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...and the only thing worth doing for the race is to increase its stock of ideas. Then,
if you make available a larger stock, the people are at liberty to help themselves from
out of it. By this process the means of improvement is offered, to be accepted or rejected
freely, and there is a faint hope of progress in the course of the millennia. Such is the
business of the philosopher, to open new ideas. It is not his business to impose them on
people.
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Abstract

In this thesis, aspects of radar methods currently used to obtain important parameters of
energy and momentum transport in the mesosphere are examined. Methods that enable
the extraction of the rate of dissipation of energy through turbulence, from radar echoes,
are presented. It is suggested that one of these methods, which utilises the width of the
Doppler spectrum to obtain the energy dissipation rate, is susceptible to contamination
by high-frequency gravity waves motions. This hypothesis is tested through some case
studies carried out on high time resolution data obtained using a VHF radar at Poker
Flat, Alaska. It is found that the effect of high-frequency gravity waves can be important
in data obtained with sampling times of the order of a minute. This data set utilised
sampling times of around ten seconds and it was shown that this was of short enough
duration to avoid the effects of high-frequency gravity waves. Values of the turbulence
energy dissipation rate are then calculated and their variation as a function of time are
also discussed.

Much of the remainder of the work in this thesis involves the methods of analysis
of data obtained using the Buckland Park HF radar near Adelaide. Two problems
associated with previous measurements of the vertical flux of horizontal momentum are
considered. The first involves the effective pointing angle of the radar beams that are
used. This angle is important in calculations of momentum flux using the dual beam
method proposed by Vincent and Reid. The effective pointing angle usually differs from
that expected from the antenna phasing and can vary as a function of height and time.
A method of calculating the effective pointing angle from the spatial correlation function
of the echoes on the ground is developed and tested. Some modelling of the effect of
time variations of pointing angle on momentum flux measurements was carried out and
is presented.

The second problem associated with momentum flux measurements using the Buck-
land Park HF radar involves the presence of outliers in the velocity data. Suitable

methods of outlier rejection for different period bands were developed. It was then pos-

v



sible to analyse 12 momentum flux data sets taken on a campaign basis over one year
from March 1985 to February 1986. The results of this analysis are presented.
Seasonal variations of the vertical flux of zonal and meridional momentum are con-
sidered. It is found that u/w’ and v'w’ vary as a function of season and that this effect is
most clearly exhibited in the short period (8 min — 1 hr) data. The relative magnitudes
of the momentum fluxes in various period bands are considered and it is found that,
although u/w’ is generally largest for the short period band Ida,ta,, this is not the case for

‘w'. 1t is also found that the magnitude of v'w’ is often of similar amplitude to that of

>4

ulw'.

The implications of the u/w’ and v'w’ data in the balancing of the mesospheric
momentum budget are discussed briefly. Calculations of the mean-flow acceleration due
to the divergence of the momentum flux are carried out and the results are compared

to the Coriolis accelerations present at the corresponding times.
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Chapter 1

Introduction

In this thesis, some aspects of energy and momentum in the mesosphere are consid-
ered. Much of the emphasis is on the experimental and data handling techniques used
to obtain quantitative information on these properties, but some interpretation of the
measurements that are made is also presented. The interpretation, and that of others
who consider the data presented here, seeks to build on the knowledge of this region
of the atmosphere; however, this cannot occur without suitable foundation. The aim
of this chapter is to lay that foundation for the rest of the thesis. General aspects of
the atmosphere that pertain to this study are presented here. Further reviews and dis-
cussions of more particular topics are presented at the appropriate times later in the

thesis.

1.1 Atmospheric structure

The structure of the atmosphere can be considered in a number of ways, depending
on the property of interest. For example, if the electrical properties of the atmosphere
are to be investigated, then knowledge of the density of free electrons as a function of
height (say) would be useful. Because the data considered here were obtained through
the use of atmospheric radars which rely on the presence of free electrons for reflection
or scatter, some aspects of ionospheric physics will be considered briefly.

The ionosphere, i.e. that part of the atmosphere where the constituent gases have



been ionised, thereby liberating electrons, is divided into three main parts. These are
called the D-, E- and F- (made up of F1- and F2) regions and are depicted in figure 1.1
where the number of electrons per unit volume is plotted as a function of height. The
range of heights that are considered in this thesis covers the upper part of the D-region
and the lower part of the E-region. The processes that lead to ionisation in these regions
will be considered briefly.

Figure 1.1 typifies the situation during daylight. At night, the electron density be-
comes much smaller suggesting that it is solar radiation that is ionising the atmospheric
gases. Nicolet suggested in 1945 (see Brasseur and Solomon, 1984) that, in the D-
region, the gas being ionised was nitric oxide and the process involved photoionisation
by Lyman—a (121.6 nm) radiation. A later theoretical study by Nicolet and Aiken
(1960) suggested that, as well as the NO* (whose molecular mass is 30), OF (mass 32)
would be present. This was verified with rocket-borne mass-spectrometric measurements
carried out by Narcisi and Bailey (1965) whose resqlts are presented in figure 1.2. It
can be seen that some other species with molecular masses of 19 and 37 are present in
significant concentrations. These are due to the cluster jons H3Ot and Hs0F. Cluster
ions with larger orders of hydration (n in H*(H,0),) also exist; however, their abun-
dance and orders of hydration depend on water vapour content and temperature and
are spatially and temporally variable as a result. Experiments seeking heavy negative
lons in this region find few below 80 km at night and 70 km during the day. Because the
atmosphere is electrically neutral, the free electron concentration can be attributed to
the positive ions discussed above. In the lower E-region, extreme ultraviolet radiation
(Lyman—£ 102.6 nm) and soft X-rays play a more important role in producing the ions
OF and NO*.

An alternative system [or classifying altitude regions of the atmosphere is one that
has temperature as its basis. Temperature turns out to be a useful parameter for this
work because atmospheric dynamics forms the main field of interest in this thesis and,
as will be seen shortly, the dynamics of the atmosphere is closely tied to its temperature

structure (and vice versa). This distribution is presented in figure 1.3 from Brasseur
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Figure 1.1: A typical daytime electron density profile of the ionosphere indicating prin-
cipal ions at the various layers. (Banks and Kockarts, 1973)
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Figure 1.2: Mass spectrometric observations of positive ions in the region 65 to 90 km.
Molecular masses are indicated on the diagram. (Narcisi and Bailey, 1965)

and Solomon (1984) where it can be seen that the temperature alternately decreases and
increases as a function of height. The lowest region, where a decrease in temperature
with height is evident is called the “troposphere”. The temperature distribution in this
region is due to heating of CO2, H,O and other “green.house gases” by infrared radiation.
This radiation, incident from below, results from the heating of the earth’s surface due
to solar insolation and reradiation at infrared wavelengths. If the troposphere did not
contain these gases, the temperature there would be 20-30 K less than it is. This tem-
perature enhancement is called the “greenhouse effect”. The decrease in temperature
through the troposphere ceases at a height of approximately 10-15 km. The temper-
ature remains essentially constant throughout the next region which is known as the
“tropopause”.

The “stratosphere” takes in the height range 20-50 km. It is characterised by in-
creasing temperatures from the low of around 220 K at the tropopause to around 270 K
where the temperature becomes constant again in the “stratopause”. A sccond region
of decreasing temperature, known as the “mesosphere” then follows. The upper parts
of the mesosphere and the region above it where the temperature once again becomes
constant, (the “mesopause”) are the coldest parts of the terrestrial atmosphere with

temperatures that can fall below 180 K. From there, at around 85 km, temperature
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Figure 1.3: The temperature structure of the atmosphere

once again increases and continues to do so throughout the uppermost region of the
atmosphere, the “thermosphere”.

The increase in temperature that is evident in the stratosphere (figure 1.3) must
be associated with a source of heating in that region. Figure 1.4 depicts the rate of
heating in K/day at the solstice (London 1980) due to absorption by Oz, O, NO,
and CO;. It can be seen that the stratopause corresponds in height to a peak in the
heating rate. A similar but slightly different profile is presented in Kiehl and Solomon
(1986). The differences between the two profiles are mainly due to the differences in the
ozone distributions used in the two papers, but both profiles have peaks in heating at
the stratopause. Of the first three chemicals given above, it is ozone that is the most
important contributor to heating in the region 20-60 km (Kieh! and Solomon 1986) but

O makes an important contribution to heating in the upper mesosphere (see figure 1.4).
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1.2 The mesospheric momentum budget

If the arguments applied to ozone in the stratosphere were applied to heating by O, in
the mesosphere then one would expect this to be a warm region as well but, as stated
previously, this is not the case. Early measurements of temperature in this region were
made using rocket-grenade techniques (Ference et al. 1956) at Fort Churchill in Canada
(55°N, 94°W) by Stroud et al. (1960). Not only did these authors find a cold summer
mesosphere, but they also found that the winter mesosphere was approximately 40K
warmer than the same region in summer. This cannot be explained using the radiative
equilibrium arguments that were applied in the stratosphere, making it is necessary to
consider some non-radiative processes to account for the observations. Haurwitz (1961)
suggested that these processes are dynamical. It was proposed that vertical motions
near the poles, and the associated cooling (heating) due to the adiabatic expansion
(compression) of the air parcels as they rose (fell) over the summer (winter) pole, would
explain the observations.

A number of models have been used to test whether vertical motions in the polar
regions do adequately reconcile theory and observations. The observational data set that
is often used for comparison is that due to Murgatroyd (1969) and it is presented in
figure 1.5. Representing the condition at the solstice, information on both the summer
and the winter hemispheres is present. This can be compared to model results like
the ones presented by Geller (1983), reproduced in figure 1.6. The model assumes
that the atmosphere is in radiative equilibrium, where the heating due to absorption
of solar radiation and the cooling through infra-red reradiation are in balance in the
local environment, and no dynamical effects are included. In the temperature cross-
sections, it can be seen that the summer-winter temperature inversion above 70 km that
is obvious in the observations is not evident in the model temperature field.

It is also possible to use the meridional cross-section of temperature to calculate
the meridional cross-section of the zonal wind using the thermal-wind equation (which

assumes geostrophic balance). The results of this calculation are given in the lower
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part of figure 1.6. The grey band in the centre of this panel denotes the region where
the geostrophic approximation is not applicable. Although there are some similarities
between these model winds and the observed winds of figure 1.5, the two cross-sections
are quite different in many respects and it could not be said that the assumptions used
to formulate the model are extensively applicable throughout the middle atmosphere.
But then, these models do not yet contain the dynamical effects that were proposed by
Haurwitz (1961).

In order to include dynamical effects and still have a model that can be realistically
applied to the atmosphere, it is necessary to maintain momentum balance in the model.
The zonal velocities in figure 1.6 result from that requirement to balance momentum.
The flow from the warm summer pole (near the stratopause) to the cool winter pole
is turned into a zonal flow by the Coriolis force acting due to the earth’s rotation.
An alternative interpretation of this notes that a flow toward or away from the pole
involves a change in the total angular momentum of the atmosphere. The total angular
momentum of the earth and its atmosphere must be conserved and, as the average
rate of rotation of the earth is observed to be very close to constant, then the total
angular momentum of the atmosphere must also be conserved. Thus parcels of air that
move in a manner that would change the angular momentum are acted on by a force
(or pseudo force) that maintains the momentum balance. But herein lies a dilemma.
The dynamical effect that has been proposed to explain the temperature structure of
the mesosphere involves vertical motions over the poles. By continuity, these in turn
involve a meridional flow but by the arguments just presented, any meridional flow must
be turned into a zonal flow to maintain an angular momentum balance. Therefore, in
the absence of other sources of momentum, meridional flows and this solution to the
question of the atmospheric temperature structure, cannot exist. Observational evidence
of a meridional flow does exists though, an example of which is given in figure 1.7 after
Nastrom et al. (1982). (Note that the level at which these wind measurements have
been made is above the temperature minimum.) Thus, it seems that the model needs

another source of momentum.
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Figure 1.7: Averaged meridional wind components at 90 km in June in the Northern
hemisphere (after Nastrom et al. 1982)

Haurwitz (1961) realised the need for another momentum source and suggested that
friction due to eddy viscosity be considered. This friction would decelerate the mean flow
thereby altering its momentum. Some calculations by Haurwitz showed a qualitative
agreement with observations in a broad sense. This concept was incorporated into a
model by Leovy (1964) through a term known as Rayleigh friction. This term acted
to decelerate the mean flow in proportion to the mean-zonal wind with the constant of
proportionality known as the Rayleigh drag coeflicient. The Rayleigh drag concept is
a simple one but it has no physical basis and therefore provides few clues as to what
may supply the momentum needed in the mesosphere. It can, however, be used to
investigate the qualitative nature of the momentum source (or sink) that is required to
reconcile theory and observations. Leovy’s success in this regard was limited by the fact
that he only used Rayleigh drag profiles that were constant with height and only a fair
agreement could be obtained.

It was some time before a height varying Rayleigh drag profile was used in a model.

11



Considerable improvements to the models (and to the computers used to make the
calculations) were made in the time before the models of Cunnold et al. (1975) and
Schoeberl and Strobel (1978) were developed. Cunnold et al. derived their drag value
from eddy flux arguments, whereas Schoeberl and Strobel (1978) used a drag profile that
drove the meridional winds in the mesosphere but did not damp out the quasi-biennial
oscillation at lower levels. Improvements to the treatment of heating and differing drag
profiles were used in the models of Holton and Wehrbein (1980), Wehrbein and Leovy
(1982) and Apruzese, Schoeberl and Strobel (1982) yielding better agreement between
theory and observations. But Rayleigh drag was still a convenient parameterisation
that had no physical basis. It showed how the mesospheric momentum budget could
be balanced but gave no clue as to what was the momentum source. The answer to
the question of a source was proposed by Houghton (1978) who considered the role
that various types of waves could take in balancing the mesospheric momentum budget.
He concluded that gravity waves were the most likely mechanism for supplying the

momentum that was sought.

1.3 Atmospheric gravity waves

Early height profiles of wind in the mesosphere showed distinctly wavelike features as
can be seen in figure 1.8 from Liller and Whipple (1954). A theory to explain these
features in terms of internal-gravity waves (or “buoyancy” waves) was presented by
Hines (1960) which, despite some scepticism in the beginning (Hines 1989), has become
widely accepted and used. The high-frequency limit on these waves is called the Brunt-
Vaisala frequency. If a parcel of air is displaced vertically, it will have a density that
differs from its surroundings due to the vertical gradient of atmospheric density. It
therefore experiences a force that, in certain circumstances, will act toward the parcels
original position. The result is that the parcel of air oscillates about a mean position

with a frequency N, the Brunt-Vaisala frequency, given by
oT ¢ g 00
NMzn=2|Z=4+2|=4Z :
(2) T [82 + Cp] 00z (1.1)
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Here, z is the vertical coordinate of a Cartesian system, ¢ is the acceleration due to
gravity, C, is the specific heat at constant pressure and T and 0 are the mean tem-
perature and the mean potential temperature respectively. (e.g. Fritts (1984). This
description of gravity waves follows that of Fritts (1984), but a variety of other treat-
ments are available. See e.g. Hines (1960), Gossard and Hooke (1975) and Andrews et
al. (1987)). A lower limit on the frequency of these waves is set by the rotation of the
earth. Known as the inertial frequency, f, this quantity is a function of latitude and is
given by f = 2Qsin ¢ where  is the rotation rate of the earth and ¢ is the latitude.
(This parameter, f, is also called the Coriolis parameter and is equal to the vertical
component of the earth’s rotation vector.) If we restrict our attention to oscillations
whose frequency, w, satisfies f < w <« N then it is also possible to assume that all
motions are in the z — z plane (z being a horizontal coordinate of a Cartesian system,)
and that the mean velocity %(z) is in the x-direction. The passage of a wave causes
variations in numerous quantities such as velocity, pressure, temperature and density.
If we assume that these can be represented by a mean and a perturbation about that
mean such that
P(2,2,t) = P(2) + ', 2,1), (1.2)
where,
_ 1 iz b
(o) =y [ e, (1.3)
¥ being any one of the above quantities and A, being the horizontal scale of the variation,
then it is possible to linearize the equations of z and z momentum, the adiabatic energy

equation and the continuity equation. If it is assumed that solutions are of the form
'(»[}’(377 z, t) . ,(/)/(Z)ez/ZHeik(x—ct) (1‘4)

where k(= 27 /M) and m(= 27 /),) are the horizontal and vertical wavenumbers, and
Ar and A, are the horizontal and vertical wavelengths of the perturbation, H is the
local atmospheric scale height (H = RT'/g, R being the gas constant for dry air), then

linearizing and combining the above equations yields

2 s ==
N Uszy U, 1

w), + = —k? — -
(@—1c)? (u—c) (T—c)H 4H?

w =0 (1.5)
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Figure 1.8: A height profile of wind velocity from Liller and Whipple (1954)

where c is the horizontal phase velocity of the wave motion, w’ is the vertical component
of the perturbation velocity vector (u’,0,w’) and the subscripts denote differentiation.
This equation, known as the Taylor-Goldstein equation, can be simplified under the
conditions described above and the assumptions that N? is constant, %,, is small and
that H is large, to

wl, + [N?/(5 — )]’ = 0 (L6)
For slowly varying m, this equation can be solved, using WKBJ methods (see Andrews

et al. (1987), p215) to give

w'(a:, z, t) — Am—1/2ez/2H6i(Ic:v+mz—kct). (17)

This equation describes the vertical velocity as a function of space and time. One im-
portant feature is the presence of an e*/?" dependence. The vertical velocity amplitude
grows with height to conserve energy in an environment where density is decreasing.
This wave growth is what makes gravity waves a significant part of dynamics at high
altitudes.

Given the nature of the vertical perturbation velocity, it is possible to relate other
perturbations to w. The equations involved are called the “Polarisation Relations”.

These include

u=——w (1.8)



which relates the horizontal perturbation velocity to the vertical component. It can be
seen that the horizontal and the vertical velocities are in anti-phase. Another polariza-

tion relation relates potential temperature fluctuations to w', viz

0
= ————=— 1.9
6 ik(w — c)w (19)

So far, nothing has been said about the way gravity waves change as a function of fre-

quency, w. This is described through the dispersion relation, which, for the assumptions

above is
2 AJ2
, KN

——a_u__ 1
k2?2 4+ m2 {1=10)

w

It is possible to calculate the phase and group velocity of a wave (packet) using this rela-
tion by noting that, in this formulation, where motion is restricted to the z —z plane, the
phase velocity, ¢, = (w/k,0,w/m) and that the group velocity ¢; = (Ow/dk,0,0w/dm).
Applying these results to the dispersion relation yields ¢, = (N/m,0,kN/m?) and
¢y = (N/m,0,—kN/m?). These expressions represent what to many is the most sur-
prising property of gravity waves. It can be seen that the z-component of the phase and
group velocities have opposite signs. Thus a wave whose energy is propagating upwards
appears to be moving downwards through the action of the surfaces of constant phase.

If waves with frequencies closer to the inertial frequency f are considered, then
it is necessary to include terms involving the Coriolis force in the basic momentum
equation. The result of this is that motions are no longer constrained to the plane of
propagation (previously defined as the z — z plane). A phase difference between the y
and z components of velocity v’ and u’ respectively shown by the ¢ in the polarisation
relation

v =ifufw (1.11)

means that the velocity vector traces out an ellipse in a horizontal plane as a function
of time. (Note that the vertical velocity remains in antiphase with u'.)

The above equations demonstrate that, given a disturbance in a density stratified
atmosphere, a wave solution to the equations of motion, energy conservation and conti-

nuity exists with frequencies like those of periodic structures observed in the atmosphere.
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Other characteristics such as tilted phase-fronts in velocity vs height data (e.g. Balsley
et al. 1983) consistent with the gravity-wave solution have also been observed routinely.
Therefore, gravity waves must be prime candidates for the mechanism that was sought
to transport momentum to the mesosphere. Possible sources of these gravity waves will
be considered next. It is worth noting that some philosophical discussion on the subject
of waves and their momentum has taken place (see e.g. McIntyre 1981). It is now gen-
erally accepted that, although a wave can act to transport momentum, the wave itself
contains no momentum. Instead, the wave redistributes the momentum that resides
in the medium as the wave passes through a region but, in the case of non-dissipating
waves, that region is left in its initial state once the wave has passed. Thus phrases such
as “waves giving up their momentum”, although in common usage, are not strictly true:
the momentum is not in the waves to give up.

The high density of the atmosphere in the troposphere (relative to the mesosphere)
and its increased absorption of solar energy make it a region of the atmosphere that
is energy dense. This makes it the most likely source of gravity waves that are seen
to be propagating energy upwards in the mesosphere. Studies identifying the exact
characteristics of the gravity-wave source distribution and the physical processes that
produce vertically-propagating gravity waves are few. Some examples have been pre-
sented though, including Lu et al. (1984) where gravity waves were associated with
thunderstorm activity. This study highlights one of the problems in this work. Because
the VHF radar that was used to obtain the vertical velocities that were considered in Lu
et al. (1984) was situated some distance from the thunderstorms being investigated, it
was possible to detect horizontally propagating gravity waves but difficult to detect ver-
tically propagating ones. Statistical studies such as those of Clarke and Morone (1981)
and Bowhill and Gnanalingam (1986) were able to overcome this problem of limited
horizontal range and correlate mesospheric gravity waves with tropospheric sources.
Airglow observations by Taylor and Hapgood (1988) were successful in associating a
thunderstorm with short-period gravity waves in the mesosphere as well. Gavrilov and

Shved (1982), suggested that fronts, cyclones, jet streams and airflow over mountains
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were also important sources of gravity waves.

The distribution of gravity waves in the mesosphere would be the same as that at
the gravity-wave source if the medium through which they propagated did not alter the
waves. There are, however, two important ways in which propagation of a gravity wave
can be affected. These will now be considered.

The formulation of gravity wave theory presented above assumes that the atmo-
sphere is stratified. Density decreases exponentially with height and % is also allowed
to vary in the vertical. It is not surprising, then, that a parameter that describes the
vertical structure of a gravity wave, the vertical wavenumber m(= 27 /},), is important
in considerations of gravity-wave propagation. The two cases where gravity-wave prop-
agation is affected, namely turning levels and critical levels, are characterised by m?
going negative and m? tending to infinity respectively. Before considering these cases,
it is useful to note that, using w = k(% — c), the dispersion equation (eq. 1.10) can be
rearranged to give

2 N?

For a turning level to occur, m? must become negative. Inspection of equation 1.12
shows that this can be caused by N? becoming small or by (@ — ¢) becoming large.
The first of these possibilities can come about through variations in temperature as
a function of height, the second through changes in the mean wind with height. As a
gravity wave approaches a turning layer, the phase fronts become more and more vertical
until, at the turning layer, the parcel motions, which are parallel to the phase fronts,
are vertical. This means that their frequency of oscillation must be equal to the local
Brunt-Vaisila frequency and that m is equal to zero. Further decreases in m result in an
overturning of the wave, which propagates on in the same horizontal direction but in the
opposite direction in the vertical. A noteworthy aspect of this reflection process is that
it does not dissipate energy. Thus, if another turning level is present below the source,
a waveguide can be formed and the wave energy can be “ducted” such that it travels
great distances horizontally from the source. This is in fact the mode of propagation

that was suggested by Lu et al. (1984) in their study.
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Inspection of equation 1.12 shows that for m? to tend to infinity, (¥ — c)? must tend
to zero or @ — c¢. The phase speed of a wave is (generally) an invariant property so
it must be variations in u with height that bring about critical level interactions. The
phase fronts become more horizontal, as do the parcel motions, as critical layers are
approached. The increase in m and the corresponding decrease in A, also implies that
the phase fronts become closer toget'her. This “compression” of the wave packet leads
to the dissipation of the energy it contains.

A laboratory study of both of these interactions has been carried out by Koop (1981),
the results of which elegantly illustrate the above situations. The density stratification
in a water tank is enhanced using a salt solution and sheared horizontal flows can
be set up. Finally, a piston at the end of a rod that is immersed in the tank can
be oscillated at frequencies near the local Brunt-Vaisala frequency to produce gravity
waves. Photographic results of a particular experiment where a sheared flow is present
are presented in figure 1.9a and a schematic representation of that photo is given in
figure 1.9b. The rod that is used to excite the gravity waves can be seen in the centre
of the photo. The measured velocity profile has been superimposed onto the right hand
side of the photograph. The flow in this case is from right to left so that @ is negative.
The waves, characterised by the lighter regions of the photo can seen emanating from
the piston. Those on the right hand side of the rod have phase speeds ¢ > 0, where those
on the left have phase speeds ¢ < 0. The result is that waves on the right encounter
a turning level and those on the left reach a critical level and are dissipated. The
orientation of the phase fronts as a critical or turning level is approached are presented
in figure 1.9b.

The above cases prevent a gravity wave from propagating any further in the vertical.
There are, of course, cases where the gravity wave is deviated by variations in vertical
wavenumber that do not reach the limits that characterise turning and critical levels.

These cases are analogous to refraction effects in optics.
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Figure 1.9: Turning and critical levels in a sheared flow (after Koop 1981)

19




1.4 Momentum deposition by gravity waves

Thus far, sources of momentum, a mode of momentum transport (gravity waves) and
effects that could act to filter that mode of transport have been presented. The way
in which this momentum is deposited into the mean flow is now considered. Although
the concept of gravity waves causingleddy diffusion and thereby depositing energy and
momentum into the mean flow was discussed by Hodges (1967, 1969) and Hines (1970,
1972), it was the work of Lindzen (1981) that brought about a renascence in work on
the subject of gravity wave breakdown and it is that wor-k which will now be discussed.

The discussion of gravity waves that was presented above began with the consider-
ation of the restoring force that was experienced by a parcel of air displaced vertically
upward in a density stratified fluid. Of interest now is the potential temperature of that
parcel of air. This vertical displacement will not change the potential temperature of the
air parcel, but the potential temperature of the environment may change with height.
Thus, the potential temperature of the parcel may differ from that of the environment
(6e). If 6. increases with height, an air parcel that is displaced upward will experience
a force toward its original position. If 8, decreases with height, however, a parcel dis-
placed upward will continue to do so giving rise to an unstable situation. This form of
instability is known as a static or convective instability and is characterised by 0, < 0,
or in terms of temperature, by T, < —g/c, where T is the local temperature and the
z subscript denotes differentiation with respect to height. If the potential temperature

polarisation relation presented previously is differentiated with height, one obtains

_ , .
—0,mw u'd,

@—ck (@—c)

0 = (1.13)

The condition for instability mentioned above, when applied to a height varying mean
potential temperature with a superimposed perturbation, is (6 + 6'), < 0 which re-
duces to u’ > ¢ —@. Thus if the ground-based (Eulerian) velocity @ 4 u’ exceeds the
phase velocity of the wave, the wave is convectively unstable. The works of Hodges
(1967,1969) and Lindzen (1981) have as their basic premise the idea that once a wave

reaches saturation amplitudes defined by the conditions for stability described above, it
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will produce just enough turbulence to maintain that wave amplitude which just satisfies
the static stability criterion. It is implicitly assumed that the characteristics of the wave
and its propagation are unaffected. Assuming that the effects of turbulent diffusion are

immediate and complete, the saturation conditions become (Fritts 1984)

0, > —0, (1.14) -

which for monochromatic wave motions, is equivalent to
] < e — ] (1.15)

A possible scenario for gravity wave breaking and momentum deposition is presented
by Andrews et al. (1987). As a gravity wave propagates upward, its amplitude increases
to compensate for the decreasing density. Material surfaces such as those depicted
in figure 1.10 become more distorted. For short period waves, material surfaces are
analogous to “isentropes” or surfaces of constant potential temperature. Thus when
the wave grows to a state similar to that in figure 1.10c, convective instabilities cause
turbulence and a convergence of horizontal momentum at the appropriate phase of
the wave. Although this picture illustrates wave breaking, it is a rather simple one,
and complications such as the presence of a gravity-wave spectrum rather than just
one monochromatic wave should be borne in mind when the real atmosphere is being
considered.

It should be noted that the critical level interaction described in the previous section,
where (@ — ¢) tends to zero, will be convectively unstable before this limit is reached.
Thus, variations in @ can bring about convective instabilities as can the wave growth,
and the associated increase in u’, as described in this section.

The convective instability discussed above is important for gravity waves of shorter
periods. For gravity waves of frequency closer to the inertial frequency, it has been
shown that waves become dynamically unstable before they become convectively unsta-
ble (Dunkerton 1984, Fritts and Rastogi 1985). Dynamical instabilities occur as a result

of the presence of a vertical shear of horizontal velocity. An important parameter in
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Figure 1.10: Schematic diagram illustrating the breaking of a vertically propagating
gravity wave. The curves denote material surfaces. (Andrews et al. 1987)

considering these instabilities is the (gradient) Richardson number, R: given by

m (52 (2 (19

Qualitatively, the Richardson number represents the ratio of the work required to inter-
change vertically adjacent air parcels against the acceleration of gravity to the kinetic
energy available to do the work (e.g. Gossard and Hooke, 1975). The threshold where
a fluid becomes dynamically unstable is given by R: = 1/4. Figure 1.11 presents the
ratio u'/(W — ¢) as a function of frequency (normalised to the inertial frequency) that
corresponds to R: = 1/4. Convective instability will occur when v'/(7 — ¢) = 1 with
this quantity being less than unity when the wave is stable. Thus it can be seen that
at longer frequencies, dynamic instability will occur before the condition for convective
instability is reached (Fritts and Rastogi 1985).

