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Abstract

Ambiguities occur in Over-The-horizon Radar (OTHR) due to multipath propagation from

multiple ionospheric layers. Multipath propagation causes multiple instances of each target

to be observed and consequently multiple tracks per target are formed. There is a need to

determine which tracks correspond to the same target. The process of associating tracks

which correspond to the same target is termed track association.

The tracks corresponding to the same target appear in patterns in the radar space which

are characteristic of the propagation conditions. These characteristic patterns depend on the

ionospheric state and the location of the target with respect to the transmitter and receiver.

These patterns have been noticed previously, but have not been used for automated track

association.

This dissertation presents anovel system for automated track association, which providess

significant improvement on previously proposed methods. The track association system is

designed on the premise that the characteristic patterns of multimode propagation are a

function of the ionospheric conditions. One component of the track association system

models the multimode patterns over the radar covorage. An estimation of the shape and

form of a multimode pattern can be made for a required location. The estimated multimode

patterns can be compared to the patterns formed by observed tracks, to determine if the

observed tracks are multimode tracks from a common target. The comparison of the estimated

multimode pattorns to the observed track patterns is performed with an association metric.

The association metric requires certain parameters of the multimode patterns to be modelled

over the radar coverage.

An association metric is proposed for discrirninating between 'associated' tracks from a

common target and 'non-associated' tracks from different targets. The multimode pattern

paramoters provided by the model of multimode patterns are used for the computation of

the association metric. Propagation modes are hypothesised for the observed tracks and the

expected positions of the alternative propagation modes are obtained. The association metric

compares the expected position of an observed track's alternative mode to the actual position

of another observed track. The discrimination ability of the association metric is compared

to that of the alternative association metrics over a range of simulated OTHR scenarios and

significant improvement is shown 
ix



Two techniques for modelling parameters of the multimode patterns over the radar cover-

rge areintroduced. The first technique employs heuristically chosen functions to model the

field of multimode patterns. The second technique models the field via principle component

analysis. Deficiencies are noted in both techniques, and a third technique is introduced which

combines the advantages of the first two techniques. The third technique employs principle

component analysis from the second technique on the coefficients of the basis functions

from the first technique. Comparative studies are performed between the three modelling

techniques. The technique employing heuristically chosen basis functions performed the

worst, while the other two techniques performed sirnilarly'

x
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CHepren I

Introduction

L.L Overview

The ionosphere can be used as a propagation medium for high frequency (HF) radio signals

[32]. Over-The-Horizon Radar (OTHR) exploits this propagation medium, and provides a

capability for long-range surveillance [19], including the detection and tracking of targets and

the remote sensing of the soa state [18], which is important in the detection and monitoring

of cyclones or rough weather. Using the information obtained from remote sensing, ships

can save fuel by avoiding rough weather. The ionosphere is a complex medium and it is

not uncommon for more than one propagation path or made to exist from the transmitter to

the receiver via the target. This situation is illustrated in figure 1.1; the E and F layers of

the ionosphere, which typically contribute to multimode propagation are shown. Multiple

detections received from a common target via different propagation modes are usually tracked

as distinct tracks, resulting in multiple tracks per target. This process is termed track

association It is important to determine which tracks correspond to the same target, so

that an integrated picture of the surveillance region can be obtained ll4, 15,27f . The ttack

association task is a fundamental problem in OTHR and the results of this task can assist

other OTHR signal processing tasks. This thesis addresses the problem of track association,

and contributes a systematic approach for solving this problem.

1.2 Over-The-Horizon Radar Overview

In this section, we explain the context of OTHR track association by providing a brief

overview of OTHR signal processing. We discuss the concepts of OTHR operation and

signal processing which are relevant to this thesis. OTHR signal processing is discussed in

more detail in chapter 2.

The work in this thesis was inspired by some of the outstanding challenges of the

Australian Jindalee radar, near Alice Springs. This HF skywave radar transmits a frequency

modulated continuous waveform (FMC\Ð which consists of multiple sweeps with a linear

saw-tooth frequency modulation 1241. Tlne radar transmits and subsequently receives adwell



1.2 Over-The-Horizon Radar Overview

F layer

E layer

Rx
Tx

2

Target

Figure 1.1: OTHR operation in the presence of multipath propagation.



1.3 Multimode patterns

of data, which is a coherent pulse train for measuring delay, apparent azimuth and Doppler

shift data. The processes of ranging, beamforming and Doppler processing are applied to

received data; thus the data is processed into azimuth-range-Doppler (ARD) cells'

Possible detections are identified from the ARD cells, and these detections are associated

into tracks by ar automatic tracker. This process of determining which detections correspond

to a common track is sometimes termed data association [2], as distinct from track association

[14, 15], which is the process of determining which tracks correspond to a common target.

We discuss difficulties of detection and tracking in Section 2.6.2.

1.3 Multimode patterns

In the presence of multimode propagation there are differences in the radar measurements

of the multiple detections from a common target. The multipath returns from a common

target appear in characteristic patterns in the radar measurement space. These patterns are

referred to as multirutde patterns (MPs) . The shape and size of the MPs depend on the

relative differences in the propagation geometry of the different modes. The propagation

geometry varies significantly in different circumstances. The propagation geometry depends

on the location of the target with respect to the transmitter and receiver and the ionospheric

conditions. Consequently the multimode patterns vary geographically (due to changing

propagation geometry over the radar coverage), and temporally (due to changes in the

ionospheric conditions).

Different modes have different propagation paths, and consequently multiple returns

from a common target have different delay, apparent (For economic reasons, OTHR receiver

arrays can generally not discriminate between the angle of elevation and the azimuthal angle

of return signals. For such receivers, the apparent azimuthal angle is the conical angle of

arrival of return signals, which is different fiorn the actual azimuthal angle of the target.)

azimuth and Doppler shift measurements. The difference in propagation path length causes

a difference in the delay of multipath returns from the same target. The difference in the

elevation angle of the different paths causes a difference in apparent azimuthal angle of

multipath returns from the same target; we refer to the cause of this difference as the coning

effect. For economic reasons, OTHR receiver arrays can generally not discriminate between

the angle of elevation and the angle of apparent azimuth of return signals. For such receivers,

the apparent azimuthal angle is the conical angle of arrival of return signals, which is different

from the actual azimuthat angle of the target. The differences between the angles of incidence

and reflection at the target with respect to the velocity of the target for different paths cause

a difference in the Doppler shift returns from the same target.

A simulation of a single target traversing a large distance within the coverage of an OTHR

illustrates the MPs between associated tracks. It is common for two ionospheric layers to

3



1.4 Multimode freld

exist at the radar operating frequency; three or more layers occur more infrequently. The

simulation assumes two ionospheric layers and therefore two propagation paths between

the target and the radar as in figure 1.1. Typical layer heights for the E and F layers

of the ionosphere are 100km and 250km respectively, and these values were used in the

simulation. Note therefore that there are four paths from the transmitter to the receiver via

the target, resulting in the formation of four tracks. The results of the simulation of OTHR

propagation are shown in f,gure 1.2. OTHR track data consists of delay, apparent azimuth

and Doppler shift information, but for the sake of simplicity, only the delay and apparent

azimuth components of the track data are displayed in figure 1.2. T};re tracks are displayed as

dotted lines and are labelled by mode with two letters (for example "Mode EF") to represent

the ionospheric propagation layers which correspond to that mode; the first letter indicates the

ionospheric layer reflecting the transrnitted signal to the target, while the second indicates the

ionospheric layer reflecting the return from the target. The multimode patterns are shown at

regular time intervals by solid lines linking the tracks. Note that the shape of the multimode

patterns changes as the target moves across the radar coverage.

1.4 Multimode field

The term dispariry field refers to a field, given in the radar measurement space, which is

used to describe the value of MPs throughout the radar space. The disparity field represents

the variable shape and size of the MPs throughout the radar space. The disparity field is an

indicator of the current ionospheric propagation conditions. The observed MPs are samples

of the disparity field.

An illustration of a disparity field is shown in figure 1.3. The figure shows the variation

in the MPs over the radar measurement space. The simulation is a snapshot of the multimode

patterns at one time instant when there are two ionospheric layers present. Each multimode

pattern consists of four detections from the same target which are connected by solid lines

to highlight the patterns. Note the variation in multimode patterns throughout the radar

coverage due only to variations in the propagation geometry, not variations in the ionosphere.

At larger azimuthal angles from boresight (a reference angle, perpendicular to the antenna

array and is the direction of maximum resolution), the apparent azimuthal component of

the disparity vector between certain modes is larger, due to the coning effect. At shorter

ranges, the delay component of the disparity vector between certain modes is larger. The

characteristic multimode patterns have been noticed previously 1L4,43f, but have not been

used for automated track association.

4



1.4 Multimode freld
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1.4 Multimode freld
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1.5 disparity vectoÍ

1.5 disparity vector

The dispariry vector is defined as the difference in measurements between modes from a

common target. Each multimode pattern in figure 1.3 consists of detections due to four

modes; thus six (Cra) mode pairs and twelve unique disparity vectors exist. Only three

disparity vectors are shown in figure 1.3. The disparity vector between a pair of modes varies

throughout the radar measuremont space.

There are two factors other than the target position which contribute to the variation

in an disparity vector. The first is caused by changes in the propagation geometry due to

ionospheric perturbations. The second is caused by radar measurement error. These sources

of variation cause an disparity vector to vary at a particular location in the radar coverage.

We simulate a typical distribution of an disparity vector at a particular location, which is

shown in figure 1.4. The figure shows the variation in the expected measurements of the mode

EF track with respect to the mode EE track. This variation is shown as a two dimensional

probability density function at a particular location in the radar coverage. The dark regions

indicate high probability density and the light regions indicate low probability density. The

variation of the expected position of mode EF in this example is caused by changes in the

propagation geometry due to perturbations in the heights of the ionospheric layers. Only

the variation in the disparity vector due to ionospheric perturbation is considered. The other

source of variation, rîdar measurement error, depends on specific radar characteristics but

could be included in an analogous way.

The distribution of the disparity vector in figure 1.4 is generated by a Monte Carlo

simulation with a target observed via the E and F layers of the ionosphere. The simulated

target is observed via 10,000 different ionospheric conditions at a ground range of 1000km,

with an actual azimuth of 400 milliradians from boresight. The height of the E layer is sampled

from a normal distribution with mean 100km, and standard deviation 2.5km. The height of
the F layer is also sampled from a normal distribution with mean 250km, and standard

deviation 12.5km. The heights of the ionospheric layers vary independently according to

normal distributions which correspond to physically plausible ionospheric states [32].

1.6 Contributions of this thesis

The major contribution of this thesis is a systematic approach for associating OTHR tracks

corresponding to the same target. Association is the process of determining which tracks

are multimode tracks from a common target. The approach exploits the patterns which are

characteristic of multimode propagation. Significant components of the association system

are an association metric for track association, and a model of the multimode patterns in
the radar measurement space. An overview of the system appears in section 3.3, and it is

7
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1.6 Contributions of this fåesis 9

illustrated in figure 3.1. We summarise specific contributions of the thesis as follows:

o A contribution which lies at the heart of the systematic approach is the formulation

of the coordinate transform between propagation modes as a function of the radar

measurements and ionospheric propagation conditions. This formulation appears on

page 30, in equation (3.1) of section 3.3.2.

o Another contribution at the core of the system is the concept of modelling the statistical

parameters of the disparity vector in the radar measurement space. A formulation of

this concept appears on page 31 in equation (3.4) of section 3.3.4.

o We propose to model the disparity vector functions as a linear combination of basis

functions on page 56 in equation (5.1) of section 5.2. We propose three techniques of

finding a suitable set of basis functions:

1. Firstly, we propose a technique for rnodelling the disparity vector as a linear

combination of heuristically chosen basis functions in section 5.3, beginning on

page 57. W'e illustrate this technique using multidimensional cosine functions.

2. We propose a second technique for rnodelling the disparity vector as a linear com-

bination of empirically determined, discretely sampled functions in section 5.4,

beginning on page 58. We determine the functions using principle component

analysis.

3. Finally, we propose a third technique for modelling the disparity vector in sec-

tion 5.5, beginning on page 63. The third technique combines the advantages of

the previous two approaches, modelling the disparity vector via principle com-

ponent analysis (PCA) on the coefficients of multidimensional cosine functions.

o We perform a comparative study of the three techniques for modelling the disparity

vector in section 5.7.

o A major component of the system is the association metric, proposed in chapter 4.

The association metric operates on a pair of tracks and it is designed to discriminate

between pairs of tracks associated with the same target (associated tracks) and pairs

of tracks associated with different targets (non-associated tacks). The association

metric is based on the Mahalanobis distance of the disparity vector function, and is

formulated on page 38 in equations 4.2 and 4.2 of section 4.2. T\e disparity vector

function is used so that the warping caused by multimode transmission is accounted

for, and thus the metric provides a measure of track similarity with uniform accuracy

across the radar coverage. We perform a comparative study of the proposed metric to

alternative metrics in section 4.3.



1.7 Organisation 10

o 'We formulate cumulative associatiotz metrics in section 4.4, which are a combination

of sequential association metrics. We propose equation (4.6) on page 50 for the case

of independence between sequential measurements. 'We propose equaúon (4.8) on

page 50 for the case of dependence between sequential measurements. We propose an

additional, more tractable, cumulative association metric for the case of dependence,

potentially trading off accuracy for tractability in equation (4.9) on page 51.

1.7 Organisation

The remainder of this thesis is organised as follows:

Chapter 2 provides an introduction to Over-The-Horizon Radar, and some necessary back-

ground for the work presented later in the thesis.

Chapter 3 introduces a systematic approach to track association, the significant details of

which appear as separate chapters in this thesis.

Chapter 4 introduces a novel association metric, based on a model of the disparity vectors,

and compares the association metric to alternative association metrics.

Chapter 5 contains details of novel techniques for modelling the disparity vectors. One

method models the disparity vector as a linear combination of cosine functions, while

another models the disparity vector via principle component analysis. A third tech-

nique, which combines the advantages of each of the first two techniques is proposed,

and a comparative study of the three techniques is performed.

Chapter 6 summarises the important results from this thesis, and discusses the direction of

future work.

Appendix A contains details of a simplified model of ionospheric propagation used for the

comparative study of association metrics in chapter 4.



CHaprsn II

Over-The-Horizon Radar

2.1 Introduction

This chapter introduces some of the background theory required for the work presented later

in the thesis. It is intended as an introduction to the relevant concepts and is not a general

exposition of OTHR. This chapter is organised as follows.

Some important terms are defined in Section 2.2. Theionosphere and the processes which

make it suitable for refraction of HF radio signals are briefly discussed in Section 2.3. In

Section 2.4, some important background history of HF radar with respect to the ionosphere

is introduced. Relevant issues of OTHR operation are discussed in Section2.5. There are

many problems in OTHR, primarily due to the complex nature of the propagation medium.

Some of the problems in OTHR are discussed in Section2.6. Previous work is discussed in

Section 2.7 , and a summary of the Chapter appears in Section 2.8.

2.2 Definitions

The definitions in this section, appearing in italics, are necessary for the discussion in this

chapter and are used throughout the rest of this thesis.

A propagation m.ode is the the path taken by a radio wave when propagating from the

transmitter to the receiver [33]. In OTHR, the radio wave propagates from the transmitter

to a remote site and is partially scattered back to the receiver. There are many possible

propagation modes. The propagation modes active for a radio wave depend on the frequency

of that radio wave, and there are often frequencies for which multiple propagation modes are

simultaneously active.

The radio waves make one or morchops when propagating in either direction. Single hop

propagation has one reflection from the ionosphere, while double hop propagation has two

reflections from the ionosphere and one reflection from the surface of the earth in between.

The term target is used to refer to reflectors of HF radio waves which are of interest for

surveillance. The physical area monitored by the radar in which targets exist is termed the

target space. The target space is measuredin ground coordinates, in some global coordinate
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system. This global coordinate system can be actual range and actual azimuth from the rada¡

or the geographical coordinate system of latitude and longitude. The radar measurements,

which include quantities corresponding to delay, apparent azimuth and Doppler shift, define

the radar space. There is a need to transform radar measurements into a system of global

coordinates. This transformation problem is commonly termed the coordinate registration

problem. To transform points from the measured radar space (in radar coordinates) to the

target space (in ground coordinates) it is necessary to know how ground range and azimuth

vary as a function of the propagation path through the ionosphere.

Multim.ode registration is the process of transforming measurements from multiple prop-

agation modes so that they correspond exactly to a common position in ground coordinates.

The common position is the location of the reflector in ground coordinates.

T}.te association decision is the process of determining whether a group of tracks is in

fact multimode from a common target.

2.3 The lonosphere

The ionosphere is the medium which makes OTHR possible, but is also the source of many

problems. A thesis addressing some of the problems of Over-The-Horizon Radar would be

incomplete without giving some background on the ionosphere.

The ionosphere is a roughly spherical region, concentric with the earth's surface in which

ionised particles exist. The ionosphere is a complex medium for several reasons. The neutral

atmosphere consists of a range of atoms such as oxygen, nitrogen and nitric oxide; the

proportion of these atoms varies with altitude but the total density of the atoms decreases

as altitude increases. Ionised particles are formed from the atoms by a process termed

photoionisation, in which solar radiation strips electrons from atoms [32]. The intensity

of solar radiation decreases as altitude decreases, because the radiation has been partially

absorbed. The two contributing effects to ionised particles, atomic density and solar radiation

both vary in a complex manner and are both functions of height. The combination of these

two effects causes the variation of electron densities with height. Consequently, there are

several regions of high electron densities at different altitudes. These regions are referred to

as layers because they forrn within height bounds. There are up to four different layers at

different altitudes.

The layers of high electron density partially refi'act electromagnetic radiation of between

approximately 0 and 50 J[ll.Iìz, according to Snell's Law of refraction. Consequently, some

energy of HFI rays transmitted from the earth's surface to be refracted back towards a receiver

at another point on the earth's surface. The degree of refraction ofthe rays depends on the

t2

lBetween 3 and 30MHz
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electron density. However, the electron density and hence the path of refracted rays can

only be coarsely estimated. The path length of the refracted ray from the transmitter to the

receiver is often estimated via a simplif,cation. The ray is considered to be reflected by a

virtual reflecting layer in the ionosphere; this layer is known archaically as the Heaviside

layer [20], but is referred to in this thesis as the virtual reflecting layer. The height of the

virtual reflecting layer is determined as the height which causes the path length of a virtual

reflected ray to equal to the path length of the actual refracted ray. For the purposes of this

thesis, it is sufficient for the ionospheric regions which refract HF radio waves back to the

earth's surface to be considered as distinct reflecting layers.

The suitability of the ionosphere as a reflector depends mainly on solar radiation. The

amount of solar radiation incident at a particular point on the ionosphere depends largely

on the zenith angle and the degree of solar activity. The zenith angle varies with latitude

and with the diurnal and seasonal cycles. Solar activity is also cyclic and has a period of

approximately 11 years. There are other factors which contribute to ionospheric variability

such as thermospheric winds, and chemical reactions [32].

