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Abstract

Modern over-the-horizon radars are currently being developed which have arrays than can

be erected quickly, with minimal site preparation. Due to the rapid deployment of these affays,

antenna/sensor position effors may be present. Further since the antennas have a simple

and cost-effective design, mutual coupling may be present. These imperfections, which can

degrade radar perfonnance, form the basis for the work conducted in this thesis.

The effect of these model effors on radar performance is first analysed. The degradation in

signal-to-noise ratio, anay gain, bearing estimation and array sidelobe levels, are determined.

The major degradation is observed in the array sidelobe levels, which in turn results in the

clutter-to-noise ratio (and hence target detectability) being worsened in the presence of non-

stationary interferences. For these reasons, array calibration is required to improve the array

sidelobe levels.

New array calibration algorithms are then developed to correct for sensor position errors

and mutual coupling, using sources in the radar environment. These algorithms are analysed

using simulations, and are found to perform well. The Cramer-Rao lower bound is derived, for

the problem scenarios considered, and the algorithms are shown to achieve the bound. Further

the Cramer-Rao lower bound is analysed, to obtain useful insight into the array calibration

problem and identifi ability.

Scattered echoes from meteor trails are shown to be excellent sources of opportunity for

over-the-horizon radar array calibration. These echoes are found in general to : have planar

wavefronts, be present in large numbers, be sufficiently strong, and be of adequate duration

for sufficient snapshots to be obtained for array calibration. It also is shown that meteor head

echoes are good sources of opportunity, and their properties along with that of other sources,

are determined.

Finally, the receivingarray of the Jindalee over-the-horizonradar (located in central Aus-

tralia) is calibrated using echoes from meteor trails. The results obtained are compared with

vl



ABSTRACT

standard calibration (for this radar), which involves the use of special calibration sources.

Array calibration using meteor trail echoes is found to perform as well as the standard array

calibration, indicating that echoes from meteor trails can perform good array calibration.
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CHEpTER 1

Introduction

1.1 Problem Description

Over-the-horizon (OTH) radars are cuffently being developed for coastal and long range

surveillance. These systems are to be used primarily for detecting targets (such as ships and

aircraft) and for remote sensing the ocean surface. Unlike other radars these radars achieve

over-the-horizon propagation, by operating in the 3-30 MHz frequency band, called the High

Frequency (HF) band.

Two main types of OTH radars exist : skywave and surface-wave radars. Skywave OTH

radars [90, 103, 116], use the reflection of the ionosphere and the diffraction from the

ground/sea, to get electromagnetic waves to propagate beyond the horizon. Long distance

propagation is obtained for such systems, but the radar signals are often distorted by the

ionosphere. Surface-wave OTH radars 19,133,110] work by coupling electromagnetic waves

with the conducting surface of the ocean, obtaining propagation to ranges up to a few hundred

kilometres around the earth. Surface-wave radars cover the close-in ranges that are not covered

by skywave radars, and hence can often fill the surveillance gap. Surface-wave radar data is

of higher quality, since ionospheric contamination of radar signals usually does not occur.

The work reported here is primarily for surface-,wave radar systems, but is applicable for

skywave radar systems as well. The surface-wave radar environment is illustrated in figure L1,

although the diagram is not to scale. Surface-wave radars are located near the ocean surface,

and exploit surface-wavo propagation to detect targets. These radars usually contain well-

separated (quasi-bistatic) transmit (Tx) and receive (Rx) subsystems. The transmit subsystem

transmits energy in a particular direction, and backscattered energy is analysed by the receive

subsystem. Interference signals (for example from radio stations) are from active sources, and

1
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Figure 1.1 : The surface-wave radar environment.

can reach the receive subsystem either via surface-wave or skyrvave propagation modes.

Typical OTH radar receive subsystems use an array of antenna elements, to obtain better

target detectability and further to estimate the bearings of the targets. The electromagnetic

waves scattered from targets, the ocean and land, together with interference signals, induce

voltages on the antenna elements. These voltages are measured simultaneously using multiple

receivers, with a single receiver connected to each antenna, to form the array output. Mea-

surements made at discrete time instants, called snapshots, are then processed by the radar.

Radar signal processing transforms the received signals over a period of time (called a dwell)

into ARD (azimuth-range-Doppler) data, which expresses the received power as a function of

bearing (usually azimuth), range (distance from the radar) and Doppler (or velocity). Target

detection and remote sensing is then performed on the ARD data.

Figure 1.2 shows the received power (in dB) of a surface-'wave radar [9], as a function

of range bin and Doppler. Surface-wave returns are observed in range bins 80-100, while

skywave returns are observed after about range bin 190 (the vertical lines over the other range

bins are processing artifacts). The strong returns at 0 Hz (in range bins 90-100) are scattered

returns from the ground; the very strong return near range bin 83 is energy received directly
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Figure 1.2: Example of surface-wave radar data.

from the transmitter. The pair of returns either side of the ground returns are sea-clutter returns

(known as Bragg-lines). Both ground and sea-clutter returns appear in certain range bins

(90-100) since both land and sea are present at these ranges, in the radar's coverage. Note the

surface-wave returns are cleaner (less spread in Doppler) than the skylvave returns. In figure

| .2 the horizontal lines in range bins I 00- 12 5 , 152 and 202, are scattered returns from meteor

trails, which are highly Doppler-spread.

The surface-wave radars currently being proposed have receiving antenna affays that can be

erected quickly, with minimal site preparation, and are designed to be easily relocated. Due to

rapid deployment of these receiving affays, individual antennas in the array may not be in their

exact designed locations, and hence antenna position errors may be present. Further due to the

simple and cost-effective design of these antennas, mutual coupling between antenna elements

is expected to be significant. These imperfections will effect signal processing for the new

generation radar systems, and hence this issue must be studied. The effect of these imperfections

on radar array processing and means for estimating/correcting these imperfections, known as
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array calibration, form the basis for the work described in this thesis.

The main issues that need to be addressed in this thesis are as follows :

o the effect of the imperfections (or model errors) on radar performance has to be determined.

Radar performance measures which are most affected need to be identified;

. sources which are suitable for performing array calibration, have to be determined. The

sources used could be either special sources or sources of opportunity, the latter sources being

preferred. Characteristics of these calibration sources, which relate to array calibration, have

to be determined;

o signal processing techniques for estimating (and correcting) the imperfections, using the

calibration sources, have to be developed. The algorithms developed must exploit the charac-

teristics of the sources, and the performance of the algorithms need to be established. The time

duration for performing array calibration is not very important, since it will only need to be

performed about once a day (when mutual coupling varies due to ground conditions varying).

1.2 Outline of Thesis and Main Contributions

In chapter 2, background material on array processing is presented, a description of areas

of research which involve array calibration is given, and previous techniques used for array

calibration which are relevant for OTH radars are outlined.

In chapter 3 an analysis of the effect of gain/phase errors, sensor position errors and

mutual coupling on radar performance, is conducted. The degradation in signal-to-noise ratio,

bearing estimation and sidelobe levels, are given directly in terms of the standard deviation of

these errors. Further, the effect of these model errors on array processing in a non-stationary

interference environment, is investigated. The main contributions were : (a) obtaining the

performance degradations in terms of the model error standard deviations; (b) showing

that model errors could degrade target detectability in the HF radar scenario.

In chapter 4 ananay calibration algorithm is developed for estimating sensor position errors

and mutual coupling using disjoint (single-mode) sources. In this thesis, disjoint sources refers

to those which do not occupy both the same time snapshots and the same radar range cells;

meteor trail echoes being a typical example of such sources (see chapter 7). The performance

of the algorithm developed is investigated in detail using simulations. The main contribution

was developing an array calibration algorithm, for utilising echoes from meteor trails, to

estimate sensor position errors and mutual coupling.

In chapter 5 an array calibration algorithm is developed for estimating sensor position
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eTrors and mutual coupling, using disparate sources. The concept of cluster is used in this

chapter, to denote any collection of sources which all occupy both the same time snapshots and

the same radar range cells (i.e. are overlapped or non-disjoint). The algorithm developed in

this chapter can use the sources, present in different disjoint clusters, to estimate the unknown

parameters (note the problem considered in chapter 4 is a special case of that considered

here). This algorithm can use the following disparate sources : multimode and near-field

sources (in addition to single-mode sources), and sources with either time-varying or time-

invariant bearings; the bearing of each source being either known or unknown. The algorithm's

performance is investigated in detail using simulations. The main contribution was the

development of an array calibration algorithm, for using disparate sources, to estimate

sensor position errors and mutual coupling.

In chapter 6 theoretical performance bounds for the array calibration problems considered

in both chapter 4 and 5 are determined, and the algorithms'performances are compared to the

bounds. The bounds are also analysed to investigate their variation with signal-to-noise ratio,

number of snapshots, number of sources, etc. The main contribution was the determination

of the Cramer-Rao lower bounds for the àrray calibration problems considered in chapter

4 and 5.

In chapter 7 sources present in the HF environment, and their applicability for array cali-

bration, is discussed. It will be shown that echoes from meteors could be used as planewave

sources of opportunity, for OTH radar array calibration. The properties of these echoes, inves-

tigated using the Jindalee OTH radar artay, are discussed (note while the temporal properties

of meteor echoes have been investigated in the past, the spatial properties have essentially not

been studied). Also in this chapter, anay callbration is performed on the Jindalee radar anay,

using echoes from meteors; results obtained being presented to illustrate the success achieved.

The main contributions were showing that the spatial properties of meteor head and

trail echoes allow them to be used for OTH radar array calibration, and demonstrating

that meteor trail echoes can be used to calibrate the amplitude and phase errors in the

Jindalee radar's receiving array.

In the appendices, array weighting required to obtain minimum sidelobe levels, a theoretical

analysis of the Cramer-Rao lower bound for the mutual coupling estimation problem, and error

surface theoretical expressions, are given. The main contributions were obtaining both the

identifiability conditions and theoretical Cramer-Rao lower bound variance expressions,

in the mutual coupling only estimation problem.
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Background Array Processing and Array

Calibration

In this chapter some background material is presented for the chapters that follow. In section 2.1

affay processing theory, relevant to OTH radars and array calibration algorithms, is presented.

To motivate the reader, in section2.2 a description of areas where array calibration has been

performed is given. In section 2.3 existing affay calibration techniques that relate to OTH

radar anay calibration are reviewed. The chapter ends with a discussion in section 2.4.

2.1 Array Processing Background

Array processing involves the use of sampled data from an array of sensors for the detection and

localisation of targets. In the case of radars, a signal is transmitted and scattered returns/signals

received by an antenna aÍray, are processed.