One final mode of energy exchange results from nonlinear interactions of waves.
Falling into two main groups, i.e resonant and non-resonant interactions, these interac-
tions are reviewed by Muller et al.(1986) in an oceanic context and are discussed by Yeh
and Liu (1981) and Dunkerton (1989) in an atmospheric context.

The conditions for convective instability described above can be combined with the
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(1985)

polarisation relations for gravity waves to infer the mean-flow acceleration due to a
monochromatic gravity wave of period w that satisfies f < w <« N (Lindzen 1981).

The mean flow acceleration is given by

%, = —(pod)/po. (1.17)

This quantity is zero for conservative wave motions but will become non-zero for breaking
waves (Eliassen and Palm, 1960; Andrews and McIntyre 1978). If it is assumed that
the waves attain saturation amplitudes at a height z,, then above z,, |u’| = |c —u|. For

linear theory, w’ can be obtained using

k k
’:———/:——— 2. 1'1
Wl =~ = (@) (118)

The momentum flux of this gravity wave above the saturation level is then

I k
poulw! = —g—o-j—v—(ﬂ -c)? (1.19)

Differentiating this with respect to height and dividing by po then gives the mean flow

acceleration;

Uy = _k(z]; o) [(UI; ) _ 3@] . (1.20)
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The acceleration, u; due to a monochromatic saturating gravity wave acts toward the
phase speed of the wave c. It also has the potential to vary in an environment where

the horizontal velocity @ is sheared with height.

1.5 The mesospheric momentum budget revisited

In section 1.2, the need for a process whereby the mean flow in the mesosphere was de-
celerated to balance the momentum budget and account for the presence of meridional
and vertical flows was highlighted. It has been shown that convergence of gravity-wave
momentum flux can contribute to the momentum budget and some simple parameterisa-
tions of the momentum flux and mean-flow acceleration due to a monochromatic gravity
wave have been presented. The momentum budget of the mesosphere is considered again
in the light of this information.

As was noted above, the action of gravity wave breaking draws the mean flow toward
the phase speed of the wave. This could imply an a’cceleration in some circumstances
but in general a deceleration occurs in the mesosphere due to stratospheric filtering of
the gravity-wave phase-speed distribution. The mechanism for this was proposed by
Lindzen (1981) and is represented in figure 1.12. A gravity-wave phase-speed distribu-
tion centred on zero is assumed at the top of the troposphere. In summer, as the waves
propagate upward, westward winds in the stratosphere bring about critical level interac-
tions that remove negative (and some small positive) phase speeds from the distribution
(figure 1.12a). Thus, on reaching the mesosphere where the gravity waves break, the
phase-speed distribution has a mean value of opposite sign to the mean wind. Therefore,
gravity-wave breaking will cause an acceleration (because the mean flow is negative in
this case) of the flow. This effect is manifest in the increase in velocities above the
breaking level denoted by zreqr. A similar situation, where the mean flow is decelerated
toward zero, can be seen in figure 1.12b. The winter stratospheric flow acts to filter out

the gravity-wave phase speeds that could accelerate the flow and a deceleration results.
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Figure 1.12 supports the theories presented above but includes some idealisation. It
is also limited in the spatial and temporal range it represents. An extensive data set of
parameters such as u’w’ would be of considerable use in testing these ideas and it is to this
end that much of this thesis is dedicated. Another test involves the inclusion of gravity-
wave drag into the models that attempted to balance the mesospheric momentum budget
in the first place. Holton (1982) developed a parameterisation for gravity-wave drag and
diffusion and included this into a simple f-plane model. It was necessary to assume a
form for the gravity-wave phase-speed distribution at the base of the model and this,
took the form of waves with ¢ =-20, 0 and 20 ms™!. These ideas were then applied to
a spherical-geometry primitive-equation model in Holton (1982). A more sophisticated
phase-speed distribution based on the work of Matsuno (1982) was then incorporated
into Holton’s f-plane model in Holton and Zhu (1984). This included a collection of
phase speeds as well as a variety of directions of propagation.

An alternative approach to this was used by Rind et al. (1988a,b). It involved a
formulation developed by Lindzen (1984) which used parameters such as the wind ve-
locity, density and Brunt-Vaisala frequency in conjunction with convection, topography
and shear to produce gravity waves. These were then allowed to propagate vertically,
saturate and deposit momentum. Realistic mean wind and temperature fields resulted
when the model was run but some aspects of the model were found to be deficient. In
Rind et al. (1988b), variable phenomena such as stratospheric warmings are successfully
reproduced; however the problems associated with modelling sub-grid scale phenomena
were proposed as a limitation to the model.

A study of the importance of these sub-grid scale phenomena was presented by
Hayashi et al. (1989). In this paper, the results of two models with differing spatial
resolutions were compared and the gravity-wave momentum fluxes were found to be quite
different. The reason for this was that the low-resolution model could not adequately
describe gravity waves of small horizontal scale. The high resolution model could cope
with these waves better and their effect on the global circulation was detected. This does

not, however, ensure that all of the short-period waves are being simulated correctly,
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because the high- resolution model still does not agree with observations. As stated in
Hayashi et al., the latitudinal maximum of the zonal westward flow in the (summer)
southern hemisphere occurs nearly 20° south of that observed by Barnett and Corney

(1985).

1.6 Energy deposition

Thus far, the deposition of momentum into the mean flow by gravity waves has been
discussed. It was noted earlier that the momentum of a gravity wave a,ctually‘resides
in the mean flow (McIntyre 1981). Near the leading edge of a (non-dissipating) wave
packet, the momentum that resides in the mean flow is redistributed. The mean flow is
then returned to its original state after the passage of the wave. If the wave breaks and
isotropic turbulence is produced, then the mean flow cannot be returned to its original
state. Turbulence, which involves irreversible processes, uses momentum and so makes
it unavailable for redistribution as the wave leaves the region.

Turbulence can be considered in a number of ways. One approach involves a spec-
trum of eddies of various scales. Large scale eddies are produced and these produce
smaller ones giving a spectrum of eddy sizes. At the smallest scales, viscosity causes
a net heating of the atmosphere. The energy that is dissipated by these eddies is the
subject of chapter 3 and the theoretical background for these measurements is set in
chapter 2. A less physical treatment but one that involves a useful parameterisation of
turbulence was initiated by Ludwig Prandtl. Known as “K-theory”, it uses an analogy
to molecular diffwssion. Turbulent eddies are capable of diffusing momentum and heat
through a medium. The rate at which this occurs is described by the eddy diffusion
coefficient, K. In particular, the eddy diffusion coefficient for heat is K, and the eddy
diffusion coefficient for momentum is K.

Lindzen (1981) calculated the eddy diffusion coefficient for a breaking gravity wave,

but assumed that this coefficient was the same for heat and momentum. This was

equivalent to assuming that the Prandtl number, Pr = K/ K, (the ratio of the eddy
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Figure 1.13: Schematic diagram of the occurrence of turbulence due to an unstable
gravity wave (after Fritts and Dunkerton, 1985)

diffusion coefficients for momentum and heat), was unity. It was suggested by Chao and
Schoeberl (1984) that localisation of the turbulence should lead to Prandtl numbers
greater than one. The concepts of static stability presented previously suggest a non-
uniform turbulence field like that presented in figure 1.13. In this figure, from Fritts and
Dunkerton (1985), the region of the potential temperature field of a breaking gravity
wave that is convectively unstable (i.e. where (6 + 6'), < 0 using the notation defined
previously) is shaded. It is near this region that turbulence will occur. Prandtl numbers
greater than one imply that momentum is diffused more effectively than heat. Some
other theoretical calculations on the effect of localisation on diffusion have been carried
out. These are reviewed briefly by Fritts (1989) and the reader is referred to this paper

and the references therein for further information.

1.7 Other atmospheric waves

The internal gravity waves that have been discussed so far represent only one solu-
tion to the set of momentum, heat and continuity equations. Other solutions exist,
where different heat or momentum sources are included, and some of these will now be

discussed.
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The heating of the atmosphere due to insolation during the daylight hours of each
day has the effect of forcing an oscillation with a 24 hr period known as the diurnal
tide. The non-sinusoidal nature of this forcing, however, also acts to produce a 12
hr (semi-diurnal) oscillation as well. The “classical” theory of tides, as presented by
Chapman and Lindzen (1970), attempts to predict the amplitude and phase (time of
maximum wind) of the (eastward and northward) velocity components as a function of “
latitude #nd season. In general, this theory has been quite successful although recent
improvements have made the agreement between theory and observations even better
(see e.g. the special issue of Journal of Atmospheric and Terrestrial Physics, 51, 7/8,
1989). An important aspect of tides in this thesis, however, is their contribution to
the momentum budget of the mesosphere. Their effect on the background flow and the
resulting filtering of gravity waves (Walterscheid 1981, Fritts and Vincent 1987) does
bring about an indirect effect on momentum deposition. The effect of breakdown of
the tides themselves was considered by Miyahara and Wu (1989) who concluded that,
below 120km, the momentum deposition due to the diurnal tide may be significant, but
that the magnitude of the deposition is dependent on the vertical eddy diffusion profile.
This profile was assumed ad hoc in their model.

Another important class of atmospheric waves are the planetary waves (Charney and
Drazin 1961). These waves are essentially due to the variation of the Coriolis parameter
with latitude and have periods of the order of days. Although they are thought to make
some contribution to the momentum budget of the mesosphere, they are only evident
at mesospheric heights during the winter. The summer wind profile in the stratosphere
acts to prohibit their propagation into the middle atmosphere. Therefore, they can only

be one part of the momentum balance in the mesosphere and not the whole story.
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Chapter 2

Atmospheric Turbulence

Motions of many forms exist in the atmosphere. They range from waves with scales of
thousands of kilometres down to eddies a few metres across. It is these eddies and their
intrinsic dynamics that are of interest in this and the following chapter. A background
for this discussion will be set here; however this chapter is meant only as a brief review.
For further information, the reader is referred to the reviews by Hocking (1985,1989)

and to classic turbulence texts such as Tatarski (1961), and Batchelor (1953).

2.1 About Turbulence

Because turbulence is not well understood, it is difficult to give a precise definition
of what it is. A more instructive approach is to note some of the characteristics of
turbulence. It is a fluid motion that is random in nature. The velocity at any point
within the turbulence can vary in magnitude and direction and yet turbulence is a zero
mean motion. Turbulence enhances transfer of heat, momentum and mass and, through
viscosity, causes dissipation of energy. It is this last characteristic that makes turbu-
lence important in the mesosphere. Energy from the energy-dense lower atmosphere is
transported to the mesosphere by gravity waves. These waves grow with altitude until,
at mesospheric heights, they become unstable and break, creating large eddies. Lewis
Richardson, inspired by a verse by Jonathan Swift, described the process that then

occurs, stating: “We realize thus that: big whirls have little whirls that feed on their
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velocity, and little whirls have lesser whirls and so on to viscosity” L. F. Richardson
(1922, p66) The energy cascades from larger to smaller scales until the eddies being
created are so small that viscosity damps them out, heating the atmosphere.

The scales of the turbulence are split into various ranges according to the character
of the turbulence in that range. These are summarised in figure 2.1 (after Blix 1988).
E(k)dk is the kinetic energy contained between k and k + dk, k is a measure of the h
scale of the turbulence (the number of waves per unit length in the Fourier analysis).
[It should be noted that various forms of spectra exist. (Tatarski, 1961) In this case
E(k), being an energy spectrum, has contributions from all three components of velocity.
Spectra of a single velocity component are also useful as will be seen later.] As the name
suggests, viscous effects dominate in the viscous range. The large shears associated with
these small scale-eddies bring about this dominance. The inertial range contains eddies
that are larger but are not affected by buoyancy. The range of scales where buoyancy
effects become important is called the buoyancy range. Here, the stratification of the
atmosphere is thought to make the eddies elongated and anisotropic (Bolgiano 1959,
Lumley 1964, Sidi and Dalaudier 1989). The inertial range is the most intensively
investigated of all the turbulence ranges. It is a region of the turbulence spectrum where
energy is neither being produced (by large scale shears or convection) or dissipated
(by viscosity). Energy is essentially passing through from the larger to the smaller
scales. Thus it is not surprising that the form of the energy spectrum in this subrange is
independent of viscosity. The spectrum has the form (sometimes called the Kolmogorov-
Obukhov law)

E(k) = aesk™3 (2.1)

(e.g. Tennekes and Lumley 1972) with a =~ 1.5. € is the rate at which turbulent energy
is being converted to heat.

The region of the atmosphere of prime interest in this thesis is the mesosphere. It is
a region that is difficult to probe directly because of its remoleness. Occasional rocket
experiments allow some in-situ measurements but these data are limited spatially and

temporally. Radars can be used to fill this data gap, and it is the methods applicable
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Figure 2.1: The turbulence energy spectrum (after Blix, 1988). Note that the spectrum
is not thought to fall off at small k in the upper atmosphere (Sidi and Dalaudier 1989).

to their use that will now be discussed.

Two distinct methods exist for obtaining turbulence information using radars. One
involves using the width of the Doppler spectrum of the returned signals, whereas the
other relates returned power to the strength of the turbulence. Both of these are con-

sidered now.

2.2 The Spectral-Width Method

A radar operating at a frequency f, will receive enhanced backscatter when the scatter-
ing structure in the line of sight is of scale A/2, where A(= ¢/ fo) is the radar wavelength
and c is the speed of light in a vacuum. These structures could be turbulent eddies
of that size that are formed during the energy cascade process from larger to smaller
scales. This enhanced backscatter then makes these “Bragg-scale” structures act as
tracers for the turbulence field. These small eddies are carried around by larger ones

and so their overall motions are affected by scales from A/2 to some upper limit. This
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Figure 2.2: A Doppler spectrum.
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limit can be due to the size of the radar sampling volume or the fact that eddies beyond
a particular size do not exist. Information on the turbulence that lies between these
limits is returned to the radar.

If the scattering structure is moving, then the component of its velocity radial to
the radar will make the returned radio-wave frequency different to that transmitted.
In Doppler radar systems this shift can be detected and then converted to a radial
velocity. Obviously, if many scatterers of differing velocities are contributing to the
backscattered signal, a range of frequency shifts will be detected giving a broadened
frequency spectrum and hence a spectrum of velocities. In the absence of other effects,
this spectrum would be expected to look something like that depicted in figure 2.2.

If the velocity due to one eddy is considered in isolation, a connection can be made
between turbulence and the radar backscatter. The variations in the vertical component
(say) of velocity due to this single eddy of wavenumber & (k = 27/l, [ being the scale
of the eddy) will have a variance ;)E The energy in the turbulence field at that scale is
also related to E The fact that a multitude of eddies with scales ranging upward from
A/2 (as discussed previously) contribute to the width of the velocity spectrum of the
scatterers (or Doppler spectrum) means that this spectral width can be equated to the

energies summed over a range of scales. These concepts led to the expression (Hocking
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1983a, 1989)
— —kp ka
Foi= [ " ou(k)dk + [ Ou(k)dk (2.2)
—kx - kp
Here ©11(k) is the longitudinal one-dimensional spectrum function, which represents
the energy in one component of velocity, at a scale of wavenumber k, k) is the Bragg
scale wavenumber, kg = 27/Lp wher_e kg is the wavenumber and Lpg the scale at which
the turbulence begins to be affected by buoyancy and no longer satisfies the expression .
used for E(k), and F is the fraction of the spectral width v? that comes from inertial
range turbulence. Note that the spectra E(k) and ©;1(k) are different. In the earlier
literature, some confusion about the differences between the various kinds of spectra
existed (Ottersten 1969).

In the inertial range,
O11(k) = 0.1244 C2 /3|53 (2.3)

where ¢ is the energy dissipation rate and C? is found by experiment to be close to 2.0

(e.g. Caughey et. al. 1978). From this, Hocking (1983a) derived the expression

E*LB

= 2.4
ENTZEREE .
where
F s (v?)2
* — 2 2.

&= sz Iy (2:5)

If A is much smaller than Lg and F is taken as 0.5, this reduces to

45(v?)3

E = ———3 5(v )2 . (26)

Lp

Weinstock (1978b) has related the buoyancy scale Lg to the Brunt-Vaisila frequency

wp = 27 fp and the energy dissipation rate through

2 1 =2
LB == 0.62 62wb 2 (2.7)
which gives
e = 3.1v2f, (2.8)
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It is this relation that is used to relate the width of the Doppler spectrum to the energy
dissipation rate. A slightly different approach used by Frisch ana Clifford (1974) should
be noted; however it is the above equation that is used in this thesis.

In this treatment, vertical velocities were used. Any component could have been
utilised in principle but some practical considerations suggest that data from a vertical-
beam radar should be preferred. These practical considerations and their effect will now‘
be discussed, however, for a full treatment the reader is referred to Hocking (1983a,1989).

Although turbulence itself is a zero-mean motion, it is usually “embedded” in a mean
flow. In the case of a vertical beam, a vertical velocity will merely shift the spectrum
leaving the spectral width unaffected. A horizontal velocity, however, may broaden the
spectrum if the radar beam is of finite width. A radar beam of half-power half-width
01 /2 will see echoes from angles out to ;/, from the vertical and beyond, even though the
backscattered power of their signal is reduced. A purely horizontal wind blowing across
the beam will have no vertical component but it will have a component of velocity
at an angle (say) 0y, from the vertical and echoes approaching the radar from this
direction will be Doppler shifted by the horizontal wind. Thus turbulence contributions
of the spectrum will be shifted in frequency resulting in a smearing out of the Doppler
spectrum. This effect, known as beam broadening, is illustrated in figure 2.3 (after
Hocking, 1983a).

The expression (Hocking 1989)

2
fosB = X(1-0)|M|01/2 (2.9)

relates the spectral half-power half-width due to beam broadening fosp to the radar
wavelength A, the magnitude of the horizontal velocity vector |Vior| and the two-way
beam half-power half-width (in radians) 6,,.

The Doppler spectrum of the received echoes will be a convolution of the turbulence
spectrum with the spectrum due to beam broadening. It is important to note that the
beam-broadening contribution can and often does dominate the spectrum. Therefore

it 1s vital that its contribution be calculated and removed from the measured value of
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Figure 2.3: Beam broadening in a vertical beam.

width using
f3.5turb = f(?.Se:cp - fg.SB (210)

where fo.sturs is the spectral half-power half-width due to turbulence, fo.sezp the exper-
imentally measured spectral half-power half-width and fo5p is the spectral half-power
half-width due to beam broadening. The velocity variance can then be calculated using

the relation
'U_2: fg.5tu'rb/(2 ln 2) (211)

and used to obtain the energy dissipation rate.

Another form of spectral modification, termed shear broadening/narrowing, exists
but it is not considered important for vertical beams. The presence of a vertical shear of
horizontal velocities over the radar sampling volume can spread or narrow the Doppler
spectrum, an effect that is worsened by the increased range of heights contributing to
the Doppler spectrum when tilted beams are used. It is for this reason the use of

vertical-beam data is preferred for the spectral-width method.
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2.3 The total power method of turbulence mea-
surement.

The random nature of turbulence makes it difficult to describe individual particle mo-
tions so statistical approaches are used. One such method of description forms the basis
of turbulence measurements using the total power returned to a radar from a defined
scattering volume, and this will now be described.

The structure function of the scalar £ is defined as
De(r) =< [€(z) — €(z +1)|* > (2.12)

where D¢(r) is the structure function, z a position vector, r a displacement vector (from
z) and the angle brackets denote an average over space and time. ¢ is some property
that varies through the turbulent area (such as temperature) but whose statistical prop-
erties do not depend on position. Properties of this kind are called “passive tracers”,
and although potential temperature is a passive tracer, temperature is not. A vertical
movement of an air parcel will cause expansion and (assuming that it is adiabatic) a
change in temperature. The statistical properties of this parcel of air will differ from
those around it. Thus care must be taken in choosing ¢ appropriately.

For isotropic homogeneous turbulence in the inertial range, it can be shown (e.g.
Tatarski 1961) that

De(r) = CZ|rfs (2.13)

where C’g, the structure constant, depends on the intensity of the turbulence.
Turbulence fluctuations can also be considered as being composed of a combination
of Fourier scales. If each scale is represented by a wavenumber k = (k., ky, k. ), then the

spectrum of fluctuations can be shown (again Tatarski 1961) to be
$e(kz, ky, k.) = 0.033 CZ|k| =% (2.14)
for inertial-range turbulence. This equation uses a normalisation such that

///_o:o be(k)dk =< €% > .
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In this thesis we are interested in obtaining turbulence parameters using radars which
observe weak coherent backscatter. Such backscatter depends on variations in refractive
index. Refractive index, however, is not a passive tracer. Thus potential refractive index
is chosen as our tracer. Hocking (1985) after Booker (1956), Ottersten (1969) showed
that for a radar operating at a radio wavelength A, the backscatter cross-section o was

related to C2, the potential refractive index structure constant, by
o = 0.00655 75 C2\~5 (2.15)

The received power Pg of a radar system will also depend on . Hocking (1985,1989)

showed that
. PTeRetGAR Vv

4zt In2 &

Pr (2.16)

where Pr is the transmitted power, egr,er the efficiencies of the receiving and transmit-
ting systems respectively, G the gain of the transmitting array, Ar the effective area of
the receiving array, z the range and V the volume of the sampling region defined by the
pulse length and the two-way polar diagram. Combining these equations for the case of

a monostatic radar (which uses the same antenna for transmission and reception) gives

_ 66Pg 2205

Cln ——=" "
" PrAgretAz

(2.17)

where Az is the pulse length.
An equation due to Tatarski (1961) relates C? to energy dissipation rate (¢) making

measurement of this important parameter possible:
C? = a®K, M™% (2.18)

where a? &2 2.8, K, is the turbulent diffusion coefficient for heat, and M, is the gradient

of the potential refractive index with height. Given that
K = cyejw} (2.19)

(e.s. Weinstock 1978a,b Lilly et. al 1974 ) where Kjr is the turbulent diffusion

coefficient for momentum, wg the Brunt-Vaisala frequency and ¢, a constant usually
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taken as 0.8, an equation for £ can be obtained:

2, ,2
Crwg
20/ 2

a’a’co M2

e=] 2. (2.20)

(o/)7! is equal to the Prandtl number, P, (= K/ K,).

This formulation assumes that the entire sampling volume V is filled with turbulence.
If this is not true (as is often the ca'se) a factor F; must be introduced to account for
this assumption. Let C2 due to turbulence be C2(turb) and that measured by the radar
be C2(radar). Then

C2(turb) = C2(radar)

2.21
Ft K ( )
where F; is the fraction of the radar volume which is filled with turbulence at any one
time. The energy dissipation rate within the turbulent patch can then be calculated if

F} is known or if a value of Fj is assumed.

2.4 Some possible effects of gravity waves on tur-

bulence measurements.

The widths of the Doppler spectra due to returned radar signals are subject to con-
taminations of various forms. In section 2.2 the effect on spectral width of horizontal
mean velocities and beams of finite width, and of vertical shears of horizontal velocity
in the mean flow, were discussed. In the first of these, there is no variation of the mean
velocity over the sampling volume. In the second, however, there is a variation due to
the presence of a vertical shear of horizontal velocity. Both these effects have two things
in common. They involve horizontal velocity and they do not involve variations in time.

The question arises: is it possible that vertical velocities affect the spectral width?
Considering a vertical beam, two possible cases of variation in the mean exist. They are
variation in the vertical velocity with height and variation of vertical velocity with time.
These two cases will now be examined for the particular case of a quasi-monochromatic

gravity wave propagating through the radar sampling volume. It should be remembered
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that monochromatic waves may not be the norm, but any time or any height variation

of vertical velocity could bring about similar results.

2.4.1 Variation of vertical velocity with height due to gravity
waves.

High frequency gravity waves propagate vertically and have parcel motions that contain
a significant vertical component. Therefore, it is conceivable that the bulk motion at
the top of the sampling region could differ from that af the bottom by an amount that
could cause contamination in the spectral-width measurements. If the spectrum due to
turbulence (alone) at the top of the sampling region was shifted in relation to that at
the bottom, then when the two are summed to compute the average spectrum (either
by design or as a result of limitations of the radar’s resolution,) a spectral width not
representative of the turbulence activity would result. For this to occur, a gravity wave
with a vertical wavelength . less than or comparable to 2Ah, where A is the vertical
resolution of the radar, and a vertical velocity amplitude greater than or of the order
of the spectral width (expressed in ms™') would be required. This width then becomes
more dependent on the vertical velocity variations due to the gravity wave than those
due to turbulence. As shown in figure 2.4, the effect that this wave would have would
depend on the position of the sampling volume, or alternatively, the time as the gravity
wave propagates through a sampling volume of fixed position. If the spectral widths
obtained at a series of instances in time were examined, a peak in spectral width would
occur twice per cycle (when the sampling volume contains the regions where the vertical
velocity changes rapidly with height). This would produce a wavelike variation of the

spectral width with a frequency twice that of the gravity wave.

40



~ width

[ .
Height A
h
\ )‘ZN 2h
/ h
i l ~ width i
_»

Vertical Velocity

Figure 2.4: The effect of variations of vertical velocity with height, due to a
quasi-monochromatic gravity wave, on the Doppler spectral width.

2.4.2 Variation of the vertical velocity with time due to grav-
ity waves.

In the case where the gravity wave that is propagating through the sampling volume is
one with vertical wavelength A, > h, effects within the sampling volume at one time
can be ignored. However, the wave could be causing a net bulk motion through this
volume and, if the time taken to sample is comparable to the wave period, variations of
the mean will effect the spectral-width measurement. This is illustrated in figure 2.5a.
Each line represents the velocity of one tracer in the turbulent field within the sampling
volume. The spread of the lines is then an indication of the spectral width. It can
be seen that, if a sampling fime of T is used, a good estimate of the spectral width
due to turbulence will result. However if the sampling time of T, is used, then the
movement of the mean will contaminate the spectral width estimate. As the sampling
time is incrcasced from 77, the effect of the variation of the mean increases until the wave
variance makes a significant contribution. The way in which this occurs depends on the

phase of the wave at the beginning of the sampling interval. Figure 2.5a) represents a
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worst case example where figure 2.5b) illustrates some other possibilities.

2.5 Summary

In this chapter, two methods of ascertaining the energy dissipation rate using radars
have been outlined. The methods are distinct in that they use different information to -
obtain the energy dissipation rate. The problems associated with the implementation
of each method also differ. Some possible causes of contamination of energy dissipation
rate values obtained using the spectral-width method are discussed. The importance
of these forms of contamination in interpreting real data forms the subject of the next

chapter.
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Figure 2.5: The effect of variations of vertical velocity with time, due to a
quasi-monochromatic gravity wave, on the Doppler spectral width.
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Chapter 3

Measurements of turbulence

parameters in the mesosphere over

Alaska during August 1986.

As a result of a discussion between Dr David Fritts and Dr Wayne Hocking, a decision
was made to run an experiment, using the Poker Flat radar in Alaska, to study the
effect, if any, of gravity waves on measurements of the spectral width and the energy
dissipation rates that are obtained from them. This chapter describes the analysis of

the data from this experiment.

3.1 The Poker Flat Experiment

3.1.1 Brief Description of the Poker Flat MST Radar

The Poker Flat MST radar was granted initial funding by the (American) National
Science Foundation in September 1978. It was designed to allow continuous monitoring
of the atmosphere up to approximately 100km, a task that was carried out successfully
until April 1985. The radar was then reconfigured to allow both oblique beams to be
steered and the philosophy of obtaining continuous data was relaxed.

The data presented in this chapter were collected on August the Ist. (day 213) of
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Poker Flat MST Radar

Location 65° 7' 58"N 147° 21’ 30"W (near Fairbanks, Alaska)
Frequency 49.920 MHz
Antenna Area 4 x 10* m? for oblique and vertical beams

Two Way Beamwidth 1.1° Full width half maximum

For day 213, 1986

Height range 75.0 km — 94.8 km -
Height resolution 300m (using Pulse coding)
Acquire time 10 s
Antenna Directions both beams vertical
OR
beam 1 azimuth 64° clockwise from geographic north

elevation 83° -
beam 2 azimuth 334° clockwise from geographic north

elevation 83°

Table 3.1: The radar configuration used at Poker Flat on Day 213, 1986.

