UNIX F455

6A-ω-Aminoalkylamino-Cyclodextrins: Their Preparation and Studies of Their Self-inclusion Complexes and Catalytic Nature.

Michael J. Field.

Thesis submitted for the degree of
Doctor of Philosophy
In
The University of Adelaide
Faculty of Science.

Table of Conte	ents	i
Acknowledgm	ents	v
Statement		vi
Abstract		vii
Abbreviations		ix
Chapter 1: Int	roduction.	
1.1. Gen 1.1.1	eral and structural properties of cyclodextrins. Nomenclature.	1 2
1.2. Cyc	lodextrin Host-Guest Complexes.	3
1.2.1.	Detecting Inclusion Complexes.	5
1.3. Cyc	lodextrins as enzyme mimics.	8
1.3.1.	Host/guest Complexation and Catalysis of Nitrophenyl Esters.	8
1.3.2.	Geometric Requirements of Complexation.	10
1.3.3.	Chain length effects on the inclusion complexes of phenyl esters with native cyclodextrins.	11
1.4 Mo	dified Cyclodextrins.	15
1.4.1	Modifying the Hydroxyl groups of cyclodextrins.	17
1.4.2	Metallocyclodextrins.	21

1.4	1.3	Other Aspects of Cyclodextrins	24	
References For Chapter 1.				
Chapter :	Chapter 2: Catalysis Studies of Substituted β-Cyclodextrins.			
2.1	Introd	luction.	29	
2	2.1.1	Catalysis Studies With Native Cyclodextrins.	29	
2	2.1.2	Catalysis Studies With Modified β -cyclodextrins.	31	
2.2	Chair ester	Length Effects In The De-esterification of 4-nitrophenyles.	35	
2	2.2.1	Synthesis of p-Nitrophenyl Benzoate and p-Nitrophenyl Propanoate.	36	
2	2.2.2	Synthesis of 6^{A} -(2-aminoethylamino)- 6^{A} -deoxy- β -cyclodextrin and 6^{A} -(6-aminohexylamino)- 6^{A} -deoxy- β -cyclodextrin	37	
2.3	Solve	ent Effects On The Reactivity of 4-Nitrophenyl Esters.	40	
2.4		olysis of 4-Nitrophenyl Esters By Modified clodextrins.	43	
2.5	Inhib	ition Studies.	48	
2.6	Prod	uct Analysis.	50	
Con	clusion	s.	51	

-	Ш	-

References For Chapter 2.			52
Chapter	13: In	tramolecular Complexation in Modified β-Cyclodextrins.	
3.1	Inti	roduction.	53
3.2	Мо	lecular Knots.	53
	3.2.1	Detecting a "Molecular Knot".	56
3.3	Syı	nthesis of Potential "Knotted" Cyclodextrins.	58
3.4	Sel	f Inclusion Studies of 6 ^A -(6-aminohexyl)amino-	60
	6 ^A -	deoxy-β-cyclodextrin.	
	3.4.1	Self-Complexation of 6 ^A -(6-Aminohexylamino)-6 ^A -deoxy-β-	61
		cyclodextrin Modified With Terminal Groups Incorporating	
		An Adamantyl, Cubyl or Di-methyl Cubyl Group and	
		the Cubane Dimer Adamantyl, Cubyl, Di-methyl Cubyl Blocking	
		Groups and the Cubane Dimer.	
	3.4.2	Self-Complexation of 6 ^A -(6-Aminohexylamino)-6 ^A -deoxy	63
		-β-cyclodextrin Modified With Terminal Groups Incorporating	
		Norbornyl and Noradamantyl Terminal Groups Norbornyl	
		and Noradamantyl Blocking Groups.	
	3.4.3	Dimethylcubane Substituted β -Cyclodextrin Dimer.	72
3.5	Co	nclusions.	78
3.6	Po	otentiometric Titration Studies.	79
Ref	erenc	es For Chapter 3.	81
Chapte	r 4: A	ttempted Synthesis of β-Cyclodextrins Mono-Substituted	
With M	lulti-d	entate Metal Binding Substituents.	
4.1	Int	roduction.	83
4.2	At	tempted Synthetic Preparation of β -CD-ED3A.	86

		- iv -
4.3	Attempted Synthetic Preparation of β -CD-PD3A.	94
Reference	ces For Chapter 4.	97
Chapter	5: Experimental Procedures and Protocols.	
5.1	General Physical Methods.	99
5.2	Experimental Protocols and Results.	100
5.3	Self-complexation Studies of Cyclodextrins.	114
5.4	Kinetic Measurements of the De-esterification of p-nitro	117
	phenylbenzoate and <i>p</i> -nitrophenylpropanoate.	
	5.4.1 Preparation of Solutions for Catalysis Studies.	119
5.5	pH Titration Studies.	122
Publicati	ons.	130

ABSTRACT.