The output of the mth sensor (antenna), when N signals impinge the radar receiving array,

is 
¡¡

,^(t): 
: "*(t - r**) I "^(t) (2.1)

where s"(l) is the baseband waveform of the nth signal received, and the additive noise rz- (l)

is either receiver noise or noise external to the array. The time delay r^n, in the case of a

two-dimensional planar (or nominally linear) afiay, for planewave signals is

rmn : (r- sin 0n t y^ cos 0") f u (2.2)

where r^ and Am are the r and y coordinates of the rnth sensor, and u is the speed of light

6



2.1. AKRAY PROCESSING BACKGROUND

Y

$ 0n

7

Planewave

. Signal

ìì'.:'..X

rtt"
1,rt\

+{!

q$o (t*, y*)

v

o(1 'h)
(0,0)

x o
(x¡a, t¡a)

o (rZ,yZ )

Figure 2.1 : Planewave signal impinging an affay of sensors.

in free space. The parameter 0n is the bearing of the nth signal, and is often called the

signal's direction-of-arrival (DOA) or azimuth (the elevation angle is assumed to be small and

is hence ignored). Here 0n is specified with respect to broadside (i.e. the direction orthogonal

to the arcay), and end-fire directions (i.e. both the directions along the anay) correspond to

0n : I90. Note r^n contains sensor location information, and r^n is defined as the time

delay with respect to the position (r,y) : (0, 0) as shown in figure 2.1.

Now consider narrowband signals. In array processing a narrowband signal is defined as a

signal which has a bandwidth much smaller than the reciprocal of the propagation time for the

signal wavefront to travel across the array. For the case of narrowband signals, the output of

the mth sensor is 
¡/

"^(t): : 
sn(t)er*"^' + r*(t) (2.3)

where t¿ is the radar's operating frequency and j is the complex operator.

m



where z(t) : ltt(t), rr(t),..., rr(t)]', "(l) : ["r(¿), ,r(t),...,rr(t)]', and the array steering

vector

a(0r) : fei-"t" ,, ei-'zn, ..., ei-"rø"17
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Now consider an anay of M identical sensors. The vector of M sensor outputs rs

N
z(t) : | "(d,)s,(/) + n(¿)

n=l

Equation (2.4) canbe written compactly as

z(t) :,Ls(f) + n(t)

E{z(ÐzH (t)}

AE{s(¿)sH(¿)}at * E{n(t)nt(¿)}

APAII + Q

E{.(¿).r/(¿)}

E{n(ú)nr/(r)}

8

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.e)

(2.10)

(2.tr)

where a : ["(dr) ,"(02),..., "(d¡r)] 
and "(l) 

: ["r(ú), "r(t),..., "r(r)]t. The "array manifold"

is the locus of {"(9) : Y0}, which is a closed curve for a linear array but in general is a surface.

Array processing for Gaussian signals usually involves the second order statistics of the

received data, which is obtained by determining the spatial covariance matrix of the received

signals. (Note the spatial covariance matrix is often referred to as the cross-spectral matrix,

since for narrowband signals they are effectively equivalent). The spatial covariance matrix of

the receiveddata, assuming zero mean noise, is

R

where E{ } is the statistical expectation operator. It has been assumed here that the signals are

uncorrelated with the noise, and so E{n(f)"H(f)} : 0. The MxM spatial covariance matrix

is Hermitian (i.e. nH : R), and for the case of a uniformly spaced linear array (and diagonal

e) n is Toeplitz (all elements along any diagonal are equal). The signal covariance matrix P

and the noise covariance matrix Q are

P

a
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The signal covariance matrix is diagonal when all the signals are uncotrelated, and is non-

diagonal when correlated (multipath) signals are present. In the case of some/all signal(s) being

coherent (fully correlated) with other signal(s), matrix p is rank-deficient and hence singular.

rWhen the noise is only made up of receiver noise, it is usually assumed that the noise is

complex Gaussian distributed, stationary uncorrelated between receivers (E {n^(t)n; (l ) } : 0

for m I k) andhas common variance ofu. this is referred to as spatially white noise, and for

this case the noise covariance matrix is

Q: o2Nlu (2.12)

For external noise signals, the noise may not be spatially white, and hence the data is usually

"prewhitened"; that is the vector of receiver outputs is multiplie dby g-r /z before any array

processing is performed.

Array processing often involves the "eigendecomposition" of the spatial covariance matrix,

where the spatial covariance matrix is expressed as

9

M
R:ApAH +o2Nlm:vÂlvH: t À*u*ufl

m,:1

(2.r3)

(2.r4)

where V is a MxM unitary matrix of linearly independent columns, with each column

vm (a unit norrn vector) called an "eigenvector" of R. The MxM diagonal matrix

rrÀ : diag{À1,À2,...,À¡a} contains the real "eigenvalues" of the covariance matrix, and

are ordered so that lt 2 Àz > ... >

eigenvalues", are equal to o2¡¡; their corresponding M - N eigenvectors are called "noise eigen-

vectors". The l/ largest eigenvalues are called "signal eigenvalues", and their corresponding

N eigenvectors are called "signal eigenvectors". The signal eigenvectors span the range space

of n, while the noise eigenvectors are orthogonal to A and so span the nullspace of n. The

vector v1 is referred to as the principal eigenvector of R.

The spatial covariance matrix is sometimes expressed as

R: Erl¡*EH a Ur\¡,UH

where the "signal subspace" E : [rr,rr,...,v^¡], and the so called "noise subspace" U :

[tr+r , vNt2¡ ...,vM].The diagonal matrix Â¡" contains the signal eigenvalues, and the diagonal

matrix rt¡. contains the noise eigenvalues.
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Thus far it has been assumed that the exact covariance matrix can be estimated via an infinite

number of array snapshots. In practice the covariance matrix must be estimated from a finite

number of snapshots 7, and is usually estimated as

,(t),H (t¡ (2.15)

where n is called the sample covariance matrix. The eigendecomposition of R gives

n: ÊÂr"ÊH + ûÂr"ûH (2.16)

where Ê and Û are the estimated subspaces, and the diagonal matrices Â¡" and Â¡, contain the

estimated signal and noise eigenvalues respectively.

Note the number of signals N has often to be known before localisation of targets can be

performed. Techniques for estimating l/ exist in the literature (see for example16,245,239,

247 ,2421). The number of signals must be less than the number of sensors M.

Now some of the methods used for bearing estimation are outlined. These methods were

developed for passive sonar array processing, and while they are not necessarily applicable

(especially subspace methods) for OTH radar target detectiorVlocalisation, they are described

here since they have been (and can be) exploited in array calibration methods for sonars, radars,

etc. First the maximum likelihood method, which is the "optimal" method, is described. Then

beamforming methods and subspace methods, which are computationally more attractive

techniques, are discussed. Note the spatial covariance matrix contains information about the

signal bearings, and these methods use the covariance matrix in different ways to estimate

the signal bearings. For convenience, hereafter the spatial covariance matrix will be simply

referred to as the "covariance matrix".

2.1.1 Maximum Likelihood Method

The Maximum Likelihood (ML) method [212, 214] is derived from the likelihood function

of the observation data probability density function, and is an optimal method for bearing

estimation. The deterministic maximum likelihood (DML) method assumes the signals are

deterministic and unknown, while the stochastic maximum likelihood (SML) method models

the signals as Gaussian randomprocesses. The DML method's estimates ofthe signal bearings

Ê.: 1+
rla Z-¿
f t=l
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are obtained at the minimum of

pa^t(0) : tr ace{[r - a(aHa)-' At]Ê.] (2.r7)

where trace{} is the trace operator. Optimisation techniques for obtaining the minimum have

been proposed in 121,54,278,187], but are computationally expensive and do not guarantee

global convergence. Since the ML methods require computationally expensive optimisation

procedures, they have not been used widely, and suboptimal methods have instead been used.

Instead of the ML methods, which require an l/-dimensional search, methods which use a

one-dimensional search have been often employed.

2.1.2 Beamformers

Beamforming involves the "steering" of a beam, to obtain a spatial spectrum from which the

signal bearings can be estimated. The direction(s) in which the power output of a beamformer

are at a maximum, are interpreted as the signal bearings. The beamformer's output is

Zo(t) : *H çe¡"çt¡ (2.18)

where 0 is known as the steer direction and w(d) is the processor's weights for forming a beam

in direction d. The output poìñ/er of the beamformer is

p(0) : 2e (¿)
1T: ; t *H 10¡,çt¡,ø1r;*10; : *H (0) R*(d) (2.r9)
f t=7

f.1
,r, LI t=l

2

assuming w(á) is the same for f : 1,2, ...,7 .

The array beampattern for the steer direction d, is the power output of the beamformer for

a unit amplitude signal in direction /. It is defined as

(2.20)

The beampattern is usually displayed as a function of /, and illustrates the relative contributions

equal magnitude signals from different directions make.

The conventional (Bartlett) beamformerþrocessor is analogous to the classical Fourier-

based spectrum estimator for time-series data. This beamformer maximises the output power

Be(ó) : *H çe¡"ç6¡ 
z : *H (0)"(Ð"H @)*(0)
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in the steer direction. This processor's data-independent weights are

w(d) : "(d )
M

The beamformer output is then

t2

(2.2t)

(2.22)

If the signals are well separated, p.".(0) will have peaks close to the signal bearings. This

beamformer has the same resolution limitation as the Fourier-based estimator for time series

data, and is not able to resolve closely spaced signals. This beamfoûner cannot resolve signals

closer than 2r f M radians.

The minimum variance distorsionless response (MVDR) processor [25], also called the

Capon processor and the adaptive processor, provides better resolution. This beamformer

minimises the output power, while fixing the output in the steer direction using the linear

constraint

*H1d;"14¡ : t (2.23)

The data-dependent weights for this processor can be obtained using Lagrange multipliers, and

w(d) : R-1a(á)
(2.24)

"'(0)R- '"(d)
The beamformer output is then

are

Pmuar(o): -d-tø (2.2s)

When noise-only data can be measured, different weights for this processor can be obtained

by using the estimated noise-only covariance matrix Q in equation (2.24), instead of n. The

bearing estimates of the MVDR processor, unlike the ML method, do not converge to the true

signal bearings when the number of snapshots alone approach infinity.

The MVDR processor has been widely used in affay processing, and is the most appropriate

for OTH radar anay processing. This processor is capable of rejecting interference signals,

estimated in R or Q, by using the data specific (adaptive) weights. V/hile the resolution of

the MVDR processor may not be as good as the ML method and subspace methods (to be

described next), bearing resolution is not of great importance for OTH radars; since multiple
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targets can often be separated by their different Doppler and/or range. The MVDR processor

is more robust than the ML methods to model errors.

2.1.3 Subspace Methods

Subspace methods, also called eigenstructure methods and high-resolution methods, use the

eigenstructure of the covariance matrix and its properties, to estimate the bearings of the signals.

These methods are based on the fact that the signal subspace and the array manifold intersect

at locations corresponding to the bearings of the signals. Subspace methods have resolution

that is not limited by the aperture of the anÍay, or in principal by the signal-to-noise ratio, when

the number of snapshots or signal-to-noise ratio are large. Subspace methods originated from

Pisarenko's method [ 1 58].