1986 between 7:50 and 14:50 (approximately). A summary of the radar configuration
used is given in table 3.1. The data consist of 64 point Doppler spectra. Each spectrum
was computed from the complex receiver signal levels obtained from each beam and
sampled at the appropriate ranges. A 10 s series of these complex signal levels was
transformed into the 64 point spectrum giving one spectrum for each height in each
beam, every 10 s. A short dwell time of one or two seconds was then required to write
the data to tape and to switch the beam between the two configurations described in
table 3.1. It should be noted that, as a result of this beam switching, spectra for a
particular beam and range were 11 s apart rather than the 1 s due to the dwell alone.
The frequency used corresponds to a wavelength of around 6m and thus a Bragg

scale of 3m. This means that echoes will be due to turbulent structures of 3m scale,
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Figure 3.1: The positions of the sampling volumes at 80 km on day 213, 1986

which in the mesosphere, are thought to be in the viscous range (Hocking 1985) . It is
felt that there will be enough of these structures to describe the larger scale turbulent
motions despite their shorter lifetimes.

As the radar system is monostatic, the sampling volumes for the vertical beams and
those for the oblique beams were not colocated. The separation between the sampling
volumes at 80 km is illustrated in figure 3.1.

For the rest of this chapter, it will be assumed that the reader is familiar with the
MST radar technique and the Poker Flat MST radar will not be discussed any further.
However further information on the MST radar technique can be obtained from Rottger

(1984) and information on the Poker Flat radar can be found in Balsley et. al. (1980).
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3.1.2 Technique for obtaining spectral parameters

Having obtained a power spectrum of the echoes returned from the mesosphere, we must
now evaluate the spectral parameters that are of interest to us. These include the mean
frequency offset, which gives a measure of the velocity radial to the beam, and the width
of the spectrum which is associated with turbulence. A measure of the signal-to-noise
ratio can also be of interest.

A review of methods that can be used to obtain estimates of spectral parameters
was compiled by Zrni¢ (1979) . This article, whose emphasis was on weather radars,
formed the basis of Woodman (1985) which discussed spectral moment estimation in
MST systems. Numerous methods are presented in these papers, however, as the data
used in this study were in the form of spectra, only some of the methods are applicable
here. These include calculating the zeroth (power), first (mean) and second (variance)
moments of the spectrum, as well as fitting a Gaussian function to the spectrum. These
methods were compared and the errors in the power,mean and width in each, for various
values of signal-to-noise ratio (SNR), were calculated by Yamamoto et. al. (1988).
They found that for signal-to-noise ratios approaching infinity, fitting a parabola to the
logarithm of the power spectrum gave the best result but suggested further work be
done before this method should be used at lower SNR. Under conditions of lower SNR
they suggest that a Gaussian fit is best. Although other works on the errors associated
with the various methods of obtaining spectral parameters exist, these usually do not
consider the spectral width and are thus not discussed here. The presence of noise in
the spectrum makes the problem of obtaining an estimate of the spectral width more
difficult than just computing the standard deviation of the spectrum. A noise spectrum
that is white over the finite range being considered would be expected. If this noise is
not accounted for, it too will contribute to the spectral width giving a larger value than
would result if no noise was present. Similarly, the mean will be biased toward the mean
of the noise, zero, causing it to be erroneous also. Furthermore, the mean and standard
deviation, even when correct, do not describe the shape of the noise-free spectrum.

A method utilising the best fit of a Gaussian function plus a constant to the spectrum
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was used because of these factors. Given that this fit was of suitable quality, this
ensured that the spectra being considered conformed to the ekpected Gaussian form
and, by appropriate choice of the function, allowed the noise,which should be the same
throughout the spectrum, to be actounted for. An estimate of the signal-to-noise ratio
could also be obtained but this estirr.late was not used in this work.

The form of the function used was as follows..
f—A1y2
y=As+ Age T (3.1)

It can be seen that by choosing a suitable set of the parameters A;, any Gaussian function
on a DC offset can be formed. The DC offset is described by A3, the parameter to which
y tends when f is a long way from A;, the mean value. A; is the width parameter and
A4 is the maximum value the Gaussian attains relative to the DC offset. A, is related
to the standard deviation of a Gaussian function by the expression o = A3/+/2.

The task is then to find the set of A parameters that best describe the spectrum.
The parameter x'? is used to characterise how well the function y fits the spectrum and
is calculated by summing the square of the quantity y — Pr(f), where Pg(f) is the radar
power spectrum. Thus

X*= L D~ Fa()) (32)
where k is a normalising factor related to the area under the spectrum. Thus, when
X% < X3 esns @ threshold value of X2, we can say that the fit of y to the spectrum Pgr(f)
is a good one and the A parameters can be used to describe the spectrum. The value
of (X resr, Which will depend on k) is chosen by inspecting spectra and the fits made to
them. (Note that x? is not simply related to the x? parameter of statistics.)

The quantity x? will vary with each of the A parameters giving us a multitude of
x'? values. The one we desire is the global minimum of these values and this minimum
is found using the grid search routine GRIDLS from Bevington(1969). A first guess set
of A parameters is obtained from the first and second moments of the spectrum, the
maximum value and an average of values near the edges of the spectrum (where noise

would be expected to dominate). Starting from this “first guess”, GRIDLS repeatedly
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searches for x> minima by varying each A parameter until a minimum is found. It
then repeats the process starting from this minimum until no change in the resultant x'?
occurs. This set of A parameters is then chosen as those best describing the spectrum.
It is possible that they represent a local minimum and not a global one but the resulting
x"? value would not be acceptably small causing the fit to be rejected. It is important,
however, to make the first guess of the A parameters as good as possible so that the
starting point is close to the global minimum. This makes the possibility of settling
on a local minimum less likely and decreases the computer time needed, improving the
efficiency of the analysis. For the same reason, the 64 point spectrum stored on tape is
averaged in pairs to form a 32 point spectrum, halving the number of calculations to be
made in x'? for no significant loss in fit quality.

The turbulence theory described in chapter 2 treats Gaussian spectra, and this
method of spectral fitting is matched to these. However in practise, non-Gaussian
components of the spectrum exist (Hocking 1983b). In particular, specular spikes that
are not thought to be associated with turbulence exist as can be seen in figure 3.2. It
is felt that in this analysis these are best ignored, and the following method is used to
remove their effect.

The specular spikes have amplitudes typically much greater than that of the back-
ground Gaussian profile. Thus the first thing to do is to find the maximum value in the
spectrum. If “one” spike is to be rejected, the Gaussian fit can be carried out on the
spectrum ignoring this maximum point. Similarly, if “two” spikes are to be rejected,
the maximum and second maximum values are ignored and so on. A number of levels
of spike rejection can then be tried and the one that yields the best x'2 value is chosen
as the one representing the Gaussian spectrum. In this analysis, up to 5 points are
removed from the 64 point spectrum. It should be noted that this may not remove 5
spikes as two or more points that are adjacent to each other forming one spike, may be
removed.

The method suggested by Yamamoto et al (1988) where a parabolic fit to the log-

arithm of the power spectrum is made is less sensitive to the effects of spikes. Its

49



50+

N
<

W
T

)
<

Power (arbitrary units)

10-

0_1 T T

(¥, =

-10 -5 0
Velocity (ms'l)

Figure 3.2: A typical spectrum from the Poker Flat radar.
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application to situations where the signal-to-noise ratio is low, however, is still to be
considered.

The Gaussian fitting method is not used in the routine operation of the Poker Flat
system. Instead a subroutine called PROFILE calculates velocities, widths and signal-
to-noise ratios. This routine uses the method of Hildebrand and Sekhon (1974) to
calculate the noise present in the spectrum and uses these noise figures to avoid their ’
effects on the mean and standard deviation. Plots comparing the velocities and widths
obtained using the two methods, i.e. a Gaussian fit to a spike rejected spectrum or the
use of PROFILE on a non-spike rejected spectrum are given in figures 3.3 and 3.4. The
points in these figures correspond to cases where the data from both analysis methods
are acceptable, i.e. the signal-to-noise ratio from PROFILE is greater than zero and the
x"? < 0.6. It can be seen that there is a good agreement between the velocities obtained
using the spectral fitting and the PROFILE methods. The different symbols indicate
the various numbers of spikes that were “removed” and it can be seen that no significant
bias in the velocity as a function of the spike rejection was present.

The widths obtained using the two methods are also in agreement although it is not
as good as for the velocities. Spike rejection will cause the width of the spectrum to be
increased because a strong narrow component has been removed. Therefore one would
expect high levels of spike rejection to be associated with spectra where the spectral
fitting width is broader, and low levels where the fit is narrower. The fact that few
squares and circles occur below the y = z line in figure 3.4 and that few crosses and
diamonds occur above this line suggest that this is occurring. This is not a problem, in
fact it probably means that the spike rejection is acting as it should.

Reinspection of the velocity plots of figure 3.3 with this in mind still does not suggest
a bias. Thus the spikes do not seem to systematically affect the velocity estimates.

If the cases where no spikes are rejected are considered in isolation, it can be seen
that in the 14:00 to 14:20 data, the width using Gaussian fitting is usually less than
that from PROFILE. A possible cause of this may be that PROFILE is not adequately

accounting for the noise in the spectrum. If this is the case, it is of no consequence in
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Figure 3.3: Comparisons of velocities obtained using the spectral fitting and the PRO-
FILE methods, a) for 11:00-11:20 data and b) for 14:00-14:20 data.
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Figure 3.4: Comparisons of widths of the Doppler spectra (standard deviations) obtained
using the spectral fitting and the PROFILE methods, a) for 11:00-11:20 data and b)
for 14:00-14:20 data.
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this study as the PROFILE widths are not used.

3.1.3 Assessing gravity wave contamination.

The prime objective of this experiment was to investigate the notion that short period
fluctuations in wind velocities are contaminating radar estimates of turbulent energy
dissipation rates (€). As discussed previously, these contaminations are due to variations
in the mean over the sample (in space or time) which contribute to the width of the
resultant spectrum and thus €. These contributions could obviously be minimised by
choosing a suitably small sample but this is not always possible. In order to build up
a spectrum of velocities, returned signals must be sampled for an appropriate length of
time. Thus a minimum sampling time exists. It depends on parameters such as radar
frequency and the nature of the turbulent structures being investigated and can be a
significant fraction of the period of the gravity wave. In considering this latter point, it
must be remembered that, even though the Brunt-Vaisala period in the mesosphere is
of the order of 5 min, oscillations with ground-based periods less than this are possible
due to Doppler shifting by the mean wind (Fritts and VanZandt 1987).

Because of the advantages in minimising the sampling time, the first stage of this
part of the analysis involves choosing that minimum time. For these data, this can be
(2n — 1)Tsampie, where n is any positive integer and Tyampie is the time taken to acquire
a spectrum, in this case 10-11 s. (The 2n — 1 factor is due to the switching of the
beam configuration described earlier.) A lower limit of Tigmpre €xists and comes about
through the need for the sample to contain the minimum amount of data required for a
reliable spectrum. Hocking (1983b) showed that if this is not the case, spectra that seem
realistic but are in fact entirely spurious can result and suggested that 80-100 times 75,
the half-width of the autocorrelation function, be used. May (1988) suggests that 50
times the half-width could be enough.

Height accumulations, where spectra over successive heights for the same time are
summed frequency bin by frequency bin are available also and should be considered in

a similar way. One spectrum represents echoes from a height interval of approximately
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300m, which is actually too small for the turbulence measurements envisaged here. It

is thought that the outer scale of turbulence, Lg is of the order of 1km (e.g. Hocking

1983b), that is, turbulent eddies exist up to about l1km in scale. Therefore, a sample

taken over a 300m height range will only contain echoes from part of a large scale eddy

and will not fully describe it. If we are to measure turbulence parameters due to the

whole range of scales, then more thaﬁ one height sample will be necessary. In this case,”
a minimum of 3 height intervals are summed so that spectra contain information on

these large scale eddies.

These arguments suggest a “basic unit” data block of 3 adjacent height samples ac-
cumulated for one time, denoted 3Z1T. There is however one more consideration. The
distribution of the spectral widths obtained for these units showed that some spectra
were quite narrow. Inspection of these spectra showed that their structure was domi-
nated by the presence of specular spikes. Although the cause of these spikes is unclear, it
is felt that they bias the turbulence parameter estimates and should be removed (Hock-
ing 1983b). However at this stage of analysis, numérous levels of spike rejection have
been used and the narrow cases yield the best (least) chisquare value. This suggests
that not much exists in the spectrum other than the spike (and noise) and this is borne
out by inspection of these spectra. In some cases, a Gaussian-like profile can be fitted
to the rest of the spectrum but its extremely small amplitude makes it insignificant.

To overcome the problems of these narrow spectra, one can either ignore the cases
where they occur and suffer the decrease in the data acceptance rate or move to 3Z2T
where two successive time samples as well as 3 heights are accumulated, in the hope
that the non-specular parts of the spectrum will become more significant. This latter
method has the disadvantage that the spectra could also contain some or more gravity
wave contamination. If the gravity wave present is of a long period, this may be an
acceptable step so one must make this decision with this in mind.

In this experiment, we have the ability to simulate a number of sampling times.
Having made a decision on the size and duration of the “base unit”, it is possible to

expand the sampling time to see the effect, if any, of gravity waves on the spectral
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widths. For example, if we consider a time and height block of 3Z10T (3. adjacent
height samples and 10 time samples) and compare the spectrai width obtained from
this accumulation to those of the (say) 5x3Z2T base units that make up the set, it is
possible to ascertain whether variations in velocity are contaminating the spectral width
estimate of the larger set.

To do this, one must note that the width obtained from the Gaussian fit to a spectrum ‘
is independent of the position of the mean. Therefore by averaging the widths of the
(here) 5 base units in some way, one gets an estimate of the spectral width value with
longer term (> 10 s) velocity effects removed. This can then be compared to the spectral
width from the larger set which will still be contaminated by these velocity effects. The
averaging of the spectral widths of the base unit spectra must be done with some care
if one is to maintain the analogy to echoes returning from the mesosphere. Not only
is the spectral width independent of the position of the mean (velocity) but it is also
independent of the amplitude of the Gaussian. A broad spectrum of low power will not
contribute much to the accumulated spectrum and thus must be given a lower weighting
in the averaging process that we use.

This averaging is done by considering the final spectrum, S(f) as being the sum of

a series of n component spectra S;(f) with properties as described in Table 3.2.

Distribution Mean Variance Area

Final Spectrum S(f) fs ol A=1
Component spectra Si(f) JA o? A;
Table 3.2:

The areas A; are the areas underneath each spectrum. When it is assumed that the
area under the final spectrum, (.A) is equal to one, we obtain the following equations

for the mean and variance of the final distribution (derived in appendix B):

Given S(f) = 3", Si(f) and 0, A; =1,

fs= Xn: A (3.3)

i=1

56



n 1> n . B
ol =3 Aol + 52 > AA(Fi - i) (3.4)
=1 =1 jFi=1

It is equation 3.4 that is of interest to us. It can be seen that the final variance has
contributions due to the component variances and due to variations in the means of
the component spectra. Note that this is a general result and can be used for any
functions that satisfy the criteria above. The mean and variance of, and the area -
under, a Gaussian can all be obtained from the parameters produced by the Gaussian
fitting routine described previously. In this way, noise can be accounted for but most
importantly, by computing the variance without the second term in equation 3.4, effects
of the variations in the mean are removed.

We can now devise a method of quantifying the effect of velocity variations on es-
timates of spectral width. In the example where 3Z210T data with a base unit of 3Z2T
arc considered, the spectral width from five 3Z2T component spectra could be calcu-
lated using equation 3.4 without the second term and compared to the width obtained
over the whole 3Z10T accumulation. The former repfesents the average width over the
interval with longer term velocity effects removed and the latter the width from a long
time sample with potential for contamination.

For reasons that will become clear shortly, the ratio

2(
=% i=1,2,... (3.5)
is used to measure the contamination, where o2(7;) is the variance of a spectrum accu-
mulated over a time 7;, and W is that quantity for the base units (each of duration
To) that make up the final spectrum, obtained using equation 3.4 without the second
term. The angle brackets denote an average over all the cases that occur in the whole
(typically 20 min) data set. Obviously if no contamination due to velocity effects is
present in the spectral widths, both terms in ¥; will be the same and a value of one will
result for all values of 7;. If contamination is present however, non-unity values of Y;
will result for some values of .

In the cases where the “base unit” chosen is suitably small, it is conceivable that the

first ratio Y; will be close to one. One can then take this study of the contamination
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effect beyond showing it exists. The spectral width is not due to gravity wave effects
alone. Turbulent spectral widths and contaminations discussed by Hocking (1985) are
present as well. In the absence of gravity waves, Hocking states that the experimental

half-power half-width f. obtained using the methods of section 3.1.2 obeys

o =fon+fr (3.6).

where fgn is a component of the spectral width due to the broadening and narrowing
effects of shears and the mean wind, and fr is the width of the turbulent component of
the spectrum. This equation actually ;iescribes the width of a Gaussian (f.) obtained
from the convolution of two other Gaussians of widths fgny and fr. This idea can be
extended, with some approximations, to obtain some information on the magnitude of
velocity effects on spectral widths by including a gravity wave width component. One

would expect the following relation:

fe2(Ti) = féW(Ti,ﬁb)'f‘féN‘i'f% (3.7)

where fZy (7:,¢) is the component of the spectral width due to the gravity wave con-
tamination in a sample of time 7; taken when the phase of the wave is ¢. This can
only be an approximation however, because the profile of fZ;, (7, #) is not expected to
be Gaussian. In fact it will be a segment of the gravity wave spectrum as shown in
figure 3.5 (Details of how these spectra are produced are given in appendix A). It can
be seen that, in the case of a half-cycle of the gravity wave being included in the sample
Ti, & spectrum that is anything but Gaussian will result. Two points, however, make
the approximation that segments of this spectrum are Gaussian less of a problem. The
first is that sampling times in this analysis are generally less than half the wave period
and will not include the whole spectrum. Secondly and more importantly, the spectra,
from which f2(7;) are obtained have had a Gaussian fitted to them and are therefore
Gaussian to within the value of x2 ., that was used. If these spectra, which result from
the convolution of turbulence, broadening/narrowing and gravity-wave effects, were be-
ing greatly affected by the shape of the gravity-wave component, they would not have

Gaussian end products and would be rejected. This is not to say that eq 3.7 is exact, it
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Figure 3.5: A segment of the Doppler spectrum due to a gravity wave only (see ap-

pendix). The solid line in the inset shows which part of the gravity wave cycle was
sampled.
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is just not as bad as first thought, and may be used to make a quantitative estimate of
the gravity wave effect.

To obtain this estimate, we first average f2(7;) over all the 7; samples in the data
set to get < f2(;) >. If enough samples exist to average over all possible phases in the

gravity wave, we can say
< fAm) >=< f&w(n) > + < fonr > (3.8)

or, as everything is assumed Gaussian

< o) >=< obw(T) > + < ohynr > (3.9)

where < fZyr >= 2In2 < o%pyr > is the average of the broadening/narrowing and
turbulence-width contributions combined and < fZy () >= 2In2 < oy (1) > is the

width of the gravity wave segments averaged over all phases. This means that..

< otw(m) > + < ojnr >

where 75 is the duration of the base unit. If a case exists where Y; = 1, then < aéw('rl) >
and < oy (70) > must be negligible compared to < o > as the latter of the pair
must be of a different magnitude to the former. This means that Y; can be used to

estimate < 0%y > and that for the other ¢ values,

< otw(m) >+ < odyr >

Y: ~ 3.11
Some algebraic manipulation then yields
(Yi—1) < ohyr >r< odw(m) > Vi# 1. (3.12)

Thus if equation 3.9 is true,we can use our ¥; ratios and < o7 > to estimate the value
of the spectral width component that is affected by the sampling time, < o, (7;) >.
An expression for the variance, averaged over phase, of the velocity fluctuations
due to a gravity wave has been derived by Hocking(1988) using the probability density
function (in the appendix):
V2

< oty () >= 701? (3.13)
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Table 3.3: Characteristics of the data segments

Time interval Heights Base Unit Comments

11:00 - 11:20 84.6 — 86.1 km  (3Z2T) 385 s oscillation in w
2@37Z of amplitude 2.25 £ 0.25 ms~!

14:00 - 14:20 84.0 - 85.5km  (3Z1T) 300 s oscillation in w
2037 of amplitude 2.5 & 0.5 ms™!

13:00 — 13:20 84.3-84.9km (3Z1T) little variation in w
1@Q37Z

9:00 - 9:20 84.9-86.4km (3Z2T) Long period fluctuation in w

2@3Z
8:30 - 8:50 86.1 - 86.7km  (3Z2T) A ramp in w
1@37Z
where
1 7T 2nr
PR T AR i 14
F=1 57 7 {1 — cos( T )} (3.14)

T being the period of the gravity wave , V; its amplitude and 7 the sampling time. It is
shown in appendix A that this equation can be applied to the power spectrum. It can
then be compared to (Y; — 1) < o}t > in order to judge its ability to estimate the

contamination due to gravity waves.

3.2 Results

The analysis described previously was carried out on the data on a case study basis.
These cases which include oscillations in vertical velocity w of various periods were
chosen from the velocity vs height and time plots given in figure 3.6 and were subjected
to further analysis. Although this figure consists largely of noise, some areas containing
coherent velocity variations can be seen. The segments of the data set and some of their

characteristics are summarized in Table 3.3.
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Figure 3.6: Plot of the velocities for the whole data set.
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Figure 3.7: The Y; values for the 11:00-11:20 data.

3.2.1 Gravity wave contamination.

The 11:00 — 11:20, 84.6 — 86.1 km data.

In this case the base unit, chosen using the criteria of section 3.1.3 was 3Z2T, i.e. 3
height samples and 2 time samples were accumulated to give the “minimum?” spectrum
that was analysed. These were then compared with multiples of the base unit to give
the Y; values shown in figure 3.7. The error bars are calculated using the one-standard-
deviation errors in the mean of the numerator and denominator in equation 3.5, both
of which involve an average through the data set.

The vertical axis in figure 3.7 represents the time over which the sample is accumu-
lated. It can be seen that as this increases, Y;, which is a measure of the contamination
due to velocity variations, moves away from unity. The first significant non-unity ¥;
value occurs at a sampling time of 165 s although the 121 s sample only just includes
unity.

The amount of contamination is dependent on the period and the amplitude of the
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Figure 3.8: Comparison of predicted and measured spectral width contamination for
the 11:00-11:20 data.

gravity-wave oscillation as expressed in equation 3.13. The ability of this equation to
predict the contamination is assessed in figure 3.8. In this figure, the horizontal axis
represents the predicted variance, averaged through the data set, of a gravity wave
only (using equation 3.13). The central values are calculated using a period of 385 s
and an amplitude of Vo= 2.25ms™! and the error bars use V,=2.0 ms~! and 2.5 ms™!
respectively. On the vertical axis, the variance due to components that are independent
of sampling time (i.e. the non “GW?” terms) are plotted. The error bars denote one-
standard-deviation uncertainties in the mean derived from the average over the data
segment.

It can be seen from figure 3.8 that a good agreement between the experimentally
derived widths and those predicted by equation 3.13 exists. The fact that the period
of the oscillation varies through the data segment (i.e it is not “monochromatic”) and
is not ezactly 385 s, and that V; also varies will act to degrade the quality of the

predicted widths. Despite this though, equation 3.13 predicts the width of the gravity
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Figure 3.9: The Y; values for the 14:00-14:20 data.

wave component quite well.

The 14:00 — 14:20, 84.0 — 85.5 km data.
The base unit for this segment was 3Z1T and the Y; ratios for the 14:00-14:20 data

segment are given in figure 3.9. The second data point, corresponding to a sampling
time of 55 s, is non-unity to within the one-standard-deviation error in the mean. The
Y; values seem to level off between 2.0 and 2.2 for samples larger than 120 s. This
may imply that all the gravity-wave contamination has been included in these spectra;
however the number of individual ¥; values contributing to these points is small making
the statistics unreliable.

Figure 3.10 shows the comparison between predicted and experimentally determined
widths. The predicted values use a V5 of 2.5 ms™, and a period of 297 s (equivalent
to 14 samples) with the error bars corresponding to V5=2.0 and 3.0 ms™!. The vertical
error bars correspond to the one-standard-deviation crrors in the mean. There is good
agreement between the predicted and experimental values for the smaller samples. The

larger ones are probably being affected by the small number of samples. This will mean
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Figure 3.10: Comparison of predicted and measured spectral width contamination for

the 14:00-14:20 data.

that averaging over the data set will not capture a variety of phases making the result
incompatible with the theoretical prediction where all possible phases are averaged. This
lack of data is due partly to the limited number of separate large samples that can be
taken from a finite data segment but may also reflect a predominance of non-Gaussian
spectra. This would be expected for larger samples, and numerous spectra were rejected
on the basis on a poor x? at these long sampling times.

13:00 — 13:20, 84.3 — 84.9 km data.

The base unit on this occasion was 3Z1T; however the height range over which the
data were available was less than for the previous two cases making it impossible to
split it into two 3Z height regimes. The result is that fewer points are availablc and the
error bars on the Y; graphs given in figure 3.11 are correspondingly larger. It can be
seen however that none of the Y; values are significantly different to 1.0, a result which
1s not surprising as the variations in the data are of small magnitude (0.5 — 1.0 ms™).

Thus, even though a 3Z1T base unit was chosen, a longer duration sampling time would
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Figure 3.11: The Y; values for the 13:00-13:20 data.

give results unaffected by gravity waves.

As no regular oscillation was present, a comparison of measured with predicted

contamination could not be carried out.

9:00 — 9:20, 84.9 — 86.4 kin data.

A base unit of 3Z2T was chosen for the data set. Figure 3.12 shows the Y; values for
this data set. The vertical velocity changed from -2 to +2 ms™! approximately during
the 20 min of the data set. If any oscillation is present it is of period much larger than
the data set. None of the Y; values are significantly non-unity and no comparison was

possible with predicted broadening due to gravity waves.

8:30 — 8:50, 86.1 — 86.7 km data.

For this data set, a base unit of 3Z2T was needed. The vertical velocity fluctuated
slightly around a linear decrease but no clear oscillation was present. The Y; values are
given in figure 3.13. None of those displaycd are significantly different to 1.0. The large

error bars are due to fewer points being available in this smaller height range.
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3.2.2 Energy dissipation rates from the vertical beam data.

The vertical beams can be used to obtain measurements of the turbulent energy dissi-
pation rates. As discussed in chapter 2 and in Hocking(1989), this involves calculating
the width of the spectrum of one of the beams, correcting for contamination effects, and
converting this width to &, the turbulent energy dissipation rate. For this experiment,
the two beams are pointed vertically at the same time so that the spectra from each
can be averaged to improve the signal-to-noise ratio. The width of this must then be
corrected for non-turbulent contributions. -

In the previous section, it was shown that gravity wave contamination can be avoided
in this experiment by choosing a suitable base unit spectrum. The analysis here is
confined to that spectrum, which must then be corrected for other forms of broadening
and narrowing. Hocking (1983b) suggests that beam broadening is the most important
for vertical beams, that is, shear broadening can probably be ignored. The use of an
approximately 1 km height sample adds credence to this as the shear that would be
required to produce an effect would need to be even greater than that for the 2-3 km
height samples used by Hocking at MF. Thus beam broadening is the main contaminant.
An equation to quantify this is given in Hocking (1985) and when applied here the result
1s:

fospn(Hz) =0.0032 x V (3.15)

This uses a two way beam half-power half-width of 0.55° and a wavelength of 6m. The
V here is the magnitude of the horizontal wind velocity vector in ms™!.

As the sampling regions for the vertical and off-vertical beams were not colocated,
an assumption must be made in order to proceed with this analysis. As shown in
figure 3.1 the sampling regions for the off-vertical beams are approximately 10 km away
from zenith at 80 km, thus we do not have a measure of the horizontal velocity in the
region where the spectrum whose width we measure is sampled. To overcome this, it is

assumed that the wind field in the region of the 3 sampling volumes is non-divergent.

That is, the horizontal velocity measured at one of the oblique beams is the same as
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that at the other two beams and the vertical velocity measured at the vertical beam is
the same as that at the oblique beams. This yields the followihg expression for radial

velocity Viqq

Vied = usin@ + wcosb

(3.16)
= u x 0.122 + w x 0.993

for § = 7°, where 0 is the angle of each beam from the zenith, u is the horizontal wind-
compornent in the plane containing the vertical and oblique beams and w is the vertical

velocity. This can be rearranged to give an expression for u viz:

Vieg — w X 0.993
_ 3.17
b 0.122 (3.17)

Although horizontal velocities are generally larger than vertical ones, it is variations
of w between the beams that will cause the greatest concern. As equation 3.17 shows,
an error in w will cause a significant error in u and, of the three wind components, it
is w that is most likely to vary. The horizontal winds will most likely be due to longer
period waves which have horizontal wavelengths much greater than the size of the beam
separation, making small scale variations unlikely. Conversely, the vertical velocities are
due to high-frequency waves which have shorter horizontal wavelengths and are more
likely to vary from one beam to another. However, of all the possible assumptions that
can be made, the non-divergent one is the best in spite of the above complications.

