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iv.
SUMMARY
The work is divided into three chapters, followed by an appendix
describing computer programs developed for this work and used for
experimentation, leading to conjectures which were subesequently proved
and presented in the main part of the work. The computer programs can

be used as a basis for further experimentation.

The first chapter of the thesis deals with incidence relations in the
n-dimensional linear space over the finite field GF(q), where q = ph.
(Here h is a natural number and p a prime number.) The relations give
rise to identities which can be interpreted as generalisations of known
identities of binomial coefficients. Some of the enumerative formulae
discussed in this chapter are used in the later part of the work, while
others are explored for their intrinsic interest in highlighting the
analogy between combinatorial structures: subsets of a set, and subspaces

of a space.

The second and third chapters deal with projective geometries over
finite fields GF(q?). Here the order of the underlying field is a
perfect square g2 = p2h, an even power of some prime. These projective
geometries are of special interest because of their subgeometries over
GF(q). In the two dimensional case the substructures, called Baer-
planes, have been investigated by several workers and a number of
results discussed in this work were found earlier by others. The
references listed include those works on which some of the investigations
are based as well as those which contain results at which the present
investigations arrived independently, by different methods. By the
nature of the subject, the second chapter of this thesis, dealing with
Baer-planes intertwines with the work of other authors. However, it
appears that the Singer duality theorem and a theorem depending on it,

dealing with a configuration of Baer-planes named here "Singer wreath"



are new results.

The third chapter deals with Baer-substructures of the n-dimensional
projective space PG(n,q2) over GF(q2). These are structures isomorphic
to projective spaces over GF(q) of dimension n or Tess. Their inter-

sections give rise to structures, named Baer-complexes, which relate to

projective spaces in a manner similar to the relation of partitions to
sets. A number of properties of these Baer-complexes are established.
The Singer duality theorem discussed in Chapter Two, is generalised in

Chapter Three and earlier results are reviewed in this light.
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FUNDAMENTAL CONCEPTS

In traditional geometry properties of objects such as lines, curves,
polygons or three dimensional configurations are established. These
properties are metric or descriptive. While the former concern distances,
angles, areas, volumes, the latter deal with relative positional
connections. In classical (Euclidean) geometry - the theorems of

Pappus, Desargues, Pascal are of descriptive nature. As a result of
development, projective geometry has become an independent branch of
geometry, exploring the descriptive properties of configurations, that
is, incidence relations. The elements of three dimensional space are
points, lines, planes. By assigning coordinates to the points, incidence
relations such as intersections, collineations, coplanarities become
simple problems of linear algebra. At this stage, geometry can be
generalised in two directions. On one hand, the concept of dimension

can be extended; abstract points which can be defined by n coordinates
are introduced where n can be any natural number, not just 1, 2 or 3.

On the other hand, the coordinates characterising the points can be
chosen to be elements of some algebraic structure more general than the
field of the real numbers. This way we arrive to finite geometries, or

the geometries of finite combinatorial structures.

Two approaches to projective geometry were developed simultaneously.

The first one is the axiomatic, purely geometrical approach, the starting
point being the set of axioms on the primitive terms (such as points,
lines, spaces), and deriving the theory from these. The other approach
is the algebraic one, beginning with the concept of the general n-
dimensional space, points being ordered sets of n numbers, where these
numbers are elements of an algebraic field, infinite or finite, while

linear spaces are sets of points, linearly dependent on finite sets of
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points, (basis-elements). Projective n-dimensional geometry is then
presented as the set of subspaces of an n+l dimensional linear space
over a field, together with the incidence relations of these subspaces.
It has been shown that for dimensions greater than two, the algebraic
and axiomatic approach lead to the same result. This is not the case
in two dimensions. The projective plane defined by the axioms of
incidence (three in number) is a more general structure than the
projective plane defined by its points given as triples of elements of
an algebraic field, finite or infinite. Accordingly, the main stream
of resarch on projective planes centers on finding and classifying
projective planes other than Galois planes (i.e. planes where the

coordinates of the points are elements of a finite field ([3é, 171,
4.

(11, [35], [22]).

However, the aim of the present work is to explore combinatorial
relationships in n-dimensional spaces, and where possible, extend

results known, or more readily found in the two dimensional case to
higher dimensions. Thus, throughout this work, the concept of projective
planes will be restricted to Galois planes. In the few cases where
results apply more generally, special mention will be made of this

fact.

In this introductory chapter well known concepts will be summarised,
notations, definitions and known results will be given. A1l the theory
to be discussed is readily found in texts given as references, so proofs

will be generally omitted.

1. Galois Fields

(E.g. [13], [31], [26].)

A finite field F is an extension of some finite prime-field. If p

is the order of the prime-field, then p must be a prime number.
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This number p is called the characteristic of F. The prime-field
of F of characteristic p is isomorphic to Zp, the field of residue
classes modulo p. F can be represented, up to isomorphism, as a

vectorspace over Zp. Thus the order of F is
ph = q where h is a natural number.

The elements of F form an elementary abelian group under addition,

since the order of each non-zero element is p. The elements

belonging to F\jOk form a group under multiplication. Since the

order of this group is
q-1-= ph -1,

the multiplicative order of each non-zero element is a divisor of

q - 1. Thus if
a e F\{0}
then
ad-l =1,
or more generally, if
aeF
then
ad - a = 0.
Hence the elements of F are roots of
x9 = x = 0. (1.1)

Since this polynomial has exactly q roots, and q is the number of

elements in F, it follows that F is the splitting field of (1.1)




-4-

over Z.. Hence, in an abstract sense, all fields of order q = ph

p
are identical.

So F is called the Galois field of order g and is denoted GF(q).

Furthermore, it can be shown that the multiplicative group of GF(q)
is cyclic. If a 1is an element of order q - 1, that is, the powers
of o run through all the non-zero elements of F = GF(q), then a is

called a primitive element in GF(q).

The number of primitive elements in GF(q) is ¢(q-1), where ¢(n) is
the Euler function of n, enumerating all positive integers less

than n and coprime to it.

Field-automorphisms. It is immediate that the transformation

T : a+aP for all a € GF(q)
is a field automorphism:

= t(a ) + t(a,)

w(a, + a,) L 2

and

and T is a bijection, since T(ax) - t(a,) = T(al_az)' For q = ph
this means h automorphisms. It can be also shown that these are
the only automorphisms of GF(q). Hence GF(q) has exactly h

automorphisms.

Conjugate roots

Let

fF(x) = apx + ..+ a
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0
be an irreducible polynomial over Zp, and let o be one of its roots.
Then it follows from the automorphism theorem that the other roots
n-1

are aP, apz, .oy aP , and these roots are said to be con-

jugate.

Sub-fields.

Let GF(q) and GF(q') be two Galois fields, where q = ph and q' = ph'
and h' > h., Then GF(q) is a subfield of GF(q') if and only if h is
a divisor of h'. An element o of GF(q') belongs to the subfield

GF(q) if and only if
ad -a =0 (cf 1.1)

The automorphism theorem implies that if GF(q') is an extension
field of GF(q), then the map
a + ad

is an automorphism where the fixed elements are those belonging to

GF(q).

If f(x) =ap" + ...+ a, is an irreducible polynomial over GF(q),
then its set of roots is

n-1
{a, aq, vees afl }

where a is any one of the roots.

Quadratic extensions are of particular importance in this work.

The following results are listed for this special case.

(i) GF(q) is a subfield of GF(q2).
(i1) If « is a primitive element of GF(q2) then the set
{ai(q+1)} (i=1,..,9-1) represents all the elements

of GF(q)\{0}.
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(iii)  The mapping a + a9 is an involution of GF(q2).
(iv) If ¢ is a primitive element of GF(q2), then the set
{me + n}, m, n e GF(q) (1.2)
represents uniquely the elements of GF(g2).

It is apparent that the relation of the extension field GF(g?) to
GF(q) is analogous to the relation of the field of complex numbers
to the real field. This justifies the usage of referring to the

elements of GF(q) as the real elements of GF(q2).

General projective planes

[5], [26], [15], [21], [20] for Sections 2, 3, 4.

As pointed out in the Summary, this work is confined to the study

of spaces over finite fields, so in the present summary of definitions,
notations and results only such spaces will be considered, using

the algebraic approach, while most texts indicated as references

treat a wider field and use the two-way approach for establishing

basic concepts and results. Since all the content of this introductory
chapter is well known, the summary is restricted to material used

in the following chapters. However, basics about general (not
necessarily Galois-type) projective planes cannot be totally

disregarded, so these are surveyed in this section.
The projective plane is an incidence structure:
n=(pP,L,I)

where P = {p} is a set of objects called points, L = {2} a set of
objects called lines, the sets P and L are disjoint, and I is a

subset of ordered pairs,



I ={(p,2)},
where p € P, & € L, subject to the following axioms.

I. For any two points P,» P, € P, there exists a unique

1ine 2 € L, incident with P, and P,s that is

(pl, 2) eI and (p., &) € I.

2’

II. For any two lines 21, 22 e L, there exists a point

p € P, incident with both zl and 22, that is
(P, 2) €1 and (p, 2,) € I.

III. P contains four points such that no three of the four
are incident with the same Tine.

(Such a set will be called briefly a non-degenerate

quadrangle).

Immediate consequences

Ila It follows from I that the point incident with both lines

zl and 22 is unique.

IITa. The plane 1 contains four lines such that no three

intersect in the same point.

Notations and definitions

The line &, incident with P, and P, is denoted 2 = P, +P, and

called the join of P, and Pye

The point incident with zl and 22 is denoted p = 21 n 22 and

called the intersection of 21 and 22.




The principle of duality

From axioms I, II, III together with IIa and IIla, it can be seen
that the word "point" is interchangeable with the word "line",
while interchanging the words "join" and "intersection". Thus for
each theorem established for the projective plane, there is a valid

dual theorem obtained by the above interchange.

Finite planes

To the axioms of the general projective plane add the assumption:

there exists a line 2 in P which is incident with only a finite

number of points.

Let the number of points on the Tine & be q+l1, where g is called

the order of the plane I.

From the above assumption and the axioms the following can be

deduced:
(1) q > 2 (this is Fano's postulate);
(ii) every line £ € I is incident with exactly q+l points;

(iii)  through each point p of T there are exactly g+l lines;

(iv) I contains exactly q2 + q + 1 points;

(v) I contains exactly g2 + g + 1 lines.

In Section 4 it will be shown that the number of choices for the

order q of the projective plane is infinite.

Linear (vector) spaces over a field

The concern in this work is with finite spaces. In a more general
treatment a linear space is a structure defined over a skew field
(division ring). However, by Wedderburn's theorem [34], finite

division rings are commutative, hence it is assumed here that the

set of scalars forms a field.
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A linear n-space V over a field k is the set of all n-tuples:

p = (al, 8,5 sees ap)

where
aj e k (i=1,..,n) (3.1)

The ordered sets of field elements defined in (3.1) are called the

points of the n-space. In particular the point
o=(0, 0, .., 0) is called the origin.

The aj's in (3.1) are the coordinates of the point p. Alternatively

they may be interpreted as the components of the vector p.

Defining scalar multiplication and addition of vectors the usual

way, we can write down the vector

p=cp +dp, (c,dek).

]
—
a1}

-
o]
-

Let p, » 800005 Ap)

p2 = (b ] b 3 eoeoey bn)s

p = (ca1 + dbl, ca_ + dbz, eseey Cap + dbp).

2

Linear subspaces

Let P s Pys eos Pr be a set of points in a linear space V. Define

the set

(ci ek fori=1,..r) (3.2)

to be the subspace spanned by P> Pys eees Pre It follows from

(3.2) that the origin o is contained in every subspace.
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Independence, basis, dimension

Definition : the points of the set {pl, Py ees pr} are dependent,
if some point of the set is in the subspace spanned by the others,

or equivalently, if there exists a set

C , C_y s0ey C (C' € k, 'i=1,..,|"),
1 2 r 1

where not all the elements are equal to zero, such that
CPp, ¥ Cp, + een +CrPp = 0 (3.3)

Both definitions imply that a set of points containing o is a

dependent set.

The points P s Pys wees Prare independent if the equation (3.3)

implies that
ci =0 for i=l,..r.

A basis of a subspace is a set of independent points spanning the
subspace. A subspace can be spanned by different sets of basis-

elements, but the number of basis-elements in each basis is the

same. The dimension of a subspace is defined as the number of basis-

elements required to span it. Thus the dimension of V is n.

Zero dimension is assigned to the point o, also called the null-
space, and by the definition, the dimension of a 1ine (through o)

ijs 1, of a plane (through o) 2, and so on.

A subspace spanned by n-1 basis-elements is called a hyperplane. It

is the solution-space of the single equation

ax +ax_ + ...+ apxp =0 3.4
i 272 non ( )

From the definition (3.2) it follows that it two points P and P,
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belong to a subspace S, then so does any linear combination
cp,tcp, (cl,c2 e k).

Conversely, a subset of V, closed on addition and scalar multipli-

cation is a subspace.

Intersection, sum-spaces, Grassman's identity

The set of points common to two subspaces Sl and S2 is again a

subspace : S1 N 52.

The sum S + S, of two subspaces S, and S, is defined as the set

{pl * p2| pi € Sl’ pz E S2}'

3 . U -
The union S1 U S2 is a proper subset of Sl & 52. Sl 52 is not a

subspace (unless Sl c 82 or Sl =) Sz)' The smallest subspace

containing Sl U 52 is Sl + Sz'

The subspaces of the Tinear space V form a set, partially ordered

by inclusion, and such that the meet of any two elements S ands,,

which is S n S_ and the join of S and S "which is S + S belong
L 2 — 1 2 L 2

to the set. Hence the subspaces of a linear space form a lattice.

A very useful relation, known as Grassman's identity applies to the

dimensions of the sum and intersection of any two subspaces S1 and

Sz‘ Denoting by dim S the dimension of a subspace S, the relation

is
d1m(Sl + Sz) + d1m(Sl n Sz) = dim Sl + dim 52 (3.5)

Finite linear spaces

If k is a finite field, then a finite dimensional linear space over

it is also finite. The linear space of n dimensions over the field
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GF(q) is denoted by V(n,q). i
The number of points in V(n,q) is qn.

The number of r dimensional subspaces of V(n,q) is denoted by the

B

symbol [n]q, where
r

(q"-1)(q""1-1) ... (q"~"*lo1) s
L ]q B (3.6) ;
r (g-1)(q2-1) ... (q"-1) 1

This result will be proved and discussed in detail in Chapter 1.

Projective spaces

Homogeneous coordinates

The historical development of projective geometry led to the
introduction of homogeneous coordinates. The cartesian coordinate
system characterises a point of the Euclidean plane by the coordinate

pair
(g, n).

Writing £ = x/z, n = y/z, the triple (x,y,z) is used to represent

the point (&, n).

Using this representation, the ideal points of the Euclidean plane

can be written as triples of type

(x,y,0)

and the ideal line is given by the equation

However, the choice of a homogeneous triple to replace the coordinate-
pair is not unique. The triple (x,y,z) can be substituted by the

triple
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(ox, py, pz) where p # 0.

Hence the point in the plane is characterised by a set of triples,

which form an equivalence class.

More generally, each point of an n-dimensional projective space is

represented by an equivalence class of (n+l)-tuples. This can

also be interpreted as an equivalence class of points of an (n+1) -

dimensional linear space:

p(Xl, Xys oo Xn+1)s Where o # 0.

Alternatively, the point in the n-dimensional projective space is

represented by the set of points of a ray through the origin in the

(n+1)-dimensional linear space, excluding the origin.

Galois planes

The Galois plane PG(2,q) over the field GF(q) is defined as a

collection of points and lines described as follows.

A point in PG(2,q) is
p = o(x,s X, X;) (4.1)

, X. 1S

meaning an equivalence class of triples, where X s X i

2
some fixed set of three elements in GF(q) not all zero, and p

ranges through all non-zero elements of GF(q). For most purposes,

when identifying a point, the factor p may be omitted.

A line is a set of points in PG(2,q), satisfying the equation over

GF(q)

ax *tax,tax, = 0 (4.2)

where at least one of a5, a,, 3, is different from 0. The set
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{a,, a,, a,} can be replaced by p{a,, a,, a4}, where
p € GF(q)\{0}. The equation is well defined for the points of the

line, for if one triple (xl, X, X ) satisfies (4.2), so do all the

3

triples belonging to its equivalence class p(Xl, Xos x3). The set

of coefficients in (4.2) is called the set of line-coordinates and

is denoted by

a_J.

[al’ az’ 3

If P, and p, are any two distinct points on a line then the Tine
can be represented as the set
{C1p1 + Czpz} (cl, c, € GF(q), not both zero).

The number of points, also the number of lines in PG(2,q) is

(q3-1)/(q-1) = g2+ g+ 1.

It can be checked that all the axioms of the general projective

plane, listed in Section 2 are satisfied.

The order of a Galois plane is q = ph, where p is prime and h a
natural number, hence there is an infinite number of choices for the

order q.

Projective subspaces

It has already been noted that there is a 1-1 correspondence between
the points of a projective n-space and the one-dimensional subspaces
of a Tinear (n+l)-space. This is now generalised for the subspaces
of the projective n-space. Subspaces of the projective n-space are
defined as Tinear combinations of points of the projective space,
in the same manner as for linear spaces. The concepts of linear

dependence and independence for projective spaces also follow the
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definitions for linear spaces. Thus a point p of the projective n-
space is independent of the projective subspace S if and only if

the map of p in the linear (n+l)-space in independent of the map

of S in the linear (n+l)-space. Assigning dimension 0 to the points
of the projective space, dimension 1 to its lines, and so on, it

follows from the above considerations that a bijection exists

between the r-subspaces of the n-dimensional projective space and

the (r+l1)-subspaces of the (n+l)-dimensional Tinear space over the

same field.

This mapping of the subspaces of the projective space to the
subspaces of the linear space preserves inclusion, hence the lattice
structure of the linear space induces a lattice structure of the

projective space.

A basis of a projective subspace is a set of independent points
which span the subspace. While in the case of the linear space a
basis of an r-space contains r elements, the number being equal to
the dimension of the subspace, it is seen from the above that an r-

subspace of the projective n-space is spanned by r+l basis-elements.

However, Grassman's identity as in (3.5) is still valid in the
projective case, since the difference between numbers of basis-

elements and dimensions is the same on both sides.

Some authors use the term "rank" for the number of basis-elements

of the subspace, where
rank = dimension + 1.

A list of dimensions and ranks follows. The empty set is counted

as a subspace, complying with the lattice structure of the set of
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projective subspaces.

Dimension No. of basis-elements (rank)

Empty set -1 0

Point 0 1

Line 1 2

Plane 2 3

"Solid" 3 4

Hypérp]ane n-1 n

Whole space n n+l
Duality

The principle of duality for projective planes can be generalised
for projective n-spaces. Hyperplanes are maximal dimensional proper
subspaces of the n-space, their dimension being n-1. The points of
a hyperplane are given by the points of the solution-space of the
homogeneous linear equation

a X, *aX, * e+ AntlXn+l = 0 (4.3)

so the hyperplane h is determined by the n+l-tuple:

h = [al, 8,5 eees ap+1] where aj € k (the field)
(1=1,2,00.,n+1),

not all the aj's being equal to zero.

More precisely, as in the case of points, the hyperplane is determined

by the set

p[als azs ssay an+1] (p ek, p# 0)'

Again, in the equation (4.3) the vectors (xl, eess Xp+1) and

[al,..., apn+1] play equal roles.

A dual map of the projective space is introduced by interchanging

points and hyperplanes, together with the words "contains" or

"contained by", describing incidence.
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General subspaces are determined by the intersection of a set of
hyperplanes {hj}, of which r are independent, meaning that r of the
vectors [al, d,s woes an+1](1) are linearly independent. A set of
homogeneous linear equations of rank r is generated by these
hyperplanes and so the solution-space is spanned by n+l-r basis~

vectors (xl, s xn+1)(j), hence the dimension of the intersection-

space is
n-r.

At the same time, the dimension of the space spanned by the duals

of the hj vectors (r in number) is r-1.

Hence the sum of the dimensions of a subspace of the projective n-

space and its dual is n-1.

The lattice of projective subspaces is associated with the dual
lattice obtained by exchanging "meet" and "join". Each theorem of

the projective space induces its dual.

Finite spaces

The projective n-space over the field GF(q) is denoted by
PG(n,q).

The number of points in Pq(n,q) is

qn+1_1

- =qn+qn'1+...+q+1 (4.4)
q—

(equal to the number of Tines (through o) in V(n+l,q).

The number of r-dimensional subspaces of PG(n,q) can also be written
down, assuming formula (3.6) for subspaces of V(n,q) and using the
1-1 correspondence between r-subspaces of PG(n,q) and (r+l)-subspaces

of V(n+l,q).
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The number of r-subspaces of PG(n,q) is

n+l (@"*1-1)(q"-1) ... (q"T*-1)
q = (4'5)
£ (a-1)(q%-1) ... (gN-1)

Collineation Groups

[131, 51, [21].
A collineation (or automorphism) of a linear or projective space is
a bijective map of the space to itself, which preserves incidence.

The set of all collineations form a group, finite, if the space is

finite.

The Group GL(n,q)

A transformation of the linear space V(n,q) such that the matrix of

the transformation is non-singular is linear, hence it preserves

incidence and is bijective, hence it is a collineation. A1l non-

singular linear transformations of V(n,q) form a group under

composition, denoted by GL(n,q).

The order of the group can be determined by counting all the bases

of V(n,q):

(qi-1). (5.1)
1

|6L(n,q)| = qn(n-1)/2
1

[ [J=— =1

Field automorphisms and collineations

Let T be a field-automorphism of the field GF(q). The transformation

T on the points of V(n,q) takes

to

for all p € V(n,q).
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This transformation is again bijective and preserves incidence,

hence it is a collineation.

A semilinear transformation is the composition of a linear

transformation and a field automorphism. The group of semilinear

transformations of V(n,q) is denoted by

rL(n,q).
If q is the hth power of some prime, then the order of the auto-
morphism group of the field is h, hence the order of I'L(n,q) is

n
11L(n,q)| = hgn(n-1)/2 1 (qi-1)
i=1

Finite projective groups

Homographies (called projectivities by some authors).

A homography is a transformation of PG(n,q) induced by a non-singular
Tinear transformation on the equivalence classes of points in

V(n+l,q) representing the points of PG(n,q).

More explicitly:
Let p and p' be points of PG(n,q), where
p=1(a, a, ... an+1)

pl = (bl b2 ce o bn+1)
and suppose that the homography takes p to p'.

Let P, P' be column-vectors, formed by the components of p and p'
respectively. Let H be an (n+l) x (n+l) non-singular matrix over

GF(q), called the matrix of homography. Then

oP' = HP, where p ¢ GF(q)\{0} (5.2)

The group of homographies of PG(n,q) is denoted by

PGL (n+1,q).

The order of PGL(n+l,q) is
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n+tl |
IPGL(n+1,q)| = qn(n+1)/2 1 (q1-1) (5.3)
i=2
As in the case of linear spaces, the composition of a homography

and a field automorphism yields a collineation in PG(n,q). The

converse can be stated as the

Fundamental Theorem of Projective Geometry

A11 collineations of PG(n,q) are of form
H,
where H is a homography and t a field automorphism.

The proof is omitted here, but note is taken of the fact that the
fundamental theorem is the direct consequence of two equally

important results:

Theorem A
The group of homographies of PG(n,q), which is the group PGL(n+1,q)
is transitive on ordered sets of n+2 points, no n+l linearly

dependent.

Theorem B
A collineation leaving an ordered set of n+2 points, no n+l linearly

dependent, fixed, induces an automorphism of the field GF(q).

Theorem A can be stated in an even stronger form : there exists a
unique homography which transforms an ordered set of n+2 points, no
n+l linearly dependent, into any other ordered set of n+2 points of

the same structure in PG(n,q).

In particular, when the geometry is P(1,q), the geometry of the
line, then there is a unique homography transforming an ordered set

of three distinct points into any other ordered set of three distinct

points.
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It follows from the above that in coordinatising, any set of n+2

points, no n+l dependent, can be chosen as the fundamental set:

(1 0 .. 0)
(0 1 .. 0)
0 0 .. 1)
(1 1 @« 1).
Correlations

A correlation is a one to one mapping of a projective space to its
dual. Points are mapped onto hyperplanes and hyperplanes onto
points such that incidence relations are preserved : all points of
a hyperplane map to hyperplanes containing the same point, and
hyperplanes through a point to points in the same hyperplane. It
follows that dependence and independence relations are preserved.
One way of realising such a correlation is by mapping points

... an+1) to hyperplanes represented by vectors

(a,, a,,

[al, d,s oes an+1]. The product of two correlations is a collineation.

Involutions, perspectivities, cyclic groups

(4], [191, [21]

This final section concentrates on subgroups of collineation groups

of projective spaces which have relevance to this work.

0f special interest are those groups which leave certain configurations
fixed. They are of significance not only in the case of Galois

planes, but also in the general case.
The following definitions refer to general projective planes.

Closed configurations

A set of points and lines of the projective plane form a closed
configuration if the intersection of any two lines and the join of

any two points of the set belongs to the set.
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Examples:
The empty set (vacuously),
the whole plane,

a single 1ine with any number of points on it:

- - »

a single point, with any number of lines through it:

AN

the sides and vertices of a triangle:

N

a line with some points on it and a number of lines through one of

a line with some points on it, and an external point, with lines

the points:

joining the external point to the selected points on the line:

AN
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Subplanes

If a closed configuration contains a non-degenerate quadrangle,

then it follows from the axioms, that it is a projective plane. It

is a subplane if it is properly contained in the projective plane

of reference.

Example :
A1l Galois planes PG(2,q) have proper subplanes if q = ph, where
h>1.

Dense sets (Baer sets)

If a closed configuration is such that each line of the projective
plane contains a point of the configuration, and each point of the
plane is on some line of the configuration, then the configuration

is dense in the plane.

Non trivial examples in a plane of order q:
(1) a configuration of q+2 points and q+2 lines as shown

in the figure:

(i1) a configuration of g+l points and g+l lines as shown:

s — i
. J

Baer subplanes

é Baer subplane, or as it will be referred to subsequently, a Baer-
plane is a proper subplane of the projective plane, dense in the

plane.
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A1l Galois planes of square order possess Baer-planes. They form

the topic of Chapter 2.

Let 6 be a collineation of the projective plane. The fixed set of

the collineation: F(8) is the set of points and lines which are

mapped into themselves by 6.

F(e) is a closed configuration for all 6.

An involution is a collineation of order 2.

A perspectivity is a collination which fixes all the lines through

some point V, called the vertex of the perspectivity.
The following results hold for all projective planes.
1. If ® is an involution, then F(6) is a dense set.

2. If 6 is a perspectivity, then there is a line %, called the

axis of perspectivity, such that all the points on & are fixed

by the perspectivity. Conversely, if a collineation fixes all
the points on a line &, then.it is a perspectivity, that is for
some pointIV, all the lines through V are fixed by this
collineation. The perspectivity is called a (V,%)-perspectivity.

It is called an elation if V is on &, and a homology otherwise.

3. The (V,%)-perspectivities, for a fixed pair (v,2) form a group,
denoted by T(y,6g). No element of T(y g¢)» other than the
identity, fixes any point of the plane P, other than V and the
points on £, and fixes no line of I other than £ or the Tlines
through V. The image of one (non-fixed) point or Tine determines
the collineation.

4, 1If a closed set is dense in P, then it is either a Baer-plane,

or the fixed set of some (V,2) perspectivity.
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(V,2)-transitivity

The perspectivity group T(y, g) is said to be transitive if for each
pair of points p, p' such that V, p, p' are collinear and p and p'

are not on &, there exists an element 6 e T(y,6g) such that

p- = 6p.

In a finite projective plane of order q, T(y,g) is transitive

if and only if

q and V ¢ 2 (elation-group)

IT(V,2)|

or
g-1 and V ¢ ¢ (homology group).

IT(v, o)l

Desargues configurations

Let 8 be a (V,2)-perspectivity, and the triangles p p, p, and

pl pé p; such that

P! = 6P, Py = 8P,, Py = 6P,

Then the 10 points : p , P,s Pys Pys Pys Pgo Vs pp, N2,
P,PyN %5 P Py N 2 and the 10 lines : p p,s P Pys P,P3s PPys
pép;, p;pl, plpi, pzp;’ pspé, 2 are said to form a Desargues-

configuration. (Here p p, N& = p'p. N2, and so on.)
172 12

By the classical Desargues-theorem, two triangles in the extended
Euclidean plane are in perspective from a point, if and only if

they are in perspective from a line, or (using the above definition),
two triangles in perspective from a point, extend to a 10 point -

10 line Desargues configuration, as seen above.
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For the general projective plane, the axioms do not imply Desargues'

theorem, but projective planes which are subspaces of a higher

dimensional space are Desarguesian.

Non-Desarguesian projective planes have been found in numbers ([32],
[171, [11, [35]). However, some theorems on Desarguesian configurations
apply to classes of projective planes wider than that of Desarguesian

planes.

It was shown [22], that all finite projective planes admit Desarguesian
configurations. This however does not imply the existence of non-

trivial (V,2)-perspectivity groups.

Of particular interest are those projective planes which are (V,8)-

Desarguesian. These are projective planes for which Desargues'

theorem holds for a particular pair (V,%).

Baer's Theorem [3]

A projective plane is (V,%)-Desarguesian if and only if it is (V,8)-

transitive.

Thus the Galois plane is (V,2)-Desarguesian and (V,%)-transitive

for all pairs (V,2).

General projective planes, for which q > 4 have been completely
classified by their sets of possible configurations of (V,2)-pairs,
for which (V,%)-transitive collineation groups exist. This is the

Lenz-Barlotti classification [35].

Singer's Theorem

Collineation groups of special interest are cyclic groups, generated
by a single collineation o, denoted by E = <o>. If p is a point of
the projective space (dimension > 2), the orbit of p under the

action of a collineation group E is the set of points Ep.
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If the group <o> is transitive on the totality of points of a space,
then the space is called cyclic. This is not always the case when
the space is two-dimensional, hence cyclic projective planes form a
special class of planes, with some existence problems still
unresolved. However, Galois planes (2,q) are cyclic for all q = ph,
as all projective spaces PG(n,q) are cyclic. The cyclic nature of
projective spaces plays a focal role in this present work, so the
proof of the following fundamental theorem will be described in

detail.

Theorem (Singer [27]1, [18])
Projective spaces PG(n,q) are cyclic : there exist cyclic groups

acting transitively on the points and the hyperplanes of PG(n,q).

Proof

Let PG(n,q) be a projective space. The points are represented by
(n+1)-vectors over the field GF(q), (or rather by equivalence
classes of such vectors), hence they can be listed as elements of

the field
GF(gqn+l),

Since Galois-fields have cyclic multiplicative groups (excluding
the element 0), there exists some element a € GF(gN*l) such that

the set
[af]0 < i < g+l - 1}
gives the set of all non-zero elements of the field.

As GF(gn*l) is an extension field of GF(g), there exists some
irreducible polynomial equation of degree (n+l), such that a is one

of its roots. Let this equation be
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VL1 SR R Cpo1X e toxHc (6.1)

n 0

Equation (6.1) will be referred to as the generating equation of

the Singer-group.

For the root « we have then

antl - Cnan + Cn_lan'l + el + Cla’4 o (6.2)

Assign to aN*l the vector determined by the coefficients on the

left hand side of (6.2). Thus

o™l s (e, Cuigs wees €5 Cp) (6.3)

Assign also to ol (0 < i < n) a vector which has only one non-zero
component, which will be taken to be 1, and the first n-i and the

last i components are zero. Thus

@2+ (0 0 .. 1 0 0)= P, (6.4)

I

o (1 0 0 es 0)

Pn

Hence if for i=1,2,...,(n+l) ol is expressed as a linear combination

of elements of the set
{ao =1, a, a2, ..., an}

then the corresponding components of the vectors in (6.3) and (6.4)

are the coefficients of the powers of o« in the expansions.

Assume now inductively that
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Then

+ a (j)qz + a (J)a

(3)gn
a’ + ... L 0

a\j+1 = an(j)an+1 + an-].

Substituting for oMl at the right hand side of (6.2) we obtain

Gl e ()0 4 5 (FH1)gn-1 .

¢ a (i*)g + 2 (341,

where

ai(j+1) = cia,(3) + a-_l(j) for i=1 to n 1

and 1 (6.5)

ao(J'+1) = coan(j)

Hence the transformation taking the vector (an(j)an_l(J)..al(j) ao(j))

assigned to ol to the vector assigned to «d*l is a linear

transformation. In particular, the vectors (6.3) and (6.4) satisfy

the general transformation - equation (6.5), so the matrix of the

transformation is obtained immediately as

ch 1 0 . . O

cp1 0 1 . .0

This matrix M will be referred to as the Singer matrix. The

generating polynomial of the Singer group

n+l _ n _ n-1 _ _
X X Ch-1X c

0

is the left-hand side of the characteristic equation of M, and o and

jts conjugates are the eigenvalues of M.
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Let 6* be the Tinear transformation induced by the matrix M. Since
the set {ad} gives all the elements of GF (qn*1)\{0}, it follows
that the cyclic group <6*> acts transitively on the non-zero vectors

of V(n+l,q), so there is a bijection between the set
[od] 0 < < ("1 - 1)}
and the q"l - 1 non-zero vectors of V(n+l,q).

The points of PG(n,q) are represented by equivalence classes of

points in V(n+l,q), each equivalence class having g - 1 elements.

Two vectors of V(n+l,q):

\ = (an an_]_ ee a )
and

Vv, = (bn bn_l .s bo)

represent the same point 1in PG(n,q) if and only if
bij = paj for i=0 to n+l,

o being a constant for this set and a non-zero element of GF(q).

Thus if aj! and aJ? are assigned to v and v, respectively, it

follows that
aj2 = p oJ!

where p = of and since p € GF(q),
pd-1 = or(a-1) =1,

Since o is primitive, this happens if and only if qn+1 - 1 divides

r(g-1), or if r is a multiple of (q"*1-1)/(q-1). Thus the set

{ad] 0 < j < (qn*1-1)/(q-1)} represents (qn+1-1)/(g-1) non-equivalent

vectors of V(n+l,q) and so represents all (g"+1-1)/(q-1) points of

PG(n,q).
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The projective transformation (homography) induced by 6* is denoted

by ¢ for Singer transformation and

= Lg>

[¢3]

is the cyclic Singer group, where
|<o>| = (qM*1-1)/(g-1) for PG(n,q).

The group & = <o> is said to act regularly on the points of PG(n,q)

because
(i) it fixes no point in PG(n,q);
(i1) it is transitive on the points of PG(n,q).

Note: (For the purposes of the proof it was assumed that the roots

of the generating equation (6.1) are primitive elements of GF(q"*l),
because the existence of primitive elements is known. It is
sufficient to use a primitive element a for the bijection between
the first (q"*t1-1)/(g-1) powers of a and the points of PG(n,q).
However, this is not necessary. It suffices to use any element of
GF(qN*1) which has (gq"*1-1)/(q-1) successive powers which can be

assigned to different points of PG(n,q).)

—

It remains to be shown that = acts also regularly on the hyperplanes

of PG(n,q).

Suppose hl is a hyperplane. Without Toss of generality it may be

assumed that

Suppose that the length of the orbit of hl under the action of E

is L. This means that L is the smallest integer for which

ob(h ) = h, (6.7)
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Denote R = (qM*1-1)/(g-1), (the number of points of PG(n,q)).
Then UR(hl) =h , since for all points p - oR(p) = p.

Thus L divides R.

By (6.7) cL(p ) = p_ is in hl, hence poy , P3_ and so on are in hl.

0

Let t be the smallest integer for which

PtL = Pg-
Then R divides tL.

But L divides R and t is minimal, hence

t = R/L. (6.8)
Suppose that the set {pkp |k integer} does not include all the points
of hl. Then for a point pj € hl, not in the cycle, there is another

cycle of points
{pjskLIk integer} in h and disjoint from {pkL}-

So h1 consists of cycles, each of length t. Denote Rl = (qn-1)/(q-1),

the number of points in hl.

Then t divides Rl and by (6.8) it divides R, so t is a common divisor

of R and Rl where

R - R1 = gn.
Hence R and Rl are co-prime, and so t = 1.
Thus, by (6.8)

L =R = (qn*+l-1)/(q-1).

By (4.5) the number of hyperplanes 1in PG(n,q2) is the same as the
number of points. Thus the Tength of the orbit L is equal to the
number of hyperplanes, so £ acts regularly on the hyperplanes in

PG(n,q). This completes the proof.

it
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Difference Sets

Singer's theorem is valid for PG(2,q), hence Galois planes are
cyclic. Here the hyperplanes are lines. Singer's theorem provides
a natural ordering to the points and lines. Using orderings as

before, we denote

p, = (0 0 1)
p,=(0 1 0)
p, = (1 0 0)

= 3 = 2 4 "
P, (c2 c co) where x c,X cx+c,

is the generating cubic.

For 1ines:
20 = PPy
1, = PPy
22 = p2p3 and so on.

The subscripts marking the points and lines are called Singer-indices.

If there is no ambiguity we may denote the points (or lines) by

their Singer indices only.

