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Abstract.

This thesis is concerned with the development of nonlinear adaptive power system stabilis-
ers for single-machine infinite-bus power systems. Single-input single-output design methods
are discussed. The studies of this thesis cover the areas of linear adaptive, nonlinear opti-
mal, nonlinear adaptive, and bilinear adaptive control in the design of such stabilisers. Both

theoretical analyses and simulation studies are presented for each area of study.

The modelling of the single-machine infinite-bus power system is discussed for the pur-
poses of the analysis and design of the linear and nonlinear optimal/adaptive power system
stabilisers, and the simulation studies for the evaluation of the stabilisers that result from
the various control strategies. The weighted minimum variance control scheme is selected for
the development of the various power system stabilisers for the sake of simplicity and consis-
tency. A linear adaptive power system stabiliser is designed, and its performance is taken as
a reference for the assessment of the nonlinear power system stabilisers. The validity of the
reference is verified by comparison of its damping performance with that of a well-designed,

robust, conventional power system stabiliser at various operating conditions.

A new nonlinear model which describes the relationship between the excitation control
input and electrical torque output is derived from the mathematical description of the non-
linear power system of concern. The model is given in a regression equation form, linear in
the parameters and in the control input, with additional feedback signals. The model is an
accurate characterisation of the inherent nonlinearities of the power system, and provides
a useful means for the development of a variety of nonlinear control laws for power system

stabilisers.

New nonlinear optimal control laws (namely the generalised minimum variance control
law and its special case, the weighted minimum variance control law) are developed from
a general form of the cost function; the associated global closed-loop stability properties
are established theoretically. A number of nonlinear adaptive control algorithms, in the
sense of different tuning strategies, can be developed from proper selections of the weighting

polynomials in the cost function.

New nonlinear adaptive weighted minimum variance control algorithms are derived, and

the theoretical proofs of the convergence of these algorithms are given. This completes the

viil



theoretical development of the nonlinear weighted minimum variance control scheme based

on the new nonlinear model.

For practical implementations, simplifications of the nonlinear adaptive control algorithm
are discussed. A new bilinear model that represents the simplest nonlinear relationship be-
tween the control input and output is derived. This model retains the inherent nonlinearities
of the power system and requires a minimum set of measurable feedback signals. New simple
bilinear optimal and adaptive control strategies for the design of power system stabilisers
are studied. A new bilinear adaptive weighted minimum variance control algorithm is also

developed.

Three new power system stabilisers based on the same (weighted minimum variance)
control scheme but different (nonlinear optimal, nonlinear adaptive, and bilinear adaptive)
control strategies are proposed. Systematic evaluations and comparisons of the performance
of these power system stabilisers against the reference performance of the linear adaptive
power system stabiliser are conducted through simulation studies. Conclusions of the advan-
tages and disadvantages of the different control strategies, involving the areas of linear and
nonlinear as well as optimal and adaptive control, in the design of power system stabilisers
are drawn from the studies. The results of this work provide a basis for the development of

a practical nonlinear adaptive power system stabiliser.
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Chapter 1

Introduction.

1.1 The Basic Concept of Power System Stability.

Problems associated with power system stability emerged in the 30’s [1], and have
formed the basis for many areas of study since that time. As the complexity of mod-
ern power systems increases, improving the stability and dynamic performance of the
system has become increasingly desirable, and has attracted the attention of control

engineers [2].

Power systems rely on synchronous generators for the generation of electrical power.
A necessary condition for the transmission and exchange of electrical energy is that all
generators in a system rotate in synchronism. The concept of power system stability
relates to the ability of the generators in the system to maintain synchronism and
the tendency to return to and remain at their steady-state operating points following

system disturbances.
A heuristic non-mathematical definition of power system stability can be given as

follows [3]:

Power System Stability. If the oscillatory response of a power system

during the transient period following a disturbance is damped, and the



system settles in a finite time to a (new) steady operating condition at
constant frequency, then the system is said to be stable. If the system is

not stable according to this definition, then it is considered unstable.

Due to the nonlinear nature of the power system, and to describe its wide range of
behaviour, power system stability is further classified into three categories: steady-state
stability due to minute disturbances, dynamic stability due to small disturbances, and

transient stability due to large disturbances [4,5,2,6]. !

Steady-State Stability, Power System. Steady-state stability refers to
the stability of a power system subject to minute and gradual changes in
the operating conditions. The system is described by algebraic equations

with phasor representations.

The studies in this category are concerned with the system steady-state stability limit,
which is the maximum power that can be transmitted in the steady state without the
loss of synchronism. The minute disturbances that are applied to the system cannot
cause the loss of synchronism unless the system is operated at, or very near to, its

steady-state stability limit.

Dynamic Stability, Power System. Dynamic stability refers to the sta-
bility of a power system subject to small and “sudden” perturbations. The
system can be described by linear differential equations which are obtained
by linearising the system nonlinear differential equations about a certain

steady-state operating point.

Typical perturbations under this category may be small, randomly occurring changes
in load or small alterations in reference settings. It is assumed that the system under

study is stable at the initial operating condition. If the system is dynamically stable, it

11t should be pointed out that there is no universally accepted classification of power system
stability [2]. For example, in some different classifications, only steady-state stability (or dynamic

stability) and transient stability are categorised.



is expected that after a temporary small disturbance the system will return to its initial
state, while for a permanent small disturbance the system will acquire a new operating
state after a transient period [3]. In both cases the synchronism of the system should
not be lost. The size of small disturbances may be measured by the criterion that the

perturbed system can be stabilised in an approximately linear region [3].

Transient Stability, Power System. Transient stability refers to the
stability of a power system subject to severe disturbances for which the
linearised model of the system is invalid. The system must be described by

nonlinear differential equations.

The severe disturbances which cause transient stability problems may typically be
large changes in load, three-phase faults or transmission line switching. It is usually
assumed that the system under study is stable before a large disturbance happens. If
the system is transiently stable, the system oscillations resulting from large disturbances
are damped. However, transient stability of the system depends very much on the initial
operating condition of the system and the nature (i.e., the type, magnitude, duration,
and location, etc.) of the large disturbances that are applied to the system [3], as well

as on the post-fault system configuration.

For successful operation and control of power systems, the latter two categories of

stability of the system must be carefully considered.

1.2 The Effect of the Excitation Control System

on Power System Stability.

In the analysis of power system stability, considerable attention has been given in the
literature to the ezcitation control system, which is one of the basic components in a
generating unit (see, e.g., Fig. A.1 of Appendix A). By the use of an Automatic Voltage
Regulator (AVR) with machine terminal voltage feedback, the primary functions of

an excitation control system are



e to maintain the desired constant voltage at the synchronous generator terminal

within a specified error limit;

e to continuously adjust the generator excitation level in response to changes in

reference voltage.

A high-gain AVR was recommended for reducing the steady-state error of the system
output. It was, then, realised by early investigators that the steady-state stability
limit of the system could be increased when a high-gain AVR was used [7]. Analyses
based on several different stability criteria also pointed out that the increase of the
steady-state stability limit was restricted by the general characteristics of the system,

such as time lags and gain levels [7]-[18].

The study of the excitation control is further complicated by a conflict in con-
trol requirements in the time period immediately following a transient. For different
stability control problems, the requirements on the excitation control system may be
significantly different. In transient stability studies, the time period of interest during
a transient is the first few cycles of rotor oscillations, with the first swing being of
primary importance. During the first swing, the generator is suddenly sub jected to a
large change in its output power, causing its rotor to accelerate (or decelerate) at a rate
large enough to threaten the loss of synchronism. To prevent the loss of synchronism,
a very fast and high-ceiling voltage control action from the excitation control system is
needed to reduce the amplitude of the first swing and to help the generator to maintain
its synchronism. From this point of view, a fast excitation system with a high-gain
AVR is beneficial to the control of the system transient stability. In dynamic stability
studies, however, a high-gain excitation control system introduces a negative damping
effect to the rotor oscillations. This can be analysed by using the small signal lin-
earised system model (D.2)-(D.7) ? given in Section D.2 of Appendix D, with constant
reference signals [8,19]. For a system without the AVR regulation, the damping torque

2The parameters K; (i = 1,2,---,6) in the model are defined in (2.107)-(2.108), (2.119)-(2.120),
and (2.109)-(2.110), respectively.



component of the electrical torque at frequency w is given by
Ky KiKyrhqw

ATy (w) = =
1) = T i A

Ad(w). (1.1)

Since the parameters K;, K3, and K, are all positive, the damping torque given by
(1.1) is positive too. However, for a system with the AVR in service, the damping

torque component of the electrical torque is described approximately as
Ky;K5Ka (T;o + {.{:‘;) w

Wi [( + 582) — riorae]" + (rio+ )]

ATy(w) = Ad(w), (1.2)
where ATy(w) has the same sign as the parameter K. At low frequencies, the syn-

chronising torque component of the electrical torque is given approximately by

AT, () [ &, - ks

] Ad(w). (1.3)
6

At some operating conditions the parameter K5 can be negative (see, e.g., Table 2.2
of Section 2.5). In these cases the damping torque (1.2) becomes negative, while the
synchronising torque (1.3) is augmented (since K; and Kg are positive). Therefore,
whereas the AVR regulation improves the synchronising torques on the generators in

the system at low frequencies of rotor oscillations, it reduces the inherent damping of

the system at operating conditions where Kj is negative.

The above analysis indicates that the excitation control system has the potential
to introduce negative damping into the system dynamics. This phenomenon has been
observed by many researchers (e.g., [19]-[29]) and has been reported widely in the

literature.

1.3 The Role of Power System Stabilisers.

Based on the fact that the negative damping effect is caused by the closed-loop exci-
tation control of generator terminal voltage, it is reasonable to expect that a positive
damping effect may be introduced into the system by using a supplementary damping

signal through the same control loop. The network used to generate this signal has

)



been known as a power system stabiliser network. By the use of the supplementary
damping signal, not only can the negative damping effect of the AVR regulation be
cancelled, but the positive damping effect of the system can also be increased so as
to allow the system to operate even beyond the steady-state stability limit. This 1s
the basic idea behind the design of power system stabilisers. The role of power system
stabilisers is to improve the damping performance of the system and to extend the

steady-state stability limit of the system via modulation of the generator excitation.

By means of the power system stabiliser, a component of torque in phase with
speed is introduced onto the shaft of the generator. This component of torque is
a pure damping torque. If the system characteristic between the reference voltage
input and the shaft speed output is described by a transfer function GEP(s) [29], the
supplementary damping signal generated by the power system stabiliser is then aimed
to compensate for the phase and gain characteristics of GE P(s) by giving, ideally, that

PSS(s) = G—I;‘;f(is), (1.4)

where Kpgs represents the desired damping contribution from the stabiliser. A prac-
tical realisation of the transfer function PSS(s) (1.4) is to use analogue controllers to
achieve the desired adjustments in phase and gain over the frequency range of concern.
A washout circuit is usually added into the final form of the stabiliser to eliminate the

steady-state offset in the stabilising signal.

Design issues involved in the use of various tuning techniques and input (or stabilis-
ing) signals for power system stabilisers have been studied extensively in the literature
under classical control theory. For example, a detailed analysis of the damping and
synchronising torques of synchronous generators with speed as a stabilising signal was
given in [19]. A comparative study on the proper selection of transfer functions for a
number of stabilising signals, namely speed, frequency, and power, was described in
[30,29]. Other input signals, such as the accelerating power [31]-[33], for power system
stabilisers have also been studied. Practical aspects associated with the implemen-
tation of the designed power system stabilisers have been discussed in the literature

(e.g., [32,30]). Studies reported by researchers in this field have shown that improved



damping performance is achievable with properly tuned power system stabilisers in the

frequency range of concern.

1.4 Shortcomings of the Conventional Power Sys-

tem Stabilisers.

Power system stabilisers designed using classical control theory can be called conven-
tional power system stabilisers. For design purposes, linearised fized-parameter models
of the nonlinear power system are derived from the linearisation of the system about a
given operating point. Such models are valid, in theory, only at the chosen operating
point. If the system operating point changes or the system configuration alters, the
basis for the design of linearised fixed-parameter power system stabilisers is violated.
This implies that a conventional power system stabiliser, based on a linearised fixed-
parameter model, cannot track the variations in the system operating conditions over

a wide range.

A conventional power system stabiliser is operated through the system transfer
function GEP(s). Frequency analyses shown in [29] for the design of the transfer
function PSS(s) of the power system stabiliser indicate that the characteristics of
GEP(s) vary with different operating conditions. * The gain of GEP(s) increases
with the generator loading and the a.c. transmission system strength. Also, the phase
lag of GEP(s) increases as the a.c. transmission system becomes stronger 4. Since
the parameters of the stabiliser are constant, the stabiliser gain fixed for the strong
system conditions can not be as high as desired by the weak system conditions, and
the damping performance under these conditions will deteriorate [29]. Therefore, a
compromise has to be made in the selection of the stabiliser gain in order to give

satisfactory performance for different operating conditions.

3This statement is made for systems having a relatively low AVR gain. Higher AVR gain may
improve the characteristics of the system transfer function [34].

4The term stronger or weaker refers here to the strength of the a.c. transmission system [30].



Furthermore, power systems are nondeterministic. Changes in the system configu-
ration, disturbances from load demands, and occurrences of unpredicted faults happen
randomly. A conventional power system stabiliser, designed in a deterministic envi-

ronment, has no means of coping with the stochastic nature of the system.

The above shortcomings associated with the conventional power system stabilisers
indicate that in order to enhance the stability and damping performance of a time-
varying nonlinear power system over a wide range of operating conditions, a power
system stabiliser must be able to identify the current system operating condition and
to adapt to the system changes on-line. A particularly useful approach to realise this
requirement is the use of adaptive control strategies for the design of power system

stabilisers.

1.5 Linear Adaptive Control in the Design of Power
System Stabilisers.

Adaptive control has been a topic of research for more than a quarter of a century.
An adaptive control system can be defined as a control system within which automatic
means are used to change the control system parameters in a way intended to improve
the performance of the closed-loop system [35]. The goal of adaptive control is to make
the system under control less sensitive to parameter variations and unmodelled dynam-
ics. As the system dynamics change, adaptive control systems attempt to sense the
changes and to make on-line adjustments to control parameters and/or control strate-
gies. Different philosophies are used in making on-line adjustments. The approaches
taken to implement each philosophy vary, as in other aspects of control system design.

Surveys of various approaches to adaptive control are given in [36]-(39].

The adaptive control approach that is considered in this thesis for the design of
power system stabilisers is the self-tuning adaptive control approach. In this approach,
parameter estimation algorithms are used to identify the system parameters on-line,

and these parameter estimates are then incorporated into the control scheme as if the



estimated parameters were the true parameters. The controller that implements the
self-tuning adaptive control scheme is called the self-tuning adaptive controller. Issues
of general interest regarding the self-tuning adaptive control approach include global
stability properties [40], persistency of excitation requirements [41], and convergence

properties [42].

In this thesis, the self-tuning adaptive control schemes that are based on linear
finite-dimensional discrete-time models are called linear adaptive control schemes. Cor-
respondingly, those that are based on nonlinear finite-dimensional discrete-time models
are called nonlinear adaptive control schemes. These definitions are necessary in order
to distinguish the adaptive linear and nonlinear control methodologies to be presented

in this thesis.

Much effort has been devoted in recent years to the application of linear adap-
tive control theory to the stabilisation of power systems. In References [43] and [44],
summaries of the approaches and developments of adaptive power system control are
presented. The emphasis in most approaches has been placed on adaptive generator ez-
citation control [45]-[67], which is based on Single-Input Single-Output (SISO) models
of the power systems. Such SISO adaptive controllers are used as either power sys-
tem stabilisers (i.e., the adaptive controller operates as a conventional power system
stabiliser to provide an auxiliary damping signal to the ordinary AVR control loop) or
excitation controllers (i.e., the adaptive controller combines the functions of the AVR
and the power system stabiliser). Research interest has also been shown in the adap-
tive generator control via both governor and exciter controls [68]-[74], where the adap-
tive controllers are based on Multi-Input Multi-Output (MIMO) models of the power
systems. Moreover, the power systems under study have been extended from single
machine systems [45,46,47,48,49,50,51,52,68,54,69,57,70,58,71,72,59,62,63,73,67,74] to
multi-machine systems [53,55,56,60,61,62,64,65,66], and research has also been carried
out in both simulation studies [45,47,49,52,53,54,55,69,56,57,58,60,61,62,64,73,65,66,74]
and laboratory experiments [46,48,50,51,68,70,71,72,59,63,67]. In the studies of those
linear adaptive power system stabilisers (both the SISO [49,50,51,53,54,56,58,59,63,64,
65,66] and the MIMO devices [70,73,74]), the dynamic and transient performance of

the power systems has been shown to be improved over the conventional power system
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stabilisers (which may not have been properly designed in some instances). Linear
adaptive power system stabilisers (or controllers) are currently being implemented in
laboratories (e.g., [70,59,67]). This represents the state-of-the-art in terms of the

design and implementation of adaptive power system stabilisers (or controllers).

An important feature of a linear adaptive power system stabiliser is that it iden-
tifies the power system dynamics continuously by operating the parameter estimation
algorithm on-line. On the basis of this up-to-date model of the system, it is then pos-
sible to ‘find’ suitable stabiliser parameters so that the control action can be tuned to
damp the oscillations that may arise from disturbances. From this point of view, a lin-
ear adaptive power system stabiliser is actually a time-varying linear controller which
is able to cope with the system nonlinearities by adjusting the estimated parameters

on-line.

Linear adaptive power system stabilisers, when used to stabilise nonlinear power
systems, are based on linearised models of the power systems. The reason for adopt-
ing linearised models for the development of adaptive power system stabilisers is for
the purpose of parameter estimation and for the development of control algorithms.
Since theories associated with linear adaptive estimation/prediction/control are well
developed, the use of linear adaptive control strategies for the design of power system
stabilisers may be relatively straightforward. However, because of the use of linearised
models, the parameters of the linear adaptive power system stabilisers have to change
in order to track the changes in operating conditions of the nonlinear power systems.
Before the parameters converge to new values, the linearised models may not accurately
represent the actual systems. Consequently, the control actions that are generated by

unconverged estimates may not give the optimal control effects.

The underlying problem may be handled by the formulation of some kind of non-
linear control strategy that exploits the nonlinear structure of the power system. Since
a power system is a nonlinear system, improvements in the control (or stabilisation) of
the system may be obtained by incorporating the nonlinearities of the system into the
control law. This is the motivation of the work of this thesis. The idea of introducing

nonlinear control schemes for the control of nonlinear dynamic systems has been rec-
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ommended by many researchers in different fields of studies [44,75]. In recent years,
nonlinear control theory, such as the differential geometric theory [76] and the direct
feedback linearisation theory [77], has been employed in the design of power system
controllers. The research reported in [78]-[87] represents the state-of-the-art in term

of the development of nonlinear controllers for power systems.

1.6 Nonlinear Optimal Control in the Design of

Power System Stabilisers.

The differential and algebraic equations describing the generating unit and the external
system of a power system possess nonlinearities which often have known forms. As
the modelling accuracy increases, nonlinearities associated with the power system of
concern can be modelled in analytical forms [3,88,6,89]. If the nonlinearities of the
system are incorporated into a control law, then the control law will have the advantage
of not requiring the controller parameters to change when the operating point of the
power system changes. From this point of view, a fixed-parameter nonlinear optimal
power system stabiliser will be able to stabilise the nonlinear power system over a wide
range of operating conditions in which the controller parameters are constant. The
control action of such a stabiliser is optimal at the new operating point immediately,
and the resulting system transition from one operating point to another is also optimal.
These are the anticipated advantages of a nonlinear optimal power system stabiliser

over a linear adaptive power system stabiliser.

Optimal control strategies have been considered in the literature for the stabil-
isation of power systems [90]-[106]. At an early stage in the design of power sys-
tem stabilisers, many studies on the utilisation of linear optimal control strategies
were carried out in order to achieve an optimum tuning of the stabiliser parameters
[90,92,93,94,95,97,99,101,104,105). Most of the results are based on the assumption that
an explicit deterministic mathematical model of the system is available. The system
model was then linearised around a chosen operating point with the system param-

eters assumed constant. By numerous off-line simulation studies, suitable weighting
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factors involved in the control law could thus be found. However, since a linear opti-
mal power system stabiliser is still based on a linearised fized-parameter model of the
nonlinear power system, the optimal control action for one operating point may not be
optimal for another. Therefore, a linear optimal power system stabiliser may have the
same deficiencies as a conventional power system stabiliser in tracking a wide range of

variations of the system operating point.

A nonlinear optimal power system stabiliser, however, can overcome the above
problem by utilising a nonlinear model that inherently represents the nonlinearities of
the power system. Subject to the provision of a valid nonlinear model, the control
action of a nonlinear optimal power system stabiliser will be globally optimal, unlike a
linear optimal power system stabiliser. This is an important consideration behind the

study of nonlinear optimal power system stabilisers.

A number of problems associated with a nonlinear optimal power system stabiliser

can be anticipated:

e Power systems are not only nonlinear but also time-varying. The system param-
eters and configuration are changing randomly. Therefore, the parameters of the
nonlinear model that is used for the calculation of the nonlinear optimal control
law are time-varying in nature. With fized parameters, the nonlinear optimal
power system stabiliser is not able to track the changes in the system parameters

and/or the system configuration.

e Since a power system is a complex nonlinear system, the derivation of a feasible
nonlinear optimal control law from the mathematical description of the power
system inevitably involves certain assumptions. If the conditions in the assump-
tions are violated, the control action generated by the nonlinear optimal power

system stabiliser is not optimal.

These problems are due to the inability of the nonlinear optimal controller to adapt
to changes in the system. It is then reasonable to suggest that the nonlinear optimal
control strategies should be replaced by the corresponding nonlinear adaptive control

strategies.
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1.7 Nonlinear Adaptive Control in the Design of

Power System Stabilisers.

The development of nonlinear adaptive control algorithms requires

e formulation of a nonlinear model of the system;
e implementation of on-line parameter estimation algorithms;

e synthesis of nonlinear control methodologies.

A survey of approaches to adaptive control of nonlinear dynamic systems in a wide

range of fields is given in [75]. It has been pointed out that [75]:

researchers have to focus their interest in the direction of special nonlinear

methods and problems which are not formal extensions of linear ones.

This feature of nonlinear adaptive control explains the reason why there is less research
activity in this area than in the area of linear adaptive control. The development of
nonlinear adaptive control algorithms for nonlinear dynamic systems is, then, one of
the recent trends in both adaptive control theory and adaptive control applications
[44]. In the field of power system control, an investigation on the design of an adaptive
excitation controller with a nonlinear control approach for a single-machine infinite-bus

power system is reported in [86].

If a nonlinear model developed for the design of a nonlinear adaptive control al-
gorithm is derived in a regression form, linear in the parameters, then the parameter
estimation algorithms that are developed for linear models can be utilised for the iden-
tification of the parameters of the nonlinear model. Moreover, if the nonlinear model
is linear in the control input, then a nonlinear optimal control law that is based on the
nonlinear model is most likely to be solved explicitly. With the availability of a suitable

nonlinear model and a solvable nonlinear optimal control law, the development of a
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nonlinear adaptive control algorithm from a nonlinear optimal control law is straight-
forward. This forms the general guideline for the design of a nonlinear adaptive power

system stabiliser.

A nonlinear adaptive power system stabiliser is expected to exhibit the following
important features that distinguish it from the corresponding nonlinear optimal and

linear adaptive power system stabilisers:

e If there is no change in the power system parameters or configuration, the nonlin-
ear adaptive power system stabiliser will behave in the same way as the nonlinear
optimal power system stabiliser. Thus it will inherently track the variations in

the system operating point without changing its parameters.

e Upon the occurrence of a change in the power system parameters or configuration,
the nonlinear adaptive power system stabiliser will behave in the same way as

the linear adaptive power system stabiliser by adjusting its parameters on-line.

e When any assumption that is used in the derivation of the nonlinear optimal
control law is violated, the nonlinear adaptive power system stabiliser will adapt
to the new environment by identifying new parameters and generating an appro-

priate control action.

It is anticipated that the combination of nonlinear models with adaptive control schemes
will provide better stabilisation of the time-varying and nonlinear power systems than

more conventional approaches.

1.8 Subject Coverage and Outline of the Thesis.

This thesis is concerned with the development of nonlinear adaptive power system
stabilisers for single-machine infinite-bus models of power systems. The studies of this
thesis will cover the areas of linear adaptive, nonlinear optimal, nonlinear adaptive, and

bilinear adaptive control in the design of such stabilisers. Both theoretical analyses and
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simulation studies will be presented for each area of study. SISO design methods will

be considered. The aims of this study are

e to explore the possibility of using nonlinear adaptive control strategies in the

stabilisation of power systems;
e to establish the nonlinear optimal/adaptive control theory relevant to the design;

e to investigate the effectiveness of nonlinear adaptive power system stabilisers
in improving the system damping performance over a wide range of operating

conditions.

For these purposes, a consistent control scheme will be used for the development of
the power system stabilisers in the above-mentioned areas. With this arrangement,
the comparisons of the performance of the different stabilisers will then provide a
meaningful basis for assessing their relative benefits and deficiencies. The conclusions
drawn from these studies will therefore provide a general guideline for future research

and the development of practical nonlinear adaptive power system stabilisers.
This thesis consists of seven chapters. The outline of the thesis is as follows.

Chapter 2 is concerned with the modelling of the single-machine infinite-bus power
system for the analysis and design of the linear and nonlinear optimal/adaptive power
system stabilisers, and simulation studies for the evaluation of the stabilisers that result

from the various control strategies.

e In Sections 2.2 and 2.3 three complete models of the nonlinear single-machine
infinite-bus power system, including the generator, the excitation system, the
governor, the steam turbine, and the transmission system, are developed from
the basic model described in Appendix A. Decisions with regard to the selection
of the models, used for the analysis and design of power system stabilisers and
for the evaluation of the stabilisers which are to be designed, are made with the

aid of the model-matching studies presented in Subsection 2.3.2. Nonlinear and
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linearised analytical models ® of the power system are derived in Section 2.4 for
the development of the power system stabilisers to be undertaken in Chapters 3

to 6. The models developed in this chapter are summarised in Subsection 2.4.3.

e In Section 2.5 the selection of a suitable stabilising signal for the power system
stabilisers that will be designed in this thesis is discussed using participation

factor analyses [107].

o In Section 2.6 the concepts of controllability and observability associated with
the models developed in this chapter are briefly introduced, and the aspects of
the system realisation and input-output properties are discussed. This facilitates
the development of the linear adaptive power system stabiliser to be designed in

Chapter 3.

In Chapter 3 the design of SISO linear adaptive power system stabilisersis discussed:

e In Section 3.2 a linearised nominal model ¢ is derived from the simplified linearised
analytical model given in Subsection 2.4.2 for the development of linear optimal

and adaptive control laws.

e In Section 3.3 linear stochastic optimal control laws are developed from a general
form of the cost function. Aspects of the use of different linear stochastic opti-
mal control schemes for the design of linear adaptive power system stabilisers are
discussed. The weighted minimum variance control scheme is selected as the con-
trol scheme for the development of the corresponding nonlinear optimal /adaptive

power system stabilisers in Chapters 4 to 6.

e In Sections 3.4 and 3.5 the linear stochastic adaptive weighted minimum vari-
ance control algorithm is developed from the generalised minimum variance con-
trol algorithm, and a linear adaptive weighted minimum variance power system

stabiliser is proposed.

5See Section 2.4 for the definition of an “analytical model” used in this thesis.

6See Section 3.2 for the definition of & “nominal model” used in this thesis.
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o In Section 3.6 a series of simulation studies is defined to form a systematic method
for comparing the performance of the various stabilisers that will be designed
in this thesis. The performance of the proposed linear adaptive power system
stabiliser is then assessed by comparison with a robust conventional power system
stabiliser (designed in Subsection 3.6.2), and is taken as the reference for the
evaluation of the performance of the nonlinear optimal/adaptive power system

stabilisers in Chapters 4 to 6.

Chapters 2 to 3 provide the basis upon which the studies of the nonlinear opti-

mal/adaptive power system stabilisers are presented in later chapters.

In Chapter 4 the design of SISO nonlinear optimal power system stabilisers is dis-

cussed;

e In Section 4.2 a nonlinear nominal model is derived from the nonlinear analytical
model given in Subsection 2.4.1. This model describes the nonlinear relationship
between the control input and the electrical torque (or power) output of the
generator, and is used for the development of the nonlinear optimal and adaptive

control laws.

e In Section 4.3 a SISO nonlinear stochastic generalised minimum variance control
law is developed and its closed-loop stability conditions are established (Sec-

tion E.1 of Appendix E).

e In Section 4.4 a nonlinear weighted minimum variance control law and the suf-
ficient condition for its global closed-loop system stability (Section E.2 of Ap-
pendix E) are described. A nonlinear optimal power system stabiliser which is
based on the nonlinear weighted minimum variance control scheme is then pro-

posed.

e In Section 4.5 the performance of the proposed nonlinear optimal power system
stabiliser is evaluated by comparison with the performance of the linear adaptive
power system stabiliser proposed in Chapter 3. The effectiveness of the nonlinear

control strategy in the design of power system stabilisers is investigated.
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Chapter 4 establishes a valid basis for the further development of the nonlinear adaptive

power system stabilisers in Chapters 5 and 6.

In Chapter 5 the design of SISO nonlinear adaptive power system stabilisers is

discussed:

e In Section 5.2 parameter estimation algorithms for the nonlinear nominal model
are proposed and convergence analyses are given (Sections G.1 and G.2 of Ap-

pendix G).

¢ In Section 5.3 nonlinear adaptive weighted minimum variance control algorithms
are derived and theoretical proofs of the convergence are presented (Section G.3
of Appendix G). A nonlinear adaptive weighted minimum variance power system

stabiliser is proposed.

e In Section 5.4 the evaluation of the performance of the proposed nonlinear adap-
tive power system stabiliser is conducted through simulation studies. The perfor-
mance of the nonlinear adaptive (Chapter 5) control strategy is compared with
that of the nonlinear optimal (Chapter 4) control strategy. The improvement in
the system damping performance associated with the nonlinear adaptive (Chap-
ter 5) control strategy over that with the linear adaptive (Chapter 3) control

strategy is demonstrated.

Chapter 5 provides an ideal design of a nonlinear adaptive power system stabiliser.

In Chapter 6 the simplification of the ideal nonlinear adaptive power system sta-
biliser proposed in Chapter 5 is discussed, and the design of a SISO bilinear adaptive

power system stabiliser is presented:

e In Section 6.2 the predicted output of the nonlinear nominal model is decom-
posed, and the dominant components in the system dynamic and steady-state
responses are extracted. Simplified versions of the nonlinear adaptive power sys-

tem stabiliser proposed in Chapter 5 are then developed in Section 6.3.
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e In Subsection 6.4.1 a bilinear nominal model which gives the simplest nonlin-
ear relationship between the control input and the electrical torque (or power)
output is derived. Bilinear optimal and adaptive control strategies are discussed
in Subsections 6.4.2 and 6.4.3. A bilinear adaptive weighted minimum variance

power system stabiliser is then proposed.

e In Section 6.5 the assessment of the performance of the bilinear adaptive power
system stabiliser is conducted through comparisons with the linear and nonlinear
adaptive power system stabilisers proposed in Chapters 3 and 5, respectively.
The validity of the bilinear adaptive power system stabiliser for the development

of a real-time nonlinear adaptive power system stabiliser is verified.

Chapter 6 provides a basis for the future development of a practical nonlinear adaptive

power system stabiliser.

In Chapter 7 general conclusions regarding the development of the new nonlinear
optimal/adaptive control strategies for the design of power system stabilisers are drawn.
The features of each power system stabiliser developed in this thesis are highlighted.
From these conclusions and the experience obtained through this research, a number

of recommendations are made for future research.

1.9 Original Contributions.

To the author’s knowledge, the development of the nonlinear optimal control (Chap-
ter 4), the nonlinear adaptive control (Chapter 5), and the bilinear adaptive control
(Chapter 6) strategies in the design of power system stabilisers, presented in this thesis,
are original. The original contributions are listed in Sections 4.1, 5.1, and 6.1, and

are highlighted as follows:

1. Two new models, namely the nonlinear nominal model and the bilinear nominal
model, novel in the sense that they inherently represent the nonlinear relationship

between the control input and the electrical torque (or power) output, are derived
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in Chapters 4 and 6 from the mathematical descriptions of the nonlinear power
system outlined in Chapter 2. These models are linear in the parameters and in
the control input. The establishment of these models provides a useful means
for the development of a variety of nonlinear control laws for the design of power

system stabilisers.

2. Two new nonlinear optimal control laws (namely the generalised minimum vari-
ance control law and its special case, the weighted minimum variance control
law) are developed from a general form of the cost function in Chapter 4. The
associated global closed-loop stability properties are established theoretically. A
number of nonlinear adaptive control algorithms, in the sense of different tuning
strategies, can be developed from proper selections of the weighting polynomials

in the cost function.

3. Two new nonlinear adaptive weighted minimum variance control algorithms are
derived in Chapter 5 and the theoretical proofs of the convergence of these al-
gorithms are given. This completes the theoretical development of the nonlin-
ear weighted minimum variance control scheme based on the nonlinear nominal

model.

4. Simplifications necessary for the practical implementation of the nonlinear adap-
tive control algorithms are discussed in Chapter 6. New simple bilinear opti-
mal and adaptive control strategies in the design of power system stabilisers are
studied. A new bilinear adaptive weighted minimum variance control strategy,
incorporating a novel protection function that prevents ineffective control actions

when large transients of the power system occur, is developed.

5. Three new power system stabilisers based on the same (weighted minimum vari-
ance) control scheme but different (nonlinear optimal, nonlinear adaptive, and
bilinear adaptive) control strategies are proposed and evaluated in Chapters 4,

5, and 6.

Systematic evaluations and comparisons of the performance of the power system

stabilisers designed in Chapters 4 to 6, against an identical reference (established by
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a valid linear adaptive power system stabiliser proposed in Chapter 3), are conducted
through simulation studies. Conclusions are drawn regarding the benefits and deficien-
cies of the different control strategies, including linear and nonlinear as well as optimal
and adaptive control, in the design of power system stabilisers. Of the power system
stabilisers studied in this thesis, the bilinear adaptive power system stabiliser is the
most significant one because it maintains excellent dynamic and transient performance
while using a minimum number of feedback signals which are measurable in a practical

situation.

Apart from the above original contributions, this thesis makes several ertensions
to previous work (shown in the literature) on aspects of power system modelling and
the design of linear adaptive power system stabilisers. These extensions are listed in

Sections 2.1 and 3.1, respectively.



Chapter 2

Power System Modelling.

2.1 Introduction.

In this chapter the modelling of the synchronous generator and power system for sim-
ulation studies involving the linear and nonlinear adaptive control of generating units

is discussed.

In an electric power network, each individual generating unit is a nonlinear multi-
variable system. The characteristics of a power system vary with the system loading
conditions imposed on the nonlinear generating unit. On the one hand, to analyse the
dynamic performance of such a system, it is necessary to know, in detail, the system
configuration and to provide an adequate mathematical description of the system under
study. On the other hand, due to the difficulties associated with the field testing and
the real-time implementation in laboratories, a practical and effective method for eval-
uating the system dynamic performance is through simulation studies of the system.
This emphasis on simulation also requires an adequate representation of the system.
The provision of suitable models of power systems is, therefore, an important feature

in the investigation of system performance and the development of controllers.

Numerous mathematical models of generating units and power systems have been

discussed in the literature [108]-[120]. The representations of components in a power
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system have become increasingly detailed and accurate in order to meet the needs
of modern technologies in system operation and control [88]. Because power systems
differ considerably in practice, it is impossible to devise a universal model that will
satisfy all systems. It is, therefore, necessary to specify the components in the power
system under study and to make clear the purposes for which the model of the power

system is used.

In this chapter mathematical models of a power system consisting of a synchronous
generator driven by a steam turbine for use in dynamic performance analyses and
simulation studies are discussed. Attention will be paid to a single machine power
system connected to a very large power network through two parallel transmission
lines, as shown in Fig. 2.1. Such a system is usually called a Single Machine Infinite
Bus (SMIB) power system. Although a SMIB power system representation may not

be appropriate to a practical power system, this type of model

e is simple for the purpose of assessing control strategies;
e is sufficient to establish basic control effects as well as feasibilities;

e provides useful insight and understanding of the system dynamic behaviour.

In the literature the SMIB power system representations have been widely utilised
for steady-state analysis (e.g., [7,8,121]), the design of power system stabilisers (e.g.,
[19,29,54]), and so on. The concepts developed by using the SMIB models have been
extended to multi-machine power system analyses (e.g., [53,55,122,34]).

A functional block diagram of a synchronous generator and steam turbine gener-
ating unit is illustrated in Fig. 2.2. Four basic components, which are important to
power system dynamic studies, are considered for the system modelling. They are
the steam turbine, which converts thermal energy to mechanical power; the governor,
which controls the flow of steam to the turbine; the generator, in which the mechanical
to electrical energy conversion takes place; and the exciter and voltage regulator, which
control the terminal voltage output. In Appendix A detailed mathematical models of

the components shown in Fig. 2.2 are described.
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Figure 2.2: A synchronous generator and steam turbine generating unit.
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The organisation of this chapter is as follows. Three simplified synchronous gen-
erator models, developed from the basic model of the synchronous generator given in
Section A.l of Appendix A, are introduced in Section 2.2. The resulting nonlinear
models of the SMIB power system for simulation studies are presented in Section 2.3.
In Section 2.4 analytical models ! of the nonlinear power system for the development
of linear and nonlinear optimal/adaptive power system stabilisers are described. In
Section 2.5 the selection of suitable stabilising signals for the design of power system
stabilisers is discussed. Finally, for the purpose of establishing theoretical foundations
for the modelling analysis of the linear adaptive power system stabiliser, concepts of
controllability and observability related to the models developed in this chapter are

briefly discussed in Section 2.6.

The previous work described in the literature is extended in this chapter in the

following aspects:

1. A systematical derivation of simplified models of the synchronous generator from
the basic machine equations is given in Section 2.2. This procedure differs from
those described in the literature, and provides insight into the mathematical

description of the generator/tie-line system.

2. The three nonlinear SMIB power system representations are presented and com-
pared in Section 2.3. The effect of increasing the value of the rotor damping
coefficient in the machine equation of motion in order to compensate for the
omission of damper windings is demonstrated. This work establishes a sound
foundation for using a low-order nonlinear model to design a system controller

which in practice controls a higher-order system.

3. Nonlinear and linearised analytical models of the power system are proposed in
Section 2.4. These models provide mathematical bases for the implementation of
the linear and nonlinear optimal/adaptive power system stabilisers in Sections 3.2

and 4.2.

1The definition of an “analytical model” will be given in Section 2.4.
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4. The preferred choice of the electrical torque as the stabilising signal for the design
of power system stabilisers is discussed in Section 2.5 through the analysis of
participation factors of the system. This knowledge will be used to construct
the linear and nonlinear optimal/adaptive power system stabilisers which are

discussed in Chapters 3 to 6.
Two types of SMIB power system models will be developed in this chapter, namely,

SGM (Simplified Generator Model): this model represents only the synchronous gen-
erator and the tie-line; representations of the excitation system, the governor,

and the steam turbine are excluded (see Section 2.2).

CSM (Complete System Model): this model gives a ‘complete’ system description which
contains not only the synchronous generator and the tie-line, but also the com-

ponents omitted from the SGM type (see Section 2.3).

2.2 Simplified Nonlinear Models of the Synchronous

(zenerator.

In this section:

e three simplified nonlinear models of the synchronous generator are systematically

derived from the basic machine equations given in Section A.l of Appendix A;

e the selection of appropriate models for the simulation studies and for the devel-

opment of adaptive power system stabilisers is discussed.

In a power system, the system dynamic behaviour is determined mainly by the
characteristics of the synchronous generator, its loading condition (P, Q:, V;), and
the external network parameters. A basic representation of a synchronous generator

connected to an infinite bus through a double-circuit transmission line is given by
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(A.1)-(A.12) of Appendix A. This model includes seven first-order nonlinear differential
equations and a set of simultaneous nonlinear algebraic equations. In addition to these,
other equations describing the excitation system, the governor, and the steam turbine
must be included in the system mathematical model. Thus a complete mathematical
description of a power system may be complex, and simplifications are often made in

modelling the system.

A variety of models of the synchronous generator have been discussed in the liter-
ature [117,118)]. In extensive analyses and comparisons based on system performance,
the effect of the various degrees of approximation commonly used in the simplifica-
tion procedure has been examined in detail [117,123]. Such studies provide guidelines
upon which the three simplified nonlinear models of the synchronous generator will be
selected. In contrast to the previous work in the literature, the simplified generator
models described in this section are a result of adopting a different sequence of approxi-
mations, forming a systematic way of developing the simplified models of the generator
and the transmission system. The three simplified generator models are listed in or-
der of decreasing complexity. This is achieved by making a number of simplifying

assumptions which are introduced sequentially, as described below.

Step 1:

Eliminate the damper winding variables Ip(t), Io(t), Ap(t), and Ag(t) and the field cur-
rent Ir(t) from the basic synchronous machine equations (A.1)-(A.2) of Appendix A.

The flux linkage equations and the voltage equations of this machine model are rear-

ranged as
Aq(t) Ga(p) O 1u(t) Ha(p) .
Aty | =] 0 Glp) L) i B Bl OB CRY
Ar(t) Gr(p) 0 " Hr(p)
and
Va®) | _ | r 0| W) | 1 Aa(t) | | w(t)Aq(t) (22)
Vy(®) 0 r || LO ] @[ A0)] | —w®r ] '
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The operational functions in (2.1) are of the form

1+ p(7as + 745) + p2Td4Td6L

G =
a(p) 1+ p(7q1 + Ta2) + P21 743 ¢
14 proe
Gq(P) a 1+ P:I Lq:
q
1+ p7ar
G = L,
r(p) 1+ p(7a1 + 7a2) + P*Tar7as ¢
and
1+ prar
H = )
(p) 1+ p(ta1 + Ta2) + P2TanTas
1 L
HF(p) _ + D743 F

1+ p(ta1 + Ta2) + P*7arTas Lma’

where p is the differential operator denoted as <. ? Similar expressions for Gu(p), G,(p),
and Hy(p) can be found in the literature, e.g., in [117,125], while the expressions for
Gr(p) and Hp(p) are derived in Appendix B. The time constants in the above equations

are defined as

>
h

oy

o

=

Td1

1>
h

O

~~

S

=

Td2

WoT D
a 1 L3
Tiz = oD (LD I )’ (2.5)
A 1 L%,
= Lp——2
Td4 WoTF ( F Ld 3
A 1 L?nd
Tds = WoT'D (LD Ld ]
- é 1 f;;) B L,znd(Ld + LF) — QL;L{
6 wor'p = LdLF — Lfnd )
A 1
Ty = (Lp — Lya), (2.6)

1
2Precise definitions of the symbols p and — are given as [124]
p

2
20 pypatdl

and

1
OO / y(t)dt + o

where yo represents the initial value of the integral.
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Lq

worQ ’

1 L?
Ly — 2ma
WOTQ(Q Lq)’

where the inductances and resistances are given in their per unit values.

1>

1>

qu

Step 2:

Consider that, in per unit, rp > rp while Lp and Lg are of similar magnitude [3]. It

is assumed that

Assumption 2.2.1

Td1 + Td2 R Ta1 + Td3, (2.7)

Tda + Tas = Taq + Tis. (2.8)

The operational functions in (2.1) are then simplified to read

(1 +pry)(1 + p7y)
G R~ ; <L, 2.9
«P) A (L pr) (29)
1 +p7'"
Gq(p) = 1_-|-p7’q’; b (2.10)
q
1+ pmp
G m ; a~Lmd, 2.11
O e A (211)
1+ p1p
Hy(p) =~ : _— 2.12
o) N T+ ) (2.12)
1 Lr
H N —— .
F(p) 1 +pTd0 Lmd (2 13)

where the d, g-axis subtransient and transient time constants as well as the d-axis

damper leakage time constant are defined as [117,3]
A v A rA
Tago = Td1s Tgo=Td3s Tg= Tdd

" A A "oA
T4 = Td6s TpD = T47, qu =Tg41,

" A
Tq = qu.
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Step 3:

Introduce the per unit d, q-axis subtransient and transient inductances [3]

H "

'
r AT, n AT, ' naA T
Ly =tLs, Ly=—Ly, Ly2-FL,
Tdo Tdo Tq0

and the relationship between per unit stator EMF’s and rotor quantities [3]

Erp(t) & L2y, E(t) 2 %Ap(t).
TR F
Equation (2.1) is rewritten as
Aa(t) Ga(p) 1u(t) Ha(p)
Ar:(t) = _0 Gy(p) [Iq(t) _0 Erp(t) (2.14)
E,(t) Gr(p) 0 Hr(p)

where G4(p), G4(p), and Hy(p) are described by (2.9), (2.10), and (2.12) respectively;
Gr(p) and Hr(p) are related to Gr(p) (2.11) and Hp(p) (2.13) through

L,

GF(P) e T;dGF(p)’
— L,
Hr(p) = 7= Hr(p).
The operational functions in (2.14), when expanded into partial fractions, become
Al Ag "
G = ; -+ L, 2.15
W = T, T T .
L - L” "
Gilp) = Tt+Iy
q
— B As Ag
Ul = T T (210
As Ay
H = t "o A
o(p) 1+ p7y0 ! 1+ prgo (217)
— 1
_H = —T-, .
F(p) 1+prp (2.18)

where the constants A;(i = 1,2, ...,6) are

I "
’

Ay = (La—Ly)2—1, (2.19)

Tdo — Tdo

Ay = (Ld - LZ) - (Ld - L:z) -T',;—O:—Tig", (2:20)

Tao — Tdo
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A3 = —'"—"’Tfﬁ =2 (221)

Tio = Tdo
Ay = 1- M, (2.22)
Tao — Tdo
I} Tio — TD
As = (La—Ly) P—r, (2.23)
( d) Tgo — Tdo
[ TD . TdO
As = (Lgq—Lg) ——- (2.24)
( ) Tio — Tdo

Step 4:

Note that usually 75 3> 7y, Ty > Ty, and Ty > mp while 7, Ty, and Tp are of the

same order [117]. It is further assumed that

Assumption 2.2.2

" ! "

7';0 — Ta = Tdo — Tdo» (2.25)
Too = TD R Tap — Taor (2.26)
The parameters A;(i = 1,2, ...,6) in (2.19)-(2.24) are then simplified to read

Ay~ Ly—L,, Ay~ L,—L;, A3 =1,
A4%0, A5%Ld—L:i, AGWO,

so that the subtransient components in the operational functions Gr(p) (2.16) and
H,(p) (2.17) are eliminated. Gp(p) is now the transient component of Ga(p) (2.15),
while H r(p) (2.18) and Hy(p) become identical.

Step 5:

Define the per unit subtransient stator flux linkages as [3]
Ay(t) 2 Ag(t) — LTa(t), (2.27)

Al(t) & A (t) = LI (1), (2.28)
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from which the per unit d, g-axis voltages behind the subtransient reactances are

introduced [3]
Ej(t) 2 —w(t)A, (1), (2.29)

E!(t) £ w(t)Ay(t). (2.30)

Hence, five first-order differential equations that represent the machine electro-magnetic

relationship are re-formed from (2.14) and (2.2), so that

raoka(t) = (La—Ly) L(t) + Erp(t) — E,(t), (2.31)
() = (Ly— Ly) Iu(t) + By(t) + mao By (1) — Aq(2), (2.32)
aoha(t) = (L= Ly) I(t) — Ay (), (2.33)
-i—oAd(t) = rI(t) —w(®AL(t) — Liw(®)L(2) — Valt), (2.34)
u.f—OAq(t) = CrL(t) 4 w(®ALE) + Liw(t)La(t) - Vy(t): (2.35)

Substituting for Ag(t) and A,(t) from (2.27) and (2.28) into the electrical torque equa-
tion (A.6) of Appendix A yields

T,(t) = AS(OI,(8) — Ay (@)Talt) + (L = L) L) (o). (2.36)

Remark 2.2.1 From Step 1 to Step 5, only two numerical approzimations
(eqns. (2.7)-(2.8) and (2.25)-(2.26)) are introduced. The errors due to Assumptions 2.2.1
and 2.2.2 are not significant [117].

Step 6:

Note that under stable dynamic conditions the transformer voltage terms (wlol'\d(t) and
-u%()-Aq(t)) in the machine stator voltage equations (2.34) and (2.35) are numerically
small compared to the speed voltage terms in these equations [118,123,3]. Further-
more, the time constant Teéfﬁz associated with transmission line dynamics is usually

small compared to those of the machine [126]. Two major assumptions are therefore

introduced.
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Assumption 2.2.3 In the stator voltage equations (2.34) and (2.35)
| I
-—Ad(t) =~ 0, —Aq(t) ~ 0.

wo Wwg

Assumption 2.2.4 The transmission line dynamics can be neglected.

Application of these two assumptions to (2.34)-(2.35) and (A.9)-(A.10) of Appendix A

results in
Va(t) = —rly(t) — w(t)A,(t) — Lyw(t) (1), (2.37)
Vo(t) = —rLy(t) +w(t)Ag(t) + Lw(t)Ia(2), (2.38)
and
Va(t) = —Vio sin 6(t) + Relu(t) + Low(t) (1), (2.39)
V,(t) = Vo cos 8(t) + ReI,(t) — Lew(t)Ly(t). (2.40)

A simplified model, called the Simplified Generator Model 1 (SGM1), is obtained
by combining the third-order electro-magnetic characteristics (eqns. (2.31)-(2.33) and
(2.36)-(2.38)) with the second-order shaft dynamics (eqns. (A.3)-(A.5) of Appendix A),
together with the transmission line characteristics (eqns. (2.39)-(2.40), (A.8) and (A.11)-
(A.12) of Appendix A). The order of the synchronous generator model is now reduced
from seven to five, while the two inherent nonlinearities, the product nonlinearity and
the trigonometric nonlinearity, associated with the basic machine representation (A.1)-

(A.12), are still retained.

