17/9/76

THE METAMORPHIC GEOLOGY OF THE WINDMILL ISLANDS AND ADJACENT COASTAL AREAS, ANTARCTICA.

VOLUME 2

by

David Frank Blight, B.Sc.(Hons) (Adelaide)

Department of Geology and Mineralogy University of Adelaide

October, 1975.

A THESIS SUBMITTED IN ACCORDANCE WITH THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY CONTENTS VOLUME 2 TEXT FIGURES

Figure 1.1

a. Location map of Antarctica

b. Map of the Law Dome.

Figure 1.2

- Air photo of the Windmill Islands (looking south from over Clark Peninsula).
- b. The Løken Moraine
- c. Melt lake and melt streams on Clark Peninsula.

a

b

С

Figure 1.3

Geological map of Antarctica (Modified from Harrington, 1965).

Descriptive textural terms (from Moore, 1970 with modifications by Collerson, 1974).

Grain boundary shapes from Spry, (1969).

a. straight

b. curved

c. embayed

d. scalloped

e. 1. sutured (lobate)

2. sutured (serrated)

f. rational

g. irrational

GRANOBLASTIC

SERIATE

ANASTOMOSING

Geological map of the Windmill Islands, Antarctica. (located in pocket in the back of volume 2).

Geological map of Ford and Cloyd Islands

(located in pocket in the back of volume 2).

Geological map of Herring Island.

(from Oliver, 1970).

, · · / 8 *

a / " .

- a. Weakly layered gneiss
- b. Ribbon gneiss
- c. Layered granite gneiss near core of major fold on Clark Peninsula. Rule parallel to schistosity (S₃) at an angle to the layering.

a

b

C

- a. Development of layering in layered granite gneiss from
- a pegmatite.
- Plagioclase rims developing around plagioclase; uncrossed
 polars. Length of bar 1.0mm.
- c. Folded basic pod in leuco gneiss.

b

a

Ċ

- a. Orthopyroxene (h) altering to anthophyllite (a) and iron
 oxide; uncrossed polars. Length of bar 0.1mm.
- b. Migmatite gneiss from Clark Peninsula.
- c. Contact of migmatite gneiss with leuco gneiss (Mitchell Peninsula).

- a. Folded sillimanite defining S₁ with axial plane biotite defining S₂; uncrossed polars. Length of bar 1.0mm.
- b. Biotite altering to chlorite along (001) cleavage plane;
 uncrossed polars. Length of bar 0.1mm.
- c. Pleochroic halo about zircon included in cordierite;
 uncrossed polars. Length of bar 0.1mm.

- a. Folded sillimanite in cordierite; uncrossed polars.
 Length of bar 1.0mm.
- b. Same as above but with crossed polars, showing multiple twinning in cordierite. Length of bar 1.0mm.
- c. Cordierite altering to pininite(?); uncrossed polars. Length of bar 1.0mm.

C

- a. Layered gneiss from Robinson Ridge.
- b. Mineralogical and grain size layering from layered gneiss (Haupt Ntk); uncrossed polars. Length of bar 1.0mm.
- c. Quartz vein showing Sm and S₄?; crossed polars. Length of bar 1.0mm.

a

b

С

- a. Honeycomb weathering of charnockite from Browning Peninsula.
- b. Xenoliths of country rock within a xenolith of charnockite in charnockite. (Peterson Island). Note leucocratic reaction rim.
- c. Close up of above.

a

С

- a. Contact of charnockite with layered gneiss (Bosner Island).
- b. Elongate xenoliths in charnockite parallel to schistosity.
 (Ardery Island).
- c. Layering in charnockite (Peterson Island).

Modal analyses of charnockites plotted on classification diagram from Tobi, (1971).

ALL ROCKS CONTAIN ORTHOPYROXENE

- a. Plagioclase porphyroblasts in charnockite (Odbert Island).
- Kinked plagioclase crystal from charnockite; crossed polars. Length of bar 1.0mm.
- c. Contact of porphyritic granite (on right) with granite gneiss (Ford Island). The schistosity in the granite gneiss parallels the hammer handle while that in the porphyritic granite parallels the contact.

- a. Porphyritic K feldspar crystal aligned parallel to schistosity, in porphyritic granite gneiss, defined by biotites; uncrossed polars. Length of bar 1.0mm.
- b. Same as above but with crossed polars showing twin plane
 of K feldspar parallel to schistosity. Length of bar 1.0mm.
- c. Xenolith in aplite.

b

С

a

Figure 2.16

Pegmatite distribution on Clark Peninsula.

Figure 2.17

- a. Type (i) aplite (335-15); crossed polars.
 Length of bar 1.0mm.
- b. Type (ii) aplite (335-400B); crossed polars.Length of bar 1.0mm.
- c. Type (iii) aplite (335-219); crossed polars.Length of bar 1.0mm.

a

b

С

Figure 2.18

- a. Folded aplite (335-219) in charnockite with axial plane parallel to schistosity of charnockite (parallel to hammer handle).
- Biotite developing about opaques in olivine gabbro dyke; uncrossed polars. Length of bar 1.0mm.
- c. Flow structure, parallel to rule, in dolerite dyke, defined by weathered out feldspar pheocrysts.

a

b

С

Isograd map of the Windmill Islands. Also shows the colour of biotites and hornblendes.

Interpretative structural map of the Windmill Islands, Antarctica. (Located in pocket in the back of Volume 2).

Sketches of mesoscopic folds

a,b & c. F₂ fold profiles.

d. F_2 fold overprinted by F_3 fold.

Sketches of mesoscopic folds.

a. Pinch and swell features in layered granite gneiss developed by F_3 folds, (see also Fig. 3.5a).

b, c & d. F₃ fold profiles.

15 c m

- a. F₂ fold (Bailey Peninsula)
- b. F_3 folds in the core of the major F_3 antiform, northern Clark Peninsula.

a

b

- a. "Pinch and swell" features developed in layered granite gneiss from F_3 folds. Rule parallel to axial plane schistosity (S₃).
- b. Mineral lineation developed in core of major F₃ antiform, northern Clark Peninsula.

a

b

Dendogram (cluster analysis) compiled from analyses of acid rocks.

ACID

ROCKS

Dendogram (cluster analysis) compiled from analyses of pelitic and intermediate rocks.

PELITIC & INTERMEDIATE ROCKS

Dendogram (cluster analysis) compiled from analyses of basic rocks.

BASIC ROCKS

.

Comparison of Windmill Islands rocks with "average" rocks.

(For explanation of symbols see Table 4.8).

a. A.C.F. plot; acid rocks.

b. A.K.F. plot; acid rocks.

c. A.F.M. plot; acid rocks.

d. A.C.F. plot; basic rocks.

e. A.F.M. plot; pelitic and intermediate rocks.

f. A.K.F. plot; pelitic and intermediate rocks.

g. A.C.F. plot; pelitic and intermediate rocks.

(7)

Influence of rock oxidation ratio on rock chemistry.

- a. Wt.% MnO of rock against rock oxidation ratio.
- b. Wt.% Fe (as Fe_2O_3) of rock against rock oxidation ratio (symbols as in 4.5a).

Dendograms comparing oxidation ratio of rocks from northern areas (north of O'Brien Bay) to that of rocks from the southern areas.

- a. Plot of Niggli c against Niggli (al-alk) for the basic rocks of the Windmill Islands. Dashed curve contains field of all igneous basic rocks. Solid curve contains field of Karoo Dolerites (from Leake, 1964).
- b. Plot of Niggli c against Niggli mg for the basic rocks of the Windmill Islands (from Leake, 1964).

Niggli plot of 100mg against c against (al-alk) for the basic rock of the Windmill Islands (from Leake, 1964).

