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Summary 

The thesis is concerned with the dynamics of the upper mesosphere and lower thermosphere 

(i.e. the height region between 60 and 100 km). Two methods of investigation using radio 

waves at MF have been used. These are the Spaced Antenna (SA) and Doppler Radar 

Techniques. The Doppler radar technique was the main method of investigation used in this 

research, and because of this, its reliability as a means of determining winds in the D-region at 

a frequency of 2 MHz was established by comparison with the much tested and proven SA 

method. Once this had been done, measurements of mesospheric gravity wave horizontal 

wavelengths and phase velocities were obtained using a Doppler radar with dual beams and a 

new analysis technique over a period of two years and over a range of heights, typically 80-94 

km. This method also allowed the mesospheric momentum fluxes 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  to be obtained. 

From the vertical profile of 𝑢′𝑤′̅̅ ̅̅ ̅̅  values of 𝐹𝑢 (the zonal wave drag) were computed and 

compared with the zonal acceleration due to the Coriolis torque acting on the mean meridional 

circulation. The comparisons show that gravity waves play a major role in determining the 

mean zonal circulation in the mesosphere. Vertical velocities were also obtained from the same 

observations. The mean velocities are much larger than those predicted by theory, and appear 

to be downward for most of the year. 
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1. Introduction and Aim 

This work describes observations of internal atmospheric gravity waves in the lower part of the 

ionosphere known as the D-region. This is generally taken to be that part of the ionosphere in 

the 60-90 km height range, but later in this thesis we refer to the D-region as the 60-100 km 

region. This is not strictly correct because the region between 90 and 100 km is usually 

considered to be part of the E-region of the ionosphere. 

Radar observations of wind at MF and HF in the D-region depend upon there being a significant 

ionized component to backscatter the transmitted radiation. Because the ionized component is 

relatively small, and the collision frequencies large, a close coupling between the ionized and 

neutral components is expected, and the ionization is used essentially as a tracer of the 

movement of the neutral component. In terms of the neutral atmosphere, the D-region 

corresponds to the mesosphere and lower thermosphere (see below).   

The dynamics of this region cannot be considered in isolation from the other parts of the 

atmosphere because waves excited primarily in the lower atmosphere propagate upward and 

may transmit characteristics of their region of generation into other parts of the atmosphere. 

The importance of waves in this region arises from the exponential growth of wave amplitude 

with height. This is required for conservation of the wave energy density because the mean 

density of exponentially with height, and in the region above about 80 km, the winds induced 

by atmospheric waves with periods less than about a day are comparable in magnitude to the 

mean flow. 

1.1  The Formation of the D-region 

In the 60-90 km height region, electron densities are small, rising from values of about 10 𝑐𝑚−3 

at about 60 km to about 104 𝑐𝑚−3 at 90 km during the day (Vincent, 1980). At night there are 

few free electrons below about 80 km under quiet conditions, and electron concentrations 

throughout the region are greatly reduced over daytime values.  This is because the D-region 

formation is dominated by photoionization of minor constituents.  Rocket mass spectrometer 

measurements have shown that such minor constituents as O, O3, CO2, NO, NO2, H2O and 

OH play an important role in the ion chemistry of the region. 
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Figure (1-1) The variation of wavelength of the height of unit optical depth for solar radiation incident 

vertically (after Thomas, 1980). 

The ionization is produced primarily by photo-ionization of nitric oxide (NO) by the intense 

solar Lyman- radiation (121.6 nm). A high proportion of the incident high energy ionizing 

solar radiation has been absorbed by the time it reaches D-region heights, but because of the 

"window" in the ultra-violet (UV) absorption spectrum of 02 at 121.6 nm (see Figure (1-1)), 

Lyman- radiation penetrates to the 75-90 km height region, where it ionizes NO. 

 

Figure (1-2a) (above left) Daytime and Figure (l-2b) (above right) Nighttime ionization rates (after 

Arnold and Krankowsky, 1977). 

A metastable state of oxygen O2('g) produced by the absorption of radiation in the 266-320 

nm band by ozone, can be ionized by solar radiation with wavelengths less than 111.8 nm 

which coincide with "windows" in the absorption spectrum of O2, and below 90 km at middle 

latitudes at sunspot minimum, represents the other major source of ions in the D-region. 
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Above about 85 km, solar extreme ultraviolet (EUV) radiation and soft solar X-rays can ionize 

most of the dominant constituent neutral gases in the ionosphere, while the Lyman- line (102.6 

nm) can just ionize molecular oxygen. Figure (1-2a) shows the estimated ion pair production 

rates for undisturbed conditions in the 60-100 km height range for a solar zenith angle of 60°.  

As we have noted, ion production from NO is dominant. Inspection of this diagram also 

indicates that cosmic rays become important as a source of ionization below about 70 km.  At 

heights below about 65 km, cosmic rays, which can penetrate deep into the atmosphere, will 

provide the only source of ionization.  This mechanism may explain the existence of the ledge 

in electron density observed near 60 km and sometimes referred to as the C-layer. 

The relative contribution of the galactic cosmic ray flux to ionization in the region below about 

70 km increases with geomagnetic latitude and decreases with increasing solar activity.  The 

latter effect results from the screening of the galactic cosmic rays by the increased magnetic 

fields associated with the solar wind. Short wavelength X-rays can also contribute to ion 

production and this becomes important when the X-ray flux is highest, that is, during active 

solar conditions, and its importance is particularly enhanced during solar flare conditions. 

The absence of solar radiation at night results in the reduced electron concentrations in the D-

region over the daytime values, but D-region ionization is often present at night at 

concentrations higher than would be expected on the basis of the recombination rates.  The 

absence of significant electron concentrations at night below 80 km is due to the rapid 

attachment of free electrons to neutrals to form negative ions, and positive and negative ions 

in proportionately equal concentrations dominate the composition. 

During the day the attachment is offset by the photo-disassociation of the negative ions by 

visible light to produce free electrons.  In this region, rapid increases in electron density occur 

at sunrise, with subsequent decreases at sunset.  Above about 80 km, the increase in electron 

density after sunrise occurs at a relatively slower rate. The ion chemistry of the D-region at 

night is extremely complicated and not well understood.  Figure (1-2b) shows an estimate of 

the ionization production rates expected in the 60-100 km height range.  The ionization of NO 

by scattered Lyman-a radiation, and the precipitation of high energy electrons from the 

thermosphere and plasmasphere (which becomes particularly important at higher magnetic 

latitudes) are indicated as the most important source of ionization. 
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The D-region as a whole has a complicated ion chemistry and the distribution of the ionizable 

constituents can vary with time.  It to pursue this topic any further but we note that the ion 

chemistry is strongly temperature dependent.  This means that D-region electron densities can 

be strongly influenced by the dynamics of the mesosphere.  This is in turn strongly influenced 

by the dynamics of lower atmosphere. The best example of this is probably the anomalously 

large radio wave absorption observed in winter (when compared to summer) at mid to high 

latitudes (the so called "winter anomaly").  It is now well established that this is at least partly 

due to coupling between the lower and upper atmospheres by large scale planetary waves (see 

e.g. Offermann, 1979) The dynamical coupling of the lower and upper parts of the middle 

atmosphere, and its effect upon the general circulation is of major concern in this thesis.  

 

Figure (1-3) Temperature height profile for 45°N, 1966 U.S. Standard Atmosphere 

1.2 The Middle Atmosphere and the importance of Gravity Waves 

The atmosphere is usually divided into layers on the basis of the variation of the vertical 

distribution of temperature.  Figure (1-3) illustrates the temperature height profile for 45 N for 

values obtained from the 1966 U.S. Standard Atmosphere and shows the names given to the 

various regions. The middle atmosphere is generally taken as that part of the atmosphere 

extending from the tropopause (~10 km) to a height of about 100 km.  It includes the 

stratosphere, mesosphere and the lower thermosphere. 
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Figure (1-4a.) (Left) Zonally averaged temperature distribution and Figure (l-4b) Zonally averaged· 

winds (after Murgatroyd, 1969)  

Figure (l-4a) shows the zonally averaged temperature distribution for the middle atmosphere 

based on in situ measurements by radiosonde, rocketsonde and rocket grenade soundings made 

over a number of years (Murgatroyd, 1969), and is taken from Geller (1983). Inspection of this 

diagram indicates that the highest temperatures are found in the summer tropics. This is as 

would be expected on the basis of the geometry of the incoming solar radiation.  The summer 

stratopause temperature is higher than that for the winter stratopause, which is consistent with 

the larger ozone concentration at the poles, and the absence of solar heating at the winter pole. 

In the tropics at tropopause heights, a local temperature minimum is noted, and the coldest 

climatological temperatures are found in the summer polar mesosphere, while the polar winter 

mesosphere evidences warm temperatures. 

The mean zonally averaged winds are shown in Figure (l-4b) and these are in geostrophic and 

hydrostatic equilibrium with the temperature distribution.  Eastward jet streams occur in both 

summer and winter hemispheres near the tropopause.  The winter jet stream magnitude is about 

twice that of the summer jet stream.  In the 60-70 km height region jet streams are noted in 

both hemispheres, eastward in winter and westward in summer.  The winter jet is about 20 

𝑚𝑠−1 larger in magnitude than the summer jet. 
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Figure (1-5a) Calculated radiative equilibrium temperature described in text. Units are K (after Geller, 

l983) 

 

Figure (1-5b) Geostrophic mean zonal winds calculated from the radiative equilibrium temperatures 

shown in Figure (l-5a). No values are shown near the equator because the geostrophic formula does 

not apply there. Units are 𝑚𝑠−1, and eastward winds are positive. 

As Geller (1983) points out, this temperature distribution shown in Figure (l-2b) does not 

correspond to the radiative equilibrium condition calculated on the basis of the local solar 

heating and local infra-red cooling.  Figure (1-5a and b) is taken from Geller (1983) and 

compared with Figure (l-4b), the radiative equilibrium state predicts a too warm (cold) summer 

(winter) stratopause, and too warm (cold) summer (winter) mesosphere. 
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The mean zonal geostrophic wind calculated from the radiative equilibrium field and shown in 

Figure (1-5b) shows that the magnitudes of the summer and winter mesospheric jets are too 

large and they do not close in the mesosphere. Meridional and vertical motions are absent in 

this model. 

  

  

Figure (1-7a) (top left) Model calculated zonally averaged temperature field in K Figure (1-7b) (top 

right) Zonal wind in 𝑚𝑠−1, Figure (1-7c) (bottom left) Mean meridional wind in 𝑚𝑠−1, Figure (1-7d) 

(bottom right) Mean vertical motion in 𝑐𝑚𝑠−1 (after Geller, 1983) 

Leovy (1964) first recognized that dynamical processes must account for the departure of the 

atmosphere from radiative equilibrium, and pointed out that what is lacking in this physical 

model is a mechanism for zonal momentum dissipation. To simulate this effect mathematically 

in his model of mesospheric circulation, he hypothesized a linear drag that produces a 

deceleration proportional to the mean zonal wind speed, a "Rayleigh drag".  Leovy used a 

uniform Rayleigh drag with a damping time of about 15 days.  This produced a circulation in 

qualitative agreement with observations. Later models by Schoeberl and Strobel (1978) and 
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Holton and Wehrbein (1980) used a Rayleigh drag that increased with height.  This resulted in 

closure of the mesospheric jets and reversal of the mean meridional temperature gradient. 

The temperature, mean zonal wind, mean meridional wind and mean vertical wind obtained by 

Geller (1983), who used a Rayleigh drag profile such that the dissipation time scale increased 

from about that the dissipation time scale increased from about 10 days throughout the 

stratosphere to about one day at 90 km, are shown in Figure (1-7a and b). Inspection of these 

diagrams indicates that the summer stratopause is cooler and the winter stratopause is warmer 

than in the radiative equilibrium solution.  The meridional temperature gradient is reversed so 

that the winter mesopause is warmer than the summer mesopause. 

The mean zonal jet structure closes with height, and the magnitudes are in better agreement 

with observations.  A meridional flow from the summer to the winter flow and upward motion 

in the summer hemisphere, and a downward motion in the winter hemisphere are evident.  The 

expansion cooling in the summer hemisphere and compression heating in the winter 

hemisphere associated with the vertical motions are the primary cause of the variations of the 

temperature field from radiative equilibrium. 

Even though a Rayleigh drag does not accurately represent any relevant physical mechanism 

(Dunkerton 1982), the results of such model calculations indicate that the middle atmosphere 

temperature and zonal wind strongly depend on zonal momentum drag processes.  This 

momentum is presumed to be transported upward from wave sources in the troposphere. Recent 

theoretical and observational evidence suggests that of the major wave systems contributing to 

the dynamics of the mesosphere, namely planetary waves, atmospheric tides and gravity waves, 

the latter are the most likely candidate for balancing the thermal and momentum budgets of the 

middle atmosphere. 

There is an extensive literature on waves at each of these scales, and it is not our intention to 

review those for either tides or planetary scale waves.  However, no scale of motion can be 

considered in isolation from the others, and in 1.2.1 and 1.2.2 below we briefly describe these 

waves, and the observational evidence that suggests that they are not the primary vehicles of 

momentum transport into the mesosphere. 
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1.2.1 Planetary waves 

Planetary waves are zonally asymmetric disturbances of global scale with periods in excess of 

a day. They may be divided into two types, stationary modes and transient modes.  The former 

are quasi-permanent features of the circulation in the Northern hemisphere away from the 

equatorial regions.  Any planetary scale waves with periods greater than about 30 days are 

assumed to be quasi-stationary. Stationary planetary wave activity is observed to be a 

maximum in the Northern hemisphere winter, while the southern hemisphere is much less 

disturbed by these waves, and the maximum activity occurs in late spring.  They are believed 

to be forced by flow over topographical features and by differential heating of land masses and 

the ocean, and this may explain hemispheric variation in activity, because the zonal 

asymmetries in topography and the land-ocean differences are much smaller in the Southern 

Hemisphere. Transient or travelling waves occur in both hemispheres with approximately equal 

strengths.  They have time scales of from a few days to four weeks, and are believed to result 

from hydrodynamic instabilities in the atmosphere. 

Both types of planetary waves are primarily excited in the troposphere.  Theoretical studies 

indicate that they may only propagate vertically in the presence of Eastward mean winds, and 

stationary planetary waves are not observed to propagate through the stratosphere in summer 

when the mean zonal wind in this region is westward (see Charney and Drazin, 1961). Since 

the same order of magnitude decelerations are required in both summer and winter 

hemispheres, but stationary planetary waves do not propagate into the mesosphere in summer, 

these waves are probably not providing the necessary wave drag to maintain the mean zonal 

wind and temperature states observed (Geller, 1983). 

In addition, Houghton (1978) noted that the summer mesopause temperature, which is 

particularly sensitive to the strength of the mean meridional circulation, should fluctuate in 

response to the level of planetary wave activity if planetary waves in either the summer or 

winter hemisphere were controlling the mean meridional circulation.  Since this was not 

observed in satellite data (Curtis et al., 1974; Hirota 1975, 1976), Houghton argued that 

planetary waves are not the primary source of momentum transport into the mesosphere, and 

suggested that gravity waves were the most likely candidate for balancing the thermal and 

momentum budgets of the middle atmosphere. 
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1.2.2 Atmospheric Tides 

A comprehensive description of these waves may be found in Chapman and Lindzen (1970). 

The solar tidal motions in the earth's atmosphere have periods of 24, 12 and 8 hours.  They are 

excited by differential solar heating of the earth's atmosphere, and the oscillations are produced 

as the atmosphere attempts to return to thermodynamic equilibrium. They must propagate 

westwards with respect to the earth to maintain a fixed phase relationship to their driving force. 

Excitation is primarily by absorption of solar UV radiation by ozone in the upper stratosphere 

and by water vapour in the troposphere.  UV and EUV absorption in the lower thermosphere 

is also important. 

The 8 and 12 hour oscillations are harmonics of the fundamental period of 24 hours, and are 

produced because the solar insulation is nearly in the form of a square wave. Elford (1979) 

examined the role of tidal winds between 80 and 100 km in transporting momentum poleward 

by using 9 years of meteor radar data obtained at Adelaide.  He found an annual variation in 

momentum flux, and that in summer, the poleward flux was large enough to maintain the mean 

zonal flow at these heights in middle latitudes, but that the meridional transport of momentum 

was insufficient to balance that due to the mean flow.  On the basis of Elford's (1979) 

observations, and also theoretical grounds (e.g. Miyahara, 1980) it would appear that at mid-

latitudes, atmospheric tides are unlikely to be important contributors to the mesospheric 

momentum budget. Like Houghton (1978) Elford pointed out that one possible source of 

momentum flux was short period gravity waves. 

1.2.3 Internal Atmospheric Gravity Waves 

It is not our intention to review the extensive literature that exists for this class of waves, but 

rather to provide an indication of some of the salient features related to momentum transport 

into the mesosphere.  Details of these waves may be found in Hines (1960). Mathematical 

details of their characteristics are described throughout this thesis where appropriate. 

Gravity waves are a particular class of internal waves confined to a limited frequency range, 

the upper limit of which is determined by atmospheric parameters and corresponds to a period 

of about 5 minutes (the Väisälä -Brunt period). The lower frequency limit is determined by the 

initial period (about 20.9 h at 35°S), and those waves with periods less than 200 minutes are 

usually of sufficiently small scale so that Coriolis forces may be ignored. The direction of the 

oscillation of the medium in which these waves travel is almost transverse to the direction of 
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phase propagation, and phase and energy propagate orthogonally.  Short period gravity waves 

propagate energy nearly vertically, while those of long period propagate energy nearly 

horizontally. For a given wave frequency, the horizontal and vertical wavelengths are free to 

take a range of values which are determined by the dispersion relations for this class of waves. 

In the presence of a background wind, the gravity wave frequency is subject to a Doppler shift, 

Pitteway and Hines (1965). The intrinsic frequency, , that observed in a frame of reference 

moving with the background wind, is given by the Doppler transformation 

 =  − 𝒌 ∙ 𝒖 (1-1) 

where  is the angular frequency of the wave observed in a frame of reference stationary with 

respect to the Earth's surface, 𝒌 is the wavenumber and 𝒖 is the background wind. 

In the presence of a height varying background wind, the intrinsic frequency may be zero at 

some height. If this occurs and the Richardson number of the mean flow is large, the wave 

momentum and energy are transferred to the background flow (e.g. Booker and Bretherton, 

1967).  The convergence of the gravity wave momentum flux with height leads to an 

acceleration of the mean flow.  Very little wave energy is able to pass a critical level, and a 

gravity wave spectrum isotropic in azimuth at a lower level may be filtered so that there is a 

preferred azimuthal direction at higher levels.  This preferential orientation makes it possible 

for momentum to be transferred in a particular direction to the mean flow where the waves are 

dissipated. 

A study by Bretherton (1969a and b) indicated that the mean flow is accelerated generally, 

whenever gravity waves are dissipated, and later studies indicated the likely importance of this 

for the mean circulation (Bretherton, 1969c; Hines, 1972; Lindzen, 1973). Examples of 

dissipative processes are molecular diffusion and radiative cooling, and these operate more or 

less independently of wave amplitude. Studies by Hines (1960), Hodges (1967) and Lindzen 

(1967) indicated that both tides and gravity waves would become dynamically and/or 

convectively unstable above some level due to their exponential growth with height, and that 

turbulence and smaller scale gravity were likely to be thereby produced.   



 

12 

 

Figure (l-8) Schematic of gravity wave breaking and the resulting vertical flux of zonal momentum 

(after Geller, 1983) 

What happens when this takes place is shown schematically in Figure (1-8) which is taken from 

Geller (1983). The right hand side of this figure shows the exponential growth with altitude of 

the horizontal velocity and temperature associated with a monochromatic gravity wave.  Above 

the wave breaking level, the wave amplitude is assumed to be constant.  This idea is due to 

Hodges (1967, 1969) and wave amplitudes are assumed to be limited by the formation of 

corrective instabilities that produce just that level of turbulent diffusion required to maintain 

saturation amplitudes. 

The left hand side of this diagram illustrates schematically the vertical flux of horizontal 

momentum in the xz-plane.  Above the wave breaking level, the momentum flux decays 

exponentially.  The convergence of the momentum flux with height leads to a deceleration of 

the mean flow towards the phase velocity of the wave at the wave breaking levels. 

Above the wave breaking level, the wave described above is said to be saturated.  Gravity wave 

saturation refers to any process that acts to limit or reduce wave amplitude due to instabilities 

or interactions arising from large-amplitude motions (Fritts, 1984).  It implies that the wave 

field has reached amplitudes such that secondary instabilities can develop which limit further 

wave growth (Lindzen, 1981; Dunkerton, 1982). The saturation mechanism thought to be most 

important in the middle atmosphere, where amplitudes may reach sufficient amplitude to break, 

is the turbulent breakdown of convectively unstable regions produced by the differential 

advection of denser air over less dense air by internal gravity wave motions, known as 

convective overturning or convective instability (Fritts et al., 1984). Another is the Kelvin-

Helmholtz (KH) instability (e.g. Fritts, 1979). 
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Lindzen (1981) proposed a simple scheme by which the effects of gravity wave saturation 

could be calculated. By generalizing an expression obtained by Hines (1970) to apply to 

arbitrary mean flows, including critical levels, he obtained an expression for the mean flow 

accelerations induced by both wave dissipation and momentum flux convergence. The latter 

effect, the deposition of momentum, is the most important consequence of gravity wave 

saturation for the middle atmosphere. This is because the mean flow acceleration produced is 

such that the mean flow is driven towards the phase speed of the wave.  The latter quantity has 

characteristics determined by the forcing mechanism. 

Sources of these waves include just about any process which can produce instabilities in the 

atmosphere with periods greater than the Brunt-Väisälä period.  In the mesosphere, possible 

sources include wind shear, jet streams, and zones of strong shearing and unstable lapse rates 

produced by tides and other waves.  Theory indicates that many locally generated waves are 

confined to the region of generation, but some modes correspond to waves which could 

propagate freely away from the region of generation into stable regions of the atmosphere (e.g. 

Fritts, 1979). 

Unlike the mesospheric sources, there are many known tropospheric sources, which include 

unstable wind shear (Lindzen and Rosenthal, 1976) topography, frontal process (Hines, 1968; 

Peltier and Ley, 1978; Reed and Hardy, 1972) and convection.  Wind shear produces waves 

with phase velocities characteristic of tropospheric wind speeds, while topography generates 

gravity waves with a distribution of phase velocities centered about zero.  The phase velocity 

spectrum associated with convective generation is less well understood, but it is reasonable to 

suppose that the phase distribution is broad and centered about tropospheric wind speeds (Fritts 

et al., 1984). For a gravity wave spectrum of tropospheric origin, the effect of momentum 

deposition through wave saturation is a deceleration of the mean flow, as required by the model 

calculations mentioned earlier. 

Following Lindzen's (1981) work, Holton (1982) and Matsuno (1982) examined through 

modelling the role of gravity wave drag in the middle atmosphere. Holton's work indicated that 

the saturation of gravity waves with simple phase velocity spectra could produce reasonable 

profiles of the mean zonal wind.  Matsuno (1982) did not use gravity wave saturation explicitly, 

but incorporated similar effects in that dissipation accelerated the mean flow towards the 

gravity wave phase speeds, and obtained similar results to those of Holton (1982). Later studies 
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have examined various other aspects of gravity wave saturation, and a comprehensive review 

is given by Fritts (1984). 

The purpose of this work is to obtain experimental evidence of the role of gravity wave 

momentum deposition in the mesosphere. 

1.3 A Note on Doppler Radar Techniques 

The gravity wave observations reported in this work were obtained using Doppler radar 

techniques at MF.  Powerful Doppler radars operating at VHF and UHF have recently become 

available for mesospheric observations (see e.g. Gage and Balsley, 1978) but meteorological 

radars operating in the planetary boundary layer have been available for almost two decades. 

The techniques developed for these devices are often quite general and applicable for Doppler 

radars observing the mesosphere.  A particularly powerful version of the meteorological radar 

is that using the Velocity Azimuth Display (VAD) technique (see e.g. Wilson and Miller, 

1971).  In this version of the Doppler radar, a single radar beam is scanned through a range of 

azimuth angles at a fixed elevation.  The theory developed to retrieve information about the 

mean and fluctuating parts of the wind field for this technique (see e.g. Browning and Wexler, 

1968; Wilson, 1970) is particularly useful for a radar capable of directing radar beams at 

opposite angles to the zenith in a vertical plane. 

The most important parameters that can be obtained by a Doppler radar in this configuration 

are the Reynolds stress terms 𝑢′𝑤′̅̅ ̅̅ ̅̅ and 𝑣′𝑤′̅̅ ̅̅ ̅̅ . These terms cannot generally be obtained by a 

Doppler radar operating with the conventional beam configuration, that is, one beam directed 

vertically, and one beam offset from the zenith at some angle .  Their importance arises from 

the fact that the gravity wave acceleration of the mean flow in the zonal direction is given by  

𝐹 = −
1

𝜌

𝜕

𝜕𝑧
(𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ) (1-2) 

(e.g. Lindzen, 1981), and a similar expression applies for the meridional acceleration due to 

gravity waves. 

The theory to obtain the Reynolds stress terms was developed independently at Adelaide, and 

is described in Vincent and Reid (1983).  It was the development of this theory that enabled 

the importance of gravity waves in balancing the momentum budget in the mesosphere to be 
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investigated.  Other useful physical parameters that can be obtained using two coplanar beams 

offset at opposite angles to the zenith in the same vertical plane, and derived from the theory 

developed for the VAD technique, have also been investigated in this work. 

1.4 Summary 

On the basis of observational and theoretical studies, gravity waves are thought to play a major 

role in the momentum and heat budgets of the middle atmosphere.  This work attempts to 

investigate their importance by using Doppler radar techniques to observe the wind field in the 

D-region of the ionosphere. 
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2. Equipment and Experimental Procedure 

2.1 Introduction 

The Buckland Park (BP) aerial array is located on a flat coastal plain about 40 km north of 

Adelaide at 34° 38'S and 138° 29'E. The individual aerials are half-wave dipoles resonant at 

1.98 MHz, but they can be used at the third harmonic of 5.995 MHz. The array is extremely 

versatile, and individual dipoles, groups of dipoles or the entire array can be used for either 

transmission or reception. However, the most typical arrangement is that in which a much 

simpler array situated next to the main array is used for transmission. The transmitting and 

receiving equipment are situated at the centers of their respective arrays as illustrated in Figure 

(2.1a). A general, if somewhat dated, description of BP may be found in Briggs et al. (1969). 

 

Figure (2-1) Schematic diagram of the BP aerial array. Each cross represents a dipole pair and the 

spacing between centers is about 91.4 m. The transmitting array is represented by the small square in 

the lower right hand side of the diagram. The portable SA equipment used in November 1980 is shown 

as the triangle next to the Rx array. The NS axis of the array is aligned 4° west of true north. 

In November 1980 a portable Spaced Antenna (SA) system was operated at the BP site 

simultaneously with the BP facility, which operated as a dual beam Doppler radar. The SA 

equipment was in transit from a site near Townsville (19° 40'S, 138° 29'E) to its present 
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location at Mawson Base, Antarctica (67° 37'S, 62° 52'E). This experiment provided winds 

from each technique over the range of 80-96 km. 

 

Figure (2.1b). Experimental set-up for the portable SA equipment receiving array used in November 

1980 at the BP field site. The dot/dash lines in the diagram represent the coaxial cables connecting the 

dipoles to the receiving equipment. Excess cable was coiled up and positioned inside the receiving hut. 

Dipoles were aligned in the EW direction, parallel to the EW dipoles of the main array and the spacing 

between dipole centers was about 183 m. To position them in the EW direction, they were aligned by 

eye with the aerial poles in the main array (which have a basic spacing of 91.4 m 

2.2 Topography 

The site is adjacent to St. Vincent's Gulf about 40 km north of Adelaide and 3 km east of the 

coast, but the area to the west of the station is used as salt pans. The water table of the site is 

about 3-5 m below the surface, and the groundwater is quite brackish. 

When the aerials are connected up as a broadside array, so that a narrow beam is produced, it 

is important to know the slope of the ground plane because this will determine the tilt of a 

nominally "vertical" beam. Since the site is a flat coastal plain, we could reasonably expect the 

water table, and hence the ground plane, to be parallel to the mean surface level. The results of 

a survey of the area made with a level and staff are shown in Figure (2.2).  
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Figure (2.2) Contour plot-of the Buckland Park field site. Spot heights obtained using a level and staff 

are represented by a cross. The corresponding height relative to the center of the array is written next 

to each. The crossed circle indicates a spot height relative to sea level. The contours represent a plane 

fitted to all of the spot heights using a multiple regression analysis. 

 

Figure (2.3) Aerial photograph of BP field site. The scale is about 1:5333. The aerial pole positions 

are clearly visible and the general outline of the array can be seen. The bright white lines running from 

the bottom right to the center of the array are roads. Smaller tracks are also visible. Land immediately 

to the North, East and South is agricultural, while the land to the West is used as salt pans. A number 
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of dry shallow creek beds can be seen running across the site, including one at the top center of the 

array. 

Thirty-nine spot heights relative to the center of the array were obtained, and these were 

subjected to a multiple linear regression analysis (Mood and Graybill, 1963) to obtain the mean 

slope of the ground. Figure (2.2) also shows the contours corresponding to the mean slope, and 

from these, it is clear that the overall gradient is small, about 1.68 × 10−3 or 0.10°. The 

contours fit the data well. The poor fit at the center top of the diagram is due to a local 

minimum, where a creek bed runs through the site. This was determined by observation of the 

ground and of an aerial photograph (Figure 2.3) and map.  

Also marked on the contour plot are the five-meter contour and a seven-meter spot height taken 

from an orthocadastral topographical map of the area. The relative heights of the two areas 

agree well; both show a 2 m difference. The 5 m contour is the only one on the map (apart from 

a few tiny mounds), but by using the spot heights it appears that the slope of the BP field site 

is typical of the surrounding area. 

It seems reasonable to conclude that a "vertically" pointing beam is about 0.1° from the zenith 

at an azimuth angle of about 225° measured clockwise from North. 

The general expression for the mean radial velocity 𝑉𝑅  measured with a Doppler radar at 

(𝑅, ,) where 𝑅 is the range measured along the beam,  is the angle from the zenith and  is 

the azimuth angle measured clockwise from north is (see Chapter 4, Equation (4-3)) 

 𝑉𝑅
̅̅ ̅() =  �̅�𝑠𝑖𝑛𝑠𝑖𝑛 +  �̅�𝑠𝑖𝑛𝑐𝑜𝑠 +  �̅�𝑐𝑜𝑠 

where (𝑢, 𝑣, 𝑤) are the mean eastward, northward and vertical components of the wind 

respectively. At BP a beam nominally directed vertically will measure a radial velocity given 

by 

𝑉𝑅
̅̅ ̅ =  �̅�(−1.23 × 10−3  + �̅�(−1.23 × 10−3)  + �̅� 

where  =  0.10°,  =  225° 

For values of (�̅�, �̅�) 𝑜𝑓 (30, −10) 𝑚𝑠−1 we obtain 

𝑉𝑅 =  (−2.5 +  �̅̅̅�) 𝑐𝑚𝑠−1 
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so that there will be a bias towards downward vertical velocities of about 3 𝑐𝑚/𝑠 in this case. 

These values of (�̅�, �̅�)  would be typical at Adelaide at 85 km for most of the year. In summer 

the meridional component will generally be positive at this height so that for (�̅�, �̅�)   =

 (30, 10) 𝑚/𝑠  we obtain 

𝑉𝑅 =  (−4.9 +  �̅̅̅�) 𝑐𝑚𝑠−1. 

Consequently, vertical velocities measured in summer have a stronger bias towards negative 

values, but for most of the year the contribution of the horizontal wind to the measured vertical 

velocity at 85 km is about 3 −  5 𝑐𝑚/𝑠. We consider this in a little more detail in Section 

(2.3.5). 

2.3 Buckland Park Equipment 

2.3.1 Transmitting Equipment 

The transmitter operates at a frequency of 1.98 MHz in a pulsed mode. The pulses are Gaussian 

in shape and their width may be varied to suit a particular experimental design from about 20-

200 µs. The pulse width determines the height resolution of the system; for a full width at half 

power of 20 µs, the height resolution is 3 km and for 30 µs, 4.5 km, and these widths represent 

the range for the work described here. The pulse repetition frequency and transmitter array 

polarization are under computer control, but only one PRF, of 20 Hz, has been used here. The 

transmitter peak power is about 50 kW, but this may vary from run to run depending on the 

transmitter tuning and general condition. 

The transmitting array consists of four center fed half-wave folded dipoles arranged to form a 

square. The half-width at half-power of the polar diagram of the transmitting array is 

approximately 40°. Opposite dipoles are phased together, and by introducing a phase difference 

of ± 90° between the two pairs, either "ordinary" (0), or "extraordinary” (E or X), circular 

polarization may be chosen. The ionosphere is birefringent, and circularly polarized EM 

radiation corresponds to the characteristic wave. Linear polarization may also be obtained, but 

since this is not a characteristic wavemode, two magnetoionic components result if it is 

transmitted. 

The possibility of mutual interference between these components makes it undesirable, and it 

has not been used in this work. Of the two characteristic waves, extraordinary mode 
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polarization is strongly absorbed during the day at heights above about 80 km. For this reason, 

it is generally used during the night, and ordinary mode is used during the day. 

2.3.2 Receiving Array 

The receiving array consists of 89 horizontal half-wave dipole pairs arranged on a square grid 

with a roughly circular perimeter of about 0.9 km diameter. The dipoles that constitute each 

pair are orthogonal and each dipole is connected to the central receiver building through a 

buried coaxial cable cut to an integral number of half wavelengths. In this way each of the 178 

individual dipoles can be accessed from the central hut where the phase of the signal received 

at the dipole is reproduced. 

 

Figure (2.4) Schematic diagram of the array in broadside array configuration. The twelve aerials in 

this diagram represent one array of dipoles Columns of dipoles are connected to each other and their 

impedance is transferred to 50 ohms. Each column is then connected to a power divider which provides 

two identical outputs differing from the original signal only in that their power has been halved. Each 

output can be treated completely separately by summing the outputs from each column, two circular 

beams can be obtained. The two beams may be tilted from the zenith by introducing phase delays 
𝑖
 

between the columns before their outputs are summed. 

Each cable from the array of dipoles aligned in the north-south direction terminates in a coaxial 

connector on a "patch board". Here, the array is represented in a plan view with a coaxial 

connector representing each dipole. Similarly, the dipoles aligned in the east-west direction 

have cables which terminate in another patch board. 
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This is an extremely versatile arrangement because any dipole, or any group of dipoles may be 

used. It allows two completely separate linearly polarized arrays, one polarized EW and one 

polarized NS, or one (right or left) circularly polarized array to be utilized. This can be 

improved on though. Figure (2.4) illustrates schematically the use of phase preserving power 

dividers to obtain four separate beams, two polarized NS, and two polarized EW. This 

arrangement halves the power received by each beam, but because the receiving site is 

relatively low noise and the transmitter is relatively high power, excellent signals are still 

obtained. The outputs from the power dividers were compared at 1.98 MHz over a range of 

input voltages using a gain-phase meter, and no significant variation between individual units 

was detected (a difference of less than 0.5 dB and 1° at 5 mV input). 

When a patch board is connected up to produce a broadside array, aerials in a row (or column) 

are connected in parallel and the impedance is transformed to 50 ohms with a transformer / 

capacitor combination. The transformers for the EW array were designed for each row by 

assuming that each aerial was to be included and that each had an impedance of 70 ohms 

(purely resistive). The individual rows (or columns) are then connected in parallel and the 

impedance of this combination is in turn transformed to 50 ohms through a coaxial cable 

transformer / capacitor combination. In this way, the impedance of the array is matched to the 

input impedance of the receivers. There is a slight difference between the array with dipoles 

aligned NS and the array with dipoles aligned EW when they are set up as two separate 

broadside arrays. For the NS array, the transformer/capacitor combination to transform the 

impedance of the row or column to 50 ohms is inside the connector for each row. On the other 

hand, those for the EW array are positioned on the back of the patch board. However, this is a 

trivial difference. 

In practice, when setting the aerials up in a broadside array configuration, some aerials must 

be omitted because they are out of tune or because they have been damaged in some way (e.g. 

by high winds or corrosion). However, the number of aerials omitted was generally small. 

Before commencing a run, every aerial was checked using a vector impedance meter. If the 

impedance differed from the correct value of 70  (purely resistive) by more than about 10%, 

the aerial was omitted. The capacitor / transformer combination corresponding to the row or 

column of the omitted aerial was then changed so that an impedance of 50  purely resistive 

was obtained for that entire row or column. The back scattered signal received by each aerial 

was also monitored on a CRO to check for noisy operation, a condition not always obvious 
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from impedance measurements, and omitted if significant noise was present. This involved a 

subjective judgement. 

 

Figure (2.5) Polar diagram of an entire array of dipoles at BP (Re-drawn from Hocking (l983a)). 

To tilt the beams away from the zenith, phase shifts were introduced between the rows (or 

columns) by using appropriate lengths of coaxial cable. This is a simple method for a fixed 

beam tilt, but involves a lot of coaxial cable (442 m were required to tilt one beam 11.6° and 

for four beams 1,769 m were required). The cables were accurately measured and cut to the 

required lengths, and the phasing cables for each of the four beams were checked against each 

other by using a gain-phase meter. Typical amplitude ratios, for two cables nominally the same 

length, were 0.1 dB and the largest phase difference was less than 4°. 

Only two tilt angles were used for this work, 0° and 11.6°. The latter angle was chosen because 

it reduces the effects of specular reflections from the vertical (Hocking, 1979), as it corresponds 

to the first null of the array polar diagram (Figure 2-5). 

Twelve aerials of the large array are used in the SA experiment. These are used as three groups 

of dipoles, each of which consists of four dipoles connected in parallel.  This increases the gain, 

improves the signal to noise ratio and because the beam width is decreased, the effects of off 

vertical echoes are reduced (Figure 2.6). The impedance of each group of dipoles is transformed 

to 50 ohms, and they are connected through a 50-ohm cable to a receiver. The spacing between 

the receiving sites affects the results of the experiment, the so called "Triangle Size Effect" 
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(Golley and Rossiter, 1970; Rossiter, 1970) and a spacing of about 200 m has been shown to 

provide reliable results at 1.98 MHz (Stubbs, 1972). The relative aerial positions used for the 

SA experiment are shown in Figure (2.1a). 

 

Figure (2.6) The polar diagram of a single horizontal dipole (dashed line), and of a group of four 

dipoles (solid line). 

2.3.3 Receiving equipment 

The receiving system is designed to measure complex amplitude information by recording the 

"in-phase" and "quadrature” components of the received signal. What this means is that the 

received signal is expressed as 

𝐸(𝑡)  =  𝐼(𝑡)  +  𝑖𝑄(𝑡) 

where 𝐼(𝑡)  =  "𝑖𝑛 − 𝑝ℎ𝑎𝑠𝑒" 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑄(𝑡)  =  "𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒" 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡. This is 

processed so that the phase corresponds to the Doppler shifted frequency of the backscatter 

signal. Details of this may be found in Ball (1981) and Wilson and Miller (1971). 

The amplitude and phase at any time are then simply given as 

𝐸(𝑡)  =  (𝐼2(𝑡)  +  𝑄2(𝑡))1/2, 

(𝑡)  = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑄(𝑡)/𝐼(𝑡)), 

respectively.  

Obviously, with this system, the phase relation between the in-phase and quadrature 

components must be such that the latter component leads the former by 90°. A problem arises 
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here with the BP system because this phase relationship may be changed by the system being 

turned off. This peculiarity made it necessary to monitor the phase relationship before 

commencing a data run and after any power failures. The effect of this phase change is to add 

or subtract 90° to the argument of 𝑎𝑟𝑐𝑡𝑎𝑛(𝑄(𝑡)/𝐼(𝑡)). This multiplies the sign of 𝜙 by minus 

one, and any radial velocities measured by the Doppler technique are reversed in sign. The 

system maintained its phase unless it was turned off or the power failed. 

In the DW run of July 1982 which extended over 16 days, and perhaps gave more opportunity 

to detect unusual effects, abrupt changes in radial velocity which could be related to phase 

changes were found on some occasions. An example of radial velocity time series obtained in 

this observational period is shown in Figure (2-8). This is in fact the clearest example. This 

diagram represents periods less than 8 hours only. On the 8th, an abrupt change in radial velocity 

is evident at the time of the polarization change in both beams above about 90 km, and in the 

southward beam time series it is evident down to about 82 km. 

Since these beams were offset at equal and opposite angles to the zenith in the same vertical 

plane, this change, if it is real, can only correspond to a vertical motion of sufficient magnitude 

to dominate the contribution to the radial velocity from horizontal wind motion. At other times 

this effect was not present at all heights in each beam, and often did not occur in all beams at 

the same time and height. When it did occur in a number of beams at the same time and height, 

it often indicated a change in radial velocity of the same sign in each beam. 

These effects are difficult to explain only in terms of a phase change because of their 

inconsistency from beam to beam and height to height, and even if the signs are reversed, the 

time series are not continuous. Abrupt changes in radial velocity can be found in this and other 

data sets at times not corresponding to polarization changes, and when the phase was known 

not to have changed, and consequently, the situation is rather complicated. Abrupt changes in 

velocity can be observed in SA observations obtained with amplitude only data, thus precluding 

any possibility of these changes resulting from a phase change (Figure 2-7). 
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Figure (2.7) SA Wind results for 18th June, l973 from Briggs, Stubbs and Vincent (1974). Individual 

wind values represent ten minute averages. Note the abrupt changes in the zonal wind components 

between 1400 and 1500. These results were obtained with amplitude only data. 

One possible instrumental explanation for the change in the July 1982 time series is that the 

transmitter pulse "broke up" occasionally, thus introducing additional frequencies into the 

phase of the returned signal. However, this is unlikely. Because there is some uncertainty in 

this particular data set, it has been analyzed somewhat cautiously. The mean square radial 

velocities are not changed significantly when the Section of the time series showing the abrupt 

changes is removed, but these data were not considered suitable for cross spectral analysis. 

Further details may be found in Chapter 6 and 7. 

The receiving system was under the control of a 16-bit NOVA 2 minicomputer with three basic 

peripherals; a dual drive floppy disk system, a nine track read/write tape recorder (seven track, 

write only in November 1980) and a printer/terminal. The computer itself has 32,000 words of 

core memory, and whilst real time analysis of data was possible for low data acquisition rates, 

all of the data presented here has been analyzed off-line. 
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Figure (2.8) Radial velocity time series for motions with periods less than 8 hours. For details see text. 

The parameters discussed below can be chosen to suit a particular experimental design. 

However, unless otherwise stated, those specified below are those that have been used for this 

work. 

Data were sampled simultaneously on from one to four receivers over ten height ranges every 

0.05s. Receiver outputs were digitized to levels, and adjacent height ranges were separated by 

2 km. Every eight consecutive points from a given receiver and height range were averaged so 

that the signal to noise ratio was increased by eight times (coherent averaging). Thus data points 

were obtained every 0.4 s at each receiver and each height. After obtaining 256 such data 

points, each comprised of a real (in-phase) and imaginary (quadrature) component, data were 

written on to magnetic tape. This corresponded to a data set of 102.4 s duration, and data could 

be taken again·17.6 s later. That is, every 120 s, a maximum of 102.4 s of data could be 

obtained. The receivers were calibrated against each other by feeding a 1.98 MHz signal into a 

phase preserving power divider, and taking the identical outputs to the separate receivers. The 

receivers were then compared using a gain-phase meter. The receiver bandwidth is 25 kHz 

which gives an effective height resolution of 4 km. 
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2.3.4 Data Acquisition Programs 

Two programs were used to obtain data. The first sampled 15 heights with fixed gain, which 

meant winds could be measured over a range of 30 km with a 2 km height interval. With this 

set-up, heights from 70-100 km were sampled. The second program was that used to obtain 

data for the SA experiment, but modified to handle a maximum of four, rather than three 

channels. This program was more flexible in that two separate 20 km height ranges (2 km 

interval) could be sampled at alternate times, and that the receiver gains were under computer 

control. Thus, if the alternate starting heights were 60 km and 80 km, the sampling rate would 

be one wind measurement every 4 minutes over 40 km. 

However, as discussed in Chapter 5, the scatterers below about 80 km are very anisotropic, and 

this has important consequences for the interpretation of the Doppler spectra. Furthermore, 

below this height range, few wind values are obtained at night, and the analysis of 

discontinuous data presents some computational problems. Because of this, later data runs used 

the second program, starting at a range of 80 km for each two-minute sample. This meant one 

wind measurement could be obtained every two minutes, with variable receiver gain control, 

over 20 km with a 2 km height interval. 

2.4 Beam Configurations and Nomenclature 

The most typical arrangement for the multi-beam Doppler Wind technique is that in which one 

beam is offset from the vertical in the east-west plane, and another is offset by an approximately 

equal angle in the north-south plane. If it is assumed that the vertical velocity is essentially 

zero, at least for the mean wind and for the longer periods, then the radial velocities in these 

beams can be used to calculate the horizontal wind (see Chapter 4). If the complete wind field 

is to be measured, a vertical beam is also used. This last arrangement will be referred to as the 

Triple Orthogonal (Beam) Doppler experiment. The same arrangement without the vertical 

beam, that is, one beam eastward, one beam northward, will be referred to as the Dual 

Orthogonal (Beam) Doppler experiment. 

These arrangements are commonly used to measure some of the mean and fluctuating 

components of the wind field. Whilst other arrangements are possible, they are not commonly 

used because most information of interest can be obtained from these two beam arrangements 

using the assumption that the wind vector is constant in a horizontal plane. 
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Figure (2.9) The beam positions available when using BP. A maximum of four channels are available 

at any one time. Note that beams are 4 degrees off cardinal axes. 

Since the short scale component of the wind field may consist of turbulence of various scales 

and many randomly phased gravity waves of different frequency, horizontal and vertical scales, 

amplitudes, and propagation directions, measurement of many useful parameters related to the 

small scale motions requires a statistical approach. Since the mean values of the perturbation 

velocities of these motions will be close to zero, the mean square values are often of more 

interest. The mean square value of the radial velocity can contain a maximum of six terms 

depending on the beam pointing direction. By considering one vertical plane the number of 

beam pointing directions required to solve this Equation is reduced to three. However, with 

two suitably arranged beams, the variance and covariance terms in the mean square radial 

velocity Equation can be separated (see Chapter 4). 

The beam arrangements used in this work have therefore depended upon the parameters 

required, and obviously upon the number of beams available. In November 1980 and May 1981 

only two beams were available when using the entire array, however with the addition of phase 

preserving power dividers in mid-1981 this number was increased to three. In late 1981 this 

was increased to the maximum number of four beams available for this work. As more beams 

became available, experiments were designed to make full use of them. However, the complete 
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wind field could not be measured with four beams and so in any one experiment some quantities 

had to be omitted. The beam positions available are illustrated in Figure (2-9). 

We now consider the beam arrangements used. 

2.4.1 Dual Complementary Coplanar (DCC) beam arrangement 

With this beam arrangement, two beams are offset from the zenith at equal and opposite angles 

in the same plane. Figure (2-10) illustrates this experimental arrangement for a zenith angle of 

11.6°. The beam half width at half power is about 4.5° which corresponds to a full width half 

power of about 14 km at 85 km, and the beam separation between centers at the same height is 

about 35 km. This width will determine the smallest scale (gravity wave and turbulent) of 

motion that can be resolved by BP in this mode of operation (see Chapter 4). Note that the 

beam will be broadened by 𝑠𝑒𝑐(11.6°) by being pointed off-vertical (Skolnik, 1962). Useful 

horizontal winds can be obtained between about 80 and 96km, but the upper limit will be' 

determined by the leading edge of the E-region. 

 

Figure (2.10) Schematic diagram of two beams tilted 11.6° from the zenith, one to the east and the other 

to the west. Note the separation of the beams and their half power and half width. This is the beam 

configuration used in May 81 and in the nomenclature outlined in the text, is the Dual Complementary 

Coplanar beam arrangement. The beam width at half power is about 14 km.at 85 km. 
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2.4.2 Dual Coplanar (DC) Beams 

This arrangement occurred as a sub-group of other experiments, except in September 1981 and 

February 1982 (when it was used with more than one beam pointing in the same direction to 

check for systematic channel differences). One beam is directed vertically and one beam is 

directed at +𝜃  to the zenith in the same plane. Because of the relatively wide beams used, the 

separation of beams is rather small in this arrangement. The separation between half power 

points will be about 4 km, which together with the beam resolution of l4 km may make the 

measurement of horizontal scale difficult. Useful horizontal winds may be obtained over the 

same height range as for the DCC beam arrangement. Vertical winds may be measured above 

60 km during the day, and above 80 km at night. 

2.4.3 Triple Coplanar (Complementary Pair) TC(CP) Beam Arrangement 

This is as in Section (2.4.1) but with vertically directed beam added. 

2.4.4 Orthogonal Pair of Dual Coplanar (OPDC) Beams 

In this arrangement four beams are used. One pair is aligned in the EW plane and these beams 

are directed at equal and opposite angles to the zenith. The other pair of beams is aligned in the 

NS plane and these are directed vertically and at +  to the zenith. 

2.4.5 Orthogonal Pair of Dual Complementary Coplanar (OPDCC) Beams. 

Four beams are arranged so that one pair is directed at equal and opposite angles ±  to the 

zenith in the EW plane, and the other pair is arranged in the same fashion in the NS plane. 

There are of course many other useful arrangements possible when using fixed beam positions. 

For instance, the "Coplanar Pair Dual CC" (CPDCC) Beam arrangement in which four beams 

are off-set from the vertical in the same plane, with one pair off set at equal and opposite angles, 

and the other pair arranged in a similar fashion at a different zenith angle. This would provide 

redundancy in the measurement of parameters in this plane and if one pair was arranged at 

11.6° from the zenith and the other at a somewhat larger angle, the maximum scale measurable 

would be increased from that of about 200 km available when using  =  11.6° (see Chapter 

4). However, the maximum off zenith angle will be determined by the scattering polar diagram 

of the irregularities producing backscatter. Vincent and Belrose (1978) found that above 80 km 

returns may be received from up to 20° on occasion, and consequently the beam separation 
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could be increased to a maximum of about 60 km at 85 km. In practice, the optimum angle 

depends upon the polar diagram of the array as well as that of the scatterers and thus would 

have to be determined by observation.  

The beam arrangements used in this work and the periods of observation are shown in Tables 

(2-1) and (2-2) respectively. The reasons for choosing a particular beam arrangement are 

discussed in Chapter 4. In December 1981 a combination of the usual SA aerial arrangement 

and a vertically directed narrow beam was used to simultaneously obtain horizontal and vertical 

winds. This has a number of advantages over using the Triple Orthogonal Beam arrangement 

at 2 MHz at BP although the horizontal scale of the motions cannot be obtained. Because the 

scatterers in the D- region (60 – 100 km) are rather anisotropic, backscatter signals are returned 

only from angles close to the zenith.  

 

Table (2.1) Beam configurations used and their acronyms 
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Table (2.2) Data observation periods and beam configurations used. Equipment failures during 

October 1981 and late December 1981 runs made data from these periods unusable and these have 

been omitted from this table. It is interesting to note that 40 km of magnetic tape were required to store 

this data and this highlights the need for an efficient real time analysis. 

Lindner (1975b) and Hocking (1979) found most returns from angles of less than 2-3° at those 

heights below about 80 km at 2 MHz when using the BP array. Since the array half-power half-

beam width in this mode is about 4.5°, off vertical beams cannot usually be used to obtain 
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measurements of horizontal winds in this region without correcting for the effective beam 

direction (see Chapter 5). However, the SA technique is not restricted in the same way because 

it makes use of the enhanced echoes from the vertical. It does require sufficient ionization to 

produce backscatter of course, and this is generally present only during the day below about 80 

km. 

  

Figure (2.11a) (above left) Scatterplot of SA derived zonal winds (u) and Doppler derived vertical 

winds (w). Note that the vertical scale is in 𝑐𝑚𝑠−1. Each point represents a one-hour average, and 

results from all heights in the range 80-90 km are plotted on the same diagram 

Figure (2.11b) (above right) As for Figure (2.11a) but for the meridiona1 component. 

This particular experimental arrangement allowed horizontal and vertical components of the 

wind to be measured down to about 68 km during the day, and above 80 km at night. Thus the 

Reynolds stress terms 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  can be obtained in principle in the region below 80 km as 

long as sufficient data acceptance rates are obtained. It also enabled a comparison of vertical 

velocities measured with the three wide SA beams to be made with those obtained with the 

narrow full array beams; the results of which are discussed in Chapter 5. One other comparison 

was also possible. The vertical and horizontal winds could be compared for consistency to 

determine the tilt of the vertical beam. Although there is a relation between vertical and 

horizontal components for each scale of motion, averaging over a few days of observations 

should leave only the mean wind. 
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Figure (2.12). The mean zonal (u), meridional (v), and vertical (w) wind velocity for one month of 

observations obtained in November 1983. 

Because these results are pertinent to the effective vertical beam pointing direction we present 

them here. Figures (2-11a) and (2-11b) show the hourly average zonal and meridional wind 

values obtained from SA measurements plotted against the measured vertical component for 

three days of observation for all heights in the range of 80–90 km. No clear correlation is 

evident. Note that the vertical scale is (𝑐𝑚𝑠−1). As further evidence that the vertical beam is 

directed quite close to the vertical, we present the mean zonal and meridional wind profiles 

with the vertical wind profile for the month of November 1983 in Figure (2-12), (May and 

Vincent, private communication). These results are the first obtained at BP using real time 

analysis. 

The measured vertical velocity is consistent in sign with that expected from a tilt towards the 

south-west, but is somewhat larger over most of the height range. The apparent vertical velocity 

�̅� that would be obtained with a beam tilted at 0.1° towards the South-West and the values of 

(𝑢, 𝑣) for November 1983 are shown in Table (2-3), together with the measured radial velocity 

for the same period. If we assume that the real vertical velocity is zero, we may calculate the 

tilt  required to produce the measured vertical velocity. This is also shown in Table (2-3). 
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Table (2.3) The contribution of the horizontal wind �̅� to the measured vertical velocity, the measured 

vertical velocity 𝑉𝑅
̅̅ ̅, and the tilt  of the vertical beam from the zenith calculated assuming that the 

mean vertical wind is zero for the monthly mean winds shown in Figure (2-12). 

The off-vertical angle of a vertically directed beam is almost certainly less than 1°, because 

beam swinging experiments on the totally reflecting E-region reproduce the polar diagram of 

the array to within this amount (Hocking, l98l), so that the vertical velocity above 86 km must 

contain a significant contribution from the real vertical wind. While the values of 𝑉𝑅  and �̅� 

are of the same sign in Table (2-3), this is not the case in general for other observations made 

during this work. Table (2-4) illustrates similar results for 2 days in May 1982. 

 

Table (2.4) As for Table (2.3), but for May 82. 

If the measured vertical velocity is produced solely by the horizontal wind component, then 

these results indicate an off vertical angle opposite to that indicated by those in Table (2-3). 

While this would be possible if the tilt of the water table changed with the seasons, it seems 

unlikely. 
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2.5 Systematic and Random Differences between radar beams 

In order to check for systematic differences between separate beams and corresponding 

receivers, beams were directed to the same direction and radial velocities obtained were 

compared for systematic and random differences. This was done for three or four hours in May 

1981 and for three days in September 1981. However, we will only consider one representative 

example here. Three days of observations were taken in February 1982.  Two beams were 

directed vertically and two beams were directed westward at 11.6° to the zenith. 

Data were acquired at the rate of one record every six minutes between 80 and 90 km and at 1 

record every twelve minutes between 70 and 78 km and 92 and 96 km. The data acceptance 

rates for individual two-minute wind determinations are illustrated in Figure (3-9c). Below 84 

km data acceptance rates were less than 50% and below 80 km were considered too low for 

further analysis. Since the height range of interest for this work is above 80 km, this last fact is 

of little direct consequence. 