Step 7:

In this thesis the design of stable, relatively well-damped shaft dynamics is of concern.
Under such conditions, the shaft speed w(t) (in rad/s) deviates, typically, from the
synchronous speed wp (in rad/s) by less than 2%. Assume, therefore, that

Assumption 2.2.5 In the machine voltage equations, in per unit,
w(t) = L. (2.41)
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The per unit machine and transmission line reactances are thus numerically equal to
the corresponding per unit values of the inductances, so that these parameters become
independent of frequency. Also, the machine electrical torque 1.(t) and mechanical
torque T}, (t) are numerically equal to the machine electrical power Pe(t) and mechanical
power P,,(t), respectively. Furthermore, the subtransient stator flux linkages A} (t) and
A;’ (t) can be replaced by the commonly-used subtransient voltages E}(t) and E;’(t),
according to their definitions in (2.29) and (2.30). Consequently, the equations of the
SGM1 reduce to

TEl(t) = (Xa— X)) Li(t) + Erp(t) — E(t), (2.42)
Tl () = (Xi—Xg) L) + Ey(t) + a0 Ey(8) = B, (1), (2.43)
roBa(t) = — (X, - X]) I(t) - B3(), (2.44)
Vi(t) = —rIy(t) + E;(t) — X, I,(t), (2.45)
V,(t) = —rI(t)+E,(t) + X L(t), (2.46)
and
T.(t) = Ey()I(t) + E, ()L (t) + (Xi = X, ) La(t)1,(2), (2.47)
Ton(t) = Pa(t), (2.48)
Va(t) = —Vio sin 8(t) + R 1a(t) + X1, (t), (2.49)
V,(t) = Vao cos8(t) + ReI,(t) — XeIu(t). (2.50)

The model described by equations (2.42)-(2.50), (A.3)-(A.4), (A.8), and (A.11)-(A.12)
is called the Simplified Generator Model 2 (SGM2). Although the SGM2 is of the same
order as the SGM1, some product nonlinearities in the equations of the SGM1 become
linear expressions in the SGM2 as a result of applying Assumption 2.2.5 (e.g., the
Lew(t)I,(t) product in (2.39) becomes a linear expression X.I,(t) in (2.49)). However,
as w(t) usually deviates from its nominal value by less than 2%, the elimination of
some machine nonlinearities caused by the introduction of Assumption 2.2.5 into the
machine representation may be considered insignificant [3]. Note that in the machine
equation of motion (A.4), w(t) is retained as a state variable; Assumption 2.2.5 is used

only to simplify certain terms in the relevant machine equations.

34



Remark 2.2.2 A version similar to the SGM2 is called the E” model in [3] in which
the two numerical assumptions (Assumptions 2.2.1 and 2.2.2) are not involved. Like-
wise, the SGM2 is also called machine representation 4 in [117] in which a further

"

) " ) B .
assumption, X; = X, is sometimes included.

Step 8:

Consider the case in which the effect of the damper windings on the transient response
is small enough to be negligible or may be compensated for by increasing the value
of the rotor damping coefficient D in the machine swing equation (A.4) [3]. Another

assumption, as given below, can be introduced.

Assumption 2.2.6 The machine amortisseur effects are neglected.

This assumption is equivalent to assuming that in (2.43) and (2.44)

" "

TdO ~ 0, qu ~ 0.

Accordingly, the machine equations (2.43)-(2.47) become the simple algebraic equations

Va(t) = —rla(t) - Xqu(t)’ (2.51)
Vy(t) = —rI(t) + Xala(t) + Ey (), (2.52)
T(t) = E,()1,(t) + (Xy - X,) L(D)T(2), (2.53)

while the other equations ((2.42), (2.48)-(2.50), (A.3)-(A.4), (A.8), and (A.11)-(A.12))
of the SGM2 stay unmodified. As a result of Assumption 2.2.6, the order of the
generator model is reduced from five to three, so the simplification can be viewed as
significant. However, the main nonlinearities inherent in the original machine charac-
teristics are still retained. On the other hand, since increasing the value of the rotor
damping coefficient D can compensate for the omission of damper windings [3], the
error due to Assumption 2.2.6 can be minimised. This simplification will be illustrated

in Subsection 2.3.2.
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Remark 2.2.3 From this step, a simplified generator model (represented by (2.51)-
(2.58) and equations (2.42), (2.48)-(2.50), (A.3)-(A.4), (A.8), and (A.11)-(A.12) of
the SGM2) is obtained. The same expression as for this simplified generator model can
be obtained directly by eliminating Ip(t) and Io(t) in the basic machine equations (A.1)-
(A.2) (resulting in the E:l model in [3]) and then applying Assumptions 2.2.3-2.2.5. In

[117] this generator model is referred to as machine representation 2.

Step 9:

Note that the voltage drops across the resistances of both the generator stator windings
and the transmission lines are normally small compared to those across the reactances.

Finally, it is assumed that

Assumption 2.2.7 The generator stator winding resistance and the transmission line

resistance can be neglected.

The machine stator and line voltage equations (2.51)-(2.52) and (2.49)-(2.50) are then

represented by

Vat) = —X, I, (1), (2.54)
Vy(t) = Xylu(t) + E(2), (2.55)
and
Vi(t) = Vi sin 8(t) + X1, (t), (2.56)
V,(t) = Vio cos§(t) — X Iy(t). (2.57)

These equations ((2.54)-(2.57)), together with (2.42), (2.48), (2.53), (A.3)-(A.4), (A.8),
and (A.11)-(A.12), form a model which is called the Simplified Generator Model 3
(SGM3).

In the studies of this thesis, the SGM1 is used as the benchmark model of the syn-
chronous generator/tie-line system for the analysis of the system dynamic behaviour.
This is because the SGM1 most closely represents the basic model of the synchronous

generator given by (A.1)-(A.12) as explained in the following. Recall that the SGM1
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results from neglecting the time-derivative terms in (2.34)-(2.35) and (A.9)-(A.10) and
including Assumptions 2.2.1 and 2.2.2. In [117] it is stated that neglecting the time-
derivative terms of d, g-axis stator flux linkages in the machine voltage equations (2.34)
and (2.35) may lead to a less stable system response than that observed in tests on an
actual system under severe fault conditions; nevertheless the errors are still not signif-
icant [118,3]. It is also pointed out in [123] that neglecting the time-derivative terms
in the differential equations (A.9) and (A.10) of the transmission system is generally
justified on the basis of reducing computational effort. The justification for adopt-
ing the SGM1 as the benchmark instead of using the basic seventh-order generator
model (A.1)-(A.12) is based on the trade-off between the use of a more accurate model
and the computational burden that is involved. It is also based on the fact that the
studies in this thesis are concerned with the investigation and comparison of system
performance of the same model with different control methodologies. Therefore, in-
accuracies introduced by using the SGM1 as the benchmark model for the synchronous
generator/tie-line system will not significantly affect the analysis and design of system

controllers, nor the evaluation of system dynamic behaviour.

A distinct feature of the SGMI is that it retains the shaft speed as a time-varying
quantity in the machine voltage equations and in the power and torque equations.
Consequently, time-varying parameters of the form Lw(t) in the generator and the
transmission line equations are retained in this model. The SGM1 also includes all
the product nonlinearities in the model equations. Omitting some of the product
nonlinearities in Assumption 2.2.5 results in the SGM2. The influence of adopting As-
sumption 2.2.5 on machine modelling is investigated in Subsection 2.3.2 by comparing
the system performance of the SGM1 and the SGM2 at various operating conditions
(see Remark 2.3.2(1)).

The SGMS3 is characterised by the simplicity of its equations. In this thesis it is an
important machine model for the analysis and design of power system stabilisers. The

use of this model is based on the following considerations:

(1) Modern control strategies rely on the mathematical description of the system for

the development of control laws. When such control strategies are considered in
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the design of power system stabilisers, it is necessary to employ a simple model of
the synchronous generator in order to avoid the complexities involved with a high-
order representation [123]. This argument has been supported by the previous
work on the linear optimal control [90,91,92,94,97,98,99,101}, nonlinear optimal
control [127]-[132], and linear adaptive control {45,47,58,73] of power systems. It
will be further supported by the studies of the nonlinear optimal and adaptive
power system stabilisers to be presented in this thesis. The use of a simple model
will be justified in Chapters 4 and 5 in which issues such as closed-loop system
stability of the nonlinear optimal control laws and convergence analysis of the

nonlinear adaptive control algorithms are considered.

(2) The system time response of the SGM3 closely matches that of the benchmark
(SGM1) by appropriately adjusting the rotor damping coefficient D in the ma-

chine equation of motion (see Subsection 2.3.2).

For the above reasons, the SGM3 is used for the assessment and comparison of the
controller performance. However, with a final form of the controller design, the perfor-
mance is evaluated with the SGM1 to ensure its validity (see Subsections 3.6.3, 4.5.3,
5.4.3, and 6.5.3). It is also important to point out that, though simple, the SGM3

retains the basic nonlinear characteristics associated with the basic machine equations.

2.3 Nonlinear SMIB Power System Models for Sim-

ulation Studies.

In this section:

e three nonlinear SMIB power system models are presented; each model combines
one of the simplified generator/tie-line models described in Section 2.2 with those
of the excitation system, the governor, and the steam turbine as described in

Appendix A;
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e comparisons of system dynamic performance of the three nonlinear SMIB power

system models are given;

o the effect of increasing the value of the rotor damping coefficient D as compen-

sation for the omission of damper windings is demonstrated;

e the power system models used for the analysis and design of power system sta-

bilisers and for the evaluation of the designed stabilisers are introduced.

The layout of this section is as follows. Mathematical descriptions of the three
nonlinear SMIB power system models are given in Subsection 2.3.1. Simulation studies
of the system time response are conducted in Subsection 2.3.2, where conclusions on
the choice of models are drawn from comparisons of the dynamic performance of the

three models.

2.3.1 The Development of the Complete System Models.

In choosing adequate representations of the excitation system, the governor, and the
steam turbine to form a complete mathematical description of the SMIB power system,
it is desirable to select appropriately simple models of these components to represent the
limiting nonlinearities and the associated dynamic performance. There is little benefit
in introducing detailed models for these components if some significant simplifications
of the generator/tie-line models are also implemented. For this reason, simplifications
in modelling the excitation system, the governor, and the steam turbine have been made
in Assumptions A.2.1-A.2.3 and A.3.1-A.3.2 of Appendix A to match the simplified

generator/tie-line models proposed in Section 2.2.

The use of the simplified models for these components is based also on the con-
sideration that the comparison of system dynamic performance will be conducted in
this thesis with the same models of these components. This approach is similar to
that expressed in Section 2.2 in which the use of simplified generator/tie-line models

is justified.
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In the following, three nonlinear SMIB power system representations which corre-
spond, seriatim, to the three simplified generator/tie-line models defined in Section 2.2,
and which include the additional components, are developed. To provide a compact
mathematical description of the resulting three complete system models, a general form

of a nonlinear, continuous-time, expanded state-space representation is defined as

X(t) ®(X(t), 4(t), Ur(t))
0 |= w(X(1),Z(t) |- (2.58)
0 E(X(t), 4(t), Ur(t))

Here, X(2) is the system state vector, Z(t) is the system auxiliary (algebraic) variable
vector, and Uy(t) is the system input vector. The dimensions and/or the definitions
of X(t) and Z(t) vary with the different generator/tie-line models, while the definition

of Uy(¢) is common to all three system models, i.e.,
. A T
Us(®) 2 | Pros(t) Viur®) | (2.59)

where the superscript T' denotes transpose. In general, the function ®(X(¢), Z(t), Ug(t))
in (2.58) is a linear function of X(t), Z(t), and Uy(t), expressed as

B(X(t), Z(t), Up(t)) = BxX (1) + BzZ(t) + BUy (1) (2.60)

where ®x, @z, and B are all constant matrices. The functions ¥(X(t),Z(t)) and
E(X(t),Z(t), Ur(t)) in (2.58) are vector-valued, nonlinear, algebraic functions that
describe the nonlinear characteristics of the system. The product nonlinearities and
the trigonometric nonlinearities inherent in the synchronous generator and the tie-line
are formulated in W(X(t),Z(t)), while the nonlinearities caused by limiting in the
excitation system and the governor are expressed in E(X(¢),Z(t), Uy(t)). The latter

has the same structure for the three complete system models, i.e.,

Ep;)(f,) —Nfi
E(X(t),Z(1),Ur(t)) = | Pg(t)— Nf, (2.61)

Pey(t)—Nfs
where N f1, N f,, and N f3 are the saturation functions given in the right-hand side of
(A.14), (A.16), and (A.18) of Appendix A. Therefore, for each of the nonlinear power
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system representations addressed below, only ®x, ®z, B, and ¥(X(t),Z(¢)), together
with X(¢) and Z(t), need to be specified.

Based on the general form of the state representation (2.58), three nonlinear system

models are defined as follows:

Complete System Model 1 (CSM1): the synchronous generator and the tie-line
are described by the SGM1; the models for the excitation system, the governor,
and the steam turbine are given by (A.13)-(A.24) of Appendix A.

In the CSM1 the state vector X(t) and the auxiliary variable vector Z(t) are
defined as

X(t)= [ 60) w®) Ej©) Aj® A®) Va® Povl®) Pur®t) Pret) Por(t) |
(2.62)

and
_ T
Z(t) = [I,,(t) L) T.(t) Vi(t) Twm(t) Erp(t) Psx(t) PGV(t)] . (2.63)

The matrices ®x, ®z, and B in (2.60) are given by

0w 0 0 0 0 0 0 0 0
D
0 -5 0 0 0 0 0 0 0
0 0 = 0 0 0 0 0 0 0
Taa
0 0 -+ 3 o0 0 o 0 0 0
Tao Tao d0
0 0 0 | — 0 0 0 0 0
®x = 4 , (2.64)
0 0 0 0 0 - 0o o0 0 0
A
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 o - 0
CH
1 1
0 0 0 0 0 R T 0
0 0 0 0 0 0 0 0 1 -
L. Tco Tco
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and

0 0 0 0 0 0 0 0
1 il
0 , 0 -5 0 2 0 0 0
Tty 0 0 0 o0 X+ o o
1 ”TdO + TdO
LI—LI+L¢—-LI 0 0 0 0 _]7-,_ 0 1]
Tdo Tao T Tao
Le—L
0 = 0 0 0 0 0
Ta0 ? (2'65)
0 0 o X2 0o 0 0 o
A
0 0 0 0 0 0 1 o0
0 0 0 0 0 o0 o0
TCH
0 0 0 0 0 0 0 0
0 0 0 0 0o 0 0 o |
T
00000 0 0O O O
B = . (2.66)
0 0 0 0 0O Lff 0 0 0 O

The nonlinear algebraic function ¥(X(t), Z(t)) is derived by equating (2.37) with
(2.39) and (2.38) with (2.40), and substituting (2.37) and (2.38) into (A.10). This

results in
‘I’(X(t), Z(t)) . [ Y1 ¥ Y3 s s ]T (2-67)
with
b1 = (r+ R (~w(t)A; (t) + Voo sin&(1))
~(Lewit) + L;’w(t)) (WA ®) Ve cos 6(t)) - ela(?), (2.68)
Y2 = (r+R.) (WAL — Veo cos (1))
+ (L,,w(t) + L;’w(t)) (_w(t)A;’(t) + Vio sin 6(t)) — I, (t), (2.69)
s = AgOLE) - A O + (La - Ly) L@ - T.(2), (2.70)
ba = w®)? A7 + 4507 +2 (LiAs L) + LA, ()L, ()]
+(r+ L;’Zw(t)z) L7 + (7 + Ly w(t)?) T,()?
—2rw(t)Te(t) — Vi(t)?, (2.71)
s = FupPyp(t)+ FrpPrp(t)+ FrpPrp(t) — w(t)Tim(t), (2.72)
where
w(t) = ws(t) + 1 (2.73)
and
¢ = (r+ R.)" + (Lew(t) + Lyw(t)) (Lew(t) + Lyw(t)) . (2.74)
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In this thesis the CSM1 is referred to as the benchmark model of the complete
system in which the associated generator/tie-line model (SGM1) most closely

represents the basic synchronous generator/tie-line system described by (A.1)-

(A.12).

Complete System Model 2 (CSM2): the synchronous generator and the tie-line
are described by the SGM2; the models for the excitation system, the governor,
and the steam turbine are given by (A.13)-(A.24) of Appendix A.

This representation is the consequence of applying Assumption 2.2.5 to the
CSM1. The state vector X(t) and the auxiliary variable vector Z(t) in the CSM2

are defined as

X(t) = [6(t) wi(t) E,(t) E,t) Ej(t) Vr(t) Pov(t) Pup(t) Prp(t) PLP(t)]T
(2.75)

and
_ T
Z(t) = | L) L) T.) %) Ero(t) Ps(t) Pov() ] (2.76)

in which the dimension of Z(¢) is reduced by one compared to its definition in
(2.63) for the CSM1. The matrix B in the CSM2 is identical with that of the
CSM1 (eqn. (2.66)), while the other two matrices, ®x and Pz, are described by

0w 0 0 0 0 o0 0 0 0
D F F F,
0 —37 0 0 0 0 0 S SF SF
0 0 - 0 0 0 o 0 0 0
Ta0
0o 0o -3 2 o0 0 0 0 0 0
Tao0 Tdao0 Tdo
0 0 0 0 - 0 0 0 0 0
dx = oo (2.77)
0 0 0 0 0o -+ 0 o0 0 0
A

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0o o0 —-1 0 0

CH

1 1
0 0 0 0 0 o o L L 0
0 0 0 0 0 0 0 0 L

[ofe) Tco
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and

b2
N
Il

0 0 0 0 0 0 0
1
0 0 —s 0 0 0 0
XXy 0 0 0 2+ o0 o
, “Tm , Tao
Xo=Xg 4 XaoXg 0 0 0 L o o
Tao Tao0 " Tao
0 Rl et 0o 0 0 0
q0
0 0 0 -% 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 o0 L
TCH
0 0 0 0 0 0 0
0 0 0 0 0o 0 o |

(2.78)

The nonlinear algebraic function ¥(X(t), Z(t)) of the CSM2 is simplified by sub-

stituting w(t) = 1 into (2.67), resulting in

with

(2}

{2

Y3
¥q

T
EXE,Z0) = [ ¢y b2 bo b |

= (r+R.) (E;’ (1) + Voo sin 6(t))

— (Xe+ %) (B} (t) = Voo cos 6(t)) — cla(t),

= (r+R.) (E;’ (1) — Vio cos 6(t))

+ (Xe +X3) (Ej () + Veo sim 8()) — ely(2),

= LME; )+ LOE, &)+ (Xi ~ X)) L), () - (),
= E;(0+ B; )" +2 (X4 By ()1a(t) - X, B3 9)1,(1))

"2 n2
+ (r? + X, )Id(t)2 + (r2 +X, )Iq(t)2 — 2T (t) — Vi(t)?,

where ¢ given by (2.74) becomes a constant

c=(r+R) + (Xe + X;) (X. + X, ).

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

Complete System Model 3 (CSM3): the synchronous generator and the tie-line

are described by the SGM3; the models for the excitation system, the governor,

and the steam turbine are given by (A.13)-(A.24) of Appendix A.

This combination yields the simplest system model used in this thesis. The

four elements (®x, 7z, B, and ¥(X(¢),Z(t))) defining the system state expres-
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sion (2.58) are expressed as

[0 wo 0 0 0 0 0 0
D F F' F,
0 —5x 0 0 S SE
o o X 0 0 0
Td0
0 0 0 —L 0 0 0 0
@x: Ta ) (285)
0 0 0 0 o0 0 0
0 0 0 0 o - 0 0
CcCH
1 1
0 o 0 0 0 == - 0
0 0 0 0 0 0 L 1
- CcO Tco 4
0 0 0 0 0 0 0
1
0 , -5 0 0 0 0
XaoXy 9 0 0 -+ o0
Td0 Td0
0 0o o -Xa o9 o o
by = TA ) (2.86)
0 0 0 0 0 1 0
0 0 0 0 0 0 L.
TCH
0 0 0 0 0 0 o
0 0 0 0 0o 0 0 |
T
0 00 0 0O0UO O
B = , (2.87)
000 X2 90 0 0 0
A
and
Voo c038(t) = Ey(t) — (Xo + X3) L)
Voo sin 8(2) — (X + X,) I (t)
U(X(t),Z(t)) = (2.88)

LOE® + (Xi - X,) LOLE) - T.@)
| E(6)? + 2XE, (D 1a(t) + X3 Ta(t)? + X2I,(2)? — Vi(t)? |

In the CSM3 the dimension of the state vector X(t) is reduced by two due to the
elimination of the subtransient states E,(t) and E;’(t) from (2.75)

T
X(t) — [ 6(t) ws(t) E;(t) VR(t) Fav(t) PHP(t) P[P(t) PLP(t) ] .
(2.89)
The auxiliary variable vector Z(t) is the same as in (2.76) for the CSM2.

Remark 2.3.1 In the three complete system models given in this subsection, the sys-

tem equations are formulated with reheating. However, as indicated in Remark A.3.1,
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the system equations with nonreheating can be easily obtained by the proper selection
of the values of the parameters associated with the model of the steam turbine and

reheater.

2.3.2 Comparisons of the Dynamic Performance of the Com-

plete System Models.

In order to select the power system models for controller analysis and design and for
the evaluation of the designed controllers, a set of simulation studies is conducted for
the various operating conditions in which the three complete system models derived

from Subsection 2.3.1 are subjected to the same disturbances.

Aims and structure of the simulation studies.

The dynamic performance of the CSM1 is taken as the benchmark performance which
is verified by the comparison of the system time response with that obtained from the
established software package, ADSTAB [133]. * The dynamic behaviour of the CSM2
and the CSM3 is then compared with the result obtained from the benchmark. The

aims of this study are

e to establish the degradation in system performance associated with the various

system models;

e to demonstrate the effect of increasing the value of the rotor damping coefficient

D as compensation for the omission of damper windings in the CSM3.

3For the simulation studies in this thesis, the software package SIMNON [134,135,136] is used. The
software written by the author of this thesis for the simulation studies in SIMNON has been verified
by comparing the results with those obtained from the ADSTAB package. The ADSTAB package is
a multi-machine transient stability program that has been designed for research use in the University
of Adelaide [133]. The accuracy of the models and algorithms used in ADSTAB has been verified
against the results obtained by tests on actual power systems (e.g., a series of tests at Northfleet in

the U.K. [137]).
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For the purpose of simulation studies in this thesis, identical models and param-
eters of the nonreheat turbine, the governor, and the excitation system are used. The

parameters and limits of the system models are listed in Appendix C.

Two system operating conditions with two distinct disturbances have been selected

for the simulation studies:

Case 1: The generator is operating at P; = 0.6 pu and @; = 0.3 pu, and is subjected

to a step change of 0.05 pu increase in reference power.

Case 2: The generator is operating at P, = 0.6 pu and @; = —0.1 pu, and is subjected

to a step change of 0.05 pu decrease in reference power.

Case 3: The generator is operating at P; = 0.6 pu and @; = 0.3 pu, and is subjected
to a symmetrical three-phase fault * on the receiving end busbars. The fault is

cleared in 100 ms, and the system returns to its pre-fault operating condition.

Case 4: The generator is operating at P; = 0.6 pu and @; = —0.1 pu, and is subjected
to a symmetrical three-phase fault at the machine terminal. The line is switched
out ° after the fault duration of 100 ms, and a new steady-state operating point

is established.

The simulation studies are conducted in two steps:

Step 1: Compare the system performance of the three power system models with
the same value of the rotor damping coefficient (D = 0.1 pu) to establish the

degradation in system performance.

Step 2: Compare the system performance of the CSM3 (D = 4.0 pu) with that of the

CSM1 (D = 0.1 pu) to demonstrate the effect of increasing the value of the rotor

4Although the majority of the faults occurring in practice on a power system are asymmetrical
between the phases and the phase(s) to ground, the symmetrical fault is important because it is more

severe and easier to analyze [125].

°In the simulation studies of this thesis, the values of R, and X, are doubled to represent the event

of a transmission line switching-out.
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damping coeflicient D as compensation for the omission of damper windings in

the CSM3.

Simulation results which take account of the above steps are plotted for the four cases

in Figs. 2.3-2.6.

Analysis of the simulation results.

Step 1: The simulation studies in the first step involve the comparison of damping
performance of the three complete system models with the same value of D = 0.1 pu.
This value of D is given a priori. Figures 2.3 and 2.4 show the transient speed deviations
in Cases 1 and 2. It is seen that under normal operating conditions the performance
of the CSM2 (dashed line) agrees closely with that of the CSM1 (solid line). However,
since there are no damper windings in the CSM3, the speed response of the CSM3
(dotted line) differs significantly from the result of the CSM1. The same conclusions
can be derived from the simulation result of Case 3, shown in Fig. 2.5. It is seen that
with the occurrence of the remote fault, the CSM2 still provides satisfactory agreement
with the CSM1, whereas the CSM3 exhibits instability. In Case 4, appreciable errors
in phase between the responses of the CSM1 and the CSM2 are found, as shown in
Fig. 2.6. Nevertheless the amplitudes of the speed deviation of the CSM2 are almost
the same as those of the CSM1. It is noted that, in this simulation study, the response
of the CSM3 is unstable and is unacceptable.

Remark 2.3.2 The above simulation studies reveal that

(i) The CSM2 is a good approzimation of the CSM1 at the chosen operating con-
ditions. This justifies Assumption 2.2.5 and indicates that the nonlinearities in

system parameters and in machine stator voltage equations can be neglected.

(i) The CSM3 with the given value of D cannot be used to represent the benchmark
model (CSM1) directly. To achieve good agreement between the performance of
the two models, the damping of the CSM3 has to be increased.
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The approach of using the CSM3 to approximately represent the benchmark model
is important because of the simplicity of the CSM3 for the analysis and design of system
controllers. Since the subtransient effects which are omitted in the representation of
the CSM3 are normally very short, it is possible to compensate for the omission of
damper windings in the CSM3 by adjusting the rotor damping coefficient D to a higher
value. This simplification has been proposed in Section 2.2 (when Assumption 2.2.6

was introduced).

Step 2: The simulation studies in the second step involve the demonstration of
the above-mentioned simplification. The value of the rotor damping coefficient D is
adjusted to make the response of the CSM3 agree as closely as possible with that of the
CSM1. For the various operating conditions, the value of D = 4.0 pu is found to be the
optimal value. D is therefore increased from 0.1 pu (the given value) to 4.0 pu in the
equations of the CSM3. The performance of the CSM3 (D = 4.0 pu) (dot-dashed line)
is compared with that of the CSM1. It is observed from Figs. 2.3-2.5 that significant
improvements in overall model matching are achieved in these three simulation cases.
In Case 4, referring to Fig. 2.6, the CSM3 (D = 4.0 pu) shows stronger damping than
the CSM1.

Remark 2.3.3 The comparison of system performance of the CSM3 (D = 4.0 pu)
and the CSM1 in Case 4 indicates a possibility that a controller particularly designed
for the CSM3 (D = 4.0 pu) may not be able to damp the oscillations associated with
the CSM1 satisfactorily. This initiates the discussion of the validation of the designed
power system stabilisers in Subsections 3.6.83, 4.5.3, 5.4.3, and 6.5.5.

Remark 2.3.4 The comments made in Remarks 2.3.2 and 2.3.3 are valid when the

system operating point varies (e.g., P, = 0.75 pu, P, = 0.4 pu, etc.).

Robustness studies.

The validations of the designed power system stabilisers are regarded to be the robust-

ness studies in this thesis. As far as the system modelling is concerned, robustness
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studies in power system control are required when an approximate model is used as a
basis for controller analysis and design. For the purpose of this thesis, there are two
major concerns in employing the approximate model (CSM3 with D = 4.0 pu) for
representing the benchmark (CSM1):

e Unmodelled dynamics — caused by ignoring the damper windings (i.e., omit-
ting the subtransient states Ej(t) and E,(t)) (see Assumption 2.2.6), and/or
by assuming a constant rotor speed in some terms of the synchronous generator

equations (see Assumption 2.2.5);

e Modelling simplifications — for example, by assuming zero values for some system
parameters (see Assumption 2.2.7), and/or by increasing the given value of D to

a higher value.

It will therefore be necessary to verify the various power system stabilisers using the
benchmark model (CSM1) to confirm that the simplified model (CSM3 with D =
4.0 pu) is suitable for their design.

Conclusions.

In view of the simulation results shown in Figs. 2.3-2.6, it is proposed that:

1. The CSM3 (D = 4.0 pu) be taken to be the approzimate power system model for
the purpose of the analysis and design of power system stabilisers in Chapters 3

to 6.

2. The CSM1 (D = 0.1 pu) be taken to be the accurate power system model for
validating the designed power system stabilisers in Subsections 3.6.3, 4.5.3, 5.4.3,
and 6.5.3.
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Figure 2.3: Speed response for Case 1 (P, = 0.6 pu, Q; = 0.3 pu; 0.05 pu increase in
reference power). CSM1 (D = 0.1 pu) - solid line, CSM2 (D = 0.1 pu) - dashed line,
CSM3 (D = 0.1 pu) - dotted line, CSM3 (D = 4.0 pu) - dot-dashed line.
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Figure 2.4: Speed response for Case 2 (P, = 0.6 pu, Q; = —0.1 pu; 0.05 pu decrease in
reference power). CSM1 (D = 0.1 pu) - solid line, CSM2 (D = 0.1 pu) - dashed line,
CSM3 (D = 0.1 pu) - dotted line, CSM3 (D = 4.0 pu) - dot-dashed line.
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Figure 2.5: Speed response for Case 3 (P, = 0.6 pu, @; = 0.3 pu; 100 ms short-circuit
on the receiving end busbars). CSM1 (D = 0.1 pu) - solid line, CSM2 (D = 0.1 pu) -
dashed line, CSM3 (D = 0.1 pu) - dotted line, CSM3 (D = 4.0 pu) - dot-dashed line.

20

10|

Speed Deviation (radfs)

-10 . " "
3.5 4 4.5 S

(o] 0.5 1 1.5 2 2.5 3

Time (sec)

Figure 2.6: Speed response for Case 4 (P, = 0.6 pu, @; = —0.1 pu; 100 ms short-circuit
at the machine terminal). CSM1 (D = 0.1 pu) - solid line, CSM2 (D = 0.1 pu) -
dashed line, CSM3 (D = 0.1 pu) - dotted line, CSM3 (D = 4.0 pu) - dot-dashed line.
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2.4 Linearisation of the Nonlinear Power System

Model.

In this section:

e the nonlinear power system model (CSM3) proposed in Subsection 2.3.1 is lin-

earised;

e analytical models ¢ of the nonlinear power system for the development of the

linear and nonlinear adaptive power system stabilisers are introduced;

e the models derived in Sections 2.2 to 2.4 are summarised.

The nonlinearities associated with a power system can be divided into two cate-
gories: inherent nonlinearities and intentional nonlinearities [138]. In general terms,
an inherent nonlinearity is defined as an inseparable characteristic of the laws governing
the operation of the system to be controlled, while an intentional nonlinearity is con-
sidered to be deliberately introduced into the design of the system by control engineers.
For a power system, the inherent nonlinearities of the system are mainly characterised
by the product nonlinearities and the trigonometric nonlinearities which are contained
in the term W(X(t), Z(t)) (e.g., (2.88)) in (2.58). On the other hand, the intentional
nonlinearities of the system include the amplitude and rate limits that are given by
the term Z(X(t), Z(t), Ux(t)) (e.g., (2.61)) in (2.58). The intentional nonlinearities
which are introduced by the power system control components (such as the exciter and
the governor) are usually determined from a trade-off between technical and economic

considerations.

Analytical models of the power system are derived from the following two steps:

SIn this thesis, an analytical model is defined for the purpose of simplifying the analysis. It is
used for developing the nominal model of the system. The definition of a “nominal model” will be

given in Section 3.2.
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(1) eliminate the intentional nonlinearities by assuming that the perturbations that
are injected into the nonlinear system are mild enough so that limiting of the

system variables does not occur (see Assumption 2.4.1);

(2) eliminate the inherent nonlinearities by linearising the system equations about

one or more steady-state operating points (see Assumption 2.4.2).

Following (1) a nonlinear analytical model results, in which the inherent nonlinearities
of the power system are still retained. Following (2) the nonlinear power system model

is completely linearised, and a linearised analytical model is obtained.

Most methods for the design of power system controllers in the literature are based
on linearised models of power systems. Linearisation of the nonlinear power system
about a steady-state operating point provides information on the small-perturbation
dynamic behaviour of the system at the specified operating point. Since low-frequency,
lightly-damped rotor oscillations dominate the system transient response, the CSM3
introduced in Subsection 2.3.1 is used in this section for the derivation of the analytical

models upon which the development of control strategies is based.

The layout of this section is as follows. In Subsection 2.4.1 a nonlinear analytical
model is derived from the nonlinear power system model (CSM3). A linearised analyt-
ical model is then developed from the nonlinear analytical model in Subsection 2.4.2.
These analytical models are prepared for the development of the linear and nonlinear
adaptive power system stabilisers discussed later in Sections 3.2 and 4.2 respectively.

The models proposed in this chapter are finally summarised in Subsection 2.4.3.

2.4.1 Nonlinear Analytical Model of the Nonlinear Power
System.

Consider the situations where the perturbations injected into the nonlinear power sys-
tem are mild enough that limiting of the system variables does not occur. Under these
circumstances, the intentional nonlinearities of the system can be ignored by assuming

that
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Assumption 2.4.1 Under transient conditions, the nonlinear power system under
study ts operating within the limiting actions described by the functions Nf;, Nf,,
and N f3 in (A.14), (A.16), and (A.18).

On removing the limits, the nonlinear function E(X(t), Z(t), Ur(¢)) in (2.61) becomes

a linear expression

EFD(t) — VR(t)
BOX(0), 2(1), Us(t)) = | P() - FetlO-Komld=rory

TG

Py (t) — -ch(t)

which can be incorporated into the expressions for ®(X(t), Z(t), Ur(t)) and ¥(X (), Z(t))

in (2.58). Hence, the mathematical description of the CSM3 can be rewritten as

X(t)
0

(X (1), Z(1), Ur(t))

(2.90)
W(X(t), Z(t))

where
X@ =60 wl®) B Erot) Pav(®) Par®) Prr(d) Por(®)] » (291)

Z(t) = [ Li(t) T.(t) Vi(t) ]T, (2.92)

and

B(X(t), Z(t), U(t)) = BxX(t) + BzZ(t) + BU(t) (2.93)

(as expressed in (2.60)). The elements ®x, 7, B, and ¥(X(t),Z(t)) in (2.90) are

written as
0w 0 0 0 0 0 0
L 0 0 Eyp Ep ELp
2H 2H 2H 2H
o 0o -3+ I 0 0 0 0
T30 Ta0
0 0 0o -1 0 0 0 0
o = A . (2.94)
0 —%a 9 0 - 0 0 0
G TG
1 1
0 o 0 0o A L 0 0
1 1
0 0 0 0 0 — —Te 0
0 0 0 0 0 0 : =1
- TCco Tco J
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0 0 o |
1

0 —5r 0
Xe=Xg 0

Tdo

0 0 -Xa

b7 = A 15 (2.95)

0 0 0

0 0 0

0 0 0

0 0 0 |

0 00 0 L o0 o000
B = o ; (2.96)
0 00 £+ o0 o090 o0

and

¥(X(1),2(1) =

Voo cos 8(t) — Ey(t) — (X + X) La(t)

X=X vi . v, o i
(Xe+Xq)(Xe+Xg 4 MRAAY Iffjg“(t) i fle)=ald) ’
r3_ o 22 L ’ 2 4
Gy <o 800+ Gy oin 60 + (B0 o0s 800 + e Larya By (0 = V(0*
(2.97)

in which the expressions for I(t) and I,(t) in (2.88) have been substituted into the
expressions for T.(t) and V;(t) in (2.97).

Equations (2.90)-(2.97) form a model which is called the Nonlinear Analytical Model
(NAM) of the nonlinear power system (CSM3) for the development of the nonlinear
optimal and adaptive power system stabilisers to be discussed in Section 4.2. It is
important to note that although the intentional nonlinearities of the CSM3 have been
eliminated in (2.90)-(2.97), the inherent nonlinearities of the system are still retained

by the term ¥(X(t), Z(t)) in (2.97).
Remark 2.4.1 The NAM is identical with the CSM3 provided that the external dis-

turbances that are applied to the system are mild enough that the system state variables

vary within the range of linear operation of the limiting nonlinearities.
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2.4.2 Linearised Analytical Model of the Nonlinear Power

System.

Consider the case where the nonlinear system (2.90)-(2.97) is operating with small

deviations about an arbitrary steady-state operating point (Xo, Zo, Uro), i.e.,

X(t) = Xo+AX(t), (2.98)
Z(t) = Zo+AZ(), (2.99)
Ur(t) = Uso+AUL(2). (2.100)

It is assumed that

Assumption 2.4.2 The new state (Xo + AX(t),Zo + AZ(t), Uro + AUr(t)) of the
system (2.90)-(2.97) is a small perturbation from the steady-state (Xq, Zo, Uro).

The dynamic behaviour of the nonlinear system (2.90)-(2.97) can then be examined by
linearising the system equations around the steady-state operating point (Xg, Zo, Urg).

The linearisation technique is briefly discussed as follows:

By the substitution of (2.98)-(2.100) into (2.90) and the use of a Taylor’s series
approzimation [139] that neglects the terms of second-order and above, a linearised

model of the nonlinear system (2.90)-(2.97) is derived

AX(t) | Bxe Bz || AX() Bo AUL) (2.100)
0 Ux, ¥z, AZ(t) 0
where, according to Taylor’s expansion theorem,

@Xo a QQ(X(t), Z(t)a Ur(t)) ,
OX(t) (X0.29.Uro)

@ZO a BQ(X(t)’ Z(t), Ur(t)) ,
9Z(t) (X0,Z9.Urg)

By A BQ(X(t), Z(t)a Ur(t))

IUx(?) (X0+Z9-Uro)
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are the Jacobian matrices of ®(X(t),Z(t), Ur(t)). Since ®x, ®z, and B in (2.93) are

all constant matrices independent of the system operating point (Xg, Zg, Urg), one

obtains
Px, = Px, (eqn.(2.94)); (2.102)
Pz, = Pz, (eqn.(2.95)); (2.103)
Bo = B, (eqn.(2.96)). (2.104)

The nonlinear function ¥(X(t), Z(t)) in (2.90) does not depend explicitly on Uy, and

is therefore linearised around (Xo, Zo), resulting in

W (Xo + AX(t), Zo + AZ(t)) ~ ¥(Xo, Zo) + Ux, AX(2) + Wz, AZ(t)

where
By, & MEOZO)
() (Xo:Zo)
ug, & 2HE0.20)
(t) (Xo.Z9)

are the Jacobian matrices of ¥(X(?), Z(t)) and
W(Xo,Z9)=0

due to (2.90). The matrices ¥x, and Vzy according to the above definitions, are

functions of the operating point (X, Zo), given by

—Vesinég 0 -1 0 0 0 0 0

¥x, = K 0 K, 0 0 0 0 0 (2.105)
Ks 0 K¢ 0 0 0 0 0
and
—(Xe+X;) 0 0
¥z, = 0 -1 0 |, (2.106)
0 0 —2Vio
where 7
_ X, —X .
K 4 1 —V?2 cos 26p + ——— V. E P) 2.107
1 (Xe+Xq) (Xe+Xd) oo COS o+ Xe+Xd qocOS 0, ( )

It should be pointed out that K; (i = 1,2,5, 6) defined in this thesis are related to K; (i = 1,2,5,6)
commonly named in the literature (e.g. in [19]) through the relationships: K; = K; for (i = 1,2) and

K; = 2V K; for (i =5,6).
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= 1
Ky = ————V sinéy, 2.108
2 Xe+Xd 511 Og ( )

X2 (X2 - X3) +2X. (X2X; - X' X,)

Ks = 2 T2 V°20 sin260
(Xe+ Xg)" (Xe + X3)
2X,. X, .
———4d Vo Eygsin by, (2.109)
(X + X,)

_ 2X X, 2X2 '
1{6 = -—%Vw cos 60 + ——% q0° (2.110)

(X.+X,) (X.+ X))

It may be seen that the matrix ¥z, in (2.106) is non-singular. From (2.101) one has
AZ(t) = —Wz ~1Ux AX(2). (2.111)

A standard linear state equation is finally formed from (2.101) and (2.111) by elemen-

tary matrix reduction, resulting in

AX(t) = AgAX(t) + BoAU; (2.112)

where

AoéQXO — @ZO‘I’ZO_I‘I’XO (2.113)

and By is given by (2.104).

The model formed from equations (2.112)-(2.113) is called the Linearised Analytical
Model (LAM) of the nonlinear power system (CSM3) for the development of the linear
adaptive power system stabiliser to be discussed in Section 3.2. The inherent nonlin-
earities that are retained in the NAM are linearised after Assumption 2.4.2, resulting
in a completely linearised version of the nonlinear power system model. According to
Poincaré’s theorem [140], the linearised model (2.112)-(2.113) is valid for small pertur-
bations about the steady-state condition specified by (Xo,Zg, Uro). The elements of
the matrix Ag depend upon the values of (Xg, Zg,Uyo) and the system parameters,
e.g., R. and X,. For a specific dynamic study at a specified operating point, Ag is
a constant matrix. Generally speaking, Ag may be considered to be a time-varying
state-functional matrix having piece-wise constant [141] elements that are functions of
the system operating point. Therefore, the system (2.112)-(2.113) is linear, piece-wise,
time-varying in nature. It should be pointed out that the assumption, that the ele-

ments of Ag are piece-wise constant, provides only the information on the dynamic
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behaviour of the system around each operating point as perturbations on the system
variables tend to zero. It does not describe the transient behaviour of the system

between operating points.

When small signal excitation control of power systems is under consideration, a
simplified version of the LAM can be employed assuming that the system is stable. It

is based on the following assumption.

Assumption 2.4.3 The effective time constants associated with the AVR-excitation
system loop and the governor-steam turbine loop are so widely different that the inter-

actions between these two control loops can be considered as disturbances on each other

[47].

Under this assumption, for excitation control studies, the deviation of the mechanical
torque input to the synchronous generator can be viewed as a disturbance that is added
to the system. The governor and the steam turbine are excluded from the system model,
and the power system is simply treated as being controlled by the excitation voltage

input, with injected mechanical torque disturbance.

By the elimination of the dynamic models of the governor and the steam turbine

from the equations of the LAM, the system state equation (2.112) is rewritten as
AX(t) = AgAX(2) + buoAu,(t) + byoAw(t) (2.114)

where
T

AX(t):[Aa(t) Aw,(t) AE(t) AErp(t) (2.115)

and Au,(t) and Aw(t) are the system voltage reference input, AV,.;(t), and mechan-
ical torque disturbance, AT,,(t), respectively. The matrices in (2.114) are given (see

Section D.1 of Appendix D) by

r~ A
0 Wwo 0 0
&R _D _K
2H 2H 2H
Ag = o , (2.116)
_"TL 0 ] 2 }
Tdo T K3 Tdo
K4Ks _ KaK¢ 1
L 21aVo 274 Veo TA 4
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T
buoz[u 00 ’—A] : (2.117)

TA
T
bw0=[0 5 0 0] ; (2.118)
where &
_ X.+ X,
Ky = ————= 2.11
3 Xe + Xd’ ( 9)
_ = X
K, = ‘;“—Jrf;%vw sin 6o. (2.120)
€ d

This Simplified Linearised Analytical Model (SLAM), without the governor and the
steam turbine, will be used in Section 2.5, when the selection of stabilising signals for
the design of power system stabilisers is discussed. It is also used in Section 3.2 for the

modelling of the power system under linear adaptive excitation control.

2.4.3 Summary of the Models of the Power System.

The various models of the synchronous generator/tie-line and the complete power sys-
tem proposed in this chapter are summarised in Table 2.1. Of these models, SLAM,
NAM, CSM3, and CSM1 are used in the studies of this thesis for the following purposes:

e SLAM — for the discussion of selection of stabilising signals, and for the design

of the linear adaptive power system stabiliser;

¢ NAM — for the design of the nonlinear optimal and adaptive power system

stabilisers;

e CSM3 (D = 4.0 pu) — for simulation studies for evaluating the performance of

the designed power system stabilisers;

e CSM1 (D = 0.1 pu) — for studies of the robustness of these controllers.

8As noted earlier, K; (i = 3,4) defined in this thesis are related to K; (i = 3,4) commonly used in

the literature through the relationship: K; = K; (i = 3,4).
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Name Explanation Section Equations

(2.31)-(2.33),

SGM1 simplified generator model 1 2.2 (2.36)-(2.40),
(A.3)-(A.5),

(A.8), (A.11)-(A.12)

(2.42)-(2.50),
SGM?2 simplified generator model 2 2.2 (A.3)-(A.4),
(A.8), (A.11)-(A.12)

(2.42), (2.48),

SGM3 simplified generator model 3 2.2 (2.53)-(2.57),
(A.3)-(A4),
(A.8), (A.11)-(A.12)
CSM1 complete system model 1 ;.3.1 (2.58)-(2.74) )
(2.58)-(2.61),
CSM2 complete system model 2 2.3.1 (2.66),

(2.75)-(2.84)

(2.58)-(2.61),
CSM3 complete system model 3 2.3.1 (2.76),
(2.85)-(2.89)

NAM nonlinear analytical model 241 (2.90)-(2.97)
(2.102)-(2.104),

LAM linearised analytical model 2.4.2 (2.105)-(2.110),
(2.112)-(2.113)

SLAM | simplified linearised analytical model | 2.4.2 (2.114)-(2.120),

(2.107)-(2.110)

Table 2.1: The models of the synchronous generator and the SMIB power system.
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2.5 Identification of Suitable Stabilising Signals

for the Design of Power System Stabilisers.

In this section:

e the concepts associated with participation factors are highlighted;

e the selection of suitable stabilising signals for improving the damping behaviour

of rotor oscillations is discussed;

e a conclusion regarding the choice of the electrical torque as the stabilising signal

for the design of power system stabilisers is drawn from the discussion.

It is clear from the literature that the most commonly-used techniques in designing
power system stabilisers, from the original analogue lead-lag compensators to recent
digital self-tuning controllers, are SISO linear control strategies. The power systems
are reduced to SISO linear systems for which the control strategies are derived. A
simple state-space realisation of such a SISO linearised system representation has been

given by the SLAM in Subsection 2.4.2.

The feedback signals for power system stabilisers are usually chosen from a variety
of available (measurable) system output signals. Utilising alternative input signals, fre-
quency response analysis has been employed for the design of power system stabilisers
[29]. In this section the selection of the suitable feedback signals for damping system
oscillations is based on the analysis of participation factors of the system matrix Ag.

Such an approach is based on [142].

The concept of participation factors was proposed by Pérez-Arriaga in 1981 [107]
as a means of providing a quantitative description of the participation of each state
variable in system oscillatory modes. A direct application of participation factors
to the so-called Selective Modal Analysis (SMA), a physically motivated framework
for understanding and simplifying complex models of linear time-invariant systems,

has been extensively discussed in [143]-[149]. Successful applications of this technique

63



for choosing significant states for developing a reduced-order model of a large-scale
power system have been investigated in [146,147]. The concept has been applied to
the design of power system stabilisers with the use of eigenvalue sensitivities and the
SMA techniques [150], and to the analyses of power system oscillatory instability [151]
and small-signal stability [152]. As an extension of the applications, a novel approach
based on participation factors for the selection of a suitable set of feedback signals for
a Single-Input Multi-Output (SIMO) excitation controller was introduced in [142]. In
this section, the same approach as that in [142] is used to investigate the participation
of each state in the system oscillatory modes. Here, emphasis will be placed on the
damping effects introduced by the stabilisers using signals such as the speed deviation

and the electrical torque.

The basic concepts associated with participation factors are highlighted as follows.

Consider a linear time-invariant dynamic system of the form

X(t) = AX() (2.121)
with A = {a;;} being an n X n system matrix that is assumed, for the sake of simplicity,
to have distinct eigenvalues A; ( = 1,2,...,n) [107]. The dynamic behaviour of the
system (2.121) can be described by the association between groups of state variables
and groups of natural modes of the system matrix A. This association is precisely

defined in [107] by means of the participation matrix P = {;;} with elements
N o\
Pij = lijTi; (= —) (2.122)
i = bt da;;

where 7;; (I;;) is the j-th element of the i-th right (left) eigenvector #; (1) associated with
the i-th eigenvalue ();) of A. The elements f;; of P are termed participation factors of
the system and are dimensionless [146,142]. The time response of the system (2.121)

with the initial condition X (0) can be expressed as
X(t) = Y LTX(0)eNt (2.123)
1=1

where the right eigenvector, 7;, describes the activity of each state variable in the :-th
mode while the left eigenvector, [;, gives the state constitution of the mode. Assume

X(0) = ej, where e; represents the j-th unit vector (i.e., the j-th element of ¢; is 1,
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all others in e; are 0). The time response of the j-th state variable in (2.123) then

becomes
zi(t) = Y I et =Y pijel. (2.124)
i=1 i=1
This solution shows that #;; describes the activity of z; in the i-th mode and I;; weights
the contribution of this activity to the mode. Thus f;j, according to its definition in

(2.124) (or (2.122)), gives the net participation of the j-th state variable in the ¢-th

mode.

The property of participation factors thus provides a means for determining the
participation of the state variables in the oscillatory mode of concern. To apply this

methodology to the SLAM given in Subsection 2.4.2, a set of measurable signals

AX(t) = [Aws(t) AT,(t) AVi(t) AEpp(t) i (2.125)

is used which replaces the set of state variables in (2.115) [92,142]. With this new set
of state variables, the system matrix Ag in the SLAM is rewritten (see Section D.2 of

Appendix D) as

- — 55 0 0
Ag = le{) ;;%KR;]_??—RKQF]:’ 5 ~2_:’:1QK%;2KR1R—§—KR2KR5 ;Kﬁ- ’ (2.126)
| 0 0 = =

The decision on choosing suitable stabilising signals can then be made by analysing

the participation factors of the system matrix Ag in the above equation.

Given a system operating point (Xo, Zg, Uyg), the elements of Ag are constant. The
eigenvalues of A in (2.126) describe the dynamic behaviour of the system free response
at the specified operating point, whereas the participation factors of Ao measure the
contributions of the system variables (2.125) to each mode that forms the system
free response. Since the role of power system stabilisers is to improve system damping
performance, and hence to extend the system dynamic stability boundary, the specified
operating point (Xo,Zg, Urg) is chosen to be close to the edge of the system steady-
state stability region. This facilitates the observation of the participation of the system

variables in the lightly-damped oscillatory modes.
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Two operating points are selected as study conditions:

e a full-load lagging operating condition with P, = 0.8 pu, @; = 0.3 pu, and
V; = 1.0 py;

e a full-load leading operating condition with P; = 0.75 pu, @; = —0.1 pu, and
V; = 1.0 pu.

At each operating point the system response to a small disturbance is highly oscillatory
and barely stable. The system parameters K; (: = 1,2,...,6) associated with the
equations of the SLAM are calculated in each study condition and their values are
listed in Table 2.2. The system eigenvalues and the corresponding absolute values of
the participation factors (indicated in the columns associated with each state variable)

at these two operating conditions are shown in Table 2.3.