Using equation 3.17, the components of the horizontal wind can be calculated. The
radial velocities come from a Gaussian fit to a 3Z1T base unit spectrum. Even though
in some cases the widths from 3Z1T are unreliable, the velocities are acceptable and
can then be averaged if necessary to obtain a suitable velocity sample. The averaging
becomes necessary because the vertical and off-vertical beam measurements are not only
separated in space but in time also. Thus to get a horizontal velocity for a particular
vertical beam sample, some manipulation of off-vertical beam radial velocity data must
be carried out. If the vertical beam samples are 3Z1T, then the oblique beam sample
before and after are used to give the radial velocity. If 3Z2T is the vertical beam base
unit, then the 3Z1T sample taken between the two time samples is utilised to obtain

the radial velocity. With these radial velocities, the horizontal wind vector is calculated
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and the magnitude of this vector, V is then used in equation 3.15.

The first step in the energy dissipation rate analysis is to ensure that the spectra
do contain information on turbulence and are not made up entirely of contamination
effects. This is done by plotting the measured spectral half-power half-width against
the spectral half-power half-width that would result from beam broadening/narrowing
alone. If all the data lie on or close to the line of slope 1 passing through (0,0), then no ‘
turbulence information is available. If this is not the case, and the spectral widths are
not all due to contamination effects, the measured spectral width can be calculated via
equation 3.6.

Graphs showing the above processing are now presented. The “Total horizontal
velocity” is the magnitude of the horizontal velocity vector calculated from the three
beams. The half-width, fosgn, is the width due to instrumental effects like beam broad-
ening/narrowing and must be removed from the measured width; fo.s:urs is the result
of that correction. The signal-to-noise ratio (S/N) in dB produced by the PROFILE
routine for the vertical beam data are presented along with the vertical velocity (in
ms~!) for comparison.

The average and median values of corrected half width for each data set are sum-
marised at the end of this section. As the method of converting these half widths
to energy dissipation rates requires some qualification, this has been left to the next
(Discussion) section.

11:00 — 11:20, 84.6 — 86.1 km data.

The scatter plots in figures 3.14 and 3.15 show that in general only a small component
of the measured spectral width can be attributed to beam broadening. Thus turbulence
information can be obtained. This information is summarised in figures 3.16 and 3.17.
It can be seen that a clear oscillation in w, the vertical velocity, is present. There is a
suggestion that spectral width attains a maximum as w is increasing however little can
be inferred from the two cases here. A correlation between corrected spectral width and

the signal-to-noise ratio is not obvious.

71



0 0-2 0-4 0-6 0-8 1 1-2
84.6km  fycpy (Hz) 11:00to 11:20 data

Figure 3.14: Scatter plot of measured spectral half-power half-width (fos.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fospn), both in Hz
for 11:00 to 11:20, baseheight 84.6 km data.
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Figure 3.15: Scatter plot of measured spectral half-power half-width (f5.5.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fosBN), both in Hz
for 11:00 to 11:20, baseheight 85.5 km data.
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Figure 3.16: Spectral half-power half-widths and associated information for the 11:00
to 11:20, baseheight 84.6 km data. See text for details.
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Figure 3.17: Spectral half-power half-widths and associated information for the 11:00
to 11:20, baseheight 85.5 km data. See text for details.
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Figure 3.18: Scatter plot of measured spectral half-power half-width (fos.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fosgn), both in Hz
for 14:00 to 14:20, baseheight 84.0 km data.

14:00 — 14:20, 84.0 — 85.5 km data.

The scatter plots in figures 3.18 and 3.19 allow further analysis by ruling out sig-
nificant contamination. The oscillation in vertical velocity is less monochromatic than
the previous case as shown in figures 3.20 and 3.21. The upper data range is a little
intermittent due to the absence of spectra in both the vertical and off-vertical beams
at various times. In either case, correlation between signal-to-noise ratio and corrected
half-width is not obvious.

13:00 — 13:20, 84.3 — 84.9 km data.

Once again, figure 3.22 shows that turbulent effects dominate the spectra. The
vertical velocity oscillates around a mean value by 0.5-1.0 ms™! in an irregular fashion
(figure 3.23). There is a slight suggestion that high signal-to-noise ratio is associated

with narrow spectra.
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Figure 3.19: Scatter plot of measured spectral half-power half-width (fo.s.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fossn), both in Hz
for 14:00 to 14:20, baseheight 84.9 km data.
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Figure 3.20: Spectral half-power half-widths and associated information for the 14:00
to 14:20, baseheight 84.0 km data. See text for details.
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Figure 3.21: Spectral half-power half-widths and associated information for the 14:00
to 14:20, baseheight 84.9 km data. See text for details.
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Figure 3.22: Scatter plot of measured spectral half-power half-width (fos.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fo.s5n), both in Hz
for 13:00 to 13:20, baseheight 84.3 km data.
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Figure 3.23: Spectral half-power half-widths and associated information for the 13:00

to 13:20, baseheight 84.3 km data. See text for details.
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Figure 3.24: Scatter plot of measured spectral half-power half-width (fo.5.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fossn), both in Hz
for 9:00 to 9:20, baseheight 84.9 km data.

9:00 —- 9:20, 84.9 — 86.7 km data.

The data shown in figures 3.24 and 3.25 suggest that turbulence information is
obtainable. Both the time series in figures 3.26 and 3.27 have gaps due to chisquare
rejection or the unavailability of horizontal wind data. The latter part of figure 3.27
however shows some quite large spectral width values.

8:30 — 8:50, 86.1 — 86.7 km data.

Figure 3.28 shows that beam broadening/narrowing dominates in a few points how-
ever turbulence information is still available. This data set (see figure 3.29) is charac-
terised by a decrease in vertical velocity with some small-scale fluctuations around it.

The corrected spectral half-width becomes large for two 3Z2T samples around 8:40.
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Figure 3.25: Scatter plot of measured spectral half-power half-width (fo.se) versus cal-
culated half-power half-width due to beam broadening/narrowing (fo.sen), both in Hz
for 9:00 to 9:20, baseheight 85.8 km data.

Summary of corrected half-widths squared
Time Baseheight Mean (Hz?) Median (Hz?)

11:00-11:20  84.6 km 0.476 0.380
85.5 km 0.451 0.384

14:00-14:20  84.0 km 0.180 0.132
84.9 km 0.188 0.163

13:00-13:20  84.3 km 0.193 0.132
9:00-9:20 84.9 km 0.143 0.087
85.8 km 0.560 0.284

8:30-8:50 86.1 km 0.325 0.151

Table 3.4: Summary of the mean and median values of the corrected spectral half-width
squared in Hz?.
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Figure 3.26: Spectral half-power half-widths and associated information for the 9:00 to

9:20, baseheight 84.9 km data. See text for details.
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Figure 3.27: Spectral half-power half-widths and associated information for the 9:00 to
9:20, baseheight 85.8 km data. See text for details.
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Figure 3.28: Scatter plot of measured spectral half-power half-width (fos.) versus cal-
culated half-power half-width due to beam broadening/narrowing (fo.ssn), both in Hz
for 8:30 to 8:50, baseheight 86.1 km data.
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Figure 3.29: Spectral half-power half-widths and associated information for the 8:30 to
8:50, baseheight 86.1 km data. See text for details.
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3.3 Discussion

The first two data sets presented in the previous section, i.e. those for 11:00-11:20
and 14:00-14:20, show moderate amplitude oscillations in vertical velocity which are
assumed to be due to gravity waves. Using the ratio Y; (see equation 3.5) it is shown
that contamination of the spectral widths due to gravity waves occurred at sampling.
times of 165 and 55 s. respectively. The other data sets, however, were not affected
for sampling times up to 200 s. Thus gravity wave contamination of spectral width
measuremeénts can occur. The equation derived by Hocking(1988) (equation 3.13) was
shown to give a good estimate of this contamination for monochromatic waves and could
be used to make an approximate correction to spectral-width estimates if the period and
amplitude were known. However if the instrument is able to resolve the period, it is
unlikely that this contamination will be a serious problem. This experiment has shown
that VHF radars can be used to obtain uncontaminated data; however MF radars, with
their longer fading times and resultant longer sampling times, could be seriously affected.

Hocking(1988) carried out a statistical study of gravity-wave contamination in data
obtained using the Buckland Park HF /MF radar. By changing the sampling time be-
tween 102 s and 205 s, Hocking was able to confirm the presence of gravity wave con-
tamination in spectral-width measurements. To correct the energy dissipation rate mea-
surements however, all that could be done was to assume that 5 min was the dominant
contaminating period.

The spectral widths, corrected for gravity-wave contamination, can be used to obtain
the energy dissipation rate (¢) and methods for doing this (as outlined previously) require
a knowledge of the relationship between the spectral width and €. As the constants that
should be used are subject to some debate, these calculations will be avoided in the
discussion of the character of the time variations of spectral widths (and thus €) that is
to follow. These time variations are shown in figures 3.16, 3.17, 3.20, 3.21, 3.23, 3.26,

3.27 and 3.29.

The possibility of a correlation between the phase of a gravity wave and ¢ is con-
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sidered first. The 11:00 to 11:20 data set (figures 3.16 and 3.17) contains the most well
behaved oscillation and it is assumed to be due to a gravity wave with a ground based
period of around 300 s. (The Brunt-V4&isila period in that region is of the order of 265
s (Groves 1987).) An oscillation in the total horizontal velocity vector is seen to be
in antiphase with that in the vertical velocity. Although this could feed back into the
corrected spectral widths via the beam broadening/narrowing term, this does not seem
to be occurring here. The data for the 84.6 km baseheight (figure 3.16) and the 85.5
km baseheight (figure 3.17) both suggest a peak in € toward the end of the increasing
vertical velocity segment of the wave.

A similar suggestion can be seen in the 14:00 to 14:20 data at the baseheight of 84.0
km (figure 3.20) although both the gravity wave and this effect are less clear. Of the 3
peaks in vertical velocity, the first (at around 14:07) and the last (near 14:17) seem to
have preceding peaks in €; however, the peak in w at 14:11 does not.

The peaks in ¢ for the baseheights 84.6 km and 85.5 km in the 11:00 to 11:20 data
occur at the same time. This coherence is not displayed in the signal-to-noise ratio (SNR)
data however. In fact the character of the time variations of SNR is quite different to
that of the variations of spectral width, both in the 11:00-11:20 data, and the other
data sets.

Contour plots of SNR are often used to indicate the presence of turbulence, however,
the lack of correlation between SNR and spectral width seen here suggests that some
care should be taken in the interpretation of SNR data. It is safe to assume that noise
1s essentially constant. Galactic noise is the major noise source at 50 MHz. If the beam
being considered does not transit a radio star, short term variations in the noise will not
be a problem. At Poker Flat, this transit would take less than 2 min and the data do
not show signs that this is occurring. The potential refractive index structure constant,
CZ, is proportional to returned power (the signal) for a single radar system at a fixed

height. However the relationship between C? and ¢ is a complex one, viz:

2,2
anB

20/ o M2

a?a’cy M2

e=] 2/ (3.18)
(from the previous chapter) and many of the parameters in this expression are not

89



constant. The most important in this case is probably M,, the potential refractive
index gradient,
wy dN Ndp

an
M= oNnWN Y~ 5%

(3.19)
where n is the refractive index, IV is the electron density, p is the density at height z,
wp 1s the Brunt-Vaisald frequency and g is the acceleration due to gravity. The echoes
considered here are thought to result from auroral particle precipitation; thus the form
of dN/dz and N(z), and hence the form of M, cannot be considered constant.

It is also worth noting that the spectral width method of measuring € includes in-
formation from all scales in the range A\/2 (the Bragg scale) to Lp the inner scale of
the bouyancy range. Bragg scale structures, acting as tracers, are advected around by
larger eddies. The power method, however, relies on the presence of Bragg scale turbu-
lence structures or in fact any structure of that scale. It has recently been suggested by
Klostermeyer (1988) that parametric instabilities may be enhancing small-scale struc-
ture. If this is so, the power method will be affected . by non-turbulent contributions.

Hoppe et al. (in preparation) conducted an experiment in which VHF and incoherent
scatter radar techniques were used to study the summer polar mesosphere. As part of
this, the mobile SOUSY VHF 53.5 MHz. radar (Czechowsky et al. 1984, Schmidt et
al. 1979) was operated on the island of Andgya, Norway. In data obtained during June
1987, Hoppe et al. found cases of a correlation between vertical velocities and SNR as
well as spectral width and SNR. They admit, however, that many cases exist that do
not correlate well.

Rgyrvik and Smith (1984), using the 50 MHz VHF radar situated at Jicamarca near
the equator (11.95° 5,76.87° W) looked for correlations between returned signal power
(S) and the signal correlation time (C), which is inversely proportional to the spectral
width. Their results varied as a function of height with a strong positive correlation
between S and C below 75 km (negative correlation between power and spectral width)
and a negative S/C correlation above 75 km (correlation between power and spectral

width). These observations should be treated with caution however as the mechanisms

causing the echoes in the summer polar mesosphere are thought to be quite different to
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those operating elsewhere.

Empirical calculations of the energy dissipation rate, €, from the spectral width were

carried out using the equation

e = Kvifp (3.20)

(see previous chapter) where fg is the Brunt-Vaisala frequency in Hz, K = 3.1 and W_
is the RMS vertical velocity. This is related to spectral width by v2 = f2/21n 2 where
fr is the spectral width due to turbulence only measured in ms—!. As stated previously,
the constant K is subject to some debate. Weinstock (1981 suggests K = 2.5 whereas
calculations by Hocking refining the Hocking (1983a) value of K = 2.8 have resulted in
the value used here of £ = 3.1 (Hocking 1988). These variations in the X value used
need to be kept in mind when comparisons of ¢ values obtained by other authors are
made.

Measured values of fg at the time of the experiment were unavailable so model
values had to be used. These were obtained from Groves (1987). As the date of the
experiment was August the 1st. and the model supplied monthly values, those for July
and August for 65° N were averaged together. Some interpolation was carried out to
obtain a value for the centre of each height block (approximately); however in the light
of the uncertainty in X, this was probably overkill. All values were close to 0.0237 rad
s~1 or 0.00377 Hz.

The values of ¢ obtained from the median spectral widths are summarised in fig-
ure 3.30. In cases where it is warranted (i.e. those where there is a suitable amount of
data), the time variation of ¢ is plotted in figure 3.31. The median of € ranged from
0.007 Wkg™* to 0.029 Wkg! (figure 3.30) however energy dissipation rates in excess of
0.15 Wkg~! occur in figure 3.31.

As part of the STATE experiment, Watkins et al. (1988) calculated energy dissipation
rates using the Poker Flat radar. The experiment was carried out in June 1983, at which
time the radar was operated in a different configuration to that described previously in
that the vertical beam width was 2.2°. The average ¢ calculated by Watkins et al., using

a K of 2.8 are larger but not inconsistent with the values presented here. The typical
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Figure 3.30: Summary of median energy dissipation rate values (¢)
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maximum values they found however are some 5-10 times greater than these values and
are much larger than all the maxima seen in figure 3.31. The Watkins et al. (1988) work
included correction for beam broadening and narrowing, but used a data aquisition time
of 1 min. As was shown in figure 3.9, this could result in gravity wave contamination
and may explain the larger € values. A further consideration will be discussed shortly.

Rgyrvik and Smith (1984) used the Jicamarca 50 MHz VHF radar to calculate ¢ in
the equatorial mesosphere during February 1983 and obtained a value of 0.05 Wkg™?.
Because of the difference in latitude and season, it is possible that this value should
not be compared to those presented previously. Additionally, Rgyrvik and Smith did
not apply any correction for beam broadening/narrowing and, as they used an oblique
beam, had to adjust for horizontal velocity contamination. Thus this value is cast into
some doubt.

Hocking (1988) presented a two year study of ¢ using the Buckland Park HF/MF
system (138.5° E, 35° S). In that study, Hocking showed that the long data aquisition
time was causing contamination. The ¢ values obtained after some correction for this
are of the same order or larger than those found here. However, as before, the difference
in latitude may make comparison of the two inappropriate. It should be noted that in
Watkins et al. (1988) and Rgyrvik and Smith (1984), spike rejection and Gaussian fitting
were not used. If spikes are present in the spectra, this will generally act to decrease
the width value obtained. Accepting non-Gaussian spectra will probably be a greater
problem though. If a gravity wave half-cycle is sampled by the radar, a spectrum that is
a convolution of the turbulence spectrum with that shown in figure 3.5 will result. If the
gravity wave has an amplitude of a few metres per second, a spectrum much wider than
that due to turbulence alone would result, and without the restriction of a Gaussian fit
will be interpreted as due to turbulence alone. These gravity waves are seen to exist (eg.
the 14:00-14:20 data) above Poker Flat and could explain the large values of € found on
occasions by Watkins et al. (1988).

As a final comparison, Thrane (1985) used rocket measurements to obtain € in the

mesosphere over Norway in November 1980. The mean € values presented there are in
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general agreement with the median values of figure 3.30.

3.4 Summary

In this chapter, an experimental study of the effect of gravity waves on the width of
the Doppler spectrum was carried o;ut. The data were obtained using the Poker Flat"
50 MHz VHF radar. A parameter Y; was used to describe the difference in the width
of spectra sampled over a long period of time (7;) and that taken over a shorter time
(10). I Y; is not significantly different to 1.0, no contamination is present. Non—unit;l
values of Y; were seen to exist in some cases where a gravity wave was present. The
experimental data considered here were of a time resolution that allowed the period and
amplitude of the contaminating gravity wave to be determined. A theoretical expression
for gravity wave contamination proposed by Hocking (1988) was then tested and found
to agree with measurements.

Having shown that the data blocks and sampling times selected were not contami-
nated by gravity waves, it was possible to use the spectral-width measurements to obtain
the turbulent energy dissipation rates for these blocks. The time variation of spectral
width was considered first and found to show a correlation with vertical velocity in the
case of an almost monochromatic gravity wave. The peak in spectral width occurred as
the vertical velocity approached its maximum upward amplitude. This effect was less
clear for the case where the gravity wave was less monochromatic.

Median spectral width values were used to calculate energy dissipation rates and
these values were seen to agree with values obtained by other workers. There was some
discrepancy between typical maximum values found here and those calculated by others;
however, these differences can be explained on the basis of the differences between the

methods,
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Chapter 4

Buckland Park

Equipment and basic analysis

The data considered in the remaining chapters of this thesis were obtained using
the Buckland Park MF/HF (1.98/5.94MHz) radar. The antenna array was constructed
between 1964 and 1967 and is situated approximately 40 km north of Adelaide at 35°
38'S, 138° 29’E. The name comes from the Buckland Park sheep station that is situated
nearby and which once covered the area of the field site. The results presented in this
thesis were obtained using only the 1.98 MHz mode of operation, so the 5.94 MHz mode
will not be considered in this chapter. A 50 MHz ST radar has been constructed next
to the MF/HF array. A plan of the Buckland Park site is presented in figure 4.1.

Although the Buckland Park radar system is unique, radars are in common use
around the world. Their application, which was born of a desire to detect aircraft, has
extended into many fields. Weather radars form a significant fraction of radar usage,
and a considerable amount of radar expertise has resulted from their use. (For a review
of weather radar methods, the reader is referred Doviak and Zrnié 1984.) Radar remote-
sensing of the atmosphere and ionosphere has been able to draw on this knowledge as
well as contribute new methods to it. For example, the technique used to obtain the
first moment of a power spectrum that is described later in this chapter was developed
by ionospheric investigators (Woodman and Hagfors 1969).

In this chapter, some details of the Buckland Park system and the analysis methods
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used on data obtained there are presented. The aim is to provide the reader, who already
has some knowledge of radar techniques, with the information necessary to appreciate
the limitations and advantages of the Buckland Park system that are pertinent to the

work presented in the remainder of this thesis.

4.1 Transmission

The position of the transmitting array is given in figure 4.1. It consists of four folded
dipoles arranged as shown in ﬁ-gure 4.2. The separation between the parallel dipoles is
around 75 m giving a beam-width of approximately 40° half-width half-maximum. The
dipoles are suspended at a height of 30 m. The configuration shown in figure 4.2 allows
transmission of both right and left-hand circularly-polarised waves as well as enhancing,
to some extent, the transmitted power that is directed vertically.

Switching between circular polarisations improves echo strength at various times
of the day. During the daylight hours, E (or X) mode (left-hand circularly polarised
in the southern hemisphere when looking from the source) is strongly absorbed before
reaching 80 km; however, echo powers are enhanced by using E mode at night. O mode
(right-hand circularly polarised) is used during the daylight hours.

The transmitter operates in a pulsed mode with a typical pulse repetition frequency
of 20 Hz. Each pulse is a 1.98 MHz sine wave modulated by a Gaussian envelope. The
half-width of this envelope is typically 25 ps. The transmitter peak power varies with

condition of the valves, but is typically around 25 kW.

4.2 Reception

Returned echoes are received via a circular filled array with a diameter of 1 km . Its
layout is shown in figure 4.1 (after Briggs et al. 1969). The array consists of two in-
dependent sets of 89 half-wave dipoles, one set aligned 4° off north-south, the other
aligned 4° off east-west. The dipoles are 72 m in length and are strung from wooden

poles at a height of 11 m. Each is connected to the patch board in the main hut by a
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Figure 4.1: A ground plan of the Buckland Park site (after Briggs et al. 1969).
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balun transformer and its own coaxial cable cut to an integer number of wavelengths (in
cable). Thus each of the 2x89 dipoles is accessible in the main hut. He;re they can be
phased relative to each other to produce the desired beam configuration. (The phasing
used for momentum flux measurements is described in a later section.) When all the
north-south or east-west elements are connected as a broadside array, the polar diagram
has a beam-width of approximately 5° half-width half-maximum. The first nulls lie at
11.6° from the vertical.

Eight receivers are available to amplify the 2 MHz signals from the array. The
output from these receivers is passed to signal processors that take samples of the
complex voltages. The in-phase and quadrature parts of the signal are sampled using
an 8-bit analogue-to-digital converter and are passed to the controlling Eclipse S/120
mini-computer.

The echo height is calculated from the time between the pulse transmission and the
time of sampling. This time interval = 2z/c where c is the speed of light and z is the
height from which a narrow transmitted pulse would have been reflected. The finite
transmitted pulse width (here around 25us) means that reflections occurring above and
below this level arrive at the ground with this time delay. The practical result of this
effect in this case is that the vertical height resolution is of the order of 4 km. Height
samples are taken every 2 km thus successive height bins are not independent.

The averaging of the in-phase components and the quadrature components of the
signal at successive times to give a representative in-phase, quadrature pair (coherent
averaging) is used to improve the signal-to-noise ratio. For most of the data considered
here, 8 samples separated by 0.05 s were coherently averaged to give a pair of data
points every 0.4 s. A time series of 256 of these samples, lasting 102.4 s is stored for
each available height.

The variation in the echo power with height, and the resulting changes in gain
required by the receivers used here to compensate for this, make it impossible to sample
over a height range of more than 20 km at one time. Generally these 20 km height blocks

are switched between 60-78 km and 80-98 km for successive time intervals. At night,
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Figure 4.3: The antenna configuration used for spaced-antenna wind measurements.

however, the lower block is moved up to 70-88 km as no echoes occur below 70-80 km

at this time.

4.3 Spaced antenna analysis

One mode in which the Buckland Park MF system can be operated is that utilising
spaced antennas to measure winds (the SA method). For a full description of the
method the reader is referred to Briggs (1984).

Three antennas are required for this method of analysis. At Buckland Park these
are made up from combinations of either the north-south aligned or east-west aligned
antennas. Either can be used as the echoes returning from the mesosphere are circularly
polarised. Each of the three antennas is made up of four dipoles, adjacent to each other
on the grid as shown in figure 4.3. The complex signals from these three antennas are
recorded and analysed using correlation analysis.

The radio waves reflected from the mesosphere form a diffraction pattern on the
ground. The movement of the scatterers with the wind causes this pattern to move
so that by measuring the speed at which this pattern moves and the direction it is

moving, the wind velocity and direction can be obtained. Given the variations in the
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signal at three vertices of a triangle, a cross correlation of the pairs of complex time
series will yield information on the time required for the pattern to pass from one vertex
to another. Then, given the distance between, and the positions of the three vertices,
the components of the velocity can be obtained (Mitra 1949). This simple method,
however, does not account for any systematic elongation of the pattern or for variations
in the diffraction pattern as it moves. These changes will cause the above method to
yield a velocity larger than the true velocity. The full correlation analysis (Briggs 1984)
accounts for this factor and it is this analysis that is used on the spaced-antenna data
treated in this thesis.

A theoretical treatment of the errors of the SA technique was carried out by May
(1988). It was found, however, that the rejection criteria used in the SA technique
made experimental determinations of the error more applicable. An experiment was
conducted which used two separate sets of receiving antennae to make two independent
determinations of the horizontal velocity and obtain an estimate of the statistical error
of the SA technique. May found root-mean-square differences between the two velocities
of between 6 and 21 ms™! which translate to an error in each reading of between 1.7
and 3.2 ms™!. These measurements were made in the mesosphere with wind speeds of
greater than 70 ms™!.

The full correlation analysis provides information on other aspects of the scatterers.
In particular, the pattern scale, which describes the size of the diffraction pattern on
the ground, is obtained from the spatial correlation function. It is assumed that the
spatial correlation function has elliptical contours and the parameters that describe the
p = 0.5 ellipse, namely the axial ratio, length of semi-major axis and orientation of the

ellipse, are calculated in the full correlation analysis.

4.4 Doppler analysis

Another method whereby radars can be used to obtain the velocity of motion of a

medium is the Doppler method. As stated previously, the Doppler method has been
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applied to weather studies for some years and has undergone extensive development in
that time. A small subset of these developments that are relevant to middle atmosphere
studies is presented now. For further information, the reader is referred to (eg.) Doviak
and Zrnic (1984).

Radio waves transmitted at a carrier frequency w; are backscattered by irregularities
in refractive index in the radar sampling volume. If these irregularities are moving, the
returned radio waves are shifted in frequency by an amount wy that satisfies wg = 2Vw, /¢
where V is the velocity of the scatterer radial to the radar and c is the speed of light.
Thus by measuring wy, the radial velocity of the scatterer can be determined.

In practice, random motions in the atmosphere and its bulk motion produce a spec-
trum of returned frequencies and it is the mean of this spectrum that is used to obtain
the velocity. This mean value can be obtained using approaches that use the spectrum,
or by applying the Fourier shift theorem and using the autocorrelation function of the
time series from which the spectrum was obtained. One of the former methods was
used in Chapter 3 to obtain spectral widths. The discussion here will begin with the
time-series (covariance) based methods used on the Buckland Park data. Other possible
methods will then be discussed

In the case where the atmosphere is stationary, but contains some zero-mean random
motions, a Doppler power spectrum of the returned echoes S;(w) would be centred on the
radar frequency. The sampling method used at Buckland Park has the effect of moving
this to zero frequency, leaving the spectrum centred on zero. By the autocorrelation or
Watner-Kintchine theorem (see e.g. Bracewell 1978, p115) the Fourier transform of this
power spectrum is the autocorrelation function p,(7) of the original time series.

If the atmosphere is in motion, the power spectrum S,(w) will be shifted to (say)
wq. If we define the shifted spectrum S(w) = S;(w — wq) then its Fourier transform can

be found using the shift theorem and is as follows:
S(w) & p(7) = pa(r)e™” (4.1)

p(7) being an autocorrelation function and < denoting a Fourier transform. If we

assume that S;(w) is symmetrical (i.e. an even function), then p,(7) will be purely real.
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Thus the phase of the autocorrelation function, ¢(7), in the expression

p(r) = |p(r)|e* (4.2)
will be due to the shift in the spectrum only. This implies that ¢(7) = wyT or
wq = ¢(7)/7. This result was obtained by Woodman and Guillen (1974), Rastogi and
Woodman (1974), however, they used slightly different reasoning.

In principle, this could be calculated at any value of 7. Values close to zero are
preferred in practice, however, because noise and departures from symmetry can make
the phase less reliable at large lag values. With the complex time series obtained at
Buckland Park, the value of the phase of the autocorrelation function at one discrete
lag is calculated to give wy. This method is sometimes termed the pulse pair (PP)
technique.

It was noted that this treatment assumes that the power spectrum, if computed,
would be symmetric. This may not be so in practice. The gravity-wave effects discussed
in chapter 3 could make the spectrum asymmetric. For off-vertical beams, leakage of
power into the beam from the vertical could increase the power near zero frequency caus-
ing asymmetry. “Specular spikes” could also bias the spectrum; thus it is possible that
this symmetry assumption is not satisfied. For this work, however, the computational
efficiency of this widely-accepted method made it preferable.