С

- Basic dyke(?) transgressive to country rock layering,
 north Robinson Ridge. Hammer parallel to country rock
 layering.
- b. Skialith in Ribbon Gneiss. Note leucocratic reaction rim (especially near hammer handle).

b

a

Plot of Windmill Islands granitic rocks on normative Or-Ab-An-SiO₂ system. The contours represent the normative Or-Ab-An ratio in 1,269 rock which carry more than 80% Ab+Or+Q. The other straight lines represent the low temperature trough of the Or-Ab-An-SiO₂ system (after Kleeman, 1965).

Or

Log log plot of potassium against rubidium for Windmill Islands rocks.

A. Main trend of Shaw (1968).

B. Metamorphic trend of Lewis & Spooner, (1973).

C. Linear regression of acid rocks.

D. Linear regression of pelitic and intermediate rocks.

E. Linear regression of basic rocks.

F. Linear regression of all Windmill Islands rocks.

Log log plot of thorium against potassium for Windmill Islands rocks.

Log log plot of potassium against Rb/Sr for Windmill Islands rocks. Curve dividing Upper Granulite field from Upper Amphibolite and Lower Granulite field from Sighinolfi (1971a).

a. Calcium against Rb/Sr for Windmill Islands acid rocks.

b. Calcium against Sr for Windmill Islands acid rocks.

c. Potassium against Rb/Sr for Windmill Islands acid rocks.

d. Potassium against Sr for Windmill Islands acid rocks.

ACID ROCKS

a. Calcium against Rb/Sr for Windmill Islands basic rocks.

b. Calcium against Sr for Windmill Islands basic rocks.

c. Potassium against Rb/Sr for Windmill Islands basic rocks.

d. Potassium against Sr for Windmill Islands basic rocks.

 $(\frac{Mg}{Mg+Fe+Mn})$ mineral against $(\frac{Mg}{Mg+Fe+Mn})$ host rock for Windmill Islands rocks

- a. Clinopyroxene
- b. Biotite
- c. Orthopyroxene
- d. Cordierite
- e. Garnet
- f. Hornblende

(Mg Mg+Fe+Mn) Mineral

 $(\frac{Mn}{Mg+Fe+Mn})$ mineral against $(\frac{Mn}{Mg+Fe+Mn})$ host rock for Windmill Islands rocks

- a. Garnet
- b. Clinopyroxene
- c. Orthopyroxene

C

Rock oxidation ratio against mol $\left(\frac{Mg}{Mg+Fe} \times 100\right)$ mineral, for Windmill Island rocks.

- a. Biotite
- b. Orthopyroxene
- c. Garnet
- d. Hornblende
- e. Clinopyroxene

Rock Oxidation Ratio -

12

 $Mol\left(\frac{Mg \times 100}{Mg + Fe}\right)$ Mineral -

Rock oxidation ratio against mol $\left(\frac{Mn}{Mg+Fe+Mn} \times 100\right)$ mineral, for Windmill Islands rocks.

- a. Hornblende
- b. Orthopyroxene
- c. Clinopyroxene
- d. Garnet.

 $Mol\left(\frac{Mn}{Mg + Fe + Mn} \times 100\right)$ Mineral

W+% TiO_2 in mineral against the north-south distance through the Windmill Islands.

- a. Hornblende
- b. Biotite.

Weight 🕺 TiO₂ -----

.

- a. Si per unit cell against Al^{V1} per unit cell of hornblendes from the Windmill Islands. Symbols are:
 Solid squares samples north of Sparkes Bay;
 open circles samples south of Sparkes Bay;
 open squares charnockite (Peterson Island)
- Al^{V1} per unit cell against (Na+K) per unit cell of hornblendes from the Windmill Islands. Symbols as above.
 Fields indicated are after Binns, (1969a)
 - A. epidote amphibolite facies;
 - B. lower amphibolite facies;
 - C. higher amphibolite facies;
 - D. granulite facies.

 $K_{\mbox{D}_{\mbox{Mg}}}$ against $\chi_{\mbox{Mg}}$ and $K_{\mbox{D}_{\mbox{Mn}}}$ against $\chi_{\mbox{Mn}}$ for minerals from the Windmill Islands.

- a. Estimated temperature of crystallization from the garnetbiotite pair (Saxena, 1969a) plotted against north south distance through the Windmill Islands.
- b. "Roozenboom" Mg distribution diagram for Windmill Islands co-existing garnet and biotite. Isotherms are from Perchuck (1969).

a

- a. K^{opx-cpx} against X^{opx} . "Ideal" and "non-ideal" trends Mg from Davidson, (1969).
- b. "Roozenboom" Mg distribution diagram for co-existing orthopyroxene and clinopyroxene from the Windmill Islands.
 Symbols are: open circles - samples south of Robinson Ridge

solid squares - sample north of and including Robinson Ridge.

c. "Roozenboom" Mn distribution diagram for co-existing orthopyroxene and clinopyroxene from the Windmill Islands. Symbols as in figure 5.9b. Linear trends indicated are from Lindh (1974).

Opx-Cpx

a. K^{Hbl-cpx} against Al[#]Hbl Mg Symbols are: solid squares - samples from Bailey Peninsula; solid triangles - samples from Mitchell Peninsula and Robinson Ridge; open circles - samples from Ford and Cloyd Islands.
b. K^{Hbl-opx} against Al[#]Hbl. Mg Symbols are as above and open squares - samples from the

١V

charnockite (Peterson Island).

- a. (Na/Ca)_{Hb1} against (Na/Ca)_{Cpx}
 Symbols are:
 solid squares samples north of Sparkes Bay;
 open circles samples south of Sparkes Bay.
- b. $\left(\frac{Ca}{Na+K}\right)_{Hb1}$ against $\left(\frac{Ca}{Na+K}\right)_{Cpx}$

Symbols as above.

"Roozenboom" Mn distribution diagrams for co-existing hornblende and pyroxene from the Windmill Islands. Symbols as in Fig. 5.11.

- a. Hornblende orthopyroxene
- b. Hornblende clinopyroxene

"Roozenboom" Mg distribution diagrams for co-existing biotite and pyroxene from the Windmill Islands. Symbols as in Fig. 5.11.

- a. Biotite orthopyroxene
- b. Biotite clinopyroxene.

"Roozenboom" Mn distribution diagrams for co-existing biotite and pyroxene from the Windmill Islands. Symbols as in Fig. 5.11.

a. Biotite - clinopyroxene

b. Biotite - orthopyroxene.

- a. "Roozenboom" Mg distribution diagram for co-existing hornblende and biotite from the Windmill Islands.
- b. "Roozenboom" Mn distribution diagram for co-existing hornblende and biotite from the Windmill Islands.

.

K^{Hbl-Biot} Mg against Al^{1V} Hbl a. against Al $\frac{1V}{Hb1}$ Al $\frac{1V}{Biot}$ K^{Hbl-Biot} b.

- a. W+% MnO distribution between hornblende and biotite.
 "Granulite trend" and "Amphibolite trend" from Hollander (1970).
- b. W+% TiO₂ distribution between hornblende and biotite.
 "Trend of Hollander (1970)" is for upper amphibolite facies rocks.

