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Summary

The subject of this dissertation is game-theoretic models of patch defence in the

quasi-gregarious parasitoid Tri,ssolcus Basali,s Wollaston (Hymenoptera:Scelioni,dae)

and the relation of the Evolutionary Stable Strategies derived to the information ex-

changes between opponents.

Chapter 1 reviews game-theoretic modelling in Behavioural Ecology, with an em-

phasis on parasitoid behaviour, information exchange and strategies used by owners

or intruders of some resource. A discussion of the biology and behaviour of T.

basali,s follows, emphasising pairwise patch competition. Modelling approaches are

then discussed.

Competition for patch residency is the subject of Chapter 2. Models of resource

allocation, given the outcome of competition as resident or intruder, are constructed'

We then present a model of patch competition with perfect information exchange

of the opponent's investment. This model is contrasted with models of patch com-

petition in which each player is aware of it's own investment and a distribution of

possible opponent's investments'

Chapter 3 focuses on the transition of the resident from a host searching strat-

egy to patch pure defence and the transition of the intruder from attempting to

"steâ,I" ovipositions to playing the waiting game. Models of optimal intruder patch

return rate are constructed, under the assumption that the patch is least defendable

whilst the resident is itself ovipositing. Given an intruder optimal return rate, the

resident's switch from searching to guarding is then calculated. We then consider

a stochastic dynamic programme of multiple intruder returns where the intruder

xll



decides whether to return or to play the waiting game, based on it's past successes

and failures in ovipositing on return to the patch'

The waiting game is the topic of Chapter 4. Constant payoffs from superpara-

sitism and no information exchange to the intruder about the resident's leaving time

form the assumptions in this chapter. If there is no resident departure information

exchange, we prove that no ESS exists. The dynamics of resident/intruder stratgies

are simulated next. Finally, we consider mixed strategies, these being shown to be

at best, neutrally stable.

We change two assumptions in the previous analysis of the waiting game, non

constant superparasitism payoffs and partial information exchange of the resident's

departure time passed to the intruder in Chapter ??. Here we show that as the

intruder always returns to superparasitise, this gives the resident the information

advantage to leave the patch at a time that takes the intruder's imminent return

into account. patch leaving strategies will therefore form a Stackelberg equilibria.

A model of partial resident departure information transfer is then presented.

A discussion of further topics of research and a general conclusion follows in

Chapter 6.



Chapter 1

Introduction and Overview

1.1 Adaptationism and Behavioural Ecology

This dissertation focuses on models of patch competition and defence in the par-

asitoid Trissolcus basalis (Hgmenoptera:Scelioni,dae)through an adaptationist per-

spective (Alcock,[l]). The adaptationist approach views behaviour, not as a series

of random acts, but rather as a sequence of actions undertaken to maximise indi-

vidual fitness (Stephens and Krebs,lTTl). Though the adaptationist approach has

been the subject of criticism and debate, without viewing behaviour as a series of

actions to increase fitness, either directly or indirectly, it would be difficult to un-

derstand the underlying causal mechanisms of behaviour common within and across

species (Dennett,[1a]). The study of how behaviour has evolved and is influenced

through interactions of individuals with conspecifics and the external environment

is the study of Behavioural Ecology (Hamilton,[29])'

1.1.1 Optimisation: Rate and State based Models

One of the first examples of the application of the adaptationist approach to study-

ing behaviour came with work on predator selection of prey type when foraging

1



CHAPTER 1. INTRODUCTION A¡üD OVERVIEW

(Stephens and Krebs,l77D. Under the assumption that the long term rate of energy

intake determines evolutionary fitness, this prey selection model assigned a simple

accept/reject rule to prey types, based on energy returns and encounter rate asso-

ciated with the considered prey type (Stephens and Krebs, l77l). With the same

theme of maximising long term energy intake, Charnov modelled optimal patch leav-

ing times employed by foragers encountering patches whose marginal rate of energy

return decreased over the course of patch exploitation (Charnou,[6]). The intuitive

insight of this approach can be seen from the simple rule that foragers should leave

the patch, when the rate of intake in a patch drops below that of the average intake

rate from the habitat (Charnov, [6]).

Though the rate maximising models of early optimal foraging theory appealed be-

cause of simplicity of construction and prediction, the link between energy rate max-

imisation and evolutionary fitness was not clear (Mangel and Ludwig,[51]). Foraging

for food is not the only activity animals are engaged in, with decisions such as the

apportionment of time between looking for mates and foraging for food clearly affect-

ing fitness (Mangel and Clark,[50]). Before any progress in understanding the forces

affecting behavioural decisions could be made, models that mapped behavioural

decisions directly to frtness consequences needed to be considered (Stephens and

Krebs,[77]). Another important, but overlooked, assumption of simple rate maximi-

sation models was that decisions were made independent of the internal physiology

and experience of the animal (Mangel and Clarke,[50]). Empirical studies of par-

asitoids indicated that both egg load and age influence behaviour (Godfray, [26]).

Similarly, some species of parasitoids are known to exhibit associative learning,

thus ultimately, experiential states influence fitness related decisions (Wardle and

Bowden,[84]).

Having realized that behavioural models should take into account both phys-

iological and experiential variability, as well as modelling decisions that directly

influence fitness, Iwasa applied the technique of stochastic dynamic programming

(SDP) to model oviposition decisions in parasitoids with different egg loads and

2



CHAPTER 1. INTRODUCTION A¡\ID OVERVIEW

mortality levels (Iwasa, Suzuki and Hiroyuki,[38]). Common to all SDP approaches,

the state of the parasitoid, the set of possible actions taken by the parasitoid within

that state and a transition function, which specifies the subsequent state, once a

decision is enacted must be specified. Given these three ingredients, optimal state

dependent decisions can be calculated using the dynamic programming algorithm

(Fitar and Vrieze,[23]). In comparison to rate maximisation models, for example,

parasitoids are predicted to accept lower quality hosts for an internal state of large

egg load and old age (Iwasa, Suzuki and Hiroyuki,[38], Mangel,[45]).

State dependent models have been used to determine the conditions under which

post-oviposition host marking is advantageous (Roitberg and Mangel,[68]). These

models consider the spread of a "double-mutant", an individual that can both mark

hosts and detect marked hosts. One of the conclusions of this work was that mu-

tants that can mark hosts have a considerable advantage when hosts are distributed

in a spatially aggregated manner. Marking mutants will not waste time in super-

parasitism when unparasitised, higher quality hosts can be readily detected within

a patch, due to the level of aggregation (Roitberg and Mangel, [68]).

If an organism lives in a unpredictable changing habitat then fitness will be in-

fluenced by the ability to obtain information from the environment and use this

information adaptively (McNamara and Houston,[58]). When patches of hosts or

food vary in quality, the question of how often foragers should sample each patch

type is of fundamental importance, and involves estimating or learning information

about the current state of the environment (Stephens and Krebs,[77])' A related

problem known as the "trryo-armed bandit" problem asks when you should give up

sampling one of two resources in order to maximise energy returns, given only the

variance in per-sample payoff of the two resources is known, not the mean per-sample

energy payoff (Holland,[34])'

One way of tracking a highly variable environment comes by apportioning im-

portance to current estimates of a parameter versus past estimates of this parameter

(McNamara and Houston,[58]). The so called linear operator model is the simplest

3



CHAPTER 1. I¡\ITRODUCTION AIVD OVERVIEW

implementation of this idea (McNamara and Houston, [57]). An estimate of a pa-

rameter at time t, it"¿, ís found by taking a convex combination of the current sampled

value p,, and, the previous parameter estimate at f -I, þî-t, so l¿ - ap'+ (7 - a) pî¡'
The parameter o € [0,1] determines weighting of the past compared to the present

and it is this past/present updating that is the common theme of most learning

algorithms, such as the Bayesian Method (McNamara and Houston,[57]) and the

Sliding Window method (Mangel and Roitberg,[52])). Models of learning have been

applied both within the static and dynamic state dependent context. For example,

the Bayesian method was applied to model a prey's estimation of the presence of

predator, given only partial information as to the presence of the predator at any

given time (sih,[73]). within a dynamic context, a host acceptance model of a

tephritid fruit fly incorporated an information state as one of the dynamic variables

(Mangel and Roitberg,[52]). At each time ú, the last 5 encounters with either clean

or marked fruit were recorded, this information being used to estimate the proba-

bility of future encounters with unmarked, acceptable fruit (Mangel and Roitberg,

[52]).

L.L.2 Game-Theoretic APProaches.

Well before the advent of the neo-Darwinian Synthesis (Futuyma,[25]), many schol-

ars of natural history recognised that intra-specific competition generated as much,

if not more selective forces in the evolution of a species (Darwin'[13]). Geneticists

coined the term "frequency dependent selection" (Futuyma,[25]) when viewing the

evolution of a trait whose fitness depended on the frequency of other indivirluals in

the population with that same trait. Frequency dependent selection is most clearly

seen when studying sex allocation in plants and animals (Charnov,[7],Godfray'[26]).

The statistician and biologist R.A. Fisher used frequency dependent arguments to

explain why most homogeneously mating populations should have a sex ratio of

approximately 50% males and 50% females (Charnov,[7]). When studying sex allo-

4



CHAPTER 1. I¡\TTRODUCTION A¡\ID OVERVIEW

cation in parasitoids, W. Hamilton noted many gregarious species mated locally, at

the emergence site, with mated females dispersing, to find new patches (Hamilton,

[28]). Through population genetic simulations, an "unbeatable sex ratio", that is a

ratio of males to females in the population, under which no individual could obtain

a selective advantage in applying another sex ratio to its siblings (Hamilton'[28]).

Following the development of game theory in the application of economics (von

Neumann and Morgenstein,[81]), a simple model of animal conflict was developed by

Maynard-Smith and Price to relate the costs and benefits of either passive or aggres-

sive displays to an optimal frequency of aggressive display. This model was called

the Hawk-Dove game (Maynard-Smith, [54]), comparing aggressive "hawk" strate-

gist with a passive dove strategist. At the optimal frequency of aggressive display, no

individual can increase its fitness by adopting another aggressive display frequency,

thus the optimal frequency was termed "uninvadable" by some mutant individual,

and the frequency is an "evolutionarily stable strategy" (ESS) (Maynard-Smith,

[b4]). To the mathematical biologist, a more succinct expression of the criterion

of uninvadability comes from viewing the expected fitness of an individual, as a

function of some strategy parameter (such as the frequency of aggressiveness) zt,

and the strategy parameter adopted by conspecifics in the populatlon upop denoted

E(u,uooe).An ESS u* must satisfy the criterion of best expected returns against

any opponent, when adopted by all members of a population,

E(u*,u*) > E(u,u*), (1.1.1)

and the strategy must spread, when introduced by some mutant (Mesterson-Gibbons,

[61]), that is

E(u*,u) > E(u,u) (1.1.2)

The second criterion may be replaced by an entrenchment condition: strategies

difierent to u* cannot spread if introduced, once u* is established. Thus, for an

alternative strategy u, if in small frequency q within the population, so the overall

5



CHAPTER 1. INTRODUCTIO¡\I AI\ID OVERVIEW 6

population strategy is P : qu + (l - q)z* then

E(u*, P) > E(u, P). (1.1.3)

Criterion one is termed the Nash Equilbrium condition (Fudenberg and Tirole,[24])

and criteria two and three are stability criteria, guaranteeing that the ESS, once

established, will stay dominant in the population.

The Hawk-Dove game's importance came not from any attempt to find a realistic

biological model of animal conflict, but in directing both experimental and theoreti-

cal biologists towards analysis of conflict and interference competition through cost

based, individual fitness benefit decisions (Maynard-smith,[54]).

central to finding an ESS, the Bishop-cannings Theorem (Bishop and cannings,

[3]) states the requirement of any strategy, before it can be considered part of the

evolutionary stable strategy set. The theorem states that for any set of strate-

gies 11, 12,..,In applied in the ESS 1' expected payoffs from adopting any of these

strategies against -I are equal,

E(Ir, I) : E(Iz, I) :,. ..,: E(In,I) : E([, I)'

The expectation of the ESS / against itself, E(I,I) is called the value of the game

(Fudenberg and Tirole, [2a]). In symmetric zero sum games' this value will always

be precisely zero.

paths of ESS research have followed similar lines to that of classical optimisa-

tion research, with initial static models of interference and conflict extending to the

dynamic, state dependent context (Houston and McNamara,[37]).

An example of a static model comes from a model of ESS patch leaving rules,

under interference competition (Yamamura,[88]). In this model, animals compete

for patches that supply energy, with only one individual allowed on the patch at any

one time. Once a patch has been exploited, it is removed from the environment. The

problem is to frnd the ESS patch leaving time, given a constant supply of unused

patches, and a number of conspecifics, as to maximise the long-term individual rate
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of energy gain. An optimal patch leaving time was determined, with the property

that the larger the ratio of competitors to patches, termed the competi,ti,ue i,nten-

sity, the longer a player stayed on to exploit diminishing returns from the patch

(Yamamura,[S8]). To contrast this model with that of Charnov's, the competitive

intensity replaces rate of encounter of patches, as the most important criteria when

making decisions as to patch leaving times (Yamamura'[8S])'

Including dynamism into game theoretic models introduces a vast increase in

the complexity of mathematics required to find either explicit or numerical ESS

strategies (Mangel and Clarke, [50]). Such difficulty arises from the observation

that by introducing time and state dependency into the model implies that a player

must estimate both the state and age of the opponent, when calculating state depen-

dent best response to an opponent's strategy (Mangel,[50], McNamara and Houston,

[5e]).

Dynamic state dependent games have been applied to understanding such be-

haviours as the tradeoff between singing to attract a mate and foraging to find

food (Houston and McNamara,[37]), scanning to find predators (Kaitala et al,[40]),

parent-offspring conflict in feeding and fledging (Clark and Ydenberg,[9]), habitat

selection (Mangel, [47]) and superparasitism (Mangel,[50],Visser,[80], van der Ho-

even and Hemerik,[7S]). The model of van der Hoeven and Hemerik addressed when

should a female parasitoid superparasitise the host, given knowledge of the number

of eggs present in the host, and the number of searching conspecifics present' As

with the study of competitive patch leaving times, the ESS level of superparasitism

depends on the ratio of competitors in the patch to hosts present, as well as the

remaining eggs of the individual (van der Hoeven and Hemerik,[78]) .

Game theoretic models in Behavioural Ecology may be partitioned into models

where the individual plays against "the field", such as the sex ratio games, or where

the individual directly competes against another individual (Maynard Smith,[54]).

Conflict models may be further partitioned into two classes, the first class being

games of timing, where no information about the resource value or costs is exchanged

7



CHAPTER 1. INTRODUCTION A¡\ID OVERVIEW

during the contest, but is reflected in the contest outcome. The second class, state

dependent sequential assessment games involves the assessment of the relative fight-

ing strength of each player during the contest (Bishop and Cannings,[3],Enquist and

Leimar,[16]).

Games of timing approaches involve continuous time models of conflict, where

players "fight" for a resource with some specified value to each player. Fighting

refers to the mechanism by which one player wins over another. A winning indi-

vidual could either be the player that persists longest in display the so called war

of attrition, or the player that persists longest in display or the player last to be

injured, the graduated risks game (Bishop and Cannings,[3]). In either game, in-

definite persistence will have fitness consequences, since there is an associated time

cost in fighting, assumed in most models, to be an energetic cost (Marden and

Wagge,[53]). Two classes of persistence solution arise, depending on the assumption

of what information players have about the opponents reward from winning and

cost of persistence (Mesterson-Gibbons,[63]). If players have perfect information

and equality in costs and rewards, then the evolutionary stable persistence time is

determined by a probability distribution over a set of persistence times (Bishop and

Cannings,[3], Sjerps and Haccou,[76]). For example, in the war of attrition with

equal reward V and per unit time linear cost C, lhe optimal persistence time is

drawn from the exponential probability density p(t) : $ exp(-Çt).

Imperfect information as to the opponents rewards and costs of fighting form

another class of timing games, with more realistic assumptions, increased mathe-

matical difÊculty and richer predictions (Bishop, Cannings and Maynard-Smith,[4],

Hammerstein and Parker,[3l]). Games with variation of rewards are called wars of

attrition with random rewards (Bishop, Cannings and Maynard-Smith,[4]). Varia-

tion in rewards results in altering the set of ESS persistence times, that is the set

of times where the ESS density is non-zero, adopted by each player (Hammerstein

and Parker,[3l]). Given a set of relative player rewards in fighting, Vt,Vz,...,W,

where V 3 Vz (, ..,{ Ç, this partitions the set of persistence times into disjoint

8
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intervals ltor,turf,ltor,tur],...,\ton,ú6r,], with persistence interval lt"¡,ta¡) associated

with the player having reward value V¡. The persistence intervals reflect the re-

wards to be won, since if two players, labelled j and k have V¡ S Vn then t6¡ 1 t"¡,

(Bishop,Cannings and Maynard Smith,[a]). In the limit of continuous variation in

rewards for winning the contest, with the reward V drawn from some continuous

probability distribution, the ESS is a pure strategy "persist till time Íy" where úy is

some monotonically increasing function of the reward V (Mesterson-Gibbons, Mar-

den and Dugatkin,[64], Enquist and Leimar,[16]).

State variables such as energy reserves have been incorporated into war of at-

trition models (McNamara and Houston,[59]). The exponential distribution persis-

tence strategy was shown not to be an ESS, with alternative strategies able to invade,

though the general state dependent persistence distribution is yet to be found under

a range of realistic biological assumptions (McNamara and Houston,[59]).

Of current interest is the extension of the games of timing approach to n-person

wars of attrition (Haigh and Cannings,[27], Sjerps and Haccou,[75]) and the applica-

tion of such models to dispersive behaviour (Sjerps and Haccou,[75]). Observations

of the dispersal behaviour of various insect larvae indicate there are tradeoffs in max-

imising both food intake and survival at the pupal stage (Sjerps and Haccou,[76],

Blackwell, [5]). In order to avoid starvation, some larvae must migrate to another

patch as resources from the host plant are scarce because competitors also consume

the resource. Migration, however, incurs a large potential mortality cost. When two

of more individuals remain on the host plant, persistence strategies can be modelled

as a G generalised war of attrition. If y(¿) is the payoff to the player with the

earliest migration time ú, and,W(t) the payoff to the remaining player, then the ESS

migration strategy is to leave with hazard )(¿) : ffifu (Sjerps and Haccou, [76]).

If players are related, possibly through females laying clusters of eggs on the host

plant,thishastheeffectofaIteringthemigrationtendencytoÀ(ú):ffi
where r is the relatedness coefficient between individuals'

In contrast to the games of timing approach, individuals that assess the rela-

9
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tive fighting ability of the opponent through a series of escalated bouts are termed

sequential assessment games (Enquist and Leimar,[16, 17]). Opponents, labelled

players one and two in the sequential assessment game attempt to assess relative

fighting costs, here defined to be the relative cost to player one, against player two,

0n:ln(c2f c), where c¡,i :1,2 is the fighting cost imposed by player j against

the opponent. In a series of bouts each player samples á, plus some observational

error. Let the i¿å sample of the relative fighting cost be denoted by X¡4 strategy is

specified by a sequence of numbers {Sr, Sr, ....} and the persistence rule "give up af-

ter step n" if. X1> Sr, Xz) Sz,..',Xn-t) Sn-r,Xn I S"'Through the application

of dynamic programming, the ESS is found to be a sequence Sn,fr :0,1,... with

properties dependent on the sampling error of the relative fighting ability and bout

number. Sampled relative fighting estimates constitute a walk through a "causâl

factor space", and when the sampled value crosses a critical threshold, individuals

desist. In accord with biological intuition, animals with the same fighting costs,

0n:ïzt -- 0, are predicted to persist the longest in fighting, though through sam-

pling errors, a stronger player may ocassionally desist before the weaker individual.

As the relative fighting ability becomes increasingly skewed, fights become shorter

with less assessment errors from the stronger player (Enquist and Leimar,[t6, fZ]).

1.1.3 Sensitivity of Games Models to Information Exchange

Predicted strategies at the evolutionary stable state depend critically on the assump-

tions of information exchange between opponents (Fundenberg and Tirole,[24]). This

is best illustrated by considering an important theorem, relating the set of possible

stable strategies, given contestants can perceive asymmetries, such as role or height,

between one another. The theorem states that if two contestants have any perceived

asymmetry, even if this asymmetry is not related to any fitness outcome, then an ESS

cannot be a mixed strategy (Selten,[72]). Though this theorem is difficult to prove,
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the result can intuitively be seen by an argument developed in (Maynard-Smith,[54]).

Suppose animals can adopt two sorts of roles, owner and intruder, with an ESS con-

sisting of playing strategy -I in role one, and playing strategy "I in role two. Further-

more, suppose the strategy .I is mixed, adopting strategy A with probability p and

strategy B with probability (t -p). By the Bishop-Cannings theorem, for l to be an

ESS, the expected payoffs in role one must be equal, E(A, J) -- E(8, J) : E(I , J).

For l to be an ESS in role one then E(I,A) > E(A,A) and E(I,B) > E(B,B).

Decomposing strategy I : pA+ (L - p)8, then the identities E(B,A) > E(A,A)

and. E(A, B) > E(8, B) must be proved to satisfy the ESS criterion. If players can

assess roles, then a player in role one will never meet another player in role one, thus

the quantities .Ð(4, A) and E(B,B) cannot be calculated, thus we cannot check the

ESS criterion. Mixed strategies in asymmetric games can be neutrally stable, in

that the mixed strategy will do equally well against a set of pure strategies, but

any mixed strategy will not invade a population against pure strategy alternatives

in assymetric games.

Errors in role perception can lead to ESS mixed strategies. The most impor-

tant example of this occurs in the assymetric war of attrition, (Hammerstein and

parker,[3l]) where roles A and B are distinguished by the persistence payoffs and

attrition costs. In this approach, rewards and costs of a player in role A against a

player in role B are denoted by V.qn,C¡¿ r€spectively. With errors in the perception

of roles, two players, both in role A may contest, with persistence payoffs and costs

Vt¡,Ct¿,. Hammerstein and Parker established bounds on the probabilities of both

players occupying the same role, under which mixed strategies can be an ESS' If

ptn is the probability that player one is in role A and player two is in role B, then

the asymmetry conditions p¡sV¡n ) panVn3 and Pn¡Cø,q' ) wuCet are required

for the existance of ESS mixed strategies, provided role A is favoured in payoffs,

that is Ye > W. Derived ESS mixed strategy densities for roles A and B do not
- tAB wBA

overlap, with players having favoured payoffs, that is players in role A, persisting

longest (Hammerstein and Parker,[31])'
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Studies of the war of attrition in which players either have perfect informa-

tion and identical states (Bishop and Cannings,[4]), imperfect but partial informa-

tion about two states (Hammerstein and Parker,[3l] Bishop,cannings and Maynard

smith,[4]), or no information about the opponents state (Mesterson-Gibbons,[63])

show a continuum from entirely mixed strategies to pure strategies with mixed

strategies forming the ESS when opponents possess some probability of being in the

same state as the oPPonent.

Information câ,n alter, not only the type of stable strategy, pure or mixed, but

also form of equilibria (Sjerps and Haccou,l74l,, Fundenberg and Tirole,[24])' Cen-

tral to the definition of the ESS is that strategies must form a Nash equilibria' The

process by which a Nash equilibria is attained can be explained with the notion of

the best response strategy. suppose players in a population adopt strategy uoo, and

a mutant adopts strategy 't;*u¡, to maximise its lifetime frtness when competing with

uoo, strategists. The strategy u^r¿ is termed the best response to the the population

strategy. If Br is defined to be the best lesponse function, then

urnut -- Br(u,p").

A Nash equilibrium strategy u* satisfies the fixed point equation

u* : Br(u*).

The Nash equilibria occurs when neither player has any advantageous information

about the opponents strategy before the commencement of the game' this being

seen by a general examination of the types of Nash equilibrium strategies derived,

when players have identical or distinct states. when players are in identical states,

the Nash equilibria are mixed strategies, these being pre-emptively unpredictable

to the opponent. If players have different rewards and costs associated with direct

conflict, players adopt pure strategies. Though the pure strategies depend on the

associated rewards and costs, they cannot be pre-emptively assessed by the oppo-

nent, as rewards and costs are internal states of the opponent.
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Suppose instead, that a player can preempt the strategy used by the opponent,

due to the respective roles of each player. Such preemption permits optimisation of

payoffs, in light of the opponents strategy (Sjerps and Haccou,[7a]). Thus, given the

constrained player adopts some strate1y u", then the preemptive player will choose

ui to maximise expected payoff,

uT: u'ïmaxE(u,u")'

The preemptive player has essentially the final round in the best response iteration.

If both players cannot do any better, given the preemptive player has the last op-

timisation round, then the equilibrium generated is called a Stackelberg equilibria

(Fundenberg and Tirole, [Z+], S¡erps and Haccou, [7a])'

1.L.4 Owners and Intruders

ESS's associated with ownership of a resource have been the subject of both theoret-

ical and experimental study, from the commencement of the application of game the-

ory to animal behaviour (Maynard-Smith,[54]). Maynard-Smith and Parker studied

ownership with the Hawk-Dove-Bourgeois game (Maynard-Smith and Parker'[55]).

Aggressive competition was the strategy of the Hawk player. Passive competition,

always defeated by a Hawk, was the strategy of the Dove' Finally, a Bourgeois

strategist will play Hawk of an o\ryner of some territory and Dove if an intruder to

an occupied territory. Assuming I/ is the value of the resource, C is the cost of in-

jury and half of the conflicts are as o\ryner and half as intruder, the following matrix

describes the strategic form

Hawk Dove Bourgeois

Hawk +(v - c) V 3
4 V 1

4 C

Dove 0 +v iv
Bourgeois iv -c) 3

4 V +v
Thus, for example, the expected payoff of a Hawk strategist against a Bourgeois is

E(H,B): Ln@,H)+|E(H,D): iV -iC.If only pure strategies are considered,
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when V > C the ESS is to play Hawk. When V < C however, the Bourgeois strategy

is the ESS.

The Hawk-Dove-Bourgeois model provided the first theoretical basis for observed

patterns of behaviour in ownership across many species (Hammerstein and Riechart

[32]). There are some exceptions, including the behaviour of the spider Oecobius

ci,ui,tas in which the intruder always displaces the owner (Mesterson-Gibbons,[62]).

To understand how different strategies may be favoured under different ecological

conditions, a model in which players compete in a sequence of games, either as an

o\Mner or as an intruder was analysed under different "ecotypes" or combinations

of competitive intensity, probability of injury and expected lifetimes (Mesterson-

Gibbons,[62])). AIso included was the anti-Bourgeois strategy of playing Dove when

an owner and Hawk when intruder. Though the Hawk strategy was the ESS for

most ecotypes, both the Bourgeois and anti-Bourgeois strategies were found to be

evolutionary stable under certain ecotypes, especially large resource values and long

Iife times (Mesterson-Gibbons, [62]).

L.2 Behavioural Ecology of Trissolcus basalis

The species Trissolcus Basalis Wollaston (Hymenoptera: Scelionidae), in Australia,

is an quasi-gregarious synovigenic egg parasitoid of the species Agonoscelis rutila

(Hemiptera:Pentatomid,ae) commonly known as the horehound bug. In the United

States and South Amercia T. Basali,s also parasitises other pentatomid species, such

as Nezara uiri,d,ula (Hemi,ptera: Pentatomidae), also known as the green vegetable

bug, a common agricultural pest (Noble,[66]). A. rutila typically lays rafts of be-

tween 10 to 30 eggs held together by secreted adhesive (Noble,[66]).

Australian strains of T. basalis females have an approximate fecundity of 90-140

eggs, and are attracted to host patches through secretions from the host metathoric

gland (Field,[19]). Upon arrival to the patch, the parasitoid commences searching

for suitable hosts, this being achieved through an antennated search of individual

t4
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eggs (Wilson,[86]). Antennae of T. basali,s have various chemosensillae that func-

tion to recognise suitable hosts. Once antennation has focussed on a single host,

this host may be accepted for parasitisation, and a sterotypical oviposition sequence

commences (Wilson,[86]). Upon finding a suitable host, the parasitoid begins the

behavioural sequence that commences with the preliminary probing of the host egg,

presumably to find a suitable site for injection of its needle-like ovipositor. Following

the probing behaviour, parasitoids commence the sequence of drilling, oviposition

and finally host marking. Hosts are marked by running the ovipositor across the

surface of the egg in a figure "8" (Wilson,[86]). Host marking enables searching par-

asitoids to discriminate between unparasitised and parasitised hosts, this restricts

the patch search to unparasitised hosts and is thought to have adaptive significance

(Roitberg and Mangel,[63]). If a host egg is superparasitised, first instar larvae com-

pete within the host, this competition resulting in complete elimination, commonly

of one larvae, and occassionally both larvae (Salt,[70]). First instar larvae develop

piercing mandibules that are used in combat. Larval fights are thought to be fatal

because only one parasitoid can develop within the egg, thus the total lifetime fitness

to the loser of a fight will be precisely zero. If the expected future fitness of a losing

player is zero, then it has been shown that the ESS is to fight to the death (Enquist

and Leimar,[18]).

