.

The continuous lattice [0,1]Ops is the unit interval [0,1]

endowed with the reversed ordering. We identify u(-), A(+) € [0,1]L
if for all t € R;

u(t) = A(t).

Since u(+) and A(+) are Scott continuous we have
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A(t) = sup{A(S) : S < s t}
and

u(t)

sup{u(S) : S << t}.

ops

The interval [0,1] being a chain means that S - t iff

S>torS=1t=1 This in turn implies

1}
I

A(t) = sup{A(S) : S > t} = A(t+) for t # 1

A1)

(]
o

tl

sup{A(S) : S > 1}

This class is a subset of monotone mappings on [0,1] consisting
of those continuous from the right for all points in the interval
[0,1] and also satisfying (1) and (2). We identify A(+) and

u(+) via the criteria A(t+) = u(t+)(zu(t)),which is only one

sided.
The Scott topoiogy on [0,1]ops consists of the sets
t=1{0,0) ; « €[0,1) and [0,1]}

which is an ordinary topology of half open intervals on [0,1].
We may consider ([0,1], T) a topological space in which the
open sets T form a continuous lattice. From our discussion

after Definition 1.18 we note that we can associate
[[0,1]0ps'+ Ly =110,11, zL],

where [0,1] is considered as a topological space endowed with
the topology t. From Theorem 1.11 we know that this is a con-
tinuous lattice itself as long as L is continuous. The lattice
[O,I]R(L) is an associated lattice with the ordering induced

by the pointwise order on L and as a consequence is also con-

tinuous.
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The crisp intervals are embedded in the usual way by letting

for r € [0,1]

R(t) =1; t<r
and

R(t) >0; t > r.

We note that for any continuous lattice, [O,I]R(L) is obviously
closed with respect to unions and is in fact closed with respect

to finite intersections if L is also.

Proposition 5.7 : Suppose A, u € [0,1]R(L) then the pointwise

(with respect to the ordering on L) infimum
¥(+) = A(+) A u(+) €00, (L)
if L is closed with respect to finite infimums.

Proof : Since we always have
(1) A(t)

and

1=u(t) for t <0

(2) AM(t) =0=u(t) fort>1

we also have

AMt) Au(t) =1 for t<0

A(t) A u(t)

0 for t > 1.

It only remains to verify the Scott continuity in the interval

[0,1].
When t = 1,
0 =A(1) Au(l) = v(1) = sup{A(S) A u(S); S > 1}

so we only need to verify right continuity at points t € [0,1).
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Given S, w > t, because of the monotonicity of A, u we have
AR) A u(®) 3 A(S) A u(w)

where
L =S Aw>t.

Hence
sup{A(2) A u(f); & >t} > A(S) Au(w) forall S, w>t

Since 11ms+tk(5) = A(t+) = A(t),we have by, letting Syt and then
wi¥t, that

sup{Aa(2) A u(2) : 2>t} = A(t) a u(t).

Of course we always have u(t) > u(2) and A(t) > u(g) for & > t

so that

A(t) A u(t) > u(e) A A(R); for 2 >t
that is |

A(t) A u(t) = supfu(e) A A(2) @ 2 > t).
Thus for t € [0,1) we have

y(t) = A(t) A u(t) = supfu(®) A A(R) : 2 > th
implying v(+) 1is right continuous.

We now consider the situation when L = C ® . (Uz), where the ¢-

convex sets are compact.

Proposition 5.8 : Suppose L = C I (Up) forms a continuous

lattice of open sets in the Euclidean topology of U. = IR",a
® -convex set,where the d-convex sets are compact in the

Euclidean topology.
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Then

Az [0,1) co  (U,),

aps

considered as a multi-valued mapping into U, endowed with the

metric Euclidean topology is i.s.c. Moreover, there is a function
feL' ={f: U, > [0,1] s.t. Vv o €[0,1]
1 (%) €C o (U)}

ops

such that
AMa) = {up @ fuy) > a} € Q)m (Us).