 

Figure (2.13a) Mean radial velocity for two vertically directed beams. (b) As for (a) but for two beams 

at  =11·6° (c), mean square radial velocity for two vertically directed beams for motions with periods 

less than 8 hours. (d), as for (c), but for two beams directed at  = 11.6°. 
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For the heights above 80 km the data were analyzed to produce separate radial velocity time 

series corresponding to each of the beams. These were then used to calculate the mean radial 

velocities for the pair of vertical beams and the pair of off-vertical beams. These are shown as 

a function of height in Figure (2-13a and b) respectively. The radial velocity from a vertical 

beam is of course a direct measure of the vertical wind and this is plotted in Figure (2-13a). 

The weighted mean absolute difference between the two vertical profiles shown in this diagram 

for heights above 80 km is 0.1 𝑚𝑠−1. The corresponding difference for the off-vertical radial 

velocities which are positive westward, is also 0.1 𝑚𝑠−1. This is fairly crude measure but can 

be taken as an indication of the error due to channel differences. The corresponding weighted 

mean relative errors are 34% and 10% respectively. 

The time series were further analyzed using the procedure outlined in Section (3.3) to obtain 

the mean square radial velocities for periods less than 8 hours and these are shown in Figure 

(2-13c and d). Above 82 km both show excellent agreement and the mean absolute difference 

for the mean square radial velocities obtained from both the vertical and off-vertical beams is 

0.1 𝑚2𝑠−2 (or 5%). 

 

Figure (2-13e) Radial velocity time series for motion swith periods longer than 8 hours measured in 

two vertically with periods greater directed beams. 

These diagrams of 𝑉𝑅
2̅̅̅̅  are only meant to indicate the relative values obtained in each pair of 

beams. No account has been taken of the missing data and some rescaling is necessary if 

comparisons between heights (especially lower heights) are to be made. However, to convert 
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these diagrams to 𝑢′2̅̅ ̅̅ , 𝑉𝑅
2̅̅̅̅  should be x 38 and 37 𝑤′2̅̅ ̅̅ ̅ should be subtracted; this would give 

about 123 𝑚2𝑠−2at 90 km or (11 𝑚𝑠−1 RMS) (See Chapters 4 and 5). 

The agreement between the longer period motions (> 8 ℎ𝑜𝑢𝑟𝑠) measured in the vertically 

directed beams is also good and Figure (2-13e) illustrates the low pass filtered velocities for a 

number of heights. There is some variation between these time series, but on the whole, 

agreement is very good, and harmonic analysis of each time series to obtain the tidal 

components would produce very similar results. · 

2.6 Portable Spaced Antenna Equipment 

The portable SA equipment used in November 1980 is quite similar to that generally used at 

BP, although a much simpler receiving array is used. 

2.6.1 Receiving Array 

This array consists of three pairs of crossed half-wave dipoles arranged 1n the form of an 

equilateral triangle with a spacing of about 165 m between crossed dipole centers. Each dipole 

is tuned to 1.94 MHz and has the form of an inverted "V", with its center 10 m above the 

ground, and each end about 2 m above the ground. The impedance of a particular dipole is 

about 10 ohms because of its proximity to the ground, and this is transformed to 50 ohms by a 

balance to unbalance transformer. The dipoles are then connected through 50 ohm cables, three 

half wavelengths long, to the receiving equipment. Signals received by each dipole are fed back 

to the central receiving site separately, where the appropriate connections and phasings are 

made. With a phase change of ± 90° between the dipoles of each pair, either O or E modes of 

polarization can be received. However, only one dipole, which was aligned in the EW direction, 

was erected at each receiving site at BP for the November 1980 run, and the dipoles were not 

re-tuned to 1.98 MHz, the BP frequency, because of the limited time for which the equipment 

was available. Even so, echoes returned from the D-region proved to have satisfactory complex 

amplitudes. The aerial layout used is shown in Figure (2-1b). 

2.6.2 Receiving Equipment 

This is essentially the same as the BP equipment. The main differences being that only three 

receivers are available, the system is controlled by a microprocessor rather than a 

minicomputer, and the tape recorder is seven track/write only, rather than nine track. 
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2.7 November 1980 Doppler Wind / Spaced Antenna comparison. 

In November 1980 only two channels capable of recording amplitude and phase, and only two 

narrow beams were available when using the 1 km x 1 km MF array at BP. However, by using 

the portable SA receiving equipment and aerials which were in transit from Townsville to 

Mawson Base, it was possible to make a comparison of winds measured by the SA and Doppler 

techniques. 

 

Figure (2.14) Schematic diagram of data acquisition scheme for SA/Doppler wind comparison. The 

transmitter (Tx) was controlled alternately by each system. The SA system took six minutes’ data then 

remained off for 14 minutes. Doppler system ditto. This gives nine·2-minute samples for each technique 

per hour. The Tx PRF was 20 Hz, and coherent averaging over 8 Tx pulses was applied. Both systems 

stored data on magnetic tape. SA height range was 80-100 km in 2 km steps; Doppler, 78-98·km in 2 

km steps. 

The aerial layout for this experiment is shown in Figure (2-1). The SA receiver rack, containing 

all of the receiving equipment and microprocessor controller was temporarily installed in a 

building south of the main array.  Single ‘droopy dipole’ aerials were erected and positioned 

in the EW direction by aligning them up, by eye, with the aerial poles running along a given 

NS row of the main array. This simplified the task of laying out the receiving array and gave a 

spacing between dipole centers of 183 m, a distance about optimum for the D-region SA 

experiment. 

The transmitter was controlled alternately by the BP and SA systems, but the receiving 

equipment remained completely independent. The BP system triggered the transmitter and 

recorded data for six minutes, and then waited for fourteen minutes. The SA system started 

triggering the transmitter and taking data immediately following the BP system and continued 

for six minutes. It then waited for fourteen minutes.  In this way, three two-minute wind 

determinations were made by each system every twenty minutes (Figure 2-14). The large array 
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was connected up as two broadside arrays with the beams pointing northwards and westwards 

11.6° from the zenith (Figure 2-15). Nine days of SA observations were obtained, but the 

receiving equipment of the BP facility failed after five days. A summary of the BP and portable 

SA equipment parameters as used in November 1980 is given in Table (2-5).  

 

Table (2.5) Summary of Buckland Park system specifications 
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Table (2.5) (cont.) summary of portable SA equipment 

 

Figure (2.15) Beam configuration used to obtain Nov 80 Doppler data. One beam is offset 11.6° in the 

EW plane, and the other an equal angle in the NS plane. In the text this beam arrangement is referred 

to as "Dual Orthogonal". 



 

44 

2.8 Summary and Conclusions 

This Chapter has outlined the equipment and experimental procedure as applied in this work. 

For the most part, it is fairly straightforward. The nomenclature suggested for the various beam 

configurations is somewhat clumsy and could be improved on, but this is of minor concern. 

The most important parts of this Chapter are concerned with whether a vertical directed 

Doppler beam is in fact directed vertically, what is happening to the radial velocities in the July 

1982 data set, and the error in the mean square radial velocities. 

The survey of the array indicates that the physical ground is very flat and if the electrical ground 

is similar, then a vertical beam will be directed very close to the zenith. The scatter plots of SA 

derived winds and Doppler wind derived vertical velocities support the assumption of similar 

slopes for physical and electrical grounds, as does the data obtained in November 1983. In 

addition, a comparison of vertical velocities measured in wide (±20°) and narrow (±4.5°) beams 

indicates good agreement, and since the wide beams are relatively insensitive to the slope of 

the ground, we feel confident that the evidence indicates that a vertical beam is indeed directed 

vertically. The results of this particular comparison are presented in Chapter 5. 

The abrupt changes in radial velocity in the July 1982 data set, given only cursory treatment in 

this Chapter, are somewhat harder to come to grips with. The period in which these data were 

taken was characterized by increased geomagnetic activity and is certainly not typical in this 

respect of the other observational periods. Detailed analysis exceeds the constraints imposed 

for this work, and this problem is left for future study.  We have however, treated the data in 

question somewhat cautiously. 

The single most important part of this Chapter is concerned with the systematic and random 

differences in the mean square radial velocity because the error in this quantity will determine 

the smallest momentum flux that can be resolved. The mean relative error of about 5% means 

that very accurate measurements of the Reynolds stress and vertical mean square perturbation 

velocities are possible when observations are averaged over 2-3 days. 

In the next Chapter we consider the basic analysis of Doppler spectra and radial velocity time 

series. 
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3. Basic Doppler Wind Data Analysis 

3.1 Introduction 

In this Chapter we are concerned with the basic analysis of the Doppler spectra of backscattered 

radiation to measure the mean radial velocity of the scattering volume determined by the radar 

pulse lengths and beamwidth.  Here we are only concerned with the accurate retrieval of this 

information from finite, discrete data lengths, and other considerations are discussed in Chapter 

5. General reviews of the analysis of Doppler radar data may be found in Wilson and Miller 

(1971) and Doviak et al. (1979). 

In the next Section we consider some basic ideas related to the measurement of Doppler spectra. 

3.2 Basic Ideas 

In this Section we consider some basic concepts related to the measurement of the Doppler 

spectrum produced by radar backscatter.  We begin with a n elementary case. 

Consider a radar transmitting a plane radio wave of amplitude 𝐸𝑇 and frequency  0 vertically 

upward. 

The signal transmitted may be expressed as 

𝑬 (𝒕)  =  𝑬𝑻 (𝒕)𝒆𝒊𝒐𝒕. (3-1) 

A stationary point “target", which in this case may be any fluctuation in refractive index in the 

volume defined by the radar receiving array beamwidth and the transmitted pulse length, which 

produces a weak reflection or backscattering of the incident radiation, will return a signal 

𝐸 (𝑡)  =  𝐸0 (𝑡)𝑒𝑖(0𝑡+
4𝜋


𝑅)

, 
(3-2) 

where  = the radar wavelength, 𝑅 = the instantaneous range of target measured along the 

radar beam, and 𝐸0 = the voltage of the returned signal. 

If the target is moving, the frequency of the returned signal will be Doppler shifted so that its 

angular frequency 𝑅  is given by 
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𝑅 = 0(1 +
2𝑉𝑅

𝑐
), (3-3) 

where 𝑉𝑅  = radial velocity of target, and 𝑐  = velocity of light. 

For a narrow beam, the radial velocity is the projection of the target velocity on the beam radial 

direction, that is 

𝑽𝑹 = 𝒗 ∙ �̂�, (3-4) 

where, for example, 1n this work 𝒗  =  𝑢𝒊 +   𝑣𝒋 +  𝑤𝒌, and  

�̂�   =  𝑠𝑖𝑛𝑠𝑖𝑛𝒊 +   𝑠𝑖𝑛𝑐𝑜𝑠 𝒋 +   𝑐𝑜𝑠𝒌, 

where (𝑢, 𝑣, 𝑤) are the zonal, meridional and vertical components of the wind field 

respectively, and (, ) are the angles measured from the zenith and clockwise from north for 

the co-ordinate aries shown in Figure (4-1). 

The returned signal is then 

𝐸 (𝑡)  =  𝐸0 (𝑡)𝑒𝑖(𝑅𝑡+
4𝜋


𝑅)

. 
(3-5) 

 

This is processed to obtain 

𝑎(𝑡) = 𝐸0(𝑡)𝑒𝑖𝑑𝑡 , (3-6) 

where 𝑑 = 𝑅 − 0, so that from (3-3) 

𝑑 =
4𝜋𝑉𝑅


, (3-7) 

or 

𝑓 =
4𝑉𝑅


. (3-7’) 

That is, the radial velocity may be obtained from the processed signal described by (3-6) as a 

frequency shift.  Equation (3-6) is generally written as the "In-phase", 𝐼(𝑡), and "Quadrature", 

𝑄(𝑡), components which are defined as 
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𝐼 (𝑡)   =  𝑅𝑒(𝑎(𝑡))   =  𝐸0𝑜(𝑡) 𝑐𝑜𝑠 (𝑑𝑡), (3-8) 

and, 

𝑄 ( 𝑡)   =  𝐼𝑚(𝑎(𝑡))   =  𝐸0(𝑡) 𝑠𝑖𝑛 (𝑑𝑡), (3-9) 

respectively, so that at any time 𝑡 the amplitude of the returned signal is given by 

𝐸0(𝑡)   =  (𝐼2 (𝑡)   +   𝑄2 (𝑡) )
1

2⁄ , (3-10) 

and its phase is given by 

  =  𝑡𝑎𝑛  −1(
𝑄(𝑡)

𝐼(𝑡)
). (3-11) 

The entire time series 𝑎(𝑡) may be analyzed by one of two essentially equivalent methods, 

namely power spectral analysis or autocorrelation analysis. 

These techniques are equivalent because the Fourier transform of the autocorrelation function 

is the power spectrum.  The former method may be easily illustrated using Equation (3-6).  If 

the Fourier transform of (3-6) is given by 

𝐴() = ∫ 𝑎(𝑡)𝑒−𝑡𝑑𝑡
∞

−∞
, (3-12) 

then this represents an impulse of amplitude 𝐸0 at  = 𝑑  for constant 𝐸0.  This represents a 

target moving with a radial velocity given by (3-7). 

Because the scattering volume will not contain a single "target" in general, there will be 

multiple frequency components and 𝐸0 will vary with time.  In this case a spectrum of 

frequency shifts will result. The square of (3-12) for this case is 

𝑆() = |𝐴()|2, (3-13) 

where 𝑆() is called the Doppler spectrum or power density spectrum and represents the 

backscattered power associated with a particular frequency. 

As we have noted, the power spectrum is the Fourier transform of the signal autocorrelation 

function, that is, 
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𝑆() = ∫ 𝜌(𝜏)𝑒−𝜏𝑑𝜏
∞

−∞
, (3-13) 

where 𝜏 is the time lag.  The autocorrelation function for a signal whose statistics do not change 

during the time of observation is given by 

𝜌(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝐸∗̅̅ ̅(𝑡)𝐸(𝑡 + 𝜏)𝑑𝑡

𝑇
2⁄

−𝑇
2⁄

, 

and the Doppler spectrum of radial velocities·𝑆(𝑉𝑅) is related to the power spectrum·𝑆() by 

𝑆(𝑉𝑅)  =
4𝜋𝑆() 


.  

Apart from the power, there are two other parameters of the Doppler spectrum that provide 

useful information, and for a Gaussian frequency distribution, completely specify its form.  

There are the mean frequency shift and the spectral width.  In the next Section we briefly 

consider these quantities in relation to mesospheric backscatter spectra. 

3.3 The Doppler Spectrum 

The backscattered power is a direct measure of the refractive index variation within the radar 

pulse volume at a particular frequency shift, or radial velocity, and so the integral of the velocity 

spectrum is proportional to the total power reflected or scattered from the radar pulse volume. 

In the D-region, variations in refractive index result from irregularities in the neutral air but are 

enhanced by free electrons.  At 2 MHz and medium transmitter powers it is the free electrons 

that are detected and the fluctuations in electron density are taken to be proportional to 

fluctuations in the index of refraction, because the amount of ionization is small, and the 

collision frequency is large, so that a close coupling between the ionized and neutral gas 

components is expected. 

The fluctuations themselves are believed to result from turbulence, and the resulting velocity 

spectrum is the Doppler velocity distribution weighted by the backscattered power.  Thus the 

mean radial velocity is weighted in favour of velocities associated with the largest 

backscattered power, and the co-existence of scattering and reflection may make interpretation 

of the spectrum difficult, because individual spectral "spikes" may shift the mean value of the 

spectrum. The weight given to the radial velocities within the radar pulse volume will depend 
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upon the antenna pattern, the transmitted pulse-width and the receiver bandwidth in addition 

to the reflectivity of the scatterers. 

If we ignore such effects for the moment, the Doppler spectrum will consist of a mean 

frequency corresponding to the velocity of the bulk motion of the scattering volume with a 

range of frequencies distributed about the mean corresponding to the "random" fluctuations of 

velocity within the scattering volume itself.  For no background wind, and a narrow receiving 

array beamwidth and transmitter pulse-width, the width of the Doppler spectrum is a direct 

measure of the variance of the fluctuating velocities within this volume. Since backscatter 

radars are most sensitive to scales equal to half the radar wavelength (corresponding to Bragg 

scattering), this information is related to a particular scale of motion (about 75m at 2 MHz).  

The spectral width is exploited to obtain information about these scales (e.g. Gage and Balsley, 

l978). 

In practice, finite beam widths and pulse lengths and the presence of a background wind 

contribute to the spectral width, and these effects must be considered.  Hocking (1983a) has 

produced a coherent analysis of these effects, and has successfully analyzed spectral width data 

obtained using a complete array at BP at 2 MHz to measure turbulent energy dissipation rates 

in the D-region (Hocking, 1983b).  The presence of turbulence also reduces the certainty in the 

measurement of the mean Doppler shift even for an infinitely narrow radar beam, because the 

spectral "line" corresponding to the mean radial velocity will have a finite width.  In practice 

spectral broadening due to the effects mentioned above will increase this uncertainty. 

The time series described by Equation (3-6) is normally only available at discrete time intervals 

and we now consider the standard results related to the analysis of the discrete Doppler 

spectrum and auto- correlation function of backscattered radiation. 

3.3.1 The Discrete Doppler Spectrum and Auto Correlation Function. 

In the following discussion of the discrete Doppler spectrum we follow Wilson and Miller 

(1971) to obtain Equations (3-14) to (3-21) and consider standard results which require little 

discussion. 

The expression for the discrete Fourier Transform of Equation (3-12) of the estimate based on 

N time series samples may be written as 
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�̂�(𝑘) = ∑ 𝑎(𝑛)𝑁−1
𝑛=0 exp (

−2𝜋𝑘𝑛

𝑁
) , −(

𝑁

2
− 1) ≤ 𝑘 ≤

𝑁

2
, (3-14) 

where 𝑎(𝑛) is the value of 𝑎(𝑡) at 𝑡 = 𝑡𝑛, and the hat on 𝐴(𝑘) indicates that it is an estimate.  

The estimate of power 𝑆(𝑘) associated with the frequency interval 𝑓𝑘  is given by 

�̂�(𝑘) = |�̂�(𝑘)|
2

, (3-15) 

and the kth frequency interval 𝑓𝑘  is given by 

𝑓𝑘 =
𝑘

𝑁𝑇
, (3-16) 

where 𝑁  = the number of time series samples, and 𝑇  = the time interval between samples. 

T may be the radar pulse repetition period or, if coherent averaging is used,𝑛𝑇𝑅, where 𝑛 is the 

number of radar pulses averaged over, and 𝑇𝑅 is the radar pulse repetition period. 

The finite number of time samples from which the estimate of the power spectrum is calculated 

limits the velocity resolution and creates a window effect, because the signal time series, which 

extends to infinity, is multiplied by a "window" of finite length.  In the transform domain, the 

measured spectrum will be the convolution of the square of the Fourier Transform of the 

window function (the spectral window) with the true spectrum.  The spectral window will 

generally be of the form (
sin 𝑥

𝑥
)

2

, and power in the periphery of the true spectrum may be 

masked by leakage of power into the side lobes.  This effect may be reduced by weighting the 

signal with a window that shows a more gradual change between data and no data regimes and 

so reduces the artificial side lobes in the measured spectrum. 

In this work we are rather more concerned with the mean Doppler shift, and consequently, the 

limited resolution in velocity is of more direct concern. 

The minimum velocity resolution 𝑉𝑅  may be obtained by substituting Equation (3-16) into 

(3-7’), in which case we obtain 

𝑉𝑅  =


2𝑁𝑇
. (3-17) 

Because the time series samples are only available at discrete intervals, an ambiguity in velocity 

can be produced if the radial velocity of the scattering medium is such that the phase changes 
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by more than 𝜋 between samples 𝑇𝑛, 𝑇𝑛 + 1.  This corresponds to the Doppler frequency shift 

being greater than one half the sampling rate, 

𝑓𝑁  = ±
1

2𝑇
, (3-18) 

where 𝑓𝑁 is the so called "Nyquist” or "aliasing" frequency.  Thus the maximum unambiguous 

("Nyquist") velocity is obtained by substituting (3-18) into (3-7) and is 

𝑉𝑁  = 𝑉𝑅𝑚𝑎𝑥 = ±


4𝑇
. (3-19) 

The maximum and minimum unambiguous ranges are easily obtained as 

𝑅𝑚𝑎𝑥 =
𝑐𝑇

2
, (3-20) 

and 

∆𝑅 =
𝑐𝜏

2
, (3-21) 

respectively, where 𝜏   = radar pulse length and 𝑐 is the velocity of light.  The parameters 

described by Equations (3-17) to (3-21) are shown in Table (3-1) for the system at BP as used 

in this work. 

Parameter BP system value 

𝑉𝑅 0.74 𝑚𝑠−1 

𝑓𝑁 ±1.25 𝐻𝑧 

𝑉𝑁 ±95 𝑚𝑠−1 

𝑅𝑚𝑎𝑥  6.00 ×  104 𝑘𝑚 

∆𝑅 4.5 𝑘𝑚 

Table (3-1) Limiting parameters of the BP system as used in this work 

It is clear that the only real limitations due to this choice of parameters are the velocity and 

minimum range resolutions. 
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It is worth noting that the velocity resolution can be improved by increasing the number of time 

series samples at a fixed sampling rate and as is discussed in (3.1.3c) this has other advantages.  

If the Doppler spectrum is well formed, it may also be reduced by interpolation. 

Many researchers do not calculate the Doppler spectrum explicitly but obtain the complex auto 

correlation function (acf) instead. 

This is related to the Doppler spectrum in a simple way as can be easily illustrated.  Following 

Rastogi and Woodman (1974) we note that the jth order derivative of 𝑆() can be evaluated in 

terms of the jth order derivative of the complex acf (𝜏) at 𝜏 = 0, where· 

(𝜏) = 𝐴(𝜏)𝑒𝑖(𝜏), (3-22) 

and 𝐴(𝜏) = the amplitude of the acf at lag 𝜏, (𝜏) = the phase of the acf at lag 𝜏, and 𝜏 = lag 

in seconds. 

The Doppler shift 𝑑  is the first moment of the power spectrum 𝑆() so that 

𝑑 = ∫ 𝑆()𝑑
∞

−∞
, (3-23) 

and consequently 

𝑑 =
1

𝑖

′(0)

(0)
= ′(0). (3-24) 

That is, the slope of the phase of the complex auto correlation function at zero lag is equivalent 

to the Doppler shift in frequency.  Using similar arguments, we may obtain the power, 𝑃, as 

𝑃 = (0), (3-25) 

and the spectral width 𝜎2 

𝜎2 =
𝐴′′(0)

(0)
. (3-26) 

By applying Equations (3-24) to (3-26) these three quantities of the Doppler spectrum may be 

obtained from the acf.  Like the Doppler spectrum this will only be available at discrete 

intervals, and Woodman and Guillen (1974) demonstrated how Equations (3-24) to (3-26) 

could be evaluated in this case.  Their work indicated that the mean Doppler shift, power and 

spectral width can be obtained from two points of the acf, those calculated at lags 𝜏 = 𝜏0 and 
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𝜏 1, as long as 𝜏  is sufficiently small so that higher order terms of a Taylor expansion of (𝜏) 

and 𝐴(𝜏) are negligible, and the coherently detected amplitude 𝐸(𝑡) forms a discrete complex 

Gaussian random process in time.  The advantage of this particular procedure is that computing 

time is minimal, something that is particularly important for real time analysis. Woodman and 

Guillen (1974) showed that if 𝜏 is small enough, then 

̂𝑑 ≈
(𝜏1)−(0)

𝜏1
, (3-27) 

since by definition (0)   =   0, 

𝑓𝑑 ≈
1

2𝜋

(𝜏1)

𝜏1
, (3-28) 

which may be rearranged to yield 

�̂�𝑅 ≈


4𝜋

(𝜏1)

𝜏1
. (3-28’) 

The approximation (𝜏1) = ′(𝜏1)𝜏1 involves errors of 𝑂(𝜏3) due to the truncation of the 

Taylor expansion. 

The estimate of spectral width 𝜎2 may be obtained from 

�̂�2 ≈ 2
(1−𝐴(𝜏1)/(0)

𝜏1
2 , (3-29) 

and the power is just 

�̂� = (0). (3-30) 

The estimate of 𝜎2 involves errors of 𝑂(𝜏4). 

Other sources of error in these estimates are the presence of both external and receiver noise in 

the processed signal, statistical errors in the estimates themselves, finite data lengths, and the 

finite width of the Doppler spectrum due to finite beam widths and turbulence.  This last effect 

corresponds to an uncertainty in the slope of the phase at (𝜏1). 
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3.3.2 Noise 

Noise in the received backscatter signal will affect all of these estimates.  If it is uncorrelated, 

it will appear only at the zero lag of the amplitude of the acf, and the estimate described by (3-

30) will be incorrect.  If it is correlated for lags greater than 𝜏1, Equations (3-27) and (3-28) 

will also be incorrect.  Rastogi and Woodman (1974) point out that for bandwidth limited noise, 

a suitable choice of 𝜏1 is 𝜏1 > 𝐵−1, where 𝐵 is the bandwidth, so that there is an additional 

constraint on 𝜏1 in this case. 

If a noise spike does appear at the zero lag of the amplitude of the acf, it can be removed in 

principle by interpolation over this point, and this has the advantage of providing a measure of 

the signal to noise ratio (SNR). 

This is described in more detail in the next Section.  In this work, SNR's were generally ≥

10 𝑑𝐵, and when noise spikes were evident, they only appeared at 𝐴(0).  Because of this, the 

value of 𝜏1 = 0.4 𝑠 appeared to be small enough so that uncorrelated noise in the backscatter 

time series did not contribute significantly to the error in estimates based on Equations (3-28) 

and (3-30). 

3.3.3 Statistical Errors 

Woodman and Guillen (1974) suggested that for their data, the errors in estimates given by (3-

27) and (3-28) were comparable to those obtained by calculating the entire Doppler spectrum.  

The estimate for the error in (𝜏) they applied has been given in the Miller and Rochwarger 

(1972) and Woodman and Hagfors (1969) as 

∆𝟐̅̅ ̅̅ ̅ =
(𝟏−𝟐)

𝟐𝑵𝟐 , 
(3-31) 

where N is the number of sample points averaged and  is the auto correlation at 𝜏 normalized 

with respect to total power. 

The RMS uncertainty in 𝑉𝑅  is then 

∆𝑉𝑅 =
1

(2𝑁)
1

2⁄

𝑐

2𝜔0

(1−2)
1

2⁄

𝜏
. 

(3-32) 
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However, this expression does not seem to take the finite width of the spectrum into account.  

A review of Doppler weather radar techniques by Doviak et al. (1979) includes a discussion of 

the statistical errors in moment estimates based on covariance techniques.  The discussion is 

directly applicable to the pulse pair technique, in which there may be two basic pulse spacings 

and which is a generalization of the work of Woodman and Guillen (1974).  They give a 

maximum likelihood (ML) estimate of the auto covariance 𝑅(𝜏) as 

�̂�(𝜏𝑠) =
1

𝑚
∑ 𝐸((𝑛 + 1)𝜏𝑠)𝑚

𝑛=1 𝐸∗(n𝜏𝑠), (3-33) 

where 𝑚 = the number of echo samples. This assumes a Gaussian spectral density and is 

strictly true if successive pairs give independent estimates of 𝑅(𝜏𝑠). The mean velocity is then 

�̂�𝑝𝑝 =


4𝜋

arg (𝑅(𝜏𝑠))

𝜏𝑠
, (3-34) 

and this is an unbiased estimate of the first moment for symmetrical spectra.  In our case (3-

33) and (3-34) correspond to the auto-covariance evaluated at lag 𝜏𝑠 and to Equation (3-28') 

respectively.  Doviak et al. (1979) then consider the error in �̂�𝑝𝑝    including correlated pairs and 

suggest that satisfactory estimation of the mean velocity can be made with an input spectrum 

width of up to about 0.4 of the Nyquist velocity (Equation (3-19)), and that the uncertainty in 

the estimate increases rapidly for larger widths. For larger widths the uncertainty increases 

exponentially and is given by 

𝑉𝑎𝑟(�̂�𝑝𝑝) =


2 exp((4𝜋𝜎𝑣𝜏𝑠)/2)

32𝜋2𝑚𝜏𝑠
2 ((

𝑁

𝑆
)

2

+ 2 (
𝑁

𝑆
) (1 − exp (−8 (

2𝜋𝜎𝑣𝜏𝑠


2 )) +

4𝜋1.5


𝜎𝑣𝜏𝑠), 

(3-35) 

where 𝑆/𝑁 =   𝑆𝑁𝑅, and the other terms have previously been defined for a Gaussian spectral 

density and white noise. 

𝜎𝑣 is the input spectral width and for 𝜎𝑣~5 𝑚/𝑠 and 𝑆𝑁𝑅 =  10 𝑑𝐵 this gives, 

𝑉𝐴𝑅 (�̂�𝑝𝑝   )  =   0.52 𝑚2 𝑠−2, and 

∆�̂�𝑝𝑝 = ∆�̂�𝑅~0.72 𝑚𝑠− 1, 
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which is approximately the uncertainty in the radial velocity due the sampling interval.  

Equation (3-35) takes noise and spectral width into account and appears to be more generally 

applicable than Equation (3-32). It is noteworthy that Doviak et al. (1979) find that at low 

SNR's, the pp estimator has a lower estimate standard deviation than an FFT evaluated Doppler 

spectrum. 

Given the assumptions of Gaussian spectral density and white noise in Equations (3-32) and 

(3-35) it seems more appropriate to estimate the uncertainty in radial velocities by analyzing 

the time series to obtain a measure of the uncertainty. This indicated errors of 0.7 𝑚𝑠−1 in 

individual 102.4 𝑠 determinations of radial velocity and since this is rather large when vertical 

velocities are measured, consecutive 102.4 𝑠 estimates of radial velocity were averaged 

together to reduce the uncertainty. 

3.3.4 Finite Data Lengths 

The largest likely contribution to the uncertainty in 𝑉𝑅  in this work is related to the assumption 

that 𝐸(𝑡) forms a random Gaussian process in time, and hence to the characteristic fading time 

of the received back scattered radiation.  Hocking (1981) used a computer simulation of typical 

backscatter fading observed at BP, formed from a known Doppler spectrum, to show that if 

data lengths of 1-2 minutes of such data are Fourier transformed to produce a Doppler 

spectrum, then this does not necessarily correspond to the true spectrum.  These spectra often 

contained strong spectral peaks that were not related to any components of the true spectrum, 

and consequently, would not be related to any real motion in the scattering volume. 

Hocking estimated that minimum data lengths of (80-100)𝑇1

2

 , where 𝑇1

2

 is the fading time (the 

width of the auto correlation function, or the inverse width of the Doppler spectrum) are 

required to produce the true spectrum.  Lindner (1975b) found that for observations made at 

BP, 𝑇1

2

~2 − 5 𝑠 at 80-90 km, and so data lengths of 160-500 s may be required. Since computer 

limitations at the field site restricted the data lengths to 102.4s, some care was taken to ensure 

that acfs were Gaussian. 

It is interesting to note that some experimenters select the peak and a few other spectral points 

from the spectrum of weak signals and use this as an ML estimator for the mean radial velocity 

(see e.g. Strauch, 1983).  Whilst weak returns are rather different from short data lengths, the 

principle is still valid as long as data lengths are not too short relative to the characteristic 
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fading time, because the strongest backscatter returns are expected near the mean Doppler shift.  

In terms of acf analysis, this ML approach would correspond to taking the slope of the phase 

at the first lag as an estimate of the radial velocity regardless of the form of the acf.  

However, some discretion must be used, because if specular reflections are present with 

frequency shifts significantly different from the mean frequency shift, the estimate may be 

poor.  It is interesting to note that Röttger (1980) suggests that such specular contributions may 

form a Gaussian random process if sufficiently long data lengths are obtained.  Consequently, 

a good estimate may be obtained by averaging sufficient spectra.  Obviously, if a ML estimate 

of mean radial velocity is made, the width of the measured Doppler spectrum will not have any 

practical use, except perhaps to put rough upper and lower limits on the mean Doppler shift. 

With such an estimate, another kind of ML approach can be applied by checking for 

consistency between adjacent radial velocities in time and height.  This method has been used 

by Larsen et al. (1982), who checked radial velocity time series for abrupt changes in velocity, 

and rejected values that differed by more than about 6 𝑚𝑠−1 from adjacent values. However, 

some discretion must be applied in this case as well, because abrupt changes in measured 

velocity are observed which appear to correspond to real changes in the atmosphere. We have 

already given an example of this in Chapter 2, and Röttger (1982) has also given an example 

from simultaneous observations made with the SOUSY VHF radar and rawindsonde 

information. 

The strong spikes observed in Hocking's (1981) short time series spectra would correspond to 

an oscillatory acf (Awe, 1964), and a radial velocity obtained by applying Equation (3-28') 

would be erroneous.  Rastogi and Woodman (1974) noted that an oscillatory acf may also be 

formed if two or more scatterers are present in the radar pulse volume, and these are moving 

with significantly different velocities and backscattering similar amounts of power.  For two 

such scatterers, the phase of the acf will oscillate with a beat frequency corresponding to the 

difference between the mean frequency shifts associated with the respective radial velocities, 

and an amplitude that depends upon the relative backscattered powers (see e.g. Rastogi and 

Bowhill, 1976; Hocking 1981). 

In principle, this information could be exploited to determine the radial velocities, but this 

leaves the problem of which velocity is correct, and ignores the fact that short data lengths 

could also produce an oscillatory acf. Hocking (1983c) has pointed out that another effect that 
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could produce oscillatory acfs is related to returns obtained from specular reflection points on 

a tilted or corrugated reflector. Since such structures are known to be spatially and temporally 

intermittent in the D-region, this may occur in a sporadic fashion producing a Doppler spectrum 

with strong spectral spikes that may be related to the true bulk motion of the scattering volume.  

Again, a representative radial velocity may be hard to obtain. 

Because a representative phase could not be determined from oscillatory acfs, they have been 

rejected in this work. No attempt has been made to determine why they were oscillatory. The 

possibility of large errors occurring by relying on one point of the acf has encouraged some 

researchers to use more points to measure the mean radial velocity. For instance, Rastogi and 

Woodman (1974) noted the strong dependence of ∆𝑉𝑅  on 𝜌2(𝜏1) Equation (3-31) and formed 

an estimate of the radial velocity from 

𝑉 =
𝑉1𝐴(𝜏1)+𝑉2𝐴(𝜏2)

𝐴(𝜏1)+𝐴(𝜏2)
, (3-36) 

where 𝑉1 and 𝑉2 are the radial velocities calculated at 𝜏 =   𝜏1  and 𝜏2  respectively using (3-

28'). Salah and Holt (1974) Fourier transformed power spectra obtained using the Millstone 

Hill incoherent scatter radar to obtain the complex acf, and then used a weighted least squares 

fit of the form 𝐴2(𝜏) to the phase before measuring the phase of zero lag. 

In this work, after the rejection criteria outlined in the next Section were applied, the phase of 

the acf at the first lag was generally representative of the phase up to a total shift of 10% of the 

data length, the maximum length usually considered suitable for acf analysis (Blackman and 

Tukey, 1959). However, as noted in Section 3.3.3, 102.4s estimates of radial velocity were 

averaged to give an overall sampling rate of one record every four minutes. 

3.4 Rejection Criteria 

The information written onto magnetic tape and subsequently analyzed consisted of 256 values 

of the "in-phase" and "quadrature" components for each 102.4s of data for each beam and for 

each height.  Data values in each 102.4s block were 0.4s apart, and each consisted of eight 

coherently averaged data points.  These data were analyzed off-line using a program based on 

an auto correlation analysis, and each block was subjected to the following procedure. 

The mean and standard deviation were calculated, and if the mean was too high (receivers 

saturated for a significant time) or too low (little or no signal) or if the standard deviation was 
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low (low power) the sample was rejected.  Data taken in May 1981, September 1981 and 

November 1981 used receivers with fixed gains, whilst later data were obtained with the 

receiver gains under computer control.  In these latter runs, few data blocks were rejected 

because of low or high signals in the height range of 80-96 km.  Two obvious exceptions to 

this were during HF fade outs, and when sporadic E was present. 

The auto correlation functions of the remaining data blocks were calculated to 20 lags (8 

seconds) and by interpolation over the first three points of the amplitude either side of 𝐴(0), 

omitting 𝐴(0), the signal to noise ratio (𝑆𝑁𝑅) was calculated.  This can be done for noise that 

is uncorrelated or correlated only for lags less than 𝜏1, since its contribution to the acf will 

appear at 𝐴(0). The ratio of (0) to the interpolated value ∗(0), therefore gives a measure of 

the 𝑆𝑁𝑅.  If this was less than l dB the sample was rejected. However, a SNR of -6 dB also 

appeared to produce reliable results.  Comparison of the results of this method of calculating 

the noise component agree well with results obtained from measurements of the noise signal 

made with the transmitter off (Hocking and Vincent, 1982). 

It was found that the interpolation procedure used to calculate ∗(0) occasionally broke down 

and gave spurious results.  Further examinations revealed that these records had an irregular 

acf, which was actually very oscillatory, and were unreliable.  Consequently, they were 

rejected. The acf was then checked for a significant oscillatory nature and rejected if this were 

so.  As mentioned in the last Section, oscillatory phase can result from statistical effects due to 

the finite data length or from two or more scatterers moving through the radar pulse volume at 

different velocities. Both of these effects bias the phase.  The number of records rejected for 

this reason was generally relatively small, a result which is in agreement with comparisons of 

velocities determined from backscatter spectra and other methods which show that the former 

method does measure the neutral air motion on average. 

For the remaining records the parameters output were then: 

(a) The mean and standard deviation of the signal 

(b) Signal to noise ratio 

(c) Measured half width of the acf 

(d) Half width calculated from (3-29) 
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(e) Radial velocity 

(f) Power calculated from (3-22) or from the standard deviation of the signal taking the 

SNR into account. 

Since the array was not calibrated only relative powers were obtained. 

Although the half-width of the acfs were calculated they have not been used in this work.  

However, examination of measured half widths and widths calculated from Equation (3-29) 

indicates general agreement for accepted records, which can perhaps be taken to indicate that 

the power spectra were sufficiently Gaussian, and 𝜏1  sufficiently small, so that (3-28') was 

valid. Observation of numerous acfs and power spectra corresponding to accepted records 

indicated that most were well behaved and that the first lag phase of the acf was representative 

of the phase up to lags of 8 seconds. 

 

Figure 3.1 Example of an acf from an accepted 102.4s record chosen at random from the NOV 80 data 

set. The phase is clearly well behaved, although a slight oscillation is evident. 

An example chosen at random is shown in Figure (3-1). Some oscillation is evident in the 

phase, but the slope at the first lag is clearly a good estimate.  Two examples of rejected acfs 

are shown in Figures (3-2) and (3-3).  These were chosen at random from the rejected records 

and illustrate oscillatory and irregular auto-correlations respectively.  An example of an 

accepted 102.4s record is presented as a velocity spectrum in Figure (3-4). A Gaussian form is 

beginning to appear but records of this length do appear to be marginal.  A fit by eye indicates 

𝑉𝑅~11𝑚/𝑠 and from the first lag of the phase 𝑉𝑅  is found to be ~10 𝑚/𝑠. The long tail of the 

spectrum extending into negative values of 𝑉𝑅  may be biasing the result, but this example 
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indicates statistical errors of ~10% between estimates based on acf and spectral analysis may 

be possible for some data. 

  

Figure 3.2 (left) Example of an oscillatory acf selected at random from the NOV 80 data set, and Fig 

3.3 (right) An example of an irregular acf selected at random from the OCT 82 data set. 

 

Figure 3.4 An example of the Doppler velocity spectrum corresponding to an accepted 102.4s data 

record. Note the long tail extending into negative values of radial velocity, and the ‘spikey’ nature of 

the spectrum. A Gaussian form is apparent with a peak at about 11 𝑚𝑠−1. 

Acf analysis is limited when compared to spectral analysis in one regard.  Strong spectral 

components, which may bias the mean Doppler shift, are harder to detect.  These are observed 

in spectra obtained in both vertical and off-vertical beams (e.g. Röttger, 1981; Hocking, 

1983b), and when Gaussian forms are fitted to obtain the various spectral moments, are 
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generally discriminated out.  Because reflectors in the D-region are generally horizontal, these 

components are rather more important for spectra measured in vertical beams. 

In an attempt to determine the presence of a specular component in the acfs obtained from 

backscattered records in oblique beams, a somewhat arbitrary condition was set upon the 

amplitude of the auto correlation function for one analysis of May 1981 data.  If the width of 

acf at 8 seconds had not fallen to 0.5 it was tagged “slow fading” and the number of such 

records was monitored.  The rationale for this was that a specular and random component 

produce a characteristic form of acf as shown in Figure (3-6a), (Ratcliffe, 1956), and the 

"wings" on the acf can be used to monitor the specular component.  

 

Fig 3.5a The reasons for data rejection and the occurrence of acfs with half widths greater than 8 s 

(that is, “slow fading” records) for three days of observation in May 81. “Bad cfn” are irregular acfs. 

Ratcliffe’s (1956) work refers to spatial rather than temporal auto correlation functions, but 

appears to be applicable.  Gage et al. (1981) have investigated specular returns from the 

troposphere at VHF obtained in a vertically pointing Doppler beam.  They found specular 

returns were characterized by high power and low spectral width.  More isotropic scattering 

produced spectra which were characterized by rather broader spectral widths and lower signal 

powers.  Since the half width of the auto correlation function is inversely proportional to the 

half width of the power spectrum, we expect specular returns to have broader auto correlation 

functions.  The superposition of specular and isotropic type scattering is therefore expected to 

produce a characteristic form of acf. 
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The results of this analysis are shown in Figure (3-5a and b), there is a clear peak at about 82-

84 km, a height which is known to have a strong specular component (Hocking and Vincent, 

1982).  The velocities determined from these records were consistent with adjacent records and 

it appears that in this case, correct velocities were obtained.  Also shown on this diagram are 

the reasons for data rejection for May 1981. Below about 78km most records are rejected on 

the basis of SNR as is expected, because of the highly anisotropic nature of the scatterers.  At 

these heights irregular and oscillatory acfs also account for a small percentage of rejected 

records.  For 80-94 km the few records that are rejected are because of oscillatory acfs. 

 

Figure 3.5b As for Figure 3.5a, but with the results presented for each height. Because of the way these 

results were analyzed, slow fading records have been separated from the accepted records, but should 

be included. 

Near the "tail" of the E-region strong specular reflection from the vertical can bias velocities 

measured in oblique beams.   To illustrate this, we consider a typical example.  The amplitudes 

of four acfs for l02.4s of data obtained in October 1982 from the same height and time are 

shown in Figure (3-6a).  The beams were directed at 11.6° from the zenith Eastwards, 

Westwards, Southwards and Northward and are labelled this way in the diagram.  With the 

exception of the eastward acf, these amplitudes are characteristic of the presence of a quasi-

random and more steady component in the backscattered signal The eastward amplitude is 

slightly oscillatory, and when we examine the corresponding phase, Figure (3-6b), we note that 

it is subject to an abrupt 2𝜋 phase change at about 4.4 s. 
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Fig 3.6a (left) Amplitude of four acfs for one 102.4s record from the Oct 82 data set. Note the slight 

oscillation in the last beam amplitude, and the form of the south beam amplitude, which could be 

indicative of the superposition of random and more specular components. 

Figure 3.6b (right) As for Figure 3.6a, but for the phase of the acfs. The crosses represent the east beam 

phase. Note the abrupt phase change at 4.4 s and the slight oscillation in the phase of the other two 

beams. For clarity the phase of the westward beam has been omitted. 

This behaviour is typical of an acf corresponding to a backscattered signal in which two or 

more components are beating.  In this case this may be due to specular reflections with different 

frequency shifts.  However, this is uncertain, because the beat frequency does not seem to 

correspond to the spikes in the power spectrum.  The phases of the acfs appear to be well 

behaved, but when the power spectra are examined Figure (3-6c), it is apparent that they show 

three well defined peaks which are quite similar for three of the beams.  This tends to suggest 

a specular contribution which is dominating the spectra.  The slope of the phase of each acf 

corresponds to the largest peak in each of the spectra, and since the derived radial velocity is 

of the same sign for all four of the beams, this suggests a net downward motion of a tilted or 

corrugated reflector rather than a horizontal motion. 

If these strong peaks are real and correspond to different reflection points, then all of the phases 

should oscillate.  However, the peaks correspond to adjacent frequencies and the corresponding 

beat frequency would be about 100 s, too long to be detected with 102.4 s of data. 
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Figure 3.6c As for Figures 3.6a and 3.6b, but now the results are presented as power spectra. Note the 

narrow spectra and the similarity between the three spectra. For clarity the westward spectrum has 

been omitted. 

This particular record is unsuitable for the simple analysis applied in this work and should be 

rejected.  The fading time criterion could be used because the south beam record exceeds 0.5 

at 8 seconds, but this is clearly arbitrary because the Eastward and Northward beam records 

would not be rejected.  The oscillation in the eastward beam records acf could be used because 

it is evident in both the amplitude and phase but the other records would still remain.  The best 

procedure, and the one followed here, appears to be to analyze and tag such records, and then 

check the radial velocities for consistency between heights and adjacent data blocks.  The fact 

that at heights near the tail of the E-region radial velocities may not be correct must be borne 

in mind however.  If a vertically directed beam is available, then the half width of the scattering 

region may be estimated if sufficient averaging in time is possible.  Then echoes obtained near 

the tail of the E-region could be checked and rejected if the angular half width was indicative 

of a specular return.  This would allow an approach based on a rejection algorithm rather than 

a maximum likelihood method to be applied. 

The record we have just discussed is quite typical of records obtained in October 1982 at 

heights of 90 km and above.  Since these were generally unsuitable for analysis, acceptance 

rates were somewhat lower in October 1982 than in some other months. 



 

66 

The number of accepted records for data taken in some representative observation periods is 

shown in Figure (3-7) to (3-12).  For the height range 80-96 km for May, July and November 

runs the acceptance rate is clearly very high, while for February and October is more variable. 

 

Figure (3.7) The percentage of accepted data for the May 81 data run. 

 

Figure 3.8(a-d). The data acceptance rates for various beam configurations for the February 82 data 

sets. For details see text. 

In February 1982, Figure (3-8), sporadic E was indicated by observation of the CRO at the field 

site and appeared at heights down to about 90-92km. This reduced the amount of usable data 

available from the higher heights so much so that data from days 054-057, (Figure (3-8b)) 

could not be successfully analyzed to obtain momentum flux measurements.  Figure (3-8c) is 

for data obtained using four beams but with two directed vertically, and two directed in the 

same direction at 11.6 to the zenith, and the data obtained was discussed in Section (2.3.6).   
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Figure (3-gd) is for SA observations and is fairly typical except for the low acceptances below 

84 km. 

 

Figures (3.9 to 3.12). The data acceptance rates for various data runs. For details see text. 

In October 1982, sporadic E also accounted for the high rejection rate about 88km, and low 

SNR's for 78-82 km. These data acceptance rates are only intended to give a measure for each 

run.  Because the beam configurations and transmitter power varied from run to run, the array 

was not calibrated, and receiver gains were controlled in different ways, comparison of data 

acceptance rates between runs is subject to a number of uncertainties. 

The analysis of data acceptance rates will not be pursued here, but there is obviously a great 

deal of important information that can be derived from such studies. The real importance of 

these data acceptance rates is in the analysis of the time series to measure 𝑢′𝑤′̅̅ ̅̅ ̅̅ .  Since this 

quantity may show quite substantial variations in time (Vincent and Reid, 1983), data 

acceptance rates for various heights must be similar if intercomparisons of 𝑢′𝑤′̅̅ ̅̅ ̅̅  measured at 

various heights are to be valid.  We will refer to these acceptance rates in Chapter 6. 
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3.5 Analysis of Radial Velocity Time Series 

The time series of radial velocities from each beam were analyzed with the same basic set of 

programs used for SA observations.  These were modified to cope with the small radial 

velocities, different data formats and areas of interest but were essentially unchanged. They 

were generally used in the following way. 

The radial velocities for each height range were processed so that consecutive 2 minute 

determinations of velocity were averaged to produce one observation at each height at half the 

original record sampling rate. A cubic spline technique was then used to interpolate over small 

gaps in the data.  The resulting time series were then plotted so that the quality of the data could 

be assessed visually. This was necessary because power failures at the field site at the time of 

observation and various ionospheric effects (e.g. sporadic E and HF fadeouts) could produce 

substantial gaps in the data.  The interpolation routine could not cope with such data and the 

following schemes were necessary. 

For power failures, which obviously resulted in a loss of all data for their duration, the time 

series were split into separate computer files, and analyzed as such.  For a time series with 

significant gaps due to ionospheric effects, the interpolation routine was applied to provide a 

value at the basic sampling rate.  These data were then numerically filtered to remove periods 

less than 8 hours.  These low pass values were substituted for the long breaks in the original 

data and the cubic spline interpolation was then applied again.  Periods greater than 8 hours 

were then removed using a numerical filter and this final form of the data was then suitable to 

calculate the variance of the time series for periods less than 8 hours.  Comparison of variances 

of data treated in this way with that produced by analysis of separate files showed that the two 

techniques were equivalent. Since one data file is easier to handle than two, all later data was 

analyzed in this way.  However, great care was taken in setting up the equipment and then 

ensuring that any breaks due to equipment failures were minimized, and in later observational 

periods, breaks in the data due to power failures were compensated for by extending the run so 

that a minimum of three consecutive days of data with no breaks due to equipment failures 

were obtained. 

The filtered time series of radial velocities were cross spectrally analyzed to measure scale and 

for this complete data sets were required.  The time series were split up into consecutive 3, 6 

or l2 hour blocks and these were plotted and examined for breaks in the original data.  If a data 
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block had continuous data for its entire length, it was considered suitable for cross spectral 

analysis.  However, if it contained continuous breaks of more than 10% of its entire length it 

was discarded. 

The tidal and mean components of the wind were calculated using a harmonic fit with 12 and 

24 hour periods to the hourly values of the horizontal and vertical components derived from 

the radial velocities for each 24 hours of data.  Details of this type of analysis can be found in 

Ball (1981) and Vincent and Ball (1981). 

3.6 Summary and Conclusions 

In this Chapter we have considered the analysis of backscatter   time series to obtain the various 

moments of the backscatter Doppler spectrum. The analysis described is quite basic, and 

nothing new has been reported.  However, we would suggest that longer data lengths be 

obtained (~3 min) and that spectral analysis, although more time consuming, is somewhat more 

flexible when assessing data quality above 90 km.  The real confirmation of the analysis 

procedure applied is whether the winds derived from it agree with other methods of 

measurement.  The results of a comparison between Doppler and Spaced Antenna derived 

winds is reported in Chapter 5, and these show quite good agreement. 

In the next Chapter we consider the Doppler Wind technique, and the various beam 

configurations and the parameters that may be obtained are discussed. 
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4. The Coplanar Doppler Radar Beam Experiment 

This Chapter is concerned with the analysis of radial velocity time series measured in multi-

beam or beam swinging Doppler radar experiments.  Particular reference is made to the Dual 

Complementary Coplanar Beam Arrangement (see Chapter 2).  In the first part we examine the 

various assumptions made when the Doppler wind technique is applied to the measurement of 

dynamical parameters of the wind field and their validity for different beam arrangements. In 

the second part we consider the calculation of the horizontal and vertical scale of gravity wave 

motion for the same beam arrangements using cross spectral techniques and the gravity wave 

model of Hines (1960). The measurement of dynamical parameters for scales smaller than the 

radar pulse volume is considered very briefly in Section 4.4. 

4.1 The Measurement of Dynamical Parameters 

The basic theory relating to the idealized Dual Complementary Coplanar Beam experiment 

was introduced by Vincent and Reid (1983).  They demonstrated how radial velocities obtained 

from two narrow Doppler radar beams tilted at + and −  to the zenith could be analyzed to 

obtain a number of useful parameters relating to the mean and fluctuating parts of the wind 

field, the most important of which was the upward flux of horizontal momentum.  In addition, 

they developed a technique to determine the horizontal scales of gravity wave motions that 

were present in the wind field. 

It appears that the first part of the theory mentioned above described a special case of the VAD 

radar technique (see Chapter l). In this method a single radar beam is scanned through azimuth 

angles of from 0° to 360° at a fixed elevation angle.  The mean radial velocity, which is a 

function of the azimuth angle, is then subjected to a Fourier series least squares fit which 

provides the mean horizontal wind, the horizontal divergence of the wind and the stretching 

and shearing deformations (Browning and Wexler, 1968). The variance of the radial velocity 

is similarly processed to obtain the variances and covariances of the components of the wind 

field (Wilson, 1970).  These last two terms are important because they are related to the kinetic 

energy and momentum transfer and deposition respectively. A description of the VAD method 

may be found in Wilson and Miller (1971). 

The technique does not appear to have been used for investigations outside the troposphere and 

lower stratosphere, probably because Doppler radars capable of scanning an azimuthal region 
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in other parts of the atmosphere are quite rare.  For instance, for the mesosphere, such a radar 

relying upon mechanical beam swinging would require a rather large dish antenna and an 

extremely rapid (prohibitive) rotation rate.  A VHF radar with individually phased array 

elements could do it but the number of phase delays required would be 𝑂(5000).  The MU 

radar, presently under construction in Japan, will be capable of this mode of operation (Fukao 

et al, 1980).  One radar that is capable of sampling the wind field of the upper atmosphere in a 

horizontal plane, which is essentially the same as the information obtained from an azimuthal 

scan, is Bribie Island (Brownlie et al., 1973).  The UHF radar previously at Chatanika, and now 

at Sondrestrom, is capable of VAD type operation for the lower atmosphere and has been used 

to obtain mean winds in the troposphere and stratosphere (Peterson and Balsley, 1979; Balsley 

et al., 1977). 

Most of the information that can be obtained from the VAD technique can be obtained from a 

limited number of beams with a suitable choice of beam geometry.  The beam geometry that is 

required can be obtained from any radar capable of swinging a beam through a range of zenith 

angles.  This type of facility is relatively common because the individual array elements can 

be connected in parallel to form rows or columns and swinging the beam is then quite simple 

(see e.g. Section 2.2.2).  With real time computer controlled beam swinging it is entirely 

feasible to relocate a beam in about 1 𝑚𝑠, a period during which the atmosphere can be 

regarded as statistically stationary. If radial velocity time series are obtained from a number of 

zenith angles, the analysis described in Section (4.1) can be easily applied.  In fact, it has some 

advantages over using fixed beams (Section 4.1.2). 

In the following Section we consider the general Equations for the radial velocity measured in 

a Doppler beam experiment and then consider some specific examples of beam geometry that 

lead to useful physical parameters of the wind field.  We will restrict the analysis to a horizontal 

slice through the atmosphere because the assumption of a horizontally homogeneous 

atmosphere (in a statistical sense) is much more general than that of a vertically homogeneous 

atmosphere.  The idealized technique is quite general and can be applied to any part of the 

atmosphere. 

We first consider small scale motions, that is, motions with scales comparable to the spacing 

between the radar beams.  Since both gravity wave and turbulent motions can be viewed as a 

kind of geophysical “noise" the analysis requires a statistical approach to obtain meaningful 

results. 
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Figure (4-1). The right handed co-ordinate system used in this work.  is the azimuth angle and is 

measured clockwise from north (+y axis),  is the zenith angle measured from the vertical (+z axis) 

and (u,v,w) are the components of the wind in the zonal (+x), meridional (+y) and vertical (+z) 

directions. In the text we consider a fixed R and   and the discussion therefore concentrates on radial 

velocities obtained in radar volumes along the locus indicated. 