The error in the velocities obtained when this method is applied to Buckland Park
data was considered by Vincent and Reid (1983). The results of independent velocity
determinations from narrow Doppler beams pointed in the same direction were compared
and the mean-square difference was found to be around 0.5 m2?s~2. The error in a single

determination of velocity was given as 0.7Tms™'.

This value is consistent with that
obtained when the theoretical treatment of Doviak et al. (1979) is applied with typical
values of spectral width and signal-to-noise ratio (Reid 1984).

Another time-series based method of obtaining velocities (termed the poly-pulse pair
technique) utilises the phase of the autocorrelation function at various lags and computes

a weighted average of these to obtain the slope of the phase function at zero lag. The

error involved in the pulse pair, poly-pulse pair and various spectrum-based techniques
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Figure 4.4: Interpolation back to-the zero lag value of the autocorrelation function gives
the signal-to-noise ratio.

was calculated by May et al. (1989) and compared with the results of simulations and
some tropospheric radar observations. They (;oncluded that the pulse-pair technique
was best for data with a good signal-to-noise ratio.

The signal-to-noise ratio can also be obtained from the complex time series. The
noise will be uncorrelated at the first lag and will therefore appear in the autocorrelation
function at zero lag. At non-zero lags the correlation function will be largely unaffected
by noise. Thus by calculating the amplitude of the autocorrelation function at zero and
(say) one, three and five lags, the correlated signal at zero lag can be determined by
interpolation from greater lags and compared with the actual zero lag value to give the
signal-to-noise ratio. This process is described in figure 4.4; it gives the signal to noise

as a power ratio.

4.5 Phasing the Buckland Park array

The Doppler method just described is most often applied to data obtained using narrow
off-vertical beams. It is necessary to have a narrow beam to enable the off-zenith angle
to be accurately determined and to minimise any variations in this angle which might
occur. This requirement is applied to the Buckland Park array through the use of all
89 of the north-south or east-west aligned dipoles. The off-zenith angle is set through

the use of phasing cables.
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The momentum flux measurements that are considered in the remainder of this thesis
require two orthogonal pairs of off-vertical beams. The procedure required to produce
one pair of off-vertical beams is now described.

The signals from each of the 89 north-south aligned (say) dipoles are available in the
receiving hut at Buckland Park. These are arranged in 11 rows, each having between 3
and 11 dipoles as seen in figure 4.1. The dipoles in each row are connected in parallel
(and transformed to maintain a constant resistive load) to form eleven outputs, one
from each row. The signals from each of these rows are then split with power splitters
into two identical sets of eleven signals. These can t.hen be phased to swing the beam
in a direction perpendicular to the rows of antennas.

The off-vertical angle utilised at Buckland Park is 11.6°. This is the angle of the
first nulls of the polar diagram of the whole array when it points vertically. When the
array is tilted to 11.6°, one of these nulls point vertically, reducing the scatter leaking
into the beam from overhead. This configuration was found to be optimum by Hocking
(1979).

To achieve this off-vertical angle, a phase delay is introduced between sucessive rows
using various lengths of coaxial cable. A schematic diagram of this arrangement is given
in figure 4.5. The lengths of the cables are given in table 4.1. With this arrangement,
signals due to a plane wave coming from 11.6° off-zenith (as indicated in figure 4.5) will
arrive at the output to the receiver in phase.

Because the transmitted pulse used at Buckland Park contains many cycles of the
transmitted frequency, it is possible to truncate any cables that are longer than one
wavelength (in cable). This can be seen in table 4.1 between cables lg and l;o. The
beam on the other side of zenith to the one just described is obtained in the same way
as this one, however, the order of this set of cables is reversed. Where one output
from the power splitters may have a cable of length /;, the other will have l;,_;. This
procedure is also repeated for the set of dipoles that are aligned perpendicular to the
first set, however, the rows in this case are connected in a direction perpendicular to

that used for the first pair of beams. Thus four independent radar beams are available.
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Figure 4.5: The phasing cables used to obtain an 11.6° off-vertical beam.
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i li

1 Om
2 11.6m
3 23.2m
4 34.8m
) 46.3m
6 57.9m
i 69.5m
8 81.1m
9 92.7m
10 7.7Tm
11 19.3m
One wavelength in cable = 96.6m

Table 4.1: The cable lengths used to phase the Buckland Park MF array for an 11.6°
off-vertical beam.
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It is noted that this arrangement allows the data for the momentum flux experiments to
be obtained concurrently. This differs from the experimental arrangement used at some
other radar installations where one beam is pointed in different directions at different

times (e.g. Poker Flat, Fritts and Yuan 1989).

4.6 Summary

In this chapter, some aspects of the Buckland Park MF/HF array have been presented.
Methods of data analysis for various types of experiment as well as some aspects of
the hardware configuration have been summarised. For reasons of brevity, however, the
scope of the chapter has been limited to concepts that are of importance in discussions

of the experiments and data processing presented in the rest of this thesis.
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Chapter 5

Beam pointing angles and the

Buckland Park array

It was suggested by Vincent and Reid (1983) that their momentum flux measurements
underestimated the true momentum flux because the effective pointing angle of the radar
beams was closer to the zenith than that defined by the antenna phasing. Fritts and
Vincent (1987) estimated the effective pointing angle by comparing root-mean-square
(RMS) velocities obtained using spaced-antenna and Doppler modes of analysis. As a
precursor to the momentum flux analyses that are the subject of this thesis, a study of
pointing angles, how they can best be calculated, and how they vary with time as well
as height is now presented.

Nominal and effective pointing angles () for the Buckland Park system are generally
within 12° of zenith. In this range, sin § and 0 are very close to being linearly related (or
equal if 0 is expressed in radians). It is therefore common in this chapter to consider sin §
even though the parameter ultimately required is 6. It is also common to use the term
“height” where “range” would be a more precise term. Once again, with 0 within 12°
of zenith and a sampling volume approximately 4 km in height, the difference between

height and range is not critical.
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5.1 Methods of ascertaining the pointing angle

If a very narrow beam is directed at an angle # from the vertical, then the instantaneous

radial velocity measured through this beam will be given by
Vrad = Upor 8iN 0 + w cos 6 (5.1)

where w is the vertical velocity in the radar sampling volume and v, is the component
of horizontal velocity in the plane of the zenith and the radar beam. For # small (say

less than 15°), cos @ = 1 so that to a good approximation

Vrad = Uhor SIN 0 + w. (5.2)
Rearranging gives
sin@ = —ret — 2 (5.3)
Vhor

The two velocities v,,4 and v, can be measured by the Doppler and spaced-antenna
methods. In order to use equation 5.3 to obtain 6, it is necessary also to know w. One
way of obtaining this information is to have a second radar beam directed vertically.
Assuming that the vertical velocity in the sampling volume overhead is the same as that
in the sampling volume of the off-vertical beam, w can be obtained and used in the

above expression. An alternative approach is to assume that w is zero, giving

sin = 22, (5.4)

Uhor

The quality of the assumptions leading to equations 5.3 and 5.4 can sometimes be
enhanced by averaging over a period of time such that v,..4, vhor and w refer to average
velocities. The root-mean-square variation around that average can then be computed
and it was this method that was used by Fritts and Vincent (1987). This root-mean-
square variation can be substituted for the velocities in equation 5.4 to find a constant
sinf. A discussion on the application of this method is presented in a later section.

How often the assumptions made above will be satisfied is difficult to say. It is
conceivable that w will be small if averaged over a suitable period of time but large

values are possible over short time scales. For example, vertical velocities as large as
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10ms~! were seen in the polar mesospheric data presented in figure 3.6 of chapter 3. It
is important that this be kept in mind and considered in relation to each set of data.

The above discussion assumes a very narrow beam, that is, a beam that has little
scope for pointing angle variations. The effective polar diagram of a radar will be the
product of the transmitting, receiving and scattering polar diagrams and as suggested
by Rottger (1981), if both the transmitting and receiving polar diagrams are broad,
variations in the scattering polar diagram will change the effective polar diagram. The
effective pointing angle 0.7y will then be the angle at which this polar diagram has
maximum gain. Then 6.;; will replace § in equation 5.3 and 5.4.

Models for obtaining this effective pointing angle have been presented by White-
head et al. (1983), Hocking et al. (1986), Reid (1988) and Hocking (1989). Hock-

ing (1989) assumes polar diagrams of the form P,(f) x e for the scatterers and

_ (sin 6sin ¢)2+(sin 0 cos ¢—sin GT)2
Pr(6,¢) x e sin? 6o for the radar beams combined. Here ¢ is the az-

imuthal angle and 6, and 6, are parameters that describe the width of the scatterer and
radar beam polar diagrams respectively. Finding the position of the maximum of these

polar diagrams yields

"] (535)

in 6. = sinfr (1 4+ ——
s sy S1n T[ +sm203

where 0r is the pointing angle of the two-way radar beam only. This approach is different
to that of the other workers mentioned above in that it utilises the correct form of the
radar polar diagram of a tilted beam. The expressions that had been used previously
contained no dependence on ¢ and thus could only describe a vertical beam correctly.
An annular ring instead of a narrow off vertical beam resulted when a tilt angle was
included in these expressions. Both approaches, however, yield equation 5.5.

The above polar diagrams assume that the distribution of the returned power is az-
imuthly symmetric. Information provided by the spaced-antenna analysis, however, sug-
gests that this may not actuaily be the case. The full correlation analysis (Briggs 1984)
allows azimuthal asymmetry to the extent that contours of constant autocorrelation

can be elliptical. With the assumption of a Gaussian form the spatial autocorrelation
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function contours will then have the form

o [&
p(€,m) = exp (— [—2 + —2]) = constant (5.6)
£ m
as shown in figure 5.1(a). £; and 7, are the e™! lengths of the spatial correlation function
and £, &, 7 and 7, are all expressed in wavelengths. The distances to the half-correlation
points are calculated by the full corrélation analysis and are related to the e~! values by
(é1)os = VIn2 ¢ and (91)os = VIn2 ;. Briggs (private communication 1989) pointed
out that equation 5.6 is in fact the Fourier transform of the angular power spectrum
of the echoes (see e.g. Ratcliffe, 1956). This result can be used to obtain, not only
W (Si, Sz), the angular power spectrum, but the effective pointing angle as well. The

method used to do this, which is presented in detail in appendix C, is now outlined.

The angular power spectrum will have the form
W(S1,52) = Woexp(— [r€2S% + mn}S3]) « p(é,m). (5.7)

Here, S; and S, represent sinf on two orthogonal axes and ”«” denotes a Fourier
transform. An example is given in figure 5.1 (b).

As noted earlier, the effective polar diagram of the radar is the product of the trans-
mitting, scattering and receiving polar diagrams. At Buckland Park, the transmitting
polar diagram is broad and it is the combination of the polar diagrams of the scatter-
ers and receiving antenna that determines the effective polar diagram and the effective

pointing angle. If the receiving beam is phased to point in the direction S; = a4, S2 = a2

'“2)2], (as shown in fig-

and is assumed to have the form P(S,S;) o« exp — [(Sl—a1)2;-2(52
0

ure 5.1 (c)) the resulting polar diagram will have an effective pointing direction that is
given by
(S)etr = m@E= (S2)es = watoe (5.8)
This polar diagram is represented in figure 5.1 (d).
Thus far, the S;, S, axes have not been aligned with the N-S, E-W directions.

This is because the orientation of the autocorrelation ellipse need not be along these

axes. The full correlation analysis gives the angle ¢ between the semi-major axis of the
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Figure 5.1: The correlation ellipse (a), its Fourier transform, the angular power spectrum
(b), the radar polar diagram (c) and the effective polar diagram of the scatterers and
radar combined (d).
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spatial correlation half-width ellipse and North (¢ must be between 0 and 180 degrees).
Therefore the axes in the above treatment need to be rotated through an angle ¢. If
this is done and the appropriate values of a; and a, are included for a beam phased to

point 11.6° off-zenith toward the east, the result is

in11.6° sin? in11.6° cos® ¢
(S1)ess = LGSt + =L (5.9)
1420708 14207 0
and
. o . ) o .
(Sé)eff: 51n11§6“sx(x;f;cos¢ _ smllfwzl(rflf;coszb. (510)
1+ 2 1+ In2

In these primed coordinates, S} is toward the east and S}, is toward the north. Therefore,
using the parameters calculated using the full correlation analysis, the effective pointing
direction can be obtained.

The above derivation assumes a scattering polar diagram that is centred on the
zenith. Although this has been thought to be acceptable in general, some authors
(whose work will be discussed later) have reported the need for an angular distribution
of scattered power that peaks away from the zenith. If this were the case, a translation
in §1 and S; would be necessary. For an angular spectrum with a maximum at Sy = by,
S5 = by the translation

a1—>a1—b1
a2—->a2-b2

would be necessary before the rotation was applied. For the data considered later in
this chapter, however, b; and b, are unknown making it impossible to carry out this
translation.

The difference between the velocity and the polar-diagram-based methods of deter-
mining 6.5 should be noted. The radial velocity is a measure of the mean of the power
spectrum which in turn results from the integrated effect of the velocities in the radar
sampling volume, weighted by the effective polar diagram. If this effective polar diagram
is asymmetric, (for example where the backscatter polar diagram is not circularly sym-
metric) the power spectrum may also be asymmetric. The velocity represented by the

mean would then differ from the one that would be obtained if the wind was projected
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onto a narrow beam pointing in the direction @.5s. Browning and Wexler (1968) and

Hocking (1989) note this but Hocking suggests that the difference will not be great.

5.2.1 A comparison of Doppler and spaced-antenna-derived

velocities on short time-scales

For a week in June, 1984, the Buckland Park array was operated in such a way that
it collected time series using three spaced antennas, one narrow vertical beam and one
narrow off-vertical beam directed 11.6°0ff zenith toward the east. The data were stored
on magnetic tape. The narrow beams utilised the full array and gave data suitable
for Doppler analysis. The other three time series were subjected to the full correlation
analysis (Briggs 1984) mentioned in chapter 4. A similar experiment is described in
Reid (1988), although in Reid’s work the spaced antenna and Doppler data were not
concurrent. This limited the conclusions that could be drawn from the experiment, but
a tendency for the Doppler value to be less than the spaced antenna value was noted. In
the data presented here, the time series used in both methods of analysis were obtained
simultaneously and comparisons of the two methods are subject to fewer assumptions.

Optimally, analysis of these time series would yield two measures of velocity for each
height and time sample. Unfortunately, the rejection criteria applied in each method
remove some data points from each set. This necessitates the removal of points which
do not have values in both data sets to maintain the simultaneity of the data. This is
important because there may be a systematic rejection of points in one of the methods
which will bias the results when averaging is applied. The test used required that
Doppler data in one of the beams (including two of the wide spaced-antenna beams)
but not necessarily all of them, be available with each spaced antenna point.

The first data sets considered are made up of 4 min averages of the data. During
the day, each 4 min bin contains one point for each height. However, at night, an
overlap in the height multiplexing means that two points per 4 min sometimes occur
between 80 and 88 km inclusive. Data exists between around 70 and 98 km but the

data acceptance rate below approximately 80 km limited the usefulness of the data in
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that region. Similarly, the E-tegion seemed to affect the 98 and 96 km data so that only
the data between 80 and 94 km is considered in detail.

Firstly, the existence of a problem with pointing angles should be confirmed. This is
done in figures 5.2 and 5.3 where the eastward component of the wind obtained using the
spaced antenna (SA) analysis is plotted with the horizontal velocity inferred from the
radial velocity measured with an eastward pointing, nominally 11.6°, off-vertical beam.
An 11.6° effective pointing angle and no vertical velocity are assumed. Only heights
of 94, 90, 86 and 82 km are plotted in the interest of brevity. It can be seen that there
is a systematic difference between the SA and Doppler derived velocities. This suggests
that the effective pointing angle is not 11.6°.

Equations 5.3 and 5.4 are used to obtain sinf.s;. The results of these calculations
are presented in figures 5.4, 5.5, 5.6 and 5.7. Values from near 0.2 (= sin(11.6°)) to
around 0.1 (= sin(11.6° —4.5°), 4.5° being the beam half-width) would be expected and
do exist, but there are also values vastly different from these. At all heights, using both
methods, values less than zero occur. These correspond to effective pointing angles on
the opposite side of zenith to the beam and are difficult to explain. At 94 and 90 km,
values close to or even greater than 1.0 can be seen. These are impossible to interpret
and show a breakdown in the analysis. The error analysis that follows helps to explain
this breakdown.

Inspection of equations 5.3 and 5.4 suggests that large values of sin f.;; would result
if Vior was small. If standard error analysis is applied to equation 5.4, the absolute error

in sinf.;; can be found using the expression

: (AViad)? | V2 i(AVior)?
Asinf.; = U
sin 0y J V2 + Vi

(5.11)

hor
assuming that the covariance between V.4 and Vj,, is zero. These measurements are
made separately and are thus independent so that the covariance term can be taken as
zero. Although in reality they are related by sin 6.y, here we are allowing V.4 and Vi,

to take any value and are considering the error in sin#f.;; due to random errors in the

velocity measurements.
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Solid line: assuming an 11.6° polnting angle Dotted line: using the spaced antenna analysis
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Figure 5.2: A comparison of SA derived eastward velocities (dots) and Doppler derived
eastward velocities assuming an effective pointing angle of 11.6° and zero vertical velocity
for day 152, 12:00-24:00.
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Solid llne: assuming an 11.6° pointing angle Dotted line: using the spaced antenna analysis
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Figure 5.3: A comparison of SA derived eastward velocities (dots) and Doppler derived
eastward velocities assuming an effective pointing angle of 11.6° and zero vertical velocity
for day 153, 0:00-13:00.
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Solid line: Verfical velocity (V) Dotted line: Radial velocity from an 11.6° off—vertical beam (Vm]
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Figure 5.4: Velocities and the sin ., values obtained from them for the 94 km data.

120




Solid line: Vertical velocity (V) Dotted line: Radial velocity from an 11.6° off—vertical beam v.)
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Solid line: Vertical veloclty (V) Dotted Ilne: Radial velocity from an 11.6° off—vertical beam (Vm)
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Figure 5.6: Velocities and the sinf.;; values obtained from them for the 86 km data.
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Solid line: Vertical velocity (V) Dotted line: Radial velocity from an 11.6° off—vertical beam (V.“)
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Figure 5.7: Velocities and the sinf,¢; values obtained from them for the 82 km data.
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Figure 5.8: Contour plot of the error in sinf.s; where sin 8.y is obtained using equa-
tion 5.4.

Contours of this function for values of AV,,, =2.5ms™! and AV,,; =0.7ms™! are
plotted in figure 5.8. The value of 2.5ms™! used for AVj,, falls in the middle of the
range of uncertainties deduced from May (1988). The error estimate for V.oq comes
from Reid and Vincent (1987). The dependence of V., on V,.4 can now be introduced
by considering the points that lie in the region V;.4 = (0.1 t0 0.2)V},.. It can be seen
that in this region errors in sin 6.5 of the order of 0.1 exist in the range | Vior| < 10ms™1.
This suggests that only values of V4, > 10ms™ (at least) should be used.

The values of sinf,.s; obtained using equation 5.4 with values where |Vj,,| <10ms™!
removed are given in figure 5.9. (Recall that V},, is the component of horizontal velocity
in a plane containing the zenith and the radar beam.) Fewer large values of sin 8. exist
but there are still some negative values. Most importantly though, at some heights the

number of data points has been reduced considerably. Applying this rejection to values
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obtained using equation 5.3 yields similar results. Thus, at least at short time scales,
the velocity method of obtaining sin 6.5 is unsuitable.

Another possible method, where sin 6. is obtained using the pattern scale from the
full correlation analysis was, presented earlier in this chapter. Equation 5.9 was used
to obtain the values of sinf,s; for the data obtained on day 152/153 and the results
are presented in figure 5.10. Some variation in sin f.s; is still present (the fluctuations
are of greater magnitude at night) but a well-behaved data set results. These were
used in equation 5.4 to obtain the horizontal velocities (under the assumption that the
vertical velocity is zero) and these are compared with the spaced-antenna velocities in
figure 5.11 and 5.12. It can be seen that the agreement is now much better than when
an 11.6°off-zenith beam was assumed. This is quantified through the average differences
of the two velocities presented in figure 5.13.

The presence of outliers should be noted (e.g. just prior to 04:00 on day 153 at 82 km
and at around 00:40 on day 153 at 86 km). Investigations of these points show values
of radial velocity and sinf.ss that are moderately consistent with those around them.
Their ratios, however, are quite unrealistic and they were therefore removed from the
data set. Their cause is uncertain although a specular event (where one echo is much
stronger than the others contributing to the power spectrum and causes a biasing of the
mean of the spectrum) in the Doppler beam may be to blame.

As this velocity difference does not involve any squaring or moduli, both positive and
negative values are possible. It can be seen that at almost all heights in the region of
interest, the pattern-scale method of obtaining the effective pointing angle gives Doppler
results that are more consistent with the spaced-antenna velocities. The average zonal
velocities in figure 5.13 show that the minimum difference occurs at an altitude where
the zonal velocity is a maximum. This suggests that the variations in the average
difference are not simply due to variations in the average zonal velocity and that a real
improvement in the agreement between the two methods has been obtained.

Although these results show a better agreement between the pattern-scale-corrected

Doppler velocities and the spaced-antenna velocities, there does still seem to be a sys-
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Eastward component of sin8 . for an eastward pointing beam
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Figure 5.11: Spaced antenna winds (dotted lines) and Doppler winds using pointing
angles derived from the pattern scale, for heights 94, 90, 86 and 82 km. (Day 152 data.)
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Solid line: Doppler method using pattern scale pointing angle Dotted line: spaced antenna analysis
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Figure 5.12: Spaced antenna winds (dotted lines) and Doppler winds using pointing
angles derived from the pattern scale, for heights 94, 90, 86 and 82 km. (Day 153 data.)
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Day 152/153 data 1984
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Figure 5.13: The average velocity difference and the average zonal velocity as a function
of height for the day 152/153 data, 1984
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tematic difference. Vertical velocities could cause this difference on short time scales.
However, as the difference statistics were compiled from almost a full day of data, any
vertical velocity component of the difference would have averaged to a value close to
the mean on this time scale. This mean is widely thought to be of the order of tens of
cms™! (see e.g. Riister and Reid 1990) and cannot account for the differences seen here.

Radial velocity data from a “narrow vertical” beam are available and could be used
in this analysis to take out the effects of vertical velocity, however, some questions
about these data that were raised by Murphy (1984) cast doubt on this course of action.
These included the susceptibility of these measurements to contamination by horizontal
velocities. Velocities from wide beams (such as one of the spaced-antenna beams) are
probably less susceptible to this problem because their Doppler spectra will be much
broader, but their sampling volumes cover a larger altitude range. The wide-beam and
narrow-beam vertical velocities do in fact differ but the uncertainties in whether either
or neither of them are correct make it best to avoid their use where possible.

Another possibility is that the polar diagram of the scatterers is not centred on the
zenith. The differences seen in figure 5.13 could perhaps be explained by a shift from
zenith of the order of 1 or 2 degrees, which is not inconceivable. This shift would not
change the amplitude of the spatial correlation function but would introduce a phase
variation. The phase of the spatial correlation function is not necessary in the full
correlation analysis and is not measured with the Buckland Park system. Thus it is
difficult to see if a phase variation across the array is occurring. Consideration of data
from beams pointing at equal off-vertical angles on either side of the zenith may be
instructive, so some dual-beam data taken on days 168/169 of 1984 will be considered
shortly.

It may also be possible that there is a systematic error in the spaced-antenna method.
Some sources of systematic error are discussed in Hocking et al. (1989), the most relevant
being that proposed by Rgyrvik (1983). Variations in vertical velocity over the sampling
volume would cause the diffraction pattern on the ground to move, over short time

scales, in a manner that does not represent the bulk motion of the atmosphere. Rgyrvik
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presented some parameters of the gravity waves that would be of greatest concern but
little is known about how often they occur. Meek et al. (1985) suggested that a peak
in the power spectrum of spaced-antenna velocities near the Brunt-Vaisala frequency
was evidence for some contamination of the data by vertical velocities but noted that
this peak occurred rarely in their spectra. Simulations conducted by Meek and Reid
(1984) concluded that gravity-wave vertical velocities did not affect spaced-antenna
measurements, however, the sampling times that they used were considerably longer
than those utilised at Buckland Park. This would tend to average out the squrce of
error proposed by Rgyrvik. In general, atmospheric motion appears to be quasi-random
in nature and the assumption of a wind field that is uniform over the sampling volume is
a satisfactory one. Given this assumption, the effects of vertical velocities and effective
pointing angle variations being considered here are not considered a problem in the
spaced-antenna method making it a suitable bench-mark for this study. Previous studies
in which the spaced-antenna method was compared with direct wind observations using
rocket techniques (Vincent et al. 1977) showed that if it is biased at all, it is in the sense
of the velocity being slightly too small. This is the wrong sense to explain the present
velocity differences.

Data collected on days 168 and 169 of 1984 (June 16th and 17th, about two weeks
after that presented previously) consisted of spaced-antenna winds and radial velocities
from an eastward-pointing and a westward-pointing Doppler beam. Both these beams
were phased to point at 11.6° from the zenith. As before, equation 5.9 was used to
calculate an effective pointing angle. This was used to obtain a horizontal velocity value
for each data point and each beam. The westward-beam velocity was then folded over
(by changing its sign) to compare it with the eastward-beam value. Half-hour averages
of these data are presented in figure 5.14 for heights 82, 86, 90 and 94 km. It can be
seen that the two horizontal velocities that are inferred from the radial velocities mirror
each other fairly well. The spaced-antenna value often falls between these two velocities
but at times does not. Some possible causes of this behaviour will now be considered.

Given the beam configuration presented in figure 5.15, and the assumption of a
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Figure 5.14: Half-hour averages of the horizontal velocities inferred from eastward (solid
line) and westward (dashed line) beam data and of the spaced antenna velocity for days

168/169 of 1984.

133



Beam 2 z

Beam 1

Figure 5.15: Effective beam configuration for a pair of off-vertical beams in the presence
of a scattering polar diagram that is centred off zenith.

uniform velocity field, the radial velocities measured in each beam will be

Vi = Viersin(0 — 66) + w cos(d — 66)

Voo = —Viorsin(0 + 68) + w cos(8 + 66).

Assuming that 6 + 66 is small, this can be approximated by

Vi =

-V

Vior (0 — 80) + w

er(a + 60) —w

(5.12)

(5.13)

(5.14)

(5.15)

where 6§ and 66 are expressed in radians. The negative sign on V, makes the expression

more comparable to figure 5.14. V] and V,, however, are radial velocities whereas those

in figure 5.14 are horizontal velocities. They are expressed in this form to allow com-

parison with spaced-antenna velocities but they should be thought of as V4/sin 6.5 and

Va/sin .5 in this discussion.

If we set 66 to zero and consider the effect of vertical velocities, V; and —V, become

|4

—V2

Vhore +w
Vher@ — w.
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It can be seen that a vertical velocity will cause the lines in figure 5.14 to move away
from a common point. This movement, however, will be equal in both beams (given the
assumption of a uniform velocity field) but in opposite directions because Vi, is the
same in both expressions.

If 60 is non-zero, but w = 0 we get

‘/1 - Vhor0 - Vhor(se

-V, = Vhor0+WLor59-

Once again the lines in figure 5.14 will move away from a common point. Thus only sym-
metric departures from a common point are possible when the effective polar diagram
of the scatterers is not centred on the zenith or vertical velocities are non-zero.

These effects can explain the “mirroring” that is seen in the radial beam horizontal
velocities of figure 5.14. The extent to which each effect contributes to the mirroring
cannot be determined because 6 and w are unknown.

The fact that the spaced-antenna velocities do not always fall exactly between the
eastward-beam and westward-beam values cannot be explained by the above effects. In
order to reconcile these values, one of the spaced-antenna or radial velocities, or the
values of sin f.5; must be in doubt. Although all are possible, problems with sin 0.5 are
considered most likely. The full correlation analysis assumes that the amplitude of the
spatial correlation function is Gaussian making the angular spectrum of the scatterers
Gaussian as well. If this is not the case then the pattern scale parameter used in this
analysis will not be an appropriate measure of the pattern scale, and the value of sin 0.4/
will be in error.

Some studies of the angular spectrum of mesospheric echoes have been carried out.
Haug and Pettersen (1970) computed the angular spectrum from the autocorrelation
function by assuming that the diffraction pattern does not change rapidly with time.
As their method precludes a maximum scatter from the zenith, however, their results
are difficult to interpret. Vincent and Belrose (1978) required an angular distribution

of scattered powers with a decrease at the zenith to explain some of their results but
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noted that this angular distribution could come about if a strong scattering layer was
situated just below a range gate when measured overhead. The intersection of the curved
sampling volume with this scattering layer would enhance the off-vertical scatter giving
a peak in the scattering power at an angle away from the zenith.

