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Abstract.

This thesis is concerned with the deveiopment of nonlinear adaptive power system stabiüs-

ers for single-machine infrnite-bus power systems. Single-input single-output design methods

are discussed. The studies of this thesis cover the areas of linear adaptive, nonlinear opti-

mal, nonlinear adaptive, and bilinear adaptive control in the design of such stabilisers' Both

theoretical analyses and simulation studies are presented for each area of study.

The modelling of the single-machine infinite-bus power system is discussed for the pur-

poses of the analysis and design of the linear and nonlinear optimal/adaptive power system

stabilisers, and the simulation studies for the evaluation of the stabilisers that result from

the various control strategies. The weighted minimum variance control scheme is selected for

the development of the various powet system stabilisers for the sake of simplicity and consis-

tency. A linear adaptive po\Mel system stabiliser is designed, and its performance is taken as

a referencefor the assessment of the nonlinear power system stabilisers. The validity of the

reference is verified by comparison of its damping performance with that of a well-designed,

robust, conventional power system stabiliser at various operating conditions'

A new nonlinear model which describes the relationship between the excitation control

input and electrical torque output is derived from the mathematical description of the non-

linea,r power system of concern. The model is given in a regression equation form, linear in

the parameters an¿ in the control input, \Mith additional feedback signals. The model is an

accurate characterisation of the inherent nonlinearities of the power system, and provides

a useful means for the development of a variety of nonlinear control laws for power system

stabilisers

New nonlinear optimal control laws (namety the generalised minimum variance control

law and its speciai case, the weighted minimum variance control law) are developed from

a general form of the cost function; the associated global closed-loop stability properties

are estabüshed theoretically. A number of nonlinear adaptive control algorithms, in the

sense of different tuning strategies, can be developed from proper selections of the weighting

polynomials in the cost function.

New nonlinear adaptive weighted minimum variance control algorithms are derived, and

the theoretical proofs of the convergence of these algorithms are given. This completes the

VIII



theoretical development of the nonlinear weighted minimum variance control scheme based

on the new nonlinear model.

For practical implementations, simplifications of the nonlinear adaptive control algorithm

are discussed. A new biiinear model that represents the simplest nonlinear relationship be-

tween the control input and output is derived. This model retains the inherent nonlinearities

of the powel system and requires a minimum set of measurable feedback signals' New simple

bilinear optimal and. adaptive control strategies for the design of power system stabilisers

are studied. A new bilinear adaptive weighted minimum variance control algorithm is also

developed.

Three new power system stabilisers based on the same (weighted minimum variance)

control scheme bú d.ifferenú (nonlinear optimal, nonlinea¡ adaptive, and bilinear adaptive)

control strategies are proposed. Systematic evaluations and comparisons of the performance

of these power system stabiüsers against the reference performance of the linea¡ adaptive

po\Mer system stabiliser are conducted through simulation studies. Conclusions of the advan-

tages and disadvantages of the different control strategies, involving the areas o1 linear ar.d

nonlinear as well as optimal and, adaptiue control, in the design of power system stabilisers

are drawn from the studies. The results of this work provide a basis for the development of

a practical nonlinear adaptive power system stabiliser'
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Chapter 1

Introduction.

1-.1- The Basic Concept of Power Systern Stability.

Problems associated with power system stability emerged in the 30's [1], and have

formed the basis for many areas of study since that time. As the complexity of mod-

ern power systems increases, improving the stability and dynamic performance of the

system has become increasingly desirable, and has attracted the attention of control

engineers [2].

Power systems rely on synchronous generators for the generation of electrical power.

A necessary condition for the transmission and exchange of electrical energy is that all

generators in a system rotate in synchronism. The concept of power system stability

relates to the abitity of the generators in the system to maintain synchronism and

the tendency to return to and remain at their steady-state operating points following

system disturbances.

A heuristic non-mathematical definition of power system stability can be given as

follows [3]:

Power System Stability. If the oscillatory response of a power system

during the transient period following a disturbance is damped, and the
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system settles in a finite time to a (new) steady operating condition at

constant frequency, then the system is said to be stable. If the system is

not stable according to this definition, then it is considered unstable.

Due to the nonlinear nature of the power system, and to describe its wide range of

behaviour, power system stability is further classified into three categories: stead'y-state

stability due to minute disturbances, dynamic stabili,ty due to small disturbances, and

transient stability due to large disturbances [4,5,2,6]-r

Steady-State Stability Power System. Steady-state stabiliúy refers to

the stability of a powel system subject to minute and gradual changes in

the operating conditions. The system is described by algebraic equations

with phasor representations.

The studies in this category are concerned with the system steaily-state stability limit,

which is the maximum power that can be transmitted in the steady state without the

loss of synchronism. The minute disturbances that are applied to the system cannbt

cause the loss of synchronism unless the system is operated at, or very near to, its

steady-state stability limit.

Dynamic Stability, Power System. Dynamic stability refers to the sta-

bility of a power system subject to small and "sudden" perturbations. The

system can be described by linear differential equations which are obtained

by linearising the system nonlinear differential equations about a certain

steady-state operating point.

Typical perturbations under this category may be small, randomly occurring changes

in load or small alterations in reference settings. It is assumed that the system under

study is stable at the initial operating condition. If the system is dynamically stable,, it

rlt should be pointed out that there is no universally accepted classiflcation of power sysüem

stabiliiy [2]. For example, in some different classifications, only steady-state stability (or dynamic

stability) and transient stability are categorised.
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is expected that after a temporary small disturbance the system will return to its initial

state, while for a permanent small disturbance the system will acquire a new operating

state after a transient period [3]. In both cases the synchronism of the system should

not be lost. The size of small disturbances may be measured by the criterion that the

perturbed system can be stabilised in an approximately linear region [3]'

IYansient Stability, Power System. Transient stability refers to the

stability of a power system subject to severe disturbances for which the

linearised model of the system is invalid. The system must be described by

nonlinear differential equations.

The severe disturbances which cause transient stability problems may typically be

large changes in load, three-phase faults or transmission line switching. It is usually

assumed that the system under study is stable before a large disturbance happens. If

the system is transiently stable, the system oscillations resulting from large disturbances

are damped. However, transient stability of the system depends very much on the initial

operating condition of the system and the nature (i.e., the type, magnitude, duration,

and location, etc.) of the large disturbances that are applied to the system [3], as well

as on the post-fault system configuration.

For successful operation and control of power systems, the latter two categories of

stability of the system must be carefully considered.

!.2 The Effect of the Excitation control system

on Power System StabilitY.

In the analysis of power system stability, considerable attention has been given in the

literature to the etcitation control system, which is one of the basic components in a

generating unit (see, e.g., Fig. 4.1 of Appendix A). BV the use of an Autornatic Voltage

Regulator (AVR) with machine terminal voltage feedback, the primary functions of

an excitation control system are
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o to maintain the desired constant voltage at the synchronous generator terminal

within a specified error limit;

o to continuously adjust the generator excitation level in response to changes in

reference voltage.

A high-gain AVR \ryas recommended for reducing the steady-state error of the system

output. It was, then, realised by early investigators that the steady-state stability

limit of the system could be increased when a high-gain AVR was used [7]. Analyses

based on several different stability criteria also pointed out that the increase of the

steady-state stability limit was restricted by the general characteristics of the system,

such as time lags and gain levels [7]-[18].

The study of the excitation control is further complicated by a conflict in con-

trol requirements in the time period immediately following a transient. For different

stability control problems, the requirements on the excitation control system may be

significantly different. In transient stability studies, the time period of interest during

a transient is the first few cycles of rotor oscillations, with the first swing being of

primary importance. During the first swing, the generator is suddenly subjected to a

large change in its output power, causing its rotor to accelerate (or decelerate) at a rate

large enough to threaten the loss of synchronism. To prevent the loss of synchronism,

a very fast and high-ceiling voltage control action from the excitation control system is

needed to reduce the amplitude of the first swing and to help the generator to maintain

its synchronism. From this point of view, a fast excitation system with a high-gain

AVR is beneficial to the control of the system transient stability. In dynamic stability

studies, however, a high-gain excitation control system introduces a negative damping

effect to the rotor oscillations. This can be analysed by using the small signal lin-

earised system model (D.2)-(D.7) 2 given in Section D.2 of Appendix D, with constant

reference signals [8,19]. For a system without the AVR regulation, the damping torque

2The parameters If¡ ('i,: L,2,

and (2.109)-(2.1 10), respectively.

,6) in the model are defrned in (2.10?)-(2.10s), (2.119)-(2.120),
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component of the electrical torque at frequency u.r is given by

Lr¿(u): tt,t'!r!r'{g*=aá(c..,). 
(1.1)

I I ll$r¿o u"

Since the parameters .I12, 1(3, and I{a are all positive, the damping torque given by

(1.1) is positive too. However, for a system with the AVR in service, the damping

torque component of the electrical torque is described approximately as

/.
I(zI{sI{¡ ("r. + I u

LT¿(u) x
2Vo [(r¿t * ffi) - r'¿o,a,2)" * (,;o+ fr)' ,'

Aó(ø), (1.2)

where LT¿(u) has the same sign as the parameter -If5. At low frequencies, the syn-

chronising torque component of the electrical torque is given approximately by

AT"(a,) æ I{ a6(ø)
I{21{5

t-T lfo
(1.3)

At some operating conditions the parameter I(s can be negative (see, e.g., Table 2.2

of Section 2.5). In these cases the damping torque (1.2) becomes negative, while the

synchronising torque (1.3) is augmented (since 1îr and I{6 are positive). Therefore,

whereas the AVR regulation improves the synchronising torques on the generators in

the system at low frequencies of rotor oscillations, it reduces the inherent damping of

the system at operating conditions where .I(s is negative.

The above analysis indicates that the excitation control system has the potential

to introduce negative damping into the system dynamics. This phenomenon has been

observed by many researchers (".g., [19]-[29]) and has been reported widely in the

literature.

1-.3 The Role of Power System Stabilisers.

Based on the fact that the negatiue damping effect is caused by the closed-loop exci-

tation control of generator terminal voltage, it is reasonable to expect that a positiue

damping effect may be introduced into the system by using a supplementary d'amping

signal through the same control loop. The network used to generate this signal has
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been known as a power system stabiliser netrvork. By the use of the supplementary

damping signal, not only can the negative damping effect of the AVR regulation be

cancelled, but the positive damping effect of the system can also be increased so as

to allow the system to operate even beyond the steady-state stability limit. This is

the basic idea behind the design of power system stabilisers. The role of power system

stabilisers is to improve the damping performance of the system and to extend the

steady-state stability limit of the system via modulation of the generator excitation.

By means of the power system stabiliser, a component of torque in phase with

speed is introduced onto the shaft of the generator. This component of torque is

a pure d,amping torque. If the system characteristic between the reference voltage

input and the shaft speed output is described by a transfer function GEP(s) [29], ihe

supplementary damping signal generated by the power system stabiliser is then aimed

to compensate for the phase and gain characteristics of GE P(s) by giving, ideally, that

PSS" llrss
i(s) :ffi, (1.4)

where I{pss represents the desired damping contribution from the stabiliser. A prac-

tical realisation of the transfer function P^S^9(s) (1.a) is to use analogue controllers to

achieve the desired adjustments in phase and gain over the frequency range of concern'

A washout circuit is usually added into the final form of the stabiliser to eliminate the

steady-state offset in the stabilising signal.

Design issues involved in the use of various tuning techniques and input (or stabilis-

ing) signals for power system stabilisers have been studied extensively in the literature

under classical control theory. For example, a detailed analysis of the damping and

synchronising torques of synchronous generators with speed as a stabilising signal was

given in [19]. A comparative study on the proper selection of transfer functions for a

number of stabilising signals, namely speed, frequency, and power, was described in

[30,29]. Other input signals, such as the accelerating power [31]-[33], for power system

stabilisers have also been studied. Practical aspects associated with the implemen-

tation of the designed power system stabilisers have been discussed in the literature

(e.g., [32,30]). Studies reported by researchers in this field have shown that improved
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damping performance is achievable with properly tuned po\ /er system stabilisers in the

frequency range of concern.

L.4 Shortcomings of the Conventional Power Sys-

tem Stabilisers.

Power system stabilisers designed using classical control theory can be called conven-

tional power system stabilisers. For design purposes, Iineariseil fneil-pammeúer models

of the nonlinear po\ryer system are derived from the linearisation of the system about a

given operating point. Such models are valid, in theory, only at the chosen operating

point. If the system operating point changes or the system configuration alters, the

basis for the design of linearised fixed-parameter power system stabilisers is violated.

This implies that a conventional power system stabiliser, based on a linearised fixed-

parameter model, cannot track the variations in the system operating conditions over

a wide range.

A conventional power system stabiliser is operated through the system transfer

function GEP(s). Frequency analyses shown in [29] for the design of the transfer

function PSS(s) of the power system stabiliser indicate that the characteristics of

GEP(s) vary with different operating conditions. 3 The gain oT GEP(s) increases

with the generator loading and the a.c. transmission system strength. Also, the phase

lag of GEP(s) increases as the a.c. transmission system becomes stronger a. Since

the parameters of the stabiliser are constant, the stabiliser gain fixed for the strong

system conditions can not be as high as desired by the weak system conditions, and

the damping performance under these conditions will deteriorate [29]. Therefore, a

compromise has to be made in the selection of the stabiliser gain in order to give

satisfactory p erformance for different operating conditions.

sThis statement is made for systems having a relatively low AVR gain. Higher AVR gain may

improve the characteristics of the system transfer function [34].

aTh" ter- slronger or weaker refers here to the strength of the a.c. transmission system [30].
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Furthermore) power systems are nondeterministic. Changes in the system configu-

ration, disturbances from load demands, and occurrences of unpredicted faults happen

randomly. A conventional power system stabiliser, designed in a deterministic envi-

ronment, has no means of coping with the stochastic nature of the system.

The above shortcomings associated with the conventional po\¡rer system stabilisers

indicate that in order to enhance the stability and damping performance of a time-

varying nonlinear power system over a wide range of operating conditions, a power

system stabiliser must be able to identify the current system operating condition and

to adapt to the system changes on-line. A particularly useful approach to realise this

requirement is the use of adaptive control strategies for the design of power system

stabilisers.

1-.5 Linear Adaptive Control in the Design of Power

System Stabilisers.

Adaptive control has been a topic of research for more than a quarter of a century.

An ailaptiue control system can be defined as a control system within which automatic

means are used to change the control system parameters in a way intended to improve

the performance of the closed-loop system [35]. The goal of adaptive control is to make

the system under control less sensitive to parameter variations and unmodelled dynam-

ics. As the system dynamics change, adaptive control systems attempt to sense the

changes and to make on-line adjustments to control parameters and/or control strate-

gies. Different philosophies are used in making on-line adjustments. The approaches

taken to implement each philosophy vary, as in other aspects of control system design.

Surveys of various approaches to adaptive control are given in [36]-[39].

The adaptive control approach that is considered in this thesis for the design of

power system stabilisers is the self-tuning adaptiue control approach. In this approach,

parameter estimation algorithms are used to identify the system parameters on-line,

and these parameter estimates are then incorporated into the control scheme as if the
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estimated parameters were the true parameters. The controller that implements the

self-tuning adaptive control scheme is called the self-tuning adaptiue controller. Issues

of general interest regarding the self-tuning adaptive control approach include global

stability properties [40], persistency of excitation requirements [41], and convergence

properties [42].

In this thesis, the self-tuning adaptive control schemes that are based on linear

finite-dimensional discrete-time models are called li,near ailaptiae control schemes. Cor-

respondingly, those that are based on nonlineørfinite-dimensional discrete-time models

are called nonlinear ad,aptiue control schernes. These definitions are necessary in order

to distinguish the adaptive linear and nonli,ne¿r control methodologies to be presented

in this thesis.

Much effort has been devoted in recent years to the application of. Iinear adap-

tive control theory to the stabilisation of power systems. In References [43] and [44],

summaries of the approaches and developments of adaptive power system control are

presented. The emphasis in most approaches has been placed on ailaptiae generator er-

citation control [45]-[67], which is based on Single-Input Single-Outpzú (SISO) models

of the po\ryer systems. Such SISO adaptive controllers are used as either po\¡/er sys-

tem stabilisers (i.e., the adaptive controller operates as a conventional power system

stabiliser to provide an auxiliary damping signal to the ordinary AVR control loop) or

excitation controllers (i.e., the adaptive controller combines the functions of the AVR

and the power system stabiliser). Research interest has also been shown in the adap-

tiue generator control aia both goaernor and erciter controls [68]-[74], where the adap-

tive controllers are based on Multi-Input Multi-Output (MIMO) models of the power

systems. Moreover, the power systems under study have been extended from single

machine systems 145,46,47,48,49,50,51,52,68,54,69,57,70,58,7I,72,59,62,63,73,67,741 to

multi-machine systems [53,55,56,60,61,62,64,65,66], and research has also been carried

out in both simulation studies 145,47,49,52,53,54,55,69,56,57,58,60,61,62,64,73,65,66,741

and laboratory experiments [46,48,50,51,68,70,71,72,59,63,67]. In the studies of those

Iinear adaptiue power system stabilisers (both the SISO [49,50,51,53,54,56,58,59,63,64,

65,66] and the MIMO devices 170,73,741), the dynamic and transient performance of

the power systems has been shown to be improved over the conventional power systen
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stabilisers (which may not have been properly designed in some instances). Linear

adaptive power system stabilisers (or controllers) are currently being implemented in

laboratorie, (".g., [70,59,67]). This represents the state-of-the-art in terms of the

design and implementation of adaptive power system stabilisers (or controllers).

An important feature of a linear adaptive power system stabiliser is that it iden-

tifies the power system dynamics continuously by operating the parameter estimation

algorithm on-line. On the basis of this up-to-date model of the system, it is then pos-

sible to ,find, suitable stabiliser parameters so that the control action can be tuned to

damp the oscillations that may arise from disturbances. From this point of view, a lin-

ear adaptive power system stabiliser is actually a time-uaryi'ng linear controller which

is able to cope with the system nonlinearities by adjusting the estimated parameters

on-line.

Linear adaptive power system stabilisers, when used to stabilise nonlinear power

systems, are based on linearised moilels of the power systems. The reason for adopt-

ing linearised models for the development of adaptive power system stabilisers is for

the purpose of parameter estimation and for the development of control algorithms.

Since theories associated with linear adaptive estimation/prediction/control are well

developed, the use of linear adaptive control strategies for the design of power system

stabilisers may be relatively straightforward. However, because of the use of linearised

models, the parameters of the linear adaptive power system stabilisers haue to change

in order to traclc the changes in operating conditions of the nonlinear power systems.

Before the parameters converge to new values, the linearised models may not accurately

represent the actual systems. Consequently, the control actions that are generated by

unconverged estimates may not give the optimal control effects.

The underlying problem may be handled by the formulation of some kind of. non-

Iinear control strategy that exploits the nonlinear structure of the power system. Since

a power system is a nonlinear system, improvements in the control (or stabilisation) of

the system may be obtained by incorporating the nonlinearities of the system into the

control law. This is the motiuation of the work of this thesis. The idea of introducing

nonlinear control schemes for the control of nonlinear dynamic systems has been rec-
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ommended by many researchers in different fields of studies 144,,75). In recent years,

nonlinear control theory, such as the differential geometric theory [76] and the direct

feedback linearisation theory [77], has been employed in the design of power system

controllers. The research reported in [78]-[87] represents the state-of-the-art in term

of the development of nonlinear controllers for power systems'

1-.6 Nonlinear Optimal Control in the Design of

Power System Stabilisers.

The differential and algebraic equations describing the generating unit and the external

system of a power system possess nonlinearities which often have lenowr¿ forms. As

the modelling accuracy increases, nonlinearities associated with the power system of

concern can be modelled in analytical forms [3,88,6,89]. If the nonlinearities of the

system are incorporated into a control law, then the control law will have the advantage

of. not requiring the controller parameters to change when the operating point of the

power system changes. From this point of view, a fixed-parameter nonlinear optimal

power system stabiliser will be able to stabilise the nonlinear power system over a wide

range of operating conditions in which the controller parameters are constant. The

control action of such a stabiliser is optimal at the new operating point immediately,

and the resulting system transition from one operating point to another is also optimal.

These are the anticipated advantages of a nonlinear optimal power system stabiliser

over a linear adaptive power system stabiliser.

Optimal control strategies have been considered in the literature for the stabil-

isation of power systems [90] [106]. At an early stage in the design of power sys-

tem stabilisers, many studies on the utilisation of linear optimal control strategies

were carried out in order to achieve an optimum tuning of the stabiliser parameters

[90,92,93,9 4,95,97,99,101,104,105]. Most of the results are based on the assumption that

an explicit deterministic mathematical model of the system is available. The system

model was then linearised around a chosen operating point with the system param-

eters assumed constant. By numerous off-line simulation studies, suitable weighting
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factors involved in the control law could thus be found. However, since a linear opti-

mal power system stabiliser is still based on a linearised fixed-parameter model of the

nonlinear power system, the optimal control action for one operating point may notbe

optimal lor another. Therefore, a linear optimal power system stabiliser may have the

same deficiencies as a conventional po\lrer system stabiliser in tracking a wide range of

variations of the system operating point.

A nonlinear optimal power system stabiliser, however, can overcome the above

problem by utilisin g a nonlinear mod,el that inherently rcpresents the nonlinearities of

the power system. Subject to the provision of a valid nonlinear model, the control

action of. a nonlineøroptimal power system stabiliser will be globally optimal, unlike a

Iinear optimal power system stabiliser. This is an important consideration behind the

study of nonlinear optimal power system stabilisers.

A number of problems associated with a nonlinear optimal porffer system stabiliser

can be anticipated:

o Power systems are not only nonlinear but also time-varying. The system param-

eters and configuration are changing randomly. Therefore, the parameters of the

nonlinear model that is used for the calculation of the nonlinear optimal control

law are time-uarying in nature. With fired parameters, the nonlinear optimal

power system stabiliser is not able to track the changes in the system parameters

and/or the system configuration.

o Since a power system is a complex nonlinear system, the derivation of a feasible

nonlinear optimal control law from the mathematical description of the power

system inevitably involves certain assumptions. If the conditions in the assump-

tions are violated, the control action generated by the nonlinear optimal power

system stabiliser is not optimal.

These problems are due to the inability of the nonlinear optimal controller to adapt

to changes in the system. It is then reasonable to suggest that the nonlinear optimal

control strategies should be replaced by the corresponding nonlinear adaptiue control

strategies.
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!.7 Nonlinear Adaptive Control in the Design of

Power Systern Stabilisers.

The development of nonlinear adaptive control algorithms requires

o formulation of a nonlinear model of the system;

o implementation of on-line parameter estimation algorithms;

o synthesis of nonlinear control methodologies

A survey of approaches to adaptive control of nonlinear dynamic systems in a wide

range of fields is given in [75]. It has been pointed out that [75]:

researchers haue to focus their interest in the ili,rection of special nonlinear

method,s and, problerns which are not formal ertensions of linear ones.

This feature of nonlinear adaptive control explains the reason why there is less research

activity in this area than in the area of linear adaptive control. The development of

nonlinear adaptive control algorithms for nonlinear dynamic systems is, then, one of

the recent trend,s in both adaptive control theory and adaptive control applications

[aa]. In the field of power system control, an investigation on the design of an adaptive

excitation controller with a nonlinear control approach for a single-machine infinite-bus

po\l¡er system is reported in [86].

If a nonlinear model developed for the design of a nonlinear adaptive control al-

gorithm is derived in a regression form, linear in the parameters, then the parameter

estimation algorithms that are developed for linear models can be utilised for the iden-

tification of the parameters of the nonlinear model. Moreover, if the nonlinear model

is linear in the control input, then a nonlinear optimal control law that is based on the

nonlinear model is most likely to be solved explicitly. With the availability of a suitable

nonlinear model and a solvable nonlinear optimal control law, the development of a
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nonlinear adaptive control algorithm from a nonlinear optimal control law is straight-

forward. This forms the general guideline for the design of a nonlinear adaptive power

system stabiliser.

A nonlinear adaptive power system stabiliser is expected to exhibit the following

important features that distinguish it from the corresponding nonlinear optimal and

linear adaptive po\¡/er system stabilisers:

¡ If there is no change in the power system parameters or configuration, the nonlin-

ear adaptive power system stabiliser will behave in the same way as the nonlinear

optimal power system stabiliser. Thus it will inherently track the variations in

the system operating point without changing its parameters.

o Upon the occurrence of a change in the power system parameters or configuration,

the nonlinear adaptive power system stabiliser will behave in the same way as

the linear adaptive power system stabiliser by adjusting its parameters on-line.

o When any assumption that is used in the derivation of the nonlinear optimal

control law is violated, the nonlinear adaptive power system stabiliser will adapt

to the new environment by identifying new parameters and generating an appro-

priate control action.

It is anticipated that the combination of nonlinearmodels with adapt¿'ue control schemes

will provide better stabilisation of the time-uaryi,ng and nonlinear power systems than

more conventional approaches.

1-.8 Subject Coverage and Outline of the Thesis.

This thesis is concerned with the development of nonlinear adaptive power system

stabilisers for single-machine infinite-bus models of power systems. The studies of this

thesis will cover the areas ol linear adaptiue, nonlinear optimal, nonlinear adapti,ue, and

bili,near adaptiae control in the design of such stabilisers. Both theoretical analyses and
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simulation studies will be presented for each area of study. SISO design methods will

be considered. The aims of this study are

o to erplore the possibility of using nonlinear adaptive control strategies in the

stabilisation of power systems;

o to establisl¿ the nonlinear optimal/adaptive control theory relevant to the design;

o to inuestigate the effectiveness of nonlinear adaptive power system stabilisers

in improving the system damping performance over a wide range of operating

conditions.

For these purposes, a consistenú control scheme will be used for the development of

the power system stabilisers in the above-mentioned areas. With this arrangement,

the comparisons of the performance of the different stabilisers will then provide a

meaningful basis for assessing their relative benefrts and deficiencies. The conclusions

drawn from these studies will therefore provide a general guideline for future research

and the development of practical nonlinear adaptive power system stabilisers.

This thesis consists of seven chapters. The outline of the thesis is as follows

Chapter 2 is concerned with the modelling of the single-machine infinite-bus pou¡er

system for the analysis and design of the linear and nonlinear optimal/adaptive po\ryer

system stabilisers, and simulation studies for the evaiuation of the stabilisers that result

from the various control strategies.

o In Sections 2.2 and 2.3 three cornplete models of the nonlinear single-machine

infinite-bus po$¡er system, including the generator, the excitation system, the

governor, the steam turbine, and the transmission system, are developed from

the basic model described in Appendix A. Decisions with regard to the selection

of the models, used for the analysis and design of power system stabilisers and

for the evaluation of the stabilisers which are to be designed, are made with ihe

aid of the model-matching studies presented in Subsection 2.3.2. Nonlinear and
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linearised analytical models 5 of the power system are derived in Section 2.4 for

the development of the power system stabilisers to be undertaken in Chapters 3

to 6. The models developed in this chapter are suûunarised in Subsection 2.4.3.

¡ In Section 2.5 the selection of a suitable stabilising signal for the power system

stabilisers that will be designed in this thesis is discussed using participation

factor analyses [107].

o In Section 2.6 the concepts of controllability and observability associated with

the models developed in this chapter are briefly introduced, and the aspects of

the system realisation and input-output properties are discussed. This facilitates

the development of the linear adaptive power system stabiliser to be designed in

Chapter 3.

In Chapter 3 the desigr' of SISO linear adaptiae pouer system stabilisers is discussed:

o In SectionS-2 alinearised nominal model 6 is derived from the simplified linearised

analytical model given in Subsection 2.4.2 for the development of linear optimal

and adaptive control laws.

o In Section 3.3 linear stochastic optimal control laws are developed from a general

form of the cost function. Aspects of the use of different linear stochastic opti-

mal control schemes for the design of linear adaptive power system stabilisers are

discussed. The weighted minimum variance control scheme is selected as the con-

trol scheme for the development of the corresponding nonlinear optimal/adaptive

power system stabilisers in Chapters 4 to 6.

o In Sections 3.4 and 3.5 the linear stochastic adaptive weighted minimum vari-

ance control algorithm is developed from the generalised minimum variance con-

trol algorithm, and a linear adaptive weighted minimum variance power system

stabiliser is proposed.

sSee Section 2.4 lor the definition of an (analytical model" used in this thesis

6See Section 3.2 for the definition of a *nominal model" used in this thesis.
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o In Section 3.6 a series of simulation studies is defined to form a systematic method

for comparing the performance of the various stabilisers that will be designed

in this thesis. The performance of the proposed linear adaptive power system

stabiliser is then assessed by comparison with a robust conventional power system

stabiliser (designed in Subsection 3.6.2), and is taken as the reference for the

evaluation of the performance of the nonlinear optimal/adaptive power system

stabilisers in Chapters 4 to 6.

Chapters 2 to 3 provide the basis upon which the studies of the nonlinear opti-

mal/adaptive power system stabilisers are presented in later chapters.

In Chapter 4 the design of SISO nonlinear optimal pouer system stabilisers is dis-

cussed:

o In Section 4.2 a nonlinear nominal model is derived from the nonlinear analytical

model given in Subsection 2.4.I. This model describes the nonlinear relationship

between the control input and the electrical torque (or power) output of the

generator, and is used for the development of the nonlinear optimal and adaptive

control laws.

o In Section 4.3 a SISO nonlinear stochastic generalised minimum variance control

Iaw is developed and its closed-loop stability conditions are established (Sec-

tion 8.1 of Appendix E).

o In Section 4.4 a nonlinear weighted minimum variance control law and the suf-

ficient condition for its global closed-loop system stability (Section 8.2 of Ap-

pendix E) are described. A nonlinear optimal power system stabiliser which is

based on the nonlinear weighted minimum variance control scheme is then pro-

posed.

o In Section 4.5 the performance of the proposed nonlinear optimal power system

stabiliser is evaluated by comparison with the performance of the linear adaptive

po\lrer system stabiliser proposed in Chapter 3. The effectiveness of the nonlinear

control strategy in the design of power system stabilisers is investigated.
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Chapter 4 establishes a valid basis for the further development of the nonlinear adaptive

power system stabilisers in Chapters 5 and 6.

In Chapter 5 the design of. SISO nonlinear ad,aptiue pouer system stabilisers is

discussed:

o In Section 5.2 parameter estimation algorithms for the nonlinear nominal model

are proposed and convergence analyses are given (Sections G.l and G.2 of Ap-

pendix G).

o In Section 5.3 nonlinear adaptive weighted minimum variance control algorithms

are derived and theoretical proofs of the convergence are presented (Section G.3

of Appendix G). A nonlinear adaptive weighted minimum variance po\ryer system

stabiliser is proposed.

o In Section 5.4 the evaluation of the performance of the proposed nonlinear adap-

tive power system stabiliser is conducted through simulation studies. The perfor-

mance of the nonlinear ailaptiue (Chapter 5) control strategy is compared with

that of the nonlinear optirnal (Chapter 4) control strategy. The improvement in

the system damping performance associated with the nonlinear adaptive (Chap-

ter 5) control strategy over that with the linear adaptive (Chapter 3) control

strategy is demonstrated.

Chapter 5 provides an ideal design of a nonlinear adaptive power system stabiliser.

In Chapter 6 the simplification of the ideal nonlinear adaptive power system sta-

biliser proposed in Chapter 5 is discussed, and the design of a SISO bilinear adaptiue

power systern stabiliser is presented:

o In Section 6.2 the predicted output of the nonlinear nominal model is decom-

posed, and the dominant components in the system dynamic and steady-state

responses are extracted. Simplified versìons of the nonlinear adaptive power sys-

tem stabiliser proposed in Chapter 5 are then developed in Section 6.3.
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o In Subsection 6.4.1 a bilinear nominal model which gives the simplest nonlin-

ear relationship between the control input and the electrical torque (or power)

output is derived. Bilinear optimal and adaptive control strategies are discussed

in Subsections 6.4.2 and 6.4.3. A bilinear adaptive weighted minimum variance

power system stabiliser is then proposed.

o In Section 6.5 the assessment of the performance of the bilinear adaptive power

system stabiliser is conducted through comparisons with the linear and nonlinear

adaptive power system stabilisers proposed in Chapters 3 and 5, respectively.

The validity of the bilinear adaptive power system stabiliser for the development

of a real-time nonlinear adaptive power system stabiliser is verified.

Chapter 6 provides a basis for the future development of a practical nonlinear adaptive

power system stabiliser.

In Chapter 7 general conclusions regarding the development of the new nonlinear

optimal/adaptive control strategies for the design of power system stabilisers are drawn.

The features of each power system stabiliser developed in this thesis are highlighted.

From these conclusions and the experience obtained through this research, a number

of recommendations are made for future research.

1-.9 Original Contributions.

To the author's knowledge, the development of the nonlinear optimal control (Chap-

ter 4), the nonlinear adaptiue control (Chapter 5), and lhe bilinear adaptiae control

(Chapter 6) strategies in the design of power system stabilisers, presented in this thesis,

are original. The original contributions are listed in Sections 4.1, 5.1, and 6.1, and

are highlighted as follows:

1. Two new models, namely the nonlinear nominal model and the bilinear nominal

model, novel in the sense that they inherently represent the nonlinear relationship

between the control input and the electrical torque (or power) output, are derived
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in Chapters 4 and 6 from the mathematical descriptions of the nonlinear power

system outlined in Chapter 2. These models are linear in the parameters and in

the control input. The establishment of these models provides a useful means

for the development of a variety of nonlinear control laws for the design of power

system stabilisers.

2. Two new nonlinear optimal control laws (namely the generalised minimum varl-

ance control law and its special case, the weighted minimum variance control

law) are developed from a general form of the cost function in Chapter 4. The

associated global closed-Ioop stability properties are established theoretically. A

number of nonlinear adaptive control algorithms, in the sense of different tuning

strategies, can be developed from proper selections of the weighting polynomials

in the cost function.

3. Two new nonlinear adaptive weighted minimum variance control algorithms are

derived in Chapter 5 and the theorelical proofs of the conaergence of these al-

gorithms are given. This completes the theoretical development of the nonlin-

ear weighted minimum variance control scheme based on the nonlinear nominal

model.

4. Simplifications necessary for the practical implementation of the nonlinear adap-

tive control algorithms are discussed in Chapter 6. Neu; simple bilinear opti-

mal and adaptive control strategies in the design of power system stabilisers are

studied. A. new bilinear adaptive weighted minimum variance control strategy,

incorporating a novel protection function that prevents ineffective control actions

when large transients of the power system occur, is developed.

5. Three neu, power system stabilisers based on the s&n'¿e (weighted minimum vari-

ance) control scheme brú differenú (nonlinear optimal, nonlinear adaptive, and

bilinear adaptive) control strategies are proposed and evaluated in Chapters 4,

5, and 6.

Systematic evaluations and comparisons of the performance of the power system

stabilisers designed in Chapters 4 to 6, against an identical reference (established by
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a valid linear adaptive power system stabiliser proposed in Chapter' 3), are conducted

through simulation studies. Conclusions are drawn regarding the benefits and deficien-

cies of the different control strategies, including linear and nonlinear as well as optimal

and adaptiue control, in the design of power system stabilisers. Of the power system

stabilisers studied in this thesis, the bilinear adapti,ue pouer system stabiliser is the

most significant one because it maintains excellent dynamic and transient performance

while using a minimum number of feedback signals which are measurable in a practical

situation.

Apart from the above original contributions, this thesis makes several ertensi,ons

to previous work (shown in the literature) on aspects of power system moilelling and

the design of linear adaptiue pouer system, stabilisers. These extensions are listed in

Sections 2.1 and 3.1, respectively.
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Chapter 2

Power System Modelling.

2.L Introduction.

In this chapter the modelling of the synchronous generator and power system for sim-

ulation studies involving the linear and nonlinear adaptive control of generating units

is discussed.

In an electric power network, each individual generating unit is a nonlinear multi-

variable system. The characteristics of a power system vary with the system loading

conditions imposed on the nonlinear generating unit. On the one hand, to analyse the

dynamic performance of such a system, it is necessary to know, in detail, the system

configuration and to provide an adequate mathematical description of the system under

study. On the other hand, due to the difficulties associated with the field testing and

the real-time implementation in laboratories, a practical and effective method for eval-

uating the system dynamic performance is through simulation studies of the system.

This emphasis on simulation also requires an adequate representation of the system.

The provision of suitable models of power systems is, therefore, an important feature

in the investigation of system performance and the development of controllers.

Numerous mathematical models of generating units and power systems have been

discussed in the literature [108]-[120]. The representations of components in a power
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system have become increasingly detailed and accurate in order to meet the needs

of modern technologies in system operation and control [88]. Because power systems

differ considerably in practice, it is impossible to devise a universal model that will

satisfy all systems. It is, therefore, necessary to specify the components in the power

system under study and to make clear the purposes for which the model of the power

system is used.

In this chapter mathematical models of a pov¡er system consisting of a synchronou,s

generator driven by a steam turbine for use in dynamic performance analyses and

simulation studies are discussed. Attention will be paid to a single machine power

system connected to a very large power network through two parallel transmission

lines, as shown in Fig. 2.1. Such a system is usually called a Single Machine Infini'te

Bus (SMIB) power system. Although a SMIB power system representation may not

be appropriate to a practical power system, this type of model

o is simple for the purpose of assessing control strategies;

o is sufficient to establish basic control effects as well as feasibilities;

o provides useful insight and understanding of the system dynamic behaviour

In the literature the SMIB power system representations have been widely utilised

for steady-state analysis (e.g., [7,8,121]), the design of power system stabilisers (e.g.,

[19,29,54]), and so on. The concepts developed by using the SMIB models have been

extended to multi-machine po\l/er system analyses (e.g., [53,55,I22,34]).

A functional block diagram of a synchronous generator and steam turbine gener-

ating unit is illustrated in Fig. 2.2. Four basic components, which are important to

pou/er system dynamic studies, are considered for the system modelling. They are

the steam turbine, which converts thermal energy to mechanical power; the governor,

which controls the flow of steam to the turbine; the generator, in which the mechanical

to electrical energy conversion takes place; and the exciter and voltage regulator, which

control the terminal voltage output. In Appendix A detailed mathematical models of

the components shorvn in Fig. 2.2 are described.
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The organisation of this chapter is as follows. Three simplified synchronous gen-

erator models, developed from the basic model of the synchronous generator given in

Section 4.1 of Appendix A, are introduced in Section 2.2. The resulting nonlinear

models of the SMIB power system for simulation studies are presented in Section 2.3.

In Section 2.4 analytical mod,els 1 of the nonlinear power system for the development

of linear and nonlinear optimal/adaptive power system stabilisers are described. In

Section 2.5 the selection of suitable stabilising signals for the design of power system

stabilisers is discussed. Finally, for the purpose of establishing theoretical foundations

for the modelling analysis of the linear adaptive power system stabiliser, concepts of

controllability and observability lelated to the models developed in this chapter are

briefly discussed in Section 2.6.

The previous work described in the literature is extended in this chapter in the

following aspects:

1. A systematical derivation of simplified models of the synchronous generator from

the basic machine equations is given in Section 2.2. This procedure differs from

those described in the literature, and provides insight into the mathematical

description of the generator/tie-line system.

2. The three nonlinear SMIB po\ryer system representations are presented and com-

pared in Section 2.3. The effect of increasing the value of the rotor damping

coefficient in the machine equation of motion in order to compensate for the

omission of damper windings is demonstrated. This work establishes a sound

foundation for using a low-order nonlinear model to design a system controller

which in practice controls a higher-order system.

3. Nonlinear and linearised analytical models of the power system are proposed in

Section 2.4. These models provide mathematical bases for the implementation of

the linear and nonlinear optimal/adaptive power system stabilisers in Sections 3.2

and 4.2.

lThe definition of an 'analytical model" will be given in Section 2.4.
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4. The preferred choice of the electlical torque as the stabiiising signal fol the design

of power system stabilisers is discussed in Section 2.5 through the analysis of

participation factors of the system. This knowledge will be used to construct

the linear and nonlinear optimal/adaptive power system stabilisers which are

discussed in Chapters 3 to 6.

Two types of SMIB power system models will be developed in this chapter, namely,

SGM (Simplifi,ed Generator Model): this model represents only the synchronous gen-

erator and the tie-line; representations of the excitation system, the governor,

and the steam turbine are excluded (see Section 2.2).

CSM (Complete System Mode[)z this model gives a'complete' system description which

contains not only the synchronous generator and the tie-line, but also the com-

ponents omitted from the SGM type (see Section 2.3).

2.2 Simplified Nonlinear Models of the Synchronous

Generator.

In this section:

o three simplified nonlinear models of the synchronous generator are systematically

derived from the basic machine equations given in Section A.1 of Appendix A;

o the selection of appropriate models for the simulation studies and for the devel-

opment of adaptive power system stabilisers is discussed.

In a power system, the system dynamic behaviour is determined mainly by the

characteristics of the synchronous generator, its loading condition (Pr, Qr, %), and

the external network parameters. A basic representation of a synchronous generator

connected to an infinite bus through a double-circuit transmission line is given by
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(A.l)-(4.12) of Appendix A. This rnodel includes seven first-ordel nonlinear differential

equations and a set of simultaneous nonlinear algebraic equations. In addition to these,

other equations describing the excitation system, the governor, and the steam turbine

must be included in the system mathematical model. Thus a complete mathematical

description of a power system may be complex, and, simplifications are often made in

modelling the system.

A variety of models of the synchronous generator have been discussed in the liter-

ature [117,118]. In extensive analyses and comparisons based on system performance,

the effect of the various degrees of approximation commonly used in the simplifica-

tion procedure has been examined in detail [117,123]. Such studies provide guidelines

upon which the three simplified nonlinear models of the synchronous generator will be

selected. In contrast to the previous work in the literature, the simplified generator

models described in this section are a result of adopting a different sequence of approxi-

mations, forming a systematic way of developing the simplified models of the generator

and the transmission system. The three simplified generator models are listed in or-

der of decreasing complexity. This is achieved by making a number of simplifying

assumptions which are introduced sequentially, as described below.

Step 1:

Eliminate the damper winding variables lo(t),Iq(t),Äp(ú), and Àa(f ) and the field cur-

rent 1¡(f) from the basic synchronous machine equations (4.1)-(4.2) of Appendix A.

The flux linkage equations and the voltage equations of this machine model are rear-

ranged as

^¿(¿)

^o(¿)

^r(¿)

G¿(p)

0

Ge(p)

0

Gn@)

0

Ia(t)

Io(t)

H¿(p)

0

Hr(p)

+
L*¿
rF

vr(t) (2.1)

l';':,',] 
:-[; :]l

I¿(t)

In(t)

ø(t).{n(t)

-(,(ú)^d(¿)

and
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The operational functions in (2.1) are of the form

G¿(p) : | * p(r¿a + rd¡) I p2r¿ar¿6

Llp(r¡!r¿2 * P2r¿1r¿s

Gn@)

Ge(p)

L¿,

L*iI,L * pr¿z

L*p(rn+rd2)*p2r¿1r¿3

and

H¿(p):ffi,
Hr(p)

I I pr¿z Lp
1* p(rn + rd2) I p2r¿1r6 L*¿

where p is the differential operator denoted u" *.2 Similar expressions for G¿(p) ,Go(p),

and fI¿(p) can be found in the literature, e.g., in lll7,I25l, while the expressions for

Ge(p) and f/p(p) are derived in Appendix B. The time constants in the above equations

are defined as

Lp
(2.3)Tdt

Tdz

Tdg

Td4

Tds

Tdz

A

A:

A

A

g

A:

@orF
Lp

uoTD

1

1

1

aorD

(2.4)

@of D

t
md

(2.5)

(2.6)

,tT

Tdø _ L'*oØo* Le) - zLTo

L¿Lp - L

ê 1 
Ør-L*¿),

QoTD

2Precise definitions of the symbols p and 1 ur" girr".t as [12a]p

py.4!W, pzy(t)!W,

and

n-Lve¡i:!o@I l: ye)dt * ao

where p6 represents the initial value of the integral.
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Tql

Tq2

Lq
aorQ

1

uorQ

L'^n

Lq
Lq-

A:

:̂

where the inductances and resistances are given in their per unit values.

Step 2:

Consider that, in per unit, rn Þ r¡ while Lp and Lp are of similar magnitude [3]. It

is assumed that

Assumption 2.2.1

1¿*r¿zÈ,r¿1{¡r¿s,

r¿¿*T¿sNTds*r¿a.

The operational functions in (2.1) are then simplified to read

G¿(p)
(t+er;)G+pr;)

La,

(2.7)

(2.8)

(2.e)

(2.10)

(2.11)

(2.t2)

Go(p)

Ge(p)

H¿(p)

tL
t¿o 

- 'dl¡
trL

Td : Td'6,

(1 +eáXL+pr;o)
I*prq' ,

t, "qtr + prqo

L*prp
L^d,

(1 + Pr¿oxr+ PTao

l*pro
(t*nraò(r+pr;ò'

)

He(p) x ,.--^*, (2'13)

where the d, q-axis subtransient and transient time constants as well as the d-axis

damper leakage time constant are defined as [117,3]

ttL
Tdo: Td3t

A
TD: TdTt

uÃ
Tq : Tq2.

,^
Td.: Td4,

,'A
Tng: Tølt
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Step 3:

Introduce the per unit d, q-axis subtransient and transient inductances [3]

d, Îd
Tdo

L¿,, Ld ^Td
Tdo

d L'0, L'nL ?tn,tqo
L

and the relationship between per unit stator EMF's and rotor quantities [3]

Lrnd.

rF
Eppþ) ! ve(t), n,Q) + Lfittrqt¡.

Equation (2.1) is rewritten as

0

Go@)

0

I¿(t)

Io(t)

H¿(p)

0

Ee@)

+ Ern(t) (2.t4)

(2.15)

where Ga(p),,G0@), and H¿(p) are described by (2.9), (2.10), and (2.12) respectively;

Ge(p) andF¡'(p) arerelated to Ge(p) (2.11) and fl¡(p) (2.13) through

Gr(p) : tfi*r{o),

ør(p): t#rrror.

The operational functions in (2.I4),, when expanded into partial fractions, become

G¿(p)

Go@)

Gr(p)

Ha(p)

A5

r+pÃ
A3

I I pr¿o

-f L"¿,

Iu
Tdo - Td

t ll 1

Tdo - Tdo

(2.16)

(2.t7)

Ee@) : . t 
,

r I pr,¿o,

where the constants A¿(i : I12,...,6) are

(2.18)

(2.1 e)AL

A2

(l,o - ljo)

(to- t';) - (to- t'o)
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Az

A4

As

Aa

(2.2t)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(l,o - l}o)
T¿o - TD

-î--11 ¡
Tdo - Tdo

TD - Tdo
T-îi-.
Tdo - Tdo

(to - L )d

Step 4:

Note that usually ,'¿o Þ ,'i,, ,'¿o > 
"';o, 

and rjo Þ rn while ,J, ,^, and rp are of the

same order [117]. It is further assumed that

Assurnption 2.2.2

tdo- td - tdo- tdo¡

Tdo-TDNTdo-Tdo.

The parameterc A¿(i -- I,2,...,6) in (2.19)-(2.24) are then simplified to read

At N L¿ - L'0,, Az x L'o - L'J,, A3 N r,

Aa -0, AsNL¿-L'¿, Aax0,

so that the subtransient components in the operational functiont G"(p) (2.16) and

H¿(p) (2.I7) are eliminated. G¡(p) is now the transient component of G¿(p) (2.15),

while E r(p) (2.18) and H¿(p) become identical.

Step 5:

Define the per unit subtransient stator flux linkages as [3]

L';þ) A nr(¿) - t'otolt¡, (2.27)

tt'r(t) A nn(¿) - t'o tolt¡,
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from which the per unit d, q-axis voltages behind the subtransient reactances are

introduced [3]

E';(t)A -t.,(r)no(t), (2.2e)

n,fr¡ ! uþ)\t'¿(t). (2.30)

Hence, fivefirst-order differential equations that represent the machine electro-magnetic

relationship are re-formed from (2.14) and (2.2), so that

lon'nçt¡

,J"Ìr'Jþ)

,ri"Ìr'lþ)

-lrrr(r)
{Ðg

(to - t'o) taçt¡ * Epp(t) - E'o(t),

(t'o - t'j) toçt¡ ¡ E'n$) + "*È'r(t) - L';(t),,

(t,-t'r)tr(r)-ní(¿),

-r I ¿(t) - u(t) L'q(t) - L'nu(t) \(t) - Va(t),

-rloþ) ¡u(t)lt'oþ) + L"oa(t)I¿(t) -vr(t).

(2.31)

(2.32)

(2.33 )

(2.34)

(2.35)(¿)

^q

1

Ug

Substituting for ^4,¿(t) and Ào(f) from (2.27) and (2.28) into the electrical torque equa-

tion (4.6) of Appendix A yields

T"(t) : L'dþ)Iq(t) - L';(t)Id(l + (t''o - L';) Id(t)Iq(t). (2.36)

Remark 2.2.L From Step 1 to Step 5, only two numerical approximati'ons

(eqns. (2 7)-(2.5) and (2.25)-(2.26)) areintrod,uced. The errors dueto Assumpti,ons 2.2.1

and 2.2.2 are not signif,cant [117].

Step 6:

Note that under stable dynamic conditions the transformer voltage terms (å^¿(¿) and

#,lr(r)) in the machine stator voltage equations (2.34) and (2.35) are numetically

small compared to the speed voltage terms in these equations [118,123,3]. Further-

more, the time constant ,"!h associated with transmission line dynamics is usually

small compared to those of the machine [126]. Two major assumptions are therefore

introduced
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Assumption 2.2.3 In the stator uoltage equations (2.3Ð and (2.35)

anr(r) = o,
I

Âo(f ) = 0.
Ug

Assumption 2.2.4 The transmission line dynamics can be neglected.

Application of these two assumptions to (2.3a)-(2.35) and (4.9)-(4.10) of Appendix A

results in

v¿(t) : -rl¿(t) - u(t)lloþ) - L'ow(t)In(t), (2.37)

vnþ) : -rIo(t) + u(t)tlj(t) + t'ouçt¡I¿(t), (2.3S)

and

v¿(t): -7oo sinó(¿) + R.I¿(t) + L.u(t)Iq(t), (2.39)

Vþ): Voo cosó(¿) + R.Iq(t) - L"a(t)I¿(t). (2.40)

A simplified model, called the Simplifieil Generator Model ,f (SGMl), is obtained

by combining the third-order electro-magnetic characteristics (eqns. (2.31)-(2.33) and

(2.36)-(2.3g)) with rhe second-order shafr dynamics (eqns. (4.3)-(4.5) of Appendix A),

together with the transmission line characteristics (eqns. (2.39)-(2.40), (4.8) and (,{.11)-

(4.12) of Appendix A). The order of the synchronous generator model is now reduced

from seven to five, while the two inherent nonlinearities, the product nonlinearity and

the trigonometric nonlinearity, associated with the basic machine representation (4.1)-

(4.12), are still retained.

Step 7:

In this thesis the design of stable, relatively well-damped shaft dynamics is of concern.

Under such conditions, the shaft speed r,.,(t) (in rad/s) deviates, typically, from the

synchronous speed a.'s (in rad/s) by less than 2To. Assume, therefore, that

Assumption 2.2.5 In the machine aoltage equations, in per unit,

ø(f) æ 1 (2.4t)
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The per unit machine and transmission line reactances are thus numerically equal to

the corresponding per unit values of the inductances, so that these parameters become

independent of frequency. Also, the machine electrical torque ?"(ú) and mechanical

torque T^(t) are numerically equal to the machine electrical power P"(ú) and mechanical

po$rer P^(t),respectively. Furthermore, the subtransient stator flux linkages Ä.1(t) and

L'r(t) can be replaced by the commonly-used subtransient voltages n'iQ) and Ei(t),

according to their definitions in (2.29) and (2.30). Consequently, the equations of the

SGM1 reduce to

''oon'o\)
,^Ërfr)

,ri"È')u)

v¿(t)

u(t)

(*o - xL) to(Ð + EF.D(I) - n,(t),

(*; - x';) Id(t) + Eq(t) + rion'nþ¡ - E';(t),

- (x, - x') Io(t) - E';(t),

-rr¿(t) + E';(t) - xi tnçt¡,

-r r,(t) + E: (t) + x ; Id(t),

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

and

T.(t) : Ed(t)Id(t) + E';(t)Iq(Ð + (X'o - X';) Id(t)Iq(t), (2.47)

T,"(t) : P^(t), (2.48)

vd(t): -v- sinó(¿) + R"Id(t) + X"Iq(t), (2.49)

U(t) :I/* cos á(¿) + R"Iq(t) - X.Id(t). (2.50)

The model described by equations Q.a2)-(2.50), (4.3) (4.4), (4.8), and (4.11)-(4.12)

is called the Simplified Generator Model2 (SGM2). Although the SGM2 is of the same

order as the SGMI, some product nonlinearities in the equations of the SGM1 become

linear expressions in the SGM2 as a result of applying Assumption 2.2.5 (e.g., the

L.a(t)Io(t) product in (2.39) becomes a linear expression X.Iq(t) in (2.a9)). However,

as ar(ú) usually deviates from its nominal value by less than 2To, the elimination of

some machine nonlinearities caused by the introduction of Assumption 2.2.5 into the

machine representation may be considered insignificant [3]. Note that in the machine

equation of motion (4.4), c.r(t) is retained as a state variable; Assumption 2.2.5 is used

only to simplify certain terms in the relevant machine equations.
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Remark 2.2.2 A uersion similar to the SGMT is called the B" model in [3] in which

the two numerical assumptions (Assumptions 2.2.1 and 2.2.2) are not inuolued. Like-

wise, the SGM| is also called machine representation /¡ in [117] in which a further

assumption, Xi : Xi, ls sometimes included.

Step 8:

Consider the case in which the effect of the damper windings on the transient response

is small enough to be negligible or may be compensated for by increasing the value

of the rotor damping coefficient D in the machine swing equation (4.4) [3]. Another

assumption, as given below, can be introduced.

Assumption 2.2.6 The machine amortisseur effects are neglected.

