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SUMMARY

The work is divided into three chaptens, followed by an append'ix

describìng computer prognams developed for th'is work and used for

experìmentat'ion, leading to conjectures which were subesequent'ly proved

and presented in the main part of the work. The computer programs can

be used as a basis for further experimentation.

The f irst chapter of the thesis deal s with 'incidence relat'ions 'in the

n-dimensional ljnear space over the finite field GF(q), where q = ph.

(Here h is a natural number and p a prime number.) The relatìons g'ive

rjse to'identities which can be interpreted as generaljsations of known

identities of binomial coefficients. Some of the enumerative formulae

discussed in this chapter are used 'in the later part of the work, whìle

others are explored for the'ir intrìnsic interest in highlighting the

analogy between comb'inatorial structures: subsets of a set, and subspaces

of a space.

The second and th j nd chapters deaì w'ith project'ive geometn j es oven

finite fields GF(q2). Here the order of the underlying field is a

perfect square e2 = p2h, an even power of some prime. These projective

geometries are of speciaì interest because of their subgeometlies over

Gf(q). In the two djmensional case the substructunes, called Baer-

planes, have been investigated by several workers and a number of

results discussed jn th'is work were found earlien by othens. The

refenences listed include those works on whjch some of the investigations

ane based as well as those which contain nesults at which the present

jnvestigatìons arrived independently, by dìfferent methods. By the

nature of the subject, the second chapter of this thes'is, dealing with

Baer-pìanes jntertwines with the work of other authors. However, it
appears that the Singen duality theorem and a theorem dependìng on it,

dealing with a configurat'ion of Baer-pìanes named here "Sìngen wreath"
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are new results.

The third chapter deals with Baer-substructunes of the n-dimens'ional

projective space PG(n,q2) over GF(q2). These are structures isomorphic

to pnojective spaces over GF(q) of dimension n or less. Thejr inten-

sect'ions give rise to structures, named Baen-com I exes whì ch nel ate to

proiective spaces in a manner simìlar to the relation of partitions to

sets. A number of properties of these Baen-complexes are established.

The Singer duaìity theorem d'iscussed in Chapter Two, is generalised in

Chapten Three and earlier results are neviewed in th'is light.



-1-

FUNDAMENTAL CONCEPTS

Introducti on

In traditional geometry properties of obiects such as lines' curves'

polygons or three dimensional configurat'ions ane established. These

properties are metric or descriptive. l^lh'ile the former concenn distances,

ang'les, areas, volumes, the latter deal with relative pos'itiona'l

connections. In classical (Euclidean) geometry - the theorems of

Pappus, Desangues, Pascal are of descriptive nature. As a result of

development, projective geometry has become an ìndependent branch of

geometry, expìo¡ing the descriptive pnoperties of configuratìons, that

iS, inc1dence relatjons. The elements of three dimensional space are

poì nts, ì i nes, pl anes. By assi gni ng coondi nates to the poi nts, i nci dence

relations such as intersections, coìl'ineations, copìananjties become

simpìe pnoblems of linear algebna. At this stage, geometry can be

genenalised in two directions. 0n one hand, the concept of dimensjon

can be extended; abstract points which can be defjned by n coordinates

are introduced where n can be any natunal number, not iust 1,2 or 3.

0n the other hand, the coordjnates characterisìng the poìnts can be

chosen to be elements of some aìgebraic structune mone general than the

field of the real numbers. This way we arrive to fin'ite geometries, or"

the geometries of finite combinatorial structures.

Two approaches to projective geometry were developed sìmultaneousìy.

The first one is the axiomatic, pureìy geometrical approach, the starting

point beìng the set of axioms on the pr'ìmitìve terms (such as points,

lines, spaces), and derivìng the theory from these. The other approach

is the algebra'ic one, beginning wìth the concept of the genenal n-

djmensional Space, points bejng ondened sets of n numbers, where these

numbens are elements of an aìgebraìc field, jnfinite or finjte, while

l'inear spaces are sets of points, Ijneanly dependent on fin'ite sets of
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points, (basis-elements). Proiective n-dimensjonal geometry is then

presented as the set of subspaces of an n+l dimens'ional linear space

over a field, togethen with the'incìdence relations of these subspaces.

It has been shown that for dimensions gneater than two, the algebraic

and ax'iomatic appnoach lead to the same nesult. This'is not the case

in two dimensions. The projective plane defined by the axioms of

inc'idence (three'in number) is a more genera'l structure than the

projective plane defined by'its points g'iven as trìples of elements of

an algebraìc fie'ld, fin'ite or jnfìnjte. Accordingly, the main stneam

of resanch on project'ive planes centers on finding and classìfying

projective planes other than Galois pìanes (i.e. planes whene the

coordinates of the poìnts are elements of a finite fjeld (tgZJ, [17],

[1], [35], l22l).

However, the a'im of the present work is to explore combinatorial

nelationsh'ips in n'dimensional spaces, and where possìble, extend

results known, on more readily found jn the two dimensional case to

higher dimensjons. Thus, throughout this work, the concept of projective

planes wiì'l be restricted to Galois pìanes. In the few cases where

results apply more generally, speciaì mentìon will be made of thjs

fact.

In this 'intnoductory chapten wel'l known concepts wìll be summanìsed,

notations, defìnitjons and known results will be gìven. All the theony

to be djscussed is readj'ìy found in texts given as references, so proofs

will be generaì1y omitted.

1. Galois Fields

(E.g. [13], [31], 126).)

A finite field F is an extens'ion of some finite pnìme-fieìd. If P

then p must be a prime number.js the order of the prime-field,
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This number p is called the charactenistic of F. The prime-field

of F of characterist'ic p'is ìsomorph'ic to Zp, the field of res'idue

classes moduìo p. F can be represented, up to isomorphism' as a

vectorspace over Zp. Thus the order of F is

ph = q where h is a natural number.

The elements of F form an el ementa ry abelian qroup under addition,

sìnce the order of each non-zero element is p. The elements

be]ongìng to F\{0} form a group under mult'iplicat'ion. Since the

order of this grouP is

q - 1 = ph - 1'

the multipìicative onder of each non-zero element is a divjson of

q - 1. Thus if

cr e Ff {0}

then

aQ-1 = 1,

or mone generaìlY, if

aeF

then

aQ - a = 0.

Hence the elements of F are roots of

xQ-x=g. (1.1

Since this po'lynomial has exactly q roots, and q'is the number of

)

elements in F, 'it follows that F is the spl'itting field of (1.1)
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ove n 7p Hence, in an abstract sense, a'|1 fields of orden q = ph

are i denti cal .

So F ìs called the Galois field of order q and 'i s denoted GF (q ) .

Funthermore, it can be shown that the mult'ipìicative group of GF(q)

is cyclic. If a is an element of order q - 1, that ìs, the powers

of a run through aì1 the non-zero elements of F = GF(q), then c is

called a prìmitive element in GF( q).

The number of primitive elements in GF(q) ìs O(q-1), where O(n)'is

the Euler function of n, enumerating al'l positive integers less

than n and copr"'ime to it.

Field-automorphisms. It is immediate that the transfonmat'ion

r:a+q,PforallceGF(q)

is a field automorphism:

r(c, + cra) = r(or) + t(cr)

and

t(cror) =.(or)t(ar)

and r is a bijection, since r(or) - r(oz) =.(crr-cr). For q = ph

thjs means h automonphisms. It can be also shown that these ane

the only automorphisms of Gf(q). Hence GF(q) has exactly h

automorphi sms .

Conjugate roots

+ ... + a

Let

f(x) = ¿nth
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0

be an inneducible polynomial oven Z p, and let a be one of its roots.

Then it follows from the automorphìsm theorem that the othen roots

¿¡g a,P, .rP2, ..., aP 
1, 

und these roots are said to be con-

jugate.

Sub-fields.

Let GF(q) and GF(q') be two Galois fields, where q = ph and q'= ph'

and h'> h. Then GF(q) is a subfield of eF(q') if and only if h is

a divisor of h'. An element cr of GF(q') beìongs to the subfield

cF (q ) 'i f and on'ly ì f

a9-q=0 (cf 1.1 )

The automonphism theorem implies that jf GF(q') is an extension

field of GF(q), then the map

c+aQ

is an automonphism where the fixed elements are those belongìng to

GF(q).

If f (x) = un*n + ... + ao is an irreduc'ible polynomia'l over. GF(q),

then ìts set of roots is

n-1
io, oQ, ..., aQ i

where c is any one of the noots.

Quadratic extensions ane of particular importance in this work.

The followìng results are l'isted for this special case.

(j )

(i i)

cF(q) is a subfield of cF(q2).

If a'is a primitive element of GF (q2) then the set

{cri 
(A+1 ) 1 (i =1 ,. . ,q-1 ) represents al I the el ements

of GF(q) r{o }.
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(iii ) The mapping cr + cg is an 'involution of GF(q2).

(iv) If e is a primitive element of GF(q2), then the set

{mt+n},m,neGF(q) (r.2)

represents uniquely the elements of GF(q2).

It is appanent that the relation of the extension fjeld GF(q2) to

GF(q) is analogous to the relat'ion of the field of comp'lex numbers

to the real field. Thjs justifies the usage of referning to the

elements of GF(q) as the real elements of GF(qz).

2. General projecti ve p1 anes

[5], 1267, [tS1, lZt1, [20] for Sections 2, 3, 4.

As pointed out in the Summany, this work is confined to the study

of spaces over finite fieìds, so in the present summary of definitions,

notations and results only such spaces will be cons'idered, using

the algebraic approach, while most texts 'indicated as references

tneat a wider field and use the two-way approach for estabììshing

basic concepts and results. Since all the content of thìs introductory

chapter ìs well known, the summany is restnicted to material used

in the following chapters. However, basics about genenaì (not

necessariìy Galois-type) projectìve planes cannot be totaì1y

disnegarded, so these are sunveyed jn this section.

The pnojectjve plane is an incidence structure:

n = (P,L,I)

where P = {p} is a set of objects calìed points, L = {s} u set of

objects called lines, the sets P and L are disjoìnt, and I is a

subset of ondered paì rs,
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I c {(p,r) },

where p e P, L Ê L, subject to the following axioms.

For any two points pr, p, e P, thene ex'ists a unique

line ! e L, incident with p, and pr, that is

(pr, g) e I and (Pr, .t,) e I.

II. For any two lines lr, 9,, e L, there exists a point

-p 
e P, incident with both t, and l,r, that is

(p, ,,.) e I and (p, Lr) e I.

III. P contains four points such that no three of the four

are incident with the same line.

(Such a set will be called briefly a non-degenerate

quadrangl e ) .

Immedi ate consequences

IIa It follows from I that the po'int incident with both lines

!, . and ¿^ i s uni que.LZ

I I I a. The p'l ane II contai ns f ou n I i nes such that no th ree

intersect in the same point.

Notat'ions and defìnitions

The line !,'incident with p, and p, ìs denoted g = p, + P, and

called the join of p, and p,.

The point incident with .c, and r,, is denoted P = tr l1 !", and

called the intersection of t I and t,2.
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The pri ncì p le of duaìity

From axìoms I, II, III together with IIa and IIIa, it can be seen

that the word "point" is jntenchangeable with the word "line",

while jnterchanging the words "ioin" and "intersectjon". Thus fon

each theorem establ'ished for the projective pìane, there is a valid

dual theorem obtained by the above 'interchange.

Fi nite pì anes

To the axioms of the

there exists a line

gene ra'l p roi ect i ve P lane add the assumption:

r,'in P wh'ic h is incident wìth only a finite

number of points.

Let the number of poìnts on the l'ine g be q+1, where g ìs ca]led

the orden of the p'lane lt.

From the above assumptìon and the axioms the following can be

deduced:

q > 2 (tnis 'is Fano's postulate);

eve I 'i ne .{, e II i s i nci dent wi th exactl y q+l poi nts

th rou gh each oi nt of n there are exactlv q+l lines:

I contains exactly 2¡ +1 oi nts

n contains exactly q2 + q + 1 l'ines.

In Sect'ion 4 'it will be shown that the number of choices for the

order q of the proiective plane is infinite.

3. Li near ( vector) spa ces over a field

The concern'in this work is with finite spaces. In a more general

treatment a linean space is a structune defined over a skew field

(dÍvision ring). However, by Wedder"burn's theorem [34], fin'ite

divjsion rings are commutative, hence'it is assumed here that the

set of scalars forms a field.

(j )

(ii)

(ii j )

('iv )

(v)
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A'linear n-space V over a field k is the set of all n-tuples:

p = (âr, à2, ..., ân)

where

ai e k (i=1,..,ñ) (3.1)

The ordered sets of field elements defined in (3.1) are called the

points of the n-space. In particulan the point

o = (0, 0, .., 0) is called the origin.

The a.i 's i n (3.1 ) are the coordi nates of the poi nt p. Alternati ve'ly

they may be interpneted as the components of the vector p.

Defining scal an multip'l ication and addition of vectors the usual

way, we can write down the vector

p=cpr*dpz (c,dek).

Let p, = (ã L, ã2,:.., an)

P, = (br, bz, ..., b¡),

then

p = (.u, * dbr, ca, + dbr, ....¡ cô¡ + dbn).

Li near subspaces

Let p L, pz, .., pn be a set of points in a linean space V. Defi ne

the set

s = {.rp, * ,zpz*... * crpn}

(ci e k fon i = 1,..f) (3.2)

to be the subspace spanned by p,, po,..., pn. It follows from

(3.2) that the origin o is contained in every subspace.
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I ndep endence. bas'is, dimension

Definition : the po'ints of the set {Or, P 2, .., Pr} are dependent

'if some poi nt of the set j s 'in the subspace spanned by the others,

or equivaìent1y, if there exists a set

{, ,, ,r, ..., cr} (ci e k ' i =1,.. , f ),

where not all the elements ane equal to zero, such that

.rp, * czpz*... + crPr = 0 (3.3)

Both definit'ions imp'ly that a set of points containing o is a

dependent set.

The points pr, pz,

impì i es that

su bs pace.

el ements ,

Pr are jndependent ìf the equation (3.3)

ci - 0 for i=1,..r.

A basis of a subspace is a set of i ndependent points spannìng the

A subspace can be spanned by dìfferent sets of basis-

but the number of basis-elements ìn each bas'is is the

same. The dimension of a subspace 'is def i ned as the number of basi s-

elements req uired to span ìt. Thus the dimens'ion of V is n.

Zero dimension is assigned to the point o, aìso called the null-

space, and by the definitjon, the dimension of a line (through o)

is 1, of a pìane (through o) 2, and so on.

A subspace spanned by n-l basis-elements is called a hyperplane. It

is the solution-space of the sìn91e equation

a +ax +22 *ânxn=0 (3.4 )
II

X

(3.2 )Fnom the definition it follows that jt two points P, and P,
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belong to a subspace S, then so does any ìinear combination

C,'P 
..

* ,zpz (ct,cz e k).

Conversely, a subset of V, closed on additjon and scalar multipìi-

cation is a subspace.

Intersection, sum-spaces Grassman's ìdentity

The set of points common to two subs paces S, and S, ìs again a

subspace : S n s2.

The sum S, + S. of two subspacesLZ S andS is defined as the set

1

I

Þ

{1,

{r

t 2

{p, * Pz p eS Pz' srÌ'I I

TheunionS USt

subspace (unl ess

, is a pnopen subset

Sc S, ot' =

of S, * 52. S,

. The smal lest

, t. ts not

s u bs pace

a

s

s2.

Sr)

contajning S, , S 'ls
1t

+S I2

The subspaces of the linear space V form a set, partiaìly ordened

by inclusion, and such that the meet of any two elements S, and.Sr,

which ìs S, fì S, and the ioin of S, and S, whjch is S, + S, belong

to the set. Hence the subspaces of a ljnear space form a lattice.

A very useful relation, known as Gnassman's 'identity a pp'li es to the

d'imensions of the sum and jntersection of any two subspaces S, and

52. Denoting by djm S the dimens'ion of a subspace S, the relatjon

is

dim(S +S ) + dim(S NS =dimS +dimS (3.5)
I 2 )t 2 I 2

Fj nite l'inear spaces

If k is a finite fieìd, then a fjnite dimensional Iinear space over

it is also finjte. The linear space of n dimens'ions over the field
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cF(q) is denoted by V(n,q).

The number of points in V(n,q) 'is qn.

The number of n djmens'i onal subspaces of V (n ,q ) i s denoted by the

symbo'l tlro, where

n
(qn-1 ) (qn-1-t ) ... lon-n+l-1 ¡

(3.6)lq
(q-1) (qz-r) ... (qr-t)

Th'is result will be proved and d'iscussed in deta'il in Chapter 1.

4. P ecti ve s ces

Homoqeneous coordi nates

The h'istorical development of projective geometry led to the

jntnoduction of homogeneous coordìnates. The cartes'ian coordinate

system characterises a point of the Euclidean plane by the coordinate

paì r

(E, n).

Writing E = xfz, n = y/2, the triple (x,y,z) is used to represent

the point (t, n).

Usi ng thi s representati on , the 'ideal po'i nts of the Eucl i dean p'l ane

can be written as tripìes of tYPe

(x,Y,o)

and the i deal I i ne 'i s g'i ven by the equat'ion

z=0.

Howeven, the choice of a homogeneous triple to rep'lace the coordinate-

pair. is not unique. The triple (x,y,z) can be substituted by the

tri pl e

.t

I
l'¡r

È-

I
rl
1Ì

'i

I
i

!

I

1'
t



-1 3-

(px, e!; pz) where p + 0.

Hence the po'int i n the p'lane 'is chanacteri sed by a

which form an equivalence class.

¡"

set of triples.

More gener"aì ìy, each Poì nt of an n-d'imensi onal oro.iecti ve space r s

represented by an equi val ence cl ass o f( n+1)-tuoles. This can

also be interpreted as an equivalence class of ints of an n+1

dimensio nal I inear space:

xzt x¡at ), where p + 0.p(xr, t

Alternatively, the point 'in the n-dimensìonal proiective space is

represented by the set of points of a ray throuq h the ori q'in i n the

(n+f)-d'imensjonal I i near space. excl ud'ing the ori g'in.

Gal oi s ol anes

The Galois plane PG(2,q) over the fjeld GF(q) is defined as a

col I ect'i on of poi nts and I i nes descri bed as fol I ows.

A poi nt 'in PG (2,q) 'ls

P = p(x x2'
"r)

(4.1)
I

meaning an equivaìence class of trip'les, where x t, xz, x, ìs

some fixed set of three elements in GF(q) not all zeno, and p

ranges through a1ì non-zeno elements of GF(q). For most purposes'

when ident'ifying a point, the factor p may be omìtted.

A line is a set of poìnts in PG(2,9), satisfying the equation over

GF(q)

t

* u3t3AX , * uz*z 0 (4.2)
1

whene at least one of ar, ã2, a, ìs different from 0. The set
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{ur, uz, u,} can be repìaced by o{ar, a2, a3}, where

p e GF(C)t{O}. The equation'is well defined fon the poìnts of the

lÍne, for if one tripìs (xr, x2, X3) sat'isfies (4.2), so do al1 the

tripìes belong'ing to its equivalence class p(xr, x2, x3). The set

of coefficients in (4.2) is called the set of l'ine-coordinates and

is denoted by

a

t¡ pr and p, are any two d'istìnct poìnts on a line then the line

can be nepresented as the set

{.r0, * ,zPr.} (c r, cz e GF(q), not both zero).

The number of oi nts also the number of lines in PG(2,q) is

(q3-1)/(q-1¡=q2+q+1.

It can be checked that all the axioms of the general projective

plane,'lìsted in Section 2 are sat'isfied.

The onden of a Galois p'lane is q = ph, where p is prìme and h a

natunal number, hence thene is an infinite number of choices for the

onden q.

Pro ecti ve subs aces

It has already been noted that there is a 1-1 correspondence between

the po'ints of a projective n-space and the one-dimensional subspaces

of a linear (n+l)-space. This ìs now ge neralised for the subspaces

of the project'ive n-space. Subspaces of the projective n-space are

def i ned as I i near combi nat'ions of po'ints of the proiecti ve space,

in the same mannen as for linear spaces. The concepts of linear

depenclence and independence for projective spaces also follow the

[â r, 2
a l.

3-

I
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definitions for linear spaces. Thus a point p of the projectjve n-

space is independent of the pnojective subspace S if and onìy if

the map of P in the linear ( n+l)-space in i ndependent of the map

of S jn the linean (n+1)-space. Assigning dimensìon 0 to the points

of the projective space, djmension 1 to its lines, and so on, 'it

fol I ows from the above co ns'idenations that a bi.iection ex'ists

between the r-subsPaces o f the n-d'imensi onal project'ive space and

the (r+1) -subspaces of the (n+i )-dimens'ional linear space over the

same fìeld.

This mapping of the subspaces of the project'ive space to the

subspaces of the linear space preserves inclusion, hence the latt'ice

structune of the linear space induces a lattice structure of the

pro ject'i ve space.

A basis of a proiective subspace is a set of independent points

which span the subspace. While'in the case of the linear space a

basis of an r-Space contains r elements, the number being equaì to

the dimension of the subspace, jt js seen from the above that an r-

subspace of the projective n-Space is spanned by r+1 basis-elements.

However, Grassman's jdentity as ìn (3.5) is still valid in the

projective case, since the difference between numbers of basis-

elements and dimens'ions is the same on both sides.

Some authors use the term "rank" for the numben of baSis-elements

of the subspace, where

rank=dimension+1.

A list of dimensions and ranks follows. The empty set is counted

as a subspace, comp'lying with the lattice structure of the set of



-16-

proiecti ve subsPaces.

D'imens i on

Empty set
Poi nt
L'i ne
Plane
"Sol'id"

Hyperpì ane
Whole space n

No. of basìs-elements rank

0
1

2
3
4

n

n+1

-1
0
1

2
3

n-1

Dual i ty

The prìncipìe of dual'ity for proiective planes can be generalised

for projective n-spaces. Hyperplanes ane maximal dimensional proper

subspaces of the n-space, the'ir dimension being n-1. The points of

a hyperplane are gìven by the points of the solutjon-space of the

homogeneous I i nean equati on

4.3 )0AX
ll

* Ur*, + ... + a¡+lxn+l

so the hyperpìane h is determined by 1þs ¡+1-tup'le:

..., ân+11 where ai e k (the field)

(i=I,2,...,n+l),

the ai's bejng equal to zeno.

More prec'iseìY, as

by the set

i n the case of poi nts, the hyperp'lane i s detenmi ned

p[ar, âr, an+1] (Pek,P#0).

h d2t[âr,

not al I

Aga'in, ìn the equation (4

an+l I Pì aY equaì

.3) the vectons (xr, ..., x¡+l) and

rol es.[ar,...,

A dual map of the proiective space is introduced by i nterchangi

points and hyperplanes, together with the words "contaìns"

"contained by", describ'ing incjdence.

or

nq



General subsPaces

hyperpl anes {t''i }'
vectors Iar, à2,

homogeneous I i nea

hyperplanes and s

vectors (xr, ..,
space ì s

-r7 -

ane determined by the intersection of a set of

of which r are independent, meaning that r of the

. .., .n*tl (i ) ane l'inearly 'independent' A set of

r equations of rank r is generated by these

o the solution-space 'is spanned by n+l-n basis-

*n*t) (i), hence the dimension o f the intersection-

n-r.

At the same time, the dimensìon of the space spanned by the duals

of the hi vectors (r in number') is r-1'

he dimens'ions of a subspace of the p ro.'iecti ve n-
Hence the sum of t

SP ace and its dual i s n-1.

The I att'ice of proiecti ve subspaces 'is associ ated w'ith the dual

Iattice obtajned by exchanging "meet" and "join"' Each theorem of

the proiect'ive space i nduces 'its dual '

Fi n'ite sPaces

The pr.oject.i ve n-space over the f j el d GF (q ) i s denoted by

PG(n,q).

The number of Points jn PG(n,q) js

on+1-1 = qn + gn-l + ... + q + 1 (4.4)
q-1

(equa'l to the number of lines (through o) in V(n+1'q)'

The number of r-dimensional subspaces of PG(n,q) can also be written

down, assuming formula (3.6) for subspaces of V(n'q) and using the

l-1 correspondence between r-subspaces of PG(n,q) and (r+1)-subspaces

of V(n+l,q).
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The number of r-subspaces of PG(n'q) ìs

l,oIn*
(qn*1-1)(qn-i) ... 1on-r+1-1;

(q-1 ) (q2-1 ) ... (qn-1 )

(4.5)
r+

5. Co I I i neati on GrouPs

[13], [5], l2rl.
A collineation (or automorphism) of a linear or pnojectìve space is

abi ective map of the space to itself, which preserves inc'idence.

The set of all collineations fonm a group, finite, if the space is

fi nite.

The Group GL( n.q)

A transformation of the linear space V(n,q) such that the matrix of

the transforma tion is non-sinqularis linear, hence it preserves

incidence and is bijective, hence it is a coll'ineat'ion. All no!-

s'inqular I inear transformations of V(n,q) form a rou unde r

compos'itìon, denoted bY GL(n'q).

The order of the gnoup can be determ'ined by counting alI the bases

of V(n,q):

IGL(n,q) | = qn(n-I)/2 (qj-t).

Field automor phi sms and col I i neat'ion s

Let t be a field-automorphism of the fieìd GF(q). The transformation

t on the points of V(n,q) takes

n

]I
i=1

(s.1)

p (ur, ã2r...' an)

to

r(p) = ( t(a, ), t(ar) , .. , r(an) )

for all p e V(n'q).
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This transformation is again bìjective and preserves'incidence,

hence it is a collineation.

A sem'il'inean transformat'ion is the composition of a linear

transformation and a field automorphìsm.

transformations of V(n,q) is denoted by

rL(n,q).

The group of semi I'inear

If q is the ¡th power of some prime, then the order of the auto-

morphìsm group of the fjeld is h, hence the order of fL(n,q) Ís
n

lrt-(n,q)l = hqn(n-I)/z n (qi-t)
i=1

Fi nite proj ective qroups

Homographies ( called projectivities by some author"s).

A homography is a tnansformation of PG(n,q) induced by a non-singular

ljnear transformation on the equivalence classes of points in

V(n+1,q) representing the poìnts of PG(n,q).

More exp'l i cì t1y:

Let p and p' be points of PG(n,q), whene

p = (ar uz ... an+1)

p' = (b, br. bn+t)

and suppose that the homography takes p to p' .

Let P, P'be column-vectors, formed by the components of p and p'

respectiveìy. Let H be an (n+l) x (n+1) non-s'ingular matrix over

GF(q), called the matrix of homography. Then

pP' = HP, where p e GF(q)t{O} (5.2)

The group of homograph'ies of PG(n,q) is denoted by

PGL(n+1,q).

The orden of PGL(n+l,q) ìs
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n+1

IPGL(n+1,q) I = qn(n+t)/2 n (qr-1)
i=2

As in the case of linear spaces, the comPositjon of a homognaphy

and a field automorphism yields a collineat'ion in PG(n,q)' The

converse can be stated as the

Fundamental Th eorem of Pro .'iect'ive Geomet r'y

All collineations of PG(n,q) are of form

TH,

whereHisahomographyandtafieldautomorphism.

The proof is omjtted hene, but note is taken of the fact that the

fundamental theorem is the direct consequence of two equaì'ly

important nesul ts :

Theorem A

The group of homographies of PG(n,q), which is the group PGL(n+1,q)

is tnansit'ive on ondened sets of ¡+2 po'ints, no n+1 ìinearly

dependent .

Theorem B

A collineation leaving an ordered set of n+2 oi nts no n+1 'l i nea 11y

dependent, fixed, induces an automorphism of the field GF(q).

Theorem A can be stated in an even stronger form: there exjsts a

unique homography which transforms an ordered set of n+2 poìnts, no

n+l ljnearly dependent,'into any other ordened set of n+2 pojnts of

the same structure in PG(n'q).

In particular, when the geometry is P(l,q), the geometry of the

I i ne, then ther.e 'is a unique homography transformì ng an ordered set

oft hree distinct po'ints into any other ordered set of three dìst'inct

(5.3 )

poi nts.
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It follows from the above that in coordìnat'ising, any set of n+2

points, no n+l dependent, can be chosen as the fundamental set:

(1 0
(0 I

0
1

o)
o)

1)
1).

(o
(1

Correlations

A correl at'ion 'i s a one to one mappi ng of a projecti ve space to i ts

dual. Points are mapped onto hyperp'lanes and hyperpìanes onto

points such that incidence relations ar"e preserved: all points of

a hyperplane map to hyperplanes conta'inìng the same poìnt, and

hyperplanes through a point to points 'in the same hypenplane. It

follows that dependence and independence relations are preserved.

One way of realising such a conrelation is by mapping points

(ar, az, ..., ân+1) to hyperp'lanes nepresented by vectors

[ar, ã2,.., a¡+1J. The product of two correlat'ions js a collineation.

6. Involutions, PersPecti viti es. cycl j c qroups

[4], [19], l2rl
This final sectjon concentrates on subgroups of collineation groups

of pnojectìve spaces which have relevance to this work.

0f specìal intenest are those groups which leave certain configurations

fixed. They are of significance not on'ly in the case of Galoìs

pl anes, but al so i n the genena'l case.

The fol ì owi ng defi niti ons refen to general projectì ve pl anes.

Cl osed confi qurati ons

A set of points and lines of the projective plane form a closed

configuration if the intersection of any two l'ines and the iojn of

any two points of the set belongs to the set.
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Exampl es:

The empty set (vacuously),

the whole plane,

a single line with any number of points on it:

a sing'le point, with any number of 'lines through it:

the sides and vertices of a triangìe:

a line with some points on jt and a number of lines through one of

the points:

a line with some points on it, and an external point, with lines

joining the external point to the selected points on the line:
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Subpl anes

If a cl osed conf igurat'ion contai ns a non-de enerate uadran le

then it follows from the axioms, that it js a pnojective plane. It

is a subplane if it ìs ro erl contained in the Pnoiective Pìane

of reference.

Examp'le :

All Galo.is p'lanes PG(2,q) have prope¡ subplanes 'if q = ph, whene

h > 1.

Dense sets (Baen sets)

If a closed configuration is such that each l'ine of the projective

plane contajns a point of the configuratìon, and each point of the

plane'is on some line of the configuration, then the configuration

is dense in the Pìane.

Non tri v'ial exampì es 'in a p'lane of orden q:

(ì) a configur.ation of q+2 points and q+2 lines as shown

in the figure:

(i.i) a configuration of q+1 points and q+1 ìines as shown:

Bae r subol anes

J Au". subp'lane, or as it will be referred to subsequently, a Baer-

plane is a proper subplane of the p¡ojective pìane, dense in the

pì ane.

\
I
Ít
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All Galois planes of square onden possess Baer-planes. They form

the topic of ChaPter 2.

Let 0 be a collineation of the projective p Iane. The fixed set of

the collineation: F(0) is the set of points and I jnes wh'ich are

mapped 'into themselves bY 0.

F(e) is a clos ed confi qunation for all o.

An i nvol utì on i s a col I 'i neati on of order 2.

A perspect'ivity is a coll'ination wh'ich fjxes all the ljnes thr"ough

some point V, called the vertex of the perspectiv'ity'

The fol I owi ng nesul ts hol d for al I proiecti ve pì anes.

1. If O 'is an 'invol utì on then F(e) 'is a dense set.

2. If O is a perspectivity, then there ìs a line [' called the

axìs of perspectìvìty, such that all the po ints on g are fixed

by the per"spectivìty. conversely, if a collineation fixes all

the points on a ljne !, then 'it js a perspectjvjty, that is for

some point V, a1'l the Iines thnough V are fixed by this

col I ineation. The per^spectiv'ity 'is cal led a (V,.t,)-perspectivity'

It is called an elation if V'i son r. and a homology otherwise.

3. The (V,g)-penspectivities, for a fixed paì r (V,¿) form a group'

denoted by r(V,,r,) . No element of r(V,9), other than the

ìdent.ity, f i xes any poi nt of the pì ane P, other than v and the

points on 0, and fixes no line of II other than ¿ on the lines

thr.ough V. The image of one (non-fixed) point or lìne determines

the collineation.

If a closed set 'is dense in P, then it is e'ither a Bae'r-plane,

or the fixed set of some (V,t,) penspectivìty'

4
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(V.r.) -trans i ti vi tv

The penspectivity group r(V,¿) is saìd to be transitive if for each

pa-i r of poi nts p, p' such that v, P, p' are coì I i nean and p and p'

are not on f,, there exists an element g e I(V,g) such that

ep.p

or

In a finite projective pìane of order q' r(V,s)

if and onìy if

lr1y,r) I = q and V e.(, (elation-group)

'is transitive

and the triangl"t Pr P, P, and

V

lr1y,r)l = q-l and v é t (homology group).

Desarques confi qu rati ons

Letobea
p p;

(V,s)-penspectivitY,

such that
I

pl

på

0P,., PL = ,Pr' I

3
p ED'3

Ps
P,

Pi
P¿

Then the 10 points I Pr, 92, Pg, Pl' På' på, V, prp, î L,
t,

PrPs0 I' PrP3

plpå, påpl' pr

confi gurati on.

n I and the 10

p t PzP 2' PaP 3t

l'ines : prp2, PrP3, P2P3, PIPå,

I are said to form a Desargues-

and so on. )

I

(Here p rp,

By the class'ical Desangues-theorem, two triang'les jn the extended

Euclidean p]ane a¡e in perspective fnom a point, if and onìy if

they are.in perspective from a'line, or (using the above definit'ion),

two triangles in perspect'ive from a point, extend to a 10 po'int -

10 line Desargues configuration' as seen above.

l'ìs=pininr,
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For the general projecti ve p'lane, the axi oms do not i Desangues'

theorem, but project'ive Pì anes which are subsp aces of a hi qher

dimensional space are Desa ngues i an .

Non-Desarguesian pnojective pìanes have been found in numbers ([32]'

[17], [1], t35l). However, some theorems on Desangues'ian configunations

apply to classes of projective pìanes wider than that of Desarguesian

pl anes .

It was shown lZZ1, that al I f i n'ite projecti ve p'lanes admit Desargues'ian

configurations. This however does not imply the exìstence of non-

tnj v'ial (V,g)-penspect'i vity groups.

0f particulan interest are those pnojectìve planes whjch are (V'.s)-

Desarguesìan. These are pnojective p'lanes for which Desangues'

theorem holds for a particular pair (V,c).

Baen's Theorem [3]

A projective plane is (V,.q,)-Desarguesjan if and only 'if it 'is (V,s)-

transi ti ve.

Thus the Galois plane is (V,l)-Desarguesian and (V,S)-trans'itive

for al'l pa'irs (V,s).

General pr.ojective planes, for which q > 4 have been compìetely

classified by thei r sets of possible configurations of (V,S)-pai ns,

for which (V,¿)-transit'ive coll'ineation groups exist. Thjs'is the

Lenz-Bar lotti classjf ication [35].

Si nqer's Theorem

Col I i neat j on gnoups of speci a'l 'interest are cycl'ic groups, generated

by a single co]lineatjon o, denoted by a = (o). If p is a poìnt of

the pr.ojecti ve space (d jmension > 2), the orb'it of p under the

act'ion of a collineation group 3 ìs the set of points Ep.
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If the gnoup (o> is transitive on the totality of points of a space'

then the space is cal'led cyclic. This is not aìways the case when

the space 'i s two-d'imensi onaì , hence cycf ic pro jecti ve pì anes f orm a

spec.i aì cl ass of pì anes , with some exì stence pr obl ems st'il I

unresol ved. However, Gal o'is pl anes (2,q) are cycl i c f or al I I = Ph,

as alì pr.ojective spaces PG(n,q) ane cyc'lic. The cyclic natune of

projective spaces pìays a focal role in this present work, so the

proof of the following fundamental theorem will be described in

detai I .

Theonem (Singer 127), i18l)

projectìve spaces PG(n,q) are cycìic : thene exist cycf ic groups

act'inq transit'ivel .y on the poi nts and the hype I anes of PG(n,q).

P roof

Let pG(n,q ) be a pr.oject'ive space. The poi nts are repr esented by

(n+1)-vectors over the field GF(q), (or rathen by equì valence

classes of such vectors), hence they can be listed as elements of

the field

GF(qn+1 ¡.

Sj nce Gal oj s-fi el ds have cycì i c multi pl i cati ve groups (excl udi ng

the element 0), there exists some element a e GF(qn*l) such that

the set

{sil0 < i < qn+1 - 1}

gives the set of all non-zero elements of the field.

As GF(qn+l) is an extension fjeld of GF(q), there exists some

jrreducib'le polynomial equation of degree (n+1), such that c ìs one

of its roots. Let this equation be



(6.1)

Equation (6.1) wiìì be refenred to as the generating equation of

the Si nger-group.

For the root a we have then

o[*1 = cnan + .n-1on-1 + ... * ..'o i .o rc.z)

Assìgn ¿s rn+1 the vector determ'ined by the coeffjcìents on the

left hand sjde of (6.2). Thus

*n+1=cnX[+cn-1x + clx + c0

-28-

n-1 1

nt cn-1, "'r ctr to)cln*1 {+ c (6.3)

(6.4)

Assign also to ai (0 <'i < n) a vector which has only one non-zero

component, whìch will be taken to be 1, and the first n-j and the

last j components are zero. Thus

o0 * (0 0

cI ++(0 0

c2*(0 0

1)

o)

o)

0

p2

p

pr1

10

on * (1 0 0 o) P¡

Hence'if for i=I,?-,...,(n+1) aj is expnessed as a linear combination

of elements of the set

cL, a2r..., onÌ

then the corresponding components of the vectons in (6.3) and (6.4)

are the coef f i ci ents of the power^s of .a i n the expansi ons.

Assume now i nduct i ve'ly that

{ao = 1,

1 (i)
0

oi = un(j)on + ân_1(j)on-t * ur(j) a* ô
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Then

where

and

ai+l = an(j)on+l * un_t(i)on + ... * ar(j) c2 + a'(i)"

Substitut'ing fon on+1 ¿¡ the ríght hand s'ide of (6.2) we obtain

ar(j+t, - cian(j) + a.,-r(j) for i=1 to n

ai+1 = an(j+1)on * an_r(j+1)on-l *...
+ ar(j+1)a + ao(j*l),

ao(j+t) = .our,(i)

(6.5 )

(6.6)

Hence the transfonmation taking the vector (an(j)un-r(i)..ar(j) ao(j) ¡

assigned to ai to the vecton assigned to ai+1 is a linear

transformat'ion. In particular, the vectors (6.3) and (6.4) satisfy

the general transformation - equation (6.5), so the matrix of the

transformati on i s obtai ned jmmedi ate'ly as

cn10
cn-1 0 1

0

0

fvl =

I

0

Ic

c

00
00

Thi s matri x M wi I I be refenred to as the S'inger matri x. The

generating polynomial of the Singer group

xn+1 - anrn - an-1*n-1 - ... - co

is the left-hand side of the characterist'ic equation of M

0

its conjugates are the eigenvaìues of M.

, and c ând
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Let 0* be the linear transformation induced by the matrix M' Since

the set {cj } g'ives al I the el ements of GF (qn*l) \{0 }, 'it f oì'lows

that the cycl ì c gt'oup <0*> acts transiti ve'ly on the non-zero vectors

of V(n+l,q), so there ìs a bjiection between the set

{"i10<i.(qn*l-1)}

and the qn+l - 1 non-zero vectors of V(n+1,q)'

The points of PG(n,q) a¡e rep¡esented by equivaìence classes of

points in V(n+l,9), each equivaìence class having q - 1 elements'

Two vectons of V(n+l,q):

V, = (an an -1 a

and

v, = (bn bn-l bo)

nepresent the same point in PG(n,q) if and only if

bì = pa.i foli=O to n*1,

p bejng a constant for this set and a non-zeno element of GF(q)'

Thus if ajr and aj2 ane assigned to v, and v, respectively,'it

fol I ows that

sjz = p oir

where I = cf and since p e GF(q)'

p9-1 = crr(q-l) = 1.