The ionospheric layers can be considered to be roughly spherical, but there are many

large scale perturbations from the spherical. For instance, the heights of ionospheric layers

vary immensely at the sunrise and sunset transition. Other effects which contribute to a

gradient in the ionospheric include ionospheric stonns, the equatorial anomaly, and travelling

ionospheric disturbances [17].

2.3.1 Previous work on modelling the ionosphere

Theoretical models of the ionosphere are very complicated due to the nature of the medium

being modelled. The primary ionospheric variable estimated by a model is usually electron

density as a function of height. Due to the complex chemical and physical processes at work

in the ionosphere, the estimation is invariably difficult. The literature has an abundance of

ionospheric models and ionospheric prediction techniques, and they continue to be developed

140, 53,11, 301. A review of ionospheric radio propagation models is out of the scope of this

thesis, but one is provided in [40].

2.4 History of Over-The-Horizon Radar

It has long been known that the ionosphere can be used for the propagation of HF radio

signals. The ionosphere's ability to act as a propagation medium for radio signals was

first suggested following Marconi's successful transatlantic radio transmissions in December

1901 [46]. Heaviside and Kennelly independently suggested the existence of an ionised layer

in the upper atmosphere which acts as a reflecting surface for radio signals 120,461.
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Further important precursors to OTHR occurred in the mid 1920's, when the first exper-

iments relating to the propagation of HF radio signals for ionospheric sounding were being

conducted in Germany, Britain and the USA t471.

During \Morld War II, Britain's Chain Home radar series was intended as a ground-wave

radar, but often received backscattered returns at extreme ranges 129, 441. It was known

that these returns were from the earth's surface via ionospheric propagation. Due to the

magnitude of clutter from the earth's surface it was not possible to interpret the returns. The

pulse repetition frequency (PRF) had to be reduced to ensure that these unwanted returns

were not confused with the desired ground-wave returns via range ambiguity.

Following World War II it was recognised that distinguishing between targets and the

backscattered surface clutter (see Section2.5) required that the Doppler of moving targets be

used. Perhaps the first attempts at exploiting the ionosphere for over-the-horizon surveillance

was in World War II when HF radars atternpted to detect sea convoys. Without the ability

to use Doppler to distinguish between targets and clutter, the attempts were in vain. OTHR

has only become a possibility with the advent of high quality signal sources, which enable

the Doppler of targets to be resolved frorn that of clutter via signal processing. Furthermore,

OTHR requires the processing of a vast amount of data, which has been made possible

through advances in digital signal processing.

2.5 OTHR principles of operation

In Section 2.3 the effect of the ionosphere on high frequency radio signals was discussed.

The essential principles of OTHR operation are discussed in this section.

OTHR provides a capability for long range surveillance[ 3] by exploiting the ionosphere

as a propagation medium for HF radio signals. HF radio waves are transmitted with some

directivity and propagate through the ionosphere, where they are effectively reflected back

to the earth. The transmitted radio waves illuminate a large area on the surface of the earth

over the horizon from the transmitter. Some of the radio energy is backscattered from the

tafget and return to the receiver array via the ionosphere.

The radio signals travel through a large propagation distance (thousands of kilometres)

and a highly variable propagation medium. The received electromagnetic energy diminishes

as the fourth power of distance frorn the transmitter, so a large amount of energy must

be transmitted to obtain significant backscatter returns [43]. To prevent the transmitted

energy from saturating the receiver, the OTHR must operate as a bi-static radar (with the

transmitter and receiver not colocated) with the receiver usually being over the horizon from

the transmitter. At the Jindalee OTHR facility near Alice springs in Australia, the transmitter

and receiver are geographically separated by more than 100km and a mountain range [43].
OTHR provides a look-down view frorn the ionosphere, so backscatter retums from
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the earth's surface, also known as clutter returns, are significarfiÍ24]. The sea contributes

particularly strong clutter returns to the received signal, and meteorological parameters

relating to the sea state can be obtained from the sea clutter via signal processing [18].

Consequently, the long range surveillance provided by OTHR contributes remote sensing

of the sea state in addition to the detection and tracking of targets. Analysis of the Bragg

lines of sea clutter returns enables maps of the wind speed, wind direction and sea state to

be produced. Such maps provide valuable inforrnation to many bodies with an interest in

meteorology. For instance, the information provides a capability for the tracking of tropical

cyclones, and the information also enables ships to save fuel by avoiding rough seas [19].

The area illuminated on the earth's surface is of the order of tens of thousands of square

kilometres, and the resolution of a delay-beam cell is of the order of hundreds of square

kilometres, which is much larger than the size of an aircraft or even a ship. Hence the

energy backscattered from the earth's surface is of far greater magnitude than the energy

backscattered by a target. A target, typically an aircraft or a ship, has an effective radar

cross section in the range 5 to 500 square metres [5]. Most of the radar energy returned is

clutter from the sea or land; the clutter power typically dwarfs target returns by more than

a million-foId [43,24]. Consequently, Doppler is an important feature for discriminating

between the returns from moving targets and the returns from the earth's surface. To use the

Doppler effect as a discriminator between moving targets and clutter, the propagation path

length must be stable during the coherent integration time (CIT).

2.6 Present challenges of OTHR

2.6.1 Introduction

There are many areas in OTHR signal processing where the interpretation of signals is

often challenging. These areas include detection and tracking, multimode track association,

coordinate registration and mode identification. Each of these areas is discussed in turn in

this section.

The ionosphere is the medium which makes OTHR possible, but is also the source of
many challenges in the interpretation of received OTHR signals. The geometry of OTHR

propagation paths are dependent on the ionosphere, whose unpredictable nature is the main

cause of the challenges in interpretation. The ionosphere is a highly complex medium,

affected by changes in the earth's upper atmosphere and incident solar radiation 132,391and
its state can only be predicted in gross features. The geometry of the propagation path thus

varies over the radar coverage and with the ionosphere over the diurnal, seasonal and sunspot

activity cycles. Other factors contribute to the challenges of interpreting OTHR signals;

these include uncertainty in the propagation mode, impulsive noise (from noise sources such
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as thunderstorms and meteors), and multimode propagation.

The detection of OTHR targets is not as reliable as in other radar applications due to

the highly variable propagation environment. There are several aspects of the variable

environment which deteriorate the signal-to-noise ratio (SNR). The deterioration of SNR can

lead to missed detections and false detections. Difficulties in the detection and tracking of

OTHR targets are discussed in Section2.6.2.

Multiple detections received from a common target via different propagation modes are

usually tracked as distinct tracks, resulting in ambiguous situations with multiple tracks per

target. It is necessary to resolve these ambiguous situations by determining which tracks

correspond to the same target [14, 15]. This process is termedtrack association The track

association task is a fundamental problem in OTHR and the results of this task can assist

other OTHR signal processing tasks (see Section 2.6.6). The problem of multimode track

association is discussed in Section2.6.3.

An important part of OTHR signal processing is the determination of the physical location

of the targets which correspond to observed tracks. Coordinate registration (see Section2.2)

is used to convert tracks from radar coordinates to ground coordinates. The key to coor-

dinate registration is knowledge of the ionospheric propagation conditions along the entire

propagation path 122). However, the ionosphere and thus the propagation path can only be

estimated in gross features. Hence coordinate registration is still considered a difficult prob-

lem. Furthermore even the propagation mode of tracks is not always known. The coordinate

registration problem is discussed in Section2.6.4.

Identification of propagation modes is a necessary step for the coordinate registration

process to be successful. However, the propagation mode is often ambiguous. The problem

of mode identification is discussed in Section 2.6.5.

Detection and tracking, multimode track association, coordinate registration and mode

identification are closely linked problems in OTHR signal processing. The similarities of

these problems and their solutions are discussed in Section 2.6.6.

2.6.2 Detection and tacking

The first stage of OTHR signal processing involves processing the received waveforms

into delay-Doppler shift-beam cells [24]. The next stage of signal processing involves the

detection of potential targets in the delay-Doppler shift-beam cells. The detection of targets

is difficult for the following reasons:

Clutter
The clutter po\'/er is of the order of a million times greater than the signal power.

Slowly moving targets are particularly difficult to detect because they often occupy the

same Doppler cells as the clutter.
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Noise

Noise sources can often severely deteriorate the background noise level in frequency

modulated continuous waveform (FMCW) radar [48]. The two significant contributors

to noise are impulsive noise and radio frequency interference (RFI). Impulsive noise

is usually caused by environmental phenomena such as meteors and lightning strikes.

Impulsive noise causes a higher than average background noise level in several delay-

Doppler shift-bearn cells [28], but is localised in one or more domains [24]. RFI

consists of transmissions by other users of the HF spectrum. RFI is spread across many

delay and beam cells but is localised in Doppler. The degree of localisation in Doppler

depends on the bandwidth of the transmitted interference. Some successful methods

have been proposed for suppressing noise [35, 36], but the suppression of target signals

is an unavoidable consequence.

Smearing

The Doppler of moving targets is not always a reliable discriminator; fluctuations in

the electron density of the ionosphere effectively change the height of the equivalent

reflecting layer and thus also change the length of the propagation path. When the

length of the propagation paths change during the coherent integration time, the Doppler

of signal returns are effectively smeared across several Doppler bins. The Doppler

smearing property of the ionosphere reduces the quality of the returned signal and

therefore reduces the probability of a successful detection.

Polarisation

The polarisation of the radio wave can affectthe detectability of atarget The transmit-

ted wave is vertically polarised. The polarisation of the wave changes as it propagates

through the ionosphere. For significant backscatter from the target, the polarisation

of the wave must be suited to the orientation of the major reflector(s) in the target.

Furthermore, polarisation of the returning wave changes as it propagates through the

ionosphere from the target to the receiver. An array of vertical receivers only detects

the vertical component of the returning wave's polarisation.

Tracking of OTHR detections is difficult due to the poor quality and reliability of the

detections. Multiple detections received from a common target via different propagation

modes are usually tracked as distinct tracks, resulting in multiple tracks per target ll2, l3l.
The idea of tracking several multimode detections as a single target was introduced in [37]

and extended in [38]. Multimode tracking will theoretically provide improved tracking

performance, and is discussed further in section 2.1.3.

The detection and tracking of ships is a particularly difficult problem. Sea going ships

travel at a speed similar to the speed of the waves. Hence the Doppler shifts from sea waves
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are similar to the Doppler shifts frorn sea going ships. Consequently, a long CIT is needed

to obtain the Doppler resolution necessary to distinguish between ship detections and clutter.

It is necessary for the ionosphere to be stable during the CIT if the signals received are to be

interpretable. This is important over longer coherent integration times, such as those used to

detect ships (approximately 30 seconds). The ionosphere is often not sufficiently stable over

the coherent integration time because movements in the ionosphere cause Doppler variations

as a function of delay, apparent azimuth and time. Over shorter coherent integration times,

such as those used to detect aircraft (approximately 2 seconds), the effect of ionospheric

fluctuations on Doppler returns is not as great.

2.6.3 Multimode track association

The ionosphere is a complex medium and it is not uncommon for more than one propagation

path or mode to be active from the transmitter to the receiver via the target [33]. OTHR

operation in the presence of multiple propagation modes is illustrated in Figure 1.1. Simul-

taneously active propagation modes contribute what is termed multimode interferenc¿ to the

received signals. Multimode interference is effectively a superposition of the returns from

several distinct propagation modes.

Multimode interference causes difficulties for the interpretation of OTHR signals. Hence

in OTHR operation it is preferable for signals to propagate from the transmitter to the

target and back to the receiver via one propagation mode [32]. A simple way to avoid

multimode propagation is to choose a radar frequency sufficiently high so that the signal

can only propagate by the lowest order mode. However for optimal detection probability,

it is important to maximise the SNR, regardless of multimoding [14]. Hence multimode

propagation cannot always be avoided, and multiple detections of each target are observed.

The multiple detections from the same target are usually tracked as distinct tracks, resulting

in multiple tracks per target. Track association is the process of determining which tracks

correspond to the same target ll4l. In some parts of the literature, track association is also

known as dual designation resolution.

Multipath interference occurs in many other areas, such as communications and sonar

applications, where signals propagate via multiple paths. Multipath interference is usually

modelled as the sum of amplitude scaled and time shifted copies of a known signal plus white

noise. There are many established methods in the signal processing literature for determining

the relative amplitudes and time shifts of multiple propagation paths [3]. These established

methods are not applicable to the problem of resolving multipath interference in OTHR,

where the signals propagating via different modes have different Doppler shifts [14].

There are two essential components of track association. The first involves the computa-

tion of ¿sso ciation metrics (also known as similarity measures in some parts of the literature)
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which are tools for estimating the probability that a pair of tracks is associated. The second

component of track association is the combination and interpretation of these metrics in a

meaningful way. The association metrics considered in this thesis all operate on a pair of

tracks. Previous approaches for track association are discussed in Section2J.

2.6.4 Coordinate rcgistration

OTHR data is of interest to many bodies including meteorological bureaus, customs author-

ities, drug enforcement agencies and the military. However, the processed data is not useful

to these bodies. The radar coordinates in which lneasurements are'made do not have a direct

correspondence with the real world, and therefore it is necessary to transform the data to a

global coordinate system.

Coordinate registration is the process of registering measurements in the radar space to the

locations of the corresponding reflectors in the target space. The locations of measurements

in radar space are given in terms of delay (also known as slant range) and apparent azimuth.

However the locations of the corresponding reflectors in the target space are the actual

range and azimuth with respect to the radar, which can be readily converted to geographical

coordinates (when the geographical coordinates of the radar are known). Note that the

apparent azimuth of the target is not the same as the actual azimuth of the target due to the

coning effect.

A coordinate transformation is used to convert measurements in the radar space to the

corresponding locations in the target space. It is important to estimate the transformation

between the radar coordinates of measurements and the ground coordinates of the correspond-

ing reflectors in the target space as accurately as possible. Knowledge of the propagation

conditions, and hence the propagation mode, is necessary for the coordinate transformation.

Coordinate registration is a difficult problem due to uncertainty in the propagation condi-

tions [22]. The ionosphere must be modelled as precisely as possible for accurate coordinate

registration. Various techniques for observing the ionosphere are used to reduce the un-

certainty in the coordinate registration model. In addition to the analysis of backscatter

ionograms, the ionosphere is observed by networks of vertical incidence ionosondes, oblique

incidence ionosondes, fixed frequency HF beacons and HF transponders [34]. Despite these

techniques for observing the ionosphere, the ionospheric state can only be reliably estimated

in gross features. The heights of the equivalent reflecting layers cannot always be accurately

estimated throughout the entire radar coverage.

Measurements due to different propagation modes but from the same target should be

registered to the same ground coordinates, via multimode registration. The existence of

multiple echoes can actually enhance the reliability of the ground range estimation. However,

to use the multiple echoes for ground range estimation, the track association process needs

t9
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to determine the correct associations.

2.6.5 Mode identifrcation

The coordinate registration process transforms tracks from radar coordinates to ground co-

ordinates. To perform the registration, a coordinate transform is estimated for each possible

mode of propagation. The mode of propagation of a track must be known for the correct

transform to be applied. This is where the challenge lies: a track's mode of propagation is

not always known with certainty.

The set of active propagation modes can usually be established from other sources, such

as ionospheric sounders. The situation is unambiguous when only one propagation mode

is known to exist. However, when multiple propagation modes are known to exist, it is
necessary to establish the propagation rnode of a track so that the appropriate coordinate

transform can be applied. Mode ambiguity can arise when there are fewer echoes observed

than there are active modes, which can happen when one layer is only reflecting weakly. The

mode identification problem is easier if the elevation angles are measured [34], but the cost

of building a two dimensional array to measure the elevation angles is often prohibitive.

2.6.6 Closely linked problems

Many of the problems in OTHR are closely related 1271. Figure 2.1 is ablockdiagram showing

the relationships between solne of the OTHR processing tasks. The coordinate registration

task relies upon the results from the mode identification task. The track association results

can assist the mode identification task, and vice versa. The accuracy of the coordinate

registration task can be validated by the track association results.

The key to successful coordinate registration is knowledge of the propagation conditions

but particularly the propagation mode. Hence coordinate registration is reliant upon the

resolution of mode ambiguities (see Section 2.6.4). Many mode ambiguities can be resolved

as a by-product of the multiple hypotheses techniques employed in multimode track associ-

ation [14, 45]. Thus successful mode identification can enhance the accuracy of coordinate

registration. Furthermore, the accuracy of the coordinate registration task can be validated

by the track association results. Thus track association and coordinate registration are closely

related tasks. The track association process provides a valuable enhancement to the task of

estimating the position of the target in global coordinates. For instance, if you know that two

tracks should be associated, then they should be registered to the same location in ground

coordinates.

The track association task and the detection and tracking task are closely linked. Knowl-

edge of the difference between multimode measurements from the same target can help the

detection process. For instance, if the correct associations and correct mode assignments of
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Figure 2.1: The related processes in the multimode track association problem.
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a group of tracks are known, then the location of any undetected mode can be estimated, thus

assisting the detection process. If a set of detections are known to be multimode detections

from a common target, then the multimode detections can theoretically be tracked as a single

target [37].
The usefulness of a successful technique for associating multimode tracks is not limited

to this area; the results of multimode association can provide valuable information for the

coordinate registration task and other OTHR signal processing tasks, because the problems

are so closely related.

2.7 Previous Methods for Multimode Track Association

The literature is rich in some areas of data association, specifically in areas relating to

target tracking: track initiation and track maintenance. However, the open literature2 is

sparse in the area of track association. Multimode track association for OTHR is a far more

difficult problem, due to the inherent difficulties of ionospheric propagation, which has been

largely overlooked in the open literature. The previously proposed methods and concepts are

outlined in this section. Some work has been done in the area of multiradar track association

for OTHR, but this is an entirely different challenge, so a review of this work is out of the

scope of this thesis.

2.7.1 DaLl-Kewley

One method for multimode track association is proposed in [14], evaluated in [15], and

refined in [16]. 
'We refer to this technique as Dall's method. The proposed method is reliant

on an explicit model of ionospheric propagation to provide coordinate transformations from

radar coordinates to ground coordinates and back into radar coordinates. A pair of tracks is

compared by calculating a "correlation score". Tracks are deemed to be associated if they

have a high correlation score. The correlation score proposed in [14] between two tracks is,

N
.9 - - lo[ro" (2.r)

n:1

where ó, is the difference in the radar measurements of the two tracks in consideration

at sample n, and.l. is a matrix to normalise the weight given to each component of the

difference. The matrix contains the statistical variances of each of the components of ó,".

There is no mention of covariances between components of ó,.
A major shortfall with the rnethod is that the -l. matrix does not vary over the radar

coverage, whereas the dependence between measurements does. A further shortfall is that

2The literature which is publicly available.
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.f is a diagonal matrix, and thus the method does not take the dependence in the components

of ó into account.

