
õ-x -$

A Genetic Algorithm Search

for the Optimal Design of
Water Distribution Systems

Laurence Joseph Murphy

Thesis submitted for the degree of

Doctor of Philosophy

tn

The University of Adelaide

Faculty of Engineering

Department of Civil and Environmental Engineering





A genetic algorithm searchfor the optimal design of water distribution systems

Acknowledgements

This research was conducted in the Department of Civil and Environmental Engineering at the

University of Adelaide between 1991 and 1997. The author was supervised for the period of

his candidature by Dr. Angus R. Simpson and Associate Professor Graeme C. Dandy. The

author is indebted to the his supervisors and the Department for the opportunity to pursue this

research. The author is most grateful to his supervisors, Dr Simpson and Assoc. Prof Dandy,

for their guidance and encouragement, their valued advice and also their endurance, in fostering

this research from an undergraduate research project.

The author would like to give special mention to Mr Jeffery Frey and Mr John Gransbury for

their unwavering enthusiasm. They have been, along with my supervisors, genuine, energetic

supporters of this genetic algorithm application.

The author would also like to extend thanks to Mr. Rod Kitto, Mr. Terry Farrill, Mr. Paul

Doherty and Mr. Jim Zissopoulos, Mr. Andris Rubenis and Mr. Mun Thim Wong. The

willingness of these system engineers and designers to provide details of their water systems is

greatly appreciated, as is their foresight and openness to this new idea. They have helped to

convince me of the importance of efforts to apply this research to real-world water system

applications.

The author acknowledges the support provided by the administrative and computing staff of the

Department of Civil and Environmental Engineering, and for the valuable association with other

teachers and fellow students. Funding for stages of this research was provided by the

Department, by way of a CivilTest Scholarship and this support is gratefully acknowledged.

I would especially like to thank my wonderful family, my friends and my wife-to-be (soon),

Jacqueline, for all believing in me, and thank you Bobby Z.

AII these people, and many others are thanked for their contribution in many different ways to

this research.

1ll



A genetic algorithm searchfor the optimal design of water distribution systems

Table of Contents

Statement of O riginality

Acknowledgements

Table of Contents

List of Figures

List of Tables

Principal Notqtions

Chapter 1. Introduction .

1.1 Water Distribution Systems

1.2 System Expansions

1.3 Hydraulic Simulation of Water Distribution Systems

1.4 Optimisation of the Design of Water Distribution Systems

1.5 Pipe Network Optimisation Techniques

1.6 Genetic Algorithms (GAs)

1.7 ATraditional GA for Pipe Network Optimisation

1.8 The Two-Reservoir Gessler Network

1.9 Modifications to the Traditional GA

1.10 Multiple Gessler Problems

1.11 The New York City Water Supply Tunnels

1.12 The Fort Collins - Loveland System Expansion Plan

Chapter 2. Development of a Hydraulic Simulation Model
2.1 Introduction

2.2 Pipe Network Components

2.3 Tree Networks and Looped Networks

2.4 Natural Loops and Pseudo Loops

2.5 Hydraulic Grade Line (HGL)

2.6 Pipe Friction Head Losses

2.7 Parullel Pipes

2.8 Pumping Heads

2.9 The Set of Pipe Network Equations

2.9.1 Pipe flow equations (Q-equations)

2.9.2 Node equations (^F1-equations)

29.3 Loop corrective flow equations (AQçequations)

2.10 The Adopted Method of Hydraulic Analysis

2.lO.I The Anytown water distribution system

ll

iü

iv

X

xviii

xxiii

1

I

1

2

2

J

4

5

7

8

8

9

9

11

11

13

I4

15

15

t7

18

T9

2I

23

27

30

34

34

lV



A genetic algorithm searchfor the optimal design of water distribution systems

2.TL

2.IO.2 Determination of natural loops and pseudo loops

2.10.3 Assumed initial flows

2.10.4 Near minimum bandwidth of the Jacobian matrix

2.10.5 The Newton-Raphson method applied to the loop equations

2.10.6 Convergence test

2.10.7 Sparse matrix routines

2.10.8 Junction node pressure heads

2.10.9 Analysis of pressure reducing valves and check valves

2.10.10 Extended period simulation (EPS)

Integration of the Hydraulic Simulation Model and the Genetic Algorithm

Pipe Network Optimisation Model

Chapter 3. Optimisation of 'Water Distribution System Design

3.1 The Optimisation Problem

3.1.1 The decision variables

3.1.2 The objective function

3. 1.3 System performance constraints

3.1.4 Hydraulic constraints

3.1.5 General design constraints

3.1.6 The solution space

3.2 The Benefits of Optimisation

3.3 Pipe Network Optimisation Techniques

3.3.1 Nonlinear programming (NLP)

3.3.2 Linear programming (LP)

3.3.3 Two-phase decomposition methods

3.3.4 Global search and local optimisation

3.3.5 Dynamic programming

3.3.6 Enumeration algorithms

3.3.7 Heuristic techniques

3.3.8 Equivalent pipe methods

3.3.9 Evolutionary strategY

3.4 Complexities of Pipe Network Optimisation

Chapter 4. Overview of Genetic Algorithms
4.1 Chromosomes

4.2 Fitness of Coded Structures

4.3 The Solution Space

4.4 Populations of Coded Structures

4.5 Genetic Algorithm Operítions

38

42

45

47

52

54

61

62

66

14

19

68

73

73

17

77

19

19

80

81

81

85

90

9I
93

95

96

98

99

100

t02
ro2

to4
105

105

106

v



A genetic algorithm searchfor the optimal design of water distribution systems

4.6 Selection

4.7 Crossover

4.8 Mutation

4.9 String Similarities (Schemata)

4.10 The Power of the Genetic Algorithm

4.11 GAs applied to Pipe Optimisation Problems

Chapter 5. Application of the Traditional Genetic Algorithm to
Pipe Network Optimisation

5.1 A Genetic Algorithm Approach

5.1.1 Coded strings

5.1.2 Fitness of coded strings

5.1.3 Implementation of a simple genetic algorithm

5.2 Case Study: The Two-Reservoir Gessler Pipe Network

5.2.1 Description of the Gessler problem

5.2.2 Exhaustive enumeration of the Gessler problem

5.2.3 Partial enumeration applied by Gessler (1985)

5.2.4 Nonlinear programming optimisation of the Gessler problem

5.3 A Small Scale Simulation of the Simple Genetic Algorithm applied to the

Gessler Problem

5.3.1 Coded strings representing Gessler network designs

5.3.2 Coded string populations

5.3.3 Evaluation of the coded strings

5.3.4 The second generation of coded strings

5.3.5 Selection

5.3.6 One-point crossover

5.3.7 Mutation

5.3.8 Subsequent generations and the Schema Theorem

5.4 Sensitivity Analysis of Genetic Algorithm Parameters

5.4.1 Variations of the random number generator seed

5.4.2 Yariations of the population size, N

5.4.3 Yariations of the probability of crossover,p"

5.4.4 Yaiations of the probability of mutation, p,'

5.4.5 Infeasible network designs

5.4.6 Findings of the sensitivity analysis

5.5 Conclusions .

106

108

109

109

111

111

113

113

113

rt4
t14
118

118

t2r
r27

r28

t32
r32

134

t34

139

t39

140

t4r
t42
r43

r45

r49

155

r59

r62

r63

t64

VI



A genetic algorithm searchfor the optimal design of water distribution systems

Chapter 6. Improvements to the Simple Genetic Algorithm for
Pipe Network Optimisation

6.1 Introduction

6.2 Pefiormance Measures

6.3 Penalty Functions

6.3.1 Penalty functions for pipe network optimisation

6.3.2 The penalty multiplier

6.3.3 Varying the penalty multiplier

6.3.4 GA model runs to compare penalty functions and penalty multipliers

6.3.5 Recommendations for the penalty function

6.4 Selection Methods and Fitness Functions

6.4.1 Proportionate selection

6.4.2 T ournament selection

6.4.3 Fitness functions

6.4.4 Fitness scaling mechanisms

6.4.5 Experimental analysis of selection methods and fitness functions

6.4.6 Recommendations for selection schemes

6.5 Coding Schemes

6.5.1 Binary codes and Gray codes

6.5.2 Integer codes

6.5.3 The optimum anangement of decision-variable substring positions

within the coded string

6.5.4 Genetic algorithm runs to compare coding schemes

6.5.5 Counting the numbers of decision-variable substrings

6.5.6 An ideal coded structure

6.6 Crossover Mechanisms

6.6.1 GA model runs to compare crossover mechanisms

6.6.2 Recommendations for crossover mechanisms

6.7 ACreeping Mutation Operator

6.7.1 A creeping mutation operator for binary-coded substrings

6.7 .2 GA model runs to measure the effectiveness of creeping mutations

6.7.3 Recommendations for creeping mutations

6.8 Conclusions

Chapter 7. Larger Problems with Known Optimal Solutions

7.1 The Original Gessler Problem

7.2 Simultaneous Optimisation of Two Gessler Problems

7.2.I The improved genetic algorithm approach

7.2.2 Elitism

t66
t66
r66

tll
t]2
113

n4
r75

187

188

188

189

190

191

t92
204

206

208

2to

2t2
213

2t9
229

232

235

242

245

246

241

250

257

259

259

259

26r

263

vll



A genetic algorithm searchfor the optimal design of water distribution systems

7 .2.3 Pefiornance of the improved GA (with elitism) applied to

two Gessler problems

7.3 Simuttaneous Optimisation of Three Gessler Problems

7.4 Simultaneous Optimisation of Five Gessler Problems

7.4.I The GA parameter sets Fl-F5

7.4.2 Pefiormance of the improved GA (with elitism) applied to

Itve Gessler problems

1.43 Pertormance of the improved GA (without elitism) applied to

five Gessler problems

7 .4.4 Performance of the traditional GA applied to five Gessler problems

7.5 Conclusions

Chapter 8. An Improved Genetic Algorithm Formulation Applied to
the New York Tunnels Problem

8.1 The New York Tunnels Problem

8.2 The Genetic Algorithm Optimisation Approach

8.3 The Improved Genetic Algorithm Formulation

8.3.1 Structure of the coded strings

8.3.2 Binary codes and Gray codes

8.3.3 Raw fitness of a coded string

8.3.4 The reproduction operator

8.3.5 Scaled f,itness of a coded string

8.3.6 The penalty function

8.3.7 Creeping mutations

8.3.8 Elitism

8.3.9 Population size, crossover and random bit-wise mutations

8.4 Establishing a Penalty Multþlier (GA Runs NY1-NY10)

8.4.1 Results of GA Runs NY1-NY10

8.5 Performance of the Improved GA Formulation (GA Runs NYl1-NY69)

8.5.1 Results of GA Runs NYl1-NY69

8.6 The GA Solutions to the New York Tunnels Problem

8.7 Comparison of GA Results with Previous Studies

8.8 Summary and Conclusions

Chapter 9. GA Optimisation of the Water System Expansion Plan for
the Fort Collins - Loveland Water District

9.1 Introduction

9.2 The 1993 Master Plan

9.3 The Genetic Algorithm Approach to the FCLWD System

265

268

213

274

216

219

219

280

282

282

286

281

281

281

289

289

290

290

291

292

292

294

295

302

303

320

323

328

330

330

330

331

vltl



A genetic algorithm searchfor the optimal design of water distribution systems

9.4 Sources of Supply in 2015

9.5 Booster Pump Stations

9.6 Storage Tanks

9.7 Existing Pipelines

9.8 New Pipes and Duplicate Pipes

9.8.1 The Master Plan pipe network design

9.8.2 The Genetic Algorithm pipe network design

9.9 Pressure Reducing Valve Settings

9.10 System Performance of Master Plan and GA Design

9.10.1 Node pressures and pipe velocities

9.10.2 Supply flows, transmission flows, tank outflows and inflows

9.10.3 Taft Hill source pump station

9.11 Extended Period Simulation (EPS)

9. 1 1 . 1 Maximum day demands for 201 5

9.1I.2 Variable head storage tanks

9.11.3 Pump station characteristics for EPS

9.1I.4 The sources of supply

9.11.5 System performance for EPS

9.12 Summary and Conclusions

9.13 Scope for Further GA Optimisation Expansion Planning

Chapter 10. Conclusions and Recommendations

10.1 GAs for Pipe Network Optimisation

10.2 The Hydraulic Simulation Model

10.3 Other Possible Applications of GAs to Pipe Networks

10.4 Future GA Model Development

Chapter 11. References

Appendix A Fort Collins - Loveland System Expansion Plan

EPANET hydraulic simulation input data and output results for the

Master Plan design subject to the 2015 peak hour demands

Appendix B Fort Collins - Loveland System Expansion Plan

EPANET hydraulic simulation input data and output results for the

Genetic Algorithm design subject to the 2015 peak hour demands

333

335

33t

338

338

339

343

348

351

352

353

355

356

356

357

361

363

364

364

365

367

373

314

375

315

3t8

388

IX

402



A genetic algorithm searchfor the optimal design of water distribution systems

List of Figures

1.1 Flow cha¡t for the proposed genetic algorithm model

2.1 The HGL for a length of pipe

2.2 '[he HGL at a reservoir

2.3 The head added by a pump

2.4 The pump head and system head curves

2.5 The Anytown water distribution system

2.6 The natural loops (A-R) and pseudo loops (S-T) identified for the

Anytown pipe network

2J Atree network generated by a Breadth First Search (BFS) originating from the

principal source node 10

2.8 The loops ordered for near minimum bandwidth

2.9 The operative mode for a PRV

2.10 The inoperative mode for a PRV

2.1 1 The open check valve

2.12 The closed check valve

3.1 Coupled NLP model and simulation model

3.2 Exarcryle pipe network with assumed flow directions

3.3 Decomposition of the dynamic programming procedure .

4.1 Hypothetical pipe network design problem requiring the selection of

five new pipe sizes

4.2 A model of a generation of a simple evolution strategy

5.1 Layoutof the Gessler Network

5.2 Number of solutions with a particular number of nodes at which pressure

constraints are violated

5.3 Critical demand patterns and critical nodes

5.4 Feasible solutions when implementing pipe [1] rehabilitation decisions

5.5 Feasible solutions when implementing decisions for new pipe [6]

5.6 The feasibility of solutions with given pipe network costs

5.7 The formation of a24-bit coded string

5.8 Best generation costs for random number seeds, seed=200 and seed=400

5.9 Average generation costs for random number seeds, seed=200 and seed=400

5.10 Best generation costs for a population size, N=20

6

t6

t6

19

20

35

40

43

46

63

63

65

65

84

93

94

103

t07

119

t24
124

t25

t25

126

133

148

148

151

X



A genetic algorithm searchfor the optimal design of water distribution systems

5.1 1

5.r2

5.t3

5.r4

5.15

5.16

5.t7

5.18

5.19

5.20

5.21

5.22

5.23

5.24

Average generation costs for a population size, N=2O

Best generation costs for a population size, N=50

Average generation costs for a population size, N=50

Best generation costs for a population size, N=80

Average generation costs for a population size, N=80

Best generation costs for population sizes, N=150 and N=500

Average generation costs for population sizes, N=150 and N=500

Best generation costs for probability of crossover, pc=O.2 and pr-j.4
Best generation costs for probability of crossover, pc=0.6 and pc=O.8

Best generation costs for a probability of crossover, pc=l.O

Average generation costs for varying probability of crossover, p,

Best generation costs for probability of mutation, pm=0.0 and p--0.005

Best generation costs for probability of mutation, pm=0.03 and p^-O.I

Average generation costs for varying probability of mutation, p,

151

r52

t52
153

153

t54
r54

t51

r51

158

158

160

160

161

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Best generation costs (feasible solutions only) for GA runs PEN4 (k=$25,000/psi),

PEN14 (k=$50,000/psi) and PEN24 (k=$75,000/psi) with penalties PC^o,based

on maximun violations of pressure constraints for each demand pattern 181

Best generation costs (feasible solutions only) for GA runs PEN34 (k=$25,000/psi),

PEN44 (k=$50,000/psi) and PEN54 (k=$75,000/psi) with penalties PC",, based on

sum of violations of pressure constraints for each demand pattern 1 8 I

Best generation costs (feasible solutions only) for GA runs PEN14 (k=$50,000/pni

with penalties PÇ^), PEN44 (k=$50,000/psi with penalties PC,,^) and PEN64

(increasing ft with penalties PC*) I82

Best generation costs (feasible and infeasible solutions) for GA runs PEN14

(k=$50,000/psi with penalties PC*), PEN44 (k=$50,000/psi with penalties PC,,.)

and PEN64 (increasing k with penalties PC*) 182

Average generation costs (feasible and infeasible) for GA runs PEN4 (k=$25,000/psi),

PEN14 (k=$50,000/psi) and PEN24 (k=$75,000/psi) with penalties based on

m@cimum pressure constraint violations 184

Average generation costs (feasible and infeasible) for GA runs PEN34 (tr-$25,000/psi),

PEN44 (k=$50,000/psi) and PEN54 (ft=$75,000/psi) with penalties based on

sum of all pressure constraint violations 184

Average generation costs (feasible and infeasible) for GA runs PEN14 (k=$50,000/psi

with penalties PC*), PEN44 (k=$50,000/psi with penalties PC,,^) and PEN64

(increasing k with penalties PC*) 184

Infeasible solutions in the populations (population size, N=100) for GA runs PEN4

(ft=$25,000/psi), PEN14 (k=$50,000/psi) and PEN24 (k=$75,000/psi) with

penalties based on maximum constraint violations 186

XI



A genetic algorithrn search for the optimal design of water distribution systems

6.9 Infeasible solutions in the populations (N=100) for GA runs PEN34 (k=525,000/psi),

PEN44 (k=$50,000/psi) and PEN54 (k=$75,000/psi) with penalties based on

sum of all constraint violations 186

6.10 Infeasible solutions in the populations for GA runs PEN14 (ft=$50,000/psi with

penalties PC,n,,), PEN44 (k=$50,000/psi with penalties PC",,,,) and PEN64

(increasing k as GA run proceeds with penalties PC^",) 186

6.1 1 Best generation costs for GA runs FIT4 (n=1 throughout), FIT14 (n=2 throughout)

and FIT44 (n is increasing as GA run proceeds) using the inverse fitness function 200

6.12 Best generation costs for GA runs FIT24 (n=1 throughout), FIT34 (n=2 throughout)

and FIT54 (z is increasing as GA run proceeds) using the linear fitness function 200

6.13 Best generation costs for GA runs FIT64 (binary tournament with p,=1.0),FIT74

(binary tournament with p,=0.9), FIT84 (binary tournament withp,=0.8) and

FIT94 (ternary tournament) 200

6.14 Offline performance (running average of best cost solutions) for GA runs FIT4

(n=1 throughout), FIT14 (n=2tluoughout) and FIf44 (n is increasing as GA

run proceeds) using the inverse fitness function 201

6.15 Offline performance (running average of best cost solutions) for GA runs FIT24

(n=1 throughout), FIT34 (n=2 throughout) and FIT54 (n is increasing as GA

run proceeds) using the linear fitness function 2Ol

6.16 Offline performance for GA runs FIT64 (binary tournament withp,=1.0), FIT74

(binary tournament withp,-0.9), FIT84 (binary tournament withP,=0'8) and

FIT94 (ternary tournament) 2Ol

6.17 Average generation costs for GA runs FIT4 (n=1 throughout), FITI4 (n=2

throughout) and FIT44 (n is increasing as GA run proceeds) using the

inverse f,rtness function 202

6.18 Average Eenerution costs for GA runs FIT24 (n=1 throughout), FIT34 (n=2

throughout) and FIT54 (n is increasing as GA run proceeds) using the

Iinear fitness function 202

6.19 Average generation costs for GA runs FIT64 (binary tournament withp,-1.0),

Flt74 (binary tournament withp,=O.g), FIT84 (binary tournament withp¡O.8)

and FIT94 (ternary tournament) 202

6.20 Online performance (running average of all solutions) for GA runs FÏ14 (n=l

throughout), FIT14 (n=2throughout) and FIT44 (n is increasing as GA run

proceeds) using the inverse fitness function 203

6.21 Online performance (running average of all solutions) for GA runs FIT24 (n=t

throughout), FIT34 (n=2tluoughout) and FIT54 (n is increasing as GA run

proceeds) using rhe linear fitness function 203

xl1



A genetic algorithm searchfor the optimal design of water distribution systems

6.22 Online performance for GA runs FIT64 (binary tournament withP,=1.0), FITI4
(binary tournament withp,=Q.g), FIT84 (binary tournament withp,=0.8) and

FIT94 (ternary tournament)

6.23 Average generation costs and average cost of strings selected from the generation

for mating for GA run FIT4 (n=1 throughout using the inverse fitness function)

6.24 Average generation costs and average cost of strings selected from the generation

for mating for GA run FIT44 (n is increasing as GA run proceeds using the

inv ers e fitness function)

6.25 Average generation costs and average cost of strings selected from the generation

for mating for GA run FIT64 (binary tournament with p,=1.0)

6.26 The formation of the coded string for the Gessler problem

6.27 An alternative arrangement of the decision substrings in the string

6.28 Best generation costs for GA runs CODE4 (substrings of binary codes), CODEl4

(Gray codes), CODF.}  (strings of integers) and CODE34 (binary codes with an

alternative arrangement of substring positions)

6.29 Offline performance for GA runs CODE4 (substrings of binary codes), CODE14

(Gray codes), CODE}  (strings of integers) and CODE34 (binary codes with an

alternative ¿urangement of substring positions)

6.30 Average generation costs for GA runs CODE4 (substrings of binary codes),

CODE14 (Gray codes), CODE}4 (strings of integers) and CODE34 (binary

codes with an alternative ¿urangement of substring positions)

6.31 Online performance for GA runs CODE4 (substrings of binary codes), CODE14

(Gray codes), CODE}4 (strings of integers) and CODE34 (binary codes with an

alternative ¿urangement of substring positions)

6.32 The variations with time of numbers of decision-variable substrings of binary

codes at the first substring position (corresponding to existing pipe [1] ) for

GA run CODE4 (optimum substring is OOO)

6.33 The variations with time of numbers of decision-variable substrings of Gray

codes at the first substring position (corresponding to existing pipe [1] ) for

GA run CODEl4 (optimum substring is OOO)

6.34 The variations with time of numbers of decision-variable substrings of binary

codes at the second substring position (corresponding to existing pipe [4] ) for

GA run CODE4 (optimum substring is llO)

6.35 The variations with time of numbers of decision-variable substrings of Gray

codes at the second substring position (corresponding to existing pipe [4] ) for

GA run CODEl4 (optimum substring is lOl)

6.36 The variations with time of numbers of decision-variable substrings of binary

codes at the third substring position (corresponding to existing pipe [5] ) for

GA run CODE4 (optimum substring is OOO)

203

205

205

205

207

2t3

211

2rl

218

218

220

22r

221

220

xl11

222



A genetic algorithm searchfor the optimal design of water distribution systems

6.37 The variations with time of numbers of decision-variable substrings of Gray

codes at the third substring position (corresponding to existing pipe [5] ) for

GA run CODEl4 (optimum substring is OOO)

6.38 The variations with time of numbers of decision-variable substrings of binary

codes at the fourth substring position (corresponding to new pipe [6] ) for

GA run CODE4 (optimum substring is Oll)

6.39 The variations with time of numbers of decision-variable substrings of Gray

codes at the fourth substring position (corresponding to new pipe [6] ) for

GA run CODE14 (optimum substring is OIO)

6.40 The variations with time of numbers of decision-variable substrings of binary

codes at the fifth substring position (corresponding to new pipe [8] ) for

GA run CODE4 (optimum substring is OOI)

6.41 The variations with time of numbers of decision-variable substrings of Gray

codes at the fifth substring position (corresponding to new pipe [8] ) for

GA run CODEl4 (optimum substring is OOI)

6.42 The variations with time of numbers of decision-variable substrings of binary

codes at the sixth substring position (corresponding to new pipe [11] ) for

GA run CODE4 (optimum substring is OOI or OIO)

6.43 The variations with time of numbers of decision-variable substrings of Gray

codes at the sixth substring position (corresponding to new pipe [11] ) for

GA run CODE14 (optimum substring is OOI or Oll)

6.44 The variations with time of numbers of decision-variable substrings of binary

codes at the seventh substring position (corresponding to new pipe [13] ) for

GA run CODE4 (optimum substring is OOO)

6.45 The variations with time of numbers of decision-variable substrings of Gray

codes at the seventh substring position (corresponding to new pipe [13] ) for

GA run CODEl4 (optimum substring is OOO)

6.46 The variations with time of numbers of decision-variable substrings of binary

codes at the last substring position (corresponding to new pipe [14] ) for

GA run CODBT (optimum substring is OIO or OOI)

6.47 The variations with time of numbers of decision-variable substrings of Gray

codes at.the last substring position (corresponding to new pipe [14] ) for

GA run CODE14 (optimum substing is Oll or OOI)

6.48 An ideal coded structure representation of the Gessler problem

6.49 Anay representing ideal coded structure

6.50 Possible crossover cuts for the ideal coded structure

6.51 Simple one-point crossover

6.52 Two-point crossover

6.53 Uniform crossover (multiple random crossover points)

222

223

223

224

224

225

225

226

226

227

227

230

230

23r

232

232

233

xlv



A genetic algorithm searchfor the optimal design of water distribution systems

6.54 Two-point crossover (crossover points at substring boundaries)

6.55 Best generation costs for GA runs CROSS 14 (two-point crossover), CROSS24

(four-point crossover) and CROSS34 (uniform crossover)

6.56 Best generation costs for GA runs CROSS44 (one-point crossover at substring

boundaries), CROSS54 (two-point crossover at substring boundaries) and

CROSS64 (uniform crossover at substring boundaries)

6.57 Best generation costs for GA runs CROSS4 (one-point crossover) and CROSS44

(one-point crossover at decision-variable substring boundaries)

6.58 Offline performance (running average of best solution costs) for GA runs

CROSS 14 (two-point crossover), CROSS24 (four-point crossover) and

CROSS34 (uniform crossover)

6.59 Offline performance for GA runs CROSS44 (one-point crossover at substring

boundaries), CROSS54 (two-point crossover at substring boundaries) and

CROSS64 (uniform crossover at substring boundaries)

6.60 Offline performance for GA runs CROSS4 (one-point crossover) and CROSS44

(one-point crossover at decision-variable substring boundaries)

6.61 Average generation costs for GA runs CROSS14 (two-point crossover),

CROSS24 (four-point crossover) and CROSS34 (uniform crossover)

6.62 Average generation costs for GA runs CROSS44 (one-point crossover at

substring boundaries), CROSS54 (two-point crossover at substring boundaries)

and CROSS64 (uniform crossover at boundaries)

6.63 Average generation costs for GA runs CROSS4 (one-point crossover) and

CROSS44 (one-point crossover at decision-variable substring boundaries)

6.64 Online performance (running average of all solution costs) for GA runs

CROSS14 (two-point crossover), CROSS24 (four-point crossover) and

CROSS34 (uniform crossover)

6.65 Online performance for GA runs CROSS44 (one-point crossover at substring

boundaries), CROSS54 (two-point crossover at substring boundaries) and

CROSS64 (uniform crossover at substring boundaries)

6.66 Online performance for GA runs CROSS4 (one-point crossover) and CROSS44

(one-point crossover at decision-variable substring boundaries)

6.67 The action of a creeping mutation

6.68 Best generation costs for GA runs CREEP4 (No creeping mutation, p,=0.0)

and CREEP24 (probability of creep, p,=O.I25, and probability of creeping

down, pn05)
6.69 Best generation costs for GA runs CREEP14 (p.=0.0625, p,-0.5), CREEP24

(p,=0.125, pno.S) and CREEP34 ( p"=O.25, pnÙ.s)

6.70 Best generation costs for GA runs CREEP24 (p"=0.125, p,FO.s), CREEP44

( p,=O.125, p¡O.25) and CREEP54 ( p"=0.L25, p,¡O'75)

235

240

240

240

24r

24t

241

243

243

243

244

244

244

247

253

253

XV

253



6.71

6.12

6.13

6.74

6.75

6.76

6.11

6.18

6.19

A genetic algorithm searchfor the optimal design of water distribution systems

Offline performance (running average of best cost solutions) for GA runs

CREEP4 (No creeping mutation, p,=0.0) and CREEP24 (probability of creep,

p,=0.I25, and probability of creeping down, p,F0.5)

Offline performance for GA runs CREEPI4 (p"=9.9625, p,¡0.5), CREEP24

( p"=0.125, p,¡0.5) and CREEP34 ( p,=0.25, p,F0.5)

Offline performance for GA runs CREEP}4 Q)"=0.I25, p,¡0.5), CREEP44

(p,=0.I25, p,¡0.25) and CREEP54 (p"=0.I25, p,,=Q.JJ¡

Average generation costs for GA runs CREEP4 (No creeping mutation, p,=0.0)

and CREEP24 (probability of creep, p"=0.125, and probability of creeping

down, P¿=0.5)

Average generation costs for GA runs CREEP14 (p,=0.0625, p,F0.5), CREEP24

(p,=0.125, p,¡0.5) and CREEP34 ( p,=0.25, p,F0.5)

Average generation costs for GA runs CREEP24 (p"=0.I25, p,F0.5), CREEP44

(p"=0.125, p,v}.25) and CREEP54 ( p,=0.I25, p,¡0.75)

Online performance (running average of all solution costs) for GA runs CREEP4

(No creeping mutation, p"=0.0) and CREEP24 (probability of creep, p,=0.125,

and probability of creeping down, pnoS)

Online performance for GA runs CREEP14 (p,=9.9625, p,70.5), CREEP24

(p"=0.125, p,¡0.5) and CREEP34 ( p,=0'25, p,F0-5)

Online performance for GA runs CREEP}4 (p"-0.125, p¡0.5), CREEP44

(p,=0.I25, pn0.25) and CREEP54 ( p"=0.125, p,¡0.75)

7.r

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Formation of a 48-bit string (from two 24-bit strings) representing trial solutions

in the GA search for two independent Gessler network designs

The elitist model

Best generation costs for the GA run D1 - two Gessler problems

Average generation costs for the GA run D1 - two Gessler problems

Best generation costs for the GA run Tl - three Gessler problems

Average generation costs for the GA run T1 - three Gessler problems

Best generation costs for GA runs Fl (improved GA with elitism), Fl' (improved

GA without elitism) and Fl" (traditional GA) - five Gessler problems

Average generation costs for GA runs Fl (improved GA with elitism), Fl' (improved

GA without elitism) and Fl" (traditional GA) - five Gessler problems

254

254

254

255

255

255

256

256

256

260

264

266

267

271

272

277

278

8.1 The New York City water supply tunnels network in 1969 283

8.2 Coded strings representing the best GA designs . 288

8.3 Best of generation costs for GA runs NYI (k=$5mill./ft) and NY5 (k=$40mi11./fÐ 298

8.4 Average generation costs for GA runs NYl, NY3 and NY5 299

8.5 Fluctuations of number of infeasible solutions per population for GA runs NY1-NY5 301

xvl



A genetic algorithm search for the optimal design of water distribution systems

8.6 Best of generation costs for GA runs NY13 (Improved GA with N=500) and

NY23 (No elitism)

8.7 Average generation costs for GA runs NY13 (Improved GA with N=500) and

NY23 (No elitism)

8.8 Best of generation costs for GA runs NYl3 (Improved GA) and

NY33 (Binary codes)

8.9 Average generation costs for GA runs NY13 (Improved GA) and

NY33 (Binary codes)

8.10 Best of generation costs for GA runs NY13 (Improved GA) and

NY43 (Raw fitness values)

8.11 Average generation costs for GA runs NY13 (Improved GA) and

NY43 (Raw fitness values)

8.12 Best of generation costs for GA runs NYl3 (Improved GA) and NY53 (No creep)

8.13 Average generation costs for GA runs NY13 (Improved GA) and NY53 (No creep)

8.14 Best of generation costs for GA runs NYl3 (Improved GA) and

NY63 (Traditional GA) .

8.15 Average generation costs for GA runs NY13 (Improved GA) and

NY63 (Traditional GA) .

9.1 The layout of the Fort Collins - Loveland water supply system including the existing

system and the system expansions proposed in the 1993 Master Plan

9.2 Pump curves for the Overland Trail source pump station

9.3 Pump curves for the Airport booster pump station

9.4 The Master Plan pipe network design and proposed PRV pressure settings for the

Fort Collins - Loveland system expansion plan for the year 2015

9.5 The coding scheme for the GA optimisation of the FCLWD water distribution

system expansion plans

9.6 The Genetic Algorithm pipe network design and proposed PRV pressure settings

for the Fort Collins - Loveland system expansion plan for the year 2015

9.7 7-nne I 1.0MG Tank water level variation for EPS

9.8 Znne2 4.OMG Tank water level variation for EPS

9.9 New Zone 3 4.0MG Tank water level variation for EPS

9.10 New McCloughan Hitl Tank water level variation for EPS

9.11 Elevated Airport Tank water level variation for EPS

9.12 Timnath Tank water level variation for EPS

306

307

309

310

312

313

315

316

318

3t9

332

335

336

34r

344

346

359

359

359

360

360

360

xvll



A genetic algorithm searchfor the optimal design of water distribution systems

List of Tables

2.1 The pipes of rhe Anytown network

2.2 The nodes of the Anytown network

2.3 Anytowl¿ pump characteristics

2.4 The loops, initially assumed loop flow comections and final loop flow

corrections (after 6 iterations)

2.5 The initially assumed flows and the balanced flows in the Anytown network

2.6 Convergence of the Newton-Raphson method applied to the loop

equations for the Anytown network

2.1 The unbalanced head losses around the loops

2.8 Potential pivot elements for the scaled Jacobian matrix for the Anytown

network inEq.256
2.9 Chosen pivot order for Markowitz threshold pivoting

2.10 Chosen pivot order for modified Markowitz threshold pivoting

2.lI The balanced pressure heads at the junction nodes for the Anytown system

4.1 The representation of design parameters by pieces of code

4.2 Exar"rryle schemata and subset members

5.1 Pipe connectivity, lengths, diameters and roughness coeff,tcients

5.2 Node elevations, demands and associated minimum pressures

5.3 Available pipe sizes and associated costs

5.4 The best 50 solutions to the Gessler problem

5.5 The balanced pipe flows for global optimal solution 1

5.6 Junction node pressure heads for global optimal solution 1

5.7 Pipe groups (as used by Gessler, 1985)

5.8 Fitted cost functions for the nonlinear optimisation model

5.9 Solution from GINO nonlinear optimisation for the Gessler network

5.10 Decision variable choices and corresponding binary substrings

5.11 The starting population

5.12 Decoding String 9

5.13 Equivalent diameters and Hazen-Williams coefficients for the network solution

represented by String 9 .

5.14 Determining the pipe cost of String 9

5.15 The balanced pipe flows

5.16 Comparison of actual and allowable node pressure heads

5.17 Calculation of the penalty cost for String 9

36

31

31

4I
44

52

53

59

60

6t

62

to4
110

120

r21

t2r
r23

t26
r27

t21

128

130

t32
134

135

135

t36
137

r31

138

xvllr



A genetic algorithm searchfor the optimal design of water distribution systems

5.18

5.19

5.20

5.2r

5.22

5.23

5.24

5.25

5.26

5.21

5.28

5.29

5.30

5.3r

Cost and fitness of the strings in the starting population

Starting population cost statistics

The probability of survival

The second generation

Cost of the strings in the second generation

Second generation cost statistics

Distribution of 1,000,000 random numbers

Minimum cost network solution with varying random number seed

Minimum cost network solution with varying population size, N
Minimum cost solution with varying probability of crossover, p"

Minimum cost solution with varying probability of mutation, p-
Commonly identified infeasible pipe network confi gurations

The costs of the infeasible network solutions

The critical pressure head deficiencies for the infeasible solutions

6.1 The chosen GA parameter sets

6.2 Summary of the GA model runs performed in this chapter

6.3 Extra pipe costs for pipe [14] for a 1 psi improvement in pressure at the critical

node 12 (for the optimal solution 1 subject to demand pattern GE3)

6.4 Variation of the penalty multiplier for GA model runs PEN61-PEN65

6.5 Search results for genetic algorithm model runs PEN1-PEN5

6.6 Search results for genetic algorithm model runs PENl I-PEN15

6.7 Search results for genetic algorithm model runs PEN21-PEN25

6.8 Search results for genetic algorithm model runs PEN31-PEN35

6.9 Search results for genetic algorithm model runs PEN41-PEN45

6.10 Search results for genetic algorithm model runs PEN51-PEN55

6.11 Search results for genetic algorithm model runs PEN61-PEN65

6.12 Yariation of fitness scaling exponent, n for GA runs FIT41-FIT45

(inverse fitness function) and FIT51-FIT55 (linear fitness function)

6.13 Search results for genetic algorithm model runs FTT1-FTT5

6.14 Search results for genetic algorithm model runs FITl1-FIT15

6.15 Search results for genetic algorithm model runs FIT21-FIT25

6.16 Search results for genetic algorithm model runs FIT31-FIT35

6.17 Search results for genetic algorithm model runs FIT41-FIT45

6.18 Search results for genetic algorithm model runs FIT51-FIT55

6.19 Search results for genetic algorithm model runs FIT61-FIT65

6.20 Search results for genetic algorithm model runs FIT71-FIT75

6.21 Search results for genetic algorithm model runs FIT81-FIT85

6.22 Search results for genetic algorithm model runs FTT91-FIT95

138

t39

140

r4t
r42

t42
t46
r47

155

r56

r59

r62

r63

163

r61

168

174

116

r16

117

177

178

t79

179

180

192

194

t94
195

195

196

t96
r97

r97

198

198

xlx



A genetic algorithm searchfor the optimal design of water distribution systems

6.23 Representation mappings

6.24 Ranked design parameters for the upgrade of existing pipe [1]

6.25 Ranked design parameters for the upgrade of existing pipe [4]

6.26 Search results for genetic algorithm model runs CODE1-CODE5

6.27 Search results for genetic algorithm model runs CODE11-CODE15

6.28 Search results for genetic algorithm model runs CODEZI-CODEZí

6.29 Search results for genetic algorithm model runs CODE31-CODE35

6.30 Search results for genetic algorithm model runs CROSSI-CROSS5

6.31 Search results for genetic algorithm model runs CROSS1I-CROSS15

6.32 Search results for genetic algorithm model runs CROSS21-CROSS25

6.33 Search results for genetic algorithm model runs CROSS31-CROSS35

6.34 Search results for genetic algorithm model runs CROSS41-CROSS45

6.35 Search results for genetic algorithm model runs CROSSS1-CROSS55

6.36 Search results for genetic algorithm model runs CROSS61-CROSS65

6.37 Search results for genetic algorithm model runs CREEPl-CREEP5

6.38 Search results for genetic algorithm model runs CREEPl I-CREEP15

6.39 Search results for genetic algorithm model runs CREEP21-CREEP25

6.40 Search results for genetic algorithm model runs CREEP31-CREEP35

6.41 Search results for genetic algorithm model runs CREEP41-CREEP45

6.42 Search results for genetic algorithm model runs CREEPS1-CREEP55

7.1 GA parameter sets D 1-D5 for the optimisation of two Gessler problems

7 .2 YaÅation of fitness scaling exponent, n for the GA runs D1-D5

7.3 Improved GA results for the optimisation of two Gessler problems

J.4 Occunences of optimal solutions for GA run D1

7.5 Parameter sets T1-T5 for the optimisation of three Gessler problems

7.6 Yariation of the fitness scaling exponent, n for the GA runs T1-T5

7 .7 Improved GA results for the optimisation of three Gessler problems

7.8 A comparison of the various expanded solution spaces

7 .9 Parameter sets F1-F5 for the optimisation of five Gessler problems

7.10 Variation of the htness scaling exponent, n for the GA runs F1-F5

7.11 Results of the optimisation of five Gessler problems using the improved GA

(with elitism)

7.12 Results of the optimisation of five Gessler problems using the improved GA

(without elitism)

7.13 Results of the optimisation of five Gessler problems using the traditional GA

8.1 Nodal data for the New York City water supply tunnels

8.3 Existing tunnel data for the New York City water supply tunnels

208

209

209

214

2L4

215

215

236

236

237

231

238

238

239

248

248

249

250

25t
252

262

263

265

268

269

269

270

213

274

276

276

279

280

284

285

XX



A genetic algorithm searchfor the optimal design of water distribution systems

8.3 Available tunnel sizes and construction costs for New York tunnels duplications

and the corresponding coded substrings

8.4 The improved GA compared to the traditional GA formulation

8.5 Improved GA runs NYl-NY5 with varying penalty multiplier

8.6 Improved GA runs NY6-NY10 with varying penalty multipliers and new random

number generator seed

8.7 Improved GA runs NY11-NY19

8.8 Improved GA runs NY21-NY29 (without elitism)

8.9 Improved GA runs NY31-NY39 (with substrings of binary codes)

8.10 Improved GA runs NY41-NY49 (not including f,rtness scaling)

8.11 Improved GA runs NY51-NY59 (not including creeping mutation)

8.12 Traditional GA runs NY61-NY69

8.13 The five lowest cost feasible GA designs and three low cost infeasible GA designs

8.14 Hydraulic heads for GA designs

8.15 Balanced tunnel flows for design GA(1)

8.16 Balanced node hydraulic heads for design GA(1)

8.17 Previous studies of the New York City tunnels problem

8.18 Designs achieved by previous studies

8.19 Hydraulic heads for previous designs using KYPIPE

8.20 Hydraulic heads for previous designs using the simulation model

developed in this research

9.1 Pump station operation for the 2015 peak hour demands

9.2 Storage tank water levels for the 2015 peak hour

9.3 Mapping of values of decision variables to corresponding integer code

9.4 The Master Plan pipe network design for 2015

9.5 The GA design pipe network design for 2015

9.6 Summary of pipe costs

9.7 Master Plan recommendations for PRVs

9.8 Range of pressure settings considered in GA optimisation for PRVs

9.9 Pressure reducing valves and selected pressure settings

9.10 Summary of low pressures for the proposed designs

9.1 I Pressure zone inflows for the 2015 peak hour demands

9.12 Demand variation assumed for EPS of the 2015 maximum day

9.13 Tank dimensions and initial water levels assumed for the EPS

9.14 Tanks available operating storage

9.15 Tank water level variations for the EPS of the 2015 maximum day

9.16 Pump station operation for the EPS analyses

9.17 Average pump station power output for the 2015 maximum day

286

281

296

291

304

305

308

311

314

3t7

320

321

322

323

324

325

327

328

335

338

340

342

347

348

349

350

35r

353

354

357

357

358

358

361

362

XXI



A genetic algorithm search for the optimal design of water distribution systems

9.18 The HGL of sources of supply for EPS

9.19 Estimated total supplies from the sources of supply for EPS

A1 Tank and reservoir input data and output results for the EPANET simulation of

the Master Plan design subject to the 2015 peak hour demands

A2 Node input data and output results for the EPANET simulation of the

Master Plan design subject to the 2015 peak hour demands

A3 Pipe input data and output results for the EPANET simulation of the

Master Plan design subject to the 2015 peak hour demands

A4 Pump station (PS) input data and output results for the EPANET simulation

of the Master Plan design subject to the 2015 peak hour demands

A5 Pressure reducing valve (PRV) and flow control valve (FCV) input data and

output results for the EPANET simulation of the Master Plan design

subject to the 2015 peak hour demands

81 Tank and reservoir input data and output results for the EPANET simulation of

the Genetic Algorithm design subject to the 2015 peak hour demands

B2 Node input data and output results for the EPANET simulation of the

Genetic Algorithm design subject to the 2015 peak hour demands

B3 Pipe input data and output results for the EPANET simulation of the

Genetic Algorithm design subject to the 2015 peak hour demands

84 Pump station (PS) input data and output results for the EPANET simulation of

the Genetic Algorithm design subject to the 2015 peak hour demands

85 Pressure reducing valve (PRV) and flow control valve (FCV) input data and

output results for the EPANET simulation of the Genetic Algorithm design

subject to the 2015 peak hour demands

394

363

363

388

389

40t

401

403

408

4r5

4t5

402

xxll



A genetic algorithm searchfor the optimal design of water distribution systems

Principal l{otations

Many of the symbols that are commonly used throughout the thesis are presented below. Each

symbol is also defined when first encountered in the text.

A = cross-sectional area

An, Bp = constants for a pump P

BFS = breadth first search

Cj =Hazen-V/illiams roughness coefficient of pipe j
CV = check valve

Dj = diameter of pipe"l

D¿ = eguivalent diameter of pipe

AE^n= E*-En= elevation difference between fixed-grade nodes m andn for pseudo loops

EGL = energy grade line

EPS = extended period simulation

f =Darcy-Weisbach friction factor

f¡= ruw fitness of coded string I

.û'= scaled fitness of coded string ú

FCLWD = Fort Collins - Loveland Water District

FCV = flow control valve

g = acceleration due to gravity

GA = genetic algorithm

hfi =fnction head loss in pipe j
hr= pumping head

Hi= total hydraulic head (pressure head+elevation head) at node i

Hmini= minimum allowable head at node I

fle = pump shut-off head

HGL = hydraulic grade line

-I = the Jacobian matrix of partial derivatives (evaluated at the values of the flow corrections for

the loop flow correction equations)

ft = pressure violation penalty multiplier

Lj =Iength of the pipe"l

LP = linear programming

n = fitness scaling exponent (in the fitness function)

f/ = population size (the working population)

N'= elite population size

NF' = number of fixed-grade nodes

(NF-1) = number of pseudo loops
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N,I = number of junction nodes

NL = number of natural loops

NLP = nonlinear programming

NP = number of pipes

NPJ = number of pipes connected to a given junction node

NPL = number of pipes forming a given loop

NPP = number of parallel pipes

NPR = number of pipes in a path from a fixed-grade node to a given junction node

pa=the probability of creeping mutation

pc = the probability of crossover

p¿= the probability of creeping down

pe = the probability of an elite mate

pi= the probability of selection of string i

p m = the probability of random bit-wise mutation

p¡- probability that the fittest individual is selected as the winner in a binary tournament

Pp = pump power input

PC - penalty cost

PC**- penalty cost based on the maximum violation of the pressure constraints

PCr*r= penalt] cost based on the sum of the violations of the pressure constraints

PRV = pressure reducing valve

PS = pump station

e = (et, e2, . . . enu¡,tr-t) = flow corrections for each natural loop and pseudo loop

q(m) = computed flow corrections for iteration lz

A4org= specified accuracy of average change in flow corrections between iterations

Aq^o*= specified accuracy of maximum change in flow corrections between iterations

Ø = flow in pipe j
Qui= demand at node I

Qo = pump flow

Rj = resistance or loss coefficient of pipei

R = Reynolds Number

s = tournament size (tournament selection)

ü = hydraulic gradient for pipe j
Y= pipe velocity

Z¡ = elevation of node i

I= unit weight of water

4p = pump efficiencY

v = viscosity
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1 Introduction

This thesis presents an application of the relatively new and powerful genetic

to the problem of the optimisation of the design (and operation) of water distribution systems

1-.1 Water Distribution Systems

A water supply system is a fundamental component of the infrastructure of a community. A

water supply system for water transmission and distribution is essentially a network of pipes

connecting sources (such as reservoirs, wells or connections to adjacent systems) of water to

demand points (nodes). To facilitate efficient and reliable operation, the sources are connected

to the demand nodes via a complex arrangement of system components such as pipes, pumps,

balancing tanks (often used to store water for peak demand periods and emergency conditions),

and control devices such as pressure reducing valves (often used to separate a system into

pressure zones).

1.2 System Expansions

A community's water use patterns increase and diversify with population and economic growth.

The water supply authority responsible for the ongoing maintenance and operation of a water

distribution system assesses the reliability and the quality of service provided by their system

and periodically updates plans for future system expansions to meet projected future demands.

Recommendations for future system expansions may include a host of design and operational

decisions such as:

o the identification of future sources of water such as wells

o the upgrade of water treatment facilities (since the capacity of the source is constrained by

the capacity of the water treatment facitity)
o the sizing of pumps and their pumping schedules

o the settings and operating rules of pressure regulating valves

o the expansion or rehabilitation of a water distribution pipe network,

o the location and capacity of system storages

The design of future system expansions and / or changes to the operation of existing facilities to

meet changing demand patterns is the responsibility of the water authority. For complex city

systems, and even for simple residential subdivisions sub-systems or irrigation systems, the

number of alternative designs is very large. The number of combinations of options to meet the

1
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I Introduction

changing demands in the best way is often so large that it is impossible to consider all possible

solutions

1.3 Hydraulic Simulation of Water Distribution Systems

A prerequisite step to optimisation is the accurate hydraulic simulation of proposed pipe

network designs to assess hydraulic feasibility. A hydraulic simulation model predicts water

distribution system behaviour, including flow and pressure distributions, given some

instantaneous or time-dependent pattern of water demands.

The hydraulic simulation of a water distribution system is itself a complex mathematical

problem. Methods of hydraulic analysis are reviewed in this thesis in Chapter 2 in a search for

a reliable and efficient analysis. The hydraulic simulation model is a very important part of the

genetic algorithm formulation developed in this thesis.

There are a number of commercial packages available for the hydraulic analysis of water

distribution systems. In engineering practice, the designer develops a pipe network design by

considering a handful of trial and error hydraulic simulations of proposed designs using a

commercial hydraulic simulation package. Proposed designs are based on local knowledge of

the design and operation of the system, engineering judgement, design guidelines and rules of

thumb. The designer uses a simulation model to determine workable solutions which are then

compared in terms of cost, reliability and other objectives.

1.4 Optimisation of the Design of Water Distribution Systems

The optimisation of a water distribution system design attempts to achieve the best possible

design (and operation) for a specified level of system performance such that system expansion

costs (and life-cycle operating costs) are a minimum. The pipe network optimisation problem is

defined in Chapter 3.

Usually, the foremost objective of the optimisation is to minimise the initial construction costs

of new system components and the present value of system operation costs for the lifetime of

the design. Millions of dollars are spent annually expanding or rehabilitating water supply

system infrastructure. Jeppson (1985) reported the 40,000 water services in the U.S.A. had

invested $200 billion in water supply facilities and were investing in new facilities at the rate of

$2 billion per year. The ongoing costs of operating water supply systems are also significant

(and will depend on the system layout and the capacity of system components). In the U.S.A.,

the electricity consumed by water supply utilities (for pumping water) makes up about 7Vo of all

the electricity consumed in the country (Ormsbee et a1., 1989).
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I Introduction

In addition to network design and operating costs, there are usually several other competing

objectives (some non-quantifiable) such as system reliability and possible future system

expansions that should be considered in the optimisation.

The decision variables of the optimisation are the physical and operational characteristics of the

system components to be defined in the design such as: the pipe network layout; the diameters

of new pipes; the cleaning, duplication or deletion of existing pipes; the introduction of new

pump station installations or the upgrade of existing pump stations; the capacity and proposed

operating policies for individual pump units; the location, volume and operating water levels of

new storage tanks; and valve settings.

The water distribution system design is subject to a series of demand conditions at the nodes

such as: peak instantaneous flows; emergency flows for fire fighting or in the event of a pipe

breakage; and.ior time-dependent peak day or peak week demand patterns. The design is

required to exhibit a specified system performance for the demand patterns considered. Some

system performance constraints which may be considered include: minimum allowable pressure

heads achieved at the nodes for all demand conditions; tanks refill by the end of some demand

period in preparation for the next demand period; and pumps operate within their limits of

operation. A design which does not meet the system performance constraints is said to be an

infeasible solution.

L.5 Pipe Network Optimisation Techniques

The optimisation of pipe networks is a problem which has received more attention in recent

years. In Chapter 3 of this thesis, a selection of models are reviewed, covering a broad range

of approaches to pipe network optimisation. Some models formulate the pipe network

optimisation problem using traditional mathematical optimisation techniques such as linear

programming, nonlinear prograÍrming or dynamic programming. There are other innovative

models that are essentially random search methods or enumeration algorithms. Many of the

models are hybrid schemes of two or more methods and the models often incorporate heuristic

processes. Lansey and Mays (1989b) and Walski (1985) provide comprehensive reviews of

the development of pipe network optimisation models in the last 25 years.

Most of the approaches presented in the literature first concentrate on the simpler problem of the

optimisation of a gravity-fed distribution network of pipes subject to one critical instantaneous

demand pattern and then make recommendations for the treatment of complexities such as

pumped systems, multiple demand patterns and the design of other system components such as

storage tanks. Often assumptions and simplif,rcations are required due to the complicated nature

of the pipe network optimisation problem.
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I Introduction

Optimisation approaches which are linked to stand-alone hydraulic simulation models are

convenient as proposed designs can be simulated and hydraulic feasibility evaluated in the same

way a designer manually simulates and confirms a workable design.

1.6 Genetic Algorithms (GAs)

A genetic algorithm (GA) model for the practical optimisation of the design and operation of

water distribution systems is developed in this thesis. The framework for the GA search model

is represented by the flowchart of processes in Figure 1.1.

The GA search is a simplified simulation of the evolution process. Evolution is the established

optimisation process used by nature, by which species grow and develop from earlier forms

and adapt to their environment. A firm theoretical basis for genetic algorithms was established

by Holland (1975).

In the natural evolution of a species, a chromosome of genetic information characterises a

unique individual. Similarly, in the GA search, trial solutions to the search or optimisation

problem are represented by a unique coded structure such as a binary string of l's and 0's.

In nature, according to Darwin's survival-of-the-fittest philosophy, an individual's chances of

survival and reproduction are ultimately regulated by the fitness of the individual. The fitness

may be measured relative to the conditions imposed by the environment. The prospect of

reproduction can be measured by the fitness of the individual relative to the fitness of fellow

members within the competing population. In the artificial evolution of the GA, coded

solutions are assigned a value of fitness which measures the worth of the solution relative to a

set of objectives.

The GA search employs operators such as selection, crossover and mutation which simulate

Darwin's rules of natural selection and genetic mechanisms acting on an evolving population of

coded structures. The selection or reproduction operator selects patent coded structures from

the current population with some chosen preference to fitter solutions. The genetic code of

selected parent coded structures is combined to form offspring coded structures for the new

population by the crossover operator. Occasionally, the mutation operator applies subtle genetic

variations to the offspring code. Crossover and mutation imitate the exchange of genetic

information and the minor variations that occur to genetic information from parent to child.

In nature, useful developments and adaptations are inherited and stored in chromosomes which

carry the blueprint of a living thing. In the GA, small pieces of useful code are reproduced and

combined with other small pieces of useful code to produce longer pieces of highly fit code.
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Over many generations, a population of coded solutions with average fitness (the starting

population may be randomly selected) evolves to a population of highly fit coded solutions.

The traditional GA formulation (Holland, 1975) is reviewed in Chapter 4 of the thesis. The

simple, yet powerful traditional GA considers populations of strings coded in the binary

alphabet and three standard GA operators of selection, crossover and mutation. DeJong (I975)

demonstrated the far-reaching possibilities of GAs for function optimisation by applying the

traditional GA and some variations to a diverse set of solution spaces (including discontinuous,

many-peaked and highly-dimensionality spaces). The simple, robust nature of the GA

formulation makes it suitable for a number of applications - some applications for which the

best solutions may be difficult to obtain using traditional optimisation techniques. Goldberg

(19S9) presented a comprehensive review of genetic-based techniques and their applications,

and an analysis of the mechanics and the fundamental theory of GAs. Some GA applications of

particular interest to this research are reviewed in Chapter 4.

t.7 
^ 

Traditional GA for Pipe Network Optimisation

There is a good degree of freedom in the way a GA model may be formulated. DeJong (1985)

presents an overview of the issues facing researchers implementing a GA model for a new

application area, including the choice of an appropriate coding representation, fitness functions,

GA operators and parameters. A traditional GA approach to the pipe network optimisation

problem is presented in Chapter 5.

A coding scheme is selected to represent pipe network design solutions as unique coded strings

of finite length which simulate chromosomes. The decision variables of the optimisation are

represented by genes and the genes are assigned positions in the coded string. A set of unique

symbols for a gene (string position) maps to the choices for the corresponding decision variable

such as available pipe diameters or allowable PRV settings. The traditional GA uses substrings

of binary codes to represent decision variable choices for the pipe network design.

A fitness value provides information about a string's fitness to produce offspring. The fitness

of a pipe network design is measured relative to objectives such as low cost and adequate

hydraulic performance. The cost of proposed designs may be estimated and penalty costs may

be applied to infeasible designs which do not achieve a specified level of system performance.

The evaluation scheme of the GA model (in Figure 1.1) is linked to the hydraulic simulation

model (developed in Chapter 2) which tests the hydraulic feasibility of the proposed design.
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New population becomes
current population Starting population becomes

current population

lnitiate genetic algorithm model run
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Figure L.1 Flow chart for the proposed genetic algorithm model
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The GA model operates with a population of coded solutions at any time. The initial population

of coded strings is usually randomly generated. GA operators generate new populations using

the code and fitness information of coded solutions in the old population. GA operators such as

proportionate (roulette-wheel) selection, one-point crossover and random bit-wise mutations are

employed by the traditional GA. The GA operators and GA parameters such as population size,

probability of crossover and of mutation are selected to control and guide the GA search.

Simpson, Dandy and Murphy (I99Ð presented a detailed procedure for applying the traditional

GA approach to optimise a relatively simple hypothetical pipe network design which is referred

to as the two-reservoir Gessler network.

L.8 The Two-Reseryoir Gessler Network

The two-reservoir Gessler network (Gessler, 1985) is the case study chosen to investigate the

application of the GA model to pipe network optimisation. The l4-pipe Gessler network

introduced in Chapter 5 is a looped, gravity-fed distribution system. The Gessler network

expansions require the sizing of five new pipes and the upgrade (cleaning, duplication or 'do

nothing') of three existing pipes. The network expansions are required to satisfy three demand

patterns, including a peak loading condition and two emergency loading conditions.

It was feasible to perform an exhaustive enumeration of every possible pipe network design

solution (about 4 million) for the Gessler problem. The exhaustive enumeration identified the

two global optimum solutions and other characteristics of the solution space such as relative

proportions of feasible and infeasible solutions, critical nodes in the system and critical demand

patterns. Gessler (1985) used a partial enumeration of a pruned search space of about 900

combinations to optimise the problem.

First, a small-scale GA is applied by hand to the Gessler problem. A small population size

(only 10 members) is used for a close examination of the operations of the GA search. Then,

full-scale GA model runs are performed with realistic population sizes for the application to the

Gessler problem. The GA runs were allowed a maximum of 10,000 new solution evaluations

(for example, about 100 generations of a population of 100 coded string members). The least

cost solutions determined by the GA may be compared with the best solutions identified by the

exhaustive enumeration. The traditional GA is found to be effective, but it becomes apparent

that some modifications may improve performance.
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L.9 Modifications to the Traditional GA

Many researchers have found it necessary to experiment with variations of the traditional GA,

introducing innovative coding schemes, alternative fitness evaluation schemes and advanced

GA operators to tailor the GA to a specific problem. Although, there is considerable freedom to

express and formulate the GA search, it would be unwise to depart too far from the theoretical

foundations of the GA search established by Holland (I915).

Variations of the traditional GA are applied to the search for the known optimal solutions to the

Gessler network expansions problem in Chapter 6. The performance of specific elements of the

GA formulation is observed, including various penalty functions and fitness functions and

alternative coding representations, parent selection methods, crossover and mutation

mechanisms. The experiments suggest the operators, coding and evaluation schemes likely to

lead to improved performance in the search of the solution space to the pipe network

optimisation problem. An improved GA formulation for the application to pipe network

optimisation begins to emerge as a result of the study of the Gessler problem in Chapter 6.

L.L0 Multiple Gessler Problems

The exhaustive engmeration of the relatively small Gessler problem (l4-pipe network) in

Chapter 5 positively identifies the lowest cost solutions. The effectiveness of various forms of

the GA is measured in Chapter 6 by the ability to find these solutions. Larger water system

design optimisation problems with many decision variables are required for further development

and testing of the GA application. As problems increase in size and complexity, it soon

becomes impossible to perform an exhaustive enumeration.

In Chapter 7, alarger pipe network optimisation problem with known global optimum solutions

is devised by considering the simultaneous optimisation of two Gessler problems. The coded

string solutions are separated into two component substrings for evaluation, representing two

solutions to independent Gessler problems. Even larger solution spaces are manufactured by

considering the simultaneous optimisation of three and five Gessler problems. The improved

GA, incorporating many of the recommendations of Chapter 6 is applied to these problems. In

addition, an elitist concept (DeJong, 1915; Goldberg, 1989) is introduced to the GA model. A

population of the best solutions obtained in earlier generations are maintained in a parallel elite

population and elite mates are occasionally crossed with members of the working population.
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L.1L The New York City Water Supply Tunnels

In Chapter 8, the GA model is applied to the optimisation of the expansions of the New York

City tunnels network. The classic New York tunnels problem was first introduced and

optimised by Schaake and Lai (1969). Since then, the New York tunnels network has become

a benchmark for researchers of pipe network optimisation techniques.

The five least cost feasible designs and three low cost infeasible designs identified by the GA

are presented. The designs are compared with the designs obtained by traditional optimisation

methods such as linear programming, nonlinear programming and enumeration techniques.

There are estimated to be 1.93 x 192s possible (discrete tunnel size) solutions to the New York

tunnels problem.

The performance of the traditional three-operator GA and the new GA developed in Chapters 6

and 7 and various intermediate GA formulations are compared for the application to the New

York tunnels problem. Dandy, Simpson and Murphy (1996a) presented an improved GA

approach for the application to the New York tunnels problem (the GA used decision variable

substrings of Gray codes, fitness scaling and decision-variable-wise creeping mutations, but

not the elitist concept).

l.l2 The Fort Collins - Loveland System Expansion Plan

Ultimately, the objective of this research is to develop the GA model for pipe network

optimisation as a practical design tool. A final case study is intended to demonstrate the

usefulness of the GA approach in a realistic design situation. In Chapter 9, the GA model is

applied to the optimisation of aspects of the expansion plan for the Fort Collins - Loveland

water transmission and distribution system.

The system provides water to an area of about 60 square miles between the cities of Fort Collins

and Loveland in Colorado, U.S.A. The system will require expansions to meet anticipated

increased agricultural and municipal water needs. A Master Plan prepared recently by a local

engineering consultant predicted future water demands and outlined a proposed system

expansion plan for 2015. The Master Plan design was determined using design guidelines,

experience and a hydraulic simulation model.

The GA optimises the diameters of new and duplicate pipes and pressure reducing valve (PRV)

pressure settings. The Fort Collins - Loveland water system is a complex system of source and

booster pump stations, storage tanks, about 330 pipes (of which 49 are proposed new or

duplicate pipes) and 13 major PRVs which isolate the system into 5 major pressure zones.

9
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The water is supplied from several alternative sources of supply. The GA model helps to

identify the preferred water sources by considering increasing the supply (up to allowable

limits) from the connections to adjacent city systems. The Fort Collins - Loveland system

expansion plan presents the GA model with many real problems facing optimisation models for

pipe network design. The design generated by the GA model is compared to the original Master

Plan design.

The GA model is reconstructed for the Fort Collins - Loveland system expansion problem to

link with a commercial hydraulic simulation package. The simulation model is employed to

confidently test the hydraulic feasibility of proposed expansions to the complex system of

multiple pressure zones.

10



2 Development of a Hydraulic Simulation Model

2.1 Introduction

A water distribution pipe network supplies some pattern of flows to demand points in the

network. A hydraulic simulation (or hydraulic analysis) of a pipe network involves the

prediction of system behaviour (such as pipe flows, nodal pressures and tank water level

variations) for a given system configuration and operation, subject to some expected demand

condition. The accurate simulation of a water distribution system to assess hydraulic

performance is a prerequisite step to pipe network optimisation. The genetic algorithm (GA)

model for pipe network optimisation developed in this thesis incorporates a simulation model to

evaluate the hydraulic feasibility of trial designs generated by the GA search.

At present, hydraulic simulation models have a much higher use in practice than pipe network

optimisation models. There now exist a number of extensively tested hydraulic simulation

models that perform efficient analyses of the behaviour of complex water distribution systems.

It makes sense to utilise the well developed capabilities of hydraulic simulation models as a first

step towards the problem of optimisation. A number of effective pipe network optimisation

techniques are linked to stand-alone hydraulic simulation models to test for hydraulic feasibility

including linear programming (Morgan and Goulter, 1985), nonlinear programming (Lansey

and Mays, 1989a) and enumeration procedures (Gessler, L982).

The evaluation scheme of the GA model should be linked to an efficient and reliable method of

hydraulic analysis. In this chapter, a hydraulic simulation model is developed specifically for

the purpose of the development of the GA model.

In the GA evolution of a population of coded solutions representing pipe network designs,

hundreds of thousands of pipe network designs may be generated and evaluated. It is most

important that the simulation model is efficient, since the hydraulic analyses of trial pipe

network designs usually requires the most significant proportion of the total computational

effort for the GA search. The pipe network simulation model is integrated with the GA

optimisation model in one computer program in order to minimise computational times.

The hydraulic solution method should display good convergence characteristics in all situations,

since the GA can propose unusual pipe network designs (more often in early generations). The

simulation model should be capable of performing multiple hydraulic analyses for different

demand patterns including instantaneous peak loading cases, loadings for emergency conditions

such as pipe breakage or fire fighting needs, and maximum day or average day extended period
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2 Devel.opmcnt of a hydraulic simulation model

simulations. The results of the simulations are used to check that water is supplied with an

accept¿ble prcssure. The simulation model can be used to check other hydraulic constraints

such as acceptable pipe velocities, to estimate annual power costs for pumping or to check the

fluctuations of storage t¿nk water surface levels over a period of time. The simulation model

could poæntially be modified to simulate and check other conditions such as prcssure surges or

water quality constraints.

The alternative to developing a hydraulic simulation model from the ground up is to create an

external link between the GA evaluation scheme and a stand-alone commercial hydraulic

simulation package such as WATSYS (Olde, 1985), KYPIPE (Wood, 1974) or EPANET

(Rossman, 1994). If the source code for a well developed and tested simulation model is

available, it may be morc practical and efficient úo embed the hydraulic sirnulation code within

the code of the GA routines.

A hydraulic analysis is essentially the deærmination of the steady-state pipe network flows and

node pressures for a defined system configuration and operation, subject to a pattern of

instantaneous nodal demands. The behaviour of the sysæm over a period of time (exænded

period simulation) is usually determined from a series of steady-state hydraulic analyses

performed at suitable time inærvals.

The sæady-st¿te behaviour of the system is governed by the physical laws of mass continuity at

the junction nodes and conservation of energy around the loops of the network, and the

nonlinea¡ head loss / flow relationship in the pipes. The hydraulic analysis of a pipe network

for steady-state conditions reduces to the solution of a set of pipe network equations which may

be formulated as:

. pipe flow equations (Q-equations) constructed in terms of unknown pipe flows

. node equations (I/-equations) constructed in tems of the unknown nodal heads

.loop conective flow equatiots (AQtquations) constructed with flow corrections

around the loops as the unknowns

The equations forn a set of simultaneous nonlinear algebraic equations which cannot be solved

directly. A number of methods have been proposed to solve this system of equations including:

. the Hardy Cross method

. the Newûon-Raphson method

. the linear theory method
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2 Development of a hydraulic simulation model

In this chapter, the pipe network equations are formulated and proposed solution methods are

reviewed in the search for an efficient and reliable method of hydraulic analysis. The adopted

method of hydraulic analysis is presented and the implementation of the method and various

algorithms which are developed to supplement the method are described for a case study

hydraulic simulation.

A hydraulic simulation model is developed which can perform a steady-state analysis of a

looped pipe network which contains system components such as reservoirs, tanks and pumps.

The inclusion of other system components such as pressure regulating valves and the

modification of the model for extended period simulation (EPS) is discussed briefly. Finally,

time-saving techniques are described which speed up the hydraulic simulation of systems for

the GA search, particularly by exploiting the results of previous simulations.

2.2 Pipe Network Components

A pipe network is composed of a layout of nodes interconnected by pipes. The pipes provide

the principal framework for the water transmission and distribution system. The transmission

pipelines convey large flows from water sources to the balancing storages and distribution

pipes then convey the flows to the water demand points.

A pipe is characterised by physical properties such as length, roughness and diameter. The

roughness of the pipe inside wall may depend on the material, size and condition of the pipe.

The condition of the pipe is influenced by time in operation and water quality. Common pipe

materials include DICL (ductile iron concrete lined), CICL (cast iron concrete lined), RC

(reinforced concrete), HOBAS and uPVC. The pipe size may be indicated by a nominal

diameter or an intemal diameter.

The nodes of the pipe network are either junction nodes (demand nodes) or fixed-grade nodes

(source nodes). The elevations of the nodes are determined from network topography. The

demands at junction nodes are determined by forecasted consumer water needs. The demands

at the junction nodes should be supplied with a pressure above some specified minimum (and

below some allowable maximum pressure). A fixed-grade node is a point where a constant

pressure head is maintained such as a reservoir, storage tank or connection to a constant

pressure region. The water surface level at some nodes (such as elevated storage tanks) which

are assumed to be fixed-grade nodes for the steady-state hydraulic analysis may actually vary

with time. Elevated storage tanks are used to help smooth peak water demand periods and store

water for emergency water demands such as fire fighting needs.
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Pipe networks may contain flow devices such as pumps, check valves and pressure reducing

valves. Source pumps are used in association with water sources such as tanks, reservoirs,

wells and rivers, and connections to adjacent systems. Booster in-line pumps are used within a

length of pipe in the network. Pumping station facilities usually consist of multiple stages of

centrifugal (radial-flow) pumps.

Check valves only allow flow in one direction. Check valves are installed in the discharge line

of pumps to prevent flow against the direction of pumping. A pressure reducing valve (PRV)

maintains a constant pressure on the downstream side of the valve assuming upstream pressure

is greater than or equal to the valve pressure setting. Should the pressure upstream of a PRV be

less than the valve pressure setting, then the PRV has no affect and flow through the valve is

unrestricted. Should the pressure at the downstream side of a PRV be greater than the upstream

pressure, then the PRV acts as a check valve and closes to prevent reverse flow. PRVs are

used to reduce the pressure in regions of the system, to adjust flow distributions or to control

the sources of supply (El-Bahrawy and Smith, 1987). Other flow devices include flow control

valves (FCVs) used to maintain a set rate of flow, pressure sustaining valves (PSVs) used to

maintain a set upstream pressure and throttle control valves or orifice plates.

2.3 Tree Networks and Looped Networks

Pipe networks may be tree networks or they may contain loops. A tree network (or branched

network) is such that any two nodes a.re connected by one and only one path of pipes. There is

always a unique flow pattern in a tree network governed by the law of mass continuity. The

hydraulic analysis of looped networks is more complicated since the flow may be conveyed to a

single demand node by several alternative routes. The flow pattern throughout the looped pipe

network is governed by the physical laws of mass continuity and energy conservation.

Irrigation systems are often branched networks. Looped networks are usually preferred to

provide some degree of system reliability and flexibility. Urban water supply systems are

usually extensively looped. Loops can help meet downstream demands in the event of a pipe

breakage or pipe maintenance. In addition, looped networks do not allow water to become

stagnant in dead-end pipes and have greater flexibility to meet abnormal demands such as fire

fighting demands.
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2.4 Natural Loops and Pseudo Loops

Natural loops (or primary loops) in a pipe network are identified as any closed path of pipes

that does not contain another closed path of pipes within it.

Pseudo loops (or paths) are formed for systems with multiple fixed-grade nodes to account for

unknown outflows and inflows at the storages (Streeter and Wylie, 1981). If there is only one

fixed-grade node, then there are no pseudo loops since the total network demand is carried by

one source. Pseudo loops are created by the introduction of an imaginary link between pairs of

fixed-grade nodes. The pseudo loops are treated in the hydraulic analysis in a similar way to

natural loops by taking the head loss in the imaginary link as the difference in elevation between

the fixed-grade nodes.

Wood and Rayes (1981) state the following general relationship for a pipe network:

NP=NJ+NL+(NF-1) (2.r)

in which NP = number of pipes, N,I = number of junction nodes, NL = number of natural

loops, NF = number of fixed-grade nodes and where (Nf-1) = number of pseudo loops that

need to be considered for the hydraulic analysis.

There are actually NF!/[(NF-2)l 2l] possible pseudo loop configurations for a system

containing NF>1 fixed-grade nodes, however, only (NF-1) pseudo loops need to be

considered to formulate the equations for the hydraulic analysis. The (NF-l) selected pseudo

loop configurations should involve each of the NF fixed-grade nodes (at least once).

2.5 Hydraulic Grade Line (HGL)

The water at any point in the water distribution system possesses an energy equal to the sum of

the elevation head, pressure head and velocity head at the point. The velocity head and minor

head losses in system components are usually small compared to head losses due to friction for

long pipes and therefore these are assumed to be negligible in this case. This implies the

hydraulic grade line (HGL) equals the energy grade line (EGL). The pressure head at a

junction node is the energy possessed by the water above the elevation of the junction node

(measured above some arbitrary datum).

The hydraulic grade line (HGL) is the profile of the variation of head across network

components such as pipes as shown in Figure 2.1.
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Figure 2.1 The HGL for a length of pipe

The pressure head at a reservoir is equal to the depth of water and the HGL is the reservoir

surface as shown inFigure 2.2.

Reservoir a
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Figure 2.2 The HGL at a reserYoir

According to the Bernoulli equation in Eq. 2.2 (neglecting velocity heads) and demonstrated in

Figures 2.L,2.2 and2.3, the HGL at some downstream point d equals the HGL at an upstream

point a less head losses due to friction (hÍu-¿) plus head gains due to pumping (Hpu-ì between ø

and d. The Bernoulli equation is based on the physical law of conservation of energy between

points u and d.

d

zd

,,*?=zdtI*rr,*Ho,n
(2.2)

in which zr= elevation of node ø (ft, m), zd= elevation of node d, pu = prossure at node ø (psi,

Pa), p¿= presSure at node d and Z= specific unit weight of water (62.4Lb/ftz at 60"F, 9,789

N/m3 at 15'C).
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2.6 Pipe Friction Head Losses

The flow in a pipe results in an energy loss or head loss due to friction over the length of the

pipe. Friction head loss in a pipe is expressed in terms of the flow by the following

relationship:

h¡= R O lol"-r.t --

in which hf= friction head loss in pipe (ft, m), Q - pipe flow (cfs, m3ls), R = the resistance or

loss coefficient for the pipe which is a function of pipe parameters and flow conditions and

depends on the head loss equation and the units used, andn = the exponent in the head loss

equation.

The equation chosen to relate head loss to flow will depend on the pipe roughness data available

for the pipe network under study. The widely used Hazen-Williams equation is of the form of

F;q. 2.3 with resistance R given by Eq. 2.4 or F;q.2.5 and with n=\.852 (Streeter and Wylie,

1981).

4. t.

(2.3)

(2.4)

(2.s)

(2.6)

R (US customary units)
ç1852 (2:|.rroo

¡-r.s52 ( D \4.8704t- lilooo/

(SI units)

in which L = length of the pipe (ft, m), C = Hazen-'Williams roughness coefficient and D =

diameter of pipe (in, mm).

The Darcy-'Weisbach head loss formula is also commonly used, and iterative pipe roughness

values are calculated in this case since the Darcy-'Weisbach friction factor is a function of the

flow in a pipe. The Darcy-Weisbach head loss equation computes the friction head losses in a

pipe, h¡ (m) for a pipe velocity, V (m/s).

ft= 10. T.

t".-f L-vz =f L--1-Q'=fL882"r D2S D2g¡z D5 go,

in which/= Darcy-Weisbach friction factor, ¿ = pipe length (m), D - pipe diameter (m), Q =

pipe flow (m3/s) andA - pipe cross-sectional area (m2)'
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The pipe roughness may be expressed in terms of the Colebrook-V/hite roughness k (mm).

The Swamee-Jain formula (Swamee and Jain, 1976) in Eq. 2.7 is used to determine the Darcy-

Weisbachfrictionfactor/fromtheColebrook-WhitekandReynoldsnumberR=VD/v
where v = viscosity (1.007 x 10-6 m2ls for water at 20"C).

f- (2.1)

l:4'+"+5r41]'z

2.7 Parallel Pipes

Two or more pipes may be connected in parallel between the same two nodes. This situation

often occurs when existing pipe systems are reinforced to meet increased demands by installing

new pipes (of some selected pipe size) parallel to existing pipes (called pipe 'duplication'). The

parallel pipes may be regarded as one equivalent pipe with equivalent hydraulic properties for

the hydraulic analysis. The flow in the equivalent pipe, 0, is the sum of the constituent flows

in NPP parallel pipes:

Qt+Qz+"'+Q¡,1PP=Qu (2.8)

The relationship in Eq. 2.9 is obtained by substituting the friction head loss equation inBq.2.3

into Eq. 2.8.

g-¡..WJ+ +W=G^Ì (2e)

Consequently, the equivalent pipe may be assigned a resistance R, which is a function of the

resistances of the NPP parallel pipes as given by F,q.2.L1.

l_L\I ¡rrl tl rl rrrl
m,F.[oÌf +.. +(¡fi;f =h'l Q.It)

The physical law of energy conservation is observed between the nodes and therefore the

energy losses across the parallel pipes must be equal:

hfr= hfrr " ' 3 hfrrr= hf" (2'10)
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2.8 Pumping Heads

The purpose of a pump is to increase the pressure head in the system by adding energy head to

the flow. The hydraulic grade line (HGL) rises across a pump as shown in Figure 2.3. The

energy added by pumps is expressed in the energy equation in Eq. 2.2 as a head gain, Hr.

Ha

Hu

d
u

Pump
Station

zd

HORZONTAL DATUM

Figure 2.3 The head added by a pump

The centrifugal (or radial-flow) pump with multiple (serial or parallel) stages is the best suited

and most cofirmon in water distribution systems. A pump is described by characteristic curves

for pumping head, power requirements and efficiency as functions of flow.

The pump head characteristic curve relates the flow through the pump to the head produced by

the pump. Some alternatives for approximating actual pump head, H, as a function of pump

flow, Qrinclude a quadratic equation or an exponential equation. The quadratic equation in

F;q.2.12 will approximate the head-discharge curve within the normal working range of the

pump (Jeppson, 1976).

Hp=AQr'*BQr+Hs (2.r2)

in which I1o - pumping head, Qp= pump flow, He- pump shut-off head and A and B ate

constants for a given pump.

Pumping head decreases with flow for a centrifugal pump as shown in Figure 2.4. The

pumping head at zero flow is the shut-off head. As the flow increases from zero flow, the

pumping head may rise just above the shut-off value before falling as the flow increases

further. A unique operating point is ensured if the pump head characteristic curve is strictly

monotonic decreasing (the constants A and B are negative for this condition).

Hp
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Head
OperatingPump head

charcteristic curve point
Hs

Flow

Figure 2.4 Pump head and system head curves

The efficiency characteristic curve specifies the ability of the pump to transmit power to pump

head for a given flow. Head losses due to circulatory flow, torque losses and turbulence and

shock losses reduce the pump efficiency. The point of best efficiency occurs when turbulence

and shock losses are minimised (Streeter and 'Wylie, 1981). The flow at this point of peak

efficiency is called the best efficiency point (BEP).

The pump power input Po (kW) is given by Eq. 2.13 (based on Lansey and Mays, 1989c)

(2.t3)

in which 4p - pump efficiency.

A pump operates against a system head composed of the static head, friction losses in the pipes

and the velocity head. Since head loss increases approximately proportionalß Q2, as demand

flows increase the system head required increases approximately quadratically. The steady-state

flow through the pump (operating point) is the one at which the pump head equals the system

head. This represents the intersection of the pump head characteristic curve and the system

head curve as shown in Figure 2.4.

A pumping station facility may consist of multiple stages of pumps arranged in series or

parallel. Given some set of pumps, the pumps operating at any time will depend on the system

demands and other conditions such as water levels in balancing tanks. In this way, pumps may

be operated close to their best efficiency.

System head
curve
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2 Development of a hydraulic simulation model

2.9 The Set of Pipe Network Equations

The steady-state hydraulic analysis of a looped pipe network involves the determination of the

flows in the pipes and the pressure heads at the nodes given the physical description of the

network and the demand pattern to be supplied to the nodes. A set of simultaneous, nonlinear

algebraic equations are formulated by applying the two fundamental physical laws of the

conservation of mass to the nodes and the conservation of energy to the loops. These laws are

analogous to Kirchoff's first and second laws in electrical network theory. The pipe network

equations are usually formulated in one of three ways:

. the pipe flow equations (Q-equations)

. the node equations (F1-equations)

. the loop corrective flow equations (AQr-equations)

The set of pipe flow equations (Q-equations) express the mass continuity equations at the nodes

and the energy conservation equations around the loops in terms of the unknown flows in the

pipes. The set of node equations (.F1-equations) express the mass continuity equations in terms

of the unknown heads at the junction nodes. The set of loop equations (AQ¿-equations)

express the energy conservation equations in terms of the unknown flow corrections around the

loops (flow corrections to an assumed initial pipe flow pattern which satisfies continuity).

Since the relationship between flow in a pipe and friction head (energy) loss in the pipe is

nonlinear (Section 2.6),the system of pipe network equations for looped networks is nonlinear

(regardless of formulation). The equations cannot be solved directly and must be solved using

an iterative method. Three widely used methods for solving the system of nonlinear network

equations are the following iterative numerical techniques:

(1) Linear theory method

(2) Newton-Raphson method

(3) Hardy Cross method (pre-computer method)

The linear theory method developed by V/ood and Charles (1912) may be applied to the pipe

flow equations or the node equations. The method is described in detail in Section 2.9.L.

The Newton-Raphson method is widely used for solving systems of nonlinear equations

Consider a system of N functionsfr in the variables x to be set equal to zero.

Nf(x)=0 fori=1,

2I

(2.r4)
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in which the vector of unknowns is:

x=(xl,x2, ..,xX) Q.I5)

If x(0) is an approximate solution to Eq. 2.I4,then¡(0)1S¡ is an improved approximation.

Thus:

$¡ = (õx1, 6rt, .. . , ôr,v) Q.l6)

Expanding the functionsJ in Taylor series and neglecting the higher order terms produces a set

of N linear equations in terms of the corrections âr that move each function closer to zero

simultaneously.

for i=l,..., N (2.n)

The linear system of equations in Eq. 2.I7 may be expressed using matrices by Eq. 2.18. The

N by N matrix of partial derivatives is known as the Jacobian matrix of coefficients. The

functions and the partial derivatives in Eq. 2.I8 are evaluated at the current approximation of x.

õxt -ft

õ*z -fz

(2.18)

-fu

The corrections ôr can be determined by solving Eq. 2.17 by apptying standard matrix

procedures for the solution of systems of linear equations to the Jacobian matrix in Eq. 2.18.

The improved values of ¡ are computed using F;q.2.I9 for the (m+1¡rn iteration.

y(m+t) - y(m) ¡ g¡ (2.I9)

The set of linear equations in Eq. 2.18 are set up for each iteration by evaluating the functions

and partial derivatives at the improved approximations of ¡ to determine the corrections ô¡ to

the improved approximation. The iterative procedure is repeated until convergence of the

functions or the variables is exhibited. The Newton-Raphson method may be used to solve the

pipe flow equations, the node equations or the loop equations.

Martin and Peters (1963) introduced the Newton-Raphson method (or Newton's method) for

the simultaneous solution of the nonlinear algebraic hydraulic network equations. The

ðft
ð"r

ôx1 + !d*r+'..+ !õ*¡¡=-¡,öx2 oxN

òft òf,

6xN

òlt
ð*¡v
òrt
ð",v

A/'
ðx¡v

ð*z
òft
ò*z

ðÍ¡t
òxz

ò*t
òfz
ò*t

afy
ò*t
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2 Development of a hydraulic simulation model

application of the Newton-Raphson method for efficiently simulating pipe networks was made

possible by the development of the computer. Prior to the development of computers, the

Hardy Cross method (suitable for hand computation) of systematic relaxation was the standard

numerical procedure for solving the pipe network equations.

The Hardy Cross method is the oldest method for balancing pipe networks. It was devised by

Hardy Cross in 1936. The Hardy Cross method uses Newton's method to solve one nonlinear

equation at a time in one unknown (in contrast to the Newton-Raphson method that solves the

set of nonlinear equations simultaneously). The Hardy Cross method may be applied to the

node equations, but is more commonly applied to the loop equations. The Hardy Cross method

has often been reported to converge slowly (if convergence does occur) and a number of

variations of the method have been suggested to improve convergence. In a general application

of the Hardy Cross method to the loop equations (Jeppson, L976):

(1) an initial set of pipe flows is determined which satisfies continuity at the junction nodes,

(2) Newton's method is used to solve one loop equation at a time for the unknown flow

correction around the loop assuming the remaining flow corrections are temporarily known,

(3) usually the flow corrections are computed once for each loop (or path) in the system and

the process is repeated using the improved solution until convergence is exhibited.

2.9.L Pipe flow equations (0-equations)

The set of pipe flow equations are formed with the flows in each pipe as the unknowns. A

mass continuity balance equation must be satisfied for each junction node which states the

volumetric flow rate into the node must equal the volumetric flow rate out of the node. There

are NJ independent linear mass continuity equations in the form of F;q.2.20.

NPJ

\ Qt= Q"r, for junction nodes i=1,..., NJ (2.20)
k=I

in which NPJ = total number of pipes k connected to junction node i, Qt= flow in pipe k

connected to node i (flow towards node I is positive) and Q'*r= demand at node i'

An energy conservation equation can be written for each natural loop and pseudo loop which

states the net energy gain around a loop is zero. There are NL+(NF-l) independent nonlinear

energy conservation equations in the form of Eq. 2.21.

NPL .

Zlrrrl a"J - AE^,--O for loops I=1,'.', NI+(NF-1) (2'21)

k=l
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Therefore,

NPL

Ï loo OÅOt¿"-t + (AÀelz+B/el+øg,)]- a8,,,- o

k=l

for loops l=1,..., NI+(NF-l) (2.22)

in which

NPL = total number of pipes k that make up loop /

hf*=the pipe friction head loss in pipe k

Hpt - the pump head of pump P in pipe k (Hp¡=Q if pipe fr does not contain a pump)

Qt= flow in pipe k in an assumed direction (clockwise or anti-clockwise)

Rr = loss coefficient of pipe k

Ap, Bp and H6p are the pump curve coefficients for pump P

AE^n- E^- En= elevation difference between fixed-grade nodes m and n in the case

of a pseudo loop (AEr*=O for a natural loop) where ru is the node connected to

pipe ft=l andn is the node connected to pipe k=NPL

The pumping head, Hp¡is considered when a pump exists in the pipe k within the loop /. The

sign of the pumping head will depend on the direction of pumping. The flow through the

pump, Q¿ must be positive in the direction of pumping. There are NJ mass continuity

equations and NZ+(NF-l) energy conservation equations forming the set of NP simultaneous

equations in terms of the NP unknown pipe flows (Eq. 2.1).

Wood and Charles (1972) proposed a method for a hydraulic network analysis using the linear

theory method based on the simultaneous solution of the pipe flow equations. The method

proposed to transform the nonlinear energy equations represented by Eq. 2.21 into linear

equations by approximating the head loss as shown inBq.2.23.

hfo= Rr Q{ = R*lQÀ'-r Qr= R*' Q* (2.23)

in which Qko= a first guess of the flow in pipe k'

An initial flow is assumed in each pipe. The NL+(NF-l) linearised energy equations are

combined with the N,I continuity equations to yield NP simultaneous linear equations in terms

of flows in each pipe which can be solved using standard matrix procedures. At each iteration,

the computed values of flow are used as the new estimates of the flows and the process is

repeated. The iterations continue until convergence is exhibited.
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2 Development of a hydraulic simulation model

Wood and Charles (1912) propose a first approximation of Qb=1.0 (i.e., R¿'-R¿) provides a

reasonable initial guess for the flow distribution as the solution approximates a laminar flow

distribution (since the head loss is assumed to vary linearly with flow). They suggest this initial

guess will give feasible estimates of the turbulent flow distribution. To protect against

oscillations about the final solution, Wood and Charles suggest the new approximate flow,

Qk@) in pipe k for the mth iteration be calculated using Eq. 2.24. This averaging process

showed faster convergence to the solution.

n.(m) -QoQn-t) 
+ Qo@-2)

Yk2 (2.24)

Wood and Charles analysed a network with 19 pipes, 12 nodes and 8 natural loops using their

proposed linear theory method, a Hardy Cross method and a Newton-Raphson method. The

linear theory method provided excellent convergence, requiring 3 iterations to achieve a practical

level of accuracy. The Newton-Raphson method converged in 3 iterations, provided the initial

guesses for flow were good. The Newton-Raphson method required about 2 additional

iterations, if the initial guesses for flow were poor. The Hardy Cross method required about 20

iterations to approach a similar accuracy. 'Wood and Charles concluded that the linear theory

method shows rapid and accurate convergence. The approach does not require initial estimates

of flows.

Jeppson (1976) found the linear theory method did not give rapid convergence when analysing

networks with pumps using the pipe flow equations with energy equations written in the form

of E;q.2.2I. Jeppson did however describe modifications to the pipe flow equations which

improved the convergence. Jeppson did not recommend the use of the linear theory method for

solving the node equations or the loop corrective flow equations.

Wood and Rayes (1981) examined the reliability of five widely used methods that have been

proposed to perform a steady-state analysis of pressure and flow in a pipe network including:

(1) the linear method applied to the pipe flow equations

(2) the Hardy Cross method applied to the node equations

(3) the Newton-Raphson technique applied to the node equations

(4) the Hardy Cross method applied to the loop equations

(5) the Newton-Raphson technique applied to the loop equations
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Wood and Rayes ( 1981) applied the five methods to a large number of real pipe networks (60

networks with less than 100 pipes and 31 networks with more than 100 pipes). A convergence

criterion was specified which stated the average change in flows between successive iterations

must be less than 0.57o. The iterations were continued until the convergence criterion was met,

however, convergence does not guarantee an accurate solution. The accuracy of the methods

based on the pipe flow equations or loop equations was indicated by the unbalanced heads for

the energy equations. The accuracy of the methods based on the node equations was indicated

by the unbalance in continuity at junction nodes. Liberal upper limits were piaced on the

maximum number of iterations allowed (from 20 iterations for the linear method up to 200

iterations for the Hardy Cross methods).

Wood and Rayes (1981) recorded a 'failure' if convergence was observed and the solution was

inaccurate (average deviation of flow or head exceeded I}Vo or the maximum deviation of flow

or head exceeded 30Vo). A 'failure' was also recorded if convergence was not observed within

the maximum number of iterations.

The method referred to as the linear method by Wood and Rayes (1981) and as the modified

Iinear method by Ormsbee and Wood (1986) is not the original linear theory method described

by Wood and Charles (1972) as reported by Salgado et al. (1988) and Ellis and Simpson

(1996). The linear method (Wood and Rayes, 1981), which is the solution technique adopted

in the KYPIPE hydraulic simulation computer program (Wood, 1974), is actually quite similar

to the Newton-Raphson method (Ellis and Simpson, 1996).

Wood and Rayes investigated the reliability of the linear method for the solution of the pipe

flow equations. Excellent convergence characteristics were shown and no failures were

reported using the method. The linear method was used to determine the exact solutions for all

the comparisons, by performing one further iteration after the specified convergence criterion

was reached, which is an indication of the reliability of this method. For the 31 networks with

more than 100 pipes (up to 509 pipes), the linear method computed solutions with good

accuracy in an average 6.4 iterations (which did not depend on the size of the system) and using

an average 5.4 seconds of computer time. The reliability study conducted by V/ood and Rayes

(19S1) was revisited by Wood and Funk (1993)'
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2.9.2 Node equations (.É1-equations)

The set of node equations are formed with the heads at the junction nodes in the pipe network as

the unknowns. The friction head loss in a pipe connecting nodes i and i represents the head

difference between nodes i and j:

h¡,t= H¡ - H¡ (2.2s)

in which h¡¡¡ = the friction head loss in the pipe connecting nodes i and j, H¡= HGL or total

head (pressure head+elevation head) at node i and H¡ = HGL or total head at node j'

Rearranging the head loss relationship given by Eq. 2.3 and substituting 8q.2.25 gives

(2.26)

The node equations are based on the continuity relationship in Eq. 2.20. Substituting F,q.2.26

into Eq. 2.20 gives:

n,=(T)w''

äIWWI.'=e"*¡ for junction nodes i=L,..., NJ (2.27)

in which NPJ = total number of pipes connecting nodes j to node i

There are a total of N,I nonlinear simultaneous node equations in terms of the NJ unknown

heads at the junction nodes. The node equations in Eq. 2.27 are formed assuming the pipes do

not contain pumps. Wood and Rayes (19S1) described a method to expand the node equations

to include pumps by introducing two junction nodes at the suction and discharge sides of the

pump. Two additional equations are written in terms of the two additional unknown heads at

the new junction nodes. A flow continuity equation is formed expressing flow using F;q.2.26

since the flow in the suction line (upstream) is equal to the flow in the discharge line

(downstream). Another equation relates the head gain across the pump to the flow in either the

suction line or the discharge line.

Martin and Peters (1963) reported oscillations of the corrections to the head approximations

when the Newton-Raphson method was applied to the node equations. They identified possible

reasons for the oscillations and overcame the convergence difficulties by halving the corrections

when oscillations were observed.

2l



2 Development of a hydraulic simulation model

Shamir and Howard (1968) proposed a generalised method for determining the steady-state

solution of a water distribution network by solving the node equations using the Newton-

Raphson method. Shamir and Howard allowed the N,I unknowns to be computed to be some

solvable combination of the node heads H, the demands, Qr* and the pipe loss coefficients (or

resistance), R. A combination of unknowns which produces a Jacobian matrix with a row(s)

which contains only zeros is not solvable.

The method proposed by Shamir and Howard (1968) may be used to determine pipe resistances

for some specified system performance. Unfortunately, the optimum combination of node

heads which produces the lowest cost combination of network elements is difficult to predict.

Shamir and Howard suggest any network element which may be represented by a function

relating flow and head changes such as pipes, pumps and valves may be included in the

network analysis, however, convergence is not guaranteed when a characteristic function of an

element does not have a continuous derivative. Shamir and Howard reported good convergence

to a solution using their method provided reasonable initial guesses are made for the set of

unknowns.

Gessler's (1982) enumeration algorithms required the repeated hydraulic analyses of network

pipe size combinations in the search for the minimum cost pipe network. Gessler believed

methods based on the node equations where the pressure heads at the nodes are the unknowns

are superior to methods based on the loop equations especially for the purposes of optimisation

where the critical constraint is the pressure head distribution. The iterations of a method based

on the node equations can be terminated as soon as the pressure heads converge to some

specified accuracy which may avoid unnecessary iterations. In addition, Gessler suggested the

average absolute head adjustment is a more reliable measure of the pressure head accuracy than

the average absolute residual of the head losses around the loop. Gessler found the successive

head adjustments consistently reduced by a factor of about 0.5. Under some conditions, over-

relaxation by a factor of about 1,85 produced the best results.

Gessler suggested that for large networks where computer time for a solution is important, there

are almost as many loops (NL+(NF-l)) as nodes (NÐ for realistic layouts. This claim is true

for extensively interconnected layouts, however in general, the number of node equations is

greater than the number of loop equations. Gessler argued the node equations are especially

suited to analysing systems with pumps, pressure reducing valves and check valves. The pipe

flow equations and loop equations require the formation of the loop structure compared to the

node equations which do not require this information. Gessler presented several reasons why

the node equations may be favoured, however, Wood and Rayes (1981) questioned the

reliability of methods based on the node equations.
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Wood and Rayes (1981), in their study of the reliability of five commonly used methods of pipe

network analysis (Section 2.9.1), examined the Newton-Raphson method (Shamir and

Howard, 1968) and the Hardy Cross method for the solution of the node equations. Both

methods require an initial realistic assumption of the node heads. The Hardy Cross method

computes a head adjustment factor for each junction node consecutively. The adjusted heads

approach the solution of Eq. 2.27 at the node assuming the heads at adjacent nodes are fixed.