Since c ì s prim1tive, this happens 'if and only if qn+l - 1 d'iv'ides

r(q-1), orif r is a multiple of (qn+1-1)i(q-t) . Thus the set

aj 0< n+l-1 -1 Ì represents )/(q -1) non-equivalent

0

1on+I-1

vectors of V

PG(n,q).

n+1 and so ne resents al I n+1-1 -1 i nts of



-31 -

The projective transformation (homography) induced by 0* is denoted

by o for Singen transformation and

E = (o)

is the cyclic Singer gnoup, where

l.orl = (qn+1-1)/(q-t) for PG(n,q).

The group E = (o) is said to act regulanly on the poìnts of PG(n',q)

because

(i) it fixes no point in PG(n,q);

(ii) it is trans'itive on the points of PG(n,q).

Note: (For the purposes of the proof it was assumed that the roots

of the generating equation (6.1) are pnimitive elements of GF(qn*l),

because the ex'istence of primitive elements is known. It is

suffjcient to use a primjt'ive element cr for the biiectìon between

the first lOn+1-1)/(q-1) powens of a and the points of PG(n,q).

Howeven, this is not necessary. It suffices to use any element of

GF(qn+1 ) which has (qn*l-1)/(q-1) successive powers which can be

assigned to different points of PG(n,q). )

It remains to be shown that E acts also reguìarly on the hypenpìanes

of PG(n,q).

Suppose h, ìs a hyperpìane. Without loss of genera'lity it may be

assumed that

po = (o o 1) r hr.

Suppose that the'length of the orbit of h, unden the action of s

is L. This means that L is the smallest integer for wh'ich

i

è

+'

it':
¡l

t[

oL(hr) = h, (6.7)
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Denote R = (qn+1-1 )/ (q-1 ) , (the number of poi nts of PG( n,q ) ) .

Then oR(hr) = hr, since for al1 points pr- oR(p) = p.

Thus L dìvides R.

By (6.7) oL(po) = pL is in hr, hence P2L, P3L and so on are ìn hr'

Let t be the smallest 'integer for which

ptL = po.

Then R divides tL.

But L d'ivides R and t is m1nimal , hence

t = R/1. (6.8 )

Suppose that the set {pf l lk ì nteger'} does not 'incl ude al I the poi nts

of hr. Then for a point pi e hr, not'in the cycìe, there is another

cycle of points

{pi*fllk integer} in h, and djsjoint from {pfl}'

So h cons'ists of cyc'les, each of 'length t. Denote R

I

the number of Points in hr.

= (qn-1)/(q-1),

.1
I

,t

h^

I

t

t
'{

I
I

Ì
I

I

Then t divides R, and by (6.8) it d'ivides R, so t is a common divìsor

ofRandR whe reI

R.R = qn.

Hence R and R ane co-prime, and so t = 1.
L

Thus, by (6.8)

L=R=(qn+1-1)/(q-t).

Bt (4.5) the number of hyperplanes in PG(n,q2) is the same as the

number of points. Thus the length of the orbit L is equal to the

number of hypenplanes, so 3 acts regularìy on the hyperp]anes in

PG(n,q). This comPletes the Proof-

ìi

l

i

I

I

I

l

I

I

tr
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Difference Sets

Sìngen's theorem'is valid for PG(2,q), hence Galois planes are

cycìic. Here the hyperplanes are lines. Singer's theorem pnovides

a natural ordering to the points and lines. Using orderings as

before, we denote

i

Þ-.

Po = (o o

P, = (o I
P, = (1 o

1)

o)

o)

,t

fi

I

t

I

I

l

I
I
I

I

P3 = where x3 = crx2 + crx + co

is the genenating cubic.

For I i nes:

on line I form a perfect difference set modulo (q2 + q + 1).
0

This means that for all non-zeno elements a of the set of residue

classes modulo (q2 + q + 1), thene is a unl ue alr

t
0

t

t
2

(c, c, co)

P tPz I

P 0P.,.

PrPs and so on.

The subscripts markin g the poi nts and I i nes are cal I ed Si ngen-i ndi ces.

If there is no ambiguity we may denote the points (or lines) by

thei r Singer indices onìy.

The q+l Poi nts on I 'i ne g0 a re

We show that these q+1 numbers denoting Singer indices of the points

I

't chosen

out of the q+l indices (mod q2 + q + 1) in the set D, such that
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i-j=a(modq2+q+1).

Proof

There is a unique line t¡ containing the points 0 and a. Then 0

and a are the tth images of two points on line ¿0. Let i,j be the

Singer indices of these two points. Then

i+¿=g
j+t=a (mod q2 + q + 1),

hence a = j - i (mod q2 + q + 1).

Since the number of ordered pairs chosen out of the q+l elements

of the set D is

(q+1)9=92rg,

it follows that each non-zeno element of the q2 + q + 1 Singer

indices nepresenting the points of pG(2,q) has just one representation

as a difference. D

Note: If D is a perfect difference set, then so is the set D+s,

where s (shift) js added to each of the elements of D, as

(i+s)-(j+s) = 'i - j.

It follows that the Sinqer indices of a ny line i n PG(2,q) form

perfect difference sets (mod q2 + q + 1).

I

I

I
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CHAPTER ONE

FINITE LINEAR SPACES AND GAUSSIAN COEFFICIENTS [30]
7,

1.1 Introduction
\'l{v¿i'''r

Gaussian coefficients is the name given to a class of rational

functions, pìaying a fundamental role in describ'ing the structune

of affine and projectìve spaces oven a fin'ite field. They will be

denoted 'in this work by the symbo'l

and defined fon all q f L and non-negative integers n' r as

( qn-1 ) (qn-1-t ) when0<n<n
(q-1)(q2-t)

lwhenr=0
0 otherwi se.

(qr-1)

t-

\-?

n
[]or,

lOn-r+1-1 ¡

In ]ot''

(1.1)

As the name shows, these rational functions were first stud'ied by

Gauss who proved their fundamental pnopenties. The relat'ion of

these coefficients to Iinear spaces over fin'ite fields was d'iscovered

later. They play also a basjc role in the theony of partìtions.

However, in this work their. study is l'inked with the study of

I i near spaces.

The notation used

coefficients and

n(n-1)

h'ighlights the analogy between the Gaussian

the bi nom'ial coef f i c'ients

(n-r"+1)
n

[]=
r r

In fact, we

t.2
may wrìte

(qn-l ) ...

(1.1) as

qOn-r+1-1 ¡

In ]or'
lrq-r) .. . (qr-t )J-

f
/ (q-l)r(q-1 ) r

n

I
j=n-n+l

j-1
I

j-1
I ql

/

r
I

j=1-0i

for all q I 1 and 0 < r < n

0
q (1.2)
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If (1.2) is used as the definìng formula for I]lO instead of
r

(1.1), then the defin'ition ìs valid for all q. In particular,

when q = 1, the formula (1.2) yields the b'inomìal tll.r

In this sense the Gaussians may be regarded as generalisations of

the binomial coeffic'ients and identities established for Gaussians

must yield binomjal identities for q = 1. We may say that Gaussian

coeffic'ients provide the connection between elements of the lattice

of subspaces of a linear space in a manner analogous to the nole

played by bìnomial coefficients connecting the elements of the

lattice of subsets of a set. The aim of thjs chapter ìs to explone

these ana'logjes , by I ooki ng f i nst at the betten known bi nomi al

nel at'ionsh'ips and f i nd j ng the corespondent rel at'ions between

Gaussians togethen with thein impì'icatjons to the structure of

linear spaces. To this end we begin with the pnoof of the formula

determining the number of subspaces of a linean subspace oveÌ'a

fin'ite fjeld, discussed already in the introductory chapter (cf.

formula (3.6) 'in Introduction).

I.2 The Geometrical Meaning of the Gaussian Coefficients

The theorem pnoved below is well known, [13], lTf, but for

completeness the proof will be presented here.

Thereom 1.1 : Let V be a 'li near sP ace of dìmension n oven the

field GF(q), 9 = ph (p pr'ìme). The number of subspaces of dimension

n
n is given by I Jq.

r

Proof : (For brevi tv the subscriot q 'is omitted whenever we deal

with sp aces over a fixed finite field.

wì I l. be cal I ed shortlY r-spaces. )

Subsoaces of dimension r
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Each r-space of v can be spec'ified by selecting a set of r linearly

independent vectors out of the vectot^s of the n-space V, which has

qn-1 non-zero vectors-

Thus the first chojce fon a basis vector can be made in qn-l ways'

For each successive basis vector we must exclude all the vectors

of the spaces spanned by the basis vectors already fixed. Thus,

the number of choi ces i s

(qn-t)(qn-q) ... 1on-or-1¡

However, the same r-space may be obtained by a d'ifferent cho'ice of

basis elements. By reason'ing similar to the above, the choice of

r linearly'independent vectors in a fixed r-space can be made 'in

(qr-r ) (qn-q) ... 1qr-qr-1 ¡

ways. Thus the number of r-spaces in the n-space V is

rr)
(qn-r)(qn-q¡..10n-or-1¡ q'2' (qn-1)..(qn-r+1-1)

(qn-qr-1 ) (Or-Or-2).. (qn-1)
o(f)ro-r)..(qr-1)

r
(

where q 2

n
Simpf i fyi ng, we obtaì n ( ) q as cl ajmed.

= q. q2.. or-1 = q(r(r-1))tz.

E
r

1.3 Basic Pro perties of the Gau s s'i an Coef f i ci ent s

The f undamental propert'ies of the bì nomi al coef f i c'ients can be

best visualised by exh'ibit'ing them ìn the Pascal trìang'le' Three

properties of the binom'ials are immediateìy apparent and the

elementary proofs of these propertìes are well known. lJe ljst

here these for comparison w'ith Gaussian coefficients. They are



(j) Un'imodularity :

(ii ) Symmetry:

Pascal 's
recu rs i on :

) for r < I/2 (n+1)

) for r > I/2 (n+1).
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n()>
r

and

(n) <

n

r-1

r
n

r

n

1

n

r-1

n-r
n

(

n-1(iii) )+( r

These sums are called Galois numbens.

Inspecting the tables, it is immediate'ly apparent that propert'ies

(i) and (ii) of the binomials are also val'id for Gaussians, while

pnoperty ('iii) does not hold. Fon Gaussians the Pascal necunsion

fonmula takes the form

n-1

(
n-1

r-1

For the Gaussian coefficients [n]O tuUtes ane constructed by
I

calculating the coefficients for q=2,3,4,5 and for small values of

n. In add'ition the sums of the nows of the Gaussian tables are

al so shown.

n
I 
r]o

r l,o

n

I
n=0

tlro = cn(q).

n-1

r-1
t

t

lq * qt[ l (3.1)

(3.2)

r q

or
n-1 n-1 l

n-1 qlq * qn-t[
r

These relat'ions were known by Gauss, and thein aìgebraic verification

'is easy, but it is omitted here. Instead, a comb'inatorial inter-

pretation will be given to the fundamental relat'ions as well as to

more compl ex 'ident'iti es i nvol vi ng Gaussi ans.
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Gaussi an tabl es

1

1

163
r 127

255 10795

q 2

1

11
131

177l
153s151

31 155 155 31 1

651 1395 651 63 1

2667 11811 11811 2667 727 1

97155 200787 97155 10795 255 1

Gn tnlr

n
_f-L

r=0

n=0

n--L

n=2

n --3

n=4

n=5

n=6

n=7

n=8 1

1

2

5

16

67

374

2825

29?L2

4L7199

1

2

6

28

?L2

2664

56632

2052656

L27902864

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8 I

q 3

1

11
L41

113131
140130401

I LzI T?LO L?IO LzL 1

1 364 11011 33880 11011 364 1

1 1093 99463 925771 92577L 99463 1093 1

3280 896260 25095280 75913222 25095280 896260 3280 1
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q 4 un-
ntl
r

n

I
r=0

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=7 1

I

11
151

TZT?L1
1853578s1

1 341 5797 5797 341 1

1 1365 93093 376805 93093 1365 1

5461 1490853 24?08613 24208613 1490853 5461 1

q 5

I

t1
161

131311
1 156 806 156 I

I 781 20306 20306 78t 1

1 3906 508431 25585s6 508431 3906 1

19531 12714681 3203?7931 32032793t L27I468L 19531 1

1

2

7

44

529

t2278

565723

51409856

[=0

n=1

n=2

n=3

n=4

n=5

n=6

n=7 1

1

2

8

64

LLzO

42t7 6

3583232

666124288
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For the binomial coefficients, that'is, fon the case, q=1, the

Galois number Gn(1) is well known and can be listed as property

(iv) of the binomjals:

!n(iv) I(-)=2î=cn(1).
n=0 |

One way of pnoving ('iv) fon binomials is by using recursjon:

Gn = 2 Gn-1.

By a suitable 'interpretatjon the recursion fonmula will be

generalised for q > 1. It is clear fnom the tables that here G¡

increases mone rapidly with n. The necursion formula for Gauss'ians

is

Gn=2 Gn-l + (qn-1-1)Gn_2 (3.3)

Befone proving (3.1), (3.2), (3.3) by theì r geometrical inten-

pretation to be done in the next section, the unimodu'lanity and

syrmetry of the Gaussians can be settled.

Unimodu'larity: This is verified exactly the same way as for

bi nomi al s.

Syrrnetny : We recall the comb'inatorial interpnetation of

the rel ation

n-n

When choosing r out of a set of n, we choose

simultaneousìy n-r elements to be left behind.

The corresponding interpnetation for Gaussians

is not quite as direct. Two alternatives can

be given.

n

r
(

n
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(a) 0rthogona'l compl ements

Fix a basi s and coondi nate system, and def j ne the 'innen

product of the vectons

xz' *n), { = (yr, !2,..., y¡)..,

in the usual way as

xiy'i

X = (X,,

n

I
i=1

p

Two vector"s are orthogonal jf this inner product is zero.

Let V¡ be an n djmensional subspace of Vn (dìmension n).

The orthogona'l complement of V¡ is. the set of vectors

orthogonal to alI the vectors of Vr. These form a subspace

of Vn of dimension n-r. Thus there js a bijectìon fnom the

r-spaces of Vn to their orthogonal comp'lements which are

( n-r) -spaces .

(b) Duality

The r-spaces of V¡ can be mapped to the (n-r")-spaces of the

dual space of Vn defined by the qn ljnear transfonmatjons

of Vn to itself.

1.4 Subset and Subspace Intensections

The basic diffenence between b'inomials, whìch count subsets and

Gaussians which count subspaces manifests itself jn the gneaten

compìexity of intersection relat'ions of the latter.

The general intersection relation from which the specìaì cases can

be deduced,'is analogous to the count of the number of k-sets

intersectìng a fixed r-subset R of the n-set S¡ in a fixed f-set

F
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This count is

n-r
tk-f

fon there ane k-f elements of Sn to be chosen to complete the

fixed f-set, and these must be selected out of n-r elements of sn

which are not contained in R.

The cornespondi ng re'lat'ion for I i near subspaces can be summan j sed

i n the fol I owi ng theorem.

Theonem 1.2

Let v be an n dimens'ional l'inean space over GF(q), R and F fjxed

subspaces of V of dimensions n and f respectively and F c R.

The numben of k-spaces which intersect the subspace R exacily in F

'is

n-nNk,.,r = to_rl q(k-r) (r-f) (4.1)

(Note: for q = 1 the fonmu'la agrees with the bjnomial coeff.icient

cal cu I ated above. )

P roof

Choose a basis for V by beginning with a set

f,= { X Ir'
of basis vectors spann'ing F, and complete it to a basis for^ R by

the independent set

Y- {{r' {r, " , vg }

X
1 f

where yi e R (i=1,..,g) and g = r-f.



-44-

complete this to a v-basjs by choosing a thind linearly independent

set:

z = {rr, zz, tsÌ..t

where s = n-r.

The sets X,Y,Z are to span

spaces F,G,S mutuaììy V
onthogonaì. Let K be a

k-space in V such that

KnR=F.

A bas'is for K may be chosen by completing the set x with the

ììnearly independent set

l{= { w \z ..., w¿Ì

R

t

where I = k-f.

Each element wi of l,l belongs to the space spanned by s and G,

hence has a unique decomposition

wi

whene 7i eSand[i e G. Moneover the set of the components

vi+zi

{7r'7r' "',7tI
must consist of g lineanly independent vectons. Suppose that they

ane dependent, hence some linear combinat.ion of the zi components

vanishes. Then we have a vector in K with all its basis components

in G, contradicting the requinement that K î R = F, thus K fì G = 0.

converseìy, any linearly independent set of r, vectors belonging to
S gives rise to a linearly independent set

S

I
I F

C.
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E¡ !', " S, yi e G (1=I,Z,..,L)

whatever the vectors yi are. The set {yi} need not be ìndependent.

Each adm'issible k-space determines uniqueìy its Z¿ component,

where Zg c S and is of dimension g = k-f .

The number of .Q,-spaces jn S j, [t]. Each of these gìves rise to
r.

a Z¿ component of a class of admissibìe k-spaces. Each k-space

beìonging to the same class'is determined by the choice of the

{[i] set, ]'¡ E G, (j=1,..,ß). Once the 7s component is fjxed, the

set of k-spaces detenmined by it is independent of the basis

ili Ì (ai , 7e., j=1,..,.t,) chosen fon 'it. Different choices fon

the iyi Ì components to compl ement a gi ven {2l-* } basi s g'ive ri se to

different k-spaces, for if a + yr(1) is a basis element of the

k-space K, the vector 1 + 4(Z) is in K if and onìy if

¡(z) ={1(t). Since the numben of vectors (including the zero

vector) in G is q9, each of the I basis vectors of Z, can be

comp'lemented independent'ly in q9 ways, so the same Z, component

determi nes

(qs)¿

admjssible k-spaces. Thus the number of k-spaces intensecting R

exactl in F is

s I qs¿

v+

t
9,

Settjng s = n-r, l=k-f, g = r-f gives the result (4.1). ¡¡

We wnite down now important speciaì cases of (4.1).
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(a) Number of k-spaces containinq a fixed r s pace

Here F = R, hence the number is

n-r
l

k'n

I n pant'icul ar the number of k-spaces conta.ini ng a f i xed

vector is

t

n-1

k-1
t t.

(b) Numben of k-spaces K fon which K fl p = g (the nulì space)

Hene f = 0, hence the number is

n-r
t l qkr.

k

By abuse of tenminology we will say that the k-spaces ar.e

"di sjoi nt " from R.

(c) Number of k-spaces which do not contajn a given line

Th js is a spec'iaì case of (b) with r = 1, hence the number

is

n-1t I qK.
K

(d) Numben of complementary s paces of an r-space 'in V

The number of subspaces of dimension n-r and disjoint from the

given r-space R are wanted here. This is again a specìa'l

case of (b), where k = n-r. Thus the required numben js

qr (n-r ).

(Note that when q=1, i.e. when we deal with sets jnstead of

spaces, the number of compìementary sets is 1.)

Relations (3.1) and (3.2) of the pnevjous sectjon can be interpreted

now. We necall the combinatorial intenpretation of the Pascal recurs'ion
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formul a:

n n-1 n-1
+ )

The r-subsets of an n-set fall into two classes: those which

contain a fixed element and those wh'ich do not conta'in it. The

two terrns on the right hand sjde of the fonmula signify the number

of sets belonging to each class.

s'imilarìy, we considen the r"-spaces in an n-space. Those subspaces

which contajn a fixed vector, which is a 1-d'imensional subspace

are

rr I

t I in number, by (a).

Those r-spaces jn V which do not contain the fixed vector in

questìon give the count

n-1
[ ]qr by(c).

r

Hence

n-1

r-1

n
[]=[

n-1

r-1 I + qn[
n-1

r lr

Now we use the syrnmetny relation to obtain

n
t l=[ ln-r

and settirìg k = n-r we obtain the alternative formula

tl, =,';t, + qn-ktl_|,

n-tl * o.f n-l
n-r '-n-l-r

as stated 'i n (3 .2 ) .

This last fonmula can also be given a dual interpnetation. The

first term on the right hand sìde gives the numben of k-spaces
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which are contained in a fixed n-1 -s ace (hyperpìane) of V.

Since the left hand side counts alì k-spaces of V, the second term

g ives the remaining k-s paces. Hence we obtain another useful

nel at'ion :

(e) The numben of k-spaces not contained in a fixed hyperp'lane

of V is

n-1
q n-kI l

k-1

In particular, Qn-f is the numben of lines not conta'ined'in

a fixed hyperpìane. This follows also from (d).

Next, we pnove the necursjon fonmula for the Galois numbers Gn

stated'in (3.3). l^le note first that if q=1, Gn=2n as indìcated

before. This can be proved by establishing a necunsion: all subsets

of an (n+l)-set are obtained by considerìng fjr"st all the subsets

of one of its n-subsets and then adding the element left out to

each of the subsets alneady accounted for. Thus when q=l,

Gn+l = 2 Gn.

This reasoning is then modified for q > 1.

in the (n+1 )-dimensional vecton space Vn+1.

Let v be a fi xed vector

Then

n

Gn+l=Nr*N,

where N, is the number of all the subspaces containìng v and N,

the numben of subspaces not containing v.

The number of k-spaces 'in V¡a1 contai n'ing v is I
not containing v is til of, so we have

k-1 I and those
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n

k=0

n+1

I
k=1

qk
n

tol

n

I
k=0

+
0

n

I
k

n
tol

n

I
k=0

n
Io-'-

ntl
k

qk=Gn+ 4.2)

The second term on the rìght hand side is the count of the jnc.idences

of all the subspaces of v¡ with the points contained by them.

Another way of countìng these incidences .is obtained by countìng

first all the subspaces containing a fixed non-zeno vector.

k-spaces and hence in

qk
ntl
k

By (a) in Section 1.4, a fixed vector is contained in In-1]
k-1

Since the number of non-zero vectors of Gn_, is qn-l, the number

n-1
i

k=0

n

I
k=1

n-1tl
k-1

n-1
t ] = Gn-1 subspaces.

k

of incidences is

(qn-1 ) Gn-1 .

To this we add Gn as the numben of incidences of the zeno vecton

with all the subspaces. Thus

olo 
ril r¡ = (qn-l)Gn-l + Gn.

Substitutjng this in (4.2) we obtain the recursion

Gn+l = 2 Gn + (qn-1)Gn-l of (3.3).

1.5 Summation Identities

In thjs sect'ion interpnetative proofs are given to some known

Gaussian identities together- with proofs of ident.itjes not known

by the author. All these identities are treated as q-genenalìsations

of known binomial ident'ities.
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The binomial identity deaì'ing with add'ition of the elements in a

diagonal of the pascal triangìe is

nI(
r=k

n

k

1r-
).

k-1

The comb'inaton'ial meaning of this identity to be adopted for
Gaussi ans i s as fol I ows.

Anrange the elements of an n-set in a fixed order

â1' ã2t ...r âk, ...¡ cl¡.

we keep thi s orden i n the k-sets sel ected out of the n-set. l^/e

put then aì'l the k-sets with the common last element a " i nto one

class(k<r<n).

The number of the k-sets .in thi s cl ass i s

summation of the numben of sets in all classes gives the identity.

The cornesponding relation for Gaussian, known and proved by Gauss

'ts

I -r-1 n) t, _l qn_k = [ ]
¡=lç K- I k

(5.1)

The right hand side represents the number of k-subspaces on an n_

space.

0n the left hand side we do the counting by arranging fixed
subspaces dimensions k, k+1, ..., n respective.ly and such that

1

k-1

M¡ c M¡+1 c... G Mr .... c Mn
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Taking M¡ as the first k-space we proceed by finding all k-spaces

conta'ined in Mk+l, wìth the exclusion of M¡. The number of these

ìs

k
i. - I q by (e) of section 4.
K-I

(This number is equaì ao to]tl-1.)
k

suppose now that all the k-spaces conta'ined in Mr-1 have already

been counted. Sìnce M¡-1 ìs a hyperplane of M¡, we can use (e)

again to find the number of k-spaces included ìn M¡, but not in

Mr-l. Thjs it t;_iI q.-k. Continuing in this manner we fjnish

the counting by consìdering the k-spaces contained in v = Mn but

not in Mn-1. This proves (5.1).

Anothen well known binomial identity is known as the van der Monde

convolut'ion:

Kmnm+n
)()(. )=( ).

n=0 | K-f K

The intenpnetation: Count the k-subsets of an (m+n) set, by

sepanating the set jnto an m-set and an n-set, then selecting n

elements from the m-set and (k-r) elements from the n-set for all

values of n such that 0 < r < k.

The Gaussian general isat'ion of this is

I

À

I

(5.2)

Th'is can now be pnoved by a neasoning sim'ilar to the above. cons.ider

the vector space

V=M+N

k

I
n=0

[t][on.] q(k-n)(m-n) = Itln:

where M, N have dimensjons m and n nespectiveìy.
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By Theonen r.2, the number of k-spaces of v intensectìng M in a

fixed r-space is

, 
(m+n )-tl 

o(k-r-) (m-n).- k-r -

m
S'ince there ane I ] r-spaces in M, the number of k-spaces inter-r
secting M in some r-space is

[t][, 
n 

] q(k-r)(m-n),n K-r

(since there u.. [t] choi ces for the r-space i n the m-space ).r

Summ'ing fon r = 0 to k yields (5.2).

Note that this formula is not symmetrjcal 'in m and n (unìjke the

van der Monde formula for sets), but usìng the symmetry relation

of Gaussians, various equivalent fonms can be written down.

(Formuìa (5.2) is a special case of a generalìsation of the van

der Monde identity found in [7].)

A binomial identity similar to the convolutjon formuìa, but not as

well known is

n+ 1

)=(

l.t

ihr

F

;¡:,t, 
(';'

2k+I

Combi natori al P roof:

An (n+1)-set is annanged in fixed order. The (zk+t)-sets chosen

out of it ane classified, according to the centra'lìy p'laced element:

if the (j+1)th element js "central,,jn the chosen 2k+1 set where

k < j < n-k, then there ane k elements of a rower and k elements

of a highen index in the chosen set. Therefore the number of

sets wjth the i+tth element central, is

(j)(n-j).
kk

I

è-

I

!

{i

)
{,

I

I
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summing for aìì the admissible j-values, the numben of all (zk+t)-

sets is obtained.

General isation fon Gaussians:

(5.3)

P roof:

we proceed similarìy to the pr"oof of (s.1). consider the ser.ies of
su bspaces

Mk+l cMk+z c... cM¡ c Mj*l . ... c Mn+l_k

of the (n+l)-space V, where the subscrìpts indicate the dimensjons.

We count the (2k+l)-spaces in the (n+l)-space V containing M¡a1,

next those (2k+l)-spaces which contain (k+t)-spaces of M¡a2\Mk+I,

and so on, finish'ing with the (zk+1)-spaces containing (k+l)-spaces

of M¡11-¡\ Mn-k.

Using (e) of section 4, we find that the number of (k+1)-spaces

contained in

M¡+1\ M¡

is

q(j+t)-(k+t)¡ (¡+1 )-1
(k+t)-1

;¡:tl,,n;'r 
q(i-r) (k+r ) = t,lll,

By Theonen L.2, the number of (Zk+l)-spaces of V intersecting

M¡+1 in a fixed k+l-space is

- ( n+1 ) - (i*1]. 
I q ( ( 2k+1 ) - (k+l ) ) ( (¡+r )- (t+r ) )

'(zr*r)-(k+1)-

¡ = qj-k¡i1.

n-j
=[ I qk(i-k)

k

hence the numben of (2k+l)-spaces containing (k+l)_spaces of

rr

tú

Þ

I
t'
¡

fr,Ì
'{

''

Tl
'l'

I

I



'ts

M¡ +1\ M¡

t It
n-J
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l = tll cn-¡

I q(k+t)(i-k)

n

j
k

Ï tflt'l = (l)zn-r'
r=kK r K

i
k

This gives the general term of the sum on the left hand side of

(5.3) with j varying from k to (n-k).

Th'is 'identity can be generalised to

IorJolltuil o(r+t)(j-k) = [
n+1

k+.c,- 1
l (5.4)

(s.5)

The proof of (5.3) can be adapted with no change in the reasoning.

To finish this sectìon one more binomial summation 'is discussed

which can be natura'lly extended to a Gaussian identity:

I eads to

n

II
r=k

t'It
k r

In the combinatorial ìdentity both sides represent the number of

ways ìn which an n-set can be divided into three sets, one of which

has the fixed cardinality k. 0n the left hand side the divisjon

is made by fìnst selecting an r-set out of the n-set, where r must

be at least as much as k. An n-set is then selected out of the r-

set. The numben of ways this can be done is fnltfl. Summing for
rk

r gì ves a'll possi b'le part'iti ons sat'isfyì ng the preset condit'ion.

0n the rìght hand side the k-set is chosen first. For each choice

there ane 2n-k partit'ions of the nemaining e'lements.

I^Je neason the same way fon establ'ishing (5.5), countìng the number

of ways i n wh'ich an n-space can be P artiti oned i nto thnee orthogonal

subspaces, one of them of fixed djmension k.
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1 .6 Al ternati nq Sums. The Inversi on Theorem

A lar"ge numben of well known binomial 'identities involve sums with

terms of strict'ly aìternat'ing signs. There are corresponding

alter.nating Guassian sums. To show the connection between these

and the binomìal sums it is necessany to general ise the Inclus'ion-

Excl usi on prì nci pl e of combi natoni cs.

A genera'l treatment of general i sed (Mobi us ) 'invensi on r el at j ons j n

(locally) fin'ite partìaììy ordened sets ìs gìven'in [25]. In this

chapter, a pnoof of the inversion theorem in the partially ondered

set of subspaces of a l'inean space is given, using only the results

of the pr evious sections. Alternatjve, sìmple proof can be found

in [8].

Theonem 1.3 (Inversion)

Let V be a fjnite linear space oven the finite field Gf(q), the

dimension of V being n. Denote by S,T any of the subspaces

(includìng V and 0) of V and define the functìons f(S), g(S), h(S)

on the subspaces wjth the following propertìes

s(s) = I f(T)
T_cS

Then, for all S c V

and h(s) = I f(T).
T=S

)

, k = d'im S-dim T for (a)

(a) f(s¡ = i T(T)g(T) and
TcS

(b) f(s) = I
TTS

Tu

whe ne

( Th )

k

u(T) = ( -1 )kq 
(

2

and ktl
u(T) = (-1)kq'2', k = dim T-dim S for (b).
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Note:

(i ) For our punposes, f, g, h are 'integer valued functions

but they may repnesent mappings to any ring.

(ii ) The set of subspaces of V, Pârtially ondered by inclusion

has V for a natural upper bound and the O-space for a

natural lower bound. However-, upper and lowen bounds

Sru* and S¡i¡ ma] be imposed by defining f(S) = 0 for

S = S¡n¿¡ and S c Smjn. The sums definjng g(S) and h(S)

are f i n'ite and hence wel I def i ned .

P roof

(a) Let the d'imension of S be m, and denote bv S(k) any subspace

of S of dimens jon m-k. (In part'icular S (0) = s. )

Then

s(s) = Ir(r) =f(s) +

T5j

= f(s) +

I ttr)
T6

r(s(r)¡ (6.1)
Ik

m

I

I
k=1

S( )-s
I
k

Hence

f(s) = s(S) - I r(s(k)¡
s (k )-s

(6.2)

More generally, we may apply (6.1) to any S(k) subspace

of S and hence obtain

r(s(k)¡ = sls(r)) - I
s(i).s(k)

f(s(i)¡ (6.3)

Substituting expression (6.3) for k=1,2,... into (6.2) we

obtai n at some stage

m

I
i =k+l

k-1
I

i =1
f(s) = s(s) + ï(i) . I s(s(i)) * nr-r

s(i þs
(6.4)
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where the rema'inder tenm is

Rt -t ci t
i )ó

f (s('i )).
m

L
i=k (s

l,le note here that the coeff i ci ents of the

f(S(i )¡ terms depend onìy on the structune

set of subspaces considered and not on the

s(s(i )¡ and

of the P.0.

functi ons f
(6.3) to (6.a)

unchanged.

and g.

affect s

Fu rthermore, another. appl i cati on of

only R¡-1 and leaves the first part

hlri te

Rt-t c¡ f(s(k))
S( Ls s(

mT r i r(s(i)).
Es 'i=k¿+1 "ts(ìÞ"s(k)''- t'i

k
+ I

k

Appìy now (6.3) to each f (S(k) ¡, subst.itute j nto (6.a) to
obta'in

f(s) s(s) + ï(i ) I
't

s(s(i )¡
s( )-s

+

Note that R¡ contai ns

r(s(t)¡

only.

on'ly f (S (i )) terms f or k+1( j (m, hence

the sums s(s(i )¡ for o < i < k

torrot, s(s(k)¡ +R (6.5)

tenms

k-1
i

i =1

k

I

k

Hence R¡ is the new remajnden term containing f{S(l)¡
for i=k+1 to m.

l^Je can c¡ and wri te down (6.5 ) 'i n the f orm

s(s) f(s) I(i ) s(s
(j ) Rk (6.6)

S ts
and compare the coef f ic j ent of f (S (k ) ¡ .in to (6.6 ) .

now wnìte u(k)

l 1
Il

(6.1)

contri butes to
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Let s(k) be

to q(s(i )

a fixed subspace.

if and only if S(k)

Then f(5(k) ¡ contri butes

) c s(i ).

By (a) ìn section 1.4, the numben s¡ 5(i) spaces (i.e.
spaces of dimension (m-'i ) of S, containing S(k)¡ is given

by

m- lm-k )
[(r-r l-tr-o)] = [o

Thus the contribution

kt.t.
'l

k
.l

-'l

of f(S(k)¡ to the rerm

k
s(s('i )¡ is u(i )t l'l

and so the coeffjc'ient of f (S(k)) conta.ined in 1S

kI T(i )r
i=1

k

l

and this must be equal to 1, the coefficient of f(S(k)) in

(6.1).

Hence

u(j ) I
s(its

(6.6)

l

tlriting u(0) = 1, we write down thi's

recursi on formul a for. T(k ). S'ince I

k

u(i )t:l'l

k

I
i=1

l
k-1-l u(i )tu

1+

k

0.

I ast equation as a

1, we obtai n
k l

î(3)ï

k

(6.7 )
-0'l l

Using this to evaluate ï(k), we obtain

0 1 î(1) -1, I(2) Q' _q3 = _ql+z.

l,,le continue by i nducti on, assumi ng that for 0 < i < k
i
2î(i ) (-1 ) 1q

(



i
(Since (_) = 0 when i=0 or 1, this is also true fon those' '2'

two values. )

Usi ng

wri te

of section 1.3 and the inductive hypothesis we

(6.7) as

k-1

(3.1)
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I +
i=2

of the right hand side, excepting the last one

and we obtai n

k-1

2

f (T) + I r(r)
T=S

+ I r(s (k )).
5(k )>5

u k qitk.lr)
'l

k

,( r)

(-1)io(l)r,î_î,

.o o-'r 
l_ I 

r(-1)kqku

I (6.8)

Al I terms

cancel out

)
(-1) k

as cl aimed.

(b) The proof ìs similar to (a). The modification 'is that we

denote with s(k) any subspace of v conta'ining s and of

dimension m+k. We have

h (s) f(s)_[_L
T>S

-mn

Then for k=0,1,2,...

rls(k)¡ rr 1s 
(t )¡

and after successive

f(s) h(s) +

with the remainder term

n-m- I I r(s(i))
i =k+l S (i )=s (k )

substi tuti ons

(6.e)

(6.10 )

RL_r (6.11 )

T
k=1

f(s)

k-1
.I- u(i )
'l =I

. .I h(s(i))
5(t )=g

+

n-m
Rr-r = .I. ci

'l =K

and correspondi ng

)=S,tl
f(s (i ) )

to (6.6) we have
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h(s) = r(s) - -l.rf i ) ,1. h(s(i )) - Rk rc.n)i=1 S(i )

Here f(s(k)) contributes to h(s(i)¡ if and onìy if the sub-

space S(k) = S('i ), whene S(k), S(i ) ane subspaces of djmen-

sions m+k, m+i respectively, both containing S.

Hence we must determine the numben of the (m+i)-spaces in an

(m+k)-space which contain a fixed m-space.

By (a) of section 1.4 this .is

(m+k )-m kr' 'r 
-- [.].'(m+i )-m' .r

Thus we obtain for u(k) the same recursion formula (6.7) as

for u(k ).

and so

k-1 k
u(k) = - I u(i)t-,1

i=0 'l

v(')
u(k) = (-1)k q'2

In (a), k = dim S - dim S(k), while in (b) k = dim S(k) - ¿im S.

Thìs completes the proof.

The arguments used in the proof ane val.id for q = 1, i.e. for the

case of subsets. Here u(k) = (-1)k = î(l). The nesult gives the

combjnatorial Inclusion-Exclusion pr.incip'le as a specìa'l case.

Let o be a set of objects and p a set of pr-operties. Let the

variables S, T nepresent subsets of p, and use the notatjon s(i)
fon subsets of P consisting of i properties. Denote by f(s) the

numben, (or more gener"al ly the comb'ined "wei ght', ) of those el ements

of a which have exactly the propert'ies s, by h(s) the numben
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(weight) of eìements of a hav.ing at least the erties S and by

g(S) of those having at most pr.operties S, hence

h(s) = I r(r) ands(s) = I r(r)T=S Ts
as before. The inversion formula fon h(S) gives

f(s) = I (-1)kh(T)
T=S

whenek=lTl_lSl.

(6.13 )

n(s(2)¡ + ... * (-1)lPln(p)

In particuìar, if S = O (the empty set of pnoperties)

h(o) = lol' or (the weight of o), the whore set of objects, since

thene is no restniction on them. The relatjon (6.13) can then be

written as

f (o) = lCIl - I h(s(1)) +

s(1)
I
(s 2)

This last equation repnesents the classical Inclusion-Exclusion

prf nci pl e.

I .7 Exampl es of Bi nom'ial and Gauss ian Altennat'inq Sums

The best known examp'le of an artennating sum of binomials is

tir - rir . rlr (-1)nrfr = o.

us'ing the notatjons of the previous section this result can be

obta'ined by setting f(o) = l for the empty set and for each subset

S of an n-set have f(S) = 0.

Then for all subsets S of an n-set N, we have

s(s) = I r(T) =1
T=s

and by inversion
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)(-tli = f(N) - o for alt n > o.
n

l1

n

I
-0

n

I
j=1

ïhe result translates immediateìy into the Gaussian relation
'l

,!o 
tit,t, = ril-lil-tilq + ... + (-r¡i¡ n )

lq 2

Hen ce

+
'l

+ ...+ (-1¡n¡n1 = g
n

we can recognise that (7.1) is the same as the recursion formula

(6.7 ) .

Anothen well known alternating b.ionomial sum is

n(-t ¡j¡ 1 ) = o.

(7.1)

j

l^Je can give two diffenent interpnetations to this relation, and

accordi ngly obtai n two di fferent Gaussi an i dentiti es.

(j ) l^le use the Inclusion-Exclusion pr"'incìpìe to determine

the number of those (n-1)subsets of an n-set which do

not contain a ny of the elements I,2,..,r knowing that
the answelis 0.

Let n be the set of (n-1)-sets and the property p is
defi ned i n the fol I owi ng way:

P¡ : the subset contains the element j (j=1 ,?,..,n),
Pjr : the subset contains the erements j and k, and so on.

lnl=(nnr)=rll=r.

The number of (n-1)-sets containins j is ,l_1,.
the sum of the numbens of (n-1)-sets with propertìes p'
Pr, .., Pn respectì vely is n(

n-1
n-2 ) . The number of ( n-1 ) -

sets with proper-ties pi and p¡ js (l:3).
numbens js filf^-zrl .

The sum of the



we pnoceed in this manner and appìying the Incrusion-
Excl usi on pri nci pì e we fi nd that

n:l . ..-.n n-n) (-t¡r1 )( -) - o
r=0 f n-f-I

setti.s (r:;:1) = (n;') = (n-r) we obtain

n-1
I^ t-r )r"(^) (n-n ) = 0 or writi ng j = (n-r )r=0 1"

i f-rl¡¡fl) = o.
J

This interpnetation can be used direcily for (n-1)-spaces
jn an n-dimensional ljnear space, by fix.ing a basis

v1'Y2'...' vj ...' vn and then usÍng the Incrusion-Exclusion
princìple 'in the above manner to detenmine the number of
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hypen pl anes not contai n'inq an.y vector of the q iven basi s.