K, K, K K, K Ks
lagging | 1.0752 | 1.1807 | 0.3090 | 1.8798 | -0.0595 | 0.8098
leading | 1.2518 | 1.4762 | 0.3090 | 2.3500 | -0.0896 | 0.5605

Table 2.2: System parameters at the lagging (P; = 0.8 pu, Q¢ = 0.3 pu, V; = 1.0 pu)
and leading (P, = 0.75 pu, @; = —0.1 pu, V; = 1.0 pu) operating conditions.

As expected, for the lightly-damped rotor oscillatory mode (—0.1602 £ 57.0083
and/or —0.0750 4 j7.4619), signals Aw,(t) and AT,(t) have much greater participation
factors than the other states. The voltage signals, AV;(t) and AEpp(t), show very
small participation in this mode. Hence, for successful damping of rotor oscillations,

one of the two signals, Aw,(t) and AT,(t), should be chosen as the stabilising signal.

Frequency analyses shown in [29] indicate that power system stabilisers utilising the
electrical torque (or power) signal as the input can be designed with a characteristic

that is less sensitive to high frequency noise and torsional interaction. This property is
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operating | participation factors — |P|

conditions eigenvalues | Aw,(t) | AT (2) | AVi(t) | AE(t)
lagging | A;2 [ —0.1602 £ 57.0083 | 0.4800 | 0.4573 | 0.0514 | 0.0290

Asa | —5.4232+ 357.1957 |f 0.0247 | 0.0476 | 0.5542 | 0.5784

¥

leading | Ao | —0.0750 £ 57.4619 | 0.4782 | 0.4578 | 0.0789 | 0.0467

Az | —5.5085+ 35.6886 | 0.0481 | 0.0736 | 0.5945 | 0.6455

Table 2.3: System eigenvalues and participation factors at the lagging (P, = 0.8 pu,
@: = 0.3 pu, V; = 1.0 pu) and leading (P, = 0.75 pu, Q; = —0.1 pu, V; = 1.0 pu)

operating conditions.

superior to that associated with the use of the speed signal. The damping performance
associated with the use of the electrical torque (or power) input can be equivalent to
that with speed input but more robust [29]. In practice, the electrical torque (or power)
signal is easily measured or synthesised, while the location, on the shaft of a turbo-
generator, of a speed transducer requires special attention [30]. For these reasons, the
electrical torque (or power) is chosen as the stabilising signal for the design of the

power system stabilisers to be discussed in the following chapters.

2.6 Controllability and Observability.

In this section:

e concepts of the controllability and observability of the models developed in Sub-
sections 2.3.1 and 2.4.2 are briefly introduced;

e aspects of the system realisation ® and input-output properties are discussed.

9See, e.g., [153] p.53.
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Controllability and observability of a system are often the key concepts leading
to successful system identification and control. These concepts are also important to
the explanation of the system realisation and to the determination of the external
properties of the system models. The conclusions drawn from the discussion of this
section will be used for the modelling analysis of the linear adaptive power system

stabiliser to be discussed in Section 3.2.

For the discussion of the system observability, the system output equation is re-
quired. Such an equation depends on the selection of output variables in the models
presented in the previous sections. In general, the nonlinear output equation of the

power system can be written as
Y (t) = Y(X(t), Z(t)) (2.127)

where Y (¢) is the system output vector, and X (X(t),Z(t)) is a nonlinear function.
For example, for the CSM3 given in Subsection 2.3.1, with the chosen system output
variables

_ T

OB OR7OI

the nonlinear function Y(X(t),Z(t)) can be derived, on the basis of (2.88), as

Iq(t)E;(t) + (X:i - Xq) Id(t)Iq(t)
VEL(t)? + 2XEL () a(t) + X3 Ta(t)? + X21,(t)?

Y (X(2),Z(1)) =

Equation (2.127) combined with the general form of the system state equation (2.58)
gives a complete state-space description of the nonlinear SMIB power system. It is seen
that the system described by (2.58) and (2.127) is functionally dependent (via func-
tions ®(X(t), Z(¢), Ur(t)), ¥ (X(t), Z(t)), 2(X(t),Z(t), Ux(t)), and Y(X(t), Z(t))) on
the values of the state vector X(t), the auxiliary variable vector Z(t), and the in-
put vector Uy(t). Moreover, the system parameters, such as R, and X,, may change
according to changes in system configurations. This indicates that the system parame-
ters (or structures) are also implicitly dependent on time ¢. Therefore, a power system

formulated by (2.58) and (2.127) is classified as a nonlinear time-varying system.

Standard results concerning the controllability and observability of linear time-

invariant systems have been well documented (see, e.g., [153]). However, to handle
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nonlinear time-varying systems, new tools of differential geometry and topology are
needed. Basic concepts of these techniques have been given in [154]. A detailed de-

scription of the principles can be found in [155].

One may wish to investigate the controllability and observability of the system (2.58)
and (2.127) using the above techniques. Difficulties arise as the system is high-order
with complicated nonlinearities. For sufficiently small alterations of the inputs Uy, the
response of a nonlinear system is very close to that of its linearised model [139]. The
concepts of controllability and observability of the nonlinear system may then be pre-
sented for its equivalent linearised version in terms of the same concepts. Under these
conditions, the problems of controllability and observability of the time-varying non-
linear system (2.58) and (2.127) may be considered as the problems of controllability

and observability of the corresponding time-varying linear system.

Consider the linearised time-varying system state equation (2.112) given by the
LAM in Subsection 2.4.2. To derive an equivalent expression for the linearised time-
varying system output equation, the same procedure as shown in Subsection 2.4.2 is

followed:

i) Linearise the nonlinear function Y (X(t), Z(t)) in (2.127) about the system operating
point (Xg, Zg, Uro). This yields

T (Xo + AX(t), Zo + AZ(1)) ~ Y (Xo, Zo) + YTx,AX(t) + Yz, AZ(t)

where
e & OXX().Z()
0 9X(t) (Xp Zo) ’
o a FXX(,Z()
’ OZ(t)  lxq.Zo)

are the Jacobian matrices of Y(X(¢),Z(t)). The linearised system output equa-

tion is then expressed as
AY(t) = TXOAX(t) + TZOAZ(t) (2.128)

where

AY(t) =Y (t) - Yo
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and, due to (2.127),
Yo — Y (Xo,Zo) =0.

ii) Substitute for AZ(t) from (2.111) into (2.128). A standard linearised system output

equation is obtained

AY () = CoAX(?) (2.129)

where

Co £ Yx, — Yz, ¥z, ' ¥x,- (2.130)

In a similar manner as for Ag in (2.113), Cp in (2.130) may be explained as a
time-varying state-functional matrix that depends on the system operating point

(X0, Zo, Uyo) as well as the system parameters.

Hence, a complete linearised version of the nonlinear time-varying system (2.58) and
(2.127) is formulated by (2.112) (with (2.113)) and (2.129) (with (2.130)). It is linear,

time-varying in nature.

The general notions of controllability and observability of linear time-varying sys-
tems over the time interval [to,;] are given in [156} (by Definitions 23.6 and 23.4
respectively). If it is assumed that each matrix in the system (2.112) and (2.129) has
piece-wise continuous '° elements over [0, c0), then the system (2.112) and (2.129) is

controllable on [to, ;] if and only if the controllability Gramian
t1 .
We (to, 1) = /t ot (t1, 7) Bo(r)Bo*(T)et” (t1,7) dr (2.131)

is positive definite (see Theorem 23.5 in [156]); and the system (2.112) and (2.129) is

observable on [ty,?;] if and only if the observability Gramian
t1
Wo (to, t) = /t ot” (7, 16) Co™(T)Co(7 )t (T, o) dr (2.132)

satisfies the same condition (see Theorem 23.2 in [156]). The asterisk * denotes the
complex conjugate transpose, and 4 (t,t0) is the state transition matriz. In theory,

for a given state matrix Ag, ot (£,%0) is known (according to Definition 11.2 in [156]).

10See Definition 10.5 in [156].
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Therefore, given the matrices Ag, Bg, and Cg, the calculation of the system Gramian

matrices (2.131) and (2.132) is (at least theoretically) possible.

At a specific steady-state operating condition, the matrices Ag and Co may be
considered to be constant so that the system (2.112) and (2.129) becomes linear
time-invariant. The basic controllability condition (2.131) and observability condi-
tion (2.132) that apply to the linear time-varying systems then reduce respectively to

the familiar linear time-invariant condition that the system controllability matriz
C= [ Bo AgBo ... A¢" 'By ] (2.133)

has full rank n (see [153] Subsection 9.2.1), and likewise the system observability matriz

- -

Co

CoA
o= " (2.134)

- COAon—l -

has full rank n (see [153] Subsection 9.2.2), where n denotes the order of the system.

For the analysis of computer-controlled real-time systems, it may become nec-
essary to use a discrete-time equivalent of the continuous-time system (2.112) and
(2.129). By taking the z-transform, a zero-order-hold sampling of the linear system
{Ag,Bo,Co} given by (2.112) (with (2.113)) and (2.129) (with (2.130)) may be de-
scribed by {Ao, ﬁo, éo} in the z-domain. It is well known that in linear time-invariant
cases the controllability condition (assuming that Ay is invertible) and the observability
condition of the discrete-time system are of the same form as the conditions (2.133) and
(2.134) respectively. However, since the z-transform is a nonlinear transformation and
the resulting discrete-time system depends on the sampling period (e.g., see eqns. (3.4)
and (3.5) of [141]), the discrete-time system {Ao,ﬁo, éo} may become uncontrollable
or unobservable even if the corresponding continuous-time system {Ag, Bg, Co} is con-

trollable or observable [141].

As far as a SISO linear time-invariant discrete-time system {AO,BO,EO} is con-
cerned, the following properties related to the controllability and observability of the

system are important [153,157].
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(1) The state-space system {AO,BO, EO} is a minimal realisation 1! if and only if the

system is controllable and observable.

(2) The system transfer function
Ho(2)2& [21 - Ao| ™ bo (2.135)

is irreducible (or coprime) if and only if the system {AO,BO, Eo} is a minimal

realisation.

These properties establish some theoretical foundations for the modelling analysis of

the SISO linear adaptive power system stabiliser to be discussed in Section 3.2.

2.7 Concluding Remarks.

In this chapter the modelling of the SMIB power system for studies in this thesis is
discussed. This facilitates the analysis and design of the linear and nonlinear opti-
mal/adaptive power system stabilisers, and the simulation studies for the evaluation

of the controlled system.

In Section 2.2 three simplified synchronous generator/tie-line models (SGM1, SGM2,
and SGM3) are developed from the basic equations of the synchronous generator/tie-
line given in Appendix A. These three models are presented in order of decreasing
complexity. Combination of these three models with identical models of the excitation
system, the governor, and the steam turbine results in three complete system models
(CSM1, CSM2, and CSM3) in Section 2.3. The modelling accuracy of the three com-
plete system models is degraded in comparison with the system described by the basic
model given by Appendix A. The acceptance of the degradation is justified on the basis
that these complete system models are used for comparisons of system performance
with different control strategies. It is based also on the need to reduce the compu-

tational burden. The significant decrease in modelling accuracy associated with the

11gge, e.g., [L57] p.19.
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simplest power system model (CSM3 with D = 0.1 pu) is compensated for by increas-
ing the rotor damping coefficient D to a higher value (4.0 pu). Satisfactory agreement
in system performance of the CSM3 (D = 4.0 pu) and the CSM1 (D = 0.1 pu) is then
achieved. Selections of the CSM1 (D = 0.1 pu) as the benchmark model for the SMIB
power system under study and of the CSM3 (D = 4.0 pu) for controller analysis and

design are finalised.

Nonlinear and linearised analytical models (NAM, LAM, and SLAM) of the power
system are developed from the CSM3 in Section 2.4. The application of these ana-
lytical models is in the design of linear and nonlinear optimal/adaptive power system
stabilisers to be discussed in the following chapters. The nonlinearities associated with
the power system are classified as two categories: the inherent nonlinearities and the
intentional nonlinearities. Elimination of the system intentional nonlinearities results
in the NAM in which the inherent nonlinearities of the system are still retained. The
NAM represents the CSM3 accurately within the range of linear operation of the lim-
iting nonlinearities; it thus can be used to derive a nonlinear nominal model ' (see
Section 4.2) for the design of nonlinear optimal and adaptive power system stabilisers.
Linearisation of the NAM about a steady-state operating point results in the LAM
with its state matrix being linear, piece-wise, time-varying in nature. The LAM is
a valid representation of the NAM in a neighbourhood of the steady-state operating
point of concern. Further simplification of the LAM yields the SLAM which is used for
the derivation of a linearised nominal model (see Section 3.2) for the design of linear

adaptive power system stabilisers.

In Section 2.5 suitable stabilising signals for improving the system damping per-
formance are chosen among the measurable state variables. From the analysis of par-
ticipation factors of the system state matrix as well as the consideration of practical
measurements, the electrical torque (or power) is selected as the feedback signal for
the stabilisation of the power system via excitation control. This knowledge will be

utilised for the design of power system stabilisers using different control strategies.

In Section 2.6 the concepts of controllability and observability associated with the

12The definition of a “nominal model” will be given in Section 4.2.
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models developed in this chapter are discussed. For the purpose of providing a theo-
retical basis for the modelling analysis of the linear adaptive power system stabiliser in
Section 3.2, consideration is finally given to a SISO linear time-invariant discrete-time
model. The state-space and input-output properties established for this model will be

used in Section 3.2.

The extensions in this chapter to the previous work described in the literature have

been listed in Section 2.1.
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Chapter 3

SISO Linear Adaptive Power
System Stabilisers.

3.1 Introduction.

In this chapter the design of SISO linear adaptive power system stabilisers is discussed.
This forms the basis for the comparisons of system damping performance of the linear
adaptive and nonlinear optimal/adaptive control strategies to be conducted in Chap-

ters 4, 5, and 6, respectively.

In the literature, the so-called conventional power system stabilisers are based on
time-invariant linearised models of the nonlinear power system. Such models are ob-
tained from linearisation of the nonlinear power system about a chosen operating con-
dition and, subsequently, are valid only at the chosen operating condition. The design
of conventional power system stabilisers utilises classical control theory which gives
the required damping performance when the system is operating at the chosen condi-
tion. If the system operating point and/or the system configuration vary widely, the
parameters of the linearised models change. However, with fixed parameters, the con-
ventional power system stabilisers are unable to respond satisfactorily over the wide
range of system operating conditions. If not designed properly, the system damping

performance may deteriorate significantly.

75



Linear optimal control theory was introduced into the design of power system sta-
bilisers (e.g., [92,99,104]). Because a linear optimal power system stabiliser is still
based on a linearised time-invariant model of the nonlinear system, its damping per-
formance also degrades when the system operating condition changes from that at
which the optimal stabiliser is designed. There is, consequently, considerable interest

in the application of adaptive control theory for the design of power system stabilisers.

A key feature that distinguishes a linear adaptive power system stabiliser from a
conventional (or linear optimal) power system stabiliser is that, theoretically, the linear
adaptive power system stabiliser can track the changes in the system operating condi-
tion by changing its parameters on-line. In doing so, a time-varying linear controller

is able to control the nonlinear system over a wide range of operating conditions.

Potential applications of the linear adaptive control theory to the design of power
system stabilisers have been explored in recent years. Considerable interest has been
shown in introducing a variety of linear adaptive control strategies into the design
of power system stabilisers, with the objectives of extending the operational margins
of the system stability and improving the system dynamic performance. It has been
shown, from simulation studies [49,53,54,56,58,64,65,66,74] and/or from laboratory ex-
periments [50,51,70,59,63], that well-tuned linear adaptive power system stabilisers can

provide substantial improvement in performance at various operating conditions.

In this chapter an evaluation of a linear adaptive power system stabiliser applied to
the SMIB power system given in Subsection 2.3.1 is conducted. The evaluation involves
the establishment of a linearised nominal mode for the design of the linear adaptive
power system stabiliser, the selection of the parameter estimation algorithm suitable
for the identification of the SMIB power system, the design of the linear adaptive
control law, and the assessment of the system damping performance of the resulting

stabiliser.

The organisation of this chapter is as follows. In Section 3.2 a linearised nominal
model is derived from the SLAM given in Subsection 2.4.2. Linear stochastic optimal
control of the linearised nominal model is discussed in Section 3.3. The linear stochastic

adaptive generalised minimum variance control algorithm is developed in Section 3.4.
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In Section 3.5 a linear adaptive weighted minimum variance power system stabiliser
is proposed. The damping performance of the proposed stabiliser is assessed through

simulation studies in Section 3.6.

The previous work described in the literature is extended in this chapter in the

following aspects:

1. The linearised nominal model used for the development of the linear adaptive
power system stabiliser is developed directly from the mathematical model of the
SMIB power system described by the SLAM. The derivation procedure provides
insight into the model.

2. The commonly-used linear optimal control strategies for the development of linear
adaptive control laws are derived and discussed under a general form of the cost

function.

3. A linear adaptive weighted minimum variance power system stabiliser is proposed
for the SMIB power system described by the models given in Subsection 2.3.1.
The performance of the proposed stabiliser is evaluated at various system op-
erating conditions through a set of simulation studies and its effectiveness is
demonstrated by comparison with the performance of a well-designed conven-

tional power system stabiliser.

It should be pointed out that the theory for linear adaptive estimation/ prediction/
control of SISO systems has been well documented. For this reason, proofs of lemmas
and theorems, as well as convergence analyses of algorithms used in this chapter are

omitted.

3.2 SISO Linear Input-Output Power System Mod-

elling.

In this section:
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e a SISO linear discrete-time input-output model of the power system is derived

from the SLAM given in Subsection 2.4.2;

e a linearised nominal model ! in a regression form is then developed; this model

is used for the design of the linear adaptive power system stabiliser;

The choice of a linearised nominal model for the design of a linear adaptive power
system stabiliser is the first step towards the successful control of the system dynamics.
In the area of adaptive control, an appropriately chosen model for the estimator can
greatly simplify the parameter estimation procedure and facilitate the design of the

prediction and control algorithms for the system.

The significance of utilising linear adaptive control strategies for the design of power
system stabilisers is that for small dynamics the nonlinear power system can be mod-
elled approximately by a time-varying linearised form. Such a form can be called a
linear dynamic equivalent model [61] of the nonlinear power system. In this thesis, it
is termed a linearised nominal model for which linear adaptive control laws are to be

designed.

The structure of a linearised nominal model for the nonlinear power system can be
proposed in a “black-box” form, in which a model with fixed order and fixed delay-
time but unknown parameters is assumed at first. The data collected from a detailed
simulation of the nonlinear power system (or from real-time field testing) is then fed
into the assumed model in order to modify the proposed model structure and to iden-
tify the unknown parameters (if required) [158]-[165]. This procedure is based on the
concept of the external equivalent [61] of the system. In the literature, the structure of
a linearised nominal model for the design of linear adaptive power system stabilisers
(or controllers) has been assumed as either a Deterministic AutoRegressive Moving-
Average (DARMA) model [45,49,50,68,53,69,56,58,59,62,63,64,65] or an AutoRegres-
sive Moving-Average model with auXiliary input (ARMAX) [46,47,48,52,54,55,57,70,
71,72,60,61,67,74]. 2

1n this thesis, a nominal model is defined as a model for which control laws are directly designed.

2The definitions of a DARMA model and an ARMAX model in linear forms are given in [157].
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Alternatively, the structure of a linearised nominal model can be derived from a
reduced-order nonlinear model of the SMIB power system through linearisation and
discretisation. Theoretically, the validity of the derived model relies heavily on the tech-
niques that are employed in the linearisation and discretisation and/or the assumptions
that are introduced into the derivation of the model. Since a derived linearised nominal
model is based on a simplified nonlinear model of the power system, its validity needs
to be confirmed through external equivalent studies as well. Nevertheless, a derived
model provides insight into the system and, hence, confidence in using such a model

for design purposes.

Due to the time-varying nature of the model parameters, the order of a linearised
nominal model can often be lower than that of the actual nonlinear system. It is
required that such a model represent the dominant dynamics of the system and omit
the less significant dynamics of the system. The consequence of this requirement is to
simplify the design of the system controllers. Since the model is derived in a linear
form, linear adaptive control strategies that have been well documented can be applied

directly to the model.

In this section the linearised nominal model of the SMIB power system is derived
from the SLAM proposed in Subsection 2.4.2. The layout of the remainder of this
section is as follows. A SISO linear continuous-time state-space model of the nonlinear
power system is given in Subsection 3.2.1. The subsequent discrete-time state-space
and input-output models are derived in Subsection 3.2.2. The final form of the lin-
earised nominal model for the design of the linear adaptive power system stabiliser is

determined in Subsection 3.2.3.

3.2.1 SISO Linear Continuous-Time State-Space Power Sys-
tem Modelling.

As far as small signal excitation control of the power system is concerned, the nonlinear

SMIB power system can be described by the SLAM (2.114) derived in Subsection 2.4.2

79



with the linearised output equation (2.129) given in Section 2.6, i.e.,
AX(t) = AgAX(t) 4 byoAu.(t) + buoAw(t), (3.1)

Ag(t) = coAX(t), (3.2)

where Au,(t) is the input to the summing junction of the AVR-excitation system, and

is expressed as

Aur(t) = AV,es(t) + A(t) (3.3)

with A#(t) being the control signal generated by the linear adaptive power system sta-
biliser which is to be designed; Aw(t) is the deviation of the machine mechanical torque,
AT, (t), which has been considered as the system disturbance (see Subsection 2.4.2).
The matrix Ag and the vector cg are defined by (2.113) and (2.130), respectively. With
the selection of the state variables, AX(t), being the set of measurable variables given

by (2.125), Ag is derived in (2.126). The vectors byg and by in (3.1) are written as

T
buo=[0 00 Kf] (3.4)
and
T
bwo=[51ﬁ 000] ; (3.5)

The expression for the vector cg in (3.2) depends on the selection of the system output
variable, Ag(t). Choosing Ag(t) to be the electrical torque deviation, AT.(t), 3 co is
then given by

coz[o 100]. (3.6)

3.2.2 SISO Linear Discrete-Time Input-Output Power Sys-
tem Modelling.

For the sake of simplicity, the disturbance term Aw(t) from (3.1) is omitted for the

time being. It is assumed that for small disturbances about an operating point, Ag in

3The reason of using AT,(t) as the stabilising signal has been explained in Section 2.5.
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(3.1) is a constant matrix. The so-called zero-order-hold equivalent [141] of the linear

continuous-time state-space representation (3.1)-(3.6) is then described by

AX(kh + k) = AgAX (kh) + byoAu, (kh), (3.7)
Aj(kh) = coAX(kR), (3.8)
where
Ag = ehoh, (3.9)
~ h
b.o =/ eA07dr byo; (3.10)
0

h is the constant sampling period and k € [0,1,2,---). An input-output representation
of the discrete-time state-space model (3.7)-(3.10) in the backward-shift operator form
is obtained by eliminating the state variables using purely algebraic manipulations to
give

Ag(kk) = co (I — g A0)” ¢ Buolu,(kh) (3.11)
where

¢ AG(kR)2Ag(kh — h), for k > 1; ¢ Ay(0)20,

and so on. It is assumed that

Assumption 3.2.1 In the model (3.1)-(3.6) the system matriz Ag is nonsingular.

Assumption 3.2.2 The input signal AV, 4(t) is zero ezcept in the cases in which
Vies(t) has step changes.

Subject to Assumptions 3.2.1-3.2.2, the SISO linear discrete-time input-output model (3.11)

can be rewritten as
Ag(kh) = co (I — 'eR0") 7 g Ag™ (eA0h - 1) byoAau(kh), (3.12)
which utilises the result
buo = Ag~! (20" — 1) byo.
The pulse-transfer operator [141] of the model (3.12) is defined as

aB(¢")

I—{(q_l)éco I — g ot - g Aot (20" — ) bo=2—"—%.
A(q™)

(3.13)
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The model (3.12) can then be expressed as
Ag(kh) = H(g7")Au(kh). (3.14)

For convenience of notation, the sampling period k is omitted. The model (3.14) is
then written as

A(g7)Ag(k) = B(g")Au(k) (3.15)
where the polynomial A (¢~!) is of fourth-order and the polynomial B (¢') is of third-

order.

For a given operating point of the nonlinear system, the state-space model (3.7)-
(3.10) and the input-output model (3.15) are time-invariant and linear. According to
the conclusions drawn in Section 2.6, the order of the input-output model (3.15) is equal
to the order of the state-space model (3.7)-(3.10) if and only if the model (3.7)-(3.10)
is completely controllable and observable. In this case, the given system operating
point that determines a minimal realization of the state-space model (3.7)-(3.10) will
result in an irreducible pulse-transfer operator H (¢~!) (3.13), and therefore unique co-
efficients of the polynomials A (¢~') and B (¢~') in (3.15). However, as the operating
condition of the nonlinear system varies widely, the controllability and observability
of the model (3.7)-(3.10) over a wide range of operating conditions is not guaran-
teed, nor is the uniqueness of the coefficients of the polynomials A(¢~*) and B (¢7").
Consequently, it may happen in theory that multiple sets of values of the polynomial
coefficients in (3.15) represent an identical operating point at which the controllability

and observability of the model (3.7)-(3.10) are not satisfied.

3.2.3 Linearised Nominal Model of the Power System.

From a practical point of view, one allows for measurement errors, actuator errors, and

in some instances computer round-off errors in (3.15) by assuming that

Assumption 3.2.3 For the model (3.15), the measured or computed values of the
input and output variables, u(k) and y(k), satisfy that

sup |Ay(k) — Ag(k)| < Ay,

0<k<o0
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sup |Au(k) — Au(k)| < Ay,

0<k< 00

where A; (1 = 1,2) are fired known values.

Taking the omitted disturbance term Aw(t) and the errors introduced by Assump-

tion 3.2.3 into account, one adds a noise term C (¢~*) €(k) in (3.15), resulting in
A(g")Ay(k) = B(g™")Au(k) + C(q™")e(k) (3.16)

where C(¢q~!) is an unknown polynomial and {€(k)} is uncorrelated with {Ay(k)} and

For the system operating points at which zero-pole cancellations in H (¢7') (3.13)
take place, the order of the model (3.16) is higher than it should be. In the context
of the adaptive estimation and prediction, an overparametric model may result in a
low convergence rate of the estimated parameters and, subsequently, a poor prediction
of the system output. To avoid it, the polynomials A (¢7!) and B (¢™') in (3.16) may
need to be replaced by the corresponding lower-order ones. Consequently, a general

form of the Linearised Nominal Model (LNM) of the SLAM is described by
Alg ) Ay(k) = ¢ B(g™")Au(k) + Clg™")e(k) (3-17)
where A (¢7!) is of third-order
A" =1+ a1q7! + a7 + asq™; (3.18)
B (q7!) is of second-order
B(q™Y) = b+ big™" + bag™2 (3.19)

The roots of the polynomial C (z) are restricted to lie within the unit circle of the
z-domain. The noise {e(k)} is an uncorrelated random sequence of zero mean and
is unmeasurable. The order of C (¢7!) is to be specified. For the sake of simplicity,
C(¢7*) = 1 can be taken [46,48,54,55,57,70,71,72,60,67,74]. Note that the coeflicients
of the polynomials in (3.17) are time-varying in nature, in accordance with the changes
in system operating conditions. The LNM given by (3.17)-(3.19) will be used for the
design of the linear adaptive power system stabiliser in the following sections of this

chapter.
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3.3 SISO Linear Stochastic Optimal Control.

In this section:

o the SISO linear stochastic optimal control laws which lead to the corresponding
linear stochastic adaptive control laws are derived from a general form of the cost

function;
o features of the different linear stochastic optimal control strategies are described;

e aspects of utilising the different optimal control strategies for the development of

linear adaptive power system stabilisers are discussed.

The establishment of the LNM (3.17)-(3.19) in Section 3.2 provides a basis for the
design of linear adaptive power system stabilisers. As the LNM is given in an ARMAX
form, for a given control performance index in a. stochastic environment linear stochastic
optimal control laws can be derived for the LNM. The derivation and discussion of the
linear stochastic optimal control strategies conducted in this section will establish a
foundation for the development of the subsequent linear stochastic adaptive control

strategies in Sections 3.4 and 3.5.

The layout of this section is as follows. In Subsection 3.3.1 a linear stochastic
optimal d-step-ahead predictor is given. The linear stochastic optimal control laws are

derived and discussed in Subsection 3.3.2.

3.3.1 SISO Linear Stochastic Optimal d-Step-Ahead Predic-

tor.

Consider, in general terms, a SISO linear finite-dimensional time-invariant discrete-

time model given by

A(g)y(k) = ¢ *B(g7 " u(k) + C(g7")e(k) (3.20)

84



where y(k)ER is the output; u(k)ER is the control input; e(k) is a white noise satisfying
E{e(k) | Fios} =0, E{e(k)? | Fyoa} =, for k > 1; (3.21)

d is the system pure time delay; A(¢™!), B(¢™"), and C(¢™") are polynomials of order

n, m, and I, respectively, and are given by

Al =14ag"+... tag ™ (3.22)
B(g)=bo+big ' +...+bng™™, (bo # 0), (3.23)
Clg)=1+cag +...+aq™. (3.24)

The roots of C(2) are strictly inside the unit circle of the z-domain.
For the model (3.20)-(3.24) having d-step pure time delay, the optimal d-step-ahead

prediction, y°(k + d | k), of y(k + d) is given by

Lemma 3.3.1 The optimal prediction of the output of the model (3.20)-(3.24) at time

(k + d) can be expressed in the following predictor form

Clg M)y (k+d | k) = a(g h)y(k) + Blg™" )u(k) (3.25)
where
W(k+d | k)2 E{y(k+d) | Fi} =y(k+d) - F(g™e(k +d), (3.26)
a(g!) £ G(g™), (3.27)
Blg™) £ F(¢™")B(¢™) (3.28)

with By = by # 0. F(g™!) and G(q7"') are the unique polynomials of order (d—1) and
(n — 1), respectively, satisfying

C(q™") = FlgHAlg™) +q"G(g™), (fo=1). (3.29)
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3.3.2 SISO Linear Stochastic Optimal Control Laws.

The linear stochastic optimal control performance index leading to the linear stochastic

adaptive control schemes is of the following form
_ - 2 - 2
J(k+d) £ E { [P(a)y(k+d) — R(g™)y"(k+d)] + [Qa™)u(k)] } (3.30)

where y*(k + d) is the desired output trajectory which the system should follow and
P(¢71), R(¢"), and Q(g?*) are the preselected weighting polynomials which are used
to penalise excessive control actions and to deal with nonminimum phase problems.

The leading coefficient of P(q™'), po, is taken as 1.
The optimal control law which minimises (3.30) sets

PPk +d 10 - Rig e+ )+ DL B0 =0

which utilises the definition of ¥°(k +d | k) in (3.26), the optimal d-step-ahead predic-
tor (3.25), as well as the numerical characteristics of e(k) in (3.21). The consequent

linear optimal control law as well as its closed-loop characteristics is then given by
Theorem 3.3.1 For the model (3.20)-(3.24) having the optimal predictor (3.25)-(3.29),

(a) the optimal control law minimising the cost function (3.30) has the form 4
L(g)u*(k) = M(q7")y"(k +d) — P(¢”)y(k) (3.32)

where L{q™'), M(g™!), and P(q™") are defined as

L) 2 P + HL o, (339
M(q7") & R(¢™)C(g™), (3.34)
P(g™") £ P(¢7M)e(g™); (3.35)

4Note that in this thesis the final form of the optimal controlinput is symbolised by u* (k).
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(b) the closed-loop system is given by

w(q_l){y<k+d> Blg MR Lia™) Hy*<k+d>} —

u*(k) A(gYR(g™") —¢*P(q7") e(k +d)
where i
w(g™) & P(¢)B(g™) + %ﬁm—l); (3.37)

(c) the resulting closed-loop system (3.36)-(3.37) is bounded-input bounded-output
stable provided that

w(z") 2 P(z")B(z"") + —Q(zz;o Mo 471y 20, forall || < 1.

Discussions of different linear stochastic optimal control schemes.

The cost function (3.30) describes the following important cases, each resulting in a

linear optimal control scheme:

(1) Select P(¢™') = R(¢™*) = 1 and Q(¢™"') = 0. A minimum variance controller is
formed from (3.32)

Blg " )ur(k) = C(¢ M)y (k + d) — a(q ™ )y(k). (3.38)
The resulting closed-loop system poles are given by
B(z™') = 0.
The features of a minimum variance controller are:

— the controller can only be used when the system is minimum phase;

— with a small value of the leading coefficient of the polynomial 8(¢~"'), an

excessive control effort may be called for.

(2) Select P(¢7!) = R(¢g™') = 1 and Q(¢7") = Az (where A > 0). A weighted
minimum variance controller is formed from (3.32)

Blq) + %0@-1) (k) = Clq Y (k+ d) — ol (k). (3.39)
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The resulting closed-loop system poles are given by

B(g™) + 5 AG™) = 0.

The features of a weighted minimum variance controller are:
— by including a weighting coefficient A into the construction of the control
law, the controller can be used to stabilise a nonminimum phase system;

— with a suitable choice of the value of A, excessive control actions can be

penalised without losing the optimal control effect;
— the controller will, in general, produce a steady-state tracking error unless

the control action converges to zero in the steady state.

(3) Select P(qg~') = R(¢™!) =1 and Q(¢~1) = A2(1 — ¢™!). An integrated minimum

variance controller is formed from (3.32)

[ﬂ(q"’) + % (1-¢7) C(q‘l)l u(k) = C(g7)y"(k +d) — a(g™)y(k). (3.40)

The resulting closed-loop system poles are given by

B(g™) + % (1-¢) A(g™) =0.

The features of an integrated minimum variance controller are:

— the controller can be used for a nonminimum phase system;

— zero steady-state tracking error is guaranteed by the introduction of a pure

integrator into the control loop;

— the effect of “integral wind-up” may result if saturation in the input and/or

the output signals occurs.

(4) Solve P(¢7') and Q(g~') from

Q¢ )%
Bo

where A*(q!) defines the prespecified locations of the desired closed-loop poles.

Let M(q') = ¢~?P(q") (i.e., choose R(q~!) such that

w(qg™') = P(¢g")B(q™") + A(g™h) = A(q) (3.41)
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R(gHC(¢7Y) = ¢~ P(g7)a(q™")). A pole assignment controller is formed from
(3.32)

L(¢7")w(k) = P(¢7") [y" (k) — y(k)].

The resulting closed-loop system poles are given by
A*(¢") =0.
The features of a pole assignment controller are:

— the choice of A*(¢~!) is random provided that a unique solution of P(g™*)
and Q(¢™!) can be found from (3.41), i.e., A(¢™!) and B(g!) are relatively
prime;

— a poor choice of A*(¢”!) may lead to an unstable L(¢™'), thus an unstable

controller.

Remark 3.3.1 The linear optimal control schemes given by (3.38), (3.39), and (3.40)

can be summarised under the name of generalised minimum variance control [166,167].

Utilisation of the linear stochastic optimal control schemes for the develop-

ment of linear adaptive power system stabilisers.

The linear optimal control laws given above provide the bases for the development
of the corresponding linear adaptive control algorithms. To choose an appropriate
optimal control scheme for the design of a linear adaptive power system stabiliser, the

following basic requirements are essential:

(1) the control scheme should be able to stabilise a nonminimum phase system;

(2) the control action generated by the control law should not saturate during the

system dynamics following a disturbance;

(3) the design of the control law should not rely heavily on the a priori knowledge
of the system;
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(4) the computation of the control action should not affect the practicality of the

control algorithm;

(5) the resulting controller should be able to be tuned by one parameter in the control
law, to achieve the best trade-off between the system performance and the control

effort.

Based on the above requirements, the following are considerations which need to
be taken into account when applying the different linear optimal control schemes to

the design of linear adaptive power system stabilisers {49,43,44]:

e The minimum variance control scheme is not suitable for the adaptive excitation

control of power systems because

— the resulting closed-loop system will be unstable if the system is nonmini-

mum phase;

— an excessively large control action will cause the exciter to reach its ceiling

level with the result that poor damping performance of the system occurs.

e The integrated minimum variance control scheme may not be suitable for the

adaptive excitation control of power systems because

— during large excursions of the system variables, saturation of the input
and/or the output signals occurs. The integrator output will then build
up to a large value which leads to poor control system performance or even

instability.

e The pole assignment control scheme may not be suitable for the adaptive excita-

tion control of power systems because
— it may be difficult to choose the closed-loop system poles which are appro-
priate for a wide range of system operating conditions;

— the computation burden in calculating the control action may become ex-
cessive, since at each iteration two identity equations ((3.29) and (3.41)) are

required to be solved;
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— a poor choice of A*(¢~!) may lead to an unstable control action and, thus,

poor damping performance.

It can be seen from the above discussion that the weighted minimum variance control
scheme meets the basic requirements (1)-(5) and is simple to be implemented in prac-
tice. Since a high-gain AVR is usually used in the excitation control system, for stable
system responses the control action u*(k) from (3.39) will converge to a very small
value in the steady state, as expressed by

lim [u*(k)| < €y (3.42)

k— oo

where €,+ is a small constant which is dependent of the value of the gain of the AVR.
It should be emphasised here that an important advantage of utilising the weighted
minimum variance control scheme for the development of the linear adaptive power
system stabiliser is that, due to its simplicity, it can be extended into a nonlinear
control case. This advantage will facilitate the comparisons of system performance of
the linear adaptive and nonlinear optimal/adaptive control strategies to be conducted

in the following chapters.

Remark 3.3.2 The features of the adaptive excitation control of power systems as-
soctated with the use of the optimal linear quadratic control scheme and the model
reference control scheme are described in [49,43], however they are not included in this

thesis.

Remark 3.3.3 Modified versions of the pole assignment control law, called the pole-
shifting control law [49,50] and the self-searching pole-shifting control law [58,54,55,
56,70], have been proposed and implemented in the literature. However, due to the
complexity in computation, these control laws may not be easily extended into a non-
linear control case and, therefore, are considered to be unsuitable for the purposes of

this thesis.
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3.4 SISO Linear Stochastic Adaptive Generalised

Minimum Variance Control.

In this section:

e aspects of the selection of the parameter estimation algorithm for the identifica-

tion of the LNM are discussed;

e the SISO linear stochastic adaptive generalised minimum variance control algo-

rithm is described.

The derivation of the linear stochastic optimal control laws discussed in Section 3.3
provides a basis for the development of the linear adaptive control laws for the LNM.
Since the parameters of the LNM are time-varying and, in general, are unknown in
nature, a properly selected parameter estimation algorithm is incorporated into the
control law (3.32) to identify the model or the controller parameters on-line. The
control law is then updated using the estimated parameters as if they were the true ones.
Such a design scheme is based on the so-called certainty equivalence principle [37]. If
the estimated parameters are the controller parameters, the resulting adaptive control
algorithm forms a direct self-tuning adaptive controller. However, if the estimated
parameters are the model parameters, intermediate control design calculations are
needed at each iteration step in order to obtain the controller parameters. The resulting

adaptive control algorithm is then called an indirect self-tuning adaptive controller.

The layout of this section is as follows. In Subsection 3.4.1 the selection of parameter
estimation algorithms for on-line model identification of power systems is briefly dis-
cussed and the basic algorithm used for the simulation studies of this thesis is finalised.
In Subsection 3.4.2 a direct SISO linear stochastic adaptive generalised minimum vari-

ance control algorithm is described.
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3.4.1 Parameter Estimation Algorithms for the Linearised

Nominal Model of the Power System.

In an adaptive control scheme, the parameter estimation algorithm plays an important
part in the successful control of system dynamics. Standard parameter estimation

algorithms, such as

projection method;

least squares method;

instrumental variable method;

extended least squares method; etc.,

have been well documented in the literature (e.g., [168,157,169,170]). The applications
of these algorithms to a variety of fields of studies have been widely reported. One of
the most popular methods, the recursive least squares algorithm, has been accepted as
a suitable standard algorithm for the parameter estimation in power system studies.
Several modified versions of this standard algorithm have been proposed and imple-
mented for the identification of power systems either through simulation studies [57,61]

or laboratory experiments [71,72,67].

For identifying a steady-state power system at a fixed operating point, the unknown
parameters of the LNM are time-invariant. The standard recursive least squares algo-
rithm can then be used without modifications. However, as indicated in Section 3.2,
the parameters of the LNM are time-varying due to the changes in system operating
conditions. This nature of the parameters of the LNM requires that the estimation
algorithm possess the ability to track the parameters. The standard recursive least
squares algorithm does not track the changes in the parameters well. This is because
after the initial convergence of the estimated parameters, the covariance matrix P(k)
in the algorithm becomes very small and the estimator is close to a ‘switching-off’
condition. To improve the tracking ability of the algorithm, several modifications have

been proposed [45,47,57,71]. Among them, the application of an exponential forgetting
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factor, 4, with a constant value of less than one has received considerable attention
[45,57,71,72,61,64,67]. The best value of y depends upon the system operating condi-
tion. For small variations from the system steady-state operating point, the value of
¢ should be close to unity, but for large excursions in the system operating condition,
the value of p should be less than one. Since the covariance matrix P(k) is constantly
scaled by p, the phenomenon whereby the matrix P(k) ‘blowing-up’ occurs if p is cho-
sen relatively small while the system is operating at a steady-state point for a long
time. When this happens, the estimator becomes very sensitive to any disturbances
or numerical errors in computation. A small disturbance or numerical error will cause

bursting in the estimated parameters [171,54].

To overcome this problem, a time-varying forgetting factor, (&), has been proposed
instead [171]. The proposed structure of p(k) is a function of the error, e(k), between
the system output variable and its prediction, i.e.,

e(k)? 1

Mk =~ T S —aT Pk —d—Dg(k— d) 6

For steady-state operation, the error e(k) is close or equal to zero. The value of pu(k) is
then close or equal to unity, preventing the matrix P(k) from ‘blowing-up’. For small
disturbances, p(k) decreases as e(k) increases. This improves the parameter tracking
ability of the estimator and prevents the estimator from ‘switching-oft’. The occurrence
of large disturbances causes p(k) to decrease significantly, resulting in fast parameter

tracking.

The above approach (or other similar versions of this method, e.g., [60]) has been
employed in several applications of adaptive control to power systems in the literature.
Its performance in tracking parameter changes over a wide range of system operating
conditions has been verified through simulation studies [53,54,56,58,60,65,74] and ex-
perimental results [70]. This approach is adopted to form a basic parameter estimation
algorithm for the design of the linear adaptive power system stabiliser in this chapter
and the nonlinear adaptive power system stabilisers in Chapters 5 and 6. The detailed
forms of the estimators will be given in Subsection 3.4.2 and Sections 3.5 and 5.2, along

with the relevant control laws.
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3.4.2 SISO Linear Stochastic Adaptive Generalised Mini-

mum Variance Control Algorithm.

The design of an adaptive control law involves the combination of a parameter estima-
tion algorithm with an optimal control law. This combination results in the controller
possessing the ability to adapt to variations in operating conditions of the nonlinear

power system.

Combining the linear optimal control law (3.32) with the recursive least squares
algorithm with the time-varying forgetting factor selected in Subsection 3.4.1, one ob-
tains the basic structure of a linear adaptive power system stabiliser. To derive a direct
adaptive generalised minimum variance control algorithm from (3.32), an auxiliary

variable p(k + d) and its optimal prediction ¢*(k + d | k) are introduced as

okt )2 Playlh +d) — R+ )+ ZE 0 (g

B
and
e (k+d| k)2 P(g )y (k+d | k) — R(gV )y (k+d) + %u(k). (3.44)
Due to (3.26), it follows from (3.43) and (3.44) that
e k+d|k)=pk+d)—e,(k+d) (3.45)
where
eo(k+d) £ P(q7")F(g™")e(k + d); (3.46)

{ex(k + d)} is uncorrelated with {y(k)} and {u(k)}. According to (3.26), (3.25), and
(3.31), an equivalent form of the model (3.20)-(3.24) can be derived from (3.43)-(3.46):

o(k+d) = P(gVy(k)+ L(g " )u(k) — M(¢~")y*(k+ d) + e, (k + d)
2 $(k)T O + ey(k + d) (3.47)

where P(q~?), L(¢™'), and M(q™!) are given by (3.35), (3.33), and (3.34), respectively,

and

ST 2 [ y(k) y(k=1) o (k) w(k—1) - —y(k4d) -y (ktd=1) - |;
(3.48)
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Ogé po p1 - o &y o mo oMy oo | (3.49)
The optimal control law given by (3.32) is then written concisely as
$(k)TO0 =0
with u(k) in (3.48) denoted by u*(t).

Using the certainty equivalence principle, the d-step-ahead adaptive prediction,

@(k + d), of o(k + d) in (3.47) can then be defined as
o(k + d) £ ¢(k)TO(k)
where
OK)T 2 | po(k) po(k) - bo(k) h(k) --- ro(k) (k) --- ] . (3.50)
O(k) is the estimate of O, (3.49). Hence, the adaptive control u(k) is chosen such that

$(k)TO(k) = 0. (3.51)

The linear estimate O(k) of ©p is obtained at each iteration step by using the
selected recursive least squares algorithm with the time-varying forgetting factor. At
the sampling instant k, the vector of the parameter estimates previously available is
O(k — 1). A new estimate O(k) of the parameters can be generated by the following
algorithm. Note that as the algorithm is given in a direct form, the control input u(k)

is solved directly by using the estimated controller parameters in ©(k) (3.50).

Algorithm 3.1 [direct SISO linear stochastic adaptive generalised minimum

variance control algorithm.]

Estimate:

A

O(k) = O(k — 1) + P(k — d)p(k — d) [io(k) — $(k — d)TO(k — 1)] ;

Covariance:

P(k —d) = P(k—d—1)_P(k_d—1)¢(k—d)¢(k—d)TP(k—d—1)] 1

w(k—1) 1 ¢(k—d)TP(k—d— 1§k —d) | u(k—1)’
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Auxiliary Variable:

o(k) = PlaY(k) — Bl (k) + 2L D% _ g,

Po
Prediction:
¢(k) = ¢(k — d)TO(k — d);
Error:
e(k) = SO(k) - @(k‘),
Forgetting Factor:
) 205 !
#olk) =1 — T S TPtk —d =gk — ) %o’
A(k) = { ° - ’
fmin otherwise
2 » trace[{-’(k — d)] <C
u(k) = £ (k) ;
1 otherwise

Control Law:

$(k)TO(k) = 0;

where k > d, P(—1) = KoI (0 < Ko < C), and pu(d — 1) = 1. P(¢™'), R(¢™?), and
Q(q~') are preselected weighting polynomials. o, fimin, and C are preselected positive

constants. O(k) and @(k) are defined by (3.50) and (3.48), respectively. ©(0) is given.

\YAYAY
Remark 3.4.1 In Algorithm 3.1, it is required that

(i) lo(k) be non-zero for all k. If this assumption is violated in practice, it is then
necessary to introduce boundaries in the estimate in order to prevent io(k) from

being zero.

(it) the value of By be known.

Remark 3.4.2 The introduction of pi;, and C in the algorithm is to guarantee the
convergence of the estimates [172,173].
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Algorithm 3.1 will be used in Section 3.5 for the development of the desired linear

adaptive power system stabiliser.

3.5 A Linear Adaptive Weighted Minimum Vari-

ance Power System Stabiliser.

In this section:

e the SISO linear stochastic adaptive weighted minimum variance control algorithm

is developed from Algorithm 3.1 given in Subsection 3.4.2;
e alinear adaptive weighted minimum variance power system stabiliser is proposed.

e the control structure of the SMIB power system equipped with the proposed

linear adaptive power system stabiliser is given.

Algorithm 3.1 proposed in Subsection 3.4.2 can be used for the implementation of
the three important linear adaptive controllers as discussed in Subsection 3.3.2 (see
Remark 3.3.1). Based on the discussions of the features associated with each control
law in Subsection 3.3.2, the weighted minimum variance control law is adopted for the
development of the linear adaptive power system stabiliser. As indicated previously,
the advantage of using this control law is that it facilitates the development of a
corresponding nonlinear control law and the comparison of system performance of the

linear and nonlinear adaptive control strategies.

With the selections of P(¢~!) = R(¢™!) = 1 and Q(¢~!) = A7, Algorithm 3.1 imme-
diately results in a direct SISO linear adaptive weighted minimum variance controller.
Furthermore, it is assumed that C(¢™') = 1 in the LNM (3.17)-(3.19) in which the
time delay d = 1. From (3.33)-(3.35), it follows that the estimated controller param-
eters of the polynomials L(k,q™1), P(k,q‘l), and M(k,q‘l) in Algorithm 3.1 can be

constructed directly by the estimated model parameters of the polynomials A(k,q‘l)
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and B(k, ¢ ') of the LNM, i.e.,

and

M(k,q™") = 1.

The incremental notations for the input and output signals of the LNM are used, and
the control law (3.51) can then be reconstructed directly by the estimated parameters

of the LNM, i.e.,

TA A —
$(k)TO(k) + mm(k) ~0 (3.52)
where
O 2 [ ay(k) (k) as(k) bo(k) hi(k) hah) |, (359)

BT 2 [ —ay(k) —dy(k—1) —Ay(k—2) Au(k) Au(k—1) Au(k—2) ]
(3.54)
Hence, an indirect SISO linear adaptive weighted minimum variance control law for
the LNM can be developed from Algorithm 3.1, and is given by Algorithms 3.2(A)
and 3.2(B) for the parameter estimation and the calculation of the control input,

respectively.

Algorithm 3.2(A) [indirect SISO linear stochastic adaptive weighted mini-

mum variance control algorithm — parameter estimation.]

FEstimate:

O(k) = O(k — 1) + P(k — 1)¢(k — 1) [Ay(k) — Aj(k)];
Covariance:

P(k —2)¢(k — 1)¢(k — 1)T P(k — 2) 1
(k—1) + ¢(k — )T P(k — 2)¢(k — 1) | p(k —1)’

P(k=1) = |P(k~2)~ -

Prediction:

Aj(k) = ¢(k —1)TO(k - 1);
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FError:

e(k) = Ay(k) — Aj(k);

Forgetting Factor:

) e(k)? !
wolk) =1 — T S )T Pk = 20k — 1) 5o’
Limin otherwise ,
) .. trace[P(k — 1)]
k f ¢
NG <O
1 otherwise

where k > 1, P(—1) = Kol (0 < Ko < C), and p(0) = 1. Zo, fimin, and C are prese-
lected positive constants. @(k) and ¢(k) are defined by (3.53) and (3.54), respectively.
6(0) is given.