This assumption is equivalent to assuming that in (2.a3) and (2.44)

,^=0 Tqo n¿0

Accordingly, the machine equations (2.43)-(2.47) become the simple algebraic equations

Vd(t) : -r I ¿(t) - X qlq(t), (2.51)

w(t) : -rln(t) * x'ol¿(t) ¡ E'o(t), (2.52)

T.(t) : E,(t)ro(t) * (r; - x,) Idþ)Iq(t), (2.53)

while rhe other equarions ((2.42), (2.48)-(2.50), (4.3)-(4.4), (4.8), and (4.11)-(4.12))

of the SGM2 stay unmodified. As a result of Assumption 2.2.6, the order of the

generator model is reduced from five to three, so the simplification can be viewed as

significant. However, the main nonlinearities inherent in the original machine charac-

teristics are still retained. On the other hand, since increasing the value of the rotor

damping coefficient D can compensate for the omission of damper windings [3], the

error due to Assumption2.2.6 can be minimised. This simplifrcation will be illustrated

in Subsectior 2.3.2.
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Rernark 2.2.3 From this step, a simplif,ed generator model (represented by (2.51)-

(2.53) and equations (2.12), (2.48)-(2.50), (A.3)-(A.Ð, (A.s), and (A.11)-(A.t2) of

the SGM2) is obtained. The sa,n'Le erpression as for this simplifi,ed generator model can

be obtained directly by eliminating Ip(t) and, Iq(t) in the basic machine equations (A.1)-

(A.2) (resulting in the E'n model in [3] and then applyi'ng Assumptions 2.2.3-2.2.5. In

[117] thís generator model is referred to as machine representation 2.

Step 9:

Note that the voltage drops across the resistances of both the generator stator windings

and the transmission lines are normally small compared to those across the reactances.

Finally, it is assumed that

Assumption 2.2.7 The generator stator winding resistance and the transmission line

resistance can be neglected,.

The machine stator and line voltage equations (2.51)-(2.52) and (2.49)-(2.50) are then

represented by

vd(t): -xqIq(t), (2.54)

vu) : x)toçt¡ ¡ E'n(t), (2.55)

and

v¿(t): -v- siná(¿) + x.Iq(t),, (2.56)

W(t):7oo cosó(ú) - x"Id(t). (2.57)

These equations ((2.54)-(2.57)), together with (2.42), (2.48),, (2.53), (4.3)-(4.4), (4.8),

and (4.11)-(4.12), form a model which is called the Simytlified, Generator Model 3

(scM3).

In the studies of this thesis, the SGM1 is used as the benchmark model of the sgn-

chronous generator/tie-Iine system for the analysis of the system dynamic behaviour.

This is because the SGM1 most closely represents the basic model of the synchronous

generator given by (A.t)-(4.12) as explaìned in the following. Recall that the SGM1
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ïesults from neglecting the time-delivative terms in (2.34)-(2.35) and (4.9)-(A'10) and

including Assumptions 2.2.1 and 2.2.2. In [117] it is stated that neglecting the time-

derivative terms of d, q-axis stator flux linkages in the machine voltage equations (2.34)

and (2.35) may lead to a less stable system response than that observed in tests on an

actual system under severe fault conditions; nevertheless the errors are still not signif-

icant [118,3]. It is also pointed out in [123] that neglecting the time-derivative terms

in the differential equations (4.9) and (A..10) of the transmission system is generally

justified on the basis of reducing computational effort. The justification for adopt-

ing the SGM1 as the benchmark instead of using the basic seventh-order generator

model (4.1)-(4.12) is based on the trade-off between the use of a more accurate model

and the computational burden that is involved. It is also based on the fact that the

studies in this thesis are concerned with the investigation and comparison of system

performance of the same model with different control methodologies. Therefore, in-

accuracies introduced by using the SGM1 as the benchmark model for the synchronous

generator/tie-line system will not significantly affect the analysis and design of system

controllers, nor the evaluation of system dynamic behaviour'

A distinct feature of the SGMI is that it retains the shaft speed as a time-varying

quantity in the machine voltage equations and in the power and torque equations.

Consequently time-varying parameters of the forrn Lu(t) in the generator and the

transmission line equations are retained in this model. The SGM1 also includes all

the product nonlinearities in the model equations. Omitting some of the product

nonlinearities in Assumption2.2.5 results in the SGM2. The influence of adopting As-

sumption 2.2.5 on machine modelling is investigated in Subsection 2.3.2 by comparing

the system performance of the SGM1 and the SGM2 at various operating conditions

(see Remark 2.3.2(i)).

The SGM3 is characterised by the simplicity of its equations. In this thesis it is an

important machine model for the analysis and design of power system stabilisers. The

use of this model is based on the following considerations:

(1) Modern control strategies rely on the mathematical description of the system for

the development of control laws. When such control strategies are considered in
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the design of power system stabilisers, it is necessary to employ a simple model of

the synchronous generator in order to avoid the complexities involved with a high-

order representation [123]. This argument has been supported by the previous

work on the linear optimal control [90,91,92,94,97,98,99,101], nonlinear optimal

control ll27l-1132), and linear adaptive control 145,47,58,73] of power systems. It

will be further supported by the studies of the nonlinear optimal and adaptive

power system stabilisers to be presented in this thesis. The use of a simple model

will be justified in Chapters 4 and 5 in which issues such as closed-loop system

stability of the nonlinear optimal control laws and convergence analysis of the

nonlinear adaptive control algorithms are considered.

(2) The system time response of the SGM3 closely matches that of the benchmark

(SGM1) by appropriately adjusting the rotor damping coefficient D in the ma-

chine equation of motion (see Subsection 2.3.2).

For the above reasons, the SGM3 is used for the assessment and comparison of the

controller performance. However, with a final form of the controller design, the perfor-

mance is evaluated with the SGMl to ensure its validity (see Subsections 3.6.3, 4.5.3,

5.4.3, and 6.5.3). It is also important to point out that, though simple, the SGM3

retains the basic nonlinear characteristics associated with the basic machine equations.

2.3 Nonlinear SMIB Power Systern Models for Sim-

ulation Studies.

In this section:

o three nonlinear SMIB power system models are presented; each model combines

one of the simplified generator/tie-line models described in Section 2.2 with those

of the excitation system, the governor, and the steam turbine as described in

Appendix A;
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. comparisons of system dynamic performance of the three nonlinear SMIB power

system models are given;

o the effect of increasing the value of the rotor damping coefficient D as compen-

sation for the omission of damper windings is demonstrated;

o the power system models used for the analysis and design of power system sta-

bilisers and for the evaluation of the designed stabilisers are introduced.

The layout of this section is as follows. Mathematical descriptions of the three

nonlinear SMIB power system models are given in Subsection 2.3.1. Simulation studies

of the system time response are conducted in Subsection 2.3.2, where conclusions on

the choice of models are drawn from comparisons of the dynamic performance of the

three models.

2.3.L The Development of the Complete System Models.

In choosing adequate representations of the excitation system, the governor, and the

steam turbine to form a complete mathematical description of the SMIB power system,

it is desirable to select appropriately simple models of these components to represent the

limiting nonlinearities and the associated dynamic performance. There is little benefit

in introducing detailed models for these components if some significant simplifications

of the generator/tie-line models are also implemented. Fol this reason, simplifications

in modelling the excitation system, the governor, and the steam turbine have been made

in Assumptions 4.2.1-4.2.3 and 4.3.1- A.3.2 of Appendix A to match the simplified

generator/tie-line models proposed in Section 2.2.

The use of the simplified models for these components is based also on the con-

sideration that the comparison of system dynamic performance will be conducted in

this thesis with the same models of these components. This approach is similar to

that expressed in Section 2.2 in which the use of simplified generator/tie-line models

is justified.
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In the following, three nonlinear SMIB power system representations which corre-

spond, seriatim, to the three simplified generator/tie-line models defined in Section 2.2,

and which include the additional components, are developed. To provide a compact

mathematical description of the resulting three complete system models, a general form

of a nonlinear, continuous-time, expanded state-space representation is defined as

x(ú)

0

0

o(x(ú), z(t),u{t))
!r'(x(¿), z(ú))

E(X(ú), Z(t),U,(t))

(2.58)

Here, X(t) is the system state vector, Z(t) is the system auxiliary (algebraic) variable

vector, and U"(ú) is the system input vector. The dimensions and/or the definitions

of X(t) and Z(t) vary with the different generator/tie-line models, while the definition

of U"(t) is common to all three system models, i.e.,

u"(¿) t 1r,",(r) v"¡@l (2.5e)

where the superscript ? denotes transpose. In general, the function A(X(ú), Z(t),Ur(t))
in (2.58) is a linear function of X(ú), Z(t), and U"(¿),expressed as

o(x(¿), z(t),ur(t)) : oxx(t) + <Þzz(¿) + BUr(¿) (2.60)

where (Þx, (Þ2, and B are all constant matrices. The functions rú(X(t),Z(t)) and

E(X(¿), Z(t),Ur(t)) in (2.58) are vector-valued, nonlinear, algebraic functions that

describe the nonlinear characteristics of the system. The product nonlinearities and

the trigonometric nonlinearities inherent in the synchronous generator and the tie-line

are formulated in ìIt(X(¿), Z(t)), while the nonlinearities caused by timiting in the

excitation system and the governor are expressed in E(X(¿), Z(t),U,(t)). The latter

has the same structure for the three complete system models, i.e.,

(2.61)

where Nh, Nfz, and N/3 are the sa,turation functions given in the right-hand side of

(4.14), (4.16), and (4.18) of Appendix A. Therefore, for each of the nonlinear power
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system representations addlessed below, only tÞ¡, Qz,B, and iú(X(t),2(t)), together

with X(ú) and Z(t), need to be specified.

Based on the general form of the state representation (2.58), three nonlinear system

models are defined as follows:

Complete System Model 1 (CSMl): the synchronous generator and the tie-line

are described by the SGM1; the models for the excitation system, the governor,

and the steam turbine are given by (4.13)- (A.24) of Appendix A.

In the CSM1 the state vector X(ú) and the auxiliary variable vector Z(t) arc

defined as

X(t) : I o1r¡ ,,(t) øo{t) t'JU) L';Ø vn¡) F'v(t) Pnp(t) Ptp(t) p"r4) l'
(2.62)

and

Z(t) : I latt) roe) r"e) V(t) T^(t) Een(t) P"(¿) p.r$) l' (2.63)

The matrices iÞ¡, ,iÞ2, and B in (2.60) are given by
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and

where

B_ 00000 0 0000
00

(2.66)

(2.68)

(2.6e)

(2.70)

(2.71)

(2.72)

The nonlinear algebraic function !ú(X(ú), Z(t)) is derived by equating (2.37) with

(2.39) and (2.38) with (2.a0), and substituting (2.37) and (2.38) into (4.10). This

results in
t1r

!r(X(ú), Z(t)) : l rþ, ,þ, ,þ" ,þn ,þ, I (2.67)

with

,h : (r * .R,) (-16¡rr, trl + V- sinó(t))

- (t ",çt¡ + r,'ou1)) (r(¿)¡ti f¿l - v- cos ó(ú)) - cr¿(t),

,þz : (r I R") ("(¿)rrit¿l - V"" cos ó(ú))

+ (t"rçt¡ + r,'iu(l) (-r1t¡rrrttl * Iz- sinó(t)) - clo(t),

,þz : tt')1t¡toçt¡ - tt'o{t)ta(t) * (t; - L';) Id(t)Iq(t) - T"(t),

,þq : ,1q'zflo{t)2 + r'j1t¡2 +z (r''ot'j1t)1¿(¿) + r'rtr1t¡trç¡)]

+ ("'?+ L')'zu(1'z) Idg)z + (r'+ t'o'r1t¡'z) 41t¡'z

-2ru(t)T"(t) - V(t)' ,

,þs : FypPyp(t)+ ùpPtp(t)+ FæPr.r(t) -u(t)T^(t),

u(t):ø"(f) *1 (2.73)

": (, + R.)' + (t.rçt¡ + L')uþ¡) (t.rçt¡ + L'ruQ)) . Q.T4)

and
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In this thesis the CSM1 is referred to as the benchmark rnodel of the complete

system in which the associated generator/tie-line model (SGM1) most closely

represents the basic synchronous generator/tie-line system described by (4.1)-

(A.12).

Complete System Model 2 (CSM2): the synchronous generator and the tie-line

are described by the SGM2; the models for the excitation system, the governor,

and the steam turbine are given by (4.13)-(A.24) of Appendix A.

This representation is the consequence of applying Assumption 2.2.5 to the

CSMI. The state vector X(ú) and the auxiliary variable vector Z(t) Á the CSM2

are defined as

x(t) : Ia1r¡ u,(t) E'q(t) Eï$) n'J$) va(t) Fev$) pnp(t) ptp(t) p"re)f'
(2.75)

and

Z(t) : I rr(r) rc1) T"(t) V(t) Eno(t) F"(ú) p"r4) l' (2.76)

in which the dimension of Z(t) is reduced by one compared to its definition in

(2.63) for the CSMI. The matrix B in the CSM2 is identical with that of the

CSM1 (eqn. (2.66)), while the other two matrices, Õx and iÞ2, are described by

iÞ¡ --
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(2.7e)

(2.80)

(2.8 1 )

(2.82)

(2.83)

The nonlinear algebraic function !Ir(X(¿), Z(t)) of the CSM2 is simplified by sub-

stituting e(t) N 1 into (2.67), resulting in

!ú(x(ú), z(t)) : ,þ, ,þt ,þ" ,þn

T

tþz

(r * R") (u;A¡+ rz- sinó(ú))

- (x" + x;') ("îA¡- v- cosó(ú)) - cI¿(t),

(r * R") (t', A¡ - Iz- cos ó(r))

* ("" * rî) (t;A¡r v- sinó(ú)) - clo(t¡,

Id(ÐE';U) + rq(ÐE';(t) + (x'j - x';) rdg)rq(t) - r"(t),
o'J(Ð'+ E';(Ð2 +z (x'jørqt)rd(t) - x'o'ø'i1t¡to1t¡)

+ (" + x'j') hlt¡' + (r' + xi') 41t¡' - zrr"(t) - v(t)z,

where c given by (2.7a) becomes a constant

" 
: (, + R.)'+ (x" + x;) (x. + xr') (2.84)

Complete System Model 3 (CSM3): the synchronous generator and the tie-line

are described by the SGM3; the models for the excitation system, the governor,

and the steam turbine are given by (4.13)-(A.24) of Appendix A.

This combination yields the simplest system model used in this thesis. The

four elements (iÞ¡, lÞ2,8, and tú(X(t),Z(t))) defining the system state expres-
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sion (2.58) are expressed as
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v- cos 6(t) - Eq(t) - (x" + x'o) 41t¡

V- sin ó(¿) - (X" + Xs) Is(t)

Iq(t)Eq(t) * (r'o- xr) IdOIq(t) -T"(t)
E;(Ð2 ¡ 2x'¿E'o(t)Ia1t¡ + x|' t¿7t)2 + x? Iq(t)' - u(t)'

In the CSM3 the dimension of the state vector X(t) is reduced by two due to the

elimination of the subtransient states E;(t) and Eiþ) from (2.75)

The auxiliary variable vector Z(t) 1s the same as in (2.76) for the CSM2

Remark 2.3.L In the three complete system models giuen in this subsection, the sys-

tem equations (rre formulated with reheating. Howeuer) as indicated in Remark 4.9.1,

x(ú) : 
I ,frl ,"U) E',(t) vn(t) Pcv(t) pnp(t) hp(t) p"r@l .

(2.8e)
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the system equations with nonreheating can be easily obtained by the proper selection

of the ualues of the parameters associated with the rnodel of the steam turbine and

reheater.

2.3.2 Comparisons of the Dynamic Performance of the Com-

plete System Models.

In order to select the power system models for controller analysis and design and for

the evaluation of the designed controllers, a set of simulation studies is conducted for

the various operating conditions in which the three complete system models derived

from Subsection 2.3.I arc subjected to the same disturbances.

Aims and structure of the simulation studies.

The dynamic performance of the CSMI is taken as the benchmark performance which

is verified by the comparison of the system time response with that obtained from the

established software package, ADSTAB [133]. 
3 The dynamic behaviour of the CSM2

and the CSM3 is then compared with the result obtained from the benchmark. The

aims of this study are

o to establish the degradation in system performance associated with the various

system models;

o to demonstrate the effect of increasing the value of the rotor damping coefÊcient

D as compensation for the omission of damper windings in the CSM3.

sFor the simulation studies in this thesis, the software package SIMNON [134,135,136] is used. The

software written by the ¿uthor of this thesis for the simulation studies in SIMNON has been verified

by comparing the results with those obtained from the ADSTAB package. The ADSTAB package is

a multi-machine transient stability program that has been designed for research use in the University

of Âdelaide [fff]. The ôccuracy of the models and algorithms used in ADSTAB has been verified

against the results obtained by tests on actual power systems (".g., r series of tests at Northfleet in

the U.K. [137]).
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For the purpose of simulation studies in this thesis, identical models and param-

eters of the nonreheat turbine, the governor, and the excitation system are used. The

parameters and limits of the system models are listed in Appendix C.

Two system operating conditions with two distinct disturbances have been selected

for the simulation studies:

Case 1: The generator is operating at P¿:0.6 pu and Qt:0.3 pu, and is subjected

to a step change of 0.05 pu increase in reference power.

Case 2: The generator is operatin g at Pt : 0.6 pu and Qt : -0J pu, and is subjected

to a step change of 0.05 pu decrease in reference power.

Case 3: The generator is operatingat n:0.6 pu and 8¿:0.3 pu, and is subjected

to a symmetrical three-phase fault a on the receiving end busbars. The fault is

cleared in 100 ms, and the system returns to its pre-fault operating condition.

Case 4: The generator is operating at n: 0.6 pu and Qt : -0J pu, and is subjected

to a symmetrical three-phase fault at the machine terminal. The line is switched

out 5 after the fault duration of 100 ms, and a new steady-state operating point

is established.

The simulation studies are conducted in two steps:

Step I-: Compare the system performance of the three power system models with

the same value of the rotor damping coefficient (D : 0.1 pu) to establish the

degradation in system performance.

Step 2: Compare the system performance of the CSM3 (D :4.0 pu) with that of the

CSM1 (D :0.1 pu) to demonstrate the effect of increasing the value of the rotor
aAlthough the majority of the faults occurring in practice on a pou¡er system are asymmetrical

between the phases and the phase(s) to ground, the symmetrical fault is important because it is more

severe and easier to analyze [125].
5In the simulation studies of this lhesis, the values of l?" and X" ate doubled to represent the event

of a transmission line switching-out,
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damping coefficient D as compensation for the omission of damper windings in

the CSM3.

Simulation results which take account of the above steps are plotted for the four cases

in Figs. 2.3-2.6.

Analysis of the simulation results.

Step 1: The simulation studies in the first step involve the comparison of damping

performance of the three complete system models with the same value of. D :0.1 pu.

This value of D is given a priori. Figures 2.3 and 2.4 show the transient speed deviations

in Cases 1 and 2. It is seen that under normal operating conditions the performance

of the CSM2 (dashed line) agrees closely with that of the CSM1 (solid line). However,

since there are no damper windings in the CSM3, the speed response of the CSM3

(dotted line) differs significantly from the result of the CSMI. The same conclusions

can be derived from the simulation result of Case 3, shown in Fig. 2.5. h is seen that

with the occurrence of the remote fault, the CSM2 still provides satisfactory agreement

with the CSMI, whereas the CSM3 exhibits instability. In Case 4, appreciable errors

in phase between the responses of the CSM1 and the CSM2 are found, as shown in

Fig. 2.6. Nevertheless the amplitudes of the speed deviation of the CSM2 are almost

the same as those of the CSM1. It is noted that, in this simulation study, the response

of the CSM3 is unstable and is unacceptable.

Remark 2.3.2 The aboue simulation studies reueal that

@ fhe CSM? is a good approúmation of the CSMI at the chosen operating con-

d,itions. This justifies Assumption 2.2.5 and indicates that the nonlinearities in

system parameters and in machine stator uoltage equations can be neglected.

(ii) The CSMS with the giaen aalue of D cannot be used, to represent the benchmarle

mod,el (CSMI) directly. To acltieue good, agreement between the performance of

tl¿e two models, the damqting of the CSMS has to l¡e increased.
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The approach of using the CSM3 to approximately represent the benchmark model

is important because of the simplicity of the CSMS for the analysis and design of system

controllers. Since the subtransient effects which are omitted in the representation of

the CSM3 are normally very short, it is possible to compensate for the omission of

damper windings in the CSM3 by adjusting the rotor damping coefficient D to a higher

value. This simplification has been proposed in Section 2.2 (when Assumption 2.2.6

was introduced).

Step 2: The simulation studies in the second step involve the demonstration of

the above-mentioned simplification. The value of the rotor damping coefficient D is

adjusted to make the response of the CSM3 agree as closely as possible with that of the

CSM1. For the various operating conditions, the value of. D :4.0 pu is found to be the

optimal value. D is therefore increased from 0.1 pu (the given value) to 4.0 pu in the

equations of the CSM3. The performance of the CSMS (D :4.0 pu) (dot-dashed line)

is compared with that of the CSMI. It is observed from Figs. 2.3-2.5 that significant

improvements in overall model matching are achieved in these three simulation cases.

In Case 4, referring to Fig. 2.6, the CSM3 (D:4.0 pu) shows stronger damping than

the CSMl.

Remark 2.3.3 The comparison of system performance of the CSMS (D : 4.0 pu)

and the CSMI in Case j indicates a possibility that ø controller particularly d,esigned

for the CSMS (D : a.0 pu) may not be able to ilamp the oscillations associated with

the CSMI satisfactorily. This initiates the iliscussion of the ualidation of the designed

pouer system stabilisers in Subsections 3.6.3, 4.5.3, 5.4.3, and 6.5.3.

Remark 2.3.4 The comments made in Remarles 2.3.2 and 2.3.3 are ualid when the

system operating point aaries (r.g., Pr:0.75 pu, Pt:0.4 pu, etc.).

Robustness studies.

The validations of the designed power system stabilisers are regarded to be the robust-

ness studies in this thesis. As far as the system modelling is concerned, robustness
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studies in power system control are required when an approximate model is used as a

basis for controller analysis and design. For the purpose of this thesis, there are two

major concerns in employing the approximate model (CSM3 with D - 4.0 pu) for

representing the benchmark (CSMI) :

o Unmodelled dynamics - caused by ignoring the damper windings (i.e., omit-

ting the subtransient states n'J@ and E'i(t)) (see Assumption 2.2.6), and/or

by assuming a constant rotor speed in some terms of the synchronous generator

equations (see Assumption 2.2.5);

o Modelling simplifications - for example, by assuminEzero values for some system

parameters (see Assumption2.2.7), and/or by increasing the given value of D to

a higher value.

It will therefore be necessary to verify the various power system stabilisers using the

benchmark model (CSMI) to confirm that the simplified model (CSM3 with D :

4.0 pu) is suitable for their design.

Conclusions.

In view of the simulation results shown in Figs. 2.3-2.6, it is proposed that

1. The CSM3 (D :4.0 pu) be taken to be the approrimate pouer system modelfor

the purpose of the analysis and design of power system stabilisers in Chapters 3

to 6.

2. The CSM1 (D : 0.1 pu) be taken to be the accurate power system model for

validating the designed power system stabilisers in Subsections 3.6.3, 4.5.3, 5.4.3,

and 6.5.3.
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2.4 Linearisation of the Nonlinear Power System

Model.

In this section

o the nonlinear power system model (CSM3) proposed in Subsection 2.3.1 is lin-

earised;

o analytical models 6 of the nonlinear power system for the development of the

linear and nonlinear adaptive power system stabilisers are introduced;

o the models derived in Sections 2.2 to 2.4 are summarised.

The nonlinearities associated with a power system can be divided into two cate-

gories: inherent nonlineari,ties and, intentional nonlínearities [138]. In general terms,

an inherent nonlinearity is defined as an insepamble characteristic of the laws governing

the operation of the system to be controlled, while an intentional nonlinearity is con-

sidered to be deliberatelg introduced into the design of the system by control engineers.

For a pov/er system, the inherent nonlinearities of the system are mainly characterised

by the product nonlinearities and the trigonometric nonlinearities which are contained

in the term ü(X(t),2(t)) (e.g., (2.88)) in (2.58). O" the other hand, the intentional

nonlinearities of the system include the amplitude and rate limits that are given by

the term E(X(¿), Z(t),U,(t)) (".S., (2.61)) in (2.58). The intentional nonlinearities

which are introduced by the power system control components (such as the exciter and

the governor) are usually determined from a trade-off between technical and economic

considerations.

Analytical models of the power system are derived from the following two steps:

6In this thesis, an analytical model is defined for the purpose of simplifying the analysis. It is

used for developing lhe nominal mod,el of the system. The definition of ¿ "nominal model" will be

given in Section 3.2.
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(1) eliminate the intentional nonlinearities by assuming that the perturbations that

are injected into the nonlinear system are mild enough so that limiting of the

system variables does not occur (see Assumption z.aJ);

(2) eliminate the inherent nonlinearities by linearising the system equations about

one or more steady-state operating points (see Assumption 2.4.2).

Following (1) a nonlinear analytical model results, in which the inherent nonlinearities

of the power system are still retained. Following (2) the nonlinear po\ryer system model

is completely linearised, and a linearised analytical model is obtained.

Most methods for the design of power system controllers in the literature are based

on linearised models of power systems. Linearisation of the nonlinear power system

about a steady-state operating point provides information on the small-perturbation

dynamic behaviour of the system at the specified operating point. Since low-frequency,

lightly-damped rotor oscillations dominate the system transient response, the CSM3

introduced in Subsection 2.3.1 is used in this section for the derivation of the analytical

models upon which the development of control strategies is based.

The layout of this section is as follows. In Subsection 2.4.1 a nonlinear analytical

model is derived from the nonlinear power system model (CSM3). A linearised analyt-

ical model is then developed from the nonlinear analytical model in Subsection 2.4.2.

These analytical models are prepared for the development of the linear and nonlinear

adaptive power system stabilisers discussed later in Sections 3.2 and 4.2 respectively.

The models proposed in this chapter are finally summarised in Subsection 2.4.3.

2.4.L Nonlinear Analytical Model of the Nonlinear Power

System.

Consider the situations where the perturbations injected into the nonlinear power sys-

tem are mild, enotgh that limiting of the system variables does not occur. Under these

circumstances, the intentional nonlinearities of the system can be ignored by assuming

that
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Assumption 2.4.L Under transient condi,tions, the nonlinear power system under

study is operating within the limiting actions described by the functions Nh, Nfz,

and Nf3 in (A.11, (A.16), and (A.15).

On removing the limits, the nonlinear function E(X(ú), Z(t),UJt)) in (2.61) becomes

a linear expression

Eeo(t) - Vn(t)

E(X(¿), Z(t),U,(t)): Pr (¿) - 
P""' (t) - Kc' 

"(t) - 
Pcv (t)

Pcv(t) -Pcv(t)

which can be incorporated into the expressions for iÞ(X(ú), Z(t),Ur(t)) and t[(X(t),,Z(t))

in (2.58). Hence, the mathematical description of the CSM3 can be rewritten as

x1t)

0

00
00
00
00

o(x(ú), z(t),uJt))
ìr,(x(ú), z(¿))

(2.e0)

where

x(¿) : 
[ ,ftl ,"þ) E;(ù Een(t) Pcv(t) P¡tp(t) hp(t) p"r4)f , (2.e1)

z(t):1,u, r.(t) u@l , e.sz)

and

iÞ(x(¿), z(t),uút)) : oxx(t) + azz(¿) + BU"(ú) (2.e3)

(as expressed in (2.60)). The elements iÞ¡, (Þ2, B, and !ú(X(t),Z(t)) in (2.g0) are

written as

0
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0

0

0
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0
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I.T
T¿o

_1
1A

0

0

0

Fqp
2H

0

0

000
-l o o

TG

1 
-1 oTCH TcH
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55

1

Tco



1

2H
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0

0

000 0 000
0 00 Iç 000fA

(Þz: 0

0

0

0

0

0

0

0

0

0

0

(2.e5)

(2.e6)B-
T

1

rG

0

and

!ú(x(¿), z(t)) :

V- cos 6(t) - E|

(2.s7)

X
x"

in which the expressions for /¿(ú) and /o(ú) in (2.88) have been substituted into the

expressions for ?l(ú) and V¿(f) in (2.97).

Equations (2.90)-(2.97) form a model which is called the Nonlinear Analytical Model

(NAM) of the nonlinear polver system (CSM3) for the development of the nonlinear

optimal and adaptive power system stabilisers to be discussed in Section 4.2. It is

important to note that although the intentional nonlinearities of the CSM3 have been

eliminated in (2.90)-(2.97), the inherent nonlinearities of the system are still retained

by the term !ú(X(t),Z(t)) in (2.97).

Remark 2.4.L The NAM z's identical with the CSMS proaided that the external d,is-

turbances that are applied, to the system are mild enough that the system state uariables

uary within the ro,nge of linear operation of the limiting nonlinearities.

cos2 6(

56



2.4.2 Linearised Analytical Model of the Nonlinear Power

System.

Consider the case where the nonlinear system (2.90)-(2.97) is operating with small

deviations about an arbitrary steady-state operating point (Xo,Zo,U"s), i.e.,

X(ú) : Xo*Ax(ú),

z(t) : zotLZ(t),

u"(¿) : u"o*au"(ú).

(2.e8)

(2.ee)

(2.100)

It is assumed that

Assumption 2.4.2 The new state (Xs + AX(ú), Zo * LZ(t), U"o + AU"(¿)) of the

system (2.90)-(2.97) is a small perturbation Jrom the steady-state (X¡,Zo,,Uro).

The dynamic behaviour of the nonlinear system (2.90)-(2.97) can then be examined by

Iinearising the system equations around the steady-state operating point (Xo,Zo,U"o).

The linearisation technique is briefly discussed as follows:

By the substitution of (2.98)-(2.100) into (2.90) and the use of a Taylor's seri,es

appToximation ll39l that neglects the terms of second-order and above, a linearised

model of the nonlinear system (2.90)-(2.97) is derived

Inxrr¡ I:|**, ,,,|furr¡ I_f"olo,-,"1,¡ (2 101)

I o J Lv*o vzo)L^z(t)l Lol
where, according to Taylor's expansion theorem,

O,xo

<Þzo

A:

A:

A:

ôiÞ(x(¿), z(t),u, t
ax(ú)

ú))

az(t)

ao(x(ú), z(t),u,
aur(ú)

l,*o,ro,,r"o,'

l,*o,ro,,r"o,'

l,"o,ro,,r"o,
Bo
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are the Jacobian matrices of iÞ(X(ú), Z(t),U,(t)). Since lÞx, (Þ2, and B in (2.93) are

all constant matrices independent of the system operating point (Xo,Zo,,IJ"6), one

obtains

Oxo : iÞx, (eqn. (2.9a)); (2.102)

øzo : lÞ2, (eqn. (2.95)); (2.103)

Bo : B, (eqn. (2.96)). (2.104)

The nonlinear function tú(X(ú), Z(t)) in (2.90) does not depend explicitly on 1J"6, and

is therefore linearised around (Xo,Zo), resulting in

v(xo + ax(ú), zo * LZ(t)) = ìú(xs ,zo) + !F¡oax(ú) + vzoLz(t)

where

tlrxo
a!ú(x(ú), z(ú))A

A

X _X

ax(ú)

ô!ú(x(¿), z(ú))
(xo'zo)

vzo
az(t) (xo'Zo)

are the Jacobian matrices of !ú(X(t),2(t)) and

V(Xo, Zo) :0

due to (2.90). The matrices lfr¡o and ![r20, according to the above definitions, are

functions of the operating point (Xo, Zo), given by

iúxo
-V- sin ós 0 -1 0

K1 0I{z 0

I{s 0 1{o 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-2Vo

(2.105)

(2.106)

and

where 7

- (x"* ";)Pro: 0

0

0

-1
0

I{t (x"+ xq) X"+ X;
Vi cos 26" + #V-Eqocos 

ós, (2.107)

?It should be pointed out that R¡ (i: L,2,5,6) defined in this thesis are related to K¿ (i: L,2,6,6)

commonly named in the literature (e.g. in [tS]) through the relationships: 1l;: I{; for (i:1,2) and

I{¿ : ZYro¡ç¡ for (i : 5, 6).
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I{z 1çlV¡v* sin/,o'

x? (x3 - xå) *2x" x?xi - x'o'Xo)

(x" * xò' (x" + x¿)

ffiv*ENsinó¡'
V- cos oo ¡ 

-2X3- 
t

(x" + x;f Eoo'

V!sin26s

(2.108)

(2.10e)

I{s

ITa
2X

(2.110)
(x"+ xo)

It may be seen that the matrix ![r7o in (2.106) is non-singular. From (2.101) one has

LZ(t) - -*ro-'rú¡oAx(f). (2.111)

A standard linear state equation is finally formed from (2.101) and (2.111) by elemen-

tary matrix reduction, resulting in

lxlr¡ : Aoax(¿) + Boau" (2.112)

where

A6êO¡o - <Þzoiúzo-tttlxo (2.113)

and 86 is given by (2.10a).

The model formed from equations (2.112)-(2.113) is called the Linearísed Analytical

Model (tAM) of the nonlinear power system (CSM3) for the development of the linear

adaptive power system stabiliser to be discussed in Section 3.2. The inherent nonlin-

earities that are retained in the NAM are linearised after Assumption 2.4.2, resulting

in a completely linearised version of the nonlinear power system model. According to

Poincaré's theorem [140], the linearised model (2.II2)-(2.113) is valid for small pertur-

bations about the steady-state condition specified by (Xo, Zo,Uro). The elements of

the matrix As depend upon the values of (Xs,Zo,U"o) and the system parameters,

e.8., R" and X". For a specific dynamic study at a specified operating point, As is

a constant matrix. Generally speaking, A6 may be considered to be a time-varying

state-functional matrix having piece-wise constant [141] elements that are functions of

the system operating point. Therefore, the system (2.112)-(2.113) is linear, p'i,ece-wise,

time-uarying in nature. It should be pointed out that the assumption, that the ele-

ments of Ao are piece-wise constant, provides only the information on the dynamic
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behaviour of the system around each operating point as perturbations on the system

variables tend to zero. It does not describe the transient behaviour of the system

between operating points.

When small signal excitation control of power systems is under consideration, a

simplified version of the LAM can be employed assuming that the system is stable. It

is based on the following assumption.

Assumption 2.4.3 The effectiue time constants associated with the AVfu-ercitati,on

system loop and the goaernor-steam turbine loop are so wiilely different that the i,nter-

actions between these two control loops can be considered as disturbances on each other

t471.

Under this assumption, for excitation control studies, the deviation of the mechanical

torque input to the synchronous generator can be viewed as a disturbance that is added

to the system. The governor and the steam turbine are excluded from the system model,

and the po\¡/er system is simply treated as being controlled by the excitation voltage

input, with injected mechanical torque disturbance.

By the elimination of the dynamic models of the governor and the steam turbine

from the equations of the LAM, the system state equation (2.112) is rewritten as

AX(¿) : A0AX(ú) + b"sAu,(¿) + b-sA?r(t) (2.tr4)

where 

^x(¿) 
: 

I aolr¡ aa,"(r) LE,oþ) LEFDþ)f (2.115)

and Au,(f) and Au(t) are the system voltage reference input, t["¡(t),, and mechan-

ical torque disturbance, LT^(t), respectively. The matrices in (2.1la) are given (see

Section D.l of Appendix D) bV

0

BL
2H

+
ldo

Ug

_I{nKø _ 1

2r¡V3s 1A

D
-2H

_KnKs
2r¡V¡s

0

0

Ao:
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b \A
1A

00

00

1fr

]',

]',

(2.1r7)

(2.118)

(2.11e)

(2.r20)

where 8

uO

b-o

I{

l{

3

4

This Simplif,ed, Lineariseil, Analytical Mod,el (SLAM), without the governor and the

steam turbine, will be used in Section 2.5, when the selection of stabilising signals for

the design of power system stabilisers is discussed. It is also used in Section 3.2 for the

modelling of the power system under linear adaptive excitation control.

2.4.3 Summary of the Models of the Power System.

The various models of the synchronous generator/tie-line and the complete power sys-

tem proposed in this chapter are summarised in Table 2.1. Of these models, SLAM,

NAM, CSM3, and CSM1 are used in the studies of this thesis for the following purposes:

o SLAM - for the discussion of selection of stabilising signals, and for the design

of the linear adaptive power system stabiliser;

o NAM - for the design of the nonlinear optimal and adaptive power system

stabilisers;

o CSM3 (D :4.0 pu) - for simulation studies for evaluating the performance of

the designed power system stabilisers;

o CSM1 (D :0.1 pu) - for studies of the robustness of these controllers.

8As noted earlier, Ri (i:3,4) defined in this thesis are related fo I{; (i:3,4) commonly used in

the literature through the relationship: 1î¿ : I{; (i: 3,4).
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Name Explanation Section Equations

SGMl simplified generator model 1 2.2

(2.31)-(2.33),

(2.36)-(2.40),

(A.3)-(A.5),

(A.8), (A.11)-(4.12)

SGM2 simplified generator model 2 2.2

(2.42)-(2.50),

(4.3)-(4.4),

(A.8), (A.11)-(4.12)

SGM3 simplified generator model 3 2.2

(2.42), (2.48),

(2.53)-(2.57),

(A.3)-(A.4),

(A.8), (4.11)-(4.12)

CSMl complete system model 1 2.3.r (2.58)-(2.74)

CSM2 complete system model 2 2.3.1

(2.58)-(2.61),

(2.66),

(2.75)-(2.84)

CSMS complete system model 3 2.3.r

(2.5s)-(2.61),

(2.76),

(2.85)-(2.8e)

NAM nonlinear analytical model 2.4.1 (2.e0)-(2.e7)

LAM linearised analytical model 2.4.2

(2.t02)-(2.r04),

(2.105)-(2.110),

(2.1t2)-(2.rtï)

SLAM simplified linearised analytical model 2.4.2 (2.rr4)-(2.r20),

(2.107)-(2.110)

Table 2.1: The models of the synchronous generator and the SMIB power system.
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2.5 Identification of Suitable Stabilising Signals

for the Design of Power Systern Stabilisers.

In this section:

o the concepts associated with participation factors are highlighted;

o the selection of suitable stabilising signals for improving the damping behaviour

of rotor oscillations is discussed;

o a conclusion regarding the choice of the electrical torque as the stabilising signal

for the design of power system stabilisers is drawn from the discussion.

It is clear from the literature that the most commonly-used techniques in designing

power system stabilisers, from the original analogue lead-lag compensators to recent

digital self-tuning controllers, are SISO linear control strategies. The power systems

are reduced to SISO linear systems for which the control strategies are derived. A

simple state-space realisation of such a SISO linearised system representation has been

given by the SLAM in Subsection 2.4.2.

The feedback signals for power system stabilisers are usually chosen from a variety

of available (measurable) system output signals. Utilising alternative input signals, fre-

quency response analysis has been employed for the design of power system stabilisers

[29]. In this section the selection of the suitable feedback signals for damping system

oscillations is based on the analysis of participation factors of the system matrix 46.

Such an approach is based on [L42].

The concept of participation factors was proposed by Pérez-Arriaga in 19S1 [107]

as a means of providing a quantitative description of the participation of each state

variable in system oscillatory modes. A direct application of participation factors

to the so-called Selectiue Modal Analysis (SMA), a physically motivated framework

for understanding and simplifying complex models of linear time-invariant systems,

has been extensively discussed in [1a3]-[149]. Successful applications of this technique
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for choosing significant states for developing a reduced-order model of a large-scale

po\ryer system have been investigated in [146,147]. The concept has been applied to

the design of power system stabilisers with the use of eigenvalue sensitivities and the

SMA techniques [150], and to the analyses of power system oscillatory instability [151]

and small-signal stability [152]. As an extension of the applications, a novel approach

based on participation factors for the selection of a suitable set of feedback signals for

a Single-Input Multi-Output (SIMO) excitation controller was introduced in [1a2]. In

this section, the same approach as that in [1a2] is used to investigate the participation

of each state in the system oscillatory modes. Here, emphasis will be placed on the

damping effects introduced by the stabilisers using signals such as the speed deviation

and the electrical torque.

The basic concepts associated with participation factors are highlighted as follows.

Consider a linear time-inuariant dynarnic system of the form

X(t): AX(t) (2.12r)

with A : {a¿¡l¡ being an n x n system matrix that is assumed, for the sake of simplicity,

to have distinct eigenvalues l¿ (i : 1,2,..., n) [107]. The dynamic behaviour of the

system (2.L2I) can be described by the association between groups of state variables

and groups of natural modes of the system matrix A. This association is precisely

defined in [107] by means of the participation matrix i' : {þ¿¡} with elements

ñn¡ !i,,r,, (: #) e.nz)

where f o¡ (îò is the j-th element of the i-th right (left) eigenvector ñt (lo) associated with

the i-th eigenvalue (l¿) of A. The elements þ;¡ of F ur" termed participation factors of

the system and are dimensionless [146,142]. The time response of the system (2.LZI)

with the initial condition X(0) can be expressed as

x(t) : li,r xço¡"^,'rn
n

i=I
(2.r23)

where the right eigenvector, ñ;, describes the activity of each state variable in the i-th

mode while the left eigenvector, i¿, gives the state constitution of the mode. Assume

X(0) : e3., where er' represents the j-th unit vector (i.e., the j-th element of e¡ is 1,
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all others in e¡ are 0). The time response of the j-th state variable in (2.123) then

becomes

x¡(t) : ii;¡rr¡"^,' : ip,¡"^". (z.tz4)
i-1 d=l

This solution shows that ñ;¡ describes the activity of. x¡ in the i-th mode and,i;¡ weights

the contribution of this activity to the mode. Thus p;¡, according to its definition in

(2.124) (or (2.122)), gives the net participati,on of the j-th state variable in the i-th

mode.

The property of participation factors thus provides a means for determining the

participation of the state variables in the oscillatory mode of concern. To apply this

methodology to the SLAM given in Subsection2.4.2,, a set of measurable signals

ax(¿): Aar"(ú) LT.(t) LU(t) LEFD(I)
T

0

R"
îdo

,ffi^
_1

TA

(2.t25)

is used which replaces the set of state variables in (2.115) 192,142). With this new set

of state variables, the system matrix A6 in the SLAM is rewritten (see Section D.2 of

Appendix D) as

D
-ú

0

2H

0

0

-E.¿^1A

1

Ao: -2VoRz 
Rt-RzRtR"

r)oK" KrR6-K2K5
(2.126)

The decision on choosing suitable stabilising signals can then be made by analysing

the participation factors of the system matrix As in the above equation.

Given a system operating point (Xo,Zo,U"o), the elements of As are constant. The

eigenvalues of A6 in (2.126) describe the dynamic behaviour of the system free response

at the specified operating point, whereas the participation factors of A6 measure the

contributions of the system variables (2.125) to each mode that forms the system

free response. Since the role of power system stabilisers is to improve system damping

performance, and hence to extend the system dynamic stability boundary, the specified

operating point (Xo,Zo,U*s) is chosen to be close to the edge of the system steady-

state stability region. This facilitates the observation of the participation of the system

variables in the lightly-damped oscillatory modes.

R^ R,-R"R"R^
- "-r,¡rRftaãffi
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Two operating points are selected as study conditions

o a full-load lagging operating condition with Pr : 0.8 Pu, 8t : 0.3 pu, and

Vr : 1.0 pu;

o a full-load leading operating condition with Pr : 0.75 Pr, Qt : -0.1 pu, and

V¿: 1.0 Pu.

At each operating point the system response to a small disturbance is highly oscillatory

and barely stable. The system parameters ft; (i : 1,2,...,6) associated with the

equations of the SLAM are calculated in each study condition and their values are

listed in Table 2.2. The system eigenvalues and the corresponding absolute values of

the participation factors (indicated in the columns associated with each state variable)

at these two operating conditions are shown in Table 2.3.

I{t I{z I{s I{a I{s I{a

lagging t.0752 1.1807 0.3090 1.8798 -0.0595 0.8098

leading 1.2518 1.4762 0.3090 2.3500 -0.0896 0.5605

Table 2.2: System parameters at the lagging (Pr : 0.8 pu, Qt : 0.3 Pr, V: 1.0 pu)

and leadinB (Pr:0.75 pu, Qt: -0.1 Pr,V: 1.0 pu) operating conditions.

As expected, for the lightly-damped rotor oscillatory mode (-0.1602 + i7.0083

and/or -0.0750 +. j7.4619), signals Aø"(f ) and Af (ú) have much greater participation

factors than the other states. The voltage signals, LVr(t) and L,Ero(ú), show very

small participation in this mode. Hence, for successful damping of rotor oscillations,

one of the two signals, Aar"(l) and A[(ú), should be chosen as the stabilising signal.

Frequency analyses shown in [29] indicate that power system stabilisers utilising the

electrical torque (or power) signal as the input can be designed with a characteristic

that is less sensitive to high frequency noise and torsional interaction. This property is
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operating

conditions

participation factors --+

eigenvalues J

l'l
Atu"(t) LT.(t)

^uþ) ^E;(t)
lagging Àt,, -0.1602 + j7.0083 0.4800 0.4573 0.0514 0.0290

lt,n -5.4232 + j7.1957 0.0247 0.0476 0.5542 0.5784

leading \t,z -0.0750 + j7.4619 0.4782 0.4578 0.0789 0.0467

Àr,o -5.5085 + j5.6886 0.0481 0.0736 0.5945 0.6455

Table 2.3: System eigenvalues and participation factors at the lagging (P, :0.8 pu,

Q, : 0.3 pu, V : L.0 pu) and leading (P, : 0.75 pu, Q, : -0.1 pu, /, : 1.0 pu)

operating conditions.

superior to that associated with the use of the speed signal. The damping performance

associated with the use of the electrical torque (or power) input can be equivalent to

that with speed input but more robust [29]. In practice, the electrical torque (or power)

signal is easily measured or synthesised, while the location, on the shaft of a turbo-

generator, of a speed transducer requires special attention [eO]. for these reasons, the

electrical torque (or power) is chosen as the stabilising signal for the design of the

power system stabilisers to be discussed in the following chapters.

2.6 Controllability and Observability.

In this section:

o concepts of the controllability and observability of the models developed in Sub-

sections 2.3.1 and 2.4.2 are briefly introduced;

o aspects of the system realisation e and input-output properties are discussed.

sSe", e.g., [153] p.53
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Controllability and observability of a system are often the key concepts leading

to successful system identification and control. These concepts are also important to

the explanation of the system realisation and to the determination of the external

properties of the system models. The conclusions drawn from the discussion of this

section will be used for the modelling analysis of the linear adaptive power system

stabiliser to be discussed in Section 3.2.

For the discussion of the system observabilit¡ the system output equation is re-

quired. Such an equation depends on the selection of output variables in the models

presented in the previous sections. In general, the nonlinear output equation of the

po\Mer system can be written as

Y1r¡ : T(x(f), z(f)) (2.r27)

where Y(t) is the system output vector, and T(X(t),2(t)) is a nonlinear function.

For example, for the CSM3 given in Subsection 2.3.1, with the chosen system output

variables

y1t¡: Icfrl uØl ,

the nonlinear function T(X(ú), Z(t)) can be derived, on the basis of (2.88), as

T(x(¿), z(t)) : rq(t)E;(t) * (x: - x,) Id(t)Iq(t)

E;(t), +zx'oÛ'o(t)Id(t) + x; r¿(t), + xSrq(t)z

Equation (2.127) combined with the general form of the system state equation (2.58)

gives a complete state-space description of the nonlinear SMIB power system. It is seen

that the system described by (2.58) and (2.127) is functionally dependent (via func-

tions iÞ(x(t),2(t),u"(¿)), !tr(x(¿), z(t)), E(x(ú), z(t),,u,(t)), and T(x(ú), z(t))) on

the values of the state vector X(ú), the auxiliary variable vector Z(t), and the in-

put vector U"(f). Moreover, the system parameters, such as .8" and X", may change

according to changes in system configurations. This indicates that the system parame-

ters (or structures) are also implicitly dependent on time f . Therefore, a power system

formulated by (2.58) and (2.L27) is classified as a nonlinear time-uarying system.

Standard results concerning the controllability and observability of linear time-

invariant systems have been well documented (see, e.g., [153]). However, to handle
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nonlinear time-varying systems, new tools of differential geometry and topology are

needed. Basic concepts of these techniques have been given in [15a]. A detailed de-

scription of the principles can be found in [155].

One may wish to investigate the controllability and observability of the system (2.58)

and (2.127) using the above techniques. Difficulties arise as the system is high-order

with complicated nonlinearities. For sufficiently small alterations of the inputs LI¡, the

response of a nonlinear system is very close to that of its linearised model [taO]' fne

concepts of controllability and observability of the nonlinear system may then be pre-

sented for its equivalent linearised version in terms of the same concepts. Under these

conditions, the problems of controllability and observability of the tíme-aaryi'ng non-

linear system (2.58) and (2.L27) -uy be considered as the problems of controllability

and observability of the corresponding time-uarying linear system.

Consider the linearised time-varying system state equation (2.112) given by the

LAM in Subsection 2.4.2. To derive an equivalent expression for the linearised time-

varying system output equation, the same procedure as shown in Subsection 2.4.2 is

followed:

i) Linearise the nonlinear function T(X(ú), Z(t)) in (2.127) about the system operating

point (Xo.,Zo,U"o). This yields

T(Xo + AX(¿),7,o + LZ(t)) æ T(Xo,Zo) + T¡0AX(ú) +-rzoLz(t)

where

Txo
ôT(x(ú), z(¿))

ax(r)

ôT(x(¿), z(ú))
Tzo az(t) (xo'Zo)

are the Jacobian matrices of T(X(t),2(t)). The linearised system output equa-

tion is then expressed as

Av(¿) : T¡oAX(t) +TzoLZ(t) (2.128)

AY(ú) :Y(r) -Yo

A

A

(Xo'Zo)

where
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and, due fo (2.127),

Yo - T(Xo, Zo) :0.

ii) Substitute for LZ(t) from (2.111) into (2.128). A standard linearised system output

equation is obtained

AY(¿) : co^x(ú) (2.12e)

where

Co å T'xo Tzoúzo-r¡[rxo. (2.130)

In a similar manner as for Ao in (2.113), C6 in (2.130) may be explained as a

time-varying state-functional matrix that depends on the system operating point

(XorZo,U¡s) as well as the system parameters.

Hence, a complete linearised version of the nonlinear time-varying system (2.58) and

(2.IzT) is formulated by (2.rt2) (with (2.113)) and (2.129) (with (2.130)). It is linear,

time-varying in nature.

The general notions of controllability and observability of linear time-varying sys-

tems over the time interval [ú0, úr] are given in [156] (by Definitions 23.6 and 23.4

respectively). If it is assumed that each matrix in the system (2.112) and (2.t29) has

piece-wise continuous 10 elements over [0,*),then the system (2.112) and (2.129) is

controllable on [fs, ú1] if and only if the controllability Gramian

Wc (to,tr) : [" gt(tt,r)86(r)8 o*(r)p{ (t1,r) d,r (2.131)
Jto

is positive definite (see Theorem 23.5 in [156]); and the system (2.II2) and (2.129) is

observable on [ús,ú1] if and only if the obseraability Gramian

wo (to,tr) : [" p{ (r,ts)c6.(r)c o(r)ç¡(r,,ts) d,r (2.132)
Jto

satisfies the same condition (see Theorem 23.2 in [156]). The asterisk ,r. denotes the

complex conjugate transpose, and g¿ (¿, ¿o) is the state transition matrir. In theory,

for a given statematrix 46, %(t,ús) is known (according to Definition 11.2 in [156]).

rosee Definition 10.5 in [156].

70



Therefore, given the matrices As, Bs, and C6, the calculation of the system Gramian

matrices (2.131) and (2.132) is (at least theoretically) possible.

At a specific steady-state operating condition, the matrices As and Cs may be

considered to be constant so that the system (2.112) and (2.129) becomes linear

time-inaaríant. The basic controllability condition (2.131) and observability condi-

tion (2.132) that apply to the linear time-varying systems then reduce respectively to

the familiar linear time-inuariant condition that the system controllability matrix

c- Bs AoBo Ao"-tBo (2.133)

has full rank r¿ (see [153] Subsection 9.2.1), and likewise the system obseruability matrir

Cs

CoAo
(2.134)o-

CoAo"-t

has full rank n (see [153] Subsection 9.2.2), where n denotes the order of the system

For the analysis of computer-controlled real-time systems, it may become nec-

essary to use a discrete-time equivalent of the continuous-time system (2.112) and

(2.129). By taking the z-transform, a zero-order-hold sampling of the linear system

{Ao, Bo, C6} siven by (2.Ir2) (with (2.113)) and (2.129) (with (2.130)) may be de-

scribed bV {Ã0, É0, Õo} in the z-domain. It is well known that in linear tirne-inaaríant

cases the controllability condition (assuming that Ão is invertible) and the observability

condition of the discrete-time system are of the sameform as the conditions (2.133) and

(2.134) respectively. However, since the z-ftansform is a nonlinear transformation and

the resulting discrete-time system depends on the sampling period (e.g., see eqns. (3.4)

and (3.5) of [1a1]), the discrete-time system {Ã0, É0, Õs} -uy become uncontrollable

or unobseruable evenif the corresponding continuous-time system {Ao, Bo, Cs} is con-

trollable or observable [1a1].

As far as a SISO linear ti,me-inaariant discrete-ti.me system {Ã0,Ë0,õo} is con-

cerned, the following properties related to the controllability and observability of the

system are important [153,157].
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(1) The state-space system {Ã0,Ë0, eo} i. a minimal realisation 11 if and only if the

system is controllable and observable.

(2) The system transfer function

noç"¡leo [,r - Ão]-' Ëo (2.135)

{Ã0, É0, õo} it a minimalis irreducible (or coprime) if and only if the system

realisation.

These properties establish some theoretical foundations for the modelling analysis of

the SISO linear adaptive power system stabiliser to be discussed in Section 3.2.

2.7 Concluding Remarks.

In this chapter the modelling of the SMIB po\lrer system for studies in this thesis is

discussed. This facilitates the analysis and design of the linear and nonlinear opti-

mal/adaptive power system stabilisers, and the simulation studies for the evaluation

of the controlled system.