An iteration is complete when the heads at all the junction nodes in the pipe network have been

adjusted. By comparison, the Newton-Raphson technique applied to the node equations adjusts

the heads at the junction nodes simultaneously.

Significant convergence problems were exhibited by both the Hardy Cross and Newton-

Raphson methods apptied to the node equations. The Hardy Cross method applied to the node

equations proved to be the least reliable of the five methods examined by Wood and Rayes. For

the 60 networks analysed with less than 100 pipes,51 failures (a'failure'was defined in

Section 2.9.D were recorded using the method. In most cases, the convergence criterion of

O.5Vo was satisfied, but the solution was found to be in error. The convergence criterion was

not satisfied for 7 networks, yet a maximum of 200 iterations were allowed. Four of 5

networks tested further, failed to converge after 1000 iterations and the solution which did

converge was found to be in enor. Often substantial errors were found in solutions when the

convergence criterion was attained. The probability of an accurate solution was increased by

applying a more stringent convergence criterion, however, this did not promise an accurate

solution. Given a convergence criterion of 0.057o and a maximum of 400 iterations, 15 of 15

networks tested converged, however, 2 failures were noted'

The Newton-Raphson technique applied to the node equations is capable of providing a highly

accurate solution in relatively few iterations, however,'Wood and Rayes (1981) recorded a

number of problems for this method. A total of 18 failures were reported using the method,

from the 60 networks with less than 100 pipes analysed. Convergence was not observed for 8

networks within the allowed 40 iterations. In some cases, oscillations occurred which

prevented the attainment of the convergence criterion regardless of the number of iterations.

Five of 9 networks tested further, failed to converge after 400 iterations and 6 failures were

noted.

Wood and Rayes (1981) found the reliability of the node methods was hindered in some cases

by the inability to handle pipes which carry very high flows at very low head losses. In these

situations, small errors in head calculations may produce serious errors in flow calculations.

Shamir and Howard (1968) previously had reported that the Hardy Cross method may

converge very slowly, or even diverge, given some conditions such as pipes with low

resistance or very low flows (i.e., very low head losses). The node methods require an initial
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set of heads and the chance of obtaining a good solution are increased by using initial values

which are closer to the correct values, however, convergence is not assured and it is difficult to

consistently estimate close initial values. Nielsen (1989) also discouraged the use of the node

equations reasoning it is difficult to determine a good initial set of node heads and convergence

to the solution may be slow.

2.9.3 Loop corrective flow equations (AQrequations)

The set of loop equations are formed with the flow corrections for each of the loops as the

unknowns. F;q.2.28 is derived from the nonlinear energy equation in Eq. 2.21. F,q.2.28 is a

set of nonlinear equations in the unknown flow corrections q for each loop.

Ft(q) = o for loops I=1,..., N¿+(NF-1) (2.28)

i [*¿n. -lqleorxql,'-t +(tÅeo-!ql2 + BÅeortrql * aoJ] - aE*, = e
k=l

for loops I=I,..., NL+(NF-1) (2.2e)

in which

FI= net head loss around the loop /

e = (qt, e2, . . . evt+(¡,tp-tì = one flow correction for each loop

NPL= total number of pipes fr that make up loop I

Rk = loss coefficient of pipe k

Qo*= initial flow in PiPe k

Ap, Bp and H6p are the pump curve coeffîcients for pump P (if pipe k contains a pump)

AEmn= Em- En= elevation difference between fixed-grade nodes m and n in the case

of a pseudo hoop (AE*,=O for a natural loop) where ru is the node connected to

pipe k=1 and n is the node connected to pipe k=NPL

The flow correction q¿ is added (or subtracted depending on the sign convention adopted) to

each assumed initial flow, Qg¡, when the pipe k forms part of loop /. If pipe k is common to

several loops, the flow, QOtis adjusted by the corrections for each loop.

An initial flow pattern must be specified such that continuity at each of the junction nodes is

satisfied. The initial flow pattern generally will not satisfy the energy equations and therefore

the flow corrections are determined such that each loop energy equation is satisfied. The final

adjusted flow pattern will continue to satisfy the continuity equations. There are a total of

NL+(NF-l) nonlinear simultaneous equations in terms of the unknown flow corrections in each
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of the loops (including natural loops and pseudo loops). The number of loop equations is

generally less than the number of node equations which in turn is less than the number of pipe

flow equations, since the number of loops (N¿+(NF-1)) is generally less than the number of

nodes (N/) which in turn is less than the number of pipes (NP) in a looped pipe network.

Epp and Fowler (1970) present the outline of a computer program for the steady-state analysis

of pipe networks. The algorithm features the Newton-Raphson method to solve the loop

corrective flow equations. The Newton-Raphson method applied to the loop equations gives

fast (quadratic) convergence.

The algorithm proposed by Epp and Fowler (1970) was designed to minimise computer time

and storage requirements. The algorithm utilises a 'minimal spanning tree' to assign the initial

flow pattern to the pipe network. This provides an initial flow pattern which satisfies continuity

of flow at the nodes and Epp and Fowler believed that it assures convergence. The algorithm

utilises a 'minimum path algorithm' to define the natural loops and pseudo loops in the pipe

network given node connectivity information. The number of nonlinear equations to be solved

equals the number of loops. The loops are numbered so as to obtain a symmetric and banded

Jacobian matrix of coefficients of near minimum bandwidth. This type of matrix minimises

storage requirements and is easily solved. The algorithm developed by Epp and Fowler was

used successfully on a wide variety of networks. The method was applied to some networks

where convergence by the Hardy Cross method or the Newton-Raphson method for the node

equations was not exhibited, the largest network consisting of 307 pipes, 170 nodes, 135

natural loops and4 pseudo loops.

Wood and Rayes (1981) in their investigation into the reliability, accuracy and efficiency of

methods of hydraulic analysis (formulation of pipe network equations and numerical solution

methods) considered the linear method applied to the pipe flow equations (Section 2.9.I), the

Newton-Raphson technique and Hardy Cross method applied to the node equations (Section

2.g.2) and also the Newton-Raphson technique and the Hardy Cross method for the solution of

the loop equations.

Wood and Rayes (1981) found that significant accuracy problems were exhibited by the Hardy

Cross method applied to the loop equations. Given a maximum 200 iterations, the method

converged in every case for the 60 networks with less than 100 pipes. Although the

convergence criterion was reached, substantial errors were found in some solutions. A total of

8 failures were documented for the 60 networks using the convergence criterion of.O.S%o. The

probability of an accurate solution was increased by specifying a more stringent convergence

criterion, however, this did not guarantee a good solution. Five of the 8 previous failures were

improved by applying a convergence criterion of 0.05Vo and allowing a maximum of 400
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iterations. The 3 remaining failures featured significant unbalanced heads and errors in flows to

and from storage nodes. For most of the failures, the average unbalanced head was relatively

low. The Hardy Cross method encountered difficulty with a very high head loss and a very

low head loss in the same energy equation. The method requires an initial set of flows that

satisfy continuity at the nodes and the chances of obtaining a good solution are increased by

using initial flows which are closer to the balanced flows, however, convergence is not

assured.

Wood and Rayes (19S1) also examined the Newton-Raphson method applied to the loop

equations. The method was developed to improve the convergence characteristics of the Hardy

Cross method. The Newton-Raphson method also requires as input an initial set of flows

which satisfy continuity at the nodes. A flow adjustment factor is computed for each natural

loop and pseudo loop simultaneously. A set of NL+(NF-1) simultaneous linear equations are

constructed in terms of the loop flow adjustment factors. The set of linear equations can be

solved using standard matrix procedures. The flow adjustment factors tend to balance the

energy equations for a loop by considering the energy relationship for the particular loop and

also for all other loops with pipes in common with this loop. The computation of a new set of

Ioop flow adjustments to the initially assumed pipe flow distribution constitutes an iteration.

Iterations continue until convergence is exhibited. The loop flow adjustments correct the

assumed flows in all pipes in each loop and so continuity is maintained.

'Wood and Rayes found the performance of the Newton-Raphson method applied to the loop

equations to be comparable to that of the linear method (for the pipe flow equations) computing

very accurate solutions in few iterations and using reasonable computer times. For 31 networks

with more than 100 pipes, the Newton-Raphson method computed accurate solutions in an

average 8.5 iterations and required an average 6.9 seconds of computer time (by comparison,

the linear method computed accurate solutions in an average 6.4 iterations and required an

average 5.4 seconds of computer time). Wood and Rayes found the Newton-Raphson method

for the loop equations showed excellent convergence characteristics. For 60 networks with less

than lO0 pipes analysed, the method failed once to converge within 30 iterations. The single

failure is attributed to a pipe network containing a constant power pump characterised by a steep

head-discharge curve. The low horsepower pump operated at low flow rates. The steepness of

the characteristic curve led to convergence problems for all the methods investigated by Wood

and Rayes except the linear method.

Nielsen (1989) formulated the hydraulic equations in matrix notation and observed the

behaviour of the linear theory method and the Newton-Raphson method, Nielsen found the

iterates for the successive solution of the system of pipe flow equations are identical to the

iterates for the successive solution of the system of loop equations. The system of loop
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equations requires a starting set of flows that satisfies continuity. The corresponding iterates

are identical regardless of the choice of loops. Nielsen used linear algebra to show that the

linear theory method is a variation of the Newton-Raphson method. He suggests using the

linear theory method to determine a starting point (the first iteration) for a Newton-Raphson

method (used for second and subsequent iterations) and demonstrated the accuracy and

reliability of this modification. Nielsen suggests the use of the loop equations since there are a

smaller number of unknowns (NL+(NF-l)) and convergence is efficient.
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2.10 The Adopted Method of Hydraulic Analysis

The hydraulic simulation model developed in this study to be linked with the genetic algorithm

optimisation model uses the Newton-Raphson numerical solution technique applied to the loop

corrective flow equations (Epp and Fowler, I9l0) as outlined in Section 2.9.3. The reliability

of the method is demonstrated in the valuable work of Wood and Rayes (1981). The method

was extensively tested and consistently exhibited excellent convergence to accurate solutions.

Since it is expected that thousands of network analyses need to be performed by the genetic

algorithm search to optimise a proposed pipe network design, the efficiency of the adopted

method of hydraulic analysis is critical. Few iterations are required by the Newton-Raphson

method to reach accurate solutions owing to the quadratic convergence characteristics. The

number of simultaneous equations to be solved using the loop equations are usually fewer (than

the node equations and pipe flow equations) since in general there are less loops than pipes or

nodes in a pipe network. The extensively interconnected Anytown network in Figure 2.5

(Walski et al., 1987) is an exception. Jeppson (I976) found the Newton-Raphson method

required less computer storage for a given number of equations.

The adopted method of hydraulic analysis solves for the flow corrections around the loops.

The loop corrective flow equations or AQ¿ eeuations (Eq. 2.29) are derived from the energy

conservation equations around the loops (F;q.2.22). The method requires initial flows in the

pipes to be specif,red which satisfy continuity at the nodes given some set of consumer water

demands at the nodes. The method requires the pipes in the loops and the loop structure to be

identified. A computer program to perform a hydraulic analysis may incorporate algorithms

which undertake these tasks in order to save the users additional effort and minimise errors in

data input. In the development of the optimisation model in this reseatch, the motivation for the

development of algorithms to compute a set of initial flows and to identif, the loops a¡ose as the

proposed network layout and operation may be considered as design variables.

The adopted method of hydraulic analysis is described in the following sections and particularly

with respect to the hypothetical Anytown water distribution system.

2.10.1 Tllre Anytown water distribution system

Walski et al. (1987) presented the water distribution system for the hypothetical community of

Anytown in the 'Battle of the Network Models' study. The existing water distribution system

before the proposed system expansions is represented by the pipe network in Figure 2.5.
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2 Development of a hydraulic simulation model
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Figure 2.5 The Anytown water distribution system

The lengths, diameters and roughness coefficients of the pipes are given in Table 2.1. The

lengths and diameters of the pipes refer to the existing network, however, the roughness

coefficients are values projected for 20 years time. Pipes [78] and [80] are riser pipes to

elevated tanks and pipe t82l is the pumping main. The loss coefficients for the pipes (Eq. 2.4)

in the Anytown system are given in Table 2.I. The Hazen-Williams friction head loss formula

(F;q.2.3) and US customary units are used for this study'

The current average daily demand flows for the junction nodes of the Anytown system are given

in Table 2.2. The nodes within the old central city area and the industrial area around

node 160 are associated with higher water requirements. The demands at the junction nodes

should be met while maintaining minimum pressures of 40psi.

The fixed-grade nodes are numbered 1-0, 65 and 165 in the Anytowrz system. Node 10 is a

clearwell at the water treatment plant where water from a nearby river is treated. The elevation

of the water level at the clearwell is maintained at 10 ft. Nodes 65 and 165 are elevated storage

tanks both with an elevation of 215 ft and a minimum water level of 10 ft and both with a

volume of 250,000 gal.
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2 Development of a hydraulic simulation model

Table 2.1 The pipes of the Anytown network

The Anytowtt source pump station pumps water to the Anytown system from the water

treatment plant at the clearwell (node 10). The pump station consists of three identical pumps

arranged in parallel. The pump characteristics for the individual pumps are given in Table 2.3.

The rated flow (point of peak efficiency) for each pump is 4000 gpm with 65Vo efficiency. The

efficiencies of the pumps are wire-to-water efficiencies which includes motor and pump

efficiencies.

[Pipel Start
node

End
node

Length, L
(fÐ

Diameter, D
(in)

Hazen-
Williams

roughness, C

Loss
coefficient

(Resistance, R)
2 20 70 12000 IÓ 70 5.348
4 2tJ 3U 12000 I2 r20 8.002
6 20 110 12000 TZ 10 2r.1t3
8l 7tJ 30 9000 I2 10 16.285
10 70 100 6000 t2 lo 10.857

7tJ 90 6000 10 10 26.384
14l 70 ó0 6000 t2 70 10.857
ló 90 ó0 6000 10 70 26.384

t18 60 80 6000 T2 lo I0.857
20 90 EO 6000 10 70 26.384
)') 90 l5t 6000 10 l0 26.384
24 90 100 ó000 l0 10 26.384
26 100 150 6U00 I2 10 10.857

150 80 6000 10 't0 26.',384

30 60 30 ó000 10 t20 9.723
32 3t 40 6000 10 t20 9.123
34 30 50 90u0 10 r20 14.585
JÓ 4t 50 6000 10 120 9.123
38 80 50 ó000 10 t20 9.123
40 ÜU t40 6000 10 tzt) 9.723
42 150 r40 6000 8 t20 z8.EzE
44 160 150 6000 8 t20 28.828
46 100 ró0 6000 8 tzo 28.828
48 1.10 100 ó000 8 10 78.223
)U 110 1óU 6000 t0 tz0 9.723
52 tlu t20 6000 ö t20 28.828
54 160 LZIJ 9000 2 r20 37000.000
5ó I20 130 6000 E r20 28.828
5E 160 t3t 6000 l0 r20 9.723
ó0 130 L70 6000 I r20 28.828
62 1ó0 140 6000 8 t20 28.828
64 t7u 140 12000 E r20 57.ó5ó
óó 140 50 12000 8 r20 57.656
78 o5 60 100 12 r20 0.0667
EU 165 tó0 100 t2 T¿U 0.0667
82 10 20 100 30 140 0.00058
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Node Degree
(number of

connected pipes)

Elevation
(fÐ

Demand
(cfs)

Minimum
allowable

pressure head
(Psi)

10 1 10 Clearwell
ó5 I 225 Elevated storage tank

165 1 225 Elevated storage tank
20 4 20 1.1 14 40
30 5 50 0.446 40
40 2 50 o.446 40
50 4 50 0.446 40
ó0 5 50 1.114 40
70 5 50 I.I14 40
80 5 50 I.I14 40

90 5 50 2.228 40
100 5 50 1.T14 40
110 4 50 I.I14 40
T2IJ 3 t20 o.446 40
130 3 r20 0.446 40
T40 5 80 o.446 40
L50 5 t20 0.446 40

160 7 r20 1.782 40
t70 2 120 o.446 40

2 Development of a hydraulic simulation model

Table 2.2 The nodes of the Anytown network

Table 2.3 Anytown pump characteristics

The pump head characteristic curye for a pump in the Anytown pump station is approximated

by F,q.2.3o.

Hp = -0.372 Qp2 - 0.056 Qo + 300 (2.30)

The set of equivalent characteristic curves for r identical operating parallel pumps in the

Anytown pump station are approximated by F;q.2.31.

Hp = -0.37r(+)'- o.os6 ({). too

Pump flow, Qp

(epm)

Pump head, Ho

(fÐ

Pump effrciency, r7o

(7o)

Pump power, Pp

(horsepower)

0 300 0

2000 292 50 295.2
4000 270 65 4r9.9
ó000 230 55 634.2

8000 181 40 9t4.9
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2 Development of a hydraulic simulation model

2.I0.2 Determination of natural loops and pseudo loops

An algorithm has been developed in this research which defines the pipes in the natural loops

and pseudo loops. The algorithm is outlined below.

In the following discussion, a Breadth First Search (Even, I919) or BFS is a method of

traversing a network by fanning out from some start node s. The start node s corresponds to a

level 0. Every node adjacent to the start node is visited and these nodes are located on level 1.

The level of a node corresponds to the minimum number of pipes connecting the start node and

the node in question. The nodes which are connected to the nodes on level 1 and which have

not already been visited are visited and located on level 2. The sweep of the network in levels

of nodes continues until all the nodes have been visited or until some specified destination node

d is encountered. The BFS will determine the minimum number of pipes in the path between

start node s and destination node d.

The Natural Loops

The structure of the NZ natural loops may be deduced from the node connectivity information

using the following procedure.

Step t. Determine the degree of the nodes.

The 'degree' of a node in the looped network equals the number of pipes (excluding imaginary

pipes used to form pseudo loops) connecting the node to adjacent nodes.

Step 2. Disconnect 'tails' from the looped netvvork.

A node with degree=l and the pipe connecting the node to the looped network may be excluded

from further consideration by the algorithm since the pipe is a 'tail' which is not an edge of a

natural loop.

Step 3. Modify the degree of the remaining nodes.

The degree of nodes adjacent to disconnected nodes are modified (reduced by one for each

adjacent node that is disconnected).

Step 4. Repeat Steps 2 and 3 until there are no nodes of degree=1 remaining.

Step 5. Establish a 'key' node and a 'start' node.

A key node is a node in the pruned network of least degree, preferably of degree=2, but

occasionally only nodes of degree>3 will remain (in rare situations, using a key node with

degree>3 will identify a loop which is not a natural toop). The start node is a node adjacent to

the key node. A start node ofleast degree is selected ifthe key node has degree)3.

Step 6. Pedorm a Bread.th First Search (BFS) extending from the start node in search of the

key node.

A BFS originates from the start node without backtracking until the key node is determined.

The BFS identifies the minimum path of pipes and consequently the natural loop.
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2 Development of a hydraulic simulation model

Step 7. Store the path of pipes constituting a loop.

The loop is defined as the path of pipes determined in Step 6 plus the pipe connecting the start

node and key node.

Step 8. Remove the pipe connecting the start node to the key node'

Step 9. Repeat Steps 2 to I until the network is completely removed in Step 2.

The Pseudo Loops

The number of pseudo loops (NF-l) equals the number of fixed-grade nodes NF less one.

Step I. Establish a key node.

The key node may be any fixed-grade node within the network which does not already belong

to a pseudo loop.

Step 2. Perform a Breadth First Search (BFS) through the complete original looped netvvork

until anotherfixed-grade node is reached.

The minimum number of pipes between the fixed-grade nodes and an imaginary pipe between

the fixed-grade nodes forms the pseudo loop. The pipes constituting the pseudo loop are

stored. The energy loss in the imaginary pipe is equal to the difference in total head from the

end.fixed-grade to the start fixed-grade node.

Step 3. Repeat Steps I and 2 until every fixed-grade node belongs to at least one pseudo loop.

The Anytown pipe network contains 36 pipes (NP=36), 16 junction nodes (N/=16) and 3

fixed-grade nodes (NF=3). By rearranging Eq. 2.1, thete ate NL=NP-N/-(NF-1)=18 natural

loops and there are (NF-1)=2 pseudo loops. The algorithms described above were used to find

the 18 natural loops and2 pseudo loops of the Anytown network.

The natural Ioops A to R (in the order they were found) are shown in Figure 2.6. First, the

'tails' are removed from the network which includes the three source nodes L0, 65 and 165

and their respective adjoining pipes. A node of degree=2 (node 170) is chosen as the 'key'

node and an adjacent node (node 140) is chosen as the 'start' node. A BFS extends from

node 140 outwards in all directions until the key node 170 is reached. The path of pipes [64],

t621, [58] and [60] form the natural loop A. Pipe [64] is now removed from the network.

Consequently, pipe [60] represents a tail and is removed also. The nodes 130 and 160 are

selected to be the new key node and start node respectively and a BFS extending from node

160 in search of node 130 identifies natural loop B. The process continues until the set of

natural loops is defined.
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2 Development of a hydraulic simulation model
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Figure 2.6 The natural loops (A-R) and pseudo loops (S-T) identified for the

Anytown pipe network

After the natural loops A to M have been identified, the network has reduced to a bicycle-wheel

network centred about node 90. Only nodes of degree)3 remain. Node 150 is arbitrarily

chosen as the key node. If node 90 is chosen as the start node, then the new loop N (pipes

1221,Í261and[laD is a natural loop but the next loop O (pipes 1261,1241, [20] and [28]) is not

a natural loop. Similarly, if node 90 is chosen as the key node, the set of natural loops is not

found. Under these circumstances, the algorithm chooses the key node of least degree and

adjacent start node of least degree from the potential key nodes and start nodes. Therefore,

node 150 is chosen as the key node and node 100 is chosen as the start node. The path of

pipes in the natural loops may be in a clockwise or an anti-clockwise direction. The direction of

the loops is shown in Figure 2.6 and the path of pipes in the loops are given inTable 2.4.
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2 Development of a hydraulic simulation model

Table 2.4 The loops, initially assumed loop flow corrections and final loop

flow corrections (after 6 iterations)

* A negative sign indicates the assumed pipe flow direction is opposite to the assumed loop

flow direction

The 2 pseudo loops labelled S and T in Figure 2.6 were both found while performing a BFS

starting at node 10. The equivalent head loss in the imaginary pipes from node 65 to node 10

and from node 165 to node 10 is equal to 215 ft for both pseudo loops (elevation difference

between water levels).

The algorithm developed in this thesis resembles the 'loop defining algorithm'proposed by Epp

and Fowler (1970). Epp and Fowler suggest choosing the natural loops will generally reduce

the bandwidth of the Jacobian matrix, although not necessarily improve convergence of the

Newton-Raphson method.

Loop Path of pipes
for the loops*

Initial flow
corrections,

q(o)
(cfs)

Adjustments
(Iteration 1)

6q
(cfs)

Improved tlow
corrections,

q(1 )

(cfs)

.Final tlow
corrections,

q(6)
(cfs)

1 64 -62 58 60 0.05 -0.157 -0.107 -0.r76
2 -58 54 56 0.t -0.71 1 -0.611 -0.904
3 44 42 -62 0.15 -0.164 -0.014 -o.239
4 -54 -50 52 o.2 -0.166 -0.55ó -0.913
5 44 -26 46 0.25 o.o92 0.342 0.654
6 -4228 40 0.3 -0.185 0.115 -0.226

7 50 -46 -48 0.35 o.439 0.7E9 r.025
82 6 50 -80 o.4 -2.602 -2.202 -3.527

9 -26 -2422 0.45 -0.505 -0.055 -0.939
10 -40 38 -ó6 0.5 -0.513 -0.013 -0.205
11 -2220 -28 0.55 -o.2rr o.339 -0.219
l2 48 -rO -2 6 0.6 o.257 0.857 t.253

13 (Pseudo 82 4 -30 -78 0.ó5 -t.328 -0.678 -u.ó0E

I4 -24 -t2 rO o.7 -0.0ó8 0.632 r.214
15 -38 -18 30 34 0.75 - 1.305 -0.555 -0.ó90
1ó -20 1ó 18 0.8 -0.09s 0.7u5 0.056
T7 28 -4 0.85 -0.79t 0.059 o.259
1,8 -8 t4 30 0.9 -t.210 -o.310 0.2ó8
L9 -t2 t4 -t6 0.95 0.411 1.361 0.606
20 36 -34 32 1.0 -0.5 ró 0.484 o.410
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2 Development of a hydraulic simulation model

2.10.3 Assumed initial flows

An algorithm was devised in this research which utilised node connectivity and junction node

demands to determine a set of initial flows in the pipes such that continuity was satisfied. The

algorithm is outlined in Steps 1 to 9 below.

Step 1. Establish a tree network originating from a principal source node.

The principal source node is usually the source node expected to supply the greatest proportion

of flow to the system. A tree network is derived from the original looped network by starting

at the principal source node and systematically visiting all the downstream nodes such that any

two nodes are connected by just one path of pipes. The downstream nodes are visited by a

Breadth First Search (BFS). Additional supply nodes (such as tanks) may not be a part of the

tree network. The pipe flows in the tree (assumed initial flows in the looped network) are

determined from the node demands and continuity in Steps 2to 9.

Epp and Fowler (1970) used a tree network called a 'minimal spanning tree'. The minimal

spanning tree was built by starting at any node and appending the pipe of minimum length to

the tree network which connects the tree to any isolated node. Epp and Fowler claim use of the

minimal spanning tree will lead to a reasonable approximation of the flow distribution, reduce

the number of iterations required and assure convergence of the iterative Newton-Raphson

solution technique, since pipe resistance is proportional to pipe length.

Step 2. Assign a cumulative demand to each node initially equal to the demand at this node.

Step 3. Count the degree of the junction nodes in the tree netvvork.

The degree of a node in the tree network equals the number of pipes connecting the node to an

adjacent node in the tree.

Step 4. Consider a node with degree=1.

The algorithm considers all junction nodes with degree=1 in the tree consecutively.

Step 5. The flow in the pipe connected to the node of degree=l under consideration equals the

current cumulative demand at the iunction node.

Step 6. The junction node of Steps 4 and 5 and the adjacent pipe are disconnected from the

tree.

Step 7. The degree of the node immediately upstreqm in the tree is reduced by 1.

Step 8. The cumulative flow imbalance at the node immediately upstreann is adiusted by the

flow in the disconnected pipe.

Step 9. Repeat Steps 4 to L Proceed upstream through the tree until the root source node is

reached.
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2 Development of a hydraulic simulation model

The flow pattern established in the tree network in the above procedure and a zero flow in the

pipes that were not part of this tree represents an initial flow pattern (that satisfies continuity) for

the original looped network to be simulated.

Consider the application of the procedure described above to the Anytown pipe network.

Figure 2.7 represents the tree network generated by conducting a BFS on the Anytowrz looped

pipe network originating from the clearwell at source node 10. The nodes of degree=l in the

tree network (excluding the root source node L0) are the extreme downstream junction nodes

(nodes 40, 60, 80, L00, 140, 150, 160 and 170). Therefore, the initial flow in pipe [66]

from node 50 to node 140 is equal to the demand at node L40 (0.446 cfs). Similarly, the

initial flow in pipe [38] from node 50 to node 80 is equal to the demand at node 80

(l.lI4 cfs). The nodes 140 and 80 and the adjacent pipes [66] and [38] are removed from the

tree and node 50 has a modified degree=l. The cumulative flow imbalance at node 50 is the

sum of the demand at node 50 and the flows in pipes [66] and [38]. The initial flow in pipe

[34] from node 30 to node 50 is equal to the cumulative flow imbalance at node 50

(2.005 cfs). The algorithm retreats upstream from the furthest downstream nodes until the root

source node 10 is reached.

50
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150O--

170

160 qõõ-r1ol

Anytownpump
statlon

130 t6l

I
Figure 2.7 A tree network generated by a Breadth First Search (BFS)

originating from the principal source node 10
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2 Development of a hydraulic simulation model

The set of assumed initial flows for the Anytown system are given in Table 2.5. It may be

anticipated that a tree network which fans out from a principal source node will reasonably

guess the patterns of the flow. The initial flows assigned to the main supply branches in pipes

l2l, l4l and [6] is approximately one third the total flow into the system (supplied from the

principal source node 1.0) which appears to be a rational estimate.

Table 2.5 The initially assumed flows and the balanced flows

in the Anytown system

* head loss includes pump head lift (hf - Hp)

Pipe Loss
coefficient

(Resistance)
R

Initial
flow

Qo
(cfs)

Final
flow
o

(cfs)

Head
loss
h¡
(flo

Head
loss/
1000ft

2 5.348 4.901 3.901 66.722 5.560
4 8.002 4.010 3.r43 66.-t',¿t) 5.560
6 21.713 4.233 1.958 75.385 6.282
U 1ó.285 0.0 -0.0093 -0.0028 -0.0003
t0l 10.857 1.1 14 l. 135 13.718 2.286
I2 26.384 2.613 0.794 17.190 2.865
t4 10.857 0.0 o.814 8.462 1.410
IÓ 26.384 U.U -0.550 -8.121 -1.455
18 10.857 0.0 o.146 6.3r5 1.053
2t) 26.384 0.0 -0.215 -2.4r2 -0.402

26.364 0.446 -o.215 -2.410 -o.402
24 26.384 0.0 -0.335 -3.472 -0.579

10.857 0.0 0.285 t.062 o.r77
26.384 0.0 -0.00ó8 -0.0025 -0.0004

30 9.123 -I.I14 -o.928 -8.465 -l.4ll
32 9.723 tJ.446 0.916 8.260 r.377
341 14.585 2.OO5 0.E44 10.663 1.185

3ó 9.723 0.0 o.470 2.403 0.401
38 9.723 -r.t14 -0.629 -4.111 -0.686
4U 9.123 0.0 -0.020 -0.0071 -0.00r2
42 28.828 0.0 -0.013 -0.0097 -0.0016
44 28.828 0.0 0.415 5.ó5ó o.943
46 28.828 0.0 -0.37r -4.594 -0.166

48 78.223 u.0 o.228 5.05ó 0.843
50 9.723 r.182 0.193 0.462 0.077
52 28.828 r.331 o.424 5.873 o.979
54 37000.000 0.0 0.0092 6.252 0.695

28.828 0.891 -0.013 -0.0090 -0.0015
58 9.723 0.0 0.728 5.403 0.900

28.828 o.446 o.210 2.541
62 28.828 0.0 0.415 5.646

57.65ó 0.0 -0.17ó -2.304
66 57.656 -o.446 -o.240 -4.1I0
78 0.0667 0.0 0.608 o.o21

0.06ó7 0.0 3.527 0.688

L82l 0.00058 t4.257 to.r22 -290.1 58' -2901.600*
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2 Development of a hydraulic simulation model

2.10.4 Near minimum bandwidth of the Jacobian matrix

A Jacobian matrix (8q,.2.18) is reduced for each iteration of the Newton-Raphson technique

applied to solve the loop equations. The size of the Jacobian is n by n, where n equals the

number of loops, NL+(NF-1). The zero-nonzero structure of the Jacobian will depend on the

chosen set of loops (preferably the natural loops and minimum path pseudo loops) and the loop

numbering scheme.

The loops are assigned loop identification numbers which associate the loops with rows (and

columns) in the Jacobian matrix of coefficients. The coefficients of the Jacobian on the leading

diagonal are nonzero. The other nonzero entries in a row of the Jacobian occur in the columns

corresponding to loops with common edges. The bandwidth of the matrix is2k+I, where k

(the half bandwidth) is the maximum number of parallel diagonals traversed by any row

between the leading diagonal and a nonzero entry (Martin and Peters, 1963). The set of natural

loops and pseudo loops may be reordered (assigned alternative loop identification numbers) in

such a way that minimises the bandwidth of the Jacobian matrix. The bandwidth is minimised

by ordering the loops so that the nonzero entries in the rows are as close as possible to the

leading diagonal. Epp and Fowler (1970) described a 'loop labelling algorithm' which

determines a near minimum bandwidth and hence reduces total computational time required.

Epp and Fowler estimated the computational time to solve the Jacobian matrix is proportional to

(n)(k)2 in which n is the number of rows (i.e., the number of loops) and k is the half

bandwidth. Knowledge of the bandwidth is used to speed the reduction of the Jacobian, since

arithmetic computations need only be considered inside the bandwidth. The procedure

described by Epp and Fowler is summa¡ised in Steps 1 to 7 below.

Step 1. Choose a starting loop to label Loop I that is either a pseudo loop or a natural loop

containing a node with degree=2 (a 'corTter' node).

The loops containing a node with degree=2tend to occur at 'comers' in the network.

Step 2. Consider the loop with the smallest identification number which has adiacent loops

which are not yet labelled.

Step 3. The adjacent unlabelled loops are labelled by observing the rule:

The adjacent unlabelled loop next to be assigned an identification number is the one with the

fewest adjacent labelled loops.

Step 4. Repeat Steps 2 to 3 until all the loops have been labelled'

Step 5. Calculate the bandwidth of the Jacobian matrix generated by the loop numbers.

The bandwidth of the Jacobian is 2k+I, where k (the half bandwidth) is the maximum

difference between the loop numbers of any two adjacent loops.

Step 6. Repeat the Steps I to 5 for all pseudo loops and for all natural loops containing

'corner nodes',
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2 Development of a hydraulic simulation model

Step 7. The chosen set of labelled loops is the one corresponding to the smallest bandwidth.

The resulting bandwidth is a near minimum bandwidth. It is not guaranteed to be the minimum

possible bandwidth.

The algorithm for determining a near minimum bandwidth is applied to the 20 loops of the

Anytown pipe network (18 natural loops and2 pseudo loops) referenced as Loops A to T in

Figure 2.6. There are four potential loops to be labelled Loop 1 including the natural loops A

and D with 'corner' nodes 170 and 40 respectively and the pseudo loops S and T. Loop A

labelled as Loop 1 yields the smallest bandwidth of 11 (compared to 15 for loop D, 15 for loop

S and I'7 for loop T). The algorithm chooses the loops as 1 to 20 as shown in Figure 2.8

starting with loop A. The bandwidth equals 2k+1, where k is equal to the maximum difference

between the loop numbers of any two adjacent loops. For the configuration of loops in

Figure 2.8, k=5 since loop 7 is adjacent to loop L2 (and loop 12 is adjacent to loop 17, etc.).

Therefore, the bandwidth is 2k+l=IL
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Figure 2.8 The loops ordered for near minimum bandwidth
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2 Development of a hydraulic simulation model

2.10.5 The Newton-Raphson method applied to the loop equations

The Newton-Raphson method is applied to the set of N¿+(NF-l) nonlinear loop equations in

F;q.2.29. The loop equations are formed with the set of flow corrections around a loop of

pipes as the unknowns. Flow corrections around the loops q modify assumed initial flows in

the pipes Qs such that the balanced flow distribution is given bV (QÈÐ. The initial flows in

the network are selected such that continuity of flow at each node is satisfied. Since the flow

corrections are added (or subtracted) from all the pipes in a loop, the improved flow

approximations will continue to satisfy continuity. According to Eq. 2,I7, the Newton-

Raphson method generates the set of NZ+(NF-1) simultaneous linear equations inEq. 232

with a set of adjustments to the flow corrections around the loops âq as the unknowns. The

linear system of equations in Eq. 232 is equivalent to the matrix expression in Eq. 2.33 (for the

Anytown network).

Pa,* P õaz+
dQt oQz

* -- 
i4L- 

õqNL+(NF-t)=-Ft
oQwt+(¡,lr-D

for loops I=1,..., NL+(NF-1)

-F1

-Fz

(2.32)

ðFr
ðqt
òFz
ðqt

ðFr
òqz
ðFz
òqz

ðFr
òqzo
òFz
òqzo

õq,

õqz

õqzo
ðFzo òFzo

(2.33)

ðqt òq,
òFzo
ðqzo -Fzo

The coeffìcients in the system of linear equations in Eq. 2.32 arc the functions Fl(q) and partial

derivatives of F¡(q) evaluated at the current values of the flow corrections q. Appropriate

matrix techniques are used to reduce the Jacobian matrix to solve for the adjustments to the flow

corrections around the loops ôq. The flow corrections q are superseded by the adjusted flow

corrections q+õq to complete one iteration of the Newton-Raphson technique applied to the

loop equations. The adjusted flow conections q+õq move the NZ+(NF-1) functions Flq)

closer to zero simultaneously.

As an illustration, the functions of the loop flow corrections (i.e., the loop corrective flow

equations) and the partial derivatives with respect to the loop flow corrections for natural loop

20 and pseudo loop 13 of the Anytown pipe network a¡e formulated below. The functions and

partial derivatives are evaluated for the fîrst iteration of the Newton-Raphson method.
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2 Development of a hydraulic simulation model

Natural Loop 20

The loop equation for natural loop 20 of the Anytown network is expressed by function F2s in

¡.;q. 2.34 (according to Eq. 2.28). The natural loop 20 is formed by the path of pipes [36],

[34] and l32l in an anti-clockwise direction as shown in Figure 2.8. The function F26 is equal

to the net sum of the head losses in the pipes [36], l34l and Í32).

F2o= h¡^o- h¡^oI h¡^, (2.34)

in which hfr= friction head loss in pipe k

The direction of a pipe as indicated in Figure 2.8 represents the arbitrarily assumed direction of

positive pipe flow. The actual pipe flow (and head loss) will be negative where the pipe flow

direction is assumed incorrectly. The direction of a loop (clockwise or anti-clockwise) also

indicated in Figure 2.8 is the arbitrarily assumed direction of positive loop flow correction.

The head losses in Eq. 2.34 arc expressed in terms of pipe flows using the head loss formula

such that the loop equations for natural loop 20 are expressed by the function of loop flow

corrections in Eq. 2.35. The flow in pipe [36] equals the initial flow in pipe [36] plus the loop

flow correction for loop 20. Similarly, the flow in pipe [32] equals the initial flow in pipe [32]

plus the flow correction for loop 20. Since pipe t34l is common to loops 20 and L5, the flow

in pipe I34l is equal to the initial flow in pipe [34] plus the flow correction for loop 20 minus

the flow correction for loop 15. The flow correction for the common loop 15 is subtracted

since the assumed direction of positive flow correction in loop 15 (clockwise) opposes the

direction of positive loop flow coffection in loop 20 (anti-clockwise).

F 20 = Rz ø(Q o *+ q 20) lQo ro+ q2dn - t + R z +t Qo *+ Qzo- q t s) l- Q oro+ q zo- q t sl'' 
| +

Rzz(Qorr+8zo)lQorr+qzd"-r (2.35)

in which QOt = initial flow in pipe k, R¿ = resistance of pipe fr and q¡= flow correction for

loop I andn = the exponent in the head loss formula.

The initial flow corrections q(0) for the loops are chosen as q¡Q)-q¡-1(o)+0.05 (with 41(0)=0.05)

as shown in Table 2.4. The flow corrections q(0) are chosen in this way so that there was no

possibility of a loop equation becoming redundant for the first iteration. The pipe resistances

and initial pipe flow assumptions are given in Table 2.5. Hence, the function F2ç is evaluated

for the first iteration of the Newton-Raphson method:

F2o = e.723) + (-41.334) + (19.250) = -12.37
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2 Development of a hydraulic simulation model

The partial derivative of F2s with respectto q2s is expressed by Eq. 2.36 and evaluated for the

first iteration of the Newton-Raphson technique. The sign of the partial derivatives is

independent of the sign of the pipe flow (Martin and Peters, 1963) and is only dependent on the

sign of the flow correction.

# = nR3 iQs^.+q2dn- 
| + nh l- Qs,o* qzo- q t sl'' 

| + nfu )Qu'+q2d'- | (2.36)

The partial derivative of F2s with respect to the flow correction in the common loop 15, 415 is

evaluated using 8q.2.37. The remaining partial derivatives of F2s with respectto q aÍe equal

to 0.0 as stated by Eq. 2.38.

Hence. ?o'o = (1s.007) + (43.619) + (24.655) = 86.28' dqzo

# = -nRtÀ-Qo,n+q2o-qtsln-t = -43.62 (2.37)

{ l;l=I,..., N L+(N F - l) J+20J+l 5 | (2.38)

Pseudo Loop 13

The pseudo loop 13 is formed by the path of pipes 1821, Í41, [30] and [78]. The function F13

in Eqs. 2.39 and 2.40 must account for the head losses in pipes [82],l4l, [30] and [78], the

pumping head gain in pipe 182f, Hps2 (with r identical parallel pumps operating), and the

elevation difference between the water levels of fixed-grade nodes L0 and 65, AEs-65.

Fß= hf*"- HPrr+ hrn- hfrn- hfr*- ABn-es (2.39)

ð=F'o 
= o.o

òqt

Ft3 = Rsz(eo,,+qr¡+øs) lQo,,+qtz+qdn-L - (^tP*Y42 + nrpeËf;tlls)* ao,J*

Rq(Qoo+qß-qn)lQoo+qn-qnl"-r + R¡o(-00, n*8tt-Qs-qß)l-Qorr+qß-qts-qßln-r +

Rza(-go,*+qn\l-Qo,*+qnl'-r - (Ero - Ees) QA})

Hence, Ft3= (0.0904) - (277.780)+(95.291) + (0.174) + (0.030) - (-215.0) =32.81
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2 Development of a hydraulic simulation model

The partial derivatives of F13 with respectto q arc given by Eqs. 2.4I-2.46 and evaluated for

the first iteration of the Newton-Raphson method. The evaluated functions and partial

derivatives are inserted in the complete matrix equation shown inBq.2'47 .

a?)Qorr+qß+qal

?"'' = nRs)Qs^,+qß*qsl"-t -
oQtl

sÅQorr+q3+qsl Bzu). 
nR y'Qs,+ q 

1 y q nl'- | +

= 2.88
12 r

+
12

nR3 j- Q s 
^n+ 

Q t z - Q t s - Q ßln 
- | + nR1 j- Qo, r+ Q nl'- |

Hence. ?"t' = (0.0109) - (-z.Bi5) + (46.322)+ (2.828) + (0.0857) = 52.t2' dqn

T# = nRs)Qs*,+qtz+qsl''-t - , Bsz-r.-

# = -nRtd-Qoro+ett-ets-e ßl'-r = -2.83

?"t' = -nRlQço+qn-qnl'-t = -46.322
oQtt

H = -nRzd-Qo,o+Qtz-Q ts-Qßln-t = -2.83

Ingeneral, ff= o.o

(2.4t)

(2.42)

(2.43)

(2.44)

(2.4s)

II:I=I ,..., NL+(NF- 1 )J+8;I+13;I+15;I+17 ;l+I8l (2.46)

The complete Jacobian matrix equation of functions and partial derivatives evaluated at the

starting loop flow corrections q(0) is formulated in Eq. 2.47 for the first iteration of the

Newton-Raphson method. The Jacobian matrix is reduced using sparse matrix routines

(Section 2.L0.7) to solve for the adjustments ôq to the loop flow corrections. The adjustments

r&q to the loop flow corrections g(0) ¿¡¡d the improved loop flow corrections q1)-q(o)¡$q fç¡

the first iteration are given in Table 2.4. A new matrix equation of functions and partial

derivatives evaluated at the improved flow corrections q(1) is set up and solved and the

procedure is repeated until some specified convergence criterion (Section 2.10.6) is met.
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2 Development of a hydraulic simulation model

2.L0.6 Convergence test

The purpose of a convergence test is to determine whether the Newton-Raphson method has

converged to a solution. In addition, a maximum number of iterations is specified. Wood and

Rayes (1981) used a convergence criterion which stopped iterations when the average change in

flows in the pipes between successive iterations is less than0.5Vo. A similar convergence test

is employed in this thesis. Computations are terminated when the average change in flow

corrections around the loops between successive iterations, m is less than some specified

relative accuracy, Aqors and the maximum change in flow corrections between successive

iterations is less than some other specified accuracy, Aq^ot. The convergence test is

summarised by Eqs. 2.48 and2.49.

NL+(NF-l)

L=l 1 ALore
NL+(NF-l)

l=l

q,(m) - qt(m-L)

(2.48)

(2.49)mQx 3 Aq^o, for loops l=1,..., NI+(NF-1)
qí*)

in which q¡@) - computed flow correction for loop / for the current iteration m and q,@-r) =

computed flow correction for loop I for the previous iteration m-1.

Based on an average change Aeors=0.l%o and a maximum change Aq*o*=0.57o, calculations

were terminated after only 6 iterations of the Newton-Raphson method applied to the loop

corrective flow equations for the Anytowr¿ network. The convergence to the solution for the

analysis of the Anytown system is shown in Table 2.6.

Table 2.6 Convergence of the Newton-Raphson method applied to the loop

equations for the Anytown network

Iteration Maximumchange
in q (Vo)

Average change
inq (Vo)

I 260.2 t loop 8) 114. r
2 123.5 t loop 8) 56.1

3 13.8 ( 1.26
4 1.70 t loop 3) 0.72
5 O.73 t loop 2) 0.18
6 0.27 t loop 2) 0.065
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2 Development of a hydraulic simulation model

The final computed flow corrections for the loops after 6 iterations qG) v¡s presented in

Table 2.4 and the balanced pipe flows are presented in Table 2.5. The Anytown source pump

station contributes most (7I.ÙVo) of the total network demand for the average daily demand

flows with the elevated tanks 65 and 165 at their low water levels (225.0 ft). Tank 65

supplies 4.3Vo of the network demand while tank 1,65 supplies 24.lVo of the network demand.

The flow fans out from node 20 and then from nodes 30, 70 and 1-1-0. Pipes [28], [40] and

142) and pipes [54], [56] and [8] convey relatively small flows.

The accuracy of the solution is checked by computing the unbalanced heads around the loops as

shown in Table 2.7. The relatively high unbalanced heads for loops 2 and 4 may be attributed

to the very high resistance of pipe [54] which is common to both loops. The very high

resistance of pipe [54] results in a significant head loss for a very low flow. The unbalanced

heads in loops 2 and4 could be reduced by applying a more stringent convergence criterion.

Table 2.7 The unbalanced head losses around the loops

Loop Path of pipes Unbalanced head losses
(fÐ

1 64 -62 58 ó0 0.00002
2 -58 54 56 o.83986
3 44 42 -62 0.00000
4 -54 -50 52 -0.84020
5 44 -26 46 0.00000
ó -4228 40 0.00000
7 50 -4ó -4E 0.00001

I (Pseudo) 82 6 50 -80 -2r4.99999
9 -26 -2422 0.00000
1t -40 38 -ó6 0.00000
11 -2220 -28 0.00000
t2 48 -tO -2 6 0.00000

13 (Pseudo) 82 4 -30 -78 -215.00000
T4 -24 -r2 rO 0.00000
15 -38 -18 3034 0.00000
ló -20 1ó 18 0.00000
t7 28 -4 0.00000
1ü -8 14 30 0.00000
L9 -12 14 -16 0.00000
20 36 -34 32 0.00000
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2 Development of a hydraulic simulation model

2.10.7 Sparse matrix routines

The chosen set of loops (preferably natural loops and minimum path pseudo loops) and the

numbering of the loops (preferably for near minimum bandwidth) determines the structure of

the Jacobian matrix to be reduced to solve the set of loop equations. To increase the efficiency

of the adopted method of hydraulic analysis, sparse matrix routines were introduced to

efficiently reduce the sparse Jacobian matrices. The Jacobian matrices are scaled and a practical

and efficient order of pivot elements is determined before the matrices are reduced.

A matrix is said to be sparse if it is comprised of only a small percentage of nonzero elements.

An n by n matrix is classified as sparse if it is comprised of to the order of only n nonzero

elements. The Newton-Raphson method applied to the loop equations requires the solution of a

system of n=NL+(NF-1) linearised equations:

J õq=-F (2.50)

õq = -¡-t P (2.sr)

in whichul = the (NL+(NF-1)) by (NL+(NF-l)) Jacobian matrix of partial derivatives evaluated

at the current values of the flow corrections, J'L = the inverse of the Jacobian, F = the

(NZ+(NF-l)) by 1 matrix of functions evaluated at the current values of the loop flow

corrections , fu = the (NL+(NF-1)) by 1 matrix of the unknown loop flow corrections.

The (NZ+(NF-1)) by (NZ+(NF-1)) Jacobian matrix of coefficients J is usually sparse.

E;q. 2.5O was written in full in Eq. 2.47 for the first iteration of the Newton-Raphson method

applied to the 20 loop equations of the Anytown pipe network. The Jacobian produced by the

Newton-Raphson method applied to the loop equations typically comprises of 3 or 4 nonzero

elements per row of NI+(NF-l) elements. The rows (and columns) of the Jacobian

correspond to loops of the network. The number of nonzeros in a row of the Jacobian depends

on the number of loops adjacent (with common pipes) to the loop associated with this row. The

Jacobian matrix will usually have many zeros and it is worthwhile using sparse matrix

techniques that avoid operating with the zeros.

The augmented Jacobian matrix uI' is comprised of the matrix -F' appended to the Jacobian rl

or

such that:

J' = LJ l'Fl
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2 Development of a hydraulic simulation model

Gauss-J ordan Elimination

The method of solution of E;q.2.5O considered is based on Gauss-Jordan elimination. The

pivot elements.I'(R,C) are chosen on the leading diagonal (where rows r = R and columns c =

C such that R - C) using the strategy described below. The nonzero elements above and below

the pivot element are eliminated by row reduction operations. A set of row reduction operations

for a sequence of pivot elements are applied to the augmented Jacobian matrix,J' which reduces

,I to the identity matrix. The same row operations applied to the right hand side of the

augmented matrix.I'yields the solution ô4.

The pivot elements were chosen on the leading diagonal since in general these elements are the

most suitable pivots. Pivots on the leading diagonal help to maintain a minimum bandwidth and

directly reduce the Jacobian matrix to the identity matrix. Having chosen an appropriate pivot

element J'(R,C), the Gauss-Jordan elimination considers the rows r with nonzero elements in

the pivot column C. The rows r are operated on by the pivot row R for all the columns c with

nonzeroelementsinthepivotrowJ'(R,c)'Theelementl'¡¡{r'c)forthelthoperationofthe
Gauss-Jordan reduction overwrites the element J'¡(r'c) according to the formula:

r+R (2.s3)

The nonzero elements in the pivot column are reduced to 0.0 since if the column c equals the

pivot column C in Eq. 2.53 then:

J' ¡*{r,C) = J' dr,C) - J ¡(r,C) = 0.0 (2.s4)

The pivot row R is divided by the pivot element such that the pivot element-I'(R,C)=1.0

J'¡a 1(r,c) - J',(r,c) - 
J ¡(R tc) - 

J' ¡(r'C)

J i(R,C)

(2.ss)

The operations for columns c in rows r (r # R) given by Eq. 2.53 and for columns c in row R

given by Eq. 2.55 need only be performed for elements within the bandwidth of the Jacobian.

The half bandwidth k is the maximum number of columns traversed between the leading

diagonal and another nonzero element in the same row. The half bandwidth of the Jacobian for

the Anytown network in Eq. 2.47 was reduced to k=5 by rearranging the loop identification

numbers in Section 2.10.4. No arithmetic operations are performed beyond the bandwidth in

the pivot column and pivot row. It is unnecessary to visit elements beyond the bandwidth when

the Jacobian is originally generated and scaled. Should an operation in Eq. 2.53 overwrite an
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2 Development of a hydraulic simulatiott model

element J'(r,c) where lr-cl>k, then the half bandwidth becomes k=lr-cl. The operations in Eq.

2.53 and2.55 are repeated for a chosen sequence of NL+(NF-l) pivot elements.

Gaussian elimination pivots about the elements of the leading diagonal working from the top left

hand corner and systematically eliminating the elements below the leading diagonal in forward

elimination. The unknowns are computed by a back substitution through the modified linear

equations above the leading diagonal. In Gaussian elimination, the number of operations are

halved compared to Gauss-Jordan elimination, however Gaussian elimination requires a series

of row and column interchanges to bring the ith pivot element to the leading diagonal in the ith

row. The row and column interchanges will not help to maintain the minimum bandwidth.

Row Scaling

The magnitude of the nonzero elements of the Jacobian matrix may differ significantly from the

magnitude of other nonzero elements in the same row (or column). Numerical instability may

arise when large numbers are added to small numbers during the reduction. The difference in

the magnitudes of element J(2,1) and element J(2,2) in the Jacobian for the Anytown network

(before scaling) in Eq. 2.47 wov\d indicate the potential danger of numerical instability during

the row reduction operations. A simple method of scaling the matrix before the reduction

begins can be applied to assure the matrix elements are of comparable magnitude. Row scaling

consists of dividing each row by the element having the largest absolute value in that row

(Tewarson,Igl3). The scaled, augmented Jacobian J' for the Anytown network derived from

the matrix equation in Eq. 2.41 is presented in Eq. 2.56.

Any computational effort spent to efficiently reduce the sparse Jacobian matrix 
"I 

is justified

since Jacobian matrices for each iteration of the Newton-Raphson technique have identical zero-

nonzero structures with numerical values of a comparable scale (after scaling). The Jacobian

matrices associated with identical pipe network layouts (proposed by the optimisation model)

have identical zero-nonzero structures. A sequence of pivot elements to reduce the sparse

matrix by Gauss-Jordan elimination may be established and stored to be applied to all the

identical matrices encountered. A substantial amount of time can be saved if trivial operations

involving zeros are not performed. The sequence of pivots helps to maintain numerical stability

and at the same time limits the amount of fill-in.
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2 Development of a hydraulic simulation model

Strategy for Selectíng Suítable Pivot Elements

Markowitz threshold pivoting is a successful and widely used criterion for choosing which

element is the next most suitable pivot (Parisi, 1981). The pivot is chosen as the nonzero

element J'(R,C) which minimises the product in Eq. 2.57 and which satisfies one of the two

conditions in Eqs. 2.58 and2.59.

(NZC)(NZR) (2.s7)

in which NZC = the number of (columns with) nonzero elements in row R and NZR = the

number of (rows with) nonzero elements in column C for the proposed pivot element 
"I'(R,C).

[r'tn,cj ) max(V'rr,c>|.") for a¡ rows r=1,..., NZ+(NF-r) (2.s8)

or

þ'tn,Cj ) max(þ'1n,.¡l ., ) for all columns c=I,..-, NZ+(NF-1) (2.59)

The threshold parameter, ø is specified in the interval [0.0, 1.0]. Choosing u=LO is to pivot to

maintain numerical stability alone while choosing ø=0.0 is to pivot to maintain sparsity alone.

A value of ø=0.1 is recommended as being a good compromise (Parisi 1981).

In this research, a modified form of Markowitz threshold pivoting is employed to determine the

next pivot element. The pivot is chosen as the elementJ'(R,C) such that:

(1) R = C (i.e. the pivot element J'(R,C) is on the leading diagonal)

(2) one of the two conditions in Eqs. 2.58 and2.59 is satisfied

(3) the product in Eq. 2.60 is minimised:

(f.o'.)(ä','-^)
(2.60)

In words, F:q.2.57 is the product of the number of nonzero elements in the pivot row R and the

number of nonzero elements in the pivot column C. The minimisation of this product helps to

minimise the amount of fitl-in caused by the row operations. The minimisation of the modif,red

product in Eq. 2.60 may be appropriate for the reduction here since the modified product takes

into account the distance of the nonzero elements J'(R,c) and J'(r',C) from the pivot element

J'(R,C). The further these elements are from the pivot element on the leading diagonal, the

greater the chance the half bandwidth will be extended when a nonzero element is placed

beyond the bandwidth by a row reduction operation.

for columns c'such that u/'(R,c)t0.0 and

for rows r'such that J'(r',C)+0.0
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2 Development of a hydraulic simulation model

The first pivot element is chosen for the scaled Jacobian in Eq. 2.57 as shown in Table 2.8.

The pivot element is chosen as J'(20,20) by Markowitz threshold pivoting and J'(2,2) by the

modified Markowitz threshold pivoting. The elements of the leading diagonal are usually the

element of greatest magnitude in a row or column. The modified product in Eq. 2.60 favours

element J'(1,1) or J'(2,2) over element J'(20,20) for the first pivot element even though rows

I and2 contain more nonzero elements than row 20, since the nonzero elements in rows 1 and

2 are closer to the leading diagonal.

Table 2.8 Potential pivot elements for the scaled Jacobian matrix
for the Anytown network in Eq. 2.56

T the pivot element is selected on the leading diagonal such that.R=C
* chosen pivot elements

Element
J'ß,C)1

Product
(F,q.2.s1)

Moditied product
(Eq. 2.60)

Max. element
in row R

Max. element
in column C

J'r 1,1 9 9 1.0 1.0
J'(2,2)=l.g 9 g* 1.0 1.0

J', 3,3 IÓ 49 1.0 1.0

J'i 4,4 r= I.0 1ó 8l 1.0 1.0
J'(5,5 ló 64 1.0 1.0

J'( .ó,6 t= 1.0 16 t44 1.0 I.0
J' J,7 r= 1.0 25 t2r 1.0 1.0

J'r 8,8 25 196 0.45ó 0.418
J 9,9 t= 1.0 1ó 12L 1.0 1.0

J'( t 9 81 1.0 1.0
J'r I I,I I t=1.0 16 r44 1.0 1.0

J'r 12,T2 t=O.'192 25 256 o.792 o.192
J'( 13,13 t= I.U 25 256 t.0 1.0
J't '14,r4 l=1.0 IÓ r44 1.0 1.0
J'l 15,15 =I.0 36 256 t.0 1.0

J't 1 6,1ó. l= 1.O 16 EI 1.0 1.0
l'l,r'l = 1.0 16 100 1.0 1.0

J'l 1 8,1 8')=1.0 25 I00 1.0 1.0
I T9.T9 )=1.0 16 81 1.0 1.0

4* 25 1.0 1.0
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2 Development of a hydraulic simulation model

The order of the pivot elements chosen by Markowitz threshold pivoting and the modified

Markowitz threshold pivoting are given in Tables 2.9 and 2.10 respectively. Comparison of the

adjusted half bandwidths throughout the matrix reduction confirm the modified pivoting

strategy maintains a smaller bandwidth for longer, however, the total number of operations for

the Markowitz threshold pivoting is 862 which is 4.lVo less than the total number of operations

for the modified Markowitz threshold pivoting which is 899. The average number of nonzero

elements at each step of the reduction for Markowitz threshold pivoting is 83.55 which is just

less than for the modified pivoting order which is 84.75.

Either strategy for selecting pivot elements is suitable for this research. Although more

operations are performed during the matrix reduction using the alternative pivot order, the

operations are conf,rned to thinner bands of nonzero elements for longer.

The element on the leading diagonal always represents the element of greatest magnitude within

the row for the chosen pivots which helps maintain numerical stability. The threshold

parameter was set at u=0.1, however a value of ø=1.0 would not have changed the chosen

order of the pivot elements.

Table 2.9 Chosen pivot order for Markowitz threshold pivoting

Pivot
element

Product
F,q. 2.56

Max.
row

element

Max.
column
element

Adjusted
half

bandwidth

Number
of

operations

Number of
nonzero
elements

J t=1.0 4 1.0 I.0 5 6 81

J't l= 1.0 9 1.0 1.0 9 t2 81

I'r 2,2 ,=1.0 9 1.0 1.0 9 L2 8l
J'( 1,1 t2 1.0 1.0 9 l6 81

J'( 19,T9.= 1.0 l6 1.0 1.0 9 20 84

J't I7,17' )= 1.0 1ó 1.0 1.0 9 20 85

J'( ll.lt )= 1.0 I6 1.0 1.0 t0 20 88

J't 5,5 l=1.0 I6 1.0 1.0 10 20 9L

J'( 4,4. =0.017 24 0.017 o.994 10 30 92

J'r L4,14 ¡=O.794 30 o.194 0.794 10 36 95

J'( 1,3,r3 l=0.53ó 30 0.53ó o.53ó IO 36 98

J r=0.845 35 0.E45 0.845 13 42 103

7,7 t=0.895 45 0.895 0.895 I3 54 TTJ]

J' '18,1 
8 '=0.586 ó0 0.586 0.586 t3 10 108

J'l 'l ó, 1ó r=0.7Ió 84 o.7t6 0.71ó I6 98 106

J't '15,15 eO.62l 15 0.62r o.62r n 90 96

J'l T2,I2 r=0.596 80 0.59ó 0.883 t7 100 77

J'( =0.363 60 0.363 0.699 t7 80 58

J'( 8,8. l=O.O27 4t) 0.o27 0.945 t7 60 39

J' 3,3 ,=0.300 20 0.300 0.925 I] 40 20
TorArF862 Avc=83.55
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Pivot
element

Modified
product
Eq. 2.58

Max.
row

element

Max.
column
element

Adjusted
half

bandwidth

Number
of

operations

Number of
nonzero
elements

l'l t= 1.0 9 1.0 t.0 5 12 82

J'r 20," r= 1.0 25 1.0 1.0 5 6 81

J'l I t I t=1.0 30 1.0 I.0 5 t6 81

J', 3,3 =0.928 54 0.928 o.928 5 30 86
J'( 19,r9 t=1.0 8I 1.0 1.0 5 ztJ 89
J' t= l.U 81 1.0 1.0 9 I2 89
J'l 11,l'7 l= 1.0 I00 t.0 1.0 9 20 90
J'r 9,9 =1.0 t2r 1.0 1.0 9 20 93

J'r 7,7 . l= 1.0 12l I.0 1.0 9 30 95

J'r 1ó,1 6 =0.962 130 0.962 0.962 9 36 98
J'r 13, 13' l=0.536 221 0.536 0.53ó IO 36 l0l
J'l 4,4 360 0.016 0.994 11 54 to4

J'( T4,T4 l=O.522 589 0.522 0.614 T4 ó3 109

J'r I I,I I r=U.óó4 943 0.664 o.664 I4 10 106

J'( 8,8 ló38 0.414 0.531 I7 9I I08
J', ',tIZ r=0.075 2024 0.075 0.983 t] 108 9I

J'r 6,6 2332 o.619 o.619 t't 95 75
J'( 15,15 t=(J.623 1560 0.623 0.623 I1 80 58

J'( 5,5 1ó90 0.418 0.ó48 L] ÓU 39

J'( 18,I8 t=0.I'17 0 0.r11 0.829 I7 40 20
161¡¡=$$9 AVG=84.75

2 Development of a hydraulic simulation model

Table 2.10 Chosen pivot order for modified Markowitz threshold pivoting

Packed Forms of Storage

The zero-nonzero structure of the sparse Jacobian matrix "I is symmetric when the Newton-

Raphson method is applied to the loop equations. In general, the elements of the leading

diagonal are nonzero elements. The pipes common to loop r and loop c yields nonzero elements

J(r,c) and J(c,r). A packed form of storage is investigated which makes use of this

characteristic. For this research, the pipes common to two or more loops were identified so that

an array could be constructed which contained the addresses of the nonzero elements (other than

the leading diagonal).

2.L0.8 Junction node pressure heads

Pipe head losses are determined from the final balanced pipe flows using the friction head loss

formula and pump heads are calculated using pump head characteristic curves. An algorithm

finds the pressure heads at the junction nodes in the network by starting at any fixed-grade node

and proceeding through the network using a Breadth First Search (BFS) to systematically visit

all the junction nodes. The pressure head p¿at a downstream junction node, d is determined

from the pressure head prat a connecting upstream node, ø by the Bernoulli equation (F,q.2.2).

The computed pressure heads at the junction nodes in the existing Anytown system for the
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2 Development of a hydraulic simulation model

average daily demand pattern are presented in Table 2.II. There are no violations of the

minimum allowable pressure head constraints of 40 psi. The lowest pressure is 41.70 psi at

node 170.

Table 2.1,L The balanced pressure heads at the junction nodes

for the Anytown system

2.t0.9 Analysis of pressure reducing valves and check valves

A pressure reducing valve (PRV) maintains a constant pressure immediately downstream of the

valve equal to the valve pressure setting, assuming the pressure immediately upstream of the

valve is greater than the valve pressure setting. There are three possible modes of operation of a

PRV, however the mode of operation just described is the functional mode of the PRV.

PRVs may be used to reduce pressure in downstream regions or subnetworks of the water

distribution system. In the absence of a PRV, uncontrolled pressures may be high and

considerably variable with time. PRVs serving lower zones are sometimes considered as

demand points in a water transfer system and the same PRV may represent the source node of a

more detailed subnetworkl of distribution pipes. The PRV may control the pressure at the

upstream end of the subnetwork and limit the available flow to the subnetwork (Perez et al.,

1993). PRVs may be used to maintain pressure within operating limits to protect equipment

against damage due to extreme pressures. For networks with more than one source of supply,

I Jeppson (1976) suggested the decomposition of pipe networks into subnetworks where possible to improve
computational efficiency. For example, a subnetwork may be supplied by a single pipe or isolated by one or
more PRVs.

Junction
node

Actual pressure
(psi)

Minimum allowable
pressure (psi)

Surplus pressure
(Psi)

20 121.22 40.0 8r.22
30 79.31 40.0 39.'31
4t) 75.80 40.0 35.80
50 14.76 40.0 34;t6
ó0 I5.1r 40.0 35.71
70 19.31 40.0 39.3't
80 tz.9E 40.0 32.98
90 7 t.94 40.0 3r.94
100 13.44 40.0 33.44
110 75.63 40.0 35.63
120 42.43 40.u 2.43
130 42.80 40,0 2.80
t40 60.00 40.0 20.00
150 42.69 40.0 2.69
160 45.t4 40.0 5.r4
1.7 0 41.70 40.0 r.70
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2 Development of a hydraulic simulation model

PRVs may be operated to adjust the flow distribution and control the flows to and from the

source nodes for some demand conditions.

The PRV with pressure setting (Hr",) may assume one of three different modes of operation

which depends on the inlet pressve (H¡) and the outlet pressure (Hor) of the PRV (El-

Bahrawy and Smith, 1987).

(1) The ooerative mode

If the PRV inlet pressure is greater than or equal to the PRV setting (H¡n)Hr",) as shown in

Figure 2.9,thenthe PRV is operating (throttling) and the PRV maintains a f,rxed outlet pressure

equal to the PRV settin9 (HourHu).

Hu ¡TG¿

I

tHout
H¿

u PRV

Figure 2.9 The operative mode for a PRV

12) The inooerative mode

If the PRV inlet pressure is less than the PRV pressure setting (H¡a1H5¿) as shown in

Figure 2.10, then the PRV outlet pressure equals the inlet pressure minus minor losses through

the open valve which may be negligible (HourH¡).

Hu Èrc¿

H¡n

Hset

PRV

Figure 2.10 The inoperative mode for a PRV

(3) The closed check valve mode

If the outlet pressure exceeds the inlet pressure (HorÞH¡n), the PRV acts as a check valve (CV)

and prevents reverse flow.

u

tHoutH¡n

63



2 Development of a hydraulic simulatiott model

The hydraulic simulation model described previously may be modified to allow for the inclusion

of PRVs and to adjust the analysis to determine the eventual mode of operation of the PRVs.

Jeppson (I916) described modifications to each of the formulations of the pipe network

equations including the loop corrective flow equatrons (AQ¡-equations) to simulate PRVs and

check valves (CVs) in the hydraulic analysis. The loop equations write NZ+(NF-1) energy

equations in the unknown flow corrections around the NL natural loops and (NF-1) pseudo

loops. The energy equations for loops with PRVs are only valid if the PRV inlet pressure is

less than the PRV setting (inoperative mode). The PRV in the inoperative mode has negligible

effect on the pressure distribution in the network. The network may be analysed as though the

PRV did not exist at all.

The head drop across an operational PRV is not a function of the flow through the PRV and is

therefore independent of the flow corrections in any loop which contains the PRV. The energy

equations for the loops which include an operational PRV are no longer valid. Natural loops

and pseudo loops may be affected by an operating PRV.

Jeppson (1976) analysed the operating PRV as an artificial fixed-grade node, with HGL equal

to the PRV pressure setting. The pipe upstream of the PRV is removed from the network. If
the PRV is considered to be an artificial fixed-grade node, continuity is upset since flow is

extracted from the PRV without being added to the upstream node. Therefore, the loop flow

corrections are assumed to circulate around the original set of loops, / defined as if there were

no PRVs. The corrections applied to the flows in the pipes in the original loops will produce a

flow distribution which continues to satisfy continuity. However, the energy equations (Eq.

2.29) are written around the new set of loops, l'which are formed assuming the operating PRV

is an artificial fixed-grade node. A new pseudo loop is formed and a natural loop removed for

each operating PRV in the modified set of loops, l'. The final pipe flows satisfy continuity at

the nodes for the original set of natural loops and pseudo loops, I and the head losses ate zefo

around the modified set of natural loops and pseudo loops, /'.

The new set of loops may be determined using the procedures described in Section 2.5.2.

Alternatively, the modified set of loops may be determined from the original set of loops by:

(1) deleting the natural loop(s) which contains the pipe with the operating PRV,

(2) defining a new natural loop if the pipe with the PRV is coÍtmon to two original

natural loops (the new natural loop is formed by the incomplete paths of the two

original natural loops),

(3) defining an alternative path of pipes for an original pseudo loop(s) if the original

pseudo loop(s) contains the pipe with the PRV, and

(4) by identifying a new pseudo loop between the PRV and a fixed-grade node.
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2 Development of a hydraulic simulation model

These modifications to the original loops avoids the computational effort (especially for large

networks) of defining and numbering a complete new set of loops which are quite similar to the

original set of loops.

A PRV does not allow the direction of flow to be in the opposite direction and under these

conditions the PRV operates as a closed check valve (CV).

There are two different modes of operation of a CV (open or closed). The inclusion of a CV

does not affect the analysis if the flow is in the permitted direction as shown in Figure 2.II. If
the flow is in the reverse direction, then the CV closes and there is no flow in the pipe as shown

inFigure 2.L2. A closed CV may be analysed by assuming the pipe with no flow does not

exist. The network is analysed again with the pipe removed (the flow in this pipe must zero in

the initial flow pattern).

Hu H¿

H¿ Hu No flow

u u
Check Valve Check Valve

Figure 2.11 The open check valve Figure 2.L2 The closed check valve

Jeppson (1976) analyses a closed CV by adjusting the flow corrections in the loop with the

closed CV by the initial flow in the closed pipe which need not be zero for this method of

analysis. For example, if pipe j is closed and belongs to loop K then:

ex= -Qo,! q¿

I 1

(2.6r)

in which Z are the other loops which contain the closed pipe¡. The flow 0; in pipei is

Ø=Qo,lq=0.0 (2.62)

for a closed CV in pipe j. The number of equations is reduced by 1, since the expression in Eq.

2.61 is substituted for qy where this correction is applied to pipes in the loops in the energy

equations.

Salgado et at. (1988) reviewed a number of the traditional methods of hydraulic analysis of

water supply systems and warned of a number of problems that may arise when using some

methods proposed to simulate pressure regulating devices. The loop equations may experience
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2 Development of a hydraulic simulation model

difficulty in dealing with multiple pressure regulating devices. The assumed mode of operation

for these devices is checked after an appropriate number of iterations and the analysis must be

repeated if the devices are not operating according to the initially assumed conditions. Using

Jeppson's (I976) modifications to the loop equations to simulate PRVs, the loop structure must

be modified if the mode of operation of the PRV is different to the assumed mode of opelation.

The method of hydraulic analysis used by Salgado et al. (1988) is the gradient method. The

gradient method (Todini and Pilati, 1987) is based on a "formal dissipated power approach" and

operates on the heads and flows simultaneously. Salgado et al. (1988) propose an extension of

the gradient method of hydraulic analysis for modelling regulating valves such as PRVs and

CVs and other devices such as pressure sustaining valves (PSVs), pump on/off switches and

closed pipes. The proposed algorithm is "physically based" and does not require the

identification of a new loop structure when the mode of operation of the pressure regulating

device is different to the assumed mode of operation. The gradient method is reported to have a

number of other advantages compared to the traditional methods of hydraulic analysis. The

hydraulic simulation model called EPANET (Rossman, 1994) developed by the U.S.A.

Environmental Protection Agency uses the gradient method of hydraulic analysis.

2.10.L0 Extended period simulation (EPS)

A steady-state hydraulic analysis determines instantaneous flow and pressure distributions for a

system subject to an instantaneous demand pattern. An extended period simulation (EPS)

predicts system behaviour (such as node pressure patterns and tank water levels) over a period

of time, given changes in system operation (such as pump schedules and valve status), and

subject to varying demand patterns with time. The time-dependent simulations are a series of

steady-state hydraulic simulations carried out at some specified time step.

To develop a practical tool for pipe network optimisation, it is necessary to link the solution

evaluation scheme with a hydraulic simulation model that can perform an efficient EPS. EPS

provides a more comprehensive assessment of the feasibility of the integrated water supply

system design and operation, subject to the anticipated maximum and/or average demand cycle

(the demand cycle is usually 24 hours for an urban water distribution system). EPS is the most

effective way to evaluate elements of system design such as proposed system storage capacity

and system operating rules such as pump schedules and EPS is used to approximate power

costs for pumping.

Storage tanks (or balancing tanks) are used to help 'equalise' or smooth peak water demand

periods and store water for emergency purposes. Tank water surface levels are assumed to be

constant for a steady-state hydraulic analysis. The water levels are updated during the EPS by
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accounting for flows in and out of the tanks. The shape (eg., cylindrical, spherical) and volume

of the tanks, and the maximum and minimum water levels and the starting water level (at the

initiation of the EPS) should be known for the EPS.

The dimensions of the tanks are required to determine how the water levels will vary with

incoming or outgoing volumes of water. The tank water levels should not exceed the maximum

water level or fall below a specified minimum water level. The minimum water level is not

usually the very bottom of the tank since some storage is usually retained as an emergency

supply. As a tank water level reaches the maximum water level or falls to the minimum water

level, the pipes connecting the supply to the network are closed and remain closed until flow is

reversed such that the flow is out of a full tank or into an empty tank. Ideally, water levels

should return to close to the initial water levels by the end of the demand cycle (in preparation

for the next demand cycle) and fluctuating water levels are often required to demonstrate a

reasonable amount of tank exercising (for water quality reasons).

The accuracy of the EPS to simulate time-dependent behaviour depends on the time step

between steady-state hydraulic analyses, the magnitude of the flows leaving and entering the

tanks and the size and shape of the tanks (Lansey and Mays, 1989c). The time step is the time

elapsed since the last steady-state hydraulic analysis. The time step is very important since the

accuracy of the EPS increases as the time between hydraulic analyses decreases and the cost of

additional hydraulic analyses is a rapid increase in computational effort.

The variations in water level Ah in tanks and reservoirs between steady-state hydraulic analyses

for a time step /r is expressed by Eq. 2.63. The water levels are updated each time step. The

time taken At to fill or drain a tank a height /å is computed by rearranging Eq.2.63. If the

water level is approximately constant for the source for the duration of the EPS, then the surface

area is assumed to be infinite.

^h=^#
(2.63)

in which O = flow to or from the tank or reservoir and A = water surface area of the tank or

reservorr.
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A new steady-state hydraulic analysis is required during the EPS if

. a tank becomes full or empty,

. a tank fills or drains by more than some specified height increment,

The change (rise or fall) in water level between hydraulic analyses should not

exceed some specihed change in water level regardless of the time since the

last hydraulic analysis.

. a specified time increment elapses,

The time between hydraulic analyses is not allowed to exceed some specified

time interval (the time step).

. the demands vary (the start of a new demand period), or

. system operation changes (for example, a pump is switched on or off, or the setting

or status of a valve is adjusted).

z.Ll Integration of the Hydraulic Simulation Model and the
Genetic Algorithm Pipe Network Optimisation Model

In this chapter, a hydraulic simulation model is developed which is to be integrated with the

genetic algorithm (GA) model for pipe network optimisation. The simulation model uses the

Newton-Raphson numerical solution technique (Martin and Peters, 1963) applied to the loop

corrective flow equations (AQ7-equations) and is similar to the algorithm outlined by Epp and

Fowler (1970). The simulation model is developed specifically for the purpose of the GA

optimisation. The computer simulated GA evolution is expected to generate many thousands of

proposed pipe network designs. The hydraulic feasibility of each trial design is evaluated, and

this may involve multþle hydraulic simulations (instantaneous and time-dependent) of the many

thousands of alternative configurations of system components and operational decisions for

system components.

The efficiency of the hydraulic simulation model is critical. The extensive investigation of

methods for hydraulic analysis carried out by Wood and Rayes (1981) showed that both the

linear method applied to the pipe flow equations (Q-equations) and the Newton-Raphson

method applied to the loop corrective flow equations exhibit efficient convergence to accurate

solutions. The hydraulic solution methods which formulated the pipe network equations as

node equations (.F1-equations) were found to be less reliable.

The reliability of the method of hydraulic analysis is also important. The simulation model will

be expected to model many different hydraulic situations including complex arrangements of

system components and extensively looped pipe networks. The random processes of the GA

search (including the randomly generated starting population and the randomness of crossover
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and mutation) are expected to occasionally yield unconventional pipe network designs, many of

which will be infeasible combinations of network components.

Based on experience to date, the simulation model developed in this chapter obtains accurate

solutions for the case study pipe networks considered in this thesis, An additional check for

imbalances in the loop energy equations may be used to confirm the accuracy of the analysis.

The accuracy of the simulation model was verified by comparison with the established KYPIPE

hydraulic simulation package (Wood, I914) for the simulation of the New York City tunnels

network in Chapter 8. The HGL at the critical (extreme downstream) nodes determined by the

hydraulic simulation model developed in this chapter and the KYPIPE model are compared, and

closely agree, for all the near-optimal designs identified by the GA and for designs identified by

past studies of the classic New York tunnels problem. In general, final GA designs are

independently verified by comparison with a conìmercial hydraulic simulation package.

Algorithms have been developed to accompany the chosen method of hydraulic analysis (the

Newton-Raphson method applied to the loop equations), including algorithms to define the

paths of pipes in natural loops and pseudo loops (the loop structure), an algorithm to determine

a set of initial flows in the network such that continuity is satisfied and a loop numbering

scheme that leads to a Jacobian matrix of coefficients of near minimum bandwidth. Sparse

matrix routines are employed to efficiently reduce the identical, sparse Jacobian matrices at each

iteration of the Newton-Raphson method. Row scaling and a strategy for selecting a suitable

sequence of pivot elements maintain numerical stability and minimise the number of row

reduction operations by limiting the amount of fill-in. The use of a convergence test specifies

the accuracy of the solutions required and avoids unnecessary iterations of the method.

Various time-saving procedures can be implemented to speed up the hydraulic analyses

performed as part of the GA search. For many pipe network optimisation problems, sequences

of hydraulic analyses are performed for which the structure of the loop set does not change

from one simulation to the next. This is the case for the optimisation of pipe sizes in a pipe

network of fixed layout (with multiple reservoirs), subject to instantaneous demand pattern(s),

such as the two-reservoir Gessler network case study introduced in Chapter 5. If the loop

structure does not change in consecutive analyses, it is not necessary repeat computations to

determine the following:

. the natural loops and pseudo loops (consequently an appropriate loop numbering

scheme, Jacobian zero-noîzero structure and near minimum bandwidth is known).

. a practical and efficient order for the pivots computed by the modified Markowitz

threshold pivoting. The sparse Jacobian matrices will have an identical zero-nonzero

structure and contain elements of comparable scale and may be efficiently reduced from
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one iteration of the Newton-Raphson technique to the next, and from one GA coded

string evaluation to the next using the same pivot order. A sequence of pivot elements

to reduce the sparse matrices by Gauss-Jordan elimination is established and stored to

be applied to all the identical matrices encountered.

. good initial assumptions of the flow patterns for the same demand conditions

(associated with initial assumptions of flow corrections equal to zero).

If loop structure is identical for consecutive analyses using the loop equations, the balanced

flows of the previous analysis may be used as the initial flows for the new analysis to improve

efficiency of the simulation. For an extended period simulation (EPS), the final flows of the

last analysis may be used as the initial flows for the next analysis for successive analyses (for

the same loop structure). Shamir and Howard (1968) highlighted the advantage of good initial

guesses and recommended this type of approach to significantly reduce the amount of

computation required. This practice is of value for any sequence of hydraulic analyses and

would be of exceptional value in the GA search as the population of solutions converges and the

pipe network designs become similar.

The structure of the loop set may be modified if:

. the layout of the new pipe network is being optimised (in this case, possible new pipes

may be assigned azeto diameter),

. tank or valve locations are being optimised,

. the status of pipes, pumps or valves changes,

. the mode of operation of a pressure or flow regulating valve is different to the assumed

mode of operation or changes during an extended period simulation, or

. tanks become full or empty during an extended period simulation.

If the loop structure does change for consecutive simulations it may be possible to store a data

bank containing information about alternative loop structures (such as the loop numbering

scheme, the sequence of row reduction operations and good initial flow assumptions). The data

bank may be updated for new loop structures and accessed if previously identified loop

structures are encountered to avoid repetitive computations. The number of alternative loop sets

may depend on the number of pipes that may be added or removed, the number of existing

tanks and valves, or the number of possible locations for new tanks and new valves.

In addition, during the GA search, the old population of coded strings may operate as a

temporary data bank of evaluated solutions. A child coded string solution produced for the new

population is compared to parent strings in the old population for a match which may avoid the

repeated evaluation of strings.
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The function of pressure reducing valves (PRVs) and check valves (CVs) and the extension of

the Newton-Raphson method applied to the loop equations for the consideration of these system

components is briefly discussed. In Chapter 9, the GA search is applied to the optimisation of

proposed expansions to the complex Fort Collins - Loveland water distribution system. The

Fort Collins - Loveland system is separated into five pressure zones and contains NP = 323

pipes, NJ = 253 junction nodes, NF = 10 fixed-grade nodes and 13 PRVs. Therefore, the

system is modelled as NL (=NP-N/-(NF-1)) = 61 natural loops and (NF-1) = 9 pseudo loops

assuming the PRVs are in the inoperative mode and 48 natural loops and 22 pseudo loops for

13 operating PRVs. It is a more difficult problem to analyse systems separated into multiple

pressure zones by multiple pressure regulating devices where the mode of operation of the

devices is not initially known and is identified as part of the simulation (Salgado et al., 1988).

For this reason, the code of an established simulation model is embedded within the GA model

evaluation scheme to apply the GA search to the optimisation of pipe diameters and PRV

pressure settings for the Fort Collins - Loveland system. The code of the established simulation

model is modified to some extent to suit the purposes of the GA search.

Extended period simulation (EPS) plays an important role in integrated water supply system

optimisation and techniques are suggested for the extension of the steady-state simulation model

to consider EPS. Time-dependent simulations are not performed for the case study pipe

network optimisation problems considered in this thesis.

'When this research commenced, computation times to switch between separate optimisation and

simulation packages via an external link were excessive. In future studies, as computers

become faster and hydraulic simulation becomes more complicated, it may be more practical to

link the GA model with an established simulation model such as EPANET (Rossman, 1994).

Reliable models for hydraulic simulation such as EPANET are becoming available which are

better equipped to handle complexities such as multiple pressure and flow regulating devices.

To link the GA model with an existing simulation model, familiarity with the simulation model

is essential, to know how to obtain the results of the simulation in order to evaluate hydraulic

feasibility and to increase efficiency of the simulation by the avoiding repetitive computations.

It is also important to recognise when the simulation model has not converged to an accurate

hydraulic solution. Pipe network designs for which a hydraulic solution cannot be obtained

should be penalised in the GA search, however, a breakdown of the simulation model should

not cause the GA to stop processing. The GA can afford to discard these designs since it

operates with a population of designs at any time. These designs are not expected to be near-

optimal designs. Near optimal solutions are expected to be realistic design situations, for which

the pipe network simulation model will converge to a hydraulic solution.
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2 Development of a hydraulic simulation model

Nevertheless, there were a number of advantages in developing a hydraulic simulation model

from the ground up for the purposes of the development of the GA model. Firstly, this

afforded a flexibility to model assumptions and peculiarities of system operation and simulation

encountered in practice, and consider different system performance requirements and reliability

measures used to evaluate alternative designs in practice. Secondly, special techniques could be

used to improve the efficiency of the simulation. Finally, the simulation model could be

modified to perform other tasks such as individual coded string solution evaluations, checks for

local optimality and also the exhaustive enumeration of the t\ryo-reservoir Gessler network

expansions problem in Chapter 5.

Hydraulic simulation is the prediction of system performance for a specified system design and

operation, subject to some set of demand conditions. Simulation has a unique solution, which

is obtained in the most efficient and accurate manner, although it is not a simple task to obtain

this unique solution. Simulation is a prerequisite step to the more difficult task of optimisation.

Optimisation is the determination of the most economical system design and operation, for a

specified level of system performance for the system subject to one or more demand conditions.

Optimisation has a unique solution, although it is much more difficult to identify. Given a pipe

network design problem, ten water supply system designers may determine ten different

designs and ten different pipe network optimisation techniques may identify ten different

solutions. A hydraulic simulation model has been prepared in this chapter, to be coupled with a

GA pipe network optimisation model. In the next chapter, the pipe network optimisation

problem is introduced and a number of pipe network optimisation techniques from the literature

are reviewed.
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3 Optimisation of Water Distribution System Design

Water transmission and distribution systems are fundamental components of the infrastructure

of a community. Water systems provide for a diversity of water needs. The demand for water

varies with population and economic growth. Water system expansions and alternative system

operating rules and settings are considered to satisfy changing water needs.

The design of a water distribution system can be separated into the simulation problem and the

optimisation problem. Hydraulic simulation predicts system behaviour including instantaneous

(steady-state) and time-dependent flow and pressure distributions and tank water level

variations for some proposed water distribution system design. A series of manual hydraulic

simulations of system designs can provide a workable design, however simulation models

alone do not have the capability to determine optimum designs.

A hydraulic simulation model may be coupled with an optimisation model. The simulation

model developed in Chapter 2 is linked to the genetic algorithm search in this research. The

optimisation model determines water distribution system design (and operation), for a specified

level of system performance, and such that system expansion costs (and operating costs) are a

minimum. The optimisation problem is introduced in this chapter. A number of optimisation

techniques have been developed to search for the optimal water distribution system design and

some of these are reviewed in this chapter.

3.1 The Optimisation Problem

The optimisation of a water distribution system design is a process which strives to determine

the minimum cost system design, which supplies the projected demands while maintaining an

acceptable level of system performance. In general, the optimisation problem can be stated as:

Minimise system construction / expansion and operating costs

subject to system performance constraints

hydraulic constraints

general design constraints

In general, the objective function to be minimised and the constraints to be satisfied are a set of

nonlinear functions in terms of the decision variables.
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3 Optimisation of water distribution system design

3.1.1 The decision variables

The decision variables are the physical and operational characteristics of the system components

to be defined in the design. The decision variables represent design information concerning the

layout, sizing and operation of system components such as pipes, tanks, sources of supply,

pumping facilities and valves. The design may be an expansion or rehabilitation of an existing

system, in which case the optimisation should evaluate the use of existing system components.

The design of the water distribution system may require the introduction of new pipes. The

pipe network is the principal framework of the water distribution system composed of a set of

nodes interconnected by a layout of pipes. The nodes represent junctions of pipes and may

have associated demands and some nodes are sources of water. The pipes may be arranged in a

tree network or in loops. A looped network may be preferred (particularly in urban systems) as

Ioops can help meet downstream demands in the event of pipe breakage or pipe maintenance

and loops provide greater flexibility to meet abnormal demands such as fire fighting loads. Pipe

network reliability considerations may require that each demand node is connected to a source

node by at least two paths.

The optimisation of the pipe network layout considers the placement of the possible new

pipelines as decision variables. The proposed pipe network layout is often constrained by the

street layout or by an existing layout of pipes. The new pipes should be constructed along

accessible routes. Many pipe network optimisation techniques size new and duplicate pipes

(pipes parallel to existing pipes, but may be of different diameter) for a fixed pipe network

layout (minimum pipe diameters are specified for new pipes). A solution to the pipe network

layout problem may be found by allowing new or duplicate pipes the option of a zero pipe

diameter in the pipe sizing problem. Of course, demand nodes may not be disconnected from

the network.

In its simplest form, the pipe network optimisation problem is the sizing of pipes of a

predef,rned gravity-fed pipe network layout for one critical instantaneous demand pattern. The

optimum pipe network layout for one demand pattern is a tree network (Swamee and Khanna,

1974; Quindry et al., 1981). Network redundancy (or reliability) often results from analysing

multiple demand patterns.

The diameter, material and wall thickness (or pressure class) of the new pipes are decision

variables which may be selected in the optimisation. The choices of pipe diameters are the

discrete set of commercially available pipe sizes. Some pipe network optimisation techniques

determine a continuous diameter design in which the optimised set of pipe diameters take on
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3 Optimisation of water distribution system design

continuous real values . A. discrete diameter design is a set of pipe diameters selected from

among a specified set of commercially available pipe sizes. A split pipe design is derived from

a continuous diameter design by decomposing a pipe section length of continuous diameter into

partial lengths of discrete diameters to form a pipe with equivalent hydraulic properties. Internal

pipe diameters should be used for the hydraulic simulations, since internal diameters may differ

significantly from nominal diameters.

The old pipes in the system may be candidates for cleaning and./or relining, or duplication with a

new parallel pipe in the optimisation problem. Alternatively, the existing pipes may be removed

from the pipe network or retained without improvement. The deteriorating condition of existing

system components such as increasing pipe roughnesses (and decreasing pump efficiencies)

should be considered for the projected demand periods. The condition of the pipes inside wali

is influenced by the pipe material, time in operation and the water quality. The cleaning and

relining of existing pipes to improve the roughness of the pipe inside wall may be an

economical design consideration.

The optimisation may select the site, shape, volume and elevation of new storage tanks. The

optimisation observes the variation of the tank water levels for extended period demand patterns

to ensure balancing tanks fill during low demand periods and empty when demands are high.

Loubser and Gessler (1990) indicated that the pipe sizing problem and the tank sizing problem

are interrelated. The tank volume should be adequate for balancing peak demands and the

feeder pipes connected to the tank should have adequate capacity for refilling the tank during

off-peak demand periods. The tanks should show a net inflow for average demand flows.

The pipe distribution network may be a gravity-fed system or a pumped system. The

optimisation of a water distribution system with source pump stations or in-line booster pump

stations may consider the installation of new pump stations or the upgrade of existing pump

stations. The decision variables may include the location of new pump stations and the capacity

and arrangement of individual pump units.

The pump facility operation schedule is the set of operating rules indicating when the individual

pumps should be switched on and off over a specified period of time (the demand period cycle)

such as a day for an urban system. The pump operating rules for a cycle of average demands

may be decision variables so that average annual energy costs for pumping can be computed.

The pump operation schedule for a cycle of maximum demands may also be decision variables

to ensure tanks do not emptY.
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3 Optimisation of water distribution system design

Ormsbee et al. (1989) optimised the operation of water supply pumps for the minimisation of

pump operation costs. The two phase technique may be applied to water distribution systems

with a single dominant source and multiple pump stations. The first phase of the optimisation

develops an optimal tank water level trajectory determined by dynamic programming. The

second phase of the optimisation uses an enumeration scheme to develop an optimal pump

operating policy to achieve the optimal tank trajectory. Tarquin and Dowdy (1989) and Jowitt

and Germanopoulous (1992) considered the optimal pump scheduling problem for water

distribution systems.

Devices such as pressure reducing valves, pressure sustaining valves or flow control valves are

used in water distribution systems to regulate flows and"/or pressures by adjusting settings to

vary energy losses. Pressure reducing valves (PRVs) control the interface between pressure

zones or subdue large pressure variations in adjacent systems. The optimisation should

evaluate the use of existing PRVs and any proposed new PRVs. The location and pressure

settings for proposed PRVs may be decision variables in the optimisation and existing PRVs

may be relocated or removed. The pressure setting selected for a given PRV site is an

indication to whether or not a PRV is required at the site. The operational mode of the PRV is

the only economical mode since the system component is functioning (El-Bahrawy and Smith,

1987). The use of PRVs is not appropriate for some systems. The possible sites and settings

of other valves and control devices (such as flow control valves, altitude control valves and

orifice plates) may be considered in the optimisation in a similar way.

Perez et al. (1993) describe a procedure for the efficient utilisation of PRVs in tree networks.

The procedure ensures the flows are delivered to the demand points above some minimum

pressure and the pipe wall thickness class is selected to withstand internal pipe pressure. PRVs

may be used to keep pressure within operating limits to protect equipment such as thinner, more

economical pipes from excessive pressures and to reduce the danger of leaks.

In summary, the optimisation problem may consider some combination of the possible decision

variables:

Layout of
components

. introduce new pipes

. remove or maintain existing pipes

. parallel existing pipe routes with new pipes (duplicate pipes)

. identify sites for new storage tanks

. locate pump station facilities

. locate valves and other control devices (consider pressure zone layouts)

. identify future sources of supply (wells, connections to adjacent systems)
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3 Optimisation of water distribution system design

Sizing of
components

. select the size, material and class of new pipes and duplicate pipes

. the capacity and number of pump units for new / upgraded pump stations

. the shape, volume and elevation of new tanks

. determine the capacity of other system facilities such as regulating devices

and sources (often limited by the capacity of water treatment facilities or

the amount of water that may be drawn from a connecting system)

Rehnbilitation . consider the cleaning / relining or replacing of existing pipes

. consider the refurbishment of existing pump stations and the upgrade of

other existing facilities (such as the redrilling of wells)

Operation o/ . select the pump station operating rules (the number and combination of

components individual pumps in operation)

. determine normal operating water surface levels for tanks

. select valve settings and controls (operating rules may be selected for

some regulating devices such as a schedule of flow settings for flow

control valves)

3.1.2 The objective function

The objective of the optimisation is typically to minimise the capital costs of new or upgraded

system components plus the present value of system operating costs for the expected lifetime of

the design. The cost of new pipes may include the cost of the pipe material, transport and

laying costs and existing pipes may be considered for duplication or cleaning/relining. The

costs of installing pipe may vary with pipe route (eg., dirt or paved roads, volume of traffic).

The costs for new or upgraded pump station installations and tank construction (and land

acquisition costs) may be considered where they are factors. The system operating costs may

include energy costs for pumping, water treatment costs and perhaps the cost of purchasing

water from an adjacent systems.

3.L.3 System performance constraints

The optimal water distribution system design should adequately satisfy the water requirements

for a complex combination of water users. Several possible demand patterns may need to be

investigated to ensure a reliable design:

. instantaneous peak hour demands

. emergency demand pattems such as fire fighting loadings
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3 Optimisation of water distribution system design

o emergency conditions where a system component is out of operation such as pipe

breakage, pipe maintenance or pump failure (to ensure reliability)
. the variation of demands on the maximum day (or appropriate critical period)

. the variation of demands on the average day (to estimate energy costs for pumping)

The design must demonstrate a specified level of system performance for the demand patterns

considered. The system performance constraints are usually set by the managing water utility

or company. The demand patterns and corresponding system performance constraints applied

to a water distribution system depend on factors such as:

. consumer water use (eg. domestic, industrial or agricultural)

. system reliability to be achieved (eg. considering a peak demand pattem with the

reservoirs and tanks at their low levels and one source pump unit out of operation)

. the probability of a demand situation occurring

The most important system performance constraints are the minimum acceptable pressures at the

demand points for all demand conditions. System performance and reliability requirements may

include:

. minimum and maximum allowable pressures at demand nodes

. pipe velocities within acceptable limits

. pumps should operate within acceptable operating limits for all demand situations

. minimum and maximum operating water levels for reservoirs and storage tanks

. the water levels at the end of a critical period (eg. ma,ximum day) should be at least

equal to the water levels at the start of the period (in preparation for the next period)

. fluctuating water levels should demonstrate a reasonable amount of tank exercising

(for water quality reasons)

. the inflows from some sources may be restricted (eg. inflows from adjacent systems

and inflows restricted by the capacity of a water treatment plant)

. the available hydraulic grade at some points may be limited (eg. transmission system

turnouts or connections to adjacent zones or systems), and the system may be required

to maintain a minimum grade at points which serve adjacent zones or systems

The water should be supplied to the consumer with an operational pressure head. Maximum

pressure head constraints protect against exceeding the strength of the pipe material as well as

consumer appliances. Velocity of the flow may be restricted to a permissible range since

scouring of residue on the pipe wall may lead to poor water quality.
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3 Optimisation of water distribution system design

3.1.4 Hydraulic constraints

For a water distribution system subject to a given demand pattern, the physical laws of

continuity of flow at the nodes and conservation of energy around the loops must be satisfied.