VVV

In practice, the control signal Au(k) in (3.52) is bounded by physical limits. The control
law (3.52) is then modified to form the desired Linear Adaptive Weighted Minimum
Variance Power System Stabiliser ( LAWMYV-PSS) which is described as

Algorithm 3.2(B) [indirect SISO linear stochastic adaptive weighted mini-

mum variance control algorithm — control law.]

u° . i’O(k) A -1y _ A -1y _ 1 i
(=7 (k)2+)\{[A(k’q ) —1] qAy(k) — [B(k,q™") — bo(k)| Au(k)}, (3.55)
Urmas if u®(k) > Umaer
Au(k) =19 wok)  if upin < u(E) < s ; (3.56)
Upmin if u(k) < upin

where A is the weighting coefficient, ., and u,;, are known constants, and the

estimated parameters are provided by Algorithm 3.2(A).

VVV
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Clearly, the calculation of the control action of the LAWMV-PSS is a tWO:‘{“S‘%:.é:I';}r

procedure:

e the recursive least squares algorithm with the time-varying forgetting factor (Al-

gorithm 3.2(A)) provides the estimated parameters of the LNM;

e the control law (3.55)-(3.56) (Algorithm 3.2(B)) generates the control signal by
the use of the estimates of the LNM.

Remark 3.5.1 The advantage of using an indirect form of the control algorithm (Algo-
rithms 8.2(A)-(B)) is that the requirements in Remark 3.4.1(i)-(ii) need not be involved.
Also, since the control law (8.55)-(3.56) is constructed by the estimated parameters of

the LNM, intermediate calculations of the controller parameters are not needed.

The system to be stabilised is a SMIB power system, the models of which have
been derived in Subsection 2.3.1. The control structure of the system equipped with
the proposed LAWMV-PSS is illustrated in Fig. 3.1. The stabilising signal, Ay(k),
is the deviation of the machine electrical power, AP.(k) (or torque, AT,(k)). The
performance of the LAWMYV-PSS will be evaluated in Section 3.6.

Remark 3.5.2 It should be pointed out that the output trajectory y*(k) in Fig. 3.1
can be provided by feeding back the output variable y(k) through a low-pass filter. The
frequency of the low-pass filter should be designed such that any rotor oscillations can
be attenuated while the maximum rate of the loading due to the mechanical system can
be followed. However, for the sake of simplicity, y*(k) is set, artificially, to be the
reference power (P,.;(k)) in the simulation studies of this chapter. The same approach

will be utilised in Chapters 4 to 6.
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Figure 3.1: Control structure of the SMIB power system with the LAWMV-PSS.

3.6 Evaluation of the Performance of the Linear
Adaptive Weighted Minimum Variance Power

System Stabiliser.

In this section:

e the validity of the LNM derived in Subsection 3.2.3 to represent the nonlinear
power system (CSM3) is verified through external equivalent studies;

e the performance of the LAWMV-PSS proposed in Section 3.5 is evaluated through

simulation studies;

e the robustness of the LAWMV-PSS is tested with unmodelled dynamics and

modelling errors.
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The LAWMV-PSS proposed in Section 3.5 is implemented via excitation control of
the SMIB power system modelled in Subsection 2.3.1. The steam turbine of the power

system is controlled by the conventional speed-governor as described in Appendix A.

A sampling period of 20 ms is chosen for the simulation studies of this chapter as
well as the following chapters. This period has been used in laboratory experiments in

the literature and found to be satisfactory [68,71,67].

The procedure for the simulation studies in this section is as follows:

e The LAWMYV-PSS is initially designed for the CSM3 (D = 4.0 pu), the per-
formance of which has been verified, in Subsection 2.3.2, to give the satisfactory
agreement with that of the higher-order, more accurate model of the actual power
system (CSM1 with D = 0.1 pu). A series of simulation studies will be conducted
for the CSM3 equipped with the LAWMV-PSS to evaluate the performance of
the LAWMV-PSS.

o The effectiveness of the LAWMYV-PSS will be further tested through robustness
studies. The major issues of concern in this type of study have been explained
in Subsection 2.3.2. The simulation studies will involve the replacement of the
CSM3 by the CSM1, and will include different situations in which the LAWMYV-
PSS is subjected to unmodelled dynamics and modelling errors. These studies

will confirm the validity of the proposed LAWMYV-PSS.

Note that this procedure will be followed by the simulation studies in Chapters 4 to 6
for the evaluation of the nonlinear optimal and adaptive power system stabilisers which

will be designed later.

To fulfill the above procedure, three Stages of simulation studies are conducted:

Stage 1: Verification and identification of the LNM — to examine the performance
of the estimated LNM in tracking and predicting the dynamics of the nonlinear
power system (CSM3) at different system operating points with different system

configurations.
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Stage 2: Evaluation of the performance of the LAWMV-PSS — to compare the dy-
namic and transient behaviour of the LAWMYV-PSS with that of a well-designed
conventional power system stabiliser at different operating conditions and under

fault conditions.

Stage 3: Studies on the robustness of the LAWMV-PSS — to test the performance
of the LAWMV-PSS when the CSM3 is replaced by the CSM1.

The implementation of the above three Stages will be discussed in the following Sub-
sections 3.6.1, 3.6.2, and 3.6.3, respectively. The parameters and limits associated with
the SMIB power system and the LAWMYV-PSS are listed in Appendix C. The simula-
tion results obtained from this section will be used as a reference for the comparisons
of system performance of the linear and nonlinear control approaches in Chapters 4

and 6.

3.6.1 Verification and Identification of the Linearised Nom-

inal Model of the Power System.

In this subsection the validity of using the estimated LNM to represent the nonlinear
power system (CSM3 with D = 4.0 pu) is verified through simulation studies at differ-
ent system operating points with different system configurations. The output signal is
the machine electrical torque deviation, AT, (k). This subsection is the implementation

of Stage 1.

Aims and structure of the simulation studies.

The nonlinear power system (CSM3 with D = 4.0 pu) is operating at a specified
steady-state operating point. An external Pseudo Random Binary Sequence (PRBS)
signal is used as the control signal u(k) which is injected into the summing junction
of the input of the AVR to excite the dynamics of the nonlinear power system. The
PRBS signal as well as the sampled output signal (AT,(k)) from the CSM3 is fed into
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the estimator, the model of which is the LNM. At each sampling instant, the estimator
generates the estimated parameters (O(k)) and the predicted output (AT.(k)) by the
implementation of the recursive least squares algorithm with the time-varying forget-
ting factor (Algorithm 3.2(A)). The configuration of this study is given by Fig. 3.2 5.
The aims of this study are

e to confirm that the estimated LNM is an adequate representation of the CSM3;

e to examine the convergence of the estimated parameters;

e to verify the output tracking ability of the estimated LNM at different system

operating conditions.

Vel 1) 4 SVOn T (1)
Power System -
+ l
DAC ADC
‘ + Te(k)
——y*K)
- Estimator - AT.(k) + -
Au(k) (LNM) - e(k)
(PRBS)
O k) { AT.(k)

Figure 3.2: Structure of the verification and identification of the LNM.

The PRBS signal is generated by a seventh-order shift register. The step length
and clock period of this signal are chosen to be 100 ms, and its amplitude 0.002 pu,

causing about 2% perturbation about the specified operating point.

A variety of system operating points have been tested. Two of them are selected

as examples:

5See Remark 3.5.2 for the explanation of the signal y* (k) in Fig. 3.2.
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e Lagging Operating Point: P, = 0.6 pu, ¢; = 0.3 pu, V; = 1.0 py;

e Leading Operating Point: P; = 0.4 pu, @; = —0.1 pu, V; = 1.0 pu.
Three simulation studies at the above two operating points are constructed as follows:

Case 1: The system is operating at the lagging operating point with the original

system parameters (as listed in Appendix C).

Case 2: The system is operating at the leading operating point with the original

system parameters.

Case 3: The system is operating at the lagging operating point with the original
system parameters ezcept that the value of the transmission line reactance, X.,

is doubled; this represents a change in the system configuration.

The simulation results associated with these three cases are given by Figs. 3.3-3.4 and
Tables 3.1-3.2. The estimator parameters are: Ko = 10%, C' = 10°, ppin = 0.2, and
Yo = 0.8. The initial value of the estimate, (:)(0), is set to zero.

Analysis of the simulation results.

The estimated parameters of the LNM in Case 1 are plotted in Fig. 3.3. It is seen that
all estimates converge satisfactorily. The responses of the electrical torque deviation of
the generator and its prediction of the estimated LNM in this case are superimposed
in Fig. 3.4, from which it is seen that the estimated LNM describes the dynamic char-
acteristics of the machine electrical torque deviation around this operating condition.
These conclusions about the convergence of the estimated model parameters and the
output tracking ability of the LNM in Case 1 are also applicable entirely to Cases 2
and 3 the graphs of which are, therefore, omitted.

Notice that Cases 1 and 2 represent the situation in which the power system works
at different operating points with the same system configuration, while Cases 1 and 3

represent the situation in which the power system works at the same operating point
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but with different system configurations. To demonstrate the ability of the LNM to
identify the power system in different system operating environments, two tables of
simulation results are given by Tables 3.1-3.2. Table 3.1 shows the converged values
of the estimates of the LNM for the three simulation cases, while Table 3.2 lists the
identified zeros of the polynomials of the LNM for each case. It is seen that if the system
operating point and/or the system configuration change, the estimated parameters of
the LNM change, resulting in the changes of the identified zeros of the polynomials
of the LNM. It is then evident that the estimated LNM can adapt to the changes
in the system operating environment by giving different sets of estimates as well as

polynomial zeros in its linear representation.

~ A A

&y &y ds bo by b,

Case 1 || -1.2623 | -0.2932 | 0.5975 | 0.0424 | 0.0472 | -0.0245
Case 2 |[ -1.2540 | -0.2677 | 0.5730 | 0.0462 | 0.0568 | -0.0189
Case 3 |[ -1.2921 | -0.2840 | 0.6037 [ 0.0315 | 0.0371 | -0.0259

Table 3.1: Estimated parameters of the LNM for Cases 1-3.

zero 1 zero 2 zero 3
Case 1 | A(g™1) || -0.6423 | 0.9523+4j0.1527 | 0.9523-j0.1527
B(¢™) || 0.3860 -1.4995
Case 2 | A(g™Y) || -0.6275 | 0.9408+j0.1673 | 0.9408-j0.1673
B(¢™") || 0.2720 -1.5019
Case 3 | A(g™1) |[ -0.6377 | 0.9649+j0.1248 | 0.9649-j0.1248
B(g™!) | 0.4921 -1.6720

Table 3.2: Identified zeros of the polynomials of the LNM for Cases 1-3.
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Conclusions.

From the above studies, it is concluded that:

1. The estimated LNM is a good representation of the CSM3 at different operating

conditions.

2. The estimated LNM possesses the ability to track and predict the dynamics of

the CSM3 in different system operating environments.

3.6.2 Evaluation of the Performance of the LAWMYV-PSS
for the CSM3.

In this subsection the evaluation of the performance of the LAWMYV-PSS is conducted
for the CSM3 (D = 4.0 pu) through a series of simulation studies. The performance
of the CSM3 without a power system stabiliser is taken as the performance of the
original system, and the performance of the CSM3 equipped with the LAWMYV-PSS
will be compared with that of the CSM3 equipped with a conventional power system

stabiliser. This subsection is the implementation of Stage 2.

The design of a conventional power system stabiliser.

To provide a basis for the evaluation of the performance of the LAWMYV-PSS, a con-
ventional power system stabiliser is designed for the CSM3 at a chosen operating point.
The basic principle for the design of a conventional power system stabiliser is to provide
an additional electrical damping torque that is in phase with the shaft speed deviation
of the generator, i.e., ATy = DgAw, where ATy is the desired damping torque and Dy
is the damping coefficient. A variety of design methods are available in the literature,
and a robust design method proposed in [122,34] is used in this thesis to construct the

desired characteristic of the conventional power system stabiliser for the CSM3. The
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Figure 3.3: Estimated parameters of the LNM for Case 1 (lagging operating point with

original system parameters).
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stabiliser with speed input takes the form

TwS 1 (14 87pss1) (1 4+ $Tpes2)
TF T8 Ko (1 4 8Tpss3) (1 4 8Tpssa)

PSS.(s) =D (3.57)

A washout stage has been included in (3.57) to eliminate the steady-state offset in the
1 (1 + STpssl) (1 + STpss2)

K., (1 + STpssS) (1 + STpss4)
characteristic of the generator [122,34]. Since the electrical torque (or power) has been

stabilising signal. The term accounts for the so-called PVr
chosen as the stabilising signal in this thesis, an ideal stabiliser for the electrical torque
(or power) input is derived from (3.57), given by

Tp$ 1 1 (1 + STpssl) (1 + STP”z)

PSSp(s) = —Dag Tp8 2H 8 K (1 + 8Tpos3) (1 + STpssa)

(3.58)

Equation (3.58) forms the transfer function of the desired Conventional Power System
Stabiliser (CPSS). For a chosen steady-state operating point of the CSM3: P =
0.6 pu, Q; = 0.3 pu, and V; = 1.0 pu, the fixed parameters of the CPSS in (3.58) are
listed in Appendix C. The performance of the LAWMYV-PSS will be compared with
that of the CPSS designed with Dy = 20 pu.

Remark 3.6.1 A higher value of Dy (say, Dy = 30 or 40 pu) may give better damping
effects in small dynamics, but may present worse performance during large transients
(e.g., three-phase faults). Therefore, a value of 20 pu is used as a compromise in the

design of the CPSS in this thesis.

Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the LAWMYV-PSS is described by
Fig. 3.1. Alternatively, replacing the dotted-line box in Fig. 3.1 by the transfer func-
tion (3.58), one obtains the control structure of the CSM3 with the use of the designed
CPSS. Also, removing the dotted-line box in Fig. 3.1 results in the control structure
of the original system. In this subsection each simulation study will be conducted
for the three control structures of the CSM3 to evaluate the system performance under
the different control schemes. The electrical torque deviation is used as the stabilising

signal. The aims of this study are
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e to demonstrate that the CPSS is properly designed;

e to confirm that the proposed LAWMYV-PSS is superior to the CPSS (Dy = 20 pu)

at various system operating conditions;

e to establish a reference for the comparisons of the performance of the linear and

nonlinear optimal/adaptive control approaches in Subsections 4.5.2 and 6.5.2.

Five Groups of simulation studies are conducted to evaluate the damping perfor-

mance of the LAWMYV-PSS at various system operating conditions:

Group 1: Dynamic Response — the performance of the LAWMV-PSS is assessed by
simulating the changes in the system operating point. Three simulation studies

are given:

Study 1: The generator is operating at P, = 0.6 pu and @; = 0.3 pu, and is

subjected to periodic variations in reference power (column 2 of Table 3.3).

Study 2: The generator is operating at P, = 0.6 pu and @; = —0.1 pu, and is

subjected to periodic variations in reference power (column 2 of Table 3.3).

Study 3: The generator is operating at P, = 0.6 pu and ¢; = 0.3 pu, and
is subjected to periodic variations in reactive power between lagging and

leading power factors (column 3 of Table 3.3). ©

Group 2: Transient Response — the performance of the LAWMYV-PSS is assessed
by simulating three-phase faults on the receiving end busbars or at the machine

terminal. Three simulation studies are given:

Study 4: The generator is operating at P; = 0.65 pu and Q; = 0.3 pu, and is
subjected to a three-phase fault on the receiving end busbars. The fault is

cleared in 100 ms and the system returns to its pre-fault operating condition.

Study 5: The generator is operating at P, = 0.55 pu and @); = —0.1 pu, and is

subjected to a three-phase fault of 100 ms duration at the machine terminal.

6The periodic variations in reactive power (Q;) are simulated by varying the value of the infinite

bus voltage (Voo ) accordingly.
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The line is switched out after the fault, and a new operating condition is

established.

Study 6: The generator is operating at P, = 0.65 pu and @; = 0.3 pu, and is
subjected to two successive three-phase faults on the receiving end busbars,
each of duration 100 ms. The first fault is cleared by returning the system
to its pre-fault operating condition. The second fault is cleared by opening
both ends of the line, and the system returns to its pre-fault output power

with the value of the transmission line reactance doubled.

Group 3: Response to the Changes in the System Configuration — the performance
of the LAWMYV-PSS is assessed by simulating the changes in the transmission

line system. One simulation study is given:

Study 7: The generator is operating at P, = 0.55 pu and Q; = 0.3 pu, and is
subjected to two successive changes in the transmission line system: one
transmission line is opened, causing the value of the transmission line reac-
tance to be doubled; the opened line is then reclosed and the value of the

transmission line reactance returns to its initial value.

Group 4: Response to External Disturbances — the performance of the LAWMYV-
PSS is assessed by simulating the variations in reference voltage. Two simulation

studies are given:

Study 8: The generator is operating at P, = 0.6 pu and Q); = 0.3 pu, and is sub-

jected to periodic disturbances in reference voltage (column 4 of Table 3.3).

Study 9: The generator is operating at P, = 0.6 pu and @; = —0.1 pu, and
is subjected to periodic disturbances in reference voltage (column 4 of Ta-

ble 3.3).

Group 5: Response to Unstable System Oscillations— the performance of the LAWMYV-
PSS is assessed by simulating large excursions in the system operating point which
is beyond the stability region of the original system. Two simulation studies are

given:
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Study 10: The generator is operating at P; = 0.6 pu and ¢, = 0.3 pu, and
is subjected to large periodic excursions in reference power (column 5 of

Table 3.3).

Study 11: The generator is operating at P, = 0.6 pu and ¢); = —0.1 pu, and
is subjected to large periodic excursions in reference power (column 5 of

Table 3.3).

The simulation results of Studies 1-11 are plotted in Figs. 3.5-3.17. In each study,
three dynamic responses — of the original system, the CSM3 with the CPSS, and
the CSM3 with the LAWMV-PSS — are shown. Identical controller output limits,
Umin = —0.05 pu and Uq = 0.05 pu, are used in the CPSS and the LAWMYV-PSS.
The same limits will be used to construct the nonlinear power system stabilisers to
be designed in Chapters 4 to 6. The weighting coefficient A of the LAWMV-PSS is
adjusted to be 0.4. Note that Studies 1-11 form a series of evaluation studies to be
conducted in Chapters 4 to 6 to evaluate and compare the system damping performance
associated with different control approaches. For the sake of simplicity, in the sequel
the titles of these simulation studies will be quoted directly without repeating the

detailed explanations.

Remark 3.6.2 To avoid radical variations in the estimated parameters of the LAWMYV-
PSS, a fized-length freezing time period can be applied to the estimator to suspend
the estimation of the parameters for a short period of time following the onset of a
fault. Such a technique has been widely used for simulation studies in the literature
[50,57,71,72,60,61,67], and is adopted in this thesis for simulation purposes. A length
of 120 ms (1.2 times the usual fault duration) freezing time period is arranged in the
simulation software upon the occurrence of a fault. Practically, switch logic can be
used to turn the estimator off automatically. The switch logic can be operated by the
detection of a sudden terminal voltage drop greater than a certain amount, say 30%,
of its ordinary level [60]. It can also be operated by using other practical techniques
[57,71,72,61,67].
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Time (sec) || Studies 1-2 | Study 3 | Studies 8-9 | Studies 10-11
(romto) | PG | @(u | Viow P, (pu)
0—05 0.60 0.30 1.00 0.60

0.5—10.5 0.65 -0.1 1.02 0.90

10.5 — 20.5 0.55 0.30 0.98 0.30

20.5 — 30.5 0.65 -0.1 1.02 0.90

30.5 — 40.0 0.60 0.30 1.00 0.60

Table 3.3: Variations in the system operating point of the CSM3 for Studies 1-3 and
8-11.

Analysis of the simulation results.

Group 1: From Study 1 to Study 3, the dynamic performance of the LAWMYV-PSS
is examined by simulating the periodic changes in the system operating point at the
lagging and leading power factors. The simulation results are shown in Figs. 3.5-3.7. It
is seen that in dynamic situations, both the LAWMYV-PSS and the CPSS can provide
an adequate damping torque to the oscillations of the original system. The CPSS works
well for small changes in the system operaing point. Though the difference in system
performance associated with the CPSS and the LAWMV-PSS is not significant, the
LAWMV-PSS shows a faster output tracking ability than the CPSS.

Group 2: From Study 4 to Study 6, the transient performance of the LAWMYV-
PSS is examined by simulating the three-phase faults in the transmission line system.
The simulation results are plotted in Figs. 3.8-3.11. It is seen from Fig. 3.8 that
with the occurrence of a remote fault followed by a recovery of the pre-fault operating
condition, the CPSS can stabilise the system after a few swings. However, when the
fault is severe (as shown in Fig. 3.9) and/or when the fault is followed by a change in
the system configuration (as shown in Fig. 3.9 after the fault and in Fig. 3.11 after the
second fault), the original system tends to be unstable and the CPSS barely damps the
system oscillations. Under these circumstances, the LAWMV-PSS provides stronger
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damping than the CPSS to retrieve the system from the unstable state. It is evident
that the transient behaviour of the LAWMV-PSS is more effective than that of the

CPSS.

Remark 3.6.3 Figure 3.10 illustrates the field voltage Epp(t) response for the test in
Study 5. The conclusions regarding the field voltage responses of the different power
system stabilisers support those made for the torque responses. Further to this, the
field voltage response of the LAWMYV-PSS shows that the LAWMYV-PSS can provide a
control action with appropriate amplitude and phase, resulting in the stronger damping

of the rotor oscillations as revealed by the responses.

Group 3: In Study 7, the ability of the LAWMV-PSS to track the changes in
the system parameters and configuration is examined. With one transmission line
switching out and in, the parameters of the power system become time-varying, causing
the changes in the parameters associated with the models of the LAWMYV-PSS and the
CPSS. With fixed parameters, the CPSS can not adapt to the system changes on-line.
Consequently, as shown in Fig. 3.12, the damping performance of the CPSS is worse
than that of the LAWMYV-PSS, the parameters of which (plotted in Fig. 3.13) are

self-adjusted on-line.

Group 4: From Study 8 and Study 9, the ability of the LAWMYV-PSS to overcome
the external disturbances of the system is examined. The simulation results are given in
Figs. 3.14-3.15. In these two cases, the LAWMYV-PSS provides better damping than the
CPSS. An advantage associated with the LAWMV-PSS is that it reflects the effects of
the external disturbances through the inclusion of a noise term in the estimated LNM,

thus it gives a fast control action to the external disturbances.

Group 5: From Study 10 and Study 11, the ability of the LAWMYV-PSS to extend
the system stability region is examined. Figures 3.16-3.17 show the simulation results.
It is seen that with the large excursions in the system operating point, the original
system responses to the step changes towards 0.9 pu power are unstable both at lagging
and leading power factors. The CPSS can stabilise the system unstable oscillations in

the lagging operating condition, as shown in Fig. 3.16. However, it fails to do so in
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the leading operating condition, as shown in Fig. 3.17 during 10.5-20.5 seconds. The
LAWMV-PSS can successfully damp the system unstable oscillations in both cases.
There is no doubt that the LAWMYV-PSS can extend the system stability region beyond
the capacity of the CPSS. Nevertheless, it is demonstrated that although the CPSS
is designed for a chosen operating point, it can implement the stabilising task over a

certain range of operating conditions.

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that:

1. The CPSS is well designed, and possesses robust characteristics to be able to

work when the system operating conditions change.

2. The CPSS (Dy = 20 pu) and the LAWMV-PSS are comparable for the small
and less severe disturbances covered by Studies 1-3 and 8-9. As indicated in
Remark 3.6.1, higher values of Dy (e.g., 30 pu) can be used in practice, which

may give improved damping performance for small and less severe disturbances.

3. The LAWMV-PSS is more effective than the CPSS in improving the system
damping performance and extending the system stability region in different op-
erating environments following major disturbances and for large increase in trans-
mission line reactance. This can be seen by comparing the settling times of the
relevant output response curves. With the use of the LAWMV-PSS, the settling

time is greatly reduced.

3.6.3 Studies on the Robustness of the LAWMYV-PSS for the
CSM1.

In this subsection the robustness of the LAWMV-PSS is tested with unmodelled dy-

namics and modelling errors. This subsection is the implementation of Stage 3.
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Figure 3.5: Electrical torque response for Study 1 (P, = 0.6 pu, Q; = 0.3 pu; periodic
variations in reference power). CSM3 with the LAWMYV-PSS - solid line, CSM3 with

the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.6: Electrical torque response for Study 2 (P; = 0.6 pu, @; = —0.1 pu; periodic
variations in reference power). CSM3 with the LAWMYV-PSS - solid line, CSM3 with

the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.7: Electrical torque response for Study 3 (P, = 0.6 pu, @; = 0.3 pu; periodic
variations in reactive power between lagging and leading operating conditions). CSM3

with the LAWMYV-PSS - solid line, CSM3 with the CPSS - dashed line, CSM3 only -

dotted line.
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Figure 3.8: Electrical torque response for Study 4 (P; = 0.65 pu, Q; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM3 with the LAWMYV-PSS - solid line,

CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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0.55 pu, @; = —0.1 pu; 100 ms

short-circuit at the machine terminal). CSM3 with the LAWMV-PSS - solid line, CSM3

with the CPSS - dashed line.

Figure 3.10: Field voltage response for Study 5 (P,
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Figure 3.11: Electrical torque response for Study 6 (P; = 0.65 pu, @; = 0.3 pu; two
successive faults of 100 ms duration on the receiving end busbars). CSM3 with the

LAWMYV-PSS - solid line, CSM3 with the CPSS - dashed line, CSM3 only - dotted

line.
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Figure 3.12: Electrical torque response for Study 7 (P, = 0.55 pu, Q; = 0.3 pu; one
transmission line is opened and then reclosed). CSM3 with the LAWMV-PSS - solid

line, CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.13: Estimated parameters of the LNM for Study 7 (P = 0.55 pu, @ = 0.3 py;

one transmission line is opened and then reclosed).
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Figure 3.14: Electrical torque response for Study 8 (P; = 0.6 pu, @, = 0.3 pu; periodic
disturbances in reference voltage). CSM3 with the LAWMV-PSS - solid line, CSM3
with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.15: Electrical torque response for Study 9 (P; = 0.6 pu, @ = —0.1 pu;

periodic disturbances in reference voltage). CSM3 with the LAWMV-PSS - solid line,

(CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.16: Electrical torque response for Study 10 (P, = 0.6 pu, @; = 0.3 pu; large
periodic excursions in reference power). CSM3 with the LAWMV-PSS - solid line,

CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.17: Electrical torque response for Study 11 (P; = 0.6 pu, @: = —0.1 pu; large
periodic excursions in reference power). CSM3 with the LAWMV-PSS - solid line,
CSM3 with the CPSS - dashed line, CSM3 only - dotted line.

Aims and structure of the simulation studies.

The CSM3 (D = 4.0 pu) is replaced by the CSM1 (D = 0.1 pu) in the three control
structures of the power system arranged in Stage 2. The performance of the LAWMYV-
PSS is further evaluated with a higher-order, more accurate model of the power system.
Higher-order dynamics are therefore present. Since the assumption of w(t) =~ 1 puis
not included in the modelling of the CSM1, the stabilising signal is taken to be the

electrical power deviation. The aims of this study are

e to confirm the performance of the LAWMV-PSS for the actual power system

represented by the more accurate model (CSM1);

e to establish a reference for the comparisons of the performance of the linear and
nonlinear control approaches with unmodelled dynamics and modelling errors in

Subsections 4.5.3 and 6.5.3.
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A variety of simulation studies have been conducted for the above purposes. It is
found that the conclusions drawn from the simulation studies of Stage 2 are applicable
to the simulation studies of this Stage. Brief examples are given in the following two
Groups of studies to illustrate the dynamic and transient behaviour of the SMIB
power system (CSM1) with the LAWMYV-PSS:

Group 1: Dynamic Response — the performance of the LAWMV-PSS is assessed by
simulating the step variations in the system operating point. Two simulation

studies are given:

Study 12: The generator is operating at P, = 0.6 pu and @; = 0.3 pu, and is

subjected to a step change of 0.1 pu increase in reference power.

Study 13: The generator is operating at P, = 0.6 pu and Q¢ = —0.1 pu, and is

subjected to a step change of 0.1 pu increase in reference power.

Group 2: Transient Response — the performance of the LAWMV-PSS is assessed by
simulating three-phase faults in the transmission line system. Two simulation

studies are given:

Study 14: The generator is operating at P, = 0.6 pu and @; = 0.3 pu, and is
subjected to a three-phase fault on the receiving end busbars. The fault is

cleared in 100 ms and the system returns to its pre-fault operating condition.

Study 15: The generator is operating at P, = 0.6 pu and @: = —0.1 pu, and is
subjected to a three-phase fault of 100 ms duration at the machine termi-

nal. The line is switched out after the fault, and a new operating point is

established.

The simulation results of Studies 12-15 are given by Figs. 3.18-3.21, each showing
three responses associated with the original system (CSM1), the CSM1 with the CPSS,
and the CSM1 with the LAWMV-PSS. Note that Studies 12-15 form a series of
robusthess studies to be conducted in Chapters 4 to 6 to evaluate and compare the
system damping performance associated with different control approaches. Again, in
the sequel the titles of these simulation studies will be quoted directly without repeating

the detailed explanations.
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Analysis of the simulation results.

Group 1: In Studies 12-13, the dynamic performance of the LAWMV-PSS associated
with the CSM1 is examined. It is seen from Figs. 3.18-3.19 that both the CPSS
and the LAWMV-PSS can work well in dynamic conditions. This coincides with the
performance of Studies 1-3 shown in Figs. 3.5-3.7. The LAWMV-PSS exhibits a better
damping effect and a faster output tracking ability when compared with the CPSS.

Group 2: In Studies 14-15, the transient performance of the LAWMV-PSS asso-
ciated with the CSM1 is illustrated in Figs. 3.20-3.21. Though the CPSS eventually
damps the system oscillations in Study 14, it gives unstable performance for the severe
fault in Study 15. This indicates that the CPSS designed for the CSM3 can not be
used to control the actual power system (CSM1) for the large or major disturbances
considered in these studies. The LAWMYV-PSS, however, leads the CSML1 to be stable

in each case and provides more damping to the system oscillations.

Conclusions.

The above analysis reveals the following facts:

1. The LAWMV-PSS can cope with the unmodelled dynamics and the modelling
errors at the various operating conditions, thus it is valid for controlling the

higher-order actual power system.

2. The LAWMV-PSS can improve the system damping performance in dynamic and

transient situations and can extend the system stability region.

3. The overall system performance associated with the LAWMYV-PSS is superior to
that with the CPSS.
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Figure 3.18: Electrical power response for Study 12 (P = 0.6 pu, @, = 0.3 pu; step
change in reference power). CSM1 with the LAWMYV-PSS - solid line, CSM1 with the

CPSS - dashed line, CSM1 only - dotted line.
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Figure 3.19: Electrical power response for Study 13 (P = 0.6 pu, @y = —0.1 pu; step
change in reference power). CSM1 with the LAWMV-PSS - solid line, CSM1 with the

CPSS - dashed line, CSM1 only - dotted line.
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Figure 3.20: Electrical power response for Study 14 (P, = 0.6 pu, @; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM1 with the LAWMV-PSS - solid line,

CSM1 with the CPSS - dashed line, CSM1 only - dotted line.

Elctrical Power (u)

Time (sec)

9 10

Figure 3.21: Electrical power response for Study 15 (P, = 0.6 pu, @; = —0.1 py;
100 ms short-circuit at the machine terminal). CSM1 with the LAWMV-PSS - solid

line, CSM1 with the CPSS - dashed line, CSM1 only - dotted line.
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3.7 Concluding Remarks.

In this chapter the design and implementation of a linear adaptive power system sta-
biliser for the SMIB power system modelled in Subsection 2.3.1 is discussed. The aim
of this study is to establish a sound basis for the development and evaluation of the
nonlinear optimal/adaptive power system stabilisers to be conducted in Chapters 4 to

6.

In Section 3.2 the linearised nominal model (LNM) of the nonlinear SMIB power
system is derived from the simplified linearised analytical model (SLAM) given in
Subsection 2.4.2. The order of the LNM is determined by making use of the conclu-
sions drawn in Section 2.6. The derivation procedure shows clearly the insight of this
model. The validity of this model to represent the nonlinear power system is further
confirmed through the external equivalent studies presented in Subsection 3.6.1. The
derived LNM provides a basis for the development of the linear adaptive power system

stabiliser.

Linear stochastic optimal control laws are derived and discussed in Section 3.3
under a general form of the cost function. Aspects associated with the application
of these control laws to the design of linear adaptive power system stabilisers are
summarised under the general requirements essential for the design. The selection
of the weighted minimum variance control law for the design of the linear adaptive
power system stabiliser in this thesis is finalised. This control law is simple and robust,
satisfying the general requirements mentioned above. Also, since a high-gain AVR is
usually used in the excitation control system, the steady-state tracking error associated
with this control law is very small. In the selection of this control law for the design
of the linear adaptive power system stabiliser, special consideration is given to the
feasibility of this control law for the development of the corresponding nonlinear control
laws. This will facilitate the comparisons of the performance of the linear and nonlinear

control approaches to be conducted in Chapters 4 and 6.

For the implementation of an adaptive power system stabiliser, parameter estima-

tion algorithms suitable for on-line model identification of power systems are briefly
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discussed in Section 3.4. The recursive least squares algorithm with the time-varying
forgetting factor is adopted as the basic parameter estimation algorithm for the de-
sign of adaptive stabilisers in this thesis. A direct SISO linear adaptive generalised
minimum variance control algorithm (Algorithm 3.1) is then developed from the com-
bination of the optimal control law with the selected parameter estimation algorithm.
This control algorithm establishes a basis for the development of the desired linear

adaptive power system stabiliser.

A linear adaptive weighted minimum variance power system stabiliser (LAWMV-
PSS) for the SMIB power system given in Subsection 2.3.1 is then proposed in Sec-
tion 3.5. The LAWMV-PSS is implemented by an indirect control algorithm (Algo-
rithms 3.2(A)-(B)) which produces the estimated parameters of the LNM and generates

the control action by using directly the model estimates.

In Section 3.6 the performance of the SMIB power system with the LAWMYV-PSS is
assessed through simulation studies. A series of evaluation studies (Studies 1-11) and
robustness studies (Studies 12-15) is described to form a systematic way of comparisons
of system performance with different control approaches. These studies cover a wide
range of system operating conditions and working environments. To provide a valid
basis for the evaluation of the performance of the LAWMV-PSS, a robust conventional
power system stabiliser (CPSS) is designed and implemented. The effectiveness of the
LAWMYV-PSS is then tested through the comparison of the system performance with
the CPSS in the same simulation study. The simulation results shown in Figs. 3.5-3.21
indicate that the LAWMV-PSS is more robust and superior to the CPSS, particularly
for more severe disturbances. The LAWMYV-PSS significantly improves the system
damping performance in the various dynamic and transient situations, and extends
the system stability region effectively. The provision of the simulation results in this
chapter establishes a valid reference to be used for the evaluation of system performance

of the nonlinear control approaches in Chapters 4 to 6.

The extensions in this chapter to the previous work described in the literature have

been listed in Section 3.1.
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Chapter 4

SISO Nonlinear Optimal Power

System Stabilisers.

4.1 Introduction.

In this chapter the design of SISO nonlinear optimal power system stabilisers is dis-
cussed. This establishes an important basis for the development of the nonlinear adap-
tive power system stabilisers to be conducted in Chapters 5 and 6. It also forms a
link between the linear and nonlinear adaptive control approaches, the performance of

which will be compared in Chapter 6.

As indicated in Section 3.1, linear adaptive control schemes have been proposed for
the design of power system stabilisers in order to overcome the shortcomings of the
conventional power system stabilisers in adapting to the variations of system operating
conditions. By changing its parameters on-line, a linear adaptive power system sta-
biliser can cope with the nonlinearities and the time-varying properties associated with
a nonlinear power system, so that it improves the system damping performance. How-
ever, since a linear adaptive power system stabiliser is based on a linearised nominal
model for the design and implementation of the control law, the performance associated
with the linear adaptive power system stabiliser may depend heavily on several factors,

such as the order of the linearised nominal model, the convergence rate of the on-line
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estimated parameters, etc.. For each variation in the operating conditions of the non-
linear power system, the parameters of the linearised nominal model have to change
in order to track the changes in the system operating point. There exists, therefore,
a transition in the identified parameters of the linearised nominal model between two
system operating conditions. Before the identified parameters converge to their new
values, the control action of the linear adaptive power system stabiliser may not be
optimal, and the associated damping performance of the system may not be as good

as expected.

The nonlinearities of power systems are often known. In Section 2.4 the nonlineari-
ties associated with the power system given in Subsection 2.3.1 have been classified into
the inherent nonlinearities and the intentional nonlinearities, and have been modelled
accurately in the mathematical descriptions of the system. It is reasonable to expect
that the system damping performance will be better if the nonlinear characteristics of
the system are taken into account in the construction of the control law. The resulting
control law would be nonlinear and should inherently possess the ability of stabilising

the nonlinear power system over the range of the operating conditions of concern.

The design of such a nonlinear control law requires a nonlinear nominal model which
should contain the nonlinearities of the system and should, inherently, track the changes
in the system operating point without changing its parameters. A nonlinear fized-
parameter power system stabiliser designed on these principles is therefore expected to

perform better than a linear adaptive power system stabiliser in that

e the control action should be optimal in the new operating point immediately;

e the system transition from one operating point to another should be optimal.

Different approaches that are utilised to incorporate the nonlinearities of the power
system into the design of the control laws result in different nonlinear control schemes.
In the literature, several attempts have been made to design power system controllers
based on nonlinear models of the power systems [127]-[132]. For instance, a quasi-

linearisation technique was used to obtain a nonlinear excitation controller [129], and
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a nonlinear output-feedback control method was employed to construct an excitation
control system for a fast acting static exciter [131]. As nonlinear control theory develops
[77,174,175,176,177,178,179,180,76,181], advanced approaches are tested in the design
of power system controllers [182,78,79,80,81,82,83,84,85,87]. For example, nonlinear
decoupling theory has been applied to the design of nonlinear excitation and governor
controllers using state-variable feedback [182]. A direct feedback linearising control
technique [77] has been utilised to design an excitation controller which is composed
of a complete linearising compensator and an output robust optimal feedback con-
troller [80,82]. A similar control technique has been used to design a nonlinear variable
structure excitation controller [83]. An exact linearisation design method for scalar
nonlinear control systems has also been employed to construct a nonlinear excitation
controller [85]. Using the feedback linearisation method, a multivariable linearising
feedback controller has been derived and simulated for a synchronous generator [87].
In this chapter a new nonlinear optimal control law is developed for the design of the
power system stabiliser for the SMIB power system given in Subsection 2.3.1. The
nonlinear optimal control law will be given in a regression form which will facilitate
the development of the corresponding nonlinear adaptive control laws to be discussed

in Chapters 5 and 6.

Original work on the analysis, design, and evaluation of a nonlinear optimal power
system stabiliser will be conducted in this chapter. The work involves the derivation
of a nonlinear nominal model, the development of the nonlinear optimal control laws,
the establishment of the closed-loop system stability conditions, the development of a
nonlinear optimal power system stabiliser, and the assessment of the system damping

performance with the nonlinear optimal stabiliser.

The organisation of this chapter is as follows. In Section 4.2 a nonlinear nominal
model for the design of the nonlinear optimal and adaptive power system stabilis-
ers is derived from the NAM given in Subsection 2.4.1. The SISO nonlinear stochastic
generalised minimum variance control law is developed and its closed-loop stability con-
ditions are established in Section 4.3. In Section 4.4 the nonlinear stochastic weighted
minimum variance control law is presented and its global closed-loop stability condi-

tions are analysed. A nonlinear optimal power system stabiliser is then proposed. In
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Section 4.5 the performance of the proposed nonlinear optimal power system stabiliser
is assessed through simulation studies, and is compared with that of the LAWMV-PSS

developed in Chapter 3.

To the author’s knowledge, the research reported in this chapter is original; the

main contributions are:

1. A new SISO discrete-time input-output model (in terms of a nonlinear nominal
model) is derived from the NAM given in Subsection 2.4.1. A rigorous mathemat-
ical derivation is presented, and the boundedness of the variables in the model 1s
established. This model contains the inherent nonlinearities of the SMIB power
system and is an accurate representation of the continuous-time nonlinear power
system (CSM3) provided that certain assumptions are satisfied. The nonlinear
model is formulated in a regression equation, linear in the parameters and in the
control input. It thus provides an important basis for the development of the

nonlinear optimal and adaptive control laws.

2. A new SISO nonlinear stochastic generalised minimum variance control law is
derived from a general form of the cost function for the nonlinear nominal model.
The closed-loop stability conditions with this control law are established and the

associated proof is given in Section E.1 of Appendix E.

3. A new SISO nonlinear stochastic weighted minimum variance control law is de-
veloped and its global closed-loop stability conditions are established. The asso-
ciated proof is presented in Section E.2 of Appendix E.

4. A new nonlinear optimal power system stabiliser based on the nonlinear weighted
minimum variance control scheme is proposed, and its practical aspects are dis-
cussed. The control structure of the SMIB power system equipped with the

proposed nonlinear optimal power system stabiliser is illustrated.

5. Simulation studies on the evaluation of the resulting nonlinear optimal power
system stabiliser are conducted. A series of useful comparisons with the LAWMV-

PSS is given.
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It should be pointed out that while there is an extensive body of linear control
theory for designing linear control systems, there are no general methods for specific
nonlinear systems. For this reason, in this chapter nonlinear control laws have been
developed specifically for the nonlinear nominal model proposed in Section 4.2, and the
relevant proofs of lemmas and theorems have been established. This work provides a

basis for extending these approaches to other forms of nonlinear power system models.

4.2 SISO Nonlinear Input-Output Power System
Modelling.

In this section:

e a new SISO nonlinear continuous-time input-output model is derived from the

NAM given in Subsection 2.4.1;
e the associated SISO nonlinear discrete-time input-output model is developed;

e a new nonlinear nominal model ! is formed and will be used for the design of

the nonlinear optimal and adaptive power system stabilisers;

e the boundedness of the system variables and noise in these models is discussed,
and the Bounded-Input Bounded-Output (BIBO) stability of the nonlinear nom-

inal model is established.

In a similar manner as for linear control methodologies, the first problem associ-
ated with nonlinear control methodologies is the development of the nominal models
of the nonlinear dynamic systems. For the design of conventional power system sta-
bilisers in the literature, the nominal model of the power system is usually taken as
a linearised time-invariant form in which the parameters and/or the system operating
conditions are fixed. In the design of the linear adaptive power system stabiliser dis-

cussed in Chapter 3, a linearised time-varying nominal model (LNM) is derived in order

1The definition of a “nominal model” used in this thesis has been given in Section 3.2.
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to match more closely the practical nonlinear time-varying power system. However, no
single linearised nominal model can represent the nonlinear power system accurately.
A key feature in developing a nonlinear control scheme, be it a nonlinear optimal con-
trol scheme or a nonlinear adaptive control scheme, for the design of the power system
stabiliser is that a nonlinear nominal model is derived directly from the mathematical
description of the nonlinear power system itself. Thus, inherently, the nonlinear nomi-
nal model will represent the nonlinear system accurately, and track any changes in the

system operating point automatically.

A general review of the nonlinear nominal models used to represent nonlinear dy-
namic systems for a wide range of applications is given in [75]. The models are mainly

classified as

e Block-oriented models — the models consist of cascade connections of static

nonlinearities followed by linear dynamic systems (e.g., [183]-[187]); 2

¢ General models being linear in parameters — the models are described by a scalar
(or vector) product of a parameter vector (or matrix) and a regression vector (or

matrix) 3 independent of the parameter vector (or matrix) (e.g., [188]-[198]); 4

e “Linear” models with signal-dependent parameters — the models have parame-

ters that depend on a known vector of functional variable (e.g., [199]-[201]);

e “Linear” models with piece-wise constant parameters (multi-model) — the mod-
els have the characteristic that the parameter-dependence need not be known
analytically, and the nonlinear models coincide with the approximate linearised

models valid in the region under consideration (e.g., [202,201]).

For a nonlinear power system the main features considered in choosing a suitable
structure of the nonlinear nominal model for the design of a nonlinear optimal (or

adaptive) control law are:

2A typical example of this type of nonlinear models is the Hammerstein model.

3In the regression vector (or matrix), the nonlinear terms are normally restricted to quadratic
nonlinearities {75].

4This representation comprises an important class of bilinear systems.
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(1) the nonlinear nominal model should represent the inherent nonlinear features of

the power system;

(2) if simplifications are involved in the derivation of the nonlinear nominal model,
the nonlinear nominal model should contain enough information that is essential

for the control purpose;

(3) both the parameter estimation algorithms and the control laws developed for the
identification and control of linear dynamic systems should be capable of being

extended to the nonlinear nominal model, which requires that

(4) the regression vector of the nonlinear nominal model be independent of its known

(or unknown) parameters.

Based on these factors, it is decided that a general model being linear in parameters
is the desirable representation of the nonlinear nominal model for the SMIB power

system.

In deriving a general model being linear in parameters for the design of the non-
linear optimal (or adaptive) power system stabiliser for the SMIB power system de-
scribed in Subsection 2.3.1, the system intentional nonlinearities (described by the term
E(X(t), Z(t), Up(t)) in (2.61)) are ignored. This is because proper design of the power
system controllers requires that for normal operating conditions the system variables
lie within the range of linear operation of the limiting nonlinearities. For this reason, in
the following derivation of the nonlinear nominal model for the power system, Assump-
tion 2.4.1 given in Subsection 2.4.1 is adopted. Consequently, the NAM developed in
Subsection 2.4.1 forms the basis for deriving the nonlinear nominal model of the power

system (CSM3).

The layout of the remainder of this section is as follows. A new SISO nonlinear
continuous-time input-output model developed from the NAM is described in Subsec-
tion 4.2.1. The associated SISO nonlinear discrete-time input-output model is derived
in Subsection 4.2.2. The nonlinear nominal model is then formulated and its BIBO

stability is established in Subsection 4.2.3.
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4.2.1 SISO Nonlinear Continuous-Time Input-Output Power
System Modelling.

Consider the NAM given by (2.90)-(2.97) in Subsection 2.4.1. Following the elimination
of the system auxiliary variable vector Z(t) from the system state equation (2.90) and
the selection of the electrical torque T.(t) as the system output variable ®, a SISO

nonlinear continuous-time state-space model is described by the equations below.
X(t) = A(X(t)) + B:R() + baa(t), (4.1)

g(t) = T.(t) = c(X(1)), (4.2)

where
X(t)T=[6(t) wit) E(t) Erp(t) Pov(t) Pap(t) Prp(t) PLP(t)], (4.3)

ROT= [ Pt Ve | = [ 900 20|, (44)

wow, ()

— I sin26(t) — B3 E, () sin 8(t) — Byws (1) + ZHE Pup(t) + S Pre(t) + Lo Prp(t)
3 cos §(t) — 7= E,(t) + PAErp ()

—2agr(t) — L Erp (D)

—&au,(t) - 5 Pev(t)

: Pcv(t)— : PHp(t)

AX(t) =

TCH TCH
1 1
T‘RHPHP(t) - TRHPIP(t)

1 1
| Tco Prp(t) - 725 Prp(t)

(4.5)
with gp(t) in (4.5) defined by

1

gr(t) = Vi(t) = (m5 cos? (1) + me sin? 6(t) + mr B (t) cos 8(t) + msE;(t)z) . (46)

. 000 0 L ooo

Br: . 3 (4.7)
(000 % 0000

b£=000§f~0000], (4.8)

5The reason for using 7, (t) as the stabilising signal has been explained in Section 2.5.
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and

c(X(t)) = mysin26(t) + sz;(t) sin 6(t). (4.9)

In the above equations §*(t) is the system output set point, Pres(t); d(t) is the mea-
surable deterministic disturbance input, V,.5(t); gr(t) is the additional output signal,
Vi(t); §(t) is the system output variable, T(t); ® @(t) is the control signal generated
by the nonlinear controller which will be designed later, and u(t) is injected into the
voltage summing junction of the input of the AVR. The parameters m; (i = 1,2, )
and the time constant 7., in (4.5)-(4.9) are given by

r 2
my = X*{ X ‘_/°£, (4.10)
(X + X3) (Xe + X,) 2
1
o) —l. o0 -11
mo Xe +de (4 )
Xy— X
= Vios 4.12
mg3 X+ Xy ( )
Xe X5
= === 4.13
e Xe‘l'Xd’ ( )
12
my = %sz, (414)
(X +Xy)
X2
meg = ————=V,7 (4.15)
(Xe + X,)
2X'X.
(X + X3)
X2
mg = —6—7—2—, (4.17)
(X + X)
T = 4Ty (4.18)

where m; > 0 for (¢ = 2,...,8) and m; < 0.

A block diagram of the above system model is shown in Fig. 4.1. For this config-
uration, the system is deterministic. The scheduled variation of the system operating
point due to the change of P,.(t) is considered as the change of the output set point,
7*(t). On the other hand, the scheduled variation of the system operating point due

to the change of V,.;(t) is viewed as the measurable deterministic disturbance, d(t).

6Note that Ty(t) = P.(t) due to Assumption 2.2.5.
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Remark 4.2.1 The model (4.1)-(4.18) is only an alternative expression for the NAM.
As explained in Remark 2.4.1, the model (4.1)-(4.18) represents the CSM3 accurately

within the range of linear operation of the system limiting nonlinearities.

e o e i |
: :
I |
R(t) | xo [ X(®) B0)
= B 5 > c()
I + + |
I I
1 |
| |
I |
I |
u | | :
—> by A() = !
I
I I
: SYSTEM |
| I
I I

Figure 4.1: SISO nonlinear continuous-time state-space modelling of the SMIB power

system.