In Section 2.2tbreesimplified synchronous generator/tie-line models (SGMI' SGM2,

and SGM3) are developed from the basic equations of the synchronous generator/tie-

line given in Appendix A. These three models are ptesented in order of decreasing

complexity. Combination of these three models with id,enticøl models of the excitation

system, the governor, and the steam turbine results in three complete system models

(CSMI, CSM2, and CSM3) in Section2.3. The modelling accuracy of the three com-

plete system models is degraded in comparison with the system described by the basic

model given by Appendix A. The acceptance of the degradation is justified on the basis

that these complete system models are used for comparisons of system performance

with different cont¡ol strategies. It is based also on the need to reduce the compu-

tational burden. The significant decrease in modelling accuracy associated with the

11Se", 
".g., [157] p.19
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simplest power system model (CSM3 with D : 0.1 pu) is compensated for by increas-

ing the rotor damping coefficient D to a higher value (a.0 pu). Satisfactory agreement

in systemperformanceof the CSMS (D:4.0 pu) and the CSM1 (D:0.1 pu) is then

achieved. Selections of the CSM1 (,D : 0.1 pu) as the benchmark model for the SMIB

power system under study and of the CSM3 (D :4.0 pu) for controller analysis and

design are finalised.

Nonlinear and linearised analytical models (NAM, LAM, and SLAM) of the power

system are developed from the CSM3 in Section 2.4. The application of these ana-

lytical models is in the design of linear and nonlinear optimal/adaptive power system

stabilisers to be discussed in the following chapters. The nonlinearities associated with

the power system are classifred as two categories: the inherent nonlinearities and the

intentional nonlinearities. Elimination of the system intentional nonlinearities results

in the NAM in which the inherent nonlinearities of the system are still retained. The

NAM represents the CSM3 accurately within the range of linear operation of the lim-

iting nonlinearities; it thus can be used to derive a nonlinear nominal model 12 (see

Section 4.2) for the design of nonlinear optimal and adaptive power system stabilisers.

Linearisation of the NAM about a steady-state operating point results in the LAM

with its state matrix being linear, piece-wise, time-varying in nature. The LAM is

a aalid representation of the NAM in a neighbourhood of the steady-state operating

point of concern. Further simplification of the LAM yields the SLAM which is used for

the derivation of a linearised nominal model (see Section 3.2) for the design of linear

adaptive power system stabilisers.

In Section 2.5 suitable stabilising signals for improving the system damping per-

formance are chosen among the measurable state variables. From the analysis of par-

ticipation factors of the system state matrix as well as the consideration of practical

measurements, the electrical torque (or power) is selected as the feedback signal for

the stabilisation of the power system via excitation control. This knowledge will be

utilised for the design of power system stabilisers using different control strategies.

In Section 2.6 the concepts of controllability and observability associated with the

l2The definition of a *nominal model" will be given in Section 4.2.
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models developed in this chapter are discussed. For the purpose of providing a theo-

retical basis for the modelling analysis of the linear adaptive power system stabiliser in

Section 3.2, consideration is finaþ given to a SISO linear time-invariant discrete-time

model. The state-space and input-output properties established for this model will be

used in Section 3.2.

The extensions in this chapter to the previous work described in the literature have

been listed in Section 2.1.
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Chapter 3

SISO Linear Adaptive Power

Systern Stabilisers.

3.1- Introduction.

In this chapter the design of SISO línear ailaptiue power system stabilisers is discussed.

This forms the basis for the comparisons of system damping performance of the linear

adaptive and nonlinear optimal/adaptive control strategies to be conducted in Chap-

ters 4, 5, and 6, respectively.

In the literature, the so-called conventional power system stabilisers are based on

time-invariant linearised models of the nonlinear power system. Such models are ob-

tained from linearisation of the nonlinear power system about a chosen operating con-

dition and, subsequently, are valid only at the chosen operating condition. The design

of conventional power system stabilisers utilises classical control theory which gives

the required damping performance when the system is operating at the chosen condi-

tion. If the system operating point and/or the system configuration vary widely, the

parameters of the linearised models change. However, with fixed parameters, the con-

ventional pov/er system stabilisers are unable to respond satisfactorily over the wide

range of system operating conditions. If not designed properly, the system damping

performance may deteriorate significantly.
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Linear optimal control theory was introduced into the design of power system sta-

bilisers (e.g., [92,99,104]). Because a linear optimal power system stabiliser is still

based on a linearised time-invariant model of the nonlinear system, its damping per-

formance also degrades when the system operating condition changes from that at

which the optimal stabiliser is designed. There is, consequently, considerable interest

in the application of adaptive control theory for the design of power system stabilisers.

A key feature that distinguishes a linear adaptive power system stabiliser from a

conventional (or linear optimal) po\Mer system stabiliser is that, theoretically, the linear

adaptive power system stabiliser can track the changes in the system operating condi-

tion by changing its parameters on-line. In doing so, a ti,me-uarying li'near controller

is able to control the nonlineør system over a wide range of operating conditions.

Potential applications of the linear adaptive control theory to the design of power

system stabilisers have been explored in recent years. Considerable interest has been

shown in introducing a variety of linear adaptive control strategies into the design

of power system stabilisers, with the objectives of extending the operational margins

of the system stability and improving the system dynamic performance. It has been

shown, from simulation studies [49,53,54,56,58,64,65,66,74) and/or from laboratory ex-

periments [50,51,70,59,63], that well-tuned linear adaptive power system stabilisers can

provide substantial improvement in performance at various operating conditions'

In this chapter an evaluation of a linear adaptive power system stabiliser applied to

the SMIB power system given in Subsection 2.3.1 is conducted. The evaluation involves

the establishment of a linearised nominal mode for the design of the linear adaptive

power system stabiliser, the selection of the parameter estimation algorithm suitable

for the identification of the SMIB power system, the design of the linear adaptive

control law, and the assessment of the system damping performance of the resulting

stabiliser.

The organisation of this chapter is as follows. In Section 3.2 a linearised nominal

model is derived from the SLAM given in Subsection 2.4.2. Linear stochastic optimal

control of the linearised nominal model is discussed in Section 3.3. The linear stochastic

adaptive generalised minimum variance control algorithm is developed in Section 3.4.
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In Section 3.5 a linear adaptive weighted minimum variance power system stabiliser

is proposed. The damping performance of the proposed stabiliser is assessed through

simulation studies in Section 3.6.

The previous work described in the literature is extended in this chapter in the

following aspects:

1. The linearised nominal model used for the development of the linear adaptive

power system stabiliser is developed, d,irectlyfrom the mathematical model of the

SMIB power system described by the SLAM. The derivation procedure provides

insight into the model.

2. The commonly-used linear optimal control strategies for the development of linear

adaptive control laws are derived and discussed under a general form of the cost

function.

3. A linear adaptive weighted minimum variance power system stabiliser is proposed

for the SMIB power system described by the models given in Subsection 2.3.1.

The performance of the proposed stabiliser is evaluated at various system op-

erating conditions through a set of simulation studies and its effectiveness is

demonstrated by comparison with the performance of a well-designed conven-

tional power system stabiliser.

It should be pointed out that the theory for linear adaptive estimation/prediction/

control of SISO systems has been well documented. For this reason, proofs of lemmas

and theorems, as well as convergence analyses of algorithms used in this chapter are

omitted.

3.2 SISO Linear Input-output Power system Mod-

elling.

In this section
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. a SISO linear discrete-time input-output model of the power system is derived

from the SLAM given in Subsection 2-4.2;

o a linearised nominal model 1 in a regression form is then developed; this model

is used for the design of the linear adaptive power system stabiliser;

The choice of a linearised nominal model for the design of a linear adaptive power

system stabiliser is the first step towards the successful control of the system dynamics.

In the area of adaptive control, an appropriately chosen model for the estimator can

greatly simplify the parameter estimation procedure and facilitate the design of the

prediction and control algorithms for the system.

The significance of utilising linear adaptive control strategies for the design of power

system stabilisers is that for small dynamics the nonlinear po\l¡er system can be mod-

elled approximately by a time-uarying linearised form. Such a form can be called a

Iinear dynamic equiualent moilel [61] of the nonlinear power system. In this thesis, it

is termed a linearised nomi,nal mod,el for which linear adaptive control laws are to be

designed.

The structure of a linearised nominal model for the nonlinear power system can be

proposeil in a "black-box" form, in which a model with fixed order and fixed delay-

time but unknown parameters is assumed at first. The data collected from a detailed

simulation of the nonlinear power system (or from real-time field testing) is then fed

into the assumed model in order to modify the proposed model structure and to iden-

tify the unknown parameters (if required) [i5S]-[165]. This procedure is based on the

concept of the erternal equiualent [Ot] of the system. In the literature, the structure of

a linearised nominal model for the design of linear adaptive power system stabilisers

(or controllers) has been assumed as either a Deterministic Auto&egressiae Mouing-

Auerage (DARMA) model [45,49,50,68,53,69,56,58,59,62,63,64,65] or an Auto Regres-

siae Mouing-Auerage model with auXiliary input (ARMAX) 146,47,48,52,54,55,57,70,

71,72,60,61,67,74]l. 2

1In thi" thesis, a nominal model is defined as a model for which control laws are directly designed.

2The d.finitions of a DARMÂ model and an ARMAX model in linear forms are given in [157].
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Alternatively, the structure of a linearised nominal model can be deriued from a

reduced-order nonlinear model of the SMIB power system through linearisation and

discretisation. Theoretically, the validity of the derived model relies heavily on the tech-

niques that are employed in the linearisation and discretisation and/or the assumptions

that are introduced into the derivation of the model. Since a derived linearised nominal

model is based on a simplified nonlinear model of the po\ryer system, its validity needs

to be confirmed through external equiaalent studies as well. Nevertheless, a deriued

model provides insight into the system and, hence, confidence in using such a model

for design purposes.

Due to the time-varying nature of the model parameters, the order of a linearised

nominal model can often be lower than that of the actual nonlinear system. It is

required that such a model represent the dominant dynamics of the system and omit

the less significant dynamics of the system. The consequence of this requirement is to

simplify the design of the system controllers. Since the model is derived in a linear

form, linear adaptive control strategies that have been well documented can be applied

directly to the model.

In this section the linearised nominal model of the SMIB power system is ileriueil

from the SLAM proposed in Subsection 2.4.2. The layout of the remainder of this

section is as follows. A SISO linear continuous-time state-space model of the nonlinear

power system is given in Subsection 3.2.1. The subsequent discrete-time state-space

and input-output models are derived in Subsection 3.2.2. The final form of the lin-

earised nominal model for the design of the linear adaptive power system stabiliser is

determined in Subsection 3.2.3.

3.2.L SISO Linear Continuous-Time State-Space Power Sys-

tem Modelling.

As far as small signal excitation control of the power system is concerned, the nonlinear

SMIB power system can be described by the SLAM (2.II4) derived in Subsection 2.4.2
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with the linearised output equation (2.129) given in Section 2.6, i.e.,

axlt; : Aoax(ú) * b,sau'(¿) + b-6Au''(t), (3'1)

Lg(t): csAX(ú), (3.2)

where L,u,(t) is the input to the summing junction of the AVR-excitation system, and

is expressed as

Au"(t) : LV4(t) + Aú(ú) (3.3)

with AZ(f) being the control signal generated by the linear adaptive power system sta-

biliser which is to be designed; Au.'(t) is the deviation of the machine mechanical torque,

LT^(t), which has been considered as the system disturbance (see Subsection 2.4.2).

The matrix A6 and the vector cs are defined by (2.113) and (2.f 30), respectively. \Mith

the selection of the state variables, AX(ú), being the set of measurable variables given

by (2.125), A6 is derived in (2.126). The vectors b,,s and b'6 in (3.1) are written as

b,o: 000 Y-a,
îA

T

T

(3.4)

and

b.,o 1fr 000 (3.5)

The expression for the vector cs in (3.2) depends on the selection of the system output

variable, At(ú). Choosing Lú(t) to be the electrical torque deviation, LT"(t),3 c6 is

then given by

(3.6)C0: 0100

3.2.2 SISO Linear Discrete-Time Input-output Power sys-

tern Modelling.

For the sake of simplicity, the disturbance term Ato(ú) from (3.1) is omitted for the

time being. It is assumed that for small disturbances about an operating point, Ao in

3The re"son of using LT.(t) as the stabilising signal has been explained in Section 2.5
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(8.1) is a constant matrix. The so-called zero-ord,er-hold equiualent [1a1] of the linear

continuous-time state-space representation (3.1)-(3.6) is then described by

AX(kh + å) : Ãolx(*n) + Ë,oar,(kh), (3.7)

Lú(kh): c6AX(lclz), (3.8)

where

Ão : "Aon,, 
(3.9)

6,,0 : 
fon "oo'd,rb,o; (3.10)

l¿ is the constant sampling period and k € [0,1,2,...). An input-output representation

of the discrete-time state-space model (3.?)-(3.10) in the backward-shift operator form

is obtained by eliminating the state variables using purely algebraic manipulations to

glve

L!(kh): 
"o 

(l - q-'Ão)-t s-t6,oa u,(kh) (3.1 1)

where

q-L tgç*h¡ltgçkn - h), for fr à 1; q-'ly1o¡ê0,

and so on. It is assumed that

Assumption 3.2.1 In the mod,el (3.1)-(3.6) the system matrir Ao is nonsingular.

Assumption 3.2.2 The input signal LV"¡(t) is zero ercept in the cases in uhich

V"¡(t) has step changes.

Subject to Assumptions 3.2.1- 3.2.2,the SISO linear discrete-time input-output model (3.11)

can be rewritten as

LE@h): 
"o 

(l - q-t eLoh) 
-t 

ø-t.Lo-r (eAot' - r) u,on u&h), (3.12)

which utilises the result

)

The pulse-transfer olterator [1a1] of the model (3.12) is defined as

Ab,o o-'( eAoh I b,o

ã(q-1)9.0 (1- q-'"ooo)-t q-'Ao-t ("oo'- r) u,og "#
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The modei (3.12) can then be expressed as

Lg(kh): ã(q-l)a tl(kh). (3.14)

For convenience of notation, the sampling period å is omitted. The model (3.la) is

then written as

Ã(q-')Lg(k) : B(q-t)La(k) (3.15)

where the polynomial ,4 (q-t) ir of fourth-order and the polynomial B (q-t) it of third-

order.

For a given operating point of the nonlinear system, the state-space model (3.7)-

(3.10) and the input-output model (3.15) are time-invariant and linear. According to

the conclusions drawn in Section2.6, the order of the input-output model (3.15) is equal

to the order of the state-space model (3.7)-(3.10) if and only i'f the model (3.7)-(3.10)

is completely controllable and observable. In this case, the given system operating

point that determines a minimal realization of the state-space model (3.7)-(3.10) will

result in an irreducible pulse-transfer operator .F (q-1) (3.13), and therefore unique co-

efficients of the polynomial. ,4 (q-t) and B (q-t) it (3.15). However, as the operating

condition of the nonlinear system varies widely, the controllability and observability

of the model (3.7)-(3.10) over a wide range of operating conditions is not guaran-

teed, nor is the uniqueness of the coefficients of the polynomialt,4(q-t) and B(q-t).

Consequently, it may happen in theory that multiple sets of values of the polynomial

coefficients in (3.15) represent an identical operating point at which the controllability

and observability of the model (3.7)-(3.10) are not satisfied.

3.2.3 Linearised Nominal Model of the Power System.

From a practical point of view, one allows for measurement errors, actuator errors, and

in some instances computer round-off errors in (3.15) by assuming that

Assumption 3.2.3 For the model (3.15), the measurcd or computed aalues of the

input and output uariables, "(k) andy(k), sati'sfy that

sup lAy(k) - Lg(k)l I a',
0(/c(oo
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sup lAz(k) - Aa(k)l 1 Lz,
O(/c(oo

where A¿ (i : L,2) are fi,red lcnown uo,Iues.

Taking the omitted disturbance term Atr,r(t) and the errors introduced by Assump-

tion 3.2.3 into account, one adds a noise term Õ (q-t) ¿(k) in (3.15), resulting in

Ã(q-')Ly(k):B(q-r)au(k) +e@-t)e(k) (3.16)

where e k-\ is an unknown polynomial and {a(lc)} is uncorrelated with {Ay(k)} and

{^u(k)}.

For the system operating points at which zero-pole cancellations in,ã(q-1) (3.t3)

take place, the order of the model (3.16) is higher than it should be. In the context

of the adaptive estimation and prediction, an overparametric model may result in a

low convergence rate of the estimated parameters and, subsequently, a poor prediction

of the system output. To avoid it, the polynomialr Á (q-t) and .B (q-t) i" (3.16) may

need to be replaced by the corresponding lower-order ones. Consequently, a general

form of lhe Lineariseil Nominal Moilel (tNM) of the SLAM is described by

A(q-')Ly(k) : q-r B(q-1)A,u(/c) + C(q-l)e1t; (3.17)

where A(q-t) is of third-order

A(q-') - 1+ ate-L + orq-' + asq-3; (3.18)

B (q-t) is of second-order

B(q-t): óo * br,q-t * brq-'. (3.19)

The roots of the polynomial C (z) are restricted to lie within the unit circle of the

z-domain. The noise {.(k)} is an uncorrelated random sequence of zero mean and

is unmeasurable. The order of C (q-L) is to be specified. For the sake of simplicit¡

C (q-t): 1 can be taken 146,48,,54,55,57,70,7L,72,60,67,741. Note that the coefficients

of the polynomials in (3.17) are time-uarying in nature, in accordance with the changes

in system operating conditions. The LNM given by (3.t7)-(3.19) will be used for the

design of the linear adaptive power system stabiliser in the following sections of this

chapter.
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3.3 SISO Linear stochastic optirnal control.

In this section

o the SISO linear stochastic optimal control laws which lead to the corresponding

linear stochastic adaptive control laws are derived from a general form of the cost

function;

o features of the different linear stochastic optimal control strategies are described;

o aspects of utilising the different optimal control strategies for the development of

linear adaptive power system stabilisers are discussed'

The establishment of the LNM (3.17)-(3.19) in Section 3.2 provides a basis for the

design of linear adaptive power system stabilisers. As the LNM is given in an ARMAX

form, for a given control performance index in a stochastic environment linear stochastic

optimal control laws can be derived for the LNM. The derivation and discussion of the

linear stochastic optimal control strategies conducted in this section will establish a

foundation for the development of the subsequent linear stochastic adaptive control

strategies in Sections 3.4 and 3.5.

The layout of this section is as follows. In Subsection 3.3.1 a linear stochastic

optimal d-step-ahead predictor is given. The linear stochastic optimal control laws are

derived and discussed in Subsection 3.3.2-

3.3.1 SISO Linear Stochastic Optimal d-Step-Ahead Predic-

tor

Consider, in general terms, a SISO linear finite-dimensional tirne-inuariant discrete-

time rnodel given by

A(q-')y(k) -- q-oak-')"(fr) + C(q-L)e(k)
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where y(k)e¿is the output; u(k)e&is the control input; e (k) is a white noise satisfying

E{e(k) l.rr-r}:0, n{e@)'zlfu-'):o3, for k ) 1; (3'21)

d is the system pure time delay; A(q-t), B(q-'), and C(q-1) are polynomials of order

n) rn,, and /, respectively, and are given by

A(q-t) - 1+ orq-' +... + ane-n, (3.22)

B(q-t):óo*brq-r1...*b^e-^, (bo#0),, (3.23)

C(q-t): I + qq-r + -.. +.tq-l. (3.24)

The roots or. c þ) are strictly inside the unit circle of the z-domain.

For the model (3.20)-(3.24) having d-step pure time delag the optimal d-step-ahead

prediction, yo(k + d I k), of y@ 1 d) is given bv

Lemma g.g.t The opti,mal prediction of the output of the moilel (3.20)-(3.2Ð at time

(k + d) can be eupressed in the following preilictor form

C(q-')yo(k+dlk):a(q-t)a(k)+ 7Q-')"(k) (3'25)

where

yo(k+d,lk) L n{y]r+d) I Ft}:v&+d)- F(q-')e(k+d'), (3.26)

o(q-') g c(q-'), (3.27)

þ(q-') a r(q-')s(q-') (3'28)

with Bs: bo # 0. F(q-t) and G(q-r) are the unique polynomials of ord,er (d -l) and

(, - 1), respectiaely, satisfying

c(q-t) : F(q-t)A(q-') + q-dck-L), (/o : 1). (3.29)
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9.3.2 SISO Linear Stochastic Optimal Control Laws.

The linear stochastic optimal control performance index leading to the linear stochastic

adaptive control schemes is of the following form

r(k + a¡ ! n{ [rto-'1, & + d) - R(q-')v.(fr + d)) +[øtn-'l"trl]'] (3.30)

where A*(k+ d) is the desired output trajectory which the system should follow and

P(q-t), R(q-r), and Q(q-t) are the preselected weighting polynomials which are used

to penalise excessive control actions and to deal with nonminimum phase problems.

The leading coefficient of P(q-r), po, is taken as 1.

The optimal control law which minimises (3.30) sets

P(q-\ao(k + d I k) - R(q-')a" & + d) + u(k) :0 (3.31)

which utilises the definition of yo(k + d, l k) in (3.26), the optimal d-step-ahead predic-

tor (3.25), as well as the numerical characteristics of e(k) in (3.21). The consequent

linear optimal control law as well as its closed-loop characteristics is then given by

Theorem 3.3.1 For the model (3.20)-(3.24) haaing the optimal predi'ctor (3.25)-(3.29)'

(a) the optimal control law minimising the cost function (3.30) has the form a

L(q-L)u. (k) : M (q-')a- & + d) - P(q-')a@) (3.32)

where L(q-'), M(q-'), and P(q-t) are def'ned as

L(q-') ! pQ-\ p(q-') + wt(q-'),
M(q-') a R(q-')c(q-'),

P(q-') L P(q-')o(q-');

aNote that in this thesis the finalfotmof.the optimal conlrolinput is symbolised by u-(È)

(3.33)

(3.34)

(3.35)
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(b) the closed-loop system is gi,uen by

-(q-,, l,:åí, I 
: 

l:l;_,Ël;_,ì ::î¿,,] I

y-(k + d)

e(k + d)
(3.36)

where

.(q-,) L p(q-\a(q-') + W^(q-'); (3.37)

(c) the resulting closeil-loop system (3.36)-(3.37) is bouniled-input bounded-output

stable proaid,ed, that

.(,-') L PQ-\nþ-') +W^Q-\ I o, for atl l,-'l < t.

Discussions of different linear stochastic optimal control schemes.

The cost function (3.30) describes the following important cases, each resulting in a

linear optimal control scheme:

(1) Select P(q-t) : A(q-t): l and Qk-t):0. A minimumuariance controlleris

formed from (3.32)

þ(q-')".(k) : C(q-')a-(k + d) - o(q-')y(r). (3.38)

The resulting closed-loop system poles are given by

B(z-t) :0.

The features of a minimum variance controller are:

- the controller can only be used when the system is minimum phase;

- with a small value of the leading coefficient of the polynomial þ(q-t), un

excessive control effort may be called for.

(2) Select P(q-t):A(q-t) :1and Qk-') : Àå (whereÀ> 0). Aweishted

minim,um uari,ance controller is formed from (3.32)

[øtn-'l 
* àrrn-')] 

,.(t¡ : c(q-')v.(k + d) - o(q-')v(*). (3'3e)
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The resulting closed-loop system poles are given by

B(q-')*àoro-'):0.

The features of a weighted minimum variance controller are:

- by including a weighting coefficient I into the construction of the control

law, the controller can be used to stabilise a nonminimum phase system;

- with a suitable choice of the value of À, excessive control actions can be

penalised without losing the optimal control effect;

- the controller will, in general, produce a steady-state tracking error unless

the control action converges to zero in the steady state.

(3) Select P(q-t): Ã(q-t) : 1 and Qk-'): À+(1 - q-1). An intesrated, minimum

uariance controller is formed from (3.32)

lo
(q-')

À_r_
'þo (t - o-') ck-') ".(k) 

: C(q-')y.(k + d) - o(q-')y(t ). (3.40)

The resulting closed-loop system poles are given by

IB(q-') *Bt (r - o-') A(q-l) :0.

The features of an integrated minimum variance controller are:

- the controller can be used for a nonminimum phase system;

- zero steady-state tracking error is guaranteed by the introduction of a pure

integrator into the control loop;

- the effect of "integral wind-up" may result if saturation in the input and/or

the output signals occurs.

(4) Solve P(q-t) and Q(q-l) from

.(q-'): P(q-t)B(q-')+ QQ-')qo Oto-l1 : A*(q-r) (r.+r)'Po"\Y)

where A-(q-t) defines the prespecified locations of the desired closed-loop poles.

Let M(q-L): q-oP(q-t) (i."., choose Æ(q-t) such that
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R(q-t)C(q-t) : q-oP(q-t)o(q-t)). A pole ass'ignmenl controller is formed from

(3.32)

t (q-t)u*(k) : P(q-') ly"(k) - y(k)1.

The resulting closed-loop system poles are given by

A*(q-t) :0.

The features of a pole assignment controller are

- the choice of A.(q-1) is random provided that a unique solution of P(q-1)

and @(q-1) can be found from (3.41), i."., A(q-t) and B(q-l) arc relatiaely

prxrne;

- a poor choice of A.(q-l) may lead to an unstable L(q-t), thus an unstable

controller.

Remark 3.3.1 The linear optimal control schemes giuen by (3.35), (9.39), and (3.10)

can be surnmari,sed uniler the name o/generalised minimum variance control [166,167].

Utilisation of the linear stochastic optimal control schemes for the develop-

ment of linear adaptive po$/er system stabilisers.

The linear optimal control laws given above provide the bases for the development

of the corresponding linear adaptive control algorithms. To choose an appropriate

optimal control scheme for the design of a linear adaptive power system stabiliser, the

following basic requirements are essential:

(1) the control scheme should be able to stabilise a nonminimum phase system;

(2) the control action generated by the control law should not saturate during the

system dynamics following a disturbance;

(3) the design of the control law should not rely heavily on the a priori knowledge

of the system;
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(a) the computation of the control action should not affect the practicality of the

control algorithm;

(5) the resulting controller should be able to be tuned by one parameter in the control

law, to achieve the best trade-off between the system performance and the control

effort.

Based on the above requirements, the following are considerations which need to

be taken into account when applying the different linear optimal control schemes to

the design of linear adaptive power system stabilisers [49,43,44):

¡ The minimum variance control scheme is not suitable for the adaptive excitation

control of power systems because

- the resulting closed-loop system will be unstable if the system is nonmini-

mum phase;

- an excessively large control action will cause the exciter to reach its ceiling

level with the result that poor damping performance of the system occurs.

o The integrated minimum variance control scheme may not be suitable for the

adaptive excitation control of power systems because

- during large excursions of the system variables, saturation of the input

and/or the output signals occurs. The integrator output will then build

up to a large value which leads to poor control system performance or even

instability.

o The pole assignment control scheme may not be suitable for the adaptive excita-

tion control of power systems because

- it may be difficult to choose the closed-loop system poles which are appro-

priate for a wide range of system operating conditions;

- the computation burden in calculating the control action may become ex-

cessive, since at each iteration two identity equations ((3.29) and (3.41)) are

required to be solved;
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- a poor choice of A.(q-l) may lead to an unstable control action and, thus,

poor damping performance.

It can be seen from the above discussion that the weighted minimum variance control

scheme meets the basic requirements (1)-(5) and is simple to be implemented in prac-

tice. Since a high-gain AVR is usually used in the excitation control system, for stable

system responses the control action ,.(k) from (3.39) will converge to a very small

value in the steady state, as expressed by

*!¡g |".(k)l ( .,,' (3.42)

where €,,* is a small constant which is dependent of the value of the gain of the AVR.

It should be emphasised here that an important advantage of utilising the weighted

minimum variance control scheme for the development of the linear adaptive power

system stabiliser is that, due to its simplicity, it can be extended into a nonlinear

control case. This advantage will facilitate the comparisons of system performance of

the linear adaptive and nonlinear optimal/adaptive control strategies to be conducted

in the following chapters.

Remark 3.3.2 The features of the adaptiae ercitation control of power systems as-

sociated with the use of the optimal linear quadratic control scheme anil the model

reference control scheme are described in ft9,131, howeuer they are not includeil in this

thesis.

Remark 3.3.3 Modifi,ed uersions of the pole assignment control law, called the pole-

shifting control law [19,50] and the self-searching pole-shifting control law [53,5],55,

56,701, haue been proposed and implemented in the literature. Howeuer, d,ue to the

complerity in computation, these control laws may not be easily extended into a non-

linear control case and, thereforc, are considered to be unsuitable for the purposes of

this thesis.
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3.4 SISO Linear Stochastic Adaptive Generalised

Minimum Variance Control.

In this section:

o aspects of the selection of the parameter estimation algorithm for the identifica-

tion of the LNM are discussed;

o the SISO linear stochastic adaptive generalised minimum variance control algo-

rithm is described.

The derivation of the linear stochastic optimal control laws discussed in Section 3.3

provides a basis for the development of the linear adaptive control laws for the LNM.

Since the parameters of the LNM are time-uaryi.ng and, in general, are unlenown in

nature, a properly selected parameter estimation algorithm is incorporated into the

control law (3.32) to identify the model or the controller parameters on-line. The

control law is then updated using the estimated parameters as if they were the true ones.

Such a design scheme is based on the so-called certainty equiualence principle [37]. If

the estimated parameters are the controller parameters, the resulting adaptive control

algorithm forms a d,i,rect self-tuning adaptive controller. However, if the estimated

parameters are the model parameters, intermediate control design calculations are

needed at each iteration step in order to obtain the controller parameters. The resulting

adaptive control algorithm is then called an indirecú self-tuning adaptive controller.

The layout of this section is as follows. In Subsection 3.4.1 the selection of parameter

estimation algorithms for on-line model identification of power systems is briefly dis-

cussed and the basic algorithm used for the simulation studies of this thesis is finalised.

In Subsection 3.4.2 a direct SISO linear stochastic adaptive generalised minimum vari-

ance control algorithm is described.
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3.4.I Parameter Estimation Algorithms for the Linearised

Nominal Model of the Power Systern.

In an adaptive control scheme, the parameter estimation algorithm plays an important

part in the successful control of system dynamics. Standard parameter estimation

algorithms, such as

o projection method;

o least squares method;

o instrumental variable method;

o extended least squares method; etc.,

have been well documented in the literature (e.g., [168,157,169,170]). The applications

of these algorithms to a variety of fields of studies have been widely reported. One of

the most popular methods, the recursiue least squo,res algorithm, has been accepted as

a suitable standard, algorithm for the parameter estimation in power system studies.

Several modified versions of this standard algorithm have been proposed and imple-

mented for the identification of power systems either through simulation studies [57,61]

or laboratory experiments 17I,72167).

For identifying a steady-state po\¡/er system at a fixed operating point, the unknown

parameters of the LNM are time-invariant. The standard recursive least squares algo-

rithm can then be used without modifications. However, as indicated in Section 3.2,

the parameters of the LNM are time-varying due to the changes in system operating

conditions. This nature of the parameters of the LNM requires that the estimation

algorithm possess the ability to track the parameters. The standard recursive least

squares algorithm does not track the changes in the parameters well. This is because

after the initial convergence of the estimated parameters, the covariance matrix P(k)

in the algorithm becomes very small and the estimator is close to a 'switching-off'

condition. To improve the tracking ability of the algorithm, several modifications have

been proposed [45,47,57,7L!. Among them, the application of an exponential forgetting
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factor, ¡1, with a constant value of less than one has received considerable attention

145,57.,71,72,61,64,671. The best value of p depends upon the system operating condi-

tion. For small variations from the system steady-state operating point, the value of

p should be close to unity, but for large excursions in the system operating condition,

the value of p should be less than one. Since the covariance matrix P(k) is constantly

scaled by ¡;, the phenomenon whereby the matrix P(fr) 'blowing-up'occurs if p is cho-

sen relatively small while the system is operating at a steady-state point for a long

time. When this happens, the estimator becomes very sensitive to any disturbances

or numerical errors in computation. A small disturbance or numerical error will cause

bursting in the estimated parameters [171,54].

To overcome this problem, a time-varying forgetting factor, p(k), has been proposed

instead [171]. The proposed structure of p,(k) is a function of the error, e(k), between

the system output variable and its prediction, i.e.,

t &) : r - W ;(f): d _ L)ó(k_ ¿) rto.

For steady-state operation, the error e(k) is close or equal to zero. The value of ¡r(ft) is

then close or equal to unity preventing the matrix P(k) from'blowing-up'. For small

disturbances, p(k) decreases as e(k) increases. This improves the parameter tracking

ability of the estimator and prevents the estimator from 'switching-off'. The occurrence

of large disturbances causes p,(k) to decrease significantl¡ resulting in fast parameter

tracking.

The above approach (or other similar versions of this method, e.g., [60]) has been

employed in several applications of adaptive control to power systems in the literature.

Its performance in tracking parameter changes over a wide range of system operating

conditions has been verified through simulation studies [53,54,56,58,60,65,74] and ex-

perimental results [70]. This approach is adopted to form a basic parameter estimation

algorithm for the design of the linear adaptive power system stabiliser in this chapter

and the nonlinear adaptive power system stabilisers in Chapters 5 and 6. The detailed

forms of the estimators will be given in Subsection3.4.2 and Sections 3.5 and 5.2, along

with the relevant control laws.
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3.4.2 SISO Linear Stochastic Adaptive Generalised Mini-

rrlum Variance Control Algorithm.

The design of an adaptive control law involves the combination of a parameter estima-

tion algorithm with an optimal control law. This combination results in the controller

possessing the ability to adapt to variations in operating conditions of the nonlinear

power system.

Combining the linear optimal control law (3.32) with the recursive least squares

algorithm with the time-varying forgetting factor selected in Subsection 3.4.1, one ob-

tains the basic structure of a linear adaptive power system stabiliser. To derive a direct

adaptive generalised minimum variance control algorithm from (3.32), an auxiliary

variable g(k + d) and its optimal prediction g"(k + d,l k) are introduced as

e& + ù ! P(q-')y(k + d) - R(q-')y.(k+ d) + W^r, (s.4s)

and

e.(k + d, I k) ! P(q-')yo(¿+ d, I k) - R(q-')y.(k+ ù +ffr@. (3.44)

Due to (3.26), it follows from (3.43) and (3.aa) that

e-(k + d.l k) : ç(k + d,) - e*(k + d) (3.45)

where

e,(k + d) t Pk-')r(q-')'(k + d,); (3.46)

{rr(k +d)i is uncorrelated with {y(f)} and {u(k)}. According io (3.26), (3.25), and

(3.31), an equivalent form of the model (3.20)-(3.24) can be derived from (3.43)-(3.a6):

e@+d) : P(q-')y(t) + L(q-t)u(k) - M(q-')y.(k+ d) +e*(k+d)

ê ó@)'@o + e,(k + d) (3.47)

where P(q-t),, L(q-t), and M(q-L) are given by (3.35), (3.33), and (3.34), respectively,

and
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ofl A 
I r. pt to 11 Trrs rr.1 ] (3.49)

The optimal control law given by (3.32) is then written concisely as

d(k)Îoo: o

with u(k) in (3.aS) denoted by u.(f).

Using the certainty equivalence principle, the d-step-aheail adaptiae pred,iction,

,þ(k + d), of. p(k + d) in Q.a7) can then be defined as

,þ(k+a¡L6çtc¡r61*¡

where

o(¿)" a lø.f*l p,(k) îo(k) î,&) ño(k) ,î,,(k) ] (3.50)

ô1f¡ ir the estimate of O¡ (3.49). Hence, the adaptiae control u(k) is chosen such that

d(k)ro(k) :0. (3.51)

The linear estimate O1&¡ of Oo is obtained at each iteration step by using the

selected recursive least squares algorithm with the time-varying forgetting factor. At

the sampling instant k, the vector of the parameter estimates previously available is

O(¿ - 1). A new estimate O(k) of the parameters can be generated by the following

algorithm. Note that as the algorithm is given in a direct form, the control input u(k)

is solved directly by using the estimated controller parameters in O1f¡ 1a.SO¡.

Algorithm 3.1 [direct SISO linear stochastic adaptive generalised minimum

variance control algorithm.]

Estimate:

o(¿) : o(r - 1) + P(k - d,)ó(k - ùle],) - ó(k - d)r'6@- 1)] ;

Covariance:

P(k - d):

96



Auxiliary Vaúable:

Prediction:

Error:

Factor:

t(k):

p(k) :

Qk-')qo
þo

p(k): P(q-\a(k) - A(q-')y.(k) + u(k - d);

,þ(k):ó(k-a¡rõg'-a¡;

e(k): v&) -,þ(k);

,, (L\- 1 - 
e(k)2 r

r¿uvv/ - r 
L+ ó(k_d)rp(k_d_r)ö(k _d) Eo,

po(k)

llmi'n

r'(k)

1

if ¡,ts(k) ) p,*;n ) 0

otherwise

trace[P(k - d)] <Cif
l'(k)

otherwise

Control Law:

where k> d, P(-l) : I{oI (0 < 1(0 < C),and p,(d - 1): 1. P(q-t),,,R(q-1), and

Qk-') are preselected weighting polynomials. Eo, p^in, and C are preselected positive

constants. O(lc) ana $(k) arc defined by (3.50) and (3.a8), respectivety. O(O) is given.

VVV

Remark 3.4.1 In Algorithm 3.1, it is required that

0 ft@ be non-zero for all k. If this assumption is aiolated in practice, it is then

necessary to introiluce boundaries in the estimate i,n order to preaent îoçtt¡ ¡ro*
being zero.

(ä) the aalue of þo be known.

Remark 3.4.2 The introduction of þ^;n and C in the algorithm is to guarantee the

connergence of the estimates [172,173].

¿1r)îo(r) : o;
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Algorithm 3.1 will be used in Section 3.5 for the development of the desired linear

adaptive power system stabiliser.

3.5 A Linear Adaptive Weighted Minimurn Vari-

ance Power System Stabiliser.

In this section

o the SISO linear stochastic adaptive weighted minimum variance control algorithm

is developed from Algorithm 3.1 given in Subsection 3.4.2;

o a linear adaptive weighted minimum variance power system stabiliser is proposed

o the control structure of the SMIB power system equipped with the proposed

linear adaptive po\¡/er system stabiliser is given.

Algorithm 3.1 proposed in Subsection 3.4.2 can be used for the implementation of

the three important linear adaptive controllers as discussed in Subsection 3.3.2 (see

Remark 3.3.1). Based on the discussions of the features associated with each control

law in Subsection 3.3.2, the weighted minimum variance control law is adopted for the

development of the linear adaptive power system stabiliser. As indicated previously,

the advantage of using this control law is that it facilitates the development of a

corresponding nonlinear control law and the comparison of system performance of the

linear and nonlinear ad,aptive control strategies.

With the selections of P(q-'): Æ(q-t) : 1 and Qk-\: Àå, Algorithm 3.1 imme-

diately results in a d,irect SISO linear adaptive weighted minimum variance controller.

Furthermore, it is assumed that C(q-t) : 1 in the LNM (3.17)-(3.19) in which the

time delay d, : I. From (3.33)-(3.35), it follows that the estimated controller param-

eters of the polynomials L(k,q-'), P(k,g-l), and tut(*,q-t) ir Algorithm 3.1 can be

constructed, directly by the estimated moilel parameters of the polynomiats ,Â(t,q-l)
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and -B(k, q-t) of the LNM, i.e.,

L(t ,q-t): Bçk,q-t) + #,
Î'U',q-'): [1 - Â(*,q-t)]q,,

and

U(*,q-t) : 1'

The incremental notations for the input and output signals of the LNM are used, and

the control law (3.51) can then be reconstructed ilirectly by the estimated parameters

of the LNM, i.e.,

ö&)?6:,J)+*¡,(k) :o (3.52)' óo(fr) \ /

where

ô(r)'ê | a,1rl î,,(k) a"@) óo(k) ó,(k) å,(fr) ] , (3.58)

ó(k)'ê [ -ly1r¡ -a,y(k - t) -Ly(k - 2) az(k) az(k - 1) a,u(k - 2)l
(3.54)

Hence, an ind,irecú SISO linear adaptive weighted minimum variance control law for

the LNM can be developed from Algorithm 3.1, and is given by Algorithms 3.2(A)

and 3.2(B) for the parameter estimation and the calculation of the control input,

respectively.

Algorithm 3.2(A) [indirect SISO linear stochastic adaptive weighted mini-

mum variance control algorithm - parameter estimation.]

Estimate:

Covariance:

P(k-1) :

o(¿) : o(¿ - 1) + P(k - r)ó(k - t)[ay(k) - l:û(¿)] ;

Lû(k):ó(k-r)"ô(r-r);
Prediction:

99



Error:

Foryetting Factor:

e(k): Ly(k) - Lû(k);

p(k): po(k)

þrnin

rro(k)- 1 - 1 + d1*- ¡iftYr - 2)ö(k- r) j,,

if. ps(k) ) ¡1,*;n ) 0

otherwise

trace[P(k - 1)]if <C
p(k) :

1 otherwise

where k) I, P(-1) - KoI (0 < /(o <C), and ¡r(0) - 1. Ð0, pmint and C areprese-

lected positive constants. ô(f) ana þ@) arc defined by (3.53) and (3.5a), respectively.

ô10¡ ir given.

VVV

In practice, the control signal A,u(k) in (3.52) is bounded by physical limits. The control

law (3.52) is then modified to form the desired Li,near Adaptiue Weighted, Minimum

Varia,nce Power System Stabiliser (LAWMV-PSS) which is described as

Algorithm 3.2(B) [indirect SISO linear stochastic adaptive weighted mini-

mum variance control algorithm - control law.]

p(k)

L,u(k):

r'(k)

utnar if uo(k) ) u,mar

"o(k) il u*¿n < ro(k) 1u^o, ,

u¡nin if uo(k) 1 ll*in

(3.56)

where I is the weighting coefficient, 'u^o, aîð, nmin are known constants, and the

estimated parameters are provided by Algorithm 3.2(A).
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1,/

Clearly, the calculation of the control action of the LAWMV-PSS is a t

procedure:

¡ the recursive least squares algorithm with the time-varying forgetting factor (Al-

gorithm 3.2(A)) provides the estimated parameters of the LNM;

o the control law (3.55)-(3.56) (Algorithm 3.2(B)) generates the control signal by

the use of the estimates of the LNM.

Remark 3.5.1 The aduantage of using an ind,irect form of the control algorithm (Algo-

rithms 9.2(A)-(B)) is that the requirements in Remarlc A.4.1(i)-(ü) need, not be inuolued.

AIso, since the conhvl law (3.55)-(3.56) is constructed by the estirnated pammeters of

the LNM, intermediate calculations of the controller parameters are not need,ed'.

The system to be stabilised is a SMIB power system, the models of which have

been derived in Subsection 2.3.1. The control structure of the system equipped with

the proposed LAWMV-PSS is illustrated in Fig. 3.1. The stabilising signal, Ly(k),

is the deviation of the machine electrical power, LP.(k) (or torque, A?i(k)). The

performance of the LAWMV-PSS will be evaluated in Section 3.6.

Remark 3.5.2 It should be pointed out that the output trajectory y.(k) in Fig. 3.1

can be proaided by feeding back the output uariable y(k) through a low-pass filter. The

frequency of the low-pass fi,lter should be designed such that any rotor oscillati'ons can

be attenuated, while the rnarimurn rate of the loading due to the mechanical system can

be followed. Howeaer, for the sake of simplicity, y.(k) is set, artif,cially, to be the

reference pouer (P,"¡(k)) in the simulation studies of this chapter. The same approach

wi,ll be utilised in Chapters I to 6.
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Figure 3.1: Control structure of the SMIB power system with the LAWMV-PSS.

3.6 Evaluation of the Perforntance of the Linear

Adaptive Weighted Minimurn Variance Power

Systern Stabiliser.

In this section:

o the validity of the LNM derived in Subsection 3.2.3 to represent the nonlinear

power system (csM3) is verified through erternal equiualent studies;

o the performance of the LAWMV-PSS proposed in Section 3.5 is evaluated through

simulation studies;

o the robustness of the LAWMV-PSS is tested with unmodelled dynamics and

modelling errors.
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The LAWMV-PSS proposed in Section 3.5 is implemented via excitation control of

the SMIB power system modelled in Subsection 2.3.1. The steam turbine of the power

system is controlled by the conventional speed-governor as described in Appendix A.

A sampling period of 20 ms is chosen for the simulation studies of this chapter as

well as the following chapters. This period has been used in laboratory experiments in

the literature and found to be satisfactory [68,71,67].

The procedure for the simulation studies in this section is as follows:

o The LAWMV-PSS is iniúiøl/y designed for the CSM3 (D : 4.0 pu), the per-

formance of which has been verified, in Subsection2.3.2, to give the satisfactory

agreement with that of the higher-order, more accurate model of the actual power

system (CSMI with D : 0.1 pu). A series of simulation studies will be conducted

for the CSM3 equipped with the LAWMV-PSS to evaluate the performance of

the LAWMV-PSS.

o The effectiveness of the LAWMV-PSS will be further tested through robustness

studies. The major issues of concern in this type of study have been explained

in Subsectiot 2.3.2. The simulation studies will involve the replacement of the

CSM3 by the CSMI, and will include different situations in which the LAWMV-

PSS is subjected to unmodelled dynamics and modelling errors. These studies

will confirm the validity of the proposed LAWMV-PSS.

Note that lhis procedure will be followed by the simulation studies in Chapters 4 to 6

for the evaluation of the nonlinear optimal and adaptive power system stabilisers which

will be designed later.

To fulfill the above procedurc, three Stages of simulation studies are conducted

Stage 1: Verification and identification of the LNM - to examine the performance

of the estimated LNM in tracking and predicting the dynamics of the nonlinear

power system (CSM3) at different system operating points with different system

configurations.
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Stage 2: Evaluation of the performance of the LAWMV-PSS - to compare the dy-

namic and transient behaviour of the LAWMV-PSS with that of a well-designed

conventional power system stabiliser at different operating conditions and under

fault conditions.

Stage 3: Studies on the robustness of the LAWMV-PSS - to test the performance

of the LAWMV-PSS when the CSM3 is replaced by the CSMI.

The implementation of the above three Stages will be discussed in the following Sub-

sections 3.6.1, 3.6.2, and 3.6.3, respectively. The parameters and limits associated with

the SMIB po\ryer system and the LAWMV-PSS are listed in Appendix C. The simula-

tion results obtained from this section will be used as a reference for the comparisons

of system performance of the linear and nonlinear control approaches in Chapters 4

and 6.

3.6.1 Verification and Identification of the Linearised Nom-

inal Model of the Power System.

In this subsection the validity of using the estimated LNM to represent the nonlinear

power system (CSM3 with D : 4.0 pu) is verified through simulation studies at differ-

ent system operating points with different system configurations. The output signal is

the machine electrical torque deviation, LT"(k). This subsection is the implementation

of Stage 1.

Aims and structure of the simulation studies.

The nonlinear polver system (CSM3 with D - 4.0 pu) is operating at a specified

steady-state operating point. An erternal Pseudo Random Binary Sequence (PRBS)

signal is used as the control signal u(k) which is injected into the summing junction

of the input of the AVR to excite the dynamics of the nonlinear po\l/er system. The

PRBS signal as well as the sampled output signal (A,?}(k)) from the CSMS is fed into
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the estimator, the model of which is the LNM. At each sampling instant, the estimator

generates the estimated parameters (O(/c)) and the predicted output (A?"(fr)) by the

implementation of the recursive least squares algorithm with the time-varying forget-

ting factor (Atgorithm 3.2(A)). The configuration of this study is given by Fig. 3.25.

The aims of this study are

o to confirm that the estimated LNM is an adequate representation of the CSM3;

o to examine the convergence of the estimated parameters;

o to verify the output tracking ability of the estimated LNM at different system

operating conditions.

V,"(t)+ T"(0

+

T.(k)

y*(k)

Áu(k)
(PRBS)

Figure 3.2: Structure of the verification and identification of the LNM

The PRBS signal is generated by a seventh-order shift register. The step length

and clock period of this signal are chosen to be 100 ms, and its amplitude 0.002 pu,

causing about 2To pertwbation about the specified operating point.

A variety of system operating points have been tested. Two of them are selected

as examples:

sSee Remark 3.5.2 for the explanation of the signal y-(k) in Fig. 3.2.

+

e(k)

(k)@

SMIB
Power System

DAC ADC

^a(k)

+

Estimator
(LNM)

^T"(k)
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o Lagging Operating Point: Pt:0.6 pt, Qt: 0.3 Pu, % : 1'0 pu;

o Leading Operating Point: Pt:0.4 pr, Qt: -0.1 pu, y¿ : 1.0 pu

Three simulation studies at the above two operating points are constructed as follows:

Case 1: The system is operating at the lagging operating point with the original

system parameters (as listed in Appendix C).

Case 2: The system is operating at the leading operating point with the original

system parameters.

Case 3: The system is operating at the lagging operating point with the original

system parameters except that the value of the transmission line reactance, X",

is doubled; this represents a change in the system configuration.

The simulation results associated with these three cases are given by Figs. 3.3-3.4 and

Tables 3.1-3.2. The estimator parameters are: I{o - 104, C - 10u, þmin:0.2, and

Eo : 0.8. The initial value of the estimate, O(O), is set to zero.

Analysis of the simulation results.

The estimated parameters of the LNM in Case I are plotted in Fig. 3.3. It is seen that

all estimates converge satisfactorily. The responses of the electrical torque deviation of

the generator and its prediction of the estimated LNM in this case are superimposed

in Fig. 3.4, from which it is seen that the estimated LNM describes the dynamic char-

acteristics of the machine electrical torque deviation around this operating condition.

These conclusions about the convergence of the estimated model parameters and the

output tracking ability of the LNM in Case 1 are also applicable entirely to Cases 2

and 3 the graphs of which are, therefore, omitted.

Notice that Cases 1 and 2 represent the situation in which the power system works

at differenú operating points with the sanle system configuration, while Cases 1 and 3

represent the situation in which the power system works at the salr¿e operating point
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but with different system configurations" To demonstrate the ability of the LNM to

identify the power system in different system operating environments, two tables of

simulation results are given by Tables 3.1-3.2. Table 3.1 shows the converged values

of the estimates of the LNM for the three simulation cases, while Table 3.2 lists the

identified zeros of the polynomials of the LNM for each case. It is seen that if the system

operating point and/or the system configuration change, the estimated parameters of

the LNM change, resulting in the changes of the identified zeros of the polynomials

of the LNM. It is then evident that the estimated LNM can adapt to the changes

in the system operating environment by giving different sets of estimates as well as

polynomial zeros in its linear representation.

A1 ú2 Ag åo E, b,

Case 1 -t.2623 -0.2932 0.5975 0.0424 0.0472 -0.0245

Case 2 -r.2540 -0.2677 0.5730 0.0462 0.0568 -0,0189

Case 3 -t.292r -0.2840 0.6037 0.0315 0.0371 -0.0259

Table 3.1: Estimated parameters of the LNM for Cases 1-3.

zero 1 zero 2 zeto 3

Case 1 ¡(q-') -0.6423 0.9523+j0.1527 0.9523-j0.1527

nG-') 0.3860 -1.4995

Case 2 Â@-') -0.6275 0.9408+j0.1673 0.9408-j0.1673

nk-') 0.2720 -1.5019

Case 3 ¡(q-') -0.6377 0.9649+j0.1248 0.9649-j0.1248

a(q-') 0.492t -r.6720

Table 3.2: Identified zeros of the polynomials of the LNM for Cases 1-3.
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Conclusions.

From the above studies, it is concluded that:

1. The estimated LNM is a good representation of the CSM3 at different operating

conditions.

2. The estimated LNM possesses the ability to track and predict the dynamics of

the CSM3 in different system operating environments.

3.6.2 Evaluation of the Performance of the LA\MMV-PSS

for the CSM3.

In this subsection the evaluation of the performance of the LAWMV-PSS is conducted

for the CSMS (D :4.0 pu) through a series of simulation studies. The performance

of the CSM3 without a power system stabiliser is taken as the performance of the

original system, and the performance of the CSM3 equipped with the LAWMV-PSS

will be compared with that of the CSM3 equipped with a conventional power system

stabiliser. This subsection is the implementation of Stage 2.

The design of a conventional power system stabiliser.

To provide a basis for the evaluation of the performance of the LAWMV-PSS, a con-

ventional power system stabiliser is designed for the CSM3 at a chosen operating point.

The basic principle for the design of a conventional power system stabiliser is to provide

an additional electrical damping torque that is in phase with the shaft speed deviation

of the generator, i.e., LT¿: D¿Lu,, where AT¿ is the desired damping torque and D¿

is the damping coefficient. A variety of design methods are available in the literature,

and arobust design method proposed inlL22,34) is used in this thesis to construct the

desired characteristic of the conventional power system stabiliser for the CSM3. The
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stabiliser with speed input takes the form

P.s^s,(s) :n-9-. ..,;nffi. (3.52)

A washout stage has been included in (3.57) to eliminate the steady-state offset in the

stabilising signal. The term j Íl t "to""t) 
(1 + "to""') accounts for the so-called pvrLrrv uvr¡¡r 

IÇG a 
"to""r) 

(1 { szp""l)
characteristic of the generator 1122,341. Since the electrical torque (or power) has been

chosen as the stabilising signal in this thesis, an ideal stabiliser for the electrical torque

(or power) input is derived from (3.57), given by

Ps,9,(s) : -po - 't" , l= =1 !1 
+ "to"t) !1 

+ ""^"'ì . (3.58)'P\-' -'l + ros2HsI{*(l f srps"3)(1 f srp*a)'

Equation (3.58) forms the transfer function of the desired Conaentional Power Systern

Stabiliser (CPSS). For a chosen steady-state operating point of the CSM3: n -
0.6 pu, Qr : 0.3 pu, and U : I.0 pu, the fixed parameters of the CPSS in (3.58) are

listed in Appendix C. The performance of the LAWMV-PSS will be compared with

that of the CPSS designed with D¿:20 pu.

Remark 3.6.1 A higher ualue of Da (say, D¿:30 or 40 pu) may giae better ilarnping

effects in srnall d,ynamics, but may present uorse performønce during large transients

(e.g., three-phase faults). Therefore, a ualue of 20 pu is used, as a cornpromise in the

ilesign of the CPSS in this thesi,s.

Airns and structure of the simulation studies.

The control structure of the CSM3 equipped with the LAWMV-PSS is described by

Fig. 3.1. Alternatively, replacing the dotted-line box in Fig. 3.1 by the transfer func-

tion (3.58), one obtains the control structure of the CSM3 with the use of the designed

CPSS. Also, removing the dotted-line box in Fig. 3.1 results in the control structure

of the original system. In this subsection each simulation study will be conducted

for the three control structures of the CSM3 to evaluate the system performance under

the different control schemes. The electrical torque deviation is used as the stabilising

signal. The aims of this study are
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o to demonstrate that the CPSS is properly designed;

o to confirm that the proposed LAWMV-PSS is superior to the CPSS (Do:20 pu)

at various system operating conditions;

o to establish a reference for the comparisons of the performance of the linear and

nonlinear optimal/adaptive control approaches in Subsections 4.5.2 and 6.5.2.