If two or more females co-exploit a patch then competition for resources will en-

sue. Competition for ovipositions is fundamentally different to that of competition

between predators for prey. Prey items aïe consumed by the predators, removing

the energy source from the environment, whereas parasitised hosts remain to be su-

perparasitised (Field and Calbert,[20]). The evolutionary mechanisms that induce

intra-specific patch defence in gregarious and quasi-gregarious parasitoids, in partic-

ular the family Scelionidae, have been studied by comparing the relative host patch

sizes, across species in the family Scelionidae (Wagge,[83]). Species with average

host patch sizes of less than 50 eggs tended not to fight, whereas smaller patch sizes

were shown have fighting parasitoids. The author argued that small host patch sizes



CHAPTER 1. I¡\I"RODUCTION A¡\rD OVERVIEW 16

can be defended from superparasitism, whereas ovipositions can easily be "stolen"

from competitors attempting to defend a larger patch (Wagge,[83]). Patch size is

not the only important factor determining defence behaviour. Given that the av-

erage host patch of A. rutilø consists of approximately 20 eggs, in the Australian

strain of. T. basalis a patch will represent a minimum of approximately 10 % of an

individuals lifetime success. Add to this mortality of the parasitoid, high ratios of

competitors to patches, superparasitism and hyperparasitism then the percentage

lifetime contribution to fitness of this patch will increase substantially (Field,[19],

Ayal and Green,[2]).

T. basalis is notable in the high expected payoff to the superparasitising fe-

male, when the time difference between the first and second ovipositions is small

(Field, Keller and Calberf,l22l). In an experiment to determine the probability of

superparasitism success, an Adelaide strain of. T. basalis and a strain from Dar-

win, distinguished by an enzyme polymorphism, were identified. A female from

the second strain oviposited some time after the first strain oviposition. Emerging

progeny were thus identified through errzyme analysis. Given progeny success could

be recorded as binary data, with 0 for the success of a first strain female, and 1

for the success of a second, analysis of factors such such as order of oviposition,

and time difference between ovipositions were done through a statistical technique

called logistic regression (McCullagh and Nedler,[56]). Though the order of oviposi-

tion, strain one first and strain two second or vice versa was important, the overall

conclusion was that the superparasitising female possessed a greater than 50 %

chance of success in the emergence of its progeny (Field, Keller and Calbert,l22)).

As expected, the success of superparasitism gradually decreased over a period of 15

hours from the first oviposition, as can be seen from the results of the fitted logistic

model (Figure 7.2.L).

In summary, the evolutionary mechanisms that govern defence behaviour in T.

basalis include

o defendability of patches from superparasitism,
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Figure I.2.L: The probability of emergence of the superparasitising female. Data

from an emergence experiment (Field, [f9]), fitted with a logistic model. Note the

estimated probability of emergence of the superparasitising female is greater than

0.b, for time differences of up to 3 hours, no matter which strain oviposits first.

o large ratios of competitors to patches,

o high payoff from superparasitism and

o a significant percentage of lifetime reproductive potential from a single patch

']-,.2.t Structure of Pairwise Patch Contests

Though there is considerable variation in the behaviour of competing conspecifics,

agonistic competition between two ?. basali,s females can be divided into three

broad phases. Phase one commences with the arrival of both players to the patch.

0
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During this stage of competition, both females begin antennation of the patch for

suitable hosts. Depending on the skewness of the relative patch investments of both

players, and the number of remaining eggs to be parasitised, agonistic competition

ranges from complete tolerance to extended conflict (Cumber, [12]). When the patch

approaches full parasitisation, extended fighting yields a dominant player that can

usurp the opponent from the patch. The dominant player takes possession of the

patch, though take-overs have been observed. In this dissertation, the dominant

player is called the resid,ent and the opponent is called lhe intruder (Field,[19])'

It is important to note that the notion of a resident is different to that of an owner'

We have used the term resident, as the patch may be superparasitised in the future

whereas the owner of a food resouïce may consume the item without need to future

defend this food resource (Field, [19]).

The factors that influence the onset of competition in pairwise patch competition

have been studied through an experiment in which the second player is released onto

the patch, after the first has parasitised some fraction of the patch. As player one

will either become resident or intruder, outcomes are binary valued, thus the factors

that influence residency can again be modelled with Iogistic regression (McCullagh

and Nelder,[56]). Body weight was not shown to be an important factor determining

contest outcomes (Field,[19]). The relative investment of both players was shown to

determine which player achieved residency (Field,[19]). During a series of escalated

contests, the player that won the previous contest also had the highest probability of

winning the current contest (Fietd,[19]). Once residency was established, takeovers

though observed, r,vere rare, occurring in only 3 % of contests (Field'[19])'

Once residency has been established, phase two of competition commences. Dur-

ing this stage, an intruder will not fight the resident, but retreat to the patch periph-

ery if approached. A resident is observed to search for remaining parasitised eggs,

while the intruder returns from the patch edge to search for unparasitised hosts, or

to superparasitise (Field,Calbert and Keller,[21]). If the resident observes, or comes

in contact with the intruder, it is once again removed, either by retreating or by res-
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ident force, to the patch periphery. The return frequency of the intruder decreases,

depending on the number of times it is removed from the patch and whether the

resident ceases to find further unparasitised hosts and commences guarding.

The final stage of patch competition, termed lhe wai,ting gawte, commences when

the resident ceases searching for remaining unparasitised hosts, and the intruder

ceases to return periodically. The resident is observed to wait, motionless, at the

center of the patch. There is anecdotal evidence that T. basali,s has poor vision

of stationary objects, but is sensitive to movement (Field,[19],Land,[42]), thus the

stationarity of the resident is thought to have adaptive significance, maximising the

prospect of detecting a returning intruder (Field,Calbert and Keller'[21]). After a

period of time, ranging from 30 minutes to 6 hours, the resident commences a series

of excursions around the patch. Each excursion ends with the return of the resident

to the patch, followed by another excursion, with larger travel radius, till eventu-

ally the resident leaves (Wilson,[86],Field,[19]). Leaving time distributions for patch

sizes of 12 and 24 eggs are shown in the following figure'

Rarely does the intruder leave the patch, instead it is found "waiting" in the

near periphery. While a resident sits motionless on the patch, an intruder is observed

to make occasional partial patch returns and this is hypothesised to increase the in-

truder's estimate of the resident's presence (cumber,[12],Field,[19])' subsequent to

the resident leaving, the intruder returns to superparasitise the undefended patch.

The time interval between the resident leaving, and the intruder's return may be up

to two hours. Both the resident leaving time and intruder return time are influenced

by the number of host eggs and the skewness of competitor investment (Field, [19]).

To summarise observations of pairwise patch competition in 7' basali's,

o Phase one: initially tolerate a conspecifics presence, though as the number of

unparasitised eggs diminishes, agonistic competition increases, resulting in the

establishment of resident/intruder roles.
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Figure I.2.2: Graph of the logarithm of the estimated survivor function taken from

resident leaving times. Leaving times are recorded from the commencement of the

stationary guarding period of the resident. Data is presented for patches with 12

and 24 eggs respectively'

o Phase two: an intruder returns from the patch periphery to search for re-

maining unparasitised hosts or to superparasitise. The resident searches for

remaining unparasitised eggs. An intruder is immediately removed off the

patch upon encounter with a resident.

o Phase three: resident ceases searching, but remains stationary on the patch,

presumably to maximise motion detection. The intruder waits at the patch

edge. After some time, dependent on investment skewness and patch size, the

resident leaves and the intruder returns to superparasitise.

patch size 12
patch size 24
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L.2.2 Simplifying Complex Behaviours

Eleven behavioural catagories exhibited by T. Basali,s have been described (Field,[19],

pgs 33-34). These behaviours can further be classified into three groups, those asso-

ciated with search/oviposition, those behaviours associated with patch defence and

general behaviour, å,s are listed below.

Search/Oviposition

o Walk-antennate-host: walking over the egg mass, antennae vibrating and

sweeping over the exposed surface of the egg mass.

o Turn: turning on top of a particular host egg'

o Probe: examination of a host egg, probing the egg surface with the ovipositor,

ending with insertion of the ovipositor.

o Pump: repeated pumping movements of the head and flexing of the wings

during oviposition.

o Rock: entire body vibrating, infrequent head pumping.

o Mark: ovipositor swept over the surface of the egg, in a figure "8" '

Guarding

o Stationary: body motionless, a,ntennae vibrating'

o Patrol: repeated bursts of running, from one side of the egg mass to the other.

General

o Walk-antennate substrate: as for walk-antennate-host, but on any general

surface.

o Groom: cleaning of body.

o Feed: consumption of honey/water mixture.
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Because of this natural classification of behaviours into three catagories, models

of patch competition will assume the three behavioural catagories of "search",

,,oviposit" and "guard". It will be assumed that during oviposition, the parasitoid

will not be able to prevent a conspecific from searching for hosts. Furthermore,

the patch is assumed to be the most susceptable to conspecific parasitism when the

parasitoid is ovipositing'

1.3 Approaches to Modelling Patch competition

Models of intra-specific patch competition, ideally, should satisfy some minimal

requirements to be considered as contributions to understanding the Behavioural

Ecology of. T. basali,s. criteria used to judge a model, or series of models, should

include the following'

o Do the assumptions behind such models reflect biological reality ?

o Can such modets yield either implicit or computationally tractable results ?

o Do the results reflect the diversity of behaviour, as observed through experi-

ments ?

o Can testable predictions be made from the models ?

It is the balance between tractability and the incorporation of biological detail, that

is the challenge to any student of Mathematical Biology (Godfray,[26])' To justify

the modelling approach used in this dissertation, some comparisons between various

mathematical techniques used in Behavioural Ecology are noted.

One possible approach to modelling ?. basali,s behaviour would be to study be-

havioural decisions taken over an individual's lifetime and to use state dependent,

dynamic games (Mangel,[50, 49], McNamara and Houston,[36])' This method has

the advantage that both physiological and experiential factors can be incorporated

as state variables. To build a comprehensive model of patch defence behaviour,
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state variables such a,s age, egg load, patch size and current number of oviposi-

tions should be incorporated. Furthermore, an information state that included the

number of past patch encounters where residency was obtained may serve as impor-

tant within the model. Minimally the age, egg load and current percentage patch

parasitism would have to be included. However, any state dependent, life-history

approach will suffer from two problems. Firstly, even with the minimal three states

mentioned, dynamic games rapidly become computationally intractable (Houston

and McNamara,[36]). Further to this, different time frames are associated with dif-

ferent decisions. For example, the time frame in which fighting decisions are made

may be too fine grained, if compared to the time frame of resident leaving, intruder

return decisions. For these reâsons, life-history models, though initially attempted,

are not undertaken in this dissertation'

What if we restrict attention to single patch competition? Attempts at apply-

ing the state dependent dynamic games approach are not suitable because of the

following reasons. Most dynamic games assume that individuals make decisions

against,,the field" (Houston and McNamara,[36]). In this ca,se, an individual's op-

timal strategy will be a function of its internal state variables, and the averaged

populations internal state (Mangel and Clark,[50])' This is no longer appropriate

when individuals play against one another, as it is no longer sufficient to assume that

players choose strategies against some "averaged" player. The sequential assessment

games of Leimar and Enquist avoided such problems, as there is only one internal

state variable, relative fighting cost, which does not change over the course of the

game (Enquist and Leimar,[l7],). Furthermore, the decision set of each individual

changes over the course of the game, making a formulation of the stages of pairwise

competition within T. basalis very difficult'

To avoid the forementioned problems, each phase of pairwise competition in ?'

basali,s is modelled separately, and each model has a set of assumptions regarding

the information exchanged between opponents. No physiological state variables are

included in the models, because of the complexity of single patch interactions.
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Phase one, in which patch parasitism proceeds and fighting decides residency

is modelled using a \ryâr of attrition, with individual variation in patch investment.

In this phase, players are assumed to be aware of their self-investment and a dis-

tribution of possible investments of the opponent. This is similar to the war of

attrition with random rewards, with patch investment replacing rewards of win-

ning (Bishop,Cannings and Maynard Smith,[ ]). As it was difficult to determine

by experiment the exact mechanism of contest resolution (Field,[19]), two hypothe-

ses, addressing different ways of winning an extended fight are modelled. The first

mechanism of contest resolution assumes that both players continuously accrue in-

juries as the fight proceeds, and the winner is the individual to persist the longest

(Chapter 2). The second model, called the graduated risks model, is well known

in Behavioural Ecology literature, with the loser being either the first player to be

injured, or the first player to desist fighting (Bishop and Cannings,[3] and Chapter

2).

Phase two, with residency decided, models the return rate of the intruder, as

the resident proceeds to search for remaining unparasitised eggs. Underlying such

models is a central assumption regarding the vulnerability of the patch to intruder

parasitism and superparasitism. It is assumed that the patch is most vulnerable to

an intruder oviposition, if the intruder returns while the resident is itself ovipositing.

In some sense, the intruder's best strategy is to return with the same frequency as

the resident's oviposition times. The resident, as a response to an intruder's teturn,

chooses to either search for further hosts or ceâse searching and adopt a purely

defensive role. Both players are assumed to possess limited information as to the

opponent's actions, with the intruder assumed to have an estimate of the resident's

oviposition rate, and the resident, an estimate of the intruder's return frequency

(Chapter 3). The hypothesis that patch vulnerability is maximal when the resident

is itself ovipositing is not the only hypothesis explored. We also consider an intruder

centered stochastic dynamic programme, in which the intruder chooses to return or

to play the waiting game, based on the past successes and failures in finding an
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oviposition on return to the patch (Chapter 3).

Finally, phase three, the waiting game is analysed with different biological and

information exchange assumptions and different modelling approaches. Initial mod-

elling approaches assume that the payoffs from superparasitism, over the course of

the waiting game are âpproximately constant. From this basis, models are con-

structed to calculate the ESS resident leaving time and intruder return time. In

Chapter 4 we prove that the waiting game has no ESS if there is no information

exchanged to the intruder about the resident's leaving time. If there is a small prob-

ability that the opponent may be absent, through injury or predation, leaving time

densities and return time densities are derived that yield constant payoffs, but are

shown to be at best neutrally stable(Chapter 4).

Motivated by the failure to find an ESS under the previous assumptions of in-

formation exchange, a nerry set of models is proposed. Two biological observations

underlie this new approach. Firstly, the payoff from superparasitism decreases over

the course of the waiting game, in agreement with experimental observations. Sec-

ond, intruders have partialinformation as to the presence or absence of the resident.

Finally, in accord with experimental observations, an intruder is assumed to return

only after the resident leaves the patch. The resident, in turn, optimises its leaving

decision in light of the intruder's impending return (chapter 5).

At this point, it should be emphasised that though the work on the waiting gâme

without information exchange of the resident's leaving time failed to find an ESS,

the conclusions helped to form a new set of assumptions, with which appropriate

ESS leave/return times could be derived. Hence this work, while not suitable for

publication, is included in the thesis to highlight the model building process.

In developing the modelling approaches in pairwise T. basalis competition, only

a limited set of models were explored, due to time and work constraints. Further

avenues of research, including spatial foraging issues and e-perfect strategies are

explored in the general conclusion (Chapter 6).



Chapter 2

Competition for ResidencY
Perfect and Imperfect Information of the conspecificts investment.

2.! Introduction

There are few general rules regarding strategies used in resource competition. One

general observation of organisms that compete for a resource is that competition will

take place for that resource, if the ratio of competitors to resource patches is suffi-

ciently high (Mangel,[a7]). In some species of spiders, for example, failure to secure

a territory wilt imply zero future reproductive success, which implies the only ESS

is to fight to the death (Hammerstein and Riechart,[32], Enquist and Leimar,[18]).

The effect on future reproductive success of a resource is not the only criterion

in deciding to fight for resource possession. The resource patch should be of such

size, that it is economical to defend (Cockburn,[10]). In a seminal study comparing

patch size with competition for resources within the parasitoid family Scelionidae,

hosts laying small egg rafts were found to have their eggs parasitised by species

that fought for the patch, through intra-specific competition. In those host species

where large rafts of eggs were laid, intra-specific competition was less prevalent or

nonexistant (Wagge, [83]).

By comparisional dissection of developed, T. basal¿s that were yet to parasitise a

host, embryo counts revealed an estimate of approximately 90-140 embryos available

26



CHAPTER 2. COMPETI?IO¡ü FOR RESIDE¡\ICY 27

for future investment (Field, [19]). With the host patch size ranging from approxi-

mately 10 to 30 eggs, successful parasitism of a patch of say 20 eggs will represent

a major proportion of a parasitoid's maximum future reproductive success. With

mortality due to superparasitism, host defences and hyperparasitism, this percent-

age will only increase. This coupled with the fact that during mid-summer, counts

of the ratio of parasitoids to patches is extremely high (Hood,[35]), provide both the

evolutionary and proximate mechanisms underlying resource competition and patch

defence in the species T. basali,s.

In studying the intensity of competition for resources, both the effects of internal

physiological variables such as egg load, competition experience and age as well as

the external factors such as the size of the patch, number of competitors and current

investment in the patch should be factored into decisions of competition. Statistical

models of patch competition within T. basali,s have been analysed, to determine

which factors determine the the onset of fighting for patch possession (Field and

Calbert,[20]). Factors such as current oviposition rate, number of total ovipositions

and outcomes of previous fighting bouts were deemed to be statistically significant

(Field and Calbert,[20]). Ideally, internal variables such as the aformentioned egg

load, should be statistically assessed for significance, but for purposes of focusing

on the dynamic variables that influence competition resolution, only the external

variables, such as number of ovipositions were studied. Modelling patch competi-

tion with the emphasis on patch investment and patch fitness value will also be the

approach taken in this chapter.

Before constructing an evolutionary model of patch fighting, some broad ob-

servations regarding the nature of contest resolution should be taken into account'

Firstly, fighting occurs with considerable variability in agonistic intensity (Field,[19],

Cumber,[12]). When two conspecifics initially encounter one another, serious escala-

tions are rare, with fights building in intensity as the level of remaining unparasitised

hosts diminishes (Fietd,[19]). As well as this general observation of fighting inten-

sity, the outcomes of fights are normally determined by comparison of the skewness
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of investment between players. Given two conspecifics compete for the patch, if one

player arrives considerably earlier to the patch than the opponent, inevitably this

player will attain eventual residency (Field and Calbert,[20]). Furthermore, players

that arrive at approximately the same time, will fight with the most intensity when

competing for residency (Field, [t9]). In this situation, there can be a considerable

number of takeovers in which the current resident is forcably removed from this

status by an aggressive opponent(Field,[19]).

With these broad observations, some models of patch competition are con-

structed in this chapter. As a starting point, the level of current self-investment

in the patch must be included as a variable determining contest outcomes. Should

it be assumed that players are avøare of the opponent's current patch investment?

Studying the process by which females search for unparasitised eggs provide clues

for modelling relative investment information between opponents.

Upon arrival to the patch, females cycle through the behavioural sequence of

antennation, oviposition and host marking, as they search the patch for future in-

vestments (Field,[19]). This searching strategy, in contrast to a strategy of full

patch assessment before oviposition, is a local i,nformation strategy. Thus another

ingredient for a model of patch competition will assume knowledge of self invest-

ment and only knowledge of the di,stri,buti,on of patch investments of the opponent

(Mesterson-Gibbons, Marden and Dugatkin,[6a]). In addition, the local searching

strategy implies that it should not be assumed that players have knowledge of the

fitness value of the patch, rather a distribution of possible fitness returns.

Because of the size of individuals observed, and the pace of movement, contests

did not clearly indicate the exact mechanism by which contestants resolved a compe-

tition. Thus, in this chapter, two mechanisms of contest resolution are studied, the

continuous risks and graduated risks models. In the continuous risks model, as play-

ers fight, they are assumed to continuously accrue injuries during the course of the

fight, the winner being the individual that persists in competition the longest. The

second mechanism of contest resolution, the graduated risks model, has been stud-
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ied before within the context of wars of attrition (Maynard Smith and Parker,[55],

Bishop and Cannings,[3]). Rather than choose an escalation time, players in the

graduated risks game choose an escalation level, reflected in the probability that

either player will be injured. The winner in the game is either the last player to

desist from fighting, or the player that escaped injury.

Before commencing the next section, an overview of the current chapter is given.

Section 2.1.1 discusses a model of fitness returns for a player that invests r eggs

in a patch of fitness value E. Given a particular percentage investment in a patch,

both the returns from current investments and the returns from potential future

investments must be considered in the decision as to whether to fight for the patch

and at what intensity. Following discourse of patch investment issues, Section 2.2

looks at a simple model of patch competition, in which players have perfect knowl-

edge of self and opponent patch investment and as well as patch size. Expanding

the assumptions toward biological realism, through restriction of the information of

an opponent's investment and patch size is the focus of the following two sections.

The continuous risks model is the first fighting mechanism to be modelled, in Sec-

tion 2.3.1, followed by the graduated risks model, Section 2.3.2. For both sections,

ESS fighting strategies, dependent on current patch investment and expected future

returns are derived, and parameter sensitivity studied. A discussion of alternative

approaches to modelling patch conflict, with differing biological assumptions and al-

ternative mathematical techniques is included in the Discussion/Conclusion (Section

2.4). Finally in the Appendix (Section 2.5) to this chapter we derive the equations

for the calculation of the ESS for the continuous and graduated risks models.

z.L.t A simple model of Patch Investment

Given that two parasitoids simultaneously host search on a patch, suppose the in-

vestment of the first player is r eggs and the second player g eggs. After competition

for possession of the patch, the fitness of each player will depend on the role, resi-
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dent or intruder of each player subsequent to competition, the number of remaining

eggs to be parasitised and importantly the uulnerabi,Ii,ty of. the patch to intruder

parasitism or superparsitism, given a particular proportion of the patch has been

already parasitised.

Let the fitness of player one, be denoted by.R(ø,y), if residency is achieved and

I (*, y) if player one loses residency and becomes the intruder. It is assumed that the

patch contribution of fitness in both roles can be decomposed into two components,

that of fitness accrued from previous parasitism and the expected fitness obtained

from future eggs yet to parasitised. In other words

Fitness : Contributions from current investment

+ Contributions from future.

To look at the contribution from current investments it is assumed that each player

receives a proportion of the opponent's current investment and a proportion of it's

own current investment, these proportions dependent on the role of each player after

agonistic conflict.

Let R be the event that the player wins residency, and I the event that the

player loses, becoming an intruder. Then let

a : E(proportion of current self investment securedlll)

and

0 : E(proportion of opponent's current investment securedlll).

Thus, if player one wins residency, then the fitness contribution from total current

investments is or * þy, and if player two wins residency, it's fitness of current

investments is ogt i 0r.
As the sum of the current fitness contributions is r * y, it follows that the

fitness contribution to player one if it becomes an intruder is (r + A) - @A + þ*) :
(I - t)a + (1 - B)ø. Though the functions o and B will in general depend on

investments r,y of the two players, for simplicity, throughout the remainder of this
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chapter, they are assumed to be constants.

Since it is assumed that the fitness value of the patch is .8, the remaining future

patch fitness, r : E -r-g, will be distributed amongst each player, this distribution

dependent on the role of each player.

We define the remaining resources distributed to the resident and intruder as the

p ro p o rti o n distributed

ilr) : E(proportion of remaining resources securedlTl, r).

Combining current and expected future returns, the expected total fitness of

player one, if residency status has been achieved is

R(r,ù : o¿n + þa + ilE - r - ù(t - " - a),

and if player one becomes an intruder,

I(*,ù: (1 - a)a + (t - þ),+ (1 -'v(E - * - ù)(" - " - a)

Functions a, B and, .y ale measures of the ability of the resident to retain cur-

rent investment and secure some of the opponent's investment through superpar-

asitism. Generally, the ability of the owner of some patch to secure resources

within that patch is known as the resource holdi,ng potential or RHP (Parker

and Rubenstein,[67],Field,[19]), hence a, B and 7 embody the RHP'

Decisions such as when to fight for possession of the patch, or when to concede

residency should depend on how future self/opponent investment change in propor-

tion to total current investment. This investment dependent patch defendability

will be reflected in the possible values of 7(r). With no resident advantage in secur-

ing future fitness returns, on average each player will secure half of the remaining

resources, thus 1(r) : I for both players. If remaining patch resources become in-

creasingly vulnerable to intruder attempts to "steal" ovipositions, then 7(r) will be

monotonically decreasing as r ---+ 0. In analysis of any model of patch competition,
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t(r)

1

I
2

unparasitised eggs, r

Figure 2.1.7: Hypothesised expected fraction of remaining unparasitised eggs given

to the resident, as a function of the remaining fitness value of the patch, 7(r), where

r ranges from .E to 0. The hatched line shows a slow increase in defendability of

remaining unparasitised hosts, compared to the dotted line where defendability is

independent of investment.

an ESS fighting strategy must depend on changes in resource holding potential over

the course of patch parasitism.

2.2 Perfect Knowledge of Opponent's Investment

If competing parasitoids are able to assess the opponent's patch investment, through

some cues found while searching, any assymetries between investments of play-

E
0
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ers will be used to settle contests for residency (Maynard Smith and Parker,[55],

Hammerstein,[30]). Such an assymmetry will be prominent, when the difference be-

tween patch arrival times of players is large, as this gives the earlier arriving player

more time to invest in the patch, and more time to assess the total fitness worth of

the patch.

To find the ESS adopted by competing players with differing investments, sup-

pose two players, one and two, have respective patch investments r and gt, where

r * y 1 -8, the total fitness value of the patch. It is further assumed that players can

adopt two strategies, either persistance in fighting or retreat from conflict. If both

players have equal fighting ability then the cost of fighting for residency is assumed

to be C for both players. Viewing the strategy combinations for each player gener-

ates the following payoff matrix or strategic form, with top corner payoffs given to

player one, and bottom corner payoffs given to player two,

where A(r,ù : (nçr,A) + I(r,ù)lZ is the expected payoff from competition.

Player two
Fight Retreat

A(x,y)-c

A(y,x)-c

R(x,y)

I(y,x)

I(x,y)

R(y,x)

El2

Et2

Figure 2.2.2: Payoffs to player one, with investment r and player two, investment

gr, as determined by the two strategies "Fight" and "Retreat".

If both players adopt the strategy of "retreat" then they are assumed to "share"

payoffs from the patch, resulting in El2 given to each'

As the game played is assymetric, only the pure strategy combinations for both

bo
E

o
o
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ô-Ë (Ë
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players need to be considered as candidates for the ESS (Selten, l72l). A strategy

is specified by the pair of actions of each player, either in the role of player one or

the role of player two. If it is assumed that a contestant will be in the role of player

one or player two with equal probability, let role dependent strategies be denoted

by (St, Sr), f, : F, R, where the strategy of fighting is denoted by F and retreat by

R.

An ESS is found by calculating the best response of players in each role, de-

pendent on the opponent's strategy (Hammerstein,[30]). Starting from a randomly

chosen strategy pair, player one's best response to player two's strategy is calcu-

lated. In turn, player two finds the best response to player one's strategy' This

cycle continues till there is no change in either players best response.

For example, if .I(ø, A) < A(r,A)-C,then starting from the strategy pair (4, F),

the best response of player one is to switch from the strategy of retreating to that

of persisting. If I(y,r) > A(A,n) - C, then the best response, in turn, for player

two is to retreat. Now if R(",A) > El2, then player one will not change strategies

in response to player two's strategy of retreating. Thus the the strategy "player one

fights, player two retreats" forms a role dependent ESS with the conditions, though

not unique, that are listed above. A set of role dependent strategies are graphed for

a choice of parameters below.

Consider the region in Figure 2.2.3 where the ESS is the strategy pair (F,,R).

Within this region, investments satisfy the conditions

{@, ùlR(", ù > E I 2, R(y, *) < E I 2, A(r, y) - C < I (*, a), A(a,,) - C < I (a,')}'

The diagram of best responses to the opponent's strategy is shown below.

with the parameters o - L,p: 0 and t: 1, it is intuitively clear as to

why the ESS is to fight with small investments. The resident gets none of the

intruder's current ovipositions (É : 0) and most of the remaining unpapasitised

hosts (l:31Ð. Under these conditions, there will be no advantage in fighting

when the number of unparasitised hosts drops to zero, as residency secures most
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(R,R)

v

R(y,x)=B//

x+y=E

R(x,y)=þ/t

x
A(x,y)-C=I(x,y)

A(y,x)-C=I(y,x)

Figure 2.2.3: Role dependent ESS pure strategies, as a function of player one's

investment ø and player two's investment E. Strategies within a region are denoted

bv the vector (St,Sr),^9¿ the strategy for player i:1,2. The parameters chosen are

o¿ :1, þ : 0,.y : l,C :2 and -E : 10.

unparasitised hosts, even when total current patch investment is low.