Figure 6.1

Petrogenetic grid showing estimated P-T conditions of co-existing garnet and cordierite pairs from the literature. Symbols are: triangles - calibration of Hensen and Green (1973) calibration of Currie (1971) squares - calibration of Hutcheon, Froese and Gordon (1974). circles 1. Muscovite + quartz $\stackrel{<}{\rightarrow}$ K feldspar + Al₂SiO₅ + H₂O PH₂O = PL (Winkler 1967) $PH_20 = 2 K bars$ la. ditto (Winkler 1967) 2. Orthoamphibole $\stackrel{\scriptstyle \leftarrow}{\leftarrow}$ orthopyroxene PH₂O=PL (Touret 1971a) PH₂O=2 K bars (Touret 1971a) 2a. ditto 3. Hornblende breakdown. $PH_2O = PL$ (Touret 1971a) $PH_2O = 2 K bars (Touret 1971a)$ 3a. ditto at higher PH₂O=PL (Lambert and Wyllie, 1972) 3b. ditto 4. Hornblende (i) + quartz $\stackrel{\scriptstyle 2}{\leftarrow}$ Hornblende (2) + orthopyroxene $PH_{2}0 = PL$ (Binns, 1969b) + clinopyroxene + plagioclase $PH_{2}0 = 0.5PL$ (Binns, 1969b) 4a. ditto $PH_{2}0 = 0.3PL$ (Binns, 1969b) 4b. ditto Beginning of melting of hydrous granite (Winkler, 1967) 5. Upper stability limit for anhydrous Mg cordierite 6. (Newton et. al. 1974) 7. Al₂SiO₅ stability fields (Richardson et. al. 1969) Field of granulites from fluid inclusion studies 8. (Touret, 1971b).

Figure 6.2

Petrogenetic grid showing estimated P-T conditions of co-existing garnet and cordierite pairs from rocks of the Windmill Islands. Symbols and curve numbers as in Fig. 6.1.

WHOLE ROCK ANALYSES: ACID LITHOLOGIES

-

N N

	,	r	r		.	·		- i		r	·····			<u></u>				· • · · · · · · · · · · · · · · · · · ·	·	·			·						
	335- 1	335- 15	335- 21	335- 24	335- 30	335- 32	335 - 35	335 - 50	335 - 74	335- 82	335- 100	335- 113	335- 114	335- 115	335- 122	335- 144	335- 151	335- 219	335- 313	335- 321	335 - 324	335- 375 -	335 - 380	335- 400B	335- 445	335- 495	335- 502	335- 673	288- 12
SiO ₂	73.55	74.23	72.35	73.14	73.76	75.69	74.77	70.60	74.23	71.42	73.67	76.19	73.95	71.16	75.67	74.13	73.53	69.76	71.57	71.20	72.73	73.67	70.52	74.41	75.37	74.95	72.78	69.47	76.48
A1 ₂ 0 ₃	14.23	13.60	14.77	15.22	14.85	13.17	13.75	15.67	15.01	14.79	14.57	12.88	13.24	15.09	12.93	13.86	13.97	14.74	14.19	14.47	14.49	14.42	14.33	13.67	14.89	14.16	15.19	14.28	12.81
Fe ₂ 03	.35	*1.24	.36	.48	.45	.14	.65	1.05	.02	.54	.83	.47	.92	1.18	.74	.16	.40	*2.45	.70	1.10	.57	.28	.86	.78	.03	.35	.07	1.38	.50
Fe0	.98	-	1.13	1.35	1.18	1.00	.64	1.54	.59	1.35	1.28	.94	1.29	1.51	1.15	.68	.58	-	1.77	1.72	1.53	.68	2.27	.72	.86	.75	.13	1.90	.97
CaO	1.83	.94	2.52	3.25	2.99	1.54	1.32	3.15	.71	2.15	2.27	1.79	1.69	2.03	1.32	1.27	1.79	1.63	1.95	3.75	2.06	1.50	2.09	.40	1.47	1.14	.21	1.66	1.01
Na ₂ 0	4.63	3.63	6.87	5.13	5.34	3.35	3.79	4.20	4.85	5.21	4.26	4.18	5.30	4.35	3.36	4.34	3.96	2.78	3.09	4.06	5.00	4.72	4.01	3.63	5.41	3.53	2.66	2.80	2.44
Mg0	.28	.13	.61	.54	.48	.47	.32	1.12	.13	1.06	.50	.40	.16	.34	.63	.67	.23	.40	.32	2.77	.59	. 79	1.84	.21	.22	.32	.16	.68	.11
K ₂ 0	3.90	5.70	2.12	1.14	1.20	4.36	4.72	1.89	4.92	3.36	2.65	2.86	2.98	3.39	4.61	5.33	3.95	6.80	5.40	.76	2.91	4.21	3.02	5.39	1.95	5.20	9.29	6.03	6.06
TiO ₂	.13	.11	.07	.13	.13	.01	.09	.21	.02	.27	.18	.12	.08	.31	.13	.04	.05	.69	.39	.09	.19	.07	.34	.12	.01	.08	.01	.50	.23
Mn0	.01	.00	.11	.05	.03	.11	.02	.03	.07	.03	.03	.01	.00	.05	.00	.05	.00	.00	.03	.02	.06	.02	.79	.01	.19	.06	.00	.02	.02
P ₂ 0 ₅	.00	.11	.01	.00	.00	.01	.01	.00	.00	.06	.03	.00	.04	.10	.00	.03	.03	.16	.15	.06	.03	.00	.14	.00	.03	.00	.00	.21	
H ₂ 0 ⁺	.28.	.22	.32	.31	.27	.19	.42	.40	.33	.74	.62	.55	.26	. 32	.37	.19	.26	.23	.26	.37	.52	.30	.21	.29	.16	.27	.17	.30	.17
Total	100.17	99.91	101.24	100.74	100.68	100.04	100.50	99.86	100.88	100.97	100.89	100.39	99.91	99.83	100.91	100.75	98.75	99.64	99.82	100.37	100.68	100.06	100.42	99.63	100.59	100.81	100.61	99.23	100.91
Rb (ppm)	131	325	85	53	61	121	163	62	205	162	85	91	81	119	123	185	112	243	140	35	94	143	172	298	91	234	263	335	196
Sr "	209	25	298	301	265	134	147	240	78	317	158	223	186	215	233	247	247	188	155	300	183	194	225	77	34	109	118	102	97
Pb "	39	-	32	25	24	42	35	27	62	34	30	26	30	36	51	34	333	-	25	14	41	43	36	45	52	68	90	61	49
Th "	8	-	18	<2	8	<2	13	8	5	15	10	6	21	39	45	<2	13	-	14	<2	15	7	7	30	<2	17	<2	135	28
K/Rb	298	175	249	215	197	360	290	305	240	207	312	314	368	285	375	288	353	280	386	217	310	294	176	181	214	222	353	180	309
Rb/Sr	.627	13.0	.285	.176	.23	.903	1.109	.258	2.628	.511	.538	.408	.435	.553	.528	.749	.453	1.29	.903	.117	.514	.737	.764	3.87	2.676	2.147	2.229	3.284	2.021
Th/K(x104)	2.05	-	29.51	-	6.67	-	2.75	4.23	1.02	4.46	3.77	2.10	7.05	11.5	9.76	-	3.29	-	2.59	-	5.15	1.66	2.32	·5.57	-	3.27	-	22.39	4.62
K/Pb	1000	-	663	456	500	1038	1349	700	793	988	833	1100	993	942	904	1568	119	-	2160	543	710	797	839	1198	375	765	1032	988	1237
Oxidation Ratio	24.3	-	22.3	24.2	25.5	11.2	47.7	38.0	2.9	26.5	36.8	31.0	39.1	41.3	36.7	17.5	38.3	-	26.2	36.5	25.1	27.0	25.4	49.3	3.0	29.6	-	39.5	31.7

.