Another problem is in the calculation of the correlation score; the score is formed by

summing the contributions of the Mahalanobis distance 6[f 6,Vn. This summation is a

valid way to combine Mahalanobis distances of independent normal random variables [21].

The correlation score would then have a X2 distribution with n x r degrees of freedom, where

r is the length of vector ó,. However, in this case the 6n are not independent for different

values of n, because each ó, represents the difference in measurements between the same pair

of tracks. Therefore the threshold for the correlation score cannot be chosen in accordance

with a y2 test. Furthermore, the proposed correlation score will vary, depending on both the

location and length of the tracks. There is no mention in either paper of how the decision

threshold for the correlation score is chosen.

Dall's method is reliant on an explicit ionospheric model (in the form of coordinate

registration tables), and thus any errors in the propagation model will result in errors in

the coordinate transformations, and thus errors in the correlation score. Without taking the

dependence in measurements into account, the errors in the correlation score will be larger

than necessary. A generalisation of the algorithm has been proposed which allows for the

possibility of refining the ionospheric model [50].

The performance of Dall's rnethod was reported in [15]. The associations made by human

operators were compared with the associations made by the data fusion algorithm. The data

used for the comparison was collected at the Jindalee Facility at Alice Springs, over 240

hours (ten days). The performance of the data fusion algorithm was found to be comparable

to the performance of the human operators.

2.7.2 Feature based methods

Methods for track association based on track features alone have been proposed in [9, 10, 52].

These methods are inspired by the ability of a human operator to associate tracks on a radar

display. The association decision is based on the comparison of heuristically chosen track

features. The features are selected on their ability to discriminate between associated and

non-associated tracks. Typical track features are mean position, track shape (curvature),

angular velocity and speed.

The performance of the above-mentioned feature based methods was reported in [7, 51].

The association decision is based on the combination of features. Two approaches for

combining the features were proposed in [6, 8]: a linear, statistically determined combination,

and a non-linear combination found by training a multi-layer perceptron. Both approaches

were evaluated in [], 5Il. A data set v/as simulated for evaluating several permutations

of the proposed methods. All permutations of the proposed methods performed extremely
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well on this data set: the error rate of the association decisions was around O.IVo for every

permutation.

2.7.3 Pulford-Evans

The idea of tracking a multimode pattern as a single target was introduced in l37l and

discussed in detail in [38]. Multimode tracking is conceptually appealing, because it will the-

oretically improve tracking performance. However, a comparison of the relative advantages

of track-level fusion and rneasurement level fusion suggests that "although measurement

level fusion is technically superior, in many scenarios track fusion is more appropriate" f49f .

Multimode tracking is difficult due to variations in the relative positioning of associated

tracks (see section 1.5). The tracking process can be enhanced by improving the a priori
knowledge of the intermodal field. Hence we anticipate that this work could benefit from

contributions in this thesis, such as modelling the intermodal vector field chapter 5. Details

of the performance of this approach are not publicly available.

2.7.4 Other work

The association of tracks between rnultiple OTHRs is receiving attention [50,27,4]. The

technique proposed ín [27] has similarities with Dall's approach [14]. The track data is

transformed from the radar space to the target space. The linkage between the problems of
mode propagation and multiradar track association is recognised irt [27], but the problem

of multimode track association is overlooked. The association of tracks between multiple

OTHRs does not fall within the scope of this thesis; instead, we focus on the challenge of
associating multimode tracks due to a single OTHR.

2.7.5 Limintions of previous work

There is an inherent distortion between multimode measurements over the radar coverage

due to variations in the propagation geometry. A significant limitation of previous track

association work is that the association metrics do not take this inherent distortion into

account. This oversight causes the previously proposed association decisions to vary in
quality over the radar coverage.

Multimode data is potentially a very useful source of information for addressing the

challenges faced in OTHR, and yet it has not been exploited by previous work to address

these challenges.
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2.8 Summary

The ionosphere is the medium by which long range surveillance can be achieved. However,

there are many challenges in the interpretation of OTHR returns due to the complex nature

of the ionosphere as a medium for propagation. Many of the processing tasks in OTHR

are interrelated, and the success of one affects the success of the others. Multimode track

association is a key operation, which is related to several OTHR signal processing tasks.

Multimode data can be used to assist the track association task, and also to assist other

related OTHR processing tasks. However, previous methods for multimode track association

have significant limitations in that they do not exploit the multimode patterns to their full
potential.
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Systematic Approach To Track

Association

3.1 Introduction

In Section 2.6 some challenges in OTHR were outlined. In this chapter, the problem of
multimode track association is discussed in more detail, and a systematic approach to this

problem is presented. This system is outlined in this chapter, and certain aspects thereof are

discussed in detail in subsequent chapters.

The methodology for the approach taken is described in Section 3.2. An overview of the

system for track association is presented in Section 3.3. Several features of the system are

introduced in this chapter, including the association metric, the model of multimode patterns

and the association decision. Finally, we summarise the important aspects of this chapter in

section 3.5.

3.2 Methodology of proposed system

The methodology for the systernatic approach to track association is discussed in this section.

The system contains several distinct components which act together to exploit the information

contained in the multimode patterns for track association.

3.2.1 Motivation

Differences in the radar measurements of multimode detections from a common target appear

in patterns which have been noticed previously, but have not been used for automated track

association. Knowledge of the rnultimode patterns is potentially of great assistance for the

association decision,

A system proposed in this chapter exploits prior knowledge of the characteristic patterns

of multimode propagation. The motivation for using the multimode patterns is firstly to
provide a systematic approach for track association based chiefly upon the valuable, but as yet
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unexploited, multimode patterns; and secondly to enable mutual verification of the association

decisions. The verification of the association decisions enables conflicting decisions to be

identified, and provides a framework for resolving the conflicting decisions.

3.2.2 Exploiting the multimode patterns

Multimode patterns are a previously unexploited source of information in OTHR. The mul-

timode patterns are characteristic of the propagation path , which are dependent on the

ionospheric propagation conditions and the location of the target with respect to the trans-

mitter and receiver. Estimating the rnultimode patterns from their cause is difficult because

the ionospheric propagation conditions and the location of the target can only be crudely

estimated. However note that accurate estimates of the radar measurements (delay, apparent

azimuth and Doppler shift) of tracks are available from the tracking process. The proposed

system for track association models the multimode patterns in terms of their radar measure-

ments, thus exploiting the multimode patterns. The approach of modelling the multimode

pattems in terms of the radar measurements is a key aspect of the systematic approach to

track association presented in this thesis.

Let the radar measurement space be denoted by M. The vector field given in M of the

difference between radar measurements of multimode tracks is referred to as the disparity

field (frrst introduced in section 1.4 of this thesis). Simultaneously observed multimode

patterns arc samples of the disparity field for a particular moding. Hence the disparity field is

modelled from the observed multirnode patterns and the resulting model reflects the current

ionospheric state.

The approach of modelling the multimode patterns in M from observed multimode
patterns avoids reliance on an explicit ionospheric model. The cause of the multimode
propagation, the ionosphere, is not modelled; instead the effects of multimode propagation

are modelled. Hence the model of the disparity field constitutes a partial ionospheric model.

The model of the disparity field can not only assist the task of track association, but also other

OTHR signal processing tasks. Such tasks include coordinate registration and the tracking
of multimode detections.

3.2.3 Verifrcation of association decisions

The systematic approach is inspired by the exploitation of simultaneously observed multi-
mode patterns to assist association decisions, and enhance the confidence with which they
are made. In contrast to previous track association methods (see section 2.7), in which each

association decision is based solely on the measurements of the pair of tracks in consider-
ation, the systematic approach incorporatos information from other (potentially multimode)
pairs of tracks. The systematic approach's association decisions will thus be consistent with
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each other, and also more reliable overall.

Example: We give an example of conflicting decisions. There are three tracks, labelled

A, B and C. Consider a scenario in which the following association decisions have been

made:

1. tracks A and B are associated with a common targeq

2. tracks B and C are associated with a common target;

3. tracks A and C are not associated with a common target.

The association decisions are clearly conflicting, because if A and B are from a common

target, and if B and C are from a common target, then A and C must also be from a common

target. In this case, at least one of the decisions is incorrect. We hypothesise that some

conflicts can be resolved by verifying association decisions against each other.

3.3 System Overview

The proposed system for associating multimode OTHR tracks is shown as a block diagram

in Figure 3.1. The measurements of observed track i are denoted y;. Tþe measurements of
observed trackT are denoted y¡. The estimated value of the disparity vector and its covariance

are denoted by d^^ and Ð*n. There are several aspects of the systematic approach shown

in the figure. Details of each of the rnain blocks are outlined in this section, but discussed in
detail in subsequent chapters.

3.3.1 Modehypotheses

The model introduced in chapter 5 provides an estimate of the difference in multimode
measurements between propagation modes at a specified location in radar coordinates. The

mode of propagation of each track is not known, but can be deduced by the relative positioning

with respect to other tracks, so classical hypothesis testing is performed to determine the

correct associations. Each possible mode of propagation is hypothesised for each observed

track and the association metric is computed under these hypotheses. Note that mode

classification is a by-product of the multiple hypothesis approach.

The set of track measurements is denoted as {y¿li : r,...,ff}, where i refers to the

track. The subset of tracks due to propagation mode rn is denoted 5-. The hypothesis that
track i is due to mode m is denoted [f/ : ii] e 5*].
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3.3.2 Intermodal coordinate transformation

The expected measurements of a track are calculated with respect to an observed track under

the specific mode hypotheses outlined in section 3.3.1. We represent the difference in radar

measurements from alternate modes as a coordinate transformation. The transform T^n is

a coordinate transformation of radar measurements due to mode m to radar measurements,

from a common source, due to mode n. 'We make the hypothesis that an observed track i is
due to mode rn. The measurements of a track corresponding to the same target as track i,
but due to propagation mode Ìr, aÍe represented by the transformation of the measurements

yi under transform fi,,, expressed

T*nY¿.

The radar measurement space has a variable relationship with the geographical space, due

to variations in the propagation geometry. The intermodal transform depends on two things;

firstly, it depends on the the ionospheric conditions, which are abstractly representedby Ft
and secondly it depends on the location of the vector in the radar measurement space y¿. We

express the intermodal coordinate transform in terms of the disparity function d*,(y¿, Ft);
thus

T^nV¿: y¿ * d*.(y¿,Ft). (3.1)

The disparity function d^.(y¿,f¡) is a vector function defined in the radar measurement

space M and represents the the difference in measurements between tracks from a common

target due to modes m and n.

3.3.3 The disparity function

The disparity function is a vector function in M; there is an disparity function in M for
every pair of propagation modes. The components of the disparity functions corresponding to

delay, apparent azimuth and Doppler shift are discussed here, but other radar measurements,

such as range rate and azimuth rate can be treated in an analogous way.

There is a component of the disparity function which corresponds to the difference in
delay between two modes from a common target, denoted by AA. This component is due

to the differences in length of the propagation paths. Another component of the disparity

function corresponds to the diflèrence in apparent azimuth between two modes from a

common target, and this corlponent is denoted by A.,4. The return radar signals propagate

via different ionospheric layers, and therefore arrive at the receiver from different elevation

angles. The difference in elevation angle of the different paths causes a difference in the

apparent azimuthal angle of rnultipath returns from the same target.

The Doppler refers to the Doppler shift in frequency in returns from a moving target. The

shift is proportional to the component of velocity in the direction of the radar beam, which

I
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is related to but not the same as the ground velocity. The Doppler is proportional to the

radial component of the target's velocity multiplied by the cosines of the elevation angles of

the incoming beam to the target 0¿ and the outgoing beam from the target 0o. Tlte incoming

angle and outgoing angle are determined by the mode of propagation. Hence the measured

Doppler depends on the mode of propagation as well as the radial component of the target's

velocity. The measured Doppler is related to the radial component of the target's velocity u7

and the cosine of the angle of the incident signal and the cosine of the angle of the out-bound

signal.

Dn : u7 coS î¿aos 0o

Multimode tracks originating from the same target will have differences in their values of

Doppler. Another component of the disparity function is the difference in Doppler of the

multimode returns from a common target. This component is denoted by AD.

3.3.4 Model of disparity function

Anestimate of theintermodalcoordinatetransformT*nof equation (3.1) is needed to compute

the association metric in Section 3.3.5. YetT^n is dependent on the ionospheric propagation

conditions and should be estimated from ionospheric models. Ionospheric modelling is a

large field in its own right, and is out of the scope of this thesis. Suffice it to say that

ionospheric models are not sufficiently reliable for the purpose of accurately estimating the

transform T*n. We consider the ionospheric state Ft as a random variable. The expectation

of the transform T^n caî be reduced, via equation (3.1), to the expectation of d,,,*(y¿, F¡);
thus

E lT^"y¿ly.,[H , {i} e .9-]l : Elyn+d^n(y¿,F,)lyn,[fI: {i} e 5-]l
: V¿ i E ld*,(y¿, F,)ly'lH : {i} € S-ll . (3.2)

The distribution of the disparity function d**(y¿,F¡) for a particular y; is dependent on

the ionospheric conditions, and hence the distribution can only be grossly estimated. For

simplicity it is assumed that the disparity vector has Gaussian distribution,

d^n(y¿,Ft) - Nlã**(yo),)-,"(v,)] . (3.3)

'We 
denote the expectation of the disparity vector in equation (3.2) tn terms of â-,(y¿).

Hence Equation (3.2) becornes

E lT*^y¿lyo,lH , {i} € S-ll : v; -l êl^,çy.¡. (3.4)

We use the model of disparity functions, which is one of the components in Figure 3.1,

to estimate the disparity function d-, and its covariance Ð^n. The inputs to the model are
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the track measurements yi and hypothesised modes m and n and the outputs from the model

are the estimated disparity vector' â-, (yo) and an estimate of its covari *t"" b 
^*7yo¡l

The ionosphere is a highly complex medium, and hence it is very difficult to model (see

Section 2.3). Instead of rnodelling the ionosphere explicitly, only the effects of multimode

propagation are modelled. The model of the multimode effects is essentially a partial

ionospheric m.odel. We model the field given by d^^(y¿,Fl) by exploiting priorknowledge of

the form of likely disparity fields. The accuracy of the modelled disparity field is improved by

adding current observations of the rnultimode patterns to the prior knowledge. The observed

multimode patterns reflect the current ionospheric state .F¡. The forms (i.e. shapes) of likely

disparity fields are estimated frorn prior knowledge, and the most likely disparity field to fit

the data is used. The disparity field is calibrated to fit the observed multimode patterns so

that it is representative of the current ionospheric conditions. Note that the selection of the

most likely disparity field rnay change as more multimode patterns are available.

The model of the disparity field is a major component of the system for track association,

and is discussed further in chapter 5. Two alternative techniques for modelling the disparity

field are proposed. Limitations of these techniques are identified, and another technique for

modelling the disparity field is introduced which combines the advantages of both models.

3.3.5 Association metric

The proposed association metric is a key component of the track association system; it is used

to discriminate between pairs of associated tracks and pairs of non-associated tracks. The

proposed association metric is the Mahalanobis distance between the radar measurements

of an observed track, and the expected transformed measurements of another track. The

transformed measurements are calculated relative to another observed track, hypothesised to

belong to the same target but due to another propagation mode. The association metric is

described in detail and compared to other previously propo sed similarity measures (measuring

the similarity of a pair of tracks) in chapter 4.

We use the association metric to test a hypothesis consisting of three statements for the

pair of tracks labelled i and j:

1. that tracks i and.j are associated,

2. thattracki belongs to mode m, and

3. that track j belongs to mode n.

We denote this hypothesis by

lfI : {i, j} e A*"1, (3.5)

where A*n is a set, containing ordered pairs of tracks which are associated, and correspond

to the modes m and n, respectively.
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3.4 Association probability

We use the association metric, denoted by M*.(y ¿, y¡), to estimate the as sociationprobability

for a pair of tracks. We define the association probability as the probability that a pair of

tracks are due to a cornmon target, The association metric operates on a vector referred to

as the error vector, denoted 6^n; we mention this vector now, but it is properly introduced

later (see equation (4.1)). Note that the association metric only provides an estimare of the

probability that a pair of tracks are associated. We do not obtain a measure of the actual

probability, since the distribution of 6^n, and hence the association metric, are not accurateþ

known.

To estimate the probability, it is necessary to make assumptions regarding the distribution

of 6^n for associated pairs of tracks and non-associated pairs of tracks. We assume the

difference vector á-, is normally distributed about the estimated disparity vector å-,,,
with covariance matrix Ð-n. From these assumptions, the distribution of the association

metric for associated and non-associated pairs of tracks is implied. Despite the inherent

warping of the radar measurement space (see section 2.6.4), the distribution of the association

metric is assumed to be invariant over the radar measurement space, because this warping is

accommodated by a model of the disparity vectors (see chapter 5). The distribution of the

Mahalanobis distance is then Xz(r), where r denotes the number of degrees of freedom;r is

also the dimension of 6^n. The estimated association probability can then be found from y2

tables [26].

We use our estimate of the association probability to test the hypothesis [fI : {i, j} e

A^^l.We calculate the confidence interval that the association metric corresponds to a pair

of associated tracks; the confidence interval is defined by

Pr(llrI^"(y¿,y¡) a a) : -t,, (3.6)

where 7 is the degree of confidence of the interval. 7 is usually chosen to be close to unity

(99Vo or 999%). The association metric is the Mahalanobis distance and thereforehas a y2

distribution. Hence the bound of the confidence interval o can be found from chi-square

tables (as in [26]) for the chosen value of 1.

The combination of successful hypotheses is complex, since the successful hypotheses

can be mutually conflicting (see the example in section 3.2.3, page 28). The combination of
hypotheses is dealt with in the following subsection.

3.4.1 Association decision

A pair of observed tracks which are potentially multimode tracks from a common target is

referred to as a multimode candidate. Multimode candidates which actually correspond to a

common target provide samples of the actual disparity field and thence must be compatible
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with the disparity field. We divide this requirement into two criteria, which are both necessary

conditions for multimode candidates to be deemed associated. The first criterion determines

which association candidates are possibly associated. The second criterion is applied to

successful association candidates frorn the first criterion. The second criterion determines

which subset of the association candidates are associated.

First Criterion

The first criterion is a sirnple test performed locally on each multimode candidate to eliminate

candidate pairs which are incompatible with every possible disparity field of a certain mode

combination. One way of expressing this test as a question in English is, "Is this pair of
tracks possibly associated?".

The assumption is made that the range of all possible ionospheric states I can be known a

priori. This is not an unreasonable assumption, as solar activity is cyclic and the range of all

ionospheric states have been observed for a longer period of time than the longest cycle, the

1l-year solar cycle. The disparity field given in M depends directly on the ionospheric state

ft, and thus the range of all possible disparity fields can be known a priori. The range of
possible disparity fields may be analytically derived from the range of possible ionospheric

states 7.