The MUltiple Slgnal Classification (MUSIC) algorithm 1178,179,191 uses the property

that the noise subspace u is orthogonal to the array manifold at the true signal bearings (for

uncorrelated signals) and uses an orthogonality measure to determine the signal bearings. The

MUSIC algorithm (inverse of orthogonality measure) is

(2.26)

where bearings corresponding to the peaks are the signal bearings. The peak values of the

MUSIC algorithm are not the signal powers, and hence after the signal bearings have been

estimated other techniques have to be used to determine the signal powers. The MUSIC

algorithm has been shown to perform like the ML method (i.e. "optimally") when the number

of snapshots (and signal-to-noise ratio) are large and the signals are uncorrelated l2I2l.

While the MUSIC algorithm provides better resolution than beamforming methods, it fails

to resolve closely spaced signals when the number of snapshots and the signal-to-noise ratio

are srirall. Further, the resolving ability of the MUSIC algorithm is seriously affected when

signals are highly correlated l2I2l. Note when the signals are coherent, the noise subspace

is not orthogonal to the array manifold at the true bearings, and hence MUSIC provides

peaks at incorrect bearings. Spatial smoothing techniques have been proposed in the literature

[50, 186,255,157,44,246]for overcoming this signal correlation problem, but they are only

applicable for certain array configurations.

The Weighted MUSIC algorithm is a modiflcation of the standard MUSIC algorithm,

1l- /Á\
vmuszc\w' - ¡¡ûø"1 0)ll, - 

"H 
(0)uitr "(0)
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proposed as an improvement over MUSIC. The algorithm involves the maximisation of

t4

(2.27)

where \M is a weighting matrix which is used to weight the relative contributions of the

eigenvectors. Note if w : r, the algorithm simplifies to the MUSIC algorithm. While the best

asymptotic properties have been shown to occur for w : r (i.e. MUSIC), alternate weighting

may result in better performance when the number of snapshots is small and when the signals

are highly correlated l2l4l. The Minimum Norm method 1164, | 141 is an example of Weighted

MUSIC.

The Root-MUSIC algorithm involves the solution of polynomial equations, to obtain es-

timates for the signal bearings [17]. These polynomial equations are in terms of the noise

eigenvectors, and are only applicable for uniform linear affays. The Root-MUSIC algorithm

has the same asymptotic properties as the MUSIC algorithm, but performs better than MUSIC

when only a limited number of snapshots are available I I 13].

The Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) al-

gorithm, is valid for an array with two identical subarrays which are physically displaced

by a known displacement 1154, 1741. ESPRIT estimates the displacement matrix relating

the subspaces of the subarrays, and then the signal bearings are determined from this dis-

placement matrix. LS-ESPRIT estimates the displacement matrix using least-squares, while

TLS-ESPRIT uses total least squares. LS-ESPRIT and TLS-ESPRIT have the same asymptotic

properties, but TLS-ESPRIT performs better for limited number of snapshots [113]. ESPRIT

is computationally more efûcient than the MUSIC algorithm.

While beamformers and subspace methods discussed above provide computationally effi-

cient estimates of the signal bearings, as mentioned earlier, they do not perform adequately

when the number of snapshots is small or when the signals are highly correlated or coherent.

Parametric subspace methods have recently been proposed which have the same statistical

performance as the ML method (and work with limited snapshots and coherent signals), while

being computationally more efficient than the ML method. These methods are called "subspace

fitting" methods.

One of these methods, known as the V/eighted Subspace Fitting (WSF) method 1227,228,

229f, estimates the signal bearings by minimising

p-^u";"(o) : 
"¡1Ð#õ'"(Ð

p-" ¡ (0) - tr ct ce{[r - a(,l,H,L)- I A¡r]Ê\ME] (2.28)
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where w : (Â¡" - aful2L;r, and ã2* may be obtained by averaging the noise eigenvalues.

Another parametric subspace method is the Method Of Direction Estimation (MODE) algo-

rithm, developed in [215, 216]. Its performance is at least as good as the ML method for both

uncorrelated and correlated signals l2I 6, 2131.

2.2 Array Calibration Application Areas

The problem of array calibration, for improving the detection of targets or for the enhancement

of images, has been considered in a number of different fields. Array calibration has been

considered for telescope imaging, microwave radars, airborne radars, synthetic aperture radars,

passive sonar towed arrays, synthetic aperture sonar imaging systems, multiple cameÍasystems,

ultrasound amays and microphone arrays. In this section, to motivate the reader, application

areas of array calibration will be outlined, while in the next section specific array calibration

methods in the literature which are relevant to this thesis are reviewed.

2.2.1 Telescope Images

The quality of telescope images are limited primarily by atmospheric distortion, which is

mainly due to random phase variations of incoming light over the aperture of the telescope.

The effect of this phase variation, or wavefront distortion, is to rñ'orsen the resolution of the

telescope images, and hence limit the detail in the image.

Muller and Buffington proposed a technique [135] which uses an optical phase shifter to

shift the effective phase of the light by varying amounts along the aperture of the telescope.

Their technique determines the required phase shifts from the light of the actual reference

object being observed, rather than from other close by objects. By defining image sharpness

measures, and maximising one of these measures, they were able to determine appropriate

phase corrections for removing image distortion.

Post-processing techniques on the image, and hybrid techniques which use both post-

processing and pre-correction optics, have also been proposed in the literature. For example

techniques using wavefront sensor measurements to determine the aberration, and then cor-

recting in real-time the atmospheric distortion with adaptive optics have been used [72, 188]

Closure phase, which is a measured number that is independent of instrumental þhase) er-

rors, has been exploited by automatic methods (called self-calibration) to obtain high-resolution

images [33]. Atmospheric distortion is also overcome by these methods.
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Radio telescope array outputs are also affected by atmospheric distortion and need phase

compensation [48, 123]. For these systems phase compensation is performed digitally.

2.2.2 Generul Antenna Arrays

Antenna array perfoÍnance are affected by non-identical anterura patterns, receiver mismatch,

effors in antenna positions, mutual coupling, etc. Antenna affays have been calibrated via

many methods :

o internal calibration has been used in 1207,l55l to calibrate amplitude and phase variations

using calibration loops;

o calibration has been achieved by using measured antenna patterns in [14];

o external sources have been used for array calibration in [40, 41];

o external sources of opportunity were used in [ 152] to calibrate receiver phase erors. A radio

star was used as the source of known position, which progresses through the radar's beams as

the earth rotates.

Ground-based microwave radar affays have been used for high resolution aircraft imaging

[208], where the high resolution images need to be of sufûcient quality for aircraft target

recognition. Imperfections, such as antenna placement errors and receiver mismatch, degrade

the images, and hence diffraction-limitedimage quality is not achieved. Calibrationtechniques

for improvingthe image quality, using point sources in the form of reflectors þassive sources)

or beacons (active sources), have been discussed in [210] to overcome distorted affays. Tech-

niques using multiple scatterers have been discussed in [106], while clutter returns have been

used for calibrating nalrow beamwidth microwave radars in [1 1].

2.2.3 Airbome Radar

Airborne antennas (in an anay) may have different patterns, so calibration is required to enable

high-resolution localisation of targets in space-time adaptive processing (STAP) systems.

In lll2, 167l a method has been proposed which uses the ground clutter to perform this

calibration. The method is based on the fact that the ground returns in different Doppler bins,

are from distinct azimuths. Hence the array spatial information at each azimuth can be obtained

independently from that of other azimuths.

Antenna arrays mounted on the belly of aitcraft, used for communication, have been

considered in [130, 88]. These direction-finding alrays, usually calibrated in special calibration
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flights, have antenna gain and phase mismatches, antenna position errors, and are in the presence

of near-field scatterers which effect perforrnance. In [ 130] a method is proposed for calibrating

such arrays over multiple elevation angles simultaneously using geographically separated

multiple cooperative, co-channel sources.

2.2.4 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is used for remote sensing and reconnaissance, providinghigh

resolution images by synthesising an increased aperture (synthetic aperture). The increased

effective aperture is obtained by processing data, coherently received at equally spaced inter-

vals, as the aircraft travels in a straight line at a uniform speed. In practice however the aircraft

deviates from a straight line path (vertically and laterally) and may have non-uniform speed,

hence the SAR images are degraded. Further, atmospheric propagation can also degrade the

images. Various methods have been proposed to improve SAR images [1a5].

Motion compensation techniques have been developed to measure sensor platform motion,

using accelerometer and inertial units, and then the received signals phase corrected to give

higher quality images [34].
Post-processing of images using autofocusing techniques have also been used widely.

Techniques such as map drift, contrast optimisation, and shift-and-correlate have been used

for SAR image enhancement [36, 47]. Both point and extended objects have been used for

performing autofocusing. These techniques not only overcome the image degradation due to

aircraftpath deviation, but also that due to atmospheric propagation.

For quantitative interpretation of SAR images, airborne SAR are often calibrated using

corner reflectors [76] while spaceborne SAR are calibrated using active radar calibration

units [02] (in addition to corner reflectors).

Inverse synthetic aperture radar (ISAR), which uses the motion of the target being imaged to

synthesise an aperture, requires precise motion compensation to obtain high quality images of

manoeuvering targets. Autofocusing techniques for ISAR, using single or multiple scatterers

to calibrate phase errors, have been proposed 12481.

2.2.5 Passive Sonar Towed Anays

Passive sonar hydrophone arrays are used to detect acoustic sources in underwater environ-

ments. These flexible arrays are often deformed due to course fluctuations, underwater currents,
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swells, etc. When the array shape deviates, the performance of the sonar degrades, and array

shape estimation is required in order to limit the performance degradation.

Techniques which use data only from the hyrophones for shape estimation have been pro-

posed in [49, 82, 58, 235,lgíf,while techniques which use non-acoustic sensors (compasses,

depth sensors) for shape estimation have been been proposed in Il 50, 95, 84].

2.2.6 Sonar Imaging Sysfems

Sonar imaging systems contain a transducer array which both transmits and receives acoustic

energy in an ocean. A pulse is transmitted, and surface reverberation scatters some energy

back to be received by the transducer which then converts the pressure waves into electrical

signals.

Sources of calibration effors in sonar imaging systems are the non-ideal response of the

receivers (range dependent magnitude and phase errors), array misalignment, reflections from

the hull and other reflectors, etc. Calibration is performed using cross coffelation 142] or using

a calibrated transducer [75], for example.

2.2.7 Synthetic Aperture Sonar Imaging Sysfems

Synthetic Aperture Sonar (SAS) imaging systems use SAR techniques to increase the effective

aperture of the sonar aÍray, hence obtaining better cross-range resolution. Coherent data is

collected as the sonar moves along a straight path, resulting in the increased effective aperture.

However since a towed array may not follow a straight path, motion compensation must be

performed. Often data from inertial navigation systems are not sufûciently accurate for motion

compensation, and so cross-correlation based techniques have been proposed [43]. Also,

autofocusing algorithms, originally developed for SAR, have been considered for motion

compensation and medium-induced phase fluctuation compensation [100, 6l].

2.2.8 Computer Vision

Calibration is of key importance in computer vision. Calibration of a moving camera has been

considered in ll27l. For every displacement, correspondences between at least seven points

have to be established, and camera position, orientation and image parameters then calibrated.