Proof :
If A is right continuous, monotonically decreasingsthen \° is

monotonically increasing and right continuous, i.e.

¥ (th) = ll‘g X(s) = (s) : s > t}

tl

[U{A(s) @ s > t}]°

2 (t).

If we can show A° (<) is u.s. continuous then we have the i.s.
continuity of A(+). For any given € > 0 there exists a h > 0 s.t.

t <s<t+ himplies
A (s) = N(X° (t),e€).

This follows from the right continuity of A° () and the fact that

X () is a closed set in the Euclidean topology.

Now suppose s € (t-h,t+h), and define
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Note that t < s' < t + h and hence A°(s') = N(A° (t),e). However,

since s £ s', we have

¥ (s) € 2 (s') o NOX (t),e).

Finally condition (F) of Proposition 5.2 is satisfiedby [0,1] since
[O,l]ops and [0,1] are both continuous Tattices and for g # 0,

o >> B is equivalent to a > B in [0,1]; namely q <ob in

[0,1Lps. Condition (E) is satisfiedssince the C %ps(UZ)

sets are open in the Euclidean (and hence Hausdorff) topology

and also form a continuous lattice.

The lattice [[O,l]ops - O%DS(UZ)]O is just the lattice of
functions A(+) € [0,1]R(L) restricted to [0,1]. Proposition 5.2
is applicable and we conclude that the above lattice is equivalent

to
£V = {f(+) : Uy » [0,1]; £ *(%a) € C ?,ps(Uz) for all o € [0,11}.
For o € [0,1] we have

8(f) = A(a) = {us : fuz) >al €C o (U,), O

o ps

since << 1is equivalent to <.
Proposition 5.8 does not assume that L = C %ps(UZ) is closed with

respect finite infimums. However, in the case when C Q””(Uz) forms a

topology, by Proposition 5.1 we have
f € [Up, 2[0,1]].

Dafinition 5.6 :

Suppose
r(-) : U; > P(U,) 1is multi-valued mapping.
We define the interior to be

r’(+) = u{a(+) : a(+) =1r(-) and A(-) € [Uy, ZCO (Uz)1h
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and the closure to be
T(+) = n{A(+) : A(+) 2 T(+) and A°(-) € [U;, IC ® (U2)11}.
Obviously
r%-) er(+) =T(+) and
ur > I'°(u,) is  Scott continuous ( Proposition 1.10) implying
r(-) € [U;, £ C <1>ops(U2)] ,
the lattice being sup complete. Similarly,
T(+) = [(r" (+))°T

is upper-semi-continuous whenever the Scott continuous functions
are inner-semi-continuous. We note also in passing that

Proposition 1.9 implies that

[ry(e) nTy()1°

UA(+) € Uy, 2 C o (U2)] & A(+) <Ta(+) N Ta(0)]

U{A;(*) N Ay(+) € [U,, T C e (Uz2)] :
Ay (+) EF1(')
Aa(+) = T2()}

ri(-) nri(-)

Recall that a normal space is one such that for every closed set
K(+) contained in an open set M(-) there exists a set V(-) s.t.

K< V® <V <M In reference [36] Bruce Hutton proves the following:

Theorem 5.2 :

A fuzzy topological space is perfectly normal if and only if it
is normal and every closed set is a countable interection of

open sets.
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Proof :

Reference [36] Theorem 2.
In our situation we have a fuzzy topology
[U;, £C @ops(uz)] < {T(-) : Uy > P(U2) 3.

We are interested in the situation when it is a perfectly
normal fuzzy topology and hence any i.s.c. mapping in this
topology is the intersection of a countable collection of

upper-semi-continuous ®-convex imaged set valued mappings.

We can define a fuzzy topology on [O,I]R(L) as follows,

Let L (\) = A (t7) and R (A) = A(t) and take a sub-base
{R, L :t€R} togenerate a topology £ on [0,1]R(L).

For W € £L we have W : [0,1]R(L) > P(U,).