In other words, the difference in measurements (between a certain mode pair) must lie

within a bound corresponding to possible ionospheric states. This bound, denoted Il^n for
mode pur mn is variable over the radar coverage and is a function of the radar measurement

y¿; thus

'R^"(y¿) -- {d*"(y¿,77)VFy €f}.
The first criterion for track pair {i,7 } where track i is hypothesised to belong to mode m, i.e.

lH : {i} 6 .S-1, and track 7 is hypothesised to belong to mode n, i.e. j e S^ is formulated as

V¿-V¡eR*"(y¿)

The projectionof R^n onto any one dimension of the radar measurement space would not

be a good discriminator, and thus the first criterion would not be very successful. However,

there is a high degree of correlation between the components of the difference in measure-

ments, so the bound is a good discriminator in the radar measurement space. Independent

targets are unlikely to maintain the appearance of mulûmode tracks for long, even if this is

their objective.

Second Criterion

The second criterion verifies the global compatibility of the multimode candidates which
have satisfied the first criterion. The rnultimode candidates which actually correspond to a
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common target must all be compatible with the same (plausible) disparity field.

We make the hypotheses that every successful candidate from the local criterion is an

associated pair. We denote the corresponding set of hypotheses by the unordered set 7l; thus

H:(lH : {i,j} eA^"],lH: {k,l}çA**),...), (3.7)

where{i,7} and {k,l} denotethetrackpairsof associationcandidates. Asexplainedinsec-

tion 3.3.5, each hypothesis is tested using the association metric M*n. The association metric

requires an estimate of d.^n, obtairied via the model of disparity vectors (see section 3.3.4).

The model is calibrated to observed disparity vectors, which are not known. However, we

do have observed inter-trackvectors, denoted by

zij:Yi-Yj

fortrack pair {i,j}. The hypothesis [fI : {i,j} ç A*n), if true, implies thatthe corre-

sponding inter-track vector z¿¡ is a disparity vector. Hence, under the hypotheses of 71, the

corresponding inter-track vectors are samples of the disparity fie1d. Thus, we calibrate the

model of disparity vectors using the inter-track vectors z¿¡ corrosponding to every hypothesis

of '11.

The second criterion is satisfied if, for every multimode candidate {¿, j} the association

metric M,',,"Iies inside the confidence interval; thus

A[^n(y¿,yj) < a, V lH : {i, j} e A*,] e '11 (3.8)

However, it is important for the reader to note that if we calibrate the model based on

all the hypotheses of '11, we run the risk of false hypotheses biasing our estimate ã*n a*ay
from the actual value d.^n. Il the second criterion is not satisfied for the desired confidence

interval ?, we apply the criterion to all subsets of '11; satisfied for a subset of the hypotheses

?l; rhus

M^n(y¿,v¡) I a, VIH : {i, j} € A^"1€ Ç

where Ç denotes a subset of 11. For each subset, the model is recalibrated to the inter-track

vectors corresponding to the hypotheses in the subset. 'We choose the subset Ç for which

CI corresponds to the greatest confidence level 1 of equation (3.6). We decide that this

subset (perhaps the full set'11 and perhaps the empty subset) contains all the hypotheses for
associated tracks, and only the hypotheses for associated tracks.

3.5 Chapter summary

This chapter proposes a systematic approach for solving the challenge of multimode track

association in OTHR. The systern exploits the characteristic patterns of multimode propaga-

tion. The methodology of the systematic approach, including motivation for exploiting the

multimode patterns, is discussed in section 3.2.



3.5 Chapter summary 36

'We present an overview of the proposed system in section 3.3, and discuss each of
the major subcomponents in turn. The difference between radar measurements from a

common target, but due to different propagation modes, are expressed as a disparity function;

the disparity function is a function of location in the radar measurement space. A major

component of the system is a model of the disparity function, discussed briefly in section 3 .3.4;

the model is discussed at length in chapter 5. Another major component of the system is

an association metric for discrirninating between pairs of associated tracks and pairs of non-

associated tracks. The association metric is mentioned in section 3.3.5, but discussed in detail

in chapter 4. The final component of the system is the association decision, discussed in

section 3.4.I. 'We 
separate the association decision into two criteria, applied consecutively.

The first criterion selects candidates which are possibly associated. The second criterion

determines which set of candidates are associated, while ensuring that conflicting association

decisions are avoided.
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Association metric

4,1 Introduction

A key component of the track association system of chapter 3 is the association metric,

introduced in section 3.3.5. The purpose of the association metric is to discriminate between

pairs of tracks from a common target and pairs of tracks from different targets. The association

metric is essentially a tool for estirnating the probability that a pair of tracks are due to a

common target, and it forms the basis for the association decision. This chapter is organised

as follows. The proposed association metric is discussed in detail in section 4.2. It is
compared to alternative association metrics, similar to those previously proposed 19,10,52],
in section 4.3. The combination of several values of an association metric over several dwells

is discussed in section 4.4. Finally, we summarise the important aspects of this chapter in
section 4.5.

4.2 Association metric

The association metric operates on the difference between the measurements of an observed

track and the expected transforrned measurements of another track. An illustration of the

spatial relationship between an observed track position, in the radar measurement space, and

the expected track position is shown in figure 4.1. In this figure, the observed track i, shown

as a solid line, is hypothesised to correspond to mode m and the expected measurements (in

the radar measurement space) of the transformed track corresponding to mode n is shown as

a dotted line. The observed tack j , shown as another solid line, is hypothesised to belong

to mode n. The estimated disparity vector d-,, is shown at both of ends of track i; note

that ã*n has changed over the radar coverage. The measurements of track i are denoted y¿,

and the expected transformed measurements due to mode TL are expressed E[T,ry¿]. The

measurements of observed track j , which is hypothesised to be due to propagation mode n

are denoted by y ¡. The difference between the estimated measurements of mode n and the

observed measurements of track j is also shown in figure 4.1. This difference is referred to
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as the enor vector; it is denoted by 6.^n, and formulated thus

6 
^n(y¿,y 

j) : E lT*"y,ly¿, i e S^) - y ¡.

Through application of equation (3.4) the error vector is expressed as

6*n(y¿,yi) : y¿ + ã^.*(y¿) - v¡. (4.1)

For the association decision, we require an estimate of the the probability that a pair of tracks

are associated. The ,^/-dirnensional Mahalanobis distance is the distance from the centre

of a lú-dimensional, multivariate, normally distributed population, normalised with respect

to the covariance of the population. We choose the Mahalanobis distance l2tl (hereafter

referred to as M-distance) as a tool to estimate this probability, since there is a high degree

of correlation between the components of the disparity vector. The correlation between the

delay and apparent azimuth components is clearly evident in flgure 1.4. The association

metric is the Mahalanobis distance of 6*n(y¡,y¡), formulated thus:

M*n(y¿,yi) : 6^n(y¿,y¡)'Ð;'^(v)6^*ç"',,t'r, (4.2)

where Ð^n denotes the covariance matrix of 6^,. The covariance matrix varies over the

radar coverage and hence is a matrix function of the radar measurements V¿. We estimate the

disparity function, d^"(y¿) and its covariance Ð *"(y¿).
The primary benefit of using the M-distance as the association metric is the fact that it

accounts for the covariance between radar measurements. We do not ignore the possibility

that there may be a choice of association metric which provides better discrimination between

associated and non-associated pairs of tracks. We expect an association metric with greater

discriminatory performance to improve the performance of the track association system.

However, to maintain the focus of this thesis, we omit a rigorous investigation into the merits

of different metrics. We perforrn a lirnited comparison of the proposed association metric to

other association metrics in section 4.3.

4.3 Comparative study

A demonstration of the proposed association metric is presented in this section. The demon-

stration compares the proposed metric to alternative meirics using the track measurements of
a pair of tracks. For sirnplicity, we only consider two components of the track measurements,

the components corresponding to delay and apparent azimuth. The alternative metrics are

similar to those which have been previously proposed in [9, 10, 52].

For the purpose the demonstration, we designed an OTHR simulator, and used it to
generate the demonstration's data set. The simulated ionospheric layers are spherical and

the heights of these layers drift by a small amount between each radar dwell. Details of the
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propagation geometry used for the sirnulation appear in appendix A. Two ionospheric layers

are considered and the initial heights of these layers, and the distribution of their rates of drift

are chosen according to known ionospheric priors (see appendix 4.5).

The data set consists of two types of scenarios. Each scenario consists of two targets,

travelling with constant speed and constant heading. Only two of the multimode tracks

are considered from each target. The first type of track association scenario comprises

two targets travelling in significaritly different directions and travelling with significantly

different speeds. It should be easy for any method, including a human operator, to determine

the correct track association. This type of scenario is referred to as the easy association

scenario. An easy scenario is shown in frg:ure 4.2. Both targets have two corresponding

multimode tracks: tracks #1 and #2 correspond to the one target and tracks #3 and #4

correspond to another target. The second type of track association scenario is chosen to be

difficult for track association. The targets have similar locations, speeds and headings. This

scenario is referred to as the dfficult ossociation scenario. The difficult association scenarios

comprise two targets travelling on parallel flight paths with a separation of approximately

50km. A difficult scenario is shown in figure 4.3, two multimode tracks per target. As in

the easy scenario, tracks #1 and #2 correspond to the one target, whereas tracks #3 and #4

correspond to another target;

The simulated data set for the comparison comprises 500 easy association scenarios (such

as Figure 4.2) and 500 difficult association scenarios (such as Figure 4.3). The heights of

the ionospheric layers are the same throughout every scenario. The height of the E layer is

1 10km, while the height of the F layer is 250km; we refer the interested reader to appendix 4.5

for justification of these values. Each scenario contains data for 4 tracks from 100 dwells

and is divided into 10 windows of 10 dwells each, making 5,000 windows of track history

for each type scenario. There are 4 tracks in every scenario and therefore 6 pairs of tracks in

every scenario which are candidates for track association. Therefore there are 30,000 cases

for track association for both types of association scenario. The alternative metrics and the

proposed metric are applied to every case.

4.3.1 Alternative Association Metrics

We heuristically choose alternative association metrics for their potential ability to discrim-

inate between pairs of associated tracks and pairs of non-associated tracks. The alternative

metrics are based on features which are derived from the difference in track measurements

over time, which we lefer to as track velocity. Note that the track velocity of a target is not

the same as the actual velocity of the target due to the geometry of OTHR propagation paths.

Track velocity is computed in the ra.dar space in Cartesian coordinates, as in [52], and is

measured as the change in target position between radar dwells.

39
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The track features for the alternative metrics are all computed as vectors over a window

of n points of track data. The length of the resulting feature vectors will not necessarily be

n, because more than one point is needed to compute track velocity. Each alternative metric

measures an aspect of track sirnilarity. The metrics used for the comparison of a pair of tracks

are:

(1) Projection ofvelocity vectors

(2) Rate of change in heading

(3) Track speed

Projection of velocity vectot"s

The first alternative metric is a measure of the similarity of the velocity vectors of a pair of

tracks. The metric discriminates between:

o tracks with similar velocity (both rnagnitude and direction), and

o tracks with dissimilar velocity (both magnitude and direction).

The similarity of the velocity vectors, denoted p, is computed over two dwells using the

projection of the one velocity vector in the direction of the other velocity vector. For the

metric to preserve symmetry, the choice of the velocity vector projected and the velocity

vector projected upon must be unambiguous. We arbitrarily choose to project the shorter of

the two vectors onto the longer of the two vectors, so that the metric approaches unity for

velocity vectors with similar rnagnitudes and directions,. We denote the velocity vector at

dwell k for track i by v¿(k). The velocity vector is the difference in the radar measurements

of two sequential dwells; thus

v¿(k):y¿(k+ 1) -vn(k)

The projecúon of the shorter vector vi onto the longer vector v¡ is formulated

Yi.Yi,: Éi' where ll"¡ll > ll"oll'

The ratio of the length of projection p and the magnitude of the vector projected upon, vj, is
the association metric for one dwe1l; thus

M'(ll;,i:ll 
ll',i:l]) 

: ffi' where rr'¡rr > rr'orr

The metric is computed for a window of track data by averaging over a number of dwells.

The projections are averaged over a window of l/ sequential dwells, and therefore ¡/ - 1



v;(k).v¡(fr)

(¡'r - 1) max (ll',{r)ll',11"¡(¿)ll')'

Alternately, M, can be expressed as

'" (]ìifrìll'm) cosd¿¡(k)' (43)

where ïr¡(k) is the angle between vectors v¿(k) and u¡(k).Itis apparentfrom equation (4.3),

that the metric is related to two aspects of the velocity vectors:

o the similarity in magnitude, as either ratio ffi, or ratio ffi, una

o the similarity in direction, as cos ïo¡(k).

Contrastingly, the correlation coefficient between vectors v¿ ând v¡, formulated as
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values of v¿. The association rnetric between tracks i and.i is

C'(uo,v.,) : v¿.v j
ll',ll ll',ll '

is merely equivalent to the cosine of the angle between vectors v¿ and v¡, which is not

sufficient to discriminate between vectors similar or dissimilar in magnitude.

Similarity in îate of change in heading

One would expect that tracks from the same target would have similar headings, and similar

rates of change in heading. The second alternative metric, due to 1521, represents the

similarity of the rate of change in heading of a pair of tracks. The measure of rate of change

in heading is calculated over three consecutive track points. The rate of change in heading

of track i at dwell k is denoted a¿(k), and formulated as

,n(k): arcsin lv¿(k - 1 x v¿(k)ll
radians/dwell

ll.,o(k - 1)ll llro(¿)ll

where x represents the vector cross product operation. The computation of rate of change in
heading over a window of r¿ consecutive dwells results in a feature vector for every track in
consideration. The rate of change in heading feature vector of track i is

,n(z)
u)i:

u¿(n - I)
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(4.4)

(4.s)

Note that the feature vector is of length n - 2 (two elements shorter than the track window),

because the computation of every element of the feature vector requires two consecutive

velocity measurements, and therefore positional data from three consecutive dwells.

The association metric is a tool to estimate the probability that a pair of tracks are

associated; in this case the metric uses the similarity in the rate of change in heading of

the tracks in question. The association metric is the sample correlation coefficient between

feature vector ar¿ from track i and feature vector cer.i from track j; thus

where lu¿ - ø¿] is the demeaned version of feature vector a;¿

Similarity in track speed

The third alternative metric is a measure of the similarity in track speed for a pair of tracks.

Track speed is calculated as the rnagnitude of the change in track position between dwells.

The track speed of track i at dwell k is denoted llv¿(k)ll. The computation of this metric

over a time window of length n results in a feature voctor of track speed for every track in

consideration. Note that the computation of track speed uses two points, so the resulting

feature vector is one element shorter than the track window, ¡/. The feature vector for the

speed of track i is

The association metric for the sirnilarity in track speed is calculated as the correlation coef-

ficient between the two speed vectors from the respective tracks. The correlation coefficient

between feature vectors s¿ and s¡ is formulated by analogy with equation (4.4); thus

lw¿ -ø¿lr lu¡ -o¡]
lltrn - ø¿lll lllr¡ -ø¡lll

[s; - -q]" [r¡ - E- ]

llt'n - s¿lll ll['¡ - E- ]ll

where [s¿ - s,- ] is the demeaned version of feature vector si

4.3.2 Proposed Metric

The proposed association metric is described in Section 4.2. The proposed metric uses only

one point, chosen at random frorn the same track window as the alternative association met-

rics. The computation of this association metric requires a model to compute the distribution



4.3 Comparative study

of the disparity vector for associated tracks. Details of the propagation geometry and priors

of this model can be found in appenclix A.

The model does not have perfect knowledge of the ionospheric conditions. The iono-

spheric state lies within the total range of possible ionospheric states, which are known a

priori. The modelled parameters are the estimated disparity vector å-,, and the eigenvectors

and eigenvalues of its covariance matrix Ð *,.

4.3.3 Results

The values for every metric are accuûrlrlated and are plotted as histograms for associated and

non-associated tracks. The results of the association metrics applied to the easy scenario are

plotted in figure 4.4, while the results frorn the difficult scenarios are plotted in figure 4.5. Both

figures contain four sub-figures, showing one histogram for each method. The distribution

for non-associated tracks is shown as a gray line, while the distribution for associated tracks

is shown as a black line. The rnethods are based on the following association metrics (by

sub-figure):

(a) projection of velocity vectors;

(b) correlation of rate of change in heading;

(c) correlation oftrack speed and

(d) proposed metric.

The values of the proposed rnetric span such a large range that the histograms need to be

plotted on a log scale; the histograrns of the alternative association metrics are only plotted on

a linear scale. To aid the visual comparison of the metrics, we plot the values of the proposed

metric on a reversed log scale; thus in all sub-figures, the distributions of associated tracks

and non-associated tracks appear to the right and left ofthe scale, respectively.

An association decision basecl on any association metric is prone to errors when the

distribution of the association metric for associated tracks overlaps the distribution of the

association metric for non-associated tracks. The histograms in figure 4.4 show that, in the

case of the easy association scenario, all of the association metrics provide some degree

of discrimination between associated and non-associated tracks. However, in figure 4.5

distributions of associated tracks and non-associated tracks are significantly overlapped for

the alternative metrics. Note that in figures a.5@) and 4.5(b), there is significant overlap in

the distributions. The histograms in fìgures 4.5(a),4.5(b) and 4.5(c) indicate that, in the case

of the difficult association scenario, the alternative metrics provide litt1e or no discrimination

between associated and non-associated tracks. For these metrics, there is significant overlap
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between the histograrns of the association metrics for associated tracks and for non-associated

tracks, particularly in the case of the difficult association scenarios.
'We 

decide that a pair of tracks are associated lf M ( I where f is the threshold. The error

rate is calculated as the sum of Type I (rnissed association) and Type II (false association)

errors, and is calculated for each metric as an indication of its discrimination ability. We

make the simplifrcation that Type I errors and Type II errors have equal prior probabilities

and equal cost. The threshold which rninimises the sum of Type I and Type II errors has been

calculated for each metric and is shown in Table 4.1 as f . In other words, the error rate e is

calculated as if the best possible threshold ú were known and used. The error rate e is the

ratio of the erroneous cases (including both Type I and Type II errors) to the total number of

cases (30,000). It is tabulated in Table 4.1.

Scenario Metric Me M, M" M
Subfigure (a) (b) (c) (d)

Easy t 0.92 0.96 0.92 -10
e 2Vo 3lVo 397o 0.UVo

Difficult t 0.93 0.91 0.01 -10
c 537o 67Vo 7I7o 0.07o

Table 4.1: Cornparative performance of association metrics.

4.3.4 Discussion

In the case of the easy association scenario, shown in figure 4.4, every association metric

provides some degree of disclirnination between associated tracks and non-associated tracks.

Each of the alternative metrics produced solne errors, with the projection of velocity vectors

in figure a"a@) having the lowest error rate of the alternative metrics. Note, in table 4.1, the

outstanding difference in the error rate of the proposed association metric and the alternative

association metrics. The proposed association metric in figure 4.4(d) produces no errors for

the easy association scenalios.