By neasonìng identical to the above assign property p¡ .to

those hyperpìanes which contain vj. heir number (bV (a)
'in section 1.4) is tl-lr, hence the connesponding sum fon
j=Ir2r..rn is

n n-1
(1 )[n_2].

sim'ilarìy, the number of hyperpìanes containing a fixed
set of r of the given basis-vectons, hence the subspace

spanned by them, is

t
n-n

n-r-1
n-r

1
l=[ I (sectjon 1.4(a))

n-rl.
1

and since there ane (n) *uy, of choos.ing the r basis-r
vector"s, the correspondi ng sum i n the Incl usi on_Excl usi on

formul a is

(-1)r(n)t
r

Thus the number of hype.pranes not containing any of the
basis elements vr, v2r..., vn is
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nit 
(-1)r(n)[n-t].

r=0r1
This sum however is not 0.

l'le can count thi s sum by determi ni ng the number of hyper-
planes with equations

aixi =Q (ai ecF(q))

not containing any of the unit_vectons

(r 0 0

Choosing âr = 1 and ai É 0 (i=2,..,n) there are (q_t)n-t
possi bl e choi ces wh'ich determi ne the adm.issi bl e hyperpl anes.

Hence

n-1
I (-1)r( )t I = (q-1)n-1 (7.2)

t'=0 r

f(T) = lsl
TcS

and 'in the case of subspaces

1

n

i'l

n-rn

1

The resurt (7-2) is easy to verify aìgebraicaì1y and does

not yield resurts when n-subspaces are considered instead

of hyperplanes. A more interesting nesurt ensues fnom the
al te nnat'i ve method.

(ii) Using the jnversion theorem, define f(S) = 1 if S is a

subset of an n-set containing one erement or if s is a

subspace of dimension 1 of an n-space; otherwise, in both

cases ìet f(S) = 0.

Then in the case of subsets

s(s) = I

f(T) = [
k

1

g(s) = I
T$

l,
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where k is the dimension of s. The inver-s'ion theorem

gives for sets:

n(-1)j(n-i)( 0
n-j

which is the same as the r"elation

n(-1)ji ( 0 of (i).
J

For subspaces we obtain a relation different fron (1.2)

nameìy

n

J

n

I
j=0

n

I
-0

n-m

I
j=0

I
j=0

( -1 ) i r';i lr 
nlr 

ro 
tl'

The last identity can be generalised by letting
for all m-subsets of an n-set, or m-spaces .in 

an

respectìvely, and setting f(S) = 0 otherwise.

o (n 1). (7.3)

f (s) = l
n-space

If S is a k-set or k-space respectively, where k > m, then

s(s) (k)
m

I r(r)
TcS

for the case of sets, with the resulting binomial identity

(-1)j( )(
n-J o (n m)

n

n-J m

For Gaussians we get in the same way

n-m

I (-r ljt
j=0

n n-j
It lqn-j m

n-j

,i,
0

The same method yieìds a further

setting f(S) = 1 for all subsets

nI (-1)j( )2n-i

7 .4)

pair of relations, by

( subspaces ). These are:

(

1

1

I

I

I

I

and

I (-rrjlnlrlG¡-¡e c (7.s
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( Note: The above bi nomi ar 'ident'ity can be obtai ned by a

direct appìication of the Incrusion-Excrusion principle to
count those sets, which do not contain any of the erements

(r,2,. .,n ) . The answer i s 1, correspondi ng to the empty set. )

l'le conclude this discussion w'ith two more exampres, using
less t.ivial f functions. The first one is the identity

n-1

;l; (-1)k(n-k)r,lol zn-k = zn

whi ch genera'l i ses to

n-l rkl

r=Io 
(-1)kq'2'1n-k)tnloJGn-¡ = 2n (7 .6

space V. Define f(S) = r. Then

Let n be the d'imensìon of a subspace S of the n-dimensionar

r
ç
L
-0

The inver.sion theonem (a) then gives (7.6).

g(s) = I r(r) =
TS

¡tfl *
J

G,",

]=

rit.l
J

t

I
j=0

1

-l
2

t'

I ¡I

t'-
I (r-i)i'.1j=0 J

slnce

r
?L

J

+j r:r
J

¡li[.] = I, j=o

r
-\-L

j=0

=Q -0J

r

r-j

r

J
lrIj

Another known altennat.ing binomìal identity is

Ï (-r¡ltlltn-k) = 1.
k=0Km

One interpnetation of this is given by counting those m-

subsets of an n-set which contain exact'ry the m erements

of a given set M.
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One possible transration of this reration to Gaussian is

T (-r)ktmrt'-orotl' = om(n-m)k=0Km (7.7)

Proof

Let M be a fixed m-space in the n-space V.

Let K be a k-space in M. Define f(K) as the number of
those (n-m)-spaces whi ch i ntersect M exacily i n K. By

Theonem 1.2

f(K) = t,rlri_oJqn-m-t)(m-k) = [notro(n-m-k)(m-k)

In particular for K being the O_space we have

f(0) = q(n-m)m

(the numben of complement-spaces of M, c.f. section 1.4(d)).

Then h(K) = ^I r(s), hence h(K) enumerates ail those
S"K

(n-m)-spaces of V which contain K.

By (a) of Section 4,

h(K) =1, t-f ,=[n-k].
( n-m) -k -

(In particulan, h(0) = [n]. )
m

A direct appìicat'ion of the inversion theonem (b) gives

the identity (1.7).

Gaussi an coeff i ci ents wi r be f nequenily used i n chapter. 3

in the study of Baer-spaces of highen dimensjons.
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CHAPTER Tt,llo

ON THE BAER STRUCTURE OF GALOIS PLANES OF S QUARE ORDER

2.I Introduction

In sect'ion 5 of the introductory chapter a Baer-plane was defined

as a pnojectìve p'lane of finjte order, embedded in a larqe pro ecti ve

plane and dense in it. The followjng theonem gìves a necessary

condition for the existence of a pr-oper subplane within a fjnite
pnojecti ve pl ane.

Bnuck's Theorem Itzl
If I js a fin'ite project'ive plane of order q and can be extended

to a projecti ve pì ane II' of or-der g, , then e jther

(i) q'=q2,

or

(ii) q'>q2+q.

The proof of this theonem implies that in case ('i) the sub pìane is

dense i n the I arger pr^ojecti ve pì ane. Hence a pr-ojecti ve pì ane

can possess a Baer-plane onìy jf its order ìs a perfect squane.

Gal oj s pl anes of t ype PG Q.q2 ) (q > 2) possess Baer- pl anes. for
the points in PG(2,q2) with coor"dinates belong.ing to cF(q) (dìviding

through by a constant if necessary) form a subplane : pG(z,q).

In the subsequent work this Baer-pìane wì1'l be called the',neal"

Baer-pìane and denoted by Bo.

It follows immediately that there js a ìange number of Baer-planes

in PG(2,q2). Any homography produces a Baer-pìane. The convense

is also true. Any Baer-plane B, is a homographìcal image of Bo.

This'is not obvious, since by the Fundamental Theorem of projective

Geometry a genera] col I i neati on i s the pr-oduct of a homography
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and a field automorph'ism. Thus by choosing a non degenerate

quadnangìe in B, to be the homographìcaì image of the fundamental

points (1 0 0), (0 1 0), (1 0 0) and (1 1 1) (always possible by

the fundamental theonem), it must also be ascertained that the

homography determìnes fulìy Br. This is proved, ê.g. in [14] by

J. Cofman. A shor"t alternative argument is used here to prove the

statement, because the same argument can be used for. higher

dimensions to be discussed in the next chapter.

It suffìces to show that a fìeld automorphism r of GF(q) ìeaves Bo

ìnvaniant (though not necessanjly poìntwise). All points of Bo

have coordinates belongìng to GF(q), so all of the coordinates

sati sfy the equat'ion

x9-x=0 (1.1)

If t is a f ield automorph'ism, then

(rx)Q - (.x) =.(xÇ-x) =.(0) = 0,

hence the transformed points are aga'in in Bo.

in particular, if the autornorphism takes the coordinates of the

points to their conjugates in GF( q2), that is

x*xÇ

then B^ remaìns poìntwise fixed, since by (1.1) the elements of

GF(q) are equal to theìr conjugates. Hence this particular

field-automonphism induces an involutjon in PG(2,q2), with qÞ_Þgl_lg

'its f i xed set .

The number of Baen-planes'in PG(2,q2) can be determ1ned next.
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This is obta'ined by dividing the total number of homographics of

PG(Z,q2) by the number of those which leave Bo invariant, that

is the number of homograph'ics of PG(2,q).

Denote the numben of Baer-pì anes by N. Then

N - lPcL(3,q2)l/IPGL(3,q) l,

and by (5.4) of the introductony chapter,

N = q6(qu-r)(q6-1)/q3(q2-1)(q3-r)

= q3(q3+t)(q2+1) (1.2)

The investigations Iead'ing to this wor k began wjth a computer

search surveying points, lines and a singer orbit of Baer-planes

in PG(2,25). Questìons of interest ìn the geometr^y of the p'lane

PG(Z ,qz) a re :

(j )

(ii )

(j i j )

intersection configuratìons of Baer-planes;

partiti on'ing of PG(Z,q2 ) by Baer-p'lanes;

structures of special sets of Baer-p'lanes.

The findìngs resulting from the early ìnvestigatìons were

publìshed in [28], (1981).

Before these results could be publìshed, the paper [10] by R.C.

Bose, T.W. Freeman, D.G. Glynn appear"ed provìng the jntensection-

theonem of Baer-planes (Theorem 2.1) in this chapter"), together

w'ith a count of the possible intersection configurations. The

pnoofs of these, given in this chapter, are independent of the

above, us'ing different methods. The intersectjon theonem was also

pnoved simultaneous'ly by K. Vedder [33].
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The problem of pant'itìoning a pnojective plane by Baer-p'lanes was

tneated by T.G. Room and P.B. Kirkpatrìck in 124). Theoren (Z.IZ)

of thi s chapter" i s pnoved i n 124) f or PG(2,9 ), but ther-e 'is nothì ng

new in the proof for PG(2,q2), the generaì case. Thjs result was

needed for ìnterpreting the fonmula for the number of Baer-planes

disjoint from a given Baen-p1ane, obtained eanlier by ind'inect

means.

Another approach to partitìoning, ìndependentìy found and pubììshed

jn [28] was later found to have appeared in [36] by p. yff (1974),

where jt was quoted as a result of R.H. Bruck (1960). A survey of

partitions and spreads appear"ed in [20].

Baer-pl anes have been 'intensi vely stud'ied by sevenal wonkers (as

the short survey above 'indìcates). They have proved to be useful

tools for constnucting non-desarguesìan projective planes (cf D.R.

Hughes and F.C. Piper [21], Chapter on Derivation Sets), also for

construct j ng arcs 'in projecti ve pl anes t6l.

This chapter may be regarded as an introduction to Chapter 3.

Results d'iscussed here are pointens to the more genenaì structure

of pnojective spaces of higher dimens'ions.

2.2 The Intensection of Two Baer-Planes

Definition

Two Baer-planes B, and B, of a general projective plane I of orden

q2 are said to share a l'ine .Q, i n n, i f q+1 poi nts of ,o bel on gto

each B and B

I
t

I 2

If, in pantìcular

B fì,Q,=B
I 2

nt.



-72-

and lB, n ¿l = lBz n rl = q+l, then B,

share the I j ne .c poi ntwi se.

and B are sai d to
2

I

è.

I

I

1,

Note: It'is sufficient to ascertain that two points of ¿

bei ong to each of B, and Br, f or i t f ol I ows then that .0 î B,

and ¿ n Bz each contaìn q+l points. The sets of points in

.(, ¡ B, and I n B, may be disioint, intersecting or identical .

Theonem 2.1

The number of points common to two Baer-pìanes B, and B, of a

projective pìane I of onder q2 is equal to the number of lines

shared by Br and Br.

P roof

0bserve f i rst that f or each Baer-pl ane B of It there are q+l l'ines

of B through each poìnt of B, whìle exactly one line of B goes

through a point of I external to B. This is so because B is dense

'in I and lines belongìng to B intensect w'ithin B.

Dua'l'ly, each line of B contajns q+l poìnts of B, while each l'ine

of lt external to B 'i ntersects B i n exactly one poi nt.

Denote by n the numben of points ìn B,

of lines shaned by B, and Br.

n B2' and by s the numben

Let I be the number of incidences of the points of B with the

t
ii'¡t

tl

1

lines of B

By the above obsenvation, the r poìnts 'internal in B, make

r(q+1) incidences with l'ines of Br, whìle the nest of the poìnts

of Br, q2+q+1-r in number, are external to Br, hence nesult each

jn one incidence only. Hence

I t'r'(q+l) +q2+q+1 (2.1)
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0n the other hand, s lines of B, berong to Br, hence give s(q+l)

incidences with its points, while the remainìng q2+q+1-s ljnes of

B, ane external to Br, hence each makes one'incidence with some

poi nt of B r. Hence

I = s(q+1) + q2 + 9 + 1 - s

comparìng (2.1) and (2.2) it is found that r = s as claimed.

Corol I ar.y

Two Baer-planes have no common line if and on'ly if they are

pointwise disjoìnt.

Theorem 2.f is valid for Baer-pìanes of a general projective pìane.

The next lemma is also valid generally. It concenns the nature of

the i ntersect'ion of two Baer-pl anes.

Lenna 2.2

The intersection of two Baer-pìanes js a closed confiqur.atjon (cr.
I ntroducti on, Secti on 6).

P roof

If two points p, and p, belong to Br n 82, then pr, p2, Br, so

theìr join . p, * pz r Br. Sjmilarìy p, * pz .Br. Hence

Pr*Pz eBrnBr.

In the same way, if the lines,R,r and ¿2 belong to each of B, and

Br, so does theìr 'intersection t, 0 t,2.

If the pnojective pìane is a Galois plane pG(2,q2), then the

following theonem'imposes more restr-ictions on the intersection

configuratìons of two Baer-pìanes belonging to it.

I

È,.

(2.2)

I

I
I

¡!,
ìJ

I

I

!

I

i

#

fr
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Theonem 2.3 (cf. also [14])

If two Baer-planes in PG(2,q2) share 3 points on a l'ine ¿ of

PG(2,q2), then they share q+l po'ints of t. (They shane the

line t pointwìse.)

Pnoof

Denote the three points on t. shared by the two Baer'-planes by

Pr' P 2r Pt.

l^Jithout loss of generaìity the fundamental po'ints of PG(2,q2) can

be chosen as

p, = (o 1o), pr= (1 o o),

(hence they are two of the given points), while

po=(oo1) andps=(111)

are two poìnts'in one of the Baer-planes, on some line through p¡

(the third g'iven point of jntersection). Thus one of the given

Baer-pìanes is taken to be Bo, the reaì Baer-plane, while the

other one is denoted by Br.

It follows from the construction that pt = (1 1 0). Consider a

homography tak'ing B, to B^ and leaving p, and po fixed.

The matrix of this homography 'is of form

ct 0*I

A= 0

0

where alI entries are elements of GF(qz), the asterisks in the

third column stand for unspecified elements, and cr, cr, and the

last entry in the third column are non-zero.

oz

0

*

*

lr
ù
I
,l
i!

h.

I

I ¡l'

I
{ri

i.

i
I

I

I
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The homography takes pt to pu e ß n 80, whene

Pu = (ar, arr 0).

Since p¡ e Bo, 'it follows that or/o, e GF(q).

Let p e r, î B, where p is different fr.om pr, p2, pt. l.lithout I oss

of generaì ity

p = (x 1 0)

then the homography takes p to p', where

CX ct o).p
2I

Since p' r 80, o tx/oz e GF(q ) and so x e GF(q ).
all the points of ¿ n B, belong to Bo. Hence B,

in q+1 poìnts of .¿ as claimed.

This means that

and B i ntersect
0

(1)

(2i)

(2ii )

I

It follows immediately that the intersection of two d.istinct Baer-

p'lanes in PG(2,q2) have 0, r, z or q+l points in common with any

line. Furthermore, by Lemma z.z the intersectjon is a closed con-

figuration and it cannot contain a non-degenerate quadrang]e,

because such a quadrangl e deterrni nes exact'ly one Baer-p'lane.

Hence we arrive to the folìowing theorem.

Theorem 2.4

Two Baer-planes in PG(2,q2) can only intersect in one of the

fol I owi ng confi gurati ons :

(1)

(2)

the empty set,

one poì nt and one I i ne

(i) the point is on the line

0

(ii) the point is external to the line, a
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(3) two points and two lines

as shown,

(4) three points and three lines

forming a triangu'lar

conf i guratì on,

(5) g+1 points on a line and

q+l lines going through

one poi nt of that I i ne

(6) 9+2 poi nts and q+2 'l i nes

Q+1 poi nts bei ng coì I i nean

and q+l lines concurrent.

(3)

(4)

!
(s)

(6)

P noof

By Theonen z.r the number of points and number of lines in the
'intersection must be the same. In cases (1) and (2) there is
nothing to prove. In case (3) one of the rines must be the joìn
of the two points and one of the points must be the intersection
of the two lines since the configuration is closed. In case (4)

the configuration consists of 3 non-collinear points and their 3

joins. In cases (5) and (6) the configurations contain more than

two points of one rine r.. By Theoren (2.3) the number of points

on that I i ne must then be q+l. If no more than these q+1 poi nts
beìong to the intersection, then thene must be q+l l.ines, one of
which is the join of the points. The nemainÍng q lines must all
intersect in one of the q+l points, otherwise a point external to !
would be added to the configuration. In case (6) an extennal
point js added to the q+1 points of e.. The q+l lines joining the
extennal point to the poìnts of t close the configurat.ion. No

rnore than 1 extennaì point can be added to the q+l points of t",

since the configuration cannot contain a quadrangìe. This compretes

the pnoof.

t
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Note:

Theorem (2.4) does not establish the existence of all the I i sted

configurat'ions. It will be shown laten that they ane all realised

and the numben of Baer-planes intersecting a fixed Baer-pìane of
PG(2,q2) wi I I be cal cul ated.

2.3 Baer-planes and pers pecti vitv Gnoups,

Sl ots Bunches and Cl usters

Recall the result

t nansiti ve for al I

in the Introduction

( v, ¿) -pai rs i n the

Desarguesìan planes are (v,¿)-

pl anes: if V is any fixed poìnt

of the pl ane and .0 any ì i ne wi th al I .its poi nts f .ixed , then the

homography-gnoup w'ith the above f ixed set i s trans jt.ive on the

poì nts of m\ {V,m tì .e,}, where m i s any l.ine through V. The

homographies belonging to the group are rS ectivities mo re

specÍ fi cal ly homol ogì es i f v i s not on L, and el ati ons otherwi se.

Before discussìng the action of penspect.ivity groups or Baer-

pl anes, the fol I owi ng theorem i s needed.

(Note : 'in the f ol ì owì ng statement and p roof , po.i nts a re ma rked

by capìtaìs, lines by smaìr rettens, to make distinctjons between

dual s cìearer. )

Theorem 2.5

If r'is a line in PG(2,q2), A, B, c thnee distinct points on the
'lìne, and P an anbjtnary po'int of the plane, not on.Q,, then there

ex j st Baer-p'lanes i n pG (2,q2) contai ni ng A, B, C and p.

Dualìy: If a, b, c are three rines in the pìane, through a point

P, and ! some other line of the p'rane, not through p, then there

are Baer-pìanes containing a, b, c and.{,.
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Pr oof

Let P'be a point on the line pc, distinct from p or c. (since

q2+1>5, the choice for p' 'is not unique.) Then A, B, p', p

determine a non-degenerate quadnangìe, hence a Baer-plane, which

contains C, which is the intensection of AB and pp'.

The dual statement i s proved s jmi I ar'ly, noti ng that a quadrilateral

( non -d eqene rate ) al so detenmi nes unìquely a Baer- pl ane , slnce any

four inter^section points of the four sides form.ing a non-degenerate

quadrangìe determine a unique Baer-p'lane contain.ing the four lines
(hence the other intersectìon points). !

Recall next Lemma 2.2. All Baer-pranes sharing the poìnts A, B, c

on the line g, share q+1 points of line ¿. The dual of this lemma

'impì i es that i f two Baer-pl anes shane three lines a. b. c throu qh

the point P then th have q+1 I i nes th rouqh P in common.

Definitions

(a) Let A, B, C be three points on a line r in pG(Z,qz). The set

of q+l points of ¿ belongìng to a Baer-pìane through A, B, c
is called a slot on t".

(b) Let a, b, c be three rines of pï(z,q2) through a point p. The

set of q+1 I i nes through p bel ong.ing to a Baer-p'lane contai nÍ ng

a, b, and c (that is segments of q+l points of each of these

ì i nes ), i s cal I ed a bunch through p.

Theorem 2.6

For a given line .e,, and a given point v, not on .e, in pG(2,g2), and

a given slot s on t,, there are exactìy q+1 Baer-planes which share

the point v and the slot s. They pantition the points on each of

the q+1 lines joining v and the points of s (excludìng v and s).
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P noof

By Theoren 2.5 thene ex'ists a Baer'-pìane Br, contaìnìng V and s.

Then a (V,r)-homology e takes B, into some Baer-pìane (possìb'ly

'itself). This new Baer-plane'is fully determ'ined by a non-degenerate

quadrangle, and since V and s are already fixed, an image of any

ointXeB V Us determìnes a Baer- lane. 0n the other hand, since

the pìane PG(2,q2) is (V,s)-transitive for any choice of V and l,

any po'int X' on some lìne m through V, m be'longìng to Br, js a 0-

image of the point X on Br 0 t, where 0 ìs a (V,.c)-homo'logy, and

X and X' are d'isti nct, f rom V or po'ints of s. Hence eve oint X

of m\ {V,m n ¿} belonqs to exactly one Baer-p I ane contai n'inq V and s.

The th ree poi nts V , m f-ì .q, and X '

Thus al'l images of X withi n thi s

pl ane.

determine a slot on the line m.

slot determine the same Baer-

Hence the number of Baer-planes sharinq V and the slot s on g is

equal to the number of sl ots on some l'ine m. .i oì n'inq V and a poì nt

of s, such sl of contai n'i nq V and m n s. Since there ane q-l more

poìnts on each sìot, and by Theorem 2.3 these sets of q-1 poìnts

must be di sjoi nt, the number of adm'issi bl e sl ots on m i s

(q2*1-2)l(q-1) = q+1.

Thjs concludes the proof.

Definit'ion

A famìly, consjstìng of q+1 Baer-planes sharìng a slot s on a lìne

.Q, and a poi nt V not on L, is called a (V,s)-hornology cluster.

Theorem 2.7

Let .t be a line in

a bunch through A

PG(2,q2), A â point on L, s a slot on .c, ,andb

Isuch that s and b belonq to the same Baen-plane B
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Then there are exactl.Y q Bae r-p lanes which share the slot s and

the bunch b. The po'ints, excluding A, of the q 'lìnes of b\ {l}

are partìt.ioned by the Baen-p'lanes j nto d'is joì nt sets, each

contaj ni ng q poi nts.

P roof

choose in the fjxed Baer-plane B, a point X, not belonging to s.

Let m be the line AX. Let e'be an (4,¿)-elation takjng X to X'

whene X' e mf{A}. It is known (cf. Introductìon, Sect'ion 6) t¡rat

O' 'is fully determ'ined by X', hence X' also determines unìque1y a

Baer-plane B, (possib'ly identjcal to Br), which is the ìma9e of Br.

The point X'can be arbitrarily chosen on m\{n}, tjnce PG(2,q2) is

(4,¿)_transitive. Let Sm = 82 flm, thus s* ìs a slot on the ljne

m. Let x,, be another point of sr. By the transjtjvity propenty,

X" determines some transformat'ion 0", be'longìng to the (A'¿)-

elation group. Hence X" also determines unique'ly some Baer-p'lane Br,

which conta'ins X", b and s, (since B, ìs an image of Br).

Then the Baer-pìanes B, and 83 are identicaì, since they share at

least one non-degenerate quadrìlateral conjsting of two lines of

b, d.ifferent from m, and two lines io'ining x" to two points of s,

di f ferent f rom A, (noti ng that X" bel ongs to B, si nce 'it i s a

point of s¡). Hence the s'lot sr deter^mines a un'ique Baen-p'lane

containing s and m.

Convenseìy,'if Y e ¡\s¡, then the un'ique Baer-plane determined by

the (A,.¿)-elat'ion takjng X to Y must differ from Br, since it

contains a poìnt on m, whìch does not belong to B, fl t.

Hence the number of Baen-p'lanes shari ng a s'lot s on I and an

associated bunch b through the point A e s ìs equal to
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(qz+l-1)/q = q,

since by the above, the set of points of m\{A} ìs par"titioned into

disjoìnt sets, each conta'ining q+l-1 = Q poìnts'

Defi ni ti on

A famiìy, consìsting of q Baer-p]anes, sharing a slot s on a ljne 'Q'

together. wìth a fìxed bunch through A, where A is a point of s, is

ca lled an (A.s)-elation cluster.

4 The Exi stence of the Intensecti on Confi qu rati on s of Two Baer-planes

¡

2.

Theorem 2.8

There exjst seven possible configurations of intersections of Baer-

p I anes 'i n PG (2 ,q2) .

Pr oof

Theonem 2.4 glves a l'isting of 1; 2(i),(ii); 3, 4, 5, 6 to the

poss.ible configurat'ions in wh'ich two Baer-planes in PG(2,q2)on'ly

may intersect. Theorems 2.6 and 2.7 will be used to construct and

count al I Baer-pì anes i ntensecti ng a f i xed Baer-p'lane 'in each of

the configuratìons from 6 down to 2(i) and 2(ii). The total number

of these is found to be less than N-1, whene

N = qr(qE*1)(q2+f )

denotes the total number of Baer-planes in PG(2,q2) (cf. 1'2)'

Thus No, the number of Baer-planes disjoint from Bo can be also

found by a sìmpìe subtraction. The procedune then is to beg'in

wìth configuration (6) and do the constructions and countìng

successìvely in the cases, in an order reverse to the listing.

Without loss of genena]ìty, the fixed Baer-plane can be taken to

be jn all cases, the reaì Baer-p1ane Bo. This is used as a

reference, but does not make any difference to the arguments in

the pnoofs.
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To determi ne

lines with B 0'

whi ch B o bel ongs . Each cl uster i s

a poi nt V and a I i ne r of PG (2,q2)
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the number of Baer-pìanes sharing q+2 points and q+2

we count the number of (V s) -homoloqy clusters to

For V we have a free cho'ice out of the 
_q2+q+1

a l'ine must be chosen which does not contain

determined by fixing wìthin Bo

be'longing to Bo.

poi nts of B 
o 
. For t,

V, hence there are

q2+q+1-(q+1) = q2 choìces.

Thus Bo be'longs to

q2(qz+q+1 ) cl usters.

By Theoren 2.6 there are q Baer-planes other than Bo in each

cl uster, the cl usters formi ng di s jo'int c'ìasses of Baer-pl anes.

Hence the numben of Baer-pì anes i ntersectì ng B o i n conf igu r^at'ion

(6) is

(4.1 )

Case 5

To find the number of Baen-planes intersectìng Bo'in exactìy q+1

points of a line (and the same number of'lines), we have to find

the number of (A,s)-elation clusters to whjch Bo belongs. The

poìnt A can be chosen within Bo in q2+q+1 ways. S'ince there are

q+1 'ljnes of B0 thr"ough A, there are q+1 choices for the slot s

containing A. Thus the required number of elation-clusters 'is

(qz+q+1)(q+1).

In each elation-clusten there are q-1 Baer-pìanes other than Bo

by Theorem (2.7). Thus the number of Baer-planes intensecting

Bo in configuration (5) is

Nq+1 = (q2-1 ¡ (qz+q+1 ) (4.2)
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Case 4

The i ntersecti on i s a tri anguì ar confì gunatj on of three poì nts

and th nee I 'i nes.

A
Let the poìnts A, B, C be fixed in Bo.

Let D be any poìnt on the line AB, not
C.

beì ongì n toB Then A, B, D determine
-B

D
unìqueìy a slot s of q+1 points on the

line AD. Next we find the nurnber of

Baen-planes contaìning the point c and the slot s (hence the points

A and B) and no othen o'int of B . Al'ì these Baer-pì anes bel ong

to the (C, s )-homol ogy cì uster determi ned by A, B , C and D . Th.is

cl usten consi sts of q+1 Baer"-pì anes. However., we must excl ude

Baer-p lanes containinq points on CA or CB , other than A, B, C and

bel onqi n gt0 Bn

By Theonen 2.6 there ìs a unique Baer-p1ane B, wh'ich shares with

Bo the slot A C nBo and belongs to the (C,s)-cluster. Likewise,

there 'is a un'ique Baer-pìane B, which shanes with Bo the slot BC 0 Bo

and belongs to the (c,s) cluster. Moneover,8., and B, are dìstinct,

for no Baer-pìane shares with B0 more poìnts than those'in a slot and

a point extennal to the slot. Thus B, and B, are the only two

Baer-pìanes belonging to the (C,s) cluster, and sharing wìth B0

some pojnts on CA or CB other. than A, B or C. So the numbers of

admjssible Baer-planes beìong'ing to the (C,s) cluster js

q+I-Z = q-1.

The number of slots on the line AB, containing the pojnts A and B

is

(q2-t)/(q-1) = q+1

(as seen before in the proof of Theorem 2.6).
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Thus there is a choice of q sìots, other than the slot belong.ing

to Bo, on the line AB, thnough A and B, each of them determining

a (c,s) cluster. Hence, for a fixed triang'le ABC.in Bo there are

q(q-1)

Baer-pì anes j ntensecti ng Bo in exacily A, B, and C.

The choice of the three non collinear points A, B, c in Bo can

be made 'in

1qz+q+1) (q 2+q )q2 ways,?t

(choosing A, B, c in order, then obtajning the numben of unondered

tr"ipìes).

Hence the number of Baer-planes intersecting Bo in confìguration

(4), is

ru, = (q2+q+1)(gz+q)qz q(q-1)

= (q2+q+1)qa(qr-t)/gt (4.3 )

Note

l^lhile q > 2, and p'lane B, ìntersects Bo in exacily 3 po.ints, the

points are necessarily non-collinean. Thjs js not the case when

q=2. case 5 applies to the sìtuation when two Baer-planes in

PG(z,4) intersect in 3 collinear poìnts, and case 4, when the

poi nts are non-col I i near.

Thus, for PG(2,4) thene are (22+2+t)(22-I) = ZI Baer-p'lanes inter-
secting Bo jn 3 collinear points and (|Z+Z+I)ZL+Q2-I)/3! = 56 Baen-

pìanes intersecting it jn 3 non-col l'inear poÍnts. Hence the total
number of Baer"-planes in pG(2,4) intersecting Bo ìn 3 points is 77.
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Case 3

Let A, B be f ixed points and .t,, m

fixed lines of Bo such that t = AB

and A = I ft,m. The admissible Baer-

p'lanes to be counted are those which

intersect Bo in A, B, 0 and m and no

othen points or lines.

A

tvt\

t

E P

Let P be a poi nt of mt{A}, not belonging to Bo, and s a slot on g,

determined by A, B and E where E é 80. l^le show that ther"e is

exactly one admissible Baer- p'lane contai ni n g P and s.

All Baer-p'lanes through P and s belong to the (p,s)-homology

cluster wh'ich consists of Q+1 Baer-pìanes, all different from Bo.

Let c be a poi nt of B 
o 

rì m \{A }. Then the quadrangl e EBpc deter-mi nes

the unjque Baer-pìane Br, which contains also the poìnt A, hence

belongs to the (P,s)-cluster. since B, ìs then different from Bo,

it shares no other poìnts with Bo on the line m, than A and C.

Thus, each oint of B flm\ A determi nes a uni ue Baer- I ane of the

(P.s)-cluster. and these pl anes a re d'istinct, q in number, all of

them inadmissible. This leaves exactly one Baer-plane, E in the

cluster. B is admissibìe, for jt shares on.Q, only the points A and

B with Bo, on m onìy the point A, and it cannot contain a poìnt

P' e Bo\irUm], otherwise the line Ep' and hence Ep'nm belongs to

Enno, which is a contradiction, since EP'nm É A. This proves the

cl ai m.

E intersects m\{A} ìn q points. Hence the number of admissible

p'lanes containing the slot s in ['is equaì to the number of s]ots

on m, each consisting of the point A and a set of q points, disjoìnt

fnom all the other slots. The number of these slots is then
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(q2+1- (q+l ) )/q = q-1

since, as seen before, the slot s on .c can be chosen in q ways,

(if it is to contain exactìy the two given points A and B of Bo,

and no more) it follows that there ane

q(q-1) admjss'ible Baer-planes for each fixed A,B,L, m set ìn Bo.

The numben of choices for the above sets can be obtained by

considening the number of selections for A and B, which uniqueìy

determjne .Q,, and then choose m through A, gÍving (q2+q+1)(qz+q)q

selections of the above ordered set.

Thus the numben of Baer -planes intersecting Bo in two points and

two lines is

N, = (q2+q+t) (q2+q)q(q-1 )q

= (q2+q+t)q3(q2-t)

Case 2 (i )

Let L and A be a fixed Iine and

poi nt of B o and A e .C. The

admi ss i bl e Baer-p'l anes now are

those whjch intersect Bo ìn A and

f, and no other elements.

As a first step, we count

(a) the number of slots on l.ine g which conta.in A, but

no other point of Bo,

(b) dua'lìy : the number of bunches thnough A which

contain g, but no other- I i ne of Bo.

4.4)

A

0
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The count is the same fon (a) and (b).

The total number of sl ots contaì ni ng A on ,e, i s

02o('z)/Ç) = q2(q2-t)/q(q-1) = e2 * q,

because there are f 
ortl *uV, of pi cki ng Z points on .(, whi ch

determine a slot together w'ith A, and there are q) pai rs of

points d'ifferent from A within each slot consjsting of q+1 poìnts.

Fix now a point on r nB't{n}. This can be done in q ways. As .it

was shown eanlier, the number of slots containing A, the selected

point but no other point of Bo, js q. Thus q2 slots contain

exactìy two points of B0 n¿. Finalìy, subtract q2+1 from the

total numben of slots, taking'into account the singìe slot which

belongs to Bo. Hence the count for both (a) and (b) .is

(q2+q)-(q2+1) = q-1.

Next considen the cluster of Baer-planes which contain a slot s on

.c, and a bunch b thnough A, such that s contains no other point

than A and b contains no othen ljne of Bo than 9..

This is an (A,b)-elation cluster, consisting of Bae r- I anes all
of whi ch ane admi ssi bl e since none of the lines of the bunch

contain any poìnt of Bo, othen than A. Hence any of the planes

be'longing to this cluster intersect Bo .in A and ¿ and no other

el ement .

since the cho'ice of slots and bunches of the desired property, can

be done in (q-1) ways fon each,'it foilows that for a given A and

I the numben of admissible Baer-planes is

q(q-1 )2.
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The choice of A and ¿ in B can be made in (q2+q+1)(q+1) ways,

hence the total numben of Baen-planes 'intensecting Bo in one 'line

and one poi nt cont a i ned by the I i ne .i 
s

*lt'= (q2+q+1)(q+1)q(q-1)2 (4.5)

Case 2(ii )

Let I and A be a fixed line and point in B , A not on t,. A Baer-
0

plane is admiss'ible jf it intersects Bo in A and 1,, but no othen

po'int or ljne.

consider an (A,s)-homology cluster, where s is a slot on the line

L, not containi n9 any int of B Al I admi ssi bl e Baer-pì anes

must belong to such a homology-cìuster, sìnce each must contain A

and .t, but cannot i ntersect ,{, .in a poi nt bel ongì ng to Bo. Al l

g+1 Baen-pl anes beì ongi ng to such a homol ogy cì uster a re admi ss i bì e,

for no line of the bunch through A can belong to Bo, otherwise

its'intensection with r would be a point of Bo. so no line of the

bunch contains a point of Bo other than A.

Next the number of sl ots on .c, not conta'ini ng any poì nt of Bo

must be cal cul ated:

Reasoni ng simi'lanly as befone we have

q2+r

3

q+1(a) the total number of slots on t = ( )/(
3

= q (q2+1 )

(b) the number of slots containing one fixed point of Bo ìs

using the nesult 'in case 1(i)

hence the total number of sl ots conta'ini ng some un-ique poi nt of

Bo on L is (q+1)(q-l).

q-1,
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(c) the numben of slots containing exactly two fixed poìnts

of Bo n.(, is (as seen before) q, hence the number which

contains exactly some fixed pair of points in Bo nL is

o+1
l' )o.'2

(d) there is 1 Baen-pìane, nameìV Bo, which contains more than

2 poi nts of Bo n L.

Hence the nequired number of suitable slots is

q(q2+i)-(q-1)(q+l) - q2(q+1)/z - 1 = 1/2 q(q-I)(q-z).

S'ince each (A,s)-clusten contains q+1 admissible Baer-planes, if
s has no poìnt ìn Bo, the total number of admissjble Baer-pìanes,

for A and ¿ fixed is

r/2 q(q2-1)(q-z)

The number of ways'in which the point A and the line I can be

seì ected, i s

1qz+q+1)q2,

and so the number of Baer-p'ìanes intensectìng Bo in one I jne and

one poi nt, the poi nt not on the l'ine i s

(2)
(4.6 )N = r/2 qr(qz+q+l ) (q2-1) (q-z)

I

Using now the result (1.2) for the total numben N of Baer-planes

'in GF(q2), we can calculate No, the number of Baer-planes disjoint

from Bo:

No= N- Nq*z - Nq+l -N3 -Nr- Nlt' -*lt). U.7)
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Substituting 'into each term on the right hand side of (4.7) the

appnopriate result gÍven by (I.2), (4.1), (4.2), (4.3), (4.4),

(4.5) and (4.6), we obtai n after simpì i fication that

q4(q-1 ) 
3(q+1 

)

(4.8 )
3

This completes the counts of all the configurations ljsted in
Theonem (4.4), hence completes the pr.oof of Theonem (a.8).

Compare the expness'ion (4.8) w'ith the order 
^'of 

the homography

group which ìeaves Bo invaniant. By (5.4) in the introduction,

Âo = IPGL(3,q)l = q3(q3-1)(q2-r),

Hence N may be wr'Ítten down as

No

0

(4.e)

An'interpnetation of this nesult is given in Sectjon 8 of this

C h apte r.

2.5 The Action of Cyclic (S'inqer. ) Groups of Homognaphies

Singer's theonem pìays a fundamental role jn descrjbing the struc-

ture of the project j ve pl ane PG(Z,q2). It was treated genera'|ly,

(for spaces of n dimensions) in detail in the Intnoduction (Section

6). It'is convenient to recall here some defjnjtions and notat'ions

which will be used throughout. In this chapter onìy planes are

considered, hence the following apply to two d'imens'ions only.

The singer group is a cycìic group of homognaphies, acting r"egu'lar'ly

on the points and lines of PG(2,q). since this chapter deals with

Baen-planes in the pnojective pìane of square order: pG(2,q2), it

^^N^ = (qz-q
" 31qz+q+1 )
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will be necessary to distinguìsh between a singer- gr-oup acting on

the projective plane PG(Z,q2) and the singer gnoup acting on the

Baen-pì ane Bo = PG(2,q). Hence, wheneven necessary r,\,e use sub-

scrìpts q or q2 in the notation.

Thu s

and

3 q = <oO> acts on PG(Z,q)

Z q2 = <oqz> acts on PG(2,q2

Here oq is a homography with matrix

cz

c

to

I

10
1

0

0

0

Whene X3 = C^X2 + C X + C2t'

[vl = (5.1)

5.2)
0

is the generating cubic equation (cf. Introduction) and cz, c 
L,

co are elements of GF(q).