A friction head loss formula (eg. Hazen-Williams, Darcy-Weisbach) describes energy loss as a

function of flow in the pipes. Pump characteristics describe pump energy gain as a function of

pump flow. Some optimisation models (eg. linear programming and nonlinear programming

techniquesl) incorporate these nonlinear hydraulic constraints in the optimisation problem

formulation while other models (eg. enumeration, genetic algorithms) are linked to a hydraulic

simulation model (Chapter 2) which incorporate the hydraulic constraints.

3.1.5 General design constraints

There may be general design constraints which should be observed. The available sizes of new

system components are usually discrete sets (corresponding to commercially available sizes).

There may be minimum diameter constraints to ensure a looped network of pipes is maintained.

Some specific design constraints may apply to the system being studied. For example, some

existing pipe routes may not be accessible for duplication.

3.L.6 The solution space

A set of I values for the decision variables represents a network design solution and a point in

an l-dimensional solution space. Solutions that satisfy the constraints are feasible designs and

those that do not are infeasible designs. Feasible designs are restricted to a subspace of the

solution space called the feasible region and the scope of the feasible region is shaped by the

constraints.

The objective function value and the feasibility of a design are determined by performing a

function evaluation. The objective function may have many local minima in the feasible region.

An optimisation procedure searches for the global minimum or smallest local minimum in the

feasible region. The optimum solution is likely to occur on or near the boundary of the feasible

region.

I Some linear programming (Morgan and Goulter, 1985) and nonlinear programming (Lansey and Mays, 1989a)

techniques are coupled with hydraulic simulation models.
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3 Optimisation of water distribution system design

3.2 The BenefTts of Optimisation

Current design practices usually involve costing and simulating a handful of designs selected by

the designer using engineering judgement and rules of thumb. The values for each of the

decision variables are modified by a trial and error approach and a series of hydraulic

simulations are performed until a feasible combination of decision variable values is determined.

Mathematical optimisation is a powerful tool for guidance in the design process, although it

must always be supplemented by engineering experience. Optimisation eliminates the need for

the uneconomical trial and error design practices and allows the designer to concentrate on other

aspects of the design such as considering alternative pipe network layouts.

Optimisation can provide a number of near-optimal designs which may be evaluated by the

designer in terms of other (perhaps non-quantifiable) engineering objectives such as expected

future developments or environmental issues. The interpretation of the designs generated by an

optimisation search lends insight into characteristics and peculiarities of the water system such

as the limitations of system facilities, the critical demand conditions and system performance

requirements, and the most limiting design constraints. The optimisation may suggest

alternative design options and explore alternative system operating rules.

Water authorities are aware that water distribution system design is a complex optimisation

problem. Many millions of dollars are spent providing a water supply system, and an

optimisation search should be employed to explore potential cost savings. Even for a relatively

small pipe network design, there may be millions of alternative designs. Experienced designers

can often design a pipe network to be within lOVo to 207o of the global optimum solution,

however, better designs may not be obvious and may be overlooked. In some cases, lower

cost pipe networks are superior hydraulic designs.

Research has shown that the cost differences between apparently good designs and the global

optimum design may be substantial. Schaake and Lai (1969) applied a linear programming

method to the proposed expansions to the New York City water supply tunnels (21 tunnel

sections) and determined an optimised design cost of $78.1 million. Researchers using arange

of optimisation tools have studied the pipe network since 1969 and costs have been

progressively cut to $39.2 million. The significant savings identified by successive optimised

designs demonstrates the elusiveness of the best designs. The genetic algorithm optimisation

procedure developed in this research is applied to the benchmark New York tunnels problem in

Chapter 8.
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3 Optimisation of water distribution system design

3.3 Pipe Network Optimisation Techniques

A search for the optimal design for a water distribution system can be achieved by a number of

optimisation techniques including:

. Nonlinear programming (NLP)

. Linear programming (LP)

. Two-phase decomposition methods

. Random sea¡ch methods

. Dynamic programming

. Enumeration algorithms

. Heuristic techniques

. Equivalent pipe methods

. Evolutionary strategy

. Genetic algorithms

Many of the procedures developed are a hybrid scheme combining two or more of the above

techniques. Walski (1985) and Lansey and Mays (1989b) present extensive reviews of

optimisation models for water distribution design in the literature. A selection of optimisation

methods ¿ìre now reviewed.

3.3.1 Nonlinear programming (NtP)

El-Bahrawy and Smith (1987) presented the general nonlinear programming (NLP) formulation

of the pipe network optimisation problem. El-Bahrawy and Smith employed the powerful,

large-scale, nonlinear, sparse-oriented MINOS package (Murtagh and Saunders, 1980) to solve

the water distribution system design optimisation problem. Other nonlinear programming

software packages which are available include GINO (Liebman et al., 1986) and GAMS

(Brooke et al., 1988).

For a pipe network with NP pipes, the pipe network optimisation problem requires the

determination of 3NP unknowns: including the combination of the diameters D¡,the flows Q;

and the head losses NI¡ in the pipe sections j. The head losses may be found from the flows

directly using the friction head loss relationship applied to each pipe section. El-Bahrawy and

Smith (1987) formulated the problem as a nonlinear objective function subject to linear and

nonlinear constraints considering three design variables for each pipe. These are pipe diameter

D, pipe flow Q and pump shut-off head Hs (for pipes which contain pumps). The NLP model

is formulated as shown:
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3 Optimisation of water distribution system design

NP

Minimise cost Z=>f ilD¡, Q¡, Hol
j=l

sub.iect to
NPL

NP.I

2 O,= Qex¡

\ ft(n¡, Q¡, Ho)- AE^, for loops I=f ,..., NL+(NF-L) (3.2)
j=l

NPR

\ ft(o¡, Q¡, Ho¡)2 Hmin¡ for junction nodes i=1,..., NJ (3.3)
j=l

(3.1)

(3.4)

(3.s)

(3.6)

(3.7)

for junction nodes i=1,..., NJ
j=l

D^¡nSD¡3D^"* for pipes i=1,..., NP

Q*¡n 3Q¡3Q^", for pipes j=1,..., NP

0.0 < Ho,1Ho^* for pipes j=1,..., NP

in which

Dj = diameter of pipej

Ø= flow in pipej

Hlj = the shut-off head for a pump in pipe j
AE,M - Em - En= e\evation difference between fixed-grade nodes m andn in the case of

a pseudo \oop (AE,r*= 0 for a natural loop) where mis connected to pipe j=1

and n is connected to PiPe j=NPl
Hmini= the minimum allowable pressure head at node i

Qexi= demand at node i

NPL= the number of pipes j that make up natural loop or pseudo loop I

NPR = the number of pipes j in the path from a fixed-grade node to junction node I

NPJ - the number of pipes j connected to node i

NP = the number of pipes

N,I = the number of junction nodes

NL = the number of natural loops

NF = the number of fixed grade nodes

(NF'-l) = the number of pseudo loops
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3 Optimisation of water distribution system design

The objective cost functionfi in Eq. 3.1 is comprised of pipe cost as a function of pipe diameter

and pump installation and operating costs as a function of pump power which is, in turn, a

function of pump flow and pump head (pump head is determined from the pump characteristic

curve given pump flow and pump shut-off head). The pipe cost function and pump installation

and operating cost functions are defined with suitable parameters of pipe cost per unit length,

capital cost of pumps per unit power, the cost of energy, the annual pumpage time, appropriate

values of interest rate and the expected life of the pump. The objective function is subject to a

set of linear and nonlinear constraints.

The set of nonlinear constraints in Eq. 3.2 are the loop energy conservation constraints (see

F;q.2.22). The equations state the net energy gain around a loop is zero. The nonlinear

constraints in Eq. 3.3 are the minimum node pressure constraints. The constraints state the

head losses in pipes between a fixed-grade node and node i should not results in a pressure less

than the minimum allowable pressure for node l. The linear constraints given by Eq. 3.4 are the

node flow continuity constraints (see Eq. 2.20). The equations state the volumetric flow rate

into a junction node equals the volumetric flow rate out of the node. The constraints in

Eqs.3.5 to3.7 arethesetsof boundsonthedecisionvariables. Thefunctionsf2 and/3may

consist of a combination of the pipe friction head loss, minor losses and pump lift expressions.

The MINOS package is designed to solve large-scale nonlinear programming systems involving

sparse constraints. The nonlinear functions in the objective function and the constraints must be

continuous and smooth. El-Bahrawy and Smith (1987) described how pipe network

components such as pumps, reservoirs, pipe fittings, check valves and pressure reducing

valves (PRVs) may be included in their model. A pre-processor was developed to automatically

generate the MINOS input data file from the simple network data and a post-processor was used

to interpret the output data provided by MINOS.

El-Bahrawy and Smith (1987) proposed an analysis to determine the optimal discrete diameter

solution from the continuous diameter solution. They incorporated techniques which determine

network layout by identifying the primary tree networks and then selecting loop forming

redundant links by assessing network reliability.

Lansey and Mays (1989a) developed a methodology which uses a NLP procedure based on the

generalised reduced gradient method (GRG2, Lasdon and Waren, 1983). The pipe network

optimisation problem was stated in terms of a vector of nodal pressure heads H and the design

decision variables D. The decision variables D define pipe diameters, pump sizes, valve

settings and tank volumes or elevations
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3 Optimisation of water distribution system design

The nonlinear objective cost functronf(H,D) includes the cost of components such as pipes,

pumps, valves and tanks. The objective function is to be minimised subject to the following

constraints:

. Hydraulic constraints G(H,D) based on the physical laws of node continuity of flow

and loop conservation of energy. These constraints define the pressure distribution

for one or more demand patterns.

. Pressure head bounds specify the minimum and maximum allowable pressure heads

for the nodes in the system.

. Design constraints set by physical limitations or availability of components.

. General constraints such as minimum and maximum pipe velocities.

Existing NLP packages are usually limited in the number of constraints that can be handled.

The number of hydraulic constraints G becomes very large as pipe network size increases or if
multiple demand patterns are to be considered. The NLP procedure of Lansey and Mays is

coupled with a hydraulic simulation model (KYPIPE, 'Wood, I974) as shown in Figure 3.1.

Decision Variables D
Nodal Demands Q"'

Nonlinear Programming Model

/

Hydraulic Simulation Model

Nodal Heads Íl
Pipe Flows Q

Figure 3.1 Coupled NLP model and simulation model

The simulation model determines the node pressure heads Íl given the set of decision variables

D andtherefore the hydraulic constraints G may be removed from the optimisation problem.

The gradient (or reduced gradient) of the new objective cost functionf(H(D),D) with respect to

D determines how to alter the decision variables D. The reduced gradients are computed by

solving a system of linear equations for each demand pattern since they cannot be calculated

directly. Since the pressure heads H arc implicit functions of the decision variables D,the

pressure head bounds are not considered when step size is determined and may be violated.

Therefore, the pressure head bounds are incorporated into the objective cost function by using
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3 Optimisation of water distribution system design

an augmented Lagrangian penalty function method. The penalty weights and Lagrangian

multipliers in the penalty term are also optimised in the overall optimisation problem.

Duan et al. (1990) extended the work of Lansey and Mays (1989a). They developed a general

optimisation model that can include pumps and tanks (and the locations of these) as well as

multiple loading conditions. The model operates on a hierarchical basis as follows:

. At the master problem level, the numbers and locations of pumps and tanks are

identified by implicit enumeration.

. At the subproblem level, the GRG technique is used to find the optimum pipe sizes

for the pump and tank layout specified at the master problem level.

. An inner loop within the subproblem uses KYPIPE to ensure that the continuity and

head loss constraints are satisf,red, and a separate model (RAPS) is used to compute

various measures of system reliability.

The Western Australian Water Authority (WAV/A) has developed an in-house capability for

pipe network optimisation using nonlinear programming (Waters, 1989; Vigus, 1989).

3.3.2 Linear programming (LP)

Schaake and Lai (1969) formulated the nonlinear pipe network optimisation problem as a linear

programming (LP) problem. The node pressure head pattern is selected and then the LP model

determines a set of optimum pipe diameters. The nonlinear expressions in terms of the pipe

diameters D¡ are linearised by introducing a new variable X; using the following variable

transformation:

for pipes j = 1,..., NPDixj

The constantp equals 2.63 for the rearranged Hazen-V/illiams head loss formula (see Eqs. 2.4

and2.5):

Ø = aC L-0.54 h¡f's+ p.2.63 - a Cj L-0's4 h¡f to X¡

(3.8)

(3.e)

in which ais a constant which depends on the units used.
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3 Optimisation of water distribution system design

The linear programming model was formulated as shown

NP

j=r
Minimise cost /, = Lj

subject to

xjþ¡

NPJ

\ a ç. 7'-o'sa hf to X¡ = Q,ex, for junction nodes i=I,..., NJ (3.11)
j=l

for pipes j=1,..., NP

(3.10)

(3.r2)xj > 0.0

Linear constraints of the type given in Eq. 3.11 for the LP model are based on the mass

continuity equations for the junction nodes. The N"I binding linear constraints are obtained by

substituting Eq. 3.9 into the node continuity relationship given in Eq. 2.20. The constraints in

Hq. 3.11 assume flow in pipe¡ is towards node i. The pipe lengths L¡, arrd roughnesses Ç and

node demands Q"r¡ are assumed to be known. The node pressure heads are assumed and the

friction head loss h¡¡ in pipej is the difference in hydraulic grade between the start and end

nodes of the pipe. The constraints in Eq. 3.1 1 a¡e linear in the X¡ variables for an assumed

pressure pattern. The NP inequalities in Eq. 3.12 state the diameters must be non-negative.

The objective function in Eq. 3.10 is some linear function of the X; variables. A linear pipe

cost function is approximated using available pipe cost data in which p; is the cost per unit

length of pipe 7 (of pipe size D¡) per unit of X¡. It may be necessary to approximate the cost

function by a set of linear segments. Schaake and Lai (1969) also considered multiple demand

patterns and the inclusion of pumping costs in the objective function (not shown here).

The single step LP model developed by Schaake and Lai (1969) is limited in that it does not

compute the optimum operating pressure heads and the quality of solution is dependent on the

initially assumed pressure distribution. Schaake and Lai recommended using the LP model for

different pressure distributions. The pressure distribution is thought to be near-optimal if small

changes in the pressure distribution have little effect on the cost.

Quindry et al. (1981) used the LP model developed by Schaake and Lai (1969) as an iterative

step in a gradient sea¡ch technique. The dual variables )a generated by the LP model associated

with each constraint in Eq. 3.11 are given by:

d(cost)
d(Q,,) for nodes i=1,..., NJhi=
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Gradient terms which adjust the pressure distribution are given by Eq. 3.14 and are calculated

for each node in the pipe network given the current values of nodal pressure heads, pipe flows

and the dual variables.

¡/P M

Minimisecost Z=I > c¡mX¡m
j=l m=l

for nodes i=1,..., NJ
ð(cost)

ãH¡
(3.14)

(3.1e)

The adjusted pressure head distribution becomes the starting assumption for the next iteration.

Iterations continue until the rate of improvement in cost is small.

Alperovits and Shamir (1977) presented an alternative LP gradient approach. A list of candidate

discrete diameters are chosen for each proposed new pipe in the network. The new pipe is

assumed to consist of a set of segments of constant diameter. The unknowns in the LP

formulation are the partial lengths X¡m of piqeT of the mth diameterz.

Alperovits and Shamir (1911) assumed an initial flow pattern in the looped pipe network which

satisfied continuity at the nodes. If the flows in the pipes are known, the friction head loss /r¿-

in pipe segment m of pipej is a linear function of the unknown partial length X¡^. TbeLP

model is formulated as shown:

subject to

j=l m=l

(3.1s)

for junction nodes i=1,..., NJ (3.16)

for pipes i=1,..., NP (3.17)

(3.18)

NPR M

Hmini<¡4t > I Sr-X¡^SH^or,
j=l m=l

\x¡* =Li
M

m=l

NPL M

X¡* >- 0 'O for pipes i=1,..., NP

2 Calhoun (lg7l) developed a similar LP formulation for tree pipe networks which assumed the total length of
new pipe consists of partial lengths of constant diameter. The flow pattern in a tree network is known since it is
governed only by continuity.
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3 Optimisation of water distribution system design

in which

Xj*= the length of pipe segment of the zth diameter in pipe j
c¡*= the material cost per unit length of pipe of the rnth diameter in pipe j
M = number of candidate discrete pipe sizes for pipeT (number of segments m in pipe,l)

Hmin¡= minimum allowable pressure head at node I

H^o*¡= maximum allowable pressure head at node i

11" - pressure head at the source node s

$' = the hydraulic gradient of segment of mth diameter of pipe j
Lj = the total length of pipe j

The objective function in Eq. 3.15 assumes a linear relationship between the cost of the pipe

and its length. The objective function is subject to the set of linear constraints in Eqs. 3.16 to

3.19. The linear constraints in Eq. 3.16 check that the pressures at the nodes are within the

allowable bounds. The hydraulic gradient is determined from the Hazen-V/illiams head loss

formula. ThehydraulicgradientSrTislinearinX¡mif aflow Qinpipei isknownorassumed:

ht.
Si^= ?L= R¡^ 9'1ss2Ljm G'20)

The constraints in Eq. 3.17 ensure the total lengths of the segments rn equals the length of

pipe j. The constraints in Eq. 3.18 are based on the law of conservation of energy around a

natural loop or pseudo loop I and they ensure the segments are chosen such that the network is

hydraulically balanced. Finally, non-negativity constraints in Eq.3.19 arc required for the

variables X¡m.

The linear programming model determines the optimal set of decision variables for an assumed

flow pattern. The dual variables Â¿ generated by the LP model associated with each constraint

in Eq. 3.18 are given by:

),, =4!o!!! for loops I=f ,..., NL+(NF-I) (3.21)
d(AEù

The dual variables in Eq. 3.2I are used to find a gradient move in the steepest direction in the

solution space. The assumed flow pattern is adjusted in this direction. The gradient terms are

given by:

ã(cost)

for loops I=1,..., NL+(NF-I)
ãAQt
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The changes in flows AQ¡in the loop I are made proportional to the corresponding components

of the gradient terms. The step size of the move is based on the magnitude of the change in

flow but may be varied depending on the success of the previous steps. The linear program

optimises the design and hydraulically balances the network for each adjusted flow pattern. The

adjusted flow distribution becomes the starting assumption for the next iteration. Iterations

continue until no further improvement in cost can be achieved.

The list of candidate discrete diameters are selected for each new pipe from commercially

available pipe sizes. The candidate diameters for a pipe should cover a range of diameters such

that the limits of the list are not a constraint in the optimal design. Minimum diameters may be

specified for some pipes for system reliability.

In the optimal design, it may be necessary to round split pipe sizes to a single pipe size for the

entire length of pipe. Small pipe length segments should be removed. The final rounded

design should be checked to ensure it satisfies the minimum and maximum pressure head

constraints. The design may no longer be optimal following the rounding procedure.

Alperovits and Shamir (1977) provided an extension of their model to account for multiple

demand patterns, pumps, valves and reservoirs and operational considerations. The model can

design a nerw system or additions to an existing system.

Morgan and Goulter (1985) used a LP model coupled with a simulation model (based on the

Hardy Cross method) and heuristics to determine the optimal layout and design of looped water

distribution systems. The decision variables for the LP model are partial lengths of a pipe of a

given diameter to be replaced by different diameters. The LP model modifies the pipe sizes.

The simulation model determines flow and pressure distributions for the modif,red system layout

and design. A heuristic weighting procedure is used to remove uneconomical pipe locations.

The LP model again modifies the pipe sizes given the flow distribution and the weights.

Iterations of this procedure continue until the pipe sizes are not changed by the LP model.

Schaake and Lai (1969), Quindry et at. (1981) and Morgan and Goulter (1985) applied their LP

models to the planned expansions of the primary water tunnels of New York City and the

results are shown in Chapter 8. Some LP packages include LINDO (Schrage, 1981), LINGO

and GAMS (Brooke et al., 1988).
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3.3.3 Two-phase decomposition methods

The pipe network optimisation problem is generally expressed as a nonlinear programming

problem (El-Bahrawy and Smith, 1987). Decomposition methods such as the LP gradient

methods presented by Alperovits and Shamir (t977) and Quindry et al. (1981) are those that

decompose the general NLP formulation of the pipe network optimisation problem into smaller

subproblems and solve them in an iterative fashion.

Pipe network optimisation problems generate solution spaces with feasible regions that are

nonconvex and have multiple local optimal solutions (Loganathan et al., 1995). The LP

gradient methods are limited in that a local search is performed in the vicinity of the assumed

starting values of node pressures or pipe flows. The NLP method is also a local search which

alone, may only attain a local minimum in the vicinity of the assumed starting point. It is

recommended the LP and NLP problems be solved several times starting with a number of

initial solutions. The two-phase decomposition methods and other methods which combine

global strategy with local refinement attempt to generate better local optimal solutions.

Fujiwara and Khang (1990) proposed a two-phase decomposition method that combined the

methods of Alperovits and Shamir (1977), Quindry et al. (1981), and Mahjoub (1983). In the

first phase, a NLP gradient method (an extension of the LP gradient method of Alperovits and

Shamir, 1977) finds the optimum pipe head losses (and hence the pipe diameters) for an

assumed flow distribution and pumping heads. A correction is then applied to the assumed

flows and pumping heads using the Lagrange multipliers associated with the previous solution.

This iterative process converges to a local optimum. In the second phase, the head losses

obtained at the end of the first phase are fixed. A second NLP model finds the optimum pipe

flows and pumping heads for these head losses. The solution of this nonlinear concave

minimisation problem leads to an improved local optimum that may be used to restart the first

phase. Iterations continue between the two phases in such a way as to obtain improving local

optimal solutions.

A global optimum solution cannot be guaranteed (there are no techniques which guarantee a

global optimal solution for looped systems except for an exhaustive enumeration), however

Fujiwara and Khang (1990) believe the two-phase decomposition method allows for movement

to better local optimal solutions which may be far apart in the solution space. Fujiwara and

Khang showed extensions of the model for multiple sources, booster pumping, multiple

loadings and for the expansions of existing systems.
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Kessler (1988) and Kessler and Shamir (1991) developed a similar two-phase decomposition

method. Results of the optimisation techniques of Kessler (1988) and Fujiwara and Khang

(1990) as applied to the classic New York tunnels problem are shown in Chapter 8.

3.3.4 Global search and local optimisation

Randomness is a widely used tool in optimisation algorithms. Random search algorithms are

popular because they can easily be implemented and combined with heuristic ideas to suit a

particular search and they are often well suited to irregular solution spaces. Random search

methods are usually a combination of random sampling and local optimisation. Torn and

Zilinskas (1989) provided a comprehensive review of global search strategies including three

types of random search methods: crude sampling, single-start and multi-start methods. Crude

sampling is random exploration of regions of the solution space. Single-start is local

optimisation starting from a randomly chosen point. Multi-start is local optimisation starting

from multiple randomly chosen points.

Jacoby (1968) presented a procedure based on NLP and heuristics which was a variation of a

multi-start random search of the pipe network design solution space. Jacoby considered the

pipe network design problem for NP pipes as a nonlinear constrained optimisation problem in

2NP decision variables: the diameters D¡ and the flows Q¡inthe pipes j. The objective cost

function which incorporates pipe capital costs and system operating costs is nonlinear in the

decision variables D¡ and Q¡. It is assumed that pipe cost can be approximated by some

function of the pipe diameter. For example, a linear or polynomial function obtained by fitting a

curve to the cost versus discrete diameter data. The objective cost function is subject to sets of

linear and nonlinear constraints arising from the physical laws of continuity and energy applied

to the network. Minimum and maximum diameter and pressure head bounds may be included

as constraints.

Jacoby (1968) combined the objective function with the constraints in a 'merit function', F

F(Qt, ..., Q,NP, Dt, . .., D7i,p) (3.23)

The merit function is the cost function which is penalised with additional costs if a constraint is

violated. Any kind or combination of constraints can be managed in this way. The penalties

should be chosen such that the constraints are satisf,red at the global minimum.
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Jacoby (1968) considered an iterative procedure that moved in the solution space from point to

point. The step size of the movement varies with the success in reducing the merit function,

however, it is initially set at a value which depends on the scale of the numbers. The direction

of the movement is chosen in one of three ways:

1. negative gradient direction

2. random direction

3. experience direction

The directions are summarised by a direction vector, S

,S=lsl,...,sZXp) (3.24)

The components of the direction vector s¡ or s2¡ are the directions of movement with respect to

the decision variable Q or D¡ respectively. The negative gradient direction is the direction of the

local optimum. The components of the negative gradient vector of the merit function can be

approximated by finite movements from point to point in the solution in space moving with

respect to the corresponding decision variable. The second direction of movement is a

randomly chosen direction. The experience direction is a weighted average of the most

successful directions of the most recent steps.

A jump step to a random new starting point, occurring at some low frequency is an attempt to

avoid local optima. If the value of F cannot be reduced by any of the movements, the last point

is the solution. The continuous diameters need to be rounded to commercially available discrete

pipe sizes. Jacoby (1963) demonstrated substantial reductions in network cost for a simple

7-pipe system designed by this method.

Loganathan et al. (1995) showed the nonconvex, multimodal features of the pipe network

optimisation solution space. They presented a pipe network optimisation procedure with an

outer search scheme to choose alternative, feasible flow distributions to initialise an inner LP

formulation which determined pipe diameters (and nodal heads) of a local optimal solution. The

outer global sea¡ch strategies of multi-start local search and simulated annealing a.re adopted to

move between local optimal solutions and help locate isolated areas of the feasible region. The

multi-start local search chooses a number of random initial flow distributions from the feasible

region. Simulated annealing is an iterative improvement algorithm which compares the current

solution with the new solution. The new solution is used if it is a better solution and otherwise

it is discarded. To avoid being stuck on a local optimum, a worse point is accepted with some

specified probability (the'metropolis step').
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Loganathan et al. (1995) recommended a gradient-based optimisation be carried out from the

best point or other near-optimal solutions obtained by the outer search - inner optimisation

method to locally refine the optimum. The method can consider multiple loadings, pumps and

storage tanks. Loganathan et al. applied the model to the optimisation of the New York tunnel

network expansion problem (results are shown in Chapter 8).

3.3.5 Dynamic programming

Dynamic programming is applicable to general, separable, serial optimisation problems. The

problem is separated into subproblems called stages which are connected serially. Transition

functions pass information between each stage. State variables or states record the current

condition of the system at each stage. Kally (1912) used dynamic programming to determine

the set of optimal pipe sizes for branched pipe networks.

Martin (19S0) described a dynamic programming procedure which could be used to establish

the minimum cost layout and design of a water distribution system. The procedure described

by Martin is best explained by applying it to a simple example pipe network such as the one

shown in Figure 3.2.

Node

+ Section (directed arc)

Figure 3.2 Example pipe network with assumed flow directions

A specified flow is to be delivered from a source node A to a designated delivery node E along a

single conveyance route. A set of possible routes make up a directed, non-looping network. A

directed network is a set of nodes connected by a set of directed arcs. A non-looping network

is one where there is no path along any set of arcs which leads from a node back to itself. The

direction of the arcs indicates the direction of flow and this must be specified in advance.

The dynamic programming procedure works progressively backwards from the delivery node

in stages. The stages represent sets of sections (for example, sections may be pipes or pumps)

which are an equivalent number of sections back from the delivery node, considering the route

with the maximum number of sections between the delivery node and the section under

consideration. Stage N represents sections that a¡e a maximum of N-1 pipes from the delivery
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3 Optimisation of water distribution systent design

node. The example pipe network is therefore decomposed into four stages as shown in

Figure 3.3. Stage 1 represents sections BE, CE and DE. Stage 2 represents only section BD.

The input states for each stage are the HGL elevations of the downstream nodes of the sections

under consideration or the output states of the previous stage. The output states for each stage

are the HGL elevations of the upstream nodes of the sections under consideration or the input

states which pass through the stage unchanged.

,S¿ ,$ S¡

S¿ S¿

Dcn(þ)

sE) so)

Dc4Sn)

sr)

Sx Set of feasible HGL elevations and associated costs at node X

DYXSX) Set of decisions along the section YX dependent on state Sx

Figure 3.3 Decomposition of the dynamic programming procedure

Consider stage 1 for the example pipe network. A set of design decisions Dnø, Dcn and Dp¿

(eg., pipe diameters) are considered for sections BE, CE and DE for each feasible downstream

HGL elevation ,S6. The combination of design decision DBBand downstream HGL elevation S¿

generate an upstream HGL elevation ,S¡. The cost of providing water to the delivery node

including the construction and operating costs of the design along a conveyance route is

recorded at each stage for feasible upstream HGLs. The dynamic programming procedure

moves progressively upstream in this way until it encounters the water source(s). In the

example network, water source A is reached and the output states of stage 4 are the HGL

elevations at node A. The feasible HGL elevation at node A associated with the minimum cost

defines the optimal design and route.

Martin (1980) considered open channel canals and other canal structures and facilities,

embankment dams, pipeline systems and pumping stations as the possible design decisions

along each section. The dynamic programming procedure was implemented in a computer

program called CANAL-I. The procedure was applied to proposed water conveyance systems

in Texas.

.S¡+
,SC Sc Sc

STAGE 2 STAGE 3 STAGE 4STAGE 1
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3.3.6 Enumeration algorithms

Loubser and Gessler (1990) presented a partial enumeration technique. The technique which

developed from the enumeration algorithm described by Gessler (1982,1985) was proposed to

overcome many of the practical considerations that make the optimisation of water distribution

systems difficult. For the pipe sizing optimisation problem, a designer is usually limited to

selecting discrete pipe sizes from a list of available pipe sizes. An enumeration technique makes

use of this restriction by generating and evaluating possible combinations of discrete pipe sizes

for the proposed pipe network layout. The combination of pipe sizes with the minimum cost

and which meets the specified pressure head constraints is selected as the optimum.

A complete (exhaustive) enumeration of every possible combination of the decision variables is

the only known technique that can guarantee the determination of the global optimum for looped

networks. A limitation of complete enumeration is the computational effort required to

investigate every possible combination of pipe sizes. For example, for the proposed

expansions to the New York City water supply tunnels (Chapter 8) with 21 tunnels to be sized

and with 16 available tunnel sizes to choose from, there are 162r = 1.93x102s possible network

designs. It is a practical impossibility to evaluate every possible solution for this relatively

small network, even using the fastest computers.

Some modifications to the solution space are suggested by Loubser and Gessler (1990) to limit

the search and reduce the computer time required. The modifications (1) and (2) reduce the

extent of the solution space before the partial enumeration starts.

(1) An understanding of the overall flow pattern in the network from the supply to the

demands may allow the designer to place certain pipes in pipe groups which are

restricted to the same pipe size. Gessler (1982, 1985) argued that placing selected pipes

in pipe groups simplifies the construction process and may help to provide redundancy.

(2) The original list of available pipe sizes may be reduced for the pipe groups

The modifications (1) and (2) for reducing the search of the solution space require some

experience with the pipe network under consideration. Regardless of experience and intuition,

the pruning decisions to reduce the search space size will often exclude the optimum solution

and therefore potential cost savings are lost.
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Other modifications (3) and (4) to the search are applied to reduce the extent of the solution

space as the partial enumeration proceeds.

(3) 'Cost Filter': There is no need to test a combination of pipe sizes for hydraulic

feasibility if the cost of the solution is greater than some cut-off cost. The cut-off cost

corresponds to the cheapest known solution that satisfies the pressure constraints.

(4) 'Size Filter': There is no need to test a combination of pipe sizes for hydraulic

feasibility if all the selected pipe sizes are equal to or less than the pipe sizes of some

other cut-off infeasible solution.

In some situations, reducing a pipe size in the system has been found to result in a flow pattern

redistribution which increases the pressure head at critical nodes3. These circumstances bring

the use of the size filter into question.

Some enumerative search schemes are devised so that all the pipe size combinations are visited

systematically using say, a Breadth First Search (BFS) algorithm. All the pipe sizes start at the

maximum pipe size and the search progresses systematically down the list of available pipe

sizes. Gessler (1982) suggested the preliminary use of a Depth First Search (DFS) algorithm to

quickly determine low cost feasible combinations of pipe sizes as well as some marginally

infeasible combinations of pipe sizes for the effective use of the cost filter and size filter.

The partial enumeration of Loubser and Gessler (1990) identified a number of good solutions

from the evaluated solutions. A disadvantage of the partial enumeration is the likely exclusion

of the best solutions as a result of the severe pruning of the solution space. The technique also

requires some knowtedge of the optimal flow patterns for the system and candidate pipe sizes

must be specif,red for the flow patterns. These are not obvious decisions, especially as network

size increases and the system is subject to multiple demand patterns.

3.3.7 Heuristic techniques

Some practical optimisation problems especially in engineering may be very complex and are

only rigorously def,rned by mathematics. It is reasonable then, that heuristic methods should be

developed. Heuristics are procedures and rules particular to the search. They may be learned

from experience with the problem and perhaps are not proven mathematically. Heuristics can

generally assist in problem solving and generally reduce the effort of the search. Most of the

optimisation algorithms reviewed in this chapter have used some heuristics.

3 This was demonstrated by the genetic algorithm optimisation of a relatively small (5 loops and 27 mains

including 13 new and 14 existing mains) water distribution network for a new residential subdivision at Seaford

in South Australia (Murphy et al., 1993a).
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Featherstone and El-Jumaily (1983) based a heuristic optimisation technique on the concept that

a unique hypothetical linear gradient exists which corresponds to an optimal design. An

extensive cost function was adopted which accounted for pipe, pump and tank costs, labour,

maintenance and water treatment costs. The cost function is expressed in terms of the hydraulic

gradient term, ,! for pipei where:

(3.2s)

The pipes in the network are assigned arbitrary (usually identical) diameters as a starting

assumption. A hydraulic analysis of the network is performed to determine balanced pipe

flows. The coeff,rcients of the cost function are evaluated since they depend on the pipe flows.

The optimal design is found by equating hydraulic gradients in all of the pipe sections ,! to a

hypothetical value,so or dummy optimal gradient. The cost function is a minimum where:

hf,

L¡
5i=

(3.26)

The value of ,So is computed by differentiating the cost function, setting the first derivative to

zero and solving for So. The method assumes a cost function for which the first derivative

exists. A set of new diameters for the pipes are given by substituting S;-So into the Hazen-

Williams friction head loss formula for all the pipes j. The continuous pipe sizes may be

rounded to commercially available discrete pipe sizes. The new pipe network corresponding to

,S, is balanced using a steady-state hydraulic simulation model. The coefficients in the cost

function are revised using the balanced pipe flows. An adjusted value of ,S, is found and the

pipe network solution corresponding to this value of So is determined. The procedure is

repeated until the least cost design is reached.

Monbaliu et al. (1990) reported a pipe network optimisation technique which could be described

as a type of enumeration search or gradient search incorporating heuristics. The technique is

implemented in a computer program called PIPENET. The optimisation algorithm is coupled

with a Hardy Cross hydraulic simulation model in PIPENET. The user supplies the algorithm

with the network data and a list of candidate pipe sizes. The pipes to be sized are initially

allocated the smallest pipe diameter and the proposed network is checked for hydraulic

feasibility. If the pressure heads are inadequate, the diameter of the pipe with the largest head

loss per metre is increased to the next available pipe size. The procedure is repeated until a

feasible solution is obtained. The optimisation algorithm was compared to linear and nonlinear

programming and produced similar designs for two simple example pipe networks.
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3.3.8 Equivalent pipe methods

Equivalent diameter methods and equivalent length methods are specific types of heuristic

search methods for pipe network optimisation. Deb and Sarkar (191I) developed a method of

pipe network optimisation based on an equivalent diameter method which can be used to obtain

the minimum cost combination of pipes for a given set of nodal pressure heads. The method

assumed the pipe network consisted of pipes of equal lengths L, and roughness coefficients Cu

and equivalent diameters D"¡ such that:

(3.21)

The cost function is assumed to be of the form:

Y¡ = K2 D¿.1" (3.28)

in which

Yj = total cost of pipeline of equivalent diameter D"¡

Kl, KZ = cgnstants

m = an exponent

Deb and Sarkar (1971) substituted F,q.3.27 into Eq.3.28 to eliminate D"¡and formed the

relationship:

S D]{- 
= e'LIO

(3.2e)

The friction head loss ft¡ in pipe j can be determined from the difference in node pressure heads

which are specified in advance. In addition, the pressure heads fix the direction of flow in the

pipes. Deb and Sarkar (1971) applied Eq. 3.29 to the pipes in a loop and concluded that for the

minimum total cost of pipe in a loop the following condition must be satisfied:

(3.30)

where A'is a constant. The optimum value of A'is the maximum value that does not disturb

the assumed flow directions. The problem needs to be solved for increasing trial values of A'.
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The method also requires a set of initially assumed flows Q,. The corresponding equivalent

diameters Dr¡ can be determined from F,q.3.27. A known value of A'can be found by

applying Eq. 3.30 to the pipes in a loop. Deb and Sarkar (1971) derived a relationship for

correction factors AQ for flow to be added algebraically to the initially assumed flows in a loop.

The procedure is repeated and convergence to the solution in each loop is observed. The

equivalent diameters D"¡ can be converted to the actual diameters D; with actual length L¡ and

roughness Q by the relationship:

(?l*" = (z)(?)'"'
(3.31)

The method requires a set of assumed fixed pressure heads for the nodes to be specified.

Various solutions may be obtained for various sets of assumed pressure heads. Deb and Sarkar

attempted to determine the optimum set of pressure heads by assuming the pressure head profile

between the source node and the critical node (usually an extreme downstream point in the

network) can be represented by a quadratic function. The validity of the equivalent pipe

methods has been questioned. Swamee and Khanna (1974) showed that the equivalent pipe

methods essentially fix the hydraulic gradient.

Raman and Raman (1966) considered an equivalent length method to determine optimal pipe

sizes from known node pressure heads. Initially, all the pipes j in the network are replaced by

pipes of equivalent length L, of a constant diameter. The technique was based on the concept

L/Q=O must hold for pipes around a loop if the total sum of equivalent lengths ZLr of pipes

in the loop is a minimum. A correction factor for pipe flows was derived to be applied to a set

of initially assumed flows. The actual lengths of pipe are used to determine the actual diameters

of the equivalent lengths of pipe.

3.3.9 Evolutionary strategy

The evolutionary strategy was developed by Rechenberg 0913) in Germany, independently of,

but in parallel with the development of genetic algorithms by Holland (1975) in the United

States. Rechenberg believed that the imitation of the processes of biological evolution should

be a promising experimental method for optimising engineering design. Rechenberg also

claimed the rules of biological evolution were themselves evolving, such that evolution is an

optimal mode of operation.

Rechenber g (1973) described biological evolution most simply in terms of mutation which is

the occasional random alterations of members and selection which is the survival of members of

high resilience. A two-membered competitive scheme is a simple concept in which a variation
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is made to a single member and a decision is made to keep or take back the variation depending

on the capacity for survival of the child member compared to the parent member. The two-

membered competitive situation is extended to the multi-membered competitive situation. The

mechanisms of mutation and selection are applied to a collection of members. A process of
recombination may be introduced which is the continuous mixing of parent members.

Cembrowicz and Krauter (1911) utilised an optimisation technique which combines graph

theory, linear programming and the evolutionary strategy to optimise a pipe network. A tree is

a branched network that contains no loops such that every node is connected. Tree

configurations were considered since they correspond to local cost minima. The evolutionary

strategy was composed of five major operators based on the principles of mutation, selection

and recombination. The evolutionary strategy was used to generate trees by 'permutating the

chords in any loop', since a tree network is a loop network minus one chord in each loop.

Linear programming was used to optimise the generated tree networks. Since the flows in the

tree network are known, the objective cost function is subject to a set of linear constraints.

3.4 Complexities of Pipe Network Optimisation

The complexities of the pipe network design problem has restricted the development of practical

optimisation techniques. The following outlines some issues that should be addressed.

Pipe network optimisation is a highly dimensional problem which makes it difficult to solve.

The dimensionality of the solution space is determined by the number of decision variables.

Dimensionality (and computational time and storage requirements) increase as the pipe network

size increases. Pipe network optimisation techniques should be capable of efficiently operating

with large pipe networks. Partial enumeration algorithms may experience difficulty as the pipe

network size increases, as the near-optimal flow patterns become more difficult to predict and

the computational time needed to perform a hydraulic simulation of trial pipe network designs

increases significantly.

Water distribution systems are designed to fulf,rl the diverse water needs imposed by a complex

combination of users for domestic, industrial, commercial and emergency (eg. fire-fighting)

purposes. In addition, water needs fluctuate with the seasons and during the day. Multiple

demand patterns should be analysed to ensure redundancy and a reliable design (Lansey and

Mays, 19S9b). The critical demand pattern is often difficult to predict. Linear programming

and nonlinear programming optimisation methods (that are not coupled to a hydraulic simulation

model to evaluate feasibility) generate new sets of hydraulic and system performance constraints

for each new demand pattern and the formulation can become cumbersome for multiple demand

patterns.
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3 Optimisation of water distribution system design

Pipe network optimisation is a highly nonlinear problem, since the cost eq

equations for flow in the system components are usually nonlinear expressions.

as linear programming attempt to simplify the problem by linearising the objective

the constraints by assuming some network conditions. The assumptions immediately place

restrictions on the regions on the solution space that may be searched.

Pipe network design is a global optimisation problem. The global minimum is one of many

local minima in the solution space and the number and distribution of local minima is difficult to

predict. Although some constraints may be extended to their bounds for the local minimum, the

cost of the local minimum may still be considerably higher than the cost of the global minimum.

For these reasons, local search techniques without some global strategy are not well suited to

pipe network optimisation.

Some optimisation methods derive a smooth and continuous pipe cost versus diameter relation

by approximating the pipe cost by some function such as a polynomial in the diameters.

Approximation of the pipe cost functions can contribute to errors in computation of the objective

cost function and hence mislead the optimisation technique.

Pipe diameters are usually a discrete set of commercially available pipe sizes. Some linear

programming and nonlinear programming methods operate with continuous pipe diameter

variables. Continuous solutions require the rounding of continuous diameters to discrete

diameters to be of practical value. The rounding of continuous solutions is itself a secondary

optimisation problem. In addition, the rounding of continuous solutions does not ensure an

optimal or feasible design. In split pipe designs, the pipe sections of continuous diameter are

reduced to lengths of the two adjacent discrete pipe diameters. The partial lengths are chosen so

as to create a pipe section with equivalent hydraulic properties.

Other design parameters such as cleaning, lining, duplication or deletion of existing pipes are

often diff,rcult to incorporate into the optimisation model. In practice, alternative pipe materials

with different pipe roughnesses and internal diameters for a given nominal diameter may be

available.

The pipe network may be a new system, but often expansions to an existing system are required

to meet increased water needs. The optimisation technique should be capable of handling both

situations. Techniques which are only applicable to optimising branched networks have limited

practical value, since most urban pipe networks are looped. The optimisation procedure should

be capable of handling the simulation and optimisation of the design and operation of other

system components such as pumps, tanks, pressure reducing valves and other flow and

pressure regulating devices.
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4 Overview of Genetic Algorithms

Genetic algorithms (GAs) ane a class of powerful search procedures which simulate an

evolution strategy (Holland, 1915: Goldberg, 1989). Evolution is the process of gradual and

continuous growth by which species of living things develop from earlier forms. Charles

Darwin proposed new species arose by a process called natural selection acting on individual

variations in a population. The study of genetics explains the individual variations by genetic

mechanisms such as spontaneous mutations.

The genetic algorithm (GA) search is a simplified computer simulation of Darwin's rules of
natural selection and mechanisms of population genetics. In nature's established optimisation

process, fitter populations of individuals evolve and adapt to the current environment over

many generations. In the artificial GA evolution, simplified versions of natural selection rules

and genetic mechanisms are applied to an evolving population of trial solutions; to identify

global optimal (or near-optimal) solutions in a solution space defined by the optimisation or

search problem.

Genetic algorithms have been theoretically and empirically proven to effectively search complex

solution spaces. DeJong (1975) demonstrated the far-reaching possibilities of the GAs when

he subjected the simple GA and five variations to a set of search spaces with diverse

characteristics. Since their introduction by Holland in 1975, the GA search, sometimes with

modifications to the traditional GA formulation, has performed efficiently in a number of

scientific, engineering, economic and even artistic applications (Goldberg, 1989). This

demonstrates the robustness of the GA search and the flexibility of the GA formulation. In this

thesis, the GA search is applied to the global search of the vast, complex solution space for a

water distribution system (looped, pumped) optimisation problem. In this chapter, the

traditional genetic algorithm method is introduced and some applications relating to the genetic

algorithm formulation developed in this thesis are reviewed.

4.1 Chromosomes

The genetic algorithm (GA) represents individual solutions by some unique encoded structure

such as a string or block of binary bits. Coded strings may represent individual solutions to the

optimisation problem such as pipe network designs, just as a chromosome of genetic code

characterises an individual of a species in biological systems.

Chromosomes are ¿urangements of genes which are the inherited biological factors that define

the characteristics of an individual. In natural systems, the total genetic make-up of an
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4 Overview of genetic algorithms

organism is contained in a package of one or more chromosomes called a genotype (Goldberg,

1989). In the genetic algorithm, the coded string is the artificial genotype or collection of
chromosomes which represents the decision variables for the optimisation problem. In natural

systems, the phenotyp¿ is the organism formed by the interaction of the genetic make-up with

its environment (Goldberg, 1989).

The first task of the GA user in the implementation of a GA model for a new application is to

develop a coding scheme to represent solutions to the optimisation problem as coded structures.

Traditionally, substrings of binary code arranged in a coded string decode to the decision

variable choices of the optimisation. Alternatively, substrings of Gray code (Bethke, 1981;

Caruana and Schaffer, 1988), integer values, letters (Davis and Coombs, 1987), or real

numbers (Goldberg, 1990) may be mapped to decision variable choices to represent a trial

solution to the optimisation problem. Consider a coded string representing a trial pipe network

design for the hypothetical pipe network design problem shown in Figure 4.1. The five

decision variables for the optimisation are the diameters of the proposed new pipes [1] to [5].

10" 6"
4" 10"

12"

8"

12"

t4l
12 l

.Q-G +

Coded substring position:

Corresponding pipe number:

L4"

1-2-3-4-5
tll-t2l-t3l-t4l-tsl

¿
tll

t5l t3l

Figure 4.1, Hypothetical pipe network design problem requiring the selection

of five new pipe sizes

The coded string is constructed of five coded substrings each corresponding to one of the five

decision variables of the optimisation problem. In this case, the substring positions correspond

to the new pipes to be sized:
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4 Overview of genetic algorithms

The unique substring code at a substring position decodes to the proposed decision variable

choice (eg., pipe diameter) in the trial pipe network design by observing a specified mapping

between the substring code and the decision variable choices. For example, if the available new

pipe sizes for the hypothetical pipe network design were 4", 6", 8" and 10" diameters, one of

the mappings in Table 4.I may be used to represent trial network solutions.

Table 4.L The representation of design parameters by pieces of code

If for example, the optimal solution to the hypothetical pipe network design problem was:

D¡1¡=lQ" - D¡21=6" - D¡31=8" - D¡41=8" - D¡51=4"

Then the coded strings representing the optimal pipe network design solution are as follows:

. Substrings of binary codes 11-01 -10-10-00

. Substrings of Gray codes: 10-01 -11-11-00

. Substrings of integer code: 4-2-3-3-r

4.2 Fitness of Coded Structures

In natural systems, fitness may reflect a living thing's compatibility with its surrounding

conditions and ultimately regulates its survival. Similarly, the fitness value of a coded string

(an artificial chromosome) is a measure of the quality of the solution and determines its chances

of survival in the genetic algorithm search. Each coded string is assigned a f,rtness and the GA

searches for the string with the highest fitness.

The fitness function is a relationship between the fitness value of a string and the objective

function value of the trial solution, and may incorporate a penalty for infeasible solutions. A
penatty method is one approach to a constrained optimisation problem. Infeasible solutions are

unacceptable solutions which do not satisfy one or more of the constraints of the optimisation.

PHENOTYPE GENOTYPE
Available new pipe

diameters
Unique substrings of

binary code
Substrings of

Gray code
lnteger code

4 00 00 I
6 01 01 2
8 t0 lt J

10" 11 10 4
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4 Overview of genetic algorithms

The genetic algorithm penalises infeasible solutions by reducing their fitness. The penalty

applied to a solution is usually function of the distance from feasibility (Richardson et al.,

1939) such that penalties increase as the quality of solution decreases. The penalty can be a

function of the number of violated constraints or a function of the degree by which the solution

violates the constraints.

The penalty is the cost of achieving feasibility. Infeasible solutions are not discarded from the

GA search since valuable genetic information may be contained in a coded string representing

an infeasible solution which just fails to satisfy the constraints. Some infeasible strings will be

composed of pieces of the optimal string since the global optimal solution lies close to the

boundary between feasible and infeasible solutions and is only a step away from feasible and

infeasible solutions. The penalty function should be selected so that the GA search approaches

the optimum solution from both the feasible and infeasible regions of the solution space.

4.3 The Solution Space

A coded string is a trial solution and the set of all coded strings describes the solution space to

be explored by the genetic algorithm search. The number of decision variables and the number

of possible choices for the decision variables determines the size of the solution space. The

fitness values of the coded solutions reflects the topography of the solution space. The solution

space for the constrained pipe network optimisation problem is made up of a feasible region

(the set of solutions which satisfies the constraints) and an infeasible region.

4.4 Populations of Coded Structures

In nature, organisms live within competitive populations. Similarly, the genetic algorithm

considers a collection or population of coded strings at any given time. The population

represents some distribution of trial solutions in the solution space. The size of the population

can be anywhere from 10 to 1,000 or more coded structures. The population size is kept

constant throughout the traditional GA evolution, although the population size may vary

through the generations for some GA formulations.

The GA artificial evolution process is initiated with a starting population. The starting

population of coded strings is usually generated randomly although some GAs may bias the

starting population in some way to attempt to help direct the search. A randomly generated

starting population of coded strings represents a random distribution of trial solutions in the

solution space, giving the GA a picture of the global topography.
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4 Overview of genetic algorithms

The GA successively evaluates and regenerates new populations of coded strings. The GA

search generates new populations of coded solutions from old populations using simple

operators. The GA effectively searches and improves from a population of strings and their

corresponding fitness values.

4.5 Genetic Algorithm Operators

The chromosomes of living things are combined and manipulated by genetic mechanisms from

generation to generation. The genetic algorithm performs simple operations to the current

population of coded structures to create a new population. The operations imitate nature's rules

of survival and mechanisms of population genetics. The simple, yet powerful traditional

genetic algorithm employs selection, crossover and mutation operators.

Consider the schematic of an evolution strategy in Figure 4.2. The shading of the artificial

chromosomes represents fitness, such that the darker chromosomes are fitter. In this simple

representation, the fitter chromosomes are more likely to survive and reproduce and their

progeny make up the new generation of chromosomes. The new chromosomes are formed

from parts of their parent chromosomes and occasionally a gene mutation occurs in a child

chromosome. As the generations proceed, the population gradually becomes fitter and more

competitive.

4.6 Selection

Selection (or reproduction) is based on Darwin's survival-of-the-fittest philosophy of natural

selection. The fittest coded solutions from a population of solutions are more likely to be

selected to advance to the next generation of the GA evolution by the selection operator.

In natural systems, the survival of a living thing depends to some degree on it's strength (or

fitness) and to some degree on good fortune. In a similar fashion, the selection of a coded

string from within a competing population of strings depends on the fitness of the string relative

to fellow strings and chance factors.

The traditional selection operator is calledproportionate selection or stochqstic sampling with

replacemenr (Goldberg, 1989). Goldberg likened proportionate selection to a weighted roulette

wheel with segments corresponding to the strings in the population and sized according to the

string's fitness. The roulette wheel segments are sized such that strings with higher fitness

have a higher probability of selection.
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Figure 4.2 A model of a generation of a simple evolution strategy

Coded strings are evaluated
and assigned a fitness value.
lncreasing slring f¡tness is
represenled as shown:

Starting populatlon of
,v coded strings

The population members are traditionally
fixed - lenglh strings of binary b¡ts.
For example:

string a = (1 1 )-(1 0)-(1 0)-(1 1 )-(00)
The slarting population is

usually randomly generated.

Select two parent strings from the old population
for mating using with some bias to fitter slrings.
There are a number of alternative selection
methods including proportionate (roulette-wheel)
selection and tournament selection.

Theparentstrings g@ og

ræ

The generalion of child strings
by selection, crossover and
mutation continues unitl the

new population ¡s f¡lled.

N

I
ñ

The parent slrings are maled and exchange
corresponding segments ol code ¡n one-po¡nt
crossover. The crossover point may be
chosen randomly.

æ!

g-e
The mated parent str¡ngs are occasionally
altered by random mutations of code.

Thechildstrings a' b'- The parent strings produce two new child
strings. The child str¡ngs are evaluated and
assigned a su¡table fitness value.

The two new ch¡ld strings are
inserted in the new populalion.

The new population
ol rVstr¡ngs

A generat¡on is complete when the
new population of ch¡ld strings has

been formed from the old populatlon.

The generation of new populations continues for a specified
numbêr of generations or until the population has converged.

N-
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4 Overview of genetic algorithms

The fitness assigned to a string must differentiate it from stronger and weaker strings to allow

the string an appropriate chance of selection in the reproduction process.

Some alternative parent selection methods include tournament selection and ranking selection

(Goldberg and Deb, 1991). Tournament selection selects two (or more) parent strings from the

old population by stochastic sampling and the parent string with the highest fitness is declared

the winner and proceeds to produce offspring strings in the new population.

Hollstien (I971) investigated a number of parent selection methods and mating methods based

on natural breeding practices and controlled breeding practices applied by man to plants and

animals (Goldberg, 1989).

The traditional selection scheme of proportionate selection or roulette-wheel selection has been

used successfully combined with the use of fitness scaling techniques (Goldberg, 1989),

although tournament selection is often the preferred selection operator since selection and

fitness scaling are combined into one step (Goldberg and Deb, 1991).

4.7 Crossover

Crossover mimics the mixing of chromosomes and swapping of genes that occurs when two

living things mate. The genetic algorithm crossover operator breaks two parent strings selected

from the old population and exchanges segments of code to produce two offspring strings in

the new population.

The traditional GA crossover operator is simple one-point crossover. A position in the coded

string is selected randomly and crossover proceeds by breaking the coded strings and

exchanging corresponding segments of code between the strings after the crossover site.

Some alternative crossover operators include multiple-point crossover, uniform crossover and

shuffle crossover (Eshelman et al., 1989). Multiple-point crossover is the random selection of

two or more crossover sites and the exchange of corresponding alternate segments of code. In

uniform crossover, corresponding bits of code are exchanged rather than segments of code.

The bits may be exchanged between the parents with some probability. In adaptive crossover,

the crossover sites are not chosen randomly, but instead are chosen with some probability that

may be specified or determined as the GA run progresses.
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4.8 Mutation

Mutation is the occasional, random alteration of code in the offspring strings. The genetic

algorithm mechanism of mutation spontaneously alters pieces of code to prevent the loss of a

potentially useful genetic trait.

The traditional bit-wise complement mutations operate on randomly selected offspring strings

of binary bits. A bit position is randomly selected and the bit value is inverted.

Decision-variable-wise mutation performs a mutation of decision variable substring code

chosen randomly from the coded string. Goldberg (1990) suggested the use of traditional bit-

wise mutations and decision-variable-wise or phenotypic mutations in binary-coded GAs to

overcome such problems as Hamming Cliffs.

A marked mutation in any environment may not easily survive, however, more subtle mutations

may survive. Davis and Coombs (1987) introduced an operator called creep in their study of

the design of packet switching communication networks. The coded strings were lists of

communication link speeds which corresponded to links in the network and creep altered

selected link speeds upward or downward one or more steps in the list of allowable link

speeds.

4.9 String Similarities (Schemata)

Holland (1975) developed the Schema Theorem for genetic algorithms. A schema describes a

family of coded strings related by coding similarities at given positions on the string. A schema

is a similarity template (Goldberg, 1989) describing a subset of strings with similarities at given

positions on the string. Schemata, a set of schema, are a way of representing similarities

between strings of the same string length and constructed with the same alphabet.

Consider the set of strings with a string length of 15 bits coded using the binary alphabet

{ 1 ,0 } . There arc 2t5 unique coded strings of 15 binary bits. Schemata are constructed using

the ternary alphabet { 1,0,* } in which the x is sometimes called the 'don't care' symbol. There

are 315 unique schemata which may be defined for a coded string of 15 binary bits. In general,

there are (k+l)l schemata, for a string of length / constructed with an alphabet of cardinality k

(Goldberg, 1939). The examples of schemata in Table 4.2 arc accompanied by coded strings

which belong to the family of coded strings designated by the schemata. Schema 1{ describes

a subset of 2rr coded strings with an identical 0-1 structure in the bit positions 3 to 6 and either
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a 0 or a 1 in the bit positions occupied by a *. Three members of this family are shown in

"lable 4.2.

The order of a schema is the number of fixed positions in the schema. The low order of
schema H ¡ is 4 and the relatively high order of schema H2 is 11. The order of schema I13 is 5.

The defining length of a schema is the distance between the outermost specific positions of a

schema. The schema H t has a short defining length of 3, the schema H2has a defining length

of 11 and the schema,Fl3 has a relatively long defining length of 13.

The GA interprets and exploits the relationship between string similarities and corresponding

fitness values in a population of strings. As such, the GA identifies building blocks which are

schemata of low order and short defining length and which are associated with high fitness

(Goldberg, 1989). These building blocks are an important element in the action of genetic

algorithms. Should schema H1 in Table 4.2be found in strings of high fitness, it could be an

effective building block with its low order and short defining length. Goldberg considered the

effects of selection, crossover and mutation on the expected numbers of schemata in subsequent

populations and concluded the power of the GA is in the propagation and the combination of

building blocks.

Table 4.2 Example schemata and subset members

GAs exploit string similarities by allowing more copies of the fitter strings to continue to the

mating pool during selection. The GA selects strings with high fitness more often in

reproduction to contribute further to the GA evolution. Hence highly fit string similarities or

EXAMPLE ScHSN,IA,TA. AND FAMILY MEMBERS FOR COOBO STNTNCS OF 15 BN.IARY BITS

Schema If **1_110_***_*x*_{<** 111-110-000-010-110

001-1 10-1 1 1-1 10-1 10

011-110-010-11 1-000

Schema ^F12
x I 1_* 10_000_010_1 ** I I 1-1 10-000-010-1 10

011-010-000-010-110

111-110-000-010-101

Schema F/3 1**_11*_r<**_***_11* 1 1 1-1 10-000-010-1 10

101-11 1-101-001-1 11

110-110-010-000-110
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highly fit schemata survive and accumulate in successive generations. The offspring strings

inherit the combined highly fit schemata of their parents in crossover. Schemata of short

defining length and low order are less likely to be disrupted by the effects of crossover.

4.10 The Power of the Genetic Algorithm

Selection rules and genetic code modifications from generation to generation of coded strings

attempt to reproduce the efficiency of the development of living things towards adaptation. In

nature, weak genetic characteristics of living things are discarded in time while the strong

genetic characteristics of living things become prominent. In the GA, building blocks are

regenerated in reproduction and are combined with other building blocks by crossover to

c<lnstruct superior new strings from the best parts of the best old strings. Subsequent

populations of coded strings converge on 'fitter' regions of the solution space.

The GA searches from a population of coded strings and their corresponding fitness values.

All the information required for the search is contained in these two elements. The GA does

not rely on auxiliary information such as continuity or the existence of derivatives. The power

of the GA comes from the exploitation of the special relationship between the f,ttness of strings

and the string similarities within a population.

The GA works with an evolving population of trial solutions where conventional methods

move from a single point in the solution space to the next. The starting population is usually

randomly distributed throughout the solution space. The GA climbs many peaks in parallel

which is particularly important in many-peaked and discontinuous solution spaces. The GA

only searches a fraction of the total number of solutions before near-optimal solutions are

determined.

The GA produces a number of acceptable solutions that are near-optimal and yet perhaps quite

different. The penalty function can be modified so that consideration can be given to solutions

that are just infeasible. The GA technique does not exclude infeasible solutions from the

search. A well chosen penalty function considers the degree by which the constraints are

violated and calculates an appropriate penalty cost. Solutions that are just infeasible are

recognised as useful solutions since the optimal solution lies on the boundary between feasible

and infeasible solutions.

4.ll GAs applied to Pipe Optimisation Problems

In recent years, researchers have proposed the genetic algorithm approach for aspects of the

design of pipeline systems. Goldberg and Kuo (1937) applied the traditional GA to the
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optimisation of the operation of a steady-state serial gas pipeline consisting of 10 pipes and 10

compressor stations each containing 4 pumps in series. The objective was to minimise power,

while supplying a specified flow and maintaining allowable pressures. The simple three-

operator GA found near-optimal pump operation alternatives after evaluating a fraction of the

total possible number of solutions (about 3500 from 1.10 x 1gl2 possible combinations).

Davidson and Goulter (1992a,I992b) used GAs to optimise the layout of a branched rectilinear

network such as a rural natural gas or water distribution system. The optimal layout was

assumed to be the one of least length. The layout solutions were represented by blocks of

binary code and new GA operators of recombination and perturbation were introduced to

reduce the numbers of infeasible solutions created by the traditional GA operators of crossover

and mutation.

Walters and Lohbeck (1993) found the GA effectively converges to near-optimal branched

network layouts selected from a directed base graph which defines a set of possible layouts.

The nodal conneçtivity of the trial branch network solutions was represented by a string of

code. Alternative GA coding schemes were investigated including a binary representation and

an integer representation. V/alters and Cembrowicz (1993) extended these ideas using linear

programming for the optimal selection of pipe sizes for branched pipe networks generated by a

GA. The combination of GAs, graph theory and linear programming formed an effective

search for near-optimal branched pipe network designs.

In the next chapter, a methodology is proposed for the application of the traditional genetic

algorithm to the pipe network optimisation problem.
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5 Application of the Traditional Genetic Algorithm
to Pipe Network Optimisation

The traditional three-operator genetic algorithm (GA) introduced in the previous chapter is

applied to a relatively simple pipe network design optimisation problem in this chapter. The

traditional GA applies proportionate selection, one-point crossover and occasional random bit-

wise mutations to an evolving population of fixed-length binary strings. The fixed-length

binary strings characterise the form of representation space to be searched. The GA

optimisation of the multimodal, high-dimensional objective function for the pipe network

optimisation problem presented in this chapter is based on the traditional form of the GA, to

take advantage of the powerful properties identified by Holland (1915). The GA search,

sometimes with modifications to the traditional GA formulation, has been shown to perform

efficiently in a number of different applications. This efficiency indicates the robustness of the

search method that underlies the GA approach and the flexibility of the formulation itself

(Goldberg, 1989).

5.L A Genetic Algorithm Approach

The genetic algorithm search can be formulated in many different ways, such is the flexibility of

the technique. The GA formulation presented in this chapter outlines a traditional GA approach

to pipe network optimisation (Simpson, Dandy and Murphy,1994).

5.1.1 Coded strings

In a simple form, the pipe network optimisation problem is the selection of a combination of

pipe sizes in a gravity fed water distribution system, such that pipe material and laying costs are

minimised (Chapter 3). The pipe network design is subject to system performance constraints,

hydraulic constraints and other design constraints. The decision variable choices for this

standa¡d pipe network optimisation problem are the new pipe sizes. The GA represents the set

of decision variable choices describing a trial solution by a unique coded string of finite length

(Goldberg and Kuo, 1987). The coded string is similar to the structure of a chromosome of

genetic code. The {0,1} binary code (the minimum alphabet) is chosen as the representation

mapping in the traditional GA application. Consider a coded string of ten binary bits,

constructed of five coded substrings each of two binary bits:

11-01 -10-10-00

This artificial genetic code could represent a trial pipe network design for a pipe network

optimisation problem. The five decision va¡iable substrings each correspond to one of f,tve new
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pipes. The five decision variables for the optimisation are the five pipe diameters to be selected

for the new pipes. The 2-bit substring symbols {00,01,10,11} map the decision variable to

one of four possible choices of discrete pipe diameter.

5.1.2 Fitness of coded strings

The coded string representing a trial pipe network design is assigned a fitness. The fitness is a

value which measures the quality of the solution. The fitness of a coded string is analogous to

the fitness of the genetic make-up of an individual member of a species. The fitness value to

accompany the coded string is determined by the pipe costs and the hydraulic performance of

the pipe network design. The total cost of a pipe network design is taken as the sum of 1) the

present value of material, construction, maintenance and operation costs and 2) penalty costs

(where the system performance constraints such as minimum pressure requirements are

violated).

The simple GA search operates with strings of binary code and the associated fitness values.

All the information required for the search is contained in these two elements. By comparison,

some traditional optimisation methods rely on the existence and continuity of derivatives or

other auxiliary information (Goldberg and Kuo, 1987).

5.L.3 Implementation of a simple genetic algorithm

The genetic algorithm (GA) procedure involves the following steps:

Generatíon of an Initia.l Population ol Coded Strings

The GA operates directly with a population of coded strings at any given time. The simple GA

randomly generates an initial population of coded strings. The bit positions in the string take on

a value of either 0 or I produced by a random number generator. A recurrence called a linear

congruential generator is used in this study to propagate sequences of pseudo-random numbers

(Barnard and Skillicorn, 1988).

The population size, N (typically N = 50 to 1000) is a GA parameter which is usually selected

based on the length of the coded string. The population of N coded strings represent N

different pipe network configurations. The randomly generated starting population of strings

represents a random distribution of trial pipe network solutions in the solution space.
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Decodíng and Evaluatíon of Coded Strings

The GA decodes and evaluates each of the N coded strings in the current population in turn.

The strings of binary code are decoded to pipe network designs by observing a specified

mapping between binary substrings (genotype) and decision variable choices such as pipe

diameters (phenotypes). The evaluation of the pipe network design to determine a suitable

measure of string fitness consists of an estimation of network expansion costs and a hydraulic

analysis of the network design. If crossover does not occur for a selected pair of parent strings

in the generation of new populations, the previously computed fitness values are used.

Computation of Pípe Network Costs

The GA estimates the pipe network costs for each decoded pipe network design in the current

population. The pipe material and laying costs, and system operation and maintenance costs

may be included in the estimation.

Hydraulic Anølyses of Triøl Pipe Networks

A hydraulic simulation model is used to assess the hydraulic feasibility of the proposed pipe

network designs. The node pressures and pipe flows are computed for the predicted demand

patterns for each of the trial pipe networks in the current population. For the initial population,

N pipe networks are analysed. The actual node pressures are compared with the minimum

allowable pressures and pressure deficits are noted.

The hydraulic simulation model is linked to the evaluation scheme of the GA optimisation

model. The method of hydraulic analysis adopted in this research uses the Newton-Raphson

technique applied to the set of simultaneous nonlinear algebraic equations in terms of the

unknown flow corrections around the loops (Chapter 2). The hydraulic analyses are

computationally intensive and special techniques such as sparse matrix routines are

implemented to ensure the efficiency of the hydraulic simulation model.

Computation of Penalty Costs

The pipe network designs are subject to system performance requirements such as minimum

node pressures. The constraints divide the solution space into afeasible region containing the

solutions which satisfy the constraints and an infeasible region containing solutions which do

not satisfy the constraints. The constraints are included in the GA formulation by way of a

penalty function method, which effectively formulates the constrained optimisation problem as

an unconstrained problem. The penalty cost applied to infeasible pipe network solutions is

usually some function of the degree by which the design violates the system performance
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5 Application of the traditional genetic algorithm to pipe network optimisation

constraints. Penalty costs are computed if the pipe network design does not maintain minimum

allowable pressures while supplying the specified demand flows.

The penalty function used in this study is the product of the pressure violation(s) (the sum of all

node pressure violations or the maximum node pressure violation) for each demand pattern and

a chosen penalty factor, k. The penalty cost is thought of as the cost of achieving feasibility

and the penalty factor is interpreted as a measure of the cost of a deficit of a unit of pressure

head (e.g., /.=$100,000 / metre of pressure head deficit). The GA computes the penalty costs

for each infeasible trial pipe network design in the current population. For strings duplicated in

subsequent generations (not disrupted by crossover or mutation), the previously computed

penalty costs are used.

The optimum solution lies close to the boundary between feasible and infeasible solutions. The

penalty factor should be carefully selected such that near-optimal infeasible solutions are highly

fit (but not optimum), so that the search approaches the optimum solution from both the feasible

and infeasible regions of the solution space. Some trial and effor may be necessary to select a

suitable penalty factor for the given pipe network optimisation problem.

Computation of Total Costs

The total cost of each trial pipe network design in the current population is taken as the sum of

the pipe network cost and the penalty cost.

Computation of the Fitness Values of Coded Strings

The fitness of a coded string representing a proposed pipe network design is a function of the

total objective function cost. The pipe network optimisation problem is the search for the

minimum cost pipe network configuration. Thus the objective function must be minimised,

while the simple GA searches for the coded string with the highest fitness. The inverse of the

total pipe network cost (the sum of pipe costs and penalty costs) is an example of a form of the

fitness function selected to ensure highly fit (low cost) coded strings survive. It has the

following form:

for coded strings I = 1,..., N (s.1)

Many other forms of fitness function may be selected, however the form of Eq. 5.1 was found

to be effective in the GA search. The GA computes the fitness of each coded string in the

current population.

fitness¡= 1 
;

COSIi
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5 Application of the traditional genetic algorithm to pipe network optimisation

Generøtion ol ø New Population 01 Coded Strings

The artificial GA evolution imitates rules of survival in nature and mechanisms of natural

population genetics in an effort to reproduce the efficiency of the natural evolution processes.

The traditional GA most commonly uses the three simple operators of proportionate selection

(or reproduction), one-point crossover and bit-wise mutation. The GA operators apply

selection rules and code modifications to the current (old) population of coded strings to

generate a new population. The GA operators use probabilistic (randomised) transition rules,

as opposed to deterministic rules, to move from population to population in the solution space.

The Selection Operator

Selection (or reproduction) is based on Darwin's survival-of-the-fittest philosophy of natural

selection. The selection of a coded string from within a competing population to advance to the

next generation of strings will depend on the fitness of the string compared to fellow strings

and chance factors. The traditional selection operator is proportionate selection (Goldberg,

1989). The strings are selected randomly (with replacement) from the current population.

Strings with higher fitnesses have a higher probability of being selected. The probability of

selection, p¡ of coded string i to advance to the new population of N strings using the

proportionate selection method is given by Eq. 5.2.

Pi= fitness¡ for coded strings i = 1,..., N (s.2)Nt fitness;Jj=l

The Crossover Operator

Crossover is the partial exchange of binary bits between two parent strings to form two

offspring strings. Parent strings selected from the old population (by the selection operator)

mate in the traditional GA operator of one-point crossover with some specified probability of

crossover, p". To perform one-point crossover, a bit position in the string (crossover site) is

selected randomly and crossover occurs by breaking the coded strings and exchanging

corresponding segments of code at bit positions after the crossover site.

The Mutation Operator

The traditional GA operator of bit-wise complement mutation is the occasional random

alteration of binary bits to prevent the loss of a potentially useful genetic trait. The bit value of a

randomly selected bit position of a randomly selected string (which has undergone crossover) is

inverted (from 1 to 0 or from 0 to 1) with specified probability of mutation, p-.
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5 Application of the traditional genetic algorithm to pipe network optimisation

Productíon of Successive Generations

Goldberg (1989) refers to the application of the GA operators of selection, crossover and

mutation as a standard genetic algorithm. The above procedure produces a ne\ry generation and

the GA repeats the process to generate successive generations. The fittest strings (say the best

2O) are stored and updated as fitter strings are generated. The size of the pipe network in terms

of the number of decision variables determines the maximum number of generations which

should be evaluated (typically a GA will evaluate 100 to 1000 generations). GAs do not

necessarily guarantee that the global optimum solution will be reached, although experience

indicates that they will give near-optimal solutions after a reasonable number of evaluations.

5.2 Case Study: The Two-Reservoir Gessler Pipe Network

In this chapter, a case study in pipe network optimisation is considered. A pipe network design

problem described by Gessler (1985) is the chosen case study to investigate the application of

genetic algorithms to the optimisation of water distribution pipe networks. The Gessler

network has some interesting features including:

. the selection of the diameters of f,rve new pipes

. three existing pipes may be cleaned, duplicated or left alone

. three demand patterns must be satisfied

. two supply sources are available

5.2.1 Description of the Gessler problem

The two-reservoir Gessler pipe network is a looped, gravity-fed water distribution system. The

case study design problem involves an expansion to an existing pipe system. The layout of the

existing pipe network and the proposed pipe network expansions are shown in Figure 5.1. The

network consists of fourteen pipes, including five new pipes and nine existing pipes. The new

pipes are to be sized and three of the existing pipes (the main supply lines) may be cleaned or

duplicated with new parallel pipes. The pipe network connectivity and pipe hydraulic attributes

are presented in Table 5.1. The Hazen-'Williams formula is used to express pipe friction head

loss in terms of pipe flow. US customary units used in the original study were preserved for

this study.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

Table 5.1 Pipe connectivity, lengths, diameters and roughness coefficients

t These existing pipes may be cleaned or duplicated
# A cleaned pipe will have a C=LZO

* New pipes are assumed to have a C=120

The Gessler pipe network consists of a reservoir (node 1) and a tank (node 5) connected to ten

demand nodes. Water distribution systems are designed to supply anticipated water demands to

the nodes with satisfactory pressures. The Gessler pipe network is required to satisfy three

instantaneous demand patterns. The three demand patterns designated GEl, GE2 and GE3,

and corresponding minimum allowable pressure heads at the nodes and the node elevations are

presented in Table 5.2. The demand pattern GEI may represent a peak loading condition with

relatively generous minimum pressures. The demand patterns GE2 and GE3 may represent

emergency loading conditions such as fire fighting flows at nodes 7 and 12 respectively.

The set of available pipe sizes and the corresponding unit pipe costs and the unit costs for pipe

cleaning are given in Table 5.3. The design problem is to determine the least cost pipe network

expansions, such that the new system design performs adequately subject to the three expected

loading conditions.

Pipe Start node Bnd node l)rameter
(in)

Length
(fÐ

Hazen-V/illiams
roughness, C

lllr I 2 I4 15840 75#
2 2 3 10 5280 80
3 J 4 10 5280 80

t4lr 4 5 10 2TI2O g0#

[s]T
,¿

6 IU 528U g0#

t6l 4 8 New 5280 120*
6 1 I 5280 100

t8l 7 8 New 5280 r20*
v 6 9 10 5280 80
10 l IU 4 52EU 100

[1 1] I l1 New 5280 r20*
t2 9 IO I 5280 r00

Ll3l 10 1l New 5280 120*

lr4l 11 t2 New 5280 120*
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5 Application of the traditional genetic algorithm to pipe network optimisation

Table 5.2 Node elevations, demands and associated minimum pressures

Table 5.3 Available pipe sizes and associated costs

Diameter
(in)

Cost ofnew
plpe
($/fÐ

Cost of cleanrng
existing pipe

($/fÐ
6 15.1 14.5
I 19.3 t5.1
10 28.9 16.8
12 40.5 t1.7
t4 52.1 18.5
1ó 59.4 19.2

5.2.2 Exhaustive enumeration of the Gessler problem

It was feasible to perform an exhaustive enumeration of every possible pipe network design for

the Gessler problem. An exhaustive enumeration checks every possible combination of pipe

sizes and identifies the global optimum design as the lowest cost design which satisfies the

pressure constraints. There are six possible pipe sizes for the five new pipes and eight

alternatives for the three existing pipes (including six possible duplicate pipe sizes, cleaning the

pipe or 'do nothing'). Therefore, there are 3,981,3 t2 (6s by 83) potential combinations of pipe

sizes. Gessler (1985) used partial enumeration of a pruned search space of approximately 900

combinations to approximate the optimum design for this problem (Section 5.2.3).

Node Elevation
(fÐ

Demand pattern GEI Demand pattern GE2 Demand pattern GE3

Demand
(gpm)

Minimum
allowable
pressure

(psi)

Demand
(gpm)

Minimum
allowable
pressure

(osi)

Demand
(gpm)

Minimum
allowable
pressure

(psi)
1 tzot) Reservoir
2 1050 200 40 200 20 200 20
3 1070 200 25 2rJ0 20 200 20
4 1090 0 25 0 20 0 20
5 r2z0 'l-ank

6 980 300 50 300 20 300 20
7 910 300 50 1300 15 300 20
I 960 300 50 300 20 300 20
9 950 200 50 200 20 200 20
10 950 300 50 3UU 2t) 300 20
11 960 300 50 300 20 300 20
I2 950 20t) 5U 20rJ 20 800 15

t2l



5 Application of the traditional genetic algorithm to pipe network optimisation

The solution space was considered small enough such that an exhaustive enumeration could be

performed to find the true minimum. The hydraulic network solver systematically executed the

3.981 million evaluations of the solution space (in 82 CPU hours on a SUN 4/280 computer

for 1 1.944 million hydraulic simulations). An evaluation included a computation of the pipe

network costs and a hydraulic analysis of the pipe network design for the three demand patterns

to test for hydraulic feasibility.

The best 50 solutions to the Gessler problem are ranked in Table 5.4. The 50 pipe network

designs in Table 5.4 satisfy the pressure constraints at the nodes for the three demand patterns.

The lowest cost feasible designs or global optimum solutions at $1.7503 million are solutions 1

and 2. Although 50 solutions represents only a fraction of the solution space, the cost of
solution 50 is $101,900 (or 5.82Vo) more than the cost of solution 1. The solutions reached by

the genetic algorithm optimisation can be compared with this set of 50 solutions for some

indication of the effectiveness of the search. In Table 5.4, "dup 14" denotes duplication of the

existing pipe with a 14 inch diameter pipe, "clean" denotes cleaning the existing pipe and

"leave" denotes leaving the existing pipe as it is (i.e., 'do nothing').

Some solution space statistics were determined in the process of the exhaustive enumeration.

Of the 3.981 million possible solutions, 3.294 million are infeasible leaving only 687,500

feasible pipe network designs. Figure 5.2 shows the number of solutions with a given number

of node pressure constraint violations. Notably, there are 233,500 solutions with the maximum

number (30) of pressure violations. The demand pattern for which the maximum number of
pressure violations occurred and the node with the most critical pressure for the infeasible

solutions are shown in Figure 5.3. The demand pattern GE3 (the emergency loading at the

extreme downstream node 12) is the most difficult to satisfy and the most critical nodes are

nodes 4, Il and12.

122



5 Application of the traditional genetic algorithm to pipe netyvork optimisation

Table 5.4 The best 50 solutions to the Gessler problem

* 
Gessler's best solution

No. Cost
($m;

Pipe Selections (inch diameter)
Existins oioes New pipes

tll t4l tsl t6l t8l tlll n3l n4l
I 1.1503 leave dup 14 leave t2 8 8 6 10

2 1.7 503 leave dup 14 leave t2 8 l0 6 8

J 1.7725 leave dup 14 leave t2 8 8 8 l0
4 1.1125 leave dup 14 leave t2 8 10 8 8

5 r.7910 leave dup 14 dup 8 10 8 8 6 10

6 1.7999 leave duo 14 cle¿n 10 8 8 8 10

7 1.8010 leave dup 14 leave t2 8 10 6 10

8 1.8010 leave duo 14 leave t2 10 8 6 10

9 1.8010 leave dup 14 leave t2 10 10 6 8

10 1.81 15 leave duo 14 leave t4 8 8 6 10

ll 1.8 1 15 leave dup 14 leave t4 8 10 6 8

l2 1.8115 leave duo 14 leave 12 8 12 6 8

13 1.8115 leave duo 14 leave t2 I 8 6 t2
I4 1.8131 leave dup 14 dup 8 10 8 8 8 l0
15 1.8232 leave duo 14 leave t2 8 8 10 l0
16 t.8232 leave dup 14 leave 12 8 10 8 10

I7 r.8232 leave duo 14 leave t2 l0 8 8 10

18 r.8232 leave dup 14 leave tz 8 10 t0 8

t9 r.8232 leave duo 14 leave t2 10 10 8 8

20 1.8285 leave dup 14 clean 10 8 10 6 10

2t 1.8300 leave duo 14 duo 6 t2 8 8 6 10
')', 1.8300 leave dup 14 dup 6 t2 8 10 6 8

23* 1.8337 leave dup 14 leave t2 8 12 8 8

24 t.8337 leave dup 14 leave t4 8 10 8 8

25 1.8337 leave dun 14 leave t4 8 8 I 10

26 1.8337 leave dup 14 leave l2 8 8 8 t2
27 1.8385 cle¿n duo 12 leave 10 10 10 6 10

28 1.8390 clean dup 12 dup 8 10 8 I 6 10

29 1.8390 leave duo 14 clean t2 8 8 6 l0
30 1.8390 leave duo 14 cle¿n 12 8 10 6 8

3t r.8390 leave dup 14 clean 10 8 t2 6 8

32 1.8390 clean duo 12 duo 6 10 8 8 8 10

33 1.8390 clean dup 12 dup 8 10 8 10 6 8

34 t.8417 leave duo 14 duo 8 10 8 10 6 10

35 t.8417 leave dup 14 dup 10 10 8 8 6 10

36 t.84t7 leave duo 14 duo 10 10 8 10 6 8

37 1.8417 leave dup 14 dup 8 10 l0 8 6 10

38 t.84t7 leave duo 14 duo 6 10 10 8 8 10

39 1.8480 clean dup 12 clean 10 8 8 8 10

40 1.8501 leave duo 14 leave t6 8 8 6 10

4l 1.8501 leave dup 14 leave 16 8 l0 6 8

42 1.8506 leave duo 14 clean 10 8 8 10 10

43 1.8506 leave dup 14 cle¿n 10 8 10 8 10

44 r.8506 leave dup 14 clean 10 10 8 8 10

45 1.8517 leave duo 14 leave t2 t0 10 6 10

46 1.8517 leave dup 14 leave 10 t2 10 6 10

47 1.8517 leave duo 14 leave 10 10 t2 6 10

48 r.8517 leave duo 14 leave 10 10 l0 6 12

49 1.8522 leave dup 14 dup 8 t2 8 8 6 10

50 t.8522 leave duo 14 duo 6 t2 8 8 8 10
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Figure 5.2 Number of solutions with a particular number of nodes at which
pressure constraints are violated
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Figure 5.3 Critical demand patterns and critical nodes

The feasibility of solutions with respect to the alternative decisions for the existing pipe [1] and

the new pipe [6] is shown in Figures 5.4 and 5.5 respectively. There is clearly a dominance of

infeasible solutions. There are no feasible solutions which select a 6 inch diameter pipe for the

new pipe [6]. Similarly, there are no feasible solutions which select a 6 inch diameter pipe for

the new pipe [14] and no feasible solutions which choose to 'do nothing' with the existing

pipe [4].
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Figure 5.4 Feasible solutions when implementing pipe [1] rehabilitation decisionr
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Figure 5.5 Feasible solutions when implementing decisions for new pipe [6]

The feasibility of solutions with respect to pipe network expansion costs is shown in

Figure 5.6. There are no feasible solutions with pipe network costs less than $1.75 million

(the two global optimal solutions cost $1.7503 million). There are only 1,096 feasible

solutions with pipe network costs less than $2.0 million. The minimum pipe network cost is

$0.3986 million (infeasible), the maximum pipe network cost is $4.0772 million and the

average pipe network cost across the entire solution space is$2.1762 million.

6
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Figure 5.6 The feasibility of solutions with given pipe network costs

The pipe flow and node pressure head distributions for the optimum solution 1 (in Table 5.4)

for the three demand patterns are supplied in Tables 5.5 and 5.6 respectively. The direction of

the flows in the pipes in Table 5.6 is determined from the node connectivity data in Table 5.1.

Table 5.5 The balanced pipe flows for global optimal solution 1

n Infeasible

I Feasible

Pipe
Demand pattern GEI Demand pattern GE2 Demand pattern GE3

Head Loss
(ft)

FIow
(cfs)

Head Loss
(fÐ

Flow
(cfs)

Head Loss
(ft)

t'low
(cfs)

1 30.974 1.616 68.143 2.565 50.0u0 2.t70
2 -rJ.932 -o.201 - 1.538 -o.264 -o.457 -o.r3l
3 -8.093 -o.641 -9.ó01 -o.709 -6.667 -0.583
4 -4t.949 -3.448 -77.004 -4.186 -62.876 -4.290
5 35.238 t.432 90.579 2.384 57.323 r.862
ó 23.719 2.801 47.53r 4.017 39.86s 3.707
I -o.434 -0.093 29.456 0.903 -0.485 -0.09E

t8 -20.1IU -0.882 -83.643 -r.904 -24.096 -o.973
9 t3.593 0.85ó 12.325 o.812 29.132 t.292
10 20.8ót 0.r21 -t1.594 -0.088 55.721 o.206
tl 38.385 1.251 54.rJ24 I.504 97.3tJ6 2.067
t2 6.833 0.41u 5.536 0.36ó 26.rO4 0.84ó
l3 -2.586 -o.137 -18.025 -0.390 t7.489 0.384
T4 t.914 u.446 r.914 o.446 24.949 t.182
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Node
Demand pattern GEI Demand pattern GE2 Demand Pattern GE3

Minimum
allowable
pressure

(psi)

Actual
pressure

(psi)

Minimum
allowable
pressure

(psi)

Actual
pressure

(psi)

Minimum
allowable
pressure

(psi)

Actual
pressure

(psi)

2 40 51.50 20 35.42 20 43.27
J 25 43.25 20 21.43 20 34.81
4 z5 38. t0 20 22.93 zo 29.O4
ó 50 66.54 20 26.51 20 48.16
l 50 71.06 15 18. l0 20 53.29
I 50 84.09 20 5U.ó2 2U 68.05
9 50 73.64 20 34.t6 20 49.13
10 50 7U.69 2t) 3r.17 20 31.84
11 50 61.48 20 35.24 20 25.94
l2 50 70.9E 20 38.14 l5 t9.41

5 Application of the traditional genetic algorithm to pipe netvvork optimisation

Table 5.6 Junction node pressure heads for global optimal solution 1

5.2.3 Partial enumeration applied by Gessler (1985)

Gessler (1985) solved the optimisation problem by a partial enumeration of a limited solution

space of 900 combinations of the design parameters. Gessler pruned the solution space to 900

by placing the pipes into five pipe groups as shown in Table 5.7. The pipes in a group were

restricted to selecting the same design parameter from the candidate design parameters in

Table 5.7.

Table 5.7 Pipe groups (as used by Gessler, L985)

Pipe group Pipes in group Candidate design parameters
(inches)

I [1] and leave, clean, dup 12, dup 14, dup 1ó
2 leave, clean, dup 12, dup 14, dup ló
3 lól ancl t1 8, 10, 12
4 l8l and I3 ó, E, l0
5 l14 6,8, rO, 12

A further 495 combinations were eliminated since the 6" pipe for pipe group 5 and the leave and

clean alternatives for pipe group 2 werc not considered. According to the exhaustive

enumeration ca¡ried out in the research presented in this thesis:

. there are no feasible solutions with a new 6" pipe [14]

. there are no feasible solutions for leaving the existing pipe [4]

. and there are only 2,42L feasible solutions for cleaning the existing pipe [4]
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5 Application of the traditional genetic algorithm to pipe network optimisation

The pruning of the solution space for a partial enumeration must be based on experience.

Unfortunately, the global optimum may be eliminated in this process. Gessler excluded the

global optimum by restricting pipes [6] and [11] in pipe group 3 and pipes [8] and [13] in pipe

group 4 to the same pipe size.

Gessler enumerated the remaining 405 combinations. A hydraulic analysis to determine the

pressure head pattern was required for only 6Vo of the 405 combinations. The other 94Vo were

excluded from the search during the'cost filter' and'size filter' described in Section 3.3.6.

Gessler achieved a best solution with a cost of $1.8337 million represented by solution 23 in

Table 5.4.

5.2.4 Nonlinear programming optimisation of the Gessler problem

The Gessler case study problem was solved by Simpson et al. (1994) using the nonlinear

optimisation package GINO assuming that continuous sizes were available for all pipes. The

GINO analysis was carried out independently of the exhaustive enumeration.

A cost function for new pipes was fitted to the data in Table 5.3. The cost per unit length (ca)

,was approximately linear with pipe diameter for new pipes. The line fitted to the new pipe cost

data is only approximate, especially for the smallest pipe size. The process of fitting a cost

function to the data is a weakness of the application of nonlinear optimisation to pipe networks.

Table 5.8 shows the fitted cost functions for new and duplicated pipes.

The 'equivalent diameter' approach was used to model the effects of cleaning or duplicating

existing pipes [1], [4] and [5] (i.e., each pipe was assumed to be replaced by a new pipe with

the same Hazen-V/illiams coefficient as the old pipe but a new equivalent diameter). Thus the

equivalent diameter must be greater than or equal to the existing diameter. The cost per unit

length (ca for existing pipe [1] and cç for existing pipes [4] and [5]) was approximately linear

with the logarithm of equivalent diameter D" for these pipes (Table 5.8).

Table 5.8 Fitted cost functions for the nonlinear optimisation model

Pipes Cost function ($/ft length)

New ct=4.730 D - 16.124

Pipe t1l cn= 128.05 los.(D"\ - 61.735 (for D. > 14" )

Pipes I4l & t5l cc=84.826 log (D") - I1.963 (for D. > 10")

Note: D = diameter of new pipe (inches)

D¿ = eguivalent diameter of pipe (inches)
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5 Application of the traditional genetic algorithm to pipe network optimisation

The variables in the GINO model a¡e the diameters (Dn"*) of the five new pipes, the equivalent

diameters (Dn"*) of the three existing pipes [1], [4] and [5], the 14 flows (Qr) in each pipe for

each loading case and the 10 total heads (H¡) at each junction node for each loading case. This

gives a total of 80 variables.

The constraints for each of the three loading cases and additional minimum diameter constraints

are as follows:

(i) Continuity of flow at each node (10 linear equations).

NPJ

Z ao t Q,"r,= O for all junction nodes i =I,..., NJ (5.3)

k=l

where Q* are the flows in each of the NP,I pipes connected to node i if a convention is

adopted such that a flow away from the node is taken as positive. The demand at the

node is Q¿y¡.

(ii) The Hazen-Williams head loss equation for each pipe k connecting nodes i and j
( 14 nonlinear equations).

H¡ - H¡ -8'528 
x los t* QrlQÅo'8s2 for at pipes k = 1,..., Np (5.4)
cro.tsz of,.ato+

where Z¿ is the length of pipe k, and C¿ is the Hazen-Williams coefficient for pipe k.

(iii) Minimum pressure head constraints at each node as given in Table 5.2

( 10 linear inequalities).

H¡> H¡ for all junction nodes i =1,..., NJ (s.s)

The items (i) to (iii) give34 constraints per loading case.

(iv) In addition there are 8 lower bounds for the pipe diameters

Dn"*) Dr"* for all new pipes new=|,..., NEW¡6¡a¡ (s.6)

The minimum diameter for the five new pipes in the case study problem is 6" (Table 5.3). The

minimum equivalent diameters for pipes which could be duplicated (pipes [1], [4], [5]) are the

existing diameters (Tabte 5.1). Upper bounds on pipe diameters were not required for this

problem.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

There rwere a total of 110 constraints for the problem (i.e. 3 x 34 + 8) as a result of the three

loading cases being considered simultaneously. The objective function (to be minimised) is the

total cost of the network, that is, the cost per unit length for each pipe (Table 5.8) multiplied by

its length and summed over all pipes in the network. The following objective function was

optimised in GINO:

Minimise cost cB L¡1¡+ >
¿e tal,t5l ¿e t6l,[8],[1 1],tl 3l,tl4l

where cA, cB, and cç are the pipe cost functions in Table 5.8

GINO uses a generalised reduced gradient approach for solving nonlinear optimisation

problems. Liebman et al. (1986) discusses the details of the method. Table 5.9 shows the

optimum solution obtained with an estimated cost of $1.76 million. The continuous diameters

need to be rounded up or down to the nearest discrete pipe size. This may involve considerable

judgement, particularly for a large network as it is not clear that the solution after rounding will

automatically satisfy the minimum pressure constraints at all nodes. In this case, the rounding

was carried out by trial and error with each rounded solution being checked to see if it satisfied

the minimum pressure constraints for the three loading cases.

Table 5.9 Solution from GINO nonlinear optimisation for the Gessler network

The rounded solution determined for this problem is shown in Table 5.9. The duplication of

pipe [4] with a 14" diameter pipe gives an equivalent diameter of 17.91" that is slightly larger

than the optimum continuous size of I7.52". Four pipes have been rounded up in size, one has

been rounded down and three do not require rounding as they are at the respective lower

bounds. The cost of this rounded solution is $1.8010 million. This solution corresponds to

solution 7 in Table 5.4 and is about 3Vo more expensive than the optimum.

Pipe Existing
diameter
(inches)

Diameter from
nonlinear optimisation

(inches)

Rounded solution
(Equivalent diameter, inches and/or

whether rounded up or down)

I I4 L4' existing'
4 10 17.52 Duplicate with 14" r 17.9I", round up

5 l0 IO exrstrng
ó 11.69
E 8.07
11 8.78
13 6tt

T4 8.66
Cost= $1.76 million $1.8010 million
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

The nonline¿ì-r programming model was modified to calculate the pressure heads throughout the

network for the particular set of pipe sizes. This was accomplished by replacing the lower

bounds on pipe diameters by equations which define the diameters and deleting the minimum

head constraints. The rounded solution was verified by a commercial hydraulic computer

simulation program (WATER, Fowler, 1990).

The most significant rounding in this solution was for pipes [11] and [14] whose sizes fell

midway between the commercial sizes of 8" and 10". In the above solution both were rounded

up in size. A further three alternative rounding solutions rwere tested:

(l) round both pipes [11] and [14] down to 8" diameter

(2) round pipe [11] down to 8" and pipe [14] up to 10"

(3) round pipe [11] up to 10" and pipe [14] down to 8"

Solutions (2) and (3) above both satisfied the minimum pressure constraints but solution (1)

violated the constraints. The costs of solutions (2) and (3) are identical and both equal to

$1.7503 million. These solutions were identified as the likely optimum solutions to the

problem. Comparison with the solutions obtained by exhaustive enumeration (Table 5.4)

shows that the two solutions obtained by nonlinear optimisation are indeed the minimum cost

solutions to the problem.

Each optimisation run took approximately 6.8 CPU minutes on a SUN 41280 for this problem.

Identification of the global optima after rounding in this case could have been fortuitous as there

is no guarantee that rounding from a continuous solution will give the optimum discrete sizes.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

5.3 A Small Scale Simulation of the Simple Genetic Algorithm
applied to the Gessler Problem

A simple three-operator genetic algorithm (GA) using a population of ten coded string solutions

is applied to the Gessler pipe network optimisation problem. The GA formulation, GA

operations and string decoding and evaiuation procedures are presented in detail to illustrate the

application.

