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SUMMARY

Two types of inhomogeneous elastic materials are considered in this
thesis. The first type of material is made up of different regions with the
elastic coefficients constant in each region. For the second type of material

the elastic coefficients vary continuously with the spatial coordinates.

The thesis may be thought of as being composed of three parts. In
the first part, the one-dimensional propagation of waves through an inho-
mogeneous elastic material i1s considered. Numerical solutions for certain
materials are obtained by using the finite difference method. In the second
part of the thesis, axially symmetric and spherically symmetric deformations
problems of inhomogeneous materials are considered by employing analyti-
cal techniques. In the final and major part of the thesis, we consider some
antiplane and plane deformation problems for isotropic and anisotropic inho-
mogeneous elastic materials. In the antiplane and plane problems emphasis
is placed on the development of the boundary element method for the nu-
merical solution of particular boundary value problems. The kernel of the
integral equation for some specific materials is derived so that the standard

boundary element method may be employed.
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CHAPTER 1

INTRODUCTION

The foundation of the mathematical theory of elasticity dates back to the sev-
enteenth century when Robert Hooke stated that the extension of springlike solid
bodies, produced by the tensile forces, is proportional to the applied force. Such
a relation which is known as a stress—strain relation has been developed extensively
over the last two centuries due to the growing demand for the elastic analysis of many
problems involving solid bodies. A large number of books and theories have been
written on the subject involving homogeneous materials (see for example Green and
Zerna [34], Love [47]. Muskhelishvli [53], Sokolnikoff [71]). The solution of boundary
value problems for such materials has been widely investigated. Several methods have
been developed such as the use of integral transforms (see for example Sneddon [6§],
[69], [70], Tranter [77]), special functions (see for example Sneddon [70], Watson [80))
and complex variable methods (see for example Muskhelishvli [53]). More recently
with the help of modern computational equipment, numerical methods such as finite
elements, finite differences (see for example Yang and Lee [88]), the boundary element
method (BIEM) (see for example Abdrabbo and Mahmoud [1], Ang [3], [4], Cheng
[9], Clements [10], [11], [12], [13], [14], [16], {19], Coleman [20], Cruse [22], Ligget
[46], Rangogni [59]. [60], Rizzo [61) and the combination of the finite element and
boundary element method (see for example Wearing and Sheikh [81]) have been used
extensively to solve a number of boundary value problems for homogeneous elastic

materials.

The study of boundary value problem involving inhomogeneous materials is also
of great importance in applications. In comparison with the homogeneous case rel-

atively little has been done in this area. Problems of this type are of considerable
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practical importance in view of the fact that inhomogeneous materials such as f-
bre reinforced and composite materials have wide applications in modern technology
especially in engineering.

The solution of many problems for inhomogeneous materials presents consider-
able mathematical difficulty. However for laminated materials a number of solutions
exist. For example, recent investigations presented by Sun et al [74] have described
the dynamic behaviour of a laminated composite. Following this work, several re-
searchers have studied the propagation of waves in a composite with periodic struc-
ture. Nayfeh and Nasser [56] investigated elastic waves in inhomogeneous periodic
materials. Using the variational method, Kohn et al [43] studied wave dispersion in
composite media. More recently, Yang and Lee [88] developed a numerical method

to analyse the modes of Floquet waves.

Some work has been done and a number of papers published on the subject
of linear elasticity involving inhomogeneous materials with continuous variation of
the elastic parameter. In particular some progress has been made in applying the
boundary element method to such problems. Since Rizzo [61] approached the classi-
cal elastostatic problem using the boundary integral method, the boundary integral
element method has become a more and more accepted tool for the fast and accu-
rate numerical solution of problems for homogencous media. In comparison with the
other commonly used numerical methods, the obvious advantage of the boundary
integral element technique is that the only quantities that have to be specifically
determined in the numerical solution process are the boundary values. Once these
have been obtained. the basic unknowns at any interior point may be found by the
use of an appropriate integral relation. Very recently, by using the radial basis func-
tions approach, Coleman [20] has employed the boundary element method to solve
the Helmholtz equation with variable coefficients. Other boundary element tech-

niques involving the evaluation of the area integral have also been developed (see
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for example Cruse [22]). However such as approach employs the unknown interior
points which means the boundary element method is less effective. To employ the
standard boundary element method, it is necessary to find a suitable kernel of the
integral equation. Unfortunately, the kernel of the integral equation is often very
hard to find. This is particularly true for elastic problems involving inhomogeneous
materials. The two dimensional Laplace equation with variable coefficients which
appear in anti-plane deformation problems involving inhomogeneous materials has
been successfully approached by Clements [10] using the boundary element method.
However this approach still needs to be developed since the variable coefficient which

is considered in his paper only varies with one spatial coordinate.

In this thesis. we review and develop several analytical and numerical methods
for solving problems in the theory of linear elasticity of inhomogeneous materials.
In chapter 2, the propagation of waves through one dimensional deformations of in-
homogeneous materials is discussed through the WKBJ method. The results of the
perturbation technique for specific problems are compared also with the results from
the Floquet theory. The propagation of Floquet waves through inhomogeneous pe-
riodic materials is also investigated numerically in this chapter by using the finite
difference method. Chapters 3 and 4 discuss axially symmetric deformations and
spherically symmetric deformations respectively. Analytical solutions are derived by
the integral transform method and the method of separation of variables. Numerical
solutions for some problems are obtained by the two point boundary value method.
Chapter 5 deals with anti-plane deformation problems for isotropic materials. An-
alytical solutions are derived through the method of separation of variables and the
numerical solution through the boundary integral element method (BIEM) combined
with the perturbation technique. The development of the boundary element method
for certain classes of shear moduli for the materials is centred around finding a suit-

able kernel for the integral equation. Several problems and their numerical results
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are compared with their analytical results in order to verify the accuracy of the nu-
merical procedure. In chapter 6 we consider anti-plane deformations for anisotropic
materials. The development of the boundary element method again centres on find-
ing a suitable kernel for the integral equation so that the standard boundary element
method can be directly applied. Chapter 7 deals with plane deformations for in-
homogeneous materials. The numerical results obtained by coupling the boundary
integral element method (BIEM) and the perturbation technique are compared with
the numerical results using the two point boundary value method. Several numer-
ical results relating to stress intensity factors are also discussed in this chapter. In
chapter 8, the integral equation formulations for anisotropic inhomogeneous elastic
materials developed in chapter 6 are used in considering the surface effects due to

incident plane polarised SH waves.



CHAPTER 2

ONE-DIMENSIONAL ELASTIC DEFORMATIONS

2.1 Introduction

One-dimensional elastic deformations for inhomogeneous materials are consid-
ered in this chapter. Such materials, including composite materials, have become an
important ingredient in many modern engineering structures. The propagation of
elastic waves in sucli materials has, therefore, been discussed by a number of writers
using different theories and approaches. For example by using WIKB method Kohn

[42] has discussed the propagation of small frequency waves in composite materials.

In the present chapter, we consider the propagation of large frequency waves
through inhomogeneous materials with constant cross section as well as with vari-
able cross section using the WKB or WKBJ method (named after Wentzel, Kramers,
Brillouin and Jeffreys) in which the large frequency wave solutions can be compared
with their approximations. Using the perturbation method, we consider the propaga-
tion of waves through specific materials with relatively small variation of the Young
modulus and the density. For two layered composite materials, the analysis of the
Floquet waves has been discussed by Yang and Lee [88] using the finite difference
approximation. Here we extend their work by including inhomogeneous materials in
section 2.5. The numerical results for two layered composite cells are then compared

with the exact solutions,



2.2 Basic equations

We consider a semi-infinite rod with constant cross section 4 as shown in Figure
2.1. By applying Newton’s law to the force through the cross section A at a point

and z 4+ b2 we obtain

0%u

2 (2.2.1)

Alo(a + éx) — o(2)]) = pbzA

Here p denotes the mass of the inhomogeneous rod at the point 2, u denotes the
displacement and o denotes the force at the relevant points. As usual we can make
6z arbitrarily small, thus by using the stress strain relation o = 110u/dz equation
(2.2.1) reduces to the wave equation for the inhomogeneous semi infinite rod
2
%3% (1;%) = %f_;’ (2.2.2)

where 7 denotes the Young modulus or the elasticity coefficient.
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Figure 2.1

Semi-infinite rod with constant cross section A

In the case when 7 and p are constants, equation (2.2.2) simply becomes the

well known one-dimensional wave equation

Fu 9u .
2 = 2.9
C 50z = B (2.2.3)



where C? = 5/p.
If the cross section varies then by applying Newton’s law, we obtain

2
Az + da)o(a + o) — A(x)o(a) = ;15,06.1.'{.4(:1' + ) + 4(1)}% (2.2.4)

Expanding A(x + é2) and o(a + é2) using Taylor’s series and taking the limit as éz
tends to zero gives

1 9 du 0%u
H%(’l“%) =7 (2.2.5)

2.3 Waves 1n inhomogeneous rods

Consider equation (2.2.5) for wave propagation along the x axis in an elastic

inhomogeneous medium with varying cross section

1 0 1 Ju &u a5
-— — > 7 —_— =il =——— :_/. .
pA Oz "02 o2’ ( )
where u(z,1) is the particle displacement, n = 5(2) is the elasticity cocfficient, A =

A(x) is the area of cross section, p = p(x) is the mass density. Yih [90] express that

the solution of (2.3.1) may exist in the form
u(z,t) = f(x)exp [7(g(;1:) - wt)], (2.3.2)

also Clements [10] suggests that a simple spatial transformation might simplify equa-

tion (2.3.1). Thus if we assume the displacement takes the form

—1
u(a,t) = U(ﬂ?)[."l(.‘l?)?](;r:)] 2 exp[—wt], (2.3.3)
where 1> = —1 and w is a constant, then by substituting equation (2.3.3) into equation
(2.3.1) we obtain
02U 2lp A
a;?-f-w 5—-‘“? U=0, (2.3.4)

-1



where
9

(_477)”(‘47])_] - i(.—h])’ (_477)—2.

| —
—~~
o
w
cn
-

Aa) =

Equation (2.3.3) shows that the condition (% - %) > 0 1s sufficient for U to
have a periodic solution. As is known, unless (% — %) equal a constant, equation
(2.3.2) does not admit a progressive wave solution since the inhomogeneity of the
materials induces wave reflection. However, an approximate solution can be obtained
which exhibits many of the properties of a progressive wave under certain restricted

conditions. Furthermore suppose we can set
U(a) = T(a)exp[tS(a)], (2.3.6)

where T and S are real valued functions which are to be determined. By substituting

equation (2.3.6) into equation (2.3.4) we obtain

T - TS + (“’TP - A)T +2T'S"+TS") = 0. (2.3.7)

This condition only holds if the real and imaginary parts of the complex number

vanish. That is

2
" TS 4 (“’ ey A) T =0, (2.3.8)
Ui
2T'S'+TS" =0, (2.3.9)
or
T?S' = constant. (2.3.10)

The power in complex notation is given by
Ou ou
P=R<An— 3R ¢. 2.3.11
{ "0 ot )~ ( )
where R denotes the real part of the relevant argument or

P= %wAv]TgS' - %w.:—ln']' {7T'sin2(S + wt) + 75 cos2(S +wt)}, (2.3.12)

8



where

T = T(An)" 2. (2.3.13)

Using equation (2.3.10) since w is a constant, the time average power per unit

volume is then given by

P = lim {l/ P(t)dt}
a0 k& do (2.3.14)
= %wTQS'

=

which means that the time average of the power flow P over the unit volume is
constant. By assuming that (ﬁ — Ay is such that T is a slowly varying function of

w

, and hence that T"/T tends to zero or can be neglected then from equation (2.3.8)

we obtain

AY?
s = iw[£ = —,,] . (2.3.15)
N W
Also equation (2.3.10) gives
p 'f\ ---:}
T=1T ?—} = . (2.3.16)

where Ty is a constant. Thus finally by using (2.3.16), (2.3.15), (2.3.6) and (2.3.3)

we obtaln

L=

T ) A@)]F N\
exp[m(t:t/o [7)(01) " ] da)]. (2.3.17)

For large w, equation (2.3.4) can be approximated by

| Al
w(a,t) = To(An)~ 2 [E - _7]

f,f ow

2
°"7 Pu=o, (2.3.18)
)

~—~

0% N
Oa?

so that the solution for the displacement in (2.3.17) reduces to

u(a.t) = TU(-—'11‘/)—]5 (%) 4 explw(t :I:/ (2) ) da)). (2.3.19)
0

n

9



Another method for the comparison of results in the case of large w will be

discussed next. Following Nayfeh and Nasser [36], if we write U(a) as

Ulz) = explw /J‘ Q dal, (2.3.20)
0

then by substituting this into equation (2.3.4) we obtain Riccati’s equation
lororel-2Lon (2.3.21)
w n o w?

Suppose w is large and @ can be written in the form
@ | G (2.3.22)

Q=Qo+—+ S+

By using three terms of the series only, we now determine Qq, @1, and @ by sub-

stituting (2.3.22) into equation (2.3.21). This gives
Qi+ "=
n
Qo +2QoQ = 0, (2.3.23)

Q] +Q? +2Q0Q2 — A =10,

or "
QU::EZ_I,*,
1,1
Q; = ;EC(C). (2.3.24)
1 1./7
Q2= F5Cf1% e (C) + 2 C (&)

\)

.3.22), (2.3.20) and (2.3.3) we finally obtain

)]

(2.3.25)

where C' = y/n/p. By using (2.3.24), (2

Olv—-

w(z,t) =T [.417] ek exp [u,.){t + / [E _ __9 _ S_“J:)_(E(E)// — 3
0

Equation (2.3.19) and equation (2.3.25) are similar for large values of w since
the terms containing w™2 are negligible.

10



Of particular interest is the case where = 19, 4 = Ay, p = po(a + @)" where

N0, Ao, po and a are constants. We obtain
A(z) = 0. (2.3.26)

Equation (2.3.17) becomes

vV o/ Mo <($ T a;—'+1)”_

u(z,t) = ToAO_i(??o/)o)—%(ﬂ’ +a)7 3 exp [M{t = n/2+1

We see here that for the case n = —4 the amplitude varies linearly with = while
the wave speed also varies with respect to position according to the equation

1 1
V =n2p, 22+ a). (2.3.28)

In the case where A(2) = 0, A = Ay, n = no(a + @)* and p = po(z + a)? we

obtain

u(a,t) = T'()AO_%(T}U[)U)_%(.’E +a) exp [M{t ==k /2—21}} (2.3.29)

Equation (2.3.29) shows that the wave speed is constant as well, while the am-
plitude is inversely proportional to a.
In the case of a homogeneous right circular cone, 4 = Aga, n = 0y, p = po,

A = —1272 we have the displacement in form

ik
z 1 3
Po '
oxp [ | t £ — da ) |.
exp [1 < /0 {170 RE 4a'2w2} a)}

If we apply a relatively large frequency w, then equation (2.3.30) reduces to

u(x,t) = TOAO_%(770/)0)_%.1?_l exp [zw{t = /%T}] . (2.3.31)
0

11
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2.4 Perturbation method

Motivated by Nayfeh and Nasser [56], we consider here an inhomogeneous ma-
terials with relatively small variations in Young's modulus and the mass density. If

the Young’s modulus and the mass density can be written as

1= 10+ ep(2),
(2.4.1)

p = po+eq(x),
with € is a small positive number, p(z) and ¢(2) are continuous functions then equa-

tion (2.3.4) can be written as

o*U o i 2 ; Sl
57 + w [70+e71+67g+---]l =0, (2.4.2)
where
Po
rg = —,
7]0
o 4w(gm0 — ppo) — 2yop”
1 4(.02773 i (243)
4w (p?po/no — pq) + 2pp" + P’
re = PG .
4w=ng
Furthermore, if we assume that
U=Uy+ely + Uy + -, (2.4.4)
then by equating the coefficients of powers of € we obtain
Ué' +w?rlUy = 0,
l]]” + U—‘27’0U1 = - wQT] lfoa (245)
n—1
L’Y:,I + LUQT'U Up = — w? Z ra—ili, n=23,---,
=0

Unless p(2) and ¢(x) are specified, equation (2.4.5) can not be solved. In their
discussion of Harmonic media, Nayfeh and Nasser [56] have considered two specified

cases. The first case is for materials with 7 = 19, p = po(1 + ecosfz) and the second

12



case for materials with 5 = 1(1 — ecosfa) and p = pg, where 1y, po, 6 are the
material constants and € is a small positive number. The first case is obtained by

choosing p(x) = 0 and ¢(a) = pg cos 6z so that equation (2.4.2) reduces to

U 1
7+ 7 (1+ecosy)U(y) = 0, (2.4.6)

which is known as the classical Mathiew equation with 6z =y, a® = 198%/pew?. The
second case is obtained by choosing p(z) = —n¢ cosfz, ¢(z) = 0 so that equation

(2.4.2) reduces to

U 1 1 €a® cosy e2a? sin” 1 .
-~ 4= n g Y_U(y) =0, (2.4.7)
Jy? a* |l —e€cosy 2(1 —e€ecosy) 4(1 —ecosy)*

which is a Hill equation (sce Nayfeh and Nasser [56)). Here we note that any periodic
functions of p(a) and g¢(2) will have a similar effect for two cases discussed above.

For example by choosing the functions

pla) = ng cos O,

(2.4.8)
g(x) = pg cos B,
we obtain
P0
o = —,
70
62 cos Bx
™ = T, (249)
62(1 + 3 cos 26x)
o = — 5 i

B Sw?

By assuming the series in (2.4.4) converges very rapidly, we only consider three terms

of (2.4.5). Thus
T 1 T
Uy + a—.zl/o(y) =0,
b1 . 1 N g

Ui + 5 Ui(y) = = 5(cosy)l, (2:4.10)
a? 2

R 1 1

Uy + ;-,)Ug(y) e §(1 + 3cos2y)Uy — g(cosy)U],
12 2

2

2
where a? = 6254 /w?py.

13



The first equation (2.4.10) has a solution in the form

1 L1
Uy = Ap cos Y 4+ By sin 1.
a a

(2.4.11)

If the homogeneous solutions of the second and the third equation of (2.4.10) are

Uy, = Aj cos £l + B sin Q,

a a

Usp = Ay cos ¥ + B sin g,

a a

then the particular solution for the second equation (2.4.10) is
1 . il

Uy, = da ¢ Ag cosy(l + —) + By smy(l + —) .
a a
1. . ]
dz < Ap cosy(l - —) - By smy(l - =
a a

and for the third equation is

Us, = d; { Apy Sln = — Byy cos g}-i—
a
1
dy {41 cosy(l + )+ B;siny(1 + —)}—i—
a
) 1
{-1 cosy(l — —) Bysiny(l — —)}-}-
a a
1
{—10 cosy(2 + — )+ Bysiny(2 + —)}-{-
a
1
(/O{ Ag cosy(2 — -—) — Bysiny(2 — —)},
a
where
- —a
M= Yz —a)
e
d(a+2)
. a
S da—2y
—a(3 4+ «)
(l_q = y
32(a+1)(a +2)
a(3 — a)
(15 = -

32(a~1)a—-2)

14
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(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)



Thus the solution of U can be obtained in the form

U= C'Cosy + Ds
a

where C and D are arbitrary constants

(2.4.13) respectively. From (2.4.11), (2.4,

.0 .
in é + Gy + €2G2p, (2.4.17)

and Uy, and U;, are given in (2.4.12) and

12), (2.4.13), (2.4.14) we can see that there

exists a singular point at « = 0. The constants in (2.4.16) also show that there exists

singular points which divide the domain

a by the transition curve along which the

solutions are periodic. These singular points are a = £2, a = £1. Other singular

points can be obtained by expanding the perturbation parameter to a higher order.

For the case near the singular point @

(-]

2, we can write

4+ aye, (2.4.18)

where a; = O{1}. If we consider two terms of the perturbation parameter only then

equation (2.4.10) can be written as
1 ’

1
Ug + 3 Ua =0,

(2.4.19)
lr!l 1(7 _ 1 1 . l]
Ty = (Ea‘] = ;jcosy) 0,
with solution
1 )
Uy = Ap cos 5y + By sin 5Ys
; 1 1
Uip = Ay cos Syt Bj sin 59>
- - (2.4.20)
o7 B(l—i-l) 1 4(1 1)_1+ :
, = — — 4+ —ay)ycos -y — Agl—- — —a1 )1 -
1 08y T g MIVeos gl T Aoy T g MY ER Y
1 3 1 .
.40§ cos §y + Bog sin §y,
or
1 1 1 1 3
U = {_40 + 6(_4] - Boy(z + E(l.] ))} cOS 3y + ’8—_40 cOs 5y+
. 1‘ . 3‘ (2.4.21)
{B(j + E(B] bt fl()y(z — ECL] ))} sin §y + gBO sin 5:(/,
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which is always unstable since U grows infinitely with y. We obtain similar unstability
for the other singular points. Thus the perturbation method above only gives good

approximations if a >> € and « is not close to the singular points.

2.5 Floquet waves in inhomogeneous periodic materials

In their study of the composite materials, Yang and Lee [88] have employed a
forward difference approximation combined with an excellent numerical techniques
for analysing the vibration modes of the composite. In the present section, we adopt

their techniques in considering wave equation for inhomogeneous materials of con-

terials
n(a + p) = n(x),
(2.5.1)

pla 4+ p) = p(a),

where p is a periodicity constant, 7 and p are continuous functions of « and denote

the Young’s modulus and the density of the materials respectively.

By assuming the displacement takes the form of

u(z,1) = u(a)explwt], (2.5.2)

[

dx

d du
— [1;(3?)5] = —pla)w’u. _ (2.5.3)

If we consider only one period of the material, ranging from @ = a to 2 = b, then

by introducing the new variables

= ,
P
U(X) = l(p” ,
: (2.5.4)
E.X’ = 1](1)
(X) 77(-’1’1)’
RIX) — /)'(w)’
= p(x1)



where =0 a, equation (253) reduces to a dimension]ess differential c uation
p » € q

d ..dU ])2.’4.‘2/)(.’1']) T .
— |E(X)— | = ——F— 2 R(XU(X).
dX [ ( )d-«\'} : n(xy) AEDIC )
a p . b
. — 2
L] ]
\ 1
\ /
\ 1
1 i
\ i
\ ]
A I
1 1
\ [}
\ 1
\ I
\ |
\ 1
2123 e n. e ,
CI) he ; .X
Figure 2.2

The X now, ranges from X = 0 to X = 1. Discretising X into n segments or

(n 4 1) discretisation points as in Figure

2.2, and also choosing

=Ly

E,’ S E(-'Yi - ]_;)’
R; = {R(Xi + )+ R(X; - }/2,

(2.5.6)

where A = 1/n, € is a small positive number, then by using the finite difference

approximation, we

where 1 = 1,2, .-

obtain the relation

EiUi—y — (E; + Ei))Ui + Eiy Uiy = KR;U;,

,n, and N = —p?w?h?p(xy)/n(ay).

(2.5.7)

By Floquet theory, the mode function u(a) satisfies the quasi periodic conditions

(see for example Nasser [55])

u(x + p) = u(z)exp[ipg],
u'(x + p) = u'(x)explipy],
o(z +p) = o(x) exp[ipg]
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where ¢ is the wave number which relates to the radial frequency w.
Equation (2.5.7) provides n equations and (n + 2) unknowns, while equation
(2.5.8) provides
Unt1 = Uy explepgl,
(2.5.9)
Us = Uy exp[—pq],
Thus by using (2.5.1) and (2.5.9) in (2.5.7), we obtain
—(Ey + BE2)U;y + EQUy + Eye™™U, = KR Uy,
E,’U,'_] . (E,’ <+ Ei+] )U?' + Ei+]Ui+1 = I\'R,'U,', 1= '2, 3, ceen—1 (2.5.10)

Ele”,ql[] + E’nl’?n——] - (E'n + El )l’rn = IX—R')l[]n-

In matrix form, equation (2.5.10) can be written as
1

AU = KBU. (2.5.11)
where
—-F, — E, E, 0 0 Eierd
E, —F5 — Ey Es - 0 0
0 Ey —-FE;—-E; ... 0 0
A= ) . . _ . .
0 0 0 eo. —FEn_1—-FE, E,
E] ' 0 0 i e En —En — E]
U= (U Uy - U,y U,)", and B is a n-diagonal matrix with diagonal element

Rla R'_’a B R'n-

Following Yang and Lee [88], since B is positive defenite, we may write B =

K

B:Bz where B? is also a diagonal matrix. If we define
1
V =B>U, (2.5.12)
then equation (2.5.11) reduces to ordinary eigenvalue problem

A'V=KV, (2.5.13)

18



= Pl N O 0 . 0 o9
where A* = B72AB77 is a Hermitian matrix with a real tridiagonal and two

complex elements in (1,7) and (n, 1) locations. All other elements of A* are zeros.