4.1.1 Small Scale Motions 

Consider a radar located at the origin of a right handed co-ordinate system with East as the +𝑥-

direction and North as the +𝑦 −direction (Figure 4.1).  The instantaneous radial velocity 𝑉𝑅  

measured by this radar at (𝑅, ,) is given by 

𝑽𝑹 (𝑹,, ) = 𝒖(𝑹,, )𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + 𝒗(𝑹, ,)𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + 𝒘(𝑹,, )𝑐𝑜𝑠, (4-1) 

where (𝑢, 𝑣, 𝑤) are the instantaneous zonal, meridional and vertical components of the wind 

respectively and (𝑅,, ) are the range measured along the beam, the beam zenith angle 

measured from the vertical, and the beam azimuth angle measured clockwise from North, 

respectively. 
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We will consider a fixed 𝑅 and 𝜃 (that is, height) and can therefore write 

𝑽𝑹 () = 𝑽𝑹(𝑹,, ),  

if we keep in mind the fact that this refers to one particular position in space.  The mean radial 

velocity is then 

�̅�𝑹 () = �̅�𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + �̅�𝒔𝑖𝑛𝜃 𝑐𝑜𝑠 + �̅�𝒄𝑜𝑠, (4-2) 

where we have dropped the functional dependence notation for the (𝑢, 𝑣, 𝑤) and overbars 

denote a time average. Deviations of 𝑉𝑅  from the mean radial velocity �̅�𝑅   will result from local 

velocity variations related to turbulent and gravity wave motion.  The easiest way to examine 

this is to consider the variance of the fluctuations of the instantaneous radial velocity from the 

mean, that is, the mean square perturbation from the mean. 

The mean square radial velocity is 

𝑉𝑅
′2̅̅ ̅̅ () = (𝑉𝑅() − �̅�𝑅  ()̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅),  

= (𝑢′𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + 𝑣′𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + 𝑤′𝑐𝑜𝑠)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. (4-3) 

Where,  𝑢′ = (𝑢 – 𝑢)̅̅ ̅, 𝑣′ = (𝑣 –  �̅�), 𝑤′ = (𝑤 −  𝑤)̅̅̅̅ , are the instantaneous velocity 

fluctuations from the mean. 

Expanding Equation (4-3) we obtain 

𝑉𝑅
′2̅̅ ̅̅ () = (𝑢′2̅̅ ̅̅ ̅ 𝑠𝑖𝑛2 + 𝑣′2̅̅ ̅̅ 𝑠𝑖𝑛2)𝑠𝑖𝑛2𝜃 + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑠2 +

𝑣′𝑤′̅̅ ̅̅ ̅̅ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + 𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + 𝑢′𝑣′̅̅ ̅̅ ̅̅ sin2θ 𝑠𝑖𝑛2 . 

(4-4) 

which is the general expression for the mean square radial velocity.  Lhermitte (1968) derived 

a similar expression based on Equation (4-1) to investigate turbulence in the boundary layer 

and Wilson (1970) derived Equation (4-4) for the same purpose. 

The (𝑢′2̅̅ ̅̅  , 𝑣′2 ,̅̅ ̅̅ ̅  𝑤′2̅̅ ̅̅ ̅) are the mean square values of the fluctuating components of the wind field, 

that is, twice the kinetic energy per unit mass for the zonal, meridional and vertical components 

respectively. 
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The covariance terms (𝑢′𝑣′̅̅ ̅̅ ̅, 𝑢′𝑤′̅̅ ̅̅ ̅̅ , 𝑣′𝑤′̅̅ ̅̅ ̅̅ ) are the components of the "Reynolds Stress".  These 

correspond to the horizontal momentum flux, the upward flux of zonal momentum and the 

upward flux of meridional momentum, all per unit mass, respectively. 

The most important thing to note about Equation (4-4) is that it contains both variances and 

covariances. This is obviously a fundamental consideration when using the variance of a radial 

velocity.  Generally, the various quantities in this Equation are only useful if they can be 

obtained separately. 

In order to do this, we must make certain assumptions about the horizontal homogeneity of the 

wind field and use a sufficient number of beams to obtain the various quantities in Equation 

(4-4) separately.  All Doppler radars must make this assumption because all measure radial 

velocities in spatially separated parts of the atmosphere.  This requires careful consideration 

and comparison with physically realistic models before it can be applied. However, this is also 

an advantage, because the spatial variation of the wind field may be measured.  With a suitable 

choice of beam geometry, we can separate the variances from the covariances in Equation (4-

4).  Equation (4-4) contains six unknowns and so requires six Equations and the assumption 

that these terms are statistically similar in a horizontal plane to solve.  However, by suitable 

choices of 𝜃 and 𝜙 the number of Equations required (and, of course, the number of parameters 

obtained) is reduced.  For instance, with  =  
𝑛𝜋

2
, 𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, only five Equations or (beam 

positions) are required to obtain the three components of the kinetic energy and the upward 

flux of horizontal momentum.  The Northward flux of Eastward momentum (or vice versa) 

cannot be obtained in this case. 

Another way of reducing the number of beam positions required is to calculate the individual 

terms in Equation (4-4) from their components measured in spatially separated volumes.  This 

places a limitation upon the accuracy of the measurement in that only contributions to the terms 

in Equation (4-4) from scales larger than the spatial separation of the volumes in which the 

parameters are measured will be correct.  The situation is complicated by the differences in the 

relative magnitudes of (𝑢′, 𝑣′, 𝑤′) and the variances and covariances calculated from them 

because some terms will be much larger than others.  For instance, 𝑢′2̅̅ ̅̅  and 𝑣′2̅̅ ̅̅  will dominate 

the other quantities in Equation (4-4) over most of the frequency range between the inertial and 

Väisälä-Brunt frequencies.  Consequently, some spatial covariance estimates are better than 

others.  This is taken up in the next two Sections. 
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Figure (4.2) Schematic representation of the conventional beam configuration used to measure winds 

with a Doppler radar. Radial velocities are measured in a horizontal plane 𝑧 =  𝑅𝑐𝑜𝑠 in each beam. 

𝑙 is the beam separation and is about l7 km for 𝑧 = 84 𝑘𝑚,  =  11.6, (𝑢′, 𝑤′) are the horizontal 

and vertical perturbation velocities and these quantities are a function of position. 

In the next Section we consider the conventional beam configuration used with Doppler radars 

to obtain the vertical and horizontal components of the wind field. Practical considerations such 

as finite beam widths and limited height resolution are considered briefly in Section 4.3.  The 

theory discussed in the rest of this Chapter related directly to the beam configurations available 

when using BP. 

4.1.1.1 Vertical and Off-vertical Beams 

In this Section we consider the basic beam configuration used to measure winds with a Doppler 

radar and examine the assumptions used to obtain the mean and fluctuating components of the 

wind field.  This serves as a useful introduction to the complementary coplanar beam technique 

and highlights the care that must be taken when using such radars. 
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Consider two radar beams directed at + and −  to the zenith in the xz-plane (Figure 4-2).  

With the instantaneous radial velocities measured in these beams written as 

𝑉𝐸 = 𝑉𝑅(𝑅, 𝜃, ) and 𝑉𝑉  =   𝑉𝑅(𝑧), 

where 𝑧 =  𝑅𝑐𝑜𝑠, and  =  90°, respectively, and the radial velocities are obtained from 

Equation (4-2) as 

𝑉𝐸  = (𝑢)𝐸𝑠𝑖𝑛𝜃 + (𝑤)𝐸𝑐𝑜𝑠𝜃, 

 

(4-5) 

𝑉𝑉 =  (𝑤)𝑉, (4-6) 

where the subscript refers to the beam in which the bracketed quantity is measured.  These 

Equations are used to obtain the mean horizontal and vertical components of the wind. 

Rearranging (4-5) we obtain 

(�̅�)𝐸 =
𝑉𝐸−(�̅�)𝐸𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
, (4-5’) 

(In this Chapter, Equations which are rearrangements of other Equations or are the same basic 

Equation expressed in a slightly different way are specified with a prime on the Equation 

number.) 

To measure this quantity, it is assumed that 

𝑉𝑉 =  (𝑤)𝑉 = (𝑤)𝐸 , (4-7) 

so that (4-5') becomes 

(�̅�)𝐸𝑉 =
𝑉𝐸−𝑉𝑉𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
, (4-5’’) 

where (�̅�)𝐸𝑉 is defined by (4-5"). 

Equation (4-7) is equivalent to the assumption that horizontal gradients of the mean wind are 

negligible.  This is reasonable for most of the atmosphere. 

The mean square fluctuation of the zonal velocity, the zonal kinetic energy, is calculated from 

the instantaneous and mean values of Equation (4-5).  In this case, 
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(𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (𝑢 − �̅�)2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,  

= (
𝑉′𝐸−(𝑤′)𝐸𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
. 

(4-8) 

where (𝑉′)𝐸  =  𝑉𝐸  −  �̅�𝐸 , and  (𝑤′)𝐸  =   (𝑤)𝐸  −  (�̅�)𝐸   are the instantaneous fluctuations 

from the mean.  Expanding (4-8) we obtain 

(𝑢′2̅̅ ̅̅ ̅)𝐸 =
𝑉𝐸

′2̅̅ ̅̅ + (𝑤′2̅̅ ̅̅ ̅̅ )𝐸𝑐𝑜𝑠2𝜃 − 2𝑉𝐸
′(𝑤′)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
 

(4-9) 

To measure this quantity, the assumptions made are that 

(𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝑉  (4-10) 

and 

𝑉′𝐸(𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐸 = 𝑉′𝐸(𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉 (4-11) 

in which case (4-9) becomes 

(𝑢′2̅̅ ̅̅ ̅)𝐸 =
𝑉𝐸

′2̅̅ ̅̅ + (𝑤′2̅̅ ̅̅ ̅̅ )𝑉𝑐𝑜𝑠2𝜃 − 2𝑉𝐸
′(𝑤′)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
 

(4-9’) 

Equation (4-10) is straightforward if the statistics of the motions are assumed to be independent 

of horizontal position, but (4-11) requires further consideration.  Expanding the LHS of (4-11) 

we obtain 

𝑉′
𝐸(w′)𝐸

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (u’)𝐸(w’)𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ sinθ + (w′2)̅̅ ̅̅ ̅̅ ̅

𝐸cosθ  

and for the RHS 

𝑉′
𝐸(w′)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (u’)𝐸(w’)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ sinθ + (w′)𝐸(w′)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅cosθ  

so that implicit in (4-11) is the assumption that 

(u’)𝐸(w’)𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (u’)𝐸(w’)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-11’) 

 



 

79 

(w′)𝐸(w′)𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (w′)𝐸(w′)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4-11’’) 

Combining (4-10) and (4-11’, 4-11") we note that any time 𝑢′2̅̅ ̅̅  is calculated from a vertical 

and off-vertical beam, the assumptions made are that 

𝑢′𝑤′̅̅ ̅̅ ̅̅ = (u’)𝐸(w’)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (w′2)̅̅ ̅̅ ̅̅ ̅

𝑉 = (w′)𝐸(w′)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4-12) 

We may rewrite (4-9’) using the terms in (4-12) so that 

(𝑢′2̅̅ ̅̅ ̅)𝐸𝑉 = (𝑢′2̅̅ ̅̅ ̅)𝐸 + [(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 + (w′2)̅̅ ̅̅ ̅̅ ̅

𝑉 − (w′)𝐸(w′)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]cot2θ 

+2[(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐸 − (u’)𝐸(w’)𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]cotθ 

 

 (4-13) 

If we consider the contribution to (𝑢′2̅̅ ̅̅ ̅)𝐸𝑉  due to a single gravity wave, then Equation (4-13) 

is dependent on both frequency and scale.  The easiest way to consider this is to calculate the 

ratio of (𝑢′2̅̅ ̅̅ ̅)𝐸𝑉  to the true value (𝑢′2̅̅ ̅̅ ̅)𝐸 and apply the polarization relations given by Hines 

(1960) which relate the peak vertical and horizontal perturbation velocities.  These are 

𝑤′0  =  𝐴𝑍 =   𝐴𝜔0
2 (𝜔2 − 𝑘𝑥

2𝑐2)  

𝑢′0 = 𝐴𝑋 = 𝐴𝜔0𝑘𝑥𝑐2(𝑘𝑧 − 𝑖
(2 − 𝛾)

(2𝛾𝐻)
) 

(4-14) 

respectively, where 𝛾 is the ratio of specific heats, 𝐻 the pressure scale height, 𝐴 an arbitrary 

amplitude and 𝑐 is the speed of sound. 

The instantaneous perturbation velocities of a single gravity wave of angular frequency 𝜔0, 

peak perturbation velocities (𝑢’, 𝑤’) and horizontal and vertical wave numbers (𝑘𝑥  , 𝑘𝑧  ) can 

be expressed in terms of 𝑅 and 𝜃 as 

(𝑢′, 𝑤′) = (𝑢′0, 𝑤′0) 𝑒𝑖(𝜔0𝑡−𝑘𝑥𝑙−𝑘𝑧𝑧) (4-15) 

where 𝑙 = 𝑅𝑠𝑖𝑛𝜃, 𝑧 = 𝑅𝑐𝑜𝑠𝜃, and we may include any arbitrary phase variation in the time 

term. 
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If the statistics of the motions are homogeneous in a horizontal plane, we may write 

(𝑢′2̅̅ ̅̅ ̅)𝐸 = 𝑢′2̅̅ ̅̅ (𝑧)  

(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (w′2)̅̅ ̅̅ ̅̅ ̅

𝑉 = 𝑤′2̅̅ ̅̅ ̅(𝑧)  

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐸 = u′w′̅̅ ̅̅ ̅̅ (z) (4-16) 

which are much more general assumptions than those contained in Equation (4-12), because 

there is no requirement for spatial covariances to be calculated.  If (4-16) is valid than we may 

write Equation (4-13) as 

(𝑢′2̅̅ ̅̅ ̅)𝐸𝑉 = 𝑢′2̅̅ ̅̅ + 2[𝑤′2̅̅ ̅̅ ̅ − (w′)𝐸(w′)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]cot2θ 

+2[𝑢′𝑤′̅̅ ̅̅ ̅̅ − (u’)𝐸(w’)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]cotθ 

 

 (4-13’) 

Now 

𝑢′2̅̅ ̅̅ =
𝐴2

2
𝜔0

2𝑘𝑥
2𝑐4(𝑘𝑧

2 + 𝐵2) (4-17) 

𝑤′2̅̅ ̅̅ ̅ =
𝐴2

2
𝜔0

2(𝜔0
2 − 𝑘𝑥

2𝑐2)2 (4-18) 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝐴2

2
𝜔0

2𝑘𝑥𝑐2𝑘𝑧(𝜔0
2 − 𝑘𝑥

2𝑐2)  (4-19) 

where 𝐵 =  
( 2−𝛾)

2𝛾𝐻
   and 

𝑤′
𝐸𝑤′

𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑤′
𝐸𝑤′∗

𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2
=

𝐴2

2
𝜔0

2(𝜔0
2 − 𝑘𝑥

2𝑐2)2[cos(𝑘𝑥𝑙)] 

= 𝑤′2̅̅ ̅̅ ̅[cos(𝑘𝑥𝑙)] 

(4-20) 

where ∗ = complex conjugate 
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𝑢′
𝐸𝑤′

𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑢′
𝐸𝑤′∗

𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2

=
𝐴2

2
𝜔0

2 𝑘𝑥  𝑐2𝑘𝑧(𝜔0
2 − 𝑘𝑥

2𝑐2)[cos(𝑘𝑥𝑙)] −
𝐵

𝑘𝑧
sin (𝑘𝑥𝑙)] 

= 𝑢′𝑤′̅̅ ̅̅ ̅̅ [cos(𝑘𝑥𝑙)] −
𝐵

𝑘𝑧
sin (𝑘𝑥𝑙)] 

 

 

(4-21) 

so that 

(𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉 = 𝑢′2̅̅ ̅̅ + 2𝑤′2̅̅ ̅̅ ̅[1 − cos(𝑘𝑥𝑙)]𝑐𝑜𝑡2𝜃

+ 2𝑢′𝑤′̅̅ ̅̅ ̅̅ [1 − cos(𝑘𝑥𝑙) +
𝐵

𝑘𝑧
sin(𝑘𝑥𝑙)] 𝑐𝑜𝑡𝜃 

(4-22) 

and 

(𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉

𝑢′2̅̅ ̅̅ = 1 +
2(𝜔0

2 − 𝑘𝑥
2𝑐2)2

𝑘𝑥
2𝑐4(𝑘2 + 𝐵2)

[1 − cos(𝑘𝑥𝑙)]𝑐𝑜𝑡2𝜃

+
2𝑘𝑧(𝜔0

2 − 𝑘𝑥
2𝑐2)

𝑘𝑥𝑐2
[1 − cos(𝑘𝑥𝑙) +

𝐵

𝑘𝑧
sin(𝑘𝑥𝑙)] 𝑐𝑜𝑡𝜃 

(4-23) 

Equation (4-23) can be evaluated for a given 𝜔0 and 𝑘𝑥, with 𝑘𝑧, being obtained from the 

dispersion relation.  Figure (4-3a) illustrates this Equation evaluated for a number of wave 

periods for typical mesospheric values of 𝐵, 𝑐, 𝜔𝑎 𝑎𝑛𝑑 𝜔𝑔 . The case illustrated corresponds to 

a range of 86 km. and a zenith angle of 11.6°, and so the height is ~84 km.  𝑘𝑧 is negative and 

𝑘𝑥  positive, but the same results would be obtained for 𝑘𝑧 positive and 𝑘𝑥 negative. For this 

range and tilt angle, the horizontal separation of the beams is about 17 km and this corresponds 

to the minimum in the curves.  This is physically reasonable because the perturbation velocities 

are in phase and the assumptions in Equation (4-12) will be true. 
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Figure (4.3a) (left) The horizontal kinetic energy calculated using spatial covariance estimates 

normalized with respect to the correct value for waves propagating in the +𝑘𝑥   direction with 

downward phase progression. The same result would be obtained for (−𝑘𝑥 , +𝑘𝑧).  The curves are 

plotted for a height of 84km and an off-vertical angle of 11.6°. 

Figure (4.3b) (right) As for 4.3a but two periods are plotted for propagation in the +x and -x directions 
for downward phase progression. 

At twice the beam separation (~35 km.) the measured value of (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉  shows the worst 

agreement with the expected value 𝑢′2̅̅ ̅̅ . This corresponds to the case for which the perturbation 

velocities are in anti-phase and the spatial covariance estimate terms in Equation (4-12) will be 

equal and opposite to the true values. For the case of 𝑘𝑧 and 𝑘𝑥 both negative, we have plotted 

only two periods, 12 min and 180 min, in Figure (4-3b). Also shown on this diagram are the 

values of Equation (4-23) for 𝑘𝑥 positive and 𝑘𝑧 negative. It is clear from this diagram that the 

12-minute period wave is quite similar for both directions of horizontal propagation, whilst the 

plot for the 180-minute period wave exhibits considerable symmetry about 
(𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝐸𝑉

𝑢′2̅̅ ̅̅ ̅ = 1. 

Consequently, for a wave field in which the propagation directions are isotropic in the plane of 

the beams, a motion with a 12-minute period will have its horizontal kinetic energy incorrectly 

measured, whilst the same quantity measured for a motion with a 180-minute period will be 

quite close to the correct value. However, if there is a preferred direction of propagation, the 

horizontal kinetic energy of even this period will be incorrectly measured for scales less than 

about 100 km (10% error at this wavelength).  This is a distinct possibility because some gravity 

wave may be removed by critical layer interactions (see e.g. Booker and Bretherton, 1967). 
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Figure (4.3c) As for (4.3a) but for a wave field in which equal numbers of similar waves are propagating 

in the +x and -x directions 

Figure (4-3c) illustrates the horizontal kinetic energy as measured by this beam arrangement 

for an isotropic wave field for four periods.  It is clear that at 𝑇 =  36 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, there will be 

substantial errors in (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉  if horizontal scales of less than about l50 km are present. The 

results for 𝑇 =  60 𝑎𝑛𝑑 180 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 are better, but it is clear than at 𝑇 =  60 𝑚𝑖𝑛., the 

measured value of (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉  is an overestimate of the correct value 𝑢′2̅̅ ̅̅ . 

Figure (4-3d) is from Vincent and Reid (1983) and shows the mean zonal wavelength plotted 

as a function of wave period for three days of observation in May 1981. These results were 

obtained with the DCC beam arrangement and the analysis described in Section (4-2).  If these 

results are typical, then the spatial covariance estimates of 𝑢′2̅̅ ̅̅  are probably acceptable for an 

isotropic wave field for periods greater than about 60 minutes. 
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Figure (4-3d) Mean zonal wavelength plotted as a function of wave period for May 1981 results (after 

Vincent and Reid, 1983) 

Inspection of Equation (4-23) indicates that the second term is symmetrical in 𝑘𝑥 and 𝑘𝑧, and 

so is independent of the direction of propagation of the waves that contribute to it.  The last 

term is not, and it is this term that produces the variation in (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉  with the direction of 

propagation.  The relative magnitudes of 𝑢′2̅̅ ̅̅ , 𝑤′2̅̅ ̅̅ ̅  and 𝑢′𝑤′̅̅ ̅̅ ̅̅   are important in this respect, and 

Figures (4-3e and f) illustrate 
𝑤′2̅̅ ̅̅ ̅

𝑢′2̅̅ ̅̅ ̅ and 
𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝑢′2̅̅ ̅̅ ̅  for a number of wave periods respectively. 

It is important to note that 𝑢′𝑤′̅̅ ̅̅ ̅̅   is a signed quantity, and if the wave field is isotropic, it will 

take a value of 0 in this elementary case.  𝑤′2̅̅ ̅̅ ̅ is not, and from (4-3e) it is obvious that this 

quantity is most important for the shortest wave periods and is inconsequential at 𝑇 =

 180 𝑚𝑖𝑛𝑢𝑡𝑒𝑠. At this period, the important contribution to (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉  is from the last term in 

Equation (4-23). 

 
 

Figure (4.3e) (left) The ratio of the vertical and the horizontal perturbation velocities calculated from 

the polarization relations for a number of wave periods and horizontal scales. 

Figure (4.3f) The ratio of the Reynolds stress to the horizontal kinetic energy for propagation in the +x 

direction and downward phase progression calculated from the polarization relations. The ratio for 

propagation in the -x direction and downward phase progression is equal in magnitude to those plotted 

but opposite in sign for each period and horizontal wavelength. 
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To illustrate how dependent Equation (4-23) is on , Figure (4-3g) shows the results for a 

gravity wave of 60 minutes’ period plotted against horizontal scale for three tilt angles,  = 5°, 

11.6° and 15° at a height of 84 km. It is clear that at any of these tilt angles, the shortest scale 

that could be correctly measured would be about l50 km.  The results for the two largest angles 

are quite similar and these are somewhat better than those for  = 5. It would appear that 

spatial covariance estimates of the horizontal kinetic energy should be avoided if wave scales 

of less than 100 km and periods of less than about one hour are of interest, and this can be done 

by calculating the mean square radial velocities for each beam separately. 

 

Figure (4.3g) The horizontal kinetic energy calculated using, spatial covariance estimates normalized 

with respect to the correct value, for three off-vertical beam angles, for propagation in the +x direction 

with downward phase progression for a wave of period 60 minutes. 

This is also of some interest because with some Doppler radars, no measurement of the vertical 

wind is available and radial velocities are obtained from off-vertical beams only.  These are 

then analyzed using the assumption that the vertical component of the wind is negligible when 

compared with the horizontal component. For instance, this scheme was used in November 

1980 at BP to compare the Doppler radar technique with the SA method.  We now consider the 

validity of estimating the mean square horizontal velocity from the radial velocity measured in 

an off-vertical beam. 

The mean square radial velocity measured in a beam at + to the zenith in the x-z plane is 

given by 
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𝑉𝐸
′2̅̅ ̅̅ = 𝑢𝐸

′2̅̅ ̅̅ 𝑠𝑖𝑛2𝜃 + 𝑤𝐸
′2̅̅ ̅̅ ̅𝑐𝑜𝑠2𝜃 + 2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐸𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (4-24) 

and the estimate of 𝑢′2̅̅ ̅̅  is obtained from 

𝑉𝐸
′2̅̅ ̅̅

𝑠𝑖𝑛2𝜃
= 𝑢𝐸

′2̅̅ ̅̅ + 𝑤𝐸
′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 + 2𝑢′𝑤′̅̅ ̅̅ ̅̅

𝐸𝑐𝑜𝑡𝜃 
(4-24’) 

It is evident from Equation (4-24’) that better estimates of 𝑢′2̅̅ ̅̅  can be obtained from larger 

values of . 

With the assumption that 

(𝑢′2̅̅ ̅̅ ̅)𝐸 = 𝑢′2̅̅ ̅̅ (𝑧)  

(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = 𝑤′2̅̅ ̅̅ ̅(𝑧)  

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐸 = u′w′̅̅ ̅̅ ̅̅ (z) (4-25) 

we obtain after normalizing Equation (4-24’) with respect to 𝑢′2̅̅ ̅̅   and applying the polarization 

relations 

𝑉𝐸
′2̅̅ ̅̅

𝑠𝑖𝑛2𝜃
⁄

𝑢′2̅̅ ̅̅ = 1 +
(𝜔0

2 − 𝑘𝑥
2𝑐2)

𝑘𝑥
2𝑐4(𝑘2 + 𝐵2)

𝑐𝑜𝑡2𝜃 +
2𝑘𝑧(𝜔0

2 − 𝑘𝑥
2𝑐2)

𝑘𝑥𝑐2(𝑘2 + 𝐵2)
𝑐𝑜𝑡𝜃 

(4-26) 

This Equation is plotted in Figure (4-4a) for a number of wave periods.  However, it is more 

instructive to consider an isotropic wave field 1n which case the last term will be zero.  This is 

plotted in Figure (4-4b).  It is clear from this diagram that the error in the estimate of 𝑢′2̅̅ ̅̅  is 

about 15% for most scales for T= 60 min, which is probably an acceptable error.  At shorter 

periods the error increases until it is quite substantial T = 12 minutes. One hour would appear 

to be the minimum time resolution that could be obtained in this case. 
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Figure (4.4a) (left) The estimate of horizontal kinetic energy obtained from a single off-vertical beam 

at a height of 84 km. and tilt angle of 11.6°. The case plotted corresponds to propagation in the -k 

direction with downward phase progression. 

Figure (4.4b) (right) As for 4.4a but for wave field in which equal numbers of similar waves are 

propagating in the +x and -x directions. In this case, the Reynolds stress is zero. 

Note that we have written the LHS of Equation (4-26) as 
𝑉𝐸𝑊

′2̅̅ ̅̅ ̅̅

𝑢′2̅̅ ̅̅ ̅  in Figure (4-4b). This is because 

these results also apply for the DCC beam arrangement in which one beam is directed 

Eastwards and another Westwards.  In this case, however, these results are quite general and 

the wavefield does not have to be isotropic.  We will discuss this arrangement in the next 

Section and the usefulness of this diagram in Section (4-3-4). If a vertically directed beam is 

available, then the second term in Equation (4-24') can be removed.  In this case, if the wave 

field is isotropic, the measured value of 𝑢′2̅̅ ̅̅  will be exact.  The general expression for the 

quantity measured when a vertical beam is available is 

𝑉𝐸𝑉
′2̅̅ ̅̅̅ =

𝑉𝐸
′2̅̅ ̅̅ − 𝑉𝑉

′2̅̅ ̅̅ 𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛2𝜃
 (4-27) 

= 𝑢𝐸
′2̅̅ ̅̅ + ((𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝐸 − ((𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑉)𝑐𝑜𝑡2𝜃

+ 2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅
𝐸𝑐𝑜𝑡𝜃 

 

Where 𝑉𝐸𝑉
′2̅̅ ̅̅̅is defined by (4-27). 

If the wave field is statistically similar in a horizontal plane, then we may apply Equations (4-

16) and 

𝑉𝐸𝑉
′2̅̅ ̅̅̅ = 𝑢𝐸

′2̅̅ ̅̅ + 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑡𝜃 (4-27’) 
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Note that without an additional beam at - to the zenith, where  can be any angle such that 

0<</2 in the same vertical plane, there is no way of separating these terms unless the scale 

and period of the wave are known (see Section 4.3.4).  The accuracy of this expression depends 

upon the momentum flux term and because 𝑢′𝑤′̅̅ ̅̅ ̅̅  is a signed quantity, it is not possible to 

calculate the contribution of this term to Equation (4-27) from the polarization relations without 

additional information about the isotropy of the gravity wave field.  However, we can obtain a 

measure of the error in this estimate of 𝑢′2̅̅ ̅̅ . Observational evidence indicates that for periods 

between about 8 hours and the Väisälä-Brunt period (~5 minutes), energy is partitioned 

approximately equally for periods of 8-2 h and periods 2h-5 min (see e.g. Vincent and Ball, 

1981; Vincent, 1984). 

Reasonable estimates of momentum flux for 85 km for periods less than about 8 hours are 

about 1 m2s-2 (Chapter 6) and it can be shown that this will be partitioned so that about 2/3 of 

the total momentum flux is due to periods less than about 2h (Chapter 6). 

The error in Equation (4-27') can then be obtained by normalizing with respect to u'2 such that 

𝑉𝐸𝑉
′2̅̅ ̅̅̅

𝑢′2̅̅ ̅̅ = 1 +
2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐸𝑐𝑜𝑡2𝜃

𝑢′2̅̅ ̅̅  (4-28) 

This will be about 8% for periods between 8 and 2 h, and about 16% for periods less than 2 h, 

where we have taken 𝑢′2̅̅ ̅̅ ~ 200 m2s-2 for both of these period ranges for  =  11.6°.  These 

errors are also probably acceptable. For  =  15°, the corresponding errors will be about 6% 

and 12% respectively. 

It is apparent that better estimates of 𝑢′2̅̅ ̅̅  can be obtained for periods less than l80 min and 

scales less than 100 km by calculating the mean square radial velocities and not resorting to 

the spatial covariance estimates. This is made particularly clear by considering an isotropic 

wave field, in which case Equation (4-27) is exact, whereas Figure (4-3c) indicates that 

application of Equation (4-9') may lead to considerable errors for scales less than about 150 

km. 

Turning now to the Reynolds stress term 𝑢′𝑤′̅̅ ̅̅ ̅̅ , we can obtain 

𝑉𝐸
′2̅̅ ̅̅ = (𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝐸𝑠𝑖𝑛2𝜃 + (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑐𝑜𝑠2𝜃 + 2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐸𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (4-24) 



 

89 

𝑉𝑉
′2̅̅ ̅̅ = (𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝑉  (4-29) 

Following a similar scheme to that used to obtain Equation (4-9') w 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 =
𝑉′𝐸𝑉′𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑉

′2̅̅ ̅̅ 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 (4-30) 

the Reynolds stress.  Using Equations (4-5), (4-6) and (4-24) this can be expanded to 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 = (𝑢′)𝐸(𝑤′)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + [2(𝑤′)𝐸(𝑤′)𝑉 − (𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝐸 − (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑉]

𝑐𝑜𝑡𝜃

2
 (4-30’) 

If Equation (4-16) is true then this is 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 = (𝑢′)𝐸(𝑤′)𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + [(𝑤′)𝐸(𝑤′)𝑉 − 𝑤′2̅̅ ̅̅ ̅]𝑐𝑜𝑡𝜃 (4-30’) 

In Terms of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′2̅̅ ̅̅ ̅ this becomes 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 = (𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅) [cos(𝑘𝑥𝑙) −
𝐵

𝑘𝑧
sin(𝑘𝑥𝑙)] + (𝑤′2̅̅ ̅̅ ̅̅ [cos(𝑘𝑥𝑙) − 1]𝑐𝑜𝑡𝜃 (4-30’’) 

Writing (4-27) in terms of 𝜔0, 𝑘𝑥 and 𝑘𝑧 and normalizing with respect to (𝑢′𝑤′̅̅ ̅̅ ̅̅ ) we obtain after 

some rearranging 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅)𝐸𝑉

𝑢′𝑤′̅̅ ̅̅ ̅̅ = cos(𝑘𝑥𝑙)

+ 𝑐𝑜𝑡𝜃
𝐵𝑘𝑥c2sin(−𝑘𝑥𝑙) + (𝜔0 − 𝑘𝑥𝑐2)[cos(𝑘𝑥𝑙) − 1]

𝑘𝑥𝑐2𝑘𝑧
 

(4-30’’) 

Equation (4-31) may be evaluated for a given 𝜔0, and 𝑘𝑥 as before, with 𝑘𝑧 being obtained 

from the dispersion relation. 
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Figure (4.5a) The Reynolds stress measured using spatial covariance estimates normalized with respect 

to the correct value for a height of 84 km. and an off-vertical beam angle of 11.6°. Propagation is in 

the +x direction with downward phase progression. 

Figure (4-5a) illustrates this Equation evaluated for a number of wave periods for R = 86 km 

and  =  11.6°.  𝑘𝑧 is negative and 𝑘𝑥 positive for this illustration, but the same result would 

be obtained for 𝑘𝑧 positive and 𝑘𝑥  neqative. 

These results can be interpreted in much the same way as those for (𝑢′2̅̅ ̅̅ ̅)𝐸𝑉 .  Note that unlike 

𝑢′2̅̅ ̅̅  measured using this beam configuration, longer period waves are affected almost as much 

as shorter period waves so that averaging the data over longer periods will not improve the 

measurement. In addition, because 𝑐𝑜𝑠(𝑘𝑥  𝑙) is a symmetric function for values of 𝑘𝑥  𝑙 of 

interest, application of Equation (4-31) in the presence of an isotropic wave field, which should 

result in 𝑢′𝑤′̅̅ ̅̅ ̅̅  =   0 in this case, will lead to errors in the measurement for all scales less than 

about 200 km. 
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Figure (4.5b) (left) As for Figure 4.5a but for a wave of 180 minutes’ period propagating in the +x 

direction, and another of the same period propagating in the -x direction, and Figure 4.5c (right) As 

for 4.5b but for a wave of 36-minute period. 

 

Figure (4.5d) The difference of the normalized estimate of the Reynolds stress from the correct value of 

zero for a wave field in which equal numbers of similar waves are travelling in the +x and -x directions 

with downward phase progression for two off-vertical beam angles. 

To illustrate this, we have plotted Equation (4-31) for two periods, T = 36 min, and T = l80 

min. for (-𝑘𝑥,- 𝑘𝑧) and (+𝑘𝑥,- 𝑘𝑧) in Figure (4-5b and c).  The difference of 
(𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )𝐸𝑉

𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅
 for each of 

these cases should be zero and in Figure (4-5d) we have plotted the measured value of 
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(𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ )𝐸𝑉

𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅
 for an isotropic wave field by two tilt angles.  It is clear that there will be substantial 

errors in (𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅)𝐸𝑉 for scales less than about 150 km, but that T = l80 min will lead to the best 

measurement of (𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅)𝐸𝑉. 

 

 

 

Figure (4.5f) (top left) The estimate of the Reynolds stress normalized with respect to the 

correct value for a 180-minute period wave and an off-vertical beam angle of 5°. Wave 

propagation is in the +x-direction with downward phase progression.  

Figure(4.5g) (bottom left) As for 4.5f but for an off-vertical angle of 11.6°  

Figure(4.5h) (right) As for Figure(4.5g) but for an off-vertical angle of 15°. 

Because gravity waves are free to take a range of values of 𝑘𝑥 and  𝑘𝑧 for a given 𝜔0, the 

separation of horizontal scales cannot be achieved by filtering radial velocity time series, unless 

there is independent evidence for a relation between 𝜔0,  and 𝑘𝑥. This means that if a significant 
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proportion of the shorter horizontal wavelength waves are contributing to the total Reynolds 

stress, this beam configuration is of limited use for this value of .  

Figures (4-5f, g, and h) show Equation (4-31) evaluated for three tilt angles,  =

 5, 11.6 𝑎𝑛𝑑 15° for a wave period of 180 minutes.  From this diagram it is clear that smaller 

tilt angles will increase the accuracy of the measurements at shorter scales for this period. Since 

theory cannot predict which scales contribute most to the total Reynolds stress, the only way 

to check Equation (4-30) is by comparison with a technique that is not dependent on scale.  The 

complementary coplanar beam method is such a technique.  This is considered in the next 

Section. 

4.1.1.2 Two Complementary Coplanar Beams 

 

Figure (4.6) Schematic representation of the two dimensional radar situation in which two 

narrow radar beams are directed at angles + and - to the zenith. In the nomenclature 

outlined in Chapter 2, this is the DCC-beam arrangement. 

We now consider two complementary coplanar beams. This beam arrangement simplifies the 

statistics considerably, because of its symmetry, and the quantities measured are independent 

of the scales of the motions present.  No assumptions are required about the kind of motion that 

is present and both turbulent scales larger than the radar pulse volume and gravity wave 

contributions can be measured, although they cannot be separated unless wave motions are 

identified, and this can be done 1n principle only for coherent waves.  However, the effects of 
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the Reynolds stress on the mean flow do not depend on the type of motion that produces it.  

The derivation of Equations (4-33 to 4-37) in this Section follows that of Vincent and Reid 

(1983). 

Consider two radar beams directed at equal and opposite angles  to the zenith in the xz-plane 

(Figure 4-6). Then  =  90, 270°. 

Writing 

𝑉𝐸
′2̅̅ ̅̅ = 𝑉𝑅

′2(90)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑉𝑊
′2̅̅ ̅̅ = 𝑉𝑅

′2(270)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

where the radial velocities are measured at the same height 𝑧 =   𝑅𝑐𝑜𝑠, and substituting into 

Equation (4-4) we obtain 

𝑉𝐸
′2̅̅ ̅̅ = (𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝐸𝑠𝑖𝑛2𝜃 + (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑐𝑜𝑠2𝜃 + 2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐸𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (4-24) 

𝑉𝑊
′2̅̅ ̅̅ = (𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝑊𝑠𝑖𝑛2𝜃 + (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑊𝑐𝑜𝑠2𝜃 + 2(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (4-32) 

where the subscript refers to the beam in which the bracketed quantity is measured. If the 

statistics of the motions are assumed to be independent of horizontal position, then 

(𝑢′2̅̅ ̅̅ ̅)𝐸 = (𝑢′2̅̅ ̅̅ ̅)𝑊 = 𝑢′2̅̅ ̅̅ (𝑧)  

(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (w′2)̅̅ ̅̅ ̅̅ ̅

𝑊 = 𝑤′2̅̅ ̅̅ ̅(𝑧)  

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐸 = (𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊 = u′w′̅̅ ̅̅ ̅̅ (z) (4-33) 

These assumptions are rather more general than those described by Equation (4-12).  Unlike 

the latter assumptions, they do not involve any spatial covariance estimates. 

Subtracting (4-32) from (4-24) gives 

𝑉𝐸
′2̅̅ ̅̅ − 𝑉𝑊

′2̅̅ ̅̅ = 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑠𝑖𝑛2𝜃 

that is, 



 

95 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34) 

Adding (4-19) and (4-17) and rearranging gives 

𝑢′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 =
𝑉𝐸

′2̅̅ ̅̅ + 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑉𝐸𝑊

′2̅̅ ̅̅ ̅ (4-35) 

where 𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ is defined by (4-35).  For two beams at + and - to the zenith in the yz-plane with 

𝑉𝑁
′2̅̅ ̅̅ = 𝑉𝑅

′2(0)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝑉𝑆
′2̅̅ ̅̅ = 𝑉𝑅

′2(180)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

similar expressions to those of (4-34) and (4-35) apply. In this case 

𝑣′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝑁

′2̅̅ ̅̅ − 𝑉𝑆
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-36) 

𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 =
𝑉𝑁

′2̅̅ ̅̅ + 𝑉𝑆
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑉𝑁𝑆

′2̅̅ ̅̅̅ (4-37) 

where 𝑉𝑁𝑆
′2̅̅ ̅̅̅ is defined by (4-37).  Equations (4-34) and (4-36) indicate that the upward flux of 

momentum can be obtained from two complementary coplanar beams without a direct 

measurement of the vertical component of the wind.  Since this last parameter is difficult to 

measure, this beam arrangement has a practical advantage over a vertical and off-vertical beam 

independent of considerations of scale and frequency dependence.  It is interesting to note that 

Lhermitte (1968) obtained Equation (4-21) to investigate turbulence in the boundary layer and 

that Vincent and Reid (1983) arrived at it independently. 

Equations (4-35) and (4-37) indicate that to obtain the horizontal and vertical kinetic energy 

separately using the assumptions in Equation (4-33) only, an additional beam is required. 

Note that the major assumption made in this derivation is that the statistics of the motions are 

independent of horizontal position.  Fritts (1984) has pointed out that gravity waves with small 

horizontal scales will influence the mesosphere very near their source, possibly producing 

substantial spatial inhomogeneity in the momentum flux terms described by Equations (4-34) 

and (4-36) and the other terms in Equation (4-33).  On the other hand, large scale gravity waves 
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can propagate large distances horizontally before arriving in the mesosphere and can therefore 

be expected to produce a much more homogeneous flux.  This means that there may be some 

natural limit to the technique.  However, this is only likely to become evident when widely 

separated regions of the atmosphere are observed.  For propagating gravity waves and the beam 

separation we are considering here, the assumptions described by Equation (4-33) are 

reasonable. It is interesting to note that to measure the horizontal and vertical kinetic energy 

accurately for all scales a minimum of three coplanar beam positions are required.  This is 

obvious from either (4-24) or 4-32) if each bracketed quantity is treated as a separate parameter, 

because there are three unknowns, and three Equations, or equivalently, three beam positions, 

are required to obtain them separately. 

Equations (4-35) and (4-37) indicate that we cannot separate the vertical and horizontal kinetic 

energy. However, if we normalize Equation (4-35) with respect to 𝑢′2̅̅ ̅̅ , then we can obtain an 

indication of those periods for which 𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ is a good approximation to 𝑢′2̅̅ ̅̅ . This ratio has 

previously been plotted as Figure (4-4b).  Inspection of this diagram indicates that at all scales 

the horizontal kinetic energy for periods greater than about 60 minutes can be obtained with an 

error of less than 10% and this is acceptable. Consequently, at this beam angle and height 

(11.6°, 84 km) the momentum flux 𝑢’𝑤’̅̅ ̅̅ ̅ or 𝑣’𝑤’̅̅ ̅̅ ̅ can be obtained for any period and horizontal 

scale and the horizontal kinetic energy 𝑢′2̅̅ ̅̅  or 𝑣′2̅̅ ̅̅  can be obtained for periods greater than about 

60 minutes. 

To emphasize the problems inherent in using spatial covariance estimates, we can derive an 

expression for the zonal kinetic energy which involves spatial covariances from two 

complementary coplanar beams.  To do this we anticipate the next Section in which we will 

consider the larger scale motions. 

If we consider the expression for the mean wind in the xz- plane calculated from two beams at 

+ and − respectively, we obtain (see next Section, Equation (4-43)) 

𝑢0̅̅ ̅ =
𝑉𝐸
̅̅ ̅ − 𝑉𝑊

̅̅ ̅̅

2𝑠𝑖𝑛𝜃
 

which is rather similar to Equation (4-5'). In principle the zonal kinetic energy can be calculated 

from this expression in a similar way to that used to calculate this quantity from (4-5').  From 

the instantaneous and mean values of (4-43) we can obtain 
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𝑢0
′2̅̅ ̅̅ = (𝑢0 − 𝑢0̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-38) 

This can be expanded to obtain (Appendix 4) 

𝑢0
′2̅̅ ̅̅ =

1

4
((𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝐸 + (𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝑊 + 2(𝑢′)̅̅ ̅̅ ̅

𝐸(𝑢′)̅̅ ̅̅ ̅
𝑊)

+
((𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝐸 + (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑊 − 2(𝑤′)̅̅ ̅̅ ̅̅

𝐸(𝑤′)̅̅ ̅̅ ̅̅
𝑊)

4𝑡𝑎𝑛2𝜃

+
((𝑢′)𝐸(𝑤′)𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑢′)𝑊(𝑤′)𝑊

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑢′)𝐸(𝑤′)𝑊
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + (𝑢′)𝑊(𝑤′)𝐸

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2𝑡𝑎𝑛𝜃
 

(4-38’) 

Equation (4-38’) requires the following assumptions to be valid 

(𝑢′2̅̅ ̅̅ ̅)𝐸 = (𝑢′2̅̅ ̅̅ ̅)𝑊 = (𝑢′)𝐸(𝑢′)𝑊
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(w′2)̅̅ ̅̅ ̅̅ ̅
𝐸 = (w′2)̅̅ ̅̅ ̅̅ ̅

𝑊 = (𝑤′)𝐸(𝑤′)𝑊
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐸 = (𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊 = (𝑢′)𝐸(𝑤′)𝑊
′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑢′)𝑊(𝑤′)𝐸

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4-39) 

The first two terms of these three Equations are just those contained in (4-39).  The others are 

additional assumptions which are scale and frequency dependent. Equation (4-38’) may be 

expressed in terms of the polarization relations for a single gravity wave as before to obtain 

𝑢0
′2̅̅ ̅̅

𝑢′2̅̅ ̅̅ =
1 + cos (−2𝑘𝑥𝑙)

2
+

(𝜔0
2 − 𝑘𝑥

2𝑐2)2

2𝑘𝑥
2𝑐4(𝑘𝑧

2 + 𝐵2)
[1 − cos(−2𝑘𝑥𝑙)]𝑐𝑜𝑡𝜃

+
(𝜔0

2 − 𝑘𝑥
2𝑐2)

𝑘𝑥𝑐2(𝑘𝑧
2 + 𝐵2)

[𝐵𝑠𝑖𝑛(2𝑘𝑥𝑙)]𝑐𝑜𝑡𝜃 

(4-40) 

This expression is symmetrical in 𝑘𝑥 and 𝑘𝑧 and so is independent of the direction of 

propagation.  It can be evaluated for a given 𝑘𝑥 and 𝜔0 and the results for a number of wave 

periods are shown in Figure (4-7a).  This diagram can be interpreted in much the same way as 

that for 
(𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝐸𝑉

𝑢′2̅̅ ̅̅ ̅ . At the beam separation (35 km for 𝑅 =  86 𝑘𝑚 and  = 11.6°) the ratio is one 

as it is at any value of horizontal wavelengths such that 

𝑥 =
2𝑙

𝑛
, 𝑛 = 1,2,3, … 
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At 𝑥 =
4𝑙

𝑛
, 𝑛 = 1,3,5, .. the ratio shows the worst agreement with the expected value of one, 

because the perturbation velocities are in anti-phase.   

 

Figure (4.7a). The estimate of the horizontal kinetic energy normalized with respect to the 

correct value for the DCC beam arrangement. The same results are obtained for any direction 

of propagation in the xz-plane. 

The beam symmetry works against an accurate measurement of the horizontal kinetic energy 

in this case.  Better results can be obtained by reducing 𝜃 and Figure (4-7b) illustrates Equation 

(4-40) evaluated for three tilt angles for a period of 180 minutes.  It is apparent from this 

diagram that  = 5° provides the best measurement, but that even this tilt angle produces large 

errors if scales less than about 100 km are present. 

These results are quite reasonable.  For two coplanar beams, the best measurement of the 

horizontal kinetic energy using spatial covariance estimates is obtained using tilt angles of 0 

and 𝜃, but this also corresponds to the worst measure of the Reynolds stress term.  The best 

measurement of this is obtained with tilt angles of ±, and this corresponds to the worst 

measurement of the horizontal kinetic energy.   This is because a vertical beam is insensitive 

to variations in the horizontal component of the perturbation velocity.  The errors in the 

estimate of the horizontal kinetic energy arise because of the spatial covariance estimates of 

the vertical perturbation velocity and Reynolds stress terms. 
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Figure(4.7b) As for (4.7a) for a wave of 180 minutes’ period for three off-vertical tilt angles. 

Since the horizontal component of the perturbation velocity is in general much larger than 

either the vertical perturbation velocity or the Reynolds stress, this term tends to dominate in 

Equation (4-23) for the longer wave periods. The major errors arise for periods shorter than 

about 60 minutes (10% at 100 km. for an isotropic wave field at this period) associated with 

shorter scale waves, that is, those waves in which the vertical perturbation velocity the 

horizontal perturbation velocity.  However, there is a strong dependence upon the direction of 

propagation for the estimate of 𝑢′2̅̅ ̅̅   for longer period waves. 

On the other hand, the estimate of the Reynolds stress using Equation (4-30) depends on the 

spatial covariance estimate of the horizontal and vertical perturbation velocities.   This has a 

𝑐𝑜𝑠(𝑘𝑥𝑙 ) dependence and this term dominates.  The second term on the RHS of (4-30) 

produces a separation of periods and is dependent upon the direction of propagation, but not 

sufficiently to provide symmetry in 𝑘𝑥 . 

With two off-vertical beams, the estimate of the horizontal kinetic energy depends upon the 

spatial covariance of the horizontal perturbation velocities measured in the two beams.  This 

term has a 𝑐𝑜𝑠(2𝑘𝑥𝑙 ) dependence and is symmetrical, that is, it does not depend upon the 

direction of propagation.  Again, this term dominates the RHS of Equation (4-38).  The 

symmetry of this experimental arrangement produces this dependence.  However, this same 

symmetry allows an accurate determination of the Reynolds stress term because it does not 

require spatial covariances to be calculated. 



 

100 

It is worth noting that the Reynolds stress term can be measured using the assumption of 

Equation (4-33) for any two beams as long as neither beam points vertically. 

With a suitable choice of beam directions, the error in the measurement of the horizontal kinetic 

energy using spatial covariance estimates when using two off-vertical coplanar beams can be 

minimized.  We can apply a similar analysis to the mean vertical wind.  In this case (Equation 

(4-45), next Section) the mean wind is 

𝑤0̅̅̅̅ =
𝑉𝐸
̅̅ ̅ + 𝑉𝑊

̅̅ ̅̅

2𝑐𝑜𝑠𝜃
 

The mean square value of the instantaneous value of this Equation may be written as 

𝑤0
′2̅̅ ̅̅ ̅

= ((𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸 + (𝑢′2)̅̅ ̅̅ ̅̅ ̅

𝑊 − 2(𝑢′)̅̅ ̅̅ ̅
𝐸(𝑢′)̅̅ ̅̅ ̅

𝑊

𝑡𝑎𝑛2𝜃

4

+
((𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝐸 + (𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑊 + 2(𝑤′)̅̅ ̅̅ ̅̅

𝐸(𝑤′)̅̅ ̅̅ ̅̅
𝑊)

4

+
((𝑢′)𝐸(𝑤′)𝐸
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑢′)𝑊(𝑤′)𝑊

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (𝑢′)𝐸(𝑤′)𝑊
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − (𝑢′)𝑊(𝑤′)𝐸)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2
𝑡𝑎𝑛𝜃 

(4-41) 

 

𝑤0
′2̅̅ ̅̅ ̅

𝑤′2̅̅ ̅̅ ̅ =
[1 + cos(−2𝑘𝑥𝑙)]𝑡𝑎𝑛2𝜃

2
 
𝑘𝑥

2𝑐4(𝑘𝑧
2 + 𝐵2)

2(𝜔0
2 − 𝑘𝑥

2𝑐2)2
+

1

2
[1 − cos(−2𝑘𝑥𝑙)]

+
𝑘𝑥𝑐2

(𝜔0
2 − 𝑘𝑥

2𝑐2)
[𝐵𝑠𝑖𝑛(−2𝑘𝑥𝑙)]𝑡𝑎𝑛𝜃 

(4-42) 

Because the vertical perturbation velocity is much smaller than the horizontal perturbation 

velocity, the first term in Equation (4-42) tends to dominate.  This becomes clear when this 

Equation is plotted (Figure 4-8). From this diagram it is apparent that except at the beam 

separation and for scales larger than about 1000 km. there is a gross error in this measurement 

for the longer periods. In general, shorter period waves can be measured more accurately than 

the longer period waves, because of the relative magnitudes of 𝑢′2̅̅ ̅̅  and 𝑤′2̅̅ ̅̅ ̅, but it is clear this 

this particular spatial covariance estimate is rather poor. 
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Figure (4.8) The estimate of the vertical kinetic energy obtained using spatial covariance 

estimates in the DCC beam configuration normalized with respect to the correct value. 

4.1.2 Larger Scale Motions 

In this Section we consider longer period motions. The analysis of these time scales is relatively 

simple but as for the shorter scale motions, the spatial variation of the wind field must be 

considered. 

The mean radial velocity as given in Equation (4-2) is 

�̅�𝑹 () = �̅�𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + �̅�𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + �̅�𝑐𝑜𝑠. (4-2) 

If this is calculated over a suitably long interval, the longer period winds and tidal components 

may be obtained. In this case, we can obtain the various wind components by simple vector 

decomposition.  If we consider the situation as illustrated in Figure (4-6) with one beam.at + 

to the zenith and one at − in the xz-plane, then  =  90, 270° respectively and with 

𝑉𝐸
̅̅ ̅ = 𝑉𝑅

̅̅ ̅(90) 

and 
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𝑉𝑊
̅̅ ̅̅ = 𝑉𝑅

̅̅ ̅(270) 

the zonal component of the mean wind is given by 

𝑢0̅̅ ̅ =
𝑉𝐸
̅̅ ̅ − 𝑉𝑊

̅̅ ̅̅

2𝑠𝑖𝑛𝜃
 

(4-43) 

Similarly, for the yz-plane, the meridional component is 

𝑣0̅̅ ̅ =
𝑉𝑁
̅̅ ̅ − 𝑉�̅�

2𝑠𝑖𝑛𝜃
 

(4-44) 

Where 

𝑉𝑁
̅̅ ̅ = 𝑉𝑅

̅̅ ̅(0) 

and 

𝑉�̅� = 𝑉𝑅
̅̅ ̅(180) 

The mean vertical component is 

𝑤0̅̅̅̅ =
𝑉𝐸
̅̅ ̅ + 𝑉𝑊

̅̅ ̅̅

2𝑐𝑜𝑠𝜃
=

𝑉𝑁
̅̅ ̅ + 𝑉�̅�

2𝑐𝑜𝑠𝜃
 

(4-45) 

These Equations have previously been derived by Vincent and Reid (1983) and similar 

expressions were derived by Lhermitte (1966). 

However, if a gradient exists in the mean wind the situation is slightly more complicated.  

Lhermitte (1966) realized this and Browning and Wexler (1968) gave a simple technique to 

determine the effects of a gradient in the horizontal wind field.  Following Browning and 

Wexler we expand the mean horizontal components of the wind field as a truncated Taylor 

series so that, 

�̅� = �̅�0 + x
𝜕�̅�

𝜕𝑥
+ y

𝜕�̅�

𝜕𝑦
 

 

�̅� = �̅�0 + x
𝜕�̅�

𝜕𝑥
+ y

𝜕�̅�

𝜕𝑦
 

(4-46) 
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where the higher order terms have been neglected, the zero subscript refers to the velocity 

between a coplanar pair of beams, we have assumed that horizontal gradients of �̅� can be 

neglected, and (𝑥, 𝑦, 𝑧) are defined by the coordinate transformation relations for the axes in 

Figure (4-1). These are, 

𝑥 = 𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛  

𝑦 = 𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠  

𝑧 = 𝑅𝑐𝑜𝑠 (4-47) 

where R is the range,  is the angle from the zenith and  is the angle from North.  These 

assumptions seem to be reasonable for the expected magnitudes of the mean winds and 

gradients in the mesosphere (and most of the atmosphere). Note that the assumption that the 

horizontal gradients of the mean vertical wind can be neglected is one of the assumptions used 

to calculate the mean horizontal wind from vertical and off-vertical beams.  Substituting (4-46) 

into (4-2) and applying (4-47) we obtain, after some rearranging, 

�̅�𝑅  () = 𝑢0̅̅ ̅𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + 𝑣0̅̅ ̅𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 + 𝑤0̅̅̅̅ 𝑐𝑜𝑠 + (
𝜕�̅�

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
)

𝑅2𝑠𝑖𝑛2𝜃

2

+ (
𝜕�̅�

𝜕𝑦
−

𝜕�̅�

𝜕𝑥
) cos2

𝑅𝑠𝑖𝑛2𝜃

2
+ (

𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) sin2

𝑅𝑠𝑖𝑛2𝜃

2
 

(4-48) 

which is the general expression for a mean Doppler radial velocity measured in a beam at 

(𝑅, ,). This is the form of the Equation for the mean radial velocity that is used for VAD 

radar data analysis (see e.g. Wilson and Miller, 1971).  The terms in brackets in Equation (4-

48) are, 

the horizontal divergence 

(
𝜕�̅�

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) 

the stretching deformation 

(
𝜕�̅�

𝜕𝑦
−

𝜕�̅�

𝜕𝑥
) 

and the shearing deformation 
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(
𝜕�̅�

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) 

As was the case for the fluctuating velocities, the various parameters in Equation (4-48) may 

be obtained from a suitable choice of beam geometry.  For the pair of beams in the xz-plane 

(Figure 4-5) we obtain, 

�̅�𝐸  = 𝑢0̅̅ ̅𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 + 𝑤0̅̅̅̅ 𝑐𝑜𝑠 +
𝜕�̅�

𝜕𝑥
𝑅𝑠𝑖𝑛2𝜃 

(4-49) 

�̅�𝑊 = −𝑢0̅̅ ̅𝑠𝑖𝑛𝜃 + 𝑤0̅̅̅̅ 𝑐𝑜𝑠 +
𝜕�̅�

𝜕𝑥
𝑅𝑠𝑖𝑛2𝜃 

(4-50) 

From (4-49) and (4-50) it is clear that (4-43) is still valid. This is an obvious result because 
𝜕𝑢

𝜕𝑥
 

is by definition constant from beam to beam.  However, adding (4-49) and (4-50) gives, 

𝑤𝑢
∗̅̅ ̅̅ =

𝑉𝐸
̅̅ ̅ + 𝑉𝑊

̅̅ ̅̅

2𝑐𝑜𝑠𝜃
= 𝑤0̅̅̅̅ +

𝜕�̅�

𝜕𝑥
𝑧𝑡𝑎𝑛2𝜃 

(4-51) 

where z = Rcos8 and 𝑤𝑢
∗̅̅ ̅̅  is defined by (4-51). 