5.3.1 Coded strings representing Gessler network designs

The set of decision variables describing a trial solution to the pipe network optimisation is

represented by a unique coded string of binary bits. A trial solution to the Gessler problem

includes the sizing of five new pipes ( [6], [8], [11], [13] and [14] ) and the choice to clean,

duplicate or 'do nothing' with three existing pipes ( [1], [4] and [5] ). Thus, there are eight

decision variables and the coded string is made up of eight binary-coded substrings.

A list of the discrete choices for the decision variables is presented in Table 5.10. The 18" and

20" pipe sizes for new pipes were added to the list to make up eight alternatives for each

decision variable for the genetic algorithm formulation. The order of the list of decision

variable choices for the existing pipes in Table 5.10 is chosen in terms of increasing unit pipe

cost ($/Ð and increasing equivalent pipe diameter (in).

Table 5.L0 Decision variable choices and corresponding binary substrings

Decision variable choices
codedIf exists

1 , and
ve as exrsts

If pipe is new
( [6], [8], [11], [13] and [14] )

6"
duplicate with ó" 8" 001

clean existing plpe 10" olo
duplicate with 8" 12" 011

duplicate with 10" t4" 100

duplicate with 12" 16" 101

duplicate with 14" 1g" 110

duplicate with 16" 20" 111

A trial Gessler network solution is represented by a binary string according to the mapping

between discrete choices for the decision variables and binary-coded substrings in Table 5.10.

Since there are eight decision variable choices, a 3-bit binary substring is appropriate. A 24-bit

string which represents a Gessler network solution can be constructed from eight concatenated

3-bit decision-variable substrings as shown in Figure 5.7.
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5 Application of the traditional genetic algorithm to pipe network optimisation

E t4l

t1l E

J

t5l
E

I

16l rE
IU
I

-Ç
I

11rlE

I_G -o

t1l t4l tsl , [6] t8l [11] t13l [14]

Figure 5.7 The formation of a 24-bit coded string

_trn_
t13l

TITTIITTTITTTITTT
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5 Application of the traditional genetic algorithm to pipe network optimisation

The 3-bit binary substrings may decode to a zero pipe size for existing pipes such that proposed

duplicate pipes may be eliminated from the design. The genetic algorithm can thus be used to

consider the parts of the existing pipe system which require reinforcement with duplicate pipes.

The GA could be used in a similar way to determine the optimum layout of new pipes. Often

new pipes cannot be eliminated and the new pipes are constrained to a minimum diameter (this

is the case for the Gessler pipe network design).

5.3.2 Coded string populations

GAs search the solution space using a population of points. A point in the GA solution space is

a unique 24-bit coded string. GAs move in the solution space by successively evaluating and

regenerating populations of coded strings. The GA search begins by randomly generating a

starting population of strings. Random unbiased generation of l's and 0's to form the bits of

the strings produced the starting population of ten codþd strings shown in Table 5.1 1. The

strings in the starting population are randomly distributed in the solution space. The solution

space searched by the GA for this problem contains L6,777,216 points since there arc 224

unique 24-bit binary strings.

Table 5.11 The starting population

No. Coded string
I 100-101-101-01 1-t I l-1 t 1-0I 1-00u
2 101-100-000-100-1 l0-1 1 1-1 10-101
3 001-010-l I t-1 I 1-r I l-r00-0lu-01 r
4 010-001-001-01 1-1 1 1-100- 101-010
5 101- 101-001-1 I t-l I0-0I0-I0l-010
6 1 10-001-000-1 10-1 1 1-1 1 l-010-000
1 000- 100-00 I -0 10- I t I-10 I -0r I -001
8 100-001-010-1 10-1 10-1 I 1-1 10-1 10

9 010-01 1-t 10-001-100-l t0-0r0-010
l0 010-0 10-0 10- I 10- 10 1- 100-010- 101

5.3.3 Evaluation of the coded strings

In turn, the binary strings in the current population are decoded to trial pipe network solutions

and each solution is evaluated. Consider the evaluation of String 9 of the starting population.

Each 3-bit decision-variable substring corresponds to a pipe in the network to be sized or

reinforced as shown below:

Binary substrings of String 9:

Pipe corresponding to substring position:

010 011

tll Í41

110 001

tsl t6l

110 010 010

t11l t13l t14l

100

t8l
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5 Application of the traditional genetic algorithm to pipe network optimisation

Strings are decoded by observing the mapping between substrings and decision variable

choices in Table 5.10. String 9 specifies the pipe network design in Table 5.12. The

implications of the decisions on existing diameters and Hazen-V/illiams roughness coefficients

of the pipes in the network are summarised in Table 5.13.

Table 5.12 Decoding String 9

Substring Decision

010
011 w1 an
110 a

001 new plpe ó is an 8" pipe
100 new plpe ó is a 14" pipe

110 new is an 18" pipe
010 new plpe 13 is a 10" pipe
010 new prpe L4 a

Table 5.L3 Equivalent diameters and Hazen-Williams (H-W) coefficients for
the network solution represented by String 9

The existing pipes l2l,l3l, [7], [9], [10] and ll2) arc unchanged. The existing pipe [1] is

cleaned and hence the Hazen-Williams roughness coefficient of C=15 is increasedto C=120.

The existing pipe [4] is duplicated with an 8" diameter pipe and the two parallel pipes are

equivalent to a 10.78" diameter pipe with a C=120 of the same length. Existing pipe [5] is

duplicated with a 14" diameter pipe. New pipes [6], [8], [11], [13] and [14] are sized. The

new pipes are assumed to have a C=120.

Pipe Existing
diameter

(in)

Duplicated or
new diameter

(in)

Equivalent
diameter

(in)

Existing H-W
coeff,rcient

C

New H-'W
coefhcient

C
I t4 0 t4 75 t20

10 0 l0 EU 80

3 10 o 10 80 80

4 l0 8 10.78 80 r20
5l 10 I4 15.33 80 t20
ó 0 I 8 0 120
7 8 0 8 100 100

I 0 I4 I4 0 120

) l0 0 l0 80 80

t0 4 0 4 100 100

1l 0 18 l8 0 120
T2 8 0 8 100 100

t3 0 10 10 U t20
I4 o 10 10 0 r20
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

The pipe network design proposed by String 9 is now established and the fitness of the solution

can be evaluated. The decisions for a proposed network solution are associated with unit pipe

material costs or unit pipe cleaning costs given in Table 5.3. The pipe cost for a decision ($) is

the product of the unit pipe cost of the decision ($/fÐ and the length of the pipe (ft). The pipe

costs for String 9 are summarised in Table 5. 14. The lengths of pipes [ 1] and [4] make the

pipe costs expensive and the significant positions of pipes [1] and [4] in the network (main

supply lines) make the decisions very influential on network hydraulic performance. The total

pipe cost for String 9 is $2.0328 million.

Table 5.L4 Determining the pipe cost of String 9

The capacity of the network represented by the coded string to meet the system performance

constraints is assessed. Hydraulic simulations of the pipe network are performed to determine

balanced pipe flows and the corresponding pressure heads at the junction nodes for each of the

demand patterns given in Table 5.2. The Newton-Raphson iterative technique applied to the

simultaneous nonlinear loop corrective flow equations was used to determine the balanced pipe

flows (Chapter 2). The Hazen-Williams friction head loss formula (Bqs.2.3-2.5) is used to

compute the head loss in the pipe sections. Table 5.15 provides the balanced pipe flows and

the corresponding head loss in the pipe sections for the three demand patterns.

The node connectivity in Table 5.1 may be consulted to determine the direction of flow and

head loss in the pipe sections in Table 5.15. The head losses in the supply line pipes [1], [4],

[6] and [7] arc significant for each demand pattern. The losses throughout the network are

highest for demand pattern GE2. Demand pattern GE2 simulates an emergency fire fighting

demand at node 7.

Pipe Decision Unit pipe cost
($/rt)

I-ength of prpe
(fÐ

Pipe cost
($ million)

tll clean 18.5 1584U 0.293
4 duplicate 8" t9.3 2rt20 0.408
5 duplicate 14" 52.1 5280 0.215
ó 8 19.3 5280 0.102
ö r4" 52.1 5280 o.215
1l 18" 70.5 5280 0.315
r'3 10" 28.9 5280 0.153
T4 10" 28.9 5280 0.153

cost=
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5 Application of the tra.ditional genetic algorithm to pipe netvvork optimisation

Table 5.15 The balanced pipe flows

Since the elevation of the source nodes 1 and 5 are known, the pressure heads at the junction

nodes throughout the network can be computed. The actual node pressure heads are compared

with the minimum allowable pressure heads for the three demand patterns in Table 5.16. The

junction nodes in the network where the pressure head is insufficient are shown in Table 5.16

(shaded). String 9 represents an infeasible pipe network solution, since it does not meet the

minimum pressure head requirements at the nodes while supplying demand patterns GE2 and

GE3. String 9 fails at node 4 for demand pattern GE3 and at several junction nodes for demand

pattern GE2. The minimum allowable pressure heads are satisfied for demand pattern GE1.

Tabte 5.L6 Comparison of actual and allowable node pressure heads

Pipe

Demand pattern GEl Demand pattern GEZ l)emand pattern GE3

Head loss
(fÐ

Flow
(cfs)

Head loss
(fr)

Flow
(cfs)

Head loss
(fÐ

Flow
(cfs)

1 3.3 89 4.963 4.335
2 0.352 0.119 2.522 0.'344 t.443 o.255
J -2.290 -0.'32't -0.262 -0.101 -o.841 -0.191
4 -r.735 -2.389 -2.t26
5 1.293 2.825 15.010 4.113 rr.624 3.634

t6l 1.4u8 2.281 1.935

l1 1.041 1.807 1.48ó
8l o.240 0.351 -r.711 -r.031 t.012 0.789

Le 22.r89 1.1 15 48.238 t.691 31.4't'.¿ I.481
t10l 0.870 0.022 -4.326 -0.052 t.426 0.028

Ll l 0.s74 1.091 0.1 80 0.582 1.853 2.055
r'¿ r6.94r 0.67U 53.855 r.252 37.89s 1.035

13 0.008 0.023 2.659 0.532 1.535 0.395
T4 1.918 o.446 1.9I8 0.446 24.920 r.782

Node

Demand pattern GEl Demandpattem GEZ Demand Pattern GE3

Requrred
pressure

(psi)

Actual
pressure

(psi)

Required
pressure

(psi)

Actual
pressure

(psi)

Requrred
pressufe

(psi)

Actual
pressure

(psi)

2 40 44.21 20 23.t2 20 32.38
3 25 35.47 20 20 23.rO
4 25 21.18 20 2t)
6 50 7 t.4r 20 46.92 20 57.64
1 50 59.15 15 20 29.97
I 50 63.38 20 20 33.83
9 50 74.79 20 39.03 20 54.40
10 50 61.45 20 20 38.01

1l 50 63.r2 zo 20 33.O2

L2 50 66.62 20 15 26.56
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5 Application of the traditional genetic algorithm to pipe network optimisation

A penalty cost is added to the pipe costs for infeasible solutions to reduce the fitness of the

string. The penalty cost is taken as a function of the degree of violation of the pressure

constraints. The penalty function used in this formulation considers the pressure heads at the

nodes and compares this to the minimum allowable pressure heads to find the maximum

violation of the pressure constraints for each demand pattern. The penalty cost ($) for each

demand pattern is taken as a product of the maximum node pressure deficiency (psi) and a

chosen penalty factor, k ($/psi). A value of k = $50,000/psi for the penalty factor was chosen

for the study of the Gessler problem. The total penalty cost is the sum of these component

penalty costs for each demand loading case. The computation of penalty cost for String 9 is

summarised in Table 5.17. The total penalty cost for String 9 is $1.0215 million.

Table 5.17 Calculation of the penalty cost for String 9

The total cost of the string is the sum of the pipe costs and the penalty costs. The total cost of

String 9 is $3.0541 million. The objective of the optimisation is to find the network solution

with the lowest total cost. The string is accompanied by a fitness taken as some function of the

total cost of the string. The GA searches for the string with the highest fitness. A simple

inverse fitness function (Eq. 5.1) may be used to calculate string fitness from total network

cost. The fitness of String 9 is 0.3274. The procedure described above is used to decode and

evaluate the fitness of each string in the starting population. The total costs and the fitness

values of the strings in the starting population are summa¡ised in Table 5.18.

Tabte 5.18 Cost and fitness of the strings in the starting population

Demand
pattem

Critical pressure deticiency
(psi)

Critrcal
node

Penalty multiplier, k
($/Psi)

Penalty cost
($ million¡

GE1 None 50,000 o
GEZ 15.2r 4 50,000 0.7605
GE3 5.22 4 50,000 0.26I0
Total 20.43 LOzt5

String Pipe cost
($ million¡

Penalty cost
($ million)

'I'otal cost
($ million)

Fitness

I 2.8897 3.4810 6.3708 0.1570
2 3.0180 t.0847 4.UJ21 o.2437
3 2.4045 5.5427 7.9472 0.1258
4 2.0745 4.3469 6.4214 0.1557
5 2.9980 0.0806 3.0786 0.3248
6 2.6067 7 .r517 9.1638 o.to24
7 r.8991 2.5r52 4.4t49 0.2265
I 2.7926 4.5689 1.3615 0.1358
9 2.|J3ZE r.o2r3 3.0541 0.3274
10 2.t664 4.ZZ3L 6.3895 0.1565
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

Some population cost statistics for the starting population are presented in Table 5.19. The

starting population contains no feasible solutions and penalty costs comprise the major part of

the total cost. The best generation cost for the starting population of 10 randomly generated

strings is $3.0541 million for String 9. The best generation cost (highest fitness and lowest

cost) for String 9 is quite different from the optimum cost of $ 1.7503 million identified by the

complete enumeration. The starting population does not contain any feasible solutions,

however, the small population size of 10 strings used for this experiment is unreasonably small

for a problem of this size.

Table 5.19 Starting population cost statistics

Generation cost statistics
cost $i3.U541 mrllron

Highest cost t Strine 6) $9.7638 million
Average generation cost $5.8905 million

Average $2.4883 million
cost $3.4022 million

Number of infeasible solutions 10

5.3.4 The second generation of coded strings

The second generation is generated from the starting population using a series of GA operators.

The traditional three-operator GA applies the GA operators of proportionate selection, one-point

crossover and bit-wise mutations to the old population to produce the new population.

5.3.5 Selection

Selection (or reproduction) uses a combination of the fitness information and random chance to

select pairs of parent strings to form the next generation. The GA gives strings with higher

fitness relative to the other strings a better chance of selection in the reproduction process.

Goldberg (1989) likened proportionate selection to a weighted roulette wheel with slots sized

according to fitness. A casino roulette wheel has 37 segments of equal size and the ball may

fall into any one of the segments with equal probability. The number of segments of the

weighted roulette wheel equals the population size (in this case 10). Each string in the

population is assigned a segment and the size of the segment is proportional to the fitness of the

string. The ball may fall into any segment but there is greater probability the ball will select the

segment of a highly fit string. The probability of selection in reproduction is given by F,q. 5.2.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

The probability of selection by proportionate reproduction of the strings in the starting

population has been computed and is given in Table 5.20. The strings are assigned intervals

between 0.0 and 1.0 proportional to the probabilities of selection by the cumulative distribution

in Table 5.20. A string is selected by generating a random number between 0.0 and 1.0 and

looking up the interval in which this random number falls. For example, if the number 0.1206

is generated randomly, String 2 is selected.

Table 5.20 The probability of survival

Also recorded in Table 5.20 is the number of copies of the strings in the starting population

actually selected by the reproduction operator for the new generation. Strings 5 and t have

high fitness values. String 6 has a low f,rtness and does not survive. The fittest strings have

the best chance of survival while some less fit strings may survive by chance (such as String 8

which is selected twice).

5.3.6 One-point crossover

The mating pool is developed from the application of the selection operator to the starting

population. Pairs of parent strings are mated using an operator known as crossover.

Crossover is analogous to a mechanism of natural genetics which involves the exchange of

corresponding segments of a pair of chromosomes. A gene position is selected randomly so

that crossover may proceed about that gene position by breakage and reunion. The GA

operator of one-point crossover operates on pairs of strings in a similar way. A bit position on

the strings is selected randomly and is called the crossover site. The corresponding segments

of the strings after the crossover site are exchanged. The two offspring strings replace their

parent strings in the new generation. The strings that have been created to form the second

generation of strings are shown in Tabte 5.21. Crossover occurs with some specified

probability of crossover. If crossover does not occur, the two selected parent strings pass to

the new generation unchanged. GA users have achieved the most success with high

String Fitness
Probability
of selection

(vo)

Cumulative
probability
distribution

Copies

1 0.1570 8.03 0.0803
2 0.2437 12.46 o.2049 2

3 0.1258 6.43 0.2692
4 0. I 557 7.96 0.3488 I
5 0.3248 16.61 0.5149 1

6 o.t024 5.24 o.5613
7 0.2265 11.58 0.6831
8 0.1358 6.94 o.1525 z
9 0.3274 16.14 0.9199 2

10 0.1565 8.00 1.0000 2
'I'otål L.Y556 100.00 10
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5 Application of the traditional genetic algorithm to pipe network optimisation

probabilities of crossover such as 0.7 to 0.9 (Goldberg and Kuo, 1987). A probability of

crossover of 0.7 (on average, 7 strings in every 10 experience crossover) was used in the small

scale GA as shown in Table 5.2I. In this case, the five pairs of selected parent strings have all

undergone crossover.

Table 5.21 The second generation

5.3.7 Mutation

Mutation is the occasional random alteration of a bit. Mutation involves randomly selecting bit

positions (with low probability) within strings which have experienced crossover and changing

a zero at this bit position to one or a one to zero. A low probability of mutation of 0.01 (on

average, one bit mutation in every one hundred bits crossed over) has been used in this

example. There were 240 bits crossed over in the creation of the second generation and one bit

was mutated. This bit was the first bit of String 3 as shown in bold in Table 5.21. Mutation is

an insurance against the loss of potentially useful genetic information. If the I's or 0's at a

particular bit position on the string are lost for all the strings in the population they could never

be restored without a mutation at this bit position. For example, in the second generation of

strings there a¡e no zeros at bit position 13 in any of the strings. A mutation at bit position 13 is

the only way a zero may occur agan at this bit position. Note that the optimum solution

contains azero at this bit position.

The second generation (strings in Table 5.21) has been created from the starting population.

The costs of the strings, including penalty costs derived from hydraulic analyses of the demand

loading conditions, in the second generation have been computed and includedinTable 5.22.

Some generation cost statistics for the second generation have been provided inTable 5.23.

Ofl'spring strings Parent
strings

Crossover
site

Mutation
site

01 0-001 -01 0-1 10-1 10-1 1 1-1 1 0-1 1 0 9,8 tstt4

1 00-01 1-1 10-001-100-1 10-010-010 8,9 -tsrt 4

000-001 -01 0-1 10-110-111-1 1 0-1 0 1 8,2 Bit22 Bit I
101-100-000-1 00-1 1 0-1 1 1-1 1 0-1 1 0 2,8 Btt22

01 0-1 01 -001 -1 1 1 -11 0-01 0-1 01 -01 0 9,5 Bir 3

1 01-01 1-1 10-001-100-1 10-01 0-010 5,9 tslt 3

01 0-00r -001 -0 1 0-1 01 -1 00-01 0-1 01 4, 10 Bir 10

01 0-01 0-01 0-1 11-111 -1 00-l 01 -01 0 ro,4 Bit l0
101-100-000-100-1 10-1 1 1-1 l0-101 2, lrJ tsit22

01 0-01 0-01 0-1 1 0-1 01 -1 00-01 0-1 01 L0, z 81t22
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Table 5.22 Cost of the strings in the second generation

String Pipe cost
($ million)

Penalty cost
($ miltion)

'I'otal cost
($ million)

I 2.6219 4.7588 't.'3861

2 2.T915 0.8804 3.0119
3 2.2136 8.6067 r0.8803
4 3.0793 L0847 4.1639
5 2.6495 0.266s 2.9160
6 2.3813 o.2322 2.6135
7 r.8992 3.7300 5.6292
8 2.3332 4.2758 ó.ó090
9 3.0180 r.o84l 4.1027
10 2.t664 4.223r ó.3895

Table 5.23 Second generation cost statistics

A better cost solution has been found for the second generation and the average generation cost

has been reduced in the second generation. There are no feasible solutions in the new

generation.

5.3.8 Subsequent generations and the Schema Theorem

The second generation of strings has been created from parts of the fitter strings of the first

generation. The process is repeated for many generations until convergence of the population is

observed.

A rigorous theoretical basis for the power exhibited by genetic algorithms was established in

Holland's (I915) Schema Theorem. The fundamental concept of a schema or similarity

template was discussed in Chapter 4. According to the Schema Theorem, short, low-order,

above-average-fitness schemata called building blocks (Goldberg, 1989) receive exponentially

increasing trials in subsequent generations. The GA selects strings with high fitness more often

in reproduction to form a new population. Building blocks receive more samples in the new

Generation cost statistics "/o Imptovement over
f,rrst generation

Lowest cost (String 6) $2.6135 million 14.4Vo

Highest cost (String 3) $10.8803 million -IO.3Vo

Average generation cost $5.37ó9 million 8.'7Vo

Average pipe cost 52.4626 million I.OVo

Average penalty cost $2.9143 million 14.3Vo

Number of infeasible solutions 10

Average cost of strings selected for
reproduction from first generation

$5.131ó million
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5 Application of the traditional genetic algorithnt to pipe network optimisation

population and are recombined with other building blocks in crossover to construct superior

new strings from the best parts of the best old strings.

As a simple demonstration of the Schema Theorem at work for the small scale GA simulation

performed on the Gessler problem, consider Schema H1 and Schema H2 below:

SchemaH¡ ***-*+*-***-**x-1x0-*1+-++*-t**

SchemaH2 ***-***-**'F-***-*+*-+**-***-*10

There does not appear to be (and we do not expect) large numbers of useful building blocks in

the random initial population of 10 strings, however Schema H1 (order=3 and defining

length=4) and Schema H2 (order=Z and defining length=l) represent short, high performing

string similarities in the starting population. Schema H1 is present in the low cost Strings 2, 5

and 9 (and also String 8) and Schema H2 is present in the low cost Strings 5 and 9 (and also

Strings 4 and 8).

The schemata H1 and H2 are termed building blocks and they make their presence felt in the

new population. The second generation contains seven strings which are representatives of

Schema H1 and six strings which are representatives of Schema H2. The new population

shows some improvement compared to the starting population, producing two solutions that are

superior to any of the randomly generated solutions in the starting population. The three lowest

cost strings in the new population of 10 offspring strings each contain the schemata H¡ and H2.

Schema H1 and Schema }J2are likely to be important building blocks in subsequent generations

of this small scale GA search.

5.4 Sensitivity Analysis of Genetic Algorithm Parameters

This application of genetic algorithms (GAs) to the Gessler pipe network optimisation uses the

traditional three-operator GA (Goldberg, 1989). Several full scale GA model runs rwere

performed to try to determine the effect on GA performance of variations of the following GA

parameters:

. population size, N

. probability of crossover, p.

. probability of mutatiorL, pm

In addition, various random number generator seeds were used to check the influence of the

random number sequence.
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5 Application of the tra.ditional genetic algorithm to pipe netvvork optimisation

DeJong (197 5) constructed a set of five test functions to be minimised to test the robustness of

the standard three-operator GA. DeJong performed extensive experiments with combinations

of the GA parameters on one of his five test functions. The function was a smooth, convex,

quadratic function of three variables.

3

fV¡)=> r? (s.8)j=I

Two measures of effectiveness were considered. On-line performance is the average of all

function evaluations up to the current trial. Off-line performance measures convergence and is

an average of the best function evaluations up to a given time. DeJong showed a population

size N=200 maintained population diversity and eventually showed excellent convergence. A

N=50 displayed better initial on-line performance. DeJong's parametric study found a

probability of crossover of pr-).6 exhibited good on-line and off-line performance. DeJong

achieved good on-line performance with a probability of mutation p.-0.001 to 0.01 and best

off-line success withp.-0.005 to 0.02. A p^>0.02 helped maintain population diversity but at

the cost of poor performance. An almost insignificant p--0.001 displayed excellent on-line

performance but did not achieve convergence.

Goldberg and Kuo (1987) suggested good results may be obtained with relatively small

population sizes (N=35 to 200), high crossover probabilities (pr=0.5 to 1.0) and mutation

probabilities inversely proportional to the population size (p*=0.1/lt{ to 5.0/f{). Goldberg and

Kuo emphasise the GAs are not highly sensitive to the chosen GA parameters.

In accordance with these recommendations the GA parameters were initially chosen as:

N=100, pc=0.7 and p^-0.02

With a population size of N=100, the GA successively generates and evaluates new populations

of 100 coded strings. On average, approximately (p.)(M)=(0.7X100)=70 of the 100 coded

strings in the new population will be created by crossing over two strings in the old population

using a probability of crossover of p"=0.7. The other 30 or so strings will be copied from the

old population to the new population untouched. Approximately 2 bits in every 100 bits

crossed over are mutated using a probability of mutation of p.=9.02. Since the string length is

24bits for the Gessler problem, about I bit in every two strings crossed over or about 34 bits

in a new population will be altered by a mutation.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

When a new string is created in the new population by a crossover, an evaluation of the string

is required. An evaluation of a coded string is the computation of the total cost of the

corresponding network solution, including pipe costs and penalty costs. The calculation of the

appropriate penalty costs requires hydraulic analyses of the network solution for each demand

pattern. An evaluation of a string untouched by crossover (a copy of a parent string) is not

necessary since the cost information is already known. Therefore, there are about 70 new

string evaluations for every generation. The GA runs were allowed a maximum of 10,000

string evaluations. The 10,000 evaluations are equivalent to about 143 (=19,900/70)

generations of populations of coded strings.

If a population size N=50 and probability of crossover pc=O.5 are used, on average about 25

(=0.5x50) new strings would be formed in the new population and 400 (=10,000/25)

generations of populations of coded strings would constitute the 10,000 function evaluations.

The smaller population sizes and crossover probabilities have the benefit of more generations,

but this is at the expense of less mixing of parent strings per generation. The evaluation of

10,000 strings from the 16,771,216 possible pipe network combinations for the Gessler

problem represents a search involving less than O.O6Vo of the solution space. The GA runs of

10,000 evaluations utilised about 6 minutes of CPU computing time on a SUN SPARCstation-

1+ (about 9 minutes of CPU time on a SUN 4/280 computer).

5.4.L Variations of the random number generator seed

The random number generator seed is an arbitrarily chosen integer which initiates a unique

sequence of random numbers. The GA search is a randomised search directed by probabilistic

operators. A GA run usually requires the use of thousands of random numbers.

The random number generator function used in this thesis (Barnard and Skillicorn, 1988)

generates sequences of pseudo-random numbers using a recuffence called a linear congruential

generator of the form:

xi+r=(ax¡+c)modm

in which the constants ø, c and m are suitably chosen integers. The constant m is usually

chosen as the maximum positive integer the machine can represent, typically 231. If the

constants ø (chosen to be positive) and c (chosen to be non-negative) are carefully selected, the

recurrence will contain all the integers between 0 and m-t exactlY once in some random

sequence before there is any repetition and there will be no correlation between successive

terms.

(s.e)
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5 Application of the traditional genetic algorithm to pipe network optimisation

The random number generator seed is the starting point in the sequence of random numbers.

Any particular seed produces the same sequence of random numbers. The user is required to

input the starting seed for the GA runs. The same seed will generate the same starting

population of strings for the genetic algorithm run. This is useful for the comparison of

different combinations of GA parameters and also for debugging purposes.

Some simple tests were performed to verify the randomness of the random numbers generated.

The random number generator and an arbitrary seed, 12345, were used to generate 1,000,000

random numbers between 0 and 1. The numbers were placed in one of the ten intervals

(0-+0.1,..., 0.9-+1.0). The resulting distribution in Table 5.24verifies the uniformity of the

distribution of the numbers generated.

Table 5.24 Distribution of 1,000,000 random numbers

lnterval Random Numbers

0.0-r0.1 100,023

0.1-,0.2 100,105

0.2-+0.3 99,920

0.3-+0.4 99,733

0.4-+0.5 100,4r7

0.5-+0.6 100,245

0.6-+0.7 100,088

0.7-+0.8 99,693

0.8-+0.9 99,422

0.9-r1.0 100,354

The mean of the 1,000,000 random numbers generated was 0.49988 and the mean absolute

deviation from the mean was 0.24991. The statistics of the sample almost coincide with the

expected mean of 0.50000 and the expected mean absolute deviation from the mean of

0.25000.

Random numbers are required by the GA run to generate the starting population of coded

strings, select fitter strings in reproduction, decide whether crossover will occur, choose a

crossover site and to decide whether mutation will occur for a particular bit position. For the

GA run of 10,000 evaluations, approximately 300,000 random numbers were produced by the

random number generator. The integet min the random number generator was chosen as

23r=2,!47,483,648. Therefore, the sequence of random numbers generated is much longer

than the number of random numbers required by the GA run. As a further precaution, the

actual number of crossovers and mutations are counted and are compared with the expected

number of crossovers and mutations for the GA run.
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5 Application of the traditional genetic algorithm to pipe network optimisation

Five GA runs were initiated using five different random number seeds (seerl=100, 200, 300,

400 and 500). The population size, probability of crossover and probability of mutation were

held constant. The lowest cost network solutions achieved in the GA runs are given in

Table 5.25. All the GA runs with different random number seeds (unique sequences of

random numbers generating different starting populations) approach the global optimum

solution and all achieve a minimum cost within 5.07o of the global optimum solution cost of

$1.7503 million. The optimum solution is reached using a seed=200. The minimum cost

network designs identified by the GA runs are slight variations of the global minimum cost

network design. The chosen random number seed only appeaß to affect the performance of the

GA slightly.

The solution numbers for the lowest cost network designs identified by each GA run are given

in Table 5.25. The feasible near-optimal network solutions to the Gessler problem were

identified by the complete enumeration and they are listed in Table 5.4. The infeasible network

solutions determined by the GA runs in this analysis are given in Section 5.4.5. Marginally

infeasible designs are prominent in the GA runs using a seed=300 and a seed=400. The

network costs in Table 5.25 arc the sum of pipe costs and penalty costs.

Table 5.25 Minimum cost network solution with varying random number seed

N=100, pc=0.J, pm=0.02

l global optimum
* includes penalty costs

** infeasible designs (presented in Table 5.29)

The least cost solution achieved in a generation is plotted against the number of function

evaluations up to and including the current generation for a seed=200 and a seed=400 in

Figure 5.8. The GA run using a seed=Z}O is successful in achieving the optimum after 8,540

evaluations. Although the seed=200 exhibits superior performance the general shape of the two

plots is similar. The average cost of the solutions in a generation is plotted against the number

of function evaluations up to and including the current generation f.or a seed=200 and a

seed=4}O in Figure 5.9. The gradual improving trend of both plots towards the optimum

solution is evident.

Random
number

seed

Minimum
cost network
($ million)

Generation
number

Evaluation
number

Solution
number

(Table 5.4)

Vo difÍerence
from

optimum
100 1.8285 39 2730 20 4.41
200 t.7503r t22 8540 I 0.0
300 1.8154. 104 7280 2** 3.12

400 1.8048- 118 8260 f"* 3.1 1

500 t.ltzs 113 7910 4 r.21
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Figure 5.8 Best generation costs for random number seeds, seeF200 and seed=400
(N=100, p"=0.7 and p-=0.02)
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5 Application of the traditional genetic algorithm to pipe network optimisation

The GA parameters of N=100, pc=0.7 and p*=Q.Q2 displayed good convergence and attained

low cost network solutions. The random number seed=I}O was chosen for all the subsequent

GA runs in the sensitivity study in this chapter.

5.4.2 Variations of the population size, N

A suitable population size is an important consideration for GA users. Populations which a¡e

too small are likely to converge too quickly and without sufficient processing of the limited

numbers of schemata, and population sizes which are too large are likely to take a long time to

converge, since it takes longer to get enough mixing of building blocks (Goldberg, 1989b).

Goldberg (1985) developed a theoretical basis for selecting initial population size for a binary

string of fixed length. Probability rules are used to compute the expected total number of

unique schemata, n, in a random population of strings of given population size. A single

binary string (population size, N=1) of length I contains 2l schemata since each string position

may take its assigned value of 0 or 1 or the 'don't care' symbol *. As population size

increases, the number of schemata approaches 31, the maximum possible number of schemata

for a binary string of length I (Goldberg, 1989b). Goldberg (1985) ¿ugues that the schemata in

this string are only useful when they are duplicated in other strings or combined with new

schemata from other strings. The number of excess schemata in a random population n", is a

measure of this schemata processing potential.

fles= fls - 2l (5.10)

Goldberg (1935) maximises the number of excess schemata per population member. An

increase in population size is desirable if it increases the number of schemata per population

member.

(5.1 1)

A Fibonacci search is used to maximise this function. An approximate formula is developed for

optimal population size, N*.

N* = 1.65 .20.211 (s.r2)

Tables of recommended population sizes for string length / are provided by Goldberg (1985)

Goldberg's theory suggests a population size of N*=51 for a string length of 24 bits.

max ("4
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

Goldberg (1989b) extends the computations of the expected numbers of schemata in

populations of fixed-length binary strings (Goldberg, 1985), to consider alphabets of higher

cardinality and for cases in which more than one copy of each schema is required. Goldberg

(1989b) derives an approximation for the real-time rate of schema processing by considering

the calculations of the expected number of schemata in a population of given size and the

relationship between population size and number of generations to convergence (for two

different assumed levels of convergence). The optimal population sizes maximise the real-time

rate of schema processing for different string lengths and for processing by serial and parallel

machines. Goldberg's theory suggests relatively small population sizes are appropriate for

serial processors (such as the one used in this research).

Goldberg et aI. (1992) presented an alternative approach to the population sizing question. An

equation for sizing populations was derived from statistical decision theory which chooses

'large-enough' population sizes to control errors in building block decision making. The

equation is modified to include the noise introduced by selection and other GA operators, and

the explicit noise of the objective function.

A series of GA runs were performed on the Gessler problem using population sizes between

N=20 and N=500. The probability of crossover, probability of mutation and random number

seed were held constant as:

P r=O'7, P m=0.02, s e ed=I00

The minimum cost network solutions determined by the GA runs are summarised in

Tab\e 5.26. The plots of best generation costs and average generation costs for GA model

runs using various population sizes are shown in Figures 5.10-5.17.

Population sizes of N=20 andN=150 reach the global minimum cost network for $1.7503

million. The best generation cost plots and average generation cost plots for the large

population sizes N=150 and N=500 in Figures 5.16 and 5.17 respectively suggest the GA run

needed additional generations to attain the optimum since convergence is slower. The large

populations have a greater capacity for coded information, however they require more

generations for sufhcient processing and mixing of this information.
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Population
slze,
N

Minimum
cost network
($ million)

Generation
number

Evaluation
number

Solution
number

(Table 5.4)

7o difference
from

optimum
20 1.75037 283 3962 2 0.0
40 r.1125 140 3920 3 r.21
50 r.62'32 285 991s 19 4.r1
60 1.8300 161 6162 22 4.56
tt0 1.79 rU r39 1784 5 2.33
100 1.8285 39 273t) 20 4.41
150 1.7503r 93 9165 2 0.0
200 1.8048. 64 89ó0 f** 3.1 1

500 r.84t7 t7 5950 35 5.22

5 Application of the traditional genetic algorithm to pipe netvvork optimisation

Table 5.26 Minimum cost network solution with varying population size, N

P c=0.7, P m=0.02, seed=IO0
.t 

global optimum
* includes penalty costs

** infeasible designs (presented in Table 5.29)

The population sizes of N=80 and N=150 determine near-optimal and optimal cost network

solutions respectively. The best generation cost plots for N=80 and N=150 in Figures 5.14

and 5.16 respectively display consistent improvement of the lowest cost network solution as the

GA run progresses. The convergence of the average generation cost plots for N=80 and

N=150 is shown in Figures 5.15 and 5.17. The larger population sizes maintain more diverse

populations for longer and convergence of average generation costs is slower.

The small population sizes of N=20 andN=4O have determined cost effective network designs.

The initial convergence of the best generation cost plots for N=20 and N=50 in Figures 5.10

and 5.72 respectively is efficient. The smallest population size considered, N=20 identifies the

global optimum solution after only 3,962 solution evaluations, however, this solution is

subsequently lost and the GA does not hnd another network solution less than $1.90 million

for the remaining 6,000 evaluations. The variation of average generation costs for the GA runs

with N=20 and N=50 are shown in Figures 5.11 and 5.13 respectively. A moderate population

size of N=100 was chosen for all the following GA runs in this analysis.

5.4.3 Variations of the probability of crossoYur' p¿

Ten GA runs were performed using varying values of crossover probability between P,=O.I

and, p"=l.Q while the other GA parameters were held constant. Applied to a population size of

N=100, apr=O.I isexpectedtocreate l0offspringstringsbycrossoverof 5pairsof selected

parent strings. Therefore, it is assumed there are approximately 10 new string evaluations on

average per generation. Using a N=100, a pc=I.O will crossover every pair of selected parent
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

strings to create 100 offspring strings in the new population and therefore it is known there are

100 new string evaluations per generation. There are about 1,000 generations required to

complete 10,000 evaluations using ã pr=0.1 while only 100 generations are required to

complete 10,000 evaluations using a pr=|.0.

The minimum cost network solutions identified by the GA model runs with various crossover

rates are given in Table 5.21 . The global optimum solution is not found by any of the GAs,

however the lowest cost network solution determined by the GA run using pr-0.9 for 51.7725

million is just one step from the global optimum. All the GA runs in Table 5.27 achieve

minimum cost solutions within 55% of the cost of the global optimum.

Table 5.27 Minimum cost solution with varying probability of crossover, pc

Probability
of crossover,

D"

Minimum
cost network
($ million¡

Generatron
number

Evaluation
number

Solution
number

(Table 5.4)

Vo dlffercnce
from

optimum
0.1 t.8010 48 480 8 2.90
o.2 1.8010 69 1380 9 2.90
0.3 r.7910 l3E 4r40 5 2.33
o.4 1.81 15 201 8040 l0 3.50
0.5 1.7999 108 5400 6 2.83
0.6 1.9154. r33 7980 2** 3.12
0.7 1.8285 39 2130 20 4.47
0.8 1.8460. r02 8160 3** 5.41

0.9 r.1725 4l 3690 J r.27
1.0 t .81 l5 80 8000 tz 3.50

N=100, p m=0.02, seed=l00
* includes penalty costs

** infeasible designs (presented in Table 5.29)

The best generation cost plots for low probabilities of crossover, Pc=0.2 and p"-0.4 in

Figure 5.18 exhibit fast initiat convergence, however further improvement is not significant

beyond 1,500 solution evaluations. The best generation cost plots for higher crossover rates in

Figures 5.19 and 5.20 display slower, but more consistent convergence. The average

generation cost plots for various crossover rates are shown in Figure 5.21. The average

generation costs a.re higher for higher (more disruptive) crossover rates.
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Figure 5.18 Best generation costs for probability of crossover, p"=0.2 and p"=0.4
(N=100, p,,=0.02 and seed:100)
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Figure 5.19 Best generation costs for probability of crossover, p.=0.6 and p"=0.8
(N=100, P.=0.02 and seed=100)
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Figure 5.20 Best generation costs for a probability of crossover, p"=1.0
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5.4.4 Variation of the probability of mutation, p¡n

The optimum network solution is determined by two of the nine GA runs with varying mutation

probabilities between pm=0.0 and p^=9.2. The probability of mutation is the chance that a bit

visited by the mutation operator is altered by mutation. The mutation operator considers each

bit of every offspring string which is the result of the crossover of a pair of parent strings.

The minimum cost network solutions determined by the GA runs for various mutation rates are

summarised in Table 5.28. The global optimum solution is identified using pm=0.0 and

pm=0.03. The GA runs using p^>0.03 are not very successful in identifying low cost network

solutions.

Table 5.28 Minimum cost solution with varying probability of mutation, p*

Probabiltty
of mutation,

Pm

Minimum
cost network
($ million)

Generation
number

Evaluatron
number

Solution
number

(Table 5.4)

Vo differcnce
from

optimum
0.0 t.7503ï 28 1960 2 0.0

0.00r 1.8115 5l 3990 II 3.50
0.005 r.7725 3I 2170 3 1.27

0.01 T.8232 35 2450 L9 4.t7
rJ.0z 1.828s 39 2730 20 4.41
0.03 r.1503r 38 2660 2 0.0
o.05 t.8623 35 245U >5U 6.40
0.1 I.8417 5 350 36 5.22
o.2 1.9510 119 8330 >50 tt.47

N=100, pc=0.7, seed=l00
T global optimum

The curves of best generation costs for the low mutation rates p^=Q.0 and Prn=0.005 in

Figure 5.22 show less variability compared to the curves of best generation costs for high

mutation Íates pm=0.03 and pm=0.1 in Figure 5.23. The plots of average generation costs for

various mutation rates are shown in Figure 5.24. The average generation costs ale lower for

the lower (less disruptive) mutation rates. A high value of probability of mutation of p.=Q. | ¡5

too disruptive and the plots of best generation costs and average generation costs resemble a

random walk in the solution space. The plot of best generation costs using Pm=0.03 in

Figure 5.23 is more successful identifying the optimum solution on two distinct occasions

within the given 10,000 solution evaluations. The plots of best generation cost plots for the

relatively low mutation probabilities of p*=Q.g and p*-0.005 in Figure 5.22 approach the

optimum solution efficiently. The GA run with no mutations easily achieves the global

optimum, however after about 4,000 solution evaluations the optimum is lost and never

regained.
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Figure 5.22 B,est generation costs for probability of mutation,p-:0.0 andp-=0.005
(n{=100, p"=0.7 and seed:100\
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Figure 5.23 Best generation costs for probability of mutation, p-=0.03 and p-=0.1
(N=100, P"=0.7 and see6lgg)
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The plot of average generation cost using pn=0.0 in Figure 5.24 approaches and eventually

equals the best generation cost as the GA run progresses. The selection and crossoveÍ

operators alone have no further effect on the population after about 6,000 evaluations, The

population is dominated by copies of one low cost (but not optimal) solution.

5.4.5 Infeasible network designs

The infeasible network designs determined by the GA model runs in this analysis of the GA

parameters are given in Table 5.29. The infeasible network designs may be compared with the

lowest cost feasible network designs determined by the exhaustive enumeration and presented

in Table 5.4.

Tabte 5.29 Commonly identified infeasible pipe network configurations

No
Total
cost*
($m)

Pi
New pipes

I 141 5 LÓ] I II t13l l14l
I 1.8048 leave dup 14 leave 10 10 10 6 l0
2 1.8154 clean dup 12 leave t2 8 I ó 10

3 1.84ó0 clean dup 12 leave 12 8 8 I 10

* including penalty costs

The occurrence of low cost marginally infeasible network designs is an advantage of the GA

optimisation technique, particularly for the pipe network optimisation application. The

marginally infeasible designs may represent a substantial cost saving for a small pressure head

deficiency at a demand node. The total network cost in Table 5.29 is the sum of the pipe

material cost and the penalty cost. The pipe costs and penalty costs for the infeasible solutions

are provided in Table 5.30. The penalty cost is the product of the pressure head deficiency

(psi) at the critical node and some penalty multiplier, k ($/psi). The penalty multiplier, k, was

chosen as k-$50,000/psi for the GA runs in the sensitivity analysis after some prior

experimentation with the Gessler network. The pressure head deficiencies at the critical node

for the critical demand patterns for the infeasible network solutions are given in Table 5.31.
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lnfêasible network
designs

Pipe cost
($million)

Penalty cost*
($million)

Total cost
($million)

I r.1905 0.0143 1.8048
2 t.7984 0.0170 1.8154
3 I.8205 0.0254 1.8460

5 Application of the tra.ditional genetic algorithm to pipe network optimisation

Table 5.30 The costs of the infeasible network solutions

* computed using a penalty multiplier, k=$50,000/psi

Table 5.31 The critical pressure head deficiencies for the infeasible solutions

5.4.6 Findings of the sensitivity analysis

The sensitivity analysis of the GA parameters conducted in this chapter indicate good

performance of the GA may be achieved with:

. population size, N=80 to 200

. probability of crossovef , pc=O.5 to 0.9

. probability of mutation, pm=0.005 to 0.03

. and an arbitrary random number generator seed

The findings of the sensitivity analysis compared closely with the suggestions of previous

studies. DeJong's (I975) work suggested the use of population sizes of N=50 to 200 and

Goldberg and Kuo (1987) suggested N=35 to 200. The sensitivity analysis performed in this

chapter had some success with N<80.

Goldberg and Kuo suggested the use of a probability of crossover of p"=9.5 to 1.0. Good

performance of the GA is displayed in the sensitivity analysis using a high probability of

crossover. DeJong suggested the use of a probability of mutation of p^-0.001 to 0.02.

Goldberg and Kuo recommended a pn=0.001 to 0.05 (based on a population size, N=100).

The sensitivity analysis has emphasised that mutation is a secondary GA mechanism that should

be used with low probability. An arbitrarily chosen value of random number seed is suggested.

The same seed should be used if the effectiveness of different values of the GA parameters is to

be compared.

Inteasrble
network
designs

Critical
demand
pattern

Critical
node

Allowable
pressure head

(psi)

Actual
pressure head

(psi)

Pressure head
deficiency

(psi)
I 2 1 15.0 r4.11 o.29
2 ') 4 20.0 19.66 0.34
3 2 4 20.o 19.49 0.51
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5 Application of the tra.ditional genetic algorithm to pipe network optimisation

Only approximate guidelines are established for selection of GA parameters. The selection of

the most appropriate GA parameters is an experimental process and usually several GA model

runs are required to permit refinement of the selected GA parameters for new problems. It

would seem beneficial to choose GA parameters which help maintain a degree of population

diversity. The global optimum solution was determined using a population size of N=20 and a

mutation rate of p^=0.0 which may be an unexpected result. The sensitivity analysis has found

the GA is not too highly sensitive to the chosen GA parameters as was also indicated by

Goldberg and Kuo (1987).

5.5 Conclusions

A traditional genetic algorithm approach to pipe network optimisation was described in this

chapter. The traditional GA approach was applied to the search for the optimal design of the

relatively small two-reservoir Gessler pipe network optimisation problem. The Gessler

problem was first solved by an exhaustive enumeration to positively identify the optimum

configuration. The solution space for the Gessler problem searched by the GA has 16,771,216

possible pipe network solutions if the solutions are represented by a coded string of 24binary

bits. Complete enumeration is possible for this number of alternatives, however when the

binary string length exceeds about 30 bits, then the solution space becomes very large and

complete enumeration is not possible. The GA technique then becomes particularly useful.

Previous attempts to optimise the Gessler problem include the use of partial enumeration

(Gessler, 1985) and nonlinear programming (Simpson, Dandy and Murphy,1994).

A small scale simulation of the traditional genetic algorithm applied to the Gessler problem was

performed by hand followed by a number of full scale computer simulated GA evolutions. The

GA parameters of populations size, probability of crossover, probability of mutation and

random number seed were varied for the full scale GA model runs. A sensitivity analysis of the

GA parameters indicates the potential of the traditional GA search, however the global optimum

network solution ($1.7503 million) for the relatively simple Gessler problem is not determined

consistently by the GA within the maximum allowed 10,000 solution evaluations. The next

chapter investigates various aspects of the traditional GA model formulation to determine if any

improvements can be made with respect to pipe network optimisation and specif,rcally, for the

GA applied to the Gessler problem.
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5 Application of the traditional genetic algorithm to pipe netvvork optimisation

A schema (Holland, I915) describes a family of coded strings with coding simila¡ities at given

positions on the string. Schemata describe coding similarities between strings of the same

string length and constructed with the same alphabet.

The order of a schema is the number of fixed positions in the schema. The defining length of a

schema is the distance between the outermost specific positions of a schema. The GA exploits

the relationship between string similarities and conesponding fitness values in a population of

strings. The GA identifies building blocks that are schemata of low order and short defining

length that are associated with high fitness (Goldberg, 1989). Goldberg considered the effect

of reproduction, crossover and mutation on the expected numbers of schemata in subsequent

populations and concluded the power of the GA is in the propagation and the combination of

building blocks.

The GA selects strings with high fitness more often in reproduction to form successive

generations. Hence highly fit string similarities or highly fit schemata survive and accumulate

in successive generations.

The offspring strings inherit the combined highly fit string similarities of their parents. Short

string similarities or schemata of short defining length and low order are less likely to be

disrupted by one-point crossover.

In nature, the weak genetic characteristics of living things are discarded in time while the strong

genetic characteristics of living things become prominent. In the GA, low order, short defining

length schemata or building blocks (Goldberg, 1989) are regenerated by selection or

reproduction and are recombined with other building blocks in crossover to construct superior

new strings from the best parts of the best old strings. Subsequent populations of coded

strings converge on the best regions of the solution space approaching the global optimum

solution.
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6 Improvements to the Simple Genetic Algorithm
for Pipe Network Optimisation

6.I Introduction

The previous chapter constructed a methodology for applying a traditional genetic algorithm

(GA) to water distribution pipe network optimisation. The traditional GA applies three standard

GA operators of proportionate selection, one-point crossover and occasional random bit-wise

mutations to an evolving population of strings of binary code.

This chapter explores aspects of the GA model formulation to determine what improvements

can be made for this application. The effectiveness of the proposed changes to the GA model is

measured empirically by application to the Gessler network expansions problem introduced in

Chapter 5. The exhaustive enumeration of all the possible solutions to the Gessler problem in

Section 5.2 positively identified the best solutions for this problem and led to an improved

understanding of the pipe network optimisation solution space to which the GA models will be

applied. The experimental analysis performed in this chapter points to advances in the structure

of the GA model, to improve the power of the model to search a solution space of this type.

Specifically, this chapter trials:

. different penalty methods to incorporate the constraints of the optimisation problem

. the parent selection schemes of proportionate selection and tournament selection

. different string fitness functions (including fitness scaling techniques)

. alternative crossover mechanisms

. various coded string representations

. a creeping mutation operator

6.2 Performance Measures

The traditional GA model was applied to the Gessler network expansions problem for varying

GA parameters of population size (M), probability of crossover (p), probability of mutation

(p^) and different seeds for the random number generator in Section 5.4. This chapter

investigates the perforrnance of modifications to the structure of the GA model developed in

Chapter 5 for the optimisation of the Gessler problem. A set of five GA model runs are

conducted for each of the modified GA models. This was achieved by using the five sets of the

GA parameters shown in Table 6.1. The GA parameter sets were chosen according to the

findings of the sensitivity analysis of the GA parameters in the previous chapter (i.e., moderate

population sizes, N=50-100, high crossover probability, p"-0.5-1.0 and occasional mutations,

pm=O.OO5-0.01).
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6 Improvements to the simple GAfor pipe network optimisation

The GA parameter sets in Table 6.1 are maintained throughout this study, so that corresponding

experiments for each modified GA model are initiated with identical (randomly distributed)

starting populations and essentially operate under similar conditions (population size, crossover

and mutation rates). The solution space for the Gessler problem considered by the GA consists

of about 16.8 million possible network design solutions. All the GA model runs are allowed a

maximum of 10,000 solution evaluations (O.06Vo of the solution space) in which to determine a

near-optimum solution. The expected number of generations required by the GA model runs

can be calculated by considering the expected number of solution evaluations (new solutions

generated by crossover) per generation (p"X1Ð.

Table 6.1. The chosen GA parameter sets

In total, 150 different GA model runs are described in this chapter. A brief summary of the GA

model runs is given in Table 6.2. For example, the GA runs designated PEN1, PEN2, . . . ,

PEN5 are five GA model runs for the five GA parameter sets in Table 6.1 using the traditional

GA formulation established in Chapter 5 with some variation to the penalty coefficient. The

GA model runs in bold in Table 6.2 use the traditional GA formulation exactly as described in

Chapter 5. For example, GA runs PENl1, FITI, CODEI, CROSSl and CREEP1 represent

the same GA run (the results are identical). The GA runs using the traditional GA act as a

benchmark for all the GA model runs.

The GA model runs required an average of 10 seconds of CPU computing time for 10,000

solution evaluations (30,000 steady-state hydraulic analyses) on a SUN SPARCstation-10. As

network size and complexity increases, the computational effort to perform a GA run will

increase significantly. However, computers are getting faster. OnIy 2 years ago, the GA

model runs applied to the Gessler problem required 9 minutes for 10,000 solution evaluations

on a SUN 41280 computer.

FTvB PRnaMETER SETS FOR THE GA MODEL RUNS

GA Parameter 1 2 -1 4 5

Population size, N 50 100 100 100 100

Probability of crossover, pt o.75 0.75 0.5 1.0 1.0

Probability of random bit-wise mutation, p. 0.01 0.01 0.01 0.01 0.005

Random number generator seed 1000 1000 1000 1000 1000

Maximum number of solution evaluations 10,000 10.000 10,000 10,000 10,000

Expected evaluations per generation, (P'XM) 37.5 75 50 100 100

Exoected number of senerations 267 t33 200 100 100
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6 Improvements to the simple GAfor pipe network optimisation

Table 6.2 Summary of the GA model runs performed in this chapter

GA model runs Description

PENALTY FuNctroNS AND PBN¡.rrv Cosr MULTIPLER, k (Section 6.3)

PENI- PEN5 Penalty costs PC.o, based on the maximum violations of pressure

constraints for each loading condition (Eq. 6.1) with k = $25,000/osi

PEN11.PEN15 Penalty costs PC^o* with k = $50,000/psi

PEN21-PEN25 Penalty costs PC^*rwith fr = $75,000/psi

PEN31-PEN35 Penalty costs PCr* based on the sum of all violations of pressure

constraints for each loading condition (E,q.6.2) with k = $25,000/psi

PEN4l-PEN45 Penalty costs PC.,,- with k - $50,000/psi

PEN51-PEN55 Penalty costs PC",, with ft = $75,000/psi

PEN61-PEN65 Penalty costs PC^* with k increasing gradually as the GA run

proceeds from $10,000/psi to $100,000/psi

SBlBcrroN MsrHoDS, FtrNess FuNcrroNS AND Flrr.r¡ss Sc¿,1-INc (Section 6.4)

FITl-FIT5 Proportionate (roulette-wheel) selection with inverse

fTtness function and fitness scaling exponent n = L

FITlI-FIT15 Proportionate selection with inverse fitness function and n = 2

FIT2l-FIT25 Proportionate selection with linear fitness function and n = I

FIT31-FIT35 Proportionate selection with linear fitness function and n = 2

FIT41-FIT45 Proportionate selection with inverse fitness function and increasing

fitness scaling exponent as GA run proceeds from n = | to n = 4

FIT5l-FIT55 Proportionate selection with linea¡ fitness function and increasing

fitness scaling exponent as GA run proceeds from n = | to n = 4

FM61-FIT65 Binary (s=2 competitors) tournament selection and better individual of

the two selected with probability p, = 1.9

FIT71-FIT75 Binary tournament selection and better individual selected with pr - 0.9

FIT8l-FIT85 Binary tournament selection and better individual selected with pr - 0.8

FIT91-FIT95 Temary (s=3 competitors) tournament selection (pr = 1.0)

CODED STRN.TG REPRESEI.ITATIONS (S ection 6. 5)

CODEl.CODE5 Concatenated decision-variable substrings of binary codes

CODE11-CODE15 Substrings of Gray codes

CODE2l-CODE25 Coded strings of integers

CODE31-CODE35 Substrings of binary codes with an alternative arrangement of
decision-variable substring positions
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GA model runs Description

CRoSSoVER MECHANISMS (Section 6.6)

CROSSl.CROSS5 One-point crossover

CROSSl l-CROSS15 Two-point crossover

CROSS2l-CROSS25 Four-point crossover

CROS53l-CROSS35 Uniform crossover

CROS54l-CROSS45 One-point crossover at decision variable substring boundaries

CROSS5l-CROSS55 Two-point crossover at decision variable substring boundaries

CROS56l-CROSS65 Uniform crossover at decision variable substring boundaries

CREEPING MUTATIoN OPERAToR (Section 6.7)

CREEPl.CREEPs No creept pa = 0.0

CREEPl l-CREEPI5 Probability of creeping mutation, po=0.0625 with
probability of creeping down, p¿=0.5

CREEP2l-CREEP25 Probability of creeping mutation, Pa=0.125 with pd = 0.5

CREEP3l-CREEP35 Probability of creeping mutation, Pa=0.25 withp¿ = Q.5

CREEP4l-CREEP45 Probability of creeping mutation, 125 with p¿=0.25

CREEPs1-CREEP55 Probability of creeping mutation, Pa=0.L25 with p¿= 0.75

6 Improvements to the simple GAfor pipe netvvork optimisation

Table 6.2 cont. Summary of the GA model runs performed in this chapter

Note. The bold GA model runs all represent the same set of five GA runs. These GA runs use the traditional

GA formulation and act as a bench mark for all the GA model runs.

The performance of the genetic algorithm model runs are measured in a number of ways.

Ultimately, the success of a GA run is measured by its ability to reach the optimal solution.

The two global optima for the Gessler problem were identified by exhaustive enumeration in

Section 5.2. The 50 lowest cost (feasible) solutions to the Gessler problem were presented in

Table 5.4. In most cases, the GA runs performed in this study arrive at one of these 50

designs. The lowest cost solution (feasible or infeasible) identified by each GA run is observed

including the number of generations (and solution evaluations) required to determine this

solution.

Some population cost statistics are recorded for each generation of the GA model including the

lowest cost solution in the generation and the average generation cost. The lowest average

generation cost achieved and the generation at which this is achieved is recorded. In addition,

the performance measures used by DeJong (L975) in his pioneering study of GAs for function

optimisation, offline performance and online performance, are recorded as the GA run

proceeds. Offline performance is essentially a running average cost of the lowest cost solutions

in each generation up to the current generation, and online performance is essentially a running
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6 Improvements to the simple GAfor pipe network optimisation

average cost of all solutions evaluated by the genetic algorithm search up to the current

generation (Goldberg, 1989).

The ultimate offline performance and ultimate online performance are observed (after 10,000

solution evaluations have been performed). For most of the GA model runs, the offline

performance and online performance improve throughout the GA run up to the last generation

performed. Offline performance measures convergence to the best solutions and is best suited

to offline applications in which it is important to determine the best alternative and online

performance measures ongoing performance for online applications in which it is more

important to achieve acceptable performance quickly (Goldberg, 1989).

Other measurements are made for some of the GA model runs in this study, including the

variations of the number of infeasible solutions in each generation for alternative penalty

methods, the average cost of strings selected for mating by the alternative selection procedures

(compared to the average generation cost) and other performance measures of specific facets of

the GA formulation. The parents of the optimal solution (if reached) are noted.

A stopping criteria for the GA model runs is not used. Instead, all the GA model runs are

allowed to proceed for a maximum of 10,000 solution evaluations. A suitable stopping criteria

could be established (for the Gessler problem) by performing further GA model runs and

observing the changes in performance conditions such as average generation cost, offline

performance and online performance throughout the GA run. The rate of improvement of these

conditions when (and iÐ the global optimum solution to the Gessler problem is reached could

help decide when to terminate future GA runs.
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6 Improvements to the simple GAfor pipe network optimisation

6.3 Penalty Functions

The pipe network optimisation problem is a constrained optimisation problem. The pipe

network designs are subject to large sets of hydraulic constraints, system performance

constraints and other general design constraints. General design constraints such as minimum

pipe diameters are usually allowed for in the coded representation of the solution space. The

genetic algorithm model, like many other useful pipe network optimisation models satisfy the

hydraulic constraints by linking the optimisation model to a hydraulic simulation model. The

simulation model balances pipe flows and node pressures for each of the demand conditions.

The system performance constraints such as minimum allowable node pressures are compared

with the results of the hydraulic simulation. For example, the Gessler network expansions are

subject to three patterns of projected (instantaneous) demands and the proposed designs are

required to achieve a minimum pressure head profile (Table 5.2).

In the implementation of the GA applied to pipe network optimisation, a penalty function

approach is used such that the objective function is based on the network expansion costs and

penalty costs. The penalty function applies a penalty cost to infeasible network solutions (those

that do not satisfy system performance constraints). Other system performance constraints

(such as maximum pressure heads, maximum velocity constraints and acceptable tank water

level variations during extended period simulation) and some general design constraints may

also be considered in the GA sea¡ch by way of a penalty function(s).

A genetic algorithm search of a constrained objective function will often apply harsh penalties to

infeasible solutions which effectively sets the fitness to zero. The pipe network optimisation

problem is usually a highly constrained problem and the feasible region (the part of the search

space where the constraints are met) may be a relatively small fraction. For example, of the

3.981 million possible solutions to the Gessler probleml,3.294 million are infeasible. In

addition, the infeasible region may isolate small parts of the feasible region. The global

optimum solution is expected to occur at the boundary of the feasible region, adjacent to

infeasible solutions. For these reasons, penalties applied to infeasible solutions are a function

of the distance from feasibility, such that penalties increase as the quality of the solution

decreases. In this way, infeasible solutions can play an important role in the GA search and the

GA search profits by the (often) valuable coded information provided by infeasible solutions.

I Gessler (1985) originally considered a solution space of 3.981 million solutions, however there are actually
16.8 million (2%) solutions within the solution space we have constructed for the GA search.
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6 Improvements to the simple GAfor pipe network optimisation

Richardson et al. (1989) recommended the use of penalties which are functions of the distance

from feasibility. They found penalties which are a function of the degree by which the

constraints are violated are better than those which are functions of the number of violated

constraints. For the pipe network optimisation problem, the distance from feasibility is an

indication of the quality of the solution.

In practical problems such as pipe network optimisation, there are other advantages in

maintaining infeasible solutions. The pipe network designs which are only marginally

infeasible are often useful designs and in some cases, allowing for factors such as the accuracy

of the hydraulic analyses and uncertainties such as the prediction of future demand conditions,

designs which are only just infeasible may actually be the designer's preferred alternative.

The penalty function should not be too harsh, otherwise the GA will be too concerned with

satisfying the pressure constraints and useful infeasible solutions may be discarded in the

selection process. Furthermore, the GA will be less likely to find isolated parts of the feasible

region. Alternatively, if the penalty function is too light, the GA search may drift to many

different parts of the infeasible region without identifying the best feasible regions. The

purpose of the following analysis is to construct a pressure violation penalty function, such that

the GA search may approach the optimum solution from both the feasible and infeasible regions

of the solution space simultaneously.

6.3.1 Penalty functions for pipe network optimisation

The penalty applied to infeasible pipe network solutions is a linear function of the magnitude of

the violations of the minimum pressure constraints. Two penalty functions for pipe network

optimisation are considered in this study. The first penalty function in Eq. 6.1 computes a

pressure violation penalty cost (PC^or) that is the product of the maximum violation of the

pressure constraints for each loading pattern (l) and a specified penalty multiplier (k). The

alternative penalty function in Eq. 6.2 computes a pressure violation penalty cost (PCr*n) that is

the product of the sum of all the violations of the pressure constraints for all loading patterns (l)

and a penalty multiplier (k). Multiple demand patterns may be considered and the system may

fail to achieve the minimum allowable pressures at a number of demand points for any demand

condition. Clearly, if the pressure constraints a¡e met, no penalty is applied.
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in which lø = nodes where the minimum allowable pressure constraints are not satisfied for

loading pattern I, H#'n = minimum allowable pressure at node m for loading pattern I

(appropriate pressure units), H^ - measured pressure at node m fot loading pattern l, L = the

number of loading patterns and k = presSure violation penalty multiplier ($/pressure unit

deficit).

6.3.2 The penalty multiplier

The penalty multiplier is problem dependent and should be chosen carefully. Some trial and

error adjustment of the penalty multiplier may be required for new problems and for new

penalty functions for different design situations.

Richardson et al. (1989) regarded infeasible solutions as incomplete solutions and suggested

good penalty functions can be constructed in terms of the expected completion cost (that is, the

cost increase to make an infeasible solution feasible). The pressure violation penalty cost may

be thought of as the cost of achieving hydraulic feasibility and the penalty multiplier may be

thought of as the cost of improving the pressure at the failing node by one unit. The pressure

deficiencies are not easy to cost, but penalty costs should be measured on the same scale as

network expansion costs.

Consider node 12 of the Gessler network at the extreme downstream end of the system. The

exhaustive enumeration showed that this node is one of the most critical, often failing to meet

the pressure requirements for demand pattern GE3 (Figure 5.3). The pipe [14] which connects

node L2 to the system is a new pipe to be sized. The optimum solution 1 (Table 5.4) sizes

pipe t14l as a 10" pipe and the resultant pressure at node L2 is I9.47psi (the pressure at

node 11 immediately upstream is 25.94psi and the headloss in the 10" pipe [14] is 24.95lft

according to Tables 5.5 and 5.6). Increasing the diameter of pipe [14] (Table 6.3), gives an

indication of the increased pipe costs to improve the pressure at node 12. The flow in

0
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6 Improvements to the simple GAfor pipe netvvork optimisation

pipe [14] is 1.782cfs for demand pattern GE3, the length of pipe [14] is 5,280ft and the

Hazen-Williams roughness is 120. The calculations in Table 6.3 show that it costs between

$10,000 and $25,000 to improve the pressure at node l2by 1 psi. In the following GA model

runs, penalty coefficients betwee¡ ft=$10,000/psi and k=$100,000/psi are tested.

Table 6.3 Extra pipe costs for pipe [14] for a L psi improvement in pressure at

the critical node 12 (for the optimal solution 1 subject to demand pattern GE3)

I for L14=J,280ft and Cy=l)O and assuming Qu=1.782cfs (for critical demand pattern GE3)
2 assuming pressure at node ll is 25.94psi (see results for demand pattern GE3 in Table 5.6)

3 fot L14=J,280ft

The value of the penalty multiplier should be selected such that near-optimal infeasible solutions

cost slightly more than the optimal solution. Of course, the optimal solution is not usually

known, but the number of feasible solutions in the populations of the genetic algorithm search

and the feasibility of the lowest cost solution obtained by the genetic algorithm search are the

best experimental pointers to the suitability of the chosen penalty multiplier.

6.3.3 Varying the penalty multiplier

The starting population of strings is expected to contain a high number of infeasible solutions,

since infeasible solutions make up a substantial proportion of the solution space. Many of the

randomly generated solutions in the starting population will be highly infeasible. As the

selection operator will act quickly to reject these solutions, the starting population will be

effectively much smaller. The value of the penalty multiplier may be increased as the GA model

run proceeds, from a low value in the diverse early generations to allow a wide search, to a

higher value late in the GA run in order to close in on the feasible region. Richardson et al.

(1989) suggested there could be some value in varying the penalty coefficient as the GA model

run proceeds, starting with relaxed constraints and tightening them as the GA run progresses,

and recommended that future studies investigate this further.

New pipe

diameter

(in)

Headloss in

pipe [4]l
(ft)

Pressure at

node 122

losi)

Unit cost of

new pipe

rs/fo

Total cost of

new pipe3

rs)

Extra cost (compared with new

l0" pipe) for a I psi pressure

improvement at node 12

10 24.95r 19.47 28.9 srs2.592

t2 r0.261 25.82 40.5 $213.840 $9.639/osi

t4 4.8461 28.t] 52.1 $27s.088 $14.080/osi

16 2.529 29.17 59.4 $313.632 $16.597lpsi

18 1.425 29.65 70.5 $372,240 $21.575/psi

20 0.853 29.90 80.0 s422.400 S25.873/osi
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6 Improvements to the simple GAfor pipe network optimisation

Siedlecki and Sklansky (1989) proposed a modified genetic algorithm search to encourage

exploration of the feasible region and the promising parts of the infeasible region at a given

distance from the feasible region boundary. They devised an algorithm to adjust the penalty

coefficient each generation before the reproduction stage, so as to influence which solutions are

selected for the mating pool. In this way, they could control the placement of the population in

the solution space.

Siedlecki and Sklansky (1989) considered a constrained optimisation problem in which the

criterion to be optimised introduced a uniform orientation in the search space and where the

minima was expected to occur on the boundary of the feasible region. Optimisation problems

of this type are often encountered in the design of statistical pattern classifiers. The variable

penalty coefficient method was found to be superior to a fixed penalty coefficient. The method

avoids the need for trial and error determination of suitable penalty coefficients.

6.3 .4 GA model runs to compare penalty functions and
penalty multipliers

The three sets of GA model runs designated PENI-PEN5, PENl1-PEN15 and PEN21-PEN25

(refer to Table 6.2) used the penalty function in Eq. 6.1 (with penalty costs a linear function of

the maximum violations of the pressure constraints for each demand condition) for three values

of the penalty multiplier, k. The GA model runs PEN1-PEN5 used a penalty multiplier,

k=$25,000/psi, GA runs PENII-PEN1S used ft=$50,000/psi and GA runs PEN21-PEN25

used k=$75,000/psi.

The next three sets of GA model runs PEN31-PEN35, PEN41-PEN45 and PEN51-PEN55

used the penalty function given in Eq. 6.2 (with penalty costs a linear function of the sum of. all

violations of the pressure constraints for all demand conditions) for the values of the penalty

multiplier, k=$25,000/psi, k=$50,000/psi and k=$75,000/psi respectively.

Finally, the GA model runs PEN61-PEN65 used the penalty function based on the maximum

violations of the pressure constraints (Eq. 6.1) and increased the penalty multiplier with

solution evaluations from k=$10,000/psi to $100,000/psi according to Table 6.4 (increasing

$10,000/psi for every 1,000 solution evaluations).

The results of all the GA model runs PEN1-PEN65 using alternative penalty function are

summarised in Tables 6.5-6.11.
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6 Improvements to the simple GAfor pipe netvvork optimisation

Table 6.4 Variation of penalty multiplier for GA model runs PEN61-PEN65

Number of evaluations

performed

Penalty multiplier, k
($/Psi)

0 - 1,000 r0.000

1.000 - 2.000 20,000

2.000 - 3.000 30,000

3.000 - 4.000 40.000

4,000 - 5,000 50.000

5,000 - 6,000 60.000

6,000 - 7,000 70,000

7.000 - 8.000 80,000

8.000 - 9.000 90.000

9,000 - 10,000 100.000

Table 6.5 Search results for genetic algorithm model runs PENI-PENS

* 
Number of infeasible solutions in starting population

t Globul optimum solution (verified by complete enumeration in Chapter 5)

T Infeasible design. The solution cost includes the penalty cost. The infeasible design is given in Table 5.29.

GA run PEN4 determined a best feasible design for $1.8010m (Solution 9 in Table 5.4) after 94 generations.

Penalty costs based on maximum violations of minimum allowable pressure constraints, PC^ax @q. 6.1) for

each demand condition with penalty multiplier, ft=$25,000/psi

GA RIJNS

Unless specified otherwise GA parameters

N=100, pc=l.O and prn= 0.01

PENl

N=50,

p"4.75

PEN2

Pc=0.75

PEN3

Pc=0.5

PEN4 PEN5

Pm=O.OO5

Number of generations required 266 t33 197 100 100

Lowest solution cost ($m)

lafter - senerations)

1.8115

(92\

1.8010

fl27\

I

1.7503+

02\

t.7g76I

t88)

1.8390

(82\

Lowest cost GA desisn senerated ffable 5.4) 11 8
,) tI 31

Lowest average generation cost ($m)

(after - eenerations)

2.167

r153)

2.284

11t4\

2.009

t148)

2.348

t98)

2.tt5

t95)

Ultimate offline performance ($m) 2.049 t.965 r.875 1.965 1.980

Ultimate online oerformance l$m) 2.5t1 2.613 2.340 2.684 2.547

Averase infeasible solutions / oooulation 49Vo 57.97o 33.17o 43.5Vo 39.3Vo

Maximum infeasible solutions /population 947o 76Vo 75Vo* 75Vo* 75Vo*

Minimum infeasible solutions / population l4Vo 3OVo 7q 247o l2Vo

t76



6 Improvements to the simple GAfor pipe network optimisation

Table 6.6 Search results for genetic algorithm model runs PEN11-PEN15

* 
Number of infeasible solutions in starting population

* Globul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.7 Search results for genetic algorithm model runs PEN21-PEN25

* 
Number of infeasible solutions in starting population

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Penalty costs PC^o* with k=$50,000/psi

GA RTJNS

Unless specified otherwise GA parameters

N=100, pc=7.0 and pm= 0.01

PEN11

ly'=50,

p"=0.75

PEN12

Pc=o.'15

PEN13

Pc=O'5

PEN14 PEN15

Pm=0.005

Number of qenerations required 266 133 t97 100 100

Lowest solution cost ($m)

(after - generations)

1.7503+

(s9)

1.7503+

(e6)

1.7s03 +

t59)

L.1125

t93)

1.8807

(82)

Lorvest cost GA design generated (Table 5.4) 2 ,) I J

Lowest average generation cost ($m)

(after - generations)

2.045

QTz)

2.139

J3)

2.038

(176)

2.271

(92)

2.274

t86)

Ultimate offline performance ($m) t.963 1.896 1.916 1.935 2.026

Ultimate online performance ($m) 2.560 2.557 2.4'75 2.766 2.694

Average infeasible solutions / population 19.47o 15.87o 21.37o 38.67o 26.7Vo

Maximum infeasible solutions /population 727o* 757o* 7SVo* 757o* 757o*

Minimum infeasible solutions / population 27o l7o 4Vo 217o 77o

Penalty costs PC^o, with k=$75

GA RTJNS

Unless specified otherwise GA parameters

N=100, Dc=1.0 and pm= 0.Ol

PEN21

N=50,

p"4.15

PEN22

Pc=0.15

PEN23

Pc=O'5

PEN24 PEN25

Pm=O'OO5

Number of generations required 266 133 197 100 100

Lowest solution cost ($m)

(after - generations)

1.7999

t1531

r.7scß+

06\

a
1.7503+

í22)

1.7s03+

(52\

1.8010

e4)

Lowest cost GA desisn senerated Oable 5.4) 6 1 2 2 I

Lowest average generation cost ($m)

(after - generations)

2.109

(242)

2.217

n22\

1.981

(190)

2.284

(81)

2.123

(e6)

Ultimate offline performance ($m) 1.989 r.915 1.980 1,950 1.951

Ultimate online performance ($m) 2.746 2.673 2.590 2.917 2.698

Averase infeasible solutions / population 16.OVo 18.77o 14.67o 23.27o 19.87o

Maximum infeasible solutions /population 72Vo* 757o* 75Vo* 757o* 75Vo*

Minimum infeasible solutions / population 2Vo 27o l%o 6Vo 4Vo
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Penalty costs based on the sum of all violations of minimum allowable pressure constraints, PCru^ @q. 6.2)

for each demand condition with penaltv multiolier. k=$25.000/psi

GA Rurqs

Unless specified otherwise GA parameters

N=100, Þe=|,0 and pø= 0.01

PEN31

N=50,

p.4.75

PEN32

Pc=0'75

PEN33

Pc=0'5

PEN34 PEN35

Pm=0.005

Number of generations required 266 133 t97 100 100

Lowest solution cost ($m)

lafter - senerations)

l.9510

(164\

1.7s03+

(64)

1.7s03+

(173)

1.7s03+

(s6)

1.8010

(s4)

Lowest cost GA desisn senerated Oable 5.4) 1 I I 1

Lowest average generation cost ($m)

(after - senerations)

2.307

Q44\

2.252

(l03)

2.025

/r12\
2.240

(83)

2.107

(71\

Ultimate offline performance ($m) 2.132 1.904 1.893 l.905 1.997

Ultimate online performance ($m) 2.'156 2.880 2.484 2.830 2.745

Average infeasible solutions / population 48.07o 32.3Vo 22.LVo 33.97o 35.lVo

Maximum infeasible solutions /oopulation 9jVo 757o* '75Vo* 'l5Vo* '75Vo*

Minimum infeasible solutions / population l67o I5Vo 57o 9Vo 9Vo

6 Improvements to the simple GAfor pipe network optimisation

Table 6.8 Search results for genetic algorithm model runs PEN31-PEN35

* 
Number of infeasible solutions in starting population

t Clobat optimum solution (verified by complete enumeration in Chapter 5)

Lowest cost solutions

The GA model runs PEN4I-PEN45 (penalty function PC,u* with k=$50,000/psi) were most

successful, achieving the global optimum on four occ¿rsions. GA runs PENlI-PEN15 (PC^*
with k=$50,000/psi), PEN2I-PEN25 (Pcmaxwith k=$75,000/psi) and PEN31-PEN35 (PC,,^

with k=$25,000/psi) each achieved the global optimum on three occasions from five attempts.

Of the five GA model runs PEN61-PEN65 (increasing ft), three have determined a lowest cost

solution that is infeasible, while the other two GA runs determine the global optimum solution

(Table6.11). The penalties are too light early in the GA run, not sufficiently penalising

infeasible solutions which are not close to the best feasible regions.

The least effective GA parameter sets were the first GA parameter set (using the smaller

population size, N=50) and the fifth GA parameter set (using the lower mutation rate,

P,îr=O.005).
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6 Improvements to the simple GAfor pipe netvvork optimisation

Table 6.9 Search results for genetic algorithm model runs PEN41-PEN45

* 
Number of infeasible solutions in starting population

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Tabte 6.10 Search results for genetic algorithm model runs PEN51-PEN55

* 
Number of infeasible solutions in starting population

f Globul optimum solution (verified by complete enumeration in Chapter 5)

Penalty costs PC"r- with k=$50,000/psi

GA RT]NS

Unless specified otherwise GA parameters

N=100, pc=1.0 and p^=Q.91

PEN4l

N=50,

P"=0.J5

PEN42

Pc=0.75

PEN43

Pc=O'5

PEN44 PEN45

Pm=O.005

Number of generations required 266 r33 197 100 100

Lowest solution cost ($m)

hfter - senerations)

t.7999

(170)

I

1.7503+

t45)

1.7503+

(724\

1.7503+

168)

L

1.7503+

t88)

Lowest cost GA desisn qenerated Oable 5.4) 6 1 1 2 2

Lowest average generation cost ($m)

(after - generations)

2.292

(1 19)

2.155

/]27\

2.O79

(120)

2.496

02\

2.108

(98)

Ultimate offline performance ($m) 2.038 1.877 1.926 2.022 2.000

Ultimate online performance ($m) 2.879 2.977 2.743 3.292 2.963

Average infeasible solutions / population 26.67o 20.tvo 18.77o 29.SVo 15.27o

Maximum infeasible solutions /population 72Vo* '157o* 75Vo* 757o* 757o*

Minimum infeasible solutions / population 27o 67o 3Vo lTVo 27o

Penalty costs PC"u. with k=$75,000/psi

GA RUNS

Unless specified otherwise GA parameters

N=100, pc=1.0 and pn = 0.01

PEN51

N=50,

p"4.75

PEN52

pc=0.75

PEN53

Pc4.5

PEN54 PEN55

Pm=O'005

Number of generations required 266 t33 t97 100 100

Lowest solution cost ($m)

(after - generations)

1.8010

(91)

1.81r5

(97\

I .81 15

t53)

I

1.7503+

(94ì,

1.7503+

0t\

Lowest cost GA desisn senerated Oable 5.4) 9 10 10 1 1

Lowest average generation cost ($m)

(after - generations)

2.t32

(102)

2.177

(e\
1.984

(172),

2.405

(94\

2.016

(83)

Ultimate offline oerformance ($m) 2.029 1.963 1.913 2.031 1.902

Ultimate online performance ($m) 3.r37 3.527 3.081 3.551 3.1 13

Averaqe infeasible solutions / population 13.27o 15.4Vo 13.j%o l7.4Vo 15.7Vo

Maximum infeasible solutions /population 72Vo* 'lSVo* 75Vo* 757o* 757o*

Minimum infeasible solutions / population 2Vo 57o lVo 57o 2Vo
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Penalty costs PC^o, with increasing penalty multiplier, k gradually (and uniformly over the 10,000

evaluations) as the GA run proceeds from $10,000/psi to $100,000/psi

GA RriNS

Unless specified otherwise GA parameters

N=100, pc=7.0 and prrr= 0.01

PEN6l

N=50,

p"4.75

PEN62

Pc=O.75

PEN63

Pc=O'5

PEN64 PEN65

Pm=O.OO5

Number of generations required 266 133 r97 100 r00

Lowest solution cost ($m)

(after - senerations)

1.79621

(3s)

1.7s03+

fl0s)

t.ss70t

/11)

r
1.7503+

(19\

I

1.83241

t96)

Lowest cost GA desisn senerated Oable 5.4) rl 1 2
I2t

Lowest average generation cost ($m)

(after - generations)

2.043

/192\

2.106

(64\

2.384

t171)

2.286

e2)

2.140

(96)

Ultimate offline performance ($m) 1.919 1.900 2.154 L914 r.970

Ultimate online performance ($m) 2.481 2.569 2.612 2.797 2.514

Averase infeasible solutions / population 25.4Vo 29.37o 64.OVo 35;lVo 48.4Vo

Maximum infeasible solutions /population 867o 75Vo* 947o 85Vo 877o

Minimum infeasible solutions / population OVo 87o 177o 67o 13Vo

6 Improvements to the simple GAfor pipe network optimisation

Table 6.1L Search results for genetic algorithm model runs PEN61-PEN65

* 
Number of infeasible solutions in starting population

* Gtobat optimum solution (verified by complete enumeration in Chapter 5)

t Infeasible designs. The solution costs include penalty costs. The infeasible designs are given in Table 5.29.

GA run PEN61 determined a best feasible design for $1.8010m (Solution 7 in Table 5.4) after 104 generations,

PEN63 determined a best feasible design for $2.0898m after 108 generations and PEN65 determined a best

feasible design for $1.9288m after 24 generations.

Best of generation costs and offline performance

Figures 6.1-6.3 show the bestfeasibl¿ solution costs in each generation against the number of

solution evaluations performed for GA runs PEN4, PEN14, . . . , PEN64. By comparison to

Figure 6.3, Figure 6.4 shows the best of generation costs (least cost feasible or infeasible

individuals in each population) for GA runs PEN14, PEN44 and PEN64.

The GA run PEN24 (high value of k=$75,000/psi) is most effective for penalties based on the

maximum violations of the pressure constraints (Figure 6.1). In contrast, the GA run PEN34

(low k=$25,000/psi) is most effective for penalties based on the sum of all the pressure

constraint violations (Figure 6.2).

The GA run PEN64 with increasing penalties and an average penalty multiplier of
k=$55,000/psi is quite effective by comparison to GA runs PENl4 and PEN44 with fixed
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6 Improvements to the simple GA for pipe network optirnisation

k=$50,000/psi (Figure 6.3). The GA run PEN64 is one of two successful GA runs with

varying penalty multiplier k. Figure 6.4 indicates that GA run PEN64 obtains low cost

solutions after only a few generations, however Figure 6.3 shows that the low cost solutions

are infeasible.

The most consistent performers, in terms of offline performance (running average of best

generation costs), are GA runs PENl1-PEN15 (PC^o* with k=$50,000/psi) and GA runs

PEN3 1-PEN35 (P C,u^*1¡¡ ¿=$25,000/psi).

Average generation costs and online performance

Figures 6.5-6.1 show average generation costs (average of feasible and infeasible solutions in

the population) against evaluations performed for GA model runs PEN4 PEN64. The

plots of average generation cost for GA runs PEN34, PEN44 and PEN54 using the penalty

function based on the sum of all the pressure constraint violations (Figure 6.6) are relatively

discontinuous and occasionally average generation costs are very high (as high as $4 million)2.

Sometimes a particularly disruptive mutation or crossover can produce a highly infeasible

solution. The penalty function that sums all the violations of allowable pressure heads for all

loading cases can compute unreasonably high penalty costs. Poor decisions for influential

upstream pipes will cause all of the pressure constraints to be violated downstream of this pipe,

regardless of downstream pipe decisions. The downstream pipe sizes may even be optimal.

These solutions are harshly penalised (a penalty cost for all the pressure constraint violations)

and are not likely to be selected in the reproduction process.

The penalty function based on the maximum pressure constraint violations avoids this situation

and still accounts for poorly selected pipe sizes. If an upstream pipe size is inadequate, but

downstream pipe sizes are optimal, the deficiency in pressure head exists for all downstream

nodes but does not grow. If the downstream pipe sizes are also inadequate, the deficiency in

pressure head accumulates so that the ma¡cimum violation of the pressure constraints occurs at a

node further from the reservoir. If a downstream pipe size only is inadequate the penalty costs

obtained by both functions may be similar.

The GA runs using the third GA parameter set (Table 6.1) with the lower crossover rate,

pc=0.5 (less disruption by crossover) typically provide the lowest average generation costs and

superior online performance.

2 In term. of network expansion costs only, the most expensive solution has a cost of $4.0772 million and the

least expensive solution has a cost of 0.3986 million.
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Figure 6.5 Average generation costs (feasible and infeasible) for GA runs PEN4 (¿:$25,000/psi), PENI4
(fr:$50,000/psi) and PEN24 (F$75,000/psi) with penalties based on maximum pressure constraint violations
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6 Improvements 1o the simple GAfor pipe network optimisation

Number of infeasible solutions in the populations

Figures 6.8-6.10 show the variation of the number of infeasible solutions in the fixed

population size of N=100 members for GA runs PEN4, PEN14, . . . , PEN64. Typically,

75Vo of the randomly generated solutions in the starting populations for the GA model runs

applied to the Gessler problem are infeasible solutions. The number of infeasible solutions

tends to drop significantly in the first few generations (with the exception of GA run PEN64

with the low initial value of k).

As expected, the average number of infeasible solutions maintained in a population is decreased

with increasing penalty multiplier. The use of penalty costs based on the maximum constraint

violations maintains more infeasible solutions than penalty costs based on the sum of all the

constraint violations.

The average number of infeasible solutions per population for the GA runs PEN61-PEN65

(increasing k) range from an average of 29Vo for GA run PEN62 up to an average of 64Vo for

GA run PEN63. The GA run PEN63 maintains high numbers of infeasible solutions and the

lowest cost solution obtained by that GA run is infeasible and a long way from the global

optimal solution. As previously discussed, it is important to maintain reasonable numbers of

infeasible solutions in the GA search (although perhaps not as many as GA run PEN63).

Further experimentation is required as to methods for applying suitable adjustments to the

penalty multiplier as the GA run proceeds, to regulate the numbers of infeasible solutions.

An alternative approach may be to separate the populations into two subpopulations of feasible

and infeasible solutions for the selection process. Specified numbers of feasible solutions and

infeasible solutions may be selected for the new generation. The probability of selection of a

feasible solution from the subpopulation of feasible solutions may be determined by the fitness

of the feasible solution relative to the other feasible solutions. Similarly, the probability of

selection of infeasible solutions may be determined by the fitness of the infeasible solution

relative only to other infeasible solutions. Using such a procedure, may enable the GA search

to hillclimb in the feasible region and infeasible region simultaneously. For highly constrained

optimisation problems with very small feasible regions, the starting population could be

randomly selected from within the feasible region only.
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6 Improvements to the simple GAfor pipe netvvork optimisation

Parents of the optimal solution

The parents of the global optimal solution (pipe costs $1.7503 million) were recorded for all the

GA runs in this chapter, if the optimum solution was determined. The parents were found to be

either two feasible solutions, or (not quite as regularly) one feasible solution and one infeasible

solution, but never two infeasible solutions. As an example, the parents of the global optimum

solutions obtained by traditional GA runs PEN11, PEN12 and PENl3 are shown below. In

each case, the optimal strings may have been obtained from the parent strings by any one of a

number of combinations of crossovers and random bit-wise mutations. Mutation was involved

in the creation of the optimal strings for GA runs PENl1 and PEN12.

GA run PENL1:

Optimal solution:

Parent 1:

Parent2:

GA run PENL2:

Optimal solution:

Parent 1:

Parent2:

GA run PEN13:

Optimal solution:

Parent 1:

Parcnt2:

000- 1 10-000-01 1-00 1-010-000-001

000- 1 10-000-0 I 0-000-0 10-0 1 1 -00 1

000- 1 10- 100-0 1 1 -00 1 -0 1 1 -000-00 1

000- I 10-000-0 I 1-00 1 -0 10-000-00 1

000- I 10-0 10-0 1 1-001 -0 10-000- 1 10

01 1- 1 1 1-010-01 1-001-010-000-001

000- 1 10-000-0 1 1 -00 1 -00 1 -000-0 10

000- 1 10-000-0 1 1-000-001 -00 1 -01 1

001 - 1 10- 1 10- 100-001 -00 1 -000-0 10

Pipe costs Penalty costs

$1.7503m

$2.109m

$2.299m

Pipe costs

$1.7503m

$1.8010m

$1.964m

Penalty costs

$2.II2m

Pipe costs

$1.7503m

$1.8115m

$2.326m

Penalty costs

$1.244m

6.3.5 Recommendations for the penalty function -

In general, the higher values of the penalty coefficient (k>$50,000/psi) show superior

performance for the case where the penalty function depends on the maximum violations of the

pressure constraints. Conversely, lower values of the penalty coefficient (k<$50,000/psi) are

more suitable when the penalty function depends on the sum of all violations of the pressure

constraints. The GA runs using the penalty function which sums all the pressure constraint

violations is effective in determining the global optimum, however excessive penalties are

applied to some infeasible solutions. There is potentially some value in varying the penalty

multiplier as the GA run proceeds, however further testing is required to determine the best

method of adjusting the penalty multiplier.
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6 Improvements to the simple GAfor pipe network optimisation

6.4 Selection Methods and Fitness Functions

The power of the GA lies in the trade-off between exploitation of past results by selection and

the exploration of new parts of the search space by the crossover and mutation mechanisms.

The critical GA operator of selection (or reproduction) exploits past experience in the solution

space. Selection simulates a Darwinian survival-of-the-fittest process, regulating the survival

of solutions in the search by allowing better (or fitter) solutions a greater chance of survival.

The coded string solutions are evaluated and assigned a measure of fitness which reflects the

merit of the trial solution. In the pipe network optimisation problem we try to minimise cost,

while in the GA search we try to maximise fitness. The fittest individual in the GA solution

space should be the global optimum solution. The fitness is some function of the objective

function value. For pipe network optimisation, the fitness is a function of the cost and the

hydraulic feasibility (accounted for by penalty costs) of the proposed pipe network design.

The selection operator uses an appropriate method to choose fitter solutions from within a

competing population of solutions to generate the new population. The selection methods of

proportionate selection and tournament selection are compared in this study. The traditional GA

uses a proportionate selection scheme, although there is much theoretical and empirical support

for tournament selection. The following experimental analysis is intended to help establish a

suitable fitness function and a reliable and efficient parent selection scheme for the GA

application to pipe network optimisation.

6.4.L Proportionate selection

Proportionate selection (also called stochastic selection or biased roulette-wheel selection)

chooses strings according to their fitness with respect to the fitness of fellow strings in the

population and chance factors. The fitness allocated to a string allows the string an appropriate

chance of selection in the proportionate reproduction process. The strings are selected

randomly (with replacement) from a competing population of N strings with the probability of

selection, p¿ of string i given by:

for coded strings, l=1,..., N (6.3)

f¡
N

Z¡'
j=1

P¡

where j = the f,rtness of coded string I
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6 Improvements to the simple GAfor pipe network optimisation

A number of methods have been proposed to sample this probability distribution (Goldberg and

Deb, 1991) including roulette-wheel (Monte Carlo) selection, stochastic remainder selection and

stochastic universal selection. The method used in the traditional GA we have described in

Chapter 5 for pipe network optimisation is weighted roulette-wheel sampling (DeJong, I915).

The probability of selection of each individual in the population is computed by Eq. 6.3. The

computer algorithm allocates real intervals (or slots) between 0.0 and 1.0 to each individual

equal to their probability of selection. The computer generates a random number between 0.0

and 1.0 (a spin) and the individual occupying this interval is chosen. Spins are performed until

the new population of N strings has been selected.

Roulette-wheel selection selects individuals according to their fitness and there is a degree of

luck. By comparison, in stochastic sampling methods the number of offspring an individual

receives in the new population is determined by (and is approximately equal to) the number of

expected offspring in the new population. There are combinations and variations of roulette-

wheel sampling and stochastic sampling. In this research, only proportionate selection by the

traditional method of roulette-wheel selection has been considered.

6.4.2 Tournament selection

The tournament selection approach is as follows:

(1) Choose two or more individuals for the tournament from the current population

(usually without replacemenÐ. The number of individuals is the tournament size, s.

Binary tournaments (s=2 competitors) (Brindle, 1981) and ternary tournaments (s=3

competitors) are considered in this study.

(2) The fittest individual among the competitors is selected as the tournament winner.

In a variant described by Goldberg and Deb (1991), the fittest individual in a binary

tournament is selected as the winner with some probability, p¡ (such that 0.5<p¡11.0)

(3) Repeat steps (1) and (2) until the new population is filled. A number of passes

through the current population will be required.

Tournament selection has an advantage in that a fitness function is not required to transform the

pipe network cost minimisation problem to a coded string fitness maximisation problem. The

coded string solution with the lowest cost wins the tournament. As a consequence, biases

introduced by the form of the fitness function do not influence the GA search.

Goldberg and Deb (1991) provided a comprehensive theoretical analysis of a number of

selection schemes used in GAs including proportionate reproduction, tournament selection,

ranking selection and Genitor (or 'steady-state') selection and made recommendations for the

use of selection methods in practical applications. They compared the expected performance of
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6 Improvernents to the simple GA for pipe netvvork optimisation

the selection schemes on the basis of the solutions to deterministic finite difference equations

that describe the change in proportion of different classes of individual in time, and by estimates

of the takeover time and expected growth ratio of the fittest individual. The takeover time is the

time when the population contains N-1 of the best individuals. The expected growth ratio of

the fittest individual is the number of times the fittest individual is selected from the population,

divided by the number of copies of the fittest individual in the population.

Goldberg and Deb (1991) found tournament selection has a significantly higher expected

performance than proportionate reproduction. Tournament selection can achieve higher growth

ratios as tournament size increases. The expected performance of proportionate selection can be

improved by fitness scaling techniques. The expected growth ratio of proportionate selection is

higher in the early generations and quite low in the late generations and this is the reason for the

use of fitness scaling mechanisms. An exponential fitness scaling function is suggested to

control the degree of competition. Goldberg and Deb made useful recommendations for the

correct use of selection methods in GAs to balance the conflict between exploitation and

exploration, to prevent premature convergence and to maintain diversity in populations.

6.4.3 Fitness functions

In the implementation of the GA to the pipe network optimisation problem, the fitness function

is a relationship between the fitness of coded strings and the objective function value (total cost)

of the trial pipe network designs. The total cost of a network solution is the sum of the pipe

network expansion costs and penalty costs (for violating system performance constraints). The

fitness function maps the total cost of network solutions to be minimised, to fitness values of

coded strings to be maximised by the GA search. The fitness values should not be negative.

Each string in a GA population of N strings is assigned a value of fitness.

The two alternative fitness functions considered in this study are given by Eqs. 6.4 and 6.5 in

which the fitness of string ¿ f is a function of the total cost of string i, cost¡. The first is a

simple inverse relationship between fitness and objective function value to some power n. The

second fitness function is a linear fitness function (Goldberg, 1989) in which the fitness of

individuals in a population are normalised with respect to the cost of the worst individual (the

maximum cost string) in the population, denoted by costn,or.

for coded strings, i=1,..., N

f¡=(costm*-cost¡f for coded strings, j=l,..., N

(6.4)
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6 Improvements to the simple GAfor pipe network optimisation

Measuring fitness values from a cost extreme such as the maximum cost string should give an

increasing progression of fitness values, however, it may be more appropriate to measure

fitness relative to some other reference cost other than the maximum cost in the current

population, such as the average cost or the minimum cost in the current population or some

previous population. In some cases, an additional transformation may be required so that

fitness values are non-negative.