In the case of the difficult association scenario, only the proposed association metric in

Figure 4.5(d) performs better than a random guess. The alternative metrics in Figures 4.5(a),

4.5(b) and 4.5(c) have an error rate, shown in table 4.1, which is greater than507o. As in the

easy scenario, the proposed association metric has an error rate of ÙVo, which is achievable

over a range of values for the decision threshold.

The outcome of the associatior.l decision for the proposed metric is not sensitive to the

exact choice of threshold, and the minimuln sum of errors is zero. For the easy scenarios, a

threshold in the range of 3 to 300 resulted in no errors. For the difficult scenarios, a threshold
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in the range of 3 to 200 resulted in no errors. In contrast, the outcome of the association

decision for the alternative association metrics is sensitive to the choice of threshold and the

minimum sum of errors is not zero. The choice of threshold is therefore a critical issue for the

alternative metrics. Due to the overltrp in the distributions of associated and non-associated

tracks for the alternative metrics, errors are unavoidable. Contrastingly, the histograms of

the proposed association metric for associated and non-associated tracks are substantially

separated, as shown in figures 4.4(d) and 4.5(d).

The proposed method has no errors in either the easy scenario or the difficult scenario, and

is not as sensitive to the choice of thleshold as the alternative metrics. The decision threshold

for the proposed association metric c¿rn be chosen over a wide range with no resulting errors.

It is both desirable and possible to have a measure of association calculated instantly instead

of having to wait for a window of data to process as in [14] and [52]. The alternative metrics

discussed in this paper are all derived frorr the change in radar measurements over a period

of time, and therefore require a winclow of track data for their computation. The alternative

metrics become less reliable over shorter windows.

The proposed association metric presents a significant reduction in errors over the alter-

native metrics. However this metric is based on the comparison of the observed disparity

vector to the expected disparity vector', and thus the metric can be calculated from just one

point. Naturally, one could expect the proposed association metric to have greater reliability

ifitwerecalculatedovermorepoints. Insection 4.4,weproposeextensionstotheassociation

metric so that it can accommoclate more than one data point.

With respect to the variation in disparities, only the contribution due to ionospheric

perturbation has been considered. Radar specific effects due to measurement errors have

been deliberately ignored for simplicity. Radar errors can be included in the simulation. The

inclusion of radar errors would change the distribution of the disparity vector, and therefore

the parameterisation. The perfonnance of all of the association metrics would be slightly

impaired by the inclusion of radar measurerrent errors.

4.4 Cumulative associationrnetrics

The association metric proposed in this chapter puts a lot of dependence on one detection,

which may be in error in real data. In this section, we discuss a way of improving the

discrimination between associated tracks and non associated tracks, by combining several

sequential association metrics for an association candidate. This improvement reduces

the possibility of erroneous association in cases when a pair of non-associated tracks are

separated by the correct disparity clistance for associated tracks for a small number of dwells;

for instance, when two non-associated tracks cross. We refer to a combination of sequential

association metric as a cutnul,a.tive tss'ociation metric.



4.4 Cumulative association ntetric s 50

The association metric in [14] is accumuiated (see equation (2.1)) over a length of track,

and an arbitrary threshold is applied to the sum. However, the application of a threshold

to a sum of M-distances, as in [14], is only correct if the M-distances are independent. In

the case of independence, we test the sum of M-distances using the yL(r) test [21], where

r represents the degrees of freedom of the random variable to be tested, since M-distances

have a ¡2 distribution. The nurnber of degrees of freedom r is M x N, where M is the

dimensionality of the disparity vector, and 1/ is the number of M-distances which have been

added.

V/e propose a cumulative assocjation rnetric of the M-distances of equation (4.2) for

the case of independence, denoted 
^t;Tl 

The radar measurements of track i at dwell f are

contained in vector y¿. The cumulative association metric Mgl is formulated as

M#: : Ð OT,"(t) > 
^',.0 olt¡¡f. ̂ ^(t¡

/\r

i=l
(4.6)

where the error vectol' 6^n ùt tin-re / is

6. ,,(t): y;(t) + â-,(y¿(¿)) - v¡(¿) (4.7)

Unfortunately, the temporally secluential M-distances are not independent. If we properþ

account for the dependence between sequential M-distances the cumulative association metric

is formulated as

-1T
6 ^"(tr)
6**(t2)

I-l2tt

\lo L:.Lt

út'fru

tzrtN

6^"(t1)
6^"(t2)

Ð
Ð

h,tz

t2

Ð
Ð

(4.8)

6^"(tN) Ðrn,,r, Ðr*,rt fl2tw 6^"(t¡'t)

where X¡, denotes Ð-"(y;(t ¡)). Ð r,,t¡ represents the covariance between the elements of

6^"(ti) and 6**(t¡). The difference between the independent metric of equation (4.6) and

the dependent metric of equation (4.6) is the off-diagonal matricos Ð¿¡,¿r, t¿ I t¡.

The covariance matrix Ð,n,. of equation (4.2) accounts for the covariance in the error

vector 6-,, about the estimated disparity vector â-,.,. Thete are two major contributors to

the covariance of the error veclor:

1. errors in the estimate d-,, due to mismodelling, and

2. errors in the measurerìent ol y; and y ¡

The off-diagonal matrices are diffìcult to determine. We propose a method of calculating

the cumulative association metric AtIff; of equation (4.8) which avoids the need to calculate

the off-diagonal matrices. This rnethod discriminates between tracks based on the variation

M*i
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in the disparity vector ó-,, oveL the l"rack window. This discriminator exploits the fact that the

variation in 6 *n over the track winclow is smaller for associated tracks than for non-associated

tracks. We demean the disparity vector ó-,, over the track window in consideration. The

covariance matrix Ð then only neecls to account for the errors in the measurement of y¿ and

y¡. Thus,

T -1

'a

6*"(tt) - 6,"n

6*"(tz) - 6,,,,,

6^"(tN) - 6^n

frme0s2t1

0

0

tlmeo,s'tz

0

0

6^^(tt) - 6*n

6^"(tz) - 6*n

s¡meas 6^"(tN) - 6^n

M#i N

00

where ÐT'"" denotes the cornponent of covariance in 6^"(t1) due to measurement errors

Then the resultant M-distance is given by

JV

M#: : f (6,",,(¿) - 6 *.)' Ð^""" ("0çr¡¡-' (6 *,(t) - 6 ^.) (4.e)
t-1

4.5 Summary

In this chapter, a novel associatiorr metric for track association based on a model of the

intermodal vectors is presented. The association metric is a tool for estimating the probability

that a pair of tracks are due to a common target. Since the components of the difference in

multimode radar measurements are correlated significantl¡ we propose an association metric

which can exploit the correlation in the difference components: the Mahalanobis distance

(M-distance). The parameters of the M-distance, the estimated disparity vector â-,, and its

covariance matrix Ð*n are riodelled as functions in the radar measurement space.

The proposed metric is con-rpared to altelnative, heuristically chosen methods simila¡ to

those previously proposed. The success of the proposed metric is demonstrated for both

easy association scenarios and diffrcult association scenarios. The proposed metric provides

better discrimination between pairs of associated tracks and pairs of non-associated tracks

than the alternative, heuristicaliy chosen metrics. For the data set in the demonstration, no

errors result from this proposed metric. The proposed association metric is not as sensitive

to choices in decision threshold as the alternative metrics.

The fundamental difference between the proposed metric and the alternative metrics is that

the proposed metric uses prior knowledge to estimate the distributions of intermodal vectors.

The success of the proposed metric is due to the incorporation of a model of the multimode

propagation. The alternative association metrics, by comparison, do not incorporate a

propagation model, and we demonstrated that these metrics perform significantly worse.

Finally, in section 4.4, we proposed three ways of computing cumulative association

metrics. The proposed associal"ion metric performs well on one dwell (see section 4.3.3).
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However, we anticipate that a cumulative association metric, based on several dwells, will
enhance the discrimination ability of the association metric, and hence the performance of

the entire track association syslem. To maintain focus on the track association system, a

demonstration of cumulative association metrics is out of the scope of this thesis.
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Modelling the disparity vector

5.1 Introduction

The argument for modelling the irltermodal disparity function (which we refer to as the

disparity function), which defines the intermodal disparity field (which we refer to as the

disparity field), appears in section 3.3.4. In this chapter, we introduce three techniques for

modelling the disparity functiorr l"hroughout the radar measurement space. Samples of a

simulated disparity field typical ol those to be modelled are shown in figure 5.1. There are

two ionospheric layers present in the sirnulation; the E layer with a virtual height of 100km,

and the F layer with a virtual height of 250km. Figure 5.1 shows the multimode detections at

a set of grid-points throughout the radar coverage. The set of four detections for a common

target are connected for clarity, and the connecting lines form a zig-zag pattern for each

target. The vertices of each zrg-zag pattern correspond to the four detections, and the edges

correspondtothreedisparityvectors. Infigure5.2,weshowtheazimuthaldisparitybetween

modes EF and FE as a function of the radar measurements range and azimuth for one mode.

The radar measurements correspond to one mode of the pair detection, which we arbitrarily

choose to be the FE mode.

One important aspect of all three techniques presented in this chapter is that the modelling

of the disparity function occllrs in the radar measurement space. We choose to model in the

radar measurement space because the rnultirnode data is observed in the radar measurement

space, and the correspondence to the geographical space can only be crudely estimated. It is

important for the reader to note tlÌat any point fixed in the radar measurement space is not

fixed in geographical space chre to the variability of the measurement transform.

Note that the disparity field behveen modes m and n is defined by the disparity function

d*n. We denote our estimate of the disparity function by d^,. The three techniques

demonstrated in this chapter are illustrated for a generic component of the disparity field;

the specific components of the disparity field can be treated analogously. V/e denote the lcth

component of the estimated disparity function by d^,,n(y), which is a function of the radar

measurements, such as range, azimuth and Doppler, denoted by the vector y.

We explain how each technique models the disparity function as a linear combination of
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basis functions in section 5.2. The fìrst technique represents d-, as a linear combination of

discrete cosine functions, and is described in section 5.3. The second technique represents

ã**by basis functions determinecl via principle component analysis (PCA), and is described

in section 5.4. By contrast, the Iìrst technique represe.rts â-,, with analytical functions,

whereas the second technique represents ã^n at discrete locations with empirical vectors.

The third technique combines the strengths of each of the flrst two techniques by analysing

basis function coefficients via PCA; this technique is presented in section 5.5. A limited

demonstration of each of the three techniques is presented in section 5.6. For each of the

three techniques presented in sectiorìs 5.3,5.4 and 5.5, the estimated values of d-,(y) are

denoted ¡V åf;(v) , ã"##(v) and d';7$), respectively. A comparative study of the three

techniques, in which ã'å:"(Ð, ãf:::(Ð ana ên;7$) are compared to the actual values of
d^"(y) appea.rs in section 5.7. Finally, we sulnmarise and discuss the important aspects of
this chapter in section 5.8.

5.2 Modelling with basis functions

Each of the three techniques introduced in this chapter is illustrated modelling the disparity

function d*",*(y) as a linear combination of basis functions. 'We denote a set of /ú basis

functions in the radar measurement space by

{To,Tt,...,Tnr}.

The linear combination of basis Iìurcl"ions for modellingã^*,n(V), adopted by all of the three

techniques proposed in this chapter is forrnulated as

¡tr

å,,,,,,*(y) : t or¡T ¡(y), (5.1)
l:o

where each a¡¡ is the coefficient of the j¿h basis function T; (V).

If the disparity function component d*n,k is to be estimated from only p multimode

samples, then only p basis functior.l coefficients can be determined. Hence it is important to

represent the estimated disparit y ã,,n,* in terms of a few basis functions. The criterion for
finding ã^*,r(y) is to minimise the expression

r 
l(â-" of v) - d**,*{vl)']

with a limited number of basis functions. Consequently, we determine the proportion of the

disparity field's total spatial vari¿rtion represented by each basis function. We refer to the

basis function which accolutts for the most spatial variation as the dominant basis function.

Vy'e choose the set of basis lincLions so that the mean squared error between a combination
of p basis functions and the cÌispririty function is minimised. The basis functions are the first
p functions, in terms of dominance.
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5.3 Modelling via Cosine Functions

In this section, we introduce a technique for rnodelling the disparity using a heuristically

chosen set of basis functions. The choice of basis functions will depend on the data used,

and any modelling must be performecl with siniulated data since there is no suitable data

publicly available. We avoid a rigorous study into the choice of basis functions, since it
would have only limited value ou the simulated data. Instead, we choose a set of basis

funcúons from a visual inspection of a typical disparity field, such as the one in figure 5.1.

The most noticeable feature of figure 5.1 is the component of the disparity field corresponding

to the azimuthal disparity A.tl, since it exhibits the maximum amount of variance throughout

the field. Furthermore, A,A exhibjts a symmetry about bore-sight, which is apparent from

figure 5.1, but glaringly obvious in lìgure 5.2,

From our observations, we choose the cosine functions [1] of the discrete cosine transform
(DCT) as the basis functions. Hence we refer to this technique as the cosine technique. From

a visual inspection of the field it is appar'ent that most of the spatial variation of the disparity

field might be represented by a few of the low frequency cosine functions; thus the cosine

functions seem to be a good choice, heuristically speaking. However, there may be other

sets of basis functions which are lnore suitable because they can express the disparity field

in terms of fewer basis functions. The cosine functions are commonly used as functions of
a single variable, in which case the j¿i' cosine function, with 7 a non-negative integer, is

denoted þ¡(y) and formulated tl.rtrs:

ó¡(y) : cos(7y),

where the variable y is normalised to a range between 0 and ø. The first basis function covers

half the period of the cosine function, and subsequent functions cover multiples thereof.

Bases are also defined for cosine functions of more than one variable. For instance, the

widely used JPEG image compression standard represents an image in terms of the two
dimensional (2D) cosine functions 1411.

For simplicity, we represent only two dirnensions of the disparity vector function using

2D cosine functions, but an extension to higher dimensionality is trivial. 'We 
denote the 2D

basis functions of equation (-5 . 2) by O ¿¡ (" , y ) . The 2D cosine functions are defined as the

multiplicative combination of two lD cosine functions; thus

Q¡¡(yt,yz) : ó¿(yr)ó¡(yr)
: cos(iy1) cos(jy2).

The kth component of the esl-imatecl disparity function ã*n,t"(yt,fz) is then modelled as

a'.,:,:,,r(tLr,rr) : btbt a*¿je¿i(ar,yr) (5.2)
i=0 j:0
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,lV1-1 ,nl2-1

D Ð oro¡óo(vt)ó¡(vz),
i:0 j--0

where a¡¿¡ denotes the coefficient of the 2D basis function O¿¡, used to representfunction

ãni,r, and ¡ú and Äb denote the dimensions of the set of 2D basis functions.

Normalisation

The chosen basis functions, the cosine functions, operate on angles (in radians) between 0

and r radians. Hence the choice of basis functions requires that the radar measurements be

normalised to this range.

In all simulations of this chapter, the slant range -rB" lies between 2500 and 5000 kilometres,

and the apparent azimuth A" lies between -600 and +600 milliradians. We thereforenormalise

-R" and A" to normalised v¿ilues (in raclians):

Jì¡¡" zr(R"-2500)
2500

?r(,4,+600)
't200

(s.3)
At¡s

5.3.1 Summary

A technique is proposed for rnoclelling the disparity function as a linear combination of
heuristically chosen basis fïnctions. We choose the set of basis functions to be the cosine

functions.

5.4 Modelling via Principle Component Analysis

In this section, we introduce a technique for modelling the disparity field via principle com-

ponent analysis (PCA). By contrast to the technique introduced in section 5.3, this technique

determines the model from ernpirjcal data, and hence is referred to as the empirical tech-

nique. The empirical technique is inspired by the use of PCA in meteorology for modelling

the field of a meteorological parameter; such use of PCA is described in section 5.4.1. The

application of PCA for rnodelling [he disparity function is proposed in section 5.4.2. Finally,

we discuss the merits of this proposed technique in section 5.4.3. A limited demonstration

of the proposed technique appears later in the chapter, in section 5.6.2.

5.4.1 PCA for meteorological modelling

Principle Component Analysis (PCA) is an established tool in meteorology for describing the

spatial variance of a meteorologicll parameter in a condensed form t251. A meteorological

parameter, such as pressure or tenÌperature, is observed (i.e. measured) at several weather

stations. These stations simull"aneously measure the meteorological parameter at regular time
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intervals. A set of simultaneous noasurements from the stations constitute an observation

of the spatial field of the meteorological parameter, at discrete locations. The field varies

from observation to observatiorr, since the parameter varies over time. PCA decomposes the

sequence of spatial fields into ¿r set of eigenvectors, ordered by the amount of spatial variation

they represent. Each obselvation of the spatial field can be represented by a combination of

eigenvectors, which are found via PCA. The merit of PCA in meteorological modelling is that

the bulk of the spatial variance in the field of a meteorological parameter can be represented

by a linear combination of just a ièw eigenvectors.

We form a matrix, termed the sample matrix. A row of the sample matrix contains a

set of measurements of the mel-eorological parameter, made simultaneously; there is one

measurement for each weather sLation. Each column of the sample matrix contains all

the measurements at one weather station. In the sirnplest case of the PCA, each set of

measurements receives equal zrltention, which corresponds to the case where the evenly

spaced measurement intervals.

Consider the case in which the meteorological parameter has been measured simultane-

ously at the p weather stations oll ??, occasions; n is rnuch greater than p. The sample matrix

X is (n x p), with n observations on the p variables; thus

ru1(1) -rQ)
ut1(2) *r(2)

trO)
-r(2)x

tu1(rz) zu2(t-t) -r(r)

where tr.'¡ (i) is the ith measurelner-rt at the j¿h weather station. 'We perform PCA by determin-

ing the eigenvectors, or principle cornponents (PCs), of X"X. The eigenvectors of X"X are

sometimes referred to as the entpiricct.l orthogonal functions (EOFs) in the meteorological

literature [31].
The singular value decornposition (SVD) is a computationally efficient way to compute

the eigenvectors of X"X. Another virtue of the SVD is that it provides a useful means of
representing the results of the PCA, in the form of the eigenvectors. The data matrix X is
decomposed via the SVD as follows

X: IJLVT, (5.4)

where V is a (p , p) matrix with orthonormal columns so that V"V : In (In being the

identity matrix of dimension rz); V contains the eigenvectors of X"X. L is a (" , p)

matrix, containing the square roots of the eigenvalues of XTX. U is a (n x n) matrix, also

having orthonormal columns. Each row corresponds to an observation of the spatial field,

and contains the coefficients for the linear cornbination of eigenvectors which represents that

field.
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The eigenvectors of X"X, contained in the columns of V each represent an aspect of
the spatial variation of the meteorological pararneter. The simultaneous measurements of the

meteorological parameter at the we¿rther stations, denoted by the (1 x p) row vector w, are

representable as a unique line¿rr combination of the columns of V; thus

n

w : t a¡vl, (s.s)
j=7

where the (p x 1) vector vJ denotes the j¿å column of V, and a¡ is the corresponding

coefficient in the linear combination

5.4.2 Modelling the disparity function via PCA

We derive inspiration frorn the ¿rl.rove-mentioned use of PCA in meteorology to develop a

technique for modelling the principle components of spatial variation in the disparity field.