Murphy (1984) correlated the horizontal winds measured using the spaced-antenna
method at Buckland Park with the Doppler winds from a “vertical” beam over three
12 week periods in 1984. The direction of maximum correlation between horizontal
and vertical winds suggested that the scattered power was centred. on a point between
0.4° and 1.0° off zenith depending on azimuth, height and season. Variations of this
magnitude cannot explain all of the “mirroring” seen previously but it should be noted
that these variations may be larger on shorter time scales.

Although the Gaussian form of the angular distribution P;(0) is easy to manipulate
algebraically, it suggests that the scattered power goes to zero at large scattering angles.
The work of Czechowsky et al. (1988) at VHF suggests that a constant should be added
to this Gaussian to allow scatter from isotropic irregularities at large zenith angles.
This idea is consistent with the findings of Hocking (1979) who compared mesospheric
echo powers at 1.98MHz from a vertical and an 11.6° off-zenith beam. Hocking found
that significant returns at large off-vertical angles occurred above 80km. The changing
nature of the echoes as a function of height that Hocking observed is of interest and was
noted in the work of Lindner (1975). Lindner found that echoes from near 80 km had a
smaller angular spread than those from above that region. This would explain why the
method of obtaining sin f.; from the pattern scale works well at some levels but is less
accurate at others. It suggests that this method of obtaining sin f.s; is more suited to
narrow angular spectra. It is conceivable that, for these spectra, the additive constant
proposed by Czechowsky et al.(1988) will be small compared to the peak power and the
Fourier transform of this will be mainly Gaussian. The increasing importance of this
constant at greater heights will introduce a spike into the spatial correlation function
and affect the parameters obtained from it.

The pattern-scale values used in this work have been taken as correct. Although
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it is likely that they will have an error associated with them, the magnitude of this
error is unknown. It is hoped that some planned modelling studies (D. Lesicar, private
communication 1989) will provide estimates of the error in this and other spaced-antenna

parameters.

5.2.2 Obtaining effective pointing angles from averaged data.

It was stated earlier that the effective pointing angle could be obtained from the root-
mean-square (RMS) velocities but the method presented assumed that sinf.;; was a
constant. There is now evidence that this is not the case and as a result of that, the
methods of obtaining sin f.s; from RMS values must be changed. As the basic theory to
be used here involves the relationship between the variances of different distributions,
it is variance data that will be considered rather than the RMS values.

Given the expression

Vrad R
= — 5.1
Vi or S I (5.16)

sinGeff =

(where S, R and H are used for ease of subscripting) then the variances of the distri-

butions of S, R and H are related by

2 2
gi - 2’; % 2?—; (5.17)
where o? denotes a variance and o% g is the covariance between H and R. This can be
rearranged to give an expression for S.

This expression differs from that used by Fritts and Vincent (1987) in that 0% and
o} are non-zero. If these terms are ignored, the results are as shown in figure 5.16.
The average of the values of sinf.s; from the pattern scale are also shown. It can be
seen that the results of the two methods are quite different. Reid (1988) also compared
the pointing-angle profile of Fritts and Vincent to those of other workers at Adelaide
and found that they differed. An attempt is now made to explain these differences.

Until now, the effective pointing angle has not been allowed to vary with time in

theoretical treatments aimed at obtaining its value. Thus there has been an a-priori
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Figure 5.16: The effective pointing angle, following Fritts and Vincent (1987) and from
the pattern scale.
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assumption that c% = 0. The work presented in this chapter has shown that this is not
so. Therefore, in order to use equation 5.17 an estimate of 0% must be obtained. The
o} g term is also non-zero as there will be a correlation between the radial velocity and
the horizontal velocity. The radial velocity will also have an independent component
due to vertical velocities. Therefore it is difficult to estimate what the value of o} will
be.

Some attempts were made to obtain sin .5 in this way by assuming various levels
of ?orrelation between H and R; however, this method seemed quite unreliable. When
applied to the dual beam data of days 168/169, two sin .5 profiles that were not only

different to each other but different to the pattern scale profile resulted.

5.3 Obtaining the pointing angle profile for mo-
mentum flux analysis.

In this chapter so far, a number of methods have been considered for obtaining the
effective pointing angle for an off-zenith beam in the Buckland Park 2MHz radar system.
The purpose of this was ultimately to improve estimates of momentum flux considered
later in this thesis.

The method which utilises the scale of the spatial correlation function will be used.
Although it seems more suitable at some levels in the mesosphere, it still gives acceptable
results at others. It also has the advantage of allowing for any azimuthal asymmetries
in the angular spectrum that may exist.

Much of the data to be considered in this thesis do not have concurrent spaced-
antenna data associated with them. In these cases, the spaced-antenna data obtained

before and after the momentum flux run will be used to obtain a pointing angle profile.
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5.4 The effect of pointing angle variations on the
momentum flux analysis

The analysis method proposed by Vincent and Reid (1983) assumes that the pointing
angle remains constant with time. Results presented earlier in this chapter, however,
suggest that this is not the case. It is therefore necessary to gauge the effect of pointing
angle variations on the Vincent-Reid analysis.

To do this, a computer model has been constructed. A spatially uniform but time-
varying two-dimensional wind field is set up and a pair of finite-width radar beams are
replaced in the simulation by two coplanar infinitely narrow beams pointing at an angle
of 8.5 from the vertical on either side of zenith. The wind velocity at any one time is
then projected onto each beam to produce two radial velocities. Variations in the wind

field as a function of time result in a radial-velocity time series for each beam. This can

be used to calculate Wexp using the Vincent-Reid analysis. The true u/w’ (u/'w's,ye) can
also be calculated by averaging the product of the instantaneous velocity components
for the duration of the times series. In an ideal situation, these quantities would be
exactly the same. In this case, the effective pointing angle 0.;s has been allowed to vary
as a function of time making a difference between W' e and Wexp possible.

The variations in the pointing angle are modelled using distributions of ¢, the angle
between the semi-major axis of the correlation ellipse and North, r(= n;/£1), the axial
ratio of this ellipse and 7%y, its semi-major axis length (in metres). Distributions of
these parameters were obtained from the spaced-antenna data presented earlier in this
chapter. It was then necessary to generate values of ¢, r and 7;, that have distributions
like those observed in the spaced-antenna data. This is not an easy thing to do in
general, however, if these distributions had been Gaussian, this could have been done

using the equation
X =0y —2Ilnry xsin(27ry) + p

where r; and r; are random numbers in the range (0,1), o and p are the standard

deviation and mean of the Gaussian distribution respectively and X is one value from
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Xthresh X

Figure 5.17: An example of folding a Gaussian distribution

the distribution. This is known as the Boz-Muller method. (see e.g. p202, Press et al.
1986) The distributions of ¢, r and 7; were not Gaussian but it was found that they
could be approximated to a suitable standard by folding a Gaussian distribution about

Tenresh as illustrated in figure 5.17. This involves the following:
If X < Tthresh X — Tthresh T+ (mth’resh - X)

By varying o, p and Tipresn, a variety of distributions are available. In generating r and

n the values of u, o and Zspresn, that were used were

forr: pr, =13, o0,=0.5, zipresn = 1.0;

for p1: p, =300, o, =125, =ipresn = 175.

Values of ¢ were taken to be evenly distributed between 0° and 180° and the equation,
¢ = r3x 180 was used where r3 is a random number in the range (0,1). The distributions
for r, n and ¢ that these equations produce, and those that they seek to imitate are
given in figure 5.18.

The ¢, r and n; values obtained in this way are combined to produce a value of
sin f.fs using equation 5.9 of the previous section. This approach assumes that the
covariance between ¢, r and 7 is zero. Whether or not this is so could be determined

from the spaced-antenna data presented earlier; however, it was found that the time
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series of sin ;s obtained in the way described above were of similar character to those
given in the previous section. Thus ¢, r and 7, were taken as independent in the
interest of simplicity.. Apart from being used in the calculations of radial velocity for
the two beams, the values of sin 055 are also averaged to produce a value of 0.5 for the
Vincent-Reid analysis.

With beams pointing near to the vertical, small variations in pointing angle will
affect the radial velocity resulting from the projection of horizontal velocities onto the
radar beam to a greater extent than the radial velocity due to the vertical velocity
projection. It would therefore be useful to consider the effect on u'w’ of wind fields
where either one of the vertical or the horizontal velocities dominate. Short period
gravity waves have predominately vertical parcel motions whereas longer-period waves
have a more significant horizontal velocity component. Therefore a set of wind fields
made up of monochromatic gravity waves of different periods should make it possible to
gauge the effect of pointing angle variations under a suitable variety of circumstances.
To this end, the following process was adopted. A gravity-wave period was chosen in
the range 10 to 480 min and the horizontal-velocity amplitude of a gravity wave at that
period was calculated from a power spectrum taken from Vincent (1984). The amplitude
of the vertical velocity was then obtained from the gravity-wave polarisation relations
(Hines 1960). This gave a two-dimensional velocity vector (u’,w’). The amplitude of
this vector was varied sinusoidally with time between the limits (u’, w') and (—', —w’),
and projected onto the radar beams at +0.s¢ from zenith. It should be noted that under
the assumptions outlined above, it was not necessary to introduce the spatial variation in
velocity that would be typical of a gravity wave. Therefore in the interest of simplicity,
this was not done in this model. Samples of radial velocity were taken at equally-spaced
intervals from a time series ten times the wave period in length, and u'w’ was calculated
using the Vincent-Reid analysis. This was repeated for different periods and therefore
for wind fields of different character.

A graph of the percentage error in u'w’ as a function of gravity-wave period is

presented in figure 5.19. The percentage error is calculated using the expression 100 x
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Figure 5.19: The error in vw'w’ as a function of gravity-wave period expressed as a
percentage

(W egp — W W' trye) /U W trye Where u/w'es, is the value obtained using the Vincent-Reid
analysis and u/w';. comes from the instantaneous «’ and w’ values. It can be seen that
in general an error of less than 1 percent is the result of the pointing-angle variations
although at shorter periods the errors are as large as 3 percent. This is in contrast with
the arguments about horizontal and vertical velocities presented above and is due to the
fact that, to remain consistent with the momentum-flux analysis methods to be used in
this thesis, a time separation between simulated data points of 4 min was chosen. This
undersampling seems to have a more significant effect at these shorter periods and in
fact is less pronounced when a time step of 2 min is used. In any case, an error of 3
percent or less is quite acceptable.

This model has made it possible to estimate the magnitude of the error in u/w’ due

to short time-scale variations in the beam pointing angle. Other sources of error in u/w’
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exist and some of these can be quantified. It is now possible to compare these errors
with that due to pointing angle variations. A further discussion of the Vincent-Reid

analysis will be presented in the following chapter.

5.5 Summary

Previous applications of the Vincent-Reid analysis to produce u'w’ using MF radar data
(Vincent and Reid 1983, Fritts and Vincent 1987, Reid and Vincent 1987) gave results
whose magnitudes were somewhat uncertain. This was due to an erroneous or inexact
estimate of the effective pointing angle (6.5;), a parameter required by the Vincent-Reid
analysis.

Attempts to overcome this problem have been described in this chapter. A method
of obtaining effective pointing angles from simple pattern scale parameters and the
application of diffraction theory has been presented and tested. It produced results that
ranged from significant improvement to little improvement over methods used previously.

Some of the methods that have been used in the past were reviewed and found to
be inappropriate. In particular, the presence of variations in #.s; on short time-scales
made methods involving comparison of horizontal and radial velocity variances to find
the effective pointing angle less reliable than previously thought.

The possibility that these short term variations in f.7s may introduce a significant
error in measurements of u'w’ obtained using the Vincent-Reid analysis was considered.
Through the use of a simple model it was found that errors of the order of a few
percent were typical as a result of this effect making it far less important than correctly

estimating the mean value of 0.y;.
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Chapter 6

Momentum flux analysis

The importance of momentum transport in balancing the mesospheric momentum bud-
get was demonstrated in chapter 1. It was suggested there that gravity waves were the
most likely process of transporting momentum from the energy-dense troposphere into
the mesosphere and that some quantitative measurements of the gravity-wave momen-
tum flux would be of great value. In this chapter, a method of measuring gravity-wave
momentum flux using the Buckland Park radar system is presented. The quantity that
is measured, u'w’ (and v'w’) is considered in a simple example as an introduction to the
analysis method, however, this quantity is fundamental in some complex formulations
of atmospheric dynamics. Before the analysis method is presented, some origins of u'w’
will be discussed.

One interpretation of u/w’ stems from an analogy with statistical mechanics. If a
plane in a fluid (gas or liquid) is considered, then the fluid on one side of the plane will
exert a force per unit area (a stress) on the fluid on the other side of the plane. If the
fluid is inviscid, this force will only act normally to the plane. If, however, the fluid is
viscous, motions parallel to the plane will be transferred across the plane by viscosity and
a stress parallel to the plane will result. Thus, viscosity is transferring momentum across
the plane. If this concept is extended to three dimensions by considering three mutually
perpendicular planes, each plane will have associated with it stresses which have three

components, one normal to the plane and two mutually perpendicular components that
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are parallel to the plane giving nine stress components in all. A convenient notation for
these components is a tensor (e.g. Reif 1965). It is possible to draw an analogy between
the viscosity above (molecular viscosity) and similar effects due to turbulence. In this
analogy, the tensor described above is called the “Reynolds stress tensor” and it has
the form ;; = —pv;0; where v;,v; € (v,v’',w') (Gossard and Hooke 1975). A further
analogy to the cross-products of gravity-wave perturbation velocities is often drawn as
well so that the quantities uw'w’ and v'w’ are termed elements of the Reynolds stress
tensor.

The equations governing the dynamics of the atmosphere require a balance of quan-
tities such as momentum, heat flux and mass flux. The coordinate system in which these
equations are derived can only change the form of the equations and not the physical
processes that they represent. Therefore, it is possible to alter the form of the equations
in a manner that may emphasise and illuminate particular aspects of the dynamics they
describe. Two possible coordinate systems include the Lagrangian and the Eulerian sys-
tems. The Lagrangian system follows the motion of a particular fluid element where the
Eulerian system describes the properties of a fluid at a fixed point in space. A derivation
of this latter system, known as the transformed Eulerian mean (TEM) system is of some
utility in studies of the momentum budget. When the momentum balance is considered,
a quantity V - F appears on the right-hand side of the equation (see e.g. Andrews et
al. (1987), p128). The F in this expression is known as the Eliassen-Palm flux. The
usefulness of this quantity lies in the fact that it depends on basic physical properties of
the flow. The workers after whom the flux is named, Eliassen and Palm (1961), showed
that for steady linear waves on a zonal flow, which was a function of latitude and height
only, with no frictional or diabatic effects, V - F = 0. In the case of (shorter-period)
gravity waves, F' = (0, —pou'v’, —pou'w’). Thus the result py'(pou'w’), = 0 (i.e. that the
mean-flow acceleration is zero) for this class of waves, is a result from the Eliassen-Palm
theorem. The utility of this approach and extensions of it does not lie in it's treatment
of simple cases like the one above, but in its application to more complicated situations.

For example, non-steady waves are treated in the generalised Eliassen-Palm theorem of
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Figure 6.1: Components of velocity V.

Andrews and McIntyre (1976, 1978). -

6.1 Momentum Flux

Consider a wind vector V. as shown in figure 6.1. In this case the components, de-
noted v’ and w' correspond to the horizontal and vertical velocities, the primes denoting
perturbations from a mean. The following discussion is applicable to non-perturbation
velocities but is applied in this thesis to data that has had low-frequency components
removed. Hence the prime notation is used.

If the atmospheric density is p, the quantity pu’ is the horizontal momentum per
unit volume. Under the influence of a vertical velocity w’, the amount of some quantity
crossing an area A in unit time is w’A. Combining these concepts, it becomes clear that
pu'w’ =the amount of horizontal momentum per unit volume crossing unit area in unit
time or the vertical flux of horizontal momentum. This quantity has been called the
momentum flux. The significance of this quantity lies in its variation with height. If
the momentum passing through one level differs from that at another level, a force must
exist to account for this difference. The variations of momentum flux with height and
the associated forces will be discussed further in the next chapter.

In order to obtain the quantity u'w’, all we need do is obtain the orthogonal com-
ponents v’ and w' of the velocity vector V. This is shown schematically in figure 6.2a.
To obtain these projections using radars, however, it is necessary to have two sepa-

rate systems aimed at a common sampling volume. A more practical arrangement is
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Figure 6.2: Projections of the velocity vector V onto two axes

shown in figure 6.2b where the velocity projections in two separate sampling volumes
are obtained with one monostatic radar system. It is not reasonable to assume that the
instantaneous velocities in the two sampling volumes are the same. Thus, in order to use
this configuration, it is necessary to make the assumption that the statistical properties
of the atmosphere at one height are spatially invariant in a horizontal plane. It is then
possible to obtain u/w’, where the overbar denotes a time average. This method was
presented by Vincent and Reid (1983) and involves the use of the expression

R il /4

Toryl —
ww 2sin 20

(6.1)

where V2, V2 are the variances of a time series of the components of velocity for beams
1 and 2, and = 6; = 0, is the (effective) off-zenith pointing angle of the radar beams
being used.

In the general case, the velocity vector V is three dimensional, i.e. V(u',v',w'). It is
possible to obtain uw’, the vertical flux of zonal momentum and v'w’, the vertical flux
of meridional momentum using a pair of radar beams in the east-west plane and a pair

of radar beams in the north-south plane respectively. It is noted that the radar beams
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at Buckland Park are actually aligned 4° off the north-south and east-west planes. It
was found that the effect on u’w’ and v'w’ of a rotation of 4° was negligible, and it has

been assumed that the measured values of momentum flux are u/w’ and v'w’.

6.2 Data analysis

6.2.1 Filtering the data

The momentum fluxes to be measured here are thought to be due to the action of
waves of a continuum of frequencies. It is therefore instructive to obtain momentum
flux values for various (ground-based) frequency or period bands. These bands were

chosen as follows.

Short period Period from the Nyquist period (here 8 min) up to 1 hour
Medium period Period from 1 hour to 8 hours

Long period Period from 8 hours to the inertial period (/21 hours at Adelaide)

The method of separating the contributions from these bands is that used by Fritts
and Vincent (1987). The lower limits of each period range were set by averaging the
data. For example, the short-period data, which had either one or two points per 4
minutes, was averaged into 4 minute blocks. This gave a Nyquist period of 8 minutes.
The upper limit was then set by taking, in this example, 15 points or one hour of data
to give a maximum period of one hour. Similarly, an 8 hour block of half-hour averaged
points gave the medium-period band and a 24 hour block of 4 hour averaged points gave
the long period band. In the latter case, the upper limit is actually set geophysically by
the inertial period rather than by the data processing.

Although a one-hour data block (say) cannot be used to obtain information on
oscillations of period greater than one hour without ambiguity, it is still possible for these
oscillations to affect the data. To minimise the potential of this effect, the variances
required by equation 6.1 are not calculated around the mean but around a line of

arbitrary slope and intercept fitted to the data. In the medium and long period data, a



diurnal and semidiurnal oscillation is fitted to the data and removed before the straight

line fit is carried out.

6.2.2 Outlier rejection

The Vincent-Reid method of estimating momentum flux involves the difference between
two quantities which are similar in magnitude. The quantities that are being differenced
are variances and these are susceptible to the effects of outliers. If a bad data point
occurs and lies some distance d from the line of best fit, its contribution to the variance
sum d?, could easily dominate the contributions of the good data points. It is therefore
important to remove the outliers from the data.

A number of methods were tried in order to achieve this. The first involved taking a
block of radial velocity data (at one height and for one channel) and calculating the mean
and standard deviation of that block. The data in the block that fell outside a range
centred on the mean and extending a predetermined number of standard deviations
from the mean were then rejected. In this method, the final variance of the data was
not being set artificially as the standard deviation of the data could have any value.
In order to ensure that a significant number of points contributed to the mean and
standard deviation, the data blocks needed to be as long as possible. However, if their
length became comparable to half the period of the semi-diurnal tide, it was conceivable
that the tidal variation of the velocity could lead to some good data points near the
tidal maxima and minima being rejected. The block length chosen on the basis of these
arguments was three hours.

In the above method, the original calculation of the standard deviation contains
values due to data that are destined to be rejected. This has the potential to bias the
standard deviation calculations. Because of this, an initial pass over the data rejecting
only values that are well away from the mean (say 2 or 3 standard deviations) should
be executed to remove the really bad points. Further passes over the data can then be
made with more confidence in the statistics being used.

The question arises: How do we know if the outlier rejection is working? Little
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is known about momentum flux, the quantity we are trying to measure, therefore we
cannot know if the outlier rejection has been successful. This question, and its solution,
led to another outlier rejection method and this method was used on the short-period
data.

Each of the fifteen four-minute average data points that make up a one-hour block
of the short-period data makes a contribution to the variance sum 3 ;(v; — 7;)? where v;
is the 7th data point and v; is the value of the line of best fit at the ith data point. If one
point lies much further away from the line of best fit than the others, its contribution to
the variance sum will dominate those due to the other points. The variance then reflects
the value of this one point and ignores the character of all the other points in the data
block. Should this one point be kept in favour of the others in the block? Given that
there is a chance that this data point may be in error, the answer to this question must
reasonably be no, and the point in question should be removed.

If a point that fitted the above description existed in each data block, it would be
a simple programming task to remove that point. In practice, there are sometimes no
points that should (using the dominance criterion above) be rejected and sometimes two
or three points. Because of this, it was not possible to automate this outlier rejection
philosophy. Instead a manual approach had to be adopted. This involved displaying a
series of the data points on a computer screen. Points could be removed by positioning
the cursor on a data point and pressing a mouse button. When the current set of points
was considered acceptable, the next set was displayed and the process was repeated.
This program formed the basis of the outlier rejection or “weeding”! process carried out
on the short-period data.

Weeding of the data was carried out in two phases. The first involved making a
cursory inspection of the data, at each channel and each height, on the computer screen
and removing points that were clearly outliers. Some examples of these are given in
figure 6.3a and b. In this diagram, time is plotted on the top axis and an index number

(the number of points from the begining of the data set) is plotted on the lower axis. In

!Weed - to rid of weeds or of inferior parts or members. Pocket Oxford Dictionary
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figure 6.3a two points, one near 0:30 (index 145) and one near 2:20 (index 169) would
clearly dominate the variance sum and should be removed. Similarly in 6.3b, the point
at index 40 should be removed. The datum at index 41 is more marginal but should
probably be rejected on the basis that it seems to be affected in the same way as the
point at index 40.

Phase two of the weeding process involved calculating the variance of each one hour

block. Blocks that satisfied the following criteria were flagged for further inspection.

e Large variance. The variance was greater than approximately 30m?s~2.

e Variance different to partner. If the variance of the data from one beam is more
than twice that from the beam on the other side of zenith, the block was marked
for inspection. This test was only applied to variances that were greater than

approximately 8m?s~2.

The data blocks that were marked were then inspected once more. Points that domi-
nated the variance sum in the way described above were then removed. These criteria
tended to indicate blocks such as that between 0:00 and 0:56 in figure 6.3c. The point
at 0:12 (index 138) in this data block should be removed.

Some aspects of this weeding process should be noted. Firstly, if a block was marked
for further inspection, this did not mean that some points had to be removed. It may just
be that the variance was large (say) in that data block. Secondly, although removing
bad points from a data block will always act to decrease the variance, u'w’ and v'w’
are free to increase or decrease. This is because the momentum flux is proportional to
the difference between two positive-definite quantities (the variances). This difference
can increase or decrease as a result of the weeding process so that the weeding is not
biassing the momentum flux toward zero. Importantly though, any large magnitude
values of momentum flux that do result, which have a greater potential for biassing a
mean momentum flux, can be accepted with some confidence because of the attention
paid to them in phase two. Finally, this possibly subjective approach to outlier rejection

has a “safety net”. Short-period values of momentum flux are only calculated if at least
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Figure 6.3: Some examples of the outliers in the velocity data.
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ten of the fifteen available points per block exist in each beam. Weeding removes values
from the wings of the distribution of velocities, but because at least 66% of the data must
remain, there is little potential for significant changes to the body of the distribution
and confidence in the variance values remains.

This weeding process was applied to the short-period data only. Ideally, this weeded
data would then be averaged into half-hour and four-hour blocks for the medium-period
and long-period data analysis, but this could not be done because of an incompatability
in the format of the data. Instead, phase one was replaced with two successive outlier
rejection passes over the raw (unaveraged) data, filtering three-hour data blocks to
2.5 standard deviations as described previously. It was not possible (or considered
necessary) to imitate phase two because the data points used for the medium and long-
period analyses were half-hour and four-hour averages of the filtered data respectively
and were thus less affected by smaller-scale variations of individual points. Thus, the
raw data was filtered to 2.5 standard deviations, this filtered data was then filtered to 2.5
standard deviations, averaged appropriately and then analysed to obtain the momentum
flux. A flow chart summarising the outlier rejection, averaging and momentum-flux
analysis for the three period bands is given in figure 6.4.

The outlier rejection method used in this work has been based on the effect that
individual data points have on the variance. Points that were rejected on the basis
of the dominance criterion discussed previously occured in all four channels and at all
heights. They were both greater than and less than the bulk of the data points around
them. Although the reason why some data points were bad has not been considered in
detail, no characteristics of the occurrence of these points were noted that would suggest
a cause. Some possible causes include poor signal-to-noise ratio and variations in the
pointing angle. It was found, however, that outliers often occurred during periods of
100% data acceptance rate for that height suggesting that the signal-to-noise ratio was
good. Variations in the pointing angle could not be investigated because details of the
spatial correlation function were unavailable for these data sets.

Although the question of cause has been considered beyond the scope of this the-
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Figure 6.4: A flow chart summarising the momentum flux analysis.
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sis, some statistics of the data points that were removed have been stored on file for
later analysis. Further, the concept of a display, where the Doppler spectrum could be
inspected, combined with the display of the velocity data used for weeding is noted as
a powerful extension of the current system. It would also be instructive in finding the
cause of the bad points. Unfortunately the computing facilities available here would not

allow a system of this kind.

6.3 The effect of outlier rejection

One of the twelve data sets obtained during 1985/86 was selected at random for a
comparison between data that were subjected to the outlier rejection methods just
described and data that were not. These data were obtained over four days from 5
August to 9 August, 1985.

As stated previously, little is known of the parameters u'w’ and v'w’. This makes
comparison between filtered and unfiltered data difficult to interpret and limits the
conclusions that can be drawn from such a comparison. Some of the points that can be
noted are now considered.

Figure 6.5 shows average short period momentum flux values obtained by averaging
over the four days of (hourly) values at each height between 80 and 94 km. This height
range is selected because the data above 94 km appear to be affected by the ionospheric
E-layer and those below 80 km are only present during part of the day. Both the raw
data and the weeded data are represented. It can be seen that weeding has a significant

effect on the data at the lower heights causing a change in u/w’ of approximately 40m?*s~2

and 10m?s~2 in v'w’ at 80 km. In general the effect is of the order of 2 or 3m?s~2 in
w'w’ and 1m?s~? or less in v/w'.

Medium-period data are presented in figure 6.6. Here we have data that have been
subjected to no outlier rejection (unfiltered data), data that have had one pass of a

2.5 standard deviation three-hour block filter (filtered data - 1 pass) and data where

these one pass values have been filtered again to 2.5 standard deviations (filtered data
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- 2 passes). Once again, the most significant changes occur at 80 km. Elsewhere, the
filtering causes changes in the four day average of less than 1m2s=% in both uw'w’ and
v,

In the long-period data of figure 6.7, it can be seen that the filtering has no effect
at 80km. This suggests that the four-hour averages used to obtain the long-period

momentum flux values are not affected by outliers. There is, however, some small effect

at 86km in v'w’ and above 86km in v'w’.

6.4 Sources of error in the momentum-flux analysis

The outlier rejection methods just described allow greater confidence in the momentum-
flux analysis but there is still some error involved in the measurements. These errors
are now considered.

A basic assumption of the Vincent-Reid analysis is that the statistical properties
of the atmosphere do not vary horizontally. This assumption was tested in Vincent
and Reid (1983) and found to be a reasonable one. Given this assumption, if the true
variances in each beam are obtained, then equation 6.1 will give the exact value of u'w’.
However, to obtain the true variance, it is necessary to determine the radial velocity
distributions in each beam exactly. In a statistical context, this means that the parent
radial velocity distribution must be obtained. This is, of course, impossible and the best
that can be obtained in practise is a good estimate of the variance from the sample of
the radial velocity distribution that is available.

