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Abstract

Modern over-the-horizon radars are currently being developed which have arrays than can

be erected quickly, with minimal site preparation. Due to the rapid deployment of these affays,

antenna/sensor position effors may be present. Further since the antennas have a simple

and cost-effective design, mutual coupling may be present. These imperfections, which can

degrade radar perfonnance, form the basis for the work conducted in this thesis.

The effect of these model effors on radar performance is first analysed. The degradation in

signal-to-noise ratio, anay gain, bearing estimation and array sidelobe levels, are determined.

The major degradation is observed in the array sidelobe levels, which in turn results in the

clutter-to-noise ratio (and hence target detectability) being worsened in the presence of non-

stationary interferences. For these reasons, array calibration is required to improve the array

sidelobe levels.

New array calibration algorithms are then developed to correct for sensor position errors

and mutual coupling, using sources in the radar environment. These algorithms are analysed

using simulations, and are found to perform well. The Cramer-Rao lower bound is derived, for

the problem scenarios considered, and the algorithms are shown to achieve the bound. Further

the Cramer-Rao lower bound is analysed, to obtain useful insight into the array calibration

problem and identifi ability.

Scattered echoes from meteor trails are shown to be excellent sources of opportunity for

over-the-horizon radar array calibration. These echoes are found in general to : have planar

wavefronts, be present in large numbers, be sufficiently strong, and be of adequate duration

for sufficient snapshots to be obtained for array calibration. It also is shown that meteor head

echoes are good sources of opportunity, and their properties along with that of other sources,

are determined.

Finally, the receivingarray of the Jindalee over-the-horizonradar (located in central Aus-

tralia) is calibrated using echoes from meteor trails. The results obtained are compared with

vl



ABSTRACT

standard calibration (for this radar), which involves the use of special calibration sources.

Array calibration using meteor trail echoes is found to perform as well as the standard array

calibration, indicating that echoes from meteor trails can perform good array calibration.
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Cramer-Rao lower bound for estimating !DcRrB(ü)

Boldface lower case variables are column vectors.

Boldface upper case variables are matrices.
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