If we write matrix A* as

A" = A+ ggh, (2.5.14)
where
_E+E, Ey
(TR w0 i 0 )
20 _ Byt B “3
Vit Re Ity V2 Ia
0 f.'.':t. — E,'ﬁ""’ £-|
A H-_» ”;; R({
A= : . ;
) : : . — En—.l+En E‘n
O 0 0 o Ry-1 ;; Ry_-1Rn
0 0 0 E, _E.+E _ _E
\ o AV R,_iR, Ry RiR,
(2.5.15)
g=(10---0 %)T and H denotes the conjugate tranpose, then A is readily
1/1n

diagonalized by the implicit QL algorithm for a real symmetric matrix using shifts

of origin (see for example Wilkinson and Reinsch [83]) such that we can write
A=QAQ7, (2.5.16)

where A 1s a diagonal eigenvalues matrix which is arranged in ascending order
Ay <Ay <Az <Ay, (2.5.17)

Q 1s an orthogonal matrix formed by the eigenvectors coresponding to the eigenvalues
m A.

Substituting (2.5.14) and (2.5.16) into (2.5.13) we obtain

(QAQT + gg)V = KV. (2.5.18)
Let
h=Q"g,
(2.5.19)
w=QTV,
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then equation (2.5.18) can be written as
(A — KT+ hh®)w =0, (2.5.20)
which has a nontrivial solution if and only if

det (A — KT+ hh*) =0, (2.5.21)

The rank one modification on A* has different eigenvalues from A. Since K #

Ai,i=1,2,---,n and det (A — KT) # 0 then we can write (2.5.20) as

det [T+ (A — KT)7"hh"] = 0. (2.5.22)
After some algebraic manipulation, equation (2.5.22) can be written as a scalar
characteristic equation
n
h;h; :
oK) =1+ — =0, 2.5.23
Z Ai—L ( )

where the h; denotes the conjugate of h;. This function of I then can be solved
for its roots for a certain specified accuracy especially for the smallest roots using
an elementary methods such as the bisection method or Newton method. From
a practical point of view, only the lowest few frequencies and mode shapes are of
interest. This means that we do not have to solve for all zeros of K in (2.5.23). Let

K; be a known eigenvalue, equation (2.5.20) gives
(A — K;I)w; = —hhPw,. (2.5.24)
Since hHw; is a scalar. we can write
w; =y(A - ;1) h. (2.5.25)
Using equations (2.5.11) and (2.5.18) we finally obtain

U; =B 2Q(A — ;1) 'h. (2.5.26)
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where v is an arbitrary complex constant which can be determined by a given initial

condition.

The strain now can be obtained through the relation

CU' = D, (2.5.27)
where

Ey =E 0 g 0 0

0 E, -E; 0 0

0 0 B 0 0

C = .

0 0 0 .. E.n -E,
~Ej™ 0 0 ... 0 E,

U=t u, u - uT,

2,,2 1A
D= ZZ__L;)(pﬂl))—' ( RyUy + R2Us - Rn——]Un—l + R, U, RyUe™ + R,U, )T’
2n(ay

and the stress follows immediately through the equation

du
- (2.5.28)

o) = 77(.1?)%.

In the case when the strain has been specified, then the displacement can be

obtained by

FU =G, (2.5.29)
where N P 0

] 5 ... 0 0

0 Ry Rs 0 0

0 0 Rs 0 0

F= : .
0 0 0 R._; R,
Rie™ 0 0 0 R,
U=(U; Uy Uz - U, )T.
In(x

=2 pn B . Ba Ul — EJUN —EyUle™ 4+ B U

— p2w?p(a)h
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Problem 2.1 : A numerical example for a two layered composite cell

In order to verify the accuracy of the procedure above, we consider a two lay-
ered composite cell problem. Here the material is made up from many two layered
composite cells as illustrated in Figure 2.3. Each cell consist of material one at both
sides of the cell and material two which is located at the centre of the cell. If the cell
and the material two have length a and b respectively, then the analytical solution of

the mode which is found in the literature (see for example Sun et al [74], Yang and

Lee [88]) may be written as

. w(a—Dh) wh 1472 fw@-h)\ . [wb
=cos| ——— Jcos| — } — S . 2.5.
cos (¢ga) = cos ( - ) cos ( ” ) oy sin ( c] sin > ) (2.5.30)

L
5

where ¢1 = (11 /p3)%. ca = (2/p2)?, v = (2p2/mp1)?.

7 11 I
! i ] %
— } _
< a >
Figure 2.3

Two layered composite cell

If we further specify the materials with y = #;/n; = 4 and 8 = py/p; = 3 and
b/a = .5. Then by specifying the initial condition for the displacement u = 1 + 0z in
the middle of the cell and using 60 discretisation segments, we obtain the numerical
results for displacement, strain and stress as in Table 2.1. The comparison between
the analytical results which are given by solid lines and the numerical results which

are given by the dots for the first six modes are in Figure 2.4.a.
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Figure 2.4.b shows the similar comparison with materials specification y = 50,
6 = 3 and b/a = .5 (the composite material consists of two quite different materials).
Both figures show that the first six modes of numerical solutions can be regarded as
the exact solution. We note that a similar test problem and the numerical results for

the first five mode can be found in Yang and Lee [88].

Problem 2.2 : Inhomogeneous cell

Here we extend the problem 2.1 by considering the material made up from
many inhomogeneous cells. Each cell of the material has the non dimensionalised
Young's modulus /1y = .5 + .02 cosz and mass density p/pg = 24 .02cosz, —7 <
2 < . Using 60 discretisation segments and specifying the initial condition for the
displacement v. = 1+ 02 in the middle of the cell, we obtain the numerical results for
displacement, strain and stress as in Table 2.2, The plot between the wave number

ga and the radial frequency w for the first three modes can be found in Figure 2.5.



Table 2.1
One dimensional Floquet waves in inhomogeneous materials

Mode = 1, QA = 1.5707963, Frequency = 2.3436633

No u(x) du/dx o(x)

Real Imag Real Imag Real Imag
0 0.57112  -0.57112 1.70677  1.70677  5.12031 5.12031
6 0.73608  -0.39573 1.58692  1.79541  4.76077 5.38624

12 0.88757  -0.21311 1.43807 1.85123  4.31420 5.55370
18 0.97266 -0.09659 0.27212  0.47406  3.26546 5.68878
24 0.99314  -0.04863 0.13700  0.48405 1.64401 5.80856
30 1.00000 0.00000 0.00000  0.48739  0.00000 5.84867
36 0.99314 0.04863 -0.13700  0.48405 -1.64401 5.80856
42 0.97266 0.09659 -0.27212 0.47406 -3.26546 5.68878
48 0.88757 0.21311 -1.43807  1.85123 -4.31420 5.55370
54 0.73608 0.39573 -1.58692  1.79541 -4.76077 5.38624
60 0.57112 0.57112 -1.70677  1.70677 -5.12031 5.12031
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Comparison of the numerical and analytical results

for the first six modes of two layered composite cell
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One dimensional Floquet waves in inhomogeneous materials

Table 2.2

Mode = 1, QA = 1.8849556, Frequency = 0.1499931

No u(x) du/dx o(a)
Real Imag Real Imag Real Imag

0 0.58696  -0.80788 1.53081 1.11220  0.76235 0.55388

6 0.72870  -0.68298 1.29487 1.37773  0.64526 0.68655
12 0.84438  -0.53403 1.01189 1.59206  0.50522 0.79489
18 0.92989  -0.36651 0.69362 1.74839  0.34717 0.87510
24 0.98233  -0.18642 0.35238 1.84301 0.17674 0.92437
30 1.00000 0.00000 0.00000 1.87449  0.00000 0.94099
36 0.98233 0.18642  -0.35230 1.84256 -0.17674 0.92437
42 0.92989 0.36651 -0.69335 1.74769 -0.34717 0.87510
48 0.84438 0.53403  -1.01148 1.59143 -0.50522 0.79489
54 0.72870 0.68298  -1.29455 1.37739 -0.64526 0.68655
60 0.58696 0.80788 -1.53081 1.11220 -0.76235 0.55388
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CHAPTER 3

AXIALLY SYMMETRIC DEFORMATIONS

3.1 Introduction

There are two types of axially symmetric deformations of elastic materials which
are considered in this chapter. The first type of deformations for which the nonzero
displacement component is ug, are discussed by using the method of separation of
variables. The second type of deformations are those for which the only non zero
component is u,. For this type of deformation, Clements et al [15] have approached
the problem using the Fourier transformation. Following their technique, we employ
the Laplace transformation in solving a specific axially symmetric deformation prob-
lem. The solution of a double walled cylinder and/or concentrically composite disk

problem and several numerical results can be found at the end of the present chapter.

3.2 Basic equations

The basic equations relevant to the specific classes of problem considered in this
chapter are provided in this section. Axially symmetric deformations refer to defor-
mations which referred to cylindrical polar coordinate system 7,6, z are independent
of 8. For axially symmetric deformations where the only nonzero displacement com-
ponent is ug, the equilibrium equation can be written as (see for example Sokolnikoff
7))

0o,.¢ Oog. 2
g Zovp =0, 2.1
O T g, T (2l
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where

all.g
Th: = pa
 (ue ws (3.2.2)
Trg = p<_é1— — 1_*> 4

If we specify the inhomogeneity of the material in the form u = p(r, z), then equation

(3.2.1) can be rewritten as
?ug  O’ug Oug (1 Op ol Oug Op _
H ( Or2 2 922 > + o (7_ + g) — Ug (0—17- + 1—2) + 5 02 0. (3.2.3)

For the class of axially symmetric deformations where the only nonzero displace-

ment component is in the radial direction u,, the equation of motion can be written

as (see for example Sokolnikoff [71])

007‘ + 1( ) _ a2“1‘ 3 9 4
or T i =S = g ot?’ ( o )
where
Our A

or = (2u+ /\)aauj + —ur,
ro (3.2.5)

Oup Uy

0.9=/\6 +(2p+ A)—.

r r

By assuming A, i, and p are dependent on the radial coordinate r only, the equation

(3.2.4) becomes

O*u, Ou, 0%u,
—_— K N Uy = ,' id e 2
52 + A(r) ar + B(r)u C(r) 52 (3.2.6)
where
Mngﬂmm+Aﬂ
dr '
1 dA 1 .
B(7)—m*&,—‘—72—, (32()
p
Cl(r
(r) (2u+ A)



3.3 General solution using the separation of variables method

We consider equation (3.2.3) for the axially symmetric elastostatic problem here.

By performing the transformation, ug(r, z) = ,u,—%U(r, z), equation (3.2.3) becomes

02U 19U 1 _, [0 2 0% 3 0l 1
or [ ; (_> L R Ly ma—) U+

oz rar |1 \or
2 (3.3.1)
R EI A N B
0-2 T |a! \a:) "2 ez T
Furthermore if we assume that U and g take the forms
Ur,z) = R(r)Z(z),
(3.3.2)

iy ) = pop(r)a(2),
then by substituting equation (3.3.2) into (3.3.1) and separating the variables we

obtaln

R R 1 lpl 2 ])” 3])1 AL 1 ql 2 1 q//
) + 2 [ . = == - — 57 . (3.3.3)

As usual this equation should be equal to a negative constant, say —n?, which gives

us the two equations

and
1/¢'\" 1¢"
Z" + [- (q—) =54 n?} 7 =0. (3.3.5)
Here the primes denote the derivatives with respect to the relevant argument and n?
is the separation variable constant.

Suppose ¢(z) is an analytic function which satisfies the differential equation

1d%  1/1dg\?
2—(1(]? 2 (EE> = qo, (3.3.6)
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where qo is an arbitrary constant, thus if ¢(z) 1s known, ¢o can be determined.

Suppose n?2 + g = £2 > 0, then equation (3.3.5) becomes
Z" - €7 =0, (3.3.7)

with the solution

Z(z) = A(6)e % + B(£)e* . (3.3.8)

By substitution we finally obtain
Ur, 2) :/ R(&,7)[Ae™ + Bet?] dé. (3.3.9)
0

or

ug(r,z) = [pop(r)g(=)] 5/ R(E,m)[4e™¢ + Bet*] de. (3.3.10)
0
Here A(€) and B(€) are arbitrary functions. If p(r) are known, R(r) can be deter-

mined from equation (3.3.4).

As an example for a particular problem, let the shear modulus take the form

p(r,z) = por® exp(fz), a>0, (3.3.11)
then equation (3.3.4) can be simplified to
1 1/a ;
R'+-R + [712 — —,)—(% + 1> ]R =0, (3.3.12)
r 2\ 2

which is Bessel’s equation. The solution of this differential equation can be written
as

R(r) = Alhte(nr) + BYi14a(nr), (3.3.13)
where A and B are arbitrary constants, Ji4s and Yi4¢ are Bessel functions of the
first and second kind respectively with order 1 + 9. Since the displacements are
always bounded at » = 0, this gives the constant B = 0. In addition, for the half

space z > 0, r > 0 and (r? + 52)]5 — 00, the general solution may be written as

/ A(E)e™ Jiq g (nr) dE, (3.3.14)
0

N

ug(r,z) = [NOTO eXP(ﬂ:)]_

/O A© Dy g (e - 760, (3315)

where A(€) is an arbitrary function of &.

~or

[XIE

ug(r, z) = [,u.gro exp(ﬂ:)]
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3.4 General solution using the Laplace transformation

Here we consider the equation of motion for inhomogeneous elastic materials
governed by (3.2.6). By rewriting u, as u, we have

&u Ou N2
52 + A(?)-87 + B(r)u = C(s )-a?, (3.4.1)

with A(r), B(r) and C(r) are given by (3.2.7).

By applying the Laplace transform which is defined by

u(r,s) = / e *lu(r,t)dt, (3.4.2)
0
with inverse
1 ctioc o
u(r,t) = 7—/ a(r, s)e’ ds, 1=+-1 (3.4.3)
2l c—i1oe

to equation (3.4.1) with respect to time subject to the initial conditions u(r,0) = 0

and Ju/0t|(, gy = 0 we obtain

&*w ou 2 e
52 + _4-87 +[B-s Clu =0. (3.4.4)

According to Clements et al [15] the solution of this differential equation can be

expressed in the form

Tlr,s) = F(r)Flg) (3.45)
where ¢ = sg(r). The substitution of equation (3.4.5) into (3.4.4) yields the quadratic
form

d*F C 2f'g  g¢" Ag,dF  ¢*
2 [ _F bl i LA " A !/ B F: ] 34.
q [dq2 g/2 ] + (j[ fq' + g/‘2 + q' ] (Zq + fg,z [f + Af + f] 0 (3 4 6)

This equation is satisfied by requiring that all of the coefficients of ¢ are equal

to zero




"

2f'g 99" | Ag

e Ty 0, (3.4.8)
" +Af"+Bf =0. (3.4.9)
If we put
C=gq", (3.4.10)
then equation (3.4.7) has solution
F= c](s)e‘qg(") + co(s)e™ 9 (3.4.11)

where c1(s) and ¢y(s) are arbitrary functions of s.

Substituting (3.4.11) into (3.4.5) and taking the inverse Laplace transform, we

obtain
1 100
u(r,t) =5— / f(r)[cl(s)csy("') + Cr_)(s)e_”"”(")]esr ds
=T Je—ioe
flr) [+
= / [c](s)e‘““‘"g("” + 62(3)63(1—9(7‘))] s
= C—=120
or

u(r,t) = f(r) [d](t +g(r)) + da2(t — g(v*))], (3.4.12)

where dy and dy are arbitrary functions which are linear combinations of the inverse
transforms of the arbitrary functions ¢; and ¢y. Here ¢(r) should satisfy equation
(3.4.10), while the function f(r) should satisfy either equations (3.4.8) and (3.4.9),

or
' 2By’
f(’l") = /exp [/(‘(/”_4——{{4‘(]' — .4) d?’} dr. (3413)

Finally by substituting equation (3.4.13), (3.4.10) into (3.4.12) and simplifying,

we obtain the general solution

e [/ {/4}36'—.40 —24°C }d]
ujr.t) = exp T 24C o i
& i (3.4.14)

[dl(t+/C%dr)+d2(t—/c%dr)}.
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The constants here can be evaluated using the boundary conditions while the stresses

can be derived by the direct substitution of (3.4.12) into (3.2.2) and (3.2.3)

. A
or(r) = [(2# + M+ Tf] [di + da] + (2 4+ M) fg' [d] — d5], (3.4.15)
oe(r) = [/\f' + 2'“':— /\f} [dy + do) 4+ Afg' [dy — d5]. (3.4.16)

As a particular example, suppose we have the material specification in the form

p = por’,
p= per?, (3.4.17)
— /\0,.1@’

where pg, fto, Ao, @, 3 are constants. By substituting (2.4.17) into (3.2.7) we obtain
4= (p+1)r?,

_ /\0/3 1 —2
=Tt Y (3.4.18)

— P a-8
= ————r .
2u0 + Ao

Also from (3.3.10) and (3.3.13), we have the relation

g = qrate=ht,
1 @ (3.4.19)
f=17—=r""",
o+1
where )
Po L , -1
-/“/\ ﬁ” - (3.4.20)
§=14 L—l) a+p+2)71-f+1.
(?,”u + Ao ( / ) 8
Thus the solution for the displacement in (3.4.12) can be written as
1
u(r,t) = 6—+—17~5+] [d](t 4 prz@=DHy gt — prEle= B4yl (3.4.21)
while the stress in (3.4.15) and (3.4.16) can be written as
oy = T[(I] + (12]7,,3+6 + h‘.[d'] — (1'2]7*%("'“3”5“,
(3.4.22)

g = X [dr + do]r?He tw[d) — dy]rilet AT
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where 3
fto + 1] + () + 17
k= [po(2p0 + X)) ? (6 +1)77,
) ! (3.4.23)
\ = Ao+ (2p0+ Xo)(6+1)77,

1
o ( Po )2 Ao

As an application, we choose a cavity problem for an inhomegeneous cylinder

made up from the material given in (3.4.17). The boundary r = a of the cavity being

subjected to a sudden constant pressure p. The boundary condition at » = a i1s
or(a) = pH(1), (3.4.24)

with H(t) denotes the Heaviside function. Note that, the stress expression in (3.4.12)
is only valid provided that 7 # a+2. For the case f > a+2 the appropriate conditions

for d; and dy are

dy = exp [—Za-%(o-ﬂ)—]f} + Ba—ﬂ—éH(f),
,g T (3.4.25)

(l-z - 01

while for the case § < o + 2 the appropriate conditions for the progressive wave

equation are

d] e 0-.
, . 3.4.26
(12 — exp[za—%(o—ﬁ)—lg} + Ba._/j_éﬂ(ﬁ)’ ( )
K T
where
£=1t—|n|(r —a)zle=2H1, (3.4.27)

The hoop stress follows immediately by substituting (3.4.25) or (3.4.26) into (3.4.22).

For the case 3 < a + 2. the hoop stress is

N

.
og(r) = exp [—a—%((’_m']f}
K

(3.4.28)

£713;(o+;3)+6+1a—%(0—ﬂ)—1] 42X ([)BHH(O_
K i a
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In the case a = 3, it simply becomes

R K T a

og(r) = exl)[f—{] [\1_04_5 - w—Tro"'H]a_]] + ded (£>0+6 H(¢). (3.4.29)

Another general solution in terms of Bessel functions can be obtained by choosing

the coefficients of equation (3.4.6) to be

C=—g° (3.4.30)
2f'g 99" | Ay
it T+ =L (3.4.31)
J9g g )
I__[f"+Af' + Bf] = =7, (3.4.32)

fg"”?

so that equation (3.4.6) reduces to Bessels equation

J2F  dF .,
2L g q(d—q + (¢ — v)F = 0. (3.4.33)

s
4 dg?

This differential equation admits the solution
F(q) = c1(8)Ju(q) + c2(5)Y,(q), (3.4.34)

where ¢; and ¢y are arbitrary functions, J,(¢) and Y,(¢) are first and second kind of
the Bessel function of order v. The displacement can be simply obtained by using

the inverse of the Laplace transform again

e cc+100 I
u(r,t) = —iﬁ?—) / [c](s).],,(sg(v*)) + C'g(s)l",,(sg(r))] et ds. (3.4.35)

=7 c—100

3.5 Double walled thick cylinder

The inhomogeneous materials can be assumed to be made up from an n-layered

homogeneous materials. In this section we consider a double walled cylinder and/or
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disk made up of two layered homogeneous materials. Such as problem for example a
thin disk with a circular hole and its ring (plane stress case) and/or its counterpart,
a double walled cylinder (plane strain case) are of considerable practical importance.
If the first homogeneous material with constants A; and y; is bounded by ro < r <
r1, and the second homogeneous material with constants Ay and ps i1s bounded by

r; <r < ry (see Figure 3.1), then the basic equation (3.2.4) reduces to

*u 1du 1
02 + ;"(F — ;Eu =0. (3.5.1)

Without any difficulty we obtain the well known solution for the displacement

d
u=cr—+ - (352)

7

where ¢ and d are arbitrary constants. The stresses can be easily obtained by

substituting (3.5.2) into (3.2.5)

d

gr =2(A+ p)c— 2;1.r—2, (3.5.3)
d

g =2\ +pu)e+ '2,u.r—2. (3.5.4)

By assuming the force at ry 1s T1, the constants ¢ and d can be evaluated. Using

equation (3.5.3) we obtain

Gid
TO = F] Cc] — :2(] : (355)

0

and

G1d
Ty = Frep — =21, (3.5.6)

i

Thus the constants ¢; and d; for the first material can be specified

T’ng - 7‘%T]

Fy(rg —13)’

_ 7'87‘]2(T0 — T])
(g —13)

C =

(3.5.7)
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Material 1l

— o — :
_— ") —
T9 ]

-~

Figure 3.1
Material I with X = Ay, p = #1 and material I1 with X = Ao, pt = iy

and for the second material

2 2

d2 _ ?‘;‘27‘3(T1 . Tg)

Gao(rf —13)

(3.5.8)

where Fy = 2(Ay 471 ), F» = 2( Mo 4p), Gy = 23, G2 = 2p13. The continuity property

requires that

[15] (7‘1 ) = ‘UQ(TQ )

(3.5.9)

Here the materials are assumed perfectly continuous, with u; and uy denote the

displacement at the first and the second materials respectively. By using (3.5.9) we
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obtain the equation

( 2T0 —"IQT]) ?‘ﬁ?‘](T@ = T}) _ 1‘](7‘]2T] — 7‘2T2) + ?‘1?§(T1 )
Fi(r2 -r}) G2 —12) —  F(r?-r?) Go(r2 —12)

(3.5.10)

Ty in (3.5.10) can be written explicitly. Using this 73 in (3.5.7) and (3.5.8) we
have

c = [7‘1 2G1T2(F‘7 + G’)) — 70T%G2T0(F2 + Gy )-l- 'I"O 2F2T0(G2 - Gl)]

dy = 122 [12GaTo(Fy — Fy) — iR BTo(Fy + Go) + A R T (Fy + G,

(3.5.11)
co = 1[rir;G1Ta(Fy + G2) — rérGoTo(Fy 4 Gy) + rers i To (G2 — G1)),
dzI—’T g[ C TQ(F‘) F])—'I’SFQT()(F]+G])+T3F1T2(F2+G])],

where " o
T = [7‘]'7‘§G]FQ(F] + G'_)) — 7'11G1G2(F2 - 5 )+
o (3.5.12)
rers FyFy(Gy — Gr) — riri FiGa(Fy + Gy))
Thus the displacement can be written by
d
up(r)y = eir + — for ro <r <7y,
w(r) = (} (3.5.13)
Ug(r) = coT + = for ry <r <y,
T

and the stresses for plane stress case are

d; G,

onlr)=aF— =2 o o <r <,

or(r) = (3.5.14)

. drG
ora(r) = cokFy — 2,) 2 for r1 <r <rg,
2
and e
oe1(r) = crF1 + '13_,7] for ro <1 <1y,
og(r) = d2C2 (3.5.15)
oer(r) = coFy + for ry <r < rg.
In the case of plane strain, the stresses are
A .
0':](7") = C]F] for ro <1 <71y,
4+ A
o.(r) = A (3.5.16)
(1) = 7 +2/\2 co Fy for ry < r < 7o,



The stress intensity factor can now be determined. Suppose we choose Ty = 0

and Ty = —T, then equation (3.5.11) gives
c; = - TT'I']Q'I‘gG](FQ + G2),

¢y = — Tr3[r}Gi(F + G2) + r2Fi(Ga — Gh)),

(3.5.17)
dy = — Trririrs Fy(Fy + Ga),
dy = — Trrir3 [P2G1(F2 — Fi) + r{ Fi(Fy + G1)).
The non zero stress at r = ry 1s
oo(ro) = =2T7riry F1G1(Fy + G). (3.5.18)
The stress intensity factor becomes
I = 2T7‘]27’§F]G] (FQ + GQ) (3519)

For the case that a thin circular ring radius rg 1s applied along the hole of a
circular disk radius ro, or 1y & 1y << 19, or 7y/r; — 1, ro/r9 — 0, 71 /ro — 0 then
equation (3.5.17) gives

Gi1G2, + G Fy
GG Fy + By PGy’
LF+ B Gy 2

)y = —T

h=-T .
“ G1G2F2+F1F2G'270’ )
. (3.5.20)
BHE — T_G];F] '
=T G+ R FyY
G'1 . Fl 2
ly=-T i
“ GGz + F1G; °
The stress intensity factor in this case is
92
I = 2t £ m)(As + 2ps) (3.5.21)

“pa(Xa F p2) (A 4 20)

Thus if we choose the first material to be harder than the second one then the

stress intensity factor becomes smaller and vice versa. For example if y; = £ps and
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A = %/\2 then the stress mtensity factor becomes It = 1 which is smaller then the
stress intensity factor (X = 2) obtained by using the same material for the first and

second materials (y17 = pa, Ay = Ag).