The exponent n in the fitness functions may be held constant throughout the GA run (say n=1

or n=2) or n may vary as the GA run proceeds and in this case the exponent n acts as a fitness

scaling mechanism.

6.4.4 Fitness scaling mechanisms

In this research, a form of power law fitness scaling is tested. The exponent (n) in the fitness

function is increased in magnitude as the GA model run proceeds to stretch the range of fitness

values.

Goldberg (1989) reported on fitness scaling mechanisms used to adjust the raw fitness values

to maintain appropriate levels of competition between the strings in a population. Fitness

scaling mechanisms regulate the number of copies of strings selected for the mating pool.

Goldberg believed the choice of the value of the exponent is usually problem-dependent and the

value of the exponent can be changed to shrink or stretch the range of fitness values.

Gillies3 (1985) considered a power law form of fitness scaling where the scaled fitness is some

power (n) of the raw fitness. Gillies used a value of n=l.005 in a machine vision application.

The starting population of strings is generated randomly and as a consequence this population

and early generations are likely to contain diverse strings of genetic code. The average string

fitness in the starting population will be low, and the individual string fitnesses may vary

significantly, yet all of the strings may possess potentially valuable genetic information. A low

value of the exponent n should be employed at the start of the GA run, say n = L, so the GA

can sort through the potential strengths of the ordinary strings in the early generations. A low

value of n preserves population diversity in the early generations. A large value of the exponent

n is not appropriate here since the GA search may be misguided by encouraging one better than

average (but not near-optimal) string to dominate the new populations.

Over a number of generations, populations are likely to tend towards homogeneity to the point

of convergence and fitness levels may become very similar. In time, a large number of useful

3 Reported by Goldberg (1989).
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6 Improvements to the simple GA for pipe network optimisation

string similarities are recognised and become established. The value of the exponent n may be

increased in steps during the intermediate generations. As the GA run progresses further, the

highly fit string similarities that have evolved begin to dominate the populations. The strings

are constructed of similar genetic code and their magnitudes of raw fitness may be very similar.

A high value of the exponent n, say 3 or 4, is needed late in the GA run to accentuate the small

differences in string fitness.

6.4.5 Experimental analysis of selection methods and
fitness functions

In the following analysis, ten sets of GA model runs are performed to compare the selection

methods of proportionate reproduction and tournament selection and various forms of the

fitness function. The ten sets of five GA runs designated FITI-FIT5, FITl1-FIT15, . . . ,

FIT9l-FIT95 are described in Table 6.2. The first six sets of GA runs use proportionate

selection and the remaining four sets of GA runs use tournament selection.

The first two sets of GA model runs FIT1-FIT5 and FIT1I-FIT15 adopt the inverse fitness

function given by Eq. 6.4. The GA runs FIT1-FIT5 use a fixed value of the exponent, n=1

while GA runs FITl1-FIT15 use a fixed value of the exponent, n=2. The next two sets of GA

runs FIT21-FIT25 and FIT31-FIT35 adopt the linear fitness function given by Eq.6.5 for

fixed exponents /r=1 andn=2 respectively.

The final two sets of GA runs employing the proportionate selection scheme FIT41-FIT45 and

FIT51-FIT55 increase the fitness scaling exponent, n throughout the GA run according to

Table 6.12. The GA runs FIT41-FIT45 use the inverse fitness function and GA runs FIT51-

FIT55 use the linear fitness function.

Table 6.12 Variation of fitness scaling exponent, n for GA runs FIT41-FIT45
(inverse fitness function) and FIT51-FIT55 (linear fitness function)

Fitness scaling

exponent, n

Solution evaluations

performed

1 0 - 2.500

2 2,500 - 5,000

3 5.000 - 7.500

4 7.500 - 10.000
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6 Improvements to the simple GAfor pipe network optirnisation

The GA model runs FIT61-FIT65 select the winners of binary tournaments (s=2 competitors)

for the reproduction process. The GA runs FIT7l-FIT75 and GA runs FIT81-FIT85 select the

better individual in binary tournaments with probability pF0.9 and p¡-0.8 respectively.

Finally, the GA runs FIT91-FIT95 choose the winners of a ternary tournaments (s=3

competitors) for the reproduction process.

The results of this series of GA runs are given in Tables 6.13-6.22.

Best cost solutions

The GA model runs FIT4l-FIT45 (proportionate selection using the inverse fitness function

with fitness scaling) and GA runs FIT81-FIT85 (binary tournament selection withp¡0.8) both

achieve the global optimum solution ($1.ZSOgm) in all of the five GA runs.

For proportionate selection, the inverse fitness function achieves the global optimum on 11

occasions from 15 attempts. The inverse fitness function is considerably superior to the linear

fitness function which achieves the global optimum on only 3 occasions from 15 GA runs. The

GA runs which scaled fitness values by varying the exponent in the fitness functions achieved

the global optimum more often than the GA runs which fixed the exponent.

The binary tournament selection is extremely effective, achieving the global optimum solution

on 13 occasions from 15 attempts. In addition, binary tournament selection is very efficient, in

most cases determining the global optimum after less than 3,000 solution evaluations of the

maximum 10,000 evaluations. The higher probabilities of selecting the best individual p¡1.0
(in GA runs FIT61-FIT65) and p¡-0.9 (GA runs FIT71-FIT75) fail to achieve the global

optimum when population size is small, N=50. The most effective GA parameters for

tournament selection are the larger population size, N=100, the high crossover rate, pc=I.O,

and high mutation rate, p^=Q.01. V/e suspect the small populations are dominated too quickly

by better than average solutions that are not necessarily near-optimal. The ternary tournament

selection (3 competitors) finds the global optimum solution just once, using the high crossover

rate and high mutation rate. The relentless exploitation of past results of ternary tournament

selection is best combined with increased exploration by crossover and mutation to provide

more opportunities for useful variations in the converging populations. Ternary tournament

selection is remarkably efficient, identifying low cost solutions in only 10 to 15 generations.
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6 Improvements to the simple GAfor pipe network optimisation

Table 6.13 Search results for genetic algorithm model runs FITI-FITS

* Globul optimum solution (verihed by complete enumeration in Chapter 5)

Table 6.14 Search results for genetic algorithm model runs FIT11-FIT15

* Gtobal optimum solution (verified by complete enumeration in Chapter 5)

Proportionate (roulette-wheel) selection with replacement using the inverse fitness function (Eq.6.4) and fitness

scaling exponent, n=I. GA runs FIT1-FIT5 are equivalent to GA runs PEN11-PEN15.

GA RTJNS

Unless specified otherwise GA parameters

N=100, pc=l.O and pm= 0.Ol

FITl

N=50,

Pc=0.J5

FIT2

Pc=0.75

FIT3

Pc=0'5

FIT4 FIT5

Pm=O'OO5

Number of generations required 266 133 t91 100 100

Lowest solution cost ($m)

(after - eenerations)

I

t.'7503+

(59)

1.7s03+

(96)

a
1.7503+

(59)

1.7125

t93)

r.8807

t82)

Lowest cost GA desisn senerated Oable 5.4) 2 2 1 J

Lowest average generation cost ($m)

(after - generations)

2.045

(212\

2.139

Q3)

2.038

/116)

2.271

(92\

2.2',74

(86)

Ultimate offline performance ($m) t.963 1.896 1.916 1.935 2.026

Ultimate online performance ($m) 2.560 2.557 2.475 2.766 2,694

Averase cost of all strinss selected ($m) 2.421 2.394 2.373 2.599 2.569

Prooortionate (roulette-wheel) selection using inverse fitness function and fitness scalins exponent. n=2

GA Rtxs
Unless specified otherwise GA parameters

N=100, þ"=1.0 and pu= 0.01

FIT11

N=50,

p.4.75

FIT12

Pc=0.75

FITl3

Pc=0'5

FITl4 FITl5

Pnx=0'005

Number of generations required 266 133 r97 100 100

Lowest solution cost ($m)

lafter - senerations)

r.7725

(¿ll\

I

1.7503+

(34)

1.8897

(170)

1.7503+

(51)

!

1.7503+

t48)

Lowest cost GA desisn senerated Oable 5.4) 3 2 I I

Lowest average generation cost ($m)

(after - generations)

1.885

(253\

1.940

t83)

2.039

1140)

2.041

t87)

1.945

(94),

Ultimate offline oerformance ($m) 1.850 1.811 2.004 1.839 r.946

Ultimate online performance ($m) 2.240 2.323 2.325 2.427 2.444

Averase cost of all strines selected ($m) 2.O47 2.O99 2.2t8 2.199 2.282
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Proportionate (roulette-wheel) selection with replacement using the linear fitness function (Eq.6.5) and

fitness scaling exPonent, n=1

GA RTJNS

Unless specified otherwise GA parameters

N=100, p"=l.O and pm= 0.01

FIT21

N=50,

p"4.75

FTT22

Pc=0.'15

FIT23

Pc=0.5

FTT24 FIT25

Pm=0'OO5

Number of generations required 266 133 r91 100 100

Lowest solution cost ($m)

(after - senerations)

r.8781

o04\

2.058

û07)

1.8131

(34)

1.94007

(s2\

1.8115

ß2)

Lowest cost GA desiqn senerated (Table 5.4) t4 t2

Lowest average generation cost ($m)

(after - generations)

2.t27

(r92\

2.452

r1 19)

2.058

/r94\
2.514

(72\

2.331

(.97\

Ultimate offline performance ($m) 2.06t 2.214 r.967 2.lot 2.050

Ultimate online performance ($m) 2.518 2.90r 2.466 2.967 2.785

Averaqe cost of all strings selected ($m) 2.395 2.166 2.367 2.820 2.663

6 Improvements to the simple GAfor pipe network optimisation

Table 6.15 Search results for genetic algorithm model runs FIT21-FIT25

t Infeasible design. The solution cost includes the penalty cost. GA run FIT24 determined a best cost feasible

design for $1.9420 million af¡er 44 generations.

Tabte 6.16 Search results for genetic algorithm model runs FIT31-FIT35

t Clobul optimum solution (verified by complete enumeration in Chapter 5)

Proportionate (roulette-wheel) selection using the linear fitness function and fitness scaling exponent, n=2

GA RTINS

Unless specified otherwise GA parameters

N=100, Þr=l.O and p^= g.g1

FIT31

N=50,

p"4.75

FIT32

p"4.75

FIT33

Pc=0'5

FIT34 FIT35

Pm=0'005

Number of qenerations re4uired 266 133 r97 100 100

Lowest solution cost ($m)

/after - senerations)

1.7503+

fl39)

1.79t0

fi4\

1.8390

øt),

1.8390

(71\

1.8385

(31)

Lowest cost GA desien qenerated (Table 5.4) 2 5 32 33 27

Lowest average generation cost ($m)

(after - senerations)

1.885

1200)

2.244

t133)

1.921

(91)

2.19t

(96)

2.088

(e8)

Ultimate offline performance ($m) 1.883 1.955 1.876 1.955 t.920

Ultimate online performance ($m) 2.269 2.682 2.207 2.622 2.453

Averase cost of all strings selected ($m) 2.t06 2.497 2.092 2.45t 2.3t6

195
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Table 6.17 Search results for genetic algorithm model runs FIT41-FIT45

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.18 Search results for genetic algorithm model runs FIT51-FIT55

* Globul optimum solution (verified by complete enumeration in Chapter 5)

Proportionate (roulette-wheel) selection using the inverse fitness function and a gradually increasing (uniformly

over 10,000 evaluations) fitness scaling exponent as GA run proceeds from ¿=1 to n=4

GA RTJNS

Unless specihed otherwise GA parameters

N=100, pa=l.O and pnx= 0.01

FIT41

N=50,

Pc=O.75

FIT42

Pc=0.75

FIT43

Pc=0'5

FTT44 FIT45

Pm=0'005

Number of generations required 266 133 t97 100 100

Lowest solution cost ($m)

(after - eenerations)

1.7503+

(s9)

1.7s03+

(80)

T
1.7503+

(59)

T
1.7503+

(52\

1.7503+

(99\

Lowest cost GA desisn senerated (Table 5.4) 2 1 I 1 I

Lowest average generation cost ($m)

(after - generations)

1.799

(237)

t.925

fl22\

1.194

(n2)
l.968

(83)

1.914

(96)

Ultimate offline performance ($m) 1.857 1.856 1.869 1.878 1.943

Ultimate online performance ($m) 2.298 2.356 2.272 2.546 2.527

Averase cost of all strinss selected l$m) 2.tzt 2.153 2.147 2.321 2.343

Proportionate (roulette-wheel) selection using the linear fitness function and a gradually increasing fitness

scaling exponent as GA run proceeds from n=l to n=4

GA RIJNS

Unless specified otherwise GA parameters

N=100, pc=LO and p^= g.g1

FIT51

N=50,

p"4.75

FIT52

Pc=0'75

FIT53

Pc=0.5

FIT54 FIT55

Pm=O'OO5

Number of qenerations requi¡ed 2,66 133 197 100 100

Lowest solution cost ($m)

hfter - senerations)

1.8390

Q27\

2.0069

(&)
1.7s03+

fl21\

1,79t0

fl00)

1.7s03+

(48)

Lowest cost GA desisn senerated Oable 5.4) 33 1 5 2

Lowest average generation cost ($m)

lafter - senerations)

1.951

(235\

2.t20

t133)

t.877

(183)

2.268

t87)

r.924

(81)

Ultimate offline performance ($m) 2.O53 2.142 1.911 1.998 1.958

Ultimate online oerformance l$m) 2.444 2.'126 2.367 2.825 2.544

Averase cost of all strinss selected ($m) 2.302 2.579 2.234 2.635 2.409
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Table 6.19 Search results for genetic algorithm model runs FIT61-FIT65

t Globul optimum solution (verif,red by complete enumeration in Chapter 5)

Table 6.20 Search results for genetic algorithm model runs FIT71-FIT75

t Globul optimum solution (verified by complete enumeration in Chapter 5)

T Infeasible design. The solution cost includes the penalty cost. The design is given in Tabte 5.29.

GA model run FIT71 determined a best cost feasible design for $1.8897 million after 14 generations.

Binary (s=2 competitors) tournament selection and best individual selected with probability, p¡1.0

GA R[]NS

Unless specified otherwise GA parameters

N=100, pc=1.0 and pm=0.01

FIT6l

N=50,

p"4.15

FTT62

Pc=0'J5

FIT63

Pc=0'5

FIT64 FIT65

Pm=0'005

Number of generations required 266 135 197 100 100

Lowest solution cost ($m)

(after - senerations)

t.1910

t5l )

L

1.7503+

(18)

¡
1.7503+

(22\

1.7s03+

(20\

1.7503+

fl5)

Lowest cost GA desisn senerated (Table 5.4) 5 I 1 I I

Lowest average generation cost ($m)

(after - qenerations)

1.8060

Q35)

1.792

/r34\

1.758

(1ss)

1.858

(57)

1.760

0s\

Ultimate offline performance ($m) r.824 1.790 1.780 1.803 1.801

I-Iltimate online performance ($m) 2.079 2.088 1.984 2.23t 2.071

Averase cost of all strinss selected ($m) 1.859 1.863 r.825 1.924 1.889

Bina¡y tournament selection and best individual selected with probability, p¡09

GA RUNS

Unless specified otherwise GA parameters

N=100, þe=l.O aîd pm= O.Ol

FIT71

N=50,

p"4.75

Ftr72

Pc=0.75

FIT73

Pc=O'5

FTT74 FIT75

Pm=O'OO5

Number of qenerations required 268 133 200 100 100

Lowest solution cost ($m)

(after - generations)

1.81541

(227')

I

1.7503+

(18)

f,

1.7503+

oo\

1.7s03+

(34\

1.7sß+

(18)

I-owest cost GA desisn senerated ffable 5.4) zI 1 I 1 I

Lowest average generation cost ($m)

(after - generations)

1.848

Q20)

7.791

(120)

t.766

ll66')

1.875

(53)

1.787

(89)

Ultimate offline performance ($m) 1.875 1.801 1.787 1.831 1.817

Ultimate online performance ($m) 2.r22 2.171 2.O4r 2.361 2.1 80

Averase cost of all sEings selected ($m) 1.959 1.955 1.887 2.063 1.984

197



6 Improvements to the simple GAfor pipe netvvork optimisation

Table 6.2L Search results for genetic algorithm model runs FIT81.-FIT85

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.22 Search results for genetic algorithm model runs FIT91-FIT95

t GtoUut optimum solution (verified by complete enumeration in Chapter 5)

Binary tournament selection and best individual selected with probability, p¡=0.8

GA RTJNS

Unless specified otherwise GA parameters

N=100, pc=I.O aîd pm= 0.01

FIT81

N=50,

D.=0.J5

FIT82

Pc=O.75

FIT83

Pc=0'5

FIT84 FIT85

Pm=0.O05

Number of generations required 268 133 200 100 100

Lowest solution cost ($m)

(after - senerations)

1.7s03+

(ss)

1.7s03+

(93)

1.7s03+

(32)

1.7s03+

(31)

1.7s03+

(26)

Lowest cost GA desisn senerated (Table 5.4) I I I I 2

Lowest average generation cost ($m)

(after - generations)

1.182

(91\

1.827

t110)

t.170

û661

1.996

ø6\

l 871

t85)

Ultimate offline performance ($m) r.'t93 t.842 l.803 1.837 1.843

I-lltimate online performance ($m) 2.207 2.334 2.t52 2.566 2.356

Averase cost of all strinss selected ($m) 2.Orr 2.t3r r.994 2.289 2.t57

Ternary (s=3 competitors) tournament selection

GA RTJNS

Unless specified otherwise GA parameters

N=100, pc=l.O and p^= g.g1

FIT91

N=50,

D"=0.J5

FIT92

Pc=0.15

FIT93

Pc=0'5

FIT94 FIT95

Pm=O.OO5

Number of generations required 268 133 198 100 100

Lowest solution cost ($m)

lafter - eenerations)

1.8115

(10)

1.8115

(17't

1.8010

(l1)

1.7503+

(13)

1.7999

(13)

Lowest cost GA desien senerated (Table 5.4) 10 l0 8 1 6

Lowest average generation cost ($m)

(after - generations)

1.816

(84)

1.834

(53)

1.808

(38)

1.821

ø4\

1.813

(68)

Ultimate offline oerformance ($m) 1.823 1.840 r.822 1.782 1.837

Ultimate online performance ($m) 2.O89 2.t62 1.990 2.t49 2.095

Averase cost of all strinss selected ($m) 1.836 1.875 1.839 1.831 1.882

198



6 Improvements to the simple GAfor pipe netvvork optimisation

Best of generation costs and offline performance

Figures 6.ll-6.13 plot best of generation costs against the number of solution evaluations

performed (100 solution evaluations per generation) for the alternative selection operators and

fitness functions for GA runs FIT4, FIT14, . . . , FIT94. The plots of the best generation

costs for GA runs using proportionate selection and the inverse fitness function in Figure 6.1 I

are clearly superior to those of the GA runs using proportionate selection and the linear fitness

function in Figure 6.I2. The performance GA runs using tournament selection in Figure 6.13

cannot be faulted. The binary tournament selection is very effective. The GA run FIT94 is the

only time ternary tournament selection achieves the optimum solution, however it does so after

only 1,300 solution evaluations.

Figures 6.14-6.16 depict offline performance (running average of best generation costs) for the

alternative selection operators and fitness functions. The offline performances of GA runs

FIT4 (proportionate selection using inverse fitness function with fixed n=1) and FIT44

(proportionate selection using inverse fitness function with increasing n) are identical for the

first 2,500 evaluations since n=I for both GA runs up to this point. Thereafter, the effect of

increasing the value of the exponent n for GA run FIT44 is evident. The proportionate

selection method using the inverse fitness function consistently achieves superior ultimate

offline performance compared to the linear fitness function. The fixed value of n=2 with its

headstart in the first 2,500 evaluations always achieves a better offline performance compared

to the increasing n for the linear fitness function, however, on occasions the increasing n

achieves an equivalent ultimate offline performance for the inverse lttness function.

The GA runs using tournament selection achieve very low values of ultimate offline

performance (i.e., high performance). The populations are dominated by the best individuals

for most of the GA runs. The use of tournament selection with small populations and of

ternary tournament selection without adequate crossover and mutation rates can cause the

populations to be dominated by good solutions other than the optimum solution.

Average generation costs and online performance

Figures 6.17-6.19 plot average generation cost against the number of solution evaluations and

Figures 6.20-6.22 plot online performance for the GA runs using alternative selection

processes. The use of the proportionate selection with the inverse fitness function and scaled

fitness values achieves quite low average generation costs. The average generation costs

determined with tournament selection are lower than those determined with proportionate

selection. The lowest average generation costs achieved by tournament selection are in most

cases only a fraction more than the best cost solution obtained, indicating the populations have

been almost completely dominated by this solution. The plots of average generation costs and
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Figure 6.1I Best generation costs for GA runs FIT4 (n=l throughout), FITI4 (n:2 throughout) and
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Figure 6.14 Offline performance (running average of best cost solutions) for GA runs FIT4 (n:l throughout),

FlTl4 (n:2 throughout) and FIT44 (n is increasing as GA run proceeds) using the inverse fttness function
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FlT34 (n:2 throughout) and FIT54 (n is increasing as GA run proceeds) using the linear fitness function
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6 Improvements to the simple GAfor pipe network optimisation
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6 Improvements to the simple GAfor pipe netvvork optimisation

online performance (Figures 6.19 and 6.22) show rapid convergence in the first half of the GA

run and little further improvement for the second half of the GA runs.

Average cost of all strings selected for mating

Figures 6.23-6.25 compare average generation cost with the average cost of the strings selected

for mating in the new population, for each generation of the GA search for GA runs FIT4

(proportionate selection with fixed n=1 and inverse fitness function), FIT44 (proportionate

selection with variable n and inverse fitness function) and FIT64 (binary tournament selection).

The purpose of these comparisons is to observe the ability of the fitness functions to separate

the good solutions from average solutions in the population. Proportionate selection with

increasing values on the fitness scaling exponent n is better able to differentiate the good strings

from average strings in more competitive populations than the fixed value of the exponent n=l.

6.4.6 Recommendations for selection schemes

The empirical analysis of two commonly used selection schemes of proportionate selection and

tournament selection has shown proportionate selection to be very effective for an appropriate

fitness function (the inverse fitness function in Eq. 6.4 is recommended for the pipe network

optimisation application) and using power law fitness scaling. Binary tournament selection is

effective and very efficient for suitable combinations of the standard GA parameters (large

population sizes, and relatively high crossover and mutation rates are recom.mended) and there

is some value in allowing the weaker individual a small chance to win the tournament. Ternary

tournament selection can be used to determine reasonably good solutions very quickly. Early in

the GA model run, care must be taken to avoid premature convergence of the population due to

domination by a better than average (but not optimal) solution and late in the GA model run the

parent selection scheme should maintain appropriate levels of competition between high

numbers of highly fit solutions, so that the search is not left to drift aimlessly.

There is a possible explanation for the poor performance of the linear fitness function. Late in

the GA run when the populations have effectively converged, the coded strings in the

population look very similar and their associated fitness values are much closer. The linear

fitness function compares the cost of a string to the maximum cost string in the population as a

means of measuring fitness. Often, a very weak individual is formed in the new population by

some particularly disruptive crossover or mutation. Since the very weak string is distant from

the rest of the population in terms of cost, the distances between the fit individuals in the

population in comparison to this distance will be small. This would make it difficult for the

linear fitness function to differentiate between highly fit strings in the population. Overall,

binary tournament selection with a probability of selecting the better individual of 0.8 gives the

best results for this example.
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GA run FIT4 (n:l throughout using the inverse f,ttness function)

6

5

æ
Ø

o()
c)
öo
(É
tr
C)

4

3

.,

0 2000 4000 6000 8000 10000

Evaluations

Figure 6.24 Average generation costs and average cost of strings selected from the generation for mating for
GA run FIT44 (n is increasing as GA run proceeds using the inverse fibress function)

0 2000 4000 6000 8000 10000

Evaluations

Figure 6.25 Average generation costs and average cost of shings selected from the generation for mating for
GA run FIT64 (binary tournament withp,:I.0)

205

Ø

o(-)
o
ÒI)
(n
H(")

6

4

3

2

Average generation costs for GA run FIT4

-Average 

cost of strings selected from generation for mating

'Average generation costs for GA run FIT44

-Average 

cost of strings selected from generation for mating

.-- '.- Average generation costs for GA run FIT64

-Average 

cost of strings selected from generation for mating



6 Improvements to the simple GAfor pipe network optimisation

6.5 Coding Schemes

In the genetic algorithm search, the set of design parameters describing trial solutions are

represented by some coded structure such as a string or array of symbols. Davidson and

Goulter (1992a, I992b) used arrays of 1's and 0's to represent solutions to a pipe network

layout problem. In most cases, trial solutions are most efficiently represented by a unique

fixed-length string of symbols such as coded strings of 1's and 0's. The coded string simulates

the structure of a chromosome of genetic code in the artificial evolution of the GA search.

Coded strings are formed to represent solutions to the Gessler problem in Figure 6.26. The

coded strings are composed of eight decision-variable substrings of symbols representing the

eight decision-variables of the optimisation. The decision-variables are each allocated substring

positions in the coded string. For example, the first substring position is associated with the

existing pipe [1]. The symbol(s) at the substring positions in a coded string decode to the pipe

network design parameters by observing some specified mapping between the decision-variable

substring symbols and the design parameters such as new pipe sizes. In this way, the artificial

genetic code describes a pipe network design solution.

Traditionally, decision-variable substrings of binary codes are used to specify the mapping

between substring code and design parameters. In the empirical analysis that follows, three

alternative mappings between decision-variable substrings and design parameters are

considered. The alternative representation mappings considered include substrings of the

traditional binary codes, substrings of Gray codes (both based on the binary alphabet) and an

integer coding scheme. The alternative mappings between substring symbols and design

parameters are given in Table 6.23. The design parameters in Table 6.23 are the available

diameters for new pipes and the options for existing pipes (cleaning, duplication or 'do

nothing') for the Gessler network expansions.

As an illustration, the optimal network solutions I and 2 (Table 5.4) for the Gessler problem

determined by the exhaustive enumeration are shown as coded strings of substrings of binary

codes, substrings of Gray codes and substrings of integer numbers (octal code) in Figure 6.26.
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Optimum solution 1 (Table 5.4)

Solution I in binary codes
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Solution 1 in integer codes
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Figure 6.26 The formation of the coded string for the Gessler problem
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Pipe network design parameters Decision-variable substring encodings

If existing pipe

tll-t4l-tsl
If new pipe

t6l-t8l-t 1 1l-t131-t 141

Binary codes Gray codes Integer codes

do nothing new 6" Eripe 000 000 1

duplicate with 6" new 8" pipe 001 001 2

clean existins pipe new 10" pipe 010 011 a
-')

duplicate with 8" new 12" pipe 011 010 4

duplicate with 10" new 14" pipe 100 110 5

duplicate with 12" new 16" pipe 1 0 1 111 6

duplicate with 14" new 18" pipe 110 1 0 I 7

duplicate with 16" new 20" pipe 1 1 1 100 8

6 Improvenxents to the simple GAfor pipe netvvork optimisation

Table 6.23 Representation mappings

There are eight decision-variable choices for the existing pipes in the Gessler network (pipes

[1], [4] and [5]) including cleaning, duplication with new parallel pipes and the 'do nothing'

option. The order of the list of allowable decision-variable choices for existing pipes in

Table 6.23 was chosen as it best approximates increasing cost, performance and equivalent

diameter for the decisions as demonstrated in Tables 6.24 and 6.25 for existing pipes [1] and

[4] respectively. The performance is measured by a frictional head loss (ft/1000ft) assuming an

arbitrary constant flow in the pipe of 1000gpm (=2.2218cfs). The equivalent diameters (in) are

for an assumed Hazen-Williams roughness coefficient of the equivalent pipe of C=I2O.

6.5.1 Binary codes and Gray codes

In accordance with fundamental GA theory, it was decided to test coding schemes based on the

minimum {0-l} binary alphabet including binary codes and Gray codes. Small (low-

cardinality) alphabets such as the binary alphabet generate longer coded strings and hence

maximise the number of string similarities or schemata present in a population of coded strings

(Goldberg, 1990). The preservation of greater numbers of schemata or string similarities is

desirable so that there is a greater depth of genetic information available to be interpreted and

processed in the GA search (Holland, 1975; Goldberg, 1989).
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PrPE [1]

Existing properties 2F15840ft, C=75, D=I4in

Design parameters Unit cost

($/rO

Performance

(ft1000fÐ

Equivalent diameter

(in)

do nothing 0 3.3r Lt.709

duplicate with 6" 1 5 1 2.468 12.439

clean existing pipe 18.5 r.381 t4.o

duplicate with 8" 19.3 1.856 13. 188

duplicate with 10" 28.9 t.295 14.199

duplicate with 12" 40.5 0.864 15.43r

duplicate with 14" 52.1 0.565 16.838

duplicate with 16" 59.4 0.369 18.379

6 Improvements to the simple GAfor pipe network optimisation

Table 6.24 Ranked design parameters for the upgrade of existing pipe [1]

Table 6.25 Ranked design parameters for the upgrade of existing pipe [4]

The Gray code representation is such that adjacent decision-variable substrings are separated by

a Hamming distance of I (differ by one bit). For example, only one bit changes between

neighbouring substrings of 000 and 001 and 011. By comparison, adjacent substrings of

binary codes may differ by more than one bit. For example, the substring 100 which follows

011 in the list of binary-coded substrings (Table 6.23) differs at all three bit positions. This

extreme Hamming distance of 3 is referred to as a Hamming cliff.

PrPE [4]

Existing properties lFzlIz0ft, C=80, D=10in

Design parameters Unit cost

($/fÐ

Performance

(fi1000f0
Equivalent diameter

(in)

do nothing 0 15.137 8.571

duplicate with 6" 1 5 1 8.2r2 9.718

clean existing pipe 16.8 1.144 10.0

duplicate with 8" t9.3 4.922 t0.795

duplicate with 10" 28.9 2.174 12.t44

duplicate with 12" 40.5 1.550 13.685

duplicate with 14" 52.r 0.884 15.356

duplicate with 16" 59.4 0.522 17.tl4
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6 Improvements to the simple GA for pipe netvvork optimisation

Using substrings of Gray codes, similar code represents adjacent design variable choices, and

thus similar network designs are represented by strings of code with a close resemblance and

the coded string solutions are closer in the GA search space.

Hollstien (1971) concluded Gray codes may be superior to binary codes, since adjacent codes

differ by only one bit and bit-wise complement mutations cause less disruption to the solution.

Based on experimental results, Bethke (1981) found Gray codes improved the performance of
the GA and suggested the reason for this is that a Gray code maps Euclidean neighbourhoods

into Hamming neighbourhoods.

Caruana and Schaffer (1988) compared the performance of binary codes and a Gray code

representation and found the Gray code to be better than or equivalent to binary coding for six

functions tested including the five functions considered by DeJong (I915) to test the GAs

performance. Caruana and Schaffer concluded that by eliminating the Hamming Ctiff of binary

coding, the Gray codes might improve the performance of the GA.

The GA process is not concerned with the method of evaluation of the coded string. The GA is

blind to the mapping that occurs between a coded string and the set of design parameters the

string describes. Caruana and Schaffer suggested the GA may be misled by biases introduced

by the mapping such as a the Hamming cliff of binary codes.

The GA is concerned only with the production of new populations of superior strings by

subjecting the old population of strings to a series of GA operators. The GA achieves this by

interpreting the information in the special relationships between string similarities and the string

fitness. The GA may expect strings that appear to be constructed of similar genetic code to

possess a similar fitness (that is, strings that have similar 0-1 structures will describe similar

trial network designs).

6.5.2 Integer codes

Since the design parameters for the pipe network optimisation problems are often sets of
discrete decisions (such as new pipe sizes), an integer coding scheme is considered in which

integer numbers map directly to the design parameters (Table 6.23).

Goldberg (1990) outlined a number of reasons why a large (high-cardinality) alphabet and

shorter coded strings may be preferred in GAs. The combination of large alphabets and a

creeping mutation operator for hill-climbing overcomes the problem of Hamming Cliffs,

experienced in binary-coded GAs using bit-wise complement mutations. Gray codes are

considered in this study to overcome problems such as Hamming Cliffs, however Goldberg
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6 ImprovelrTents to the simple GAfor pipe network optimisation

(1990) suggests the use of Gray codes may introduce higher order non-linearities with respect

to recombination. Instead, he suggests the use of both bit-wise and decision-variable-wise

mutations in binary-coded GAs. Decision-variable-wise mutations are considered later in this

chapter (Section 6.7). High-cardinality alphabets may be prefened to low-cardinality alphabets

because they are known to converge faster (under certain operating conditions), however as the

alphabet cardinality increases, the quality of the solution obtained decreases.

The use of larger alphabets reduces the dimensionality of the solution space and may reduce the

size of the solution space. The number of allowable design parameters should be some power

of 2to be efficiently represented by substrings of binary codes. Fortunately, for the original

Gessler problem there are 8 discrete design options for the three existing pipes (including

cleaning, 6 pipe sizes for duplicate pipes and the 'do nothing' option). The 8 discrete options

are associated with 1 of the 8 unique 3-bit binary coded substrings as shown in'lable 6.23.

However, only 6 new pipe sizes were originally available for the five new pipes and the 18"

and20" pipe sizes were introduced to 'make up the numbers'. This action increased the size of

the solution space to be searched by the GA from about 4 million solutions to 16.8 million

solutions. There may be more effective ways to utilise the two redundant binary numbers.

Beasley et al. (1993b) mentioned some possible solutions to this problem of redundant codes.

A chromosome containing code which does not map to a valid gene value may be discarded as

illegal or assigned a low fitness. These solutions are not recommended as good gene values

elsewhere in the chromosome may be discarded. The preferred solution is to map the invalid

code to a valid gene value. Beasley et al. (1993b) suggested this could be achieved by fixed

remapping (map the redundant code to a specific valid gene value), random remapping (map the

redundant code to a random valid gene value) or by probabilistic remapping (every gene value

is remapped to one of two valid values in a probabilistic way).

The integer coding scheme does not need to introduce new pipe sizes for the redundant binary

codes, but instead could limit the integer numbers to the interval 1 to 6 in the string positions

corresponding to new pipes. To allow for a fair comparison between the integer coded GAs

and the binary-coded GAs in the following experimental analysis, the integer coded GAs were

applied to the extended solution space of 16.8 million solutions.

Davis and Coombs (1987) studied an application of GAs to the design of packet switching

communication networks. They used coded strings that were lists of link speeds. The link

speeds in the coded string corresponded to links in the backbone communication network, in

much the same way as the pipe sizes represented in our coded strings correspond to pipes in the

pipe network. The link speeds were chosen from a list of allowable link speeds for the design

such that each link speed in the coded string was coded as a single 'letter'. The motivation for
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6 Improvements to the simple GAfor pipe network optimisation

their chosen coding scheme was to admit the introduction of an advanced GA operator called

'creep' (discussed in Section 6.7). In the pipe network optimisation problem, the pipe sizes are

chosen from a discrete list of allowable pipe sizes and the integer coding scheme considered

here effectively represents the pipe sizes in the coded string as a single 'letter'. Davis and

Coombs believed the use of the high-cardinality alphabet was not detrimental to the GA search

in this particular solution space, in which the best link speeds were restricted to one or two

regions of the link size list. If the best link speeds were found in periodic regions of the list of

link sizes, the use of smaller alphabets and longer coded strings would have been appropriate.

In fact, GAs that use high-cardinality codings and floating-point codings (real-coded GAs) have

enjoyed success in a number of practical applications. Goldberg (1990) reviews the history of

real-coded GAs before presenting a theory for real-coded GAs consistent with the fundamental

GA Schema Theory of Holland (1975). Goldberg accounts for the convergence of GAs with

high-cardinality alphabets by introducing the theory of 'virtual characters' and 'virtual

alphabets'. The power of the selection operator is shown to reduce high-cardinality alphabets

to low-cardinality virtual alphabets quite early in the GA search, and the GA continues the

search over the smaller alphabet. The theory explains the empirical success of real-coded GAs,

however it demonstrates that real-coded GAs may be 'blocked' from accessing the global

optimum solution (become stuck on local optima) for some problems. To overcome the

limitations of real-coded GAs in such cases, it may be necessary to introduce new genetic

mechanisms or some other modifications to the real-coded GA.

6.5.3 The optimum arrangement of decision-variable
substring positions within the coded string

The pipes in the system are associated with decision-variable substring positions in the coded

string structure. Some consideration should be given to the arrangement of the decision-

variable substrings within the string. The GA theory suggests the decision-variable substrings

which are likely to develop close relationships in a solution should be positioned nearby in the

string to assist the GA in identifying building bloclcs or short, low-order schemata.

The arrangement of decision-variable substrings in the coded string built for the Gessler pipe

network optimisation problem was chosen as shown in Figure 6.26. The pipes in the two main

supply lines (i.e. pipes [1] and [5] and pipes [4] and [6]) a¡e all situated at the beginning of the

string. The substring positions represent pipes further downstream from the sources as the

coded string structure is traversed.

These decisions for the upstream pipes are most influential in terms of the economics and

hydraulic feasibility of the proposed pipe network design. By closely grouping these decision-
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6 Improvements to the simple GA for pipe network optimisation

variable substrings we hope to create one short, powerful building block for the GA search.

An alternative substring arrangement is tested in the following GA runs that arranges the

decision-variable substrings in the coded string structure according to Figure 6.27. In this

way, the influential decisions regarding the main supply line (pipes [1] and [5]) are located at

the beginning of the string and the influential decisions regarding the alternative main supply

line (pipes [4] and [6]) are located at the opposite end of the string. The less influential

downstream pipes make-up the intermediate segment of the coded string structure. This

arrangement of decision-variable substring positions maximises the opportunities to trial,

through crossover, different combinations of these alternative main supply lines.

tll tsl t13l t14l tl1l t8l 16l l4l Pipe in Gessler network

Decision-variable substring

Figure 6.27 An alternative arrangement of the decision substrings in the string

6.5.4 Genetic algorithm runs to compare coding schemes

A series of GA model runs designated CODE1-CODE35 are carried out to compare the

performance of the various coding schemes (Table 6.2). The GA runs CODEI-CODE5 a¡e the

traditional GA runs using coded strings formed with substrings of 3-bit binary codes mapped to

the design parameters (according to Table 6.23). The GA runs CODEl1-CODE15 use a string

made up of substrings of Gray codes. The set of GA runs CODEZI-CODEZ5 use a string of

integer numbers to represent network solutions. Finally, GA runs CODE31-CODE35 use

substrings of binary codes, but the decision-variable substring positions in the string have been

shuffled (as shown in Figure 6.27). The results of the GA model runs (including lowest cost

solutions and lowest average generation costs achieved, ultimate offline and online

performance) are presented in Tables 6.26-6.29.

Lowest cost solutions

The binary codes (GA runs CODE1-CODE5) find the optimal network solution most often.

The Gray codes (GA runs CODE1 I-CODE15) and binary codes with the shuffled substring

positions (GA runs CODE31-CODE35) are both capable of finding good low cost solutions.

The integer codes fail to determine the optimum solution in any of the f,rve GA runs CODE2l-

CODE25 (Table 6.28).

lrl
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Substrings of binary codes. GA runs CODEl-CODE5 equivalent to GA runs PENI l-PEN15

GA RTTNS

Unless specified otherwise GA parameters

N=100, pc=l.O and pm= O.0l

CODEl

N=50,

P"=0.75

CODE2

Pc=0.15

CODE3

Pc=0'5

CODE4 CODE5

Pm=0.005

Number of generations required 266 133 197 100 100

Lowest solution cost ($m)

lafter - senerations)

I

1.1503+

t59)

T
1.7503+

t96)

1.7s03+

(s9)

L1725

(93)

1.8807

(82)

Lowest cost GA desisn senerated Oable 5.4) 2 2 I J

Lowest average generation cost ($m)

(after - generations)

2.045

(2r2)

2.139

(ú3)

2.038

/116\

2.2'71

02\

2.274

t86)

Ultimate offline oerformance l$m) 1.963 1.896 1.9t6 1.935 2.026

Ultimate online oerformance l$m) 2.560 2.557 2.475 2.766 2.694

6 Improvements to the simple GAfor pipe network optimisation

Table 6.26 Search results for genetic algorithm model runs CODEI-CODES

* Globul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.27 Search results for genetic algorithm model runs CODE11-CODE1S

t Globat optimum solution (verified by complete enumeration in Chapter 5)

Concatenated decision-variable substrings of Gray codes

GA RuNs

Unless specified otherwise GA parameters

N=100, D"=I.O and p-= 0.01

CODE11

N=50,

P"=O'75

CODE12

Pc=0'75

CODE13

Pc=O'5

CODE14 CODE15

Pm=O'OO5

Number of senerations reouired 266 133 197 100 100

Lowest solution cost ($m)

(after - senerations)

t.7999

Qr9\

1.81 15

(4s)

r.75ß+

(95)

1.7503+

0s\

1.8390

(95)

I-owest cost GA desisn senerated lTable 5.4) 6 t0 1 2 28

Lowest average generation cost ($m)

(after - qenerations)

2.025

(253\

2.r40

(109)

t.937

(189)

2.323

(51)

2.080

(98)

Ultimate offline oerformance l$m) 1.974 1.919 1.842 t.926 1.966

Ultimate online oerformance ($m) 2.413 2.495 z.3lt 2.733 2.489
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Coded strings of integers

GA RUNS

Unless specified otherwise GA parameters

N=100, pc=|.0 and p^= g.g1

CODE21

N=50,

D"=0.J5

CODEZ2

Pc=O'J5

CODE23

Pc=O'5

CODEZ4 CODE25

Pm=O'005

Number of generations required 267 134 197 100 100

Lowest solution cost ($m)

(after - senerations)

I

1.8510 |

r184)

1.8337

t55)

1.7910

t130)

1.9119

t89)

r.8612

(14)

Lowest cost GA desisn senerated Oable 5.4) 23 5

Lowest average generation cost ($m)

(after - generations)

2.105

n7t\

2.026

(l13)

1.863

(195)

2.078

(100)

r.955

(96)

Ultimate offline performance ($m) 2.099 1.930 1.863 2.097 t.951

Ultimate online performance ($m) 2.379 2.357 2.t71 2.641 2.342

6 Improvements to the simple GAfor pipe network optimisation

Table 6.28 Search results for genetic algorithm model runs CODE,ZI-CODEZí

I Infeasible design. The solution cost includes the penalty cost. GA run CODE2l determined a best cost

feasible design for $1.9536 million after 86 generations.

Table 6.29 Search results for genetic algorithm model runs CODE31-CODE35

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Substrines of binarv codes with an alternative arrangement of decision-variable substrings within the string.

GA RuNS

Unless specified otherwise GA parameters

N=100, pc=l.O aîd pm= O.Ol

CODE3l

N=50,

P"=0.75

CODE32

Pc=O.75

CODE33

Pc=O'5

CODE34 CODE35

Pm=0.005

Number of qenerations required 266 133 r97 100 100

Lowest solution cost ($m)

lafter - senerations)

r.7'125

Q55\

1.8300

(60)

a
1.7503+

(7r)

a
1.7503+

(M\

1.8285

t9l)

Lowest cost GA desisn senerated Oable 5.4) 5 22 2 1 20

Lowest average generation cost ($m)

(after - qenerations)

2.044

066\

2.394

(100)

1.946

(143)

2.374

ø9\

2.289

t98)

Ultimate offline performance ($m) 2.1t9 2.044 1.811 1.855 2.010

Ultimate online performance ($m) 2.7t5 2.799 2.354 2.774 2.156
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6 Improvements to the simple GAfor pipe network optimisation

Best generation costs and offline performance

The comparison of the plots of best of generation costs and offline performance (running

average of best of generation costs) shown in Figures 6.28-6.29 demonstrate the inferior
performance of integer codes (at least for this set of GA parameters). The binary codes with the

alternative arrangement of substring positions is clearly the most effective in this case. The

binary codes in GA run CODE4 and Gray codes in GA run CODE14 converge at the same

slower rate, but are eventually successful in determining the best regions of the solution space.

The Gray codes are shown to achieve good ultimate offline performance a little more

consistently than binary codes across the set of five GA runs.

Average generation costs and online performance

There is little to separate the behaviour of the four alternative coding schemes in terms of the

plots of average generation costs and online performance in Figures 6.30-6.31. The plot of
average generation costs for the GA run CODE24 using the integer coding scheme is less

variable compared to the plots of average generation costs for the coding schemes using the

binary alphabet. This is likely due to the limited power of exploration of crossover applied to

the relatively short strings of integer numbers.

In terms of ultimate online performance (average of all solution costs) and lowest average

generation costs achieved, the Gray codes are the most effective of the coding schemes using

the minimum binary alphabet and the binary codes adopting the original coded string structure

are generally more effective than the binary codes adopting the alternative arrangement of

decision-variable substring positions in Figure 6.27.

Further discussion

There is not enough evidence to suggest which of the alternative coding schemes using the low-

cardinality binary alphabet is superior. Each of the binary coding schemes were capable of

identifying low cost solutions. In terms of offline performance and online performance and

lowest average generation costs achieved, the Gray codes hold a slender advantage and are

certainly worthy of further consideration. There appears to be little advantage in one or the

other arrangements of decision-variable substrings in the coded string solutions to the relatively

small Gessler pipe network optimisation problem. The performance of the GA runs using

strings of integer numbers is clearly inferior to the coding schemes based on the binary

alphabet. The higher cardinality alphabet may be better suited to larger problems requiring

longer coded strings and the use of a creeping mutation operator is recommended (Section 6.7).
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6 Improvements to the simple GA for pipe network optimisation
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6 Improvements to the simple GAfor pipe network optimisation

6.5.5 Counting the numbers of decision-variable substrings

The number of copies of decision-variable substrings in a given substring position for each

generation can be counted as the population evolves. The analysis shows which pieces of code

dominate the population of coded strings as it advances and shows the shifting position of the

population in the solution space. Every fifth population of 100 coded strings is considered in

turn, through the 100 generations of GA runs CODE4 (traditional GA using binary codes) and

CODE14 (substrings of Gray codes). The number of copies of the eight classes of unique 3-bit

substring codes (000,001,. , 111) at each substring position are recorded. The varying

numbers of copies of substring code at each substring position are summarised for GA runs

CODE4 and CODE14 in Figures 6.32-6.47. The trends may indicate how the chosen coding

scheme influences the evolution of the string population. The decision-variable substrings are

considered to be significant building blocks (Goldberg, 1989) in the GA search. The charts can

be used to observe the existence of other shorter or longer building blocks and building blocks

of different order.

The optimal combination of substring codes are known for the Gessler problem. The substring

codes that constitute the optimal network solutions are shaded in Figures 6.32-6.41. The GA

model run CODE4 (substrings of binary codes) determined a near-optimal solution for

$IJ725m (Solution 3 in Table 5.4) after 93 generations. The string of binary code

representing Solution 3 is shown below. The GA run CODE14 (substrings of Gray codes)

determined one of the global optimal solutions for $1.7503m (SolutionZ in Figure 6.26) after

75 generutions. The string of Gray codes representing Solution 2 is shown.

Substring position:

Corresponding pipe in Gessler network:

Solution 3 using binary codes (GA run CODE4):

Solution 2 using Gray codes (GA run CODEl4):

1

t1l
000

000

2

l4l
110

101

J

tsl
000

000

4

t6l
011

010

5

t8l
001

001

678
l11l t13l t14l

001 001 010

011 000 001

Since each bit in the starting population of coded strings is randomly generated, the number of

substring codes are randomly (and approximately evenly) distributed among the eight possible

substring codes in any substring position in generation 1. As the population develops, the

distribution of substring codes in a substring position usually congregate about the substring

codes associated with high fitness, and in time one highly fit substring code may dominate the

population at the substring position.

The first decision-variable substring position in the coded string is associated with the existing

pipe [1] in the Gessler network. Figure 6.32 counts the number of copies of the 3-bit

substrings of binary codes at the first substring position for GA run CODE4 and Figure 6.33
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6 Improvements to the simple GAfor pipe network optimisation

l0
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Substrings of binary codes for existing pipe [1]

Figure 6.32 The variations with time of numbers of decision-variable substrings of binary codes at the first
substring position (corresponding to existing pipe [1] ) for GA run CODB1 (optimum substring is OOO)
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Figure 6.33 The variations with time of numbers of decision-variable substrings of Gray codes at the first
substring position (corresponding to existing pipe [] ) for GA run CODEl4 (optimum substring is OOO)
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6 Improvements to the simple GA for pipe network optimisation

l0
20

Generations

90

169000 OOI OIO Oll IOO lOl llO lll

Substrings ofbinary codes for existing pipe [4]

Figure 6.34 The variations with time of numbers of decision-variable súbstrings of binary codes at the second

substring position (corresponding to existing pipe [4] ) for GA run CODB1 (optimum substring is llO)

1¡9OOO OOI Oll OIO llO lll lol IOO

Substrings of Gray codes for existing pipe [4]

Figure 6.35 The variations with time of numbers of decision-variable substrings of Gray codes at the second

substring position (corresponding to existing pipe t4l ) for GA run CODEI4 (optimum substring is lOl)
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6 Improvements to the simple GAfor pipe network optimisation
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Figure 6.36 The variations with time of numbers of decision-variable substrings of binary codes at the third
substring position (corresponding to existing pipe [5] ) for GA run CODBÍ (optimum substring is OOO)
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Figure 6.37 The variations with time of numbers of decision-variable substrings of Gray codes at the third
substring position (corresponding to existing pipe [5] ) for GA run CODEl4 (optimum substring is OOO)
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Substrings ofbinary codes for new pipe [6]

Figure 6.38 The variations with time of numbers of decision-variable substrings of binary codes at the fourth
substring position (corresponding to new pipe [6] ) for GA run CODBI (optimum substring is Oll)
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Figure 6.39 The variations with time of numbers of decision-variable substrings of Gray codes at the fourth
substring position (corresponding to new pipe [6] ) for GA run CODEI4 (optimum substring is OIO)
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l0
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Substrings ofbinary codes for new pipe [8]

Figure 6.40 The variations with time of numbers of decision-variable substrings of binary codes at the fifth
substring position (corresponding to new pipe [8] ) for GA run CODBÍ (optimum substring is OOI)
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Figure 6.41 The variations with time of numbers of decision-variable substrings of Gray codes at the fifth
substring position (corresponding to new pipe [8] ) for GA run CODEI4 (optimum substring is OOI)
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6 Improvements to the simple GA for pipe network optimisation
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Figure 6.42 T\e variations with time of numbers of decision-variable substrings of binary codes at the sixth
substring position (corresponding to new pipe [11] ) for GA run CODB1 (optimum substring is OOI or OIO)
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Figure 6.43 The variations with time of numbers of decision-variable substrings of Gray codes at the sixth
substring position (corresponding to new pipe [ 1] ) for GA run CODE14 (optimum substring is OOI or Oll)
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Figure 6.44 The variations with time of numbers of decision-variable substrings of binary codes at the seventh
substring position (corresponding to new pipe [3] ) for GA run CODE4 (optimum substring is OOO)
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Figure 6.45 The variations with time of numbers of decision-variable substrings of Gray codes at the seventh
substring position (corresponding to new pipe [3] ) for GA run CODEI4 (optimum substring is OOO)
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Figure 6.46 ^lhe variations with time of numbers of decision-variable substrings of binary codes at the last

substring position (corresponding to new pipe [14] ) for GA run CODE4 (optimum substring is OIO or OO¡)
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Figure 6.47 The variations with time of numbers of decision-variable substrings of Gray codes at the last

substring position (corresponding to new pipe [4] ) for GA run CODEl4 (optimum substring is Oll or OOI)
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6 Improvements to the simple GAfor pipe network optimisation

counts the number of copies of the eight possible substrings of Gray codes at the first substring

position for GA run CODEl4. In Figure 6.32, the substrings of binary code in the first
substring position are eventually dominated by the substring 000 which represents the optimal

substring code ('do nothing' for existing pipe [1]) for this substring position. Similarly in
Figure 6.33, the substrings of Gray code in the first substring position are eventually

dominated by the optimal substring 000, however, in both cases the substring code

representing the cleaning option (010 for the binary codes and 011 for Gray codes) is

prominent for some time.

The Gray codes were in greater danger of overlooking the optimal substring code 000 in the

first substring position, as the Gray substring code 011 associated with cleaning pipe [1] is a

greater Hamming distance from the optimal substring code 000 than the binary substring code

010. The Gray codes are disadvantaged in this situation. A new bias may have been

introduced into the coding scheme when the cleaning alternative for pipe [1] was ranked after

duplication with a 6" pipe in the list of decision variable choices in Table 6.24. ForÍtnately, the

genetic algorithm is robust enough to overcome such biases that are inadvertently introduced

into the GA formulation.

In the second substring position (Figures 6.34 and 6.35), the number of optimal substrings

associated with duplicating the existing pipe [4] with a 14" diameter pipe (110 for binary codes

and 101 for Gray codes) gather numbers late in the GA run, however, the substring codes

associated with duplicating pipe [4] with a t2" pipe (101 for binary codes and 111 for Gray

codes) are prominent for a time. The prominence of the substring codes representing the

duplication of pipe [4] with a 12" pipe in the second substring position lasted for about as long

as the prominence of the substring codes representing cleaning pipe [1] in the first substring

position. Early in both GA runs CODE4 and CODEl4, quite good solutions that cleaned

existing pipe [ 1] and duplicated pipe [4] with a 12" diarrteter pipe (such as solutions 27 ,28,32
and 33 in Table 5.4) arc prominent. However, eventually both GA populations were able to

shift to the best regions of the solution space.

In the Gessler network, pipes [1] and [4] represent the alternative main supply lines, and the

choice of pipe size for pipe [4] is considerably dependent on the choice of pipe size for pipe [1].

In the pipe network optimisation problem, it is evident that the f,rtness of a particular decision

variable choice is dependent on the other decision variable choices in the same solution and

some relationships between decision variable choices are stronger than others.

Both GA runs of binary code and Gray code are inconclusive in their search for the optimal

substring code for the third substring position (associated with the existing pipe [5]) as shown

in Figures 6.36 and 6.37. In the Gessler problem, the best decision variable choice for pipe [5]
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6 Improvements to the simple GAfor pipe network optimisation

is likely to be highly dependent on the preferred choices for the main lines [1] and [4]. In
addition, the position and shorter length of pipe [5] compared to pipes [1] and [4] would

suggest the choice for pipe [5] in the solution is less significant than the choices for pipes [1]

and [4]. Therefore, confusion in the third substring position (pipe [5]) may be related to

uncertainties in the first and second substring positions (pipes [1] and [4] respectively). This

raises concerns about some pieces of code carrying more weight than other pieces of code. A
possible solution to this problem is to split long lengths of pipe into smaller segments.

The fourth substring position provides the best chance to see any evidence of the Hamming

Cliff obstructing populations of strings formed with binary codes, since the optimal substring

code in the fourth substring position 011 is on one side of the 011-100 step. In Figure 6.38,

there are good numbers of the optimal substring code 011 and virtually no occurrences of the

100 substring code. Fortunately in this case, the population has assumed the right side of the

Hamming Cliff. The Gray substring codes for the fourth substring position in Figure 6.39

collect about the optimal substring code 010. Gray codes eliminate the potentialhazard of the

Hamming Cliff of binary coding.

The exhaustive enumeration of the Gessler problem in Section 5.2.2 ídentified two optimum

network solutions. The solutions differ in that Solution 1 assigns pipe [11] an 8" diameter pipe

and pipe Í141 a 10" diameter pipe, while the alternative Solution 2 assigns pipe [11] a 10" pipe

and pipe [14] an 8" pipe. The strings of Gray code in Figure 6.43 carry healthy numbers of

both optimal substring codes 001 and 011 at the sixth substring position (corresponding to new

pipe [11]). In contrast, the strings of binary code in Figure 6.42 carry high numbers of the

optimal substring code 001 and low numbers of the optimal substring code 010 at the sixth

substring position. A similar condition is exhibited for the last substring position

(corresponding to new pipe [1a]) in Figures 6.46 and 6.47 .

6.5.6 An ideal coded structure

If a coded string structure is used to represent solutions, the best anangement of the decision

variable substrings within the string is a significant issue for the use of the traditional GA for

pipe network optimisation. The pipes nearby in the pipe system which are likely to have an

influence on each other in the economics and hydraulics of the pipe network system design

should be allocated substring positions nearby on the string.

The original substring arrangement shown in Figure 6.26 was found to be superior to the

alternative substring Íurangement considered in Figure 6.27 for the GA runs performed on the

Gessler network. The more influential pipes were allocated adjacent substring positions at the

start of the string providing the opportunity for the development of short, highly fit string
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6 Improvements to the simple GAfor pipe network optimisation

similarities at these string positions. The string similarities would be less disrupted by the

effects of crossover and would be propagated by reproduction to quickly establish themselves

in the population. It would be more difficult to determine the best substring arrangement for a

larger and more complicated system. Perhaps advanced GA operators such as inversion

operators or Goldberg's messy genetic algorithms hold the key to this ordering problem.

Ideally, a coded structure in the form of an array of symbols which more closely represents the

layout of the pipe network itself would best utilise the interactions and relationships between

decision variable choices in the solution. The development of a coded array structure for the

Gessler network is shown in Figures 6.48 and 6.49.

Í41

t1l r1r 
E

tsl

r5r 
E

t8l
t11l

t13l t14l

t13l t14l

Gessler network expansions problem Construction of the ideal coded structure

Figure 6.48 An ideal coded structure representation of the Gessler problem
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6 Improvements to the simple GAfor pipe netvvork optimisation

The coded array in Figure 6.49 represents one of the optimum solutions for the Gessler

problem with substrings of binary codes. The GA operators of selection and mutation could be

performed in the usual way. To implement crossover, one or more crossover cuts in the array

could be selected randomly across the expected direction of flow in the pipe network system as

shown in Figure 6.50.

Figure 6.50 Possible crossover cuts for the ideal coded structure

No testing has been carried out on the proposed coded arny. It is thought that its potential

would not be as apparent for the relatively simple Gessler problem. It is potentially the best

form of coded solution for large, complex water distribution systems. The coded array should

promote the relationships between symbols related in the solution and could be most effective

for large, highly interconnected systems with many loops and with a number of decision

variable substrings associated with pipes and other system components. The symbols

representing other system components (such as tank sizes at prospective tank locations) could

be positioned in the ¿uray according to their location in the network.
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6 Improvements to the simple GAfor pipe network optimisation

6.6 Crossover Mechanisms

Crossover is the genetic algorithm mechanism of recombination which operates on two parent

coded strings to create two new offspring coded strings for the new generation by exchanging

segments from the parent coded strings. The crossover points are randomly selected positions

in the fixed-length string that mark the segments to be exchanged. There may be one or more

crossover points.

Simple one-point crossover is used in the traditional GA model developed in Chapter 5 for pipe

network optimisation. The action of one-point crossover is demonstrated in Figure 6.51 for
two 24-bit coded string solutions.

/

Crossover point

0-110-101-010-001 First parent string
Second parent string

First offspring string
Second offspring string

I 10-1 1 1-101-1

Figure 6.51 Simple one-point crossover

Two-point crossover has much theoretical and experimental support among GA researchers

(Holland, I975; DeJong, I975). Two crossover points are randomly selected on the string and

the two points mark the beginning and the end of a segment to be exchanged by the parent

strings. In two-point crossover, the coded string is treated as a circular string (no beginning or

end). The action of two-point crossover is demonstrated in Figure 6.52.

Crossover

/
001-000-110- First parent string

Second parent string

First offspring string
Second offspring string

110-111 00-010-100

Figure 6.52 Two-point crossover

1 10-1 1 1-101-1 10-1 10-101-010-001

1 10-1 1 1-001-000-1 10-100-010-100
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6 Improvements to the simple GAfor pipe network optimisation

More crossover points may be selected to the point where uniform crossover occurs. In
uniform crossover, bits of code are randomly exchanged. The parent strings exchange bits in

corresponding bit positions randomly (or with some probability) to construct two offspring

strings. Uniform crossover produces U2 crossover points on average for strings of length L
(Syswerda, 1989). The action of uniform crossover is demonstrated in Figure 6.53.

:0O0 "îf:1'¡":1"0,1¡,:,1 OI':rli¡d t. l :û 1 Ð 1O- íCI-CI

1 1 1- 1 10-001-010-1 1 1-000-010-001

First parent string
Second parent string

First offspring string
Second offspring string

Figure 6.53 Uniform crossover (multiple random crossover points)

Syswerda (1989) compared one-point, two-point and uniform crossover theoretically and

empirically and found in most cases, uniform crossover to be superior to two-point crossover

and in turn, two-point crossover to be superior to one-point crossover. Syswerda introduced

the notion of crossover masks to replace the traditional idea of crossover points to compare the

crossover mechanisms. Uniform crossover was found to be more effective at combining

schemata and exhibited superior performance applied to a diverse set of function optimisation

problems.

DeJong and Spears (1990) presented an analysis of the more general picture of the interacting

roles of crossover and population size. Their theoretical and experimental analyses suggest the

less disruptive crossover operators such as two-point crossover are likely to perform better with

larger population sizes. However, they found more disruptive crossover operators such as

uniform crossover and multi-point crossover (with crossover points > 2) are likely to perform

better with smaller population sizes and explain this by the increased exploration in the limited

information base of small populations. The more disruptive crossover operators are less likely

to produce offspring which are identical to their parents in small, homogeneous populations.

A GA search combines powers of exploitation of past results in selection and exploration of

new areas of the search space by crossover and mutation. Eshelman et al. (1989) classify

various crossover mechanisms by their powers of exploration. The amount of exploration

provided by crossover depends on the crossover rate, and also on the amount of exploitation

performed by selection. As exploitation is increased, the exploratory power of crossover is

decreased, since there are fewer differences in the population which crossover can explore by

recombination. The chosen coded representation of the solution has a significant affect on the

exploratory powers of crossover. As an example, for traditional one-point crossover, bits

which are related in the solution and far apart on the string are more likely to be separated. If
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6 Improvements to the simple GAfor pipe network optimisation

there are known relationships between bits in a coded string solution and one-point or two-

point crossover is to be used, these bits should be located close to one another in the string.

The experimental results of Eshelman et al. (1989) showed the traditional one-point crossover

operator to be the least effective crossover mechanism.

Other types of crossover mechanisms have been proposed for the exchange of information

between parent strings to create offspring strings. Schaffer and Morishima (1987) propose a

GA model incorporating an adaptive crossover mechanism they called a 'genetic algorithm with

punctuated crossover' (GAPC). The GAPC model doubles the length of the original coded

string solution by attaching a second coded string to the end of the first string. The second

coded string represents the crossover punctuation (the 1's in the second coded string of binary

bits represent the crossover points). 'When the starting population is generated, the bits of the

first part of the coded string representing the solution are randomly generated, but the l's in the

second part of the string are generated with some specified probability. The strings are

interpreted as the first coded string separated by punctuation marks at the crossover points. The

punctuation marks are inherited by the offspring strings and the punctuation marks are lost if a
solution is not selected for the new generation by the selection operator. The mutation operator

may mutate bits on the first part of the string (the solution) or the second part of the string (the

crossover points).

Schaffer and Morishima (1987) present empirical evidence to suggest their model performs as

well or better than the traditional genetic algorithm model. As the populations of coded string

solutions evolve, the punctuation part of the coded string representing the distribution of

crossover points is expected to represent the best points to perform crossover.

Other crossover mechanisms such as cycle crossover, partially-matched crossover and order

crossover reviewed in Goldberg (1989) combine properties of crossover and reordering

operators such as inversion in one step.

This following analysis investigates the performance of simple one-point crossover, multi-point

crossover and uniform crossover for the pipe network optimisation application. In addition,

crossover operators which choose crossover points at any bit position of the string or only at

the boundaries of the decision-variable substrings are considered. Figure 6.54 demonstrates

the action of two-point crossover occurring at crossover points at the substring boundaries.
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6 Improvements to the simple GAfor pipe network optimisation

Crossover points
/\

,t\
i00.1 - 1 1 0-00 1 -000- 1 1 0-.101.-CI,f0=O0'1

1 10-I,1 1-TOIì!,1 tr.1:f l,i[,+000-010- 100

i001,.;1itr I ¡_l:0{;-'[li[.i, { ïril:È'l$[¡O,tr 0*gg1

1 10- 1 10-001-000-1 10-000-010- 100

First parent string

Second parent string

First offspring string
Second offspring string

Figure 6.54 Two-point crossover (crossover points at substring boundaries)

6.6.L GA model runs to compare crossover mechanisms

A series of GA model runs CROSS 1-CROSS65 were conducted to measure the performance of
the various crossover mechanisms for the application of the GA model to the Gessler pipe

network optimisation problem (refer to Table 6.2). The GA runs CROSSl-CROSS5 used the

traditional GA crossover mechanism of one-point crossover. The GA runs CROSSl-CROSS5

are identical to GA runs PENl1-PEN15, GA runs FIT1-FIT5 and GA runs CODEI-CODE5

presented earlier in this chapter. The GA runs CROSSll-CROSS15 use the two-point

crossover operator. The GA runs CROSS21-CROSS25 use the four-point crossover operator

and GA runs CROSS31-CROSS35 use the uniform crossover operator.

fhe bA model runs CROSS41-CROSS45, CROSSS1-CROSS55 and CROSS61-CROSS65

use the one-point crossover, two-point crossover and uniform crossover mechanisms

respectively, but the crossover points are chosen randomly at the decision-variable substring

boundaries. The results of the GA model runs are summarised in Tables 6.30-6.36.

Lowest cost solutions

The traditional one-point crossover operator (GA runs CROSSl-CROSS5) is the most

successful, finding the global optimum in three GA runs (Table 6.30). None of the other

crossover mechanisms find the global optimum three times. The two-point crossover operator

crossing at random bit positions and both uniform crossover mechanisms obtain the optimum

solution twice in five attempts. The least effective crossover mechanism is two-point crossover

at substring boundaries (GA runs CROSS51-CROSS55) which fails to find the global optimum

solution in five attempts. The high crossover rate, pr=t.Q with population size, N=100 is the

most successful parameter combination when used with mutation rate, p^=Q.O1 (fourth GA

parameter set in Table 6.1), and yet this is the least successful combination of crossover rate

and population size when used with low mutation rate, pn=O.OOS (fifth GA parameter set).
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One-point crossover. GA runs CROSSl-CROSS5 equivalent to GA runs PEN11-PENI5.

GA RI]NS

Unless specified otherwise GA parameters

N=100, pc=l.O andp-= g.g1

CROSSI

N=50,

P"=0.75

CROSS2

Pc=0.75

CROSS3

Pc=0'5

CROSS4 CROSS5

Pm=0'005

Number of generations required 266 133 t97 100 100

Lowest solution cost ($m)

lafter - senerations)

1.7503+

(s9)

1.7503+

(96)

1.7503+

(s9)

1.1125

(93)

1.8807

(82)

Lowest cost GA desisn senerated (Table 5.4) 2 2 I 3

Lowest average generation cost ($m)

lafter - senerations)

2.045

(2t2\

2.t39

(73\

2.038

n76\

2.271

(92\

2.214

t86)

Ultimate offline nerformance ($m) t.963 1.896 1.916 1.935 2.026

Ultimate online performance ($m) 2.560 2.557 2.4',75 2.766 2.694

6 Improvements to the simple GAfor pipe network optimisation

Table 6.30 Search results for genetic algorithm model runs CROSSI-CROSSS

t Globul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.3L Search results for GA model runs CROSS11-CROSSL5

t CtoUul optimum solution (verified by complete enumeration in Chapter 5)

T Infeasible design. The solution cost includes the penalty cost. The design is given in Table 5.29. GA run

CROSSl2 determined a best cost feasible design for $1.8385m (Solution 27 in Table 5.4) after 69 generations.

Two-point crossover

GA RuNs

Unless specified otherwise GA parameters

N=100, pa=LO aîd pm=O.Ol

CROSSl 1

N=50,

P.4.75

CROSSl2

Pr=O'75

CROSSl3

Pc=O'5

CROSSl4 CROSSl5

Pm=O'OO5

Number of generations required 265 133 194 100 100

Lowest solution cost ($m)

hfter - senerations)

I

1.7503+

(152\

1.81s47

(106)

1.7725

(133)

a
1.7503+

(84)

1.9288

(70)

Lowest cost GA desisn senerated ffable 5.4) 2 2I 3 1

L,owest average generation cost ($m)

(after - generations)

2.124

(99)

2.218

fl19)

2.050

(168)

2.357

162\

2.480

(54)

Ultimate offline oerformance l$m) 1.998 1.958 1.909 1.988 2.156

Ultimate online oerformance ($m) 2.58t 2.735 2.564 2.91r 2.875

236



6 Improvements to the simple GAfor pipe network optimisation

Table 6.32 Search results for GA model runs CROSS2L-CROSS25

f Gtobul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.33 Search results for GA model runs CROSS3I-CROSS3S

t Global optimum solution (verified by complete enumeration in Chapter 5)

Four-point crossover

GA RUNS

Unless specified otherwise GA parameters

N=100, pc=l.O and pm= 0.Ol

CROSS2I

N=50,

P"=0.'15

CROSS22

Pc=}'75

CROSS23

Pc=0'5

CROSS24 CROSS25

Pm=0.005

Number of qenerations required 267 133 196 100 100

Lowest solution cost ($m)

(after - senerations)

l.8l 15

(r13)

1.7503+

(s2\

1.8300

0s4)

1.7125

(93)

1.8871

(66)

Lowest cost GA desisn senerated (Table 5.4) l0 1 22 -1

Lowest average generation cost ($m)

(after - generations)

2.158

(179)

2.16s

(132\

2.101

061)

2.570

07\

2.190

04'l

Ultimate offline performance ($m) 2.051 1.930 r.944 2.066 2.037

Ultimate online performance ($m) 2.136 2.790 2.464 3.039 2.128

Uniform crossover

GA RT'NS

Unless specified otherwise GA parameters

N=100, pc=l.O and p.= 9.91

CROS53l

N=50,

p"4.75

CROSS32

Pc=O'75

CROSS33

Pc=O'5

CROSS34 CROSS35

Pm=0'005

Number of generations required 266 133 198 100 100

Lowest solution cost ($m)

(after - qeneratons)

r.9393

(193)

1.8300

QI)

1,7s03+

(83)

I

1.7503+

189)

1.8115

175\

I-owest cost GA desisn senerated ffable 5.4) 2t 1 1 11

l-owest average generation cost ($m)

(after - generations)

2.367

t238)

2.520

/121\

2.090

(138)

2.361

(87)

2.214

r100)

Ultimate offline performance ($m) 2.168 2.098 t.919 2.t03 r.996

Ultimate online oerformance ($m) 2.744 2.997 2.576 3.2t4 2.875
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One-point crossover at decision-variable substring boundaries

GA RTJNS

Unless specihed otherwise GA parameters

N=100, pc=l.O and pm= 0.01

CROSS4l

N=50,

Pc=j'J5

CROSS42

Pc=O'J5

CROSS43

Pc=O'5

CROSS44 CROSS45

Pm=O'005

Number of generations required 266 133 191 100 100

Lowest solution cost ($m)

(after - senerations)

1.7503+

(242)

I

1.8047 |

/125\

1.7725

(86)

1.8871

(73)

1.8385

Ø3\

Lowest cost GA design generated (Table 5.4) 1 rÏ J 27

Lowest average generation cost ($m)

(after - generations)

1.998

(242\

2322

(133)

2.023

(140)

2.372

(75\

2.067

(98)

Ultimate offline performance ($m) t.976 1.979 t.941 2.028 1.982

Ultimate online oerformance l$m) 2.552 2.710 2.461 2.832 2.511

6 Improvements to the simple GAfor pipe network optimisation

Table 6.34 Search results for GA model runs CROSS4I-CROSS4S

f Globul optimum solution (verified by complete enumeration in Chapter 5)

T Infeasible design. The solution cost includes the penalty cost. The design is given in Table 5.29. GA run

CROSS42 determined a best cost feasible design for $1.8337m (Solution 25 in Table 5.4) after 60 generations.

Table 6.35 Search results for GA model runs CROSS5L-CROSS55

t Clobat optimum solution (verified by complete enumeration in Chapter 5)

Two-ooint crossover at decision-variable substrins boundaries

GA RuNs

Unless specified otherwise GA parameters

N=100, pc=\.O and p-= 9.91

CROSS5l

N=50,

p"4.75

CROSS52

Pc=0.J5

CROSS53

Pc=O'5

CROSS54 CROSS55

Pm=0'005

Number of senerations reouired 265 t33 198 100 100

Lowest solution cost ($m)

(after - senerations)

t.79to

Qt6\

1.7910

fl24\

l.19to

fl26\

1.8385

r54)

1.8997

t30)

Lowest cost GA desisn senerated (Table 5.4) 5 5 5 27

Lowest average generation cost ($m)

(after - senerations)

2.047

(2t9\

2.193

fl22\

1.972

(165)

2.417

(83)

2.232

(96)

Ultimate offline performance ($m) t.9zt t.892 1.906 2.026 2.099

Ultimate online oerformance l$m) 2.486 2.560 2.404 2.851 2.821
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Uniform crossover at decision-variable substring boundaries

GA RTJNS

Unless specified otherwise GA parameters

N=100, pc=l.O and pnl= O.OI

CROSS6I

N=50,

P"=O'75

CROSS62

Pc=O.75

CROSS63

Pc=O'5

CROSS64 CROSS65

Pm=0.005

Number of generations required 267 133 199 100 100

Lowest solution cost ($m)

(after - qenerations)

¿
1.7950 |

(2Ll\

I

1.7503+

(93)

1.81 l5

(127\

1.1725

t58)

1.1125

(19\

Lowest cost GA design generated (Table 5.4) rI I l0 4 J

Lowest average generation cost ($m)

(after - senerations)

2.002

(250)

2.122

(107)

2.04r

(130)

2.251

(89)

2.023

(19)

Ultimate offline performance ($m) 1.8'71 1.978 t.963 1.919 t.954

Ultimate online performance ($m) 2.411 2.692 2.451 2.160 2.592

6 Improvements to the simple GAfor pipe network optimisation

Table 6.36 Search results for GA model runs CROSS61-CROSS65

t Ctobul optimum solution (verifred by complete enumeration in Chapter 5)

I Infeasible design. The solution cost includes the penalty cost. The design is given in Table 5.29. GA run

CROSS6l determined a best cost feasible design for $1.8010m (Solution 9 in Table 5.4) after 167 generations.

Best of generation costs and offline performance

The less disruptive crossover mechanisms such as two-point crossover (GA run CROSS14) are

more effective than the more disruptive crossovers if the crossover points may be selected at

any bit position linkage (Figures 6.55 and 6.58). Conversely, the more disruptive crossover

mechanisms such as uniform crossover (GA run CROSS64) display superior convergence

when crossovers occur only at decision-variable substring boundaries (Figures 6.56 and 6.59).

The uniform crossover operator crossing at random bit positions (GA run CROSS34)

converges at a greater rate in the second half of the GA search and eventually determines the

global optimum not long after the two-point crossover mechanism in Figure 6.55. The use of

one-point and two-point crossovers at substring boundaries is not effective.
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6 Improvements to the simple GAfor pipe network optimisation

Average generation costs and offline performance

As we might expect, the more disruptive crossover mechanisms such as multi-point and

uniform crossovers at bit position linkages display inferior online performance (Figures 6.61

and 6.64). Of the other crossover mechanisms, one-point crossovers at bit positions and

uniform crossovers at substring boundaries show good online performance and low average

generation costs in addition to determining good solutions.

In terms of lowest average generation costs and ultimate online performance, the most effective

combination of GA parameters is N=100, pc=0.5 and p,n-0.01 (third GA parameter set) and

the least effective combination is N=100, pc=L 0 and pm=O.OI (fourth GA parameter set) with a

higher probability of crossover, and this is despite the latter GA parameter set being the most

successful in reaching the best solutions.

6.6.2 Recommendations for crossover mechanisms

The less disruptive crossover mechanisms (for example, one-point crossover) are best suited to

the genetic algorithm search for the optimisation of the Gessler network expansions problem for

crossover points at any bit position linkage in the string. In contrast, the more disruptive

crossover mechanisms (uniform crossover) are most effective for crossover points selected

only at the linkages between decision-variable substrings. The exploration offered by the one-

point crossover and two-point crossover operators at only the substring boundaries is

insufficient for this problem. The uniform crossover at substring boundaries (applied to GA

runs CROSS61-CROSS65) and one-point crossover at any bit position (GA runs CROSSl-

CROSSS) have demonstrated a similar level of performance for the solution space that has been

constructed and the other conditions that have applied here.

The results for various crossover mechanisms are influenced by the form of the coded string

and the amount of selection pressure applied. The more selection pressure, the more disruptive

the crossover mechanism that may be applied. For example, fitness scaling (Section 6.4) could

be used to increase the selection pressure. The more disruptive crossover mechanisms may be

better suited to longer coded strings. DeJong (1985) suggested that the number of crossover

points could be increased as a function of the length of the strings. The relationships between

decision-variable substrings in the string are not as easily defined if the system is complex. The

findings in this Section with respect to crossover mechanisms may not be as applicable to very

complex systems, and further tests would be required.
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Figure 6.61 Average generation costs for GA runs CROSS14 (two-point crossover), CROSS24 (four-point
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decision-variable substring boundaries)
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6.7 A Creeping Mutation Operator

Mutation is a genetic algorithm mechanism which provides occasional random variations of the

genetic code in offspring strings to prevent the loss of potentially useful genetic traits. The

traditional bit-wise mutation operator randomly selects bits in offspring strings (generated in

crossover) and inverts the bit value (from 1 to 0 or from 0 to 1). A creeping mutation operator

is developed here and incorporated within the GA formulation to complement the random bit-

wise mutations.

The creeping mutations are also known as adjacency mutations (Dandy, Simpson and Murphy,

1996a), decision-variable-wise mutations or phenotypic mutations (Goldberg, 1990). The

creeping mutation mechanism presented in this study is similar to 'creep' described by Davis

and Coombs (1987) and Davis (1989).

Davis and Coombs (1987) and Coombs and Davis (1987) studied the application of the GA

search to the design of packet switching communication networks. They used coded strings

that were lists of link speeds, such that each link speed in the string was coded as a single

'letter' (discussed in Section 6.5). The use of such coding was principally to admit the

introduction of an advanced GA operator called 'creep'. Creep altered the speed of a link

upward or downward one or multiple steps in the list of allowable link speeds. The process of

choosing link speeds of a packet switching communications network is an optimisation problem

with similar characteristics to the design of the pipe sizes of the water supply pipe network.

Like the pipe network optimisation solution space, the domain searched by Davis and Coombs

is very noisy and there is a high degree of parameter interaction. They suggest further

consideration be given to creep and representations that support creep in GA approaches to

spaces with contiguous optimal parameter values.

Davis (1989) studied a technique for determining effective GA parameter settings based on

observed performance as the GA run progresses. He developed a GA consisting of five

operators including 'guaranteed-mutation', 'guaranteed-big-creep' and 'guaranteed-little-creep'.

An application of an operator on a parent string to produce a child string constituted a

reproduction event. The 'guaranteed' feature checks the child string is not identical to the

parent string. The 'guaranteed-mutation' operator replaced the value of a coded substring on

the parent string, with IOVo probability, with a randomly selected value within the list of

allowable values. The 'guaranteed-big-creep' operator replaced the value of a coded substring

on the parent string, with 2O7o probability, with a value that is I,2 or 3 units above or below

the original value. The magnitude and direction of the big-creep is selected randomly. The

'guaranteed-little-creep' operated with lOVo probability and the modified value of the coded

substring on the child string was only 1 unit above or below the original value. The direction
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6 Improvements to the simple GAfor pipe netvvork optimisation

of the little-creep movement was selected randomly. The creeping should not extend past the

limits of the list of allowable values.

Goldberg (1990) recognised the potential of a decision-variable-wise mutation operator in his

discussion of real-coded GAs. Goldberg suggested the use of both bit-wise (traditional

mutation operator) and decision-variable-wise mutation or phenotypic mutations in multi-

parameter binary-coded GAs to overcome such problems as Hamming Cliffs.

6.7.1 A creeping mutation operator for binary-coded substrings

The creeping mutation operator presented in this research is applied to selected binary-coded

decision-variable substrings of offspring coded strings which have been generated for the new

population by crossover. The chosen coded substring is mutated to a neighbouring substring

representing an adjacent design parameter (pipe size), either up or down the list of design

parameters (and within the limits of allowable parameter values).

Candidate substrings of offspring strings to be subjected to creep are selected randomly with

some specified probability of creeping mutation, po. For example, the GA model runs

designated CREEP21-CREEP25 in the following experimental analysis use a value of
pa=O.125, which implies about I in 8 decision-variable substrings are disrupted by creep in

offspring strings formed by crossover. Since the coded strings symbolising Gessler network

designs consist of 8 decision-variable substrings for the I pipe sizes to be selected, we would

expect one substring to undergo a creeping mutation for every new string created by crossover.

The creeping mutation operator allows for the adjustment of the chances of creeping up or

down the list of design parameters. The creeping mutation will generate a modified substring

representing an adjacent design parameter down the parameter list (decreasing pipe size) with

some specified probability of creeping down, p¿. For example, a value of pa- 0.6, implies

there is a 6OVo chance of creeping from the current pipe size to the next smaller pipe size rather

than the next larger pipe size. The probability of creeping up the list of allowable pipe sizes is

pu=l-p¿. The direction of the creep may be unbiased (pr0.5) or biased in either direction. The

chosen decision-variable substring remains intact if the substring is at the upper or lower limit

of allowable substrings and the creep would like to adjust the substring beyond this limit.

Figure 6.67 demonstrates the very simple action of a creeping mutation. The 24-bit coded

string in Figure 6.67 is constructed of 8 concatenated 3-bit substrings . The string symbolises

a solution to the Gessler network expansions problem. The decision-variable substrings of
binary codes represent new pipe sizes. The last substring position is associated with the new

pipe [14]. The binary number 011 in this position decodes to a 12" pipe diameter for pipe [1a]
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(by observing the mapping in Table 6.23). If the last substring was chosen to be subjected to

creep, it may be mutated down to 010 (10" pipe) or up to 100 (14" pipe) to form one of the

modified strings as shown:

Old coded string:

New coded strings

01 1- 110-000-000-001-1 1 1-010-0L1

01 1- 1 10-000-000-001-11 1-010-010

0 1 1- 1 10-000-000-00 1 - 1 1 1 -010-L00

(creeping down)

(creeping up)

Figure 6.67 The action of a creeping mutation

The creeping mutations contrast with the traditional bit-wise mutations that may or may not

produce an adjacent substring. Bit-wise mutations provide useful variations, however, alone

they are not likely to overcome the Hamming Cliffs of binary code, in which substrings such as

011 and 100 represent adjacent design parameters. Bit-wise mutations with low probability and

creeping mutations were used simultaneously in the following GA model runs. Like bit-wise

mutations, it becomes clear in this analysis that creeping mutations are most effective when

used with low probability.

In addition to possessing some reliability that accounts for global exploration of the solution

space, an effective optimisation technique must exercise refinement in the vicinity of relatively

good solutions. The subtle creeping mutations (with low probability) may provide the fine

adjustments that are necessary. The purpose of the creeping mutations is to promote hill-

climbing and local exploration. We expect the creeping mutations to be most prominent once

the selection method has identified relatively good regions of the solution space.

6.7.2 GA model runs to measure the effectiveness of
creeping mutations

A series of GA model runs were conducted which experimented with various combinations of

the probability of creep, po and the probability of creeping down, p¿. The decision-variable

substrings were coded in binary codes. The GA runs CREEPI-CREEPS are the traditional GA

runs using pa=O.O (no creep). The GA runs CREEPl l-CREEPIS ço=9.0625 and p¿=0.5),

CREEP21-CREEP25 (pa=0.I25 andp¿=0.5) and CREEP31-CREEP35 Qto=9.25 andp¡-05)

use increasing probabilities of creeping mutation for an equal chance of creeping up or down'

The GA runs CREEP41-CREEP45 Qto=9.I25 and pd=0.25) consider a high probability of

creeping up and GA runs CREEPS1-CREEP5 5 (po=0.125 and p60.75) consider the effect of a

high probability of creeping down. The performance of the GA model runs CREEPI-

CREEP55 is summarised in Tables 6.37-6.42.
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No creepins mutations (pa=0.0). GA runs CREEPI-CREEP5 equivalent to GA runs PEN1 1-PEN15

GA RIXS

Unless specihed otherwise GA parameters

N=100, pc=1.0 and pm= O.Ol

CREEPI

N=50,

p"4.15

CREEP2

Pc=0.75

CREEP3

Pc=0'5

CREEP4 CREEP5

Pm=0'0O5

Number of generations required 266 133 t91 100 100

Lowest solution cost ($m)

(after - senerations)

1.7503+

(s9)

1.7s03+

(96)

1.7s03+

(59)

1.7725

(93)

r.8807

(82)

Lowest cost GA desien senerated (Table 5.4) 2 2 1 3

Lowest average generation cost ($m)

(after - senerations)

2.045

QLz\

2.139

(ú3)

2.038

/1^76),

2.271

02\

2.274

(86)

Ultimate offline performance ($m) r.963 1.896 1.916 1.935 2.026

Ultimate online performance ($m) 2.560 2.557 2.475 2.766 2.694

6 Improvements to the simple GAfor pipe network optimisation

Table 6.37 Search results for genetic algorithm model runs CREEPI-CREEPS

* Gtobul optimum solution (verified by complete enumeration in Chapter 5)

Table 6.38 Search results for GA model runs CREEP11-CREEP15

t Clobul optimum solution (verifred by complete enumeration in Chapter 5)

Probability of creeping mutation pa=O.O625 with probability of creeping down p¿=0.5

GA RUNS

Unless specified otherwise GA parameters

N=100, pa=l.O and p,u= 0.01

CREEP1l

N=50,

pc{.75

CREEPl2

Pc=O'J5

CREEPl3

Pc=0'5

CREEPl4 CREEPl5

Pm=0.005

Number of generations required 261 131 t95 100 100

Lowest solution cost ($m)

(after - qenerations)

1.8506

(ú4\

t.8232

(48)

a
1.7 503+

(L71\

1.7s03+

(s1)

1.7s03+

(99)

Lowest cost GA desisn senerated Oable 5.4) 44 16 I 1 I

Lowest average generation cost ($m)

(after - generations)

2.441

02\

2.452

(63)

2.236

Q9\

2.625

(s3)

2.547

ß7)

Ultimate offline performance ($m) 2.137 2.003 1.897 2.0t2 2.032

Ultimate online oerformance ($m) 2.930 2.9r2 2.583 3.O92 2.93r

Total no. of strings affected by creep 3.984 3.997 3.915 3.928 3.928

Total no. of pood creeps 1.597 1.539 1.340 r.536 1,559

Total no. of badcreeos 2.O59 2,148 2.234 2.089 2.to9

Average 70 cost decrease due to Pood creeps 4.287o 4.3OVo 4.45% 4.86Vo 4.t070

Averaqe 7o costincrease dueto ba.dcreeps ll.69Vo ll.757o 15.44Vo ll.94Vo tt.75%
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Probability of creeping mutation pa=0.125 with probability of creeping down pFO.5

GA RTJNS

Unless specifred otherwise GA parameters

N=100, pc=l.O and p^= g.g1

CREEP2I

N=50,

p"4.75

CREEP22

Pc=O.75

CREEP23

Pc=0.5

CREEP24 CREEP25

Pm=O'005

Number of qenerations required 266 t33 198 100 100

Lowest solution cost ($m)

lafter - senerations)

1.81 15

(201\

1.33837

(104)

1.8010

/r51\

t.8417

(96)

t.8232

(89)

Lowest cost GA desisn senerated (Table 5.4) t3 7 5t 18

Lowest average generation cost ($m)

(after - generations)

2.328

(208)

2.6'74

/123)

2.376

(191)

2.888

(91)

2.785

(81)

Ultimate offline oerformance ($m) 2.070 2.022 2.023 2.t30 2.138

Ultimate online oerformance ($m) 2.931 3.006 2.779 3.316 3.209

Total no. ofstrings affected by creep 6.536 6.518 6.581 6.487 6.481

Total no. of goodcreeÞs 2.525 2.581 2.473 2.666 2.688

Total no. of badcreeÞs 3.601 3.507 3.726 3.453 3,380

Averase Vo cost decrease dueto soodqeeps 4.85Vo 5.j%o 4.697o 4.967o 4;t370

Averase Vo cost increase dueto ba¿ cre'eps 15.257o 15.437o 12.44Vo 12.9l%o ll.86Vo

6 Improvements to the simple GAfor pipe network optimisation

Table 6.39 Search results for GA model runs CREEP2I-CREEPZí

T Infeasible design. The solution cost includes the penalty cost. GA run CREEP22 determined a best cost

feasible solution for $1.8417 million (Solution 36 in Table 5.4) after 44 generations.

The optimum solution is achieved in all the GA runs CREEP51-CREEP55 with the high

probability of creeping down (Table 6.42). About 7 or 8 from 10 creeping mutations will be

down the design p¿uameter list using p¿=0.75. The success of the bias towards creeping down

is perhaps because the objective function is to be minimised. 'We do not disregard the

possibility of creeping up since we expect to approach the best regions of the solution space

from both the feasible and infeasible regions.

Figures 6.68-6.79 show some relevant comparisons of the variations of best generation costs,

offline performance, average generation costs and online performance for the GA model runs

CREEP4, CREEPl4, . . ., CREEP54.
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Probability of creeping mutation pa=O.25 with probability of creeping down p¿=0.5

GA RuNs

Unless specified otherwise GA parameters

N=100, pc=I.0 and pm=O.Ol

CREEP3I

N=50,

Pc=O'J5

CREEP32

Pc=0.15

CREEP33

Pc=O'5

CREEP34 CREEP35

Pm=0.005

Number of generations required 268 133 200 100 r00

Lowest solution cost ($m)

hfter - senerations)

l .8 807

(120)

a
1.8383 |

(70)

T
1.7503+

(82\

1.8010

(48)

1.84t7

(t'7)

Lowest cost GA desisn senerated Oable 5.4) 2 7 35

Lowest average generation cost ($m)

(after - generations)

2,674

ll 19)

2.820

(47\

2.522

0r0)

3.048

(51)

2.957

(94\

Ultimate offline oerformance l$m') 2.t60 2.O74 t.967 2.159 2.r82

Ultimate online performance ($m) 3.181 3.195 3.015 3.414 3.343

Total no. of strinss affected bv creep 9.001 8.931 8.892 8.963 8,963

Total no. of poodcreeDs 3.664 3.627 3.293 3.830 3.937

Total no. of badcreeps 5.016 4.933 5,161 4.8t2 4.104

Averase 7o cost decrease due to pood creeos 6.207o 5.957o 6.14o 6.I2Vo 5.557o

Averase 7o cost increase due to bad qeæps 15.95Vo 16.8Vo 19.9Vo 15.34Vo 13.37o

6 Improvements to the simple GAfor pipe network optimisation

Table 6.40 Search results for GA model runs CREEP31-CREEP3S

f Globul optimum solution (verified by complete enumeration in Chapter 5)

T Infeasible design. The solution cost includes the penalty cost. GA run CREEP32 determined a best cost

feasible solution for $1.8417 million (Solution 34 in Table 5.4) after 7l generations.

The plot of best of generation costs in Figure 6.70 demonstrates the success of the GA run

CREEP54. The poor online performance of creeping down more often in GA run CREEP54

may be attributed to stepping inside the infeasible region more often (Figure 6.79).

The plot of average generation costs in Figures 6.74-6.16 show that using creep will generally

lead to higher average generation costs, due to the disruptions caused by the increased

exploration by the creeping mutations.

6.7.3 Recommendations for creeping mutations

The results of these experiments indicate the use of low probabilities of creeping mutation with

an increased chance of creeping down are appropriate. Further testing of these pa-rameters with

more complicated pipe network optimisation problems is required. We have not investigated

the combination of creeping mutations and substrings of Gray codes. Creeping mutations are

actually particular bit-wise mutations when creeping mutations are applied to a list of substrings

of Gray codes.
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Probability of creeping mutation po=O.125 with probability of creeping down p¿--0.25

GA RUNS

Unless specified otherwise GA parameters

N=100, p"--1.0 and pm=O.Ol

CREEP4I

N=50,

p"Ã.75

CREEP42

Pc=j''15

CREEP43

Pc=O'5

CREEP44 CREEP45

Pm=0.005

Number of generations required 266 133 198 100 r00

Lowest solution cost ($m)

(after - eenerations)

1.8612

(260)

1.8807

rcj\

1.8300

(14s)

t.9tt4
(66)

r.9251

(10)

Lowest cost GA desisn senerated (Table 5.4) >50 >50 2t >50 >50

Lowest average generation cost ($m)

(after - generations)

2.456

Q59)

2.620

n13)

2.396

02s\

2.994

(ú4\

2.927

(63)

Ultimate offline performance ($m) 2.236 2.148 2.061 2.289 2.251

Ultimate online performance ($m) 3.034 3.026 2.839 3.288 3.256

Total no. ofstrinss affected bv creep 6,536 6,518 6.581 6.487 6.487

Total no. of soodcreeps 1.841 1.139 1.698 1.8 14 1.745

Total no. of bad crenps 4.198 4.162 4.353 4.104 4,t41

Average 7o cost decrease due to good creeps 5.4Vo 5.O7Vo 6.46Vo 5.23Vo 4.14Vo

Average % cost increase due to ba.d creeps 5.967o 6.317o 7.26Vo 5.284o 5.25Vo

6 Improvements to the simple GAfor pipe network optimisation

Table 6.41 Search results for GA model runs CREEP41-CREEP45

Further study is recommended to observe the relationship between penalty functions and the

preferred direction of creep (up or down). There is likely to be some relationship between the

bias in the direction of creep and the severity of the penalties. It may be appropriate to tend to

creep up when penalties are light so as to approach the best regions of the solution space from

the infeasible region (below) and similarly, it may be prefened to creep down when penalties

are strict so as to approach the optimum from the feasible region (above).

Finally, there may be better ways to determine the best direction to creep. For example, the

chances of creeping down may be increased if the current population of solutions is typically

feasible or if the coded string in which the chosen substring belongs is currently feasible or

more specifically, according to the hydraulic performance (for example, based on headloss per

unit length) of the pipe size represented by the substring in the net'work solution.
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Table 6.42 Search results for GA model runs CREEPSI-CREEPSS

f Globul optimum solution (verified by complete enumeration in Chapter 5)

Probability of creeping mutation pa=0.125 with probability of creeping down p¿=0.75

GA RI.INS

Unless specified otherwise GA parameters

N=100, pc=I.O aîd p m= O.Ol

CREEPsl

N=50,

P"=O.75

CREEPs2

Pc=O.75

CREEP53

Pc=O'5

CREEP54 CREEPs5

Pm=0.005

Number of generations required 266 133 198 100 100

Lowest solution cost ($m)

(after - senerations)

1.7503+

(186)

l.7503+

(93)

1.7503+

(s9)

l 7s03+

(58)

1.7503+

Q4\

Lowest cost GA desisn senerated (Table 5.4) 1 2 2 1 I

Lowest average generation cost ($m)

(after - generations)

2.389

Q06\

2.680

t109)

2.314

t155)

2.763

t53)

2.864

(94\

Ultimate offline performance ($m) 1.980 1.980 1.901 1.987 1992

Ultimate online performance ($m) 3.t36 3.135 2.816 3.420 3.354

Total no. of strinss affected bv creep 6.536 6,518 6,581 6.487 6.487

Total no. of pood creeps 2.596 2.93r 2.523 2.909 2.697

Total no. of ba.d creeps 3.464 3.154 3.396 3.tt7 3.322

Averase 70 cost decrease due to sood cræos 4.77o 4.287o 4.557o 4.\Vo 4.93Vo

Average 7o cost increase due to bad cre,eps 34.l%o 25.9Vo 36.l7Vo 3O.3Vo 3I.77o
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Figure 6.68 Best generation costs for GA runs CREEP4 (No creeping mutation, p":0.0) and

CREEP24 (probability of creep, po:O.125, and probability of creeping down, p¡0.5)
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Figure 6.69 Best generation costs for GA runs CREEPI4 Qt;0.0625, p¡0.5), CREEP24 (p;0.125, pd0.5)
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Figure 6.70 Best generation costs for GA runs CREEP24 Qt;0.125, p¡0.5), CREEP44 (p,:0.125, p¡0'25)
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Figure 6.71 Offline performance (running average of best cost solutions) for GA runs CREEP4 (No creeping

mutation, po:0.0) and CREEP24 (probability of creep, p,,:0.125, and probability of creeping down, p¡0.5)
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6 Improvements to the simple GAfor pipe network optimisation

6.8 Conclusions

The experimental analyses in this chapter has provided an improved understanding of some of

the issues facing the GA user when selecting a genetic algorithm formulation for pipe network

optimisation.

