

Over-the-Horizon Radar Array Calibration

by

ISHAN SAMJEVA DANIEL SOLOMON B.ENG.(HONS), B.SC.

Thesis submitted for the degree of

Doctor of Philosophy

Department of Electrical and Electronic Engineering Faculty of Engineering The University of Adelaide Adelaide, South Australia

April 1998

Contents

AI	ostrac	t		vi
De	eclara	tion		viii
A	cknow	ledgmo	ents	ix
Li	st of I	Figures		X
Li	st of]	Fables		xvi
G	lossar	у		xvii
Pı	ıblica	tions		xxi
1	Intr	oductio	n	1
	1.1	Proble	m Description	1
	1.2	Outlin	e of Thesis and Main Contributions	4
2	Bacl	kgroun	d Array Processing and Array Calibration	6
	2.1	Array	Processing Background	6
		2.1.1	Maximum Likelihood Method	10
		2.1.2	Beamformers	11
		2.1.3	Subspace Methods	13
	2.2	Array	Calibration Application Areas	15
		2.2.1	Telescope Images	15
		2.2.2	General Antenna Arrays	16
		2.2.3	Airborne Radar	16
		2.2.4	Synthetic Aperture Radar	17
		2.2.5	Passive Sonar Towed Arrays	17

		2.2.6	Sonar Imaging Systems	18
		2.2.7	Synthetic Aperture Sonar Imaging Systems	18
		2.2.8	Computer Vision	18
		2.2.9	Ultrasound Arrays	19
		2.2.10	Microphone Arrays	19
	2.3	Previou	us Array Calibration Methods	19
		2.3.1	Methods for Estimating Sensor Positions	20
		2.3.2	Methods for Estimating Mutual Coupling	24
		2.3.3	Methods for Estimating Sensor Positions and Mutual Coupling	25
		2.3.4	Other Methods	26
	2.4	Discus	sion	27
3	Effe	ct of Mo	odel Errors on Radar Array Processing	28
	3.1	Literat	ure	29
	3.2	Descrip	ption	31
	3.3	Perform	mance Measures	32
		3.3.1	Signal-to-Noise Ratio and Array Gain	33
		3.3.2	Beampointing Error	33
		3.3.3	Sidelobe Levels	34
	3.4	Non-st	ationary Interferer Environment	36
		3.4.1	Fluctuating Interferer Wavefront Model	38
		3.4.2	Fluctuating Interferer DOA Model	38
		3.4.3	Sea Clutter Model	40
		3.4.4	Results	40
	3.5	Conclu	ision	43
4	Arra	ay Calib	oration using Disjoint Sources	45
	4.1	Mutual	Coupling Models	46
	4.2	Genera	lised Weiss-Friedlander Method	48
	4.3	Perform	nance of Generalised Method	52
	4.4	Modifi	ed Algorithm for OTH radars	55
	4.5	Simula	tion Example	59
	4.6	Monte	Carlo Analysis	61
	4.7	Alterna	ative Sensor Position Estimator	65

	4.8	Perform	mance Criteria	67
	4.9	Mutual	Coupling Estimation Investigation	70
	4.10	Error S	Surface	72
	4.11	Conclu	sion	79
_				
5	Arra	y Calib	oration using Disparate Sources	83
	5.1	Signal	Model	84
	5.2	Time-v	varying DOA Sources	85
	5.3	Time-in	nvariant DOA Sources	86
	5.4	Overal	l Cost Function	87
	5.5	An Exa	ample	87
	5.6	Algorit	thm	88
		5.6.1	Initialisation	89
		5.6.2	Sensor Position Estimation	91
		5.6.3	Coupling Matrix Estimation	93
		5.6.4	DOA Estimation	93
		5.6.5	Estimation of Complex s's	95
		5.6.6	Assumptions	95
	5.7	Simula	tion Example	96
	5.8	Monte	Carlo Analysis	99
	5.9	Special	Case	100
		5.9.1	Simulation Example	103
		5.9.2	Monte Carlo Analysis	104
	5.10	Error S	Surface	109
		5.10.1	4-element Array	110
		5.10.2	Theoretical Analysis of 2-element Array	113
	5.11	Perform	nance with Larger Model Errors	118
	5.12	Conclu	sion	119
6	Cran	ner-Rac	b Lower Bounds	122
	6.1	CRLB	for Disjoint Sources	122
		6.1.1	DOA - DOA Terms	174
		612	Sensor Position - Sensor Position Terms	127
		613	Coupling - Coupling Terms	124
		0.1.0	ovupining - ovupining runnið a a a a a a a a a a a a a a a a a a a	120