Five Groups of simulation studies are conducted to evaluate the damping perfor-

mance of the LAWMV-PSS at various system operating conditions:

Group l: Dynami,c Response - the performance of the LAWMV-PSS is assessed by

simulating the changes in the system operating point. Three simulation studies

are given:

Study 1: The generator is operating at P¿ : 0.6 pu and Q, : 0.3 pu, and is

subjected to periodic variations in reference power (column 2 of Table 3.3).

Study 2: Thegenerator is operatinïat n:0.6 pu and Q¿: -0-1pu, and is

subjected to periodic variations in reference power (column 2 of Table 3.3).

Study 3: The generator is operating at P¿ : 0.6 pu and Q, : 0.3 pu, and

is subjected to periodic variations in reactive po\ryer between lagging and

leading po\Mer factors (column 3 of Table 3.3). u

Group 2: Transient Response - the performance of the LAWMV-PSS is assessed

by simulating three-phase faults on the receiving end busbars or at the machine

terminal. Three simulation studies are given:

Study 4: The generator is operating at Pú : 0.65 pu and Q, :0.3 pu, and is

subjected to a three-phase fault on the receiving end busbars. The fault is

cleared in 100 ms and the system returns to its pre-fault operating condition.

Study 5: The generator is operatingat P¿:0.55 pu and Qt: -0.1pu, and is

subjected to a three-phase fault of 100 ms duration at the machine terminal.

6The periodic variations in reactive power (Q¿) are simulated by varying the value of the infinite

bus voltage (I/-) accordingly.
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The line is switched out after the fault, and a new operating conditlon ls

established.

Study 6: The generator is operating at P¡: 0.65 pu and 8¿ : 0.3 pu, and is

subjected to two successive three-phase faults on the receiving end busbars,

each of duration 100 ms. The first fault is cleared by returning the system

to its pre-fault operating condition. The second fault is cleared by opening

both ends of the line, and the system returns to its pre-fault output power

with the value of the transmission line reactance doubled.

Group 3z Response to the Changes in the System Conf,guration - the performance

of the LAWMV-PSS is assessed by simulating the changes in the transmission

line system. One simulation study is given:

Study 7: The generator is operating at &: 0.55 pu and Qt : 0.3 pu, and is

subjected to two successive changes in the transmission line system: one

transmission line is opened, causing the value of the transmission line reac-

tance to be doubled; the opened line is then reclosed and the value of the

transmission line reactance returns to its initial value.

Group 4: Response to External Disturbances - the performance of the LAWMV-

PSS is assessed by simulating the variations in reference voltage. Two simulation

studies are given:

Study 8: The generator is operating at P¿ : 0.6 pu and Qt: 0.3 pu, and is sub-

jected to periodic disturbances in reference voltage (column 4 of Table 3.3).

Study 9: The generator is operatinï at n: 0.6 pu and Q, : -0.1 pu, and

is subjected to periodic disturbances in reference voltage (column 4 of Ta-

ble 3.3).

Group 5: Response to Unstable System Oscillations- the performance of the LAWMV-

PSS is assessed by simulating large excursions in the system operating point which

is beyond the stability region of the original system. Two simulation studies are

given:
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Study 10: The generator is operating at P¿ : 0.6 pu and Q, : 0.3 pu, and

is subjected to large periodic excursions in reference power (column 5 of

Table 3.3).

Study 11: The generator is operatinï at n : 0.6 pu and Qt -- -0.1 pu, and

is subjected to large periodic excursions in reference power (column 5 of

Table 3.3).

The simulation results of Studies 1-11 are plotted in Figs. 3.5-3.17. In each study,

three dynamic responses - of the original system, the CSM3 with the CPSS, and

the CSM3 with the LAWMV-PSS - are shown. Identical controller output limits,

umin : -0.05 pu and u¡nar :0.05 pu, are used in the CPSS and the LAWMV-PSS.

The same limits will be used to construct the nonlinear po\¡/er system stabilisers to

be designed in Chapters 4 to 6. The weighting coefficient À of the LAWMV-PSS is

adjusted to be 0.4. Note that Studies 1-11 form ¿ series o/evaluation studies to be

conducted in Chapters 4 to 6 to evaluate and compare the system damping performance

associated with different control approaches. For the sake of simplicit¡ in the sequel

the titles of these simulation studies will be quoted directly without repeating the

detailed explanations.

Remark 3.6.2 To auoid radical aariations in the estimated parameters of the LAWMV-

PSS, a fi,xed,Jength freezing time peri,od can be applied, to the estirnator to suspend,

the estimation of the parameters for a short period of time following the onset of a

fault. Such a technique has been widely used for simulation studies in the literature

[50,57,71,72,60,61,67], and is adopteil in this thesis for simulation purposes. A length

of 120 ms (1.2 times the usual fault duration) freezing time period is arranged in the

símulation software upon the occurrence of a fault. Practically, switch logic can be

used, to turn the estirnator off automatically. The switch logic can be operated by the

rletection of a sudden termi,nal uoltage drop greater than a certain amount, say 30T0,

of its ordinary leuel [60]. It can also be operated by using other practi,cal techniques

[57,71,72,61,6u.
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Time (sec)

(from-to)

Studies 1-2

P' (p")

Study 3

Q' (p")

Studies 8-9

% (p")

Studies L0-11

P' (p")

0-0.5 0.60 0.30 1.00 0.60

0.5 - 10.5 0.65 -0.1 t.02 0.90

10.5 - 20.5 0.55 0.30 0.98 0.30

20.5 - 30.5 0.65 -0.1 r.02 0.90

30.5 - 40.0 0.60 0.30 1.00 0.60

Table 3.3: Variations in the system operating point of the CSM3 for Studies 1-3 and

8-11.

Analysis of the simulation results.

Group 1: From Study 1 to Study 3, the dynamic perforrnance of the LAWMV-PSS

is examined by simulating the periodic changes in the system operating point at the

lagging and leading power factors. The simulation results are shown in Figs. 3.5-3.7. It

is seen that in dynamic situations, both the LAWMV-PSS and the CPSS can provide

an adequate damping torque to the oscillations of the original system. The CPSS works

well for small changes in the system operaing point. Though the difference in system

performance associated with the CPSS and the LAWMV-PSS is not significant, the

LAWMV-PSS shows a faster output tracking ability than the CPSS.

Group 2: From Study 4 to Study 6, the transient performance of the LAWMV-

PSS is examined by simulating the three-phase faults in the transmission line system.

The simulation results are plotted in Figs. 3.8-3.11. It is seen from Fig. 3.8 that

with the occurrence of a remote fault followed by a recovery of the pre-fault operating

condition, the CPSS can stabilise the system after a few swings. However, when the

fault is severe (as shown in Fig. 3.9) and/or when the fault is followed by a change in

the system configuration (as shown in Fig. 3.9 after the fault and in Fig. 3.11 after the

second fault), the original system tends to be unstable and the CPSS barely damps the

system oscillations. Under these circumstances, the LAWMV-PSS provides stronger
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damping than the CPSS to retrieve the system from the unstable state. It is evident

that the transient behaviour of the LAWMV-PSS is more effective than that of the

CPSS.

Remark 3.6.3 Figure 3.10 illustrates the f,eld aoltage Epp(t) response for the test in

Stud,y 5. The conclusions regard,ing the fi,eld, uoltage responses of the d,ifferent pouer

systern stabilisers support those made for the torque responses. Further to this, the

field, uoltage response of the LAWMV-PSS shows that the LAWMV-PSS can proaide a

contrcl action with appropri,ate amplitude and phase, resulting in the stronger d,amping

oJ the rotor oscillations as reaealed, by the responses.

Group 3: In Study 7, the ability of the LAWMV-PSS to track the changes in

the system parameters and configuration is examined. With one transmission line

switching out and in, the parameters of the po\ryer system become time-varying, causing

the changes in the parameters associated with the models of the LAWMV-PSS and the

CPSS. With fixed parameters, the CPSS can not adapt to the system changes on-line.

Consequently as shown in Fig. 3.12, the damping performance of the CPSS is worse

than that of the LAWMV-PSS, the parameters of which (plotted in Fig. 3.13) are

self-adjusted on-line.

Group 4: From Study 8 and Study 9, the ability of the LAWMV-PSS to overcome

the external disturbances of the system is examined. The simulation results are given in

Figs. 3.14-3.15. In these two cases, the LAWMV-PSS provides better damping than the

CPSS. An advantage associated with the LAWMV-PSS is that it reflects the effects of

the external disturbances through the inclusion of a noise term in the estimated LNM,

thus it gives a fast control action to the external disturbances.

Group 5: From Study 10 and Study 11, the ability of the LAWMV-PSS to extend

the system siability region is examined. Figures 3.16-3.17 show the simulation results.

It is seen that with the large excursions in the system operating point, the original

system responses to the step changes towards 0.9 pu power are unstable both at lagging

and leading power factors. The CPSS can stabilise the system unstable oscillations in

the lagging operating condition, as shown in Fig. 3.16. However, it fails to do so in
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the leading operating condition, as shown in Fig. 3.17 during 10.5-20.5 seconds. The

LAWMV-PSS can successfully damp the system unstable oscillations in both cases.

There is no doubt that the LA\MMV-PSS can extend the system stability region beyond

the capacity of the CPSS. Nevertheless, it is demonstrated that although the CPSS

is designed for a chosen operating point, it can implement the stabilising task over a

certain range of operating conditions.

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that:

1. The CPSS is well designed, and possesses robust characteristics to be able to

work when the system operating conditions change.

2. The CPSS (Do :20 pu) and the LAWMV-PSS are comparable for the small

and less severe disturbances covered by Studies 1-3 and 8-9. As indicated in

Remark 3.6.1, higher values of D¿ (e.g., 30 pu) can be used in practice, which

may give improved damping performance for small and less severe disturbances.

3. The LAWMV-PSS is more effective than the CPSS in improving the system

damping performance and extending the systern stability region in different op-

erating environments following major disturbances and for large increase in trans-

mission line reactance. This can be seen by comparing the settling times of the

relevant output response curves. With the use of the LAWMV-PSS, the settling

time is greatly reduced.

3.6.3 Studies on the Robustness of the LA\MMV-PSS for the

CSMl-.

In this subsection the robustness of the LAWMV-PSS is tested with unmodelled dy-

namics and modelling errors. This subsection is the implementation of Stage 3.
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Figure 3.5: Electrical torque response for Study I (n:0.6 pu, Qt:0.3 pu; periodic

variations in reference power). CSM3 with the LAWMV-PSS - solid line, CSM3 with
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line, CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.10: Field voltage response for Study 5 (n :0.55 pu, Qt : -0J pu; 100 ms

short-circuit at the machine terminal). CSM3 with the LAWMV-PSS - solid line, CSM3

with the CPSS - dashed line.
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Figure 3.11: Electrical torque response for Study 6 (P¿ - 0.65 pu, Qr:0.3 pu; two

successive faults of 100 ms duration on the receiving end busbars). CSM3 with the

LAWMV-PSS - solid line, CSM3 with the CPSS - dashed line, CSMS only - dotted

line.
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Figure 3.12: Electrical torque response for Study 7 (p, :0'55 pu, Q, :0.3 pu; one

transmission line is opened and then reclosed). CSM3 with the LAWMV-PSS - solid

line, CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.15: Electrical torque response for Study S (n : 0.6 Pu, 8¿ : -0.1 pu;

periodic disturbances in reference voltage). CSM3 with the LAWMV-PSS - solid line,

CSM3 with the CPSS - dashed line, CSM3 only - dotted line.
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Figure 3.17: Electrical torque response for Study 11 (p, :0.6 Pu, 8t: -0'1 pu; large

periodic excursions in reference power). CSM3 with the LAWMV-PSS - solid line,

CSM3 with the CPSS - dashed line, CSM3 only - dotted line.

Aims and structure of the simulation studies.

The CSM3 (D : 4.0 pu) is replaced by the CSM1 (D : 0.1 pu) in the three control

structures of the polver system arranged in Stage 2. The performance of the LAWMV-

PSS is further evaluated with a higher-order, more accurate model of the power system.

Higher-order dynamics are therefore present. Since the assumption of c..,(ú) = I pu is

not included in the modelling of the CSMI, the stabilising signal is taken to be the

electrical power deviation. The aims of this study are

o to confirm the performance of the LAWMV-PSS for the actual power system

represented by the more accurate model (CSMl);

o to establish a reference for the comparisons of the performance of the linear and

nonlinear control approaches with unmodelled dynamics and modelling errors in

Subsections 4.5.3 and 6.5.3.
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A variety of simulation studies have been conducted for the above purposes. It is

found that the conclusions drawn from the simulation studies of Stage 2 are applicable

to the simulation studies of this Stage. Brief examples are given in the following two

Groups of studies to illustrate the dynamic and transient behaviour of the SMIB

power system (CSMI) with the LAWMV-PSS:

Group Lz Dynami,c Response - the performance of the LAWMV-PSS is assessed by

simulating the step variations in the system operating point. Two simulation

studies are given:

Study 12: The generator is operatingat P¡:0.6 pu and 8¿ : 0.3 pu, and is

subjected to a step change of 0.1 pu increase in reference power.

Study 13: The generator is operatin| at &: 0.6 pu and Qt: -0.I pu, and is

subjected to a step change of 0.1 pu increase in reference po\4/er.

Group 2: Transient Response- the performance of the LAWMV-PSS is assessed by

simulating three-phase faults in the transmission line system. Two simulation

studies are given:

Study 14: The generator is operating at, P¿: 0.6 pu and Qt:0.3 pu, and is

subjected to a three-phase fault on the receiving end busbars. The fault is

cleared in 100 ms and the system returns to its pre-fault operating condition.

Study 15: The generator is operatingat P¿:0.6 pu and Qt: -0'l pu, and is

subjected to a three-phase fault of 100 ms duration at the machine termi-

nal. The line is switched out after the fault, and a new operating point is

established.

The simulation results of Studies 12-15 are given by Figs. 3.18-3.21, each showing

three responses associated with the original system (CSMI), the CSM1 with the CPSS'

and the CSM1 with the LAWMV-PSS. Note that Studies 12-15 form ¿ series of

robustness studies to be conducted in Chapters 4 to 6 to evaluate and compare the

system damping performance associated with different control approaches. Again, in

the sequel the titles of these simulation studies will be quoted directly without repeating

the detailed explanations.
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Analysis of the sirnulation results.

Group 1: In Studies I2-I3,lhe d,ynamic performance ol the LAWMV-PSS associated

with the CSM1 is examined. It is seen from Figs. 3.18-3.19 that both the CPSS

and the LAWMV-PSS can work well in dynamic conditions. This coincides with the

performance of Studies 1-3 shown in Figs. 3.5-3.7. The LAWMV-PSS exhibits a better

damping effect and a faster output tracking ability when compared with the CPSS.

Group 2: In Studies 14-15, the transient perfonnance of the LAWMV-PSS asso-

ciated with the CSM1 is illustrated in Figs. 3.20-3.21. Though the CPSS eventually

damps the system oscillations in Study 14, it gives unstable performance for the severe

fault in Study 15. This indicates that the CPSS designed for the CSMS can not be

used. to control the actual power system (CSMI) for the large or major disturbances

considered in these studies. The LAWMV-PSS, however, leads the CSM1 to be stable

in each case and provides more damping to the system oscillations.

Conclusions.

The above analysis reveals the following facts:

1. The LAWMV-PSS can cope with the unmodelled dynamics and the modelling

errors at the various operating conditions, thus it is valid for controlling the

higher-order actual power system.

2. The LAWMV-PSS can improve the system damping performance in dynamic and

transient situations and can extend the system stability region.

3. The overall system performance associated with the LAWMV-PSS is superior to

that with the CPSS.
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Figure 3.18: Electrical power response for Study 12 (pr: 0.6 Pr, Qt : 0.3 pu; step

change in reference power). CSM1 with the LAWMV-PSS - solid line, CSM1 with the

CPSS - dashed line, CSM1 only - dotted line.
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Figure 3.19: Electrical power response for Study 13 (¿:0'6 Pr, Qt: -0.1 pu; step

change in reference power). CSM1 with the LAWMV-PSS - solid line, CSM1 with the

CPSS - dashed line, CSMI only - dotted line.
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Figure 3.21: Electrical power response for Study 15 (n : 0.6 Pu, 8¿ : -0.1 pu;

100 ms short-circuit at the machine terminal). CSM1 with the LAWMV-PSS - solid

line, csMl with the CPSS - dashed line, csMl only - dotted line.
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9.7 Concluding Remarks.

In this chapter the design and implementation oT a linear adaptiue power system sta-

biliser for the SMIB power system modelled in Subsection 2.3.1 is discussed. The aim

of this study is to establish a sound basis for the development and evaluation of the

nonlinear optimal/adaptive power system stabilisers to be conducted in Chapters 4 to

6.

In Section 3.2 the linearised nominal model (LNM) of the nonlinear SMIB power

system is derived from the simplified linearised analytical model (SLAM) given in

Subsection 2.4.2. The order of the LNM is determined by making use of the conclu-

sions drawn in Section 2.6. The derivation procedure shows clearly the insight of this

model. The validity of this model to represent the nonlinear power system is further

confirmed through the external equivalent studies presented in Subsection 3.6.1. The

derived LNM provides a basis for the development of the linear adaptive power system

stabiliser.

Linear stochastic optimal control laws are derived and discussed in Section 3.3

under a general form of the cost function. Aspects associated with the application

of these control laws to the design of linear adaptive power system stabilisers are

summarised under the general requirements essential for the design. The selection

of the weighted minimum variance control law for the design of the linear adaptive

power system stabiliser in this thesis is finalised. This control law is simple and robust,

satisfying the general requirements mentioned above. Also, since a high-gain AVR is

usually used in the excitation control system, the steady-state tracking error associated

with this control law is very small. In the selection of this control law for the design

of the linear adaptive power system stabiliser, special consideration is given to the

feasibility of this control law for the development of the corresponding nonlinear control

laws. This will facilitate the comparisons of the performance of the linear and nonlinear

control approaches to be conducted in Chapters 4 and 6.

For the implementation of an adaptive power system stabiliser, parameter estima-

tion algorithms suitable for on-line model identification of po\l¡et systems are briefly
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discussed in Section 3.4. The recursive least squares algorithm with the time-varying

forgetting factor is adopted as the basic parameter estimation algorithm for the de-

sign of adaptive stabilisers in this thesis. A direct SISO linear adaptive generalised

minimum variance control algorithm (Algorithm 3.1) is then developed from the com-

bination of the optimal control law with the selected parameter estimation algorithm.

This control algorithm establishes a basis for the development of the desired linear

adaptive power system stabiliser.

A linear adaptive weighted minimum variance power system stabiliser (LAWMV-

PSS) for the SMIB power system given in Subsection 2.3.1 is then proposed in Sec-

tion 3.b. The LAWMV-PSS is implemented by an indirect control algorithm (Algo-

rithms 3.2(A)-(B)) which produces the estimated parameters of the LNM and generates

the control action by using directly the modei estimates'

In Section 3.6 the performance of the SMIB power system with the LAWMV-PSS is

assessed through simulation studies. A series of evaluation studies (Studies 1-11) and

robustness studies (Studies l2-I5) is described to form a systematic way of comparisons

of system performance with different control approaches. These studies cover a wide

range of system operating conditions and working environments. To provide a valid

basis for the evaluation of the performance of the LAWMV-PSS, a robust conventional

power system stabiliser (CPSS) is designed and implemented. The effectiveness of the

LAWMV-PSS is then tested through the comparison of the system performance with

the CPSS in the same simulation study. The simulation results shown in Figs. 3.5-3.21

indicate that the LAWMV-PSS is more robust and superior to the CPSS, particularly

for more severe disturbances. The LAWMV-PSS significantly improves the system

damping performance in the various dynamic and transient situations, and extends

the system stability region effectively. The provision of the simulation results in this

chapter establishes a valid reference to be used for the evaluation of system performance

of the nonlinear control approaches in Chapters 4 to 6'

The extensions in this chapter to the previous work described in the literature have

been listed in Section 3.1.
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Chapter 4

SISO Nonlinear Optimal Power

System Stabilisers.

4.L Introduction.

In this chapter the design of SISO nonl'i,near optimal power system stabilisers is dis-

cussed. This establishes an important basis for the development of the nonlinear adap-

tive power system stabilisers to be conducted in Chapters 5 and 6. It also forms a

link between the linear and nonlinear adaptive control approaches, the performance of

which will be compared in Chapter 6.

As indicated in Section 3.1, linear adaptive control schemes have been proposed for

the design of power system stabilisers in order to overcome the shortcomings of the

conventional power system stabilisers in adapting to the variations of system operating

conditions. By changing its parameters on-line, a linear adaptive power system sta-

biliser can cope with the nonlinearities and the time-varying properties associated with

a nonlinear power system, so that it improves the system damping performance. How-

ever, since a linear adaptive povver system stabiliser is based on a linearised nominal

model for the design and implementation of the control law, the performance associated

with the linear adaptive power system stabiliser may depend heavily on several factors,

such as the order of the linearised nominal model, the convergence rate of the on-line
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estimated parameters, etc.. For each variation in the operating conditions of the non-

linear po\ /er system, the parameters of the linearised nominal model have to change

in order to track the changes in the system operating point. There exists, therefore,

a transition in the identified parameters of the linearised nominal model between two

system operating conditions. Before the identified parameters converge to their new

values, the control action of the linear adaptive power system stabiliser may not be

optimal, and the associated damping performance of the system may not be as good

as expected.

The nonlinearities of power systems are often known. In Section 2.4 the nonlineari-

ties associated with the power system given in Subsection 2.3.1 have been classified into

the inherent nonlinearities and the intentional nonlinearities, and have been modelled

accurately in the mathematical descriptions of the system. It is reasonable to expect

that the system damping performance will be better if the nonlinear characteristics of

the system are taken into account in the construction of the control law. The resulting

control law would be nonlinear and should inherently possess the ability of stabilising

the nonlinear po\ryer system over the range of the operating conditions of concern.

The design of such a nonlinear control law requires a nonlinear nominal model which

should contain the nonlinearities of the system and should, inherently, track the changes

in the system operating point without changing its parameters. A nonlinear fi,xed-

pammeterpo\lrer system stabiliser designed on these principles is therefore expected to

perform better than a linear adaptiue power system stabiliser in that

o the control action should be optimal in the new operating point immediately;

o the system transition from one operating point to another should be optimal.

Difierent approaches that are utilised to incorporate the nonlinearities of the power

system into the design of the control laws result in different nonlinear control schemes.

In the literature, several attempts have been made to design power system controllers

based on nonlinear models of the po\'/er systems [127]-[132]. For instance, a quasi-

linearisation technique was used to obtain a nonlinear excitation controller [129], and
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a nonlinear output-feedback control method was employed to construct an excitation

control system for a fast acting static exciter [131]. As nonlinear control theory develops

177,174,175,L76,177,L78,179,180,76,181], advanced approaches are tested in the design

of power system controllers 1L82,78,79,80,81,82,83,84,85,87]. For example, nonlinear

decoupling theory has been applied to the design of nonlinear excitation and governor

controllers using state-variable feedback [182]. A direct feedback linearising control

technique [77] has been utilised to design an excitation controller which is composed

of a complete linearising compensator and an output robust optimal feedback con-

troller [30,82]. A similar control technique has been used to design a nonlinear variable

structure excitation controller [83]. An exact linearisation design method for scalar

nonlinear control systems has also been employed to construct a nonlinear excitation

controller [85]. Using the feedback linearisation method, a multivariable linearising

feedback controller has been derived and simulated for a synchronous generator [87].

In this chapter a neu nonlinear optimal control law is developed for the design of the

power system stabiliser for the SMIB po\ryer system given in Subsection 2.3.1. The

nonlinear optimal control law will be given in a regression form which will facilitate

the development of the corresponding nonlinear adaptive control laws to be discussed

in Chapters 5 and 6.

Original work on Lhe analysis, design, and eualuation of a nonlinear optimal power

system stabiliser will be conducted in this chapter. The work involves the derivation

of a nonlinear nominal model, the development of the nonlinear optimal control laws,

the establishment of the closed-loop system stability conditions, the development of a

nonlinear optimal power system stabiliser, and the assessment of the system damping

performance with the nonlinear optimal stabiliser.

The organisation of this chapter is as follows. In Section 4.2 a nonlinear nominal

model for the design of the nonlinear optimal and adaptive power system stabilis-

ers is derived from the NAM given in Subsection2.4.I. The SISO nonlinear stochastic

generalised minimum variance control law is developed and its closed-loop stability con-

ditions are established in Section 4.3. In Section 4.4 the nonlinear stochastic weighted

minimum variance control law is presented and its global closed-loop stability condi-

tions are analysed. A nonlinear optimal power system stabiliser is then proposed. In
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Section 4.5 the performance of the proposed nonlinear optimal power system stabiliser

is assessed through simulation studies, and is compared with that of the LAWMV-PSS

developed in Chapter 3.

To the author's knowledge, the research reported in this chapter is original; the

main contributions are:

I. A new SISO discrete-time input-output model (in terms of a nonlinear nominal

model) is derived from the NAM given in Subsection2.4.I. A rigorous mathemat-

ical derivation is presented, and the boundedness of the variables in the model is

established. This model contains the inherent nonlinearities of the SMIB porver

system and is an accurate representation of the continuous-time nonlinear power

system (CSM3) provided that certain assumptions are satisfied. The nonlinear

model is formulated in a regression equation, linear in the parameters and in the

control input. It thus provides an important basis for the development of the

nonlinear optimal and adaptive control laws.

2. A. new SISO nonlinear stochastic generalised minimum variance control law is

derived from a general form of the cost function for the nonlinear nominal model.

The closed-loop stability conditions with this control law are established and the

associated proof is given in Section E'1 of Appendix E.

J. A, new SISO nonlinear stochastic weighted minimum variance control law is de-

veloped and its global closed-loop stability conditions are established. The asso-

ciated proof is presented in Section 8.2 of Appendix E'

4. A, newnonlinear optimal power system stabiliser based on the nonlinear weighted

minimum variance control scheme is proposed, and its practical aspects are dis-

cussed. The control structure of the SMIB power system equipped with the

proposed nonlinear optimal power system stabiliser is illustrated.

b. Simulation studies on the evaluation of the resulting nonlinear optimal power

system stabiliser are conducted. A series of useful comparisons with the LAWMV-

PSS is given.
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It should be pointed out that while there is an extensive body of linear control

theory for designing linear control systems, there are no general methods for specific

nonlinear systems. For this reason, in this chapter nonlinear control laws have been

developed specificallyfor the nonlinear nominal model proposed in Section 4.2, and the

relevant proofs of lemmas and theorems have been established. This work provides a

basis for extending these approaches to other forms of nonlinear power system models.

4.2 SISO Nonlinear Input-output Power System

Modelling.

In this section:

. a neu) SISO nonlinear continuous-ti,me input-output model is derived from the

NAM given in Subsection 2.4.1;

o the associated SISO nonlinear iliscrete-time input-output model is developed;

. a neu) nonlinear nominal model 1 is formed and will be used for the design of

the nonlinear optimal and adaptive power system stabilisers;

o the boundedness of the system variables and noise in these models is discussed,

and the Boundeil-Input Bouniled-Output (BIBO) stability of the nonlinear nom-

inal model is established.

In a similar manner as for linear control methodologies, the first problem associ-

ated with nonlinear control methodologies is the development of the nominal models

of the nonlinear dynamic systems. For the design of conventional power system sta-

bilisers in the literature, the nominal model of the power system is usually taken as

a linearised time-invariant form in which the parameters and/or the system operating

conditions are fixed. In the design of the linear adaptive power system stabiliser dis-

cussed in Chapter 3, a linearised time-varying nominal model (LNM) is derived in order

lThu definition of a tnominal modelt used in this thesis has been given in Section 3.2.
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to match more closely the practical nonlinear time-varying power system. However, no

single linearised nominal model can represent the nonlinear power system accurately.

A key feature in developing a nonlinear control scheme, be it a nonlinear optimal con-

trol scheme or a nonlinear adaptive control scheme, for the design of the power system

stabiliser is that a nonlinear nominal model is derived directly from the mathematical

description of the nonlinear pov/er system itself. Thus, inherently, the nonlinear nomi-

nal model will represent the nonlinear system accurately, and track any changes in the

system operating point automatically-

A general review of the nonlinear nominal models used to represent nonlinear dy-

namic systems for a wide range of applications is given in [75]. The models are mainly

classified as

o Block-oriented models - the models consist of cascade connections of static

nonlinearities followed by linear dynamic systems (e.g', [183]-[187]); 
2

o General models being linear in paramet the models are described by a scalar

(or vector) product of a parameter vector (or matrix) and a regression vector (or

matrix) 3 independent of the parameter vector (or matrix) (".s., [188]-[193]); 
a

o "Linear" models with signal-dependent parameters - the models have parame-

ters that depend on a known vector of functional variable (e.g., [199]-[201]);

o "Linear" models with piece-wise constant parameters (multi-model) - the mod-

els have the characteristic that the parameter-dependence need not be known

analytically, and the nonlinear models coincide with the approximate linearised

models valid in the region under consideration (e.g', 1202,2011).

For a nonlinear power system the main features considered in choosing a suitable

structure of the nonlinear nominal model for the design of a nonlinear optimal (or

adaptive) control law are:

2A typical example of this type of nonlinear models is the Hammerstein model.
3In th" regression vector (or matrix), the nonlinear terms are normally restricted to quadratic

nonlinearities [75].
aThi" rep."sentation comprises an important class of bilinear systems.
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(1) the nonlinear nominal model should represent the inherent nonlinear features of

the power system;

(2) if simplifications are involved in the derivation of the nonlinear nominal model,

the nonlinear nominal model should contain enough information that is essential

for the control purpose;

(3) both the parameter estimation algorithms and the control laws developed for the

identification and control of linear dynamic systems should be capable of being

extended to the nonlinear nominal model, which requires that

(a) the regression vector of the nonlinear nominal model be independent of its known

(or unknown) parameters.

Based on these factors, it is decided that a general model being linear in parameters

is the desirable representation of the nonlinear nominal model for the SMIB power

system.

In deriving a general model being linear in parameterslor the design of the non-

linear optimal (or adaptive) power system stabiliser for the SMIB power system de-

scribed in Subsection 2.3.1, the system intentional nonlinearities (described by the term

E(X(ú), Z(t),U,(t)) in (2.61)) are ignored. This is because proper design of the power

system controllers requires that for normal operating conditions the system variables

lie within the range of linear operation of the limiting nonlinearities. For this reason, in

the following derivation of the nonlinear nominal model for the power system, Assump-

tion 2.4.1 given in Subsection 2.4.I is adopted. Consequently, the NAM developed in

Subsection 2.41forms the basis for deriving the nonlinear nominal model of the power

system (CSM3).

The layout of the remainder of this section is as follows. A new SISO nonlinear

continuous-time input-output model developed from the NAM is described in Subsec-

tion 4.2.I. The associated SISO nonlinear discrete-time input-output model is derived

in Subsection 4.2.2. The nonlinear nominal model is then formulated and its BIBO

stability is established in Subsection 4.2.3.
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4.2.L sISO Nonlinear continuous-Time Input-output Power

System Modelling.

Consider the NAM given by (2.90)-(2.97) h Subsection 2.4.I. Following the elimination

of the system auxiliary variable vector Z(ú) from the system state equation (2.90) and

the selection of the electrical torque T"(ú) as the system output variable 5,, a SISO

nonlinear continuous-time state-space mod,el is described by the equations below.

x1t¡ : A(X(ú)) + BrR(ú) + b¿u(¿), (4.1)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

y(t):T.(t): c(X(ú)), (4.2)

where

x(¿)t : | ,(r) ,"(¿) E,(t) Ero(t) Pcv(t) Pap(t) Ptp(t) p"rþ)1, (4.3)

P,"¡(t) V.¡(t) g.(t) d(t)

usu¡(t)

- ffi sin z 6 (t¡ - ffi E'o\)sin ó (ú) - r rL r, (t) + ffi P n e (t¡ + ffi e ¡ p 1t¡ + ffi P r r Q)

A(x(ú)):
ff cos 6(t) - +E'q(t) + HEFD(I)

- ,^lr{t) - *Eeo(t)
-#,"(t) - åPev(t)

fiPcv(t) - *P*r(t)
*Pup(t) - *hp(t)
*hp(t) - frPr.r(t)

with y-p(f) in (a.5) defined by

ge(t) : V(t) : (-u.or'ó(¿) + rn6 sin2 ó(ú) + *rnoçt¡cos ó(ú) + meTo(1z)

R(¿)T :

8"1
0

00 KA

1

TG

0

0 000

7

2

0:l:
:IobT

000fA

00 EA 0000îA

sThe reason for using ?}(ú) as the siabilising signal has been explained in Section 2.5
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and

c(X(ú)) - îr:lsin 2ó(ú) + rn2Û'q(t)sin ó(ú). (4.9)

In the above equations t.(ú) is the system output set point, P,"¡(t); d(Ú) is the mea-

surable deterministic disturbance input , V"¡(t); Ur(t) is the additional output signal,

V(t); l(ú) is the system output variable, T"(t); u a(t) is the control signal generated

by the nonlinear controller which will be designed later, and Z(ú) is injected into the

voltage summing junction of the input of the AVR. The parameters rn¿ (i -- 1,2,...,8)

and the time const arrt r^ in (a'5)-(a.9) are given by

x.+ x; (x. + xq)

v3
T,TT\ :

TfL2 :

TTL7 :

TTL4 :

TTLS :

rfù7

Tm

v*',

(4.10)

(4.11)

(4.t2)

(4.13)

(4.r4)

(4.15)

(4.16)

(4.17)

(4.18)

(x" + x;)'
X?

TTt,6

rng

v*',
(x" + x)2

2X'dX.

(x. + x;)'
v*,

where m; ) 0 for (i - 2,,. .. ,8) and m1 1 0

A block diagram of the above system model is shown in Fig. 4.1. For this config-

uration, the system is deterministic. The scheduled variation of the system operating

point due to the change of P,"¡(t) is considered as the change of the output set point,

g-(t). On the other hand, the scheduled variation of the system operating point due

to the change of.V,.¡(t) is viewed as the measurable deterministic disturbance, d(ú).

6Not" th.t T"(t): P"(ú) due to Assumption2.2.5.
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Remark 4.2.L The model (4.1)-(4.18) is only an alternatiue enpression for the NAM.

As erplained in Rernark 2.1.1, the model (4.1)-(1.18) represents the CSMS accurately

within the range of linear operation of the system limiting nonlinearities.

R(t)

u(r)

x(r)x(r) v(t)

+

SYSTEM

-l

Figure 4.1: SISO nonlinear continuous-time state-space modelling of the SMIB power

system.

Clearly, in the nonlinear continuous-time state-space representation (a.1)-(4.18), the

output variable g(Ð Q"(t) or P"(t)) is an implfciú function of the control input u (ú).

For control purposes, an erpliciú expression for g(ú) in relation to z(ú) is required. To

find the desired input-output relationship betweert g(t) and z(f) from the model (4.1)-

(4.18), the following mathematical rule is introduced

(1 + e) {rnr¡} : r¿ (r + p) {r¡} * x¡p {x¿}

where r; and r¡ are arbitrary, continuously differentiable time variables. Premultiply-

ing the output equation (a.2) by (l + r^p) and using the following state equations from

(a.1) and (a.5)

p6(t)

(\ * r^p) E'n(ù

: usu"(t),

: ?7?3cosá(l) + maÛpp(t),

c(.)I
s

Br

A(.)bE
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one writes

(t + r,*n) u$) : *, (r + r^p) {sin 2ó(t)} * rnz sin ó(r) (1 + r^p) {t'trl}
¡m2r*Eo(t)p {sin ó(t)}

: *t (I + r*p) {sin 2ó(t)}

*rnz sin 6(t)lrycos ó(ú) + rn4EFD(t)l

¡m2r^E'o(ú) cos ó(¿)e {6(Ú)}

: l(-, * ry) +*,,*pf{sin26(t)}

*mzmt {Ero(t) sin ó(t)}

jm2asr* 
{u"(t)E'n(t)cos ó(t)} . (4.20)

Similarly, premultiplying (4.20) bV (t * r¿,p) and using the state equation from (4.1)

and (a.5)

(r-t ra,p) Eeo(t) - I(,a, [;trl - úr(t) + ¿(¿)] ,

one obtains

(r*ril)g+r*a)aU) : Q+r¡p) [(-, * ry) +*r'*pf{sin26(t)}

lm2usrm(l t r,aù {u,(lnnþ) cos ó(t)}

*mzm qr t E r o (t)p {sin ó(t) }

lmzmtsin ó(ú) (I t raf {Ero(t)},ryg*rep) 2myrrn
)

1+
2mt + rnzrnz {sin 26(t)}

!m2usr^ (I + r¿p) {a"(lno(t) cos ó(t)}

lm2mausr¡ {a"(t)Epp(f ) cos ó(ú)}

*mzmal{¡{sinó(t) lrttl - sr(t) + ¿(¿)]] . $.2r)

Now, define

zr(t) ê sin26(ú),

zr(t) ê u"þ)E'o(t)cos 6(ú),

z"(t) å u"þ)Epp(ú)cos ó(ú),

zn(t) 4 sinó(f),

(4.22)

(4.23)

(4.24)

(4.25)
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and

A(p) :
B(p) :
c(p) :
n@) :
n@) :

l*(u+r^)pIrtr^p2,

t' [r + (ro * a) p * rr,,p2) ,

k2 (L + ,.¿,p) ,

ks,

lc+,

(4.26)

(4.27)

(4.28)

(4.2e)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

where

Im

2

fTL2U)gT7n,

TÍ|2TTù4UgTa,

m2maI{¡,
2m1rrn

2*, + rnztrls

Equation (4.2I) is then re-organised in the following compact form

t(p)s(t):B(p)21(t)+C(p)zz(t)+D(p)4(t)+E(p)z¿(¿) [d]¿) -!e(t)+¿(ú)] . (4.16)

This high-order continuous-time differential equation describes the nonlinear relation-

ship between the control input z(f) and the output ú(t). It includes the additional

feedback signals, 2{t) (i:1,2,3,4) and ar(t¡, and the reference signal, d(ú). Equa-

tions (4.22)-(4.36) form a SISO nonlinear continuous-tirne input-output model of the

power system (CSM3). The block diagram of this model is shown in Figure 4.2.

Remark 4.2.2 The d,eriaat'ion of the input-output model (,1t.22)-(4.36) from the state-

space mod,el (4.1)-(4.18) does not inuolae any mathematical assumptions. The forrner

model is therefore a ualid continuous-time input-output representation of the NAM.

The boundedness of the variables in the nonlinear continuous-time input-output

model (4.22)-(4.36) is important for the theoretical analysis of the nonlinear control

schemes to be designed later. For most power system studies, the following assumption

is generally accepted.

2*t + rnzrÍtz
ler

le2

k3

lc4

t4r



c(p)
A(p)

P(p)
A(p)

B(p)

Ã(p)

ù(t) u(t) ztt)

+ +

SYSTEM

Figure 4.2: SISO nonlinear continuous-time input-output modelling of the SMIB power

system.

Assumption 4.2.L The state uariables Ero(t) and P6y(t) in the equations of the

pouer system are all constrained as follows

I

I

I
I
I

tu(t)i

d(t)

u(t)
++++

++ v(r)

(i) l\ro(t)l ( max {lVn*o*l,lV^*",|} !Kr;

lPcr(t)l ( max {lP^¿*l,,lP^",|} LI{r,(ü)

for allt, where IÇ and, I{2 are known.

This assumption is not critical since, in practice, the field voltage and the power at the

gate (or valve) are always constrained by physical limitations as described by (4.1a)

and (4.18) respectively. Based on Assumption4.2.L, the following lemma is established.

Lemma 4.2.1 For the model (4 22)-(4.36), under Assumption y'.2.1,

sup
0(f (oo

(i) lz1(t)l < 1;
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(ii)

(üi)

(ir)

(r)

(ri)

sup lzr(t)l 1 7z 
^o, iO(ú(oo

sup lz.(¿)l 1zs*o,i
0(f (oo

sup lz4(t)l < L;
0(ú(oo

sup l:tr(¿)l 1V*o'i
O(ú(oo

sup ly(¿)l S 9^o,,
O(t(oo

where 22^or, Zs*o", V^ou and g^o, are either lcnown or ca'n be determined

Proof of Lemma 4.2,1

(1) From the definitions of z1(t) and z4(t) Á (4.22) and (a.25) respectivelv,, (i) and

(ia) are obtained in a straightforward manner'

(2) From (4.1g), it is seen that for bounded signals cos ó(ú) and Epp(t) (t"" Assump-

tion 4.2.1(i)), E;(ú) is bounded, i.e.,

,:P- lt't'll 
l me+mnI{'4 K'

where r'r,s]> 0 and ru) 0. Parts (a) and (ui) then followfrom (4.6) and (a.2)

respectively. V^o, arrd g^o, are given by

V^o,: (-, * mo * mzIÇ + mel{!)+

and

Umøx : m2I{s - rn1 (4.37)

where m¿ t 0 for (i :2,5,6,7,8) and rn1 < 0'

(3) From the state equation (4.1) and eqn. (4.24) of Appendix A, the expression

.:lå lFupPap(t) * Frche(r) + FLPPLP(I)I < I{2 (4'38)

follows from Assumption 4.2.1(ii). According to the equation

(t *'$o) ,"(t) : f,{rrrPap(t) * FrcPrc(t) * FæPrp(¿) - t(¿)) (4.3e)
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which is derived from the second differential equation of the state equation (4.1),

the expression

1

.:Ïå l'"(¿)l s ; Q', - mt * mrI{") 4 I{n (4'40)

arises as a result of applying the condition (a.3S) and conclusion (ai)(with (4.37))

to (a.39). Hence, (ii) and, (iii) are readily established by the definitions of z2(t)

and z3(ú) in (a.æ) and @.2\, with 22*o, antd Zs,no' being chosen as

zzmos : I{sKq

2z^o, - I{LI{4

respectively.

Q.E.D.

Lemma 4.2.1 establishes the boundedness of the additional feedback signals, Z;(ú)

(i : 1, 2,3,4) and g¡(t), and the output variable, t(¿), in the nonlinear continuous-

time input-output model (4.22)-(4.36), in accordance with the physical limitations

specified by Assumption 4.2-1. This lemma will be used when the boundedness of the

variables in the corresponding discrete-time model is discussed in Subsection 4-2.2 ar.d

when the BIBO stability of the resulting nonlinear nominal model is established in

Subsection 4.2.3

Remark 4.2.g It shoulil be emphasised that the bound,edness of the state and output

uariables of the model (4.22)-(4t.36) is obtained in Lemma 1.2.1 withoul imposing an

upper (or lower) bound on the control input u(t).

4.2.2 SISO Nonlinear Discrete-Time Input-Output Power

System Modelling.

In order to implement a discrete-time control law, the nonlinear continuous-time input-

output model (4.22)-(4.36) developed in Subsection 4.2.I is replaced by an equiualent

and
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discrete-time one which is based on the approximation for the first and second deriva-

tives given by

Assumption 4.2.2 [141, lW] ?

(i) pr(t)lt=t¡, :@P I tt,(tx- h,tt);

(ii,) pr*(t)lr=r¡ : ü(tk + h) - zr!!k) + t(tk - h) * r¡"(t¡ - h,tt,tn * h),

where h is the santpling perioil anilt¡ is the sampling ínstant (k e [0,1,2,"')); "(¿)

represents an arbitrary, continuously ilifferentiable time aariable that is sarnpled (or

computeil) through a zero-ord,er holil; þ"(tx - h,t¡) and T'(tn - h,t¡,t¡ t h) are suffi-

ciently small, satisfying the condition that at each sampling instant t¡

!\u,Uu-h,tr):s (4'41)

anil
(4.42)

By applying Assumplion 4.2.2 to (4.36), the nonlinear continuous-time input-output

model (4.22)-(4.36) is discretised, and its approximate discrete-time model is derived

AS

aQ* + h) * a*(tt) + azy(t* - h) : bsî(t¡+ l¿) + btzt(t¡,) +624(tk - h)

tc1z2(t¡) I czzz(t * - h) + dtzz(tx)

+eú4(tk) [o(r*) - ar(t*) + ¿(¿fr)]

+ú(tk + h) (4.43)

where

hr+( rt*r,,,)h-2r¡r^ (4.44)
TATm

7It is possible to use a higher order approximation, e'g', the fourth-order Runge-Kutta, to derive

the corresponding discrete-time model. However, for simplicity, the approximations introduced by

Assumption 4.2.2 arc considered adequate for the studies in this thesis.

A1
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A2

bo

rAr* - (r¡ t r^) h

TATm

Tm

Tm

(4.45)

(4.46)

(4.48)

(4.47)U: kr

lcL

lct

lí2

Ics

k4

) h

h'+ (ra+r;)h-2r¡r*
TATm

t
tt * T,n

TATm

h(h*re)
TAT*
h

TATw - (
b2

C1

C2

dr

êy

-lcz

(4.4e)

(4.50)
Tnn

h2

TATm

(4.51)
TAT^

h2 (4.52)

and

a(tx + h) g h" (r¿, * r,,) , tps\t* - h,tt) - h'qn(to - h,tx,t* * h)
TAT*

*let
h2 r¿, * r^

TATn"

+krLtrr,(tk - h,tk).
Tn

Note that ,(tx + h) represents the error due to the discretisation introduced by As-

sumption 4.2.2. According to (a.al) and @.42), u(t* + å) satisfies

I'so(r* + l¿) :0 (4.53)

for each sampling instant f¡.

Clearly, for purposes of prediction and control of the output variable, the future

value o14(t¡,), zr(t*+h), in (4.43) needs to be expressed in terms of its present and/or

past values {4(t¡,),h(tn - å),...}. This results in the following assumption.

Assurnption 4.2.3 I A linearised prediction 2¡(t¡ * h) at time t¡, is giuen by

zr(tn + h) :24(tk) - a(tk - h) + hqr Ø.54)

sAgain, it is possible to use a higher order approximation to derive the prediction z¡(t¡, { à.) at time

ú¡. However, according to the definition of.4Q) in (+.ZZ), the adopted first-order linearisation (4.54)

is found to be adequate, provided that the condition (+.SZ) is satisfied.

ttr,(t* - h,tt ) * rr*rz,(tt, - h,t¡,t¡, ! h)
( )
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where ê¿u represents the error due to the prediction and satisfies

Its"* : o

for each sampling instant t¡.

Remark 4.2.4 Assumption 1.2.3 is based on the relation

PhG) lr=tx+h : P4(r) l"=t* * etx

where, according to (1.22),

,rr ! 2rolr"þn f lz) cos 26(t¡, ¡ h) - u"(t¡) cos 2ó(f¡)]

sati,sf,es the cond,ition that

bL : Zbo¡br,

b2 : bz-bo,

u(t¡, ¡ h) : r(tn + h) + bshet*

r47

(4.55)

(4.56)

ItS.,o 
: O (4.57)

for eøch sampling instantt,¡. Application of Assumption 1.2.2(i) to (1.56) Ieads to the

following expression

4(t* + h) - 
^(tn) ^(tk) 

- zL
* etx

h

where

eu ! etr I ltrr(tx - h,tt) - pzr(tk,tx * h).

Accord,í,ng to the conditions (4.41) and, (/¡.57), e¿o satisfies the condition (4.55).

Substituting from (4.54) for the prediction zr(t* + å) into (4.43), one writes

y(tt + h) + aú(tx) i a2g(t¡ - h) : bú{tk) * bz7(tn - h)

+qz2(tk) * cz2z(tt - h) + dú3(tk)

-te1zn(tr) [r]r*) - ar(tx) + ¿(úfr)]

+u(t¡, ¡ h) (4.58)

where

t*-h
h

(4.5e)

(4.60)



and

(4.61)

due to the conditions (4.53) and (4'55)

From a practical point of view one allows for measurement errors' actuator errorst

and. in some instances computer round-off errors in (a.58) by writing

Assumption 4.2.4 For the uariables in (1.58)'

u(tr+ å) :0lim
/¿*0

Y(tx)

zt(tr)

zz(t*)

4(tk)

z+(tx)

ur(t*)

d(tn)

u(tk)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.6s)

: g(t*) + *:(t*),

: zr.(tx) + u2(tk),

: zz(t*) + ?rs(tk),

: z"(t*) + u4(tk),

: zt(tx) + urs(rk),

: Vr(t*) + uz(tk),

: ã(t¡) + w6(tk),

: ú(tk) + tll8(¿ß),

where the term,s of the left-hand siile of (4.62)-(4.69) represent measurvil or computed

ualues, and, the terms, .;(t*) (i : 1,...,8), of the right-hand siile of (4.62)-(4.69)

reprvsent the measurement errors, actuator errors, ønd computer round,-off errors that

are o,ssurned bouniled,, such that

lur;(t¡)l < A¿ (i:1,...,8), (4.70)sup
0(ú¡ (oo

with L,¡ (i : 1,.. .,8) being some fired, lenown ualues

Remark 4.2.6 [Jnder the condition (1.70), from Lemrna 4.2.1(ia) and (1.66), it fol-

Iows that

osîl* l"n(tr)l < 1* as. Ø'7t)

The conilition (1.71) witl be used for the stabilíty analysis of the nonlinear optimal

and, adapti.ue controllers in Sections 4.3, 4.4, anil 5.3. It will also be used for the

conaergence analysis of the parameter estimation algorithms in Section 5.2.
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A SISO nonlinear discrete-time input-output model of the power system is finally

derived by applying Assumption 4.2.4 ((4.62)-(4.69)) to (4.58), resulting in

a(tr + h) * a*(tn) + ary(t¡ - tr) bra(t¡)+b2zr(tk-h)

*c122(t ¡,) ! c2z2(t ¡ - h) + fizs(t¡)

¡ ep4(t ¡) ld(t r) - a r(t o¡ + u(t* )1

+w(t¡ ¡ h) (4.72)

where w(t* + lr) represents the combined effect of errors due to discretisation (see

Assumption 4.2.2),linearisation (see Assumption 4.2.3), and measurements, etc. (see

Assumption 4.2.4), which together shall be designated as noise; w(t*+ lz) is defined as

u(t¡ ¡ h) ê wt(tn+ ñ) + a1w{t¡,) i a2u1(t¡, - h) - b¡a2(t¡) - brwr(t¡' - h)

-c1us(t¡,) - c2ws(t¡ - h) - dpa(t¡) - eyza(t¡") [trlu(¿r) - wz(tr) + ?lls(¿fr)]

-eLul(tk) ldfr¡ - ùr(t¡¡ + u (tr)] * u(t¡ + h). (4'73)

Remark 4.2.6 The mod,el (4.72)-(4.73) is ileriueil from the nonlineør continuous-time

input-output model (4.22)-(4.36) subiect to Assumptions 1.2.2-4.2.4. In aiew of Re-

marles 1.2.1 and 4.2.2, it can be concludeil that

(i) the moilel (4.72)-(4.73) is a ualid d,iscrete-time input-output representation of the

NAM, prouided that the conditions in Assumpti,ons 1.2.2-4.2.4 are all sati,sfied';

(ii) the model (4.72)-(/r.73) is an accurate representation of the continuous-time non-

Iinear SMIB power system (CSM?), prouided, that the cond,itions in Assump-

tions 2.1.1 and 1.2.2-/'2.1 are all satisfi,ed'

The characteristic of w(t * å) in the model (4.72)-(4.73) is important for the the-

oretical analyses of the parameter estimation algorithm and the adaptive control law

under a nonlinear control scheme. Considering that in practice the voltage reference

signal and the control signal from a power system stabiliser are usually constrained by

operation or design, one may assume that
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Assumption 4.2.5 In the model (/, 72)-(4 73) the erternal measurable disturbance

input d(t¡) and the control input a(t¡) are constrained to be

(i) lrtr-ll 1v,no,í

(ii) l¿(¿o)l 1ú,no,,

for each sarnpling instant t¡, whereV^o, andltr*o, are known

Based on Assumptions 4.2.1-4.2.5, the following property of u.'(f¡ * /z) is readily estab-

lished.

Lemma 4.2.2 For the model (4.72)-(4.73), subject to Assumptions /¡.2.1-1.2.5, there

enists a L- such that

sup l.(¿o)l ( A-
O(t¡(oo

Proof of Lemma 4.2.2

Signals d-(t¡) and z(f¡) are all bounded due to Assumption 4.2.5(i) and (ii). Also, the

boundedness of z[tn) and g¡(t¿) is provided by Lemma a.2.1(iv) and (v). Therefore,

the conclusion (4.74) is readily obtained from the expression for u.'(ú¡ * h) in (4.73),

subject to the condition (4.?0) in Assumption 4.2.4 as well as the condition (4.61).

Q.E.D

The boundedness of w(t¡ * h) in Lemma 4.2.2 is essential for the proof of convergence

of the parameter estimation algorithms in Section 5.2 and for the analysis of the closed-

loop stability associated with the nonlinear control laws to be designed in Sections 4.3,

4.4, and 5.3.

(4.74)
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4.2.3 Nonlinear Nominal Model of the Power Systern and

Its BIBO StabilitY.

For a fixed sampling period h, the sampling instant ú¡ is expressed as

t*: Ich, (k e [0, 1,2,. . .)).

Equation (4.72) is then rewritten as

a@h + h) + as(kh) + a2y(kh - h) - fuz{kh) } b2z{kh - h)

*c122(kh) * c2z2(leh - h) + d'14(kh)

! eça(kh) ld(k h) - y r(k h) + u(kh)l

tu(kh + h). (4.75)

For convenience of notation, the sampling period h in (a.75) will be implied in the

following equations. A compact form of the SISO nonlinear discrete-time input-output

model (4.72)-(4.73) developed in Subsection 4.2.2 is then given by the following regres-

sion equation

a& + L) : ó&)rOo + u(k + 1) (4.76)

where /(k) is the regression vector, the components of which are functions of the

sequences of the inputs and the output as well as the additional feedback signals. /(fr)

is given by

ó(k)' ê -y(k) -y(k - L) "r(k) z{k - t)

,r(k) z2(k - r) ""(k) za(k)(d(k) - aF(k) + u(k)) (4.77)

Oo is the parameter vector, the elements of which are the model parameters, i.e.,

A: cI1 cI2 h b2 cy c2 ù €1 (4.78)

The parameters in (4.78) are given, in the order written, by @.a\-(4.45),, (4.59)-(4.60),

and (a.a9)-(4.52). It is assumed that

Assurnption 4.2.6 For the SMIB power system described in Subsection 2.3.1,

Oo

T
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(i) the ualues of the parameters of the generating uni,t and the tie-line (such as X¿,

X", etc.) are known;

(ä) for a giuen steady-state operating cond,ition, the infi,nite bus uoltageV* is constant

oaer the time period of a simulation study.