3.6 Numerical solutions
Problem 3.1 : Concentrically composite disk

We consider a simple plane stress problem here, which might occur for a thin
circular disk with circular hole and ring around the hole, and/or in the other words, a
thin circular disk concentrically made up of two kinds of the homogeneous materials

as illustrate in Figure 3.1. The material I which is bounded from the circular hole

to the radius r = .7 of the disk is chosen with non dimensionalised Lame constants
of the material Ay = .4, 1y = .4 and the material II which is bounded from radius
r = .7 to r = 1. of the disk with non dimensionalised Lame constants A, = .8,

p2 = .8. This disk is subjected to the traction free around the circular hole and the
traction ¢ = p around the exterior boundary. Using (3.5.14) and (3.5.15), we obtain
the results for o, /p and o4/p which are plotted versus radius r for several radius of

the hole ( = .1,.2,.3, .4,.5) as in Figure 3.2 and Figure 3.3.
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Figure 3.2

Distribution of o, /p for several radii of the hole
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Figure 3.3
Distribution of o, /8 for several radii of the hole
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Problem 3.2 : Inhomogencous disk

For axially symmetric materials with the only nonzero displacement component
1s in the radial direction, the equilibrium equation becomes the second order differen-
tial equation with variable coeflicients. Not many second order differential equation
with variable coefficients can be solved analytically. Using numerical methods such
as the two points boundary value method, we consider a thin circular plate with

circular hole here for several materials in order to study their elastic behaviour.

2 material

If we denote material I for the material with A\/Ag = 1, p/po = r
II for the material with A\/Ag = 1, u/po = 2/(1 + ), material III for the material
with A/Ao = 7%, u/io = 1, material IV for the material with A/Ao = 2/(1 + r),
p/po = 1 and material V for the homogeneous material with A/Ag = 1, u/po = 1,
then by using the two point boundary value method as in DO2GBF-NAG Fortran
library routine and specifying the tolerance of error as 107°, we obtain the numerical

results as given by Tables 3.1-3.5.

The plot between the displacement and radius r, the stress and radius r for these
five kinds of the materials can be found through Figure 3.4 and 3.5. In Figure 3.6, we
plot the stress intensity factor and the radius r for these materials. Note that from
Figure 3.6, we can see that the stress intensity factor in the interior boundary can be
decreased by using the material I and material III. For material I the stress intensity
factor decreases at the interior boundary but increases at the exterior boundary in

comparison with the homogeneous material V.
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Table 3.1

Homogeneous material with A/Ag =1 and pu/pe =1

0-(1)=0,0.(3) =2 and tol=1e76

R Displacement Stress du/dr
1.0000000 1.6874999 0.0000000 -0.5625000
1.1250000 1.6328124 0.4722222 -0.3263889
1.2500000 1.6031249 0.8100000 -0.1575000
1.3333333 1.5937499 0.9843750 -0.0703125
1.5000000 1.5937499 1.2500001 0.0625001
17777778 1.6328124 1.5380861 0.2065431
2.0000000 1.6874999 1.6875002 0.2812501
2.2500000 1.7656249 1.8055557 0.3402779
2.5000000 1.8562499 1.8900002 0.3825001
3.0000000 2.0625004 2.0000000 0.4375000
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Table 3.2
Inhomogeneous material with A/Ag = 2/(1 + ) and p/po =1

0,(1) =0, 6,(3) =2 and tol=1¢~6

R Displacement. Stress du/dr

1.0000000 1.8078281 0.0000000 -0.6026094
1.1250000 1.7507112 0.5032808 -0.3268646
1.2500000 1.7229837 0.8588823 -0.1268136
1.5000000 1.7274417 1.3124008 0.1396781
1.7777778 1.7933257 1.5981651 0.3205398
2.0000000 1.8759508 1.7397057 0.4178958

2.2500000 1.9909116 1.8459573 0.4976073
2.5000000 2.1230629 1.9172062 0.5568635
2.7500000 2.2682095 1.9660497 0.6024294
3.0000000 2.4234848 2.0000000 0.6384343




Table 3.3

Inhomogeneous material with A/Ag = r? and p/po =1

o,.(1) =0, 0,(3) =2 and tol=1e76

R Displacement Stress du/dr
1.0000000 1.3431401 0.0000000 -0.4477134
1.0555556 1.3199862 0.1852537 -0.3879218
1.1111111 1.2998302 0.3465858 -0.3393560
1.2222222 1.2663942 0.6139988 -0.2672760
1.3333333 1.2395743 0.8269188 -0.2186065
1.5000000 1.2073099 1.0765337 -0.1728073
2.0000000 1.1370669 1.5492132 -0.1208201
2.5000000 1.0807447 1.8216841 -0.1066882
2.7500000 1.0546028 1.9192961 -0.1025738
3.0000000 1.0294197 2.0000000 -0.0989327




Table 3.4
Inhomogeneous material with A/Ag =1 and p/po = 2/(1 + 1)

0,(1)=0, 0,(3) =2 and tol=1¢~6

R Displacement, Stress du/dr
1.0000000 2.0408755 (0.0000000 -0.6802918
1.0476190 2.0111892 0.2394333 -0.5689334
1.1428571 1.9661782 0.6204734 -0.3836974
1.2857143 1.9271696 1.0214819 -0.1736101
1.4000000 1.9149077 1.2456178 -0.0458150
1.6000000 1.9234848 1.5114516 0.1218350
17777778 1.9553014 1.6639915 0.2312027
2.0000000 2.0187078 1.7896627 0.3344181
2.5000000 2.2277223 1.9368873 0.4880393
3.0000000 2.4973229 2.0000000 0.5837795
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Inhomogeneous material with A/Ag =1 and j¢/pg = r

Table 3.5

0,(1) =0, 0-(3) =2 and tol=1e~6

2

Displacement

Stress

du/dr

1.0000000
1.0555556
1.1250000
1.3333333
1.5000000
1.6000000
2.0000000
2.2500000
2.5000000
3.0000000

0.6147831
0.6049697
0.5964839
0.5899741
0.5880478
92352

[
(&4

A\

0.
0.597638

[
-

0.6100966
0.6288741
0.6519809
0.6757919

0.7229827

0.0000000
0.0878799
0.1897313
0.3201864
0.4558200
0.6399762
0.7425358
0.9149777
1.1191827
1.3410884
1.5599087
2.0000000

-0.2049277
-0.1503067
-0.0964182
-0.0407557
0.0032453
0.0445590
0.0602960
0.0781040
0.0894162
0.0945000
0.0955253
0.0925793
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Displacement distribution for several materials
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CHAPTER 4

SPHERICALLY SYMMETRIC DEFORMATIONS

4.1 Introduction

Spherically symmetric deformations have been extensively studied in the theory
of linear homogencous isotropic elasticity, since mathematically speaking they are
relatively simple to solve and have many physically important applications. Elemen-
tary solutions to static problems are given mm a number of standard texts and papers
by numerous authors. For example, Eason [206] has investigated dynamic problems
ivolving spherically symmetric deformations for homogeneous materials. Solutions
to spherically symmetric problems for inhomogeneous materials are less common.
However in recent years a number of papers in this area have been published. For ex-
ample, Clements et al [15] have considered deformations of inhomogeneous materials
by employing Bicklund transformations. These transformation reduce the govern-
ing equation into a particular elliptic equation which can then be solved using the

Bergman series approach.

In the present chapter, we consider several simple static problems for spherically
symmetry deformations of inhomogeneous elastic materials in which the only non
zero displacement component is in the radial direction u,. The numerical results
for some simple static problems are obtained by using two point boundary value
method. For the time dependent problem, we employ Backlund transformations so

that equation of motion reduces to the simple canonical form for the wave equation.
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4.2 Basic equations

For spherically symmetric problems for inhomogeneous materials in which the

only nonzero displacement is in the direction of » component, and the inhomogeneity

of the materials is governed by r as well, the relevant equation of motion is

do, N ( ) B 2w o
or e — Gy & patz ’ (4.2.1)
where 5
oy = (A + 2) = + 2%,
o (4.2.2)
Ou u
06 = Ao +2(pn 4 A)—,
07" 7
or
ag'll. . au a?u
o Ju=Cr)as D1
T2 +A(7)07‘ + B(r)u C(7)0t2 ; (4.2.3)
where ;
.-'1(7‘) S []n(/\ + 2/1.)7.2] .
dr i
2 d 2
0 — N ,
S (A +21)r dr 2’ (4.2.4)
C'(’I’) = /) =

A+ 2u

4.3 Some simple solutions for homogeneous materials

4.3.1 Homogeneous spheres

We consider a homogencous sphere of radius a with the material constants A and

p here. For the case when the material is in equilibrium, the governing differential

equation 1s
2
d*u

dr?

2 du 2 .
(4.3.1)



i which the well known solution can be obtained as
u(r) = Ar + Br2, (4.3.2)

where A and B are constants. The stresses are
or(r) = (83X +3u)A — 4uBr 3,

(4.3.3)
og(r) = (BA 4+ 3p)A + 2uBr~3.

If the pressure on the exterior of the sphere is p, then the displacement be should
finite in the center of the sphere and so B = 0. Thus we obtain the stress pressure

relation as

or(r) =og(r) = p, (4.3.4)

and the displacement
o pr _
w(r) = P (4.3.5)

4.3.2 Spherical shells

For a homogencous spherical shell with interior radius a and exterior radius b, the
displacement and the stresses are given by equations (4.3.2) and (4.3.3) respectively.
If there are two conditions are given then the constants A and B can be determined.
For example if the pressure p; is given in the interior of the shell and p. at on the
exterior of the shell then we have

pi= (3N +2u)A — 4uBa3,

(4.3.6)

Pe = (3X\ +2u)A — 4, Bb ™3,

with the solution
1 a®pi = Vpe

'~1=3A+'7 at =0
2 ad =¥ , N
: 4.3.7
a0 pi = p. ( )

B =

dp a® =0
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By substituting (4.3.7) into (4.3.2) and (4.3.3), we obtain the displacement,

3 3 313
r a’pi—bp.  a’l’pi—p
u(r) = P2 s Te (4.3.8)
IN+2u -0 4pr? o3 — 3
and the stresses .
ap; — VPpe PV p; — pe
o(r)= = ;
@ — 13 "3 g3 _ 3’
: 3 5 (4.3.9)
. a'pi—bpe  a’b” pi — pe '
76lr) = a® - b 23 ad — b3
4.3.3 Spheres with two layered materials

We consider the splicres with two layered homogeneous materials. Suppose the
first material constants are A = A7, g = 13 with radius ¢ and the second material
constants are A = Xy and ;1 = 1z covering the first sphere from radius a to b. If we
assume at r = a that there is pressure p then the displacement and the stress for the

first material (0 < r < «a) are

)/ pr
Lt pp—
3A1 + 210 (4.3.10)

oD (r) = p.
If the pressure p, is given at the exterior of the sphere then the displacement

and the stress for the second material (a < r < b) are given by

(2)() r ap—0p. P p—p. 1
w, (1) = , - ——,
! 3Ny 4+ 2 @ - 03 dpy a® — b3 2 4311
3 _ 3 313 4 _ (4.3.11)
0'(2)(1‘) — 9 Pe d P~ Pe .
r a3 — b3 r3 o3 — b3
Now we determine p. Using the continuity equation
u!MN(a) = u!P(a), (4.3.12)
we obtain
Uiz (4.3.13)
)= —————— P 3.
! a3:3+b333]e’
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where

= — 182 = 125312 — YA A — Gy,

z]
29 = Spd 4+ 120919 — 120112 — Spiqjia,
z3 = — 8//3 — 12X9p9 — BAyptg — 4pi3pta — 9Ny Ag — 6Aayey.

(4.3.14)

Thus by substituting (4.3.13) into equations (4.3.10) and (4.3.11) we obtain the

displacement and stress distribution over the sphere.

4.3.4 Two layered spherical shells

Here the shell is considered to be made up from two layered materials. Suppose

the interior layer is from radius a to b with material constants A; and p; and the

exterior layer is from radius b to ¢ with material constants Ay and po. If the pressure

p;i is applied at the interior of the shell and p. at the exterior of the shell then by

assuming the pressure is p at r = b, we have that the displacement and stress for

a<r<bare

(1)) r adp; —0p @30 pi—p
uy (r) = .
' 3N+ 2y =03 4p972 a3 — 3

(1)) ap; —Bp @30 pi—p

o, '(r) = - A
' a’ — b? rd @ =03

and for b < < ¢

() T bp — 3p, et p-p.

w, (1) = )
' 3Ny +2up 03— (3 4p912 B3 — 3
(2)( ) Vp—cp. 0¥ p—pe

o (r) = — :
" b — 3 r3 03— 3

Using the continuity equation

«M(b) = (D),

(824
-1

(4.3.15)

(4.3.16)

(4.3.17)



we obtain

Ppi(0® — )z + Ep(a® — b2 )z
P= "5 3.3~ 3 3. S (4.3.18)
« h =3 + ave <1 'l" b " 25 + hbvﬁ

where

21 = 90 Aajia + 6105 4 18Xgp g + 124y 22,

29 = 9X Aoy + 18Xy 0y 400 + 6/\-3,u§ + 12#;')#2,

23 = 120 pee + ONi dager + BNi i3 + 8uufpia + GAopis g + 41 i3,

zg = 9 Aoty + BA1jpta — 9N Aapg — BAy 3 4 GAopd + dpd g — 6Aopiy g — Ay 3,
z5 = — 9N Aajuy — BNy pryprg — GAgpd — Ay g — 120941 g — Syiy i3,

o= = 12Xy iy = Sy + 122001 12 + Spua .
(4.3.19)

Thus by doing some substitutions, we obtain the displacement and stress through
equations (4.3.15) and (4.3.16). In the case that the displacement uV(a) = u; is
given instead of p; or u'?)(¢) = uy is given instead of p, then p; or Pe can be obtained

from equations (4.3.15) and (4.3.16).

4.4 Simple solutions for inhomogeneous materials

4.4.1 Bessel differential equations

We consider a shell witli the inhomogeneity of the materials represented by

r2 42 -2

A(r) = 5
h? (4.4.1)
p(r) = — 4

For this case we restrict the range of the radius so that 2 < r? + 1?2 < 4. By

substituting equation (4.4.1) into (4.2.3) and let the right hand side of (4.2.3) equal

98



to zero, we obtain

|
A(r) = -,
,,
2 (4.4.2)
B(r)y=1- —.
2
Thus we have the Bessel’s differential equation
d*u 1du 1’
- —=)u=0 4.
dr? L rdr +(1 72 Ju i (4.4.3)
with solution
u(r) = AJ,(r)+ BY,(r). (4.4.4)
The stress simply becomes
1 ,2 + ]/‘2 -9
a,(z):_-lL I, (r) + ", ],,(7*)}4-
(4.4.5)

where J,(7) and Y, (1) denote the Bessel’s polynomials of the first and second kinds
with order u.

The constants 4 and B here can be determined if we specify two conditions
involving the displacement and/or the stress. They will form a linear system with

two equations and two unknowns.

For a more specific case, say with v = 0, the displacement is obtained by
w(r)y = AlJy(r)+ BYo(r), (4.4.6)

and the stress by

r? —2 1 . r2 -2
0'1-('1‘) = 4 2 .]()(7’) — ;J](T)] + B[ 2 )"0 ) = —) ('I) (447)
If we have a shell with radius from r = 1.5 to r = 1.7 and the pressure at

the interior of the shell is p; = 0,-(1.5) = 2, and at the exterior of the shell is p, =
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o-(1.7) = 3, then the constants are 4 = 12.2407322 and B = 18.45469669. The exact

displacement at » = 1.6 is «(1.6) = 13.33330683 and stress is 0,(1.6) = 2.565725304.

4.4.2 Some numerical results

Problem 4.1 :

Here we consider spherically shell problem for several kind of materials subjected
to the given non dimensionalised radius and the boundary conditions using two point
boundary value method in the DO2GBF-NAG Fortran Library Routine. Table 4.1
shows the numerical results for homogeneous material using the non dimensionalised

material quantities A/Ag = 1 and p/pg = 1 by specifying the boundary conditions

or(1) =1 and 0,(2) = —1. It can be verified that the exact displacement and stress
i this case are u(r) = —2—; — 7?*—’ and o,.(r) = —;ﬁ + 711—6% respectively. Table 4.2 shows
the numerical results for inhomogeneous material with /)y = (r? — 2)/(2r) and

(/o = (4=12)/(4r) by specifying the tolerance of error tol = 1075 and the boundary
conditions ¢,(1.5) = 2 and 0,(1.7) = 3. Tables 4.3 and 4.4 show the numerical
results for inhomogeneous materials with A\/Ag = 2/(r 4+ 1), /g = 1/(r + 1) and
A Ao =1+7% p/ue = Inr + 2 respectively, using the boundary conditions u(l) =0,
or(2) = —2 for the results in Table 4.3 and o,.(1) = 1, 0,(2) = —1 for the results in

Table 4.4 and tolerance of error is chosen to be tol = 1076,
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Table 4.1

Homogeneous material with A/Ag =1 And p/po =1

0.(1)=1,0.(2) = -1 and tol=1e™7

R Displacement Stress du/dr
1.0000000 -0.8285714 1.0000000 0.8857143
1.0500000 -0.7883025 0.6887717 0.7301001
1.0750000 -0.7709043 0.5541956 0.6628121
1.1250000 -0.7407848 0.3196159 0.5455222
1.2023810 -0.7044390 0.0291947 0.4003116
1.2500000 -0.6871428 -0.1154286 0.3280000
1.3000000 -0.6724091 -0.2453345 0.2630470
1.3750000 -0.6558146 -0.4064613 0.1824836
1.5000000 -0.6396825 -0.6084656 0.0814815
1.6666667 -0.6342857 -0.7920000 -0.0102857
1.7500000 -0.6365889 -0.8592253 -0.0438984
2.0000000 -0.6571428 -1.0000000 -0.1142857
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Table 4.2

1.7000000

3.0000000

Inhomogeneous material with A/ = r:,)_,:(" and p/pg = 4;:2
0,(1.5) =2, 0,(1.7) = 3 and tol=1e™5
R Displacement, Stress du/dr
1.5000000 13.3231225 2.0000000 0.7794796
1.5111111 13.3309310 2.0692399 0.6262128
1.5259259 13.3387047 2.1591103 0.4235353
1.5407407 13.3434899 2.2461570 0.2227634
1.5592593 13.3453117 2.3509615 -0.0255405
1.5814815 13.3414689 2.4708103 -0.3196301
1.6000000 13.3333060 2.5657252 -0.5614968
1.6148148 13.3235676 2.6383995 -0.7529014
1.6296296 13.3110072 2.7081731 -0.9424565
1.6592593 13.2775301 2.8390133 -1.3160399
1.6814815 13.2452177 2.9295339 -1.5914076

-1.8177330




Table 4.3

Inhomogeneous material with A/ = —qu_—] and p/po = r_}_l

u(l) =0, 0,(2) = =2 and tol=1e~ 6

R Displacement Stress du/dr
1.0000000 0.0000000 -2.9195925 -1.4597963
1.0555556 -0.0779744 -2.7738040 -1.3515565
1.0833333 -0.1148764 -2.7116174 -1.3062610
1.1250000 -0.1680426 -2.6292248 -1.2474045

1.2037037
1.2592593
1.4166667
1.5000000
1.5833333

SLLLll

2.0000000

-0.2626052
-0.3257159
-0.4063307
-0.4934072
-0.5777603
-0.6602538
-0.7953184
-1.0631869

-2.5019871
-2.4293780
-2.3490455
-2.2756709
-2.2156206
-2.1655057
-2.0978873
-2.0000000

-1.1602452
-1.1134919
-1.0655285
-1.0265971
-0.9995893
-0.9815533
-0.9659311
-0.9684065
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Table 4.4
Inhomogeneous material with A/Ag = 14 ¢? and pu/po = Inr + 2

0,(1)=1,0.(2) = -1 and tol=1e~6

R Displacement Stress du/dr
1.0000000 -0.5768860 1.0000000 0.7880312
1.0555556 -0.5369392 0.6978468 0.6551666
1.1250000 -0.4961279 0.3925511 0.5260969
1.16G6667 -0.4755394 0.2394686 0.4637919
1.2500000 -0.4412297 -0.0151009 0.3646362

1.3000000 -0.4242019 -0.1416578 0.3178288
1.3750000 -0.4025845 -0.3032011 0.2610136
1.4375000 -0.3874898 -0.4170638 0.2232856
1.5000000 -0.3745326 -0.5158999 0.1923499
1.6111111 -0.3556418 -0.6626899 0.1500319
1.7500000 -0.3375283 -0.8078512 0.1132185

2.0000000

-0.3146931

-1.0000000

0.0737803
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4.5 Analytic solution for the time dependent problem

In general, equation (4.2.3) can be reduced to the canonical form of the wave
equation. Following Clements et al [15], by introducing a function v(r, t), the equation

(4.2.3) can be written more conveniently in a matrix form
Q= MQ + NQ, (4.5.1)

where the subscripts denote the partial derivatives and the matrices are

‘ 0 m n 0
Q= (1’) M= (mﬂ 01) N=< iy o)' (4.5.2)

Here, mi2,m9; and ny; are functions of r only and should satisfy the relations

mygamay = C, (4.5.3)
d
niy + o [ln 771]'_)] = —A, (4.5.4)
M
d N1
Mz [777.]2] = (4.5.5)

By setting ® = exp{— [ny1dr} or ny; = —%%, and A = exp{[ Adr}, equa-

tions (4.5.3) and (4.5.4) can be written as
CA

moy = 7{)—7 (456)

and

e (4.5.7)

mMyo =

Thus if we set u*(r,t) = u(r,t)®(r) and v*(r,t) = v(r,t), then equation (4.5.1)

u* B 0 P2/ A u* .
<l> = (AC/@Q 0 ) (U*)- (4.5.8)

reduces to the form



Furthermore, by introducing the new independent variables
1
1’* == /6'5 (17" t* = t, (459)

equation (4.5.8) reduces to
w* - 0 K~z u*
(‘L‘* ),.- = (I\,% 0 ) (v*>t. ’ (4510)

K= A%%7"C. (4.5.11)

where

Equation (4.5.10) in usual notation is

0'2 02

gz ) = o g (r7, 1), (4.5.12)

which is the standard wave equation. The general solution of this equation is
ut = f(T )+ fo(tt =), (4.5.13)

or

u(r,t) =@ (r) [fl(t + / C%dr) + fo(t - /C'%(IT)J . (4.5.14)

which is a similar equation to (3.4.21).
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CHAPTER 5

ANTI-PLANE DEFORMATIONS FOR ISOTROPIC MATERIALS

5.1 Introduction

Anti-plane deformations for inhomogeneous elastic materials are considered in
this chapter. Several methods are employed for solving static and dynamic anti-plane
problems for isotropic materials. For certain types of materials, the static problem

can be solved analytically using the method of separation of variables.

Many problems involving anti-plane deformations of inhomogeneous elastic ma-
terials cannot be solved analytically. In such cases numerical methods must be em-
ployed. Finite differences, finite elements and the boundary element method are three
such numerical techniques. Due to the difficulties of finding the fundamental solution,
not many authors have touched on the subject of developing the boundary integral
equation method for such boundary value problems. In section 5.4, the boundary
element method is developed for handling the static case. This development is then

applied to a seepage problem.