This method does not require any special object/pattern to perform calibration.

Multi-sensor calibration has been considered for non-moving imagery in vision systems
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[62]. Here sensor (camera) orientation, object coordinates and other calibration parameters,

are estimated without any knowledge ofthe object. Multi-sensor calibration of moving imagery

for enabling a mobile robot to navigate in a complex environment, has been considered in [35].

2.2.9 Ultrasound Arrays

Ultrasound arrays have been used for imaging patients so cancer diagnosis may be performed.

These affays have had only limited success in detecting low contrast lesions, due to aberrations

in tissues (resulting in different acoustic speeds), sensor position errors, etc. An aberration

correction method has been proposed inll44l, which uses cross-correlation of reflected ultra-

sound signals. This method works for point reflectors and also diffuse reflectors. Methods

using the mean speckle brightness as a measure for reducing phase errors, has been studied

12751. Techniques which compensate for amplitude errors in phase-compensated data, have

also been considered 1276,2771.

2.2.10 Microphone Arrays

Microphone arrays are used for audio, teleconference, hearing aid and voice recognition appli-

cations, to enhance the signal-to-noise ratio in noisy environments. A beam is steered towards

the source of interest, while background noise and interferers are rejected. Gairldelay mis-

matches in the arÍay,however reduce performance substantially, and hence must be calibrated

12371.

2.3 Previous Array Calibration Methods

Array calibration methods that have been proposed in the literature, which are relevant for

OTH radars, are now reviewed.

The general assumptions made by array calibration methods are : (a) the signals and noise

are stationary over the calibration interval; (b) the number of signals are known (or can be

estimated), and have different directions-of-arrival; (c) the signals are not perfectly correlated;

(d) the noise covariance matrix is known up to a multiplicative constant; (e) the sensors are

not placed along a straight line; (f) there are more sensors than sources; (g) the location of

one of the sensors and the direction to another sensor, are known. Further the nominal sensor

position values are assumed to be known, and the sensor position effors are assumed to be
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small compared to the inter-element spacing. The nominal sensor position values are usually

used as initial estimates to initiate the algorithms.

2.3.1 Methods for Estimating Sensor Positions

Array calibration methods can be divided into two broad categories, depending on the type

of sources they use. "Passive" array calibration methods use sources in the data ("sources of

opportunity"), and are also known as "self calibrating" methods; the source DOAs are usually

unknown. "Active" array calibration methods need special sources with known parameters for

array calibration; the source DOAs are usually known.

Array calibration methods usually use only disjoint sources, or only non-disjoint sources.

Disjoint sources refer to sources which can all be separated in time or frequency, while non-

disjoint sources are sources which are all overlapped in time and frequency (note in chapter 4

and subsequent chapters a different definition will be used for disjoint sources).

Rockah and Schultheiss studied the Cramer-Rao lower bound, for passive array calibration

using disjoint sources, in [70, 171, 168]. They showed that when the location of one sensor

and the directionto another sensor are known, three sources are sufficient to calibrate for sensor

position effors; the calibration accuracy increasing with source strength and observation time.

However if the later (direction to another sensor) is unknown, then only array shape can be

estimated (angular rotation of the array is unknown and cannot be estimated). If further the

location of none of the sensors is known, then not only is the angular rotation of the array

unknown, but also an unknown translation of the array exists. The work in these papers are the

basis for the assumptions (e) and (g) above. Identifiability issues have also been considered in

lll8, 122,60, 80, 31, l94l for different scenarios (e.g. combination of known and unknown

DOA sources, three-dimensional arays, correlated signals, etc).

Ng and Nehorai have analysed the Cramer-Rao lower bound for active array calibration (us-

ing non-disjoint sources) in [38, 139]. They showed, foruncorrelated signals, to minimise the

Cramer-Rao lower bound the bearing of the calibration sources must be uniformly distributed.

The minimum value of the Cramer-Rao lower bound was shown to be inversely proportional to

the number of signals and the number of snapshots. In these papers it was suggested that active

array calibration is expected to provide better accuracy than passive array calibration. Further

it was mentioned, that numerical examples indicated, that the use of uncorrelated calibration

signals appear to provide better sensor position estimates, than using correlated signals.
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Passive Methods

Rockah and Schultheiss developed a procedure for estimating sensor positions Ull), which

differs slightly from the maximum likelihood method. A least squares procedure for successive

approximations was used to derive an iterative algorithm. The results obtained were shown to

be close to the Cramer-Rao lower bound. A minimum of three disjoint sources are required.

Weiss and Friedlander have developed a ML method for estimating sensor positions [250].

The method uses disjoint sources in the data, and is based on an iterative two step procedure.

In the first step the signal DOAs of the sources are estimated, using the best available estimates

of the sensor positions. In the second step the sensor positions are estimated, using the signal

DOAs estimated in the first step. The cost function used is said to converge to either the global

or local minimum, depending on how close the nominal sensor positions and initial signal

DOAs are to their true values.

V/eiss and Friedlander also developed an eigenstructure based method for estimating sensor

positions, using non-disjoint sources in the datal25ll. The method is based on the fact that

the noise subspace (for an estimate of the covariance matrix) is almost orthogonal to the true

signal steering vector; the cost function used being a minimum when the signal steering vector

is almost orthogonal to the estimated noise subspace. The parameter values at this minimum

are the estimated values. The algorithm iterates between two steps : (1) the MUSIC algorithm

is used to estimate the signal DOAs, using the last estimate of the sensorpositions; (2) a closed

form solution that is related to the Gauss-Newton technique is used to estimate the sensor

positions, using the last estimate of the signal DOAs. A necessary condition for uniqueness

(for the narrowband case) is 2M - 3 + N < 2(M - N)¡/. While the ML method [250]

proposed by these authors provides a solution which is optimal in the maximum likelihood

sense, it is expected to typically require more computation than this eigenstructure method.

Lo developed a technique for reducing the array calibration computation time of a ML

estimator [120]. He noted that while ML estimators of signal DOAs remove the problem

with eigenvector methods when the signal-to-noise ratio (SNR) and/or data record length

are small, they require more computation. By the numerical solution of the nonlinear least-

squares problem for the ML estimation being replaced by iterating a finite sequence of linear

regression formula (known as "cyclic regression"), the computation time was reduced to be

less than eigenvector methods. Existing sources in the data are used, and the sources do not

have to be non-disjoint. This method also estimates sensor gains and phases, however if these

quantities are known, then the steps for estimating them can be simply skipped.
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Bucker l24l,Fergtson [58] and Goris [80] have worked on methods known as "sharpness

methods", for towed array shape estimation. Sharpness methods work on the principal that

when the estimated positions of the sensors coincide with their actual positions, the sharpness

measure is a maximum. The sharpness measure is calculated by summing, the product of

the beam output power squared and the sine of the beamsteer angle, over all beamsteer

directions. The shape of the array is synthesised using a harmonic series, which is calculated

using Bucker's iterative algorithm [24]. (Note in [80], Goris has also presented least-squares

methods for narrowband and broadband sources).

Ng proposed a method for estimating sensor positions in [141], which uses non-disjoint

sources in the data. The cost function used is similar to that used by Weiss and Friedlander in

l2sll,but is defined over "DOA regions" rather than at the estimated DOAs of the sources (as

in [251]). The cost function is minimised using an exhaustive search over the region of sensor

positional uncertainty; the estimated sensor positions being obtained at the minimum.

Hwang and Williams have developed a method for estimating sensor positions using a ML

approach in [01]. Their method uses non-disjoint sources of unknown DOAs. The proposed

iterative algorithm uses a total least squares (TLS) approach to estimate the source DOAs, and

a constrained total least squares (C-TLS) approach to estimate the sensor positions. Hwang and

Williams compared their TLS/C-TLS method with a least squares (LS) method, and concluded

that generally TLS/C-TLS converges closer to the true values than do LS (but requires more

computation).

Active Methods

Dorny developed a method l40,4ll for using a few beacons, of known location, to determine

the array sensor positions. The beacons are blinked consecutively (disjoint sources), and the

phases of each signal at the sensors compared to a reference sensor. From the comparisons

for each beacon, the sensor positions and the relative phase difference between sensors, are

determined using a least-squares procedure.

The sensor positions, estimated by this method, were the positions which permit the best

focussing of the array in the directions of the beacons. Dorny showed that if the beacons

were distributed uniformly over the region of interest, the positions obtained should provide

acceptable focussing throughout this region. The gain loss was small for pointing angles

within the spread of the beacons, with the loss increasing near the edges of the beacon spread,

and becomes large for angles outside the spread. Dorny also looked at the impact of beacon
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position effors and of phase measurement errors (owing to multipath).

Ng and Nehorai [38, 139] developed two approaches for estimating sensor positions using

known DOA non-disjoint sources of known waveform. Iterative Newton-type algorithms for

a ML estimator and an eigenstructure-based estimator were proposed. Both methods require

at least two sources.

Seymouret. al. developedamethodforusingknownDOAnon-disjointsources [85]. The

method is based on minimising the sum of projections of the steering vector (computed using

the estimated sensor positions) on the noise subspace for each calibration source. An iterative

procedure is obtained using the gradient search algorithm. Results indicated that the final

sensor position errors varied inversely with SNR of the calibration sources, and the number of

snapshots. At least two sources are required.

Lo and Marple developed an eigenvector method [21] which requires at least two disjoint

calibrating sources of known bearing. Covariance Differencing (or Despoking) is used, and

it is assumed the signal and noise environment do not change during the calibration period.

The principal eigenvector of the Covariance Differencing matrix is used to obtain the sensor

positions.

Gray et. al. 182, 59] have developed a method for using the principal eigenvector of the

cross-spectral matrix to estimate the sensor positions. A ML estimate of the signal vector

is used to determine the phase of the signal at each hydrophone. Gray showed that while a

single source of known DOA is insufficient to unambiguously determine the sensor positions,

the ambiguities can be removed for towed arrays using constraints. The constraint that the

spacing between adjacent sensors, in a towed array, should be equal to a fixed value ("chord"

approach) is used. This results in two solutions for each sensor position; the solution which

results in the minimum array distortion from the nominal shape is used to obtain the sensor

location. Results show that the method works best when the source is at broadside direction

and degrades when the source is moved towards end-fire. A computationally more efficient

variant of this method has been proposed by Smith et. al. in [95, 196], where the sensors are

partitioned into subarrays and the Gray et. al. method used on each subarray. (Note also the

Gray et. al. method has been modified for broadband sources in [97]).
ZhangandZhuhave proposed two non-iterative (single-step) methods for estimating sensor

positions f271,272), using sources of known DOAs; the first method uses disjoint sources,

while the second method uses non-disjoint sources. lnl2Tll the principal eigenvectors, from

each disjoint source's covariance matrix, together with a small perturbation expression are used
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to obtain equations from which the sensor position errors can be estimated. Three or more

principal eigenvectors, and hence sources, are required. Sensor gainlphase errors can also be

estimated using this method, after the sensor positions have been estimated, and is performed

in a single step too.

ln [272], Zhang and Zhu use an approach similar to the eigenstructure method proposed

by Weiss and Friedlander in l25ll, for estimating the sensor positions. The key difference is

thatZhang andZhu use sources with known DOAs, and hence are able to obtain estimates in

a single step. Three sources are required.