When the difference between investments is large, the costs of fighting negate

the payoffs of residency for the player with the smaller investment. Given this

observation, the role dependent ESS for the player with highest investment is to

fight for residency while the opponent retreats to the role of intruder, as seen in the

sensitivity analysis of Figure 2.2.3'

How does this model compare with general observations of patch competition in

T. basali,s? When the investments of players are skewed, as will most often be the
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A(x,y)-c

A(y,x)-c

R(x,y)

I(y,x)

I(x,y)

R(y'x)

Et2

Et2

Player two
Retreat (F,R)Fight

Figure 2.2.4: Role dependent best responses in patch competition of residency, under

the conditions listed above. The vertical arrows give the direction of player one's

best response, horizontal arrows player two's best response. At an ESS the arrows

meet.

case because simultaneous arrivals are rare, the player with the larger investment

wins residency, usually with little competition (Field,[19], Cumber,[12]) and this is

the result of the analysis of the prefect information model. However, if investments

are approximately equal, fighting usually occurs when the number of unparasiti,sed

hosts approaches zero, Lh:us we would expect the ESS within some neighbourhood

of the patch investments (r,A): (E12,E12) to be "both fight." At the investment

point (*,y): (Elz,Elz), the srrategy (4F) cannot be an ESS in the perfect

information case, since fighting comes at a cost C, negating the payoffs if both fight'

One reason for the anomaly between observations and the model of patch conflict

may come from the assumption of constancy in the parameters o, B and 7 and the

values of these parameters chosen in our example. As mentioned in Section 2.!'1,

the parameter that measures the defendability of future investments, 7 will generally

be a function of the number of host eggs and the current player investments. For
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example, if the patch increases in defendability as current investments increase, then

7 may take the form 7(r, s) : (1 - exp(-(E - n - g))).

Another more fundamental reason that fighting is an ESS at low investments is

the assumption that both players have perfect information, both of the patch size,

defendability and the opponent investment. With perfect information, there is no

"risk" in making the wrong decision, as a player can exactly specify the costs and

benefits of winning residency at any current level of self or opponent investment. If

there is uncertainty about an opponent's investment then the best strategy may be

to secure âs many current investments as possible to guarantee certainty of having

the larger investment.

2.3 Imperfect Knowledge of opponentts Invest-

ment

As players adopt a "local" search strategy (see Section 2.1), small inter-arrival times

will make information of the opponent's investment inexact. Information about

the relative investment of each player may be obtained through extended agonistic

competition to win residency (Field and Calbert,[20]). In this section, models of

patch competition to achieve residency status are studied, with two models of contest

resolution being proposed.

Suppose, as before, that two players compete for the patch' At the time of

frghting player one has investment r, player two investmenl y. Each player is aware of

it's own self investment, and a distribution of possible investments of the opponent.

Games in which players are aware of their self-investment and the distribution

of an opponent's investment have been studied in the evolutionary game-theoretic

context. Using the games of timing approach, variation between players fighting

rewards had the effect of altering the set of possible persistance times each player

would adopt (Bishop, Cannings and Maynard Smith,[4]). Those players with a
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higher reward for winning where predicted to persist the longest, and in the limit of

continuous variation in fighting reward, the ESS is chosen to be a persistance time

pure strategy increasing for increasing rewards for winning the contest (Bishop,

Cannings and Maynard Smith,[4]).

An extension of this model comes from contests with continuous variation in the

energy reserves of each player (Mesterson-Gibbons, Marden and Dugatkin,[64]). It
was shown that the ESS persistance strategy for a player with energy reserve Z, at

each time ú is of the form

I Persist if t < uZ,
{ -"" ' (2.3.1)

I Retreat if t 2 uZ

Here, u is a scaling factor depending on the population distribution of energy re-

serves, the fitness gains in winning the fight and the unit time costs in fighting. As

the persistance time of each player depends linearly on self-investment, the scaling

factor u converts the fitness based currency Z to a temporal based attrition currency

uZ.

Further extensions of this work exist, in finding equilibrium concession functions

which map an individuals valuation of a resource, u, onto a time of concession, 7(u),

where T is a monotonically increasing function of the resource value u (Nalebuff and

Riley,[65]).

As a simplification, we âssume both for the continuous risks and graduated risks

models, that this time of concession is linearly dependent on the current patch in-

vestment. The scaling factor, u(a, þ,7), will depend on the fraction of self/opponent

investments kept if residency is achieved, and the future returns, determined by the

function 7. Analogous work on the war of attrition with a distribution of energy

reserves (Mesterson-Gibbons,[63]), here the scaling factor u converts the current in-

uestment number into a fitness based temporal currency.

There is a fundamental difference in the structure of the opponent's investment

distribution, in comparison to wars of attrition with random rewards. Models of

fighting with variation in energy reserves assume that the energy distributions of



CHAPTER 2. COMPETITIOIV FOR RESIDE]VCY 39

ea,ch player, before competition, are independent (Mesterson-Gibbons,[63]). With

patch investment models of competition, as there is a finite fitness value for the

patch, investments of both players must be conditioned to be less than or equal to

the patch fitness value. Thus players are assumed to be aware of the opponent's pos-

sible investment distribution, conditioned on the patch not being fully parasitised.

Therefore, the conditioned investment density of player one, for example, takes

the form Pr(X : rlx +Y < E,X > 0,y > 0), inducing dependency between

players investments. Explicitly representing the conditioned density, Iet

U(E) : {(r, a)1" + a 3 E,r I 0, a > 0},

this set being the investment space of players one and two. By defining the indicator

function

Iu@)(*,a):
if (r,a) e U(E),

otherwise,

1

0

then

Pr(X : nlu(E)) Pr({X:n}nU(E))
er(u(E))

Pr(X : r) @,a)
er(u(ø))

In order to apply the optimisation techniques efforded in Calculus, investments

are modelled ith the currency of fitness acquired from the patch, rather than the

discrete currency, number of ovipositions. Any such fitness distribution must be

positive valued and one such candidate is the Gamma distribution, with density

, \ 6-a*a-L exP(-rlb)p\r): _ 
f (o),

which has expectation E(x): øb and variance var(x) : ab2 . The gamma function

is defined to be l(z) : Iæ f-te-tdú. Other postive valued densities, such as the

Weibull or Lognormal densities may be considered, but we will focus on the Gamma

density for the remainder of this chapter.
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2.3.L A Continuous Risks Model

In this model both players will incur a non-fatal injuries as they fight for patch pos-

session and the last player to desist is the winner of the contest, attaining residency.

In order to incorporate in effects of injury when fighting, the following model is

assumed.

Suppose two players compete for patch residency, player one having investment

r and player two investment gr. A simple model of continuous accrual of injuries

will assume that the value of the resource after fighting will decrease as the time of

fighting increases. Thus, if y(r) is the resource value at time ú, then it is assumed

that

V(t) --+ 0 as ú -+ oo.

If R(r,g) is player one's residency fitness value, then after ú minutes of competi-

tion, it is assumed that the residency fitness value will be ÀtR(r,g), where À e [0,1)

determines the decay of resource value from fighting. Suppose that ú1 and t2 arc the

respective persistance times in fighting for residency. The expected payoff to player

one will have the form

E(tr,tr¡ : \t,I(r,y)
Àt, R(r,y)

if t1 1t2,
if hltz.

As À --+ 0 extended fights become increasingly costly. The loser in this game is

not the first player to be injured, but the first player to give up, as both players

may incur injuries during the fight. A modification of this model, in which the first

player to be injured is the loser of the fight is constructed in the next section.

Other more general models of continuous accrual of injuries could be included.

For example, let the fitness value of the resident, after j injuries be f (j)R(r,y),

where /(j) is a monotonically decreasing function of j, such that /(j) € [0,1). The

expected fitness of a resident, who's opponent fought for time ú would then be

oo

I pt( j injuries after time t)f (j)R(r,y).
j:o
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However, inclusion of more complicated fitness models will make the equations in-

creasingly parameter rich. The simple model captures the essential feature of con-

tinuous risks in that resource value decreases as time spent fighting increases.

Before continuing to find an evolutionary stable persistance times the assump-

tions behind the continuous risk model are recapped.

o Two players compete for current residency of a patch, player one having in-

vestment z in the patch and player two investment gt.

o The loser is the first player to give up in fighting

o Each player's self-investment is known, but only the distribution of the oppo-

nent's investment is known. This opponent investment distribution is condi-

tioned on the sum of investments being less than the total fitness value of the

patch ,Ð. Thus player one knows the distribution Pr(Y < AIU(E)). To keep the

mathematical expressions as simple as possible, let the conditioned distribution

P(Y < alu(E)) : P(alÐ), with the conditioned density p(alu(ø)) : p(alÐ).

o The actual fitness value of the patch is not known to either player, though

a total patch fitness density p(E) is known and is assumed to be Gamma

distributed, with some mean p,B and variance o2B.

o Each player chooses a persistance time in proportion to it's current invest-

ment. Hence player one chooses persistance time ru1 a,rd player two chooses

persistance time !u2 wilh ut,'u2 representing the scaling factors of player one

and two respectively. Player one will win residency if rul ) gtz2 otherwise it
will loose residency. 1

With these assumptions, the expected fitness of player one using scaling factor z1

competing against player two using scaling factor u2 is constructed and denoted by

1As we are considering continuous representations of fitness, the probability that {Í,ur : Auz is

precisely zero.
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E(u1,u2).

First, let .9 be the set of patch investments of player one and player two such

that player one wins current residency and let ^9' be the set of patch investments of

each player such that player one loses.

Recalling the definition of U(E) : {(r, A)lr + A 3 E and ø } 0,U ) 0}, and

noting that player one will win residency \f. ru1 ) Auz, then let

W:{(r,ùlr>aYz}.\ t¿/t "LLt'

Thus S : U(E) ìW and S' : U(E) aW'. With this the expected fitness of player

one, adopting scaling factor u1, a,gainst player two adopting scaling factor u2 is

E(u1,u2) À""' I (r, a) p (al n) p (rl E) e@) dy dr d E

Àa"' R(r, a) p@l E) p (y 
| 
ø) e @) ar dy d E

The evolutionary stable scaling factor z* is calculated according to the definition of

an ESS, namely that

E(r*,u*) > E(u,u*),

or, if .Ð(u* ,u*) : -E(u, u*), then

E(r*,u) > E(u,u).

An ESS scaling factor u* will satisfy hn@r,uz)ur-ur-u* : 0 and *4rrn(u1,u2) 10
(Mesterson-Gibbons, [63])

In order to differentiate this expectation, Leibniz' Rule, as stated below, is

needed,

* I'u' s(r,z)d'r -- Io""' fin6,2)d,r * s(lQ),affOl-

After differentiation (see the Appendix, Section 2.5) the ESS must be found by

finding the fixed point of the equation

u: F.r(u),

:

+
Ë,

Ë,

I 1,,

II,
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where F*(u) has the following form

F*(u):-ffi,
with

A(u) -- l;r l:r\"(R(r,r) - I(r,r))rp(nlr S 
E 

)'atn)d,rd'E

and

ß(u) : I;, I:, I:." ø rn()))"'r (,,y)p(all)e@ll)e@)d,vd,rd'E -

The function F",(u) is evaluated using numerical integration. Starting from

a random initial point u,0) à sequence is generated using the recurrence relation

Itrn*r--F*(u).Calculationof thissequenceishaltedwhen llu"- u,+rll (e,fore a

small positive constant.

Observations from sensitivity analysis over the cost of fighting À, and the ex-

pected future returns are in accord with biological intuition. As extended fights

increase in cost, players will persist less in proportion to their investments, so as

I -+ 0, z -ì 0. As À -+ 1, costs of attrition decrease thus the scaling factor u ---+ oo

as seen in Figure 2.3.5.

On observation of the following Figure 2.3.6, changes in expected future returns,

7(r), seem to have less of an effect, if compared to costs in fighting. As persistance is

assumed to be proportional to current investment, the scaling factor will increase for

smaller investments, if the proportion of remaining resources given to the resident

increases to one. Observation of Figure 2.3.6 shows an approximately linear increase

in ESS scaling factor z* when ry(r) --+ 1 as r ---+ 1. Decreased relative importance

of future investments, if compared to the costs of fighting, ilaY be due to the cen-

tral assumption of persistance in proportion to the current investment. An optimal

persistance time, in proportion to some combination of current and expected future

returns is a subject of future research.
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Figure 2.J.5: ESS scaling factor ,rr* for the continuous risks model, with 7 : 0.8,0.95.

The cost in fighting À ranges from 0.5(high risk) to O.95(moderate risk)' The other

parameters used in this model were -Ð - 10, a:314,P:ll4'

2.9.2 A Graduated Risks Model

In this section, a different mechanism of contest resolution is modelled. Previously

there $¡as some probability of being injured during the contest for the patch. An

injury decreased the expected fitness return to a player, though it did not stop attri-

tion in the contest and thus there was no inherent possibility of a chance win of one

of the contestants. Other frghting models such as the sequential assessment games

of Enquist and Leimar include the possibility of an accidental victory (Enquist and

Leimar, [16]).

For the graduated risks model, players choose some level of escalation, the win-

À

?:0.8
? : 0.95
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Figure 2.3.6: ESS scaling factor u* for the continuous risks model' Sensitivity

analysis for I : 0.95 and À : 0.8, as the remaining fraction of patch payoff given to

the resident 'y ranges from 0.5 to 0.95.

ner of the game being the player that persists the longest or the player to escape

being injured during the contest. Thus, there is a possibility that the player with

the longest persistance time is injured during the contest, giving the opponent resi-

dency.

Let us hightlight the differences in contest resolution mechanisms of the contin-

uous risks and graduated risks models. In the continuous risks model, there is ø

continuous d,ecrease in fitness as the contest progresses. The level of this fitness de-

crease is measured by the parameter À. Within the graduated risk model the winner

of the game is either the player that escapes injury or the player that chooses the

highest escalation level, thus there is no temporal decrement in the winners fitness

À : 0.95

À=0.8
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gain for the graduated risks model.

The level of escalation is defined here to be the probability that no player will

be injured in the contest (Maynard Smith and Parker,[55]). If it is assured that a

player will be seriously injured, then the escalation level is maximal. Thus

¿: Pr(no player is injured)

During the contest, the probability that one of the players will be injured, at a cost

C, is simply (1 - a). Thus, assuming that before residency is decided, both players

have equal probabilities of injuring the conspecific, then

(1- a)12 : Pr(player one is injured )

Dr(player two is injured ).

Thus (1- o), the probability of injury is the associated cost in entering the contest.

An ESS escalation level is assumed to be proportional to the risk associated with

entering the contest, that is, the probability of injury. Suppose player one chooses a

risk level, or probability of injury (1 - or) that it is willing to escalate up to. Here,

the scaling factor, now denoted by u, scales the current investment to the probability

of injury. Thus, if player one has investment r, then the scaling factor u1 will satisfy

11)¡: (1 - ot).

If no injuries occur during competition, the winner is the player willing to escalate

to the highest risk level, thus the expected reward to player one, with persistance

utle ru1, against player two with persistance rule yu2 is

E(*'a) : f ""'a)rut 
* I(r's)(7 - ru1) if 

"ru1 
1 !u2'

I t(r, a)auz -t R(r,ù(l - auz) if ru1 ] !u2.

where H(*,ù: (R1r, y) + I(r,ù - C) 12 \s rhe expected gain to each player, if an

injury occurs. As the persistance rule is a probability, both ru1 ( 1 and yuo 1 I,
hence

0(u1, rrSl,
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and also, the patch size must be fixed to fitness value -8.

As in the previous model, Iet ,S be the set of each player's patch investment

such that player one has the highest persistance rule, and .9' is the set of patch

investments where player two has the highest persistance rule. Integration over

the investment distributions of player one and player two determines the fitness of

player one adopting scaling factor u1 against player two adopting scaling facf'or u2

with density of investments p(rlÐ),p(AlE),

E(u1,u2) : I, I @f.,s)(l - au2) + H(r,v)vu2)n@lÐn@l4)d'rdry

+ I* I F(r,v)(L - ru1) + H(n,v)ru1)n@lÐn@la)avar'

As with the continuous risk model, the ESS scaling factor u* is found by solving for

the fixed point of the equation

u: fnr(u)

with

where

F*('):-ffi

rE /2
C(u): J"'r- {n{",:t) - I(r,r))(7 - nu)p(rlr 1 El2)zrdn

and

D(") I"=': l,:,-
(R(r,a)-I(r,s)-C) p(alE)p("lÐ)dydr

2

This fixed point expression is proved in the appendix. Again integration of the

function F*(") is done numerically. By choosing a random initial scaling factor

u6 and applying the recurrance relation ur¿+l : Fnr(un), \Me generate the Sequence

'un,fr : !,2,. '. . Calculation of the sequence is stopped when llr"-,"_tll ( e where

e is some small positive constant'

The results from iterating the fixed point expression, for the graduated risks

model are markedly different to that of the continuous risks model. For this model,
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Figure 2.3.7: ESS investments where players switch from no aggression, u : 0, to

full aggression u : LlE, for the graduated risks model with patch fitness value

E : !0. The full line is for C: 10 and the dashed line for C :20. The ESS scaling

factor is determined for the expected fraction of remaining eggs given to the resident

7 € [0.5,1.0].

a transition occurs, from no conflict, t) : 0, to that of escalation to , u : i,
depending on the expected investment of the opponent, ¡t,the cost of injury C and

the relative returns of a resident over an intruder. The ESS thus takes the form, for

self-investment r and expected opponent investment' ¡.r,,

. I o ir þ1þ*,E(tt,tr) : I
| "ln if p> p*.

where ¡-r,* is the threshold patch investment instigating the switch to aggression.

Thus, prior to a critical investment threshold, players are predicted not to fight. If

'l
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only one player is past this threshold investment, the opponent will not escalate,

backing off from conflict. With both players past this threshold investment level

and fight will occur with both players escalating till an injury occurs.

Viewing the sensitivity over 7(r), the threshold investment over which players

switch to high aggression decreases for increasingly guardable future investments.

The evolutionary logic of this strategy is clear, since if players risk injury then fight-

ing should occur when potential losses from injury are compensated for by maximal

returns from winning residency.

If losing an agonistic bout implies a high cost, then the graduated risks model

12 14 16 18 20

Figure 2.3.8: Sensitivity over costs for ESS investments where players switch from

no aggression, u:0, to full aggression u : IlE, in the graduated risks model,

with patch fitness value ,Ð : 10. The full line is f.or 1 - 0.5 and the dashed line for

7:0.95. Costs range from 10 to 20.
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predicts a later switch to aggression. Here, the strategy is to delay aggression as

long as possible, adopting the "safe" foraging option till the benefits gained from

past investments equal the risks and costs of fighting.

Fighting, with imperfect information will occur only when both playets have par-

asitised a sufficiently large proportion of the patch. This is in contrast to the results

of the perfect information analysis (Section 2.2),inwhich fighting occurs at the start

of patch parasitism. With perfect information, about self and opponent investments,

winning residency guarantees large payoffs. If there is uncertainty about the number

of opponent ovipositions, gaining residency over a patch may not be advantageous

enough, thus it is more profitable to fight only when the patch approaches full par-

asitisation. In a very strong sense, assumptions of information exchange between

opponents determine the structure of the ESS as patch parasitism proceeds'

The strategy of switching from tolerance to conflict, within a resource limited

patch is analogous to similar ESS results for switching from parasitism to super-

parasitism in time limited parasitoids (Visser,[S0]). In these models, two or more

searching females initially accept only unparasitised hosts, but switch to superpara-

sitism at a certain threshold encounter rate with unparasitised hosts (Visser,[80' 79]).

Similarily, as the number of unparasitised hosts decreases, female T. basalis are pre-

dicted to switch from a risk-averse to a risk-prone strategy of competing for the

patch.

2.4 Conclusion

One of the principal observations from outcomes in pairwise contests was the player

who last ,$on" a bout for residency seemed to win all of the contests thereafter, and

the player that initially arrived on the patch won residency most of the time (Field

and Calbert, [20]). Both of these observations can be explained by the simple rule

of attrition in proportion to your investment. If investments are correlated with the

time on the patch, on average, the early arriver will have the largest investment, thus

50
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will secure the patch because of longer attrition. Similarily, if a player has larger

investment upon agonistic competition, it will have a higher probability of having

a larger investment at the time of the next bout. The experimental observations of

contest resolutions motivated this principal assumption of the chapter (Field and

Calbert,[20]).

Though the models considered in this chapter assume a single fight for patch

possession, in fact, many such competitions may occur, again depending on the

skewness of the relative investments. New models of patch residency competition

may take into account multiple fights, if one considers updating the distributions

of investments to take into account information obtained by the previous contest

outcomes. For example, given the information states W : "Won the last fight"

and L: "Lost the last fight", the new distribution of investments may be updated

to take into account this information. Thus, prior to a fight, the distribution of

your opponent's investment was Pr(rlE) and now will be Pr(zlE,W),lf you won

previously.

Having considered one possible extension of these fighting models, some of the

difficulties associated with construction of the models of patch competition are dis-

cussed. Consider the assumptions behind both war of attrition and sequential as-

sessment approaches to contest resolution. Both approaches assume either a static

reward I/ or some distribution of rewards that does not change over the course

of the contest (Enquist and Leimar,[16],Bishop and Cannings,[4]). Furthermore,

the contest resolution mechanisms are relatively simple, winners being either the

player to persist the longest, the player persisting longest or avoiding injury, or the

player crossing the line in "causal factor space" as in the sequential assessment game

(Leimar and Enquist,[  ]). Similarily, the cost structure in fighting is known in these

games.

Observations of ?. basali,s do not indicate which approach, attrition or sequential

assessment is more appropriate in modelling contests. Similar questions, regarding

the mechanisms of contest resolution have been addressed for competition with the
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Cichlidae species Nannacara anomala (Enquist and Jakobsson,[15]). To illustrate

the complexity of possible contest resolution mechanisms, fights may be decided not

only by combinations of current investment and potential future investments, but

also the spatial status of opposing players, as the contest progresses. An attack

from one player, from behind the opponent, may generate an intrinsic advantage

that outweights current state variables such as the forementioned current and fu-

ture investments (Field, personal observation). Furthermore, a player fighting closer

to the patch "edge" when compared to the opponent may have an intrinsic disadvan-

tage, since it could be easily "pushed" off the edge. Advantages due to the spatial

configurations of the opponent have been observed when an intruder attempts to

return from the patch periphery to parasitise, only to be "pushed" to the periphery

again by the resident (personal observation).

Coupled with the difficulties in finding the correct contest resolution mechanism

are the problems in assessing the fitness value of the patch, given particular patch

investments during the fighting phase, as other stages of patch competition, such

as intruder returns to "steal" ovipositions and the final return of the intruder (see

the following three Chapters) make the map from current investment to total patch

fitness return unclear. The question of how fitness returns are correlated with invest-

ments is at the very least, difficult to answer. As mentioned in Section 2.1, payoff

from superparasitism varies over time, thus patch fitness will depend not only on

the number of eggs parasitised/superparasitised but also the order and time interval

with which these events take place (Godfray,[26], Field, [19]). Host patches vary not

only in size, but also in the quality of individual eggs that make up the patch. As

a general rule, eggs near the periphery are of lower quality than eggs in the interior

(Hood,[35]). Thus the spatial configuration of ovipositions will also have an effect on

fitness outcomes. These problems may be addressed with extensive simulations, but

lacking any empirical data as to overall total fitness outcomes from pairwise com-

petition, a simple model of fitness, comparing investment gains kept by the players

if either resident or intruder was deemed the best approach in the present course of
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research.

Finally this discussion will focus on the assumption of. pai,rwise competition

between players. Though competition between opponents in the laboratory was

pairwise, in the field, up to as many as sixteen conspecifics have been recorded,

fighting for a single patch, though the mean number, recorded over a season \ryas

two (Field,[19]). F\rrther work in modelling patch competition must therefore include

multiple competitors, with incomplete information as to the opponent's investment.

There has been substantial progress in n-person wars of attrition games (Haigh and

Cannings,[27], Blackwell,[5]), but of particular note is the work of patch leaving

strategies adopted by multiple foragers on a patch (Sjerps and Haccou,[76]). The

authors calculated a probabilistic patch leaving strategy, according to the degree

of conspecific interference, the resource intake rate, and the number of remaining

competitors on the patch.

Inclusion of both incomplete information of the opponent's state, resource intake

or degree of superparasitism and number of opponents are just some of the assump-

tions to be incorporated in the l¿-person war of attrition approach (See Section 6 ).

In summary, this chapter addressed competition for residency in pairwise patch

competition. The complete information scenario was briefly studied. Following this,

players where assumed to have incomplete information of the opponent's investment

and patch size. With the rule "persist in proportion" to your current investment,

ESS scaling factors, relating persistance times or injury levels to current investments

were found in the continuous risks and graduated risks games. Players persisted ac-

cording to costs of injury, relative rewards between resident and intruder, as well

as the expected future patch returns from securing residency. The continuous risks

model predicts a "smooth" rise in agonistic conflict, as the level of parasitism in-

creases. A graduated risks approach predicts a switch from tolerance to aggression,

once a players investment rises above some threshold. Additional factors leading to

contest resolution, such as spatial configuration of players at the point of competi-

tion may be important. Further research directions should focus on n-person wars
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of attrition with incomplete information

2.5 Appendix

2.5.L Proof of continuous risk fixed point equation

Here we prove that the ESS scaling factor u* is found by solving the fixed point

equation u : Fu(u), where F*(u) : -A(") lß(")'
If ^9 is the set of patch investments such that player one wins competition then

,s : {(u,s)lo < a s (*),?, s r < E - a}'il -1- t' 'ur

and the region where player one loses competition

S'--{(*,s)10< "S(E
E

az
Ul +1

The union of these two sets ^9u^9':U(E).
With the structure of the sets S and ,9' and the notation

E

9*3y<E-r]|
U2

X- E Y
42.
UL +1

the expected fitness of player one takes the form

E(u1,u2) : [: [. [':. À*u'I(r,a)p@ll)p@l$e@)asd,rd,E (2'5.2)
J E:U J o=U t A:¡i

+ [* [" ["-.0. 
^o-R(n,y)p(rln)p@lÐp(E)d,rd,yd,E 

(2.5.3)
J E:0 J A=0 L r=lA

Due to the complexity of the differentiation, the two integrals are treated separately.

Differentiating the first integral

0- f f ¡E-" ¡'ur 7(*,,y)p(all)e@ll)e@)d,yd'rd,E
ôu, Jr=ol*=olo:-¿'

Ë, r, h I:; \'u' I (r, a) p@lÐ p(rl E)e@) d'v d'n d' E

+ Ë,# I: ; Àx u' I çx, a) p 6 I 
E) p (v 

I 
E) e @) d'v d' E
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Figure 2.5.g: Region of integration in player one,two patch investments x and y. Set

,S is the region where player one persists longest and the set S' is the region where

player two persists longest.

Leibniz rule must once again be applied to the inner expression

Ë,

Ë,

Ë,

Ë,

r,
-fr
tur
u2

Ë,;Ln(À") 
À"', I (, , a)p@lT)e(rlT)e@)d'vd'rd'E

I )o ^,",, 
r", ffl o rff @) e @l E) e @) h(ff) o, o u

In deriving this expression, the derivative hÀ*"': ln(À")À"l, 
"t/as 

used.

Now to the differentiation of the second expression

l;,I:,I'=;\uu'R(r'a)p@ll)p(vll)e@)d'rd'vd'E
with application of Leibniz rule, the partial derivative with respect to z1 is

I;,I:,,i^l:äÀau'R(r'a)p@l,)p(vl,)e@)d'rd'vd'E
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+ I:,#, Ë;^Yun R(n,v)e(vlee@lee@)d,rd,E.

Evaluating the inner partial derivative

I ;, I:, #' t ":; Àa 
u' R (n' v) p @ I 

E) p (v 
I 
n ) e @) a n d'v d' E

: - I;, I,l:o^*" o(T, a)p(utn)p(fftølotn) h(T)d,yan: I;, I:, x"' nçff , ùp(al,)prfftønrn)ff auan.

Hence the total derivative of the second integral is

f [' ¡a"" RlW,a)pfulÐp(Wln)4¿yap@)Jø-oJy=o \ 112'Ù/r \¿t " "ttr. ' ' ui

+ I:,#, I'=; ^Yu, 
R(x),y)e(v ll)e@ll)p(E)d.naø.