The g+l points on Tine L, are

We show that these g+l numbers denoting Singer indices of the points

on Tine 2 form a perfect difference set modulo (g2 + q +1).

This means that for all non-zero elements a of the set of residue

classes modulo (q2 + q + 1), there is a unique pair (i,j) chosen

out of the g+l indices (mod q%2 + q + 1) in the set D, such that
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i-J3=a (mod q? +q + 1),

Proof
There is a unique line 2t containing the points 0 and a. Then 0
and a are the tth images of two points on line 20. Let i,j be the

Singer indices of these two points. Then

(mod g2 + q + 1),

1]
o

j+t
hence a = j - i (mod q2 + q + 1).

Since the number of ordered pairs chosen out of the g+l elements

of the set D is

(gtl)q = q2 + q,

it follows that each non-zero element of the q2 + q + 1 Singer
indices representing the points of PG(2,q) has just one representation

as a difference. O

Note: If D is a perfect difference set, then so is the set D+s,
where s (shift) is added to each of the elements of D, as

(i+s)-(j+s) = 1 - j.

It follows that the Singer indices of any line in PG(2,q) form

perfect difference sets (mod q2 + q + 1).
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CHAPTER ONE

FINITE LINEAR SPACES AND GAUSSIAN COEFFICIENTS [30] gﬂ

ol |
I\

i NAy A
Introduction Ty yn

Gaussian coefficients is the name given to a class of rational
functions, playing a fundamental role in describing the structure
of affine and projective spaces over a finite field. They will be
denoted in this work by the symbol

n
[ 1q

r
and defined for all g # 1 and non-negative integers n, r as
" (q"-1)(q""1-1) .. (q"""*1-1)
q
r (q-1)(gq2-1) .. (q-1)

1 whenr =0

when 0 < r <n

0 otherwise. (1.1)

As the name shows, these rational functions were first studied by
Gauss who proved their fundamental properties. The relation of

these coefficients to linear spaces over finite fields was discovered
later. They play also a basic role in the theory of partitions.
However, in this work their study is linked w%th the study of

linear spaces.

The notation used highlights the analogy between the Gaussian
coefficients and the binomial coefficients

n n(n-1) ... (n-r+l)

r 1.2 ...r

In fact, we may write (1.1) as

i (q"-1) ... (q"""*11) f(g-1) ... (q"-1)
[]q=
r (q-1)r (g-1)r
n Jj-1 . roj-1
= I 2q1/ﬂ L q (1.2)
j=n-r+l i=0 j=1 1i=0

for all g#1and 0 < r <n.
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n
If (1.2) is used as the defining formula for [ ]q instead of
r
(1.1), then the definition is valid for all q. In particular,

n
when q = 1, the formula (1.2) yields the binomial ( ).
r

In this sense the Gaussians may be regarded as generalisations of
the binomial coefficients and identities established for Gaussians
must yield binomial identities for q = 1. We may say that Gaussian
coefficients provide the connection between elements of the Tattice
of subspaces of a linear space in a manner analogous to the role
played by binomial coefficients connecting the elements of the
lattice of subsets of a set. The aim of this chapter is to explore
these analogies, by looking first at the better known binomial
relationships and finding the corespondent relations between
Gaussians together with their implications to the structure of
linear spaces. To this end we begin with the proof of the formula
determining the number of subspaces of a linear subspace over a
finite field, discussed already in the introductory chapter (cf.

formula (3.6) in Introduction).

The Geometrical Meaning of the Gaussian Coefficients

The theorem proved below is well known, [13], [2], but for

completeness the proof will be presented here.

Thereom 1.1 : Let V be a Tinear space of dimension n over the

field GF(q), q = ph (p prime). The number of subspaces of dimension

n
r is given by [ ]q.
r

Proof : (For brevity the subscript q is omitted whenever we deal

with spaces over a fixed finite field. Subspaces of dimension r

will be called shortly r-spaces.)
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Fach r-space of V can be specified by selecting a set of r linearly
independent vectors out of the vectors of the n-space V, which has

q"-1 non-zero vectors.

Thus the first choice for a basis vector can be made in qn-1 ways.
For each successive basis vector we must exclude all the vectors
of the spaces spanned by the basis vectors already fixed. Thus,

the number of choices is

(q"-1)(q"-q) ... (g"-q"-1)

However, the same r-space may be obtained by a different choice of
basis elements. By reasoning similar to the above, the choice of

r linearly independent vectors in a fixed r-space can be made in

(q"-1)(q"-q) ... (aM-q"™1)

ways. Thus the number of r-spaces in the n-space V is

)
(g"-1)(q"-q)..(q"-q 1) 9 2 (gM-1)..(gq"-r+l-1)
(qr-q™1)(q"-q"™2)..(q"-1) ()
q 2 (g-1)..(qr-1)
)

where q 2 =q. q2 .. q"-1 = q(r(r-1))/2,
n

Simplifying, we obtain ( )q as claimed.
r

Basic Properties of the Gaussian Coefficients

The fundamental properties of the binomial coefficients can be
best visualised by exhibiting them in the Pascal triangle. Three
propertieé of the binomials are immediately apparent and the
elementary proofs of these properties are well known. We Tist

here these for comparison with Gaussian coefficients. They are
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n n
(i) Unimodularity : () > ( 1) for r € 1/2 (n+l)
r r-
and
n n
() < ( ) for r > 1/2 (n+l1).
r r-1
n n
(1) Symmetry: () = ( Y
r n-r
n n-1 n-1
(iii) Pascal's ()= )Y+ ).
recursion: r r-1 r

n
For the Gaussian coefficients [ ]q tables are constructed by

r
calculating the coefficients for q=2,3,4,5 and for small values of
n. In addition the sums of the rows of the Gaussian tables are

also shown.
n n
2 [ ]q = Gn(cl)-
r=0 r
These sums are called Galois numbers.

Inspecting the tables, it is immediately apparent that properties
(i) and (ii) of the binomials are also valid for Gaussians, while
property (iii) does not hold. For Gaussians the Pascal recursion

formula takes the form

n n-1 n-1

[r]q = [r_qu +q"[ i ]q (3.1)
or

n n-1 _nn-1

[Jg =0 Jg+a""T ], (3.2)

These relations were known by Gauss, and their algebraic verification
is easy, but it is omitted here. Instead, a combinatorial inter-
pretation will be given to the fundamental relations as well as to

more complex identities involving Gaussians.
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Gaussian tables

q=2
1
1 |
il 3 1
1 [ 7 il
1 15 35 15 1
il 31 155 155 31 i
1 63 651 1395 651 63 1

1 127 2667 11811 11811 2667 127
255 10795 97155 200787 97155 10795 255

1 13 13 1
| 40 130 40 1
| 121 1210 1210 121 1
! 364 11011 33880 11011 364 1
1 1093 99463 925771 925771 99463 1093
3280 896260 25095280 75913222 25095280 896260 3280

1

1

16

67

374
2825
29212
417199

28

212

2664
56632
2052656
127902864



1

1

-40-

q=4
1
Il 1
1 5 1
1 21 21 1
1 85 357 85 1
1 341 5797 5797 341 1
1 1365 93093 376805 93093 1365 1

5461 1490853 24208613 24208613 1490853 5461 1

q=>5
1|
1 1
1 6 il
1 31 31 1
1 156 806 156 il
1 781 20306 20306 781 1
1 3906 508431 2558556 508431 3906 1

19531 12714681 320327931 320327931 12714681 19531

Gn

1

P "
r=0 I

1

2

7

44

529

12278

565723

51409856

8

64

1120
42176
3583232
666124288
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For the binomial coefficients, that is, for the case, g=1, the
Galois number Gp(1) is well known and can be listed as property

(iv) of the binomials:

n
() = 2" = ().

H~13
—

(iv)

r

One way of proving (iv) for binomials is by using recursion:
Gn = 2 Gn_l-

By a suitable interpretation the recursion formula will be
generalised for g > 1. It is clear from the tables that here Gp
increases more rapidly with n. The recursion formula for Gaussians

is

- n-1
Gn =2 Gn-l + (q -1)Gn_2 (3.3)

Before proving (3.1), (3.2), (3.3) by their geometrical inter-

pretation to be done in the next section, the unimodularity and

symmetry of the Gaussians can be settled.

Unimodularity : This is verified exactly the same way as for
binomials.
Symmetry : We recall the combinatorial interpretation of

the relation

When choosing r out of a set of n, we choose

simultaneously n-r elements to be left behind.
The corresponding interpretation for Gaussians
is not quite as direct. Two alternatives can

be given.
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(a) Orthogonal complements

Fix a basis and coordinate system, and define the inner

product of the vectors

X = (X5 Xy ees Xp)s ¥ =

~ l -~

(¥,5 ¥ps wees ¥n)

in the usual way as

t~13

p= 1 Xy

i=1
Two vectors are orthogonal if this inner product is zero.
Let V. be an r dimensional subspace of V,, (dimension n).
The orthogonal complement of Vp is the set of vectors
orthogonal to all the vectors of V.. These form a subspace
of Vp, of dimension n-r. Thus there is a bijection from the
r-spaces of V, to their orthogonal complements which are

(n-r)-spaces.

(b) Duality
The r-spaces of V, can be mapped to the (n-r)-spaces of the
dual space of V, defined by the q" linear transformations

of V, to itself.

Subset and Subspace Intersections

The basic difference between binomials, which count subsets and
Gaussians which count subspaces manifests itself in the greater

complexity of intersection relations of the Tatter.

The general intersection relation from which the special cases can

be deduced, is analogous to the count of the number of k-sets

intersecting a fixed r-subset R of the n-set Sp in a fixed f-set

F.
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This count is

for there are k-f elements of S, to be chosen to complete the
fixed f-set, and these must be selected out of n-r elements of Sn

which are not contained in R.

The corresponding relation for linear subspaces can be summarised

in the following theorem.

Theorem 1.2

Let V be an n dimensional linear space over GF(q), R and F fixed

subspaces of V of dimensions r and f respectively and F < R.
The number of k-spaces which intersect the subspace R exactly in F
is

(Note: for g = 1 the formula agrees with the binomial coefficient

calculated above.)

Proof
Choose a basis for V by beginning with a set
X = {51, Xps wees Ef}
of basis vectors spanning F, and complete it to a basis for R by

the independent set

Y = {'y.l’ zzs LA ] .Zg}

-~

where y; € R (i=1,..,9) and g = r-f.
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Complete this to a V-basis by choosing a third Tinearly independent
set:
7= {zl, Zys e zg}

where s = n-r.

’
The sets X,Y,Z are to span S
— | -
spaces F,G,S mutually Vv < oL I Al
]
orthogonal. Let K be a 'S £ R
k-space in V such that L G

KnmR=F,

A basis for K may be chosen by completing the set X with the

Tinearly independent set

W = {yl, Wos eees fg}
where & = k-f,

Each element w;i of W belongs to the space spanned by S and G,

hence has a unique decomposition

where zj ¢ S and yi ¢ G. Moreover the set of the components

Z, Zps ees T}

must consist of & linearly independent vectors. Suppose that they

are dependent, hence some linear combination of the g} components

vanishes. Then we have a vector in K with all its basis components
in G, contradicting the requirement that Kn R =F, thus KN G = 0.,
Conversely, any linearly independent set of 2 vectors belonging to

S gives rise to a linearly independent set
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{z; +71}, Zi €S, yi€h (i=1,2,..,%)
whatever the vectors yi are. The set {yj} need not be independent.

Each admissible k-space determines uniquely its Ly component,

where Zg =S and is of dimension & = k-f.

The number of 2-spaces in S is [z]. Each of these gives rise to

a Zy component of a class of admissible k-spaces. Each k-space
belonging to the same class is determined by the choice of the
{z}} set, ?} e G, (i=1,..,2). Once the Zy component is fixed, the
set of k-spaces determined by it is independent of the basis

fgj} (51 e Ly, i=1,..,%) chosen for it. Different choices for

the {yj} components to complement a given {zj} basis give rise to
different k-spaces, for if g} + g}(l) is a basis element of the

k-space K, the vector E} + y}(Z) is in K if and only if

§§(2) = yg(1>. Since the number of vectors (including the zero
vector) in G is q9, each of the % basis vectors of Zx can be
complemented independently in q9 ways, so the same L, component

determines
(q9)*

admissible k-spaces. Thus the number of k-spaces intersecting R

exactly in F is

S
1 q9%
[2 q
Setting s = n-r, 2=k-f, g = r-f gives the result (4.1). 1

We write down now important special cases of (4.1).
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(a) Number of k-spaces containing a fixed r space

Here F = R, hence the number is

In particular the number of k-spaces containing a fixed
vector is

n-1

[k_l].

(b) Number of k-spaces K for which K N R = 0 (the null space)

Here f = 0, hence the number is

n-r
[ ] kr,
K q

By abuse of terminology we will say that the k-spaces are

"disjoint" from R.

(c) Number of k-spaces which do not contain a given line

This is a special case of (b) with r = 1, hence the number

is

(d) Number of complementary spaces of an r-space in V

The number of subspaces of dimension n-r and disjoint from the
given r-space R are wanted here. This is again a special

case of (b), where k = n-r. Thus the required number is
qr{n-r),

(Note that when g=1, i.e. when we deal with sets instead of

spaces, the number of complementary sets is 1.)

Relations (3.1) and (3.2) of the previous section can be interpreted

now. We recall the combinatorial interpretation of the Pascal recursion
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formula:
My = My s (M.
r r-1 r

The r-subsets of an n-set fall into two classes: those which
contain a fixed element and those which do not contain it. The
two terms on the right hand side of the formula signify the number

of sets belonging to each class.

Similarly, we consider the r-spaces in an n-space. Those subspaces
which contain a fixed vector, which is a 1-dimensional subspace

are

n-1
[ 1] in number, by (a).
r‘_

Those r-spaces in V which do not contain the fixed vector in

question give the count

n-1
[ Jq" by (c).
r
Hence
-1 -1
(=0 1+qT 1.
r r-1 r

Now we use the symmetry relation to obtain

-1 sl
(" 1="" 1+ q0 " 7
n=r

n-r n-l-r
and setting k = n-r we obtain the alternative formula

n n-1 n-1
= n-k
[1=0 3+ ankp "]

as stated in (3.2).

This last formula can also be given a dual interpretation. The

first term on the right hand side gives the number of k-spaces



-48-

which are contained in a fixed (n-1)-space (hyperplane) of V.

Since the left hand side counts all k-spaces of V, the second term
gives the remaining k-spaces. Hence we obtain another useful

relation :

(e) The number of k-spaces not contained in a fixed hyperplane

of V is

n-1
n-k[ 1.
é k-1

In particular, q"-1 is the number of Tines not contained in

a fixed hyperplane. This follows also from (d).

Next, we prove the recursion formula for the Galois numbers Gy,
stated in (3.3). We note first that if g=1, G, =2" as indicated
before. This can be proved by establishing a recursion: all subsets
of an (n+l)-set are obtained by considering first all the subsets
of one of its n-subsets and then adding the element left out to

each of the subsets already accounted for. Thus when g=1,
Gn+1 = 2 Gn.

This reasoning is then modified for q > 1. Let v be a fixed vector

in the (n+l)-dimensional vector space Vp41. Then
Gn+1 b Nl + N2

where N1 is the number of all the subspaces containing v and N2

the number of subspaces not containing v.

n
The number of k-spaces in Vp41 containing v is [k 1] and those

not containing v is [:] gk, so we have
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ntl n n
U T R S R L
n+l k=1 k-1 k=0 k

n n n n N n
S L]+ [Tqgk=6 + [] qk (4.2
kzo k kZO k a n kZO k ; )

The second term on the right hand side is the count of the incidences

of all the subspaces of V, with the points contained by them.

Another way of counting these incidences is obtained by counting

first all the subspaces containing a fixed non-zero vector.

n-1
By (a) in Section 1.4, a fixed vector is contained in [ ]

k-spaces and hence in

n  n-1 n-1 n-1
L [ 3= 1 [ 1=Gpq subspaces.
k:l k"']. k:O k

Since the number of non-zero vectors of G_p s q"-1, the number

of incidences 1is

n
(q"-1)6, ;.

To this we add G as the number of incidences of the zero vector

with all the subspaces. Thus

n

k] qk = (qn-l)Gn_l + Gn'

n

.

k=0
Substituting this in (4.2) we obtain the recursion

6h41 = 2 6, + (q"-1)6,_; of (3.3).

Summation Identities

In this section interpretative proofs are given to some known
Gaussian identities together with proofs of identities not known
by the author. A1l these identities are treated as g-generalisations

of known binomial identities.
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The binomial identity dealing with addition of the elements in a

diagonal of the Pascal triangle is

n p-1 n

Lh) 0.

The combinatorial meaning of this identity to be adopted for

Gaussians is as follows.
Arrange the elements of an n-set in a fixed order
al, a2’ ® s e g ak, 00y ano

We keep this order in the k-sets selected out of the n-set. We

put then all the k-sets with the common last element ar into one

class (k < r < n).

The number of the k-sets in this class is

r-1
(k-l)'

Summation of the number of sets in all classes gives the identity.

The corresponding relation for Gaussian, known and proved by Gauss
is

n

r-1 n
l"-k =
AL Tk =] (5.1)

The right hand side represents the number of k-subspaces on an n-

space.

On the Teft hand side we do the counting by arranging fixed

subspaces dimensions k, k+1, ««ey N respectively and such that

M= Mgs] =..e M oo M.
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Taking My as the first k-space we proceed by finding all k-spaces
contained in Mg4+1, with the exclusion of My. The number of these
is

k
[k 1] q by (e) of section 4.

, k+1
(This number is equal to [ ) 1-1.)

Suppose now that all the k-spaces contained in M._.j have already
been counted. Since Mp_7 is a hyperplane of Mp, we can use (e)
again to find the number of k-spaces included in Mp, but not in
M._1. This is [;:1] q"-k. cContinuing in this manner we finish
the counting by considering the k-spaces contained in V = M, but

not in Mp-1. This proves (5.1). 0

Another well known binomial identity is known as the Van der Monde

convolution:

m n m+n
r

The interpretation: Count the k-subsets of an (m+n) set, by
separating the set into an m-set and an n-set, then selecting r
elements from the m-set and (k-r) elements from the n-set for all

values of r such that 0 < r < k.

The Gaussian generalisation of this is

(" " 7 qlk-r)(m-r) = (™M (5.2)
r k-r

k
rZ k

0

This can now be proved by a reasoning similar to the above. Consider

the vector space
V=M+N

where M, N have dimensions m and n respectively.
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By Theorem 1.2, the number of k-spaces of V intersecting M in a

fixed r-space is

I:(m+n)-m:l q(k=r) (m-r).
k-r

m
Since there are [ ] r-spaces in M, the number of k-spaces inter-
r

secting M in some r-space is

"0 " 3 gqlk-r) (m-r),
r

-r

m
(since there are [ ] choices for the r-space in the m-space).
r

Summing for r = 0 to k yields (5.2).

Note that this formula is not symmetrical in m and n (unlike the
Van der Monde formula for sets), but using the symmetry relation

of Gaussians, various equivalent forms can be written down.

(Formula (5.2) is a special case of a generalisation of the Van

der Monde identity found in [7].)

A binomial identity similar to the convolution formula, but not as
well known is

nsk . on-3.  n+l
jzk(k)( O (2k+1)'

Combinatorial Proof:

An (n+l)-set is arranged in fixed order. The (2k+1)-sets chosen

out of it are classified, according to the centrally placed element:
if the (j+1)th element is "central" in the chosen 2k+l set where

k < j < n-k, then there are k elements of a Tower and k elements

of a higher index in the chosen set., Therefore the number of

sets with the j+1th element central, is
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Summing for all the admissible j-values, the number of al] (2k+1)-

hed

sets is obtained.

T e -

Generalisation for Gaussians:

n=k j n-j . n+1
(J-k)(k+1) = i +
AL e oy (5.3) ‘f

Proof:
We proceed similarly to the proof of (5.1). Consider the series of

subspaces
Mk+1 cMkso = ... cM; e Mit1 S eoe © Mgk

of the (n+l)-space V, where the subscripts indicate the dimensions.
We count the (2k+l)-spaces in the (n+1)-space V containing Mk+1,
next those (2k+1)-spaces which contain (k+1)-spaces of Mk+2\Mk+15
and so on, finishing with the (2k+1)-spaces containing (k+1)-spaces

of Mn+1_k\ Mn_k .

Using (e) of section 4, we find that the number of (k+1)-spaces

contained in
Mj+1\M;
is

q(5+1)- (k1) B¥D)-1

= ai-kpI
(k+1)_1] qJ [k].

By Theorem 1.2, the number of (2k+1)-spaces of V intersecting

Mj+1 in a fixed k+l-space is

(n1)-034) 3 ((2k1)- (k1)) ((341) = (k1))
(2k+1)-(k+1)

LN
[ ] 1 gk(=k)

hence the number of (2k+1)-spaces containing (k+1)-spaces of
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Mj+1\ M5
is
Jj._n-J .
(k+1)(j-k)
[k][ ) 1q

This gives the general term of the sum on the left hand side of

(5.3) with j varying from k to (n-k).

This identity can be generalised to

Iy e (k) < g M
j;k[k][ , Cact? (5.4)

The proof of (5.3) can be adapted with no change in the reasoning.

To finish this section one more binomial summation is discussed

which can be naturally extended to a Gaussian identity:

N r..n n :
= n-k
rZk(k)(r) (k)Z
leads to
N r__n n
2k[k][r] = [k] Gn-k (5.5)
r=

In the combinatorial identity both sides represent the number of
ways in which an n-set can be divided into three sets, one of which
has the fixed cardinality k. On the left hand side the division
is made by first selecting an r-set out of the n-set, where r must
be at least as much as k. An n-set is then selected out of the r-
set. The number of ways this can be done is (:)(;). Summing for

r gives all possible partitions satisfying the preset condition.

On the right hand side the k-set is chosen first. For each choice

there are 2N-K partitions of the remaining elements.

We reason the same way for establishing (5.5), counting the number
of ways in which an n-space can be partitioned into three orthogonal

subspaces, one of them of fixed dimension k.
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1.6 Alternating Sums. The Inversion Theorem

A large number of well known binomial identities involve sums with
terms of strictly alternating signs. There are corresponding
alternating Guassian sums. To show the connection between these
and the binomial sums it is necessary to generalise the Inclusion-

Exclusion principle of combinatorics.

A general treatment of generalised (M;bius) inversion relations in
(locally) finite partially ordered sets is given in [25]. In this
chapter, a proof of the inversion theorem in the partially ordered
set of subspaces of a linear space is given, using only the results
of the previous sections. Alternative, simple proof can be found

in [8].

Theorem 1.3 (Inversion)

Let V be a finite 1inear space over the finite field GF(q), the
dimension of V being n. Denote by S,T any of the subspaces
(including V and 0) of V and define the functions f(S), g(S), h(S)

on the subspaces with the following properties
g(s) = I f(T) and h(S) = ) f(T).

Then, for all S <V

(a) f(s) = ) w(T)g(T) and
Tes
(b) f(S) = } u(T)h(T)
155
where k
_ ()
w(T) = (-1)kq 2, k = dim S-dim T for (a)
and k

= dim T-dim S for (b).

|=
-
—i
g
1
——
]
=
S
Pl
O
N
-
~
1



Note:

-0u=-

Proof

(a)

For our purposes, f, g, h are integer valued functions
but they may represent mappings to any ring.
The set of subspaces of V, partially ordered by inclusion
has V for a natural upper bound and the O-space for a
natural lower bound. However, upper and lower bounds
Smax and Spin may be imposed by defining f(S) = 0 for
S 5 Spax and S < Spin. The sums defining g(S) and h(S)
are finite and hence well defined.
Let the dimension of S be m, and denote by s(k) any subspace
of S of dimension m-k. (In particular S(0) = s.)
Then

= TS
Sfs)+ 1 5 fis(k)) (6.1)
k=1 g(k)cs
Hence
f(S) = g(S) - ;o f(s(k)) (6.2)
k=1 s(k)es

More generally, we may apply (6.1) to any s (k) subspace
of S and hence obtain
m .
f(stk)y = g(s(k)y - 7 I st (6.3)
k+l  s(i)=s(k)
Substituting expression (6.3) for k=1,2,... into (6.2) we

obtain at some stage

k-1 _

£(s) = g(s i 3(s{1)y + R 6.4
(S) = g(s) +121 11(1)5(1_§CS g(S*'/) + Ry (6.4)
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where the remainder term is

m .
Rt = L f(s(1)y,

S(;)d
We note here that the coefficients of the g(S(i)) and
f(S(i)) terms depend only on the structure of the P.O.

set of subspaces considered and not on the functions f

and g. Furthermore, another application of (6.3) to (6.4)

affects only Ry_; and Teaves the first part unchanged.
Write

Rk-l = Ck Z f(S(k)) + E

Apply now (6.3) to each f(S(k)), substitute into (6.4) to

obtain

f($) =g(s) + § W) ¥ qsi))
1

+ o g(s(k)y + Ry (6.5)

s(kgcs
Hence R, is the new remainder term containing f(S(i)) terms

for i=k+l1 to m.
We can now write u(k) = cx and write down (6.5) in the form

k .
9(s) = f(s) - 1 W) 7 sy - (6.6)

g
1 s(iks

and compare the coefficient of f(S(k)) in (6.1) to (6.6).

Note that R, contains only f(S(i)) terms for k+1<i<m, hence
f(S(k)) contributes to the sums g(S(i)) for 0 < i <k

only.
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Let S(k) be a fixed subspace. Then f(S(k)) contributes

to g(s(1)) if and only if s{k) < s(i),

By (a) in section 1.4, the number of S(i) spaces (i.e.
spaces of dimension (m-i) of S, containing S(k)) is given
by
m-(m-k k k
(m-ig-(mik)] =Lyl = L
Thus the contribution of f(S(k)) to the term

w(i) I a(s()) s

and so the coefficient of f(S(k)) contained in (6.6) is

and this must be equal to 1, the coefficient of f(S(k)) in

(6.1).
Hence
K _  k
1+ 2 w(i)[.] = 0.
i=1 1

Writing u(0) = 1, we write down this last equation as a

— k
recursion formula for u(k). Since [k] = 1, we obtain

w(i)L. 1. (6.7)

k-1 k
i=0 L

Using this to evaluate u(k), we obtain

u(0) = 1, u(1) = -1, W(2) = q, W(3) = -q3 = -q1*2,

We continue by induction, assuming that for 0 < i < k
.i
_ ()
u(i) = (-1)1q ¢ .
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i
(Since (2) = 0 when i=0 or 1, this is also true for those

two values.)

Using (3.1) of section 1.3 and the inductive hypothesis we

write (6.7) as
i

_ k-1 . () k- . k-
G(k) = -1- 7 (-1)ig 2 (017 + qif* ) (6.8)
j=2 i-1 i

A1l terms of the right hand side, excepting the last one
cancel out and we obtain

Y )
= k-1
(k) = (-1)kq 2 "gklr 7T = (-1)K

as claimed.

The proof is similar to (a). The modification is that we
denote with S (k) any subspace of V containing S and of
dimension m+k. We have
h(s) = 1 f(T) =f(S)+ [ f(T)
BS =N

; F(s(k)y, (6.9)
k=1 g(k)og

Then for k=0,1,2,...
n-m .
f(s(k)y = n(s(k)y - 'y I f(sli) (6.10)
i=k+1 S('i):,s(k)

and after successive substitutions
f(8) =h(s) + I (i) I nstysg (6.11)

with the remainder term
nim
Ry.1 = L ¢ )
i=k S('I )DS

and corresponding to (6.6) we have

f(s(i))



u(i) h(sti)y - gy (6.12)

i
1 s(1)ss

>
—_
w
~—
un
—4
—~
(2]
~—
1
L e

Here f(S(k)) contributes to h(S(i)) if and only if the sub-
space S(k)gg S(i), where S(k), s(1) are subspaces of dimen-

sions m+k, m+i respectively, both containing S.

Hence we must determine the number of the (m+i)-spaces in an

(mtk )-space which contain a fixed m-space.

By (a) of section 1.4 this is

~-m k
1=1"L1.
-m i

(m+k)

(m+i)

Thus we obtain for u(k) the same recursion formula (6.7) as

for u(k).
k-1 k
w(k) = -7 u(i)L.]
i=0 1
and so

In (a), k = dim S - dim S(K), while in (b) k = dim s(k) - dim s.

This completes the proof. O

The arguments used in the proof are valid for q=1, i.e. for the
case of subsets. Here (k) = (-1)k = u(k). The result gives the

combinatorial Inclusion-Exclusion principle as a special case.

Let @ be a set of objects and P a set of properties. Let the
variables S, T represent subsets of P, and use the notation S{i)
for subsets of P consisting of i properties. Denote by f(S) the
number, (or more generally the combined "weight") of those elements

of @ which have exactly the properties S, by h(S) the number
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(weight) of elements of @ having at least the properties S, and by

g(S) of those having at most properties S, hence

h(s) = } f(T) and g(S) = J f(T)

TS TS

as before. The inversion formula for h(S) gives

TES (-1)kn(T) (6.13)

f(S)
where k = |T| - |[S].

In particular, if S = ¢ (the empty set of properties)
h(¢) = |@|, or (the weight of @), the whole set of objects, since
there is no restriction on them. The relation (6.13) can then be
written as
fle) = lal - T ns()) + 7 sy + .+ (-1)[PInp)
s(1) s(2)
This Tast equation represents the classical Inclusion-Exclusion

principle.

Examples of Binomial and Gaussian Alternating Sums

The best known example of an alternating sum of binomials is

Using the notations of the previous section this result can be
obtained by setting f(¢) = 1 for the empty set and for each subset

S of an n-set have f(S) = 0.

Then for all subsets S of an n-set N, we have

and by inversion
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rZ] ()(-1)T = f(N) =0 for all n > 0.

The result translates immediately into the Gaussian relation
()
N n n_ n_ n . n
LoD Tu() = L 1-0 3+ Jq + wuw + (-1)1[ g 2 +
j=0 1 00 1 2 i

5 . (-1)n[:] - 0 (7.1)

We can recognise that (7.1) is the same as the recursion formula

(6.7).
Another well known alternating bionomial sum is

(-1)33(") = 0.
1 J

e~13

J
We can give two different interpretations to this relation, and

accordingly obtain two different Gaussian identities.

(i) We use the Inclusion-Exclusion principie to determine
the number of those (n-1)subsets of an n-set which do
not contain any of the elements 1,2,..,n knowing that

the answer is 0.

Let @ be the set of (n-1)-sets and the property P is
defined in the following way:
Pj : the subset contains the element j (i=1,2,..,n),

ij : the subset contains the elements J and k, and so on.
Q = H] = n,
ol = (") = ()

n-1
The number of (n-1)-sets containing j is ( 2). Hence
n—

the sum of the numbers of (n-1)-sets with properties P,

Pys «.y Pp respectively is n(::z). The number of (n-1)-

sets with properties P; and Pj is (
n,, n-2

numbers is .
()

n-2

n_3). The sum of the
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We proceed in this manner and applying the Inclusion-

Exclusion principle we find that

n-1 n._ n-r
(-1 ) ) =0
r=0 r n-r-1
Setting ( T ) = (n-r) = (n-r) we obtain
n-r-1 1

n-1 n

L (=1)T()(n-r) = 0 or writing j = (n-r)
r=0 r

L1350 = o
This interpretation can be used directly for (n-1)-spaces
in an n-dimensional linear space, by fixing a basis
Vis Vos eees Vj wue, Vg and then using the Inclusion-Exclusion
principle in the above manner to determine the number of

hyperplanes not containing any vector of the given basis.

By reasoning identical to the above assign property Pj to
those hyperplanes which contain Vj. Their number (by (a)

n-1
in Section 1.4) is [ 2], hence the corresponding sum for

j=1,2,..,n 1is
n _n-1
(L3

Similarly, the number of hyperplanes containing a fixed
set of r of the given basis-vectors, hence the subspace

spanned by them, is
n-r n-r
[ =0 ] (section 1.4(a))
n-r-1 1

n
and since there are ( ) ways of choosing the r basis-
r

vectors, the corresponding sum in the Inclusion-Exclusion

formula is
-0,
r 1

Thus the number of hyperplanes not containing any of the

basis elements Vis Vos eees Vp is
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This sum however is not 0.
We can count this sum by determining the number of hyper-
planes with equations
n
L aixi =0 (aj e GF(q))
i=1
not containing any of the unit-vectors
(100 .. 0,01 0 .. 0), .. (0 0 0 .. 1).
Choosing a, =1 and a; #0 (i=2,..,n) there are (q-l)”'1

possible choices which determine the admissible hyperplanes.

Hence
n-1 -
L (-1)r(:>[”1”1 - (q-1)n-1 (7.2)
r=

The result (7.2) is easy to verify algebraically and does
not yield results when n-subspaces are considered instead
of hyperplanes. A more interesting result ensues from the

alternative method.

Using the inversion theorem, define f(S) =1 if S is a
subset of an n-set containing one element or if S is a
subspace of dimension 1 of an n-space; otherwise, in both

cases let f(S) = 0.

Then in the case of subsets

g(s) = ) f(T) = |s]
T=S

and in the case of subspaces

k
g(s) = § £(T) = [1],
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where k is the dimension of S. The inversion theorem

gives for sets:

(-1)d(n-5)( ") = 0
0 n-J

It t~13

J

which is the same as the relation

Il ~13

.n
(-1)93(,) = 0 of (i).

j=0 J

For subspaces we obtain a relation different from (7.2)

namely

(n >1). (7.3)

It 3
—_
L}
—
e
(%]
[ |
e}
i
.
—_
i
L
0
nN
u
o

j 0 1 n-j
The last identity can be generalised by letting f(S) =1
for all m-subsets of an n-set, or m-spaces in an n-space

respectively, and setting f(S) = 0 otherwise.

If S is a k-set or k-space respectively, where k > m, then
. k
g(s) = } f(T) = ()
TS m

for the case of sets, with the resulting binomial identity

C0IC" ™ 20 s m

For Gaussians we get in the same way

J

. n _ n-j (2)

(<103 3L 192 =o0. (7.4)
j=0 n-j m

The same method yields a further pair of relations, by
setting f(S) =1 for all subsets (subspaces). These are:
. n .
Y (=1)d( " )an-d =1
n-J
and j
. N
-1)J q 2 =
I (-1) [n_j]Gn_Jq 1 (7.5)



-66-

(Note: The above binomial identity can be obtained by a
direct application of the Inclusion-Exclusion principie to
count those sets, which do not contain any of the elements

(1,2,..,n). The answer is 1, corresponding to the empty set,)

We conclude this discussion with two more examples, using
less trivial f functions. The first one is the identity

n-1 n
- k - _k=
kzo (-1)K(n-k)( " )2k = 2n

which generalises to

-1 ™

PRSHE 2 (n-k)[n?k]Gn_k = 2n (7.6)

Let r be the dimension of a subspace S of the n-dimensional

space V. Define f(S) = r. Then
4 1
9(S) = I f(T) = § 50 7==:raq,
TS j=0 3 2
since
r r r
27 3031= 7 i+ 7 o507
j=0 J j=0 J j=0 r=J
r r r r P
= 2 303+ T (1= T f[ 1.
j=0 J j=0 J j=0

The inversion theorem (a) then gives (7.6).

Another known alternating binomial identity is

One interpretation of this is given by counting those m-
subsets of an n-set which contain exactly the m elements

of a given set M,
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One possible translation of this relation to Gaussian is
k

m m.n-k_ ()

I (-DKLI "1q 2 = qm(n-m) (7.7)
k=0 k™" m

Proof

Let M be a fixed m-space in the n-space V.

Let K be a k-space in M. Define f(K) as the number of

those (n-m)-spaces which intersect M exactly in K. By

Theorem 1.2

f(K) = [(nT;T_k]qn—m-k)(m-k) = [n;m]q(n-m—k)(m-k)

In particular for K being the 0-space we have
£(0) = q(n-m)m
(the number of complement-spaces of M, c.f. section 1.4(d)).

Then h(K) = } f(S), hence h(K) enumerates all those
S=K '
(n-m)-spaces of V which contain K.

By (a) of Section 4,

n-k n-k
h(K) = [ 1=[ 1.

(n-m)-k m

(In particular, h(0) = [;].)

A direct application of the inversion theorem (b) gives

the identity (7.7).

Gaussian coefficients will be frequently used in Chapter 3

in the study of Baer-spaces of higher dimensions.
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CHAPTER TWO

ON THE BAER STRUCTURE OF GALOIS PLANES OF SQUARE ORDER

Introduction

In Section 5 of the introductory chapter a Baer-plane was defined

as a projective plane of finite order, embedded in a large projective

plane and dense in it. The following theorem gives a necessary

condition for the existence of a proper subplane within a finite

projective plane.

Bruck's Theorem [12]

If T is a finite projective plane of order q and can be extended

to a projective plane II' of order q', then either

or

(i) q' » g% + q.

The proof of this theorem implies that in case (1) the subplane is

dense in the larger projective plane. Hence a projective plane

can possess a Baer-plane only if its order is a perfect square.

Galois planes of type PG(2,92) (q » 2) possess Baer-planes, for

the points in PG(2,q2) with coordinates belonging to GF(q) (dividing
through by a constant if necessary) form a subplane : PG(2,q).