Clearly, in the nonlinear continuous-time state-space representation (4.1)-(4.18), the
output variable §(t) (T.(t) or P.(t)) is an implicit function of the control input u(t).
For control purposes, an ezplicit expression for §(t) in relation to #(t) is required. To
find the desired input-output relationship between §(t) and @(t) from the model (4.1)-

(4.18), the following mathematical rule is introduced

(1+p) {ziz;} = z: (1 +p) {z;} + z;p {=z:}

where z; and z; are arbitrary, continuously differentiable time variables. Premultiply-
ing the output equation (4.2) by (1 + 7,,p) and using the following state equations from
(4.1) and (4.5)

pé(t) = wows(t),

(14 7mp) E;(t) = macosd(t) + maErp(t), (4.19)
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one writes

(1+ TmP) y(t) =

my (1 + 7mp) {5in 26(£)} + ma sin 8(2) (1 + 7mp) { E,(1)}
+matr By (t)p {sin 6(1)}

my (1 4 Tmp) {sin 26(t)}

gy sin 6(t) [ms cos () + m4Epp ()]

+ma T By(t) cos 6(t)p {6(t)}

[(m1 + m22m3) + mlf,,,p] {sin26(1)}

+mama {Epp(t) sin 6(t)}

+mawoTm {w,(2) By (t) cos §(t)} . (4.20)

Similarly, premultiplying (4.20) by (1 + 74p) and using the state equation from (4.1)

and (4.5)

(14 74p) Erp(t) = Ka [d(t) — gr(t) + a(t)] ,

one obtains

(1+7ap) (1 + ™mp) §(2)

Now, define

maomsg

= (1+7ap) [(ml + 5 ) + ml’rmp] {sin26(t)}
+mawoTm (1 + 7ap) {ws(£) Ey(t) cos 8(t) }

+momaTaErp(t)p {sinb(t)}

+mqmysin 8(t) (1 + 7ap) {Erp(t)}
o It mams g (1+

2 2my + mams3

+mawoTm (1 + 74p) {wa(t) Ey(t) cos 8(2) }

+1momawoTa {ws(t)Erp(t) cos 6(t)}

2m1'rm

p) {sin 26(t)}

+mamyKa {sin8(t) [d(t) — r(t) + a(t)] }. (4.21)
(t) 2 sin26(2), (4.22)
B(t) £ w,(t)E,(t)cosb(2), (4.23)
73(t) £ w,(t)Epp(t)cosé(t), (4.24)
Z(t) 2 siné(b), (4.25)
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and

A(p) = 14 (Ta+Tm)p + 74T, (4.26)
B(p) = ki [L+ (ra+ 1) p+mamnp?], (4.27)
C(p) = k(14 7ap), (4.28)
D(p) = ks, (4.29)
E(p) = ky, (4.30)
where
k= w (4.31)
k2 = mawoTm, (4.32)
ks = mamawora, (4.33)
ke = momeKa, (4.34)
R . (4.35)

2m1 + L UE :

Equation (4.21) is then re-organised in the following compact form:

A(p)y(t) = B(p)zi(t)+C(p)2(t)+ D(p)2s(t) + E(p)za(t) [d(t) — gr(t) + u(t)] . (4.36)

This high-order continuous-time differential equation describes the nonlinear relation-
ship between the control input %(t) and the output y(¢). It includes the additional
feedback signals, z(t) (i = 1,2,3,4) and yp(t), and the reference signal, d(t). Equa-
tions (4.22)-(4.36) form a SISO nonlinear continuous-time input-output model of the
power system (CSM3). The block diagram of this model is shown in Figure 4.2.

Remark 4.2.2 The derivation of the input-output model (4.22)-(4.36) from the state-
space model (4.1)-(4.18) does not involve any mathematical assumptions. The former

model is therefore a valid continuous-time input-output representation of the NAM.

The boundedness of the variables in the nonlinear continuous-time input-output
model (4.22)-(4.36) is important for the theoretical analysis of the nonlinear control
schemes to be designed later. For most power system studies, the following assumption

is generally accepted.
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A(p)

Figure 4.2: SISO nonlinear continuous-time input-output modelling of the SMIB power

system.

Assumption 4.2.1 The state variables Epp(t) and Pgy(t) in the equations of the

power system are all constrained as follows

(7‘) lEFD(t)l < max {IVRminl ) |VRmaz|} él{lf

(i) | Pav ()] < max {| Puin| , | Praz|} 2K,
for all t, where Ky and K, are known.

This assumption is not critical since, in practice, the field voltage and the power at the
gate (or valve) are always constrained by physical limitations as described by (A.14)

and (A.18) respectively. Based on Assumption 4.2.1, the following lemma is established.

Lemma 4.2.1 For the model (4.22)-(4.36), under Assumption 4.2.1,

(i) sup |z1(1)] <1,

0<i<o0
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(it)
(iii)
(iv)
(v)
(v)

sup |22(t)l S 22 max;
0<t<oo

sup IES(t)| S Z'Smaar:;
0<i<o0

sup |Z4(t)| < 1;
0<t<c0o

sup |9 (t)| < Vimass
0<t<o0

sup Ig(t)| < Ymaz,
0<t<co

where Zomaz, Z3mazs Vimaz, 6NA Ymaz are either known or can be determined.

Proof of Lemma 4.2.1

(1)

(2)

3)

From the definitions of 7;(t) and z(t) in (4.22) and (4.25) respectively, (i) and

(iv) are obtained in a straightforward manner.

From (4.19), it is seen that for bounded signals cos 6(t) and Epp(t) (see Assump-
tion 4.2.1(1)), E;(t) is bounded, i.e.,

sup lE;(t)l < mg+myaK; A K,

0<t<o0

where m3 > 0 and my > 0. Parts (v) and (vi) then follow from (4.6) and (4.2)

respectively. V;mar and Jmqs are given by

N

V;ma:z: = ('ms + me + m7I{3 + msKg)

and

yma.r = sz{g — My (4.37)

where m; > 0 for (¢ =2,5,6,7,8) and m; <0.
From the state equation (4.1) and eqn. (A.24) of Appendix A, the expression

sup |FHPPHp(t) + FIPPIP(t) + FLPPLP(t)] < K, (438)

0<t<o0

follows from Assumption 4.2.1(ii). According to the equation

(1 + %P) ws(t) = %(FHPPHP(t) + FipPip(t) + FrpPrpe(t) — §(t))  (4.39)
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which is derived from the second differential equation of the state equation (4.1),

the expression

sup |w,(t)] < % (Ky — my + myK3) 2K, (4.40)

0<t<c0
arises as a result of applying the condition (4.38) and conclusion (vi) (with (4.37))
to (4.39). Hence, (i) and (iii) are readily established by the definitions of Z(t)
and Z(t) in (4.23) and (4.24), with 23 mas and Zzmas being chosen as

Zoamazr = I(3K4
and
Z3mar = K1K4

respectively.

Q.E.D.

Lemma 4.2.1 establishes the boundedness of the additional feedback signals, Z(?)
(: = 1,2,3,4) and gr(t), and the output variable, #(t), in the nonlinear continuous-
time input-output model (4.22)-(4.36), in accordance with the physical limitations
specified by Assumption 4.2.1. This lemma will be used when the boundedness of the
variables in the corresponding discrete-time model is discussed in Subsection 4.2.2 and

when the BIBO stability of the resulting nonlinear nominal model is established in

Subsection 4.2.3.

Remark 4.2.3 It should be emphasised that the boundedness of the state and output
variables of the model (4.22)-(4.86) is obtained in Lemma 4.2.1 without imposing an

upper (or lower) bound on the control input u(t).

4.2.2 SISO Nonlinear Discrete-Time Input-Output Power

System Modelling.

In order to implement a discrete-time control law, the nonlinear continuous-time input-

output model (4.22)-(4.36) developed in Subsection 4.2.1 is replaced by an equivalent
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discrete-time one which is based on the approximation for the first and second deriva-

tives given by

Assumption 4.2.2 [141,193]7

() pe(@) ey = SRR - )

.. z(ty + h) — 2z(ty) +z(tx — h
(”) pzx(t) |t=tk - ( : ) ’Ezk) ( . ) + T]z(tk = h,tk>tk + h);

where h is the sampling period and ty is the sampling instant (k € [0,1,2,...)); =(t)
represents an arbitrary, continuously differentiable time variable that is sampled (or
computed) through a zero-order hold; po(te — hyty) and no(tr — hyte, i + h) are suffi-

ciently small, satisfying the condition that at each sampling instant iy

lim po(ty — hyte) =0 (4.41)
and
}zin{l)nx(tk — h,tk, te + h) = 0. (4.42)

By applying Assumption 4.2.2 to (4.36), the nonlinear continuous-time input-output

model (4.22)-(4.36) is discretised, and its approximate discrete-time model is derived

as
Gtk + ) + arg(te) + agg(te — ) = boz(tx + k) + biza(te) + b2 (tx — R)
+c1Za(tk) + 2zt — h) + diZ3(tk)
texza(ti) [d(te) — Gr(te) + ()]
+5(t + h) (4.43)
where

B _
4 = + (TA + Tm) h 2/T.ATm . (444)

TATm

It is possible to use a higher order approximation, e.g., the fourth-order Runge-Kutta, to derive
the corresponding discrete-time model. However, for simplicity, the approximations introduced by

Assumption 4.2.2 are considered adequate for the studies in this thesis.

145



_ 4.45
e TATm ' ( )
. 'rl
- fm 4.4
bo lem, (4.46)
_ h? + T-I—‘T,In h—27’7‘,’n
5 = & (st 7m) <ol (4.47)
TATm
- T 'r:n— T, +T,,In h
b = ke (ra + 7n) ] (4.48)
TATm
h(h
o = bt (449)
TATm
h
Cy = —kgT—', (450)
B2
di = ks ; (4.51)
TATm
h2
= k ¢ 4.52
&1 (4.52)
and
h? (14 + T
’l_)(tk + h) £ ———(7%_—)-”@(% - h,tk) — hzng(tk — hytg, iy + h)
h? (14 + 7, h27,
+k1"(—')-)u21 (tk - h)tk) i kl ngI (tk - hytkatk + h)
TATm Tm

12
+k2'7_—#22 (tk — h,ty).

Note that #(t; + h) represents the error due to the discretisation introduced by As-
sumption 4.2.2. According to (4.41) and (4.42), B(t + h) satisfies

}llin% ot +h) =0 (4.53)
for each sampling instant ;.

Clearly, for purposes of prediction and control of the output variable, the future
value of 2 (t), % (tx+ h), in (4.43) needs to be expressed in terms of its present and/or

past values {21(t4), Zi(tx — k),...}. This results in the following assumption.

Assumption 4.2.3 8 A linearised prediction Z (1 + h) at time t is given by

zi(tk + h) = 2z (tk) — 21(tk — h) + h&E, (4.54)

8 Again, it is possible to use a higher order approximation to derive the prediction z,(ty +h) at time

tr. However, according to the definition of z;(¢) in (4.22), the adopted first-order linearisation (4.54)
is found to be adequate, provided that the condition (4.57) is satisfied.
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where &, represents the error due to the prediction and satisfies

lim &, =0 (4.55)

—0

for each sampling instant 1.

Remark 4.2.4 Assumption 4.2.3 is based on the relation
PZ(7) lr=tysh = PZ(T) |r=tr + €4 (4.56)
where, according to ({.22),
€, 2 2up [ws(tx + k) cos 28(ty + k) — w,(tx) cos 26(tx))]

satisfies the condition that
}Li_r% €, =0 (4.57)
for each sampling instant ty,. Application of Assumption 4.2.2(i) to (4.56) leads to the

following expression

fl(tk + h) — fl(tk) _ El(tk) — El(tk — h)
h h

+ &,
where
€ 2 €, + fz (b — hyte) — pz (tes B + B).

According to the conditions (4.41) and (4.57), &, satisfies the condition (4.55).

Substituting from (4.54) for the prediction 2 (tx + k) into (4.43), one writes
Gtk + ) + ar§(te) + axfi(ty — h) = bizi(k) + ez (e — B)
+e1Z2(tk) + c2z2(te — h) + diZs(tr)
tenza(ty) [d(te) — Tr(te) + 8(4))

+o(tg + h) (4.58)

where
b1 - 27)0 + Bl, (4.59)
b2 = ?)2 . Bo, (460)

v(ty + k) = (tx + k) + bohé,,
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and

lim o(ti + h) = 0 (4.61)

due to the conditions (4.53) and (4.55).

From a practical point of view one allows for measurement errors, actuator errors,

and in some instances computer round-off errors in (4.58) by writing

Assumption 4.2.4 For the variables in (4.58),

y(te) = §(t) + wits), (4.62)
alty) = &)+ wats), (4.63)
alty) = Z(te) + walte), (4.64)
w(te) = Zs(t) + walte), (4.65)
a(te) = Za(te) + ws(t), (4.66)
yr(ty) = Fr(te) + wrlte), (4.67)
d(ty) = d(te) + we(tk), (4.68)
u(ty) = u(te)+ ws(te), (4.69)

where the terms of the left-hand side of (4.62)-(4.69) represent measured or computed
values, and the terms, wi(ty) (i = 1,...,8), of the right-hand side of (4.62)-(4.69)
represent the measurement errors, actuator errors, and computer round-off errors that
are assumed bounded, such that
sup |wi(te)] < A; (:=1,...,8), (4.70)
0<tx <00

with A; (i =1,...,8) being some fived, known values.

Remark 4.2.5 Under the condition (4.70), from Lemma 4.2.1(iv) and (4.66), it fol-
lows that
sup |za(tk)| £ 1+ As. (4.71)

0<tx <o

The condition (4.71) will be used for the stability analysis of the nonlinear optimal
and adaptive controllers in Sections 4.3, 4.4, and 5.3. It will also be used for the

convergence analysis of the parameter estimation algorithms in Section 5.2.
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A SISO nonlinear discrete-time input-output model of the power system is finally

derived by applying Assumption 4.2.4 ((4.62)-(4.69)) to (4.58), resulting in

y(tr + k) + ary(te) + agy(te — h) = bizi(te) + beza(te — h)
+er29(te) + caza(te — h) + diza(tr)
+erza(te) [d(t) — yr(te) + u(is)]
+w(ty + h) (4.72)

where w(t; + h) represents the combined effect of errors due to discretisation (see
Assumption 4.2.2), linearisation (see Assumption 4.2.3), and measurements, etc. (see

Assumption 4.2.4), which together shall be designated as noise; w(t + k) is defined as

wlts +h) 2wty + k) + aywi(te) + agwi (B — b) — biws(t) — byws(t — h)
—cyws(ty) — cowa(ty — h) — dywa(te) — e1Za(tr) [we(tr) — wr(ty) + wa(ts))

—eyws(t) [d(te) — Tr(te) + a(t)] + v(ts + R). (4.73)

Remark 4.2.6 The model ({.72)-(4.73) is derived from the nonlinear continuous-time
input-output model (4.22)-(4.36) subject to Assumptions 4.2.2-4.2.4. In view of Re-
marks 4.2.1 and {.2.2, it can be concluded that

(i) the model (4.72)-(4.78) is a valid discrete-time input-output representation of the
NAM, provided that the conditions in Assumptions 4.2.2-4.2.4 are all satisfied;

(i1) the model (4.72)-(4.73) is an accurate representation of the continuous-time non-
linear SMIB power system (CSM3), provided that the conditions in Assump-
tions 2.4.1 and {.2.2-4.2.4 are all satisfied.

The characteristic of w(t + k) in the model (4.72)-(4.73) is important for the the-
oretical analyses of the parameter estimation algorithm and the adaptive control law
under a nonlinear control scheme. Considering that in practice the voltage reference
signal and the control signal from a power system stabiliser are usually constrained by

operation or design, one may assume that
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Assumption 4.2.5 In the model (4.72)-(4.73) the external measurable disturbance

input d(ty) and the control input u(ty) are constrained to be

(i) IJ(tk)| < Vinass

(1) [a(t)] < Gmas,
for each sampling instant t, where Vinaz and Upmez are known.

Based on Assumptions 4.2.1-4.2.5, the following property of w(tx + k) is readily estab-
lished.

Lemma 4.2.2 For the model (4.72)-(4.73), subject to Assumptions 4.2.1-4.2.5, there
exists a A, such that

sup |w(ty)| < Ay (4.74)

0<t,<oo
Proof of Lemma 4.2.2

Signals d(t) and @(t;) are all bounded due to Assumption 4.2.5(i) and (ii). Also, the
boundedness of Zy(tx) and gr(ts) is provided by Lemma 4.2.1(iv) and (v). Therefore,
the conclusion (4.74) is readily obtained from the expression for w(t) + k) in (4.73),
subject to the condition (4.70) in Assumption 4.2.4 as well as the condition (4.61).

QED.

The boundedness of w(#; + k) in Lemma 4.2.2 is essential for the proof of convergence
of the parameter estimation algorithms in Section 5.2 and for the analysis of the closed-
loop stability associated with the nonlinear control laws to be designed in Sections 4.3,

4.4, and 5.3.
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4.2.3 Nonlinear Nominal Model of the Power System and
Its BIBO Stability.

For a fixed sampling period A, the sampling instant 2 is expressed as
tr = kh, (k€ [0,1,2,...)).
Equation (4.72) is then rewritten as

y(kh + B) + ary(kh) + asy(kh — b) = byz1(kh) + byz1(kh — k)
terza(kh) + caza(kh — B) + dyz3(khR)
+erza(kb) [d(kR) — yr(kh) + u(kR)]
+w(kh + R). (4.75)

For convenience of notation, the sampling period k in (4.75) will be implied in the
following equations. A compact form of the SISO nonlinear discrete-time input-output
model (4.72)-(4.73) developed in Subsection 4.2.2 is then given by the following regres-

sion equation

y(k+1) = ¢k + w(k +1) (4.76)

where ¢(k) is the regression vector, the components of which are functions of the
sequences of the inputs and the output as well as the additional feedback signals. ¢(k)

is given by
A
ST 2 | —yk) —y(k=1) a(k) ak-1)

k) malb—1) z(k) z(k) (k) — pe(k) +u(k) |- (470

Qg is the parameter vector, the elements of which are the model parameters, i.e.,
A T

90 = [ ay aq b1 b2 C1 Co dl €1 ] . (4:78)
The parameters in (4.78) are given, in the order written, by (4.44)-(4.45), (4.59)-(4.60),
and (4.49)-(4.52). It is assumed that
Assumption 4.2.6 For the SMIB power system described in Subsection 2.3.1,

151



(i) the values of the parameters of the generating unit and the tie-line (such as Xy,

X., etc.) are known;

(ii) for a given steady-state operating condition, the infinite bus voltage V., is constant

over the time period of a simulation study.

Referring to the definitions of a4, etc., one may conclude that the model parameters
(a1, etc.) in the vector O are all %known’, and that O is independent of ¢(k). Hence,
equations (4.76)-(4.78) represent a SISO nonlinear discrete-time input-output model
which is linear in its parameters. In the following analysis this model is referred to as
the Nonlinear Nominal Model (NNM) of the power system (CSM3), and is to be used
for the design of not only the parameter estimation algorithms in Section 5.2 but also
the nonlinear optimal and adaptive control algorithms in Sections 4.3, 4.4, and 5.3,

respectively. Figure 4.3 shows the configuration of the NNM.

- e -

K
LI - o (k-1)"0,

SYSTEM

Figure 4.3: SISO nonlinear discrete-time input-output modelling of the SMIB power

system.

Remark 4.2.7 The NNM (4.76)-(4.78) is an alternative form of the model (4.72)-
(4.73), and therefore accurately represents the continuous-time nonlinear power system

(CSM3), provided that the conditions in Assumptions 2.4.1 and 4.2.2-4.2.5 are all
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satisfied (referring to Remark 4.2.6(ii)). This pownt will be verified in Subsection 4.5.1

through simulation studies.

Remark 4.2.8 Since the electrical torque output, T,(k), of the system (CSM3) is re-

lated to the state variables (such as E;(k) and §(k)) through the nonlinear relationship
(4.9), z(k) (i = 1,2,3,4) (see (4.22)-(4.25)) are implicit functions of y(k). This
determines the nonlinear nature of the NNM (4.76)-(4.78).

There are several important features in the NNM:

(1)

3)

The model (4.76)-(4.78) is derived from the mathematical description of the non-
linear power system (CSM3), and represents the inherent nonlinearities (i.e., the
product nonlinearities and the trigonometric nonlinearities) associated with the
electrical torque (or power) output (see (4.9)). Therefore, the inclusion of the
measurable disturbance input, d(k), as well as the additional feedback variables,
zi(k) (s = 1,2,3,4) and yp(k), in the model will result in an accurate prediction of
the output variable, y(k), and potentially better control of the system dynamics.
This point will be demonstrated in Section 4.5 (see Remark 4.5.1).

Since the model (4.76)-(4.78) includes the measurable deterministic disturbance
input signal {d(k)} ezplicitly, the influence of this disturbance on the system
performance can be reduced as soon as it acts on the system. From this point of
view, the model (4.76)-(4.78) provides a feedforward path for the control of the
system. The simulation results shown in Subsection 4.5.2 will verify this point
(see Remark 4.5.6). Being a reference signal, the disturbance input sequence

{d(k)} is known or exactly predictable.

Since the model (4.76)-(4.78) is described in a regression form, the parameter
estimation algorithms and the optimal (or adaptive) control strategies that are
developed for linear systems can be extended to this nonlinear model. Also,
since ¢(k) is a linear function of the control input u(k), the solution of u(k)

from the optimal (or adaptive) control laws to be designed later will be relatively
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straightforward. This aspect is essential for the implementation of the nonlinear

control schemes.

It should be pointed out that the discrete-time nonlinear input-output model (NNM)
of the power system (CSM3) has been developed from the continuous-time nonlinear
input-output equations (4.22)-(4.36). Consequently, the nature of the input-output
model of the power system has been changed from deterministic (see Fig. 4.2) to
random or stochastic (see Fig. 4.3), with the term w(k + 1) representing the nondeter-

ministic quantity of the NNM.

The BIBO stability ° of the NNM is given by

Lemma 4.2.3 Subject to Assumptions 4.2.1, {.2.4, and 4.2.5, for the NNM

(i) the output y(k), and the additional feedback signals z;(k) (i = 1,2,3,4) and yr(k),
are bounded for all k;

(ii) the measurable deterministic disturbance input d(k) is bounded for all k;

(iii) the control input u(k) is bounded for all k.

Proof of Lemma 4.2.3

Conclusion (i) is the consequence of Lemma 4.2.1 and Assumption 4.2.4. Also, con-
clusions (4i)-(iii) are the result of the combination of Assumption 4.2.4 with Assump-

tion 4.2.5.
Q.E.D.
Remark 4.2.9 According to Lemma {.2.3(i) the output and the additional feedback

signals of the NNM are bounded without imposing an upper (or lower) bound on the
control input u(k).

9See Definition 4.2 in [170].
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Lemma 4.2.3 forms a key lemma for the proofs of the convergence of the parameter
estimation algorithms in Section 5.2, the analyses of the closed-loop stability associated
with the nonlinear optimal control laws in Sections 4.3 and 4.4, and the proofs of the

convergence of the nonlinear adaptive control algorithms in Section 5.3.

4.3 SISO Nonlinear Stochastic Generalised Mini-

mum Variance Control and Stability Analysis.

In this section:

e the optimal prediction of the output variable of the NNM is developed;

e the nonlinear stochastic generalised minimum variance control of the NNM is

discussed, and the closed-loop characteristics are presented;

o the closed-loop stability conditions with the nonlinear stochastic generalised min-

imum variance control law are established.

The discrete-time NNM (4.76)-(4.78) derived in Subsection 4.2.3 is used for the
development of the nonlinear optimal power system stabiliser for the SMIB power
system described in Subsection 2.3.1. The model (4.76)-(4.78) can be rewritten in a
left difference operator representation [157] expressed in terms of the backward-shift
operator ¢71, i.e.,

A(g M y(k+1) = f(k) + w(k + 1) (4.79)

where A(¢~!) is a linear scalar polynomial in ¢!

Alg") =1+ a1g7" +axq™’ (4.80)
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and f(k) is a nonlinear function of the form

[ z1(k) |

z(k—1)

f(k) = [ by by ¢ ¢ dy el] z‘zz(ﬁ)l) . (4.81)
z3(k)

| za(k) (d(k) — yr(k) + u(k)) |

The backward-shift operator, ¢!, is defined as
-1 A -1 A
g ly(k)=y(k—1), fork2>1; ¢ y(0)=y(0)
and so on.

As indicated in Subsection 4.2.3, the derivation of the NNM introduces a nonde-
terministic disturbance term that is expressed by the scalar sequence {w(k)}. For
theoretical analyses, it is desirable to define the properties of this noise term. Thus,

three types of noise models are proposed:

Noise Model 1: Assume that the noise is negligible. With the omission of the term
w(k + 1), the model (4.79)-(4.81) becomes a Nonlinear Deterministic AutoRe-
gressive Moving-Average (NDARMA) model of the form

Al Hy(k+1) = f(k).

The analysis of the nonlinear prediction and control of the NNM will thus be
carried out in a deterministic environment. However, this assumption may not
be reasonable since the model (4.79)-(4.81) does possess a significant noise term
w(k +1) during and shortly after a severe disturbance (e.g., a three-phase short-
circuit). This is because in such an event limiting actions may occur on the
power system, so that Assumption 2.4.1 which is used for the development of the
NNM is violated. This phenomenon will be demonstrated in Subsection 4.5.1
(see Remark 4.5.3).
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Noise Model 2: Assume that the statistical properties of the scalar sequence {w(k)}
can be described in terms of one kind of stochastic process, e.g., a white noise

sequence {e(k)}, or a coloured noise sequence such as
wlk+1) = Colg™)e(k+1)

where C.(g™!) is assumed to be a linear filter having its roots strictly inside the

unit circle of the z-domain. The model (4.79)-(4.81) can then be written as
A(gMy(k +1) = f(k) + Ce(g™Me(k +1) (4.82)

which is called a Nonlinear AutoRegressive Moving-Average model with auXiliary
input (NARMAX). 1° If C.(¢7") = 1, then w(k+1) is white, and equation (4.82)
reduces to (4.79).

Noise Model 3: Consider {w(k)} to be any bounded nondeterministic noise sequence
(satisfying Lemma 4.2.2), without specifying its statistical properties. The model
(4.79)-(4.81) remains. The optimal prediction and control of the NNM are then

subjected to conditions, such as the condition (4.74) in Lemma 4.2.2.

For the discussion of the nonlinear optimal prediction and control of the NNM in this
chapter, the second noise model (4.82) is adopted, in which the term w(k+1) is defined
to be a white noise sequence so that C.(¢™') = 1 in (4.82). Optimal prediction and
control of the NNM will be developed from (4.79)-(4.81). The third noise model (i.e.,
(4.79)-(4.81)) will be employed in Sections 5.2 and 5.3 in which the boundedness of
w(k + 1) (established by Lemma 4.2.2) will be used to prove the convergence of the
parameter estimation algorithms as well as the convergence of the nonlinear adaptive

control algorithms.

The layout of the remainder of this section is as follows. In Subsection 4.3.1 an
optimal predictor of the output of the NNM is derived. In Subsection 4.3.2 the nonlin-
ear stochastic generalised minimum variance control of the NNM and its closed-loop

characteristics are presented. The closed-loop stability conditions are then established.

10The definition of a NARMAX model without additional feedback signals can be found in [157)
(eqn. (7.4.20), p. 267).
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4.3.1 SISO Optimal One-Step-Ahead Predictor.

The optimal prediction of the NNM discussed in this subsection is concerned with ex-
trapolating a time series of the output variable into the future from the model (4.79)-
(4.81). Since the NNM has been structured in a regression form, linear in the parame-
ters, the prediction of the future output of the NNM can be constructed through simple
algebraic manipulations of (4.79)-(4.81).

The assumption about the noise sequence {w(k)} in the model (4.79)-(4.81) is

formalised as follows.

Assumption 4.3.1 Let the scalar sequence {w(k)} in the model (4.79)-(4.81) be a
real-valued stochastic process defined in a probability space (0, F, P) [157] and adapted
to the sequence of increasing sub-sigma algebras (Fi, k € N), where Fj is generated
by the observations up to and including time k. (Fo is assumed to contain all initial

condition information.) The sequence {w(k)} satisfies

(i) E{w(k+1)|Fc} =0, a.s., k>0;
(ii) E{w(k+1)?|F} =0, a.s., k>0,

where the symbol “a.s.” means almost surely, i.e., save on a set having probability

measure zero [157].

Under Assumption 4.3.1, {w(k)} is a white noise sequence. The optimal prediction of

the output of the NNM is then given by the following lemma.

Lemma 4.3.1 Consider the model (4.79)-(4.81) in which w(k + 1) is subjected to
Assumption 4.3.1 and f(k) is Fy measurable. The optimal one-step-ahead prediction,
y°(k + 1| k), of y(k + 1) satisfies

YOk +1|k)=G(q " y(k) + F(g")f(k) (4.83)

where

WOk + 1| k)2y(k +1) — F(g Yw(k +1). (4.84)
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F(q7!) and G(q™") are the unique polynomials satisfying

F(gMA(g)+¢'Glgh) =1, (4.85)
F(g) =1, (4.86)
Gla™) = [1- Al e (4.87)

The optimality of y°(k+ 1 | k) is established by
y’(k+11k)=E{y(k+1)|F}.

Also
E{[y(k +1)— g%k +1] k)]2} ey

Proof of Lemma 4.3.1

Refer to the proofs of Lemma 7.4.1 and Lemma 7.4.5 of [157].

Q.E.D.
Remark 4.3.1 From (4.83) it is noted that

(i) since the model (4.79)-(4.81) is linear in y(k + 1), the optimal predictor (4.83)-
(4.87) has a simple closed-form ezpression for the prediction of the electrical

torque (or power) output of the generator;

(ii) the inclusion in the model (4.79)-(4.81) of the measurable disturbance input as
well as the additional feedback signals in f(k) enhances the predictability of the
output. This concept has been outlined in Subsection 4.2.83 with regard to the
features of the NNM, and will be verified in Subsection 4.5.1.

The optimal predictor (4.83)-(4.87) will be used for the development of the nonlinear

optimal control law in Subsection 4.3.2.
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4.3.2 SISO Nonlinear Stochastic Generalised Minimum Vari-

ance Control Law.

The aim of optimal stochastic control of the NNM is to compensate for the stochastic
noise {w(k)} of zero mean (see Assumption 4.3.1(i)). The control input is chosen so

as to minimise a cost function, J(k + 1), of the form
2 2
Je+1) = E{ Wla™ e+ 1) = Wala (e )]+ [Wala™ ] ) (489

where y*(k + 1) is the desired output trajectory; W,(¢Y), W.(¢7?), and W, (¢7") are
the preselected weighting polynomials in the backward-shift operator

W,(g™") = wyo+wug "t +wpg i+, (4.89)
Wo(g™Y) = weo+wng ' +weg i+, (4.90)
Wu(g™) = Wuo+wag ' +wig >+, (4.91)

with wyo being taken to be 1 without loss of generality. The expectation is conditional
upon the system input and output data acquired up to time k. Using the optimal
predictor (4.83)-(4.87), the control u(k) that minimises the cost function (4.88)-(4.91)

is given by the following lemma.

Lemma 4.3.2 For the model (4.79)-({.81), the input u(k) that minimises the cost
function (4.88)-(4.91) is given by

wuoWa(g ™ )u(k) = it [We(a™)y"(k+1) = Wy (¢)G(a )y (k) - Wy(a™)f(k)] -

~ du(k)
(4.92)

Proof of Lemma 4.3.2

Substituting for y(k+ 1) from (4.84) into (4.88) and using Assumption 4.3.1, one finds

J(k+1) = [l + Z:wm] u? + Wy (g )y (k + 1| k) = Wi (g y" (b + 1))’

+ [Walg™u(®)] (4.93)
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Differentiating (4.93) with respect to u(k) and setting the result equal to zero, one

writes

oy°(k+11k)

) + wuo Wy (g u(k) = 0.

(4.94)
Equation (4.92) immediately follows by substituting (4.83) into (4.94) and noting that

oyP(k+1 1K) _ df(k)
du(k) = du(k)

(W, (qg™)y0(k + 11 k) — Wilg™)y™(k + 1)]

Q.E.D.

According to (4.81), f(k) is also a function of z;(k) (i = 1,2, 3,4) and r(k) defined

by (4.22)-(4.25) and (4.6), respectively. The solution of j{t((’;c)) in (4.92) can then be

written as

df(k)  9f(k) 0=z(k
du(k) ~—  O=(k)0zi(k
01 (k) 0zs(k) dzs(k) | DF(K) Dza(k) dzu(k)
D2a(k) D2a(K) du(k) T Dza(k) Dzs(k) du(k)
af(k) dyr(k)dyr(k) , Of(k)
Bur (k) 05r () du(b) T Bu(k) (495)

da(k) | Of(k) dz(k) dza(k)
(k) " Dzy(k) 072(k) du(k)

u

d
k) dz
k) d

where, due to (4.63)-(4.67),

%’% 1,  (i=1,2,3,4), (4.96)
g% = 1, (4.97)
and
gi ((’Z)) _ 3, (4.98)
‘Zl((:)) = 2005 26(k) EZ)) (4.99)
gi—((l% = ¢, (4.100)
dn(k)  0m(k) dwy(k) 822(k) dE\(K)  0zy(k) d6(k)
du(k) ~ Buws(k) dulk) | OE,(k) du(k) © 96(k) du(k)

dE,(k)

= E , (k) cos 5(k) ((k)) + w,(k) cos 6(k)
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—w,(k)E, (k) sin 6(k)—di—(k—), (4.101)

ofk) _ 4 (4.102)

Oz3(k)

dzs(k)  0zs(k) dwy(k)  0%(k) dEpp(k) | 0z(k) db(k)
du(k) Ow,(k) du(k) 0Epo(k) du(k) ~ 08(k) du(k)

=  Epp(k) cos (k)= duw, (k )+w(k) cos 6k )dEFD(k)

du(k) du(k)
ds(k)
—w,(k)Erp(k)sin 6(k)m, (4.103)
AL = ald®) —url) + ), (4.104)
dza(k) sy 95(K)
S (k)) = cosb(k) gy (4.105)
9fk) _ .,
Gonle) = O a(k), (4.106)
dgr(k)  Ogr(k) dE.(k) = Ogr(k) d8(k)
du(k) — OE (k) du(k) 96(k) du(k)
- %gp(k)—l {[m7 cos 6(k) + 2msE (k)] 4E, ((kk))
+ [(ms — ms) sin 26(k) — meEy (k) sin 8()] 35((]’3} (4.107)
of(k) _
Bull] exz4(k). (4.108)
Substituting (4.96)-(4.108) into (4.95), one writes
T = x(0) + A1) 2 Aok (4109
where
x(k) 2 {2b; cos26(k) — w,(k)sin (k) (e B (k ) + dy Epp (k)]
+e1 [d(k) — yr(k) + u(k)] cos 6(k)
_224(k)gF(k)—1 [(me — ms) sin 26(k) — m7 B,(k) sin 5(k)]} %
dw,(k)
+{cos 6(k) |e1 Ey(k) + di Erp(k ()]} = t ((k
+{c1ws(k)cos6(k)———z4(k)37p( yL [m7cos6(k)+2m8E;(k)]}%(ki))
+ {dyws () cos ()} M, (4.110)
du(k)
Bo(k)= L e124(k). (4.111)
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Remark 4.3.2 From the definition of Bo(k) in (4.111) and the condition ({.71), i
follows that
sup [Bo(k)] < €1 (1+ As) = fomas (4.112)

0<k<©

where e; > 0 according to (4.52).

For the solution of x(k) in (4.110), the SISO nonlinear continuous-time state-space
equation (4.1) introduced in Subsection 4.2.1 is utilised. Using the Backward Difference
Approzimation (BDA) ! (i.e., Assumption 4.2.2(i)) to approximate the derivatives of
the state variables in (4.1) at time t, = kh, the following difference equation of (4.1)

is obtained
X(kh) = X(kh — k) + hA(X(kh)) + hB:R(kh) + hbgu(kh) (4.113)

where h is the sampling period. From (4.113) and the definition of by in (4.8), the

X(k
expression for icliT((k_)) (where for convenience of notation kh is written as k, as described
u
previously) can be found
dX (k) [ T
= b;u = hK ] . «
da(k) h 000240000 (4.114)

Thus, according to the definition of X(t) in (4.3) as well as (4.69) in Assumption 4.2.4,

ds(k) _ dé(k) da(k) _

Ja(R) = du(k) du(k) = (4.115)

dw,(k) _ dw,(k) du(k) _ 0

du(k) ~ du(k) du(k) (4.116)

dE\(k)  dE,(k)da(k)

du(k) ~ du(k) du(k) (4.117)
dErp(k)  dEpp(k)du(k)  hKy4 i)

du(k) —  du(k) du(k) T4

are obtained from (4.114), by noting that 3115]8 = 1. Therefore, the solution of x(k)
u

is readily derived by substituting (4.115)-(4.118) into (4.110), and results in

dihK 4

TA

x(k) = ws(k) cos 6(k). (4.119)

NgGee, e.g., [141] p.176.
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df (k)
du(k)

df(k) dlhKAw
du(k) —  Ta

due to (4.111) and (4.119).

Consequently, the expression for in (4.109) (or (4.92)) is written as

(k) cos 8(k) + exza(k) = Bo(k) (4.120)

Remark 4.3.3 In view of ({.40) and (4.71), Bo(k) in (4.120) is bounded for all k.

Remark 4.3.4 As an alternative to the BDA approach, the Forward Difference Ap-

proximation (FDA) ' (or Euler’s method ) can be used to derive the ezpression for
df (k)
du(k)’
given by the following difference form

Using the FDA approach, the derivatives of the state variables in (4.1) are

X(kh) = X(kh — k) + hA(X(kh — b)) + hByR(kh — k) + hbgi(kh — h).

It is clear from the above equation that

dX (k)
du(k)

Therefore, from (4.110) and (4.109) one immediately obtains that

x(k) =0,

df (k) )
Tulk) ~ Bo(k) = Po(k)-

However, the BDA approach is adopted here because the same approach has been used

for the derivation of the SISO nonlinear discrete-time input-output model (4.72)-(4.73)
(see Assumption 4.2.2(i)).

In preparation for the derivation of the nonlinear optimal control law, a variable
g(k) is defined as
g(kY2 £ (k) — Bo(k)u(k). (4.121)

The boundedness of g(k) is given by

Lemma 4.3.3 Subject to Assumptions 4.2.1, 4.2.4, and 4.2.5, g(k) is bounded for all
k.

12Gee, e.g., [141] p.176.
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Proof of Lemma 4.3.3

Lemma 4.3.3 is the consequence of the application of Lemma 4.2.3(i)-(ii) to (4.121).

Q.E.D.

The nonlinear optimal control law is now readily derived from Lemma 4.3.2, subject

to the following assumption which ensures the solvability of the control input.

Assumption 4.3.2 With proper selection of the leading coefficients of the weighting
polynomials W,(q™1) and W,(¢™%),

(i) ﬂo(k)ﬁo(k)wyo +wi, #£0, for all k.

1
(it) sup

= < M,,
oskeeo | Bo(k)Bo(R) g + wlo|

where 0 < My < oo.

The nonlinear stochastic generalised minimum variance control law and its closed-loop

characteristics are then given by

Theorem 4.3.1 Subject to Assumption 4.3.2, for the model (4-79)-(4.81) having the
optimal predictor (4.83)-(4.87),

(a) the generalised minimum variance control u*(k) minimising the cost function (4.88)-
(4.91) is given by
[Bo(R)Bo(kYWy (q71) + wuoWa(g7)] w" ()
= Bo(k) [Wi(g ™)y (k + 1) = Wy (g7 G(ay(k) — Wy(g 7 )g(R)]; (4.122)
where
IBO(k) = 6124(k)’
Bo(k) = dlhKAws(k) cos 6(k) + e1z4(k),

g(k) = f(k) — Bo(k)u(k);

165



(b) the effect of the control law (4.122) 1s to give

Bo(F)W, () (k+1 | k) = Bo(R)W, (g™ )y* (k-+1) —wuaWi(g™ )" (); (4.123)

(c) with the control law given by (4.122), the closed-loop system is described by

oy y*(k + 1)
w(g™", k) [ 4 *(;)) =H(g k)| gk) (4.124)
w(k+1)
where
(gL, k) £ Bo(k)Bo(k)Wy(q7") + wuoWaul(g ) A(G™) (4.125)
and
i & {ﬂo(k)éo(kwr(q-l) woWula™)
’ Bo(k)Wi(g D) A(g™?) —Bolk)W,(q™Y)

BolE)Ba( k)W, (a") - wioWalg™) | (4.126)
—Bo(k)Wy(¢7)G(g g™

(d) the resulting closed-loop system (4.124)-(4.126) is bounded-input bounded-output
stable provided that:

(i) B(z~, k) 2 Bo(k)Bo(k)Wy(271) + wuoWa(z71) A(=7)
is bounded for all k;

(i) sup || @a(k+1) - Ou(k) |I< €a
0<k< o0
where eg is sufficiently small and © 5(k) is the coefficient vector of (271, k),

defined as
Q4(k)T2 [ 1 0g1(k) Oaa(k) -+ Oan(k) ]
with
@271, k) 2 Oao(k) [1+ 0aa(k)z ™ + Oan(k)z™" + -+ + Oam(k)z™"]
where n denotes the order of the polynomial W(z71,k);

(iti) w(z71,k) #0
for all| 271 |< 1 and all k.
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Proof of Theorem 4.3.1

See Section E.1 of Appendix E.

Q.E.D.

Remark 4.3.5 In Theorem 4.3.1,

(i) the stochastic control law (4.122) is based on the optimal predictor (4.83)-(4.87).
The predictor allows one to determine, using past input/output data, the pre-
dictable part of the disturbance on the future response and hence to cancel it

using the control action.

(i) since the model (4.79)-(4.81) is linear in the control input, the solvability of u*(k)
from (4.122) is ensured subject to Assumption 4.3.2(i)-(1i).

The closed-loop system stability established in Theorem 4.3.1(d) is essential for the
implementation of the control law (4.122). It guarantees the existence of a bounded
optimal control u*(k) such that the operation governed by (4.123) is feasible. Theo-
rem 4.3.1 will be used in Subsection 4.4 to derive the nonlinear stochastic weighted
minimum variance control law which forms the desired nonlinear optimal control strat-

egy for the design of the nonlinear optimal power system stabiliser.

4.4 A Nonlinear Optimal Weighted Minimum Vari-
ance Power System Stabiliser and Stability Anal-

ysis.

In this section:

e the nonlinear stochastic weighted minimum variance control of the NNM is de-
veloped from Theorem 4.3.1 given in Subsection 4.3.2, and the closed-loop char-

acteristics are presented,;
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e the closed-loop stability conditions with the nonlinear stochastic weighted mini-

mum variance control law are established,;
e a nonlinear weighted minimum variance power system stabiliser is proposed.

e the control structure of the SMIB power system equipped with the proposed

nonlinear optimal power system stabiliser is given.

The nonlinear stochastic generalised minimum variance control law established in
Theorem 4.3.1 is based on the cost function (4.88)-(4.91) for which a wide range of
the weighting polynomials W,(¢™), W,(¢™"), and W,(¢7") can be chosen. Different
weighting polynomials result in different forms of the nonlinear optimal control law.

Table 4.1 shows a few special cases.

Nonlinear Control Laws || W,(¢7!) | W,(¢™") W.(q™)
Minimum Variance 1 1 0
Weighted Minimum Variance 1 1 Az, (A > 0)
Integrated Minimum Variance 1 il Ai(1—¢7Y), (A >0)

Table 4.1: SISO nonlinear optimal control laws with their selections of weighting poly-

nomials.

As a parallel study to the linear stochastic weighted minimum variance control
approach discussed in Section 3.5, a nonlinear stochastic weighted minimum variance
control law is considered in this section for the construction of the desired nonlinear
optimal power system stabiliser. As shown in Table 4.1, such a control law is achieved
simply by selecting W,(¢™!) = L, W,(¢™?) = 1, and Wy(¢™") = A% in the cost func-
tion (4.88)-(4.91), which then reduces to

J(k+1) = E{[y(k + 1) —y"(k+ 1)]" + u(k)?} (4.127)

where the weighting coefficient A > 0.
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For the derivation of the nonlinear stochastic weighted minimum variance control
law from Theorem 4.3.1, assumptions concerning x(k) (4.119) and Bo(k) (4.109) are

made as follows.

Assumption 4.4.1 Under Assumption 2.2.5, x(k) (4.119) and Bo(k) (4.109) satisfy
x(k) =0,

Bo(k) = Bo(k).

The nonlinear stochastic weighted minimum variance control law and its closed-loop

characteristics are then given by

Theorem 4.4.1 For the model (4.79)-(4.81) having the optimal predictor (4.83)-(4.87),
subject to Assumption 4.4.1,

(a) the weighted minimum variance control w*(k) minimising the cost function (4.127)

is given by
" [Bok)? + N (k) = Bok) [y (k +1) = Glg ™y (k) — (k)] (4.128)
which is equivalent to
Bo(k)y°(k + 1| k) = Bo(k)y"(k + 1) — Mu"(k);

(b) when the control law (4.128) is used for all k, the closed-loop system is described

by
y*(k+1)
g™, b [ y(k*;c)” _HGR)| o (4.129)
w(k +1)
where
(g™ 8) 2 Bo(k)? +MA(™) (£130)
and
H(g™' k)2 [ Pol) A Bolk)” + 4 (4.131)
Bo(k)A(g™") —PBo(k) —Bo(k)G(g " )g ™
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(d) the resulting closed-loop system (4.129)-(4.131) is bounded-input bounded-output
stable provided that:

() @271, k) = Bo(R)* + AA(27)
is bounded for all k;
(i) sup || ©g(k+1)—0a(k) |I<e
0<k< o0

where eg is sufficiently small and O g(k) is defined as

(T2 Aa Aa
Ou(k) _[1 - D ﬂo(k)gH] (4.132)

with

)\al -1 /\a2

—_— -———z_2 : i
TRk AN Bo(k) A ] (4.133)

B(z1, k) = [Bo(k)” + ] [1
(iii) (21, k) £ 0

forall | 271 |< 1 and all k.

Proof of Theorem 4.4.1

Exactly as for Theorem 4.3.1 (given by Section E.1 of Appendix E) on noting that
Bo(k) =~ Bo(k), Wy(q_l) =W,(¢7") =1, and Wu(¢™) = Az,
Q.E.D.

Remark 4.4.1 In Theorem 4.4.1, because A > 0, ﬂo(k)2 + )X > 0 is satisfied for all k.
Hence, the solvability of u*(k) from (4.128) is guaranteed.

Remark 4.4.2 According to the definition of Bo(k) in (4.111) (see also Remark 4.2.8),
Bo(k) is an implicit function of y(k). This determines the nonlinear nature of the

control law (4.128).

The closed-loop stability of the control law (4.128) can be given by

Theorem 4.4.2 For the system (4.79)-(4.81) having the nonlinear stochastic weighted
minimum variance controller ({.128), there exists a choice of X such that the closed-loop

system (4.129)-(4.131) is bounded-input bounded-output stable.
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Proof of Theorem 4.4.2

See Section E.2 of Appendix E.

Q.E.D.

Theorem 4.4.2 gives a sufficient condition for the stability of the closed-loop sys-
tem (4.129)-(4.131). It ensures the global stability of the closed-loop system associated
with the control law (4.128). This control law can be used directly as the desired
nonlinear optimal power system stabiliser. It.will be used for the development of the

corresponding nonlinear adaptive control laws in Section 5.3.

In practice, if the power system is operating under a no-load steady-state operating
condition, then &(k) ~ 0, which leads to fo(k) ~ 0 (since Bo(k) = eisiné(k)). For
small disturbances around this operating point, the control action from (4.128) will be
close to zero, which may result in an ineffective control action on the damping of small
oscillations around the operating point. In order to prevent the control action from
being close to zero for small disturbances, modifications to the control law (4.128) can
be adopted. The consequent control algorithm which takes the physical limitations

into account is then given by

Algorithm 4.1 [modified nonlinear weighted minimum variance control law.]

Bo(k)

(k) = 520 5 (ke 1) = G ™uk) - o(8)] (4134)
Umaz if u%(k) 2> Umaz
u*(k) ={ u(k) if Ui < ©0(k) < Umas 3 (4.135)
Unin if u%(k) < Upin
where
Bo(k) = { i) H VAol > Fomin (4.136)
sign[Bo(k)] Bomin otherwise

Bomin 15 a preselected constant, satisfying 0 < Bomin < Bomar Where Somaz 18 defined by

(4.112); X is the weighting coefficient; umq, and wmin are known constants.

171



\YAYAY

Remark 4.4.3 According to ({.112), Bo(k) in (4.136) satisfies

0 < Bomin < |Bo(k)| < Bomazs for all k. (4.137)

Remark 4.4.4 The suggested procedure for the selection of Bomin is:

(i) choose a minimum value, As > 0, of the rotor angle 5(k) (e.g., As =1°=0.0175

(rad));

(ii) calculate Bomin according to (4.111), i.e.,
Bomin = €150 As (4.138)

where e; > 0 is defined by (4.52).

Algorithm 4.1 ((4.134)-(4.136)) forms the Nonlinear Optimal Weighted Minimum
Variance Power System Stabiliser (NOWMYV-PSS) for the SMIB power system mod-
elled in Subsection 2.3.1. The control structure of the system equipped with the
NOWMYV-PSS is given by Fig. 4.4. The stabilising signal y(k) is the machine elec-
trical power, P.(k) (or torque, T.(k)). The performance of the NOWMV-PSS will be

evaluated in Section 4.5.

Remark 4.4.5 Referring to Remark 3.5.2, in practice the desired output trajectory
y*(k) in Fig. 4.4 can be provided by feeding back the output variable y(k) through a
low-pass filter. However, for the sake of simplicity, y*(k) is set, artificially, to be the
reference power (Pro;(k)) in the simulation studies of this chapter as well as Chapters 5
and 6. The same approach has been utilised in Chapter 3 (see Remark 3.5.2).

Remark 4.4.6 As indicated in Section 3.3, for a high-gain AVR-excitation control

system, the steady-state value of the control action of the weighted minimum variance
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Figure 4.4: Control structure of the SMIB power system with the NOWMV-PSS.
power system stabiliser will converge to a very small value (see (3.42)). Therefore, the
optimal control signal u*(k) (either in (4.128) or in (4.184)-(4.136)) satisfies

klim lu* (k)| < €y (4.139)

where €.+ is a small constant, dependent of the value of the gain of the AVR. This con-
dition will be employed in Section G.3 of Appendiz G for the analysis of the convergence

of the nonlinear adaptive control algorithms to be designed in Section 5.3.

4.5 Evaluation of the Performance of the Non-
linear Optimal Weighted Minimum Variance

Power System Stabiliser.

In this section:
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e the validity of the discrete-time NNM derived in Section 4.2 to represent the
continuous-time nonlinear power system (CSM3) given in Subsection 2.3.1 is

verified through simulation studies;

e the performance of the NOWMV-PSS proposed in Section 4.4 is investigated
through the evaluation studies (Studies 1-11);

e the robustness of the NOWMV-PSS is tested with unmodelled dynamics and
modelling errors (Studies 12-15).

The NOWMV-PSS proposed in Section 4.4 is realised by a digital computer which
implements the calculations for generating the control signal. A sampling period of

20 ms is used.

Following the procedure described in Section 3.6, the simulation studies of this

section will be conducted in three Stages:

Stage 1: Verification of the NNM — to examine the performance of the discrete-time
NNM in tracking and predicting the dynamics and transients of the continuous-

time nonlinear power system (CSM3) at different system operating conditions.