At the ESS ur - r12: z, thus

(x,Y): (E12,El2).

Thus upon substitution of u, integrals with the limits

: !!x,E - x,
U2

: '2y,8 -yU1

will vanish. Upon substitution of z1 -- 'u2 : u, the density product

p@lÐp(TlÐ : n@lffa *v < ølp(Tlff *a 3 E)

: p@lza < E),

: p@ly < El2)'.

Thus the substitutiorr u,1: uz -- u leaves the following expression for the derivative

of the E(uyu2)
1 f- rE/2

; J":, lo=,0 ^'"'*@'a)P@la 
< E l2)'P(E)dYdE

(n,r)p(rlr < E lz)'p(E)drdÐ

a

:x

(À') À"" I (r, s) p(ylÐ) p@l n) e@) ds dr d E : 0
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To simplify this expression, let A : r in the first integral, leaving

this expression being

l;o I,'='n' 
À*'r(R@,r) - I(r,Q)e@lr s E lz)'p(E)d,rd,E

+ I;, IE/2 [84 ln()")À"'r (*, a)p@ll)e@ll)e@)dryd,raE : 0
Jt=O JA:r

I
u

+-t B(u) : s,

which is solved to yield the equation LL: F-(r)

2.6.2 Proof of graduated risks fixed point equation

Here, the proof that the ESS scaling factor u* is found by finding the fixed point

to the equation u: Fn,(u), where F*("): -C(u)12(u) is completed. As with

the continuous risks model, the region of investments where player one chooses the

highest risk is denoted by the set ^9. Player two chooses the highest risk of injury

within the set S' : U(E)/S. Integration proceeds in exactly the same manner as

the continuous risks model, implying that the expected fitness of player one against

player two is

E(u1,u2) : L =, l,:;(o@,y)(1 - arr) -r H(r,y)yu2)n@lÐa@ll)d,rd,y
,A-U JI-- '

+ I:, Ë;Q@,a)(1 - øu1) r H(r,y)rur)p@ll)p(rll)d,yd,r.
Jix-U JA-r '

and the ESS scaling factor found by differentiating with respect to u1 and solving

at, zero, u"*;,r"" : o.

Differentiating the first integral, the application of Leibniz rule gives

h, I:,1,':;(*@,v)(1 - auz) + H(r,v)vu2)n@lø)n@ll)d'rd'v

: l,:,h 1,"=+(*@,y)(1 - au2) + H(r,y)su2)n@lÐn@ll)d,rd,s

AY tE-Y /+ ? I"_L(^ø,y)(1 - rry)-t H(r,v)u2y)n(ylÛ)e@la)d,r.
du1 J x,-
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Applying the derivative within the first integral leaves

Now to the derivative of the second integral,

l, :, (orffi, ù o - a u z) .r u (T, a,,)) hfff¡, rff wt n ra E) da

+

h I"=,I:;(I@,s)(t - uú) * H(r,v¡,,,)n@ll)p(rll)d,sd,r

f, #, Ë; (I @, y) (t - rut) -t H (r, a) ru t) p@ll)p(rl E) d,s d,r

# l*" (r6,a)o - nu1) + H(x,v)xu1)p@lÐe@ll)d'a.

The inner derivative yields

l,*=o (, @, T¡ rt -,,,) i H (r, ry) * u,), rff wl fi (ff) o rø "l 
o. .

+ I:,I:;(- t@,ù* i n@,v)r)n@ll)e@ll)d,vd,r.

At the ESS X :Y : E12 and as with the graduated risks model, the integral with

the limits ,: #,8 - X will vanish, leaving

Il=|r' 
(*(r,a)o - au) + n(a,s)a,)f;a@lnlz)'au

I,l='n' Qr*,r)(1 - ru) + H(r,flnu)f,n@lnlz)'a,

+ I,:|0' I,:," fW)*p@lø)p(rll)d'vd'r'
By substitution of A - r into the first integral, we have

+

I I,':=r' (^@,r) - I(r,r))(1 - ru)p(rlEl2)2rd,r

I,u='n' lrl,"
(*@,y)-I(*,ù-c)

rp(ylÐ)p(nlÐ)dsdr : 0.
2

This equation is
C(") +D@):s.

u

Thus, solving for u, the fixed point equation for the graduated risks model u :
îr(r) is obtained.



Chapter 3

The Intruder's Patch Retlrrll .

Two hypotheses about the information governing intruder returns'

3.1 Introduction

This chapter addresses the second stage of patch competition in which the roles

of both players, as resident or intruder have been settled through agonistic con-

flict. Both players still search for unparasitised eggs and conspecific parasitised eggs

(Field,[1g]). 'I'his stage of conflict marks the transition from residency settlement to

the waiting game (Fietd, Calbert and Keller' [21])'

patches exhibit varying degrees of defendability, depending on the number of

eggs laid in the host clutch and the number of conspecifics competing for host eggs

(Cumber,[12], Wagge,[S3]). Resident females searching for unparasitised eggs at the

periphery leave the remainder of the egg clutch exposed to a searching conspecific'

For large clutch sizes this makes the patch only partially defendable. This partial

defendability is compounded by the fact that once a resident has discovered a suit-

able host egg, it must temporarily resign from the current role of defending past

investment, to gain present fitness returns (Field'[19])'

Given that the past history of agonistic bouts reveal the resident to be the player

with the most at stake in defending the resource, one fundamental question must be

addressed: how much time on the patch should the defending resident apportion to
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pure patch defence and how much time should it apportion to searching the patch

for further suitable host eggs? This question can be rephrased as the juxtaposition

between defence of past investment versus the accrual of future fitness fitness returns

by recommencing host search (Field and Calbert,[20]).

Intruding parasitoids face a different class of problems in maximising any fit-

ness returns from the patch. One factor in deciding just when to return to the

patch rests on the observation that any initial fitness gains the intruding female

has gained before the onset of agonistic competition may be eroded by a resident

superparasitising intruder parasitised hosts. The second problem of the timing of

patch return is more fundamental and centres on information asymmetry between

contestants (Field, Calbert and Keller,[21]).

Subsequent to an intruder being forceably removed from the patch, it will have

no knowledge as to the location or the current behaviour of the resident. An intruder

that possessed knowledge of the location of the resident could decide at what time

to attempt to return to find further hosts. For instance, if the resident \ryâs on one

side of the patch, the intruder could choose to return on the other side, maximising

any chance of being intercepted. Similarly, an intruder that would know the resident

was in the act of oviposition, having found a suitable host, could judge when best to

return. It is most likely that none of this information is fully available when waiting

at the side of the patch, as there is evidence that ?. basali,s females have limited

scope in vision (Field,[l9], Land,[42]). In the field, ?. basali,s females, searching for

a patch a,re seen to pass near an egg mass. The close location of the patch does not

seem to have an effect on the parasitoid as it passes. (personal observation).

In this chapter we consider two hypotheses about the information that the in-

truder uses to judge when and if it is best to return, in order to find further hosts.

The first hypothesis is constructed by assuming that the lack of information on

the behaviour or position of the resident forces an intruder instead to rely on broad

characteristics of the resident's behaviour to make optimality decisions. One such

characteristic is the resident's current rate of encounter with suitable hosts and the
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time taken from insertion of the ovipositor to the withdrawal time, otherwise known

as the handling or oviposition time (Godfray,[26]). While the resident is oviposit-

ing, it temporarily suspends defending the patch. If the intruder can estimate the

rate at which the resident oviposits, then it can ascertain a patch return rate which

maximises the chances of arriving on a patch while the resident is itself ovipositing,

increasing it's chances of finding a suitable host before being intercepted by the res-

ident. In turn, if the resident can estimate the intruder's return rate, it can decide

whether to search for remaining unparasitised hosts or whether to guard. If the

resident chooses to guard, by patrolling the boundary of the patch, it increases the

chances of intercepting the intruder before it has time to superparasitise (Field, [19]).

The intruder must also decide whether to return while the resident is present or

to wait for the resident to leave before returning (see Chapters 4 and ??). This

decision must be based on estimates of the probability of success in finding further

suitable hosts and the costs associated with resident interception. If the intruder

has returned a number of times before, then it's interception cost estimates may be

based on the past successes and failures in finding ovipositions before being inter-

cepted and removed by the resident.

The nature of the two types of information exchanged to the intruder, either

resident oviposition rates or interception costs, is completely different. If resident

oviposition rate information is exchanged, this will determine when the intruder

should return. If interception cost information is exchanged, this will determine

whether the intruder will return.

At present, it is not clear as to which information the intruder uses to base it's

return decisions. The intruder may use both information about resident oviposition

rates and the costs of being intercepted. By evaluation of the merits and failures of

both hypotheses, some progress can be made in understanding the adaptive tactics

of intruder returns.

Models of intruder return decisions and the adaptive responses of the resident

are presented in this chapter. We first consider a model of an optimal intruder re-
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turn frequency, given that the patch is temporarily undefended while the resident

oviposits (Section 3.2). Following an analysis of the optimal return rate as a function

of patch defendability, we consider a model in which the resident chooses to defend

for some random time, before re-commencing host search (Section 3.2.4). The result

of this analysis is the proof that a mixed strategy does not exist and the resident

should choose to either guard or host search, depending on the the host encounter

rate and the relative costs of opponent superparasitism (Section 3.2.7). We then

consider a model in which the intruder decides whether to return at all, based on an

assessment of past successes and failures when returning to superparasitise (Section

3.3). The probability of being intercepted is calculated by the application of Bayes'

Theorem and this probability is used to estimate the expected payoff from return-

ing to the patch versus the payoff of returning after the resident leaves the patch

altogether (Section 3.3.2). Finally, we consider multiple intruder returns through a

stochastic dynamic programme, with past successes and failures in patch return as

the available information that govern the decision whether to return or to commence

the next phase of patch competition (Section 3'3.3).

3.2 Information exchange of the Residentts Ovipo-

sition Rate

The question of when an intruding conspecific should return to a patch in order to

attempt searching for unparasitised eggs and to superparasitise the resident's egg

investment is the subject of this section.

Prior to the commencement of this game, the resident has usurped the intruder

from the patch. Given that the resident is the superior competitor, as âssessed from

previous bouts for possession of the patch, the tradeoffs for a return to the patch for

the intruding parasitoid need to be addressed. On return to the patch the behaviour

of the resident is the crucial determinant of intruder oviposition success.
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Rather than constructing a game of return rate and patch guarding between the

intruder and resident, it is assumed that the resident initially has not commenced

patch occupancy from a purely defensive role, but instead is still attempting to

search for further suitable hosts after temporarily removing the intruder from the

patch. Given that the resident is not guarding, the vulnerability of the patch to

intruder superparâsitism still fluctuates over time. Whether the resident has found

a suitable host and is committed to oviposition may determine when the patch is

maximally subject to intruder success in parasitism or superparasitism.

Once a suitable host egg is found by the resident, it begins the sequence of acts

typical of an oviposition event, beginning with the insertion of it's ovipositor into

the egg. During the act of host parasitism, a resident must sit motionless over the

host, and is no longer able to respond in defence to an intruder searching over the

patch, unless oviposition has just begun, in which case the resident can withdraw

it's ovipositor and usurp the intruder from the patch (Field,[19], Cumber,[12]). If

the resident is still foraging for hosts once the intruder has returned, an encounter

between the players will result in the intruder once again being forced off the patch,

inducing the intruder to await yet another return in an attempt to superparasitise

or find undiscovered unparasitised host eggs (Field,[19]).

Thus, in making a decision asto when to return to the patch, the intruder must

take into account the costs of returning, which critically depend on the rate at which

the resident encounters eggs suitable for parasitism and also the time it takes for

the resident to complete a successful oviposition.

Rather than derive the structure of a return time distribution for the intruder, a

constant tendency to return is assumed, dependent on the resident oviposition rate,

the host handling time and the relative costs of resident ovipositions on intruder

investments. This restricts the return time to be drawn from an exponential distri-

bution, which is agreement with experimental observations (Field,[19]). Assuming

a constant return tendancy also has the advantage of tractable expressions in the

calculation of intruder fitness equations. In this chapter, we make extensive use of
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Renewal Theorg (Cox,[11]) to calculate quantities such as the probability of resident

oviposition over time, given some baseline rate of finding suitable hosts'

3.2.L Assumptions

Assumptions behind the model of return, based on information of the resident's

oviposition rate are listed here.

o only two players compete for fitness returns on the patch.

o The status of each player has been estabished through previous bouts or esca-

Iated conflicts. One player has the role of resident on the patch, the other the

role of an intruding Parasitoid.

o The game commences immediately after the player roles have been estabished

and the intruding female is jostled off the edge of the patch or when an intruder

has been removed after a prior return'

o Termination of competition is marked by the forced removal of the intruder

to the periphery after the return, that is only one return to find suitable

eggs rather than multiple returns is considered (see Section 3.3 for analysis of

multiple returns).

o The fitness payoffs have the following general form: suppose player 1 oviposits

in a eggs and player 2 oviposits in b eggs during the course of patch com-

petition. Further suppose that the cost to player 1 from the opponent's b

ovipositions is c1(b), then the fitness gain of player !,rr(o,b) is defined to be

fr@,b):a-Ct(b)'

similarily, the fitness return to player 2, rr(o,b) with cost imposed by player

L,C2(a) is f2(a,b) : b - C"(")'

o Once the resident commences oviposition, both the rate of encounter with

suitable hosts and the handling or oviposition time are assumed to be constant.
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o Fitness payoffs to the resident depend on the current oviposition rate and

handling time, as well as the time between commencement of host searching

and the return time of the intruder.

o Payoffs to the intruder, from returning, depend on the behaviour of the res-

ident on the patch. On return to the patch, an intruder is hypothesised to

accumulate the highest fitness returns whilst the resident is ovipositing, com-

pared to the gains when the resident is searching for acceptable hosts.

3.2.2 Intruder's Fitness Equation

It is assumed that the resident oviposits with a constant tendancy Ào and the time

from the commencement to completion of an oviposition event, the handling time, is

k time units. The end of an oviposition defines a renewal epoch and this is followed

by another search phase for suitable hosts, provided the intruder has not been en-

countered yet. We can therefore infer that subject to the intruder not arriving on the

patch, the time from the commencement of searching to the end of the oviposition

phase, known as the inter-renewal time, satisfies the following time distribution

r'(¿) : 0

1 - exp(-l "(t - k))

for 0<t<k
for t> k.

The subscript of one indicates that this is the distribution of the first inter-oviposition

time.

Given that inter-oviposition times are independent and identically distributed,

we can calculate the distribution of times to the end of lhe jth oviposition, defined as

F¡(t), using the notion of the convolution of distributions. Suppose the times To,Tu

for two particular events have distribution functions given bV F,(ú),f'6(f) with the

corresponding density functions given by p"(t) and p6(f). Then the distribution of

the sum of the times To I Tu,Pt(T" I Ta 1ú) is given by the convolution

I I*,=,F"x F6(t) p"(r)p6(y)drdy
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¡t: 
Jo 

,"(t - r)dF6(r).

From basic probability theory the distribution F¡(t), is simply j convolutions of the

distribution ¡'1(¿), that is

Fj(t): Fr*Fr*...* (¿)

j times

Let Tt denote the time of return of the intruder. If we define 
^ä(ú) 

to be the

expected number of ovipositions in time t of the resident, conditioned on the intruder

not returning by time ú,

^t(ú) 
: E(number of resident ovipositions I Tt > t),

then a fundamental result of renewal theory (Cox,[11]) relates the distribution of

times till the end of the jth oviposition to the expected number of ovipositions.

Lemma L

¡\/,(¿) : Ë F¡þ).
j=L

We will use this result (Cox, [11], Ross,[69]) in calculating the expected fitness of

the intruder adopting some return tendancy.

The fitness gains of the intruder are assumed to be only dependent on the state,

either searching or ovipositing, of the resident when returning to the patch. Let To

indicate the commencement of an oviposition event for the resident. Fitness gains

of the intruder conditioned on the resident searching or ovipositing are defined as

Ao:Pr( intruder oviposits on return I resident is ovipositing)

and

A" : Pr(intruder oviposits on return I resident is searching).

Because the probability of the intruder finding a suitable host is assumed to be

highest if returning while the resident is ovipositing then

A" 1Ao.



CHAPTER 3. IIVTRUDER'S PATCH RETUR¡\I 67

One possible measure of the resident's effectiveness in patch defence is the ratio

of the probabilities of intruder oviposition, whilst the resident searches or oviposits,

*. nr fr -+ 1, the patch becomes decreasingly defendable to intruder attempts to

steal ovipositions.

With these expressions, \rye can calculate the expected intruder fitness at return

time ?¡, conditioned on the commencement time of oviposition 4. It is assumed

that no more than one suitable host can be found by the intruder, so conditioned on

the intruder returning while the resident is ovipositing, the expected intruder fitness

gain E(/ | resident is ovipositing ) is just

E(I I resident is ovipositing ): LAo* 0(1 - Ao): Ao'

For time of ovipositionTo, the expected fitness gain of the intruder, E(IlT7,To),

satisfies

E(IlTr,To):
A, for

Ao for

A, for

0 7¡ 1To,

To 1Tt < To + lc,

Tt)To*lc.
Now the expected fitness of the intruder, adopting a specific return distribution

can be derived assuming the fitness of the intruder is the difference between the

expected number of ovipositions and the resident's total ovipositions weighted by

the per oviposition cost C¡.

Suppose that we define the following probability distributions

Gt(t): Pr(intruder returns at time ( ú)

and

G.(t): Pr(resident is ovipositing at time ( ú).

The corresponding density of the intruder return time is simply W(t) : À¡ exp(-À¡f)

Before calculating the expected fitness of the intruder, we must calculate p"(t).

Lemma 2

p.(t): ¡ú,(¿ + k) - ¡/,(¿)
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Proof

p"(t) I,'*r

I,'**

j--t
oo

Pr(renewal at time[r,r * L,r])dr
oo

D Pr(jth renewal at time r)dz
j=I

I,*r F-fr',¡¡a'
D l,'*r rl,r

F¡(r)drd

Ð p¡(t + k) - Fj(t)

Therefore

p"(t) : ¡ú,(¿ + k) - 
^t(¿).

tr

Recalling the assumptions listed in Section 3.2.I, the expected fitness of the

intruder E(I | 
^r,Ào), 

given that the resident oviposits at a rate À, and the intruder

returns with rate À¡, will therefore satis

E(r lÀ¡, À,) : 
Io* 

p,þ)(p.þ)(A, - crN"(t)) + (1 - p,(t))(A" - crN"(Ð))dt,

where C¡ is the relative cost to the intruder of a resident's oviposition.

With the restriction of the intruder adopting an exponential distribution on re-

turn, we can find an explicit expression for this fitness integral using some standard

results in Renewal Theory (Cox,[11]). The fundamental result that is applied here

relates the expected number of ovipositions in some time ú, with it's Laplace trans-

form.

The Laplace transform with respect to s, of some continuous bounded function

/(ú), is defined as 
/^oo

J. /(t)exP(- st)dt'

j=L
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Let L(f (t),s) : /-(ú) denote the Laplace transform of some function /(ú), with

respect to the variable s, then the Laplace transform of the convolution of two

functions f"(t),fb(t),LU"* lu(t),s) : ff(s)/,i(t) Suppose the distribution of time

to the first resident oviposition ,t'1(t) has density ft(t), with Laplace transform with

respect to s,/f (s). Using this property of convolutions and using the fact (proved

by integration by parts)

L(Fi (t), r) : r;tfl,(¿), r),

we can show that the Laplace transform of the expected number of ovipositions with

respect to variable s has the form
oo

As DÊr ai : ft, the Laplace transform of the number of ovipositions, 1Vo(ú) re-

f (/V,(t), s) L(D4(¿),')
j=I

1 oo

s D (rï('))'j=l

duces to

L(N,(t),r) : ,, /i!t), ,,'/ s(l - /i(s)).
To complete the calculation, we must evaluate the Laplace transform of the density

of the time between ovipositions. The density of the time between ovipositions, fi (f)

may be written as

f lÐ : À, exp(-) "(t - k))h(t - k)

where the Heaviside step function is defined as

h(t): 0 for ú<0,
1 for ¿>0.

Using an elementary result of Laplace transforms known as the shifting lemma,

stating that

LU(t - a)h(t - a), s) : exp(-0s)/-(t),

we have that

LUrþ),s) : exp(-*')#,
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thus
/ï(') ), exp(-ks)

s(l - /í(s)) s(s * Ào - exp(-ks)À,)'
Consider the expected fitness of the intruder, returning in an exponentially dis-

tributed manner with rate À¡,

E(11À/, À,) - e*p(-)rr)((¿,t¡t, (t + k) - ¡/,(¿)))

- CrN,(ù)dt

: 
^rL(A"(N"(t 

+ tl - ¡/,(ú))

+ A"(1 - 
^[(¿ 

+ k) + /%(¿)) - crN"(t), À').

Once again, by direct calculation or application of the shifting lemma of Laplace

transforms, we calculate

L(N'(t+ k)' Àr) 
: :i";^:r:;"," i];^''

With this we can evaluate the intruder's expected fitness

E(I | À/,1,) : 
^r{A"L(N"(t), 

À¡)(exp(kl.) - t) + A'L(I,^r)

+ A"L(N"(I), À¡)(1 - exp(kÀ¡)) - CrL(N.(¿), Àr)Ì

: A, + ÀtL(¡/,(ú), rr)({a, - A,)(exp(kl¡) - 1) - c.)

l, exp(-kl¡) (A. - A")(exp(kÀ t) - r) - C,
: Ar* lo * À¡ - À, exp(-kÀ¡)

This expectation has a well defined maximum, as shown by comparing,Ð(1 I À¡, À,)

against values of À¡ in Figure 3.2.1.

: 
^rIJo

+ (r",t - 
^ä(ú 

+ k) + ¡'t,(¿)))

3.2.3 Optimal Return Rate to Superparasitise

Many methods exist to calculate the optimum rate of return li, all of these must

satisfy
w#-ù: o and a2EQ-LIT,^ò <0.



CHAPTER 3. INTRUDER'S PATCH RETUR¡ú 7L

i5srl

o

F
I

(f)
¡

5 10 15 20 25 30

Figure 3.2.L: The expected intruder's fitness E(I I l¡, )o) against intruder return

rate À¡. Parameters used in this figure Ao:0.9,1r:0.5, Ct:I, with lines drawn

for k : 5,* :0.3 and lc : L, * : O.t'

Differentiating the intruder's fitness expression with respect to À¡, we are left with

the following implicit expression for Ài

0

À¡

(,r, - A")k exp(-kÀi) + c¡k exp(-rÀï)) {À, + Àî - ), exp(-k)})}

(r + .l,r exp(-k)|))ttr, - ,4,)(1 - exp(-k)îD - C,exp(-/cÀ|) : o

There is no closed ical aPProach

is required. This is d the equation

to find a fixed point.

À=5
k--1,
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Iteration number:n Àr["] À.["]

0 2.00 4.00

1 2.303 2.773

2 2.389 2.51r

3 2.4t3 2.445

4 2.4t9 2.428

5 2.421 2.423

6 2.422 2.422

I 2.422 2.422

Table 3.2.I: Table of the values )r[r], for different initial conditions À¡[0] :
2.00,4.00. The parameters used in this table are l, : 0.50, k : 1.00, Ao:0.5, fi :
0.1 and Ct :7.

where

Dllnl:: (A, - A,)k + Crk)(^, + À¡[n] - À, exp(- kÀ¡lnl)

and

D2ln]:: - C ¡ exp (- ttÀ, ["] ) - (A,-,4, ) ( 1 - exp ( - k)r ["] ) ) ) ( 1 + À,k exp ( - kÀ¡ [rz] )

for n -- L,2,..., we iterate this equation till the difference between successive ap-

proximations converges to some small arbitrary constant e, that is till I Àrl, + 1] -
l¡[rz] l< e.

Computations show that À¡[rz] ---+ Ài, for small values of n, under different ini-

tial conditions À¡[0], as seen in the Table 3.2.I.

Plots of the optimal return frequency À¡ against À, show that as the resident's

rate of encounter with suitable host eggs increases, so does the rate of return to the

patch for the intruder (Figure 3.2.2). This increase in return rate is to be expected

since an intruder will increase the return tendancy whilst the resident is more often

predisposed to oviposition at high values for À,.
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Figure 3.2.2: Graph of the optimal intruder return rate )i versus the resident's

current rate of oviposition lo using the iteration formula for À¡[n]. Iterations ceased

when I Àr[" + 1] - l¡[n] l< e.

As the ratio of payoffs from returning while the resident is searching or oviposit-

ing approaches one, fi ---+ 1, the cost ofreturning to the patch decreases, as there is

no gain for the intruder in waiting for the resident to oviposit, therefore the optimal

return frequency must increase. Viewing the equation for )f , u, * ---+ 1, Ài --+ oo

and the graph in Figure 3.2.3 of the optimal return frequency Ài confirms this.

Á, : 0'95

Au:0'5



CHAPTER 3. INTRUDER'S PATCH RETUR]V 74

t.-

(o

ro

sr

(Ð

C\

0.2 o.4 0.6 0.8 1.0

4-

Figure 3.2.3: Graph of the optimat Intruder Return Rate )i against * ", ^n --) 1

This graph assumes the parameters Ao : 0'9, lc : I.0, Ào : 0.5.

3.2.4 Resident's Best Response to the Intruder's Return

The resident's response to the intruder's strategy is considered in this section. Be-

havioural observations of T. basalis contests indicate considerable variation in the

actions of a resident on an intruder's patch return (Field,[19]). This behaviour can

range from pure patch defence in which the resident must sit motionless, awaiting

any peripheral movement, to active forgaging for acceptable hosts (Field, Calbert

and Keller,[21]). If we observe typical resident behaviour over the course of multiple

intruder returns, there seems to be a change from partial to total exclusion of the

intruder from the patch (Field, Calbert and Keller,[21], Field,[19])'

In order to incorporate some component of pure patch defence in this model, it

0.0
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is assumed that once a resident has usurped an intruder from the patch a, ne\ry game

commences. Initially, the resident guards for some time specified by an exponen-

tial distribution then switches to a search/oviposit phase. Lower fitness returns are

accrued to the intruder if it returns while the resident is guarding, as compared to

the fitness returns while the resident searches/oviposits. This game is assymetric

in both player role and costs, therefore we expect to find only pure strategies for

the resident, that is either guard or oviposit, but not both within the course of a

game. Crucial to the decision of the resident to guard are the relative costs in de-

fending the patch, versus the potential fitness gains in ovipositing (Field, Calbert

and Keller,[21]).

If the intruder arrives on the patch once a large proportion of the eggs have

been parasitised by the resident, then intruder superparasitism will evoke a higher

cost to the resident. Thus, in choosing to defend the patch, a resident will face a

trade off between defending past patch investment versus future fitness gains from

oviposition (Field,[19]). Therefore, to understand the nature of patch competition,

it is reasonable to ask at what superparasitism cost should the resident switch from

search/oviposition to pure patch defence.

3.2.5 Payoffs to the Resident and Intruder

Before construction of the fitness equations for each player in patch competition,

the following terms must be defined. Letr Cn be the expected per oviposition cost

to the resident each time the intruder oviposits in a random egg. Similarily, C¡ is

the per resident oviposition cost to the intruder. Costs are relative, since the fitness

gain of a player is defined to be the total number of self ovipositions minus the

cost of the opponent ovipositions, with the relative cost of self-superparasitism not

taken into account. These costs are assumed to be constant over the course of a

single intruder return. As it is assumed that the player with the largest investment

is the resident. Therefore, if the intruder superparasitises a random egg it will most
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Iikely be a resident parasitised egg, thus the relative superparasitism costs will be

greater for the resident, Cn ) C¡. As in the previous model, we must define the

payoffs to the intruder from returning to the patch, conditional on the resident

either guarding,searching or ovipositing. Here

As : E(payoff to the intruder I resident is guarding),

Ao : E(payoff to the intruder I resident is ovipositing),

A, : ,E(payoff to the intruder I resident is searching).

These definitions are made on the assumption that the following inequality holds

An1A"1Ao.

As would be biologically expected, the smallest expected payoff to the intruder comes

from returning to the patch while the resident is guarding. If we let ?"7o denote the

time at which the resident ceases guarding and starts the search/oviposit phase and

T¡be the return time of the intruder then the number of ovipositions of the resident

IS

E(number of ovipositions by the resident lT,l": t,Tt : r,r > t) : N'(r - t),

where ¡r/,(¿) is the expected number of ovipositions for the resident, with host en-

counter rate Ào and handling time k. \ /ith these definitions \4¡e can calculate the ex-

pected payoff to both players. An intruder's expected payoff, conditional onT,¡o - t

and Ty : r is seen as

E(I lT,l.: t,Tt - r) :
As if r 1t,

Ao- CyNo(, -t) if r ) tand 4 1r 1To+k,
A" - CyNo(, - t) otherwise.