		6.1.4	Cross Terms	25
		6.1.5	CRLB Analysis	26
		6.1.6	Algorithm Comparison with CRLB	32
		6.1.7	Mutual Coupling Estimation using a Single Source	33
	6.2	CRLB	for Disparate Sources	42
		6.2.1	DOA - DOA Terms	42
		6.2.2	Sensor Position - Sensor Position Terms	14
		6.2.3	Coupling - Coupling Terms	14
		6.2.4	Cross Terms	45
		6.2.5	Algorithm Comparison with CRLB	45
		6.2.6	CRLB Analysis	16
	6.3	Conclu	sion	17
7	Sour	ces for	HF Array Calibration 14	50
	7.1	Jindale	e Radar Overview	50
	7.2	Meteor	· · · · · · · · · · · · · · · · · · ·	54
		7.2.1	Visual Observations	55
		7.2.2	Radar Observations	55
		7.2.3	Underdense versus Overdense Echoes	56
		7.2.4	Shower Meteors and Sporadic Meteors	57
		7.2.5	Radio Frequency Dependence	57
		7.2.6	Diurnal Variation	50
		7.2.7	Range and Altitude Dependence	50
		7.2.8	Numerous Disjoint Sources of Opportunity	51
		7.2.9	Spatial Stationarity Analysis of Head and Trail Echoes	59
		7.2.10	Multimode Echoes	72
	7.3	Externa	al Noise	73
		7.3.1	Suitable Noise Sources	74
		7.3.2	HF Noise Statistics	75
	7.4	Other S	Sources	16
	7.5	Jindale	e Array Calibration	16
		7.5.1	Calibration over Receivers	17
		7.5.2	Performance Determination	30
	7.6	Conclu	sion	30

CONTENTS

8	Con	clusion	185
	8.1	Overview and Contributions	185
	8.2	Future Work	187
A	Side	lobes for 2-D Array with Mutual Coupling	188
B	Mut	ual Coupling Estimation using a Single Source	190
	B.1	Passive Array Calibration	195
	B.2	Active Array Calibration	198
	B.3	Interpretation for Non-Identifiable Conditions	200
С	Ana	ytic Expressions for Error Surfaces	201
	C.1	Source DOA	202
	C.2	Sensor Position Error	203
	C.3	Coupling Amplitude	204
	C.4	Coupling Phase	205
	C.5	Complex Scalar s_n	206

v

Abstract

Modern over-the-horizon radars are currently being developed which have arrays than can be erected quickly, with minimal site preparation. Due to the rapid deployment of these arrays, antenna/sensor position errors may be present. Further since the antennas have a simple and cost-effective design, mutual coupling may be present. These imperfections, which can degrade radar performance, form the basis for the work conducted in this thesis.

The effect of these model errors on radar performance is first analysed. The degradation in signal-to-noise ratio, array gain, bearing estimation and array sidelobe levels, are determined. The major degradation is observed in the array sidelobe levels, which in turn results in the clutter-to-noise ratio (and hence target detectability) being worsened in the presence of non-stationary interferences. For these reasons, array calibration is required to improve the array sidelobe levels.

New array calibration algorithms are then developed to correct for sensor position errors and mutual coupling, using sources in the radar environment. These algorithms are analysed using simulations, and are found to perform well. The Cramer-Rao lower bound is derived, for the problem scenarios considered, and the algorithms are shown to achieve the bound. Further the Cramer-Rao lower bound is analysed, to obtain useful insight into the array calibration problem and identifiability.

Scattered echoes from meteor trails are shown to be excellent sources of opportunity for over-the-horizon radar array calibration. These echoes are found in general to : have planar wavefronts, be present in large numbers, be sufficiently strong, and be of adequate duration for sufficient snapshots to be obtained for array calibration. It also is shown that meteor head echoes are good sources of opportunity, and their properties along with that of other sources, are determined.