In section 5.5, the development of the boundary element method for certain
classes of dynamic problems are discussed. The combination of the boundary element
method and the perturbation technique which reduces the governing equation to the
Laplace and Poisson type equations and several numerical results are given in section

5.6. Further development for the dynamic case can be found in section 5.7.
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5.2 Basic equations

Elastic inhomogeneous materials are in a state of anti-plane strain if the dis-
placements uy,us and ua take the form u; = 0, uy; = 0 and uz = ug(xy, 7). In other

words, the only nonzero displacement component is uz and it depends only on the

plane coordinates 7 and 5.
The stress-displacement relations for inhomogeneous materials (see for example

Sokolnikoff [71]), are

Jus Jus

013 = 031 = MOT and O3 = 039 = ,u,aT s (521)
T €9

with all other stress components zero. In (5.2.1) p is the shear modulus which is
taken to be a function of position, say j = (g, ).
The equation of motion for anti plane strain in the absence of body force may

be written in the form

0013 80'23 82‘11,3

0, Ors P o2’

(5.2.2)

where p = p(a1,22) denotes the density of the material. Using (5.2.1) in (5.2.2) and

for simplicity, we change variables 21,25 to 2 and y respectively and i3 to u

o[, 0[] _ o s
ox |Mox Oy 'uay ~ P (5.2.3)

If the material is in equilibrium then the governing equation reduces to

Ju 0 [ Ou .
I [#EJ + a—y [NO_yJ =0 (5.2.4)
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5.3 Analytical solution by the method of separation of variables

A method of separation of variables is considered in this section for solving

equation (5.2.4) for specific materials. By introducing a new variable
. 1 ,
Ulx,y) = u(a,y) [,u.(.r, y)] 2, (5.3.1)

to equation (5.2.4) we obtain

VU — A(z,y)U = 0. (5.3.2)
where
o i — 1 o2 1 @ : _@ ’ =
Alx.y) = Qllv - 1 [(033) i <0y . (5.3.3)
Let
Ula,y) = X(2)Y (y), (5.3.4)

and assuming that g is continuous and twice differentiable with respect to = and y,

and can also be written in the form

plx,y) = pof(a)g(y), (5.3.5)
where g is a constant, equation (5.3.2) now reduces into two equations
2 () - e

2y . ] 2 .2
0), + —'n'—l—l Ydgy 1 ld_g Y =0;
oy? 4\ g dy 2\ g dy?

Here n? is the separation constant. In the case that f(x) satisfies the differential

(5.3.6)

equation
1 d2f 1/1df\>
— h e ._..— - r _
2f dz? 4 <f dn:) fo, (5.3.7)
and ¢(y) satisfies the differential equation
1 dz.(/ 1/1dyg c
29 dyr 4 (;@) = 90 (5.3.8)



where fy and gy are constants the equation (5.3.6) reduces to

02X 9
2 +A°X =0,
2.2
57 (fo+ g0+ 1Y =0,
where k? = n? — f;. By assuming
B =n?—f >0, and 2+ fo+g0 >0, (5.3.10)

we find the solution for the displacement in half-plane y > 0 which satisfies the

condition u — 0 as y — oc in the form

u(m,y)::[nfoa»g(y)]“]/zj/ {A(€) cos(x€) + B(€) sin(a€))
0 (5.3.11)

exp [_(fo + g0+ éz)l/zyJ d€,

where A({) and B(£) ave arbitrary functions of €.

The non zero stresses follow by using (5.3.11) in (5.2.1)

1 ) ] o ' -
o13 = — 3[/10.7"(3‘).(/(y)]"]/'/to—((]'f_g(y) [ {A(f)COS(-’”{H
2 )

B({)sin(;r{)} exp[—s(&)y] d€ + [;lolf'(_.qr:)g(y)]]/g / {B({) cos(zf) (5.3.12)
0
— A(¢) Sin(-‘?f{)}ﬁ exp[—s(£)y] d¢,
and

1 : y . dg [
am=—ﬂmﬂnmw”ﬁmﬂm%/ {ﬂ@w%%H
Z s 0

mammﬁ}mwﬁwm&—muhmww“/”%M%wmo (5.3.13)

40

+ B(§) sin(m{)}s({)exp[—.s({)y] dg,

where

s(€) = (ap + by + €2)%. (5.3.14)
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5.4 Boundary element method for static case

The boundary element method is considered for solving boundary value problems

for the static case in this section.

5.4.1 General solution in term of an arbitrary harmonic function

One of the main difficulties of solving equation (5.2.4) using the boundary ele-
ment method is to find the fundamental solution. However, for certain cases, includ-

ing the case when the shear modulus takes the form
p,y) = X(2)Y (y), (5.4.1)

it 1s possible to express the solution of (5.2.4) in terms of an arbitrary harmonic
function.
In the previous section. it has been shown that the simple transformation as in

equation (5.3.1) reduces (5.2.4) to
VU = Az, y)U =0, (5.4.2)

where A(x,y) is given by (5.3.3). For some specific cases, for example ule,y) =
(p12y + pod + pi3y + jea)? where gy, pia, 3 and jiy arve constants, or in more general
for the case that the shear modulus satisfy V'zpr]? = 0, we obtain A(x,y) = 0 so that
equation (5.4.2) simply reduces to the Laplace equation in which the general solution

can be well expressed in terms of harmonic functions.

For the case when the shear modulus is given by (5.4.1), equation (5.4.2) can be

written as

VAU — [As(2) + Aa(y)]U =0, (5.4.3)



with

T rdxN? dx

Aya) = (,(—1[<((T1> /“V(ﬁﬁ
d t‘r?)'- : - dy’

Ao(y) = @K@) /41 ]/(@)

The general solution now is sought in the form of the double series

Z Z 2)gm (Y)Y (2, y), (5.4.5)

where F7" satisfy the two-dimensional Laplace’s equation.

(5.4.4)

By substituting (5.4.5) into (5.4.3), we obtain

(lfn aFm ; (12 fn d_]m aF-m g dzgm
m F7;n - n F;n
Z Z{ J [ dv O i da? T fula ) (]J Jy T dy?

n=0 m=0

- (A](-T) + -’\Z(I/))fn( )Jm(y)Fm} = (.

(5.4.6)

Now (5.4.5) is a solution of (5.4.3) if we choose f,, (), ¢m(y) and E7" to satisfy

aF’l’n

S b e for m>0 and n>1, (5.4.7)
€T
F‘Iﬂ

aa—" =F"-! for m>1 and n>0, (5.4.8)
[

and " 2y
- Ul 41 = In
oy Y Mk =0,
(5.4.9)

. (]_(jm +1 ngm
2 5 AQ(.U)_(/m - O,
dy dy?

for n > 0 and m > 0 with f, and ¢ being constants.
If ®¢(z) (= = a+2y) is an analytic function of z in the domain of interest. define

®,,(2) to be analytic functions of z given by the recurrence relation

Pn(z) = / Pyp_i(t)dt  for  n=1,23,... (5.4.10)
Jo
Letting
F,;n ’l?,y) = %{(—Z)m (I)m-i»n(z)}-, (5411)
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we find that, after using (5.4.10). equations (5.4.7) and (5.4.8) are satisfied. There-

fore, the choice of F" as given in (5.4.11) is a suitable one.

Proceeding further as in Clements [10], we obtain
1 4
®,(z) = —/ (z =1)"1®y(t)dt for n>1, (5.4.12)
(n =1/, '

and hence

m _ 1 o, \m ’ . n+m—1
Fl(x,y) = —_—(77 e 1)!§R{( ?) /0 (z —1) @O(t)clt}, (5.4.13)

forn+m=1,2,3,---

Thus, a solution of (5.2.4) with (5.4.1) may be expressed in the series form

ulw,y) = [ y)] ‘5%{.7"090@0(:”

—1) Jm(y) _ ndm—1g ¢ (5414)
Z Z 77-!—777—1) /0 (= —1) (IO(,t)CH}-

n=0 m=0
m—+n#0

The validity of this solution depends on the convergence properties of the infinite
series. The convergence of the series will depend on f,(2) and ¢gn(y) which are, of
course, related to the coefficient of the shear modulus p(x,y) through the equations
(5.4.1) and (5.4.7)-(5.4.9).

Here the question of the convergence of the series in general case will not be
examined in detail. It will be sufficient to note that the series may be truncated after
a finite number of terms for certain p(a,y). The validity of (5.4.14) as a solution of

(5.2.4) in such cases is assured. Specifically let

j(v,y) = (ax 4+ B)'(8y + 1), (5.4.15)
then equation (5.4.9) gives
ey = CLLE =20 T 0 otk pyrsy  nz
= (5.4.16)
gm(y) - ( 6)1;)3({,7577_, 7777) H b?j + 77) go m > 1.
r=1



It 1s clear that for p = 0.£2,44,--. and ¢ = 0,+2,44,--- the series is truncated

after several terms and thus converges uniformly and absolutely.

5.4.2 Boundary integral equation

Consider a region R bounded by a simple closed curve C'. For a point (a,b) € C,

define a small semi circle segment I' centre at the point (a,b) with radius e (Figure

5.1). If u and u' are two solutions of (5.2.4) valid in R then it can be verified that

(see Appendix A, theorem 1 by putting w = 0)
' Ou d

/ i, )[—Lu' — iu] dS = 0.

Jogr on on
Let u' be given by (5.4.14) with fy = go = 1 and

Py = ylog(z — zp),
with v a constant, = = 2 4+ 1y and zp = a+ 5. Thuson I’
T =ua+ €ecos. y=1>0b+ esiné, = = zp + eexp(26),

so that

u' = L = {log e+
[,u(a. + ecosf.b + esin 9)] ‘

Z Z (=) fala+ €cos@)gn (b + esinf)
(n4+m— 1)

n=0 m=0
m—+nz#0

2ot cexp(ef) n4m—1
/ [30 + eexp(:f) — t] log(t — zo) dt ¢.
0

It may be readily verified that by letting € — 0 we obtain

u' = ——‘)—l loge + O(1) + O(elog €)
[/,/.((l..,b)] z
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(5.4.19)



{a.b)

Figure 5.1

Simple closed curve C

ou’ 1
51 = — - 40(1)+0(loge) (5.4.22)
N [/,1((1,1))] a g

Hence for small €

N T a+tm
/ p‘@'—u dS = —'—l— / pla+ecos8,b+ esinf)u(a+ ecos,b+ esinb)dé
T 671 [p.((l.,b)] 2 a
+ O(¢€) + Oleloge)

= — 7y [,u((/, b)] %u(a, b) 4+ O(e) + O(eloge)
(5.4.23)
and
ou ,
//.:.(;1',y)—'u. dS = O(e) + O(elog €). . (5.4.24)
r 877

In the above 1t has been assumed that I is a semicircle so that the limits on
the integral on (5.4.23) are a and a + 7 where a is the appropriate angle. If the
geometry is such that I' is not a semicircle then it is necessary to make an appropriate
adjustment to the limits on the integral in (5.4.23). Also, note that, for each z5 € C,
the branch cut of the complex logarithmic function in (5.4.18) is selected in such a
way that the function is single-valued throughout R. This is to ensure that v’ and

its partial derivatives are all single-valued throughout the entire domain.
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Using (5.4.17), (5.4.23) and (5.4.24), it now follows that in the limit as € — 0

=1 , !
u(a,b) = —~——-——1/ /j(nr,y)[égu' - a_u“] ds for (a,0) € C' (5.4.25)
7y [p(a,0)] * Je gz dn

The arbitrary constant 4 here cancels out with the v in ' and Ou' /on.

9.4.3 Integral equation for interior points

If &y = vlog(z — z¢) and v’ is given by (5.4.14) then in the case z; € R it is
not possible for both «' and du’/dn to be single-valued throughout R. Thus the
standard boundary integral equation for an interior point (a,b) € R which expresses
u(a,b) in terms of an integral round the boundary €' of R cannot be used. Instead it
is convenient to proceed as follows. The domain R is divided up as shown in Figure
5.2. Note that C = C; U (5. Both v and Ou/On are known on C; and C, through

calculation using (5.4.25).

Figure 5.2

Simple closed curves C; and Cs
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-1 j Ou au'
u(a,b) = [ ( l)]% /]1 p(.‘t,g)[%M _ 81717 u] dS + I for (a,b) € Ty
7y [pla, b)Y 2 T
(5.4.206)
and
-1 0 au’
u(a,b) = T(—(,)J% /] wx,y) [a—:ju' - 8_1717“] dS+ I, for (a,b) € Ty
Ty p(a,0)f° 2 ' '
(5.4.27)
where
-1 du ou'
= —u' - —ul|d k =1,2 4.2
I T /( i, y) [017. u o ’U:l dS for r=1, (5.4.28)

T [p(a, b)] i
and since u and Ju/On are known on C; and Cy both I} and I, can be readily
calculated.

The mtegral in equations (5.2.26) and (5.2.27) can be discretised to provide a
system of linear algebraic equations for the unknown v and 9u/dn on T’y and T,.
Continuity conditions on u and Ou/0n on the interface of I'; and I'; can then be

applied to complete the linear system of equations so that the system can be solved

for u and Gu/0On.

9.4.4 Numerical examples
Problem 5.1 :

To demonstrate the accuracy of the method, consider the following boundary

value problem.

Find a solution to



which is valid in the square 1 < 2 < 2,1 < y < 2 and is subject to the boundary

conditions
1 o1
u=s(1-=a HYarctan(z ™) 4 5T on y =1
1
u = —_;(J —4) autan( y)-l-J on r =2
ou - o1 1.1.(4 —a2%) 1 5 (5.4.30)
5y = 2arctan(2x" ") + 2 214 + 51 on y=2
du ly(y?—-1) 1
Foi arctan(y) + E_lTyT — 3V on x=1
This problem admits an analytical solution in the form
1, . 1
U= S(y- — a”)arctan(y/a) + STY- (5.4.31)

According to equation (5.4.25). the integral equation corresponding to (5.4.29) can

be written as

b . 9] 0
u(a,b) = % /C(nry)_2 [—a%—u - E)%u’] dS (5.4.32)
with u' is given by (5.4.14) or
' o 1o 1., 1.4
u =ay|Fy - —-Fy - -F; + —F} |, (5.4.33)
T Y 2y

where

(z — zg)log(z — z0) + =0 log(—=z0) — 3},
(5.4.34)

F0]:§R —i(z — z¢)log(z — zp) — 220 log(— )-|-1,}

1 : 1 1 1
Fll =R 51.(: - :0)2 log(z — z¢) — 5123 log(—=zp) — Z?(z — 20)2 + Zzz02}.

To ensure that w' and its normal derivative Ju'/dn are single valued throughout
the entirely square boundary, it is necessary to consider the branch cut of the com-
plex logarithmic function in (5.4.34). The adjustment might be done by writing the

logarithmic function in the form

w|-—-

log(z — zo) = log(1) + 26, r=[(x —a)’ +(y - b)?]*. (5.4.35)
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The imaginary part of the complex logarithmic function in (5.4.35), 0 is determined
by the following procedure

Stepl. Determine § = mxttan(y ) so that 0 < 8 < 2.

T —a

Step2. If n; > 0 then 6 = 6.

If ny =0 and ns > 0 then 6§ = ?;

In the case 6 = 0, it should be replaced by 6 = 27.
If n3 =0 and 13 < 0 then 6 = 6. (5.4.36)

If ny <0 and ny >0 then 8 = 6;
In the case 8 > 7, it should be replaced by 6 = 6 — 27,
If ny <0 and ny < 0 then 6 = 6;

3 . -
In the case § > 57, 1t should be replaced by 6 = 8 — 27,

<

where n; and ny denote the outward normal components at point zy. Now, equa-
tion (5.4.32) can be employed using the standard boundary element procedure. By
using five segments on each side of the square boundary, a comparison of the numer-
ical results using the boundary element technique and the analytical results on the
boundary for the Ju/dn can be found in the Table 5.1, while the results for u are in
the Table 5.2. Numerical results and analytical results for v and its normal derivative
at certain interior points are compared in Table 5.3. From Tables 5.1-5.3, we find

that numerical results to be in reasonable agreement with the analytical results.



Table 5.1
Comparison of analytical and numerical results

Ou/0n at boundary points

Boundary point Ou/On(BEM) Ou/On(ANAL.)

(1.10,1.00 ) -1.3000 -1.235553
( 1.30,1.00 ) -1.0946 -1.138967
(1.50,1.00 ) -1.0356 -1.049541
( 1.70,1.00 ) -0.9423 -0.968742
( 1.90.1.00 ) -0.9607 -0.896625
(2.00,1.10 ) -0.0475 -0.161157
(2.00,1.30 ) -0.1738 -0.238866
(2.00,1.50) -0.3025 -0.327002
( 2.00,1.70 ) -0.3984 -0.422051
( 2.00,1.90 ) -0.5601 -0.520840

80



Table 5.2
Comparison of analytical and numerical results

for « at boundary points

Boundary point u (BEM) u (ANAL.)
( 1.90,2.00 ) 2.0465 2.058152
( 1.70.2.00 ) 2.1924 2.180798
( 1.50,2.00) 2.3269 2.311383
( 1.30,2.00) 2.4606 2.448556
( 1.10,2.00 ) 2.5724 2.589795
( 1.00.1.90 ) 2.3422 2.367646
( 1.00,1.70 ) 1.8157 1.831923
( 1.00,1.50 ) 1.3500 1.364246
( 1.00,1.30 ) 0.9513 0.965710
( 1.00,1.10) 0.6198 0.637463
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Table 5.3
Comparison of analytical and numerical results

for w and its normal derivative at interior points

Interior point u(BEM) w(ANAL.) Ou/0y (BEM) Ou/dy(ANAL.)

(1.10,1.40 ) 1.1287  1.10931 2.0646 1.94688
( 1.30,1.40 ) 1.0361  1.02103 1.7738 1.84947
( 1.50,1.40 ) 0.9518  0.94112 1.7184 1.74964
( 1.70,1.40 ) 0.8759  0.86965 1.5901 1.65150
( 1.90,1.40 ) 0.8081  0.80610 1.6943 1.55762

82



Problem 5.2 :

In the beginning of this chapter, it 1s mentioned that the development of bound-
ary element method can be directly applied to the seepage problem. For flow of
ground water that obeys Darcy’s law, the governing equation can be written as

% [A%ﬂ + é% [I{aa—]ﬂ = 0. (5.4j36)
where I = I'(2,y) is hydraulic conductivity, H is piezometric head, which is corre-
sponding to equation (5.2.4) simply by replacing « by H and p by IV, Of the practical

interest here, the permeabhility is chosen as the square of the bilinear function
K(x,y) = (kyay + koa 4 kyy + kq)?, (5.4.37)

since it is easy to use tlis to fit A(a, y) to a wide range of field permeability data. The
numerical results for the seepage in a square box bounded by 0 < 2 <land0 <y <1
with the boundary conditions H = 0 along 2 = 0 and H = 1000 along =z = 1 and
OH/On = 0 along y = 0 and y = 1 which are presented in equipotential lines can be
found in Figure 5.3. Here, the computation is carried out by discretising the boundary
over 32 equal segments and the permeabilities are chosen as ' = (1.0732y — 0.684z —
0.553y + 1)? for Figure 5.3 (a) and I = (0.899492y — 0.45228z — y + 1)? for Figure

5.3 (b). Note that, similar results in Figure 5.3 (a) have been obtained by Rangogni

[59] using a different method.

5.5 Boundary element method for dynamic case

In this section a class of dynamic problems are considered. Specifically we con-

sider problems for which the displacement can be written as

u(x.y,t) = v(e,y)e ™, (5.5.1)
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Darcy’s flow
so that from (5.2.3) v(x.y) must satisfy the equation
0 dv o[ o 5
— |p=— — |p= wv = 0. gon
Ox [/1037} + Oy [’u@y} oty (5.5.2)
Furthermore, let
v(2,y) = p7 30, (5.5.3)
then equation (5.5.2) will be satisfied if
VU - Aa,y)U = 0, (5.5.4)
where
| [ 1 ou\? A\? puw?
Alary)= —V*u- — (=L — - —. 5.
Aerey) p s M g [(3-7) " y T (5.55)
Suppose
pla,y) = Fulz.y), (5.5.6)
where £ is a constant and the shear modulus satisfies
V2u? =0, (5.5.7)



then equation (5.5.4) simply reduces to the Helmholtz equation

VQU + ]\7“12[] = (. (558)

5.5.1 Boundary mtegral equation

The reciprocal relation corresponding to equation (5.5.2) subject to the region
R which is bounded by the contour C is (see Appendix A, theorem 1 by replacing u

with v, v’ with v')

" [ov , OV A
'/C { [%v — %1} dS =0, (5.5.9)

where v’ and v are the solution to equation (5.5.2). It can be verified that the

fundamental solution of (5.5.8) takes the form (see for example Coleman [20])
1 -
U= Z)’o(l/’l').; (5.5.10)

where v = wVk, r = [(x—a)*+(y— b)2]% with (¢, d) € R, and Y} denotes the second
Bessel function of order zero so that the solution for (5.5.2) with the shear modulus

given by (5.5.7) can be chosen as

1 _a
v = Zp'_ﬂb(l/r). (5.5.11)

To obtain the integral equation corresponding to (5.5.2), it is necessary to exclude

a point (¢, b) and surrounding it by a small circle I' of radius e. The equation (5.5.9)

yields
)I
/ i [@v' - a—%} s = 0. (5.5.12)
Joyr Lon on
It may be verified that
. . dv av' %
}B%All.[%l7l — Ev} dS = [p(a, b)] v(a,b). (5.5.13)
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Thus the integral equation

. o' dv
Av(a, b)[,u(a.,b)] = /C,u.[%v — 57—117} ds, (5.5:14)

w=

where A is a constant with 0 < A < 1. If C has a continuously turning tangent then

A=1

5+

5.5.2 Numerical technique

The numerical technique here directly employs equation (5.5.14) by discretising
the boundary €' into N segments so that for pu(z,y) = (juay + fax + psy + pq)?,
where gy, pta, pi3, jtq ave constants, the equation (5.5.14) is approximated by

]\7
Alprab + jraa + psb + py )og(a, b) = Z Vn Dok — Wi Sk, (5.5.15)

m=1

where vy, denotes value of v on segment m, 1w, denotes dv/On on segment m and

on

“m

. 0 ’
T :/ pidS and Smk:/ po' dS. (5.5.16)
Gy C

When m # k the integrals in (5.5.16) can be evaluated using standard numerical
integration techniques (For example the Romberg integration technique). When m =
k, the first integral in (5.5.16) may be written as

1 T .
Toi == 3 {3o0m) + § MotV om) = 7,0 )

{Gnyn + p2)ng + (e 4 psdng + Gy + pa)ng + (pazg + ps)na} +

/Ck % {)'()(7/1-) + g [Ho(l/?‘)}"](yyv) _ H] )'0(,/7)]} _

1 .
Z(,u] Y + o + pay + ,u.4);—f)"](1/r) {(x —a)ny +(y — b)ny} dS
(5.5.17)
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and the second integral by

1
Sk == 77 {m(m-) + Z [Ho(vr)¥5 (1) - H](w)m(yr)]}

| =

{na(@nyn + vy + po(en +20) + ps(yn + i) + 2} —

1 W (5.5.18)
/ - {)},(m") + 5 [(Ho(v7)Y] (1) — Hl)"o(z/r)]}
Cr =

4

{1y + 2 )@ — a) + (w2 + ps)(y — b)} dS
where r denotes half length of segment k, (2, y,) and (ay, Y1) denote the coordinates
of end points of segment &, Hy and H; denote the Struve functions of order zero
and one respectively. Both n; and ny denote the outward normal components with
respect to spatial variables = and y.
The integrals in (5.5.17) and (5.5.18) can be evaluated numerically so that (5.5.15)
will form a set of linear algebraic equations. Ouce this set of equations is solved, the
values of v, and w,, are obtained all over the boundary. The numerical evaluation

for interior points are then carried out by employing equation (5.5.15) again.

5.5.3 Another shear modulj

If the shear modulus su(x.y) takes the form
w(x,y) = exp(juya + pay), (5.5.19)

where p3 and py are constants and the density is given by (5.5.6), then (5.5.5) gives

1, 2
Ale,y) = Z(,u.i +15) — kw?, (5.5.20)

To obtain the general solution for (5.5.2) with the shear modulus given by
(5.5.19), it is necessary to consider three separate cases. The first case 1s the case

where the frequency satisfies

12+ 4
2 S B
o> R .0.2
w P (5.5.21)
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then the fundamental solution for (5.5.2) is

1

o' = 7 &¥P [—(a 2 + g12y)/2] Yo (7). (5.5.22)
The second case is the case with the frequency satisfies
2 2
2 _ Mt
W = —, 0.2
ik (5.5.23)
then the fundamental solution is
, 1
vl = s—exp [~ + /,/gy)/Q] log(r). (5.5.24)
The third case is the case with the frequency satisfies
2 2
I S 15
s 5.2
w i (5.5 5)
then the fundamental solution is
, 1 »
v = —s—exp [~ (12 + 12y)/2] Ko (vr), (5.5.26)
L

where Ky denotes the modified second Bessel function of zeroth order. The numerical
solution for this kind of shear modulus can be computed directly by employing the

integral equation as in (5.5.14) with the fundamental solutions v’ given in (5.5.22),

(5.5.24) and (5.5.26).