The resident's expected payoff, under the same conditioning assumptions is given

by

_C nAs

N"(r-t)-CRA"
N"(r-t)-CRA"

if r 1t,
if rltandTolrlTo+k,

otherwise.

E(R lT,lo: t,Ty : 7) :
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3.2.6 Approximating Fitness Expressions

Expected payoffs for this gâme can be calculated by integrating over all possible

times when the resident ceases guarding and times when the intruder returns to the

patch. Given that p,(f) is again the probability that the resident is ovipositing at

time ú and p¡(t), p,t"(t) are the respective densities for T¡,Ts¡s t'hen

w(t) : À¡ exp(-l tt),p,/.(t) : À,loexp(-À"7oú),

then the intruder's expected payoff E(/, R) is

E(1, R) : 
Io* o,,"(r)( lo' 

,+no,çr)ar)at

+ 
Io* 0,,"(r)( lr* {0,1, - t)(A' - c¡N"(r - t))

+ (t - p"(, - ú))(,4" - C¡N"(r - t)))p,(r)dr)at.

Expected payoff for the resident is given by

E(R,I) : 
Io* r,,"(r)(lo' -roonpy(ldr)dt

+ 
Io* 0,,"(r)( lr* {0"1, - ¿)(¡â(' - t) - caA")

+ (t - p,(, - ¿))(¡r,(' - t) - CaA"))w(r)dr)dt.

Even with the restriction that the guarding times and the return times are drawn

from exponential distributions, some approximations need to be made in evaluating

these integrals. The main difficulty lies in the integration of the probability of

oviposition

po(r -i) : À["(r - t + k) - N"(r - t)'

Instead we will apply a Tauberian approximation to this probability of oviposition

(Cox,[f1]). The Tauberian Theorem gives us an approximation for the number of

ovipositionr lr/,(¿), for large times ú and in turn a time independent approximation

for the probability of oviposition p,(ú). Firstly the Tauberian Theorem is stated

formally (Ross,[69])
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Theorem 1 (Tauberian Theorem) Suppose a cont'inuous and bounded function

f (t), has Laplace transform with respect to uariable s giuen by

Lff(t),s) : /-(s)

andlet0<p<æ. Then

ri* /(ÐI{1: t) - 1 e ,rg.o/.(r)" 
p*7 : r.¿-)oo tp

Where f(p) : /o*exp(-r)rq-rd,r. If p i,s an integer, thenl(p): (p- 1)!.

Informally this theorem states that the function f (t) for large times ú, can be ap-

proximated by the Laplace transform /-(s) of /(ú), with respect to variable s near

s:0. If L(l(t),s) can be expanded in the form

L(Í(t), ù = ,l-,

then

f (t) x tt.

The coefficient I is then calculated as

,l$o /-(r)r2 : L

This theorem is now applied to an approximation of the number of ovipositions

^t(¿) 
and it's Laplace transform with respect to variable )¡. For large times, 

^t(¿)
can be linearly approximated (Cox, [11]),

^t(ú) 
x Rot.

Applying the Tauberian theorem (Cox,[11]) to fina the coefficient .Ro, we have

. lim 
^ 
r?¿(^ä(¿), À¡)

^I 
---+U

lim

Ro

,\¡ -)0
I
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The denominator and numerator are both zero when applying this limit, hence

L'Hopital's rule may be applied, thus

Ro

L + 
^"lr'

Conditioned on the intruder not returning at time f, the number of ovipositions of

the resident is therefore approximated as

¡/,(ú) = ,l\"r
With this approximation, the probability of oviposition is calculated as

P'(r -t) : ¡ú"(t - t+k) - N"(r - t)

^"(r 
-t+k) Ào r -t)

I+^"lr I+^"k
\ok

I + À"1c.

Some properties of the linear approximation are evident, since dividing the de-

nominator and numerator by lo we have

n1rLo L_+k
1

E(time to find host) f (handling time

This is just Hollings Disc Equation (Stephens and Krebs,[77]) for the rate of par-

asitism, with inter-host travel time f and handling time k. With this result we

can no\/ evaluate the resident and intruder fitness equations, to give approximate

expressions for the fitness of the intruder and the resident

E(l, R) : 
Io* r,, "(r) ( lo' 

qr,çr)ar)dt

+ 
Io* 0","(t)( lr* {0"{, - t)(A" - c7N"(r - t))

)
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+

+

+

:

+

(1- p"(, - ¿))(4, - C¡N"(r - t))\p,(r)ar)at

lo* 0",,(r)( lo' 
,+no,çr)ar)at

Io* ,,,,(r)( I,* , *-ùh(A, - cyN"(r - t))

j ufo, - c¡No(r - t))p¡(fldr)dt

o

To evaluate this last integral, we may evoke the Tauberian theorem again

a,¡"(t)
t,

7 + À"lc À,/o t À¡

p¡(r)N,(r - t)drdt.

)o 1

AoÀole + A,

)¡

o

À,

Io*

I,*

n"¡.(t) lr* o,{r)*"(r - t)d,rd,t

l,*r,{òffioro,
o

À,/o]-À¡7*À.le
Thus

)¡ * À"/o
(B - CrN()r)),

where ¡f(À.) is Tauberian approximation of the expected number of ovipositions to

the resident, given that the intruder returns at a rate À¡,

¡ú()¡) :' Ài,l.t)
1 + À,k \À1l

and B is the expected number of ovipositions of the intruder, given that the resident

has commenced searching/oviposition,

B:A,+(A,-A,) Àok

I + 
^"lr'

By a similar calculation, the resident's fitness equation is

E(I,R) = a,¡fi¡+

E(R,I) = -c^An xl¡,t,+
o (¡ú(À') - CnB)

Àt -f À,lo

The structure of the equations are easier to recognise if we note that

Pr(fr<?.-)- Àt
t sØJ - À¡ I Àr¡o'
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so that the expected payoffs become

AnPr(T¡ 1T,lo) f E( intruder payoff lT, > T,¡.)Pr(T¡ ) T,/o),

-CnAsPr(T¡ 17,/o) * E( resident payoff lTt > T,¡")Pr(T¡ ) T,/o)

E(r,R) È

E(R, r) È

The fitness equations can be rewritten as

E(r, R) x An t ;#r(" - on- c/¡\r(Àr))

and

E(R, r) x -cpAn. oL+ñ(n(rr) - cnB + cRAs).

Furthermore, \rye must note that the expected return to the resident, conditioned

on the intruder returning after search/oviposition has commenced, must increase as

À¡ ---+ 0, thus ¡/(Àr) satisfies
ô{!rd . o

dÀt
Now suppose the current population resident and intruder strategies are denoted

fV ¡Ïl', and Àefe and these are finite in value, 0 I À'ro' ( oo, 0 < 
^0,:f. 

< oo. Having

rewritten the fitness equations, the best response of an invading mutant resident can

be seen from looking at the sign of the terms in parentheses of E(R,I). Since these

terms in parentheses are only dependent on the population rate of intruder return,

À!"p, we will look at the best response of an invading resident. Defining the best

response strategy of a mutant resident as

Bo(Àï") - arg sup E(R,I),
Àdl" € [0,oo)

then this best response satisfies

(r(^ir) - ca(B +.4r)) < o,

(r(^?'") - c^(B+ Ar)) : o,

(r(^i*) -cn(B+An)) >0.

This analysis implies that when the relative cost of searching is high, the resident's

only response is to guard. If the payoffs from oviposition are sufficiently large because
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many unparasitised hosts remain, then the resident should search for remaining

hosts, forgoing the costs of intruder induced superparasitism.

The derivation of the pure strategy best responses of the resident was based on

the assumption that the resident chooses to guard before searching for remaining

hosts and the Tauberian approximation for the number of ovipositions /V"(t). An

exact calculation, comparing fitness payoffs when the resident chooses to search or

to guard will yield the criterion under which the resident will switch from ovipositing

to guarding.

3.2.7 Resident's Searching to Guarding Switch

If the resident chooses to search for remaining hosts (1"/o : oo) then the expected

payoff to the intruder

E(I | À,¡"- oo) : 
Io* ^,exp(-À¡ú) 

('t"çN.çt + k) - 
^t(¿))

+ A,(1- 
^ä(¿ 

+ k) + 
^[(ú)) 

- crN"(ù)dt,

this expression was evaluated in Section 3.2.2. A similar expression exists for the

resident's payoff, E(Rl À"/o: oo), given the per opponent oviposition cost C¿,

E(R lÀ"/o : æ) : 
Io* ^,exp(-À¡ú) 

(nf,trl - cn(.t,çN"(t + k)- 
^t(¿))

+ A,(1 - 
^r(¿ 

+ k) + 
^r(¿))))"

Once again we can find an expression for the intruder's optimal rate of return by

setting W+P:0 and solving by numerical iteration (see Section 3.2.2). Ler

us denote this optimal rate of return ¡V fi(C¡) Once Ài(Cr) has been found, then

this can be substituted into the payoff expectations of both players to yield

), exp(-Àî(Cr)k)( ( exp(Ài(C¡)k) - L)(A" - A") - C,)

^iQ 
t) * lo - À, exp(-ÀiQ,)k),

À"exp(-ÀiÇùk)(t - 
""(exp(Ài(C¡)k) 

- 1)(A"- Á"))
E(Rl),/o:æ) : -CpA,l Ài(Cr) * Ào - À, exp(-ÀiQ,)tt)



CHAPTER 3. I]V?RUDER'S P.ATCH RE?UR]V 83

Fitness

\it"(c^):

For simplicity, let

Search/Oviposit

A(À')

Guard

Cn A,-As )

À¡

Figure 3.2.4: Diagram illustrating the resident switch from ovipositing to guarding,

for À¡ that satisfies Â(À¡) : Cn(As - A').

If. ),"¡o:0 (always guard), the respective payoffs to the intruder and resident

will be

E(I | \,¡": g¡ : An,

E(Rl),/o:0) : -CnAs.

Hence the optimal strategy to the resident Àit"(C") will be

oo if E(Rl \,/o: oo) > E(Rl À,/o:0),
0 if E(Rl À"/o: oo) < E(Rl l,/o:0).

1- Cn(exp(l¡(C¡)k) - 7)(A"- A"))

^(Àr) 
: À, exp(-À¡,k)(

Àr * Ào - l, exp(-l¡k)
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this expression being the expected fitness gain of the resident, finding suitable hosts

at rate Ào, before the intruder returns. The set of intruder return rates by which

the resident oviposits satisfies

^(Àr) 
>cn(A,-Aò,

with C¿(,4, - Aò being the cost of searching compared to guarding. Since A(Àr)

is monotone decreasing, there will be a return tendency below which the resident

should oviposit and above which the resident should guard.

So far, we have considered the resident's oviposition rate, )o to be constant in

our analysis. The method of calculating the switch from guarding to ovipositing

needs to be carried out when the rate of parasitism/superparasitism decreases over

time. Simulation of the fitness returns may be the only method by which the switch

from guarding to ovipositing may be calculated.

3.3 Assessment of Oviposition Success Through

Multiple Returns.

In the previous section, r,¡/e assumed that the intruder bases its returns to "steal"

ovipositions on estimates of the resident's oui,posi,ti,on rate. This hypothesis is ap-

pealing because of it's adaptive advantage z/ this information is available to the

intruder. The decision to return at all, however, must be made before deciding

when to return. The available information by which this decision is made must be

different to that of the resident's oviposition rate, as other factors such as the size of

the egg mass and the overall level of patch parasitism will influence the probability

of successful superparasitism (Field, Calbert and Keller, [21])'

Consider the case in which the intruder has returned a number of times, after

being removed from the patch, either by resident force or by retreating. Prior to

the removal, the intruder may or may not have had success in oviposition. Over

a series of returns, the intruder may estimate the chance of successfully oviposit-
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ing if it chooses to return again. Furthermore, the intruder may estimate the cost

associated with returning. If the resident is nearing the end of it's life or has low

egg load, then it may repel the intruder with great ferocity (Field,[l9]). Thus the

intruder may jointly estimate the chances of successful oviposition and the costs of

being intercepted.

The two proposed information states, resident host encounter rates and success

in previous returns are not at odds with one another. Both may be used by the

intruder to make the optimal decision as to if and when to return. A review of other

possible available information follows in Section 3.4.

In this Section, patch return, based on estimates of the probability of success

in oviposition are modelled. It is assumed that after being ejected from the patch

after the previous return, the intruder makes the single decision of returning in an

attempt to "steal" further ovipositions or to commence the final stage of patch com-

petition, returning after the resident abandons the patch (see the next two chapters

for a discussion of this). The decision of whether to return or to wait will depend

on the relative costs and benefits of each action.

3.3.1 Assumptions

o Both the roles of resident and intruder are established.

o The intruder makes a decision either to return or to wait till the resident has

left before returning.

o Let the expected fitness payoff, if the intruder is successful in finding suitable

ovipositions on return be A. If it is intercepted before finding a suitable host,

then it receives zero payoff.

o If the intruder chooses to wait till the resident has left before returning then

the fitness payoff from this strategy is lrtrl.
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o The probability of not being injured on return is independent of the number

of returns and is denoted by r.

o After each return, the intruder estimates the probability of success if it chooses

to return once again. For the r¿¿h decision point, the probability of success is

a random variable denoted by r € [0,1] and the estimate of the probability

of success is the expectatio\ pn : E(rln - l previous returns ). Given an

estimate of the subsequent probability of success of the n¿h return, p' then the

optimal strategy at the n¿h decision point is found by comparing the sum of

the estimated payoff on returniî1, Apn, and the payoffs from future decision

points with the payoff from waiting till the resident leaves altogether, I4l.

Let F¡(n,n) be the expected fitness of the intruder at the n¿ä decision point (imply-

ing (n- 1) previous returns) and the estimate of oviposition success at the nth ret:urn,

pn. If choosing to return, then the payoff is decomposed into the immediate payoffs

from return, Apn and the payoffs from future decision points, F¡(n-lI,pn+t).At the

r¿¿ä decision point, the choice between returning or waiting is therefore calculated

from the simple stochastic dynamic programme (Iwasa, Suzuki and Hiroyuki,[38],

Mangel and Clarke,[50])

Fr(n,pn) : 
*"r*p,Tu",. {oo, * rF¡(n -l r,p,¡);w\.

Estimation of the probability of success is accomplished through the use of Bayes'

theorem (McNamara and Houston,[57]).

3.3.2 Bayesian estimates of Oviposition Success

If the probability of success in oviposition, after n returns, r is drawn from some

distribution on the interval [0,1], then Bayes' theorem is a general way of updating

this distribution given information about the success or failure of the previous n - 1

returns.

It is assumed that the probability of success of r¿ returns is drawn from the óeúø
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distribution (Law and Kelton,[43]). This distribution, determined by two parameters

a and b has densitv

,a-r 71-r)b-L
B(a,b)

0

for 0<r<1,
otherwise,

were B(ø, b) : 6 f-L(r - t)u-ror. The beta distribution has mean

E(x) 
"iu

and variance

uar(X):, ,,='ob . ,(a+b)2(a+b+1).
This distribution was chosen because of it's generality, as it can represent a wide

variety of distributional forms on the interval [0,1] (Law and Kelton,[43]).

Now suppose, after n - L returns, that the intruder successfully oviposited in i
occasions before being ejected. The other n - j - 1 returns the intruder \ryas ejected

before it could oviposit. What will be the estimaft of. r? Bayes' Theorem gives us a

way of updating the density of r, by considering the intruder's past successes and

failures in finding ovipostions.

The prior estimate of the oviposition success density, before returning is

ro - beta(a,b)

Now suppose that the intruder returns and successfully oviposits, as denoted by

event 5, then the posterior estimate of the oviposition sucess density is

f r@) : /o ("ls)

By Bayes' theorem,

Pr(AlB) :ryff|ï4

/o("ls)
Pr(slr)/6(r)
Pr(5 z)/s(r)dr.

the posterior density

fr@)
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Now Pr(S|,*): *. Thus the posterior density takes the form

no _T ó-1

f'@)
/rt
na(! - a)u-t
B(a + L,b)

If the intruder is successful on return then

r - beta(a + 1, ó).

Similarily, if the intruder fails to find a suitable host before being intercepted by the

resident, as denoted by the complement of the event S, S" then the posterior density

f'@) /o("15")
ïa-r(t _ r)b
B(a,b + t).

Hence, if the intruder has no ovipostion success on return then

r-beta(a,b+t)

To illustrate, consider the the initial distribution of oviposition success on return

r - beta(\,1). The density

ro",):"0!t,'-Í)o : ,,
B(1,1)

thus our initial choice of distribution is the uniform distribution,

beta(7,1) : U(0,f)

Consider the sequence of five returns, with success/failure to oviposit on return de-

noted by {5", S,5", S", S"}. The estimates of the probability of success in oviposition

on return will be

111111
Po: 1,Pt: 5,Pz: 5,Ps 

: 
5' P+: n,Pu: E

l-n



CHAPTER 3. INTRUDER'S PATCH RETUR¡\T 89

The intruder will choose not to return when

max
Return,Wait

-W -rF¡(n*I,pn+t)P"< 4

{ho + nÇ!rr,(ø * t, b,n * L) + 
" +-!-b+¡(a,b 

* r,n+ r)); w}

thus if W - 0.25,A: I,T : 1.0 and f'¡(rz * l,pr,+r) : 0 then the intruder will

return only four times before commencing the final stage of patch competition, that

of waiting till the resident leaves the patch before making a patch return.

3.3.3 Solving the Stochastic Dynamic Program

Having illustrated the estimation of return ovipostion success through Bayesian

updating of the beta distribution, the stochastic dynamic program constructed in

Section 3.3 may be constructed to incorporate this estimation. If r¿ is the number of

intruder returns, ¿ the number of previous returns where the intruder successfully

oviposited before interception and b the number of unsuccessful returns, then the

fitness of the intruder, F¡(a,b,n) with available state (4, b, n) will therefore satisfy

F¡(a,b,n):

Before solving this equation, we must impose some constraints on the infor-

mation state variables and âpply boundary conditions (Mangel and Clarke,[50],

Mangel,[48]). Clearly, the number of successes and failures must equal the number

of past returns, a-fb: r¿. For the boundary conditions, we will restrict the mrmber

of decision points to a maximum of nineteen, after which the intruder chooses to

play the waiting game (see the next two chapters for analysis of the waiting game).

Thus, at the twentieth decision point

F¡(a,b,20) : W, for all a * b:20'

With these conditions, the dynamic programming algorithm (Filar,[23]) working

backwards from the twentieth decision point, starting from the nineteenth decision
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point and solving the optimal strategy for each a,b, a*b - 19, then to the eighteenth

decision and so on is implemented. This is possible since

Fy(a,b,19) :

*"**f,î',,, {ho + ,uÇlrrr(ø r 1' b,20) + ;h''@'b + r'20));w}

and F¡(ø, b,20) is known for each value of a,b. Using the values of. F¡(a,b, 19) we

can in turn solve for F¡(a,ó,18) and so on, this technique being termed baclcward

recursion (Mangel and Clarke, [50]).

Qualitatively, the results show a switch from returning to waiting, depending on

the expected return fitness value, A, the probability of injury on return (1 - zr) and

most importantly the past successes, ø and failures, ó when returning. The follow-

ing table (Table 3.3.2) illustrates this switch by considering the following question.

Given ten previous returns, how many past successes and failures are needed so

the intruder switches from returning to waiting at the eleventh decision point, for a

particular fitness value ,4?

As the risk in returning decreases, that is 7t ---+ 1 the price sampling the patch

for suitable hosts (interception by the resident) decreases, thus the intruder will

make a greater number of returns before the switch to the waiting game.

The dynamic programme constructed in this Section may be expanded in a num-

ber of state variables from which to make adaptive return decisions. Indeed, the work

of. when to return (Sections 3.2 to 3.2.7) and i,f to return (Sections 3.3 to 3.3.3) may

be united by adding another state variable to the dynamic programme, the estimate

of the resident's oviposition rate. Bayes' theorem may be used to estimate estimate

the oviposition rate of the resident, since if we let the event of intruder oviposition

before resident interception be denoted by .A and the events of resident searching

and ovipositing by 6, (? respectively then Pr("4) : Pr("41S)Pr(S) +Pt(AlO)Pt(O)'

Recalling the definitions listed in Section 3.2.2,

Pr(.Á) : A" t (A" -4")(¡/,(¿ + k) -¡/,(¿))
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A Successes out of 10 returns before the switch to waiting

0.5 always wait,

1.0 always wait,

1.5 always wait,

2.0 return rf > 7 successes, wait otherwise,

2.5 return if > 6 successes, wait otherwise,

3.0 return if > 5 successes, wait otherwise,

3.5 return if > 4 successes, wait otherwise,

4.0 return if > 3 successes, wait otherwise.

Table 3.3.2: A table of the optimal decision at the 11¿ä, to return or to wait, as a

function of the past successes and failures in oviposition. Here, the fitness value from

waiting W : 2.0 and the probability of not being injured, z- : 0.99. The expected

fitness value on return, A ranges from 0.5 to 4.0.

This time dependent distribution is a function of the oviposition rate Ào which may

be updated by past return successes and failures through Bayes' Theorem.

3.4 Discussion and Conclusion

A review of the proceeding models and a biological interpretation of the results will

be the focus of this discussion.

Under the assumption of information transfer of the resident's oviposition rate,

an optimisation model was constructed, to calculate the best return rate of the in-

truder, under the condition of a foraging resident. A core assumption behind the

model concerned the variation in patch vulnerability. While ovipositing, the resident

temporarily suspends any possible defence of the patch, increasing the probability

of successful intruder superparasitism.

Higher return rates were predicted, as the resident encounter rate with suitable
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hosts increased. On analysis of the possibility of guarding, for a period of time

before commencing search/oviposit behaviour, it was concluded that the resident's

best response to a returning intruder could only be drawn from the pure strategy set

"always guard" or "always search", as all mixed guarding strategies were inherently

unstable.

Though any patch defence is temporarily suspended when the resident oviposits,

this is not the only time when the patch is left exposed to potential intruder super-

parasitism. As the resident must search for remaining unparasitised hosts, it may

venture to the boundary of the patch. If the intruder waits on the opposite side, this

may leave one half of the patch unguarded and subject to attempts at superpara-

sitism (Field, Calbert and Keller,[21]). The available information transferred to the

intruder here will be the position of the resident. As mentioned in Section 3.1 there

is some evidence that insects have limited scope in the detection of a stationary

object, instead relying on movement. If information is transferred as to a resident's

location, this information will most likely be imperfect. The hypothesis about in-

formation transfer of the resident's position is both simple and plausible and will

be fully explored, through a Bayesian model of imperfect information transfer in

Chapter ??.

The behaviour of the intruder, mimics aspects of male polymorphism in other

species of animals. The bird species Phi,Iomachus pugnar exhibits a sexual dimor-

phism in the plumage and behaviour of males. Some males establish territories,

the so called "independent" males and others do not, the so called "satellite" males

(Maynard Smith,[54]). Within this species, the dimorphism is not strict, as about

half of the male population will both be independent and satellite males at some

stage of their lives. Satellite males are occasionally tolerated when in an indepen-

dent male's territory and have been shown to be successful in mating, when the

independent male is otherwise occupied and cannot drive off the satellite male from

it's territory (see also Alcock,[1] for a review of male and female polymorphisms).

Further work is required to understand what available information influences re-
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source stealing strategies across dimorphic male species and parasitoids that defend

patches.

In summary this chapter explored adaptive hypotheses of intruder returns to

"steal" remaining unparasitised hosts and to superparasitise. As is the theme of

this thesis, any strategy adopted by the intruder must depend on the nature of in-

formation transfer between the resident and intruder. We explored the hypotheses

of patch return when the resident is preoccupied with oviposition, leaving the patch

undefended. Multiple returns were also considered through a Bayesian analysis of

the fitness gains from returning. More work is required to understand what available

information the intruder uses to judge it's patch return when attempting to steal

ovipositions.



Chapter 4

The \Maiting Game
Instability of Strategies without information exchange.

4.L Introduction and Chapter Overview

The focus of this chapter is the last stage of pairwise competition in T. basalis,

and the necessary conditions for the existence of an ESS in the final stage of patch

competition. When an intruder no longer returns to steal ovipositions (see Chapter

3), a waiting game ensues (Field, Calbert and Keller[21], Wilson,[36]). The resident

sits motionless on the centre of the patch, while the intruder waits near the patch

periphery. When competition was restricted to pairwise events, all observations

pointed to a clear behavioural pattern. After some time, the resident commenced

radial searches around the patch, each search increasing in radius, after which it
leaves the patch altogether, a patch leaving strategy common amongst many insect

parasitoids (Wagge,[82], Godfray,[26]). Some time thereafter, the intruder is ob-

served to return to the unguarded patch, after which it sets forth to superparasitise

the patch (Field, Calbert and Keller,[2l], Cumber,[fZ]).

There are sound reasons, based on behavioural observations, to believe that the

return strategy of the intruder may be considered as the final return and not just

another attempt to covertly superparasitise in the presence of the resident (Field,

Calbert and Keller,[21]). Firstly, during this phase of competition, the resident has

94
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completely ceased searching for unparasitised hosts and instead adopts a purely

defensive role, remaining stationary at the center of the patch to maximise any de-

tection of movement whilst occassionally making excusions to the patch boundary,

presumably to find the intruder (Field,[19] ). This is in contrast to the second phase

of competition, in which roles are established but the resident still searches for re-

maining hosts, exposing the patch to covert intruder ovipositions (Field,[19] and

Chapter 3). Second, the intruder no longer is seen to walk onto the patch, rather

it waits near the patch boundary, occasionally moving closer, presumably to obtain

information as to the resident's location (Field, Calbert and Keller,[21]). Finally,

when the intruder returns to find a resident after a significant period of time waiting

it leaves, though these observations are rare (Field, personal communication).

This game, known here as the waiting game (Field, Calbert and Keller,[21]) mo-

tivates a series of questions about adaptive significance. Why should the resident

leave at the observed time? Does the intruder know when the resident has left? The

first question can be answered when viewing patterns of resident leaving times, as a

function of the patch size and the resident/intruder assymetries in patch investment.

The waiting game lasts longer with large patch sizes and highly skewed investments

(Field, [19]). The second question is more difficult to definitively answer. Initially

it was thought that the intruder possessed no information about the leaving time

of the resident. It is the purpose of this chapter and the next to study the waiting

game under differing assumptions of information exchange about the departure time

of the resident given to the intruder.

A game of similar structure exists, in the context of interspecific competition,

with a predator-prey game between predaceous bullheads, Cottus gobio and case

making caddis larvae, Halesus radiatus (Johansson, [39]). Predators attacked the

caddis larvae and surviving individual larvae feigned dead for some time as the bull-

heads waited for signs of caddis larvae movement. Winners in this game are the

individuals that persisted longest in waiting (Johansson, [39]). For the predator, a

longer persistance time ensures catching and consuming further larvae, for the prey
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longer persistance implies safe passage from predation.

Of biological importance was the conclusion that the waiting times of both preda-

tor and prey depend on each players estimation of habitat value and information

passed between players during the predators' attack of the prey. In the predator-

prey game, a key theoretical point was made noting the instability of models based

on the assymetric war of attrition (Hammerstein and Parker,[31]) as this approach

to a waiting strategy cannot take into account information exchanges between op-

ponents during the commencement or course of the game (Johansson,[39]).

Without information exchange on the leaving time of the resident, the waiting

game is not a 'q/ar of attrition, for the following reasons. Firstly, there is an as-

symmetry in the roles and actions of the resident and intruder, whereas in the war

of attrition both players adopt the same action of attrition. Second, in the war of

attrition, if either player surrenders, the game ends and the payoff is given to the

victor with costs payed by both players. In the waiting game, the resident may leave

without the knowledge of the intruder, who percieves the game is still on. A payoff

is given to both players, even if the intruder returns to a guarded patch'

If the waiting game without information exchange is not a war of attrition, what

strategies should one play? If patch payoffs are given to both players, albeit a lower

payoff to the resident if the intruder superparasitises, should the waiting game be

played at all? In this Chapter it is proved that no ESS exists if there is no informa-

tion exchange as to the leaving time of the resident. Two arguments are developed

which underlie the proofs. If the intruder returns after the resident, as there is no

information exchange about the resident's leaving time given to the intruder, the

resident may cheat, leaving at earlier and earlier times. The second argument is

the instability of any leaving time if the intruder returns before the resident. If the

intruder returns before the resident, as there is no selection on the resident's de-

parture time, leaving it free to drift towards the commencement of the game' This

makes the resident's leaving time unstable and an unsuitable candidate for an ESS.