A penalty function which computes penalty costs based on the maximum violations of the

pressure constraints for each loading condition was found to be the most suitable. An

appropriate penalty multiplier (Ë=$50,000/psi) was established for the Gessler problem,

although this parameter is problem-dependent. There may be value in varying the penalty

multiplier as the GA run proceeds.

A form of power law fitness scaling has been used. The fitness scaling exponent n is increased

in steps during the GA model run, adjusting raw fitness values in order to maintain appropriate

levels of competition at different stages of the GA run. The use of power scaled fitnesses with

a low value of the exponent n early in the GA run allows the population the freedom of a wider

exploration of the solution space. The scaled fitnesses with higher values of n later on in the

GA run forces the population to focus on the best regions of the solution space. The

tournament selection method was found to be very effective and very efficient, however, larger

population sizes are recommended.

A number of past theoretical and empirical results suggest a Gray code representation may be

effective in eliminating biases introduced by the binary code. There have been indications in the

analysis conducted in this chapter, that the Gray code may be more appropriate for the pipe

network optimisation problem, however binary codes have also performed effectively. There is

clear evidence that the arrangement of decision variable substrings within the coded string is a

significant issue to be confronted by the GA user for the application to pipe network

optimisation. Decision variable substrings which are related in the hydraulics and economics of

the solution should be positioned nearby in the string. The performance of an integer coding

scheme was inferior to the coding schemes based on the binary alphabet when applied to an

identical solution space, however redundant binary codes have increased the size of the solution

space from 4 million possible solutions to 16 million solutions. Redundant codes can be

eliminated using an integer coding scheme. In addition, the performance of the integer coding

scheme may be improved if it is used in association with suitable operators.

The traditional GA one-point crossover operator provided a sufficient amount of exploration for

the length of coded string constructed for the Gessler problem. More crossover points may be

required as the length of the coded string increases. The more disruptive crossover operators
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6 Improvements to the simple GAfor pipe network optimisation

such as uniform crossover were more effective if the crossover points were selected only at the

boundaries of the decision va¡iable substrings.

The creeping mutation operator was found to be a very effective tool for exploring the

immediate vicinity of the current population in the solution space.

The modifications to the traditional GA model have been considered systematically and

separately in the application of the Gessler pipe network optimisation problem in this chapter.

In the next chapter, an improved genetic algorithm is formulated based on the findings in this

chapter. The improved GA combines elements of the GA model formulation such as the

increased exploitation offered by fitness scaling and the subtle exploration powers of creeping

mutations. The improved GA model is applied to pipe network optimisation problems of

increased size and complexity in the following chapters.
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7 Larger Problems with Known Optimal Solutions

7.1 The Original Gessler Problem

The two-reservoir Gessler (1985) network expansion problem introduced in Chapter 5 is a

relatively simple pipe network optimisation. The Gessler problem was chosen as a trial

optimisation problem for the genetic algorithm (GA) application as it is feasible to enumerate

every possible pipe network solution in order to positively identify the global optimum

solution(s). As a pipe network optimisation problem increases in size, it soon becomes

impossible to perform an exhaustive enumeration.

The set of possible network solutions to the Gessler problem may be represented by the set of

coded strings of 24binary bits. The 24-bit strings are formed by eight 3-bit substrings. The

eight substring positions in the coded string correspond to the eight pipes to be sized. The

unique structure of a 3-bit coded substring represents the selected pipe size (from the list of

eight possible new or equivalent pipe sizes) for the pipe associated with the substring.

The exhaustive enumeration described in Section 5.2.2 identified two optimal solutions, each

having a cost of $1.7503 million, given by solutions 1 and 2 in Table 5.4. The corresponding

optimal 24-bit coded strings may be represented using Gray codes as shown below. The

representations of the alternative optimal coded strings differ in only two bit positions (i.e., a

Hamming distance of 2). The solution space searched by the GA consists of 2% = 16,777 ,216

possible network solutions.

Solution 1

Solution 2

000- 10 1 -000-0 1 0-00 1 -00 1 -000-0 1 1

leave-dup. 1 4" -leav e- l2r I 

- 8 
I I 

- I I I 
- 6 

I I 

- I 0 
I I

000- 10 1 -000-0 1 0-00 1 -0 1 1 -000-00 1

leave-dup. 1 4" -leave-IZ"-8 "- 10II -6II -8 
II

7.2 Simultaneous Optimisation of Two Gessler Problems

In engineering practice, the GA witl be required to optimise much larger pipe network designs.

An expanded solution space with known global optimal solutions is considered by

simultaneously optimising two independent l4-pipe Gessler networks as an equivalent 28-pipe

network. The GA searches for the optimal4S-bit coded string formed by two adjacent 24-bit

coded strings as shown in Figure 7.1.
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Gessler network

l4l

r1r 
E

Gessler network'

E
l4l'

r1r'E

rsr 
E

Solution 1,1

Solution 1,2

Solution 2,1

Solution 2,2

[11]

t13l lL4l

t6l 15r'E [6]'

[11]'

t1l t4l t5l t6l t8l tl1l t13l t14l [1]' [4]' [5]' [6]' [8]' [11]'[13]'[14]'

tll l4l tsl t6l t8l [11] t13l t14l [1]' l4l' [5]' [6]' [8]' [11]'[13]' [14]'

Figure 7.1 Formation of a 48-bit string (from two 24-bit strings) representing

trial solutions in the GA search for two independent Gessler network designs

The cost of the global optimal solutions for the equivalent 28-pipe network expansion problem

is $3.5006 million. The four possible combinations of the optimal solutions I and 2 to the

original Gessler problem form four optimal solutions to this larger problem. The four optimal

48-bit coded string solutions may be represented using Gray codes as shown below. The

expanded solution space searched by the GA consists of 248 = 2.815x101a possible network

solutions.

000- 1 0 1 -000-0 I 0-00 1 -00 1 -000-0 1 1 --000- 1 0 1 -000-0 1 0-00 1 -00 1 -000-0 1 1

000- 1 0 1 -000-0 1 0-00 1 -00 1 -000-0 1 1 --000- 1 0 1 -000-0 1 0-00 1 -0 I 1 -000-00 1

000- 1 0 1 -000-0 1 0-00 1 -0 1 1 -000-00 1 --000- I 0 I -000-0 1 0-00 1 -00 1 -000-0 1 1

000- 1 0 1 -000-0 1 0-00 1 -0 1 1 -000-00 1 --000- I 0 1 -000-0 I 0-00 1 -0 1 1 -000-00 1

The GA is not aware of the relationship between the first 24 bits and the second 24 bits of the

coded string. There are no GA operators used in the analyses in this chapter that can shift bits

transversely to other positions on the string to assist the search. The GA considers the 48-bit

coded string as a solution to a pipe network optimisation problem that requires the sizing of 16

TIT TT¡

ITI TTT ltr lrl III
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7 Larger problems with known optimal solutions

pipes (with eight possible new or equivalent pipe sizes). The 48-bit string is separated into the

two component24-bit strings to both compute the pipe costs and test the hydraulic performance

of the pipe network solutions. The total cost of the 48-bit string is the sum of the pipe costs

and penalty costs (if any) of the component 24-bit strings. The GA itself, is not awa.re of the

decoding and evaluation procedures; only ofthe strings ofcode and their associated fitnesses.

In pipe network designs, the suitability of a decision regarding the location, sizing or operation

of a system component is dependent to some extent on the other decisions in the design. In the

case of the solution of multiple Gessler problems, there is no relationship between the

component 24-bit strings of the subproblems. It is difficult to say whether this lack of

interaction across the component24-bit substrings assists the GA search or impedes it in the

recognisation and propagation of short, highly fit string similarities (Schema Theorem of

Holland, 1975).

The exhaustive enumeration of the Gessler network expansion problem identified 50 feasible

solutions (listed in Table 5.4) within $101,900 (5.82Eo) of the cost of the optimal solutions.

The 50 solutions represent only 0.0003Vo of the total number of possible solutions for the

Gessler problem. By comparison, for two Gessler networks, there are 2500 feasible network

solutions within $203,800 (5.82Vo) of the cost of the optimal solutions. The 2500 feasible

network solutions represent only 0.000,000,000,97o of the total number of possible solutions.

The 2500 solutions are the 502 combinations of the 50 solutions in Table 5.4.

7.2.L Tlne improved genetic algorithm approach

In the previous chapter, possible modifications to the traditional GA formulation were tested for

the optimisation of the original Gessler network expansion problem. Based on the results of

the experiments in Chapter 6, an improved genetic algorithm for pipe network optimisation is

proposed for the optimisation of two Gessler problems. In this study, five improved GA runs

of the double Gessler problem were conducted (designated DI,DZ,..., D5) using the parameter

sets given in Table l.l. The improved GA model incorporates the following features:

. Penalty costs (for infeasible solutions) are based on the maximum violations of the

pressure constraints for each loading condition (Eq. 6.1). A pressure violation

penalty multiplier of ft=$50,000/psi is used.

. Proportionate (roulette-wheel) selection is adopted using the inverse fitness function

(Eq. 6.a) and the fitness scaling exponent, ¡¿ is allowed to increase in steps as the GA

run progresses according to Table 7 .2.

. The 48-bit coded strings are formed by 3-bit substrings of Gray codes.
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7 ktrger problerns with known optimal solutions

. One-point crossover is used and the crossover point may occur at any point in the

48-bit coded string. A high crossover rate p,-0.5-1.0 is used (Table7.I).
. Both random bit-wise mutations and creeping mutations are employed. The

probability of a bit-wise mutation is low (p-=0.001-0.005). The creeping mutation

rate, po=O.125 , \s relatively high and on average two 3-bit substrings per 48-bit

coded string will be subjected to a creeping mutation. The chance of creeping down

is greater than the chance of creeping up (p60.6).
. An elitist model is introduced (described in Section 1.2.2).

Population sizes of N=100 to 200 are considered (Table 7.1). The GA runs were allowed a

maximum of 100,000 new solution evaluations which represents only 3.55xI0-8Vo of the total

number of possible solutions. By comparison, the 10,000 solution evaluations for the original

Gessler problem (Chapters 5 and 6) representedO.O6Vo of the 16,777,216 possible solutions.

The 100,000 new coded strings to be evaluated are formed by 1,000 generations of a

population of N=100 strings (for GA run D1). The GA runs could be terminated if an optimal

solution was determined before the specified maximum number of evaluations.

Table 7.1 Parameter sets D1-D5 for the optimisation of two Gessler problems

GA Parameters D1 D2 D3 DT D5

Population size, N 100 200 100 100 100

Maximum number of generations 1000 500 1000 1000 1000

Maximum number of evaluations 100,000 100,000 100,000 100,000 100,000

Probability of crossover, p" 1.0 1.0 0.5 1.0 1.0

Probability of bit-wise mutation, p- 0.005 0.005 0.005 0.001 0.005

Probability of creeping mutation, po 0.t25 o.125 0.r25 0.t25 0.r25

Probability of creeping down, p¿ 0.6 0.6 0.6 0.6 0.6

Elite population size, N' 10 10 10 10 10

Probability of an elite mate, p" 0.04 0.02 0.04 0.04 0.04

Penalty factor, k ($m/psi) 0.05 0.05 0.05 0.05 0.05

Random number seed 100 100 100 100 200
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7 Larger problems with known optimal solutions

Table 7.2 Variation of fitness scaling exponent, n for the GA runs D1-D5

Value of n Evaluation Number Interval

n 1 evaluations < 25,000

n=2 25,000 < evaluations < 50,000

n j 50,000 < evaluations < 75,000

n=4 75,000 < evaluations < 100,000

7.2.2 Elitism

The simple or traditional GA is driven by three operators including (1) roulette-wheel selection,

(2) one-point crossover and (3) bit-wise complement mutations. In his study of the application

of GAs to function optimisation, DeJong (I975) experimented with the traditional GA

formulation and various other GA models including elitist models. DeJong's elitist model

(Goldberg, 1989) preserves the best coded string solution identified by the GA up to the current

generation, by including it in the new population of N coded strings as the (N+1)th member, if
it is not already a member of this new population. The new populations are generated by the

traditional GA operators. DeJon g (I97 5) found the elitist model improved the performance of

the GA search in solution spaces with unimodal surfaces but degraded the performance for

multimodal surfaces.

A form of elitism is introduced to the improved GA search developed in this thesis for pipe

network optimisation. A small elite population of N' coded string solutions identified by the

GA up to the current generation is maintained in parallel with the working population of N

members. In the formation of the new working population from the old working population,

elite population members are selected to mate with working population members with some low

probability of an elite mate, pr. The elitç mates are chosen randomly from the elite population.

A coded string solution generated for the new working population by selection, crossover and

mutation replaces a coded string in the elite population, if it survives a tournament with the

randomly selected elite population member and it is not already a member of the elite

population.

A schematic of the elitist model is shown in Figure 7.2. In the improved GA runs D1-D5

applied to the double Gessler problem, a small elite population size of N'=10 members is

maintained and a low probability of an elite mate, Pe=o'04 is used (Tabte 7'1)' A value of

pe=0.04 implies that about 4 of the 100.parent strings selected for mating are randomly picked

from the elite population.
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Figure 7.2 The elitist model
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7 .2.3 Performance of the improved GA (with elitism) applied to
two Gessler problems

The improved GA formulation was applied to the search for the optimum designs of two

Gessler pipe networks simultaneously in the five GA runs designated D1-D5. The GA runs

utilised 116 minutes of CPU computer time on a SUN SPARCstation-1+ to complete the

100,000 evaluations for the double Gessler problem. The GA runs utilised only 14 minutes on

a SUN SPARCstation-lO. The 100,000 evaluations are equivalent to 600,000 hydraulic

analyses since three demand patterns for two Gessler pipe networks are analysed to evaluate

each 48-bit coded string. If the computation time to perform the genetic algorithm processes is

negligible compared to the time to perform the hydraulic analyses, the time to perform one

hydraulic analysis of the l4-pipe (and 4-loop) Gessler pipe network is about 0.0014 seconds.

The minimum cost solutions determined by GA runs D1-D5 are summarised in Table 7.3 and

are optimum solutions in every case. A maximum of 79,600 evaluations were required.

Table 7.3 Improved GA results for the optimisation of two Gessler problems

* global optimum solution

The occurrences of the individual solutions I and2 in the five GA solutions are equal, however

there is a dominance of the combined solution 2,I. The optimal solution combination 2,1 is

first identified by GA run Dl after 31,000 solution evaluations, however, the optimal solutions

are identified repeatedly within the maximum allowed 100,000 evaluations as shown by the plot

of best solutions for each generation in Figure 7.3. The convergence of the average generation

costs for GA run Dl is shown in Figure 7.4.

GA run Lowest cost solution

($mitlion)

Evaluation number Solution combination

(see Table 5.4)

D1 3.5006* 31,000 2,L

D2 3.5006* 79,600 2,1

D3 3.5006* 43,100 2 , 1

D4 3.5006* 38,000 2,r

D5 3.5006* 52.r00 2,1

Average number of solution evaluations to determine the optimum solution = 49,000
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The optimal solution is actually identified 29 times within the maximum 100,000 evaluations for

GA run D1. The 29 occurrences of the optimal solution combinations are recorded in Table

7.4. The optimal strings are close to one another in the solution space. They are separated by a

maximum Hamming distance of only 4 bits for a string of length 48 binary bits. The optimum

solution 2,I is found after 31,000 evaluations (310 generations) for GA run D1, and all of the

four optimal solutions are identified in less than 38,200 evaluations (382 generations).

Table 7.4 Occurrences of optimal solutions for GA run DL

* both solutions 1,2 and 2,1 determined after 571 generations

I solution 2,1 determined twice after 844 generations

7.3 Simultaneous Optimisation of Three Gessler Problems

This study can be extended to consider an even larger pipe network optimisation with known

global optimum solutions by simultaneously considering three l4-pipe Gessler networks as an

equivalent 42-pipe network. The GA searches for the optimal 72-bit coded string formed by

three adjacent24-bit coded strings. The optimum solution for the expanded solution space has

a cost of $5.2510 million. There are eight combinations of solutions 1 and 2 which are optimal

pipe network designs. The solution space searched by the GA consists of 272 = 4.72xI021

possible solutions. There are 125,000 feasible solutions within $305,700 (5.82Vo) of the cost

of the optimal solution. The 125,000 solutions (representing only 2.65xlo-rs%o of all

solutions) are the 503 combinations of the 50 solutions in Table 5.4.

The improved GA formulation is applied to the simultaneous optimisation of three Gessler

networks. The GA parameter sets used in the previous optimisation (Table 7.I) are employed

again in this more difficult optimisation, except the five GA model runs designated Tl-T5 are

allowed a maximum of 200,000 evaluations to search the solution space. The parameter sets

T1-T5 are given in Table 7.5. The variation of the fitness scaling exponent, n for the GA runs

of 200,000 evaluations (maximum) is given in Table 7.6. The GA runs of 200,000 evaluations

utilised 350 minutes of CPU computer time on a SUN SPARCstation-1+ station (42 minutes on

Solution Hamming distance

from solution2,L

Number of

occurrences

Number of generations performed to

find the optimum solution

1 , 1 2 bits a
J 382:991',997

1,2 4 bits 2 339;511*

2 ) 1 t9 310; 398; 447 ; 520; 535; 57 l* ; 653;

687 ;1 64; 172; 794; 841; 844(2)I;

856; 867; 905;922;951

2.2 2 bits 5 37 6; 690; 691;135; 843
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a SUN SPARCstation-10). The 200,000 evaluations required 1.8 million hydraulic analyses

(200,000 solutions of three networks for three demand patterns).

Table 7.5 Parameter sets T1-T5 for the optimisation of three Gessler problems

Table 7.6 Variation of fÏtness scaling exponent, n for the GA runs T1-'T5

Value of n Evaluation Number Interval

n 1 evaluations < 50,000

n=2 50,000 < evaluations < 100,000

n=3 100,000 < evaluations < 150,000

n=4 150,000 < evaluations < 200,000

The 200,000 evaluations represent only 4.24x10-r5Vo of the total number of possible solutions.

To place these numbers in some perspective, consider the extent of the pipe network solution

space can be represented by the total land area of Australia (which is approximately 7,682,300

square kilometres). Each solution to the optimisation of three Gessler problems would then

occupy about 0.0016 mm2. The GA search of 200,000 evaluations for the optimal 72-bit

coded string solution is the equivalent of investigating about 3.25 square centimetres of the total

land area of Australia.

GA Parameters T1 T2 T3 T4 T5

Population size, N 100 200 100 100 100

Maximum number of generations 2000 1000 2000 2000 2000

Maximum number of evaluations 200,000 200,000 200,000 200,000 200,000

Probability of crossover, p. 1.0 1.0 0.5 1.0 1.0

Probability of bit-wise mutation, p* 0.005 0.005 0.005 0.001 0.005

Probability of creeping mutation, po 0.r25 0.r25 0.r25 0.r25 o.r25

Probability of creeping down, p¿ 0.6 0.6 0.6 0.6 0.6

Elite population size, N' 10 10 10 10 10

Probability of an elite mate, p" 0.04 o.o2 0.04 0.04 0.04

Penalty factor, k 0.05 0.05 0.05 0.05 0.05

Random number seed 100 100 100 100 200
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7 I-arger problems with known optimal solutions

The lowest cost network solutions identified by the GA runs T1-T5 are presented in Table 7.7.

The optimum solution for $5.2510 million is determined in three out of five cases after about

180,000 evaluations. The solutions determined by the other two GA runs are near-optimal

solutions. The occurrences of the individual solutions I and2 are about equal.

Table 7.7 Improved GA results for the optimisation of three Gessler problems

* global optimum solution

T a maximum of 200,000 evaluations were performed

The variation of best generation costs for the GA run T1 (shown in Figure 7.5) is very

irregular, although there is a general downward approach towards the optimal solution. The

corresponding convergence of average generation costs is shown in Figure 7.6.

The effect of the increases in the value of the fitness function exponent, r? on average generation

cost is clear for the GA run T1 in Figure 7.6. The transformation from n=l to n=2 afte.r 50,000

evaluations obviously reduces the average generation cost of the population. The changes from

n=2 to n=3 after 100,000 evaluations and n=3 to n=4 after 150,000 evaluations are not as

distinct, however, a reduction in average generation cost may be noticed.

The improved GA is found to be reasonably capable of handling pipe network design problems

of this size (string length l=72bits). Often, more than one GA run are performed to experiment

with the GA parameters, particularly with the penalty factor k. In this case the most appropriate

penalty factor was established in Section 6.3 of the previous chapter.

GA run Lowest cost solution

($million;

Evaluation number Solution combination

(see Table 5.4)

T1 5.2510. 182,000 1,1 2

T2 5.3238 156,8001 15,2,2

T3 5.2510* 181,400 1 2 t 1

T4 5.2731 148,000t 3,1 2

T5 5.2510* 184,400 2.2.1
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7 Larger problems with known optimal solutions

7.4 Simultaneous Optimisation of Five Gessler Problems

Consider the simultaneous optimisation of five 14-pipe Gessler networks as an equivalent

7O-pipe network. The GA searches for the optimal 120-bit coded string formed by five

adjacent 24-bit coded strings. The optimum solution for the solution space has a cost of

$8.7516 million. There arc32 combinations of solutions 1 and 2 which are optimal pipe

network designs. The solution space searched by the GA consis¡t o¡ 2120 = 1.329xI036

possible solutions. Table 7.8 compares the size of the solution spaces and the GA runs for the

simultaneous optimisation of two, three and five Gessler problems.

Table 7.8 A comparison of the various expanded solution spaces

The improved GA formulation (described in Section 7.2.I) using substrings of Gray codes,

proportionate selection with power law fitness scaling, creeping mutations and the elitist

strategy is applied to the simultaneous optimisation of five Gessler networks. In order to

measure the effectiveness of the elitist model, the improved GA without elitism is also applied

The solution space and genetic

algorithm run comparisons

Two Gessler

Problems

Three Gessler

Problems

Five Gessler

Problems

Length of coded strings 48 binary bits 72blts 120 bits

Total number of solutions in

the solution space

248

(2.815x1014)

272

(4.7Z2xlgzr¡

2120

(1.329x1036)

Global optimum solution cost $ 3.5006 million $ 5.2510 million $ 8.7516 million

Number of global optima 4 8 32

Maximum number of string

evaluations for the GA runs

100,000 200,000 400,000

Maximum fraction of solution

space searched by the GA

3.55x10-8Vo 4.24x10-r5%o 3.OIxIO-2eVo

Marimum number of

hydraulic analyses

600,000 1,800,000 6,000,000

Total computational time

(SUN SPARCstation-1+)

116 minutes 350 minutes

Total computational time

(SUN SPARCstation-10)

14 minutes 42 minutes 140 minutes

Estimated time for one

hydraulic analysis

(SUN SPARCstation-10)

0.0014 secs 0.0014 secs 0.0014 secs
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7 l-arger problems with known optimal solutions

to the optimisation of five Gessler networks. Finally, to further demonstrate the capabilities of
the improved GA formulation for pipe network optimisation, the traditional GA formulation

(using substrings of binary codes and without fitness scaling, creeping mutations or elitism) is

applied to the optimisation of five Gessler problems.

7.4.1 The GA parameter sets F1-F5

The three GA formulations (the improved GA with elitism, the improved GA without elitism

and the traditional GA) used the GA parameter sets designated F1-F5 (with a few exceptions)

for the optimisation of five Gessler networks as given in Table 1.9. The size of the solution

space and the length of the binary string has increased significantly, and for this reason

population sizes are increased and probabilities of bit-wise mutations and creeping mutations

(for the improved GA runs) are decreased by comparison to the parameter sets D1-D5 used for

two Gessler problems (Table 7.I) and T1-T5 used for three Gessler problems (Tabte 7.5).

Table 7.9 Parameter sets FL-F5 for the optimisation of five Gessler problems

* not applicable to the improved GA runs without elitism

t not applicable to the traditional GA runs

Goldberg (1985) presented a theoretical basis for selecting initial population size. Goldberg

found the optimal population size to be a function of the length of the binary strings and

recommended a population size of N=2,240 strings for a string length of l=50 bits and

N=10,200 for l=60 bits. A population size of N>10,000 is not really practical, however, the

population size used for the optimisation of three Gessler problems, N=100 (N=200 for GA

run T2) may have been inadequate for the string length of.l=72 bits. The population size used

GA Parameters F1 F2 F3 F4 F5

Population size, N 200 400 200 200 200

Maximum number of generations 2000 1000 2000 2000 2000

Maximum number of evaluations 400,000 400,000 400,000 400,000 400,000

Probability of crossover, p. 1.0 1.0 0.5 1.0 1.0

Probability of bit-wise mutation, p- 0.0025 0.0025 0.0025 0.0025 0.0025

T Probability of creeping mutation, po 0.015 0.015 0.015 0.03 0.015

l Probability of creeping down, p¿ 0.6 0.6 0.6 0.6 0.6
*f Elite population size, N' 20 20 20 20 20

*l Probability of an elite mate, p" 0.03 0.015 0.03 0.03 0.03

Penalty factor, k ($m/psi) 0.05 0.05 0.05 0.05 0.05

Random number seed 100 100 100 100 200
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7 Larger problems with known optimal solutions

for the optimisation of five Gessler problems (l=120 bits) is increased to N=200 (N=400 for

GA run F2). The populations of 200 strings are allowed to evolve over a maximum of 2,000

generations (a total of 400,000 solution evaluations). The GA runs are terminated if the optimal

solution is determined before the generation of the 2,000 new populations.

The elite population size is increased to N'=20 members for the improved GA runs (with

elitism). The probability of an elite mate is decreased to pr-0.3 (P"=0.015 for GA run F2).

Since the population size has increased to N=200 members (N=400 for GA run F2), we expect

about 6 elite mates to be selected as parent strings per generation of 200 (or 400) chitd strings.

The probability of crossover is maintained at pr-I.O. As the string length gets longer, one-

point crossover may not provide adequate mixing of population individuals. Although it was

not considered in this study of multiple Gessler problems, multiple-point crossover may be

more effective under these circumstances (Section 6.6). The probability of bit-wise mutation is

decreased from p*-0.005 (1 bit inverted for every 200 bits crossed over) to pm=0.0025 (1 bit

inverted for every 400 bits crossed over). The probability of creeping mutation (for improved

GA runs) is significantly decreased from po-O.I25 (l substring mutated to an adjacent

substring in the decision variable substring list for every 8 substrings crossed over) to

pa=O.Ol1 (1 substring mutated for every 67 substrings crossed over). The binary strings of

120 bits are composed of 40 substrings of 3 binary bits. The strings are expected to be

subjected to 1 crossover and an average of 0.3 random bit-wise mutations and 0.6 creeping

mutations (improved GA runs) before forming the new population.

The GA runs designated F1-F5 were allowed a maximum of 400,000 solution evaluations.

Each solution evaluation required 15 hydraulic analyses (three demand patterns for five pipe

network designs per evaluation). Thus, a total of 6 million hydraulic analyses are performed

for 400,000 evaluations. The approximation in Section 7.2 that the computation time to

perform the genetic algorithm processes is negligible and the computation time therefore to

perform one hydraulic analysis of the l4-pipe Gessler pipe network is 0.0014 seconds would

indicate the GA runs of 6 million hydraulic analyses would require approximately 8,400

seconds. The GA runs required 8365 seconds (140 minutes) of CPU computer time on the

SUN SPARCstation-10 to complete the 400,000 evaluations. The maximum 400,000

evaluations represents only 3.01x10-2e%o of the total number of possible solutions.

The variation of the fitness scaling exponent, n throughout the improved GA runs of 400,000

solution evaluations (maximum) is given in Table 7.10.
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7 Inrger problems with known optimal solutions

Table 7.10 Variation of fitness scaling exponent, n for the GA runs F1-F5

Value of n Evaluation Number Interval

n=L evaluations < 100,000

n=2 100,000 < evaluations < 200,000

n=3 200,000 < evaluations < 300,000

n=4 300,000 < evaluations < 400,000

7 .4.2 Performance of the improved GA (with elitism) applied to
five Gessler problems

The performance of the improved GA (with the elitism strategy) is excellent and the optimum

solution is identified by four of the five GA runs as shown in Table 7.1 1. The variations of the

best generation costs and average generation costs for GA run Fl are given in Figures 7.7 and

7.8 respectively. The optimum solution was determined after completing 261,800 of the

allowed 400,000 evaluations. The GA run F4 (higher creeping mutation, p"=0.03) was the

only GA run to perform the maximum 400,000 evaluations without identifying the optimum

solution. The GA run F4 has probably become stuck on a local peak. The best solution

obtained for $8.8493 million is composed of four optimal solutions to the Gessler problem and

solution 39 from Table 5.4. Solution 39 is represented by the coded string as shown.

Solution 39 is a Hamming distance of 7 bits from the optimal solution I and 9 bits from the

optimal solution 2.

Solution 39 011-111-011-011-001-001-001-011

clean-dup. I 2" -clean- 1 0"-8 "-8 "-8 "- 1 0"

Table 7.11 Results of the optimisation of five Gessler problems using the

improved GA (with elitism)

* global optimum solution

t a maximum of 400,000 evaluations were performed

GA run

(with elitism)

Lowest cost solution

($million)

Evaluation number Solution combination

(see Table 5.4)

F1 9.7516* 261,800 1,1,1 ,2, 1

F2 9.75t6* 298,800 2,2,2,1 ,7

F3 9.7516* 269,400 1,1, 1 2 1

F4 8.8493 392,6001 1,39,1,1,r

F5 9.7516* r4r,200 1,2.2.t,1
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7 Larger problems with known optimal solutions

7 .4.3 Performance of the improved GA (without elitism) applied
to five Gessler problems

The improved GA (without the elitism strategy) does not determine the optimal solution with

any of the five GA runs as shown in Table 7.12. The elitism is turned off by using a

probability of an elite mate p"=Q.O. The elite population is maintained in any case so that the

best N' solutions are saved and reported at the completion of the GA run. The maximum

400,000 evaluations are performed for all of the runs. The improved GA run F3' (without

elitism) is very close to finding the optimum solution (0.0025Vo difference), although the GA

run F4' is a relatively long way from the optimal solution (0.057o difference). Figures 7.7 and

7.8 compare the variations of the best generation costs and the average generation costs for the

improved GA (with and without elitism) and the traditional GA for the GA parameter set Fl.

Table 7.12 Results of the optimisation of five Gessler problems using the

improved GA (without elitism)

T a maximum of 400,000 evaluations were performed
* some solutions do not appear in Table 5.4

# infeasible solution 1 from Table 5.29

7.4.4 Performance of the traditional GA applied to five Gessler

problems

The traditional GA model represents solutions by coded strings of binary bits in binary codes

(as opposed to Gray codes), and uses the original fitness function without the power fitness

scaling, and there are no creeping mutations or a parallel elite population. The performance of

the traditional GA summarised in Table 7.13 is inferior to that of the improved GA within

400,000 evaluations. The global optimum is not reached by any of the GA runs and the

maximum 400,000 evaluations are performed for all of the GA runs. The traditional GA run

F3" is closest to the optimal solution (0.08Vo difference). The comparisons of the plots of best

generation costs and average generation costs for GA model runs Fl, Fl' and Fl" in Figures

GA run

(no elitism)

Lowest cost solution

($million)

Evaluation number Solution combination

(see Table 5.4)

F1' 8.9845 378,2001 L2,4,1,4,15#

F2' 8.9807 367,6001 1.4.2,-,3#*

F3' 8.7738 381,2001 3,r,2.2,2

F4' 9.t935 359,2001 1 1 1 1 1
{.

F5' 8.9443 347,2001 8,J,8,2,5
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7 Larger problems with known optimaL solutions

7.7 and 7.8 respectively show that the traditional GA actually performs better than the improved

GA (without elitism) for the first 100,000 evaluations. The fitness scaling exponent, n is

increased after 100,000 evaluations for the improved GA and the effect of this increase is

significant.

Table 7.13 Results of the optimisation of five Gessler problems using the

traditional GA

GA run

(traditional)

Lowest cost solution

($million)

F1" 9.7 43r

F2" 9.1889

F3" 9.4587

F4" 9.743r

F5" r0.0326

7.5 Conclusions

In this chapter, large pipe network optimisation solution spaces with known global optimal

solutions have been manufactured by considering the simultaneous optimisation of two, three

and five Gessler problems. The coded strings representing solutions to the multiple Gessler

problem are formed by placing the component 24-bit strings representing solutions to the

subproblems side by side. The coded string for the simultaneous solution of five independent

Gessler problems has a string length of l=I2O binary bits and represents a vast solution space

of 1.329 x 1036 (2rzo¡ possible solutions. Of course, the global optimum solution is not

usually known for solution spaces of this size.

An improved genetic algorithm has been developed for this application to multiple Gessler

problems. The improved GA formulation (based on the results of the experimental analyses of

changes to the traditional GA formulation in Chapter 6) incorporates coded solutions

represented by strings of binary bits in Gray codes, power law fitness scaling and creeping

(decision-variable-wise or adjacency) mutations. In addition, an elitist concept has been

introduced to the improved GA formulation.

In the elitist strategy, a small (N' members) elite population of the best solutions previously

determined by the GA is maintained in parallel to the working population through the

generations. The members of the elite population are selected as parent strings with some low

probability of an elite mate, p".
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7 Larger problems with known optimal solutions

The improved GA model is very effective and quite efficient in searching the vast, complex

solution spaces for the multiple Gessler problems. The power of the elitist strategy is

remarkable. The effectiveness of the elitist model is demonstrated by the application of the

improved GA model (with and without elitism) to the optimisation of five Gessler problems.

The traditional GA formulation is also applied to the optimisation of five Gessler problems.

The improved GA (with elitism) clearly demonstrates superior performance to the improved GA

(without elitism) and in turn, the improved GA (without elitism) is superior to the traditional

GA for this study. The global optimum is identified in 4 out of 5 occasions by the improved

GA (with elitism) after relatively few solution evaluations (less than 400,000) in the vast

solution space for the simultaneous solution of five Gessler problems. By comparison, the

improved GA (without elitism) and the traditional GA are unable to locate the global optimum

solution.

The maintenance of an elite population of the previous best solutions allows for relentless

exploitatiorz of past results by selection and extensive exploration by crossover and mutation

mechanisms, without moving away from the best regions of the solution space previously

identified. Further research is required to determine the most appropriate values of elitist model

parameters of elite population size and probability of an elite mate, and to investigate other

issues such as the method of selection of elite mates from the elite population and the method of

updating the elite population.

The objgctive of the elitist model is to keep the genetic algorithm search on the right track. It is

hoped, that by the same principle, the elitist model does not lead the genetic algorithm search

down the wrong track. It may be necessary to vary the probability of an elite mate as the

genetic algorithm run proceeds to avoid the elite population being dominated by solutions from

better than average, but not optimal, regions of the solution space. If the elite population is not

improving, it may be necessary to suppress the selection of elite mates (reduce the probability

of an elite mate to zero) for a number of generations to allow the genetic algorithm a chance to

explore other regions of the solution space without the influence of the elite population. The

elite population may be updated as usual during this time. The initial results for the improved

genetic algorithm formulation including the elitist model presented in this chapter are quite

promising.
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I An Improved Genetic Algorithm Formulation
Apptied to the New York Tunnels Problem

The benchmark New York City water supply tunnels optimisation problem has been

comprehensively studied since the problem first appeared (Schaake and Lai, 1969) in the early

days of the consideration of the pipe network optimisation problem. A number of researchers

have reported the results of their studies of the New York tunnels problem in the pipe network

optimisation literature. Nonlinear programming, linear programming and enumeration pipe

network optimisation models have been applied to the New York tunnels problem.

The purpose of this chapter is to demonstrate the new genetic algorithm (GA) formulation

developed for pipe network optimisation in this thesis by applying it to the New York tunnels

network optimisation problem. The GA uses variable power scaling of the fitness function.

The exponent in the fitness function is increased in magnitude as the GA computer run proceeds

in order to stretch the range of fitness values (Goldberg, 1989). A creeping mutation operator

complements the more commonly used random bit-wise mutation operator. Gray coding is

used in the improved GA instead of binary coding to represent the decision variables as coded

substrings. A subtle form of the elitism strategy which demonstrated success when applied to

the optimisation of multiple Gessler networks in Chapter 7 is employed again here.

Results are presented comparingthe simple traditional GA formulation and the improved GA

formulation for the New York tunnels problem. The results indicate that the improved GA

performs significantly better than the traditional GA. In addition, the solutions obtained by the

improved GA are compared with the solutions obtained by traditional optimisation methods

such as linear programming and nonlinear programming methods and a partial enumeration

algorithm. Application of the improved GA to the New York tunnels problem provides the

lowest cost, feasible, discrete pipe size solutions yet presented in the literature.

8.L The New York Tunnels Problem

In 1969, Schaake and Lai developed an optimisation technique to determine the most

economical design for the proposed additions to the primary water distribution system of New

York City. The existing system (as defined in 1969) was composed of a network of 2l deep

rock tunnels of large diameter (up to 204 inches). Part of the proposed expansions included the

construction of duplicate gravity tunnels parallet to the existing tunnels to enable the system to

meet the increasing water demands. The New York City primary water supply tunnel system

(as considered by Schaake and Lai, L969) is shown in Figure 8.1.
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Figure 8.1 New York City water supply tunnels network in 1969
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The primary tunnel system consisted of City Tunnels No.1 and No.2. City Tunnel No.1

extended from Hillview Reservoir to node L6 in Brooklyn by way of Manhattan. City Tunnel

No.2 extended between Hillview Reservoir and Richmond downtake by way of Queens. City

Tunnel No.1 was constructed in about I92O and City Tunnel No.2 was constructed in about

1940 (de Neufville et al., l97I). The age of the City Tunnels and possible population increases

and the consequent increased water demands indicated the need to consider possible expansions

to the existing network.

A single demand pattern was considered for designing the improved tunnel system and a

corresponding minimum hydraulic grade line (HGL) profile was specified for the nodes as

given in Table 8.1. A hydraulic simulation of the projected demands applied to the existing

tunnel system shows that nodes 16,17 ,18, L9 and 20 fall significantly below the minimum

HGL profile (Bhave, 1985). Nodes 1, to 15 have acceptable hydraulic grade line elevations.

The tunnel system is a gravity flow system that draws water (20L1.5 cfs) from the Hillview

Reservoir at node 1. The lengths and diameters of the 21 existing tunnels are tabulated in

Table 8.2. A Hazen-Williams roughness coefficient C = 100 is assumed for all new and

existing tunnels. Imperial units were used in this study to allow for comparisons with previous

studies.

Table 8.1. Nodal data for the New York City water supply tunnels

Node Demand
(cfs)

MinimumHGL
(ft)

1 Reservoir 300.0
2 92.4 255.rJ
3 92.4 255.O
4 88.2 255.O
5 88.2 255.O
6 88.2 255.O
7 88.2 255.0
I 88.2 255.0
9 170.0 255.0

10 1.0 255.0
LL 170.0 255.0
t2 tr7.r 255.0
13 I17.L 255.O
t4 92.4 255.0
15 92.4 255.O
ló 170.0 260.O
t7 57.5 212.8
1ü tt7.L 255.0
t9 ln.t 255.O
zo 170.0 255.0
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8 An improved genetic algorithm formulation applied to the New York tunnels problem

Table 8.2 Existing tunnel data for the New York City water supply tunnels

Tunnel Start node End node Length
(fÐ

Exrstrng
diameter

(in)
I 1 z 1 1600 180

2 3 19800 180

3 3 4 7300 180
4 4 5 8300 180

5 5 ó 8600 180
6 6 7 19I00 180

7 ü 9600 r32
8l 8 9 r2500 r32
9 9 1t 9600 180

IU ll 9 tt200 zo4
11 L2 11 14500 204
t2 13 1.2 t2200 204
t3 l4 13 24to0 204
t4 15 L4 21100 204
15 I 15 15500 204
16 L0 t7 26400 72
n t2 18 31200 72

t18 18 t9 24000 60
19 11 zt) r4400 60
20 20 16 38400 60
ZI 9 16 26400 7Z

Hazen-Williams roughness C = 100 for all pipes

The genetic algorithm technique considers a set of design variable choices that are 15 discrete

tunnel sizes and the alternative of not duplicating the existing tunnel. The available tunnel sizes

considered for the New York tunnels additions are presented in Table 8.3. The tunnel cost

function given by Eq. 8.1 relating tunnel construction cost to new tunnel diameter used in the

original work is used in this study.

TC¡ - l.l Drt'zt 7' (8.1)

in which TC¡= construction cost of tunnel i (L969 US dollars)

D¿ = diameter of tunnel t (in)

L¿ = length of tunnel I (ft)
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.3 Available tunnel sizes and construction costs for

New York tunnels duplications and the corresponding coded substrings

Diameter
(inches)

Unit tunnel cost
($/f0

SU

Binary code Gray codes
0 (do nothtng. 0 0000 0000

36 93.5 0001 0001
48 r34.O 0010 00r I
60 176.0 001 1 0010
72 221.0 0100 0l I0
84 261.O 0l0l 0111
96 316.0 0110 0101
108 3ó5.0 011I 0100
t20 4r1.t) 1000 I 100
t32 469.O 1001 t 101

t44 522.O 1010 1t1l
156 577.O 1011 1110
168 632.tJ I 100 1010
180 689.0 1101 1011

t92 146.rJ 1110 1001

204 804.0 1111 1000

8.2 The Genetic Algorithm Optimisation Approach

The improved GA formulation for pipe network optimisation developed in the preceding

chapters has proven to be a successful GA model for this application. The main elements of the

improved GA formulation are outlined in Table 8.4.

The GA approach to the optimisation of the expansions to the New York tunnels can be

separated into three parts:

1) Firstly, the formulation of the GA is established for the New York tunnels optimisation

problem including a coded string structure, a decoding scheme, a fitness function, the

GA operators and appropriate GA parameters (Section 8.3)'

In the second part of the GA study, the improved GA formulation is applied to the New

York problem for different penalty multipliers to establish the most appropriate penalties

for violations of the node minimum HGL constraints (Section 8'4).

Finally, nine sets of GA parameters (population sizes, probabilities of crossover and

bit-wise mutation) are investigated. The performance of the GA search is evaluated for

the traditional three-operator GA, the improved GA formulation (for pipe network

optimisation) and va¡ious intermediate GA formulations to measure the effectiveness of

the various proposed modifications to the simple GA formulation (Section 8.5).

2)

3)
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The differences between the traditional GA and the improved GA formulation developed in this

thesis for pipe network optimisation are summarised in Table 8.4.

Table 8.4 The improved GA compared to the traditional GA formulation

8.3 The lmproved Genetic Algorithm Formulation

8.3.1 Structure of the coded strings

The trial designs for the New York tunnel network expansions generated by the GA are

represented by strings of code using the binary alphabet { 1,0}. The coded strings of 84 binary

bits, consist of 21 coded substrings of 4 binary bits each as shown in Figure 8.2. The

21 coded substring positions correspond to the 21 existing tunnels that may be duplicated. A

substring of 4 binary bits permits representation of the 16 alternative discrete design variable

choices considered for the New York problem as demonstrated in Table 8.3. The New York

tunnels problem is a difficult problem with a significantly larger search space than the Gessler

problem. The solution space considered by the GA consists of the set of 284 or 1.934x102s

unique solutions for the coded string length of 84 binary bits.

8.3.2 Binary codes and Gray codes

The chosen mapping between coded substrings and design variable choices associates the

anificial genetic code with a pipe network design. The design variable choices are the possible

diameters of the new parallel tunnels for the New York primary tunnels system. Traditionally,

binary codes have been used to specify the mapping. The improved GA formulation uses Gray

codes (Section 6.5). Table 8.3 presents the alternative mappings between design variable

choices and decision-variable substrings for both coding schemes'

Feature of GA formulation Traditional GA formulation Improved GA formulation

Coded strings: Substrings of binary code Substrings of Gray codes
Fitness values: Raw fitness values Variable power scalrng of raw

fitness values

GA operators: (1) Reproduction
(2) Crossover

(3) Random bit-wise
mutations

(l) Reproduction
(2) Crossover

(3) Random bit-wise mutations
(4) Random creeping mutations

Other: Parallel populatron of elite stnngs
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The tunnels conesponding
to the substrings

Subsfrings in Gray codes

cÄ(1) $38 .796m

cA(2) S39 .062m

cA(3) $39.166n

cÀ(4) $39 .227m

eÀ(5) $39.284m

cÀ(6) $38.524m*

GÀ(7) 536.190m*

cA(8) $33.626m*

Substrings in binary codes

GA(1) $38.796m

cA(2) $39 .062m

cA(3) $39.166m

cA(4) 539.22Lm

cÀ(5) S39 .284m

c.A(6) $38.524m*

GÀ(7) $35.190m*

GA(8) S33 .626m*

* Infeasible Designs

t1l -t21 -t3l -t4l -tsl -t6l -t7l -t8l -tel -t10l- tlJl-lr2l-t131-t141-t1sl-t161 -tÚl- t18l-t7e)-l'201-12L)

0ooo-0000-0ooo-0000-0000-oooo-0000-0000-ooo0-0000-0000-oooo-oooo-0000-1100-ol-11-0101--011-1-01-10-0000-011-0

0oo0-0ooo-oooo-0000-0000-0000-1-111-OOOO-O0oO-oo0o-0000-0000-0000-0000-0000-0101-0100-0110-0110-0000-0110

o0oo-0ooo-ooo0-o0oo-oo0o-0ooo-1110-0ooo-ooo0-0000-0000-o0oo-0000-0000-oooo-0101-0101-01-11-0110-0000-0110

0000-0000-oooo-0ooo-0000-oo0o-0000-oooo-oooo-0000-0000-0ooo-0000-0000-1100-0111-0100-01-10-0110-0000-01-l-0

00oo-oooo-0000-0000-ooo0-0ooo-oooo-oo0o-0000-0000-0000-o0oo-o0oo-0000-01-oo-0101-0101-0111-0110-0000-0110

0000-o0oo-o0oo-0000-0000-oo0o-o0oo-oo0o-0000-o0oo-0000-o0oo-oooo-0000-0101--010L-0101-011-1-0110-0000-011-0

0ooo-0ooo-0000-0000-oo0o-oo0o-0111-0ooo-0000-0ooo-0000-o0oo-0000-oo0o-0000-ol-01-0101-0111-011-0-0000-0110

ooo0-ooo0-ooo0-0000-ooo0-oooo-0000-0000-0000-0000-o0oo-0000-0000-0000-0ooo-0101-0101-0111-0110-0000-0110

oooo-ooo0-oooo-0ooo-oo0o-oooo-0000-oooo-0ooo-0000-0000-0ooo-0000-0000-1000-0101-0110-0101-0100-0000-0100

oo00-oooo-0ooo-0000-0000-ooo0-1010-0000-0000-o0oo-oo0o-0ooo-0ooo-0000-0ooo-0110-0111-0100-0100-0000-01-00

oooo-oooo-oooo-0000-0000-oo0o-101-1-oooo-0000-0000-0ooo-0ooo-oo0o-0000-oooo-0110-0110-0101-0100-0000-0100

0000-0000-oooo-0000-oo0o-0000-0000-oooo-0ooo-0ooo-0000-0ooo-oooo-0000-1000-0101-0111--0100-0100-0000-01-00

o0oo-0000-oooo-0000-0000-0000-o0oo-0ooo-0000-0000-0000-oooo-0000-oo0o-0111-0110-Ol-10-0101-0100-0000-0100

0000-0000-oooo-0000-ooo0-oooo-0ooo-0000-0000-0000-0000-0000-oo0o-0ooo-011-o-o1l-o-011-0-0101-01-00-0000-0100

o0oo-0000-0000-o0oo-o0oo-0000-0101-OOOO-O0oO-Ooo0-0000-0000-0000-0000-0000-0110-0110-0101-01-00-0000-0100

o0o0-0000-0000-0000-0000-0ooo-0ooo-0000-oooo-0ooo-0000-0000-0000-oo0o-0000-0110-01-10-0101-0100-0000-0100

Figure 8.2 Coded strings representing the best GA designs



8 An improved genetic algorithmformulation applied to the New York tunnels problem

The Gray code representation is such that neighbouring decision-variable substrings differ by

only one bit or a Hamming distance of 1. Since similar genetic code represents adjacent design

variable choices, the Gray codes onsure trial solutions that are nearby in the solution space are

represented by similarly coded strings. By comparison, neighbouring substrings in binary

codes may differ by any number of bits. The extreme Hamming distance of 4 for bit strings of

length 4 is referred to as a Hamming cliff (between substrings 0111 and 1000). It would be

difficult to alternate between these coded substrings during the course of the GA run using bir
wise mutations or one-point crossover alone, even though in binary codes they represent

adjacent pipe sizes.

8.3.3 Raw fitness of a coded string

The new coded strings generated by the GA are decoded to trial tunnel network designs by

observing the mapping between substrings and design variable choices in Table 8.3. The trial

designs are evaluated in terms of hydraulic performance and estimated tunnel construction

costs. The strings in a population are then accompanied by appropriate measures of fitness.

The raw fitnessf. of a string j is a function of tunnel construction costs TC¡ for the tunnels i and

a penalty cost PC for unacceptable system performance:

f¡=
PC+

2I
TC¡ (8.2)

i= I

8.3.4 The reproduction operator

The GA reproduction operator adopted is a proportionate selection scheme (with replacement)

which chooses parent strings for the next generation according to their f,rtness with respect to

the fellow strings of their generation. The probability of selection, p; of string j in reproduction

is given by Eq. 8.3. The string's fitness differentiates it from stronger and weaker strings in

its own generation allowing it an appropriate chance of selection in reproduction. There

remains a degree of randomness about the proportionate selection process.

pj= f¡
N

2r" (8.3)
n=l
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

8.3.5 Scaled fitness of a coded string

The traditional GA considers the raw fitness of coded strings in reproduction. The improved

GA adopts a power law fitness scaling mechanism to adjust the raw fitness of strings in a

population to maintain an appropriate level of competition between strings (Goldberg, 1989).

t'-tnJj=Jj (8.4)

The fitness scaling function in Eq. 8.4 is used in this study to adjust the calculated raw fitnessf

of the strings j in a population to the scaled fitnessf '. The value of the exponent n is allowed

to increase in steps as the GA run progresses. The early populations of the GA search are

formed by diverse sets of strings, all holding potentially valuable genetic information. The

exponent is low in the early generations, while the GA assesses the potential strengths of the

assortment of strings. The value of the exponent is increased in steps during the intermediate

generations.

As the GA search develops further, the strings in a population are constructed of similar genetic

code. The raw fitness values are usually very similar, such that the probabilities of selection of

the strings from a population are indiscernible to the proportionate selection operator. A high

value of the exponent is used to accentuate the small differences in string raw fitness. The

exponent r? was allowed to vary throughout the improved GA search:

n=

I evaluations performed S 50,000

2 50,000 < evaluations S 100,000

3 100,000 < evaluations < 150,000

4 150,000 < evaluations 5200,000

8.3.6 The penalty function

The pipe network design is subject to a set of system performance constraints that may be

included in the GA search by way of a penalty function. The New York tunnels network

expansions are subject to a pattern of node demands and the proposed designs are required to

achieve a minimum hydraulic grade line (HGL) profile (Table 8.1). Infeas¿bl¿ solutions are

unacceptable designs which do not achieve the specified system performance requirements.

The penalty function in Eq. 8.5 appties a penalty cost PC to infeasible solutions that is a

function of the degree by which the design violates the hydraulic head constraints. The penalty

function for pipe network optimisation established in Section 6.3 is a linear function of the
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

maximum deficit of hydraulic head. The pressure violation penalty cost is the product of the

maximum violation and a specified penalty multiplier, k.

{
PC= k l*tr (H#i" H^)) for demandnodes m: H*< Hf,'"

if .for all m : H^ > Hn'"
(8.5)

0

in which rn = nodes where the minimum HGL constraints are not satisfied, Hç'n - minimum

allowable hydraulic head at node m, H^- measured hydraulic head at node m and k - penalty

multiplier ($/unit of hydraulic head). The selection of an appropriate penalty multiplier is

considered in Section 8.4.

8.3.7 Creeping mutations

A creeping mutation operator introduced in Section 6.7 is used in the improved GA

formulation. The creeping mutation operator changes a randomly selected decision-variable

substring to an adjacent substring up or down the list of decision-variable substrings with some

probability, pq. For example, the substring 0001 may change up to the substring 0011 (in Gray

codes) or change down to the substring 0000. The creeping mutations contrast with the

traditional random bit-wise mutations that may or may not produce an adjacent decision variable

choice. For example, the substring 0000 may be altered by a bit-wise mutation to 1000, 0100,

0010 or 0001. Although these substrings modified by bit-wise mutations are only a Hamming

distance of 1 from the original substring, the substrings 1000 and 0100 represent significantly

different designs compared to 0000. Random bit-wise mutations are still important as they add

diversity to the gene pool. The creeping mutations and the traditional random bit-wise

mutations with low probability were used simultaneously in the improved GA formulation.

A creeping mutation occurs when a substring of a new string for the new generation is selected.

This occurs with a specified probability of creep po. The creeping mutations could be

performed on any string as part of the formation of the new population. A value of po-0.04 is

employed in the improved GA runs which implies about I in 25 substrings in the new

population will shift to an adjacent substring. Since the coded strings for the New York tunnels

GA search consist of 21 substrings, most strings are likely to be subject to a creeping mutation'

The creeping mutation operator allows for different probabilities of creeping up or down the list

of decision-variable substrings. Given that a creeping mutation will proceed, a probability of

creeping down, pFO.6 was used in the ensuing improved GA runs, imptying there is a60Vo

chance of creeping down the substring list towards 0000 (to smaller tunnel diameters) and a
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

4O7o chance of creeping up. The probability of the direction of creeping mutation is biased in

the downward direction with the view of enhancing the chance of moving towards lower cost

solutions. The subtle creeping mutations provide hne adjustments in the vicinity of the current

solutions.

8.3.8 Elitism

An elitism concept was introduced in Section 7 .2.2. A small population of N' elite members is

maintained in parallel to the natural working populations of N coded strings. The elite members

consist of the best strings determined at any of the earlier generations of the GA. A number of

the elite strings are mated with strings from the natural population with some probability of an

elite mate, p". The natural population mates are selected by the proportionate selection operator.

The elite mates are selected randomly from the small parallel elite population.

An elite population size of N'=10 members and a probability of an elite mate p¿=0.01 is

considered for the improved GA applied to the New York tunnels problem. A value of p"-0.01

and a population size of N=200 imply approximately (prXM)=2 of the 200 strings selected to be

parent strings for the new population will be strings from the elite population.

8.3.9 Population size, crossover and random bit-wise mutations

The improved GA runs in Section 8.4 experiment with the penalty function for a set of GA

parameters which are expected to perform effectively for a problem of this size. The primary

GA parameters are chosen to be population size, N=200, probability of crossover, Pc=1.0 and

probability of mutation, pm=O.OOs. The GA runs in Section 8.5 consider the performance of

the various formulations of the GA model across nine alternative sets of GA parameters. The

GA parameter sets in Section 8.5 systematically vary from the primary GA parameter set.

Population sizes of coded strings of N=100, N=200, N=500 and N=1,000 were considered for

a crossover probability pc=|.0 and a probability of mutation pm=0.005. The GA runs were

allowed a maximum of 200,000 objective function evaluations which is only a relatively small

fraction of the entire solution space of 1.934x192s possible solutions. The GA runs used

approximately 6 minutes of CPU time on a SUN SPARCstation-lO (using SunOS Release

4.I.3) for the 200,000 function evaluations.

A function evaluation is required for every new coded string created in a new generation when

an old string is disrupted by crossover or mutation or by another GA operator such as creeping

mutation. The expected number of generations for 200,000 evaluations can be computed by

considering the expected number of new strings created in a new population. In the following

292



8 An improved genetic algorithmformulation applied to the New York tunnels problem

GA runs, the actual numbers of new string evaluations are counted as the GA run proceeds.

The GA run is terminated when the maximum number of 200,000 evaluations are performed.

The number of generations required to produce 200,000 new strings are recorded.

Crossover occurs between two selected parent strings with a probability of crossovar, pc.

Probabilities of crossover pr=Q.25, pr-0.5, pc=0.75 and pr-l.O are considered. A value of

pc=0.5 and apopulation size of N=200 will result in approximately þr)(M)=100 of the 200

coded strings in the new population being created by crossing over two strings from the old

population. The other 100 or so strings pass to the new generation without being crossed over.

GA researchers (Goldberg, 1989) suggest good performance of the GA may be obtained using

high crossover probabilities (pc=0.5 to 1.0). For a value of pr-|.0, every string selected from

the old population is modified by crossover in forming the new population.

GA researchers (Goldberg, 1989) suggest bit-wise mutations should occur with low probability

(pm=0.00t to 0.05). Mutation probabilities p.-0.001, p^=0.005 and pm=0.0I are considered

in the following GA runs. A value of p^-0.005 implies 1 bit in every 200 bits crossed over is

mutated. Since the string length is 84 bits for the New York problem, about 4 bits will be

mutated from 10 strings crossed over to form a new population. A high probability of

crossover (pc=l.0) and relatively frequent bit-wise mutations (p-=0.005) are employed for the

GA runs in Section 8.4.

The random number generator seed is usually held constant for a series of GA runs for a fair

comparison. The seed is an arbitrarily chosen integer that initiates a unique sequence of random

numbers. The same seed produces the same sequence of random numbers and generates the

same starting population of coded strings for a given population size. This is useful for the

comparison of the performance of various GA formulations and combinations of GA

parameters. The mechanics of the random number generator were described in Section 5.4.1.
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

8.4 Establishing a Penalty Multiplier (GA Runs NY1-NY10)

Infeasible solutions are expected to play an important role in the GA search. The optimal

solution lies close to the boundary between feasible and infeasible solutions. The penalty

function approach should allow the GA search to approach the optimum solution from both the

feasible and infeasible regions of the solution space. Ideally, the lowest cost solution

determined by the GA search will be a feasible solution. Therefore, the penalty multiplier

should produce penalty costs such that near-optimal infeasible solutions are just a little more

expensive than the optimal (best feasible) solution. Since the optimal solution is not known,

some trial and error adjustment of the penalty multiplier is usually necessary. The purpose of

GA runs NYl, NY2,..., NY10 is to establish an appropriate penalty multiplier, k. The penalty

multiplier sets the severity of the penalties. The GA runs are summarised as follows:

NY1-NY5

NY6-NY1O

Improved GA formulation with varying penalty multiplier /c=$5million/ft,

$l0millior/ft, $20million/ft, $3Omillion/ft and $4Omillion/ft for five identical

GA parameter sets with N=200, pr=I.O and p^-0.005 (and with random

number seed=l0)

Improved GA with varying penalty multiplier for five identical GA parameter

sets as for GA runs NYl-NY5 (but with s¿¿d=20)

In this study, the performance of a GA run is evaluated in terms of a number of measures. The

best costs and average costs of each generation of the GA run are recorded as the run proceeds.

The lowest solution cost generated by the GA run and the number of generations and

evaluations to achieve this solution, and the lowest average generation cost achieved during the

GA run are recorded. DeJong (1915) used two performance measures, online and offline

performance, to evaluate the effectiveness of his GA models applied to various solution spaces.

The online performance is described as an average of all function evaluations up to the current

time and offline performance as the average of the best function evaluations to the current time

(Goldberg, 1989). In this study, ultimate offline performance is the average of all best

generation costs at the termination of the GA run and the ultimate online performance is the

average of all solution costs (excluding elite population solutions) at the end of the GA run.

Ultimately, the success of the GA run is measured by the quality of the best solution produced.

The lowest cost feasible and infeasible GA designs determined by GA runs in this chapter,

designated GA(1)-GA(8), were shown in Figure 8.2 and are presented in detail in Section 8.6.
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

8.4.1 Results of GA runs NY1-NY10

The GA parameters and features of the improved GA formulation and the results of GA runs

NYl-NY5 are given in Table 8.5. Table 8.6 shows the results of the GA runs NY6-NY10.

Infeasible designs are more prominent in the GA search when the penalty multiplier is smaller.

The GA runs NY1 (k=$5million/ft) and NY2 (/c=$lOmillion/ft) with the smaller penalty

multipliers generate many low cost, but slightly infeasible solutions and the best cost solutions

are infeasible. The GA run NY1 determined a least cost (infeasible) solution for $38.497

million ($37.130m for tunnel construction costs and a penalty cost of $1.:Zm as a result of a

hydraulic head deficiency of O.27ft at the critical node). The GA run NY2 determined a least

cost infeasible solution for $38.845m ($38.638m for tunnel costs and a penalty cost of

$0.207m indicating a maximum hydraulic head violation of 0.04fÐ. The GA runs NY6

(k=$5million/ft) and NY7 (k=$lOmillion/ft) with a different starting population of strings

(different random number seed) reach the same least cost (infeasible) solutions as the

corresponding GA runs NYl and NY2.

The costs of several infeasible solutions determined in GA runs NY1, NY2, NY6 and NY7 are

less than the cost of the best known feasible design GA(1) of $38.796m (Section 8.6). In such

cases, it is worthwhile observing the least cost/easible designs identified by the GA run. The

GA run NYl found the local optimum design GA(2) for $39.062 million after 164,800

evaluations (824 generations) and GA run NY2 found design GA(2) after 115,800 evaluations

(579 generations). The GA runs NY6 and NY7 also located design GA(2). The GA runs with

lower penalty multipliers are useful as they demonstrate the value in some infeasible designs.

Some of the most valuable infeasible designs produced are GA(6), GA(7) and GA(8).

The offline performance (average of the best of generation costs) after the completion of 1,000

generations (or 200,000 evaluations) for GA runs NY1-NY5 (in Table 8.5) is slightly less for

NYl as it generates many low cost infeasible solutions, but is not significantly different for the

increasing penalty multipliers of GA runs NY2-NY4. As expected, the lowest average

generation cost and ultimate online performance (average of all solution costs) increases as the

penalty multiplier increases. In general, the lowest average generation cost is achieved in the

last quarter of the GA runs NYl-NY5 (after 750 generations when the exponent in the scaled

fitness function becomes n=4), indicating the GA populations are improving up to and beyond

750 generations (or 150,000 evaluations).

295



8 An improved genetic algorithntformulation applied to the New York tunnels problem

Table 8.5 Improved GA runs NYI-NYS with varying penalty multiplier

I infeasible designs
* number of infeasible solutions in starting population

GA SEARCH FORMULATION AND PARAMETERS FOR GA RUNS NYl-NY5

GA RUNS NY1 NY2 NY3 NY4 NY5

Population size, N 200 200 200 200 200

Maximum number of evaluations 200.000 200.000 200.000 200.000 200.000

Maximum number of generations 1.000 1.000 1.000 1.000 1.000

Probability of crossover, p. 1.0 1.0 1.0 1.0 1.0

Probability of random bit-wise mutation, p. 0.005 0.005 0.005 0.005 0.005

Probability of creeping mutation, po 0.04 0.04 0.04 0.04 0.04

Probability of creeping down, p¿ 0.6 0.6 0.6 0.6 0.6

Random number generator seed 10 10 10 10 10

Penalty multiplier, k ($million/ft) 5.0 10.0 20.0 30.0 40.0

Codine scheme Grav Grav Gray Gray Gray

Fitness Scaled Scaled Scaled Scaled Scaled

Elite population size, N' 10 10 l0 10 l0

Probability of an elite mate, pe 0.01 0.01 0.01 0.01 0.01

GA SEARCH RESULTS FOR GA RUNS NYl-NY5

GA RIJNS NYl NY2 NY3 NY4 NY5

Lowest solution cost (incl. penalties) ($million) 38.4971 38.8451 39.682 39.062 39.062

- after - generation 947 915 4t2 437 345

- after - evaluation 189.400 183.000 82,400 87,400 69.000

Lowest averase generation cost ($million) 4'.t.8 48.8 52.9 53.1 55.6

- after - qeneration 811 964 754 992 879

- after - evaluation t62,200 192.800 150.800 198.400 175,800

Ultimate offline performance ($millio¡) 42.33 43.66 43.68 43.46 43.39

Ultimate online performance ($million) 60.3 66.s 75.O 83.4 91.1

GA desisns qenerated (Table 8.13 and Figure 8.2) 2.3.s.6I.8t 2.3 2.3 2.3

Average no. of infeasible solutions / population t79.6 73.0 52.3 45.5 40.3

Maximum no. of infeasible solutions t62 109 l02* l02+ l02+

Minimum no. of infeasible solutions 11 25 5 16 8
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GA SEARCH FORMULATION AND PARAMETERS# FoR GA RUNS NY6-NY1O

GA Rurus NY6 NY7 NY8 NY9 NYlO

Random number generator seed 20 20 20 20 20

Penalty multiplier, k ($million/ft) 5.0 10.0 20.0 30.0 40.0

GA SEENCH RESULTS FOR GA RUNS NY6-NY1O

Lowest solution cost (incl. penalties) ($million) 38.4911 3 8.84s t 38.796 39.062 39.062

- after - qeneration 891 826 347 431 334

- after - evaluation 119.400 165.200 69.400 86.200 66,800

Lowest averase seneration cost ($million) 46.5 48.8 51.6 52.5 55.1

- after - generation 769 190 963 799 935

- after - evaluation 153.800 158.000 t92.600 159,800 187.000

Ultimate offline performance ($million) 42.4t 43.42 43.66 43.1 8 43.56

Ultimate online performance ($million) 60.9 66.r 15.O 82.5 90.4

GA desisns generated (Table 8.13 and Figure 8.2) z.eI .tI.sI 2.3 1.4.5.61 2.3 2.3

Averase no. of infeasible solutions / population t20.5 73.8 44.5 44.8 40.8

Maximum no. of infeasible solutions t70 110 101* 101* 101*

Minimum no. of infeasible solutions 32 2'l 13 t4 9

8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.6 Improved GA runs NY6-NY10 with yarying penalty multipliers and

new random number generator seed

# GA parameter sets identical to corresponding GA runs NYI-NYS, except for seed

t infeasible designs
* number of infeasible solutions in starting population

Figure 8.3 shows the best of generation costs for GA runs NYl (ft=$5million/fÐ and NY5

(ft=$40million/ft). Both GA runs converge quickly on the best regions of the solution space,

although the GA run NYl converges slightly faster to lower total costs (including penalties).

Figure 8.4 plots the average generation costs for the GA runs NYl, NY3 and NY5. The

average generation costs increase and are less stable for higher penalties.
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8 An improved genetic aLgorithmformulation applied to the New York tunneLs problem

The GA run NYI moves further into the best infeasible regions of the solution space as

indicated by the number of infeasible solutions per generation in Figure 8.5. The GA run NYl
has on average 120 and up to 160 infeasible solutions in any population of 200 solutions,

compared to an average of 40 infeasible solutions per population for GA run NY5 with the

larger penalty multipliers. The high numbers of infeasible solutions present in the GA runs

(even for high values of the penalty coefficient) underline the important role of infeasible

solutions in the search.

Since the five GA runs NY1-NY5 are initiated with the same random number generator seed,

the starting populations of coded strings are identical and each starting population contains i02

infeasible solutions. The starting populations with the different seed for GA runs NY6-NY10

contain 101 infeasible solutions. The randomly generated starting populations of solutions for

the New York problem was consistently formed with about an equal share of feasible and

infeasible solutions. The size of the feasible and infeasible regions of the solution space may be

approximately equal.

Most of the infeasible solutions in the starting population are likely to be very infeasible and the

numbers of infeasible solutions in the subsequent early populations suddenly drops from 100 in

a population size of 200 to only 10 or 20 (for all values of k). The proportion of infeasible

solutions then gradually increases again toward the typical number for the given value of ft.

Further experimentation may consider some variation of the penalty multiplier value as the GA

run proceeds. Initially, the value of the penalty multiplier should be low to avoid the immediate

culling of large numbers of infeasible designs, but perhaps should increase as the GA run

develops to ensure convergence to feasible regions of solutions.

The performances of GA runs NY6-NY10 are similar to corresponding GA runs NYl-NY5.

The significant difference is the improved GA run NY8 (with k=$20million/ft) achieves a lower

cost feasible design, which is the lowest cost design identified by any of the GA runs. The

design is GA(l) with a tunnel construction cost of $38.796 million (presented in Section 8.6).

The design GA(1) is determined by GA run NY8 after only 69,400 solution evaluations of the

maximum 200,000. The other GA runs NY6, NY7, NY9 and NY10 all find the second best

known feasible solution GA(2) with cost $39.062 million, although the least cost solutions

(including penalty costs) determined by GA runs NY6 (k=$5 million/ft) and NY7 (k=$10

million/ft) are infeasible solutions.
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The improved GA runs NY1-NY10 with varying penalty multipliers demonstrate a high level of

performance regardless of the severity of the penalties for the penalty multiplier values tested.

For GA runs NY1-NY1O, the number of infeasible network solutions present in each new

generation and the feasibility of the lowest cost solutions identified by the GA search are

indications of the suitability of the penalty multiplier. The lower penalties (k=$5mitlion/ft and

$lOmillion/ft) produce a number of valuable just-infeasible solutions and the low cost feasible

solution GA(2), which is one of two distinct local optima found by the GA search. When

larger penalty multipliers (k=$30million/ft) are applied to infeasible solutions, the local optimal

solutions GA(1) and GA(2) are the best cost solutions and near-optimal infeasible solutions are

a little more expensive than the feasible optima.

A penalty multiplier of k=$30million/ft (GA runs NY4 and NY9) is used for the GA runs in

Section 8.5 of this study. For a value of k=$30million/ft, the lowest cost designs generated are

feasible designs, although some infeasible designs are still amongst the best designs and there

is a reasonable number of infeasible solutions generated in a population.

8.5 Performance of the lmproved GA Formulation
(GA Runs NYL1-NY69)

The series of GA runs designated NYl1-NY19, NY21-NY29,..., NY61-NY69 are intended to

measure the effectiveness of the various features of the improved GA formulation. The GA

runs are summarised as follows:

NY11-NYl9

NY21-NY29

NY31-NY39

NY41-NY49

NY51-NY59

NY6I-NY69

Improved GA incorporating the elitism strategy, Gray codes, fitness scaling

and creeping mutations for nine GA parameter sets that are variations of the

original GA parameters N=200, pc=L.0 and p^-0.005 (with seed=SO and

k=$3Omillior/ft)

Improved GA (NYll-NYl9) for the nine corresponding GA parameter sets

(used for NYl1-NY19) but with no elitism strateg)¡ (Pr=0.0)

Improved GA (NYll-NYl9) for the nine corresponding GA parameter sets

(NYl 1-NY19) but using substrings of binary codes (not Gray codes)

Improved GA (NYl1-NY19) for the nine corresponding GA parameter sets

(NYl1-NY19) but with no fitness scaling

Improved GA (NYl1-NYl9) for the nine corresponding GA parameter sets

(NYl1-NY19) but with no creeping mutation (Po=0.0)

Traditional GA formulation (withpr-0.0, binary codes, raw fitness values and

po=0.0) for the nine corresponding GA parameter sets (used for NYl1-NY19)
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The improved GA formulation for pipe network optimisation is applied to the New York

tunnels problem for nine alternative GA parameter sets and the GA runs are labelled NYl1-

NY19. The GA parameter sets are summarised in Table 8.7. The primary GA parameters

(used for GA run NY12) are chosen to be N=200,pr=1.0 and p*-0.005. The population size,

crossover rate and bit-wise mutation rate are systematically varied from the primary GA

parameter values to form the nine GA parameter sets. Population size is varied from N=100 to

1,000 members, probability of crossover is varied from pr-O.25 to I.0 and mutation rates of

pm=Q.001,0.005 and 0.01 are considered. The random number seed is held constant for all

the GA runs. Since, it is more desirable to produce a least cost solution which is feasible, a

penalty multiplier value of k=$30million/ft is used for the GA runs NY11-NY69 (see

Section 8.4). The performance of the improved GA formulation (GA runs NYl1-NY19), the

traditional GA formulation (GA runs NY61-NY69) and the various intermediate GA

formulations are assessed across the nine selected GA parameter sets.

8.5.1 Results of GA runs NY11-NY69

The results for the improved GA runs NY11-NY69 are summarised in Tables 8.7-8.12. The

GA run NY12 identifies the solution GA(1) after 459 generations (91,800 evaluations). Of the

total of 64 GA runs performed in this GA study of the New York tunnels problem, the best

known feasible solution GA(1) for $38.796m (presented in Section 8.6) was achieved only 3

times in GA runs NY8 (improved GA with k=$20million/ft), NY12 (improved GA with

k=$30million/ft) and NY37 (improved GA with substrings of binary codes and pt=Q;7 5). By

comparison, the competing local optimum solution GA(2) for $39.062m was achieved on 39

occasions. The improved GA runs NYl1-NY19 (with elitism) determined solution GA(1) on

one occasion with N=20O, achieved solution GA(2) six times and twice (N=500 and p"-0.25)

failed to determine either GA(1) or GA(2).
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.7 Improved GA runs NY11-NY19

GA SEARCH FORMULATION AND PARAMETERS FOR GA RUNS NY11-NY19

GA RIJNS NYl 1 NYI2 NYI3 NYI4 NY15 NY16 NY17 NYl8 NY19

Population size, N 100 200 500 1.000 200 200 200 200 200

Maximum evaluations 200.000 200,000 200,000 200,000 200,000 200.000 200,000 200,000 200,000

Max. senerations reouired 2,000 1,000 400 200 1.131 1.089 t.044 1.000 1.000

Prob. crossovet, pc 1.0 1.0 1.0 1.0 0.25 0.5 0.7 5 1.0 1.0

Prob. bit mutation, p- 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.01

Prob. creep mutation, po 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Prob. creep down, p¿ 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Random number seed 50 50 50 50 50 50 50 50 50

Penalty factor, k ($m/ft) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

Codins scheme Gray Grav Grav Grav Grav Grav Gray Gray Grav

Fitness Scaled Scaled Scaled Scaled Scaled Scaled Scaled Scaled Scaled

Elite population size, N' 10 10 10 10 10 10 10 10 10

Prob. elite mate, pe 0.02 0.01 0.004 0.002 0.01 0.01 0.01 0.01 0.01

GA SEARCH RESULTS FOR GA RUNS NYl1-NY19

GA RTINS NYl1 NYI2 NY13 NY14 NYl5 NY16 NY17 NY18 NY19

Lowest cost ($million) 39.062 38.796 39.694 39.062 40.294 39.A62 39.062 39.062 39.062

- after - generation 1.005 459 281 178 304 315 617 366 555

- after - evaluation 100,500 91,800 140.500 178.000 53.400 57.800 118,200 73.200 I 11.000

Lowest avs sen cost 48.8 52.4 60.6 64.5 48.0 49.6 50.5 46.2 62.2

- after - qeneration 1.534 800 298 160 1,019 796 t.034 904 901

- after - evaluation 153.400 160.000 149,000 160,000 t79.300 146.300 198.200 180.800 180,200

Offl ine performance ($m) 43.5 43.8 47.O 50.5 44.3 44.3 43.6 42.6 45.4

Online performance ($m) 81.7 82.7 89.2 98.1 66.3 72.5 77.7 64.5 r04.6

GA desisns 0able 8.13) 2.3 t.4.5 2.3 2.3 2,3 2.3 2.3
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GA SEARCH FORMULATION AND PARAMETERS# FOR GA RUNS NY21-NY29

GA RUNSÍ NY2I

N=100

NY22

N=200

NY23

N=500

NY24

N=1,000

NY25

P"=0.25

NY26

Pe=O'5

NY27

p"Ã.75

NY28

)m=0.001

NY29

Pm=0.01

Max. generations required 2.000 r,000 400 200 1.t37 1.088 1.044 1.000 1,000

Prob. elite mate, pe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GA SeancH RESULTS FOR GA RUNS NY21-NY29

Lowest cost ($million) 39.062 39.062 39.062 39.062 39.062 39.062 39.062 39.062 39.125

- after - generation 1.033 173 273 163 875 155 596 414 885

- after - evaluation 103,300 154,600 136,500 163.000 153.800 139,100 114.200 82.800 177.000

Lowest avg gen cost 5r.4 55.1 62.O 64.9 41.6 48. I 51.2 41.1 62.3

- after - generation t,760 135 288 t94 894 r.o24 906 925 978

- after - evaluation 176.000 147.000 144,000 194,000 l 57.100 188.400 173.500 185.000 195.600

Offl ine performance ($m) 49.t 47.4 51.0 52.4 46.2 45.1 47.8 44.5 52.3

Online performance ($m) 85.6 86.1 93.9 99.4 67.2 12.3 80.7 66.0 106.3

GA designs (Table 8.13) 2,3 2.3 2.3 2.3 2.3 2,3 2.3 2.3

8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.8 Improved GA runs NY21-NY29 (without elitism)

# GA parameter sets are identical to the coffesponding GA runs NYl1-NY19, with no elitism

t unless otherwise specified N=200, pc=1.0, pm=0.005

The GA runs NY21-NY29 consider the performance of the improved GA formulation without

the elitism concept described in Section 8.3.8. The GA runs NY21-NY29 are identical to the

corresponding GA runs NYl1-NY19 in all other respects. The results of the GA runs NY21-

NY29 are given in Table 8.8. The GA runs generate solution GA(2) and GA(3) in eight of the

nine GA runs. The optimum solution GA(1) is not identified and the GA run NY29 with the

relatively high bit-wise mutation rute pm=0.01 does not achieve GA(1) or GA(2)'

The variation of best of generation costs and average generation costs for the improved GA run

NYl3 with elitism and NY23 without elitism are compared in Figures 8.6 and 8.7 respectively.

The decision to compare GA runs NY13 and NY23 with a population size N=500 is not

particularly favourable to the improved GA run NY13 which fails to determine either solution

GA(1) or GA(2) under these circumstances. The improved GA run NY13 with elitism

converges faster but after about 100,000 evaluations the improved GA run NY23 without

elitism is achieving similarly priced solutions and there is little improvement shown by either

GA run beyond this point.
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.9 Improved GA runs NY31-NY39 (with substrings of binary codes)

# GA parameters are identical to the corresponding GA runs NY11-NY19, with binary codes

tunless otherwise specified N=200, pc=|.0, pm=O.005

The GA runs NY31-NY39 consider the performance of the improved GA formulation using

substrings of binary codes rather than Gray codes. The results of the GA runs are given in

Table 8.9. The least cost known feasible solution GA(l) is generated by GA run NY37 with

pc=0.75. The local optimum solution GA(2) is determined by seven of the nine GA runs and

the GA run NY38 (p.=0.01) does not achieve GA(l) or GA(2)'

There is not much difference between the plots of best of generation costs and average

generation costs for the improved GA run NY13 using Gray codes and GA run NY23 using

binary codes in Figures 8.8 and 8.9. There seems to be little improvement in the GA

performance using Gray codes as opposed to binary codes for the New York tunnels problem.

GA SeenCH FORMULATION AND PARAMETERS# FOR GA RUNS NY31-NY39

GA RUNS* NY31

N=100

NY32

N=200

NY33

N=500

NY34

N=1,000

NY35

Pc=0.25

NY36

Þ"=0.5

NY37

p"4.'/5
NY38

,¡ø=0.001

NY39

Pm=O'01

Max. senerations required 2.000 1.000 400 200 1,136 1.091 1.043 1.000 1.000

Coding scheme Binarv Binary Binary Binary Binarv Binarv Binarv Binarv Binarv

GA SnnncH RESULTS FOR GA RUNS NY31-NY39

Lowest cost ($million) 39.062 39.062 39.062 39.062 39.062 39.062 38.796 39.682 39.062

- after - generation r,681 557 291 194 911 301 268 301 759

- after - evaluation 168,100 111.400 14s.500 194.000 172,000 s5,100 51,400 60.200 15 1.800

Lowest avs gen cost 50.7 53.9 59.3 68.2 45.1 49.',| 52.3 48.9 62.O

- after - generation I.918 865 368 180 883 318 192 174 833

- after - evaluation 191,800 173,000 184.000 180.000 155.300 58,200 152,000 154,800 166.600

Offline oerformance ($m) 43.5 44.4 47.t 5t.4 45.3 41.9 42.4 43.3 44.7

Online oerformance ($m) 84.6 86.5 92.7 102.4 68.9 71.5 '17.o 61.9 106.1

GA desiens 0able 8.13) 2.3 2.3 )? 2 2.3 2.3 1.4.5 t
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.L0 Improved GA runs NY41-NY49 (not including fitness scaling)

# GA parameters are identical to corresponding GA runs NYll-NYl9, with no fitness scaling

f unless otherwise specified N=200, pc=1.0, pm=0.005

T infeasible design

The fitness scaling appears to be the most effective feature of the improved GA. The results of

the improved GA runs NY41-NY49 without fitness scaling are given in Table 8.10. The

solution GA(l) is not identified and the readily generated local optimum solution GA(2) is

achieved in only two (p"=Q.5 and p^=0.001) of the nine GA runs.

The variations of best generation costs and average generation costs for the improved GA run

NY13 with fitness scaling and the corresponding GA run NY43 without fitness scaling in

Figures 8.10 and 8.11 demonstrate the significant effect of the increase in the exponent n in the

fitness function (Section 8.3.5) after 50,000 evaluations are performed. The GA runs are

identical up to this point (n=1.0 for less than 50,000 evaluations).

GA SeencH FORMULATION AND PARAMETERS# FOR GA RUNS NY41-NY49

GA RUNST NY4I

N=100

NY42

N=200

NY43

N=500

NY44

N=1.000

NY45

P"=0.25

NY46

Pr=0.5

NY47

Pe=O.75

NY48

'm=0.001

NY49

P-=0.01

Max. eenerations required 2.000 1.000 400 200 1.136 1,087 1.044 1,000 I,000

Fitness Raw Raw Raw Raw Raw Raw Raw Raw Raw

GA SEARCH RESULTS FOR GA RI.INS NY41-NY49

Lowest cost ($million) 39.142 39.284 4t.25t 41.416 40.294 39.062 39.166 39.062 39.590

- after - generation 1,869 640 392 t96 534 555 315 684 885

- after - evaluation 186.900 128.000 196.000 196.000 93.900 102,100 71,900 136,800 177,000

Lowest avg qen cost 58.5 66.2 75.4 80.2 53. I 57.2 60.8 52.8 80.1

- after - qeneration 1.895 928 278 116 441 593 '785 722 895

- after - evaluation 189.500 185.600 139.000 176,000 78,600 109,100 150.400 744.400 179.000

Offline performance ($m) 45.5 45.9 51.1 54.7 44.5 44.9 44.2 43.4 49.4

Online performance ($m) 90.7 93.3 98.7 108.9 70.9 77.4 84.9 69.0 1 18.1

GA desiens 0able 8.13) s.6r 2,3 3 2.3
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.11 Improved GA runs NY51-NY59 (not including creeping mutation)

# GA parameters are identical to corresponding GA runs NY11-NY19, with no creep

f unless otherwise specified N=200, pc=I.O, pm=0.O05

The results of GA runs NY51-NY59 without creeping mutations are given in Table 8.11. The

solution GA(2) is identified in all but one of the GA runs. The GA run NY58 withp-=9.991

fails to identify GA(l) or GA(2). Figures 8.12 and 8.13 show the comparison of best

generation costs and average generation costs respectively for GA run NY13 with creeping

mutations and GA run NY53 without creeping mutations. In general, the best generation costs

and average generation costs are lower when creep is not used.

The average number of infeasible solutions per population is reduced when the creeping

mutation is removed (GA runs NY51-NY59 and traditional GA runs NY61-NY69) from the

GA formulation as less strings are disrupted by this operator. Further experimentation would

be necessary to determine the value of creeping mutations for the New York tunnels problem.

The experimentation may consider the use of creeping mutations with less frequency.

GA SnancH FORMULATION AND PARAMETERS# FOR GA RUNS NY51-NY59

GA RUNST NY51

N=100

NY52

N=200

NY53

N=500

NY54

N=1.000

NY55

D"=0.25

NY56

Pe=0.5

NY57

P.=0.'75

NY58

'n=0.001

NY59

Pn=0.01

Max. generations required 2,000 1.000 400 200 4.0O4 r.994 1,338 r,000 1,000

Prob. creep mutation, po 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GA SBnnCH RESULTS FOR GA RUNS NY51-NY59

Lowest cost ($million) 39.062 39.062 39.062 39.062 39.062 39.062 39.062 41.242 39.062

- after - generation 1,061 362 216 149 r.942 I,084 680 421 794

- after - evaluation 106,100 72.400 138.000 149.000 97,100 108,800 101.800 84.200 158.800

Lowest avs gen cost 42.9 44.4 47.4 56.9 39.8 4t.l 43.O 41.9 s5.4

- after - seneration 1.701 980 385 136 3.661 1.656 1.926 796 573

- after - evaluation 170.100 196.000 192,500 136,000 183.200 166.200 193.800 159.200 114,600

Offl ine performance ($m) 42.5 42.0 45.9 50.8 43.2 4t.3 42.6 44.6 45.2

69.4 70.6 19.4 93.6 51.1 56.4 64.9 54.2 97.2

GA desisns (Table 8.13) 2,3 2.3 2.3 2 2.3 2,3 2.3 2.3
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Table 8.12 Traditional GA runs NY61-NY69

# GA parameter sets are identical to the corresponding GA runs NYl1-NY19, except that the

elements of the improved GA are not included

f unless otherwise specified N=200, pc=I.O, pm=0.005

I infeasible design (penaþ cost included)

The improved GA runs NYl1-NY19 consistently determine superior network designs

compared to the traditional three-operator GA runs NY61-NY69 summarised in Table 8.12.

The traditional GA runs do not achieve solutions GA(l) or GA(2) and in some cases perform

very poorly. Figure 8.14 shows the best of generation costs against number of evaluations for

the improved GA run NY13 and the equivalent traditional GA run NY63. Figure 8.15 shows

the average generation costs against number of evaluations for corresponding GA runs NY13

and NY63. The improved GA formulation exhibits superior performance and generates

solutions with significantly lower cost throughout the GA run.

GA SEARCH FORMULATION AND PARAMETERS# FOR GA RUNS NY61-NY69

GA RUNSÍ NY61

N=100

NY62

N=200

NY63

N=500

NY64

N=1.000

NY65

P"=0'25

NY66

Pc=0'5

NY67

P.=0.'75

NY68

'ru=0.001

NY69

Pm=0'01

Max. senerations required 2,000 1.000 400 200 3.998 r.999 I,336 1.000 I,000

Prob. creep mutation, po 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Codine scheme Binarv Binarv Binary Bina¡y Binary Binarv Bina¡v Binarv Binarv

Fitness Raw Raw Raw Raw Raw Raw Raw Raw Raw

Prob. elite mate, pe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GA SEARCH RESULTS FOR GA RI.INS NY61-NY69

Lowest cost ($million) 42.631 43.311 4t.t7 t ß.209t 43.850 43.173 41.690 41.t23 48.466

- after - qeneration 375 94',1 316 194 2,9r0 r.271 1.158 334 641

- after - evaluation 37.500 189,400 158,000 194,000 145.500 121.300 173.400 66.800 128.200

Lowest avg gen cost 59.3 61.5 1t.0 72.1 48.8 53. 1 56. I 46.0 85.0

- after - generation 26'7 924 328 146 2.84s 800 961 622 698

- after - evaluation 26.700 184.800 164.000 146,000 t42,200 80.400 143.800 124.400 139.600

Offl ine performance ($m) 52.2 53.8 52.0 55.3 49.0 48.7 50.6 46.t 59.7

Online performance ($m) 86.0 91.8 98.4 ro5.2 60.5 7t.2 81.4 6t.2 tt6.2
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

8.6 The GA Solutions to the New York Tunnels Problem

The five lowest cost feasible designs GA(l)-GA(5) and three low cost infeasible designs

GA(6)-GA(8) identified by the GA model runs in this chapter are summarised in Table 8.13.

The coded strings were shown in Figure 8.2. The designs GA(1) for $38.796 million and

GA(2) for $39.062 million are competing local optima in the solution space. Although there is

a small cost difference (O.69Vo), the designs are quite different. The coded strings representing

GA(1) and GA(2) differ by 9 bits using Gray codes and7 bits using binary codes (Figure 8.2).

This was not a favourable situation for the Gray codes representation. Not one of the total 64

GA runs performed in this study succeeded in determining both solutions, although the GA

runs usually determined one or the other. The design GA(z) was identified significantly more

frequently than design GA(l). The reason for this is not apparent as the complete

characteristics of the solution space in this region are not known'

Table 8.13 The five lowest cost feasible GA designs and three low cost

infeasible GA designs

I including penalty costs based on k=$5million/ft

Tunnel

Diameters of duplicate (inches)

Feasible desi

GA(1) GA(2 GA(3 GAr 4 GA(5) GA(6) GA(7 GA(8
I 0 o 0 0 0 0 U 0

2 0 0 0 0 0 0 0 0

3 0 o 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

l 0 r44 156 0 0 0 84 0

I 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

1l 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0

t4 0 0 0 0 0 0 0 0

t5 r20 0 0 r20 l0E 96 0 0

16 84 96 96 E4 96 96 9ó 96

t7 96 108 96 108 96 96 96 96

18 84 72 84 72 84 84 84 84

I9 72 l2 12 72 72 72 72 72

0 0 0 0 0 0 0 0

zl 72 72 72 72 72 72 12 72

Cost
($mitt.¡

38.796 39.062 39. tóó 39.22r 39.284 38.524
38.7931

36.r90
38.81 11

33.626
38.6941
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The GA solutions in Table 8.13 would seem to belong to one of two families of designs. The

designs GA(z) and GA(3) duplicate tunnel [7] in City Tunnel No.1. The feasible members of

the competing family of designs, GA(l), GA(4) and GA(5), duplicate tunnel [15] at the

upstream end of City Tunnel No.2. It would seem certain that tunnels [16], [17], [18], [19]

and [21] require duplication. The feasible GA designs duplicate only 6 of the 21 existing

tunnels. The coded strings in Figure 8.2 emphasise the coding similarities within the family

groups and coding similarities relating members from opposing family groups. The infeasible

GA(8) solution which duplicates only 5 tunnels is a coded string which is closely related to

both local optima GA(l) and GA(2).

The hydraulic heads at the critical nodes for the GA designs are given in Table 8.14

Table 8.14 Hydraulic heads for GA designs

* a negative value indicates the minimum HGL constraint is violated

T including penalty costs based on ft=$5million/ft

The infeasible GA solutions demonstrate significant cost savings for some small violations of

the hydraulic head constraints. The infeasible solutions may be acceptable in some

circumstances, particularly if a small hydraulic head deficiency is accompanied by large tunnel

cost savings. The design GA(8) for $33.626 million represents a cost saving of about $5.17

miltion (I3.3Vo) compared with the lowest cost feasible design for a hydraulic head deficiency

of only about 1 foot at nodes 16,L7 and 1-9.

The total solution costs including penalty costs for the infeasible GA solutions GA(6)-GA(8)

assuming a penalty multiplier ft=$5million/ft a¡e given in Table 8.13, based on the violations of

the minimum allowable HGL in Table 8.14. The total solution costs of the infeasible designs

are less than the tunnel construction cost of the best feasible design for $38.796 million using

k=$5million/ft, but greater than $38.796 million for k=$30million/ft.

Minimum
allowable

head,
feet

Hydraulic heads at the three most critical nodes, feet

gns

GAt 1) GA(2 GAt 3 GA(4) GAt 5 I GA(ó) GAI I GA(8)
Node 16

260.0
(Sumlus)

260.52
+0.52

260.0r
+0.01

260.08
+0.08

260.52
+O.52

260.23
+0.23

259.95
-0.05*

259.48
-0.52*

258.99
-1.01*

Node 17
272.8

(Sumlus)
272.86
+0.06

272.82
+O.02

212.88
+0.08

272.86
+0.06

273.02
+0.22

272.75
-0.05*

272.28
-0.52*

27t.79
-1.01*

Node 19
255.0

(Sumlus)
255.7r
+0.7I

255.7r
+0.71

255.04
+0.04

256.43
+1.43

255.39
+0.39

255.10
+0.10

254.50
-0.50*

254.07
-0.93*

Cost
($million¡

38.796 39.062 39. lóó 39.221 39.284 38.524
38.7931

36.190
38.81 1t

33.626
38.6941
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The equation used to relate head loss to flow in this study is the Hazen-Williams head loss

formula which was given by Eqs. 2.3 and2.4 in Chapter 2. Small variations of the constants

in Eq. 2.4 (for US customary units) can be the difference between a solution being classified as

feasible or infeasible for the New York tunnels problem. The balanced tunnel flows and nodal

heads for the design GA(1) are given in Tables 8.15 and 8.16 respectively. A greater

proportion of the flow (57.9%) supplying the city is conveyed by City Tunnel No.2. The

design GA(2) which duplicates City Tunnel No.1 (tunnel [7]) conveys a flow of approximately

884 cfs by this tunnel compared to 848 cfs for GA(l). The very long existing tunnel [20] is

almost redundant as a consequence of optimisation (flow in tunnel [20] is just 8 cfs). The

nodes 16,17 and 19 at the downstream extremities of the system are the critical nodes.