9.5.4 Numerical examples
Problem 5.3 : A test problem for shear modulus e, y) = (paay + pox + pay + ).

The test problem here is considered by solving the partial differential equation

13} , Ov 0 N , Ov o i
=7 {(;I.U) a*l] + 0_3/ [(12}) ay] + (2y) v =0, (5.5.27)
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subject to the square region R with 1 < @ < 2 and 1 < y < 2. Here the non-
dimensionalised shear modulus constants are taken to be gy =1, g = p3 = 14 = 0
and ¥ = 1. By specifying v = Jo(vR)/(zy) on all over the boundary, where Jy
denotes the first Bessel function of order zero and R = /22 + y? then discretising the
boundary of each side of the square into five equal segments we obtain the numerical

results at some boundary points for Jv/0n as in Table 5.4. The analytical results in

Table 5.4 are given by

dv _ o) | J1(R) Jo(R) | Ji(R) .
o ( = R )m (H/" +—= ) na, (5.5.28)

where n; and ng denote the outward normal components and J; denotes the first
Bessel function of order one. From Table 5.4, we can see that the numerical results

and the analytical results are reasonable compared.
Problem 5.4 : A test problem for shear modulus p(,y) = exp(p1a + p2y)

By specifying the material constants puy = .2, pp = .1 and & = .3125 or using the
material with the non-dimensionalised shear modulus p(a,y)/pe = exp(.22+.1y) and
the density p/po = 3125 exp(.22 + .1y), the frequencies w = 4, w = 2 and w = .1
then are applied. The comparison between numerical solutions and the analytical
solutions for Jv/0n on the boundary are in Table 5.5. Similar comparisons for v
at interior points are in Table 5.6. Note that, the numerical results in Table 5.5
and Table 5.6 are obtained using the similar domain and discretisation points as in
problem 5.3 and specifying v all over the boundary by

v = exp [—.1.-1' - .05;{/] .]U(.19365\/.1:2Ty2) for w=.4
v = exp [—.1;1? — .05y] for w=.

v = exp[—.l.r - .OBy]Io(.OQGSZ\/;L'? +y?) for w=".1

where Jy and I; denote the first Bessel function and modified Bessel function of

NS

(5.5.29)

zeroth order respectively.
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Table 5.4
Comparison of analytical and numerical results

Jv/On at boundary points

Boundary point Ov/On(BEM) Ov/On(ANAL.)

( 1.30.1.00 ) 0.5886 0.601661
(1.70,1.00 ) 0.3120 0.313602
( 2.00,1.30 ) -0.1680 -0.170697
( 2.00,1.70 ) -0.0868 -0.087995
( 1.70,2.00 ) -0.0867 -0.087995
( 1.30,2.00 ) -0.1681 -0.170697
( 1.00,1.70 ) 0.3120 0.313602
( 1.00,1.30 ) 0.5887 0.601661
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Table 5.5
Comparison of analytical and numerical results

Jv/On at boundary points

M
V]
(S
Il
—

w=.4 w

Boundary point BEM ANAL. BEM ANAL. BEM ANAL.

( 1.30,1.00 ) 0.0551  0.0562 0.0409 0.0418 0.0373 0.0381
(1.70,1.00 ) 0.0532  0.0535 0.0399 0.0401 0.0365 0.0361
( 2.00,1.30 ) -0.0995 -0.1007 -0.0759 -0.0767 -0.0697 -0.0705
( 2.00,1.70 ) -0.0962  -0.0977 -0.0741 -0.0752 -0.0683 -0.0693
( 1.70.2.00 ) -0.0622  -0.0635 -0.0374 -0.0382 -0.0309 -0.0316
( 1.30.2.00 ) -0.0661 -0.0666 -0.0395 -0.0397 -0.0326 -0.0328
( 1.00,1.70 ) 0.0945 0.0954 0.0822  0.0831 0.0790 0.0800
( 1.00,1.30 ) 0.0969  0.0984 0.0835 0.0848 0.0801 0.0813

91



Table 5.6
Comparison of analytical and numerical results

at interior points of v

M
[\
€
I
—

w= 4 w

Interior point BEM ANAL. BEM ANAL. BEM ANAL.

( 1.30.1.30 ) 0.7970 0.7970 0.8228 0.8228 0.8294 0.8294

9
( 1.50,1.50 ) 0.7652 0.7652 0.7985 0.7985 0.8070 0.8070
3

0
( 1.70,1.70 ) 0.7335 0.7335 0.7749 0.7749 0.7855 0.7854




5.6 Boundary element method and perturbation technique

5.6.1 Perturbation technique

The coupling of the boundary element method and the perturbation technique
1s investigated here. Using the same transformation as in (5.5.1) and (5.5.3) and
assuming that the density of the materials are proportional to the shear modulus as

given in (5.5.6), the equation (5.2.3) is then transformed into
VAU 4 Az, y)U + 12U = 0, (5.6.1)

where
S, 1 = a,“ ? 0/1 : I =12 "
Alr,y) = i [(07) + (8_1/ = 5H Vu, (5.6.2)

i
and v? = hw?.

Instead of equation (5.6.1) here, we consider the equation
VAU + [eAa,y)+ 2 ]U=0, 0<e<1 (5.6.3)

or, in other words, equation (5.6.3) is thought of as a perturbation of equation (5.6.1).
For € = 0, equation (5.6.3) simply reduces to the Helmholtz equation, while for e = 1,
we obtain equation (5.6.1). If » = 0 then equation (5.6.3) simply reduces to the static

problem.

The solution of (5.6.3) is sought in the form
U=>) €U, (5.6.4)
Using (5.6.4) in (5.6.3) and ordering the powers of epsilon yields

[VQUO+;/2UOJ+f[\72U]+u2U]+AUO}+e? [V’-’UQ+V2L72+AU] +.--=0. (5.6.5)
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This equation is then solved for
ViU, + v Uy = 0, (5.6.6)

which is a Helmholtz equation (or Laplace equation if v = 0), subject to the given
boundary conditions. Once this equation is solved, it provides the first right hand

side of the recursive form of

V]

v‘zU'i + Vlz[]i = —A(’La y,)Ui—] 1= 17 [ (567)

These equations then can be solved subject to specified zero boundary conditions.
Here it is assumed that the boundary conditions for Uy, Uy, - - are imposed. The given
boundary conditions are used for Uy, so that the remaining boundary conditions for

Uy, Us,- -+ are zero.

9.6.2 Boundary element method

The boundary element method for solving the Helmholtz equation or Laplace’s
equation is well established (see for example Cruse [22], Rizzo [61]). Without any
difficulty, this boundary element method can be extended to solve equations of the
type (5.6.7).

Without going into detail, the corresponding boundary integral equations for

equation (5.6.6) and (5.6.7) are

. J8f
/ Uy 96 _ ¢ 45 — AUg(a, b)
C

. 0On " On :
o2c o ) (5.6.8)
/ U; -~ G—=—4dS = \U;(a,b) + | GAU,_,dR 1>1
¢ On on R

where A is a constant with 0 < A < 1. If C has a continuously turning tangent then

A = 4. The Green function or the fundamental solution here 1s given by

1
5= logr for v =10,
G=4{ -7 (5.6.9)
- EH(}(V?') for v #0,
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with 1 = /-1, r = \/( r —a)? 4+ (y - b)? and Hy denotes the Hankel function or the

third Bessel function of zeroth order.

9.6.3 Numerical results
Problem 5.5 : A test problem (comparison with problem 5.1)

We consider the problem 5.1 again using this coupling of the boundary element
and perturbation technique. Using five segments on each side of the boundary and
discretising the domain R into 36 subdomains, and using three terms of the pertur-
bation series, the numerical results for 9¢/0n and for ¢ on the boundary are obtained
as i Table 5.7 and Table 5.8. The results of the numerical computation for some u

and Ou/0y in the interior points are in Table 5.9.

Although the comparison between Table 5.1, Table 5.2 and Table 9.7, Table 5.8
show that the coupling between the boundary element method and the perturbation

technique is less accurate. it provides the solution for a more general shear modulus.
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Table 5.7
Comparison of analytical and numerical results

Ju/On at boundary points

Boundary point, Ou/On(BEM) Ou/On(ANAL.)

( 1.10.1.00 ) -1.1820 -1.235553
( 1.30,1.00 ) -1.0919 -1.138967
( 1.50,1.00 ) -1.1035 -1.049541
( 1.70,1.00 ) -1.0633 -0.968742
( 1.90,1.00 ) -1.0399 -0.896625
(2.00,1.10) -0.1916 -0.161157
( 2.00.1.30 ) -0.3317 -0.238866
( 2.00,1.50 ) -0.3589 -0.327002
( 2.00,1.70 ) -0.3524 -0.422051
( 2.00,1.90 ) -0.3680 -0.520840
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Table 5.8
Comparison of analytical and numerical results

for u at boundary points

Boundary point w(NUM.) u (ANAL.)
( 1.90,2.00 ) 2.0175 2.058152
( 1.70,2.00 ) 2.1213 2.180798
( 1.50,2.00 ) 2.2052 2.311383
( 1.30,2.00 ) 2.2836 2.448556
(1.10,2.00) 2.3536 2.589795
( 1.00,1.90 ) 2.1495 2.367646
( 1.00,1.70 ) 1.6685 1.831923
( 1.00,1.50 ) 1.2599 1.364246
( 1.00,1.30 ) 0.9111 0.965710
(1.00,1.10 ) 0.6144 0.637463




Table 5.9
Comparison of analytical and numerical results

for v and 9u/Jy at interior points

Interior point  »(NUM.) w(ANAL.) Ou/By (NUM.) 9du/dy (ANAL.)

(1.0833,1.4167) 1.1279  1.14992 1.9578 1.98409
(1.2500,1.4167) 1.0614  1.07388 1.7974 1.90395
(1.4167,1.4167) 1.0118  1.00352 1.7616 1.82102
(1.5833,1.4167) 0.9672  0.93912 1.7306 1.73807
(1.7500,1.4167) 0.9224  0.88047 1.6995 1.65694
(1.9167,1.4167) 0.8751  0.82726 1.7633 1.57892
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5.7 Further technique for the dynamic case

In the section 5.4 we have considered the anti plane deformation for the static

case including the case that the shear modulus takes the form
z,y) = X(2)Y (y). (5.7.1)

Here, we extend the boundary element method for such materials to the dynamic
case.
In section 5.5. we have seen that by using the simple transformation as given in

(5.5.1) equation (5.2.3) becomes

} + pwv = 0. (5.7.2)

9 [,0v] O &
ar |Mox | T oy Moy

and by using (5.5.3) we can reduce the equation (5.2.3) into
VAU — A(z,y)U = 0, (5.7.3)

where A(x,y) is given by (5.5.5). In the case that the shear modulus is given by

(5.7.1), then equation (5.7.2) can be written as

VAU - [Aj(2) + Aa(y) — p(XY)7U =0, (5.7.4)
where Aj(z) and As(y) ave given by (5.4.4).
5.7.1 General solution
For the case when the density of the materials satisfies
pla,y) = ku(a.y), (5.7.5)
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the general solution of (5.7.3) can be sought in term of the double series form

Z Z fn ./m 'm(:l y) ( .

n=0m=0

[
~J
<D
~

with G satisfying the two dimensional Helmholtz equation

VQGZ:’ + 1/2(}”,:1 =0, 2 = k. (5.7.7)
Substituting (5.7.5) into (5.7.3) yields
df,, OC'T . al2 " d m OG™ o B2 gm
ZE Im J) +G f fn( ) J ———f-G" g:)
da dy Oy dy?
n=0m=0 5 78)
. (./\](.’17)—{-_"\2( )fn 7),/171( ) Z]} = 0.
If we choose
OGTI;I i g L
e = S for m>0 and n>1, (5.7.9)
-
0; i G for m>1 and n >0, (5.7.10)
Y

then equation (5.7.7) will vanish if and only if f,, and ¢,, satisfy

5 (]fn+l d?fn

T 2 A]('T)fn = 0,
N (5.7.11)

5 d,(/m-{-] d2g1n
2 e Ao(y)gm = 0,
dy dy?

for n > 0 and m > 0 with f; and go being constants. Thus the solution of (5.7.2)

may be expressed in the form

wl—'

Z Z (2 )gm (1 J)Gm 3:;‘/)- (5.7.12)

n=0m=0

= [//.(.1'.

5.7.2 Boundary integral equation

It has been shown in the previous section that by choosing specific materials the
series can be truncated thus convergence is assured uniformly and absolutely. Here

we discuss a more specific case in which the shear modulus is given by

p(z) = (ax + 3)7 2 (5.7.13)
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Using (5.7.13) in (5.5.14). the integral equation can be written as ‘\:':'.\_ &
N o/
_ o B LT g
Ae(a,baa + 4)7" = /( (az + 8)7 [0—20- a—zzJ as, (5.7.14)
where
v' = (az + B)Go — oGy, (5.7.15)
with
1. 1
Gy = Z) o(vr), i == [(-T —a) 4+ (y—b)° ] o (5.7.16)
and
1 /.. _ R 1 _
G, = i / Yo () dt, T = [(i—(l._)"-’;—(y—b) ]2 (5.7.17)

5.7.3 Numerical results

In order to evaluate the integral equation (5.7.14), it is necessary to obtain the
functions v’ and 9v’'/In and/or the function Gy, G, and their normal derivatives.
The evaluation of Gy or equivalently the Bessel function and its normal derivative
can be easily obtained (see Abramowitz and Stegun [2]). However it is more difficult
to evaluate Gy and 9G; /0y since these functions are multi valued. By expanding the

Bessel function Yy in (5.7.17) in an infinite series in the form

Yo(vr) = — ln —7 {1 —arr?? +agrtvd — a3t + agr®f — asr 0y 10}
(5.7.18)
+ —')f—}— :7 1° {b] — bor?y? + byrit — by r%0° + bgrty }
T T
where
1 1
a; = Z b] = Z(—')‘!‘ 1)
1 1 1
ag = 6_4 1)2: &(—“I-*'l-l-})
1 il 1 1 N
1 l 1 ( L1+ 1 + 1 n 1)
.= hy = — e SR
M= 147456 + 7 147456 2737%
—— as = ————( +1+1+1+1+5
P 15 = = —~ -+ -4+ -+ -
% = 14745600 14745600 2737475
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and y = .57721566490153 is the Euler constant, the evaluation of the integral can be
carried out and the value of the arctan function can be adjusted to make the functions
single valued (Graphs lustration of these multivalueness for Gy and 9G4 /0y can be

found in Appendix B). For example, if Yy is approximated as in (5.7.18) then

Gy = 2%{(, — )%+ uzgﬁ(%] + %—]) + 2557 (by + ‘3ﬂ) - 1% %” ;—;)_
PP ) 4 52) 00 (B4 B8 ooy
1167(:3) SR (b + 1190?) + 1555 (bs + 13;3) _ ,/85\9(1;4 n 241)
2 g 8 gt S
1/8,&'578(1)4 1;?? )+ 2):(5,-— §1/2c1.13'73 + %7/409)'75 - £1/1c13\7— + ;T)iy alvg)

+ ln(gr) [ (1 =120 + viaor® — 18ap® + 1/80,47*8) + ka(guza] —
4, 8 48

9 ; 5 K 5 -5 K 2
ot 2 M 21/0(137'J — §1/8(1.41'b) + X (—'_1/](12 — 57/6(1.37‘ + 17"'8(1‘4 1*4)
0

3 5 15

16 192 384
+ x (371/%3 - 105’/8“47'2) R5 945> ”8("J}

oG 1 2 3.0 2 7 8
ay] _7.'{)” (b + %) _2,,4_\,3},-(% n 4(;9) — 40557 (b + ﬂ)_*_

15
. 194 N 16
200555 g ) + 4R (b + 10(’53) + 005 (b 323)_
- 4b, 29a. Gb. 233a 4} 187a
2 '/g o _.i 1 —4 8‘-,5 .73 _i 4 _ 6 g(.'g 'r5 _4 4
VR ) 7”“(5+1575) VIV (5t )

1'28(:.4) : 9 L8 16 o .
_ — 1 v= —-1/ « \ —Va - —V a ’
315 ) "2 \YT 3 e g 3 357 98

5., 303 n 16y

— 8&F Xy’ (b; +

128

* 315 5 35

. * ) 8 16 128
1/8(1,4)/'9> + 6 (1 — 21/2(1,1)72 + §zl4agy — —1/6a3y6 + —7/8(14\78>

v ) . 2
3 4 3,2 9
+ 7—2< (1 -2 a7 asr? — P azr® —}-1/80,47'8) + x (§7/ a)—
4

8 48

8
4 8 6 -
—1 (I?? + 21/ azr — 51/ aqr )—i—x (—1/4a> — 51/6037 + l—rz/8a4r4)
5]

15
384

= 16 = 192 e 1% ..
K 945 1 ay \J) + 111(57*) (}:}7(—21/261.1-}-

+ x' (—1/ ay —

35 105

2
7/8(1,4 r ) +

: 2 5 j 8 6 -3 8 9
41 ayr? — 60%azr? + 8Sv aqr ) + x y(—gu‘jag + 815302 — 161/8a47"4)
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5., 16 192 ., 384 o
+ X )’(——51/0(13 + EVS(M 7‘2) + X y(—ﬁgl/&m )) }: ('0.1.21)
where
X=ux—a,
.‘lY: [/ b7
. i (5.7.22
7*:[($—a)2+(y—b)2]2, ‘ )
* .
6 = arctan(l a).
y—b
*
Here 6 is given by
* oo
8 = T g, (5.7.23)

where § = arctan((y — b)/(x ~ a)) obtained by the procedure as in (5.4.36). To this
end, we note that » should be sufficiently small to ensure the series in equations

(6.7.18), (5.7.20) and (5.7.21) are converge.
Problem 5.6 : A test problem for dynamic case with shear modulus i(z) = (ax+ )2

Here, we try to find the solution of the partial differential equation given by
0 , Qv 15} 5 Ov 5
— a7 — — a7 — v =0, 5.7.24
o [ Ox + Oy Jy + J ( )
subject to domain 1 < 2 < 2,1 <y < 2 and the boundary condition
v = (x — 1)e* cos(V2y), (5.7.25)

which is specified all over the boundary.

Using the boundary element method and discretising the boundary into twenty
equal segments, the numerical results for 9v/n as well as the analytical results for
two sides of the boundary are given by Table 5.10 below. From their comparison we

can see a good agreement between the numerical and the analytical solutions.
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Table 5.10
Comparison of analytical and numerical results

Ov/0n at boundary points

Boundary point Ov/On(BEM) Jv/On(ANALL.)

( 1.10,1.00 ) 0.6247 0.419656
( 1.30,1.00 ) 1.5785 1.537705
( 1.50,1.00 ) 3.1366 3.130263
( 1.70.1.00 ) 5.2354 5.352636
( 1.90.,1.00 ) 9.4378 8.405645
( 2.00.1.10 ) 0.1422 0.224048
( 2.00,1.30 ) -4.0062 -3.908752
( 2.00,1.50 ) -7.7295 -7.730931
( 2.00,1.70 ) -10.7404 -10.938748
( 2.00,1.90 ) -14.1359 -13.277284
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CHAPTER 6

ANTI-PLANE DEFORMATIONS FOR ANISOTROPIC MATERIALS

6.1 Introduction

In the previous chapter, we have considered anti plane deformations for isotropic
inhomogeneous materials. In the present chapter, the boundary element method is
developed to solve the more general problem of anti plane problems for inhomoge-
neous anisotropic materials.

In section 6.3, the boundary element method is developed for handling a specific
static case in which the elastic parameter varies in one spatial direction only. The
general solution for this specific material is obtained by modifying the solution given
by Clements and Rogers [19]. Numerical approximation as well as a test problem for
Justifying the accuracy of the procedure are discussed. For the dynamic case, the fun-
damental solution of a specific material is obtained through several transformations.

A numerical example as a test problem can also be found in section 6.4

6.2 Basic equations

The governing equation for the dynamic case of anti-plane deformations for the

inhomogeneous materials considered in the present chapter is given by

0 Ou 0?u (6.2.1)
ey = p—. s
ox; His Oz; Poiz

where the repeated suffix summation convention (summing from 1 to 2) is employed,

t 1s the time coordinate, p is the density of the materials, and the shear modulus

Hi12 = poy satisfies the ellipticity condition

[N]
(V]
~—

13y — p11ptaz < 0. (6.2.
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Note that if 9*u/dt* = 0 then (6.2.1) reduces to the equilibrium equation

_2. ﬂ =0 9
Ox; 'u“@.tj o (:22)

6.3 Boundary element method for static case

In general, to obtain the analytical solution of (6.2.3) is difficult. However, for
certain materials for which the shear modulus is a function of one spatial coordinate

only, it is possible to obtain the solution of (6.2.3) in terms of analytic functions.

6.3.1 General analytical solution

The shear modulus is considered here to be a function of x; only. Following

Clements and Rogers [19], let the displacement v take the form

u=> Ty(22)Eula; + S(xs)), Ty #0, (6.3.1)

n=_0

and E, satisfy the recurrence relations
El =F,_; for n=1,2,-.. (6.3.2)

where the prime denotes the derivative with respect to the argument m question.

Then by substitution of (6.3.1) into (6.2.3) yields
Z {TnE:,l [NJ] + 24125 + }122512] + E, [,“--I;)g ST+
n=0

2pun Ty + 2022 S'T, + 228" T + iy T + En [ty Tl + /lrzvalvl]} =0,
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or in another form

o0
Z {T71E1’1,(/’-l] o 2/1125' + /11225'2)+
n=0

] p (6.3.3)
2E, (112 + /1‘225’)% : [(s12 + ltzzsl)%Tn] + E,— [H22T1/,]} = 0.
(l.lfg (]’172
The first term in (6.3.3) will vanish for all n if
SI = /L._)_zl [—/1,]2 + (‘11.122 - ;I,]]/_Igg)"l-;] . (634)
The use of the second term together with the third term provides
n-—3 .
To = Clua + 412282, (6.3.5)

where C' is an arbitrary constant and

d [
1 S R A R ,uz_Tn_
T, = _3[/’12 + 11228 ? /[ — ]}lJ di, for n=1,2,--- (6.3.6)
S L a2 + p22S']

<

In view of (6.2.2) it follows that (6.3.4) yields a complex conjugate 7(x2) and
T(x2) where 7(x2) is obtained from (6.3.4) by taking the positive sign. The corre-
sponding T}, obtained from (6.3.5) and (6.3.6) will be denoted by T,, and T, respec-

tively. Hence a real function u which satisfies (6.2.3) may be written in the form

u= Z [T,,(;zrg VEu (21 4+ 7(22)) + Ty (29)En(ay + T(x2))|, (6.3.7)
n=0
where )
T, = C'1"_5h-11»
B ] (6.3.8)
Tn=C(=2)""7h,,
and
ho = [pipaz — i3] 7,
d (6.3.9)

=

3

Il
[ =

i [,u.”#.?z o /"?2]_% /[/‘11,“22 - M]?z]_% d
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Let z = 2y + 7(22) so that from (6.3.2)

(e o= / EL,_5(t)dt for n=1,2,---. (6.3.10)
0
Hence
1 z
E, ()& ( 1)7/ (z —t)"""Ey(t)dt for n>1 (6.3.11)
" — . 0

Furthermore, if we choose

1
E, = ;z%q).,,(:), (6.3.12)

we obtain the general solution for equation (6.2.3) as

U= C{h-o(-’l'-z )-?R{ q)O(:)}'*'
(6.3.13)

oc

Z(_l)” {/7211—](372 )3{(1)211~](2)} + ’7‘211(372 )é}%{q)’Zn(:)}:' }e

n=1
where £ and 3 denote the real and imaginary parts of the argument of the complex
function respectively.