For ooz we wrjte the matrix of homography and genenating cubic

equatìon'in the same forms (5.1) and (5.2) respectively, w.ith the

understandìng that in th'is case c2, cr, c0 are elements of GF(q2).

The singer gnoups induce natural orderings of the points and lines
j n PG (2,q) and PG( 2,q2) .

Denoting by o(p), o2(p) = o(o(p)), ..., ok(p), .. the successive

s'inger transforms of a poi nt p, wê denote by p o the poi nt (0 0 1) ,

i n PG (2,q) ( on PG (2,q2)) .

Then by Singer's theonem, the set

k
{oo(Ro)lo < k < q2+q+1}

consists of q2+q+1 diffenent po.ints of pG(2,q) and

(5.3)
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o2+o+1

"; 
(po) = po.

Hence all the points of PG(2,q) ane nepresented by the set (5.3).

We denote by

kpk=o

po = (o o

Pr=o(o o

P, = o2(o

P3 = o3(0

1)

1) = (0 1 0)

1) = (1 0 0)

1) = (c, c, co)

(no) (5.4 )

(5.5)

q

The subscript k characterising the point pk is called the singer-

index of the point. It is defined as the exponent (mod q2+q+1 )

in the equation (5.4).

(Note: The subscript q or" q2 may be dropped if there is no

ambi guity. )

Thus

0

0

and so on.

t^Je observe that

Pk+s = ok+s(pn) = oslok(lo)) = os(pk).

The diffenence s between the singer indices of two points is called

the Sinqer-shift.

The lines of PG(2,q) are also ondered cyclicalìy by the group

E = (o).

The choice of the line 4o is arbitrany. Unless stated otherwise

in some particular case, we take for,(, the oin of and l'

!

lt
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lo = po * pr, in short notation pop,

!r = o(po*pr) = o(po) + o(pr) = prp,

L, = o,(Oo+O ,) = o,(Ro) + oz(p t) = prp,

and general ìy

uk=ok(ro)=pkpk+t

The set

k

{o(¿^)10.k<qz+q+l}q"

represents al I the I i nes of PG( 2,q ) .

(5.6)

(5.7)

The exponent k (mod q2+q+1) in equation (5.6) is called the Singer-

'index of the I i ne t,

The difference between the indices of two ljnes (mod q2+q+1) is

cal I ed the Si nqen-shi ft of the I'ines.

l,le recal I here that i f the poi nts

Pi ''0
p , ..., Pf are collinear,

{
Ä',

#

I q

then the'indìces io, ir, ..., iq form a perfect difference set

(cf. Introductìon).

We also observe hene the useful fact that if the point pi is on

the line 9¡, then the point pi+s is on the line 9k+s.

We conclude this sect'ion by tabulating the points and the lines of

PG(z,4) to illustnate Singer onderìng. Two different generating

cub'ics are used i n the two tabl es to deter.mi ne the Si nger cycì e.

PG(z,4) is the smallest projective plane of squane order, so ìt is

,;

I

Þ

I

I

It
l,

I

I

)

I

i
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the smal ì est pr ojecti ve p'l ane whi ch possesses Baer-pì anes . In the

case of PG(z,4) the ordening can be done by hand-calculation,

while for projective p'lanes of higher or-den, this is done by

computer. In each of the two tables the points and l'ines of the

real Baer-plane, i.e. the points the lines with coordinates in

GF(2) ane ci ncled in.

.t
¡
I

rt

ùþ

I
i

.t
ft,i
't

T
)
1,

l
rt

I

I

,1

I

rí
l4
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TABLES 0F SINGER LISTINc IN PG(2,4)

(c is root of s2+c+1 = 0 over GF(Z))

Tabl e la

Gene rat i n cubi c x3 = x2+x+a(Circìed poi nts and I nes be ong to real subpìane)

i

.t

,t

t-

I

I
ll
:

i
i,

I

;

i

Points (xr,xr,xr) Lines (each rine is given by the set of the
i ndi ces of its poi nti )

@O (0, o, 1)

O (0, 1, o)

@ (1, o, o) L

4

5

6

16

T7

18

19
P

P

3

4

5

6

d2

0

(1,

(1,o

3
(1, 1, o)

(0, c, 1)

(o, 1, o)

1

(1, 0, c)

(o, 1, oz)

(o2, 1 , o2)

(c, o, 1)

(1, c, a)

(1, 1, d2)

L,

Lu

t,

@
@
L,

L,

2

r0

l1

I

9

10

11

I2

13

16

17

18

19

3

4

5

6

4

P

P

5

6

8

9

r0

I1

L2

I6

t7

r8

1)

o)

t2

t7

16

L7

18

19

8

9

10

11

t2

13

5

1t

I
9

10

11

T2

13

8

9

i0

11

L2

13

I

P

P

3

4

5

6

P

P

P

P

t,

r.

9.

3

4

5

613

1

1

( 0

(1,

t

L,,

t
15

!" r5

9"
t8

P

P

P

(0, 1, o)

(1, o, o)

(1, c, c2)

(o, 1, 1)

t

16

L7

18

19

16

T7

18

19

8

9

10

11

72

1331 1

P,,

(1,
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Table 1b

Generati n cubic I X3 = oX2+ ax+a
(C'i rc I ed po nts an nes eìong to rea subpl ane )

Points (xr,xr,xr)

I

¡

Lines (each ljne is given by the set of the
indices of its poìnts)

I

I
ti,

I
t

I

(0, o, 1)

0

@
o
ø

@

6

7

18

19

20

(0, 1, o)

1)

0

1

i
1

10

11

I2

13

t4

15

10

11

I2

13

t4

15

Pu

P6

P,

t"
l+

t.

L,

L,

P
4

(1, 1, o2)

(42, 1, c)

(0, d2, 1)

(c2, 1, o)

(0, 1, 1)

(1, 1, o)

(o, 1, 1)

(1, 1, c)

(c, o, 1)

(o, 1, o)

(c2, c, 1)

(c2, 0, 1)

t

t

(1, c, 1)

,

4

5

6

7

6

4

5

6

7t

9.

r.

t,

5

10

II

L2

t7

4

5

6

7Pro

P II

P,,

Pr,

P
14

P
r5

!rt

t

10

11

I2

13

t4

15

10

11

I2

13

14

15

T7

18

19

20

L7

18

19

20

10

11

I2

13

I4

15

T7

4I

P

P

P

1

0

9.

t
r8

Lrg

Lzo

1)

c2)

0

4

5

6

7

4

5

1

17

18

19

20

L7

18

19

20

T7

r8

20

r9 (1, s2, o)

(1 , a, cr)P
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2.6 Singer Duality of Baer-Planes

We begìn with the observation made in the last section that if a

point pi lies on the line r¡, then the point p.i+s lies on the

ì'i ne t¡+s .

Put 'in panticular s = -(i+j), then we obtain the result:

lies on I i f and onl if lies on 9.-

Note: In this section we refer to the plane PG(2,q2), hence the

Sì nger group here 'is

oq"1-q2 =(

and indices are taken modulo (q++qz+1).

The above nesult suggests the establishment of the duality map v0,

f rom the points of lt = PG(2,q2) to 'its I ines, and f rom its I jnes

to ì ts po'i nts , def i ned the fol I owì ng way:

I

vo(ti) = .o-i = ÞîT0T

vo(ri) = p-i = ¿.ifOT
(i=0,1,..,Q++q2) (6.i)

where p.rcT, mT ane poìnts and lines of the projective pìane

Ï, dual to lt.

It follows immediateìy that

FireI lies on ETdl- if and only if p,j 'lies on t,-i,

hence if and onìy if p-j+s lies on t-.i+s for all s

(mod qa+qz+I).

Thus the more genera'l duality map vs may be defjned:
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vs(p.i) = r-i*s = p.i-(il
vs(ri)= p-j+s = ¿j-(Ð

(i=0,1,..,q4+q2) (6.2)

Let pir, Pi r., Pir, Piu be the vertices of a non-degenenate quadrangìe

in Bo, the real Baer-plane in pG(2,q2). Then, (denot.ing by T tne

v, dual of n):

the dual ima eofB in n is real if and onl if r.- i'+s'
t_ ane real lines.+s'i 

'+s 
'

9. -ì 
'+s 

't I
¡+

The above i s neferred to as Cond'iti on R

This is so, because in this case the dual map of the quadrang'le pi

Pir, Pi3, piu is again a non-degenerate quadrangle with real

vertìces, hence it detenmines unìqueìy the real Baer-p'lane Bo in

II.

An equivalent form of Conditjon R is as follows:

The image of the real Baer-pìane in rI = pï(z,q2) js the neal Baer-

pl ane of n i f and onìy 'if there exi st 'in B o a non-degenenate quad-

rangìe with ventices pi Pi ,, P'i, '
pi

+
and a non-degenerate

I
quadrilateral with sides.t,¡ r, Ljr, tjt, øj+ such that

ir - it = -(i r"-it) (mod q++q2+1)

for

r,t=Ir2,314andrft.

Theorem 2.9

A unique number s can be found such that the duality map v5,

defined as in (6.2), maps the real Baer-pìane of u = pG(2,q2) to

the real Baer-plane of n = v5(n).

I
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Proof

It suffices to ascentain that Cond'ition R is satisfied, that is, a

non-degenenate quadrangl" pir, pir, pi3, pi4 can be found, such

that its ventices are real points and the duals ts-ir, Ls-ir,

tr-ir, 4s-i4 are real lines, for a suitably chosen s.

Let to, ¿r and !,2 findexed as in Sect'ion 5) be the lines pqpr, p 
rp2,

PrP, with equations

X

X

=Q

-0
t,(

(Lz)
t I

3

c oxz
(rr)=QXc I 3

using the coondinates of po, pr, p2, p, as in (5.5).

Us'i ng the I i ne-coordì nate notati on [u u
2

u I to descri be a l'ineI 3

of which the equation is urr, * ,z*z* u3X3 = 0, we write

0 0l
0 1l

(6.3 )

and

ol (as [1 0 O]N = lcz 1 ol)

The I i nes .{,0 and t, ane neal , so each of them contai ns q+l poi nts

be'longing to B 0'

Let this list of real points be as follows:

Lo : [1

L : l-0t-
Lr: [o

9.

tr]co

I

Lo Pi,Po P,

lczt

p i
q 6.4 )L, , P, P, Pir+r' ... Pio+1

Since t, is obtained from ¿o by a Singer-shift equal to 1, the

points in the second line of (6.4) belong indeed to tr. That these

(
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poìnts also belong to Bo foìlows from the fact that the singer

transformati on o , w'ith mat ri x M as i n (5.1 ) takes a poì nt
q

(0, f, g) of !0, where f,g e GF(q)

to (f, g, 0) in t,r.

Suppose that the dual map vs takes the Iìne.to to the point pr,

as in (6.2).

Then t, has as dual the point ps_1, while the points

P0, Pr, ..., Pi
q

and

P,, Pc¡ ...' Pi +1L'q

have as dual s the I i nes

[s, ls-1, ..., [s-i
q

and

ls-1, Ls-2, ..., Is_iO_1 respectiveìy.

we look fon a duality map which satisfies the followjng condit.ion.

Condition S.

The transformat'ion o takes all neal lines throu i nto realh

I i nes thr"ouqh p"_ 1.

l^le note here that Condition S represents the dual of the statement

that al I real i nts of .t ane taken o to real 'ints of ¿
1J-

and so it represents a condjtion necessary to be satisfjed by s to

make ,s(Bo) the real Baer-pìane of T.

Suppose that

Ps = (x, x, xr).



-101-

Then the line

I

goes through ps if and onìy if

+a X =Q
3

ur]g=[a uz

* uz^zAXlt

Then Condition S is satisfied if and only if

Iruz* ßoa, = 0Bzu,

(6.5)
3

This line.t, is real if and only if âr, â2, ô3 (divided by a common

factor if necessary) be'long to GF(q).

-1
The transformation 6

q

[b., b2 b3] such that the matrix equation

[b, brJ = [a, a
z

ug

, takes the I i ne [a, az a,J into a line

b

is sat'isfied, where M is the Singen matrit ot o'r.

ur]

2
lu

From this we have

[b, b brl = [czar + , ,u, ca03+
2

a 6.6 )I

Refenring now to Condition S, the choice of s, hence sf Ps must be

made so that for the fixed tr^iplg (x, Xz X¡) and for all real

trip'les (u, u, ar) wh'ich satisfy equation (6.5),-aì'l tripìes

(b, b, b,) obtained by (6.6) are also real.

Write ci = ci * epi (i=I,2,3), where e is a primitive element

of the extens'ion-field GF(q2) over GF(q) and cr'¡, pi e GF(q).

(cf. Intnoductìon, Section 1).

+



-L02-

for each of the q+l vectors [a, u, ur], representing rea'l lines,

which satisfy (6.5).

This happens if and on'lY if

Ps = (82 ßr Bo) (6.7)

Next it must be shown that if s is chosen to satisfy (6.7) then

Condit'ion R is fulfilled.

(i ) The General Case

As a first step we show that iÎ (6.7) is satisfied, then

the I'ines ls, ts-1, ts-2 ane real .

since p5 is real by definition and condition s is satisfied,

jt follows that the point ps-l is also real. Thus

ts = ps-lps is real.

-1
p5, the transformation o , takes it to a neal l'ine which

q

is rs-2.

It remains to be shown that xs is real. By the use of

matrìx M, the point Ps+f is determined.

Ps+l = krgr+ 9,

Moreoven, since ß5-1 is one of the real lines through

c oBr)
g

'r9r*

The equat'ion of the l'ine tr'is

0

(Note: ps+l is not genenaìlY real.)

X

I

xz

gr

X
I

2

3

Êo (6.8)

c rBr+ßo'r9z*8, 'o9 z

=Q
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next.

(ii ) Cases when lies on the l'ines g t OTDD
I-LLLz

must be found.
P"

Use will be made of neal points other

than po or p, on lines .co and lr.

Writing ìn (6.8) ci = ai * eBì for i=I,2,3, and

expandi ng the I eft hand si de, al1 tenms conta'in'ing e

vani sh. Thi s veri f j es that lt 'is real '

Suppose that p, ì s not on .q,0' gr or on the 1ì ne prpr'

In this case the quadnangle PoPrP2Ps is non-degenerate,

and ìts dual .is the quadriIateral found by the Iines

ßs, !s-1, Ls-Z, lo, which are real'

Hence Cond'ition R ìs satisfied and for this case the proof

of the theonem ìs comPlete.

The cases where PoPrPrPs is degenerate, must be considered

In all these cases some non-degenerate

real quadrangle other than poPrPrPs 
pr P;

0 o

Pi*,

t_

Let such a point be pi = (0, f, g) where f,9 e GF(q)'
1

Thus pi+l = (f, g, 0). Here Pi = ú

pi+1 = "olt,Po) = oir{or).

The transformati 
i

on oo'

P0' Pr' Pz

where

,(no) and
q

takes the three consecutive points

to the three consecutive points pi, P'i+1 ' Pit?,

pi+2 = o "(pi+l),q'
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hence by the use of the matrix M

Pì+2=(crf+g tof)'trf

(Note: Strict'ly speaking, the matnix Mi takes po

to the vector p(0 f g), where p e GF(q2), hence the

points P, and P, to p(f g 0) and p(crf+g trf tof)'

but handlìng Uì as a matrix of homography' the factor

common to all three columns can be disregarded')

It follows from the above that the transformation

l
o Po + pi

q 2

has the matrix

M(j) = c

crf+g f 0

fsr (6.e)
I

g

The cluals of pi and pi+1 are Ls-i and tr-i-1 respectìvely'

Rather than showi ng general'ly that for ps = (0r, ßr, ß0) ,

the dual 9s-i and ß5-i-1 are real, it turns out to be

s'impl er to treat each an'isi ng case separately '

Ca se (a) s=0

Then p5 = (0 0 1) hence 9z = 9,. = 0, thus cz' c, e GF(q)'

The I i ne coordi nates of tr-i and 45-i -l I (wh'i ch 'i n th'i s case

areg-iands.i-t)areevaluatedbyusingthel.inecorodinates

of .to and l-1, g'iven in (6'3) and the matri¡ y(i)'

0cf
0

Fon L-i:
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crf+g f 0

[too]
tof

trf f
g

g

0

Ic.f+g f0l (6.10 )

crf+g fl (6.11)

For

Thus the

the real

1 ¡1y(i )L-¡-t lcz +cf= lr|f * ,29 I

Since cr, c, e GF(q), alì components in the equat'ions (6.10) and

(6.11 ) are real.

real non-de nerate

quadri I ateral Lo !,_2

quadnangle po p, pi+l pi has as dual

s-i -t e.-i .

Case ( b ) s=l

This time ps

real .

(0 1 0), hence Ê 0andsocÊ and c are
2 0

The dual s of pi and pial are now L1-.i and t-i .

Fon t-i (6.10) can be used. Sìnce c2 e GF(q), r.-i is real .

For ,t1-i:

to 0 llM(i ) Icof ogl

Hence ,t,l-i i s neal .

The non-degenerate quadrangle and its dual are now po p, pi+l pi

and .{,, L-L L-i ¿l_i respectively, hence satisfy the

requi rements.

Case (c) s=2

Ps (1 o o) hence B, = ßo 0andsoc and c are in GF
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The dual of the quadrangìe po p, p.i+l pi is now !., !.0 !,1-i

Lz-i.

0n1y e,2-i must be cal cul ated. Usi ng (6.3 ) agaì n f or e.2-i:

Io to to9

A1l sides of the dual quadnìlateral are real ljnes.

Case d is on .Q, , but sl0, sl1

In this case we taken 'i=s and use the quadrangìe po p, ps+l ps

with its dual Ls Ls-Z e.-1 e.o:

The lines lr, Ls-Z, ¿o are aìways real as shown before. The

coordi nates of r,-1 are

lcz 1 01.

S'ince ps is on to,

pr = (o X
2

X )soß

cof-crgJ

0
3 2

and c, is real . So.t,-1 is also real . This case is concluded.

Case (e) p , is on t, and sfl, sfZ.

Now take i=s-1, since ps-1 is real and is on line lo. The quadrangle

and its dual are now

Po P, Ps Ps-l

and Ls Ls-Z Lo L r.

All the sides of the quadrilateral are neal lines.

Case ( f) p, is on the line pop., slO, sfz.

Note that p5-1 is not on 10, because if it were, then p5 wouìd be

on ¿t hence at the intersection of t, and popr, so ps = p, which
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has been excluded. The point p5-1 is known to be real, hence,

unl ess D" -1 is on the line p0P2, wê may choose the quadrangìe

Po P, Ps Ps-1

with dual

Xs ls-1 Lo L,

and thus settling the case.

The onìy case left is:

ps and pr-1 are on the line popr.

Now we choose the quadrangìe pl pi ps Ps-l where pi ê L ,

ilO or 1, and pi is real.

The dual is

ls-l [s-j Lo L,

Hene.0s-1 = ps-lps which is the line popr, hence tt-1 is the

line [0 1 0].

So &5 is

tO 1 gly-l=[1 0 -c

But .(,, is known to be real , so cr/co e GF(q).

The only line to be checked is ls-i. We have for it

t1 0 -cr/colu(i)=[g
c,

r - j gl
co

hence thi s I i ne 'is al so real .

,/'of

This completes the proof fon all cases.
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(Note:InChapter3thistheorem.isgeneralisedforh.igher

dimens'ions.)

Theorem 2.g is equivalent to stat'ing that the d'if fene nces of the

al I 'ines a re 'in a cycl 'ic o rder revense
i nd'ices of cons ecutive re

to the differ ences of i ndi ces of cons ecut'i ve real po'ints.

Examp'les of thìs can be seen in the tables for PG(2'4)'

As further illustration, consider l'ists of real points and l'ines,

calculated by computer for PG(2'9)'

Usi ng generat'ing cubi c

*3=ç¡2¡+c,6

overGF(9)wherea.isaprimit'iveelementofGF(9)andisaroot

of

x2+x-1=0 overGF(3)'

Indices of real Points:

01 23461726 58637778 80 (mod 91 )

Indi ces of real I i nes:

0 1 2 3 4 15 1718 32 37 64 78 89 (mod 91)

Here s=4.

Dual maP : lo + Pu.

Di f f erences of i ndi ces , beg'i nnì ng ua p + for po'i nts and at 'Q'o for

l'i nes :

poi nts :

l'ines :

2

1

11 932 5141
1 1 111 2 7

2
T4

11 1

539
111
911 2
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2.7 S'i nger 0rbi ts of Baer-pl anes

Denote the Singer group acting on the points and lines of PG(2,q2)

by

=(O
2

Let B be some Baer-plane in PG(2,q2). Then for alf i, the image

1

(8.)

q"q'

o
2q

Ì

where the elements of the set are d'istinct.

is agaìn a Baer-plane.

The orb'it of the Baer-p'lane B under the acti on of the gnoup E_r ,q'
denoted bV ¡ ^Gl is the set

q'

2G-)

Si nce the order of the Si nger group 'is

,l = q+ + q2 t r,

É- can have no more than q+ + q2 + 1 distinct images under the

action of i ^, in other words the orbit-length of B- under theq'
action of E . is < qq + qz + L.q'

We jnvestigate cond'itions under which the length of the orbit is

less than q4 + q2 + 1.

Suppose that for some j and k where

0<i<k<q4+q2

{ot
q

q

(7.1)oi (B-) = oo (B-) .
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(note: here 'it is understood that the Singer-grouP ìs EOz, so

the subscri Pt can be om'itted. )

The equaìity (7.1) means that each sìde nepresents the same set of

poì nts, differentìY ordened.

It follows immediately that for all m

+m k+m
o (B-) = o (E) and so for s = k-i

Õ

where (7.2)

0<g<q4+q2+I

Denote by i the I east val ue of ,g sati sfy'ing (7 .2). It fol I ows

that 'i js a divisor of q4 + q2 + 1.

Denote by B-i the transform oi (B-). Then by (7 -2) tr: = E- So it

follows that for all Pr e B-, Pr+i e E and hence the set

{pr+rilk integen} 'is r'nE.

Suppose that the above set has n distinct points. Then

Pr+n'i = Pr (7'3)

It follows that n'i is a multìp'le of q4 + qz + 1, and since i

d'iv'ides qa + q2 + 1, it fol lows that

ni=q++qz+! (7.4)

since (7.3) holds for al'l points pn E E, it follows that B- is

partitioned ìnto cycles of points, each cycìe of ìength n. Thus n

is a divisor of q2 + q + 1, the number of poìnts in B-.

J

9,

B-(B)
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Write
q2+q+1

n=
d

Then

(qz+q+1)i = d(qa+q2+1) = d(qz+q+1)(q2-q+1)

Hen ce

i = d(q2-q+1). (7.5)

Investigate first the case when d=1. Then n = qz + q + 1 and

i = g2 - q + 1.

In th'is case the transformation oi causes a shift of q2 - q + 1

in the S.inger index of each of the qz + q + 1 points of B. It

follows that the indices of the points of B- are conqruent

mod(q z_q+l ) .

It remains to be shown that such a set of points B- represents

.indeed a Baer-pì ane. Thi s w'il I be stated and proved 'in the fol l owi ng

theo rem.

Theorem 2.10 (cf. also [36])

For each Singer orde¡ing of the points of PG(2,q2) the poìnts which

have S.ingen indjces 'in the same residue class modulo (q2-q+1),

form a Baer-pìane of PG(2,q2). It follows that the points of

pG(2,q2) can be partit'ioned into q2 - q + 1d'isjoint Baer-planes.

P roof

Notati on

In the fo]1owìng, pojnts wilì be simpìy denoted and referred !o by

their Sìnger indices. CorrespondinslJ, elements of the set of

congruency c'lasses modulo q4 + q2 + 1 will be sometimes called

"points".
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Recal I that the S'ing er jnd'ices of the points of any ìine in PG(2,q2)

form a pe nfect difference set modulo (q++q2+t). The terms "points

of a l i ne" or ',el ements of a d'if ference set" wi l l be used

alternatjve'lY.

Choose any 'ìine of reference L 'in PG(2,q2) . Then for anv subset S

of the points of PG(2,q?), a subset A of the points of the line

can be chosen such that each point of S is unique'ly represented as

a diffenence of two elements of Â. If in part'icular, S is chosen

to be the set of Poi nts bel ongi ng to residue class 0 mod(q2-q+1)

then

g = {r< (qz-q+r ) }

and the correspondìng subset of d'ifferences, 
^ 

has the foììowing

propenty:

for each k modlqz+q+l)

k(q2-q+1) = 6i - ô¡ (mod qa+q+l)

ôi, ô¡ e À

(7.6)

and thi s representati on ì s un'ique.

Let ôi = rj(mo¿ q2-q+1) for each point ôi e t'.

Then

ôi = (qz-q+1)di + ri (mod qa+q2+1) (7.7)

I^le then obtai n for the Points of the subset S, bY (7.6)

k(q2-q+1) = (q2-q+l)(di-dj) + ri-rj mod(q4+q2+1) (i.8)

Since qr++q2+1 = (q2+q+1)(q2-q+1), it follows from (7.8) that
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ri-rj = 0 mod(q2-q+1)

for each pai r (oj,ôj ) satisfyìng (7.6).
Ì (7.e)

Furthermone, (Z.A) can now be s'impììfied to

k = dj - dj mod(q2+q+1)

s'i nce (q 2-q+1 ) and (q z+q+1 ) a re cop ri me.

The set lo = {di} marks those values of di as defjned in (7.7)

which cornespond to the 6i values in the subset A.

Since the nepresentat'ion (7.6) is un'ique for each point of S, and

by (7.e)

ôi - ôj = (q2-q+l)(d1-a¡)

ìt follows that (7.10) gìves unique representat'ion for each k,

where di,dj t Ao.

Thus A 'ls a erfect difference set mod +1 and so

lool=l^l=q+l

(7 .10 )

and all elements of a are conqruent modulo q2 -q + 1.

The I'ine .Q, has q2+1 poi nts. Those whi ch do not beì ong to a must

beì ong pa'i rwi se to di f ferent congruency c'lasses (mod q2-q+1) s'ince

thei n paì rwi se d'if ferences determi ne po'ints bel ongi ng to PG(2,q2 )\ S.

Hence each congruency class mod(q2-q+1) is repnesented by the

points of .e,. Those be'longìng to Â, a'll represent the same c'lass,

while each of the nemaining poìnts belongs to one of the remaining

q2-q cl asses.

Suppose that the line of reference I has q+l points belonging to

class r (mod q2-q+1). Thus a shift by r nesults jn a line with q+1
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l'

I

tpoints ìn the 0 class. There are (qq*qz+I)/ (q2-q+1) = q2+q+1

lines ìn PG(2,q2) which have q+1 po ints in the 0 class

(mod q z-q+1). Denote the set of lines w'ith this property by fo.

Denote the set of po'ints of PG(2,q2) belonging to the 0 class

(mod q2-q+1) by 90. The numben of points of 9, is also q2 + q + 1'

The ioin of any two points of C o, since

no othen line in PG(2,q2) has mone than one poìnt in the 0 class'

Next it must be shown that the intersection of any two lines of

eo is a point of Co.

Let p , Co. Jo.in P to the nemaining q2 + q poìnts of Co. Each of

these ioins is a line of fo, and each has q points of co, other

than P. since co\{p} has q2 + q points, it foìlows that there are

exacily q + 1lines of the set f0 through P, hence through any

poìnt of co. Let I e fo. Then through each point of r, n co, there

ar^e q lines of ro other than 9.. This accounts for q(q+l) 1ines,

hence all l'ines of fo\.e,. Hence all 'intersections of ¿ with a line

of eo belongs to Co as clajmed.

Thus the po'ints and I'ines bel ongi ng to co and e o respecti vely fonm

a closed configuration of q2 + q + 1 points and lines respectiveìy

and hence determine a Baer-Pìane.

Denote th'is Baer-Plane bY Bo.

A shift ok of the points of ô0, where k * 0 (mod q2-q+1) produces

another Baer-p'lune û¡ with points belongìng to class k (mod q2-q+1).

Hence Ê¡ is d'isioint from Ê0.

Thus we obtain exactl y q2-q+1 Bae r-pì anes, mu tua'l'ìy di t and

Å,
st

ft

2
cove rl n al I the ints in PG 2 Th'i s compl etes the P roof . fl
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Notat'ion

Denote bV Sô' the set of Baer-planes

{Ê0, 0r, .., 6'oz_q}

where Ê'i is the Baer'-pìane the points of which belong to class

ì (mod q2-q+1 ).

Return now to the djscussion of the Sjngen-orbit of a generaì Baen-

pìane. Theorem 2.10 establishes that there exìsts at least one

SÍnger onbjt of length less than q4 + q2 t 1, namely the orbit of

any of the Baer-p'lanes belonging to Sff. This orbit is of length

q2 - q + 1.

The quest'ion arìses naturaììy : are there any other Baer-pìanes

wjth Singer orbits shorter than qa + q2 + 1? The anguments which

follow give rise to the conjecture that excepting Baer-planes

belongìng to the set Sfi, all Baer-pìanes have S'inger-orbits of

maximal ìength = q'+ + q2 + I. However, Theoren 2.II wh'ich summarises

the resu'lts, leaves the conjectune unproved for centain values of q.

Suppose that B is a Baen-p'lane with an orbjt shorter than

qa + q2 + 1. Then by (7.5) the length of jts orbit ìs

i = d(q2-q+1)

where d'is a divjsor of qz + q + 1.

Recall now that B is partitioned into cycìes of length n where

ni =q4+ q2+I and nd=g2+q+1.

The case d = 1, r = q2 + q + 1, i = g2 - q + t has been settled,

while in the caSe when d = g2 + q + 1, n = 1, i = q4 + q2 + 1, the

orbit is of max'imal length.

I

¡,-

i,,

F
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Hence assume that n is a ro er divisor of + 1. Si nce2

q2 + q + 1 is always odd, n must be odd' thus

n > 3.

We di sti ngui sh between two cases :

I

¡

ti,
l,

ll
I
i

I

I

I

(i) n ) 3, (ii) n = 3.

(j) B- contains together with some point r, the poìnts

f*i, ..., r+(n-l)i, whene

i = 0 (mod q2-q+1) bY (7'5)'

ThusB.containsnpoìntsbelongingtotheSamecongruency

class (mod q2-q+1) and thus shares n poìnts with one of the

p'lanes of the set Sfi. By assumpt'ion

n > 4.

Assuming that no three of the common poìnts are collinear,

'it follows that they detenmìne a unique Baer-pìane' and so

E coincides wìth one of the Baer-pìanes of the set Sfi'

If, on the othen hand, the set of n points contains 3

collinear points, then B- and the Baer-p1ane of the set

Sff shane at ìeast q+1 points of a line'

However, n fq + 1 and n É q + 2 since

q2 + q + 1 = q(q+1) + 1 = (q+2)(q-1) + 3

and thus neither q+1 nor q+2 can be dìvisors of q2 + q + 1'

HenceBandtheotherBaer.p.|anesshareawholeslotofq+l

points and at least two mone points and so they coincide'

Thus case (i) leads to contradiction'

J

üi

{[ I

,Þ^
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This case could only occur if 3 div'ides q2 + q + 1,

that ì s

q = l(mod 3).

Then by assumption B shares 3 points with each Baen-pìane

of a subset of Sg, and we may assume that exactly 3 poìnts

of E belong to each subplane of that set, fon the altern-

ative has been covered by the arguments used in (j). So

the points of B- ¡elong to (qz+q+l)/3 dìstìnct congruency

cl asses mod (q2-q+1 ) .

Without loss of generalìty, we may assume that 0 beìongs

to E, for an appropriate Singer shìft can achieve this

si tuati on.

Denote

n=
q4+q2+!

3

q2+q+1
= (q2-q+1 ) 

,

Then B fl B consists of the three Poìnts:
0

0, \, 2rl = -rl .

Fon convenience, we may now index the lines of PG(2,q2)

by beginning w'ith the oin of 0 and , and marking 'it by

t o. Hence the I ine .tn goes thnough n and 2n (or n, -n),

while !-n is the jo'in of -n and 0.

Funthermore, if i, i+n, i-n is anothen point-trip'le of E-,

shared with B¡, the lines (i,i+n), (i+n,i-n) and (i-n'i)

have Singen ìndices i, i+n, j-¡ respectively, so by this

'indexi ng the same set of i nd'ices determ'i nes the poi nts and

I i nes of B'.
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The line ro has q+l poìnts ofB-,0 and ¡ being two of them.

Let v be one poi nt of B- n ro

dìffenent from 0 and n. Let

lu be the l'ine ioi ni ng 0 and

v+n. Then r¡ beìongs to E-,

where u belongs to a congruency 
Ô

-**l

rÀ

-u

-u+n

-u-n

v-u

v-utn

v-u-n

0

-n

u+"1

v-u+n

v-u-n

v-u

2v-u+n

2v -u -n

2v -u

v+n

v-n

V

"LN
?

class (mod q2-q+1) djfferent from 0 on v, s'ince it nepresents a

ìine joinìng two points of different classes, (i.e. two points

'lying in diffenent p'lanes of the set S$, so the line u contains

two points u and u+n different from 0 and v+n, and belongjng to E.

We can now list successively some points and lines of B-, beginning

with the'lines 0, rìr -rìr Vr v*n, V-r, u' u+n' u-n. 0n each line

we can list 5 po'ints in terms of n, u and v, since the line 0 has

the poìnts 0-u, v+n-tl ìn addit'ion to 0, n, and v, and the

conresponding points on these other lines are obtained by Singen

shi fts. Tabul at'ing these, we have:

Li ne Poi nts

0 0

n

v+n V-n

v v+n

u u+n

V

v+n

v-n

2v

2v+n

2v-n

v+u

v+u+n

v+u-n

n

-n

-n

0

n

v

u

-n

v+n

v-n

u*n

u-n

v-n v

u+n u-n n

u-n u

Not alì points ljsted above are known to belong to B. However, v-u

is the intersection of the lines v and -n, hence it belongs to B-'
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together with u-v+n and u-v-n and these points are in a class

d'if f erent f rom n and v, bei ng ì ntersect'ions of I i nes bel ongi ng to

di fferent cl asses. A further I i stj ng then g'i ves

Li ne Poi nts

v-u

v-u+n

v-u-n

v-u

v-u+n

v-u-n

v-u+n

v-u- n

v-u

2v -u

2v-u+n

2v-u-n

v-2u

v-2u+n

v-2u-n

2v-Zu+n

2v-Zu-n

2v -2u

It can be seen that 2v-u is the ìntersect'ion of the lines v-u and

V-trsothepo'ints2v-t),2v-u+n,2v-u-nandtheconresponding

I i nes gì ve new trì P'les.

We cont'inue bY
.induct j on and show that the po'ints (and l'ines )

k(v-u) and (k+t)v-ku ane in E:

Assume that kv-ku and kv-(k-l)u belong to B-. since the ljne 0

contains v, and v-u+n,the'line kv-ku conta'ins (k+t)v-ku, and the

line kv-(k-1)u-n also conta'ins (k+l)v-ku. Hence the trip'le defined

by (k+t)v-ku js in E-. A shift from -u on the line 0 to the line

(r+r)v-kushowsthat(k+t)v-(k+t)uisonthe].ine(k+l)v-ku,while

a shift of kv-ku-n from v-u+¡ on the line 0 shows that (k+1)v-(k+l)u

'is al so on the l'ine kv-ku-n and so 'is the 'intersecti on of two

I i nes of B-. Thi s compl etes the i nduct'ion '

Forcomp.|etìngtheproof,werestrictourselvestothecasewhen

O2 - q + 1 is a pr'ìme number. (Th'is ìs true when q = 1 (mod 3)

and q = 4,7, 13, !6,25 but not true when I = 19' 31') tn this

case the set k(u-v), where u = 0' 1' "' 92 - q gives a full

set of the residue crasses mod (q2-q+1). so B- has points 'in all

the Baer-p'lanes be'long'ing to Si. This contradicts the original

assumption. This argument does not work in itself when O2 - q + 1

jsnotaprime.Tocrosethegap,itisnecessarytoprovesome
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further conjectures. It'is easy to show that u-v takes at least

(q+3)/2 different values when choosing dìfferent points for v on the

line 0 where the points u-v+n are on the line 0. So it is a

natural conjecture that at least one of these poìnts is coprime to

q2 -q + 1. Having failed howeven to prove thìs conjecture, the

theorem can be stated only in a restricted form.

Theorem 2.11

The orbit of a Baer'-pìane unden the action of the Sìnger group

Eq, is of ìength d(q2-q+1), where d is a divisor of q2+q+1.

If the Sìngen indices of the points of B belong to the same nesidue

class mod(q'-q*l), then d=l. Otherwise, d = qz + q + 1, hence the

orbit length is qa + q 2 + I, pnovìded that q ¿ 1 (mod 3), or

q = 1 (mod 3), but q 2 - a + 1 is a prime number.

In the cases when the theorem is valid the Baer-p'lanes may be

divided into classes of planes belonging to the same orbìt. The

number of orbits of length qa + q2 +1 (if q 1 1 mod 3, or q = 1

(mod 3)) but q2 - q + 1 is a pr"'ime is

N' = (N-(q2-q+t¡7(q++qz+1)

whe re

N = (q2-q+1 )q3 (qz+r ) (q+l )

is the total numben of Baer-planes of ttqz.

Then N' = (qa*q2-L), and so the total numben of Singer orbits is

q4+q2=q(q3+t).
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2.8 0n Col I i neati ons Fi xi n q One Baer-pl ane

Denote again by Bo the real Baer-plane in PG(2,q2). This tìme a

Sìnger ordening ìs given to Bo, by app'ly'ing Singer's theonem to

pG(2,q), the coeffjcients of the generating cub'ic and entries of

the Si nger matri x be'ing eì ements of GF (q ).

l)enote the Singer grouP bY

3q = (oO).

The points of Bo are successively'indexed from 0 to q2 + q (mod

qz+q+l). The components of the vectors in BO are elements of

GF(q). The proiective p'lane PG(2,q2) ìs constructed as an extension

ofB 0'

Denote by

CIr dZ, ...t *q2-q

the elements of GF(q2)t GF(q).

Theorem 2.12 l24l

Let p, Þ be any two fixed distinct points of the Baer-plane Bo.

Considen the set

Spp = {p * "iEl t=!,2,..,q2-g}

and let EO act on each of its points. Then

(i ) The onb'it of each point corresponding to an element of

Spp is a Baer-p'lane'in PG(2,q2). Denote the orbìt of

p + a1þ by Bi.

(i i ) Forili the Baer-p'lanes Bi , B¡ are dì s joi nt '

(i'ii ) Bo, Br, ..., Bqt-q Partition PG(2,q2).



-r22-

P roof

(i) Denote by e the transformatjon

kkkk
0 : o p + o (p+cr1þ] = o p + cjoÞ (8.1)

(The subscript q 'is omìtted from oq, s'ince al I this

sectìon refens to Eq = <oqr.)

Then o ìs a collineation, which ma ps the poi nts of B to
0

those of i(p+ciþ), where ci is fixed, ci e GF(q2)\eF(q).

To show that 0 is jndeed a collineation, consider an

arbitrany ììne l¡ in Bo. The real points on this line

ane

k kqtp, ..., o P'

repnesented as S'inger images of p. Suppose that the Singer

shift from p to p ìs s, then the points

kq-

oooo,

k_ k _
o uP, o tP,

6

..., 6 p

(i i )

are the real po'ints of the I i ne gr+s.

It follows that the po'int, okip + diokiþ(k = 0,1,..,q) are

col I j near. Hence (8.1 ) represents a col I j neat'i on, and so

the'image of Bo'is agaìn a Baer-p1ane, which has no point

'in common with Bo. Denote the image by Bi.

Assume that ai f "j. Suppose that some point P belongs

to both Baer-planes Bi and B¡. Then o takes P agaìn to a

common point and this is nepeated through the whole cycìe

of ¡. Hence Bi and B¡ coincide. Since each of these Baer-

pìanes intersects the real line pþ in one point onìy, it
follows that c'¡ = oj, wh'ich is a contradictjon.
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(ì i i ) To show that each point in pG(2,q2) berongs to one of the
Baer-pì anes Bo, B t, . . . , Bq2_q, ìt suffj ces to count

the number of points in the union of these Baer-pranes.