In the subsequent work this Baer-plane will be called the “real"

Baer-plane and denoted by Bo'

It follows immediately that there is a large number of Baer-planes
in PG(2,92). Any homography produces a Baer-plane. The converse
is also true. Any Baer-plane B1 is a homographical image of Bo'
This is not obvious, since by the Fundamental Theorem of Projective

Geometry a general collineation is the product of a homography
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and a field automorphism. Thus by choosing a non degenerate
quadrangle in B1 to be the homographical image of the fundamental
points (1 0 0), (010), (100) and (11 1) (always possible by
the fundamental theorem), it must also be ascertained that the
homography determines fully B . This is proved, e.g. in [14] by
J. Cofman. A short alternative argument is used here to prove the
statement, because the same argument can be used for higher

dimensions to be discussed in the next chapter.

It suffices to show that a field automorphism t of GF(q) leaves B0
invariant (though not necessarily pointwise). A1l points of B0
have coordinates belonging to GF(q), so all of the coordinates

satisfy the equation

xd - x =0 (1.1)
If 7 is a field automorphism, then

(tx)4 - (1x) = 1(x9-x) = t(0) = 0,
hence the transformed points are again in Bo'

In particular, if the automorphism takes the coordinates of the

points to their conjugates in GF(q2), that is
x + x9

then B0 remains pointwise fixed, since by (1.1) the elements of

GF(q) are equal to their conjugates. Hence this particular

. = o - . - . 2 - -
field-automorphism induces an involution in PG(2,q%), with E; being

its fixed set.

The number of Baer-planes in PG(2,g2) can be determined next.
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This is obtained by dividing the total number of homographics of
PG(2,92) by the number of those which leave B, invariant, that

is the number of homographics of PG(2,q).

Denote the number of Baer-planes by N. Then
N = |P6L(3,q2)|/[P6L(3,q)],

and by (5.4) of the introductory chapter,

q%(q*-1)(q®-1)/93(q2-1)(q3-1)

=
I}

q3(q3+1)(q2+1) (1.2)

The investigations leading to this work began with a computer
search surveying points, lines and a Singer orbit of Baer-planes
in PG(2,25). Questions of interest in the geometry of the plane

PG(2,q2) are:

(1) intersection configurations of Baer-planes;
(1) partitioning of PG(2,q2%) by Baer-planes;

(i11) structures of special sets of Baer-planes.

The findings resulting from the early investigations were

published in [28], (1981).

Before these results could be published, the paper [10] by R.C.
Bose, T.W. Freeman, D.G. Glynn appeared proving the intersection-
theorem of Baer-planes (Theorem 2.1) in this chapter), together
with a count of the possible intersection configurations. The
proofs of these, given in this chapter, are independent of the
above, using different methods. The intersection theorem was also

proved simultaneously by K. Vedder [33].
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The problem of partitioning a projective plane by Baer-planes was
treated by T.G. Room and P.B. Kirkpatrick in [24]. Theorem (2.12)
of this chapter is proved in [24] for PG(2,9), but there is nothing
new in the proof for PG(2,q2), the general case. This result was
needed for interpreting the formula for the number of Baer-planes
disjoint from a given Baer-plane, obtained earlier by indirect

means.

Another approach to partitioning, independently found and published
in [28] was later found to have appeared in [36] by P. Yff (1974),
where it was quoted as a result of R.H. Bruck (1960). A survey of

partitions and spreads appeared in [20].

Baer-planes have been intensively studied by several workers (as
the short survey above indicates). They have proved to be useful
tools for constructing non-desarguesian projective planes (cf D.R.
Hughes and F.C. Piper [21], Chapter on Derivation Sets), also for

constructing arcs in projective planes [6].

This chapter may be regarded as an introduction to Chapter 3.
Results discussed here are pointers to the more general structure

of projective spaces of higher dimensions.

The Intersection of Two Baer-Planes

Definition

Two Baer-planes Bl and 82 of a general projective plane I of order

q? are said to share a line % in 1, if g+l points of 2 belong to

each B and B_.
i 2

If, in particular
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and [B, Nng| = [B, N2| =gq+l, then B and B, are said to

2
share the line & pointwise.

Note : It is sufficient to ascertain that two points of 2

belong to each of B1 and Bz’ for it follows then that 2 n Bl
and £ n B2 each contain g+l points. The sets of points in

LN B1 and £ n B2 may be disjoint, intersecting or identical.

Theorem 2.1
The number of points common to two Baer-planes B1 and B2 of a
projective plane I of order q2 is equal to the number of lines

shared by Bl and Bz'

Proof
Observe first that for each Baer-plane B of I there are g+l lines
of B through each point of B, while exactly one line of B goes
through a point of I external to B. This is so because B is dense

in T and lines belonging to B intersect within B.

Dually, each line of B contains gq+1 points of B, while each line

of I external to B intersects B in exactly one point.

Denote by r the number of points in 8 N B, and by s the number

of lines shared by B1 and Bz‘

Let I be the number of incidences of the points of B1 with the

lTines of Bz‘

By the above observation, the r points internal in B2 make

r(g+l) incidences with Tines of B_, while the rest of the points

2’
of Bl, q2+q+l-r in number, are external to Bz’ hence result each

in one incidence only. Hence

I:r(q+1)+q2+q+1—r‘ (2.1)
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On the other hand, s lines of B2 belong to B s hence give s(q+1)
incidences with its points, while the remaining q2+q+l-s lines of
B2 are external to Bl, hence each makes one incidence with some

point of Bl. Hence
I =s(gtl) +q2 +q+1 -5 (2.2)
Comparing (2.1) and (2.2) it is found that r = s as claimed.

Corollary
Two Baer-planes have no common line if and only if they are

pointwise disjoint.

Theorem 2.1 is valid for Baer-planes of a general projective plane.
The next lemma is also valid generally. It concerns the nature of

the intersection of two Baer-planes.

Lemma 2.2

The intersection of two Baer-planes is a closed configuration (cf.

Introduction, Section 6).

Proof

If two points P, and P, belong to B1 N Bz’ then P» Py € Bl, SO
their join : P, t P, e Bl. Similarly p, t P, € Bz‘ Hence

P + p, € Bl n B2.

In the same way, if the lines %, and L, belong to each of B1 and

B,, so does their intersection L n L,e

If the projective plane is a Galois plane PG(2,92), then the
following theorem imposes more restrictions on the intersection

configurations of two Baer-planes belonging to it.
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Theorem 2.3 (cf. also [14]) .

If two Baer-planes in PG(2,q2) share 3 points on a line g of

=<

PG(2,q92), then they share g+l points of 2. (They share the

line % pointwise.)

Proof

Denote the three points on & shared by the two Baer-planes by

pl, p29 pt' |

Without loss of generality the fundamental points of PG(2,q2) can

be chosen as
p,=(010),p, =(100),

(hence they are two of the given points), while
Py = (001) andpg=(111)

are two points in one of the Baer-planes, on some line through pt
(the third given point of intersection). Thus one of the given

Baer-planes is taken to be B_, the real Baer-plane, while the

0!
other one is denoted by Bl.

It follows from the construction that pt = (1 1 0). Consider a

homography taking §4 to B0 and leaving p,_and p, fixed.

The matrix of this homography is of form

@, 0 ¥
A=10 @, *s
’0 0o *

where all entries are elements of GF(q2), the asterisks in the

third column stand for unspecified elements, and a5, @, and the

last entry in the third column are non-zero.
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The homography takes pt to py, e £ n Bo’ where

pu = (al’ (!2, 0).

Since p, € Bo’ it follows that al/az e GF(q).

Let p e 2 n B1 where p is different from P> Pys Pte Without loss

of generality
p=( 1 0)
then the homography takes p to p', where

p' = (alx @, 0).

Since p' ¢ Bo’ alx/a2 e GF(q) and so x ¢ GF(q). This means that
all the points of 2 n Bl belong to Bo' Hence Bl and B0 intersect

in g+l points of £ as claimed.

It follows immediately that the intersection of two distinct Baer-
planes in PG(2,q2) have 0, 1, 2 or g+l points in common with any
line. Furthermore, by Lemma 2.2 the intersection is a closed con-
figuration and it cannot contain a non-degenerate quadrangle,
because such a quadrangle determines exactly one Baer-plane.

Hence we arrive to the following theorem.

Theorem 2.4
Two Baer-planes in PG(2,q2) can only intersect in one of the

following configurations:

(1) the empty set, ¢ (1)

(2) one point and one line

(i) the point is on the line ® (2i)

(1) the point is external to the line, —— (211)
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(3) two points and two lines j::ﬂ,::::::::::#’

as shown, (3)
(4) three points and three lines

forming a triangular , :j ;

configuration, (4)
(5) g+l points on a line and

g+l Tines going through L

one point of that line ;: 5 i : (5)
(6) q+2 points and q+2 lines

/&e ®
¢ &

g+l points being collinear

and g+l lines concurrent.

Proof
By Theorem 2.1 the number of points and number of Tines in the
intersection must be the same. In cases (1) and (2) there is
nothing to prove. In case (3) one of the lines must be the join

of the two points and one of the points must be the intersection

of the two lines since the configuration is closed. In case (4)

the configuration consists of 3 non-collinear points and their 3
joins. In cases (5) and (6) the configurations contain more than
two points of one line 1. By Theorem (2.3) the number of points

on that Tine must then be q+l. If no more than these g+1 points
belong to the intersection, then there must be g+l lines, one of
which is the join of the points. The remaining q Tines must all
intersect in one of the g+l points, otherwise a point external to %
would be added to the configuration. In case (6) an external

point is added to the g+l points of 2. The g+l lines joining the
external point to the points of 2 close the configuration. No

more than 1 external point can be added to the g+l points of g,
since the configuration cannot contain a quadrangle. This completes

the proof.
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Note:

Theorem (2.4) does not establish the existence of all the listed
configurations. It will be shown later that they are all realised
and the number of Baer-planes intersecting a fixed Baer-plane of

PG(2,92) will be calculated.

Baer-planes and perspectivity Groups,

Slots, Bunches and Clusters

Recall the result in the Introduction : Desarguesian planes are (V,%)-

transitive for all (V,%)-pairs in the planes: if V is any fixed point

of the plane and % any line with all its points fixed, then the
homography-group with the above fixed set is transitive on the
points of m\{V,m N2}, where m is any Tine through V. The

homographies belonging to the group are perspectivities, more

specifically homologies if V is not on &, and elations otherwise.

Before discussing the action of perspectivity groups or Baer-

planes, the following theorem is needed.

(Note: in the following statement and proof, points are marked
by capitals, 1ines by small letters, to make distinctions between

duals clearer.)

Theorem 2.5
If 2 is a line in PG(2,q2), A, B, C three distinct points on the
line, and P an arbitrary point of the plane, not on £, then there

exist Baer-planes in PG(2,q2) containing A, B, C and P.

Dually : If a, b, c are three lines in the plane, through a point
P, and % some other line of the plane, not through P, then there

are Baer-planes containing a, b, ¢ and &.
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Proof
Let P' be a point on the line PC, distinct from P or C. (Since
q%+155, the choice for P' is not unique.) Then A, B, P', P
determine a non-degenerate quadrangle, hence a Baer-plane, which

contains C, which is the intersection of AB and PP'.

The dual statement is proved similarly, noting that a quadrilateral

(non-degenerate) also determines uniquely a Baer-plane, since any

four intersection points of the four sides forming a non-degenerate
quadrangle determine a unique Baer-plane containing the four lines

(hence the other intersection points). 0O

Recall next Lemma 2.2. A1l Baer-planes sharing the points A, B, C
on the Tine £, share g+1 points of line 2. The dual of this lemma

implies that if two Baer-planes share three lines a, b, ¢ through

the point P, then they have g+l lines through P in common.

Definitions
(a) Let A, B, C be three points on a line £ in PG(2,92). The set
of g+l points of % belonging to a Baer-plane through A, B, C

is called a slot on 1.

(b) Let a, b, c be three lines of PG(2,q2) through a point P. The
set of g+l Tines through P belonging to a Baer-plane containing
a, b, and ¢ (that is segments of g+l points of each of these

lines), is called a bunch through P.

Theorem 2.6

For a given line 2, and a given point V, not on £ in PG(2,q2), and
a given slot s on %, there are exactly g+l Baer-planes which share
the point V and the slot s. They partition the points on each of

the g+l lines joining V and the points of s (excluding V and s).
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Proof

By Theorem 2.5 there exists a Baer-plane Bl, containing V and s.

Then a (V,%)-homology 6 takes B, into some Baer-plane (possibly
itself). This new Baer-plane is fully determined by a non-degenerate

quadrangle, and since V and s are already fixed, an image of any

point X € Bl\{V Us} determines a Baer-plane. On the other hand, since

the plane PG(2,92) is (V,%)-transitive for any choice of V and %,

any point X' on some line m through V, m belonging to Bl, is a 6-

image of the point X on B N m, where 8 is a (V,2)-homology, and

X and X' are distinct, from V or points of s. Hence, every point X

of m\{V,m N 2} belongs to exactly one Baer-plane containing V and s.

The three points V, m N& and X' determine a slot on the Tine m.

Thus all images of X within this slot determine the same Baer-

plane.

Hence the number of Baer-planes sharing V and the slot s on & is

equal to the number of slots on some line m, joining V and a point

of s, such slot containing V and mns. Since there are g-1 more

points on each slot, and by Theorem 2.3 these sets of g-1 points

must be disjoint, the number of admissible slots on m is
(q2+1-2)/(q-1) = q+l.
This concludes the proof.

Definition
A family, consisting of g+1 Baer-planes sharing a slot s on a line

% and a point V not on &, is called a (V,s)-homology cluster.

Theorem 2.7

Let £ be a line in PG(2,q92), A a point on %, s a slot on %, and b

a bunch through A such that s and b belong to the same Baer-plane Bl.
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Then there are exactly g Baer-planes which share the slot s and

the bunch b. The points, excluding A, of the q lines of b\ {2}
are partitioned by the Baer-planes into disjoint sets, each

containing q points.

Proof

Choose in the fixed Baer-plane Bl a point X, not belonging to s.
Let m be the 1ine AX. Let ' be an (A,%)-elation taking X to X'
where X' e m\{A}. It is known (cf. Introduction, Section 6) that
g' is fully determined by X', hence X' also determines uniquely a
Baer-plane B, (possibly identical to Bl), which is the image of B .
The point X' can be arbitrarily chosen on m\{A}, since PG(2,q2) is

(A,2)-transitive. Let sy =B, nm, thus sy is a slot on the line

2
m. Let X" be another point of syp. By the transitivity property,
X" determines some transformation 6", belonging to the (A,2)-

elation group. Hence X" also determines uniquely some Baer-plane B

which contains X", b and s, (since B3 is an image of Bl).

Then the Baer-planes 82 and B3 are jdentical, since they share at
least one non-degenerate quadrilateral conisting of two lines of
b, different from m, and two 1ines joining X" to two points of s,
different from A, (noting that X" belongs to 82 since it is a
point of sp). Hence the slot sy determines a unique Baer-plane

containing s and m.

Conversely, if Y € m\sy, then the unique Baer-plane determined by
the (A,%)-elation taking X to Y must differ from B, since it

contains a point on m, which does not belong to B2 n m,

Hence the number of Baer-planes sharing a slot s on 2 and an

associated bunch b through the point A & s is equal to
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(q2+1-1)/q = q,

since by the above, the set of points of m\{A} is partitioned into

disjoint sets, each containing g+l-1 = q points.

Definition

A family, consisting of q Baer-planes, sharing a slot s on a line &
together with a fixed bunch through A, where A is a point of s, is

called an (A,s)-elation cluster.

The Existence of the Intersection Configurations of Two Baer-planes

Theorem 2.8

There exist seven possible configurations of intersections of Baer-

planes in PG(2,92).

Proof

Theorem 2.4 gives a listing of 1; 2(i),(ii); 3, 4, 5, 6 to the

only possible configurations in which two Baer-planes in PG(2,q2)
may intersect. Theorems 2.6 and 2.7 will be used to construct and
count all Baer-planes intersecting a fixed Baer-plane in each of
the configurations from 6 down to 2(i) and 2(ii). The total number

of these is found to be less than N-1, where
N = q3(q3+1)(q?+1)

denotes the total number of Baer-planes in PG(2,q2) (cf. 1.2).

Thus N.. the number of Baer-planes disjoint from B0 can be also

0’
found by a simple subtraction. The procedure then is to begin
with configuration (6) and do the constructions and counting

successively in the cases, in an order reverse to the 1isting.

Without loss of generality, the fixed Baer-plane can be taken to
be in all cases, the real Baer-plane Bo' This is used as a
reference, but does not make any difference to the arguments 1in

the proofs.
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Case 6

To determine the number of Baer-planes sharing gq+2 points and q+2

lines with B_, we count the number of (V,s)-homology clusters to

0’

which B0 betongs. Each cluster is determined by fixing within BO

a point V and a line & of PG(2,q2) belonging to By-

For V we have a free choice out of the g2+q+l points of Bo' For &,

a 1jne must be chosen which does not contain V, hence there are
q2+q+1-(q+l) = q2 choices.

Thus BO belongs to
q?(q2+q+l) clusters.

By Theorem 2.6 there are q Baer-planes other than B0 in each
cluster, the clusters forming disjoint classes of Baer-planes.

Hence the number of Baer-planes intersecting B0 in configuration

(6) is
Ng+2_= q3(q?+q+1) (4.1)
Case 5

To find the number of Baer-planes intersecting B0 in exactly g+l
points of a line (and the same number of lines), we have to find
the number of (A,s)-elation clusters to which B0 belongs. The
point A can be chosen within B0 in g2+g+l ways. Since there are
g+l lines of B0 through A, there are g+l choices for the slot s

containing A. Thus the required number of elation-clusters is

(g2+q+1)(q+l).

In each elation-cluster there are gq-1 Baer-planes other than B0
by Theorem (2.7). Thus the number of Baer-planes intersecting

Bo in configuration (5) is

Ng+1 = (q2-1)(q%+q+1) (4.2)
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Case 4

The intersection is a triangular configuration of three points

and three lines.

Let the points A, B, C be fixed in Bo‘

Let D be any point on the line AB, not
—_— N B C.

belonging to Bg. Then A, B, D determine D

uniquely a slot s of g+l points on the
line AD. Next we find the number of
Baer-planes containing the point C and the slot s (hence the points

A and B) and no other point of Bo' A1l these Baer-planes belong

to the (C,s)-homology cluster determined-by A, B, C and D. This
cluster consists of g+l Baer-planes. However, we must exclude

Baer-planes containing points on CA or CB, other than A, B, C and

belonging to Bo'

By Theorem 2.6 there is a unique Baer-plane B1 which shares with

B0 the slot A C ﬂBO and belongs to the (C,s)-cluster. Likewise,
there is a unique Baer-plane 82 which shares with B0 the slot BC(WBO
and belongs to the (C,s) cluster. Moreover, B1 and B2 are distinct,
for no Baer-plane shares with B0 more points than those in a slot and
a point external to the slot. Thus Bl and 82 are the only two
Baer-planes belonging to the (C,s) cluster, and sharing with B0

some points on CA or CB other than A, B or C. So the numbers of

admissible Baer-planes belonging to the (C,s) cluster is
q+1-2 = g-1.

The number of slots on the Tine AB, containing the points A and B
is
(g2-1)/(g~1) = g+1

(as seen before in the proof of Theorem 2.6).
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Thus there is a choice of g slots, other than the slot belonging
to Bo’ on the Tine AB, through A and B, each of them determining

a (C,s) cluster. Hence, for a fixed triangle ABC in BO there are
q(g-1)
Baer-planes intersecting B0 in exactly A, B, and C.

The choice of the three non collinear points A, B, C in B0 can

be made in

£9?+q+1)§?2+Q)q2 ways,
(choosing A, B, C in order, then obtaining the number of unordered
triples).

Hence the number of Baer-planes intersecting B0 in configuration

(4), is

N3 =A192+q+1)§?2+q)q2 q(q-1)

(q2+q+1)q*(q2-1)/3! (4.3)

Note

While q > 2, and plane B1 intersects B0 in exactly 3 points, the
points are necessarily non-collinear. This is not the case when
q=2. Case 5 applies to the situation when two Baer-planes in
PG(2,4) intersect in 3 collinear points, and case 4, when the

points are non-collinear.

Thus, for PG(2,4) there are (22+2+1)(22-1) = 21 Baer-planes inter-
secting B in 3 collinear points and (22+2+1)2%(22-1)/3! = 56 Baer-
planes intersecting it in 3 non-collinear points. Hence the total

number of Baer-planes in PG(2,4) intersecting B0 in 3 points is 77.
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Case 3
Let A, B be fixed points and £, m A

fixed lines of B0 such that £ = AB

and A = 2nm. The admissible Baer- ™
planes to be counted are those which ﬁ
intersect B0 in A, B, £ and m and no £ P

other points or lines.

Let P be a point of m\{A}, not belonging to B,» and s a slot on g,
determined by A, B and E where E ¢ Bo' We show that there is

exactly one admissible Baer-plane containing P and s.

A11 Baer-planes through P and s belong to the (P,s)-homology
cluster which consists of q+1 Baer-planes, all different from Bo'
Let C be a point of B Am\{A}]. Then the quadrangle EBPC determines
the unique Baer-plane Bl, which contains also the point A, hence
belongs to the (P,s)-cluster. Since Bl is then different from Bo’
it shares no other points with BO on the line m, than A and C.

Thus, each point of B . Nm\{A} determines a unique Baer-plane of the

(P,s)-cluster, and these planes are distinct, q in number, all of

them inadmissible. This Teaves exactly one Baer-plane, B in the

cluster. B is admissible, for it shares on 2 only the points A and
B with Bo’ on m only the point A, and it cannot contain a point
P' € B \{2Um}, otherwise the Tine EP' and hence EP' nm belongs to

B nB,, which is a contradiction, since EP' nm # A. This proves the

0’

claim.

B intersects m\{A} in q points. Hence the number of admissible
planes containing the slot s in £ is equal to the number of slots
on m, each consisting of the point A and a set of q points, disjoint

from all the other slots. The number of these slots is then



-86-

(q2+1-(q+1))/q = g-1

Since, as seen before, the slot s on % can be chosen in g ways,
(if it is to contain exactly the two given points A and B of Bo’

and no more) it follows that there are
q(q-1) admissible Baer-planes for each fixed A,B,2, m set in Bo‘

The number of choices for the above sets can be obtained by
considering the number of selections for A and B, which uniquely

determine 2, and then choose m through A, giving (q%+q+1) (g2+q)q

selections of the above ordered set.

Thus the number of Baer-planes intersecting B0 in two points and

two lines is

=
1}

(q2+q+1)(q2+q)q(q-1)q
(q2+q+1)qg3(q2-1) (4.4)

Case 2(1)

Let 2 and A be a fixed line and

point of B0 and A € . The e
admissible Baer-planes now are

those which intersect B0 in A and

£ and no other elements.

As a first step, we count

(a) the number of Slots on line & which contain A, but
no other point of Bo’

(b) dually : the number of bunches through A which

contain £, but no other Tine of Bo,
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The count 1is the same for (a) and (b).

The total number of slots containing A on 2 is

( )/(q) = g2(q%-1)/q(q-1) = q2 + g,

2
because there are (q2) ways of picking 2 points on & which

determine a slot together with A, and there are (g) pairs of

points different from A within each stot consisting of g+l points.

Fix now a point on £ NB MA}. This can be done in q ways. As it
was shown earlier, the number of slots containing A, the selected

o> 15 9. Thus g2 slots contain

point but no other point of B
exactly two points of B, N4. Finally, subtract q2+1 from the
total number of slots, taking into account the single slot which

belongs to Bo' Hence the count for both (a) and (b) is

(q2+q)-(q?+1) = g-1.

Next consider the cluster of Baer-planes which contain a slot s on
2, and a bunch b through A, such that s contains no other point

than A and b contains no other line of BO than 2.

This is an (A,b)-elation cluster, consisting of q Baer-planes, all

of which are admissible, since none of the lines of the bunch
contain any point of Bo’ other than A. Hence any of the planes
belonging to this cluster intersect B0 in A and 2 and no other

element.

Since the choice of slots and bunches of the desired property, can
be done in (g-1) ways for each, it follows that for a given A and

2 the number of admissible Baer-planes is

q(g-1)2.
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The choice of A and £ in B can be made 1in (q2+q+1)(q+1) ways,
hence the total number of Baer-planes intersecting B0 in one line

and one point contained by the line is

N = (a%q+1)(q+1)q(q-1)2 (4.5)

Case 2(1i1)
Let 2 and A be a fixed line and point in Bo’ A not on £. A Baer-
plane is admissible if it intersects B0 in A and %, but no other

point or line.

Consider an (A,s)-homology cluster; where s is a slot on the line

2, not containing any point of Bo' A1l admissible Baer-planes

must belong to such a homology-cluster, since each must contain A
and %, but cannot intersect % in a point belonging to Bo' ATl

qt+l Baer-planes belonging to such a homology cluster are admissible,
for no line of the bunch through A can belong to Bo’ otherwise

its intersection with % would be a point of Bo’ So no line of the

bunch contains a point of B0 other than A.

Next the number of slots on £, not containing any point of B0
must be calculated:

Reasoning similarly as before we have

q2+1 g+l
(a) the total number of slots on & = ( g )/ ( 5
= q(q%+1)

(b) the number of slots containing one fixed point of B0 is
using the result in case 1(i)
=q-1,
hence the total number of slots containing some unique point of

By, on & is (q+1)(g-1).



-89-

(c) the number of slots containing exactly two fixed points
of B0 Ne is (as seen before) g, hence the number which

contains exactly some fixed pair of points in Bof1£ is

(d) there is 1 Baer-plane, namely Bo’ which contains more than

2 points of BOrWz.

Hence the required number of suitable slots is

q(q2+1)-(q-1)(q+1) - q2(q+1)/2 - 1 = 1/2 q(q-1)(q-2).

Since each (A,s)-cluster contains g+l admissible Baer-planes, if
s has no point in Bo’ the total number of admissible Baer-planes,

for A and £ fixed is

1/2 q(q2-1)(q-2)

The number of ways in which the point A and the line & can be

selected, is
(q2+q+1)q2,
and so the number of Baer-planes intersecting B0 in one line and
one point, the point not on the line is
(2) 3(q2 2
N, =1/2 q°(q%+q+1)(g*-1)(q-2) (4.6)

Using now the result (1.2) for the total number N of Baer-planes
in GF(q2), we can calculate No’ the number of Baer-planes disjoint
from BO:

N. =N N N N N N(l) N(2) 4.7
o T Ng+2 T Bg+l T Ny T Ny = R = N (4.7)
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Substituting into each term on the right hand side of (4.7) the

appropriate result given by (1.2), (4.1), (4.2), (4.3), (4.4),

(4.5) and (4.6), we obtain after simplification that
q*(q-1)3(q+1)

N, = (4.8)
3

This completes the counts of all the configurations listed in

Theorem (4.4), hence completes the proof of Theorem (4.8).

Compare the expression (4.8) with the order Aoof the homography

group which leaves B0 invariant. By (5.4) in the introduction,
A, = [PGL(3,q)| = q%(q3-1)(q2-1).
Hence N0 may be written down as
AO

Ny = (42-q)——— (4.9)
3(q2+q+l)

An interpretation of this result is given in Section 8 of this

Chapter.

The Action of Cyclic (Singer) Groups of Homographies

Singer's theorem plays a fundamental role in describing the struc-
ture of the projective plane PG(2,q2). It was treated generally,
(for spaces of n dimensions) in detail in the Introduction (Section
6). It is convenient to recall here some definitions and notations
which will be used throughout. 1In this chapter only planes are

considered, hence the following apply to two dimensions only.

The Singer group is a cyclic group of homographies, acting regularly
on the points and lines of PG(2,q). Since this chapter deals with

Baer-planes in the projective plane of square order : PG(2,q2), it
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will be necessary to distinguish between a Singer group acting on
the projective plane PG(2,q2) and the Singer group acting on the
Baer-plane B0 = PG(2,q). Hence, whenever necessary we use sub-

scripts q or q2 in the notation.

Thus

[z1

q = <9g> acts on PG(2,q)

1]

and q2 = <og2> acts on PG(2,q2).

Here aq is a homography with matrix

<, 1 0
M=lc, 0 1 (5.1)
<, 0 0
3 = 2
where x X%+ x+c (5.2)

is the generating cubic equation (cf. Introduction) and Cpo C s

c, are elements of GF(q).

For oq2 we write the matrix of homography and generating cubic
equation in the same forms (5.1) and (5.2) respectively, with the

c, are elements of GF(q2).

understanding that in this case ¢ 0 S

2’C

The Singer groups induce natural orderings of the points and lines

in PG(2,q) and PG(2,q2).

Denoting by a(p), o2(p) = o(o(p)), «.., oK(p), .. the successive
Singer transforms of a point p, we denote by Py the point (0 0 1),
in PG(2,q) (or PG(2,q2)).

Then by Singer's theorem, the set
k
{o (py)]0 < k < qZ+q+1} (5.3)
q

consists of q2+q+1 different points of PG(2,q) and
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q2+q+l
o (

P.) =p,.
q 0 0

Hence all the points of PG(2,q) are represented by the set (5.3).

We denote by

Pk =0 (p,) (5.4)

The subscript k characterising the point py is called the Singer-
index of the point. It is defined as the exponent (mod q2+q+1)

in the equation (5.4).

(Note: The subscript q or q2 may be dropped if there is no

ambiguity.)
Thus
p, = (0 0 1)
p, =0(0 0 1) =(0 1 0)
(5.5)
p, = o2(0 0 1) =(1 0 0)
Py =00 0 1) = (c, ¢ c)
and so on.

We observe that
Peas = 0K¥S(p,) = oS(oK(p )) = oS(p,)
k+s P/ = 071a71P LIS

The difference s between the Singer indices of two points is called

the Singer-shift.

The Tines of PG(2,q) are also ordered cyclically by the group
E = <o>,

The choice of the 1ine 20 is arbitrary. Unless stated otherwise

in some particular case, we take for L the join of p. and P, -
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Hence ?
L, = P, t P, in short notation pp,
21 = o'(p0+p1) . G(po) + O(pl) = p1p2
= o2 = o2 2 =
23 =g (p0+pl) o (po) + 0 (Pl) PP

and generally

2k = Uk(zo) = PkPk+1 (5.6)
The set
k 2
{oq(20)|0 < k < q%+q+l} (5.7)

represents all the lines of PG(2,q).

The exponent k (mod g?+q+l) in equation (5.6) is called the Singer-

index of the line fk.

The difference between the indices of two lines (mod q2+q+l) is

called the Singer-shift of the lines.

We recall here that if the points

Pi s Pi 5 «ees Pj are collinear,
0 1 q

then the indices 10, 11, oo iq form a perfect difference set

(cf. Introduction).

We also observe here the useful fact that if the point py is on

the line 2k, then the point pij+s is on the line fk+g.

We conclude this section by tabulating the points and the lines of
PG(2,4) to illustrate Singer ordering. Two different generating
cubics are used in the two tables to determine the Singer cycle.

PG(2,4) is the smallest projective plane of square order, so it is
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the smallest projective plane which possesses Baer-planes. In the
case of PG(2,4) the ordering can be done by hand-calculation,
while for projective planes of higher order, this is done by
computer. In each of the two tables the points and lines of the

real Baer-plane, i.e. the points the lines with coordinates in

GF(2) are circled in.

e
:?  pr——— L

b
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TABLES OF SINGER LISTING IN PG(2,4)

(a is root of o2+a+l = 0 over GF(2))

Table 1la

Generating cubic : x3 = x24x+q
(Circled points and lines belong to real subplane)

Points (xl,xz,xa) Lines (each line is given by the set of the

indices of its points)
(0, 0, 1) © Q@ = 16
C) ©0.1,0 @)

17

@
(1, 0, 0) , (@ 3 6 15 18
3

9 12

P, (1, 1, £, 4 @ 17 19
P, (0, a, 1) 5, 4 5 8§ 18 @
Pe (a1, 0) s 5 6 9 13 (o
Pe (1, o2, 1) (D 10 ©
(1, 0, 1) Qe 8 11 @
3
4

P ((1, ]-s a2) £ 9 10 13

5

212

©
(e o]
——
—
o
Q
x>
Q©
c=2Qo o -« OOO®
o=@ -

(1, 1, 0) L. @ 16 19 10

Pe (0,1, ) v 16 17 11
P, (1, a, 0) b, 7o (0) 100 12
e (1, a, o?) 2.4 18 19 @ 11 13
Pg (o 1,1) @ 19 @ 12
(1, 1, 1) @ (© 3 13 (1)
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Table 1b

Generating cubic : x3 = ax2+ ax+a
(Circled points and Tines belong to real subplane)

Points (x ,x,,x.) Lines (each Tine is given by the set of the
—= 2727 —=2 1&dNT X :
indices of its points)

© () 18
@
®

(0, 0, 1)
(::) 19
10 20
11

& ©

3
(1, 0, 0) ‘I’

& G

e T R T S S
=~ w NN = O ~N O

10 15 17

(1, 1, o2) 5 12
Pe (o2, 1, a) % 5 6 13
Pe (0, a2, 1) 2 6 7 14
P, (a2, 1, 0) g, 7 15
0.1 ® ©
() ®

CICRARIRIOIO0

Po (o 1,1) g, 1001 18
L (L1, ) g, 11 12 17 19
P, (a0, 1) L 1213 18 20
Py (a1, o) s 13119 @ 10
P (o2, a, 1) g, ¥ 1B 2 () u
P (a2, 0,1) 15 ©O) @
(1, 0, 1) A €) G3)
P, (1,0, 1) v, 1718 @ 4 14
s (0,1, a?) te 18 19 (3) 5 15
s (1,02, 0) s 19 20 4 6
Po (1, @, a) 2,, 20 @ 5 7 17

STTE e
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2.6 Singer Duality of Baer-Planes

We begin with the observation made in the last section that if a
point pj lies on the 1ine £j, then the point pj+s lies on the

Tine 2j+s.
Put in particular s = -(i+j), then we obtain the result:

pj_lies on #3, if and only if p.j 1ies on &_5.

Note: In this section we refer to the plane PG(2,q2), hence the

Singer group here is

and indices are taken modulo (q“+q2+1).

The above result suggests the establishment of the duality map Vo>
from the points of I = PG(2,q2) to its lines, and from its lines

to its points, defined the following way:

vo(pi) = 2.4 = pi(0)
vo(2i) = p-i = 24(0)

(1=0,1,..,q%+q?) (6.1)

where pi(0), 2i(0) are points and lines of the projective plane

T, dual to 1.

It follows immediately that

pi(0) Ties on zjioi if and only if p_j lies on 2._j,
hence if and only if p_j+s Ties on 2_j4+g for all s

(mod q"+q2+1).

Thus the more general duality map vg may be defined:



\)s(p-l) = fj4g = p'l(s) (.i=0,1’..,q'++q2) (6°2)

!
P
—
-
wn
g

vs(29) = p_j+s =

Let pj , pj » Pj » Pi be the vertices of a non-degenerate quadrangle
i 2 3 4

in B,» the real Baer-plane in PG(2,92). Then, (denoting by T the

vg dual of m):

the dual image of B, in T is real if and only if %.i 45,
0 1

&r12+5’.&—13+5’.&r14+5 are real lines.

The above is referred to as Condition R.

This is so, because in this case the dual map of the quadrangle py ,
1

Pi p13, qu is again a non-degenerate quadrangle with real

b
2
vertices, hence it determines uniquely the real Baer-plane B0 in

.‘I_I-.
An equivalent form of Condition R is as follows:

The image of the real Baer-plane in I = PG(2,92) is the real Baer-
plane of T if and only if there exist in B0 a non-degenerate quad-
rangle with vertices pj , pj , p13, qu and a non-degenerate

) =1

2
quadrilateral with sides £3 5 23 5> %j_» &j such that
o 2 3 L

Jp = Jt = -(ip-it) (mod q“+q2+1)
for

rst =1, 2, 3, 4 and r # t.

Theorem 2.9
A unique number s can be found such that the duality map vg,
defined as in (6.2), maps the real Baer-plane of I = PG(2,92) to

the real Baer-plane of T = vg(I).
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Proof
It suffices to ascertain that Condition R is satisfied, that is, a
non-degenerate quadrangle pil, Piz, Pis, pil+ can be found, such

that its vertices are real points and the duals 25_11, 25_12,

25_13, 25_1'l+ are real lines, for a suitably chosen s.

Let 20, £ and 22 (indexed as in Section 5) be the lines PP s P,Pys

1

P,P, with equations

using the coordinates of Pgs P,» Pys Py aS in (5.5).

Using the Tine-coordinate notation [ul u u3] to describe a line

2
of which the equation is ux Fux, tux, = 0, we write
10 :[1 0 0]
L 0t [0 0 1]
(6.3)
, 200 ¢y -c]
and
Lo [c2 1 0] (as [1 0 OIM = [c2 1 ol)

The Tines 2, and % are real, so each of them contains g+l points

belonging to Bo'
Let this list of real points be as follows:

20 “ Py Py p12 ce Piq (6.4)

L otP P P12+1’ cee P1q+1

Since 21 is obtained from 20 by a Singer-shift equal to 1, the

points in the second line of (6.4) belong indeed to 21. That these
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points also belong to B0 follows from the fact that the Singer

transformation o " with matrix M as in (5.1) takes a point
q

(0, f, g) of 20, where f,g ¢ GF(q)

to (f, g, 0) in 2 .