Equation (6.3.13) provides the required solution to (6.2.3) in any domain in
which the infinite series converges uniformly. The uniform converge of the series may
be investigated after the manner of Bergman, but here it will be sufficient to note
that for certain inhomogeneities the series (6.3.13) truncates after a finite number of

terms. For this class of problems where the shear modulus pi; takes the form
i = /\,']'(O'.TQ + _/3)’), (6.3.14)

with A;;, a, /7, p are constants, we obtain

ho = Alaws +3) 75 A= (A11)a2 — )\fz)_%

gz )" AT e | (6.3.15)
hy= la 2,723),,”, p(p — 2n) H []JQ - (21‘)2](0':1:2 + /3)—'%-”.
- ) r=1

It is clear that for certain number of p or for p = £2, 44, --- the h,, vanish thus the

series converges uniformly.
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6.3.2 Boundary integral equation

We consider a region R bounded by a simple closed curved C. For a point (a, b)
on C, define a small semi circle segment I' centre at the point («, b) with radius e. Let
u denotes a required solution to the boundary value problem governed by the partial
differential equation (6.2.3) and w' be another solution to (6.2.3) given by (6.3.13)

with

®(z) = log(z — =), (6.3.16)

where z = a1y + 7(22), z0 = a + 7(b). Hence

u' = Cho(a)R{log(z — )}-}-
= 6.3.17
C'Z(—l)" [77217-1(-’1'2)3‘{@2“—1(2)} +’1271(1‘2)5}%{4’2"(3)}}, ( 0
n=1
where
n—1 L .
(—1)"(z—z)" ' r41
(I)'n(:): Z . Wy — _1'{(;_.~) 108( )—
— (r+1){n—-1—r7) (6.3.15)

T~ zp) ! _ s, )1
(—z0)" 1 log(—z0) — (= = 20) (—20) }

r+1 * r+1
Here the logarithmic function in (6.3.16) should be selected in such a way so that
the functions u' and its partial derivatives are all single valued throughout the entire

domain. The reciprocal relation corresponding to equation (6.2.3) is (see Appendix

A, theorem 2 by putting w = 0)

' 0 ou'
/ [//,] - SRt — pija— . -nu | dS = 0. (6.3.19)
cir "0 a1,
Now, on I
Ty = a+ecosb, 29 = b4 esind,

z9 = a + 7(b),
=1+ 7(22)
= a+ecos 4 7(b+ esind)
= a+ecos+ 7(b) + esin07'(b) + O(€?),
z— 20 = €[cosf + 7'(b)sin ] + O(€*).
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So that

u' = Chy(b+ esin 9)%{1(@[6((‘.039 + 7'(b)sinf) + O(€? )] }—}-

C Z(_l)-n []?2-,,_](1) + €esin 9)3{@27,_1 } 4 hon(b 4+ €sin 9)%{@2,,}] ,
n=1
(6.3.20)

where

n—1

(—1)"‘ ' IR s g\1n—1—r
o, = ; CES YT [e(cosé’ + 7(b)sin€) + O(e )]

{ [e(cose + 7'(b)sin8) + 0(62)] log[e(cos@ + 7'(b) sin §) 4+ O( € )]_

[e(cos 6 + 7'(b) sin §) + O(€? )] !

r41 ,
[—(a. + T(b))] log[—(a + ‘r(b))] — T 1 +
[—((1, + T(b))} o
r+1
(6.3.21)
Hence for small €
u' = C'h(,(b)%{log e} + O(1) 4+ O(eloge),
O _ ()R : +0(1) +0(
2 _r s .
oz i é(cos @ + 7'(b)sin 6) ' (log e), (6.3.22)
ou’ ! ‘
o Chal DY .
Oxo ChU(b)R{ e(cos @+ 7'(b)sin 6) } +0(1) + O(logee),
Thus for small «
du’
i =———un; dS
/r,u ](917.,- uUn; ¢

C—/‘O‘Jﬂfgfe ho(0)[p11(D)ny + pias (b)ng + (%’12.(1’)”1 t p22(b)ma )7'(8)] u(a,b)df
) cosf + 7/(b)sin @

+ O(e) + O(eloge)

= — K(b)Cu(a,b)+ O(e) + O(eloge),
(6.3.23)

where

o ot ho(b) [111(b) + p12(0)7'(b)] cos
_ ) :
L(b) = /0 R{ cos@ + 7'(b)sin 6 -

ho(b) [/1.2]((7) + ,u.r_)r_)(b’)T'(b:)] sin 6
; df
cos8 4+ 7'(b)sin @

(6.3.24)
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since n; = —cosf and ny = —sinf and a denotes the appropriate angle of the
boundary.

Now from physical consideration the parameter ij(x) are bounded in R, so
that if the derivatives u/0x; and du/dx, are required to be bounded in R then it

follows that for small €

/ /1”00 niu' dS = O(elog e). (6.3.25)
Hence
lim/ [/1,, Ou niu' — pijo— i -1, uJ dS = CK(b)u(a,b). (6.3.26)
«—0 Jp dr; Oz,
Thus (6.3.19) yields
. !
/ [/l,'jgli‘n,"lll i =— Ou -1 UJ dS = —CK(b)u(a,b). (6.3.27)

Since u = 1 is the solution of (6.2.3) it should satisfy (6.3.27), so we obtain the

relation

' au’ .
pija—n;| dS = CL(b). (6.3.28)
C 0.17]-
Using (6.3.28) in (6.3.27), we finally obtain the integral equation for equation

(6.2.3) as

(a b)/ [p,, : ‘,} dS = /[;:,Jgu R aa n; u]dS. (6.3.29)

6.3.3 Numerical approximations

The boundary element method employs (6.3.29) by discretising the boundary
C over N segments and by assuming v and y;;0u/dx;n; are constants over the

boundary C, (6.3.29) gives
u(a,b) Z / [/1,, ..7 .,] ds = Zn,,, / [/1,10 J dsS—

m=1 m=] (6330)
Ou J / ;
fii=——n; u' dS.
[ ]a:l‘] m Cﬂ]
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By specifying ji;;0u/0x ;n; over the boundary C, equation (6.3.30) forms a set
of linear algebraic equations for u over the boundary. Similarly, if « is given over the
boundary €' then (6.3.30) forms a set of linear algebraic equations for p;;0u/dx;n;.
Thus we can solve this linear algebraic set to obtain pijOu /02 n; and u all over the

boundary ¢'. The mixed boundary data here can be handled in the similar manner.

In order to obtain the solution numerically, it is necessary to evaluate

o, !
/ {/I,,‘jai”-j] dS and / u'dS. (6.3.31)
Je, U 02 Em

By putting € = 1 in (6.3.17), the second integral in (6.3.31) can be easily

evaluated for m = I using numerical integration technique.

For a class of problem where j;; is given by (6.3.14) the evaluation of the second

integral in (6.3.31) for m = I is given by

Je,
2
-9 =112
sin® @ —

22 22

/ w' dS = r(logr — 1)[ho(a2|n) + ho(x2]))] - / (2 — D)hy(logr — 1) dS+
Ch

11

[NTES

dS+

: A
hy log {cos” 6 + B sin f cos 9}

K

o

(o)

(_1)” [’7217—](372 )(\}{q)Qn—](:)} T ]7'217(3;2 )%{(b?n(z)} d57

(6.3.32)

S

Yk =]

where hy(x2],) and o(22]1) denote the value of hy at the upper end and the lower
end of the segment C, » denotes the distance from the singular point to the end of
the segment (here we assume that the singular point (a,b) is located at middle of
the segment), 6 denotes the angle of the segment according to Cartesian coordinates

system centre at point («.b) (0 < 8 < 27) and hg denotes the derivative of hy.

The evaluation of the first integral in (6.3.31) is carried out in the similar manner.

For the singular point we obtain



/ i 3 n;dS = Cyr(logr — 1 [(m.-gl,,+/3)"{hs<mzlh)—6111(x2|,.)}+
(az )i + B){ hg(z2 i) — 8hy( ”l’)l[)}]
Ca(ag — b)(logr — 1) [O])(O’.’Eg + g)yr—! (716 - 511])+
@

(ag + 3) (hg — 6]1;)] dS+

. i A
Cylazy + BY [(hfJ — &hy) log(cos® 6 + )\i sin® §—

Jo, 22
202 1
sin # cos 9) 2 7/7.13{'1)0}J dS+
A22
C (079+/3 {]70%{(1) }—hli}{@o}~hg§R{@1}+
Jc,

Z( )H+] []7211+]‘S{q)7”1 —+ h‘)n-’r')R{q)?n'l'] }:l }

n=1

Colaas + 5)7,{]10%{71@‘] } - ]1']“3{@]} B /7,'2§R{(I’2}—
haR{7'®:} + ) (—1)"H [h'z-.,ﬂs{q’?nﬂ} g 2R P22 )

n=1

+ ]7217+]S{qu)211} + ]7211+2>R{T,(1)2n+] }J } dS-,

(6.3.33)
where
C1 = Aing + Aayna,
C2 = Agang + Agang,
~A12
T )
Aoa
. o1 (6.3.34
5= (A11d22 — A3,)? )
A22
=+ 6,
(I)_] = 1/(2’ -z

Once we obtain u and p;;0u/0xjn; all over the boundary, the evaluation of u

and their derivatives in the interior domain R is carried out in a straight forward
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way using (6.3.30).

6.3.4 Numerical example

Problem 6.1 : A test problem

To demonstrate the accuracy of the procedure, consider the following partial

differential equation

4 [-7 -2 0“‘] n 50_[ -2 Ou J n —a—[m;" a“‘J ;9 [4.-13;2 a’“‘] =0, (6.3.35)

— |22t — ) e —
Oz 2 9wy vy 2 Ows Jra | * Oxy Jzo ‘< Oxy

which is valid in the square region 1 < a3 < 2,1 < 29 < 2 and subject to the

boundary conditions

ﬁ 4ﬂ =0 on To =1
a-l] (9;1'2
u= 28— 19 on Ty =2
(6.3.36)
—ai +4 U =0 on Tp =2
0:1"] 3;1‘2
u=4— 2, on x; = 1.

Note that equation (6.3.35) corresponds to equation (6.2.3) with the shear modulus
given by (6.3.14) using the non dimensionalised shear modulus constants A1 = 2,
Mr=dg =1l n=4a=1p3=0, P = —2. The integral equation for this problem
1s
. ou' , o' du
u(a,b ANisayi=—mn;| dS :/ Aijy Cm—nu — Azl =—nuu'| dS. (6.3.37
(a, )/C[U 2 Ox; i o Oz, ¢ ij o axj"z‘ ( )
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where

u® = 7_%:1:2;*}?{1(%(3 — 20)} - 4.7_:4‘13{(: — z0)log(z — z0)+

TTay { . } = 4.7—§3{1og(5 - zo)H+

1)
(177 + 4ny): :,_[ {log )+7_%at2§R{—%_—}-ﬁ—f?_?}_.
+

fi-k oo

Here the logarithmic function in (6.3.38) might be evaluated by writing the logarith-

~010g,( o) — ~}

by 1_281

5T, 0 = (2n; 4 nq)a

.Ll—-

s

*]

—"v-
u:-l —

(6.3.38)

mic function in the form

* ok
log(z — zp) = logr + 146, (6.3.39)
where
+ . 2\ A ,]7 |
r=|{xv; —a) — ! (7 —a)(xs = b) + & (9 —b)°| . (6.3.40)
A2g A22

*
The imaginary part of the complex logarithmic function in (6.3.39) 6 is determined

by procedure

g — 1 m A2z )
(29 — )) 11722 12/ ") so that 0 < 4 < 2%

Ste b1. Determine g = arctan
! ((I] —(I)—(.‘I‘Q -—l))/\]'g//\gg

g
Step2. If ny > 0 then § = 6.

*
If ny =0andny, >0 then 6 = 6;
*
In the case 6’ = 0, it should be replaced by 8 =2

If ny =0andny; <0 then 6 = 4.

*
g
*
0 =6,

If ny < 0andny; >0 then

* * —
In the case 8 > 7, it should be replaced by 6 = 6 —

*
If ny <0 and ny <0 then 8 = 6;

*

In the case 6 > :;7r, it should be replaced by § = 6 — 2
B (6.3.41)
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where n; and ny denote the outward normal components at point (a, b). By dis-
cretising the boundary into five segments on each side of the square, we obtain the
numerical results for « and ;;0u/0xjn; on the boundary as in Tables 6.1 and 6.2
respectively. The analytical results for the comparison in Tables 6.1 and 6.2 are ob-
tained by v = 4z, — 2 and /L,-_ja’u,/axjn,- e 7.1:2—2771. For the interior points, a similar
modification as in section 5.4.3 is carried out. Numerical evaluation for u, du/dz;,

and Ou/0xy at some interior points can be found in Table 6.3.
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Table 6.1
Comparison of analytical and numerical results

u on boundary

Boundary point u(BEM) ©(ANAL.)
( 1.10,1.00 ) 3;.3779 3.4000
( 1.30.1.00 ) 4.1999 4.2000
( 1.50,1.00 ) 5.0159 5.0000
(1.70,1.00 ) 5.8308 9.8000
( 1.90,1.00) 6.6386 6.6000
( 1.90,2.00 ) 5.5889 5.6000
( 1.70,2.00 ) 4.7772 4.8000
( 1.50,2.00) 3.9740 4.0000
( 1.30,2.00 ) 3.1718 3.2000
(1.10,2.00 ) 2.3651 2.4000




Table 6.2
Comparison of analytical and numerical results

jtijOu/Ox jn; at boundary points

pijOufdajn;
Boundary point BEM Analytic
( 2.00,1.10 ) 5.9847 5.7851
( 2.00,1.30 ) 4.5407 4.1420
( 2.00,1.50 ) 3.0610 3.1111
( 2.00,1.70 ) 2.2477 2.4221
( 2.00,1.90) 2.0881 1.9391
( 1.00,1.90 ) -2.1128 -1.9391
( 1.00,1.70 ) -2.2820 -2.4221
( 1.00,1.50 ) -3.0683 -3.1111
( 1.00,1.30 ) -3.9528 -4.1420
( 1.00,1.10) -6.4996 -5.7851
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Table 6.3

Comparison of analytical and numerical results

w, Qu/dxy, Qu/dzxs at some interior points

Interior point,

BEM

u Ou/Ozy Ou/Oxy

Analytical

U OufOxy  Ou/dxy

(1.30,1.30 )
( 1.50,1.50 )
(1.80,1.80)

3.8899 4.0047 -0.9918
4.4956 4.0176 -1.0059
0.4084 4.0113 -0.9495

3.9000 4.0000 -1.0000
4.5000 4.0000 -1.0000
5.4000 4.0000 -1.0000
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6.4 Boundary element method for dynamic case
6.4.1 General analytical solution

In this section, we consider equation (6.2.1) for a specific material in which the

shear modulus takes the form
ftij = /\,‘j(a'].'L‘] + Qoo + 0’3)2, : (6.4.1)

and the density

p = polaszy + asas + az)?, (6.4.2)

where A;; = Aji, a1, a2, a3 and p; are constants.

By assuming that the displacement can be written in the form

u = v(xy,x9)e™, (6.4.3)
then (6.2.1) becomes
0 5 OV 9 9
7 (Aijlar2r + aarg + a3)” | + pew (o121 + az2s + a3)’v = 0. (6.4.4)
0.’1:,'_ ’ 6.13]-
Let
v = (ayry + azas + 0'3)_]1/7(.1:1,.—1'2), (6.4.5)
then (6.4.4) becomes
o? .
1/’ + V‘)'q,[y p— 0’ (646)

P
J 3;1','0.1rj

5 : Y . — .
where v? = pow?. Let 7 be a complex number with positive mmaginary part and T is

it conjugate pair of quadratic equation

/\]] + 2/\]27' -+ )\22'T2 = 0, (647)
and
=21+ T2
(6.4.8)
T=21 +Tay



where 7 denotes the conjugate pair of z, then (6.4.6) is ready to be transformed into

2[M1 + Aa(7 +7) 4 Ao )]

a— = 0. (6.4.9)

Furthermore, if we transform (6.4.9) into a new independent variables

_ 1 1_
T1 :52 + 5: 7
1 1 (6.4.10)
) 22—12 — )—7",
then (6.4.9) becomes
oy,
a + %22 + Vo = 0’ (6411)
which is the Helmholtz equation with
—2 poA2aw?
V= — (6.4.12)

/\] 1 /\'_)2 - /\'J?.»)

The solution of (6.4.11) is the well known as the Hankel function. Let (a,b) is

the source of vibration then the solution of (6.4.6) will be

v = cHy(vT), (6.4.13)
where ¢ is a constant and
A A 3
7= (2 —a)? 2 (20 — D)% =2 ]2(;131 —a)(xg — b)| . (6.4.14)
/\22 /\')2 )

Thus the general solution of (6.4.4) can be written as

v=clajry + asx9 + 03)‘]Ho(177—‘). (6.4.15)

6.4.2 Integral equation

To derive the integral equation, it is necessary to exclude a point (a,b) in R and
surrounding it with a small circle T of radius e. Using the reciprocal relation theorem

as in appendix A (theorem 2) yields

/ [/I,J aav v'n; — P a@v vn,] dS = 0. (6.4.16)
Jo+
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If we choose v’ as given by (6.4.15) with ¢ = —1/4 then on I
Ty = a+ ecosb,
Ty = b+ esiné,

vl == —;; [a-](a + €cos 6) -+ 0’2(1) + € SIn 9) -+ (]3]_]H0(177_‘),

! =
aai = %[a](a + €cos ) + az(b 4+ esin§) +a'3]—]H1('177_‘
T
cosf — —/’Q—Lzsillﬁ
+
1
[cos 0+ 3 ’\" sin® 6 — &lcos()smﬂ]*
04]7 [a](u + €ecos ) + az(b+ esinf) + 0'3] _2H0(777_‘),
ov' v
0: = ?4—/[01((1+ecos€)+ao(b+esmf))+ag] ]H](PF)
9

A
2o SIn /\ 2 cos

+

n=

cos? § + ’\—”— sin® 6 — 221 ¢35 sin 9]
Aon A2s

% [a-'] (a + €cos @)+ as(b+ esinf) + 0'3] _2H0(177—'),
where
A1 2A 1
7 [(()S 0+ E sin? 6 — /\2]2] cos 6 sin 9} 2
Since for fixed 7, and ¥ — 0
‘H (5w 1 Pp—
= o(VT) ~ 3 og(vT),
2 - 1
ZH](V?) ~ —

It follows for ¢ — 0

/p,,aa v'n; dS = O (eloge),

//1,,3y vn; dS = —K(a,b)v(a,b) + O(elog ¢),
.

where

.
. /\]]/\22 - )‘32

(6.4.17)

(6.4.18)

(6.4.19)

(6.4.20)

(6.4.21)

(6.4.22)

(6.4.23)

1
K(a,b) = (a1a+ asb+ a3)
27
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Jo, Aoz cos?@ — 2X;9sinfcosf + A1 sin? 6
(6.4.24)



Thus (6.4.16) gives

v ov'
/ /l,]a v'n; — /1,16 vn; | dS + K(a,b)v(a,b) = 0, (6.4.25)
or
L (a,D)vla,b) :/ ﬂija_vvﬂ, Mijm— did v n; | dS. (6.4.26)
C a.’l?j 8

Note that I(a,b) in (6.2.24) depends on the position in the given domain, the angles

61 and 8, as well as the shear modulus of the material.
6.4.3 Numerical example
Problem 6.2 : A test problem

The accuracy of the numerical procedure is tested by considering the partial
differential equation given by (6.4.4) and specifying Aj; = 1, 12 = Ay = 1, Aop =

2
3,a1 =0,a02 =1,03 =0,py = .w=1,or

a [, 0v N 0 1_3013 N 9 [, 0v -
00y [20m, | T 0my |00y | T 22, | P2 0m,

0 s Qv 5
Og {31?-&3—} + gagv =0,

~

(6.4.27)

(S™]

which is valid in the square region 1 < 27 < 2,1 < w2 < 2, and subject to the source

of the vibration at point (3.5,5) and the boundary condition
v =, Hy(r), (6.4.28)

which is specified all over the boundary. Here Hy denotes the Hankel function of

order zero and

, 1 2 . il .
r=[(x; —3.5)* + 5(v2 = 5)% — g (a1 = 3.5)(x2 — 5)]? (6.4.29)
The numerical procedure is used to calculate
01! dv Ov _
Mij = 8:1' 1301.] (n1 +nq) +a 383'2 (ny 4 3n2), (6.4.30)
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and without any difficulty we obtain the analytical solution as

('1]—35) 2—0)

21 =—(ny +3n2)Hy(r) — 22 Hy (0 )[(771 + n2)
(.’132 —5)—(.’171 —35)]

+ (11 4+ 3n2)- 3
(6.4.31)
Using boundary element method and specify ten segments on each side of the
square boundary, the numerical evaluation of 1tijOv/dz;n; as well as the analytical
solution for some boundary points can be found in Table 6.4, while the evaluation
of v and Jv/0ry,0v/dxy for some interior points are in Table 6.5 and Table 6.6

respectively.

6.4.4 Two inhomogencous anisotropic materials

Consider the case when the material is made up of two kinds of imhomogeneous
anisotropic materials with an interface boundary (see illustration in Chapter 7, Figure

7.1) and the function v satisfies the differential equation

J [, Q 2),2 Q0 Q Q Q)

7o |4 0l 4 0l S 0y 40l 4 0l P =
7 Ly

(6.4.32)

where the superscript (£2) = (1) denotes the governing differential equation in the

first material and (Q) = (2) denotes the governing differential equation in the second

material. In this case the integral equation may be written as

: » v’V
K(Q)(a,b)vm)(a,b) _ / [/\SJQ)( ()., +a(n)“+a,§m)2 v Wy
Je Iz
, o)
/\f'?)( (m_ _I_Ogm ol @ (Q))’-’ o i, st
a.’lfj
(6.4.33)



Table 6.4
Comparison of analytical and numerical results

tti;0v/0z jn; on some boundary points

BEM Analytical

Boundary point. Real Imaginary Real Imaginary

(1.151.00 )  -0.2678 1.6336  -0.27340 1.59602
(1.45,1.00)  -0.1115 1.6862  -0.11894 1.66510
(1.75,1.00 )  0.0279 1.7616  -0.00995 1.70706
(2.00,1.25)  0.0276 -0.7142  0.05844 -0.63687
(2.00,1.55)  0.0964 -0.7815  0.11711 -0.72766
(2.00,1.75)  0.1262 -0.8747  0.16437 -0.80786
(1.652.00)  0.1961 -2.0635  0.11197 -2.07692
(1.552.00)  0.2450 -2.0015  0.16942 -2.02237
(1.352.00)  0.3726 -1.8435  0.29651 -1.90797
(1.00,1.55)  -0.5557 0.5170  -0.53394 0.57308
(1.00,1.35)  -0.4656 0.5010  -0.44989  0.54807
(1.00,1.15)  -0.3841 0.4632  -0.37080 0.52632
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Table 6.5
Comparison of analytical and numerical results

v at some interior points

BEM Analytical

Interior point Real Imaginary Real Imaginary
(1.30,1.30) 0.1723  0.3862 0.1748  0.3921
(1.50,1.50) 0.2049 0.3204 0.2079  0.3250
(1.80,1.80) 0.2377  0.2366 0.2416  0.2403




Table 6.6
Comparison of analytical and numerical results

Quv/dxy and Ov/dzy at some interior points

BEM Analytical
Ov [0y Ov/0xs Ov/0x; Ov/0xs

Point Real Imag Real Imag Real Imag Real Imag

(1.3,1.3) 0.2110 -0.0374 -0.0298 -0.3161 0.2152 -0.0411 -0.0232 -0.3229
(1.5,1.5) 0.1705 -0.0579 -0.0393 -0.2455 0.1749 -0.0585 -0.0337 -0.2518

)

(1.8,1.8) 0.1203 -0.0727 -0.0423 -0.1814 0.1232 -0.0698 -0.0369 -0.1886

§




for 2 = 1,2, where

v’m) = — i(a'gmnrl + a'. ’L + O(Q)) Hy (17(9)7_“(9)),
Q Q
S S %
o8 \2 7 5712
71( — ((1:] —a) + o)) (:172 - l)) -2 ) (Il?] = CL)(.’L‘Q — b)
22 22

The function XD (q,b) in (6.4.33) may be evaluated with by the help of a solution
of (6.4.32)

W = 2 (0% + Ve + ofP) 7 Hy (#V5D), (6.4.35)

where

nN=

S

0 _ gy My N

- 1

s = [ar] + Wrg 7/\(9)’11’1? . (6.4.36)
22

Since (6.4.35) satisfies (6.4.32), it should also satisfy the integral equation (6.4.33)

thus we obtain

' -1 (2)
. ' 3\ a I
I\"(Q)(a, b) = [w(m(a, b)} / [/\( )( (Q) 1+ O(Q).-Q + aéﬂ))z 2 U’(Q)”i‘
c

u a’L‘]‘
(Q)
AP + «Pa; + o (n))')@w o' @ L s
Oz,
(6.4.37)
By applying the continuity equations
p) = (@)
(1) (2)
(1) (11,2 0v (2) (2)y2 v
)\ ( +a 1'7-|-Cl’_ 77,:)\ ( +a T + « ng,
2 3 amj 3 ) aa:]_
(6.4.38)

across the interface boundary, and using the boundary element procedure, we obtain a

set of linear algebra equation. Once v and/or )\(Q)( (Q)’l —I—a(m 2+a (Q)) agi_r_l)n;

2 51

(2 Q
) ]+a") ’l 2+ > )) dz; 1y

are specified on the boundary we obtain v and /\( )(a

in the whole domain through equation (6.4.33).
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6.4.5 Numerical example
Problem 6.3 : A test problem

The accuracy of the procedure is tested by considering the partial differential
equation given by (6.4.32) and specifying )\(1) = /\(2) == i, /\312) e /\(2) = i), )\glo) =