In order to find the sources of error in u'w’ and v'w’ then, it is necessary to establish
what aspects of the experiment could cause the sample variance to differ from the true
variance. One possibility is that there are too few radial velocity points to adequately
describe the true (or parent) distribution. Thus, it is important to keep the number of
samples per variance calculation as high as possible. In practise, this is limited by the
upper limit of the desired period band on the one hand and either the lower limit of the

period band or the time taken to obtain a Doppler spectrum (and therefore a velocity
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measurement) on the other. In the analysis just described, it was these factors that
determined the number of samples per data block. The criteria where data blocks with
data acceptance rates less than around 66% were rejected ensured a good representation
of the radial velocity distribution was present. (It is noted that if the height range over
which the data were taken was contracted from 40 to 20 km, a radial velocity data point
would be possible every two minutes. However, when the experimental data considered
in this thesis was collected, it was hoped that data below 80 km could be obtained.)
Random errors in the velocity measurements could also ai.fect the sample variance
although this would be a function of the magnitude of the variance itself. Vincent
and Reid (1983) estimated the intrinsic error due to signal-to noise ratio and sample
length in a single radial velocity measurement to be 0.7 ms™'(or 0.5 m?s~2?). If the
true variance were much greater than this, then these random errors would have little
effect on the sample variance. Each velocity sample is likely to be within 0.7 ms™! of
the true value but each has an equal chance of being above or below the true velocity
value. Because the variance involves a sum of squared deviations, the effect of random
errors will not average out to zero but it will be smaller than the (0.7 ms™")%. If the
true variance was small, however, random errors could set a lower limit on the sample
variance. At the lower heights, sample variances occasionally get as low as 0.6-0.7 m?s~?2
which could mean that the corresponding momentum fluxes are underestimates of the
true momentum flux value. If numerous momentum flux values are averaged, however,
this effect will be reduced because it is likely that small values will occur in both beams.
The variation of the variance with time due to geophysical effects make it difficult
to gauge how good an estimate of the true variance the sample variance is. If it were
possible to oversample the velocity time series, the variance of subsets of this data set
containing various numbers of points could be compared. Because of the longer fading
times at MF in the mesosphere, this oversampling would be difficult to obtain (although
a 2 min sampling time may achieve this). At VHF, however, such a comparison of

variance may be possible.
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6.5 Other momentum flux analyses

So far in this thesis, some problems associated with measurements of momentum fluxes
using dual-beam-Doppler radar techniques and an MF radar system have been dealt
with. The basic methods used to obtain momentum fluxes, however, can be applied
using numerous other systems. Some examples of these are now presented.

The work presented by Vincent and Reid (1983) was the first application of the
dual-beam-Doppler technique in the mesosphere. In that paper, it was noted that the
Vincent-Reid method was in fact a special case of the analysis required for Velocity-
Azimuth-Display (VAD) radars. These radars measure the radial velocity using beams
that have fixed zenith angles but that are swept through 360° in azimuth and had been
used in meteorological studies. A review of the principles of VAD radars is presented in
Wilson and Miller (1972) where the following chronology is noted. Browning and Wexler
(1966) showed that a Fourier-decomposition technique could be applied to VAD data
to obtain information on wind divergence and deformations. Lhermitte (1968) noted
that the variances of the VAD radial velocities could be used to obtain the covariance
between the horizontal and vertical winds. Wilson (1970) then used estimates of these
variances to obtain (among other things) momentum fluxes. These early applications
used weather radars operating in the lower part of the lower atmosphere.

The dual beam and VAD techniques of obtaining momentum fluxes have been applied
elsewhere as well. A Doppler lidar scattering off atmospheric aerosols has been used in
a VAD mode to obtain momentum fluxes in the lower atmosphere (Eberhard, Cupp and
Healy 1989). Later work by Lhermitte (Lhermitte and Poor 1983) saw the application
of the dual beam technique to Doppler sonar studies of tidal-flow turbulence in water
channels. This work is of note in that it differs from other applications in a fundamental
way. Lhermitte and Poor use the variance of the Doppler spectrum (rather than the
variance of the radial velocity time series) to obtain the momentum flux within the
pulse volume. This concept is being applied to mesospheric data to obtain turbulence-

momentum fluxes by Reid (private communication 1990)
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Momentum fluxes have been measured using the Vincent-Reid technique at a vari-
ety of sites. The momentum flux in the polar mesosphere has been measured using the
Poker Flat radar in Alaska by Fritts and Yuan (1989), Wang and Fritts (1990a), Wang
and Fritts (1990b), and using the SOUSY radar situated at Andenes in Norway by Reid
et al. (1988). The MU VHF radar system has also been used to make measurements of
momentum flux in the mesosphere by Tsuda et al. (1990) and in the troposphere and
lower stratosphere by Fritts et al. (1990) as has the Poker Flat radar (McAfee, Bals-
ley and Gage 1989). The latter paper included a study of the effepts of orogrqphy on
momentum flux measurements and sounded a warning in this regard. It is noted that,
flow over orography can introduce an additional vertical component of velocity to one
Doppler beam and thus compromise the assumption of statistics that are invariant in a
horizontal plane. It was shown that this can be a problem through much of the tropo-
sphere, but it is unlikely, given the mean wind variations that occur in the stratosphere,
that this effect will be a concern in the mesosphere.

Applications of the Vincent-Reid technique at MF have been limited to Adelaide
because of the narrow beam-width that is required. Experiments by Vincent and Reid
(1983), Fritts and Vincent (1987) and Reid and Vincent (1987) have been presented in
the literature.

Momentum fluxes have also been measured in other ways. Smith and Fritts (1983)
identified individual gravity waves in the mesosphere over Poker Flat and measured u’w’
directly. Meyer et al. (1989) used foil clouds to estimate the mesospheric momentum flux
in northern Scandinavia and Meek and Manson (1989) combined radial velocities from
a vertical Doppler beam with spaced antenna horizontal velocities to obtain momentum
fluxes. This latter work is susceptible to error through possible contamination of the
vertical velocity measurement by horizontal winds. Some attempt was made to correct
for this but the adequacy of this correction is difficult to gauge.

The radar beam configuration used by Vincent and Reid (1983) is not the only “non-
VAD” radar configuration that can be used to obtain measurements of momentum flux.

Other possible configurations and their relative merits for measuring the momentum
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fluxes of gravity waves are presented by Reid (1987). It is found that the Vincent-Reid
configuration is optimal, however, if more beams are included, further useful parameters

can. be measured.

6.6 Summary

In this chapter, the methods of filtering the data into short, medium and long-period
ranges are presented. The presence of outliers is then considered and the methods used
to remove them from the data are discussed. Possible causes of error in momentum flux

are then discussed. This is followed by a review of measurements of momentum flux.
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Chapter 7

The mesospheric momentum

budget

In the preceding chapters, techniques for dealing with two important aspects of the
momentum flux analysis method of Vincent and Reid (1983), namely the estimation of
the effective pointing angle and the treatment of outliers, have been considered. Tt is
now possible to apply these ideas to the analysis of a data set obtained during 1985/86.

The spatial and temporal coverage of measurements of mesospheric momentum fluxes
is rather limited. The data set to be presented in this chapter represents a significant
extension of this data base and it is now possible to consider aspects of momentum fluxes
that could not be studied until now. Seasonal variations (like those noted in ww’ by
Reid and Vincent (1987)) can be used to improve modelling studies of the mesospheric
momentum budget and can provide clues as to the sources of gravity waves and the
filtering processes that they are subject to.

In this chapter, the data set will be presented and some characteristics of it will
be summarised and discussed. These characteristics will include the variation of mo-
mentum flux on long (seasonal) time scales in both ww' and vw’, the partitioning
of the total momentum flux into period ranges and the importance of their contribu-
tions throughout, the year. The capacity for gravity wave momentum fluxes to halance

the mesospheric momentum budget will also he considered through caleulations of the

166



mean-flow acceleration and comparison of these results with Coriolis torques.

7.1 A climatology of mesospheric momentum fluxes

7.1.1 Momentum fluxes during 1985/86

Between March 1985 and February 1986, the Buckland Park MF radar was used to
obtain momentum flux data on twelve occasions. Ifach campaign lasted for four days
(except one, which had to be terminated due to a system failure). This duration was
the same as that used in the GRATMAP or GRAvity waves And Tides in the Middle
Atmosphere Program series of experiments and the campaigns considered here either
coincided with those in GRATMAP or fell in a week either side of a GRATMAP run.
The start and end times and dates are presented in table 7.1. (Note that the number
in the run code represents the start day of the year, and the year of the run.)

The array was phased in the manner described in chapter 4 to produce northward,
southward, eastward and westward pointing beams, each at a nominal 11.6° off zenith.
This configuration allowed the measurement of u'w” and v'w’. The results of the analysis
described in the flow chart of figure 6.4 are presented in the following 12 figures. These
figures show a time average over the data set for ecach height. The horizontal bars indicate
the standard deviation of the individual momentum-flux values. These should not be
interpreted as measures of the uncertainty of the data. w'w’ (and v'w’) shows a significant
amount of systematic variation as a function of time (Fritts and Vincent 1987). The
repeatability of this variation suggests that it is larger than the uncertainty in the
momentum flux. Thus, the standard deviation reflects the momentum flux variability
more than it does the error. N, the number of momentum flux values contributing to
the average, is printed next to the right-hand axis of each figure.

It should be noted that the ranges of the x-axes (momentum fluxes) varies from
graph to graph. This makes comparisons between the graphs more difficult, however,
specific comparisons of the data will be carried out in the next section where appropriate

subsets of the data will be reproduced.
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Start time Start date Start day End time End date Run code
13:08 4/3/85 day 63 11:58 8/3/85  gmr06385
15:24 15/4/85 day 105 13:56 19/4/85  gmr10585
15:04 6/5/85 day 126 3:02 11/5/85  gmrl12685
13:38 27/5/85 day 147 11:12 31/5/85 mucl4d785
12:54 8/7/85 day 189 15:30 12/7/85 mucl8985
11:34 5/8/85 day 217 13:16 9/8/85  gmr21785
12:32 16/9/85 day 259 6:34 18/9/85  gmr25985
11:08  7/10/85  day 280  15:16  11/10/85 gmr28085
11:58 18/11/85 day 322 11:38 22/11/85 gmr32285
14:04 9/12/85 day 343 13:06 13/12/85 gmr34385
11:06 6/1/86 day 6 9:06 10/1/86  gmr00686
9:34 9/2/86 day 40 11:00 13/2/86  gmr04086

Table 7.1: The start and end times and dates for the momentum flux experiments

carried out between March 1985 and IFebruary 1986
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The experiment that began on day 259 of 1985 (gmr25985) was terminated prema-
turely by a system fault. Because the resulting data set was less than two days long, it
was not possible to carry out the medium and long-period data analysis. Thus figure 7.7
contains only short-period momentum fluxes. In cases where only one point contributes
to the mean momentum flux, the standard deviation is not calculated and the error is
set to zero. It can be seen in some cases that the data acceptance rate at the lower
heights is much lower than those above approximately 88km.

The pointing angles that were used to obtain these data are presented in figures 7.13
and 7.14. As discussed in chapter 5, these were obtained using spatial-correlation-
function information from the spaced-antenna analysis. The profiles are averages of the
pointing angles during two full days prior to and two full days following each run. The
numbers on the right hand side of each profile indicate the number of points contributing
to the average at that height.

Finally, height profiles of the total momentum flux over all periods between 8 min
and 24 hr are of interest. These are calculated by summing the profiles presented in
figures 7.1 to 7.12. The standard deviation, that is plotted as a horizontal bar, is the
square root of the sum of the squares of the standard deviations in each of the three
original period bands. If less than a day of data was included in the average for any of
the three period bands, then the summed momentum flux value was rejected. Because
the GMR25985 data set contained only short period data, this data has been omitted
from the total momentum flux computation. The results are presented in figures 7.15,

7.16 and 7.17, 7.18.

7.1.2 Long term variation in momentum flux

With a set of average momentum flux values spread throughout the year at hand, it is
possible to look for any long term (seasonal time scale) trends that may exist. That is,
of course, if each data set is representative of the time around it, i.e. if the 4 days of
the datla set reflect the characteristics of momentum fluxes in the 15 or so days before

and after. Because the GRATMAP data presented in the previous section is made
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Figure 7.17: Momentum flux (v/aw’) for all periods (gmr06385 Lo gmr21785). One stan-
dard deviation is indicated by the horizontal bar.
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up enlirely of 4 day campaigns spaced by approximately one month, it is diflicult to
decide if the data is truly represeutative of the time around it. Data taken at Adelaide
and presented by Reid and Vincent, (11)87), however, does give some insight into this
question. In their case, w'w’ data taken between 30 June and 16 July 1982 and v'w’ data.
taken between 6 July and 16 July has been split up into intervals of between 2.4 and 3.9
days. Some variation in the character of the v’ profiles can be seen and there is an even
greater variation in the v/w’ profiles. Of the 5 ww’ profiles, 3 look quite similar to each
other, 1 a little different and thic other quite different. In v'w’, Ahe 3 profiles available
are each quite distinct. 'T'hus some care needs to be taken in assuming that each data
set, is characteristic of a longer time period. Conversely, though, the height profile of
w'w’ presented by Reid and Vincent for the period 5-8 October 1982 (see p 448 of that
paper) and that prescuted here for the period 7-11 October (gmr28085) are strikingly
similar, suggesting that the momentum flux during early October is moderately uniform
in character. Thus a cautionary note is sounded but it is not considered imprudent to
proceed with a study of seasonal varialions of momentum flux characteristics.

In order to consider the character of the momentum flux through the year, it is
necessary to parameterise the momentum flux in some way. The simplest parameter,
and that used in figure 7.19, is the mean. Thus, the average momentum flux over the
height range 80-94 km for each data set is presented. In figure 7.19, all the periods
between 8 min and 24 hr (rccalling that the diurnal and semi-diurnal tides have heen
removed) are included. Figures 7.20, 7.21 and 7.22 give the short-, medium- and long-
period height-averaged momentum fluxes.

The average u'w’ values for “all periods” show some suggestion of a scasonal variation
with a minimum around September, October, November (local spring) and possibly in
February (1986) although the March (1985) value is quile large. Either of the Iebruary
or March values may be due to the short term variation mentioned previously. The main
contribution to the seasonal variation is that of the short period waves. A clear annual
variation in wuw’ can be seen in fignre 7.20 with a minimum in (local) Tate winter carly

spring and zero crossings in carly-mid winter and late spring. T'wo local maxima occur
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Figure 7.19: Momentum flux (v/w’ and v'w’) for all periods, averaged over the height
range 80-94 km.
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Figure 7.20: Momentum flux (u'w’ and v"w’) for short period data, averaged over the
height range 80-94 km.
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Figure 7.21: Momentum flux (w'w’and v'w’) for medium period data, averaged over the

height range 80-94 km.
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Figure 7.22: Momentum flux (uw"w’and v"w) for long period data, averaged over the
height range 80-94 km.

190



at early summer and mid autumn with a local minimum between.

In v'w’, there seems to be a tendency for the “all periods” values (figure 7.19) to
be larger in autumn-winter than in spring-summer. A point in early March and one
in November violate this trend. The medium period fluxes are probably the main
contributions to this trend with some enhancement through a variation in the short-
period v'w’ values that is similar to that found in short-period u'w’.

The relative amplitudes of the v« and v"w’ components of the momentum flux are
presented in figure 7.23. To obtain this figure, the absolute values of u/w’ and v'w’ were
summed. The fraction of the sum due to v’w’ was then shaded. Thus the sign of u/w’
and v'w’ is ignored. It is noted that, particularly in the case of the medium-, long-
and all-period height averages, the contributions due to v'w’ are of equal or greater
importance to those due to uw’. An exception to this is the short period data where
the u’w’ values are more often of greater magnitude than the corresponding v'w’ height
averaged momentum fluxes.

The variation during the 4 days of each data set is crudely described by the stan-
dard deviation of the momentum flux. This quantity is presented as an horizontal bar in
figures 7.1 to 7.12. Figures 7.24, 7.25, 7.26 and 7.27 contain height averages of the stan-
dard deviation between 80-94 km (including only those heights where there is enough
data). The most striking feature of these figures is the large enhancement in Autumn
of the standard deviation of the all-period zonal momentum flux. This enhancement is
due to the short period waves (figure 7.25). There is also an extremely large value in
August (the GMR21785 data of figure 7.6) which can also be attributed to short-period
waves. The all-period v'w’ values show considerable scatter due to the scatter in the
short-period standard deviations. The minima in the v'w’ standard deviations for all
four gr@phs fall near the solstices (June and December).

The contribution of each period band is considered in figure 7.28. Each box within
that figure contains segments whose size represents the fractional contribution of each
period band to the sum of the absolute values of the momentum flux from each band.

The grey and black shaded areas indicate the contribution due to medium- and long-
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Figure 7.23: The relative amplitudes of ww’ and v/w’ as a function of height and season
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Figure 7.24: Variance of the momentum flux (u/w’and v'w’) for all-periods data, averaged
over the height range 80-94 km.
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Figure 7.25: Variance of the momentum flux (w'w' and v'w’) for short period data,
averaged over the height range 80-94 km.
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Figure 7.26: Variance of the momentum flux (v/w’and v'w’) for medium period data,
averaged over the height range 80-94 km.
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Figure 7.27: Variance of the momentum flux (w'w’and v'w’) for long period data, aver-
aged over the height range 80-94 km.
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Figure 7.28: The relative contributions of the short-, medium- and long-period waves to
the sum of the absolute momentum fluxes. The medium- and long-period contributions
are shaded.

period waves respectively. Thus if the short period momentum flux dominates, much of
the box will be clear and the shaded regions will occur near the top of the box. It can
be seen that in some cases w'w’ and in almost half the cases in v'w’, the medium period
values make a significant contribution.

Because the medium period range (1 hr to 8 hr) is quite broad and the wave periods
contributing to the dominance of the medium-period band are uncertain, it was decided

to reanalyse the data into period ranges 8 min-2 hr (short-medium period) and 2 hr-—24
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Figure 7.29: The relative contributions of the 8 m-2 hr and 2-24 hr period waves to the
sum of the absolute momentum fluxes. The 2-24 hr period contribution is shaded.

hr (medium-long period), once again with the diurnal and semi-diurnal tides excluded.
The results of this analysis are presented in figure 7.29. Here it is the contributions
due to the 2-24 hr period waves that are shaded. Two points become clear in this
figure. The first is that in uw’, the 2-24 hr period waves make their most significant
contribution in winter, although below 90 km, this contribution continues on into the
summer. Secondly, 2-24 hr period waves dominate v'w’ almost all of the time. The main

exception to this is above 88 km during October and at 90 km and below in December.
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7.1.3 Discussion

The results of this analysis (which will be collectively referred to as the GRATMAP data)
can be compared with those derived by other workers at Adelaide and data acquired
at other sites. Data obtained at Adelaide are considered first. The data presented by
Vincent and Reid (1983) for uw/w’ between 11-14 May, 1981 fall in the range —1 m?s~2
(80 km) to —0.1 m?s~2? (92 km). In contrast to this, the all-period data for a closely
corresponding time in the data set presented here (6-11 May, 1985; gmr12685 data)
has a range —3 m?s~2 (82 km) to 16 m2s~? (90 km). The w/w’ data presented in Reid
and Vincent (1987) are averaged with height and compared to a height average of the
GRATMAP all-period data in figure 7.30. It is noted that the GRATMAP results have
a greater spread than those of Reid and Vincent. Fritts and Vincent (1987) present
u'w’ data for the period 9-17 June, 1984. The 8 min-24 hr data ranges from —3 m?s~?
(82 km) to —5.5 m2s™2 (90 km) in the 80-94 km height interval. The nearest GRATMAP
data were taken between 27 and 31 May, 1985 (mucl4785, 9 days prior to that of Fritts

and Vincent) and has a maximum of 1 m?s~? (88 km) and a minimum of —7.5 m?s~2

(80 km). A height average of the Fritts and Vincent (1987) data has been included in
figure 7.30.

All the above works used somewhat different analysis methods. Vincent and Reid
(1983) and Reid and Vincent (1987) applied a filtering algorithm that rejected data
sets with more than 10% of the data missing but did not apply the manual rejection
methods used here. The Fritts and Vincent (1987) and GRATMAP data analysis simply
calculated the variance, around a linear trend, of the radial velocities. Visual inspection
of the radial velocity time series was used to remove outliers in the Fritts and Vincent
analysis as well as the GRATMAP analysis. In all cases, the diurnal and semi-diurnal
tides were removed. Vincent and Reid assumed a pointing angle of 11.6 ° whereas
Fritts and Vincent used a method (comparing root-mean-square velocities) that was
questioned in chapter 5. Reid and Vincent used a pointing angle profile derived from a
limited measure of the scatterers’ polar diagram. These differences in the pointing angle

profile can affect the magnitude of the momentum flux estimates but cannot change the
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Figure 7.30: A comparison of the height averaged, all-period GRATMAP w'w' and v"uw/
data, with height averages of the Reid and Vincent (1987) w'w’ and v'w’ data and Fritts
and Vincent (1987) w/'w’ data

sign. Despite these differences in analysis, the momentum flux measurements show
general agreement.

Data obtained at Kyoto (35°N, 136°E) using the MU radar would be useful for
comparison with the Adelaide data presented here because of the geographical conju gacy
of the two sites. Tsuda et al. (1990) have presented a climatology of momentum fluxes.
However, two points make comparison of the data sets from the two sites difficult. The
first is that the MU radar data do not go above 80 km altitude whereas the GRATMATD
data were not obtained below this level. Secondly, by virtue of the fact that the MU
radar could only obtain data between 8:00 and 16:00 local time, the results of Tsuda et
al. do not include contributions from waves of period greater than 2 hr. A comparison
between GRATMAP short-medium period (say) data and the MU radar results could be
considered, however, this too may be inappropriate. Fritts and Vincent (1987) showed
that momentum flux in June of 1984 had a diurnal variation due to the large amplitude
of the diurnal tide at Adelaide at that time of the year. They found that an enhancement

of momentum flux values occurred between 0:00 and 6:00 local time, 1.e. outside the

sampling time of the MU radar data. The inability of VHF radars to obtain mesospheric
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velocities at night may then lead to a bias in averaged momentum flux data, at times
when similar diurnal tidal conditions occur, because these radars will then only sample
part of this momentum flux cycle. Although the zonal component of the diurnal tide is
generally larger at Adelaide than it is at Kyoto (Vincent et al. 1988), in June 1984 this
component was of the same magnitude at both sites. Therefore, at least at some times
of the year, a limited sampling interval will be a problem. Conversely, though, the wind
structure in the region below 80 km may differ from that above 80 km such that this
diurnal modulation does not occur. Obviously, a data set with a full 24-hour coverage
is required to resolve this question.

Fritts and Yuan (1989) calculated the momentum flux above Poker Flat, Alaska for
8 days in June 1986. (At this time and latitude, it was possible to obtain VHF echoes
throughout the day.) Although they found values that were larger in magnitude than
those of Vincent and Reid (1983) and Reid and Vincent (1987), the values presented
by Fritts and Yuan are of similar magnitude to many of those presented in figures 7.15,
7.16, 7.17 and 7.18. The results of Riister and Reid (1990) for a similar time at An-
denes in northern Norway are smaller than those of Fritts and Yuan. Riister and Reid,
however, calculated the quantity (uw’ + v'w’)/+/2 because of limitations in the beam
configuration. Thus a small v'w’, like that found by Fritts and Yuan, could explain this
difference.

The annual cycle that can be seen in the uw’ data of figure 7.20 could reflect a
variation in the source distribution or in the filtering effects of the winds between the
source and the mesosphere. This cycle is less clear in the all-period data which may
explain the difference between the observations presented here and those presented by
Reid and Vincent (1987) who found that the minima in the absolute value of the mo-
mentum fluxes occurred at the equinoxes. The long-period momentum fluxes presented
here do not seem to be modulated in the same way as the short-period values so that
their inclusion in the all-period data, both here and in the Reid and Vincent data, could
act to make the position of the minimum less clear and explain the differences between

the Reid and Vincent result and that presented here.
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If it is assumed that the source distribution of gravity waves does not vary greatly
through the year, an explanation for the character of the short period ww’ as a function
of time can be tendered. If the polarisation relation for short period waves (v’ = —w'k/m
where k and m are the horizontal and vertical wavenumbers respectively) is multiplied

by w' and averaged, the result for a monochromatic gravity wave is that

= —F (7:1)
m

I

If it is assumed that wave fluxes are upward, then m will be negative so that

uw' = — u'?, (7.2)

Thus the sign of ww’ will be the same as the only non-positive-definite quantity in the
expression, i.e. k.

The above arguments suggest that when u'w’ is positive, fewer negative phase-speed
waves are not contributing to the mesospheric momentum budget. Little is known of
the gravity-wave phase-speed distribution although it is often assumed that the phase
velocity is symmetric in azimuth. Filtering effects are then thought to remove parts of
this distribution as waves propagate upwards through the stratosphere.

A number of aspects of the short-period u'w’ data presented in figure 7.20 are con-
sistent with the ideas presented above. The mean zonal wind for 35°S from the Fleming
et al. (1988) model are presented in figure 7.31 for a height range of approximately 0-80
km. It can be seen that the negative u'w’ values (late-May, July, August, September and
October) correspond to times when positive phase-speed waves will encounter a critical
level in the stratosphere. Thus, negative phase speed waves will dominate the phase
speed spectrum in the mesosphere and yield a negative uw'w’. Similar arguments can be
applied to the November, December, January and February data if it is assumed that
the phase-speed spectrum is symmetric in azimuth (at least in the east-west plane) just
above the tropospheric jet. (This criterion avoids the filtering effects of the tropospheric
jet itself.) The early-May value violates the above concepts and may be a result of the

short term variations discussed previously.
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Figure 7.31: Profiles of zonal wind through the stratosphere for Adelaide (35°S)
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Some comment can be made on the height averaged u'w’ and v'w’ standard deviation
data presented in figure 7.25. If the wind field through which the gravity waves propagate
is highly variable with time, then the mesospheric momentum flux will also vary with
time (given a constant source distribution over the 4 day observation period). This
variation can be quantified by calculating the standard deviation of the u/w’ and viw’
values as has been done in figure 7.25. A possible cause of this variation is one or more of
the solar tides. With this in mind, it is noted that the large standard deviation values for
u'w’ in the early half of 1985 (see figure 7.25) correspond in general to a time of the year
when the zonal component of the diurnal tide has its largest amplitudes at Adelaide
(Vincent et al. 1989). However, a smaller peak in the zonal diurnal tidal amplitude
in October does not have a corresponding enhancement in height-averaged standard
deviation. The large variation in the ww’ data at this time should be noted in the
context of figure 7.30. The u'w’ values in the early parts of the year show considerable
scatter both within the GRATMAP data set and when the results of Fritts and Vincent
(1987) and Reid and Vincent (1987) are included. This scatter corresponds to some
extent to the time when the height averaged standard deviation in figure 7.25 is large.

Some attempts were made to present a “typical” summer and winter momentum flux
profile. The variability in the data just discussed, however, make it difficult to represent
the character of the summer momentum flux in one profile. In winter, however, the
variability is much less. This is reflected in the standard deviation data, as well as in
the fact that the height profiles of u'w’ for 5-9 August (gmr21785) and 7-11 October
(gmr28085) are quite similar. In conjunction with the similarity between the latter
profile and one presented in Reid and Vincent (1987) for 5-8 October, it is concluded
that the average momentum flux does not vary greatly at this time of the year and
that the profiles just mentioned can be taken as typical for the late-winter early-spring
period.

It has been noted by other authors that u'w’ is dominated by contributions from
short period waves (e.g. Fritts and Vincent) and this is supported by figure 7.29. The

exception to this is, in general, during the winter. The v'w’ data does not reflect this
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trend. In general, the contribution to the total momentum flux of waves of period less

than 2 hr is less significant than that due to longer period waves.

7.2 Mean-flow acceleration

In chapter 1, the importance of a momentum source to balance the mesospheric mo-
mentum budget was discussed. Another “torque” was required to balance the Coriolis
“torque” due to the meridional flow present at that level. (Note that the terms “torque”,
“body force” and “mean-flow acceleration” are used interchangeably in discussions of
the momentum budget. The units of the quantity to be calculated here are those of
acceleration so it is the latter term that will be used in this chapter.) The mean-flow

acceleration can be calculated from the momentum flux using the expressions,

1 Opou'w’

Uy Po az ] ( )
and
1 dpov'w’
T = ———— 7.4
Ut po 9z ] ( )

where pg is the mean density at height 2. To balance the momentum budget, the mean-
flow acceleration due to the Coriolis force shouid equal the mean-flow acceleration due
to the zonal momentum flux divergence. The Coriolis acceleration is equal to fv, where
f is the Coriolis parameter and v is the meridional velocity.

The above parameters can be calculated from the available Buckland Park data. The
meridional velocity is obtained from the spaced-antenna data that is collected routinely
at Buckland Park, however, this data is not available during the four-day intervals
of the GRATMAP data. Instead, a period of four-days both before and after each
GRATMAP run is averaged to obtain a height profile of v. To give a Coriolis acceleration
in ms~'day~!, the meridional velocities are multiplied by 7.29 day~!. The densities are
calculated using the Fleming et al. (1988) model atmosphere. Pressure and temperature
for 30° S and 40° S are each interpolated to give a value at 35° S. The ideal gas equation

1s then used to obtain the density at heights between 75 km and 100 km. These are
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then interpolated (using a straight line fit to the log of density) to give densities every
2 km in the range 80km to 94 km.