Suppose that the dual map vg takes the line 2, to the point pg,

as in (6.2).
Then %, has as dual the point pg.j, while the points
p ] p s ..., p'i

and

pl’ p2’ sy piq+1

have as duals the Tlines

R,s, 25_1, sy ls-‘iq

and

25-15 £5-25 +ee, Rg-i -1 respectively.
q
We look for a duality map which satisfies the following condition.

Condition S.

The transformation o 5 takes all real lines through pg into real
q

lines through pe_1.

We note here that Condition S represents the dual of the statement

that all real points of & are taken by o . to real points of L
L% q{_
and so it represents a condition necessary to be satisfied by s to

make vg(B,) the real Baer-plane of T.

Suppose that
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Then the Tine

goes through pg if and only if

a X *ax,+ax, = 0 (6.5)

This 1ine & is real if and only if a, a,, a, (divided by a common

2’

factor if necessary) belong to GF(q).

The transformation 0—2 takes the 1ine [a1 a
q

[bl b2 b3] such that the matrix equation

: a3] into a line

[b1 b2 b3] = [al a, a3]M

is satisfied, where M is the Singer matrix of o 9
q

From this we have

[bl b2 b3] = [cza1 tca, tca, a az] (6.6)

Referring now to Condition S, the choice of s, hence of pg must be
made so that for the fixed triple (xl X, x3) and for all real

triples (a a, a3) which satisfy equation (6.5), all triples

1
(b1 b2 b3) obtained by (6.6) are also real.

Write c; = aj + eBj (i=1,2,3), where € is a primitive element
of the extension-field GF(q2) over GF(q) and «j, Bi € GF(q).

(cf. Introduction, Section 1).
Then Condition S is satisfied if and only if

] + Bla2 + 80a3 =0

Zal
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for each of the g+l vectors [a1 a a3], representing real lines,

2
which satisfy (6.5).

This happens if and only if
ps = (B, B, By) (6.7)

Next it must be shown that if s is chosen to satisfy (6.7) then

Condition R is fulfilled.

(i) The General Case

As a first step we show that if (6.7) is satisfied, then

the Tines g, 2g5-1s %s-2 are real.

Since ps is real by definition and Condition S is satisfied,

it follows that the point pg.1 is also real. Thus
25 = Pg-1Ps is real.
Moreover, since %g_1 is one of the real Tines through

-1
ps, the transformation o 5 takes it to a real line which
q

is 25_2.

It remains to be shown that &g is real. By the use of

matrix M, the point pgs+1 is determined.
Ps+l = (8, * B, c.By B ¢ y8,)
(Note: pg+j is not generally real.)

The equation of the line &g is

=0 (6.8)

C262+Bl C182+BO Cof
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Writing in (6.8) c¢i = aj + €8 for i1=1,2,3, and
expanding the left hand side, all terms containing €

vanish. This verifies that &g is real.

Suppose that pg is not on 2,, £ or on the line P,Pye
In this case the quadrangle PoP PoPs is non-degenerate,
and its dual is the quadrilateral found by the lines

Lgy Rg-1s %s-25 %4> which are real.

Hence Condition R is satisfied and for this case the proof

of the theorem is complete.

The cases where PoP P,Ps is degenerate, must be considered

next.

Cases when pg lies on the lines &, & or pp,
In all these cases some non-degenerate

real quadrangle other than PoP,P,Ps

. ' =¥ Q
must be found. ps® > Lo
Use will be made of real points other Py

)
than p, Or p, on 1ines 24 and L - Qn

Let such a point be pj = (0, f, g) where f,g e GF(q).
i
Thus pi+; = (f, g, 0). Here pj = °q2(p0) and

i+l i
Pitl = 0 o (py) = o ,(p,).

;

The transformation o ) takes the three consecutive points
q

Pgs Ps Py to the three consecutive points pj, Pi+ls Pi+2s

where

Pij+2 = © 2(P1+1),
q
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hence by the use of the matrix M

Pi+2 = (c.f+g le cof).

(Note: Strictly speaking, the matrix Mi takes p

to the vector p(0 f g), where p € GF(q2), hence the
points p and p, to o(f g 0) and p(C2f+g le cof),
but handling Mi as a matrix of homography, the factor

common to all three columns can be disregarded.)
It follows from the above that the transformation

g : P> pj
q2 0

has the matrix

c2f+g f 0

(6.9)

The duals of pj and pj4+1 are 2g.j and fs_j-1 respectively.
Rather than showing generally that for ps = (62, B s BO),
the dual %g-i and %s-j-1 are real, it turns out to be

simpler to treat each arising case separately.

Case (a) s=0

Then pg = (0 0 1) hence 8, =8 = 0, thus ¢, ¢ € GF(q).

2’

The line coordinates of 2g.j and %s-j-1. (which in this case
are £_j and f&_j-1) are evaluated by using the line corodinates

of 2, and 2_y, given in (6.3) and the matrix M1,

For 2_5:
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c2f+g f 0

[1 0 0] clf g f f+g f 0] (6.10)

O
~h
o

[{e]

For
. b (i) = 2
5.1 ¢ [c2 1 0IM [czf + czg + le c2f+g fl (6.11)

Since C,o C € GF(q), all components in the equations (6.10) and

(6.11) are real.

Thus the real non-degenerate quadrangle Py Py Pi+l Pi has as dual

the real quadrilateral Lo 2.2 2.9-1 %-4.

Case (b) s=1

=0 and so ¢, and c_ are

This time pg = (0 1 0), hence B, = B

0

real.
The duals of pj and pj+1 are now 27.i and £_j.
For 2_i (6.10) can be used. Since c, € GF(q), 2.i is real.
For 21.4i:

[0 0o 1m() =[cf 0 gl
Hence 1.4 is real.

The non-degenerate quadhang]e and its dual are now Py P, Pi+l Pi
and & 2.1 &.j %1-j respectively, hence satisfy the

requirements.

Case (c) s=2

ps = (1 0 0) hence B, =B, =0and soc and c, are in GF(q).
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The dual of the quadrangle Py P, Pi+l Pj is now L, Xy 211

22-9 .
Only %p_4 must be calculated. Using (6.3) again for 2p_j:

[o c, -cle(i) = [0 c,9 cof-clg]

A1l sides of the dual quadrilateral are real Tlines.

Case (d) pg is on L, but s#0, s#l

In this case we taken i=s and use the quadrangle Py P, Ps+l Ps

with its dual 2g 252 2.1 24

The Tines &g, %5.2, &, are always real as shown before. The

coordinates of 2.1 are

[c2 1 o].

Since pg s on L4

ps = (0 X, Xs) s0 B, = 0,

and <, is real. So 2_1 is also real. This case is concluded.

Case (e) pg is on 2, and s#l, s#2.
Now take i=s-1, since pg_1 is real and is on line %,+ The quadrangle

and its dual are now
Py Py Ps Ps-1
and g 5. &, % .
A1l the sides of the quadrilateral are real lines.

Case (f) pg is on the Tine PoP,s S#O, s#2.
Note that pg_1 is not on 10, because if it were, then pg would be

on &, hence at the intersection of 21 and PoPys SO Ps =P, which
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has been excluded. The point pg.1 is known to be real, hence,

unless pg.1 is on the line PoP,» We may choose the quadrangie

Pe P, Ps Ps-1

with dual

s fs-1 L, %,
and thus settling the case.
The only case Teft is:
Ps and pg_1 are on the line PoPye

Now we choose the quadrangle P, Pi Ps Ps-1 where pj ¢ 2 ,

i#0 or 1, and pj is real.
The dual is
Ls-1 %s-i %, %,

Here 2g4.1 = pg-1Ps which is the line PoPyo hence 2g_1 is the

line [0 1 0]J.
So &g is
-1 = -
[0 1 0M [1 0 -c,/c,]
But 2¢ is known to be real, so c2/c0 e GF(q).

The only Tine to be checked is %g_j. We have for it

] c
[1 0 =c,/c,M() =g f -2 q]
c
0

hence this 1ine is also real.

This completes the proof for all cases.
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(Note: 1In Chapter 3 this theorem is generalised for higher

dimensions.)

Theorem 2.9 is equivalent to stating that the differences of the

indices of consecutive real lines are in a cyclic order reverse

to the differences of indices of consecutive real points.

Examples of this can be seen in the tables for PG(2,4).

As further illustration, consider lists of real points and lines,

calculated by computer for PG(2,9).
Using generating cubic
x3 = a2x + a®

over GF(9) where o is a primitive element of GF(9) and is a root

of

«2 +x -1=0 over GF(3).
Indices of real points:

o 1 2 3 4 6 17 26 58 63 77 78 80 (mod 91)
Indices of real Tlines:

0 1 2 3 4 15 1718 32 37 64 78 89 (mod 91)

Here s=4.

Dual map : &, > P,-

Differences of indices, beginning at P, for points and at 20-for

lines:

points : 2 11 9 32 5 14 1 2 1 1 1 11
lines : 1 1 1 111 21 14 539 911 2
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2.7 Singer Orbits of Baer-planes

Denote the Singer group acting on the points and lines of PG(2,q2)

by

Let B be some Baer-plane in PG(2,q2). Then for all i, the image

o2, ®

is again a Baer-plane.

The orbit of the Baer-plane B under the action of the group = 09
ClN A q

denoted by = Z(E) is the set
- q
;

(o, @1

where the elements of the set are distinct.
Since the order of the Singer group is
I 3 L 2

B can have no more than q* + q2 + 1 distinct images under the

action of E in other words the orbit-length of B under the

q?’
action of 2 _ is < g% +q2 + 1.

q2
We investigate conditions under which the length of the orbit is

less than g% + q2 + 1.
Suppose that for some j and k where
0<j<k<qg"+gqg?

oj(g) = ok(E). (7.1)
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(Note: here it is understood that the Singer-group is E SO

q2’

the subscript can be omitted.)

The equality (7.1) means that each side represents the same set of

points, differently ordered.

It follows immediately that for all m

j+m _ k+m _
cJ (BY = o (B) and so for & = k-j

o (B) =B ]
where ’ (7.2)

0<g<qgt+qg2+1 \

Denote by i the Teast value of 2 satisfying (7.2). It follows

that i is a divisor of g% + g% + 1.

= i _ -
Denote by Bj the transform o (B). Then by (7.2) Bj = B. So it
follows that for all pr € B, pr+i € B and hence the set
[pr+ki |k integer} is in B.

Suppose that the above set has n distinct points. Then

Pr+ni = Pr (7.3)

It follows that ni is a multiple of g* + g2 + 1, and since i

divides q% + g2 + 1, it follows that
ni =qg* +q%2 +1 (7.4)

Since (7.3) holds for all points ppr € B, it follows that B is
partitioned into cycles of points, each cycle of length n. Thus n

is a divisor of g2 + g + 1, the number of points in B.
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Then

(q2+q+1)i = d(q*+q?+1) = d(q%+q+1)(q?-g+1)

i = d(q2-q+1). (7.5)

Investigate first the case when d=1. Then n = g2 +q+ 1 and

i=q2-q+1.

In this case the transformation ol causes a shift of g2 - q +1
in the Singer index of each of the q2 + q + 1 points of B. It

follows that the indices of the points of B are congruent

mod(q?-q+1).

It remains to be shown that such a set of points B represents
indeed a Baer-plane. This will be stated and proved in the following

theorem.

Theorem 2.10 (cf. also [36])

For each Singer ordering of the points of PG(2,q2) the points which
have Singer indices in the same residue class modulo (q2-g+l),
form a Baer-plane of PG(2,q2). It follows that the points of

PG(2,92) can be partitioned into q% - q + 1 disjoint Baer-planes.

Proof

Notation

In the following, points will be simply denoted and referred to by
their Singer indices. Correspondingly, elements of the set of
congruency classes modulo g% + g2 + 1 will be sometimes called

"points”.
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Recall that the Singer indices of the points of any line in PG(2,92)

form a perfect difference set modulo (q*+q2+l). The terms "“points

of a line" or "elements of a difference set" will be used

alternatively.

Choose any line of reference 2 in PG(2,q2). Then for any subset S

of the points of PG(2,q2), a subset A of the points of the line

can be chosen such that each point of S is uniquely represented as

a difference of two elements of A. If in particular, S is chosen

to be the set of points belonging to residue class 0 mod(q2-q+1)

then

S = {k(q2-q+1)}

and the corresponding subset of differences, A has the following

property:
for each k mod(q2+q+l)

k(q2-q+1) = 8§ - 85 (mod g"+q+l)

(7.6)
§i, 85 € A

and this representation is unigue.
Let 85 = ri(mod g?-q+1) for each point §; e £.
Then

§i = (q2-g+1)dj + ri (mod q*+q2+1) (7.7)
We then obtain for the points of the subset S, by (7.6)

k(q2-q+1) = (q2-q+1)(dj-dj) + ri-rj mod(g*q®+1) (7.8)

Since q*+q2+1 = (q2+q+1)(q2-q+1), it follows from (7.8) that
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ri-rj = 0 mod(q?-q+1)

} (7.9)
for each pair (8i,6j) satisfying (7.6).
Furthermore, (7.8) can now be simplified to
k = di - dj mod (q2+q+1) (7.10)

since (q2-g+1) and (q2+q+l) are coprime.

The set A = {dj} marks those values of dj as defined in (7.7)

which correspond to the &7 values in the subset A.

Since the representation (7.6) is unique for each point of S, and

by (7.9)
8 - 85 = (q2-q+l)(dj-dj)

it follows that (7.10) gives unique representation for each k,

where dj,dj € A,.

Thus A is a perfect difference set mod(q?+q+l) and so

85 = 18] = q#1

and all elements of A are congruent modulo g% -q + 1.

The 1ine & has g2+1 points. Those which do not belong to A must
belong pairwise to different congruency classes (mod q2-g+1) since
their pairwise differences determine points belonging to PG(2,92)\S.
Hence each congruency class mod(q2-q+l) is represented by the

points of &. Those belonging to A, all represent the same class,
while each of the remaining points belongs to one of the remaining

g%-q classes.

Suppose that the line of reference 2 has q+l points belonging to

class r (mod gq2-q+1). Thus a shift by r results in a line with g+l
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points in the 0 class. There are (q*+q2+1)/(q2-q+1) = q?+q+l »

lines in PG(2,g2) which have g+l points in the 0 class

(mod q2-q+1). Denote the set of lines with this property by £ .

Denote the set of points of PG(2,q2) belonging to the 0 class

(mod q2-q+1) by C . The number of points of C  is also q2 + q + 1.

The join of any two points of C_is a line belonging to £0, since

v

no other line in PG(2,q2) has more than one point in the 0 class.

Next it must be shown that the intersection of any two Tines of

£, is a point of CO.

Let P e CO. Join P to the remaining q2 + q points of Co' Each of
these joins is a line of io’ and each has g points of Co’ other
than P. Since CO\{P} has g2 + q points, it follows that there are
exactly g + 1 lines of the set £, through P, hence through any
point of C . Let 2 e £,. Then through each point of & N C,» there
are q lines of £ other than &. This accounts for q(q+l) Tines,
hence all Tines of io\z. Hence all intersections of ¢ with a line

of io belongs to C0 as claimed.

Thus the points and lines belonging to C0 and £0 respectively form
a closed configuration of q2 + g + 1 points and lines respectively

and hence determine a Baer-plane.
Denote this Baer-plane by §0.

A shift ok of the points of B, where k # 0 (mod q2-q+1) produces

0’
another Baer-plane @k with points belonging to class k (mod g2-q+1).

Hence §k is disjoint from @0.

Thus we obtain exactly q2-q+1 Baer-planes, mutually disjoint and

covering all the points in PG(2,q92). This completes the proof.
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Notation

Denote by Sg the set of Baer-planes

~

{Bys B,s «-s Bg2-q}

where §1 is the Baer-plane the points of which belong to class

i (mod q%-g+1).

Return now to the discussion of the Singer-orbit of a general Baer-
plane. Theorem 2.10 establishes that there exists at Teast one
Singer orbit of length less than g* + g2 + 1, namely the orbit of
any of the Baer-planes belonging to Sg. This orbit is of length

q2-q+1.

The question arises naturally : are there any other Baer-planes

with Singer orbits shorter than q* + q2 + 1? The arguments which
follow give rise to the conjecture that excepting Baer-planes
belonging to the set SR, all Baer-planes have Singer-orbits of
maximal length = g* + q2 + 1. However, Theorem 2.11 which summarises

the results, Teaves the conjecture unproved for certain values of q.

Suppose that B is a Baer-plane with an orbit shorter than

q* + g2 + 1. Then by (7.5) the length of its orbit is
i = d(q?-g+1)

where d is a divisor of q2 + q + 1.

Recall now that B is partitioned into cycles of length n where
ni =q*+qg2+1 and nd=gq2+q+]1.

The cased =1, n=qg2 +q+ 1, i = g2 - g +1 has been settled,
while in the case when d = q2 +q+ 1, n=1, i =gq% +q% + 1, the

orbit is of maximal length.
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Hence assume that n is a proper divisor of g2 +q + 1. Since

g2 + q + 1 is always odd, n must be odd, thus
n> 3.

We distinguish between two cases :

(1) n>3, (i)  n = 3.

(i) B contains together with some point r, the points

r+i, o.., r+H(n-1)i, where

i =0 (mod q2-q+l) by (7.5).

Thus B contains n points belonging to the same congruency

class (mod g2-g+l) and thus shares n points with one of the

planes of the set Sg. By assumption

n >4.

Assuming that no three of the common points are collinear,

it follows that they determine a unique Baer-plane, and so

B coincides with one of the Baer-planes of the set Sﬁ.

If, on the other hand, the set of n points contains 3

collinear points, then T and the Baer-plane of the set

Sh share at least g+l points of a Tine.
However, n # ¢ + 1 and n #q + 2 since

g2 + q + 1 =q(g+l) + 1 = (q+2)(g-1) + 3

and thus neither g+l nor g+2 can be divisors of g2 + q + 1.

Hence B and the other Baer-planes share a whole slot of

points and at least two more points and so they coincide.

Thus case (i) leads to contradiction.

S e = e
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This case could only occur if 3 divides g2 + q + 1, L.

that is
g = 1(mod 3).

Then by assumption B shares 3 points with each Baer-plane
of a subset of Sg, and we may assume that exactly 3 points
of B belong to each subplane of that set, for the altern-
ative has been covered by the arguments used in (i). So
the points of B belong to (q2+q+1)/3 distinct congruency

classes mod(q2-g+1).

Without loss of generality, we may assume that O belongs
to B, for an appropriate Singer shift can achieve this

situation.

Denote
gt +q% +1 g2 +q+ 1
n= ———— = (q%qH) ——— .
3 3

Then @0 N B consists of the three points:
0, n, 2n = -n.

For convenience, we may now index the lines of PG(2,q2)

by beginning with the join of 0 and n, and marking it by

20. Hence the line &, goes through n and 2n (or n, -n),

while &_, is the join of -n and 0.

Furthermore, if j, j+n, j-n is another point-triple of B,
shared with Bj, the lines (j,j+n), (j+n,j-n) and (j-n,J)
have Singer indices j, j+n, j-n respectively, so by this
indexing the same set of indices determines the points and

lines of B.
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The line £, has g+l points of B, 0 and n being two of them.
Let v be one point of B N %,

f\J+~Z
different from 0 and n. Let uim
£, be the line joining 0 and A
v#n. Then &y belongs to B,

N
where u belongs to a congruency 0\/~2~

class (mod q2-q+1) different from 0 or v, since it represents a

1ine joining two points of different classes, (i.e. two points
lying in different planes of the set Sg, so the line u contains

two points u and u+n different from 0 and v+n, and belonging to B.

We can now list successively some points and lines of B, beginning
with the lines 0, n, -n, Vv, v+n, v-n, u, u+n, u-n. On each Tine
we can list 5 points in terms of n, u and v, since the 1ine 0 has
the points 0-u, v+n-u in addition to 0, n, and v, and the
corresponding points on these other lines are obtained by Singer

shifts. Tabulating these, we have:

Line Points

0 0 n v -u v-u+n
n n -n vin -u+n vV=u-n
-n -n 0 v-n  -u=-n v-u

\ v v+n 2v v-u  2v-u+n
v+n vin  v-n  2v+n  v-utn 2v-u-n
v-n v-n v 2v-n  v-u-n  2v-u

u u u+n v+u 0 v+n
u+n u+n u=-n v+u+n n V-1
u-n u-n u v+u-n -Nn v

Not all points listed above are known to belong to B. However, v-u

is the intersection of the lines v and -n, hence it belongs to B,



-119-

together with u-v+n and u-v-n and these points are in a class
different from n and v, being intersections of 1ines belonging to

different classes. A further listing then gives

Line Points

v-u v-u v-u+n 2v-u v-2u 2v-2u+n
v=-u+n v-u+n  v-u-n  2v-utn  v-2u+n 2v-2u-n
v-u-n v=u-n v-u 2v-u-n  v-2u-n 2v-2u

It can be seen that 2v-u is the intersection of the lines v-u and
v-n, so the points 2v-u, 2v-u+nm, 2v-u-n and the corresponding

lines give new triples.

We continue by induction and show that the points (and Tines)

k(v-u) and (k+1)v-ku are in B:

Assume that kv-ku and kv-(k-1)u belong to B. Since the line 0
contains v, and v-u+n,the line kv-ku contains (k+1)v-ku, and the
line kv-(k-1)u-n also contains (k+1)v-ku. Hence the triple defined
by (k+l)v-ku is in B. A shift from -u on the line 0 to the line
(k+1)v-ku shows that (k+1)v—(k+1)u is on the line (k+1)v-ku, while

a shift of kv-ku-n from v-u+n on the line 0 shows that (k+1)v-(k+1)u
is also on the line kv-ku-n and so is the intersection of two

lines of B. This completes the induction.

For completing the proof, we restrict ourselves to the case when
q2 - g + 1 is a prime number. (This is true when q = 1 (mod 3)
and q = 4, 7, 13, 16, 25 but not true when q = 19, 31.) In this
case the set k(u-v), where u = 0, 1, .., q? - q gives a full

set of the residue classes mod (q2-q+1). So B has points in all
the Baer-planes belonging to Sﬁ. This contradicts the original
assumption. This argument does not work in itself when q2 - q +1

is not a prime. To close the gap, it is necessary to prove some
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further conjectures. It is easy to show that u-v takes at least
(q+3)/2 different values when choosing different points for v on the
1line 0 where the points u-v+n are on the line 0. So it is a

natural conjecture that at Teast one of these points is coprime to
q%2 -q + 1. Having failed however to prove this conjecture, the

theorem can be stated only in a restricted form.

Theorem 2.11

The orbit of a Baer-plane under the action of the Singer group
Eq2 1s of length d(g2-g+1), where d is a divisor of g2+g+l.

If the Singer indices of the points of B belong to the same residue
class mod(q2-g+l), then d=1. Otherwise, d = g2 + q + 1, hence the

orbit length is q* + g2 + 1, provided that q 2 1 (mod 3), or

g =1 (mod 3), but q2 - g + 1 is a prime number.

In the cases when the theorem is valid the Baer-planes may be
divided into classes of planes belonging to the same orbit. The
number of orbits of length q* + g2 +1 (if q £ 1 mod 3, or g = 1

(mod 3)) but q2 - g + 1 is a prime is
N' = (N-(q2-q+1)/(q'*+q2+1)
where
N = (q2-g+1)q3(q%+1)(q+1)
is the total number of Baer-planes of Tg2.

Then N' = (q%+q2-1), and so the total number of Singer orbits is

g% + g2 = q(q3+1).
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2.8 On Collineatijons Fixing One Baer-plane

Denote again by B, the real Baer-plane in PG(2,q2). This time a
Singer ordering is given to BO,«by applying Singer's theorem to
PG(2,q), the coefficients of the generating cubic and entries of

the Singer matrix being elements of GF(q).
Denote the Singer group by
Eq = <oq>.

The points of B0 are successively indexed from 0 to g% + q (mod
q2+q+1). The components of the vectors in B0 are elements of
GF(q). The projective plane PG(2,q2) is constructed as an extension
of Bo'
Denote by

al, az, % G5 aqz_q

the elements of GF(q2)\GF(q).

Theorem 2.12 [24]

Let p, p be any two fixed distinct points of the Baer-plane Bo'

Consider the set

Sp—[; = {p + (11_p-| 1=1923'°,q2_q}
and let Eq act on each of its points. Then

(i) The orbit of each point corresponding to an element of
Spp 1s @ Baer-plane in PG(2,q92). Denote the orbit of

p + ajp by Bj.
(i1) For i#j the Baer-planes Bj, Bj are disjoint.

(1i1) By, B,, ..., Bq2-q partition PG(2,92).

0® "1 °
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Proof

(i) Denote by 6 the transformation

k k _ k k_
8 : 0 p >0 (ptajp) = o p + ajo P (8.1)

(The subscript q is omitted from aq» since all this

section refers to Eq = <oq>.)

Then 6 is a collineation, which maps the points of B0 to

those of E(p+ajp), where aj is fixed, ai e GF(q2)\GF(q).

To show that & is indeed a collineation, consider an
arbitrary line 2, in Bo' The real points on this line

are

k k k
o %, o !p, v..y, © qp,

represented as Singer images of p. Suppose that the Singer

shift from p to p is s, then the points

k k _ k
g %, o ip, vu., © qﬁ

are the real points of the Tine %p4g.

kj ki_
It follows that the points ¢ Jp + ajo Jp(k =0,1,..,q) are

collinear. Hence (8.1) represents a collineation, and so
the image of B, is again a Baer-plane, which has no point

in common with B,- Denote the image by Bj.

(i1) Assume that aj # oj. Suppose that some point P belongs
to both Baer-planes B and Bj. Then o takes P again to a
common point and this is repeated through the whole cycle
of &. Hence Bj and Bj coincide. Since each of these Baer-
planes intersects the real line pp in one point only, it

follows that aj = ajs which is a contradiction.
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(iii)  To show that each point in PG(2,q2%) belongs to one of the
Baer-planes Bo’ Bl, . qu_q, it suffices to count
the number of points in the union of these Baer-planes.
Since they are disjoint, and each contains q% +q + 1
points, the total number of points in the union in
(q2-q+1)(q%+q+1) = q* + q2 +-1, which is the number of

points in PG(2,q2). O

Notation

Denote by Sg the set {Bj|i=0,1,..,92-q}. (This is distinct from
)

the notation used for the partitioning set Sg in the previous

section.)

Remark

The set Sg is defined by the action of Eq on the set

{p + aipli=1,..,q9%-q}

where p, p are arbitrarily chosen, distinct fixed points of Bo'

However, the set Sg is independent of the choice of p and p.

To see this, think first of the Baer-planes generated by choosing

k k_
gp and ap

instead of p and p.

This only gives different starting points to the orbits of the
original points given by {p+aip}, but the orbits, that is the

Baer-planes, remain the same.

Next consider the case when p and p are replaced by p' and p* in B,

and on the same Tine as p and p.
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Then the sets

{p' + aip'li=1,2,...,9%q}

and

{p + aipli=1,2,...,92-q}

are identical, since both represent all the points of the extension
of £ into PG(2,q2). The Baer-planes themselves are permuted, but

the set remains unchanged.

Finally, given any pair of distinct points p" and p" in B_, the

0’
Tine determined by these two is the kth Singer image of the Tine

L = ﬁﬁ, for some k. So p" and B“ are Singer images of some pair

p' and p' on & and so determine the same set Sg as p' and p',

hence the (possibly permuted) set determined by p and p.

Thus the set Sp depends only on the Singer ordering of Bo'

In Section 2.4 it was found that there is a simple relation between
the number of Baer-planes disjoint from a fixed Baer-plane and
A, = IPGL(3,q)|, the order of the collineation group fixing a Baer-

plane. In the following this relation will be interpreted.

Let o € PGL(3,q), hence p is a collineation fixing the Baer-plane

B Then p permutes the points and lines of Bo’ hence permutes

OI
the extended lines, lines of PG(2,q2), (belonging to BO). In
general, p leaves only B0 fixed, while it transforms the Baer-
planes of the set Sg into other Baer-planes, still mutually disjoint

and disjoint from Bo‘

Two questions arise:
(1) which collineations in PG(3,q) (if any) fix each B; ¢ Sg,
(i) which collineations (if any) fix the set Sg, while per-

muting amongst themselves the Baer-planes belonging to Sg?
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Collineations of type (i) can be found immediately: all transform-
ations belonging to 2q = <0g> cause a mere shift of the

points and lines of Bo’ thus shifting points on the extensions of
the Tines into positions within their own Singer orbits, thus

Teaving the Baer-planes Bj ¢ Sg unaltered.

Conversely, suppose that B0 is given a Singer-ordering and 8 is a
transformation which Teaves B0 and all Baer-planes belonging to SB

unaltered.

Let Bj € Sg. MWithout Toss of generality it can be represented as
J
{Gq(PO +aip,)}
j e {0,1,..,9%+q(mod q2+q+1)}
and

ai € GF(g2)\GF(q).
The action of 6 on a general point

Pj * aipj+1 € Bj
is

1 Pj * aiPj+l > Pk + @iPk+]
also

O @ Pj+1 * @ipj+2 > Py *+ aipg+]

where k, £ ¢ {0,1,..,q2+q (mod(q2+q+1)), since the images of the

two successive points of Bj are still in Bi.

Then 6(pj) = pk and 6(pj+1) = pk+1 = py, hence

£ =k +1 (mod q2+q+1).



-126-

Thus if j = 0 and e(po) = pp then e(pl) = pp+1 and generally

e(pj) = pm+j. SO 0 ¢ Eq.

Hence the only homographies of B_which Teave Bj e Sg unaltered (for

all i in the range) are those which belong to the Singer group

—

_:_q.

Since any homography can be represented as a product of a
transformation belonging to £q and one which leaves a point
fixed, it suffices now to find homographies which leave one point

of By, say Py, fixed and leave the set Sp unaltered, while permuting

0’
the Baer-planes within the set.

Refer again to a given Singer-ordering of Bo’ having generating

cubic
3 = 2
X d,x* + d1X +d, (D)
over GF(q), with associated Singer matrix M.
Since the cubic (D) is irreducible over GF(q), its three roots
belong to GF(q3)\GF(q) and are the conjugate elements:
a’a’a =(a)-

The Singer ordering of B0 is achieved by mapping the successive

powers of one of the roots of D onto the vectors representing the

points of Bo‘ Any one of the three roots of (D) can be used

equivalently.

Fix for the moment one of the roots a of D and regard the vectors

representing the points

p09 Pq, p2q’ “ee
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These are associated with
al, od, (a9)2 ...

Since o4 is also a root of (D), the Singer transformation taking

j j+1
an to a(J )a for any j (mod q%+q+l), has the same Singer matrix

M with respect to_new fundamental points associated with a?, o9,
2q

a °

A similar situation holds for the transformation

02 i +1)q2
e a(J )4 for all j (mod q2+q+1).

Consider now the following permutations of the points of BO:

T : Pj > Pqj
: 1 > j=0,1,..,9%+q (mod q2+q+1)

2 = 7% Pj > Pq2j | (8.2)
(Note that Py is fixed by t.)

It follows from the considerations above that the group <t> of
order 3, is a subgroup of the homography-group of PG(2,q), since
lines Pjs> Pj+ls «.. 90 to lines Pjqs P(j+l)qs> +-- for all j

(mod q2+q+1).

Let T and T2 = T-1 be the matrices associated with t and 2. Then
the matrices TMT-1 and T2MT-2 = T-1MT are the transformation-
matrices which take Piq to P(j+1)q and Piq2 to P(j+1)q? res-

pectively for all j (mod q2q+l1).

Conversely, suppose that a homography p in PG(2,q) with the
associated matrix R is such that RMR™1 takes Pir to p(j+1)r for

some fixed r and all j (mod q2+q+l).

The matrix RMR-1 has the same characteristic equafion and roots as

as M, hence the only values possible for r are 1, q, q2.
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We have come now to

Lemma 2.13

Let the points of PG(2,q) be ordered by the Singer group
g = <o>,

Let o be a homography in PG(2,q) such that for some fixed r and

all j (mod q2+q+1)

pcp'l(Pjr) = P(j+1)r (8.3)

(i) r=1orqor g2
(i1) If in addition p leaves Py fixed, then p is the identity,
or the transformation t or t2 respectively, where t is

defined in (8.2).

Proof of (ii).

Let r

d. Then from (8.3) pop-l(qu) = P(j+1)q for all j

(mod g2+q+1). Let j = 0. Then PP, = P,» hence p'1p0 = p, and so

PoP, = Pq
or

P P, = Pg-

By induction on j we obtain p Pj = Pjq s claimed, so p = 1. The

other cases go similarly. When r =1, p is the identity, and when

Let Bj e Sg, hence Bj is a Baer-plane generated by the action of
the group Eq on a point on the extension of L, = PoP, into

PG(2,92). Let this-.point be
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p() = py + app,
where aj € GF(q2)\GF(q).
Investigate next the action of t (defined by (8.2) on Bj.
A general point of Bj is
(1)) = p + aipyyy.
Hence by (8.2)
T(Okp(i)) = Pkq * %iPkq+q (8.4)
while
t(p()) = p, + aiPq (8.5)
Thus t takes p(1) to a point on the line
PoPq = %s = PsPs+1
(Note: possibly %¢ = 20.)
Since by (8.5), <(p{1)) is on %, we may write
(p{1)) = pg + ajpgs (8.6)
Here a; € GF(q2)\GF(q), since by (8.5) r(p(i)) is not in Bo'

Furthermore, aj # aj, otherwise

Ps * aiPs+l = P, + 2iPgs

comparing real parts, it follows that pg = Pgs SO Ps+1 = P, -

This leads to contradiction, since P, # Pq-
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Comparing (8.4) and (8.5) it is seen that t(ok(p(1))) is obtained
from t(p(i)) by a Singer-shift of kq, while by (8.6), t(p(i))

represents a Singer shift of s from

Hence for all k (mod (q2+q+l1)) r(ok(p(i)) represents a kg+s

Singer-shift from p(J).

This means that the transformation t turns the Singer orbit of

p(1) into the Singer orbit of p(d), hence it permutes the Baer-

planes B; and B;, leaving the set Sp_unaltered.

Conversely, suppose that a homography p of B0 which Teaves Po
fixed, fixes also the set Sg (while possibly permuting the Baer-

planes belonging to Sp).
Denote again p(i) =Py + %P, (a; € GF(q2)\GF(q)). Then
o ok(p1)) = olp + aipyy)-
Let o(pk) = py and p(pk+1) = py. Then
o ok(pli)) = p, + aip,. (8.7)

Similarly p ok*1(p(i)y - o(Pk41 * @3Pgsp). Let ppy,, = Pws
then

p o (p(i)) = p, + aip,, (8.8)

Since by assumption p ck(p(i)) lies in the same Singer orbit of
some point on the extension of 2, into PG(2,q2) for all values of

k (mod (q2+q+1)), it follows from (8.7) and (8.8) that

V=U = W-v (for all k).
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Thus the Singer indices of the p-transforms of the points of B|J

form an arithmetic progression.

It follows from Lemma 2.13 that r = 1, q or g2 (referring to the

notations in Lemma 2.13) and p = 1, T or t2 (as defined in (8.2)).
The above results can now be summarised in the following.

Theorem 2.14

Let B0 be the real Baer-plane in PG(2,q2) and gq = <og> the
Singer group acting on it. This ordering induces a partitioning

of PG(Z,qz)\B0 into a set of disjoint Baer-planes, denoted by Sg.

The set of homographies acting on B0 and Teaving Sg invariant

is a subgroup of PGL(3,q). Each element of this subgroup, denoted
by Lg is the product of an element of the group <> and a Singer

shift:
i .
Lg = {0t |i=0,1,2, j=0,1,..,q%q}
q
where
oq ¢ Pk > Pk+1 and T : pg > pgk for all k (mod q2+q+l).
The order of Lg is

Corollary

The number of ways in which PG(2,q2) can be partitioned into
disjoint Baer-planes, one of them being fixed (e.g. taking B0
for the fixed Baer-plane) is

Ng = —,
A
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where Ay = |PGL(3,q)].

Hence

a3(q3-1)(q2-1)  q3(q-1)2(q+1)

Ng = = .
3(q2+q+1) 3 =

Compare this result with (4.9) in Section 4. This formula gives
the number of Baer-planes Nys in PG(2,q92) disjoint from a fixed

Baer-plane (e.q. Bo). The comparison yields the result
No = (a2-q)Ng (8.9)

Each set Sg, determined by a fixed Singer-ordering contains q2-q
Baer-pTlanes. Since NB gives the number of partitionings of
PG(Z,qz)\B0 into disjoint Baer-planes, the relation (8.9) leads to

the conclusion that every Baer-plane, disjoint from B_belongs to

exactly one partition of PG(2,9%)/B_ into disjoint Baer-planes.
This may now be stated in a more general form:

Theorem 2.15

(1) If B, and B, are two disjoint Baer-planes in PG(2,q2),
there exists exactly one set of q2%-g+1 mutually disjoint
Baer-planes, including the given Baer-planes Bl and Bz’

which partitions PG(2,q2).