Finally, the receiving array of the Jindalee over-the-horizon radar (located in central Australia) is calibrated using echoes from meteor trails. The results obtained are compared with standard calibration (for this radar), which involves the use of special calibration sources. Array calibration using meteor trail echoes is found to perform as well as the standard array calibration, indicating that echoes from meteor trails can perform good array calibration.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signature

Date _____ April, 1998

Acknowledgments

I would like to first thank Professor Douglas Gray, my principal supervisor. His expertise in array processing, together with his general signal processing knowledge, enabled him to provide extremely useful criticism, analysis, and suggestions on my work. He also taught me a lot about presentations, both oral and written.

Dr. Stuart Anderson, my co-supervisor, suggested this problem and provided me with advice on matters relating to radars, both of skywave and surface-wave types. He also helped me significantly with the final phase of publications.

Professor Yuri Abramovich, while not officially a supervisor, was instrumental, from the formulation of the problem, to its conclusion. He provided me with several suggestions and criticism, on many wide ranging aspects of radar signal processing.

I would like to thank the Defence Science and Technology Organisation, for supporting me during the course of this research; I am especially grateful to Dr. Bruce Ward, Dr. Chris Coleman, Dr. Dan Meehan, Dr. Dick Thomas and Mrs. Elizabeth Ashforth. I also would like to thank the Cooperative Research Centre for Sensor Signal and Information Processing, for providing me with good facilities for conducting research.

I am also grateful to Professor Benjamin Friedlander, who provided me with good feedback when I contacted him in California, and Professor Kok Teo who provided some useful suggestions on my work.

I would like to thank the Lord for all things, and finally I would like to thank my parents for their support and sacrifices, over the years, and to them I dedicate this thesis.

List of Figures

1.1	The surface-wave radar environment.	2
1.2	Example of surface-wave radar data	3
2.1	Planewave signal impinging an array of sensors	7
3.1	Variation of signal-to-noise ratio with signal-interference separation, for the	
	specified model error - (a) gain errors : $\sigma_{\alpha_m} = 0$ (-), 0.2 (), 0.4 (),	
	0.5 (); (b) phase errors : $\sigma_{\psi_m} = 0^{\circ}$ (-), 12° (), 24° (), 36° (); (c)	
	sensor position errors : $\sigma_{x_m} = \sigma_{y_m} = 0$ (-), 0.1d (), 0.2d (), 0.3d ();	
	(d) mutual coupling : element height (h) = 0.25λ (-), 0.4λ (), 0.5λ ().	34
3.2	Variation of pointing error with signal-interference separation, for the specified	
	model error - (a) gain errors : $\sigma_{\alpha_m} = 0$ (-), 0.2 (), 0.4 (), 0.5 ();	
	(b) phase errors : $\sigma_{\psi_m} = 0^\circ$ (-), 12° (), 24° (), 36° (); (c) sensor	
	position errors : $\sigma_{x_m} = \sigma_{y_m} = 0$ (-), 0.1d (), 0.2d (), 0.3d (); (d)	
	mutual coupling : element height (h) = 0.25λ (-), 0.4λ (), 0.5λ ().	35
3.3	Variation of average sidelobe level with signal-interference separation, for the	
	specified model error - (a) gain errors : $\sigma_{\alpha_m} = 0$ (-), 0.2 (), 0.4 (),	
	0.5 (); (b) phase errors : $\sigma_{\psi_m} = 0^{\circ}$ (-), 12° (), 24° (), 36° (); (c)	
	sensor position errors : $\sigma_{x_m} = \sigma_{y_m} = 0 (-), 0.1d (), 0.2d (), 0.3d ();$	
	(d) mutual coupling : element height (h) = 0.25λ (-), 0.4λ (), 0.5λ ().	36
3.4	Variation of peak sidelobe level with signal-interference separation, for the	
	specified model error - (a) gain errors : $\sigma_{\alpha_m} = 0$ (-), 0.2 (), 0.4 (),	
	0.5 (); (b) phase errors : $\sigma_{\psi_m} = 0^{\circ}$ (-), 12° (), 24° (), 36° (); (c)	
	sensor position errors : $\sigma_{x_m} = \sigma_{y_m} = 0$ (-), 0.1d (), 0.2d (), 0.3d ();	
	(d) mutual coupling : element height (h) = 0.25λ (-), 0.4λ (), 0.5λ ().	37