M =30 =a? =00} =aP =1,a{" =a® =0,V = pP =2 w1

2 3

0 31)(9) 17, 31)(9 0 , Ov®)
—I—a + , ops +

Ory | % Oy 2 9y oz Oz (6.4.39)
O [339 )y 2e2um —g, g1

SaZo®) = =1,2
Oz E Juy 372 '

subject to triangle region with vertices (1,1), (2,1), (2,2) for the first material and
(1,1), (1,2). (2,2) for the second material. By specifying the source of the vibration
at point (3.5.5) and the boundary condition as in (6.4.28) on all over the boundary,
we obtain the numerical results as in Tables 6.7, 6.8 and 6.9. Here, we discretise
the boundary with 10 segments on each side of the square and 30 segments on the

interface boundary. From the tables we can see that the numerical results are in

reasonable accuracy.
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Table 6.7
Comparison of analytical and numerical results

Aijlarey + agay + a3)?dv/dzjn; on some boundary points

BEM Analytical

Boundary point Real Imaginary Real Imaginary

( 1.15.1.00 ) -0.2735 1.5874 -0.27340  1.59602
( 1.25,1.00 ) -0.2192 1.6192 -0.21767  1.62241
( 1.35.1.00 ) -0.1692  1.6427 -0.16600 1.64536
( 2.00,1.35) 0.0801 -0.6604 0.07632 -0.66346
( 2.00,1.45) 0.0988 -0.6902 0.09589 -0.69365
( 2.00,1.55) 0.1194 -0.7236 0.11711 -0.72766
(1.75,2.00 ) 0.0687 -2.1262 0.05937 -2.12937

2.0717 0.11197 -2.07692
( 1.55.2.00 ) 0.1769 -2.0152 0.16942 -2.02237
( 1.00.1.65 ) -0.5756  0.5767 -0.57754  0.58638
( 1.00,1.55 ) -0.5325  0.5653 -0.53394  0.57308
( 1.00,1.45 ) -0.4898  0.5534 -0.49135  0.56025
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Table 6.8
Comparison of analytical and numerical results

v at some interior points

BEM Analytical
Interior point Real Imaginary Real Imaginary
(1.50,1.30) 0.2143 0.3828 0.2144 0.3828
(1.30,1.50) 0.1697 0.3360 0.1698  0.3359
(1.80,1.50) 0.2522  0.3077 0.2522  0.3075
(1.70,1.20) 0.2495 0.4096 0.2498  0.4095
(1.20,1.80) 0.1409 0.2802 0.1409 0.2801
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Table 6.9
Comparison of analytical and numerical results

Ov/0z; and Ov/dz, at some interior points

BEM Analytical
v /0, Ov /0y Ov /0, Ov/0xq

Point Real Imag Real Imag Real Imag Real Imag

(1.5,1.3) 0.1764 -0.0542 -0.0376 -0.3274 0.1798 -0.0499 -0.0320 -0.3314
(1.3,1.5) 0.2012 -0.0437 -0.0309 -0.2410 0.2051 -0.0486 -0.0272 -0.2443

(1.8,1.5) 0.1207 -0.0567 -0.0424 -0.2635 0.1188 -0.0541 -0.0345 -0.2659

\1
l\)

)

5)

1.2) 0.1395 -0.0455 -0.0444 -0.3957 0.1383 -0.0434 -0.0353 -0.3955
1.8) 0.1995 -0.0452 -0.0312 -0.1615 0.2037 -0.0479 -0.0287 -0.1673

A
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CHAPTER 7

PLANE DEFORMATIONS

7.1 Introduction

There are two general types of plane problems which may be defined by setting
down certain restriction and assumptions on the stress and the displacement fields.
Plane stress is relevant in the case where one physical dimension is obviously much
smaller than the other two. such as a thin sheet or diaphragm loaded in the plane
perpendicular to the small dimension. Plane strain is relevant where one dimension is
much greater than the others two, such as a long pressurised pipe, or perhaps a dam
between massive end walls. Plane strain and plane stress problems for homogeneous
isotropic materials have been widely investigated (see for example Ang [4], Clements
and Rizzo [16], England [27], Rizzo [61]), however for inhomogeneous materials solu-
tions to particular problems are less common. In general, solving plane deformations
problem involving inhomogeneous materials is difficult. For inhomogeneous material
mvolving the join of two kinds of homogeneous materials with interface boundary,
some progress can be made. In the present chapter, we develop the boundary element
method for such materials. The kernel of the integral equation here is obtained via
the complex function approach. For the problem with continuous small variation of
the material coefficients, the solution is obtained by combining the boundary element
method with the perturbation technique. Some stress intensity factor problems which
were previously discussed in chapter three are considered again using the boundary
element method. Both numerical results obtained using the two point boundary
value method and the boundary element method are compared in order to verify the
accuracy of the procedure. Several others numerical results can be found at the end

of this chapter.
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7.2 Governing differential equation and the fundamental singular solution

Consider a system of differential equations
(A + g ij + e ;5 = 0, (7.2.1)

for a body R bounded by a single smooth contour C , where the A and y are constants.
Using standard techniques (see for example Sokolnikoff [71]), this system can be

reduced to the biharmonic equation

—~
-1
o
o

p—

U‘i,jj/rk — O, 7,]/ ]. = 1,2

Here the usual index notation of Cartesian tensors is adopted. The subscript denotes
the Cartesian tensor component while the comma denotes the partial derivative for
the relevant arguments.

By assuming wqj; = Py(x1, 22) the analytic function
F(z) =P +.P;, (7.2.3)

can be constructed through the Cauchy-Rieman equations and P, is obtained by

integrating
(ZPQ = P2,1(15171 + PQ"zd.'l-'Q
= — Py adxy + Py jdas,
or
PQ = / —P],Q(I.I'] -+ P])]d(l'g. (724)
co

Consider a harmonic function Q(z) which satisfies

1
Qz)=p1 +apy = Z/F(z)dz, (7.2.5)
therefore
1
Q' =pi1+pg = Z(P] +1P,), (7.2.6)
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and from the Cauchv-Riemann equations
A 1

1
])]'] =pP2.2 = ZP],

V4

1 (7.2.7)
Pi2=—pn = —Z-Pz-
Hence from (7.2.2) and (7.2.7) we obtain
(’U-_i — P121 — p222) i = 0, (7.2.8)
since p; and p; are harmonic in R, u; can be wiitten as
i = p1ay + paxg + ¢y (21, 22), (7.2.9)

where ¢; (27, 23) 1s harmonic also in R. Now, if w(z) = ¢; +2¢2 is an analytic function

of z, then equation (7.2.9) can be written as
ui = R{Zz) + w(2)},

or

ui = {E. (2) +2Q(2) + w(z) + w(»z_)} , (7.2.10)

<

where z,2(z) and w(z) denote the conjugate of =, (=) and w(z) respectively.

If the right hand side of equation (7.2.1) is a delta function say
(N + /I._)ll.]“ij + pug g5 = I(,‘(S(;F . .’13_6), (7211)

where § denotes the Dirac delta function, I{'; are real constants and 7 = (z1,22) and
2o = (&1,&) is a point in R then it may be readily verified that a suitable choice of
(z) and w(z) in (7.2.10) in order to satisfy (7.2.11) is

Qz) = — pIn(z — =),

B o (7.2.12)
w(z) =rpln(z — z9) + f’[ O~ ’
<~ T <0

where z = 2, + 129, 20 = &1 + o,k = (XA + 3p) while 9 is a complex constant

corresponding to I\;.



7.3 General second order elliptic system for anisotropic media and the

fundamental singular solution

Consider a general system of second order differential equation given by
Cijkrvin gt = 0, HI=124k=1,2,-- . n (7.3.1)

where u) are functions of the dependent variables x j» Cizki are real constants which

satisfies

Cijkl = Cklij- (7.3.2)

and equation (7.3.1) satisfy the elliptic condition,
Cijkii ugg 2> 0. (7.3.3)
By assuming u; are analytic. and the solution of equation (7.3.1) can be written as
up = Apf(ar + paq), (7.3.4)

where 4, are constants and f is an arbitrary analytic function, then substitution of

equation (7.3.4) into (7.3.1) form a set of linear algebra system
(¢inkr + cinke + ciag + cior ) Ax = 0. (7.3.5)
This system only have a nontrivial solution if
leirk 4 civkap + ciok1p + ciorap®| = 0, (7.3.6)

which is a polynomial of degree 2n in p.

By assuming a complex p, and its conjugate p, , (& = 1,2,---,n) are the
solution of equation (7.3.6) (this condition are guaranteed by equation (7.3.3) see

Clements and Rizzo [16]) then equation (7.3.4) can be written as
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wi = Y Akafalt +Patz) + Y AuaTole + Pora).
a=]

o=]
If the right hand side of equation (7.3.1) is a delta function
CijhlUk j1 = ]&’,‘(S(ﬂ.?‘ — .1:—6),

where 7 = (a7, 22),7) = (§.&2) and I; are constants, then by choosing

1
fa(zo )= —D, 111(20 - 50 )a

2m

with o = & + pae and D, are constant, the equation (7.3.7) becomes

1 n g B
ur = 57!'—? {Z} AI;O'DO 111(20 - 60) - Z:] '4]\‘O-DO 111(50 - 60‘)} :

(7.3.8)

(7.3.8)

(7.3.9)

The the fundamental singular solution can be obtained now by determining the

constants which satisfy the appropriate conditions.

7.4 Boundary integral equation

7.4.1 Perturbation technique

The equilibrium equation in terms of the displacements in the absence of body

forces for plane elasticity problems for inhomogeneous materials is

[/\5,']'11.[\-![.- + ,u,(_u,.,"j + uj‘,-)] e 0.

(7.4.1)

Here 6;; denotes the kronecker 6, u; denotes the displacement with respect to the

relevant coordinates system, and A and p denote the elastic parameters.
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By taking A and p as a function of position, say
My, x) =X + €Ay (21, 22),
| (7.4.2)
p(y, -172) =po + €pr(ny, x2),

where Ag and jio are constants, € is a small perturbation constant, the equation (7.4.1)

becomes

(Ao + po)ujij + powijj+eps (g + uijj) + epr j(wij + i)

(7.4.3)
+edyup i+ €Ay joijup = 0.
Let the displacement take the form
;"= u il o E’U( )+ € u( 2) s (7.4.4)
Substitution into (7.4.3) and by equating the power of € yields
(Ao + je0 )u 7,, T o 115% =0,
(7.4.5)
Mo + 10 )uy + pou” = — i) (n > 1),
where
i = b + () ), (7.4.6)
If we write the stress as
OB = + eo(]) + €2 o, )—{— : (7.4.7)
then we obtain the relation
_)\0677“1\ & +/.10(’U(0) u_;ﬂ))
(7.4.8)

01(-}7) = Aoy 6,-_,~ui_?£ + ,u.o(uf-j;-) + 112"1)) + fi(;’), (n>1).

For particular inhomogeneous material, say A is a constant and u 1s a function
of position
(g, 22) = po + epr(1, 22), (7.4.9)
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the equation (7.4.3) simply reduces to
(A + p0)wgij + proui g5 + epa(uyij + wi i) + epr,j(wi;+uji)=0. (7.4.10)

Using equation (7.4.4) and cquating the order of e again, we obtain the equation

(7.4.5) with
.f;r(f) = /1-1(115-,"]'-_1) + u;_”,-_])). (7.4.11)

The equation (7.4.8) for the stress becomes

0 : 0 )
oij) = Abijuih + o) +ufl)),
, (7.4.12)
0,(‘;) = /\6-,;;"1/.(A~7.I£ + ,Uo(uf',r_]j) i “(;7:) )+ .7“:'(]"")'- (n21).

n . . N = .
where f,-(]- )i given by equation (7.4.11).
Once equation (7.4.5) is solved for the displacements, the stresses can be found

through the formula above. The tractions are given by
t,' = 0Ny, (7412)

where n; denotes the outward normal vectors.
In order to solve the equation (7.4.5a) in the two dimensional case above, let us
consider first the equation
(A+ /1.0)11.;-% + ,uou.::_%- = [ (7.4.13)
By assuming ¢, as the solution of the above equation and also ¢} as the solution of
the same equation by replacing h; by hy then by using the divergence theorem and

equation (7.4.12), yields

/ tig; dS :/ Gijgf);ﬂj dS = // (J,‘jqﬁ:),j dA
¢ N R (7.4.14)

:// 9ij 07 + oi;b;; dA.
R
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Similarly

[ tieias= [ /R 061+ lsbis dA (7.4.15)

By subtracting equation (7.4.15) from (7.4.14) we obtain

| i =500 a5 = [ fo13s67 ~ o3y 611 a4
C R

:/f hio] — hi¢; dA,
R

*

1 * * . [ — . — * ) 1 7 3 -
since 0;;¢7 i = 07;¢i;.0i,; = hi and ¢ ; = hf. Equation (7.4.16) is known as the

(7.4.16)

Betti’s Reciprocal Theorem (see Clements and Rizzo [16)).

By choosing ¢, as the fundamental solution, h; = Ki;6(% — 20), ¢3 = uf-o),t*_ =
t;o)’ L} = 0 for equation (7.4.5a), the reciprocal theorem above leads to an ntegral
solution to equation (7.4.5a) in a region R bounded by a closed curve C given by

(see Rizzo [61])

rui"() = a/c[u.,f.‘”(f)T,-j(f,ﬂ))_tf.”’(f)znj(f,.ﬂ))]dS(f). (7.4.17)
Here t; denotes the Cartesian tractions, ¥ = (v1,72),20 = (61,&), a = (A +

Bpo)/(4mpo(A 4+ 2p0)), T=1if 5 € R,0< 7 < 1if a3 € C ( note that = 1/2i C

has continuously turning tangent ).

The functions U;; and T;; ave given by

2p10(Usg +1llaj) = wQ5(2) — 2Qf(2) — wj(2),

E‘22j — ‘I,E]'_)]‘ = Q;(Z) -+ QI](:) + ZQI;(Z) + w;-(z),

e (7.4.18)
=)+ S0 = 2[5(2) + Q=)
Tl_] s E{]‘JTI[”
where
Q;(z) = = In(z — z),

&; In( 20 (7.4.19)

wj(z) = rpjIn(z — z9) + b i’ ’

zZ— 2y



Here the primes denotes the differentiation with respect to the relevant argument,
the bar denotes the complex conjugate, n; denote the normal (outward) vectors,
z=a1 F 1wy, 0= /—1, 20 =& + ks, k= (A+3u), 1 = —1o/K, hy = —1pp /K.
To obtain the stresses in the interior domain R it is necessary to evaluate the
derivative of u; with respect to & and €. Since the differential operator is a linear

operator, it can be applied in a straight forward way to obtain

2p0(Usjup 4 Usz0) = w85a(2) — 28} (2) — wj(z),

(1

22, = 151250 = 5 (2) + Q1 (2) + 297 (2) + W] (2),
(7.4.20)

Zi1j0 F S50 = 2[ ia(z) + WL
Tiit = Sikj ik,
Here the subscripts i, 7, k, [ take the value 1 and 2. The subscript comma ! denotes
the differentiation with respect to & for I = 1 and & for | = 2 respectively. Once
(0)

u;~ are known, the stresses are calculated by

AL
ol = ajfiy / wp[Thij + Tyji+—06i;Thrr]—
c Ho

1)
A
telUrij + Urji + N—&le.-r,r] ds,
0

while the tractions are given through equation (7.4.12).

Similarly the integral solution of equation (7.4.5b) in recursive form for (n>1)

can be calculated. By assuming the displacement field satisfies

(A + 100)85.i5 + podbij; = —fijjs (7.4.22)
ti = [A0ij bk + poldiy + ¢54) + fijlng, (7.4.23)
also
(/\ + /[0)(#);':1']' + /10¢T,77 = ]l:':, (7424)
t; = [A6ij0r k + 1o(87; + ¢5.,)nj, (7.4.25)
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Using the reciprocal theorem again

/ tig; —tid; dS = // [gij.qg;r _ U:jd)i],j dA
c JJr

(7.4.26)
=// oij.i0r + 01‘1"757,,,' - U:j,jﬁﬁi - J;j¢i-j dA.
R

And after some simplifications we obtain

R C R i

If we choose ¢} as the fundamental singular solution, then the solution of equa-

tion (7.4.5b) in integral form can be written as
(%) = a / [0 (#)T (7, ) — 1 FYUg 7, 5)] dS(7)+

// FOURUG AT 5) dAF) (n > 1)

By substituting equation (7.4.28) into (7.4.8) we obtain the stresses for the per-

(7.4.28)

turbation term of order n > 1 as

LY

n ” A )\
0'(--) _0/10/ )[T71]+Tl]1+ 017Tr1\ I-] [UTWJ'I—UT77+ 6YJUT" L]ds_i-

+ A n
Qg // f 71)[[- T1,87 t Uv] 81 51]U7L g].]dA +f1(] ).
(7.4.29)

Thus the displacement and the stress for the inhomogeneous material can be

obtained by substitution back through equation (7.4.4) and (7.4.7).

7.4.2 Two homogeneous materials

We consider an elastic inhomogeneous material with the inhomogeneity made

up from two kinds of materials. The first material with A = A(1), p = p) and the
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Material Il

Material |
;C"I

Material H

Ch

Figure 7.1

Two homogeneous materials with interface boundary
Material I with A = M), 4 = 4 and material IT with X = A3 =

second material with A = A®)| 4 = 4@ where AM 1M A L) are constants.
Suppose the material have an interface boundary as shown in Figure 7.1.

Thus if we choose the interface boundary as Cy and the pure boundary for the
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first material is C'y then the equilibrium equation should satisfy

(A 4 0D 4 8 = ) (7.4.30)

2,17 1,37

with the solution
Tu‘(,-l)(a:-(')):a/(])/c+(' [WD(@TH(7,5) — (@)U (F,49)]dS(F).  (7.4.31)
1 1

Similarly if we choose the pure boundary for the second material as C'; then the

equilibrium equation should satisty

(A1) 4 )2 H('z),,,}f,.?j), —0, (7.4.32)

with the solution

Tul(4%) =a“>/p i (i@ T (E,25) — 2 (@U(E, 00)]dS(F).  (7.4.33)
2—Cy

By asumming the materials are perfectly continuous across the interface curve

C1, we have the continuity equations

WM (F|e, ) = uﬁ”(flc,) i=1,2, (7.4.34)

1

and

@)=ty i=1,2 (7.4.35)

Thus if the displacements and/or tractions are known over the pure boundary
C we know the displacements and tractions on curve C; by using the combination
of the equations (7.4.31) and (7.4.33). Once the displacements and tractions on the
boundary Cy, Cy, Cy are known, the displacements and tractions in the interior points

can be calculated using (7.4.31) and (7.4.33) again.
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7.5 Numerical methods

7.5.1 Perturbation technique

Using the boundary element method, the boundary C is discretised into N
straight segments. By assuming the displacements and the tractions are constants

over a given segment, equation (7.4.5a) can be solved by the approximation

U,‘j(f,p_];)dS(f)} . (7.5.1)

N X
- — = 0]
TU;?\) = a Z {ufl(:?)‘/ Ti‘}'(‘T’pL‘)ds(m)_ tg‘m)/c

m L

Here C,, denotes the m!" segment of the discretised boundary, p; is the midpoint
of Ci and uy,, and ty,, are the constant values of u; and t; respectively over the

segment C,,, while 7 = ,17 if pronCand r=1if prE€ER.

For certain boundary, we can gain an advantage to reduce the computation time
by involving the weight function If the boundary C is divided into m conforming
elements C,,. each described by P nodes with (P — 1) being the order of the welght
function M, (£), n = 1,2,--- P, of the intrinsic variable £,(=1 < € < 1) then

equation (7.5.1) becomes

N P
(0 (0) oy _n .
7'11.]-,‘,) =a Z Z{ Ujpr /C‘ T3(%, pr)M,, (€) dS(7)

m=1n=1

(7.5.2)
— {9 / U,-j(jr',p‘L)M,]{{)dS(:E’)}.

The integral here can be evaluated by the modified Simpson’s rule (see Abramowitz
and Stegun [2]) so equation (7.5.1) forms a set of linear algebraic system with 2N
equations and 2N unknowns. Once this system 1s solved, u;o) on the entire boundary

0 : .
are known as well as u.;- " on the entire domain through the above formula.
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Similar approximations are applied for the solution of equation (7.4.5b). The

equation (7.4.28) on the boundary is approximated by

Sun = o Z{ [ Ta@ s - ) /C Uu-(f,m)dsm}

m=1 i (753)

+C‘Zf1/.olw/~ 1o,pk)// dA(T (n2>1).

o=]1
Here firo(Z,) is given by (7.4.6) on the o'* subdomain and assumed to be a constant.
@ denotes the number of subdomain (domain R is divided into Q subdomain), a7
denotes the interior point of the subdomain, ¥ denotes the boundary point. The
boundary conditions here are assumed to be superimposed. If we already specify

ZLEO) or tE-O) with the given boundary conditions then '11.(7-”)

and /or t;-") are zero. Thus
by specifying 1/.(7.") =0 and f(i") = 0 on the boundary, equation (7.5.3) form a set of
linear algebraic equation with 2\ equations and 2N unknowns again. Once this set

. . n
of linear algebraic system has been solved, we know ug )

and t(7~") over the boundary.
To evaluate the displacement for interior points, it is necessary to evaluate the area
integral which contains the singular point. For @ = zj, the displacements for the

interior points can be obtained by

N :
W) =ay” {uﬁ‘,’;,’/ Tii(7.2%) dS(F) — f,’,’,)/ Uii(,27) dS (7 )}

it o ‘ (7.5.4)

a3 A / / Uisl@, @) dAGE)  (n 2 1),

o=1

while for @ # 2 the displacement for the interior points is given by

o
“’51/:-] =a Z {“'5::;) / Ti(7, 2% )dS(T) — 1‘”7:7) /( Uii(7, ﬂ-)dS(:E‘)}

m=1 MR

+a Z FOUG & f/ dA(Z)  (n>1)

For = 24, it is necessary to evaluate f[l? Uijr dA and ffR Uij ki dA. If the domain

(7.5.5)

is divided into the rectangular shape with width 2a and height 2b and 2 is chosen
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at the center point of the rectangle then jfn UijrdA
for
a 2| 2ab
/ N U1711dA = — 4arctan 7 + - [”2 T
2| 2al
// Uys 11 dA = — 4arctan iy = > =
R, ' b kl|a? 412
U JA = 4avctan 21 2ab
A=4darctan - - — [ — —
R, 122 ety k| a? + b?
j a 2| 2ab
4 = 4arctan — + — =
//Ra UQQ,Q’_) d4 arctan b + N [({.2 n b?
1 4ab
// lfjf)]')(]-l_”:,:—a?_i_b?]._
4ab
/ " Uja oy dA = ;[_a? —}-b'—’J'
1 dab
7 4= —|— .
//H 21,126 /:{ (I,Q—I-I)QJ'
1 4ab
7 4= —|— :
7.5.2 Two homogeneous materials

= 0. ]fRn UijdA =0, except

I
|

b

— Zarctan —

b
— 2arctan —
a

. «
2arctan —|,
b
a
2arctan — |,
b

(7.5.6)

Using the boundary element method with constant coefficients, the boundary Cj,

Cr, C (see illustration in Figure 7.1) are discretised into N, M, O straight segments

respectively.

clockwise direction for discretisation purposes. If we

It is easily to specify the direction for the first material as counter

use the discretisation rule such

as C1, Cy, Cy, Cy then we have N + 2M + O discretisation pomts. Thus equation

(7.4.31) on the boundary is approximated by

1 N+ M
—ol) = o)
2“] =a mz_:] { Lim /Cm (’l,])L)(]S

(l)

1 m

/ UD(F pi) dS(3)
(7.5.7)



Similarly for equation (7.4.33), we approximate by

N+2M\
1 2 2o - o
sk == 37 {15,,3 | 0@ as@) -2 / U, pi) dS(a )}

m=N+A+1] m

N+2M+0

S {1533 /C T3 (%, pi) dS(F) — 112 / U, i) dS (& }
‘m Cn

(7.5.8)

m=N4+2A141

Using the continuity equation (7.4.34) and (7.4.35), equation (7.5.7) and (7.5.8)
then form a set of linear algebraic equations with 2(N+2M+0) equations and 2(N 4
2M + O) unknowns. Once this linear algebraic system is solved, the displacements
and the tractions over the boundary Cy, C;,C, are obtained. Similar approach can

be used for calculating the displacements and the tractions of the nterior points.