(i) The number of ways in which PG(2,92) can be partitioned
into disjoint Baer-planes is
q%(q*-1)(q2-1)
3

P =

Proof

(1) Transform B1 into Bo'
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(1) Let N be the total number of Baer-planes in PG(2,q2),
and N0 the number of Baer-planes disjoint from a fixed
Baer-subplane. Then there are

N N
—-20

ways in which a pair of disjoint Baer-planes may be chosen.
By (i) such a pair determines uniquely a partition of

PG(2,q2).

On the other hand, each partition contains q?-q+l1 Baer-
planes, hence the number of ways a pair may be chosen out

of these is

(qz-q+1%(q2-q)

So the nubmer of possible partitions is

N Ng
p = )
(92-q+1)(q2-q)

Setting for N and N the formulae given in (1.2) and (4.8)

of this chapter, we obtain
q3(q3+1)(q2+1)q*(g-1)3(q+1)
3(q2-q+1)(q%-q)
which can be simplified to
q®(q*-1)(q2-1)

3

P =

P =

as claimed. O

2.9 The "Singer wreath" of Baer-planes

(Note: In [28] the name given to Singer wreaths was "Singer Merry

Go Round".)

In Section 2.2 it has been proved that if two Baer-planes share

g+l points on a line &, then they share also g+l lines going
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through the same point, which may or may not be a point of g.
Conversely : if two Baer-planes share g+l Tines intersecting in
the same point P, then they share also g+l points of some line,

which may or may not contain P.

We shall say in this situation that the two Baer-planes are strongly

intersecting.

Configurations of strongly intersecting Baer-planes have been
found before. FEach pair of Baer-planes belonging to a homology-
or elation-cluster is strongly intersecting. These configurations

are gdenerated by perspectivity groups.

It is found that a Singer group acting on PG(2,92) generates
another interesting configuration of strongly intersecting Baer-
planes. This configuration will be called a

Singer wreath

and is described in the following theorem.

Theorem 2.16

The orbit of B0 under the action of the Singer group Eq2 = <oq2>
contains a set of q(q+l1) Baer-planes strongly intersecting B0

which in two different ways fall into g+l classes, such that

(a) 1in each class there are q Baer-planes which share g+l
points of the same line;
(b) in each class there are q Baer-planes which share g+l

Tines going through the same point.

Example
Before proving the theorem, we illustrate it with a diagrammatic

sketch of results obtained by a computer survey of PG(2,25).
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In this case the generating cubic of the Singer group is
x3+x+y=0

where vy is a root of x2 - 2x - 2 = 0 over GF(5).

In the computations jllustrated g
- 5 \l
by the diagram, 30 Baer-planes b
Y g P less /. W ™~ ¢,
were found, such that Po Mé:
Feso Pes

(a) they all intersect strongly B> \ ;%??P“7 Pias Pwi
N AN

in all the real points of one

of the following 6 Tines: G

L, 8, 4 (£%)

00 Y10 Feur Taese tssio Fsse
and in all the real lines through one of the following 6

points:

*
po’ pss’ plOO’ p383’ p587’ p650 (P*)

(b) the 30 planes fall into 6 classes. Each class has 5 Baer-planes
which share all the real points of one of the lines in £*,
(c) the 30 Baer-planes fall into 6 classes, 5 Baer-planes in each

class, which share all the real lines through one of the points

of the set P*.

Some further observations can be made in this particular case:

The Singer indices of the points belonging to B n £, in PG(2,25)

under the given Singer ordering are
0, 1, 64, 265, 551, 586,

while the lines belonging to the set £* have the same indices.

e e =

PR
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The general case : It was seen before (cf. Section 2.6) that if pj
is a real point on Tine L9 then pjyq is also a real point, hence

the line
Li = PiPi+l
is indeed a real line.

Moreover, if ps: ¢ 2 NB_, then all the real points on % are ith
v L -I

Singer images of the real points on L,

For consider the point Pj € 20 n Bo'
Then pj = (0 f g) = fp1 t 9P, hence

Uipj = Pi+j = T Pjp1 * 9Py, (9.1)
where f, g € GF(q).

So the real points on %4 are

Pis Pi+ls eees Pitjs oo- (pj € % nBO).
Remark :
(1) It follows that if 25, Lj € £*, which is the set of

lines pj pj+1 (pj e zof1BO), then their intersection is

the point Pi+j
(i) if pj e 2,MB,, then p2i is a real point.

Note: In (9.1) the Singer transformation is treated as a linear
transformation on a sum. This is justified within the range

considered, but not generally. The Singer group <og> is identified
with a cyclic group of linear transformations in GL(3,q) only for oi

q
where 0 < i < q2 + q + 1 (cf. proof of Singer's Theorem in the
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introductory chapter). The Singer group referred to in (9.1) is
<oq2>, hence here the permitted range is 0 < i < qt+q2+1.

The transformation o' takes Py and P, to p; and pj4q respectively.

where i+l < g“*+q2+1. This is so, because i represents a point on
the Tine 20 = PyP,s SO Pgqt+q2 = P-1 cannot be on 20, otherwise

Pgs P,» P, are collinear (contradiction).

Proof of Theorem 2.16

k
Denote by Bk the transform ¢ 2(BO). Consider the set
q

W= {Bj_ild # 1, pi> Pj € 2,0 B} (9.2)

The set W contains (q+l)q distinct Baer-planes, since there are
(q+1)q ordered pairs formed out of the g+l indices of the real
points on 20. Since these indices form a perfect difference set,
the differences j-i are distinct. It is claimed now that the Baer-

planes of the set W form a Singer-wreath having the properties

stated.
Consider the set of lines
£* = {83 = pipi+1lPi € 2, ﬂBO} (9.3)

and for each 2 e £, consider the Singer-dual %£i = pg-i,
where s is defined as in Section 2.6. By the Singer duality

theorem (Theorem 2.9) for each 2 e £*, pg_j € Bo'
Define P* = {ps_i|%i € £*} (9.4)

It was shown in the preliminaries that the transformation on
q
takes the real slot on £, to the real slot on zj, where %; & £*,

Since 0351(21) = 1 (25 € £%), and the real slot on &5 is
. 9

the 012 image of the real slot on % , it follows that a (j-i)-
q ettt
shift takes the real slot on 2§ to the real slot on %j.
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Dually, the bunch of the real lines through pg, belonging to Bys
is taken by o;; to the bunch through pS-1; the lines through ¥
ps being duals of the points on 2,4, their o;; transforms are g
duals of the 012 transforms of the points on L9, and since it

was shown that the 012 transform of the real slot on L9, 1s again

real, so is its dual, the ca; transform of the real bunch through

Ps. It follows that if pg.j, ps-j € P*, theng_J;1 takes the real
q

bunch through ps_j to the real bunch through ps_j.

Let wi and W) be subsets of W, such that

Wi {Bj_jlj # 1, Pi» Pj € L4 ﬂB0 and i is fixed}

wd

{Bj_113 # 1, Py, Pj € 2, NB and j is fixed]

Then all the Baer-planes belonging to W share the slot zj B0

and all the Baer-planes belonging to WJ share the bunch of real

Tines through ps.j.

In the first case, Bj-i = on BO, and the line £j belongs to

.. q
it, since Ly = 03_1 2i, where 25 € Bo' Moreover, it follows
from the preceding that Bj-i shares with B0 a slot of q+l1 points

on the line Lje

(Note: the line 2j belongs to all Baer-planes Bj-k, if 2 e B,
but only if Ly, 2k € £*, can it be ascertained that the slot
£5 N Bj.k is real.)

;
Similarly, if Bj_j € Wj, then pg_j = o Ps-j where ps_j ¢ B .
Hence pg.i € Bj_j.

Since ps_j, Ps-j € P*, it follows also that the bunch through pg_j

determined by B_, belongs to Bj_j.

0’
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There are q Baer-planes belonging to each set wi, Wj, and each of
the sets wi and WJ can be chosen in g+l ways by fixing i or j

respectively.
This completes the proof. O

Remark
The two sets £*, P* belonging to B0 determine (q+1)2 clusters, by
choosing the slot from one of the Tines belonging to £*, together
with a bunch determined by a point belonging to P*. Each of the
q(g+1) Baer-planes belonging to W belongs to one of the clusters

together with Bo’ but

(1) no Baer-planes of W belongs to a (pg.i, %i)-cluster
(that is a cluster determined by a Tine of £* and its dual).
(i) no two Baer-planes of W belong to the same (pg_j, zj)-

cluster (ps-i & P*, L5 € &%),

This follows from the fact that the Baer-plane Wj-i belongs to the
(Ps-1, £j)-cluster determined by the bunch and slot in Bys
determined by the point pg.j and the line L; respectively. Here

1 # J and each Baer plane in W is determined by a different (i,3)-

pair (i#j).

Theorem 2.16 proves that Singer-wreaths of Baer-planes exist in
all PG(2,q2), but at this stage the number of such structures

remains an open problem.

To add a further example where Singer-wreaths are produced by
calculations not needing computers, tables 1(a) and 1(b) are
completed with tables 2(a) and 2(b) which exhibit 1ists of Baer-
planes produced by the action of the respective Singer-cycles

acting on the real Baer-plane.
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Referring to tables 1(a) and 1(b) for finding the sets £* and P*,

we have the following data:

I. Tables 1(a) and 2(a)

Here ¢, = ¢, =1, c; =a (primitive element of GF(4)).

Sopg =(0 0 1) = P,» Hence s = 0.
The real points on 20 are po, p s Py
Hence £ = {zo, ORI

Duals : P* = {po, Pops P7}
The values for i and j are 0, 1, 14, with differences :

1, 14, 13, 20, 7, 8.

Hence W = {Bl, B s B3 B,os B, Ba}

Classes:

(a) Sharing q+1 = 3 points of a line

- o . e

W {B,,B5}  Common Tine: %, With points: p p, p .
. ine: ' ints:

W {813’814} Common Tine: &  ~with points: P, Py Pos
0 = i ' i i 5

W {B7,B20} Common Tine: & = with points: Py P, P,

(b) Sharing 3 lines through a point

W, = {B,,B,,} Common point: Py with lines £, 2. 2,
W, o= {813,820} Common point: p,  with lines e %ig %o
W, = {B,,Bg} Common point: p, with lines 2, 2, 2
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II. Tables 1(b) and 2(b)

Here c, =

Ps =

(1 1 1) = Pys hence s = 3,

Real points on £ _: Pos Pys Pg-

So

Duals:

0

#* = {2, %5 25}

P* = {ps, Pys P}

Differences of set {0, 1, 8} are 1, 8, 7, 20, 13, 14.

W= {8, Bg, Bys Bag» Bigs Byt
Classes:
(a) WL = {Bl, Blh} Common line: %, with points: P, P, Py
Wwé = {B7, Be} Common line: %4 with points: Pg Py P¢
WO = {813, Bzo} Common Tline: %, with points: Py P, Pg
(b) W, = {Bl, Be} Common point: p, with lines: Ly Ra 2
W, = {8, B,,}  Common point: P, With lines: & 2, 2 .
We = {B 5> B ,} Common point: P,g With Tines: 2. 2 2
ATl these results agree with Tables 2(a) and 2(b).



Bl
11
B2
Bl
By
Bs
Bl
17
18
19

20
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Table 2(a)

Generating cubic :

x3 = x2+ x + aq

10
11
12
13
14
15
16
17
18
19
20

Indices of Points pj

1
2
3

10
11
12
13
14
15
16
17
18
19
20

10
11
12
13
14
15
16
17
18
19

20

10
11
12
13
14
15
16
17
18
19
20

14

16
17
18
19
20

10
11
12
13

15 20

16
17
18
19
20

10
11
12
13
14

0
1

10
11
J2
13
14
15
16
17
18
19

10
11
12
13
14
15
16
17
18
19
20

Indices of lines 2

1
2
3

10
11
12
13
14
15
16
17
18
19
20

6

7

8

9
10
11
12
13
14
15
16
17
18
19

20

Y/

8

9
10
11
12
13
14
15
16
17
18
19
20

14
15
16
17
18
19
20

10
11
12
13

19
20
0

10
11
12
13
14
15
16
17
18

20

10
11
12
18
14
15
16
17
18
19
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Table 2(b)

1 x3 = ax2 + ox + a

Blo
11
12
13
Lh

Bs

Ble

By

Bls

B

20

Generating cubic

10
11
12
13
14
15
16
17
18
19
20

Indices of Points pj Indices of lines 24
1 2 3 8 9 16 0 1 2 3 8 15
2 3 4 9 10 17 1 2 3 4 9 16
3 4 5 10 11 18 2 3 4 5 10 17
4 5 6 11 12 19 3 4 5 6 11 18
5 6 7 12 13 20 4 5 6 7 12 19
6 7 8 13 14 0 5 6 7 8 13 20
7 8 9 14 15 1 6 7 8 9 14 0
8 9 10 15 16 2 7 8 9 10 15 1
9 10 11 16 17 3 8 9 10 11 16 2

10 11 12 17 18 4 9 10 11 12 17 3

11 12 13 18 19 5 10 11 12 13 18 4

12 13 14 19 20 6 11 12 13 14 19 5

13 14 15 20 0 7 12 13 14 15 20 6

14 15 16 0 1 8 13 14 15 16 0 7

15 16 17 1 2 9 14 15 16 17 1 8

16 17 18 2 3 10 15 16 17 18 2 9

17 18 19 3 4 11 16 17 18 19 3 10

18 19 20 4 5 12 17 18 19 20 4 11

19 20 0 5 6 13 18 19 20 0 5 12

20 0 1 6 7 14 19 20 0 1 6 13
o 1 2 7 8 15 20 0 1 2 7 14

16
17
18
19
20

10
11
12
13
14
15
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CHAPTER THREE

ON THE BAER STRUCTURE OF HIGHER DIMENSIONAL

SPACES OF SQUARE ORDER

Introduction

The intersection properties of Baer-planes studied in Chapter 2
can be generalised for higher dimensions. The introductory
chapter deals with the basics of the projective space PG(n,q), of
dimension n and order g. In this chapter the space of reference

will be
S = PG(n,q?)

of dimension n > 2 and of an order which is an even power of some
prime number. The points of PG(n,q2) are (n+l)-tuples of elements
belonging to GF(q?). The subset of points, the coordinates of
which are elements of PG(q) (possibly multiplied by some common
non-zero element of PG(q2)), determine the subgeometry PG(n,q).
As in the two-dimensional case, this subgeometry will be called

the real Baer-space Bo’ (or more precisely in some instances, the

real Baer n-space).

A change of coordinates leads to a different subset of S, with a
geometry isomorphic to that of Bo' The coordinates of all the

points of S are determined by the choice of n+2 fundamental points:
(10..0), (01 ..0), ..(00 .. 1), (11 ..1).

These serve also as fundamental points of Bo' If any other set of
n+2 points of which no n+l are linearly dependent, is chosen for
fundamental points, then (in general) another Baer-space will

result. The group of homographies of PG(n,q2), that is the group
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PGL(n+1,92), which will be denoted here shortly by T, is trans-
itive on ordered sets of n+2 points, no n+l Tinearly dependent, as
already discussed in the introductory chapter. Thus T generates

a set of homographical images of Bo’ which will be referred to as
Baer-spaces (Baer n-spaces) of § and generally denoted by B, with

some distinguishing subscripts.

An argument identical to the one used in the two dimensional case
(Section 2.1) shows that field-automorphisms of GF(g2) transform
the real Baer-space to itself, and in particular the transformation
o > a9 fixes all the points of B0 and determines an involution

of PG(n,q2). Since, by the fundamental theorem of projective
geometry, all collineations of PG(n,q2?) can be represented as
products of a homography and a field automorphism, it follows

that all the Baer-spaces of PG(n,q2) can be represented as homo-

graphical images of Bo'

To determine the number of Baer-spaces in S, we proceed similarly
to the two-dimensional case. Denoting by T the group of homographies

of S, and by r, the subgroup of I fixing Bo’ we have

n+l .
i=2
while
n+1 .
It | = gn(n+l)/2 1 -1
'|=

(by (5.3) in the introductory chapter).

Thus the number of Baer-spaces in S is

|T| n+1 )
N= — = q(n+1)n/2 I (q1+1) (1.1)

i=2
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3.2 Computation results in three dimensions

As a preliminary investigation, the computer survey used earlier
for finite Galois planes was extended to three dimensions. For
q=2,3,4,5, Baer 3-spaces of PG(3,92) were generated and thus
intersections surveyed. The computations yielded, as expected,
all the configurations of the two dimensional case listed 1in
Section (2.2), and in addition the following configurations

appeared:

(1) g+3 points, q+l on one Tine; the

Tine joining the remaining two

)

points skew to the fipst line;

(2) 4 points, not coplanar;

(3) 2q+2 points of a pair of skew ::::::f::::::::::
Tines;
(4) g% + q + 1 points of a plane

(5) g2 +q + 2 points, q2 + q+1

in a plane. ; “IIIIIIII’

The information given by these results is not as complete as in

the two dimensional case, as in this case a full description has to
give account of points, lines and planes in a configuration, However,
further analysis of the computer survey also showed that the number
of planes common to two Baer-spaces 1s equal to the number of

common points. (The exact meaning of the term "common plane" is

given in later sections.)

The conjectures which could be made on the basis of these results
pointed the way to the general investigations in the n dimensional

case, forming the subject of the following sections.
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3.3 Basic properties of n-dimensional Baer-space

Notations and definitions

Denote shortly by S the space of reference PG(n,q2), that is a
projective space of dimension n and order q?. It is necessary to

distinguish between various types of projective spaces embedded in

(i) A subspace, usually denoted by Sk, is a projective space

included in the space of reference, having the same order,

but smaller dimension. For Sk, we have the dimension k

where 0 < k < n and each Sy is isomorphic to PG(k,q2).

(i1) A Baer-space, as defined in the Introduction has the same

dimension, but different order, namely q instead of q2.

The Baer-space B is a projective Sspace isomorphic to

PG(n,q).

(iii) A subspace Sk of S belongs to the Baer-space B if Sk N B

is a k dimensional subspace of B. Thus a line Sl < S belongs

to B if S1 NB has g+l points. A plane S, <S belonging

to B has q%2 + g + 1 points in S, N B, and so on.

Since B is a projective space, it suffices to check that
there are k+1 linearly independent points belonging to Sk nB

for ascertaining that Sy belongs to B.

(iv) Definition

A Baer k-space of S where 0 < k < n is a projective space

embedded in S and isomorphic to PG(k,q). Wherever there is
no possible ambiguity, a Baer n-space will be called simply

a Baer-space of S.
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Note: A Baer k-space of S can be thought of alternatively as a k-

subspace of some Baer-space, or as a Baer-space of some subspace

Sk of S.

The enumeration of projective subspaces

Theorem (1.1) gives the number of k-dimensional subspaces of the n-
dimensional linear space LG(n,q) over GF(q) as the Gaussian

coefficient:

" - (q"-1)(q"-1-1) ... (qn-k+1_1)
! (g-1)(q2-1) .. (gk-1)

k

This formula was already quoted in the introductory chapter,
together with its modification for projective spaces. It was found

that the number of k-dimensional subspaces of the n-dimensional

projective space is equal to the number of k+l-dimensional subspaces

of an n+l-dimensional linear space, hence is given by (cf. (4.5)

in the Introductory Chapter)

" (3.1)
k+1 q. L]
In particular, the number of points in PG(n,q) is
n+1 qn+1_1
[ ]q = as well known;
1 q_l
the number of lines of PG(n,q) is
n+l n
n+l (g""*-1)(q"-1)
[ 1q = (3.2)
2 (q-1)(q2-1)

the number of hyperplanes, i.e. subspaces of dimension (n-1) is

n+1_1 i

n+1 n+1 q
i Y Y

(3.3)

and so on. These formulae will be frequently used in the following.
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The Baer-plane B is known to be dense in PG(2,92); each point of
PG(2,q2) lies on a line of B, (on exactly one, if the point is
external) and each Tine of PG(2,q2) intersects B in 1 or g+l

points. The following two theorems treat the n-dimensional case.

Theorem 3.1
Let P be a point of S, external to the Baer-space B. Then P lies

on exactly one Tine belonging to B.

Proof
P 1ies on at most one Tine of B, since two lines belonging to B
intersect at a point of B. Hence we must show that through each

external point P there exists a line belonging to B.

Equivalently, we show that S has no other points than the ones on
the lines belonging to B. We use (3.2) for the number of lines
and we count the points external to B on these, since the external
points form disjoint sets. Since on each Tine there are
(q2+1)-(q+l) = q2 - q external points, the total number of external
points on the lines is

(q*1-q)(gM-1)  q(qn*1-1)(gn-1)

(g2-q) = (3.4)
(g-1)(q2-1) q2-1

On the other hand, the total number of points of S external to B
is
n+1 n+1 q2n+2_1 qn+1_1

L7 1g2 -0 "1q = - (3.5)
1 A 1 4 q2-1 q-1

Simplification shows that the results in (3.4) and (3.5) are the

same,

This completes the proof. 0
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In the two dimensional case it is also true that each line of the
projective plane PG(2,q2) has at least one point common with any
of its Baer-planes. If the line does not belong to the Baer-plane,
then it has exactly 1 point in common with the Baer-plane, for a
Tine having 2 points in common with the Baer-plane has q+1 points

common with it and belongs to it.

In dimensions higher than 2, a line does not necessarily intersect
a Baer-space B. In fact we can show that through each point

external to B, the number of Tines skew to B is

(q"-1-1)(qn-2-1)
Lg = q3 > 0 when n > 2 (3.6)
q2-1

To prove this, we must find first the number of lines through an
external point P intersecting B. Of these, exactly one contains
q+l points of B and so the remaining points of B number

qn+l.1 qn-1-1

- (q+l) = q2 ’
g-1 g-1

and each of these, joined to P gives a 1ine not belonging to B,
hence containing only one point of B. So the number of Tines
through P, not skew to B is

qn-l_l
2 + 1.

q
g-1

The total number of lines through a point can be found by writing

down the numbers of point-line incidences in PG(n,q2).

n+1
Since there are by (3.2), [ » lq2 Tines each with q2+1 points,

the number of incidences is

(q2(n+1)_1)(q2n_1)
(9%-1){q*-1)

(q2+1)
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n+l
while on the other hand the [ g ]qz points in PG(n,q2) give

q2(n+1)_1

p q2-1

incidences, where Lp is the number of lines through a point.

Comparing the two expressions, we obtain
(q2(n+1)_1)(q2n_1) q2(n+l)_1

L = (q2+1}// —_—
P (q2-1)(q*-1) q2-1

qén-1

q2-1
The result is the same as the number of points in a hyperplane.
Hence Lg is given by the difference

qzn_l qn'l_l
- (q2
q>-1 q-1

+1).

Simplifying this expression, result (3.6) is obtained.

In the two dimensional situation the lines of S can be regarded as
hyperplanes in PG(2,q2). Hence it is appropriate to look at the
intersections of the hyperplanes of S and B. Here the situation

is summarised in the following theorem.

Theorem 3.2
The intersection of a hyperplane of S with a Baer-space B is ejther

a Baer (n-1)-space (a hyperplane of B), or a Baer (n-2)-space.

(Note: This theorem is allied to a resylt in [9]: If B is a Baer
S-space, then an Sp_t subspace of S, intersects it in a Baer k-space,
where k » S-2t, a result not seen by the author before publishing

this in [29].)
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Proof

Any point-pair in the intersection of B and H (the hyperplane of

S) determines a Tine in each H and B, hence H N B is a subspace of

E.

It is readily seen that H N B is never empty. Using the dimensional

equation for two subspaces Sa and Sp:
d(Sa) + d(Sp) = d(Sz n Sp) + d(S3 + Sp),

we have for the intersection of a line and a hyperplane in S either
the Tine itself, or a point. Hence for each of the lines belonging
to B there is at Teast one intersection point with H. Since the
number of points in H is (q2n-1)/(q2-1) and the number of lines
belonging to B is ((q”+1-1)(q”-l))/((q—l)(qz-l)), and the difference

(qn*1-1)(qn-1) g2n-1  q(qn-1)(gn-1-1)
. . > 0

(q-1)(q2-1) q2-1 (q-1)(q2-1)

it follows that some points of H are common to at least two lines

of B hence belong to B,

In order to determine the possible dimensions of the HN B spaces,

we use again the incidence-counting technique, counting incidences

of points of H with lines of B.

Let x be the number of points and y the number of lines of H n B.

Then (q2N-1)/(q2-1) - «x points of H do not belong to B and so by

Theorem 3.1 each of these points counts for just one incidence.

Similarly ((q"*1-1)(g"-1))/((q-1)(q2-1)) - y lines of B do not

belong to H and so these lines intersect H just in one point each.
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For the internal points and lines, (numbering x and Yy respectively)
we have (q"-1)/(g-1) lines of B on each point, and q2 + 1 points

of H on each of the y lines.
So the incidence equation becomes

g1 q2n-1 (qM*1-1)(qn-1)
X + ( - x) = y(q%+l) + ( -y)  (3.7)
q-1 q2-1 (g-1)(q2-1)

After some simplification we have

gn-1-1 (qn-1)(qn-1-1)
-qy = (3.8)
q-1 (q-1)(q2-1)

X

HN B is a proper subspace of B, so its dimension d is less than

n.

Substitute

qd+1_1 (qd+1_1)(qd_1)
= and y =
q-1 (g-1)(q?-1)

into (3.8) and simplify again to get

X

(q+1)(qd*1-1)(gn=1-1) - (qd*+1-1)(qd+l-q) = (qh-1)(gn-1-1)
(3.9)
Let t = qd*l. Then (3.8) simplifies to the quadratic
t2 - t(qn + qn-l) + q2n-1 =0 (3.10)
whence t = qN or gqn-1, that is

d = n-1 or n-2.

These are the only possible values for the dimension of H n B.
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Thus 1f a hyperplane of S does not belong to the Baer-space B,
then it shares with it an (n-2)-dimensional subspace of B. In
this sense Theorem (3.2) may be interpreted as the dual of Theorem

(3.1). O

In the case of two dimensions, Theorem (3.2) says that if a line
(a "hyperplane" in PG(2,q2)) does not belong to a Baer-plane, then

it intersects it in a O-dimensional space : a point.

Intersections of Baer-spaces

The following theorem generalises the result known for Baer-planes
and verifies the conjecture based on the computational results in

three dimensions.

Note: "Sharing" a subspace Sy between two Baer-spaces Bl and B2
does not necessarily mean that Bl n Sy = 82 N Sx. It only means
that Sy belongs to both B, and B, that is : both B N S and
B, nSk are k-dimensional subspaces of B1 and 82 respectively,

2
which may or may not coincide pointwise.

Theorem 3.3
The number of points of intersection of two Baer-spaces of S is

equal to the number of hyperplanes shared by them.

Proof

Let B1 and B2 be the two Baer-spaces considered and let the number

of the points common to them be r where r > 0.

Denote by h;j the number of hyperplanes belonging to Bl which share

i points with Bz’ hj > 0. Then we have the following relations:
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qn*l.1
) hy = (4.1)
i g-1
qn-1
}ihj=r—-Hm (4.2)
i g-1

where the first relation arises from counting all the hyperplanes
of Bl, while the second one counts the incidences of points of

Bl n B2 with the hyperplanes of Bl, noting that through each point
of B1 there are (q"-1)/(q-1) hyperplanes of Bl, (the same number
as there are points in a hyperplane, following from the symmetry
relation between the number of points and number of hyperplanes in

a projective space).

Next count the incidences of the points of Bz\Bl and the hyperplanes
of Bl. By theorem 3.2 these hyperplanes intersect 82 in an n-1
dimensional or n-2 dimensional subspace of Bz' Assume that out of
the set of hj hyperplanes, defined as above, xj intersect 82 in
one of its hyperplanes, whence hj-xj intersect it in an n-2
dimensional subspace. Thus the number of incidences of this class
of hyperplanes of Bl with BZ\Bl is

qh-1 gn-1-1

Xj(=—— - 1) + (hj - x3)(
q-1 q-1

- 1) =14 (4.3)

Since we are interested in subspaces of dimension n-1 through

points external to Bl, fix a point P, not in Bl, and denote the

number of hyperplanes through P and belonging to B1 by hp. ATl

these hyperplanes intersect in Lp which is the unique line of Bl
through P, because any line of B1 intersects any hyperplane of B1
in at least one point and since by assumption Lp also goes

through P, it is a 1ine of any particular hyperplane of the set
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considered. Thus the number of hyperplanes considered is the same

as the number of hyperplanes through Lps> @ line of Bl, hence hp

is the same for all points external to Bl. Since hp is given by
the number of hyperplanes through a line it may be calculated by
the incidence-relation of lines and hyperplanes of B,, where the
n+1 . ~ntl

) ]q, number of hyperplanes is [n ]q

and the number of lines in a hyperplane is [;]q, hence

number of Tines of B, is [

n+1 n+l

n
hp[ 5 :lq = [qu[ n ]q (4-4)
From (4.4) we have
qn—l_l n-1
hy = =[ ] (4.5)
P q-1 1 q

Thus the number of incidences of points of BZ\Bl with the hyperplanes

of B s
1

hp = ) T4,
Pz-:Bz\B1 i

where I is expressed in (4.3). Using this together with (4.5),

we obtain the required incidence equation:

qn-1-1 qntlg qn-1 qn-1-1
-r) = ) (xi(—= =) + (hj-xj)( - 1))
q-1 g-1 i g-1 q-1
(4.6)

The right hand side of (4.6) can be written as

qn-1  gn-1-1 qn-1-1

- )L xi = Lhi i+
q-1 g-1 i i

L his
g-1 i

where ) xj = x is the number of hyperplanes shared by B and B,-
.i LS
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By using (4.1) and (4.2), equation (4.6) becomes:

qn-1-1 qn+la qn-1  gn-1-1 ghtl-y
- r‘) . an"l - r + ,

g-1 g-1 g-1 g-1 q-1

S0
qn-1  gn-1-1 -
r( - ) = x gh-1
g-1 g-1

whence r = x as claimed. O

Corollary

If two Baer spaces are disjoint (pointwise), there is no hyperplane

(of S) belonging to both.

Theorem 3.3 does not say anything about the nature of the intersection
configurations. The two dimensional case and the three dimensional
computer findings show that in general, the intersections of two
Baer-spaces are not Baer k-spaces (0 < k < n). Intersection
structures and restrictions on the possible numbers of intersection
points of two Baer-spaces is the subject of the following theorems.
The first of these is direct extension of the two dimensional

result.

Theorem 3.4
Let P and Q be points common to the Baer-spaces B and B . Let
1 2
2 = PQ. Then
(B, n2)n (B, Ng) = {P,q}
or

Bl naes= 82 n 4.

In other words this theorem means that if two Baer-spaces have
three points of a Tine common, then they share g+1 points, (called

earlier a slot).
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Proof

As for the two dimensional case (Theorem 2.3), changing appropriately
the fundamental points to n+l-tuples and the 3 x 3 homography .é

matrix to an (n+l) x (n+l) matrix.

Corollary

A Baer kl-space and a Baer k2-space share 0, 1, 2, or g+l points

of any given line.

Proof
Denote the two Baer k-spaces by Bl(kl) and 32(k2) to indicate

their dimensions. Two Baer n-spaces Bl and 82 can be chosen such

that
B, (ki) =B and B _(k2) cB . -
— 1 2 - 2

1

Let P and Q be points common to Bl(kl) and Bz(kz). The Tine
2 = PQ then belongs to Bl(kl), hence to Bl, also to Bz(kz),

hence to Bz'

By Theorem (3.4), either

(i) 2\ {Pl’PZ} and B, 0 B, are disjoint, or
(i1) 2 NB =2 NB,.
In case (i), z\{Pl,PZ} and Bl(kl) n Bz(kz) are disjoint, since
ki) n k2
B (ki) ng (k2) <8 nB,.
In case (ii), we observe that

k n
3 ﬂBl( 1) =y B,

also
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k1) =
¢ nB (ki) =4 q B,

Similarly 2 n Bz(kz) =% 0B8,.

-

Since 2 N B, =2 NB, it follows that 2 N Bl(kl) = 4N Bz(kZ) as

claimed.

Baer complexes

In this section the nature of the set of points which can form an

intersection of two Baer-spaces is investigated.
Definition
A component of B1 n 82 s a Baer k-space such that

(1) all its points belong to Bi n 82,

(2) it is maximal in the sense that it is not contained in a
Baer k'-space (k' > k), which is also included with al]

1ts points in B1 n Bz'

(A component can be an isolated point.)

Definition

A subspace Sk (that is a k-dimensional subspace of S) is said to

belong to B,.N B, if

(1) Sg belongs to B1 and belongs to 82 (that is Sk n B1 and

Sk n 82 are of dimension k),

(2) if sx nB, =5 nB,.

Definition

An extended component of Bl n B2 is a subspace Sk (of dimension k)

of S, which contains a Baer k-space, a component of Bl n Bz'
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(1)

A Baer k-space extends uniquely into a subspace Sy of S,

hence a component of Bl n B2 determines uniquely an associated

extended component.

A subspace S is an extended component of Bl ne,, if and only
if it belongs to Bl n B2 and is not contained in a higher

dimensional subspace of S which also belongs to Bl N Bz'

If two subspaces of a Baer-space B are skew, then so are

their extensions into S, since independént basis vectors of
the extensions may be selected out of the vectors belonging
to the subspaces of the Baer-space of reference. It follows

that if two spaces S _and S, are known to intersect and each

belongs to the Baer-space B, then S nB and S, n B are

intersecting spaces.

Lemma

Let S

3.5

d be a d-dimensional subspace of S belonging to Bl N Bz’ the

intersection of the Baer-planes Bl and Bz‘ Let 2 be a line inter-

secti
in B
i

and £

ng Sq in P, and containing two points: Q, R distinct from P,
N Bz‘ Then the d+l-dimensional subspace Sq+1, spanned by Sqg

belongs to Bl n BZ.

Proof

Since
secti
dimen
It ca
B .

L = Q

Sq belongs to B N B,, the inter-
onSq =S4 n (B nB,) isad-
sional projective space of order g.

n be regarded as a subspace of say

Since Q,R ¢ Bl n Bz’ the Tine

R is also in Bl. Thus the space
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Sd+1 = Sqg + ¢ is a d+l-dimensional subspace of B . Its extension

into S is the space S44+1 = & +S4. It must be shown now that the

space Sg+¢1 is contained in B nB,.

Let T be a point in §a+1\({Q,R} U 56). We consider first the case
when T Ties on 2. Note (3) above implies that P = g2 n S4q is in
Sd, hence in B, nB,. Sothe Tine £ has 3 points P, Q, R in

Bl n Bz’
T is not on 2. Let Py, PR be the intersections of QT and RT

hence the slot 2 N Sq4p is in Bl nB,. Assume next that

respectively with Sq. Then the lines QPg and RPp belong to B, as
well as to B, so their intersection T is in B NB,. Hence Sd+1

is included in B, nB, and so the subspace of S, Sqi; belongs to

Bl n Bz' -

Corollary

If the subspace Syq belongs to Bl n 82 and intersects a Tline which

contains two points of Bl N 82, then Sq is not an extended component

of Bl n 82'

Lemma 3.6

If two subspaces, Sl and 32 belong to Bl nB_, and Sl n 32 Eod, Sl

2,

or S_, then each is contained in a higher dimensional subspace of

23

S, belonging to Bl n Bz'
Proof
Let the dimensions of S, S_ be d and d
12 72 1 2
respectively. Suppose the point P is in m

S, NS,. Let £ bea line through P in S,- ‘,

1

Then by Lemma 3.5 the d1+1 dimensional space
in S, spanned by S1 and £ belongs to Bl n Bz‘
Similarly 52 is a subspace of some d2+1

dimensional subspace of S, belonging to B1 n Bz' O
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Corollary

If S1 and 32 are extended components of B1 NB_, then they are

2,

skew to each other, It follows that the components of Bl n 82

are mutually skew.

Proof
Suppose that S1 and 32 intersect (properly). Then by Lemma 3.6
they are subspaces of higher dimensional subspaces belonging to

Bl n Bz' Thus Sl and 32 cannot be extended components of B1 n Bz' O

Lemma 3.7
If S1 and S2 are extended components of Bl n Bz’ then the space
spanned by S1 and 52 does not contain any point of Bl n 82 other

than those in S1 and Sz‘

Proof
Let d1 and d2 be the dimensions of S1 and 32 respectively. Since
by the corollary of Lemma 3.6, Sl and S2 are skew, it follows from
the dimensional (Grassman) equation that the dimension of Sl + 52

= S_ is
3

d +d_+1.
1 2
Suppose that there exists a point P in S3 such that

PeB nB

. 2 but P € Sl U 52.

Let 3; and §; be subspaces spanned by S1 and P, and S2 and P
respectively. Their dimensions are d1+1, and d2+1. Comparing
these with the dimension of 33, it follows from the dimensional
equation that Sl and'S'2 intersect in a Tine 2. It follows again

from the dimensional equation applied to 31, Sl and ¢ that 2
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intersects S1 in a point Q. Similarly £ intersects 52 in R.