3.5 Examples illustrating the models used for non-stationary interference analysis. 39

3.6	Example of SCV degradation. The clutter spectra shown are : (a) when no	
	interferer exists and there are no model errors $(-)$; (b) when an interferer exists	
	and there are no model errors $()$; and (c) when an interferer exists and there	
	are model errors $()$. A target is present at Doppler cell 100	41
3.7	SCV degradation versus model error standard deviation, for a fluctuating in-	
	terference DOA model $(-)$ and a fluctuating interference wavefront model	
	()	42
3.8	Beampatterns for the first 128 time samples (sweeps) - (a) position errors are	
	not present; (b) position errors are present.	44
4.1	Generalised Weiss-Friedlander method's performance - Toeplitz coupling matrix.	53
4.2	Average and peak sidelobe levels for parameters estimated in figure 4.1 -	
	nominal parameters $()$, estimated parameters $()$ and actual parameters	
	()	54
4.3	Generalised Weiss-Friedlander method's performance - full measured coupling	
	matrix	55
4.4	Average and peak sidelobe levels for parameters estimated in figure 4.3 -	
	nominal parameters $()$, estimated parameters $()$ and actual parameters	
	(-)	56
4.5	Performance of modified method - cost function decreases with iteration num-	
	ber; sharpening of MUSIC; errors in estimated source DOAs; actual coupling	
	matrix and estimated coupling matrix; errors in nominal (o) and estimated (*)	
	sensor positions.	60
4.6	Average and peak sidelobe levels for parameters estimated in figure 4.5 -	
	nominal parameters $()$, estimated parameters $()$ and actual parameters	
	(-), here we are a constant of a constant of the set o	61
4.7	Statistical performance of algorithm.	63
4.8	Algorithm's performance for typical SNRs and number of snapshots obtainable	
	from meteor trail echoes	64
4.9	Dependence of algorithm on number of sources.	65
4.10	Algorithm's performance with alternative sensor position estimator, for typical	
	SNRs and number of snapshots obtainable from meteor trail echoes.	68

xi

4.11	Performance Criteria - (a) integrated sidelobe level (ISLB) for uncalibrated	
	(), calibrated $()$ and perfectly known $(-)$ cases; (b) measure of perfor-	
	mance	71
4.12	First row of Longreach coupling matrix, at 5.0 MHz.	73
4.13	First row of Longreach coupling matrix for 5-12 MHz	74
4.14	Average sidelobe levels for Longreach coupling matrices	75
4.15	Longreach 5.0 MHz coupling matrix estimation	76
4.16	Longreach 12.0 MHz coupling matrix estimation.	77
4.17	Error surface for third sensor's position.	78
4.18	Error surface for two source DOAs.	80
4.19	Algorithm's performance for larger model errors. Sensor position errors with	
	standard deviation - (a) $0.2d$, (b) $0.3d$, (c) $0.4d$.	81
5.1	Illustration of disjoint clusters : A, B and C are disjoint clusters, each of which	
	may contain a number of non-disjoint sources/signals	84
5.2	Algorithm Sequence.	89
5.3	Simulation example results : cost function decreases with iteration number;	
	the actual (o) and the estimated (+) signals' DOAs; actual coupling matrix	
	and estimated coupling matrix; errors in nominal (o) and estimated (*) sensor	
	positions	98
5.4	Average and peak sidelobe levels for the nominal parameters $()$, estimated	
	parameters $()$ and also the actual parameters $(-)$.	99
5.5	Statistical performance of algorithm.	101
5.6	Performance of algorithm for typical number of snapshots and SNRs obtainable	
	from OTH radar sources.	102
5.7	Special case simulation example : cost function decreases with iteration num-	
	ber; errors in estimated signals' DOAs; actual coupling matrix and estimated	
	coupling matrix; errors in nominal (o) and estimated (*) sensor positions	105
5.8	Average and peak sidelobe levels for parameters estimated in figure 5.7 -	
	nominal parameters $()$, estimated parameters $()$ and also the actual	
	parameters ()	106
5.9	Statistical performance of special case - asymptotic scenario	107
5.10	Statistical performance of special case - finite/practical scenario.	108
5.11	Dependence on number of sources, for the special case.	109