Since they are disjoint, and each contains qr *q * 1

poi nts, the total number of poi nts i n the uni on .in

(q2-q+1 ¡ lqz+q+1) = qa + q2 +-1 , whi ch .is the number of
poi nts 'in PG(2,q2). n

Notat'ion

Denote by sg the set {gr I i=0,1,..,q2-q}. (This ìs distinct from

the notation used for the partitioning set tg in the previous

secti on. )

R ema rk

The set Sg is defined by the act.ion of eO on the set

{p + 
"iFl ì=1,..,q2-qi

where p, þ are arbitraril v chosen , di st'inct f j xed poi nts of B
0

However, the set Sg is i ndependent of the choice of p and Þ-.

To see this, think finst of the Baer-pìanes generated by choosìng

kop and o
k_

p

instead of p and þ-.

This only gives different

ori gi na'l poi nts gì ven by

Baer-pì anes, remaj n the

startì ng poi nts

ip*"iþÌ, bur the

s ame.

to the orbits of the

or bits, that is the

Next consider the case when p and þ- are repìaced by p,

and on the same line as p and þ-.

and þ-' in Bo
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Then the sets

and

{p + 
"iFl i=I,2,...,q2-q}

are identical, s'ince both represent all the points of the extensìon

of ,e, j nto PG(2,q2). The Baer-pl anes themsel ves are per-muted, but

the set remajns unchanged.

F'inally, gìven any paìr of djstinct points p" and p" in Bo, the

line determined by these two is the fth Singer ìmage of the line

I = pF, for some k. So p" and !-" are Singen images of some pair

p' and þ-' on ¿ and so determine the same set Sg as p' and þ-',

hence the (possibly penmuted) set determined by p and p.

Thus the set S de ends onl on the Sin er orderin ofB

In Section 2.4 it was found that there is a sìmp1e nelation between

the number of Baer-pìanes disjoint from a fixed Baer-plane and

Â0 = IPGL(3,q)1, the order of the collineation group fìxing a Baer-

pl ane. In the fol ì owì ng thì s rel atj on wi I I be i nterpr^eted.

Let p e PGL(3,q), hence p is a coll'ineation fixing the Baer-p'lane

80. Then p penmutes the points and lines of Bo, hence permutes

the extended lìnes, lines of PG(2,q2), (be'longìng to Bo). In

genenal, g leaves only Bo fixed, whìle it transforms the Baer-

planes of the set Sg into other Baer-pìanes, still mutually disjoint

and disioint fnom Bo.

Two quest'ions an'ise:

(i) which collineations in PG(3,q) (if any) fix each Bi e Sg,

(ii) which collineations (ìf any) fix the set Sg, whiìe per-

muting amongst themselves the Baen-p'lanes belonging to Sg?

{p + ojF' i=!,2,...,q2-q}
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collineations of type (i) can be found immediateìy: all transfonm-

ati ons be'long'ing to Eq = (oq> cause a mer.e sh j ft of the

points and ljnes of Bo, thus shifting points on the extensions of
the ljnes into positions within their own singer. onbits, thus

leaving the Baer-planes Bi e Sg unaìtened.

conversely, suppose that Bo ìs gìven a singer-ordering and 0 is a

transformation which leaves Bo and a1ì Baer-p'lanes belonging to sg

unal tened.

Let Bi e sB. without loss of generality it can be represented as

j
{oo(no * oipr)}

i " {0,1,.. ,q2+q(mod qz+q+l ) }

and

a.i e GF(q2)rer1q¡.

The action of e on a genenal point

Pj+"iPj+1tBi
'ls

0 : Pj + oiPj*1 * pk + ajpk+l

al so

o : P¡+1 + aipj+z + p¿ + dipt+l

where k, r e {0,1,..,q2+q (mod(qz+q+l)), since the images of the

two successíve points of B¡ are still ìn Bi.

Then e(p¡) = p¡ and e(pj+t) = pk+l = pL, hence

L = k + 1 (mod q2+q+1).
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Thus ìf j = 0 and e(po) = p* then e(pr) = Pm+1 and generaììy

e(p¡)=Pm+j. So0e3q.

Hence the onl homo ra 'ies of B wh'ich I eave Bi e Sg unaì tered (for

all i in the range) are those which belonq to the S 'inqer qrouD

s
S.ince any homography can be represented as a product of a

transformation belonging to lq and one which leaves a point

fixed, it suffices now to find homographìes which leave one poìnt

of BO, Sây p0, fixed and leave the set Sg unaltered, wh'ile penmuting

the Baer-pìanes within the set.

Refer agaìn to a given Singer-ondering of Bo, having generating

cubi c

x3=drx2+drx+dO (D)

over GF(q), wìth associated Singer matrix M.

Sìnce the cubjc (D) is irreducible over GF(q), its thnee roots

belong to GF(q3)\GF(q) and ane the conjugate elements:

2qq
dr c ¡ c

The S'inger ordering of Bo ìs achìeved by mappìng the successive

powers of one of the roots of D onto the vectons nepresentìng the

poìnts of Bo. Any one of the three roots of (D) can be used

equivalent'ly.

Fix for the moment one of the roots a of D and regand the vectons

representing the points

Po' Pq' P2q'
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These ane associated with

co, aQ, ("9)2

since cQ is also a noot of (D), the singer tnansformation taking
jq (i+1 )qcr tO a

Mwi
2q

e

th respect to new fundamental pointi associated w'ith c0 . c9.

A similar s'ituation holds for. the tr.ansformation

2 (i+1 )q2+ct for a1ì j (mod q2+q+1).

Consider now the followìng permutations of the points of Bo:

for any j (mod q2+q+1), has the same Singer matrix

Jq
c

r:Pj*Pqj

,2=r'r.p¡rpq2j
j=0,1 ,. . ,q2+Q (mod qz+q+t )

(8.2)

(Note that po is fixed by r.)

It fol I ows f rom the consì der.atìons above that the group (t) of

onder 3, is a subgroup of the homography-group of pG(2,q), since

lines p¡, p¡+l, go to lines p¡q, p(j+1)q, ... for all j
(mod q2+q+1 ).

Let T and T2 = T-1 be the matrices associated with t and 12.

the matrices TMT-I and T2MT-2 = T-1¡4¡ are the transformatìon-

matnices which take pjq to p(j+1¡O and pjqz to p(j+1)q2 res-

pectively for a1l j (mod q2q+1).

Then

Converse'ly, suppose that a homogr.aphy p'in PG(2,q) wìth the

assoc'iated matrix R'is such that RMR-I tuk.r p¡. to p(j+1)r for

some fixed r and all j (mod q2+q+1).

The matrix RMR-1 has the same characteristic equation and roots as

as M, hence the only values possìble for r are 1, g, g2.
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l^le have come now to

Lemna 2.13

Let the points of PG(Z,q) be ordered by the Singer group

3 = (o).

Let p be a homography in pG(z,q) such that for some fixed r and

al I j (mod q2+q+1 )

pop-1(P¡¡) = p(j*t).

n=1orqorq2.
If in addition p leaves p0 fixed, then p is the identity,
or the transformation t at rz nespectively, where r is

defi ned i n (8.2 ).

(8.3 )

Then

(i )

(i i ¡

Proof of (ii).
Let r = q. Then fr.om (8.3) ooo-1(n¡q) = p(j+1¡O for aìt j
(mod q2+q+1). Let j = 6. Then pp' = p0, hence o-lpo = po and so

poPo=Pq

or

P Pr=Pq.

By inductioh on j we obtain p pj = pjq as claimed, so p = r. The

othen cases go simi]ar'ly. l^lhen r = 1, p is the identity, and when

l=q2rg=T2.

Let B¡ e sg, hence Bi is a Baer-pìane generated by the action of

the group 3q on a point on the extension of to = pop, into
PG(2,q2). Let this. poinr be
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aiPr

whene c.¡ e GF(C2)ter1q¡.

Investigate next the act'ion of t (defined by (8.2) on Bi.

A genera'l po'int of Bi js

oklo(i)¡ P¡ +

p(i) = po +

Hence by (8.2)

t(okp(i ) ¡ pkq + ai Pkq+q

oi Pk+l'

P5 + c¡P5+1

(8.4 )

while

r(p(i )¡ Po * oiPq (8.5 )

Thus r takes p(i) to a point on the line

PoPq=ßs=PsPs+l

(Note: possibly r, Lo )

Since by (8.5), tlp(i)¡ is on l.r, we may write

r(p(i )¡ (8.6 )

Here c¡ e GF(q2)\Gr(q), since by (8.5) t(p(i )1 Bo.

Furthermore, c¡ É cr.¡, otherwise

is not in

ai pq,

comparing real parts, it follows that p, =

This leads to contradiction, since p, É pq

Ps + aiPs+l = PO *

Po, so Ps+1 pr.
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comparing (8.+¡ and (8.5) it is seen thar r(oklp(i))) is obtained

from r(p(i )) by a Singer-shift of kq, whi'te by (8.6), t(p(i )¡
represents a Singer shift of s from

p J = Po * ojPr.

Hence for all k (mod (qz+q+l)) r( ok (p(i)) repres ents a kq+s

Si nqer-shi ft f rom p(j ).

This means that the transf ormat'ion r tu rns the Singen orbit of
p(i) into the si nger orbit of p (i), hence it permutes the Baer-
planes B; and B; . leavin qthe set Sp unal tered.

Converse'ly , suppose that a homogr-aphy p of Bo which ìeaves po

fixed, fixes also the set sg (while possibly permuting the Baer-

pl anes beì ongi ng to Sg ) .

Denote again p(ì) = po + cip, (oi e GF(q2)\GF(q)). Then

p ok(p(1)¡ = p(pk + c.¡p¡11).

Let p(pt) = pu and p(pt+t) = pv. Then

p ok(p(i )¡ = o, * oiPu. (8.7)

similanly p ok*1(o(i)¡ = p(pk+1 + cip¡12). Let op¡*2 = pw,

then

p ok+110(i )) = pu + oiPw (8.8)

since by assumption p oklp(Í)¡ lies in the same singer onbit of
some point on the extension of.0o into pG(2,q2) fon all values of
k (mod 1qz+q+1)), it foilows f rom (8.7) and (8.8) that

v-u = w-v (for aìl k).
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Thus the Si n r indices of the -transforms of the oi nts of B

fonm an arithmetic pro res s'l on .

It follows from Lemma 2.13 that r = 1, g or q2 (referring to the

notations in Lemma 2.I3) and p = 1, r or 12 (as defined in (9.2)).

The above results can now be summarised in the fo'lìowing.

Theorem 2.14

Let Bo be the reaì Baer-plane in pG(2,q2) and aq - <oq> the

singer group acting on it. This onder-jng ìnduces a partitioning

of PG(2,q2)\80 into a set of disjoint Baer-planes, denoted by Sg.

The set of homograp hi es acti n o and ìeaving Sp invariantonB

is a subgnoup of PGL(3,q). Each element of this subgroup, denoted

by Lg is the pnoduct of an element of the group (r) âfld a Singer

shift:

JlLg = { li=0,1,2, j=0,1,..,q2+qÌÚT
q

whe re

oq : pk + pk+1 and t: pk + pqk for all k (mod q2+q+1).

The order of Lg is

Itel = ÂB = 3(q2+q+1).

Corol I ar'.y

The number of ways in which PG(z,qz) can be part'it'ioned'into

disjoint Baen-planes, one of them being f.ixed (e.g. taking Bo

fon the fixed Baer-p1ane) is

^oNB = -,tlg
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whene Âo = lpGL(3,q) l.

Hence

Ns

q3(q3-1)(q2-1) q3(q-t)2(q+1)

3(q2+q+1 ) 3

compare this result with (4.9) in section 4. This formu.la gives

the number of Baen-planes No, .in pG (Z,qz) di s.ioi nt fnom a fixed
Baer-p'lane (e.9. Br). The companison yieìds the r"esu'rt

No = (q2-q)Ng

!

(8.e )

Each set sg, detenmined by a fixed singer-ondering contains q2-q

Baer-p1anes. since Ng gives the number of partitionings of
PG(2,q2[Bo into disjoint Baer--p'lanes, the re]ation (g.9) leads to
the conclusion that eveny Baer-pìane , dis joint from B belon sto
exa ct I one art'ition of PG 2 2 B into dis oi nt Baer- I anes .

This may now be stated in a more general fonm

Theorem 2.15

(i )

(i i )

If B I and B, ar-e two dì s joi nt Baer-pl anes i n pG (2,q2) ,

thene exists exactìy one set of q2-q+1 mutually disjoint
Baer-pì anes, i ncl udi ng the gi ven Baer-pì anes B, and Br,

which partit'ions PG(Z,qz).

The numben of ways in which pG(z,qz) can be partìtioned

into disjoint Baen-pìanes is

q6(qa-t ) (q2-r )P-

Proof

3

0

(i) Transform B into B
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(i i) Let N be the total number of Baer-planes 'in PG(2,q2),

and No the number of Baer-planes disjoìnt from a fixed

Baer-subplane. Then there are

ways in which a pair of disjoint Baer-planes may be chosen.

By (i) such a pair determines uniquely a partition of

PG(Z,q2) .

0n the other hand, each pantition contains q2-q+1 Baen-

pl anes, hence the number of ways a pai r may be chosen out

of these is

(q2-q+1) (q2-q)
2

So the nubmen of possibìe pantitions is

NNo
p=

(q2-q+l)(q2-q)

Setting for N and No the formulae given in (1.2) and (4.8)

of this chapter, we obtain

q 3 (q 3+1 
) (q 2*1 )qa( q-1 ) 3 (q+l )p=

3(q2-q+1)(q2-q)

which can be simpìified to

q6(q+-1)(q2-t)
P-

3

as claimed.

2.9 The "Si nger wreath " of Baer-p'l anes

(Note: In [28] the name given to Singer wreaths was "S'inger Merry

Go Round". )

In Section 2.2 it has been pnoved that if two Baer-planes shane

g+1 points on a l'ine 0, then they share also q+l lines going

D
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th.ough the same point, which may or may not be a point of .t,.

Converseìy : 'if two Baer-pìanes share q+1 lines jntensecting in
the same point P, then they share aìso q+1 points of some line,
which may or may not contain p.

hle shalì say in this

i nter"secti ng.

situation that the two Baer_p.lanes are stronql v

conf i gunat'ions of strongly 'intersect.ing Baer-pr anes have been

found before. Each pair of Baer-pranes beronging to a homorogy-

or elation-cruster is str-ong1y intersecting. These configurations
are generated by perspectìv.ity groups.

It is found that a Singer group acting on pG (2,q2) generates

another interesting configuration of strongìy intersecting Baer -
p'lanes. This configuration will be called a

Sì nger" wreath

and is descnjbed in the followjng theorem.

Theonem 2.16

The orbit of Bo under the action of the singer- group zq2 = 1oq2>

contai ns a set of q(q+1) Baer_planes strongìy jntersecting 
B

0
which in two different ways

Exampl e

Before provÍng the theorem, we

sketch of results obtajned by

fall into q+1 cl asses. such that

(a) in each crass there ane q Baer-pìanes which share q+1

points of the same line;
(b) in each cìass there a.e q Baer-pìanes which share q+1

lines going through the same point.

illustrate it w.ith a diagrammatjc

a computen sunvey of pG(Z,ZS).
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In th'is case the generating cubic of the Singer gnoup ìs

x3 + x + y = O

whene y is a root of x2 - 2x - 2 - 0 over GF(5).

In the computations 'il I ustrated

by the diagnam, 30 Baer-p'lanes

wene found, such that

(a) they a'lì i ntersect strong'ly Bo,

'in al I the neal poi nts of one

of the fol I owi ng 6 'l'ines:

\

v/
/4,

¿

I

,t

t

I

I

)

I

i

(.

' 3a3

C5o

Ps¿-z

o
tL

t,,,
¿61

2zs¡

9. ," t t" (r")
64t 265' -- t551 586

and in all the real lines through one of the fol'lowing 6

poi nts:

Po, PE5, Proo, P383, Psgz, Poro (P*)

(b) the 30 pìanes fall into 6 classes. Each class has 5 Baer-planes

which share all the real points of one of the l.ines 'in f*.

(c) the 30 Baer-planes fall into 6 classes, 5 Baer-p'lanes in each

cjass, which share all the real lines thnough one of the points

of the set P*.

Some further obsenvat'ions can be made'in thìs particular case:

The Singer ind'ices of the points beìong'ing to Bon 9o in PG(2,25)

unden the given Singen ordering are

0,1, 64, 265,551, 586,

I
tlo'

f;

n

i;

Þ

whjle the lines belonging to the set f* have the same indices.
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The generaì case : It was

is a real point on line t,

the line
0t then pi11

ti PiPi+1

is indeed a neal line.

Moreover. if p e0 NB

Sin r lma s of the neal oints on ¿

Fon consider the point p¡

(cf. Section 2.6) rhat, if pi

is also a real poÍnt, hence

seen before

then al I the real oi nts on ¿ ane ith

e lo fì Bo.

Then p¡

Rema rk :

(i )

o1 pj

(o r g)

f Pi*t + 9 Pi,

Pi+j,

fpr g ps, hence

P.i+j (e.1)

wheref,geGF(q).

So the real poi nts on .{,i are

P'i' Pi+1' (p¡ nBr,e )
0 0

'j

It fol I ows that i f
fines pi pi+1 (pi

the point pj+j

Li, t¡ e

then p2i is a real poìnt.

f*, which is the set of

, then their intersection isro fl Bo)e

(ii) jf pi E lo n Bo'

Note: In (9.1) the Singer transformation is treated as a linear
transformation on a sum. This is justified within the range

considered, but not generaì1y. The singer group <oq> is .identified

with a cyc'lic gr"oup of linear transformations in GL(3,q) only for oi
o

where 0 < i < q2 + q + I (cf. proof of singen's Theonem in the

.1

,{

F

I

I
[.ll
,t

I
ri

)
't'

I

l
I

,1

a
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introductory chapter). The Singer group referred to in (9.1) is

<6q2>, hence her"e the permitted range is 0 < 'i < qa+q2+1.

The transformatìon oi takes Po and P, to p., and pi*1 nespectively.

whene i+l < qa+q2+1. Th'is is so, because i represents a poìnt on

the line lo = pgPr, so pq++qz = P-l cannot be on lo, otherwise

P0, Pr, P, ane colljnear (contradìction)-

Proof of Theoren 2.L6

l
¡
.l

t

i

I

I

1

k
Denote by Bt the transform o 2(Bo). Consider the set

q

[ = {s¡-il¡ * i, Pi, pi e lon Bo} (e.2)

The set W contai ns (q+l)q d'istì nct Baer-pl anes, s'ince thene ane

(q+1)q ordered pairs formed out of the q+1 indices of the real

poi nts on .{,0. Si nce these i ndi ces f orm a perf ect di f f erence set ,

the d'ifferences j-'i ane distinct. It is claimed now that the Baen-

p lanes of the set W form a Sinqer-wreath havin g the propertìes

stated.

Considen the set of Iines

r* = {¿i = p.ipi+tlpi e.t,onBo} (9.3)

and for each 9.i e f*, cons'ider the Si ngen-dua'ì 9.i = Ps-i ,

where s is defined as in Sect'i on 2.6. By the Singer duality

theonem (Theorem 2.9 ) for each .t i e f*, Ps-'i . B 
o.

Define P* = {pr-il¿i r f*} (9.4)

It was shown in the prelìm'inarìes that the transformation oio
q'

Ì
Fr,
'À¡

p I

takes

Si nce

the o

shift

the real slot on g

."i;',.ti ) = r¡ (ri e

t^ 
image of the realq'

takes the neal slot

to the neal slot on r,, where .{,i e f*.__J r

f*), and the real slot on r.i js

slot on L^, it follows that a (i-i)-

on f,i to the real slo!_!Lxi.
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Dually, the bunch of the real lines thr"ough pr, beìonging to Bs, ¡-
l

I

!

I
t
I'
li
L

I

i s taken ¡V r.-'" to the bunch th nou gh p s-i ; the I iq'
p, being dua'ls of the points on to, thei. o-] t.u
duals of the oi, ,.unrforms of the poìnts on [0,q'
was shown that the ot^ t.unrform of the real slotq'
real, so is its dual, the o-l t.unrform of the req' j-ps. It follows that 'if ps-i, ps_j E P*, then gO,

nes through

nsfonms ane

and since 'it

on lo, is again

al bunch through
i tuk", the real

bunch through pç-¡ to the real bunch thnough ps_.¡ .

Let Wi and WJ be subsets of W, such that

Wi = {Bj-j li I i, p.i, pj e lo rìBo and i is fixed}

¡J = {Bj-ili I i, Pi, P¡ e.Q'orlBo and j ìs fixed}

Then al I the Baer- I anes bel on 1n to WJ share the sl ot .t

and all the Baer-planes belon qi nq to l,lJ share the bunch of real

B
0

I 'i nes th rouqh pq_ i.

In the first case,.Bj-i = olltro, and the 'line r,¡ be'longs to

it, si nce tj = oJ-t ti , whene ti . Bo. Moreover, it fo'ì'ìows

fnom the pneced'ing that B¡-1 shares wjth B0 a slot of q+1 poÍnts

on the 1ì ne ,t¡.

(Note: the 1ìne.t,¡ beìongs to al'l Baer--planes Bj-k, if [¡.80,
but only ìf l¡, t¡ e f*, can it be ascertained that the slot

.t,¡ n B¡-¡ is real.)

J-1Similarìy, if Bj_.i e Wi, then p5-i = o Ps-j where Ps-j . Bo.

Hence p5-i e B¡_i.

Since ps-i, ps-j e P*, it follows also that the bunch through ps_i

determined by Bo, belongs to B¡-i.
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There are q Baer'-planes belonging to each set wi, wi, and each of
the sets W., and Wi can be chosen i n q+l ways by fi xi ng .i or j
respecti vely.

This completes the proof.

Rema rk

The two sets f*, P* belonging to Bo determine (q+1)2 cìusters, by

choosing the slot from one of the lines belonging to f*, together

with a bunch determined by a point belonging to p*. Each of the

q(q+l) Baer-pìanes belonging to w belongs to one of the clusters

together with Bo, but

(i ) no Baen-planes of W belongs to a (ps_i, rj)-cluster
(that 'is a cluster detenmined by a line of r* and its dual).

no two Baer-planes of W belong to the same (ps_i, ¿j)-

cluster (ps-i Ê P*, t¡ e f*).

(ii )

This follows from the fact that the Baer-pìane w¡-i beìongs to the

(ps-i, sj)-cluster detenmined by the bunch and slot in Bs,

determined by the point ps-ì and the ìine r¡ respectively. Here

i f j and each Baer pìane in W'is determined by a different (j,i)-
pair'(ilj).

Theorem 2.16 proves that singen-wreaths of Baer-planes ex.ist in

all PG(2,q2), but at this stage the numben of such structures

remains an open probìem.

To add a furthen example where singer-wreaths ane pnoduced by

cal cul ati ons not needi ng computers, tabr es 1 (a ) and 1 (b ) are

comp'leted with tables 2(a) and 2(b) which exhibit lists of Baer-

planes produced by the action of the respective singer-cyc'les

acting on the neal Baen-pìane.

l
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Referring to tables 1(a) and 1(b) for finding the sets á* and p*

we have the following data:

I. Tabl es I (a ) and 2(a)

Here c, = c, = 1, c3 = a (primitive element of GF(4)).

'ru 
Ì

Duals : P* = {po , pzo, pr|

0' Hence s = 0.

The neal points on to ane po, Pt' p
r+

Hence f* = t,
!'

The values for i and j are 0,1,14, with differences :

1, 14, 13, 20, 7, g.

Hence t^l = {Br, B r,*' B Bzo'

Sops=(0 0 1)=p

13 t B 7'

Cl asses :

(a) sharing q+1 = 3 points of a line

h¡r

ry0

(b) Sharing 3 lines through a point

Common I i ne: X,, with points: p, pz prs

Common line: Lo with po.ints: po pl pru

{10,

Brl

l^l14 = {Brr,Bru} cormon lÍne, lru with points: pz pr+ prs

= {Brs ,Bzo } Common poi nt , p zo with I i nes c. L r, Lzo

l,l 
o

lrl I

iBr ,Be Ì

{t,,tro}

{tr, ,e ,u }

iBT,BBl

Common point: po wi th I i nes ,t, L, Lzo
0

Lzl,l
14 Common point: p, with lines t. Lr+
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II. Tables 1(b) and Z (b)

Herecr=ct=co=o
ps = (1 1 1) = p3, hence s = 3.

Real points on to! po, pr, ps.

So t* = {¿o , L!, ,r}

Duals: P* = {pr, p2, prr}.

Diffenences of set {0, 1, g} are 1, g,7,20,13, 14.

l{ = {Br, Br, Bz, Bzo, Brs, Br+}

Cl asses :

(a) l.ll = {Br, Br4} Common line: r, with points: p, pz pg

l.l8 = {Ar, Br} Common line: r, with points: p8 ps pr6

hlo = {Brr, Bro} Common line:.t,0 with points: p0 pr p8

(b) B 1' BrÌ Common point: p, with lines: Lz Lz Lre

{Bz, Bro Ì Common poi nt: pa w'ith lines: t, L, f,ru

lrl

l,l I

{

I

W, = {Br¡, Br,r} Common point: pre with lines: La Lru L*

All these nesults agree with Tables 2(a) and 2(b).
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Tabl e 2(a)

Generati nq cub'ic : X3 = x2+x+a
Ind'ices of Poi nts pi Indi ces of I i nes !,i

B

Br.

B,

B
4

B-
5

B8

B
9

Pl ane

0

B

6

0

1

2

3

4

5

6

7

8

9

10

11

L2

13

I4

15

16

I7

18

19

20

1

2

3

4

5

6

7

I
9

10

11

I2

13

I4

15

16

L7

18

19

20

0

27
38
49
510
6 11

712
813
914

14

15

16

t7

18

19

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

T7

18

19

20

0

1

2

3

4

5

6

7

8

9

10

11

T2

13

14

20

0

1

2

3

4

5

6

7

I
9

10

11

72

13

74

15

16

t7

18

19

0

1

2

3

4

5

6

7

8

9

10

11

T2

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

I
9

10

11

12

13

L4

15

16

17

18

19

20

0

6

7

I
9

10

11

12

13

T4

15

i6

17

18

19

20

0

1

2

3

4

5

7

8

9

10

11

T2

13

I4

15

16

17

18

19

20

0

1

2

3

4

5

6

20

0

1

2

3

4

5

6

7

8

9

10

11

I2

13

T4

15

16

17

18

19

I

14 19

15 20

160
L7 1

182
193
204
05
16
27
38

B

B
7

B

B

B

B

B

r0

11

L2

r3

10

11

I2

13

14

15

16

L7

18

19

20

0

1

15

16

L7

18

19

20

0

1

2

3

4

5

6

4

5

6

7

I
9

10

11

T2

13

9

10

11

12

13

I4

15

I6

17

18

rt+

B
r5

B
r6

8,,

8,,

B

B

r9

20
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Tabl e 2(b)

Generatinq cubic : x3 = a;(2 + ax*a

I

Pl ane

4

B
5

B

Bo

B

B
2

B,

B,

B,

L7

r8

19

20

0

1

2

3

4

5

6

7

8

9

10

1i

I2

13

74

15

16

T7

18

19

20

8

9

10

11

I2

13

T4

15

16

L7

18

19

20

0

9

10

11

I2

13

74

15

16

17

18

19

20

0

1

10

11

12

13

t4

15

16

L7

18

19

20

0

1

2

9

10

11

12

13

L4

15

16

T7

18

19

20

0

1

2

3

4

5

6

7

10

11

L2

13

14

15

16

L7

18

19

20

0

1

2

3

4

5

6

7

I

16

T7

18

19

20

0

1

2

3

4

5

6

7

I
9

10

11

I2

13

I4

15

0

1

2

3

4

5

6

7

8

9

10

11

I2

13

T4

15

16

L7

18

19

20

Indices of Points pi

I2389
of lines .Q,j

3 815
4 916
51017
61118
7 12 19

81320
914 0

1015 I

11162
L2I7 3

1318 4

L4 19 5

1520 6

1607
17 18
1829
19 310
20 411

0 5L2
1 613

2 714

234
345
456
567
678
789

I ndi ces

T2
23
34
45
56
67
78
89
910

10 11

11 L2

12 13

13 L4

14 15

15 16

16 17

r7 18

18 19

19 20

200
01

16

L7

18

19

20

0

1

2

3

4

5

6

7

I
9

10

i1

T2

13

I4

15

B

6

1l

B,

B-,o

B

8,,

Br,

B r4

B-I5
B

r6

B

B

B

B
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CHAPTER THRTE

ON THE BAER STRUCTURE OF HIGH ER DIMENSIONAL

SPACES 0F SQUARE 0RDER

3.1 Introduction

The'intersection properties of Baer-planes studied Ín chapter 2

can be generaì ised fon higher- dimensions. The .intr.oductor^y

chapter deals with the basics of the projectìve space pG(n,q), of
d'imension n and order q. In thjs chapter^ the space of neference

will be

S = PG(n,q2)

of dimens'ion n > 2 and of an order which is an even power of some

pnime numben. The poìnts of pG(n,q2) are (n+1)_tuples of elements

be]onging to GF(q2). The subset of points, the coordinates of

which are elements of pG(q) (possib'ly multipììed by some common

non-zero element of PG(q2)), determine the subgeometry pG(n,q).

As in the two-d'imensionar case, this subgeometry wiìì be called

the real Baer- s pace Bn , (or more pnecisely in some ìnstances, the

real Baer n-space).

A change of coordinates leads to a djfferent subset of s, wjth a

geometny isomonphic to that of Bo. The coordinates of all the

poi nts of S ane determ'ined by the choi ce of n+2 fundamentaì po.ints:

These senve also as fundamental poìnts of Bo. If any other set of
n+2 points of whìch no n+1 are linearìy dependent, is chosen for
fundamental points, then (in gener-al ) another Baer-space will
result. The group of homographies of pG(n,q2), that is the group
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PGL(n+1,g2), which will be denoted her.e shortìy by f, is trans-

itjve on ordered sets of n+2 points, no n+l linearly dependent, as

aìneady discussed in the introductory chapter. Thus r genenates

a set of homograph'ica] images of Bo, which will be referned to as

Bae r- s paces (Baer n-spaces ) of S and genenaì ìy denoted by B, w.ith

some di stì nguì shi ng subscri pts.

An argument identical to the one used jn the two d.imensional case

(Section 2.1) shows that field-automorphisms of GF(q2) transform

the real Baen-space to itself, and in particular the transformatjon

a * cQ fixes all the points of Bo and determines an involution

of PG(n,q2). Since, by the fundamental theorem of projectìve

geometry, all collineations of PG(n,q2) can be repnesented as

products of a homography and a field automorphism, it follows

that all the Baer-spaces of pG(n,q2) can be r"epresented as homo-

graphical images of Bo.

To determine the number of Baer-spaces in s, we proceed sim.iìarly

to the two-dimensìonal case. Denoting by r the group of homographìes

of S, and by Io the subgroup of f fixing Bo, we have

n+1

lrl = qn(n+1) l (q2i -t )
i=2

while

lrol = qn(n+r)/2
n+1
]I

l=2
(q j-r )

(bV (5.3) in the introductory chapter).

Thus the number of Baer-spaces in S is

Itl n+l¡=-=r(n+I)n/Z n (qi+t)
I tol i=Z

(1.1)
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3.2 Computation resul ts in thr ee di mensions

As a preliminary'investigatìon, the computer survey used ean.rier
for finite Gaìo'is p'ranes was extended to three dimensions. For
g=2,3,4,5, Baer 3_spaces of pG(3,q2) were generated and thus
intersections surveyed- The computations yierded, as expected,
all the configurat'ions of the two dimensionar case risted in
section (2.2), and in addition the foilowing confr.gurations
appeared:

(1) q+3 poìnts, q+l on one ìine; the
'l'ine joining the remaining two

poìnts skew to the first ìine;
4 poi nts, not cop'lanar;

2q+2 poi nts of a pai r of skew

1 i nes;

q2+q+lpointsofapìane

q2 + q + 2 points, q2 + q + 1

in a p'lane.

(2)

(3)

a
,

t

(4)

(5)

a

The information gíven by these resurts is not as complete as in
the two dimensionar case, as in this case a fut description has to
give account of points, ì'ines and planes in a confÍgunatìon. However,
further anarysis of the computer survey arso showed that the number
of pìanes common

common poÌ nts.

to two Baer-spaces is equaì to the number of
(The exact meaning of the tenm. ,,common pìane,, is

gi ven in Jater sections. )

The conjectunes which courd be made on the basis of these resurts
pointed the way to the genenaì fnvestigations in the n dimensional
case ' formi ng the subject of the fol I owi ng sect i ons .

a
e

a

a

a¡ ì
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3.3 Basic properties of n-dime ns jonal Baer-spaces

Notations and defin.ition S

Denote shortìy by S the space of reference pG(n,q2), that is a

projective space of dimensjon n and order q2. It is necessany to
distinguish between various types of p roJ ectj ve sp aces embedded in
s.

(j ) A subspace, usuaììy denoted by S¡, is a projectìve space

included in the space of refenence, havìng the same order
but smallen dimen sl on . For S¡, we have the dimension k

where 0 < k < n and each S¡ is isomorphic to pG(k,q2).

(ii) A Baer-space, as defined in the Introduction has the same

dimension. but diff e rent orden, namel.y q instead of q2.

The Baer-space B js a pr.ojective space isomorphic to
PG(n,q).

(iii) A subspace s¡ of s berongs to the Baer-space B.if s

is a k dimensional sub space of B. Thus a l'ine S c S belon

to B if S, fi B has g+1 points. AI lane S cS belon

nB

s

n

to B has q2 + q + 1 points in Sr 0 B, and so on.

since B is a projective space, ìt suffices to check that
there are k+1 linearìy independent points berong.ing to s¡ n B

for ascentaining that S¡ beìongs to B.

( i v) Defi ni tion

A Baer k-space of S whe re 0 < k < n is a projective space

embedded in s and isomorphic to pG(k,q). wherever there is
no possible ambiguity, a Baer n-space wiìr be cailed simpìy

a Baer-space of S.
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Note: A Baer k-space of s can be thought of altennativeìy as a k-

subspace of some Baer-space, or as a Baer-space of some subspace

S¡ of S.

The enumeration of pro jecti ve subspaces

Theorem (1.1) gives the number of k-dimensional subspaces of the n_

dimensionaì linear space LG(n,q) over- GF(q) as the Gaussian

coeffi ci ent:

(qn-1 ) (qn-1-t ) ... lon-k+1-1 ¡

(q-1 ) (q2-t ) .. (qk-t )

This formula was aìr"eady quoted in the intnoductory chapter,

together with its mod'ification for pr-ojective spaces. It was found

that the number of k-dimensional subspaces o f the n-dimensional

, l,o

ro ecti ve s ace ls e ua I to the number of k +1-dimensional subs aces

of an n+1-dimensional li near space , hence is given by (cf. (4.5)

i n the Introductor"y Chapter")

n+1
t l

k+1
q

n+1
lq

(3.1)

In particulan, the number of poìnts in pG(n,q) is

qn*1-1
t as welì known;

In* =[ lq

q-1

n+1
n+1 q -1

1

the number of lines of pG(n,q) is

(3.2)

the number of hypenplanes, i.e. subspaces of dimension (n-l) is

-n+l - (qn*1-1 ) (qn-r )

¿ (q-1 ) (q2-t )

tro
1 q-1

(3.3 )n

and so on. These formulae will be frequently used in the folìowing.



-r49-

The Baer-plane B is known to be dense in pG(?,q2); each point of
PG(2,q2) lies on a line of B, (on exactìy one, ìf the point is
external) and each line of pG(z,q2) intersects B in 1 or q+1

points. The following two theorems treat the n-dimensional case.

Theorem 3.1

Let P be a point of s, extennal to the Baer-space B. Then p lies
on exactly one line belongìng to B.

P roof

P lies on at most one line of B, since two lines belonging to B

intersect at a point of B. Hence we must show that through each

external poìnt P there exists a line beìonging to B.

Equivaìentìy, we show that s has no other points than the ones on

the I i nes bel ongi ng to B . [^Je use (3 .z) for the numbe r of I .i nes

and we count the poìnts external to B on these, since the extennal

points form disjoint sets. since on each line thene are

(q2*1)-(q+1) = q2 - q externaì points, the total number of externa.l

points on the lines is

lOn+1-q)(qn-r) qlon+1_1)(qn-1)

(q-1 ) (q2-t ) q2-i
(3.4)

0n the other hand, the totar number of poÍnts of s external to B

'ts

O2n+2_, qn+1_1

(q2-q )

,nlt,o n+1z-l lq qz-r q-1
(3.s)

1

simplification shows that the results in (3.4) and (3.5) are the

same.

This completes the proof.
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In the two dimensional case it'is also true that each line of the

projective pìane PG(2,q2) has at least one point common with any

of its Baer'pìanes. If the rine does not belong to the Baer-plane,

then it has exactly 1 point in common with the Baer-p]ane, fon a

I'ine hav'ing 2 poi nts 'in common w'ith the Baer-pl ane has g+1 poi nts

common wjth it and beìongs to it.

In dimensions higher than z, a line does not necessanily ìntersect

a Baer-space B. In fact we can show that through each point

external to B, the number of lines skew to B is

^ 
(qn-1_i ) (qn-2-1 )Ls=Çr--->0whenn>Z (3.6)

q2-r

To prove this, we must find first the numben of lines through an

extennal point P intersecting B. 0f these, exacily one contains

q+1 points of B and so the remaining points of B number

On+1-1 qn-1_1
- (q*t) = q2 ,q-l q-1

and each of these, ioined to p gives a line not belonging to B,

hence containing on'ly one poìnt of B. so the number of lines
through P, not skew to B is

^qn-1-1qz_ + I.
q-1

The total numben of lines through a point can be found by writìng
down the numbers of point-line incidences in pG(n,q2).

since there are n+l
by (3.2), I Z JOz tines each with q2+1 points,

the number of incidences is

2(n+1)_1
q q

2n ''
-L (q 2+r 

)
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while on the oth n+1er hand tne I t f q2 points in pG (n,qz) g.ive

q2(n+l)-1
t,
P q'-1

incidences, where ro is the number of lines thr-ough a poìnt.

Comparing the two express.ions, we obtain

102(n+i )-r ) (q2n_1 )

/

O2 
(n+1 ) -1

q2'r
t, (q 2+t

(qz-r)(q4-r)

q?n-r

q2-r

The result is the same as the number of points in a hyper.plane.

Hence L5 is given by the difference

p

q2n-l qn-1_1

:-ry--r).q'-r q-1

simplifying thìs expression, result (3.6) is obtained.

In the two dimensionar situation the rines of s can be regarded as

hyperpìanes in PG(2,q2). Hence it is appr-opriate to look at the

intersections of the hyperplanes of s and B. Here the situation
i s summanj sed ì n the fol I owi ng theorem.

Theorem 3.2

The intensect'ion of a hyperprane of s with a Baer-space B is either
a Baer (n-1)-space (a hyperplane of B), or a Baer (n_Z)_space.

(Note: This theorem is allied to a result.in [9]: If B is a Baen

s-space, then an s¡-¡ subspace of s, intersects it in a Baer k-space,

where k > s-zt, a result not seen by the author before publishing

this in [2e].)
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P roof

Any poÍnt-pair in the intersection of B and H (the hyperplane of
s) determines a rine in each H and B, hence H n B is a subs pace of

It is readily seen that H n B is never empty. usìng the dimensional
equation for two subspaces S¿ and S5:

d(sa) + d(S6) = d(Sa n S¡) * d(Su + s5¡,

we have for the intersection of a line and a hyperpìane in s either
the line itse'rf, or a point. Hence for each of the rines belonging
to B there is at least one intersection po.int wìth H. since the
numben of points in H is (q2n-1)/(qz-r) and the number of rines
belongins to B'is 11on+1-1)(qn-t))/((q-r)(q2-t)), and the difference

(qn+1-1 ) (qn-r ) q2n-r q (qn-r ) (qn-1-r )

(q-1) (q2-t) q2-t (q-1)(q2-r)
>0

it follows that some po'ints of H are common to at least two lines
of B hence belong to B.