Though rare, ocassionally an intruder is injured during the contest for residency,
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usually with severed antennae (Field,[19]). This motivated a model of the waiting

game in which the intruder may be absent from the contest altogether. With this

assumption, there is a tradeoff for the resident, between leaving at the commence-

ment of the game, the best strategy if the intruder is not present, and guarding the

patch against an intruder return. Motivated by this tradeofl, mixed strategies may

be candidates for an ESS.

Following this introduction, the assumptions behind the waiting game are listed

in Section 4.2. We show that a set of leave/return time pure strategies cannot

form an ESS, in Section 4.3. The instability of leave/return pure strategies is il-

lustrated through simulation, in Section 4.3.1. Next, we consider strategies when

there is uncertainty concerning the presence of the opponent in Section 4.4. Mixed

leave/return strategies are derived, but are shown to be evolutionarily unstable,

both with certainty and uncertainty in the presence of the opponent. New assump-

tions and approaches to modelling the waiting game are discussed in the Conclusion,

Section 4.5.

4.2 Assumptions

Before commencing the construction of the waiting game, a list of assumptions is

stated below

o There are two competitors in this game, a resident female that guards a patch

of self and conspecific parasitised eggs and an intruding conspecific that waits

at the patch perifery for the resident to leave, in order to superparasitise the

patch.

o Both players adopt a strategy to maximise their expected fitness from the

commencement of the waiting game to the end of the day. We have chosen

the end of day as the boundary time for the model for two reasons.

1. At the end of the day, surface temperature is reduced, so insects tend to
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stop the process of competition (Field,[19]).

2. Fitness gains or losses from the patch will not change from the next day,

as the parasitised/superparasitised larvae will be entrenched in the host

egg (see Section 1.2 and Figure 7.2.I)'

o A resident adopts a time to leave the patch and an intruder chooses a time

to return from the patch periphery. The leave/return times may be pure

strategies or times drawn from a set of leaving time distributions and return

time distributions.

o Either competitor may be absent, due to external factors such as predation,

discovery of another patch or competitive factors such as injury caused by

agonistic conflict, may be absent from competition for the patch.

o If an intruder returns to a guarded patch, then information is exchanged to the

intruder about the presence of resident and information is exchanged to the

resident about the presence of the intruder. Thus, if ú¿ is the leaving time of

the resident and f¡ is the return time of the intruder, information is exchanged

Lf.tR> tr.If.tn ( ú¡, no information is exchanged to the intruder about the

leaving time of the resident. This assumption, constructed to highlight ESS

analysis without information exchange, is altered in the next chapter.

o Suppose a player leaves the patch and returns to the habitat at some time f

from the commencement of the game, then the fitness that yet can be realised

within this day by a parasitoid abandoning the current patch at time ú, defined

here to be the post patch habitat payoff /(t) is collected where { has the

following form

Ó(t):a-C(t)'
Here a is the maximal habitat payoff associated with leaving at the commence-

ment of the waiting game, time Ú : 0, and C(t) is the cost associated with
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leaving some time ú thereafter. A simple linear example of a post patch habitat

payoff is

ó(t):"(t - f*l),
where a is the baseline habitat value and f/ denotes the time to the end of the

day. We note that in general, /(t) is assumed to be continuous, differentiable

and strictly decreasing.

o Suppose both players are present to compete for the patch. If the intruder

returns at time ú¡ while the resident is still present guarding the patch, then

it collects a payofl determined by any previous investment before the waiting

game. This payoff is denoted by i,nto. As the intruder returns to a guarded

patch, it is assumed that it is removed immediately by the resident. As this

is assumed to be the final return, the intruder leaves collecting a post patch

habitat payoff ó(tt).On the intruder's return to the patch at time ú¡, if the

resident is absent then it collects a payoff determined by previous patch in-

vestments as well as the superparasitism of the resident's patch investment.

This payoff is denoted by int,o. Subsequent to this the intruder leaves and

collects a habitat payoff ó(tt + 7), where 7 is the time taken for the intruder

to superparasitise the patch. For the rest of the analysis of the waiting game

we will assume that T is small in comparison to both the resident's guarding

time and the intruder's waiting time - thus can be effectively taken to be zero.

o Suppose again that both players âre present to compete for the patch. If the

resident leaves at time ú¿ and the intruder has not returned, then the resident

collects a patch payoff determined by its previous investment and the intruder's

superparasitism of the patch. This is denoted by res,o. Upon leaving the patch

a habitat payoff ó(tn) is also collected. If the intruder returns at time ú¡ to

an occupied patch, then no superparasitism of the resident's patch investment

occurs and the resident collects the payoff reso atd habitat payoff Ô(tr).
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We note here that these assumptions make the game fundamentally different to the

war of attrition since in this game the first player to cease competition ends the

game.

o If an intruder returns to superparasitise then the patch payoff to this player

increases whereas the patch payoff to the resident decreases. Therefore

resp > res* and intro ) i'nto.

o Finally we assume that the fitness gain to the intruder by superparasitism is

the fitness loss of the resident. Hence if Ares - resp - ressp and Lint :
i,ntro - into, then

Lres: L'int: L"

4.2.L Expected Payoffs

This section addresses the payoffs to both players. It will be assumed that the game

commences at time ú : 0. Remembering that both players cannot ascertain the

presence or absence of the opponent, we have the following definitions of presence

to play the game

oR: Pr(resident plays the waiting game)

and

ø¡ : Pr(intruder plays the waiting game).

It is noted that the probabilities (1 - ot),(L - oo) are leaving atoms of probability

at the commencement of the game.

Conditioned on the presence of both competitots, op: oI :1, here denoted by

the event 6?, suppose the resident chooses a time ú¿ to leave the patch where 0 I
tp 1 H and the intruder chooses a time ú¡ to return to the patch with 0 3h < H.

Ler E(R I to,tr,ßP) be the expected payoff to the resident given times tp,t¡ àîd
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both players present, then this expectation satisfies

. 4^\ ( ,"ro + óþò for ts t t7,E(Rltr.,tt,ßP): I
l. res,o * Ó(tù for tp 1 ty.

Similarily Iet E(I I tt,t^, ßP) be the intruder's expected payoff conditioned on times

tp,t¡ ald both being present. It is observed that

. f iúse + óþò for t¡ ) t¡,,
E(I ltR,t¡,ßP): \

I tnto + ó(tt) for t¡ 1t¡.
There are a few points to emphasise about the expected payoffs. First, the

intruder superparasitises the patch even when the resident's leaving time is the same

as the intruder's return time, this assumption being used to highlight information

exchange. Second, as it is assumed that this is the final intruder return, when

t¡ 1 t¡¿, the payoff to the resident is reso + Ó(tt), not res, + Ó(tn), the payoff

from leaving at the time selected at the beginning of the waiting game. If the

intruder leaves altogether when intercepted by the resident, then it would not be

evolutionarily advantageous for the resident to wait till time úa to leave, as it would

tose /(ú¿) - ó(tr) fitness points.

4.3 Pure Strategies with Certainty

in the Presence of the OpPonent

The dynamics of resident leaving times and intruder return times are analysed with

the previous assumptions under the condition of aI: oR:1' In this Section' \rye

restrict our analysis to that of pure strategies. Mixed strategies will be considered

both when oy 1L,o¡7z-t and ø¡ : oR:1 in Sectiot 4'4'

In the normal definition of an ESS, the roles of each player are identical, thus

strategy tu* is an ESS if the expected payoff E(r*,?r*) > E(w,w*) for othelu.r

belonging to the strategy set defined in the game (Maynard Smith,[54]). When con-

sidering a game in which the roles of each player are well defined, making the game
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assymetric, we must apply a definition of evolutionary stability in which each player

finds the best response when that player is in a particular role. This role dependent

best response is called an evolutionary stable local strategy (Hammerstein,[30]).

First we define an evolutionary stable set of local strategies.

Definition 1 (Evolutionary Stable Local Strategies) Strategies R* and I* are

defi,ned to be euolutionary stable local strategies i! for all strategies of the resi,dent

Sn * R* and all strategies of the intruder St # I*, the erpected payoff to the resident

adopting strategy R* agai,nst the intruder satisfies

E (RIR. , I* , ßP) > E (RlS R, I* , ßP)

and the erpected paAofr to the intruder adopti,ng I* satisfies

E(IIR.,I.,ßP) > E(IIR., Sr,ßP).

Now suppose leave/return times are denoted by ú¿, ú¡ where ún ) 0 and ú¡ ) 0.

Theorem 2 There i,s no Euolutionary Stable set of Local Strategies in the waiting

garne when the i,ntruder has no information about the leauing ti,me of the resident.

Proof
We will consider four cases, when tp 1t7,tp ) ty,tn: tt: 0 and when tn: tt ) 0.

Case one: If tp 1ty, then the intruder superparasitises the patch. The intruder

however, would increase its payoff by returning earlier to collect a higher habi-

tat payoff since

int,, * ó(tt) < int,o i ó(ü - e),

for an arbitrarily small positive e. Thus

E(IltR,,h, ßP) < E(Iltn,t¡ - e, BP).

Therefore the strategies ú¿ and ty cannot be evolutionarily stable when tp I ty.
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Case two: If ta ) t¡ then the intruder returns early and is removed by the resident.

The resident however would do better by leaving slightly earlier, increasing its

habitat payoff since

res,o * ó(tò < ressp + S(tp - e)

This implies that

E(RltR,tr,ßP) < E(RltR- e,t|,ßP)

Again the strategies ú¿ and ú¡ cannot be evolutionarily stable if. tn ) tt

Case three: If. to : tt : 0 then the intruder superparasitises the patch, since no

information was exchanged about the intruder's return time when the resident

leaves at the same time (see Section 4.2.t). The resident would do better by

leaving at a time arbitrarily larger than zero, since

res,o*d(0) < reso*þþ)

if e is sufficiently small and positive. Therefore

E(n10, 0ßP) < E(Rle,O,ßP)

Case four: Finally we consider ts: ú¡ > 0' Again the patch is superparasitised by

the intruder. Here, the resident would do better by leaving earlier to collect a

larger habitat payoff, as

res,, * ó(t") < res", * Ó(tn - e)

Hence

E(RltR,tr,ßP) < E(RltR- e,t¡,ßP)

and ú¿, ú¡ cannot be evolutionarily stable if. tn - t¡ ) 0. This concludes the

proof of the instability of the waiting game without information exchange of

the leaving time of the resident.
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The results above rely on the assumptions of information exchange. Without

information exchange to the intruder on the leaving time of the resident, there is

no euoluti,onary incenti,ue f.or the resident to guard. Therefore, the resident leaving

times will drift towards zero, without intruder estimates of the leaving time of the

opponent.

4.3.L Simulations of Leave/Return times.

The instability of resident/ intruder strategies is best illustrated by studying the evo-

lutionary dynamics of each strategy over the course of time. The following method

simply traces the dynamics of strategies, by choosing the best strategy that is a

small increment away from the current strategy.

Consider an initial set of leave/return times denoted by (t¿[0]'¿t[0])' Now sup-

pose .\Me restrict the evolution of strategies to be at most ô away from the current

strategy where ô is some small positive constant. Strategies at generations I and

(g + 1), denoted by (¿"[g],f¡[9]) and (tols +Ll,ttls + 1]) will thus satisfv

I ¿"[g] -tnls + 1l 
I

I t'lgl - ttlg + 1l 
I

Consider the strategies at generation g,tnlgl and ú¡[9]. The strategy tplg +71

is calculated according to the expected fitness of strategies ú¿[9] - õ,tnlgl,t¡"fgl+õ

against t¡lgl.If there is a unique maximum then simply

tpls+l1: arg-u* {ø1al¿"[g]-ô, t]lsl,ßP), E(Rltpfsl,t]lsl,ßP), E(Rltnlsl+6,tilg1,ßP)\

This unique strategy is called the ô-step best response.

When there are two or three strategies of equal fitness, as is the case when

tilgl < tnlg], where all strategies ún € (t,lgl,Il] yield equal fitness, then the strategy

at generation g * 1 is chosen probabilistically in order to simulate genetic drift
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(Futuyma,[25]). Thus, for example, if

E(Rlt¡,lsl - õ,ttlgl,ßP) -- E(Rlt¡,fsl,tylsl,ßP) : E(Rltnlsl + õ,t¡fsl,ßP),

then

ú¿[e + 1] :
t"lgl - ô with probability : 7 13,

t"lgl with probability : tl3,
tnlgl+ ô with probabilitY:I13.

Restricting the evolution of strategies to ô-step best responses has the advantage

of clearly explicating the evolution of strategies, however this restriction does not

fully portray the evolution of strategies when these strategies are allowed to undergo

"jumps". In order to illustrate how a jump would occur, we must define the time,

denoted by i where the payoff from leaving at the commencement of the game,

forfeiting fitness gains from patch defence if resident, equals the fitness gains from

defending the patch. Thus î satisfies

res,*Ó(1):res,rlþ(0)

If the intruder refrains from waiting, forfeiting potential gains from superparasitism,

this will similarily yield equal fitness returns from waiting till Î since

int,o I Ó(î) : i,nto + þ@)'

With the definition of î in mind, suppose at some generation g,tnlgl > l and

tilgl :0. As the intruder always returns earlier than the resident, the strategy of

the resident will not be subject to selection and will therefore drift. Let n be the

first generation afler g where the leaving time of the resident drifts below i so

rc: inf{l such that tn[g i ¿] < Ð

Before generation g + K is reached, there is no fitness advantage for the intruder

to make a jump in its return time strategy. The only possible fitness advantage
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would be to return after the resident has left, at time ttlg + kl: tnÎg + k] + €,0 I
lr 1 n, where e is an rbitrarily small positive constant, to gain fitness from the

superparasitism of the patch. However, the fitness accrued from this jump would be

less than that of leaving at the commencement of the game since

int,, * þ(t¡lg + kl) :
: int,, * ó(tnlg + /c] + e)

: into + þQ)

: i,nt, + þ(0).

When generation g + K is reached, lhe best response of the an intruder is to return

after the resident at time tilg +rc + 1] : tnlg+ rc] + e 1î, since by the definition of 1,

the fitness gain of the intruder from superparasitism outweighs the cost of waiting

i,nt,o | ó(ttls * rc * 1l) > i,nto + ó(ttls * rcl) : i,nto + þQ).

This jump in return time strategy will not happen when \rye are restricted to ô-step

best responses as the only ô-step best response available to the intruder when

tilg + K] : 0 is to return at time ttlg * rc + 1] : ô, which will not increase the

intruder's fitness since

i,nt, * Ó(t,[g* rc]) :'int, *d(0) > into t Ó(ttls+ rcl + ô),

hence no single step will increase the intruder's fitness, thus the intruder's return

time strategy will remain a!, zero, if we restrict our analysis to ô-step best responses.

Though the analysis of leave/return time trajectories does not allow jumps in the

evolutionary strategy, if a mutant strategy with increased fitness is introduced into

the population, it is unlikely to replace the current population strategy in a single

generation (see McNamara, Webb, Collins, Szekely and Houston,[60] for a discussion

of the invasion of a population strategy with alternative strategies). Instead, the

strategy will spread over a series of generations, implying a continuous change in
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the strategy over the course of several generations. Thus, ô-step best responses will

mimic the slow change in population strategy trajectories.

The trajectories of respective strategies will depend on the initial conditions,

and will mimic the strategy responses given in the proofs of the instability of pure

strategies (Section 4.3).

Consider Figure 4.3.t, with the initial conditions ¿r[0] : ún[0] : 20. As the

2000 4000 6000 8000 10000

Generations, g

Figure 4.3.7: Cycling of strategies when the initial conditions are equal, ú/[0] :
¿R[0] : 20. Here parameters are a - 10,4 : 10, resp : intro : ZD,resro - int, :
10,ô:0.5,H:100.

intruder superparasitises the patch (see the expected payoffs in Section 4.2.L), when

the initial conditions are equal, the ô-step best response of the resident is to increase
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its leaving time to ¿R[0] + ô, with an increase in fitness of reso + d(¿n[O] + ô) -
ressp - d(¿"[O]) r A * ôd'(¿R[0]) fitness units. In turn, the ô-step best response

of the intruder is to return at f¡[0] * ô to superparasitise the patch. This process

is repeated until the leave/return times reach the end of the day, where at some

generation g',tnlg'l : tÃg'l: .I1. In generation g' lhe intruder superparasitises the

patch and the only ô-step best response of the resident is to leave at an earlier time,

increasing habitat payoff, whilst still exposing the patch to intruder superparasitism'

Thus at generation g'*l,t,,lg'+ll -- H _ õ. The intruder's ô-step best response is to

,,follow" the resident, increasing its own habitat payoff while still superparasitising

the patch. This process continues, instigating the process of strategy cycling seen

in Figure 4.3.1.

Figure 4.3.2 considers the evolution of strategies when Úr[0] < ¿n[0]' As the

intruder returns to a guarded patch, its only d-step best response is to return earlier,

increasing habitat payoffs, thus t¡[1] : ¿r[0]-ô. There is no incentive for the resident

to follow the intruder's strategy in its return time decent to the commencement of

the waiting game, since the resident intercepts the intruder at earlier and earlier

times, increasing its own habitat payoff as E(RltIa,û,ßP) -- resp+ Ó(tt) if.tt 1tn.

Because there is no selection on the resident's leaving time when ttlg] < úp[9], then

the leaving time will drift.

When the initial conditions are such that ú¡[0] > ún[0], the leave/return time

trajectoriesmimicthoseseenwhen¿1[0]:ún[0],asinfigure4'3'1'Ifúr[0]>¿"[0]'

the intruder successfully returns to superparasitise. The only resident ô-step best

response is to leave earlier, collecting a larger habitat payoff, thus f¿[1] : ¿n[0] - ô'

Similarily, the intruder's ô-step best response will be to leave earlier, collecting a

higher habitat payofi whilst superparasitising the patch. At some generation p, the

resident's strategy evolves to zero and the intruder's return time catches up with the

resident's leaving time so tnl¡]: till]:0. At generation 0+I, a resident will evolve

to recoup the fitness gains lost from superparasitism, leaving at t,lþ + 1] : ô' The

intruder's strategy will catch up with the resident's strategy in the next generation,
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Figure 4.3.2: Drift of the resident's leaving time with the initial conditions ¿¡[0] <

¿n[0].The parameters in this simulation are ú¡[0] - 20,¿n[0] :60,o:10,4:
l0,reso :'intro : 20 and ressp :'into : 10, ô : 0.5, H : 100'

so the process of evolutionary strategy cycling continues.

4.4 LJncertainty in Opponerrt Presence:

Can a mixed strategy form an ESS?

When there is uncertainty in the presence of the opponent then the resident cannot

assume that the intruder will return to superparasitise. Uncertainty in the presence
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of the opponent was one of the topics of research when attempting to find ESS strate-

gies for the waiting game. The motivation for this direction of research came from

the observation of injuries incurred during patch competition (Field,[19]). During

one fight, a female had an antennae severed, causing it to leave the patch altogther,

though lesser injuries such as bites forced the injured player to become an intruder,

adopting the pattern of playing the waiting game (Field, personal observation). In

keeping with the theme of this thesis, patch defence models with different informa-

tion states, we will consider modelling the waiting game, under the assumption that

there is a small probability of the opponent being absent during the waiting game.

The inclusion of a small probability of opponent injury changes the possible set

of decisions that the resident can make, as there now is the resident's tradeoff be-

tween leaving early, to collect maximal habitat returns and waiting for the possible

return of the intruder. Because of this tradeoff between leaving early and waiting

for the opponent to leave/return, mixed leave/return distributions are sought, using

the Bishop-Cannings theorem of constancy of payoffs (Bishop and Cannings,[3], also

see Chapter 1).

In deriving a set of mixed leave/return strategies, the set of pure strategies used

to define the mixed strategy must be defined.

Definition 2 (Support of a Mixed Strategy) The support of some strategy S,

d,efi,ned, by the probabili,ty densi,ty pt(*) or n-ùass Pr(r) on the i,nterual r € [0,oo) is

the set

supp(S) : {r e [0, oo)lps(") l0 or Pr(r) + 0].

Having previously defined a local ESS in Section 4.3, a version of the Bishop-

Cannings theorem, in which a player may be present or absent is proved. Before

doing this, expected payoffs to each player if absent are defined. Suppose the resi-

dent is absent, through injury or predation. The probability of absence, as defined

in Section 4.2, is (1 - o"). Here we define the expected payoff to the resident, if
absent to be Fn. Similarily, if the intruder is absent, with probability (1 -a¡), then
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its expected payoff is F¡.

With these definitions, the Bishop-Cannings theorem, with presence/absence

uncertainty, can now be proved.

Theorem 3 (Constancy of Expected Payoffs) Let RP be the euent that the

resident i,s present and TP be the euent that the i,ntruder is present to plaE the

wai,ting ganxe. Suppose R*,1* are the respectiue local ESS's adopted by the resident

and intruder, if present. Then the erpected payoff to the resident satisfies

E(RltR, I*,RP) : E(RIR., I*,RP) for a|l tp e supp(R.).

Si,mi,lari,Iy for intruder's leau'ing distri'bution we requxre

E(IIR.,tI,IP): E(IIR.,I*,TP) for allt¡ e supp(I*)'

Proof

This proof follows the same structure as that of (Bishop and Cannings, [3]). If .R*, 1*

are the local ESS's for the resident and intruder, then by definition of evolutionary

stability, for ú¿ e supp(R.)

op(E(RlR*,,1*,RP)) + (7 - oo)(.F'") >

op(E(Rltp,I*,RP)) + (1 -an)(,F'B).

Hence, E(RIR'-,I*,RP) > E(RltR,I. I RP). Now let Pr(t¡"l?¿P) be the resident's

leaving distribution, which may include atoms of probability, conditioned on staying

to defend the patch. Then

E(RIR-, I.,RP) : I"urrr^..,8(Rlt1", 
I.,7¿P)dPr(t¡jlI¿P)

J supp(R*)

: E(RIR.,I*,RP).

The only way that this inequality can be satisfied is if

E(RltR,I*,RP): E(RIR.,I*,RP) for all t4e supp(R*)'

The proof of constant payoffs for the intruder follows in precisely the same manner.

¡
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4.4.L Strategies with Constant Payoff

Before commencing construction of the leave/return time distributions some com-

ments about the support of both players are made.

Theorem 4 (Equality of Supports) Suppose R* and I* are respectiue ESS's with

supports supp(R.) and supp(I*), then supp(R.): supP(I*).

Proof

Suppose that a, b e supp(I*), ø 4 b, and the return time distribution of the resident

is denoted by Pr(ú¿). By the Bishop-cannings theorem the difference

E(I-la, R. ,IP) - E(I.lb, R* ,TP) : g,

if -I* is an ESS. Now

E(I.la, R* ,IP) - E(I.lb, R* ,TP) -
o"(er1t" < a){i,nt,o + ó@) - int"o - ó(b)}

+ Pr(ø < tp < b){i'nto + $@) - int,o - Ó(b)}

+ Pr(t¿ > b){into + Ó@) - int, - d(ó)})

I : ̂ ,::"' l":: :,T,':,:; -"1*,^i'?]r,- d (ö) )

As /(ø) - ó(b) > 0, since / is monotonic decreasing and into - intro : -A < 0, this

implies that
Pr(øSúR<b)>0,

if the Bishop-Cannings theorem is to be satisfied. As Pr(ø 1 t4 1 b) > 0 this

implies that (o, b) n supp(R.) + Ø, as this holds for all a,b e supp(f*) then

supp(I.) Ç supp(R.).

By exactly the same method we can show that supp(R.) Ç supp(l.), so

suPP(1.) : suPP(R*)'
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D

Using the Bishop-Cannings theorem, leave/return densities are now derived, with

the resident's leaving density derived first. As the supports of both players must

be equal, the derivation of the leaving time density and return time density will be

done on an interval in [0,f/].
Suppose the intruder adopts return time t¡, the resident's ESS, .R*, is to leave

with probability density conditioned on being present to play the game p*(t IRP).
The expected payoff to the intruder adopting pure strate 8Y tt, E((\fu, R* ,TP) given

that it plays the waiting game and is not injured is

E(Iltr, R*,TP) : o*{ Ir" p^(, IRP)(int,o + Óþò)d,r

+ [u oo(, IlcP)(intr-r ó(tù)dr\Jt,

+ (1 - øa){znt,o t Ó(t,)}.

For constancy of payoffs, the derivative with respect to pure strategy ú¡ must be

zero, that is,

!tg1t,, R*,TP) :0.ött \

Before differentiating, let tt : t for convenience. The derivative then takes the form

o^{i,nt"rpo(t lnP) + ó(t)pn(t IRP) + ó'(t) 
lo' 

o^{, IRP)d,r

i,ntopp(t IRP) - ó(t)po(t IRP) + ó'(t) l,' oo{, lnflar}
+ (L - o^)Ó' (¿) : o'

Grouping terms and noting the normalisation condition Ï{ p"(, I RP)dr : 1, this

expression simplifies to

op{np¡:(tlRP) + ó'(ù} + (1 - op)þ'(t):s

hence

oRLpR(tlRP) t þ'(t):s
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Therefore, if a leaving density is a candidate ESS, then

pn(tlRP) - Ó'(l'' on\
Now to the intruder's return density. The expected payofl E(RltR,I*,RP) to

the resident adopting pure strateBy tn, against an intruder that adopts the strategy

-I*, with density pt(r ITP) has the form

E(RltR, I* ,RP) : o,{ 
Ior" 

p,(, I TP)(res, + þ(r))d'r

+ [' o,? | TP)(res",p + ó(t,))dr]Jt*
+ (1 - "r)(reso t ó(t")).

Again the constancy condition is applied ftn1n1t",I*,RP): 0. Differentiating

and settinB tn : t

o ¡ {r e s rp ¡ (t I TP) + ó (t) p 

^t 
I rP) - r es spp r (t I rP) - ó (t)p, (t I rP)

rH
+ô'(t) l, pt(r lrP)dr| + (1 - o¡)$'(t) : s,

o¡{L,p¡(t I rP) + ó'(t) lru o,{, I rP)d'r)+ (1 - oy)þ'(t) : s

This expression can for solved for p¡(t I TP) by setting S(ú) : If pt(, I TP)dr so

,S'(t) : -W(t IIP).The function S(ú) satisfies the differential equation

o,{- o*tft¡+ d'(ú)s(ú)}* (t - o¡)S'(t): s

or

This is a first order linear differential equation, with solution up to a constant ç,

s(¿) : çexp ó(t)
A

hence

w(t IIP) : -{/'(t)exp
where t : c I L. The constant { is a function of the probability of intruder presence,

(+)

O¡
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To summarise, we have found a leaving density pp(tlRP) and to within a con-

stant, a return time density p¡(tlTP) that yield constant payoffs, if the supports of

the two players are equal.

Are the supports of the players equal, as required for an ESS? When considering

pure strategies in Section 4.3, an upper bound time Îwas found such that if players

left/returned after this time their best possible payoff would be less than that of

leaving at the commencement of the game. A strategist adopting time t : 0 would

be selected over a strategist adopting time Î -l e , where e is an arbitrarily small

positive constant.

Now consider the case when on 1 1 and o¡ 1 L The supports of the resident

and intruder cannot be equal if we consider the upper bound times, as is shown in

the following lemma.

Lemma 3 If o7 < l, then supp(R.) I supp(I.)

Proof
The proof is based on calculating the upper bound times for leave/return strategies.

Leaving at the commencement of the game will not be selected over guarding till

time ú, whilst

reso* ó(t) > a¡r€s,r+ (1 - o¡)reso + d(0).