Definitian 5.7 :

If (X,t:) and (Y,T,) are fuzzy topological spaces then a
mapping f : X = Y is said to be continuous if for every T,

open set W
FHW) (+) = W(F(+)) € 1.

We note that both the sub-bases are fuzzy topologies on
[O,l]R(L). Take {R : t € R}. We note that for A € [O,I]R(L)

and 8§ < 0 we have A(t) A A(t+8) = A(t) because A(t+8) > A(t).

If we take

R,R €{R :te€eR}
P 2 t
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and suppose p < & i.e, p - & < 0,then

Rz(k) A Rp(k) (Rg A Rp)(A)

A(2) A A2+ (p-2))

A(L) € [0,1]R(L),

that is,Rl A Rp € {Rt : t €R}. Finally if T < R we can define

S={8:2>t; teT}
= UT{Q 2>t}
={8:2>A Tk
Since A(+) is right continuous we have

VTx(t) = VT{x(z) : 2>t}

= VSA(Q)

Via(e) : 2> A TY

A(AT).

This in turn implies

and

VteTRt(-) € {Rt : t € R},

c

A similar argument using the left continuity of Lt(x) = (t7)
establishes that {Lt(-) : t € R} is a fuzzy topology on [0,1]R(L).
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Proposition 5.9 :

Suppose U, g;R", f: U, >~ [0,1] is lower semi-continuous and that
A (t) = {uz : f(uz) < t} is compact valued ., Then the lower semi-
continuity of A°(+) at t, as a multi-valued mapping, implies in

the case when {up, : f(uz) < t} # ¢, that cl{uz : f(uz) < 1 = 2% (%).

Proof:

This follows via a direct adaptation of the second part of Theorem 2
of reference [13]. The multi-valued mapping A° (+) is closed valued
due to the Tower semi-continuity of f(-) and hence

cl{uz : fluz) < t} = A°(t). Since A°(t) is compact valued all
definitions of semi-continuity coincide (see comment after Theorem
1.8) and we may treat A°(t) as being 1.-H-semi-continuous. If

U, € 2°(1) then either

U, € I(%) = {up : fluz) < %}, implying U2 € cl 1(t),
or

~

f(u,) = t.

Suppose U, £ I(T) and select € > 0. Since 1(%) # ¢ then for n

sufficiently large

A (t) < N(Ac(% - %), e) for n large.

This means that 3 u, € Ac(% - =) such that U, € N(u,,e), that is

S

U, € N(U2,€). Thus in every neighbourhood of Uy there is a

U, € I(t) which implies @i, € c1 I(%). O

We now argue in a similar fashion to Bruce Hutton in reference [36].
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Proposition 5.10:

Suppose U, is a topological space and U, g;R? a d-convex set.
Suppose also that the ®-convex sets are compact and that Cq”w(Uz)
forms a topology coarser than the Euclidean topology on R". We
consider U; to be a fuzzy topological space with the topology

L' = [U;, ZC(gms(Uz)] (and [0,1]R(L) a fuzzy topological space

endowed with £L)'

Then the fuzzy topology £' is normal iff for every closed set
K(-) and open set M(+) such that K = M there is a fuzzy continuous

function h : U; » [O,I]R(L) such that for every u:; € Ui,
K{up) = h(uy)(1-) = h(uy) (0+) = M{u,).

Furthermore for any fuzzy continuous function h(+) satisfying the

above we have the existence of
f(u)(+) € [U,, £[0,11] s.t.
h(ui)(t) = {uz € Up = f(ur)(uz) > t}
where
h® (u1) (t) = {uz @ flu)(uz) < t}

is a continuous multi-valued mapping at each u; s.t. h°(ui1)(t-) # ¢.

Proof:

Suppose we have a continuous h : U; — [O,I]R(L). By proposition

5.8 for each u; € U; there must exist a function
f(uy)(+) € [Up, Z[0,11] s.t.
h(up)(t) = {us @ Flup)(ua) > t}.

We also note that t > h(u;)(t) is i.s.c. for t € [0,1) and that
h® (uy)(t) is compact in the Euclidean topology for t € [0,1].