In orden to determine the possible dimensions of the H 0 B spaces,

we use again the incidence_counting technique, countinq jncidences

of points of H with lines of B.

Let x be the number of points and y the number of l.ines of H n B.

Then (q2n-t)/(q2-r) - x points of H do not belong to B and so by

Theorem 3.1 each of these points counts for just one incidence.

Sim'iìarìy 11on+1-1)(qn-r))/((q-r)(q2_r)) _ y ìines of B do not
belong to H and so these lines intersect H just in one point each.

_q.
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For the internar points and rines, (numbering x and y respectivery)
we have (qn-l)/(q-I) 1ìnes of B on each point, and q2 + ! points
of H on each of the y lines.

So the incidence equation becomes

qn-1 qZn_I
x-+(---x) =y(q2+1) +(q-1 qz-r

(qn+l-1 ) (qn-1 )

(q-1)(q2-t)

After some simpìification we have

qn-1-1

q-1
_ 

(qn_1 ) (qn-1-r )

(q-1 ) (q2-t)

- y) (3.7)

(3.8 )

n

H n B is a proper subspace of B, so its dimension d is ress than

Subst'itute

qd*1 -1
X=- andy=

(qd*1-r ) (qd_r )

q-l (q-1 ) (q2-r )

into (3.8) and simplify again to get

(q+1)(qd+1-1)(qn-1-1) - 1qd+1_1)(qd+1_q) = (qn-1)(qn_1-r)
(3.e)

Let t = qd+1. Then (3.g) sìmpì ifies to the quadratìc

t2 - t(qn + qn-l) + q2n-1 = I (3 .10 )

whence t = qn e¡ qn-1, that is

d = n-1 or n-2.

These are the onìy possibre varues for the dimension of H n B.
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Thus ìf a hyperplane of S does not belong to the Baer-space B,

then it shares w'ith it an (n-2)-dimensional subspace of B. In

this sense Theorem (3.2) may be 'interpneted as the dual of Theorem

(3.1). !

In the case of two dimensions, Theorem (3.2) says that jf a l.ine

(a "hyperpìane" in PG(2,q2)) does not belong to a Baer-plane, then

'it intensects it ìn a 0-d'imensional space: a point.

3.4 Intersections of Baer-spaces

The followìng theorem genenalises the result known for Baer-planes

and verjfies the conjecture based on the computationaì results jn

three dimensions.

Note: "Sharing" a subspace S¡ between two Baer-spaces B, and B,

does not necessariìy mean that Br fl Sk = B, fì S¡. It onìy means

that S¡ belongs to both B, and 8., that ìs : both B, n Sk and

B, ¡S¡ are k-dimens'ional subspaces of B, and B, respectìveìy,

which may or may not coincide pointwise.

Theorem 3.3

The number of poìnts of inter.sectìon of two Baer-spaces of S is

equai to the number of hyperplanes shared by them.

P roof

Let B, and B, be the two Baer-spaces considered and let the number

of the poìnts common to them be r where r > 0.

Denote by hi the number of hyperp'ìanes belonging to B. which share

i points with Bo, hi > 0. Then we have the followìng re'lations
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I
1

qn+1-1
hi = 

-
q-1

qn-1
i hi = r-

q-1

(4.1)

(4.2)I
I

where the first relation arises from counting all the hyperplanes

of Br, while the second one counts the incidences of points of

B, n B, with the hyperplanes of Br, noting that thr-ough each point

of B, there are (qn-i)/(q-t) hyperpranes of Br, (the same number

as thene are points in a hyperplane, following fnom the symmetry

relation between the number of points and numben of hyperplanes in
a projecti ve space ).

Next count the incidences of the points of Br\8, and the hyper"p.lanes

of Br. By theorem 3.2 these hype.p'ranes ìntersect B, in an n-1

dÍmensional or n-z dimensional subspace of Br. Assume that out of
the set of hi hyperpìanes, defined as above, x.¡ intersect B, in
one of ìts hyperplanes, whence hi-xi intersect it in an n-Z

dimensional subspace. Thus the number of .inc.idences of this class

of hyperplanes of B, with Br\ B. is

(4.3)

sjnce we ane intenested in subspaces of dimension n-1 through

points external to 8,, fix a point p, not in Brr ârìd denote the

number of hyperplanes through p and beronging to B, bJ hp. A|
these hyperpìanes intersect in .t,o which is the unique 1ìne of B,

through P, because any ìine of B, intersects any hyperpìane of B,

in at least one point and since by assumption ro also goes

through P, 'it is a line of any particular hyperplane of the set

.qn-1 qn-1-1
xj(- - i) + (hi -xi)( - i) = r.iq-1 q-1
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considered. Thus the number of hyperplanes considened 'is the same

as the number of hyperplanes through Lp, a ljne of Br, hence hp

is the same for all points external to B r. Since hO is given by

the number of hyperplanes through a lìne it may be calculated by

the incidence-relation of lines and hyperplanes of Br, whene the

number of lines of B, i, tnlllq, number of hyperplanes i, In*l]q
and the number of lines in a hypenplane is rlr', hence

From (4.4) we have

,1

Þ

I

!

¡

I
I
l

ï,
I

I

I

I

n+1
hp[ 

z ]q
n n+1

t2lqt 
n 

lo

n-1-
1lq

(4.4 )

h

qn-1 -1
--=[

q-1
(4.5 )p

Thus the numben of incidences of points of 82\Br with the hyperp'lanes

of B isI

h I ti,

whene Ii is expressed in (a.3). Using this together with (4.5),

we obtai n the requi red j ncidence equatìon:

I
eB

p
P ,\ B,.

qn-1-1 On+1-1(- - r) =
q-1 q-1

qn-l qn-1_1
I(xi( -'i )+(hi-xj)(' -j))i q-l q-1

(4.6)

The right hand side of (4.6) can be wr-itten as

qn-1 qn-1-1
(

q-l q-l
I
i

I
i

qn-1 -1
hi i + 

-
q-1

) xi I
i

hì,

t 1

't

whene X x is the number of hyperp I anes shared b.y B , and B^.
L-z
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By using (a.1) and (4.2), equat.ion (4.6) becomes

qn-1-1 
. 
qn+1-1 , qn-l qn-1-1 qn+1-t(_ _ r) = xqn-1 _ r + _

q-1 q-1 q-1 q-1 q-1 '

so

Corol I a ry

If two Baer spaces are d'isjoint (pointwÍse), there is no hyperpìane

(of S) beìonging to both

Theorem 3.3 does not say anything about the nature of the intersection
configurations. The two dimensional case and the three dimensional

computer find'ings show that in genenal, the intersections of two

Baer-spaces are not Baer k-spaces (0 < k < n). Intersection

structunes and restrict'ions on the possìble numbers of intersectjon
po'ints of two Baer-spaces is the subject of the following theorems.

The first of these is dinect extension of the two dimensional

resul t.

Theorem 3.4

qn-1 qn-1-1
r(- ¡=¡qn-1q-1 q-1

whencer=xasclaimed.

Let P and Q be points common to the Baer-spaces B

¿ = PQ. Then

(arnr) n (Brnt"¡= {p,Q}

l.)

*,,

n

I
and B . Let

2

or

B, n!,=BznL.

In othen words this theorem means that if two Baen-spaces have

three points of a line common, then they share q+1 poìnts, (called

earlier a slot).
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Proof

As for the two d'imensional case (Theorem 2.3), chang'ing appropriate'ly

the fundamental points to n+l-tupìes and the 3 x 3 homography

matnix to an (n+1) x (n+1) matrìx.

Corol 1 any

A Baer kr-space and a Baer k2-space shane 0, 1, 2, or q+l points

of any gi ven I j ne.

Proof

Denote the two Baer k-spaces by Br(kr) and ør(kz) to indicate

the'ir dimensions. Two Baer n-spaces B

that

(k r ) c and Br(k2) . Br.

Let P and Q be points common to Br(kt) anO ar(kz). The line

¿ = PQ then belongs to Ar(kr), hence to Br, also to Brkz),

hence to B 2'

By Theorem (3.4), either

(i ) s \ {Pr,P2} una Br n B2 are d'isjoint, on

I and B can be chosen such
2

II BB

(ii) r, nB = | nBI 2'

In case (i), ¿\{Pr,Pr} and ar(kt) n er(kz) are disioint, since

G

In case (ii ), we observe that

s (kr) n s (kz)
t2 B n Br'I

al so

x, n Br(kr) ., n B,

-t

,i

'ìþ

)
t'

{

t't
I,
I

TI
I'

I

I

t

I

I



-1 59-

It nar(kr) 1 = lr n Brl = q+1

hence

¿ n Br(kr) - ¿ n 81.

Similarìy I n1z(k2) = ß n B 2'

Since ¿ n B, = L ñ Bz it follows that ¿ fl Br(kr) = f, fì Ar(kz) as

claimed.

3.5 Baen com pl exes

In this section the nature of the set of points which can form an
intensection of two Baer-spaces is invest.Ígated.

Definition

A component of B, n B, is a Baer k-space such that

(1)

(2)

all its points belonq to B

it is maximar in the sense that it is not contained in a

Baer k'-space (k'¡ k), which is also included wìth all
its points in B n 82.I

(A component can be an fsolated point.)

Definition

A subspace s¡ (tnat is a k-dimensionar subspace of s) is said to
bel onq to B . n B^ ifLZ

(1) S¡ belongs to B, and belongs to B, (that is S¡ 0 B, and

S¡ n B, are of dimension k),

(2) if S¡ o 8., = S¡ î Br.

Definition

An extended component of B, fì B, is a subspace s¡ (of dimension k)

n
of S, which contains a Baer k-space, a component of B 82.

I

i-.

I

I

I
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Notes

(1) ABaer k-sP ace ext end s u n'i q ue'ìy into a subspace S¡ of S,

hence a component of B, ft B, determi nes un'iquely an assoc'iated

extended component.

(2) A subspace S¡ is an extended component of B, î Bz,

jf it belongs to B, n B, and'is not contained in a

d'imens'ional subspace of S which also belonSs to B,

(3) If two subspaces of a Baer-space B are skew, then

their extensjons into S, since ìndependent basis

the extensions may be selected out of th.e vectors

to the subspaces of the Baer-space of reference.

Since S¿ belongs to B, n 82, the inter-

section 5¿ = Sd o (8, n Br) is a d-

djmens'ional projective space of onder q.

It can be regarded as a subspace of say

81. Since Q,R e B, n Br, the 'line

that if two sDaces S and S are known to 'intersect and each

belonq s to the Baer-space B, then S nBandS 0 B are

intersect'inq sPaces.

Lemma 3.5

Let S¿ be a d-d'imensiona'l subspace of S bel ong'ing to B, ft B' the

intersectjon of the Baer-planes B, and Br. Let ¿ be a line'inter-

secting sd in P, and containing two points: Q, R d'istjnct from P,

in B, î Br. Then the d+1-dimensiona'ì subspace Sd+1, spanned by Sa

and ¿ belongs to B n B^.t-¿

P roof

ìf and onìy

hì gher

fl Br'

so are

vectors of

beì ong'ing

It fol'lows

R

o
T

P

F

! = QR i s a'l so i n B r. Thus the sPace

P

e



s d+1

i nto S is

If the subspace S¿

contajns two points

of B, n Bz.

Lemma 3.6

-161-

+ .s, is a d+1-dimens'ional

the space S¿11 = t +Sd.

subspace of B r. Its extensjon

It must be shown now that the

=sd

space S¿a1 js contajned in B NBI 2

Let T be a po'int jn 5¿+t\({Q,n} u S¿). We consider first the case

when T I jes on e.. Note (3) above 'impìÍes that P = x n S¿ is in

Sd, hence ìn B, nBz. So the line ¿ has 3 poìnts p, Q, R ìn

B, n Bz, hence the slot r n 5¿+l 'is ìn B, ñ Br. Assume next that

T l's not on.q,. Let Pq, Pp be the'inte¡"sect'ions of QT and RI

respectiveìy wìth S¿. Then the lines QPq and RPp belong to B, as

well as to Br, so thejr jntersectjon T'is 'in Brfl Br. Hence S¿¡1

is included ìn B, fl B, and so the subspace of S, S¿a.¡ belonqs to

B, n}z. !

Corol ì ary

beì ongs

ofB t

toB NB and
2

i ntersects a 'li ne whi ch

not an extended component

I

If two subspaces,

or Sr, then each

S, bel ongr'ng to B

NB 2t
then S¿ is

and S, beìong to Br n 82, and S-, fl S, É ö, St

contajned jn a hÍgher d.imens'ional subspace of

NB

S
1

ls

2

Proof

Let the djmensìons of Sr,

nespecti veìy. Suppose the

S.,f Sr. Let¿ bealjne

Then by Lemma 3.5 the dr+1

'in S, spanned by S r and g

Sjmil arly S, js a subspace

dimensional subspace of S,

poìnt P ìs in

through P ìn Sr.

dimensional

beìongs to B

of some dr+1

çu2 bed anddI 2

s pace

NB
t 2

beì ongi ng to B, NB
2

tr
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Corol 1 ary

If s and S, ane extended components of B, nB2, then they areI

skew to each other.

are mutual ìy skew.

It follows that the components ofB
1

NB
2

are extended components

and S, does not contain

of B. nBr, then the space

spanned by Sr any poi nt of B NB other

P roof

Suppose that s, and s, intersect (properìy). Then by Lemma 3.6

they are subspaces of higher dimensional subspaces be'longing to
B, n9z. Thus s, and s, cannot be extended components of B, n Bz.

Lemma 3.7

If S and st

!

I 2

than those in S andI S
2

Let d, and d, be the dimensjons of s, and s, respectìvery. since

by the conolìary of Lemma 3.6, s, and S, are skew, it follows from

P roof

the dimensjonal (Grassman)

= s, is
equation that the dimension of S + S,

+ +1

Suppose that ther"e exi sts a poi nt p i n S such that
3

PeB NB but P é S I US2'I 2t

Let 5, and -S, be subspaces spanned by S, and p, and S, and p

respectiveìy. The'ir dimens jons are dr*1, and <ir+1. Comparing

these with the dimension of sr, it follows from the dimensional

equation that 5, and s, intersect in a line t. It folìows again

from the dimensional equation appìjed to \, S, and .(, that x,

d d
2I
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intersects S, in a poìnt Q. Similar"ìy.e, jntersects S, in R.

The points Q and R ane d'istinct from p, since p is not ìn s, or
52. Thus ¿ contains three points p, Q, R of B, n Bzand so by

Lemma 3'5, sr+g belongs to B, nBz, hence s, is not an extended

component of B, 0 Br. The same appries to sr. This contracdictjon
concludes the proof.

Lemma 3.8

The space S spanned in S by t components of B, fl B,

point of B, n 82 other than those in the components.

of S is

contai ns no

The d'i men s i on

d +d +
2

where d dz'

+dt+t-lt

rt d¡ are the dimensjons of the components of
B nB 2'

Proof

The case for two components is settìed by Lemma 3.7. we proceed

by induction, assuming that the proposition is varid for t components:

Lt, ..., !,¡ of dimens.ions dr, ..., dt respectiveìy. Let the
(t+t )th .orponent be Ct*1, with d.imension dr*r.

Denote by St the space spanned by Cr, C2,..., Ct and by S¡11 the
space spanned by Cr, C2, ..., Ct, Ct+1.

By the 'i nduct i ve hypothes i s the di mens i on of 51 'ts

d'=dr*dr*...+dt+t-1 (5.1)

I

By the Coroììary of Lemma (3.6), Ct+1 is skew to Cr, .., C1,

it is skew to the space S¡. Hence the d.imension of S¡a1 is

hence
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d = d' + dt+l + 1

suppose now that there exists a point p .in s¡11 such that

(5.2)

PeB îBz'I but P é c ru C, u.. uCt+l.

Since P and C¡11 ane both in S¡11, they span a subspace S of
St+1, the dimension of whjch is

ã-=dt*l+1
(s.3)

Apply the dimensionar equation to the subspaces s and s¡ of s¡11.
It follows from (s.2) and (5.3) that s¡ and s intersect in exactìy
one point : Q.

Since C

that
t, C2,..., C¡ ar-e subpsaces of B, and of B'it follows

S¡ = C, * C, * ... + Ct

is an extended subspace of each B and B z'I

Similarly, S = p + Ct+1 is an extended subspace of each B.and B- t-'- -2'

since 5 and s¡ ane intersecting spaces, it foììows (Note 3) that
their restrictions to B, arso intersect. since Q is the onry po.int
of intersection of 5 and s¡, it foilows that Q , Br. Simìrarìy
Q t Bz.

Hence Q is in B

Q is a point of s¡, which by the inductive hypothesis contains no

point of B, fì B, other than those in one of components. Hence

Q e Ci, (i e {L,2,..,t}).

82.n
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However, by Lemma 3.7, the space S, spanned by two components (p
and S1¡1) does not contain any point of B, fl B, other than p or a

point of s¡a1. so Q cannot berong to s, since it is not in st+1
(skew to si) and it is different from p, since by the inductive
hypothesis s1 cannot contain p. This contrad.iction proves the
first part of Lemma 3.g. The dimension of s¿11 ìs now by (5.1)
and (5.2)

d = d' + dt+1 * 1 = d, * d, + ... + dt +dt+1 + t

This completes the proof.

Definition

A Baer com lex denoted by the symbol

'is a col lect'ion of t Baer ki -spaces (i=1,..,t) of dimensions d L, d2,
...' d¿ respectiveìy in pG(n,q2), pairwise skew, and such that the
span in PG(n,q2) of any subset of the comp]ex contains no po.ints
of the comprementary set of the compìex. A Baen k-space

(k=-1,0,1,..,n) can be regarded as a Baer compìex, of singìeton
type. The case k = -r representing the nurì-space ìs incruded.

Lemmas 3.5 to 3.8 can now be summanised:

Theonem 3.9

Two Baer n-spaces intersect in a Baer complex.

Corol I ary

c{¿r¿r.. .0, }

The intersection of a Baen k

compì ex.
t-space and a Baer kr-space is a Baer
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Proof of Corolla ry

By the cor-ollary of Theorem 3.4, the existence of three collinear
points on the intensection of a Baer kr-space and a Baer kr-space
impì'ies that the Baen k -s ace and the Baer k -s ace share a slot
of q+1 points. Keeping this in mind, ail the arguments used in
the proofs of Lemmas 3.5 to 3.g, reading to Theorem 3.9, are varid
for the intersection of a Baen kr_space and a Baer k2-space. E!

The íntensection configurations of Baer p'ranes in chapter z, and

the computer resurts for 3 dimensions, r.isted in the beginning of
this chapter provide sjmple examples of Baer_complexes.

In the next section, Baer-complexes wìll be given further attention.
Before that, however, the possibre numbers of points beìonging to
the intersection of two Baer-spaces wìrì be determined. By Theorem

3.3, these numbens a'rso give the possibre number of hyperpranes
beìonging to the intersection. Fon obtaining an upper. bound for
the number of points in the intersection we need the foììowing
I emma.

Lemma 3.10

Let q and m be integers greater than 1 and the set
a nontriv'ial partition of m, i.e.

{., , îrt.., rkÌ

+ ... * l"k -- m

whenel<r <r2 ... < r¡ and k > 1. Then

l" 'z *I

k

i
ni

q <qm
1 1

The inequality is strict except for the case

q=m--2

(5.4 )
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f^lhen m = Z, the on'ly non_trivial partition is

1,z

[^le proceed by induction, assuming that (5.4) is va]id for a.il

Proof

In this case

r t

2r;
)q

i=1

k

¡

kr;
= qll + I q '.

i=Z

k

Iq
i=1

( rì, since a., t 1.
?

k

I1

k ri
Fl

¿q
i=?

kri
Iq '

i=1

qt, * qn = qrrll * qn-rr) . qtrqn-rr+l = qrì*l

whenq>2

whenq=2

<q2

2

m < n.

Let

ri = n+1.

Then

ri

Here

ri=n*1-r
I

By the inductive hypothesis

<qn

and so

(qrr+qn

where0<n-r , a n. l^le have

2ql
q

1'l

forallq>1.
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k
Thusforall q>1 andm>2and .l-.i =m (ri )1, (i=1,..,k))

i=1

q
Krt
)q

i=1
m

Theorem 3.11

Let B, and B, be two Baer n-spaces in pG(n,q2). Let r denote the

number of poi nts common to B and Br. IhenI

1

t

+d

0<r= on-1' +1
q-1

(5.5)
t
I

'¡
1q

'l
1 q-1

where {¿i I ti=1,..,t)} represents a partition of the numben d+l-t
into t summands. Here 0 < d < n.

Proof

Here t denotes the numben of components of the Baer-compìex, which

is the intersection of the two Baen-spaces, whene

dr*dr*...+dt+t-l =d<n

Let d, < d2 < ... < d¡.

Since each component C¿ Ís a Baer di-space, the number of points

in it is

1

-1

q-l '

hence the number of points belonging to the compìex is

d+1

+d
iq

r= q1 :1

1 q-l
t
Ii

To prove the inequality in (5.5), we consider three cases first.
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The components are a hyperplane Bn_1 of B, and a point p

not belonging to Bn-1. It will be shown later that such

intersections always exist. In this case

on -1r = + + 1,q-I

hence the upper bound of the inequaìity is neached in this
ca se.

t < n + 1.

l,lri te

(ii ) The components are t linearìy independent points where

1+
qn-1

q-1
= qn-l + qn-2 * ... + 1 + 1 > n + l,

sinceq>1andn>1.

In this case the inequa'lity is strict.

(iii ) t = 1. Thus the intensection is a single subspace of
dimension at most n - 1, since we consider the intersection
of two distinct Baer n-spaces. The inequarity is again

st ni ct.

Next deal with the general case when t > 1 and

d¡ = max {¿i li=l,..,t} > 1, also d¿ < n _ 2, as d¡ = n - t has

been settled as case (i).

l,le have to show that under these conditions

t
I

i=1

d.+1
q r -1 qn-l

-'-Îrt

q-l q-1

(ttre inequaìity is strict).
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t^lrite ri = di + 1 (i=1,..,t).
becomes

Then the ìnequaìity to be proved

ni
q < qn

pnovided that ri

l^Jri te

ri
q

<qn+q+t-2.

q +q

d.i*t . n+1 and Z < rt < n-1.

rt

Since q > 2 and t > 1, it suffices to show that

11

It follows from the given conditions that

Iri
)q

i=1

t
I

i =1

t
I

j=1

t-1
r
L'i=1

t-1
I

i =1

t
i

'l1

fit
I

i=1

t
I

t
L
=

(5.6)

rí ri - rt < n + 1 - 2 = n - 1.'l
1

From Lemma 3.10

ri
q { qn-1,

r¿
a'lso q < qn-1 since n¡ < n - 1. So on the r.ight hand side of
(5.6) we have

ri 1"t
q +q

t-1
I

i=1
< 2qn-1 q qn since q > Z.

This completes the proof.

3.6 Baer compl exes basic Properties

Regarding Baen comp'lexes as basic elements in the stnucture of a

finite projective space of squane or-der, this section is assigned
to their closer study.
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The dimension
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d of the Baer complex {dr, dtÌ 'is the d'imension..t

of the space spanned by its components. Thus

d=dr*dr*...*dt+t-1 (6.1)

The fnagmentation t of the comp'lex is the number- of its components.

The class of the compìex .is determined by the set {a

that 'is the set of djmensions of its components.

I .., dt],

Notes

1 The maximal d'imension of a comp'lex js n, the djmension of the

geometry of refenence pG(n,q2). In part.icular a Baen n-space

ì s a compl ex of maxi mal d.imens i on .

2 The maximal fragmentation of a compìex js tmax = n + 1. This

follows jmmediately from (6.1). In thjs case the compìex is
a set of n + 1 linearly independent points.

More generally, the maximal fragmentation of a compìex of

dimensiondisd+1.

3. The dimension of any component of a complex cannot exceed

d + 1 - t.

If two pairs of Baer spaces intensect ìn Baer compìexes of
the same class, their intersection configurations are not

necessariìy isomorphic. As an examp'le, take intersection

configuration 2(i ) and 2(ii ) in secti on z.z. The space of

reference is the projective prane pG(z,qz). Two Baer pìanes

may intersect in a singìe point, hence the class of the inter-
section complex is {o}. But then B, n B, has arso a common

line. The point may or- may not be on the line.

4
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Theorem 3.12

The number of classes of Baer complexes in pG(n,g2) is

n

Tc(n) =1+ I P(¿+t)
d=0

where P(d+1) is the numben of partitions of theintegend+1.

Proof

The dimens'ion of a Baer complex in pG(n,q2) can take any integer.

value in the range [-1,n], whene -1 is the djmension of the null-
space, treated as a Baer complex.

From (6.1) it follows that

d+1= (di+1).
t
I

1 1

The set {dr,..,dt} is fully determined by partitioning the number

d + 1 into a set of t values : {d.i+1}, where di + 1 > 0, (i=1,..,t),
if t is fixed. sjnce the fragmentation t may take any value fnom

1 to d+1 (Note 2), then for the fixed dimension d, the numben of

classes is P(d+t). Thus, summing for aì1 dimens.ions,0 to n, and

then add'ing 1 to count as a singìe crass the empty set Ø, for the

nuìl -space, we obtain Ts(n).

Taking values from tables of partìtion-numbers of .integers lz3f,
numbens of classes of Baer compìexes of projective pìanes pG(n,q2)

up to n=9 ane listed in the fo1ìowing.

Partition numbers

n nP n

7

8
9

10

n

15
22
30
42

1

2
3
5

7

2
3
4
5

P
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Classes of Baer Compìexes

Dimension of PG(n,q2) ¡to. of Classes Cl asses

-1

0

1

2

1

2

4

7

Tiidi¿üT' 
jd¡{;ir

723

0

0 t

ó

{0}

{0 }

{oi
0r0

{r }00{ , Ì

r{?;?J riti r

0'
{0,

419

530
645

757
887

9 r29

The follow'ing two theorems deal wjth relations of Baen complexes

to Baer k-spaces.

It has been established in the prevìous section that a Baer kr-

space and a Baer kr-space 'intersect 'in a Baen-compl ex. General ly,
Baer-complexes inside a Baer n-space, are obtained by splitting up

some subspace of the Baer"-space into a d.irect sum of subspaces.

It is not obvious however that an arb'itrary Baer complex can be

embedded in some Baer space. This will be proved next.

Theorem 3.13

A Baer compìex of dimens'ion

(Note: the embedding ìs not

d can be embedded in a Baer d-space.

unique. )
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Proof

The proof is based on the facts that d + 1 ìndependent poìnts

determjne uniquely a d dimensional subspace s¿ of pG(n,qz), whìle

d + 2 points, not d + 1 of whjch are dependent, determine uniqueìy

a Baer d-space.

For compìexes C{0,..,0} of d + 1 independent points, or C{d} where

the complex is a single Baer space, no proof.is needed. Two

further cases will be considered.

Case (i)

The compì ex i s of type C {d-1 ,0 }.

This means that the complex has two components : a Baer (d-1)-

space and an external point. The dimens.ion of this complex Ís d.

Denote the Baen space by B and the external point by p. From

earlier remarks it follows that the dimension of B can be taken to
be more than 0.

Choose a set A = {Ao, Ar, .., Ad}- B, consisting of d + 1 points,

no d of them dependent. Let X be a point on Aop, differ.ent from Ao

or P. Then x is not in the extens'ion of B jnto s, denoted by sg

and of dimension d - l.

Consjder the set {p, X, Al, .., A¿}. It consists of d + Z poìnts,

not d + 1 of them dependent. To see this, only sets containing p,

x and d-1 points of the set A\{A0} have to be considered. suppose

that X is in a subspace s¡ of pG(n,q2), spanned by p and d-1 points

of A\{Aoi. The dimens'ion of s¡ is d-l, and line px. sx. Then

the poìnt Ao is also in S¡. But Ao together with the d-l poìnts
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chosen out of A\{40} spans Sg. Thus sg c s¡ and since they are of
the same dimension, sg = sx. Then p and x are in s¡ which is a

contradiction. Thus the set

{P} u {x} unr{Ao}

detenmines a unique Baer d-space B'. The line px c 8,. The

subspace of s, spanned by A\{no} u.tongs to B', hence its inter-
section point Ao with PX, is an intennal point of 8,. so B,is a

Baer d-space containing both p and B.

Case (ii)

Let C{dr,..,dt} be the comp'lex considered.

t/e may now assume:

(a) t > 1,

(b) at least one component has dimensìon greater than 0. Let

this be the tth component, the Baer d¡-space: Bt, (of dimension

dt).

(c) C{dr,..,d¡-1} is not a single point.

(If t=2, the alternative is covened in case (j ).)

Proceed by induction on t. Fon t = 1, theorem 3.13 is tr.ivialìy
true. Assume that the complex Cidr,..,dt_tÌ of dimension

d, * .. + dt-1 + t-Z = d' 'is embedded in a Baer d'-space 8,.

Choose sets of d' + 2 and dt * Z points

ff = {Ao, Ar, .., A¿'+t}

and

T = {To, Tr, ..., tor*r}
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in B'and 81 respectiveìy, so that no d'+ 1 points of the set A

and no dt + 1 points of T are dependent.

Let X be a poìnt on AoTo, di fferent from A and T
00

Considen the set

rJ = {x} u A\{Ao} u rr{ro},

containingd' +dt *3= d+Z points. Nod+ 1 oftheseare
I i nearl de endent. This is clear for the set U\{X}. Suppose

next that the set of d + 1 points conta.ins X, all points of
nt{Ao} and aìì but one point of the set T\{T0}. Assume that these

points are dependent and hence they are the points of some d_1-

dimensional space s¿-1 (of order q2). s'ince Ao is ìinearìy
dependent on At{Ao}, 'it is also in s¿-t. Hence the lìne AoX is in

S¿-t and so is To. Thus 56-1 contains all of the set A, ìn
panticulan d' + I l'inearìy independent poìnts of it, and it conta.ins

dt + 1 points of r which ane independent and.independent also of

the points of A. Now d¡ + 1 + d' * 1 = d + 1, hence S¿_1 contains

d + 1 independent points. This is a contradiction. sim.ilar

concl usi on i s reached consi derì ng a set contai n.ing X, aì 1 po.i nts

of Tt{To} and aìì but one of A\{Ao}.

Thus the set u determines uniquely a Baer d-space B. It nema.ins

to be shown that B' and B1 ane included in B-.

Let s4 be the space spanned by A\{Ao} and x and sT the sub-space

spanned by T\{T0} and X. Their dimensions ane d'+ 1 and dt * 1

respecti veìy. A0 and ro are i n s4 and s1 respecti ve]y, hence the
'line AoX To . SA n ST. Both S4 and 51 are subspaces belonging to
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the Baer space B, so theilintersection-line Aox To is also in B-,

hence the intersection of A'x r0 and AoAi where Ai e nt{Ao} is

also in E. Thus Ao is in E. The same appììes to To. Thus B-

contains the set A and the set r which determine uniqueìy the Baer-

spaces B' and B¡. So B' qE, in particular C{al,..,dt_t}c E and

81 c B.

Hence B contains the complex C{dr,...,dt}. n

Definítion

A k-d'imensi onal subspace of pG (n,q2 ) ber ongs to a Baen comp'lex i f
k + 1 independent points of the subspace ane in the compìex.

Note: Th'is does not mean that the poi nts of some Baer--space of the

subspace are al I i n the comp'lex.

Theorem 3.14 ( Symmet ry )

The number of j-djmensional subspaces be'longìng to a d-dimensjonal

Baer complex is equa'l to the numben of (d-1-j)-dìmensÍonaì subspaces

be'longing to it.

Proof

It is known that the number of j-dìmensional subspaces of a projective

space of dimension d is equaì to the numben of its (d+l-j)

dimensional subspaces, since

,{

ù

d+1
[j*, ]o to.,lil.,)rq = tl];" = (d-j-1)-dimensional

paces.
numbe n

SU

of
bs

Thus the theorem needs no proof for Baer comp'rexes of type c{d}.
d

Use the symboì M.
J

sì onal subspaces

'in the following to denote the number of .j-djmen-

bel on 'inq to a Bae r d-space.
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Denote by 1,4-Í the number of j-dimensi noal subspaces bel ongi ng to

some gìven Baer compìex of djmens'ion d. Note that while Mj js

f ixed by the val ues of d and j, l',1-S depends on the structure of

the gìven compìex.

Proceed by inductjon on the fragmentation t, splitt'ing the conrplex
t

C{dr,...,dt} of dimension d = .l-¿i + t - 1 into the complex
i=1

t-1
C{dr,...,dt-1} of dìmension d' = .l-di + t - 2 and the Baer-space

i=1
B¡ of dimension d¡, whene t > 2. We assume that the symmetry

relatìon holds for the compìex C{dr,..,dt-t} of dimension d'.

A subspace of djmension j belonging to C{d1,...,d¡} where

-1 < j < d may be spanned by some subspace of dimension i' belonging

to the complex C{dr,...,dt-1} and a subspace of dimension i¡ of

the Baer d¿-space 81.

He re

-1 <'i ' < d' (6.2)

-1 < it < dt (6.3)

i' +ìt = j-l (6.4)

Hence the number of j-dimensìonal subspaces beìonging to

c {dr, .. .,d¡ } ì s

--d - --d' dt
M = ) M .M (6.5)j ' ì'i¡

where 'i ' and j¿ satìsfy (6.2), (6.3) and (6.4). Using the synrmetny

propenty of B¡ and the inductive hypothesis fon C{dr,...,dti we put

_d' _d' d¿ d1
M -M. and M =M. (6.6)j' (d'-l)-i' i¿ (dr-l)-it

in each term of the sum.

¡

li,
l.

',

I
i'

!

I

I

I

È-

*'

#

The inequa'lities (6.2) and (6.3) impìy that
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-1 < (d'-1)-'i ' < d'
and

-1<(dt-l)-ircdr,
for all i' and i¡ respectiveìy in the range.

The dimension of the subspace spanned by a (d'-1)-i' dimensional

subspace belonging to C{d ,...,dt-1} and a (d¡-1)-it dimensional

subspace in B¡ is

(d'-1-i') + (d¡-l-it) + 1 = (d-1)-j (6.7)

The result (6.7) is deduced f nom (6.4). It foilows now from (6.s)

and (6.6) that

-d - -d' 
d¡

M =)M Mj " (d'-1)-i' (d-1)-i

This completes the pnoof.

Theorem 3.15

_d
M
d-j

tr

i

I

The intensection of two Baer complexes is a Baer complex.

P roof

Let C{dr,...,ds} and c'{d1,...,dt} ne tne complexes. Let

c{dr,...,ds} = {Bi, i=1,...,s}

and

c'{di,...,dt} = {Bj, j=1,...,t}

where the component sets {a1i ano {g¡} satisfy the required

condì t'i ons.

Then

c{dr,...,ds} n c'{di,...,dt} = {e1 n njli , {1,..,S},
j . {1,..,t}.

For each ordered pair" (i,j), where i e {1,..,s}, j. {1,..,t}, the

intersection B; n Bj is a Baer complex as shQwn in Section 3.5.

I
¡
I
i¡

¡þ
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The s'ituation js shown on the dìagram.

For convenjence, we wiìl call the

compìexes formed by the 'intersect'ions

of the components Bi of the comPlex

c {dr, . ..,d5 } and B'¡ of the comPl ex

c{d:,...,dt} mìnj-compþxes (forr 1'

j=1,...,s, i=1,..,t). [,le are going to 8r

show that the col'lect'ion of these mi ni -

complexes is agaìn a Baer-compìex.

Let P be a poì nt i n the mi ni -compì .x -9 i fl B' j beì ongì ng to a

component Bp of the mjni-comPlex.

Sìnce Bi fl B'j is a Baen-comp'lex, P cannot be in the span of any

components of Bi n B'j othen than Bp.

The span of components chosen out of the set Bi n B'¡\Bp and

components bel ongi ng to mj nì -compì exes external to Bi fl B' j cannot

include P ejther, for the span of P and components belongìng to

Bi n B'j\Bp beìongs to Bi n B¡, hence cannot conta'in extennal

I

B¿

P

ts
I

l

o'i nts . Cons i der next the span of comoonents bel onq 'inq to mì ni -p

compl exes other than B t^t B'i.

(a) If none of the components 'is inc'ìuded jl Ji, then their sPan

cannot conta j n a po'int of B i. This is so, because C{dr,..,ds}

'is a Baer compìex, hence no point of Bp can beìong to such a

span. The s'ituation is s'imilar if none of the components'is

i ncl uded i n B' J.

(b) Suppose next that some components beìong to mjni-complexes

ìnside Bi , some not ì n B i and the'i r space contai ns P. Thi s
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leads to a contradiction simirar to the one encountered

before, since p together with the components inside Bi

spans a subspace of Bi and so cannot conta.in extennal

components.

(c) The onìy remaining case is that of alì components belonging

to Bi Bi B'j. This however means that no component berongs

to B'¡ and this case was djsmissed in (a).

This completes the proof.

All Baer complexes in

Theonem 3 . 15 i mpì 'i es

complexes of pG(n,q2)

PG(n, q2) ane partial ly ordered by incl usjon.

that the pantial ly or"dered set of Baen

is a sem'i-lattice.

However, it is not generaìry possibre to define a joìn for two

Baer complexes which is itself a Baer compìex. A simpìe counter

exampì e 'is the case of two di sti nct Baer.-pì anes bel ongi ng to the

same subpìane (= pG(2,q2)) of pG(n,q2). Hence the set of Baer

complexes does not fonm a lattice in pG(n,q2). However, ìf the
set is restnicted to complexes included in the same Baer n-space

(or mone generally Baer k-space) of pG(n,q2), then the semi-lattice
defined by the nestricted set possesses a common upper bound 'ìn

the semi-ìattice, hence it js a lattice.

In [25] a uni f ied theory of partiaì ry or-dered r oca'rìy f .inite sets

is established. A variety of comb.inatonial objects fit .into this
scheme, amongst them are integers ondered by magnitude or

divisibiìity, sets ondered by incrusion, ìinean or projective
spaces ondened by incìusion, partitions of integers ondered by

refinement, and so on. The rattice of comp'rexes of pG(n,q) or
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more generalìy the semi-lattice of Baer complexes of pG(n,q2)

combine features of lattices of ro ective s aces and also features

of partitions. A I ater i nvesti gati on shoul d pr.oduce generaì

nesults charactenising these type of sets. The scope of the work

discussed'in the next section is more l.imited, it presents some

enumerations and algorithms.

3.7 Baer complexes : numerical rel ati ons

It has been proved jn section 3.b that Baer-spaces intensect in
Baer complexes. The question arises naturaìly : can any gìven

Baen complex be the intensect'ion of two Baer n-spaces? Also jn

section 2, formulae wer-e given fon numbers of Baer pìanes inter-
secting a given plane in a fixed configuration. The aim is now to
extend such numerical relatjons to spaces of higher dimension.

Before establishing such nelations it is convenient to tabulate

notations for counting numbens of various structures. This is
done in the following list.

I
n

k

n

N

tl

_n1d.,..,drt

Number of Baer k-spaces .in

PG(n,q2) 0<k<n.
Gaussi an bi nomial coeff i ci ent (as
defined in Chapten 1, Formula i.t)
Gaussi an "factoni al " notati on used
hene to denote (q-1 ) (q2:t ).. (qk-t )

Number of part'it j ons of pG(q, k ) i nto
skew subspaces of d.imensions t<r, kr,..,k¡.
Number^of C{d,,..,dt} comp'lexes inPG(n,q2). r

Number of C{d,,..,d¿} complexes in a f .ixed
Baer n-space. ^

II.

III.

IV.

V.