Yongkang et. al. proposed a method which effectively requires disjoint sources of known

DOAs to estimate the sensorpositions 12671. Using the phase difference between corresponding

elements of each principal eigenvector (of the disjoint sources), equations are obtained for

estimating the sensor positions. This non-iterative method requires three or more sources.

Gain and phase uncertainties can also be estimated using this method (in a single step), and

is performed after the sensor positions have been estimated. Yongkang et. al. mentioned

that for an antenna array which rotates not only can a single source be used for obtaining

multiple disjoint "effective" sources, but also the "real" source can have unknown DOA since

the DOA separation between the "effective" sources can be determined from the platform's

angular rotation.

2.3.2 Methods for Estimating Mutual Coupling

Weiss and Friedlander developed an eigenstructure based method for estimating a symmetric

Toeplitz coupling matrix, using non-disjoint sources in the data 1252,661 (gairVphase errors

are also estimated). This method (as in [251]) is based on the fact that the noise subspace (for

an estimate of the covariance matrix) is almost orthogonal to the true signal steering vector;

the cost function used being a minimum when the signal steering vector is almost orthogonal

to the estimated noise subspace. The parameters values at this minimum are the estimated

values. The algorithm iterates between three steps : (1) the MUSIC algorithm is used to

estimate the signal DOAs, using the last estimate of the coupling matrix and gain/phase values;

(2) the gain/phase values are estimated from a quadratic minimisation problem, using the last

estimate of the signal DOAs and coupling matrix; (3) a symmetric Toeplitz coupling matrix is

estimated from a quadratic minimisation problem, using the last estimates of the signal DOAs

and gain/phase values. A necessary condition for uniqueness is that 4M + N < 2(M - ¡f)¡/.
This method has slow convergence and has been shown to provide non-unique solutions for

24
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linear affays [156].

Pierre and Kaveh have developed a method for estimating a non-Toeplitz calibration matrix

(mutual coupling and gairVphase errors) using known DOA disjoint calibration sources [56].
The method is based on fitting the principal eigenvectors, of the calibration source covariance

matrices, to the ideal steering vector using least-squares. The number of calibration sources

required is equal to the number of sensors. A unique calibration matrix is expected from this

method.

Zhang and Zht have developed two eigenvector-based methods 12701 for estimating a

symmetric Toeplitz coupling matrix, using known DOA calibration sources in addition to

the sources in the data. The first method can work with just one calibration source, but the

source must be disjoint from the sources in the data. The second method requires at least two

calibration sources, however these sources do not have to be disjoint from the sources in the

data. Both methods are non-iterative, and provide analytic expressions for the coupling matrix

being estimated.

Qiu and Zhthave developed an eigenvector-basedmethod [160] forestimating a symmetric

Toeplitz coupling matrix, using a single near-field calibration source with known DOA. The

optimum position of the near-field calibration source was shown to be along the line of the

array.

Hung has developed a method for estimating a non-Toeplitz coupling matrix [99]. The

method uses a movable pilot source (which effectively means disjoint known DOA calibration

sources) in the far-field of the array, which circles the array once providing 1440 snapshots

(single snapshot every 0.25 degrees). The method is based on fitting the measured sensor

outputs to the signal steering vectors, using the coupling matrix.

See generalised the method of Pierre and Kaveh (in [156]) to work with unequal length

steering vectors [181]. Like Pierre and Kaveh's method this method is based on fitting the

principal eigenvectors, of the calibration source covariance matrices, to the ideal steering vector

using least-squares. A non-Toeplitz calibration matrix (mutual coupling and gain/phase errors)

is estimated using known DOA disjoint calibration sources. The number of sources must be at

teast(M2)l@ - r).

2.3.3 Methods for Estimating Sensor Positions and Mutual Coupling

See et. al. in [ 82, 183, 140, 1 84] extended their method in [ 1 8 1], for estimating a non-To eplitz

calibration matrix, to estimate sensor positions as well. Array calibration is again performed
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using a set of measured steering vectors, which are obtained from disjoint calibration sources

with known DOAs ([184] allows for a small amount of uncertainty in the DOAs). V/hile an

analytic expression is obtained for the calibration matrix, an iterative procedure is required

for obtaining the sensor positions (Newton-type algorithm) and the scaling constants (note

in [140] the scaling constants are assumed to be known, and hence are not estimated). A

necessary condition for a unique solution is that the number of sources must be at least

(M' + M - 2) l@ - 2). Depending on the initial parameter estimates, it was stated that, the

algorithm may converge to a local or global minimum.

2.3.4 Other Methods

In addition to the methods described above :

o methods for estimating sensor positions, which are specific to time-varying/towed affays,

have been considered in [93, 20,125,224,15,165,234,84,162,7I,259,72,73,57,78);

o methods which compensate for the effects of mutual coupling using measured array patterns,

mutual coupling models or special hardware, have been proposed in [107, l5l,2tI, J0, 4,

5, 16,173], while procedures for modifying beamformers/bearing-estimators to incorporate

mutual coupling information have been given in [87, 266,92,37];

o the use of measured arcay steering vectors at given directions for beamforming has been

considered in [180, 253];

. array calibration methods for estimating direction-independent gain/phase errors have been

proposedin[153,63,J4,260,261,97,98,771,142,13J,257,273,274,124,128,129,1691;

. arfay calibration methods for estimating direction-dependent gain/phase effors have been

proposed in 122,23,7, 601;

o array calibration using higher than second-order cumulants, for non-Gaussian signals, have

been considered in [39, 258,244];

o in127,28] methods are proposed for bearing estimation using anays with sensor position

errors, but l27l is only applicable for nominally uniform linear affays while [28] is only

applicable for uniform planar affays;

o robust beamforming methods for working in the presence of model emors have been proposed

in 1236, 147,230,231, 49,94, 56,225,265, 1631, as an alternative to performing array

calibration.
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2.4 Discussion

Array processing background, relevant to OTH radars and array calibration, has been presented

in section 2. 1 . Application areas where array calibration has been performed have been outlined

in section 2.2 to motivate the reader, while specific methods which are relevant to OTH radar

array calibration have been reviewed in section 2.3.

The methods in section2.3, however, are not suitable for the specific problem considered

in this thesis, of estimating both sensor positions and mutual coupling. Only the methods

by See et. al. in [182, 183, 140, 184] estimate sensorpositions andmutual coupling; these

methods however require a large number of far-field special sources (greater than 10 sources

for a 8-element array), and thus are not really suitable for calibrating OTH radars. For OTH

radar anay calibration, it is highly desirable to use as many sources of opportunity, and as few

special sources as possible.

In chapter 4 a method is developed for using disjoint sources of opportunity, which are

present in the HF environment in the form of echoes from meteor trails, to estimate sensor

positions and mutual coupling. This method generalises the work of Weiss and Friedlander

in1251,252,66]. In chapter 5 a method is developed for using disparate sources, to estimate

sensor positions and mutual coupling. This method can use special sources and sources of

opportunity, and further can use sources with time-varying DOAs.
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Effect of Model Errors on Radar Array

Processing

Surface-wave radars operate in environments (see figure 1.1) where the propagation conditions

for the targetlclutter signals (via surface-wave) and interference signals (via skywave), are

very different. The interference signals are modulated by the ionosphere, which can result

in the interference signals being spatially (and temporally) non-stationary over the radar's

coherent integration time (dwell). To overcome this non-stationarity, and reject interferers,

time-varying beamformer weights are often used (within the dwell); so the weights can adapt

to the interferer's time-varying spatial properties. Time-varying beamformer weights however

affect radar Doppler processing, which is performed after beamforming.

Doppler processing involves the processing of returns from several (coherent) radar trans-

missions, to obtain the Doppler of signals. Doppler can be used to discriminate between targets

and clutter returns, the latter occuring near zeÍo Doppler. Doppler processing enhances the

target's signal-to-noise ratio and also the clutter-to-noise ratio (or sub-clutter visibility); both

measures being indicators of how well the radar can perform in detecting targets.

While the effect of model effors on array processing has been studied for many sonar and

radar configurations, the effect on surface-wave radars, especially for the problem described

above, have not been considered. In section 3.1 previous work analysing the effect of model

effors on array processing is briefly outlined, in section 3.2 the problem description is given,

and then in sections 3.3 and 3.4 an analysis is conducted which is specific to surface-wave

radars. Finally in section 3.5 the chapter is concluded.

28
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3.1 Literature

McDonough analysed the effect of amplitude and phase effors in the data I I 3 1] . He considered

both the conventional and adaptive processors, and looked at the effect on affay power output.

He showed that the conventional processor rwas the least sensitive to the model errors. The

sensitivity of the adaptive Capon (MVDR) processor (using the signal-plus-noise covariance

matrix) was related to the eigenvalue spread between the smallest and largest eigenvalue of the

covariance matrix; the larger the eigenvalue spread, the larger the sensitivity.

In [34] Cox analysed the effect of steering vector mismatch on the performance of the con-

ventional processor, adaptive MVDR processor using the noise-only covariance matrix, and

the adaptive MVDR processor using the signal-plus-noise covariance matrix. Cox attributed

the steering vector mismatch to amplitude/phase errors, sensor position elrors, distortion of

wavefront during propagation, sampling or quantisation. He indicated that the conventional

processor is insensitive to small mismatch and the MVDR processor, using the noise-only

covariance matrix, can be more sensitive (than the conventional processor) if the eigenvalue

spread is large. The MVDR processor with the signal used in the covariance matrix was signif-

icantly more sensitive to mismatch than the MVDR processor with the noise-only covariance

matrix, for large input SNR, due to the adaptivity causing signal suppression in the former

processor. The signal suppression that occurs in this MVDR processor can result in less array

gain obtained for a strong signal than a weak signal. Cox illustrated how the power output of

this processor is less sensitive (than the array gain) to mismatch, since the increase in noise

power output partially offsets the reduction in signal output power.

Farrier analysed the effect of amplitude and phase errors, in the affay processor, on array

gainl52,53]. He obtained theoretical expressions for the arcay gain, and showed how the array

gain degrades with increasing effors. The results obtained by Cox in [34] were shown to be

valid only for small perturbations. Farrier considered both non-adaptive and adaptive (using

the signal-plus-noise covariance matrix) beamformers.

Godara in l77l analysed the effect of errors in both the steering vector and the adaptive

weights, on the performance of the MVDR processor. He obtained analytic expressions for

the output signal power, output noise power and array gain. He found the output signal power

and output noise power increase with the size of errors, while the array gain decreases. The

array gain degradation of the MVDR processor, with the signal-plus-noise covariance matrix,

due to steering vector effors was found to depend on the input signal power (as observed by

Cox), but the arcay gain degradation due to weight vector effors was independent of the input
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signal power. For the MVDR processor with the noise-only covariance matrix, the array gain

degradation was not dependent on the input signal power for both types of errors.