Figure 7.2
A quarter of the disk
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7.6 Numerical results
Problem 7.1 : Circular disk with a large hole (comparison for problem 3.1)

We consider the concentrically composite disk which was discussed in problem
3.1 but here we solve the problem using the boundary element method. Because
of the symmetric nature of the problem, we consider only a quarter of the disk as
llustrated in Figure 7.2. The segments AB and BC is subjected to the boundary
conditions t; = 0,uy = 0, the segment CD is subjected with t; = pcosf,t; = psin,
the segments DE and EF to uv; = 0,1, = 0 and the segments FA tot; = 0,5 = 0. The
numerical results for the stress concentration factor o¢/p obtained using the boundary
element method and the analytical results obtained as in problem 3.1 are plotted in
Figure 7.3. Here the dots and the dash line represent the numerical results obtained
by using the boundary element method and the solid line represents the analytical
results. Figure 7.3.a shows the results for radius of the hole r/ry = .1 obtained by
discretising the segments AB into 30 equal segments, BC into 15 segments, CD into
40 segments, DE into 25 segments, EB into 35 segments, EF into 50 segments and FA
into 20 segments. Figure 7.3.b, 7.3.c, 7.3,d give the results for the radii r/ro =.2,.3,.4
respectively using the same discretising points, except for the segment EF which is
discretised into 48,406, 44 points, segment FA into 23,206, 29 points and segment AB

into 28, 26, 24 points respectively.

Problem 7.2 : Inhomogeneous cylinder

We consider here an inhomogeneous cylinder with non dimensionalised material
inhomogeneity parameters A/Ag = 1 and p/pg = 2/(1 + r). The interior radius is
fixed at r = 1 and the exterior radius r = 3. The pressure p = 2 1s then applied at

the exterior cylinder while in the interior cylinder, zero pressure is applied.
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Comparison of the stress concentration factor for a disk with

several radii of the hole using boundary element method and analytical method
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Using the perturbation technique over a quarter cylinder by specifying 15 seg-
ments from the point (0,1) to (1,0), 40 segments from point (1,0) to (3,0), 50 segments
from (3,0) to (0,3) and 40 segments from (0,3) to (0,1) or 290 points on the boundary
and 141 points at the interior, we obtain the results as shown in Table 7.1. The
stress intensity factor for this particular problem, using the boundary element tech-
nique and the two point boundary value problem solutions can be compared through
Figure 7.2. The solid line in Figure 7.2 represents the results obtained by using
the two point boundary value method. The stars denote the results obtained by
the boundary element technique using only two perturbation terms, while the dash
line are their splines. To this end we note that the materials which is used here
is the same material used for the axially symmetric problem discussed in chapter
three. Also note that by taking the non dimensionalised quantities A/Ag = 1 and

p/ o = ]i,, =1+ .01%];”, the assumption in (7.4.2) for small variation of Ay and

fty 1s violated, however the numerical results obtained in Table 7.1 and Figure 7.4
still show that combination of the boundary element method with the perturbation

technique are in a good agreement with the two points boundary value method.

Problem 7.3 : Square plate with circular hole under uniaxial loading

We consider a square plate of width w = 2 made up from two kind of materials
with a center hole of radius » under uniaxial loading. The first material is bounded by
circular boundary with center point (0,0) and radius r = .7 to the edge of the square
while the second material is bounded from the circular hole to the circle above. The

join of these materials here is assumed to be perfectly continuous.
Because of the symmetrical nature of the problem, we only consider a quarter
part of the plate as shown in figure 7.5. Using the boundary element method, we

specify the pure boundary of the first material as having 17 segments from (.7,0) to



(1,0), 20 segments from (1.0) to (1,1), 15 segments from (1,1) to (0,1), 18 segments
from (0,1) to (0,.7). The pure boundary of the second material s specified by 40
segments from (0,.7) to (0,r), 21 segments from (0,r) to (r,0) and 15 segments from
(r,0) to (.7,0) while the interface boundary is specified by 41 segments. Several
diameters of the hole in the second material are chosen to observe the behaviour of the
stress intensity factor. The stress intensity factor I which is defined as the ratio of the
component ¢; of the stress vector at the edge of the hole (z = 0,y = 7) to the applied
stress (@ in Figure 7.5) is plotted in Figure 7.6 {for several diameters of the hole relative
to the width of the plate (% =.1,.2,.3,.4,.5). In Figure 7.6, the same material for the
first and the second material with non dimensionalised Young’s modulus E/Ey = 1.0
and Poisson’s ratio /1y = .25 are chosen for simplification and for testing the result
in comparison to the analytical solution for the homogeneous material (see Shilkrut
et al [66]) and the numerical solution using a combination between finite elements
and the boundary element technique for homogeneous materials (see Wearing and
Sheikh {81]).

Figure 7.7. shows the similar problem and the similar discretisation as Figure
7.6 with two different kinds of the materials. Figure 7.7.a shows the graph of the
stress concentration factor versus diameter of the hole for 21—; = .1,.2,.3, .4 for two
kinds of materials. The first material with non dimensionalised Young’s modulus
E/E; = 1.0 and Poisson’s ratio /1y = .25 and the second material with Young’s
modulus E/E; = 2.0 and v/1y = .25. By swapping the first material and the second
material above, we obtain the results as given in Figure 7.7.b. The results in Figure
7.7.c are obtained by using the first material with E/Ey = 1.0 and v/1y = .125 and
the second material with E/E; = 1.0 and v/vy = .25, while Figure 7.7.d the first
material with E/Ey = 1.0 and /vy = .25 and the second material with E/Ey=1.0

and v /1y = .125.



Table 7.1

Inhomogeneous material with A/Ag =1 and pu/po = ]ir

or(1)=0,0,(3) =2

Traction Traction Displacement Displacement

(BEM) (TPBV) (BEM) (TPBV)
2.8750 -2.9870 -2.2782 2.3951 2.4258
2.7750 -2.6427 -2.3058 2.3324 2.3707
2.675 -2.1604 -2.3350 2.2768 2.3167
2.47 -2.5808 -2.4088 2.1798 2.2160
2.3 -2.8877 -2.4537 2.1299 2.1693
2.27 -2.7215 -2.5057 2.0830 2.1253
2.0 -2.3619 -2.6346 2.0105 2.0461
1.97 -2.8973 -2.7125 1.9778 2.0109
1.8 -3.2684 -2.8069 1.9449 1.9805
1.775 -3.1398 -2.9168 1.9168 1.9547
1l -3.5561 -3.4203 1.8844 1.9140

-4.0114 -3.6731 1.8854 1.9169
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155



Stress Conc. Factor

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.6
The behaviour of the stress concentration factor for homogeneous

square plate with several diameters circular hole under uniaxial loading
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CHAPTER 8

SURFACE EFFECTS DUE TO INCIDENT PLANE SH WAVES

8.1 Introduction

One of the major concern of engineering seismology is to understand and explain
vibrational properties of the soil excited by near earthquakes. Alluvial deposits,
often very irregular geometrically, may affect significantly the amplitudes of incident

seismic waves (see Trifunac [78]).

In the last few years, the ground amplification of seismic wave on alluvial valleys
have been studied by numerous authors (see for example, Bravo et al [6], Sdnchez—
Sesma and Esquivel [64], Trifunac [78], Wong and Jennings [84], Wong and Trifunac
[85], [86], Wong et al [87]). Integral equation formulations have been found to be
particularly useful in obtaining numerical solutions to problems of this type. In par-
ticular, Wong and Jenning [84] have used singular integral equations to solve the
problem of scattering and diffraction of incident SH waves by canyons of arbitrary
cross section. Also Bravo [6] extended the method by considering stratified alluvial
deposits. Very recently, Clements and Larsson [14] extended these integral formula-

tion techniques by including the case of homogeneous anisotropic materials.

The work in this chapter can be considered as an extension of the previous work
on integral equation formulations to include the case when the alluvial deposits are
inhomogeneous anisotropic materials.
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8.2 Ground motion on an alluvial inhomogeneous anisotropic valley

8.2.1 Problem formulation

Referred to a Cartesian frame Ozyz323, we consider an anisotropic elastic half
space occupying the region 23 > 0 as illustrated in Figure 8.1. The half space

here is divided into two regions in which the first region contains a homogeneous

. . . : .1 (1 . :
anmisotropic material with shear moduli ,u,-j) = )\,-J-) and the second region contains

] : : . . .(2 2), (2

an mhomogeneous anisotropic material with the shear modul; ,ufj) = /\f.j)(olg )a:] +
2. . .« .

aéz)xg + aé'))g. The materials are assumed to adhere rigidly to each other so that

the displacement and stress are continuous across the interface boundary between

the first and the second regions and the constants in the shear moduli satisfy the

symmetry conditions /\_f-;-)) e /\_(;‘?) for Q =1,2.

M

I

Region 1

«— "

Reflected SH wave

Incident SH wave

Figure 8.1

The alluvial valley and surrounding half-space

159



Let ™ and »‘?) be the displacements in the 23 direction in the half space and
the valley respectively. For the propagation of horizontally polarised SH waves, the

displacement satisfies the equations of motion

1 u (5,92

y = PR (8.2.1
7 00z, 0 o2 )
for region 1 and
0 [\ 0, (22 9u® @ 22 0% u®
87:1. /\1(] ( g +CI,) .-2+Cl'3 ) -E :/)0 ( 'l]+0 )'L + ()) at? :
(8.2.2

for region 2. Here pgm denotes the density, ¢ denotes the time and repeated Latin

subscripts denote summation from 1 to 2
In view of assuming the form of time dependence as exp(uwt), equation (8.2.1)

can be reduced to

9%
(1) (1) 2.(1) _
A R ey -+ pp w?o!M =0, (8.2.3)
by substituting
w2y , Lo, 1) = 17(])(:1:] , &) exp(wt). (8.2.4)
Similarly with equation (8.2.2). By using
w2y, 20,1) = 02y, 29 ) exp(wwt). (8.2.5)
we obtain
3 2) 201)( 2)
a’[;? /\( ( +C\.) .,r_)—|-C|3 ) al] +p0 ’)( :(I),l]_l_af) )'L +O( )) ():0
(8.2.6)

Of interest is a plane wave of unit amplitude which propagates towards the

surface of the elastic half space

T2

v&l) = expw (t + s + —) 3 (8.2.

N
-~
~—

(5] C2

160



where ¢; = ;’3“)/sin Y. G2 = ;ﬂ”/cos ~1, A denotes the veloceity of the incident
waves and v, denotes the angle of the incident wave. Since v;]) in (8.2.7) propagates
in the first material, it must satisfy equation (8.2.3) so that

(1) . 2 (1) - (1) 2
2 Ay sin 42X, sinqy cosvyr + Ao cos? ~
[ﬂ(l)] _ 21 gii 12 (’1))1 Bii 22 ’)]' (8.2.8)
Po

Now we consider the case when region 1 and 2 are occupied by the same material.
In order to satisfy the traction free surface condition on z5 = 0, it is necessary to

have a reflected wave of the form
T T
1!(]?]_) = expw (t + 2 - —2> (8.2.9)

Thus if there are no irregularities, the free field solution of the displacement can be

written as

vg) = o 4ol (8.2.10)
The stresses are given by
2 (1)
(1) _ ym)ov .
o = e , (8.2.11)
’ 7 Oxj

so that the stress aé;) on xp =01is

L 1 @
0-()_-';} == (*“]— + —2—“—) exp [.J.u: (f + 1—])]+
B ¢ Co cy
(8.2.12)

Xy MY )
21 722 Vexpluo(t+=2)].
( d, dy )cxp[r ( * d; )]

This stress will be zero for all time ¢ if

dy = 1,
11 2l (8.2.13)
dy ¢ ,\f_)]z’c] '
These equations serves to provide dy in terms of the unknown quantities co, ¢y, /\gll)
and )\gg). Note that if (8.2.9) is substituted into (8.2.3) then since it represents a
solution to (8.2.3) it follows that

D 9l
- &2 =Py

(8.2.14)

2
& crds
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and 1f (8.2.13) is used to substitute for 1/d, in (8.2.14), and then into (8.2.8) so that
(8.2.13) ensures (8.2.9) is a solution to (8.2.3) on the assumption that (8.2.7) is also
solution to (8.2.3).

Let dy = B'/sinvr and dy = '/ cosyr where g is the angle of the reflection,

then
dy _ tan(~yr) (8.2.15)
d 1+2(/\(1)//\ )ta.n(q/]),

tan(yx) =

and once yp has been determined from this equation, the wave speed ' of the

reflected wave may be readily determined from the equation A’ = d; sin(vg).

To include the influence of the inhomogeneous anisotropic alluvial valley in region

2, the solution for the exterior of the deposit is put in the form
v =) 103, (8.2.16)

in which vg) 1s the displacement due to diffracted waves. In region 2, the displace-

(2)

ment v(?) = v r Wwill be caused by the refracted waves.

8.2.2 Integral equation

Proceeding further as in Clements and Larsson [14] for the region 3 with bound-
ary C and outward pointing normal components »; and n2, the integral equation

corresponding to (8.2.3) is

g (1)
T‘U“)(a.b):/( [/\f]”ac}h no™ - Af:)aa;r n; V“st, (8.2.17)
) Ly ]

where 7 = 1if (a,b) € R; and 0 < 7 < 1if (a,b) € Cy. The fundamental solution of

V) is given by

Vv = ih-(l)[}_ﬂ( DR 4+ B I)R(]))J (8.2.18)

162



where

3 o)1) z
RO = [< )t 4 S = b~ (g — a)(a - b)
22 22

(1) (1)
—(1) . A 2A55
R(l = [(;171 —a)t + <)\(])> (z — D)% — /\(1)_( —a)(xe — b)+

22 22
(25 + b)g(/\§]])/\%)1)_2 Aglz)z)] . (8.2.19)
22
KM = )‘(2]2) ”
A -
71 — /)(()l)w‘z]\-(l)

and HZ denotes the Hankel function of the second kind of order zero.
Proceeding further as in chapter 6, section 6.4 for the region R, with bound-
ary C» and outward pointing normal components n; and ns, the integral equation

corresponding to (8.2.6) is

av(2)

Ky ((’ l’):/ [’\( )( ay 1]+C\o T2 + & )) 3 notH—

ey iy “” (8.2.20)
/\f-?)(aﬂ Dy + ag Vs +al’ )) av n; I/(")} ds,
where
/\(2) 9)(2) | 3
(2) _ Ay 11 AV b I RV S
R® = {(a) —a)* + A(?r_;)(”t_ b) 30 (z1 — a)(@2 b)] ; (8.2.21)
(2) _ (9) ”ASZ’

As in section 6.4, L'*) may be determined by the help of a solution of (8.2.6)

7
w = Z(ag )21 +a(? Y20 + ag )) Hg(ﬁzsm), (8.2.22
where g
)\(2) 2/\(2) .
St _ _T']z+ 1,2 712 00y (8.2.23)
/\(2) /\(2)
22

163



Thus using (8.2.22) in (8.2.20) we obtain

=i 7(2)
K@) = {10(2)((1.,1)')} / [ )\(?)( )11 + a9 ’12 +a )qa‘—n w® -
‘ () a.’LJ

Jw
7 V| 4s.

(8.2.24)

/\( )( .1 +C\9 12_}_ (2))2

By applying equation (8.2.17) and its fundamental solution (8.2.18) in the region
1 (oﬁtside of the valley) then the only non zero integral is the integral over the valley’s
interface boundary (Sommerfeld radiation condition, see Ursell [79]). If we denote
this interface boundary as curve Cj and valley’s free boundary as Cr and specifying
the normal components n; and ny pointing outward of the valley’s boundary, thus

(8.2.17) and (8.2.20) on the valley’s boundary are

1 ' oV A
oW (a,b) = _/ AN poM D2y gs, (8.2.25)
2 ol Y Oy 1 01J ‘
and
v (2)
K@y (g, b) = / /\53)(0'(]2).1%1 + G’;Z).TQ + agg))Q njv®—
CrtCr 61?]- (8.2.26)
Do 2.
/\5?)(0'52).1‘1 + ag )19 + 03 )2 v V(Q)] ds.
. z;
The equations (8.2.25) and (8.2.26) together with the continuity equations
1) = (D), (8.2.27)
doM) 9 2 2 Ov ()
gJ]-) (9.‘(7]‘ 1, = /\57)( g )11 + O(q T2 + « ('))> —aaTn“ (8228)
and traction free boundary condition on 2 =0
o 5 2 ou?) _
/\f-;-)(ogq)m] +atP2, +a L e, n; =0, (8.2.29)

may be used to solved for displacement and stress over the interface boundary Cj

and the displacement along traction free surface x5 = 0. Once this has been done,
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we can obtain the value of the displacements v!!) and/or v® at all points (a,b) in

the half space 23 > 0 through equations (8.2.17) and (8.2.20).

8.2.3 Numerical results

Suppose we have a semi circular valley (region 2 in Figure 8.1) which is defined
by non dimensionalised quantities (z3 —2)* + 23 < 1. Also suppose that the material
properties /\5?), péﬂ), a'(lg), a.(zg), aéz), Q = 1,2 are non dimensionalised quantities and

the normalised frequency is defined by

w

- 7p0)°

n (8.2.30)

where f(1) is given by (8.2.8).

Using the boundary element method by discretising 80 segments on the interface
boundary and 70 segments on the free valley boundary, we obtain the numerical
results as shown in Figures 8.2-8.9. In Figure 8.2 we used the non dimensionalised
material specification as Ag]]) = N2, )\g) = .00, )\.(2]2) = .12,/)81) = 3.,/\521) = .02, )\522) =
.00,)\%) = .02.,/):)2) = '2.,0:(]2) = .O,a,(_,z) = .Oa'g')) = 1. and the incident angle of
the wave is chosen to be zero. Note that the results found in Figure 8.2 and the
others paper (see for example Sanchez—Sesma and Esquivel [64], Trifunac [78]) are
no different. The results in Figure 8.3 are obtained by using the same material for the
region 1. For the region 2 (the valley) we used a similar material as in Figure 8.2 also,
except we now choose a’gg) =) ¥z a'(Qg) = Ko} a'gs) = .0. Similarly in Figures 8.4 and 8.5,
we used the same material for region 1 and for region 2 the materials inhomogeneities
are chosen to be 0’32) = .010.(22) e .5,0/22) = 1. and a'gg) = .5,a§2) = .5,0'52) =.0
respectively and the angle of the incident wave is specified by zero. Figures 8.6-8.9

are obtained by using the same materials as used for in Figures 8.2-8.5 respectively,

except that in this case the incident wave angle is chosen to be 30°.
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8.3 Ground motion effect due to subterranean alluvial deposits

8.3.1 Problem formulation and integral equation

In the case of the alluvial deposits are under the ground (as illustrated in Figure

8.10), we can easily extend the work given in the previous section.

Referring to Cartesian coordinates Ozyaa73, we consider an anisotropic elastic
half-space occupying the region zo > 0. The half space here is divided into two
regions. The first region contains a homogeneous anisotropic materials with shear

moduli p,f-;) = /\5]]-). The second region contains an inhomogeneous anisotropic ma-
. . .(2 2), (2 2 2 : .
terial with shear moduli ,ugj) = Agj)(a'§,)1’1 + 0,(2 ).’1‘2 + a'gr)))z and a finite domain

bounded by a simple closed curve €.

Region 1

Regic;':‘x 2

P I,
(Depesit)
L]

Incident SH wave \L Refected SH wave

M

Figure 8.10

The alluvial deposit and surrounding half-space

Let u(") and u® be the displacements in the 23 direction in the half space and in
the deposit respectively then for the propagation of horizontally polarised SH wave,

the displacement should satisfy the wave equation (8.2.1) and (8.2.2) for the region 1

170



and region 2 respectively. Proceeding further as in the previous section the integral

equation corresponding to equation (8.2.1) in this case can be written as

' v ool
Mg b) = — RS (1) _ () M| 4
v (a,d) /(“,[ i B, nv by 8:1:1 n;V S, (8.3.1)

where 7 = 1 if (¢,b) € region 1 and 0 < 7 < 1 if (a,b) € boundary of region 1. n;
denotes the outward normal of the simple closed boundary C; and V) is given by
(8.2.18). Similarly, the integral equation corresponding to equation (8.2.2) can be

written as

)2 OV (2

E®v ) (a,b) :/ [ \() (a] T —f—o2 Y20 4+ a ) no¥—
7€ a‘” (8.3.2)
Ol
\(O (a x +(l(2)’l') +a )0 i n, V| 48,
Ty

By using equations (8.3.1), (8.3.2), the continuity equations as given by (8.2.27)
and (8.2.28) across the interface boundary C;, together with traction free condition
on 22 = 0 (which is given by (8.2.29)), we can solve for the displacement and stress
over the interface boundary C. Once this has been done, we obtain all the values of

the displacements v{!) and v?) at all points (a,b) in the half space a9 > 0.

8.3.2 Numerical results

Here we consider a semicircular alluvial deposit which is defined by non dimen-
sionalised quantities 7, 22 as in the region (: 2y —2)? (294+1)? <1, 29 < —1. Suppose
we have the non dimensionalised material properties as /\” ,p(()ﬂ), 0'52), aéz), agr')), Q=
1,2 and the normalised frequencies defined by ( 8.2.30). Using the boundary element
method by discretising the semi circular boundary into 80 segments and the diago-
nal of the circle into 70 segments, we obtain numerical results as shown in F igures
8.11-8.13. In Figure 8.11 we used the non dimensionalised material specification as
MY =.12,08 = 00,08 = 12,00 = 30,42 = 02,02 = 00,02 = .02, )P =

")’?_
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2.,a§2) =] s 01(22) = .0,0'52) = 1. and the incident angle of the wave is chosen to be

zero. The results in Figure 8.12 are obtained by using the same material for the
region 1. For the region 2 (the sediment) we used the similar material as in Figure
8.11 also, except by choosing agz) = .5, agz) =.0, a'gs) = .0 and using zero angle for
the incident wave. In Figures 8.13 we used the same material for region 1 and for

region 2 as in Figure 8.12 by specifying 30° as the incident angle.



Displacemen| amplitude

Displacement amplitude

10

10

Figure 8.11

Effect of homogeneous deposit, 97 = 0°

Figure 8.12

Effect of inhomogeneous deposit, 71 =0°




Displacement amplitude

10

Effect

Figure §.13

of inhomogeneous deposit, 77

174

30°



APPENDIX A

Theorem 1 :

Let v = u(z,y) be a solution of

d
oz

311 0 R
[u(i v) } E® [ (a y)a }+p(1'~,y)w.'

u =0,

(4.1.1)

valid in the region R in E? bounded by the contour C consisting of a finite number

of piecewise smooth closed curves. Also, let v’ be another solution of (A.1.1) valid

in R, then the reciprocal relation corresponding to (A.1.1) is

Proof:

Ju ' ou , du
/C;L(a,,_y)%u dS = /Cp.(:r,y)[au ny + —(Eu ﬂg] dS

[0 0 d du
= /R{a—lt[,u(l y)gz—lu}-i—a—[p(q g)a: '}}(ZA

- [l b] 2ol

+ (e, y) Ou ou' @in
MY 3282 T oy By
Oou ou'  Ou Ou’

:/R[ pw uu+,u{a1 al—l-—@_ygy_

Similarly

ou'

o

/ pa, y)a—udS_ /R[ puuu +,u{aati gz +%§:—g—:}} dA.

Reciprocal relation in (A.1.2) is obtained by substracting (A.1.4) from (A.1.3).
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Theorem 2 :

Let u be a solution of

i @ 20u=0 4.9
o H”ij + pwiu =0, (A.2.1)

where p;; = pj; valid in a region R in E? bounded by contour C consisting of a finite
number of piecewise smooth closed curves. Also let u’ be another solution of (A.2.1)

valid in R. Then

. '
/ g [ﬂu'ni - giun,] dS = 0. (A.2.2)
Proof:
Ou du Ou
2 i dS = g2y 2 utng| dS. A2,
/c iy oz, u'n /C['uljaxj u'ng + poj (9.1‘ju ng} ( 3)

Using the divergence theorem in (A.2.3) yields

o o ou,] o[ ou,
//17Jauuﬂ dS = /{%l}ul]-a—ou aT l:lur,]au }}dA

0 Ou n
011 Hj 81] 01‘2 H2j Ox; b

{ Ou ou' Ou o' }dA

(A.2.4)

#”81] “]69:] Oz,
ou Ju' Ou Ou' }dA

u' + +
R —ptu o J0n; M0z, Oy

Simailarly

! !
/ ,u.,-jaiun,- dS= { —pwiu'u + M L + o, YR dA. (A.2.5)
c O JR Ozj 0z,

/.1')]
T Oxj Oy

By substracting (A.2.5) from (A.2.4) the reciprocal relation (A.2.2) is obtained.
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APPENDIX B

z - |
Hlustration of multivalueness Gy = %jﬂr Yo(v[(t—a)? + (y - b)g] 2) dt around
a square boundary. Left graphs and right graphs are obtained before and after the

adjustment of the arctan function in the Bessel series expansion respectively.




Hlustration of multivalueness 0G, /0y = -1 [* 1, (vF)(y — b)/Tdt, with 7

1
[(t —a)? + (y — b)Q] * around a square boundary. Left graphs and right graphs are
obtained before and after the adjustment of the arctan function in the Bessel series

expansion respectively.
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