5.12	Error surface for third sensor position.	111
5.13	Error surface for DOAs of two sources.	112
5.14	Error Surface for General Case.	114
5.15	Algorithm's performance in the special case, for larger model errors. Sensor	
	position errors with standard deviation - (a) $0.2d$, (b) $0.3d$, (c) $0.4d$.	120
5.16	Algorithm's performance in the general case, for larger model errors. Sensor	
	position errors with standard deviation - (a) $0.2d$, (b) $0.3d$, (c) $0.4d$.	121
6.1	CRLB variation with number of snapshots : third sensor's y-coordinate $(-)$ and	
	x-coordinate $()$, and c_{12} 's amplitude $()$ and phase $()$. The standard	
	deviation values for the sensor position are in units of wavelengths, while the	
	coupling value phase is in units of radians.	127
6.2	CRLB variation with SNR : third sensor's y-coordinate $(-)$ and x-coordinate	
	$()$, and c_{12} 's amplitude $()$ and phase $()$. The standard deviation	
	values for the sensor position are in units of wavelengths, while the coupling	
	value phase is in units of radians	128
6.3	CRLB variation with number of sources : third sensor's y-coordinate $(-)$ and	
	x-coordinate $()$, and c_{12} 's amplitude $()$ and phase $()$. The standard	
	deviation values for the sensor position are in units of wavelengths, while the	
	coupling value phase is in units of radians.	129
6.4	CRLB variation with SNR for several cases.	130
6.5	CRLB variation with range, for the third sensor's y-coordinate, when the	
	elevation angle of meteor trail echoes is considered	132
6.6	Comparison of algorithm performance with theoretical performance bound -	
	CRLB (solid line), STD (circle) and 99 percent confidence intervals (vertical	
	bar) as a function of SNR, for the position of a sensor and for the amplitude	
	and phase of a coupling parameter. The STD values were obtained from 10	
	algorithm runs.	133
6.7	Variation of CRLB standard deviations with source DOA, for $c = 0.5$ and	
	$\psi=\pi/2.$	136
6.8	Variation of CRLB standard deviations with source SNR, for $c = 0.5$ and	
	$\psi = \pi/2$	138
6.9	Variation of CRLB standard deviations with both source DOAs, for $c = 0.5$	
	and $\psi = \pi/2$.	139

6.10	Variation of CRLB standard deviations with source DOA, for Jindalee 2x2	
	coupling matrix estimation.	141
6.11	Variation of CRLB standard deviations with both source DOAs, for Jindalee	
	2x2 coupling matrix estimation	143
6.12	Algorithm's performance relative to theoretical performance bound : STD	
	(circle) and 99 percent confidence intervals (vertical bar) as a function of SNR,	
	for the position of a sensor and for the amplitude and phase of a coupling	
	parameter. The solid line is the CRLB. Ten algorithm runs were used to obtain	
	each STD value.	146
6.13	CRLB dependence on disjoint/non-disjoint sources - (a) twelve disjoint clus-	
	ters, each with one signal (-); (b) six disjoint clusters, each with two non-disjoint	
	signals $()$; (c) four disjoint clusters, each with three non-disjoint signals	
	()	148
6.14	CRLB dependence on signal correlation - (a) uncorrelated signals (-); (b)	
	partially correlated signals $()$; (c) coherent signals $()$.	149
7.1	Skywave radar propagation environment (Lees et. al.).	151
7.2	Jindalee radar processing of received signals - range processing, digital beam-	
	forming and Doppler processing.	152
7.3	Example of Jindalee radar output. The received power is displayed, for each	
	of the 10 finger beams, as a 2-dimensional image; each image comprising of	
	20 range cells (vertical axis) and 128 Doppler cells (horizontal axis).	153
7.4	Propagation modes for meteor echoes	154
7.5	Examples of radar meteor echoes (McKinley)	156
7.6	Tracking of Eta Aquarid shower over azimuth and time (Thomas et. al.).	158
7.7	Variation of echo rates with frequency (Thomas et. al.).	159
7.8	Sporadic meteor echo power variation with frequency (Thomas et. al.). Curve	
	A and B are modelled results, while the circles show measured values. \ldots	159
7.9	Predicted diurnal variation of sporadic meteor echo rates for different days in	
	the year (Thomas et. al.).	160
7.10	Example data set analysed for investigating wavefront of meteor echoes	162
7.11	Example illustrating meteor echo wavefront analysis - (a) eigenspectrum for	
	echo; (b) phase values of principal eigenvector $(*)$ and straight line fit $(-)$; (c)	
	wavefront phase errors.	164