In addition to the above :

o Godara in176l considered the effect of random phase effors in array phase shifters, and

compared the results obtained with those for steering vector effors;

o Vural in 12331analysed the effects of system and medium perturbations on adaptive proces-

SOTS;

o Quazi in [161] analysed the effect of weight errors, phase errors, and antenna element failure;

o Gray in [81] looked at the effect of time-delay errors, in time-delay and sum beamfoûners,

due to sampled receiver outputs;

o Nitzberg in [143] considered the effect of weight computation precision;

o the impact of model errors on average sidelobe levels has been considered in detail by Ruze

in [175], while the impact on peak sidelobe levels has been considered by Hsiao in [96]. The

impact on sidelobe levels has also been studied in [209, 51, 105, 13];

o the effect of steering vector effors on the signal to interference-plus-noise ratio of the adap-

tive processor has been considered in 132, 2431, whlle the affect on maximum rejection of

interferences has been analysed in [1 l7];

o the effect of sensor position errors on the anay pattern has been analysed in [29], while the

effect of array platform motion has been investigated in [91];

o the performance of high-resolutionDOA estimators inthe presence of model etrors, has been

analysed in164,219,68,69,254,226,249,256,2I8,65,89,90,263,264,67,2681.

While the above studies have considered a variety of model errors and array processors,

none of them have studied the problem as it relates to surface-wave radar array processing,

and so this is considered now. The effect of model effors on the performance of the adaptive

MVDR processor, when the weights are obtained using the noise-only covariance matrix 1, is

studied. Not only are the effects of gairVphase errors (due to receiver gainlphase mismatch) and

sensor position effors considered, but also the effects of mutual coupling. Further, the MVDR

processor's performance is obtained specifically in terms of the size (standard deviation) of

the errors themselves. The effect of the model effors is considered on the following radar

performance characteristics :

o anay gain;

lit is assumed the noise-only covariance matrix can be estimated, by using quiet (transmitter off) intervals, or
otherwise.
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o signal-to-noise ratio (SNR);

o bearing estimation;

o sidelobe levels;

o sub-clutter visibility (clutter-to-noise ratio) for adaptive spatial anti-interference processing.

3.2 Description

Consider a receiving array which is affected by receiver gain/phase effors and sensor position

effors. For 1r/ narrowband signals impinging the M element affay,the vector of sensor outputs2

z(t) : rA s(¿) + n(t) (3.1)

where A contains the true sensor positions and is defined in section 2.1 alongwith s(ú) and the

spatially white receiver noise n(f ). The diagonal matrix r is defined as

t : d,ias{(l * ar )e-i'h, (1 + a2)e-i't'2, ..., (1 I atra)e-i'/t''t¡ (3.2)

where a^ and rþ^ are the receiver gain and phase effors respectively for the rnth sensor. Now

if the array is also affected by mutual coupling, the vector of sensor outputs become [87]

z(t):crAs(/) +n(t) (3.3)

where the coupling matrix c : (Itt -l z,I Zt)- 1. The matrix I¡a is the MxM identity matrix

andzo is the array impedance matrix. The scalar Z¡, isthe load impedance.

In the presence ofan interferer, the received signal is

z(t) : c rA s(ú) + c ra(/¡) s¡(l) + n(l) (3.4)

where s¡(l) is the interfering signal and ót is its DOA.

The MVDR processor, using the noise-only covariance matrix for the estimation of the

weights, is

(3.5)

where a,(g) is the nominal steering vector. The rnth element of ",(d) i" "i'"(t?^sin?lvficosî)f 
u,

2assuming the receiver noise n(t) is unaffected by the gain/phase errors.
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where r'* and yfr are the nominal sensor positions. The matrix q is the noise-only covariance

matrix, and is defined as 3

e : E{'r(¿)n"(¿)r1} (3.6)

where the total noise contribution is t 7(f) : cr"(d¡)s¡(i) + tt(t).

The beampattern for the look direction d is

Bo(ó) : *u (o)c r "(d) "H ç6¡rH c'*(o) (3.7)

3.3 PerformanceMeasures

Simulations were conducted, to analyse the performance of this processor with array model

errors, for typical OTH radar scenarios. A 16 element nominally uniform linear array with

inter-element spacing (ö of 0.4) was considered, with the signal-to-noise ratio equal to 0 dB

and the signal-to-interference rutio -20 dB. The gain errors, phase effors and sensor position

errors, \¡r'ere assumed to be zero mean Gaussian random variables. Gain errors of standard

deviation {0.2,0.4,0.5}, phase elrors of standard deviation {12o,24,36o}, and sensor

position errors of standard deviation {0.1d, 0.2d,0.3d}, were considered. Coupling matrices

were obtained using "Antenna Wire Analysis Software" [38], for a uniform linear array of

monopoles at 12 }r{}Jz with 10 m (0.a)) inter-element spacing, as is typical for OTH radars.

The height of the monopoles affects the amount of mutual coupling; coupling matrices for

typical heights of 0.25À, 0.4À and 0.5À, being used.

The signal direction (/") was fixed at broadside, and the interferer direction (/7) was varied

from end-fire to broadside. Fifty simulations were conducted for each interferer direction, and

the mean and standard deviation of the performance measures calculated (only the mean values

are presented here).

3note however, if the noise is non-stationary (as considered in section 3.4), then Q will be time dependent.
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3.3.1 Signal-to-Noise Ratio and Anay Gain

It can be shown that the signal-to-noise ratio of the array output, for a beam steered in direction

$" andfor a signal in direction /", is a

(3.8)

The array gain is

" 
_ @k t "?l^9¡úA (3.e)

oa

The SNR as a function of signal-interferer separation, for the error standard deviations, is

shown in figure 3.1. The logarithmic scale for the r-axis is to illustrate the behaviour for small

separations. The solid curve is for no model errors, while the other curves are for the model

effors specified. Note the conventional beamformer's beamwidth for the array considered is

about 8" (the beamwidth is = (0.88À) l@ d,) radians), so for separations less than this value

the interferer is within the main beam, which results in SNR degradation even in the absence

of model erïors. The SNR (and hence array gain) degradations due to model etrors (that is the

degradations with respect to the solid curve), are clearly not large; the degradations observed

being essentially independent of signal-interferer separation.

3.i.2 BeampointingEnor

The beampointing error (/o) is ló^," - ó"1, where ó^o, : {t , Bo"(€) : max(B¿"(/))}.

The variation of $, with signal-interferer separation, for different error standard deviations, is

shown in figure 3.2. Again the solid curve is for no model elrors, while the other curves are

for the model effors specified. Phase errors and position eûors are seen to cause the largest

beampointing errors. Except for small separations, where the interferer is within the main

beam, the beampointing errors shown in figure 3.2 are never more than one degree (an eighth

of the beamwidth).

Note a signal with finite SNR impinging an array (in the absence of model errors), will cause

a beampointing error o0 : llþo"st{SNR) [18], where const : ("lt/1)U@,1\cos(0).

Hence the beampointing effors caused by model elrors are significant, only when they exceed

the beampointing error given by this formula. For beampointing effors due to finite SNR to be

4Ifthe receiver noise n(t) is affected by receiver gain/phase errors, then the first term in the denominator of
equation (3.8) becomes øfuwH(/")fIHw(/,), since Q - o2*llH . The results obtained in this case were found

to be very similar to those presented here.

e^rp - 
o?Bó"(Ó")

Ù t\ tL 
"k*H (ó")*(d") + olBr"16,¡
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Figure 3.1 : Variation of signal-to-noise ratio with signal-interference separation, for the spec-

ified model error - (a) gain errors 1 oa^ = 0 (-),0.2 (--), 0.4 (-.-), 0.5 (...); (b) phase

errors I o,þ^ = 0o (-), 12'(--),24'(-.-),36" (...); (c) sensorpositionerrors:. otm= osm

= 0 (-), 0.1d (--) ,0.2d (-.-), 0.3d (...); (d) mutual coupling : element height (å) = 0.2s.1

(-),0.4À (-.-), o.sÀ (--).

less than that due to model errors (i.e. less than one degree say), would require the SNR of the

signal to be at least 14 dB (for the scenario considered). Thus for signals with SNR less than

14 dB the beampointing errors due to model errors are not of concern, while for signals with

SNR greater than or equal to 14 dB the beampointing errors due to model errors are significant.

3.3.3 Sidelobe Levels

To determine the affect on the sidelobe levels, a Hamming window was used with the weight

vector. The modified weight vector is given as

/.

a a aoa

a/a a

/.

aaaa

(3.10)



3.3. PEKFOKMANCE MEASUKES

(a) Gain Errors
5

0
1o'

Separation (degrees)

(c) Position Errors
5

0
1o'

Separation (degrees)

35

al,
c)
c)
q)
0)

o
lrl
o)c
c'õ
È

4

3

2

<t,
0)
c.)

o)
o)Þ
o

U.l
o)c
c'õ
(L

4

3

2

5

0

5

(b) Phase Errors

101

Separation (degrees)

(d) Mutual Coupling

10'
Separation (degrees)

102 102

10'

4

3

2

al,
o)
c)
o)oo
o
uJ
o)c

._Éo(L

4

3

2

Øq)
C)

o)
o)Þ

I
uJ
o)
C.F
C'õ
fL

0
10'

Figure 3.2: Yariation of pointing error with signal-interference separation, for the specified

model effor - (a) gain effors 1 oam = 0 (-), 0.2 (--),0.4 (-.-), 0.5 (...); (b) phase effors :

o,þ^= 0" (-), 12'(- -),24'(-.-),36" (...); (c) sensorpositioneffors : or^ oa^= 0 (-),
0.ld (--) ,0.2d (-.-),0.3d (...); (d) mutual coupling: element height (h) = 0.2S,1 (-),0.4)
(-.-),0.s) (--).

where D* is a diagonal matrix containing the Hamming window weights.

The average sidelobe level (ASL) and the peak sidelobe level (PSL) are given as

(3. 1 1)

PSL: ma*øtotBø'(d)Ì 
Q.n)Bo"(ó")

where o is the set of angles not in the main beamwidth, and the cos/ in equation (3.11)

is to obtain the correct contribution of powers (which would be obtained with a volumetric

integration).

The ASL and PSL as a function of signal-interferer separation, for different error standard

a-J a a?

1..

I

ooaaa
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Figure 3.3: Variation of average sidelobe level with signal-interference separation, for the

specified model error - (a) gain effors ; oa* = 0 (-), 0.2 (--),0.4 (-.-), 0.5 (...); (b) phase

effors I o,!,* = 0o (-), 12'(--),24'(-.-),36" (...); (c) sensorpositionerrors: orn= oa^

= 0 (-), 0.1d (--) ,0.2d (-.-), 0.3d (...); (d) mutual coupling : element height (å) = 0.2S.1

(-), 0.4À (-.-), 0.sÀ (--).

deviations, are shown in figures 3.3 and 3.4 respectively. As can be clearly seen, the sidelobes

are seriously affected by model effors; the sidelobes degrading with increasing model error

standard deviations. Energy scattered through the array sidelobes couldhence seriously degrade

performance. The impact of these high sidelobes on OTH radars operating in a non-stationary

interference environment, is demonstrated next.