This thesis describes the synthesis and characterisation of some 6^A -aminosubstituted β -cyclodextrins and studies of their inclusion complexes. Particular attention is given to the role of the host/guest complexes in the de-esterification of various p-nitrophenyl esters by 6^A -(2-aminoethylamino)- 6^A -deoxy- β -Cyclodextrin (β -CDen). The reaction kinetics for the reactions between β -CDen and the two esters p-nitrophenyl benzoate and p-nitrophenyl propanoate were investigated in both 100% water solution and a mixed solvent system of 70:30 H₂O: Acetonitrile. Reaction rates for the deesterification of both esters show a direct concentration dependence on the host β -CDen. No instances of Michaelis-Menten kinetics where detected and the presence of an alternative reaction pathway to the reaction products was believed to be present. The addition of acetonitrile to the reaction system saw a marked reduction in overall reaction rates due to the influence of acetonitrile on the transition state solvation and diminution of the cyclodextrin "hydrophobic effect" that facilitates the formation of host-guest complexes in aqueous solution.

The synthesis and characterisation of potential "molecular knot" modified β -cyclodextrins was also investigated. The reactions of 6^A -(6-aminohexylamino)- 6^A -deoxy- β -cyclodextrin with the esters p-Nitrophenyl noradamantane-3-carboxylate and p-Nitrophenyl norbornan-2-acetate lead to the formation of the corresponding 6-aminohexylamino substituted cyclodextrins. The substituents of each of these derivatives are complexed within the annulus of the modified β -cyclodextrin. Addition of adamantane-1-carboxylate to solutions of these modified cyclodextrins causes the noradamantyl and norbornyl substituents to compete for complexation within the annulus with adamantane-1-carboxylate

The reaction of1,4-bis(*p*-nitrophenoxycarbonyl)-2,3-dimethyl cubane with 6^A-(6-aminohexylamino)-6^A-deoxy-β-cyclodextrin gives a cyclodextrin dimer. The cubanyl group is complexed within the annulus f one of the cyclodextrin entities giving a product that is asymmetric on the NMR time-scale. The addition of two equivalents of adamantane-1-carboxylate to the dimer generates a symmetric 1:2 host-guest complex where the cubanyl group has been displaced from the annulus and each cyclodextrin entity has complexed a molecule of adamantane-1-carboxylate. The pK_as of these

modified 6-aminohexylamino- β -cyclodextrins were determined by potentiometric titrations.

The synthesis of modified β -cyclodextrins mono-substituted with a multi-dentate metal ion binding substituent was also attempted. Synthetic attachment of acetic acid pendant "arms" to the primary and secondary nitrogens of 6^A -(2-aminoethylamino)- 6^A -deoxy- β -cyclodextrin (β -CDen) and 6^A -(3-aminopropylamino)- 6^A -deoxy- β -cyclodextrin (β -CDpn) to afford the modified cyclodextrins β -CD-ED3A and β -CDPD3A. These attempts were unsuccessful due to the formation of a cyclic piperazine intermediate compound (in the former case) that barred the addition of the acetic acid pendant arm to the nitrogen attached to the $C6^A$ carbon of the β -cyclodextrin. This compound was unsuitable for metal binding and alternative methods of arm attachment resulted in similar products.

The nitrogens attached to the C6^A carbon of β -CDen and β -CDpn were non-nucleophillic and no evidence was ascertained to suggest that substitution of an acetic acid arm was substituted onto the C6^A attached nitrogen in either the β -CDen or β -CDpn system. Mass spectra of the isolated modified β -cyclodextrin products from each of these systems suggested that the major products of the substitution reactions between α -chloroacetic acid and β -CDen and β -CDpn were not the tri-substituted multidentate systems required.