WHOLE ROCK ANALYSES: PELITIC & INTERMEDIATE LITHOLOGIES

	335- 19	335- 73	335- 83	335- 274	335- 402	335- 519	335- 329	335- 160	335- 308	288- 30
SiO ₂	70.46	50.73	61.07	64.87	64.44	63.32	66.17	68.44	68.82	73.99
A1 ₂ U ₃	13.31	20.65	17.42	14.78	14.40	15.80	9.03	12.96	11.90	11.57
Fe ₂ U ₃	2.15	6.20	5.10	4.16	3.66	2.78	6.39	1.80	.93	1.96
FeO	4.57	7.82	7.77	6.18	5.11	5.85	6.22	4.42	3.48	3.63
CaO	1.87	.65	.80	2.02	1.25	1.95	1.87	5.65	7.97	1.33
Na ₂ 0	2.02	.70	1.12	1.81	1.56	2.52	1.62	2.83	1.21	1.17
MgO	1.74	3.19	2.11	2.33	4.19	2.16	3.48	2.90	4.19	. 1.87
K ₂ 0	2.79	5.33	2.78	2.00	3.07	3.25	1.91	.24	.13	3.54
Ti0 ₂	.82	1.39	1.66	1.08	1.12	. 99	1.43	.26	.31	.62
Mn O	.16	.20	.16	.23	.17	.15	.51	.15	.11	.09
P205	.17	.23	.23	.21	. 16	.26	.40	.10	.15	.07
H ₂ 0 ⁺	.50	3.09	.72	1.05	1.81	1.07	.28	.33	.49	.31
Total	100.56	100.18	100.94	100.72	100.94	100.10	99.31	100.08	99.69	100.15
Rb (ppm) Sr " Pb " Th "	153 166 28 6	257 71 17 14	198 105 17 7	150 143 26 10	225 163 27 8	266 154 25 11	108 44 14 12	26 225 13 <2	29 225 11 2	209 89 22 7
K/Rb Rb/Sr Th/K (x10 ⁴) K/Pb	182 .922 2.15 ,996	207 3.62 2.63 3135	140 1.886 2.52 1635	133 1.049 5.0 769	136 1.38 2.6 1137	122 1.727 3.38 1300	177 2.454 6.28 1 3 64	92 .116 185	45 .129 15.38 118	169 2.348 1.98 1609
Oxidation Ratio	29.7	41.6	37.1	37.7	39.2	30	48.0	26.8	19.4	32.7

WHOLE ROCK ANALYSES: BASIC LITHOLOGIES

	1	1				1		1	T	1							
	335- 12A	335- 45	335- 110	335- 254	335- 307	335- 483	335- 601	335- 602	335- 640A	335- 641	335- 648	335- 716	335- 717A	AN71- 3B	288- 19	288- 46	288- 76
SiO ₂	45.41	54.85	63.08	47.50	45.00	53.03	49.38	47.52	52.76	51.65	57.10	58.71	49.64	46.47	41.85	55.08	56.61
A1 ₂ 0 ₃	11.69	15.19	10.15	14.74	8.58	16.33	14.06	10.20	13.73	15.67	15.84	15.96	14.75	12.58	15.04	16.74	17.04
Fe ₂ 0 ₃	3.85	5.34	4.55	3.59	5.04	3.50	2.93	2.60	1.39	3.92	2.92	2.66	4.44	3.52	6.99	3.99	2.80
Fe0	9.53	6.71	5.83	9.98	7.55	6.60	8.03	8.92	5.91	5.64	4.30	3.51	8.62	12.52	10.33	5.51	5.48
Ca0	9.67	8.12	6.47	9.56	13.46	8.94	8.44	10.58	6.88	8.14	7.89	7.58	9.12	10.89	10.98	7.75	11.01
Na ₂ 0	1.96	2.38	1.27	2.65	1.70	3.76	2.02	1.49	2.87	3.90	2.78	3.93	2.56	1.71	1.70	3.69	1.30
MgO	9.40	5.61	4.97	6.09	15.25	5.89	11.52	14.19	10.86	5.29	5.44	4.49	7.07	9.71	8.89	3.86	3.80
K20	1.93	.72	.35	1.29	.25	.40	1.26	.98	3.39	1.53	1.54	.76	.72	.15	.43	1.50	.16
TiO ₂	3.40	.78	.76	1.36	1.55	.70	.42	.43	.48	1.47	1.05	.36	1.67	1.71	2.46	1.49	1.04
MnO	.24	.26	.40	.33	.20	.23	.19	.72	.23	.25	.19	.14	.30	.45	.24	.23	.30
P205	1.50	.21	.30	.69	.22	.17	.13	.06	.26	.80	.37	.18	.06	.20	.27	.55	.23
H ₂ 0 ⁺	1.12	.67	.66	1.44	.51	.41	1.09	2.13	1.26	.78	.69	.67	.64	.81	.38	.25	.86
Total	99.68	100.19	98.97	99.22	99.31	99.96	99.34	99.82	100.02	99.04	100.11	98.97	99.59	100.72	99.56	100.64	100.63
Rb (ppm)	155	50	40	55	33	57	100	56	186	79	98	39	71	35	36	87	36
Sr "	724	243	103	1063	74	161	147	39	362	478	359	371	161	121	248	351	192
Pb "	12	13	14	15	13	11	14	12	20	16	13	29	12	<10	11	17	16
Th "	4	2	3	2	2	2	<2	4	3	2	<2	8	3	3	2	2	9
K/Rb	125	144	87	235	76	70	129	175	182	194	157	200	101	43	119	172	44
Rb/Sr	.214	.206	.388	.052	.446	.354	.68	1.436	.514	.165	.273	.105	.441	.289	.145	.248	.187
$Th/K(x10^{-})$	2.07	2.78	8.57	1.55	8.0	5.0	-	4.08	.88	1.31	-	10.53	4.17	20.0	4.65	1.33	56.25
К/РЬ	1608	554	250	860	192	364	900	817	1695	956	1185	262	600	-	391	882	100
Oxidation Ratio	26.7	41.7	41.3	24.5	37.5	32.3	24.7	20.8	17.4	38.5	38.0	40.5	31.7	20.2	37.8	39.5	31.5