Stage 2: Evaluation of the performance of the NOWMYV-PSS — to compare the dy-
namic and transient behaviour of the NOWMV-PSS with that of the LAWMYV-
PSS through Studies 1-11.

Stage 3: Studies on the robustness of the NOWMV-PSS — to test the performance of
the NOWMV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-
15.

The implementation of the above three Stages will be discussed in Subsections 4.5.1,
4.5.2, and 4.5.3, which follow. The parameters and limits associated with the SMIB
power system and the NOWMV-PSS are listed in Appendix C. The simulation results
obtained from this section will be used as a reference for the comparison of the system
performance of the nonlinear optimal and nonlinear adaptive control approaches in

Chapter 5.
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4.5.1 Verification of the Nonlinear Nominal Model of the

Power System.

In this subsection the validity of using the discrete-time NNM (4.76)-(4.78) to repre-
sent the continuous-time nonlinear power system (CSM3 with D = 4.0 pu) is verified
through simulation studies at different system operating conditions. The output sig-
nal is the machine electrical torque, T,(k). This subsection is the implementation of

Stage 1.

Aims and structure of the simulation studies.

In the computer calculations, the electrical torque output of the NNM is the optimal

one-step-ahead prediction of the actual electrical torque output of the CSM3, 1.e.,
Tk | k —1) = ¢(k — 1)7 . (4.140)
According to (4.84), T(k | k — 1) is related to T.(k) through the relation
To(k | k —1) = T.(k) — w(k). (4.141)

Given the values of the parameters of the power system (CSM3) in Appendix C and
the value of the infinite bus voltage (Vi) at specified operating conditions, the values
of the model parameters (ay, etc., as defined by (4.44)-(4.45), (4.59)-(4.60), and (4.49)-
(4.52)) of the NNM are pre-calculated. Let the control input u(k) be an external test
signal which is injected into the summing junction of the input of the AVR and the
predictor, simultaneously. The model of the predictor is the fixed-parameter NNM.
At each sampling instant, the predicted electrical torque output (77(k | k — 1)) of the
NNM is calculated by utilising the signals (such as T.(k — 1), z;(k — 1), etc.) obtained
from the continuous-time nonlinear power system (CSM3) at the last sampling instant,
and is compared with the current actual electrical torque output (Te(k)) of the CSM3.
The difference between T2(k | k — 1) and T.(k) is denoted by w(k) which is updated
according to (4.141). The configuration for this study is illustrated in Fig. 4.5. The

aims of this study are
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e to confirm that the NNM is an accurate representation of the CSM3 when the

system is operating within linear operation;

e to demonstrate that the NNM inherently possesses the ability to track the output

accurately;

e to examine the validity of the NNM when the system is subjected to faults and/or

changes in the system configuration.

Veedt) +

DAC

Viu(K)
—

Power System

SMIB

T(1)

Y

ADC

V(K

z(K)

uk)

Predictor
(NNM)

T.(k)

+

9.,*

Ti(k/k-1)

Y

Y

w(k)

Figure 4.5: Structure of the verification of the NNM.

For the above purposes, two Groups of simulation studies are conducted:

Group 1: Let the same PRBS signal as that used in Subsection 3.6.1 be the signal

u(k) that is injected into the summing junction of the input of the AVR and the

predictor. Two dynamic studies are performed:

Case 1: The system is operating at P, = 0.6 pu and Q)¢ = 0.3 pu, and is sub-

jected to a step change of 0.05 pu increase in reference power at time t = 20

second.

Case 2: The system is operating at P, = 0.6 pu and Q¢ = —0.1 pu, and is

subjected to a step change of 0.05 pu decrease in reference power at time

t = 20 second.
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Group 2: Set the signal u(k) to zero. Two transient studies are performed:

Case 3: The system is operating at P, = 0.6 pu and Q: = 0.3 pu, and is sub-
jected to a three-phase fault on the receiving end busbars. The fault is
cleared in 100 ms and the system returns to its pre-fault operating condi-

tion.

Case 4: The system is operating at P, = 0.6 pu and Q: = —0.1 pu, and is
subjected to a three-phase fault of 100 ms duration at the machine terminal.
The line is lost after the fault is cleared, and a new operating point is

established.

The simulation results associated with Cases 1-4 are plotted in Figs. 4.6-4.9. The
parameters of the NNM at the given lagging and leading operating points are listed in
Table 4.2.

lagging operating point | leading operating point
(Voo = 0.91214) (Voo = 1.0673)

ay -1.7863 -1.7863

as 0.78857 0.78857

by -8.03537E-02 -0.11002

b, 8.03578E-02 0.11002

a 9.6592 11.302

c2 -8.0494 -9.4186

dy 2.84430E-02 3.32813E-02

e 9.05368E-02 0.10594

Table 4.2: Parameters of the NNM at the lagging (P, = 0.6 pu, @Q: = 0.3 pu, V; =
1.0 pu) and leading (P; = 0.6 pu, Q; = —0.1 pu, V; = 1.0 pu) operating points.
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Analysis of the simulation studies.

Group 1: The simulation studies in the first group involve the comparison of the time
responses of T%(k | k — 1) from the NNM and Te(k) from the CSM3 when the system
is operating within linear operation. Subject to the PRBS input signal and the step
change in reference power, the dynamic behaviour of T)(k | k — 1) and T.(k) in Case 1
is plotted in Fig. 4.6. It is seen that the trajectories of Tk | k—1) and T.(k) are
almost identical. TO(k | k —1) tracks T.(k) perfectly, even at time ¢t = 20 second,
when the system operating point changes. In order to further demonstrate the output
tracking ability of the NNM, the error w(k) between T2(k | k — 1) and Tc(k) in Case 1
is plotted in Fig. 4.7 by the solid line. For the sake of comparison, Case 1 is applied
to the identification of the LNM (proposed in Section 3.2), and the error between the
predicted output of the LNM and the actual output of the CSM3 is plotted in the same
graph (Fig. 4.7) by the dotted line. It is seen from Fig. 4.7 that while the estimated
LNM presents a sudden increase in its error about ¢ = 20 second when the system
operating point has a step change, the NNM shows consistently a small error over the
time horizon. It is then evident that the NNM inherently tracks the change in the
system operating point. The same phenomenon can be observed in Case 2, the graphs

of which are therefore omitted.

Remark 4.5.1 The significant difference between the NNM and the estimated LNM
is shown clearly in Fig. {.7. With the NNM, there is no time delay in tracking the
system output during the transients (e.g., about t = 20 second) and a smaller error
in the dynamics (e.g., after t = 20 second) when compared with the response of the
estimated LNM. This fact indicates that the NNM provides a better prediction of the
output than the estimated LNM. Therefore, it is reasonable to expect that a nonlinear
optimal control approach which is based on the NNM will give a better control action
than a linear adaptive control approach, the model of which is the estimated LNM. This
point will be verified by the comparison of the performance of the NOWMYV-PSS and
the LAWMYV-PSS to be conducted in Subsection 4.5.2.
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Remark 4.5.2 Figure 4.7 provides evidence of the boundedness of the noise term,
w(k), established in Lemma 4.2.2.

Group 2: The second group of simulation studies tests the validity of the discrete-
time NNM when the continuous-time CSM3 is subjected to faults and/or changes in the
system configuration. The faults specified in Cases 3 and 4 cause limiting to occur on
certain system variables, so that Assumption 2.4.1 which is used for the development
of the NNM is violated. It is seen from Figs. 4.8-4.9 that the NNM gives a poor
prediction of the electrical torque output of the CSM3 during the occurrence of the
faults (0.5 second - 0.6 second). However, it quickly tracks back the dynamics of the
system shortly after the faults are cleared. Good post-fault output tracking ability of
the NNM is shown in Fig. 4.8 in which the CSM3 returns to its pre-fault operating
condition. In Fig. 4.9 a small error between T2(k | k — 1) and Te(k) can be found after
the clearance of the fault. This is due to the fact that the CSM3 has changed its pre-
fault configuration by losing the faulted line, causing the value of the transmission line
reactance X, to be doubled. With fixed parameters, the NNM updates the post-fault
output prediction which is still based on the pre-fault values of the model parameters,

and this results in the post-fault output tracking error as shown in Fig. 4.9.

Remark 4.5.3 Since the NNM is derived from the NAM which excludes the system
intentional nonlinearities introduced by the limits, the NNM has a potential shortcoming
in representing the CSM3 during the faults. Hence the phenomenon of poor output
prediction of the NNM, ezhibited in Figs. 4.8-4.9 during 0.5 second - 0.6 second, is

expected. As a result, the noise term w(k) is significant during this period of time.

Remark 4.5.4 The post-fault output tracking error shown in Fig. 4.9 indicates that
the NNM does not have the ability to follow the changes in the system parameters and
configuration. Nevertheless, NNM still follows the post-fault dynamics of the system.

Conclusions.

Summarising the simulation results of Cases 1-4, it is concluded that:
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1. The discrete-time NNM represents the continuous-time CSM3 accurately within

linear operation of the system. This fact verifies Remark 4.2.7.

9. The NNM inherently possesses the ability to track the output accurately in dy-

namics.

3. The NNM is a valid representation of the CSM3 after faults, provided that there

are no configuration changes in the system.

The use of the NNM to represent the CSM3 for the design of the nonlinear optimal

power system stabiliser is thus verified.

4.5.2 Evaluation of the Performance of the NOWMYV-PSS
for the CSM3.

In this subsection the evaluation of the performance of the NOWMYV-PSS is conducted
for the CSM3 (with D = 4.0 pu) through the series of evaluation studies (Studies 1-11)

defined in Subsection 3.6.2. This subsection is the implementation of Stage 2.

Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the NOWMV-PSS is illustrated in
Fig. 4.4. The machine electrical torque is used as the stabilising signal. For each simula-
tion study, the performance of the CSM3 equipped with the NOWMV-P5S 1s compared
with that of the CSM3 equipped with the LAWMYV-PSS proposed in Chapter 3. The

aims of this study are

e to confirm that the proposed NOWMYV-PSS has good characteristics.

e to establish a reference for the comparison of the performance of the nonlinear
optimal and nonlinear adaptive control strategies to be conducted in Subsec-

tion 5.4.2.

180



Electrical Torque (pu)

16

17

18

19

20

Time (sec)

21

22

23

24

25

Figure 4.6: Electrical torque response for Case 1 (P = 0.6 pu, @: = 0.3 pu; 0.05 pu
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Figure 4.7: Error in electrical torque for Case 1 (P, = 0.6 pu, @; = 0.3 pu; 0.05 pu

increase in reference power). NNM - solid line, estimated LNM - dotted line.
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Figure 4.8: Electrical torque response for Case 3 (P; = 0.6 pu, @; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM3 - solid line, NNM - dashed line.
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Figure 4.9: Electrical torque response for Case 4 (P; = 0.6 pu, @; = —0.1 pu; 100 ms
short-circuit at the machine terminal). CSM3 - solid line, NNM - dashed line.

182



Studies 1-11 allocated to the five Groups specified in Subsection 3.6.2 are implemented.
The simulation results are given by Figs. 4.10-4.21 in which the performance of the
LAWMV-PSS is provided by Figs. 3.5-3.12 and 3.14-3.17. The parameters of the
NOWMV-PSS are: tmin = —0.05 pu, Umer = 0.05 pu, A = 0.4 (these values are the
same as those used in the LAWMYV-PSS), and Bomir, = 0.0001.

Analysis of the simulation studies.

Group 1: The dynamic perfoermance of the NOWMV-PSS is examined in Studies 1-3
by simulating the periodic changes in the system operating point. The simulation re-
sults are shown in Figs. 4.10-4.12. In Studies 1-2, with the step changes in reference
power, the estimated parameters of the LNM converge rapidly. Therefore, as shown in
Figs. 4.10-4.11, the system responses with the NOWMV-PSS and the LAWMYV-PSS
are similar. However, in Study 3 (shown in Fig. 4.12), in which the reactive power
of the system is changed between the lagging and leading conditions, the convergence
rate of the estimated parameters of the LNM is relatively slow. The damping perfor-
mance associated with the LAWMV-PSS shows a deterioration when compared with
the NOWMYV-PSS. As indicated in Remark 4.5.1, since the NNM inherently tracks
the changes in the system operating point, the control action of the NOWMV-PSS is
optimal at each new operating point immediately. Hence, the NOWMV-PSS provides
better damping of the rotor oscillations than the LAWMV-PSS.

Group 2: The transient performance of the NOWMV-PSS following three-phase
faults on a transmission line is examined in Studies 4-6. The simulation results are
plotted in Figs. 4.13-4.16. In Study 4 (shown in Fig. 4.13), the settling times associated
with the LAWMV-PSS and the NOWMV-PSS are almost the same. However, the
amplitude of the first few swings associated with the LAWMV-PSS is greater than
that with the NOWMV-PSS. This is due to the fact that the LAWMV-PSS needs to
readjust its parameters, and its control action is not optimal before the convergence of
the estimated parameters. The NOWMV-PSS, however, provides an optimal control
action to damp the rotor oscillations as soon as the fault is removed. In Study 5 (shown

in Fig. 4.14), the LAWMYV-PSS takes time to identify the new operating point with the
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new system configuration following the clearance of the faulted line. Consequently, the
performance of the LAWMV-PSS is inferior to that of the NOWMV-PSS. As indicated
in Remark 4.5.4 (see also Fig. 4.9), because the NOWMV-PSS can still follow the
system dynamics, even with the use of the pre-fault model parameters, the NOWMV-
PSS provides more rapid damping than the LAWMV-PSS. The above explanations of
the behaviour of the NOWMV-PSS and the LAWMV-PSS in Studies 4-5 can also be
applied to Study 6 (shown in Fig. 4.16).

Remark 4.5.5 Figure 4.15 illustrates the field voltage Epp(t) response for the test in
Study 5. The conclusions regarding the field voltage responses of the different power
system stabilisers support those made for the torque responses. Further to this, the
field voltage response of the NOWMV-PSS shows that the NOWMV-PSS can provide a
control action with appropriate amplitude and phase, resulting in the stronger damping

of the rotor oscillations as revealed by the responses.

Group 3: The ability of the NOWMV-PSS to track the changes in the system
parameters and configuration is examined in Study 7. The LAWMV-PSS can sense
the change in the value of X, (from 0.4 pu to 0.8 pu) by readjusting its parameters on-
line. With fixed parameters, the NOWMV-PSS does no on-line adjustment. Therefore,
as shown in Fig. 4.17, the NOWMV-PSS shows lighter damped performance than that
of the LAWMV-PSS when one transmission line is switched out (during the time period
10.5 second - 20.5 second). However, when the lost line is switched back (after ¢ = 20.5
second), the control action of the NOWMV-PSS is superior to that of the LAWMV-
PSS, the parameters of which need to be readjusted again (see also Fig. 3.13).

Group 4: In Studies 8-9, the ability of the NOWMV-PSS to overcome the mea-
surable deterministic disturbances in reference voltage is examined. It shows clearly,
in Figs. 4.18-4.19, that the NOWMV-PSS provides faster damping than the LAWMV-
PSS.

Remark 4.5.6 As discussed in Section 4.2 concerning the features of the NNM, the

NNM includes the voltage reference signal, d(k), explicitly. Therefore, once a step
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change of d(k) is applied to the system, the NOWMV-PSS immediately acts to damp
the predicted output oscillations even before the influence of this disturbance actually
affects the system output. Based on this fact, the NOWMV-PSS can provide some
feedforward compensation for the disturbance d(k) and, consequently, better control

performance than the LAWMYV-PSS.

Group 5: The ability of the NOWMV-PSS to extend the system stability region is
examined in Studies 10-11, shown in Figs. 4.20-4.21. The behaviour of the NOWMYV-
PSS is as good as that of the LAWMV-PSS. It is then evident that both the NOWMYV-
PSS and the LAWMYV-PSS are well designed.

Conclusions.
From the analysis of the simulation results in this subsection, it is concluded that:

1. With the use of the same value of the weighting coefficient A, the NOWMV-PSS
is more effective than the LAWMYV-PSS in most cases:

e In dynamic situations, the NOWMV-PSS possesses the inherent ability to
track the changes in the system operating point, thus it provides a better

damping effect than the LAWMV-PSS.

e Following a three-phase fault, the NOWMV-PSS can offer a fast optimal
control action for damping system oscillations. This is due to the fact that
the NOWMV-PSS does not involve any on-line parameter adjustment; its

optimal control action has no time delay.

2. The lack of a facility for on-line parameter adjustment associated with the NOWMYV-
PSS deleteriously affects its damping performance, when the system parameters

or the operating conditions (and hence the parameters of the NNM) change.

Remark 4.5.7 The above shortcoming of the NOWMV-PSS will initiate the further
development of a nonlinear adaptive power system stabiliser which will be discussed in

Chapter 5.
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Figure 4.10: Electrical torque response for Study 1 (P, = 0.6 pu, Q; = 0.3 pu; periodic
variations in reference power). CSM3 with the NOWMV-PSS - solid line, CSM3 with

the LAWMYV-PSS - dashed line.
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Figure 4.11: Electrical torque response for Study 2 (P, = 0.6 pu, Q; = —0.1 pu;
periodic variations in reference power). CSM3 with the NOWMV-PSS - solid line,

CSM3 with the LAWMYV-PSS - dashed line.
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Figure 4.12: Electrical torque response for Study 3 (P; = 0.6 pu, Q; = 0.3 pu; periodic
variations in reactive power between lagging and leading operating conditions). CSM3

with the NOWMYV-PSS - solid line, CSM3 with the LAWMYV-PSS - dashed line.
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Figure 4.13: Electrical torque response for Study 4 (P; = 0.65 pu, ¢: = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM3 with the NOWMYV-PSS - solid line,

CSM3 with the LAWMYV-PSS - dashed line.
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Figure 4.14: Electrical torque response for Study 5 (P, = 0.55 pu, Q; = —0.1 py;
100 ms short-circuit at the machine terminal). CSM3 with the NOWMYV-PSS - solid

line, CSM3 with the LAWMV-PSS - dashed line.
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Figure 4.15: Field voltage response for Study 5 (P, = 0.55 pu, @; = —0.1 pu; 100 ms
short-circuit at the machine terminal). CSM3 with the NOWMV-PSS - solid line,

CSM3 with the LAWMV-PSS - dashed line.
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Figure 4.16: Electrical torque response for Study 6 (P; = 0.65 pu, @; = 0.3 pu; two

successive faults of 100 ms duration on the receiving end busbars). CSM3 with the

NOWMV-PSS - solid line, CSM3 with the LAWMV-PSS - dashed line.
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Figure 4.17: Electrical torque response for Study 7 (P = 0.55 pu, Q; = 0.3 pu; one
transmission line is opened and then reclosed). CSM3 with the NOWMV-PSS - solid

line, CSM3 with the LAWMV-PSS - dashed line.
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Figure 4.18: Electrical torque response for Study 8 (F; = 0.6 pu, @: = 0.3 py; periodic
disturbances in reference voltage). CSM3 with the NOWMV-PSS - solid line, CSM3

with the LAWMYV-PSS - dashed line.
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Figure 4.19: Electrical torque response for Study 9 (P = 0.6 pu, @ = —0.1 py;
periodic disturbances in reference voltage). CSM3 with the NOWMYV-PSS - solid line,

CSM3 with the LAWMV-PSS - dashed line.

190



Electrical Torque (pu)

“o s 10 15 20 25 30 35 40

Time (sec)

Figure 4.20: Electrical torque response for Study 10 (P; = 0.6 pu, Q; = 0.3 pu; large
periodic excursions in reference power). CSM3 with the NOWMV-PSS - solid line,

CSM3 with the LAWMYV-PSS - dashed line.
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Figure 4.21: Electrical torque response for Study 11 (P, = 0.6 pu, Q¢ = —0.1 pu; large
periodic excursions in reference power). CSM3 with the NOWMV-PSS - solid line,

CSM3 with the LAWMYV-PSS - dashed line.
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4.5.3 Studies on the Robustness of the NOWMYV-PSS for
the CSM1.

In this subsection the robustness of the NOWMV-PSS is confirmed through the series
of robustness studies (Studies 12-15) defined in Subsection 3.6.3. The performance of
the NOWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The performance of the NOWMV-PSS and the LAWMV-PSS is further compared with
the CSM3 (D = 4.0 pu) replaced by the CSM1 (D = 0.1 pu). The stabilising signal is
the electrical power P.(k). The aims of this study are

e to verify the validity of the NOWMYV-PSS for the power system represented by
the more accurate model (CSM1);

e to establish a reference for the comparison of the performance of the nonlinear
optimal and nonlinear adaptive control strategies with unmodelled dynamics and

modelling errors to be conducted in Subsection 5.4.3.

Studies 12-15 allocated to the two Groups specified in Subsection 3.6.3 are imple-
mented. The simulation results are given by Figs. 4.22-4.25 in which the performance

of the LAWMYV-PSS is provided by Figs. 3.18-3.21.

Analysis of the simulation studies.

Group 1: The dynamic performance of the NOWMYV-PSS associated with the CSM1
is examined in Studies 12-13. The results are plotted in Figs. 4.22-4.23. It is seen that
the NOWMV-PSS gives damping performance similar to that of the LAWMYV-PSS.
This concides with the results shown in Figs. 4.10-4.11.
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Group 2: The transient performance of the NOWMV-PSS associated with the
CSM1 is examined in Studies 14-15. In Fig. 4.24 the damping performance of the
NOWMV-PSS shows a slight deterioration as compared to its behaviour in Fig. 4.13 for
the identical disturbance. This can be attributed to the influence of the subtransients
of the CSMI1 (i.e., the unmodelled dynamics of the NOWMV-PSS). Nevertheless, the
performance of the NOWMYV-PSS is still better than that of the LAWMV-PSS in
Study 15, as shown in Fig. 4.25. This agrees with the result shown in Fig. 4.14. Thus,
the fast control effect associated with the NOWMV-PSS is still evident.

Conclusions.

The above studies confirm that:

1. The NOWMYV-PSS which is well designed for the CSM3 is also valid for the
higher-order actual power system represented by the CSM1.

2. In terms of the damping performance, the NOWMV-PSS is at least comparable
with, and typically better than, the LAWMV-PSS.

4.6 Concluding Remarks.

In this chapter original work on the design and implementation of a nonlinear optimal
power system stabiliser for the SMIB power system modelled in Subsection 2.3.1 is
conducted. This work forms the basis for the theoretical and practical development of

the nonlinear adaptive power system stabilisers to be discussed in Chapters 5 and 6.

In order to deal with a nonlinear control problem, the development of a suitable
nonlinear model for controller analysis and design is essential. For this reason, in
Section 4.2 a new nonlinear nominal model (NNM) in a discrete-time input-output
representation is derived from the nonlinear analytical model (NAM) given in Subsec-

tion 2.3.1. The NNM includes the inherent nonlinearities associated with the machine
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Figure 4.22: Electrical power response for Study 12 (F; = 0.6 pu, Q¢ = 0.3 py; step
change in reference power). CSM1 with the NOWMYV-PSS - solid line, CSM1 with the

LAWMYV-PSS - dashed line.
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Figure 4.23: Electrical power response for Study 13 (P = 0.6 pu, ¢: = —0.1 pu; step
change in reference power). CSM1 with the NOWMV-PSS - solid line, CSM1 with the

LAWMYV-PSS - dashed line.
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Figure 4.24: Electrical power response for Study 14 (F; = 0.6 pu, Q: = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM1 with the NOWMV-PSS - solid line,

CSM1 with the LAWMYV-PSS - dashed line.
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Figure 4.25: Electrical power response for Study 15 (P, = 0.6 pu, @ = —0.1 pu;
100 ms short-circuit at the machine terminal). CSM1 with the NOWMV-PSS - solid

line, CSM1 with the LAWMYV-PSS - dashed line.
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electrical torque (or power) accurately. Hence, it tracks the changes in the operating
point of the nonlinear power system automatically. The validity of the NNM to rep-
resent the CSM3 at various system operating conditions is verified through simulation

studies in Subsection 4.5.1.

The NNM, given in a regression form, is linear in the parameters and in the control
input. This feature of the NNM is important, since the linear theory of estimation,
prediction, and control, can then be developed for this nonlinear model. The BIBO
stability of the NNM has been established in Lemma 4.2.3 for use in the theoretical
analyses associated with the nonlinear optimal and adaptive control laws developed in

this chapter and Chapter 5.

A new nonlinear stochastic generalised minimum variance control law is developed
for the NNM in Section 4.3, and its closed-loop stability conditions are established
in Theorem 4.3.1. By choosing different weighting polynomials in the cost function,
different forms of the nonlinear optimal control law are obtained. The noise term in
the NNM is specified as a white noise with zero mean. This specification facilitates
the theoretical development of the nonlinear optimal control laws for the NNM. The
boundedness and the dynamic characteristics of this noise term are examined in Sub-

section 4.5.1.

In Section 4.4 a new nonlinear stochastic weighted minimum variance control law
is derived. The sufficient condition for the global stability of the closed-loop system
associated with this control law is given by Theorem 4.4.2. The application of this con-
trol law to the design of a nonlinear optimal power system stabiliser is then discussed.
In taking practical implementation into account, a new nonlinear optimal weighted
minimum variance power system stabiliser (NOWMYV-PSS) is proposed for the SMIB
power system given in Subsection 2.3.1. The NOWMV-PSS would be realised in prac-
tice by a digital computer, and its control action updated by the implementation of

Algorithm 4.1.

In Section 4.5 the performance of the proposed NOWMV-PSS is investigated and
its robustness in stabilising the higher-order actual power system is tested through

the series of evaluation studies and robustness studies specified in Subsections 3.6.2
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and 3.6.3, respectively. The effectiveness of the NOWMV-PSS is demonstrated by the
comparison of the system damping performance with the LAWMYV-PSS proposed in
Chapter 3. The simulation results in this chapter indicate that the NOWMV-PSS
is properly designed; it is comparable with the LAWMYV-PSS and improves the sys-
tem damping performance with the LAWMV-PSS in most cases. Due to the property
that the NOWMV-PSS is fized-parameter and nonlinear, the NOWMV-PSS provides
a faster control action for damping rotor oscillations than the LAWMV-PSS with an
identical weighting coefficient A. Moreover, since the voltage reference signal is included
in the control law ezplicitly, some feedforward compensation for this measurable deter-
ministic disturbance is provided by the NOWMV-PSS. The provision of the dynamic
and transient behaviour of the NOWMV-PSS in this chapter establishes a basis for the
evaluation of the system performance with the nonlinear adaptive control scheme yet

to be designed in Chapter 3.

The contributions in this chapter are original, and have been listed in Section 4.1.
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Chapter 5

SISO Nonlinear Adaptive Power

System Stabilisers.

5.1 Introduction.

In this chapter the design of SISO nonlinear adaptive power system stabilisers is dis-
cussed. This follows on from the development of the nonlinear optimal power system
stabilisers discussed in Chapter 4. It will establish a basis for the further development

of a dedicated bilinear adaptive power system stabiliser to be discussed in Chapter 6.

In order to deal with the nonlinearities in a power system, nonlinear optimal control
approaches have been proposed in Chapter 4. The inherent nonlinearities of the power
system are incorporated into the design of the control laws. A nonlinear nominal model
(NNM) was derived from the mathematical description of the nonlinear SMIB power
system for the purposes of the design and implementation of the nonlinear optimal
power system stabiliser. The parameters associated with the NNM are defined by
(4.44)-(4.45), (4.59)-(4.60), and (4.49)-(4.52). From these definitions, it is clear that
for a given generating unit (with fixed system parameters), the values of the parameters

of the NNM will depend on the following factors:

o the value of the transmission line parameters, such as X, etc., which change

following a change in the system configuration;
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e the value of the infinite bus voltage, V.., which is assumed to be time-invariant
for a given lagging or leading operating condition, but will be time-varying as

the system operating condition changes from lagging to leading or vice versa.

If the above factors were unchanged, then a fired-parameter NNM would be an accurate
representation of the nonlinear power system. However, in practice, these factors do
change over a period of time. Consequently, the nature of the NNM (4.76)-(4.78) is
time-varying. As indicated in the Conclusions of Subsection 4.5.2, the NOWMV-PSS
designed by the use of the fixed-parameter NNM is not capable of tracking the system

changes on-line.

In order to overcome the shortcoming associated with the NOWMV-PSS, nonlinear
adaptive control schemes are considered in this chapter. Based on the certainty equiv-
alence principle, the derivation of a nonlinear adaptive control law from an existing
nonlinear optimal control law developed in Chapter 4 will be straightforward. A pa-
rameter estimation algorithm will be required for the purpose of on-line identification
of the time-varying NNM. Since the model is nonlinear, it will be necessary to separate
the estimation of the parameters and the calculation of the control law. Therefore, in-
direct control methods will be considered for the development of the nonlinear adaptive

control algorithms.

From the review of the literature, the study of nonlinear adaptive control algorithms
for the design of power system stabilisers has not been reported widely. One example
of a nonlinear controller, designed on direct feedback linearisation, has been employed
to implement adaptive control laws for studies on the transient stabilisation of power
systems [86]. However, in some other fields of scientific research, nonlinear adaptive
control approaches have been developed and implemented. Typical applications are
documented in [75,44]. For example, nonlinear minimum variance control strategies
have been designed in [192] for use in dissolved oxygen control in activated sludge
waste water treatment and in control of pH in acidic waste water. Similar approaches
have been developed in [196] for substrate concentration control and production rate
control of time-varying bacterial growth systems. A nonlinear model reference control

approach has been proposed in [193] for control of the nonlinear dynamics relating

199



joint angles to motor torques in robot control. Because there are a great variety of
representations of nonlinear systems in practice, nonlinear adaptive control approaches
differ significantly in formulation. However, there is a common principle behind each
design, that is to account for the nonlinearities and the time-varying features of the
systems. Moreover, a nonlinear adaptive control approach is usually proposed for a
specific problem. The application of a nonlinear adaptive control law designed for one

specific nonlinear system to other control problems is limited.

In this chapter new nonlinear adaptive control algorithms are developed for the
design of the power system stabiliser for the SMIB power system modelled in Subsec-
tion 2.3.1. Original work on the analysis, design, and evaluation of nonlinear adaptive
power system stabilisers will be conducted in the following sections of this chapter. The
work involves the development of the parameter estimation algorithms for identification
of the time-varying NNM, the derivation of the nonlinear adaptive control laws, the
convergence analyses of both parameter estimation and adaptive control algorithms,
the formulation of a nonlinear adaptive power system stabiliser, and the assessment of

the system damping performance with the proposed nonlinear adaptive stabiliser.

The organisation of this chapter is as follows. In Section 5.2 parameter estimation
algorithms for identification of the time-varying NNM are proposed and the relevant
convergence analyses are briefly discussed. In Section 5.3 the SISO nonlinear adap-
tive weighted minimum variance control laws are developed from the optimal control
law (4.128), and the convergence of the resulting bounded nonlinear adaptive con-
trol algorithms is established. A nonlinear adaptive power system stabiliser is then
proposed. In Section 5.4 the performance of the proposed nonlinear adaptive power
system stabiliser is assessed through simulation studies, and is compared with that of

the NOWMV-PSS developed in Chapter 4.

To the author’s knowledge, the research reported in this chapter is original; the

main contributions are:

1. The recursive least squares algorithm with the time-varying forgetting factor

and dead zone is applied to the NNM for the identification of the time-varying
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parameters on-line. Based on Lemma 4.2.3 established in Subsection 4.2.3, con-
vergence analyses of the resulting parameter estimation algorithms are given in

Sections G.1-G.2 of Appendix G.

2. New SISO nonlinear adaptive weighted minimum variance control laws are de-
rived from the nonlinear stochastic optimal control law (4.128). The convergence
of the resulting bounded nonlinear adaptive control algorithms is established. A
rigorous mathematical proof of the convergence is presented in Section G.3 of

Appendix G.

3. A new nonlinear adaptive power system stabiliser based on the bounded non-
linear adaptive weighted minimum variance control algorithm is proposed, and
the control structure of the SMIB power system equipped with the proposed

nonlinear adaptive power system stabiliser is illustrated.

4. Simulation studies on the evaluation of the nonlinear adaptive power system
stabiliser are conducted. A series of useful comparisons with the NOWMYV-PSS

is given.

It should be pointed out that while the convergence analysis of a standard linear
adaptive control algorithm has been well-documented, there is no general proof of
the convergence of a particular nonlinear adaptive control algorithm. For this reason,
proofs of lemmas and theorems to be established for the theoretical development of
the nonlinear adaptive power system stabiliser under design are given in this chapter.
These analyses are necessary to ensure the closed-loop system stability associated with

the proposed nonlinear adaptive power system stabiliser.

5.2 Parameter Estimation Algorithms for the Non-
linear Nominal Model of the Power System

and Convergence Analyses.

In this section:
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e the recursive least squares algorithm with the time-varying forgetting factor and

dead zone is proposed for the estimation of the parameters of the NNM;

e convergence analyses of the proposed parameter estimation algorithms are given.

The NNM given in Subsection 4.2.3 is written as
y(k+ 1) = ¢(k)TO0 + w(k + 1) (5.1)

where ¢(k) and @ are given by (4.77) and (4.78), respectively. It has been shown in
(4.83) and (4.86) that the optimal one-step-ahead prediction of the output of the above

model is given by
y°(k+ 1| k) = G(g)y(k) + f(k) = $(k)" 0o

in which {w(k)} is assumed to be a white noise sequence satisfying Assumption 4.3.1. In
this chapter, as indicated in Section 4.3, the third noise model is considered and {w(k)}
is a general bounded nondeterministic noise sequence which satisfies Lemma 4.2.2.
This treatment will result in a more general form of the nonlinear adaptive controller
applicable to different noise characteristics, provided that the noise term is bounded

(i.e., satisfying Lemma 4.2.2).

Given an estimate O(k) of Oy, the adaptive one-step-ahead prediction, §(k + 1), of
y(k + 1) in (5.1) is defined as

j(k +1) £ ¢(k)TO(k) (5:2)
where

O 2 [ k) w(®) B b a®) a®) 4B a® | 63

Since the model (5.1) is linear in its parameters, the parameter estimation algorithms
developed for the identification of linear models can be applied to this nonlinear model.
Therefore, the recursive least squares algorithm with the time-varying forgetting factor,
used in Chapter 3 to construct the linear adaptive control algorithms, is employed in
this chapter as the basic parameter estimation algorithm for the NNM. The use of

the time-varying forgetting factor is to allow tracking of the time-varying parameters
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of the NNM due to the changes in the system parameters and/or in the value of
the infinite bus voltage. It is also used to prevent the covariance matrix P(k) from
‘blowing-up’ (the reason for which has been explained in Subsection 3.4.1). Moreover,
since the model (5.1) contains a bounded noise term w(k + 1), the technique of a
dead zone [157)] is recommended. A switching function, a(k), is incorporated into the
parameter estimation algorithms [192,196]. The switching function o(k) is used to hold
the parameter estimates constant whenever the prediction errors become smaller than
a prespecified bound, A,,. The introduction of o(k) into the algorithms is necessary
for the theoretical analysis of the parameter convergence of the algorithms. It may be
omitted in practice or in simulation studies when this precaution is unnecessary. The

resulting parameter estimation algorithm for the model (5.1) is then given as follows.

Algorithm 5.1(A) [recursive least squares algorithm with the time-varying

forgetting factor and dead zone for the model (5.1).]

Estimate:
O(k) = O(k— 1) + o(k — 1)P(k — 1)$(k — 1) [y(k) — (k)] (5:4)
Covariance:
_ . o(k —1)P(k —2)¢(k — 1)p(k — 1)TP(k—2) 1
Pl =1) = | PO =2) = L0 —1) T o(h = 1)g(k — DT P(k— 2)g(k — 1) | u(k -1
Prediction:
j(k) = ¢(k —1)TO(k — 1) (5.6)
Error:
e(k) = y(k) — §(k) (5.7)
Switching Function:
i ulk — )e(k)? 2
olb-1)=1 CE— D+ sk —D P =gk —1)
0 otherwise
(5.8)
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Forgetting Factor:

o(k — 1)e(k)? 1
po(k) = 1 — T S 1T P(k — 2)$(k — 1) %o (5:9)
e { po(k) oK) 2 pnin > 0 6510
Pmin otherwise
_ . trace(P(k — 1))
aiy =4 P = <¢ (5.11)
1 otherwise

where k > 1, P(=1) = Kol (0 < Ko < C), and p(0) = 1. Ay, Zo, fmin, and C
are preselected positive constants. O(k) and ¢(k) are defined by (5.3) and (4.77),
respectively. ©(0) is given.

\YAVAY/

The parameter estimate O(k) from Algorithm 5.1(A) will be used to calculate the

corresponding nonlinear adaptive control law (Algorithm 5.1(B)) in Section 5.3.

Remark 5.2.1 Algorithm 5.1(A) is obtained by minimising the quadratic cost func-
tion (F.1) given in Appendiz F.

The convergence of Algorithm 5.1(A) is given by the following theorem, based on
[192,196]. This theorem ensures that: if the noise term w(k + 1) in the model (5.1)
is bounded, then (i) the convergence of the parameter estimate O(k) is guaranteed
through the use of the switching function o(k) in the algorithm; (ii) the boundedness
of the adaptive one-step-ahead prediction, §(k), of y(k) as well as the error between
y(k) and (k) is also guaranteed.

Theorem 5.2.1 For the least squares algorithm (5.4)-(5.11), subject to Assumptions 4.2.1-
4.2.5,

(a) tlim sup |§(k)| < K + KqA,
(b)  lim sup ly(k) — 3(k)| < Kalu,
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(c)  limsup |O(k) — O(k —1)| < KA,

t—o0

(@) | 6(k)— 60 |I< Ko || 6(0) — G0 ||, for k>1,

where K3, K4, Ks, and K¢ are known constants, independent of A,,.

Proof of Theorem 5.2.1

See Section G.1 of Appendix G.

Q.E.D.

Theorem 5.2.1(b) will be used to prove the convergence of the corresponding non-

linear adaptive control algorithm (Algorithm 5.1(B)) in Section 5.3.

Alternatively, the model (5.1) can be written as

y(k+1) = $(K)T00 + Bo(k)u(k) + w(k +1) (5.12)
where
BT 2 | yk) —y(k-1) a(®) ak-1)
oB) mlk—1) wk) @) @R -ve®) | (613)
Define §(k + 1) by
ik +1) 2 §(k)T 00 + w(k + 1). (5.14)

The model (5.12) can then be rewritten as
y(k+1) = §(k + 1) + Bo(k)u(k). (5.15)
As far as the model (5.14)-(5.15) is concerned, the adaptive one-step-ahead predic-
tion, g(k 4 1), of §(k + 1) can be defined as
ik +1) £ §(k)TO(k). (5.16)

Hence, for the model (5.14)-(5.15) the parameter estimation algorithm proposed in
Algorithm 5.1(A) can be modified to give
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Algorithm 5.2(A) [recursive least squares algorithm with the time-varying

forgetting factor and dead zone for the model (5.14)-(5.15).]

Estimate:
O(k) = O(k — 1) + o(k — 1)P(k — 1)§(k — 1) [(k) — (k)] (5.17)

Covariance:

o(k —1)P(k — 2)¢(k — 1)d(k — 1)TP(k — 2) ] 1
p(k — 1) + o(k — 1)¢(k — 1)TP(k — 2)¢(k ~ 1) ] p(k —1)

Pk—1)=|P(k—2)—

(5.18)
Output:
(k) = y(k) — Bo(k — 1)u(k —1); (5.19)
Prediction:
(k) = Bk — 1)TO(k — 1) (5.20)
FError:
é(k) = (k) — §(k) (5.21)
Switching Function:
) ” we—1ER)” S A2
olk—1) = p(k—1)+ ¢(k — )TP(k—2)¢p(k—1) = "
0 otherwise
(5.22)
Forgetting Factor:
. o(k —1)é(k)? 1
polk) =1—7 + ¢k — )TP(k — 2)¢(k — 1) Xo (5.23)
e { po(k) i bold) 2 i > 0 520
o otherwise
_ .. trace(P(k — 1))
k if C
uty = | O TR (5.25)
1 otherwise

where k > 1, P(—1) = Kol (0 < Ko < C), and p(0) = 1. Ay, Yo, fimin, and C
are preselected positive constants. ©(k) and $(k) are defined by (5.3) and (5.13),

respectively. ©(0) is given.
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\VAAVAAY

The parameter estimate O(k) from Algorithm 5.2(A) will be used to calculate the

corresponding nonlinear adaptive control law (Algorithm 5.2(B)) in Section 5.3.
Remark 5.2.2 In Algorithm 5.2(A),

(i) at each sampling instant k, (k) is obtained from the measured input/output data

sequences according to (5.19);

(ii) the parameter e, is set to be constant in (5.19) in order to calculate §(k), while
the estimated ey, & (k), is still retained in O(k) for updating the prediction (k).
This approach will be used in Section 5.8 to derive the modified nonlinear adaptive
control law (Algorithm 5.2(B)) for the sake of ensuring the convergence of the

resulting control algorithm over the time horizon.
The above points explain the essential differences between Algorithms 5.1(A) and 5.2(A).

In a similar way as for Theorem 5.2.1, the convergence of Algorithm 5.2(A) is given

by the following theorem.

Theorem 5.2.2 For the least squares algorithm (5.17)-(5.25), subject to Assump-
tions 4.2.1-4.2.5,

(@)  Jim supli(k)| < K3+ Ky,

t—00

() lim sup |g(k) — §(k)| < Ky,

t—o00

(c) lim sup |O(k) — O(k — 1)| < KA,

t—o0

(d) 1| 6(k) - 6o |I< Kq || 6(0) - 6o, fork =1,

where K, K, K;, and K are known constants, independent of A,,.
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Proof of Theorem 5.2.2

See Section G.2 of Appendix G.

Q.ED.

Theorem 5.2.2(b) will be used to prove the convergence of the corresponding non-

linear adaptive control algorithm (Algorithm 5.2(B)) in Section 5.3.
When Algorithm 5.2(A) is used, the adaptive prediction of y(k + 1) is defined as
gk +1) £ @(k)TO(k) + Bo(kYu(k). (5.26)
Also, the error between y(k + 1) and §(k + 1) can be calculated by e(k + 1) as
e(k+1)=y(k+1) — §(k+1). (5.27)
Clearly, from (5.12), (5.26), (5.14), and (5.16), it follows that
y(k) — §(k) = d(k — 1)T [0 — Ok — 1)] + w(k) = §(k) — §(k), (5.28)

or

e(k) = &(k)

due to (5.27) and (5.21).

The parameter estimation algorithms (Algorithms 5.1(A) and 5.2(A)) developed in
this section will be used to complete the indirect nonlinear adaptive control algorithms

which will be designed in Section 5.3.

5.3 Nonlinear Adaptive Weighted Minimum Vari-
ance Power System Stabilisers and Conver-

gence Analyses.

In this section:
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e nonlinear adaptive weighted minimum variance control laws are developed from

Theorem 4.4.1, given in Section 4.4;

e convergence analyses of the proposed bounded nonlinear adaptive control algo-

rithms are presented;

e a nonlinear adaptive weighted minimum variance power system stabiliser is pro-

posed;

e the control structure of the SMIB power system equipped with the proposed

nonlinear adaptive power system stabiliser is given.

The nonlinear optimal weighted minimum variance control scheme proposed in
Section 4.4 is used in this section for the development of the corresponding nonlinear
adaptive control strategies. According to the certainty equivalence principle, the basic
structure of a nonlinear adaptive control algorithm in an indirect form is obtained by
the combination of the nonlinear optimal weighted minimum variance control law with
one of the parameter estimation algorithms (Algorithms 5.1(A) and 5.2(A)) developed

in Section 5.2.

Consider the model (5.1) for which the parameter estimation algorithm is given
by Algorithm 5.1(A). From the nonlinear optimal weighted minimum variance control
law (4.128) given in Theorem 4.4.1, a nonlinear adaptive weighted minimum variance
control law is suggested by replacing the model parameters by their corresponding

estimates in the following manner
[Bo(k)? + 2] (k) = Bo(k) [y (k +1) = Gla™)y(k) = 5(k)] (5.29)

where, according to (4.111), (4.87), and (4.121)

Bo(k) = él(k)z4(k)a (5-30)
(g™ & —an(k) — aa(k)g ™, (5.31)
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Zl(k)
z(k—1)
Y- I ) . \ ; . z9(k)
) 2 [ bk BH) al) ak) (k) | . . (532)

Z3(k)
| zy(k)(d(k) — yr(k)) |

In practice, the calculated control u(k) from (5.29) is limited by design considera-

tions. Therefore, a bounded nonlinear adaptive control algorithm is proposed for the

model (5.1) as follows.

Algorithm 5.1(B) [bounded nonlinear adaptive weighted minimum variance

control algorithm for the model (5.1).]

u(k) = BT(ﬂko_)(z%X [y (k+1) = G(g™)y(k) - §(k)| (5.33)
Umag if u%(k) > Umaz

u(k) = u°(k) if Umin < u°(k) < Umaz > (5.34)
Unnin if u%(k) < Umin

where ) is the weighting coefficient; tmaz and umin are known constants; ,Bo(k), G(q‘l),
and §(k) are defined by (5.30), (5.31), and (5.32), respectively; the estimated parame-
ters are obtained from Algorithm 5.1(A).

VVV

To prove the convergence of Algorithm 5.1(B), the magnitude and sign of [y(k +
1) — y(k)] are required to satisfy certain conditions. For this purpose, the model (5.1)

is rewritten as

y(k+1) = y(k) + R (5.35)

where

=
il

R (y(k), g(k), za(k), u(k), w(k +1))
[G(a™) = 1] y(k) + g(k) + Bo(k)u(k) + w(k +1). (5.36)

>

210



According to Lemma, 4.2.3(i) (see also Remark 4.2.9), y(k) is bounded without imposing
an upper or lower bound on the control input u(k). Hence, there exist 1, and 7 such

that
ne = min [y(k +1) — y(k)],

m = max [y(k+1) —y(k)],
for all k. 7, is the minimum value of [y(k+ 1) — y(k)] when u = tpe,. For the
model (5.35)-(5.36)

T rﬁiI)IR(y(k), g(k), 24(k), Umazy —Duw) - (5.37)
Similarly, 7, is the maximum value of [y(k + 1) — y(k)] when u = up,. For the
model (5.35)-(5.36)
m 2 maxR (y(k), 9(k), 24(k), tmins Au) (5.38)
A0
Consequently, when y(k) is located in a specified region [l1, 1] € [ymin, Ymaz), it May

be assumed that

Assumption 5.3.1 there exist ry and ry for the model (5.85)-(5.36) such that

re 2 min R (y(k), g(k), za(k), tmaz, —Au) > 0, (5.39)

y<lpz —m2

r12 max R(y(k),g(k), za(k), thmin, Ay) < 0. (5.40)

¥l —m
g(k)
z4(k)
Remark 5.3.1 The existence of v, and ry is guaranteed for the same reason as the

eristence of n; and n,. Assumption 5.8.1, therefore, only requires that the inequalities

in (5.39) and (5.40) hold for the specified regions of y(k) and u(k).

Remark 5.3.2 The constant values of Ymaz and Ymin can be found in (G.11) of Ap-
pendiz G, and are

[ymina ymax] i~ [—'f{3, 1?3] .
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The assumed inequalities (5.39)-(5.40) ensure that the increment of [y(k + 1) — y(k)]

has the following sign and magnitude properties.

Lemma 5.3.1 For the model (5.35)-(5.36), subject to Assumption 5.3.1,

(i) if
y(k+1) <l and u(k) = Umaz, (5.41)
then
y(k +1) 2 y(k) +r2 > y(k); (5.42)
(ir) if
y(k+1)> 1 and u(k) = Unin, (5.43)
then
y(k+1) < y(k) +r1 <y(k); (5.44)

where Iy > Iy, [l1, 1] € [Ymins Ymaz)s 6N Ymaz and Ymin are known constants.

Proof of Lemma 5.3.1.

(1) With w(k) = tmaz, the minimum increment of [y(k + 1) — y(k)] is given by (5.37).
Thus, from (5.35) and (5.41)

y(k) <lp —mna.

Using (5.39),
y(k+1) —y(k) > ry > 0. (5.45)

Hence, inequality (5.42) follows from (5.45).

(2) With u(k) = Umin, the maximum increment of [y(k + 1) — y(k)] is given by (5.38).
Thus, from (5.35) and (5.43)

y(k)y >l —m.

Using (5.40),
y(k+1) —y(k) <r <0. (5.46)

Hence, inequality (5.44) follows from (5.46).
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Q.E.D.

In order to further ensure the convergence of Algorithm 5.1(B), the following as-

sumption is introduced.

Assumption 5.3.2 For large enough ko > 0,

(i) ,Bo(k) = Bo(k), for all k > ko;

(it) 0 < As <8(k) <7 — As, for all k > ky,

where the constant Ag is such that
€1 sin A& = ;BOmin > 07

Bomin 18 the same constant as in Algorithm 4.1.

The desired convergence result of Algorithm 5.1(B) is given by the following theorem.

References [192] and [196] provide some basic ideas concerning the proof of the theorem.

Theorem 5.3.1 For Algorithms 5.1(A)-(B), subject to Assumptions 5.3.1-5.3.2 and
4.2.1-4.2.5,

lim sup [y(k) = y"(k)| < Ko+ (4K +1) A, (5.47)
where
oA A
K, = ——¢ys; (5.48)
ﬂOmin

X, Bomin, and €,+ are known constants. K, is the same constant as in Theorem 5.2.1.

Proof of Theorem 5.3.1

See Section G.3 of Appendix G.
Q.E.D.

The convergence of Algorithm 5.1(B) requires that Bo(k) = Bo(k) (or &(k) = 1)

be satisfied when k > ko. In order to ensure the global convergence of the proposed
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adaptive control law for any possible set of values of the estimate O(k) over the time
horizon, a modification to the control law (5.29) can be adopted. The basic idea is to
replace the estimated &;(k) in (5.30) by its true value e, (i.e., to use Bo(k) instead of
,Bo(k)), while the estimated & (k) is still retained in §(k) (5.32). Such an approach has
been proposed in Section 5.2 (see Remark 5.2.2(ii)) in preparation for this modification
to the adaptive control law. The model (5.14)-(5.15) has been given to accommodate
this approach, and Algorithm 5.2(A) has been developed for the parameter estimation
of the model (5.14)-(5.15). The resulting modified bounded nonlinear adaptive control

algorithm is then given by

Algorithm 5.2(B) [bounded nonlinear adaptive weighted minimum variance

control algorithm for the model (5.14)-(5.15).]

o#(8) = 5B 1) - Gl ) - 90 (549
Umaz if u®(k) > Umaz

u(k) = q u°(k) if Upin < U0(K) < Umaz (5.50)
Unnin if u®(k) < Upin

where ) is the weighting coefficient; t,q5 and Uiy, are known constants; Bo(k), G(q'l),
and §(k) are defined by (4.111), (5.31), and (5.32), respectively; the estimated param-
eters are obtained from Algorithm 5.2(A).