VI.
n

t¿

6
L

d

r q

tkl!(q)

k
Pkr,kr,..,k ( q

t

. ,.. rdIt

1"" ô

I
I exes contai ned

Ì

VII.
,.. rdt

s Number of C {d , ,. .
inafixed ^ C

,-d* ] comp

tô;,.., 6t comp I ex.
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ô6ViII. U !'
d d,..t

I

kIX. 56 d
lt"' t

X. I¿ d

Nn = qn (n+I)/z
n

n+1

k+1
lq

S Number of C{ô,,..
a fixed

.r ô

c {d,
t ] compl exes contai ni ng
,...,dt] compTex

Number of Baer k-spaces containìng a fixed
C{dr,...,dt} complex.

Numben of Baen n-spaces jnter.secting a
fixed Baer n-space in a fixed
eÇ...,dt] comp'tex.

t

lr..t t

Note:

All the notations refer to a fjxed pr"ojective space of reference.

However, in II, III and IV q on q2 must be displayed as a subscript

or van'iab]e, because these may nefen to subspaces (of onder" q2) of

PG(n,q2) or to Baer k-spaces (of onder q).

we begìn by recalìing fnom sect'ion 3.1 the formura (1.1) countìng

the total number of Baer n-spaces. Thjs will be denoted here by

N[, in accordance with Notation I.

So

n+1
]I

i=2
(qi+t ) (7.1)

As seen in section 3, the numben of subspaces of dimension k.in

PG(n,q) is given by

_ (qk*1-1 ) (qk-1 )... (qn-k+l-1 )

(q-1 ) (q2-1 ) .. . (qt+l-1 )

t (7.2)

hence the number of subspaces of dimension k in pG(n,g2) is

g2k+2-7) (q2k_r ).. . (o2n-2k+1_1 ¡

(q2-1 ) (q+-t ).. . 1q2k+2-1 ¡

tlil'o'= (7.3)
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using fonmulae (7.1) and (7.3) together with the fact that a Baer

k-space is embedded in a unique k-subspace of pG(n,q2), we obtain

zNIo*N
n

k

n+ 1

1

k

k

1q2n+2 -1) . . . ( q2n - Zk+Z _1¡

lq

(q2-r) ... (q2k+2-1 )

k+1
I

l=2
qk(k+I) /z (qj*t) (7.4)

The next ajm is to determine f! 1r..¡d as defined by V.r

since each di-dimensional component (.i=1,..,t) deter.mines a unique

di-dimens'ional subspace of pG(n,q2) into which it is embedded, the
finst task is to determine the number of ways in which a d_subspace

of PG(n,q2) can be partìtioned into a set of dr, ..., dt dimens.ional

subspaces where

d'¡ + t - 1,

that i s , the d'imens i on of the compì ex.

The number of subspaces complementary to a given k-d.imensional

subspace wilì be needed for the calculations. In the case of
I i nean spaces, th'is i s gi ven as speci aì case (d ) of rheorern 1 .2 i n

Chapter 1, as

ok(n-k).

using the mod'ification necessary in projective spaces, we have

that the number of subs þaces of PG (n,q compì ement

t(= I
i =1

ary to a subspace

of dimension k is

q(k+t )[(n+1 )-(i+r )] = q(k+r ) (n-k) (7.5)
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l^/e use this reration first to determine the numben of ways in
which a space p(d,q) can be partitioned into two_ spaces of dimensions
d, and d, nespectively whene

d=d *d, + 1I

Settirìg f = 1, when d dr.I f
and f = !/2, when d, = d, gives

ooo,or(q) = rrod]flo q(0,*1) (d-dl).
L

In order to genenarise this resurt for par.titions into a set of t
skew spaces, we use the "factoniar,, notation introduced in III.
The formula fon two components becomes

7.6)

Next we deri ve the generaì partition formula for a d-dimensional
space Sd = pG (d,q ) di v.i ded i nto t spaces ,0, , ,0, ,
dimensions d r, d2, ..., d¡ respectively, where

dr*dr*".+dt*t-1=d.

The result (7.6) wil I be general ised to

,d,(91=t" 
to*tl'(o) 

qdrdz*dL ¿ [dr* i]!(q) ldz+tl!(q)

d [¿+tJ ! (e) e^oor,..or(c) = f l"t

d
P¿

..., sd oft

where
(7.7)

e+= IvL
1<i<j<t

1

d.¡d¡ + (r-1)d -
1

2ft-t) 
(t-z¡

s !s !
I

andf=
2

if si of the component spaces are of the
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same dimension (i=1r2r...).

For deriving (7.1) proceed step by step. Denote by d(1) tfre
dimension of a space compìementing sdr in S¿, and genera.ty by

¿(i) tn. dimension of a space co

s¿(0) = sd). 
ut'or a space comp'lementing sdi in s¿(i-1) (wher.e

For i = 1 to t, we have dli) + di = ¿(i-r)-t, (note that d, = ¿

and the number of comprementary s¿(i) spaces which comp.rement s

(t-t ¡

d. inls¿(i-1) is

q(¿(i-t)-¿i)(di*r)).

l,le obtai n then

d ¿+1_ _d (1 )+rPdr..dt(q) = rt¿-*i:ot"o 
_i'lo

er = l¡l (¿(i-r)-oi )(d,+r).

¿(r-1)+r ett l q
dr+1

wi th

For simpìification we use the factoriaJ notation:

¿(i-t¡*,
di *1

t lq
t¿(i-t)+rl! (q)

Idi+1]! (q)[¿( t-t)-dilr(q)

t¿(i-t)+rl! (q)

Idi+t]! (q)t¿ +tl!(q)'t

whi'le fon e¡ we write in each tenm (i=1,...,t_1)

(dr+1)(o(i-t)-¿i ) = (di+1) (di+t+...+dr+t-1).

A short carcuration brings the formura to the simpìfied form (7.7).
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using the partit'ion formuìa, we can now evaìuate T! dlt.. t
n n+1

¿*tlq2 P
d d
drr..dt

t
l

di
(q2Tdrr..dt t ì

N
'l

1

In+t ¡ ! o2 t
l

di(d1+1) d

2

1

2
'l

i+I
j=1

lqj+1 )

In-d]lO2
t
]I

i=1
[di+1]'qz

(7.8)

These results are used now to fina Slr...dt, the number of Baer
n-spaces containing a given Baer complex CiOr,..,dtÌ.

l^Je count the incidences of Baer n-spaces with c{dr,..,d¡} type
compìexes in two ways. 0n one hand, we have T!
of the gi ven type, each contai ned i n s!, , . . d ;..'lrr:::l:-;:...L' t

n n
S¿Tdr, "d .r.rdrt i nc i dences .t

0n the other hand, each Baer n_sp

and each of these can be partitio
c{dr,",dr} complexes. since the number of Baer n-spaces is Nn, the
number of incidences obtained in this way is 

n

N
n n+1 dt
n d+1

lq P¿
lt.. )d q

P

t
Using (7.8), we can write down the i ncidence equation:

d d

l
N

d

t
T

i=1'1,...0.i]]fio, d1, '., ¿ (qz
t

1

-ltlli,, oÍ.,..0, (q ) (7 .e)



-188-

From (7.9) we calcuìate S!r,..d,.

After. s'impì.i fying, obtai n

n
s

if d < n and

n

dl,..dt = o(d+1)+(d+Z)+..+n (q+1¡t_t
n-d
l

i =1

(qr+t )

S dr r "dt = (q+1¡t-1 jf d = n

The remarkabre feature of this nesurt is that the number of Baer n-
spaces containing a given Baer compìex depends onìy on the dimension
d and the fragmentation t of the compìex.

Let B be a fixed Baer n-space. An argorithm can be given now to
evaJuate successiveìy the number of Baer n_spaces which intensect
B in a fixed Baer compìex. Return to the notations introduced in
the beginning of this sectjon:

T
-6 r ' . . ô,

I"

r""

ô

d d

( 7.10 )

(7.11 )

t hand side

t from

n
ôIdr. ..d, dr "'dt

s T
L U s

t
The summation over the compìexes C{ôr,..,0r} on the righ
of (7'11) refers to at the cornpìexes which are diffenen
ci

(7

dr.....dtÌ. Beginning with In = tl = r, referring to B itself,
'11) is used successiveìy, proceeding fr^om compìexes of higher

djmension and smaller fnagmentation

and greater fragmentat i on .

to those of lower dimension

The calcurations have been carried out in the thnee dimensionaJ
case. To carry out these calculations, vaìues of S!.,..¿ are
found, fon each cl ass of compì exes, usi ng ( 7.10 ) . ru.*t tl. val ues- . ô... ôot U r s are Jisted. These ane found for ead-, r.. dt I I J Ls\r ' lflese ane lound for each {ôr, . . ,6, },



-189-

{dr, ..,dt}-palr by inspection.

using the incidence equation:

These values are checked by

tdr r..d ¡ör "' ô5

t dr " "d¡

n

ô
I

t

( r"eferri ng to notat i ons VI , VI I and VI I I ) .

To fina t!r,..,dt for a g.iven cJass of compìexes, use

,.t

n
td dl"'

¡6r," 6s 
=o, dr " "dt

n

d
laP d ¿ (q )t d+1 lt"¡ t

1n+
t

whene d d'¡ +t
t
¿

1
1

Results for pG(3,q2) are shown i n the fol I owi ng tabl es.

I(1). Values of
d

1t"r d
t

Cl ass
{dr,...,dt} Dimension d S¿ dt

n

l"',

{
0

1

{
0

2,
1,
,0
0

t
0

q+1
q+1

(q+1)2
1

q q+
q q+1

1

3

2

3

3

3

Ì
0

0

u space 0

2+
1

q q q q
3

3
3
3

3
3

2
2

1

q
5

I q+t
lq+t
q+10

q "+1
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ôT(2)¿ Values of U lt" s
d ¡.. rd¡

ô

{dr,..,d.}

2

1

{ôr,..., orÌ
ï

contai ni n
idr,..,d.

ô
U lt.. t ô,

d , .. rd r
T

1

3

q+

Ì

{t ,o,o }

{o, o,o ,o }

2{ 0

{r,r} 1

Ì{

0{r

1

2
I

1

4
3

6

1

q

1

q(q
q'
q3
I

I
q(
3q
3o
qd
1

3

1
2

l

{o,o,o}

1)2¡

321
)

1

Ì{ 1

q3 (q+1 )
q+
r/2 qs (q+t )
o+1

d2(q+r )

3{ Ì

3{ Ì

rilii

{s}
{ä,ó}

,riii¡,

rjlJ 
'r{l¿iJ'

iö,9 'Q,ó Ì

rliJ r

rilJ r

'liiji'
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1t...,6{dr,..,d.}
¡ôr"" ôs

dr""d¡
orÌ contai ni n

{dr,-.,d.

00 Ì{

)
)

)

1

q3(q2+q
q4(q2+q

)

(q+3)

0 Ì{

) (q+3)
) (q+1 )

+2)
+1)
I l+q+1
q'+q+1

+1)(q+2)
q2+q+1 ) (q+1 )

1)

0

r 
jlJr

.{t,rl
t 1,0,0 l

{ 0,0 ,0,ó }
{zI

.{i,ó}
to¡!io ]

rjlJ r

.{t,tl
- 1i ,0,0 |
to't¿t'óÌ

11,01
{0,0,ó }

rÁiJ r

rllJ r
{t , t 1

. {î,0,ó}
{0,0,0,0 }

{f:J}
10,0 ,0l

{1}
{?¿?}
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T(3). Values of I¿,,..,drt

{o ,...,dt} I¿ d1t..., t

s-2
q'-

-1)
-1 ) (q-2
1

q
q
q(q
q(q
q3-
q2(
3q3
r/z
7/2
r/6
r/e

lî:îl
{i,0,ó}

{o,o,o,ó}
.{21 .

råiaiJi

'?¿i'
0

2q+1 ) (q
(q-1 ) 2

)

-1)

)(q
1)(
)2(
)2(

q4tzq3-z)
2qz+6q-6)
) ( 2q 6+3q 5-5q 4+3q 3-6o2-6 )

¡ I q z+q+l 
) ( 3qa-8q g-g,j2- 

róq+a )

q+1
q+1

The last tabulated nesu'rts give the answer fon one questìon posed

in the beginning of the section for the three dimens.ion case. All
Baer complexes can occur as'intersections of two Baer 3_spaces of
PG(3,q2) with one except'ion. The exceptional case is the set of
foulindependent poìnts .in pG(3,4), since when q=2, I0,0,0,0 = 0.
It is easy to see that in all the other cases, the Idr,..,d* poly_

Lnomials have no noots greaten or equaì to z, hence take positive
val ues for q=2,3.. ..

As pointed out eanlier, the intersection of two Baen n-spaces is
not fulìy chanacterised by the class to which the intensection
complex belongs. From Theorem 3.3 it follows that the number of
hyperpìanes belonging to the ìntersection of two Baer spaces ìs fixed,
because it is equaì to the number of points in the Baer complex of
jntensectjon. Furthenmore, Bruen in i11] proved that the dual

structure of the intersectìon, that is the set of spaces detenmined

by the intersect'ion structune of the common hypenp'ranes is isomorphic
to the structune of the spaces spanned by the points of intensection.
Hence the intersection of two Baer spaces can be regarded as a pair of
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two 'isomor phic comprexes; the Baer compìex as .introduced before
and its duar. In the two dimens.ionar case the confìgurations
listed were point-compìexes coupied with their duals. The situat.ion
there is simpìe, because the only subspaces to be considered ane

poi nts and I i nes.

The list shown in the thnee-dimensional case gives onìy the possibìe
compì exes wì thout thei r duar s. Though the comp'rex fu.r 

.ry 
determi nes

the geometry of its dual, their dual is not fuììy determined. As an

exampìe, negard the simpre case when the intersect.ion compìex

consists of two points, hence is one dimensionar. Its duar consists
of two pìanes. The comp'rex and its duar, each determine a rine.
Howeven, the two r'ines may coincide as in Figure (a) or may be

distinct as in Figure (b).

(If the two 'intersection r ines do not coinc.ide, they must be skew. )

ïhus, even in the three dimensionar case, thene ìs a greater

vaniety of possible configurations for the .intersection of two
Baer spaces than shown'in the rist of poss.ibìe comp.rexes.

Howeven, if two Baer n-spaces intersect in a comprex of dimension
n' then it foilows fnom the symmetry theor em (Theorem 3.14) that
the class of the comp'rex determines fuily the configuration.

The next section will offer mone insight into the reration of a

Baer complex and its dual.

!,l

I

l
I
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3.8 Sinqer Dual it Y : The General Case

In section 2.6 singer duaìity was tneated in the two dimensionar
case' The duality map v5 âS defined by (6.1) in that section,
mapped the poi nts of the pr ane pG (2,q2) i nto i ts r .i nes and i ts
lines into its points by

vs(Pi) =øs-i=41îf
vs(¿i) = ps-i = ¿;F.

The important resurt which is summarised in Theorem z.g is that
there exists a unique numben s such that v5 fnâpS the rear Baer-
plane Bo in p'(z,q2) into the rea'r Baer-prane of the duar of
PG(Z,q2) . In other words, the conrel atj on e stabl i she d for the
poi nts and I i nes of PG(n. 2) rest ri cts n atural I y toa correl at i on
between the oi nts a nd lines of B , the real Baer-p1ane js pG( Z,q2).
Sec tion 2.9 dears with the structure of singer wreaths, and uses
Theonem 2.9 to estabrish their existence. In this section it wiil
be shown that the duarity theorem can be generarised for n

dimensions, and some of the consequences of this will be consider.ed.

Let s be again the n-dimensional projective space pG(n,q2) and Bo
the real Baen-space in s. The coordinates of the points in pG( n,g2)
can be successivery generated by a singer cycle determined by a
suitable poìynomiaì equation of degree n + 1 over GF(qz) (cf.
Introduction):

xn+l = an*n + cn-lxn-l + ... * co,

which is the characteristic equation of the (n+1) x (n+l) Singer
mat ri x
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cn

cn-1
M

c
0

0 0

The coefficients {.i} (i=0,1,..,n) may be written in the fonm

ci ci + eyi

where c.¡ , yi e GF (q ) and

equati on oven GF (q ).

e ls a noot of an irreducible quadratic

l^Ie write the matnix M as

100
00 1

0

(8.1 )

(8.2)

M A+eD

a¡

A
an -1

oo00

(8.3 )

where

0

1

1

0

0

0

(8.4 )

0

and

Y¡o
Yn-l 0

0

0

0Yoo

Both matrices A and D be'rong to GF(q). Define the point ps by

Ps = (ln, Yn-l t ..., yo)

ïhus p, r Bo.

Next we note that the action of the

D
(8.5 )

(8.6)

(singuìar) matrix D (or eD) on

P = (Xr, .., Xn+1) in pG(n,g2)a column-vector representing a point
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nesults in p5, that is the

x, É 0, on the zero-vector

For, if

coJ umn-vector representi ng pr, i f
if 0.

the matrix M ordens the

X

X I

"(
n

lvo I

I
P and P, =

xn+1

we have

eDP = exrp5;

The Singer cycìe E = <o> detenmìned by

poi nts of pG (n,q2) as foì I ows :

P (o

pr = (o

Pn = (1

Pn+l =

(where pi

0

1

0 0

0

1)

o)

o)0

(c¡, c¡-1, to)

P1 r'{i ) x(i )
n+1

Pi +1

x{i+t¡

,{t*t¡
n+1

MPi

(8.t 
7

çrzn+z -r) / (qz-r)

ordered by the

ing of the

ordering of the

By Singer's theorem, the hyperplanes of pG(n,q2),
in number, same as the number of points, are aìso
Singer cycle pG(n,q2). t,le may write down an order
hyperpìanes of pG(n,q2) in a manner similar to the
lines PG(n,q2):
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ho 'is the hyperp'lane spanned by po, pr, ..., pn_l

h, is the hyperplane spanned by pr, p2, ,.., pn

and genera'lly hi is the hyper-pl ane through the poi nts

P'i' Pi+1' ...' pi+n-1.

(since o is a non-singular transfor-mation, jt follows that for all
ì, the points pi, pi+1, ..., pi+n-1 are independent.)

l^Je now def ine the dual Singer- map v, by

vs(Pi)=hs-i=pifil
vs(hi) = ps-i = hi6

(8.8 )

By reasoning similarly as before, (hyperpranes taking the r-ole of

I i nes of the two d'imens j onal case), we concl ude that

FifsT is inc'ident with l'jTL if and onty if
p i 'is i nci dent wi th h¡ ,

so the map is a correlation, Baen spaces go into dua'l Baen spaces.

In aiming to generaìise Theor^em 2.9, we prove first that if s is
the singer index of pr as defined by (8.6), then the hyperplane h,

'is neal .

By the ordening of hypenplanes as in (8.7), the hyperplane h, is
determined by the points ps, ps+l, ..., ps+n-l. 0f these, the

point p5 is rea'l by 'its definition (8.6). The other points ps+I,

Ps+2, ..., ps+n-1 are not necessarily real. However, we show by

pnoceeding step by step, that the subspaces ps, ps+1, ..., ps+n_ g

where t, < n-l are all real . We begin with the'line ps ps+1 :

,l

I

I

i

]
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Since ps+1 = ops, we can write

P5a1 = MP5

a

Þ-

I

,l

t

i
i

I

I

i

(adapting the convention of denotìng by P the column-matrjx formed

by the coordìnates of ps).

Using (8.3), we have

Ps+l = (A + eD)Ps = AP5 + eDPs = Aps * Oro, (8.e )

whene k, e GF(q2).

Hene APr is a column matnix with ail its entnies in GF(q), since

the matrix A is real. Fúrthermone, we obsenve that while A is not
necessariìy non-s'ingu1ar, Ap, I 0, otherwise pral = ps or p, = 0,
neither of which 'is possib]e, fon no point of pG(n,q2) has al ì

its coordinates equar to 0, and no consecut.ive points are equaì.

l^Je di sti ngu i sh between two cases :

(i ) yn É 0, that is, ps is not jn the hypenplane x, = 0.

Then, by (8.9), ps+1 .is on the line p'ps, where p' is
the point defined by the corumn-matrix Aps, hence it is
real . So the ì i ne p'psps+l j s real .

(ii) Yn = 0. In thjs case, ps+1 = p'l ps ancl so the line

PsPs+l is again neal.

we pnoceed by induction, assuming that the space spanned by the
points ps, Ps+1, Ps+¿-1 js real, where g < n-1.

l'Je want to show that the .r,-dimensional space determined by the
L+l poìnts p5, Ps+l, ..., ps+¿ (known to be independent) .is

agaìn a real space.

Å:,

{$
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Write again

Ps+¿ = MPs+¿-l = APrr.¿-1 + eDPsl¿-1 (g.10)

By the inductive hypothesis, ps+.t,_1 beìongs to a neal, (s-t)_
dimensionar subspace, hence the associate corumn_vector is a rinear
combination of .Q, real vector"s, denoted by

I

Þ-

I

t

t
i

!

I

I

IP p2 o9"t ...t

(superscripts are used here instead of subscripts, which have been
reserved for Singer ordering. )

Thu s

where k¡ e GF(q2) for j =!,..,1,.

Hence

,,
Aps+¿_l = I ki (Api ),j=l u

where the column-matrices are neal for ¡=1 e..,L.

so P' = APs+,(,-l detenmines a poìnt in a rear subspace spanned
by the set {nnj¡j=1,..,r,}.

(It is not necessary to ascentain here that the set {nnjl nepnesents
i ndependent poì nts. )

As in the case whene g, = z, the second term on the night hand side
of (8'10) is either zeno, or a corumn-matrix of form k¿p5 (k¿ e GF(q2).
In either case ps+g 'is the rinean combination of corumn_vectors
beìonging to Bo, hence it represents a point of an .t,-dimensionar
real subspace in pG(n,q2)' possibìy in its extensjon into pG( n,qz).
since by the inductive hypothesis this applies to ar ps+i (i=0,..,
(¿-t)), it forows that for arì r, < n, hence in particurar fon

9.

Aps+¿_l=A-I.kjpi
j=1

l
&,
{$r
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I = n-l, the subspace spanned by ps, ps+l, ..., ps+¿ is real.
Thus we have proved

Lemma 3.16

Let the generating poìynomiar equation of the singer cyc.re for
PG(n,q2) be

xn+l - cnxn + an_1yn-1 + ... + co

Let

ci = ci + Ê y.i for i=0,1,..rn,

where ci, yj e GF(q) and e e GF(q2), being a noot of an
j rneduci b'le quadrati c equati on over GF (q ) .

Let s be Singer index of the point (yn, yn_1,.., ys), and let
the hyperpìane h, be determined by the points

Ps' Ps+l, ..., ps+n_1.

Then h, belongs to the real Baer spac. Bo.

The hyperplane h, is the singer- duaì of the point po. The points
P0'Pr, ...' pn ane neal and independent. we will show in the
following that this is arso tnue for their duars. l,,le first prove the
fol I owj ng mone generaì I emma.

Lemma 3.17

Let h¡ be a rear hyper"p'rane contai ni ng the poi nt ps (def i ned i n
Lemma 3.16). Then the hyperpìane h¡-1 is arso rear and passes

thr^ough the poi nt ps_1.

Proof

since h¡ is near, the coordinates of each of its points satisfy

ri

t
D.

I'
¡

t
¡!,
T.

i
I

I

D

the I i near equati on
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ârXr + â2X2 ... + â¡+lX¡+[ = 0.

ai e GF(q) (i=1,..,n+l)

Þle may repr.esent hj Uy the row-matrix

H¡ = [âr, ã2, ..., â¡+]J

simi I ar'ly, nepresent the hyper"p'lane h¡_1 by the row matri x

Hj-t = [b, , b2, ..., bn+1]

The transformation o carries all the points of H¡_t into points of
Hi' so if p = (x, .., X¡il) is in h¡-t, then p' = op .is in h¡.
Denoting the column-vectors repnesenting p and p'by p and p,

respectively, we have

P MP,

so we may write in matnix fonm the equation of H¡:

H¡(MP) = o

Hence for all points of H¡_1 we have

(H¡N)P = 0

Thus the equation (8.11) r'epresents the hypenplane h¡-r, hence

cnl
cn-1 0

to o

(8.11)

0

H¡-1 = H¡M,

ot'

[br, br, ..., bn+1] = [âr, à2, ..., an+l]

0

1

0

It follows that

0

I
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Howeven, the above restri cti ve cond'iti on does not genenal 1y ho'ld,

so othen sets of sujtable neal points must be considered. For

this purpose we take the folìowing set of n consecut'ive (hence

i ndependent ) poi nts

Pi ' Pi+1 ' ..., Pi+n-1

where

pi = (0 0 0 a b) a,b I 0t

hence

Pi+1 = (0 0 a b 0) a,b e GF(q) (8.13 )

Pi+¡-1=(a b 0 o)

For alì q we can always fìnd at least one such set. (llhen q=2,

there is exactly one set: p.i = (0 0 .011) and so on.)

These points detenmjne the hyperplane hi, the equation of which'is

bn*, - bn-1ax, + ... + (-1)nanxn*1 = 0 (8. i4 )

To these n points we add two po'ints: po and pn and show that any

chojce of (n+1) points out of this set of n+2 poìnts forms an

independent set and that their duals ane neal.

Equation (8.14) implies immed'iately that po and p¡ anê not in hj.

Thus'it is not possìble to select n+l points, consisting of the n

poìnts of hi lìsted and one o¡ po 0r pn so that they should be

dependent. It must be shown now that we cannot select n+l dependent

po'ints consìsting of both po and p¡ and n-l of the set {p¡}
(j=j,..,i+n-1).

Assume that there exists a hyperp'lane contaìning these n+l points,

i ts equat'ion bei ng
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kx kr*r. + ... + k¡+lx¡+l 0+
I

Since po'= (0

the hyperp'l ane,

0 1) and pn

it follows that

It nemains to be shown that the duals hs, h5-¡, hs_.i,

are neal.

(1 0 0) be'long to

(j=1,...,i+n-1) are selected, it

hs-i -n+1

0

kr=k¡+1=0.

Since n-1 points of the set ip¡Ì

follows that e'ithen pj or p.i+n-1 is in the selected set. Since

a I 0, b I 0, it follows jn the fjnst case that kn = 0 and jn the

second case k 2 = 0. Continue in this mannen and assume that the

equation js of the form

k X +jj + ktx¿ = 0

whene j,...,ß ane consecut'ive ind'ices, and coefficients from k, to

k¡-l, also from k4 to k¡..1 are zero. Sjnce at least one of the

points pi+s and pi+n-(j-1) is amongst those selected, it follows

in the finst case that k.0 = 0 and in the second case that k¡ = Q.

In the beginn'ing the left hand side of the equation of the hyperpìane

had coeffjcients from k, to kn, hence n-l in number. In n-1 steps

as above all (n-l) coefficjents are found to be equa'ì to zeno. Thìs

shows that a hyperplane containing pq, pn and n-1 points of the set

{pi , .. , pi+n_1 } cannot exi st. Thus the set {Oo, pn, pi , . .. ,pì+n_1 }

sati sf i es the requì red condi ti on .

The fjrst two of this set of hyperplanes are already known to be

real. l^le have to consider now the hyperplane hs-i.



we fjnd now the form of M], the matrix of the transfonmation taking

Po to P'¡.

Si nce

Po = (o o
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0

0

= oPn+i -l
, ..., o).

a b)

P, = (o

.1)goestopi=(0 0

1 0) goes to pi+l = (0

Pn-1 (0 1 0) goes to pi+n-1 (a b

the matnix Ml has for its last n columns

ab0)

o)

nespectiveìy. (Each column may be multipl'ied by some constant.)

To fjnd the first column, consìder

1'l
M Pn, where Pn =

i-1 pno Pn=oP

and

So,

o(a, b

'l
M

making use of (8.3).

a

0 is a real column vector, while eD kP5, where P, is the column

0

Pn

b
a
b
0

0

A

vecton detenmined by the coordinates of ps, and k e GF(q2).
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To find hs_i, write

H
s -'l H s (8.15 )

whene H5 and H5-1 ane f'ow vectons nepresenting the coefficients in
the linear equations of hs and hs_l.

From the calculations above it follows that

Mi

¡4ì A' + kD

where A' is

Pi+1 '
poi nt

a matnix transforming po, p1, ..., pn_1 inten pi,
Pi+n-1 respectively, whÍre transforming pn into the

represented by the real col umn

Thus A' is a rear matrix, D is the r¡atrix defined before, having
P5 as its finst corumn and 0 for a| the othen entries. H5.is the
real row-vecto¡ [dr, dz, ..,, dn*1], and s.ince h5 contaìns the
poÍnt pr, it follows that

dryn * dayn-l + dn+lYo= 0,

a

b

0

0

A

+

So (8.15) becomes

Hs-j = Hs(A'+kD)

which is a

real.

HsA' ,

now-vector belonging to GF(q), since Hs and A, are both

Hence h5-'¡ is a real hypenplane, as claimed. Moneover, ìt follows
fr"om the dual ity mapping that
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Ps e h5-i,

sìnce pi e ho, and ps js the dual of h

the dual of h5-i.
0t whiìe pi = ps-(s_i) is

we apply now Lemma 3.17 (n-l) times; since by (9.13) t¡re points

Pi, P'i+1, ...' pi+n-Z a1l belong to ho, so their duals hs-j, hs-j_1,

..., hs-i -n+l al I contaì n ps.

Thus the hyperp'lanes h5-i, hs_i_1, hs-j-n+1, are alì real.

This completes the generalisation of Theonem 2.9 for n djmensjons.

we may also note that the choice of the poìnt ps js un.ique by the

same argument as used in Section 2.6.

We summanise this now as the General lluality Theonem

Theorem 3.18

Let Bo be the r-eal Baer space 'in pG(n,q2). Def i ne the dual ity map

v, between the points and hyperplanes of pG(n,q2) as ìn (g.g). A

uni que number s can be found such that V 5 rnaps n+2 po.i nts of Bo,

no n+1 of them dependent, i nto n+2 hyperp'lanes be]ongì ng to Bo.

Coroì I a ry

A unique numben s exists such that the duarity map v5 maps the

real Baer space of PG(2,q2) ìnto itself.

3.9 Applicat'ions of the Sin ger D ual ity Theorem

a. The Sinqer Wreath

Note: The Si nger gnoup E = <o) 'i s here , as i n the previ ous

section E = 1oq2r, the cyclìc group acting regu'lanìy on

the points of PG(n,q2), so the subscnipt qz is dr.opped in the

follow'ing discussions. l,Je consider the act.ion of E on Bo.

Each Singer image of Bo ìs a Baer space.
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Theorem 3.19

The set of S.inger images of Bo contains a subset of q(q+1) Baer
spaces, ca1 I ed the Si nger^ l^/reath : llf3 (beì ongi ng to i) . It has
the fol ì owi ng properti es :

(i ) each Baer space beìonging to th intersects Bo in
(qn-t)/(q.r) po'ints of a hyperprane of pe(q2) and

possib'ly another point outs.ide this hyperplane.
the set W; falls into q+l classes, each containing
q Baer-spaces, such that the Baer_spaces beìonging to
one class have (qn_t)/(q_I) points of a hyperpìane
common with Bo.

the set W; falls into q+l classes, each containing q

Baer-spaces beronging to one crass intersect in a point
P of Bo, and each of the (qn-t)/(q_I) real hyperpìanes
through P berongs to ar1 the Baer-spaces of the crass,
that is: each hyperplane through p containing (qn-t )/(q_I)
points of Bo, has aìso (qn-t )/(q-r) points in common with
each Baer-space of the class.

(Note: the intersections of each of the above hyperpìanes
with the above Baer-spaces of the class ane different

(ii )

(j i i )

sets. )

Pnoof

Recall that'in the previous section hyperp anes of the forìowing
type were consjdened:

where

hi = Pi, Pi+1, ..., pi+n-lr ...
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Pi = (o o

pi+1 = (0 0

t 1)

r1o)
(e.1)

Pi+n-1 (t 1 o 0 0)

whe re

t e GF(q).

Each of the hyperpìanes of th.is type has equation:

X tx, + ... + (-1)n tnxn = 0

since ther^e are q choices for t, we obtain q hyperpìanes of this
type. In particular, fon t = 0 we have

I

ho p P r.' Pn-1'0'

with equati on X - 0.

Let H* = ihi] where the hi.hyperplanes are defìned by (9.1),

together with

I

h p P2' Pn,II

where p, = (0 0 1 0).

Each of the hyperpìanes of H* is real, hence it has (qn_t)/(q_f)
po'ints beìonging to Bo. Furthermore, by Theorem 3.1g, the singer
dual of hi, the point pr_; is also real, where s is defined by

(8.6).

Let hi E H* and let p e hiñ Bo. Then, using (9.1 ), we have

n-1
p akPi +k (an-t, ân-i , .., ao, 0) for. i =1

=Q
and

= (an-1t, an-Zt + an-I)

otherwi se.

I
k

(a ot + ar)' to)

(e.2)
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Let a¿ be the finst non-zero coefficient on the reft hand side
of (9.2), i.e.

0 < ¿ < n-1, ãg f o,and fon 0 < k ( I,, a¡ = 0.

Then a¿ can be chosen arbitnari.ly, (at t 0), but once the
choice is made fon some fixed point p, the nemaining coefficients
ane uniqueìy defined. Choosing a¿ = 1, the remaining coefficients
must belong to GF(q) as p e Bo.

Let h¡ e H*, j I l. Then

oJ-l Pi = Pj

oJ-lPi*n-l = p¡+¡-1,

hence h¡ is the (i-l ¡tn singer. image of h.¡. Moneoven, aì'l the
o'ints i n h NB are transfo rmed i nto oints of h NB b oj-i.

This is so, because

oj-1 (aoRi + arpi+1 + ... + ân-1pi+n_1 )

= aoPi * u..Pi*l + "' + an-lPi*n-l.

(Note: Here oj-i has been treated as a rinear transformation.
This is justif.ied withjn the range considered here. )

Defi ne al so

P* = {Pr-i } where hi e H*.

Through each point pr_i e p* thene is a set of (qn_l )/(q_L) hyper_
pìanes, which ane the duars of the points of hi n 80, hence they
are hyperp'lanes of Bo. If ps-i and pr_¡ both belong to p*, they
can be tneated as duar hyperpìanes r-.,-$) and h¡T)-, with the hyper-
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planes through ps-j and p5-¡ as dual points F6. So the conclusion

reached ear l'ier for the hyperpìanes of H* impììes also that

al I the er I anes contai ni n and bel on 1n toB ob the

tnansf ormati on ol -J 'i nto er I anes throu o

and bel on 1n toB

Next appìy the transfonmat'ion oj-i to the entire Baen space Bo,

whene 'i and j are as def i ned above.

Let Bì¡ = o¡-iBo. Then Bi¡ is a Baer space. Since hi e Bo, it

follows that oj-ihi = hj is in Bi¡. Moreover, the transformat'ion

oj-j takes all the poìnts of Bo n hi ìnto points of Bo n h¡ by

the previous result. 0n the other hand,

oj-ì1eo n hi) = oi-igo n oj-ih, = Bij n hj. Hence it follows

that B s ha res w'i th B al I the oi nts of B nh

The transformation oJ-l takes also the point pr., of Bo together

with all the hypenpìanes through that point, be'longing to Bo ìnto

the poìnt ps-i in Bi¡ togethen with the hyperplanes through pt-i

and belonging to Bi¡. Fnom dual considerat'ions, this poìnt togethen

w'ith the above set of hyperplanes through jt belongs aìso to Bo.

Thu s

B shares with B the oi nt and n
1 1 I anes

through pc-i.

S'ince the set H* consists of q+l hyperpìanes, there are (q+1)q

ordered pairs of indices which detenm'ine (q+l)q Baen spaces of

type Bi¡r whene i I i.

Fix first i and let i run thnough aìl the indices in H = {fi}
and differnt from j. There are q Baer spaces of type Bi¡, all

sharing pointw'ise with Bo the hyperplane h¡. Since there are
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g+1 choices for i, wê obta'in q+l classes of Baer spaces, g jn each

class, sharing with Bo (qn-f )/ka) points of a hyperplane.

Next f ix i and ì et j run through al'l vaì ues of j .in p* = {nr-¡ }

so that i f i. Ther.e ar.e again q Baer spaces of type Bi¡, alì
intersecting Bo in the point p5-i and also sharing with Bo

(qn-1)/(q-t) hyperp]anes through ps_i. l.\|ith q+l choices for j we

obtain q+l classes of Baer spaces, g jn each crass, sharing with B0

a point and (qn-t)/(q-1) hyperpìanes through the point.

This completes the proof of Theorem 3.19.

b. An interpretati on of Theorem 3.3

This theonem states that the number of poìnts berongìng to the
intensect'ion of two Baer spaces is the same as the number of
hyper^planes- In ltt] Bruen has also proved that the structures
of the point-set and the hyperpìane-set of the intensection
are "isomorphic". In the terms used earrier in this chapter,
this means that the duar of the set of hyperpranes beronging

to the intensection of two Baer spaces forms a Baer-complex

isomonphic to the comp'lex determined by the set of points of
intersect'ion (that is), a structune presenv.ing map can be

found f.om one comp'rex to the other. The singer duaìity
theorem provides a simpìe, naturar ìnterpr-etation of this
result in the case when the two Baer spaces belong to the same

Singer orbit.

without loss of generality, we may then assume that the two

Baen spaces are Bo and Br, the rea.l Baen space and its ot
transform. Denote by

!
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P = {pi}

the set of points of Bo n Bt. Then for each pi e p, hence in
Bt,

Pi-t e Bo.

By the duality theorem hs+t-i .80, where s is defined by
(8'6)' since pi is arso in Bo, it fotows from the duaìity
theorem that hr-i " B0, hence by applying the transformation ot.
hs+t-i e Bt.

Thus for each pi e Bo î 81, we have hsl¡_i e Bo 0 B¡.

The reasoning can arso be carnied out converseìy: for each

h¡ e Bo o Bt, Ps+¡-¡ e Bo o Bt.

Thus the number of points and number of hyperpranes beronging
to the Íntensection of Bo and B¿ is the same.

Furthermone, the isomorphism of the two stnuctures also follows.
For let again

P = {pi}.

Denote p, = {pi_ti.

Then P = P', since the singen transformation is a homography.

Let H = {hs+t_i}.

Then there is a correration between p'and H, since the singer
duality preserves incidences.

Thus H = P' = 
p.
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Since H repnesents by the above the hyperpìane set belonging

to B o f'ì Bt , 'it f ol I ows that the poi nt-st ructu re and the

hyperplane stnucture are isomorphic. This simple intenpretat'ion

of the isomorphìsm of the point and hyperp'lane-structures of

the intersection of two Baer-spaces can be extended to any

pain of Baen-spaces,'if the followjng conjecture holds.

Conj ectu re

For each pair of Baer-spaces B, and B, in S = PG(n,Q2) some

Si ngen group

Eq, = <o>q2

can be found such that

B' = <o>iB'

Facts supporting this conjecture:

Without loss of generality one of the spaces can be taken to

be Bo.

The following can be establjshed:

(i) A Sìnger gnoup E js its own centraliser : Z(¡) .

Proof

Let E = (o) âct regu'larly on the poì nts of S, 'induc'ing an

orderi ng

P0, Pr' ..' Pi' ..' P9,

where r. = lsl - I = Q2n+2-1)/ (qz-I) - 1.

Let t e Z(E). Then ro = or.

For the poi nt pi
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ro(pi) = .(opi) = rpj+1 = pj,

then o(rPi) = pj¡ So tpi = o-1pi = pj-l.

Hence fon two consecutive points pi, pi-1,

rPi = Pj-i' rPi+1 = pj

for an arbitrar-y poi nt pi .

Hence the action of r causes a unifor-m shift in the singer.

indices of the points of S

k = j _ (i_1)

sot=okeg.

(ii) The index of the centraliser of x in the normaliser

of E is n+1.

Proof

The result is a stnaight genenarisation of Lemma 2.13 in
Chapten 2. Denote the normaliser of g:

N(3) = N(Z).