7.12	Wavefront phase errors for meteor echoes - (a) ionospherically propagated	
	"bad" trail echoes; (b) ionospherically propagated "good" trail echoes; (c)	
	line-of-sight trail echoes; (d) line-of-sight head echoes.	165
7.13	Wavefront amplitude errors for meteor echoes - (a) ionospherically propagated	
	"bad" trail echoes; (b) ionospherically propagated "good" trail echoes; (c)	
	line-of-sight trail echoes; (d) line-of-sight head echoes.	166
7.14	Histogram of number of snapshots obtained from meteor trail echoes - (a)	
	ionospherically propagated echoes; (b) line-of-sight echoes	168
7.15	Two examples of TSSM plots showing meteor trail echoes	170
7.16	Meteor head-trail echo pair.	171
7.17	Multimode ionospheric propagation conditions.	172
7.18	Jindalee data showing sources in the HF environment : (a) noise source; (b)	
	beacon, aircraft return and meteor return.	174
7.19	Jindalee calibration weights versus range, for a particular receiver.	178
7.20	Jindalee calibration weights versus receiver number, for a particular range. $\ .$	179
7.21	Actual (o) and estimated (+) calibration weights.	181
7.22	Average and peak sidelobe level difference (+) between the two methods.	
	Positive difference values indicate calibration using meteor echoes is better.	182
7.23	Comparison between the methods - statistical performance. Positive difference	
	values indicate calibration using meteor echoes is better.	183

xv

List of Tables

4.1	Position Errors for 4-element Array	75
5.1	Effect of near-field sources on ISLB	109
B.1	Ambiguity Conditions	200

Glossary

Abbreviations

ASL	average sidelobe level	
C-TLS	constrained total least squares	
CRLB	Cramer-Rao lower bound	
DOAs	directions-of-arrival	
ESPRIT	estimation of signal parameters via rotational invariance techniques	
FIM	Fisher information matrix	
ISLB	integrated sidelobe level	
LS	least squares	
ML	maximum likelihood	
MUSIC	multiple signal classification	
PSL	peak sidelobe level	
SCV	sub-clutter visibility	
SLB	sidelobe	
SNR	signal-to-noise ratio	
STD	standard deviation	
TLS	total least squares	

Symbols

$\mathbf{x}^{T}, \mathbf{X}^{T}$	transpose
$\mathbf{x}^{H}, \mathbf{X}^{H}$	conjugate transpose
$\hat{x}, \hat{\mathbf{x}}, \hat{\mathbf{X}}$	estimates
$trace\{\mathbf{X}\}$	trace of matrix X
$\Re\{x\}$	real part of x
$\Im\left\{ x ight\}$	imaginary part of x
$conj(x), x^*$	conjugate of x
$diag\{\mathbf{x}\}, \mathbf{D}_{\mathbf{x}}$	diagonal matrix containing the elements of \mathbf{x} along its main diagonal
$ \mathbf{x} $	vector norm of x
$\ \mathbf{X}\ _F$	Frobenious norm of matrix \mathbf{X}
$\frac{\partial Q}{\partial x}$	partial derivative of Q with respect to x
\dot{x}_y	first derivative of x with respect to y
e^x , $\exp(x)$	exponential operator
$\delta(t_1,t_2)$	one when $t_1 = t_2$, and zero otherwise
$(\mathbf{X})^+$	generalised inverse of matrix \mathbf{X}
\odot	Hadamard product
j	complex operator
\mathbf{I}_M	$M \mathbf{x} M$ identity matrix
M	number of sensors / receivers
t	time index
Т	number of snapshots/samples
N	number of signals
N_C	number of clusters
N_T	total number of signals in all clusters
$N_{ ilde{Z}}$	number of columns in matrix $\tilde{\mathbf{Z}}$
$ heta,\phi$	bearing (azimuth), direction-of-arrival
Φ	set of bearings not in main beamwidth
(x_m, y_m)	actual position of mth sensor
(x^o_m,y^o_m)	nominal position of mth sensor
$(\Delta x_m, \Delta y_m)$	position error of m th sensor
λ	radar wavelength