VvV

Accordingly, the desired convergence of Algorithm 5.2(B) is presented in the fol-

lowing theorem.

Theorem 5.3.2 For Algorithms 5.2(A)-(B), subject to Assumptions 5.3.1, 5.3.2(ii),
and 4.2.1-4.2.5,
kli_{n sup [y(k) — y*(k)| < K. + (4:I~(:1 + 1) A, (5.51)

where K, is the same constant as in Theorem 5.3.1 and K, is the same constant as in

Theorem 5.2.2.
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Proof of Theorem 5.3.2

Exactly as for the proof of Theorem 5.3.1 (given by Section G.3 of Appendix G), on
noting that

(1) Assumption 5.3.2(i) is not required;
(2) equations (5.26) and (5.28) hold for all &;

(3) Theorem 5.2.2(b) is used.
Q.E.D.

Remark 5.3.8 Note that since Assumption 5.3.2(3) is not included in Theorem 5.3.2,
this theorem gives the global convergence of Algorithm 5.2(B) for any value of the
estimate &,(k) at k > ko. However, due to the replacement of Bo(k) by Bo(k) for all k,
the control action u(k) given by Algorithm 5.2(B) is ezpected to be less ‘adaptive’ than
that given by Algorithm 5.1(B). Thus, the system performance associated with the use
of Algorithm 5.2(B) may not be as good as that with Algorithm 5.1(B). Nevertheless,
since & (k) is still used for updating §(k), the deterioration in system performance due
to the use of e, (instead of & (k)) in calculating u®(k) in (5.49) can then be minimised.
Simulation studies have been conducted, which confirm this point. For the sake of

brevity, however, these studies are not included in this thests.

The combination of Algorithm 5.1(A) (Algorithm 5.2(A)) with Algorithm 5.1(B)
(Algorithm 5.2(B)) gives the desired Nonlinear Adaptive Weighted Minimum Variance
Power System Stabiliser (NAWMYV-PSS) for the SMIB power system modelled in
Subsection 2.3.1. The calculation of the control action of the NAWMV-PSS is a two-

step procedure:

e the recursive least squares algorithm with the time-varying forgetting factor and
dead zone (Algorithm 5.1(A) or Algorithm 5.2(A)) provides the estimated pa-
rameters of the NNM;
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o the control law ((5.33)-(5.34) of Algorithm 5.1(B) or (5.49)-(5.50) of Algorithm 5.2(B))
generates the control signal u(k) by making use of the estimates of the NNM.

The control structure of the system equipped with the NAWMV-PSS is illustrated in
Fig. 5.1. The stabilising signal y(k) is the machine electrical power, P.(k) (or torque,
T.(k)). For the purpose of demonstrating the effect of the proposed nonlinear adaptive
control scheme, Algorithms 5.1(A)-(B) are chosen to be the desired NAWMV-PSS,
the performance of which will be evaluated in Section 5.4. For simulation studies, the
desired output trajectory y*(k) in Fig. 5.1 is set to be the reference power P,es(k) as
explained in Remarks 4.4.5 and 3.5.2.

Vi) + SMIB Po(1) (T(1)
Power System "
+
* Y
DAC ADC ADC
A (k)

Vel k)
e

:

L f <— Controller | _

u(k) u’(k) ? 1 P(k) (T(k))
ViedK) y*(k)

NAWMYV-PSS

S

Figure 5.1: Control structure of the SMIB power system with the NAWMV-PSS.
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5.4 FEvaluation of the Performance of the Non-
linear Adaptive Weighted Minimum Variance

Power System Stabiliser.

In this section:

e the dynamic behaviour of the estimated NNM in representing the time-varying

nonlinear power system (CSM3) is examined through simulation studies;

e the performance of the NAWMV-PSS proposed in Section 5.3 is investigated
through the evaluation studies (Studies 1-11);

e the robustness of the NAWMYV-PSS is tested with unmodelled dynamics and
modelling errors (Studies 12-15).

The NAWMV-PSS proposed in Section 5.3 is operated in the same environment as
the NOWMV-PSS and the LAWMV-PSS, that is via excitation control of the SMIB

power system modelled in Subsection 2.3.1. The sampling period h is 20 ms.

The simulation studies of this section will follow the procedure described in Sec-

tion 3.6, and will be conducted in three Stages:

Stage 1: Identification of the NNM — to examine the behaviour of the estimated
NNM in tracking and predicting the dynamics of the time-varying nonlinear

power system (CSM3).

Stage 2: Evaluation of the performance of the NAWMV-PSS — to compare the dy-
namic and transient behaviour of the NAWMV-PSS with that of the NOWMV-
PSS through Studies 1-11.

Stage 3: Studies on the robustness of the NAWMYV-PSS — to test the performance of
the NAWMYV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-
15.



The implementation of the above three Stages will be discussed in Subsections 5.4.1,
5.4.2, and 5.4.3, respectively. The parameters and limits associated with the SMIB
power system and the NAWMV-PSS are listed in Appendix C. The simulation results
obtained from this section will be used as a reference for the comparisons of the system

performance of the NAWMYV-PSS and its simplified versions in Chapter 6.

5.4.1 Identification of the Nonlinear Nominal Model of the

Power System.

In this subsection the behaviour of the estimated NNM in tracking and predicting the
dynamics of the time-varying nonlinear power system (CSM3 with D = 4.0 pu) at
different operating conditions is examined through simulation studies. The output
signal is the machine electrical torque, T,(k). This subsection is the implementation

of Stage 1.

Aims and structure of the simulation studies.

The PRBS signal, which has been used in Subsections 3.6.1 and 4.5.1 for the verification
of the estimated LNM and the fixed-parameter NNM, is taken as the external control
input u(k) that is injected into the summing junction of the input of the AVR and the
estimator, simultaneously. The model of the estimator is the NNM. At each sampling
instant, the estimator generates the estimated parameters, O(k), and the predicted
electrical torque output, T,(k), by the implementation of Algorithm 5.1(A). ! The
error, e(k), between the predicted output, T ¢(k), of the estimated NNM and the actual
output, T.(k), of the CSM3 is updated. The configuration for this study is given by
Fig. 5.2. The aims of this study are

e to confirm the inherent output tracking ability of the estimated NNM;

e to demonstrate the difference between the estimated NNM and the estimated

LNM in representing the CSM3 at different operating points;

IThe switching function o (k) is not used in the simulation studies.
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e to examine the ability of the estimated NNM in tracking changes in the system

parameters.
Vea(t) 4 SMIB T.(t) _
Power System o
+
{ ,
DAC ADC ADC
4 Vb | z(k)
T(k)
Vee(k)
Estimator - + e(k)
_ (NNM) -
() 6(1()* T(K)
(PRBS)

Figure 5.2: Structure of the identification of the NNM.

For the above purposes, two cases of simulation studies are chosen:

Case 1: The system is operating at P; = 0.6 pu and @; = 0.3 pu, and is subjected to
a step change of 0.05 pu increase in reference power at time ¢t = 20 second. This

case is the same as Case 1 given in Subsection 4.5.1.

Case 2: The system is operating at P; = 0.6 pu and Q; = 0.3 pu, and is subjected to
a change in the system configuration — one transmission line is switched out at

time ¢ = 20 second, causing the value of the parameter X, to double.

The simulation results associated with Cases 1-2 are shown in Figs. 5.3-5.7 and Ta-
bles 5.1-5.2. The estimator parameters are: Ko = 10%, C = 10°, ppi, = 0.2, and
S = 0.8. The initial value of the estimate, ©(0), is set to be the pre-calculated
true value, O (see column 2 of Table 4.2). The results for the fixed-parameter NNM
(studied in Subsection 4.5.1) and the estimated LNM (studied in Subsection 3.6.1) are

compared with the simulation results in the discussion that follows.
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Analysis of the simulation studies.

Case 1: The simulation study in this case involves the confirmation of the inherent
output tracking ability of the estimated NNM. Subject to the PRBS input signal and
the step change in reference power, the dynamic responses of the predicted output,
Te(k), of the estimated NNM and the actual output, T.(k), of the CSM3 in Case 1
are superimposed in Fig. 5.3. The error, e(k), between T.(k) and T.(k) is plotted in
Fig. 5.4 by the solid line. In order to form a comparison, the error, w(k), between the
predicted output, T°(k | k — 1), of the fized-parameter NNM and the actual output,
T.(k), of the CSM3 in the same case (as shown in Fig. 4.7) is re-plotted in Fig. 5.4 by
the dotted line. It is seen from Figs. 5.3-5.4 that the estimated NNM inherently tracks
the dynamics of the CSM3 and represents the CSM3 at different operating points
as accurately as the fixed-parameter NNM; both errors, w(k) and e(k), are of the
same order of magnitude. This implies that in small dynamics where the power system
parameters are time-invariant, the performance of the NAWMV-PSS will closely match
that of the NOWMV-PSS. This point will be demonstrated in the simulation studies
of Subsections 5.4.2 and 5.4.3.

The inherent output tracking ability of the estimated NNM is further demonstrated
by the comparison of the variation in the estimates of both the estimated NNM and the
estimated LNM when the system operating point changes. For this purpose, Case 1 is
applied to the estimated LNM. The estimated parameters of the LNM and the NNM
in the same case are then plotted in Figs. 5.5 and 5.6, respectively. It is seen that while
the estimated LNM has to modify its parameters in order to cope with the change
in the system operating point, the parameters of the estimated NNM are kept almost
constant. Tables 5.1-5.2 give the variation of the estimates of the LNM and the NNM
when a step change in the system operating point occurs at time ¢ = 20 second. The
parameters of the estimated NNM vary very little when the system operating point
changes, which confirms the fact that the estimated NNM inherently tracks the change
in the system operating point. Consequently, using the parameters of the estimated

NNM, the NAWMYV-PSS is expected to provide superior control action.

Case 2: This simulation study examines the ability of the estimated NNM to
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track the changes in the system parameters. The same study is applied to the fixed-
parameter NNM. The errors, w(k) and e(k), after a transmission line is switched out
are plotted in Fig. 5.7. Since the fixed-parameter NNM cannot adapt to the change

in the system configuration, the output tracking error w(k) is seen to be much larger

than e(k).

Conclusions.

Based on the simulation results given by Cases 1-2, it is concluded that:

1. The estimated NNM has similar performance to the fixed-parameter NNM in
that it accurately models the dynamics of the continuous-time CSM3 when the

system parameters are constant and the system configuration does not change.

2. The estimated NNM possesses the ability to adapt on-line to the changes in the

system parameters and configuration.

3. Because the estimated NNM tracks the changes in the nonlinear power system,
the control action based on the estimated NNM in damping system dynamic

oscillations should be superior to that based on the fixed-parameter NNM.

A

Estimates | True Values | 4;(1000) | 6,(2000) | |0:(2000) — f(1000)|
| * -1.2624 | -1.2732 1.08 x 102
0, = @, * -0.2932 | -0.02957 2.64 x 107!
05 = &, * 0.5976 | 0.3360 2.62 x 10~
0, = bo * 0.04238 | 0.03526 7.11 x 1072
s = b * 0.04721 | 0.05020 3.00 x 10~3
b6 = b, * -0.02459 | -0.0006131 2.40 x 102

Table 5.1: Estimated parameters of the LNM for Case 1.
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Figure 5.3: Electrical torque response for Case 1 (P; = 0.6 pu, @;: = 0.3 py; 0.05 pu

increase in reference power). CSM3 - solid line, estimated NNM - line marked by ‘+’.
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Figure 5.4: Error in electrical torque for Case 1 (P; = 0.6 pu, Q: = 0.3 pu; 0.05 pu

increase in reference power). estimated NNM - solid line, fixed-parameter NNM -

dotted line.
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Figure 5.5: Estimated parameters of the LNM for Case 1 (P; = 0.6 pu, @: = 0.3 pu;

0.05 pu increase in reference power).
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Figure 5.6: Estimated parameters of the NNM for Case 1 (P; = 0.6 pu, @; = 0.3 py;

0.05 pu increase in reference power).
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Figure 5.7: Error in electrical torque for Case 2 (P; = 0.6 pu, ¢ = 0.3 pu; one

transmission line switching-out). estimated NNM - solid line, fixed-parameter NNM -

dashed line.

Estimates | True Values | 6(1000) | 0:(2000) | |8:(2000) — 6:(1000)|
0, = & -1.7863 -1.7857 | -1.7858 1.00 x 10~*
0, = a, 0.7886 0.7887 | 0.7881 5.80 x 10~*
0, = b, -0.08035 | -0.07990 | -0.07978 1.21 x 10~
b, = b, 0.08036 0.08039 | 0.07986 5.26 x 10~
05 = & 9.6592 9.6592 | 9.6591 1.00 x 10~*
b6 = & -8.0494 -8.0494 | -8.0495 1.00 x 10~*
0, = d, 0.02844 0.02825 | 0.02811 1.41 x 104
fs = &, 0.09054 0.08666 | 0.08435 2.31 x 1072

Table 5.2: Estimated parameters of the NNM for Case 1.
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5.4.2 Evaluation of the Performance of the NAWMYV-PSS
for the CSM3.

In this subsection the evaluation of the performance of the NAWMYV-PSS is conducted
for the CSM3 (with D = 4.0 pu) through the series of evaluation studies (Studies 1-11)
defined in Subsection 3.6.2. This subsection is the implementation of Stage 2.

Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the NAWMYV-PSS is illustrated in
Fig. 5.1. The machine electrical torque is used as the stabilising signal. For each simula-
tion study, the performance of the CSM3 equipped with the NAWMV-PSS is compared
with that of the CSM3 equipped with the NOWMV-PSS proposed in Chapter 4. The

aims of this study are

e to confirm that the NAWMV-PSS overcomes the deficiencies in the NOWMYV-
PSS by adapting to the system changes and producing a superior control action

during large transients;

e to establish a reference for comparisons of the performance of the NAWMV-PSS

and its simplified versions to be designed in Chapter 6.

Studies 1-11 specified in the five Groups in Subsection 3.6.2 are performed. The
simulation results are shown in Figs. 5.8-5.17 in which the performance of the NOWMV-
PSS is provided by Figs. 4.10,4.12-4.18, and 4.21. The parameters of the NAWMYV-PSS
are: Umin = —0.05 pu, Umaer = 0.05 pu, and X = 0.4, which are the same as those used

in the NOWMV-PSS.
Remark 5.4.1 In a similar manner to the LAWMV-PSS studies, a fized-length freez-

ing time period (explained in Remark 3.6.2) is employed in the estimator of the NAWMYV-

PSS to hold the estimates constant at their pre-fault values during the fault period.
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Analysis of the simulation studies.

Group 1: The dynamic performance of the NAWMV-PSS is examined in Studies 1-3
by simulating the periodic changes in the system operating point. In Studies 1-2, the
system operating point changes with constant reactive power @;, and the infinite bus
voltage V., is assumed to be constant for each study. The true values of the parameters
of the NNM are unchanged. Hence, the system responses with the NOWMV-PSS and
the NAWMYV-PSS are identical. As an example, the result of Study 1 is plotted in
Fig. 5.8 (while the result of Study 2 is omitted). However, in Study 3 in which the
system operating point changes between the lagging and leading conditions, the value
of V,, varies in accordance with the variations in @;. Consequently, the true values
of the parameters of the NNM are time-varying. As shown in Fig. 5.9, the damping
performance associated with the NOWMV-PSS can be seen to deteriorate slightly when
compared with that associated with the NAWMV-PSS. This is because the NAWMV-
PSS can make on-line adjustment of its parameters, while the NOWMYV-PSS cannot.

Group 2: The transient performance of the NAWMV-PSS following three-phase
faults on a transmission line is examined in Studies 4-6. The simulation results are
plotted in Figs. 5.10-5.13. It is seen that the NAWMV-PSS provides stronger damp-
ing than the NOWMV-PSS after the faults are cleared. With fixed parameters, the
NOWMV-PSS can only generate the post-fault control action which is based on the
assumption that the power system is operating within linear operation. The NAWMV-
PSS, however, can not only take the inherent nonlinearities of the system into account
for generating an adequate post-fault control action (as the NOWMV-PSS does), but
can also adapt to the new operating conditions by changing its parameters on-line.
Therefore, strong control actions are provided by the NAWMV-PSS, and the control
goal — damping the output oscillations — is optimally achieved during the large tran-

sients.

Remark 5.4.2 Figure 5.12 illustrates the field voltage Epp(t) response for the test in
Study 5. The conclusions regarding the field voltage responses of the different power

system stabilisers support those made for the torque responses. Further to this, the
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field voltage response of the NAWMV-PSS shows that the NAWMV-PSS can provide a
control action with appropriate amplitude and phase, resulting in the stronger damping

of the rotor oscillations as revealed by the responses.

Group 3: The ability of the NAWMV-PSS to track the changes in the system
parameters and configuration is examined in Study 7. It is seen from Fig. 5.14 that
the NAWMV-PSS provides better damping than the NOWMYV-PSS in the event of one
transmission line switching out and in. This is due to the fact that the NAWMV-PSS

can adjust its parameters accordingly (see Fig. 5.15).

Group 4: In Studies 8-9, the ability of the NAWMV-PSS to overcome the mea-
surable deterministic disturbances in reference voltage is examined. Under these cir-
cumstances, the true values of the parameters of the NNM are unchanged. Since both
the NAWMV-PSS and the NOWMV-PSS include the voltage reference signal in the
formulation of the NNM explicitly (see also Remark 4.5.6), the NAWMYV-PSS and the
NOWMV-PSS give identical system damping performance in these two studies. The
result of Study 8 is shown in Fig. 5.16 to illustrate this. The result of Study 9 is

omitted for simplicity.

Group 5: The ability of the NAWMV-PSS to extend the system stability region is
examined in Studies 10-11. Since the infinite bus voltage V., is kept constant during
these studies, the true values of the parameters of the NNM are constant. The damping
effect of the NAWMV-PSS is, therefore, equivalent to that of the NOWMV-PSS. An
example is shown in Fig. 5.17 for Study 11 (while the result of Study 10 is omitted).

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that:

1. For the dynamic situations in which the power system parameters and the value of
the infinite bus voltage are unchanged, the system responses with the NAWMYV-
PSS and the NOWMYV-PSS are identical.

227



2. In the events of severe three-phase faults, the NAWMYV-PSS is more effective in
damping the system oscillations than the NOWMYV-PSS. Unlike the NOWMV-
PSS, the NAWMYV-PSS can adapt to the changes in the system operating condi-

tions during large transients.

3. When either the power system parameters change or the system lagging/leading
operating condition changes (requiring a change in the value of the infinite bus
voltage), the damping performance of the NAWMV-PSS is better than that of
the NOWMV-PSS. This is because the parameters of the NAWMV-PSS can be
adjusted on-line, while the parameters of the NOWMYV-PSS are fixed.

The advantage of the nonlinear adaptive control strategy over the nonlinear optimal

control strategy is thus evident.

5.4.3 Studies on the Robustness of the NAWMYV-PSS for
the CSM1.

In this subsection the robustness of the NAWMV-PSS is confirmed through the series
of robustness studies (Studies 12-15) defined in Subsection 3.6.3. The performance
of the NAWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The CSM3 (D = 4.0 pu) is replaced by the CSM1 (D = 0.1 pu), and the performance
of the NAWMV-PSS and the NOWMYV-PSS is further compared. The stabilising signal
is the electrical power P.(k). The aims of this study are

e to verify the design of the NAWMYV-PSS in operation in a system represented by
the more accurate model (CSM1);
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Figure 5.8: Electrical torque response for Study 1 (P, = 0.6 pu, @; = 0.3 pu; periodic
variations in reference power). CSM3 with the NAWMYV-PSS - solid line, CSM3 with

the NOWMYV-PSS - dashed line.

Electrical Torque (pu)
o
[+)}
= =

0.45 . : : . : : .
o s 10 15 20 25 30 35 a0

Time (sec)

Figure 5.9: Electrical torque response for Study 3 (P, = 0.6 pu, @, = 0.3 pu; periodic
variations in reactive power between lagging and leading operating conditions). CSM3

with the NAWMV-PSS - solid line, CSM3 with the NOWMV-PSS - dashed line.

229



Electrical Torque (pu)
°
)
I

o " " . L " N " " L
10 11 12 13 14 15 16 17 18 19 20

Time (sec)

Figure 5.10: Electrical torque response for Study 4 (P; = 0.65 pu, @; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM3 with the NAWMYV-PSS - solid line,

CSM3 with the NOWMV-PSS - dashed line.
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Figure 5.11: Electrical torque response for Study 5 (P = 0.55 pu, @; = —0.1 py;
100 ms short-circuit at the machine terminal). CSM3 with the NAWMYV-PSS - solid

line, CSM3 with the NOWMYV-PSS - dashed line.
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Figure 5.12: Field voltage response for Study 5 (P, = 0.55 pu, @; = —0.1 pu; 100 ms
short-circuit at the machine terminal). CSM3 with the NAWMV-PSS - solid line,
CSM3 with the NOWMYV-PSS - dashed line.
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Figure 5.13: Electrical torque response for Study 6 (P; = 0.65 pu, Q: = 0.3 pu; two

successive faults of 100 ms duration on the receiving end busbars). CSM3 with the

NAWMYV-PSS - solid line, CSM3 with the NOWMV-PSS - dashed line.
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Figure 5.14: Electrical torque response for Study 7 (P = 0.55 pu, Q; = 0.3 pu; one
transmission line is opened and then reclosed). CSM3 with the NAWMV-PSS - solid
line, CSM3 with the NOWMYV-PSS - dashed line.
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Figure 5.15: Estimated parameters of the NNM for Study 7 (P; = 0.55 pu, Q; = 0.3 pu;

one transmission line is opened and then reclosed).
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Figure 5.16: Electrical torque response for Study 8 (P, = 0.6 pu, Q; = 0.3 pu; periodic
disturbances in reference voltage). CSM3 with the NAWMV-PSS - solid line, CSM3
with the NOWMYV-PSS - dashed line.
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Figure 5.17: Electrical torque response for Study 11 (P, = 0.6 pu, @; = —0.1 pu; large
periodic excursions in reference power). CSM3 with the NAWMV-PSS - solid line,
CSM3 with the NOWMYV-PSS - dashed line.
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e to establish a reference for the comparison of the performance of the NAWMYV-
PSS and its simplified versions with unmodelled dynamics and modelling errors

to be conducted in Subsection 6.5.3.

Studies 12-15 specified in the two Groups in Subsection 3.6.3 are implemented. The
simulation results are shown in Figs. 5.18-5.20 in which the performance of the NOWMYV-
PSS is provided by Figs. 4.23-4.25.

Analysis of the simulation studies.

Group 1: The dynamic performance of the NAWMV-PSS associated with the CSM1
is examined in Studies 12-13. It is found that the NAWMV-PSS and the NOWMYV-
PSS give almost identical damping performance. This agrees with the result shown
in Figs. 5.8-5.9. The analysis of the simulation results of Studies 1-2 in Stage 2
provides the explanation of this phenomenon. Besides, in dynamic situations the effect
of the subtransients of the CSM1 (i.e., the unmodelled dynamics of the NNM) is
negligible. The fixed-parameter NNM and the estimated NNM therefore provide the
same damping effects to the system oscillations. The simulation result of Study 13 is

shown in Fig. 5.18, while the result of Study 12 is omitted for the sake of simplicity.

Group 2: The transient performance of the NAWMV-PSS associated with the
CSM1 is examined in Studies 14-15. The simulation results are plotted in Figs. 5.19-
5.20. In transient situations, the unmodelled dynamics of the system become obvious.
Due to its ability to adapt to system changes, the NAWMV-PSS provides better damp-
ing to the system oscillations than the NOWMV-PSS. This agrees with the results
shown in Figs. 5.10-5.13.

Conclusions.

The above studies confirm that:

1. The NAWMV-PSS is a sound design for the higher-order actual power system.
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2. The NAWMYV-PSS is more effective than the NOWMV-PSS in the overall system

performance.

From these conclusions, and the conclusions drawn in Subsections 3.6.3 and 4.5.3, it
is evident that the NAWMYV-PSS is superior to the NOWMV-PSS, the LAWMYV-PSS,
and the CPSS (Dy = 20 pu).

5.5 Concluding Remarks.

In this chapter original work on the design and implementation of a nonlinear adaptive
power system stabiliser for the SMIB power system modelled in Subsection 2.3.1 is
described. This work completes the theoretical development and assessment of a non-
linear adaptive power system stabiliser based on the nonlinear nominal model (NNM)
derived in Subsection 4.2.3. The objective of this work is to establish a basis for the
development of simplified versions of the nonlinear adaptive power system stabiliser

and a bilinear adaptive power system stabiliser to be discussed in Chapter 6.

The development of the nonlinear adaptive power system stabiliser is initiated by
the fact that the parameters of the NNM are time-varying. Several factors, such as a
change in the system configuration and a change in operating conditions, will result
in changes in the parameters of the NNM. The NOWMV-PSS which has been de-
signed in Chapter 4 is based on the fired-parameter NNM, and hence cannot adapt to
changes in the parameters or configuration of the SMIB power system. For this reason,
the nonlinear adaptive power system stabiliser which is based on the estimated NNM
is introduced in this chapter. The performance of the estimated NNM in inherently
tracking and predicting the time-varying nonlinear power system (CSM3) at differ-
ent system operating points with different system parameters is confirmed through

simulation studies in Subsection 5.4.1.

In Section 5.2 the recursive least squares algorithm with the time-varying forgetting
factor, which has been proposed for the implementation of the linear adaptive power

system stabiliser in Chapter 3, is applied to the identification of the time-varying
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Figure 5.18: Electrical power response for Study 13 (P = 0.6 pu, Q; = ~0.1 puy; step
change in reference power). CSM1 with the NAWMYV-PSS - solid line, CSM1 with the

NOWMV-PSS - dashed line.
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Figure 5.19: Electrical power response for Study 14 (P, = 0.6 pu, Q; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM1 with the NAWMYV-PSS - solid line,

CSM1 with the NOWMYV-PSS - dashed line.
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Figure 5.20: Electrical power response for Study 15 (P = 0.6 pu, @: = —0.1 py;
100 ms short-circuit at the machine terminal). CSM1 with the NAWMYV-PSS - solid

line, CSM1 with the NOWMV-PSS - dashed line.

NNM. Since the noise term in the NNM is considered as a general bounded noise in
this chapter, the dead zone technique is used in the parameter estimation algorithm to
ensure the convergence of the algorithm. Algorithm 5.1(A) is then proposed, and its

convergence is established in Theorem 5.2.1.

In Section 5.3 a new nonlinear adaptive weighted minimum variance control law is
developed from the nonlinear stochastic weighted minimum variance control law (4.128),
and the resulting bounded nonlinear adaptive control algorithm (Algorithm 5.1(B)) is
proposed. The combination of Algorithm 5.1(A) with Algorithm 5.1(B) forms the de-
sired indirect nonlinear adaptive weighted minimum variance power system stabiliser
(NAWMV-PSS). The convergence of Algorithm 5.1(B) is established in Theorem 5.3.1,
which ensures the closed-loop system stability associated with the proposed nonlinear

adaptive power system stabiliser.

In order to guarantee the global convergence of the nonlinear adaptive control
algorithm, a modification to the nonlinear adaptive control law (5.29) is proposed.

The basic idea is to use a constant e; to calculate Bo(k), while the estimate & (k) is
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still retained in §(k). An alternative form of the estimated NNM is given by (5.14)-
(5.15) to accommodate this modification. Algorithm 5.2(A) and Algorithm 5.2(B)
are then developed for application to the model (5.14)-(5.15) for the estimation of
the parameters and the calculation of the control law, respectively. The convergence
of these algorithms is established in Theorems 5.2.2 and 5.3.2. The implementation
of this modified nonlinear adaptive power system stabiliser is expected to give a less
adaptive control effect, and is not included in this thesis for the sake of brevity (see

Remark 5.3.3).

In Section 5.4 the performance of the proposed NAWMV-PSS is investigated and
its robustness in stabilising the higher-order actual power system is tested through
the simulation studies presented in Subsections 5.4.2 and 5.4.3. The performance of
the NAWMYV-PSS is compared with that of the NOWMV-PSS, and the effectiveness
of the NAWMYV-PSS in adapting to system changes and damping system oscillations
is demonstrated by the comparison. The advantage of the nonlinear adaptive control
strategy over the nonlinear optimal control strategy is clearly shown in Figs. 5.8-5.20.
Through the systematic comparisons of performance of the CPSS, the LAWMV-PSS,
the NOWMV-PSS, and the NAWMYV-PSS, which have been conducted in Sections 3.6,
4.5, and 5.4, it is evident that, out of these power system stabilisers, the NAWMYV-
PSS gives superior damping performance. The evaluation of the dynamic behaviour of
the system with the NAWMV-PSS establishes a basis for the evaluation of the system
performance with simplified versions of the NAWMYV-PSS and with a bilinear adaptive

power system stabiliser which will be designed in Chapter 6.

Before concluding this chapter, it is necessary to make the following comments on
the comparison of the linear adaptive control strategy discussed in Chapter 3 and the
nonlinear adaptive control strategy proposed in this chapter. As far as the nominal
model is concerned, the linear adaptive control strategy is based on the estimated
LNM which has been derived by linearising the nonlinearities of the power system and
assuming that the high-order time-varying nonlinear power system can be characterised
by low-order time-varying linear dynamics. The nonlinear adaptive control strategy,
however, is based on the estimated NNM which accurately represents the inherent

nonlinearities of the SMIB power system and accommodates the system changes by its
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time-varying parameters. Therefore,

1. the nonlinear adaptive control strategy has the advantage over the linear adaptive
control strategy of not requiring parameter variations to adapt to different system
operating points, when there is no change in the true values of the parameters of

the NNM;

2. the damping performance with the nonlinear adaptive control strategy is poten-
tially superior to that with the linear adaptive control strategy, when either the

true values of the parameters of the NNM change or large transients occur.

In conclusion, a combination of nonlinear with adaptive control is more suitable for the
stabilisation of the time-varying nonlinear power system than other more conventional

approaches.

The contributions in this chapter are original, and have been listed in Section 5.1.



Chapter 6

Simplified SISO Nonlinear
Adaptive Power System

Stabilisers.

6.1 Introduction.

In this chapter simplified versions of the nonlinear adaptive power system stabiliser
proposed in Chapter 5 are derived, and the design of a bilinear adaptive power system
stabiliser is discussed. The development of this stabiliser is the objective of the analyses
and studies conducted in Chapters 3 to 5 with the models of the SMIB power system
derived in Chapter 2. The studies carried out in this chapter provide a basis for the

practical implementation of a nonlinear adaptive power system stabiliser.

A nonlinear adaptive control strategy has been proposed in Chapter 5 in order to
overcome the deficiencies associated with the nonlinear optimal power system stabiliser
designed in Chapter 4. The NAWMV-PSS designed for this purpose has been shown
to be more effective in improving the system performance than the NOWMV-PSS in
situations where the true values of the parameters of the NNM are changed. As an

ideal nonlinear adaptive power system stabiliser, the NAWMV-PSS has the advantage
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of providing better damping of the system oscillations than the other three stabilisers

(i.e., the NOWMV-PSS, the LAWMV-PSS, and the CPSS).

The implementation of the NAWMV-PSS (or the NOWMYV-PSS) requires infor-
mation about the additional feedback signals z;(k) (¢ = 1,2,3,4) at each sampling
instant k. According to the definitions of these signals given by (4.22)-(4.25), z;i(k)
(: = 1,2,3,4) can be calculated from the values of the state variables 8(k), ws(k),
Erp(k), and E;(k). The provision of these state variables at each sampling instant &
is, therefore, essential. Ideally, the state variables w,(k) and Epp(k) can be measured
directly, while §(k) and E;(k) may be obtained indirectly by other means. However, in
practice, the value of the rotor angle §(k) is difficult to determine, since the infinite bus
is taken as its reference. Furthermore, the measurement of the variable E;(k) requires
the access to the field flux, which may be difficult to obtain. Hence, from a practical
point of view, simplifications of the NAWMV-PSS by the elimination of some of the

additional feedback signals from the calculation of the control law are required.

The NAWMV-PSS is based on the NNM which has been derived directly from the
mathematical description of the nonlinear power system (CSM3). The number of the
parameters of the NNM is larger than that of the LNM employed by the LAWMV-PSS.
From Figs 4.23 and 5.18, it is observed that for small disturbances the LAWMV-PSS
performs as well as the NAWMV-PSS. This fact indicates that some parameters of the
NNM represent the less significant dynamics which may be omitted by approximations.
Due to the use of the adaptive control schemes, the effect of the omission of the less
significant dynamics from the NNM will be compensated for by the rest of the time-
varying estimated parameters. Hence, the system performance may not deteriorate.
These considerations form the bases for the simplifications to be discussed in this

chapter.

Another concern in designing an adaptive control scheme is to keep the number
of the parameters to be estimated small. It is well known that the computation time
grows with the number of the parameters to be estimated {193,203] and this factor may
affect the practicality of the control strategy for real-time implementation. Moreover,

the parameters which are related to the less significant dynamics of the system may
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converge slowly due to small signal levels. From this point of view, the simplifications
of the NAWMV-PSS are also required for simplifying the practical implementation of

the control algorithm.

In this chapter the simplifications of the NAWMV-PSS are carried out in two steps:

o firstly, simplified nonlinear adaptive control algorithms are developed from the

control algorithm on which the NAWMV-PSS is based;

e secondly, a new bilinear adaptive control algorithm is developed for the design
of the power system stabiliser for the SMIB power system modelled in Subsec-
tion 2.3.1.

Original work on the analysis, design, and evaluation of these modified nonlinear adap-
tive power system stabilisers will be conducted in the following sections of this chapter.
The work involves the isolation of the less significant dynamics in the output of the sys-
tem from an analysis of the prediction of the NNM, the discussion of the simplification
of the nonlinear adaptive weighted minimum variance control law (5.29), the derivation
of the bilinear optimal and adaptive control laws, the proposal for a bilinear adaptive
power system stabiliser, and the assessment of the system damping performance with

the latter stabiliser.

The organisation of this chapter is as follows. In Section 6.2 the decomposition
of the system dynamic and steady-state responses is discussed, and the role of the
output components in constructing the system responses is analysed. In Section 6.3
simplified versions of the NAWMV-PSS are derived and the simulation results are
briefly presented. In Section 6.4 a bilinear nominal model of the SMIB power system is
developed from a simplified form of the NNM, and optimal and adaptive control laws
are derived for the bilinear nominal model. A bilinear adaptive power system stabiliser
is then proposed. In Section 6.5 the performance of the proposed bilinear adaptive

power system stabiliser is assessed through simulation studies, and is compared with

that of the NAWMV-PSS and the LAWMV-PSS.

To the author’s knowledge, the research reported in this chapter is original; the

main contributions are:
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1. The electrical torque (or power) output of the power system modelled by the
NNM is decomposed into four output components. The contribution of each

component to the overall system response is then analysed.

2. Two simplified versions of the NAWMV-PSS are developed and their performance

is assessed.

3. A new discrete-time bilinear nominal model of the power system is derived from
the simplification of the NNM. This model, which uses a minimum set of feedback
signals, tracks and predicts the dynamics of the continuous-time nonlinear power

system satisfactorily.

4. The optimal and adaptive control of the bilinear nominal model is discussed, and

a bilinear adaptive weighted minimum variance control law is derived.

5. A new bilinear weighted minimum variance power system stabiliser, which takes
the operational aspects of the system into account in the design, is proposed. The
control structure of the SMIB power system equipped with the proposed bilinear

adaptive power system stabiliser is illustrated.

6. Simulation studies on the evaluation of the bilinear adaptive power system sta-
biliser are conducted. A series of useful comparisons with the NAWMV-PSS and
the LAWMV-PSS is given.

6.2 Analysis of Contributions of the Output Com-
ponents of the Nonlinear Nominal Model to

the System Dynamic and Steady-State Responses.

In this section:

e the optimal one-step-ahead prediction of the output of the NNM proposed in
Subsection 4.2.3 is reformulated in terms of a combination of four output com-

ponents;
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e the contribution of each component to the system dynamic and steady-state

responses is analysed;

e conclusions regarding the relative importance of the components of the output

prediction of the NNM are drawn.

The NAWMV-PSS proposed in Chapter 5 is based on the complete NNM. Clearly,
for the simplification of the NAWMV-PSS, simplified forms of the NNM are required.
The simplified NNM should represent the main dynamic and steady-state behaviour
of the original model, while eliminating the use of the additional feedback signals as
much as possible. Therefore, for the derivation of such simplified forms of the NNM,
it is necessary to decompose the output prediction of the NNM into components and
to analyse the contribution of each component to the overall dynamic and steady-state

responses of the output.

From (4.83)-(4.87), the optimal one-step-ahead predictor of the NNM (4.76)-(4.78)

can be rewritten as

(k| k—1) = Hp(g)u(k)+ Ho(g™")z(k)
+Hp(q~")z3(k) + He(q™")za(k) [d(k) — yr(k) + u(k)]

where !
z1(k) = sin26(k),
z(k) = wa(k)E;(k) cos 6(k),
z3(k) = w,(k)Erp(k)cosé(k),
z4(k) = siné(k),
and
b q—-l + b q—2
H -1 é 1 2
B(q ) 1+a1q_1 +a2q_2’
-1 -2
Hc(q_l) é Clq + C2q

1+ a1q7! + azq™?’

1Note that, for the sake of simplicity, the errors between z;(k) and z;(k) (i = 1, 2,3,4) (introduced

by Assumption 4.2.4) are ignored in the theoretical analysis of this chapter.
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The prediction, y°(k | k — 1), of the output of the NNM is then described by
yO(k | k — 1) = yg(k) + yo(k) + yp(k) + yu(k) (6.1)

where yg(k), yo(k), yp(k), and yg(k) are the output components, defined as

yp(k) = Hp(g™")z(k), (6.2)
yo(k) £ Ho(q™)z(k), (6.3)
yp(k) 2 Hp(g")zs(k), (6.4)
ye(k) £ Hp(g™")z(k) [d(k) — yr(k) + u(k)], (6.5)

respectively. From (6.1), it can be seen that y°(k | k — 1) is a linear combination of
ye(k), yo(k), yp(k), and yg(k). Hence, the time response of the output prediction of
the NNM can be constructed by superposition of the corresponding time responses of
the four output components generated by (6.2)-(6.5). The significance of each com-
ponent’s contribution to the output prediction can thus be examined by isolating the

proportion of each component in the dynamic and steady-state responses.

For this purpose, simulation studies are conducted for the CSM3 (D = 4.0 pu)
with (6.1)-(6.5) as the output predictor. The control input u(k) is set to be zero.
At each sampling instant k, the four output components yg(k), yo(k), yp(k), and
yg (k) are calculated according to their definitions in (6.2)-(6.5); the output prediction,
yo(k | k — 1), of the NNM is then formed by the sum of the four components. The
configuration for this study is illustrated in Fig. 6.1.

Two simulation studies are selected as examples:

Case 1: The system is initially operating at P, = 0.6 pu and @; = 0.3 pu. It is then
subjected to a step change of 0.05 pu increase in reference power at time £ = 0.5
second, and a step change of 0.1 pu decrease in reference power at time £ = 10.5

second.
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yo(k) vl |, w0 |, w0 |,
+ + +

y(k/k-1) = Te(k/k-1)

Figure 6.1: Decomposition of the output prediction of the NNM.

Case 2: The system is initially operating at P, = 0.6 pu and @, = —0.1 pu. It is then
subjected to a step change of 0.05 pu decrease in reference power at time ¢ = 0.5
second, and a step change of 0.1 pu increase in reference power at time ¢ = 10.5

second.

In each case, the time responses of the output prediction, y°(k | k¥ — 1), and its four
components, yg(k), yo(k), yp(k), and yg(k), are obtained from the simulation and
are plotted in the same graph for the evaluation of the contributions. The simulation

results are given by Figs. 6.2-6.3.
From Figs. 6.2-6.3, it can be seen that
yp(k): contributes a negligible amount to the steady-state output, a very small pro-

portion to the overall dynamic response at the lagging power factor (Fig. 6.2),

and an increasing amount at the leading power factor (Fig. 6.3);
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yc(k): has no contribution to the steady-state output, but contributes a relatively large
proportion to the dynamic response at the lagging power factor, and a decreasing

proportion at the leading power factor;

yp(k): does not contribute to the steady-state output, and contributes a negligible
proportion to the dynamic response at both the lagging power factor and the

leading power factor;

yg(k): provides the main contribution to the steady-state output and to the slow

dynamics both at the lagging and the leading power factors.
Based on the above analysis, it is concluded that:

1. The elimination of the component yp(k) from the expression for y°(k | k¥ — 1) in

(6.1) will not affect the system dynamic and steady-state performance.

2. The response yg(k) is the most significant component in the system dynamic and

steady-state responses.

3. The response y¢(k) is more significant than the response yp(k) in the dynamics,
since it involves three state variables, w,(k), E;(k), and é(k), which may change

significantly during large disturbances.

These conclusions provide a basis for the derivation of the simplified forms of the
NNM as well as the resulting simplified versions of the NAWMYV-PSS, to be discussed

in Section 6.3.

6.3 Simplified Versions of the Nonlinear Adaptive
Weighted Minimum Variance Power System

Stabiliser.

In this section:
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Figure 6.2: Electrical torque prediction and its components for Case 1 (P, = 0.6 pu,
Q: = 0.3 pu; step changes in reference power). y°(k | k£ — 1) - solid line, yp(k) - dotted
line, yo(k) - dashed line, yp(k) - dot-dashed line, yg(k) - point line.
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Figure 6.3: Electrical torque prediction and its components for Case 2 (P, = 0.6 pu,

Q; = —0.1 pu; step changes in reference power). y°(k | k — 1) - solid line, yp(k) -
dotted line, yo(k) - dashed line, yp(k) - dot-dashed line, yg(k) - point line.
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e two simplified versions of the NAWMV-PSS, derived from two versions of the

simplified NNM, are proposed;

e examples of simulation studies are given to demonstrate the effects of the simpli-

fications.

The contributions of the components (6.2)-(6.5) of the output prediction of the
NNM to the overall system dynamic and steady-state responses have been analysed in
Section 6.2. The conclusions drawn from the analysis are utilised in this section as a

guide to the simplification of the NAWMYV-PSS proposed in Chapter 5.

In the following, the derivations of the simplified NNM and the resulting simplified
versions of the NAWMV-PSS are highlighted, in order of decreasing complexity:

Simplified Version I: Consider that the responses yp(k) and yp(k) are insignificant
components in the system dynamic and steady-state responses. Eliminate yp(k)
and yp(k) from the predictor (6.1). The first version of the simplified NNM is
described by

(1 +a1g7t + azq_z) y(k) = (Clq-l + c2q_2) zo(k) + €17  z4(k) [d(k)
—yr (k) +u(k)] + w(k). (6.6)

A simplified nonlinear adaptive weighted minimum variance control law is derived

from the above model 2

Bo(k)

WOF) = g W+ 1) = Gl — a0 (67)
where
31(k) 2 [a1(k) + 2a(k)g™] 2a(k) + Ex(B)za(R) [dR) —yr ()5 (68)

Bo(k) and G(g™?) are defined by (5.30) and (5.31), respectively. The combination
of (6.7)-(6.8) and (5.34) forms the Simplified Version I of the NAWMV-PSS
(SVI-NAWMYV-PSS).

2The symbol u°(k) is used to denote the unbounded control action in accordance with the notation

in (5.33).



Simplified Version II: Consider that the time constant, Ty, is long. From the ma-
chine differential equation (2.31) or (2.42), it may be assumed that for fast tran-
sients the state variable E,(k) stays constant. Furthermore, cos 6(k) is bounded
in the region of [~1,1]. Hence, these two variables in z;(k) can be incorporated
into the parameters ¢; and ¢, of (6.6), so that the feedback signal z9(k) can be
simplified as the speed deviation w,(k) only. The second version of the simplified

NNM then takes the form

(14 a1 +aaq ) y(k) = (g™ +&g7) wi(k) + erg™ 2a(k) [d(k)

—yr (k) +u(k)] + w(k), (6.9)

where
& 2 ¢ E,(k—1)cosé(k — 1), (6.10)
& £ ¢ E,(k — 2)cos §(k — 2). (6.11)

The resulting Simplified Version II of the NAWMV-PSS (SVII-NAWMYV-PSS)
has the same expression as (6.7)-(6.8) and (5.34), except that in (6.8) the param-
eters & (k) and é&;(k) are changed into & (k) and &(k) (which are defined as the
estimated parameters & (k) and &(k)) and the additional feedback signal za(k)
is simplified as w,(k).

Remark 6.3.1 From the above derivation, it can be seen that the SVIENAWMV-PSS
is the simplest version of the NAWMV-PSS in this section. Although the two output
components yp(k) and yp(k) have been eliminated from the complete NNM, and the
additional feedback signal zy(k) has been simplified to w,(k), the main nonlinearities
associated with the electrical torque (or power) output of the system are still retained

in the SVII-NAWMYV-PSS by the trigonometric term z4(k) and the product terms such
as za(k) [d(F) — yr (K)].

In order to investigate the performance of the above two simplified versions of the
NAWMYV-PSS, the evaluation studies (Studies 1-11) described in Subsection 3.6.2 are
conducted for each of the simplified versions with the NAWMV-PSS as a reference.
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In each simulation study, the output responses of the CSM3 equipped with the SVI-
NAWMV-PSS and the SVI-NAWMYV-PSS, respectively, are plotted in the same graph,
along with the results for the NAWMV-PSS. The performance of the CSM3 equipped
with the NAWMYV-PSS is provided by the simulation results in Subsection 5.4.2. Ex-
amples of the dynamic performance and the transient performance of each simplified
stabiliser are given by the results of Studies 1 and 5, shown in Figs. 6.4 and 6.5,

respectively.

The simulation results demonstrate that:

e For dynamic operating conditions, the performance of the simplified versions of

the NAWMYV-PSS is almost identical to that of the NAWMV-PSS.

e In the event of a severe fault, the simplified versions of the NAWMYV-PSS can
provide damping effects to the system oscillations comparable to those provided

by the NAWMV-PSS.

The above facts reveal that:

1. The analysis of the contributions of the components yg(k), yc(k), yp(k), and

yg(k) in the dynamic performance of the system, given in Section 6.2, is valid.

2. The effect of the omission of the two components yg(k) and yp(k), as well as the
change of z;(k) into w,(k), can be compensated for by the rest of the time-varying

model parameters through the adaptive control scheme.

3. Though the SVII-NAWMV-PSS has been significantly simplified from the NAWMV-
PSS, its performance is comparable with that of the NAWMV-PSS. This is be-
cause the SVILNAWMYV-PSS retains the inherent nonlinearities in the model of

the SMIB power system.

Based on these conclusions, the simplification of the NAWMYV-PSS will be continued
in Section 6.4, where the SVIENAWMV-PSS will be further developed into a bilinear

adaptive power system stabiliser.
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Figure 6.4: Electrical torque response for Study 1 (P; = 0.6 pu, @; = 0.3 pu; periodic
variations in reference power). CSM3 with NAWMV-PSS - solid line, CSM3 with
SVI-NAWMYV-PSS - dashed line, CSM3 with SVII-NAWMV-PSS - dotted line.
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Figure 6.5: Electrical torque response for Study 5 (P; = 0.55 pu, Q¢ = —0.1 pu; 100 ms
short-circuit at the machine terminal). CSM3 with NAWMYV-PSS - solid line, CSM3
with SVI-NAWMYV-PSS - dashed line, CSM3 with SVII-INAWMYV-PSS - dotted line.
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6.4 SISO Bilinear Optimal and Adaptive Power

System Stabilisers.

In this section:

e a new bilinear nominal model 3 of the power system is derived from the second

version of the simplified NNM, given by (6.9)-(6.11);

e the nonlinear stochastic generalised minimum variance control of the bilinear
nominal model is discussed, and a bilinear optimal power system stabiliser is

presented;

e a nonlinear adaptive weighted minimum variance control algorithm is developed

for the bilinear nominal model;

e a bilinear adaptive weighted minimum variance power system stabiliser which

takes the operational aspects of the power system into account is proposed;

e the control structure of the SMIB power system equipped with the proposed

bilinear adaptive power system stabiliser is illustrated.

The performance of the SVILNAWMYV-PSS has been verified to be comparable
with that of the NAWMV-PSS through the evaluation studies in Section 6.3. As
indicated in Remark 6.3.1, the main feature of this simplest version of the NAWMYV-
PSS is that it contains the trigonometric and product nonlinearities associated with
the electrical torque (or power) output of the power system by retaining the additional
feedback signal z4(k) in its control law. However, since the rotor angle 6(k) is still
used for calculating z4(k) and forming the control action of the SVILNAWMV-PSS,
a modification which replaces this state variable by a measurable output variable is
required. This requirement results in the development of bilinear control schemes in

the design of the power system stabiliser, to be undertaken in this section.

3Gee Section 3.2 for the definition of a “nominal model” used in this thesis.
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The layout of this section is as follows. In Subsection 6.4.1 a bilinear nominal
model is derived from the model (6.9)-(6.11) associated with the SVILNAWMV-PSS.
The nonlinear stochastic generalised minimum variance control of the bilinear nomi-
nal model is discussed and a bilinear optimal power system stabiliser is presented in
Subsection 6.4.2. In Subsection 6.4.3 a nonlinear adaptive weighted minimum variance
control algorithm is developed from the bilinear optimal control law, and a bilinear
adaptive weighted minimum variance power system stabiliser with its control structure

is proposed.

6.4.1 Bilinear Nominal Model of the Power System.

The aim of the development of a bilinear nominal model for the design of the power
system stabiliser is to replace the additional feedback signal z4(k) (which involves the
rotor angle 6(k)) in (6.9) by the measurable output variable y(k) (i.e., Te(k) or Fe()).
For this purpose, the NAM given in Subsection 2.4.1 is reviewed. From (2.97), it readily
follows that

T.(0) = 3ogis ) + (X = X0) L(@sin6() (6.12)
where 4
Li(t) = Voo cos 6(t) — E,(t)

X, + X, d
E(t) 2 Ej(t) — (X4~ X;) L(D).

It is assumed that

Assumption 6.4.1 3 In the equations of the synchronous generator,

Xd ~ Xq.

Subject to Assumption 6.4.1, equation (6.12) becomes

T(t) = %()2 sin §(1). (6.13)

See, e.g., [3] p.99 for the definition of the variable E().