Since the topology generated by C q”m(Uz) is coarser than the
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Euclidean topology the compactness of h°(u;)(t) in Euclidean

topology implies the compactness in the topology C QHH(UZ).
Similarly,since f € [U2, X [0,11] implies 1l.s.c. from U
(endowed with the topology ¢ qﬂm(uz)) to [0,1],we must also

have 1.s.c. with respect to the Euclidean topology.
Now if

K(up) = h(u1)(1-) = h(u1)(0+) = M(ux),
we have for any t € (0,1) that

K(ur) = h(u)(t) < h(ur)(t-) = M(ur).

Now

=
[}
—
—
—
[¢]
~—
—
[
.
~—
I

t L (h(u1)(+))

h(uy)(t-)

and

h™ (R )(u_) = R (h(u )(+))

t° 1 t 1

It

h(uy)(t).

Since f is continuous we have f'l(Li) is closed and hence is the
complement of an inner semi-continuous mapping, that is, it is upper-
: . . -1 B . .

semi-continuous. Similarly, f (Rt) is open and hence inner-semi-

continuous (implying 1.s.c.). Now

h(u)(t-) = {uz @ f(uy)(uz) > s}

n
s<t

{Uz B f(ul)(U2) > t}

is upper-semi-continuous, implying that h°(u;)(t-) is i.s.continuous.

A11 the conditions of Proposition 5.9 are satisfied and hence
cl{uz € Uz : flur)(uz2) < t} = h° (uy)(t)

whenever
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{upy @ fluy)(uz) < t} = h° (uy)(t-) # 9.

Due to Theorem 1.10(i) we can deduce the 1.s.continuity of
¢l h°(uy)(t-) = h°(uy)(t). By construction h®(u;)(t) is always

u.s.continuous and hence is continuous in this case.
In any case we have

K(up) = h (R )(uz) = h™ (L% ) (uy) < M(uy)s

t i
implying [Uz, Z C Q’pJUZ)] js a normal topology.

Let us now suppose [U;1, IC ?um(UZ)] is normal. This allows us to

contruct {Vr : r € (0,1)} such that

K(+) eV (+) = M(+),

where for r <5,V <V’ we define

s

flu)(t) = U V:(Ul)-
r>t

By Proposition 1.10 we know that u; - f(u;)(t) is Scott continuous

and hence
FR () = U flu)(s)
5 s>t
= U U Vg(ul)
s>t r>s

U VO(u) = Fu) ()
r>t

Now for s > r

HORAC

g
<=
o
_—
g
n
<
—
.
S
L]

implying

n u V%)< nV (-).
r<t s>r ° r<t
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For r < s < t there must exist 2 s.t. r<s < & < t. Hence

Vo(+) 2T, ()

implies

U V) 27, (4)
s>r

for r< 2 < t.

This in turn shows that
nou V()2 n V()
r<t s>r =<t

and hence that

n f(-)(r)

r<t

£ ()

t

"

n u vs°(-)= n v ().
r<t s>r r<t

Since u; »—V}(ul) is u.s. continuous and has @-convex images
(i.e. closed and compact) by Theorem 1.12 (iii) we know that

f'l(Li)(-) is an u.s.continuous multi-valued mapping.

Clearly K(uy) < f(u;)(1-) < f(u;)(0+) = M(u, ), where f'l(Rt)(-)
is open (i.s.c.) and f-l(Li)(-) is closed (u.s.c.), implying f

is continuous. O

For more material on this sort of theorem one should consult

reference [37].

This shows the intimate connection between the properties of the
topology C q”m (U,) and the ability to approximate with continuous
mappings. This does not of course imply the existence of a fixed
point since, except for when n = 1, one is not assured that the

approximating continuous function admits a fixed point.