The points Q and R are distinct from P, since P is not in S1 or

Sz' Thus 2 contains three points P, Q, R of Bl N 82 and so by
Lemma 3.5, Sl+£ belongs to Bl n Bz’ hence S1 is not an extended
component of B1 n Bz' The same applies to Sz' This contracdiction

concludes the proof. =

Lemma 3.8
The space S spanned in S by t components of Bl n B2 contains no
point of Bl n B2 other than those in the components. The dimension

of § is
d1 + d2 + osee + dg + t-1

where dl, d2, .+.5 dt are the dimensions of the components of

B1 n 82.

Proof
The case for two components is settled by Lemma 3.7. We proceed

by induction, assuming that the proposition is valid for t components:
21, sees &t of dimensions dl, «++s dt respectively. Let the

(t+1)th component be Ct41s With dimension dipqe

Denote by Sy the space spanned by Cs C,s «ees Ct and by Sgy41 the

space spanned by Cl, C2, eees Cts Ciyqe
By the inductive hypothesis the dimension of St is

d' = d1 + d2 + ... +dg + t-1 (5.1)

By the Corollary of Lemma (3.6), Ct+1 is skew to C1’ .+» Ct, hence

1t is skew to the space St. Hence the dimension of St+1 1s
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d=d" +dpy) +1 (5.2)
Suppose now that there exists a point P in S¢y4q such that
PeB NB, but P¢ C UC, U.. UCtyg.

Since P and Ct4+] are both in St+1, they span a subspace S of

St+1, the dimension of which is

d = dpgp + 1 (5.3)

Apply the dimensional equation to the subspaces S and St of St41.
It follows from (5.2) and (5.3) that St and S intersect in exactly

one point : Q.

Since Cl, Cz""’ Ct are subpsaces of B1 and of Bz’ it follows

that
St=C1+C2+“°+Ct

is an extended subspace of each B1 and Bz‘

Similarly, S =P + Ct+1 is an extended subspace of each B ,and B,.

Since S and St are intersecting spaces, it follows (Note 3) that
their restrictions to Bl also intersect. Since Q 1s the only point
of intersection of 5 and St, it follows that Q e Bl. Similarly
Qz—:Bz.

Hence Q is in B1 n Bz'

Q is a point of St» which by the inductive hypothesis contains no
point of B1 n B2 other than those in one of components. Hence

QecCij, (ic€ {1,2,..,t}).
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However, by Lemma 3.7, the space S, spanned by two components (P
and St4+1) does not contain any point of Bl n B2 other than P or a
point of St41. so Q cannot belong to S, since it is not in St+1
(skew to Sj) and it is different from P, since by the inductive
hypothesis St cannot contain P. This contradiction proves the
first part of Lemma 3.8. The dimension of St+1 is now by (5.1)

and (5.2)
d=d'+dt+1+1=d1+d2+...+dt+dt+1+t
This completes the proof.

Definition

A Baer complex, denoted by the symbol

C{dldz...dt}

is a collection of t Baer Ki-spaces (i=1,..,t) of dimensions dl, d,,

.-+, dt respectively in PG(n,q2), pairwise skew, and such that the

span in PG(n,q2) of any subset of the complex contains no points
of the complementary set of the complex. A Baer k-space
(k=-1,0,1,..,n) can be regarded as a Baer complex, of singleton

type; The case k = -1 representing the null-space is included.
Lemmas 3.5 to 3.8 can now be summarised:

Theorem 3.9

Two Baer n-spaces intersect in a Baer compiex.

Corollary
The intersection of a Baer ki-space and a Baer kz—space is a Baer

complex.
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Proof of Corollary

By the corollary of Theorem 3.4, the existence of three collinear

points on the intersection of a Raer kl-space and a Baer kz-space

implies that the Baer k -space and the Baer k_-space share a slot

of g+1 points. Keeping this in mind, all the arguments used 1in

the proofs of Lemmas 3.5 to 3.8, leading to Theorem 3.9, are valid

for the intersection of a Baer kl-space and a Baer k2-space. i

The intersection configurations of Baer planes in Chapter 2, and
the computer results for 3 dimensions, listed in the beginning of

this chapter provide simple examples of Baer-complexes.

In the next section, Baer-complexes will be given further attention.
Before that, however, the possible numbers of points beTonging to
the intersection of two Baer-spaces will be determined. By Theorem
3.3, these numbers also give the possible number of hyperplanes
belonging to the intersection. For obtaining an upper bound for
the number of points in the intersection we need the following

lTemma.,

Lemma 3,10
Let g and m be integers greater than 1 and the set {rl, Fosess re}

a nontrivial partition of m, i.e,
ro+ r, Foese Frg=m

1

where 1 < rySr, «ee €rpand k > 1, Then

2

k
2 q <qgnm (5.4)

The inequality is strict except for the case

qg=m=2,
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Proof

When m = 2, the only non-trivial partition is

In this case

rj < g2 when q > 2

9 =29 }
1 = q2 when q = 2

e~

.i

We proceed by induction, assuming that (5.4) is valid for all

m < n.
Let
k
L ri =n+l,
i=]
Then
kK ri kK ry
2a =qtt+ fq o,
i=] i=2
Here

k
L ri=n+l - r,<n, since r.2>1.

k
1q <qft+gn

where 0 < n - & < n. We have

qu + qn = qu(l + qn-r1) < quqn-r1+1 = qn+1

for all q > 1.
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k
Thus for all g > 1 and m > 2 and ri=m(rj>1, (i=1,..,k))
i=1

Theorem 3.11

Let B1 and B2 be two Baer n-spaces in PG(n,q2). Let r denote the

number of points common to B1 and Bz. Then

, 4
i n_1

0O<r= 7] 1 < 104, (5.5)
i=1  g-1 q-1

where {dj|(i=1,..,t)} represents a partition of the number d+1-t

into t summands. Here 0 < d < n.

Proof
Here t denotes the number of components of the Baer-complex, which

is the intersection of the two Baer-spaces, where

d1+d2+¢o.+dt+t-1=d<n

Let d1 < d2 < oo < dg.

Since each component Cq 1is a Baer dj-space, the number of points
i
in it is

To prove the inequality in (5.5), we consider three cases first,
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The components are a hyperplane Bn-1 of Bl and a point P
not belonging to Bh-1. It will be shown later that such

intersections always exist. In this case

hence the upper bound of the inequality is reached in this

case,

The components are t linearly independent points where

t<n+1.

Write

qn-1
1+—1-=q""1+qn'2+...+1+1>n+1,
q—

since g > 1 and n > 1.
In this case the inequality is strict.

t = 1. Thus the intersection is a single subspace of
dimension at most n - 1, since we consider the intersection
of two distinct Baer n-spaces. The inequality is again

strict.

Next deal with the general case when t > 1 and

dt

= max {dj|i=1,..,t} > 1, also d¢ <n -2, asd¢ =n -1 has

been settled as case (i).

We have to show that under these conditions

Il o~ ¢t

d +1
i n.1
q 2 q

+ 1,

i=1 9q-1 q-1

(the inequality is strict).
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Write ry =dj +1 (i=1,..,t). Then the inequality to be proved
becomes
i

q <gt+g+t -2,
1

Il o~

.i

Since g > 2 and t > 1, it suffices to show that

t ry
Ll oq <qn
i=1
t t
provided that ) rj = ] dij+t < n+l and 2 < re < n-1,
i=1 i=1
Write
t ri t ri ry
! a9 =1 q +g (5.6)
i=1 i=1

It follows from the given conditions that

t-1 t
ri= ] ri-rt<n+1-2=n-1.
i=1 i=1

From Lemma 3.10
t-1 rj
IR L
i=1

"t
alsoq < q”'1 since Py <n - 1. So on the right hand side of

(5.6) we have
t-1 ry re

L a9 +q <2¢"-1 < gn since q> 2.

i=1

This completes the proof.

Baer complexes : basic properties

Regarding Baer complexes as basic elements in the structure of a
finite projective Space of square order, this section is assigned

to their closer study.
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Definitions
The dimension d of the Baer complex {dl, .., dt} is the dimension
of the space spanned by its components. Thus

d=dl+d2+...+dt+t-1 (6.1)

The fragmentation t of the complex is the number of its components.

The class of the complex is determined by the set {dl, ey dt},

that is the set of dimensions of its components.,

Notes
1. The maximal dimension of a complex is n, the dimension of the
geometry of reference PG(n,q2). 1In particular a Baer n-space

is a complex of maximal dimension.

2. The maximal fragmentation of a complex is tmax = n + 1. This
follows immediately from (6.1). 1In this case the complex is

a set of n + 1 linearly independent points.

More generally, the maximal fragmentation of a complex of

dimension d is d + 1.

3. The dimension of any component of a complex cannot exceed

d+1-t.

4. If two pairs of Baer spaces intersect in Baer complexes of
the same class, their intersection configurations are not
necessarily isomorphic. As an example, take intersection
configuration 2(i) and 2(ii) in Section 2.2. The space of
reference is the projective plane PG(2,92). Two Baer planes
may intersect in a single point, hence the class of the inter-
section complex is {0}. But then B1 n 82 has also a common

line. The point may or may not be on the line.
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Theorem 3.12

The number of classes of Baer complexes in PG(n,q2) is
Te(n) =1+ ) P(d+1)

where P(d+l) is the number of partitions of the integer d + 1.

Proof
The dimension of a Baer complex in PG(n,q2) can take any integer
value in the range [-1,n], where -1 is the dimension of the null-

space, treated as a Baer complex.

From (6.1) it follows that

le~1ct

d+1-=
i

(di+1).
1

The set {d ,..,dt} is fully determined by partitioning the number

d + 1 into a set of t values : {dj+1}, where dj +1 > 0, (i=1,..,t),
if t is fixed. Since the fragmentation t may take any value from

1 to d+1 (Note 2), then for the fixed dimension d, the number of
classes is P(d+l). Thus, summing for all dimensions, 0 to n, and
then adding 1 to count as a single class the empty set @, for the

null-space, we obtain Tc(n).

Taking values from tables of partition-numbers of integers [23],
numbers of classes of Baer complexes of projective planes PG(n,q?)

up to n=9 are Tisted in the following.

Partition numbers

P(n)

~NOTW N =~

Gl WM =3
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Classes of Baer Complexes

Dimension of PG(n,q%) No. of Classes Classes
-1 1 ¢
0 2 ¢, {0}
1 4 ¢» {0} {o,0} {1}
2 e,
’ ’ ¢6,é?£}“{i?é}{%%1
gl
4 19
5 30
6 45
7 57
8 87
9 129

The following two theorems deal with relations of Baer complexes

to Baer k-spaces.

It has been established in the previous section that a Baer kl-
space and a Baer kz-space intersect in a Baer-complex. Generally,
Baer-complexes inside a Baer n-space, are obtained by splitting up
some subspace of the Baer-space into a direct sum of subspaces.
It is not obvious however that an arbitrary Baer complex can be

embedded in some Baer space. This will be proved next.

Theorem 3,13

A Baer complex of dimension d can be embedded in a Baer d-space.

(Note: the embedding is not unique.)
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Proof
The proof is based on the facts that d + 1 independent points

determine uniquely a d dimensional subspace S4 of PG(n,q2), while
d + 2 points, not d + 1 of which are dependent, determine uniquely

a Baer d-space.

For complexes C{0,..,0} of d + 1 independent points, or C{d} where
the complex is a single Baer space, no proof is needed. Two

further cases will be considered.

Case (1)

The complex is of type C{d-1,0}.

This means that the complex has two components : a Baer (d-1)-

space and an external point. The dimension of this complex is d.

Denote the Baer space by B and the external point by P. From
earlier remarks it follows that the dimension of B can be taken to

be more than 0.

Choose a set A = {AO, Al, o Ad} < B, consisting of d + 1 points,
no d of them dependent. Let X be a point on AOP, different from A0
or P. Then X is not in the extension of B into S, denoted by Sg

and of dimension d - 1.

Consider the set {P, X, As «vs Agl. It consists of d + 2 points,

not d + 1 of them dependent. To see this, only sets containing P,

X and d-1 points of the set A\{AO} have to be considered. Suppose

that X is in a subspace Sy of PG(n,q2), spanned by P and d-1 points
of A\M{A }. The dimension of Sy is d-1, and line PX < Sx. Then

the point A0 is also in Sy. But A0 together with the d-1 points
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chosen out of A\{AO} spans Sg. Thus Sg < Sx and since they are of

the same dimension, Sg = Sy. Then P and X are in Sx which is a

contradiction., Thus the set
{P} u{x} UA\A }

determines a unique Baer d-space B'. The Tine PX < B'. The
subspace of S, spanned by A\{AO} belongs to B', hence its inter-
section point A0 with PX, is an internal point of B'. So B' is a

Baer d-space containing both P and B.

Case (i1)

Let C{dl,..,dt} be the complex considered.

We may now assume:

(@) t»>1,

(b) at least one component has dimension greater than 0. Let
this be the tth component, the Baer dt-space: By (of dimension
dt).

(c) C{d,..,dt-1} is not a single point.
(If t=2, the alternative is covered in case (i).)

Proceed by induction on t. For t = 1, theorem 3.13 is trivially
true. Assume that the complex C{d ,..,dt_1} of dimension

d + .. +dgg +t-2 =d' is embedded in a Baer d'-space B'.
Choose sets of d' + 2 and dy + 2 points

A= {AO’ Al, oo Ad'+l}
and

T={Ty T,u veey Tq 41}

t
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in B' and Bt respectively, so that no d' + 1 points of the set A

and no d¢ + 1 points of T are dependent.
Let X be a point on AoTo’ different from A0 and TO.
Consider the set

U= (X} uA\{AG} u T[T, ),

containing d' + dy + 3 = d + 2 points. No d + 1 of these are

linearly dependent. This is clear for the set U\[X}. Suppose

next that the set of d + 1 points contains X, all points of

A\{A,} and all but one point of the set T\{T,}. Assume that these
points are dependent and hence they are the points of some d-1-
dimensional space Sq.j (of order q2). Since AO is linearly
dependent on A\{Ao}, it is also in S4q.1. Hence the Tine AK s in
54-1 and so is Ty Thus Sq_7 contains all of the set A, in
particular d' + 1 linearly independent points of it, and it contains
dt + 1 points of T which are independent and independent also of
the points of A, Now dt +1 +d' +1 =d + 1, hence S4-1 contains
d + 1 independent points. This is a contradiction. Similar
conclusion is reached considering a set containing X, all points

of T\{T,} and all but one of AN{A,}.

Thus the set U determines uniquely a Baer d-space B. It remains

to be shown that B' and Bt are included in B.

Let Sp be the space spanned by A\{AO} and X and St the sub-space
spanned by T\{T } and X. Their dimensions are d' + 1 and dy + 1
respectively. A0 and T0 are in Sp and ST respectively, hence the

Tine AgX Ty = Sp N St. Both Sp and St are subspaces belonging to
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the Baer space B, so their intersection-line AgX T, 1s also in B,
hence the intersection of A X T  and A Aj where Aj e ANA,} is

also in B. Thus A, s in B. The same applies to Ty Thus B
contains the set A and the set T which determine uniquely the Baer-
spaces B' and Bt. So B' «B, in particular C{d ,..,d¢t-1}= B and

B+ < B.
Hence B contains the complex C{dl,...,dt}. O

Definition
A k-dimensional subspace of PG(n,q2) belongs to a Baer complex if

k + 1 independent points of the subspace are in the complex.

Note: This does not mean that the points of some Baer-space of the

subspace are all in the complex.

Theorem 3.14 (Symmetry)

The number of j-dimensional subspaces belonging to a d-dimensional
Baer complex is equal to the number of (d-1-j)-dimensional subspaces

belonging to it.

Proof
It is known that the number of j-dimensional subspaces of a projective
space of dimension d is equal to the number of its (d+1-j)

dimensional subspaces, since

d+1] a1 ] [d+1] b f (d-j-1)-di ional
] . = .Jg = number o -J-1)-dimensiona
179 Tdr1-(g+1)7 9 -39 subspaces.

Thus the theorem needs no proof for Baer complexes of type C{d}.

d
Use the symbol M in the following to denote the number of j-dimen-
-

sional subspaces belonging to a Baer d-space.

o
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Denote by ﬁg the number of j-dimensinoal subspaces belonging to
some given Baer complex of dimension d. Note that while Mg is

fixed by the values of d and j, ﬁg depends on the structure of

the given complex.

Proceed by induction on the fragmentation t, splitting the complex

t
C{d,,...,dt} of dimension d = ] dj+t -1 into the complex
i=1
t-1
C{d,,...,dt-1} of dimension d' = ] dj +t - 2 and the Baer-space
j=1

Bt of dimension dt, where t > 2. We assume that the symmetry

relation holds for the complex C{dl,..,dt_l} of dimension d'.

A subspace of dimension j belonging to C{dl,...,dt} where
-1 < j < d may be spanned by some subspace of dimension i' belonging
to the complex C{d ,...,dt-1} and a subspace of dimension it of

the Baer d¢-space Bg.

Here
-1 <i' <d' (6.2)
-1 < it < dt (6.3)
i+ i o= §-1 (6.4)

Hence the number of j-dimensional subspaces belonging to

C{d ,.eerdg} is
d _d' dt
M. = LM M (6.5)
J 1 1t

where i' and it satisfy (6.2), (6.3) and (6.4). Using the symmetry

property of Bt and the inductive hypothesis for C{dl,...,dt} we put

d'  _d dg  dt
M =W . and M =M , (6.6)
i! (d'-l)-1' 1t (dt-l)-1t

in each term of the sum.

The inequalities (6.2) and (6.3) imply that
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o=y

-1 < (d'-1)-i' < d' .
and v
-1 < (d¢-1)-i¢ < dg,

for all i' and it respectively in the range.

The dimension of the subspace spanned by a (d'-1)-i' dimensional
subspace belonging to C{d ,...,dt-1} and a (dt-1)-i{ dimensional
subspace in Bt is

(d'-1-1') + (dg-1-i¢) + 1 = (d-1)-j (6.7)
The result (6.7) is deduced from (6.4). It follows now from (6.5)

and (6.6) that

_d _d dt d
M =M M =M
J (d'-1)-1"' (d-1)-i d-j
This completes the proof. O

Theorem 3.15

The intersection of two Baer complexes is a Baer complex.

Proof

Let C{d ,...,ds} and C'{d},...,dt} be the complexes. Let

C{d seuusds} = (B, i=1,...,s}

and

C'{d},...,dt} = {B}, j=1,...,t}

where the component sets {Bj} and {Bj} satisfy the required

conditions.
Then

C{dl,...,ds} n C'{dl,...,d{} = {Bj n Bili £ {1,..,5},
Je {1,..,t}.

For each ordered pair (i,j), where i e {1,..,s}, j e {1,..,t}, the

intersection Bj n B} is a Baer complex as shown in Section 3.5.
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The situation is shown on the diagram.
For convenience, we will call the
complexes formed by the intersections
of the components Bj of the complex
C{d,,...,ds} and B'j of the complex

..,dt} mini-complexes (for

i=1,...,5, j=l,..,t). We are going to
show that the collection of these mini-

complexes is again a Baer-complex.

Let P be a point in the mini-complex Bj N B'j belonging to a

component Bp of the mini-complex.

Since By n B'j is a Baer-complex, P cannot be in the span of any

components of Bj n B'; other than Bp.

The span of components chosen out of the set Bj N B';\Bp and

components belonging to mini-complexes external to Bj N B'j cannot

include P either, for the span of P and components belonging to
Bi nB'j\Bp belongs to By n Bj, hence cannot contain external

points. Consider next the span of components belonging to mini-

complexes other than Bj_nB'j.

(a) If none of the components is included in Bj, then their span
cannot contain a point of Bj. This is so, because C{dl,..,ds}
is a Baer complex, hence no point of Bp can belong to such a

span. The situation is similar if none of the components is

included 1in B'j.

(b) Suppose next that some components belong to mini-complexes

inside Bj, some not in Bj and their space contains P. This
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leads to a contradiction similar to the one encountered
before, since P together with the components inside Bj
spans a subspace of Bj and so cannot contain external

components,

(c) The only remaining case is that of all components belonging
to By Bj B'j. This however means that no component belongs

to B'j and this case was dismissed in (a).
This completes the proof.

A11 Baer complexes in PG(n,q2) are partially ordered by inclusion.

Theorem 3.15 implies that the partially ordered set of Baer

complexes of PG(n,q?) is a semi-lattice.

However, it is not generally possible to define a Join for two

Baer complexes which is itself a Baer complex. A simple counter
example is the case of two distinct Baer-planes belonging to the
same subplane (= PG(2,q2)) of PG(n,q2). Hence the set of Baer
complexes does not form a lattice in PG(n,q2). However, if the

set is restricted to complexes included in the same Baer n-space
(or more generally Baer k-space) of PG(n,q2), then the semi-Tattice

defined by the restricted set possesses a common upper bound in

the semi-lattice, hence it is a lattice,

In [25] a unified theory of partially ordered locally finite sets
is established. A variety of combinatorial objects fit into this
scheme, amongst them are integers ordered by magnitude or
divisibility, sets ordered by inclusion, linear or projective
spaces ordered by inclusion, partitions of integers ordered by

refinement, and so on. The lattice of complexes of PG(n,q) or
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more generally the semi-lattice of Baer complexes of PG(n,q2)

combine features of lattices of projective spaces and also features

of partitions. A later investigation should produce general
results characterising these type of sets. The scope of the work
discussed in the next section is more Timited, it presents some

enumerations and algorithms.

Baer complexes : numerical relations

It has been proved in Section 3.5 that Baer-spaces intersect in
Baer complexes. The question arises naturally : Can any given
Baer complex be the intersection of two Baer n-spaces? Also in
Section 2, formulae were given for numbers of Baer planes inter-
secting a given plane in a fixed configuration. The aim is now to
extend such numerical relations to spaces of higher dimension.
Before establishing such relations it is convenient to tabulate
notations for counting numbers of various structures. This is

done in the following Tist.

n

Is N Number of Baer k-spaces in
k PG(n,q2) 0<k <n.
n
1. L ]q Gaussian binomial coefficient (as
r defined in Chapter 1, Formula 1.1)
IT1.  [k]!(q) Gaussian "factorial" notation used
here to denote (g-1)(q2-1)..(gk-1)
k
Ve Pk ok, (@) Number of partitions of PG(q,k) into
172 t skew subspaces of dimensions kl, k2,..,kt.
V. i yeu,d Number of C{dl,..,dt} complexes in
! PG(n,q2).
n
VI. t4,...d Number of C{dl,--’dt} compTexes in a fixed
1 Baer n-space.
§ yeey & ,
VII. L ¢! S Number of C{d ,..,d;} complexes contained

dl,--,dt in a fixed C{Gl,.., Gt} complex.
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S yesy O
VIII. Ud1 48 Number of C{é ,..., 85} complexes containing
et a fixed C{d,,...,d;} compTex
k - :
IX. Sd ,..,d Number of Baer k-spaces containing a fixed
1 t C{dl,...,dt} complex.
X. Iq ,...d Number of Baer n-spaces intersecting a
1 t fixed Baer n-space in a fixed

C]dl,...,dt} complex.

Note:
A1l the notations refer to a fixed projective space of reference.

However, in II, III and IV q or q2 must be displayed as a subscript
or variable, because these may refer to subspaces (of order q2) of

PG(n,q2) or to Baer k-spaces (of order q).

We begin by recalling from Section 3.1 the formula (1.1) counting
the total number of Baer n-spaces. This will be denoted here by

ND, in accordance with Notation I.

So
n+l

Nn = qn(n+1)/2 I (qi+1) (7.1)
n i=2

As seen in Section 3, the number of subspaces of dimension k in
PG(n,q) is given by
(¢*1-1)(q*-1)...(q"**1.1)

1q = (7.2)
T (a1)(q2-1)... (gk*L1)

n+l
k+1

hence the number of subspaces of dimension k in PG(n,q2) is

(q2k+2_1)(q2k_1)...(q2n-2k+1_1)

] = 7.3
a* (q2-1)(q*-1)...(q2k+2-1) {7:3)
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Using formulae (7.1) and (7.3) together with the fact that a Baer

k-space is embedded in a unique k-subspace of PG(n,q2), we obtain

Nn ~ |:n+1] . Nk ~
ko k179 T
(q2n+2_1)_..(q2n-2k+2_1) k+1 )
- gk(k+1)/2 p (qin1y  (7.4)
(g2-1)...(q2k+2-1) i=2

n
The next aim is to determine Td,,..,d_as defined by V,
r

Since each dj-dimensional component (i=1,..,t) determines a unique
di-dimensional subspace of PG(n,q?) into which it is embedded, the
first task is to determine the number of ways in which a d-subspace
of PG(n,q2) can be partitioned into a set of dl, <o+, dt dimensional
subspaces where

di +t -1,
1

(=
[}
Nt~ ct+

1'

that is, the dimension of the complex.

The number of subspaces complementary to a given k-dimensional

subspace will be needed for the calculations. In the case of

Tinear spaces, this is given as special case (d) of Theorem 1.2 in

Chapter 1, as

qk(n-k),

Using the modification necessary in projective spaces, we have

that the number of subspaces of PG(n,q) complementary to a subspace

of dimension k 1is

q(k+1)[(n+1)=(k+1)T = q(k+1)(n-k) (7.5)
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We use this relation first to determine the number of ways in
which a space P(d,q) can be partitioned into two spaces of dimensions

d1 and d2 respectively where

d = d1 + d2 Ll O

Setting f = 1, when d1 # d2
and f =1/2, when d1 = d2 gives
d 1 (d +1)(d-d )
"a,d, () = FL L Tq 0t L

i
In order to generalise this result for partitions into a set of t

skew spaces, we use the "factorial" notation introduced in I1I.
The formula for two components becomes
[d+1]!
d (q) d, d,+d

P (q) = f q (7.6)
4,9, [di+ 1]!(q)[d2+1]!(q)

Next we derive the general partition formula for a d-dimensional
Space 54 = PG(d,q) divided into t spaces Sq , Sdz’ cees Sdt of
1

dimensions dl, d .s dt respectively, where

o ==
dy+d, + .o +dp +t -1 =g,

The result (7.6) will be generalised to

d [d+1]!
Pdyy..d, (@) = F L at
t [d1+1]!(q) °-°[dr+1]!(q)
where (7.7)
et = ) djdj + (t-1)d - E(t-l)(t-?)
1<i<j<t 2
1

and f = < ] <7 1f si of the component Spaces are of the
sls 1 ...
12
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same dimension (i=1,2,...).

For deriving (7.7) proceed step by step. Denote by d(1) the
dimension of a space complementing Sq in S4, and generally by
i
a() the dimension of a space complementing Sq. 1n S4(i-1) (where
, i

Sq4(0) = Sq).

For i =1 to t, we have 4(1) & d; = d(i'l)-l, (note that dy = d(t-1)
and the number of complementary Sq(i) spaces which complement Sy in
i

Sq(i-1) is

q(d(i'l)-di)(d1+1)).

We obtain then

d d+1_ d(1l)y dlr-1)s1 ¢
P = f ... t
di"dt(q) [d 1 q[ d +1 ]q [ dptl 1q
1 2
with
t-1 .
et = I (d0-Dq;)(d;41).

i=1

For simplification we use the factorial notation:

(i-1)4 [d(1-1)+171(q)

dj+1 "9 7 [d;+171(q)[d(1-1)_q.71(q)
[d(1-1)+171(q)

L4411t (@)[d 4171 (q)

while for et we write in each term (i=1,...,t-1)
(di+1)(d(i-1)'d1) = (dj+1) (djyq+a.tdi+t-1),

A short calculation brings the formula to the simplfied form (7.7).
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n
Using the partition formula, we can now evaluate Tq d
l,.. t

n n+1 d
= 2
le,..dt [d+1]q2 Pdl,..dt(q )

[n+1]!q2 t dj(di+l) dj+1
= I ——-é-——-- I (qJ+1)
t i=1 j=2
[n-d]!qz I [d1+1]'q2
i=1
(7.8)

n
These results are used now to find Sq ...4 » the number of Baer
i t

n-spaces containing a given Baer complex C{dl,..,dt}.

We count the incidences of Baer N-Spaces with C{d ,..,d¢] type
complexes in two ways. On one hand, we have TQ ..d complexes
177y

n
of the given type, each contained inSq ,..4 Baer n-spaces, hence
. t

n n
Td ,..d Sq ...4q incidences.
1, t 1’ t
. n+l
On the other hand, each Baer n-space contains [d+l]q Baer d-spaces,

and each of these can be partitioned in Pd ...d (q) ways into
1? r
n
C{d ,..,dr} complexes. Since the number of Baer n-spaces is N , the
n

number of incidences obtained in this way is

n_n+l d

N p )
n[d+1]q dl,..dt(Q)

Using (7.8), we can write down the incidence equation:

n n+1 d t 4,

S 2 P 2) m N1 =

dloo'dt[d+l]q dl,..’dt(q ) 1=1 di
n_n+l d

=N g Pdl,“dt(q) (7.9)
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n
From (7.9) we calculate Sq d -
1’. L]

After simplifying, obtain

n n-d |
Sd,,.d, = QUEDH(d2) 0yt I (qi+1) ’
foasasae i=1
if d < n and ‘ (7.10)
n .
4,000, = (D)1 41 d =

t

The remarkable feature of this result is that the number of Baer n-
Spaces containing a given Baer complex depends only on the dimension

d and the fragmentation t of the complex.

Let B be a fixed Baer n-space. An algorithm can be given now to
evaluate successively the number of Baer n-spaces which intersect
B in a fixed Baer complex. Return to the notations introduced in

the beginning of this section:

n § .. &
= 15 -3T Ut s
dyend, " 1

I (7.11)
170 4 L.,
1

I
dyeend,

The summation over the complexes C{Gl,..,ds} on the right hand side
of (7.11) refers to al] the complexes which are different from
Cl{d,.....d¢}. Beginning with I, = S: = 1, referring to B itself,
(7.11) is used successively, proceeding from complexes of higher
dimension and smaller fragmentation to those of Tower dimension

and greater fragmentation.

The calculations have been carried out in the three dimensional

n
case. To carry out these calculations, values of Sq

,..d are
1
found, for each class of complexes, using (7.10). Next the values
§ .. 6
of U ! > are listed. These are found for each {61,..,6 I,
3

d,..d
R t
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{d1’ -+»dt}-pair by inspection.
using the incidence equation:

61,.. g

d,..,d
A t

n
t
S L
1

L
8

S

tq

(referring to notations VI, VII and VIII),

n
To find tq 4 for a given class of complexes, use
1’ 5 t N
n n+1 d
t =0 JaP (q)
dl’..dt d+1 a dl’..’dt q
&
where d = § dj +t - 1.
i=1

Results for PG(3,q2)

d
Values of Sy

These values are checked by

are shown in the following tables.

T(1). yeo,d
1
Class ) J n
dl, ooy dt} Dimension d Sd veo,d
1 t
3] | 3 I
lz,o} 3 ) q+1
1,1 3 q+l
{ {1,0 3 (q+1;§
,0,0 3 (g+1
{2 ’ 2 q°(q+1)
{1,0 } 2 3(q+1)2
{0,0,0} 2 4 3(q+1)3
1 1 9°(q+1) (q4T)
{é,é} il q3(q+1)2 ( 2+1)
{0] 0 q°(q+I)(q 1+1J(q’+1)
NuTT space ¢ 1 q°(q ‘+1)(q5+1) (q*+1) = Ng




6 ,.. 6
Values of U ! s

T(2) d seendr
(dy0ee st} s ) sontatntog ) g,
1 r ,’ esdp
{2,0} {3} 1
{1,1} {3} 1
{1,0,0} {3} 1
(] 2
1,1 1
{0,0,0,0} {3} !
2,0 4
i ;
1,0,0} 6
12} {fé} 33
1,0 3
1,0} Ié,gl é£q2+1)
1,1 9
1,0,0
e 1
0,0,0 3 1
{ } [é,gl q(g2+3)
1,1 3q
{1,0,0} 39%(q+1)
{0,0,0,0} q
{2} 1
{1,0} 3
1} ¥ 3 (a+)
{1,1} q*
{ligio} lif qa5(q+1)
{1,0} 32<q+1)
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{61,..., 8 } containin s P
S d,..,d y £°°°** °s
{ L r? d ,..,dp
1
{3} 1
12,01 q2(q2+q+2)
1,1 q3(2q+1)
{1,0,0} 1/2 q*(q+2)(q+3)
{0,0,0,0} 1/2 q5(q+1)
{2} q+1
{1,0} q(g+1) (q+2)
{0,0,0} q%(q+1)
{1} 1
{3} 1
2,0 93(q2+q+2)
I q*(q2+q+1)
{1,0,0} 1/2 q(q2+q+1)(q+3)
{0,0,0,0} 1/6 qs{q2+q+l)( +1)
{2} q2+q+1
{1,0} qz(q2+q+1)( +2)
{0,0,0} 1/2 g 3(q 2+q+1)(q+1)
{1} q+g+1
{0,0} q(q4+q+1)
{3} 1
2,01 q+1>(32+1J
1,1 1/2 q*(q2+1)(q2+q+1)
{1,0,0} 1/2 q éqz £q+l)(q2+q+1
{0,0,0,0} 1/24 q g (?2+1)
+1
{2} (g+1) (q2+1)
{1,0} q4(q+l)(q2+1 (32+q+1
{0,0,0} 1/6 q3(q +1
+q+1)
{1} (q%+1) (q%+q+1)
{0,0} 1/2 q(q+1)(q2+1)(q2+q+1)
{0} (q+1)(q2+1)
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T(3). Values of Id1’°”d

t
{d ,...,d¢} 1d ,....d
t
2,0 q
11’1I q
{1,0,0} q(q-1)
{0309090} Q(Q'l)(Q-Z)
{2} q3-1
{1,0} q2(2g+1)(q-1)
{0,0,0} 3q3(q-1)2
{1} 1/2 q(q2 1)(q5-2q4+2q3-2)
{0,0} 1/2 q*(q%-1)(q3-2q2+6q-6
{0} 1/6 q3(q-1)2(q+1)(2 ®+43¢5-5q4+3q3-6q2-6)
¢ 178 q°%(q-1)2(q+1)(q%+q+1) (3q*-893-92-10q+8)

The Tast tabulated results give the answer for one question posed
in the beginning of the section for the three dimension case. A7l
Baer complexes can occur as intersections of two Baer 3-spaces of
PG(3,q92) with one exception. The exceptional case is the set of
four independent points in PG(3,4), since when q=2, Io,0,0,0 = 0.
It is easy to see that in all the other cases, the Idl""d poly-
nomials have no roots greater or equal to 2, hence take pos?tive

values for g=2,3....

As pointed out earlier, the intersection of two Baer n-spaces is

not fully characterised by the class to which the intersection

complex belongs. From Theorem 3.3 it follows that the number of
hyperplanes belonging to the intersection of two Baer spaces is fixed,
because it is equal to the number of points in the Baer complex of
intersection. Furthermore, Bruen in [11] proved that the dual
structure of the intersection, that is the set of spaces determined

by the intersection structure of the common hyperplanes is isomorphic
to the structure of the spaces spanned by the points of intersection.

Hence the intersection of two Baer spaces can be regarded as a pair of
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two isomorphic complexes; the Baer complex as introduced before

and its dual. In the two dimensional case the configurations

listed were point-complexes coupled with their duals. The situation
there is simple, because the only subspaces to be considered are

points and lines.

The 1ist shown in the three-dimensional case gives only the possible
complexes without their duals. Though the complex fully determines
the geometry of its dual, their dual is not fully determined. As an
example, regard the simple case when the intersection complex
consists of two points, hence is one dimensional. Its dual consists
of two planes. The complex and its dué], each determine a line.
However, the two lines may coincide as in Figure (a) or may be

distinct as in Figure (b). g
1
¢ {,

= 7

(If the two intersection lines do not coincide, they must be skew.)

Thus, even in the three dimensional case, there is a greater
variety of possible configurations for the intersection of two

Baer spaces than shown in the Tist of possible complexes.

However, if two Baer n-spaces intersect in a complex of dimension
n, then it follows from the symmetry theorem (Theorem 3.14) that

the class of the complex determines fully the configuration.

The next section will offer more insight into the relation of a

Baer complex and its dual.
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3.8 Singer Duality : The General Case

In Section 2.6 Singer duality was treated in the two dimensional
case. The duality map vs as defined by (6.1) in that section,
mapped the points of the plane PG(2,92) into its lines and its

Tines into its points by

vs(pi) = %s-i = pi(s

vs(25)

n

1}
P
o
—
[7¢)
g
L]

Ps-j

The important result which s summarised in Theorem 2.9 is that
there exists a unique number s such that Vs maps the real Baer-
plane B0 in PG(2,92) into the real Baer-plane of the dual of

PG(2,92). In other words, the correlation established for the

points and lines of PG(n,q2) restricts naturally to a correlation

between the points and lines of Bo’ the real Baer-plane is PG(2,q2).

Section 2.9 deals with the structure of Singer wreaths, and uses
Theorem 2.9 to establish their existence. 1In this section it will
be shown that the duality theorem can be generalised for n

dimensions, and some of the consequences of this will be considered.

Let S be again the n-dimensional projective space PG(n,q2) and BO
the real Baer-space in S, The coordinates of the points in PG(n,q2)
can be successively generated by a Singer cycle determined by a
suitable polynomial equation of degree n + 1 over GF(g2) (cf.