In practise, the mean-flow acceleration due to momentum flux is a difficult parameter
to calculate. Although based on a simple equation, the slope of pou'w’ (say) as a function
of height is subject to some uncertainty due to the uncertainty in each value of u/w’.
To overcome this, some smoothing is necessary, and this has been done by fitting a
straight line to three consecutive (in height) points and calculating the slope of this
line. The slope calculated using ww’,_;, uw'w’, and w'w’,,; is then allocated to the
height z. The result is that no data is available for the heights corresponding to the
lowest and uppermost acceptable data points. This loss of data would be greater if a fit
to more than three data points was used.

It was noted in the previous section that most of the vertical lux of zonal momentum
was due to waves of period less than two hours for most of the year. The sensitivity of the
mean-flow acceleration to uncertainties in u/w’ meant that the most reliable measures
of u'w’ had to be used in this calculation. Because of their contribution to the w'w’ flux
and their reliability, the 8 min—2 hr data was used in the calculation of the mean-flow
acceleration. It should also be noted that calculation of the mean-flow acceleration due
to longer period waves is complicated by the inclusion of a multiplicative factor 1— f2/w?
(Fritts and Vincent 1987). Calculations of mean-flow acceleration from momentum flux
data that include contributions due to long period waves are complicated because the
value of w is unknown. An upper limit to the mean-flow acceleration due to long period
waves can be be calculated if this factor is ignored and the above equations for @; and
7; are used.

The results of this analysis are presented in figures 7.32, 7.33, 7.34 and 7.35. The first
two of these figures have the Coriolis acceleration for that time of the year superimposed
onto the diagram. The sign of the Coriolis acceleration has been reversed so that, if
the momentum fluxes balanced the momentum budget completely, the two lines in the
figures would coincide. The diagrams presenting the mean-flow acceleration due to

divergence of v'w’ do not have a corresponding Coriolis acceleration.
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Figure 7.32: Zonal mean-flow acceleration as a function of height. The Coriolis acceler-
ation has also been included
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Figure 7.34: Meridional mean-flow acceleration as a function of height.
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Despite the smoothing used in the mean-flow acceleration calculation, there is still
some scatter in the results as a function of height with steps of hundreds of ms~!day~!
occurring between successive heights at some time. An eyeball fit to the data is thought
to be more meaningful in these cases. There is a reasonable agreement between the
U values and the Coriolis acceleration in the data with starting days 63 (March), 105
(April), 126 , 147 (early and late May) and 189 (July). The other diagrams do not reflect
a general agreement although those for day 280 (October) and day 343 (December) show
some trends that agree with the Coriolis acceleration.

The v, data of figures 7.34 and 7.35, although noisy, suggest a non-zero mean value
of this quantity throughout much of the year. The o; values are generally smaller than

their @; counterparts.

7.3 Summary

In this chapter, the momentum fluxes that were calculated using the methods developed
in the previous chapters were presented. The seasonal variations of the vertical flux of
zonal and meridional momentum were presented and discussed as were the partitioning
of the amplitudes of these quantities between the various period bands. Some seasonal
variation in short period u'w’ was found and could be explained on the basis of strato-
spheric filtering effects. Some attempt was made to calculate the mean-flow acceleration
although it was found that this calculation was very sensitive to uncertainties in the uw’

and v'w’ data.
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Chapter 8

Thesis summary and

recommendations for future work

In chapter 1 of this thesis, some important properties of the middle atmosphere, in
particular the mesosphere and lower thermosphere were presented and the background
for the studies of momentum flux was set. It was shown that radiative equilibrium
arguments, where local heating due to insolation is largely balanced by local cooling at
infrared wavelengths, could be used to predict the thermal structure of the stratosphere.
This predicted structure was found to agree well with that observed, particularly when
accurate constituent profiles were used. These arguments could not, however, be ex-
tended to the mesosphere and lower thermosphere (termed the mesosphere for brevity
in this work). The suggestion that a diabatic circulation brought about this departure
from local thermodynamic equilibrium was supported with observations of a non-zero
meridional flow. Considerations of the mesospheric momentum budget showed that
this diabatic circulation could not be sustained without a source of momentum in the
mesosphere. Gravity waves were shown to be a viable mechanism for transporting mo-
mentum from the troposphere upward to the mesosphere and processes that act to filter
out part of the gravity-wave phase-speed spectrum as these waves propagate through
the stratosphere were presented. Saturation of gravity waves and the resulting depo-

sition of momentum into the mean flow was described using linear wave theory and it
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was shown that, if these filtering and momentum deposition processes were considered
in conjunction with the stratospheric wind structure, a realistic model of processes that
would explain the diabatic circulation could be constructed.

Chapter 2 was used to present the theoretical background for a separate but complé
mentary study of energy deposition that used data from the Poker Flat VHF radar in
Alaska. The relationship between the turbulence spectrum and the Doppler spectrum
recorded by the radar was developed and it was found that the rate of dissipation of
turbulence energy could be obtained from the Doppler spectrum. Some sources of con-
tamination, that could cause this method to yield incorrect values of energy dissipation
rate were presented including one that had, until now been little known and had never
been considered experimentally. This contamination involved variations in the vertical
velocity due to short period gravity waves, during the Doppler spectrum sampling inter-
val. It was also shown that, under some circumstances, the power of the returned radar
signal could be used to obtain measurements of the energy dissipation rate through
turbulence.

The extent to which the vertical velocity could contaminate energy dissipation rate
measurements was the subject of Chapter 3. Data with high time resolution from the
Poker Flat radar were analysed to produce a measure of the width of each Doppler
spectrum. This analysis involved fitting a Gaussian function to each function that
satisfled a minimum chisquare (goodness of fit) condition. It was possible to obtain
information on the radial velocity and signal-to-noise ratio as well, using this method.
The effect of gravity waves on the data was considered by taking five segments of the
entire data set, characterised by the presence of clear wave motions (or in one case, just
a ramp in velocity), and applying the following analysis.

The data set was made up of Doppler power spectra obtained from short duration
time series. To simulate a longer time series it was possible to sum successive power
spectra and calculate the spectral width of the result. A similar concept can be applied
to simulate the height of the sampling volume. In general, three successive height gates

were summed to give one time spectrum. An index of contamination, denoted “Y;”,
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which was essentially the ratio of the variance (another measure of spectral width) of
the simulated long duration Doppler spectra to the variance of the short duration was
calculated for various simulated time samples. This index could also be used to test
a model that predicts, quantitatively, the effect of a monochromatic gravity wave on
the spectral width, for some of the data segments being considered. It was found that,
for sampling times in common usage on VHF and MF radars, there was potential for
contamination of spectral width measurements and therefore some energy-dissipation
rate measurements by short- (ground-based) period gravity waves. This should be con-
sidered in experiments that seek to measure energy-dissipation rate accurately in this
way. The sampling time that the experiment should use should be as short as is possible
while maintaining a suitable reliability in the spectra.

With a set of uncontaminated spectral widths available, it was possible to calculate
turbulence energy-dissipation rates. After the various sources of contamination (beam
and shear broadening as well as that due to vertical velocities) were removed, this
calculation was carried out and compared to other dynamics quantities such as vertical
velocity. A suggestion of a correlation between the energy dissipation rate and the phase
of the gravity wave was evident. The energy dissipation rate was also calculated from
the Doppler spectrum power for this data and compared to the spectral-width energy
dissipation rates. These values did not correlate well and it was suggested that the
potential refractive index, a quantity that is necessary in the power energy-dissipation
rate calculation, may in fact vary in an environment where auroral precipitation is
thought to be responsible for the electron density. This would invalidate the use of the
power calculation of energy-dissipation rate at this site and at this time.

The remainder of this thesis involved the analysis of data obtained using the Buck-
land Park radar near Adelaide. The radar, and some aspects of the analysis methods
that are used to obtain horizontal winds and radial wind velocities are described in
Chapter 4. The way in which the radar beams are pointed off-vertical for the momen-
tum flux experiments that were conducted, is also described.

The Buckland Park array polar diagram has a half-width half-maximum of approx-
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imately 5°. The effective pointing direction of a radar is the product of the radar polar
diagram and the polar diagram of the scatterers. Thus, in practise, there is some po-
tential for variation in the effective pointing direction of the array. This is particularly
true in situations where the radar beam is pointed at and angle from the zenith. The
scatterer polar diagram is thought to be centred close to the zenith, drawing the effec-
tive off-zenith pointing angle from the direction in which the array was phased, toward
the vertical. The Vincent Reid (1983) analysis requires a knowledge of this off-vertical
pointing angle and chapter 4 is a study of methods that can be used to obtain this angle.

Some analyses that have been used by other workers to obtain the pointing angle
were reviewed. These generally involved comparisons of velocities obtained with and
without tilted radar beams. An alternative method, where the characteristics of the
spatial correlation function of the returned echoes are related to the scatterer polar
diagram and used to correct the array polar diagram is also presented. To test these
analyses, a comparison of concurrent spaced antenna and tilted beam Doppler velocities
was carried out. It was shown that the radar pointing angle due to the phasing did
not give good agreement between these two velocities and a pointing angle closer to
the zenith would be more suitable. Attempts to obtain this angle from individual
velocity measurements were found to give unreasonable results, largely because of the
statistical errors associated with the velocity measurements and the propagation of these
errors through the pointing angle calculation. The scale of the spatial autocorrelation
function (the pattern scale) was then used to obtain the pointing angle with considerably
greater success. The pointing angle values time series contained only a few outliers and
the agreement between spaced-antenna velocities and Doppler velocities projected onto
the horizontal using this pointing angle was improved at most heights. Some further
investigation suggested that tilting of the scatterers’ polar diagram away from zenith
was probably not the cause of the remaining difference.

The use of the echo characteristics obtained from the correlation function was recog-
nised as a powerful tool for obtaining the effective pointing angle at some heights,

however, at other heights, it is less effective. This is attributed to the changing nature
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of the echo mechanism as a function of height and the resulting change in the scatterer
polar diagram. Unfortunately, the spaced-antenna analysis in its present form attempts
to fit a Gaussian function to the spatial correlation function at each height. Although
entirely acceptable at some heights, this leaves little scope for changes in the scatterers’
polar diagram at other heights and therefore may not yield parameters that adequately
describe the true spatial correlation function. The possibility of using a Gaussian plus a
constant (say) in the spaced antenna analysis to allow for some of this variation in the
scatterer polar diagram is recommended.

The variances of segments of the velocity time series obtained using the spaced
antenna and Doppler methods have also been compared in the past, in order to obtain
an effective pointing angle. The study of pointing angles presented in chapter 5 showed
that the pointing angle can vary on a short time scale. This has the effect of introducing
another component to the variance and introduces some extra terms into the expression
that should be used to carry out this calculation. It was found that this method of
obtaining the effective pointing angle was unsuitable.

The short term variations in the pointing angle mentioned above have the potential
to affect the momentum flux values calculated using the method of Vincent and Reid
(1983). In order to examine the extent to which these values will be affected, a model,
with a semi-random pointing angle variation (based on the characteristics of the spatial
correlation pattern) was set up to measure the momentum flux due to various wind
fields. It was found that the error in uww’ induced by these pointing angle variations
was less than around 3 percent.

Chapter 6 of this thesis describes the analysis methods applied to the radial velocity
data collected at Buckland Park. In the data analysis, the data was filtered so that
contributions due to three period bands could be isolated. This was done quite simply
by averaging the data to give the lower limit of the period and by analysing blocks of
data whose length define the upper limit of the period. The most difficult aspect of
the analysis involved the removal of outliers. For unknown reasons, spuriously large

radial velocity values occur from time to time in the data. The momentum flux analysis
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method of Vincent and Reid (1983) is extremely sensitive to these occurrences, firstly
because this analysis involves differencing two large quantities and secondly, because
these quantities are variances. Qutliers have the potential to dominate the variance
sum and therefore should be removed. A number of automatic methods were tried and
one where the mean and standard deviation of three hour blocks of data were used
to remove any points more than a predetermined number of standard deviations away
from the mean of that block was adopted. Two passes, each rejecting a relatively small
number of points were used in preference to one pass rejecting many points because the
bad points also affect the rejection levels. This method, however, could only be applied
to the data that was to be averaged into blocks of at least half an hour duration. The
analysis applied to short-period data had to be quite different and, in the end, quite
time-consuming.

In the short period analysis, the data was averaged into four minute blocks. Each
of these blocks generally contained one radial velocity data point but at some times of
the day and at some heights they contained two. Therefore, this averaging had little
potential for removing the effects of outliers. A computer graphics program was written
to display a time series of these radial velocities on a screen. It was then possible to
remove data points by placing the cursor over the offending point and pressing a mouse
button. This removed that point from the data set and wrote some of its characteristics
to a file so a data base on the outliers could be compiled at a later time. In this way, the
radial velocity data time series for each channel and each height were visually inspected.
The choice of whether or not to reject was based on the following philosophy. If one
data point has a value which means that, in calculating the variance sum, (i.e the sum
of the squares of the deviations from the mean) the other points in the data block will
not contribute significantly to the variance sum, then keeping that point in the block
essentially ignores the character of the other points. That one point, then, must be
considered an outlier and removed from the data set. This philosophy was applied in
a two stage process and some limits on the acceptable number of points that can be

missing per block (here 66%) decreased the potential for bias due to cases where the
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rejection of an outlier was not a clear-cut decision.

To measure the effect of the outlier rejection, “weeded” data (as the data subjected to
the above philosophy were called) were analysed and compared to data where no outlier
rejection was applied. The data that were subjected to the three-hour-block filtering
were also compared in this way.

The method of outlier rejection applied to the short period data described above
has a number of drawbacks. It is time-consuming and labor-intensive but most of all,
it did not contribute to investigations of the cause of these outliers. Once the cause is
found, it would be possible to incorporate rejection of these data points into the primary
velocity analysis. If it has been possible to inspect the Doppler spectrum of the outliers,
it may have been possible to suggest a cause for the occurrence of these points. This
was beyond the capacity of the system developed here but could be integrated into a
more elaborate outlier rejection/inspection system. This is suggested as the next step
toward finding the cause of these outliers.

Although the application of the Vincent-Reid method of obtaining estimates of mo-
mentum flux at MF has some problems that do not occur at VHF, (e.g. the need to
calculate an effective pointing angle) one important point makes the pursuit of solutions
to these problems worthwhile. That is that, in general, VHF radars cannot measure ra-
dial velocities in the mesosphere (and therefore momentum fluxes) throughout the 24
hours of a day. The scattering mechanism at VHF is weak at night making it impossible
to obtain momentum fluxes at this time. Diurnal variations of momentum flux have been
noted by some authors (Fritts and Vincent, 1987) and these can only be investigated on
a system that is capable of obtaining results throughout the diurnal cycle.

The pointing angle profiles calculated using the methods described in chapter 5 and
the data analysis methods presented in chapter 6 were applied to a set of four beam
radial velocity data spread throughout the period March 1985 to February 1986. This
data consisted of twelve four-day data sets each approximately a month apart. They
corresponded either closely or exactly to a series of times when global experiments on

gravity waves and tides in the middle atmosphere were carried out and have been termed
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the GRATMAP data. In chapter 7 the data was summarised and some characteristics of
it were presented. The data was also compared to other momentum flux estimates that
have been made by other workers and at other sites and a general agreement was noted.
It was found that the vertical flux of zonal momentum, u/w’, varied on a seasonal basis
and that this variation was mainly due to a corresponding variation in the short-period
u'w’ values. This variation could be explained on the basis of filtering of a tropospheric
(or perhaps tropopausic) gravity wave source distribution by stratospheric winds. It
was also noted that, at least for momentum fluxes due to medium- and long-period
waves, the vertical flux of zonal momentum was not negligible and was often of similar
or greater magnitude to the corresponding u/w’ value. In u'w’ it was found that waves of
periods less than two hours were the main contributors to the momentum flux outside of
winter but that in the v'w’ data, these periods generally only made a small contribution
to the total flux.

The mean-flow acceleration was calculated from the u/w’ and v'w’ profiles. It was
found, however, that this quantity was very susceptible to the uncertainties in the mo-
mentum flux values and that the results of this calculation showed considerable scatter.
A broad agreement between the Coriolis acceleration and the zonal mean-flow accelera-
tion was observed and non-zero values of meridional mean-flow accelerations were also
present.

The short term variability in the momentum flux means that calculations of mean-
flow acceleration are difficult to carry out. This quantity, however, is of key importance
in balancing the mesospheric momentum budget. It is suggested that longer data sets
will give more information on this short-term variation and will improve estimates of
the mean-flow acceleration. Four day data sets, like those used here, were used in
experiments aimed at studying tides in the middle atmosphere (ATMAP) and were also
found to be too short. Longer data sets may not be feasible with the manual method
of data rejection used in this thesis but could be feasible if an automated data rejection

algorithm was developed.
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Appendix A

The Doppler spectrum due to a

gravity wave.

In Chapter 3, the effects of gravity waves on the VHF Doppler spectra recorded at
Poker Flat were considered. In this appendix, the form of the Doppler spectrum due to
a gravity wave will be considered and it will be shown that the variance of the spectrum
and that obtained from the probability density function are equivalent.

Let us assume that the radar being considered is capable of detecting the radial
velocity of the atmosphere within the sampling volume without any turbulence present.
That is, the Doppler spectrum due to turbulence is infinitely narrow. It is also assumed
that no wind broadening or narrowing effects occur. If this is the case, the Doppler
spectrum will be due to the gravity wave velocity alone.

Given a monochromatic gravity wave and no mean flow, the radial velocity will vary
as

V = Vo sin(w,t + @) (A.1)

where V5 is the maximum velocity, w, the gravity wave angular frequency and ¢ the
phase at t = 0. Assuming that ¢ = 0, the angular frequency shift seen by the radar due
to the gravity wave as a function of time will then be

AW
D)

w

sin{w,t) (A-2)
where ) is the radar wavelength. The rececived frequency will then be wg + w, where
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Figure A.1: The calculated Doppler power spectrum of the signal due to a monochro-
matic gravity wave.

wo is the VHF carrier frequency. If this receiver detects a signal E = FEye™®T, then the

frequency of the signal is d¢r/dt. Thus,

d
et
or
47V
dr = wot — ul 0cos(wgif).
Awy

The Doppler spectrum can then be determined by calculating the Fourier transform of
E. This has been done using an FF'T (Singleton 1969) and the results are given in
figure A.1. Note that in this case, wy is set to zero and that a full cycle of the wave is
sampled and transformed. If just part of a cycle had been sampled, only a segment of
the above spectrum would result. Figure 3.5 results from half a wave being sampled.
The situation described above is actually that of frequency modulation where the
modulation is sinusoidal. Treatments of this case give the amplitude of the components
of the power spectrum as being proportional to Bessel functions of the first kind in the

following way (see eg. Goldman 1948). Given that the frequency, w is n steps of size
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Figure A.2: The smoothed Doppler power spectrum (solid line) and the probability
density function (dashed line).

wy from wp, i.e. w = wy + nw,, then the power spectrum, S(w), has the property that

S(w) = 0 when n is non-integer and
S(w) oc 2(22) (A3)
Wy

where Aw = 47V;/lw, is the maximum frequency excursion caused by the modulating
wave and J,, is the nth order Bessel function of the first kind. In the cases of interest
to us, Aw/w, is large and most of the energy in the spectrum is confined to the range
wo & Aw. Properties of Bessel functions suggest that as Aw/w, becomes larger, the
amplitude of the oscillations that can be seen in the power spectrum become smaller,
tending toward a smooth curve (Goldman 1948).

Hocking (1989) showed that the probability of a gravity wave having a velocity
between v and v + dv is given by P(v), where

Vol — %



This can be expressed in terms of frequency using v = fA/2 = AAw/4w, where f is the
ordinate used in the previous figures and Aw is as defined previously.

Figure A.2 (solid line) shows the power spectrum of figure A.1 smoothed using a 5
point running mean (with weights 0.085, 0.25, 0.33, 0.25, 0.085). Also shown (dashed
line) is the expected form of the probability density function. It can be seen that
the smoothing of the power spectrum has resulted in a curve of similar form to the
probability density function. The probability density function has been normalised so
that the two lines coincide at zero frequency but this will not affect the variance values
calculated from each distribution. In the case of a completely smooth power spectrum,
they will be exactly the same. In practise, the oscillations in the power spectrum
will mean its variance will differ slightly from the PDF value but not significantly or

systematically.
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Appendix B

The variance of the sum of n

distributions

In Chapter 3, numerous spectra were added together. The mean and variance of the
combined spectrum and its relationship to the individual spectra was of interest. An
expression that was quoted in that chapter relating the above parameters will now be
derived.

Given a distribution function P(f), the mean of that distribution P is

S [ IPU) & [T PP &
P="1 P y (B-1)

where A = [} P(f) df is the area under P(f). The variance of the distribution, o is
- SU-PPPO) g

1= P(f) df
B O P’ oo SIS FP(S) df
= A/_mfP(f)df+A/_°°P(f)df S

- %f_m F2P(f)df + P*—2P P

& = o[ re a7 (B.2)
We now consider n distributions P;(f) 7 = 1...n each with a mean P;, variance o? and
with [°2, Pi(f) df = A;. Let the distribution obtained by summing these n. distributions
be P(f) = S0, P(f) and define /%, P(f) df = 1. The mean of P(f), P will be

I%, FP(F) df

= =g
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E /_“fia-(f) i

= > [ rrin
P b= Zn:FiAi from B.].. (B3)
=1

The variance of P(f), o} is then
L RU-PPRD &
d J2o P(f) df
= /Oo FPP(f) df — P? from equation B.2

=/ fZZP(f df—-(ZP.A using B.1

i=1

- Z/ FRf) & ~ S PLAE - 3.5 PP,

=1 i=1 j=1

J#i

given 37_, A; = 1 then A; =1—37, A; so
J#

o} = Xn: / FAP.(f) df — P.A I—ZA Zn:zn:-P—iA-i_j.Aj

t=1 J;‘:z =1 ;=1
= 2{/ FPP(f) df — PA}+ZP i22A =22 PiAPiA;
=1 ;:11 =1 ;:11
Z.Aa +EPAZA EZ Aj. (B.4)
i=1 i=1 _1 =1
J#i J#i

Now

n

> i A A (P — Py = %iiw&-( L — 2

i=1 j=1+1 i=1



The two terms in braces are the same, as swapping ¢ and j will show, making this

expression equal

These are the last two terms of equation B.4 so

op =3 Aol +3 > AA(Pi - Py)n (B.5)

1=1 1=1 j=i+1
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Appendix C

Obtaining the effective pointing
angle from the spatial correlation

function

In the full correlation analysis (Briggs 1984), the spatial correlation function has the

form

p(€,m) = p(AE® + Bn® + 2HEn) (C.1)

where £ and 5 are perpendicular spatial coordinates; thus p(£,n) =constant form ellipses.
If the coordinate system used is aligned with the axes of these ellipses, and using the

Gaussian form for p, p(¢,n) has the form

S
p(&,n) = exp—[Z5 + 5] (C.2)

&  ni
where ¢; and 7, are the e™! widths of the spatial correlation function in the directions

of the axes.

If £ and 7 are expressed in units of wavelength, the angular power spectrum of
downcoming energy can be calculated by taking the Fourier transform of p(£,7) (see
e.g. Ratcliffe 1956). If W(Sy, S2) is the energy coming from the direction S; = sin 6y,

Sy = sinfy, where 6; and 0, are measured from the zenith in perpendicular directions
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along the two axes, then
2

W(51,5:) //exp — g—% + Z—Z] exp 2mwi(S1€ + S2n) d€ dn (C.3)

1

= Woexp—[r257 1 rnS3). (C4)
The form of p(¢,n) and W(S1, Sz) are shown in figure C.1 (reproduced from chapter 5).
If an antenna array is phased to produce a beam that points in a desired direction

51 = a1, Sy = a3, (as in figure C.1c) and the beam has a power polar diagram of the

form

_[(51 —a1)? 4+ (S, — asz)?

B(Sl,Sz) = Bo exp 82
0

I

(where S is the beam e~ width), the effective polar diagram will be the product of the
polar diagram of the scattered or downcoming energy and the beam polar diagram (as

illustrated in figure C.1d)i.e.
C(S1,52) = W(S1,52) B(S1,52).

It W(S1, S2) is a constant where B(S,S;) is non-zero, then the pointing direction (or
direction of maximum gain) of the combined polar diagram will be the same as that of
the beam itself. If W (S, S;) is not a constant, then the effective pointing direction of
the combined polar diagram will differ from that due to the beam alone. The effective
pointing direction for the case of the Gaussian scattering polar diagram presented above
will now be considered.

The combined polar diagram is

(S1—a1)® + (S — as)?

C(51,82) o exp—[r*¢IS} + nniS7] exp —| 2 ] (C.5)
0
— 2 _ 2
X exp —[7r2§f.5'12 + (SHT%) + 7r2nfS22 + (5'2_52@. (C.6)
0 0

This will have a maximum where the partial differentials of C' (S1, S2) with respect to

S1 and S, are zero, i.e.
2sls—ga1 + 21228, = 0, 2‘5{%‘14-2#77352 — 0. (C.7)

226



Spatial correlation function Angular spectrum

A7
p@.€)=0.5 7, W(S,S,)=const

e
2
n

\/ \J
(a) (b)
Radar polar diagram Combined polar diagram
A 82 ‘ SZ
a) (anay)
+
(81 eff:sa eff)
S1 S1
- =

(c) (d)
Figure C.1: The correlation ellipse (a), it’s Fourier transform, the angular power spec-

trum (b), the radar polar diagram (c) and the effective polar diagram of the scatterers
and radar combined (d).
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Figure C.2: The S,, S; axes are rotated by an angle ¢ to S, S;. Contours of constant
power in the angular spectrum are shown.

This gives

(Sl)eff = Ts%%f?, (52)eff = Tsézn%?. (C8)

The work presented thus far is due to Briggs (private communication 1989). These
results are now applied to the data collected using the Buckland Park MF array.

It should be noted that the semi-major axis of the correlation ellipse Fourier trans-
forms into the semi-minor axis of the angular spectrum ellipse and it is the angular
spectrum that is being considered in this derivation. Thus far, the axes S;, S; have
been aligned perpendicular to and parallel to the semi-minor axis of the angular spec-
trum ellipse respectively; this will not be the case in practise. The angle ¢ between
North and the semi-major axis of the spatial correlation ellipse is calculated in the full
correlation analysis. In order to apply the above results then, we must rotate the angu-
lar spectrum ellipse whose semi-minor axis is oriented at an angle ¢ from North so that
this axis is not aligned with the S} axis in a new coordinate sytem S}, S where 5! is
eastward and Sj is northward. This involves rotating the S;, S, axes by an angle ¢ as

shown in figure C.2. Then

S] = Sicos¢+ Sysing (C.9)

228



Sy = Sscosp— Sysing (C.10)

So (Si)ess = (S1)efscos ¢+ (S2)esssind (C.11)
ai cos ¢ as sin ¢
= 12
R R (©12)
(S2)ess = (S2)esscos @+ (S1)esssin ¢ (C.13)
as Cos ¢ a1 sin ¢ (C.14)

L+ Sgnin? 1+ 53€n®
The constants a; and a; in the above expressions are obtained from the directions in
which the antenna array is phased to point. If a beam 11.6° off-zenith toward the
East is used, then it can be seen (figure C.3a) that sin ¢ = as/a}, cos¢ = a;/a] and
ay = sin11.6°. This gives

sin 11.6° cos? ¢ = sin11.6° sin® ¢

Dess = C.15

(Sl) ff 1+ 8361271'2 + 1+ Sg,rhzﬂ_g ( )
, sin11.6°sin ¢ cos¢  sin 11.6° sin ¢ cos ¢

e — C.].6

In the regions of the atmosphere being considered in this thesis the wind motion is
predominantly horizontal. Variations in zenith angle, which in this case are expressed
by (57)ess, have a significant effect on the radial velocity measured using the antenna
beam and are important. The (S5}).ss term is far less significant. Although the beam is
moved a few degrees North-South, this change in beam pointing angle has little effect
on the radial velocity.

Similarly for a beam 11.6° off-zenith toward the North, sin ¢ = —ay/aj}, cos ¢ = ay/a),

and aj = sin11.6° (see figure C.3b) giving

sin11.6° singdcos¢ sin11.6° sin @ cos ¢

S1)e e 1
in11.6°cos?¢  sin11.6°sin’ ¢
S%)e = 1

Similar to the case above, the (S7)css term is not important for a Northward pointing

beam.

1

The parameters Sp, £; and 5; are e™! widths of various Gaussian functions. These

are related to the half-power half-widths by (So)os = VIn2Ss, (é1)os = vIn2¢; and
(7]1)0.5 = +/In 2.
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Figure C.3: The position of (a) an eastward pointing beam and (b) a northward pointing
beam in primed coordinates.
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