Here, the probability of the intruder being absent is factored into the payoff from

leaving at the commencement of the game. At equality, let this time be denoted by

G, which satisfies d(0) : ó(î;) i Lo¡. Similarily, an upper bound return time for

the intrud er, ît, will satisfY

int,o * Ó(îr) : ozi'nto+ (1 - o R)inte + d(0)

Considering the above expression, the intruder's payoff from returning immediately

is composed of the habitat payoff, /(0), plus the payoff if the resident is present,

op,int, and the payoffif the resident is absent (l- o¡-)intr. Conhast this with the

payoff from leaving immediately given to the resident, if the intruder is present
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a¡r€srp and absent (1 - oy)resr. Once the waiting game commences, the resident

does not partake in any further parasitism or superparasitism of the patch, whereas

the intruder will superparasitise if it returns after the resident, hence the payoffs

from returning or leaving immediately will be different for both players. The time

û) willtherefore satisfy d(0) : ó(î,)+ A. As o7 11, this impliesthat í;<ît.
Now let the fitness of the resident adopting leaving time density pp(tlRP),

against an intruder adopting return time density p7(tPP), if present, be denoted by

E(Rlp^,pt,ßP).If the resident has a positive probability Pr(t6 > G) of guarding

within the interval (G,îrl then it will be selected against by a mutant assigning this

probability to leaving at the commencement of the game since

E(Rlp*,pt,RP) : Pr(t¿ sfa)E(Rlpl,pt,r¿P) + Pr(ta > G)E'(,R|pn,pt,RP)

Thus supp(r?-) n (G,î,]: Ø if the resident strategy -R* is an evolutionary stable

local strategy. This is not the case for the intruder, as in ú e (G,îr)

i,nt,o I ó(t) > o¡¿int, + (1 - op)i'nto + d(0),

thus the fitness payoff from waiting surpasses that of leaving at the commencement

of the game. These observations imply that when o7 1. L, the intruder can choose

to return after the resident and still gain fitness points, thus szpp(R.) f supp(I*),

so the distributions listed above cannot form an ESS.

n

Originally, we studied the problem of finding pure strategy ESS's when both

players \¡ere present, o¡ : oR:1, (Section 4.3). Can mixed strategies form an ESS

when or : oR: 1? Consider the support structure

supp(R) -- supp(I): [0, A.

If we calculate the expected fitness of the intruder, given that it adopts return time

distribution p¡QlfP)

E(Ilp,, R, ßP) : i:U' #(t't'o+ or'\at)wî trP)dt
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+ f lf #(rnt,+óØ)at)n,e tkP)d,t

: f,ç{l,r,,+ d(¿))(d(0) - d(ú)) + (into * óþ))(ó(t)- d(Ð))

The first integral corresponds to the payoff when the intruder returns after the

resi,dent has left, the second lo before the resi,dent has left. Recalling the definition

of e d(0) : A+d(Ð, the non-constant terms in the intruder's expected fitness vanish

and we are left with

E (IIR, Pt, ßP) :'int,o + Ó6)'

The fitness obtained by the intruder is therefore the same as that of leaving at the

commencement of the game,

E(/10, R,ßP) : E(IlPt, R,BP),

srnce

i,nt,r l Ó(Ð : i,nt, + S(0),

thus at best, the mixed strategies derived here are only neutrally stable and cannot

form an ESS, since we have two candidate strategies, not a unique ESS.

The next step in the search for a mixed ESS would be to consider assignment

of atoms of probability and to consider the supports of the resident and intruder to

be some subset of the interval [0,i]. There are two reasons why this approach is not

considered as profitable. The first is that this would take us away from the main

findings of this chapter, that of the instability of pure strategies. The second reason

comes from invoking Selten's Theorem, stating that only pure strategies can form

an ESS in an assymetric game (Selten,[72], Maynard Smith,[54]). When considering

the support as the interval [0, Î], we found the reason as to why, neutral stability, the

leave/return distributions could not form an ESS, which is not achieved by simply

invoking Selten's Theorem.
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4.5 Critique and Conclusions

The importance of this chapter lies in the refinement of the hypothesis of informa-

tion exchange in patch leaving. Though the leave/return times observed show some

stochasticity, there is a general form of patch defence behaviour found across many

species of patch guarding parasitoids (Wilson,[86]). The resident guards the patch

for a time dependent on the patch size and investment. Following its departure, the

intruder returns to superparasitise (Field, Calbert and Keller,[21]). Barring injuries,

in over eighty observations of pairwise patch contests, this was the pattern observed

(Field,[1e]).

In the eighty four patch contests observed there were four cases of injury of a

contestant. Upon injury, these contestants immediately become intruders (Field,

Calbert and Keller,[21]). Of the four injured contestants, only one was seriously

injured, with the severance of the distal part of its antennae, causing the contestant

to leave (Field , Calbert and Keller,[21]). Though it is possible that a guarding

resident may not have an opponent, the rarity of severe injuries makes it unlikely

that the patch leaving strategy of the resident would be selected to maximise fitness,

with the possibly of intruder absence. Instead, patch leaving strategies should be

based on the assumption that the intruder will return'

One other assumption of this chapter needs refinement, that of constant payoffs

from superparasitism. As mentioned in the introduction (Section 4.1), the payoff

from superparasitism decreases over the course of time. If the resident guards for a

significant period of time, then this factor must be taken into account.

Having shown that a pure strategy ESS does not exist, does not decrease the

importance of the instability results as there has been considerable attention paid

to the dynamics of strategies in recent years (Hines, [33]). Within assymetric con-

tests, a game considering the "battle of the sexes" was shown to have stable cyclical

strategies (Schuster and Sigmund,[71]).

Information transfer of the resident's leaving time is the minimal requirement
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for the existence of a stable strategy in the waiting game. In fact there is ample evi-

dence that both the resident and intruder adopt behaviour to maximise the chances

of obtaining information about the opponent's status, whilst minimising any infor-

mation transfer that would be advantageous to the opponent.

During the waiting game, a resident will mainly sit motionless on the patch,

occassionally punctuated by excursions to search the patch periphery (Field, Cal-

bert and Keller,[2l]). This period of quiescence is thought to maximise the chances

of detecting movement associated with the intruder's return and to "bluff' the in-

truder into perceiving the resident has left (Land,[42], Field, [19]). The intruder is

observed to intermittantly return close to the patch, presumably to assess the pres-

ence of the resident (Field, Calbert and Keller,[21]). Indeed, the resident's strategy

of remaining stationary, to maximise detection of intruder's movements may be seen

to counteract the intruder's strategy of partial return (Field,[19])'

In summary, the waiting game was introduced in this chapter, with the assump-

tion that no information is exchanged to the intruder on the resident's leaving time,

if the resident leaves prior to the intruder. With no information exchange, no ESS

exists, regardless of initial conditions of the resident leaving strategy or the intruder

return strategy. By simulating the evolution of leave/return times, it was shown that

strategies evolved cyclically when the initial return time of the intruder is greater

than that of the resident's leaving time. The resident's leaving time drifted, due the

absence of selection, when the return time of the intruder was less than that of the

resident's leaving time. Mixed strategies were briefly considered, but were shown at

best, to be neutrally stable.

The results of this chapter point to a construction of a new model with informa-

tion exchange of the resident's leaving time passed to the intruder and the leaving

time decision of the resident based on the knowledge that the intruder will return

to superparasitise, (Chapter ??).



Chapter 5

The \Maiting Game with
Information Exchange
A Stackelberg Equilibrium.

5.1 Introduction and Chapter Overview

The previous chapter addressed possible leaving strategies taken by the resident and

return strategies for the intruder. In this chapter, models of leave/return strategies

are constructed, under a different set of assumptions.

There are two central reasons why ESS leave/return times did not exist, with

two assumptions presented in the previous chapter. The first, is the assumption that

the only information concerning departure or return times exchanged by players oc-

curred if the intruder returned early to a guarded patch. No information about a

resident's early departure was exchanged to the intruder. A constant superparsitism

payoff to the intruder, denoted by A, no matter what the time of intruder return,

formed the second assumption'

No ESS will exist if A does not change because the following intuitive reason'

If there is no change in payoffs from superparasitism, the resident's best strategy is

either "leave immediately" or "guard indefinitely." Consider the "guard indefinitely"

720
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strategy. An intruder's best response to this strategy was to return immediately,

collecting maximal habitat payoffs after being removed by the resident. The "guard

indefinitely" strategy is optimal for the resident as there is no opportunity for su-

perparasitism. This intruder response, in turn, negates any selection pressure on the

resident's strategy, thus leaving times will drift from the "guard indefinitely" strat-

egy. Thus, "guard indefinitely" cannot be an ESS. Applying similar ârguments, to

the co-evolution of the leave/return times, denies the strategy "leave immediately"

as an ESS candidate when A is constant.

What of the possibility of uncertainty in opponent presence or absence in the

game? Through patch contest injury or predation, there may be a small probability

that a guarding resident has no corresponding intruder, awaiting an opportunity to

superparasitise. The motive for this assumption was the observation that in four of

eighty experiments, players were injured, with severed antennae, during the contest

for residency (Field, Calbert and Keller,[21] ). A game of timing approach of find-

ing a leaving probability density and return probability density yielding constant

payoffs, when used against an opponents strategy was applied. Because of presence

uncertainty, such constant payoff leave/return densities where derived, but were not

shown to generate a ESS model of leave/return behaviour, because of the neutral

stability of the strategies calculated (see Chapter 4).

Before proceeding with another model of the waiting game, another aspect of the

biology of embryo development is discussed as a precusor to the new set of assump-

tions listed below. Once parasitised, the stages of development, rate of embryonic

growth and time since previous parasitism will determine how vulnerable a particular

host egg will be to successful superparasitism (Fietd,[19], Godfray,[26]). Experiments

have been conducted to determine the level of success for conspecific superparâsitism,

under different times from the first to the second oviposition (Field,[19]). When the

time difference between first and second ovipositions is small, results showed that the

superparasitising conspecific had a higher probability of yielding a successful fitness

return (Field,[19]). Ary initial advantage to the superparasitising female decreases
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over the course of approximately six hours, when the first embyro is suffrciently de-

veloped (Field,[19]).

Including this observation motivates the first change in the assumptions of the

previous two models, allowing the intruder's payoff, from successful superparasitism,

to decrease over the course of time, that is the superparasitism payoff, A, now

changes to a positive decreasing function of time, defined to be a(ú).

a(¿) ---+ 0 as ú ---> oo.

Under this assumption, it may be possible to apply to a games of timing approach

of finding leave/return probability densities that yield constant payoffs. This will

not be the approach taken here, since an extra observation regarding information

transference between players is modelled.

During the course of the final waiting game, an intruder is observed to move

closer to the edge of the patch without making a complete return (Field, Calbert and

Keller,[21]). Though the intruder, if present, may not have complete information as

to the time of leaving of the resident, it is hypothesised that it can infer estimates of

the resident's presence or absence by makin g a parti,al return to the patch (Field,[19],

Wilson,[86]). To incorporate this observation into a mathematical model, a learning

rule should be applied giving time dependent updates of information ascertained

by a waiting intruder. For example, any consistent model of presence, absence

estimates must assign a high probability of resident presence if the time interval of

the intruder's last resident observation is small (Sih,[73]). Incomplete inference as to

the presence or absence of the opponent can then be modelled by the use of Bayes'

Theorem (McNamara and Houston,[57]) or other learning algorithms (Mangel,[48]).

Having observed that an intruder can partially infer presence or absence of the

opponent, this information can be used to make a safe return to the patch to accrue

superparasitism returns. Fitness returns are largest if the intruder returns as soon

as possible after the resident's leaving time, the time gap depending on the quality

of information the intruder has of the presence of the resident (Field'[19])' Though
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this seems to imply that the intruder has the intrinsic advantage in the waiting

game, selection would adjust the resident's leaving strategy to maximise fitness, in

light of the intruder's imminent return.

Knowledge of the intruder's return, gives the resident the information advantage,

as its leaving time constrains the possible return times of the intruder. Games

in which a player has an intrinsic information advantage over an opponent have

been studied extensively in economics, for example, within mathematical models of

compâny investment in a product, in which the company knows other competing

firms will invest in research and development in the product some subsequent time

(Fudenberg and Tirole,[24]). Economists have applied a new notion of equilibrium

centered on this information assymetry. Rather than calculating game strategies

around the notion of the Nash Equilibrium, in which both players simultaneously

calculate their respective optimal strategies, the notion of Staclcelberg Equilbri,um

applies naturally to games in which one player has the information advantage over

the opponent.

Experiments of pairwise contests indicate that the intruder always returns to the

patch to superparasitise when it is not injured (Field, [19]). Consequently, selection

will adjust the resident's leaving strategy to take this fact into account. Rather than

simultaneously optimise strategies, the intruder maximises its fitness, by returning

after some time set by the resident. Knowing this, the resident then maximises

its fitness return, by choice of appropriate leaving time, balancing increasing patch

payoffs, due to decays in superparasitism payoffs, with decreasing habitat payoffs.

When viewed as a Stackelberg game, none of the instability problems found in

the last chapter appear. Strategies adopted by both the resident and intruder are

pure strategies, in accordance with a fundamental theorem on ESS's, stating that

only pure stategies can exist for an assymetric game (Selten,[72]). I" advantage to

the resolution of the instability problems, the resident leaving times are biologically

consistent

Following this introduction, section 5.2 places the new biological assumptions
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within a mathematical foundation. Section 5.3 derives the Stackelberg equilibrium,

for the case of decreasing patch vulnerability to superparasitism and perfect resident

presence/absence information. Subsequently, the assumption of equal "perceptions"

of habitat payoffs is questioned. Eliminating the assumption of perfect resident

presence information is the topic of the next section 5.3.2 followed by the Discussion

and Conclusion, Section 5.4.

5.2 New Assumptions

Before proceeding with the model of patch leave/return behaviour, the new assump-

tions derived from the preceeding biological observations are listed

o Residents choose a time to leave and serach for new patches in the environ-

ment. This leaving time, denoted by tn, is chosen with the knowledge that

the intruder will return to superparasitise at some subsequent time,

tt : tn* þ'

The time gap between the resident's departure and the intruder's return is

clearly þ.

o Suppose the resident leaves at time ú¿ and the intruder returning at time ú¡,

1 then the payoff to the resident E(R I tn,tt,BP), glven both players are

present, takes the form

E(Rltn,tt,ßP):
reso * þ(t¡) if t7 1tp,

resp - å¡(¿r) + ó(tt) if tr : tn,

resp - A(¿r) + ó(tn) if t¡ ) tp,

there we allow both times to be in the interval [0,f/], to illustrate the payoffs if the intruder

returns to a defended patch
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and the payoffto the intruder E(I lü,,tR,ßP) satisfies

E(I lù,tp,ßP):
int, + þ(t¡) if t7 1t¡",

i,nto t Lt(tt) + Ó(tt) if tr : tR,

i,nto * A(¿r) + ó(tt) if tt ) tn.

Both /(ú) and A(ú) are assumed to be monotone decreasing, differentiable

functions of ú.

o The intruder estimates the presence or absence of the resident. It is assumed

that there is variation in the leaving time of the resident. If úh is the optimal

resident leaving time, the realised leaving time follows some distribution, due

to such factors as variation of the estimate of patch worth, and variation of

the estimate of habitat worth. If the actual leaving time be denoted by tn,

then it is assumed that this time is normally distributed with mean úþ and

vatiance o2,

ta - N(th,o2),

where the variance is small compared to t\.

5.3 The Stackelberg equilibrium

When one player can constrain the set of optimal actions taken by another player,

then the Stackelberg equilibrium is the appropriate definition for evolutionary sta-

bility (Sjerps and Haccou,[7a]). If we define the player that constrains the opponents

actions as the leader, and the opponent as the follower, then a Stackelberg equilib-

rium can be described in the following terms.

Let St and ,S¡' be the respective set of pure strategies that the leader and follower

can adopt, leave/return times being the pure strategies adopted here. Similarily P¿

and P¡ are the fitness payoffs to the leader and follower players respectively, these

functions depending on the pure strategies adopted by the leader and follower. Since

the leader can constrain the actions ofthe follower, the set ofpure strategies adopted
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by the follower ,9¡, depends on on the pure strategies adopted by the leader ,S¿. In

functional notation, for any I e 57,

Sr:,9r(l)

Suppose the leader adopts a pure strategy I e S¡, then the set of strategies that

forms the follower's best response to the pure strategy l, denoted by B¡(l), is defined

to be

B¡(l): {"f* €,S¡,, such that Pe(l,f.)> Pe(l,/), for all / e So(¿)}

A Stackelberg Equilibrium Strategy is the best response strategy of the leader

l*, given the follower adopts a strategy in B¡(l-). Therefore, if the payoff gain of the

follower is the payoff loss of leader, as in a zero sum or constant sum game, then the

equilibrium pair (l*, /*) satisfies

P"(t* 
' t*) : firil,; '.)"u,,,

¿€S¿ J€SF(¿) 
!\ /r

Now suppose the intruder possessed perfect information as to the presence or

absence of the resident. The resident's fitness return for leaving at time ú¿, is given

by

F^(to,t¡) : res, - A(¿r) + Ó(tR),

thus from the assumption listed above,

Fa(tn) - resp- A(ú" + p) + ó(t").

Since the resident decides the optimal time, úþ, to leave, this time is found by solving

the equatiorr, ffÐ : O,tW ( 0. Thus úþ must satisfy

ó,(th) 1

A14 .. B¡ 
: ''
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Note here the similarity with Charnov's marginal value theorem (Stephens and

Krebs, [77]). If 0 :0, then it is optimal to leave the patch when the marginal rate of

gain from the habitat equals that of the patch, the latter being caused by decreased

superparasitism payoffs (Charnov and Skinner,[6]).

As the intruder is assumed here to have perfect information as to the status of

the patch, defended or undefended, the optimal time for returning is e time units

greater than the resident's departure time, for an arbitrarily small positive e. Thus

tf : th+ P : th* e: tT.

Given that the intruder, because of the possibility of being injured, cannot return

before the resident has left, its return time to superparasitise minimises the resident's

fitness. Therefore the time úþ satisfies

Fnþh) : r"?rtÞr uä,r."ør 
F¡¿(t¡¡,t¡)

:,iËr?Þr 
urrff,iÊ-r^tFn(ún)'

Note that as B is a constant, e , then under perfect information the function F¿(ú¿, t¡)

is simply a function of one variable, the resident's departure time ú¿'

under the assumption of perfect information, the pair (tþ, ¿h*) : (th,tl) forms

a Stackelberg equilibrium z/ these times are â gtobal optimum for the payoffs of

both players (sjerps and Haccou,[7a]). The global optimality of equilibrium point

(úh, úf ) will in general depend on the nature of the patch vulnerability A(ú) and

the post-patch habitat fitness /(ú). Before asserting that the pair

(th,tÐ: (¿h, ¿ä+)

is a Stackelberg equilibrium, it must be checked that the intruder's return time is

indeed a global maximum, this being achieved by comparing the intruder's fitness

returns from leaving at the begining of the waiting ga,me' where maximal expected

habitat returns are found, to that of leaving at úþ+. Thus if ti : argmax (F¡(0), Ft(úä*))

then we have a global Stackelberg equilibrium. As an example, consider the following
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simple model of payoff from superparasitism,

A(t) : A-o, exp(-kú),

k being the constant that determines the decay in payoffs from superparasitism and

ó(t):'(1 - tfl)
A global optimum is achieved for some parameters a,k and A-o' with the resident's

maxima shown in the following Figure 5.3.1.

5.3.1- þ(t) for both Players?

Is it reasonable to assume that both players have the same estimate of the post-

patch habitat payoff ó(t) ? If reference is made back to the Introduction, an article

was cited, regarding the patch leaving strategies of predators, with intra-specific

competition for the resource patches (Yamamura,[8S]). The ratio of patches to

predators, or the competiti,ue intensi,ty, was cited as the most important parameter

determining patch leaving decisions (Yamamura,[8S])'

It is not unreasonable to apply the same rationale, when attempting to model

patch leaving decisions of residents and intruders. If an individual is to achieve

maximal lifetime fitness, learning the competitive intensity may be a major adaptive

advantage. In a particular patch conflict, the resident may have higher estimates of

post-patch habitat fitness than the intruder. In experiments conducted to observe

fighting and patch leaving, female T. basalis had no previous experience in patch

fighting, thus the losing intruder may have a lower estimate of post-patch habitat

payoffs, due to a higher estimate of competitive intensity,

ót(t) 3 ón(t)

These observations have implications for the global optimality of the Stackelberg

equilibrium. If an intruder chooses to return after the resident leaves at its optimal
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Figure 5.3.1: Fitness of the Resident Fn(t), at time ú for the patch vulnerability con-

stant k : 0.05, k : 0.1 under the assumption that the intruder returns immediately

after, that is þ :0+. The parameters used in the figure were Azn¿r - 10, o : 5 and

reso: l$'

time úþ, then its payoff must be grea,ter than that of leaving immediately, forgoing

superparasitism returns, but collecting maximal habitat returns,

k = 0.05
k:0.1

h(tÐ: Fr(¿ä+) > F¡(o)
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Thus the fitness gain from superparasitism must be greater than or equal to the

habitat gains,

^(úï) 
ìd¡(o) -ó,(tÐ.

Note that this is under the assumption of perfect information, as to the resident's

presence or absence.

Two necessary conditions for the resident's strategy tþ to be globally optimal

are

1. There is a fitness gain from leaving at úþ then at 0 and so, the resident's fitness

difference in guarding A(0)-A(úh) must be greater than the resident's habitat

fitness difference in not guarding, d"(0) - /¿(úþ) thus

^(o) 
-^(¿h) ldn(o) -ó"(th).

2. there is greater habitat fitness gains for the resident than superparasitism gains

at úþ, so

ón(th) > 
^(úh).

Thus the habitat fitness losses, Lr : Ór(0) - Ór(tÐ and Lp: d*(0) - /¿(Úþ) from

Ieaving must satisfy

Lr<L(th) sA(o) -Ln,
if indeed the pair (th,,tÐ : (úä, tþ+) is gtobally optimum. This inequality provides

a necessary condition, in the habitat fitness losses between the two players, for

stability, as illustrated in the following Figure 6.2.

For guarding to be profitable, gains to the resident from decreasing intruder

superparasitism payoffs must supplement losses in habitat gains. This observation

will have implications for patch competition with multiple conspecifics. With many

competitors, each player will parasitise a smaller proportion of the patch, thus the

fitness loses from superparasitism may decrease, lowering A"(0), where n,n > 2 is

the number of players. As a consequence, the times where

A"(o) -4"(¿ä) lda(o) -ó"(th)
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Fitness

A(ú)

a(o) - ¿n

L¿

ón(t)

t

t

Region Stability

Figure 5.3.2: For stability of resident and intruder strategies, the leave/return times

necessarily belong to the interval indicated in the diagram.In the region of stability,

payoffs are better than those obtained by leaving or returning at the beginning or

end of the game. Both /¿(t),ót(t) and A(f) are monotonic decreasing functions of

will decrease. Thus, with multiple competitors, residency times are expected to de-

crease, as seen in field observations (Field, personal observation).

The hypothesis of lower habitat quality estimates for an intruder may be tested,

by variation of the life histories of a group of parasitoids. If one group of parasitoids

experiences a higher proportion of residency in patch competition, as compared with

another group that become intruders, then both the leaving times and return times

of the second group should be longer than that of the first, indicative of lower habitat

quality estimates. So far, patch defence experiments, over multiple patches, have

not commenced, but may provide useful insight into the nature of patch leaving
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decisions

6.3.2 Learning Resident Presence or Absence

Previously it was assumed that the intruder had perfect knowledge as to the oc-

cupâncy of the patch. Under this assumption the intruder's return time formed

a Stackelberg equilibrium. To remove the assumption of perfect information, a

measure of an intruder's precision to infer patch occupancy must be defined. Fur-

thermore, a time dependent learning rule is to be constructed, defining the estimate

of the presence of the resident at any moment in time'

Bayes'Theorem

Pr(AlB) ñ-t Dt ,r Pr(A)
- r r\21'') p1B)

serves as a probabilistically consistent learning model that incorporates imperfect

information and time dependent estimates of resident presence. To see how this

theorem is applied, let O(h) be the event that the intruder observes the resident, in

some small time interval of length h. Let 2 be the event that the resident is present.

A measure of the quality of the information an intruder can ascertain as to patch

occupancy, is given by the limit

g: lim Pr(o(h) lP) 
./¿-+0 h,

Parameter d measures the probability per unit time for observing the resident, given

it is present. As 0 --+ oo, the intruder's occupancy information becomes more reli-

able, since in the limit, the presence of the resident is immediately detected by the

intruder.

Now let (P at ú) be the event that the resident is present at time ú, with (Nf at t)

being the event that the resident is not present at time ¿. With similar notation, let

(NO from r) be the event that the intruder has made no observations of the resi-

dent from time r. The definition of the intruder's estimate of the resident's presence
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at time ú, given no observations from time ú, r 1 t, is given by

B(tlr):Pr(P attlN0 from r).

By Bayes' theorem, this is equal to

PI(NO from r lP ar t)Pr at ú)

Pr O from r).

Conditioning on the denominator, using the Theorem of total probability, this ex-

pression is just

NO from r lP at t)Pr(P at t)P'(
Pr(lttO from r lP at t)Pr(P ar t) + er(,Mn from r I NP at ú) Pr(,Â/P at t)

Now as lim¿-¡s'-ryø: g, this implies, that of small h,Pr(Q(h) | P) x 0h'

so the observations of the resident are exponentially distributed (Ross, [0S]). ttrus

the probability of not observing the resident at time r, given its presence at time

t,r2tis
PI(NO from r lP at ú) : exP(-0(r -t)).

As noted before, since the actual leaving time of the resident ú¿ is drawn from

a distribution, assumed to be Gaussian with mean úf,, let the survivor function,

pr(t¿ > ú), be denoted by S(t) and the distribution itself be denoted by Pr(t) :
1 - s(¿).

Therefore Pr(P > ú) : S(ú) and by integration over all the possible leaving times

of the resident

PI(NO from r I NP at ú) Pr(,Â/ P at t) : l' "*v?0(t - r))d'Pr(l)'

These observations lead to the estimation of the presence of the resident at time ú,

given the last time of observation rffas at r, as

ß(tlr):
1

-0 t- s
exp(-0(t-r))S(t)+ exp(-d(l-r))d Pr(l)

if t 1r,
if tlr.

t

A graph of ß(t lr), for different values of the quality of information exchange, d is

shown in Figure 5.3.3.
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Figure 5.3.3: Intruders estimation of the presence of the resident, given that the last

observation of the resident was made at r : 5,8(t | 5). In this figure the expected

time of leaving th : 5 and the variance is o2 : 2, thus the actual leaving time

fa - Iü(5,2). This estimate of occupancy is plotted for 0 :0.1and d : 0.9.

Having constructed a model for the intruder's estimate of the presence of patch

occupancy, the perceived fitness of the intruder F¡(t,r), can be calculated where ú

is the since the beginning of the waiting game and r is the time of last observation

of the resident.

0 10 15

Ti¡ne of Waiting Garne, f

0 :0.1
d:0.9

Fy(t,r) B(tlr)(tnt,+d'(¿)) + (1 - B(tlr))(tnto+a(¿) + ó,(ù)



CHAPTER 5. WAITING GAME WITH INFORMATIO¡\I 135

i,nto t ó,(t) + (1- ß(t I r))n(t)

Comparing the resident's optimal time of leaving with the intruder's return time

will give the time delay of the intruder's return B. It is noted that this time delay

will depend on the time of the intruder's last observation and this time is assumed to

be the actual leaving time of the resident ú¿, although this assumption is questioned

in the next paragraph.

What happens if the intruder mistakenly concludes the resident is not present,

returning to the patch? There are several possibilities. A resident may have com-

menced a temporary search of the patch periphery, a behaviour occuring several

times before leaving (Field, Calbert and Keller,[21]). In this case the resident, most

likely, will return to intercept the intruder. Another possibility is the return of the

intruder whilst the resident is on the patch, again with the result of interception

and removal of the intruder (Field, personal communication).

The premature return of the intruder is very rare and the simplest explanation

for this observation it that an intruder has high quality information about the res-

ident's presence. When guarding, the resident's position is localised, usually it the

patch center. As the intruder approached the patch it would gain information. In

contrast, the intruder may be in any one of the peripheral areas surrounding mak-

ing information exchange of the intruder's presence poor. Thus, the localisation of

resources, thus resident position, has the effect of giving the intruder the presence

information advantage.

If ¿i € (t^,Hl is the return time, that maximises the intruder's perceived fitness

then

þ : atsuä,?Þr h(t,,tn) - tn'

With the assumption of imperfect information, the leaving time of the resident and

the return time of the intruder

(th,tÐ: (th,th+ P)
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do not form a Stackelberg equilibrium pair in the strict sense, but are here defined

to be a parti,al i,nformati,on Staclcelberg pai,r. To calculate the partial information

Stackelberg pair, the return time of the intruder úi, is first calculated for each resident

leaving time ú¿. Differentiating the intruder's perceived fitness and checking that we

have a global optimum, úi will satisfy

ó',(tÐ + (1 - 6(¿ïl¿))A'(tT): B'(t!lt)L(tÐ.

owing to the monotonicity of the functions /¡(ú) and a(ú), then F¡(úi) > rr(¿), rot

all ú e lti,H), thus the global optimality condition applies.

Having found the optimal time between the resident's departure and intruder

return,

þ:tt-tn'
this is substitued into the resident's fitness equation to find the optimal return time

úþ, generating (¿ä, ¿i).