Referring to the definitions of ø1, etc., one may conclude that the model parameters

(ø1, etc.) in the vector 06 are all 'lcnown', and that Oo is independent of /(k). Hence,

equations (4.76)-(4.78) represent a SISO nonlinear discrete-time input-output model

which is linear in its parameters. In the following analysis this model is referred to as

the Nonlinear Norninal Mod,el (NNM) of the power system (CSM3)' and is to be used

for the design of not only the parameter estimation algorithms in Section 5.2 but also

the nonlinear optimal and adaptive control algorithms in Sections 4.3, 4.4, and 5.3,

respectively. Figure 4.3 shows the configuration of the NNM.

d(k) y¡(k), z¡(k) w(k)
r

+
u(k) + y(k)

SYSTEM

L

Figure 4.3: SISO nonlinear discrete-time input-output modelling of the SMIB power

system.

Remark 4.2.7 The NNM (4.76)-(4.75) is an alternatiue form of the model (4.72)-

&.73), and theretore accurately reprcsents the continuous-time nonlinear pouer system

(CSM|), prouided that the conditions in Assumptions 2./¡.1 and 4.2.2-4.2.5 are all

o (k-1)roo
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satisfieil (referring to Remark 4.2.6(ii)). This point will be uerified in Subsection 1.5.1

through simulation studies.

Remark 4.2.8 Since the electrical torque output, T"(k), of the system (CSM?) is re-

lateil to the state uariables (such as n'rQc) and 6(k)) through the nonlinear relationship

u.q, ',(k) 
(i _ I,2,,3,4) (see (].22)-(4.25)) are implicit functions oJ y(k). This

d,eterrnines the nonlinear nature of the NNM (4.76)-(4'78)'

There are several important features in the NNM:

(1) The model (4.76)-(4.78) is derived from the mathematical description of the non-

linear power system (CSM3), and represents the inherent nonlinearities (i.e., the

product nonlinearities and the trigonometric nonlinearities) associated with the

electrical torque (or power) output (see (a.9)). Therefore, the inclusion of the

measurable disturbance input, d(fr), as well as the additional feedback variables,

z¿(k) (i : 1,2,3,4) and yF(k), in the model will result in an accurateprediction of

the output variable, y(k), and potentially better control of the system dynamics.

This point will be demonstrated in section 4.5 (see Remark 4.5.1).

(2) Since the model (4.76)-(4.78) includes the measurable deterministic disturbance

input signal {d(k)} explicitly, the influence of this disturbance on the system

performance can be reduced as soon as it acts on the system. From this point of

view, the model (4.76)-(4.78) provides a feedforwardpath for the control of the

system. The simulation results shown in Subsect\on 4.5.2 will verify this point

(see Remark a.5.6). Being a reference signal, the disturbance input sequence

{d(k)} is known or exactly predictable.

(3) Since the model (4.76)-(4.78) is described in a regression form, the parameter

estimation algorithms and the optimal (or adaptive) control strategies that are

developed for linear systems can be extended to this nonlinear model. Also,

since /(lc) is a linear function of the control input u(k), the solution of u(fr)

from the optimal (or adaptive) control laws to be designed later will be relatively
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straightforward. This aspect is essential for the implementation of the nonlinear

control schemes

It should be pointed out that the iliscrete-timenonlinear input-output model (NNM)

of the power system (CSM3) has been developed from the continuous-time nonlinear

input-output equations (a.22)-(4.36). Consequently, the nature of the input-output

model of the power system has been changed from deterministic (see Fig. 4.2) to

random or stochastic (see Fig. 4.3), with the term to(k f 1) representing the nondeter-

ministic quantity of the NNM.

The BIBO stability e of the NNM is given by

Lemma 4.2.3 subject to Assumpti,ons 1.2.1, 4.2.4, anil 1.2.5, for the NNM

(i) the output y(k), and, the adilitional feeilbacle signals z¿(k) (i : L,2,3,4) and vF(k),

are bounded for all k;

(ii,) the rneasurable iletermínistic di,sturbance input d(k) is bound,eil for all k;

(iä) the control input u(k) i's bounded for aII k-

Proof of Lemma 4.2.3

Conclusion (i) is the consequence of Lemma 4.2.I and Assumption 4.2.4. Also, con-

clusions (ii)-(iii) are the result of the combination of Assumption 4.2.4 with Assump-

tion 4.2.5.

Q.E.D.

Remark 4.2.g Accoriling to Lemma 4.2.3(i) the output and the add'itional feedbaclc

signals of the NNM are bound,ed without irnposi,ng an upper (or lower) bound on the

control input u(k).

eSee Definitior. 4.2 in [170].
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Lemma 4.2.3 forms a key lemma for the proofs of the convergence of the parameter

estimation algorithms in Section 5.2, the analyses of the closed-loop stability associated

with the nonlinear optimal control laws in Sections 4.3 and 4.4, and the proofs of the

convergence of the nonlinear adaptive control algorithms in Section 5.3.

4.3 SISO Nonlinear Stochastic Generalised Mini-

rnurn Variance Control and Stability Analysis.

In this section:

o the optimal prediction of the output variable of the NNM is developed;

o the nonlinear stochastic generalised minimum variance control of the NNM is

discussed, and the closed-loop characteristics are presented;

o the closed-loop stability conditions with the nonlinear stochastic generalised min-

imum variance control law are established.

The discrete-time NNM (4.76)-(4.78) derived in Subsection 4.2.3 is used for the

development of the nonlinear optimal power system stabiliser for the SMIB power

system described in Subsection 2.3.1. The model (4.76)-(4.78) can be rewritten in a

teft difference operator representation [157] expressed in terms of the backward-shift

operator Ç-r, i.e.,

A(q-\v(k+1) : f(k)+u(fr+1) (4.7e)

where A(q-') is a linear scalar polynomial in g-1

A(q-t) :1+ at¡-r +azq-' (4.s0)
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and /(/c) is a nonlinear function of the form

r(Ð: hb2c1c2dLc1

zt(k)

a(k - r)

,r(k)

z2(k - r)

,"(k)

za@) @,(k) - aF(k) + u(k))

(4.81)

The backward-shift operator, q-l, is defined as

q-tyØ)!a(k - 1), for k ) 1; q-1y(o)åy(o)

and so on.

As indicated in Subsection 4.2.9, the derivation of the NNM introduces a nonde-

terministic disturbance term that is expressed by the scalar sequence {r(¿)}. For

theoretical analyses, it is desirable to define the properties of this noise term. Thus,

three types of noise models are proposed:

Noise Model l: Assume that the noise is negligible. With the omission of the term

n,(k * 1), the model (4.?9)-(4.81) becomes a Nonlinear Deterministic Autofue-

gress'i,ae Mouí'ng-Auerage (NDAR.MA) moilel of the form

A(q-')v(k+1) :/(k)

The analysis of the nonlinear prediction and control of the NNM will thus be

carried out in a deterministic environment. However, this assumption may not

be reasonable since the model (4.79)-(4.81) does possess a significant noise term

u(k * 1) during and shortly after a severe disturbanc" (".g., a three-phase short-

circuit). This is because in such an event limiting actions may occur on the

power system, so that Assumption2.4.L which is used for the development of the

NNM is violated. This phenomenon will be demonstrated in Subsection 4.5.1

(see Remark 4.5.3).
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Noise Model 2: Assume that the statistical properties of the scalar sequence {-(k)}

can be described in terms of one kind of stochastic process, e.8., a white noise

sequence {t(k)}, or a coloured noise sequence such as

w(k*r):C"(q-l)e(k+t)

where C"(q-t) is assumed to be a linear filter having its roots strictly inside the

unit circle of the z-domain. The model (4.79)-(4.81) can then be written as

A(q-')a& + 1) : /(k) + C"(q-l)e(k + 1) (4'82)

which is called a Nonlinear Auto&egressiue Moaing-Auero,ge model with auXiliary

input (NARMAX). to If c"(q-l) : 1, then u.'(k+l) is white, and equation (a.82)

reduces to (a.79).

Noise Model B: Consider {u;(,b)} to be any bounded nondeterministic noise sequence

(satisfying Lemma 4.2.2),,without specifying its statistical properties. The model

(4.?9)-(4.81) remains. The optimal prediction and control of the NNM are then

subjected to conditions, such as the condition (4.74) in Lemma 4.2.2.

For the discussion of the nonlinear optimal prediction and control of the NNM in this

chapter, the second noise model (4.82) is adopted, in which the term u(k*l) is defined

to be a white noise sequence so lhat C,(q-t) : 1 in (a.82). Optimal prediction and

control of the NNM will be developed from (4.79)-(4.81). The third noise model (i.e.,

(4.29)-(4.81)) wilt be employed in Sections 5.2 and 5.3 in which the boundedness of

w(k * 1) (established by Lemma 4.2.2) will be used to prove the convergence of the

parameter estimation algorithms as well as the convergence of the nonlinear adaptive

control algorithms.

The layout of the remainder of this section is as follows. In Subsection 4.3.1 an

optimal predictor of the output of the NNM is derived. In Subsection 4.3.2 the nonlin-

ear stochastic generalised minimum variance control of the NNM and its closed-loop

characteristics are presented. The closed-loop stability conditions are then established.

10The d"finition of a NARMAX model without additional feed

(eqn. (7.4.20), p. 267).
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4.3.L SISO Optirnal One-Step-Ahead Predictor'

The optimal prediction of the NNM discussed in this subsection is concerned with ex-

trapolating a time series of the output variable into the future from the model (4.79)-

(4.g1). Since the NNM has been structured in a regression form, linear in the parame-

ters, the prediction of the future output of the NNM can be constructed through simple

algebraic manipulations of (4.79)-(4.81)'

The assumption about the noise sequence {.(¿)} in the model (a.79)-(a.81) is

formalised as follows.

Assumption 4.3.1 Let the scalar sequence {r(t)} in the model (4.79)-(4.81) be a

real-ualueìl stochastic process ilefineil in a probability space (Q,F,P) [157] and ad'apted

to the sequence of increasing sub-sigmø algebrat (Fn,k e Al), where F¡ is generated

by the obseruations uI, to anil incluiling time Ie . (Fo is assumed to contain all initial

conilition information.) The sequence {t(f )} satisf'es

(ù E þn(k + r)lFr) : 0, a.s., k 2 0;

(ii) E þo(k + 1)'lF¡\ : o2-, a.s.t k ) 0,

where the symbol "a.s.t' rneans almost surely, i.e., saue on a set haaing probability

n'ì.eo,sure zero [157].

Under Assumption 4.3.1, {.(t)} is a white noise sequence. The optimal prediction of

the output of the NNM is then given by the following lemma.

Lemma 4.g.L Consid,er the model (4.79)-(4.51) in which u(k * l) is subjected to

Assumption 4.5.1 anil f (k) is F¡ rneasurable. The optimal one-step-ahead prediction,

yo(k+ 1 I k), ofa(k!r) satisfies

yo(k+l lk): G(q-\a@)+r(q-l)¡(/c; (4'83)

ao(k + t I k)Ly(k+ 1) - F(q-l)tr.'(k + 1)

where

158

(4.84)



F(q-t) and G(q-l) are the unique polynomials satisfying

F (q-r) A(q-') + q-t G(q-l) : r,

F(s-t) : 1,

G(q-')= [1 - ¡(q-')]q.

The opti,mality of yo(k + t I k) is established bv

yo(k +1 | fr) : E {y(k+ 1) l.Fk}

Also

(4.85)

(4.86)

(4.87)

ø{larn+1)- vo(k+1 lk)]'} :oî

Proof of Lemma 4.3.1

Refer to the proofs of Lemma 7.4.1 and Lemma 7'4'5 of [157]'

Q.E.D.

Remark 4.3.1 From (4.83) it is noteil that

(i) si,nce the moilel (4.7g)-U.81) is linear in y(k t I), the optimal preilictor (/r.83)-

U.S7) has a simple closed,-form erpression for the preiliction of the electrical

torque (or power) output of the generator;

(ii) the inclusion in the model (4.79)-(4.51) of the measurable disturbance input as

weII as the aild,itional feedbacle signals ln f (k) enhances the preilictability of the

output. This concept has been outlined i,n Subsection 4.2.3 with regard to the

features of the NNM, and will be aerified in subsection 1.5.1.

The optimal predictor (a.83)-(a.S7) wilt be used for the development of the nonlinear

optimal control law in Subsection 4.3.2.
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4.3.2 sISO Nonlinear stochastic Generalised Minimum vari-

ance Control Law.

The aim of optimal stochastic control of the NNM is to compensate for the stochastic

noise {r(¿)} of zero mean (see Assumption 4.3.1(i)). The control input is chosen so

as to minimise a cost function, J(k f 1), of the form

J(k + r) : E{ [t,fo-'l y@ + L) - w,(q-')y.(fr * t)l' + lw,(o^)"(k)]'] (4.88)

where V*(k + 1) is the desired output trajectory; Wo(q-t), W,(q-t), andW,(q-r) are

the preselected weighting polynomials in the backward-shift operator

with urro being taken to be 1 without loss of generality. The expectation is conditional

upon the system input and output data acquired up to time k. using the optimal

predictor (4.33)-(4.87), the control u(fr) that minimises the cost function (4.38)-(4.91)

is given by the following lemma.

Lemma 4.g.2 For the moilel (/t.79)-(4.51), the input u(k) that minirnises the cost

function (4.88)-(4.91) is siaen by

uuow.(q-L)r(k) : ml*,(n.)r-(/c + 1) -wuk-\G(q-\v(k) - w,(q-')/(fr)] '

(4.s2)

Wuk-') : wyo* toyrÇ | ¡-ore-z* "',

Wr(q-t) : u,o * u,tQ-L * w,zQ-z t "',

Wr(q-t) : uuo * uag-L * touzq-2 + "',

Ð',,] 
o-2 t l*n(n-.)ro(k + 1 I k) - w'(q-')v"(r + r)]'

(4.8e)

(4.s0)

(4.e1)

Proof of Lemma 4.3.2

substituting for y(k+1) from (4.84) into (4.88) and using Assumption 4.3'1, one finds

J(k+1) :

+lw,k-t)"(r)]'
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Differentiating (a.93) with respect to z(k) and setting the result equal to zero, one

writes

lwrk)oo(k + 1 I k) - w,(q-')v-(k + Ð)W + u,ow'(q-1)u(/c) : 0

Equation (4.g2) immediately follows by substituting (a.83) into (a.94) and noting that

ôyo(k+1lk) df&)w:@'
Q.E.D.

According to (4.81), /(k) is also a function ol z;(k) (i : 1, 2r3,4) and gp(k) defined

by @.22)-(4.25)and (4.6), respectivety. The solution * #&in (a.92) can then be

written as

(4.e4)

(4.e5)

where, due to (4.63)-(4.67),

0z¿(k)

0z¿(k)

oye(k)

ñ

1

1

(i : 1,2,3,4), (4.e6)

(4.e7)

and

ôr(Ð L

oa(k)
(4.e8)

da(k)
du(k)
ar@)
ô22(k)

dzz(k)

du(k)

: 2cos26(k)m,

: CL¡

ôzz(k) dp:"(k) , ðzr(k) d,E'o(k) - ôzz(k) d6(k): ú6@*W@-@d,'(q
: E'r(k) c"s abùffi* ø"(k) 

""" 
6@ffi

(4.ee)

(4.100)

161



-u"(k)E'q(k)sin 6@!ffi,

, ïzs(k) d6(k)r a6¡@
: Ern(k) cos 6@)ffi* ø"(/c) ."" 6&)%#

-u "(k) 
E p,p (lc) sin 6 &)!ffi ,

: elld(k) - yr(k) + "(k)l '

: co"6&)p,r,

: -epa(le),

0gr(k) d,E'o&) . ôùF(k) d6(k)+wñ

(4.101)

af (k)

6@
d4(k)
@

ar&)
0za(k)
dzq(k)

du(k)
ar@)
oyr(k)
dúr(k) :
du(k) E;(k) du(k)

04(k) døro k)

aEFD(k d,u(k)

(4.103)

(4.102)

(4.104)

(4.105)

(4.106)

a

I
t úr(k)-'{ [-, cos ó(k) ¡ zmsE'o(k\ffi

+ [(-u - *u)sinzó(/c) - m7r'r(le)sin 6(k)] m] , (4.107)

W : epa(k).
au@)

Substituting (a.96)-(a.108) into (4.95)' one writes

ffi: x(k) + þo(k)tB,f*)

(4.108)

(4.10e)

where

x&) A {zö, "o, 
26(k) - r"(k) sin6(fr) l"rL'n&) + úEFD&))

¡elld(k) - ar&) + u(k)lcos ó(k)

-\"^(t )9.(k)-' l{*u -rn5) sin 26(k) - m7L'o(k)sin ó(k)] \ ffi
* {co, 6@)lctl'o(k) * d,rEr"(k)] \ ,\3

+ 
{crc.,"(k) 

cos ó(k) - } "^Ur)úr(k)-' [-, .o. ó(k) + zm"E'n(k)f\ #
* {d1ø"(k)cosó(/c)} W, 

(4.110)

þs&)!eúa(k). (4.111)
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Remark 4.3.2 Frorn the d,efinition of þo&) i" (4.111) and the condition (1.71), it

follows that

,:iå lg"Q')l I ', (r + as) ! þo*o' Ø1L2)

where e1 ) 0 according to (1.52).

For the solution of ¡(k) in (4.110), the SISO nonlinear continuous-time state-space

equation (4.1) introduced in Subsection 4.2.1is utilised. Using the Bacleward Difference

Approrimation (BDÃ) tt (i."., Assumption a.2.2(i)) to approximate the derivatives of

the state variables in (a.1) at time t¡: Ich, the following difference equation of (4.1)

is obtained

x(kl¿) :N(kh- l,) + åA(x(kå)) + åB"R(kh) + hb"n(kh) (4'113)

where å is the sampling period. From (4.113) and the definition of b¿ in (4.8)' the

dx(k) 
lwhere for convenience of notation frl¿ is written as k, as describedexpresslon tor 7ãGt \wuvrc tvr w¡rv\

previously) can be found

ffi-hb,:Io o o

T
hK¡
rA 0000 (4.114)

(4.117)

Thus, according to the definition of X(ú) in (a.3) as well as (a.69) in Assumption 4.2.4,

W, -- 
d,6\ry,¿d\q')- :0, (4.11b)

du(k) da(k) du(k)

W :4":,:t_!!) 
d,*tf.¿ :0, (4.116)

du(k) dn(k) du(k)

dE'q(k)

du(k)
_ ¿n'n(k) du(k) _ n.

da(k) du(k)

_ dÛFp(k) dú(k) : hI{t
dtt(k) du(k) rA

dEro k

d,u(k)
(4.118)

are obtained from (4.114),by noting that 
m: 

1. Therefore, the solution of ¡(k)

is readily derived by substituting (4.115)-(4.118) into (4.110), and results in

x&) : Yr"(rc)cos ó(k). (4.11e)
TA

rlSee, e.g., [1al] p.176.
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consequently ihe expression 
^, min 

(a.109) (or (a.92)) is written as

ffi: ry,"(k)cos 
ó(k) + eça(k) : þo(k)

due to (4.111) and (a.119).

(4.r20)

Remark 4.3.3 In aiew oÍ (4.40) and (1.71), \o(k) in (1.120) i's boundeil for all k'

Remark 4.g.4 As an alternatiue to the BDA approach, the Forward Difference Ap-

proximation (FDA/ ,, (o, Euler's method/ can be useil to ileriae the etpression for

W [Jsing the FDA approach, the d,eríuatiaes of the state aariables in (1.1) are

d,ulte )
giuen by the following ilifference form

x(kt¿) : x(kh - l,) + lu A(x(kh - å)) + ¡¿B"R(k h - h) + hb"a(kh - h)'

It is clear from the aboue equati'on that

dx(k) _ n
drt(k) - "'

Therefore, from (1.110) and (4.109) one immed,iøtely obtains that

x(k) :0,
d,t@)

@: þo(k) : \o(k)'

Howeuer, the BDA approach is ailopted here because the sa,n't'e approach has been used'

for the ileri,uation of the SISO nonlinear ilisuete-time input-output model (4.72)-(4 73)

(see Assumption 4.2.2 (i) ).

In preparation for the derivation of the nonlinear optimal control law, a variable

9(k) is defined as

s@)!l(k) - Bs&)u(k). (4.t2r)

The boundedness oI g(k) is given bY

Lemma 4.3.3 subject to Assumptions /¡.2.1, 4.2.4, anil 1.2.5, g(k) is boundeil for all

k

12S"e, u.g., [141] p.176.
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Proof of Lernma 4-3.3

Lemma 4.3.3 is the consequence of the application of Lemma 4.2.3(i)-(ii) to (4.121)

Q.E.D.

The nonlinear optimal control law is now readily derived from Lemma 4-3.2,, subject

to the following assumption which ensures the solvability of the control input.

Assumption 4.3.2 with proper selection of the leading coefficients of the weighting

polynomials Wu(q-t) and W'(q-t),

(i) \o(k)þo(k)woo *.',o * o, tor aII le

(ii) sup
O(È(oo

< Mo,

where0lMo(oo.

The nonlinear stochastic generalised minimum variance control law and its closed-loop

characteristics are then given bY

Theorem 4.g.L subject to Assumption 1.3.2, for the model (4.79)-(4.81) haai'ng the

optimal predictor (4. Sg )- ( 4. 87)'

(a) the generaliseil minim,um uariance controlu"(k) minirnising the cost function (4.88)-

U.91) is siuen bY

lortÐo"tt )wok-\ + uuow'(q-')] ".(r¡
: |q|rc)lW,(q-')y*(/c + 1) -Wok-\G(q-')v(k) -W,(q-')g(k)l ;(a'nz)

where

þo(k) : eús(k).,

þo(k) : ffr"çfr)cos 
ó(k) + epa(k),

g(k): /(k) - Bs&)u(k);

165



(b) the effect of the control law (/¡.122) is to giue

fto(k)Wu@-' ) yo ( k + 1 | k ) : þoç*¡W, (q-')y. (k + r) - u usWu(q-' ) ". 
( k) ; (4 -t23)

(c) with the control law gí,uen by (1.122), the closed-loop systern is d'escribed by

uk-r,k) (4.r24)

ú(q-',Ð t po&)þo(k)wuk-') + wuowu(q-L)A(q-') (4.r25)

y(k + 1)

".(k)

: irçq-t,,k¡

þo&)þo(k)w,(q-')

þo(k)W,(q-1)A(q-1)

y.(k + 1)

s(k)

u(k + 1)

-uoW'(q-')

-1o(k)Wuk^)

where

and,

it(q-',k) A

(4.126)

(d) the resulting closeil-Ioop system (4.12Ð-(4.126) is bouniled-input bouniled'-output

stable prouiiled that:

(i) ú("-t,Ð t Po&)þoçt¡woç"-t) + uuswu(z-t)A("-t)

is boundeil for aII k;

(ii,) sup ll O.r(k + 1) - O"(k) ll< .'
0(Ic(oo

where e,7 is suffi,ciently small andA6(k) is the coefficient aector of {n(z-t,k),

defi,ned as

o'(k)ta

with

ú("-t, k) å 0^&) [r + aa(*) ,-t + 0¡,2(k)z-2 +...+ 0,7^(k)z-"f

where n denotes the order of the polynomial ú(z-t,k);

(iii) ú(r-',k) + 0

for all I ,-' 13I and, all k.
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Proof of Theorem 4.3.1

See Section 8.1 of APPendix E.

Q.E.D

Remark 4.3.5 In Theorem 4.3.1'

(i) the stochastic control law (1.122) is baseil on the opti'mal preilictor (4.59)-(4.87).

The preilictor allows one to d,eterrníne, using past input/output data, the pre-

d,ictable part of the ilisturbance on the future response and' hence to cancel it

using the control action.

(ii,) since the moilel (/t.7g)-(4t.81) is linear in the control input, the soluability oJ u.(k)

from (1.122) is ensured subject to Assumpti'on l'3'2(i)-(ii)'

The closed-loop system stability established in Theorem 4.3.1(d) is essential for the

implementation of the control law (4.L22). It guarantees the existence of a bound,ed

optimal control ,.(k) such that the operation governed by (4.123) is feasible. Theo-

rem 4.3.1 will be used in Subsection 4.4 to derive the nonlinear stochastic weighted

minimum variance control law which forms the desired nonlinear optimal control strat-

egy for the design of the nonlinear optimal power system stabiliser.

4.4 A Nonlinear optimal weighted Minimum vari-

ance Power Systern Stabiliser and Stability Anal-

ysls.

In this section:

o the nonlinear stochastic weighted minimum variance control of the NNM is de-

veloped from Theorem 4.3.1 given in Subsection 4.3.2, and the closed-loop char-

acteristics are presented;
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o the closed-loop stability conditions with the nonlinear stochastic weighted mini-

mum variance control law are established;

o a nonlinear weighted minimum variance power system stabiliser is proposed.

o the control structure of the SMIB power system equipped with the proposed

nonlinear optimal power system stabiliser is given'

The nonlinear stochastic generalised minimum variance control law established in

Theorem 4.3.1 is based on the cost function (a.S8)-(4.91) for which a wide range of

the weighting polynomials wu(q-t), w,(q-t), andw,(q-l) can be chosen. Different

weighting polynomials result in different forms of the nonlinear optimal control law.

Table 4.1 shows a few special cases.

Nonlinear Control Laws Wuk-') w,(q-t) w"(q ')
Minimum Variance 1 1 0

Weighted Minimum Variance 1 1 tå, (À > o)

Integrated Minimum Variance I 1 ,lå1r - q-t), (l > o)

Table 4.1: SISO nonlinear optimal control laws with their selections of weighting poly-

nomials.

As a parallel study to the linear stochastic weighted minimum variance control

approach discussed in Section 3.5, a nonlinear stochastic weighted minimum variance

control law is considered in this section for the construction of the desired nonlinear

optimal power system stabiliser. As shown in Table 4.1, such a control law is achieved

simply by selectinSWr(q-'): I,W,(q-t) : 1, and W'(q-'): Àå in the cost func-

tion (4.88)-(4.91), which then reduces to

J(k+t) : E{trt¿+1)- a-(k+1)l'+Àu(k)'?} (4-127)

where the weighting coefficient ) > 0
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For the derivation of the nonlinear stochastic weighted minimum variance control

law from Theorem 4.3.1, assumptions concerning ¡(k) (4.119) ana ¡ão(*) (4'109) are

made as follows.

Assumptíon 4.4.L uniler Assumpti,on 2.2.5, y(k) (i.tt9) and þ"(lr) (4.109) satisfv

x(k) n: 0,

|o]r) æ \o(k).

The nonlinear stochastic weighted minimum variance control law and its closed-loop

characteristics are then given bY

Theorem 4.4.t For the model (4.79)-(4.81) haains the optímal predictor (4.83)-(4.87)'

subject to Assumption 1.1.1'

(a) the we¿ghteil minimum aariance control,r.(k) minimising the cost function (4.127)

is giuen by

10"{t )" + À] u.(k) : fto(k) [u.(k + 1) - G(q-')v(t) - g(t)] (4.128)

which is equiualent to

\o(k)yo(k+ 1 | k) -- go(k)y- çk + 1) - lu.(k);

(b) when the control law (1.128) is used for all le , the closed,-loop system is described

by

y.(k + 1)

s(k)

ur(/c + 1)

(r(q-t,k)
y(k + t)

".(k)

kqH ( 1
) (4.r2e)

uhere

ú(q-',Ð t po&)'+ \A(q-') (4.130)

(4.131)A:kqH ( 1 þo(k)' À

þo(k)A(q-') -\o(k)

Bo(k)2 + À

- 1o(k)G(q-')q-'

and,
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(d) the resulting closed-loop system (4.129)-(4.131) is bounded-input bounded-output

stable prouided that:

(ù ú(,-',Ð t Po@)2 ¡ \A(z-t)

is bouniled for all k;

(ii) ,:Ïå ll o'(k + 1) - o'(k) llS .'
where e,7 is sfficiently small and, @t'(k) is ilefi'ned' as

o,1r¡"ê[r ffi ffi] f4.ß2)

with

ú("-',k):lpo&,)'+r] [t-6 '4 +ffiu'f, (4'133)

(iii) ú("-',k) + 0

for all I "-t l3I and' all Ie .

Proof of Theorern 4.4.L

Exactly as for Theorem 4.3.1 (given by Section 8.1 of Appendix E) on noting that

Pr(k) = fto(k),,Wok-\:W,(q-'): 1, and W'(q-t): Àå'

Q.E.D.

Remark 4.4.L In Theorem /r.4.1, because À ) 0, þo(k)'+ ) > 0 is sati'sfi,ed for all k'

Hence, the soluability of ,r.(k) from (/¡.128) is guaranteed'

Remark 4.4.2 Accord,ing to the ilefinition ol þo(k) i" (4.111) (see also Rernark 1.2.8),

þo&) is an implicit function ol y&). This deter-rnines the nonlinear nature of the

control law (1.128).

The closed-loop stability of the control law (4.128) can be given by

Theorem 4.4.2 For the system (4.79)-(4.51) høui,ng the nonlinear stochastic weighteil

minimum uariance controller (4.125), there erists a choice of ), such that the closed-Ioop

system ( 4. I 2 9) - ( 4. 1 3 1 ) is bounded-inqtut hou,n,tled- ou,tput stable'
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Proof of Theorern 4.4.2

See Sectiot Ð.2 of Appendix E

Q.E.D.

Theorem 4.4.2 gives a sufficienú condition for the stability of the closed-loop sys-

tem (4.129)-(4.131). It ensures the global stability of the closed-loop system associated

with the control law (a.128). This control law can be used directly as the desired

nonlinear optimal power system stabiliser. It"will be used for the development of the

corresponding nonlinear adapti,ue control laws in Section 5.3.

In practice, if the power system is operating under a no-load steady-state operating

condition, then 6(k) = 0, which leads to þs(k) = 0 (since þo(k): ersin6(k)). For

small disturbances around this operating point, the control action from (4.128) will be

close to zero, which may result in an ineffective control action on the damping of small

oscillations around the operating point. In order to prevent the control action from

being close to zetofor small disturbances, modifications to the control law (4.128) can

be adopted. The consequent control algorithm which takes the physical limitations

into account is then given bY

Algorithm 4.1 [modified nonlinear weighted minimum variance control law.]

(4.134)

u*(lc) :
Umor

"o(k)
Unin

if uo(k) ) u,møt

7f u^¿n < 
"o(k) 

1 u,,no, i

if uo(k) 1 u*in

(4.135)

where

,uo(k) --[ ^u) 
ir lÉo(/'{;)l ) þo*¿' 

-

I sign[po(k )]6o*n^ otherwise 
; (4'136)

þo*¿,.is apreselected constant, satisfying 01þo^¿n1þo^o, where þo*o' is defined by

@.I12); À is the weighting coefficient; Lt^o, arrd u,m;n are known constants.
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Remark 4.4.3 According to (/¡.112), þ"(k) in (/.136) satisfies

o 1 \o^;n S lÉ'(k)1. 0o^,,, for aII k (4.137)

Remark 4.4.4 The suggested procedure for the selecti'on of Bs^¿n is:

(i) choose a minímum ualue, A¡ ) 0, of the rotor angle 6(k) (e.g., A¿ : 1o :0'0175

(r"d));

(ii) catculate Bs*¿n accordi,ng to (1.111), i-e.,

þo*;n: er sin A¡ (4.138)

where e1 ) 0 is d,efi,neil by Q.52)

Algorithm 4.I ((4.t34)-(4.136)) forms hhe Nonlinear Optimal Weighteil Minimum

Variance Power System Stabiliser (NOWMV-PSS) for the SMIB power system mod-

elled in Subsection 2.3.1. The control structure of the system equipped with the

NOWMV-PSS is given by Fig. 4.4. The stabilising signal y(fr) is the machine elec-

trical power, P"(k) (or torque, T"(k)). The performance of the NOWMV-PSS will be

evaluated in Section 4.5.

Remark 4.4.5 Referring to Remark 3.5.2, in practice the desired output trajectory

y.(k) in Fig. l.l can be proaid,ed, by feeding back the output uariable y(k) through a

Iow-pass fiIter. Howeuer, for the sake of simplicity, y-(k) is set, artificially, to be the

reference pouer (P,.¡(k)) in the simulation stud,ies of this chapter as well as Chapters 5

and, 6. The same approach has been utiliseil in Chapter 3 (see Remarlc 3.5.2).

Remark 4.4.6 As ind,icated, ín Section 3.3, for a high-gain AV&-ercitation control

systern, the steady-state ualue of the control action of the weighted minimum aariance
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v,lt) + P"(Ð (T"(t )

+

u*(k) u'(k)
@o

NOWMV-PSS

v,.(k) v*(k)

J

Figure 4.4: control structure of the SMIB po\ryer system with the NOWMV-PSS.

power system stabiliser will conaerge to a uery small ualue (see (3.42)). Therefore, the

optimal control sisnal ".(k) (either in (1.12s) or in (1.13Ð-(4.136)) sati'sfi'es

lim lu.(k)l ( e,. (4'139)
/c+oo '

where eu. is a small constant, dependent of the aalue of the gai'n of the AVR. This con-

ilition wiII be employed in Section G.3 of Appendix G for the analysis of the conuergence

of the nonlinear adaptiue control algorithms to be designeil in Section 5.9.

4.5 Evaluation of the Performance of the Non-

linear optimal weighted Minimum variance

Power System Stabiliser.

SMIB
Power System

ADC ADCDAC

P.(k) (T"(k))

z(k)v.(k)

Cont¡ollerr

In this section:
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o the validity of the d,iscrete-time NNM derived in Section 4.2 to represent the

continuous-time nonlinear po\ryer system (CSM3) given in Subsection 2.3.1 is

verified through simulation studies;

o the performance of the NOWMV-PSS proposed in Section 4.4 is investigated

through the eaaluation stud,ies (Studies 1-11);

o the robustness of the NOWMV-PSS is tested with unmodelled dynamics and

modelling errors (Studies 12-15).

The NOWMV-PSS proposed in Section 4.4 is realised by a digital computer which

implements the calculations for generating the control signal. A sampling period of

20 ms is used.

Following the proceilzrc described in Section 3.6, the simulation studies of this

section will be conducted in three Stages

Stage l: Verification of the NNM - to examine the performance of the discrete-time

NNM in tracking and predicting the dynamics and transients of the continuous-

time nonlinear power system (CSM3) at different system operating conditions.

Stage 2: Evaluation of the performance of the NOWMV-PSS - to compare the dy-

namic and transient behaviour of the NOWMV-PSS with that of the LAWMV-

PSS through Studies 1-11.

Stage B: Studies on the robustness of the NOWMV-PSS - to test the performance of

the NOWMV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-

15.

The implementation of the above three Stages will be discussed in Subsections 4.5.1,

4.5.2, and 4.5.3, which follow. The parameters and limits associated with the SMIB

power system and the NOWMV-PSS are listed in Appendix C. The simulation results

obtained from this section will be used as a reference for the comparison of the system

performance of the nonlinear optimal and nonlinear adaptive control approaches in

Chapter 5.
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4.5.L Verification of the Nonlinear Norninal Model of the

Power SYstem.

In this subsection the validity of using the d,isuete-time NNM (4.76)-(4.78) to repre-

sent the continuous-tirne nonlinear power system (CSM3 with D : 4.0 pu) is verified

through simulation studies at difierent system operating conditions. The output sig-

nal is the machine electrical torque, T"(k). This subsection is the implementation of

Stage 1.

Aims and structure of the simulation studies.

In the computer calculations, the electrical torque output of the NNM is the optimal

one-step-ahead preiliction of. the actual electrical torque output of the CSM3, i.e.,

r:& I r'- 1) : ó(k - t)"o0. (4.140)

According to (4.84), r:@ I k - 1) is related to T"(k) through the relation

r:&lk-1) --r.@)-.(k) (4.t4r)

Given the values of the parameters of the power system (CSM3) in Appendix C and

the value of the infinite bus voltag" (V.") at specified operating conditions, the values

of the model parameters (ør, etc., as defined by (a.aa)-( 4.45), (4.59)-(4.60), and (4.49)-

(4.52)) of the NNM are pre-calculated. Let the control input u(k) be an external test

signal which is injected into the summing junction of the input of the AVR and the

predictor, simultaneously. The model of the predictor is the fixed-parameter NNM.

At each sampling instant, the predicted electrical torque output Q:& I k - 1)) of the

NNM is calculated by utilising the signals (such as T.(le - I) , z¿(k - 1), etc. ) obtained

from the continuous-time nonlinear power system (CSM3) at the last sampling instant,

and is compared with the current actual electrical torque output (7"(k)) of the CSM3'

The difference betweenT!(k I k-1) and ?}(k) is denoted by u.'(k) which is updated

according to (a.1a1). The configuration for this study is illustrated in Fig. 4.5. The

aims of this study are
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o to confirm that the NNM is an accurate representation of the CSM3 when the

system is operating within linear operation;

o to demonstrate that the NNM inherently possesses the ability to track the output

accurately;

o to examine the validity of the NNM when the system is subjected to faults and/or

changes in the system configuration.

vJr)+ r"(Ð

T"(k)

+ w(k)

u(k) oo

Figure 4.5: Structure of the verification of the NNM

For the above purposes, two Groups of simulation studies are conducted:

Group 1: Let the same PRBS signal as that used in Subsection 3.6.1 be the signal

u(k) that is injected into the summing junction of the input of the AVR and the

predictor. Two dynamic studies are performed:

Case 1: The system is operating at n: 0'6 pu and Qt :0'3 pu' and is sub-

jected to a step change of 0.05 pu increase in reference power at time ¡ :20

second.

Case 2: The system is operating at P¿: 0'6 pu and Q' : -0'1 pu' and is

subjected to a step change of 0.05 pu decrease in reference power at time

¡ :20 second.

SMIB
Power System

ADCDAC ADC

v,(k)

V'lK)
Predictor
(NNM)

{<rru-rt
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Group 2: set the signal u(/c) to zero, Two transient studies are performed:

Case 3: The system is operatin1 at n - 0'6 pu and Q,:0'3 pu' and is sub-

jected to a three-phase fault on the receiving end busbars. The fault is

cleared in 100 ms and the system returns to its pre-fault operating condi-

tion.

Case 4: The system is operating at P¿: 0'6 pu and Q' : -0'1 pu' and is

subjected to a three-phase fault of 100 ms duration at the machine terminal.

The line is lost after the fault is cleared, and a new operating point is

established.

The simulation results associated with Cases 1-4 are plotted in Figs. 4-6-4.9. The

parameters of the NNM at the given lagging and leading operating points are listed in

Table 4.2.

lagging operating Point

(V* :0.91214)

leading operating Point

(V* :1.0673)

Ay -1.7863 -1.7863

A2 0.78857 0.78857

bt -8.03537E-02 -0.11002

bz 8.035788-02 0.11002

C1 9.6592 11.302

C2 -8.0494 -9.4186

d,l 2.84430E.02 3.328138-02

€1 9.053688-02 0.10594

Table 4.2: Paramebers of the NNM at the lagging (P, :0'6 pu, Q, : 0'3 pu, V¿ -

1.0 pu) and leading(Pr:0.6 pu, Qt: _0.1Pu, vr:1.0 pu) operating points.
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Analysis of the simulation studies.

Group l: The simulation studies in the first group involve the comparison of the time

responses of T!(k I k - 1) from the NNM and ?1(k) from the CSM3 when the system

is operating within linear operation. Subject to the PRBS input signal and the step

change in reference po\¡/er, the dynamic behaviour of ?"0(k I k - 1) and [(k) in Case 1

is plotted in Fig. 4.6. It is seen that the trajectories of ?"0(k I k - 1) and T"(/c) are

almost identical. T:(k I k - 1) tracks T"(k) perfectly, even at time f : 20 second,

when the system operating point changes. In order to further demonstrate the output

tracking ability of the NNM, the error u.r(k) between T"o(k I k - 1) and [(k) in Case 1

is plotted in Fig. 4.7 by the solid line. For the sake of comparison, Case 1 is applied

to the identification of the LNM (proposed in Section 3.2), and the error between the

predicted output of the LNM and the actual output of the CSM3 is plotted in the same

graph (Fig. a.7) by the dotted line. It is seen from Fig. 4.7 that while the estimated

LNM presents a sudden increase in its error about t : 20 second when the system

operating point has a step change, the NNM shows consistently a small error over the

time horizon. It is then evident that the NNM inherently tracks the change in the

system operating point. The same phenomenon can be observed in Case 2, the graphs

of which are therefore ornitted.

Remark 4.5.1 The significant difference between the NNM and the estirnated LNM

is shown clearly in Fig. /.7. With the NNM, there is no time delay in tracking the

system output during the transients (e.g., about t - 20 second) and a smaller erYor

in the ilynamics (e.g., after t : 20 second,) when comparvd with the response of the

estimated LNM. This fact ind,icates that the NNM proaides ø better pred,iction of the

output than the estimated LNM. Thereforu, it is reasonable to erpect that a nonlinear

optimal control approach which i,s baseil on the NNM will giue ¿ better control action

than a linear adaptiue control approach, the model of which is the estimated LNM. This

point wiII be uerifi"ed by the comparison of the performance of the NOWMV-PSS and

the LAWMV-PSS to be conducted, in Subsection 1.5'2.
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Remark 4.5.2 Figure 1.7 Ttrouides euidence of the boundedness of the noise term,

.(k), established in Lernma 4'2.2.

Group 2: The second group of simulation studies tests the validity of the discrete-

time NNM when the continuous-time CSM3 is subjected to faults and/or changes in the

system configuration. The faults specified in Cases 3 and 4 cause limiting to occur on

certain system variables, so that Assumption2.4.I which is used for the development

of the NNM is violated. It is seen from Figs. 4.8-4.9 that the NNM gives a poor

prediction of the electrical torque output of the CSM3 during the occurrence of the

faults (0.5 second - 0.6 second). However, it quickly tracks back the dynamics of the

system shortly after the faults are cleared. Good post-fault output tracking ability of

the NNM is shown in Fig. 4.8 in which the CSM3 returns to its pre-fault operating

condition. In Fig. 4.9 a small error between T:(k I k - L) and 
""(k) 

can be found after

the clearance of the fault. This is due to the fact that the CSM3 has changed its pre-

fault configuration by losing the faulted line, causing the value of the transmission line

reactance X" Io be doubled. With fixed parameters, the NNM updates the post-fault

output prediction which is still based on the pre-fault values of the model parameters,

and this results in the post-fault output tracking errol as shown in Fig. 4.9.

Remark 4.5.3 Since the NNM is deriaed from the NAM which exclud,es the system

intentional nonlinearities introduceil by the lirnits, the NNM has a potential shortcoming

in representing the CSMS d.uring the faults. Hence the phenomenon of poor output

pred,ùction of the NNM, erhibited in Figs. 4.5-4.9 during 0.5 second - 0.6 second, is

expected. As a result, the noise term u(lc) is significant d,uring this period of time.

Remark 4.5.4 The post-fault output traclcing error shown in Fig. 1.9 indicates that

the NNM d,oes not haae the abitity to follow the changes in the system pammeters and

configuration. Neaertheless, NNM still follows the post-fault dynamics of the system.

Conclusions.

summarising the simulation results of cases I-4, it is concluded that:
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1. The discrete-time NNM represents the continuous-time CSM3 accurately within

linear operation of the system. This fact verifies Remark 4.2.7.

2. The NNM inherently possesses the ability to track the output accurately in dy-

namrcs.

3. The NNM is a valid representation of the CSM3 after faults, provided that there

are no configuration changes in the system.

The use of the NNM to represent the CSMS for the design of the nonlinear optimal

poïver system stabiliser is thus verified.

4.6.2 Evaluation of the Performance of the NO\MMV-PSS

for the CSM3.

In this subsection the evaluation of the performance of the NOWMV-PSS is conducted

for the CSMS (with D :4.0 pu) through the series ol eualuation stuilies (Studies 1-11)

defined in Subsection 3.6.2. This subsection is the implementation of Stage 2.

Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the NOWMV-PSS is illustrated in

Fig. 4.4. The machine electrical torque is used as the stabilising signal. For each simula-

tion study, the performance of the CSM3 equipped wiih the NOWMV-PSS is compared

with that of the CSMS equipped with the LAWMV-PSS proposed in Chapter 3. The

aims of this study are

o to confirm that the proposed NOWMV-PSS has good characteristics

o to establish a reference for the comparison of the performance of the nonlinear

optimal and nonlinear adaptive control strategies to be conducted in Subsec-

tion 5.4.2.
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Studies 1-11 allocated to the five Groups specified in Subsection 3.6.2 are implemented.

The simulation results are given by Figs. 4.10-4.21 in which the performance of the

LAWMV-PSS is provided by Figs. 3.5-3.12 and 3.14-3.17. The parameters of the

NOWMV-PSS are: utnin : -0.05 pú, u*o,: 0.05 pu, ì : 0.4 (these values are the

same as those used in the LAWMV-PSS)' and Bs^¿n:0.0001.

Analysis of the simulation studies.

Group I-: The dynamic perfortnance of the NOWMV-PSS is examined in Studies 1-3

by simulating the periodic changes in the system operating point. The simulation re-

sults are shown in Figs. 4.L0-4.I2. In Studies 1-2, with the step changes in reference

power, the estimated parameters of the LNM converge rapidly. Therefore, as shown in

Figs. 4.10-4.11, the system responses with the NOWMV-PSS and the LAWMV-PSS

are similar. However, in Study 3 (shown in Fig. 4.12), in which the reactive power

of the system is changed between the lagging and leading conditions, the convergence

rate of the estimated parameters of the LNM is relatively slow. The damping perfor-

mance associated with the LAWMV-PSS shows a deterioration when compared with

the NOWMV-PSS. As indicated in Remark 4.5J, since the NNM inherently tracks

the changes in the system operating point, the control action of the NO\ryMV-PSS is

optimal at each new operating point immediately. Hence, the NOWMV-PSS provides

better damping of the rotor oscillations than the LA\ /MV-PSS.

Group 2: The transient performance of the NOWMV-PSS following three-phase

faults on a transmission line is examined in Studies 4-6. The simulation results are

plotted in Figs. 4.13-4.16. In Study 4 (shown in Fig. 4.13), the settling times associated

with the LAWMV-PSS and the NOWMV-PSS are almost the same. However, the

amplitude of the first few swings associated with the LAWMV-PSS is greater than

that with the NOWMV-PSS. This is due to the fact that the LAWMV-PSS needs to

readjust its parameters, and its control action is not optimal before the convergence of

the estimated parameters. The NOWMV-PSS, however, provides an optimal control

action to damp the rotor oscillations as soon as the fault is removed. In Study 5 (shown

in Fig. 4.14), the LAWMV-PSS takes time to identify the new operating point with the
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new system configuration following the clearance of the faulted line. Consequently, the

performance of the LAWMV-PSS is inferior to that of the NOWMV-PSS. As indicated

in Remark 4.5.4 (see also Fig. 4.9), because the NOWMV-PSS can still follow the

system dynamics, even with the use of the pre-fault model parameters, the NOWMV-

PSS provides more rapid damping than the LAWMV-PSS. The above explanations of

the behaviour of the NOWMV-PSS and the LAWMV-PSS in Studies 4-5 can also be

applied to Study 6 (shown in Fig. 4.16).

Remark 4.5.5 Figure 1.15 illustrates the fi,eld aoltage Epp(t) reEponse for the test in

Study 5. The conclusions regarili,ng the f,eld aoltage responses of the different pouer

system stabi,Ii,sers support those made for the torque responses. Further to thi's, the

field, uoltage response of the NOWMV-PSS shows that the NOWMV-PSS can prouid,e a

contrcI action with appropriate amplitude and phase, resulti,ng in the stronger d,arnping

of the rotor osci,llations as reuealed, by the responses.

Group 3: The ability of the NOWMV-PSS to track the changes in the system

parameters and configuration is examined in Study 7. The LAWMV-PSS can sense

the change in the value of X" (from 0.4 pu to 0.8 pu) by readjusting its parameters on-

line. With fixed parameters, the NOWMV-PSS does zo on-line adjustment. Therefore,

as shown in Fig. 4.17, the NOWMV-PSS shows lighter damped performance than that

of the LAWMV-PSS when one transmission line is switched out (during the time period

10.5 second - 20.5 second). However, when the lost line is switched back (after t :20.5

second), the control action of the NOWMV-PSS is superior to that of the LAWMV-

PSS, the parameters of which need to be readjusted again (see also Fig. 3.13).

Group 4z In Studies 8-9, the ability of the NOWMV-PSS to overcome the mea-

surable deterministic disturbances in reference voltage is examined. It shows clearly,

in Figs. 4.18-4.19, that the NOWMV-PSS provides faster damping than the LAWMV-

PSS.

Remark 4.5.6 As discussed in Section 1.2 concerning the features of the NNM, the

NNM includes the uoltage reference signal, d(k), explicitly. Therefore, once a step
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change of d(k) is applied to the system, the NOWMV-PSS immed,iately acts to damp

the pred,icted output oscillations eaen before the infl,uence of this d'isturbance actually

affects the system output. Based on this fact, the NOWMV-PSS can prouid,e some

feed,forutard, compensation for the d,isturbance d,(k) and,, consequently, better contrcl

perforrnance than the LAWMV-PSS.

Group 5: The abitity of the NOWMV-PSS to extend the system stability region is

examined in Studies 10-11, shown in Figs. 4.20-4.21. The behaviour of the NOWMV-

PSS is as good as that of the LAWMV-PSS. It is then evident that both the NO'WMV-

PSS and the LAWMV-PSS are well designed.

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that:

1. With the use of the same value of the weighting coefficient .\, the NOWMV-PSS

is more effective than the LAWMV-PSS in most cases:

o In dynamic situations, the NOWMV-PSS possesses the inherent ability to

track the changes in the system operating point, thus it provides a better

damping effect than the LAWMV-PSS.

o Following a three-phase fault, the NOWMV-PSS can offer a fast optimal

control action for damping system oscillations. This is due to the fact that

the NOWMV-PSS does not involve any on-line parameter adjustment; its

optimal control action has no time delay.

2. The lack of a facility for on-line parameter adjustment associated with the NOWMV-

PSS deleteriously affects its damping performance, when the system parameters

or the operating conditions (and hence the parameters of the NNM) change.

Remark 4.5.7 The aboue shortcoming of the NOWMV-PSS will initiate the further

ileaelopment of a nonlinear ailaptiue power system stabiliser which wòll be di'scussed in

Chapter 5.
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4.5.3 Studies on the Robustness of the NO-WMV-PSS for

the CSM1.

In this subsection the robustness of the NOWMV-PSS is confirmed through the series

of robustness studi,es (Studies I2-L5) defined in Subsection 3.6.3. The performance of

the NOWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The performance of the NOWMV-PSS and the LAWMV-PSS is further compared with

the CSMS (D:4.0 pu) replaced by the CSM1 (D :0.1 pu). The stabilising signal is

the electrical power P"(k). The aims of this study are

o to verify the validity of the NOWMV-PSS for the power system represented by

the more accurate model (CSMl);

o to establish a reference for the comparison of the performance of the nonlinear

optimal and nonlinear adaptive control strategies with unmodelled dynamics and

modelling errors to be conducted in Subsection 5.4.3.

Studies l2-I5 allocated to the two Groups specified in Subsection 3.6.3 are imple-

mented. The simulation results are given by Figs. 4.22-4.25 in which the performance

of the LAWMV-PSS is provided by Figs. 3.18-3.21.

Analysis of the simulation studies.

Group 1: The dynamic perforrnance of the NOWMV-PSS associated wiih the CSM1

is examined in Studies 12-13. The results are plotted in Figs. 4.22-4.23. It is seen that

the NO\MMV-PSS gives damping performance similar to that of the LAWMV-PSS.

This concides wiih the results shown in Figs. 4.10-4.11.
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Group 2: The transient performance of the NO\MMV-PSS associated with the

CSMI is examined in Studies 14-15. In Fig. 4.24 the damping performance of the

NOWMV-PSS shows a slight deterioration as compared to its behaviour in Fig. 4.13 for

the identical disturbance. This can be attributed to the influence of the subtransients

of the CSM1 (i.e., the unmodelled dynamics of the NOWMV-PSS). Nevertheless, the

performance of the NOWMV-PSS is still better than that of the LAWMV-PSS in

Study 15, as shown in Fig. 4.25. This agrees with the result shown in Fig. 4.14. Thus,

the fast control effect associated with the NOWMV-PSS is still evident.

Conclusions.

The above studies confirm that

1. The NOWMV-PSS which is well designed for the CSM3 is also valid for the

higher-order actual po!\rer system represented by the CSMI.

2. ln terms of the damping performance, the NOWMV-PSS is at least comparable

with, and typically better than, the LAWMV-PSS'

4.6 Concluding Remarks.

In this chapter original work on the design and implementation of. a nonlinear optimal

power system stabiliser for the SMIB power system modelled in Subsection 2'3.1 is

conducted. This work forms the basis for the theoretical and practical development of

the nonlinear adaptive power system stabilisers to be discussed in Chapters 5 and 6.

In order to deal with a nonlinear control problem, the development of a suitable

nonlinear model for controller analysis and design is essential. For this reason, in

Section 4.2 a new nonlinear nominal model (NNM) in a discrete-time input-output

representation is derived from the nonlinear analytical model (NAM) given in Subsec-

tion 2.3.1. The NNM includes the inherent nonlinearities associated with the machine

193



ê
IJ*oÀ
E
Ë
f¡¡

o-64

o.72

o.7

o-66

o-4

o-62

o-'f2

o-7

o.66

o_a

o.62

1 2

2

3

3

4

4

6

6

7

7

a

a

9

9

10

10

5

Time (sec)

5

Time (sec)

Figure 4.22: Electrical power response for Study 12 (n: 0.6 Pu, 8¿ : 0.3 pu; step

change in reference polyer). CSM1 with the NOWMV-PSS - solid line, CSM1 with the

LAWMV-PSS - dashed line.