Let p e N, then p-l op = ol.

By reasoning identicar to that in chapter 2 (Lemma 2.13), we

obtai n that

r = 1, j, 92, .., Qñ.

Hence n takes n+r possibre varues. Furthenmore, suppose that

(o')-1oo' = or,

that i s



(p' ) -1

(p'p-1)-1

op

(n+1)lil
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lop

op 1=o

p

ot

('iv)

p

So p'p-1 e Z(¿) or p, p' belong to the same coset of Z in N.

Hence the choice of n fixes the coset. Thus the index of Z(E)

or of E in N is n+1.

(iii) It follows from here that the number of conjugates of t
in the gnoup of homographies I of PG(n,q2) is

Irl

The intersectjon of two conjugate, distinct Singer

gr"oups cannot contain a pnimitive element of either

group, s'ince a pnìmitive element detenmines the whole

grou p.

As the number of prìmjtive elements of the cyclic

gr"oup is O(lEl), (where q is the Euler-function giving

the number of positive integens less than lgl and co-

prime to it), it follows that there are at least

lrl
o(lsl )-

(n+l)lal

di stj nct homogr"aphì es, each bel ongi ng to some Si ngen

gr oup, which take Bo to some Baer-space IBI.

Sjnce the numben of Baer-spaces is

Irl
fl = _,

lrol
where Io is the group of homographies of PG(n,q) .it

fol I ows that
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on the avera se there are at least

lrl
lsl lro I

o( lel) lrl
n+1

o(lal)lrol

lal (n+t)

homographies taking Bo to some Baen-space B and beronging to
some Singer cycìe.

However, this cannot be taken to be a pnoof of the conjectune,
since at this stage it is not shown that these homographies

are distributed with some measure of uniformity amongst the
various Baen-spaces in pG(n,q2).
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APPEND I X

COMPUTER WORK ON FINITE PROJECTIVE GEOMETRY

In elementany geometny or number theory theonems can be found by

experimentat'ion. Calculat'ions or dnawings point to some facts which

are finst conjectuned and then establ'ished by formal proofs. Simiìanly,
most nesu'lts proved i n th'is work were f i rst conjectured through computer

a'ided experimentation. Some of the results turned out to be known ones

and can be found in the liter"ature pubìished somewhat earlien, others

were found simultaneously by other researchers, while some nesults are

bel'ieved to be stiII new. The significance of the computen programs

evolved and to be described in the following is, that they give

"v'isibiìity" to fin'ite projectìve spaces, by ìisting and survey.ing

thein elements: points, lines, subspaces, Baer spaces with their
'intersectìon pnopertjes. They should be useful for fur-ther research in
fi ndi ng new facts or er i mi nati ng far se conjectures.

The cyclic structure of projective spaces of cljmens'ion gr-eater than two

and of projective pìanes oven Galois fields pnovides the main tool for
the sunvey to be descrÍ bed. si nger's theor-em, di scussed .in the

ìntnoductìon, is used to generate, in succession, the coordinates of
the points of PG(n,q), finding at the same time the hyperpìanes (or,
altennatively, perfect d'iffenence sets in GF(q)). In partìcuìar,
s'ince thi s pr"esent resear"ch has focused on Baer spaces r g wâs chosen

to be a perfect square.

To achieve nesults ìn limited computing time, small values of n and

q2 wene used. ln the case of projective planes, the value of q r.anged

from 2 to 8, that is, pìanes oven GF(4), GF(9), GF(16), GF(ZS), GF(49)

and GF(64) were surveyed. The programs were dimensioned for the above

range, but results in PG(2,9) and pG(2,16) already give sufficient

I
.Þ

¡

{
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insight, the higher values of q wene used on'ly in the beginning to
confirm the findings. Fon n=3, g2=4, 9, 16, and 25 wene used, whiìe

fon n=4 and 5 the on'ly value of q2 was 4.

The finst step in the procedure was to find the generatìng polynomia.l

equati on

xn+1 = c

Yi
ci=cr

n*n*cn_rxn-1+...+co
(n=2,3,4,5 )

(1.1)

(r.2)

as described in [19], (pp.130). The equation used must be j nreducjble

over GF(q2). It is suitable for oun putpose if its roots ar.e pr^imitive

elements of GF1o2(n+1) ¡, though this condition .is not necessary.

The coefficients ci ('i=0,1,..,n) 'in (1.r) are of the form

fr
where a 'is a root of an i rredu cible q uadrati c equatj on over GF(q) and

yi is a natural number be'longing to the set {I,2,..,(qz_t)i, or"

ci = 0.

(We wiìl refer to yi as the loqarithm of c i . ) Thus the numbers ci
are elements of GF(q2), where oq2-1 = 1.

For the low values of q used, it is easy to find an inreducibìe equatìon

oven GF(q), but finding a suitable generating polynomìaì equat.ion (1.1)

is left to the computer: a set of n+l integers is used jn detenm.ining

the coefficients c.¡, reading Ín 0 for ci = 0, or the ìogarithm yi in
(I.2) if ci is non-zeno. If the vector (0,0, .., 0, t) where t f O,

is reached by the prognam in less than 102(n+i)-t)t(q2-1) steps, then

the calculatjon is aborted, and another set of (n+1) integers is read

in to define the equation (1.1).

I
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A few simpre nures ane obeyed to avoid some unnecessary computations:
(i) co É 0, otherwise the poìynomia'r in (1.1) is reducibre.

(ii) co cannot be the onry non-zeno coefficient on the right hand

side of (1.1), (0,0,.., t) in n+l steps.
(1ii) To obtain prefenabìy a primitive root, ysr the rogarithm of co

in (I.Z) must not be a multipìe of q+1.

For" then co belongs to the subfjeìd GF(q). In that case equation (1.f ¡
cannot have a primitjve element of GFlO2(n+1)¡ for a noot. (Suppose ç
is a noot, then the product of ç and.its conjugates over GF(q2) gÍves

el+qz+...+q
2n

= (-1)nco' since ((-r)nco)2(q-1) = 1, it fotow that
2n

)(q-1) = l, So 6 is not pr.imìtive.)ç?(l+qz+...+q

Even if rures (i), (ii) and (iii) are adhened to, thene is no guanantee
that the poìynomiaì thus defined yierds the set of po.ints of pG(n,q2).
Howeven, poìynomiaìs were el iminated in negì igibry smar.r computing
tÍme.

At the time when the pnograms were deveroped, there were no packages of
Galois-fierd carcurations known to the authon, so the next step in the
program was to establish a Galois-field addition tabìe, (multiplication
table is not needed, as it is done simpìy by addìng mod (qz_I) the
ìogarithms of the non-zero elements of GF(q2)).

To construct the addition tabre, the erements of GF(q2) are represented
by thein ìogarithms' One thing to be watched'in the field calculations
is the nore of the erement 0, which is not nepnesented as a powen of
the primitive erement. The number 0 is not used as an exponent.
Instead, the logarithm representing 1 is wnitten as (q2-t). Hence in
the entries of the addition table, the number 0 nepresents the 0

element of the field, while the non-zeno entries stand fon the'logarithms
of the other field elements.
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The fìnst row of the addition table is obtained by hand-calculation and

read in to the computer. The primitive element cr used is a root of the

quad rat i c

s2 kd+.t (1.3)

where k, ø e GF(q) and the equation is inreducible over GF(q). The

powens of c are evaluated in the form:

al h'a * L' (h', L' e GF(q))

sums a + ai ane expressed in the form cY. Illustrate this

I

It
I

I

and so al I

procedu re

g2=

Then

cr3 =

hcl' =

a5 = -(l

c,6=-c2=a-1

q,7=c2-C=q+1

c,8=c,2*a=1

Thus we have:

A+0=c=ct

c*cr=-g=¡y5

s.+ s,2 - 1= aB

a + c3 = -f = ct4

g*c4=C-1=cG

a*a5=0

c * cr6 = -ct - I = a3

c+q7=-c*L=c2

a+c8=c*!=g7

in GF(9)

-cr + 1 is jrneducible over GF(3).

-o,2+c=-cr-1

-a.2-cr=-1

i

I
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So the numbers 'in the first row of the Galo'is add'ition table for GF(q)

a re:

158460327

(i )

(ii)

(iji)

The rest of the addition table is established by the computer usìng

synrmetry, i.e. aj + cri = oi + oi

0+aì=cri+0=si

oi + oi = o if q is even, and

ai * oì+l-"(q-1) = 0 if q 'is odd.

oi+l *oj+1 =a(cri+cj¡(ì v)

(property'iv rneans that entnies read d'iagona'lìy in the table, (excluding

the 0 di agonaì ) f o'l I ow the natu nal (cycl 'ic ) order. )

The jntroductory part of each pr^ogram used can then be described as

fol I ows:

Step (i )

Step ('i i )

Step (iji)

The val ue of q ì s nead i n.

(The f ield used ìs genera'l'ly GF(q2)).

The Galois additìon table of the field is establ'Íshed.

(Thi s tabl e depends on the ori gi nal i r reduc'ibì e quadnat'ic

over GF(q2).)

The Si nger a'l gori thm i s used

(a) to find successively the coordinates of the points

of PG(n,qz).

(b ) to determ'ine the hyperpl ane x, = 0.

l^Jhenever the f i rst coordi nate of the poì nt f ound i s 0,

the Singer index of the point js stored. The set of

sìnger indjces thus obtained gives a perfect difference

set. In terms of block-designs, th'is is a (v,k, À)-

difference set where
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(q2)n+1-1 (q2)n-t loz¡n-1_1
v=rk=rÀ=

q2-7 q2-r q2-r

(c) to determine the neal points of PG(n,q2), that js, the

points of which the coordinates belong to the subfield

GF(q). This is done by testìng whether the ratios of

the non-zeno coordj nates beì ong to GF (q ). Thi s i s

the case, if the differences of their 'ìogarithms are

mult'iples of q+1. The indices of the real po'ints

are also stored. The set of real points determ'ines

the real Baer-space of PG(n,Ç2).

As mentioned before, reSults are pr^inted out and the progr^am'is used

for funther survey only'if the full Singer cycìe of çq2n+2-7)/(qz-I)

steps i s comp'leted.

Two prognams together with outputs are attached to the wonk to gìve a

sampìe. The language used is Pascal and the pnograms wene executed on

the VAX/VMS of the Unjvers'ity of Adelaide.

The fìnst of the two programs is used for finding either the real

hyperplanes of PG(n,q2) (that is, all those hyperplanes whjch share

(qn-t)/(q-t) points with the r"eal Baer-space), or aìì the Baer spaces

strong'ly 'intersecti ng the real Baer space, that i s 'iharing a hyperpl ane

(and poss'ibìy another point) with the real Baer space. Thìs program is

d'imensioned as high as PG(4,9) or PG(5,4).

The second prograrn is used in three dìmens'ions on'ly, and has thnee

alternative uses :

(i ) determ'ini ng nea'l pl anes,

(i'i ) strongìy i ntersect'ing spaces,

(i'ii ) the real I ines 'in PG(3,q2)
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The listing of real lines .is useful for survey work,
not as straightforwar"d as the listing of the pìanes,

but the prognam is

which can be

obtained by using successfveìy the singer transformation on the pìane
*, = 0, on the listing of the Baer

orbit.
spaces belonging to the same Singer

An onderjng of the real Ijnes is obtained by listing first those lines
which contain 2 points with diffenence i in their sìnger indices, next
those where the minimum diffenence is 2, and so on. The rines ane
obtai ned as 'intersecti ons of two pr anes passi ng thr.ough the two f i xed
poi nts i nvesti gated.

An important step in the program is checking that no repetiti on of the
lines occurs. Full listjngs were done in pG(3,4), pG( 3,9) and pG(3,16).
For higher vaìues of q the computing t.ime becomes excessive.

In the outputs, points and hyperpìanes ane listed thei r Si n en
indices. However, for some punposes the risting of the coor.dinates of
the points is arso des'irabìe, in panticurar, for the points of the rear
subspace' The l'isting ìs done in a condensed form: non-zero coordinates
ane given by their 'rogarithms 

and the zero coondinates by the number
zero. ïhe whore information about the coordinate of a point is then
written in the form of a positive integer.in the decimaì system. Two
exampìes show then how to read the informat.ion.
Exampìe1:Z 0 Z 0 6 0 6 inpG(3,9)
represents P = (c2, e2, c6, a6)

equivalent to (a8, c8, cq, s4) = (1,1, _1, -1) over GF(9).
The point belongs to pG(3,3).

Exampìe2:1 3 0 g 0 0 0 g inpG(3,16)
represents p = (or3, aBr 0, aB)

= (aI5, oro, or c,ro) = (1, oror o, alo)
where cro e GF(4). Here d2 = a+ ô (where ö2 = ô +1 (over GF(z)).
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't [t iFPlas nf hasic res¡-l It's]
{rroh=no. nf poirrt.s i,n IJ*pr sr-Fce!rrnF--ntr af ¡,cr:iIr{'.f-" i.n lrvpcr¡'1¡lIrc'¡s,}

rrobl=1Ë
for .il=1 t'n clirr clo



besin A 5

Iralr I =c#rrnh'l 1

en,J i
f or k î =nr.¡h clowrrtn 2 clo

heSin
srof Ik.] I --.çrof tk" 1l

end í
Érof [1] l=0i
hl=noh 'Jiv 7 ì

writ.elrri
write1ni
urri.ùeIrri
writel.rr í
writelrr( ' INnInEÍì nF ßEAl.. F 0f NTS ' )'l
writeLrrí
fr ¿ ={,1 }

while ß'i=b qlc¡

heEin
i3=1i
nr ! =7*n i
whiLe ((-i .:'.=7) arrrJ i(nr .l .i)',1=r¡oh)) ¡:lo

heËin
u¡ ri {.e¡ ( Érof trr'l".i.l I 1 C, ) ;
i l = '.i'l'1

enú't,
t.¿ritelrr('' ")',
n I =rr'l'1

end i
for ,il=1 ta 5 cJs

hesin
r^rri.'telrr

end í
rror!=1i
fsr .ii=1 ta clhs tJo

beÉin
rroP I =ßsHr¡or,'l 1

end i
for kl=rrnr cJowr¡ta íl clc,

heE i rr

di f f I k] i =cli f f il,. "' 1 l
end í

diffflli=0i
h I =nor div 10 ¡
Hritelrr(' IIIFFEf{EN{:E $tiT Iî ');
r¡nitelni
ni=0i
while n',"=h qJo

heÉin
:a-{.J.-'.(t

rrl=10i(rri
r.rhi 1e ( ( ;i'::=1.0) Êrrd ( (flr.l"i ).r.-nor') ) ¡:lo

beli n
writ.e (dif f l.rrJ.'.ilIfl) î
i i =..i'l'1

enrSî
raritelni
nl=rr'l'1

end i
.t Listirrs rlerrefr rìrrrl $c$FrninE for re¡¡J. poi.r¡1.ti il"r t.ltr; PJ.BnPt"J
tAlternat,iveJ.g list in+ Ei;ron'f 1,,r i.rrt,or:"c+i:l.in:-J [Jaer ;-"1.1r¡t'r'*J

fnr ii=l ta 6 rJo
heEin

t+ r i 1'.e I rr

t



erlji A 6
if irol therr
heÉin

r t -rror. í
far .il=l to rrnF cJo
hegin
stall.ill=rJiff[..¡]

end i
êrrd e L se
be€irr

r I =rroh i
for .il=1 tn r¡nh cJa

beÉin
, st,a[.i] I=.4rnf L..il
end i

errd i
il=0i
while i',í1ot, da

heÉ i rr

for .il=L tc,¡ r do
heE i rr

if i=0 1'.hen
z 1a[..i] I =Eta [.i] n1. se
p I ¡rll,i.l | =p I ðt..il'1. 1

end i
-i1t--r.-L i
if p.l.aIr]=l.ot't.her¡

heÉ i rr

fnr. .il=.il clnurrrtr¡ L cjo
heÉin
rI .:[.i'[ I .l i -p,l..-:L.i ]

errd i
rlatlll=0

end i
{Scar¡ f on rÊ.rl int ersect,ior¡s}

cor¡ I =0 í
for .il=1 to rrah cJn
hegirr
hi-.ti
while ((pl.atklr:_{roft,i l) ¡rr¡d (k,:.r)) rfs
heSin

þ. I =h.1.1
end i

if r, latk. l=ÉrofEi.l t.herr
heSirr

cofii I =eßfi+.1 i
rel Ico¡r ] I =srcrf t:.¡l i

encl i
end p'

nfhi=1í
for .i!=1 t.o dhx do
hedin
ef h I =n*af h'l 1

end i
if co[r¡a'(çfh.-1 ) therr
hegin
wri.t.elrri
if ir=l theri
urít.el.rr(' ftEAL FnINTS 0F I.iYl-'F:Rl-,1-ANl:., yi¡,

elge
wri telrr(, $r,AüE ' , ! y, l.l rFT$ Itt:/t|,. fìl-,At;li
ç¡riteLni
ni=Oi

Af{f ')

Il'!');

t1ìi



A7
l¡hi 1p rr'"=B do

heÉir¡
: a -{ 

¡J.--.tt

nrl=l.0trr!
whi I e ( ( "i,:.-1.0 ) cf Frff ( ( ur.l .j).,i=ct)ur )

heÉ i rr

h¡ri.t.e ( re.l. Im.l.i] I B ) í
i l.=.,i'l'1

__ J.tittut
writ.elnî
rr l =rrl 1

er¡d i
errd i
il=i'l 1i
en¡:f i

tjttu r

CJf¡d.

) rJo
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1 227
1:J'/3
1301:
1:540

4
JI6
ê14

a

972

4
526
oaa

979
J.0;I"{
:r.064
11:Ì4
1,147
1:103
1 ??E
72't 4
:i.:109
134S

J

890

4
5?6
889

984
103:t
ro7?
J. I ?:;
1 1-J?
1:t()4
1 ?36
ÁdlÕ

131?
I34 7

49
3?7
890

50
5?8
991

A 14

986
t 040
LATii
t 1?7
1 154
1it07
1.?3'7
Li],'l çì

1317
134I

989
1044
L0'/ 6
I 12S
1 153
1? 10
J 251
1?ß1
1.1rí-1
I 35?

t

è^

I

I

I
t.,

Ì;

ï
L

I

!

I

i

SFACE

ðT HLE

SF.ACE

0
50

aa1

È- L

6't r
810

1 1:11 1

1

9l
370
3?7
774
FJ9]

rl.ó0

a,

1.73
JXJ

538
812
Ë9?

1176

7

î34
413
É0s
g4ó
?43

4
?44
4t4
609
óa /

1(r50

J

?37

ó33
848

1.051

6

473
634
Õ/ L

1.127

19
ao?

4S2
651
a7?

11?8

al

loo
483
OJ¿
o2a

L J ?9

49
JO7

653
oGo

:t 1.å0

O I'IEETS RËAI. fiI-'ATJE IN

If EETS FIEAL SFACE I N
ú

h,
ß

p
1

4t4
847

1 130

1

47l
848

1131

U

41.3
846

1 1?9

I
47?
947

1J:{0

50
809
ÊlP ?

?44
Á0$
H91

244
609
89?

1CJ50

?58
634

1051

L

5?8
891

?58
634

1051

28S
65?

11118

dõ7

É53
1 1?9

?3Ê MEETS REAL SF.ACE IN

I

l

I

SF,ACE 239 I.IF:F:T$ HË:AL SFACE IN

?a7
é51

t7?7

2BB
652

1 128

?88
65?

I 1?ft

?89
653

11?9

1

414
Ða /

1130

.)

47 .1

848
1131

J

:i?7
8?0
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SF.ACE 1126 HEETS FEAl'- $F'AOE IN

5
370
é53

1131

6
370
é53

1131

19
395
s1?

117 6

1t
395
812

1.17 6

49
413
s89

49
413
BS9

2
48?
s7L

50
414
890

50
414
890

3
523
a72

175
608
B?1

234
êo?
fi9?

?87
634

I 1?8

633
10ii0

289
Éli?

I 130

?44
ó33

11;1 /

¿Õo
ó91

1129

SF'ACE tT?7 |'IEETS REAL SFACE TN

t71
Á08
891

?34
609
Êt9?

?44
á33

t r?'l

247
634

11?B

2S?
63?

1 130

?8Ê
651

I 1:19

sF AcË 1gé4 IIEETS RF:AL SFACE IN

0
413
s46

1 1?9

I
472
847

1 130

4
li3 6
889

5
3?7
890

4?
ó0Ê
B?I

¿é /
6'J 1

LT},7

2BS
OJ¿

1128

l

I

I



A \6

PR(](ìRAIV! BEA.RSP

OUTPUT 'I

PG (3,9)

GENERAT I NG POLYNOM I AL

2

1141

( *4 = cx x3 + o ^2 
+ 2 x + cx

where cr +,o + 2 o over GF(3).)

LIST OF REAL PLANES

OUTPUT 2

PG 3

GENERATING POLYNOMIAL O 1 1 1

4 )

X cl (
24

o2+q*l=0

X +x+1)

where

LIST OF REAL LINES

ove r cF(2) .)

I



F r(nGFrA14

vãr

heE i rr

A17

IJAEf{fìF ( ínrrl L, or,ltt'rrt ) i
{BENßßATION ltF F t}INTll IN Tl'lßEr:: III}'lEN!ìIUNfì}
i r o I lal w r -i r..jr r nç ¡ .,i1 r t errp r afh r I nt, v h ¡ L r [t r Fr I t r h r

isr a¡ rJrGsFr li.nor Ín¡r¡ob t nct?'co[rtzl.e I irr{'t'¡ße¡i
Et rli ¡ flr.l tsrrtsH[1i.ìló]l oI' inte:¡{srri
reP I ËrnFct 1 . .3?l of i,'rt'eÉer i
diff ¡ rlar çt.a¡ tenr I ar ras[ 1 , .ó51 ] of int'eEer i
Él.r¡f ¡êFrrFl I cltPerHll 1..l5l¡J of irrteÉerí
p't t:l tsnnè'JC1..?¡1..651J of ínt'eHeri
cof't.err¡lvÞcttvt FrrtsHfl,.4J nf irrt'e'4er;
ÉalB,J,ll arras[0..i14r0..?4] of i'nt'efvrri

r¡rít.elrr(, lìtJr,tç'EY nf? FoINTßrL.INlifìrF',l-ANllfir$Ï'Allli$ ír'f 7J.l ') i

fcr i!=1 t,o 6 do
Lresi rr
üJrit,elrr(/ '1

e fl,J i
{Es{:at¡1,íÉhirrÉ addi t.ioFr tãhlÉ fßl"
$al.ãdrJC0¡01l=0i
read(n)i
ns:=sÕF(R) i
u¡r j teln( ¡ FIELnl GF('rns
Éalw!=RÊ"1i
for *i l=1 t.o .qtslùJ do

hÈEin
rÉFd(Eêlacldtl r.il)

end i
if n r¡ocJ 2 =0 t.herr

he9i.rr
'11=Éts1.u¡''l i

for il=? to I do
Lt e.* i rr

seladdEi r il ! =O Í
jpl=.i{'1 i
for þ-!=..ip to Éãlr,¡ do

beÉin
t enrp Î =ÉÊl,add[.i'-1 I k'-l ]'11 í
i f terrr=ns +,hen
gEleddtirkll l=1 else
Éa1 addt.i ¡ þ.1 t =i,enrr

errd i
ênd i
Éêt tsddt5tsIw ) ÉÉIu¡:l | =0 i

errd e:1.5e
LreÉi rr
efh;=5êlw div ?i
for il=? to :lalr+ do

be,É í rr
for hl=.i tn ÉB1B do

beÉi n
if (þ.'-.i)=Gfh then
EeladrjE.jYP.l !=0 else

heÉ i rr

the fìalois fislr:il

'Lerlrr i =Éa I aclrt E.i'- I r P""1 -l'l I i
if tenrr=es t,hen
4ålêddf.irkll=1 elEe
ga I adeJ ll.j ¡ 1". f l,.t,en¡P

t"rrd i
er¡d i

errrd i
end i,fclr ..it=? t,a Ée.lr,¡ clo
hu.Éin

t')'Jî

I
l
x

I

t



¡1 I ='.j.-1 â

for kl=l to .il do A 18

t¡eÉirr
.*41. eddti r kI I =SaI *cJclIk r.i-l

End i
endi

for ,il=1 to -4a1w cfa
beEin

. Étaladdl-0r..ili=ii
Éeladdt.ir0.ll=.j

(lllrd i
u,rit.el,rr{ ' AtrftTTIoN TÊÍt.Efì IN Glï{ . rGF; t '), ) ì
for.i!=() trr Éalr,¡ do

heÉ i rr
f on þ. i =0 t,o É*l r¡ do
heçi rr

u ri t.e { sel rrldF,¡ r þ,1 l.l ) i
end î

writ.eln(' '>
errd i
for il=1 ta 4 clo
heÉin
üJrit.Flrr(, ,rì

LãNd i
tAddi t.ian t.ehIe estahlished BrrcJ er¡hihit.s¡rt]

I ot ! =nç* ( sc r ( Rs ) {.Gsl.1 ) {.1 i
rêèrl ( ccrf I I ] r eaf It] r eaf IIJ r cof t4.l ) i

t¡riteln(' ') i
¡¡ri telrr(' EtIUATION IlFf: lNEL¡ f.{Y' rcofEl .l rcofl--?I ir:r¡fll,llrc:c¡f[4] ) í
for i!=1 ùrr 4 do

. be-4i.rr
uritelrr{' ',

Ênd i
read(fr)i

{Init;ial vaIueB}
r[l=1i
difftlll=1í
e{rafIl]i=1i
rrl=l i
åFfJIi=100S-{alu¿i
vectElll=0î
vBct,f ?l i =0 i
vectt;lll=Eã.1 !,ti
vect. t 4l l =0 i
b ! =rr.l.t i
,t a-{.I . --( '{tteginnind nf cgele}

{FiridirrÉ eccrdi,nat.c-rs of F'oirrt.s i rr Fr.reeessior¡ hrl fiinrit¡r t rar¡sf nrnrat.rorr}
rêPetst
i i=i.1.1 i
for .ii=1 t.c¡ 4 do
'besin

if ( veet.f l l=0 ) oÍ ( cof E.jl=0 ) t.her¡
terr¡ll .i.li=O else )

l¡esi rr

te¡¡pl=(eof1...¡l'lvect El I ) rrod .ÉèJ.r,/i
if terrp=0 then
t errp | =ÉêI L, i
terrrEil l=terr¡

errd i
end ¡

far..i l=l t,o S rJo
Lregin

I



A 19

vecttil l=Éel eddlt.ernr['i] r vectti l 1 l-l
en,Ji

vect,E4ll=ternr[4.1 i
{Cotrrdirrateç fnurrd}
t1'est, fon nealrregE' fre=rro' of zFro'-coflForrerrt'srrir=rroo

Erc I =f) i
ir | =0;
for .il=1 t,n 4 clo
heÉin
íf vectEil=0 t'he¡ =rcl-lrc'l-1 else

hedi rr

¿Pi='ir'l|ì
e[,.ir,J l=(veet.[-i]) ¡rsd tr

ËFrd i
prrd i

t¡f ltc¡rr'-;:crc¡sl

ctssÉ;rt] of
0 î nf h i = +bç ( v l- 1. .l'-v l. ? I )'lebs ( v t ? 1'-rr I l.l )'] ahr ( v l' 3 -l'-v [ 4 ] ) i
I i ofh i=¡hs ( vl- 1 .1-'vt?l ) {'ahr*('/l::.'lI-'vl. :I.l ) Í
3l cifhl=vtll'-vt?lí
3l crfhl=0i
end i

'tReÉisterirr# reê:l Poirrt.s)
i f cf h=0 t,hen

L¡e4 i rr

ni=nJ'1i
grofIr¡]l=ií
ar I rr] I =1 000*1000*veet f I -1.1.1 0000*vect.[? ] l 1 0O*'rect. [ 3.1'l'vc¡e{.t 4 il i

en,J i
{.0frt.air¡i.rrÉ cJif ferenee set}

íf veettll=0 t,hen
þeÉ:irr

m 1=rr'1 1í
diffIrr] l=i.

urFld i
r.¡r'rti1( (vect.tl l=0) anri (veettll=0) -¡+nd (vc¡et'till=0) ) î

tCg,:1F enßrPleted]
wnitel¡('TlJTAl.. Nn fìF I"0INTÍì IIì 't7.ol'v' i::' '¡i')i

tThis p¡i¡t,-.out cher:þ..s Éenerat.in.f eRrJEtiorr for primit,ivj.tt* of Foì'rt]
{ ttiÊPlêr. af hasic restllt.s}
.[rroh=rro. crf point.s i.r¡ f{tser sFêeetr,oF=rlo of ¡r¡irr{:s ín ¡'lanes}
if i. =1ot, then

beÉ i rr

rroh | =n*ns'lns'l"a l1 i
rl=apIrroh] í
f o r þ" | =rroh clowrrt.r¡ i,l do
besirr
srafIh] I =Éroftk.'-1 l;
¿pIk]l=epIk-'1]

ercl i
"rr.[1]l=riElof[1]l=0i
Lrl=rrnh ';Jiv 7 ì

writ.elrri
writ,eì.rri
writ.elrri
urritei.ni
ü¡ri't.e1rr(' INnICE$ UF REAL r'nINTtì ',)i
writeLni
rrl=0i
uhi Ie r¡¡l=h do
hegirr
il=1i
n ì =7*nþ

ì,



uJhil.e (l-i¿,=7 ) arrd ( (nrli)¡'=rroh) ) t{o
heEin
write (É|"r,frm{.ilI10) Í
i ! =.j'l' 1

encl i
writ.elr¡(' ')ì
rr I Ën{'1

. errd i
uritelni
wri t,el n i
uri t elrr{' t. I$T flF ßFAt. r'nINTtì ' ) î
uritelni
i¡i=Oi
r¡hi 1e rr*,=b do
heEin
il=1î
nl=7*nì
whi.Le (("it';=7) arrd ((ml'.i )":.=rrçh)) cio

beÉin
r.¡ritF (arIrll.i]i1O)t
i ! =.i'l' 1

errd i
wFitÈln¡
rrl=rrl1

end i
for "ii=1 t.o 5 clo
hegin
urit.el rr

er¡d I
nopl=c¡s*ns 'los 'll î
f or k l=naP rJownt'o ? do
heÉirr
rJilftkl i -difftk'"1 l

errd i
diffflli=Oi
hl=nor div lOi
uritelrr(' IIFFETtENüli fiET Ilì ' , i
r¡riüElni
ir!=Oi
r¿h i l. e rr.j=h rlo

Lregirr
.i ! =1 i
rr I =10*n î
r¡hile ((i*ì=10) itnd ((¡nl'¡ ){=noP)) clo
besin
writ.e (dif f Irll'.i] lB) í
i I =.i{'1

end i
uritelni

- rr I =rrlI
end ô

'( l..iEtirrÉ ¡'il Ërres Ërrd seertrti nÉ f c¡r real poi rrts
tA Lterneti.veIv Listin:t Ft1orri{1"* int"r+l'r-iocf irrc
fo¡ .il=I t.o ó clo

beEin
u¡rit'elr¡

end i
if ir=1 ther¡

bÉËin
r I =rroÉ i
f or ,il =1 t,o rroF do
besin

.i1i=difff'¡l
ilt
ilr
il11
il

A20

i.n t.he platrelrJ
IJae r e 1tsr-rþtsl



End ¡
ërtd e J 5e
hegirr
íf ir=2 fher¡

heg i rr

r!=¡ohi
for .ii=1 t.o rrah do
Lrelin
sit.at.il l=É¡"of [..¡ ]

end i
errd Ê

enri )

if ir',il''3 the¡
l¡eÉi r¡

:il=0i
r.rl¡i Le i ril ot' do

hÈrEin
for .il=1. t.o r clo

beÉi n
if i=0 therr
plalil !=çt+[i] else
p I ell.il i =pl e[.i]'l'1

end i
,i1 l=r''1 Í
if pl¡t rl=l at I'hen

LreEirr
for .il=i1 clnu¡rrto I ¡lo
heÉin

p I nll.i'l'1 I ! =rl a[..i]
end i

plaIJ]!=0
errd i

{Bclerr fnr re¿l ir¡tersect.ic¡ns}
conr ! =0 i
for .i!=1 t.o rrah clo
besin
k!-1î
uhi le ( (pletkl*lErof Eil) ãrrcl (þ-t';r) ) da
helirr

l'. I --l'.'! I
end i

if rIatl,. l=El.ofF.il t.herr
begin

cor¡ ! =conr*1 ínelIeanr]l=Érof[.i]i
er'É i

end i
i.f ir=1 t.herr
ofhl=oJ'I else
nfhl=os'lai

if eor¡.¡cfh +,he¡
LreÉír¡
writeln¡
if ir=1 therr
writ.elrr('nEAt. PUINTfì nF FI.ANE 'tív'

eltÉ
writ.el.rr(' fifrÉiCE ', í¡' I'fFETSì ftFñ|..
h¡¡itelni
nl=0i
r¿hi 1e rrd"=3 do
hegin
il=1i
nrl=10*rri

A21
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h'hi1e ( (.i{::=10) arrd (t[r+.i)"I.=eom)) clo
hed i rr

writ.e ( reltm l.¡1 !{1) t
i i =.i'1 1

end't
û¡ritelni
rrf=r¡'11

errd i
errdi
i l=i.i 1i
(JrrCl Í
errcJ e l se

f rrr re¿1 I irreç hegi.nsl

A22

{Snarr
he#in

g--s | =ns ll i
nfht=(nsl'c) ¡li.u 2i
lirroi=nçsE(ns'lc'll ) i'le>tpee{ecf rt¡.ttrrhc¡r' r¡f I :irrt:¡;J
el=0i
cil=0î Íhe-<irrrrirrs cf nrair¡ cj'-lnorl

{Lirrer, êr'.? eLesçifincl hrr the mj.ninral i:JifferFncF,J hetr¡een the
i.rrdiees af t.heir Pai rrt.s']

whilcr ((e.ilirro) arrd (d{=1ot)) cln
heÉin
¡¡rl-Oi

'lnr r.¡i1l he t-lre nltrrher nf iteraticrrs c¡f t'he s¿n¡e
dÍffrlrFnce'J¿:Lrte i.rr t,hÈ tli.ffererrrìe"se+,¡ here IIr=GË'l'1]

i1=1i
{tleÉirrrrirrS of .¡.-tofiF.rh¡here .j i.s t.he rnsit.i.ari r¡{'pt¡itrt
tenrpnrtsrils fixFrI r¡ithirr difference-'set, t,o Incat,e ¡oi.nt
(i'l ;rrrc) differirr.É frorr it' bs d)

while .i'{=nsP do
hesirr

ii':li; .i;="

tre.É i n
f'or k l=l t.o .ir do
hegin

terr¡[P"] I=rli ffti'lk l
end i

er¡d i
I l=,irJ'1î
for kl=l t'o rrop ç1o

heEin
terrE k.l i =cli f f tk''.irl'll ot

en,J i
{Itiffererrce ÉÉt (0"rlarre) çhift.erl hrr ..i ra'çit'i.orr'-n}

temrl=¡l-'1i
hi=0i
while ((terrr''ld) ard (P"..no¡)) do
hegin

þ, i =k'll i
tenre i =terrF k l'-di f f f .il

en,l i
if t.enrp=d therr
hegin
firl=rrl1;
stEnrl i=,1 Íf f t Jl

errd i
i I =iJ'1 í

errd i
{errcl af srrall .i'-loop arrd beÉirrrrin.* of e

large.i-'lorrur sranninÉ the prrints of t'he real
[teer'-sraep.]'

rl



il=li A

r.¡hi 1e .i.:.=rroh cJo

begi n
.¡p; =¡6þ''.,i i
i f ..i¡.r0 t,herr
he-{i r¡
'I'or þ"1=1 t.o .ir cJa

tre€ i r¡

{:err [ 1,. ] I =S rnf t i l]'. l
errd i

t:rrçJ í
1 I =.jp'l'1 i
f or P. Í =1 t,o rroh do
heÉin

23

'LerrIk] I =srcfFh''.jP1 l.l.nt
errd Ê

lenrrl=cl''1 i
ki=0É
r¿l¡i 1e ( (terrr¡"d) er¡d (k'':'nc¡h) )cio

hegi n
l¿Î=l"11i
Ierrr I =terr I k' -t''É nof t.i ]

e'nd i
if tenrP=d therr

heã i, rr

for Il=1 t.c¡ rr cJct

heg i. rr

sF [ ]. :l 1 =5raf t.il'-'-t.t I I í

{sztLl i., the shj.ft nf ihe l"i¡¡erJ zoinf, çrofll .il nf ùhe l'e.'rI tPeee fr(1rr ihe
lcrwer irtde>t irr t.he differFncF set. h*virr* t.he cJiffererree.r:J irr nr.lel;'t'i-crt.ft'
rer.rÈilFnt,ç t,he irrclex of orrc¡ of t,he pLtsnea' nonl',¡]ini.rr.J t,he znirrt Bnd it:'
'Fol lower hu dif fererrce cl .J

i f Ért I l'10 then
É¡ t I I I =gP c I I J'I ot i

errd i
isl=ii
'Íor ni=1 t.o 2 rlo

heË i rr
'lor il=1 t.n rror' rJo

LreHi n
ter¡[i ] i=(diffEil'l'.tpIrr'-l) rnor:i'[ot'

end i
{tenrIi] is É reÉL pojr¡t. fol lnwed bs arrot.her real rt¡:ilr'1. t,¡it.h tlilference d]

i l=1i
while ( ( (t.er¡f i+11'-t.errEíl)::'0) "rrrd ( j.':.nr¡p) ) clo

heSirr
i l=i'l 1

errd ï
if i'l,r¡op t.herr

LreÉin
i1 l-rroP'-i i
for l'"1=1 to 'iL do

Lre.ç i rr

r I eI rr r k" ] i =t'err l. i'tl'"1
errd i

er frd i
..iPl=rtoP'-i.'ll i
for þ-l=..iP f,o rrnP do

treÉi r¡

¡, I c t ¡r r k I I =telr t þ''-.ir"l 1 l
en'l i

' endí
{f,t¡r-.¡ rlane; ãÊnertst,i nø Ii ne f o¡.lnd}

I
I

I



fcrr i. t=l t.r: rrc¡p clfi h 2\
heHin

'berr[. i ]l l-r"Iet I r i l
end i

{f indinE i.nterseet i.ons of the tr'¡o ¡lanes}
corr | =0 í
fer il=i t.o rror c{o.. heçlin

þ" I --J.;
white ((plct?rkl*;'plc.'1.:tril) rlFrd (1,..'rror) ) clo
hegin

þ.1-lt'11
Etttj t

if r'IetSrkl=pIc[1 r i] t.herr
beÉi n

cam | -r¡orr'l'l- í
liEcnr¡l l=p1eIJ.r i]

errd i
end i

{Nexf,¡ f inrJ rÉts1 Pointç nf líne}
zrcl=0i
for il=1 t'o coßr do

lreÉ i n
lli=1i
uhi1e ((tiIi.]l''-qroftk. l) anrl (P".'lrrnh)) rlo
beÉin

l'. I -1,"'l l
en,J i

if 1iIi]=Erofil¿. 1 t.her¡
hegin
Êrcl=rrc'l-1i
¡epIere] l=1i l- i l

e.rrd i
en,J i

{eheek for çnral Ler difference}
bl=0í
i1l=dJ'1â
irI"tt'l 1i
i i =0 i
rl=0i
r^rhite ( (illr'=cl) arrcl (.ir!'=tl) ¡rrcJ (.i.ri.¡¡¡) clrrd (r=O) )

do
bes i r¡

ii=iJ'1i
þ. l=0i
r.¡hi.le (("¡1]:,.=cl) arrcl (.ir.lr=d) ar¡cl ((i'lþ")*i¡rc) arrd (r=0)
)do
he-Éi n

1,. l =kJ 1i
hi=h'll i
i1 I =rerl i'lkl'-rePE i I i
ir I =rerI i ]-'rePl. i']k lJ'lot â
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