In general, partial information Stackelberg pairs are calculated with the following

method.

o For each possible resident leaving time ú¿, calculate the intruder's perceived

best return time B so

o -- arg,,ä,?îrr F,(tt,tn) - tn

o Calculate the optimal leaving time for the resident Úþ,

úä : atg-ax Fp(tp,tn i þ),

given the intruder returns B time units thereafter'

With this algorithm, the resident's leaving time is calculated, and a sensitivity anal-

ysis is done over different rates of decay of patch vulnerability k, as seen in figure

5.3.4.

From the graph of resident leaving times, the following observations can be
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Figure 5.3.4: Stackelberg leaving times for the resident as a function of the super-

parasitism constant k which ranges from 0.0 to 1.6. The parameters used in this

figure a"re resp - 15, intr:5, L*o* - 10, Q:5,I1 : 30, o2 :2'0 and p : 0'3'

made. If there is no decay in patch vulnerability over time, then the resident's best

response is to cease patch defence immediately. In light of the fact that in this sit-

uation, no matter when the intruder returned to superparasitise, full fitness returns

are given to the intruder, there cannot be any fitness advantage to resident guarding,

thus it pays to minimise habitat fitness losses and leave the patch immediately.

At the other extreme, if the decay in patch vulnerability is large, then the resi-

dent should not guard for long periods of time, since the patch becomes relatively
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safe from superparasitism after a short period of time. Again the best resident fit-

ness returns come from adopting an early leaving strategy. Intermediate to the two

extremes described, a guarding resident must balance the tradeoff in leaving early,

for maximal habitat gain, and guarding the patch, enabling the egg parasitoid larvae

to develop its mandibular defence physiology (see the Introduction and Overview,

Chapter 1).

If it is assumed that B is small (high quality information exchange to the in-

truder), the habitat payoff, /¿(t) and superparasitism payotr, A(Ú) are infinitely dif-

ferentiable, then by application of Taylor's theorem A(t) : ÐÊo¡{")(0)f;, Ó(t) --

DLo ó9#.. Upon substitution into the equation that yields the optimal return time

of the resident,

ó'R(o) + d'á(o)¿ä
a,(o) + a,,(o)¿h

Hence

r; = -4-(Q-: 
aloì

d'å(0) - a'(0)
Thus the balance between resource decay and rate of resource decay determines

the optimal patch leaving time for the resident. Examination of the denominator

shows that úþ will be greatest when the marginal rates of decay in habitat and

superparasitism payoffs are approximately equal'

6.4 Discussion and Conclusion

This discussion focuses on the comparison of the three models constructed in the

last two chapters and further work that may be germane to the understanding of

the waiting game. As noted before, the first model based on the assumption of

constant patch vulnerability to superparasitism and no information transfer to the

intruder as to patch occupancy, exhibited no stability at all (chapter 4)' The leav-

ing times of the resident, though correlated with those of intruder's, drifted. The

second model again showed neutral stability, though is was noted that the leaving
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time distributions for the resident and the return time distributions for the intruder

cannot be evolutionarily stable as only pure strategies can satisfy stability require-

ments (Hammerstein,[30]).

The Stackelberg equilibrium must be the appropriate definition for the behavioral

strategies of the resident and intruder. Return times will be selected to maximise

the fitness of the intruder, essentially "doing the best of a bad job" (Stephens and

Krebs,[77]). This in turn puts selection pressure on the resident to adopt a strategy

taking the intruder's imminent return into account. This argument is the same as

that adopted by researchers studying the adjustment of clutch size in parasitoids

(Sjerps and Haccou,[7a]). The authors reasoned that if the first player to oviposit

within a host has knowledge that a conspecific will superparâsitise some time shortly

thereafter, then it will adjust its clutch size to take the conspecific's superparasitism

into account (Sjerps and Haccou,[7a]).

It should be noted that the Stackelberg equilibrium will break down if the costs to

the intruder, on return to a guarded patch are not as great as those ofreturning early.

This may be the case when the intruding parasitoid is nearing the end of its expected

Iife or has low egg load, making risky strategies profitable (Mangel,[a6]). However if

either of these situations apply, then it is expected that the player would choose to

show greater persistence in fighting for patch possession and would therefore achieve

residency status. Studies of the effect of varying egg load on the aggression level of

competing females of the species T. basalis have not been conducted systematically,

nevertheless females that achieve high levels of residency have been noted to have

lower egg load upon subsequent dissection (Field, personal observation).

The final model of the waiting game assumed the intruder's last observation of

the resident concurred with the actual time of leaving of the resident. Behavioural

observations indicate that the resident adopts a complicated patch leaving strat-

egy. Following the stationary period of patch defence in which the resident remains

motionless, it commences a series of radial searches around the patch before re-

turning to check the patch for the presence of an intruder. Following this it leaves
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(Field,[l9]). On evolutionary grounds, it could be argued that this search has two

adaptive components. The first, is to find the intruder, to prevent superparasitism.

The second is to deceive the intruder, increasing the time of last observation of the

resident, hence increasing the probability of an early intruder patch return. The

radial search strategy of the resident essentially decreases the quality of information

exchange given to the intruder, as measured in our model, by the parameter theta.

Leaving to search the surrounding area may come at a cost, since the intruder could

return to partially superparasitise the patch before the resident has re-checked patch

occupancy.

Clearly there are further modelling tasks that may provide more information as

to the evolutionary forces influencing resident/intruder leave/return times. When

the ratio of patches to parasitoids is low, there will be multiple intruders in any

typical patch competition. This will alter the leaving time of the resident, as both

the fitness loss, by multiple intruder superparâsitism and the habitat fitness returns

will change.

Models of resource guarding behaviour with multiple competitors have been stud-

ied in the context of male mate guarding (Yamamura,[87, 89]) both for infinite and

finite time periods. These models again predicted the existence of pure guarding

time strategies for males. The predicted guarding time depended crucially on the

level of sperm competition with previous and subsequent male matings of the fe-

male. Here sperm competition is analoguous to the larval competition within host

eggs after superparasitism. If sperm competition is intense, males remained with

their mate for a time period sufficiently long to circumvent the success of sperm

from subsequent male matings(Yamamura,[87, 89]).

How close to the patch should the intruder return in an attempt to ascertain

the resident's presence or absence? As there is a tradeoff between increasing the

quality of presence/absence information and being caught by the resident this is an

important question that should be studied.

In summary, this chapter deals with the final departure of the resident, making
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the transition from patch defence, to foraging for further patches to superparasitise,

and the return of the intruder, to superparasitise the patch. Attempts to model

the waiting game without appropriate information exchange between the resident

and intruder showed little signs of stability. Assuming that the intruder possessed

partial information as to the presence of the resident implies that any evolutionary

equilibrium will be of the form of a Stackelberg equilibrium, that is, an equilibrium

in which the resident adopts a strategy of leaving, to maximise its fitness in the

knowledge of an imminent intruder return. This equilibrium predicts a small leav-

ing time, for both small and large rates of decay of patch vulnerability and a large

Ieaving time, when the decay rate of patch superparasitism is approximately equal

to the decay rate of habitat returns over the day. In applying the intruder first, res-

ident last optimisation procedure, only pure leave/return strategies are generated

these showing intrinsic stability.



Chapter 6

Further Research Directions and

Conclustons

6.1 Topics for Further Study

In the mind of the author, this dissertation had raised many possible directions for

further research. As the decisions made by parasitoids exhibiting patch defence are

quite complicated, a large proportion of time was devoted to constructing simplified

assumptions that made the modelling tasks tractable. Pairwise, single patch com-

petition, with simple fitness functions, formed the basis of this thesis. It is therefore

important to provide directions of research, in order to break down some of the

simplifying assumptions behind this thesis.

What follows, is a brief outline of some topics that may bring more insight into

the evolution of patch defence. In Section 6.1.1, issues associated with constuct-

ing a model of patch fitness return, as a function of player investments is discussed.

Equations governing the evolution of leave/return times, as a function of competitive

intensity follow in Section 6.1.2. The incorporation of learning, to model strategies

used by residents guarding against multiple intruders, is the focus of the next sec-

tion.

a
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Recently, a seminal paper discussing techniques of finding e- perfect, subopti-

mal strategies in evolutionary game theory was applied to both static and dynamic

games (McNamara, Webb, collins, szekely and Houston,[60]). This approach to

finding strategies is applied to finding an e-perfect resident's best response to an

intruder's return in Section 6.1.4. Spatial issues, such as resident search strategies

and oviposition placements are discussed in Section 6.1.5, with the general conclu-

sion to this thesis in Section 6.2.

6.1-.1 Fitness obtained from one Patch?

At the core of the modelling approach used in this thesis was the assumption that

patch defence can be broken up into a series of sub-games, though these sub-games

are connected. In order to make the sub-game connections as general as possible,

fitness functions for each stage of competition were chosen to be as simple as possi-

ble, whilst keeping the essence of the process by which one player can gain fitness

at the expense of the opponent.

When fighting (Chapter 2), fitness was broken up into role dependent contribu-

tions from present and future ovipositions, these depending on the coefficents c, B

and 7, the proportions of self, opponent and future total patch investment given to

the resident. Once residency was decided (Chapter 3), two coefficients specified the

cost to the parasitoid itself of one opponent oviposition, these being Cy and Cp,

the unit cost of an opponents oviposition to self fitness. Finally the time-dependent

payoff from superparasitism (Chapter 5) was reflected in the payoff from intruder

superparasitism A(ú), where ú is the time from commencement of the leave/return

game. If the notation A ---+ B is used to state that B depends on the input of A

then the following relationship between coefficients

d, þ,'f --) Ct,C¿ --+ A(ú)
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will hold. Furthermore, if we let r, y denote the respective investments of the resident

and intruder, immediately after residency has been decided, then

rrU ) Ct,Cn

The complexity of the relationships between investments and payoff coefficients will

be large, and aside from separating games for tractability, this is yet another reason

for the sub-games approach.

If ø is the investment of the resident, y that of the intruder, then at least, the

dependency of the coefficients in intruder returns would satisfy

*ro, Yro,or oa
ðcn o, Y.o.art dn

Dependency between investments, upon role resolution and the payoff from intruder

superparasitism would have to satisfy

4@ >0,4@ <o0r . -' õy

A simple model of fitness returns from parasitism/superparasitism may be con-

structed if the number of superparasitising ovipositions is small enough to avoid

three ovipositions in a single egg and the resident does not superparasitise.

Suppose, following the investment of r resident embryos and g intruder embryos,

rty: -8, fitness is derived subsequent to the intruders superparasitism of z,z 1 E
embryos. Let the intruder's fitness be defined as f ¡(z,gr,r). As a reasonable approx-

imation, fitness returns of the resident will then be f p(z,A,r) -- E - f ¡(z,y,r).
How can the intruder's fitness be calculated? Noting that the intruder does not

self-superparasitise in the current round of ovipositions (Field, [19]), host eggs will

be in five states, unparasitised hosts (assumed to be zero in number, Field,[19]),

those parasitised with resident or intruder embryos, denoted by Ë and .I or those

superparasitised by the intruder, denoted by RI and ILIf ap,ar,a1r and o¡¡ are
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the respective fitness values to the intruder of host eggs in these states, then

0:0,n1am1ay1a7¡

All that remains is to calculate the proportions of .R, I, RI and I I eggs. If the

intruder does not self-superparasitise in the current round of ovipositions then the

distribution of. RI eggs will follow the hypergeometric distribution (McOullagh and

Nelder,[56]). Essentially, intruder superpârasitism is analogous to choosing an egg

at random to superparasitise without replaci,ng this egg for further superparasitism'

Thus the probability that k of the z superparasitised host eggs is of the type R-I

will be

Pr(k type Rrlz): (;)f"lJt / 
1"")

Thus, after superparasitism, there will be k type -R-[ eggs, z - k type I I eggs and

@ - ,* k) type .I eggs with probability Pr(k type RIlz). The fitness of the intruder

will then take the form

fr(2,Y,") : D (;) (,
(",@ - z I k) * antk * a1¡(z- /t))

ut,

k=0 z

Even this expression does not encapsulate all the requirements for a successful

definition of fitness. In a locally matingspecies, as is ?. basali's, the effects of the ser

ratio, known to be female biased, on fitness returns cannot be ignored since emerging

males fight for possession of the patch to maximise the number of female matings

(Godfray,[26], Wagge,[83], Wilson,[86]). Superparasitism may cause the emergence

of two related males, their competition for female matings a waste of eggs'

Large investments in superparasitism also waste time (Charnov and Skinner,[8]).

Thus combining sex ratio and time costs, another expression for fitness may take

the form

Ft(z,A,r) : exp(-92)f ¡(z,Y,r)'

where the parameler g measures the comibined effects of male competition and time

costs associated with the superparasitism of z host eggs'
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Applying this expression to models of intruder return frequencies would make

o

5 10 15 20

eggs superparasitised, a

Figure 6.1.1: Sensitivity analysis of patch fitness, as calculated for the function

Ft(r,A,r) as z ranges from 0 to 15. Parameters used àtê a¡: 0.95, aII :0'7,ap¡ :
0.6,r :8,U: 7. The parameter P ranges from 0.01 to 0.05'

any optimisation very difficult indeed. Furthermore, notice that the expectation is

"parameter rich", a problem intrinsic to adopting models of increased complexity

(Mangel and Clarke,[50]).

These observations point to a need for further experimental work to find em-

pirical total fitness from a patch, given variation in the inter-arrival times of the

two females. An empirical approach has the advantage of avoiding the foremen-

tioned parameter richness problems as well as encapsulating fitness values directly
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from observations. An approach to incorporating empirical fitness values with state

dependent models was taken for a stochastic dynamic programming model of su-

perparasitism of the gregarious parasitoid Trichogrl,nlnla euanescens (Hymenoptera,

Trichogrammatidae) (Mangel and Clarke,[50]).

6.L.2 Evolutionary dynamics Revisited

In deriving the leave/return strategies of a resident and intruder as a Stackelberg

equilibria (chapter 5), the strategy dynamics were not considered, in the case of

non-constant payoffs from superparasitism. Of potential interest, the evolutionary

dynamics of patch defence, as studied through the partial differential equations that

given waiting times may yield interesting results.

In order to derive a set of coupled differential equations that govern the evolution

of resident departure times and intruder return times, let the leave/return times be

taken from the set [0,1]. 
1 The evolution of resident/intruder strategies will depend

on the competitive intensity of the habitat, thus we define

C : E(ptoportion of times residency is achieved)'

Further, let /¿(t, g) and rt(r, g) be the respective expected fitness gain of a resi-

dent/intruder adopting leave/return time ú,r in generation 9, and /¿(g),/r(g) the

expected resident/intruder fitness returns over all times t,r € [0,1]. Generations are

assumed to be continuous'

A strategy in any generation time g is defined by the vector (¿(g), r(g)). Strate-

gies will propagate if they do well against the background of competition, thus if

the fitness obtained by adopting (¿(g),r(9)) is greater than that of the population

average, or

c(f oþ, ù -T nØ)) + (t - c)(1,?, g) --Í /g)) > 0

then this strategy will propagate into the future (Hines,[33])'

Thus, let p,.(t,g) be the proportion of individuals adopting departure time ú, at

lAny other compact interval may be re-scaled to [0, u
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generation g when resident and let WG, g) be the proportion of individuals in the

population adopting return time r, at generation g when intruder. Partial differential

equations that govern the trajectories (ú(g),r(9)) will satisfy

:k

ôs

with kn and le¡ constants governing the evolution rate of leave/return strategies

Together with the normalisation conditions on the interval [0,1],

I, pp(t, s)dt

p,(t, s)dt : 1,I,'
these equations may be candidates for describing the evolution of patch defence

strategies.

Of importance in the structure of these evolutionary equations is the coupling

of the roles of resident and intruder. When competition is intense, with residency

being rare, most selection may take place on the intruders return strategy. What

remains to be modelled are biologically realistic models for fitness obtained from a

patch, superparasitised by many intruders. In fact, the expected fitness of a resident

or intruder will depend on the competition intensity and hence C, with f ¡¡ and f ¡

decreasing as C --> 0.

6.1.3 One Resident, many Intruders

Chapter 5 addressed the leaving strategies of the resident. The optimal leaving time

was found from a tradeoff of waiting till patch investments \üere relatively "safe"

from superparasitism, whilst maximising potential fitness benefits from the habitat.

A resident could choose this strategy because an intruder \ryas constrained to return

subsequent to the resident's departure.
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At high levels of competition intensity, a resident may defend the patch from mul-

tiple intruders (Field,[19]), thus further work should focus on strategies that model

patch defence times, given multiple intruders return to superparasitise. A model of

patch leaving, with multiple intruders, should be constructed with two components.

The first is a learning component, that models estimates of the number of intruders

waiting to superparasitise. Estimating the number of opponents is a difficult prob-

lem because a learning procedure must map the number of encounters with multiple

intruders to the number of intruders themselves. If learning the intruder number

occurs during competition for the patch, how can the current resident "be sure" that

an opponent is a new female to arrive on the patch, or just an opponent previously

encountered? Similarily, whilst guarding, a resident may usurp an opponent, but

was this a new arrival to the patch, or one of the previous contestants?

As with any other behavioral model, a hypothesis must be made about the in-

formation the resident uses to assess the number of opponents. One simple starting

point would be to assume that the resident uses the encounter rate with opponents,

during competition for residency, to estimate their number. This hypothesis may

be tested experimentally, by replacing a resident guarding a patch from multiple

intruders, with a resident guarding a patch from only a single intruder. The later's

strategy, based on opponent number "estimates," if assessed during patch competi-

tion, may be to leave, on average earlier than resident who fought multiple intruders.

Return strategies of the intruders must also be considered. The assumption, for

pairwise conflict, that intruders are constrained to return after the resident leaves

may breakdown. Because of the high level of patch superparasitism, there may be a

threshold combination of patch parasitisation, attained before or during competition

for residency, in which a player removed through competition will leave.
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6.L.4 e- Perfect Strategies

e - perfect strategies are sub-optimal strategies adopted by competing players. The

analysis of e- perfect strategies has a long history in models of economic com-

petition (Fudenberg and Tirole,[24]). Recently, e-perfect game theory has been

applied to the study of animal behaviour (McNamara, Webb, Collins, Szekely and

Houston,[60]). The authors of this paper were motivated by "the cycling prob-

lem" found in finding state dependant strategies of dynamic games (Houston and

McNamara,[36]). The cycling problem occurs when there is divergence of strategies

from a Nash Equilibria. Instead strategies, found from applying the best response

function Br(.) cycle, with Br(sr) : sz, Br(s2) : sl, Br(s2) : sl, and so on' The

authors of this paper identified the reason for this cycling came from the disconti-

nuity of the best response function and by "smoothing" the best response function,

convergence to an e-perfect equilibria was guaranteed (McNamara, Webb, Collins,

Szekely and Houston,[60]).

Consider the following example, drawn from work done in Chapter 3, on the

optimal guarding strategy of the resident. An optimal return frequency, dependent

on the cost of superparasitism, C¡, was found for the intruder, li(Cr). The best

response of the resident, to the intruder's return, was to either search for remain-

ing unparasitised eggs, or to commence guarding. Which strategy to use depended

on the difference of payoffs from the strategies. With the expected payoffs from

guarding defined to be E(Rþ,,¡.:0) and from host searching E(R),'¡": oo), the

proportion of time spent guarding, as a function of the intruder's return rate will

satisfy

0

either strategy

1

if E(RlÀ"¡" - 0) - E(Rl).'¡": oo) < 0,

if E(R),,¡' - 0) - E(RlÀ,¡': oo) :0,
if E(Rl\,¡" - 0) - E(RlÀ'¡": oo) > 0.

Br(Ài.(C,)) :
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Now consider the Heaviside step function, defined to be

H(n):
if n 10,
if :x :0,
if r)0.{;

then almost surely

Br(ÀiQ)): H(E(Rl)"/o :0) - E(AlÀ"7o: oo)).

What is an e - perfect best response? Consider the following continuous approx-

imation to the heaviside step function

H,(*): ----1 - 
'- 1 + u"p(-?)'

H,(r) is an approximation to f/(z) since

H,(r) ---+ 0 âs tr ---+ -æ,
H,(r) ---+ 1 as Í ---+ oo,

and

HQ):;.
Furthermore, H,(r) converges to H(r) as € ---+ 0, in the sense that2

Iim l*^tu,øl - H(*)ldr :.ll"r.(ln(2) - ln(t)) : 6
e-+ 0

An e- perfect best response ma,y be defined as

Br,(\i(C¡)): H,(E(fi|ì,¡, - 0) - E(RlÀ,¡': -))

\Mhen the costs of guarding versus host searching are large, that is (E(Rl)'7, :
0) - E'(ElÀ,/o : oo)) is large, then the e- perfect best response will approximate

that of the best response, as seen in Figure 6.t.2. However, if the relative cost of

2This is convergence with the -Lr metric.
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Figure 6.L.2: Comparison of the best response function Br(Ài(C¡)) and the e-
perfect best response functions for Br,(Ài(C¡)) for e :0.1,0.01. Here, E(Rl)*¡o:
0) - E(nlls/o : oo) is the difference in costs of guarding versus host searching

guarding versus host searching is small, then the e-perfect best response predicts

that a certain time will be spent guarding, before commencing host searching.

Why study these strategies? The resident's best response will depend on its

estimate of the return frequency of the intruder. It is unlikely that the resident's

strategy will evolve exactly to that of the ESS, because of environmental variabil-

ity. Furthermore, biologically realistic models must include mistakes in strategies

(McNamara, Webb, Collins, Szekely and Houston,[60]) or mistakes in the assess-

ment of the opponents state (Enquist and Leimar,[16]), thus models where players

1 20

e=0.1
e : 0.01

,
I



CHAPTER 6. DIRECTIO¡úS A¡{D COI\ICLUSIOIVS 153

occassionally make errors, when the cost of making those errors is small, should be

explored. Observations of T. basali,s indicate that during the intruder's return phase,

a certain proportion of time is spent in patch defence and searching (Field,[t0]). Ap-

portionment of time to both strategies emerges from the e- perfect best response

function.

6.1.5 Spatial Issues

Most models of parasitoid host searching do not include adaptive search strategies,

instead, models focus on strategies to secure resources, once the host of patch has

been found. There is however, a growing body of work regarding host search strate-

gies, taking into account spatial distributions of hosts into account. One example

of this, is the spatial structure function, which determines the probability of find a

host, some particular distance from the current host (Mangel,[ S]).

Three classes of behaviour in ?. basali,s have spatial structure as the core issue.

The first is the oviposition pattern of contestants. Upon patch arrival, players are

seen to oviposit in the boundary eggs first, moving to the interior, as remaining un-

parasitised eggs diminish (Field,[19], 'Wilson,[86]). What are the costs and benefits

of this strategy? It may seem like an obvious strategy to adopt, however, when

resident and intruder roles are determined, an intruder superparasitises the exterior

eggs (Field,[19]). If the exterior eggs are intruder superparasitised, this makes them

a riskier investment, thus shouldn't they be parasitised last? The costs and ben-

efits of exterior first/interior last, interior first/exterior last or random oviposition

strategies are yet to be examined.

Observation of ?. basalis show that the searching strategy involves travelling up

and down the stems of the plant that support host patches (Personal observation).

As host patches are found on the undersides of leaves, this seems to be a sensible

search strategy. This strategy? as opposed to a random sample of positions on the

host plant, ilây have consequences for the the arrival of conspecifics to a patch.
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In models where predators estimate the numbers of prey at a site, as is the case

of a sit and wait forager such as a trap door spider, interarrival times of prey are

assumed to exponentially distributed (Mangel and Clarke, [50]). However, conspe-

clfrc T.basalis may arrive in "bursts" due to the search strategy adopted. There

is some evidence for this in the wild, from estimates of the coefficient of variation

of numbers of competitors on sampled patches (Field, personal communication). If
competitors do arrive in bursts, what are the implications for patch defence strate-

gies? The optimal leaving time of a resident was calculated, assuming the intruder

superparasitises some time afterwards. Models that include multiple arrivals, with

different inter-arrival time structures, should be constructed.

The final behavioral pattern that has clear spatial issues is that of the resident's

patch departure. As mentioned in the previous chapter, a resident, when leaving,

commences a series of radial searches of the surrounding area, these searches punc-

tuated with a return to check the patch (Field, Calbert and Keller,[2l]). Each time

a new search commences, the radius is increased. In this authors mind, there is clear

adaptive value in this behaviour.

Consider the following abstraction. Suppose an object is located some distance

from some central point. The probability of the object being a specified distance

from the center follows a two dimensional Gaussian distribution, with the origin at

this central point. What is the optimal search trajectory, given imperfect detection

of the object? The discipline of search theory (Koopman,[41]) covers such topics as

these. Authors have shown that the optimal search strateg¡ in this situation, is

to search within a series of circles of ever increasing radius (Koopman,[41]). There

is a clear need to apply some of the topics of search theory to the behaviour of ?.

basalis and other guarding parasitoids. Search theory has indeed been applied to

the subject of ant navigation (Wehner and Srinivasan,[85]).
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6.2 General Conclusion

The work in this thesis could be broadly classed as theoretical behavioral modelling

of parasitoids that defend patches from conspecifics. Two issues were studied.

o The resolution of roles from patch competition.

o Role dependent strategies used to maximise potential fitness gains from a

patch.

The first part of the thesis focussed on the mechanisms by which residency is decided.

By qualititive comparison with observed data (Field,[19]), the rule of persistence in

fighting, in proportion to your current investment was proposed. With this assump-

tion, a persistence time, in the case of continuous risks in fighting, could be found by

finding the ESS scaling factor u*, that scaled current investment to time of fighting.

A persistence time was replaced with a persistence level, or risk of injury, with the

graduated risks model. Below some threshold current patch investment, players did

not risk being injured, thereafter fighting occurred at a level that maximised the

probability that one player would be injured.

The host searching strategy of T. basalis, by local anntenation of the patch re-

quired that the assumptions of perfect information about the oppenents investment,

assumed in many war of attrition models was not correct (Mesterson-Gibbons,[63]).

The competitors in these games for residency \4/ere assumed to have knowledge of

self-investment and only knowledge of the distribution of possible opponent invest-

ments

Having lost residency, the strategies by which an intruder could maximise fitness

returns were studied. Under the assumption that the patch is most vulnerable to

intruder superparasitism when the resident is itself ovipositing, an optimal intruder

return frequency was calculated, assuming an exponential return time distribution.

As the intruder has only partial information of the behaviour of the resident, the

optimal return frequency was calculated under the further assumption that the in-
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truder could estimate the residents oviposition rate, but not the times of oviposition.

Assuming that the resident, in response, adopted the strategies of search/oviposit

or guard, a threshold return rate of the intruder vvas found, below which, the best

response was to continue searching. The intuitive explanation for this is clear. If
the return tendency of the intruder is low, there will be more time to search for

remaining unparasitised host eggs, making this strategy profitable.

Through multiple returns, the intruder may learn which strategy is more prof-

itable, returning to search for hosts, possibly with a resident interception cost, or

playing the waiting gâ,me.

Once the costs of attempts to steal ovipositions become to great, the only strat-

egy open to the intruder is to return after the resident leaves to superparasitise. If
the intruder has partial information as to the presence or absence of the resident,

then its best strategy is to return when the probability of resident being present is

sufficiently low that the rewards from superparasitism outweigh the risks in return-

ing while the resident is still present.

Given that the resident's costs of intruder superparasitism decrease with time,

the best response of the resident is to leave the patch at a time which maximises

fitness gains in light of the intruders return. The situation of resident departure

and intruder return, with the resident having the information advantage, forms a

Stackelberg equilibria of leave/return times.

At the commencement of this thesis, it was hoped that models would be con-

structed that were at the very least partially descriptive of the behavioural phe-

nomena studied in Dr. Scott Fields thesis (Field,[l9]). This aim has been achieved

though in constructing these models, it has became clear that some assumptions

about patch vulnerability and information assymetry need to be tested experimen-

tally.

Is the patch more vulnerable to intruder oviposition while the resident is itself

ovipositing? An initially high return rate may in fact be due to incomplete "per-

ception" of the role of this player as the intruder as it may still "perceive" it is a
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resident. Can parasitoids "count" the number of ovipositions, or are decisions made

with a rate based currency? Currently, the assumption that the parasitoids use

counts of the previous number of ovipositions, rather than the rate of ovipositions

as a cue for fighting is more favourable because there seems to be huge variation

in the mean rate of encounter with unparasitised hosts as patch parasitisation pro-

gresses (Field,[19]). The only reliable information possessed by the parasitoid seems

to be current number of self ovipositions.

Do there exist simple rules of thumb that govern the behaviour of the resident

and intruder? All of the models in this thesis assumed pairwise competition. How-

ever, large variation in host patch sizes and competitor numbers is the most likely

background under which patch defence behaviour has evolved, this being the direc-

tion for future research in parasitoid patch defence.
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