C.I.P.W. NORMS: ACID LITHOLOGIES

	335- 1	335 - 15	335 - 21	335- 24	335- 30	335- 32	335- 35	335- 50	335- 74	335- 82	335- 100	335- 113	335- 114	335- 115	335- 122	335 - 144	335- 151	335 - 219	335- 313	335- 321	335- 324	335- 375	335- 380	335- 400B	335- 445	335- 495	335- 502	335- 673	288- 12
Qtz	27.30	29.22	19.14	30.49	30.63	34.67	31.14	29.76	24.94	22.17	32.57	36.17	28.29	27.68	34.13	25.09	30.99	23.93	27.75	31.71	26.65	26.55	26.82	31.27	32.18	31.11	20.99	25.41	36.61
Corun	-	.01	-	-	-	.16	.03	.99	.42	-	.64	-	-	.81	.01	_	-	.23	.08	.29	-	-	1.00	1.14	1.28	.65	. 38	.63	.66
0r	23.05	33.69	12.53	6.74	7.09	25.77	27.89	11.17	29.08	19.86	15.66	16.90	17.61	20.03	27.24	31.50	23.34	40.19	31.91	4.49	17.20	24.88	17.85	31.85	11.52	30.73	54.90	35.64	35.81
Ab	39.18	30.72	58.13	3.41	45.19	28.35	32.07	35.54	41.04	44.09	36.05	35.37	44.85	36.81	28.43	36.72	33.51	23.52	26.15	34.36	42.31	39.94	33.93	30.72	45.78	29.87	22.51	23.69	20.65
An	6.53	3.94	3.20	15.14	13.01	7.57	6.48	15.63	3.52	7.05	11.07	7.94	3.54	9.42	6.55	2.60	8.68	7.04	8.69	18.21	8.50	5.73	9.45	1.98	7.10	5.66	1.04	6.86	4.29
Di Wo	1.07	-	3.40	.41	.76	-	-	-	-	1.35	-	.39	1.76	-	-	1.46	-	-	-	-	.64	.72	-		-	-	-	-	-
En	.38	-	1.52	.17	.32	-	-	-	-	.79	-	.18	.40	-	-	.83	-	-		-	.26	.25	-	-	-	- -	-	-	-
Fs	.71	-	1.87	.25	.44	-	-	-	-	.49	-	.21	1.48	-	-	.57	-	-	-	-	.38	.49	-	-	-	-	-	- '	-
Wo	-	-	.45	-	-	-	-	-	-	-	-	-	.15	-	-	-	-	-	-	-	-	-	~	-	-	-	-	- '	-
Hy En	.32	.32	-	1.18	.87	1.17	.80	2.79	.32	1.85	1.25	.82	-	.35	1.57	.84	.57	1.00	.80	6.90	1.21	.23	4.58	.52	.55	.80	.40	1.69	.27
Fs	.60	.39	-	1.71	1.19	1.91	.53	1.67	1.16	1.15	1.42	.95	-	1.38	1.29	.57	.65	-	2.08	2.14	1.76	.45	4.37	.50	1.89	1.07	.16	1.56	1.03
Mag	.51	1.03	.52	.70	.65	.20	.94	1.52	.03	.78	1.20	.68	1.33	1.71	1.07	.23	.58	1.39	1.01	1.59	.83	.41	1.25	1.13	.04	.51	.10	2.00	.72
Ilm	.25	.21	.13	.25	.25	.02	.17	.40	.04	.51	.34	.23	.15	.59	.25	.08	.09	1.31	.74	.17	.36	.13	.65	.23	.02	.15	.02	.95	.44
Hem	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.44	-	-	-	-	-	-	-	-	-	_	-
Apat	-	.26	.02	-	-	.02	.02	-	-	.14	.07	-	.09	.23	-	.07	.07	.37	.35	.14	.07	-	.33	-	.07	-	-	.49	`.26
TOTAL	99.89	99.79	100.92	100.43	100.41	99.85	100.08	99.46	100.55	100.23	100.27	99.84	99.65	99.51	100.54	100.56	99.49	99.41	99.56	100.00	100.16	99.76	100.22	99.34	100.43	100.54	100.50	98.93	100.74
0r	33.5	49.3	17.0	10.3	10.9	41.8	42.0	17.9	39.5	28.0	25.0	28.1	26.7	30.2	43.8	44.5	35.6	56.8	47.8	7.9	25.3	35.3	29.2	49.3´	17.9	46.4	70.0	53.8	58.9
Ab	57.0	44.9	78.7	66.5	69.2	45.9	48.2	57.0	55.7	62.1	57.1	58.7	67.9	55.6	45.7	51.8	51.1	33.2	39.2	60.2	62.2	56.6	55.4	47.6	71.1	45.1	28.7	35.8	34.0
An	9.5	5.8	4.3	23.2	19.9	12.3	9.8	25.1	4.8	9.9	9.9	13.2	5.4	14.2	10.5	3.7	13.3	10.0	13.0	31.9	12.5	8.1	15.4	3.1	11.0	8.5	1.3	10.4	7.1
																												1	

1

 $(1, \frac{1}{2})$

CATANORMS: PELITIC & INTERMEDIATE LITHOLOGIES

1

	335- 19	225- 73	335- 83	335- 274	335 - 402	335- 519	335- 329	335- 160	335- 308	288- 30
Qtz Or Ab	36.30 17.02 18.73	6.05 33.57 6.70	25.24 17.18 10.52	31.66 12.33 16.96	29.30 18.81 14.53	23.24 19.87 23.41	38.66 12.01 15.48	31.26 1.45 26.04	36.75 .80 11.26	43.46 21.77 10.93
An	8.43	1.84	2.58	9.03	5.35	8.25	7.09	22.50	27.62	6.39
Si11	-	-	.76	-	-	-	-	-	-	<u> </u>
Diop	- ¹	-	-	-	-	–	-	3.71	8.97	-
Нур	-	-	· _	-			8.01	12.33	12.59	
Pyral	10.65	1.45	-	10.23	17.45	12.94	8.62	-	-	10.01
Cord	5.00	40.92	35.22	13.23	8.62	7.30	-		-	4.25
Apat	.37	.51	.50	.46	.35	.56	.89	.21	.33	.15
Mag	2.32	6.91	5.58	4.54	3.97	3.01	7.11	1.93	1.01	2.13
Ilm	1.18	2.06	2.42	1.57	1.62	1.43	2.12	-	-	.90
Sph	-	-	-	-		-	-	.56	.67	-
	1		a							

4.5

4.6

CATANORMS: BASIC LITHOLOGIES

1

	335- 12A	335- 45	335- 110	335- 254	335- 307	335- 483	335 - 601	335- 602	335- 640A	335- 641	335- 648	335- 716	335- 717A	AN71 - 3B	288- 19	288- 46	288- 76
Qtz		10.83	31.84	- anda	-	1.29	-	-	_	-	10.00	10.54	.21	-	-	5.55	17.97
0r	11.76	4.33	2.19	7.92	1.48	2.37	7.50	5.87	19.81	9.22	9.20	4.56	4.36	.90	2.62	8.91	.97
Ab	18.15	21.78	12.10	24.72	11.34	33.92	18.27	13.55	25.49	35.70	25.25	35.81	23.56	15.65	15.75	33.33	12.03
An	17.94	29.19	22.25	25.48	15.11	26.63	25.77	18.49	14.41	21.14	26.50	24.02	27.30	26.72	33.17	24.84	41.41
Neph	-	-	-	-	2.39	-	-	- 1	-		-	-	-		-	-	1010
Diop	7.37	6.16	5.54	11.36	36.08	11.50	11.27	26.22	12.82	7.59	5.56	9.35	10.18	16.77	9.91	4.01	7.67
Нур	12.55	19.92	18.67	11.28	-	18.78	20.30	8.66	2.89	16.48	17.39	11.77	25.92	17.68	3.67	-	14.19
01	17.53	-	-	10.89	24.59	-	12.66	23.47	21.62	.86	-	· - ·	-	14.45	21.43	14.87	-
Apat	3.23	.45	.67	1.50	.46	.36	.27	.13	.54	1.71	.78	.38	.13	.43	.58	1.16	.50
Mag	4.15	5.69	5.05	3.90	5.29	3.68	3.09	2.75	1.44	4.18	3.09	2.82	4.76	3.75	7.54	4.20	3.02
Ilm	-	-	· - · ·	-	-	-	-	-	-	-		-	-	-	-	— .	-
Sph	7.33	1.66	1.69	2.95	3.25	1.47	.88	.91	.99	3.13	2.22	.76	3.58	3.64	5.31	3.13	2.24