For the yz-plane, 

𝑤𝑣
∗̅̅ ̅̅ =

𝑉𝑁
̅̅ ̅ + 𝑉�̅�

2𝑐𝑜𝑠𝜃
= 𝑤0̅̅̅̅ +

𝜕�̅�

𝜕𝑦
𝑧𝑡𝑎𝑛𝜃 

(4-52) 

where 𝑤𝑣
∗̅̅ ̅̅  is defined by (4-52).  These two Equations indicate that if a gradient exists in the 

mean horizontal wind the vertical component cannot be obtained from two off-vertical coplanar 

beams. 

If we consider the height range for this work, we note that since 𝑧𝑡𝑎𝑛2𝜃  takes values of from 

3 to 4 km over 80 to 96 km with  = 11.6°, horizontal gradients of ~0.1 ms-1km-1 will make a 

significant contribution to the RHSs of (4-51) and (4-52). 

Adding (4-51 and (4-52) we obtain, 

𝑤𝑢
∗̅̅ ̅̅ + 𝑤𝑣

∗̅̅ ̅̅

2
= 𝑤0̅̅̅̅ + (

𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
)𝑧𝑡𝑎𝑛2𝜃 

(4-53) 
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where the term in brackets is the horizontal divergence. 

Subtracting (4-52) from (4-51) gives, 

𝑤𝑢
∗̅̅ ̅̅ − 𝑤𝑣

∗̅̅ ̅̅

2
= (

𝜕�̅�

𝜕𝑥
−

𝜕�̅�

𝜕𝑦
)𝑧𝑡𝑎𝑛2𝜃 

(4-54) 

where the term in brackets is the stretching deformation. Equations (4-53) and (4-54) apply 

when four beams are used so that one pair is arranged at + and − to the zenith in the xz-

plane, and one pair is arranged in a similar fashion in the yz-plane.  It is clear that whilst we 

can obtain the stretching deformation from (4-54) we cannot obtain the horizontal divergence 

from (4-53) unless another, vertically directed, beam is available. This is the same situation 

that occurs for a VAD radar.  With the typically large zenith angles used with this method and 

small vertical velocities 1n the lower atmosphere, an estimate of the divergence is made by 

neglecting the contribution of the vertical velocity. 

A slightly different form of this technique, Stepped Elevation VAD, can incorporate a 

measurement of the vertical wind.  Alternately, a measurement of the vertical wind is made 

between azimuthal scans (Caton, 1963).  Similarly, a single beam scanned through a range of 

zenith angles with two fixed beams in the orthogonal plane allows a measurement of �̅� to be 

made, enabling 
𝜕𝑢

𝜕𝑥
 and 

𝜕�̅�

𝜕𝑦
 to be obtained for the xz- and yz-planes respectively.  This technique 

therefore has a definite advantage over using fixed beam pointing directions. 

The relative magnitudes of �̅�, 
𝜕𝑢

𝜕𝑥
, and 

𝜕�̅�

𝜕𝑦
, and hence the error in taking the sum of the mean 

velocities from two coplanar beams as the mean vertical velocity, are discussed elsewhere in 

this thesis. However, it should be noted that the accuracy of the mean vertical velocity, 

divergence and deformation measurements depends strongly upon the assumption of a uniform 

mean vertical velocity and that the measured radial velocities are correct.  Radial velocities can 

be in error because they are sensitive to the distribution of scatterers within the radar pulse 

volume (see e.g. Chapter 5). Note that the shearing deformation (
𝜕𝑢

𝜕𝑦
+

𝜕�̅�

𝜕𝑥
) cannot be obtained 

from the beam configurations described in this Section.  To measure this parameter additional 

beams at other azimuth angles are required. 

It is interesting to note that the continuity Equation can be used in this context to provide some 

useful information.  This Equation is, 
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𝜕𝜌

𝜕𝑡
+

𝜕(𝜌�̅�)

𝜕𝑥
+

𝜕(𝜌�̅�)

𝜕𝑦
+

𝜕(𝜌�̅�)

𝜕𝑧
= 0 

(4-55) 

If 
𝜕𝜌

𝜕𝑡
= 0 and the atmosphere is horizontally stratified we may write, 

− (
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
) =

𝜕�̅�

𝜕𝑧
+

�̅�

𝜌

𝜕𝜌

𝜕𝑧
 

and since 𝜌 =   𝜌0𝑒−𝑧/𝐻,  

− (
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
) = (

𝜕�̅�

𝜕𝑧
−

�̅�

𝐻
) 

(4-56) 

where 𝐻 is the pressure scale height.  Equation (4-56) indicates that if the vertical profile of �̅� 

and the pressure scale height 𝐻 are known, then so is the horizontal divergence. 

The means that if 
𝜕�̅�

𝜕𝑧
 is measured along with 

𝜕𝑢

𝜕𝑥
 say, then 

𝜕�̅�

𝜕𝑦
 may be obtained in principle. In a 

similar fashion, the mean vertical velocity through a layer may be obtained if the horizontal 

divergence and the vertical velocity at the top or bottom of the layer is known.  This last 

technique is used for meteorological VAD radars operating in the boundary layer, in which 

case the values obtained are within 10% of the true values (Wilson and Miller, 1971). This may 

have some application for ST radars where the assumption that �̅�(0) = 0 may be applied. 

4.1.3 Sensitivity of the Complementary Coplanar Beam Technique 

In Section (4.1.1.2) it was stated that when the dual complementary coplanar beam technique 

is used to measure 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅ , the only assumption made about the wind field is that the 

statistics of the motion at a given height are independent of horizontal position for the beam 

separation used.  However, because we are using a finite beam separation we might expect 

some natural limit to sensitivity to be inherent in the technique. 

For instance, we might expect the longest period waves, which have essentially horizontal 

perturbation velocities, and contribute approximately equally to the mean square velocities in 

each beam, to be discriminated against. However, this does not seem to be so from a 

consideration of some simple examples.  Consider a single gravity wave with linearly polarized 
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perturbation velocities propagating at an angle 𝛽 to the horizontal plane in the +x-direction as 

illustrated in Figure (4-9).  The radial velocity measured by a beam at + to the zenith will be, 

𝑉′𝐸 = 𝑣0
′ cos (𝜔0𝑡)𝑠𝑖𝑛(𝜃 + 𝛽) (4-57) 

where 𝑣0
′  is the peak perturbation velocity, 𝜔0 is the wave angular frequency and 𝑉′𝐸 is defined 

by (4-57). The mean square radial velocity will be, 

𝑉𝐸
′2̅̅ ̅̅ = 𝑣0

′2̅̅ ̅̅ cos 2(𝜔0𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛2(𝜃 + 𝛽) (4-58) 

Similarly, for a beam at -, 

𝑉𝑊
′2̅̅ ̅̅ = 𝑣0

′2̅̅ ̅̅ cos2(𝜔0𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛2(𝜃 − 𝛽) (4-58) 

Subtracting (4-59) from (4-58) we obtain, 

𝑉𝐸
′2̅̅ ̅̅ − 𝑉𝑊

′2̅̅ ̅̅ =
𝑣0

′2

2
[

̅̅ ̅̅ ̅̅
sin2(𝜃 + 𝛽) − 𝑠𝑖𝑛2(𝜃 − 𝛽)] 

 

=
𝑣0

′2

2

̅̅ ̅̅
𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽 

 

That is, 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ =

(𝑉𝐸
′2̅̅ ̅̅ ̅̅ − 𝑉𝑊

′2)̅̅ ̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
=

𝑣0
′2

4

̅̅ ̅̅
𝑠𝑖𝑛2𝛽 (4-60) 

where ∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ is defined by (4-60). 

If we consider the momentum flux due to the gravity wave where  

𝑢′0 = 𝑣′0𝑐𝑜𝑠𝛽 

𝑤′0 = 𝑣′0𝑐𝑜𝑠𝛽 

Then we can obtain, 

𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝑣0
′2̅̅ ̅̅ 𝑐𝑜𝑠2𝜔𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 =

𝑣0
′2

4

̅̅ ̅̅
𝑠𝑖𝑛2𝛽 (4-61) 

So that, 
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∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ = 𝑢′𝑤′̅̅ ̅̅ ̅̅  

exactly. We can generalize this result for N waves of frequency 𝜔𝑛 propagating at various 

angles 𝛽𝑛 to the horizontal.  In this case, 

𝑉′𝐸 = 𝑣1
′ cos(𝜔1𝑡) sin(𝜃 + 𝛽1)+…  

…+𝑣𝑁
′ cos(𝜔𝑁𝑡) 𝑠𝑖𝑛(𝜃 + 𝛽𝑁) 

= ∑ 𝑣𝑛
′ 𝑐𝑜𝑠𝜔𝑛𝑡𝑠𝑖𝑛(𝜃 + 𝛽𝑛)

𝑁

𝑛=1

 
(4-62) 

 

𝑉𝐸
′2̅̅ ̅̅ = ∑ 𝑣𝑛

′2̅̅ ̅̅ 𝑐𝑜𝑠2𝜔𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛2(𝜃 + 𝛽𝑛)

𝑁

𝑛=1

+ ∑ ∑ 𝑣′𝑚𝑣′𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅ sin(𝜃

𝑀

𝑚=1
𝑚≠𝑛

𝑁

𝑛=1

+ 𝛽𝑚) sin(𝜃 + 𝛽𝑛)[cos(𝜔𝑚+𝜔𝑛) 𝑡

+ cos(𝜔𝑚 − 𝜔𝑛) 𝑡)] (4-62) 

Since 𝑐𝑜𝑠𝜔𝑡̅̅ ̅̅ ̅̅ ̅̅ = 0, the second term vanishes and 

𝑉𝐸
′2̅̅ ̅̅ =

1

2
∑ 𝑣𝑛

′2̅̅ ̅̅ 𝑐𝑜𝑠2𝜔𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛2(𝜃 + 𝛽𝑛)

𝑁

𝑛=1

 
(4-63) 

Similarly, for the beam at -, 

𝑉𝑊
′2̅̅ ̅̅ =

1

2
∑ 𝑣𝑛

′2̅̅ ̅̅ 𝑐𝑜𝑠2𝜔𝑛𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛2(𝜃 − 𝛽𝑛)

𝑁

𝑛=1

 
(4-64) 

Subtracting (4-52) from (4-51) gives 

𝑉𝐸
′2̅̅ ̅̅ − 𝑉𝐸

′2̅̅ ̅̅ =
1

2
∑ 𝑣𝑛

′2̅̅ ̅̅ 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽𝑛

𝑁

𝑛=1

 
(4-64) 
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so that 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅̅ ̅ =

1

4
∑ 𝑣𝑛

′2̅̅ ̅̅ 𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽𝑛

𝑁

𝑛=1

 
(4-65) 

Now, 

𝑢′𝑛 = 𝑣′𝑛𝑐𝑜𝑠𝛽𝑛𝑐𝑜𝑠𝜔𝑛𝑡 

𝑤′𝑛 = 𝑣′𝑛𝑠𝑖𝑛𝛽𝑛𝑐𝑜𝑠𝜔𝑛𝑡 

so that 

𝑢′𝑤′̅̅ ̅̅ ̅̅ = ∑ 𝑢′𝑛𝑤′𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑁

𝑛=1

=
1

4
∑ 𝑣𝑛

′2𝑠𝑖𝑛2𝛽𝑛

𝑁

𝑛=1

 (4-66) 

And 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ = 𝑢′𝑤′̅̅ ̅̅ ̅̅  

exactly. 

If there is a phase difference between the horizontal and vertical perturbation velocities so that 

the wave has arbitrary polarization it can easily be shown that, 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ =

𝑢′0𝑤′0
̅̅ ̅̅ ̅̅ ̅̅

2
𝑐𝑜𝑠𝛼 

where a is the phase difference between the vertical and horizontal perturbation velocities, and 

that, 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑢′0𝑤′0
̅̅ ̅̅ ̅̅ ̅̅

2
𝑐𝑜𝑠𝛼 

so that, 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ = 𝑢′𝑤′̅̅ ̅̅ ̅̅  

exactly. 
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These results can be generalized to any linear combination of any number of waves with 

arbitrary polarization and directions of propagation.  It should be noted that if the gravity wave 

is saturated the above arguments apply, and if the wave actually breaks down into turbulence 

and this statistically similar in the horizontal, the technique will still measure 𝑢′𝑤′̅̅ ̅̅ ̅̅ . 

4.2 Summary of Parameters 

This Section summarizes the parameters that can be obtained directly, in principle, from 

various beam arrangements using the Equations in Sections (4.1.1.2) and (4.1.1.1). It is not 

meant to be exhaustive and concentrates mainly on those beam configurations used in this work 

(for which a maximum of four beams were available). The measurement of horizontal and 

vertical scales of motion is taken up in Section (4.2) and the parameters that can be obtained 

from this aspect of the experiment are presented there.  Equations that are scale and frequency 

dependent are marked with an asterisk. Acronyms describing the beam configuration as given 

in Chapter 2 are indicated in brackets.  We begin with a vertical and an off-vertical beam. 

4.2.1 Vertical and Off-vertical Beams (DC) 

With two beams arranged at 0 and 𝜃 to the zenith in the xz-plane, the following parameters 

may be obtained. 

(�̅�)𝐸𝑉 =
�̅�𝐸 − �̅�𝑉𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 

(4-5’’)* 

𝑉𝑉 =  (𝑤)𝑉 = (𝑤)𝐸 , (4-7) 

(𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉 = ((u)𝐸𝑉 − (u̅)𝐸𝑉)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-9’’)* 

𝑉𝑉
′2̅̅ ̅̅ = (𝑤′2)̅̅ ̅̅ ̅̅ ̅

𝑉  (4-29) 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 =
𝑉′𝐸𝑉′𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑉

′2̅̅ ̅̅ 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 (4-30)* 

𝜕�̅�

𝜕𝑧
=

𝜕𝑉𝑉
̅̅ ̅

𝜕𝑧
 

(4-67) 

𝑉𝐸𝑉
′2̅̅ ̅̅̅ = 𝑢𝐸

′2̅̅ ̅̅ + 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑡𝜃 =
𝑉𝐸

′2̅̅ ̅̅ −  𝑉𝑉
′2̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
 (4-27’) 
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Note that Equation (4-5") actually provides a measure of �̅�0 + x
𝜕𝑢

𝜕𝑥
. As was noted in the 

derivation of this Equation, this is unlikely to be of any consequence because of the relative 

magnitudes of these two quantities, but the point is raised to show the similarity of this Equation 

to Equation (4-9'), in that this beam arrangement does depend, although not strongly, upon the 

spatial variation of the horizontal wind.  To be completely consistent in labelling Equations as 

scale dependent Equation (4-5") is marked with an asterisk. 

4.2.2 Two Complementary Coplanar Beams (DCC) 

With two beams arranged at + and - to the zenith in the xz-plane, the basic parameters that 

may be obtained are 

𝑢0̅̅ ̅ =
𝑉𝐸
̅̅ ̅ − 𝑉𝑊

̅̅ ̅̅

2𝑠𝑖𝑛𝜃
 

(4-43) 

𝑤𝑢
∗̅̅ ̅̅ =

𝑉𝐸
̅̅ ̅ + 𝑉𝑊

̅̅ ̅̅

2𝑐𝑜𝑠𝜃
= 𝑤0̅̅̅̅ +

𝜕�̅�

𝜕𝑥
𝑧𝑡𝑎𝑛2𝜃 

(4-51) 

𝑢0
′2̅̅ ̅̅ = (𝑢0 − 𝑢0̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-38)* 

𝑤0
′2̅̅ ̅̅ ̅ = (𝑤0 − 𝑤0̅̅̅̅ )2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4-41)* 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34) 

𝑢′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 =
𝑉𝐸

′2̅̅ ̅̅ + 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑉𝐸𝑊

′2̅̅ ̅̅ ̅ (4-35) 

Equation (4-51) is similar in form to (4-5") that is, 

(�̅�)𝐸𝑉 = 𝑢0̅̅ ̅ +
𝜕�̅�

𝜕𝑥
𝑧𝑡𝑎𝑛2𝜃 =

�̅�𝐸 − �̅�𝑉𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 

(4-5’’) 

However, the RHS of (4-51) contains two quantities which are similar in magnitude and the 

horizontal gradient of the horizontal wind cannot be ignored. 

4.2.3 Three Coplanar Beams TC(CP) 

For three beams arranged at −, 0 𝑎𝑛𝑑 +   to the zenith in the xz-plane, we can obtain the 

following parameters in addition to those of 4.2.2. 
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�̅� = 𝑉𝑉 
̅̅ ̅̅  (4-7) 

(𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑉 = 𝑉𝑉

′2̅̅ ̅̅  (4-29) 

𝜕�̅�

𝜕𝑧
=

𝜕𝑉𝑉
̅̅ ̅

𝜕𝑧
 (4-67) 

𝜕�̅�

𝜕𝑥
=

𝑤 ∗̅̅̅̅̅𝑢− �̅�𝑉

𝑧𝑡𝑎𝑛2𝜃
 

(4-51’) 

𝑢′2̅̅ ̅̅ = 𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ − 𝑉𝑉

′2̅̅ ̅̅ 𝑐𝑜𝑡2𝜃 (4-35’) 

Equations (4-7), (4-29) and (4-67) are trivial and (4-50') is a straightforward rearrangement of 

(4-51).  Equation (4-35’) allows the horizontal kinetic energy in this plane to be calculated 

using the assumptions of (4-33) only, and so is independent of scale. 

4.2.4 Three Coplanar Beams + One Orthogonal Beam (OPDC)  

If the beams are arranged at +, 0 𝑎𝑛𝑑 −   to the zenith in the xz-plane, and at + to the 

zenith in the yz-plane, we can obtain the following parameters in addition· to those of 4.2.2 

and 4.2.3. 

(�̅�)𝑁𝑉 =
�̅�𝑁 − �̅�𝑉𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 

(4-68)* 

(𝑣′2)̅̅ ̅̅ ̅̅ ̅
𝑁𝑉 = ((v)𝑁𝑉 − (v̅)𝑁𝑉)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-69)* 

(𝑣′𝑤′̅̅ ̅̅ ̅̅ )𝑁𝑉 =
𝑉′𝑁𝑉′𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑉

′2̅̅ ̅̅ 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 (4-70)* 

𝑉𝑁𝑉
′2̅̅ ̅̅ ̅ = 𝑣′2̅̅ ̅̅ + 2𝑣′𝑤′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑡𝜃 =

𝑉𝑁
′2̅̅ ̅̅ −  𝑉𝑉

′2̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
 (4-71) 

The assumptions made in deriving these Equations have already been discussed in Section 

(4.1.1.1) for the zonal component, and of course, these can be generalized to the meridional 

component. 

The Equations for the experiments described in Sections (4.2.1) to (4.2.4) for the orthogonal 

plane are very similar, and they will not be produced here.  However, a summary of parameters 

is presented in Table (4-1). 
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4.2.5 Dual Coplanar Beams in Orthogonal Planes (OPDCC) 

If four beams are arranged at + 𝑎𝑛𝑑 −   to the zenith in the xz-plane, and + 𝑎𝑛𝑑 −   to 

the zenith in the yz-plane, the following parameters are obtained 

𝑢0̅̅ ̅ =
𝑉𝐸
̅̅ ̅ − 𝑉𝑊

̅̅ ̅̅

2𝑠𝑖𝑛𝜃
 

(4-43) 

𝑣0̅̅ ̅ =
𝑉𝑁
̅̅ ̅ − 𝑉�̅�

2𝑠𝑖𝑛𝜃
 

(4-44) 

𝑤0̅̅̅̅ + (
𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
) 𝑧𝑡𝑎𝑛2𝜃 =

𝑤𝑢
∗̅̅ ̅̅ + 𝑤𝑣

∗̅̅ ̅̅

2
 

(4-53) 

(
𝜕�̅�

𝜕𝑥
−

𝜕�̅�

𝜕𝑦
) =

𝑤𝑢
∗̅̅ ̅̅ − 𝑤𝑣

∗̅̅ ̅̅

2𝑧𝑡𝑎𝑛2𝜃
 

(4-54’) 

𝑢0
′2̅̅ ̅̅ = (𝑢0 − 𝑢0̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-38)* 

𝑣0
′2̅̅ ̅̅ = (𝑣0 − 𝑣0̅̅ ̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4-72)* 

𝑤0
′2̅̅ ̅̅ ̅ = (𝑤0 − 𝑤0̅̅̅̅ )2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4-41)* 

𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 = 𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ + 𝑉𝑁𝑆

′2̅̅ ̅̅̅ (4-73) 

𝑢′2̅̅ ̅̅ − 𝑣′2̅̅ ̅̅ =
𝑉𝐸𝑊

′2̅̅ ̅̅ ̅ − 𝑉𝑁𝑆
′2̅̅ ̅̅̅

2
 (4-74) 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34) 

𝑣′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝑁

′2̅̅ ̅̅ − 𝑉𝑆
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-36) 

These Equations require little further comment, except for (4-41), which can be obtained from 

both pairs of beams and (4-74) which is a measure of the difference of the kinetic energy of the 

zonal and meridional components of the horizontal wind and hence of the horizontal isotropy 

of the wave field. 

If a measurement of the vertical wind is made we can obtain Equations (4-7), (4-29) and (4-

67) and so separate the terms in Equations (4-53) and (4-73).  In addition, all of the parameters 
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contained in Sections (4.2.1) and (4.2.4) may be obtained.  This measurement can be obtained 

by adding a fifth vertically directed beam, or as was noted earlier, by scanning one beam 

through a range of zenith angles with two complementary beams fixed in the orthogonal plane.  

This last arrangement would allow all of the parameters mentioned in this summary to be 

obtained. 

4.2.6 Reference 

For reference, the terms we have discussed in this Chapter that depend upon spatial covariance 

estimates are summarized below. 

(𝑢′2)̅̅ ̅̅ ̅̅ ̅
𝐸𝑉 = 𝑢′2̅̅ ̅̅ + 2𝑤′2̅̅ ̅̅ ̅[1 − cos(𝑘𝑥𝑙)]𝑐𝑜𝑡2𝜃

+ 2𝑢′𝑤′̅̅ ̅̅ ̅̅ [1 − cos(𝑘𝑥𝑙) +
𝐵

𝑘𝑧
sin(𝑘𝑥𝑙)] 𝑐𝑜𝑡𝜃 

(4-22) 

(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝐸𝑉 = (𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅) [cos(𝑘𝑥𝑙) −
𝐵

𝑘𝑧
sin(𝑘𝑥𝑙)] + (𝑤′2̅̅ ̅̅ ̅̅ [cos(𝑘𝑥𝑙) − 1]𝑐𝑜𝑡𝜃 (4-30’’) 

𝑢0
′2̅̅ ̅̅ =

𝑢′2̅̅ ̅̅ [1 + cos(2𝑘𝑥𝑙)]

2
+ 𝑤′2̅̅ ̅̅ ̅[1 − cos(2𝑘𝑥𝑙)]𝑐𝑜𝑡2𝜃

+ 𝑢′𝑤′̅̅ ̅̅ ̅̅ [
𝐵

𝑘𝑧
𝑠𝑖𝑛(2𝑘𝑥𝑙)] 𝑐𝑜𝑡𝜃 

(4-38’’) 

𝑤0
′2̅̅ ̅̅ ̅ =

𝑢′2̅̅ ̅̅ [1 − cos(2𝑘𝑥𝑙)]𝑡𝑎𝑛2𝜃

2
+ 𝑤′2̅̅ ̅̅ ̅[1 + cos(2𝑘𝑥𝑙)]𝑐𝑜𝑡2𝜃

+ 𝑢′𝑤′̅̅ ̅̅ ̅̅ [
𝐵

𝑘𝑧
𝑠𝑖𝑛(2𝑘𝑥𝑙)] 𝑐𝑜𝑡𝜃 

(4-41’’) 

The corresponding terms obtained from mean square radial velocities obtained with one or two 

beams are 

𝑢𝐸
′2̅̅ ̅̅ + 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑡𝜃 =

𝑉𝐸
′2̅̅ ̅̅ −  𝑉𝑉

′2̅̅ ̅̅ ̅𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃
= 𝑉𝐸𝑉

′2̅̅ ̅̅̅ (4-27’) 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34) 

𝑢′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 =
𝑉𝐸

′2̅̅ ̅̅ + 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑉𝐸𝑊

′2̅̅ ̅̅ ̅ (4-35) 
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𝑢𝐸
′2̅̅ ̅̅ + 𝑤𝐸

′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 + 2𝑢′𝑤′̅̅ ̅̅ ̅̅
𝐸𝑐𝑜𝑡𝜃 =

𝑉𝐸
′2̅̅ ̅̅

𝑠𝑖𝑛2𝜃
 

(4-24’) 

(𝑤′2)̅̅ ̅̅ ̅̅ ̅
𝑉 = 𝑉𝑉

′2̅̅ ̅̅  (4-29) 
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4.3 The Measurement of Horizontal and Vertical Scales of Motion 

Extensive use of cross spectral techniques has been made to investigate waves of a wide range 

of scales in many parts of the atmosphere.  For example, Maeda and Handa (1980) used 𝑓0𝐹2 

data from widely spaced ionosondes to investigate large scale travelling ionospheric 

disturbances in the F2-region, Metcalf (1975) used wind and temperature data obtained from 

aircraft and meteorological radar observations to investigate sub-kilometer scale gravity waves 

in the lower kilometer of the atmosphere, and Wallace and Chang (1969) have applied cross 

spectral analysis techniques to investigate large scale travelling tropospheric wave disturbances 

in the tropics. 

Cross correlation techniques have also been applied to Doppler radar data in an attempt to 

determine the horizontal and vertical scales of wind motion. For instance, Rastogi and Bowhill 

(1976) did this for radial velocities obtained from three beams of the Jicamarca radar for 

mesospheric observations.  However, because the radial velocity measured in an off-vertical 

beam contains both horizontal and vertical wind components, the cross correlation functions 



 

117 

obtained between beams are rather difficult to interpret, especially for shorter scales, without 

additional information. 

For gravity wave motion there is a well-defined relation between the vertical and horizontal 

components. The polarization relations derived by Hines (1960) give this relation in a simple 

form for a simplified model of the atmosphere, and these may be easily applied to radial 

velocity time series.  The accuracy of this approach depends upon the original assumptions of 

Hines (1960) and this must be borne in mind as a limitation. Without this kind of additional 

information other more restricting assumptions must be invoked.  For example, Rastogi and 

Bowhill (1976) assumed that to be significant, cross correlation had to reach values of one, and 

that cross correlations calculated between off-vertical beams were only useful if either the mean 

vertical or horizontal components were zero, and this limited the interpretation of their data. 

This Section of the Chapter describes the use of the polarization relations and cross spectral 

analysis to measure horizontal and vertical scales using a single station.  Cross spectral 

techniques lead naturally to a separation of variance according to frequency, and allow the 

significance of cross spectral phases to be estimated by use of the "coherence squared” of the 

cross spectrum. The technique described in Smith and Fritts (1983) to measure horizontal scale 

is discussed in Chapter 7. 

4.3.1 Complementary Coplanar Beams 

We begin this Section by considering the general expression for the radial velocity due to a 

single gravity wave of angular frequency 𝜔0, peak perturbation velocities (𝑢′0, 𝑣′0, 𝑤′0) and 

wave numbers (𝑘𝑥  , 𝑘𝑦 , 𝑘𝑧  ) measured at (𝑅, 𝜃, , 𝑡).  This is 

𝑉′
𝑅(𝑅, 𝜃, , 𝑡) = (𝑢′0𝑠𝑖𝑛𝜃𝑠𝑖𝑛 + 𝑣′0𝑠𝑖𝑛𝜃𝑐𝑜𝑠

+ 𝑤′0𝑐𝑜𝑠𝜃) × 𝑒𝑖(𝜔0𝑡−𝑘𝑥𝑙−𝑘𝑦𝑚−𝑘𝑧𝑧) 
(4-75) 

Where 

𝑙 =  𝑅𝑠𝑖𝑛𝜃𝑠𝑖𝑛 

𝑚 =  𝑅𝑠𝑖𝑛𝜃𝑐𝑜𝑠 

𝑧 =  𝑅𝑐𝑜𝑠𝜃 

The following analysis follows that of Vincent and Reid (1983). 
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If we consider two beams which are arranged at + 𝑎𝑛𝑑 −  to the zenith in the xz-plane 

(Figure 4-6) then according to (4-75) the radial velocity measured in the beam at +𝜃 (i.e.  =

 90°) will be 

𝑉′
𝐸 = (𝑤′

0
𝑐𝑜𝑠𝜃 + 𝑢′

0𝑠𝑖𝑛𝜃)𝑒𝑖(𝜔0𝑡−𝑘𝑥𝑙−𝑘𝑧𝑧) (4-76) 

where 𝑉′𝐸 = 𝑉′𝑅(𝑅, 𝜃,  = 90, 𝑡) 

Similarly, the radial velocity measured in the beam at  =  270° will be 

𝑉′
𝑊 = (𝑤′

0
𝑐𝑜𝑠𝜃 − 𝑢′

0𝑠𝑖𝑛𝜃)𝑒𝑖(𝜔0𝑡+𝑘𝑥𝑙−𝑘𝑧𝑧) (4-77) 

where 𝑉′𝑊 = 𝑉′𝑅(𝑅, 𝜃,  = 270, 𝑡) 

 

Figure (4.9) Idealized situation in which a single plane gravity wave propagates in the +x-

direction. The direction of propagation may be obtained from a comparison of v' for each of 

the beams. The heavy lines represent the gravity wave phase fronts, and v' the perturbation 

wind velocities. 

Figure (4-9) illustrates this beam arrangement for a single plane gravity wave propagating in 

the +x-direction with downward phase progression. If 𝐹𝑅  =   𝐹(𝑅, 𝜃, , 𝜔) is the Fourier 

transform of 𝑉𝑅  such that 

𝐹𝑅 = ∫ 𝑉𝑅𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞
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Then 

𝐹𝐸 = (𝑤′
0

𝑐𝑜𝑠𝜃 + 𝑢′
0𝑠𝑖𝑛𝜃)𝑒−𝑖(𝑘𝑥𝑙+𝑘𝑧𝑧)𝛿(𝜔 − 𝜔0) (4-78) 

where 𝛿 = delta function. 

Similarly, for the beam at = 270°, 

𝐹𝑊 = (𝑤′
0
𝑐𝑜𝑠𝜃 − 𝑢′

0𝑠𝑖𝑛𝜃)𝑒−𝑖(𝑘𝑥𝑙−𝑘𝑧𝑧)𝛿(𝜔 − 𝜔0) (4-79) 

By substituting the polarization relations (4-14) into (4-78) and (4-79) and calculating the cross 

spectral power from 

𝑊𝐸𝑊 = 𝑊(𝑧, 𝜔) = 𝐹𝑊𝐹𝐸
∗ (4-80) 

where * indicates the complex conjugate, we obtain the phase of the cross spectrum as 

(Appendix 4) 

 = 2𝑘𝑥𝑙 + ′ (4-81) 

where 

′ = tan−1 [
𝑘𝑥(𝜔0

2 − 𝑘𝑥
2𝑐2)𝐵𝑐2𝑠𝑖𝑛2𝜃

(𝜔0
2 − 𝑘𝑥

2𝑐2)𝑐𝑜𝑠2𝜃 − 𝑘𝑥
2𝑐2𝑘𝑧

2𝑠𝑖𝑛2𝜃
]  

and the various terms have been defined previously.  The most important thing to note about 

Equation (4-81) is that it is symmetrical in 𝑘𝑧 and so only changes sign if the horizontal 

direction of motion is reversed.  That is,  is the same for upward and downward propagating 

waves of the same horizontal direction of propagation. By writing 𝑘𝑧
2 in terms of 𝑘𝑥

2 using the 

dispersion relation,  can be evaluated for a given 𝜔0 and 𝑘𝑥, and Figure (4-10) illustrates the 

cross spectral phase in radians calculated from (4-81) plotted as a function of horizontal 

wavelength for different periods for the separation of beams at 85 km for this work.  If the 

horizontal direction of propagation of the wave is known, the horizontal wavelength can be 

found for a wave of given frequency 𝜔0 by measuring the cross spectral phase at 𝜔 =  𝜔0, and 

comparing it with values calculated from Equation (4-81). 
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Figure (4.10) Plot of the cross spectral phase in radians calculated from (4.81), plotted as a function 

of horizontal wavelength for different periods. The numbers against each curve give the wave period in 

minutes. 

To see how the horizontal direction of propagation can be determined (for downward phase 

progression at least), we need to reconsider Figure (4-9).  By inspection of this diagram it is 

clear that larger radial velocities will be measured in the beam at + than in the beam at −. 

Consequently, the difference of the mean squared velocities will be positive for waves 

propagating in the +x-direction and negative for oppositely directed waves.  In general, the 

gravity wave motions will not be linearly polarized as shown in Figure (4-9), but elliptically 

polarized.  However, the principle will still hold. 

Returning now to Figure (4-10), it is obvious that there is an ambiguity in wavelength which 

arises because of the inherent 2𝜋𝑛 phase ambiguity.  For example, 20-minute period waves of 

30 and l20 km horizontal wavelength will have the same phase. A direct way of resolving this 

ambiguity is to measure the vertical radial velocity in addition to those at + and −, but before 

considering three Doppler beams we consider vertical and off-vertical beams.  This leads 

naturally to the three beam case and illustrates the information that may be obtained from the 

conventional Doppler radar beam configuration. 
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4.3.2 Vertical and Off-vertical Beams 

Consider two radar beams directed at 0 and + to the zenith in the xz-plane (Figure 4-2).  With 

the radial velocities measured in these beams written as 

𝑉𝑉 = 𝑉𝑅(𝑧, 𝑡) 

𝑉𝐸 = 𝑉𝑅(𝑅, 𝜃,  = 90, 𝑡) 

respectively, where 𝑧 =  𝑅𝑐𝑜𝑠𝜃 the radial velocities are obtained from Equation (4-75) as 

𝑉′
𝐸 = (𝑤′

0
𝑐𝑜𝑠𝜃 + 𝑢′

0𝑠𝑖𝑛𝜃)𝑒𝑖(𝜔0𝑡−𝑘𝑥𝑙−𝑘𝑧𝑧) (4-76) 

𝑉′
𝑉 = 𝑤′

0𝑒𝑖(𝜔0𝑡−𝑘𝑧𝑧) (4-82) 

The Fourier transform of (4-82) will be 

𝐹𝑉 = 𝑤′
0𝑒−𝑖(𝑘𝑧𝑧). 𝛿(𝜔 − 𝜔0) (4-83) 

The Fourier transform of (4-76) has previously been given as (4-78).  By applying the 

polarization relations for u6 and w6 as before and calculating the cross spectrum from 

𝑊𝑉𝐸 = 𝐹𝑉𝐹𝐸
∗ 

we obtain the phase of the cross spectrum as (Appendix 4) 

 = −𝑘𝑥𝑙 + ′  

where 

′ = tan−1 [
−𝐵𝑘𝑥  𝑐2𝑠𝑖𝑛2𝜃

𝑘𝑥𝑐2𝑘𝑧𝑠𝑖𝑛𝜃 + (𝜔0
2 − 𝑘𝑥

2𝑐2)𝑐𝑜𝑠2𝜃
] (4-84) 

The most important feature of this expression is that it is not symmetrical in 𝑘𝑧 and so depends 

upon whether the wave is up- or down- going.  For upward propagating energy (i.e. downward 

phase) 𝑘𝑧 will be negative.  The corresponding term ′ for a westward and vertical beam 

combination is identical, except that the +ve sign in the denominator becomes -ve. 
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Figure (4.11) Plot of the cross spectral phase in radians calculated from (4-84), plotted as a function 

of horizontal wavelength for different periods. Case illustrated corresponds to propagation in the +x 

(eastward) direction with a downward phase progression. 

Equation (4-84) is not symmetrical in 𝑘𝑥 either and so two nomograms are required to illustrate 

the cross spectral phase.  Figures (4 11) and (4-12) illustrate the cross spectral phase in radians 

calculated from (4-84) for Eastward and Westward propagating waves respectively plotted as 

a function of horizontal wavelength for different wave periods. This beam arrangement allows 

the vertical wavelength to be calculated directly, and can also be used to indicate whether the 

wave is up- or down- going.   

 

Figure (4.12) As for (4.11) but for propagation in the -x (westward) direction with downward phase 

progression. 
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Consider the radial velocity measured in the vertical beam at a height 𝑧 =  𝑧1. 

Then from Equation (4-83) we obtain 

𝐹𝑧1
= 𝐹(𝑧1 , 𝜔) = 𝑤′

0
𝑒−𝑖(𝑘𝑧𝑧1). 𝛿(𝜔 − 𝜔0) (4-85) 

Similarly, for a height 𝑧 =  𝑧2, 

𝐹𝑧2
= 𝐹(𝑧2 , 𝜔) = 𝑤′

0
𝑒−𝑖(𝑘𝑧𝑧2). 𝛿(𝜔 − 𝜔0) (4-86) 

The cross spectrum is given by 

𝑊(𝑅, 𝜔) = 𝐹(𝑧2 , 𝜔)𝐹∗(𝑧1 , 𝜔) =, 𝜔) = 𝑤′
0
𝑒𝑖𝑘𝑧(𝑧1−𝑧2) (4-87) 

and so the phase is 

 = −𝑘𝑧(𝑧1 = 𝑧2) (4-88) 

Thus, the vertical wavenumber can be obtained simply from 

𝑘𝑧 =


(𝑧1 − 𝑧2)
 (4-88’) 

Equation (4-88') is just the elementary expression used to calculate the wavelength if the phase 

of a wave at two spatially separated positions is known.  By measuring the cross spectrum at a 

range of heights, the phase ambiguity inherent in this measurement can be resolved.  More 

importantly, this procedure should indicate whether the wave is up- or down- going.  If this last 

information is obtained, the assumption of downward phase progression is obviously not 

required. 

4.3.3 Three Coplanar Beams 

We now consider what is probably the optimum beam arrangement for measuring horizontal 

scales. 

Consider three beams aligned at +, 0 𝑎𝑛𝑑 −  to the zenith in the xz-plane, Figure (4-9).  

With this beam arrangement the phase ambiguity inherent in the measurement of horizontal 

scale can be reduced, because we are sampling three, rather than two, positions of the wave, 

and while an ambiguous result is still possible, it is less likely.  In addition, if a measurement 
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of the vertical wavenumber (magnitude and sign) is obtained from the vertical beam the 

ambiguity can be removed entirely in principle. 

To determine the horizontal wavelength with three coplanar beams, the procedure is:  

(l) Determine the horizontal direction of propagation using the assumption of 

downward phase progression, or from the signs of [𝑆𝐸(𝜔) − 𝑆𝑊(𝜔)] and [𝑆𝐸(𝜔) −

𝑆𝑉(𝜔)] at 𝜔 = 𝜔0 or from the signs of these expressions plus the measured vertical 

phase velocity. 

(2) Measure the phase of the cross spectrum 𝑊𝐸𝑊(𝜔) at 𝜔 = 𝜔0. If the (𝐶𝑂𝐻)2 is 

significant compare the measured value of  with that calculated from (4-81) and hence 

obtain the horizontal wavelength(s). 

(3) If two wavelengths are obtained, measure the phase of the cross spectrum 𝑊𝐸𝑉 (𝜔) 

at 𝜔 = 𝜔0. If the (𝐶𝑂𝐻)2  is significant, compare the measured phase with that 

calculated from (4-84) and obtain the correct wavelength. 

The triple coplanar beam arrangement provides an additional check as to the reliability of the 

phase because the wavelength calculated from two off-vertical beams can be compared to that 

calculated from a vertical and both off-vertical beams for all significant events, not just those 

that produce an ambiguous horizontal wavelength result. This is rather important since even 

random data will produce a certain number of events with significant coherence.  Because of 

this, it is essential that corresponding phases fit into a physically reasonable pattern that is 

consistent from height to height and from beam to beam.  Isolated points with significant 

coherence are of little use. 

4.4 Some Practical Considerations 

In this Section we consider some practical considerations pertinent when applying the ideas of 

the last three Sections.  The first concerns the method of obtaining the direction of propagation. 

4.4.1 Horizontal Direction of Propagation 

To determine the horizontal direction of propagation without the assumption of downward 

phase progression, additional information is required to the tilt of the phase surface ("aspect 

ratio") and this cannot be obtained directly from the mean square radial velocities measured in 
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DCC beams. However, the assumption of downward phase progression is reasonable for long 

period gravity waves at least. Vincent (1984) used a rotary spectral analysis to show that a 

lower limit of 65% of the vertical energy flux of these waves is up-going. 

To determine the horizontal direction of propagation three coplanar beams are required, one of 

which is directed vertically (Section 4.2.2).  This involves cross spectral analysis of vertical 

velocities obtained at successive height ranges.  However, because the assumption of 

downward phase progression appears to be good, we can follow a. more time-efficient scheme 

similar to that applied to the DCC beam radial velocity variances. 

If we consider the situation illustrated in Figure (4-9) and recall Equation (4-46) for a single 

gravity wave with linearly polarized perturbation velocities propagating at an angle  to the 

horizontal, then the mean radial velocity measured in the beam at + is 

𝑉𝐸
′2̅̅ ̅̅ =

𝑣0
′2̅̅ ̅̅

2
𝑠𝑖𝑛2(𝜃 + 𝛽) 

(4-58) 

Similarly, for the beam at - 

𝑉𝑊
′2̅̅ ̅̅ =

𝑣0
′2̅̅ ̅̅

2
𝑠𝑖𝑛2(𝜃 − 𝛽) 

(4-59) 

so that 

𝛿𝑉𝐸𝑊
′2̅̅ ̅̅ ̅̅ ̅ = 𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅ =

𝑣0
′2̅̅ ̅̅

2
𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛽 

(4-89) 

In a similar fashion, we can calculate the difference between the mean square values of the 

radial velocities measured in a vertical and an off-vertical beam as 

𝛿𝑉𝐸𝑉
′2̅̅ ̅̅ ̅̅ = 𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑉
′2̅̅ ̅̅ =

𝑣0
′2̅̅ ̅̅

2

[𝑐𝑜𝑠2𝛽 − 𝑐𝑜𝑠2(𝜃 + 𝛽)]

2
 

(4-90) 

𝛽 can be expressed 1n terms of the frequency of the wave by applying 

𝛽 = tan−1 (
𝑤′

𝑢′
) 

(4-91) 

which taken as a time average is 
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𝛽 = tan−1 (
𝑘𝑥𝑐2𝑘𝑧

𝜔0
2 − 𝑘𝑥

2𝑐2
) 

(4-91') 

Applying the dispersion relation this becomes 

𝛽 = tan−1 (±
𝜔𝑖

𝑁
) 

(4-91'’) 

in the limit, where N = Väisälä-Brunt frequency, and the subscript refers to wave i.  This 

approximation is valid for periods longer than about 30 min. 

Equations (4-89) and (4-90) are plotted over a range of wave frequencies using (4-91") with 

the mean square perturbation velocity set as a constant, in Figure (4 13).   

 

Figure (4.13) Plot of the difference in the mean square radial velocities for the DCC and DC beam 

configurations. 

Thus this diagram only indicates the relative sensitivity of the two different beam geometries, 

and cannot be used to examine the sensitivity of the basic technique.  This is because 𝑣0
′2̅̅ ̅̅  is 

itself a function of frequency and the exact dependence can only be determined by experiment. 

However, it is clear that the direction of propagation can be determined from both beam 

geometries as long as 𝑣0
′2̅̅ ̅̅  brings the difference of the variances of the radial velocities measured 

in each beam up to the sensitivity of the experimental equipment, and this is considered in 

Chapter 6. 
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The DCC beam arrangement is less sensitive, because the difference between the mean square 

radial velocities is larger, for most frequencies, but the sensitivity of both techniques increases 

with increasing frequency.  𝑣0
′2̅̅ ̅̅  decreased in general with increasing frequency (see Chapter 5) 

and for a given frequency interval ∆𝑓 = 𝑓1 − 𝑓2 is given by 

𝑣0
′2̅̅ ̅̅ = [

𝑆0𝑓1−𝑘

1 − 𝑘
]

𝑓1

𝑓2

 

where 𝑆0 and 𝑘 are constants obtained by fitting a curve of the form 𝑆0𝑓−𝑘  to 𝑆(𝑓), the power 

spectrum.  A reasonable value for 𝑘 is about 1.5 (Vincent, 1984) so that for a given frequency 

interval ∆𝑓, 

𝑣0
′2̅̅ ̅̅ = [2𝑆0𝑓0.5]

𝑓1

𝑓2 

Taking two equal frequency intervals of 0.83-1h, and 1-1.25h, and evaluating this expression, 

we obtain 𝑣0
′2̅̅ ̅̅ ~𝑆0(2.1) for 0.83-1h and 𝑣0

′2̅̅ ̅̅ ~𝑆0(2.8) for 1-1.25h. Taking the center frequency 

of each of these intervals and substituting the appropriate values into Equation (4-89) we 

obtain, 

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅(0.83,1)

∆𝑉𝐸𝑊
′2̅̅ ̅̅ ̅(1,1.25)

~0.91 

so that this method of obtaining the horizontal propagation direction is more sensitive for 

shorter period waves. This is reasonable, because longer period waves have perturbation 

velocities which are rather more horizontal than shorter period waves, and the difference 

between 𝑉𝐸
′2̅̅ ̅̅  and 𝑉𝑊

′2̅̅ ̅̅   will be smaller for longer period waves. 

It is important to note that the greater sensitivity of the vertical/off-vertical beam combination 

applies only to the determination of the direction of gravity wave propagation, and not to 

measurements of momentum flux or horizontal scale. It may seem strange that the Reynolds 

stress terms 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  can be obtained from the mean square radial velocities measured in 

DCC beams but that the horizontal direction of propagation cannot.  However, the reason for 

this can easily be seen from a simple example.  From the polarization relations we may obtain 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝐴2

2
𝜔0

2𝑘𝑥𝑐2𝑘𝑧(𝜔0
2 − 𝑘𝑥

2𝑐2) (4-19) 
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where the various terms have previously been defined. For gravity waves 𝑤0
2  < 𝑘𝑥

2 𝑐2 is a very 

good approximation so that the term in brackets will be negative. 

For the case illustrated in Figure (4-8) the variance of the radial velocity measured in the beam 

at + will always be larger than that measured in - regardless of the horizontal direction of 

propagation. For propagation in the +x-direction, 𝑘𝑥 is positive, 𝑘𝑧 negative and 𝑢′𝑤′̅̅ ̅̅ ̅̅  is 

positive. For propagation in the –x-direction, 𝑘𝑥 is negative, 𝑘𝑧 is positive so that 𝑢′𝑤′̅̅ ̅̅ ̅̅  is still 

positive.  A similar argument applies for the case in which the phase tilt is perpendicular to that 

shown in Figure (4-9). In this case 𝑢′𝑤′̅̅ ̅̅ ̅̅  will be negative regardless of the direction of 

propagation.  Thus the difference of the mean square radial velocities measures the correct 

momentum flux regardless of the direction of propagation. This results from the symmetry in 

the 𝑢′𝑤′̅̅ ̅̅ ̅̅  term.  It does not matter which component, 𝑢′ or 𝑤′, is negative or positive.  For 

example, a negative value of this term can indicate upward transport of westward momentum, 

or downward transport of eastward momentum. 

In the next Section we consider the significance of the cross spectral phases and hence of the 

measured horizontal scales. 

4.4.2 Significance and Spectral Resolution 

The measurement of horizontal scale is complicated in practice because any number of waves 

may be present in the region being observed.  To ensure that the measured phase corresponds 

to a wave, and not just noise, a confidence level must be established for each frequency interval 

calculated with the cross spectral analysis. To do this, the “coherence squared” ((𝐶𝑂𝐻)2) of 

the cross spectrum may be calculated for each frequency interval as 

(𝐶𝑂𝐻)2 =
|𝐹𝐸

∗𝐹𝑊|2(𝜔)

|𝐹𝐸(𝜔)|2|𝐹𝑊(𝜔)|2
 

This term is analogous to the square of the correlation coefficient between the fluctuations in 

the two beams in given frequency band, except that it is independent of the phase relationship 

between the time series (see e.g. Jenkins and Watts, 1968).  Essentially, it provides a measure 

of the similarity of observations made in the beams for a given range and frequency interval, 

which is really a way of measuring how well a wave model fits the observations. It is related 

directly to a significance level (1 − 𝑝) by 



 

129 

𝛽 = 1 − 𝑝

1

(
𝑑𝑓

2⁄ −1)
⁄

 
(4-93) 

Julian (1975), where 𝑑𝑓 is the number of degrees of freedom, and 𝛽 is the limiting (𝐶𝑂𝐻)2 for 

significance at the (1 − 𝑝) level.  𝑑𝑓/2 is the effective number of Fourier components in a 

spectral range and thus 𝛽 depends upon the amount of smoothing applied to the spectrum. 

Any power spectral analysis produces a measure of the variance within a given frequency band 

(∆𝑓) to the total variance of a time series.  The contribution in each band consists of the vector 

sum of the spectral estimates contained within the band multiplied by the interval of angular 

frequency it represents, that is 2𝜋∆𝑓.  Averaging over spectral estimates reduces the resolution 

but improves the reliability of the measurement. This occurs because noise can be regarded as 

a random vector.  Consequently, the noise components of adjacent spectral estimates are 

randomly phased and these tend to average out to zero as more spectral estimates are averaged 

over. 

This means that to obtain both good frequency resolution and significance, long data lengths 

are required. However, if the time series contains periods in which the gravity wave activity 

various in amplitude or phase, then the (𝐶𝑂𝐻)2 of a given frequency band will generally be 

lower than for that corresponding to the period of enhanced activity.  In the extreme case, if 

the observation term is long, the wave activity may "wash out" so that no significant events are 

detected. 

Good spectral resolution is also required to reduce the likelihood of more than one wave 

appearing in the same frequency band.  If this does occur, and the (𝐶𝑂𝐻)2 is significant, the 

measured wavelength will not necessarily correspond to either wave.  If they are propagating 

in opposite horizontal directions, then the direction of propagation of both waves will be 

obscured. The (𝐶𝑂𝐻)2 may decline rapidly with spatial separation in this case, (Wallace, 1971) 

and this is only likely to be evident in this work when vertical velocity cross spectra are 

calculated at a number of successive ranges.  However, decreasing (𝐶𝑂𝐻)2 with spatial 

separation is not necessarily indicative of superposed propagating waves, because evanescent 

modes could produce the same effect. 
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Figure (4.14) Vertical coherence for May 1982 data for two separations and a range of wave periods. 

If two or more waves of the same frequency arrive at the spaced observation sites from different 

directions, the phase difference will be "smeared" and the (𝐶𝑂𝐻)2 will be reduced.  The 

variation of (𝐶𝑂𝐻)2 with spatial separation is a very useful parameter in itself, and is exploited 

in oceanographic studies quite extensively. 

In general, it will be a function of frequency and beam separation (see e.g. Figure 4-14), 

because the gravity wave field appears to be broadband and to consist of the superposition of 

many waves which may have similar frequencies, but different horizontal and vertical scales 

and this is considered in Gossard and Hooke (1975).  The principles they outline are quite 

general, and are applied in many branches of geophysics.  For example, various spaced array 

configurations are used to study internal waves in the ocean (see e.g. Garret and Munk, 1979). 

Gossard and Hooke (1975) point out that the rate at which signal coherence decreases 

perpendicularly to the direction of propagation can give a measure of the extent of the source 

of the wave motion, which they term the "beamwidth" (although a better term would be angular 

spectrum). The rate at which coherence decreases parallel to the direction of propagation can 

be used as a measure of the velocity "bandwidth" of the propagation medium. 
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Figure (4.15) The coherence plotted as a function of vertical separation for May 1982 observations. 

For an interpretation of 𝛽∗ see VanZandt (1982) (Vincent, 1983, private communication). 

To measure these quantities obviously requires sampling at spaced positions in a horizontal 

plane and the vertical direction and exceeds the range of this work for the former case.  

However, radars with a beam swinging capability can obtain the necessary information. 

It is also important from another point of view. Because the coherence decreases with 

increasing spatial separation in general, there must be an upper limit to the spatial separation 

between observing sites in relation to the measurement of the scale.  Figure (4-15) illustrates 

coherence against vertical separation for DW data taken in May 1983 (Vincent, 1983, private 

communication).  It clearly shows the decline in coherence with vertical separation, and this 

obviously has important consequences for the measurement of vertical wavelength.  A similar 

variation in coherence would be observed with horizontal separation. 

The (𝐶𝑂𝐻)2 may also be reduced at a fixed separation by the presence of non-sinusoidal 

oscillations in the radial velocity time series.  This is because cross spectral analysis will 

interpret such events as the superposition of a sinusoidal variation at a fundamental frequency 

and higher harmonics, and these will appear in other frequency bands.  This may reduce the 

(𝐶𝑂𝐻)2 sufficiently to produce an event or events that are not significant.  This could be 

important for damped and breaking waves, which together with saturated waves will produce 

changes in the mean flow.  However, it is only likely to be of any consequence if the 

perturbations vary significantly between the spaced observing positions, that is, the beam 
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separation.  Since this is about 35 km in this work, it is most likely to affect only gravity waves 

with very short horizontal wavelengths, and observations made in the course of this work 

indicate that the assumption of the homogeneity of wave statistics in a horizontal plane is quite 

good.  If this effect does occur, however, the horizontal scales measured by the DCC beam 

technique may not be representative of very small scales that may be influencing the mean 

flow. 

Spurious contributions to spectral bands can occur for at least two other reasons.  Because the 

radial velocity time series spectra have larger spectral densities at lower frequencies (so called 

"red" spectra), this can appear at higher frequencies through spectral leakage. This effect can 

be reduced by removing the low frequency components by high pass filtering and this requires 

a suitable filter function or this procedure will also introduce spurious frequencies. 

According to Hines (1974), another possible contaminating effect can be produced if high 

amplitude, coherent waves are present, because their narrow bandwidth can cause 

contamination of other cross spectral phases, and some researchers omit records containing 

coherent waveforms from cross spectral analysis for this reason (e.g. Shibata and Okuzawa, 

1983). However, if these waves can be identified, other methods of analysis, such as least 

squares fitting, may be applied.  Generally, however, the wind field is rather complicated and 

to the eye at least, often appears quite random at higher frequencies. 

Waves propagating at +  and −  from the zenith will not contribute to the radial velocities 

in one of the beams in the DCC beam arrangement.  In this case, the (𝐶𝑂𝐻)2 will not be 

significant and no horizontal scale will be obtained.  However, the correct momentum flux will 

still be measured.  Similarly, waves propagating at azimuth angles of 0 and 180° will not be 

detected if the beams are directed at 90 and 270° from North.  However, these restrictions can 

be overcome by adding a vertical beam, and another pair of beams at  =  0 𝑎𝑛𝑑 180°, 

respectively.  The limiting value of the (𝐶𝑂𝐻)2 required for significance will also determine 

the uncertainty in phase and hence the uncertainty in the measurement of horizontal scale 

(Jenkins and Watts, 1968).  For example, with a (𝐶𝑂𝐻)2 = 0.68 (which has been used in this 

work) the uncertainty in phase will be 0.45 rad.  It is evident from Figure (4-9) that phase errors 

of this magnitude make estimates of wavelengths greater than about 200 km very uncertain at 

85 km with a beam separation of 35 km. The scheme applied to the analysis of radial velocity 

time series to measure horizontal scale in an effort to meet the conflicting demands discussed 

in this Section is given in Chapter 7. 
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In the next Section we briefly consider the ambiguity in the measurement of horizontal scale 

that occurs in the DCC beam experiment. 

