5578.

An Optimised Implementation of Public-Key Cryptography for a Smart-Card Processor

Braden Jace Phillips B.E. (Hons.), B.Sc.

A dissertation submitted in the

Department of Electrical and Electronic Engineering,

University of Adelaide, to meet the requirements for
the award of the degree of Doctor of Philosophy

Abstract

Smart-cards for public-key cryptography are conventionally based around an 8-bit microprocessor core with a hardware co-processor to accelerate long wordlength arithmetic. While the co-processor can deliver excellent public-key performance, the 8-bit processor and available RAM limit other smart-card applications.

This thesis examines RSA public-key arithmetic with the objective of achieving adequate cryptographic performance without a large hardware co-processor. The chip area thus saved can be used to incorporate a more powerful 32-bit microprocessor as well as extra RAM. The resulting smart-card will better support desirable applications such as on-line media processing or biometric identification.

In the absence of a hardware co-processor, suitable cryptographic performance is achieved through the application of a variety of arithmetic techniques. Significantly, the arithmetic is optimised for average-case rather than worst-case delay. (The timing attack, which exploits variations in delay, is circumvented by a few simple blinding operations.)

Sliding window number representation has been applied to improve average case performance. Sliding windows are studied in detail and a new family of signed sliding window representations is developed. Improved algorithms for multiplication, Montgomery reduction and optimised squaring are presented that take advantage of the new signed representation.

The application of these techniques results in a smart-card design that is novel in many respects: dedicated arithmetic hardware is replaced by extra general-purpose RAM; constant worst-case timing is replaced by average-case execution and blinding; and high radix algorithms requiring a fast hardware multiplier are replaced with low radix algorithms that do not require a multiplier at all.

Contents

Ab	strac	t	iii
Co	ntent	es	v
Lis	st of F	Pigures Pigures	vii
Lis	st of T	Tables .	xi
No	tatior	n	xiii
De	clara	tion	xv
Ac	know	vledgment	xvii
1	Intro	oduction	1
	1	A New Approach	
	2	Thesis Outline	4
	3	Original Contributions	5
2	Digi	t Set Conversion	9
	1	Digit Set Conversion for an SRT Divider	10
	2	Digit Set Conversion Formalisation and Existing Results	15
	3	Generalised Sliding Windows	25
	4	Summary and Conclusions	48
3	RSA	A Cryptography	51
	1	The RSA Cryptosystem	52
	2	Exponentiation	
	3	Attacking RSA Implementations	64
	4	RSA Functional Specification	69
	5	Summary and Conclusions	
4	Mod	dular Reduction	79
	1	Background	80
	<u>~2</u>	Recoded Montgomery Reduction	95

	3	Triangle Additions	102
	4	Summary and Conclusions.	104
5	Mu	ltiple-precision Multiplication and Squaring	107
	1	Background	108
	2	Sliding Window Multiple-precision Multiplication	113
	3	Optimised Squaring with Sliding Windows	121
	4	Summary and Conclusions	134
6	A S	Smart-Card Implementation of RSA	137
	1	A Survey of Public-Key Smart-Cards	138
	2	32-bit Smart-Cards	139
	3	A New Smart-Card	142
	4	ARM Implementation	145
	5	Summary and Conclusions	159
7	Cor	nclusion	163
Pu	blica	ations	167
A	A S	Survey of Modular Multipliers	169
В	Ana	alysis of Some Digit Set Conversions	173
	1	Hwang's Radix-r Canonical Conversion	173
	2	Recoded m-ary Method	175
C	Sof	ftware for an Unmodified ARM	179
	3	Accumulation	179
	4	Montgomery Reduction	183
	5	Pre-computation	186
	6	Multiplication	188
	7	Optimised Squaring	191
D	Sof	ftware for a Modified ARM	197
E	Ma	aple Script for Optimised Squaring with SSW	203
Bi	blio	graphy	207