TABLE 5.1: GARNET ANALYSES

	1	1	1		1		
	335-19	335-83	335-274	335-329	335-402	335-519	288-30
Si0 ₂	37.05	36.05	37.54	37.95	37.23	37.06	38.05
A1203	21.00	20.87	21.34	21.65	21.00	21.03	21.52
* Fe ₂ 0 ₃	1.56	1.65	1.59	1.23	1.49	1.59	1.43
Fe0	29.56	31.30	30.24	23.39	28.39	30.13	27.18
Ca0	.75	.93	1.24	1.52	. 98	1.12	1.04
Na ₂ 0	.01	.01	.03	-	.04	.05	.04
MgO	3.97	3.27	5.64	7.63	3.94	3.28	8.37
K ₂ 0	.01		-	-	-	-	-
Ti0 ₂	-	-	.03	.06	- ·	.02 .	.07
MnO	4.20	4.04	1.94	7.03	6.52	5.61	1.66
Cr_20_3	.01	.02	.04		.01	.03	-
BaO	-	-	-		.04	.03	-
Total	98.12	98.14	99.63	100.46	99.64	99.95	99.36
$\frac{\text{Fe}(\text{total})}{\frac{1}{5}}$	= 20	×					,
Mg/(Mg+Fe+Mn)	. 173	.141	.238	. 308	.168	.140	. 351
MINERAL FO	RMULA (O	= 24)					1
	335-19	335-83	335-274	335-329	335-402	335-519	288-30
Si	6.007	5.911	5.951	5.908	5.976	5,959	5.944
V ¹ FA	-	.089	.049	.092	.024	.041	.056
IV IA	4.013	3.945	3.938	3.880	3.949	3.945	3.906
Fe ³⁺	. 190	.204	. 190	.144	.180	. 192	. 168
Fe ²⁺	4.008	4.292	4.009	3.045	3.811	4.052	3.551
Ti	-	-	.004	.007		.002	.008
Cr	.001	.003	.005	-	.001	.004	-
Mg	.960	. 799	1.333	1.771	.943	. 786	1.949
Mn	.577	.561	.261	.927	.886	. 764	.220
Ca Na	.130 .003	.163	.211 .009	.254 -	.169	.193 .016	.174

TABLE 5.2: CORDIERITE ANALYSES

 \mathbf{x}

		1	ł	1	1
	335-19	335-83	335-274	335-402	335-519
Si0 ₂	47.88	47.24	48.49	47.87	48.09
A1203	32.68	32.47	32.75	32.69	32.99
*Fe ₂ 0 ₃	.42	.49	. 34	. 39	. 44
Fe0	7.90	9.29	6.45	7.49	8.35
CaO	-	.02	_ 30	.03	.02
Na ₂ 0	. 13	.07	.21	. 46	. 12
MgO	7.85	7.22	9.01	7.69	7.65
K ₂ 0	.01	-	-	.01	
TiO ₂	- 20	.01	-	-	* -
Min O	. 32	.25	. 12	.56	. 45
Cr_20_3	.02	-	.03	-	-
BaO	· –	in	-	_	.01
Total	97.21	97.06	97.39	97.19	98.12
* <u>Fe(tota</u> 1) Fe ³⁺ =	20		t	I	el.
Mg/(Mg+Fe+Mn)	.629	.574	. 709	.630	.609
MINERAL FO	RMULA $(0 = 18)$				
Si	4.989	4.964	5.004	4.988	4.977
A1 ^{1V}	1.011	1.036	.996	1.012	1.023
A1 ^{V1}	3.002	2.985	2.987	3.003	3.001
Fe ³⁺	.033	.038	.027	.031	.034
Fe ²⁺	.689	.816	.557	.653	.723
Mg	1.219	1.131	1.386	1.195	1.180
Mn	.028	.022	.010	.050	.040
Na	.026	.014	.042	.093	.024
OH	1.250	1.260	1.240	1.250	1.240

TABLE 5.3: HORNBLENDE ANALYSES

INDLL J		CELICE TEL		Ī		1				•			
	335-45	335-110	335-307	335-308	335-483	335-601	335-602	335-629L	335-629M	335-716	335-717A	288-19	288-76
SiOn	43.57	42.74	44.34	47.11	44.51	45.80	46.46	41.53	41.26	44.63	44.46	42.33	43.42
A1.0.	9.88	9.78	10.59	7.73	9.56	8.98	8.61	10.00	9.69	9.06	9.82	10.62	10.31
*50.0.	3 49	3.17	2.41	2.55	3.91	3.05	2.90	4.71	4.90	3.76	4.03	3.30	4.16
Fe0	10 48	9.53	7.23	7.65	11.75	9.13	8.71	14.13	14.70	11.27	12.08	9.92	12.47
C=0	11 92	11 32	12.14	12.31	11.85	12.33	11.92	11.55	11.35	12.32	11.52	11.90	11.80
Na-O	1 33	1 39	1.92	1.55	1.55	1.15	1.17	1.62	1.68	1.33	1.31	1.85	1.41
MaQ	11 93	12 70	15.03	15.88	11.68	14.33	14.55	8.94	9.00	12.39	11.00	12.94	10.58
K _a O	1 15	1.31	.64	.46	.60	.97	.90	1.54	1.52	.81	.61	1.31	.73
TiO ₂	1.69	2.87	2.29	1.88	2.14	.60	. 75	3.68	3.31	1.43	1.37	2.96	2.88
Mn O	39	.68	. 12	.20	.43	.14	.53	. 42	.34	. 46	.27	.24	.80
(ral)	.03	.04	.21	.04	.02	.26	. 32	.05	-	.05	.03	.05	.00
BaO	.07	.10	.14	.14	.04	.01	.02	.10	.10	.03	.10	.15	.06
 Total	95,92	95.63	97.06	97.50	98.04	96.75	96.84	98.27	97.85	97.53	96.60	97.57	98.62
* <u>Fe(tot</u>	$\frac{(a1)}{(a1)} = 4$	1	I	1	1		4: 	I	1		ł	1	1
Mg (Mg+Fe+Mn)	.662	.688	. 784	. 783	.632	. 733	.738	.522	.515	.653	.613	. 695	.586
MINERA	L FORMULA	(0 = 23))				a g		1	ł	1		1
Si	6.558	6.444	6.467	6.818	6.572	6.744	6.813	6.279	6.286	6.621	6.653	6.285	6.436
A1 ^{1 V}	1.442	1.556	1.533	1.182	1.428	1.256	1.187	1.721	1.714	1.379	1.347	1.715	1.564
A1 ^{V1}	.311	. 182	.287	.137	.235	.303	. 302	.061	.026	.205	. 385	.144	.206
Fe ³⁺	. 395	. 360	.265	.278	. 434	.338	. 320	.536	.562	. 420	. 454	. 369	. 464
Fe ²⁺	1.319	1.202	.882	.926	1.451	1.124	1.068	1.787	1.873	1.398	1.512	1.232	1.546
Ti	. 191	. 325	.251	.205	.238	.066	.083	. 418	.379	.160	.154	. 331	.321
Cr	.001	.005	.024	.005	.002	.030	.037	.006	-	.006	.004	.006	-
Mg	2.677	2.854	3.268	3.426	2.571	3.146	3.181	2.015	2.044	2.740	2.454	2.864	2.338
Mn	.050	.087	.015	.025	.054	.017	.066	.054	.044	.058	.034	.030	.100
Са	1.922	1.829	1.897	1.909	1.875	1.945	1.873	1.871	1.853	1.958	1.847	1.893	405
Na	. 388	. 406	.543	. 435	.444	, 328	. 333	.4/5	. 430	160	, 500	2/10	1 20
К	.221	.252	.119	.085	.113	.182	. 168	, 297	. 293	1 /0/	1/07	1 /06	1 / 102
OH	1.506	1.509	1.459	1.448	1.477	1,473	1.46/	1.513	1.525	1.484	1.49/	1.400	1.403