4.4.3 The Ambiguity in Horizontal Scale in the DCC Beam Arrangement 

When only two beams are available to measure horizontal scale, an ambiguity in wavelength 

can occur. This can be resolved in principle by comparing the radial velocities measured at 

different ranges in the same beam to obtain the vertical wavelengths.  Since the vertical and 

horizontal wavelengths are related to the wave frequency by the gravity wave dispersion 

relation, it is possible in principle to choose the correct horizontal wavelength. This procedure 

was used by Vincent and Reid (1983), but because the height resolution of their equipment was 

4 km, short vertical wavelengths may not have been resolved. However, this technique may be 

useful for radars with superior height resolution. 

4.4.4 Perturbation Velocities 

When using the DCC beam arrangement, the horizontal component of the perturbation velocity 

cannot be separated from the vertical component as was shown in Section (4.1.1.2). However, 

as we noted in that Section, a good approximation can be obtained for the large period waves 

by adding the mean square radial velocities for the complementary coplanar beams for a given 

height and frequency interval because the vertical component is considerably smaller than the 

horizontal component.  The radial velocities measured in off-vertical beams may be reduced in 

magnitude by effects related to the anisotropy of the scatterers and this will be discussed in 

Chapter 5, but the relative magnitudes should be consistent. 

In addition, some care needs to be taken when removing the vertical perturbation velocity 

measured with a vertical beam from the sum of the variances of the radial velocities obtained 

from DCC beams because the vertical component will not be underestimates.  If SA 

observations are available for adjacent periods of observation the horizontal component 

measured using the Doppler wind method may be rescaled, but these limitations must be borne 

in mind. 

If the horizontal and vertical mean square perturbation velocities are available, then they may 

be used to give a further indication of horizontal scale, because they are related by the 

polarization relations. Figure (4-16) illustrates the ratio 𝑤
′2̅̅ ̅̅ ̅

𝑢′2̅̅ ̅̅⁄  for a few short gravity wave 
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periods and from this diagram it is clear that some indication of horizontal wavelength may be 

obtained if the period and ratio are known.   

 

Figure (4.16) Ratio of vertical to horizontal kinetic energy calculated from the polarization relations 

for a number of wave periods. The number against each curve represents the wave period. 

This type of diagram (see also Figures (4-4a) and (4-3d)) is useful in another way.  If the period 

and horizontal scale of a particular wave have been obtained by applying the procedures 

described in Section (4-2), then the vertical and horizontal components of the kinetic energy 

can be separated, because the wave motions measured fit the model of Hines (1960), and the 

results shown in Figures (4-15) and (4-4a) will be quite accurate. 

From Equation (4-35) we have the measured quantity 

𝑢′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 =
𝑉𝐸

′2̅̅ ̅̅ + 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑉𝐸𝑊

′2̅̅ ̅̅ ̅ (4-35) 

If the normalized value of 𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ calculated from the polarization relations is written as 

𝑉′2̅̅ ̅̅ =
𝑉𝐸𝑊

′2̅̅ ̅̅ ̅

𝑢′2̅̅ ̅̅  (4-94) 

then 

𝑢′2̅̅ ̅̅ =
𝑉𝐸𝑊

′2̅̅ ̅̅ ̅

𝑉′2̅̅ ̅̅  (4-95) 

and 
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𝑤′2̅̅ ̅̅ ̅ =
𝑉𝐸𝑊

′2̅̅ ̅̅ ̅(𝑉′2̅̅ ̅̅ − 1)

𝑉′2̅̅ ̅̅ 𝑐𝑜𝑡2𝜃
 (4-96) 

for a given wave of frequency 𝜔0 and horizontal wavelength 𝑘𝑥. However, Figure (4-4a) 

indicates that the response of 𝑉′2̅̅ ̅̅  in terms of horizontal scale is relatively flat, so that for many 

periods approximate values for 𝑢′2̅̅ ̅̅  and 𝑤′2̅̅ ̅̅ ̅ may be obtained if the period is known. 

In addition, if the horizontal scale of a wave of a given frequency has been measured using a 

vertical and off-vertical beam, a similar procedure can be applied to obtain the horizontal 

kinetic energy and Reynolds stress terms separately from Equation (4-27').  This Equation is 

𝑢′2̅̅ ̅̅ + 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑐𝑜𝑡𝜃 = 𝑉𝐸𝑉
′2̅̅ ̅̅̅  

If the normalized value of VV calculated from the polarization relations is written as 

𝑉′2̅̅ ̅̅ =
𝑉𝐸𝑉

′2̅̅ ̅̅̅

𝑢′2̅̅ ̅̅  (4-97) 

then 

𝑢′2̅̅ ̅̅ =
𝑉𝐸𝑉

′2̅̅ ̅̅̅

𝑉′2̅̅ ̅̅  (4-98) 

and 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸𝑉

′2̅̅ ̅̅̅(1 − 𝑉′2̅̅ ̅̅ )2

𝑉′2̅̅ ̅̅ 𝑐𝑜𝑡𝜃
 (4-99) 

This means that we can obtain all of the necessary information for coherent gravity waves 

through cross spectral analysis and the application of the polarization relations. 

4.4.5 Finite Beam Widths and Height Resolution 

4.4.5.1 Finite Beam Widths 

The spatial equivalent of the half power full width of the radar beam at BP is about 14 km. at 

85 km. This sets the smallest scale of turbulent and gravity wave motion that can be resolved 

by the analysis of radial velocity time series.  In the DCC beam experiment with  =  11.6°, 

the separation between beam centers is about 35 km. With a vertical beam and a beam at 11.6° 
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to the zenith, the separation between the half power points of the beams is about 4km, so that 

scales less than about 30 km are unlikely to be resolved, and there will be considerable 

smearing of the phase difference for larger scales. 

This means that better scale resolution will be obtained with the DCC beam arrangement, and 

if a vertical beam is added in an effort to resolve any scale ambiguity, the horizontal direction 

of propagation and wavelengths obtained from the pair of offset beams are likely to be the best 

estimates.  If the results from a vertical/off-vertical combination support those from the pair of 

offset beams this gives extra significance to the measurement.  If there is a contradiction, the 

results from the latter combination are probably better and should be preferred. 

This last statement does not mean that all inconsistent results be accepted, because we have 

already stated that consistency from height to height and beam to beam should be sought.  

However, the limitations of the equipment must be considered, and in our case these are 

reasonably restricting for some beam arrangements. At any rate, consistency from height to 

height can still be checked. 

4.4.5.2 Finite Height Resolution 

Since heights are sampled every 2 km, and the height resolution of the system is about 4 km, 

cross spectral analysis of time series corresponding to adjacent heights measured in a vertical 

beam results in significant correlations for most spectral bands. At a separation of 4 km, some 

significant events will result from the limited resolution of the system. This requires calculation 

of cross spectra at successive 4 km intervals to establish significance.  However, this also has 

the advantage of reducing the possibility of ambiguous vertical wavelengths being obtained. 

Since the average vertical wavelength is about 12-20 km (Vincent, 1984; Manson et al., 1979) 

and rocket observations indicate that vertical wavelengths less than about 4 km occur relatively 

rarely (Philbrick, 1981), the 4 km height resolution will not discriminate against many waves. 

However, the vertical wavelength depends on the background wind, and this is likely to vary 

rapidly with height.  To obtain consistency in the measured wavelengths, better height 

resolution would be an advantage. 

Note that the horizontal wavelength also depends upon the background wind, but because this 

is less subject to large spatial variation over typical beam separations, determination of 

horizontal wavelengths made at spatially separated locations in the same horizontal plane are 
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not affected in the same way. However, the background wind �̅� will Doppler shift the wave 

frequency so that the intrinsic frequency n can be obtained from 

 = 𝜔0 − 𝒌 ∙ 𝒖 (4-100) 

where 𝜔0 is the observed frequency and 𝒌 is the horizontal wavenumber. 

4.5 The Measurement of Momentum Flux for Scales Smaller than the 

Radar Pulse Volume 

The discussion in this Chapter has been concerned with the analysis of radial velocity time 

series.  Consequently, it is applicable for scales larger than the radar pulse volume.  However, 

a similar analysis to that applied to the mean square radial velocities can be applied to scales 

smaller than the spatial resolution determined by the beam widths and radar pulse length. This 

can be done by substituting the spectral width of the backscatter Doppler spectrum for the mean 

square radial velocity into Equation (4-4).  However, this requires a radar with a high time 

resolution capability so that the spectrum of radial velocities within the radar pulse volume can 

be measured accurately. In practice, this means that very narrow beamwidths and pulse lengths 

are necessary.  In the ideal case, with no background wind, the various components contained 

in Equation (4-4) for scales smaller than the radar pulse volume may be obtained in much the 

same way as for the analysis of radial velocity time series. For instance, if the average spectral 

widths of the Doppler spectra measured in eastward and westward beams are 𝜎𝐸
2̅̅ ̅ and 𝜎𝑊

2̅̅ ̅̅  

respectively, then the momentum flux 𝑢′𝑤̅̅ ̅̅ ̅' is given by 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝜎𝐸

2̅̅ ̅ − 𝜎𝑊
2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34’) 

for scales smaller than the radar pulse volume.  This type of analysis appears to have been 

applied to multi-beam Doppler sonar observations of tidal flow turbulence in the ocean 

(Lhermitte and Poor, 1983). 

In practice, the spectral width is partially determined by finite beam widths, pulse lengths and 

background wind (see e.g. Hocking, 1983a).  However, because these effects should be the 

same for both beams in the DCC beam arrangement, the momentum flux could be measured in 

principle, if both spectral widths are wider than the width of the spectrum due to the finite 

beamwidths and the assumption of horizontal homogeneity is valid, because Equation (4-34') 



 

138 

describes a difference rather than a sum. On the other hand, Equation (4-35) could not be used 

to obtain the sum of the horizontal and vertical mean square fluctuations in turbulent velocity 

without considering spectral broadening, because it involves the sum of the spectral widths. 

This type of analysis is likely to be quite involved in practice because of the numerous effects 

that may contaminate the spectral width of the Doppler backscatter time series, but is worth 

noting because of the amount of useful information related to small scale motion that could be 

obtained.  The momentum flux terms 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  are generally assumed to be negligible 

when compared with 𝑢′2̅̅ ̅̅   and 𝑤′2̅̅ ̅̅ ̅ in most studies which extract information about small scale 

motion from spectral widths (e.g. Hocking, l983a), and the accuracy of this assumption will 

depend upon the data length used to calculate the Doppler spectrum. Certainly, 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑤′2̅̅ ̅̅ ̅ 

may be of comparable magnitudes. However, this problem will not be pursued in this work but 

we note that the extension of the DCC beam arrangement to the measurement of these scales 

is likely to be very important. 

4.6 Summary and Conclusion 

This Chapter has concentrated on presenting the various quantities that can be obtained from a 

multi-beam Doppler radar.  The conventional Doppler radar beam configuration, that is, a 

vertical and an off-vertical beam can be used to measure horizontal and vertical scales of 

gravity wave motion and to obtain a measure of the horizontal kinetic energy. 

However, this last quantity requires a spectrum of gravity waves isotropic in azimuth for the 

results to be correct and even then it will only be correct for scales larger than about 100 km. 

and periods greater than about 60 minutes for a height of 84 km and an off-vertical angle of 

11.6°.  There may also be an ambiguity in the measurement of 𝑘𝑥. 

The upward flux of horizontal momentum can be measured for scales longer than about 200 

km at a tilt angle of 11.6° by using spatial covariances, but without additional information 

about the actual gravity wave spectrum scales cannot be separated.  Consequently, the validity 

of this measurement must be established (or refuted) by comparison with a measurement of the 

Reynolds stress made with a technique that does not depend on scale.  If the horizontal scale 

has been measured, then the Reynolds stress for that motion may be obtained. 

Two Doppler beams offset at equal angles from the zenith in the same plane can be used to 

obtain an accurate measurement of the Reynolds stress with only the assumption that the 
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statistics of the atmospheric motions are horizontally homogeneous.  However, spatial 

covariance estimates of the horizontal and vertical kinetic energy are poor.  A term containing 

both the horizontal and vertical components of the kinetic energy may be obtained, but unless 

the period and scale of the wave are known, these components cannot be obtained separately. 

Horizontal scales of the motion can be measured directly, but the vertical scale cannot, and 

there may be an ambiguity in 𝑘𝑥.  The beams do not have to be complementary, and the 

Reynolds stress can be obtained, as long as neither beam points vertically.  With a suitable 

choice of beam geometry, accurate measurements of the horizontal kinetic energy should be 

possible. 

With three coplanar beams the horizontal and vertical kinetic energy can be obtained using 

only the assumption of the horizontal homogeneity of the wind field.  In addition, both 

horizontal and vertical scales of the wave field can be measured unambiguously in principle 

and the Reynolds stress may be obtained.  Thus, three coplanar beams is the optimum 

arrangement in one vertical plane. 

Consequently, if fixed beam positions are used five beams is the minimum number required to 

measure all of the parameters presented in Section 4.1.4.  However, if the radar is capable of 

scanning a range of zenith angles in a plane in a time during which the atmosphere can be 

regarded as statistically stationary, and radial velocity time series are obtained at the same 

height for complementary zenith angles, the analysis described in this Chapter can be applied. 

Then with either two complementary coplanar beams fixed in the orthogonal plane, or another 

scanning beam, all of the parameters presented in Section (4.1.4) may be obtained.  Obviously, 

the greater the number of horizontal positions sampled at a fixed height, the better the statistics 

and reliability of the derived parameters will be. 
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5. The Measurement of Mesospheric Wind Velocities with the Doppler 

Wind Techniques at Buckland Park 

In the last Chapter we considered the ideal form of the DW experiment, in that the antenna 

beamwidths were assumed to be infinitely narrow, and the scattering regions were assumed to 

be isotropic.  This is not the case in practice, and in this Chapter we discuss some practical 

considerations that are important when observations of mesospheric winds are made with finite 

beamwidths using the DW technique. 

It will be recalled (Chapter 2) that in addition to the DW technique, the SA technique was 

available at BP in November 1980.  Both of these methods may be applied at 2 MHz to measure 

the neutral wind in the ionospheric D-region (60-100 km) and simultaneous observations of D-

region winds were made with these two techniques.  The total data length obtained was six 

days, with a time resolution of one hour. The results of this comparison are discussed in this 

Chapter. 

After considering the problems inherent in DW measurements of wind using relatively wide 

beamwidths, and the November 1980 results, we present the mean DW derived winds for the 

various observational periods in which the Reynolds stress and horizontal wavelength were 

measured. Direct measurements of the vertical component of the wind field were made in most 

observational periods during the course of this work.  The results of these observations are also 

presented in this Chapter. 

Uncertainties in the measurement of winds made with the DW technique arise from the nature 

of the scattering mechanism, and in the next Section we consider very briefly, scattering from 

the ionospheric D-region, and its importance for DW measurements made at BP. 

5.1 Backscatter from 60-100 km and its importance for the Doppler Wind 

experiment at BP 

5.1.1 Backscatter from 60-100 km 

In this Section we consider partial reflection and backscattering of radio waves from the 

ionospheric D-region.  The main area of interest is MF and HF partial reflection and 

backscatter, although some results at VHF are pertinent. 
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The received backscattered signal will always depend upon the type of scattering or reflection 

mechanism operating, and the polar diagram of the receiving array and pulse length used to 

observe it.  The polar diagram of the array can be easily determined by calculation, and the 

pulse length is under experimental control.  At BP the half width at half power of an entire 

array is ±4.5° (Figure 2-5) and a typical pulse length is 30 µ𝑠. 

The backscatter polar diagram is harder to determine, but a great deal of observational data has 

been collected which gives a good picture in a statistical sense, but has not produced a complete 

picture of what causes the scattering regions themselves.  Since we are only interested in the 

nature of the received backscatter as far as it influences the properties of the Doppler spectrum, 

this is not a major issue in this work. 

The observations related to the backscatter polar diagram can be divided roughly into indirect 

and direct methods.  Indirect observations have been made by Vincent and Belrose (1978) who 

compared the gain of antennae of very different beamwidths to estimate the off-vertical angles 

from which significant energy is returned, and by Lindner (1975b) who used the relative phase 

of backscattered radiation received at spaced antennae to measure its mean angular spread.  

This last technique is described in Lindner (1975a).  Direct methods involve measuring the 

power received at various zenith angles relative to that received from the zenith with narrow 

Doppler beams.  By assuming a Gaussian fall-off in power with zenith angle, the mean angular 

spread of the backscattered radiation may be calculated.  This last procedure has been followed 

by Hocking (1979) and Jones (1980) at HF, and by Fukao et al. (1981) at VHF.  Agreement 

between the indirect and direct methods is good. 

The general conclusion of these studies is that at D-region heights, the scattering regions often 

exist in the form of horizontally stratified layers, and scatter is returned only from angles close 

to the zenith.  The scattering properties are observed to vary with height, and the D-region may 

be roughly divided into two regimes on the basis of the character of the backscatter. Below 

about 75-80 km, radar returns appear to be due to specular type reflection from thin horizontal 

steps in refractive index, and these are observed to be both spatially and temporarily 

intermittent.  Hocking (1979) found that at 2 MHz, strong bursts of power lasting 2-5 minutes 

were quite common, and that scatter was returned only from angles up to 2 − 3° from the 

zenith. These results are in good agreement with those of Lindner (1975b) and Jones (1980). 

Above these heights, backscatter is found to be more isotopic in character, and is received from 

angles up to 10-15° from the zenith (Vincent and Belrose, 1978; Jones, 1980; Lindner, 1975b). 
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Temporal variations in signal strength appear to be smaller at these heights (Hocking, 1979). 

However, even though there is spatial variability in the occurrence of backscatter over the 

height range of 60-100 km, strong and persistent echoes often come from so-called "preferred 

heights". Observations at widely separated stations indicate that the ranges of 65-68 km, 70-74 

km, 82-84 km, 85-88 km and 90-94 km are strongly scattering regions (Hocking and Vincent, 

1982b). 

The irregularities in this height range can also cause backscattering of VHF signals (see e.g. 

Röttger et al, 1979) and consequently, irregularities with vertical scales of only a few meters 

must exist. Specular reflections are also observed at these frequencies (Fukao et al., 1980) and 

this requires a vertical fluctuation of less than one eighth the radar wavelength over a horizontal 

scale larger than the first Fresnel zone (see e.g. Röttger, 1980). This is ( 𝑧)
1

2⁄  where 𝑧 is the 

height of scatter, and  is the radar wavelength, and as is pointed out by Hocking and Vincent 

(1982b), this means that the reflecting surface cannot vary in height by more than a few meters 

over horizontal distances of the order of a kilometer. The effective production mechanism for 

such structures is not well understood at present, but Röttger (1980) gives a review of 

mechanisms that could cause specular reflections in the atmosphere up to E-region heights. 

Turbulence is considered to be the cause of the more isotropic scattering above about 80 km, 

although this has not been demonstrated conclusively, but a specular component is also present.  

Hocking and Vincent (1982a) found significant specular reflection associated with the ledge in 

electron density often observed at about 85 km, and Hocking (1981) found that at 80-85 km, 

HF backscatter appears to be composed of approximately equal proportions of specular and 

random components. Röttger (1980) has suggested that specular type reflectors with rough 

reflecting surfaces could produce this type of effect, and he has termed the process "diffuse 

reflection". 

To summarize the current picture of backscatter from the D-region, we note that: scatter is 

returned from angles close to the zenith, with heights below about 75-80 km having scatter 

characteristic of quasi-specular reflection, and heights above 80 km having scatter 

characteristic of a more isotropic scattering mechanism, but with a significant specular 

component.  Over the entire height range, the scatter is both spatially and temporally 

intermittent, but is less so above about 80 km. However, strong and persistent backscatter is 

often observed from certain preferred heights. 
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5.1.2 The Effective Beam Angle 

When radar beams are used to observe backscatter, the effective beam pointing direction is 

determined by the convolution of the angular polar diagrams of the backscatter and the 

receiving array.  Figure (5-1) is redrawn from Röttger (1980) and illustrates this situation 

schematically for a radar beam of finite width and a backscatter polar diagram which is narrow 

about the zenith.  In this diagram, 𝜃𝐴 is the apparent pointing direction of the radar beam.  The 

convolution of the two polar diagrams centered at these angles produces an effective beam at 

a mean pointing angle of 𝜃𝐸 . The effect of this is that radiation is received closer to the zenith 

and the measured radial velocity is an underestimate. 

 

Figure (5-1) Schematic illustration of the formation of the effective antenna beam. For details see text. 

If the beam width is narrow (~1°) the effective tilt angle cannot be changed much (although 

the returned power will be reduced) and the resulting error is small.  If the beam width is 

relatively large, as at BP say, large errors can result.  For instance, if the beam is nominally 

tilted at 11.6° to the zenith but is effectively pointing at the half power angle of 7.1°, the 

measured mean horizontal velocity 𝑢∗̅̅ ̅ after the vertical component is removed will be 

𝑢∗̅̅ ̅ = (0.6)�̅� − (0.5)�̅�, (5-1) 

where (�̅�, �̅�) are the true horizontal and vertical components of the wind respectively.  Since 

�̅� >> �̅� generally, this means that the measured value of the mean horizontal velocity would 

underestimate the true value by about 40% in this case.  The general expression for the 

measured horizontal velocity 𝑢∗̅̅ ̅ is simply given by 
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𝑢∗ = 𝑢(
𝑠𝑖𝑛𝜃𝐸

𝑠𝑖𝑛𝜃𝐴
) − 𝑤(

𝑐𝑜𝑠𝜃𝐸−𝑐𝑜𝑠𝜃𝐴

𝑠𝑖𝑛𝜃𝐴
), (5-2) 

Where 𝑢∗ is defined by Equation (5-2) and the other terms have previously been defined. 

That this effect would occur was first noted by Donaldson (1965) and is discussed in Browning 

and Wexler (1968) in relation to meteorological radars. It has recently been suggested 

independently by Röttger (1980) who gives a discussion more pertinent to this work. 

Experimental evidence of this effect has come from observations at VHF.  Röttger and 

Czechowsky (1980) found that when the SOUSY VHF radar was used in a DW mode for 

tropospheric observations, deviations of up to 10 𝑚𝑠−1 occurred in the horizontal velocity 

obtained from off-zenith angles of 3.5° and 7° at the radar observed tropopause.  In this region 

contribution of reflection to backscatter is quite large, so that the backscatter polar diagram will 

be relatively narrow about the zenith.  Since the radar beamwidth used in this work was about 

5°, Röttger and Czechowsky (1980) suggest that the variation in the calculated horizontal 

velocity with zenith angle was due to the effective beam direction being somewhat less than 

the nominal beam pointing direction. 

If both the backscatter and radar receiving array angular polar diagram are known, then it may 

be possible to correct for this effect.  This has been pointed out by Whitehead et al. (1983).  

However, as we noted in the previous Section, the properties of the scattering medium may be 

changing quite rapidly and unless the radar has a rapid beam swinging capability (e.g. Bribie 

Island, MU radar) it is probably only realistic to measure the mean angular width of the 

backscattered radiation over a suitable period of time. 

This has been done at BP using both direct (Hocking, 1979) and indirect (Lindner, 1975b) 

methods.  Because the former measurements were made with relatively large beamwidths 

(±4.5°), measurements of power may be subject to the same uncertainty in zenith angle as the 

measurement of radial velocity.  The latter results are not subject to the same uncertainty and 

were made by a completely different technique, and while the agreement between these two 

studies is good, it seems more appropriate to consider Lindner's (1975b) results. These 

observations have an additional advantage over those of Hocking (1979) in that they were 

obtained over almost a year, so that the mean result should represent a seasonal average. 
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Figure (5.2) is taken from Lindner (1975b) and illustrates the RMS angular spread 𝜃0 from the 

zenith of backscattered radiation at 2 MHz for a number of heights, where 𝜃0 is defined such 

that the power received at an angle 𝜃 from the zenith is proportional to 

𝑒𝑥𝑝 (− (
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃0
)

2

) (5-3) 

This diagram is actually a composite of results obtained from February to November 1971.  

However, only two months, June and September, showed the decrease in 𝜃0 above 90 km, so 

in this height region, 𝜃0 is somewhat uncertain. 

 

Figure (5-2) The RMS angular spread 𝜃0 from the zenith of backscattered radiation at 2 MHz (after 

Lindner, 1975b). 

The variability of 𝜃0 above 90 km may be due to specular reflection from the 'tail' of the E-

region, and may account for the variable quality of the data obtained from these heights 

(Chapter 3).  Data obtained in February and October 1982 in this height range certainly showed 

evidence of returns from angles very close to the zenith in oblique beams, so that there is 

probably nothing special about June and September. 

Lindner (1975b) found that values of 𝜃0 in June were much larger than in other months (𝜃0~l4° 

at 88 km, the peak), and the winter months, June, July and August showed increased variability 
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of 𝜃0 in comparison with the other months. Inspection of Figure (5-2) indicates that the 

effective half width of the backscatter increases quite rapidly from 80-90 km, above which it 

decreases at a slightly faster rate.  This means that the effective beam pointing angle will be 

less than the nominal beam angle over the entire height range, but the best agreement will be 

found at 90 km. 

 

Figure (5-3) The effective antenna beam for an off-zenith angle of 11.6, a half beamwidth at half power 

of 4.5, and a range of values of 𝜃0. 

It can be shown that the effective beam pointing We may estimate the effective antenna polar 

diagram we assume a similar functional form to that of Equation (5-3) for the antenna beam, 

which obviously neglects the sidelobes (see Figure 2-5).  In this case the power 𝑃 received at 

an angle 𝜃, and hence the effective antenna polar diagram, will be given by 

𝑃 ∝ 𝑒𝑥𝑝 (− (
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃0
)

2

) exp (−
sin(𝜃 − 𝜃𝐴)

𝑠𝑖𝑛𝜃𝐵
)2 (5-4) 

where 𝜃𝐵 is the actual beam width, and the other terms have previously been defined. 

angle is that at which the most power is returned (see e.g. Hocking, 1981; Whitehead et al., 

1983) and so 𝜃𝐸 may be obtained from the maximum of Equation (5-4).  This occurs when 

𝜃𝐸 =
1

2
𝑡𝑎𝑛−1

(𝑠𝑖𝑛2𝜃𝐴𝑠𝑖𝑛2𝜃0)

(𝑠𝑖𝑛𝜃𝐵 + 𝑐𝑜𝑠2𝜃𝐴𝑠𝑖𝑛2𝜃0)
 (5-5) 
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which may be evaluated easily.  However, it is also instructive to plot the effective antenna 

beam and this is shown in Figure (5-3) for a number of scattering half widths.  The most 

interesting thing to note about the effective antenna beams for the various values of 𝜃0, is that 

they are rather flat, and do not show much directivity. 

 

Figure (5-4) The effective beam pointing angle 𝜃𝐸 for an apparent beam angle of 𝜃𝐴 =11.6 and a 

beamwidth at half power of 4.5, calculated using Equation (5-5) and the values of 𝜃0 shown in Figure 

(5-2). 

Although necessarily inexact, by substituting Lindner's results and the known beam width into 

Equation (5-5), we estimate 𝜃𝐸~6° at 84 km, rising to about 9° at 90 km.  Figure (5-4) shows 

the effective beam pointing angle 𝜃𝐸, for an apparent tilt angle of 𝜃𝐴~11.6° and beamwidth at 

half power of ±4.5° calculated from Equation (5-5) and Lindner's (1975b) results. From 

inspection of this diagram and Equation (5-2) it is clear that if Lindner's (1975b) results are 

typical, may be substantial errors in the measurement of velocity over the entire height range 

of 60-100 km.  It is important to note that we have neglected the fact that the antenna beam is 

circular in cross Section, although the correction for this is likely to be small, and that we have 

neglected the fact that the radar has a finite pulse length. However, these results may be used 

to give an indication of the importance of the character of the backscatter for DW 

measurements.  Two points should be noted.  If the beam half-width is larger than the off-
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zenith angle, it may not be possible to correct for the difference between the apparent and 

effective beam directions so that a measure of horizontal velocity may be obtained. 

This is a consequence of the enhanced echo power from the zenith, and in this case, the 

effective beam direction may actually be vertical or very near vertical. For instance, with a 

beam tilted at an apparent angle of 3° from the zenith at BP, and with 𝜃0=3° which is 

appropriate for heights below about 80 km, the effective beam angle will be about 0.7°. If we 

note the lack of directivity in the effective beams illustrated in Figure (5-3), then it becomes 

apparent that it may not be possible to obtain a measure of the horizontal wind component. 

Table (5-1) the heights calculated using the apparent beam direction of 𝜃𝐴=11.6° and the effective 

beam direction shown in Figure (5-4). 

Range (km) Alt (𝜽𝑨) Alt (𝜽𝑬) 

78 76 78 

80 78 80 

82 80 82 

84 82 83 

86 84 85 

88 86 87 

90 88 89 

92 90 91 

94 92 93 

96 94 95 

98 96 98 

The second point concerns the power returned. Even though it may be possible to obtain a 

measure of the effective beam direction at a fixed value 𝜃𝐴 there is a rapid decrease in the 

power returned as 𝜃0 decreases (see e.g. Figure (5-3)). Unless high powers are used in 

transmission, and the receiving equipment is sensitive, the returned signal may be lost in noise.  

Reference to Figure (3-5) indicates that below 80 km, most records are rejected because of low 

SNRs.  Of course the backscattered power is smaller in this region than above 80 km in any 

case, but the combination of decreasing effective antenna gain and decreasing backscattered 

power as we move down in height from 90 km, means that may not be possible to recover the 

signal from the noise even if the effective beam pointing angle is known. 
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A further complication is that the height calculated from the range will also be incorrect.  Table 

(5-1) gives the heights calculated using the apparent beam direction of 𝜃𝐴=11.6° and the 

effective beam direction shown in Figure (5-4). Because the height resolution at BP is about 4 

km, this is probably not a major correction, but in Section (5.5) we will show that it should be 

taken into account. We have mentioned the importance of these results for the measurement of 

the mean horizontal components of the wind using the DW technique, but in this work, 

measurements of the Reynolds stress and the components of the kinetic energy are of more 

direct concern. 

 

Figure (5-5) The ratio of the measured value of the momentum flux 𝑢’𝑤’∗̅̅ ̅̅ ̅̅ ̅ to the correct value 𝑢’𝑤’̅̅ ̅̅ ̅ for 

an apparent beam angle of 11.6, but an effective beam angle as shown in Figure (5-4). 

The Reynolds stress for the zonal component is given by Equation (4-34) as 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 (4-34) 

This may be expanded in terms of 𝜃𝐸 and 𝜃𝐴 to obtain 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
1

2𝑠𝑖𝑛2𝜃𝐴
[(𝑢𝐸

′2̅̅ ̅̅ − 𝑢𝑊
′2̅̅ ̅̅ )𝑠𝑖𝑛2𝜃𝐸 + (𝑤𝐸

′2̅̅ ̅̅ ̅ − 𝑤𝑊
′2̅̅ ̅̅ ̅)𝑐𝑜𝑠2𝜃𝐸

+ 2𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝑠𝑖𝑛2𝜃𝐸] 

(5-6) 
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where the various quantities have been defined in Chapter 4.  If the wind field is horizontally 

homogeneous then 

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅∗ = (𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅(
𝑠𝑖𝑛2𝜃𝐸

𝑠𝑖𝑛2𝜃𝐴
) (5-7) 

where (𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅∗ is the measured value of the momentum flux, and 𝑢′𝑤′̅̅ ̅̅ ̅̅  is the correct value.  

Consequently, the ratio of the measured to the true value of the Reynolds stress will be given 

by the ratio in Equation (5-7).  This is plotted in Figure (5-5).  Inspection of this diagram 

indicates that the difference between the apparent and effective beam angles must be taken into 

account in measurements of momentum flux made at BP. 

The zonal body force 𝐹𝑢 is given by 

𝐹𝑢 = −
1

𝜌

𝜕(𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ )

𝜕𝑧
 (5-8) 

and if 𝑢′𝑤′̅̅ ̅̅ ̅̅  is monotonically increasing or decreasing with height, use of the measured value 

(𝑢′𝑤′)̅̅ ̅̅ ̅̅ ̅̅ ̅∗ will lead to an underestimate of 𝐹𝑢. 

The measured values of the horizontal energy are affected rather more than the Reynolds stress 

terms.  If we sum the mean square radial velocities obtained in eastward and westward directed 

beams, we obtain 

(𝑉𝐸𝑊
′2̅̅ ̅̅ ̅)∗ =

𝑉𝐸
′2̅̅ ̅̅ + 𝑉𝑊

′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= (𝑢′2̅̅ ̅̅ ) (

𝑠𝑖𝑛2𝜃𝐸

𝑠𝑖𝑛2𝜃𝐴
) + (𝑤′2̅̅ ̅̅ ̅) (

𝑐𝑜𝑠2𝜃𝐸

𝑐𝑜𝑠2𝜃𝐴
) (5-9) 

where (𝑉𝐸𝑊
′2̅̅ ̅̅ ̅)∗ is defined by (5-9) and the other terms have previously been defined. 

If the vertical component measured in a vertical beam is removed without taking the difference 

between the effective and apparent beam directions into account, we obtain 

(𝑢′2̅̅ ̅̅ )∗ = (𝑢′2̅̅ ̅̅ ) (
𝑠𝑖𝑛2𝜃𝐸

𝑠𝑖𝑛2𝜃𝐴
) + (𝑤′2̅̅ ̅̅ ̅) (

𝑐𝑜𝑠2𝜃𝐸 − 𝑐𝑜𝑠2𝜃𝐴

𝑐𝑜𝑠2𝜃𝐴
) (5-10) 

so that not only the measured horizontal mean square velocity underestimated, it contains a 

contribution from the vertical mean square component.  For 𝜃𝐸 = 8°, we obtain 
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(𝑢′2̅̅ ̅̅ )∗ = (0.5)(𝑢′2̅̅ ̅̅ ) + (0.5)(𝑤′2̅̅ ̅̅ ̅) (5-11) 

For periods less than about half an hour, the horizontal and vertical mean square perturbation 

velocities of gravity wave motion may be comparable (see e.g. Figure 4-16) and (𝑢′2̅̅ ̅̅ )∗ will 

approximate 𝑢′2̅̅ ̅̅ .  At lower frequencies, there will be a general reduction in the values of 𝑢′2̅̅ ̅̅  

and the vertical component will be much less consequential. This does not mean that 

measurements of 𝑢′2̅̅ ̅̅  are possible at higher frequencies, but does explain the form of the spectra 

when the vertical component is removed to obtain the horizontal component without taking the 

effective beam angle into account. 

 

Figure (5-6) The power spectra for 𝑢′2̅̅ ̅̅  (upper solid line) and 𝑤′2̅̅ ̅̅ ̅ (lower solid line) for November 1981. 

The corrected value of 𝑢′2̅̅ ̅̅  calculated using the effective beam direction shown in Figure (5-4) is shown 

as the dashed line. The straight line indicates the line of best fit to Vincent’s (1984) results. 

Unlike the Reynolds stress, independent measurements of 𝑢′2̅̅ ̅̅  are available.  Vincent (1984) 

has presented seasonally averaged spectra of 𝑢′2̅̅ ̅̅  for three widely spaced sites for 86 km 

including Adelaide.  The Adelaide results were obtained from a series of SA measurements.  

The results of a DW run made November 1981 are presented as power spectra for the horizontal 

and vertical wind components for 86 km in Figure (5-6).  We have taken the effective beam 
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angle for 86 km from Figure (5-4) and rescaled the mean square radial velocity obtained for 

this height accordingly, and removed the vertical mean square radial velocity measured in a 

vertically directed beam according to Equation (4-34).  In the nomenclature described in 

Chapter 2, the beam arrangement was TC(CP). The results are presented 1n Figure (5-6) as a 

power spectrum along with the vertical velocity spectrum, and the horizontal spectrum that 

would have been obtained if the effective beam direction had not been taken into account. Also 

shown is the seasonally averaged result of Vincent (1984).  

 

Figure (5-7) As for Figure (5-6), but for May 1982. 

It is clear that the rescaled spectrum of 𝑢′2̅̅ ̅̅  is in good agreement with Vincent's results, whilst 

the unsealed results are somewhat lower.  The few lowest frequency points of the spectra may 

be uncertain because the time series were filtered to remove periods longer than 8 hours, but 

the remaining points should give a good measure.  It would appear from this result that the 

effective beam pointing direction for 86 km calculated from Lindner's (l975b) results is a good 

estimate.  Note that the unsealed spectrum for 𝑢′2̅̅ ̅̅  shows better agreement with Vincent's results 

at high frequencies than at low frequencies. 

Lindner's results would also appear to be typical of other months.  Figure (5-7) illustrates 

similar power spectra for data obtained in May 1982.  It is clear that if the value of 𝜃𝐸  from 

Figure (5-4) is applied to rescale 𝑢′2̅̅ ̅̅ , agreement with Vincent's results is excellent. These 
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results are particularly encouraging, because if the values of 𝜃𝐸  illustrated in Figure {5-4) are 

typical, the task of correcting for the difference between the apparent and effective beam 

directions is considerably simplified. 

This does appear to be the case, and the results for November 1981 and May 1982 presented 

above are quite typical of the other DW results obtained during the course of this work.  The 

measurements of 𝑢′2̅̅ ̅̅  and 𝑣′2̅̅ ̅̅  derived from the various beam configurations are all smaller than 

the seasonally averaged results of Vincent (1984), and intercomparison of the same quantities 

measured in each month with SA results presented in Ball (1981) for the same months (but 

different years) indicates that DW measurements of the horizontal component of the kinetic 

energy are all too small. 

They are also smaller in magnitude than similar mesospheric measurements obtained with the 

DW technique using narrow beamwidths at Poker Flat (Carter and Balsley, 1982; Smith and 

Fritts, 1983), with estimates of 𝑢′2̅̅ ̅̅  and 𝑣′2̅̅ ̅̅  based on rocket measurements (Vincent et al., 

1977), and with SA measurements made at Saskatoon {Manson et al, 1981). Because we can 

relate the DW observations for the various months to the seasonally averaged results of Vincent 

(1984) through estimates of 𝜃𝐸 based on measurements of 𝜃0 made with a completely different 

technique, there is compelling evidence that the effective beam angle is less than the apparent 

beam angle, and that the measurements of 𝜃0 made by Lindner (1975b) give a good measure 

of this quantity. 

However, it must be stressed that this correction is only valid for observations taken over a 

suitable period of time and is then only correct in a statistical sense.  Since most observations 

presented in this work cover periods of about three days or more it is probably appropriate to 

apply the correction for the effective beam direction for the values of 𝑢’𝑤’̅̅ ̅̅ ̅ averaged over this 

period of time. 

The variation between the apparent and effective beam directions has one other important 

consequence.  The procedure for the measurement of horizontal scale outlined in Chapter 4 

assumes a separation between DCC beams of about 35 km at 85 km altitude.  Inspection of 

Figure (5-4) indicates that this is likely to be closer to about 22 km.  This means that the 

measured horizontal wavelengths will be incorrect unless this variation is accounted for. We 

will consider this in Chapter 7. 
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In Sections (5.4 and 5.5) we present additional evidence for the discussed in this Section, but 

before considering this, we describe another effect that may reduce the magnitude of radial 

velocities measured in wide Doppler beams, and then briefly describe the SA technique. 

5.2 Beam Width and DW Measurements at BP 

Another effect that may lead to errors in DW measurements that is related to finite beam width, 

but not the character of the backscatter, has been modelled numerically by Hocking (1983a) 

and discussed in a qualitative way in Hocking (1983c). Figure (5-8) is from this last paper. 

 

Figure (5-8) Schematic diagram of the formation of the Doppler spectrum for a radar beam of finite 

width (after Hocking, 1983c). For details see test. 

This means that if significant horizontal fluctuations In this diagram, three scattering regions 

are considered from simplicity, but there is no real restriction on number.  Doppler velocities 

from region 'a' produce spectrum A, likewise b, B and c, C.  Spectra produced by backscatter 

from larger tilt angles have a broader range of frequencies, and because the tilt angle is larger, 

the mean frequency shift is larger.  When spectra from each region are summed, there is a bias 

towards low frequency components and the peak of the spectrum is an underestimate of the 

value corresponding to the true horizontal component of the wind. 

occur in the wind velocity during the interval of measurement, the measured horizontal velocity 

will be an underestimate of the true horizontal velocity.  Hocking (1983a) suggests that 
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underestimates of about 20-25% could occur in horizontal velocities measured with the DW 

technique at BP in typical mesospheric conditions. Because this effect has only been suggested 

recently, no related experimental observations have been presented in the literature. The DW 

technique has been discussed in Chapters 3 and 4, but as yet we have not described the SA 

technique.  This is done in the next Section. 

5.3 The Spaced Antenna Technique 

 

Figure (5-9) Schematic illustration of the portable SA system used in this work. For details see text. 

The SA technique uses a minimum of three vertically directed radar beams which are spatially 

separated on the ground by about 200m for mesospheric observations at 2 MHz.  For purposes 

of illustration, we will consider the portable SA equipment used in November 1980 as this has 

the advantage of introducing this particular equipment as it was signed to be used. The SA 

arrangement is illustrated in Figure (5-9). 

The crosses at A, B and C represent crossed half wave dipoles, arranged at the vertices of an 

equilateral triangle with a side length 165 m between crossed dipole centers, and these are used 

for reception. The large square at the center of the triangle formed by the receiving aerials 

represents the transmitting array, each side of which represents a folded half wave dipole.  

Opposite sides are phased together and connected to a central site through transmission lines.  

Both transmitting and receiving equipment are situated at the central site. 
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The transmitted frequency of 1.94 MHz is partially reflected or backscattered from the D-

region by irregularities refractive index, and a diffraction pattern represented by the contour 

pattern at the top LHS of Figure (5-9) is formed. The fluctuations in this returned signal are 

received at the three array sites, and in the presence of a horizontal wind at the backscatter 

height, these show relative time displacements.  Using a cross correlation analysis, the mean 

time shifts are calculated for pairs of antenna, and from these the horizontal wind may be 

calculated.  This method of "similar fades" results in a parameter called the "apparent velocity", 

and this basic procedure was applied by Mitra (1949). 

If the ground diffraction pattern is on average circular, and does not change form as it moves, 

the velocity derived from the relative time displacements will correspond to the real wind 

velocity. In general, the pattern will change form as it moves and may be anisotropic.  The 

velocity derived from the relative time displacements in this more realistic case may not 

correspond to the true wind velocity at the backscatter height, because part of the signal fading 

will be due to random changes in the pattern rather than to advection of the irregularities, and 

the diffraction pattern will not be aligned perpendicularly to the velocity vector. 

To measure the true wind velocity, and not the apparent velocity of the diffraction pattern over 

the ground, the effects due to pattern anisotropy and random changes are removed using the so 

called "Full Correlation Analysis" (FCA).  This was developed by Briggs et al. (1950) and 

Phillips and Spencer (1955) and details of the technique may be found in Briggs (1977).  

Because the ground diffraction pattern is sampled at only a few antenna positions and times, a 

number of acceptance criteria are applied to ensure that the estimate of the ground diffraction 

pattern is reasonable. Details may be found in Ball (1981), Vincent and Röttger (1980) and 

Hocking (1983c). 

On the face of it, this technique appears to be quite different from the DW method.  However, 

Briggs (1980) has shown that both methods use the same information.  The DW technique 

exploits the change in the mean Doppler shift with zenith angle, and samples small spatially 

separated volumes. The SA method makes use of the fact that the variation in the Doppler shift 

with angle is such that the resultant field moves over the ground as a random pattern with a 

velocity twice that of the horizontal wind at the backscatter height.  As discussed by Briggs 

(1980), the SA method is effectively a natural analogue computer that combines the Doppler 

shifts of the radiation received in the antenna beam for all angles of arrival to produce the 

moving ground diffraction pattern. 
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5.4 November 1980 Comparison of Spaced Antenna and Doppler Wind 

Derived Horizontal Wind Components 

Intercomparison of different methods of remote sensing is essential, because this is the way in 

which their validity and suitability for particular applications may be assessed.  Because the 

DW method had not previously been routinely applied to the measurement of wind at BP, six 

days of data were obtained in November 1980 at BP using both the SA and DW techniques. 

Details of the experimental arrangement used have previously been in Chapter 2, and it will be 

recalled that the SA equipment used was not set up optimally, because only one dipole was 

erected at each receiving site, and these were not tuned to l.98 MHz but 1.94 MHz.  This 

reduced the effective height range somewhat, as will be discussed later, but reasonable data 

acceptance rates were obtained on some days. 

In addition, because the SA and DW equipment controlled the same transmitter using a time 

multiplexing system, the best data acquisition rate that could be obtained was three consecutive 

two-minute wind determinations every twenty minutes by each system.  For SA observations 

this is a little low, because typical acceptance rates are about 50%, and for DW observations 

made with off-vertical beams without a vertical beam, there may be contamination of the true 

wind because of the unresolved vertical component and gravity wave effects (Section 4-1-1-

1).  Consequently, the best resolution considered to be practical was one hour. 

5.4.1 Wind Results 

A total of six days of SA and DW observations were obtained in November 1980 from the 

21st—27th Figure (5-10) illustrates hourly mean values of the meridional and zonal wind 

components for five heights.  The acceptance rates of individual two minute SA determinations 

of velocity are shown in Figure (5-11), and from this diagram it is clear that at 84 km data may 

be marginal.  Nevertheless, the gross features appear to be in fair agreement between the 

techniques at this height.  The DW data acceptance rates were similar to those shown for 

November 1981 in Chapter 3. 
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For the SA data plotted in Figure (5-10), 84 and 86 

km have an average of three two minute 

determinations of velocity per hour, and the other 

heights an average of four per hour.  This is 

somewhat lower than that obtained during a 

typical SA run, where run rates of 4 in 10 minutes 

compared with 3 in 20 in the present study would 

be considered adequate for hourly average values 

of wind.  Since the acceptance rates shown in 

Figure (5-11) are lower than those obtained with 

the complete portable SA system or with BP operating in a SA configuration, these SA results 

are inferior in terms of quantity at all heights to those generally obtained. 

 

Figure (5-12a)102.4 s determinations of wind velocity for SA (triangles) and DW (circles) techniques 

for 88 km.  

Individual data points from both techniques are illustrated in Figure (5-12a, b) for a height of 

88 km for a few hours of observation, and these examples were selected at random from the 

available data.  Agreement between the winds derived with each technique is good, and the 

variation between adjacent data points appears to be consistent for both techniques, although 

is somewhat larger in the eastward beam DW radial velocities on the 25th of November.  

Although these times series are rather short, and the level of gravity wave activity unknown, 

we can suggest that there is not any evidence of atypical variations in velocity between 

techniques. Inspection of the time series plotted in Figure (5-10) indicates that generally, DW 

derived velocities tend to be smaller than those obtained with the SA technique.  They are also 

 

Figure (5-11) SA data acceptance rates for  

November 1980 for the range 80 to 98 km. 
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smoother, although low SA data acceptance rates are certainly contributing to the "noisier" 

time series in this case.  However, overall agreement is good, with the main features evident in 

both time series, and cross correlation between the SA and DW observations for the entire 

observational period indicates values of 0.7 for the zonal component, and 0.8 for the meridional 

component for heights with sufficient data to make the calculation meaningful.   

 

Figure (5-12b) As for Figure (5-12a) 

 

Figure (5-13) (a) The correlation coefficient between SA and DW derived winds for zonal (e) and 

meridional (n) wind components. (b) The number of hours with data points for the SA and DW methods. 

The maximum possible is 144. (c) The average wind velocity for the six-day period (SA, solid line; DW, 

dashed lines) 

This is shown in Figure (5-13), along with the number of hours with data points.  Also shown 

on this diagram are the average winds for the entire six days. From this diagram it is clear that 
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for heights above 84km, the average zonal Doppler winds for the 6-day period tend to be 

slightly smaller than the SA observations. 

The average meridional velocities show good agreement in form but a difference of about 5 

𝑚𝑠−1 is evident. On the whole, DW observations are much smoother than SA observations, but 

this could result from the much higher DW data acceptance rate.  The DW derived winds show 

rather clearly the presence of the tidal components of the wind field, and exhibit excellent 

consistency in height and in time (Figure 5-14a, b). We note in passing that these height profiles 

indicate a tendency for a vertical wavelength of about 20 km which is consistent with that 

expected for the (1,1) tidal mode.  In contrast, the SA winds have a larger variation in height 

and time, and generally have a larger irregular component superimposed on the hourly height 

profiles. 

 

Figure (5-14a) Hourly average meridional winds for November 1980. 

Some of this can be attributed to low data acceptance rates, but often consistency in height and 

time tends to indicate real variations.  Hourly average meridional height profiles of SA and 

DW derived winds are shown in Figure (5-15) for two days of observations.  

Harmonic analysis of the time series plotted in Figure (5-10) indicated good agreement in the 

phase of the tidal components calculated from the DW and SA derived winds, whilst there was 

some variation in the agreement between the tidal amplitudes.  To obtain a more general 
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comparison of the winds derived from each technique, we have applied a power spectral 

analysis, the results of which are discussed in the next Section. 

 

Figure (5-14b) Hourly average zonal winds for November 1980. 

 

Figure (5-15) Height profiles of the hourly average meridional wind velocity derived from the SA and 

DW techniques. 

5.4.2 Power Spectral Analysis of November 1980 Winds 

To check for differences between the wave energy calculated from the two methods in terms 

of wave frequency, power spectra were calculated for each height.  The significant gaps in the 
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SA data at heights below 86 km and above 92 km make these time series unsuitable for this 

analysis, and we have concentrated on 86-92 km height range. 

A cubic splines interpolation procedure was applied to smooth over small gaps in the data, and 

to improve the reliability the spectral estimates, the raw estimates from four adjacent frequency 

bands were averaged to produce one estimate.  NS and EW spectra were similar and so to 

improve the estimate further, these have been averaged together to form composite spectra.   

This procedure has previously been applied by Ball (1981) and Vincent and Ball (1981). This 

amount of averaging has obscured tidal peaks at 24 and 12 hours, but since we are rather more 

interested in the general form of the spectra, and all of the spectra have been processed in the 

same way, this is of little direct consequence. 

We have noted that the zonal wind components measured with each technique are in better 

agreement than the meridional wind components.  It could be possible that because of an error 

in the phasing cables used to tilt the beams from the zenith, the NS radar beam was tilted at an 

angle less than that of the EW beam from the zenith.  This would mean that the composite 

spectra would underestimate the true spectra. 

However, integrating under the individual spectra for a height of 88 km yields for the NS 

components, 𝑉𝑟𝑚𝑠 = 24 𝑚𝑠−1 and 17 𝑚𝑠−1 for the SA and DW winds respectively, and for the 

EW components, 𝑉𝑟𝑚𝑠 = 24 𝑚𝑠−1 and 15 𝑚𝑠−1 for the SA and DW results respectively. 

Consequently, the RMS values for NS and EW components measured with the same technique 

are in agreement.  These values are typical for the 86-92 km height region.  It is not clear why 

the meridional components as measured with each technique did not agree as well as the zonal 

components, but it is very unlikely that it was because of an error in the phasing cables used. 

It important to note that the power spectra the DW results are actually given by 

(𝑢𝐸
′2̅̅ ̅̅ )∗ =

𝑉𝑊
′2̅̅ ̅̅

𝑠𝑖𝑛2𝜃
= 𝑢𝑊

′2̅̅ ̅̅ + 𝑤𝑊
′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 + 2(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝑊𝑐𝑜𝑡𝜃 (5-12) 

and 

(𝑣𝐸
′2̅̅ ̅̅ )∗ =

𝑉𝑁
′2̅̅ ̅̅

𝑠𝑖𝑛2𝜃
= 𝑣𝑁

′2̅̅ ̅̅ + 𝑤𝑁
′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 + 2(𝑣′𝑤′̅̅ ̅̅ ̅̅ )𝑁𝑐𝑜𝑡𝜃 (5-13) 

and the average spectra plotted represent 
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(𝑢𝐸
′2̅̅ ̅̅ )∗ + (𝑣𝐸

′2̅̅ ̅̅ )∗

2

=
𝑢𝑊

′2̅̅ ̅̅ + 𝑣𝑁
′2̅̅ ̅̅

2
+

(𝑤𝑊
′2̅̅ ̅̅ ̅ + 𝑤𝑁

′2̅̅ ̅̅ ̅)𝑐𝑜𝑡2𝜃

2
+ ((𝑣′𝑤′̅̅ ̅̅ ̅̅ )𝑁

− 2(𝑢′𝑤′̅̅ ̅̅ ̅̅ )𝑊)𝑐𝑜𝑡𝜃 

(5-14) 

where  (𝑢𝐸
′2̅̅ ̅̅ )∗ and (𝑣𝐸

′2̅̅ ̅̅ )∗  are defined by Equations (5-12) and (5-13) respectively, and the 

subscript refers to the beam in which the bracketed quantity is measured.  Since the quantity 

required is that given by the first term on the RHS of Equation (5-14), there is some uncertainty 

in these spectra. 

 

Figure (5-16) The power spectra for zonal (EW) and meridional (NS) wind velocities measured with 

the DW technique at 88 km during November 1980. 

The effect of the second two terms in this Equation will become more important as we move 

up in frequency and will depend on the signs of the covariance terms as to whether the spectra 

are raised or lowered in a particular frequency interval.  For periods down to about an hour, 

(𝑣′2̅̅ ̅̅ ) ≈ (𝑢′2̅̅ ̅̅ ) ≫ 𝑤′2̅̅ ̅̅ ̅ and 𝑤′2̅̅ ̅̅ ̅~|𝑢′𝑤′̅̅ ̅̅ ̅̅ |~|𝑣′𝑤′̅̅ ̅̅ ̅̅ | are reasonable assumptions. Because of the 

𝑐𝑜𝑡2𝜃 dependence of the 𝑤′2̅̅ ̅̅ ̅ term and because the covariance terms are signed quantities, the 

second is more important than the last term in Equation (5-14).  We have already noted that 

EW and NS DW derived spectra are quite similar, and an example is shown in Figure (5-16).  
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This similarity indicates that the covariance terms are not likely to be significant and the general 

conclusions of the following discussion are valid.  The agreement between DW spectra for NS 

and EW components is comparable to that for the NS and EW components of the SA spectra. 

To give some indication of the effect of the vertical mean square component and the covariance 

terms on the November 1980 spectra, November 1981 data were analyzed to obtain hourly 

averages of 𝑉𝐸
′2̅̅ ̅̅ /𝑠𝑖𝑛2𝜃 and (𝑢′2̅̅ ̅̅ )𝐸𝑉  and these were used to calculate power spectra in the same 

way as those for November 1980.  This indicated a difference of 1 𝑚𝑠−1 in RMS velocity 

calculated over the entire frequency range for most heights.  However, there was no significant 

difference in spectral slope or general form over the entire frequency range. The November 

1981 spectra with the vertical component and covariance terms removed are in agreement with 

those for November 1980, although they are somewhat smaller at the higher frequency end of 

the spectrum.  Given that only three days of data were obtained in November 1981, and only 

the EW component was obtained, agreement between November 1980 and 1981 data is good, 

and it appears that November 1980 DW spectra are quite typical of the horizontal fluctuation 

in velocity in each frequency range as measured with the DW technique. 
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Figure (5-17a-f) The DW and SA wind velocity spectra for 84 to 94 km for November 1980. SA results 

are not shown for 84 and 94 km. Figure (5-17b) (top right previous page) also shows the lines of best 

fit to the 2-8h period range for these spectra, and the lines of best fit to the seasonally averaged results 

of Vincent (1984) (Adelaide) and summer results from Poker Flat. Figure (5-17c) (bottom left previous 

page) also shows the SA wind velocity power spectrum for November 1978. 
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Consequently, the DW spectra should be reasonable estimates of 
(𝑢𝐸

′2̅̅ ̅̅ ̅)+(𝑣𝐸
′2̅̅ ̅̅ ̅)

2
 but the uncertainty 

due to the unresolved vertical component must be borne in mind, and we could reasonably 

expect errors of 1 𝑚𝑠−1 in RMS velocity when evaluated over the entire frequency range. 