3.4 Non-stationary Interferer Environment

OTH radars must be capable of operating in highly non-stationary interference environments,

which frequently occur in the HF band. For the rejection of these interferers, time-varying

weights are often used (e.g. [1]), which result in fluctuations of the beampattern as they adapt
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o,þ*= 0" (-), 12" (--),24 (-.-),36" (...); (c) sensorpositionelrors 1 or^ oa^= 0 (-),
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to the varying spatial properties of non-stationary interferers. High sidelobe levels, due to

model errors, could hence affect the performance of these approaches.

It is now shown that the type of spatial non-stationarity of the interfererplays an important

role in the implications of adaptive spatial processing for obtaining good sub-clutter visibility.

Sub-clutter visibility, defined as the ratio of the peak clutter power (obtained after Doppler

processing) to the mean noise poìù/er level, is a radar performance measure which indicates

its capability in detecting targets; the larger the sub-clutter visibility the better the detection

capability of the radat Two models presented in [2], which reflect the spatial fluctuations of

ionospherically-propagated interference signals, are analysed. The clutter model used in the

analysis is also from [2].
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3.4.1 Fluctuating Interferer Wavefront Model

For the first model, the spatial fluctuations are modelled as an autoregressive multivariate

process, fluctuating around the mean plane-wave vector. The vector of sensor outputs for the

total noise contribution, is given as

R

"(ú) 
: t o,D^(ó,).,(t)s¡(t - r,)exp(7 L,wn,t) +'(¿) (3. l 3)

r=l

where ,R is the number of correlated (multipath) signals, or propagation modes, from the

interferer. The root-mean-square power of the rth mode is ø,, and the DOA information for

the rth mode is given by the matrix o"(d') : diag{"(/")}, where /" is the (mean) DOA

of the interferer. The regular component of the ionospheric Doppler shift for the rth mode

is Atun", and r, is the corresponding group delay. The radiated interferer waveform is s¡(ú),

and the additive receiver noise is n(t) as before. The vector ",(t), introduced to model the

spatio-temporal fluctuations, is a ly'-variate random process, described by a 2-dimensional

Markov chain (spatio-temporal), as given below.

c,(t) : p,(Lt)c,(t - Aú) + | - lp,(Lt)|, ,'(t) (3.1,4)

,'*+t(t) : n(d*+t)€i(t) + 1 - lrc(d¡11)l'ú*t(t) (3.1s)

Ehi+'(tt)'vïlt (¿').1 : 6if (h,t2) (3.16)

where d¡.'.1 is an inter-element distance, both p,(Lt) and n(d¡,¡t) are autoregressive coeffi-

cients, ,'*+t(t) is the (k + l)th element of the vector e'(ú) and ei(t) : 1i(t).The behaviour of

thisinterferer(for,R:1,ót:40o)isillustratedinfigure3.5(a),whichshowsthebeamformed

output of this interferer at different time snapshots. This figure indicates that the interferer has

a crinkled wavefront, with the crinkling varying over time.

3.4.2 Fluctuating Interferer DOA Model

For the second model, the interferer wavefront of each propagation mode is represented by a

classical plane-wave description with time varying DOA. The vector of sensor outputs for the

total noise contribution, is given as

R

"t(ú) 
: t o, a($,(t)) "r(t - r,)exp(7Au)s,t) + n(t)

r=l
(3.17)
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Figure 3.5: Examples illustrating the models used for non-stationary interference analysis.

The DOA at time ú, for the rth mode, is defined as

ó,(t): ói + nó,p,(t) (3. l 8)

þ,(t) : K(d*+t)P,(t - Al) + 1 - lrc(d¿a t)12 t,(t) (3.1e)

Thebehaviourofthisinterferer(for-R :1,ói - 40o,Adt : 10")isillustratedinfigure3.5(b),

which shows the beamformed output of this interferer at different time snapshots. Figure 3.5(b)

indicates that the interferer has a planar wavefront, with the DOA of the interferer varying over

time.
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3.4.3 Sea Clutter Model

For the clutter model "" (t) , a second-order autoregressive model is used. The vector of sensor

outputs is given as
2

zç(t): -D,Ci r"(t - ir) i a"t e"t(t) (3.20)
i=l

where r is the repetitionperiod of the radar's waveform, and the spatial properties ofthe clutter

are defined by the transmitter's antenna pattern :

,"|çt¡: ¿e:|_r(t)+ 1- llrl út(t) (3.2t)

Ehi' (t t) ú' (tr)-l : 6 xt(t t, tz) (3.22)

where ( is an autoregressive coefficient. Parameters for the clutter model have been chosen to

reflect sea-surface scattering (see [2]) : Cfi : -1.9359;Cí' :0.998; a"¿ : 0.009675.

The clutter Doppler spectrum, generated using this model with the above mentioned param-

eters, is shown in figure 3.5(c). The two peaks observed in this Doppler spectrum represent

the sea clutter Bragg-lines.

3.4.4 Resulús

The time-varying vector of weights used for beamforming in a non-stationary interference

environment, is

w(o,t)- -=9,-1(r)l* "'(d) e.23)
"f (P)q-'(t)o* a"(9)

where now the noise-only covariance matrix is time dependent, and is a(ú) :

E{n7(t)rr(¿)t}. The beamformed clutter signal is then given as

zc(t) : *'(0,t) zc(t) (3.24)

To reflect a typical OTH radar scenario, the following parameter values were chosen (see

t2l) : I : 0.5; p,(Lt) - e-0'05 for Aú : 0.1 seconds; o(du+t) : 0.9. An example of the

effect of model effors on the clutter spectrum is shown in figure 3.6. Three clutter spectra are

shown : (a) when no interferer exists and there are no model errors (-); (U) when an interferer

with a fluctuating DOA exists and there are no model effors (--); and (c) when an interferer

with fluctuating DOA exists and there are model effors (-.-). In the case of model errors the

sub-clutter visibility (SCV), defined as the ratio of the peak Bragg-line power to the mean noise



3.4. NON-S?äTIONARY INTERFERER ENVIRONMENT 4t

0

-10

-20

-30

mE
L

-40

o

=o
-50

rL -60

-70

-80

-90

-1 00 50 100 150 200 250 300 350 400 450 500
Doppler Cell

Figure 3.6: Example of SCV degradation. The clutter spectra shown are : (a) when no

interferer exists and there are no model errors (-); (U) when an interferer exists and there are

no model erïors (--); and (c) when an interferer exists and there are model effors (-.-). A
target is present at Doppler cell 100.

power, is much less than inthe absence of model errors. Note the target (located atDoppler cell

100) which is clearly visible in the absence of model errors, is not visible in the case of model

effors. Thus the effect of model errors is to reduce the SCV, and hence target detectability. An

explanation as to how model errors reduce the SCV is given later in this section.

The degradation in SCV as a function of errors in sensor positions is shown in figure 3.7(a),

for both interferer models. The degradation displayed is relative to an environment with

no interferers; the average results from 500 simulations being depicted. Clearly the model

effors degrade the attainable SCV when the fluctuating interference DOA model is used. The

degradation due to the model errors, when the fluctuating interference wavefront model is used,

is not as large but is still significant. Similar results were obtained for the other model elrors;

the SCV degradation as a function of gain errors being displayed in figure 3.1(b).

An understanding of how increased sidelobe levels effect SCV is obtained by considering
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the time-varying beampatterns shown in figure 3.8. In this figure, the main beam has been

shifted to 90o, so that the sidelobes can be seen clearly. When no model errors exist, as in figure

3.8(a), the sidelobe levels are essentially constant over time with changes in the null position

around 5 0o (for rej ecting the interferer) apparent. 
'When model errors exist howeve¡ as in figure

3.8(b), not only are the sidelobe levels higher (as seen in section 3.33) but the sidelobes vary

substantially over time. Because of the high sidelobe levels, nulling the interferer results in

more degradation on the beampattern, and since the spatial properties of the interferer changes

with time, the null position and the degradation caused vary with time. Clutter processed

by the beampatterns in figure 3.8(b) will clearly not be as coherent as that processed by the

beampatterns in figure 3.8(a), since the clutter will in fact be modulated by the variation in

the beampattern (or the adaptive weights) when it is beamformed. After beamforming the

data is Doppler processed, which involves coherently processing radar returns over several

radar transmissions. Since clutter processed by the beampatterns in figure 3.8(b) will not be

as coherent as that processed by the beampatterns in figure 3.8(a), the clutter-to-noise ratio

(or SCV) obtained after Doppler processing will be worse. Thus the SCV (and hence target

detection) is worse when model errors exist.

3.5 Conclusion

The effect of receiver gairVphase errors, sensor position effors and mutual coupling, on OTH

radar anay processing, has been analysed for the case where the adaptive processor weights

are obtained using the noise-only covariance matrix. While the array signal-to-noise ratio is

somewhat degraded and the beampointing error may be up to an eighth of the beamwidth,

the major performance degradation is the array sidelobe levels; energy received through

these sidelobes could hence seriously degrade performance. Further it was shown, under

non-stationary interference environments, the attainable SCV could be limited by these high

sidelobe levels. Array calibration is thus necessary so the array sidelobe levels can be

improved.
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Array Calibration using Disjoint Sources

In this chapter a method is developed for estimating the coupling matrix and sensor position

enors; it is assumed that receiver gainlphase effors have been corrected, by injecting signals

internally at the receiver inputs. The method proposed is for using (single-mode) meteor trail

echoes, which are shown in chapter 7 to be disjoint sources of time-invariant DOA. This

method was obtained by generalising and modifying the methods proposed by Weiss and

Friedlander in 125I,252,66]. First the Weiss-Friedlander methods are generalised, and the

resulting algorithm analysed via simulations; the simulations are generated using a measured

coupling matrix and this coupling matrix has to be estimated by the algorithm. The generalised

method was found to perform poorly, for this and other experimentally-measured coupling

matrices, since the Toeplitz coupling matrix model employed by the algorithms in1252,661

are not suitable in these cases.

This generalised method is then modified, to (a) employ a more general model for the

coupling matrix, and (b) so disjoint sources (in the form of meteor trail echoes) could be

used for performing the array calibration. The later modification results in fewer sources

being required for a given number of unknowns, while the former modification results in

more unknown parameters. Experimentally-measured coupling matrices are again used in

simulations to assess the performance of this modified method.

The layout of this chapter is as follows. Mutual coupling models are discussed in section

4.1, while in section 4.2 and 4.3 the generalised V/eiss-Friedlander method is considered. In

section 4.4 the modified method is presented, and the performance of the method is investigated

in sections 4.5 and 4.6; an alternative sensor position estimator is proposed in section 4.7 for

reducing the number of failures. In section 4.8 performance criteria for determining in practice

iÎ anay calibration has been successful are proposed, in section 4.9 the mutual coupling

45



4.1. MUTUAL COUPLING MODELS 46

estimation performance of the algorithm is investigated, and in section 4.10 the algorithm's

error surface is analysed.