6ao.e
TJ

À
E
Ei
åìE

1

Figure 4.23: Electrical power response for Study 13 (pt : 0.6 Pú, Qt: -0'1 pu; step

change in reference power). CSM1 with the NOWMV-PSS - solid line, CSMI with the

LAWMV-PSS - dashed line.

r94



1

t.2

o

e o'8
tt-
Æ 0.6
E
Er¡¡ o.4

o-2

o 1 2

2

3

3

4

4

6

6

7

7

9 105

Time (sec)

5

lfime (sec)

Figure 4.24: Electrical power response for Study U (n: 0.6 Pr, Qt: 0.3 pu; 100 ms

short-circuit on the receiving end busbars). CSM1 with the NOWMV-PSS - solid line,

CSMI with the LAWMV-PSS - dashed line.

1

o.9

o-a

o.7

o.6

o.5

o-4

o.3

o.2

o.1

o 9 10

c
tt
o

Ét<

.E
Il

r¡

o 1 a

Figure 4.25: Electrical power response for Study 15 (¿ : 0'6 Pt, Qt : -0.1 pu;

100 ms short-circuit at the machine terminal). CSM1 with the NOWMV-PSS - solid

line, CSM1 with the LAWMV-PSS - dashed line.

195



electrical torque (or power) accurately. Hence, it tlacks the changes in the operating

point of the nonlinear power system automatically. The validity of the NNM to rep-

resent the CSM3 at various system operating conditions is verified through simulation

studies in Subsection 4.5.1.

The NNM, given in a regression form, is linear in the parameters and in the control

input. This feature of the NNM is important, since the linear theory of estimation,

prediction, and control, can then be developed for this nonlinear model' The BIBO

stability of the NNM has been established in Lemma 4.23 for use in the theoretical

analyses associated with the nonlinear optimal and adaptive control laws developed in

this chapter and Chapter 5.

A new nonlinear stochastic generalised minimum variance control law is developed

for the NNM in Section 4.3, and its closed-loop stability conditions are established

in Theorem 4.3.1. By choosing different weighting polynomials in the cost function,

different forms of the nonlinear optimal control law are obtained. The noise term in

the NNM is specified as a white noise with zero mean. This specification facilitates

the theoretical development of the nonlinear optimal control laws for the NNM. The

boundedness and the dynamic characteristics of this noise term are examined in Sub-

section 4.5.I.

In Section 4.4 a new nonlinear stochastic weighted minimum variance control law

is derived. The sufficient condition for the global stability of the closed-loop system

associated with this control law is given by Theorerrr 4.4.2. The application of this con-

trol law to the design of a nonlinear optimal power system stabiliser is then discussed.

In taking practical implementation into account, a new nonlinear optimal weighted

minimum variance power system stabiliser (NOWMV-PSS) is proposed for the SMIB

power system given in Subsection 2.3.1. The NOWMV-PSS would be realised in prac-

tice by a digital computer, and its control action updated by the implementation of

Algorithm 4.1.

In Section 4.5 the performance of the proposed NOWMV-PSS is investigated and

its robustness in stabilising the higher-order actual power system is tested through

the series of evaluation studies and robustness studies specified in Subsections 3.6.2
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and 3.6.3, respectively. The effectiveness of the NOWMV-PSS is demonstrated by the

comparison of the system damping performance with the LAWMV-PSS proposed in

Chapter 3. The simulation results in this chapter indicate that the NOWMV-PSS

is properly designed; it is comparable with the LAWMV-PSS and improves the sys-

tem damping performance with the LAWMV-PSS in most cases. Due to the property

that the NOWMV-PSS is f,xed-parameter anð. nonlinear, the NOWMV-PSS provides

a faster control action for damping rotor oscillations than the LAWMV-PSS with an

identical weighting coefficient l. Moreover, since the voltage reference signal is included

in the control law explici,úly, some feedforward compensation for this measurable deter-

ministic disturbance is provided by the NOTWMV-PSS. The provision of the dynamic

and transient behaviour of the NOWMV-PSS in this chapter establishes a basis for the

evaluation of the system performance with the nonlinear adaptive control scheme yet

to be designed in Chapter 5.

The contributions in this chapter are original, and have been listed in Section 4.1.
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Chapter 5

SISO Nonlinear Adaptive Power

System Stabilisers.

5.1- Introduction.

In this chapter the design oI SISO nonl'i,near ailaptiae po$/er system stabilisers is dis-

cussed. This follows on from the development of the nonlinear optimal power system

stabilisers discussed in Chapter 4. It will establish a basis for the further development

of a dedicated bilinear adaptive power system stabiliser to be discussed in Chapter 6.

In order to deal with the nonlinearities in a power system, nonlinear optimal control

approaches have been proposed in Chapter 4. The inherent nonlinearities of the power

system are incorporated into the design of the control laws. A nonlinear nominal model

(NNM) was derived from the mathematical description of the nonlinear SMIB power

system for the purposes of the design and implementation of the nonlinear optimal

power system stabiliser. The parameters associated with the NNM are defined by

(4.44)-(4.45), (4.59)-(4.60), and (4.49)-(4.52). From these definitions, it is clear that

for a given generating unit (with fixed system parameters), the values of the parameters

of the NNM will depend on the following factors:

o the value of the transmission line parameters, such as X. etc., which change

following a change in the system configuration;
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o the value of the infinite bus voltagerV*, which is assumed to be time-invariant

for a given lagging or leading operating condition, but will be time-varying as

the system operating condition changes from lagging to leading or vice versa.

If the above factors were unchanged, then a fixed-parameúer NNM would be an accurate

representation of the nonlinear power system. However, in practice, these factors do

change over a period of time. Consequentl¡ the nature of the NNM (a.76)-(a.78) is

time-uarying. As indicated in the Conclusions of Subsection 4.5.2,, the NOTWMV-PSS

designed by the use of the fixed-parameter NNM is not capable of tracking the system

changes on-line.

In order to overcome the shortcoming associated with the NOWMV-PSS, nonlinear

ailaptíue control schemes are considered in this chapter. Based on the certainty equiu-

alence principle, the derivation of a nonlinear adaptive control law from an existing

nonlinear optimal control law developed in Chapter 4 will be straightforward. A pu-

rameter estimation algorithm will be required for the purpose of on-line identification

of the time-varying NNM. Since the model is nonlinear, it will be necessary to separate

the estimation of the parameters and the calculation of the control law. Therefore, in-

ili,rectcontrol methods will be considered for the development of the nonlinear adaptive

control algorithms.

From the review of the literature, the study of nonlinear adaptive control algorithms

for the design of power system stabilisers has not been reported widely. One example

of a nonlinear controller, designed on direct feedback linearisation, has been employed

to implement adaptive control laws for studies on the transient stabilisation of power

systems [86]. However, in some other fields of scientific research, nonlinear adaptive

control approaches have been developed and implemented. Typical applications are

documented in [75,44]. For example, nonlinear minimum variance control strategies

have been designed in [192] for use in dissolved oxygen control in activated sludge

waste water treatment and in control of pH in acidic waste water. Similar approaches

have been developed in [196] for substrate concentration control and production rate

control of time-varying bacterial growth systems. A nonlinear model reference control

approach has been proposed in [193] for control of the nonlinear dynamìcs relating
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joint angles to motor torques in robot control. Because there are a great variety of

representations of nonlinear systems in practice, nonlinear adaptive control approaches

differ significantly in formulation. However, there is a common principle behind each

design, that is to account for the nonlinearities and the time-varying features of the

systems. Moreover, a nonlinear adaptive control approach is usually proposed for a

specific problem. The application of a nonlinear adaptive control law designed for one

specific nonlinear system to other control problems is limited.

In this chapter r¿eto nonlinear adaptive control algorithms are developed for the

design of the power system stabiliser for the SMIB power system modelled in Subsec-

tion 2.3.1. Original work on the analysis, design,, and eualuationof nonlinear adaptive

pou¡er system stabilisers will be conducted in the following sections of this chapter. The

work involves the development of the parameter estimation algorithms for identification

of the time-varying NNM, the derivation of the nonlinear adaptive control laws, the

convergence analyses of both parameter estimation and adaptive control algorithms,

the formulation of a nonlinear adaptive power system stabiliser, and the assessment of

the system damping performance with the proposed nonlinear adaptive stabiliser.

The organisation of this chapter is as follows. In Section 5.2 parameter estimation

algorithms for identification of the time-varying NNM are proposed and the relevant

convergence analyses are briefly discussed. In Section 5.3 the SISO nonlinear adap-

tive weighted minimum variance control laws are developed from the optimal control

law (4.128), and the convergence of the resulting bounded nonlinear adaptive con-

trol algorithms is established. A nonlinear adaptive power system stabiliser is then

proposed. In Section 5.4 the performance of the proposed nonlinear adaptive power

system stabiliser is assessed through simulation studies, and is compared with that of

the NOWMV-PSS developed in Chapter 4.

To the author's knowledge, the research reported in this chapter is original; the

main contributions are

1. The recursive least squares algorithm with the time-varying forgetting factor

and dead zone is applied to the NNM for the identification of the time-varying
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parameters on-line. Based on Lemma 4.2.3 established in Subsection 4.2.3, con-

vergence analyses of the resulting parameter estimation algorithms are given in

Sections G.1-G.2 of Appendix G.

2. New SISO nonlinear adaptive weighted minimum variance control laws are de-

rived from the nonlinear stochastic optimal control law (4.128). The convergence

of the resulting bounded nonlinear adaptive control algorithms is established. A

rigorous mathematical proof of the convergence is presented in Section G.3 of

Appendix G.

3. A, new nonlinear adaptive power system stabiliser based on the bounded non-

linear adaptive weighted minimum variance control algorithm is proposed, and

the control structure of the SMIB porver system equipped with the proposed

nonlinear adaptive power system stabiliser is illustrated.

4. Simulation studies on the evaluation of the nonlinear adaptive pov¡er system

stabiliser are conducted. A series of useful comparisons with the NOWMV-PSS

is given.

It should be pointed out that while the convergence analysis of a standard linear

adaptive control algorithm has been well-documented, there is no general proof of

the convergence of. a particulør nonlinear adaptive control algorithm. For this reason,

proofs of lemmas and theorems to be established for the theoretical development of

the nonlinear adaptive power system stabiliser under design are given in this chapter.

These analyses ate necessary to ensure the closed-loop system stability associated with

the proposed nonlinear adaptive power system stabiliser.

5.2 Parameter Estimation Algorithms for the Non-

linear Norninal Model of the Power System

and Convergence AnalYses.

In this section:
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o the recursive least squares algorithm with the time-varying forgetting factor and

dead zone is proposed for the estimation of the parameters of the NNM;

o convergence analyses of the proposed parameter estimation algorithms are given.

The NNM given in Subsection 4.2.3 is written as

a& + t) : ó&)rOo + to(k + 1) (5.1)

where /(k) and Os are given by @.77) and (a.78), respectively. It has been shown in

(4.83) and (a.86) that the optimal one-step-ahead prediction of the output of the above

model is given by

vo(k +1 I k) : G(q-')y(k) + f(k) :d(k)'oo

in which {r(*)} is assumed to be a white noise sequence satisfying Assumption 4.3.1. In

this chapter, as indicated in Section 4.3, the thirdnoise model is considered and {r(*)}
is a general bounded nondeterministic noise sequence which satisfies Lemma 4.2.2.

This treatment will result in a more general form of the nonlinear adaptive controller

applicable to different noise characteristics, provided that the noise term is bounded

(i.e., satisfying Lemma 4.2.2).

Given an estimat" Olt¡ of Oe, the ad,aptiue one-step-ahead pred,iction, Û(k + 1), of

a(k + 1) in (5.1) is defined as

û(k + 1) ê d(k)ro(k) (5.2)

where

o(t)'A I a,1rl î,r(k) ó,(k) b,&) ¿'(k) èr(k) dr(k) ê,(k) ] 
. (5.3)

Since the model (5.1) is linear in its parameters, the parameter estimation algorithms

developed for the identification of linear models can be applied to this nonlinear model.

Therefore, the recursiue least squares algorithm with the time-uarying forgetting factor,

used in Chapter 3 to construct the linear adaptive control algorithms, is employed in

this chapter as the basic parameter estimation algorithm for the NNM. The use of

the time-varying forgetting factor is to allow tracking of the time-varying parameters
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of the NNM due to the changes in the system parameters and/or in the value of

the infinite bus voltage. It is also used to prevent the covariance matrix P(k) from

,blowing-up' (the reason for which has been explained in Subsection 3.4.1). Moreover,

since the model (5.1) contains a bounded noise term u:(k * 1), the technique of a

d,ead zone [157] is recoÍtmended. A switching function, o(k), is incorporated into the

parameter estimation algorithms [192,196]. The switching function ø(k) is used to hold

the parameter estimates constant whenever the prediction errors become smaller than

a prespecified bound, A-. The introduction of ø(k) into the algorithms is necessary

for the theoretical analysis of the parameter convergence of the algorithms. It may be

omitted in practice or in simulation studies when this precaution is unnecessary. The

resulting parameter estimation algorithm for the model (f.t) is then given as follows.

Algorithm 5.1(A) [recursive least squares algorithm with the time-varying

forgetting factor and dead zone for the model (5.1).]

Estimate:

olr¡ : o(¿-1) +ø(fr -t)P(k-r)ó(k - t)[s(¿) -t(k)] (5.4)

Covariance:

"(k-L)P(k-2)ö( k - t)ó(k - r)r P(k - 2)P(k-t): P(k-2)- 1

p(k - r) + ø(lc - 1)ó(k - I)r P(k - 2)ó(k - I) p(k - r)
(5.5)

Prediction:

Etror:

Switching Function:

û(k): ó(k - 1)"ô(k - 1)

e(k):y(k)-û(k)

otherwise

,, p,(k - r)e(k)2 -, A2,t 2 t)uI

(5.6)

(5.7)

o(k-t):
0
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Forgetting Factor:

o(k - I)e(k)2 I
uo(k) - 1 - | + ó(k - r)r P(t - 2)Ó(k - 1) Eo

(5.e)

F'(k) =

p(k) :

po(k)

llmin

p(k)

1

if po(k) )_ p,*;n ) 0

otherwise

trace(P(k - 1)) <C

(5.10)

(5.11)
if

l'(k)
otherwise

where k > L, P(-1) : I{oI (0 < Ko < C), and ¡r(0) - 1' Â-, Ð0, þmin¡ a\d C

are preselected positive constants. O(f) ana /(k) are defined by (5.3) and (4'77),

respectivety. O(O) is given.

VVV

The parameter estimate O(t) from Algorithm 5.1(A) will be used to calculate the

corresponding nonlinear adaptive control law (Algorithm 5.1(B)) in Section 5.3.

Remark 5.2.1 Atgorithm 5.1(A) is obtai,neil by mi,nimising the quailrøtic cost func-

tion (F.1) giaen in Appenilir F.

The convergence of Algorithm 5.1(A) is given by the following theorem, based on

[192,196]. This theorem ensures that: if the noise term u.'(k * 1) in the model (5.1)

is bounded, then (i) the convergence of the parameter estimate O1t¡ it guaranteed

through the use of the switching function o(/c) in the algorithm; (ii) the boundedness

of the adaptive one-step-ahead prediction, fi(k),, of y(k) as well as the error between

y(k) and y(k) is also guaranteed.

Theorem 5.2.L Forthe least squares algori,thm (5.Ð-(5.11), subjectto Assurnpti'ons 1.2.1'

4.2.5,

(") ,lig."p lt(k)l 3 i{" + i{4L-,

(b) lim sup ly]ù - t(k)l < i{n\'*,,
Í+oo
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where i{", i{n, i{s, and l{u ar" Ienown constants, independent of L,..

Proof of Theorern 5.2.L

See Section G.1 of Appendix G.

Q.E.D.

Theorem 5.2.1(b) will be used to prove the convergence of the corresponding non-

linear adaptive control algorithm (Algorithm 5.1(B)) in Section 5.3'

Alternatively, the model (5.1) can be written as

y(k + t) : õ&)r Oo + Bo(k)u(k) + u.'(k + 1) (5.12)

where

(") Ji*'"0 l"f *l - o(r - 1)l < i{ul,-,

(d,) ll ô(k) - oo ll 3 i{u ll ô(0) - oo ll, for le ) l,

-y(k) -y(k - I) ,'(k) z{k - r)

""(k) z2(k - L) z"(k) za(k) (d(k) - ar&))

ó(k)' ê 
t

(5.13)

Define ú(k+ 1) bv

ú(k +Ð t ó(Ðroo + u(fr + 1),

The model (5.12) can then be rewritten as

y(k + r) -- g(k + 1) + Bs(k)u(k)

(5.14)

(5.15)

As far as the model (5.14)-(5.15) is concerned, the adaptive one-step-ahead predic-

tion, fr(k { 1), of g(k + 1) can be defined as

ú(k +r) t ó&)rô(r). (5.16)

Hence, for the model (5.14)-(5.15) the parameter estimation algorithm proposed in

Algorithm 5.1(A) can be modified to give
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Algorithm 5.2(A) [recursive least squares algorithm with the time-varying

forgetting factor and dead zotte for the model (5.14)-(5.15)']

Estimate:

ô1r¡ : o(r - 1) + ø(k - l)P(k - r)ó(k- r) [Et*l - îi@] (5.17)

Covaúance:

o(k - L)P(k - öP(k-L): P(k -2) -
k-r)4,@-ÐrP{rlrc-2 1

p(k - 1) + ø(k - t)ó(k - r)r P(k - 2) k-1)

ú(k): y(k) - \o(k - 1)u(fr - 1);

û(t):ó(k-1)"ô(k-1)

é(k):g(k)-îi(k)

if
p(k - t)ë(k)'z > L'z_

p,(k - L) + ó(k - I)r P(k - 2) 0U, - t)
otherwise

p(k - L)
(5.18)

Output:

Prediction:

Ertor

Switchine Function:

(5.1e)

(5.20)

o(k-r):
1

0

t'(k) :

(5.21)

(5.22)

(5.23)

(5.24)

Factor:

k-r )'
k - r¡r pç¡ - 2)ó(

1

t
k

Po(k) - 1 - 1+ k-1)

po(k)

llmin

|f. p.s(k) ) p,*n t 0

otherwise

trace(P(k - 1))
if <C

p(k): (5.25)

1 otherwise

where le > I, P(-1) - I{oI (0 < 1(0 < C), and p(0) : 1. A-, Eo, þmin¡ a\d C

are preselected positive constants. O(f) "na $gt) "r" defined by (5.3) and (5.13),

respectivety. OlO) is given.

l'(k) p(k)
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The parameter estimat" Olt¡ from Algorithm 5.2(A) will be used to calculate the

corresponding nonlinear adaptive control law (Algorithm 5.2(B)) in Section 5.3.

Remark 5.2.2 In Algorithm 5.2(A)'

(i) at each sampling i,nstant k, g(k) is obtaineil from the measured input/output ilata

sequences accord,ing to (5.19);

(ii) the parameter e1 is set to be constant in (5.19) in oriler to calculate fi(k), while

the estimated, e1, êr(k), is stiT retaineil tn 6(*) for upilating the prudiction fr(k).

This approach will be used in Section 5.3 to ileri,ue the modified nonlineør adapti,ue

control law (Atgorithm 5.2(B)) Ío, the sake of ensuring the conaergence of the

resulting control algorithm ouer the time horizon.

The aboue points explaín the essentiøI d,ífferences between Algorithms 5.1(A) and 5-2(A)

In a similar way as for Theorem 5.2.1, the convergence of Algorithm 5'2(A) is given

by the following theorem.

Theorem 6.2.2 For the least squares algori,thm (5.17)-(5.25), subject to Assump-

tions 1.2.1-4.2.5,

(o) å*','p lûtrll < i<" + i{nl-,

(b) ,li1à,'p løt*l - øf¿ll s t<it-,

(") ,li*,,,p lot*l - o(¿ - 1)l < içu^-,

(d,) ll o(k) - oo lll tri ¡¡ ô10¡ - oo ll, for le 2 L,

where k;, i{i, i{'u, and i{u or" lenown constants, independent oJ L'-'
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Proof of Theorern 5.2.2

See Section G.2 of Appendix G.

Q.E.D.

Theorem 5.2.2(b) will be used to prove the convergence of the corresponding non-

linear adaptive control algorithm (Algorithm 5.2(B)) in Section 5.3.

When Algorithm 5.2(A) is used, the adaptive prediction of y(k+ 1) is defined as

û(k+¡t$çte¡rô1r¡ + Bs&)u(k). (5.26)

Also, the error between y(k f 1) and ù(k + 1) can be calculated by e(k + 1) as

e(k * r) : y(k + 1) - Û(k + t). (5.27)

Clearly, from (5.12), (5.26), (5.14), and (5.16), it follows that

y(k) - û(k) : ó(k -1)" loo - o(r - 1)] + u)(k) : Û(k) -fr(k), (5.28)

or

e(k) : é(k)

due to (5.27) and (5.21).

The parameter estimation algorithms (Algorithms 5.1(A) and 5.2(A)) developed in

this section will be used to complet e the indirecú nonlinear adaptive control algorithms

which will be designed in Section 5.3.

5.3 Nonlinear Adaptive Weighted Minimurn Vari-

ance Power system stabilisers and conver-

gence AnalYses.

In this section:
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. nonlinear adaptive weighted minimum variance control laws are developed from

Theorem 4.4.1, given in Section 4.4;

. convergence analyses of the proposed bounded nonlinear adaptive control algo-

rithms are presented;

o a nonlinear adaptive weighted minimum variance power system stabiliser is pro-

posed;

o the control structure of the SMIB pov¡er system equipped with the proposed

nonlinear adaptive power system stabiliser is given.

The nonlinear optimal weighted minimum variance control scheme proposed in

Section 4.4 is used in this section for the development of the corresponding nonlinear

adaptive control strategies. According to the cert,aintg equi'ualence principle, the basic

structure of a nonlinear adaptive control algorithm in an inilirect form is obtained by

the combination of the nonlinear optimal weighted minimum variance control law with

one of the parameter estimation algorithms (Algorithms 5.1(A) and 5.2(A)) developed

in Section 5.2.

Consider the model (5.1) for which the parameter estimation algorithm is given

by Algorithm 5.1(A). From the nonlinear optimal weighted minimum variance control

law (4.128) given in Theorem 4.4.1, a nonlinear adaptive weighted minimum variance

control law is suggested by replacing the model parameters by their corresponding

estimates in the following manner

fO,fnf + r] u(t) : go(k) [v.(k + r) - ê(q-')v(r) -,î(r)] (5'2e)

where, according to (4.111), (4.87), and (4.121)

BrUr¡ 
L erQe)znçte), (5.30)

c(q-') 4 -a'(k) - ô'"(k)q-', (5.31)
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t(k) å 
| a,f*l b,&) ¿,(k) ò,(k) â,@) ê,(k) ]

. (5.32)

In practice, the calculated control u(k) from (5.29) is limited by design considera-

tions. Therefore, a bounded nonlinear adaptive control algorithm is proposed for the

model (5.1) as follows.

Algorithm 5.1(B) [bounded nonlinear adaptive weighted minimum variance

control algorithm for the model (5.1).]

"r(k)
a(k - r)

zz(k)

z2(k - t)

zs(k)

za@)@,(k) - y"(k))

,o(k): rfi,fì , [v.(k+r) -c(q-')v(r)-û(k)] ,\ / 
0o(k)2+\

(5.33)

Umot

u(É) :
"o(k)
Umin

if zo(k) ) rtr,"o'

if. u^;n < "o(k) 
1 u^o, i

if uo(k) 3 u^;n

(5.34)

where À is the weighting coefficient; Lt,no, artd u*¿n ã'raknown constants; þo(k), C(q-t),

and 9(/c) are defined by (5.30), (5.31), and (5.32), respectively; the estimated parame-

ters are obtained from Algorithm 5.1(A).

VVV

To prove the convergence of Algorithm 5.1(B), the magnitude and sign of Íy(k +

f ) - y(t)l are required to satisfy certain conditions. For this purpose' the model (5.1)

is rewritten as

y(k+l) :y(k)+fr (5.35)

n : R(v&),s(k), za(k),,u(k),to(k + t))

[c(o-') - r] v(t) + s(k) + Bsï)u(k) + u(r + t¡. (5'36)

where

A
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According to Lemma 4.2.3(l) (see also Remark 4.2.9), y(/c) is bounded without imposing

an upper or lower bound on the control input u(k). Hence, there exist 72 and ry1 such

that

Ttz : r4in la@ + t) - y(k)l ,. u=umo,

Tr: .,!fL_ff^[y(* + 1) - y(fr)] ,

for all k. q2 is the minimum value of [y(k + 1) - y(fr)] when u : u*o,. For the

model (5.35)-(5.36)

rz 
g 

+i1r? (y(k), s(k), za(k)1ltmaot-A-) . (5.37)

,:8

Similarly, q1 is the maximum value of [y(/c + 1) - y(lc)] wheî 'ttr : ztr¡nin. For the

model (5.35)-(5.36)

7r A 
-ax-R (y(k),g(k),,2a(k),u*in,L-). (5'3S)

,'a

Consequently, when g(/c) is located in a specified region llr,lrl €ly^¡n,U^o,f, it may

be assumed that

Assumption 5.3.1 there eríst 12 o,nd, r1 for the model (5.35)-(5.36) such that

min -R @ (k), g(k),, za(k) ¡ umos ¡-4.) ) 0, (5.3e)AT2:
uStz-q2

g(*)
,Áh\

", 
4 

,g,g ,R(y(t), 
g(k), za(k)¡urnàn¡A-) < 0

s(¡)
"+(lr)

(5.40)

Remark 5.3.1 The eristence of 12 {rnd, 11 is guaranteed, for the san't'e recßon as the

existence of q2 andr¡1. Assumption 5.3.1, therefore, only requires that the inequalities

in (5.39) and (5./0) hotd for the specif,ed regions "Í v(Ð and' u(k).

Remark 5.3.2 The constant ualues ol U^o, and y*;n can be founil in (G.11) of Ap-

pendix G, and are

lY^;n,u*o,f € l-i{t, itt] '
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The assumed inequalities (5.39)-(5.40) ensure that the increment olfy(k + t) - y(k)]

has the following sign and magnitude properties.

Lemma 5.3.1 For the model (5.35)-(5.36), subject to Assumption 5.3.1,

(i) ü
y(k+1)<b and u(k):urno,1

then

v@+t)Zs(fr) *12>y(k); (5.42)

(ü) iÍ
y(k + 1) > /t and u(le) : u^¿n, (5.43)

then

a(k+ 1) < y(k) Iry <y(k); (5.44)

where l, ) h, Utrb] e lA,n¿nrU*o,f , and y^o, and, y^¿n are lcnown constants'

Proof of Lemma 5.3.1.

(1) Wirh u(k) : um asthe minimum increment of Íy(k + t) - y(r)l is given by (5.37).

Thus, from (5.35) and (5.41)

Y(k) < lz-\z'

Using (5.39),

a& + t) - y(k) 2 12 ) o. (5.45)

Hence, inequality (5.42) follows from (5.45).

(2) With u(k) : u^¿n,themaximum increment of [y(k + 1) - y(fr)] is given by (5.38).

Thus, from (5.35) and (5.43)

a(k)>h-r'-'

Using (5.40),

y(k + t) - Y(k) ( 11 ( 0. (5.46)

Hence, inequality (5.44) follows from (5.46).
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Q.tr.D

In order to further ensure the convergence of Algorithm 5.1(B)' the following as-

sumption is introduced.

Assumption 5.3.2 For large enough fro ) 0,

(i,) þ"(tt): þo(k),, for aII k > koi

(ii) 0<A¡<ó(k) 1r-L5,
where the constant L,6 is such that

forallþ2leo,

e1 sin Aa : þo*¡n ) 0;

þo^;n is the so,n'¿e constant as in Algorithm l'1

The desired convergence result of Algorithm 5.1(B) is given by the following theorem.

References [1g2] and [196] provide some basic ideas concerning the proof of the theorem'

Theorem 5.g.1 For Algorithms 5.1(A)-(B), subject to Assumptions 5.3.1-5.3.2 and

4.2.1-,4.2.5,

*l*r'p ly!r) -y.(k)l < i{,+ (+i<n+ l) A- (5.47)

where

k* ! *r,,; (5.48)
POmin

À, þorn¿n, and eu. are known constants. ko it the same constant as in Theorem 5.2.1.

Proof of Theorem 5.3.1

See Section G.3 of Appendix G

Q.E.D

The conver8ence of Algorithm 5.1(B) requires that Â(/ú) : þo(k) (or ê1(k) - "r)
be satisfied when k > leo. In order to ensure the global convergence of the proposed
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adaptive control law for any possible set of values of the estimate O(k¡ orr". the time

horizon, a modification to the control law (5.29) can be adopted. The basic idea is to

replace the estimated ê1(k) in (5.30) by its true value e1 (i.e., to use 1o(k) instead of

þo(k)), while the estimated ê1(k) is still retained in g(fr) (5.32). Such an approach has

been proposed in Section 5.2 (see Remark 5.2.2(ii)) in preparation for this modification

to the adaptive control law. The model (5.14)-(5.15) has been given to accommodate

this approach, and Algorithm 5.2(A) has been developed for the parameter estimation

of the model (5.14)-(5.15). The resulting modified bounded nonlinear adaptive control

algorithm is then given bY

Algorithm 5.2(B) [bounded nonlinear adaptive weighted minimum variance

control algorithm for the model (5.14)-(5.15).]

(5.4e)

(5.50)u(k):
U*ot

"o(fr)
ümin

if uo(k) ) 'u,,no,

il u^¿n < ,o(k) 1u*o' i

if uo(k) 3 u-¿n

where À is the weighting coefficient; u*o, aîd u,*¿n arêknown constants; þo(k), C(q-')',

and 9(k) are defined by (a.111), (5.31), and (5.32), respectively; the estimated param-

eters are obtained from Algorithm 5.2(A).

VVV

Accordingly, the desired convergence of Algorithm 5.2(B) is presented in the fol-

lowing theorem.

Theorem 5.3.2 For Algorithms 5.2(A)-(B), subject to Assumptions 5.3.1, 5.3.2(ii),

and, 1.2.1-4.2.5,

ollgr'rp ly!r) - u-&)l < i<, + (+i<^+ 1) A- (5.51)

where i{, i, the sarne constant as in Theorem 5.3.1 and i<'n is the so,n1,e constant as in

Theorem 5.2.2.
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Proof of Theorem 5.3.2

Exactly as for the proof of Theorem 5.3.1 (given by section G.3 of Appendix G), on

noting that

(1) Assumption 5.3.2(i) is not required;

(2) equations (5.26) and (5'28) hold for all ft;

(3) Theorenr'5.2.2(b) is used

Q.E.D.

Remark 5.g.g Note that since Assumption 5.3.2(i) is not incluileil in Theorem 5.3.2'

this theorem giues the global conaergence of Algori'thm 5.2(B) for any ualue of the

estimate è1(k) at k > lro. Howeaer' due to the replacement o! B"tn¡ by þo(k) for aII Ie ,

the control action u(k) giuen by Algorithm 5.2(B) is expecteil to be less 'ailaptiae' than

that giuen by Atgorithrn 5.1(B). Thus, the system perþrmance associateil with the use

of Algorithm 5.2(B) may not be as good as that with Algorithm 5.1(B). Neuertheless,

since ê,1(k) ís still used, for updating þ(k), the ileteri,oration in system performance d,ue

to the use of e1 (insteail of êa(k)) in calculating uo(k) in (5.19) ca,n then be minimised.

Simulati,on stuilies haue been cond,ucted, which confi,rm this point. For the salce of

breaity, howeuer, these studies are not includeil in this thesis.

The combination of Algorithm 5.1(A) (Algorithm 5.2(A)) with Algorithm 5.1(B)

(Algorithm b.2(B)) gives the desired Nonlinear Ailapti,ue Weighted, Minimurn Variance

power Systern Stabiliser (NA\MMV-PSS) for the SMIB power system modelled in

Subsection 2.3.1. The calculation of the control action of the NAWMV-PSS is a two-

step procedure:

o the recursive least squares algorithm with the time-varying forgetting factor and

dead zone (Algorithm 5.1(A) or Algorithm 5.2(A)) provides the estimated pa-

rameters of the NNM;
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o the control taw ((5.33)-(5.34) of Algorithm 5.1(B) or (5.a9)-(5.50) of Algorithm 5.2(B))

generates the control signal u(k) by making use of the estimates of the NNM.

The control structure of the system equipped with the NAWMV-PSS is illustrated in

Fig. 5.1. The stabilising signal y(k) is the machine electrical power, P.(k) (or torque,

?:(k)). For the purpose of demonstrating the effect of the proposed nonlinear adaptive

control scheme, Algorithms 5.1(A)-(B) are chosen to be the desired NAWMV-PSS,

the performance of which will be evaluated in Section 5.4. For simulation studies, the

desired output trajectory y.(k) in Fig. 5.1 is set to be the reference power P,"¡(lc) as

explained in Remarks 4.4.5 and 3.5.2.

v,lr)+ P"(r)

u(k) u'(k) P.(k) (T.(k)

v,"(k) y*(k)

NAWMV.PSS

Figure 5.1: Control structure of the SMIB power system with the NAWMV-PSS

SMIB
Power System

DAC ADC ADC

v,"(k)

v

Estimator
(NMVI)

r Controller
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5.4 Evaluation of the Performance of the Non-

linear Adaptive 
.weighted Minimun,l variance

Power System Stabiliser.

In this section

o the dynamic behaviour of the estimated NNM in representing the time-uaryi'ng

nonlinear po\4/er system (CSM3) is examined through simulation studies;

o the performance of the NAWMV-PSS proposed in Section 5.3 is investigated

through the eualuation studíe.s (Studies 1-11);

o the robustness of the NAWMV-PSS is tested with unmodelled dynamics and

modelling errors (Studies 12-15).

The NAWMV-PSS proposed in Section 5.3 is operated in the same environment as

the NOWMV-PSS and the LAWMV-PSS, that is via excitation control of the SMIB

power system modelled in Subsection 2.3.1. The sampling period l¿ is 20 ms.

The simulation studies of this section will follow the proceilure described in Sec-

tion 3.6, and will be conducted in three Stages:

Stage 1: Identification of the NNM - to examine the behaviour of the estimated

NNM in tracking and predicting the dynamics of the time-varying nonlinear

power system (CSM3).

Stage 2: Evaluation of the performance of the NAWMV-PSS - to compare the dy-

namic and transient behaviour of the NAWMV-PSS with that of the NOWMV-

PSS through Studies 1-11.

Stage 3: Studies on the robustness of the NAWMV-PSS - to test the performance of

the NAWMV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-

15.
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The implementation of the above three Stages will be discussed in Subsections 5.4.1,

5.4.2, and 5.4.3, respectively. The parameters and limits associated with the SMIB

power system and the NAWMV-PSS are listed in Appendix C. The simulation results

obtained from this section will be used as a reference for the comparisons of the system

performance of the NAWMV-PSS and its simplified versions in Chapter 6.

5.4.L Identification of the Nonlinear Nominal Model of the

Power System.

In this subsection the behaviour of the estímaúed NNM in tracking and predicting the

dynamics of the ti.me-varying nonlinear power system (CSM3 with D : 4.0 pu) at

different operating conditions is examined through simulation studies. The output

signal is the machine electrical torque, T.(k). This subsection is the implementation

of Stage 1.

Aims and structure of the simulation studies.

The PRBS signal, which has been used in Subsections 3.6.1 and 4.5.1 for the verification

of the estimated LNM and the fixed-parameter NNM, is taken as the external control

input z(k) that is injected into the summing junction of the input of the AVR and the

estimator, simultaneously. The model of the estimator is the NNM. At each sampling

instant, the estimator generates the estimated parametert, 01å¡, and the predicted

electrical torque output, f"Qù, by the implementation of Algorithm 5.1(A). 1 The

error, e(k), between the predicted output, î.Qù,,of the estimated NNM and the actual

output, T.(k), of the CSMS is updated. The configuration for this study is given by

Fig. 5.2. The aims of this study are

o to confirm the inherent output tracking ability of the estimated NNM;

o to demonstrate the difference between the estimated NNM and the estimated

LNM in representing the CSMS at different operating points;

lThe switching function ø(ß) is not used in the simulation studies.
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. to examine the ability of the estimated NNM in tracking changes in the system

parameters.

v,Jt)+ T.(Ð

+

T"(k)

+ e(k)

u(k)
(PRBS)

o(k)

Figure 5.2: Structure of the identification of the NNM.

For the above purposes, two cases of simulation studies are chosen:

Case 1: The system is operating at n:0'6 pu and 8t:0'3 pu, and is subjected to

a step change of 0.05 pu increase in reference power at time t :20 second. This

case is the same as Case 1 given in Subsection 4.5.1.

Case 2: The system is operating at P¿:0'6 pu and 8t:0'3 pu, and is subjected to

a change in the system configuration - one transmission line is switched out at

time ú : 20 second, causing the value of the parameter X" to double.

The simulation results associated with Cases 1-2 are shown in Figs. 5.3-5.7 and Ta-

bles 5.1-5.2. The estimator parameters are: Ko: t02, C - 10t, þmin:0.2, and

Ðo : 0.8. The initial value of the estimate, O(O), is set to be the pre-calculated

true value, Oe (see column 2 of Table 4.2). The results for the fixed-parameter NNM

(studied in Subsection 4.5.1) and the estimated LNM (studied in Subsection 3.6.1) are

compared with the simulation results in the discussion that follows.

SMIB
Power System

DAC ADC ADC

v(k)

v,"(k)
Estimator

(NNÀ,Ð
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Analysis of the simulation studies.

Case 1: The simulation study in this case involves the confirmation of the inherent

output tracking ability of the estimated NNM. Subject to the PRBS input signal and

the step change in reference power, the dynamic responses of the predicted output,

i"(tt), of the estimated NNM and the actual output, T"(k), of the CSM3 in Case 1

are superimposed in Fig. 5.3. The error, e(lc), between Q(fr) ana Zi(f) is plotted in

Fig. 5.4 by the solid line. In order to form a comparison, the error, ,(k), between the

predicted output, f:& I k - t), of the fixeil-pammeúer NNM and the actual output,

T.(k), of the CSM3 in the same case (as shown in Fig. a.7) is re-plotted in Fig. 5.4 by

the dotted line. It is seen from Figs. 5.3-5.4 that the estimated NNM inherently tracks

the dynamics of the CSM3 and represents the CSM3 at different operating points

as accurately as the fixed-parameter NNM; both errors, u;(k) and e(k), are of the

same order of magnitude. This implies that in small dynamics where the power system

parameters are time-invariant, the performance of the NAWMV-PSS will closely match

that of the NOWMV-PSS. This point will be demonstrated in the simulation studies

of Subsections 5.4.2 and 5.4.3.

The inherent output tracking ability of the estimated NNM is further demonstrated

by the comparison of the variation in the estimates of both the estimated NNM and the

estimated. LNM when the system operating point changes. For this purpose, Case 1 is

applied to the estimated LNM. The estimated parameters of the LNM and the NNM

in the same case are then plotted in Figs. 5.5 and 5.6, respectively. It is seen that while

the estimated LNM has to modify its parameters in order to cope with the change

in the system operating point, the parameters of the estimated NNM are kept almost

constant. Tables 5.I-5.2 give the variation of the estimates of the LNM and the NNM

when a step change in the system operating point occurs at time t :20 second. The

parameters of the estimated NNM vary very little when the system operating point

changes, which confirms the fact that the estimated NNM inherently tracks the change

in the system operating point. Consequentl¡ using the parameters of the estimated

NNM, the NAWMV-PSS is expected to provide superior control action.

Case 2: This simulation study examines the ability of the estimated NNM to
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track the changes in the system parameters. The same study is applied to the fixed-

parameter NNM. The errors, -(k) and e(k), after a transmission line is switched out

are plotted in Fig. 5.7. Since the fixed-parameter NNM cannot adapt to the change

in the system configuration, the output tracking error u;(k) is seen to be much larger

than e(k).

Conclusions

Based on the simulation results given by Cases L-2, it is concluded that

1. The estimated NNM has similar performance to the fixed-parameter NNM in

that it accurately models the dynamics of the continuous-time CSM3 when the

system parameters are constant and the system configuration does not change.

2. The estimated NNM possesses the ability to adapt on-line to the changes in the

system parameters and configuration.

3. Because the estimated NNM tracks the changes in the nonlinear power system,

the control action based on the estimated NNM in damping system dynamic

oscillations should be superior to that based on the fixed-parameter NNM.

Estimates TYue Values a, lrooo¡ arlzooo¡ le'1zooo¡ - á,1rooo¡l

0t:ãt * -r.2624 -r.2732 1.08 x 10-2

0z: ãz * -0.2932 -0.02957 2.64 x I0-r
0s: ãs * 0.5976 0.3360 2.62 x l0-1

0n: bo * 0.04238 0.03526 7.11 x 10-3

0s: bt * 0.0472t 0.05020 3.00 x 10-3

0u: b" * -0.02459 -0.0006131 2.40 x I0-2

Table 5.1: Estimated parameters of the LNM for Case l.
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Table 5.2: Estimated parameters of the NNM for Case 1.

Estimates Tbue Values erlrooo¡ a,lzooo¡ lâ (2ooo) - á,1rooo¡l

h--ãt -1.7863 -1.7857 -1.7858 1.00 x 10-a

ê2 : ã,2 0.7886 0.7887 0.7881 5.80 x 10-a

Au -- b, -0.08035 -0.07990 -0.07978 1.21 x 10-a

ân: b, 0.08036 0.08039 0.07986 5.26 x 10-a

0s: èt 9.6592 9.6592 9.6591 1.00 x 10-a

0e: ôz -8.0494 -8.0494 -8.0495 1.00 x 10-a

0z:dt 0.02844 0.02825 0.02811 1.41 x 10-a

ês : ê.1 0.09054 0.08666 0.08435 2.31 x 10-3
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5.4.2 Evaluation of the Performance of the NAWMV-PSS

for the CSM3.

In this subsection the evaluation of the performance of the NAWMV-PSS is conducted

for the CSMS (with D :4.0 pu) through the series o1 eaaluation studies (Studies 1-11)

defined in Subsection 3.6.2. This subsection is the implementation of Stage 2.

Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the NAWMV-PSS is illustrated in

Fig. 5.1. The machine electrical torque is used as the stabilising signal. For each simula-

tion study, the performance of the CSM3 equipped with the NAWMV-PSS is compared

with that of the CSM3 equipped with the NOWMV-PSS proposed in Chapter 4. The

aims of this study are

o to confirm that the NAWMV-PSS overcomes the deficiencies in the NOWMV-

PSS by adapting to the system changes and producing a superior control action

during large transients;

o to establish a reference for comparisons of the performance of the NAWMV-PSS

and its simplified versions to be designed in Chapter 6.

Studies 1-11 specifred in the five Groups in Subsection 3.6.2 are performed. The

simulation results are shown in Figs. 5.8-5.17 in which the performance of the NOWMV-

PSS is provided by Figs. 4.I0,4.12-4.18, and 4.2I. Theparameters of the NAWMV-PSS

ate. u,nin: -0.05 Pn¡urnor:0.05 pu, and À:0.4, which are the same as those used

in the NOWMV-PSS.

Remark 5.4.L In a similar nlo,nner to the LAWMV-PSS studies, a f,xed-length freez-

ing time períod (explained, in Remarlc 9.6.2) is employeil in the estimator of the NAWMV-

PSS to hold, the estimates constant at their pre-fault aalues during the fault period.
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Analysis of the simulation studies.

Group 1: The dynamic performance of. the NA\ /MV-PSS is examined in Studies 1-3

by simulating the periodic changes in the system operating point. In Studies 1-2, the

system operating point changes with constant reactive power Q¡, and the inflnite bus

voltage Voo is assumed to be constant for each study. The true values of the parameters

of the NNM are unchanged. Hence, the system responses with the NOWMV-PSS and

the NAWMV-PSS are identical. As an example, the result of Study 1 is plotted in

Fig. 5.8 (while the result of Study 2 is omitted). However, in Study 3 in which the

system operating point changes between the lagging and leading conditions, the value

oL V* varies in accordance with the variations in Q¿. Consequently, the true values

of the parameters of the NNM are time-varying. As shown in Fig. 5.9, the damping

performance associated with the NOWMV-PSS can be seen to deteriorate slightly when

compared with that associated with the NAWMV-PSS. This is because the NAWMV-

PSS can make on-line adjustment of its parameters, while the NO\MMV-PSS cannot.

Group 2: The transient performance of the NAWMV-PSS following three-phase

faults on a transmission line is examined in Studies 4-6. The simulation results are

plotted in Figs. 5.10-5.13. It is seen that the NAWMV-PSS provides stronger damp-

ing than the NOTWMV-PSS after the faults are cleared. With fixed parameters, the

NOWMV-PSS can only generate the post-fault control action which is based on the

assumption that the power system is operating within linear operation. The NAWMV-

PSS, however, can not only take the inherent nonlinearities of the system into account

for generating an adequate post-fault control action (as the NOWMV-PSS does), but

can also adapt to the new operating conditions by changing its parameters on-line.

Therefore, strong control actions are provided by the NAWMV-PSS, and the control

goal - damping the output oscillations - is optimally achieved during the large tran-

sients.

Remark 5.4.2 Figure 5.12 illustrates the field uoltage Epp(t) response for the test in

Stud,y 5. The conclusions regarding the field uoltage responses of the ilifferent power

system stabilisers suqtport those made for the torque responses. Further to this, the
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fi,elil uoltage response of the NAWMV-PSS shows that the NAWMV-PSS can prouid'e a

control action with appropriate amplitude and phase, resulting in the stronger damping

of the rotor oscillations as reuealed by the responses.

Group B: The ability of the NAWMV-PSS to track the changes in the system

parameters and configuration is examined in Study 7. It is seen from Fig. 5.14 that

the NAWMV-PSS provides better damping than the NOWMV-PSS in the event of one

transmission line switching out and in. This is due to the fact that the NAWMV-PSS

can adjust its parameters accordingly (see Fig. 5.15).

Group 4: In Studies 8-9, the ability of the NAWMV-PSS to overcome the mea-

surable deterministic disturbances in reference voltage is examined. Under these cir-

cumstances, the true values of the parameters of the NNM are unchanged. Since both

the NAWMV-PSS and the NOWMV-PSS include the voltage reference signal in the

formulation of the NNM expli,citly (see also Remark 4.5.6), the NAWMV-PSS and the

NOWMV-PSS give identical system damping performance in these two studies' The

result of Study 8 is shown in Fig. 5.16 to illustrate this. The result of Study 9 is

omitted for simplicity.

Group 5: The abitity of the NAWMV-PSS to extend the system stability region is

examined in Studies 10-11. Since the infinite bus voltage Voo is kept constant during

these studies, the true values of the parameters of the NNM are constant. The damping

effect of the NAWMV-PSS is, therefore, equivalent to that of the NOWMV-PSS. An

example is shown in Fig. 5.17 for Study 11 (while the result of Study 10 is omitted).

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that

1. For the dynamic situations in which the power system parameters and the value of

the infinite bus voltage are unchanged, the system responses with the NAWMV-

PSS and the NOWMV-PSS are identical.
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2. In the events of severe three-phase faults, the NAWMV-PSS is more effective in

damping the system oscillations than the NOWMV-PSS. Unlike the NOWMV-

PSS, the NAWMV-PSS can adapt to the changes in the system operating condi-

tions during large transients.

3. When either the power system parameters change or the system lagging/leading

operating condition changes (requiring a change in the value of the infinite bus

voltage), the damping performance of the NAWMV-PSS is better than that of

the NOWMV-PSS. This is because the parameters of the NAWMV-PSS can be

adjusted on-line, while the parameters of the NOWMV-PSS are fixed.

The advantage of the nonlinear adaptir.re control strategy over the nonlinear optírnal

control strategy is thus evident.

5.4.3 Studies on the Robustness of the NAWMV-PSS for

the CSM1.

In this subsection the robustness of the NAWMV-PSS is confirmed through the series

of. robustness studies (Studies l2-L5) defined in Subsection 3.6.3. The performance

of the NAWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The CSM3 (D :4.0 pu) is replaced by the CSM1 (D :0.1 pu), and the performance

of the NAWMV-PSS and the NOWMV-PSS is further compared. The stabilising signal

is the electrical power P"(k). The aims of this study are

o to verify the design of the NAWMV-PSS in operation in a system represented by

the more accurate model (CSMl);
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o to establish a reference for the comparison of the performance of the NAWMV-

PSS and its simplified versions with unmodelled dynamics and modelling errors

to be conducted in Subsection 6.5.3.

Studies 12-15 specifred in the two Groups in Subsection 3.6.3 are implemented. The

simulation results are shown in Figs. 5.18-5.20 in which the performance of the NOWMV-

PSS is provided by Figs. 4.23-4.25.

Analysis of the simulation studies.

Group 1: The dynamic perfonnance of the NAWMV-PSS associated with the CSM1

is examined in Studies 12-13. It is found that the NAWMV-PSS and the NOWMV-

PSS give almost identical damping performance. This agrees with the result shown

in Figs. 5.8-5.9. The analysis of the simulation results of Studies 1-2 in Stage 2

provides the explanation of this phenomenon. Besides, in dynamic situations the effect

of the subtransients of the CSM1 (i.e., the unmodelled dynamics of the NNM) is

negligible. The fixed-parameter NNM and the estimated NNM therefore provide the

same damping efiects to the system oscillations. The simulation result of Study 13 is

shown in Fig. 5.18, while the result of Study 12 is omitted for the sake of simplicity.

Group 2: The transíent perforrno,nce of the NAWMV-PSS associated with the

CSM| is examined in Studies 14-15. The simulation results are plotted in Figs. 5.19-

5.20. In transient situations, the unmodelled dynamics of the system become obvious.

Due to its ability to adapt to system changes, the NAWMV-PSS provides better damp-

ing to the system oscillations than the NOWMV-PSS. This agrees with the results

shown in Figs. 5.10-5.13.

Conclusions.

The above studies confirm that:

1. The NAWMV-PSS is a sound design for the higher-order actual po\ryer system.
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2. The NAWMV-PSS is more effective than the NOWMV-PSS in the overall system

performance.

From these conclusions, and the conclusions drawn in Subsections 3.6.3 and 4.5.3, it

is evident that the NAWMV-PSS is superior to the NOWMV-PSS, the LAWMV-PSS,

and the CPSS (Do:20 Pu).

5.5 Concluding Remarks.

In this chapter original work on the design and implementation of a nonli'near ailaptiue

po\4'er system stabiliser for the SMIB power system modelled in Subsection 2.3.1 is

described. This work completes the theoretical development and assessment of a non-

linear adaptive power system stabiliser based on the nonlinear nominal model (NNM)

derived in Subsection 4.2.3. The objective of this work is to establish a basis for the

development of simplified versions of the nonlinear adaptive power system stabiliser

and a bilinear adaptive poïver system stabiliser to be discussed in Chapter 6.

The development of the nonlinear adaptive power system stabiliser is initiated by

the fact that the parameters of the NNM are time-varying. Several factors, such as a

change in the system configuration and a change in operating conditions, will result

in changes in the parameters of the NNM. The NOWMV-PSS which has been de-

signed in Chapter 4 is based on the fined-parameúer NNM, and hence cannot adapt to

changes in the parameters or configuration of the SMIB power system. For this reason'

the nonlinear adaptive power system stabiliser which is based on the estimated" NNM

is introduced in this chapter. The performance of the estimated NNM in inherently

tracking and predicting the time-varying nonlinear polver system (CSM3) at differ-

ent system operating points with different system parameters is confirmed through

simulation studies in Subsection 5.4'1.

In Section 5.2 the recursive least squares algorithm with the time-varying forgetting

factor, which has been proposed for the implementation of the linear adaptive power

system stabiliser in Chapter 3, is applied to the identification of the time-varying
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NNM. Since the noise term in the NNM is considered as a general bounded noise in

this chapter, the dead zone technique is used in the parameter estimation algorithm to

ensure the convergence of the algorithm. Algorithm 5.1(A) is then proposed, and its

convergence is established in Theorem 5.2.1.

In Section 5.3 a new nonlinear adaptive weighted minimum variance control law is

developed from the nonlinear stochastic weighted minimum variance control law (4.128),

and the resulting bounded nonlinear adaptive control algorithm (Algorithm 5.1(B)) is

proposed. The combination of Algorithm 5.1(A) with Algorithm 5.1(B) forms the de-

sired indirecú nonlinear adaptive weighted minimum variance po\¡¡er system stabiliser

(NAWMV-PSS). The convergence of Algorithm 5.1(B) is established in Theorem 5.3.1,

which ensures the closed-loop system stability associated with the proposed nonlinear

adaptive power system stabiliser.

In order to guarantee the global convergence of the nonlinear adaptive control

algorithm, a modification to the nonlinear adaptive control law (5.29) is proposed.

The basic idea is to use a constant e1 to calculate Bs(k), while the estimate ê1(k) is
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still retained in 9(k). An alternative form of the estimated NNM is given by (5.1a)-

(5.15) to accommodate this modification. Algorithm 5.2(A) and Algorithm 5.2(B)

are then developed for application to the model (5.14)-(5.15) for the estimation of

the parameters and the calculation of the control law, respectively. The convergence

of these algorithms is established in Theorems 5.2.2 and 5.3.2. The implementation

of this modified nonlinear adaptive power system stabiliser is expected to give a less

adaptive control effect, and is not included in this thesis for the sake of brevity (see

Remark 5.3.3).

In Section 5.4 the performance of the proposed NAWMV-PSS is investigated and

its robustness in stabilising the higher-order actual power system is tested through

the simulation studies presented in Subsections 5.4.2 and 5.4.3. The performance of

the NAWMV-PSS is compared with that of the NOWMV-PSS, and the effectiveness

of the NAWMV-PSS in adapting to system changes and damping system oscillations

is demonstrated by the comparison. The advantage of the nonlinear adaptiue control

strategy over the nonlinear optimal control strategy is clearly shown in Figs. 5.8-5.20.

Through the systematic comparisons of performance of the CPSS, the LAWMV-PSS,

the NOWMV-PSS, and the NAWMV-PSS, which have been conducted in Sections 3.6,

4.5, and 5.4, it is evident that, out of these power system stabilisers, the NAWMV-

PSS gives superior damping performance. The evaluation of the dynamic behaviour of

the system with the NAWMV-PSS establishes a basis for the evaluation of the system

performance with simplified versions of the NAWMV-PSS and with a bilinear adaptive

power system stabiliser which will be designed in Chapter 6.