The spectra for 86-92km are shown in Figure (5-17a to 5-17f).  The DW spectra for 84 and 94 

km are also included.  On the spectral plot for 86 km we have presented the lines of best fit to 

the seasonally averaged results for Adelaide for 85 km, obtained from Vincent (1984) and some 

summer results obtained at Poker Flat for the same height using a VHF radar presented by 

Carter and Balsley (1982) which were also obtained from Vincent (1984).  The SA results for 

this height are clearly in good agreement with Vincent's seasonally averaged result, and with 

the DW results from Poker Flat.  Since the Poker Flat radar has a narrow beam width (~1°), it 

should not be subject to uncertainties in the effective beam angle because of the effects we 

have discussed earlier in this Chapter. 

We note that the BP DW results are somewhat smaller than the BP SA results.  On the spectral 

plot for 88 km we have included the SA power spectrum for November 1978 taken from 

Vincent and Ball (1981).  Agreement between the SA spectra at this height is quite good, 

although the November 1980 spectrum tends to be somewhat lower over most of the frequency 

range.  Some of this difference can be attributed to differences in the total data lengths and the 

different number of spectral estimates averaged over, and to the separation in time of the 

observations, but it is clear that this SA data is quite typical of that obtained at BP at this time 

of year. 

Agreement in form between SA and DW spectra is good, but in a given frequency interval the 

values of the DW spectra are typically half of the corresponding SA values. For example, for 

88 km the mean square horizontal velocity fluctuations for either component is 256 m2s-2 for 

DW observations and 576 m2s-2 for SA observations.  This corresponds to RMS fluctuations 

of 16 ms-1 and 24ms-1 respectively.  It is interesting to note that if we take Hocking’s (1983c) 

estimate of a 20% reduction in DW velocities because of the effects of a significant horizontal 

RMS fluctuation in velocity and a finite beam width (see Section 5.2), then this indicates an 

effective beam pointing direction of 9° at 88 km.  As we shall see later, this is a reasonable 

estimate. 

Both DW and SA spectra show typical behaviour for this type of power spectrum, in that power 

decreases on average with increasing frequency from the inertial period (20.9h), to the 



 

167 

frequency limit imposed by the sampling interval (about 2h).  This would be true in fact down 

to the Väisälä-Brunt period (about 5 min).  Over this frequency range, the spectra may be 

approximated by a power law relationship of the form 𝑆(𝑓) =  𝑆𝑜𝑓−𝑘  we have evaluated this 

expression for the frequency range of 8h to 2h because this range is of interest in this work.  

The spectral slope 𝑘 of each of the spectra for 86-92 km evaluated using a least squares fitting 

procedure are shown in Figure (5-18). Agreement is very good, indicating a general reduction 

in DW values rather than a reduction of particular frequency bands. 

 

Figure (5-18) The spectral index 𝑘 for the period range of 2-8 h for the DW and SA power spectra for 

November 1980 shown in Figures (5-15a- f) 

This is in fact generally true of each DW spectrum for each height over the entire frequency 

range.  Agreement between the SA and DW spectra improves somewhat with height as is 

indicated by inspection of Figures (5-17a to 5-17f). The RMS velocity each spectrum for either 

component evaluated over the entire frequency range is shown in Table (5-2).  We have 

estimated the RMS value for SA observations at 84km for the days with sufficient data, and so 

the uncertainty in this value is likely to be higher than the other values. 

It obvious from the data presented in this table that SA RMS values are relatively constant with 

height, which could be indicative of a broad spectrum of breaking waves.  On the other hand, 

the DW RMS velocities increase with height, which could indicate wave energy was growing 

with height. The results in Table (5-1) are consistent with the RMS velocities calculated for the 
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periods 1 − 8ℎ, and these results are shown in Table (5-3).  There is an even larger uncertainty 

in these results, because they were obtained by integrating under the line of best given by 

𝑆(𝑓)  = 𝑆0𝑓−𝑘  for the appropriate frequency limits. 

Consequently, Table (5-2) is likely to provide the best estimate of the ratio of DW/SA RMS 

velocities.  However, it is clear that in this period range, where the diurnal and semi-diurnal 

tidal amplitudes have no effect, the wave amplitudes indicated by the SA observations could 

suggest a broad spectrum of breaking waves, while the DW observations could indicate growth 

in wave amplitude with height. 

Height SA RMS DW RMS RATIO 𝜽𝑬
∗  𝜽𝑬 DW* 

84 ~25 11 ~0.4 5 7 18 

86 25 14 0.6 6 8.2 20 

88 24 16 0.7 8 9.0 21 

90 25 18 0.7 8 9.4 23 

92 25 19 0.8 9 9.2 24 

94  18     

Table (5-2) The RMS SA and DW derived wind velocity, the ratio of DW to SA RMS velocity, the effective 

beam angle 𝜃𝐸
∗  calculated by assuming that the DW derived wind velocity is reduced solely by the 

effective beam angle being less than the apparent beam angle, the effective beam angle 𝜃𝐸  obtained 

from Lindner's results, and the DW velocity rescaled to account for the effective beam angle DW*. 

Height SA RMS DW RMS 

84 ~12 5 

86 13 5 

88 11 6 

90 12 8 

92 12 9 

94  10 

Table (5-3) The RMS SA and DW derived wind velocity for motions with periods in the 1-8 hour range. 

If for the time being, we take the SA observations as being correct, we may calculate the 

effective beam pointing angle 𝜃𝐸
∗  for the large array with the assumption that the DW results 

are being reduced solely by this effect.  This is shown in Table (5-2).  Also shown are the values 

of 𝜃𝐸 calculated using Lindner's (1975b) results as discussed in Section (5.1.2.).  It will be 

noted that the values of 𝜃𝐸
∗  calculated from the November 1980 results are lower than those 
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calculated earlier in the Chapter. Lindner's (1975b) results for November are 1-2° lower than 

the average value presented in Figure (5-2) and so would reduce these values somewhat, but 

since this was obtained from relatively few observations, it is uncertain as to whether this would 

be a typical result. Nevertheless, the values of 𝜃𝐸 and 𝜃𝐸
∗  presented in Table (5-2) are in fair 

agreement.  If we apply the correction indicated by the values of 𝜃𝐸 calculated from Lindner's 

result, DW RMS velocities would be increased by 15-25%, giving fair agreement with the SA 

RMS velocities.  The values of DW RMS velocities corrected using 𝜃𝐸(𝐷𝑊∗) are shown in 

the last column of Table (5-2). 

There is considerable uncertainty in both the SA and DW RMS velocities.  The DW RMS 

velocities may be in error because of the unresolved vertical wind component, and the "noise" 

in the SA time series would tend to increase the mean square velocities.  We estimate the error 

in 𝜃𝐸 calculated from the November 1980 DW results to be about 1° and we would reasonably 

expect a similar error in the SA results.  This means that 𝜃𝐸 and 𝜃𝐸
∗  agree within the accuracy 

of the results. However, the fact that the values of 𝜃𝐸
∗   are consistently smaller than those for 

𝜃𝐸 suggests that another effect may be important.  This could be the overestimation of SA RMS 

velocities because of "noise", or it could be the effect suggested by Hocking (1983a).  It is not 

possible to determine which effect is dominant, but it is interesting to consider how Hocking's 

(1983a) estimate of a reduction in DW radial velocities affects the present results. 

Table (5-4) the values of 𝜃𝐸  calculated from Lindner's (1975b) results, and the effective beam pointing 

direction 𝜃𝐸(.8) calculated from the DW and SA RMS velocities 

ALT 𝜽𝑬 𝜽𝑬(. 𝟖) 

84 7.0 6 

86 8.2 8 

88 9.0 9 

90 9.4 10 

92 9.2 11 

We have already noted that a 20% reduction in DW velocities due to RMS fluctuations in the 

horizontal gives an effective beam angle of about 9° at 88𝑘𝑚, in agreement with the value of 

GE we have obtained from Lindner's results. If we take 20% as the reduction at each height, 

which seems reasonable because the RMS velocities indicated by the SA results are 

approximately constant with height, then the agreement is good. Table (5-4) illustrates the 

values of 𝜃𝐸 calculated from Lindner's (1975b) results, and the effective beam pointing 
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direction 𝜃𝐸(.8) calculated from the DW and SA RMS velocities, with the assumption that the 

DW RMS velocities are underestimated by an additional 20%.  We note that agreement is better 

than that in Table (5-2). 

If we note that the uncertainty in the value of 𝜃𝐸(0.8) for 84 km is larger than other values 

because we have estimated the SA RMS value for only those days with sufficient data, and that 

there may be some uncertainty in Lindner's results for heights above 90 km, the agreement 

between 𝜃𝐸 and 𝜃𝐸(0.8)is quite good. However, all that we may really say about these results 

is that is about 20% difference between the DW and SA RMS values that we cannot account 

for even after applying the correction for 𝜃𝐸. What is clear is that if we use the results calculated 

in Section (5.1.2) to correct the DW results, there is a significant improvement in the agreement 

between the RMS velocities obtained from each technique. 

5.4.3 Discussion of the November 1980 Results 

In the preceding discussion we have assumed that the SA RMS velocities were closer to the 

correct values than the DW RMS velocities.  This seems reasonable because of the agreement 

between the November 1980 SA results and the seasonally averaged SA results of Vincent 

(1984) and hence with the DW results from Poker Flat.  This validity of this argument depends 

on the geographical variation of the wind field and upon the notion of a universal spectrum of 

gravity waves which has not been demonstrated conclusively.  There are obviously 

uncertainties in measurements obtained with either technique.  In this study the uncertainties 

in the SA derived winds arise because of the relatively low data acceptance rates and the 

corresponding "noisy" and intermittent time series.  Uncertainties in the DW derived winds 

arise because the vertical component of the wind has not been removed.  

An unresolved general problem in the SA technique is the “Triangle Size Effect” (TSE).  The 

theory of the method indicates that the true velocity should not vary with the spacing between 

the receiving antenna sites. However, it does.  Golley and Rossiter (1970) found that the true 

velocity increased with the triangle size up to the correct value at a spacing of about 200m for 

D-region observations at 2 MHz.  By intercomparison with other methods, the technique has 

been optimized, but the reason for the TSE has not been determined. 
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Figure (5-19) Comparison of SA (“drift”) and meteor radar derived wind velocities (after Stubbs and 

Vincent, 1973). 

 

Figure (5-20) Comparison of VHF DW and HF SA derived wind velocities for 84 km (after Ruggerio 

and Bowhill, 1982) 

Many comparisons between SA derived winds and winds derived from other methods have 

been reported for mesospheric observations at a variety of scales.  These include a comparison 

of high time resolution (~4 minutes) SA results with winds obtained from dropsondes and 

falling spheres in the 60-90 km height range (Vincent et al., 1977), tidal components and mean 

winds using both meteor and SA techniques (Stubbs, 1973; Stubbs and Vincent, 1973), and 

mean winds and global circulation models (Smith, 1983).  Agreement between the various 

methods is good.  It is noteworthy that the comparison between SA derived winds and meteor 

derived winds at Adelaide (Stubbs, 1973; Stubbs and Vincent, 1973) indicated that SA derived 
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wind velocities tended to be slightly smaller than meteor wind velocities (Figure 5.19).  

However, because of the way in which the meteor data is analyzed, it is more likely to 

overestimate the wind velocity than underestimate it (Craig, 1984, private communication). 

Like the SA technique, the DW technique had been compared with many other methods.  DW 

results in these studies are mainly at VHF and UHF and restricted to the lower atmosphere.  

However, when narrow antenna beamwidths are used, agreement between the various methods 

is comparable to that found when the SA technique is compared with other methods. These 

studies include intercomparison of UHF DW and radar tracked balloon wind measurements 

(Balsley et al, 1977), VHF DW and aircraft wind measurements (Gage and Green, 1979) and 

of mesospheric incoherent scatter DW wind measurements and meteor radar wind observations 

(Walker, 1979). 

When wider beamwidths, or beamwidths which are wide when compared to the off zenith angle 

are used, agreement is a little more variable.  We have already noted that Röttger and 

Czechowsky (1980) found a variation in the DW derived horizontal wind velocity with off-

zenith angle, and a comparison of (HF) SA and (VHF) DW derived D-region winds by 

Ruggerio and Bowhill (1982), made with a Doppler radar beamwidth of ±2.0° (Allman and 

Bowhill, 1976) and an apparent beam angle of l.5 indicates considerable variability in 

agreement with height.  The data set is rather limited, but the authors suggest that the best 

agreement is found at heights where the scattered power is highest, and if we select such a 

height, we note that DW results generally underestimate SA values (Figure 5.20). 

This diagram shows hourly averaged winds obtained April 1982 in the Northern Hemisphere, 

and so corresponds to late spring.  It appears that DW derived wind magnitudes are typically 

half of those for SA derived winds.  At 80 km agreement is better, but there is still a tendency 

for DW derived winds to be smaller in magnitude than SA derived winds. Data from other 

heights presented by Ruggerio and Bowhill (1982) shows a rather large spread, and so it is hard 

to assess the reliability of the data they present. Since the beamwidth of their equipment is 

about ±2° and the beam is pointed at 1.5° from the zenith, there may be considerable 

contamination of DW spectra by scatter from the zenith. However, there is some indication that 

DW derived winds are too small. 

Ruggerio and Bowhill (1982) suggest that the SA results may be overestimating the true wind 

because the results of Pitteway et al. (1971), who simulated the SA experiment by using a 
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computer model, indicated that as random changes in the ionosphere increase, then so do the 

measured SA values. While this may be the case, it seems more likely that the dominant effect 

in Ruggerio and Bowhill's (1982) comparison and that for November 1980 is the reduction in 

calculated radial velocities because of the difference between apparent and effective beam 

angles. 

 

Figure (5-20a) Times series of hourly averaged velocity measured using the DW technique. Values have 

not been smoothed, and have not been rescaled to account for the effective beam angle. 

As was the case in Section (5.1.2) we can relate the SA and DW wind velocities using 

information derived from Lindner's (1975b) results, so that there is strong evidence that both 

techniques are measuring the same thing, although there are variations in agreement between 

the techniques even when the effective beam angle is taken into account. There are many 

possible explanations for this, but given the inexact nature of the measurements, agreement 

seems reasonable and within the limitations of the experiment, we may conclude that 

acceptable results may be obtained from the DW method at BP, as long as some care is taken. 

An impressive aspect of this comparison is that the only essential difference between the SA 



 

174 

and DW equipment were the aerials used for reception. We recall that there were three single 

droopy half-wave dipole aerials for SA observations, and two arrays, each consisting of 89 

half-wave dipoles for DW observations. 

This highlights the efficiency of the SA method rather well, and the addition of the other dipoles 

generally used with this particular SA equipment would have extended the height range.  The 

obvious advantage of the DW technique 1n this experiment is its excellent height and time 

coverage, which results from the higher gain of the receiving array used. Even if the DW 

derived velocities are underestimates, information about the phase of the various tidal 

components is useful, and in the 80-100 km height range, the continuity of the time series 

means that problems associated with harmonic analysis of intermittent time series (see e.g., 

Crary and Forbes, 1983) are reduced.  An example of hourly mean winds obtained with high 

data acquisition rates is shown in Figure (5-20a).  These data have not been smoothed in any 

way, and the diurnal variation of the wind field is clearly evident at 78 km. 

The poor quality of the SA winds obtained in this study when compared to those generally 

obtained have limited its conclusions somewhat, and there is an obvious need for more 

simultaneous comparisons between SA and DW derived winds. This is now possible using the 

BP facility only, and with one wind determination at each height every two minutes possible 

(before rejection criteria are applied), a clearer picture should emerge. 

In the next Section we present the mean winds for each DW run, and discuss some additional 

evidence of variation between the apparent and effective beam directions. Except where 

indicated, the DW results have not been corrected for the effective beam angle. 

5.5 The Mean Doppler Wind Derived Winds for Other Periods of 

Observation 

In this Section we present the mean winds measured for each observational period in which 

measurements of the Reynolds stress and horizontal scales were obtained. These results are 

important for the assessment of gravity wave mean flow interactions, and we will refer to them 

in Chapter 6. We also present the mean SA derived winds for adjacent or nearby adjacent 

observational periods.  This provides some indication of the general agreement between the 

winds derived from both techniques, but because there is often considerable variability in the 

tidal wind components from day to day, and because the daily "mean" wind varies because of 

planetary scale waves a detailed comparison is generally not possible.  However, 16 days of 
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DW observations were obtained in July 1982 and these data should provide a representative 

measure of the mean wind. 

In the following results, there is generally more uncertainty in the DW meridional component 

than the zonal component because all of the zonal components were obtained using the DCC 

beam configuration, while the meridional components, with the exception of the last ten days 

of the July 1982 results, were obtained using the DC beam configuration. The latter beam 

arrangement requires the vertical mean wind component to be removed for the northward 

directed beam radial velocity to obtain the meridional component of the horizontal wind.  The 

relative error in the mean vertical velocity is about ±30% (see Chapter 2) and the mean vertical 

velocity was often l 𝑚𝑠−1 while the northward beam mean radial velocity seldom exceeded 5 

𝑚𝑠−1 (±10% relative error). Consequently, there is an accumulation of errors when Equation 

(4-68) is applied to recover the mean meridional wind. 

We consider the July 1982 results first. 

5.5.1 July 1982 

  

Figure (5-21) Mean DW winds derived for 30 June to 16 July 1982. Also shown are the SA derived 

winds for July 1978. 

A total of sixteen days of DW observations were obtained in July 1982.  For the first six days 

the OPDC beam arrangement was used. We recall that this is three beams directed at 11.6° to 

the zenith Eastwards, Westwards and Northwards respectively, and one beam directed 

vertically. The remaining ten days of observations were obtained using the OPDCC beam 

arrangement, in which beams are directed at 11.6° to the zenith Eastwards, Westwards, 
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Northwards and Southwards. The abrupt changes in radial velocity in this data set discussed 

1n Chapter 2 do not change the mean winds significantly, and do not affect the general 

conclusions of this discussion. 

The mean winds for the sixteen days of observation obtained from harmonic analysis are shown 

in Figure (5-21). Also shown are the SA derived winds for June 1978, which are quite typical 

of mean winds at this time of the year at Adelaide (these particular results have been presented 

in Vincent and Ball, 1981). The SA results are also in good agreement with the model of Groves 

(1969) and with the five-year average of SA winds at Adelaide. 

 

Figure (5-22) Mean SA derived winds for June 1973, and the mean winds from Groves (1969) 

 

Figure (5-23) The DW derived winds for July 1982 corrected for the effective beam angle only (crosses), 

and with the additional correction for range (closed circles). The solid line indicates SA results for June 

1978. Open circles indicate the measured wind velocity. 
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For reference we also present the mean winds for June (1973) for Adelaide together with the 

winds from the model of Groves (1969) in Figure (5-22).  This diagram is from Briggs et al. 

(1973). It will be noted that the July 1982 observations are smaller in magnitude at all heights 

than the SA observations.  The difference cannot be accounted for by inter-annual variability 

of the mean wind, and it appears that the DW derived wind velocities are underestimating the 

true wind velocity. 

If we apply the corrections for the effective beam angle indicated in Figure (5-4) we obtain the 

results shown in Figure (5-23) as crosses. If we then correct for the range (see Table 5-1) we 

obtain the results shown as the dots in the diagram.  The difference between these height 

profiles can now easily be accounted for by inter-annual variability, and agreement is good in 

any case.  Inspection of Figure (5-22) indicates that the mean zonal wind does go westward in 

the 95 km height range at this time of year. These results support the evidence that the DW 

derived winds are underestimating the true wind, and that the effective beam direction 𝜃𝐸 

calculated from Lindner's (1975b) results provides a good measure of this quantity. 

Furthermore, it appears that the range should be corrected to account for the effective antenna 

angle. This has important consequences for the magnitude of the body force calculated from 

values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  but does not change the general conclusions of such calculations.  We 

will consider this in Chapter 6. 

5.5.2 November 1981 TC(CP) 

  

Figure (5-24) (a) Mean DW derived winds for 6-8 November 1981 (left), and (b) mean SA derived winds 

for 9-12 November 1981 (right). 
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Three days of observations made with the DW method were obtained for the zonal component 

and the mean values for each day obtained from harmonic analysis are shown in Figure (5-

24a).  These observations preceded the summer SA observational run and the mean wind values 

for SA observations for four days immediately following the DW observations are shown in 

Figure (5-24b).  Agreement in form is good and values at heights of 94 and 96 km show 

excellent agreement. Other heights indicate a difference of 10-15 𝑚𝑠−1, with DW derived 

winds being more eastward. 

The DW profile for the 7th which shows the best agreement with SA observation was calculated 

from a time series with six hours of data missing because of a power failure, and so may be 

subject to some uncertainty because of this. The values from the 6th and 8th were calculated 

from complete data sets and show good agreement.  The SA observations generally show a 

rather greater variability than the DW observations because of the lower data acceptance rates.  

This is particularly evident below about 84 km and above 90 km, and at 78 km for the four 

days only about 12-14 hours of data were available for analysis for each day, and so these 

values must be treated with some caution. 

 

Figure (5-25) Time series of zonal velocities for periods longer than 36 hours for November 1981.  

The time series of zonal velocities with periods greater than 36 hours is shown in Figure (5-25) 

and there is clear evidence for planetary wave activity. The tendency at most heights is to 
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Westward values of velocity for the first four days, although this is clearly variable.  The main 

planetary wave periods appear to be about two days, although longer oscillations are also 

evident, and examination of Figure (5-25) indicates a tendency for a 2-day variation which is 

consistent with Figure (5-24a).  Consequently, day 7 may reflect planetary wave action rather 

than a low data acceptance rate.  Days 19-23 in Figure (5-25) do show a tendency for Eastward 

values of zonal velocity and it seems likely that the gross differences between the height 

profiles of zonal velocity derived from the SA and DW techniques are due to planetary wave 

activity. It is not possible to assess the relative magnitudes of the DW and SA derived wind 

velocities in this case, but we note that the results derived from each technique are consistent 

when the longer period motions are considered. 

5.5.3 December 1981 (OPDC) 

 

Figure (5-26) (a) Mean zonal winds for December 1981 for SA (solid line) and DW (dashed 

line) (left), and (b) the corresponding meridional winds (right) 
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Four days (3-6 December) of SA observations were made in December 1981 as part of a four 

channel experiment, in which three spaced antenna aerial arrays and one entire array were 

operated simultaneously.  This allowed SA results and vertical winds obtained using a narrow 

Doppler beam to be obtained simultaneously. Immediately following these observations, three 

days of DW observations (7-10 December) were made using the OPDC beam arrangement.  

Power failures on 4 and 8 December made data from these days unsuitable for further analysis.  

The mean winds calculated by removing the 12 and 24 hour tidal components are shown in 

Figure (5-26). The zonal components show excellent agreement in form and we note that the 

DW results are larger than the SA results.  However, there is a strong tendency to more positive 

values of zonal wind at heights between 80 and 92km, and so the agreement in magnitude 

seems reasonable. 

The meridional components disagree in sign below 90 km, but as was the case in November 

1981, this observational period was characterized by longer period motions, and there is 

considerable variability in the “mean” winds from day to day. The meridional DW component 

is in agreement with that for SA observations obtained over the period 28 November to 1 

December. 

 

Figure (5-27) (a) (left) Mean zonal winds for February 1982 for SA (solid line) and DW (dashed and 

dot-dashed lines), and (b) (right) the corresponding meridional winds (right) 
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5.5.4 February 1982 

A number of days of Doppler data were obtained in February 1982 with different beam 

positions (see Chapter 2).  The “two-day wave” (see e.g. Craig et al., 1980) was particularly 

strong at this time and because of the dominance of this oscillation and because basic harmonic 

analysis of such data leads to questionable results, we have taken two day averages of the zonal 

and meridional components for SA observations for days (43-45) and DW observations for 

days (47-49) and (54-56).  These are plotted in Figure (5-27).  Agreement between the mean 

winds derived from technique is clearly very good given the separation in time of the 

observations and the presence of longer period motion.  

 

Figure (5-28) The mean DW results obtained by harmonic analysis for the five days of DW observations 

were obtained in April 1982 (21-26) are shown in Figure (5-28). Also shown in this diagram are the 

SA results for the 28 April to 1 May. 
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5.5.5 April 1982 (OPDC) 

Five days of DW observations were obtained in April 1982 (21-26).  For the last three days of 

the DW run observations were only taken over the height range of 78-90 km.  The mean winds 

obtained by harmonic analysis are shown in Figure (5-28). Also shown in this diagram are the 

SA results for the 28 April to 1 May. The bars on the SA results indicate the mean absolute 

difference for the four days of observation. The zonal component of the DW derived winds 

shows a trend to more eastward values over the five days, while the meridional component 

exhibits evidence of planetary wave activity.  The meridional component of the SA 

observations indicates similar behaviour. 

Inspection of Figure (5-28) indicates that the zonal component of the DW observations is 

somewhat smaller than the SA component, although it agrees in sign and general form.  The 

zonal SA component agrees well with the model of Groves (1969), showing the best agreement 

at 80 km, but underestimating it somewhat at higher heights.  Agreement in form is good. The 

meridional components do not agree as well as the zonal components, as would be expected 

because of the longer period waves.  The DW results are rather small, while the SA results are 

reversed relative to the model of Groves (1969). 

Since these DW observations were obtained over a period of five days, and the zonal 

components of both SA and DW are well behaved, we may tentatively suggest that the DW 

derived mean zonal velocities are underestimating the correct wind velocity.  Taking account 

of the trend in the DW zonal velocities, we estimate that the ratio DW/SA derived wind velocity 

is about 0.5 at 80 km, rising to about 0.7 at 88 km, a result in fair agreement with our estimate 

of 𝜃𝐸.  

5.5.6 May 1982 (OPDC) 

Two days of DW observations were made in May 1982 and the mean winds obtained from 

harmonic analysis of the time series are shown in Figure (5-29). It will be noted that these 

observations are in agreement with the DW observations made in April 1982. The mean zonal 

SA winds for four days preceding the DW observations are also in agreement with the SA 

observations made in April 1982, although they are slightly larger at all heights, as is expected 

as the zonal circulation becomes more eastward as it moves into the winter region.  As for April 

1982, SA observations show better agreement with the Groves (1969) wind model, and we 
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cautiously suggest that the zonal DW derived winds are underestimating the true wind. General 

agreement in form is good however. 

The mean zonal winds measured in May 1981 (DCC beam arrangement) are also smaller in 

magnitude than expected for this time of year, although of the correct sign, and agree well with 

the results for the May 1982 observations. 

 

Figure (5-29) The mean winds obtained from harmonic analysis of the time series for two days of DW 

observations made in May 1982. The mean zonal SA winds for four days preceding the DW observations 

are also shown. 

5.5.7 Discussion of the Mean Doppler Wind results. 

With the exception of the July 1982 data set, these comparative observations do not allow a 

measure· of the relative magnitude of the DW and SA derived mean winds to be made but we 

can suggest that there is no evidence of atypical behaviour in the DW derived wind velocities 
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apart from the tendency to be somewhat small in magnitude.  Observations taken in all seasons 

exhibit the correct signs for both mean wind components when longer period motions are taken 

into account. 

The better agreement between the DW and SA observations in the summer months (December 

and February) may be due to more isotopic scattering, although it is not possible to say with 

any certainty in the present case.  However, we note that the mean square horizontal velocities 

calculated from these data sets are consistently lower than similar observations made with other 

techniques. Consequently, we believe that the mean winds measured in the various 

observational periods provide a good measure of the true wind when the effective beam angle 

and range are taken into account. 

5.6 Measurement of the Mean Vertical Wind Component 

Measurements of the vertical wind component were made in most observational periods.  

Measurements of this type are subject to a number of uncertainties, the most obvious of which 

is whether the "vertical" beam is in fact directed vertically.  We have considered this in Chapter 

2, and it would appear that a vertical beam at BP is about 0.1 off vertical to the SW. 

Another effect that could produce erroneous vertical velocities is scattering from tilted 

reflectivity structures.  In this case, the echoes could return from small-off vertical angles and 

the mean shift of the backscatter Doppler spectra could include a contribution from the 

horizontal wind.  The scatter plots of horizontal and vertical velocities presented in Chapter 2 

indicate a very small contribution from the horizontal components, one that is consistent with 

the vertical beam at BP being off zenith by about 0.1, so that on average, the scattering regions 

must have very small tilts from the horizontal.  However, this argument must be treated 

somewhat cautiously, because we can measure the covariance term 𝑢’𝑤′̅̅ ̅̅ ̅̅  (Chapter 6), and we 

could expect a correlation between 𝑢′ and 𝑤′. 

The limited velocity resolution ln this work (±0.7 𝑚𝑠−1) for individual (102.4s) wind 

determinations also restricts the measurement of vertical winds over short periods, but over 

periods of a few days it should possible to obtain an estimate of the mean wind with reasonable 

accuracy (±30%).  Above 90 km, Sporadic-E may produce a downward velocity as the totally 

reflecting surface moves down, but the acceptance criteria outlined in Chapter 3 should reject 

such data.  The possibility remains however, that some of the measured vertical motion in this 
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height range is due to down-coming Sporadic-E.  In this part of the Chapter we present some 

representative observations of the vertical wind, but the uncertainty in these measurements 

must be borne in mind.  The mean square vertical perturbation velocities periods less than eight 

hours are discussed in Chapter 6. 

In the next Section we present the results of a comparison of vertical winds measured 

simultaneously in wide (±20°), and narrow (±4.5°), vertically directed beams. 

5.6.1 Measurement of Vertical Wind with Wide and Narrow Beams. 

Both of the SA and DW techniques allow the vertical component of the wind field to be 

obtained from the mean shift of the Doppler spectrum measured in a vertical beam.  With the 

DW technique, one narrow beam may be directed vertically for this purpose. With the SA 

technique, this information may be obtained from any of the receiving antenna sites, but a better 

estimate can be obtained by calculating the average vertical velocity from each of the beams. 

 

Figure (5-30) The vertical wind measured in both wide (solid line) and narrow (dashed line) vertically 

directed Doppler radar beams in the 68-78 km height range in December 1981 
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With the typical receiving aerial beamwidths of ±20° at half power that are commonly used in 

the SA technique (see Figure 2-6) vertical velocities measured using this method may be 

contaminated by scatter from off vertical angles.  However, because of the restricted range of 

zenith angles from which scatter is returned, antenna beamwidths are relatively unimportant, 

particularly below about 75-80 km. 

 

Figure (5-31a) The vertical wind measured in both wide (solid line) and narrow (dashed line) vertically 

directed Doppler radar beams for 3-4 December 1981 

Above these heights, the mean Doppler shift should be unchanged for measurements made with 

wider beamwidths, as long as strong returns are not returned from off vertical angles.  The 

Doppler spectrum will be wider and flatter, and consequently the uncertainty in the mean shift 

will be larger.  If the reflecting surface is tilted or distorted in some way, then contamination 

from horizontal velocities will occur, and if strong specular reflections are returned from off 

vertical angles, the "spikes" produced in a Doppler spectrum may shift its mean value (Röttger, 

1980).  This will affect vertical velocities measured using either wide or narrow beams, and its 

exact nature will depend upon the spatial variation of the tilt or corrugation.  Röttger (1980) 

has suggested that the incidence angle of the returned signal should be measured to correct for 
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off vertical velocity components.  This can be done in SA experiment if phase information is 

obtained, and is routinely done for meteor radar observations (e.g. Elford and Craig, 1980). 

The effectiveness of this will obviously depend upon the number of specular reflections present 

in the beam, but it would make better use of the phase information which is not exploited fully 

at present. The enhanced echo power received from the zenith means that in principle, good 

measurements of vertical velocity can be made at BP at heights down to about 60 km during 

the day, and above 80 km at night. 

In December 1981, observations of vertical velocity measured in both wide (±20°) and narrow 

(±4.5°) vertically directed beams were made.  No attempt was made to correct for off vertical 

returns, and the observations are essentially a "quick look" at how well vertical velocities could 

be measured with the SA beam configuration.  No previous comparisons of this type have 

previously been reported, although Röttger (1981) has measured vertical velocities at 

stratospheric and tropospheric heights with the SOUSY VHF SA radar. 

  

Figure (5-31b) (left) As for Figure 5.31a but for 5-6 December 1981, and Figure (5-31c) (right) As for 

Figure 5.31a but for 6-7 December 1981 

Figure (5-30) illustrates hourly averaged vertical velocities measured in the 68-78 km height 

range in December 1981.  Data were not obtained between 1800 and 0500 LT, and observations 

were taken at a rate of 1 in 4 minutes, which is consistent with typical run rates for SA 
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observations made at BP.  Data from the three SA receiving beams were averaged, and apart 

from this, all data were processed in exactly the same way (see Chapter 3). Below 74 km, 

agreement is excellent.  At the higher height ranges the wide beam velocities are rather more 

"noisy", but general agreement is fair.  This is what we expect, as above about 75-80 km 

scatterers become more isotropic. It is noteworthy that a strong echo was evident at 72 km on 

the CRO at the field site on this day.  Figure (5-31a, f) illustrates the results for 78-96 km and 

90 km in a little more detail.  Agreement is a little more variable, particularly on the 3rd, but 

general features are in good agreement.  Days 5 and 6 show better agreement, although the run 

rate for these days was 1 in 8 minutes, and it is clear that both beamwidths are measuring the 

same thing. 

 

Figure (5-31d) (left), Figure (5-31e) (center) and Figure (5-31f)  

The mean wind obtained from harmonic analysis for each day are shown in Figure (5-32a, b 

and c) for 78-96 km.  However, the actual range is 80-90 km and so the profiles should be 

shifted up together.  Worst agreement is found on the 3rd, but agreement on 5 and 6th December 

is good.  The mean of the three days (Figure 5-32d) clearly shows good agreement in form, and 

agreement would be excellent if the 3rd was omitted from the average. 

These results are particularly encouraging, and indicate that mean vertical winds over 2-3 days 

can be measured at BP with the basic SA configuration. This is not particularly important at 

BP, where a narrow Doppler beam is available simultaneously with the SA beam arrangement, 

but at other SA sites, indications are that the mean vertical winds may be measured.  However, 
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the variable agreement between days indicates that correction for off-vertical returns should be 

applied. 

5.6.2 Other Measurements of the Mean Vertical Wind. 

  

Figure (5-32a) (top left), Figure (5-32b) (bottom left), Figure (5-32c) (top right) and Figure (5-32d) 

(bottom right) The mean wind obtained from harmonic analysis for each day in December 1981 

Inspection of Figure (5-32d) indicates that the mean vertical wind is downward over most of 

the height range.  We recall that the monthly averaged vertical wind component for November 

1983 (Chapter 2) was similar in form to that shown in (Figure 5-32d).  The mean vertical wind 

measured over a three-day period immediately after that presented above is shown in (Figure 

5-33). Also shown in this diagram is the value of 𝑤𝑢
∗̅̅ ̅̅  obtained from the radial velocities 

measured in eastward and westward directed beams.  Agreement is excellent in this case, 

indicating that the spatial variation of �̅� is small. This is also true of some other observational 

periods. 

(Figure 5-34) illustrates 𝑤𝑢
∗̅̅ ̅̅  and �̅� for one day of observations obtained in November 1981 

(note that the signs of the vertical components are reversed in this diagram).  Agreement is 

good, and the main features are evident in both time series.  However, this agreement is not 

typical of the rest of the observational period. 
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Figure (5-33) The mean vertical wind measured over a three-day period in December 1981 

Neither is true in general.  Figures (5-35a-g) summarize the mean vertical velocities measured 

in the various observational periods tabled in Chapter 2. 

 

Figure (5-34) Time series of hourly averaged measured vertical velocity �̅� (solid lines) and inferred 

vertical velocity 𝑤∗̅̅ ̅̅  (dashed line) for four heights for data obtained in November 1981 
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Figures (5-35a-i) the mean vertical velocities measured in the various observational periods tabled in 

Chapter 2 

The agreement between �̅� and 𝑤𝑢
∗̅̅ ̅̅  is quite variable, and this indicates that in general, the mean 

vertical wind cannot be obtained from the mean radial velocities measured in DCC beams. 
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There are also variations between 𝑤𝑣
∗̅̅ ̅̅ , the vertical velocity inferred from Northward and 

Southward directed beams and 𝑤𝑢
∗̅̅ ̅̅  (Figure 5-35h-k) illustrates these two quantities for 

observations made in July 1982 and (Figure 5-351) illustrates similar results for October 1982.  

Inspection of these diagrams indicates that there are significant variations in 
𝜕𝑢

𝜕𝑥
 and 

𝜕�̅�

𝜕𝑦
 over the 

separation of the beams.  We will not pursue the analysis of these data, but we note that if the 

spatial variation of the mean wind is measured, then it is possible in principle to obtain the time 

variation of the total mean wind 
𝜕𝒖

𝜕𝑡
 , and hence the acceleration of the mean flow, by application 

of Taylor's transformation. 

 

 

Figures (5-35j,k,l) the mean vertical velocities measured in the various observational periods tabled 

in Chapter 2 

Returning now to Figure (5-35 a-g), we note that these diagrams illustrate mean winds over 

periods of 2-5 days, with the exception of (Figure 5-35g) which represents 21 hours of 

observations.  The height profile of �̅� for this last data set appears to have a wavelike variation, 

with a vertical wavelength of about 10 km.  This may be due to the tidal components.  Similar 



 

193 

structure is evident in the November 1981 and February 1982 (Figure 5-35b) height profiles, 

but because these observations were taken over three days, and horizontal tidal components 

show considerable day to day variability and we could reasonably expect similar behaviour in 

the vertical component, it is unclear what they represent. The most important thing to note 

about these vertical velocities is their magnitude.  The winter results show vertical velocities 

of 0.8-1 𝑚𝑠−1 at heights above 90 km when averaged over three to four days. 

 

Figure (5-36) The mean vertical wind for the period 3ist June - 6th July 1982 

The mean vertical winds for the six-day period represented by (Figures 5-35e-g) are shown in 

(Figure 5-36).  Above 90 km, the mean vertical winds are comparable to the mean horizontal 

wind for this period (see Figure 5-21).  We note that if these mean winds are real then ray-

tracing of gravity wave motion to determine its source will be subject to considerable 

uncertainty unless the vertical wind is taken into account (Tilbrook and Jones, 1979).  These 

results also indicate that the mean vertical wind cannot always be neglected when 

measurements of the horizontal mean wind are made with off vertical beams, but without a 

vertical beam. 

Inspection of the diagrams of the mean vertical wind indicates considerable variability 

throughout the year, and because the observations were taken over short periods of time, it is 

not possible to draw any definite conclusions about their importance for the mean circulation.  

However, we note that the summer observations (December, February) tend to suggest a 
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downward flow in the 80-100 km region, as does the monthly mean for late spring (November), 

and the 5- and 16-day means for mid-autumn (April), and winter (July). 

It would be unlikely that the observations were taken only when the mean vertical wind was 

downwards, and it is possible that the tendency during the entire year is towards downward 

vertical velocities.  This result would be consistent with the model based on observed 

meridional flow patterns proposed by Portnyagin and Solovyova (1982) and illustrated in 

Figure (5-37), that the upper mesospheric-lower thermospheric has a multicellular circulation. 

 

Figure (5-37) A conceptual picture of mesospheric-lower-thermospheric multicellular circulation 

proposed by Portnyagin and Solovyova (1982) (from Balsley and Riddle, 1984). 

Inspection of this diagram indicates that at 35S the annual mean wind is about 20  𝑐𝑚𝑠−1 

downward between 80- 100 km, a result not inconsistent with our observations. We also note 

that a study by Ebel et al. (1983) of mesospheric heating and cooling rates due to small scale 

dynamical processes and eddy dissipation indicated a complex vertical circulation with 

downward vertical velocities at some latitudes in summer. Finally, we note that Balsley and 

Riddle (1984) found a downward flow in summer and an upward flow in winter at Poker Flat 

(65N).  Routine observation of mean vertical winds commenced at BP in November 1983 and 

it is hoped that this information will yield some additional insight into variations of the mean 

vertical wind. 
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5.7 Summary and Conclusions 

In this Chapter we have considered some practical considerations important for DW 

observations made with relatively wide beamwidths. It has been shown that if the properties of 

the D-region and finite beamwidths are taken into account, agreement between the DW spectra 

and the seasonally averaged results of Vincent (1984) improves significantly. In addition, the 

comparison of DW and SA methods in November 1980 indicates that better agreement is found 

when the effective beam angle calculated from independent observations of the backscatter 

angular polar diagram is taken into account.  Indirect comparisons of SA and DW 

measurements support the evidence that the DW derived radial velocities underestimate the 

true values of this quantity. 

We have also presented some observations of vertical wind velocity made with the standard 

SA arrangement and a vertically directed Doppler beam which indicates mean vertical winds 

could be measured using the SA equipment over periods of 2-3 days. However, the variability 

in agreement from day to day indicates that the information about the angle of return of 

backscatter should be obtained. Preliminary investigations of the mean vertical wind indicate 

quite large magnitudes even when averaged over periods of 2-6 days, and there is some 

evidence that in the 80-100 km range, the motion is downward for much of the year.  Longer 

data lengths are required before any definite conclusion can be made. 

In general, it is not possible to obtain vertical mean wind from radial velocities measured in 

DCC beams because the horizontal variation of �̅� and �̅� is significant.  However, with the 

TC(CP) beam arrangement and observations taken over a suitably long period, it may be 

possible to measure  
𝜕𝑢

𝜕𝑥
 and 

𝜕�̅�

𝜕𝑦
. 

The importance of the character of the scattering medium for DW measurements has been 

emphasized, and for measurements of momentum flux using the DCC beam arrangement the 

variation between the apparent and effective beam angles should be taken into account.  The 

use of Lindner's (1975b) result is considered adequate for the present work, but short term 

information about the backscatter angular polar diagram would increase the accuracy of the 

results.  A need for further intercomparisons of the DW technique at BP with other methods is 

indicated. 
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6. Measurements of Momentum Flux 

In this Chapter we present and discuss the measurements momentum flux obtained using the 

DCC beam arrangement. The majority of the results refer to the upward flux of zonal 

momentum, although some measurements of the upward flux of meridional momentum are 

presented. 

The zonal and meridional body force calculated from the measured values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅   

and the neutral density obtained from the CIRA (1972) model are also presented. We have 

noted in the previous Chapter that there is very good evidence that the effective beam angle is 

less than apparent beam angle. However, in most cases, we have calculated the body force 

using both the measured values of momentum flux, and those rescaled to account for this effect. 

Short term variations in momentum flux, the alignment of the total body force 𝐹𝑇 and the 

relative contributions of high and low frequency motions to the momentum flux are also 

considered. 

Apart from the momentum flux measurements reported by Vincent and Reid (1983), and some 

measurements the momentum flux associated with coherent gravity waves presented in Smith 

and Fritts (1983), the mesospheric Reynolds stress results presented in this Chapter appear to 

be unique. However, using indirect methods, Manson et al. (1975) estimated the mean flow 

acceleration induced by the dissipation of a polarized gravity wave spectrum. By assuming all 

of the observed wave energy to be associated with a single coherent wave motion, Manson et 

al. (1975) estimated the mean flow acceleration in the 90-100 km. height region to be as high 

as 200 𝑚−2𝑠−1𝑑𝑎𝑦−1. Vincent and Stubbs (1977) considered the polarization of the observed 

mesospheric gravity wave field and obtained an estimate of Fu ~ 10 𝑚−2𝑠−1𝑑𝑎𝑦−1. Smith and 

Fritts (1983) identified a ten-hour period oscillation and estimated a mean flow acceleration of 

about 25 𝑚−2𝑠−1𝑑𝑎𝑦−1. 

These are the only estimates of the body force associated with mesospheric gravity waves of 

which we are aware, apart from those of Vincent and Reid (1983), although there are many 

theoretical studies. Vincent and Reid (1983) found a body force of 12 − 22 𝑚−2𝑠−1𝑑𝑎𝑦−1 

between 80 and 94 km altitude in May, consistent in sign with that required to balance the 

Coriolis torque due to the meridional wind component. In the next Section we consider the data 

analysis and quality assessment procedures applied. 
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6.1 Data Analysis and Quality Assessment 

6.1.1 Data Analysis 

We have described the analysis of the radial velocity time series in Chapter 3 but we shall 

recapitulate briefly here. 

Measurements of radial velocity were obtained at a rate of one every two minutes every two 

kilometres over the range of 80-100 km. Consecutive two minute determinations were averaged 

to give an overall sampling rate of 1 in 4 minutes at each height. A cubic splines interpolation 

routine was then applied to bridge small gaps in the radial velocity time for series. If there were 

significant gaps in the time series, they were low pass filtered to obtain the radial velocity for 

motions with periods longer than 8 hours, and this was substituted for the breaks in the original 

data, and the cubic splines interpolation routine applied again. These time series were then 

numerically filtered to obtain the radial velocities for those periods less than 8 hours. The mean 

square radial velocity was then calculated for each height and beam, and by applying Equation 

(4-34), the momentum flux 𝑢′𝑤′̅̅ ̅̅ ̅̅  was obtained. 

 

Figure (6-1a) Times series of the upward flux of zonal momentum for three representative heights for 

data obtained in May 1981 (After Vincent and Reid, 1983) 

The mean square radial velocity could be obtained for the entire period of the observation, or 

for any suitably long period of time. To obtain the average momentum flux for a period 

sufficiently long to enable the mean local wind, and hence the Coriolis torque due to the mean 
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meridional wind to be obtained, we have attempted to calculate the momentum flux for all of 

the data in each period of observation. Because the data were not always continuous in time 

and height, the quality of the data were assessed. This is discussed in the next Section. 

6.1.2 Data Quality 

In Chapter 3 we presented representative data acceptance rates for DW observations obtained 

various months. It will be recalled that in some months, notably February and October, low 

data acceptance rates were obtained in the lowest and highest height ranges. For a valid measure 

of 𝑢′𝑤′̅̅ ̅̅ ̅̅  to be obtained at each height, for a given period of observation, the data acceptance 

rates must be similar.  u'w' is also quite variable in time (Vincent and Reid, 1983) and this 

means that there are breaks in the time series, then they must occur over the same period at 

each height, if intercomparison of 𝑢′𝑤′̅̅ ̅̅ ̅̅  between deferent heights is to be valid. This is 

particularly important because the calculation of 𝑢′𝑤′̅̅ ̅̅ ̅̅  requires differencing two like quantities, 

and the calculation of the body force 𝐹𝑢 in turn requires the differentiation of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ . Without 

careful data assessment, very large errors could result. 

 

Figure (6-1b) As for Figure (6-1a) but for November 1981 

To obtain a measure of the data quality, the radial velocity time series were plotted and 

examined by eye to check for differences between heights in terms of accepted records. An 

example taken from the February 1982 data set is shown in Figure (6.2). This diagram shows 

the high pass (𝐻𝑃;  𝑇 < 8 ℎ𝑜𝑢𝑟𝑠) filtered radial velocity time series for a beam directed at 

11.6° Eastwards from the zenith. Calculation of -for 78-82 km is not likely to provide a 

representative measure of the average value of this quantity for the entire period of observation. 
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This is evident when we note the enhancement in radial velocity around midnight on the 17th 

at 84 and 86 km. 

Another consideration in data quality assessment was that the interpolation routine did not cope 

very well with the combination of low data acceptance rates (~30%) and widely spaced data, 

and tended to introduce spurious, although small oscillations. The plots of the time series were 

examined very carefully for evidence of this, and data for these heights were rejected if this 

was the case, although these heights would have been rejected for low data acceptances in any 

case. Because there is some subjectivity in this quality assessment and this affects the 

calculation of the body force, we present in Section (6.3) the momentum flux calculated at each 

height for all heights, regardless of the data acceptance rates. However, we are confident that 

the removal of non-representative data at various heights is valid. 

 

Figure (6-2) Time series of radial velocities for motions with periods less than 8 hours for 16-19 Feb 

1982. 

In this Chapter we also present the momentum flux obtained from observations in July 1982. 

Figure (6-3a, b) illustrates the high pass radial velocity for the four beams for the 9-12th of this 

month. Inspection of these diagrams indicates that around 1800 LT on each day (the time of 

the evening polarization change) the character of the time series often changed. However, 

removing these Sections of the data before calculating the momentum flux did not change the 

results significantly, and we have chosen to analyse these data as they are, but the possibility 

of errors must be borne in mind. 
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Figure (6-3a) (left) and Figure (6-3b) (right) Radial velocity time series for motions with periods less 

than 8 hours for 9-12 July 1982. The vertical bar represents 8 𝑚𝑠−1 

 

Figure (6-4a) As for Figure (6-3) but for 11-14 May 1981 

Figure (6-4a) shows a similar time series for May 1981, and Figure (6-4b) shows an expanded 

Section of the same data set. This last diagram clearly shows the presence of an oscillation with 

a period of about one hour. Such clear examples of coherent motion occurred relatively rarely, 

and effort was directed at obtaining information of a statistical nature. Consequently, there may 

be other examples of this type of motion our observations which could be usefully exploited as 

case studies, but the volume of data precludes this in the present work. Inspection of Figure (6-

4a) indicates similar behaviour in both beams and we note the enhancement in both beams on 

the 13th. 
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We recall that the major assumption made in the derivation of the Equation for the momentum 

flux for the DCC beam arrangement was the homogeneity of the statistics of motion in a 

horizontal plane, and this type of diagram is quite useful for a qualitative examination of the 

similarity of radial velocity time series. However, a quantitative measure of similarity is more 

appropriate, and to test the validity of this assumption, power spectra were calculated for each 

beam and height for the May 1981 and November 1981 data sets.  

 

Figure (6-4b) Expanded section of the time series shown in Figure (6-4a) (After Vincent and Reid, 

1983) 

To measure the momentum flux there must obviously be differences between the power spectra 

for the DCC beams. However, the relative magnitudes of 𝑢′2̅̅ ̅̅ , 𝑤′2̅̅ ̅̅ ̅ and 𝑢′𝑤′̅̅ ̅̅ ̅̅  indicate that the 

mean slope of the spectra should be the same for a fixed zenith angle and height, regardless of 

the azimuth angle at which the radar beam is directed. This appears to be an appropriate test of 

the homogeneity of the statistics of the motions measured. An example of power spectra for a 

range of heights, and Westward and Eastward beams, for the May 1981 data set (Figure 6-4a) 

is shown in Figure (6-5). Agreement between heights, and more importantly, between beams 

is good. The spectral slope, calculated by fitting a function of the form 𝑆0𝑓−𝑘  to 𝑆(𝑓), the 

power spectrum, indicated no significant differences between beams for each height (Figure 6-

6a). This was also true of the November 1981 data (Figure 6-6b). Power spectra were also 

calculated for each six-hour period of the time series for May 1981 for each beam, and again, 
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no significant differences between beams were found. Similar results were found for selected 

heights in other months, and the results for May 1981 and November 1981 appear to be typical. 

Consequently, the assumption of the homogeneity of the motions appears valid when statistics 

are averaged over periods at least as short as six hours. 

 

Figure (6-5) Power spectra for a range of heights for eastward and westward beams for time series 

shown in Figure (6-4a). 

  

Figure (6-6a) (left) The spectral slope of the power spectra shown in Figure (6-5), and Figure (6-6b) 

(right) As for Figure (6-6a) but for November 1981. 

6.2 Summary of Momentum Flux Measurements 

Figure (6-7) summarizes the measurements of the Reynolds stress term 𝑢′𝑤′̅̅ ̅̅ ̅̅  for motions with 

periods less than 8 hours for the various observational periods for this work. The results are 
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divided into seasons, and the values considered unrepresentative because of the low data 

acceptance rates are indicated with a small arrow. The error bars represent the error calculated 

from the uncertainty in 𝑉 𝑅
′2̅̅ ̅̅ ̅ determined in Chapter 2. 

 

Figure (6-7a, b and c) Reynolds stress 𝑢′𝑤′̅̅ ̅̅ ̅̅  for motion with periods shorter than 8 hours for various 

periods of observation 

 

Figure (6-7d, e and f) as for Figures (6-7a, b and c) 
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Figure (6-7g, h and i) as for Figures (6-7a, b and c) 

These results have not been treated in any way, and represent the "raw" momentum flux values 

obtained from the difference of the mean square radial velocities measured in Eastward and 

Westward radar beams.  Inspection of these diagrams indicates considerable variation in 𝑢′𝑤′̅̅ ̅̅ ̅̅  

between periods of observation, and in height for any period of observation. When the 

unrepresentative values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  are omitted from these height profiles, 𝑢′𝑤′̅̅ ̅̅ ̅̅  often appears to 

vary quite smoothly from height to height. The largest values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  occur the summer and 

winter months, but in general the magnitude of the momentum flux is less than 3 𝑚2 𝑠−2. 

Figure (6-8) summarizes the values of the Reynolds stress term 𝑣′𝑤′̅̅ ̅̅ ̅̅   for three periods of 

observation. We have also included the value of 𝑢′𝑤′̅̅ ̅̅ ̅̅  measured over the same period as that 

for 𝑣′𝑤′̅̅ ̅̅ ̅̅  for July 1982. The accepted values of 𝑣′𝑤′̅̅ ̅̅ ̅̅  for February show considerable variation 

with height, and we note that they are larger than the values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  for the same period. 

The results for July exhibit little variation in height, in contrast to the corresponding values of 

𝑢′𝑤′̅̅ ̅̅ ̅̅ , while the values of 𝑣′𝑤′̅̅ ̅̅ ̅̅  obtained in October are rather small, and generally little different 

from zero. Figure (6-9) illustrates the height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for the values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  shown in 

Figure (6-7). The neutral air density 𝜌 has been obtained from the CIRA (1972) model. The 

product of the neutral air density and momentum flux is observed to vary with height, indicating 

that there is a body force 𝐹𝑢 associated with the motion of periods less than 8 hours. 
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Diagrams the 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅  term (Figure 6-8) show a similar variation with height, indicating that there 

is also a meridional body force. However, before calculating the body force we need to consider 

other sources of error in these measurements. One possible error we have not yet considered is 

that due to the alignment of the array. 

 

Figure (6-8) As for Figure (6-7) but for the 𝑣′𝑤′̅̅ ̅̅ ̅̅  term. Also shown are the values of the product of this 

term with the neutral air density. Units of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ' and 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅  are 𝑘𝑔𝑚2 𝑠−2  ×  106 

 

Figure (6-8) continued 
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Figure (6-9) Height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for various periods of observation. 

 

Figure (6-9) continued 
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Figure (6-9) continued 

6.3 Correction for the Alignment of the Array and the Effective Beam 

Angle 

In Chapter 2 we noted that the MF array at BP is aligned so that the NS axis is 4° West of 

North. Consequently, measurements of the Reynolds stress term 𝑢′𝑤′̅̅ ̅̅ ̅̅  made with the EW pair 

of beams will include a contribution from 𝑣′𝑤′̅̅ ̅̅ ̅̅ . Since most observations did not include both 

of these terms, this component is unresolved and it is of some interest to consider the 

importance of this. 