SYMBOLS

f	radar frequency
w	radar angular frequency
υ	speed of light
$ au_{mn}$	time delay for n th signal to arrive at m th sensor
$\mathbf{a}(heta)$	array steering vector
$\mathbf{a}_o(heta)$	nominal steering vector
v	actual steering vector (including the effects of mutual coupling)
Α	matrix of array steering vectors
$\mathbf{D}(heta), \mathbf{D}_2(heta)$	diagonal matrices involved in the derivatives of $\mathbf{a}(\theta)$
$s_n(t)$	baseband waveform of the n th signal at time t
$s_I(t)$	baseband waveform of interference signal at time t
$n_m(t)$	receiver noise at time t
$z_m(t)$	output of m th sensor/receiver at time t
$\mathbf{s}(t)$	vector of baseband waveforms of signals, at time t
$\mathbf{n}(t)$	vector of noise outputs at time t
$\mathbf{n}_T(t)$	vector of total noise contribution (i.e. including interferers) at time t
$\mathbf{z}(t)$	vector of sensor outputs at time t
$\mathbf{z}_C(t)$	clutter signal at time t
$ar{\mathbf{z}}_m(t)$	output of consecutive receivers starting at m th receiver, at time t
$\tilde{\mathbf{Z}}$	matrix with data from all clusters
$\check{\mathbf{z}}(t)$	vector of sensor outputs for all sources, at time t
$\widetilde{z}_{ heta}(t)$	beamformer output for a beam steered in direction θ , at time t
$\mathbf{w}(heta)$	beamformer weight vector
$B_ heta(\phi)$	be ampattern for steer direction θ
$ASL(\theta)$	average sidelobe level for a beam steered in direction θ
p(heta)	beamformer power output in direction θ
$\sigma_S^2, \sigma_N^2, \sigma_I^2$	signal, noise, and interferer powers
σ_n^2	power of nth disjoint source
$s_n, \mathbf{s}, \mathbf{S}$	complex parameters
R	spatial covariance matrix
\mathbf{R}_n	spatial covariance matrix of nth disjoint source/cluster
Р	signal covariance matrix
\mathbf{P}_n	signal covariance matrix of n th disjoint cluster

2

Q	noise covariance matrix
\mathbf{v}_m, \mathbf{V}	mth eigenvector and matrix of eigenvectors
λ_m	mth eigenvalue
E	signal subspace
U	noise subspace
$lpha_m,\psi_m$	gain and phase error, for m th element
Г	diagonal matrix of receiver gain/phase errors
σ_a	standard deviation of amplitude errors
σ_ψ	standard deviation of phase errors
\mathbf{S}_C	scattering matrix
С	coupling matrix
\mathbf{C}_{o}	nominal coupling matrix
\mathbf{Z}_{o}	array impedance matrix
Z_L	scalar load impedance
Q	cost function
н	Hessian matrix
r	gradient vector
Ψ	unknowns to be estimated
J	Fisher information matrix
$\mathbf{CRLB}(\mathbf{\Psi})$	Cramer-Rao lower bound for estimating Ψ

Boldface lower case variables are column vectors. Boldface upper case variables are matrices.

Publications

The list of publications relating to this thesis are :

- I. S. D. Solomon, Yu. I. Abramovich, D. A. Gray and S. J. Anderson, "OTH radar antenna array calibration analysis", Fourth International Symposium on Signal Processing and its Applications, August 1996, Gold Coast, Australia, pp. 471-474.
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "Estimating of array mutual coupling and sensor positions for over-the-horizon radar", Digital Signal Processing Applications Conference (TENCON), November 1996, Perth, Australia, pp. 846-851.
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "Sources for OTH radar array calibration", IEEE Antennas and Propagation Symposium, July 1997, Montreal, Canada, pp. 306-309.
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "OTH radar array calibration using disparate sources", IEE Radar Conference, October 1997, Edinburgh, Scotland, pp. 176-180.
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "Over-the-horizon radar array calibration using echoes from ionised meteor trails", IEE Proceedings Radar, Sonar and Navigation, June 1998, Vol. 145, No. 3, pp. 173-180 (to appear).
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "Array calibration of OTH radars using disparate sources", submitted to IEEE Transactions on Antennas and Propagation.
- I. S. D. Solomon, Yu. I. Abramovich, D. A. Gray and S. J. Anderson, "Performance of OTH radar array calibration", IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), May 1998, Seattle, Washington, U.S.A., pp 2025-2028.

- I. S. D. Solomon, Yu. I. Abramovich, D. A. Gray and S. J. Anderson, "Mutual coupling estimation", International Radar Symposium, September 1998, Munich, Germany (to appear).
- I. S. D. Solomon, D. A. Gray, Yu. I. Abramovich and S. J. Anderson, "Meteor trail echoes for OTH radar array calibration", *in preparation for* Radio Science.