5.3

TABLE 5.4: CLINOPYROXENE ANALYSES

	335_124	335-110	335-254	335-307	335-308	335-601	335-602	335-640A	335-641	335-648	AN 71 - 3B	288-19	288-46
	555-12A	000 110				50.00	50.01	E1 40	40.67	51.01	51 11	50 31	51 35
SiO ₂	51.22	52.20	50.52	52.44	52.23	52.93	52.31	51.43	49.07		2 02	2 70	1 70
A1203	1.95	1.66	1.51	1.99	1.56	1.41	1.20	1.82	1.86	2.19	2.03	2.70	1.70
*Fe ₂ 0 ₃	.68	.57	.84	. 39	.55	.56	.53	.57	.62	.65	.80	.69	.69
Fe0	9.54	7.98	11.83	5.41	7.72	7.87	7.42	7.98	8.75	9.15	11.13	9.66	9.73
CaO	20.60	22.33	22.02	23.17	23.04	22.86	22.14	22.51	21.69	22.24	21.81	21.65	21.90
Na ₂ 0	.56	. 36	. 31	.29	. 34	. 32	. 32	.67	.51	. 39	. 30	.44	.48
MgO	12.55	13.50	11.11	15.03	14.24	13.86	13.71	13.63	12.96	13.32	12.33	13.15	12.93
K ₂ 0	-	-	-	.01	.01	-	-	-	-	-	-	-	-
TiO ₂	.41	.26	.25	.41	.31	.08	.09	.31	.28	.48	.41	.71	.48
Mn0	. 34	1.28	.46	.21	. 35	.29	. 78	.44	.63	.51	.40	.40	.76
Cr ₂ O ₂	.02	_	-	.13	.01	.08	.07	.21	.04	-	.04	-	-
BaO	.01	-	.05	.01	.01	.04	-		-	.02	.03	.02	-
Total	97.88	99.14	98.90	99.49	100.37	100.30	98.57	99.57	97.01	99.96	100.39	99.81	100.10
*Fe(tot	$\frac{1}{2a1} = 1$	5					•		1			•	
Fe ³⁺	•	-	<i>c</i>		1			E.	1		1		607
Mg/(Mg+Fe	+Mn).678	.722	.617	.827	. 759	.753	.749	.743	.711	711	.655	.699	.68/
MINERA	L FORMULA	(0 = 6)		•									
Si	1.959	1.938	1.946	1.944	1.943	1.966	1.975	1.934	1.926	1.919	1.928	1.898	1.934
AITV	.041	.062	.054	.056	.057	.034	.025	.066	.074	.081	.072	.102	.066
AT V1	.047	.012	.014	.031	.011	.028	.029	.014		.016	.018	.022	.013
Fe 3+	.020	.016	.024	.011	.015	.016	.015	.016	.018	.018	.023	. 020	.020
Fe2+	. 305	.253	. 381	.168	.240	.245	.234	.251	.284	.288	. 351	. 305	. 306
Ti	012	.007	.007	.011	.009	.002	.003	.009	.008	.014	.012	.020	.014
C vo	.012	-	_	.004	-	.002	.002	.006	.001	-	.001	-	-
Ma	715	762	638	831	. 789	. 768	.772	.764	.749	.747	.693	.740	.726
Ma	011	.041	.015	.007	.011	.009	.025	.014	.021	.016	.013	.013	.024
Ca	.844	.905	.909	.920	.918	.910	. 896	.907	.901	. 896	. 881	.875	.884
Na	.042	.026	.023	.021	.025	.023	.023	.0,49	,038	.028	.022	.032	.035

.

*

TABLE	5.5: <u>BIOT</u>	ITE ANAL	YSES																							
	335-12A	335-19	335-45	335-83	335-110	335-115	335-160	335-254	335-274	335-321	335-329	335-380	335-402	335-483	335-519	335-601	335-640A	335-641	335-648	335-716	335-717A	AN71-3B	288-12	288-30	288-46	288-76
SiO ₂	37.96	34.17	36.56	33.57	36.51	35.58	35.64	35.53	35.64	28.34	35.51	36.64	34.51	36.42	34.35	36.50	39.41	37.17	38.00	35.91	34.70	37.41	36.42	36.30	38.04	36.26
A1203	12.71	17.76	13.86	17.63	13.70	15.38	14.19	13.43	15.81	14.38	14.99	14.34	18.25	14.64	18.75	14.51	12.72	12.53	13.03	15.18	15.02	13.37	15.08	14.76	13.25	14.89
*Fe ₂ 0 ₃	1.58	2.74	2.08	2.97	1.81	2.57	2.36	2.52	2.38	3.08	1.80	1.84	2.68	2.31	2.73	2.14	1.18	1.43	1.52	2.15	2.48	1.56	2.06	1.75	1.72	2.57
Fe0	10.24	17.80	13.56	19.32	11.79	16.69	15.34	16.39	15.46	20.00	11.71	11.97	17.43	15.05	17.78	13.90	7.71	9.31	9.91	14.00	16.16	10.13	13.41	11.41	11.19	16.73
CaO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Na ₂ 0	.10	.15	.07	.11	.16	.14	.02	.04	.16	.03	.13	.08	.10	.01	.15	.08	.06	.05	.03	.04	.04	-	.03	.16	.04	.04
Mg0	16.82	7.61	13.87	6.84	14.31	10.76	12.00	11.14	10.38	13.74	13.95	14.79	7.75	13.01	7.81	14.79	19.84	17.00	17.54	13.55	12.13	16.69	14.09	14.50	15.61	11.24
κ ₂ 0	9.83	8.94	9.59	9.77	9.16	9.48	9.08	9.13	9.83	1.59	10.46	10.09	9.05	9.74	9.34	8.74	9.94	9.38	9.44	9.15	8.21	10.19	9.44	10.84	9.45	9.11
Ti0 ₂	6.24	4.96	3.96	4.58	7.70	5.88	6.48	6.21	6.04	4.26	9.08	7.69	3.53	6.11	3.51	1.83	4.60	6.73	5.97	4.24	3.31	7.45	5.67	9.13	9.94	7.59
Mn O	.04	.15	.26	.06	. 36	.23	.13	.10	.07	.29	.12	.10	.26	.27	.20	.31	.07	.10	.11	.18	.11	.06	.18	.02	.15	.25
Cr_20_3	.13	.03	.02	.02	-	.03	-	.04	-	.09	.07	.02	.01	-	.02	.29	.40	-	.02	.04	.05	.04	-	.02	.01	.04
BaO	1.12	. 38	.53	.25	.94	.25	1.66	1.05	. 44	.20	.57	. 34	. 39	. 37	. 35	.13	.28	.89	.51	.50	.53	.63	.27	. 36	.58	.57
Total	96.77	94.69	94.36	95.12	96.44	96.99	96.90	95.58	96.21	86.00	98.39	97.90	93.96	97.93	94.99	93.22	96.21	94.59	96.08	94.94	92.74	97.53	96.65	99.25	99.98	99.27
* <u>Fe(to</u> Fe ³⁺	$\frac{tal}{}$ = 7.	5													·							1	I	1	I	5
	Mm) 745	121	641	206	677	E 32	500	547	EAA	E 17	677	606	130	602	437	651	820	763	75.7	620	E 70	745	CA7	coul	77.0	- -
(путгет мтыс ра		(0 = 22	1.041	. 300	.077	.552	. 500	.547	.544	.547	.077	.000	.430	.003		.001	.020	.705	./5/	.029	.570	.745	.647	.694	.710	.541
MINE RA		(0 = 22))	1 5 222	1 5 400	5 220	5 269	1 5 1 20	1 5 260		5 172	E 22E	5 3/6	1 5 274	5 279	5 584	5 681	5 5 2 2				F 400	5 000 l	= 000 l		
۵۱ ۱۷	2 10/	2 731	2 437	2 778	2 380	2 661	2 510	2 423	2 632		2 574	2 461	2 654	2 5/6	2 721	2 416	2,161	2 198	2 244	2.576	2 È 95	5.428	5.382	5.226	5.383	5.310
	-	496	049	455		060	-		175	_	-	-	683	2.340	.675	.200	-	-		127	178	2.201	2.018	2.505	2.210	2.570
Fe 3 ⁺	.174	. 318	.238	. 348	.201	.000	267	.290	.270	_	. 197	202	.312	256	. 316	.246	. 128	.160	. 168	244	291	170	.008	-	-	-
Fe ²⁺	1.254	2,295	1,726	2.514	1,459	2.095	1,932	2.098	1.947	_	1.427	1.458	2.258	1.857	2.285	1.778	.929	1.159	1.212	1,769	2,109	1 229	1 657	1 37/	1 324	2 040
Ti	.687	.575	.453	.536	.857	.664	.734	.715	.684	_	. 995	. 842	.412	.678	.406	.211	.499	.753	.656	. 482	. 388	813	630	989	1.058	2.049
Cr	.015	.004	.002	.002	_	.004	-	.005	_	_	.008	.002	.001	-	.002	.035	.046	-	.001	.005	.006	.005	-	.002	001	005
Mg	3.673	1.749	3.146	1.586	3.155	2.407	2.694	2.542	2.331	-	3.030	3.210	1.789	2.862	1.789	3.373	4.263	3.772	3.822	3.051	2.822	3.610	3.104	3.112	3.293	2.453
Mn	.005	.020	.034	.008	.045	.029	.017	.013	.009	-	.015	.012	.034	.034	.026	.040	.009	.013	.013	.023	.015	.007	.023	.002	.018	.031
Na	. 028	.045	.021	.033	.046	.041	.006	.012	.047	-	.037	.023	.030	.003	.045	.024	.017	.014	.009	.012	.012	-	.009	.045	.011	.011
K	1.837	1.759	1.862	1.939	1.729	1.815	1.745	1.783	1.889	-	1.944	1.874	1.789	1.834	1.831	1.706	1.828	1.781	1.760	1.763	1.635	1.886	1.780	1.991	1.706	1.702
<u>5a</u>	:064	1: 1123	1(132	1 -: 0 15	1 - 054	1 + 0.15	1 1008	1 :063	1026		-033		1	1.021	.021	.008	.016	.052	.029	.030	.032	.036	.016	.020	.032	.033