The disparity field is analogous Lo the meteorological field of section 5.4.1; the spatial

variation of the disparity field is rriodeiled in the radar measurement space using PCA. In

our analogy, the weather stations correspond to fixed locations in the radar measurement

space, which we term grid-points, and which are, in general, not uniformly spaced. We

require measurements of the disparity function at fixed points, also termed grid-points,

as an intermediate result lor estirrating the disparity at other locations; however, these

measurements are not available. Therefore, we estimate disparity measurements at these

locations.

The technique proposed in this section represents d^, by exploiting empirical data of
the disparity field; hence we ref-er to this technique as the empirical technique. An outline

of the technique follows: Firstly, we obtain observations of several disparity fields. Then

we interpolate the observations of c¿rch field to fixed grid-points. We then apply PCA to the

disparity fields at the grid-points. The disparity function is modelled at the grid-points as a

linear combination of eigenvectors. These eigenvectors are basis functions, albeit discretely

sampled in the radar measurelnerlt space. Each basis function represents some of the disparity

function's spatial variation. The eigenvector corresponding to the largest eigenvalue of X"X
accounts for the maxirnum spzitial variance in the disparity field.

Simultaneously observed nultirlode patterns are samples of the disparity field. These

samples are rarely available ät the rcquired grid-points, and hence the disparity function must

be estimated at these grid-points. We estirnate the disparity function at the required grid-

points by extrapolating from, and inLerpolating between, the available samples of the disparity

field. We make an assumpLion about the form of the disparity field, since we lack accurate

ionospheric information for esl"imaLing it. Any such assumption is arbitrary, so for the sake

of simplicity, we assume that the J'orm of the disparity field is maximally smooth between

the available samples. The criterion for maximal smoothness in the estimated disparity field
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is the minimisation of the second derivative with respect to the spatial coordinates. The

interpolation method estimates the required disparity function component d^n,k at the p

grid-points using a maximally smooth interpolation function. Details of the interpolation

method, which employs biharmonic splines to achieve the criterion for maximal smoothness,

are not relevant to the immediate discussion, and therefore do not appear here; instead we

refer the interested reader to 1421.

We form a data matrix X, analogous to the meteorological data matrix X of section 5.4.1,

for each component of the disparity fleld. We denote data matrix for the årå component of the

disparity field by X¡,. The data matrix X¡ is (n x p), with n estimates on the p variables. The

variables a¡e the estimated values of the disparity funclion at fixed grid-points in the radar

measurement space. Stated explicitly, the p variables have been simultaneously estimated at

all grid-points, on n occasions. Each column of the data matrix X¡ contains all the estimates

of one variable, and each row of X¡ contains one estimate of all the variables; thus

*or(l)

Xr: *rr(2)

*ot(n) *rr(r) m*p(n)

where n'Lkj(i) is the estimate of the k¿å disparity function component d^n,k, on the i¿å

occasion, at the 7úå grid-point, measured about its mean rn¡¡. Thus the temporal variation in
the disparity field is represented in the columns of the data matrix, while the spatial variation

is represented in the rows of the data matrix.

By analogy with equation (5.4), we perform PCA via the SVD on each data matrix X¿.

The decomposition is formulated as

X¡ : TJ kLkVT, (5.6)

where V¿ is a (p x n) matrix, having orthonormal columns; these columns contain the

eigenvectors of XflX *. Lt, is a (n x n) diagonal matrix, containing the square roots of the

eigenvalues of XflX¡. U¡ is a (n x n) matrix, also having orthonormal columns, whose

ro'ws contain coefficients for the eigenvectors for each observation.

The eigenvectors are contained in the columns of V¡. These eigenvectors form a basis

which can represent different disparity fields with a different set of coefficients. We denote

the jth columnofV¡bythe(pt 1) vectorv¡i. Theiúåelementof v¡r,denotedu¡¿¡isthe
value of the jth eigenvector at the ith grid-point. We denote the radar measurements of the

i¿ä grid-point by yl. We estimate the disparity function d-,,¡(y¿) at the i'À grid-point by a
linear combination of the n eigenvectors; thus

*or(I) *rr(l)
**r(2) *or(2)

d"#írú,): t aju*;j, (s.7)
j=l
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where a¡ is the coefficient of the jrñ eigenvector.

The coefficient of the dominant eigenvector (that is, the eigenvector which accounts for

the most spatial variation) can be determined from just one sample of the corresponding

disparity function. However, if we have q samples, we can obtain the coefficients of the q

dominant eigenvectors. Note that the coefficients change if more samples are available.

We estimate the disparity function component d^n,k at the grid-points as a linear com-

bination of the eigenvectors. The estimated disparity function êl'#:,r0¡ at a location y
in the radar measurement space, is obtained by interpolating the values at the grid-points

y¿Vi €. 1...p. We denote the function which is the biharmonic spline interpolationl42l of

the jth eigenvectorby r'¡,¡(y), *d express it thus

r o¡(v) : F(vn¡,v). (5.8)

.F is the interpolation funcúon which uses the elements of vector v¡¡ as the pivotal points

[26]. The inte¡polated eigenvectors are continuous functions in the rada¡ measurement space.

We insert equaúon (5.8) into equation (5.7) to obtain a general expression for the estimated

disparity function ã^^,*(y) at location y in the rada¡ measurement space; thus

n

ã"#,rØ: t a¡lt,¡(y), (s.e)
j=l

with the coefficient a¡ the same as in equation (5.7)

5.4.3 Summary and Discussion

In this section, we introduced a technique for modelling the disparity function as a linear

combination of empirically determined basis functions. Hence we refer to this technique as

the empirical technique. Our inspiration for this technique comes from the field of meteoro-

logical modelling, which is discussed in section 5.4.I.In section 5.6.2, we demonstrate that

a significant proportion of the spatial variation in the disparity function can be represented

by a few empirically determined functions.

The empirical technique has an apparent advantage over the cosine technique, in that

it is able to represent the majority of the spatial variance in the disparity function by a

smaller number of functions. This advantage is demonstrated in section 5.7. The empirical

technique estimates the disparity function by determining a smaller number of coefficients;

thus requiring a smaller number of samples.

The assumption about the form of the interpolated disparity field is arbitrary and thus is

the most obvious weakness of this technique. While maximal smoothness is an adequate

choice for demonstrating the empirical technique of modelling the spatial variation in the

disparity field, the choice of a maximally smooth disparity field may not be appropriate in

some circumstances. For instanca, at dawn and dusk there is a significant change in the
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incident solar radiation (these conditions are referred to in the literature as the dawn and dusk

terminators), and therefore there is a change in ionospheric propagation conditions. There

may be better choices for the form of the disparity field, but an assumption is necessary to

demonstrate the technique and the emphasis of this work is on the modelling technique and

not the assumption of the form of the disparity ñeld.

5.5 Combined model of disparity vectors

In this section, we discuss limitations of the techniques proposed in sections 5.3 and 5.4.

A third technique is proposed for modelling the disparity function which incorporates the

strengths of both previous techniques, without the weaknesses of either. We refer to the

technique introduced in this section as the combined technique, since the technique com-

bines aspects of both of the previous techniques. We illustrate the combined technique in

section 5.6.3. Finally, in section 5.5.4, we summa¡ise and discuss the importantpoints of this

section.

5.5.1 Limitations of previous techniques

The techniques introduced in sections 5.3 and 5.4 both have obvious weaknesses. The most

obvious weakness of the cosine technique is that the basis functions a¡e arbitrarily chosen.

The most obvious weakness of the empirical technique is the interpolation method, which is

reliant on an arbitrary assumption: that the disparity field is maximally smooth.

Since the set of analytical basis functions is chosen arbitrarily, and the empirical functions

are determined from the data, we hypothesise that the functions of the empirical technique

represent a greater proportion of the spatial variance in the disparity field than the functions of

the cosine technique. In the section 5.7 ,we test this hypothesis by measuring the proportion of

the spatial variation in the disparity field accounted for by various subsets of basis functions.

Cosine technique

The cosine technique of section 5.3 requires a greater number of functions than the empirical

technique of section 5.4 to represent the disparity function with the same accuracy (see sec-

tion 5.7), and therefore a greater number of samples to determine the functions' coefficients.

The cosine technique's requirement for a greater number of coefficients restricts the scenar-

ios in which the disparity field can be adequately modelled by this technique, since only q

coefficients can be determined from q multimode samples.
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Empirical technique

The empirical technique represents the disparity function at a set of frxed grid-points by a

linear combination of eigenvectors. As discussed in section 5.4.3, the most significant limita-

tion of the empirical technique is its reliance upon an interpolation method. The interpolation

method uses the assumption of a maximally smooth freld, which is not necessarily justified.

Furthermore, the interpolated field based on the arbitrary assumption of a maximally smooth

disparity field may be very different from the actual disparity field.

5.5.2 The Combined Technique

We distinguish between the basis functions of section 5.3 and the basis functions of this

section: we refer to the basis functions of section 5.3 as the cosine basis functions, denoted

@: {Õ0,(Þ1,...,Õry};

we refer to the basis functions of the combined technique as the combined basis functions,

denoted

V * : {üoo, \ú6,. .., V¡¡¡}.

Note the subscript k in the combined basis; the combined basis functions are different for

the representation of each component of the disparity function. Basis function V¡¡ is the itå

basis function in the representation of the k¿å disparity function component. The idea is that

we choose a linear transformation such that each combined basis function is itself a linea¡

combination of the cosine basis functions. The change of basis, from the cosine basis Õ to

the combined basis ú¡, is a linea¡ transformation; formulated as

V*:Y*Q

where Vr is termed the transþrmation matrix. Note that the combined functions may no

longer be orthogonal.

One strength of the cosine technique of section 5.3 is that it represents the disparity

function as a linear combination of analytical basis functions. Hence we embody this

representation of the disparity function in the combined technique. However, we aim to

represent the disparity function in terms of fewer basis functions than are required by the

cosine technique. Consequently, the combined technique should have basis functions which

a-re more representative of the disparity field than the basis functions of the cosine technique.

There is a high degree of correlation between the cosine basis function coefficients in

representations of different disparity fields. The proportion of the total spatial variation which

can be represented by one basis function of the combined technique is greater than 957o. We

refer the interested reader to section 5.6.3 for verification of this statement. One strength of
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the empiricai technique of section 5.4 is that it models the spatial variation in the disparity

freld from empirical data. We derive inspiration from the empirical technique in developing

a method of determining the transformation matrix V¡i we use PCA.

5.5.3 Modelling via PCA on basis function coeffrcients

Consider the coefficients corresponding to the first p cosine basis functions selected (by

dominance), denoted akt, Vj - 1...p. We refer to a row vector of cosine coefficients,

used to represent the disparity function by the linear combination of equation (5.2), as an

obseryation We denote the i¿å observation of the variable a¡¡ b! a¡¿¡. Note that here we

refer to the cosine basis function coefflcients as variables, since they are the quantities which

vary from observation to observation.

We determine p cosine coefficients of n previously observed disparity fields. 'We form a

n x p matrix, denoted A¡,, containing the n observations of the p variables;

crktt

clkzt

dklz

anzz

dktp

dkzpAr:

Crknl dknz Q,knp

where each row of the data matrix contains one observation of the variables from historical

data.

The transformation matrix V¡ contains row vectors of cosine coefficients. The i¿å row

contains the cosine coefficients for the i¿å combined basis function ü¡¿. We determine matrix

Vr by performing PCA on the observation matrix A¡, which contains row vectors of cosine

coefficients. Each row vector of A¡ contains the cosine coefficients corresponding to one

observation of the ,k'å disparity function.

The coefficients which account for the maximum va¡iation in the cosine basis func-

tion coefficients are the elements of the principle eigenvector (i.e. the eigenvector which

corresponds to the largest eigenvalue) of the sample covariance matrix.

We decompose A¿ via the SVD to find the eigenvectors of AflA.¡; thus

At : UÈLeVf (s.10)

where IJ*, L* and V¿ are analogous to equation (5.4).

The principle linear combinations of cosine basis functions a¡e contained in the columns

of V¿. Hence V¡ is the transformation matrix referred to in section 5.5. We denote the

column of V¡ corresponding to the j'h largest singular value, i.e. the jrå largest element of
L*, by the (p x 1 ) vector v¡¡ . The column of V6 conesponding to the largest element of L¡
represents the maximum variance in the cosine basis coefficients.
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The functions of the combined basis úr are thus represented as

66

p

ü¡¡(y) : D ru¡O;(y), (s.1 r)

where u¡;¡ is the element of the jtà principle linear combination corresponding to the irÀ

cosine basis function.

We represent the modelled value of the function â-,,¡(y) as a linear combination of the

n combined basis functions:

t- I

n

ê1",:T,r(v) : Ð ,o¡ ü¿i (y) (5.12)
j=L

where ø¡¡ is the coefficient corresponding to the jÚÀ combined basis function. 'We express

ã:H,u in terms of the basis Õ by inserting equation (5.11) into equation (5.12);

n

tt";T,o$) : D u ki Drø¡ e¿(y) (5.13)
j--l i=0

5.5.4 Summary and Discussion

The technique of section 5.3 represents the disparity function analytically as a linear com-

bination of basis functions, but has a disadvant¿ge: it lacks a mechanism for incorporating

historical data. On the other hand, the technique of secúon 5.4 incorporates historical data via

PCA, but it also has a disadvantage: the form of the disparity field between the grid-points

must be arbitrarily chosen.

The technique of section 5.5 combines the advantages of the methods presented in

section 5.3 and section 5.4, while avoiding the major disadvantages of both: a function

which is defined analytically over the radar coverage but which exploits a lot of historical

data.

5.6 Demonstration

Vy'e demonstrate each of the proposed techniques of sections 5.3,5.4 and 5.5 in sections 5.6.1,

5.6.2 ønd 5.6.3, respectively. In these demonstrations, we measure the error in the estimated

disparity function ã^n,* when a limited number of basis functions are available. The demon-

strations in this section a-re not intended to be comparative; a comparative study of the three

techniques appears in section 5.7.

To reduce the complexity of the demonstration and the comparison in section 5.7, we only

consider the range component of å-,,,¡, denoted AA, and the azimuthal component, denoted

AA. These components are the differences in rada¡ measurements of a pair of multimode

detections from the same target. We simulate the corresponding radar measurements: the
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delay, or slant range, denoted Æ", and the apparent azimuth, denoted ,4", for the multimode

detections of each target, using the propagation rules in Appendix A. The Doppler data

is the most accurate in real data, and also the best discriminator between associated and

non-associated pairs of tracks. Therefore we anticipate that all methods will perform better

with the inclusion of Doppler data.

5.6.1 Cosine technique

As a demonstration of the technique of section 5.3, we model components of the disparity

function as a linea¡ combination of the functions with the greatest coefficients. These

functions a¡e also referred to as the dominant functions. The first stage of the cosine technique

is the determination of the dominant cosine functions. The discrete cosine transform (DCT)

[1], is a standard technique for determining the coefficients of discrete cosine functions, and

we employ this transform for such purpose here. To determine the dominant discrete cosine

functions, we apply the DCT to a typical disparity field. Note that the DCT operates upon

an evenly spaced grid of data. Therefore we generate a grid of data of a typical disparity

field. The typical disparity field is obtained either from historical data, or via simulation. We

demonstrate the latter case (of a simulated disparity field) here.

The azimuthal component of the simulated disparity field, shown in figure 5.2, varies with
respect to both the range and azimuth radar measurements, whereas the range component

varies only with respect to range. For demonstration, we apply the DCT on the more

'interesting' of the two components considered, which is the grid of data representing the

azimuthal component of the disparity field. We obtain the coefficients of the basis functions

by applying the DCT to the grid of simulated data in figure 5.2. The corresponding DCT

coefficients are shown in figure 5.3(a). Note that the DCT coefficients corresponding to the

even azimuthal functions ¿Ire zero, because the azimuthal disparity is odd symmetric about

bore-sight. The coefficients which are even in azimuth are all zero. For clarity, we display

only the odd coefficients of the DCT in figure 5.3(b). Note that the greatest coefficients

are those corresponding to the low frequency cosine functions, and size of the coefficients

diminishes with an increase in frequency. This property is invariant as the virtual heights of
the ionospheric layers vary in the simulation.

The dominant functions apparent from frgure 5.3(a), and figure 5.3(b) are (in order of
significance):

Qrc(yt,yz) :
Qn(yt,yz) :
Qzo(at,yz):

Qn(yt,yz) :

cos(y1)

cos(y1 ) cos(y2)

cos(391 )

cos(y1) cos(2y2)
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Qn(yt,yz)

Qzt(at,az)

: cos(y1) cos(3y2)

: cos(3y1) cos(y2)

The two dominant cosine functions are the two lowest frequency functions: Qrc(At,yz),

which is simply cos(y1) and Õ11(y1, Uz), which is cos(y1)cos(y2). The magnitudes of these

two functions are plotted with respect to range and azimuth in figures 5.4 and 5.5, respectively.

In order to demonstrate the proportion of the field representable by the dominant basis

functions, we demonstrate a linear combination of the first two dominant functions. The

linear combination of the two functions is formulated thus:

d,i"",o@r,yz) : A¡roÕro(yr ,yz) * Antót(at,yz).

We combine these functions in the ratio determined by the DCT of the simulation in figure 5.2,

in which case A*ro : 3607 , and A¡11 : 1624. The AA component of the disparity function

resulting from the linear combination of the 2 dominant basis functions is shown in figure 5.6.

The error between the original field of figure 5.2 and the modelled field of figure 5.6 is

displayed in figure 5.7.

In addition to the combination of two basis functions, we also demonstrate the proportion

of the field represented by a linear combinaúon of the four dominant functions. The coeffi-

cients for the linear combination are as determined by the DCT of the simulation in figure 5.2;

namely, Ano : 3607, A*n : 1624, A*n : 520 and Amz : 439. The AA component of

the disparity function resulting from the linear combination is shown in figure 5.8. The error

between the original field of figure 5.2 and the modelled field is shown in figure 5.9.

It is apparent that a linea¡ combination of the two dominant basis functions represents a

significant portion of the azimuthal component of the disparity field. The inclusion of the

next two functions, by dominance, in the linear combination improves the approximation

slightly.

5,6.2 Empirical technique

In section 5.4 we introduced the empirical technique, and, in this subsection, we perform

a demonstration of this technique. We demonstrate the ability of the empirical technique

to model the estimated disparity function ã^n,k, which defines the krå component of the

disparity field. Furtheffnore, we demonstrate that it can describe the majority of the spatial

variance of the disparity field in terms of just a few eigenvectors.

We determine the eigenvectors for the azimuthal disparity AA and the range disparity

A,R from a set of simulated data. To generate the data set, our simulation contains two

ionospheric layers; the E layer and the F layer. We denote the heights of the corresponding



5.6 Demonstration

4000
otta
.=g 2000

-4
-1 000

1020 ¡

í,It
a
=c
c,)
(E

=

E)
(¡t

=

4000

2000

00
0

00
0 10

5
10

5
1020 i

i

o2
E
J

Ëo
ct)
(E

=-2

(a) All cosine coefñcients. (b) Odd cosine coefûcients.