Introduction):

n+l _ n 4 n-1 , n
X CpX Cho1X =t Cy,

which is the characteristic equation of the (n+l1) x (n+l) Singer

matrix



(8.1)

The coefficients {ci} (i=0,1,..,n) may be written in the form
Ci = aj + eyj (8.2)

where aj, vi € GF(q) and € is a root of an irreducible quadratic

equation over GF(q).
We write the matrix M as
M=A+ eD (8.3)

where

an-10 1 .. 0
A = (8.4)

and

Both matrices A and D belong to GF(q). Define the point pg by
pS = (Yns Yn-ls soey YO) (8.6)
Thus pg € Bo'

Next we note that the action of the (singular) matrix D (or €D) on

a column-vector representing a point p = (x , .., Xn+1) in PG(n,q2)

1’
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results in Pg, that is the column-vector representing pg, if

X, # 0, or the zero-vector if X, = 0.

For, if
X, Yn
P = and Pg = |:
| Xn+1 | 1Yo
we have

eDP = sles;

The Singer cycle & = <o> determined by the matrix M orders the

points of PG(n,q2) as follows:

0
"

(0o . . 0 1

- i (1)
Pi (XET) oo anl) ,
. (8.7)

XET)

(where p; = ;(1) )
n+1
x(1+1)

Pis1 = N T MP

By Singer's theorem, the hyperplanes of PG(n,q2), (q2”+2-1)/(q2-1)
in number, same as the number of points, are also ordered by the
Singer cycle PG(n,q2). We may write down an ordering of the
hyperplanes of PG(n,q2) in a manner similar to the ordering of the

lines PG(n,q2):
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h0 is the hyperplane spanned by Pys> Pys <+e» Pn-1
hl is the hyperplane spanned by P> Pys »=es Pn

and generally h;j is the hyperplane through the points

Pis Pi+ls «ees Pi+n-1-.

(Since o is a non-singular transformation, it follows that for all

i, the points pj, Pj+1, «..> Pj+p-1 are independent.)

We now define the dual Singer map vg by

vs(pi) = hs-i = pi(s)

vs(hi) = pg-i

} (8.8)

1]
o

—
—

w
~—]

By reasoning similarly as before, (hyperplanes taking the role of

lines of the two dimensional case), we conclude that

pi(s) is incident with hsti, if and only if

pi is incident with hj,
so the map is a correlation, Baer spaces go into dual Baer spaces.

In aiming to generalise Theorem 2.9, we prove first that if s is
the Singer index of pg as defined by (8.6), then the hyperplane hg

is real,

By the ordering of hyperplanes as in (8.7), the hyperplane hg is
determined by the points ps, ps+1s ««., Pstn-1. Of these, the
point ps is real by its definition (8.6). The other points Ps+1 s
Ps+2s ++.5 Ps+n-1 are not necessarily real. However, we show by
proceeding step by step, that the subspaces pg, Ps+ls e«+s Ps+n- g

where £ < n-1 are all real. We begin with the Tine Ps Ps+] :
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Since pg+1 = opg, we can write
Ps+1 = MPg

(adapting the convention of denoting by P the column-matrix formed

by the coordinates of pg).
Using (8.3), we have

Ps+1 = (A + eD)Ps = AP + eDPg = AP + Kk Pg (8.9)
where k e GF(q2).

Here APg is a column matrix with all its entries in GF(q), since
the matrix A is real. Fdrthermore,'we observe that while A is not
necessarily non-singular, APg # 0, otherwise Ps41 = Pg or P¢ =0,
neither of which is possible, for no point of PG(n,q2) has all

its coordinates equal to 0, and no consecutive points are equal.
We distinguish between two cases :

(1) Yn # 0, that is, pg is not in the hyperplane X, = 0.
Then, by (8.9), Ps+1 1S on the line p'pg, where p' is
the point defined by the column-matrix APg, hence it is

real. So the Tine p'pgpg+] is real.

(1) Yn = 0. In this case, pgy1 = p' # ps and so the line

PsPs+1 is again real,

We proceed by induction, assuming that the space spanned by the

points pg, ps+], Ps+g-1 is real, where 2 < n-1.

We want to show that the %-dimensional space determined by the
£+1 points pg, Pgt]s eees Ps+g (known to be independent) is

again a real space.
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Write again
Pstg = MPgyg 1 = APgyg 1 + eDPgyg-1 (8.10)

By the inductive hypothesis, Ps+g-1 belongs to a real, (2-1)-
dimensional subspace, hence the associate column-vector is a linear

combination of £ real vectors, denoted by
PL, P2, ..., PA,

(Superscripts are used here instead of subscripts, which have been

reserved for Singer ordering.)

Thus

it~ 2

APsig-1 = A ksp? where ks e GF(q2) for j=1,..,1.

J

Hence

APsige1 = L kj(APd),

J

[ e BN

1

where the column-matrices are real for j=1,..,%.

So P' = APy 1 determines a point in a real subspace spanned

by the set {APJ|j=1,..,4}.

(It is not necessary to ascertain here that the set {APJ} represents

independent points.)

As in the case where g = 2, the second term on the right hand side

of (8.10) is either zero, or a column-matrix of form kePs (kg e GF(q2).
In either case Pgyy is the linear combination of column-vectors
belonging to Bo’ hence it represents a point of an f-dimensional

real subspace in PG(n,q2), possibly in its extension into PG(n,q2).
Since by the inductive hypothesis this applies to all Ps+i (i=0,..,

(2-1)), it follows that for all £ < n, hence in particular for
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£ = n-1, the subspace spanned by ps, Ps+ls «+es Pg+g 1S real.

Thus we have proved

Lemma 3.16

s

Let the generating polynomial equation of the Singer cycle for h

PG(n,q2) be 4

n+l _ n n-1
X CpX™ + e + ...t o

Let
¢i = aj + e vy for i=0,1,..,n,

where aj, y{ € GF(q) and ¢ ¢ GF(g?), being a root of an

irreducible quadratic equation over GF(q).

Let s be Singer index of the point (vn, Yp_1se., YO), and let

the hyperplane hs be determined by the points

Pss Ps+1: soey pS+n-1'
Then hg belongs to the real Baer space B . O

The hyperplane hs is the Singer dual of the point P,- The points
Pg» Py» +++5s Pp are real and independent. We will show in the
following that this is also true for their duals. We first prove the

following more general lemma.

Lemma 3,17
Let h;j be a real hyperplane containing the point ps (defined in
Lemma 3.16). Then the hyperplane hj_l is also real and passes

through the point Pg-1-

Proof
Since hj is real, the coordinates of each of jts points satisfy

the linear equation
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ax + a

X oXy eee * An+lxp+l = 0.

aj e GF(q) (i=1,..,n+1)
We may represent hj by the row-matrix

Hj = [al, 3,5 ooy ap+]]

Similarly, represent the hyperplane hj_l by the row matrix

Hj-1 = [bl, b,s «oes bn+1l

The transformation o carries all the points of Hj-1 into points of
Hj, so if p = (X, .., xp+1) is in hj-1, then p' = op is in hj.
Denoting the column-vectors representing p and p' by P and P'

respectively, we have
P' = MP,
So we may write in matrix form the equation of Hj:
Hj (MP) = 0
Hence for all points of Hj-1 we have
(HjM)P =0 (8.11)
Thus the equation (8.11) represents the hyperplane hj_l, hence

Hj-1 = HjM,
or
ch 1 0 0

[b ’ b2’ seey bn+1] = [a.l.’ a2’ seey an+1]

I Ch-1 0 1 .

o 0 0 o0

It follows that
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[b,s bys ey byl =

[cna, + cpo1a, + oov + Cpansls a, éz, ees anl (8.12)

~Writing again c¢j = aj + ey (i=0,1,..,n) as in (8.2), the

~first component on the right hand side of (8.12) becomes

(mnal +oop-1a, * ...t aoan+1)

+ S(Ynal + Yn_laz + a;o + Yoan)o

The second term of the above expression vanishes since by assumption
Ps = (Ynseoses YO) e hj, while the first term belongs to GF(q).

The remaining components are also real, since hj is real. From
applying the Singer shift -1, it also follows that pg.1 € hj-1,

since pg € hj.

We apply now this Temma to the hyperplane hg. Since it is real
and contains pg, it follows that hg.i is also real. Furthermore,

by applying the Singer shift,

hS-]. = pS—]_ pS seey Ps+n_2 cee
so hg_1 also contains ps.

We proceed in this manner until arriving to
hs-(n-1) = Ps-n+l Ps-n+2 «+> Ps ..., Still real and containing pg,

hence hg.p 1is also real (though not containing pg, only ps-1).
We have thus found that the duals of Pgs Pys +--s Pn are real.

To generalise Theorem 2.9, we have to find n+2 points in Bo’ not
’n+i of them dependent and with real duals. This is easy, if pg is
not in any of the hyperplanes determined by any n of the n+l points
Pgs Pys ==+5 Pn- Then the points Pgs Pys «<es Pns Ps satisfy the

condition and their duals are hg, hg.1, ..., hg_p and h , all real.
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However, the above restrictive condition does not generally hold,
so other sets of suitable real points must be considered. For
this purpose we take the following set of n consecutive (hence

independent) points

pis p1+1s es ey pi+n-1
where

pi =(0 0 . . 0 a b), a,b #0

pi+1 = (0 0 . . a b 0) a,b e GF(q) (8.13)

Pij+n-1 = (a b 0 . . 0)

For all q we can always find at least one such set. (When g=2,

there is exactly one set : pj =(00 .01 1) and so on.)
These points determine the hyperplane h;, the equation of which is
bMx = bM"dax, + ...+ (<1)aMx,yg = 0 (8.14)

To these n points we add two points: Py and pp and show that any
choice of (n+l) points out of this set of n+2 points forms an

independent set and that their duals are real.

Equation (8.14) implies immediately that Py and p, are not in hj.
Thus it is not possible to select n+l points, consisting of the n
points of hj Tisted and one of Py OF Pn SO that they should be
dependent. It must be shown now that we cannot select n+l dependent
points consisting of both p, and pp and n-1 of the set {pj}

(j=i,..,1+n-1).

Assume that there exists a hyperplane containing these n+l points,

its equation being
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lei + k2X2 + ... T kn+1Xn+1 =0

Since p0"= (0 0 . . 0 1)andpy=(1 0 . . 0) belong to

the hyperplane, it follows that

Since n-1 points of the set {pj} (j=1,...,i+n-1) are selected, it
follows that either pj or pj+p-1 is in the selected set. Since

a#0,b#0, it follows in the first case that k, = 0 and in the
second case k2 = 0. Continue in this manner and assume that the

equation is of the form
ijj + ess t+ kzXz =0

where j,...,% are consecutive indices, and coefficients from kl to
kj-1, also from kg to kp41 are zero. Since at least one of the
points pi+g and pj+n-(j-1) s amongst those selected, it follows

in the first case that kg = 0 and in the second case that kj = 0.

In the beginning the left hand side of the equation of the hyperplane
had coefficients from k2 to kp, hence n-1 in number. In n-1 steps

as above all (n-1) coefficients are found to be equal to zero. This
shows that a hyperplane containing Pos Pn and n-1 points of the set
{Pis ««s Pi4n-1} cannot exist. Thus the set {po, Pns PisesesPit+n-1}

satisfies the required condition.

It remains to be shown that the duals hg, hg_p, hg_js «ves Ngojun+l

are real.

The first two of this set of hyperplanes are already known to be

real. We have to consider now the hyperplane hg_j.
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We find now the form of Mi, the matrix of the transformation taking

po to p'i'

Since
Py = (0 0 . 1) goes topj =(0 0 . . a b)
p, = (0 1 0) goes topjp; = (0 . . a b 0)

pn-1 = (0 1 . . O0) goes to pjsn-1 =(a b . . 0)

the matrix M1 has for its last n columns

la| O] 0
b a 0
Yile |Bilg wwmy |d
0 0 |b

respectively. (Each column may be multiplied by some constant.)

To find the first column, consider

l

. 1
i =
M'Pn,  where P, = 9
[0
and
o'pp = © p1-lpn = OPp+i-1
= o(a, b, .., 0).
So,
. |al |a]
M'p, = Mib‘ = (A+ED)’I:> ;
0] 0]

making use of (8.3).

a a
b b

AlO| is a real column vector, while eD|(0] = kPg, where P is the column
0] 0]

vector determined by the coordinates of pg, and k ¢ GF(q2).
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To find hg_j, write
He_j = HM1, (8.15)

where Hg and Hg.1 are row vectors representing the coefficients in

the Tinear equations of hg and hg_1.
From the calculations above it follows that
Mi = A' + kD

where A' is a matrix transforming Pgs> Pys «ees Ppo1 inter Pis
Pi+ls «++s Pi+n-1 respectively, while transforming Pn into the

point represented by the real column

QO T w

O e

Thus A' is a real matrix, D is the matrix defined before, having
Ps as its first column and 0 for all the other entries. Hg is the
real row-vector [dl, d2, eees dn41], and since hg contains the

point pg, it follows that

dlYn + szn—l + eew + dn+1Y0= 0,
So (8.15) becomes

Hs-i = Hg(A'+kD) = H¢A',

which is a row-vector belonging to GF(q), since Hg and A' are both

real.

Hence hg_i is a real hyperplane, as claimed. Moreover, it follows

from the duality mapping that
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Ps € hg_j,

since pj € ho’ and pg is the dual of ho’ while pj = Ps-(s-i) Iis

the dual of hg.j.

We apply now Lemma 3.17 (n-1) times; since by (8.13) the points
Pis Pi+ls +ess Pj+n-2 all belong to ho’ so their duals hg_j, hg-i-1,

cees hg_j_n+1 all contain pg.
Thus the hyperplanes hs_j, hg_i-1, ««, Ng_i-n+l, are all real.

This completes the generalisation of Theorem 2.9 for n dimensions.
We may also note that the choice of the point pg is unique by the

same argument as used in Section 2.6.

We summarise this now as the General Nuality Theorem:

Theorem 3.18

Let B0 be the real Baer space in PG(n,q?). Define the duality map
Vs between the points and hyperplanes of PG(n,q2) as in (8.8). A
unique number s can be found such that vg maps n+2 points of Bo’

no n+l of them dependent, into n+2 hyperplanes belonging to Bo'

Corollary
A unique number s exists such that the duality map vg maps the

real Baer space of PG(2,92) into itself.

Applications of the Singer Duality Theorem

a. The Singer Wreath

Note: The Singer group E = <o> is here, as in the previous
section & = <oq2>, the cyclic group acting regularly on

the points of PG(n,q2), so the subscript q2 is dropped in the
following discussions. We consider the action of = on Bo’
Each Singer image of B0 is a Baer space.
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Theorem 3.19

The set of Singer images of B0 contains a subset of q(g+1) Baer
spaces, called the Singer Wreath : Wz (belonging to Z). It has

the following properties:

(1) each Baer space belonging to Wz intersects B0 in
(q"-1)/(g-1) points of a hyperplane of PG(q2) and
possibly another point outside this hyperplane.

(i1) the set Wz falls into g+l classes, each containing
q Baer-spaces, such that the Baer-spaces belonging to
one class have (q"-1)/(q-1) points of a hyperplane
common with Bo'

(iii)  the set Wz falls into g+l classes, each containing q
Baer-spaces belonging to one class intersect in a point
P of Bo’ and each of the (q"-1)/(q-1) real hyperplanes
through P belongs to all the Baer-spaces of the class,
that is: each hyperplane through P containing (q"-1)/(q-1)
points of Bo’ has also (q"-1)/(q-1) points in common with
each Baer-space of the class.

(Note: the intersections of each of the above hyperplanes
with the above Baer-spaces of the class are different

sets.)

Proof
Recall that in the previous section hyperplanes of the following

type were considered:

M= Pis Pitls ees Piancls oo

where



(9.1)

where
t € GF(q).

Each of the hyperplanes of this type has equation:
X = tx_ 4+ ...+ (-1)D t”xn = Oy

Since there are q choices for t, we obtain q hyperplanes of this

type. In particular, for t = 0 we have

hO =p0, pl’ LRC I 'Y pn_l, e 0
with equation X, = 0.

Let H* = [h;} where the hi.hyperplanes are defined by (9.1),

together with

hl = Ps Pys eees Pps oees
where p, = (00 . . 1 0).

Each of the hyperplanes of H* is real, hence it has (q"-1)/(q-1)
points belonging to Bo' Furthermore, by Theorem 3.18, the Singer

dual of hy, the point ps_j is also real, where s is defined by

(8.6).
Let hy € H* and Tet p ¢ h; N By Then, using (9.1), we have

n-1

L akpi+k = (an-1, an-i, .., a,, 0) for i =1
k=0 (9.2)

o
"

and

(an-1t, ap-2t + ap-1) ... (agt +a,), a,)

otherwise.
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Let ay be the first non-zero coefficient on the left hand side

of (9.2), i.e.
0 <2<n-1, ay #0, and for 0 <k <y, a =0,

Then ag can be chosen arbitrarily, (ag # 0), but once the
choice is made for some fixed point P, the remaining coefficients
are uniquely defined. Choosing ag =1, the remaining coefficients

must belong to GF(q) as p e Bo‘

Let hj e H*, j # i. Then
o71p; = p;

- _
I Pian-1 = Pjanoys

hence hj is the (j-i)th Singer image of h;. Moreover, all the

points in h; n By are transformed into points of h; n B,_by od-1,

This is so, because
UJ'I(aopi APl toeee A gpiyn_g)
= aopJ- + aipj+1 toee. + an_lpj+n_1.
(Note: Here gJj-i has been treated as a linear transformation,
This is justified within the range considered here,)
Define also

P* = {ps-i} where h; ¢ H*,

Through each point Ps.; € P* there is a set of (q”—l)/(q-l) hyper-
planes, which are the duals of the points of hi n Bo’ hence they
are hyperplanes of By» If pg_i and Ps-j both belong to p*, they
can be treated as dual hyperplanes h; (s) and h;(sT, with the hyper-
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planes through ps-i and ps-j as dual points p(s). So the conclusion

reached earlier for the hyperplanes of H* implies also that

all the hyperplanes containing ps-i and belonging to B go by the

transformation o1=J into hyperplanes through o. .p. ; = p._.
B > =3

and belonging to Bo‘

Next apply the transformation oj-i to the entire Baer space Bo’

where i and j are as defined above.

Let Bjj = 0j-iB,. Then Bjj is a Baer space. Since hj e By» it
follows that oj_ihj = hj is in Bjj. Moreover, the transformation
od=T takes all the points of B0 n h; into points of B0 n hj by
the previous result. On the other hand,
N h Hence it follows

j-i = il J-Th, = B.. .
o (B0 Nhy) =o B, No' " hy B1J je

that Bi; shares with B_all the points of B, nhs.

The transformation od=1 takes also the point Ps-j of B0 together
with all the hyperplanes through that point, belonging to B0 into
the point pg.y 1in Bjj together with the hyperplanes through pg_j

and belonging to Bjj. From dual considerations, this point together
with the above set of hyperplanes through it belongs also to Bo'

Thus

B;; shares with B, the point p._; and (q"-1)/(q-1) hyperplanes

i4
o

through pe_q.

Since the set H* consists of g+l hyperplanes, there are (g+l)q
ordered pairs of indices which determine (q+l)q Baer spaces of

type Bjj, where i # j.

Fix first j and let i run through all the indices in H = {[hj}
and differnt from j. There are q Baer spaces of type Bjj, all

sharing pointwise with B0 the hyperplane hj. Since there are
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g+l choices for j, we obtain g+l classes of Baer spaces, q in each

class, sharing with B0 (g"-1)/(g-1) points of a hyperplane.

Next fix i and let j run through all values of j in p* = {ps-j1

so that j # i. There are again q Baer spaces of type Bij, all

intersecting BO in the point Ps-i and also sharing with B0

(q"-1)/(q-1) hyperplanes through Pg.j+ MWith g+l choices for i we

obtain g+l classes of Baer spaces, q in each class, sharing with B0

a point and (q"-1)/(q-1) hyperplanes through the point.

This completes the proof of Theorem 3.19.

b.

An_interpretation of Theorem 3.3

This theorem states that the number of points belonging to the
intersection of two Baer spaces is the same as the number of
hyperplanes. In [11] Bruen has also proved that the structures
of the point-set and the hyperplane-set of the intersection

are "isomorphic". In the terms used earlier in this chapter,
this means that the dual of the set of hyperplanes belonging

to the intersection of two Baer Spaces forms a Baer-complex

isomorphic to the complex determined by the set of points of

intersection (that is), a structure preserving map can be
found from one complex to the other. The Singer duality
theorem provides a simple, natural interpretation of this
result in the case when the two Baer spaces belong to the same

Singer orbit.

Without loss of generality, we may then assume that the two
Baer spaces are B0 and Bt’ the real Baer space and its ot

transform. Denote by
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P = {pj}

the set of points of B0 N Bt. Then for each Pi € P, hence in

Bt ,
Pi-t e B,.

By the duality theorem hsst-i € Bo’ where s is defined by
(8.6). Since pi is also 1in Bys it follows from the duality

theorem that hs-i € Bo’ hence by applying the transformation ot,

hs+t-i € By.
Thus for each py e B0 N Bt, we have hgyt_j ¢ B0 n Bt.

The reasoning can also be carried out conversely : for each

hj € B0 N B¢, Ps+t-j € BO N Bt.

Thus the number of points and number of hyperplanes belonging

to the intersection of B, and By is the same.

Furthermore, the isomorphism of the two structures also follows.

For let again
P = {pj}.
Denote P' = {pj_¢}.
Then P = P', since the Singer transformation is a homography.
Let H = {hs+t-i}-

Then there is a correlation between P' and H, since the Singer

duality preserves incidences.

Thus H 2z P' = p,
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Since H represents by the above the hyperplane set belonging

to B, nBt, it follows that the point-structure and the
hyperplane structure are isomorphic. This simple interpretation
of the isomorphism of the point and hyperplane-structures of

the intersection of two Baer-spaces can be extended to any

pair of Baer-spaces, if the following conjecture holds.

Conjecture
For each pair of Baer-spaces B and B, in S = PG(n,q2) some

Singer group
Eq2 = <o>q2
can be found such that
B, = <o>1B

Facts supporting this conjecture:

Without loss of generality one of the spaces can be taken to
be Bo'
The following can be established:

(1) A Singer group E is its own centraliser : Z(E).

Proof
Let £ = <o> act regularly on the points of S, inducing an

ordering

Pgs Pys o5 Pis oes Pg
where 2 = |S] - 1 = (q2"*2-1)/(q2-1) - 1.
Let T € Z(8). Then 1o = oT.

For the point pj
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wo(pi) = t(opi) = a1 = ps,
then o(1p;) = Pj» SO p; = o'lpi = Pj_1-
Hence for two consecutive points Pi» Pi-1,
i = Pj-i» TPi+1 = pj

for an arbitrary point pj.

Hence the action of 7 causes a uniform shift in the Singer

indices of the points of S

k=3 - (i-1)

(i1) The index of the centraliser of T in the normaliser
of £ is n+l1,
Proof

The result is a straight generalisation of Lemma 2.13 in

Chapter 2. Denote the normaliser of z:

Let p € N, then p-1 gp = oF.

By reasoning identical to that in Chapter 2 (Lemma 2.13), we

obtain that
r=1,4q, q2, .., q".

Hence r takes n+l possible values. Furthermore, suppose that
(p')-lop' = or,

that is
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(p')-lop' = p-lop

or

(p'p1)1 op'p~l = ¢

So p'p~l € Z(%) or p, p' belong to the same coset of Z in N.

Hence the choice of r fixes the coset. Thus the index of Z(&)

or of £ in N is n+l.

(i)

It follows from here that the number of conjugates of E
in the group of homographies T of PG(n,q2) is
||
(n+1)]5]
The intersection of two conjugate, distinct Singer
groups cannot contain a primitive element of either

group, since a primitive element determines the whole

group.

As the number of primitive elements of the cyclic
group is ¢(|Z|), (where ¢ is the Euler-function giving
the number of positive integers less than |Z| and co-
prime to it), it follows that there are at least
L

¢(|&] ) ————
(n+1) ]| 5]
distinct homographies, each belonging to some Singer

group, which take B0 to some Baer-space |B].

Since the number of Baer-spaces is

where ro is the group of homographies of PG(n,q) it

follows that
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on the average there are at least

o(|2]) |r| |r]

e T, |
) ¢(]5])|To|
[Z] (n+1)

homographies taking B0 to some Baer-space B and belonging to

some Singer cycle.

However, this cannot be taken to be a proof of the conjecture,
since at this stage it is not shown that these homographies
are distributed with some measure of uniformity amongst the

various Baer-spaces in PG(n,q2).
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APPENDIX

COMPUTER WORK ON FINITE PROJECTIVE GEOMETRY

In elementary geometry or number theory theorems can be found by
experimentation. Calculations or drawings point to some facts which

are first conjectured and then established by formal proofs. Similarly,
most results proved in this work were first conjectured through computer
aided experimentation. Some of the results turned out to be known ones
and can be found in the Titerature published somewhat earlier, others
were found simultaneously by other researchers, while some results are
believed to be still new. The significance of the computer programs
evolved and to be described in the following is, that they give
"visibility" to finite projective spaces, by listing and surveying
their elements: points, Tines, subspaces, Baer spaces with their
intersection properties. They should be useful for further research in

finding new facts or eliminating false conjectures.

The cyclic structure of projective spaces of dimension greater than two
and of projective planes over Galois fields provides the main tool for
the survey to be described. Singer's theorem, discussed in the
introduction, is used to generate, in succession, the coordinates of
the points of PG(n,q), finding at the same time the hyperplanes (or,
alternatively, perfect difference sets in GF(q)). 1In particular,

since this present research has focused on Baer spaces, q was chosen

to be a perfect square.

To achieve results in limited computing time, small values of n and

g% were used. In the case of projective planes, the value of q ranged
from 2 to 8, that is, planes over GF(4), GF(9), GF(16), GF(25), GF(49)
and GF(64) were surveyed. The programs were dimensioned for the above

range, but results in PG(2,9) and PG(2,16) already give sufficient
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insight, the higher values of q were used only in the beginning to
confirm the findings. For n=3, q2=4, 9, 16, and 25 were used, while

for n=4 and 5 the only value of g2 was 4.

The first step in the procedure was to find the generating polynomial

equation

xn+l < c X+ cn_lxn‘1 teee b (1.1)

(n=2,3,4,5)

as described in [191, (pp.130). The equation used must be irreducible
over GF(q2?). It is suitable for our purpose if its roots are primitive

elements of GF(qZ(”+1)), though this condition is not necessary.
The coefficients ¢ (i=0,1,..,n) in (1.1) are of the form
C: = a i (1'2)

where o is a root of an irreducible quadratic equation over GF(q) and

Yi is a natural number belonging to the set {1,2,..,(q2-1)},_g£
ci =0,

(We will refer to Yi as the logarithm of cj.) Thus the numbers Cj

are elements of GF(q2), where od9%-1 = 1,

For the Tow values of q used, it is easy to find an irreducible equation
over GF(q), but finding a suitable generating polynomial equation (1.1)
is Teft to the computer: a set of n+l integers is used in determining
the coefficients cj, reading in 0 for ¢i =0, or the logarithm yi in
(1.2) if ¢5 is non-zero. If the vector (0, 0, .., 0, t) where t # 0,

is reached by the program in less than (q2(”+1)-1)/(q2-1) steps, then
the calculation is aborted, and another set of (n+l) integers is read

in to define the equation (1.1).
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A few simple rules are obeyed to avoid some unnecessary computations:

(i) C, # 0, otherwise the polynomial in (1.1) is reducible.
(i1) ¢, cannot be the only non-zero coefficient on the right hand

side of (1.1), (0, O, .., t) in n+l steps.
(iii)  To obtain preferably a primitive root, y,, the logarithm of <,

in (1.2) must not be a multiple of q+l1.

For then ¢, belongs to the subfield GF(q). 1In that case equation (1.1)
cannot have a primitive element of GF(qZ(”+1)) for a root. (Suppose T
is a root, then the product of z and its conjugates over GF(q2) gives

2n

clrg?+. 4 (-1)”c0. since ((-1)”c0)2(q'1) =1, it follow that

2n
r2(1492+...4q  )(g-1) - 1, so ¢ is not primitive.)
Even if rules (i), (ii) and (ii11) are adhered to, there is no guarantee
that the polynomial thus defined yields the set of points of PG(n,q2).
However, polynomials were eliminated in negligibly small computing

time,

At the time when the programs were developed, there were no packages of
Galois-field calculations known to the author, so the next step in the
program was to establish a Galois-field addition table, (multiplication
table is not needed, as it is done simply by adding mod(q2-1) the

logarithms of the non-zero elements of GF(q2)).

To construct the addition table, the elements of GF(q2) are represented
by their logarithms. One thing to be watched in the field calculations
is the role of the element 0, which is not represented as a power of

the primitive element. The number 0 is not used as an exponent.

Instead, the Togarithm representing 1 is written as (q2-1). Hence in

the entries of the addition table, the number 0 represents the 0

element of the field, while the non-zero entries stand for the Togarithms

of the other field elements.
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The first row of the addition table is obtained by hand-calculation and
read in to the computer. The primitive element « used is a root of the

quadratic
a2 = kd + 2 (1.3)

where k, £ € GF(q) and the equation is irreducible over GF(q). The

powers of o are evaluated in the form:
al =h'a+ 2" (h', 2' € GF(q))

and so all sums o + al are expressed in the form aY. I1lustrate this

procedure in GF(9)

a2 = -a + 1 is irreducible over GF(3).
Then

a3 = —a2 + q= -q -1

a* = -2 - a = -1

a’ = -q

ab = a2 = g -1

Thus we have:

a + o' = -a=aqa°

o+ a2 = 1= o8

a+ ad=-1=q"
a+a*=qa-1=qb
a+a’=0

o+ ab=-qg-1=4q3
o+ a’=-a+1=qg2
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So the numbers in the first row of the Galois addition table for GF(q)

dare:

The rest of the addition table is established by the computer using

(i) symmetry, i.e. af + o = ol + ol
(ii) 0+0L.i=0L'i+0=a'i
(iii) ol + o1 =0 if q is even, and

ol + oit%(a-1) = 0 if q is odd.

(iv) altl 4 oJtl = a(a1+aj)

(Property iv means that entries read diagonally in the table, (excluding

the 0 diagonal) follow the natural (cyclic) order.)

The introductory part of each program used can then be described as

follows:

Step (i) The value of g is read in.

(The field used is generally GF(q2)).

Step (ii) The Galois addition table of the field is established.
(This table depends on the original irreducible quadratic
over GF(q?).)

Step (iii) The Singer algorithm is used
(a) to find successively the coordinates of the points

of PG(n,q2).

(b) to determine the hyperplane X, = 0.

Whenever the first coordinate of the point found is O,
the Singer index of the point is stored. The set of
Singer indices thus obtained gives a perfect difference
set. 1In terms of block-designs, this is a (v,k, A)-

difference set where



(q2)M+l-1 (q2)"-1 (q2)n-1-1

q2-1 q2-1 q2-1

(c) to determine the real points of PG(n,q2), that is, the
points of which the coordinates belong to the subfield
GF(q). This is done by testing whether the ratios of
the non-zero coordinates belong to GF(q). This is
the case, if the differences of their logarithms are
multiples of g+l. The indices of the real points
are also stored. The set of real points determines

the real Baer-space of PG(n,q2).

As mentioned before, results are printed out and the program is used
for further survey only if the full Singer cycle of (q2n*2-1)/(q2-1)

steps is completed.

Two programs together with outputs are attached to the work to give a
sample. The language used is Pascal and the programs were executed on

the VAX/VMS of the University of Adelaide.

The first of the two programs is used for finding either the real
hyperplanes of PG(n,q2) (that is, all those hyperplanes which share
(q"-1)/(g-1) points with the real Baer-space), or all the Baer spaces

strongly intersecting the real Baer space, that is ‘sharing a hyperplane

(and possibly another point) with the real Baer space. This program is

dimensioned as high as PG(4,9) or PG(5,4).

The second program is used in three dimensions only, and has three
alternative uses :

(1) determining real planes,

(i) strongly intersecting spaces,

(iii)  the real lines in PG(3,q2).
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The Tlisting of real lines is useful for survey work, but the program is
not as straightforward as the listing of the planes, which can be
obtained by using successively the Singer transformation on the plane

X =0, or the Tisting of the Baer spaces belonging to the same Singer

1
orbit.

An ordering of the real lines is obtained by listing first those Tines
which contain 2 points with difference 1 in their Singer indices, next
those where the minimum difference is 2, and so on. The lines are

obtained as intersections of two planes passing through the two fixed

points investigated.

An important step in the program is checking that no repetition of the

lines occurs. Full Tistings were done in PG(3,4), PG(3,9) and PG(3,16).

For higher values of q the computing time becomes excessive,

In the outputs, points and hyperplanes are listed by their Singer

indices. However, for some Purposes the listing of the coordinates of
the points is also desirable, 1in particular, for the points of the real
subspace. The listing is done in a condensed form: non-zero coordinates
are given by their Togarithms and the zero coordinates by the number
zero. The whole information about the coordinate of a point is then
written in the form of a positive integer in the decimal system. Two
examples show then how to read the information.

Example 1 : 2 0 2 0 6 0 & in PG(3,9)

represents P = (a2, a2, o6, 46)

equivalent to (a8, a8, o4, a*) = (1, 1, -1, -1) over GF(9).

The point belongs to PG(3,3).

Example 2 :' 1 3 0 8 0 0 0 8 in PG(3,16)

represents P = (al3, 48, 0, 48)

((115, alO, 0’ alO) = (1, alo, 0, alO)

where o0 & GF(4). Here o2 = o + § (where 62 = § +1 (over GF(2)).
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ADDENDUM

COMPUTER PRINTOUTS



PROGRAM HIDIM

QUTPUT 1

P ( 3, 16 )
GENERATING POLYNOMIAL 15 15 0 1

where q“ + a4+ 1 =0 over GF(2).)