222

The situation of perfect normality is of interest since this
implies that we can approximate from above u.s.c. multi-valued
mappings with i.s.c. multi-valued mappings. This in turn under
reasonable circumstances,would imply that we can approximate with
continuous multi-valued mappings. That is, under the conditions
of Proposition 5.10 the normality of [U;, ZIC q”m(Uz)] implies the
following. If K(-) is closed valued (i.e. ®#-convex) and u.s.c.,
M(+) € [Uy, ZC q”m(Uz)] and M () < K (-) there must exist a

continuous mapping h(+)(t) for t € (0,1) such that

C

M (uy) = h(u)(t) € K (u1); ¥ up € Uy
If we suppose K(uy) # ¢ for all uy, then
h* (u1)(t-) = K(u1) # ¢

for any u; € U; and t € (0,1). This in turn means u; - h° (u;)(t)

is a continuous multi-valued mapping for any t € (0,1) and

M(+) = h" (+)(t) = K(-)

for any t € (0,1).

Since we can squeeze a continuous mapping between any u.s.c.
mapping contained in an i.s.c. mapping, the ability to approximate
by i.s.c. mappings can be duplicated by continuous multi-valued
mappings. In the case when Theorem 2.7 is applicable, the

ability to approximate K(+) in graph by a 1.s.c. multi-valued
mapping KE(-) can be mirrored by an i.s.c. multi-valued mapping
with open image sets, namely N(Ke(-),e). The i.s.c. of N(KE(-),e)

follows from Proposition 1.11.

Arguments along these lines indicate that perfect normality of

the fuzzy topological space [U;, chps (U2)1 is closely related
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to our ability to approximate u.s.c. mappings by continuous
multi-valued mappings. To deduce the existence of a fixed
point we then have to impose some sort of more stringent con-

vexity concept to allow selectivity of the -image sets.
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CONCLUSION

This thesis represents a preliminary enquiry into the extent to which
the concepts of generalized convexity and continuous lattice theory
help to unify seemingly unrelated areas of mathematics, under a
common theme. To what extent fhese concepts facilitate such an
approach remains unclear, but what this thesis does show is that

the properties of "classical" convexity are quite consistent with
this approach. Conversely, many questions are generated by the

text and demand further investigation. We do show though, that

upper semi-continuous, closed and convex imaged, multi-functions

behave particularly well.

Under fairly general conditions we can approximate any such multi-
function from above and in graph by a continuous, convex imaged
multi-function. As was indicated in chapter five, this ability to
approximate, in graph, is closely related to the approximation
properties of the possible classes of functions, which generate
such multi-functions. The quasi-convex functions f(+) are able to

generate upper semi-continuous multi-functions, via
T(b) = {Uz . f(U2) < b}.

In a similar fashion the strictly quasi-convex functions generate
continuous muliti-functions. The abovementioned ability to approximate
multi-functions, in graph, is equivalent to an ability to approximate
quasi-concave function, by strictly quasi-concave function, in hypo
graph. Conversely, the ability to write any quasi-convex function

as the pointwise supremum of a class of strictly quasi-convex functions,
implies in very general circumstances, a graph approximation of the

corresponding multi-functions generated. In fact if
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(i) f(ui,u2) = sup{f (uy,uz) : i € I}
(i1) f (u1,+) strictly quasi-convex, and

(iii) f (+,+) continuous on the compact set U, x U, then
d(Gm,G) < €
where Gm is the graph of

Tm(ul) = {u, : i=i??,m fi(Ul;Uz) < b}

and G is the graph of
T(ui,b) = {uz : f(ui,uz) < b}.

We obtain in this fashion a graph approximation from a simple point-
wise limit. The graph approximation ability of T'(uy,+), considered

as a function of b, is carried across to I'(+,b), considered as a
function of u;. As was demonstrated in chapter four, the continuity
properties of T'(u;,+) are closely related to the continuity properties
of I'(+,b). The classes of functions for which such correspondences
exist are of importance. Since, the fixed point problem is, at least
in part, related to the ability to approximate multi-functions in
graph, the generalized convexity concept which facilitates such a

correspondence,as stated above, are of interest.