Table 8.15 Balanced tunnel flows for design GA(1)

Tunnel
Existing
diameter

(in)

Duplrcate
diameter

(in)

Equivalent
diameter

¡in)

Tunnel
cost

($million)

Head
loss
(fÐ

Head
Ioss/

1000 ft

Tunnel
flow
(cfs)

tll IEU 0 180.0 0.0 5.380 o.464 848.285
,) 180 0 180.0 0.0 7.4r1 rJ.3t5 755.E85

3l 180 0 180.0 0.0 2.t48 0.294 663.485
4 180 0 IEO.U 0.0 1.87s o.226 515.285
5 180 0 180.0 0.0 1.428 0.166 487.085
6 180 0 IEO.O 0.0 2.T90 0.1t5 398.885
I r32 0 t32.O 0.0 3. I3E 0.'3Zt 310.685
ð t32 0 r32.O 0.0 2.202 o.r76 222.485
9 180 0 180.0 0.0 0.031 0.003 58.500
10 204 0 2U4.O 0.0 0.141 0.013 t67.914
11 204 0 204.0 0.0 1.456 0.100 516.015
T2 204 0 204.O 0.0 3.204 0.263 867.3 r5
t3 204 0 204.t) 0.0 8.003 o.332 9E4.415
I4 zo4 0 204.O 0.0 8.214 0.392 1076.81s
t5 204 IZIJ zzr.9 6.463 4.699 0.303 rt69.2r5
161 l2 84 LOz.O 7.049 t.332 U.U5U 57.500
n 72 96 III.I 9.859 13.978 o.448 234.2rJ0

18 ó0 84 95.8 6.408 6.I31 0.256 1 17.100
t9 60 72 EÓ.5 3.r82 13. Ió8 0.914 178.040
¿U ó0 0 60.0 0.0 o.672 0.017 8.040
2L 72 72 93.1 5.834 13.699 0.5 t9 161.960
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.16 Balanced node hydraulic heads for design GA(l)

Node Measured
HGL
(fÐ

Minimum
allowable HGL

(ft)

Residual
hydraulic head

(fr)
I 300.0 Reservoir
2 294.62 255.0 +39.62
3 287.20 255.O +32.20
4 285.0ó 255.0 +30.06
5 283. I I 255.O +28.1 8
ó 28t.15 255.O +26.15
l 219.56 255.O +24.56
I 216.43 255.O +2I.4'3
9 214.22 255.0 +19.22
10 274.r9 255.r.) +19.l9
11 214.36 255.0 +19.36
t2 275.82 255.O +20.82
13 279.O2 255.0 +24.O2
t4 281.03 255.0 +32.O3

l5 295.30 255.rJ +40.30
16 260.52 260.0 +o.52
t7 212.86 272.8 +0.0ó
18 261.84 255.0 +6.84
t9 255.1t 255.O +0.71
20 26t.20 255.0 +6.20

Results have been presented for the improved GA model applied to the New York tunnels

problem. The lowest cost known feasible discrete tunnel solution has been found by the

improved GA for $38.796 million. In addition, the GA runs have generated a range of

solutions which gives the designer a choice of potential designs.

8.7 Comparison of GA Results with Previous Studies

Since the original work by Schaake and Lai (1969), a number of researchers have considered

the New York City water supply tunnels as a case study to demonstrate the effectiveness of

their respective pipe network optimisation techniques. These previous studies are summarised

in Table 8.17.

In the following comparison, a continuous diameter design is an optimised set of tunnel

diameters that may take on any continuous real value. A discrete diameter design is a set of

tunnel diameters that are selected from a specified set of available tunnel sizes. A split pipe

design may be derived from a continuous diameter design by decomposing a length of

continuous diameter into partial lengths of the two adjacent discrete diameters (one smaller and

one larger) to create a pipe with equivalent hydraulic properties. The designs for the New York

water supply tunnels network expansions achieved in previous studies are given in Table 8.18.
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Author (year) Optimisation technique Diameter type Lowest cost design
($million)

Feasible or
Infeasible*

Schaake and Lat
(1969)

Single step linear
progranìIlung

Continuous 78.09 F-easible

Quindry et al
(1981)

Linear programming
gradient search

Continuous 63.58 Feasible

Gessler
(1e82)

Partial enumeration
(City Tunnel No.1

reinforcement)

Continuous 4t.2 Feasible
l)iscrete 41.8 Feasible

Partial enumeration
(City Tunnel No.2

reinforcement)

Continuous 46.9 Feasible
Discrete 49.6 Feasible

Bhave
(1e8s)

Linear programmrng
with heuristics

Continuous 40. l8 F,easible

Morgan and
Goulter
(1e8s)

Linear programming
with heuristics

Split Pipe 38.9 Inteasrble

Discrete 39.20 Infeasible
Kessler
(1988)

Decomposition method
of two submodels

Split pipe 39.0 Inf-easible

Fujiwara and
Khang
(1ee0)

Modif,ted nonlinear
programming /
gradient search

Continuous 36.r Intèasible

Split Pipe 36.6 Infeasible
Loganathan et aI.

(19es)
Outer global search -
inner LP optimisation

Split Pipe 38.04 Intêasrble

8 An improved genetic algorithmformulation applied to the New York tunnels problem

Table 8.17 Previous studies of the New York City tunnels problem

* infeasible by KYPIPE analysis (see Tables 8.19 and 8.20)

In the original work on the problem, Schaake and Lai (1969) used a linear programming

approach to find the optimum tunnel diameters for assumed values of the total head at each

node. The decision variable for each tunnel was its diameter raised to the power 2.63, thus

leading to a set of linear constraints. The nonlinear terms in the objective function were

approximated using piece-wise linearisation. No check was made to determine whether the

assumed nodal heads led to an optimum solution overall. As shown in Table 8.18, the final

solution obtained involves duplicating almost all tunnels in the system at a cost of $78.09

million (all costs in this chapter are given tn 1969 US dollars). As the minimum cost solution

to a pipe network problem tends towards a branched system, it is expected that better solutions

to the problem can be obtained by duplicating fewer tunnels.

The model of Quindry et al. (1981) is an extension of the linear programming approach used by

Schaake and Lai. First, an optimal solution for an assumed set of nodal heads was obtained.

The dual variables were then used to identify the relative changes required in the nodal heads so

as to get the maximum rate of improvement in the objective function. The heads were adjusted

and the linear program was rerun. This procedure was repeated until no further improvement
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

was obtained. As shown in Table 8.18, the solution obtained involves no duplication of City

Tunnel No.1. The total cost of the continuous diameter design was $63.58 million.

Table 8.18 Designs achieved by previous studies

* infeasible by KYPIPE analysis (see Table 8.19)
** only very slightly infeasible

Gessler (1982) used a partial enumeration technique and discrete tunnel sizes to search a subset

of the total solution space. He searched two separate regions of the solution space with

consideration of the reinforcement of either City Tunnel No.l or City Tunnel No.2. The

lowest cost discrete diameter solution obtained in each case was used as a starting solution for a

gradient sea¡ch technique that used continuous tunnel sizes. The lowest cost discrete diameter

design for the reinforcement of City Tunnel No.l involved the duplication of only seven

tunnels (Table 8.18) at a cost of $41.8 million.

Bhave (1985) used a heuristic procedure based on the identifîcation of an efficient branched

configuration. In the method, nodal heads for the branched configuration were progressively

adjusted so as to give the maximum reduction in system cost. The method identified City

Tunnel

Diameters of duplicate tunnels, inches

Infeasible designs*
Schaake
and Lai
(1e6e)

Quindry
et al.

(198r)

Gessler
(te82)

Bhave
(1e8s)

Morgan
and

Goulter**
(198s)

Kessler
( l 988)

Fujiwara
and Khang

(1eeO)

Loganathan
et al.
(lees)

tll 52.O2 0.0 0 0.0 0 0.0 0.0 0.0

í21 49.90 0.0 0 0.0 0 0.0 0.0 0.0

t3l 63.41 0.0 0 0.0 0 0.0 0.0 0.0

t41 55.59 0.0 0 0.0 0 0.0 0.0 0.0

tsl 57.25 0.0 0 0.0 0 0.0 0.0 0.0

t6l 59.r9 0.0 0 0.0 0 0.0 0.0 0.0

t71 s9.06 0.0 100 0.0 t44 0.0 73.62 120.68

t8l 54.95 0.0 100 0.0 0 0.0 0.0 0.0

r9l 0.0 0.0 0 0.0 0 0.0 0.0 0.0

t10l 0.0 0.0 0 0.0 0 0.0 0.0 0.0

t11l tt6.2t tt9.o2 0 0.0 0 0.0 0.0 0.0
1121 r25.25 134.39 0 0.0 0 0.0 0.0 0.0

t 13l 126.87 t32.49 0 0.0 0 0.0 0.0 0.0

I14t r33.07 r32.87 0 0.0 0 0.0 0.0 0.0

t15l 126.52 t3t.37 0 t36.43 0 156.1 1 0.0 0.0

I16l t9.52 19.26 100 87.37 96 '72.0 99.01 98.05

t171 91.83 91.71 100 99.23 96 96,6 98.75 96.06

r-181 72.76 72.76 80 78.t7 84 78.0 78.97 84.26

t19l 72.61 72.64 60 54.40 60 59.78 83.82 72.39

t20l 0.0 0.0 0 0.0 0 0.0 0.0 0.0

121l 54.82 54.97 80 81.50 84 72.27 66.59 72.03

Cost
($mill.)

78.09
Continuous

63.58
Continuous

41.8
Discrete

40.1 8

Continuous
39.20

Discrete
39.0

Split pipe
36.1

Continuous
38.04

Solit oioe
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Tunnel No.2 (without tunnel [20]) as the branched configuration to be optimised. The optimal

configuration (Table 8. 1 8) involved the duplication of only six tunnels at a total cost of $40. 1 8

million.

Morgan and Goulter (1985) applied a linear programming approach coupled with a hydraulic

network solver to the New York water supply tunnels problem. They used a split pipe

approach in which the decision variables were the lengths of tunnel of a specified diameter that

replace the current size. Tunnels may be increased or reduced in size, or eliminated entirely (the

last two alternatives do not apply to the New York problem.) After each iteration, hydraulic

consistency was checked using the hydraulic network solver. The discrete pipe solution

obtained by Morgan and Goulter is given in Table 8.18 and involves duplicating six tunnels at a

cost of $39.20 million. The discrete pipe solution was found to be slightly infeasible but

acceptable in terms of normal expected accuracies of simulation modelling. A split pipe

solution with a cost of $38.9 million was also obtained.

Kessler (1988) applied a decomposition technique consisting of two submodels (Kessler and

Shamir, 1991) to the New York tunnels problem. In the first submodel the heads at the nodes

are fixed, and a minimum concave cost of flow algorithm is used to find the pipe flows. These

are then fixed and the head variables are found in the second submodel using linear

programming. The two submodels are solved interactively until convergence is achieved

(which usually occurs after two iterations). It can be shown that a local optimum is obtained.

A split pipe solution with a cost of $39.0 million was obtained. This solution is shown to be

infeasible in Table 8.19.

Fujiwara and Khang (1990) used a two-phase decomposition method that combined the

methods of Alperovits and Shamir (1977), Quindry et al. (1981), and Mahjoub (1983) similar

to the model described by Kessler and Shamir (1991). In the first phase, a nonlinear

programming gradient method was used to find the optimum head loss in each tunnel (and

hence the tunnel diameters) for an assumed set of flows. A correction was then applied to the

assumed flow in each loop using the Lagrange multipliers associated with the previous

solution. This process was continued until it converged on a local optimum. In the second

phase, the nodal heads obtained at the end of the first phase were fixed. A nonlinear

optimisation model was run that found the optimum flow in each pipe for these nodal heads.

This gave a new local optimum that could be used to restart the fîrst phase. Iterations occurred

between the two phases in such a way as to obtain a better local optimum solution. Fujiwara

and Khang (1990) proposed a continuous diameter pipe solution with a cost of $36.1 million,

but this solution is shown to be clearly infeasible in Table 8.19.
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

Loganathan et al. (1995) presented a pipe network optimisation procedure with an outer search

scheme to choose alternative, feasible flow distributions to initialise an inner linear

programming formulation which determines pipe diameters (and nodal heads) of a local optimal

solution. The outer global search strategies of multi-start local search and simulated annealing

were adopted to move between local optimal solutions and help locate isolated areas of the

feasible region. Loganathan et al. (1995) applied their outer search - inner optimisation method

to the optimisation of the New York tunnels problem. They identified a split pipe diameter

design for $38.04 million, which was found to be just infeasible in Table 8.20 by the hydraulic

analysis model developed in this research and the form of the Hazen-Williams used.

The hydraulic heads at the critical nodes for the previous optimised New York tunnel network

expansion designs are presented in Tables 8.19 and 8.20. Table 8.19 gives the hydraulic grade

line profile (hydraulic heads) calculated using the conventional pipe network simulation model

KYPIPE ('Wood, 1974), while Table 8.20 shows the hydraulic heads calculated using the

hydraulic simulation model developed in Chapter 2 of this thesis. The HGL values correspond

closely for both models. The simulation model developed in this research consistently

produced hydraulic heads that were higher by about 0.05 ft (a difference of O.02Vo).

Table 8.19 Hydraulic heads for previous designs using KYPIPE

* 
a negative value indicates the minimum HGL constraint is violated

Fujiwara and Khang (1990) claimed that their design was the lowest cost published design

solution to the New York City tunnels problem but it is actually infeasible with the heads at

nodes L6,17 and L9 falling below the minimum allowable values. GA design (1) with a cost

of $38.796 million is the lowest cost feasible design for the New York City water tunnels

problem to date. The GA design (1) is a discrete diameter design and the cost is less than

continuous diameter designs achieved by other optimisation techniques. A gradient search

Minimum
allowable

head,
feet

Hydraulic heads at three most critical nodes, fêet

Schaake
and Lai
(1e6e)

Quindry
et al.

(1e81)

Gessler
(1e82)

Bhave
(198s)

Morgan
and

Goulter
(198s)

Kessler
(1e88)

Fujiwara
and Khang

(1ee0)

Loganathan
et al.

(1ees)

Node 16
260.0

(Surplus)
260.97
+0.97

260.92
+0.92

260.27
+0.27

260.80
+0.80

26r.50
+1.50

258.46
-1.54*

259.25
-0.75*

259.87
-0.13*

Node 17
272.8

(Surplus)
273.77
+0.97

273.62
+0.82

273.06
+0.26

213.34
+0.54

272.75
-0.05*

273.00
+0.20

272.22
-0.5g*

272.67
-0.13 

*

Node 19
255.0

(Surplus)
256.08
+1.08

255.98
+0.98

255.80
+0.80

255.90
+0.90

254.93
-0,07*

255.t6
+0. l6

254.18
-0.92*

254.86
-0.14*

Cost lsm) 78.09 63.58 41.8 40.18 39.20 39.0 36.1 38.04
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

could use the GA designs as a starting points to determine cost-effective continuous diameter

designs if desired.

Table 8.20 Hydraulic heads for previous designs using the simulation model

developed in this research

* 
a negative value indicates the minimum HGL constraint is violated

Three feasible solutions have been generated by the improved GA that are lower in cost

($38.796m, $39.062m and $39.166m) than the Morgan and Goulter (1985) discrete pipe

solution in Table 8.18 for $39.20m. The Morgan and Goulter solution has been found to be

only slightly infeasible. As shown in Tables 8.19 and 8.20, the hydraulic head violations are

very small and the Morgan and Goulter solution could be considered to be a valid feasible

solution to the problem (allowing for small differences in the actual values of the coeff,rcient and

exponent used in the Hazen-Williams head loss equation. The Morgan and Goulter solution

with a total cost of $39.44 million (for a tunnel construction cost of $39.20 million and a

penalty cost of only $0.24 million based on k=$30million/ft) was frequently generated by the

GA model and was regularly a member of the elite population at the termination of the improved

GA runs.

8.8 Summary and Conclusions

This chapter has presented the results of the application of the improved genetic algorithm

formulation (developed in Chapters 6 and 7) to the classic New York City water supply tunnels

(Schaake and Lai, 1969) optimisation problem.

Minimlrm
Hydraulic heads at three most cntrcal nodes, teet

allowable
head,
feet

lnteasrble Desl gns

Schaake
and Lai
(196e)

Quindry
et al.

(1e81)

Gessler
(1e82)

Bhave
(1e85)

Morgan
and

Goulter
fl985)

Kessler
(1e88)

Fujiwara
and Khang

(1ee0)

Loganathan
et al.

(1ees)

Node L6
260.0

(Surplus)
261.02
+1.02

260.97
+0.91

260.32
+0.32

260.84
+0.84

261.56
+1.56

258.51
-1.49*

259.30
-0.70*

259.93
-0.07*

Node 17
272.8

(Surplus)
273.8t
+1.01

213.66
+0.86

273.10
+0.30

273.38
+0.58

212.79
-0.01*

273.04
+0.24

272.26
-0.54*

212;n
-0.09*

Node 19
255.0

(Surplus)
2s6.t4
+1.14

256.04
+1.04

255.86
+0.86

255.96
+0.96

254.99
-0.01*

255.22
+0.22

254.24
-0.76"

254.92
-0.0g+

Cost l$m) 78.09 63.58 41.8 40.18 39.20 39.0 36.1 38.04
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8 An improved genetic algorithmformulation applied to the New York tunnels problem

The features of the improved GA include:

. variable power law form of fitness scaling

. creeping mutation

. substrings represented by Gray codes

. use ofan elitist strategy

The results for a series of GA runs have been presented for the improved GA formulation, the

traditional GA formulation (without the listed features), and intermediate GA formulations

which attempt to measure (to some degree) the significance of each feature. The combination of

the features in the improved GA (GA runs NYl1-NY19) are effective and the improved GA

performs significantly better than the traditional three-operator GA (GA runs NY61-NY69).

The fitness scaling is the most effective feature of the improved GA. Elitism provides a small

improvement. Further experimentation could be required to establish the value of using

substrings of Gray codes and the creeping mutation for the New York tunnels problem.

The GA results have been compared to results previously reported in the literature using other

more traditional optimisation techniques. The design by Fujiwara and Khang (1990) for $36.1

million was considered to be the lowest cost known feasible solution, however the solution is

shown to be infeasible.

The improved GA generated three tunnel networks with a lower cost than the discrete pipe

solution of Morgan and Goulter (1985) for $39.20 million. The hydraulic simulation model

developed in Chapter 2 (adopting the Hazen-V/illiams formula in Eqs. 2.3 and 2.4) and the

conventional KYPIPE hydraulic analysis package both indicate that the Morgan and Goulter

solution does not strictly satisfy the minimum HGL profile constraints. The lowest cost

feasible discrete pipe solution generated by the GA has a tunnel construction cost of $38'796

million. This solutionis l%o cheaper than Morgan and Goulter's solution and it may be that this

solution is the global optimum discrete solution or very close to it.

It is recommended that for any new system, a number of GA runs are performed to experiment

with the penalty multiplier, the GA formulations and other GA parameters. Several alternative

solutions (feasible and infeasible) are produced by a series of GA runs. The decision maker

can choose between similarly priced designs and consider beneficial features of other (perhaps

infeasible) designs. Some non-quantifiable criteria (such as anticipated future developments)

may be used to decide between altemative designs.
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9 GA Optimisation of the Water System Expansion
Plan for the Fort Collins - Loveland Water District

9.L Introduction

This chapter describes the application of the genetic algorithm (GA) search to optimise the

design of future expansion plans to the Fort Collins - Loveland 'Water District's water

distribution system. A design to meet the projected year 2015 peak hour demands was

prepared using the GA pipe network optimisation model. The GA-optimised design is

compared to an expansion plan prepared by a consultant using a hydraulic simulation tool and

standard design rules.

The Fort Collins - Loveland Water District (FCLWD) supplies water for agricultural and

municipal use to an area of about 60 square miles between Fort Collins and Loveland in

Colorado, USA. The population is increasing and the water supply system will require

expansion to meet the increasing water demands.

9.2 The L993 Master Plan

The FCLWD has periodically updated its water system expansion plans in the form of a Master

Plan document for many years. The latest re-assessment of the District's Master Plan was

carried out in t993by a Fort Collins engineering consultant. The Master Plan document (Fort

Collins engineering consultant,Igg3) proposed system expansions in three construction phases

to supply water to the District through the year 2015.

The 1993 Master Plan made recommendations for: (1) future sources of supply, (2) new

network storages, (3) existing pump station upgrades and new booster pump stations, (4) the

locations and settings for pressure reducing valves, and (5) improvements to the pipe network

including new pipes and the duplication of existing pipes. The future sources and expansions

to the transmission system are sized to supply the projected2015 maximum day demand. The

proposed expansions to the distribution system are sized to supply the 2015 peak hour

demands.

The Master Plan study used a hydraulic simulation computer model developed by the U.S.A.

Environmental Protection Agency (EPA) called EPANET (Rossman, L994). The input data

and output results of simulating the Master Plan design subject to the 2015 peak hour demands

using the EPANET model are provided in Appendix A. The configuration of the Fort Collins -
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9 GA optimisation of the water system expansion planfor the FCLWD

Loveland water supply system (including the existing system and the system expansions

proposed in the Master Plan) modelled using EPANET is shown in Figure 9.1.

9.3 The Genetic Algorithm Approach to the FCLWD System

The GA optimisation study is applied to identify a low cost expansion plan for the FCLWD

water distribution pipe network for 2015. The design recommended in the 1993 Master Plan

and set out in the EPANET hydraulic simulation data in Appendix A is an ideal starting point

for the GA design of this large, complex water transfer and distribution system. The 2015

Master Plan system is composed of 323 pipes (of which 277 arc existing pipes and 46 are

proposed new and duplicate pipes) and 253 junction nodes. The water is supplied from 5

alternative sources of supply including 4 connections to adjacent water systems. There are 2

source pump stations and 5 booster pump stations, although only 2 booster pump stations are

modelled. The water is stored to balance peak demand periods in 7 storage tanks distributed

throughout the system. There is a flow control valve regulating flow to a storage tank and 13

pressure reducing valves which isolate the system into 5 pressure zones. Some conclusions of

the Master Plan with respect to the configuration of system components such as future sources

of supply, storage tanks and pump stations are adopted in the GA design strategy.

The GA optimises aspects of the design of the water distribution pipe network including (1) the

diameters of the new pipes, (2) the diameters of duplicate pipes (pipes placed parallel to existing

pipes) and (3) the pressure settings for pressure reducing valves (PRVs) based on an assumed

pipe network configuration for the year 2Ol5 design. The GA is used to select sizes of new

pipes and to select sizes of (or omit) duplicate pipes. The GA considers duplicate pipes in the

locations recommended by the Master Plan and in other locations where existing pipes are

operating with high velocities and/or high head losses. The GA selects appropriate pressure

settings for PRVs in the locations recommended by the Master Plan.

The Master Plan predicted the year 2015 peak hour demand pattern (provided in the EPANET

hydraulic simulation data in Appendix A) and specified the District's system performance

requirements such as minimum and maximum nodal pressures and maximum pipe velocities.

The GA design is subject to the same instantaneous 2015 peak hour demand pattern and is

expected to satisfy the same system performance constraints to enable a fair comparison

between the original Master Plan design and the GA optimised design'
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9 GA optimisation of the water system expansion planfor the FCLWD

The GA optimisation assumes a baseline system configuration which consists of the existing

1993 system and the following aspects of the 2015 Master Plan design:

. the pipe network layout and pipe sizes (as in 1993)

. the Overland Trail source pump station

. the upgrade of the Taft Hill source pump station proposed by the Master Plan

. the Airport and Westridge booster pump staíons

. the connections to the City of Loveland water system

. the proposed new connection to the City of Fort Collins water system

. the storage tanks and their assumed tank water levels

. the new storage tank locations proposed by the Master Plan

. the sites of the PRVs and relocated PRVs proposed by the Master Plan

The GA designs represent a set of improvements to this baseline system configuration. The

evaluation of a trial GA design requires the calculation of the pipe costs and a check of the

hydraulic feasibility of the proposed design.

The KYPIPE hydraulic simulation model (Wood, I9l4) is integrated with the GA optimisation

model routines for this study. The KYPIPE simulation model is used to perform accurate

hydraulic analyses of the complex Fort Collins - Loveland system designs. The KYPIPE

hydraulic simulation model determines the balanced pipe flows and node pressures of the trial

GA designs subject to the 2015 peak hour demand pattern. The EPANET (Rossman,1994)

hydraulic simulation model was used to verify the final GA design.

9.4 Sources of Supply in 20Ls

The Master Plan anticipated the sources of supply to the Fort Collins - Loveland Water District

in the year2OI5 will include:

. Soldier Canyon (node 1, Figure 9.1) and Overland Trail pump station (nodes 9-15)

. connection to the Fort Collins system at Taft Hill pump station (node 68)

. connections to the Loveland system (nodes 363 and37t)

. a proposed new connection to the Fort Collins system at County Road 9 (node 450)

The District will need additional water supply sources beyond 2008. The Master Plan outlined

some of the alternatives such as purchasing additional water from the adjacent systems of

Loveland and from Fort Collins at the new County Road 9 connection, or exchanging water

with Fort Collins. Another alternative is to increase the supply to the system from Soldier

Canyon. For this case, it would be necessary to upgrade the Overland Trail pump station and
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9 GA optimisation of the water system expansion planfor the FCLWD

provide additional transmission lines. A preliminary investigation was carried out in the

development of the Master Plan of the trade-off between purchasing additional water from Fort

Collins and Loveland, and producing water at Soldier Canyon. The conclusions favoured

making the system improvements and using water from Soldier Canyon rather than purchasing

additional water, however, the Soldier Canyon alternative was not implemented in the report.

The Master Plan instead chose to expand the Taft Hill pump station and construct a parallel

transmission pipeline from the pump station to the existing 4.0 MG Tank (at Trilby Road) to

meet the 2015 demands.

'lhe Taft HiIl source pump station (adjacent to node 68) supplies the District's system from a

connection to the City of Fort Collins system. The pump station consists of 3 identi cal I5

horsepower pumps, each pump with rated discharge, Qn=I,150 gpm, rated head, Ë1¡=135 ft

and rated speed, Nn=1,750 rpm. The Master Plan estimated the capacity of the Taft Hill source

pump station by the intersection of the pump curve and the system curve. The maximum

capacity of the pump station is about 5,200 gpm, but the reliable capacity (with one standby

pump unit) is about 4,200 gpm. The Master Plan found the transmission line between Taft Hill

pump station and the 4.0 MG Tank must be duplicated regardless of whether increased supply

is obtained from Soldier Canyon or the City system via Taft Hill pump station. The effect on

the system curve of the duplication of the pipe was expected to increase the maximum capacity

of Taft Hill pump station to about 7,400 gpm with all three existing pumps in operation. The

Master Plan found that if a spare pump is purchased by the District as a standby unit, a reliable

capacity of 7,400 gpm may be assumed. The cost of system improvements are less for the Taft

Hill altemative than for the Soldier Canyon alternative, although more water must be purchased

from Fort Collins.

The Master Plan concluded that the increased supply was best achieved by the Taft Hill pump

station improvements. The connection to the City of Fort Collins system at Taft Hill pump

station is modelled as a demand node (node 68) with a negative demand (an inflow) and known

hydraulic grade line for the proposed2OI5 design. The Taft Hill pump station operation itself

is not modelled. The inflow at the connection of 7,400 gpm for the 2015 design is the expected

increased pump station caPacitY.

The Overland Trail source pump station (nodes 9-15) boosts flow from the Soldier Canyon

Tanks. The pump station consists of four identical 75 horsepower pumps, each with rated

discharge, Qn=1,200 gpm, rated head, Fln=180 ft and rated speed, N¡=l,lJO rpm. The

Master Plan estimated the maximum capacity of the pump station to be about 4,900 gpm'

however, the reliable capacity (with one standby pump) is about 4,200 gpm. The operation of

the Overland Trail pump station was modelled in the Master Plan design for the 2015 peak hour

demands with a design head of 165.8 ft and design flow of 4,252 gpm which corresponds to
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9 GA optimisation of the water system expansion planfor the FCLWD

three parallel pumps in operation and one standby pump as shown in Table 9.1. The pump

curve for the Overland Trail source pump station with three pumps on from the Master Plan is

shown in Figure 9.2.

Table 9.1 Pump station operation for the 20L5 peak hour demands*

Taft Hill source PS operation is not modelled, however, the pumping station is assumed to be
operating 3 pumps with a combined design flow of 7,400 gpm
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Figure 9.2 Pump curves for the Overland Trail source pump station

The existing connections to the City of Loveland system (nodes 363 and 371) and the proposed

new connection to the City of Fort Collins system (node 450) were modelled as artificial

reservoirs of known elevations shown in Figure 9.1.

9.5 Booster Pump Stations

The GA models two existing booster pump stations: the Airport booster pump station which

pumps to the airport area and supplies the elevated Airport storage tank, and the'Westridge

booster pump station which supplies the Westridge area (south of Horsetooth along a ridge next

Operation Design
(fr

Head
)

'l'otal Design Flow
(epm)

Pump Station Nodes

9- 15 3 pumps 165.8 4,252Overland Trail source PS
I pump t25 620Airport booster PS 5t1-603

53-55 l pump 19 191'Westridge booster PS

-r- 
3 pumps on

+- 4 pumps on
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9 GA optimisation of the water system expansion plan for the FCLWD

to the foothilts) with adequate pressures and fire flows. The booster pump stations are

modelled according to Table 9.1 for the 2015 peak hour demands.

TheAirport booster pump station (nodes 517-603) is equipped with several different sized

pumps. The Master Plan concluded the pumping capacity would need to be increased by about

the year 2001. The pump station was modelled in the 2015 design for peak hour demands with

a design head of L25 ft and design discharge of 620 gpm which corresponds to the ESP-1

operating curve in the Master Plan. The pump curve for the Airport booster pump station with

one or three pumps on is shown in Figure 9.3. The improvements to the pump station are not

modelled. The hydraulic simulation of the Master Plan design (Appendix A) indicates that there

are no pressure problems in the airport area subject to the 2015 peak hour demands.
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Figure 9.3 Pump curves for the Airport booster pump station

The Master Plan found the capacity of the pumps of the Westridge booster pump station (nodes

53-55) will be sufficient beyond 2015, however, a standby pump may have to be purchased.

The Westridge booster pump station was modelled in the 2015 design with a design head of

79 ft and design flow of 191 gpm (Table 9.1). This corresponds to only one pump operating

which results in low pressures being experienced in the Westridge area (node 60) for the 2015

peak hour demands. The pressures will be improved by operating the two existing pumps.

It was not necessary to model the operation of the other proposed booster pump stations in the

water distribution system for the 2015 peak hour demands. The Burns Ranch booster purnP

station supplies a small area west of Overland Trail and south of Drake Road. The capacity of

the pump station should be sufhcient beyond 2015. The new County Road 32 booster pump

-r- 
1 pump on

#3 pumps on
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9 GA optimisation of the water system expansion planfor the FCLWD

station is proposed to serve the ridge west of College Avenue between County Road 28 and

County Road 30. The low pressures experienced in the results of the hydraulic simulation for

this area (nodes 3I7 and 319) would be corrected when the County Road 32 booster pump

station is modelled. The new County Road 36 booster pump station is proposed to serve the

area east of Taft Hill Road immediately south of County Road 36. An alternative to serve this

area would be a separate pipe from Harmony Road. The effectiveness of this alternative could

be evaluated in a future GA optimisation.

9.6 Storage Tanks

The storages (as shown in Figure 9.1) in the Fort Collins - Loveland'Water District system as

of 1993 consisted of:

. Il3rd ownership in 7.0 MG storage at Soldier Canyon Filtration Plant (node 1)

. ground level steel 1.0 MG Tank (node 19)

. ground level steel4.0 MG Tank (node 85)

. elevated 300,000 gallon Airport Tank (node 635)

. ground level steel750,000 gallon Timnath Tank (node 701)

The total storage capacity is about 8.38 MG. The projected storage requirements of an

additional 9.6 MG by 2015 were estimated in the Master Plan based on an equalisation storage

equal to 257o of the maximum day demand, a fire fighting storage capable of delivering

2,500 gpm for a fire of duration 3 hours, and an emergency storage equal to one day of

average demand.

The Master Plan considered at least three possible sites for the future storage including: the

ridge west of College Avenue between County Road 30 and County Road 32, McCloughan

Hill, and adjacent to the existing elevated Airport Tank. The Master Plan proposed a ne\¡/

4.0 MG tank at the site west of College Ave (node 271) and a new 4.0 MG tank on

McCloughan Hill (node 624) for the 2015 design.

The existing tanks and the new tanks are modelled in the 2015 design with the water levels as

shown in Table 9.2 for the hydraulic analysis of the peak hour demands.
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Node WaterLevel
(fÐ

Tank

52'.32Soldier Canyon Tanks I
t9 534t.51.0 MG Tank
85 52394.0 MG Tank
27r 5 150New Zone 3 Tank*
635 5 187Airport Tank
624 5093McCloughan Hill Tank*
10r 4968Timnath Tank

9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.2 Storage tank water levels for the 2015 peak hour

New tanks proposed by the Master Plan

9.7 Existing Pipelines

The 1993 pipe network layout is shown in Figure 9.1. The pipeline data including diameters,

lengths and Hazen-Williams roughness values are given in the EPANET hydraulic simulation

data in Appendix A. The District tested the Hazen-Williams roughness values of the pipes and

a roughness of Cr=149 is taken for all new and existing pipes I (with the exception Cr=110).

9.8 New Pipes and Duplicate Pipes

The GA optimisation model is used to find the lowest cost combination of pipe sizes for new

and duplicate pipes such that the desired system performance requirements are satisfied. The

District's system expansions are designed to supply the 2015 peak hour demands and maintain

pressures at demand nodes between a minimum of 40 psi and a maximum of 100 psi.

The new pipes were required to have at least a minimum diameter of six inches for

consideration by the GA, as the layout of proposed new pipes provides supply to new areas.

The new pipes could not be assigned a zero diameter and deleted from the design. The

available pipe sizes for new pipes are given in Table 9.3. The required locations of new pipes

were determined by the Master Plan study. There were no alternative routes for new pipes

considered in this study. The routes of proposed new and duplicate pipes recommended by the

Master Plan for 2015 arc shown in Figure 9.1.

As part of the Master Plan, EPANET hydraulic analyses were performed of the L993 FCLWD

system subject to the 1993 peak hour demands and the projected 2000 and2OI5 peak hour

demands. The hydraulic analyses indicated some areas of low pressures and some pipes

operating at high velocities.
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9 GA optimisation of the water system expansion planfor the FCLWD

The Master Plan recommended duplicate pipes to improve the hydraulic performance of the

system. The duplicate pipes are new pipes placed parallel to existing pipes (but not necessarily

of the same diameter) to improve the system for transmission and distribution. The GA

considered the locations of duplicate pipes considered in the Master Plan, as well as some

alternative locations. The duplicate pipes are allowed a minimum zero diameter. In this way,

the GA helps find the best layout of duplicate pipes by eliminating unnecessary duplications.

The GA identifies the parts of the distribution system which require additional capacity. The

allowable diameters for duplicate pipes are given in Table 9.3.

The possible new and duplicate pipe sizes include pipes with diameters up to 30 inches. The

linear relationship between pipe diameter and cost per unit length of installed pipe in Table 9.3

is based on the Master Plan assumption. The pipe material and construction costs are

considered by the GA optimisation. The cost of minor items such as valves, connections and

ditch crossings are neglected for the purpose of this study.

9.8.1 The Master Plan pipe network design

The Master Plan observed certain guidelines in determining the layout of water distribution

lines: for urban areas, a 12 inch diameter pipe grid system every half mile with alternating 8

inch and 6 inch pipes within quarter sections; for rural areas, a 12 inch diameter pipe grid

system every mile with 6 inch interior pipes. The recommended pipe diameters for the Master

Plan network expansions are shown in Figure 9.4 andthe associated installed pipe costs for the

Master Plan design are surnmarised in Table 9.4. The estimated total pipe cost of the expanded

pipe network for the Master Plan design is $ 5,851,000.
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hessure

setting
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Integer

code

1

2

3

4
5

6

7
8

9
10
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l6
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Possible settings
PRVs 29 and23
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code

I
2

3
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5
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forPRVs 28,27,
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Pressure
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45
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Integer

@de

I
2

J

4
5

6

7

8

9
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11
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fot PRV 15

hessure

setting
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Remove
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91
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94

95
96

97
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Integer
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I
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9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.4 The Master Plan pipe network design for 2015

Pipe Pipe Description Start
node

End
node

Length
(fr)

Diameter
(in)

Pipe Cost
($)

NEW PIPES

92 Clarendon Hills new pipe 16 24t 5.280 12 158,400
448
478
480

New connection to Fort Collins system at
County Rd 9, continuing southwest to
TrilbvÆimberline. extendins to Parason Pt

450
451
475

451
479
479

1,640
8,000
2.640

l2
t2
l2

49,200
240,000
79.200

482 New pipe from new Zone 3 Tank to Lemay 27t 474 10,000 18 450.000
484 New pipe along County Rd 32 between Lemay

and Timberline
489 491 5,280 t6 211,200

522
524
528

Duck Lake new pipes east of Timberline to
Interstate 25 and south along County Rd 9

495
516
516

516
513
521

3,000
2,640
8.000

t2
t2
t2

90,000
79,200

240.000
620 New pipe up to new McCloughan Hill Tank 624 522 12.000 16 480,000
733
735
737

County Rd 3 loop of new pipes south
of Timnath (including County Rd 3 pipe
between Walker Mfe and Countv Rd 36)

1t5
707
735

707
735
727

2,640
2,640
5.280

12
T2

t2

79,200
79,200
158.400

DUPLICATE PIPES

83
78
79
87
89
94
96
98
102
IM

Taft Hill duplicate pipes from
Taft Hill Pump Station to Trilby Road

68
68
76
69
75
16
77
79
81

83

69
76
81
t)
76
77
79
8l
83
87

2,000
7,920
5,280
3,600
2,400
1,440
1,060
3,840
215
200

l8
l8
18

18
18
18

18

18
18

l8

90,000
356,400
237,600
162,000
108,000
64,800
47,700
172,800
9,675
9,000

100
272
274
264
266
270
276

Trilby Road duplicate pipes between the
existing 4.0 MG Tank and College Ave

85
87

253
257
259
26t
263

87
253
251
259
261
263
469

2,640
5,280
2to

2,800
500

2,000
10

24
24
24
24
24
24
24

158,400
316,800
12,600

168,000
30,000
120,000

600

310 Duplicate pipe south of new Zone 3 Tank
between College and Lemay

295 311 5,480 18 246,600

4t4
418

Harmony Road duplicate pipes between
Countv Rd 7 and Countv Rd 9

4lL
4t5

415
4t7

210
5.280

10
10

5,250
132,000

442
452

Timberline duplicate pipes between
Harmonv and Countv Rd 36

409
443

443
447

5,280
2ro

t2
t2

158,400
6.300

454
456
458

County Rd 36 duplicate pipes between
Timberline and County Rd 7

M7
451
451

449
449
453

2,640
2,640
5.280

t2
l2
12

79,200
79,200
t64.400

504
506
510

Duplicate pipes along Timberline between
County Rd 32 and County Rd 30

491
505
501

497
497
505

2,640
2,430
210

12
t2
12

19,200
72,900
6.300

516
518

Duck Lake duplicate pipes east of
Timberline

49r
493

493
495

2,640
1.320

t2
t2

79,200
39,600

526
601
610

County Rd 9 duplicate pipes between
County Rd 30 1/2 and County Rd 28

513
512
603

512
517
609

2,588
t,545
4.000

t2
t2
t2

'17,640

46,350
120,000

TOTAL PIPE COSTS $ 5,851,000
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9 GA optimisation of the water system expansion planfor the FCLWD

9.8.2 The Genetic Algorithm pipe network design

The genetic algorithm search is employed to optimise the new and duplicate pipe diameters and

the pressure reducing valve (PRV) settings for the Fort Collins - Loveland system expansion

plan. The coded structures representing GA designs consisted of strings of integer numbers as

shown in Figure 9.5. The strings were constructed of 66 integer numbers including:

. 13 integer numbers representing the set of new pipe diameters

. 40 integer numbers representing the set of possible duplicate pipe diameters

. 13 integer numbers representing the set of PRV pressure settings

The first 13 integer positions for new pipes could take on integer values between 1 and 10, the

integer values mapping to the ten available pipe sizes for new pipes according to Table 9.3

(minimum pipe diameter of 6"). The 40 integer positions for duplicate pipes could take on

integer values between 1 and 13 representingthe 12 available pipe sizes (including the 3" and

4" pipe diameters) and the 'do nothing' option as shown in Table 9.3. The last 13 integer

positions corresponding to PRV pressure settings could take on a number of integer values

depending on the range of allowable pressure settings for each individual PRV. For example,

there are 6 possible PRV settings for PRV 23 and there are 22 possible PRV settings for PRV I
(Table 9.3). The PRV pressure settings are considered further in Section 9.9. In Figure 9.5,

the coded string solutions are presented for the proposed Master Plan pipe network design and

the GA optimised pipe network expansions. The coded strings represent two solutions in an

immense solution space of approximately 5 x 1071 possible solutions.

The integer codes were used in preference to the binary alphabet (binary codes or Gray codes)

for this case study. If the problem is formulated using substrings of binary code to represent

the possible choices for decision variables, there would be a large number of redundant binary

codes (since the number of available pipe diameters and allowable PRV pressure settings are

not a power of 2) and the size of the search space would increase significantly.
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The composition of the coded string of 66 integer positions
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The decision variables which corespond to the integer positions:

D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D'D1D1D;D;D'D-D'D'D-D-D-D'D-D-D-D-D-D-D'D-D-P-P-P-P-P-P'P-P-P-P-P-P-P

inwhich þ.=diameter(inches)of neworduplicatepipei and P,=pressuresetúng(psi)ofPRVT
tl

È The coded string which represents the Master Plan design (pipe costs = $ 5.851 million):

The corresponding new and duplicate diameters (inches) and PRV pressure settings (psi) of the Master Plan design:

The coded string which represents the optimal genetic algorithm design (pipe costs = 52.966 million):

4-3-t-t-g-l-l-1-l-6-l-l-l-12-10-1-l-t-l-t-1-l-1-l-5-6-4-g-t-t-l-l-1-l-1-l-r-3-l-l-l-l-l-l-l-l-3-2-l-t-l-l-l-3-16-2-3-4-tl-11-r-l-t-4-I-'7

The corresponding new and duplicate diameters (inches) and PRV pressure settings (psi) of the optimal genetic algorithm design:

Figure 9.5 The coding scheme for the GA optimisation of the FCLWD water distribution system expansion plans



9 GA optimisation of the water system expansion planfor the FCLWD

The GA design is presented in Figure 9.6. Table 9.5 summarises the GA pipe network design

including the alternative routes for duplicate pipes considered by the GA. The alternative routes

included: (i) the connections to the Loveland system, (ii) the transmission line south of Trilby

Road to the flow control valve in the fill line to the new Zone 3 Tank, and (iii) the transmission

line below the new Zone 3 Tank to the south and then east to College Avenue. These existing

pipes were observed to be operating with high velocities and high head losses in the Master

Plan design for the 2015 peak hour demands. Of the additional possible duplicate pipe

locations investigated, the GA duplicated only the two pipes which connect to the City of

Loveland system.

In the GA pipe network design in Figure 9.6, several of the new 12 inch diameter pipes

proposed in the Master Plan have been re-sized to 6 inch diameter (i.e., the minimum pipe size

considered by the GA for new pipes). The results of simulating the proposed GA system

expansions subject to the 2015 peak hour demand pattern using the EPANET (Rossman, 1994)

hydraulic simulation model is provided in Appendix B. The GA design produces a flow pattern

similar to the Master Plan design, exhibiting adequate pressures throughout the system when

subjected to the same 2015 peak hour demands.

Table 9.5 shows that the GA sizes all but 4 of the 13 proposed new pipes at the minimum

diameter of 6 inches. The significant new pipes include: (1) the new pipe to Clarendon Hills

between Taft Hill and Shields (between nodes 76 and24l) with diameter 12 inches; (2) the

new connection to the Fort Collins system at County Road 9 (node 450) with diameter

10 inches; (3) the new pipe from the new Zone 3 Tank (node 271) east to Lemay (node 474)

with diameter 24 inches; (4) and the new pipe up to the new McCloughan Hill Tank

(node 624) with diameter 16 inches. If new pipes could be eliminated by meeting demands in

the area via existing or duplicate pipes, then the GA might identify some of the 6 inch pipes as

being unnecess¿try, and the total cost could be further reduced.

The GA design suggests duplication of only 9 pipes from the possible 40 considered. The

significant duplicate pipes are located: (1) between the Taft Hill pump station and Trilby Road;

(2) between the existingZone2 4.0}l4G Tank (node 85) and College; (3) the connections to

the City of Loveland system; (4) and along County Road 36 between the new connection to

the City of Fort Collins system and the Timnath pressure zone.
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9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.5 The GA pipe network design for 2015

Pipe Pipe Description Start
node

End
node

Length
tfo

Diameter
(in)

Pipe Cost
($)

NEW PIPES

92 Clarendon Hills new pipe 76 241 5.280 12 158.400

448
4',t8
480

New connection to Fort Collins system at
County Rd 9, continuing southwest to
Trilby/Timberline, extending to Paragon Pt

450
451
415

451
479
479

1,640
8,000
2,640

l0
6
6

4l,000
120,000
39.600

482 New pipe from new Zone3 Tank to Lemay 271 414 10.000 24 600,000

484 Countv Rd 32 between LemaY and Timberline 489 491 5.280 6 79.200

522
524
528

Duck Lake new pipes east of Timberline to
Interstate 25 and south along County Rd 9

495
516
516

516
513
521

3,000
2,640
8.000

6
6
6

45,000
39,600
120,000

620 New pipe up to new McCloughan Hill Tank 624 522 12.000 t6 480.000

733
735
737

County Rd 3 loop of new pipes south
of Timnath (including County Rd 3 pipe
between Walker Mfs and County Rd 36)

715
707
735

707
735
721

2,640
2,640
5.280

6
6
6

39,600
39,600
79.200

DUPLICATE PIPES

83
78
79
87
89
94
96
98
t02
t04

Taft Hill duplicate pipes from
Taft Hill Pump Station to Trilby Road

68
68
16
69
75
76
77
19
81

83

69
76
8',7

15
76
77
79
81

83
87

2,000
1,920
5,280
3,600
2,400
|,440
1,060
3,840
2t5
200

0
24
18

0
0
0
0
0
0
0

475,200
237,600

100
272
274
264
266
270
276

Trilby Road duplicate pipes between the
existing 4.0 MG Tank and College Ave

85
87

253
257
259
26t
263

87
253
257
259
261
263
469

2,640
5,280
zr0

2,800
500

2,000
t0

0
r6
0
8

10
6
0

211,200

56,000
12,500
30,000

310 South of new Z,orre 3 Tank (College to Lemay) 295 311 5.480 0

414
418

Harmony Road duplicate pipes between
County Rd 7 and County Rd 9

4tt
415

4t5
4r7

210
5.280

0
0

442
452

Timberline duplicate pipes between
Harmony and County Rd 36

409
443

443
447

5,280
2to

0
0

454
456
458

County Rd 36 duplicate pipes between
Timberline and County Rd 7

447
451
451

449
449
453

2,640
2,640
5.280

0
0
4 54,800

504
506
510

Duplicate pipes along Timberline between
County Rd 32 and County Rd 30

491
505
501

497
497
505

2,640
2,430
2to

0
0
0

516
5r8

Duck Lake duplicate pipes east of
Timberline

49t
493

493
495

2,640
1320

0
0

526
601
610

County Rd 9 duplicate pipes between
County Rd 30 1i2 and County Rd 28

513
512
603

512
511
609

2,588
1,545
4.000

0
0
0

ADDITIONAL PIPES CONSIDERED IN THE GA STUDY

800
801

Duplicate pipes which connect to the
Citv of Loveland svstem

37r
363

343
365

385
450

4
3

3
3

50

278
282
283

Duplicate pipes between Trilby Road and
the new Zote 3 Tank at County Rd 32

253
267
270

267
269
271

5,280
2,000

100

0
0
0

286
288

Duplicate pipes between new Zone 3 Tank
at Countv Rd 32 south and east to College

27r
293

293
295

2,640
2,440

0
0

TOTAL PIPE COSTS 000
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9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.6 presents a comparison of pipe costs between the Master Plan design and GA design.

The total pipe cost for the GA design is $ 2,966,000. This represents a cost saving of

$ 2,885,000, or 49.3Vo on the installed cost of new and duplicate pipes over the Master PIan

design. Most of the savings ($2.37 million) are achieved by reducing the number of pipes

being duplicated and optimising their diameters.

Table 9.6 Summary of pipe costs

Design Cost of new
plpes

Cost of
duplicate pipes

'l'otal pipe cost

Master Plan design $2.394m $3.457m $5.851m
Genetic algorithm design $1.881m $1.085m $2.966m

SAVINGS $0.513m
(21.47o\

$2.372m
(68.6Vo)

$2.885m
(49.3Vo\

9.9 Pressure Reducing Valve Settings

The Fort Collins - Loveland Water District system contains a number of pressure reducing

valves (PRVs) and a flow control valve (FCV). The operation and analysis of PRVs was

discussed in Section 2.I0.9. There are three possible modes of operation of a PRV. The PRV

is designed to maintain a constant pressure immediately downstream of the valve equal to the

pressure setting (the operative mode). If the pressure upstream of the valve is less than the

valve pressure setting, the flow through the valve is unrestricted (the inoperative mode). If the

pressure downstream of the valve is greater than the pressure upstream of the valve, the valve

shuts to prevent reverse flow (the shut check valve mode). FCVs limit the flow through the

valve to the specified flow setting. The flow setting (4,900 gpm) of the FCV in the Fort

Collins - Loveland system was not optimised by the GA.

The pressure reducing valves separate the system into pressure zones and maintain pressures

within acceptable limits. The District is separated into five pressure zones; the elevation of the

service area ranges from 5,280 feet to 4,800 feet (above mean sea level) across the system.

The pressure zones are as follows:

. I MG Tankhne I

. 4 MG Tank Zone 2

The highest pressure zone served from the 1.0 MG Tank (node 19)

This pressure zone is served from the existing 4.0 MG Tank

(node 85); PRVs 1 and 2 separate this zone from the adjacent highest

Zone t
The intermediate PRV pressure zone is served from the new Zone 3

Tank (node 27L) and the new McCloughan Hill Tank (node 624);itis
created using PRVs 3,14,27,28,29,30 and 31

. PRV Zone 3

348



9 GA optimisation of the water system expansion planfor the FCLWD

. TimnathZone 4 The lowest pressure zone is served from the Timnath Tank (node 701);

PRVs 8 and 9 separate the PRV Zone 3 from the Timnath Zone 4

The Airport pressure zone is served from the elevated Airport Tank

(node 635)

. Airport Zone 5

The Master Plan identified redundant valves, relocated some existing valves, and adjusted the

settings for some valves for the 2015 system layout. The recommendations of the Master Plan

for 2015 are summarised in Table 9.1 .

Table 9.7 Master Plan recommendations for PRVs

flow setting (gpm) for the flow control valve

Valve Nodes Pressure
setting
(psi)

Discussion (from the Master Plan)

PRV ] 41-20r 51

PRV 2 't3-209 60 The system cannot achieve 60 psi upstream of PRV 2 until the new
Clarendon Hills oioe is constructed.

PRV 3 207-407 45 The Master Plan suggested relocation of the valve (l/8th mile east) to the
zone boundarv would be ideal but is not necessary.

PRV 4 2t1-219 The valve should be relocated to PRV 27 to the south of Harmony. It is
hoped the valve relocation will improve pressures in Clarendon Hills and

Fairwav Estates.

PRV 7 413-415 The Master Plan suggested the valve be replaced with an altitude control
valve located 1/8th mile west of County Rd 7 to control the operation of
the Timnath tank.

PRV 8 419-709 60 PRV I is modelled although the Master Plan suggested this valve be
reolaced with an altitude control valve as PRV 7is replaced.

PRV 9 455-72r 56 The 1993 pressure setting (50 psi) is necessary at least until the
duolication of the small pipes east of I25.

PRV 10 513-505 This valve is replaced by PRV 29 west of County Rd 11

PRV ]I 507-509 This valve is replaced bv PRV 29
PRV 12 533-535 This valve to be abandoned when PRV I0 and PRV 11 are abandoned.

PRV 13 4/.3-445 This valve should be abandoned when PRV 4 is relocated and new PRV
28 is introduced.

PRV 14 361-5 1 1 53

PRV 15 483-729 90 The Master Plan acknowledged the pressure setting of 90 psi may be too
hish.

FCV 16 The flow control valve is no lonser needed and is not modelled.

PRV ]7 255-257 The Master Plan suqqested PRy 17 be eliminated.
PSV 18 295-297 The pressure sustaining valve is not modelled because the line is

converted to a low head transmission line from the new Tnne 3 Tank.

PRV ]9 514-515 This valve should
bv PRV 29.

be abandoned when PRV 10 and PRV I I are replaced

PRV 20 266-265 This valve should be relocated to the Trilby intersection. PRV 30 and
PRV 3l are introduced to replace PRV 20.

PRV 23 355-357 43

PRV 27 222-421 43 This valve is PRV 4 relocated.
PRV 28 226-406 43 New valve reouired as a consequence ofthe relocation of PRV 4.

PRV 29 332-498 43 New valve replaces PRV I0 and PRV I1
PRV 30 468-470 43 This valve is PRV 20 rclocated.
PRV 3] 264-437 43 Introduced to replace PRV 20.

FCV 32 269-270 4,900" A new flow control valve controls the flow from Zone 2 to the new Tnne
3 tank west of Collese Avenue. The current flow settins is 4,900 epm.
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9 GA optimisation of the water system expansion planfor the FCLWD

The GA is used in this study to determine optimal settings of the PRVs operating in the system.

The procedure used to accomplish this is described below. The GA optimisation has assumed

the same locations for the PRVs as recommended in the Master Plan; no optimisation of PRV

locations was attempted.

To maintain the structure of the pressure zones outlined in the Master Plan, the PRV pressure

settings should be chosen such that the static pressure in the zone below is between 50 psi and

100 psi. The range of pressure settings considered for the PRVs is determined by the range of

elevations of nodes downstream of each PRV (see Table 9.8). Generally, the furthest

downstream node with the highest ground elevation will determine the minimum PRV pressure

setting to provide a static pressure of at least 50 psi. Similarly, the node downstream of lowest

ground elevation will determine the maximum PRV pressure setting so that the static pressure

does not exceed 100 psi. The range of PRV pressure settings considered by the GA in Table

9.8 approximates the allowable range of PRV pressure settings. The GA considered a step in

pressure setting of 1 psi in the range of allowable pressure settings. The maximum and

minimum downstream elevations in Table 9.8 reasonably match the high and low service area

elevations for the pressure zones given in the Master Plan.

Table 9.8 Range of pressure settings considered in GA optimisation for PRVs

The PRV pressure settings which result in static pressures of just less than 50 psi or just greater

than 100 psi should be acceptable since in general, the high elevations in each pressure zone

are not far downstream of the PRVs (so there are insignificant head losses), while the low

Valve PRV
elevation

(ft)

Madmum
downstream

elevation
(ft)

Minimum
allowable
pressure

setting
(psi)

Minimum
downstream

elevation
(ft)

Maximum
allowable
pressure
setting
(psi)

Pressure
setting range
considered

by GA
(psi)

PRV ] 5l l0 5082 37.9 5000 52.4 40 -+ 55

PRV 2 5090 5085 41.9 4960 43.7 45+60
PRV 3 5025 4985 32.1 4920 54.6 40+55
PRV 6 4845 4850 52.2 4842 98.7 55 -à 75
PRV 9 4850 4850 50.0 4843 97.0 50+70
PRV ]4 4980 491t) 45.'l 4870 52.4 45+55
PRV 15 4850 4970 101.9 4835 93.5 90 + 100

PRV 2J 5005 4980 39.2 4870 4t.6 40+ 45

PRV 27 5000 5000 50.0 48'tO 43.1 40+50
PRV 2E 5000 4990 45.1 4850 35.1 40+50
PRV 29 5000 4970 37.O 4810 43.7 40+45
PRV JO 5000 4990 45.7 4870 43.7 40 -+ 50
PRV 3] 5000 5000 50.0 4810 43.7 40+50
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9 GA optimisation of the water system expansion planfor the FCLWD

elevations of the pressure zone occur some distance downstream of the PRVs (with significant

head losses).

A comparison of the pressure settings for the PRVs chosen by the Master Plan and by the GA

are summarised in Table 9.9. PRV 15 is not operating for the Master Plan design subject to the

2015 peak hour demands, since the system cannot maintain upstream pressures higher than the

PRV pressure settings. By comparison, PRV I and PRV I5 are not operational for the GA

design subject to the 2015 peak hour demands. PRV 23 and PRV 29 are closed and operating

as check valves for the Master Plan design subject to the 2015 peak hour demands, to avoid

flow reversal. PRV 23 , PRV 30 and PRV 31 are closed for the GA design subject to the 2015

peak hour demands. It is likely PRV 30 and PRV 3I arc closed due to the increased capacity to

this area from the new Zone 3 Tank via node 474 andnode 413.

Table 9.9 Pressure reducing valves and selected pressure settings

Valves Nodes

Master Plan PRVs Genetic algorithm PRVs

Pressure
setting
(psi)

Status for
2015 peak

hour

Pressure
setting
(osi)

Status t-or
2015 peak

hour
PRV 1 41-20r 51 Operating 42 Operating
PRV 2 73-209 60 Operating 45 Operating
PRV 3 201-401 45 Operating 55 Operating
PRV E 4t9-709 ó0 Operatinq 't5 Not operatrng
PRV 9 455-121 56 Operating 51 Operating
PRV 14 361-511 53 Operating 5l Operating
PRV ]5 483-129 90 Not operating 100 Not operating
PRV 23 355-3s7 43 Closed 43 Closed
PRV 27 2ZZ-42r 4'.3 Operating 50 Operating
PRV 2E 226-406 43 Operating 50 Operating
PRV 29 332-498 43 Closed 42 Operating
PRV 30 468-470 43 Operating 43 CIosed
PRV 31 264-431 43 Operating 4I Closed

9.10 System Performance of Master Plan and GA Design

In the Master Plan, the existing and predicted land use plans and population projections for the

District were used to estimate water demands through to year 2015. The maximum daily

demands for 2015 were predicted and peak hour demands for 2015 were derived from these.

The 2015 designs are required to supply the 2015 peak hour demands while satisfying the

District's system performance requirements. The net 2015 peak hour demand on the system

analysed in the EPANET hydraulic simulation is about 27,240 gpm(39.2 MGD).
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9 GA optimisation of the water system expansion planfor the FCLWD

The GA evaluates the hydraulic feasibility of trial GA designs by checking that the various

system performance requirements are not violated. The designs which are infeasible are not

discarded by the GA search. The infeasible designs are penalised by adding a penalty cost to

the computed pipe cost to arrive at an equivalent total cost for that trial design. The penalty cost

applied is a function of the magnitude of the violations of the hydraulic constraints. The GA

does not discard infeasible designs as they may represent very good designs if the violations are

small. Subsequent generated trial designs may incorporate the best features of these nearly

feasible designs as the GA search procedure progresses.

The KYPIPE hydraulic simulation model was integrated into the GA model to evaluate the

hydraulic feasibility of the proposed GA designs. The EPANET hydraulic simulation model

was used as a check in this study to predict the pipe flows and node pressure heads for both the

Master Plan design and the proposed GA design subject to 2015 peak hour demands (see

Appendix A and Appendix B respectively).

9.10.L Node pressures and pipe velocities

For the peak hour demands, the District's water system is designed to maintain pressures

between 40 psi and 100 psi. The GA evaluation procedure penalises designs with nodes

having pressures less than 40 psi. A small number of nodes are allowed pressures less than

40 psi (following some discussion with FCLWD regarding the performance of the Master Plan

design) as detailed in Table 9.10.

The minimum pressure constraint of 40 psi is not applied to transmission lines which are low

head, high volume systems that do not provide domestic service, however, the pressures in the

transmission system should not be negative. The pressures at some of the critical nodes in

Table 9.10 would be improved if the pump stations which serve them are modelled. The

pressure at node 337 is 39.9 psi for the GA design which represents a very small violation of

the minimum pressure constraint. The GA design shows an overall reduction of pressures in

the system compared to the Master Plan design. The average pressure for the GA design

subject to the 2015 peak hour demands is 60.60 psi, while the average pressure for the Master

Plan design is 67.72 psi.
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9 GA optimisation of the water system expansion planfor the FCLWD

Tabte 9.10 Summary of low pressures for the proposed designs

Node DiscussionMaster Plan
Design

GA
Design

J 35.66 35.O4 Nodes 3. 5. 7 and 9 between Soldier Canyon and
Overland Trail experience low pressures.

These nodes are considered to be part ofthe
transmission system such that pressures less than
40 psi are considered acceptable.

5* 36.53 35.11
.7* 18.11 17.27

9 28.98 28.05

29 33.13 29.1r Node 29 is served by the Burns Ranch booster PS
which has not been modelled.

60* 2t.26 18.41 Node 60 is served by the'Westridge booster PS
which is modelled with only one pump on.

269 7.04 2.17 Nodes 269 and 270 represent the till line to the
proposed new Zone 3 tank.21tJ 6.75 6.15

293* -0.08 4.33 Nodes 293 and 295 are considered to be part of the

transmission system.295 30.51 39.00
3r7* 2L).40 t2.r3 Nodes 317 and 319 will be part of a tank system

served by the County Rd 32 booster PS which has
not been modelled.

3 19. 50.00 32.14

nodes with demands

A small number of nodes are allowed pressures greater than 100 psi. The high pressures are

not so high as to warrant changes to the system design. In such circumstances, the District

would typically install individual domestic service line PRVs. For the Master Plan design

subject to the 2015 peak hour demands, there are five nodes with pressures greater than

100 psi. The highest pressure is 112.4 psi at node 233. For the GA design, there are three

nodes with pressures greater than 100 psi and the highest pressure is 106.4 psi at node 545.

The District would prefer to keep pipe velocities below 5 fps. The District acknowledges some

pipes (mostly transmission lines) have velocities which exceed 5 fps. Pipes with velocities

greater than 5 fps may require special design consideration for events such as those caused by

water hammer. There are 14 pipes for the Master Plan system and 31 pipes for the GA system

which exceed a velocity of 5 fps for the 2015 peak hour. The average pipe velocity is 1.93 fps

for the Master Plan design and is 2.47 fps for the GA design.

9.L0.2 Supply flows, transmission flows, tank outflows and inflows

The flows to and from pressure zones including supply flows, tank outflows and inflows, and

significant transmission flows are sufitmarised in Table 9.11 for both the Master Plan design

and the GA design for the 2015 peakhour demands.
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Pressure

Tnne
Nodes Pipe description Pipe flows (epm)

Master Plan GA

Zone I
1-3 Supply from Soldier Canyon 4.551.3 4,647.5

t9-t7 Tank flow from 1.0 MG Tank 1.932.2 2.480.9

68 Supply from Taft Hill PS 7,400.0 7,400.0

Zone 2

68-87 Transmission flow from Taft Hill PS 6.283.1 5.648.2

85-87 Tank flow from 4.0 MG Tank 3,556.3 1.566.3

47-201 Flow via PRV I 2.097.9 3.1t2.9
73-209 Flow via PRV 2 352.7 199.6

210-271 FCV 32 to new Zone 3 Tank 4.900.0 4.900.0

Zone 3

z7r-414 Tank flow east from new Zone 3 Tank 4.t79.8 7,538.1

2tt-293 Tank flow south from new Zone 3 Tank 3.917.9 6.0

371-343 Supply from existing Loveland connection 1.572.4 2,433.8

363-365 Suoolv from existins Loveland connection 5t0.2 963.0

450-451 Supplv from new Fort Collins connection 1,932.0 1.813.9

624-522 Tank flow from McCloughan Hill Tank 930.5 r.390.'7

207-40r Flow via PRV 3 125.3 r31.9

361-51 1 Flow via PRV 14 78.5 82.0

483-129 Flow via PRV 15 44.2 28.8

355-357 Flow via PRV 23 0.0 0.0

222-421 Flow via PRV 27 1,086.9 2.254.8

226-406 Flow via PRV 28 49r.3 511.2

332-498 Flow via PRV 29 0.0 135.0

468-470 Flow via PRV 30 423.1 0.0

264-437 Flow via PRV 31 r.019.6 0.0

Zone 4
101-703 Tank flow from Timnath Tank -2t.0 r 53.8

4r9-709 Flow via PRV I 57r.7 407.8

455-721 Flow via PRV 9 87.3 76.4

7t>ne 5 5r7-603 Flow to Airport zone via Airpof PS 890.8 810. r

63s-633 Tank flow from elevated Airport Tank r,673.2 1,753.9

9 GA optimisation of the water systern expansion planfor the FCLWD

Table 9.1L Pressure zone inflows for the 20L5 peak hour demands

The Master Plan design supplies about 2,080 gpm from the City of Loveland system

connections and about 1,930 gpm from the new City of Fort Collins system connection at

County Road 9. The District indicated a desire to limit the inflows from the Loveland systems

to 5.0 MGD (3,470 gpm) and from the Fort Collins system to 5.0 MGD (3,470 gpm). The GA

considered the option to duplicate the pipes connected to the Loveland system. Duplication of

these pipes results in the supply from Loveland being increased to 3,400 gpm. The relatively

short sections of existing pipe connected to the Loveland system operate with high velocities

and experience high head losses. The diameter of the new pipe connection to the Fort Collins

system has also been determined by the GA.

The GA design constrains the inflows to the City systems to the specified maximum rate of

5.0 MGD (3,472 gpm) for the 2015 peak hour demand pattern by way of a penalty function.

The GA design draws about 3,400 gpm from the Loveland system and about 1,800 gpm from

the Fort Collins system. The GA design chooses to duplicate the connections to Loveland and

increases the flow from Loveland up to close to the maximum allowable flow rate. The cost of

purchasing the additional water from Loveland may be significant or may be offset by cost

354



9 GA optimisation of the water system expansion planfor the FCLWD

savings elsewhere. The GA could be set up to consider this trade-off in an analysis to

determine optimal water sources.

The GA design provides virtually no water to the south from the new 4.0 MG Zone 3 Tank

(node 2lI). The demands is this area are met with increased flows from Loveland. The new

pipe to the east of the new Zone 3 Tank is assigned a diameter of 24 inches by the GA

(compared with 18 inches in the Master Plan) and consequently, flows from the new Zone 3

Tank are high in this direction.

The GA design supplies an amount of water from the new connection to the Fort Collins

system (node 450) similar to the amount supplied in the Master Plan design. The GA design

reduces the sizes of the new pipe connected to the Fort Collins system and the new and possible

duplicate pipes distributing the flow.

The total flow from external sources (Soldier Canyon, Taft Hill, City system connections) is

l':.,260 gpm for the GA design compared with 15,970 gpm for the Master Plan design. The

increased supply to the system reduces the total demand met by the system's tanks. There is a

significant reduction in the flow requirements of the existing 4.0 MG Tank (node 85). The

Timnath Tank is emptying for the GA design subject to the 2015 peak hour demands while the

tank is slowly filling for the Master Plan design.

9.10.3 Taft Hill source pump station

The Master Plan recommends the District purchase a standby pump unit for the Taft Hill source

pump station and duplicate the transmission line between Taft Hill and the existing Zone 2

4.0 MG Tank (node 85). The reliable capacity of the pump station would be increased to about

1,400 gpm with these improvements.

The Taft Hill source pump station can supply 7,400 gpm. The supply is provided as a negative

node demand at node 68. The hydraulic grade line (HGL) at node 68 for the Master Plan

design subject to the 2015 peak hour demands is approximately 5,260 ft. It has been assumed

in the GA design that the HGL at node 68 should be maintained at about 5,260 ft for the GA

design to simulate the pump head achieved by the pump station for the design pump discharge

of 7,400 gpm.

The GA constrains the HGL at node 68 to less than 5,260 ft by way of a penalty function. The

GA tends to provide a HGL at node 68 close to 5,260 ft by the optimisation of the duplicate

pipe sizes between Taft Hill and the existing Zone2 4.0 MG Tank. The GA design duplicates
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9 GA optimisation of the water system expansion planfor the FCLWD

the pipe from node 68 to node 76 with a 24 tnch diameter pipe and from node 76 to node 87

with an l8 inch diameter pipe. The resulting HGL at node 68 is 5,260.6 ft.

In future studies it would be useful to simulate the exact operation of the Taft Hill pump station.

This would allow the GA to determine the best operating point on the pump stations

characteristic curve, rather than be restricted to a specif,red operating point.

g.Ll Extended Period Simulation (EPS)

A hypothetical extended period simulation (EPS) of the projected 2015 maximum day demands

is performed on both the Master Plan design and the GA design. The EPS analyses are only

hypothetical because actual data was not available to do an accurate EPS. A series of

assumptions were made in the EPS analysis, particularly with respect to the variation of

demands and the water system operation for the maximum day in 2015. Despite these

assumptions, the EPS analyses provide a fair comparison of the system behaviour of the Master

Plan design and the GA design subject to an approximate maximum daily demand pattern.

The design outlined in the Master Plan is designed to supply and transfer the 2015 maximum

day demands and the document describes some of the approaches to the design of transmission

pipelines, pump station upgrades and storage tanks. The GA design was subjected to the 2015

EPS analysis to find out if it performs as effectively as the Master Plan design for an identical

demand pattern and identical system operation.

g.Ll..L Maximum day demands for 201.5

The Master Plan assumes that the peak hour demand on the maximum day is equal to 1.5 times

the average demand on the maximum day, based on experience in the U.S.A. The 2015 peak

hour demands are given in Appendix A. Using this assumption, a typical three-hourly variation

of demands has been constructed to approximate the maximum day demand pattern as shown in

Table 9.L2. The approximation of the maximum day demand pattern assumes a peak demand

period between about 6am and 3pm a lower demand period through the night between 9pm and

6am.
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Multiple of average
hour demand for

maximum day

Multiple of peak hour
demands

Time of day

1.3 0.8óó6am to 9am
1.0*9am to 12 noon 1.5*

1.3 0.86612 noon to 3pm
0.7333pm to 6pm 1.1

0.9 0.ó00ópm to 9pm
0.4669pm to 12 midnieht 0.1

0.5 o.33312 midnight to 3am
0.466o.13am to 6am

9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.12 Demand variation assumed for EPS of the 2015 maximum day

hour demand

9.LL.2 Variable head storage tanks

The EPS simulation of the 2015 maximum day demand pattern commences at 6am just before

the high demand morning period. The initial tank water levels at 6am are assumed to be at the

maximum tank water levels. In other words, the tanks are assumed to be full before the peak

day begins. The new 4.0 MG Zone 3 Tank (node 27t) and the new 4.0 MG McCloughan Hill

Tank (node 624) are assumed to have identical dimensions to the existing 4.0 MG Tank

(node 85) as shown in Table 9.13.

Table 9.13 Tank dimensions and initial water levels assumed for the EPS

New tanks proposed by Master Plan

In Table 9.14, the total volume of the tanks is compared with the available operating storage

derived from the tank dimensions in the EPANET model data provided by the District. The

EPANET simulation assumes the tanks are cylindrical. There is some disagreement between

the total storage and available storage of the elevated Airport Tank. The EPANET data suggests

an available operating volume of 680,000 gal while the Master Plan document suggests the total

volume is only 300,000 gal. This is a concern due to the poor performance of the Airport Tank

for the EPANET EPS (even when using an operating volume of 680,000 gal) of the assumed

2015 maximum day demands. This discrepancy would need to be resolved in future studies.

Maximum
water level

(f0

Diameter
(fÐ

Starting
water level

(fr)

Minimum
water level

(ft)

Tank Elevation
(fÐ

5,33ó.5 5,355.5 785,327.5 5,355.51.0 MG
5,249 t565,249 5,2304.0 MG 5,22r
5,160 15ó5,132 5,160 5,14 1Zone3 Tank*

5,084 5,103 r565,075 5,103McCloughan Hill*
5,207 605,053 5,201 5,r15Aimort

4,958 4,992 404,958 4,992Timnath
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Tank Total volume
(eal)

1.0 MG Tank 1,000,000 ó80,000
4.0 MG Tank 4,000,000 2.120,000

New Zone 3 Tank 4,000,000 2,'720,OO0

McCloughan Hill Tank 4,000,000 2,120,O00
Airport Tank 300,000* 680,000
Timnath Tank 750,000 32U,000

9 GA optimisation of the water system expansion planfor the FCLWD

Table 9.14 Tanks available operating storage

an anomaly

Ideally, the balancing storages in the tanks would discharge to help the system supply the peak

demands on the maximum day and the system would recharge the tanks during the night. The

tank water levels aÍe at the maximum operating levels at the start of the peak demand period.

They are expected to fall and then rise again to their starting water levels by the end of the

24hour extended period simulation. The tank water level variations are shown in Figures 9.7

to9.I2 and are summarised in Table 9.15.

Table 9.L5 Tank water level variations for the EPS of the 2015 maximum day

Tank water level returns to water level
** Tank empties

The balancing storage in the existing Zone I 1.0 MG Tank (Figure 9.7) is used effectively for

both the Master Plan and GA designs. The tank discharges between 6am and 3pm and then

recharges and the tank water level returns to the starting water level as the EPS proceeds.

At the end of the 2015 maximum day, the existing Zone 2 4.0 MG Tank (Figure 9.8) is full

again for the GA design, but reaches only about 60Vo full for the Master Plan design.

The new Zone 3 4.0 MG Tank (Figure 9.9) discharges throughout the 2015 maximum day and

is empty at midnight for the Master Plan design. The tank may not be empty, but the water

level is at the minimum operating water level and is effectively empty for the purpose of the

EPS. This tank does not completely empty for the GA design, however, at the end of the EPS,

the tank water levels in the new Zone 3 Tank are low for both the GA design and the Master

Plan design.

waterwater
Master PIan GAMaster PIan GA

Initial water
level (ft)

Tank

5,338.35,355.5* 5,343.55,355.5 5,355.5*1.0 MG
5,236.7 5,2455,241 5,249*5,2494.0 MG
5,141*. 5,r43.95,L43.95,160 5,r4L.9New Zone 3
5,095.6 5,O92.65,095.6 5,092.65,103McCloughan HiII

5,rJ 5**5,180.3 5,1'16.75,201 5,183.6Airport
4,975.3 4,982.94,979.9 4,992',4,992Timnath
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Table 9.7 Zone 1 1.0MG Tank water level variation for EPS

Maximum water level

GA Design

- 

Master Plan

Minimum water level

3pm 6pm gpm

Time of 2015 maximum day

3pm 6pm gpm

Time of 2015 maximum day

M¡dn¡ght 3am

Midnight 3am
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Table 9.8 Zone 2 4.0MG Tank water level variation for EPS

Maximum water level

GA Design

- 

Mester Plan

Minimum water level

5135

6am 9am Noon M¡dnight 3am

Table 9.9 New Zone 3 4.0MG Tank\ilater level variation for EPS

5140

3pm 6pm gpm

Time of 2015 maximum day

6am
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Table 9.10 New McCloughan Hill Tank water level variation for EPS
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Table 9.12 Timnath Tank water level variation for EPS

3pm 6pm gpm

Time of 20'15 maximum day

6am

¡tr

õ
o
o
(ú

=.v,c
(ú
l--

Table 9.11 Elevated Airport Tank water level variation for EPS

Max¡mum water level

GA Design
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Minimum water level

4950
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6am
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9 GA optinxisation of the water system expansion plan for the FCLWD

The new McCloughan H|II Tank (Figure 9.10) steadily discharges throughout the 2015

maximum day, The discharge rate is faster for the GA design. At the end of the EPS, the

McCloughan Hill Tank is about half full for both the GA design and the Master Plan design.

The elevated Airport Tank (Figure 9.11) drains quickly and is empty at 6pm for the GA design

while it almost empties for the Master Plan design. The Airport Tank water level variation for

the Master Plan design is similar to that of the GA design, except the tank does not empty. The

tank does begin to refill again through the night and at the end of the 2015 maximum day is

about 2O7o full for both designs.

At the end of the EPS, the existing Timnath Tank (Figure 9 .12) is full again for the GA design

but is only about 657o full for the Master Plan design.

The EPS analysis has shown that the performance of both the Master Plan design and the GA

design are similar under EPS conditions. However, it is obvious that neither design is

satisfactory and both designs would need to be re-evaluated to add additional pipes or tank

volumes to satisfy the EPS of the 2015 maximum day. This could be considered in a future

GA optimisation.

9.11.3 Pump station characteristics for EPS

The pump station characteristics for the 2015 maximum day EPS are assumed as shown in

Table 9.16. In Table 9.16, Hg is the pump shut-off head, H1 and Ql are the rated head and

rated discharge for the summed pump curves, H2 and Q2 arc intermediate points on the curve,

and Qj is the maximum pump station discharge.

Table 9.L6 Pump station operation* for the EPS analyses

Taft Hilt source PS operation is not modelled, however,
3 pumps with a combined design flow

the pumping station is operating
of 7,400 gpm

The Overland Trail source pump station and the Airport booster pump station are operated at

maximum capacity all day for the maximum day. The characteristic curves used for the

EPANET EPS analysis are derived from the Master Plan document. The pump head

characteristic curve for the Overland Trail source pump station with four pumps on is shown in

Figure 9.2 and the pump curve for the Airport booster pump station with three pumps on is

given in Figure 9.3.

Qz
(spm)

Qs
(epm)

Ht
(ft)

Qt
(gpm)

H2
(fÐ

Pump Station Operatron Hs
(fÐ

4,000.0 170.0 5,000.0 8,000.04 pumps 220.O 190.0Overland Trail
1,200.0 1,800.02t5.O 180.0 600.0 160.0Aimort 3 pumps
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9 GA optimisation of the water system expansion planfor the FCLWD

The Westridge booster pump station is modelled for the maximum day EPS with just one of the

two existing pumps operating, in the same way that it was modelled for the peak hour analysis.

Several other existing and proposed booster pump stations are not modelled for consistency as

per the original Master Plan.

The operation of the Taft Hill source pump station is not modelled, but the pump station is

assumed to supply the reliable capacity of 7,400 gpm all day during the maximum day. The

supply from the connection to the City of Fort Collins system via the Taft Hill pump station is

simulated as an inflow (negative demand) at node 68 for the EPS using the EPANET model.

The Master Plan design subject to the 2015 peak hour demands simulates the Taft Hill source

pump station as an inflow of I ,400 gpm at node 68 and the corresponding HGL at node 68 is

5,260 ft. The EPS analyses only approximately simulates the operation of the Taft Hill pump

station as the HGL at node 68 is not controlled. It is assumed that the HGL at node 68 should

not exceed 5,260 ft. The Master Plan design generally maintains the HGL at the Taft Hill

connection between 5,260 ft and 5,270 ft during the EPS. For the GA design, the HGL at the

connection generally varies between 5,270 ft and 5,290 ft during the EPS. These aspects

should be corrected in future studies. One demand period for the Master Plan EPS and two

demand periods for the GA EPS exhibited much higher HGLs at the node 68 connection. It

would be useful to simulate the exact operation of the Taft Hill pump station, for a more

accurate EPS.

The EPS of the 2015 maximum day using the EPANET model determines the power output of

the pump stations. The average power output of the pump stations are compared in Table 9.17

for the GA design and the Master Plan design.

Table 9.L7 Average pump station po\rer output for the 2015 maximum day

The power output of the Taft Hill source pump station is based on the simulated pump flow of

7,400 gpm and corresponding pump head of approximately 70 ft. The power consumed by

the pump stations will depend on the efficiency characteristic curves of the pumps. The average

power consumed on the average demand day in 2015 could be used to approximate annual

power costs for pumping.

Pump Station
Master Plan design Genetic algorithm design

Overland Trail PS 209 199

Taft Hill PS 131 131

Airport PS 39.3 43.1
Westridge PS 3.r 3.1
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9 GA optimisation of the water system expansion planfor the FCLWD

9.11.4 The sources of suPPlY

The Soldier Canyon Tanks are assumed to be maintained at full level by the water treatment

plant for the whole day during the EPS. It is assumed the supply can match the demand

throughout the maximum day. Soldier Canyon is modelled as a reservoir of constant elevation.

In addition, the connections to the City systems are modelled as reservoirs of constant

elevation. Again, it is assumed the supplies from the connections can meet the needs of the

District's maximum day. The water surface elevations of the reservoirs used in the computer

models are given in Table 9.18.

Table 9.18 The HGL of sources of supply for EPS

Source modelled as reservolr Assumed constant water surface elevation
(fÐ

5241
5263

Loveland connection ( 5212
Fort Collins connectton I 5103

The total supplies from the sources of supply for the 2015 maximum day are summarised in

Table 9.19. The GA system design demands a total of 21.78 MGD from the combined

sources. The Master Plan system demands a comparable2L.2S MGD. The GA system design

takes more water from the City systems but less from Soldier Canyon as compared to the

Master Plan design.

Table 9.L9 Estimated total supplies from the sources of supply for EPS

Source of supply Master Plan supply
(MGD)

Genetic algorithm supply
(MGD)

6.99 6.49
Taft Hill 10.66 10.66

Loveland connectton t node 363 0.48 0.79
Loveland connections node 371 1.59 2.21

New Fort Collins connection 1.56 1.63

TOTAL 2r.28 2t.78
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9.1L.5 System performance for EPS

The District's water system is designed to ideally maintain pressures at nodes throughout the

system between 40 psi and 100 psi. A small number of nodes are allowed pressures less than

40 psi under the peak hour loading condition (see Table 9.10). Over the period of the EPS,

these are the same nodes which exhibit low pressures. The most critical of these nodes for the

GA design subject to the 2015 maximum day demand pattern are perhaps node 269 (lowest

pressure experienced is 5.96 psi) and node2l0 (lowest pressure is 4.13 psi) on the fill line to

the proposed new Zone3 Tank, and node 293 (lowest pressure is 1.71 psi) which is part of

the transmission system downstream of the new Zone 3 Tank. The GA design experiences low

pressures in the Airport area at 6pm when the Airport Tank is empty. The lowest pressure of

22.55 psi occurs at node 619 in the Airport area.

The Master Plan design subject to the 2015 maximum day demands shows a similar pattern of

pressures. The Airport Tank gets low but does not empty. The pressure at node 293 is critical

sinceitisaslow as-2.2psiat9pm. This node293 ispartof thetransmissionsystemfrom

the new Zone 3 Tank. Negative pressures are not acceptable.

9.12 Summary and Conclusions

In this study, genetic algorithm optimisation has successfully been applied to the design of the

large-scale Fort Collins - Loveland Water District's water distribution system for the yeat 2015

expansion plan. The GA technique was used to size new and duplicate pipes and to choose

appropriate pressure settings for the pressure reducing valves in the system. The GA design is

shown to satisfy system performance requirements, such as minimum pressures of 40 psi for

the system subject to the 2015 peak hour demands. The cost of the new and duplicate pipes for

the GA system design is $2.966 million, which represents a savings of $2.885 million (or

49.37o) compared to the Master Plan pipe network design with pipe costs of $5.851 million.

Following the optimisation step, the GA design and the Master Plan design were both subjected

to an extended period hydraulic simulation (EPS) using an assumed maximum day demand

pattern for 2Ot5 to evaluate the transmission system. The EPS was performed to allow a fair

comparison between the two designs. Although the Master Plan system was designed with

consideration given to sizing pipelines for transmission, the design failed to perform adequately

for the EPS analysis. Not surprisingly, the GA design demonstrated similar unacceptable

system performance for the EPS, under equivalent system operation to that of the Master Plan

design. The GA design did perform slightly better in that three of the six storage tanks refilled

on the maximum day, whereas only one tank refilled for the Master Plan design.
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Extended period simulation was not a design criteria for the original Master Plan design and as

a result was not used in the GA design process. The GA technique, however, has the

capability of directly considering the EPS requirements to ensure all tanks refill at the end of a

peak demand day.

9.L3 Scope for Further GA Optimisation Expansion Planning

This GA study of the FCLWD year 2015 design was limited in its scope to optimising new and

duplicate pipes, and PRV settings. The GA technique could be used for the optimal design of

other decision variables, such as ffansmission pipelines, pumping station facilities, storage tank

locations and capacities, or to decide upon the most economic future sources of supply.

The GA technique is well-suited to optimising design decisions such as those which may be

encountered by the Fort Collins - Loveland Water District towards 2015. The decisions for the

future sources of supply and the designs of the transmission system and distribution system are

closely dependent. The GA has the potential to optimise such aspects of the design

simultaneously to create a compatible system design and take advantage of all the available cost

savings (both capital costs and pump operating costs). The GA model may be integrated with a

specific evaluation scheme to consider the District's particular design decisions.

In summary, the following aspects of the FCLWD design could be optimised with a more

comprehensive GA analysis:

. The trade-offs between producing water at the water treatment plant and purchasing

(or exchanging) water with adjacent systems, including the couesponding

transmission system expansions which would be necessary'

. The upgrades of source pump stations and booster pump stations and approximate

operating schedules for the existing and upgraded pumping stations.

. The locations and sizes of new storage tanks and desired operating water levels for

new and existing tanks.

. The locations and settings of flow regulating devices such as pressure reducing valves

and flow control valves.

. The sizing and layout of new and duplicate pipes for transmission or distribution.

The GA optimisation model would incorporate a simulation model to analyse the design for the

demands associated with a particular year (e.g., year 2000 and/or 2Ol5) subject to:

. the projected instantaneous peak hour demands

. the projected maximum day demand pattern (EPS to ensure tanks refill )
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9 GA optimisation of the water system expansion planfor the FCLWD

. the projected average day demand pattern (to determine average annual pumping costs)

. and perhaps other demand conditions such as fire demands.

The GA optimisation model would evaluate proposed designs in terms of system performance

requirements specif,red by the District such as:

. minimum and maximum pressures at the demand nodes

. maximum velocities in pipes

. maximum flows from adjacent systems

. maximum inflow from the water treatment plant

. acceptable tank water levels

. refilling of tanks following a peak demand day such that final tank water levels are at

least equal to start tank water levels

' pump station flows within the operational limits of the pumping facilities

. PRV settings which maintain the pressure zone affangement

The GA optimisation model would estimate pipe and equipment costs, installation and

construction costs and also system operating costs associated with the GA designs including:

. pipe material, supply and laying costs for new and duplicate pipes

. pump equipment costs and construction costs for new or upgraded pump stations

. construction costs (and land acquisition costs) for new storage tanks (a function of

volume and tank site)

. the costs of producing and supplying water from the water treatment plant

. the costs of purchasing water from the adjacent City systems

. and the power costs for operating the pumping stations

Finally, the GA optimisation model could be set up to consider progressive system expansions,

for example from 2000 to 2Ot5 by optimising the additions at each time step. A comprehensive

GA optimisation study could be expected to produce a range of lowest cost expansion plan

designs that satisfy all the design criteria and provide a reliable water supply system. The year

2015 GA design presented in this report is one of a number of low cost designs identified in the

GA optimisation study. Other low cost designs exhibited different system features which could

potentially be of interest to the District to meet other non-quantifiable objectives they may have

in preparing their system expansion plans.
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A methodology for applying genetic algorithms to pipe network optimisation has been

developed and tested in this thesis. The genetic algorithm (GA) model has been based on a

traditional GA strategy. A traditional three-operator GA applies proportionate selection, one-

point crossover and random bit-wise mutations to an evolving population of fixed-length binary

strings and is effective for most applications. In this thesis, various elements of the GA

structure are tested in a series of experiments and applications, and through progressive

development, an efficient improved GA is formulated to search the pipe network optimisation

solution space. The modifications to the traditional GA are intended to exploit the power of the

GA.

The GA user has considerable freedom to formulate the GA search for a given problem. The

user can take maximum advantage of this flexibility by understanding the problem to be solved

and the nature of the solution space to be searched. A summary of the steps for implementing

the GA procedure that has been developed in this thesis follows:

(1) a coding scheme is created, based on some form of coded structure with the potential to

represent all of the possible solutions.

To construct an efficient coded structure to represent the set of all possible solutions (the

solution space) for a pipe network optimisation problem, the user first identifies the decision

variables (e.g., pipes to be sized, PRV settings to be selected, etc.) and the allowable choices

for each decision variable (e.g., available pipe sizes, allowable range of pressure settings, etc.).

Some creativity may be required to decide how to best represent the unknown decision variables

by pieces of genetic code and to decide how the various pieces of code may be best arranged to

form a coded structure. Decoding routines are assembled that recognise the trial solutions

represented by coded structures (consisting of look-up tables which map pieces of code to

decision variable choices).

(2) a method of evaluation is devised to allocate fitness values to any coded structure

solution that may be generated.

A cost function computes the cost of trial solutions (e.g., pipe costs, energy costs for pumping,

treatment plant expansion costs, water production costs). A hydraulic simulation model is

formulated with the known system data (for the existing system components) and the decision

variable choices (for the proposed system expansions), and the hydraulic feasibility of the

solution is evaluated for the demand condition(s). The results of the hydraulic simulations are
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compared with the expected system performance requirements (e.g., minimum pressures) and

infeasible solutions (those that do not satisfy the performance constraints) are penalised. A

fitness function is assembled to assign fitness values to coded solutions, in terms of estimated

system expansion costs and penalty costs.

(3) a strategy is developed, including GA operators and search parameters, to generate new

fitter populations of coded solutions from the current population using the information

provided by the fitness values and the code of the parent solutions.

The traditional three-operator GA has been applied in this thesis to a two-reservoir network

expansion problem. An exhaustive enumeration of all possible solutions (about 4 million) to

the relatively simple two-reservoir Gessler problem was conducted in Chapter 5 of this thesis.

The exhaustive enumeration identified the global optimal solutions, feasible and infeasible near-

optimal solutions, and characteristics of a typical solution space for the pipe network

optimisation problem. The performance of various GA formulations was assessed by

comparison with the results of the exhaustive enumeration. Initial results using the traditional

GA were encouraging, and an extensive experimental analysis followed to determine how the

GA formulation may be improved for this application. A series of experiments were carried out

(reported in Chapters 6 and 7) to consider:

o the GA search parameters adopted,

o representation mappings (binary codes, Gray codes and integer codes),

. treatment of the constraints of the optimisation by way of the penalty function method,

o altemative selection methods (tournament selection and proportionate selection),

. an appropriate form of the fitness function and fitness scaling mechanisms,

o various crossover mechanisms (one-point, multi-point and uniform crossover),

o random bit-wise and decision-variable-wise (creeping or adjacency) mutations, and

o the introduction of an elitist concept.

The following elements of the formulation were found to enhance the performance (efficient

convergence to lowest cost solutions) of the GA search for pipe network optimisation:

proportionate selection combined with a power law form of fitness scaling (tournament

selection was also very effective),

both random bit-wise mutations and decision-variable-wise creeping mutations (both with

low probability), and

an elitist concept (in which a small population of the best solutions identified by the GA is

maintained in parallel with the working population and members of this elite population are

occasionally mated with members of the working population).

o

o

a
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In addition, it was found that

. one or two-point crossover provided a sufficient amount of exploration of the search space,

o the use of coded substrings of Gray codes to form the coded string solution was effective

(however, the most appropriate coding scheme is partly problem-dependent), and

o the penalty applied to infeasible solutions by the penalty function should be a function of the

distance from feasibitity (the choice of an appropriate penalty function and penalty factors is

problem-dependent and some trial-and-error adjustment of the penalty function(s) is usually

required).

Some experimentation with the GA strategy (the combination of GA operators and GA search

parameters) is usually required, since the most effective strategy will depend on the size of the

solution space (the length of the coded string) and the formulation of the GA model including

the choice of coding scheme, fitness evaluation scheme and other GA operators and GA search

parameters. A number of GA runs are usually carried out using various traditional and

modified operators, to find those best suited to the pipe network optimisation problem and the

structure of the coded solution adopted. Additional GA runs are usually carried out using

varying GA parameters (such as population size, penalty function coefficients which tighten or

relax constraints, and other parameters that drive the GA operations such as the probability of

crossover and the probability of mutation). Experimentation is required to find the best

performing set of GA parameters and penalty functions.

Consequently, a range of low cost pipe network design solutions are identified by the GA

method. The alternative solutions may be quite different network configurations, thus giving

decision-makers a choice in network features. The alternative configurations may then be

compared in terms of other important (but perhaps non-quantifiable) objectives such as

environmental issues, community concerns or possible future developments. Additionally, the

penalties may be relaxed such that a number of low cost solutions that are marginally infeasible

(ust fail to meet the performance constraints) are identified. The engineer can weigh up the

trade-off between constraint violations and the cost savings.

Following the analysis of the Gessler problem, the improved performance of the GA model

formulated in this thesis was confirmed by the application to larger and more complex pipe

network optimisation problems. In Chapter T,large pipe network optimisation problems with

known optimal solutions were manufactured by considering the simultaneous optimisation of

multiple Gessler problems. A modified GA formulation, incorporating coded solutions

represented by strings of bits in Gray codes, power law fitness scaling, creeping mutations and

the elitist strategy proved to be very effective. The improved GA developed in this research

consistently identified global optimal solutions after relatively few solution evaluations
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(400,000) compared to the vast solution space for the simultaneous solution of five Gessler

problems ç)r2o or I.329x1936 possible solutions for a string length of 120 bits). The global

optimal solution is not usually known for problems of this size.

The GA was also applied to the benchma¡k New York City tunnels network expansion problem

in Chapter 8. The global optimal solution to the New York tunnels problem is not known,

however, the best regions of the solution space have been previously identified by the models

of several prominent pipe network optimisation researchers. A series of GA runs were

performed for the improved GA, the traditional GA and various intermediate GA formulations

to quantify the significance of each proposed feature of the improved GA formulation. The

performance of the improved GA was far superior to the traditional GA, and fitness scaling and

the elitist strategy were the most effective elements of the improved GA model. The improved

GA generated three tunnel networks with a lower cost than the previously lowest cost discrete

pipe solution determined by Morgan and Goulter (i985).

A primary objective for researchers of pipe network optimisation is to make the progression

from theoretical pipe network optimisation to practical water distribution system design. The

optimisation of the year 2Ol5 system expansion plan for the large-scale water transmission and

distribution system managed by the Fort Collins - Loveland Water District, Colorado, was used

to test the capabilities of the GA model in a realistic design situation in Chapter 9. The Fort

Collins - Loveland system supplies water for agricultural and municipal use to an area of about

60 square miles between the cities of Fort Collins and Loveland. The system is composed of

about 320 pipes (of which 46 are proposed new or duplicate pipes) and 13 major pressure

reducing valves (PRVs) isolating the system into 5 pressure zones. The methodology for

optimising pipe network designs using GAs developed in this research was applied to this

problem. The GA model was used to optimise the diameters of new and duplicate pipes and the

pressure settings of PRVs. The GA design achieved significant cost savings (about 49Vo) by

comparison to a Master Plan design prepared by a Fort Collins engineering consultant using a

hydraulic simulation model and standard design guidelines. The design determined by the GA

applied to a problem involving many of the real concerns of designers, is evidence that the GA

model has the potential to become a valuable, practical design tool.
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The performance exhibited by certain elements of the GA stlategy is summarised below

Coded string representation

In this thesis, fixed-length coded strings were formed by concatenated substrings

corresponding to decision variables of the pipe network optimisation, and the substrings were

coded using binary codes, Gray codes or integers. Binary codes have performed effectively in

this thesis, however, experiments have indicated that Gray codes may be a more appropriate

coding scheme for this problem. The use of Gray codes ensures that similar coded strings

represent similar network solutions. Gray codes eliminate discontinuities, such as the

Hamming Cliff of binary codes, that may obstruct the GA as it accumulates highly-fit string

similarities within a population of coded strings. Fortunately, the GA seems to be robust

enough to overcome biases introduced by the coding scheme.

The performance of the integer coding scheme was shown to be inferior for the relatively small

Gessler problem in Chapter 6, however, the integer coding scheme was effective for the more

complicated Fort Collins - Loveland problem in Chapter 9. The use of an integer coding

scheme for the Gessler problem, with only eight decision variables and hence eight substrings

forming the coded string, does not provide enough genetic information for the GA to operate

with. The use of integer values may be more effective where the possible choices for these

decision variables are not a power of 2, since redundant binary codes can increase the size of

the solution space significantly. In addition, strings of integer numbers are more manageable

for problems with many decision variables and many choices for decision variables. The

coding scheme adopted influences the choice of GA operators used to manipulate parent coded

strings to produce child strings.

Penalty function method

The penalty applied to infeasible solutions by the penalty function should be some function of

the distance from feasibility (that is, violations of the constraints should be penalised according

to the degree of the violation). This allows the search to approach the optimum solutions from

both the feasible and infeasible regions of the solution space. For the GA search applied to the

Gessler problem, a penalty factor of $50,000 per psi pressure deficit at the critical low pressure

node maintained between 20 and 40 infeasible solutions in each new generation of 100

members and often led to the global optimal solution for $1.7503 million. It was shown that

one parent of the optimal solution may be infeasible.