Figure 5.3: Coefficients of 2D DCT, applied to AA grid.

cos(x)

x 10-3

4

3000

Azimuth 1000 2000 Range

4000

69

Figure 5.4: The dominant basis function



5.6 Demonstation

0.01

o 0.005
E'
J

Ëo
ct)
G

= -0.005

cos(x)cos(y)

3000

Azimuth 1000 2000 Range

Figure 5.5: The 2"d basis function, by dominance

-0.01
-1 000

4000
0

10



5.6 Demonstration

20

0

-40
-1 000

40

20+r
J

E
N

(!
=oo

5000
0 4000

Azimuth 1000 2000
3000

Range

Figure 5.6: L^A modelled by 2 basis functions.

ll

a



5.6 Demonstration

10

0

-10

-20
-1 000

5000
4000

Azimuth 1000 2000
3000

Range

Figure 5.7: Difference between actual field and field modelled by 2 basis functions

72

20

¡r
o
L
b
t¡J

0



5.6 Demonstration

20

-40
-1 000

40

20

0

.C+t
¿
F
'ñ

(E

=oo

5000
0 4000

Azimuth 1000 2000
3000

Range

Figure 5.8: AA modelled by 4 basis functions.

73



5.6 Demonstration

10

-10
-1 000

5000
4000

Azimuth 1000 2000
3000

Range

Figure 5.9: Difference between actual field and field modelled by 4 basis functions

74

5

0

5

tr
o
L
L

IJJ

0



5.6 Demonstration 75

virtual reflecting layers by variables å6 and åp, rospectively. The variables hø and åp take

on values which represent a wide range of ionospheric conditions; these values lie within the

bounds specified by [32]. The values of hs and å¡ a¡e selected from the pair of sets:

høe

hpe

A"€
A"e

{90, 94, 98, 102, 106, 1 10}

{200, 240, 280, 320, 3 60, 400}

(in kilometres) and

(in kilometres).

(s.14)

(s.1s)

Note that we do not impose any interdependence on the variables; we perfonn the simulation

for every combination of the variables åø and hp. T\e total number of such combinations is

Cf x Cf : 36. We simulate ten scenarios of each combination of åE' and åp, making a total

of 360 scenarios. Each scenario contains ten targets, and each target has a random range and

azimuth, chosen from uniform distributions within the following range of values:

800< R

-800 < A

< 2800 (in kilometres) and

< 800 (in milliradians),

where .R and A denote the actual range, and actual azimuth of a target, respectively. Thence

we calculate some radar measurements for each target: the slant range -R" and the apparent

azimuth ,4'", and thence the azimuthal disparity AA and the range disparity Ar?. 'We

demonstrate the modelling of the disparity field between the pair of modes EE and EF, since

the disparity døø,rr between modes EE and EF has both an azimuthal component AA, and

a range component A,R.

The empirical technique operates on values of the disparity field at fixed locations. Yet

the disparity field will rarely, if ever, be available at these locations. Hence we inteqpolate

the components of the disparity vector, AA and A-R to fixed locations, referred to as grid-

points, in the radar measurement space. The interpolation scheme is the same as that used

in secúon 5.4.2 (see t42l). The grid-point locations may be arbitrarily chosen, but for the

sake of simplicity, we choose the grid-points to be in an evenly spaced, rectangular grid in

the radar measurement space. The grid-points take every combination of ,R" and A" from the

following sets:

{2500, 27 50,3000, .

{-600, -500, -400,

(in kilometres) and

(in kilometres).

,5000Ì

.,600Ì

(s.16)

(s.17)

We have 11 values of range, and 13 of azimuth; thus the total number of grid-points is

11 x 13 : 143. We estimate the azimuthal disparity at the grid-points, using the azimuthal

disparity of every target in the scenario. 'We 
use the interpolation function "F (introduced in

equation (5.8)) to estimate the azimuthal disparity at grid-point i; thus

AA(v,) : F(T¿,.¿.,y¿), (5.18)
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where T¡t is a 10 x 3 matrix, containing the pivotal points for the interpolation. Each row

of Taa contains the relevant radar measurements for one target: the delay .B", the apparent

azimuth .4,, and the azimuthal disparity LA. Similarly, we estimate the range disparity at

grid-point i thus

AA(vt) : F(Tan, Y;). (5.19)

T6¿ is a 10 x 3 matrix of the pivotal points for the interpolation. Each row of T4¡ contains

the relevant radar measurements for one target: the delay Æ", the apparent azimuth ,4", and

the range disparity A,R.

We form a sample data matrix for the azimuthal disparity, denoted Xa¿, and another

sample data matrix for the range disparity, denoted Xan. Each sample data matrix contains

360 observations of the 143 variables; each observation is a scenario and each va¡iable is the

estimated disparity at a grid-point. We perform the PCA on sample data matrices X6¿ and

Xa.R, using the SVD. We demonstrate the empirical technique by displaying the eigenvectors;

the principal eigenvector of the azimuthal disparity is shown in figure 5.10. Note that the

form of this eigenvector closely resembles the actual field of the azimuthal disparity, shown

in figure 5.2.

To measure the success of the modelling demonstration, rile define (ro as the proportion

of the total spatial variation accounted for by the first q (of n) eigenvectors, calculated as a

percentage of the total variation; thus

(*o: **, (s.20)
L¡=t ^ki

where )¿, denotes the 7tå diagonal element of matrix L¡, which is the square root of the

eigenvalue corresponding to eigenvector v¡i of the matrix XfXu. Note that the expression

in equation (5.20) is a measure of the quality of the error fit at the observation points; it is

not intended as an absolute guide to the intrinsic quality of the estimated disparity function.

The proportion of the total spatial variation accounted for by the first eigenvector, shown

in figure 5.10 is Ç¿,¿t : 46.7Vo (from equation (5.20)). For comparison, rwe show the 2nd

eigenvector of the azimuthal disparity in figure 5.11. The proportion of the total spatial

variation accounted for by a linear combination of the first 2 eigenvectors is (a¿2 : 58.0Vo.

The eigenspectrum of the sample covariance matrix is also of interest. 'We can inspect

the relative 'significance' of the eigenvalues l¡,¿Vi. The eigenspectrum of XIX¡ for the

azimuthal disparity is shown on a logarithmic scale in figure 5.I2. The values of (a¡¿ are

computed via equation (5.20), and appear in table 5.1 for several values of i.
'We show the first and second eigenvectors of the range disparity in figures 5.13 and

5.14. The eigenspectrum of the corresponding Xf Xn matrix is shown on a logarithmic scale

in figure 5.15. Note that the first eigenvalue is significant, but thereafter the eigenvalues

diminish quickly. The first eigenvector accounts for (anr : 93.6Vo of the total spatial
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Components i:l i:2 i:5 i:10
(¿,.q.; 46.7 Vo 58.0 7o 67o 92.1Vo

(¡a¿ 93.6 7o 96.2 7o 98.3 7o 99.3 7o

Table 5.1: Proportion of total spatial variation of eigenvectors

variation, whereas the first two eigenvectors account for (a¡2 : 96'2vo of this va¡iation' The

values of (¿n¿ are computed via equâtion (5.20), and appear in table 5.1 for several values

of i.
'We combine the azimuthal disparity and the range disparity of flgures 5.10 and 5.13 to

figure 5.16. In this figure, we illustrate the direcúon and relative magnitude of the disparity

throughout the radar coverage. For the sake of clarity, we have only displayed the disparity

at half of the grid-points.

5.6.3 Combined technique

In section 5.5 we introduced the combined technique, and, in this subsection, we perform a

limited demonstration of this technique. The purpose of this demonstration is to measure the

error in the eslimated disparity function ã^n,* when a limited number of basis functions are

available. We perform the DCT on grids of simulated data, in a similar way to the technique

of section 5.3. The cosine basis funcúon coefficients, the cosine function coefficients, for

the grid of data are obtained by the transform. We remind the reader that we refer to these

coefficients as variables, and we refer to an instance ofthese variables as an observation (see

section 5.5.3).

Since the purpose of this demonstration is to measure the error in the estimated disparity

function with respect to the number of basis functions used, we do not want the basis functions

themselves to introduce an effor. Therefore we allow the basis functions to be as accurate as

possible, by computing them from a dense source of data.

To obtain the cosine coefficients for this demonstration, we require a grid of samples of

the disparity field. Since we do not have a way of directly computing the disparity function

at the grid-points, we obtain the values of the disparity field via simulation.

We simulate a high density of targets in the ta-rget space, and calculate the radar measure-

ments, and thus the disparities, of the corresponding multimode detections. 'We interpolate

the dense field of measurements to obtain the values of the disparity field at the grid-points.

Figure 5.2 shows a typicat grid of data for the azimuthal component AA of the disparity field.

Some aspects of the simulation in this section are the same as the simulation in sec-

tion 5.6.2. We simulate two ionospheric layers; the E layer and the F layer. We denote the

heights of the corresponding virtual reflecting layers by variables Àø and å¡, respectively.
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As in section 5.6.2, we select the values of hB and å,p from the sets in equations 5.14 and

5.15. We simulate every combination of hs and år; 36 combinations in total.

The DCT of the combined technique operates on an evenly spaced grid of disparities in

the radar measurement space; either AA or A-R. We generate the evenly spaced grid by

interpolating the disparities corresponding to the multimode detections of simulated targets.

We first simulate a dense grid of targets in the target space. We choose a dense grid because

we want to eliminate, as near as practicable, any bias the interpolation function may introduce

to the grid of data. The grid-points take every combination of -R and A from the following

sets:

,B € {800,900, 1000, . . . ,2800} (in kilometres) and (5.2I)

A e {-800, -700, -600, . . .,800} (in kilometres). (5.22)

The total number of grid-points is 21 x I7 :357. We then calculate the radar measurements

of the corresponding multimode detections for each simulated target using the propagation

rules in Appendix A. Thence we calculate the corresponding value of the disparity function

components for each targst: the azimuthal disparity AA and the range disparity A¡?. As

in section 5.6.2, we demonstrate the modelling of the disparity function between the pair of

modes EE and EF.

The DCT of the combined technique, as implemented by the author, operates on an

evenly spaced rectangular grid in the radar measurement space. The grid-points take every

combination of -R" and A, from the sets in equations 5.16 and 5.17. To estimate the disparity

function component at each grid-point, we use the biharmonic spline interpolation, referred

to in section 5.4.2:

AA(V¿) : F(TNs,,Y¿).

Ta¿ is a (357 x 3) matrix, containing the pivots of the interpolation. Each row of T6a

contains the relevant radar measurements for one target: the delay .R' the apparent azimuth

,4", and the azimuthal disparity AA. Similarly, we estimate the range disparity by analogy

with equation (5.19).

We perform the DCT on each grid of data, and we refer to the resulting set of p coefficients

as an observation of the p variables. Each observation is stored in sample matrix A¿, which

contains n observations on the p variables. Having obtained a matrix of DCT coefficients,

we decompose A¡ using the SVD of equation (5.10). One of the results of the decomposition

is the transformation matrix V¡,.

We calculate the proportion of the variation in the coefficients accounted for by eigen-

vectors of the sample covariance matrix, using equation (5.20) to perform this calculation.

In the case of sample matrix 4a.4, the disparity field resulting from applying the inverse

discrete cosine transform (IDCT) [23] to the first PC is shown in figure 5.17. The proportion

of the total variation in the coefficients accounted for by this PC is (¡¿ | : 97 .8Vo; whereas
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Components i:l i:2 i:5 i:10
(¿,n 97.9 7o 99.9 7o 100.0 7o 100.0 Vo

(an¿ 99.3 Vo 100.0 Vo 100.0 Vo 100.0 Vo

Table 5.2: Proportion of vadation of coefficient eigenvectors.

the first two PCs account for a total of ett2 : 99.9Vo. The disparity field resulting from

the IDCT on the second PC is shown in figure 5.18. table 5.2 contains the proportion of the

total variation in coefficients accounted for by a number of principle components, calculated

as a percentage of the total variation. The eigenspectrum of the sample covariance matrix is

shown in figure 5.19.

In the case of sample matrix AaR, the disparity field resulúng from the IDCT of the first

PC is shown in figure 5.20; this PC accounts for 99.3 7o of the total variation in the cosine

basis function coefficients. The disparity field resulting from the IDCT on the second PC

is shown in figure 5.21. The eigenspectrum of the sample covariance matrix is shown in

fr,gure 5.22

5.6.4 Discussion

The demonstration of section 5.6.1 illustrates that the disparity function ca¡ be represented

by cosine functions, which is hardly surprising. Moreover, we note that the majority of

the spatial variation of the disparity function can be represented by only a few of the low

frequency cosine functions. There may, however, be better choices of basis function. A set of

basis functions which requires fewer basis functions than another set to adequately represent

the same disparity function, is an improved choice; with fewer coefficients to be determined,

the set of basis functions can represent the disparity function in situations where there are

fewer multimode samples available.

The demonstration of section 5.6.2 contrasts clearly with the demonstration in sec-

tion 5.6.1. The majority of the spatial variation in the disparity function can be represented

by a few functions from a heuristically chosen set of basis functions (the cosine functions).

Contrastingly, the dominant basis functions of the empirical technique represent a much

larger portion of the spatial variation in disparity function. The advantage of the empirical

technique is that it can represent far more of the spatial variation of the disparity field with

less functions than the cosine technique. Nonetheless, a disadvantage of the empirical tech-

nique is its reliance on the assumption of a maximally smooth field. While a rudimentary

simulation of a disparity field may approach maximal smoothness between sampled points,

the assumption may not be justified in the case of real OTHR data.

The technique demonstrated in section 5.6.3 is a combination of the cosine technique and
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the empirical æchnique. Not surprisingly, the first eigenvector represents the majority of the

variation in the cosine function coefficients. The IDCT of the principle eigenvectors of the

sample covariance matrix are very simila¡ to the corresponding eigenvectors of the empirical

technique. This fact is not surprising, since the cosine coefficients are merely a transformation

of the data at the grid-points. The major difference between the empirical technique and

the combined technique is the function between the grid-points: the empirical technique

uses the maximally smooth interpolation function, whereas the combined technique uses a

linear combination of cosine functions. The choice of cosine functions over another set of

analytical functions is heuristic.

The cosine technique and the combined technique both use cosine functions, one expiicitly

and one implicitly. The PCA of the combined technique weights the cosine functions. The

combined æchnique produces a better estimate of the disparity function, with respect to the

spatial variation criterion in section 5.2, when the number of basis functions available is

limited.

In sections 5.6.1, 5.6.2 and 5.6.3, we demonstrated the three modelling techniques pro-

posed in this chapter. Each technique has its strengths and weaknesses, and can be tuned to

real data by changing the choice of basis functions, or, in the case of the empirical technique,

changing the choice of interpolation function. The OTHR data necessary for choosing the

basis functions does not exist publicly; therefore we do not speculate on an appropriate choice

of basis functions. However, we do discuss how these basis functions mightbe chosen: From

a choice of suitable candidates, we choose the basis functions which minimise the sum of the

squared error of the estimated disparity field at the grid-points.

5.7 Comparative study

In this section, we compare the three techniques proposed in this chapter. The techniques

are statisúcally compared for their ability to model the azimuthal component of a simulated

disparity field. Simulated targets provide sampled values of the azimuthal disparity; the

sampled values are used for determining the coefficients of each technique's basis functions.

5.7.1 Training

The training data for the statistical comparative study is exactly the same as the data used tbr

demonstrating the combined technique in section 5 .6.3 . Therefore we do not repeat the details

of the simulation here. We simulate one scenario of each combination of the ionospheric

heights in equations 5.14 and 5.15; making n : 36 scenarios in total. Each scenario provides

values of the azimuthal disparity at p evenly spaced grid-points. These values form a (" * p)

sample matrix, labelled Xa¡, containing n observations of the p grid-points. We obtain a
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similarly dimensioned sample matrix of the cosine coefficients via the DCT. This matrix is

also (n x p), containing n observations of the p cosine coefficients. For each of the proposed

techniques, we calculate the values of the top five basis functions, by dominance, at the p

grid-points. The basis functions foreach cechnique a¡edenoted T¡, i - 1...5 here.

5.7.2 Testing

To generate the set of test data for the comparative study, we choose an arbitrary but plausible

combination of the virtual heights of ionospheric layers E and .F. The values chosen are

hn : 100 and hp : 250. We then compute the value of the estimated disparity function

â-,,,0(y,) at the grid-points in the rada¡ measurement space, whose locations are denoted

V; i : L . . . p. The computed disparity function is used for comparison against the modelled

disparity functions.

The test data for the statistical comparison contains 1,000 scenarios, with 10 targets in

each scenario. The radar measurements of the FE mode of target ith are denoted x¿, ând

the corresponding azimuthal disparity is denoted AA;. To determine the basis function

coefficients, we solve the following linear system of equations in the least squares sense:

a1T1(x1) +
ø1T1(x2) +

a2T2(x1) +
alT',(x'¡\ +

l 
-\

+ a5T5(x1)

+ ø.T.lxrl
LAt
LAz

(s.23)

ø1T1(x16) +a212(xp) + +øsTs(xro) AAro

where AA¿ is the azimuthal disparity at x¿ in the rada¡ measurement space, and c¡ is the

coefficient of the j¿å basis function, T¡. We solve such a system of equations for each of the

proposed techniques. We use the coefficients to compute the corresponding modelled field

at the p rudar measurement space grid-points. In the case of the cosine technique,

5

âffå,*(vo) : t o¡T¡(y;), (s.24)
j=1

where y; is the location of the i¿å grid-point (in the rada¡ measurement space). We compute the

disparity field for the empirical technique and combined techniques via analogous equations

to equation (5.24). In the analogous equations, the functions T¡, j : l. . .5, denote the

basis functions for the technique in question.

Our criterion for comparing the proposed techniques uses the error between the modelled

field and the actual field at the p grid-points. The most successful technique has the minimum

sum of the squared errors: 
p

Ð(¿ffå,* (v ;) - ã^,,r(v o))' .

i=l
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5.7.3 Results

The results of the comparative study appeff in Table 5.3 and 5.4. The first tabulates the errors

from frtting only the dominant basis function, whereas the second tabulates the errors from

fitting 5 basis functions. The units in each case are milliradians squared.

Cosine Empirical Combined

Mean 6090 80.4 83.8

Std. dev 677 38.3 42.0

Table 5.3: Error (in mrads2), using one basis function

Cosine Empirical Combined

Mean 3070 4.t 10.6

Std. dev. 3510 M.3 36.9

Table 5.4: Error (in milliradians-squared), using five basis functions.

When only the dominant basis function is used, the empirical and combined techniques

perform similarly, whereas the cosine technique has far less success. As one would expect,

the performance of all three techniques improves when more basis functions a¡e used.