TABLE 5.6: ORTHOPYROXENE ANALYSES

TABLE D		TROALINE	AUAL I SEC	<u>,</u>									, 1	1	1	1	1	1	ļ	1	[1 1	4
	335-12A	335-45	335-110	335-115	335-160	335-254	335-307	335-308	335-321	335-329	335-380	335-601	335-602	335-629L	335-629M	335-640A	335-641	335-648	AN71-3B	288-12	288-19	288-30	288-46
	51.95	51.45	50.49	48.29	51.72	50.19	53.80	52.42	51.48	48.59	47.97	52.78	50.98	49.26	48.56	52.55	50.50	51.54	50.99	50.57	51.94	46.13	52.18
A1202	. 75	.94	1.04	3.01	.71	.82	1.16	.94	.71	5.13	5.24	1.02	.90	.62	.70	.85	.83	1.19	1.06	3.15	.96	7.48	.89
*Fea0a	1.90	1.86	1.65	2.38	2.13	2.29	1.32	1.75	2.14	1.77	2.18	1.75	1.78	2.61	2.57	1.64	1.69	1.78	2.03	1.80	1.75	1.95	1.88
Fen	22.74	22.30	19.85	28.52	25.62	27.48	15.89	21.01	25.65	21.26	26.11	21.02	21.42	31.29	30.86	19.72	20.28	21.33	24.33	21.64	20.95	23.45	22.56
CaO	65	65	.69	.08	.58	.67	.42	.57	.60	.11	.07	.57	.73	1.17	.72	.63	.61	.69	.85	.14	.54	.06	.90
NacO	-	01	-	.02	.04	-	.16	.04	-	-	.02	-	-	-	-	-	-	.01	.02	.06	.03	-	.02
MaQ	20 60	19 10	19 93	15,13	17.17	15.73	24.47	22.39	18.51	19.55	16.44	21.67	20.64	13.01	12.99	22.50	20.63	25.51	18.51	20.48	21.74	18.63	20.00
nyu v o	20.00	15.10	-	-	01	_	.01	.01	_	_	_	-	.01	.02	.02	-	-	.01	-	.01	-	-	-
κ ₂ υ τ:ο	-	10	10	14	.01	05	18	. 15	.12	.23	.27	.01	.04	.22	.15	-	.17	.18	.20	. 12	.10	.14	.24
110 ₂	.10	1.60	2.03	1 3/	.00	1 05	52	87	. 49	2,36	1.20	.50	1.13	1.56	1.51	1.00	1.40	1.31	.96	1.53	.85	. 45	1.75
mnu Ora O	.70	1.09	2.03	01		01	.02	.07	-	. 02	.03	.07	.06	.02	.01	.07	.01	.02	.04	-	.03	.04	.02
$r_2 v_3$.01	.01	.03	.01	01		.00	.01	02	.04	-	-	_	-	.04	.02	.01	.03	.02	-	.02	-	-
Ba0	.03	.02			.01		00.00	100.02	00 72	00.00	00.53	00.20	07.69	90 80	08.13	98 98	96 13	99 60	99 01	99 50	08 01	00 33	100 44
Total 、	99.43	98.13	96.70	98.92	99.01	98.29	99.99	100.23	99.72] 99.00	99.00	99.59	97.09	55.00	50.15	0.50	50.15	35.00	55.01	55.50	0.51	55.00	100.11
*Fe(<u>tot</u>	$\frac{a1}{3+}$ = 13													1				,		ł	1	1	4
re Mg/(Mg+Fe	+Mn) .611	.587	.610	.474	.536	. 496	.742	.646	.558	.596	.518	.642	.620	.414	.417	.660	.629	.668	.566	.611	.639	.582	.594
MINERAL FORMULA $(0 = 6)$																							
Si	1.966	1.978	1.961	1.900	1.993	1.974	1.953	1.952	1.968	1.849	1.850	1.975	1.959	1.956	1.959	1.969	1.965	1.942	1:959	1.908	1.960	1.777	1.962
A1 ^{1V}	.033	.022	.039	.100	.010	.026	.047	.041	.032	. 151	.150	.025	.041	.029	.033	.031	.035	.053	.041	.092	.040	.223	.038
A1 ^{VI}	-	.020	.009	.040	.022	.012	.003	-	-	.079	.088	.020	-	-	-	.007	.003	-	.007	.048	.003	.116	.001
Fe ³⁺	.054	.054	.048	.070	.062	.068	.036	.049	.062	.051	.063	.049	.051	.078	.078	.046	.049	.050	.059	.051	.050	.057	.053
Fe ²⁺	.720	.717	.645	.802	.826	.904	.482	.654	.820	.677	.842	.658	.688	1.039	1.041	.618	.660	.672	. 782	.683	.661	.755	. 709
Ti	.003	.003	.006	.004	.002	.001	.005	.004	.003	.007	.008	-	.001	.007	.005	-	.005	.005	.006	.003	.003	.004	.007
Cr	-	-	.001	-	-	-	.002	.001	-	.001	.001	.002	.002	.001	- 701	.002	-	.001	.001	-	.001	.001	.001
Mg	1.162	1.094	1.154	.986	.987	.922	1.432	1.243	1.055	1.109	.945	016	037	.//0	./01	0.22	1.197	1.200	1.000	040	1.223	015	1.121
Mn	.022	.055	.093	.030	.030	.035	.010	.027	.010	.070	003	023	.030	.052	.052	.032	.046	.042	.031	.049	.027	.002	.036
Ca	.026	.027	.029	.023	.024	.028	.010	.023	.025		.001	-	-	-	-	-	-	.001	.001	.004	.002	-	.001
Na	-	.001	-	.003	.002	-	.011	.005															
			•	1	1	1	•		1	-	1	•	1	-									

.

.

•