5For round-rotor synchronous generators, the relationship Xq = X, is true.
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The relationship between z4(k) and y(k) in (6.9) can then be written as

za(k) = K (k)y(k) (6.14)
where
&(k) 2 -)‘io—“];()lf—; (6.15)

Clearly, K (k) contains the variable E(k) and the time-varying quantity Vo, (the value
of which depends on the system operating condition), and can be treated as a time-
varying parameter. The substitution of (6.14) and (6.15) into (6.9) results in the

following expression

(1 +a1g”t + azq_z) y(k) = (‘31‘1—1 + 62‘1_2) ws(k)
tegq y(k) [d(k) — yr(k) +u(k)] + w(k) (6.16)

where

Ca, Xt X
K=Y E(k-1)
Equations (6.16)-(6.17) with (6.10)-(6.11) form a model which is called the Bilinear

(6.17)

Nominal Model (BNM) of the power system (CSM3). It contains five parameters, of
which &, &, and eg are time-varying and, perhaps, unknown. The BNM will be used

to develop the bilinear control laws in the following subsections.

Remark 6.4.1 It should be pointed out that the BNM retains the inherent nonlin-
earities of the output of the power system by the product term on the right-hand side

of (6.16). The trigonometric nonlinearity of the output is taken into account in the

relationship between z4(k) and y(k) in (6.14).

6.4.2 Bilinear Stochastic Generalised Minimum Variance Con-

trol.

In this subsection, the derivation of the stochastic generalised minimum variance con-
trol law for the BNM (6.16)-(6.17) (with (6.10)-(6.11)) makes use of the theories es-

tablished in Section 4.3. For conciseness, the main results are highlighted as follows.
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Assume that the noise sequence {w(k)} in the BNM is white, satisfying Assump-
tion 4.3.1. The optimal one-step-ahead prediction, y°(k + 1 | k), of y(k + 1) of the
BNM is then given by

Pk+11k) £ yk+1)—wk+1)
= G(qV)y(k) + (& + Eag™) wy(K)
+ezy(k) [d(k) — yr(k) + u(k)]

where G(g™!) is defined by (4.87). Hence, for the BNM, the generalised minimum

variance control u*(k) which minimises the cost function (4.88)-(4.91) is derived as

[2y(k)W,(a7") + waoWa(g™)] u(k)

= egy(k) {Wo(g ")y (k +1) — Wy (¢ ")G(g)y(k) (6.18)
—Wy(q™*) (& + g7 ) ws(k) — Wy (g7 ey (k) [d(k) — yr(k)]}
in which equations (4.97), (4.107), (4.115)-(4.117) are used, noting that -ZZ—E% =0.

Clearly, with different selections of the polynomials W, (¢™"), W;(¢™"), and Wu(g™),
different forms of the bilinear optimal control law will be obtained from (6.18). To be
consistent with the linear and nonlinear optimal/adaptive power system stabilisers dis-
cussed in Chapters 3 to 5, the weighted minimum variance control scheme is considered
for the design of the bilinear optimal power system stabiliser in this subsection. This
control scheme is realised by selecting W,(¢7*) = W,(¢7!) = 1 and W, (¢7") = A% with
A > 0 in (6.18). The resulting bilinear optimal weighted minimum variance control law

is then described by

[e2y(k) + A w'(k) = egy(k) {y"(k+ 1)~ G(gy(k)
— (& +&q™) wi(k) — egy(k) [d(k) — yr(R)]} . (6.19)
This control law can be used as a bilinear optimal power system stabiliser. The deriva-

tion of this control law is for the further development of a bilinear adaptive power

system stabiliser to be discussed in Subsection 6.4.3.
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6.4.3 A Bilinear Adaptive Weighted Minimum Variance Power
System Stabiliser.

The implementation of the bilinear optimal weighted minimum variance control law (6.19)
requires the values of the parameters ¢, &, and ez to be known at each sampling in-
stant. According to (6.10)-(6.11) and (6.17), the parameters &, &, and ey are generally
time-varying and unknown. This feature of the control law (6.19) suggests the utili-
sation of an adaptive control method in which the estimated values of the unknown
time-varying parameters are provided by the implementation of an on-line parameter

estimation routine.

In this subsection, the development of a bilinear adaptive weighted minimum vari-
ance control algorithm for the BNM (6.16)-(6.17) (with (6.10)-(6.11)) utilises the the-
ories established in Sections 5.2 and 5.3. Algorithm 5.1(A) which has been developed
for the parameter estimation of the NNM in Section 5.2 can be used directly for the
parameter estimation of the BNM, except that the vectors O(k) and ¢(k) are re-defined

O(k)" £ [al(k ) aa(k) &(k) (k) eK(k)] (6.20)

and

ST 2 [ —y) —y(k=1) () wlk=1) y(8) (@8) — ur(B) +u(k) |-
(6.21)
The parameter estimate O(k) from Algorithm 5.1(A) can then be used to calculate the
bilinear adaptive weighted minimum variance control law which, according to (6.19),

is given by

(05 (k)2y(k)? + N u(k) = Os(k)y(k) {y"(k +1) + bi(k)y (k) + ba(k)y(k — 1)
—és(k)ws(k) - é4(k)ws(k —1)
—0s(k)y(k) [d(k) — yr(k)]} - (6.22)

To design a bilinear adaptive power system stabiliser by the use of the above control

law, special attention has to be given to
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e the unmodelled nonlinearities of the system (caused by, e.g., three-phase faults)

and

e the sudden losses of transmission lines (caused by, e.g., one transmission line

switching-out).

This is because in both circumstances, the electrical torque (or power) output of the
generator will suddenly become small or zero, resulting in an ineffective control input
u(k) or zero control action according to the control law (6.22) (note that in general
05(k)?y(k)? < X). The consequence of the above phenomenon is poor damping perfor-
mance or even instability of the system (see Remark 6.5.3). In order to avoid this, a
function, f,(k), is introduced into the control law (6.22). f,(k) is defined by two piece-
wise functions: the first one uses a boundary y, > 0 to prevent the value of the output
y(k) from being too small or zero; the second one uses a limit C, > 0 to prevent the
rate of decrease of the output (y(k —1)—y(k)) from being too large. f,(k) is described

as

?

£ = { (k) it y(k) > v

1 otherwise
Fu(F) if y(k—1)—y(k) < C
fy(k) :{ ! . Y 3
1 otherwise

where the boundary y, can be determined by the value of the output T.(k) (or P.(k))
during the occurrence of a fault, and the limit C, can be determined based on the max-
imum rate of decrease of the output when one transmission line is suddenly switched
out. The resulting bounded bilinear adaptive weighted minimum variance control al-

gorithm is then given by

Algorithm 6.1 [bounded bilinear adaptive weighted minimum variance con-

trol algorithm for the BNM.]

uO(k) — 95(k)fy(k)
Os(k)2f, (k)2 + A
—05(k)w, (k) — ba(k)w,(k — 1) — 5(k)y (k) [d(k) —yr(K)]}, (6.23)

{5 (k +1) + Bu(k)y() + Da(R)y(k — 1)
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Umaz if uO(k) Z Umaz

u(k) =< w0(k) if Umin < UO(K) < Umaz ; (6.24)
Umin if uO(k) S Umin
where
- { y(k) ) > e 629
il otherwise
) = { Fu(k) yk=1) -y <Gy _—
1 otherwise

yo > 0 and C, > 0 are preselected constants; A is the weighting coefficient; Umas
and u,;, are known constants; the estimated parameters are obtained from Algo-

rithm 5.1(A), with O(k) and ¢(k) defined by (6.20) and (6.21) respectively.

VVV

Remark 6.4.2 In the design of the function f,(k),

(i) the sudden increase in the electrical torque (or power) output due to the switching-
in of transmission lines is not considered; this is because such a event will, in fact,

reinforce the control action according to (6.22);

(ii) the value of 1 pu torque (or power) is used to replace y(k) in the control law,
when either y(k) < yo or (y(k —1) —y(k)) > Cy. This value has been found

suitable since it will reinforce the control effort when it is most needed.

The combination of Algorithm 5.1(A) with Algorithm 6.1 results in the desired
Bilinear Adaptive Weighted Minimum Variance Power System Stabiliser (BAWMYV-
PSS) for the SMIB power system modelled in Subsection 2.3.1. Since the control

algorithm is designed in an indirect form, the calculation of the control action from the

BAWMV-PSS is a two-step procedure:

e the recursive least squares algorithm with the time-varying forgetting factor and

dead zone (Algorithm 5.1(A)) provides the estimated parameters of the BNM;
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e the control law (6.23)-(6.26) (Algorithm 6.1) generates the control signal u(k) by
the use of the estimates of the BNM.

The BAWMYV-PSS is the simplest nonlinear adaptive power system stabiliser pro-
posed in this thesis. It contains five parameters and a minimum set of the additional
feedback signals, all of which are measurable. The control structure of the SMIB power
system equipped with the BAWMV-PSS is illustrated in Fig. 6.6, in which the desired
output trajectory y*(k) is set to be the reference power P,.;(k) (see Remarks 4.4.5 and
3.5.2). The stabilising signal y(k) is the machine electrical power, P,(k) (or torque,
Te(k)). The performance of the BAWMV-PSS will be evaluated in Section 6.5.

Vedt) + SMIB P(1) (T(1))
™1 Power System o
+
¥ "
DAC ADC ADC
A V(k) § ok)
r=—f==mmmm e — ———— -=A
| l
1 1
i e 1
: -i)—-- Estimator :
: == (BNM) :
: é(k) ' :
I i
I 1
i — f =s—— Controller < E
ou) u’(k) T P(k) (T.(k)) :
E Vi) 1y*(k> |
! BAWMV-PSS |
L J

Figure 6.6: Control structure of the SMIB power system with the BAWMV-PSS.
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6.5 Evaluation of the Performance of the Bilinear
Adaptive Weighted Minimum Variance Power

System Stabiliser.

In this section:

e the dynamic behaviour of the estimated BNM in tracking and predicting the
dynamics of the nonlinear power system (CSM3) is examined through simulation

studies;

e the performance of the BAWMYV-PSS proposed in Subsection 6.4.3 is investigated
through the evaluation studies (Studies 1-11);

e the robustness of the BAWMV-PSS is tested with unmodelled dynamics and
modelling errors (Studies 12-15).

As the simplest nonlinear adaptive power system stabiliser discussed in this the-
sis, the BAWMV-PSS proposed in Subsection 6.4.3 is tested in this section with the
NAWMYV-PSS and the LAWMV-PSS as references. The differences between these
three control strategies will be demonstrated through simulation studies. The results

shown in this section provide a basis for the future practical implementation of the

BAWMV-PSS.

For a systematic comparison, the simulation studies of this section will follow the
same procedure arranged for the evaluations of the LAWMV-PSS, the NOWMV-PSS,
and the NAWMV-PSS, conducted in Sections 3.6, 4.5, and 5.4, respectively. Three

Stages will be conducted in this section:
Stage 1: Verification and identification of the BNM — to examine the behaviour of

the estimated BNM in tracking and predicting the dynamics of the nonlinear
power system (CSM3).
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Stage 2: Evaluation of the performance of the BAWMV-PSS — to compare the dy-
namic and transient behaviour of the BAWMYV-PSS with that of the NAWMYV-
PSS and the LAWMV-PSS through Studies 1-11.

Stage 3: Studies on the robustness of the BAWMV-PSS — to test the performance of
the BAWMYV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-
15.

The implementation of the above three Stages will be discussed in Subsections 6.5.1,
6.5.2, and 6.5.3, which follow. The parameters and limits associated with the SMIB
power system and the BAWMV-PSS are listed in Appendix C. The sampling period
h is 20 ms.

6.5.1 Verification and Identification of the Bilinear Nominal

Model of the Power System.

In this subsection the validity of the estimated BNM in tracking and predicting the
dynamics of the nonlinear power system (CSM3 with D = 4.0 pu) at different operating
conditions is examined through simulation studies. The output signal is the machine

electrical torque, T.(k). This subsection is the implementation of Stage 1.

Aims and structure of the simulation studies.

Let the PRBS signal described in Subsection 3.6.1 be an external control input u(k)
that is injected into the summing junction of the input of the AVR and the estimator,
simultaneously. The model of the estimator is the BNM. At each sampling instant, the
estimated parameters ,0(k), and the predicted electrical torque output, T,(k), of the
BNM are generated by the implementation of Algorithm 5.1(A) in which the definitions
of O(k) and ¢(k) are given by (6.20) and (6.21), respectively. The error, e(k), between
the predicted output, T.(k), of the estimated BNM and the actual output, T.(k), of
the CSM3 is updated. The configuration for this study is illustrated in Fig. 6.7. The

aims of this study are
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e to confirm the output tracking ability of the estimated BNM;
e to examine the convergence of the estimated parameters of the BNM;

e to demonstrate the differences between the estimated BNM, the estimated NNM,

and the estimated LNM in representing the CSM3 at different operating points.

T(1)

Vo) + SMIB

—’@——b Power System
+

* Y

DAC ADC ADC
A V(k) § afk)
Ty(k)
VoK)
— ™|  Estimator | _ + &0
| e [T @

wk O ’ Ti(k)
(PRBS)
Figure 6.7: Structure of the verification and identification of the BNM.

For the above purposes, two cases of simulation studies are chosen as examples:

Case 1: The system is operating at P, = 0.6 pu and @ = 0.3 pu, and is subjected to
a step change of 0.05 pu increase in reference power at time ¢ = 20 second. This

case is the same as Case 1 given in Subsections 4.5.1 and 5.4.1.

Case 2: The system is operating at P; = 0.6 pu and Q; = —0.1 pu, and is subjected

to a step change of 0.05 pu decrease in reference power at time ¢ = 20 second.

The simulation results are shown in Figs. 6.8-6.10 and Table 6.1. The estimator pa-
rameters are: Ko = 102, C = 103, ppin = 0.2, and ¥ = 0.8. The initial value of the

estimate, ©(0), is pre-calculated according to (6.20). For comparisons, the estimated
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NNM and the estimated LNM, studied in Subsections 5.4.1 and 3.6.1 respectively, are

incorporated into the analysis of the simulation results given below.

Analysis of the simulation studies.

Case 1: Subject to the PRBS input signal and the step change in reference power, the
dynamic responses of the predicted output, Te(k), of the estimated BNM and the actual
output, T.(k), of the CSM3 in Case 1 are superimposed in Fig. 6.8. The error, e(k),
between T.(k) and Te(k) is plotted in Fig. 6.9 by the dotted line. For a comparison,
the error between the predicted output of the estimated NNM and the actual output
of the CSM3 in the same case (as shown in Fig. 5.4) is re-plotted in Fig. 6.9 by the
solid line. The estimated parameters of the BNM are shown in Fig. 6.10 in which the

initial value of the estimate, ©(0), is set to be

6(0)T=[—1.7863 0.7886 6.0485 —5.0404 0.1166]»

It is seen from Fig. 6.8 that the estimated BNM tracks the dynamics of the CSM3 at
the different operating points satisfactorily. The errors shown in Fig. 6.9 indicate that
the accuracy of the estimated BNM in tracking the dynamics of the CSM3 is slightly
lower than that of the estimated NNM. This is due to the simplifications involved in
the modelling of the BNM. However, the estimated BNM still possesses the inherent
output tracking ability, since its tracking error does not increase significantly following
the step change in the system operating point at time ¢{ = 20 second. Further evidence
of the inherent output tracking ability of the estimated BNM is shown in Fig. 6.10,
in which the estimated parameters of the BNM do not appreciably change even after
t = 20 second. Table 6.1 gives the converged values of the estimates of the BNM
at each operating point and the variation of the estimates between the two operating
points. With reference to the data shown in Tables 5.1-5.2, it is seen that although the
difference |9i(2000) - éi(1000)l of the estimates of the BNM is slightly larger than that
of the NNM (shown in Table 5.2), it is still smaller than that of the LNM (shown in
Table 5.1) for the same case. The estimated BNM is therefore better in tracking and

predicting the nonlinear power system than the estimated LNM.
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Case 2: The similar behaviour of the output prediction and the estimates of the
BNM is observed from the study of Case 2. For the sake of brevity, these simulation

results are omitted.

Conclusions.

Based on the above analysis, it is concluded that:

1. The BNM, with only five estimated parameters, can model the nonlinear power

system (CSM3) satisfactorily at different operating points.

2. The estimated BNM retains the inherent output tracking ability as the estimated
NNM.

3. The tracking accuracy of the estimated BNM is higher than that of the estimated
LNM.

Remark 6.5.1 In view of the above conclusions and those drawn in Subsections {.5.1
and 5.4.1, it is evident that a nonlinear model (either the fized-parameter NNM, or the
estimated NNM, or the estimated BNM) more closely represents the nonlinear power
system than a linearised model (e.g., the estimated LNM). This is because the nonlinear

models retain the inherent nonlinearities of the system.

6.5.2 Evaluation of the Performance of the BAWMYV-PSS
for the CSM3.

In this subsection the performance of the BAWMYV-PSS is evaluated for the CSM3
(D = 4.0 pu) through the series of evaluation studies (Studies 1-11) defined in Subsec-

tion 3.6.2. This subsection is the implementation of Stage 2.
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Electrical Torque (pu)
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Figure 6.8: Electrical torque response for Case 1 (P, = 0.6 pu, ¢ = 0.3 py; 0.05 pu

increase in reference power). CSM3 - solid line, estimated BNM - line marked by ‘+’.
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Figure 6.9: Error in electrical torque for Case 1 (P; = 0.6 pu, @; = 0.3 py; 0.05 pu

increase in reference power). estimated NNM - solid line, estimated BNM - dotted line.
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Estimates || True Values | 6;(1000) | 4:(2000) 16:(2000) — 6:(1000)|
0, = & * -1.7877 | -1.7898 2.10 x 1073
b, = a, * 0.7900 | 0.7919 1.98 x 1073
0y =& * 6.0489 | 6.0495 6.00 x 10~*
0,=¢ * -5.0400 | -5.0395 5.00 x 10~*
b5 = éx * 0.1140 | 0.1103 3.74 x 1073

Table 6.1: Estimated parameters of the BNM for Case 1.

Estimates
o

6 . . N N N s N i "
15 16 17 18 19 20 21 22 23 24 25

Time (sec)

Figure 6.10: Estimated parameters of the BNM for Case 1 (P: = 0.6 pu, Q: = 0.3 py;

0.05 pu increase in reference power).
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Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the BAWMYV-PSS is illustrated in
Fig. 6.6. The machine electrical torque is used as the stabilising signal. For each
simulation study, the performance of the CSM3 equipped with the BAWMV-PSS is

compared with that of the CSM3 equipped with the NAWMV-PSS and the LAWMYV-
PSS proposed in Chapters 5 and 3, respectively. The aims of this study are

e to confirm that, with the significant simplifications in the control law, the BAWMV-
PSS can provide comparable damping performance to the NAWMV-PSS for dif-

ferent operating conditions;

e to examine the effect of omitting the output components yg(k) and yp(k) in the

design of the BAWMV-PSS on the system damping performance;

e to verify that even as the simplest nonlinear adaptive power system stabiliser
proposed in this thesis, the BAWMV-PSS still provides better damping than the
LAWMYV-PSS in the simulation studies.

Studies 1-11 specified in the five Groups in Subsection 3.6.2 are implemented. The
simulation results are shown in Figs. 6.11-6.24 in which the system responses associated
with the NAWMV-PSS and the LAWMYV-PSS are provided by the simulation studies
conducted in Subsections 5.4.2 and 3.6.2, respectively. The parameters of the BAWMYV-
PSS are: upin = —0.05 pu, Umez = 0.05 pu, A = 0.4 (these are the same as those used
in the NAWMV-PSS and the LAWMV-PSS), y, = 107°, and C, = 0.1.

Remark 6.5.2 In a similar manner to the technique used in the estimators of the
LAWMV-PSS and the NAWMYV-PSS, the fized-length freezing time (explained in Re-
marks 8.6.2 and 5.4.1) is applied to the estimator of the BAWMYV-PSS to hold the

estimates constant at their pre-fault values during the fault period.
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Analysis of the simulation studies.

Group 1: The dynamic performance of the BAWMYV-PSS is examined in Studies 1-
3 by simulating the periodic changes in the system operating point. The simulation
results shown in Figs. 6.11-6.13 reveal that the system responses with the BAWMV-
PSS and the NAWMYV-PSS are similar. The difference between these two stabilisers
is the variation of the estimated parameters following a step change in the system
operating point. To illustrate this difference, the estimated parameter (k) of both
the NAWMV-PSS and the BAWMV-PSS in Studies 1-2 is plotted in Fig. 6.14. It is seen
that while the estimate of the NAWMYV-PSS has a small drift from its true value when
the system operating point changes, the estimate of the BAWMYV-PSS has a relatively
large change from its previous value. This is because the BNM is less accurate than

the NNM in tracking and predicting the system dynamics. However, the performance

of the BAWMV-PSS is still better than that of the LAWMYV-PSS in these studies.

Group 2: The transient performance of the BAWMV-PSS following three-phase
faults on a transmission line is examined in Studies 4-6. The simulation results are
plotted in Figs. 6.15-6.17. It is seen that the damping effects of the BAWMV-PSS and
the NAWMYV-PSS are almost the same for large transients, and that both can provide
stronger damping of system oscillations than the LAWMYV-PSS.

Group 3: The ability of the BAWMYV-PSS to track changes in the system parame-
ters and configuration is examined in Study 7. As shown in Fig. 6.18, the performance
of the BAWMYV-PSS is comparable with that of the NAWMV-PSS and is better than
that of the LAWMV-PSS.

Remark 6.5.3 When one transmission line is switched out, the system configuration
is suddenly changed, resulting in a sudden decrease in the electrical torque (or power)
output of the system. As indicated in Subsection 6.4.3, a large decreasing rate of the
output will cause an ineffective control action (6.22). In order to overcome this problem,
the function f,(k) (6.25)-(6.26) has been introduced into the control algorithm of the
BAWMV-PSS in Subsection 6.4.3. To demonstrate the effectiveness of the function

f,(k) in preventing the control action from being ineffective, the system responses with
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the unbounded control action u°(k) generated by (6.22) and (6.23), respectively, are
compared in Study 7. The simulation results over the time period of 10-20 seconds,
during which one transmission line is switched out, are plotted in Fig. 6.19. The
corresponding control actions are shown in Fig. 6.20. The use of the function fy(k)
improves the damping performance of the system significantly by increasing the control
action through the functional calculation of (6.25)-(6.26). The effectiveness of this
modification used in the control algorithm of the BAWMV-PSS is thus evident.

Group 4: In Studies 8-9, the ability of the BAWMV-PSS to overcome the mea-
surable deterministic disturbances in reference voltage is examined. It is seen from
Figs 6.21-6.22 that the performance of the BAWMV-PSS is slightly inferior to that of
the NAWMYV-PSS. This is because the BAWMV-PSS is based on the BNM in which
the output components yg(k) and yp(k) have been omitted. Nevertheless, the sys-
tem damping performance with the BAWMV-PSS is still better than that with the
LAWMYV-PSS.

Group 5: The ability of the BAWMV-PSS to extend the system stability region is
examined in Studies 10-11. The simulation results are shown in Figs. 6.23-6.24. The
damping performance of the BAWMV-PSS is as good as that of the NAWMV-PSS and
the LAWMV-PSS.

Conclusions.
From the analysis of the simulation results in this subsection, it is concluded that:

1. With the elimination of some additional feedback signals (such as 6(k), Erp(k),
and E(k)) and the introduction of the function f,(k), the performance of the
BAWMYV-PSS is comparable with that of the NAWMV-PSS at different operating

conditions.

2. The simplification involved in the modelling of the BNM results in a small dete-
rioration of the system damping performance associated with the BAWMYV-PSS

In some cases.



3. Even as the simplest nonlinear adaptive power system stabiliser, the BAWMYV-
PSS is still superior to the LAWMYV-PSS.

6.5.3 Studies on the Robustness of the BAWMYV-PSS for the
CSM1.

In this subsection the robustness of the BAWMV-PSS is confirmed through the series
of robustness studies (Studies 12-15) defined in Subsection 3.6.3. The performance
of the BAWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The CSM3 (D = 4.0 pu) is replaced by the CSM1 (D = 0.1 pu), and the performance
of the BAWMV-PSS, the NAWMV-PSS, and the LAWMV-PSS is further compared.
The stabilising signal is the electrical power P.(k). The aims of this study are

e to examine the performance of the BAWMV-PSS for operation with a higher-

order model representing the actual power system;

e to confirm the effectiveness of the BAWMYV-PSS with unmodelled dynamics and

modelling errors.

Studies 12-15 specified in the two Groups in Subsection 3.6.3 are implemented. The
simulation results are shown in Figs. 6.25-6.28 in which the system responses associated
with the NAWMYV-PSS and the LAWMV-PSS are provided by the simulation studies
conducted in Subsections 5.4.3 and 3.6.3, respectively.

Analysis of the simulation studies.

Group 1: The dynamic performance of the BAWMV-PSS associated with the CSM1
is examined in Studies 12-13. It is seen from Figs. 6.25-6.26 that the damping effects of
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Figure 6.11: Electrical torque response for Study 1 (P; = 0.6 pu, @; = 0.3 pu; periodic
variations in reference power). CSM3 with the BAWMV-PSS - solid line, CSM3 with
the NAWMYV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted line.
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Figure 6.12: Electrical torque response for Study 2 (P; = 0.6 pu, Q; = —0.1 pu; periodic
variations in reference power). CSM3 with the BAWMV-PSS - solid line, CSM3 with
the NAWMYV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted line.
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Figure 6.13: Electrical torque response for Study 3 (P; = 0.6 pu, Q; = 0.3 py; periodic
variations in reactive power between lagging and leading operating conditions). CSM3

with the BAWMYV-PSS - solid line, CSM3 with the NAWMYV-PSS - dashed line, CSM3
with the LAWMYV-PSS - dotted line.
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Figure 6.14: Estimated parameter (k) of the NNM and the BNM for Studies 1-2
(step changes in the system operating point). BNM for Study 1 - solid line, BNM for
Study 2 - dashed line, NNM for Study 1 - dotted line, NNM for Study 2 - dot-dashed

line.
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Figure 6.15: Electrical torque response for Study 4 (P; = 0.65 pu, Q; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM3 with the BAWMV-PSS - solid line,
CSM3 with the NAWMYV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted

line.
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Figure 6.16: Electrical torque response for Study 5 (P, = 0.55 pu, @; = —0.1 pu;
100 ms short-circuit at the machine terminal). CSM3 with the BAWMYV-PSS - solid
line, CSM3 with the NAWMV-PSS - dashed line, CSM3 with the LAWMV-PSS -

dotted line.
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Figure 6.17: Electrical torque response for Study 6 (P; = 0.65 pu, @; = 0.3 pu; two
successive faults of 100 ms duration on the receiving end busbars). CSM3 with the

BAWMV-PSS - solid line, CSM3 with the NAWMYV-PSS - dashed line, CSM3 with the
LAWMYV-PSS - dotted line.
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Figure 6.18: Electrical torque response for Study 7 (P; = 0.55 pu, Q¢ = 0.3 pu; one
transmission line is opened and then reclosed). CSM3 with the BAWMV-PSS - solid
line, CSM3 with the NAWMV-PSS - dashed line, CSM3 with the LAWMV-PSS -

dotted line.
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Figure 6.19: Electrical torque response for Study 7 in the first transient (P = 0.55 pu,
Q. = 0.3 pu; one transmission line is opened). BAWMV-PSS with the function f,(k)

- solid line, BAWMYV-PSS without the function f,(k) - dashed line.
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Figure 6.20: Control input for Study 7 in the first transient (P; = 0.55 pu, Q¢ = 0.3 py;
one transmission line is opened). BAWMV-PSS with the function f,(k) - solid line,

BAWMV-PSS without the function f,(k) - dashed line.
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Figure 6.21: Electrical torque response for Study 8 (P, = 0.6 pu, @Q; = 0.3 py; periodic
disturbances in reference voltage). CSM3 with the BAWMV-PSS - solid line, CSM3
with the NAWMYV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted line.
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Figure 6.22: Electrical torque response for Study 9 (P = 0.6 pu, Q; = —0.1 py;
periodic disturbances in reference voltage). CSM3 with the BAWMYV-PSS - solid line,
CSM3 with the NAWMV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted

line.
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Figure 6.23: Electrical torque response for Study 10 (P; = 0.6 pu, Q¢ = 0.3 pu; large
periodic excursions in reference power). CSM3 with the BAWMYV-PSS - solid line,
CSM3 with the NAWMYV-PSS - dashed line, CSM3 with the LAWMYV-PSS - dotted

line.
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Figure 6.24: Electrical torque response for Study 11 (P, = 0.6 pu, Q; = —0.1 pu; large
periodic excursions in reference power). CSM3 with the BAWMV-PSS - solid line,
CSM3 with the NAWMYV-PSS - dashed line, CSM3 with the LAWMV-PSS - dotted

line.
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the BAWMV-PSS and the NAWMV-PSS are similar. This agrees with the simulation
results of Studies 1-3 in Stage 2.

Group 2: The transient performance of the BAWMV-PSS associated with the
CSM1 is examined in Studies 14-15. The simulation results are plotted in Figs. 6.27-
6.28. The performance of the BAWMYV-PSS closely matches that of the NAWMYV-
PSS. The BAWMV-PSS is more effective than the LAWMV-PSS in damping system
oscillations in these two studies. This result agrees with the simulation results of

Studies 4-6 in Stage 2.

Conclusions.

The above studies confirm that:

1. The BAWMV-PSS is a simple but sound design for a SMIB power system.

2. The damping performance of the BAWMV-PSS is comparable with that of the
NAWMV-PSS and more effective than that of the LAWMV-PSS.

The advantages of the bilinear adaptive control strategy in eliminating certain feedback

signals and in providing good damping performance are therefore evident.

From the above conclusions and those drawn in Subsections 3.6.3, 4.5.3, and 5.4.3,

it is seen that the BAWMV-PSS is superior to the NOWMV-PSS, the LAWMV-PSS,
and the CPSS. Due to its simplicity, the BAWMV-PSS shows greater potential as a

practical nonlinear adaptive power system stabiliser than the NAWMYV-PSS.

6.6 Concluding Remarks.

In this chapter original work on simplifications of the nonlinear adaptive power system
stabiliser (NAWMV-PSS) proposed in Chapter 5 is conducted. In particular, the design

and implementation of a bilinear adaptive power system stabiliser for the SMIB power
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Figure 6.25: Electrical power response for Study 12 (P, = 0.6 pu, @; = 0.3 pu; step
change in reference power). CSM1 with the BAWMV-PSS - solid line, CSM1 with the
NAWMYV-PSS - dashed line, CSM1 with the LAWMYV-PSS - dotted line.
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Figure 6.26: Electrical power response for Study 13 (P; = 0.6 pu, @ = —0.1 pu; step
change in reference power). CSM1 with the BAWMYV-PSS - solid line, CSM1 with the
NAWMV-PSS - dashed line, CSM1 with the LAWMV-PSS - dotted line.
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Figure 6.27: Electrical power response for Study 14 (P = 0.6 pu, Q; = 0.3 pu; 100 ms
short-circuit on the receiving end busbars). CSM1 with the BAWMV-PSS - solid line,
CSM1 with the NAWMYV-PSS - dashed line, CSM1 with the LAWMV-PSS - dotted

line.
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Figure 6.28: Electrical power response for Study 15 (P = 0.6 pu, Q; = —0.1 py;
100 ms short-circuit at the machine terminal). CSM1 with the BAWMYV-PSS - solid
line, CSM1 with the NAWMYV-PSS - dashed line, CSM1 with the LAWMV-PSS -

dotted line.



system modelled in Subsection 2.3.1 is discussed. This work completes the analysis and
design of the nonlinear power system stabilisers carried out in Chapters 4 to 6. The
significance of this work is to provide a theoretical basis confirmed by simulation studies
for the future realisation of a practical nonlinear adaptive power system stabiliser for

a SMIB power system.

The issue of simplifications of the NAWMYV-PSS arises when aspects related to
the practical implementation of the NAWMV-PSS are considered. The NAWMV-PSS
is based on the complete NNM which requires the on-line measurements of the state
variables 6(k), w,(k), Erp(k), and E,(k) for its formulation. However, in practice,
access to some of the state variables, such as §(k) and E,(k), is difficult. It is then
necessary to eliminate the ‘unmeasurable’ state variables from the complete NNM and

to simplify the calculation of the control law. It is primarily for this reason that

simplifications of the NAWMV-PSS are discussed in this chapter.

Simplified versions of the NAWMYV-PSS are based on simplified forms of the NNM.
Simplified forms of the NMM can be obtained from the analysis of the output pre-
diction of the complete NNM. In Section 6.2, through mathematical decompositions,
the output prediction of the complete NNM is shown to be composed of four output
components, yp(k), yo(k), yp(k), and yg(k), two of which (yg(k) and yp(k)) are found
to be less significant in contributing to the dynamic and steady-state responses of the
system than the others. This analysis of the contributions of each output component
to the overall response is essential for the simplification of the NAWMV-PSS, since,
for control purposes, a simplified NNM must retain the main characteristics of the
output variable while eliminating the need for the additional feedback signals as much

as possible.

By the elimination of the less significant components yp(k) and yp(k) from the
complete NNM and the change of the feedback signal z;(k) to ws(k), two simplified
versions of the NAWMV-PSS (called the SVI-NAWMV-PSS and the SVII-NAWMV-
PSS) are derived in Section 6.3. The evaluation studies conducted for these two simpli-
fied NAWMV-PSS confirm that the system damping performance does not deteriorate
following the simplification. The SVIENAWMV-PSS, as the simplest version of the
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NAWMV-PSS in this thesis, retains the inherent nonlinearities of the power system,
and hence possesses the potential to perform as well as the NAWMV-PSS.

Since the SVI-LNAWMV-PSS still requires the access to the rotor angle 6(k), fur-
ther modifications to the SVII-NAWMV-PSS are needed. This results in the discussion
of the bilinear control strategies in Section 6.4. By replacing sin §(k) with T,(k) ac-
cording to (6.13), a new bilinear nominal model (BNM (6.16)-(6.17) with (6.10)-(6.11))
which contains a minimum set of the measurable feedback signals is derived. The per-
formance of the estimated BNM in inherently tracking and predicting the dynamics
of the continuous-time nonlinear power system (CSM3) at different system operating

points is verified through simulation studies in Subsection 6.5.1.

In line with the theories established in Chapters 4 and 5, the bilinear optimal and
adaptive control of the BNM are discussed in Subsections 6.4.2 and 6.4.3, respectively.
A new bilinear adaptive weighted minimum variance control law (6.22) is developed
for the design of a bilinear adaptive power system stabiliser. To use this control law
for on-line operation of a bilinear adaptive power system stabiliser, modifications have
to be made in order to cope with the circumstances under which the output variable
(i.e., the electrical torque or power) suddenly changes to a small value or zero. A three-
phase fault or the sudden loss of a transmission line is a typical example of such an
event. According to the control law (6.22), the control action is ineffective when such
an event occurs. The consequence is poor damping performance of the system. The
function f,(k) (6.25)-(6.26) is proposed in Subsection 6.4.3 to overcome this problem.
The modified bilinear adaptive control law (6.23) which incorporates the function f,(k)
into (6.22) is then derived. By proper selection of the parameters y, and Cy, which
are involved in the function f,(k), the modified bilinear adaptive control law (6.23)
can provide a control action equivalent to that of the NAWMV-PSS when an event
mentioned above occurs. The effectiveness of the function f,(k) in preventing the

control action from being ineffective is demonstrated in Figs. 6.19-6.20.

Based on (6.23), a new bilinear adaptive weighted minimum variance power system
stabiliser (BAWMYV-PSS) is proposed by Algorithm 6.1. The estimator required by
this control algorithm is provided by the implementation of Algorithm 5.1(A).
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In Section 6.5 the performance of the proposed BAWMV-PSS is investigated and
its robustness in stabilising the higher-order actual power system is tested through the
simulation studies presented in Subsections 6.5.2 and 6.5.3. The performance of the
BAWMV-PSS is compared with that of the NAWMYV-PSS and the LAWMYV-PSS. It
is shown that the BAWMV-PSS is comparable with the NAWMV-PSS in providing
good damping of system oscillations. In some cases there is a small deterioration in
system damping performance associated with the BAWMYV-PSS when compared with
the NAWMV-PSS. However, the overall performance of the BAWMYV-PSS is always
better than that of the LAWMYV-PSS. The advantage of the bilinear adaptive control
strategy over the linear adaptive control strategy is clearly shown in Figs. 6.11-6.28.
From these observations and the conclusions drawn in Chapter 5 concerning the eval-
uation of the performance of the stabilisers designed in this thesis, it is evident that
the BAWMV-PSS is superior to the NOWMV-PSS, the LAWMV-PSS, and the CPSS.
Due to the elimination of the ‘unmeasurable’ feedback signals from the formulation of
the NAWMV-PSS, the potential of the BAWMYV-PSS as a practical nonlinear adaptive
power system stabiliser is greater than the NAWMV-PSS. In conclusion, the bilinear
adaptive control approach is an appropriate design for the practical implementation of

a nonlinear adaptive power system stabiliser.

The contributions in this chapter are original, and have been listed in Section 6.1.
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Chapter 7

Conclusions and Recommendations

for Future Research.

7.1 Conclusions.

In this thesis original research has been conducted on the analysis, design, and eval-
uation of three nonlinear power system stabilisers, namely the NOWMV-PSS, the
NAWMV-PSS, and the BAWMV-PSS, for use with the SMIB models of the power
system. The aim of this study is to explore the possibility of using a nonlinear adap-
tive control scheme for the design of power system stabilisers. In addition, a linear
adaptive power system stabiliser (LAWMV-PSS) and a robust conventional power sys-
tem stabiliser (CPSS) have been designed to assist in the assessment of the nonlinear

power system stabilisers mentioned above.

The development of nonlinear power system stabilisers is motivated by the fact
that a power system is a highly nonlinear system, and the inherent nonlinearities of
the system are usually known. The use of a linear control approach for the design of
the power system stabiliser will inevitably result in shortcomings related to the control
methodology that is used. A linear adaptive control approach is no exception to this. It
is only due to the fact that a linear adaptive controller is time-varying in nature (due to

its on-line estimation of parameters), that a properly-designed linear adaptive power

285



system stabiliser can cope with the inherent nonlinearities of the power system and
improve the system damping performance relative to that of a fired-parameter linear
power system stabiliser. However, the performance of a linear adaptive power system
stabiliser may not be optimal in transients before the estimated parameters converge.
Therefore, a linear adaptive power system stabiliser may not be the best design for
the SMIB power system if the system nonlinearities are known analytically. The need
to eliminate the shortcomings associated with linear control approaches immediately
suggests the use of nonlinear control approaches which incorporate the inherent non-

linearities of the power system into the design of the power system stabiliser.

In order to carry out an investigation into the design of nonlinear power system

stabilisers, the following three preparatory stages are essential:

e firstly, the modelling of the nonlinear power system being studied;
e secondly, the selection of the control scheme to be used for the design;

e thirdly, the establishment of a valid reference with which the performance of the

resulting nonlinear power system stabiliser can be compared.

The above three aspects have been discussed (in Chapters 2 and 3) prior to the initiation

of the design of the nonlinear power system stabilisers.

Firstly, the SMIB model of the power system, called the CSM1 (see Subsection 2.3.1),
has been proposed as the model which closely matches the actual power system for
which a power system stabiliser is required. For convenience in the theoretical develop-
ment, the CSM3 with a properly-tuned rotor damping coefficient (see Subsection 2.3.2)
has been used as a substitute for the CSM1 in the analysis and design of the control
strategies. Nonlinear and linearised analytical models (NAM, LAM, and SLAM) have
been developed from the CSM3 (see Subsections 2.4.1 and 2.4.2) for the derivation of
the nominal models that are the characterisations of the nonlinear power system for the
purpose of designing the control schemes. The development of these models facilitates

the design of the power system stabilisers discussed in this thesis.
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Secondly, the linear stochastic optimal control laws have been analysed under the
general requirements essential for the design of power system stabilisers (see Sec-
tion 3.3). The weighted minimum variance control scheme has been selected for the
development of the nonlinear power system stabilisers for the sake of simplicity and
consistence. The decision to select this control scheme is justified on the basis that it
facilitates the comparisons and evaluations of different power system stabilisers under

the same control scheme.

Thirdly, a linearised nominal model (LNM) has been derived from the SLAM for the
development of the linear optimal and adaptive control laws (see Section 3.2). A linear
adaptive weighted minimum variance power system stabiliser (LAWMV-PSS) (Algo-
rithms 3.2(A)-(B)) has been proposed for the SMIB power system (see Section 3.5),
and its performance has been taken as the reference for the assessment of the corre-
sponding nonlinear power system stabilisers. The validity of this reference has been
verified by the comparison of its damping effect with that of a well-designed robust
conventional power system stabiliser (CPSS) at various system operating conditions

(see Section 3.6).

The provision of the above three preparatory stages establishes a valid basis on

which the nonlinear power system stabilisers have been designed.

A new nonlinear nominal model (NNM) has been derived from the NAM for the
development of the nonlinear optimal and adaptive control laws (see Section 4.2). The

main features of the NNM are

e it accurately represents the inherent nonlinearities associated with the electrical

torque output of the power system;

e it is given in a regression form (linear in the parameters and in the control input),
and hence provides the basis for the development of the nonlinear adaptive control

algorithms from the linear ones.

For generality, a new nonlinear stochastic generalised minimum variance control law has

been derived (see Section 4.3) and its closed-loop stability conditions have been given
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by Theorem 4.3.1. The establishment of this control law and its stability conditions
is important for the development of a variety of nonlinear optimal control schemes
for the NNM, subject to the choice of the weighting polynomials of the associated cost
function. A new nonlinear optimal weighted minimum variance power system stabiliser
(NOWMV-PSS) (Algorithm 4.1) has been proposed for the SMIB power system (see
Section 4.4). A sufficient condition for the global closed-loop system stability of the
nonlinear stochastic weighted minimum variance control law used by the NOWMV-PSS
has been guaranteed by Theorems 4.4.1-4.4.2. The theoretical proofs of the stability
theorems associated with these nonlinear optimal control laws (see Appendix E) are

necessary, since

e the property related to the closed-loop system stability of a control law cannot

be determined simply by simulation studies;

e there is no general solution for the closed-loop system stability of a particular

nonlinear control law.

The effectiveness of the proposed NOWMYV-PSS has been demonstrated by the compar-
ison of its performance with the reference, which has been taken to be the performance
of the LAWMYV-PSS, through simulation studies (see Section 4.5). It has been verified
that

e because the NOWMV-PSS is based on the fixed-parameter NNM, its control
action is optimal at any new operating points provided that the true values of

the parameters of the NNM are unchanged;

e because the fixed-parameter NNM contains the inherent nonlinearities of the
SMIB power system accurately, the transition from one operating point to an-

other is optimal when the NOWMV-PSS is in operation.
The disadvantages of the NOWMV-PSS have been shown to be

e the parameters of the NOWMV-PSS are time-invariant. This implies a potential
deficiency of the NOWMV-PSS in tracking the changes in operating conditions
(which cause the true values of the parameters of the NNM to change).
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e the generation of the control action of the NOWMV-PSS is based on the assump-
tion that the limiting nonlinearities of the system are working within the linear
region. Under this assumption the magnitude of the control action is limited

when large disturbances, such as three-phase faults, occur.

The need for a solution to the above problems leads to the development of the corre-

sponding nonlinear adaptive control approach.

A new nonlinear adaptive weighted minimum variance control law has been derived
by combining the nonlinear stochastic weighted minimum variance control law and the
recursive least squares algorithm with the time-varying forgetting factor and dead-zone
(see Sections 5.2 and 5.3). The control algorithm is given in an indirect form. Two ap-
proaches have been considered. The first approach (Algorithms 5.1(A)-(B)) uses all of
the estimated parameters of the NNM to calculate the adaptive control law. In order to
ensure the convergence of the control algorithm, an assumption that the estimate é(k)
associated with the term u(k) converges to its true value is used. This precaution does
not appear to be necessary in the simulation studies, although it is necessary for the
theoretical analysis. The second approach (Algorithms 5.2(A)-(B)) sets the estimate
&, (k) associated with the term u(k) to a constant value while using all of the estimates
of the NNM for the calculations of the other terms in the control law. This approach
removes the assumption involved in the first approach, but the control action of this
approach becomes less ‘adaptive’ than that of the first one. The mathematical proofs
of the convergence of Algorithms 5.1(A)-(B) and 5.2(A)-(B) associated with the above
two control approaches have been given in Appendix G. These theoretical analyses
are presented because there is no general guarantee of convergence for a particular

nonlinear adaptive control algorithm.

A new nonlinear adaptive weighted minimum variance power system stabiliser
(NAWMV-PSS), which is based on the first approach described above, has been pro-
posed for the SMIB power system (see Section 5.3). The dynamic and transient per-
formance of the NAWMV-PSS overcomes the deficiencies of the NOWMYV-PSS, as

demonstrated in simulation studies (see Section 5.4). The studies have confirmed that
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e the adaptive feature of the NAWMV-PSS copes with the time-varying nature of
the power system; the system damping performance with the NAWMV-PSS is
thus better than that with the NOWMV-PSS;

e the nonlinear nature of the NAWMYV-PSS takes the inherent nonlinearities of the
power system into account; the system damping performance with the NAWMYV-

PSS is thus better than that with the LAWMV-PSS;

e the nonlinear adaptive power system stabiliser is, therefore, superior to the non-
linear optimal stabiliser and the linear adaptive stabiliser in damping the rotor

oscillations of the time-varying nonlinear power system.

These advantages of the NAWMV-PSS demonstrate the potential of nonlinear adaptive

control approaches for the design of power system stabilisers.

As an ideal nonlinear adaptive power system stabiliser, the NAWMV-PSS requires
the entire set of feedback signals for the estimation of the parameters of the complete
NNM and the calculation of the control law. Problems may arise when the practical im-
plementation of the NAWMYV-PSS is considered. This is because some state variables,
which are required by the NAWMV-PSS as feedback signals, may be unmeasurable in
practice. (This problem is shared by the NOWMV-PSS as well.) The direct method
of dealing with this problem is to simplify the complete NNM, resulting in simplified
versions of the NAWMV-PSS (see Sections 6.2 and 6.3). The discussion of the sim-
plification of the NAWMYV-PSS initiates the development of the bilinear controller for

the design of nonlinear power system stabilisers.

A new bilinear nominal model (BNM) which requires a minimum set of measurable
feedback signals has been derived (see Subsection 6.4.1). Due to the simplifications that
are involved in the derivation of the BNM, the accuracy of the BNM in representing
the nonlinear power system (CSM3) is lower than that of the NNM. However, with the
implementation of an on-line parameter estimation algorithm, the inaccuracy of the
BNM can be compensated for by the time-varying parameters of its estimated model
(see Subsection 6.5.1). A new bilinear adaptive weighted minimum variance control

law (6.22) has been developed from the discussion of the optimal and adaptive control
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of the BNM (see Subsections 6.4.2 and 6.4.3). Since the BNM contains a product
term of the control input u(k) and the output y(k), the control action of the control
law (6.22) is significantly reduced following a sudden decrease of the output (caused,
e.g., by a three-phase fault) or a sudden increase of the decreasing rate of the output
(caused, e.g., by a transmission line switching-out). A measurement to prevent the
control action from being ineffective in such an event has been incorporated into the
controller by means of the function fy(k). This results in a new bilinear adaptive
weighted minimum variance power system stabiliser (BAWMV-PSS). The BAWMV-
PSS is described by Algorithms 5.1(A) and 6.1 (see Subsection 6.4.3). An investigation
of the performance of the BAWMYV-PSS has demonstrated that

e being inherently nonlinear and adaptive in its control law, the performance of the

BAWMV-PSS is superior to that of the LAWMYV-PSS;

e being simplein its structure, the BAWMV-PSS is more practical than the NAWMV-
PSS, although in some instances it is subject to small deteriorations in its damp-

ing performance when compared with the NAWMV-PSS.

In conclusion, the bilinear adaptive control approach is an appropriate, and potentially
a practical, design of the nonlinear adaptive power system stabiliser for the SMIB

power system.

The original contributions in this thesis have been summarised in Section 1.9 (or see
Sections 4.1, 5.1, and 6.1). The extensions to earlier work described in the literature

have been listed in Sections 2.1 and 3.1.

7.2 Recommendations of Future Research.

For the investigation of nonlinear adaptive control schemes in the design of power
system stabilisers, the SISO nonlinear weighted minimum variance control scheme has

been studied for the NNM and the BNM proposed in this thesis. The nonlinear power
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system stabilisers developed in this thesis, namely the NOWMYV-PSS, the NAWMV-
PSS, and the BAWMYV-PSS, are for use in the excitation control loop of the SMIB
power system. The studies reported in this thesis involve the theoretical analyses and
the simulation studies only. In view of the development of linear adaptive control
strategies in the design of power system stabilisers, the following aspects relating to
future research into the nonlinear adaptive control strategies in the design of power

system stabilisers are suggested:

1. The BAWMYV-PSS designed in this thesis through theoretical analyses and simu-
lation studies can be further developed in the laboratory as a practical nonlinear

adaptive power system stabiliser.

9. The studies of the BAWMV-PSS in the SMIB power system environment, pre-
sented in this thesis, can be extended to a multi-machine power system environ-
ment in which each (or some) of the individual generating units in the system is

equipped with a BAWMV-PSS that utilises local measurements only.

3. By the use of the NNM or the BNM developed in this thesis, the design of the pole-
shifting control scheme is recommended for study. In the literature, studies of this
control scheme in the field of linear adaptive control have shown the effectiveness
of this scheme in improving the system damping performance, despite the heavy
burden involved in the calculation of the associated control algorithm {49,50,53,
54,55,56,70]. For nonlinear adaptive control studies, the computational burden
related to this control scheme is expected to be higher than that in the linear
case. However, with the use of new fast micro-processors or parallel processor
architectures in practical implementations, the problem of the computational
burden may be solved. The effort in developing this control scheme for the design
of a nonlinear adaptive power system stabiliser would be applied to the solvability
of the control action from the control law and/or the convergence analysis of the
resulting control algorithm. Since the NNM or the BNM is nonlinear, the above

two issues may be difficult to solve.

4. Multi-input multi-output nonlinear adaptive control strategies can be developed

by the utilisation of the NNM or the BNM for the representation of the excitation
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control loop of the power system with a new development of another representa-
tion of the governor control loop. This involves a progression from SISO nonlin-
ear adaptive power system stabilisers to MIMO nonlinear adaptive power system
stabilisers (or controllers). As indicated in [71], for a modern fast-governing and
fast-exciting power system, a MIMO control strategy is more suitable than a SISO
one for the co-ordination of the control actions of the exciter and the governor.
In the field of linear adaptive control, much research has been reported for the
development of MIMO pow