While the empirical technique performs the best, it has the distinct advantage in that

maximally smooth assumption used is the same as the maximally smooth interpolation

function used in generating the simulated data. The cosine technique performs the worst,

which reflects the fact that uses arbitrarily chosen basis functions. In contrast, the combined

technique is based on the same arbitrarily chosen basis functions, but it performs similarly

with the empirical technique. The combined technique transforms the original basis into a

basis in which the bulk of the spatial variation of the disparity field is represented by far

fewer basis functions; thus requiring fewer coefficients.

5.8 Summary and Discussion

In this chapter, we introduced three techniques for modelling components of the disparity

function. Each technique is essentially a methodology for choosing a set of basis function

for representing the disparity. The first technique, in section 5.3, involves choosing the

basis functions heuristically. This technique is termed the cosine technique, since the basis

functions are chosen to be the cosine functions. The second technique, in section 5.4,

employs PCA to determine eigenvectors which represent the disparity at discrete points.
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This technique is termed the empirical technique, since its basis functions are determined

from empirical data. The third technique, in section 5.5, transforms the heuristically chosen

basis of the cosine technique, by performing PCA on the cosine function coefficients. This

technique is termed the combined technique, since it combines aspects of the previous two

techniques. We demonstrate each of the three proposed techniques in section 5.6.

In section 5.7, we find that the performance of the cosine technique is the worst of the

three, which reflects the fact that its basis functions are heuristically chosen. The empirical

technique performs the best, which indicates that its assumption of maximal smoothness

provides an advantage in modelling the simulated data. This fact is not sufprising, since the

simulated data is also generated using the same maximally smooth interpolation function.

Encouragingly, the performance of the combined technique is not far behind that of the

empirical technique. The combined technique does not have the same peculiar advantage on

the simulated data as the empirical technique. The basis functions of the combined technique

are linear combinations of heuristically chosen basis functions. Essentially, the combined

technique provides a mechanism for transforming heuristically chosen basis functions, into

basis functions which approaches optimality in the Karhunen-Inéve sense. For this reason,

we hypothesise that, in the case of real data, the combined technique would be the most

successful of the three proposed techniques. Unfortunately, this hypothesis cannot yet be

tested on real data, as there are no suitable data publicly available.
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Conclusion

We have presented a systematic approach to the challenge of OTHR track association. Our

objective was to develop a system which associates multimode tracks from a common target

by exploiting the characteristic patterns of multimode propagation. These cha¡acteristic

patterns have been under utilised in the past.

The ionosphere is the medium by which long range surveillance can be achieved. How-

ever, there Íì-re many challenges in the interpretation of OTHR returns due to the complex

nature of the ionosphere as a medium for propagation. Many of the processing tasks in OTHR

are interrelated, and the success of one affects the success of the others. Multimode track

association is a key operation, which is related to several OTHR signal processing tasks.

Therefore, we anticipate that the proposed system for track association has the potential to

contribute to these signal processing tasks.

Multimode track association is a difficult problem; the transformaúon from radar mea-

surements to ground coordinates can only be roughly estimated. The difference in multimode

radar measurements from a common target is one available source of data, which has been

under exploited. Multimode data can be used to assist the track association task, and also

to assist other related OTHR processing tasks, such as coordinate registration. However,

previous methods for multimode track association have significant limitations in that they do

not exploit the multimode patterns to their full potential.

The systematic approach was designed to exploit the information contained in the mul-

timode patterns. Fundamental to the proposed track association system is the concept of

representing the intermodal coordinate transform by a vector function of both the radar

measurements, and the ionospheric propagation conditions. 'We also proposed several com-

ponents of the proposed system:

o A decision system was proposed for determining which tracks correspond to common

targets. The decision system involves the testing of multiple association hypotheses

using an association metric whose parameters are modelled by a partial model of iono-

spheric propagation. The decision system is designed to avoid conflicting association

decisions.
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o An association metric was proposed as a tool for estimating the probability that a pair

of tracks are due to a common tâfget.

o A model of the disparity vector was proposed, which estimates parameters of the

disparity vector function as functions in the radar space.

The proposed association metric is the Mahalanobis distance of the disparity vector

function. We demonstrated the success of the proposed association metric over alternative,

heuristically chosen methods for both easy association scenarios and difficult association

scenarios. The proposed metric provides better discrimination between pairs of associated

tracks and pairs of non-associated tracks than the alternative metrics. The success of the

proposed metric is due to the incorporation of a model of the multimode propagation. The

fundamental difference between the proposed metric and the alternaúve metrics is the prior

knowledge of disparity vectors used for the proposed metric. The alternative association

metrics, by comparison, are based on heuristically chosen similarity measures, and they

perform significantly worse, since they do not exploit knowledge of the disparity vectors.

In short, we have demonstrated that knowledge of the multimode patterns permits great

improvement in the association decision.

We proposed three ways of computing a cumulative association metric from the proposed

association metric. While the proposed association metric performs well using one dwell, a

cumulative association metric, using several dwells, will enhance the discrimination ability

of the association metric, and hence the performance of the entire track association system.
'We proposed three techniques for modelling components of the disparity field. Each

technique is essentially a methodology for choosing a set of basis function to represent the

disparity function.

1. The first technique involves choosing the basis functions from a visual inspection of

the field to be modelled; the basis functions are chosen to be the cosine functions.

2. The second technique employs principle component analysis (PCA) to empirically

determine discrete orthogonal basis vectors which represent the disparity function.

3. The third technique combines advantages of the previous two techniques; it transforms

the heuristically chosen basis of the cosine technique to a more suitable basis, by

performing PCA on the cosine function coefficients.

We found that the performance of the cosine technique is the worst of the three proposed

techniques; this perforlnance is indicative of the fact that its basis functions are heuristically

chosen. The empirical technique had the best performance, which could be misleading, since

the assumption of a maximally smooth disparity field is peculiar to the simulated data. We

demonstrated that the combined technique performs almost as well as the empirical technique,
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although not having the same peculiar advantage on the simulated data as the empirical

technique. The combined technique provides a mechanism for transforming heuristically

chosen basis functions into a more appropriate set of basis functions. For this reason, we

hypothesise that, in the case of real data, the combined technique would be the most successful

of the three proposed techniques. Unfortunately, this hypothesis cannot yet be tested on real

data, as there is no suitable data publicly available.

Summary of Contributions

The major contribution of this thesis is a systematic approach for associating OTHR tracks

corresponding to the same target. The approach exploits the patterns which are character-

istic of multimode propagation. Significant components of the association system are an

association metric for track association, and a model of the multimode patterns in the radar

measurement space. We summa¡ise specific contributions of the thesis as foilows:

o There are two contributions which lie at the heart of the systematic approach for track

association:

1. The formulation of the coordinate transform between propagation modes as a

function of the radar measurements and ionospheric propagation conditions (see

equation (3.1) on page 30).

2. The concept of modelling the statistical parameters of the disparity vector as

functions of the radar measurements (see equation (3.4) on page 31).

o We modelled the statistical parameters of the disparity function using basis functions

(see section 5.2). We compared (see section 5.7) three techniques for finding a suitable

set of basis functions:

1. A technique for modelling the disparity vector as a linear combination of heuristi-

cally chosen basis functions: the multidimensional cosine functions (section 5.3).

2. A technique for modelling the disparity vector as a linear combination of em-

pirically determined, discretely sampled functions using principle component

analysis, in section 5.4.

3. A technique for modelling the disparity vector which combines the advantages of

the previous two approaches: modelling the disparity vector via principle com-

ponent analysis (PCA) on the coefficients of multidimensional cosine functions

(see section 5.5).

o We derived and tested an association metric as a tool for determining the probability

that a pair of tracks is associated (see chapter 4). The association metric is designed
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to discriminate between pairs of associated tracks and pairs of non-associated tracks.

The association metric is based on the Mahalanobis distance of the disparity vector

fi¡nction (see equation (4.2) on page 38). The disparity vector function is used so that

the warping caused by multimode transmission is accounted for, and thus the metric

provides a measure of track similarity with uniform accuracy across the rada¡ coverage.

We conducted a compa¡ative study of the proposed metric and alternative metrics (see

section 4.3), and demonstrated the advantage of exploiting the patterns characteristic

of multimode propagation.

o We described three ways of enhancing the association metric by accumulating sequen-

tial association metrics (section 4.4).



ApppNorx A

Simplified Model of Disparity Function

In chapter 4, we require statistical parameters of the disparity function to compute the

proposed association metric. To maintain focus on the association metric in the comparative

study of section 4.3, we use a simplified model for the computation of the disparity function.

This appendix contains details of the simplified model for computing parameters of the

disparity vector. These parameters are the estimated disparity vector â-,, and its covariance

Ð^n.The estimated disparity vector å-,, is a vector function over the radar coverage, and

the covariance Ð*n is a matrix function.

The parameters for a specific mode pair are a function of location in the rada¡ measure-

ment space, denoted by the vector y. In section A.1 we outline the simplifications which

make the model a "simplified" model. Under these simplifications, we state, in section 4.2,

the geometrical relationship between a target's location and the corresponding radar measure-

ments. In section 4.3, we derive analytical expressions for the parameters of the disparity

vector.

We outline the numerical evaluation of the disparity vector in section 4.4. Finally, in

section 4.5, we discuss the ionospheric priors used for the simplified model.

4.1 Simplifications to propagation geometry

The model described in this appendix is based on simplified ionospheric propagation geom-

etry. \üe make these simplifications, so that analytical expressions for the components of

the disparity vector between associated tracks can be derived. These components include

the difference in slant range and apparent azimuth of tracks from a common target. The

simplifications do not detract from the validity of the comparative study in section 4.3. T\e

simplifications to the ionospheric geometry are:

Radar measurement errors are ignored.

Only the ionospheric contribution to intennodal variation is considered. Data depen-

dent quantities such as radar measurement errors are ignored to maintain focus on the

comparative study. The inclusion of radar measurement errors is straightforward, but
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would extend the study in an unnecessary direction.

Only two ionospheric layers are considered.

We only consider the case of propagation from the E and F layers of the ionosphere.

This choice results in four possible modes of propagation. Other scenarios could be

considered in the same way.

Spherical ionospheric layers are assumed.

It is assumed that the ionospheric layers are spherical and concentric with the earth.

A spherical model was chosen in order to simplify the propagation geometry for the

purposes of the demonstration, but such a model is not necessary for the method.

Ionospheric priors are known.

It is assumed that the distributions of the ionospheric heights are known a priori. This

simplification is made so that the distribution of the disparity vector can be calculated.

The heights of the spherical ionospheric layers a.re represented by the normal random

variables Xø - N(tt",o6),for the E layer and X¡ - N(pr,op), for the F layer. We

assume that the heights of the ionospheric layers vary independently.

TFansmitter and receiver are colocated.

It is assumed that the transmitter and receiver are the same distance from the target

for the purposes of the simulation. This assumption is made to avoid data dependent

complexities in the geometry of the propagation paths and is not significant for the

comparative study of the association metrics. Note that in practice, the transmitter

and receiver cannot be within line of sight because the transmitted power causes the

receiver to saturate.

Only range and azimuth are considered.

Only the rarige and azimuth components of the disparity vector are considered. The re-

maining components of the disparity vector (Doppler shift, signal strength) are ignored

to restrict the volume of this paper. The distribution of the remaining components can

be calculated in an analogous way.

^.2 
PropagationGeometry

Denote by .R and A the actual range a¡rd azimuth of a target with respect to the radar. The

height of the ionospheric layer used for transmission of the radar signal is denoted by å¿, and

the layer used for the reception of the radar signal is denoted by h,. Let -R" denote the slant

range between the radar and the target, which is a function of the ground range to the target,

-R, and the height of the ionospheric layer used for reflection, denoted by å. This function is
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derived from the propagation geometry via the cosine rule and is given by
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R"(h, R) : 2

where e is the radius of the earth (taken to be 6380km). Denote by A, the sum of the slant

range from transmitter to target and the slant range from target to receiver. R¿ is formulated

as

Rr(hr,h,, R) : R"(hr,rR) + Ä"(å',.R) (4.1)

The apparent azimuthal angle is also derived from the simplified geometry. We denote

the apparent azimuthal angle of the target by Ar. A¿ is a function of -R and A and the height of

the layer used for reception of the signal from the target, h,. From the propagation geometry,

the apparent azimuthal angle is

4,(h,, R, A): arcsin 
[rt",o, '* (*) frfo, * O) @.2)

4.3 Analytical formulation of disparity yector

Under the simplifications made in appendix 4.1, the disparity vector is a function of the

target location and the ionospheric conditions, which are known. We derive the parameters

of the disparity vector analytically for a specific mode pair at a specific location. As an

example, we derive these parameters for the specific mode pair used in the comparative study

of section 4.3.

Example Consider that an estimate of the disparity vector between modes EF and EE is

required. The difference in total slant range for this example is

_LR(XF,,XE) _ !r(Xø,Xr,R) 
- R1(Xø,Xø,R) (4.3)

: 
'Ì"(Xp,R) - R"(XB,R) (4.4)

The difference between the apparent azimuthal angles of the two modes is

LA(XF,Xø): Ar(Xr,R,A) - Ar(Xø,R,A) (A.5)

By integrating over the known range of possible ionospheric conditions, the estimated value

of the disparity vector's range component can be formulated as

lã"",rrl o^ : E ILR(Y* x¡')l (A'6)

/- 
¡oo: 

J_* J_*L,R(xB,rr)f @ø,xp) d,xB dxp (4.7)

where f @ø,rp) is the jointly normal probability density function; thus

.f(*ø,*r) ¿ToEoF

ez + (e + h)2 - 2e(e + h)*' (*)

@ø - pø)' 2r TE-PE xr - þe)exp
oþ OEOF
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where r is the correlation coefficient between random variables rB and rp.
The variance of the range component of the disparity vector can be formulated similarly

oZ^R : Il., l*f^R(x s, x p) - L,R(rs,rp) )f @r,rp) drs drp (4.8)

The remaining parameters of the disparity vector are the mean and variance of the

azimuthal component, ldnø,ør)a¡ md oo respectively, and the covariance between the

azimuth and the range components, ø,o. Expressions for these parameters are formed by

analogy with Equations 4.7 and 4.8. The estimated value of the azimuthal component of

the disparity vector is formulated as

lã"r,"r) oo
: E [LA(XE,Xr)]

: l: I:L,A(,B,rr)t@ø,rp) d,xs d,xp

(A.e)

(A.10)

The variance of the azimuthal component of the disparity vector is formulated as

- /'oo f oo 

-a

oL¿,: 
J_* J__(L.A(xB,*r) - L,A(xB,rr)-)f (xø,np) d,rs d,xp. (4.11)

The covariance between the range and azimuthal components of the disparity vector is

formulated as

ozon,d,¿.: I:l: (Arl(r¿,, ,r) - Í8,, rF

(LA(xB,rr) - A,A(rB,xp)) f (*ø,rp) dxs drp. (4.12)

^.4 
Numerical computation of the disparity vector

The components of the mean of the disparity vector a¡e calculated from equations 4.7 and

A.10. The components of covariance matrix

Ð TLn'L

oZ¿,R o2¿,I-,¿'d

oz¿,R,t,t oL,q

of the disparity vector can be calculated from equations 4.8, A.11 and A.12.

The model computes the parameters of the disparity function, â-,, and Ð 
^n, 

from track

measurements in the radar space. The integrals in section 4.3 are difficult to evaluate

analytically, but can be evaluated numerically using the ionospheric priors and the target

position in ground coordinates. However, the precise position of an observed target in the

target space is not known.

To evaluate the parameters numerically, we must do so at many locations in the radar

space. A set of data is computed to form the basis for the model of disparity vectors.

This data set is referred to as the example set, and it consists of precomputed mean vectors
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and covariance matrices, indexed by mode pair and location in radar coordinates. These

parameters are precomputed for every combination of mode pairs at many locations across

the radar coverage. 'We model the mean vector functions over the space element-wise.

In contrast, we model the eigenvectors, instead of the elements, of the covariance matrix

functions. The eigenvectors are modelled similarly to the mean vector functions: as vector

functions, element-wise. In making the matrix eigenvectors smooth over the space, instead of

the matrix elements, we ensure that the computed covariance matrix has simila¡ characteristic

properties to the adjacent precomputed covariance matrices in the example set.

For a specified mode pair at a specified location in radar coordinates, we estimate the

parameters of the disparity vector from the nearest (in the radar space) precomputed parame-

ters in the example set. For simplicity, this estimate is made via bilinear interpolation of the

nearest precomputed parameters.

4.5 Ionospheric priors

We arbitrarily choose a set of priors to generate the example set for the comparative study.

The range of possible heigha of the ionospheric layers for all latitudes can be found in[32].

The E layer exists between 90km and 130km, so X¿ was chosen to be Iú(110km,10km). The

F layer typically exists between 200km and 400km, so Xr was chosen to be 1/(300km,50km).

The heights of the different ionospheric layers are assumed to be independent.
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Addenda
We have added the following text to clarify some questions raised by readers.

o In Chapter 3, Section 3.3.4, we add the following two sentences to the end of the
second paragraph (at the top ofpage 32),:

The covariance matrix is decomposed into its eigenvectors, which are modelled in the
same way as the disparity vector itself. The interested reader can find details of this
modelling in section 4.4 of the Appendix.

o In Chapter 4, Section 4.2 we add three sentences in the middle of the final paragraph
(on page 38), which becomes (the existing text is italicised):

The primary benefit of using the M-distance as the association metric is the fact that it
accounts þr the covariance between radar measurements. We do not ignore the possibility
that there may be a choice of association metric which provides better discriminqtion
befween associated and non-associated pairs of tracl<s. Since the distribution of the
intermodal disparity vector is unknown, and there is no data available from which the
distribution of the intermodal disparity vector might be measured, we do not attempt to
assert that this proposed metric might satisff any optimality criterion. The M-distance
would be the optimal metric, in the least squares sense, if the distribution of the intermodal
disparity vector were multivariate Gaussian. For now, the criterion which we use to
measure the success of a metric is based on its ability to discriminate between tracks from
a common target and tracks not from a common target. We expect an association metric
with greater discriminatory perþrmance to improve the performance of the track
association system. However, to maìntain the focus of this thesis, we omit a rigorous
investigation into the merits of dffirent metrics. W'e perform a limited comparison of the
proposed association metric to other association metrics in section 4.3.

o At the end of the concluding chapter, Chapter 6 (on page 100), we add the following
unnumbered section:

Future work

This thesis would not be complete without a recommendation for the direction of future
work to enhance the accuracy and reliability of the techniques introduced in this thesis.

Due to the highly sensitive nature of over-the-horizon radar data, it was impossible to
apply the ideas introduced in the thesis to real data. In my opinion, the task with the
greatest urgency is to establish the reliability of the techniques using real over-the-horizon
radar data. Normally distributed disparity vectors were used for illustrating the ideas

introduced in this thesis. One might be able to achieve a more accurate model of the
disparity vector once a suitable model of the disparity vectors has been obtained using real
data.