Before concluding this chapter, it is necessary to make the following comments on

the comparison of the linear ad,aptiue control strategy discussed in Chapter 3 and the

nonlinear ad,aptiue control strategy proposed in this chapter. As far as the nominal

model is concerned, the linear adaptive control strategy is based on the estimated

LNM which has been derived by linearising the nonlinearities of the power system and

assuming that the high-order time-varying nonlinear power system can be characterised

by low-order time-varying linear dynamics. The nonlinear adaptive control strategy,

however, is based on the estimated NNM which accurately represents the inherent

nonlinearities of the SMIB porver system and accommoda,tes the system changes by its
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time-varying parameters. Therefore,

1. the nonlinear adaptive control strategy has the advantage over the linear adaptive

control strategy of not requiring parameter variations to adapt to different system

operating points, when there is no change in the true values of the parameters of

the NNM;

2. lhe damping performance with the nonlinear adaptive control strategy is poten-

tially superior to that with the linear adaptive control strategy, when either the

true values of the parameters of the NNM change or large transients occur.

In conclusion, a combination of. nonline¿r with ailaptiae control is more suitable for the

stabilisation of the time-varying nonlinear power system than other more conventional

approaches.

The contributions in this chapter are original, and have been listed in Section 5.1.
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Chapter 6

Simplified SISO Nonlinear

Adaptive Power System

Stabilisers.

6.1- Introduction.

In this chapter simplified aersions of the nonlinear adaptive power system stabiliser

proposed in Chapter 5 are derived, and the design of a bilinear ad,aptiae power system

stabiliser is discussed. The development of this stabiliser is the objective of the analyses

and studies conducted in Chapters 3 to 5 with the models of the SMIB power system

derived in Chapter 2. The studies carried out in this chapter provide a basis for the

practical implementation of a nonlinear adaptive power system stabiliser.

A nonlínear adaptiue control strategy has been proposed in Chapter 5 in order to

overcome the deficiencies associated with the nonlinear optimal power system stabiliser

designed in Chapter 4. The NAWMV-PSS designed for this purpose has been shown

to be more efective in improving the system performance than the NOWMV-PSS in

situations where the true values of the parameters of the NNM are changed. As an

ideal nonlinear adaptive power system stabiliser, the NAWMV-PSS has the advantage
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of providing better damping of the system oscillations than the other three stabilisers

(i.e., the NOWMV-PSS, the LAWMV-PSS, and the CPSS).

The implementation of the NAWMV-PSS (or the NOWMV-PSS) requires infor-

mation about the additional feedback signals z;(k) (i : I,2,,3,4) at each sampling

instant k. According to the definitions of these signals given by (a.22)-$.25), z¿(k)

(f : 1,2,3,4) can be calculated from the values of the state va¡iables ó(k), ,"(k),

Ern(k), and E'i(k). The provision of these state variables at each sampling instant k

is, therefore, essential. Ideally, the state variables ,'(k) and Epp(lc) can be measured

directly, while ó(fr) and Eo@) may be obtained indirectly by other means. However, in

practice, the value of the rotor angle ó(k) is difficult to determine, since the infinite bus

is taken as its reference. Furthermore, the measurement of the variabrc n'oQe) requires

the access to the field flux, which may be difficult to obtain. Hence, from a practical

point of view, simplif,cations ol the NAWMV-PSS by the elimination of some of the

additional feedback signals from the calculation of the control law are required.

The NAWMV-PSS is based on the NNM which has been derived directly from the

mathematical description of the nonlinear power system (CSM3). The number of the

parameters of the NNM is larger than that of the LNM employed by the LAWMV-PSS.

From Figs 4.23 and 5.18, it is observed that for small disturbances the LAWMV-PSS

performs as weII as the NAWMV-PSS. This fact indicates that some parameters of the

NNM represent the less significant dynamics which may be omitted by approximations.

Due to the use of the ailaptiue control schemes, the effect of the omission of the less

significant dynamics from the NNM will be compensated for by the rest of the time-

varying estimated parameters. Hence, the system performance may not deteriorate.

These considerations form the bases for the simplifications to be discussed in this

chapter.

Another concern in designing an adaptive control scheme is to keep the number

of the parameters to be estimated small. It is well known that the computation time

grows with the number of the parameters to be estimated [193,203] and this factor may

affect the practicality of the control strategy for real-time implementation. Moreover,

the parameters which are lelated to the less significant dynamics of the system may
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converge slowly due to small signal levels. From this point of view, the simplifications

of the NAWMV-PSS are also required for simplifying the practical implementation of

the control algorithm.

In this chapter the simplifications of the NAWMV-PSS are carried out in two steps:

o firstly, simplified, nonlinear adaptive control algorithms are developed from the

control algorithm on which the NAWMV-PSS is based;

o secondly ) a neu bilinear adaptive control algorithm is developed for the design

of the porver system stabiliser for the SMIB power system modelled in Subsec-

tion 2.3.1.

Original work on the analysis, d,esign, and eualuation of. these modified nonlinear adap-

tive power system stabilisers will be conducted in the following sections of this chapter.

The work involves the isolation of the less significant dynamics in the output of the sys-

tem from an analysis of the prediction of the NNM, the discussion of the simplification

of the nonlinear adaptive weighted minimum variance control law (5.29), the derivation

of the bilinear optimal and adaptive control laws, the proposal for a bilinear adaptive

power system stabiliser, and the assessment of the system damping performance with

the latter stabiliser.

The organisation of this chapter is as follows. In Section 6.2 the decomposition

of the system dynamic and steady-state responses is discussed, and the role of the

output components in constructing the system responses is analysed. In Section 6.3

simplified versions of the NAWMV-PSS are derived and the simulation results are

briefly presented. In Section 6.4 a bilinear nominal model of the SMIB power system is

developed from a simplified form of the NNM, and optimal and adaptive control laws

are derived for the bilinear nominal model. A bilinear adaptive power system stabiliser

is then proposed. In Section 6.5 the performance of the proposed bilinear adaptive

power system stabiliser is assessed through simulation studies, and is compared with

that of the NAWMV-PSS and the LAWMV-PSS.

To the author's knowledge, the research reported in this chapter is original; the

main contributions are:
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1. The electrical torque (or power) output of the porvver system modelled by the

NNM is d.ecomposed into four output components. The contribution of each

component to the overall system response is then analysed.

2. Two simplified versions of the NAWMV-PSS are developed and their performance

is assessed.

3. A new discrete-time bilinear nominal model of the power system is derived from

the simplification of the NNM. This model, which uses a minimum set of feedback

signals, tracks and predicts the dynamics of the continuous-time nonlinear power

system satisfactorily.

4. The optimal and adaptive control of the bilinear nominal model is discussed, and

a bilinear adaptive weighted minimum variance control law is derived.

5. A, new bilinear weighted minimum variance po\ryer system stabiliser, which takes

the operational aspects of the system into account in the design, is proposed. The

control structure of the SMIB pov/er system equipped with the proposed bilinear

adaptive power system stabiliser is illustrated.

6. Simulation studies on the evaluation of the bilinear adaptive power system sta-

biliser are conducted. A series of useful comparisons with the NAWMV-PSS and

the LAWMV-PSS is given.

6.2 Analysis of Contributions of the Output Com-

ponents of the Nonlinear Norninal Model to

the System Dynarnic and Steady-State Responses.

In this section

o the optimal one-step-ahead prediction of the output of the NNM proposed in

Subsection 4.2.3 is reformulated in terms of a combination of four output com-

ponents;
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o the contribution of each component to the system dynamic and steady-state

responses is analysed;

¡ conclusions regarding the relative importance of the components of the output

prediction of the NNM are drawn.

The NAWMV-PSS proposed in Chapter 5 is based on the complete NNM. Clearly,

for the simplification of the NAWMV-PSS, simplif,ed forms of the NNM are required.

The simplified NNM should represent the main dynamic and steady-state behaviour

of the original model, while eliminating the use of the additional feedback signals as

much as possible. Therefore, for the derivation of such simplified forms of the NNM,

it is necessary to d,ecornpose the output prediction of the NNM into components and

to analyse the contribution of each component to the overall dynamic and steady-state

responses of the output.

From (4.83)-(4.87), the optimal one-step-aheail predictor of the NNM (4.76)-(4.78)

can be rewritten as

ao(klk-1) H ø(q-') r'(k) + H ç (q-r) z2(k)

+Hn(q-')zs(k)-r He(q-')"o(k)[d(k) - aF(k) + z(k)]

where 1

"'(k)
zz(k)

,s(k)

"n(k)

: sin2ó(fr),

: ut"(k)Eo(k)cos ó(k),

: a"(k)Epp(k)cos ó(k),

: sin ó(lc),

and

H"(q-') hq-r * bzq-2

Hc(q-')

l*aß-r+azq-''
ctq-7 + cze-2

l+atq-r*azq-2'
lNote that, for the sake of simplicity, the errors between z¡(&) and z;(k) (i: L,2,3,4) (introduced

by Assumption 4.2.4) are ignored in the theoretical analysis of this chapter.

A

A:
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Hr(q-')

Hu(q-')

A:

A

dú-t
I*aú-r+azq-2

etg-L

L*aú-r+azq-2

The prediction, yo(k I k - 1), of the output of the NNM is then described by

ao(k I e - 1) : ye(k) + yc(k) + yo(k) + yø(k)

where ya(k), y"(k), yo(k), and y¿(fr) are the output components, defined as

yø(k) g Hs(q-L)a(k),

a"(k) g H6k-L)22(k),

yn(k) ê Hp(q-r)zs(k),

y"(k) ê Hr(q-')rn(k) td(k) - vr&) + u(k)1,

(6.1 )

(6.2)

(6.3)

(6.4)

(6.5)

respectively. From (6.1), it can be seen that yo(,b I e - 1) is a linear combination of.

Un(k), yc(k), yo(k), and y6(,t). Hence, the time response of the output prediction of

the NNM can be constructed by superposition of the corresponding time responses of

the four output components generated by (6.2)-(6.5). The significance of each com-

ponent's contribution to the output prediction can thus be examined by isolating the

proportion of each component in the dynamic and steady-state responses.

For this purpose, simulation studies are conducted for the CSMS (D : a.0 pu)

with (6.1)-(6.5) as the output predictor. The control input z(k) is set to be zero.

At each sampling instant k, the four output components ys(k), y"(k), yp(k), ar,.d

yø(k) are calculated according to their definitions in (6.2)-(6.5); the output prediction,

yo(k l,t - 1), of the NNM is then formed by the sum of the four components. The

configuration for this study is illustrated in Fig. 6.1.

Two simulation studies are selected as examples:

Case 1: The system is initially operating at P¡ - 0.6 pu and Q¿ : 0.3 pu. It is then

subjected to a step change of 0.05 pu increase in reference power at time ú : 0.5

second, and a step change of 0.1 pu decrease in reference power at time f : 10.5

second.
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d(t¡ =V,"(t) y(t) = T.(t)

zr(t) yr(t) = V(t)

z'(k) YF(k)

d(k)

YB(k) +

yItík-l) = 4(tç¡t-t)

Figure 6.1: Decomposition of the output prediction of the NNM.

Case 2: The systemis initially operating at, Pr- 0.6 pu andQ¿: -0.1 pu. It is then

subjected to a step change of 0.05 pu decrease in reference power at time f : 0.5

second, and a step change of 0.1 pu increase in reference po$/er at time ú : 10.5

second.

In each case, the time responses of the output prediction, Ao(k I k - 1)' and its four

componenls, y7(k), a"(k), yo(k), and y6(k), are obtained from the simulation and

are plotted in the same graph for the evaluation of the contributions. The simulation

results are given by Figs. 6.2-6.3.

From Figs. 6.2-6.3, it can be seen that

VB(k)2 contributes a negligible amount to the steady-state output, a very small pro-

portion to the overall dynamic response at the lagging power factor (Fig. 6.2),

and an increasing amount at the leading power factor (Fig. 6.3);

SMIB
Power System

ADC

q-)H.(q-t) q")q)

Y.(k)

zz(k)

, Yo(k)
I

4(k)
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Ac(k\ has no contribution to the steady-state output, but contributes a relatively large

proportion to the dynamic response at the lagging power factor, and a decreasing

proportion at the leading power factor;

AD(k)2 does not contribute to the steady-state output, and contributes a negligible

proportion to the dynamic response at both the lagging power factor and the

leading power factor;

yy(k)r provides the main contribution to the steady-state output and to the slow

dynamics both at the lagging and the leading po\Mer factors.

Based on the above analysis, it is concluded that

1. The elimination of the component yo(k) from the expression for y0(k I k - 1) in

(6.1) will not affect the system dynamic and steady-state performance.

2. The response VE(k) is the most significant component in the system dynamic and

steady-state responses.

3. The response y"(k) is more significant than the response yB(k) in the dynamics,

since it involves three state variables, t;"(k), E'o(k), and ó(k), which may change

significantly during large disturbances.

These conclusions provide a basis for the derivation of the simplified forms of the

NNM as well as the resulting simplified versions of the NAWMV-PSS, to be discussed

in Section 6.3.

6.3 Simplified Versions of the Nonlinear Adaptive

Weighted Minimurn Variance Power System

Stabiliser.

In this section:
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. two simplified versions of the NAWMV-PSS, derived from two versions of the

simplifred NNM, are proposed;

o examples of simulation studies are given to demonstrate the effects of the simpli-

fications

The contributions of the components (6.2)-(6.5) of the output prediction of the

NNM to the overall system dynamic and steady-state responses have been analysed in

Section 6.2. The conclusions drawn from the analysis are utilised in this section as a

guide to the simplification of the NAWMV-PSS proposed in chapter 5.

In the following, the derivations of the simplified NNM and the resulting simplified

versions of the NAWMV-PSS are highlighted, in order of decreasing complexity:

Simplified Version I: Consider that the responses gp(k) and y¡(k) are insignificant

components in the system dynamic and steady-state responses. Eliminate UD(k)

and ys(k) from the predictor (6.1). The f,rst version of the simplified NNM is

described by

(t + orø-' + azq-2) v@) : ("tq-' ¡ "rø-') 
z2(k) * e1q-L za(k)ld'(k)

yF(k) + u(k)l + to(k). (6.6)

A simplified nonlinear adaptive weighted minimum variance control law is derived

from the above model 2

,o(k) B'tn¡ Í *t,: ffifu.(fr+r)-ê(q-')v(t')-û'(k)] 
(6'7)

where

g,(fr) A [u,(r) * è2(k)q-L] a@ r \(k)za(k)ld(k) - ar&)h (6.8)

þ"(t ) and G(q-l) are defined by (5.30) and (5.31), respectively. The combination

of (6.7)-(6.8) and (5.34) forms the simplif,ed version I of the NAWMV-PSS

(svr-NAwMV-PSS).
2The symbol u0(È) is used to denote the unbounded control action in accordance with the notation

in (5.33).
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Simplified Version II: Consider that the time constant, 
"jo, 

i. long. From the ma-

chine differential equation (2.31) or (2.42), it may be assumed that for fast tran-

sients the state variable E'o(k) stays constant. Furthermore, cos ó(k) is bounded

in the region of [-1,1]. Hence, these two variables in z2(le) can be incorporated

into the parameters c1 and c2 of (6.6), so that the feedback signal z2(lc) canbe

simplified as the speed deviation ,"(k) only. The second, version of the simplified

NNM then takes the form

(r + orø-' + azq-2) v@) _ (õtq-t ¡ zrø-')'"(k) + etq-'zo(k) td(fr)

aF(k) + u(fr)l * tr.'(k), (6.e)

where

¿.r 2 qÛ'o(k - l)cos ó(k - 1), (6'10)

6 ! crÛo(k - z)cos ó(k - 2). (6'11)

The resulring simptif.eil version II of the NAWMV-PSS (SVII-NAWMV-PSS)

has the same expression as (6.7)-(6.8) and (5.34), except that in (6.3) the param-

eters ô1(k) and ô2(k) are changed into âr(r) ana àr1t¡ 1*hich are defrned as the

estimated parameters ô1(k) and ô2(lc)) and the additional feedback signal z2(k)

is simplified as ø"(k).

Remark 0.8.1 From the aboae ileriaq,tion, it can be seen that the SVII-NAWMV-PSS

is the si.mplest uersion of the NAWMV-PSS in this section. Although the two output

cornponentt Aa(k) and, yp(k) haue been eliminated from the complete NNM, and the

adilitional feed,baclc signal z2(k) has been simplified, to ,"(k), the main nonlinearities

associated, with the electrical torque (or power) output of the system are stiil retaineil

in the SVII-NAWMV-PSS by the trigonometric tenn za(k) and the product terms such

as za(tc)ld,(k) - ar(k)l'

In order to investigate the performance of the above two simplified versions of the

NAWMV-PSS, the eaaluation studies (Studies 1-11) described in Subsection 3.6.2 are

conducted for each of the simplified versions with the NAWMV-PSS as a reference.
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In each simulation study, the output responses of the CSM3 equipped with the SVI-

NAWMV-PSS and the SVII-NAWMV-PSS, respectively, are plotted in the same graph,

along with the results for the NAWMV-PSS. The performance of the CSM3 equipped

with the NAWMV-PSS is provided by the simulation results in Subsection 5.4.2. Ex-

amples of the dynamic performance and the transient performance of each simplified

stabiliser are given by the results of Studies 1 and 5, shown in Figs. 6.4 and 6.5,

respectively.

The simulation results demonstrate that:

o For dynamic operating conditions, the performance of the simplified versions of

the NA\MMV-PSS is almost i'ilentical to that of the NAWMV-PSS.

o In the event of a severe fault, the simplified versions of the NAWMV-PSS can

provide damping effects to the system oscillations comparable to those provided

by the NAWMV-PSS.

The above facts reveal that

1. The analysis of the contributions of the components YB(k), u"(k), yp(k), and

yE(k) in the dynamic performance of the system, given in Section 6.2, is valid.

2. The effect of the omission of the two components AB(k) and yp(lc), as well as the

change of. z2(k) into ar"(k), can be compensated for by the rest of the time-varying

model parameters through the adaptive control scheme.

3. Though the SVII-NAWMV-PSS has been significantly simplified from the NAWMV-

PSS, its performance is comparable with that of the NAWMV-PSS. This is be-

cause the SVII-NAWMV-PSS retains the inherent nonlinearities in the model of

the SMIB power system.

Based on these conclusions, the simplification of the NAWMV-PSS will be continued

in Section 6.4, where the SVII-NAWMV-PSS will be further developed into a bilinear

adaptive power system stabiliser.
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6.4 SISO Bilinear optimal and Adaptive Power

System Stabilisers.

In this section

. a ne,u) bilinearnominal model 3 of the power system is derived from the second

version of the simplified NNM, given by (6.9)-(6.11);

o the nonlinear stochastic generalised minimum variance control of the bilinear

nominal model is discussed, and a bilinear optimal power system stabiliser is

presented;

o a nonlinear adaptive weighted minimum variance control algorithm is developed

for the bilinear nominal model;

o a bilinear adaptive weighted minimum variance power system stabiliser which

takes the operational aspects of the power system into account is proposed;

o the control structure of the SMIB po\4¡er system equipped with the proposed

bilinear adaptive po\l/er system stabiliser is illustrated'

The performance of the SVII-NAWMV-PSS has been verified to be comparable

with that of the NA\ryMV-PSS through the evaluation studies in Section 6.3. As

indicated in Remark 6.3.1, the main feature of this simplest version of the NAWMV-

PSS is that it contains the trigonometric and product nonlinearities associated with

the electrical torque (or power) output of the power system by retaining the additional

feedback signal za(te) in its control law. However, since the rotor angle ó(k) is still

used for calculating za(k) and forming the control action of the SVII-NAWMV-PSS,

a modification which replaces this state variable by a measurable output variable is

required. This requirement results in the development of. bilinear control schemes in

the design of the power system stabiliser, to be undertaken in this section.

3See Section 3.2 for the definition of a "nominal model" used in this thesis
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The layout of this section is as follows. In Subsection 6.4.1 a bilinear nominal

model is derived from the model (6.9)-(6.11) associated with the SVII-NAWMV-PSS.

The nonlinear stochastic generalised minimum variance control of the bilinear nomi-

nal model is discussed and a bilinear optimal power system stabiliser is presented in

Subsection 6.4.2. In Subsection 6.4.3 a nonlinear adaptive weighted minimum variance

control algorithm is developed from the bilinear optimal control law, and a bilinear

adaptive weighted minimum variance power system stabiliser with its control structure

is proposed.

6.4.L Bilinear Nominal Model of the Power system.

The aim of the development of a bilinear nominal model for the design of the poliler

system stabiliser is to replace the additional feedback signal za(fr) (which involves the

rotor angle ó(k)) in (6.9) by the measurable output variable y(k) (i.e., T.(k) or P"(/c))'

For this purpose, the NAM given in Subsection2.4.l is reviewed. From (2.97), it readily

follows that

r.(t) : #rç[E(ú) + (x¿ - xq) Id(t)]sin ó(r) (6.12)

where a

I¿(t) : V- cos 6(ú) - (¿)

X"+ d

E@ ! E'q(t) - (ro- xd) I¿(t).

It is assumed that

Assumption 6.4.1 5 In the equations of the synchronous generator,

X¿ = Xo.

Subject to Assumption 6.4.1, equation (6.12) becomes

V""E ¿)T.(t): sinó(f)X"+ XS

4See, e.g., [f] p.Se for the definition of the variable E(t).

SFor round-rotor synchronous generators, the relationship X¿: Xq is true.
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The relationship between za(k) and y(k) in (6.9) can then be written as

za(k) : t<çt¡yçt-¡

where
A X.* Xo

(6.14)

where

r<1*¡t#ro (6.15)

Clearly, k(tt) contains the variable E(k) and the time-varying quantity V- (the value

of which depends on the system operating condition), and can be treated as a time-

varying parameter. The substitution of (6.14) and (6.15) into (6.9) results in the

following expression

(t + orø-t + azq-2) vft) : (ótq-t + õrq-t)'"(k)

*eçq-ty(k) td(k) - yF(k) + u(/c)l + to(k) (6.16)

êR: et
v*E(k - t)

Equarions (6.16)-(6.17) with (6.10)-(6.11) form a model which is

Nominal Moilel (BNM) of the power system (csM3). It contains

which öt, ð2, and e¡ are time-varying and, perhaps, unknown. The

to develop the bilinear control laws in the following subsections.

(6.17)

called lhe Bilinear

five parameters, of

BNM will be used

Remark 6.4.1 It should be pointed out that the BNM retains the inherent nonlín'

earities of the output of the pouer system by the product term on the right-hand side

oÍ (6.16). The trigonometric nonlinearity of the output is talcen into account in the

relationship between za(k) and y(k) in (6.1Ð.

6.4.2 Bilinear Stochastic Generalised Minimum Variance Con-

trol.

In this subsection, the derivation of the stochastic generalised minimum variance con-

trol law for the BNM (6.16)-(6.17) (with (6.10)-(6.11)) makes use of the theories es-

tablished in Section 4.3. For conciseness, the main results are highlighted as follows.
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Assume that the noise sequence {u;(k)} in the BNM is white, satisfying Assump-

tion 4.3.1. The optimal one-step-ahead prediction,, yo(I, + 1 I lc), o1 y(k { 1) of the

BNM is then given by

yo(k+1 lk) ê y(k+r)-ur(fr+1)

: G(q-')y(k) + (¿' ¡ erø-')r"(k)

+"ru&) td(k) - vr(k) + u(k)l

where G(q-t) is defined by (a.87). Hence, for the BNM, the generalised minimum

variance control ".(k) 
which minimises the cost function (4.88)-(4.91) is derived as

leuv {t )'wu(q-' ) + wuowu(l-t )] ".( 
r¡

: e¡yØ) {W,(q-')a.(k + L\ -Wuk-')G(q-')y(fr) (6'18)

-wuk-') (4 * özq-r)r"(k) - wo@-')eku(k)ld'(k) - vr(k)l)

in which equations (4.97),(4.107), (4.115)-(4.117) are used., noting that ffi: o.

clearly, with different selections of the polynomial"wu(q-t),w,(q-'), andw'(q-r),

difierent forms of the bilinear optimal control law will be obtained from (6.18). To be

consistent with the linear and nonlinear optimal/adaptive po$/er system stabilisers dis-

cussed in Chapters 3 to 5, the weighted minimum variance control scheme is considered

for the design of the bilinear optimal power system stabiliser in this subsection. This

control scheme is realised by selectin SWn@-t) : W,(q-t): 1 and W(q-t): Àå with

) > 0 in (6.13). The resulting bilinear optimalweighted minimum variance control law

is then described by

l"'pa&)' + À] u.(k) : e¡a&) {v-@+ 1) - G(q-')v(k)

- (u, * ¿,q-'),"(k) - ekv&)td(k) - v"(k)l). (6.1e)

This control law can be used as a bilinear optimal power system stabiliser. The deriva-

tion of this control law is for the further development of a bilinear adaptive power

system stabiliser to be discussed in Subsection 6.4.3.
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6.4.3 A Bilinear Adaptive'Weighted Minimum Variance Power

System Stabiliser.

The implementation of the bilinear optimal weighted minimum variance control law (6.19)

requires the values of the parameters ótr 6, and e¿ to be known at each sampling in-

stant. According to (6.10)-(6.11) and (6.17), the parameters õ1, õ2, a\d eR ate generally

time-varying and unknown. This feature of the control law (6.19) suggests the utili-

sation of an adaptive control method in which the estimated values of the unknown

time-varying parameters are provided by the implementation of an on-line parameter

estimation routine.

In this subsection, the development of a bilinear adapti.ue weighted minimum vari-

ance control algorithm for the BNM (6.16)-(6.17) (with (6.10)-(6.11)) utilises the the-

ories established in Sections 5.2 and 5.3. Algorithm 5.1(A) which has been developed

for the parameter estimation of the NNM in Section 5.2 can be used ilirectly for the

parameter estimation of the BNM, except that the vectors O(f ) ana $(k) arc re-defined

o(r)" e 
I a,lrl ô,,(k) à,&) ¿,(k) a,r(k) 

]
(6.20)

and

ó(k)'e [ -utrl -y|' - r) ,"(k) c.,"(k - 1) v(r) @(rc) - vl(k)+ "(k)) ] '
(6.21)

The parameter estimate ô(f) from Algorithm 5.1(A) can then be used to calculate the

bilinear adaptive weighted minimum variance control law which, according to (6.19)'

is given by

fr.rç*¡'zy1t )'z+ À] u1r¡ : êult ¡yç*¡ {v-Q, + 1) + â'ç*¡yçt¡ + Ar@)y1* - r¡
_.r,rgr¡r"çQ - É.nQe)u"(k - 1)

-ê,çt'¡yçr') td(k) - y"(k)l) . (6.22)

To design a bilinear adaptive power system stabiliser by the use of the above control

law, special attention has to be given to

AS
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o the unmodelled nonlinearities of the system (caused by, 
".g., 

three-phase faults)

and

o the sudden losses of transmission lines (caused by, e.g., one transmission line

switching-out).

This is because in both circumstances, the electrical torque (or power) output of the

generator will suddenly become small oÍ zero) resulting in an ineffective control input

u(fr) or zero control action according to the control law (6.22) (note that in general

i.rç*¡ryçt¡, < À). The consequence of the above phenomenon is poor damping perfor-

mance or even instability of the system (see Remark 6.5.3). In order to avoid this, a

function, fu@), is introduced into the controllaw (6.22). ft&) is defined by two piece-

wise functions: the first one uses a boundary Uo ) 0 to prevent the value of the output

y(/c) from being too small or zero; the second one uses a limit Cu ) 0 to prevent the

rate of decrease of the output (V& - t) - y(*)) from being too large. lr(k) is described

AS

lu(k):
v(k)

1

ir. y(k) > y"

otherwise

if y(k - 1) - a(k) < Cu

otherwise
ro&): r"Ø)

1

where the boundar¡ Uo can be determined by the value of the output T.(k) (or P"(/c))

during the occurrence of a fault, and the limit C, can be determined based on the max-

imum rate of decrease of the output when one transmission line is suddenly switched

out. The resulting bounded bilinear adaptive weighted minimum variance control al-

gorithm is then given by

Algorithm 6.1 [bounded bilinear adaptive weighted minimum variance con-

trol algorithm for the BNM.]

- êuQ')r'Qù {v.&+ 1) + erl*¡yç*¡ + âzQe¡v1tc - t¡
eugt¡'¡oç*12 .' ¡ l''

-e"ç*¡r"1tc) - enç*)u:,,(k - \ - au]e)y(fr) td(k) - y"(k)l), (6.23)

"o(k) 
:
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u*o,

u(k):
"o(k)
Umin

if uo(k) ) u*o,

if u*;n < ,ro(k) 1'ì1,*o, i

if uo(/c) 1 rtr,nin

il y(k) > y"

otherwise

(6.24)

where

v(k)
fo(k) : (6.25)

1

/,(k) if y(k - 1) - y(k) < Co

otherwise
lu(k) : (6.26)

Uo ) 0 and Cu ) 0 are preselected constants; I is the weighting coefficient; u-o'

and. u*;n are known constants; the estimated parameters are obtained from Algo-

rithm 5.1(A), \,vfth ô(k) and /(/c) defined by (6.20) and (6.21) respectively.

VVV

Remark 6.4.2 In the design of the function fu(k)'

(i) the sud,den 'i.ncrease in the electrical torque (or power) output ilue to the switching-

in of transmíssion lines is not consídereil; this is because such a euent wi'II, in fact,

reinforce the control action according to (6.22);

(ii) the ualue of I pu torque (or power) is used, to replace y(k) in the control law,

when either V&) 1 yo or (V& - t) - y(¿)) ) Cu. This ualue has been founil

suitable since it witl reinforce the control effort when it is most neeiled.

The combination of Algorithm 5.1(A) with Algorithm 6.1 results in the desired

Bili,near Ad,aptiae Weighted Minimum Variance Power System Stabiliser (BAWMV-

PSS) for the SMIB po\r/er system modelled in Subsection 2.3.1. Since the control

algorithm is designed in an indirectform, the calculation of the control action from the

BAWMV-PSS is a two-step procedure:

o the recursive least squares algorithm with the time-varying forgetting factor and

dead zone (Algorithm 5.1(A)) provides the estimated parameters of the BNM;

1
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. the control law (6.23)-(6.26) (Algorithm 6.1) generates the control signal u(k) by

the use of the estimates of the BNM.

The BAWMV-PSS is the simplest nonlinear adaptive power system stabiliser pro-

posed in this thesis. It contains five parameters and a minimum set of the additional

feedback signals, all of which are measurable. The control structure of the SMIB power

system equipped with the BAWMV-PSS is illustrated in Fig. 6.6, in which the desired

output trajectory y"(k) is set to be the reference power P,.¡(k) (see Remarks 4.4.5 and

3.5.2). The stabilising signal y(k) is the machine electrical power, P.(k) (or torque,

f"(k)).The performance of the BAWMV-PSS will be evaluated in Section 6.5.

v..(t) + P.(t) (A(t))

+

u(k) u'(k) P.(k) (T"(k))

v,"(k) v*(k)

BAWMV-PSS

Figure 6.6: Control structure of the SMIB power system with the BAWMV-PSS

SMIB
Power System

DAC ADC ADC

o(k)v,(k)

v."(k)
Estimator
(BNrd)

r Conüoller
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6.5 Evaluation of the Perforrnance of the Bilinear

Adaptive Weighted Minimurn Variance Power

System Stabiliser.

In this section:

o the dynamic behaviour of the estimøteil BNM in tracking and predicting the

dynamics of the nonlinear po\iler system (CSM3) is examined through simulation

studies;

o the performance of the BAWMV-PSS proposed in Subsection 6.4.3 is investigated

through the eualuation studies (Studies 1-11);

o the robustness of the BAWMV-PSS is tested with unmodelled dynamics and

modelling errors (Studies 12-15).

As the simplest nonlinear adaptive power system stabiliser discussed in this the-

sis, the BAWMV-PSS proposed in Subsection 6.4.3 is tested in this section with the

NAWMV-PSS and the LAWMV-PSS as references. The differences between these

three control strategies will be demonstrated through simulation studies. The results

shown in this section provide a basis for the future practical implementation of the

BAWMV-PSS.

For a systematic comparison, the simulation studies of this section will follow the

saÍne procedure arranged for the evaluations of the LAWMV-PSS, the NOWMV-PSS,

and the NAWMV-PSS, conducted in Sections 3.6, 4.5, and 5.4, respectively. Three

Stages will be conducted in this section:

Stage 1: Verification and identification of the BNM - to examine the behaviour of

the estimated BNM in tracking and predicting the dynamics of the nonlinear

power system (CSM3).
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Stage 2: Evaluation of the performance of the BA\MMV-PSS - to compare the dy-

namic and transient behaviour of the BAWMV-PSS with that of the NAWMV-

PSS and the LAWMV-PSS through Studies 1-11.

Stage 3: Studies on the robustness of the BAWMV-PSS - to test the performance of

the BATWMV-PSS when the CSM3 is replaced by the CSM1 through Studies 12-

15.

The implementation of the above three Stages will be discussed in Subsections 6.5.1,

6.5.2, and 6.5.3, which follow. The parameters and limits associated with the SMIB

power system and the BAWMV-PSS are listed in Appendix C. The sampling period

å is 20 ms.

6.5.1 Verification and Identification of the Bilinear Nominal

Model of the Power System.

In this subsection the validity of the esti,mated BNM in tracking and predicting the

dynamics of the nonlinear po\Mer system (CSM3 with D : 4.0 pu) at different operating

conditions is examined through simulation studies. The output signal is the machine

electrical torque, T.(k). This subsection is the implementation of Stage 1.

Aims and structure of the simulation studies.

Let the PRBS signal described in Subsection 3.6.1 be an external control input u(k)

that is injected into the summing junction of the input of the AVR and the estimator,

simultaneously. The model of the estimator is the BNM. At each sampling instant, the

estimated parameter. ,ô1t¡, and the predicted electrical torque output, f"&), of the

BNM are generated by the implementation of Algorithm 5.1(A) in which the definitions

of ô(f¡ and /(k) are given by (6.20) and (6.21), respectively. The error, e(k), between

the predicted output,i.(k), of the estimated BNM and the actual output, T"(k), of

the CSM3 is updated. The configuration for this study is illustrated in Fig. 6.7. The

aims of this study are
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o to confirm the output tracking ability of the estimated BNM;

o to examine the convergence of the estimated parameters of the BNM;

o to demonstrate the differences between the estimated BNM, the estimated NNM,

and the estimated LNM in representing the CSMS at different operating points.

v-(t) + T.(Ð

+

T.(k)

+ e(k)

u(k) @(k)

(PRBS)

Figure 6.?: structure of the verification and identification of the BNM.

For the above purposes, two cases of simulation studies are chosen as examples:

Case 1: The systemis operatingar P¡:0'6 pu and Qt:0'3 pu, and is subjected to

a step change of 0.05 pu increase in reference pov¡er at time t :20 second. This

case is the same as Case 1 given in Subsections 4'5.1 and 5.4'1.

Case 2: The system is operating at P¡:0'6 pu and Qt: -01pu, and is subjected

to a step change of 0.05 pu decrease in reference pouter at time t :20 second.

The simulation results are shown in Figs. 6.8-6.10 and Table 6.1. The estimator pa-

rameters ate: I{s - 10', C : L}s, þrnin:0'2, and Ð :0'8' The initial value of the

estimate, O(O), is pre-calculated according to (6.20). For comparisons, the estimated

SMIB
Power System

ADC ADCDAC

o(k)v(k)

v,"(k)
Estimator
(BNlO

T"(k)
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NNM and the estimated LNM, studied in Subsections 5.4.1 and 3.6.1 respectively, are

incorporated into the analysis of the simulation results given below.

Analysis of the simulation studies.

Case 1: Subject to the PRBS input signal and the step change in reference power, the

dynamic responses of the predicted output, i"(tt),of the estimatedBNM and the actual

output, T"(k), of the CSMS in Case 1 are superimposed in Fig. 6.8. The error, e(k),

between T"(k) ana 4(t) is plotted in Fig. 6.9 by the dotted line. For a comparison,

the error between the predicted output of the esti,mateil NNM and the actual output

of the CSMS in the same case (as shown in Fig. 5.a) is re-plotted in Fig. 6.9 by the

solid line. The estimated parameters of the BNM are shown in Fig. 6.10 in which the

initial value of the estimate, O(O), is set to be

olo¡r : -1.7863 0.7886 6.0485 -5.0404 0.1166

It is seen from Fig. 6.8 that the estimated BNM tracks the dynamics of the CSM3 at

the different operating points satisfactorily. The errors shown in Fig. 6.9 indicate that

the accuracy of the estimated BNM in tracking the dynamics of the CSM3 is slightly

lower than that of the estimated NNM. This is due to the simplifications involved in

the modelling of the BNM. However, the estimated BNM still possesses the inherent

output tracking ability, since its tracking error does not increase significantly following

the step change in the system operating point at time t - 20 second. Further evidence

of the inherent output tracking ability of the estimated BNM is shown in Fig. 6.10'

in which the estimated parameters of the BNM do not appreciably change even after

¡ : 20 second. Table 6.1 gives the converged values of the estimates of the BNM

at each operating point and the variation of the estimates between the two operating

points. With reference to the data shown in Tables 5.1-5.2, it is seen that although the

difierence 
lrî,1ZOOO¡ - rî,(rOOO)l of the estimates of the BNM is slightly larger than that

of the NNM (shown in Table 5.2), it is still smaller than that of the LNM (shown in

Table 5.1) for the same case. The estimated BNM is therefore better in tracking and

predicting the nonlinear po\Mer system than the estimated LNM.
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Case 2: The similar behaviour of the output prediction and the estimates of the

BNM is observed from the study of Case 2. For the sake of brevity, these simulation

results are omitted.

Conclusions.

Based on the above analysis, it is concluded that:

1. The BNM, with only five estimated parameters, can model the nonlinear power

system (CSM3) satisfactorily at different operating points.

2. The estimated BNM retains the inherent output tracking ability as the estimated

NNM.

3. The tracking accuracy of the estimated BNM is higher than that of the estimated

LNM.

Remark 6.5.1 In uiew of the aboue conclusions and, those drawn i,n Subsections j.5.1

and 5.1.1, it is eaident that a nonlinear moilel (either the fi,neil-parameter NNM, or the

estimated NNM, or the estimated, BNM) more closely represents the nonlinear pouer

system than a linearised moilel (e.g., the estimated LNM). This is because the nonlinear

rnodels retain the inherent nonlineariti'es of the system.

6.5.2 Evaluation of the Performance of the BAWMV-PSS

for the CSM3.

In this subsection the performance of the BAWMV-PSS is evaluated for the CSM3

(D:4.0 pu) through the series of eaaluation studies (Studies 1-11) defined in Subsec-

tion 3.6.2. This subsection is the implementation of Stage 2.
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Estimates True Values a,lrooo¡ e,lzooo¡ la,lzooo¡ - á'1rooo¡l

0, -- ît, * -r.7877 -1.7898 2.10 x 10-3

ê2: ã,2
* 0.7900 0.7919 1.98 x 10-3

0": õ', * 6.0489 6.0495 6.00 x 10-a

0t: 6 * -5.0400 -5.0395 5.00 x 10-a

0s: êR * 0.1140 0.1103 3.74 x 10-3

Table 6.1: Estimated parameters of the BNM for Case 1.
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Figure 6.10: Estimated parameters of the BNM for Case I (n :0.6 pu, Q¿ : 0'3 pu;

0.05 pu increase in reference power).
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Aims and structure of the simulation studies.

The control structure of the CSM3 equipped with the BAWMV-PSS is illustrated in

Fig. 6.6. The machine electrical torque is used as the stabilising signal. For each

simulation study, the performance of the CSMS equipped with the BAWMV-PSS is

compared with that of the CSM3 equipped with the NAWMV-PSS and the LAWMV-

PSS proposed in Chapters 5 and 3, respectively. The aims of this study are

o to confirm that, with the significant simplifrcations in the control law, the BAWMV-

PSS can provide comparable damping performance to the NAWMV-PSS for dif-

ferent operating conditions;

¡ to examine the effect of omitting the output components ye(k) and y¿r(k) in the

design of the BAWMV-PSS on the system damping performance;

o to verify that even as the simplest nonlinear adaptive power system stabiliser

proposed in this thesis, the BAWMV-PSS still provides better damping than the

LAWMV-PSS in the simulation studies.

Studies 1-11 specified in the five Groups in Subsection 3.6.2 are implemented. The

simulation results are shown in Figs. 6.ll-6.24 in which the system responses associated

with the NAWMV-PSS and the LAWMV-PSS are provided by the simulation studies

conducted in Subsections 5.4.2 and 3.6.2, respectively. The parameters of the BAWMV-

PSS are: ttrmin : -0.05 Pr, u^o, - 0.05 Pu, À : 0.4 (these are the same as those used

in the NAWMV-PSS and the LAWMV-PSS), Uo: L0-5,, and C, : 0.1'

Remark 6.5.2 In a similo,r rnanner to the technique useil in the estin¿ators of the

LAWMV-PSS and the NAWMV-PSS, the fi,reil-Iength freezing ti,me (erplained in Re-

marks 3.6.2 and, 5.4.1) is applied to the estimator of the BAWMV-PSS to hold the

estimates constant at their pre-fault ualues iluring the fault period.
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Analysis of the simulation studies.

Group 1: The d,ynamic performance of the BAWMV-PSS is examined in Studies 1-

3 by simulating the periodic changes in the system operating point. The simulation

results shown in Figs. 6.11-6.13 reveal that the system responses with the BAWMV-

PSS and the NAWMV-PSS are similar. The difference between these two stabilisers

is the variation of the estimated parameters following a step change in the system

operating point. To illustrate this difference, the estimated parameter ã2(k) of both

the NAWMV-PSS and the BAWMV-PSS in Studies 1-2 is plotted in Fig. 6.14. It is seen

that while the estimate of the NAWMV-PSS has a small drift from its true value when

the system operating point changes, the estimate of the BAWMV-PSS has a relatively

large change from its previous value. This is because the BNM is less accurate than

the NNM in tracking and predicting the system dynamics. However, the performance

of the BAWMV-PSS is still better than that of the LAWMV-PSS in these studies.

Group 2: The transient performance of the BAWMV-PSS following three-phase

faults on a transmission line is examined in Studies 4-6. The simulation results are

plotted in Figs. 6.15-6.17. It is seen that the damping effects of the BAWMV-PSS and

the NAWMV-PSS are almost the same for large transients, and that both can provide

stronger damping of system oscillations than the LAWMV-PSS.

Group 3: The ability of the BAWMV-PSS to track changes in the system parame-

ters and configuration is examined in Study 7. As shown in Fig. 6.18, the performance

of the BAWMV-PSS is comparable with that of the NAWMV-PSS and is better than

that of the LAWMV-PSS.

Remark 6.5.3 When one transmission line is switcheil out, the system confi,guration

is suddenly chønged,, resulting in a sud,den d,ecrease in the electrical torque (or power)

output of the system. As indicated in Subsection 6.4.3, a large d,ecreasing rate of the

output will cause an ineffectiae control action (6.22). In ord,er to oaercorne this problem,

the functio" fu&) 6.25)-(6.26) has been introduced into the control algori'thm of the

BAWMV-PSS i,n Subsection 6.4.3. To dernonstrate the effectiaeness of the function

fu(k) in preuenti,ng the control action from being i,neffecti,ue, the systen'¿ responses with
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the unbounded control action 
"o(k) 

generated by (6.22) and (6.23), respectiuely, are

compared, in Study 7. The sirnulation results ouer the time period of 10-20 seconds,

during which one transmission line is switched out, are plotted i'n Fig. 6.19. The

corrcsponding contrvl actions are shown i,n Fig. 6.20. The use of the function fu(k)

improues the damping performance of the system significantly by increasing the control

action through the functional calculation of (6.25)-(6.26). The effectiueness of this

moilif,cation used in the contrvl algorithm of the BAWMV-PSS is thus euident.

Group 4: In Studies 8-9, the ability of the BAWMV-PSS to overcome the mea-

surable deterministic disturbances in reference voltage is examined. It is seen from

Figs 6.21-6 .22 lhat, the performance of the BAWMV-PSS is slightly inferior to that of

the NAWMV-PSS. This is because the BAWMV-PSS is based on the BNM in which

the output components ys(k) and yp(k) have been omitted. Nevertheless, the sys-

tem damping performance with the BAWMV-PSS is still better than that with the

LAWMV-PSS.

Group 5: The ability of the BAWMV-PSS to extend the system stability region is

examined in Studies 10-11. The simulation results are shown in Figs. 6.23-6.24. The

damping performance of the BAWMV-PSS is as good as that of the NAWMV-PSS and

the LAWMV-PSS.

Conclusions.

From the analysis of the simulation results in this subsection, it is concluded that

1. With the elimination of some additional feedback signals (such as ó(fr), Ero(k),

and Ei(k)) and the introduction of the function fu(k), the performance of the

BAWMV-PSS is comparable with that of the NAWMV-PSS at different operating

conditions.

2. The simplification involved in the modelling of the BNM results in a small dete-

rioration of the system damping performance associated with the BAWMV-PSS

ln some cases
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3. Even as the simplest nonlinear adaptive power system stabiliser, the BAWMV-

PSS is still superior to the LAWMV-PSS.

6.5.3 Studies on the Robustness of the BA\MMV-PSS for the

CSM1.

In this subsection the robustness of the BAWMV-PSS is confirmed through the series

of. robustness studies (Studies 12-15) defined in Subsection 3.6.3. The performance

of the BAWMV-PSS is tested with unmodelled dynamics and modelling errors. This

subsection is the implementation of Stage 3.

Aims and structure of the simulation studies.

The csM3 (D :4.0 pu) is replaced by the csMl (D :0.1 pu), and the performance

of the BAWMV-PSS, the NAWMV-PSS, and the LAWMV-PSS is further compared.

The stabilising signal is the electrical power P"(k). The aims of this study are

o to examine the performance of the BAWMV-PSS for operation with a higher-

order model representing the actual power system;

o to confirm the effectiveness of the BAWMV-PSS with unmodelled dynamics and

modelling errors.

Studies I2-I5 specified in the two Groups in Subsection 3.6.3 are implemented. The

simulation results are shown in Figs. 6.25-6.28 in which the system responses associated

with the NAWMV-PSS and the LAWMV-PSS are provided by the simulation studies

conducted in Subsections 5.4.3 and 3.6.3, respectively.

Analysis of the simulation studies

Group 1: The ilynamic perfor"rnance of the BAWMV-PSS associated with the CSMI

is examined in Studies 12-13. It is seen from Figs. 6.25-6.26 that the damping effects of
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variations in reference power). CSM3 with the BAWMV-PSS - solid line, CSM3 with

the NAWMV-PSS - dashed line, CSM3 with the LAWMV-PSS - dotted line.
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Figure 6.20: Control input for Study 7 in the first transient (P¿ : 0.55 Pu, 8r : 0.3 pu;
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BAWMV-PSS without the function fr@) - dashed line.
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Figure 6.21: Electrical torque response for Study S (Pú : 0.6 pu, Qt:0.3 pu; periodic
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periodic disturbances in reference voltage). CSM3 with the BAWMV-PSS - solid line,

CSM3 with the NAWMV-PSS - dashed line, CSM3 with the LAWMV-PSS - dotted

line.
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the BAWMV-PSS and the NAWMV-PSS are similar. This agrees with the simulation

results of Studies 1-3 in Stage 2.

Group 2: The transi,ent perforrnance of the BAWMV-PSS associated with the

CSM1 is examined in Studies 14-15. The simulation results are plotted in Figs. 6.27-

6.28. The performance of the BAWMV-PSS closely matches that of the NAWMV-

PSS. The BAWMV-PSS is more effective than the LAWMV-PSS in damping system

oscillations in these two studies. This result agrees with the simulation results of

Studies 4-6 in Stage 2.

Conclusions.

The above studies confirm that:

1. The BAWMV-PSS is a simple but sound design for a SMIB pov¡er system.

2. The damping performance of the BAWMV-PSS is comparable with that of the

NAWMV-PSS and more effective than that of the LAWMV-PSS.

The advantages of the bilinear adaptiae control strategy in eliminating certain feedback

signals and in providing good damping performance are therefore evident.

From the above conclusions and those drawn in Subsections 3.6.3, 4.5.3, and 5.4.3,

it is seen that the BAWMV-PSS is superior to the NOWMV-PSS, the LAWMV-PSS'

and the CPSS. Due to its simplicity, the BAWMV-PSS shows greater potential as a

practical nonlinear adaptive power system stabiliser than the NAWMV-PSS.

6.6 Concluding Remarks.

In this chapter original work on simplifi,cations of the nonlinear adaptive poriler system

stabiliser (NAWMV-PSS) proposed in Chapter 5 is conducted. In particular, the design

and implementation of a bilinear adaptiue power system stabiliser for the SMIB poÌver
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Figure 6.26: Electrical porvver response for Study 13 (n:0.6 p!, Qt: -0.1 pu; step
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Figure 6.28: Electrical power response for Study 15 (¿ : 0.6 pu, 8r : -0.1 pu;

100 ms short-circuit at the machine terminal). CSM1 with the BAWMV-PSS - solid
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system modelled in Subsection 2.3.1 is discussed. This work completes the analysis and

design of the nonlinear po\4¡er system stabilisers carried out in Chapters 4 to 6. The

significance of this work is to provide a theoretical basis confirmed by simulation studies

for the future realisation of a practical nonlinear adaptive power system stabiliser for

a SMIB power system.

The issue of simplifications of the NAWMV-PSS arises when aspects related to

the practical implementation of the NAWMV-PSS are considered. The NAWMV-PSS

is based on the complete NNM which requires the on-line measurements of the state

variables 6(k), c.r"(fr), Eeo(k), and E'o(k) for its formulation. However, in practice,

access to some of the state variables, such as ó(fr) and Ei(fr), is difficult. It is then

necessary to eliminate the 'unmeasurable' state variables from the complete NNM and

to simplify the calculation of the control law. It is primarily for this reason that

simplifications of the NAWMV-PSS are discussed in this chapter.

Simplified versions of the NAWMV-PSS are based on simplified forms of the NNM.

Simplified forms of the NMM can be obtained from the analysis of the output pre-

diction of the complete NNM. In Section 6.2, through mathematical decompositions,

the output prediction of the complete NNM is shown to be composed of four output

componen ts, yB(lc), yc(k), yD(k), and y¿(/c)' two of which (at&) and yp(lc)) are found

to be less significant in contributing to the dynamic and steady-state responses of the

system than the others. This analysis of the contributions of each output component

to the overall response is essentia/ for the simplification of the NAWMV-PSS' since,

for control purposes, a simplified NNM must retain the main characteristics of the

output variable while eliminating the need for the additional feedback signals as much

as possible.

By the elimination of the less significant components yn(k) and yp(lc) from the

complete NNM and the change of the feedback signal z2(k) to ¿d"(fr), two simplified

versions of the NAWMV-PSS (called the SVI-NAWMV-PSS and the SVII-NAWMV-

PSS) are derived in Section 6.3. The evaluation studies conducted for these two simpli-

fied NAWMV-PSS confirm that the system damping performance does not deteriorate

following the simplification. The SVII-NAWMV-PSS, as the simplest version of the

282



NAWMV-PSS in this thesis, retains the inherent nonlinearities of the power system,

and hence possesses the potential to perform as well as the NAWMV-PSS.

Since the SVII-NAWMV-PSS still requires the access to the rotor angle 6(k), fur-

ther modifications to the SVII-NAWMV-PSS are needed. This results in the discussion

of the bilinear control strategies in Section 6.4. By replacing sin ó(k) with T.(k) ac-

cording to (6.13), a neu bilinear nominal model (BNM (6.16)-(6.17) with (6.10)-(6.11))

which contains a minimum set of the measurable feedback signals is derived. The per-

formance of the estimated BNM in inherently tracking and predicting the dynamics

of the continuous-time nonlinear power system (CSM3) at different system operating

points is verified through simulation studies in Subsection 6.5.1.

In line with the theories established in Chapters 4 and 5, the bilinear optimal and

adaptive control of the BNM are discussed in Subsections 6.4.2 and 6.4.3, respectively.

A. new bilinear adaptive weighted minimum variance control law (6.22) is developed

for the design of a bilinear adaptive po\4rer system stabiliser. To use this control law

for on-line operation of a bilinear adaptive power system stabiliser, modifications have

to be made in order to cope with the circumstances under which the output variable

(i.e., the electrical torque or power) suddenly changes to a small value or zeÍo. A three-

phase fault or the sudden loss of a transmission line is a typical example of such an

event. According to the control law (6.22), the control action is ineffective when such

an event occurs. The consequence is poor damping performance of the system. The

function f"&) (6.25)-(6.26) is proposed in Subsection 6.4.3 to overcome this problem.

The modified bilinear adaptive control law (6.23) which incorporates the function /r(k)

into (6.22) is then derived. By proper selection of the parameters yo and C, which

are involved in the function lu@), the modified bilinear adaptive control law (6.23)

can provide a control action equivalent to that of the NAWMV-PSS when an event

mentioned above occurs. The effectiveness of the function lr(k) in preventing the

control action from being ineffective is demonstrated in Figs. 6.19-6.20.

Based on (6.23), a neu bilinear adaptive weighted minimum variance po\ryer system

stabiliser (BAWMV-PSS) is proposed by Algorithm 6.1. The estimator required by

this control algorithm is provided by the implementation of Algorithm 5.1(A).
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In Section 6.5 the performance of the proposed BAWMV-PSS is investigated and

its robustness in stabilising the higher-order actual power system is tested through the

simulation studies presented in Subsections 6.5.2 and 6.5.3. The performance of the

BAWMV-PSS is compared with that of the NAWMV-PSS and the LAWMV-PSS. It

is shown that the BAWMV-PSS is comparable with the NAWMV-PSS in providing

good damping of system oscillations. In some cases there is a small deterioration in

system damping performance associated with the BAWMV-PSS when compared with

the NAWMV-PSS. However, the overall performance of the BAWMV-PSS is always

better than that of the LAWMV-PSS. The advantage of the bilinear adaptive control

strategy over the linear adaptive control strategy is clearly shown in Figs.6.11-6.28.

From these observations and the conclusions drawn in Chapter 5 concerning the eval-

uation of the performance of the stabilisers designed in this thesis, it is evident that

the BAWMV-PSS is superior to the NOWMV-PSS, the LAWMV-PSS, and the CPSS.

Due to the elimination of the 'unmeasurable' feedback signals from the formulation of

the NAWMV-PSS, the potential of the BAWMV-PSS as a practical nonlinear adaptive

power system stabiliser is greater than the NAWMV-PSS. In conclusion, the bili'near

ailaptiue control approach is an appropriate design for the practical implementation of

a nonlinear adaptive po\lrer system stabiliser.

The contributions in this chapter are original, and have been listed in Section 6.1.
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Chapter 7

Conclusions and Recomrnendations

for F\rture Research.