For the New York tunnels problem, a systematic approach determined the most suitable penalty

factor as $30 million per foot of hydraulic head deficit at the critical node. This penalty factor
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produced a feasible lowest cost solution and provided a good balance of feasible and infeasible

designs in the search. During the analysis of different penalty factors for the New York tunnels

problem, a useful infeasible solution was produced using a relatively low penalty factor of $5

million per foot of hydraulic head deficit for $33.63 million. The infeasible design represents a

cost saving of $5.2 million for a relatively small deficit in minimum allowable hydraulic head

(approximately I ft deficit at three downstream nodes).

Parent selection methods and fitness scaling

Proportionate selection chooses strings according to their fitness with respect to the fitness of

fellow strings in the population and chance factors. A fitness scaling mechanism was

introduced in this research in the form of a variable exponent in the fitness function to be used

in conjunction with proportionate selection and the combination was found to be very effective.

The magnitude of the exponent was allowed to increase in steps as the GA run progressed to

stretch the range of fitness values. Initially, a low value of the exponent is used, to allow the

GA time to sort through the potential strengths of the ordinary strings of the early generations.

In time, an increased value of the exponent is used to magnify the small differences in fitness

values.

Tournament selection has an advantage in that a fîtness function is not required to transform the

pipe network cost minimisation problem into a coded string fitness maximisation problem. The

coded string solution with the lowest cost wins the tournament. Binary tournament selection

was very effective and very efficient for suitable combinations of GA parameters (relatively

large population sizes and high crossover and mutation rates are recommended). There may be

some value in allowing the weaker competitor a small chance of winning the tournament.

Ternary tournament selection can be used to determine reasonably good results very quickly.

Crossover mechantsms

The traditional one-point crossover operator was generally used throughout this thesis.

Alternative crossover mechanisms including two-point crossover, multi-point and uniform

crossover were investigated for the application to the Gessler problem in Chapter 6.

Crossovers at any bit position linkage in the 24-bit string and crossovers only at the boundaries

of the eight 3-bit decision variable substrings were considered for each crossover mechanism.

The less disruptive crossover operators (one-point and two-point) were best suited for

crossover points at any bit linkage and the more disruptive crossover operators (uniform) were

best suited for crossover points at the substring boundaries.
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Mutation

The creeping mutation operator was found to be useful for exploring the solution space in the

immediate vicinity of the cunent population. Low rates of creeping mutations with an increased

chance of creeping down were found to be most appropriate. Low rates of random bit-wise

mutations were necessary to provide occasional useful variations.

The elitíst strategy

The power of the elitist strategy was exceptional for the application to the simultaneous

optimisation of multiple Gessler problems. The maintenance of the elite population of the

previous best solutions is designed to keep the GA search on the right track, while allowing for

relentless exploitation of past results by selection and extensive exploration of new parts of the

solution space by crossover and mutation. The elitist strategy was less effective for the

application to the New York tunnels problem.

L0.L GAs for Pipe Network Optimisation

The GA is powerful in its application, and yet flexible enough in its formulation to overcome

many of the obstacles which have frustrated traditional optimisation approaches in their

application to the pipe network optimisation problem.

In this thesis, the GA was formulated to select pipe sizes for new pipes and pressure settings

for PRVs. The GA can potentially consider any combination of design or operational decision

variables for any system component, if the feasibility of the decision can be evaluated by

hydraulic simulation. The GA can readily consider discrete choices for decision variables such

as a list of available pipe sizes for new pipes, tank locations, the on/off status of pumps or the

open/closed status of valves. The use of discrete choices provides an advantage over

optimisation techniques which determine continuous solutions.

Pipe network designs are usually subjected to multiple demand conditions such as steady-state

simulations of projected peak hour demands, maximum day demands or fire fighting flows

superimposed on maximum day demands and extended period simulations (EPS) of projected

maximum day demands and average day demands. Naturally, there are uncertainties associated

with future demands, long-term water use trends, projected demand variations over the day, the

magnitude of fire fighting flows and where they will be critical. There are also uncertainties

associated with quality of service and system reliability requirements. These issues need to be

resolved to design a system, regardless of whether the system will be optimised or not. Once
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they are resolved, optimisation can be used to determine the best design for the specified

demands, performance requirements and reliability constraints.

The most important performance constraints are minimum allowable pressures at the demand

points for all demand conditions. Other performance constraints may include maximum

allowable pressures for demand nodes and maximum allowable velocities for pipes. Pumps are

required to operate within acceptable operating limits. Regulating valves supplying the system

from other zones or systems usually have a maximum capacity. A minimum hydraulic grade

may have to be achieved at connections to other zones or systems. Storage tanks have

minimum and maximum operating water levels. Fluctuating water levels in tanks monitored

during an EPS are usually required to demonstrate a specified amount of exercising and water

levels at the end of the demand cycle are required to reset to initial water levels (in preparation

for the next demand cycle). In the evaluation of trial solutions generated by the GA,

performance constraints such as these are checked by examination of the results of the hydraulic

analysis. The GA method considers multiple demand conditions and multiple sets of

constraints by calling the simulation model for each demand pattern.

10.2 The Hydraulic Simulation Model

The GA method can optimise any system that can be analysed by the hydraulic simulation

model including branched irrigation networks, extensively looped urban networks, gravity-fed

systems or pumped systems. The application of the GA approach to the Fort Collins -

Loveland system expansion plan in Chapter 9 of this thesis demonstrated the capability of the

GA to handle large-scale, complex systems of multiple pressure zones. Expansions to an

existing system, the rehabilitation of an existing system or the construction of a new system

may be considered. The GA method can potentially optimise other systems such as gas

networks or telecommunications networks if the GA model can be coupled with the appropriate

network analysis model.

In Chapter 2 of this thesis, a hydraulic simulation model was developed specifically for the

purpose of a fast, integrated link to the GA optimisation model. The hydraulic simulation

model uses the Newton-Raphson numerical solution technique applied to the loop corrective

flow equations. Algorithms were developed for the hydraulic solver in this thesis to define the

Ioop structure (the path of pipes in natural loops and pseudo loops), to compute a set of initial

flows in the network such that continuity is satisfied, and to determine a loop numbering

scheme that produces a Jacobian matrix of coefficients of near minimum bandwidth. Sparse

matrix routines are used to efficientþ reduce identical sparse Jacobian matrices at each iteration

of the Newton-Raphson technique. Row scaling and a strategy for selecting a suitable sequence

of pivot elements are used to maintain numerical stability and minimise the number of row
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reduction operations by reducing the amount of fill-in. A convergence test defines the accuracy

of the hydraulic solutions required and avoids unnecessary iterations of the technique.

An alternative to developing a hydraulic simulation model is to embed the code of an established

simulation model within the code of the genetic algorithm routines. This approach was

followed for the application of the GA to the Fort Collins - Loveland system in Chapter 9.

Reliable models for hydraulic simulation are now available which are better equipped to handle

such complexities as multiple flow and pressure regulating devices.

L0.3 Other Possible Applications of GAs to Pipe Networks

There are many potential applications for GAs to problems concerning the design and operation

of water distribution systems. This thesis has concentrated on using the GA to determine the

optimal system expansion plan for a specified set of demand conditions such as those for

ultimate buildout, such that system expansion costs are a minimum.

The optimal staging (or phasing) of future expansions could potentially be considered by first

using the GA to identify the ultimate system expansion plan, and then formulating a second GA

with the year of construction of facilities as the decision variables. The proposed system

improvements would be subject to incrementally increasing demand conditions.

GAs could also be used effectively for the ongoing optimisation of water supply system

operation. The pump operation schedule is the set of rules indicating when the individual

pumps should be switched on and off over a specified period of time (usually the demand

period cycle) such as a day for an urban system. The optimal pump operation schedule is the

policy which minimises total operating cost given expected system demands, desired tank water

levels and a set ofelectricity tariffs. Suppose a system operator can efficiently forecast system

demands for the next day based on current demands or historical records, the weather forecast,

or more specific information such as scheduled watering days or water orders (for irrigation

schemes). The operator could potentially run the GA to determine optimum system operation

each day.

10.4 Future GA Model Development

Future development of the GA model is expected to proceed through an ongoing cycle of

development and testing. The GA model should be applied to a series of water system

expansion problems to better understand the practical problems, including the design options

and constraints, perforrnance requirements and operational limitations encountered in practice,

the various forms of system data that are available and the size and complexity of existing
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system models. An appreciation of the practical problems is necessary to determine how the

GA model may be applied to solve them. This is the first step towards the ultimate objective of

this research: the development of a generic GA pipe network optimisation model capable of

anticipating a wide range of systems and possible design conditions. Less common design

considerations might include environmental concerns such as the aesthetics of tank heights,

inaccessible (overgrown) pipe routes, soil conditions, boring under freeways, various water

quality concerns, political issues associated with abandoning existing facilities, etc. A generic

GA model (coupled with a flexible, fully developed hydraulic simulation model) would be a

useful design tool for water system engineers.

The computational time to perform a GA run depends on the time required to perform a

hydraulic simulation of proposed system designs. The GA processes themselves demand

negligible computational effort compared to the simulations of network solutions. Solution

evaluations are more time consuming if multiple instantaneous and time-dependent simulations

are considered for large water distribution systems. Future work should be undertaken to

improve the efficiency of the simulation model, or alternatively special techniques should be

investigated to reduce the amount of computer time required to perform an individual solution

evaluation. Possible time saving techniques might include:

identify the most critical demand patterns, perform simulations from most critical to least

critical demand pattern and stop the evaluation if the solution is shown to be infeasible (for

example, tanks drain during an EPS)

use the balanced pipe flows of the previous simulation as initial flow assumptions for the

new simulation to reduce the number of iterations to convergence (this practice may be of

value in the GA search as the population of solutions converges and the pipe network

designs become similar)

consider 12 two-hour demand periods or even 6 four-hour demand periods for a 24-hour

EPS (final designs can be tested more accurately over 24 one-hour demand periods)

perform approximate solution evaluations in the early stages of the GA evolution (for

example, EPS analyses might only be performed for one in every five new generations, or

less iterations might be performed to convergence of the hydraulic solution)

with some knowledge of the best regions of the solution space (gained from previous GA

runs), it may be desirable to bias the GA starting populations towards specific regions of the

search space (in contrast to a randomly generated starting population)

For each new water system expansion problem, it may be necessary to adjust and refine the GA

formulation and new GA strategies may be investigated to extract the best performance from the

model. It has been found that the choice of coding scheme and fitness evaluation functions are

O

o

o

a
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I 0 Conclusions and recommendations

quite problem-dependent and the most appropriate GA operators and parameter values are in

turn, dependent on the choice of coding scheme and fitness evaluation functions.

Genetic algorithm technology is advancinE at a great rate and there is seemingly no end to the

alternative GA formulations that may be investigated. Of particular interest in this area, is the

notion of an adaptive genetic algorithm formulation that evolves as the solution evolves. In this

case, many of the decisions made by the GA user may be incorporated into the coded string

solution, such that the selection, crossover and mutation mechanisms, GA parameters and even

the coding scheme itself evolves as the population evolves. This research has shown that there

may be value in varying parameters such as the exponent in the fitness scaling mechanism,

penalty factors and the probability of creeping mutation as the GA run proceeds, however, the

best way to vary these parameters is uncertain. These uncertainties may be best resolved by the

GA.

Finally, further research should be undertaken to develop specific elements of the improved GA

proposed in this thesis:

o It became evident from the experiments with alternative coding schemes in Chapter 6, that

the performance of one arrangement of decision variable substrings within the string was

superior to another. Although further investigation of this issue is necessary, it is likely that

decision variable substrings which are related in the hydraulics and economics of the solution

should be positioned nearby in the string.

o Varying the penalty factor as the GA run proceeds may be of some value, although further

tests are required.

o Further research is necessary to determine the best variation of the fitness scaling exponent

with time (perhaps in terms of a relationship between curent generation fitness and overall

search fitness statistics).

o Although initial results using the elitist strategy developed in this thesis are quite promising,

further research is necessary to determine the most appropriate values for parameters such as

elite population size and probability of an elite mate, and to investigate issues such as the

method of selection of elite mates and the method of updating the elite population.
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Appendix A

System constants

Number of tanks and reservoirs = 10

Number of nodes = 253

Number of pipes = 323 (including 277 existing pipes, 13 new and 33 duplicate pipes)

Number of pump stations = 3

Number of valves = 14 (including 13 PRVs and 1 FCV)

Table A1 Tank and reservoir input data and output results for the EPANET

simulation of the Master Plan design subject to the 2015 peak hour demands

Fort Collins - Loveland System Expans¡on Plan

EPANET hydraulic simulation input data and
output results for the Master Plan design
subiect to the 2015 peak hour demands

Description Node Elevation
(ft)

Hydraulic Grade
(ft)

Net Outflow (+ve) /
Net lnflow (-ve)

(qpm)

Soldier Canyon
Tanks

1 5217.00 5232.00 4557.30

Existing Zone 1

1.0 MG Tank
19 5327.50 5341.50 1932.23

Existing Zone 2
4.0MG Tank

85 5221.00 5239.00 3556.34

New Zone 3
4.0MG Tank

271 5132.00 5150.00 3197.67

Connection to
Loveland svstem

363 5263.00 5263.00 510.23

Connection to
Loveland svstem

371 5272.00 5272.00 1572.43

Connection to Fort
Collins svstem

450 5103.00 5103.00 1931 .95

New McOloughan
Hill4.0MG Tank

624 5075.00 5093.00 930.49

Existing elevated
Airoort Tank

635 5053.00 5187.00 1673.23

Existing Timnath
Tank

701 4958.00 4968.00 -21.03
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Node Elevation
(ft)

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(psi)

3 5111.00 0.00 5193.30 35.66
5 5100.00 132.00 5184.31 36.53
7 s134.00 11.00 5175.79 18.11
9 5107.00 0.00 s173.89 28.98
15 5107.00 53.00 5335.39 98.96
17 5105.00 0.00 5333.53 99.02
21 5121 .00 13.00 5330.86 90.93
23 5220.00 9.00 5330.86 48.03
25 5065.00 33.00 5318.23 109.72
27 s144.00 183.00 5316.46 74.73
29 5240.00 0.00 5316.46 33.1 3

33 5130.00 29.00 5309.99 77.99
35 5090.00 0.00 5305.85 93.53
37 s1 10.00 176.00 5299.66 82.1 I
39 5140.00 183.00 5297.28 68.1 5

41 5127.O0 1 10.00 5294.12 72.41
43 5127.O0 4.00 5294.12 72.41
45 5120.00 1 10.00 5284.60 71.32
47 51 10.00 0.00 5283.52 75.1 I
49 5160.00 183.00 5281.78 52.77
51 5170.00 324.OO 5272.38 44.36
53 5170.00 0.00 5271.48 43.57

55 5170.00 0.00 5350.48 78.20
57 5210.00 0.00 5347.17 59.44
59 5240.00 50.00 5346.82 46.28
60 5300.00 141 .00 5349.07 21.26
61 5165.00 515.00 5258.45 40.49
63 5145.00 1060.00 5291 .15 63.33
6ga 5145.00 -7400.00 5259.22 49.49

69 5160.00 7.00 5256.05 41.62
71 s125.00 1 10.00 5270.09 62.87
73 5090.00 285.00 5228.96 60.21
75 5080.00 0.00 5249.62 73.50
76 5080.00 0.00 5245.34 71.64
77 5150.00 12.00 5243.72 40.61
79 5125.00 0.00 5242.54 50.93
81 5130.00 3.00 5238.25 46.90
83 5130.00 13.50 5238.01 46.80
87 5120.00 34.00 5237.78 51.04
201 51 10.00 0.00 5227.70 51.00
203 5082.00 42.OO 5222.O1 60.66
205 5025.00 87.00 5211.03 80.61

207 5025.00 0.00 5210.89 80.55
209 5090.00 0.00 5221.41 56.94
211 5085.00 28.00 5214.60 56.1 5

2't3 s050.00 0.00 5210.29 69.45
215 5040.00 140.00 5194.06 66.75
217 5030.00 0.00 5194.50 71.28
219 s030.00 2.00 5194.46 71.26
221 5027.00 143.00 5193.81 72.28

Appendix A EPANET simulation of the Master Plan design for the Fort ColLins - Loveland system expansions

Table A2 Node input data and output results for the EPANET simulation

of the Master Plan design subiect to the 2015 peak hour demands

a Connection to Fort Collins city system at the Taft Hill source pump
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Node Elevation
(ft)

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(osi)

222 s000.00 0.00 5191 .12 82.81
223 5010.00 288.00 5191 .59 78.68
225 501s.00 24.00 5190.61 76.09
226 5000.00 0.00 5189.30 82.03
227 5020.00 0.00 5214.19 84.14
229 5050.00 145.00 5213.78 70.96
230 5050.00 0.00 5211.77 70.1 0
231 5000.00 1 17.00 5214.O3 92.74
233 4960.00 0.00 5219.36 1 12.38
235 5000.00 352.00 s206.04 89.28
237 s020.00 84.00 5203.42 79.48
239 5010.00 213.00 5202.63 83.47
241 5010.00 0.00 5223.27 92.41

243 5000.00 0.00 5207.33 89.84
245 5050.00 22.00 5195.87 63.20
247 5040.00 555.00 5151 .85 48.47
249 s057.00 0.00 5202.88 63.21

251 5064.00 81.00 5216.92 66.26
253 5055.00 7.00 5224.32 73.37
255 5064.00 12.00 5224.08 69.36
257 5064.00 131 .00 5224.O7 69.36
259 5090.00 0.00 5221.14 56.82
261 5030.00 769.00 5220.58 82.58
263 5010.00 442.00 5218.97 90.55
264 5000.00 0.00 5217.44 94.22
265 5030.00 0.00 5215.67 80.45
266 5030.00 0.00 5215.64 80.44
267 5086.00 47.OO 5192.93 46.33
269 5165.00 0.00 5181.24 7.04
270 5135.00 0.00 5150.58 6.75
273 5030.00 482.00 5205.75 76.15
275 5030.00 55.00 5204.64 75.67
277 5025.00 55.00 5202.09 76.73
279 5010.00 83.00 5200.61 82.59
281 5000.00 55.00 5200.52 86.89
283 5050.00 55.00 5203.04 66.31
285 5010.00 55.00 5201 .10 82.80
287 5010.00 55.00 s200.94 82.73
289 5015.00 55.00 5202.22 81.12
290 5010.00 0.00 5109.06 42.92
291 5010.00 55.00 5202.85 83.56
293 5140.00 6.00 5139.80 -0.08

295 5060.00 0.00 s130.41 30.51
297 5060.00 0.00 5203.50 62.18
299 5060.00 0.00 5203.50 62.18
301 5050.00 0.00 5203.30 66.43
303 5030.00 0.00 5203.14 75.O2

305 5010.00 6.00 5203.05 83.65
307 5030.00 0.00 5203.01 74.97
309 5005.00 98.00 5202.96 85.78
311 5005.00 0.00 5109.30 45.19
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - LoveLand system expansions

Table A2 cont. Node input data and output results for the EPANET simulation of

the Master Plan design subiect to the 2015 peak hour demands

Node Elevation
(ft)

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(osi)

313 5040.00 0.00 5203.17 70.70
315 5050.00 194.00 5201.77 65.76
317 5135.00 423.O0 5202.84 29.40
319 5088.00 22.OO 5203.40 50.00
321 5060.00 0.00 5201.77 61.43
323 5050.00 0.00 5206.83 67.95
325 5050.00 0.00 5201.O7 65.46
327 5020.00 1 13.00 5199.29 77.69
329 5030.00 8.00 5199.31 73.36
331 5030.00 0.00 5199.47 73.43
332 5000.00 0.00 5199.47 86.43
333 5017.00 26.00 5202.95 80.57
335 5070.00 0.00 5202.97 57.62
337 5072.00 464.00 5202.53 56.56
339 5072.00 13.00 5203.27 56.88
341 5072.00 0.00 5203.31 56.90
343 5005.00 88.00 5214.14 90.62
345 5005.00 93.00 5211.50 89.48
347 5020.00 88.00 5212.41 83.37
349 5020.00 0.00 5199.31 77.70
351 4990.00 4.00 5209.22 94.99
353 4990.00 93.00 5213.62 96.89
355 5005.00 0.00 5213.62 90.39
357 5005.00 4.00 5173.67 73.09
359 4976.00 29.00 5173.68 85.65
361 4980.00 0.00 5173.s6 83.87
365 5050.00 360.00 5202.27 65.98
367 5030.00 79.00 5194.87 71.44
369 4985.00 303.00 s191 .03 89.27
373 4980.00 7.OO 5173.55 83.87
375 4960.00 0.00 5173.55 92.53
401 5025.00 0.00 5128.85 45.00
403 4985.00 2.00 5121.49 59.1 4
405 4954.00 40.00 s114.34 69.48
406 5000.00 0.00 5099.24 43.00
407 4990.00 0.00 5097.09 46.40
409 4966.00 96.00 5089.42 53.48
411 4925.00 0.00 5076.93 65.83
413 4925.00 7.00 5076.62 65.70
41s 4925.00 2.OO 5076.61 65.69
417 4845.00 59.00 5068.68 96.92
419 4845.00 0.00 5068.30 96.75
421 5000.00 1 14.00 5099.24 43.00
423 4950.00 0.00 5098.19 64.21

425 4940.00 24.00 5098.14 68.52
427 4900.00 4s2.OO 5097.13 85.42
429 4970.00 189.00 5098.07 s5.49
43',! 4920.00 143.00 5096.64 76.54
433 4900.00 560.00 5096.54 85.1 6

435 5000.00 661.00 5098.07 42.50
437 5000.00 361.00 5099.24 43.00
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - LoveLand system expansions

Table A2 cont. Node input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

Node Elevation
(ft)

Demand
(qom)

Hydraulic Grade
(ft)

Pressure
(psi)

439 4980.00 257.OO 5095.73 50.15
441 4990.00 123.00 5095.45 45.69
443 4920.00 7.00 5089.79 73.57
445 4920.00 0.00 5089.79 73.57
447 4952.00 36.00 5089.80 s9.71
449 4934.00 82.00 5090.11 67.64
451 4917.00 1409.00 5090.66 75.25
453 4886.00 44.O0 5090.01 88.40
455 4850.00 0.00 5085.83 1 02.1 I
457 4920.00 323.00 5097.18 76.77
459 4910.00 413.00 5097.47 81.23
461 4930.00 235.00 5092.53 70.42
463 4930.00 0.00 5092.43 70.38
465 4950.00 99.00 5092.34 61.68
467 4940.00 99.00 5092.3s 66.01
468 5000.00 0.00 5218.69 94.76
469 5000.00 287.OO 5218.97 94.88
470 5000.00 0.00 5099.24 43.00
471 4980.00 275.OO 5098.52 51.36
473 4909.00 1371 .00 5098.32 82.03
474 4969.00 0.00 5106.47 59.56
475 4940.00 243.00 5092.90 66.25
477 4960.00 23.00 5088.90 55.85
479 4923.00 620.00 5090.65 72.64
481 4876.00 29.00 5044.55 73.03
483 4850.00 6.00 5023.79 75.31
485 5005.00 82.00 5200.54 84.73
487 4990.00 0.00 5200.52 91.22
489 4956.00 1 143.00 5106.45 65.1 9
491 4912.00 593.00 5099.71 81.33
493 4870.00 0.00 5096.13 97.98
495 4875.00 6.00 s094.34 95.04
497 4931.00 48.00 5099.48 73.00
498 s000.00 0.00 5099.71 43.20
499 4960.00 26.00 5099.71 60.53
501 4940.00 0.00 5099.42 69.08
503 4939.00 0.00 5099.43 69.51
505 4939.00 23.00 5099.43 69.51
507 4940.00 32.00 5099.22 68.99
509 4940.00 7.00 5099.21 68.99
510 4960.00 0.00 s096.86 59.30
511 4980.00 7.00 5102.32 53.00
512 4960.00 379.00 5086.39 54.76
513 4940.00 25.00 5089.02 64.57
514 4940.00 12.00 s088.97 64.55
515 4940.00 0.00 5088.96 64.55
516 4911.00 0.00 s090.13 77.62
517 4960.00 41.00 5085.55 54.40
519 4930.00 672.OO 5086.93 68.00
521 4905.00 44.O0 5087.24 78.97
522 4910.00 0.00 5087.24 76.80
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - LoveLand system expansions

Table A2 cont. Node input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

Node Elevation
(fr)

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(osi)

523 4910.00 6.00 5080.03 73.68
525 4900.00 132.00 5087.1 6 81.10
527 4900.00 61.00 s087.09 81.07
529 4930.00 0.00 5078.43 64.32
531 4950.00 24.00 5079.92 56.30
533 4950.00 10.00 5076.16 54.67
535 4950.00 0.00 5076.1 5 54.66
537 4952.00 24.OO 5075.98 53.72
s39 4970.00 40.00 5069.77 43.23
540 4914.00 100.00 5063.28 64.68
541 4875.00 325.00 5087.05 91.88
542 4920.00 2.00 5087.01 72.36
543 4900.00 0.00 5087.01 81.03
545 4835.00 315.00 5087.01 1 09.1 9

603 4984.00 0.00 5166.21 78.95
609 4975.00 561.00 5164.22 81.99
611 4990.00 23.00 5163.32 75.1 0

613 5005.00 143.00 5163.24 68.57
615 5015.00 0.00 5163.17 64.20
617 5030.00 71.00 5162.96 s7.61
619 5045.00 187.00 5162.84 51.06
621 5035.00 35.00 5163.25 55.57
623 5035.00 335.00 5163.26 55.57
625 5034.00 0.00 5164.78 56.67
627 5020.00 260.00 5165.47 63.03
629 5015.00 459.00 5168.14 66.36
631 5007.00 388.00 5174.52 72.59
633 5020.00 62.00 5185.27 71.61
637 4990.00 0.00 5164.18 75.47
639 4983.00 10.00 51 64.1 4 78.49
641 4960.00 10.00 5164.14 88.45
643 4960.00 10.00 5164.14 88.45
645 4980.00 10.00 5164.14 79.79
703 4860.00 0.00 4968.01 46.80
705 4870.00 268.00 4968.05 42.49
707 4865.00 47.00 4967.98 44.62

709 4845.00 6.00 4983.47 60.00
711 4842.OO 21.00 4978.50 s9.1 4

713 4843.00 0.00 4973.75 56.66
715 4843.00 52.00 4968.02 54.17
717 4840.00 0.00 4967.78 55.37
719 4850.00 34.00 4956.71 46.24

721 4850.00 50.00 4979.24 56.00
723 4850.00 41.00 4967.54 50.93
725 4850.00 37.00 4956.70 46.23

727 4840.00 82.00 4967.64 55.31
729 4850.00 30.00 5021.90 74.48
731 4818.00 50.00 5019.99 87.52
733 4800.00 48.00 5035.91 102.22
73s 4847.OO 0.00 4967.87 52.37
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - Loveland system expansions

Table A3 Pipe input data and output results for the EPANET simulation

of the Master Plan design subject to the 2015 peak hour demands

a Duplicate pipes between Taft Hill source pump station (node 68) and Trilby Road
b Clarendon Hills new pipe

Pipe Start
node

End
node

Diameter
(inches)

Length
(fr)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100ofr

1 1 3 20.00 81 00 110 4557.30 4.65 4.78
3 3 5 20.00 2940 140 4557.30 4.65 3.06
5 5 7 20.00 2940 140 4425.30 4.52 2.90
7 7 9 20.00 660 140 4414.30 4.51 2.88
17 15 17 20.00 660 140 4361.30 4.45 2.82
19 19 17 16.00 4300 140 1932.23 3.08 1.85
21 17 21 20.00 480 140 6293.53 6.43 5.56
23 21 23 8.00 2640 140 9.00 0.06 0.00
25 21 25 18.00 5280 140 3024.81 3.81 2.39
27 21 27 18.00 5280 140 3246.72 4.09 2.73
29 29 27 12.O0 21 60 140 0.00 0.00 0.00
35 27 33 18.00 2640 140 3063.72 3.86 2.45
37 25 35 18.00 5280 140 2991.81 3.77 2.35
39 35 37 18.00 2640 140 2991.81 3.77 2.35
41 33 39 18.00 5280 140 3034.72 3.83 2.41
43 37 43 18.00 2640 140 2815.81 3.55 2.10
45 39 41 18.00 2640 140 2079.38 2.62 1.20
47 41 43 12.00 200 140 -43.10 o.12 0.00
49 43 45 16.00 2640 140 2768.71 4.42 3.61
51 45 47 16.00 500 140 2097.94 3.35 2.16
55 39 49 8.00 1 560 140 772.35 4.93 9.94
57 49 51 8.00 1 560 140 589.35 3.76 6.03
59 51 53 8.00 't200 140 191 .00 1.22 0.75
61 55 57 4.00 1 800 140 50.00 1.28 1.84
62 57 59 6.00 1 400 140 50.00 0.57 o.25
63 55 60 8.00 3300 140 141 .00 0.90 0.43
67 63 51 8.00 1 920 140 765.57 4.89 9.78
69 41 63 18.00 2640 140 2012.48 2.54 1 .13
71 45 71 8.00 2640 140 560.77 3.s8 5.50
73 63 71 4.00 1 000 140 186.91 4.77 21.05
75 51 61 8.00 1 200 140 839.91 5.36 11.61
77 69 61 8.00 1 200 140 -324.91 2.07 2.00
7ga 68 76 18.00 7920 140 2555.91 3.22 1.75

7ga 76 87 18.00 5280 140 2290.93 2.89 1.43
82 68 69 18.00 2000 140 2422.05 3.05 1.59
g3a 68 69 18.00 2000 140 2422.O5 3.05 1.59
85 71 73 8.00 5900 140 637.68 4.O7 6.97
86 69 75 18.00 3600 140 2581.00 3.25 1.78
g7a 69 75 18.00 3600 140 2581.00 3.25 1.78

88 75 76 18.00 2400 140 2581.00 3.25 1.78
gga 75 76 18.00 2400 140 2581.00 3.25 1.78
90 76 77 18.00 1440 140 2010.31 2.53 1.12
91 77 79 18.00 '1060 140 2004.31 2.53 1.12

92Þ 76 241 12.00 5280 140 1406.37 3.99 4.18
93 79 81 18.00 3840 140 2004.31 2.53 1.12

944 76 77 18.00 1440 140 2010.31 2.53 1.12
95 81 83 18.00 215 140 2002.81 2.53 1.12
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

a Duplicate pipes between Taft Hill source pump station (node 68) and Trilby Road
c Duplicate pipes along Trilby between the exist¡ng Zone 2 Tank (4.0MG) and College Ave

Pipe Stafi
node

End
node

Diameter
(inches)

Length
(fÐ

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100ofr

g6a 77 79 18.00 1 060 140 2004.31 2.53 1.12

97 83 87 18.00 200 140 1996.06 2.52 1.11
gga 79 81 18.00 3840 140 2004.31 2.53 1.12

99 85 87 16.00 2640 140 910.09 1.45 0.46

1 00c 85 B7 24.00 2640 140 2646.25 1.88 0.46

1024 81 83 18.00 215 140 2002.81 2.53 1.12

1044 83 87 18.00 200 140 1996.06 2.52 1.11

201 201 203 16.00 2640 140 2097.53 3.35 2.16
203 203 205 16.00 5280 140 2055.53 3.28 2.O8

205 205 207 6.00 100 140 125.29 1.42 1.39
211 209 211 6.00 720 140 352.68 4.00 9.46
213 211 213 6.00 3120 140 124.61 1.41 1.38
215 213 215 6.00 1920 140 331.86 3.77 8.45
217 215 221 10.00 960 140 191 .86 0.78 o.25
219 205 217 14.00 5080 140 1843.24 3.84 3.25
221 217 219 14.00 10 140 1843.24 3.84 3.27
223 219 221 14.00 200 140 1841.24 3.84 3.25
225 221 223 12.00 1 500 140 803.26 2.28 1.48
226 211 227 10.00 1 480 140 200.o7 o.82 0.28
227 223 225 12.00 1 500 140 515.26 1.46 0.65
228 225 226 10.00 900 140 491.26 2.01 1.45
229 227 229 10.00 1 500 140 200.o7 0.82 0.28
231 229 230 8.00 2300 140 207.25 1.32 0.87
232 230 2't3 8.00 1 700 140 207.25 1.32 0.87
233 221 222 14.00 2200 140 1086.85 2.27 1.23

235 229 231 10.00 1 500 140 -152.18 o.62 0.17
237 233 231 10.00 1 500 140 797.27 3.26 3.56

239 231 235 6.00 400 140 528.09 5.99 19.96

241 241 233 10.00 1 100 140 797.27 3.26 3.55
243 237 235 6.00 1 000 140 -176.09 2.00 2.62
245 239 237 6.00 1 000 140 -92.09 1.04 o.79
247 241 243 6.00 1 200 140 423.61 4.81 13.28

249 243 239 6.00 3600 140 120.91 'l.37 1.31

251 241 245 4.00 1 320 140 185.48 4.74 20.76

253 243 247 4.00 1 080 140 302.70 7.73 51.37
255 245 247 4.00 1 200 140 252.30 6.44 36.68
257 249 245 4.00 1 320 140 88.82 2.27 5.32
259 251 249 4.00 2640 140 88.82 2.27 5.32
261 257 251 3.00 100 140 169.82 7.71 71.57
263 257 259 10.00 2800 140 411.84 1.68 1.05

264c 257 259 24.00 2800 '140 4126.73 2.93 1.05

265 259 261 8.00 500 140 238.50 1.52 1.13

266c 259 261 24.00 500 140 4300.07 3.05 1 .13

267 261 263 8.00 2000 140 198.09 1.26 0.80
268 263 469 8.00 10 140 174.86 1.12 0.63
269 469 264 14.00 1 400 140 1019.59 2.13 1.09

270c 261 263 24.0O 2000 140 3571.48 2.53 0.80
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Appendix A EPANET simulation of the Master PIan designfor the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

c Duplicate pipes along Trilby between the existing Zone 2 Tank (4.0MG) and College Ave
d Duplicate pipe south of new Zone 3 Tank (4.0MG) between College and Lemay

Pipe Start
node

End
node

Diameter
(inches)

Length
(fÐ

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100ofr

271 87 253 18.00 5280 140 3130.19 3.95 2.55
272c 87 253 24.O0 5280 140 6675.1 I 4.73 2.55
273 253 255 10.00 200 140 440.74 1.80 1 .19
274c 253 257 24.OO 210 140 4410.65 3.13 1 .19
275 255 257 10.00 10 140 428.74 1.75 1.12
276c 263 469 24.OO 10 140 3152.71 2.24 0.63
277 253 267 18.00 5280 140 4947.0O 6.24 5.95
279 266 273 14.00 3960 140 1597.88 3.33 2.50
281 267 269 18.00 2000 140 4900.00 6.18 5.84
284 270 271 18.00 100 140 4900.00 6.18 5.84
285 271 293 18.00 2640 140 3917.85 4.94 3.86
287 293 295 18.00 2440 140 3911.85 4.93 3.85
291 299 297 18.00 200 140 0.00 0.00 0.00
292 275 299 14.00 1710 140 781.53 1.63 0.67
293 273 485 3.00 880 140 44.14 2.00 5.92
294 299 301 14.00 450 140 621.74 1.30 0.44
295 273 275 14.00 930 140 1071.74 2.23 1 .19
296 305 307 14.00 1200 140 140.87 0.29 0.03
297 279 485 6.00 450 140 39.69 0.45 o.17
298 301 303 14.00 800 140 413.76 0.86 o.21

299 279 281 6.00 850 140 31.55 0.36 0.11
300 275 277 6.00 570 140 235.21 2.67 4.47
301 277 285 4.00 1 800 140 25.97 0.66 0.55
302 277 279 6.00 720 140 154.24 1.75 2.05
303 285 287 4.00 600 140 18.00 0.46 0.28
30s 287 281 4.00 1 070 140 21.62 0.55 0.39
307 289 285 4.00 680 140 47.O3 1.20 1.64
309 289 287 4.00 520 140 58.62 1.50 2.46
31 od 295 311 18.00 5480 140 3911.85 4.93 3.85

311 291 289 8.00 1 160 140 160.65 1.03 0.54
313 283 291 8.00 1270 140 79.51 0.51 0.15
314 309 333 12.00 1 500 140 42.87 o.12 0.01

315 301 283 8.00 675 140 134.51 0.86 0.39
317 303 291 8.00 720 140 136.13 0.87 0.40
318 311 290 20.00 230 140 2549.35 2.60 1.04
319 303 305 14.00 935 140 277.63 0.58 0.10
321 307 309 14.00 1 850 140 140.87 0.29 0.03
325 301 313 8.00 1 000 140 73.46 0.47 0.13
327 313 305 8.00 1 000 140 73.46 0.47 0.13
329 305 315 8.00 1 500 140 204.22 1.30 0.85
331 319 299 14.00 2640 140 -159.79 0.33 0.04
333 315 321 8.00 1 500 140 10.22 o.o7 0.00
335 319 317 14.00 2640 140 423.OO 0.88 0.21

319 321 6.00 2000 140 93.91 1.07 0.82
339 323 319 12.00 2640 140 747.07 2.12 1.30
341 321 325 6.00 700 140 104.13 1 .18 0.99
343 325 327 6.00 1 800 140 1 04.1 3 1 .18 0.99
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Appendix A EPANET simuløtion of the Master Plan design for the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET s¡mulation of

the Master Plan design subiect to the 2015 peak hour demands

e Duplicate pipes along Harmony Road between County Rd 7 and County

Pipe Start
node

End
node

Diameter
(inches)

Length
(f0

Hazen-
Williams

C

Pipe flow
(spm)

Velocity
(rps)

Headloss
/100oft

345 327 329 6.00 1 800 140 -8.87 0.10 0.01

347 329 331 6.00 4800 140 -16.87 0.19 0.03

349 333 331 3.00 3480 140 16.87 0.77 1.00

350 331 332 6.00 1 340 140 0.00 0.00 0.00
353 319 335 14.00 2640 140 367.95 o.77 o.17
355 347 323 12.00 4300 140 747.07 2.12 1.30

357 329 349 3.00 2640 140 0.00 0.00 0.00

359 335 337 14.00 2640 140 367.95 0.77 o.17
361 339 337 6.00 200 140 211.51 2.40 3.67
363 341 339 6.00 10 140 224.51 2.55 4.10
365 343 341 6.00 2640 140 224.51 2.55 4.10
366 371 343 6.00 385 140 1572.43 17.84 150.29

367 365 337 10.00 2640 140 -1 15.46 o.47 0.10
368 363 365 4.00 450 140 510.23 13.03 134.96

369 365 367 6.00 1 320 140 265.68 3.01 5.60
371 367 369 6.00 1320 140 186.68 2.12 2.92
373 343 369 4.00 2640 140 1 16.32 2.97 8.76

375 343 347 12.O0 1 000 140 873.64 2.48 1.73

377 347 345 4.00 800 140 38.57 0.98 1.14

379 343 345 6.00 1 000 140 176.97 2.01 2.64
381 343 353 8.00 2640 140 93.00 0.59 0.20
383 345 351 6.00 1 700 140 122.54 1.39 1.34

387 353 355 8.00 200 140 0.00 0.00 0.00
391 351 359 4.00 3920 140 1 18.54 3.03 9.07
393 357 359 8.00 3920 140 -4.00 0.03 0.00
395 359 373 4.00 2640 140 7.00 0.'18 0.05

397 375 373 4.00 2640 140 0.00 0.00 0.00

401 401 403 6.00 5280 140 125.29 1.42 1.39

403 403 405 6.00 5280 140 123.29 1.40 1.35

405 405 409 4.00 5280 140 83.29 2.13 4.72
407 406 407 10.00 1 480 140 491.36 2.01 1.45

409 407 409 10.00 5280 140 491.36 2.01 1.45

411 409 411 10.00 5280 140 639.73 2.61 2.37
413 411 4't3 6.00 200 140 132.26 1.50 1.54

414e 411 413 10.00 200 140 507.48 2.07 1.54

415 413 415 6.00 10 140 130.81 1.48 1.46

41 6e 413 415 10.00 10 140 501.92 2.05 1.46

417 41s 417 6.00 5280 140 130.39 1.48 '1.50

418e 415 417 10.00 5280 140 500.34 2.04 1.50

419 417 419 10.00 200 140 571.73 2.34 1.92

423 421 423 14.00 1 050 140 972.84 2.03 1.00

425 423 425 14.00 500 140 289.1 3 0.60 0.11

427 423 427 12.00 960 140 683.71 1.94 1 .10

431 425 429 14.00 700 140 265.1 3 0.55 0.09

433 429 427 6.00 1 800 140 73.72 0.84 0.52

435 435 429 14.00 2000 140 -2.41 0.01 0.00

437 427 431 12.00 2000 140 305.43 0.87 0.25

439 431 433 14.00 2640 140 162.43 0.34 0.04
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Appendix A EPANET simuløtion of the Master PIan designfor the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

Duplicate pipes along Timberline between Harmony and County Rd 36
9 New connection to Fort Collins city system at County Rd 9
h Duplicate pipes along along County Rd 36 between Timberline and County Rd 7
¡ New pipe from County Rd 9 southwest to TrilbyÆimberline
I New pipe from Trilby/Timberline to Paragon Point
k New pipe from new Zone 3 Tank (4.0MG) east to Lemay
I New pipe along County Rd 12 between Lemay and Timberline

Hazen-
Williams

c

Pipe flow
(spm)

Velocity
(rps)

Headloss
/1000fr

Start
node

End
node

Diameter
(inches)

Length
(ft)

Pipe

4.00 5280 140 -8.53 o.22 0.07441 409 443
-152.55 0.43 o.o7443 12.00 5280 140442t 409

1525 140 691.87 1.44 0.53443 433 439 14.00
434.87 1.23 0.48441 12.00 600 140445 439

1 570 140 311.87 1.99 1.86441 461 8.00447
1931 .95 5.48 7.52451 12.00 1 640 140448s 450

10 140 -9.16 o.23 0.10443 445 4.00449
-158.92 0.45 0.1 0445 '12.00 10 14045of 443

200 140 -9.'16 o.23 0.07445 447 4.00451
140 -158.92 0.45 0.07447 12.00 2004521 445

2640 140 -11.22 0.29 o.12447 449 4.00453
-202.31 0.57 0.12449 12.00 2640 140454n 447

2640 140 15.53 0.40 0.21451 449 4.00455
0.79 0.2112.00 2640 140 280.00456h 451 449

5280 140 5.44 0.25 o.12453 3.00457 451
0.58 0.1212.00 5480 140 205.04458n 451 453

140 87.30 3.96 20.90455 3.00 200459 453
1.20 0.4512.O0 600 140 423.09462 469 468

140 79.18 3.59 17.45481 3.00 2606463 453
1s97.88 3.33 2.5014.00 1 320 140464 469 265

2400 140 658.59 1.37 0.48437 435 14.00465
423.O7 1.20 0.4512.00 1 580 140466 470 471

2940 140 1089.44 1.11 o.22457 433 20.00467
148.O7 o.42 0.0ô473 12.00 31 00 140468 471

700 140 76.87 0.49 0.14461 463 8.00469
1597.88 3.33 2.49266 14.00 10 140470 265

0.14650 140 76.87 0.49463 465 8.00471
14'12.44 1.44 0.35457 20.00 820 140472 459

0.01685 140 22.13 0.14467 465 8.00473
1825.44 1.86 0.56459 20.00 1 520 140474 473

o.77 0.321 680 140 121.13475 467 8.00475
140 958.14 2.72 2.06475 12.00 2640477 473

0.05 0.008000 140 16.94451 479 12.004781
140 9.4s 0.43 0.34477 3.00 2640479 447

594.01 1.69 0.8512.00 2640 140480J 475 479
140 13.55 0.61 0.67477 3.00 2640481 479

5.27 4.3518.00 1 0000 140 4179.82482K 271 474
7.502766 140 50.18 2.28483 3.00483 481

1579.66 2.52 1.2816.00 5280 1404841 489 491
1.72140 -22.60 1.03491 3.00 5280487 479

4006.51 4.09 2.4120.00 3380 140488 474 473
0.02940 '140 1.83 0.08487 3.00489 485
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Appendix A EPANET simulation of the Master Plan design for the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

m Duplicate pipes along Timberline between County Rd 30 and County Rd 32
n Duck Lake duplicate pipes east of Timberline
o Duck Lake new pipe east of Timberline
P Duck Lake new pipe south along County Rd 9
9 County Rd 9 duplicate pipes between County Rd 30 112 and County Rd 28
r Duck Lake new pipe east to lnterstate 25

Pipe Start
node

End
node

Diameter
(inches)

Length
(fr)

Hazen-
Williams

c

Pipe flow
(spm)

Velocity
(rps)

Headloss
/100ofr

490 487 281 4.00 540 140 1.83 0.05 0.00
491 491 493 3.00 2640 140 19.91 0.90 1.36

492 474 489 20.00 1 900 140 173.31 0.18 0.01

493 493 495 3.00 1 320 140 19.91 0.90 1.36
495 491 505 3.00 5280 140 3.48 0.16 0.05
496 290 489 20.00 2500 140 2549.35 2.60 1.04

497 311 497 14.00 5280 140 1362.50 2.84 1.86

499 503 505 3.00 10 140 -1.55 0.07 0.00
501 501 503 3.00 200 140 -1.55 0.07 0.01

502 498 499 6.00 1 300 140 0.00 0.00 0.00
503 499 501 6.00 1320 140 45.54 o.52 0.21

504m 491 497 12.00 2640 140 175.11 0.50 0.09

505 501 507 6.00 200 140 106.60 1.21 1.04

506m 505 497 12.00 2430 140 -80.57 0.23 0.02

507 507 509 6.00 10 140 74.60 0.85 0.54

508m 503 505 12.00 10 140 -59.51 o.17 0.00

509 509 510 6.00 5280 140 67.60 o.77 0.45

51 0m 501 503 12.00 200 140 -59.51 o.17 0.01

511 511 499 6.00 5280 140 71.54 0.81 0.49

515 359 361 6.00 200 140 78.54 0.89 0.59

51 6n 491 493 12.00 2640 140 765.56 2.17 1.36

517 497 513 14.00 5280 140 1409.04 2.94 1.98

51 8n 493 495 12.00 1320 140 765.56 2.17 1.36

519 513 514 14.00 200 140 478.93 1.00 o.27

520 513 512 12.00 2588 140 655.38 1.86 1.02

521 514 515 14.00 10 140 466.93 0.97 o.24

5220 495 516 12.00 3000 140 779.47 2.21 1.40

523 515 519 14.00 7920 140 466.93 0.97 0.26

524p 516 513 12.00 2640 140 405.66 1 .15 0.42

525 510 531 4.00 5280 140 67.60 1.73 3.21

526q 513 512 12.00 2588 140 655.38 1.86 1.02

527 531 533 4.00 2640 140 43.60 1.11 1.42

5281 516 521 12.00 8000 140 373.81 1.06 0.36

529 533 535 4.00 10 140 33.60 0.86 0.88

531 535 537 4.00 200 140 33.60 0.86 0.88
533 537 539 3.00 2640 140 26.80 1.22 2.35

535 523 537 3.00 3920 140 17.20 o.78 1.04

537 529 539 3.00 2640 140 32.09 1.46 3.28

539 521 519 12.00 2640 140 205.O7 0.58 0.12

540 539 540 3.00 5280 140 18.88 0.86 1.23

541 527 523 3.00 3920 140 23.20 1.05 1.80

542 542 540 4.00 5280 140 81.12 2.07 4.49

543 522 521 30.00 920 140 -124.74 0.06 0.00

399



Appendix A EPANET simulation of the Master Plan design for the Fort Collins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design sub¡ect to the 2015 peak hour demands

Q County Rd 9 duplicate pipes between County Rd 30 112 and County Rd 28
s New pipe up to the new McOloughan HillTank

Pipe Start
node

End
node

Diameter
(inches)

Length
(fr)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100oft

544 522 525 30.00 3000 140 1055.23 0.48 0.03
545 527 529 3.00 2640 140 32.09 1.46 3.28
547 527 733 3.00 2640 140 83.82 3.80 19.39
548 525 527 6.00 20 140 200.11 2.27 3.32
549 525 541 24.OO 2640 140 723.12 0.51 0.04
551 541 543 24.O0 2640 140 398.1 2 0.28 0.01
553 543 545 24.OO 500 140 315.00 0.22 0.01
555 512 517 12.00 1 545 140 465.88 1.32 0.54
557 543 542 12.00 200 140 83.12 0.24 0.02
601 q 512 517 12.00 1 545 140 465.88 1.32 0.54
609 603 609 12.OO 4000 140 445.38 1.26 0.50
61 0q 603 609 12.00 4000 140 44s.38 1.26 0.50
611 609 611 12.00 3978 140 289.77 0.82 0.22
613 611 613 12.00 410 140 266.77 0.76 0.1 9

615 613 615 12.00 1279 140 133.08 0.38 0.05
617 615 617 12.00 1 200 140 258.00 0.73 0.18
619 617 619 12.00 1 200 140 187.00 0.53 0.10
620s 624 522 16.00 1 2000 140 930.49 1.48 0.48
621 613 621 8.00 2655 140 -9.31 0.06 0.00
623 615 623 12.00 1771 140 -124.92 0.35 0.05
625 621 623 12.00 1 200 140 -44.31 0.13 0.01
627 623 625 12.00 2425 140 -504.23 1.43 0.63
629 625 627 12.00 1 100 140 -504.23 1.43 0.63
631 629 627 12.00 1975 140 764.23 2.17 1.35
633 631 629 12.00 1 975 140 1223.23 3.47 3.23
635 633 631 12.00 2000 140 161 1 .23 4.57 5.38
637 635 633 12.00 300 140 1673.23 4.75 5.76
639 609 637 10.00 2640 140 40.00 0.16 0.01
641 637 639 10.00 2640 140 40.00 0.16 0.01

643 639 641 10.00 1 000 140 18.1 1 0.07 0.00
645 641 643 10.00 1 000 140 8.11 0.03 0.00
647 645 643 10.00 1 000 140 1.89 0.01 0.00
649 639 645 10.00 2640 140 11.89 0.05 0.00
701 701 703 12.00 3800 140 -21.03 0.06 0.00
703 705 703 12.00 2640 140 70.49 o.20 o.o2
705 703 707 12.00 2640 140 49.46 0.14 0.01
707 713 705 8.00 2640 140 338.49 2.16 2.16
709 709 711 10.00 2640 140 565.73 2.31 1.88
711 711 713 10.00 2700 140 544.73 2.23 1.76
713 713 715 3.00 100 140 150.67 6.84 57.36
715 715 717 3.00 3960 140 3.70 0.17 0.06
717 715 719 3.00 3000 140 34.59 1.57 3.77
7'19 713 707 4.00 2584 140 55.57 1.42 2.23
721 717 723 3.00 3960 140 3.70 o.17 0.06
723 721 723 3.00 2700 140 37.30 1.69 4.33
725 719 725 3.00 3000 140 0.59 0.03 0.00
727 727 725 3.00 2640 140 36.41 1.65 4.15
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Length
(f0

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100Oft

Start
node

End
node

Diameter
(inches)

Pipe

14.18 0.64 0.72731 3.00 2640 140729 729
3.00 3960 140 35.82 1.63 4.O2733 731731

60.38 o.17 0.01707 12.00 2640 140733r 715
2640 140 118.41 0.34 0.04707 735 12.00735t

0.34 0.04727 12.00 5280 140 118.41737r 735

Appendix A EPANET simulation of the Master Plan design for the Fort CoLLins - Loveland system expansions

Table A3 cont. Pipe input data and output results for the EPANET simulation of

the Master Plan design subiect to the 2015 peak hour demands

Loop of new pipes at County Rd 3

Table A4 Pump station (PS) input data and output results for the EPANET

simulation of the Master Plan design subject to the 2015 peak hour demands

a ESP-1 operating curue

Table A5 Pressure reducing valve (PRV) and flow control valve (FCV) input data

and output results for the EPANET simulation of the Master Plan design subiect to

the 2015 peak hour demands

Pump station
description

Pipe Start
node

End
node

No. of
pumps

operating

Rated
flow

(gpm)

Rated
head

(ft)

Flow
(gpm)

Power
output

(hp)

P um
tift
(ft)

p

Overland Trail
source PS

I 9 15 3 4252 165.8 4414.30 180 161 .50

Westrid
booster

ge
PS

60 53 55 1 191 79 191 .00 4 79.00

Airport
booster PS

603 517 603 1a 620 125 890.77 18 80.66

Valve Pipe Start
node

End
node

Diameter
(inches)

Pressure
setting

(osi)

Status Flow
(gpm)

Velocity
(rps)

Head
loss
tft)

PRV 1 53 47 201 8.00 51 Operatinq 2097.94 13.39 55.82
PRV 3 207 207 401 4.00 45 Ooeratino 125.29 3.20 82.04
PRV 2 209 73 209 4.00 60 Operatinq 352.68 9.00 7.55

FCV 32 283 269 270 18.00 49004 Operating 4900.00 6.18 30.66
PRV 29 351 332 498 6.00 43 Closed 0.00
PRV 23 389 355 357 4.00 43 Closed 0.00
PRV 28 404 226 406 6.00 43 Ooeratino 491.26 5.57 90.07
PRV 27 420 222 421 10.00 43 Operatino 1086.85 4.44 91.88
PRV 8 421 419 709 3.00 60 Ooeratinq 571.73 25.95 84.82

PRV 31 460 264 437 10.00 43 Ooeratino 1019.59 4.17 118.20
PRV 9 461 455 721 2.00 56 Operatino 87.30 8.92 106.59

PRV 30 476 468 470 12.00 43 Ooeratino 423.O9 1.20 1 19.46
PRV 15 485 483 729 2.OO 90 Not operatinq 44.18 4.51 1.90
PRV 14 513 361 511 3.00 53 Ooeratino 78.54 3.56 71.24
a Flow setting for the FCV 32
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Appendix B

System constants

Number of tanks and reseruoirs = 10

Number of nodes = 253

Number of pipes = 299 (inclu ding 277 existing pipes, 13 new and 9 duplicate pipes)

Number of pump stations = 3

Number of valves = 14 (including 13 PRVs and 1 FCV)

Table 81 Tank and reservoir input data and output results for the EPANET

simulation of the Genetic Algorithm design subject to the 2015 peak hour demands

Fort Collins - Loveland System Expansion Plan

EPANET hydraulic simulation input data and
output results for the Genetic Algorithm design
subject to the 2015 peak hour demands

Description Node Elevation
(fÐ

Hydraulic Grade
(ft)

Net Outflow (+ve) /
Net lnflow (-ve)

(qom)

Soldier Canyon
Tanks

1 5217.OO 5232.O0 4647.48

Existi
1.0

ng Zone 1

MG Tank
19 5327.50 5341.50 2480.94

Existing Zone 2
4.0MG Tank

85 5221.O0 5239.00 1566.26

New Zone 3
4.0MG Tank

271 5132.00 5150.00 2644.07

Connection to
Loveland svstem

363 5263.00 5263.00 963.03

Connection to
Loveland svstem

371 5272.00 5272.O0 2433.76

Connection to Fort
Collins svstem

450 5103.00 s103.00 1813.90

New McOloughan
Hill4.0MG Tank

624 5075.00 5093.00 1390.74

Existing elevated
Airport Tank

635 5053.00 5187.00 1753.91

Existing Timnath
Tank

701 4958.00 4968.00 153.82
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Appendix B EPANET simulation of the GA design for the Fort CoLIins - Loveland system expansions

Table 82 Node input data and output results for the EPANET simulation

of the Genetic Algorithm design subiect to the 2015 peak hour demands

a Connection to Fort Collins city system at the Taft H

Node Elevation
(f0

Demand
(qom)

Hydraulic Grade
(ft)

Pressure
(osi)

3 511 1.00 0.00 5191 .87 35.04
5 5100.00 132.00 5182.55 35.77
7 5134.00 11.00 5173.71 17.21

9 5107.00 0.00 5171.73 28.05
15 5107.00 53.00 5330.78 96.96
17 5105.00 0.00 5328.84 96.99
21 5121 .00 13.00 5325.65 88.68
23 5220.00 9.00 5325.65 45.78
25 5065.00 33.00 s310.38 106.33
27 5144.00 183.00 5308.58 71.31
29 5240.00 0.00 5308.58 29.71

33 5130.00 29.00 5300.83 74.O2

35 5090.00 0.00 5295.39 89.00
37 51 10.00 176.00 5287.90 77.O8

39 5140.00 183.00 5285.59 63.08
41 5127.00 1 10.00 5281.24 66.83
43 5127.O0 4.00 5281.12 66.78
45 5120.00 1 10.00 5265.41 63.01
47 51 10.00 0.00 5263.17 66.37
49 5160.00 183.00 5272.96 48.94
51 5170.00 324.OO 5265.80 41.51

53 5170.00 0.00 5264.90 41.12

55 5170.00 0.00 5343.90 75.35
57 5210.00 0.00 5340.60 56.59
59 5240.00 50.00 5340.24 43.43
60 5300.00 141 .00 5342.49 18.41

61 5165.00 515.00 5257.93 40.27
63 5145.00 1060.00 5278.64 57.91

684 5145.00 -7400.00 5260.55 50.07

69 5160.00 7.00 5257.65 42.31

71 5125.00 1 10.00 5257.40 57.37
73 s090.00 285.00 5232.66 61.81

75 5080.00 0.00 5252.04 74.54
76 5080.00 0.00 5248.29 72.92
77 5150.00 12.00 5245.59 41.42
79 5125.00 0.00 5243.61 51.39
81 5130.00 3.00 5236.45 46.12
83 5130.00 13.50 5236.05 45.95
87 5120.00 34.00 5235.68 50.1 2

201 s1 10.00 0.00 5206.93 42.00
203 5082.00 42.O0 s195.14 49.O2

205 5025.00 87.00 5172.15 63.76
207 5025.00 0.00 5171 .99 63.69

209 5090.00 0.00 5193.85 45.00

211 5085.00 28.00 5191 .52 46.15

213 5050.00 0.00 5180.89 56.71

215 5040.00 140.00 5134.97 41.15

217 5030.00 0.00 5135.35 45.65
219 5030.00 2.00 5135.27 45.61

221 5027.00 143.00 5133.83 46.29
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Appendix B EPANET simulation of the GA designfor the Fort Collins - Loveland system expansions

Table 82 cont. Node input data and output results for the EPANET simulation of

the Genetic Algorithm des¡gn subiect to the 2015 peak hour demands

Node Elevation
(fr)

Demand
(qpm)

Hydraulic Grade
tft)

Pressure
losi)

222 5000.00 0.00 5123.43 53.48
223 5010.00 288.00 5131 .18 52.51
225 5015.00 24.00 5129.90 49.79
226 5000.00 0.00 51 28.1 I 55.54
227 s020.00 0.00 5191 .53 74.33
229 5050.00 145.00 5191 .55 61.33
230 5050.00 0.00 5185.42 58.68
231 5000.00 1 17.00 5194.30 84.1 I
233 4960.00 0.00 5204.97 1 06.1 4
235 5000.00 352.00 s187.46 81.23
237 5020.00 84.00 5185.89 71.88
239 5010.00 213.00 5185.64 76.11
241 5010.00 0.00 5212.79 87.87
243 5000.00 0.00 5193.86 84.00
245 5050.00 22.0O 5183.20 57.72
247 5040.00 555.00 5138.80 42.81
249 5057.00 0.00 s189.28 57.32
251 5064.00 81.00 5201.44 59.55
253 5055.00 7.00 5213.08 68.49
255 5064.00 12.00 5208.32 62.53
257 5064.00 131 .00 5208.09 62.43
259 5090.00 0.00 5185.74 41.49
261 5030.00 769.00 5181 .75 65.76
263 5010.00 442.00 5161 .33 65.57
264 5000.00 0.00 5161 .25 69.87
265 5030.00 0.00 5160.97 56.75
266 5030.00 0.00 5160.97 56.75
267 5086.00 47.00 5181 .68 41.46
269 5165.00 0.00 5170.00 2.17
270 5135.00 0.00 5150.58 6.75
273 s030.00 482.00 5160.12 56.38
275 5030.00 55.00 5160.14 56.39
277 5025.00 55.00 5157.82 57.55
279 5010.00 83.00 s156.40 63.43
281 5000.00 55.00 5156.34 67.74
283 5050.00 55.00 51s9.89 47.62
285 5010.00 55.00 s157.35 63.85
287 5010.00 55.00 51 57.1 I 63.77
289 5015.00 55.00 5158.89 62.35
290 5010.00 0.00 5113.42 44.81

291 5010.00 55.00 5159.66 64.85
293 5140.00 6.00 5150.00 4.33
295 5060.00 0.00 5150.00 39.00
297 5060.00 0.00 5160.43 43.52
299 5060.00 0.00 5160.43 43.52
301 5050.00 0.00 5160.19 47.75
303 5030.00 0.00 5159.99 56.32
305 5010.00 6.00 5159.87 64.94
307 5030.00 0.00 5159.82 56.25
309 5005.00 98.00 5159.76 67.06
311 5005.00 0.00 s1 13.30 46.92

404



Appendix B EPANET simulation of the GA design for the Fort CoLlins - LoveLand system expansions

Table 82 cont. Node input data and output results for the EPANET simulation of

the Genetic Algorithm des¡gn sub¡ect to the 2015 peak hour demands

Node Elevation
(ft)

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(psi)

313 5040.00 0.00 5160.03 52.01
315 5050.00 194.00 5158.26 46.91
317 s135.00 423.0O 5162.99 12.13
319 5088.00 22.0O 5163.55 32.74
321 5060.00 0.00 5158.20 42.55
323 5050.00 0.00 5174.49 53.94
325 5050.00 0.00 5155.52 45.72
327 5020.00 1 13.00 5148.62 55.73
329 5030.00 8.00 5146.86 50.64
331 5030.00 0.00 5142.83 48.89
332 5000.00 0.00 5140.68 60.96
333 5017.00 26.00 5159.73 61.85
335 5070.00 0.00 s163.83 40.66
337 5072.00 464.00 51 64.1 1 39.91
339 5072.00 13.00 5166.28 40.85
341 5072.00 0.00 5166.40 40.90
343 s005.00 88.00 5196.86 83.1 3

345 5005.00 93.00 5192.45 81.22
347 5020.00 88.00 5192.31 74.66
349 5020.00 0.00 5146.86 54.97
351 4990.00 4.00 5190.06 86.68
353 4990.00 93.00 5196.34 89.41
355 5005.00 0.00 5196.34 82.91
357 5005.00 4.00 5152.55 63.93
359 4976.00 29.00 5152.55 76.50
361 4980.00 0.00 5152.42 74.71
365 5050.00 360.00 5166.43 50.45
367 5030.00 79.00 5160.83 56.69
369 4985.00 303.00 5158.28 75.08
373 4980.00 7.00 5152.42 74.71
375 4960.00 0.00 5152.42 83.38
401 5025.00 0.00 s151 .93 55.00
403 4985.00 2.OO 5143.17 68.53
405 4954.00 40.00 5134.64 78.27
406 5000.00 0.00 51 15.39 50.00
407 4990.00 0.00 51 12.56 53.1 0

409 4966.00 96.00 5102.43 59.1 2

411 4925.00 0.00 5095.21 73.75
413 4925.00 7.00 5091.92 72.32
415 4925.00 2.OO 5091.76 72.26
417 4845.00 59.00 5007.84 70.56
419 4845.00 0.00 5007.64 70.47
421 5000.00 1 14.00 511s.53 50.06
423 4950.00 0.00 5111.02 69.77
425 4940.00 24.OO 51 10.2s 73.77
427 4900.00 452.O0 5109.22 90.65
429 4970.00 189.00 5109.21 60.32
431 4920.00 143.00 5108.1 9 81.54
433 4900.00 560.00 5107.87 90.07
435 5000.00 661.00 5107.O2 46.37
437 5000.00 361.00 s106.64 46.21
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Appendix B EPANET simulation of the GA design for the Fort CoLlins - Loveland system expansions

Table 82 cont. Node input data and output results for the EPANET simulation of

the Genetic Algorithm design subiect to the 2015 peak hour demands

Node Elevation
(ft)

Demand
loom)

Hydraulic Grade
(fr)

Pressure
(psi)

439 4980.00 257.OO 5107.09 55.07
441 4990.00 123.00 5106.82 50.62
443 4920.00 7.00 5070.70 65.30
445 4920.00 0.00 5070.65 65.27
447 4952.00 36.00 5069.60 50.96
449 4934.00 82.00 5068.82 58.42
451 4917.O0 1409.00 5076.32 69.03
453 4886.00 44.OO 5021.85 58.86
455 4850.00 0.00 5018.59 73.05
457 4920.00 323.00 5108.34 81.61
459 4910.00 413.00 5108.57 86.04
461 4930.00 235.00 s104.18 75.47
463 4930.00 0.00 5104.12 75.45
465 4950.00 99.00 5104.06 66.75
467 4940.00 99.00 5104.08 71.10
468 5000.00 0.00 5161 .25 69.87
469 5000.00 287.00 5161 .25 69.87
470 5000.00 0.00 5108.65 47.08
471 4980.00 275.0O 5108.65 55.74
473 4909.00 1371 .00 s109.28 86.78
474 4969.00 0.00 51 18.07 64.59
475 4940.00 243.OO 5104.77 71.39
477 4960.00 23.00 5060.36 43.48
479 4923.00 620.00 5059.31 59.06
481 4876.00 29.00 4991.35 49¡98
483 4850.00 6.00 4980.80 56.68
485 5005.00 82.00 5156.31 65.56
487 4990.00 0.00 5156.33 72.07
489 4956.00 1 143.00 5114.76 68.79
491 4912.00 593.00 5038.83 54.96
493 4870.00 0.00 5066.03 84.94
495 4875.00 6.00 5079.62 88.66
497 4931.00 48.00 5097.22 72.02
498 5000.00 0.00 5096.93 42.00
499 4960.00 26.00 5094.85 58.43
501 4940.00 0.00 5091 .1 0 65.47
503 4939.00 0.00 5087.62 64.40
505 4939.00 23.00 5087.45 64.32
507 4940.00 32.00 5090.90 65.39
509 4940.00 7.OO 5090.90 65.38
510 4960.00 0.00 5088.65 55.74
511 4980.00 7.00 5097.70 51.00
512 4960.00 379.00 5073.48 49.17
513 4940.00 25.00 5081.93 61.50
514 4940.00 12.00 5081.89 61.48
515 4940.00 0.00 s081.89 61.48
516 4911.00 0.00 5080.89 73.61
517 4960.00 41.00 5070.93 48.07
519 4930.00 672.O0 5080.36 6s.1 5

521 4905.00 44.00 5080.89 76.21
522 4910.00 0.00 5080.89 74.05
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Node Elevation
(f0

Demand
(qpm)

Hydraulic Grade
(ft)

Pressure
(osi)

523 4910.00 6.00 5073.21 70.72
525 4900.00 132.00 5080.81 78.34
527 4900.00 61.00 5080.73 78.31
529 4930.00 0.00 5071.84 61.46
531 4950.00 24.0O 5072.47 53.07
533 4950.00 10.00 5068.97 51.55
535 4950.00 0.00 5068.96 51.55
537 4952.00 24.00 s068.80 50.61
539 4970.00 40.00 5062.95 40.28
540 4914.00 100.00 5056.71 61.84
541 4875.00 325.00 5080.70 89.1 3

542 4920.00 2.00 5080.66 69.61
543 4900.00 0.00 5080.66 78.28
545 4835.00 315.00 5080.66 106.44
603 4984.00 0.00 5166.47 79.06
609 4975.00 561.00 5160.44 80.35
611 4990.00 23.00 5159.95 73.64
613 5005.00 143.00 5159.91 67.12
615 5015.00 0.00 5159.88 62.78
617 5030.00 71.O0 5159.67 56.1 I
619 5045.00 187.00 5159.54 49.63
621 5035.00 35.00 5160.02 54.17
623 5035.00 335.00 5160.04 54.18
625 5034.00 0.00 5162.04 55.48
627 5020.00 260.00 5162.95 61.94
629 5015.00 459.00 5166.16 65.50
631 s007.00 388.00 5173.34 72.08
633 5020.00 62.00 5185.1 1 71.54
637 4990.00 0.00 5160.40 73.84
639 4983.00 10.00 5160.37 76.85
641 4960.00 10.00 5160.36 86.82
643 4960.00 10.00 5160.36 86.82
645 4980.00 10.00 5160.36 78.1 5

703 4860.00 0.00 4967.74 46.68
705 4870.00 268.00 4967.72 42.34
707 4865.00 47.00 4967.62 44.46
709 4845.00 6.00 4975.72 56.64
711 4842.0O 21.00 4973.08 56.80
713 4843.00 0.00 4970.63 55.30
715 4843.00 52.00 4967.62 54.00
717 4840.00 0.00 4964.58 53.98
719 4850.00 34.00 4951.87 44.14
721 48s0.00 50.00 4967.70 51.00
723 4850.00 41.00 4961.54 48.33
725 4850.00 37.00 4951.22 43.86
727 4840.00 82.00 4958.70 51.43
729 4850.00 30.00 4980.00 56.33
731 4818.00 s0.00 4980.02 70.20
733 4800.00 48.00 5010.85 91.36
735 4847.OO 0.00 4964.64 50.97

Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 82 cont. Node input data and output results for the EPANET simulation of

the Genetic Algorithm design subject to the 2015 peak hour demands
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Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100ofr

1 1 3 20.00 81 00 110 4647.48 4.75 4.95
3 3 5 20.00 2940 140 4647.48 4.75 3.17
5 5 7 20.00 2540 140 451s.48 4.61 3.01
7 7 I 20.00 660 140 4504.48 4.60 2.99
17 15 17 20.00 660 140 4451.48 4.55 2.93
19 19 17 16.00 4300 140 2480.94 3.96 2.94
21 17 21 20.00 480 140 6932.42 7.08 6.64
23 21 23 8.00 2640 140 9.00 0.06 0.00
25 21 25 18.00 5280 140 3350.80 4.22 2.89
27 21 27 18.00 5280 140 3559.62 4.49 3.23
29 29 27 12.00 21 60 140 0.00 0.00 0.00
35 27 33 18.00 2640 140 3376.61 4.26 2.93
37 25 35 18.00 5280 140 3317.80 4.18 2.84
39 35 37 18.00 2640 140 3317.80 4.18 2.84
41 33 39 18.00 5280 140 3347.61 4.22 2.89
43 37 43 18.00 2640 140 3141 .80 3.96 2.57
45 39 41 18.00 2640 140 2473.11 3.12 1.65
47 41 43 12.00 200 140 491.88 1.40 0.60
49 43 45 16.00 2640 140 3629.69 5.79 5.95
51 45 47 16.00 500 140 3112.94 4.97 4.48
55 39 49 8.00 1 560 140 691.50 4.41 8.10
57 49 51 8.00 1 560 140 508.50 3.25 4.59
59 51 53 8.00 1200 140 191 .00 1.22 0.75
61 55 57 4.00 1 800 140 50.00 1.28 1.84
62 57 59 6.00 1 400 140 50.00 0.57 0.25
63 55 60 8.00 3300 140 141 .00 0.90 0.43
67 63 51 8.00 1920 140 623.43 3.98 6.69
69 41 63 18.00 2640 140 1871.23 2.36 0.98
71 45 71 8.00 2640 140 406.74 2.60 3.03
73 63 71 4.00 1 000 140 187.80 4.79 21.24
75 51 61 8.00 1 200 140 616.93 3.94 6.56
77 69 61 8.00 1 200 140 -101 .93 0.65 0.23
7ga 68 76 24.00 7920 140 5095.17 3.61 1.55

vga 76 87 18.00 5280 140 3021.70 3.81 2.39
82 68 ô9 18.00 2000 140 2304.83 2.91 1.45
g3a 68 69 0.0 2000 not uired

85 71 73 8.00 5900 140 484.55 3.09 4.19
86 69 75 18.00 3600 140 2399.76 3.03 1.56
874 69 75 0.0 3600 Duplicate pipe not required

88 75 76 18.00 2400 140 2399.76 3.03 1.56

8ga 75 76 0.0 2400 Duplicate pipe not required

90 76 77 18.00 1440 140 2654.97 3.35 1.88
91 77 79 18.00 1 060 140 2642.97 3.33 1.86

92b 76 241 12.00 5280 140 1818.25 5.16 6.72

93 79 81 18.00 3840 140 2642.97 3.33 1.86

944 76 77 0.0 1440 icate not red

95 81 83 18.00 215 140 2639.97 3.33 1.86

Appendix B EPANET simulation oÍ the GA design for the Fort ColLins - Loveland system expansions

Table 83 Pipe input data and output results for the EPANET simulation of the

Genetic Algorithm design subject to the 2015 peak hour demands

a Duplicate pipes between Taft Hillsource pump station (node 68) and Trilby Road
b Clarendon Hills new pipe
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm design subject to the 2015 peak hour demands

a Duplicate pipes between Taft Hillsource pump station (node 68) and Trilby Road
c Duplicate pipes along Trilby between the existing Zone 2 Tank (4.0MG) and College Ave

Pipe Start
node

End
node

Diameter
(inches)

Length
(f0

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100oft

964 77 79 0.0 1 060 Duplicate pipe not required

97 83 87 18.00 200 140 2626.47 3.31 1.84
gga 79 81 0.0 3840 Duplicate pipe not required

99 85 87 16.00 2640 140 1566.26 2.50 1.26

1 00c 85 87 0.0 2640 Duplicate pipe not required

1024 81 83 0.0 215 Duplicate pipe not required

1044 83 87 0.0 200 ¡licate pipe not required

201 201 203 16.00 2640 140 3107.73 4.96 4.46
203 203 205 16.00 5280 140 3065.73 4.89 4.35
205 205 207 6.00 100 140 137.90 1.56 1.67
211 209 211 6.00 720 140 197.78 2.24 3.24
213 211 213 6.00 3120 140 203.05 2.30 3.41

215 213 215 6.00 1920 140 582.21 6.61 23.91

217 215 221 10.00 960 140 442.21 1.81 1 .19
219 205 217 14.00 5080 140 2840.83 5.92 7.25
221 217 219 14.00 10 140 2840.83 5.92 7.23
223 219 221 14.00 200 140 2838.83 5.92 7.24
225 221 223 12.00 1 500 140 883.20 2.51 1.77
226 211 227 10.00 1 480 140 -33.28 o.14 0.01

227 223 225 12.OO 1 500 140 595.20 1.69 0.85
228 225 226 10.00 900 140 571.20 2.33 1.92
229 227 229 10.00 1 500 140 -33.28 0.14 0.01

231 229 230 8.00 2300 140 379.16 2.42 2.66
232 230 213 8.00 1 700 140 379.1 6 2.42 2.66
233 221 222 14.00 2200 140 2254.84 4.70 4.73
235 229 231 10.00 1 500 140 -557.44 2.28 1.83
237 233 231 10.00 1 500 140 1 159.93 4.74 7 .11

239 231 235 6.00 400 140 485.49 5.51 17.09
241 241 233 10.00 1 100 140 11'59.93 4.74 7 .11

243 237 235 6.00 1 000 140 -133.49 1.51 1.57
245 239 237 6.00 1 000 140 -49.49 0.56 0.25
247 241 243 6.00 1 200 140 464.98 5.28 15.78
249 243 239 6.00 3600 140 163.51 1.86 2.28
251 241 245 4.00 1 320 140 193.34 4.94 22.42
253 243 247 4.00 1 080 140 301.47 7.70 50.98
255 245 247 4.00 1200 140 253.53 6.47 37.01

257 249 245 4.00 1320 140 82.18 2.10 4.60

259 251 249 4.00 2640 140 82.18 2.10 4.60
261 257 251 3.00 100 140 163.18 7.41 66.49
263 257 259 10.00 2800 140 1234.28 5.04 7.98

264c 257 259 8.00 2800 140 685.97 4.38 7.98

265 259 261 8.00 500 140 685.97 4.38 7.98

266c 259 26',| 10.00 500 140 1234.28 5.04 7.98

267 261 263 8.00 2000 140 783.74 5.00 10.2'l

268 263 469 8.00 10 140 709.25 4.53 8.s0
269 469 264 14.00 1 400 140 0.00 0.00 0.00

270c 261 263 6.00 2000 140 367.52 4.17 10.21
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm des¡gn subiect to the 2015 peak hour demands

c Duplicate pipes along Trilby between the existing Zone 2 Tank (4.0MG) and College Ave
d Duplicate pipe south of new Zone 3 Tank (4.0MG) between College and Lemay

Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100ofr

271 87 253 18.00 5280 140 4142.38 5.22 4.28
272c 87 253 16.00 5280 140 3038.05 4.85 4.28
273 253 255 10.00 200 140 2226.44 9.09 23.76
274c 253 257 0.0 210 Duplicate pipe not required

275 255 257 10.00 10 140 2214.44 9.05 23.54
276c 263 469 0.0 10 Duplicate pipe not required

277 253 267 18.00 5280 140 4947.OO 6.24 5.95
279 266 273 14.00 3960 140 422.25 0.88 o.21
281 267 269 18.00 2000 140 4900.00 6.18 5.84
284 270 271 18.00 100 140 4900.00 6.18 5.84
285 271 293 18.00 2640 140 6.00 0.01 0.00
287 293 295 18.00 2440 140 0.00 0.00 0.00
291 299 297 18.00 200 140 0.00 0.00 0.00
292 275 299 14.00 1710 140 -375.43 0.78 o.17
293 273 485 3.00 880 140 37.27 1.69 4.33
294 299 301 14.00 450 140 691.11 1.44 0.53
295 273 275 14.00 930 140 -97.02 0.20 0.01
296 305 307 14.00 1 200 '140 163.67 0.34 0.04
297 279 485 6.00 450 140 42.61 0.48 0.19
298 301 303 14.00 800 140 464.25 0.97 0.25
299 279 281 6.00 850 140 25.45 0.29 0.07
300 275 277 6.00 570 140 223.41 2.54 4.07
301 277 285 4.00 1 800 140 17.35 o.44 o.26
302 277 279 6.00 720 140 151 .06 1.71 1.97
303 285 287 4.00 600 140 18.25 o.47 0.28
305 287 281 4.00 1 070 140 31.67 0.81 0.79
307 289 285 4.00 680 140 55.90 't.43 2.26
309 289 287 4.00 520 140 68.42 1.75 3.28
31 00 295 311 0.0 5480 not uired

311 291 289 8.00 1 160 140 179.32 1.14 0.67
313 283 291 8.00 1270 140 88.76 0.57 0.18
314 309 333 12.00 1 500 140 65.67 0.19 0.01
315 301 283 8.00 675 140 143.76 0.92 0.44
317 303 291 8.00 720 140 145.57 0.93 0.45
318 311 290 20.00 230 140 -1778.15 1.82 0.53
319 303 305 14.00 935 140 318.68 0.66 0.13
321 307 309 14.00 1 850 140 163.67 0.34 0.04
325 301 313 8.00 1 000 140 83.11 0.53 0.16
327 313 305 8.00 1 000 140 83.11 0.53 0.16
329 305 315 8.00 1 500 140 232.12 1.48 1.O7

331 319 299 14.00 2640 140 1066.54 2.22 1 .18
333 315 321 8.00 1 500 140 38.12 0.24 0.04
335 319 317 14.00 2640 140 423.00 0.88 o.21

337 319 321 6.00 2000 140 178.22 2.02 2.68
339 323 319 12.OO 2640 140 1399.62 3.97 4.14
341 321 325 6.00 700 140 216.34 2.45 3.83
343 325 327 6.00 1 800 140 216.34 2.45 3.83
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm design sub¡ect to the 2015 peak hour demands

e Duplicate pipes along Harmony Road between County Rd 7

Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100oft

345 327 329 6.00 1 800 140 103.34 1.17 0.98
347 329 331 6.00 4800 140 95.33 1.08 0.84
349 333 331 3.00 3480 140 39.67 1.80 4.86
350 331 332 6.00 1 340 140 135.01 1.53 1.60
353 319 335 14.00 2640 140 -290.14 0.60 0.11

355 347 323 12.00 4300 140 1399.62 3.97 4.14
357 329 349 3.00 2640 140 -0.00 0.00 0.00
359 335 337 14.00 2640 140 -290.14 0.60 0.11

361 339 337 6.00 200 140 379.66 4.31 10.84
363 341 339 6.00 10 140 392.66 4.46 11 .57
365 343 341 6.00 2640 140 392.66 4.46 11.54
366 371 343 6.00 385 140 1810.95 20.55 195.16
367 365 337 10.00 2640 140 374.47 1.53 0.88
368 363 365 4.00 450 140 655.60 16.74 214.60
369 365 367 6.00 1320 140 228.57 2.59 4.24
371 367 369 6.00 1 320 140 149.57 1.70 1.93
373 343 369 4.00 2640 140 1s3.43 3.92 14.61

375 343 347 12.00 1 000 140 1473.21 4.18 4.56
377 347 345 4.00 800 140 -14.41 0.37 0.1 I
379 343 345 6.00 1 000 140 233.44 2.65 4.41

381 343 353 8.00 2640 140 93.00 0.59 0.20
383 345 351 6.00 1 700 140 126.03 1.43 1.41

387 353 355 8.00 200 140 0.00 0.00 0.00
391 351 359 4.00 3920 140 122.O3 3.12 9.57
393 357 359 8.00 3920 140 -4.00 0.03 0.00

395 359 373 4.00 2640 140 7.00 0.18 0.05
397 375 373 4.00 2640 140 0.00 0.00 0.00
401 401 403 6.00 5280 140 137.67 1.56 1.66
403 403 405 6.00 5280 140 135.67 1.54 1.62

405 405 409 4.00 5280 140 95.67 2.44 6.1 0

407 406 407 10.00 1 480 140 571.06 2.33 1.92

409 407 409 10.00 5280 140 571.06 2.33 1.92

411 409 411 10.00 5280 140 475.81 1.94 1.37

413 411 413 6.00 200 140 475.81 5.40 16.46

414e 411 413 0.0 200 D cate not

415 413 415 6.00 10 140 468.81 5.32 16.02

41 6e 413 415 0.0 10 Du not red

417 415 417 6.00 5280 140 466.81 5.30 15.89

418e 415 417 0.0 5280 Du not uired

419 417 419 10.00 200 140 407.81 1.67 1.03

423 421 423 14.00 1 050 140 2140.84 4.46 4.29
425 423 425 14.00 500 140 1228.97 2.56 1.54

427 423 427 12.00 960 140 911.87 2.59 1.88

431 425 429 14.00 700 140 1204.97 2.51 1.48
433 429 427 6.00 1 800 140 -6.03 0.07 0.00

435 435 429 14.00 2000 140 -1022.00 2.13 1.09

437 427 431 12.00 2000 140 453.84 1.29 0.52
439 431 433 14.00 2640 140 310.84 0.65 o.12
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm design subject to the 2015 peak hour demands

Duplicate pipes along Timberline between Harmony and County Rd 36
I New connection to Fort Collins city system at County Rd 9

Duplicate pipes along along County Rd 36 between Timberline and County Rd 7
New pipe from County Rd 9 southwest to TrilbyÆimberline
New pipe from TrilbyÆimberline to Paragon Point

k New pipe from new Zone 3 Tank (4.0MG) east to Lemay
I New pipe along County Rd 12 between Lemay and Timberline

h

i

j

Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/1000ft

4.00 5280 140 94.91 2.42 6.01441 409 443
409 443 0.0 5280 Duplicate pipe not required4421

14.00 1525 140 675.84 1.41 0.51443 433 439
439 441 12.00 600 140 418.84 1.19 0.45445

8.00 1 570 140 295.84 1.89 1.68447 441 461
450 451 10.00 1 640 140 1813.90 7.41 16.27448s

4.00 10 140 87.91 2.24 5.22449 443 445
445 0.0 10 Duplicate pipe not required45oT 443

200 140 87.91 2.24 5.22451 445 447 4.00
447 0.0 200 Duplicate pipe not required4521 445

2640 140 18.68 0.48 0.30453 447 449 4.00
449 0.0 2640 Duplicate pipe not required454n 447

140 63.32 1.62 2.84455 451 449 4.00 2640
449 0.0 2640 Duplicate pipe not required456h 451

5280 140 59.60 2.71 10.32457 451 453 3.00
453 4.OO 5480 140 124.58 3.18 9.94458h 451

200 140 76.37 3.47 16.32459 453 455 3.00
0.00 0.00468 12.00 600 140 0.00462 469

2606 140 63.81 2.90 11.70463 453 481 3.00
o.21265 14.00 1320 140 422.25 0.88464 469

140 -361.00 0.75 0.16437 435 14.00 2400465
12.00 1 s80 140 0.00 0.00 0.00466 470 471

924.99 0.94 0.1 6457 433 20.00 2940 140467
12.00 31 00 140 -275.00 0.78 0.20468 471 473

60.84 0.39 0.09461 463 8.00 700 140469
14.00 10 140 422.25 0.88 0.20470 265 266

60.84 0.39 0.09463 465 8.00 650 140471
0.2820.00 820 140 1247.99 1.27472 459 457

685 140 38.1 6 0.24 0.04473 467 465 8.00
o.47459 20.00 1 520 140 1660.99 1.70474 473

1 680 140 137.16 0.88 0.41475 475 467 8.00
2.46 1.71475 12.00 2640 140 867.66477 473

8000 140 157.39 1.79 2.1347gl 451 479 6.00
1.51 3.50477 3.00 2640 140 33.24479 447

2640 140 487.49 5.53 17.224801 475 479 6.00
0.46 0.40477 3.00 2640 140 -10.24481 479

3.191 0000 140 7538.O7 5.35482K 271 474 24.OO
140 34.81 1.58 3.81481 483 3.00 2766483

5.02 14.386.00 5280 140 442.274g4l 489 49'l
140 35.13 1.59 3.88487 479 491 3.00 5280

4.26 2.60473 20.00 3380 140 4174.65488 474
o.o2940 140 -2.12 0.10489 485 487 3.00
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm design sub¡ect to the 2015 peak hour demands

m Duplicate pipes along Timberline between County Rd 30 and County Rd 32
n Duck Lake duplicate pipes east of Timberline
o Duck Lake new pipe east of Timberline
P Duck Lake new pipe south along County Rd I
Q County Rd 9 duplicate pipes between County Rd 30 112 and County Rd 28
r Duck Lake new pipe east to lnterstate 25

Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(fps)

Headloss
/100ofr

490 487 281 4.00 540 140 -2.12 0.05 0.01
491 491 493 3.00 2640 140 -59.56 2.70 10.30
492 474 489 20.00 1 900 140 3363.42 3.43 1.74
493 493 495 3.00 1320 140 -59.56 2.70 10.30
495 491 505 3.00 5280 140 -56.05 2.54 9.21
496 290 489 20.00 2500 140 -1778.15 1.82 0.54
497 311 497 14.00 5280 140 1778.15 3.71 3.05
499 503 505 3.00 10 140 79.05 3.59 17.38
501 501 503 3.00 200 140 79.05 3.59 17.40
502 498 499 6.00 1 300 140 134.98 1.53 1.60
503 499 501 6.00 1 320 140 184.00 2.09 2.84

504m 491 497 0.0 2640 Duplicate pipe not required

505 501 507 6.00 200 140 104.95 1.19 1.01

506m 505 497 0.0 2430 Duplicate pipe not required

507 507 509 6.00 10 140 72.95 0.83 0.49
508m 503 505 0.0 10 Duplicate pipe not required

509 509 s10 6.00 5280 140 65.95 0.75 0.43
510m 501 503 200 Duplicate pipe not required

511 511 499 6.00 5280 140 75.02 0.85 0.54
515 359 361 6.00 200 140 82.03 0.93 0.64

51 6n 491 493 0.0 2640 not ired

5'17 497 513 14.00 5280 140 1730.15 3.61 2.90

51 8n 493 495 0.0 1 320 Duplicate pipe not required

519 513 514 14.00 200 140 411.68 0.86 0.20
520 513 512 't2.oo 2588 140 1230.09 3.49 3.26
521 514 515 14.00 10 140 399.68 0.83 0.20

5220 495 516 6.00 3000 140 -65.56 0.74 o.42

523 515 519 14.00 7920 140 399.68 0.83 0.19

524p 516 513 6.00 2640 140 -63.39 0.72 0.40

525 510 531 4.00 5280 140 65.95 1.68 3.06

526c 513 512 0.0 2588 Duplicate pipe not required

527 531 533 4.00 2640 140 41.95 1.07 1.33

528( 516 521 6.00 8000 140 -2.17 0.02 0.00

529 533 535 4.00 10 140 31.95 0.82 0.78
531 535 537 4.00 200 140 31.95 0.82 0.80
533 537 539 3.00 2640 140 25.95 1 .18 2.21

535 523 537 3.00 3920 140 18.00 0.82 1 .13

537 529 539 3.00 2640 140 32.54 1.48 3.37
539 521 519 12.00 2640 140 272.32 o.77 o.20
540 539 540 3.00 5280 140 18.48 0.84 1 .18

541 527 523 3.00 3920 140 24.OO 1.09 1.92
542 542 540 4.00 5280 140 81.s2 2.08 4.54
543 522 521 30.00 920 140 318.49 o.14 0.00

4t3



Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm des¡gn sub¡ect to the 2015 peak hour demands

q County Rd 9 duplicate pipes between County Rd 30 112 and County Rd 28
s New pipe up to the new McOloughan HillTank

Pipe Start
node

End
node

Diameter
(inches)

Length
(fÐ

Hazen-
Williams

c

Pipe flow
(spm)

Velocity
(rps)

Headloss
/100ofr

544 522 525 30.00 3000 140 1072.25 0.49 0.03
545 527 529 3.00 2640 140 32.54 1.48 3.37
547 527 733 3.00 2640 140 99.19 4.50 26.47
548 525 527 6.00 20 140 216.73 2.46 3.83
549 525 541 24.O0 2640 140 723.52 0.51 0.04
551 541 543 24.00 2640 140 398.52 0.28 0.01
553 543 545 24.O0 500 140 315.00 o.22 0.01
555 512 5'17 12.00 1 545 140 851.09 2.41 1.65
557 543 542 12.00 200 140 83.52 0.24 o.o2
601 q 512 517 0.0 1 545 Du not ired
609 603 609 12.00 4000 140 810.09 2.30 1.51

61 0q 603 609 0.0 4000 not
611 609 61'1 12.00 3978 140 209.09 0.59 o.12
613 611 613 12.00 410 140 186.09 0.53 0.10
615 613 615 12.00 1279 140 82.53 o.23 o.o2
617 615 617 12.00 1 200 140 258.00 0.73 0.18
619 617 619 12.00 1 200 140 187.00 0.53 0.10
620s 624 522 16.00 1 2000 140 1390.74 2.22 1.01

621 613 621 8.00 2655 140 -39.44 0.25 0.04
623 615 623 12.00 1771 140 -175.47 0.50 0.09
625 621 623 12.00 1 200 140 -74.44 o.21 0.02
627 623 625 12.00 2425 140 -584.91 1.66 0.82
629 625 627 12.O0 1 100 140 -584.91 1.66 0.82
631 629 627 12.00 1 975 140 844.91 2.40 1.63
633 631 629 12.00 1975 140 1303.91 3.70 3.63
635 633 631 12.00 2000 140 1691 .91 4.80 5.89
637 635 633 12.00 300 140 1753.91 4.98 6.29
639 609 637 10.00 2640 140 40.00 0.1 6 0.01
641 637 639 10.00 2640 140 40.00 0.16 0.01
643 639 641 10.00 1 000 140 18.1 1 0.07 0.00
645 641 643 10.00 1 000 140 8.1 1 0.03 0.00
647 645 643 10.00 1 000 140 1.89 0.01 0.00
649 639 645 10.00 2640 140 11.89 0.05 0.00
701 701 703 12.00 3800 140 153.82 0.44 0.07
703 705 703 12.OO 2640 140 -32.78 0.09 0.00
705 703 707 12.00 2640 140 121 .03 0.34 0.04
707 713 705 8.00 2640 140 235.22 1.50 1 .10
709 709 711 10.00 2640 140 401.81 1.64 1.00
711 711 713 10.00 2700 140 380.81 1.56 0.91
713 713 715 3.00 100 140 106.46 4.83 30.17
715 715 717 3.00 3960 140 14.63 0.66 o.77
717 715 719 3.00 3000 140 41.37 1.88 5.25
719 713 707 4.00 2584 140 39.14 1.00 1.17
721 717 723 3.00 3960 140 14.63 0.66 o.77
723 721 723 3.00 2700 140 26.37 1.20 2.28
725 719 725 3.00 3000 140 7.37 0.33 o.22
727 727 725 3.00 2640 140 29.63 1.34 2.83
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Appendix B EPANET simulation of the GA design for the Fort Collins - Loveland system expansions

Table 83 cont. Pipe input data and output results for the EPANET simulation of

the Genetic Algorithm des¡gn sub¡ect to the 2015 peak hour demands

t Loop of new pipes at County Rd 3
u Duplicate pipes which connect to the adjacent City of Loveland system

Table 84 Pump station (PS) input data and output results for the EPANET

simulation of the Genetic Algorithm design subject to the 2015 peak hour demands

a ESP-1 operating curue

Table 85 Pressure reducing valve (PRV) and flow control valve (FCV) input data

and output results for the EPANET simulation of the Genetic Algorithm design

subject to the 2015 peak hour demands

Pipe Start
node

End
node

Diameter
(inches)

Length
(ft)

Hazen-
Williams

c

Pipe flow
(gpm)

Velocity
(rps)

Headloss
/100oft

729 729 731 3.00 2640 140 -1.1 I 0.05 0.01
731 733 731 3.00 3960 140 51.19 2.32 7.79
733t 715 707 6.00 2640 140 -1.54 0.02 0.00
735t 707 735 6.00 2640 140 111.63 1.27 1 .13

737t 735 727 6.00 5280 140 111.63 1.27 1.13
g00u 371 343 4.00 385 140 622.81 15.90 1 95.1 6

801 u 363 365 3.00 450 140 307.43 13.95 214.60

Pump station
description

Pipe Start
node

End
node

No. of
pumps

operating

Rated
flow

(gpm)

Rated
head

(ft)

Flow
(gpm)

Power
output

(hp)

Pump
lift
(ft)

Overland Trail
source PS

I I 15 3 4252 165.8 4504.48 181 159.04

Westridge
booster PS

60 53 55 1 191 79 1 91.00 4 79.00

Airport
booster PS

603 517 603 1a 620 125 810.09 20 95.53

Valve
descrip

tion

Pipe Start
node

End
node

Diameter
(inches)

Pressure
setting

(osi)

Status Flow
(gpm)

Velocity
(rps)

Head
loss
(ft)

PRV 1 53 47 201 8.00 42 Ooeratinq 3112.94 19.87 56.24
PRV 3 207 207 401 4.00 55 Ooeratinq 137.90 3.52 20.06
PRV 2 209 73 209 4.00 45 Operatinq 199.55 5.09 38.80

FCV 32 283 269 270 18.00 49004 Operating 4900.00 6.18 19.41

PRV 29 351 332 498 6.00 42 Ooeratino 135.01 1.53 43.75
PRV 23 389 355 357 4.00 43 Closed 0.00
PRV 28 404 226 406 6.00 50 Ooeratino 571.20 6.48 12.78
PRV 27 420 222 421 10.00 50 Operatinq 2254.84 9.21 7.90
PRV 8 421 419 709 3.00 75 Not ooeratino 407.81 18.51 31.92

PRV 31 460 264 437 10.00 41 Closed 0.0
PRV 9 461 455 721 2.00 51 Operatino 76.37 7.80 50.89

PRV 30 476 468 470 12.00 43 Closed 0.0
PRV 15 485 483 729 2.OO 100 Not operatinq 28.81 2.94 0.81
PRV 14 513 361 511 3.00 51 Ooeratino 82.03 3.72 54.72
a Flow setting for the FCV 32

4t5