If we consider the beams nominally aligned Eastward and Westward, then 𝜙 = 86° 𝑎𝑛𝑑 266° 

respectively. With 𝜃 = 11.6° and 

𝑉𝐸
′2̅̅ ̅̅ = 𝑉𝑅

′2̅̅ ̅̅ (86) 

𝑉𝑊
′2̅̅ ̅̅ = 𝑉𝑅

′2̅̅ ̅̅ (266) 

 

(6-1) 

and substituting these into Equation (4-4) we obtain after some rearranging 

𝛿𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ =

𝑉𝐸
′2̅̅ ̅̅ − 𝑉𝑊

′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑢′𝑤′̅̅ ̅̅ ̅̅ + (0.07)𝑣′𝑤′̅̅ ̅̅ ̅̅  

 

(6-2) 

and 
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𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ =

𝑉𝐸
′2̅̅ ̅̅ + 𝑉′𝑊

2̅̅ ̅̅ ̅

2𝑠𝑖𝑛2𝜃
= 𝑢′2̅̅ ̅̅ + +(0.005)𝑣′2̅̅ ̅̅ +  𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 + (0.14)𝑢′𝑣′̅̅ ̅̅ ̅̅  

(6-3) 

The corresponding relations for  

𝑉𝑁
′2̅̅ ̅̅ = 𝑉′𝑅

2̅̅ ̅̅ (356) 

𝑉′𝑆
2̅̅ ̅̅ = 𝑉𝑅

′2̅̅ ̅̅ (176) 

 

(6-4) 

Are 

𝛿𝑉𝑁𝑆
′2̅̅ ̅̅̅ =

𝑉′𝑁
2̅̅ ̅̅̅ − 𝑉𝑆

′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑣′𝑤′̅̅ ̅̅ ̅̅ + (0.07)𝑢′𝑤′̅̅ ̅̅ ̅̅  

 

(6-5) 

and 

𝑉𝑁𝑆
′2̅̅ ̅̅̅ =

𝑉𝑁
′2̅̅ ̅̅ + 𝑉𝑆

′2̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
= 𝑣′2̅̅ ̅̅ + (0.005)𝑢′2̅̅ ̅̅ +  𝑤′2̅̅ ̅̅ ̅𝑐𝑜𝑡2𝜃 − (0.14)𝑢′𝑣′̅̅ ̅̅ ̅̅  

 

(6-6) 

We note in passing that the sum of Equations (6-3) and (6-6) is not significantly different from 

Equation (4-73) and that it may be possible to measure the covariance 𝑢′𝑣′̅̅ ̅̅ ̅ using the mean 

radial velocities if five beams are used. 

The values of 𝛿𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ and 𝛿𝑉𝑁𝑆

′2̅̅ ̅̅̅ are typically of the same magnitude, as we have noted in Section 

(6.3), and consequently the error involved in neglecting the meridional contribution will be 

rather small, since 

𝑣′𝑤′̅̅ ̅̅ ̅̅ =  𝛿𝑉′𝑁𝑆
2̅̅ ̅̅ ̅̅ + (0.07)𝛿𝑉′𝐸𝑊

2̅̅ ̅̅ ̅̅   

(6-7) 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =  𝛿𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ − (0.07)𝛿𝑉𝑁𝑆

′2̅̅ ̅̅̅  

(6-8) 

Figure (6-11a, b) illustrates values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  corrected for alignment of the alignment 

of the array, and uncorrected values 𝛿𝑉𝐸𝑊
′2̅̅ ̅̅ ̅ and 𝛿𝑉𝑁𝑆

′2̅̅ ̅̅̅ for the 6-9th of July 1982. Also shown are 

the products of these quantities with the neutral air density 𝜌. Values plotted have not been 

smoothed in any way, and represent the values obtained before any correction for motions in 

the beam pointing direction have been taken into account. The error bars represent the 
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uncertainty calculated from the results obtained in Chapter 2. It is clear that the correction for 

the alignment of the array is less than the uncertainty due to that in the mean square radial 

velocity.  

 

Figure (6-11a) Height profiles of upward flux of zonal momentum before correction for alignment of 

array is applied  𝛿𝑉𝐸𝑊
2̅̅ ̅̅ ̅ and after this correct1on has been applied (𝑢′𝑤′̅̅ ̅̅ ̅̅ ). Also shown are height profiles 

of 𝜌𝛿𝑉𝐸𝑊
2̅̅ ̅̅ ̅ and 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ . 

These results are typical for other observational periods, and consequently, the error in 𝑢′𝑤′̅̅ ̅̅ ̅̅  

due to the alignment of the array is not significant, and the general features of the height profiles 

𝑢′𝑤′̅̅ ̅̅ ̅̅  are consistent, so that the momentum flux measurements obtained in se months can be 

accepted. Figure (6-12a) illustrates the height profile for 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  shown in Figure (6-11a) after 

the corrections difference between the effective and apparent beam directions are taken into 

account. The heights have been corrected according to the values shown in Table (5-1) and the 

magnitudes of 𝑢′𝑤′̅̅ ̅̅ ̅̅ ' rescaled according to the value of ratio of 𝑢′𝑤′̅̅ ̅̅ ̅̅ /𝑢′𝑤′∗̅̅ ̅̅ ̅̅ ̅ shown in Figure (5-

5). 
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Figure (6-11b) As for Figure (6-11a) but for the upward flux of meridional momentum. 

The horizontal bars on this diagram represent the error in 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  calculated from the systematic 

and random errors in 𝑉′2̅̅ ̅̅  obtained in Chapter 2. The vertical bars represent the uncertainty in 

height due to the effective beam angle. Inspection of this diagram indicates the essential 

features are unchanged from those of Figure (6-11a). The height profile of 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅   treated in the 

same way as that for 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  is shown in Figure (6-12b). The error bars have the same meaning 

as those shown in Figure (6-12a). Some of the variation of the height profile of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  and 

𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅  can be accounted for by the uncertainty the height and mean square radial velocities. We 

note similarity in form in the height profiles of 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅  and 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  when the errors are taken into 

account. The errors themselves are clearly substantial, but most values are significant. 

Differentiation of these height profiles to obtain the body force will involve considerable 

uncertainty. The form of fitting applied to the height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅  to smooth the 

data and obtain an analytical expression for and 𝐹𝑣 is considered in the next Section. 
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Figure (6-12a) Height profile of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅   shown in Figure (6-11a) after correction for effective beam 

angle has been applied. Figure (6-12b) As for Figure (6-12a) but for 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ . 

6.4 Calculation of the Body Force 

Vincent and Reid (1983) fitted functions of the form 𝑎𝑒−𝑧/ℎ where 𝑧 is the height, ℎ is the scale 

height of  𝜌𝑉′2̅̅ ̅̅  and 𝑎 is a constant, to the individual height profiles of 𝜌𝑉𝐸
′2̅̅ ̅̅  and 𝜌𝑉𝑊

′2̅̅ ̅̅ . The 

values of 𝜌𝑉𝐸
2̅̅̅̅  and 𝜌𝑉𝑊

2̅̅ ̅̅  for data obtained in May 1982 are shown in Figure (6-13). These values 

of mean square radial velocity have not been smoothed in any way, and no corrections for the 

effective beam angle have been applied. A reasonable fit in this case would appear to be to the 

values of 𝜌𝑉′2̅̅ ̅̅  in the range of 82-90 km. 
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Figure (6-13) Height profiles of the product of mean square radial velocity for motions with periods 

less than 8 hours with neutral air density for westward (W) and eastward (E) beams. 

Since 

𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ = 𝜌
(𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2)̅̅ ̅̅ ̅̅

2𝑠𝑖𝑛2𝜃
 

 

(6-9) 

the net acceleration per unit mass given by the flux convergence as 

𝐹𝑢 = −
1

𝜌

𝜕

𝜕𝑧
(𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ) 

 

(6-10) 

becomes 

𝐹𝑢 = −
1

𝜌𝑘

𝜕

𝜕𝑧
𝜌(𝑉𝐸

′2̅̅ ̅̅ − 𝑉𝑊
′2)̅̅ ̅̅ ̅̅  

 

(6-11) 

where 𝑘 = 2𝑠𝑖𝑛2𝜃 

Substituting the fitted function 𝑎𝑒−𝑧/ℎ  for 𝜌𝑉2̅̅̅̅  this becomes 

𝐹𝑢 =
1

𝑘
(
𝑉𝐸

′2̅̅ ̅̅

ℎ𝐸
−

𝑉𝑊
′2̅̅ ̅̅

ℎ𝑊
) 

 

(6-12) 
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The results of this calculation are shown in Figure (6-14), along with the error calculated from 

the standard error in value of h obtained in the fit and the errors in 𝑉′2̅̅ ̅̅  discussed in Chapter 2. 

The body force 𝐹𝑢 is clearly substantial, but there is considerable uncertainty in the obtained 

values. The smoothed values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  are shown as dots in Figure (6-14) along with the raw 

values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  shown as crosses, and agreement is good.  

 

Figure (6-14) The zonal body force 𝐹𝑢  calculated from values of 𝜌𝑉′2̅̅ ̅̅  shown in Figure (6-13). Also 

shown are the "raw" values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and the corresponding smoothed values (dots) 

The advantage of this type of fitting is that information about the scale height ℎ is obtained, 

and erroneous values 𝜌𝑉′2̅̅ ̅̅  may be detected quite easily if the height profile of 𝜌𝑉′2̅̅ ̅̅  is well 

formed. The disadvantage is that the choice of heights to fit is subjective, and some cases, it 

may not be possible to select a suitable fit.  There are also discontinuities at the end points of 

each fitting range, and in the case of the May 1982 data, choice of fits to the values of 𝜌𝑉′2̅̅ ̅̅  for 
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the range of 80-82 km. and heights above 90 km. may produce errors if these values are 

considered separately from the rest of the data. 

An alternate form of fitting is that of a polynomial fit to 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ (𝑧). With an optimal fitting 

routine, no subjective judgement is involved, although this does not necessarily make the fit 

superior, and problems with discontinuities in the slope are avoided. It has the advantage that 

all of the data points are used in a single fit, but the disadvantage that anomalous values of 𝜌𝑉𝐸
′2̅̅ ̅̅  

and 𝜌𝑉𝑊
′2̅̅ ̅̅  are not evident (but odd values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  may be), and no information about the 

height scale is obtained. There may also be uncertainty in the end points of the fit. 

We have applied both types of fits to all of our results, and have generally found good 

agreement, although the advantages and disadvantages noted above were quite evident. In most 

data sets the type of fit does not affect the general conclusions, and in any case the sign of 𝐹𝑢 

is evident by inspection of the height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ . We have also calculated the zonal body 

force with both "raw" values of 𝜌𝑉′2̅̅ ̅̅  and 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ , and values corrected for the effective beam 

direction. The only variation evident is in the magnitudes of the body force, and not its sign. 

6.5 Mean Meridional Winds and the Coriolis Torque 

We have summarized the mean winds for each data run in which measurements of momentum 

flux were made in Chapter 5, but it is also instructive to consider the mean wind obtained over 

longer periods. There are difficulties in using the Groves (1969) and CIRA (1972) global 

circulation models because of their bias towards Northern hemisphere observations. 

Differences between Southern hemisphere observations and these models have been noted by 

Smith (1983) and Vincent (l984b). 

Fortunately, a long sequence of observations is available at Adelaide. These include meteor 

radar observations dating from the 1960's and D-region SA observations covering the years 

since about 1973. Figure (6-15a, b) illustrate the monthly mean SA winds for a number of 

heights for the period 1978-1983. (Vincent, private communication). These results are 

particularly useful, because they provide a direct measure of the mean wind at Adelaide, and 

the associated standard deviations give some indication of inter-annual variations. 
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Figure (6-15a) (left) Five-year average of SA mean zonal winds. for Adelaide (35°S), and Figure (6-

15b) (right) the corresponding meridional winds 

As discussed in Chapter l, any zonal drag must be balanced by a torque due to the meridional 

component when these quantities are zonally averaged. We have found it convenient to work 

in units of 𝑚2𝑠−1𝑑𝑎𝑦−1 and at Adelaide (35°S), the Coriolis torque in these units may be 

obtained by multiplying the mean meridional wind by (7.2) and taking account of the sign. 

 

Figure (6-16) unscaled values of the mean wind for the 6-9th July 1982 
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6.6 The Zonal Body Force and the Meridional Coriolis Torque 

In this Section we present the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for each period of observation, and the 

zonal body force calculated from both the measured values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and those corrected for the 

effective beam direction. The results have been divided into seasons, and first we consider the 

Winter results. 

6.6.1 Winter: July 1982 (30th June-16th July) 

The values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for the 6-9th July 1982 are shown in Figure (6-12a). A 3rd order 

polynomial fit to this height profile produces the results for the zonal body force shown in 

Table (6-1). We may obtain the Coriolis torque due to the meridional mean wind from either 

the mean winds for the 6-9th July 1982, or from the results shown in Figure (6-15b). The mean 

winds for the 6-9th obtained from harmonic analysis are shown in Figure (6-16). These results 

have not been rescaled, and we note that the meridional component is in good agreement with 

the expected circulation for this month, while the zonal component is very much smaller. 

Table (6-1) the zonal body force calculated from a 3rd order polynomial fit to the height profile shown 

in in Figure (6-12a). 

Altitude (km) 𝐹𝑢 (𝑚−2𝑠−1𝑑𝑎𝑦−1) 

80 -32 

82 -33 

83 -32 

85 -30 

87 -26 

89 -20 

91 -12 

93 -2 

95 +5 

98 -2 

This observational period showed strong evidence of planetary wave activity, and this may 

account for the better agreement between the meridional component and the expected 

circulation. Figure (6-17a, b) illustrates the daily mean values for July 1982 obtained from 

harmonic analysis, and we note the 5-6-day period variation in velocity most evident at heights 

below 90 km. Inspection of days 6-9 indicates that the meridional wind velocities are in the 
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most Westward part of the cycle. We have rescaled the mean meridional wind illustrated in 

Figure (6-16) according to the results in Chapter 5 and plotted this and the mean SA profile 

from Figure (6-15b) ln Figure (6-18). Taking the planetary wave activity into account, 

agreement is excellent. 

  

Figure (6-17a) (left) Daily values of the mean meridional wind obtained from harmonic analysis, and 

Figure (6-17b) (right) As for Figure (6-17a) but for the zonal wind component 

 

Figure (6-18) Meridional wind component shown in Figure (6-16) after the correction for effective 

beam angle has been applied. Also shown is the mean SA wind obtained from Figure (6-15b). 

The meridional Coriolis torque 𝑎∗ calculated from the rescaled DW values for the 6-9th July, 

the mean SA results for July and the results from Groves (1969) is shown in Figure (6-19) 
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along with the values 𝐹𝑢 from Table (6-1). For the purposes of comparison, Coriolis torque has 

been reversed sign. 

The error bars on values of −𝑎∗ the 6-9th July have been calculated from the uncertainty in the 

mean radial velocity estimated in Chapter 2. Those for the values of 𝐹𝑢 at 80 and 9l km. have 

been estimated by calculating upper and lower limits for the fit to the values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ , which 

is a somewhat crude, but probably sufficient measure. The error bar on the value of −𝑎∗ 

obtained from the mean SA results represents the standard deviation in �̅�, and provides a 

measure of the inter- annual variability in this quantity. Inspection of this diagram indicates 

agreement between 𝐹𝑢 and the values of −𝑎∗ for the mean SA results within the error of the 

calculation, while the values of −𝑎∗for the 6-9th July and 𝐹𝑢 are in general agreement. The 

values of −𝑎∗ calculated from the results of Groves (1969) are noted to be somewhat larger 

than the other quantities in the diagram, except at 80 km., and for the remainder of the Chapter 

we will omit the results obtained from this model. 

 

Figure (6-19) The zonal wave drag 𝐹𝑢 calculated from the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ . For details see 

text. 

The rescaled values of 𝐹𝑢  are easily able to provide the necessary torque to balance the 

meridional flow in the SA average case, but below about 84 km., there is a significant 

difference between 𝐹𝑢 and −𝑎∗ due to the local mean meridional wind. The values of 𝐹𝑢 

calculated from the unscaled data by applying a fit of form 𝑎𝑒−𝑧/ℎ to the individual height 

profiles of 𝜌𝑉𝐸
′2̅̅ ̅̅  and 𝜌𝑉𝑊

′2̅̅ ̅̅  are shown in Figure (6-20). The fit was made to the values in two 

separate height ranges, 80-88 and 88-92 km., and the error bars were calculated as for the May 

1982 data.  
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Figure (6-20) The values of 𝐹𝑢 calculated from the unscaled data by applying a fit of form 𝑎𝑒−𝑧/ℎ to 

the individual height profiles of 𝜌𝑉𝐸
′2̅̅ ̅̅  and 𝜌𝑉𝑊

′2̅̅ ̅̅  

 

Figure (6-21a) (top) The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for the 16-day period of 3ist June- 16th July 1982, 

and Figure (6-21b) (bottom) The values of 𝐹𝑢 calculated from this height profile by fitting a cubic. Also 

shown are the average SA value of −𝑎∗, and the value of −𝑎∗ calculated from the rescaled value of �̅� 

for the 16 days. 

These results agree with those obtained from the rescaled data to within the calculated error, 

but exhibit a rather more complex height profile. This is because of the limited height range of 

values to which the fit was made.  An unweighted fit to the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  using a 
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polynomial of order 5 agrees very well in form with the values shown in Figure (6-20). Our 

choice of a cubic fit to the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  was made taking the uncertainty in the 

individual values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  at each height into account, and consequently, the height profile of 

𝐹𝑢 has been smoothed somewhat in this case. 

The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for the 16-day period of 3ist June- 16 July 1982, are shown in 

Figure (6-21a). The values of 𝐹𝑢 calculated from this height profile by fitting a cubic are shown 

in Figure (6-21b) along with the average SA value of −𝑎∗, and the value of −𝑎∗ calculated 

from the rescaled value of �̅� for the 16 days. (We note that the agreement between these last 

two quantities is excellent.) Inspection of this diagram indicates that below about 88 km, the 

zonal drag does not balance the Coriolis torque, and is in the opposite sense. Above 86 km, 

agreement is excellent. Reference to Figure (6-17) indicates that at heights below about 88 km, 

the planetary wave oscillation is clearly evident and it is possible that this motion is providing 

the necessary drag. 

 

Figure (6-22). As for Figure (6-13) but for 30 June-16 July 1982 

The results of a fit of form 𝑎𝑒−𝑧/ℎ to the values of 𝜌𝑉′2̅̅ ̅̅  in the 86-94 km. height range before 

the effective beam direction has been taken into account are shown in Figure (6-22), and we 

note that they are in general agreement with the rescaled results. The difference in the results 
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for the 6-9th and the 3ist June - 16th July indicates that there is some variation in momentum 

flux. Because of the way in which the data were obtained, is convenient to break entire data set 

into periods of 2-4 days to examine this.  The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  are shown in Figure (6-

23). The number of days each represents is shown. 

 

Figure (6-23) Height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  for periods of 3-4 days for the July 1982 results 

Careful inspection of these diagrams indicates that above about 85 km., the height profits are 

similar. Below this height, there is considerable variation, with the values shown in Figure (6-

23c) exhibiting a slope the opposite sense to the other height profiles. With the exception of 

these data, the height profiles of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  are consistent with the mean result for the entire period. 

The uncertainty in the values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅  at the lower heights is considerable, and there often 

appears to be an abrupt change in slope at about 82 km. It is possible that we have overestimated 
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the correction for the effective beam angle at these heights, but this would not change the 

general conclusions of the previous discussion. 

6.6.2 Spring 

6.6.2.1 November, 1981. 

The observations in November 1981 were made with the TC(CP) beam arrangement and 

consequently, no measurement of the local mean meridional wind was available. 

However, the run was timed to coincide with a SA observational period so that a measure of 

this quantity was available. We recall that in this period (see Chapter 5) there was evidence of 

planetary wave activity with a dominant period of about two days. To remove the longer period 

motion we have taken an average over four days of the mean winds obtained from harmonic 

analysis. This is shown in Figure (6-24) along with the individual height profiles of the daily 

mean wind. We have smoothed through a variation in 𝑣 ̅ at 94 and 96 km., which we believe 

was due to low data acceptance rates, but we will point out the effect of this when we present 

the Coriolis torque obtained from this profile. 

 

Figure (6-24). Daily Mean Meridional Wind Component for SA observations obtained on 9-13 

November 1981. Also shown in the mean for the entire period. 
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We have calculated 𝐹𝑢 by fitting functions of the form  𝑎𝑒−𝑧/ℎ to the values of 𝜌𝑉′2̅̅ ̅̅  measured 

in the Eastward and Westward beams, and no rescaling to account for the effective beam angle 

has been applied. The results are shown in Figure (6-25) along with the smoothed values of 

𝑢′𝑤′̅̅ ̅̅ ̅̅  and the Coriolis torque (× −1) calculated from the mean profile shown in Figure (6-24). 

Heights below 82 km were unsuitable for analysis because of low data acceptance rates and 

have been omitted from the fit. Agreement between 𝐹𝑢 and −𝑎∗  is excellent, although the 

profiles appear to be displaced vertically. The unsmoothed values of �̅� are −8 𝑚𝑠−1 at 94 km. 

and 0 𝑚𝑠−1 at 96 km, so that the corresponding values of the Coriolis torque are 

58 𝑚 𝑠−1 𝑑𝑎𝑦−1 and 0 𝑚 𝑠−1 𝑑𝑎𝑦−1. 

The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and the fitted polynomial are shown in Figure (6-26a). The value 

of 𝐹𝑢 calculated from these values is shown in Figure (6-26b), We have also included the 

unsmoothed values of −𝑎∗ as crosses, and note that the general agreement is unchanged if these 

points are included. The displacement between the height profiles of 𝐹𝑢 and −𝑎∗ evident in 

Figure (6-25) is reduced in Figure (6-26b) and although the magnitude of 𝐹𝑢 is increased by 

rescaling the results, there is no change in the sign. We note that the profile of −𝑎∗ for the local 

mean wind lies within the expected range of values for this month. 

 

Figure (6-25). As for Figure (6-13), but for November 1981. 
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6.6.2.2 October 5-8, 1982 

We recall data obtained in October, 1982, were characterized by low data acceptance rates. The 

beam arrangement was OPDCC so that measurements of both 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  were obtained. 

While we will present the results for this latter quantity here we will not discuss them until 

Section 6.9. The data distribution in time for these observations was such that a good measure 

of 𝐹𝑢 can be made for all heights, with the exception of 78 and 80 km. which are marginal. The 

unscaled raw values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  are shown in Figure (6-27) as crosses. The smoothed 

values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  calculated using a fit of the form 𝑎𝑒−𝑧/ℎ are shown as dots. The fit was made 

to the values of  𝜌𝑉′2 ̅̅ ̅̅̅in the range 82-90 km but the results extrapolated smoothly to 78 km, so 

we have included them. However, they may not provide a good measure of 𝑢′𝑤′̅̅ ̅̅ ̅̅  or 𝐹𝑢 for the 

entire period of observation. The body force 𝐹𝑢 calculated from the unscaled values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  is 

also shown. 

 

Figure (6-26a). Rescaled values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and polynomial fit used to calculate the zonal body force 

shown in Figure (6-26b). 

The rescaled values 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and the fitted polynomial are shown in Figure (6-28a) and the values 

of the body force calculated from are shown in Figure (6-28b). so shown  the latter diagrams 

are the values of −𝑎∗ for the local mean meridional wind and for the mean SA results. 

Inspection of Figure (6-28b) indicates that the body force is in general agreement with the value 
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of −𝑎∗ for the mean SA results, although it is smaller magnitude below about 90 km, it does 

lie within the expected range of values however. 𝐹𝑢 and −𝑎∗ due to the local mean wind agree 

to within the calculated error below 90 km. Above this height they are of opposite sign, but 

given the uncertainty in the values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ shown in Figure (6-28a) agreement is reasonable.  

6.6.3 Summer 

6.6.3.1 December, 1981 (7-10) 

The beam arrangement for these observations was OPDC, so that the mean meridional wind 

was obtained from the DC beam arrangement, and as noted in Chapter 5, there is some 

uncertainty in this because of the relative errors and magnitudes of the vertical and meridional 

radial velocities. The values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  presented here represent the mean value of two periods 

of observation, being from 1346 LT on the 7th to 2209 LT on the 8th and 1044 LT on the 9th to 

0912 LT on the l0th. The value of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  for 98 km has been omitted from the fit because of 

low data acceptance rates and an intermittent time series. 

 

Figure (6-27). As for Figure (6-13) but for October 1982. 

Inspection of the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  shown in Figure (6-29a) indicates that the three 

lowest heights have values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  that do not differ significantly from zero. The body force 

𝐹𝑢 and the Coriolis torque −𝑎∗ calculated from the rescaled values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  are shown in 

Figure (6-29b) along with the mean SA result. General agreement is good and the variation 

between the profiles of 𝐹𝑢 and −𝑎∗ calculated from the local mean meridional wind can be 

accounted for by the uncertainty in 𝐹𝑢 and −𝑎∗. 
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Figure (6-28a and b). As for Figure (6-26a and b) but for October 1982 

 

Figure (6-29a and b) As for Figure (6-26a and b) but for December 1981 

6.6.3.2 February 1982 (16-19) 

The beam arrangement was as for the December 1981 run. These data were characterized by 

low data acceptance rates, and the only heights suitable for analysis are those in the 85-9l km 
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height range.  However, the values of  𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ for 83 and 95 km are marginal, and may give some 

indication of the correct value. The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  for all heights are shown in Figure 

(6-30a). In the 85-91 km height range a parabolic fit is indicated, and such a fit to this height 

range, taking account of the values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  at 83 and 95 km allows the height profile of 𝐹𝑢 

shown in Figure (6-30b) to be obtained. The values of 𝐹𝑢 are in general agreement with the 

Coriolis torque due to the local mean wind and the mean SA result. However, the uncertainty 

in this result is considerable, because the height range of the values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  is limited, and 

better fits may be possible. These data are more useful in examining shorter term variations in 

momentum flux and we will consider them in Section (6.8). 

 

Figure (6-30a and b) As for Figure (6-26a and b) but for February 1982 

The height range of suitable values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  for data obtained later in the month was even more 

restricted, and we consider these particular data unsuitable for calculation of the body force. 

6.6.4 Autumn 

6.6.4.1 April 1982 (21-26) 

The beam arrangement was as for December 1981. However, data were only obtained over the 

height range of 80-9l km for the entire five days. All heights proved suitable for analysis, and 
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the body force 𝐹𝑢 calculated from a parabolic fit to the rescaled values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  is shown in 

Figure (6-31) along with the Coriolis torque −𝑎∗. Agreement with the SA mean result below 

about 86 km is excellent, but since very few observations were available in this month, it is not 

a true average. In fact, the only April observations available are those presented in Chapter 5. 

We recall that three days of SA observations were obtained after the DW observations in this 

month. 

 

Figure (6-31a and b) As for Figure (6-26a and b) but for April 1982. My daughter Morgan was born 

on the 25th. 

Below about 86 km the Coriolis torque calculated the rescaled DW results is of the same 

magnitude as 𝐹𝑢, but opposite in sign. It is possible that the "Northward" radar beam was 

actually directed Southward because of an error in phasing, but inspection of phase of the 

diurnal tidal component for the DW results indicates that the meridional phase leads the zonal 

phase by about six hours. This is very strong evidence that "Northward" beam was indeed 

directed Northward. The mean DW derived meridional component is also in agreement with 

the model of Groves (1969) and with SA and meteor radar results for the period (1973-1978). 

The variation in agreement between the meridional components is evidence that the meridional 

component was fluctuating in this period of observation. The values of −𝑎∗ for the local 
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meridional wind agree with the values of 𝐹𝑢 between 84 and 90 km to within the calculated 

error, and in this case, an extended height range would have been an advantage. 

6.6.4.2 May 1981 (11-14) 

 

 

Figures (6-32a and 6-33a) (above left) As for Figure (6-26a) but for May 1981 and May 1982 

respectively, and Figures (6-32b and 6-33b) (above right) As for Figure (6-26a) but for May 1981 and 

May 1982 respectively 

The beam arrangement for these observations was DCC so that no measurements of the vertical 

or meridional mean wind were possible. The unscaled results for this period have been 

presented in Vincent and Reid (1983). The rescaled values are shown in Figure (6-32a). 

Inspection of the raw values of 𝑢′𝑤′̅̅ ̅̅ ̅̅  (Figure (6-7)) indicates that the results for 94 km appear 

to be different in character from the remaining data, and it was omitted from the fit made by 

Vincent and Reid (1983).  However, we have included it in the fit to the rescaled values of 

 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ because there appears to be no reason to reject it after the effective beam direction has 

been taken into account. The height profiles of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ for May 1982, also show a similar form. 

The body force 𝐹𝑢 for each height obtained from the fit indicated in Figure (6-32a) is shown in 

Figure (6-32b). Below about 93 km the body force is of the correct sign to balance the mean 
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SA result, but we note a change of sign above this height. Although 𝐹𝑢 is smaller than −𝑎∗ it 

does lie within the expected range of values for this quantity. 

We recall from Chapter 5 that the mean zonal winds for DW observations made in May 1981 

and 1982, were in good agreement, and it is possible, though by no means certain, that the 

agreement between the meridional components would be similar. Inspection of Figure (6-33b), 

which shows the Coriolis torque due to the rescaled meridional component measured in May 

(1982), indicates good agreement in form (and magnitude) with the values of 𝐹𝑢 for May, 1981. 

6.6.4.3 May, 1982 (18-20) 

The beam arrangement was as for December, 1981, and all heights proved suitable for analysis. 

We have already presented some body force results calculated from the unscaled values of 𝜌𝑉2̅̅̅̅  

in Section 6.5. The rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  are shown in Figure (6-33a) The body force 

calculated from the fit indicated in Figure (6-33a) is shown in Figure (6-33b) along with the 

Coriolis torque due to the local mean meridional wind, and the mean SA results. 

The body force agrees in sign with the Coriolis torque due to the local wind, and below about 

90 km is larger in magnitude. General agreement with the mean SA result is excellent below 

about 93 km, but as for the May 1981 results, disagrees in sign above this height. Inspection of 

Figure (6-33a) indicates considerable uncertainty in the value of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ above about 90 km, 

but the agreement in form between the May 1981 and May 1982 results indicates that this sign 

change may be real. 

6.6.5 Discussion 

The results we have just presented indicate that there is some variability in agreement between 

𝐹𝑢 and −𝑎∗, but apart from the July and April results the body force is in the correct sense to 

balance the Coriolis torque due to the local mean meridional wind, and given the uncertainty 

in the momentum flux results, agreement in magnitude is very good. This need not have been 

the case. 

The reasons for this may be briefly summarized as follows.  

(a) The zonal body force and torque due to the mean meridional wind should balance 

when zonally averaged. Local variations in agreement are reasonable and would be 

expected. 
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(b) Stationary waves, that is waves with zero horizontal zonal phase velocities, are not 

measured with the DCC technique. In Winter, when these waves may be transmitted 

into the mesosphere, they may have an important contribution to the gravity wave drag. 

(c) On theoretical grounds it is reasonable to assume that the transmission of gravity 

waves into the mesosphere would be intermittent, and that wave damping or dissipation 

would also be an intermittent or transient process. Schoeberl et al. (1983) found that in 

a numerical model of gravity wave breaking and stress in the mesosphere, steady 

gravity wave cooling rate would exceed the solar heating rate if it were not an 

intermittent process, operative less than 2 × 10−2𝜆𝑥(𝑘𝑚) per cent of the time or less. 

They also found that in modelling gravity wave breaking in the lower troposphere, only 

in limited geographical locations where the zonal wind is substantially lower than its 

average value, could a significant flux of stationary gravity waves be transmitted 

through the lower stratosphere.  

These three possibilities would possibly be sufficient to explain the variation in agreement 

between 𝐹𝑢 and −𝑎∗ for the different periods of observation, but we note that the two periods 

of observation in which substantial variations between 𝐹𝑢 and −𝑎∗ were noted (July and April) 

were characterized by planetary wave activity. These particular waves could have supplied the 

necessary zonal wave drag, but because we have omitted all motions with periods longer than 

8 hours from the analysis, we cannot exclude the possibility of the importance of any motion 

with a period within this range. However, observational (Elford, 1979) and theoretical 

(Miyahara, 1980) evidence suggests that it is unlikely that atmospheric tides contribute 

significantly to the zonal wave drag at middle latitudes. 

In contrast, dissipating planetary waves can provide at least some of the balancing torques in 

the Winter mesosphere (but do not appear to be important contributors to the Summer 

mesospheric momentum budget because of their absence from the Summer hemisphere; 

Houghton, 1978). It is noteworthy that the height profiles of 𝐹𝑢 and −𝑎∗ disagree most for 

heights less than about 86 km in the April and July results, where the planetary wave activity 

is most evident. 

Unlike July, which is mid-Winter in the Southern hemisphere, and is characterized by a typical 

Winter mean circulation, April is a transitional month, in which the meridional circulation in 

the 80-100 km height region is changing from a Summer (equatorward) to a Winter (poleward) 

flow. The meridional wind when averaged over 4-5 days certainly fluctuated considerably in 
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this period of observation. Theoretical models which indicate the importance of the gravity 

wave drag for the mean circulation have been applied to the Summer and Winter hemispheres 

only, and its importance for the mean circulation in the transitional months is uncertain from a 

theoretical viewpoint. 

What is clear from these results is that there is a substantial body force associated with the flux 

convergence with height for periods less than 8 hours, one which must have a profound 

influence upon the mean circulation. While these results admit the possibility that waves with 

periods greater than 8 hours are supplying some of the required wave drag in April and July, 

1982, observations at a number of locations are required before this may be determined. 

Table (6-2) The unscaled momentum flux 𝑢′𝑤′̅̅ ̅̅ ̅̅  (𝑚2𝑠−2) calculated for the accepted 12-h blocks for 

February 1982 

Alt 

(km) 

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

82 0.27 X X X X 0.11 

84 0.77 0.13 -2.05 -0.88 -3.47 -0.85 

86 l. 77 0.25 -1.88 -0.86 -2.41 -0.89 

88 1.19 2.86 -1.40 -1.83 -1.27 0.11 

90 0.81 3.23 -10.2 -2.02 -1.85 l.22 

92 -0.23 -1.99 -9.82 0.87 X -2.76 

94 -1.69 X -10.3 0.22 X X 

Finally, we note that the preliminary measurements of the mean vertical wind velocity 

presented in Chapter 5, which could indicate a multi-cellular meridional circulation, may be 

important because numerical models incorporating wave drag and stress do not include (or 

reproduce) this effect.  The heating or cooling due to compression or expansion may be 

substantial and could determine whether a given region becomes convectively unstable for 

gravity waves, and consequently whether momentum deposition occurs. 
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6.7 Shorter Term Variations in Momentum Flux and Evidence of Wave 

Saturation 

We have noted in Section 6.2 that the momentum flux term 𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ is quite variable in time. In 

this Section we consider some examples drawn from various periods of observation. Because 

the February, 1982 momentum flux results show a somewhat complex variation in height, 

which makes the choice of the best fit difficult, we have selected these data to illustrate the 

variation of momentum flux in time. We also consider the April 1982, results to determine their 

consistency over the entire period of observation. 

 

Figure (6-34) Power spectra for Westward and Eastward beams for Block 3 at 90 km for February 

1982 results. Also shown are the lines for best fit. 

6.7.1 Shorter Period Variation in Momentum Flux 

6.7.1.1 February, 1982 

The high passed time series for this period was split into 12 hour blocks, and examined for 

suitable date acceptance rates. The unscaled momentum flux 𝑢′𝑤′̅̅ ̅̅ ̅̅  calculated for the accepted 

blocks is shown in Table (6-2). Inspection of this table indicates considerable variation in time 

and height. In block three, above 90 km, there are very large values of momentum flux. The 

power spectra for the Eastward and Westward beam radial velocities for block three for 90 km 

are shown in Figure (6-34). The lines of best fit for functions of the form 𝑆(𝑓) = 𝑆𝑜𝑓−𝑘  are 
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also indicated. It is noted that there is little difference between the slopes of fitted curves. The 

values of k, the spectral index are (−0.54 ± 0.16) and (−0.54 ± 0.13) for the Eastward and 

Westward beam radial velocities respectively, so that the difference is not significant. 

 

Figure (6-35) Height profiles of 𝑢′𝑤′̅̅ ̅̅ ̅̅  for the various blocks shown in Table (6-2). 

 

Figure (6-36). Rescaled height profiles of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ for the three days of the February 1982 run. For 

details see text. 
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This result is typical for the other spectra in this period of time and indicates that the 

enhancement in momentum flux is real. The saturation process in this case appears to be 

broadband because the power spectra are separated by an approximately equal amount at each 

frequency, and transient in time because the adjacent data blocks do not show the enhancement. 

Inspection of Figure (6-35), which illustrates the height profiles of the values of momentum 

flux shown in Table (6-2), emphasizes the need for data quality assessment and helps explain 

the complex height profile of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  shown in Figure (6-30a), because the values above 90 km 

for block three appear to dominate the mean for the entire period. The horizontal scale in this 

diagram is considerably compressed when compared to those used to summarize the 

momentum flux observations (Figure (6-7)) and these particular data exhibit very large 

fluctuations in momentum flux. 

 

Figure (6-37) The body force 𝐹𝑢 calculated from the height profiles of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ shown in Figure (6-36). 

Also shown is the Coriolis torque due to the meridional component obtained from Figure (6-15b). The 

value of 𝐹𝑢 for Day 1 at 91 km may be uncertain because of the type of fit used. 

The rescaled value of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ for each 24-hour period for those heights with suitable data 

acceptance rates are shown in Figure (6-36). By inspection we note that for day 1, the zonal 

body force is negative up to about 89 km, above which it changes sign. The available height 

range for day 3 is more restricted, but we note that the body force is negative up to 9l km. The 
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results for day 2 exhibit a more complex height profile, but in this case the body force is 

negative up to about 89 km, positive between 89 and 9l km, and negative above this height. 

The zonal body force calculated from these results is shown in Figure (6-37). We have also 

included the Coriolis torque due to the mean SA result for February. We note that the body 

force for days 1 and 3 show a good agreement with the latter quantity, while that for the second 

day shows more variable agreement. It is noteworthy that the quasi 2-day wave was very strong 

at the time these data were obtained and it is possible that this oscillation has modulated the 

gravity wave flux. 

Our choice of fit for the entire period (Section 6.7) appears to be justified and this may indicate 

that our selection procedures are appropriate. The obvious consequence of the variation of 

momentum flux with time is that the body force must also vary in time. This example indicates 

that the variation in this latter quantity can be significant. It also indicates that transient 

planetary waves may be important in the Summer hemisphere. 

6.7.1.2 April 1982 

 

Figure (6-38a) As for Figure (6-1a) but for April 1982. 

The high passed radial time series for this observational period were split into blocks of about 

0.8 days. This allowed the entire data set to be used and gave six blocks of equal length. The 

time series of unscaled values of momentum flux  𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ for each block and height are shown in 
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Figure (6-38a). Inspection of this diagram indicates considerable variation in height and time, 

with an enhancement in magnitude at 90 km. 

 

Figure (6-38b) Height profiles of  𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ for consecutive 0.8 day blocks of the April 1982 results 

 

Figure (6-39). As for Figure (6-1a) but for May 1982. Adjacent heights have been displaced vertically 

by 3 𝑚2𝑠−2 

The unscaled height profiles of momentum flux are shown in Figure (6-38b). With the 

exception of block three and four, these diagrams indicate that the zonal body force is positive 

below about 82-84 km and negative above this height. Block 3 indicates that the body force is 

positive below about 82 km, negative between 82 and 88 km and positive above this height. 
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Block four indicates that there is no significant body force below about 88 km. Unlike the 

February 1982 results, there are no dramatic enhancements in momentum flux and even though 

there is variability between these height profiles, the values for each 0.8-day period are 

generally consistent with the mean result for the entire period. 

6.7.1.3 May 1982 

The momentum flux for four 12-hour data blocks for May, 1982, are shown in Figure (6-39). 

We note that the largest variations in 𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ occur below 84 and above 94 km. 

 

Figure (6-40a to d). Height profiles of mean square radial velocity for Eastward (dashed) and 

Westward (solid) beams for consecutive 12 hour blocks. 

 

Figure (6-41a to d). Height profiles of  𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ calculated from values of 𝑉2̅̅̅̅ shown in Figure (6-40). 
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The mean square radial velocity for each height and beam for each 12-hour period are shown 

in Figures(6-40a-d). Even though these results have not been rescaled to account for the 

effective beam direction, the following conclusions are valid. Inspection of these diagrams 

indicates that block one and block three show a tendency for the mean square radial velocity 

to be constant or decrease with increasing height, indicating a broad spectrum of saturated 

waves. In contrast, blocks two and four indicate that wave energy is growing with height. 

The corresponding height profiles of  𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ are shown in Figures (6-4la-d). We note that the 

largest contribution to 𝑢′𝑤′̅̅ ̅̅ ̅̅  occurs in blocks three and one, and that the measured values 

of  𝑢′𝑤′̅̅ ̅̅ ̅̅  in blocks two and four are generally not significantly different from zero. These results 

suggest that when the mean square radial velocities indicate wave saturation, there is a 

significant body force associated with the gravity wave momentum flux and that when they 

indicate that wave amplitude is growing with height, there is a very much smaller 

corresponding body force. 

Table (6-3) The number of events successfully analysed to yield an unambiguous determination of this 

quantity for each 12-h block for May, 1982 

Alt (km) Block 1 Block 2 Block 3 Block 4 

80 0 3 3 1 

82 2 2 1 3 

84 1 3 1 5 

88 2 1 2 0 

90 4 7 0 3 

92 3 6 0 4 

94 1 9 0 7 

96 1 6 2 7 

This indicates that the wave saturation process is transient in time, because the major 

contribution to the momentum flux for the entire period occurs in block three. It also suggests 

that the saturation process is broadband, because the mean square radial velocities for those 

periods less than 8 hours indicate similar behaviour within each block. It is instructive to 

consider how the variation in momentum flux evidenced in these four 12 hour blocks relates to 

the determination of horizontal scale. To do this, we anticipate the next Chapter in which 

measurements of horizontal scale are presented and show in Table (6-3) the number of events 
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successfully analysed to yield an unambiguous determination of this quantity for each block 

for May, 1982. 

 

Figure (6-42). Time series of radial velocity for motions with periods less than 8 hours. Enhancements 

in radial velocity correspond to blocks 2 and 4 when more determination of horizontal scale were 

obtained. 

 

Figure (6-43). Height profiles of product of mean square vertical velocity with neutral air density for 

motions with periods less than 8 hours 

Inspection of these results indicates a tendency for more unambiguous determinations of 

horizontal scale to be obtained in blocks two and four, that is, when the mean square radial 



 

241 

velocities indicated wave amplitude growth with height. The most dramatic variation is that 

between block three and the adjacent blocks. Figure (6-42) illustrates the high pass radial 

velocity time series for these observations. We note that the enhancements radial velocity 

corresponds to blocks two and four. 

It is important to note that unlike the momentum flux observations, the measurements of 

horizontal scale are limited to a maximum horizontal wavelength of about 200 km, and scales 

larger than this may be contributing to the zonal drag. The measurements of scale are also 

biased to periods less than about an hour, though periods of 72 and 120 minutes were obtained 

because of the way in which they were analysed (see Chapter 7). 

These results indicate that some gravity waves with periods less than about an hour are breaking 

down into turbulence, or are at least not coherent over the spatial separation of the beams when 

there is a significant contribution to the momentum flux. It is possible that the zonal wave drag 

was being supplied by motions with periods longer than 2 hours, but this does not explain the 

variation between the number of determinations of scale for each 12-hour block of data. We 

will consider the distribution of the measured scales in terms of frequency and height in Chapter 

7. 

6.7.2 Evidence of Wave Saturation 

 

Figure (6-44). Representative spectrum of vertical motion 

We have seen that the mean square radial velocities measured in off-vertical beams can be used 

to provide formation about the amplitude motions with height of motions in the range of periods 

from 8 minutes to 8 hours. There is some uncertainty in these results because of the effective 
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beam direction. However, there is no such uncertainty in the mean square vertical velocities. 

Table (6-4) summarizes this quantity for some representative periods of observation. 

Unrepresentative values have been omitted. Inspection of these results indicates that generally, 

values increase with increasing height. For conservation of wave energy, the product of the 

neutral air density and the mean square vertical velocity should be constant with height. 

Consequently, the variation of this quantity with height should give an indication of whether 

wave energy is varying with increasing height. 

This quantity is shown in Figure (6-43) for the values shown in Table (6-4) where the values 

of 𝜌 have been obtained from the CIRA (1972) model. A representative vertical velocity power 

spectrum is shown in Figure (6-44). Inspection of the former diagrams indicates considerable 

variability. In the height range of 84-90 km July, the results are indicative of wave amplitudes 

growing with height so that the value of 𝜌𝑤′2̅̅ ̅̅ ̅ is constant. Outside of this range, wave 

amplitudes appear to be either constant or decreasing indicating wave saturation or dissipation. 

Reference to the rescaled values of 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  in Section 6.7 indicates that there is a tendency for 

𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and 𝜌𝑤′2̅̅ ̅̅ ̅ to be constant over the same height range. 

Table (6-4) Mean square vertical velocities for periods between 8 minutes and 8 hours 

Alt 

(km) 

7-10 

Dec 8l 

16-19 

Feb 82 

26-29 

Feb 82 

21-26 

Apr 82 

18-20 

May 82 

30Jun-

2Jul 82 

2-5 Jul 

82 

5-6 Jul 

82 

80 0.80 X X 2.65 2.58 1.46 2.74 2.53 

82 0.81 X X 2.44 l. 54 1.51 2.47 1.54 

84 0.93 X X l.68 l. 24 1.61 2.89 1.21 

86 1.11 l.56 1.11 l. 91 l.33 2.19 2.53 1.02 

88 l. 48 l. 96 l. 29 2.68 2.04 3.10 3.15 1.23 

90 2.31 2.41 2.09 3.87 2.18 4.45 4.49 2.85 

92 3.09 3.62 2.90 4.96 3.01 4.67 6.47 5.09 

94 4.22 5.08 3.67 X 3.48 5.29 7.10 8.15 

96 5.07 X X X 4.76 6.25 8.26 8.43 

98 4.96 X X X 4.69 6.86 10.3 12.8 
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Figure (6-45) The zonal body force 𝐹𝑢 (top) and the quantity 𝜌𝑤′2̅̅ ̅̅ ̅ (bottom Constant values of up 𝜌𝑤′2̅̅ ̅̅ ̅ 

corresponds with the smallest values of 𝐹𝑢. For details see text 

In fact, we note that the July, May and April values of are similar in form to those 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  for 

the corresponding periods in that the largest slope in the height profile of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅ ̅ tends to occur 

in the same height range as that for 𝜌𝑤′2̅̅ ̅̅ ̅. We give one example in Figure (6-45) for data 

obtained in July 1982. Inspection of this diagram indicates that the largest body force is 

associated with heights for which wave energy indicates saturation or dissipation. The turning 

point the height profile of 𝐹𝑢 appears to correspond to a n where the wave amplitude growing 

with height so that energy is conserved. This is good evidence that momentum deposition is 

associated with wave motions that are saturated or dissipating, and is typical of observations 

made in July when a vertical beam was available, and for observations made in May 1982, and 

April 1982. 

6.8 Alignment of the Total Body Force 

There is no reason for the total gravity wave drag to be aligned in the zonal direction, because 

directional filtering of the gravity wave flux due to lower level winds could produce a spectrum 

of gravity waves not polarized in this direction. It is possible then that the zonal body force 

calculated in Section (6.7) represents some fraction of the total applied drag. While this fraction 

of the drag is much more consequential for the mean circulation than that in the meridional 

direction (see e.g. Schoeberl et al., 1983) a knowledge of both components is important for an 

understanding of the isotropy of the gravity wave field. 
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Observations made in only two months, July 1982, and October 1982, are suitable to obtain 

both the zonal and meridional body force. There are two points to note. Firstly, the uncertainty 

in the calculation of 𝐹𝑢 and 𝐹𝑣 means that only a general indication of 𝐹𝑇 may be obtained, and 

secondly, it is unclear if it is reasonable to assume that the same form of fit should be made to 

the height profiles of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and  𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅ . However, we can select a height range in which the 

choice of fit is unambiguous and, consequently, does not affect the results. 

 

Figure (6-46) Height profile of rescaled values of  𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  for October 1982 

6.8.1 Results 

6.8.1.1 October, 1982 

The rescaled values of  𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  are shown in Figure (6-46). Inspection of this diagram indicates 

only two heights, 82 and 87 km with values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  significantly different from zero. The 

error involved in calculating 𝐹𝑢 in this case would make the result meaningless. It is clear, 

however, that since there is a significant body force in the zonal direction, the total applied 

drag is given to a very good approximation by the magnitude and direction of 𝐹𝑢 calculated in 

Section (6.7) for this month, and the total drag is aligned in the East-West direction. 

6.8.1.2 6-9 July, 1982 

The rescaled values of 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  for this period have been presented in Section 6.7 and those 

for 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  have been analysed to yield to zonal body force 𝐹𝑢 in Section (6.7). The meridional 

body force 𝐹𝑣 calculated from a parabolic fit to the height profile shown in Figure (6-12b) is 

shown in Figure (6-47). In this case, 𝐹𝑣 is greater than 𝐹𝑢 over most of the height range, 

indicating that the total body force is aligned closer to the North-South direction. The total 
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body force 𝐹𝑇 is shown in Figure (6-48). At the lowest four heights where there is little 

uncertainty due to the choice of fit, the total drag is aligned between 140° and 220° clockwise 

from North. Above these heights, the choice of fit does affect the results, but it appears that the 

total drag is aligned closer to the North-South than the East-West axis. The total body force 

also appears to rotate with height. 

 

Figure (6.47) The meridional body force  𝐹𝑣 calculated from height profile of 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  shown in Figure 

(6-12b). 

 

Figure (6-48) The total body force  𝐹𝑇 for 6-9 July 1982. For details see text 

6.8.1.3 6-16 July, 1982 

The total drag calculated for a ten-day period (which includes the results for the 6-9th by fitting 

the forms indicated to the rescaled values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and  𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  (Figure (6-49), is shown in 

Figure (6-50). The fits in this case allow the best measure of 𝐹𝑇 to be obtained in the height 
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range 80-85 km.  Inspection of this diagram indicates that the gravity wave drag at these heights 

is aligned along an axis about 40° East of North. Above this height range the total body force 

appears to rotate in an anti-clockwise sense (when viewed from above). However, because of 

the dependence of 𝐹𝑇 on the fit used, no definite conclusion may be obtained.  

 

Figure (6-49) Rescaled values of  𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and  𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅̅  and fitted functions (top) and the zonal and 

meridional body force calculated from them (bottom). 

 

Figure (6-50) The total body force for 6-16th July 1982. For details see text. 

What is clear is that in the 80-85 km height range, the total drag is not aligned along with the 

North-South or East-West axes and so the zonal body force represents a fraction of this total. 

There must also be considerable variation in the alignment of the total body force in time 
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because of the difference between the results for the 6-9th and those for the 6-16th July. The 

strongest statement we may make about the total body force is that it is variable in time, and in 

July 1982, was generally not aligned in the East- West direction. 

6.9 The Frequency Dependence of the Reynolds Stress 

We have considered the variation in momentum flux with height and time, but we have not yet 

considered the variation with frequency. Using an elementary argument based on the 

polarization relations we can consider which combination of frequency and scale is likely to 

carry the major proportion of momentum flux. In Chapter 4 we noted that 

𝑢′𝑤′̅̅ ̅̅ ̅̅ =
𝐴2

2
𝜔0

2𝑘𝑥𝑐2𝑘𝑧(𝜔0
2 − 𝑘𝑥

2𝑐2)  (6-13) 

For a given frequency 𝜔0, 𝑘𝑥 and 𝑘𝑧 are free to take a range of values governed by the 

dispersion relation for gravity waves. This is 

𝑘𝑧
2 = (

𝜔𝑔
2 − 𝜔0

2

𝜔2
) 𝑘𝑥

2 + (
𝜔0

2 − 𝜔𝑎
2

𝑐2
) (6-14) 

where  

𝜔𝑔=Väisälä-Brunt frequency, and 

𝜔𝑎 =Acoustic cut off frequency 

and the other terms have previously been defined. Inspection of these Equations indicates a 

complicated expression for 𝑢′𝑤′̅̅ ̅̅ ̅̅  which is difficult to solve without additional information or 

simplifying assumptions. 

With the assumptions that 𝜔0
2 ≪ 𝑘𝑥

2𝑐2, 𝜔0
2 ≪ 𝜔𝑔

2, and 𝑘𝑧
2 ≫ 𝜔𝑎

2/𝑐2 we may obtain 

|𝑢′𝑤′̅̅ ̅̅ ̅̅ | = |
𝐴2

2
𝜔0

2𝑐2𝑘𝑥
2 𝜔𝑔

𝜔0
(−𝑘𝑥

2𝑐2) | 

= |
𝐴2

2
𝜔0𝑘𝑥

4𝜔𝑔𝑐4 | 

 

 

(6-15) 

For a fixed 𝐴 we note that: 

(1) For a given 𝜔0, the largest value |𝑢′𝑤′̅̅ ̅̅ ̅̅ | will be obtained for the largest 𝑘𝑥, that is 

the smallest 𝜆𝑥; 
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(2) For a given 𝑘𝑥, the largest value of |𝑢′𝑤′̅̅ ̅̅ ̅̅ | will be obtained for the largest value of 

𝜔0, that is, frequency. 

These results indicate that the high frequency short wavelength gravity waves will produce the 

largest contribution to |𝑢′𝑤′̅̅ ̅̅ ̅̅ |. We recall that for a given wave 𝐴 is an arbitrary constant. For a 

spectrum of waves 𝐴 will take a range of values. Consequently, it is important to obtain a more 

general expression for the Reynolds stress. To do this we may make use of an empirical relation 

for the mean square horizontal velocity. 

We have noted elsewhere in this thesis that the power spectrum 𝑆(𝑓) of the fluctuation in 

horizontal wind velocity have a characteristic form which may be approximated by a power 

law relationship. This information is quite useful because the mean square fluctuation in 

horizontal velocity 𝑢′2̅̅ ̅̅  is given by 

𝑢′2̅̅ ̅̅ = ∫ 𝑆(𝑓)𝑑𝑓 = ∫ 𝑆0𝑓1−𝑘𝑑𝑓
𝑓2

𝑓1

 (6-16) 

so that for an elemental frequency interval 

𝑢′2̅̅ ̅̅ ≈ 𝑓−𝑘 ∝ 𝜔0
−𝑘 (6-17) 

To simplify the problem, it is convenient to write 𝑢′𝑤′̅̅ ̅̅ ̅̅  in terms of a single variable, the most 

appropriate of which is the frequency. With the assumption that 𝑘𝑧
2 ≫ 𝜔𝑎

2/𝑐2 and 𝜔0
2 ≪ 𝜔𝑔

2 

the dispersion relation simplifies to 

𝑘𝑧

𝑘𝑥
≈ ±

𝜔𝑔

𝜔0
≈

𝑢′

𝑤′
 (6-18) 

so that we may write 

𝑤′ ≈ ±
𝜔0

𝜔𝑔
𝑢′ (6-19) 

and 

𝑢′𝑤′̅̅ ̅̅ ̅̅ ≈ 𝑢′2̅̅ ̅̅ 𝜔0

𝜔𝑔
 (6-20) 

Substituting (6-17) into (6-20) we have 

𝑢′𝑤′̅̅ ̅̅ ̅̅ ∝
𝜔0

1−𝑘

𝜔𝑔
 (6-21) 
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for a given elemental frequency interval. 

The momentum flux for a frequency interval ∆𝜔0 = 𝜔02 − 𝜔01  is then 

𝑢′𝑤′̅̅ ̅̅ ̅̅ ∝
𝜔0

2−𝑘

𝜔𝑔
|𝜔01

𝜔02  (6-22) 

Using Vincent's (1984) value of 𝑘 = 1.5 we may estimate the relative contributions of high 

and low frequency motions to the momentum flux. Selecting two intervals, 1-8 hours and 1 

hour-8 minutes we obtain 

𝑅 ≡
(𝑢′𝑤′̅̅ ̅̅ ̅̅  )𝐿

(𝑢′𝑤′̅̅ ̅̅ ̅̅  )𝐻

~0.4 (6-23) 

so that the high frequency waves could be expected to contribute about 60% of momentum flux 

the range of periods between 8 hours and 8 minutes. 

It should be emphasized that this argument is subject to a number of uncertainties, one of which 

is the value of 𝑘. Values presented in the literature generally lie in the range of 1-2 (Vincent 

and Ball, 1981; Carter and Balsley, 1982; Vincent, 1984; Frezal et al., 1981). The largest values 

of 𝑘 are discussed by Frezel et al. (1981) who found that in the 1-8-hour period range for meteor 

observations that k values ranged from 1.5 at a low latitude site (Punta Borinquen, l8°N) to 2.1 

at a high latitude site (Kiruna, 68° N). At mid-latitude sites 𝑘 is generally close to 1.5. However, 

we note that the ratio 𝑅 will range from about 0.14 for 𝑘 = 1 to about 0.84 for 𝑘 = 1.9, and is 

rather dependent upon the value 𝑘.  