7.L Conclustons.

In this thesis original research has been conducted on the analysis, design, and eval-

uation of. three nonlinear power system stabilisers, namely the NOWMV-PSS, the

NAWMV-PSS, and the BAWMV-PSS, for use with the SMIB models of the power

system. The aim of this study is to explore the possibility of using a nonlinear adap-

tive control scheme for the design of power system stabilisers. In addition, a linear

adaptive power system stabiliser (LAWMV-PSS) and a robust conventional power sys-

tem stabiliser (CPSS) have been designed to assist in the assessment of the nonlinear

po\l/er system stabilisers mentioned above.

The development of nonlinear power system stabilisers is motivated by the fact

that a power system is a highly nonlinear system, and the inherent nonlinearities of

the system are usually known. The use of a linear control approach for the design of

the power system stabiliser will inevitably result in shortcomings related to the control

methodology that is used. A linear adaptiae control approach is no exception to this. It

is only due to the fact that a linear adaptive controller is time-varying in nature (due to

its on-line estimation of parameters), that a properly-designed linear adaptive po$¡er
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system stabiliser can cope with the inherent nonlinearities of the power system and

improve the system damping performance relative to that of a fi,red-parameter linear

power system stabiliser. However, the performance of a linear adaptive power system

stabiliser may not be optimal in transients before the estimated parameters converge.

Therefore, a linear adaptive power system stabiliser may not be the best design for

the SMIB po\¡¡er system if the system nonlinearities are known analytically. The need

to eliminate the shortcomings associated with linear control approaches immediately

suggests the use of nonlinear control approaches which incorporate the inherent non-

linearities of the power system into the design of the power system stabiliser.

In order to carry out an investigation into the design of nonlinear po\Mer system

stabilisers, the following three preparatory stages are essential:

o firstly, the modelling of the nonlinear power system being studied;

o secondly, the selection of the control scheme to be used for the design;

o thirdly, the establishment of a valid reference with which the performance of the

resulting nonlinear power system stabiliser can be compared.

The above three aspects have been discussed (in Chapters 2 and 3) prior to the initiation

of the design of the nonlinear power system stabilisers.

Firstly, the SMIB model of the po\ryer system, called the CSM1 (see Subsection 2.3.1),

has been proposed as the model which closely matches the actual power system for

which a po\lrer system stabiliser is required. For convenience in the theoretical develop-

ment, the CSM3 with a properly-tuned rotor damping coefficient (see Subsection 2.3.2)

has been used as a substitute for the CSM1 in the analysis and design of the control

strategies. Nonlinear and linearised analytical models (NAM, LAM, and SLAM) have

been developed from the CSM3 (see Subsections 2.4.I and 2.4.2) for the derivation of

the nominal models that are the characterisations of the nonlinear power system for the

purpose of designing the control schemes. The development of these models facilitates

the design of the po\4¡er system stabilisers discussed in this thesis.
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Secondly, the linear stochastic optimal control laws have been analysed under the

general requirements essential for the design of power system stabilisers (see Sec-

tion 3.3). The weighted minimum variance control scheme has been selected for the

development of the nonlinear power system stabilisers for the sake of simplicity and

consistence. The decision to select this control scheme is justified on the basis that it

facilitates the comparisons and evaluations of different polver system stabilisers under

the sarne control scheme.

Thirdly, a linearised nominal model (LNM) has been derived from the SLAM for the

development of the linear optimal and adaptive control laws (see Section 3.2). A linear

adaptive weighted minimum variance power system stabiliser (LAWMV-PSS) (Algo-

rithms 3.2(A)-(B)) has been proposed for the SMIB power system (see Section 3.5),

and its performance has been taken as the refervnce for the assessment of the corre-

sponding nonlinear power system stabilisers. The validity of this reference has been

verified by the comparison of its damping effect with that of a well-designed robust

conventional power system stabiliser (CPSS) at various system operating conditions

(see Section 3.6).

The provision of the above three preparatory stages establishes a valid basis on

which the nonlinear power system stabilisers have been designed.

A new nonlinear nominal model (NNM) has been derived from the NAM for the

development of the nonlinear optimal and adaptive control laws (see Section 4.2). The

main features of the NNM are

o it accurately rcpresents the inherent nonlinearities associated with the electrical

torque output of the power sYstem;

o it is given in a regression form (linear in the parameters and in the control input),

and hence provides the basis for the development of the nonlinear adaptive control

algorithms from the linear ones.

For generality, a net¿ nonlinear stochastic generalised minimum variance control law has

been derived (see Section 4.3) and its closed-loop stability conditions have been given
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by Theorem 4.3.1. The establishment of this control law and its stability conditions

is important for the development of a variety of nonlinear optimal control schemes

for the NNM, subject to the choice of the weighting polynomials of the associated cost

function. A newnonlinear optimal weighted minimum variance po$'er system stabiliser

(NOWMV-PSS) (Algorithm 4.1) has been proposed for the SMIB power system (see

Section 4.4). A sufficient condition for the global closed-loop system stability of the

nonlinear stochastic weighted minimum variance control law used by the NOWMV-PSS

has been guaranteed by Theorems 4.4.1-4.4.2. The theoretical proofs of the stability

theorems associated with these nonlinear optimal control laws (see Appendix E) are

necessaral sflace

o the property related to the closed-loop system stability of a control law cannot

be determined simply by simulation studies;

o there is no general solution for the closed-loop system stability of a particular

nonlinear control law.

The effectiveness of the proposed NOWMV-PSS has been demonstrated by the compar-

ison of its performance with the reference, which has been taken to be the performance

of the LAWMV-PSS, through simulation studies (see Section 4.5). It has been verified

that

o because the NOWMV-PSS is based on the fixed-parameter NNM, its control

action is optimal at any new operating points provided that the true values of

the parameters of the NNM are unchanged;

o because the fixed-parameter NNM contains the inherent nonlinearities of the

SMIB power system accurately, the transition from one operating point to an-

other is optimal when the NOWMV-PSS is in operation.

The disadvantages of the NO\MMV-PSS have been shown to be

o the parameters of the NOWMV-PSS are time-invariant. This implies a potential

deficiency of the NOWMV-PSS in tracking the changes in operating conditions

(which cause the true values of the parameters of the NNM to change).
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o the generation of the control action of the NOWMV-PSS is based on the assump-

tion that the limiting nonlinearities of the system are working within the linear

region. Under this assumption the magnitude of the control action is limited

when large disturbances, such as three-phase faults, occur.

The need for a solution to the above problems leads to the development of the corre-

sponding nonlinear adaptiue control approach.

A. new nonlinear adaptive weighted minimum variance control law has been derived

by combining the nonlinear stochastic weighted minimum variance control law and the

recursive least squares algorithm with the time-varying forgetting factor and dead-zone

(see Sections 5.2 and 5.3). The control algorithm is given in an indirect form. Two ap-

proaches have been considered. The first approach (Algorithms 5.1(A)-(B)) uses all of

the estimated parameters of the NNM to calculate the adaptive control law' In order to

ensure the convergence of the control algorithm, an assumption that the estimate ê1(k)

associated with the term u(fr) converges to its true value is used. This precaution does

not appear to be necessary in the simulation studies, although it is necessary for the

theoretical analysis. The second approach (Algorithms 5.2(A)-(B)) sets the estimate

ê1(k) associated with the term u(k) to a constant value while using all of the estimates

of the NNM for the calculations of the other terms in the control law. This approach

removes the assumption involved in the first approach, but the control action of this

approach becomes less 'adaptive' than that of the first one. The mathematical proofs

of the convergence of Algorithms 5.1(A)-(B) and 5.2(A)-(B) associated with the above

two control approaches have been given in Appendix G. These theoretical analyses

are presented because there is no general guarantee of convergence for a particular

nonlinear adaptive control algorithm-

A. new nonlinear adaptive weighted minimum variance power system stabiliser

(NAWMV-PSS), which is based on the first approach described above, has been pro-

posed for the SMIB power system (see Section 5.3). The dynamic and transient per-

formance of the NAWMV-PSS overcomes the deficiencies of the NOWMV-PSS, as

demonstrated in simulation studies (see Section 5.4). The studies have confirmed that
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o the adaptive feature of the NAWMV-PSS copes with the time-varying nature of

the power system; the system damping performance with the NAWMV-PSS is

thus better than that with the NOWMV-PSS;

¡ the nonlinear nature of the NAWMV-PSS takes the inherent nonlinearities of the

power system into account; the system damping performance with the NAWMV-

PSS is thus better than that with the LAWMV-PSS;

¡ the nonlinear ailaptiae power system stabiliser is, therefore, superior to the non-

linear opti,mal stabiliser and the linear adaptíue stabiliser in damping the rotor

oscillations of the time-uarying nonlineør po\ryer system.

These advantages of the NAWMV-PSS demonstrate the potential of nonlinear adaptive

control approaches for the design of power system stabilisers.

As an ideal nonlinear adaptive power system stabiliser, the NAWMV-PSS requires

the entire set of feedback signals for the estimation of the parameters of the complete

NNM and the calculation of the control law. Problems may arise when the practical im-

plementation of the NAWMV-PSS is considered. This is because some state variables,

which are required by the NAWMV-PSS as feedback signals, may be unmeasurable in

practice. (This problem is shared by the NO\ /MV-PSS as well.) The direct method

of dealing with this problem is to simplify the complete NNM, resulting in simplifred

versions of the NAWMV-PSS (see Sections 6.2 and 6.3). The discussion of the sim-

plification of the NAWMV-PSS initiates the development of the bilinear controller for

the design of nonlinear power system stabilisers.

A, new bilinear nominal model (BNM) which requires a minimum set of measurable

feedback signals has been derived (see Subsection 6.4.1). Due to the simplifications that

are involved in the derivation of the BNM, the accuracy of the BNM in representing

the nonlinear power system (CSM3) is lower than that of the NNM. However, with the

implementation of an on-line parameter estimation algorithm, the inaccuracy of the

BNM can be compensated for by the time-varying parameters of its estimated model

(see Subsection 6.5.1). A. new bilinear adaptive weighted minimum variance control

law (6.22) has been developed from the discussion of the optimal and adaptive control
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of the BNM (see Subsections 6.4.2 ar'd 6.4.3). Since the BNM contains a product

term of the control input z(k) and the output y(k), the control action of the control

law (6.22) is significantly reduced following a sudden decrease of the output (caused,

e.g., by a three-phase fault) or a sudden increase of the decreasing rate of the output

(caused, e.g., by a transmission line switching-out). A measurement to prevent the

control action from being ineffective in such an event has been incorporated into the

controller by means of the function fr&). This results in a nero bilinear adaptive

weighted minimum variance power system stabiliser (BAWMV-PSS). The BAWMV-

PSS is described by Algorithms 5.1(A) and 6.1 (see Subsection 6.4.3). An investigation

of the performance of the BAWMV-PSS has demonstrated that

o being inherently nonlinear and adaptiue in its control law, the performance of the

BAWMV-PSS is superior to that of the LAWMV-PSS;

o being simplein its structure, the BAWMV-PSS is more practical than the NAWMV-

PSS, although in some instances it is subject to small deteriorations in its damp-

ing performance when compared with the NAWMV-PSS.

In conclusion, the bilinear adaptiue control approach is an appropriate, and potentially

a practical, design of the nonlinear adaptive power system stabiliser for the SMIB

power system.

The original contributions in this thesis have been summarised in Section 1.9 (or see

Sections 4.I, 5.1, and 6.1). The extensions to earlier work described in the literature

have been listed in Sections 2.1 and 3'1.

7.2 Recornmendations of Future Research.

For the investigation of nonlinear adaptive control schemes in the design of power

system stabilisers, the SISO nonlinear weighted minimum uariance control scheme has

been studied for the NNM and the BNM proposed in this thesis. The nonlinear power
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system stabilisers developed in this thesis, namely the NOWMV-PSS, the NAWMV-

PSS, and the BAWMV-PSS, are for use in the excitation control loop of the SMIB

po\iler system. The studies reported in this thesis involve the theoretical analyses and

the simulation studies only. In view of the development of linear adaptive control

strategies in the design of power system stabilisers, the following aspects relating to

future research into the nonl'i,near adaptive control strategies in the design of power

system stabilisers are suggested:

1. The BAWMV-PSS designed in this thesis through theoretical analyses and simu-

lation studies can be further developed in the laboratory as a practic¿l nonlinear

adaptive power system stabiliser.

2. The studies of the BAWMV-PSS in the SMIB power system environment, pre-

sented in this thesis, can be extended to a multi-machine power system environ-

ment in which each (or some) of the individual generating units in the system is

equipped with a BAWMV-PSS that utilises local measurements only.

3. By the use of the NNM or the BNM developed in this thesis, the design of the pole-

shifti,ng control scheme is recommended for study. In the literature, studies of this

control scheme in the field of linear adaptive control have shown the effectiveness

of this scheme in improving the system damping performance, despite the heavy

burden involved in the calculation of the associated control algorithm [49,50,53,

54,55,,56,70]. For nonlinear adaptive control studies, the computational burden

related to this control scheme is expected to be higher than that in the linear

case. However, with the use of new fast micro-processors or parallel processor

architectures in practical implementations, the problem of the computational

burden may be solved. The effort in developing this control scheme for the design

of a nonlinear adaptive power system stabiliser would be applied to the soluability

of the control action from the control law and/or the conaergence analysi's of the

resulting control algorithm. Since the NNM or the BNM is nonlinear, the above

two issues may be difficult to solve.

4. Multi-input multi-output nonlinear adaptive control strategies can be developed

by the utilisation of the NNM or the BNM for the representation of the excitation
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control loop of the power system with a new development of another representa-

tion of the governor control loop. This involves a progression from SISO nonlin-

ear adaptive power system stabilisers to MIMO nonlinear adaptive power system

stabilisers (or controllers). As indicated in [71], for a modern fast-governing and

fast-exciting po\l¡er system, a MIMO control strategy is more suitable than a SISO

one for the co-ordination of the control actions of the exciter and the governor.

In the field of linear adaptive control, much research has been reported for the

development of MIMO power system stabilisers (or controllers) in the literature

[68]-[74]. However, in the field of nonlinear adaptive control, there appears to

have been nothing forthcoming. A promising MIMO nonlinear control scheme

for the design of a MIMO nonlinear adaptive porver system stabiliser would be

a MIMO nonlinear weighted minimum variance control law, since the solvability

of the control action from the control law is expected to be relatively simple.

However, difficulties may occur in establishing the convergence of the resulting

MIMO adaptive control algorithm.

Since the study of nonlinear adaptive control algorithms for the design of power

system stabilisers is rather new, considerable development is required in this field. It

is the author's hope that the development of nonlinear adaptive control strategies for

implementation in real time will bear fruit. The studies performed for this thesis have

provided a promising basis for this.
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Appendix A

The Basic Model of a Single

Machine Infinite Bus Power

Systern.

Consider a synchronous generator power system equipped with a conventional exci-

tation system and conventional governor and steam turbine, connected to an infinite

bus through a double-circuit transmission line having resistance A" and inductance -L".

The remote infinite busbar is taken as the phasor reference.

4.1- Equations of the Synchronous Generator.

The synchronous generator under consideration is assumed to have three stator wind-

ings, one field winding, and two amortisseur (damper) windings. These six windings

are magnetically coupled. The type of the generator chosen is the salient pole type.

Let the positive directions of stator currents be the directions of leaaing the machine

terminals. The sign convention of torque is that a positive mechanical (driving) torque

T*(t) acceleratesthe shaft, whereas a positive electrical (retarding or load) torque ?](ú)

decelerates the shaft. The definition of the position of the d-axis adopted is that in [3].
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For the six-winding salient-pole synchronous generator, it is assumed that

Assumption .A..1.1

(i) There ,i,s no saturation anil there is no d,istributed conducting material in which

ed,dy currents can fl,ow [125].

(ii) The harmonics aboue second-order can be neglected, thus all the ind,uctances ao,ry

sinusoiilally with an aililitional constant term in some cases [125,120].

(ii,i,) The machine is operating under balanced' conditions [3J.

Using Park's transformation technique, the general equations describing the relation-

ship between voltages, currents and flux linkages in the synchronous generator are given

as follows [3].

Flux Linkage Equations

^¿(¿)

^r(¿)
l\p

^q
u\q

Voltage Equations

L¿ L*d L^¿

L^¿ Lr L^¿

L^¿ L*¿ Lp

0

Lrnq

I¿(t)

Ir(t)
Io(t)

In(t)

Ie(t)

0

Lq
0

(r)

(ú)

(¿)

Lmq

Lq

(A.1)

a.,(t),ô,0(t)

0

0

-t,l(t)A¿(t)
0

w(t)

-ve(t)
0

vr(t)

0

r I¿(t)

Ir(t)
Io(t)

Io(t)

Iq(t)

_1
{Ðg

^¿(¿)
Ar(ú)

^"(¿)
À,(¿)

^o(¿)

rF

Tp

r
0

re
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Swin uations

where

ó(ú) : øsø"(f),

: # (r,,þ) - T"(t) - Du:"(t))

T^(t):'#

(ú)us

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

Electrical Torque and Power Equations

T"(t): rq(t)L¿(t) - Id(¿)^q(¿),

P"(t) : T"(t)u(t).

External Connection

The external connection of the synchronous generator to the infinite bus can be de-

scribed by the following equations

c.r(t) : ar"(t) + 1, (4.8)

v¿(t) ---v- sin6(ú) + R"Id(t) + lt "ioçt) + L.u(t)Iou), (4.9)
{tg

V(t) :Voo cos ó(ú) + R.Iq(t) + ln"irçt) - L"w(t)Io(t), (4.10)
tÐo

u(t)' : vd(t)z + uþ)',, (4.11)

L(t)' : Idþ)2 * Ioþ)", (4.12)

where the transmission system is represented as a lumped series resistance and induc-

tance, l?" being the effective resistance and L. the effective inductance. The trans-

former parameters are included in R. and L".

In the above equations all quantities are normalised in per unit except that ó(t) is

expressed in radians and time ú is in seconds. The base speed up is taken as the syn-

chronous (nominal) speed cers in radians per second. The mechanical torque T,*(t) and

the electrical torque T.(t) are normalised on a three-phase base. Park's transformation

matrix as in [3] (eqn. (a.5)) is adopted. The voltages, currents, and flux linkages are

expressed by their r.n'ù.s. equivalents [3].
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^.2 
Equations of the Excitation Systern.

There are a variety of excitation system models presented in two IEEE committee

reports 1204,2051. In this thesis the standard conventional Type 1 continuously acting

exci,tation system representationl204l is employed for modelling. Figure 4.1 shows the

basic configuration.

V"ret V> VR Ei
^-FD

V,

+

Figure 4.1: IEEE Type 1 excitation system representation

For most poruer systems, a general assumption for the terminal voltage transducer

in Fig. 4.1 can be made.

Assumption 4.2.1 The terminal aoltage transducer is linear and introduces no de-

lays, i.e. rR - 0 [204,206].

To simplify the Type 1 excitation system representation, an additional assumption

made for the Type 15 system (a special case of the Type 1 system) in [20a] is accepted.

s" = f(ftJ

saturation
frrnction

1+s

terminal
volfqge

transducer

1

V
Rmax

V
Rmin

K
Ê Íø

exciter

1

+s1+sro

voltage
regulator

KA

sKr

1+sta

feedback
søbilizer

Assumption A.2.2
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ft) fhe exciter constant I{E - l, and the exc,iter time constant rp:e

(ii) The exciter saturation function is omitted by setting Sø : 0

Furthermore, the feedback stabiliser can be eliminated by assuming that [3]

Assumption 4.2.3

(i) There is no feedback filter (rp :0).

(ii,) There is no rate feedback (I{p : g¡.

Therefore, the equations of the simplified Type 1 continuously acting excitation system

representation are written as

Conventional Excitation System

(A.13)

Vn(t) ) VR^o,

Vn*6 <Va(t) 1VR^o, , (4.14)

Vn(t) 1Vn,n;n

with

vE(t):v"¡(t) _u(t), (A.15)

where p is the diferential operator. The voltage regulator output is bounded by the

magnitude limits fVn^nn,Vn^o,f which are determined as a proportion of the machine

terminal voltage [204].

Remark 
^.2.1 

The simplified ercitation systern (A.13)-(A.15) may in practice be a

typical thyristor-type excitation system. The stabilisation that is normally required by

this type of excitation system is assumed to be an integral part of the control law to be

designed [207,55J. It is for this reason that Assumption A.2.3 is introd,uced,.

vn(t): , !{l vr(t),
L+pTA
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'A'.3 Equations of the Governor and Stearn Tur-

bine.

A general model of a conventional governor for steam turbines proposed in [208] is

illustrated in Fig. 4.2. This model may be used to represent either a mechanical-

hydraulic system or an electro-hydraulic system depending on an appropriate selection

of the parameters [208]. The synchronous speed tr.rs is set a priori.

PouP.
r€T

+

+

-ú)
s

For a governor without acceleration feedback, the speed deviation ø"(f) is simply

amplified by the gain I{ç [120]. This is equivalent to assuming that

Assumption 4.3.1 In the speed, d,euiation feedback filter, 11 and 12 are negligible.

The output power from the governor is constrained by the rate limits lP¿n, Puo) and

the magnitude limits LP^¡n, P*o,]. The simplified governor model is then described as

ú)

Figure 4.2: General model of a governor/valve system for a steam turbine.

+
o

0

P P
1

tc

,x
1
s

Ko(l + s tr)

1+st,
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Conventional Governor/Valve System

P"1t¡ :
Pup

lp"(,)
T¡;

P¿n

(A.16)

(A.17)

(A.20)

(A.21)

(A.22)

if ap"(¿) 2 Puo

ir ';^. !pr(t) . Pup

ir ir"U, 
1P¿n

1
Pcv(t) Pr(t),

p

Pçy(t): (A.18)

with

P¡(ú) : P,.¡(t) - I{çu"(t) - Pcv(t). (A.1e)

Among the six common configurations of steam turbines summarised in [208],

two useful (simple) models for simulation studies are a three-stage tandem-compound

single-reheat turbine model and a nonreheat turbine model. Their approximate linear

representations are given in Figs. 4.3 and 4.4 respectively.

The equations that formulate the three-stage tandem-compound single-reheat tur-

bine system in Fig. 4.3 are

Conventional Steam Turbine (With Reheat)

t)I ntat

Pcv(t)
Dt mt'n

if Pcv(t) ) P^o"

if P^in lPcv(t) 1P^o, ,

if P"r(t) S P^¡n

1Pnp(t) Pcv(t),
I + pTCH

1Prc(t): ;-;- Pup(t),
I + ?TRH

1Ptp(t): 
-- 

&p(t),I + PTCO

P,"(t) : Fn p Pnp(t) I Frc Ptr(r) + F¡pP7p(t),
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Fn Frrti
^IP

f,tIP

+

PP

1

1+sto
1

1+st"o
1

1+st""

P
+ + m

+

PrP

PGV

Figure 4.3: Linear model of a tandem-compound single-reheat turbine.

with

Fup*Frc*F¡,p:L. (A.24)

Usually rnu Þ r6¡y and rnn Þ 166, and. it is assumed that

Assumption 4.3.2 The steam chest time constant 16¡¡ and, the crossouer time con-

stant 166 are negligible compared to the reheat tíme constant r¡"q¡.

The equation that represents the simplified form of block diagram of Fig. 4.3 can be

written as

(A.25)

For the nonreheat turbine system in Fig. 4.4, the equation of the model can be

directly obtained by setting the time constants rp¡y in (A..21) and 166 in (4.22) fo zero

and summing the power fractions Fnp, Fn, and F7p in (4.23) to 1. This results in

the following expression

p,.(t): (r,,-+#) n""a)
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1

1+st""

PGV

Figure 4.4: Linear model of a nonreheat turbine.

Conventional Steam Tr¡rbine (Nonreheat)

P*(t): #Pcv(t).

Pm

(A.26)

Remark 4.3.1 Both the simplif,ed, reheat turbine (A.25) and the nonreheat turbine

(A.26) can be includ,eil in the general expression for the conaentíonal steam turbine

(with reheat) in (A.20)-(A.2Ð bV selecting appropriate aalues of the time constants

anil the power fractions.

Remark 
^.3.2 

Normally, an appropriate boiler model shoulil be chosen to complete

the mathematical d,escription of a prirne n'¿oaer system in a power systern. Howeuer,

since the time constants associated with the boiler are usually aery large compared,

to those associated with the other components in a power system, the boiler can be

consi,dered to be an infinite steam source that ileliaers steam at constant temperaturu and

presure when transient disturbances to the power system occur [206,120]. Therefore,

the dynamic modelling of a boiler has been omitted in this thesis.
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Appendix B

Derivation of the Operational

F\rnctions Gp(p) and Hp(p) in

Section 2.2.

The derivation of the expressions for the operational functions Ge(p) and f/¡(p) in

(2.1) makes use of the following machine equations from (.A.1)-(4.2) of Appendix A.

^r(¿) 
: L*¿I¿(t) + LFIF(I) ¡ L^¿Ip(t),

^o(ú) 
: L*¿I¿(t) + L*olrçt) + LDI D(t),,

Vr(t) : rrlr(t)* ln"(r),
ttg

Q:rpIp(r¡+lÀo1r;.

Eliminatine Ir(t) from (B.1) and (8.2), one writes

Lp-
r2Lmd

I* rD(t) + L*¿-*)

(8.1)

(8.2)

(8.3)

(B.4)

r¿(t). (8.5)Ap(ú)
L*¿
Lp

/\F(¿) +

Similarly, from (8.1) and (B.3) one has

rD(t): **on,(r) + *n,U, - ffir,U) - Id(t).
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Differentiating (B.5) with respect to time and substituting the resulting equation into

(8.4), one obtains

# (t, - 
t+) 

ioçt¡ + ID(t) + 
""-!+0"(¿) 

+ # (t*, - 
t+) 

rd(ú) : 0'

(8.7)

An expression for 
^r(ú) 

is formed by substituting /D(¿) (8.6) and its time derivative

i¿1t¡ i"to (8.7)

^r(¿): ffiL^d(Id(t)).ffi*(#v,þ)) (88)

where p is the differential operator. The time constants rd1,trd2¡76, and r¿7 ãra defined

in (2.3), (2.4), (2.5), and (2.6) respectively.

The expressions for the operational functions Gr(p) and Hp(p) in (2.1) result di-

rectly from (8.8).
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Appendix C

System Parameters.

The following system parameters are used for the modelling of the CSMl, the CSM2,

and the CSM3 defined in subsection 2.3.1, unless stated otherwise. All parameters are

in per unit.

Synchronous Generator:

r : 0.0012

r)o: 5'66

X¿ - 1.904

Xq : 1'881

D :0.1

H :3.36

r';o:0.041 rj'6 : 0.065

xL:0.812 x; :0.26

xi : o'ze

D :4.0 (for the CSM3 only)

Transmission Lines:

R":0.02 X" :0.4

Excitation System:

I{,t - 100.0 T¡ : 0.1 VR*o, : 5.0 VR^;n: -5.0
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Governor:

I{6 :25.9

Pup :9'9
rc :0.I
P¿n: -9.9

c -- L03

Cv: o'l

Steam hrbine (Nonreheat):

Tcn :0.4 F¡¡p : I.0

Power System Stabilisers:

controller output limit s :

umot:0-05 umin: -0.05

CPSS:

D¿ :20.0

TpssrtTpsa2: 0.0795 + i0.0811

LAWMV-PSS:

P*o" :1.2 P^¿n :0.0

K^ :2'5
TpssSlTpss4: 0'01

þmin:0.2 Eo:0.8 À:0.4

rP:0'I

Ko: t}a C - 105 þmin:0.2 Xo : 0.8 À : 0.4

NO}VMV-PSS:

À : 0.4 þo^¿n: 0.0001

NAWMV-PSS:

I{s-1gz C:103 þrnin:0.2 Xo:0.8 À:0.4

B.4WMV-PSS:

I{o - 1gz

Ao: I0-5
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Appendix D

Derivation of the Linearised

System State Matrix A0 in

Subsection 2.4.2 and Section 2.5.

D.1 Derivation of Ao in Equation (2.L16).

Eliminate the dynamic models of the governor and the steam turbine from the equations

of the LAM. The Jacobian matrices of the LAM become

Ug

D
-ffi

0 1

-Tldo

0

o

0

0

0

0

0

0

0

xo

çro:

0

0

1T
îdo

_1
ÍA

00
o-fi

þ#o
Tdo

00

0

0

0

I{Á,
TA

-Voo sin óo 0 -1 0

I{, 0Iç 0

I{u 0 I{6 o

E*o:
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vzo

where (D.1) is the same as (2.106). Ao in (2.116) is then derived from its definition in

(2.113), subject to the definitions of ITs and 17a in (2.119) and (2.120) respectively.

D.2 Derivation of Ao in Equation (2.L26).

An alternative expression for the SLAM can be written as

and

with

niilr¡

Adr"(¿)

LEoU)

n,nrolt¡

- (x. + x;)
0

0

00
-1 0

0 -2Vo

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

ûrsAc,'l"(ú),

- # o, "rq - # "r.(t) + 
rrL 

nr^çr¡,

-*ouç¡ - *oøoçt) +1.tn,oþ),

- 
t! 

ry(Ð - ! tø, o(t) +,ofu ov 
", çr¡,

LT.(t) : IçL6(t) + R2LEq(t),

^uU) 
: #ou¡r+ffinn,ç¡.

By eliminating AEi(ú) from (D.6) and (D.7) with the use of (D.2) and (D.4), one writes

LT.(t): Ktuo\ø'(¿) +
Iç - I{2I(3I(4

Aó(¿) - #^^r"(t) + *o"rr¡¡ (D.8)
T

and

^u(t) 
: 

#,oo,"(ú) - *onra * ffifaá(r) + ffinu""ll.n,

Similarly, by eliminating AEi(ú) from (D.6) and (D.7), one obtains

Aó(ú) : #n(rr,lr;1r¡ - 2uoI72^u@)
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The final forms of the linear differential equations of A[(t) and AVr(t) are obtained

by substituting (D.10) into (D.8) and (D.9), resulting in

^?i(ú) 
: R',svu"(Ð * #ffi^r.(t)

r)ol{s IçI{6 - KzKs
K2

Tdo

2VoI72 17, - I7rl7"t7n
ay¿(ú) + LEFD(I) (D.11)

and

^u(t) ffi,"u"(¿)+
K6 I{s - I{31{41{6

2V¿sr)rÍ{3 KtKa - KzKs
LT"(t)

Ka K1- I{zKsKq

''¿oR"
IçIç - I{21{5

From the definition of ax(ú) in (2.125), Ao in (2.L26) follows from (D.3), (D.11),

(D.12), and (D.5) immediately.

^Vþ)+ ffii*eo(t). (D.12)
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Appendix E

Proofs of Theorems in Chapter 4.

E.1 Proof of Theorern 4.3.L.

(a) Equation (4.122) is immediately obtained by substituting (4.120) and (4.121)

into (4.92).

(b) Equation (4.123) follows from substituting (4.83), (4.86), and (4.120) into (4.92).

(c) Premultiplying (4.L23) by A(q-t) and using (4.84) and (4.86), one writes

wuowu(q-t)A(q-t)u. (k) : Pt(k) lw,Q)l(q-1)y.(,b + 1)

-wuk-')A(q-r)y(k + r)

+wn@-r) A(q-1 )?r(k + r)]

Substituting (a.79) and (4.121) into (E.1) and using (4.87), one has

lo"lt') o"{t )w, (q-' ) + u uow,(q-' ) / (q -' )] "- 
(k)

: þ"(*)[*,@^)o(q-\a.@ + r) - wok-\g(k)

- wok-')G(q-l)tl,l(k)] .

Similarly, premultiplying (4.123) bV þo(k) and using (4.84) and (a.86), one writes

uuoWu(q-r)Bs&)u.(k) : B"Qr)þ"(t)lr,k-')r.(k + r) -Wu!-\s(k + 1)

*wo(q'')w(t+r)] . (8.3)

(8.1)

(E.2)
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The closed-loop system @.I2a)-(4.126) is then obtained from (E.2) and (E.a).

(d) Step 1: Define

Note that the boundedness of. Bs(k) and ps(ft) is given by Remarks 4.3.2 and

4.3.3 respectively. Hence, for bounded sequences {y.(fr)}, {.(k)}, and {9(k)},

the sequences {ri(k)} and {ri(k)} are bounded. The closed-loop system (4.L24)

then becomes

ú(q-,,rrl'r:îri, ]: l;;tll ]
Consider the first equation of (8.5). It can be rewritten as

Substituting (4.79) and (4.121) into (8.3) and rearranging, one has

lO"tt )0"{t )wuk-\ + u.owu(q-')A(q-')] v@ + t)

: þo(t )þ"(k)W,(q-')y*(k + 1) + u,ow!(q-')g(k)

+ lOoU') Oo(k)wnk-') + wuowu(q-')] w@ + L).

1"" +l¡,1(le)z^-L t06,2(k)z^-2 +...+Lú,*(k)l y(¿) : 
^Lrri(k+ 

1)

where, according to Assumption 4.3.2(i)-(ii),

0^(k) : 0o(k)0o(lc)wuo + wl,o 10, for all k,

and

(8.4)

(E.5)

(E.6)

.:iål#l 1Mo

Clearly, with the selection of n state variables such as

,r(k): y(k)-#rrr*r,
xz(k) : 0¡,1(k)y(k)+ 11(k + 1),

rs(k) : 0¿,2(k)y(k) ¡ r"(k + l),
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equation (tr.6) can be written in the following observable form

x(k + L) : A"(k)x(k) + b"(k)ri(k), (8.7)

u(k) : c"(k)X (k) + d.(k)ri(k), (8.8)

where

-0*r(k)

-0rr(k)
A"(k): (E.e)

b.(k)': [ -ffi{tl -,^@, -#i8 ],
rlc,(k):lr 0...01,

d"(k): -+.o^(k)'

Step 2: Consider the zero-input response of the system (E.7)

x(k+r):A"(k)x(k) (E.10)

(i) Since ú(r-t,lc) is bounded for all k,

sup ll oú(k) ll3 K'
O(/c(oo

where 0 < I{ú, ( oo. Hence, the sequence of matrices {A"(k)} (E.9) is

bounded for all ft, i.e., there is some finite ø¡a such that

sup ll A.(k) ll: o* ( oo.
0(&(oo

(8.11)

(ii) Due to

sup ll O"(k + 1) - O'(k) ll< .',
O(lc(oo

it follows from (E.9) that

sup ll A,(k + 1) - A"(k) llS .,
O(fr(oo

where eo is sufficiently small

10 0

0 1 0

3r2

(E.12)



(iii) Since út(z,k) has its roots strictly inside the unit circle of the z-domain,

the eigenvalues, i¿ (i: 1,2,...,,n), of A.(k) are strictly inside the stability

boundary, i.e.,

li;ta,(r)Jl < r (i : 1, 2,,... ,n), for all k. (E.13)

under the conditions (8.11), (8.12), and (E.13), the system (E.10) is exponen-

tially stable (see [209,210]).

step 3: The solution of the output of the system (8.7)-(E.8) is given by

y(k) : c.(k)a(k,ko)X(ko) + d,(k)ri(k)

+ | c,(fr)o (k,,i)b'(i - l)ri(j - 1)' for fr ) ko * 1, (E'14)
j-ko*r

where X(ko) is the initial state and O(k, fro) is the system state transition matrix

[156]. Since the system (8.10) is exponentially stable, it follows that [211,210]

ll O(k, ko) ll5, Mrpk-*o, for any k¡ ) 0 and for all ¡ > lco,

where M1 and p ale independent of k; 01Mt ( oo and 0 < ¡.t, 
( 1. Thus, from

(E.14),

ll v(*) ll' <

- 
[,å, ll ",(fr) l lt o(fr,i) ll ll ó,u - 1) tt tt 'î(i - t) il]']

j-ko1'L

where

o < Mz g sMi ll X(ko) ll' < oo,

0< Mz ê 3M3 (oo,

o< M4 ê ry <oo;

Mz, Ms, and Ma are independent of k. Hence, for any N à ko * 1, it follows that

NN
t ll y(r) ll'3 Mu* MoÐ ll "i(") ll' (8.15)

È=lco*l r=lco
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where

o< M5 a lt (oo,
L- 11

o< Mø å Mzry (oo.
L-11

Clearly, Ms ar.d M6 ate independent of N. Also, from (8.14)'

where

ll y(r) ll s ll ø(t) ll ll o(k, k,) ll ll x(ko) ll + ll d."(k) ll ll "i(¿) ll

k

+ D ll ",(e) ll ll o(k,i) ll ll ó"U - 1) ll ll 'i(j - 1) ll
j-ko+r

0< Mz g Mllx(ko) ll <*,
o < M8 å Mo* MgMßú' ( oo.r-¡t,

Surely, M7 and Ms aîe independent of k.

From (E.15) and (E.16), it follows that {y(¿)} is bounded stable. The proof

of the second equation of (E.5) is the same, which leads to the conclusion that

{".(k)} is bounded stable.

Theorem 4.3.1 is then established.

Q.E.D

Remark 8.1.1 The bounded,ness of {g&)} and þl(k)} is guaranteed by Lemmas 1.3.3

and y'. 2. 2, respectiuely.

8.2 Proof of Theorem 4.4.2.

(1) According to (4.LI2), þo(k) is bounded for all k. From (4.L32),,

(
ll o'(k) ll : { 1+

t

À' (o? + 
"7)

lþo(k), + Àl'
for all k,

I
2

3t4



where

r{ú,!(r+ri *"?)'

Hence, t ("-', k) in (4.133) is bounded for all fr.

(2) Ignoring the error betwæn za(k) and za(k) in (4.66), from (4.132), (4.111), and

(4.25) one has

2 +
!
2

ll o,'(/c + 1) - o'(fr) ll

where

Due to (4.40), e¿ satisfies

Define

l1o(k + t
À(

+ Àl [Bo(fr), + À] lo"{t + 1)'- þ'(Ð'l

ço?, + "|)+I el 
lsin2 

ó(k + r) - sin'zo(t)l

ç"1+ "'r)+ ê6t
À

., ê 
oïì?L sin2 ó(k + 1) - sin2 o(r) .

e¡1lim
h*0 -0

2 * 
"',

I,
A

wu- egt.
À

Clearly, e¿ satisfies

lime¿ - 0.
/¿+O

Therefore,

.:iå ll o'(k + 1) - o'(k) lll ."

where e¿ is sufficiently small as indicated in (8.17).

(3) From (4.133), út(2.,k) can be written as

rr(z,k) : ffto{t')t + \) z2 I Àaú * \az

The roots of (E.18) are solved by setting

z2+\or"*Iøz-0

(E.17)

(8.18)
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o<rêffi=t
due to ) > 0. Define

D(À) a \'""r- 4\az.

The solution of the roots of (E.18) is given by

,, --Iø'+D(I)åþLiz - 2

where

For stability it is required that

<1

<1

(8.1e)

(8.20)

(E.21)

(8.22)

(E.23)

lr', <1.

There are three cases, each resulting in a choice of À satisfying (8.20):

Case 1: D(À) : 0. From the condition (E.20)'

t2

which gives

0<À< 2

E;I
Case 2z D(À) < 0. The condition (E.20) becomes

-À¿r f i (+\"r-\'"? )ä
2

which results in
-1o<Àtrrr'

Case 3: D(I) > 0. The condition (E.20) is written as

-rø1 r (1,"?_ a\a2)
1
2

which is equivalent to requiring that

2

l-1,,1 + (\'za? - a\a2)i . z
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or

lr,,l sr-ll",l, (E.25)

resulting in

o<r'#' (E'26)

Summarising (E.21), (8.22), and (8.26) with the consideration of (E.19), one

concludes that: with the selection of À within the range of

{o.r(min{å,ffi,'}} 
aro, @.27)

the roots of (E.18) satisfy that

l"t,rl < L, for all k.

From (E.19) and (E.27), for stability it is required that

o'Ãfr;(Ào(1
which gives

0oft¡z1-rb
Ào

1-)o
)o. (E.28)

þ3*o,, due to (4.II2)

There exists, therefore, a choice of À satisfying (8.28) such that

ú(r-',k) + 0, for all lr-'l < I and all k.

In view of Theorem 4.4.1(d), Theorem 4.4.2 is then established

Q.E.D.

Remark 8.2.L In the deriuation of the inequalities inuolued in the selection of À in

Case 3 (r(l) > 0), the conditions (8.21) and, (8.25) are used to replace the con-

dition (8.23). The region of \ giuen by (8.26) may therefore be narrower than that

satisfying (8.23). Consequently, a aalue of ), which is out of the ro,nge of (8.28) may

still lead to a stable closed-loop system.

lo

A
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Appendix F

Derivation of Algorithm 5.1.

Consider the discrete-time system having the form

y(k): ö(k - r¡1O + ,(k),,

where ó(k - 1) and O are (1 x r) vectors, and tr.'(fr) is a bounded noise.

Lemma F.0.1 The algorithm (5.1-(5.5) rninimises the following quailratic cost Íun"-

tion

where ¡rI > 1.

Proof of Lemma F.0.1.

Sr(o) : p(N - l)Siv-,(o) + a(n - r) [y(¡r) - ó(N - l)to]', (F.1)

Let

õfr-rõr-, t p(N - l)õfi-rõ ¡,t-z * ø(N - 1)d(N - l)d(N - l)t
be an (r x r) matrix with iÞf,õ¡ A 

"101¿10)d(0)t,

ür-' e 
I rfn - 1)!ú"-, o(N -l)d(¡r - 1) 

]

be an (r x .af) matrix with iÚ6 A ø(0)/(0), and

Y# ! 
[ u{r) y(z) ,(N) ]

(F.2)
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be a (1 x i/) vector. Differentiating (F.1) with respect to O and setting the result equal

to zero gives

õñ-ror-to - Üry-1Y¡y : Q. (F.3)

Define

P(N - 1)-' ê õfi_rõr-, (F.4)

where (Ofr-rOr-r)-t i, assumed to exist. Using the form of (F.2), one writes

p(¡ú-1)-': p,(N - l)P(N -2)-' *ø(N-l)d(N-1)d(¡ü-1)t. (F.5)

Note that

iúru-rYrv : p(N - l)iÚN-2vN-r * d(N - l)d(N - t)y(N). (F.6)

Let O(¡f) denote the value of O satisfying (F.3). From (F.3)-(F.6), it is readily obtained

that

o(¡r): o(¡r- 1) +ø(N- l)P(N- l)d(N- r) [y(¡r) - ö(N - l)"o(N- 1)] .

The above equation establishes (5.4). Equation (5.5) follows by applying Lemma 3.1

of [170] to (F.5).

Q.E.D.
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Appendix G

Proofs of Theorems in Chapter 5.

G.1 Proof of Theorem 5.2.L.

Step 1: From the definition of ¡z(k) in (5.9)-(5.11),

01tt^rn<p,(k)3L, for all fr. (G.1)

It follows from (F.5) and (G.1) that, if P(-1) is positive definite (Ko > 0), so is

P(/c) for fr ) 0, a¡rd that

sup ll P(k) llS c. (G.2)
0(¡k(oo

Step 2: Define

v@) t 6ç*¡r rçt, - 1)-1é(fr) > 0, for all k, (G.3)

where

o1r¡ âo1r¡ -oo.

The following expression is then readily derived from (5.4), (5.6), (5.7), (5.1),

and (F.5):

v(k) - p(k - 1)v(k - 1) : "(k - r) [to(rc)'? (G.4)-l
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From Lemma 4.2.2 arrd the definition of o(k- 1) in (5.8), equation (G.4) becomes

p(k - t)e(k)2
p(k- 1) +o(,t -t)ó(k-r P(k-2)ó(k-r)

which, according to (G.1), results in

v(k) <v(k - L), for all lc (G.5)

From (G.3) and (G.5), V(k) is a nonincreasing function, bounded below by zero,

and

0

Hence,

where

.lim sup
/c+æ

"(k)'lMI s^T

-0.

(G.6)

Ir(r) a r +- ó(k - Ðr P& - 2)ó(k - r). (G.7)
þmin

In view of Lemma 4.2.3(i)-(iii),

ó(k - Ðr ó& - 1) < zi<! + ai<l + i{?i{| + 2içR2, for all k, (G.s)

where

i{' ! sup l"(r)1, (c.9)
O(,b(oo

I{, ! 
o?p.n {lrr(")l ,lrr?)l , lrr(")l ,lrn(")l,l"n(r)ld(r) - yr(r)ll} , (G.10)

R" ! sup ly(r)l; (c.11)
0(fr(oo

i{r, i{r, and ils are independent of A-. Therefore, from (G.2), (G.8), and (G.7),

for all k, (G.12)

where

it n ! 
l, 

. -, -^ 
(z i<! + 6 i{3 + k? i<i + 2 I{, k 

")f

Clearly, i{ni" independent of A-
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Step 3: Substituting (G.12) into (G.6) gives

Jlå'"pl"(r)l < l{n\* (G.14)

which, with the use of (5.7), establishes conclusion (b). Conclusion (a) then

follows by substituting (G.11) into conclusion (b). Using (5.a) and (5.7),

ll o(k) - o(r - 1) ll': o(k - L)'ö(k - Ðr p& - \'ó(k - t)e(k)z. (c.15)

Conclusion (c) is readily derived from (G.15) by using (G.2), (G.8), and (G.la)

and noting that

i{u ! c i<a (zi<! + 6k3 + K?IC + 2iÇ{2)å (c.r6)

from which ,ifu is independent of A-. Finall¡ from (G.5) and (G.3),

i^,^lrç' - 1)-'] o1r¡ro1t) 1i^o, [pt-tl-'] o1o¡"o10¡ (c.17)

where i ¡f1f¡-t1 represents the eigenvalue(s) of P(k)-l. Due to (G.2), it follows

from (G.17) that

ll o(k) ll"s kâ ll o(0) ll" for fr ) 1, (G.18)

where llu ir defined as

i{u ! {ti^", ["(-t)-']]å , (c.le)

independent of A-. Conclusion (d) is established from (G.18). Theorem 5.2.1 is

thus proved.

Q.E.D

G.2 Proof of Theorem 5.2.2.

Following the steps shown in the proof of Theorem 5.2.I, one immediately has

olllå'"p lã(k)l < i{'n\,-
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where i<ni" independent of A-, and is defined as

(zr<! + eki)]',r+ c
þmin

:̂k'n (G.21)

i{z and i{" ur. given by (G.10) and (G.11), respectively. Using (5.21), the condi-

tion (G.20) establishes conclusion (b). Due to (5.15),

lû(k)l < ly(r)l + l\o(k - L)u(k - 1)1, for all å

Using (G.9), (G.11), and (4.112), the above condition becomes

sup lú@l < I{; (G.22)
O(/c(oo

where

R; t i{" * 1o*o,i{r. (G.29)

Clearly, i<'ri" independent of 4,,. Conclusion (a) then follows by substituting (G.22)

into conclusion (b). Conclusions (c) and (d) follow from the same procedure as the

proof of Theorem 5.2.1(c)-(d), by noting that

i("!cr<^(zk!+6kÐ+. Gl4)

k|t."" the same definition as given by (G.19).

Q.E.D.

G.3 Proof of Theorem 5.3.L.

(1) Suppose that le > ko so that Assumption 5.3.2 holds. From (S.t) and (5.2) it

readily follows that

a(k)- û(k):ó(k- 1)r [oo-o(r-1)] + *(k), for k> ks, (G.25)

where ó(k - 1) is defined by (5.13) and O1t¡ ir obtained from Algorithm 5.1. An

alternative expression lor y(k * 1) in (5.2) can be written as

û(k + r) : G(q-')y(k) + i(k) + go(k)u(k), for k > ks, (G.26)
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where C(q-t) and 9(k) are given by (5.31) and (5.32), respectively. Substituting

(G.26) and Assumption 5.3.2(i) into (5.33) yields

p(k)uo(k) : y*(k+ 1) - û(k + t) + Bo(k)u(k)

where

p@)!Wro
due to Assumption 5.3.2(ii). Hence,

û(k + I) : ú.(k+ 1) - p(Ðluo&) - "(k)]
(G.27)

where

g. (k +1) å y.(fr + 1) - lp!') - þo(k)lu(k) (G.28)

(2) The control inpui {"(¿)} is bounded by (5.3a). The output {y(f)} and the

additional signals, {r,(k)} (i : I,2,3,4), {y"(fr)}, and {d(fr)}, are bounded by

Lemma 4.2.3(i)-(ii), respectively. Then, from Theorem 5.2.1(b), for each e)0,

there exists let ) leo such that

lv?ù - it(k)l r i{n\,- ¡ r, for lc 21e1, (G.2e)

or

û(k)-i{n\--e ( a&)<û(k)+ka\,-¡e, rork) tc1. (G.30)

Define the interval

L lzh

ú.(k)- I{aL,--e E-(k)+ I{tL,-+e (G.31)

From here on, it is assumed that k 2 let, so that the condition (G.30) holds.

(3) In the following, the proof of the convergence of Algorithm 5.3 is given for four

cases (numbered (a)-(d)) arising from the control algorithm (5.33)-(5.34). The

basic idea behind the proof is to show that there exists some k2 ) k1 such that

y(k) e L for all lc ) le2.

(a) If the control algorithm (5.33)-(5.34) gives u(k) : uo(k), then y(k + 1) e L
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(b) If the control algorithm (5.33)-(5.34) gives u(k): rtrmar¡ then y(k + 1) € L.

(c) If the control algorithm (5.33)-(5.34) gives u(k) :Itrntin,t then y(k + 1) e L.

(d) If y(k) e L, then y(k + 1) € L.

Proof of (a):

If u(e) - uo(le), then from (G.27) it readily follows that f(,b + 1) - t.(fr + 1).

From (G.30) and (G.31) one immediately has that V(k+l) € L, which establishes

(").

Proof of (b) and (c):

Step 7: If z(/c) : rtrmøs¡ then from (5.34) one has that uo(lc) ) Itmao. Using

(G.27), it follows that f(k + 1) S ú.(k + 1). From (G.30) and (G.31), one has

y(k + L) < ú-(k+ 1) + itnl* + e ! I,

which, according to Lemma 5.3.1(i), yields

u&)<y(k+r)<t, (G.32)

Step 2: If z(lc) : rtrmint then uo(fr) S u^¿n due to (5.34). As in Step 1, i(/c + 1) >

g.(k + 1) follows from (G.27), and the condition

y(k)>y(h+r)>û-(k+1)- RnL--rLh (c.33)

results from using (G.30), (G.31), and Lemma 5.3.1(ii).

Step 3: There are two possibilities for the existence of (G.32) when u(k) : umaxi

(i) y(¿) € L: then from (G.32) y(k + 1) € L;

(ii) y(k) r L and y(k) < l¡ then, according to (G.32) and Lemma 5.3.1(i),

at each sampling step y(k) increases by an amount ) 12 ) 0. There then

exists lc' > le such that y(k') > /r is satisfied, while (G.32) holds. Hence,

y(k') eL.
If y(k) stops increasing before y(k) >- /1, sa1', y(k") ( 11, then u(k") * u*o,,

and u(fr") - uo(lr") is the only possibility (since u(k") : umin will result in

y(k") ) /1, as indicated in (G.33)). Therefore, as in (a) above, y(k" +I) e L.
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Step 4: There are two possibilities for the existence of (G.33) when u(le) : u^'n'

(i) y(¿) € L: then from (G.33) y(k + 1) e L;

(ii) y(k) f L and y(k) > 12: then, from (G.33) and Lemma 5.3.1(ii), y(k)

decreases by an amount ( rr ( 0 at each sampling step. Similar to Súep

3, there must exist lc' > Ic such that y(k') S /2 while (G.33) holds. Hence,

y(k') eL.
If y(k) stops decreasing before y(k) S ll2,, sa!, y(k") ) 12, then u(k") t u^i,',

and u(,b") - uo(lt") is the only possibility (since u(k"): umas will result in

y(k") z-12, as indicated in (G.32)). Hence, as in (a) above, y(le" + 1) € t.

Step l combined with Súep 3 establishes (b), while Step 2 with ,Súep 4 establishes

(").

Proof of (d):

If y(k) € L, then there are three possibilities for the control input u(k):

(i) u(k) : uo(k): then by ("), y(k + 1) e L.

(ii) u(k) : umøsi then by using Súep 3(i), v(k + 1) e L.

(iii) u(k) : umini then by using Step 4(i), y(k + 1) e L.

The above (i)-(iii) establish (d).

In conclusion of (")-(d), it follows that there exists some fr2 > fr1 such that

y(k) e L, for le ) k2.

It follows from the definition of L in (G.31) that

ly!t) - û"(k)l < i{n\,- ¡ ,, for le ) Ic2. (G.34)

(4) From (G.29) and (G.27),

lu@ - t"&) + p(k -r) [uo(k - 1) - u(k -1)]l s i{n^- +,,, for ,t I kr

Due to (G.34), the above condition can be written as

lp@-I)u(k-1)l < lpft -l)zo(fr-1)l +zi{n\,-¡2e, lork}k2. (c.35)
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On the other hand, from (5.33) and (4.128), for k > ks, one has

p(k -r)uo(k- r) : y-(k) - ó(k -1)?o(k - 1),

p(k -1)2.(k- 1) : y.(k) - ó(k -1)tOo.

From (G.36), (G.37), and (G.25), one writes

p(k-r) [uo(k-1)-,*(t -1)] : y&)-û(k)--(k), for lc > ,bs

Due to (G.29) and Lemma4.2.2, the above equation becomes

lptt - r)uo(,t - 1)l s lp& - r)u.(k - r)l + (R^* t) a- +.,

(c.36)

(c.37)

for k ) k1.

(c.38)

fork)kr. (G.39)

(5) From (G.34) and (G.28),

ly1') -y.(k)+l,p& - 1) - þo(k- 1)lu(k- t)l S RaL,*¡e, ror k) 1e2,,

which, according to (G.39), leads to

From (G.35) and (G.38), one immediately has

Due to

the condition (G.a0) becomes

)

lu(k -1)l < lu.(k - r)l + #t(t& + 1) a- + 3e] ,

and

0.ffi:po(kj),,+ì <1

p(k - L) - þo(k- 1) < #,,

ly(t') - a"(k)l < 1".(k - ll + (+t<n+ 1) a- 14., lor le ) k2. (G'41)

*lIg."p 1".(k)13 r...

From (4.139),

þo*;n
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Since e ) 0 may be chosen arbitrarily small, the condition (5.47) is readily

established from (G.41) and (G.42) by noting the definition of i{*in (5.48).

Theorem 5.3.1 is thus proved.

Q.E.D
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