BAER - SPACES STRONGLY INTERSECTING B0

(SINGER WREATH)

OUTPUT 2

PG ( 5, &)

GENERATING POLYNOMIAL 1 0 0 0 1
6

x® = o  x° x + 1)

where az + 0 + 1 =0 over GF(2)

SINGER WREATH



A2

FROGRAM  HMINTH Cinrputsoutrut) s
{EENERATION OF FOINTS IN PG{ Ry e T

var isas8alurdrdrsasydlstemrsafhelots ksl omersrshe
dimsdirsdhurleasirvnobsnarscomszre ! integer:
ind? arraql0..3] of inteders
diffsrlasstat arraull,.0211 of intesger:
grafsrel! arrawll,,1541 of intozsers
cofstermsvectsvt arrawll..61 of intecert
galaddt arragl0..24;0,.241 aof inteders

bedin
writelm(” SURVEY OF FOTNTS,HYPERFMLANFS: RAER SPFACESY)
for it=1 to & do
besin
Writeln{” )
ends

{Ecstasblishing addition tahle for the Galais field)
22l addlQs01t=034

readg{osdim) ¥

asit=sar(als

writeln(’ FROJECTIVE SFACE! FPGL sdimsass 7)) 4
galuwi=as—17%

for Ji=1 to =s&lw do

begin
read{saladdlls.1)

ends

if @ mod 2 =0 then

bedin

I=galuw-1%
for Jdi=2 ta 1 do -
besin
gzlaadldsdli=0s
drE =08
far ki=.r to gz5lw do
bedgin
temri=dgaladdld 110413
if temr=as then
galaddldshkli=1 else
galaddluirkli=tamr

ends
engs
gzladdlgaslwsgalwlti=00
end olse
bedin

afhi=galw div 2%
for .Jt=2 to Salw do

bedgin
for ki=d to Zalw do
bhedin
if (k-d)=efh then
galaddl.irklt= alse
besgin

temri=galaddli-1sk-124+13
if temr=as then
ggladdldisklti=l plse
galaddlg»kli=tems
ends
ends
ends
ends
far dt=2 to g#slw do
bedin
dlit=i-13
for ki=1 to .l do



hesgin A3

saladdl.sk)i=galaddlks.il
ends’ ,
ends’
for .,it=1 to galu do
hedin
saladdlOs.ilt=.i
galaddl.i,01t=4
end#
read(ir)s
if ir=1 then
bedin
writeln(’ ANRITION TARLES IN GF( sas 72705
for .t=0 to galw do )
besgin
for ki=0 to gzlu do
bedgin
write(galaddlirk]iIs
ends
writeln(’ £ By
ends’
for Jdi=1 ta 4 do
bedin
writeln(’ ‘Y
ends
ends
{addition table estahlished >
dirt=dim$l;
dhyi=dim-14%
loti=1+
for ni=1 tao dim do
begin
loti=as¥lottl
engs
for ni=1 to dir do
besgin
read (coflnl)
ends’
o writeln(’ ‘Y
writeln¢’ COEFFICIENTS OF GENCRATING EQRUATION DEFINED RY)S
for nt=1 to dis do
begin
write (coffmliads
endsd
writelns
for Jdi=1 to 4 do
hegin
writelm(’ 7
ends
fInitizl valuesl
mi=1¢
diffL1li=1%
groffl1li=1%§
ni=ls )
for .i=1 to dir do
bedin
if J=dim then .
vectlJli=dalu alse
vectldli=

end¥
ai=atli
it=1+¥

{Bedginning of cwclel

[



A 4
{Finding ccardinates of roints in succession he Singer {ransformalic
rereat
it=d+1s
for .i=1 to dir do
bedin
if (vect[11=0) ar (cofl.dl=0) then
terml.i1:=0 else
hegin
tempiz=(caflJltvectll1]) mod dsluws
if teme=0 then
temri=z=dgaluws

termfdli=temr s

ends
ends
for Jit=1 ta dim do
bedin
vecltl.dlti=galesddltermlJlsvectl.it1 1]
endgs
vectLdirli=termidirl}
{Coordinates found?
{Test far realressy zre=ne. of zero-comrcenentsy.dr=na.e of MO *erasl
Zrni=0%

dr =07

for Ji=1 to dir do

besgin
if vectl.il=0 themn =rci=zrctl else
hesgin

JdEt=drtl s
vLardi={vectl.il) maod b
end?
ends
indldimli=0s
for .= dim downto 1 do
hegin
ingdLi-11¢=indliltahs(vlidip-dd-vidirp-itl1)
ends
{Registerinsg real rointslk
if imdCzrcl=0 then
hedgin
ni=ntls
groflrnli=is#
ends .
{0htaining difference et
if vectl[11=0 then
hedin
mi=mt+ls
difflmli=is
ends
leat=1}+
while vectllezl=0 do
hedin
leat=leatl
endgs
until lea=dirs
{Cucle comrletadlr
writeln(’ TOTAL NO OF FOINTS X6 ‘ylots i= fyd)d
{This srint-aont checks generating eruation for srimitivity af rootl
if i=1lot then
bedin
{ Nigrlsy of basic resultsl
{nob=na. af raints in Raer sracesnor=nc of roints in heeerelanesd
nobi=1;
for .i=1 tao dim do



begin AS

robt=a¥nobil
ends
for ki=nob downto 2 do
besin
groflkli=gsroflk- 1]
ends
graflf11i=0;
bi=nob div 7
writelnt
writelns
writelns
Wwritelns
writeln(’ INDICES OF REAL FOINTS ‘)%
writelns
ni=0s%
while nm+=b ddo
hegin
di=1;
me=7%nd
while ((44=7) and {((mtd)<=noh)) do
hedin
write (grofimt+ddil0ds
Ji=.t1l
endy
writeln(’ ‘Y
ni=ntl
endyd
for Jdi=1 to 5 do
hegin
writeln
ernds
rnori=13s
for .di=1 ta dhw do
bedin
nori=asknortl
ends
for ki=naor downto 2 do
begin
difflLkli=gifflk-1]
ends
diffl131i=0%
t=moF div 105§
writeln(” NIFFERENCE SET IS5 ‘)%
writelns
ni=0%
while n<=b do
begin
Ji=13
mt=10%ns
while ((J==10) and {({(mt+i)<=rnar)) do
bedgdin
write (gifflimt. 023805
di=.t1
ernds
writelns
ni=ntl
ends
{ Listing rlanes and scaenning for resl roinle in the rlanesl
{alternatively listind strondly intersecting Gaer rlanesd
far di=1 ta 6 do
tegin
writeln

l



end; , A6
if dr=1 then
bedin
TLENORS
faor .dt=1 to nor do
bedin
staldli=diffl.i]
ends
end else
bedgin
risnohnd
for di=1 %o nob do
tegin
Costaldli=grofl.il
ends
ends
it=0%
while i<lot da
begin
far .di=1 to r do
hedgin
if i=0 then :
Flal.jli==stal.j] else
rlalilt=plaliltl
ends
dlit=pr-15
if rlalrl=lot then
tegin .
for .t=il downto 1 do
begin
Flaldt1di=rlal.l
ends
Flalflli=
ends
{8can faor resl intersectionsl
comi=0¢%
for dt=1 +to moh do
bedin
ki=1¢
while ((rFlalkl<sraflil) arnd (kL<r)) do
bedin
ki=kt+1
ends
it rlalkl=grofLCJd] then
begin
comi=camtl}
rellcomli=drofi.ils
ends
endsé
afhi=13%
for .di=1 to dhw do
bedin
afhi=ac¥efhitl
engs
if com>(afh-1) then
bedgin
writelns:
if ir=1 then -
uriteln(” REAL FOINTS OF HYFERFLANE
else
writeln(’ GPFACE Ty v’ MEETS REAL SPACE TN’y
writelnys
ni=0s

v’ ARE )



A 7
while n<=0 do
begin
Jdi=1g
mi=10%nJ

while ((Jd<=10) anad ({mtd)<=com’) do

begin
write (rellmtdlid)s
Ji=.0d1
engs
writelns
ni=ntl
endgs
ends
it=id1s
end?
ends
@r‘db
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SURVEY 0OF FOINTS,FLANESySFACES IN FGOE,5R)

FIELDN: Gr¢ 14)
ALDITION TARLES IN GF( 43
o 1 2 3 4 &5 & 7 8 9 10 11 12 12 14 1%
100 5 915 2 11 14 10 3 8 &6 13 12 7 4
2 5 0o & 10 1 #1215 11 4 g 7 14 13 &
2 % & 0 711 2 413 1 12 S 10 8 19 14
4 15 10 7 ©0 © 12 3 § 14 = 12 &4 11 9 1
o2t 11 08 0 713 4 &6 14 I 14 7 12 10
& 11 3 212 % o010 14 5 7 1 4 15 @ 13
7 14 12 4 3 13 10 0 11 195 & & =2 5 1 %
g 10 15 13 S5 4 14 11 0 12 1 7 9 3 & 2
¢ I 11 1 14 & S 15 12 O 13 % & 10 4 7
10 8 4 12 =213 7 6 112 O 14 2 7 11 S
1Tt 4 9 513 I 1 &8 7 = 14 0 15 4 10 12
12 17 7 10 &6 14 4 2 9 & & 1% 0 1 8 11
(T 12 14 @© 11 7 1% 5 3 10 2 4 1 0 2 &
14 7 13 15 9 12 8 1 & 4 11 10 5 2 0 3
15 4 8 14 1 10 13 2 2 7 5 12 11 & 3 0
FRQUATION DEFINED LY 14 15 0 !
TOTAL NO OF FOINTS IS 4349 i= 4349
INDICES OF REAL FOINTS
0 1 2 3 8é 135 136
156 191 173 174 193 328 336
387 469 71 57 766 7467 g3z
8¢l 910 PEe 1042 1144 1289 1419
1442 1491 1744 1774 19432 1971 1972
19895 2076 212% 2164 214664 2167 2148
2203 2301 2359 2340 2467 2477 2842
2472 2473 2845 2932 3152 3297 1347
3348 3448 34464 3492 3493 2540 268G
3746 3784 I93ES 3950 3979 3260 4080
41327 4145 4146 4151 4172 4174 4175
4174 4291 4309 4332 4333 4338 4367
4348
LIST OF REAL FOINTS
1 1500 156000 15000000 4090414 40414 4041400
A0203080 2121207 308 30600 3080000 7020767 &0001
HO00100 2001207 1010011 9140409 100G 100500 A010101

1110104 14040404 2001313 S150005 2120007 14040009 10150505

T



14040904
2120712
4000404

101015

10151500
10161046

12071267

120670000

13151300

DIFFERENCE

SFACE

194
837
1744

bl

"ACE

2147

]
]
~

2001202
153131318
12000207
10101500
11000111

4140904

130813

14000009

GLT IS

1
169
347
o942
692
847

1040
1153

1338

1330
1745
1911
2088
2253
2431
2553
2674
2863
2074
J24%9
2457
J5E3

2796

3J714
A059
4173
4293

43463

0

n

125

891

1774

s

1

21468

4348

121320208
2080808
110601
13088G08
1060001
100GQ04
120813200
1040006

2
193 1
204 z
543 5
715 7
89 9
1045 10
1208 12
1255 132
1538 15
1747 17
1935 19
2120 21
2254 22
2424 24
2563 25
2708 27
2888 27
2086 71
3270 33
7462 24
3587 s
2762 37
3919 39
4071 40
4207 42
4294 43
4347
MECTS
220 z
710 g
1942 19
MEETS
2
2340 24

A9

15150505
7030607
11060100
13080813
0202
2000404
1010001
10¢01
o 8
74 237
84 457
48 GSE
23 705
i2 P23
13 1082
19 122
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44 14613
77 1794
44 1932
31 2149
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44 2457
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33 2762
708 2913
23 2125
12 3343
67 J483
@0 3500
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27 3933
21 4114
214 4221
o1 4307
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& 84
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REAL SFACE
2 134
73 3348
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n
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L
s d RIO ) U b
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4115
4231

Azial

[LraNs

IN

135
469
1144
1995

IN

409714
fosea
61108606
3600308
12001308
gC013¢CQ
1287
101¢0006

24
248
4%1
572
770
@73

1094
1234
1445
14634
1822
1971
2164
2315
2470
2613
2803
2992
21332
350
3492
3642

ARE7

3940
4145
4243
AZZ0

134
a71
1289

2076

N3
n

[ ]
N -
kel

4091400
GeRGQ00O
14140909
101515
10101510
111046064
120700
151515
o0 73
272 273
S01 ald
GO0 G133
773 419
w77 9806
1095 1128
132485 1247
1455 1448
1437 14676
18449 1R7%E
1998 2658
267 2149
Q2IET 2329
2408 2492
2419 2635
2008 2809
3001 3014
217N R4
2345 3401
RE S JH07
34686 J718
ARED 2868
3977 3979
4149 4152
4258 4250
ATIR AT
15¢& 191
579 7466
1419 1442
2129 2164
287 767
4144 4178
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SFACE

158
2164
4368

SFACE

154
2164

4332

SFACE

191
3784
4367

SPACE
1864
2164
4333

SGFACE
Q

2144
4332

192
71
2359 2
193
156
2164 2
358
195
1
2147 2
4367
194
2
2340 2
38¢
191
2259 2
1973
469 1
2167 2
4333
2008
571 1
3750 z
4348
2165
469 1
2167 2
4358
2146
156
2166 2
4332

193
360

191

R3]

3
673

193

22460

144

148

~2 ]
3~

<3~

144
148

MEETS

2

MEETS

8]

MELETES

MEETS

-

MEETS

2
i

MEETS

1

2
“

MEETS REAL

[ ]

MEETS

1

el
P

REAL

J I

19
)

t

REAL

[N |

[N e
<o

REAL

REAL

124

2348

REAL
194
552

REAL

289
01

<1

71
g0

5]

-«

REAL

289
201

SrACE

on 5

ed)
[ S
Fl ds

SrACE

[N ]
[N

SMACE

1776

2359

SMACE

SO
N ~J
~1 0~

IN

IN

IN

IN

IN

IN

IN

IN

IN

[ Ry eN]

o8]
L]
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s8]

Cl e
N
o

174
3492

I

~J £
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o
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3540
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0o~

L
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41072
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e

ol
=

Y
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W
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2167
4334

SFACE

SFACE
171
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4348

SFACE
191

3950
4348

GFACE

T ]

o
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1
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MEETS REAL

194

23480

MEETS RCAL

1971
4137

MEETS REAL

1271
4137

MEETS REAL

MEETS REAL

MEETES REAL

SrACE

123
2347
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194
AZ4G

SFACE

1972
4172

SFACE

1972
4172

GrACE

1971
4137

SFACE

123
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4348 MEETS RC&L BEMACE IN

1 2 135 193 194 304 PR 1971
2359 2672 2347 492 2979 4145 4174 4175
43468



SURVEY OF FOINTSsHYPERFLANES,

FRQJECTIVE SFACER FG(

CREFFICIE
1

TAOTAL NO

NTH® OF
Y

BENERATING EQUATION

0 v

OF FOINTS IS

INDICES OF REAL POINTS

0
19
244
370
483
633
812
889
1127

i

31
257
393
nan
634
844
890
1128

LIFFERENCE SET IS

0
37
68

102
1581
191
230
287
331
373
427
478
B23
o447
604
641
bbb
703
749
goa
844
872
897
932

1
39
74

108
1352
194
231
288
332
374
431
480
028
351
608
642
5468
723
770
810
847
879
02
933

2

44

85
120
1583
200
249
292
333
383
441
482
524
557
619
646
673
724
771
814
853
880
11
934

=
e

1

1365

al

49
258
413
526
&51
847
871

1129

44

8&
126
161
207
251
293
335
393
449
485
327
508
620
647
676
730
777
818
856
881
212
?39

1

BAER SFACES

4)

NEFINEO RY

i= 1360

4 4
S0 g1
287 288
414 472
D27 028
652 653
848 g7i
B92 ?43%
1130 1131
4 16

47 49

88 8%
129 130
163 171
208 215
203 257
302 310
342 348
398 403
YY) 468
498 02
G330 531
568 o83
£28 630
649 651
678 681
734 738
778 780
820 825
859 8461
884 8835
P16 217
?40 ?43

A 13

17

o4

93
134
172
218
271
314
350
408
4469
304
532
591
633
652
489
744
784
832
B&G
886
F19
249

3
175
289
473
608
671
872

1050
11460

23

96

74
135
173
219
274
316
353
413
270
508
534
o092
636
6355
694
753
793
837
848
88¢
920

@32

234
337
482
&09
774
|73
1051
11764

25
60
100
138

ig0o

225

282
319
364
420
472
a1é
B39
995
637
4632
626
7564
799
840
B&69
890
723
254

e = e



?oe
1002
1050
1099
1138
117%
1220
1258
1296
17331
1359

SFACE

o0
337
o246
671
870

1131

SFPACE

414
847
1130

SFACE

0
413
844

1129

SFACE

1
414
847

1130

60
1004
1055
1100
1140
1180
1222
1241
1298
1332

1

91
270
S27
774
891
11460

47 %
848
1131

472
847
1120

47 %
248
1131

G&5
1026
1060
1122
1141
1192
1223
1267
1299
1334

0

175
395
528
812
Re2
1174

i

483
872

238

<

482
871

23¢%

482
872

275
1030
1663
1123
1143
1193
1227
1273
1305
1340

MEETS REAL

3
234
413
“08
844
745

279
1034
1064
1124
1147
1203
122¢e
1274
1309
1345

SFACE IN

4
244
414
409
847

1050

MEETS REAL SFACE IN

MEETS REAL

o

o0
~N R

LS AL A

MEETS REAL

4
526

873

SFACE IN

4
526
889

SFACE IN

3

27

870

584
10335
1072
1125
1152
1204
1236
1278
1312
1247

257
472
633
848
1031

49
5927

890

o0
S28

8921

Ak

?84
L0460
10745
1127
1154
1207
1237
1279
1317
1349

208
473
&34
871
1127

S0
609
892

244
408
891

244
409
892

789
1044
1076
1128
1155
1210
1251
1281
1323
1352

19
287
482
651
872

1128

258
634
1051

257
633
10350

258
634
1051

293
1044
1088
1129
1156
1212
1254
129%
1325
13585

31
288
483
652
873

112¢%

632

1128

287
691
1127

288
652

1128

998 "o}
1047 -
1093 ,
1130 b
1168 §
1215
1256 !
1294 :
1329 i
1357 }

49
289
525
633
889

1130

P.
o

1128

289
633
1129



SFACE

S

370
653
1131

SFACE

&
370
653

1131

SFACE

413
844
1129

1126 MEETS REAL SFACE

19 49 50 175

395 413 414 608

812 889 890 891
1176

1127 MEETS REAL SFACE

19 49 S0 173

395 413 414 408

812 887 8%90 891
1176

1344 MEETS REAL SFACE

1 2 3 4

472 482 S23 N2é

847 871 872 889
1130

A 15

IN
234

609
892

IN
234

60%
892

IN

527
890

244
633
1127

244
633
1127

49
608
871

287
&34
1128

287
634
1128

237
633
1050

288
651
1129

288
651
1129

287
651
1127

289
&h2

1130

289
652
1130

692

1128



PROGRAM BEARSP

DUTPUT 1

PG (3,9)

GENERATING POLYNOMIAL 1 T 4 1

2
X = o X + o X + 2 X + o

where o 4+ 0 + 2 = 0 over GF(3).)

LIST OF REAL PLANES

QUTPUT 2

PG (3,4)

GENERATING POLYNOMIAL 0 1 1
(xq = a ( x2 + x + 1)

where az + a + 1 =0 over GF(2) .)

LIST OF REAL LINES
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FROGRAN RAERSE  (inrubsoutrut)i
fBENERATION OF FOINTR IN THREE NIMENGIONGS
var ipG!ﬁBlWiJiJPIGSJJ1!tEmP!thilﬂt!kﬁlimiﬁsF#b!
Jesasdrassy MinoyiTsnObDy NORYCOMYZTC ¢ irnlegers
ctslisdrt arrashicv. 281 of integers
rer! arrasli..221 of intesers
diffselarstastemt arraxll, 6511 of intesers
arafyarsrelt arraull..1561 of intesers
#1c! arrawll..2:1..685171 of inteders
cofstermrvectsv? arrawli..q4] af intesers
galadd! a2rrauf0..24:0,.247 of intederi
bedin
writeln(’ BURVEY OF FOINTS,LINDS:FLANECS,SPACES i RATRS I
faopr it=1 to &6 do
hesin
writeln(’ ‘7
ends
{Eetzblishing zdditiocn tahle for the Gslois fielcd
22123dadl0,03:=05
resd{a)i
ast=ser({al)}
writeln(’ FIELT: GF(’sas 2723
galwt=as~1}
for .it=1 to =#alw do
hegin
read(galaddl1s+.d1)
endi
if @ mod 2 =0 then
hegin
1i=galuw-l}
for J4¢=2 to 1 do
hegin
gz3laddld»d1t=0%
drt=d1
for ki=.ir to galw do
bedin
tempi=galaddlJ~1sk-11+17
if temr=as then
gsladdldsk1i=1 else
galaddl.rkli=tenr

ends’

end?

gsladdlselwysaluli=0)
erd alse
hedgin

afhi=gslw div 23§ .
for Ji=2 to dgaluw do
besin
for ki=d to szlw do
begin
if (k-id)=afh then
ga3laddlirklt= else
besgin
temri=galadald-1yk-13+11%
if temr=as then
gzladdliskli=1 else
galaddljklt=tamr

erds
ends
andi i
ends |
for .t=2 to 2slw do
hegin [
{



Tor ki=1 to .l do
hesin
galaddldsk]i=galaddlky.il
engF
ends
for ,it=1 to szlw dao
hegin ’
daladdl0y il
£81a3ddl.is,00
@erds
writeln(” ANINTTION TARLES IN GF(‘sresy ‘)72
for Jt=0 t0o Halw do
hegin :
Tor ki=0 to =szlw do
nhedin
write{zgzladdldsk1i3)s
engs#
writeln(”’ ‘) -
ends
for Ji=1 to 4 do
bedin
writeln(’ U I
ends
{Addition table established and exhihited)
loti=asX(sar{as)tast+i)+1;
rezd(ocaflllscofl2lscoflIdrcofl4]))
writeln(’ fyE
writeln(’ EQUATION DEFINED RY “seoflllscofliR2lscafiilicaffd4l);:
far Jt=1 to 4 do
hesin
writeln(’ /)
ends
regd(ir)i
{Initial values}>
m.=1y

=1t
arl11i=100%s8alws
vectl1l:=
vectl211=03
vectl3Ji=3aluws
vertL41i=03
=atls
it=13%
{Eedinningd nf cuclel .
{Finding ccordinates of roints in succession bw Sinser transfarmation?
rereat
id=1+1%
for JJt=1 to 4 do
‘begin
if (vectl11=0) or (CDf[J] 0) then
terml.dlt=0 else
tesin
temri=(cafl.iltvectl[1]) mod salut
if temer=0 then
temri=galwi
termfdli=temr
ends
ends?
for Jdl=1 to % do
bedgin
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vert[Jli=¢aladdltermidlsvectldtl11]
erndi
vectE4li=termC 41}
{Coordinates foundl .
{Test for realrnesss =rc=ro. of zero-comronentss.dr=rno. Gf MonereTosd
Troi=0;
Jdr1=07j
for di=1 to 4 do
hedin
if veet[d1=0 then zrci=zrctl else
bhedin
Jdri=grtls
vE.irli=(vectl.dl) mod b
end?
erd?
case =ro of
0t afhi=sbs(vli1-vI22)+abe(vEi21-v[21)tahe(viZ1-vI41)§
1¢ afhi=ahs(vi11-vE24ahs (w2030}
N

2t afht=¢[12-v[273%
3t efht=03
enc

{Registering resl rointsk
if afh=0 then
bhegin
nt=nptls
graoflnli=1iy¥
SEr]t=1000%1000%vecti11+10000%vecti2]+100%vectlZltvectlal}
ends
{0hteaining difference setk
if vertl[l11=0 then
hegin
mi=m41is
diffimli=i
end?
urtil((vectl11=0) and (vectL[21=0) &nd (vectl3I=02)3
{Cucle comrleted)
writeln(’ TOTAL NO OF FDINTS IS ‘sloty i edidd
{This erint-nut checks generatind ecuation for rrimitivitwy of rooty
{ Nisrlaw af hasic resultsk )
{roh=no. of roints in Rser sracesnor=no of roints in rlaness
if i =lot then
begin
notrt=akaestastetls
rit=arlnobls
for ki=noh downto 2 do
bedin
graffkli=sraoflk-174%
arlkli=arlk-11]
@recks
arll1lti=rs
sprofL1]11=07%
bi=nnh div 7 %
writelny
writelns
writelns
writelns
writeln{”’ INRICES OF REAL FOINTS 7)) ¢
writelns
ni=03
while n<=b do
hesgin
Ji=13
me=7%né
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while ((.4=7) and ({(m+d)<=nohl) do

begin
write (groflmddlilods
Codi=dl
ends?
writeln(’ R
nt=niil
ends
writelns
writelns
writeln{” LIST OF REAL FOINTS 7D
Wwritelns
mi=04
while n<=b do
bedin
Ji=13%
mt=7%n3
while ((i<=7) and ((mtd)<=nch)) do
begin
Wwrite (arlmt.dlil0);
Jdi=t1
ends#
writelns
nt=rntl
ends$
for Ji=1 to 5 do
bedin
writeln
end?$
nori=as¥aes +taes t13%
for ki=nar downto 2 do
hedgin
diffFlkli=diffLk-11
end¥
diffri1l1i=05
tbit=ror div 103
writeln(’ DIFFERENCE SET IS ‘)%
writelns
nt=04%
while n<=h do
begin
W=l
mi=10%n}
while ({(J<=10) and ({(mt.Dd<=nor)) do
hedin
write (difflmbJliB)y
Jr=gd+1
end$
writelns
SOVRLT
ends# .
{ listing rlenes and scanning far real roints in the rlanesd
{Alternatively listina stronslw intersectind Raer rlanasd
for JJi=l to 6 do
besgin
writeln
end$
if ir=1 then
begin
ri=rnori .
for .it=1 to nor do
hedin
atalJlt=diffl.i]



endi’
end else
hedin
if ir=2 then
bedgin

ri=nohé
for Jdi=1 to nob do
thesgin
stal.ili=drofl.i]
ends
ends?
erid s
if ir<>3 then
negin
it=0%
while i<lot do
hedgin
for Ji=1 to r do
bedin
if =0 then
#laldli=stal.J] else
rlaldli=rlaldltl
endid
dlt=r-1%
if rplalrl=lat then
bedin
far .dt=J1 downto 1 do
bedgin
#leldt1dt=rlal.il
ends§
»lal11t=0
ends’
{Scarn for resl intersectionsl
comt=0%
for Ji=1 to nob do
bedin
ki=1% . .
while ((plalkl<sgrofldl) and (k<r)) do
tegin
- A
end?
if rlalkl=grafl.l then
besgin
comi=com+ls
relfcomli=drofl.il;
end¥
ends
if ir=1 then
afhti=otl else
afhi=astal
if comrafh then
tregin
writelns
if ir=1 then
writeln(’ REAL FPOINTS OF PLANL  ‘siy”
else

writeln(’ SPFACE e iy’ MEETS REAL

writelns
ni=0%
while n<=2 do
bedin
Ji=13%
mi=10%n¥

A 21
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while ((i<=10) and ({mi.)<=com)) do 4 122

bhegin
write (rellmt.118)%
dd=tl
endi
writelnts
ny=ritl
end}?
end?
it=id41%
@rcs
@i else
{Sean for real lines hedinst
besin
asst=astl’
afhit=(asta) div 2
linot=rss¥{astatl)s {exrected rnumber of linesd
ai=0s
dt=03% {heginning of main d-loork
{Lines arae molassified ha the minimal difference o hetween the
indices of their roints.l
while ({a<1inc) and (d<=lot)) dan
megin
me=04
{m will he the number of iterastions of the same
difference value in the difference-sets here m=asi1}
Jdt=1%
{Fedginning of .-loarswhere J is the rosition of roint
temeararilg fixed within difference-set tao locate roint
(if anw) differing from it bw 4l
while .J¥=nor do
begin
dri=nor-.j}
if Jdpx0 then
hegin )
for ki=1 to .Jr do
nedin
temfklt=diffLitk]
ends
engs
li=dr+14
for ki=1 to nor do
hedin
temCkIt=difflk-irltlcot
ends
{hifferernce set (0-rlasne) shifted hu J rositions.l
tempi=d--1%
kLi=0%
while {((temr<d) and (k<nor)) do
hedgin
o=kl
temel=temlkl-difflJd
endgs
if temr=d then
hesgin
mé=mt1s
stfmli=diffLd]d
end?
Ji=dd1ls
ends
{end of small .-looF &snd beginning of =
larde .-loors:s secanning the Faoints of the real
Rzer-sFrace.l



Jt=1% A 23
while .Jv=nob do
bedin
dri=nob-.ii
if JdF>0 then
hegin
far ki=1 tao Jr do
bedin
temfkIt=grofLdtk]
endis
arids

li=drd1s
for ki=1 to nob do
hegin
temfkli=srofik-Jdrltlat
end?’
temri=d-13}
v =035
while ((temr<d) arnd (kinah))do
hegin
st=hobls
temri=temlkl-grafl.il
ends
if temr=d then
hedin
for 1i=1 to m do
besgin
grL)llt=grofLdl-st010¢
{g7C17 is the shift of the fixed rFoint droflJl of the real srace from the
lower irmdex in the difference set having the difference d in cuestion.lt
rerresents the index of onme of the slanes containing the roint and its
follower hue difference d.2
if srL11<0 then
gr011i=gp 0134 0ats

end;§
Jdst=ds
for ni=1 to 2 do
bedin
for it=1 to nor do
hedin
tem[il3=(diffLil+2rTrnl) mor Lot
ends’
ftemCid is & resl roint followed bw znother real ruinl with diTference
it=13%
while (((tem[it1l-tem[il)>0) and (i<nos)) do
bedin
it=i+1
end’
if i<nor then
bhedin

Jit=nar-is
far ki=1 to .il do
hegin
rlefnskli=temlithk]

endi

andgi

dEl=nor-itly

for ki=.isr to noF do
begin
FleCrnsklt=temlk--irtl]
end’i

endé
{two rlares denerating line foundy

|

s



far it=1 to rnop da i A 24

hedin
temlili=rlcll1+1i]
ends§
{finding intersections of the two Flanask}
comi=0%
far i1t=1 to nor do-
pedin
R .
while ((rlcl2ykI<plcllsil) and (kunor)) do
bedin
k=t
ends
if rlcl2ykI=rlcl1:+i]1 then
begin

comi=comtls
liCconli=rlcllsil
enags
ands
I{Next,find real soints of linel
zrei=04
for it=1 to com do
bedin
ki=14%
while ((1iFildexsgroflk]) and (kanoh)) do
begin
kt=ktl
ends
if lilil=dgroflkl then
hedgin
zroci=xmrctli
rerlzreli=1ilil
ends
ends’

{check for smaller differencel
t=03
Jlit=d4+15%
drt=dtly
it=0Q3
ri=03% EL -
while ((J1»=d) and (irx=d) and {(i<zre) and (r=0))
do
pesin
it=it+1%
hi=03%
while ((dlx=d) and (.irr=d) and ((itk)<zre) and (r=0)
) do
begin
kt=k413
hi=htld
Jit=rerlitkl-rerlils
drt=rerlil-rerfithIdlots
if ((i1=d) and {(rerLil<grafl.il)) then
rt=rtl
endgy
end?
if (Gilx=d) and (ir»=d) and (h=efh) and (r=0)) then
hedin
ai=atls
for ii=1 to 4 do
hegin
writeln
end#

0
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writeln( ‘LINE  ‘s&s ° HAag FOINTSY )3
far i!=1 to ass do

hegin

write (1iLidié6)

end#

writelnsi

writeln{ - REAL POTINTS ARE')$
for it=1 to =zrc do

hegin

write (rerlilié)

end’

writelns

writeln( ‘FLANES CONTATINING LINE AREZ):
for it=1 tn ass do

nesin
write (gr[ilin)
ends
writelns
end$
Ji=iistl
e else
di=.it1l g
ends {end aof large J-loard
di=d+l
ends {end of d-loorr
ends {end af line-scanningl
ends
ernd.



SURVEY 0OF FOINTSsLINESFPLANCS.,SFACES in 31

FIELTIY GF ¢

N WL~
NRWNOS DS 0N
W OoONU =DM

MS ORI a

ATIITIO
A4 5

4 0

5 7

2 b

8 3

3 01

7 4

1 8

o 2

EQUATION NEFINED RY

TOTAL NO OF FOINTS

INBTICES

0

73
192
325
419
544

LIST OF

=
o

20460204

20202
20403400
8000008
SQL0S05

OF REAL FOINTS

1
24
193
366
420
737

N TARL

Lol o) S B N B ws Bivw 20 b8
fo S IR B as P RE SN S TEN |

I8

REAL FOINTS

DIFFERENCE

0
?0
14632
2922

40%

800
103
2020200
4080004
1010001
7000703

15
2
7
X

Soes RO

80
10

™)
g I

-
s

214
374
09

793

000
a00

6020202
4040003

a0

004

4000804

96
192
324
4046

927
208
350
413

GF ¢

g8
249
390
910

797

3000000
1050000
3000505
B2080808
8000400

H0004

19
108
219
340
414

b
102
288
413
566

770

10501
2020606
3000007

707
2070007
G000460Q0

21

127

226
369
4483

]

o

—
n
RN

1050100
40408
7070307
70700
3000707

34
146
220
377
471

A 26

oy}

154

324

415

GO

6060602

4040800

80404

70720000

1050501
A3 48
147 153
224 A2
378 3ai1
473 479

-
s

160
244
401
A82



488
270
683
751

316

REAL POINTS

0
414

REAL POINTS

1
415

REAL FOINTSG
1
419

REAL POINTS

2
420
REAL FOINTS

3
o977

REAL FORINTS

~J
w
SO

REAL FQINTS

1
444

REAL FOINTS

497 509
a71 a79
L3 471
754 767
OF FLANE

1 2
509 797
OF PLANE

2 3
510 790
Or FLANE

b 7
775 797
OF FLANE

A 7
577 770
OrF FLANE

7 26
605 777
OF FLANE

2 7
797 798
0OF FLANE

b 154
737 7?97
OF FLANE

aiz2
586
703
7468

b

w

b

2b

AL

192

917
%2
707
775

ARL

ARE

78

ARD

ARE

ARL

523
ure
712

780

102

528
614
714
770

154

193

366

531
6ol
716
792

i92

193

249

214

415

A 27
047
\rJ 5 :;.‘
734
797

w
b}
A

)
x)
w

BT

=n
fo e iy

666
747
806

412

374

419

644

605



S

586

REAL FOINTS

26

577

REAL FOINTS

73

509

REAL FOINTS

-~
<
o<

REAL FOINTS
1
605

REAL FOINTS

e

41

REAL FOINTS

856

REAL FOINTS

73

6035

REAL FOINTS

0
603

REAL. FOINTS

2 26
577 737
OF FLANE
26 87
644 798
OF FLANE
76 87
510 405
OF FLANE
2 102
795 797
OF FLANE
3 26
644 778
OF FLANE
3 58
577 544
OF FLANE
58 102
737 770
OF FLANE
6 78
757 790
OF FLANE
6 57
737 798
OF FLANE

73

102

171

102

2466

ARE

314

ARE

ARE

ARL

192

ARL

154

AREL

324

ARE

102

192

(2]
gt ]
N

192

324

215

193

366

249

249

390

ol
b
i

288

419

374

414

374

1tky

2088

366

219

A14

) &b

4132

414

577

420



97
644

REAL FDINTS

é
644

REAL FOINTS

7
415

REAL PFOINTS

1
309

REAL TOINTS

Lo L]

42

REAL FOINTS

3
737

REAL FOINTS

REAL FOINTS

73
795

REAI. FOINTS

566

REAL TMOINTS

98 133
737 777
OF FLANE

26 °8
7939 790
OF FLANE

26 76
510 797
0F FLANE

72 153
566 795
OF FLANE

26 73
510 737
OF FLANE

26 102
7?3 797
OF FLANE

6 26
az77 773
0F FPLANE

27 102
797 790
OF FPLANE

7 102
605 737

OF FLANE

1

318

214

347

320

414

ARE

249

ARE

193

ARL

ARE

288

ARL

413

ARC

214

(%
)
)

ol
*J
i

414

374

41%

Ji4

[N]
%)
o

114

JIhh

413

414

R

J66

344

419

A 28

$66

A1G

413

413

510

414

419

419

644



REAL FOINTS

0
737

REAL FOINTS

1
6035

REAlL FOINTS

509

REAL FOTINTS

366

REAL FOINTS

0
414

REAL FOINTS

0
413

REAL FOINTS

K

60

REAL FOINTS

509

REAL FOQINTS

RN
N

644 7

or FLANE

1
793 79

[ Q2]

oF PLANE

2 *7
b44 795

OF FLANE

n

566 77

~d Wl

0OF FLANE

3 &

797 790

0OF FLANE

3 24
419 603

OF FLANE

OF PLANLE

3 &

737 795

OF PLANE

7 76
737 795

OF FPLANE

576

ez

ARLC

249

ARL

192

ARE

192

ARE

102

ARE

ARE

374

288

366

192

414

413

%90

374

314

1A

419

414

415

350

2686

314

510

41%

420

S22

474

374

A 29
510

77

A20

390

415

390



a

510

REAL FOINTS
2
605
REAL FOINTS

3
414

REAL FOINTS

0
S84

RCAL FOINTS

REAL FOINTS

309

6 ?b
566 644
OF FLANE

7 192
795 79Q
OF FLANE

6 73
509 5977
OF FLANE

1 7
G035 644
OF PFLANEL

3 6
417 644
OF FPLANE

7 *8
377 737

193

663

193

ARE

*H

ARE

n

w

™

o~
o~

N
o]

)y
po)

W
b ]
U

wu
[+
Cc~

4132

413

S14



SURVEY OF POINTSsLINES:FLANESSFACES in 3D

FIELD: GF( 4
: ADTIITION TARLES

I = O
MWD -
= OW
(ol AN

)
IN GF¢

EQUATION DEFINED RY 0
TOTAL NG OF FOINTS IS 85  i=
INDICES OF REAL FOINTS
0 1 2 z
26 36 41 42
67
LIST OF REAL FOINTS
1 300 30000 3000000
2020002 1000101 10001 1000100
2000002
RIFFERENCE SET IS
0 1 2 4 8
41 43 51 61 63
82
LINE 1 HAS PDINTS
0 1 16 63 73

REAL POINTS ARE

10101
101

16
64

64

1010100
10100

17

19
65

1o10101
1010000

a2
73

31

34
74

a7
79

- - w

C

e



0 1 63
FLANES CONTAINING LINE ARE
0 84 69 22 12
LINE 2 HAS POINTS
1 2 17 64 74
REAL FOINTS ARE
1 2 b4
FLANES CONTATNING LINLE ARE
1 0 70 23 13
LINE 2 HAS POINTS
2 3 18 65 75
REAL FOINTS ARL
2 3 65
FLANES CONTATNING LINE AREC
2 1 71 24 14
LINE 4 HAS FOINTS
3 4 .19 66 76
REAL FPOINTS ARE
3 4 19
FLANES CONTAINING LINE AREL
2 2 72 29 15
LINE S HAS POINTS
4 3 20 67 77
REAL FOINTS ARE
4 5] 67
FLANES CONTAINING LINE ARE
4 3 73 246 146
LINE 6 HAS FOINTS
19 29 41 42 57
REAL POTNTS ARE
19 41 42
FLANES CONTAINING LINE ARE
41 40 29 63 93
LINE 7 HAR PDINTS
41 51 63 64 79
REAL FOINTS ARE
41 63 64

FLANES CONTAINING LINE ARE
63 62 47 -0 79

5@(;‘7_

A 32 X



LINE
42

42
FLANES
64

LINE

FLANES

LINE
1

1
FLANES
1

LINE
2

2
FLANES

2

LINE
3

3
FLANLES
3

LINE
10

‘ 19
FLANLS
63

8 HAS FDINTS
52 64 63 80
REAL FOINTS ARE
64 69
CONTAINING LINE ARE
63 48 1 76

? HAG FOTNTE
2 32 41 61
REAL FDINTS ARE
2 41
CONTAINTNG LINE ARE
83 53 44 24

10 HAS FOINTS
3 33 42 62
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