The value obtained by Vincent (1984) for Adelaide SA observations seems to be the most 

appropriate choice for our purposes. Another point to note is that the momentum flux is 

dependent upon the waves actually present and, consequently, upon various effects such as the 

filtering of the gravity wave spectrum by the background wind. However, it appears that for 

𝑘 = 1.5, higher frequency motions should contribute a major portion of the momentum flux. 

6.9.1 Results 

To obtain a measure of the relative contributions of high (𝑇 < 𝑙 ℎ𝑜𝑢𝑟) and low (𝑇 > 𝑙 ℎ𝑜𝑢𝑟) 

frequency motions to the momentum flux, data obtained in October 1982, were split into these 

two frequency intervals by application of a numerical filter. The results for 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  are 

shown in Figure (6-51a, b). Inspection of Figure (6-51a) indicates that above 84 km, the high 

frequency motions are contributing a significant component of the momentum flux. In contrast, 
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Figure (6-51b) indicates a significant difference between high and low frequency contributions 

at only three heights 86, 88 and 96 km, where there would appear to be a slightly larger 

contribution from the high frequency motions. 

 

Figure (6-51) Height profiles of momentum flux for periods between 8 min and 1 hour (solid) and 

periods between 1 and 8 hours (dashed). See text for details 

 

Figure (6-52a and b) Height profiles of momentum flux for (a), periods between 8 min and 1 hour and 

1 hour and 8 hours and (b), for periods between 8 min and 2 hours, and 2 hours and 8 hours. 

A similar diagram for data obtained in May 1981, is shown in Figure (6-52a) for the 𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅ term. 

Below about 88 km the high frequency motions appear to be contributing a substantial portion 
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of the momentum flux. Above this height, the low frequency motions appear to contribute 

slightly more of the total. 

 

Figure (6-53) Zonal phase velocities for May 1981 (After Vincent and Reid, 1983) 

Figure (6-52b) illustrates the momentum flux for periods less than 2 hours and for periods 

between 2 and 8 hours. Inspection of this diagram indicates that below about 88 km, the major 

contribution to the total momentum flux is due to the higher frequency motions. Above this 

height, the low and high frequency motions contribute approximately equally, but vary in sign. 

We have noted that the measurements of horizontal scale are biased towards periods less than 

about l hour. It is instructive then to consider the phase velocities for this period of observation 

and compare them with the momentum flux for this frequency interval. These are shown in 

Figure (6-53). In the 80-86 km height range, there are more waves propagating westwards. In 

the 88-94 km range we note a greater symmetry about zero phase velocity. Westward 

propagating waves with downward phase velocity will transport momentum so that the sign of 

|𝑢′𝑤′̅̅ ̅̅ ̅̅ | is negative. This agrees generally with the momentum flux for periods less than about 

an hour in the 80-86 km height range, and it appears that these waves are responsible for the 

transport of momentum in this height range.  

These results support the argument that high frequency motions contribute a significant portion 

of the total Reynolds stress for periods between 8 hours an 8 minutes. This indicates that even 

though shorter period motions have smaller amplitudes than larger period motions, the larger 

vertical group velocities associated with the shorter period waves more than compensate for 
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this, and they have a correspondingly larger momentum flux. We have also shown in Chapter 

4 that the DCC beam arrangement is more sensitive to the measurement of higher frequency 

motions, but that this sensitivity is matched exactly by the contribution to the momentum flux 

from the same waves. That is, the longer period waves are associated with a smaller momentum 

flux than shorter period waves. 

6.10 Summary and Conclusions 

We have presented results in this Chapter which indicate that the body force associated with 

the momentum flux convergence the 80-98 km height range is substantial and appears to 

balance the Coriolis torque due to the mean meridional wind velocity in many months. 

However, the Winter results indicate that longer period motions may supply the necessary wave 

drag. This is by no means certain, because the observations were made at a single site and the 

wave drag and Coriolis torque should balance when generally averaged. The need for 

observations at a range of locations is indicated. 

The momentum flux has been shown to be variable at a variety of time scales, from 3 hours in 

the November, 1981, result, to 2 days in the case of the July, 1982, results. The natural 

consequence of this is that body force is variable in time. The results for February, 1982, 

indicate that planetary waves, notably the “2-day wave", may be important in the Summer 

hemisphere, because the body force varies considerably from day to day. 

The zonal body force was found to be a component of a body force that was aligned closer to 

the North-South direction in July, 1982, and the meridional body force was correspondingly 

larger. 

The results for February and May 1982, indicate that wave saturation is transient in time and 

broadband. The May results also indicate that momentum deposition is associated with 

saturated or breaking waves. The enhancement in momentum flux for the May 1982, results 

appeared to be associated with fewer determinations of horizontal scale. 

The vertical mean square velocities support the evidence that momentum deposition was 

associated with saturated or dissipating waves. 

The high frequency wave motions (𝑇 < 2 ℎ𝑜𝑢𝑟𝑠) appear to contribute the substantial portion 

of the momentum flux for periods between 8 minutes and 8 hours. 
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On the whole, the results support theories stressing the importance of gravity wave drag, and 

the notion that gravity wave transmission and momentum deposition are transient in time. 

We have presented a wide range of results and have not exploited the data fully, mainly because 

of its sheer volume. We have attempted, however, to address some problems of current 

theoretical interest. 

The DCC beam technique is extremely powerful, but measurements at a number of sites will 

allow geographical variations in momentum deposition to be investigated and allow a measure 

of the zonally averaged wave drag to be obtained. 
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7. Observations of the Horizontal Scale of Mesospheric Gravity Waves 

7.1 Introduction 

In this Chapter we present some representative horizontal wavelengths measured using the 

DCC and TC(CP) beam configurations and the theory discussed in Chapter 4. Unlike the 

measurements of the Reynolds stress presented in the previous Chapter, some direct 

observations of horizontal scale of mesospheric gravity waves have been made with a variety 

of techniques. 

Witt (1962), Grishin (1967) and Hauwitz and Fogle (1969) used photographic techniques to 

study wave forms in noctilucent clouds (NLC), and found horizontal wavelengths ranging from 

about 10 to 75 km, and horizontal phase speeds of about 10 to 60 𝑚𝑠−1. However, observations 

of NLC are restricted in both time and space, because they occur only at the high latitude 

mesopause in the local summer.  They do exhibit evidence of a wide range of wave motions 

when they are visible. 

Similar observations of structure in air glow emissions have provided evidence of wave 

motions in limited height ranges.  Moreels and Herse (1977) and Herse et al. (1980) have 

reported observations of horizontal wavelengths between about 30 and 100 km evident in the 

OH emissive layer occurring between 80 and 90 km, and a similar study by Armstrong (1982) 

reported evidence of a nearly monochromatic wave motion with a wavelength of about 244 km 

and a phase velocity of about 72 𝑚𝑠−1.  Like observations of NLC clouds, airglow observations 

are restricted in time and space, because they require clear nights and the airglow itself occurs 

in a restricted height range. 

Rastogi and Bowhill (1976) have reported some estimates of the horizontal wavelengths of 

mesospheric gravity waves, but as we noted in Chapter 4, they were somewhat restricted in 

interpretation. Vincent and Reid (1983) reported observations of the horizontal scale of 

mesospheric gravity waves for periods less than about an hour, and scales less than 200 km, 

made using the DCC beam technique.  The mean zonal wavelengths for this selective sample 

was 70 km. The zonal phase speeds (which have been presented in Chapter 6) ranged up to 

about 200 𝑚𝑠−1 with a mean of about 70  𝑚𝑠−1.  Assuming a wavefield isotropic in azimuth, 

these values would correspond to mean values of 𝜆𝐻  ~ 50 𝑘𝑚 and 𝑐 ~ 50  𝑚𝑠−1 
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Smith and Fritts (1983) used the Poker Flat DW radar (63°N) in a DC beam configuration to 

estimate gravity wave parameters.  With a combination of numerical bandpass filtering and 

some reasonable assumptions, these authors were able to obtain horizontal wavelengths and 

phase velocities.  The technique that they describe is essentially the same as, but less general 

than that described in Chapter 4 for the DC beam configuration. Apart from the results 

presented by Vincent and Reid (1983), these are the best direct measurements of gravity wave 

parameters in the mesosphere using Doppler radar techniques of which we are aware, but note 

that these results must also be limited to wavelengths less than about 200 km.  Like Vincent 

and Reid (1983), they found horizontal wavelengths of about 20 to 80 km and phase velocities 

of about 10 to 50 𝑚𝑠−1 

Indirect estimates of horizontal scale based on SA radar measurements have been made by 

Vincent (1984) and Manson et al. (1979).  Vincent's results for the mean spectrum for SA 

observations at Adelaide have been mentioned earlier in this thesis.  By integrating under this 

spectrum for octave period bands to obtain the mean square horizontal velocity, and applying 

the dispersion relation, Vincent was able to estimate the mean horizontal wavelength for each 

frequency band.  The values thus obtained are only approximate as Vincent points out, 

especially when the scales became large enough for the curvature of the earth to be taken into 

account, but they are in agreement with other estimates.  For periods in the range of 0.1 -0.5 

and 0.5 - 1.25 hours Vincent found that A 60 and 108 km respectively, a result in good 

agreement with the values obtained by Smith and Fritts (1983) and Vincent and Reid (1983). 

In the period range of 5-10 hours Vincent found that 𝜆~1160 𝑘𝑚. 

Manson et al. (1979) used SA wind measurements to estimate scales in the range of 150-1100 

km for waves in the 2-8-hour period range, which are in agreement with Vincent's (1984) 

results.  Recent direct measurements of gravity wave horizontal wavelengths using three SA 

radars separated on the ground by about 40-50 km (and known as GRAVNET), indicate a mean 

wavelength of about 100 km for periods less than 200 minutes (Manson and Meek, private 

communication), a result which is in good agreement with the direct measurements of Vincent 

and Reid (1983) and Smith and Fritts (1983) and the indirect estimates of Vincent (1984) and 

Manson et al. (1979). 
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7.2 Data Analysis and the Importance of the Effective Beam Direction 

7.2.1 Data Analysis 

The basic data analysis and quality assessment of the data presented in this Chapter is 

essentially the same as that outlined for the measurement of Reynolds stress in Chapter 6. The 

high pass (𝑇 < 8 ℎ) time series of radial velocity were broken into consecutive blocks of 6 or 

12 hours in length and plotted.  If continuous breaks of more than 10% of the length of the 

block was present, the entire block was omitted. The remaining blocks were then used to 

calculate the cross spectrum for a given height and a particular pair of coplanar beams. 

The theory and some practical considerations relating to the measurement of scale have been 

discussed in Chapter 4.  We recall that in order to obtain good resolution of the wave velocities 

as a function of time, it is desirable to use short length records.  Otherwise, changes in the 

direction of waves of a given period will lead to "smearing" of the phase differences and a 

reduced coherence.  However, to obtain good spectral resolution and significance, it is desirable 

to use long records and average over a number of frequency bands.  As a compromise between 

these conflicting demands, data lengths of six or twelve hours’ duration were used with 

averaging over four adjacent frequency points to give eight degrees of freedom for each 

estimate. 

The values of the (𝐶𝑂𝐻)2 of the cross spectrum were used to estimate the degree of similarity 

of the spatially separated data at a given frequency (Julian, 1975).  Values as low as 0.54 were 

on occasion accepted (nominally significant at the 90% level), but most of the accepted values 

had a (𝐶𝑂𝐻)2 greater than or equal to 0.68 (nominally significant at the 95% level).  For 

(𝐶𝑂𝐻)2  =    0.68, the uncertainty in the phase is 0.45 rad (Jenkins and Watts, 1968) and as 

we noted in Chapter 4, phase errors of this magnitude make estimates of wavelengths greater 

than 200 km very uncertain. 

In addition, the analysis of data in six hour blocks with averaging over adjacent spectral 

estimates biased these particular results to periods less than one hour. The lowest frequency of 

each cross spectrum was omitted, and the periods available for analysis were then 60, 36, 26, 

20 and 12 minutes. To extend this range of periods, some data sets were analysed in twelve 

hour blocks.   This gave additional periods longer than those listed above of 120 and 72 

minutes.  However, these results are still biased principally to periods less than one hour. 
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Consequently, the measured horizontal wavelengths presented here may not be representative, 

and constitute only a selected portion of the total gravity wave spectrum. 

As a further limitation, the measured wavelengths have not been corrected for the Doppler shift 

of the gravity wave frequency by the background wind.  However, the October 1982 results 

obtained during a period of very weak zonal and meridional winds should provide a good 

measure of the scales of motions present with periods less than about an hour, even without 

correcting for the Doppler shift in wave frequency. These particular data are the only results 

which have been analysed to obtain both of the zonal and meridional scales, because the July 

1982 results evidenced some abrupt changes in radial velocity which could contaminate the 

cross spectral phases, and the February 1982 results obtained using the OPDCC beam 

arrangement were intermittent in time and restricted in height. 

7.2.2 The Importance of the Effective Beam Angle 

 

Figure (7-1) Cross spectral phase for two tilt angles. The 12-minute period has only been plotted to 

100 km. For details see text. 

We recall that in Chapter 4, a beam off zenith angle of 11.6 was assumed when the phase was 

calculated from Equation (4- 81). We noted in Chapter 5 that at 86 km, this would be closer to 

about 8°.  To examine the effect of this variation in 𝜃 the expected cross spectral phase has 
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been calculated for two periods for the latter angle and is shown in Figure (7-1). The results for 

𝜃𝐸 =    11.6° are also shown for reference. 

Inspection of this diagram indicates that the horizontal scale calculated by assuming 𝜃𝐸 =

   11.6° overestimates the correct value.  A reasonable estimate would be about 50% for 𝜃𝐸 =

   8°. For smaller values of 𝜃𝐸, corresponding to lower heights, the overestimate will be 

somewhat larger. It turns out that the correct wavelength can be obtained by taking the ratio 

𝑠𝑖𝑛𝜃𝐴/𝑠𝑖𝑛𝜃𝐸  and multiplying this by the measured wavelength.  This is a consequence of the 

dominance of the first term on the RHS of Equation (4-8l), that is 

𝜍 = −2𝑘𝑥 + 𝜍′ 

This means that there is a simple method of correcting the measured wavelength for the 

variation between the apparent and effective beam angles.  The heights and perturbation 

velocities can also be corrected by using the inverse of the same ratio as was indicated in 

Chapter 5. Because the values of 𝜍 obtained from Equation (4-81) for a height of 86 km have 

been used to calculate the horizontal wavelength for all heights, the measured scales above this 

height will be overestimates, and below it will be underestimates. However, the error due to 

this is generally less than that due to the uncertainty in the cross spectral phase. 

7.3 Results 

In this Section we present the horizontal wavelengths measured using the DCC and TC(CP) 

beam techniques. All of the results presented here have been rescaled to account for the 

effective beam angle.  Of those data sets obtained using beam configurations incorporating a 

vertical, as well as DCC beams, only the May 1982 and November 1981 results have been 

analysed using the theory developed in Chapter 4 to measure scale with the TC(CP) beam 

arrangement. 

All of the other results have been obtained using the DCC beam technique.  No attempt was 

made to measure scale by applying the DC beam technique alone, but this could have been 

done to obtain measurements of meridional horizontal wavelengths for the February, April and 

May 1982 observations discussed in this Chapter. The two data lengths used, six and twelve 

hours, complicate the comparison of results obtained in different months, because some waves 

that are coherent over periods of six hours may not be coherent over periods of twelve hours. 
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The results are valuable nevertheless, and they also illustrate the usefulness of the DCC beam 

technique.  We consider the best results to be those for October 1982 and May 1982.  The 

former results because the mean winds were very weak when the observations were obtained, 

and because both zonal and meridional scales were measured and the latter results because they 

have been analysed completely to determine the horizontal scale, and were characterized by 

very high data acceptance rates. 

We present the October 1982 results first. 

7.3.1 October 1982 (CPDCC) 

(a)  These data were analysed in 6 hour blocks.  A total of 87 and 111 gravity wave events were 

identified in the zonal and meridional planes respectively.  Since no vertical beam was 

available, these events represent unambiguous determinations of scale, and are consequently 

quite selective, because some combinations of frequency and wavelength are more likely to 

produce an ambiguous determination of scale. 

1000 events were possible for each pair of EW and NS aligned beams so that only 9 and 11% 

respectively of calculated phases lead to unambiguous determinations of scale. However, about 

25% of the calculated phases had significant values of (𝐶𝑂𝐻)2. With this point noted, we 

present the measurements of wavelength and phase velocity as histograms in Figure (7-2). The 

mean and standard deviation of the zonal and meridional wavelengths are 36±11 and 37±13 

km respectively. 
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Figure (7-2) a. Histograms of occurrence of zonal and meridional wavelength for heights between 80 

and 98 km for. October 1982 

More waves are propagating Eastwards than Westwards (68 and 32% respectively).  If these 

waves are propagating with downward phase progression, the momentum flux will have a sign 

such that |𝑢′𝑤′̅̅ ̅̅ ̅̅ | is positive. Reference to Figure (6-28a) indicates that it is indeed positive. Like 

the results for May 1981 discussed in Section (6.10.1), these waves would appear to be 

associated with the mean momentum flux 𝑢′𝑤′̅̅ ̅̅ ̅̅  for this period of observation. 

The phase velocities for the meridional scales indicate more waves propagating Northwards 

than Southwards (71 and 29% respectively.)  These waves would transport momentum so that 

the sign of 𝑣′𝑤′̅̅ ̅̅ ̅̅  is positive if the phase progression is downward.  However, as we noted in 

Chapter 6, the meridional momentum flux is not significantly different from zero.  This is one 

of the limitations in presenting the data in this form; the amplitude and period of the waves are 

not evident. 

Before considering the data in more detail, we note that more determinations of scale were 

made in the NS direction, and this could reflect the source region of the gravity waves on the 

filtering of zonally propagating waves by the lower level wind. Of the 198 determinations of 

scale only 15 were obtained in both planes for the same period and time.  Most of these events 

occurred at heights above 90 km, and were in the 60 and 36-minute period range which are 

easy to resolve unambiguously.  They were also often isolated events.  Those that were not are 

shown in Table (7-1) 

Table (7-1) summary of wave characteristics for coherent events identified between 80 and 98 km for 

October 1982. In this, and all of the other tables presented in this Chapter, the perturbation velocities 

have units of 𝑚𝑠−1, the wavelengths 𝑘𝑚, the Reynolds stress terms 𝑚2𝑠−2, the horizontal phase 

velocity 𝑚𝑠−1 and the angle of wave propagation 𝛼 is measured in degrees clockwise from North. 

ALT 𝒖′ 𝒗′ 𝝀𝒙 𝝀𝒚 𝝀 𝒄 𝜶 𝒖′𝒘′̅̅ ̅̅ ̅̅  𝒗′𝒘′̅̅ ̅̅ ̅̅  

60 minutes, Block 5 

82 5 4 -67 39 34 9 -31 -0.08 +0.03 

92 17 13 62 46 37 10 37 +0.85 +0.70 



 

262 

94 19 16 56 22 21 6 17 +1.41 +1.28 

36 Minutes, Block 1 

90 9 6 65 -57 43 20 139 0.40 -0.02 

92 9 8 48 41 31 14 41 0.42 +0.15 

94 7 7 36 39 26 12 48 0.50 +0.41 

36 Minutes, Block 6 

92 7 8 65 -62 21 137 0.10 -0.47 

94 10 10 43 -44 14 135 0.30 -0.29 

The Reynolds stress terms 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  have been calculated by applying Equation (4-34) to 

each frequency interval.  The apparent decline in wavelength with height may be due to the 

fact that we have not taken the variation in beam separation with height into account, but since 

other measurements of wavelengths do not show similar behaviour, this seems unlikely. The 

mean wavelength of the 60-minute period wave is about 30 km, with a mean phase velocity of 

about 8  𝑚𝑠−1. The variation in the sign of the zonal phase velocity with height may indicate 

that the wave at 82 km is not that detected at 92 and 94 km but it may also be due to an incorrect 

determination of the direction of propagation.  As we noted in Chapter 4, this could occur if a 

number of waves propagating at different azimuth angles, but with similar frequencies are 

present. 

The momentum flux term 𝑢′𝑤′̅̅ ̅̅ ̅̅ , which is a measure of the difference between the mean square 

radial velocities measured in the Eastward and Westward beams is not significantly different 

from zero at 82 km.  This means that it is not possible to determine the direction of propagation 

unambiguously, and it is likely that this is the reason for the variation in the zonal phase velocity 

with height in this case.  We note that the 𝑣′𝑤′̅̅ ̅̅ ̅̅   term is also small at 82 km, but that the 

meridional phase velocity for this height is the same as that for the other heights.  This is 

probably fortuitous.  A similar situation applies in block one of the results for the 36-minute 

period wave for the meridional phase velocity. 
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The mean wavelength of the 36-minute period wave is about 36 km, with a mean phase velocity 

of about 17 𝑚𝑠−1We note that apart from the direction of propagation, the character of the 

motions with this period are similar for observations separated by 24 hours. 

At 92 and 94 km, the 60-minute motion is supplying a substantial momentum flux, which is 

consistent in sign with that for the entire period.  The 36 period motions are also associated 

with a substantial momentum flux, but it is smaller in magnitude than that for the 60-minute 

motion. The upward flux of meridional momentum is opposite in sign for the 36 period motion 

for block 1 and 6, while the upward flux of zonal momentum is consistent in sign. 

 

Figure (7-2b). Histograms of occurrence of zonal (𝑐𝑥) and meridional (𝑐𝑦) phase velocity for heights 

of 80-98 km for October 1982. Phase velocities are positive Northward and Eastward 

If we omit the values in these results for which the direction of propagation is uncertain, we 

note that the 60-minute period wave is propagating towards the North-East, as is the 36-minute 

period wave in block 1.  The 36-minute period wave in block 6 is propagating towards the 

South-East.  Whether this reflects the filtering of the gravity wave spectrum by lower level 

winds, or the source region of the waves is uncertain. 
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Even though these are the only occasions when both zonal and meridional scales were 

determined simultaneously, we may obtain additional insight into the gravity wave field by 

grouping the results in each block of data according to the wave period.  Because of the volume 

of these data, we present some representative examples in Table (7-2). Inspection of these 

results indicate that generally, consistency in scale from height to height is good.  The 

perturbation velocities often increase with height, indicating wave growth.  As for the results 

in Table (7-1), there is a tendency for the waves measured in each beam to be aligned so that 

they contribute approximately equally to the NS and EW beams. There are also occasions when 

adjacent heights indicate oppositely directed waves. 

 

Figure (7-3a) The mean zonal and meridional wavelengths plotted as a function of wave period, Figure 

(7-3b), as for (a) but for total horizontal wavelength 𝜆𝐻, and Figure (7-3c), the mean absolute phase 

velocity. 

Table (7 -2a) 60 minutes 
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ALT 𝒖′ 𝒗′ 𝝀𝒙 𝝀𝒚 𝒄𝒙 𝒄𝒚 𝝀 𝒄 𝜶 𝒖′𝒘′̅̅ ̅̅ ̅̅  𝒗′𝒘′̅̅ ̅̅ ̅̅  Block 

83 - 3 - 39 - 11 - - - - 0.03 

6 

89 8 - -72 - -20 - - - - -0.14 - 

93 17 12 61 46 17 13 37 1 0 37 0.85 0.70 

95 19 15 56 56 16 16 40 11 46 1.41 1.61 

89 - 7 - 52 - 14 - - - - 0.49 

7 

91 - 6 - -63 - -18 - - - - -0.06 

93 - 9 - -55 - -15 - - - - -0.60 

95 - 12 - -49 - -14 - - - - -0.25 

85 - 7 - ·55 - -15 - - - - -0.41 

9 87 - 8 - -58 - -16 - - - - -0.27 

95 - 11 - 52 - 14 - - - - 0.66 

83 6 - -48 - -13 - - - - -0.13 - 

10 

85 - 8 - 54 - 15 - - - - 0.18 

87 4 - -40 - -11 - - - - -0.06 - 

91 - 7 - 45 - 13 - - - - 0.46 

93 - 11 - 42 - 12 - - - - 1.31 

95 11 13 -42 37 -12 10 28 8 - 42 -0.25 1.90 

When all of the results are analysed to yield the mean horizontal wavelength, we note an 

increase in scale with period. This is shown in Figure (7-3a).  mean wavelength increases from 

about 30 km at 11 minutes to about 54 km at 60 minutes.  This result is in general agreement 

with that of Vincent and Reid (1983), who found an increase in scale from 45 km at 12 minutes 

to l20 km at 60 minutes.  As we have noted, the results for October are somewhat more selective 

than those of Vincent and Reid (1983), because unlike these authors we have made no attempt 

to resolve the ambiguity in horizontal scale, or to obtain results for periods longer than 60 

minutes. The mean horizontal wavelength 𝜆𝐻 is shown in Figure (7-3b). Inspection of this 
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diagram indicates that for periods less than 20 minute, 𝜆𝐻~20 𝑘𝑚.  For the 36 and 60 minute 

periods 𝜆𝐻~40 𝑘𝑚.  The corresponding mean absolute phase velocities are shown in Figure 

(7-3c).  These are observed to decrease with increasing period from 32 𝑚𝑠−1at 11 minutes to 

11 𝑚𝑠−1at 60 minutes. 

Table (7 -2b) 36 minutes 

ALT 𝒖′ 𝒗′ 𝝀𝒙 𝝀𝒚 𝒄𝒙 𝒄𝒚 𝝀 𝒄 𝜶 𝒖′𝒘′̅̅ ̅̅ ̅̅  𝒗′𝒘′̅̅ ̅̅ ̅̅  Block 

91 8 6 +65 -57 +30 -26 43 20 139 0.40 -0.02 

2 93 9 8 48 41 22 19 31 14 40 0.54 0.20 

95 7 7 36 39 17 18 26 12 46 0.50 0.41 

85 - 2 - 73 - 34 - - - - 0.60 

3 

87 - 2 - 50 - 23 - - - - 0.01 

93 - 8 - 55 - 26 - - - - 0.18 

95 7 12 52 48 24 22 35 16 52 0.11 0.10 

85 - 3 - 43 - 20 - - - - 0.01 

6 

95 10 7 -49 50 -23 23 35 16 -46 -1.33 0.07 

85 - 4 46 - 21 - - - - 0.24 7 

7 

91 6 - 63 - 29 - - - - 0.20 - 

93 6 8 65 -50 30 -23 40 18 142 0.10 -0.36 

95 10 9 49 -51 23 -24 35 16 134 0.30 -0.29 

83 - 3 28 - 13 - - - - 0.08 - 

8 

87 - 5 - +67 - 31 - - - - 0.09 

89 - 6 - -50 - -23 - - - - -0.02 

91 - 9 - -55 - -26 - - - -0.25 - 

93 - 8 - -41 - 19 - - - - 0.83 
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89 - 4 - 66 - 31 - - - - 0.23 

9 93 10 - 32 - -15 - - - - -1.14 - 

95 12 - 32 - -15 - - - - -0.77 - 

85 - 6 - 46 - +21 - - - - 0.21 

10 87 - 8 - 43 - -20 - - - - -0.05 

95 - 6 - 50 - -23 - - - - -0.28 

83 - 6 - -37 - -17 - - - - 8.22 

11 

85 3 - 43 - 20 - - - - 0.00 - 

89 - 5 40 - 19 - - - - 0.26 - 

93 - 6 - 85 - 39 - - - - 0.21 

95 10 7 49 63 23 29 39 18 53 0.73 0.38 

82 - 5 - -27 - -13 - - - - -0.07 

12 

87 3 - 67 - 31 - - - - 0.05 - - 

89 4 - 58 - 27 - - - - 0.00 - 

91 6 5 81 106 38 49 64 30 52 0.14 0.11 

93 - 7 - 57 - 26 - - - - 0.25 

95 10 - 52 - 24 - - - - 1.03 - 

Table (7 -2c) Various other periods 

ALT 𝒖′ 𝒗′ 𝝀𝒙 𝝀𝒚 𝒄𝒙 𝒄𝒚 𝝀 𝒄 𝜶 𝑻 

85 - 2 - 30 45 - - -  

11  89 - 11 - 32 - 51 - - - 

91 10 8 -33 30 -52 48 22 33 132 

87 2 - 29 - 40 - - - - 12  
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89 4 - 30 - 42 - - - - 

91 8 4 31 26 43 36 20 28 40 

93 7 8 27 25 38 35 18 29 44 

95 - 12 - 26 - 36 - - - 

89 - 2 - 28 - 33 - - - 

14  91 1 3 33 33 39 39 23 27 46 

93 7 27 - 32 - - - - - 

87 4 - 30 - 31 - - - - 

16  89 10 - 28 - 29 - - - - 

91 6 10 31 29 32 30 21 22 43 

82 3 - 21 - 18 - - - - 

20  

83 2 - 28 - 23 - - - - 

89 - 3 - 45 - 38 - - - 

91 8 - 29 - 24 - - - - 

95 - 24 - 27 - 23 - - - 

7.3.2 May 1982 (OPDC) 

These data were analysed using the procedure outlined in Chapter 4 for the TC(CP) beam 

arrangement. The distribution of wavelengths and phase velocities for this entire period of 

observations is shown in Figure (7-4).  Inspection of this diagram indicates a strong peak in the 

40-80 km wavelength range.  The mean zonal wavelength is 41 ±20 km. 
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Figure (7-4a) (Top) As for Figure (7-2a) for May 1982 but for zonal component only. Figure (7-4b) as 

for Figure (7-2b) but for zonal component only. 

Table (7-3a) characteristics of a 120-minute period wave in May 1982 data 

Alt 𝒖′ 𝝀𝒙 𝒄𝒙 𝒖′𝒘′̅̅ ̅̅ ̅̅  Block 

94 16 63 9 0.64 1 

90 10 63 9 0.10 2 

80 7 20 3 0.21 4 

The majority of phase velocities lie in the range of +80 to -80 𝑚𝑠−1, although there are a few 

events with phase velocities greater than 140 𝑚𝑠−1. The distribution of phase velocities 

appears to be reasonably symmetrical about zero phase velocity, unlike those for May 1981 

and October 1982.  However, as we noted in Chapter 6, most determinations of scale were 

made in two twelve hour blocks which corresponded to. minimums in momentum flux, and 

there was a tendency for more determinations to be made with increasing height.  The lower 

occurrence of waves with phase velocities near zero may reflect the stronger lower level winds 

during this period of observation. The longer data lengths used in this analysis extended the 
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range of periods suitable for cross spectral analysis so that periods of 72 and 120 minutes were 

available.  Few determinations were made at the longer period; three out of a possible 40.  

These are shown in Table (7-3a). 

Better results were obtained for motions with a period of 72 minutes and these are shown in 

Table (7-3b). In block 2 there is good evidence of a wave with a zonal horizontal of about 35 

km.  In block 4 there is evidence of a gravity wave with a large horizontal wavelength. The 

question mark indicates that there is considerable uncertainty in this estimate. 

Table (7-3b) Characteristics of a 72-minute period wave in May 1982 data 

Alt 𝒖′ 𝝀𝒙 𝒄𝒙 𝒖′𝒘′̅̅ ̅̅ ̅̅  Block 

86 8 92 21 0.27 1 

80 

86 

88 

90 

94 

96 

7 

6 

6 

7 

9 

10 

-30 

-38 

-33 

-38 

+43 

-44 

-7 

-9 

-8 

-9 

+10 

-10 

-0.06 

-0.18 

-0.19 

-0.11 

+0.13 

-0.45 

2 

2 

2 

2 

2 

2 

80 10 400? 93? 0.21 4 

If the gravity wave spectrum is broadband, analysis in discrete frequency intervals may be 

misleading.  A more general picture can be obtained by presenting the results as in Table (7-

4).  The blocks in this table represent 12 hour periods of data.  We note the sparsity of events 

in block three, which corresponds to the major enhancement in momentum flux discussed in 

Chapter 6.  There are also fewer determinations of horizontal scale in block 1. 

Table (7-4) The zonal wavelength ( 𝜆𝑥) for various periods and heights measured in block one of the 

May 1982 data 

Alt 120 72 51 40 33 28 24 21 19 17 16 14 13 12 11 10 9 8.78 8.23 

80                    

82                    

83          
-

21 
        34 
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85                26    

87  90  109        29        

89            31    
-

28 
   

91       
-

29 
  

-

34 
 37       -33 

93   
-

127 
100        38        

95 63          27         

98                
-

23 
   

Table (7-4) The zonal wavelength ( 𝜆𝑥) for various periods and heights measured in block two of the 

May 1982 data 

Alt 120 72 51 40 33 28 24 21 19 17 16 14 13 12 11 10 9 8.78 8.23 

80                    

82  
-

30 
           19  19    

83   45   
-

17 
             

85  
-

37 
46 

-

42 
         28      

87  
-

33 
54 

-

59 
     

-

26 
         

89  40                  

91 63  85  69    
-

26 
28       49   

93  
-

43 
 

-

55 
    

-

26 
25  29      29 29 
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95  
-

44 
 

-

49 
  

-

35 
  27   26   

-

26 
29 -25 26 

98         
-

26 

-

21 
     25   28 

Table (7-4) The zonal wavelength ( 𝜆𝑥) for various periods and heights measured in block three of the 

May 1982 data 

Alt 120 72 51 40 33 28 24 21 19 17 16 14 13 12 11 10 9 8.78 8.23 

80                    

82    
-

25 
    

-

26 
         -19 

83      
-

19 
             

85      
-

23 
             

87                    

89               50 168    

91                    

93                    

95                    

98     64       25        

Table (7-4) The zonal wavelength ( 𝜆𝑥) for various periods and heights measured in block four of the 

May 1982 data 

Alt 120 72 51 40 33 28 24 21 19 17 16 14 13 12 11 10 9 8.78 8.23 

80                    

82  392                  

83 23  70 64                

85  50            -29  31 27 54  
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87    -62 105 17          32    

89                    

91   203       30    -32      

93         26  29 -32 -32       

95   58 43 47    25     -23 26   25  

98     66    24 25 91   -27 25  25   

In block 2 we note a tendency for events to occur in the 72-40-minute period range.  In the 

period range of 17-19 and 8-11 minutes, a number of events are noted, generally above 90 km.  

At these shorter periods, the scales determined appear to have been resolved correctly, because 

they are consistent in height. The same general distribution of scales is noted in Block 2 and 4, 

when the momentum flux was not significantly different from zero, and the pattern is not 

evident 1n block 3.  The importance of this observation is uncertain.  There does not appear to 

be any obvious reason for fewer determinations of horizontal scale to be made when there is 

an enhancement in momentum flux. 

 

Figure (7-5) Zonal phase velocities for consecutive 12 hour periods of the May 1982 data. For details 

see text 

The phase velocities for each 12-hour block are shown in Figure (7-5).  The number of events 

in each velocity range are shown as a percentage of the total number of wavelengths 



 

274 

determined.  These results indicate general agreement in the distribution of phase velocities for 

each 12-hour period of data for blocks 1, 2 and 4, but because so few determinations of scale 

were made in block 3, there is little more that we may say. The mean wavelength for each 

period is shown in Figure (7-6) and although there is considerable scatter, there is a tendency 

for the horizontal scale to increase with increasing period. Table (7-5) provides a little more 

detail on motions with periods of 51, 40 and 19 minutes. 

Table (7-5) Characteristics of waves of various periods identified in the May 1982 data 

Alt 𝒖’ 𝝀𝒙 𝒄𝒙 𝒖′𝒘′̅̅ ̅̅ ̅̅  Block 

 

51 minutes 

93 6 -127 -7 -0.34 1 

83 

85 

87 

91 

8 

6 

9 

6 

45 

46 

54 

85 

15 

15 

18 

28 

0.12 

0.14 

0.01 

0.23 

2 

2 

2 

2 

83 

91 

95 

7 

6 

9 

70 

203 

-58 

23 

66 

-19 

0.16 

0.11 

-0.08 

4 

4 

4 

40 minutes 

87 

93 

4 

5 

109 

-100 

36 

-33 

+0.07 

-0.16 

1 

1 

85 

87 

93 

95 

6 

6 

8 

12 

-42 

9 

-55 

-49 

-14 

-19 

-18 

-16 

-0.09 

-0.31 

-0.05 

-0.07 

2 

2 

2 

2 

82 10 -25 -8 -0.28 3 

83 

87 

95 

4 

5 

7 

64 

-62 

43 

21 

-20 

14 

+0.01 

-0.06 

0.19 

4 

4 

4 

19 minutes 

91 

93 

98 

7 

9 

9 

-26 

-26 

-26 

-23 

-23 

-23 

-0.16 

-0.14 

-0.12 

2 

2 

2 
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82 4 -26 -23 -0.05 3 

93 

95 

98 

7 

13 

13 

26 

25 

24 

-23 

-22 

-21 

0.02 

0.29 

0.07 

4 

4 

4 

To partially overcome the lack of resolution for those motions with periods greater than about 

an hour, the entire data lengths for May was cross spectrally analysed. The mean zonal 

wavelength for periods greater than about 30 minutes is shown in Figure (7-7).  The error bars 

indicate the standard deviation in the measured scales for each period.  Between 30 and 100 

minutes, the results are in good agreement with those shown in Figure (7-6). Above 100 

minutes’ period, there is a rapid increase in measured scale, and it is evident that a motion with 

a very large horizontal scale was present during this period of observation. 

 

Figure (7-6) The mean zonal wavelength for May 1982 plotted as a function of wave period. 
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Figure (7-7) As for Figure (7-6) but results were obtained by cross spectral analysis of the entire May 

1982 data set. Vincent's (1984) results are shown as crosses. 

Also shown in Figure (7-7) are Vincent's (1984) estimates of the horizontal wavelengths.  These 

results have been plotted at the centre frequency of each octave band.  These results were 

obtained by assuming a mean vertical wavelength of about 12 km, and since we would expect 

the vertical wavelengths to increase with increasing frequency, Vincent's estimate for the short 

periods may be uncertain. At the longer periods, agreement between Vincent’s (1984) results 

and those for May 1982 is reasonable.  It should be noted that Vincent's results refer to the 

horizontal wavelength, while the May 1982 results refer to its zonal component. 

For an isotropic wavefield, the mean horizontal wavelength for the May results would be about 

40 km for motions with periods between 30 and 100 minutes, and about 350 km for the longer 

period motions.  If this correction is applied, the agreement at the longer periods is still 

reasonable. 

7.3.3 February 1982 (OPDC) 

Like the May 1982 results, these data have been analysed in twelve hour blocks, and whilst a 

vertical beam was available, the data presented here have been analysed using the DCC beam 

theory only.  Rather few determinations of scale were made for these observations. Out of a 

possible 580, only 46 were obtained. 
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The phase velocity and horizontal wavelength are shown in Figure (7-8).  Two peaks are 

evident in the wavelength histogram, but this may be due to the small sample.  The mean 

wavelength is 84±95km, and this corresponds to periods less than and including 2 hours. The 

mean wavelength for periods less than an hour is 44±ll km.  The phase velocities indicate a 

tendency for Westward wave propagation, although there is a peak at +60 - 80 𝑚𝑠−1 

 

Figure (7-8) As for Figure (7-4a and b) but for February 1982 

Sixteen events with periods between one and two hours were detected.  The mean wavelength 

of these was 221±219 km.  Those corresponding to the 120-minute period are shown in Table 

(7-6).  Inspection of these results indicates that in block 1 and 5, a motion with a large horizontal 

scale was present.  Because of the uncertainty in the phase, all we may say is that the horizontal 

wave length is in the range of 300 – 1000 km.  The corresponding phase velocities are large   

and Eastward, and correspond to the peak in the phase velocity histogram noted above. Block 

3 and 6 indicate waves with shorter wavelengths propagating Westwards.  We note that the 

perturbation velocities are relatively large for the waves of this period for all blocks.  

The results for motions with a period of 72 minutes show evidence of a long wavelength gravity 

wave in block 5, but apart from this, most measured wavelengths are in the 50-70 km range.  

The 14-minute period wave has smaller perturbation velocities and wavelengths which are 

consistent between blocks 1 and 4.  Propagation is westward in both cases. The mean 

wavelength for each period is shown Figure (7-9), and the results are generally consistent with 

those for May (1982). 
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Table (7-6) Characteristics of waves of various periods identified in February 1982 data 

Alt 𝒖’ 𝝀𝒙 𝒄𝒙 𝒖′𝒘′̅̅ ̅̅ ̅̅  Block  

120 Minutes 

85 

87 

89 

8 

9 

8 

460 

450 

560 

64 

63 

78 

0.18 

0.36 

0.06 

1 

1 

1 

85 

93 

11 

19 

-32 

·-215 

-4 

-30 

-0.28 

-2.02 

3 

3 

89 

91 

9 

13 

600 

570 

83 

79 

0.04 

0.20 

5 

5 

91 

95 

8 

9 

-110 

-87 

-15 

-12 

-0.11 

-0.03 

6 

6 

72 Minutes 

85 

87 

8 

9 

52 

71 

12 

16 

-0.21 

-0.29 

3 

3 

93 

98 

8 

18 

47 

41 

9 

10 

-0.26 

-2.34 

4 

4 

89 9 -560 130 -0.05 5 

93 

95 

10 

9 

-90 

-70 

-21 

-46 

-0.01 

-0.12 

6 

6 

14 Minutes 

33 

85 

4 

3 

-28 

-25 

-33 

-30 

-0.03 

-0.02 

1 

1 

87 

95 

4 

7 

-33 

-29 

-39 

-35 

-0.01 

-0.02 

4 

4 
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Figure (7-9) As for Figure (7-6) but for February 1982.  

7.3.4 April 1982 (OPDC) 

 

Figure (7-10) As for Figure (7-4) but for April 1982 
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Figure (7-11) As for Fig, (7-6) but for April 1982. 

These data were analysed in 12 hour blocks and like the February 1982 results, only the DCC 

beam analysis has been applied.  The zonal wavelengths and phase velocities are shown in 

Figure (7-10).  75 wavelengths were determined, and like the other results obtained using DCC 

beams, this constitutes a small proportion of the total. number of coherent events. This may be 

reflected in the distribution of wavelengths.  The mean zonal wavelength is 45±12 km.  There 

are more waves propagating Eastward than Westward (57 and 43% respectively), and most 

phase velocities lie in the ±40 𝑚𝑠−1 range. 

We have given numerous examples of gravity wave events for the other observational periods, 

and little additional information will result from doing the same for this period.  However, we 

note that the results are consistent with the other observations. The mean wavelength for each 

period is shown in Figure (7-11). 



 

281 

7.3.5 November 1981 TC(CP) 

 

Figure (7-12) As for Figure (7-4) but for November 1981 

 

Figure (7-13) As for Figure (7-6) but for November 1981. 
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These data were analysed in six hour blocks. Only the 82 – 90 km height range has been 

analysed but all three beams were used to measure scale.  A total of 54 events were detected, 

and the distributions of zonal wavelength and phase velocity are shown in Figure (7-12). The 

mean zonal wavelength is 48±28km.  Most phase velocities are in the ±40 𝑚𝑠−1 range, 

although there are some events with phase velocities in excess of ±140 𝑚𝑠−1. There are slightly 

more events propagating Eastwards than Westwards (56 and 44% respectively).  The mean 

wavelength for motions at each period is shown in Figure (7-13).  These results exhibit 

considerable scatter and a large mean wavelength is evident at 16 minutes.  Only three events 

were detected at this period, two of which had wavelengths of about 170 km. 

7.4 Discussion 

The results we have presented are representative of a much larger data set.  Because of the 

weak mean horizontal winds during the October 1982 run, and because both zonal and 

meridional wavelengths were obtained, we have tabled numerous examples of phase velocities 

and wavelengths for this period.  These should provide a good measure of the scales present 

with periods less than about an hour. 

It is clear that the DCC beam technique as described in Chapter 4 results in the determination 

of numerous events which are consistent with a gravity wave interpretation.  However, there 

are occasions when the phase velocities measured at different heights for the same time and 

period are of opposite sign.  Sometimes this can be ascribed to similar powers being received 

in the DCC beams for that frequency interval and time.  This complicates the determination of 

the direction of propagation, and is a limitation of the technique.  At other times, oppositely 

directed phase velocities are measured for a given frequency interval and time at heights 

separated by about 10 km.  These events allow the interpretation that different waves are being 

measured. We believe that these two explanations of inconsistency in the phase velocities with 

height are sufficient to explain our results. 

We have also measured a longer period wave motion with a period of about 120 minutes in the 

February 1982 results.  The uncertainty in the cross spectral phase means that determinations 

of scale greater than about 200 km are very uncertain.  However, this is a fundamental 

restriction on the measurement of horizontal scale for closely spaced antenna beams and is 

related to the separation of the beams.  The results of Smith and Fritts (1983), who found a 
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long period wave with a large horizontal wavelength using the DC beam configuration at the 

Poker Flat DW radar, must be subject to a similar uncertainty. 

We stress that while there is a restriction on the measurement of scale, there is no such 

restriction on the measurement of momentum flux.  For instance, the momentum flux 

calculated for the 120-minute period motion detected in the February 1982 results should be 

correct to within the accuracy of the mean square radial velocities for the frequency interval 

determined by the cross spectral analysis, and this is not related to the beam separation. About 

25% of all calculated cross spectral phases had significant (𝐶𝑂𝐻)2 these, about half allowed 

the horizontal scale to be determined unambiguously. 

By calculating the cross spectral phase between vertical and eastward beams for the data 

obtained in May 1982 and November 1981, and applying Equation (4-84) about 80-90% of the 

total number of events with significant (𝐶𝑂𝐻)2 led to determinations of horizontal scale.  This 

consistency indicates that the events we are measuring correspond to wave motion and are 

generally not random events.  This is evident in any case by inspection of most of the tabled 

results. 

Table (7-7) summarizes the mean zonal wavelengths for each period of observation for those 

motions with periods less than one hour, and the mean zonal wavelengths for motions with 

periods within the octave bands analysed by Vincent (1984).  Also shown are the standard 

deviations in the measured wavelengths. Inspection of the values shown in this table indicate 

good agreement in the mean wavelength for motions with periods less than one hour.  The 

standard deviations in the results for May and November are larger than those for the other 

periods, and this may reflect the more complete analysis of these particular results. The mean 

wavelengths for all of the observational periods in this range of wave frequencies is 42 km. 

Vincent's (1984) values for motions with periods in the range 0.1-0.5 and 0.5-1.25 hours are 

𝜆𝐻 = 60 and 𝜆𝐻 = 108 𝑘𝑚 respectively.  Reference to Table (7-7) indicates that the values of 

and hence 𝜆𝐻 (for a wave field isotropic in azimuth) obtained in this work are somewhat lower.  

This may be due to the fact that some of the results have been incompletely analysed, but it is 

noteworthy that only 25% of all cross spectral phases calculated have significant values of 

(𝐶𝑂𝐻)2. There may be many other gravity waves present which are not resolved by the DCC 

technique, the reasons for which have been discussed in Chapter 4. 
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Table (7-7) The mean zonal wavelengths for each period of observation for those motions with periods 

less than one hour, and the mean zonal wavelengths for motions with periods within the octave bands 

analysed by Vincent (1984). 

𝝀𝒙(𝒌𝒎) 𝑻 < 𝟏𝒉 𝟎. 𝟏 < 𝑻 < 𝟎. 𝟓 𝒉 𝟎. 𝟓 <  𝑻 < 𝟏. 𝟐𝟓 𝒉 

February 44±11 41±9 72±41 

April 44±11 37±9 52±5 

May 38±21 30±9 76±13 

October 36±11 29±2 - 

November 48±28 45±31 - 

Mean 42 36 67 

Figure (7-14b) illustrates all of the measured zonal wavelengths plotted as a function of wave 

period. Vincent's (1984) results are included for reference and are shown as crosses and the 

mean zonal wavelength plotted as a function for each wave period is shown in Figure (7-14a). 

We note the tendency for the zonal wavelength to increase with increasing period, and the 

consistency between the values of horizontal scale for each wave period for the various 

observational runs. 

These results would appear to be the most complete set of observations of the horizontal scale 

of gravity waves with periods less than about an hour available. 

7.5 Summary and Conclusions 

The theory described in Chapter 4 to measure the horizontal scale of gravity waves using DCC 

beams has been applied to observations taken over a period of about two years. The mean zonal 

wavelength for motions with periods less than about an hour was found to be about 42 km. A 

number of tables summarizing various gravity wave parameters have been presented.  
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consistency of these results indicates that the events being measured are gravity waves and not 

just noise.  

 

Figure (7-14a) The mean zonal wavelength plotted as a function of wave period for all observations 

presented in this Chapter, and Figure (7-14b) all of the zonal wavelengths for each period of 

observation plotted on same diagram. Vincent's (1984) results are shown for reference as crosses. 

The results presented are preliminary, and like the momentum flux measurements described in 

the last Chapter, have not been exploited fully.  An obvious extension of this work is the 

calculation of the ratio of the momentum flux associated with coherent motions to that obtained 

from the mean square radial velocities measured in DCC beams. A limitation of these 

observations is that with the exception of the October 1982 results, only the zonal scale of wave 

motions has been obtained.  Obtaining both components of the wavelength would allow a 

measure of the isotropy of the gravity wave field to be obtained. 
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8. Summary and Conclusions 

Doppler radar techniques have been used to study internal atmospheric gravity waves in the 

ionospheric D-region.  Using a radar beam configuration that differs from that usually applied 

in that the beams are offset at equal angles from the zenith in the same vertical plane, the 

upward flux of zonal and meridional momentum have been measured.  This allowed the gravity 

wave drag on the mean flow to be measured.  The same beam configuration also enabled the 

horizontal scale of gravity waves with wavelengths less than about 200 km to be measured.  In 

this Chapter the main results of the work are summarized. 

8.1 Measurement Techniques 

8.1.1 Ideal Case 

Examination of the parameters that can be measured using multi beam radars, or radars with a 

beam swinging capability, has shown that the conventional Doppler radar beam configuration, 

that is, a vertical and an off-vertical beam, can be used to measure horizontal and vertical scales 

of gravity motion and obtain a measure of the horizontal kinetic energy. 

The upward flux of horizontal momentum can be measured for scales longer than about 200 

km with a tilt angle of 11.6° at a height of 85 km, but without additional information about the 

actual gravity wave spectrum, scales cannot be separated. 

The DCC beam technique, in which two Doppler radar beams are offset at equal and opposite 

angles from the zenith in the same vertical plane, can be used to obtain an accurate 

measurement of the Reynolds stress with only the assumption that statistics of the atmospheric 

motions are horizontally homogeneous. 

Spatial covariance estimates of the horizontal and vertical kinetic energy are poor, but a term 

containing both the horizontal and vertical components may be obtained.  However, unless the 

period and scale of the wave are known, these components cannot be obtained separately.  

Horizontal scales of the motion can be measured directly, but the vertical scale cannot, and 

there may be an ambiguity in 𝑘𝑥.  The beams do not have to be complementary, and the 

Reynolds stress can be obtained, as long as neither beam points vertically. 

With three coplanar beams the horizontal and vertical kinetic energy can be obtained using 

only the assumption of the horizontal homogeneity of the wind field.  In addition, both 
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horizontal and vertical scales of the wave field can be measured unambiguously in principle, 

and the Reynolds stress may be obtained. 

8.1.2 DW Measurements with Relatively wide Beamwidths 

The effective antenna beam angle, that is, that formed by the convolution of the receiving array 

polar diagram and the backscatter angular polar diagram, was found to significantly 

underestimate the apparent beam angle when the BP aerial array was used to measure the 

horizontal wind velocity in the D-region. Using independent measurements of the polar 

diagram of the backscatter, and the known antenna beam, it was shown that agreement between 

DW spectra measured in this work and seasonally averaged independent measurements of the 

spectra of horizontal wind velocity obtained at the same site improved significantly. A direct 

comparison of SA and DW methods indicated that better agreement is found when the effective 

beam angle is taken into account, and indirect comparisons of SA and DW measurements 

supported the evidence that DW radial velocities underestimate the true values of this quantity. 

8.1.3 Vertical Velocities 

A comparison of vertical velocities measured in both wide and narrow vertically directed 

Doppler radar beams indicated that vertical velocities could be obtained using phase coherent 

SA equipment when averaged over periods of 2-3 days, but the variability in agreement from 

day to day suggested that better results would be obtained if information about the angle of 

return of backscatter was obtained. It was found that in general, it was not possible to obtain 

the vertical wind from radial velocities measured in DCC beams because the horizontal 

variation of �̅�  and �̅� is significant. 

8.2 Observations 

8.2.1 Vertical Velocities 

Preliminary measurements of the mean vertical wind ln the 80-100 km height range indicated 

magnitudes as large as 0.5 − 1 𝑚𝑠−1 were typical.  There was some evidence that in this height 

range, the vertical motion was downward for much of the year. Typical mean square radial 

velocities for motions with periods between 8 min and 8 hours were found to be about 7 𝑚2𝑠−2 

rising to about  7 𝑚2𝑠−2 at 98 km. 
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8.2.2 Momentum Flux and Gravity Wave Drag 

The largest values of 𝑢′𝑤̅̅ ̅̅ ̅' and 𝑣′𝑤′̅̅ ̅̅ ̅̅  were found in the summer, and in general, the magnitude 

of either term was less than 3 𝑚2𝑠−2.  The momentum flux was found to be variable at a variety 

of time scales, from 3 hours in November 1981 results to 2 days in the case of the July 1982 

results. 

The body force associated with the flux convergence in the 80-98 km height range was found 

to be substantial, and appeared to balance the Coriolis torque due to the mean meridional wind 

velocity in many months. 

The Winter results indicated that longer period motions, in particular transient planetary waves, 

could supply the necessary wave drag, but this is by no means certain, because the observations 

were made at a single site and the wave drag and Coriolis torque should balance when zonally 

averaged.  The results obtained in February 1982 indicated that transient planetary waves, 

notably the “2-day wave” may be important in the summer hemisphere because the body force 

varied considerably from day to day. 

The zonal body force was found to be a component of a total body force that was aligned closer 

to the North-South direction in July 1982, and the meridional body force was correspondingly 

larger.  In October 1982, the total body force was aligned closer to the East-West direction. 

Results obtained in February and May 1982 indicated that wave saturation is transient in time 

and broadband.  The May results also suggested that momentum deposition is associated with 

saturated or breaking waves.  An enhancement in the momentum flux in the May results 

appeared to be associated with fewer determinations of horizontal scale. 

The vertical mean square velocities supported the evidence that momentum deposition was 

associated with saturated or dissipating waves. 

High frequency wave motions (𝑇 < 2 ℎ𝑜𝑢𝑟𝑠) appeared to contribute the substantial portion of 

the momentum flux for periods between 8 minutes and 8 hours in results obtained in October 

1982 and May 1981. 

The results as a whole supported theories stressing the importance of gravity wave drag for 

middle atmosphere dynamics, and suggest that gravity wave transmission and momentum 

deposition are transient in time. 
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8.2.3 Horizontal Scale 

About 25% of all calculated cross spectral phases had significant (𝐶𝑂𝐻)2. Of these, about half 

allowed the horizontal scale to be determined unambiguously.  By also calculating the phase 

between a vertical beam and one off vertical beam to reduce the ambiguity, about 80-90% of 

those events with significant (𝐶𝑂𝐻)2 led to determinations of horizontal scale. 

The mean zonal wavelength of gravity wave motions measured with the DCC beam 

configuration for periods less than one hour was found to be about 42 km.  The zonal 

wavelength tended to increase with increasing period rising from about 30 km at 20 minutes to 

500 km at about 200 km in the May 1982 results. 

The zonal phase velocities measured in the May 1981 and October 1982 observational periods 

had preferred directions of propagation that appeared to be associated with the upward transport 

of zonal momentum. 

8.3 Future Work 

Doppler radar technique in general, and the DCC beam arrangement in particular, have been 

shown to be particularly powerful devices for investigating the dynamics of the middle 

atmosphere. The extension of the procedures outlined in this work to MST VHF radars should 

greatly increase our understanding of the dynamics of this region. 
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Appendix A 

HF Doppler measurements of mesospheric gravity wave momentum fluxes  

This is a reprint of an article published by R.A. Vincent and I.M. Reid in the Journal of 

Atmospheric Sciences, 40(5), pp.1321-1333. 
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