In this way the Kukutani fixed point theorem and a slightly weaker
version can be viewed as a consequence of the selectivity of convex
sets. This approach reduces the problem of finding a fixed point
of a multi-function, to that of finding a fixed point of a single
valued mapping. It also forms a bridge between the area of fixed
point theory and the area of non-linear optimization. The degree
to which this connection can be used to derive new fixed point
theorems is unclear (specifically those involving non-convex image

sets) but it seems quite likely that in time, techniques for finding
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solutions to such problems, in applied contexts, could be wrought
using ideas from this area. In particular, the areas of generalized
derivatives and generalized Lagrangians could play an important

part in this pursuit. The connection between the generalized
derivative of the marginal mapping and the solutions to the dual
problem of our particular augmented Lagrangian, may prove useful

in developing algorithms.

As was indicated in chapter five, we may be able to "pointwise"
approximate an upper semi-continuous multi-function with a continuous
multi-function, in very general circumstances. The conceptual
clarity of formulating this problem in terms of fuzzy set theory
indicates the virtue of the approach. Both fuzzy set theory and
continuous Tattice theory, could provide a framework for a recasting
of part of the theory of multi-valued mappings. Both formulations
could be more "intuitive" and help gain insights into various

anomalies in this area.

A number of questions arise from this work and remain unanswered.
I iterate a number of these for the interest of the reader. Does

the concept of "way below" as defined by
A >> B iff A o N(B,e)

for some € > 0, as compared with the lattice theoretic definition
of the usual concept of way below, help compare the concepts of
upper Hausdorf semi-continuity and upper semi-continuity? How do
the rates of local-uniform upper/lower semi-continuity and §-upper
Hausdorf semi-continuity (at points in the graph of T'(+)) compare?
Under what conditions do we have the local, uniform, upper semi-
continuity of a multi-function, at a uniform rate q(+) which has a

continuous inverse? Do we have the Tower semi-continuity of the
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optimal solution set mapping, b ~ o(b,0) at a point b, when the Slater
condition holds and f(+), the function being maximized, is convex

or strictly convex? Is b - a(b,0) linearly lower semi-continuous if
g(+) satisfies the Slater condition and -f(+) is convex or linear?

Do we ever have local Tinear continuity of b + a(b,0) in a non-linear

context?

Could we use the techniques of non-linear optimization to derive
fixed point theorems (even in R™) which do not rely on the convexity
of image sets of multi-valued mappings? In passing we speculate
whether there are convexity generating classes &, defined on a
topological space U, for which one could demonstrate some sort of
reflexivity of the space U? In this context this property could
determine the topological nature of the space on which a particular
generalized convex imaged u.s.c. multi-function might behave well. One
wonders whether a stronger connection between Hahn-Banach type

theorems and generalized convexity could be wrought.

There are many possible connections between generalized convexity and
continuous Tattice theory. At the least, continuous lattice theory
could provide a very useful tool in the development of the area of
generalized convexity. Conversely does the area of fuzzy topology
bear any relationship to the area of continuous lattice theory?

Could this be useful in determining when £' = [U;, I C%ps(UZ)] is
normal or perfectly normal? Does the stability of a class of multi-
functions imply the continuity of the lattice of functions, generating

such multi-functions? In what lattice would
L ={f:f:U-=>Rcontinuous and ¢l I(b) = I'(b) for b € int B},

where
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I(b) = {u : f(u) < b} and

r(b) = {u : f(u) < b},

be a lower dense set?

Many questions remain unanswered which arise from the work in chapter
four. Do there exist non-differentiable constraint qualifications
which imply Tocal Lipschitzness of the marginal mapping? Could one

show that the marginal mapping
M(u,b) = sup{f(ui,u2) : uz € T(u;,b)},
where
I(U1,b) = {uz : glui,uz) < B},
has a Clark derivative? If so is it the case that,

31M(u1,b) = co{vif(ui,uz) + y'Vag(uy,uz):

az € O!.(l_.ll) and y' € azM(l-Jl,B)}
where

a(uy) = {tz € r(uy,b) : f(ui,uz) > M(uy,b)3?
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