4.1 Mutual Coupling Models

Mutual coupling is caused by antenna elements receiving energy re-radiated by other antenna

elements. The voltage received by an element is then the sum of the direct voltage due to

a signal, plus the sum of all voltages due to the re-radiation by other elements in the array.

Mutual coupling causes elements, in an array of identical elements, to have non-equal radiation

patterns i.e. not all elements 'see' the same environment.

A detailed model of mutual coupling was presented by Manikas and Fistas in [126]. The

coupling matrix was specified as

c:KoLo "iÚ oGg¿i"D (4.1)

where I matrix x has the root-mean-square values of the direct and re-radiated signals, matrix

L has the losses in free space propagation, matrix !t, has the random phases of the re-radiated

signals, matrix G has the gain and phases relating to the propagation of the re-radiated signals,

and matrix D has the inter-element distances. These f,ve matrices are given in equations

(4.2)-(4.6) below.

- cY1

K- J", JT - a,
(4.2)

/"t t/", -aN

where a¡ is the relative power of the signal that is re-radiated by element k and is propagated

to the other elements.

lw
L- I (4.3)

/r ¡r I

where /-¡ is a real number representing the propagation loss suffered by the spherically

'a

J",

1

rO denotes the Hadamard product i.e. [a-¡] O lb^nl - fa^nb*nl
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propagated re-radiated signal, and equals G^ f (2nd*r), where G^ is referred to as the "power

gain" of element m and d^t is the distance (in wavelengths) between the rnth and kth elements.

47

(4.4)

(4.s)

(4.6)

(4.7)

a

0

,þt

,þz

0

,þ

,þ

¡/

Nü-

where ,þ* is the random phase introduced by the rnth element to the re-radiated signal.

I "' gttt¡

G-

D-

gN1

I

I

where g*n is a complex number, which is said to represent the gain and phase characteristics

of both element rn and element k in the propagation path between the elements i.e. it accounts

for the differing gainlphase response of antennas and the ground between antenna pairs.

dvrt0

0

d¡vt 0

This coupling matrix model, while providing good insight into the physics of mutual

coupling, has numerous unknowns. A commonly used coupling matrix model for uniform

linear affays is the symmetric Toeplitz coupling matrix (the analogous model for uniform

circular arrays is the symmetric circulant coupling matrix). The symmetric Toeplitz coupling

matrrx rs

C-

Cl

c2

ca

ca

c2

C1

c2

cl

C2

cM

cM-t

cM-2

cM cM-t cM-Z cl

Such a model assumes equal coupling between any two equally spaced sensors in the array.

Note for an "almãst" uniform linear aÍray, where the antenna position deviations from a

uniform linear arfay are small, this model should still be applicable. In this chapter, this model

is (initially) investigated for nominally uniform linear arrays, although it is not appropriate for
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arbitrary affay geometries. Note coupling matrices are independent of incident signal powers

and their directions.

4.2 Generalised Weiss-Friedlander Method

Weiss and Friedlander, as mentioned in chapter 2,have developed :

o a method for estimating sensor position errors, for an array with neither mutual coupling or

gain/phase errors [251]; and

¡ a method for estimating a symmetric Toeplitzlcirculant coupling matrix (and gain/phase

errors) for a uniform linear/circular array with no sensor position errors 1252,661.

These methods are based on the fact that the noise subspace (for an estimate of the covariance

matrix) is almost orthogonal to the true signal steering vectoq the cost function used being a

minimum when the signal steering vector is almost orthogonal to the estimated noise subspace.

The parameter values at this minimum are the estimated values. The cost function used is

based on the MUSIC algorithm, which is very sensitive to model effors. Hence for the exact

covariance matrix, or for an estimated covariance matrix with sufficient number of integrations,

this cost function is a good choice. These methods use single-mode (uncorrelated) non-disjoint

sources of opportunity; where non-disjoint sources, from a radarperspective, means the sources

occupy the same time snapshots and the same radar range cells. Note in section 4.4 the modified

method proposes using disjoint sources.

The first contribution of this chapter is to generalise these two methods, to estimate both

sensor position effors and a symmetric Toeplitz coupling matrix; the details of the resulting

method is presented below. Initially the generalised method is considered, and tested for

nominally uniform linear arrays. Note since only small sensor position elrors (with respect

to the inter-element spacing) are considered, it is expected that the sensor position errors will

not effect the Toeplitz structure of the coupling matrix, considered by Weiss-Friedlander for

uniform linear arrays.

The covariance matrix is first estimated for the lú non-disjoint sources, as follows

(4.8)

where the data containing the lú sources (in the absence of gain/phase errors) is ,(i) :

cas(r) + n(t).

Ê: + þ.u
H

z (¿)
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The cost function for the generalised problem (and for a narrowband system) is

49

(4.e)

(4.r2)

q : llítl callt : f ¡¡,rt"" (0,)ll'

where Û is the estimated noise subspace, obtained from the eigendecomposition of n. (Note

the similarity between this cost function and the MUSIC algorithm in equation (2.26), which is

used for estimating DOAs only). This cost function is a least squares formulation of ,nú(M - l/)
complex equations. There are 2M - 3 unknown sensor positions (see assumptions below), l/
unknown directions-of-arrival, and2M - 2 unknown coupling parameters (since M complex

parameters are being estimated and the symmetric Toeplitz matrix is estimated up to an arbitrary

complexscalar). Henceasolutioncanexist onlyif (2M -3)+ N +(2M -2) <2N(M - N)

which implies 2N2 + (l - zM)N + (4M - 5) < 0; for example for a l6-element array

3<¡/<13.
The iterative procedure for minimising the cost function in equation (4.9) consists of three

steps; the order being obtained heuristically. The first step uses the best estimates of sensor

positions and coupling values available, and estimates the 1/ signal DOAs, using the MUSIC

algorithm as follows

p(o) : .=l-.-".- (4.10)
llû"c"(d) ll"

The DOAs corresponding to peak values of p(d) are the estimated DOAs of the 1/ signals.

In the second step the sensor positions are estimated [251] using a closed form solution

that is related to the Gauss-Newton technique. The actual position of the mth sensor is

(r*,1)*) : (*"^,,y"^) + (Lr*, Ly^) (4.11)

where r"^ and y"^ defrne the nominal (or last estimated) sensor position of the rnth sensor,

and A,r^ and L,y^ define the position error of the mth sensor. For sufiûciently small position

errors, matrix A can be approximated as

n=1

A:Ao*ÂxAr*ÂyAz

where Ae is A with the sensor positions (ri,yi), and

.¿lx diag {Lr 1, L*2, ..., L, u} (4.13)
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(4.r4)

(4.15)

(4.16)

(4.t1)

(4.18)

(4.1e)

(4.20)

(4.2r)

(4.22)

(4.23)

(4.24)

(4.2s)

(4.26)

^y
Ar

A2

: diag{L,y1, Lyr,..., Lyu}

: j l's(u lu) dias{sin(?r), sin(d2), ..., sin(0¡¡)}

: j n s(w I u) diag{cos(?r), cos(d2), ..., cos(d¡¿)}

The cost function can then be written as

vxy

s(")

z(")

llûHc[as * ÂxAr + 
^yA2]ll2N

i ll.r""l"o(d') * Àxar (0,) + 
^v^2(0*))lfn=1

¡r

i llttt"tuo(O^) j d,ias{ay (d,)}'* t cliag{a2(r.ò}'Àll'
n:1

a

where the vectors 
^o(0,), "t(0") and a2(0") are the nth column vectors of A¡, A1 and A2

respectively, and v¡ âfìd vy are vectors whose rnth element is Ar- and L,y* respectively.

Now define

then the cost function becomes

¡ T T-tT: lvx rvy I

: -[ûtc dias{u1(O")},uH c diag{"2(0")})

: itHc"s(o*)

Q:Ðllz(") - n(n)"*yll2
n,=l

The real vector v¡y that minimises Q is

where

',r*y : [Ãe{nHn}1-t R"1ø'z¡

[s"( l ),s' (z),..., B"(¡r)]t

lz' (t), z' (2), ..., z' (N)l'

B

Z

and ft{} is the real part. The DOAs estimated, and the best available values of the coupling

parameters, are used in this second step to estimate the sensor position effors using equation
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(4.24).

In the third step the symmetric Toeplitz coupling matrix is estimated 1252,661by expressing

Ca(O") as \M(d,)c (i.e. by exploiting the Toeplitz structure the unknowns in C can be placed

in the vector c and the known values in a(0") can be placed in the matrix \M(d")). The cost

function in equation (4.9) canthen be written as

¡r

| "H 
(e)cHísuH c"(0,) (4.21)

n=l

Hc

The quadratic minimum for estimating ., under the constraint cl : 1 (to exclude the trivial

solution), is 
G_ruc: urlc-lì¡ Ø29)

where c : Ðil=twH(0,)'ÙÛHw(0") and u : [1,0,...,0]t. Forthe symmetric Toeplitz

coupling matrix model, the matrix w(d") is the sum of the two MxM matrices 1252,661,

a

{Ë 
*",r,)ûûHw1r,)} (4.28)

(4.30)

(4.3r)

[w1]-À:
ümlk-l

0

m,+n<M+l
otherwise

[w2]^n --

Note since the cost function in equation (4.9) is multi-modal, this algorithm is only expected

to provide a solution close to the global minimum when the initial parameter values are

sufficiently close to the actual parameter values. Under such conditions, each of the three steps

above decrease the cost function, and so convergence ofthe algorithm is expected.

The assumptions made are :

o the location of one sensor and the direction to another sensor (and so effectively one of its

coordinates) are known [170, 171, 168];

¡ the actual anay geometry is not linear [70, 156];

o the signals and noise are stationary over the interval the covariance matrix is estimated; and

o the noise covariance is known up to a multiplicative constant.

úm-tc*r mln)2

0 otherwise
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4.3 Performance of Generalised Method

The performance of this generalised method is now investigated, using an experimentally

measured coupling matrix. This coupling matrix I I 3 6] was obtained by Nether,ù/ay and Carson

from the uniform linear Jindalee transmittingarray. First the case where the coupling matrix

is exactly Toeplitz is considered, by creating a symmetric Toeplitz matrix using the coupling

values in the first row of the measured matrix. Then the algorithm's performance is considered

when the full measured coupling matrix is used.

Three sources were considered, each with SNR of 30 dB, and with DOAs of -45o, 0o and

+45o. The covariance matrix was estimated from 500 snapshots of the sources. The simulations

were performed for a nominally uniform linear array of 16 elements with inter-element spacing

of d : 0.4). The actual sensor positions weÍe :xTn -- md I Lr^ and y^ : LU*, where

L,r^andA,y*arezeromeanGaussianrandomvariableswithstandarddeviationof0.ld. The

randomly generated sensor position errors are kept the same for both examples considered

here.

The algorithm was initialised using the nominal sensor positions, and the identity matrix

was used as the initial coupling matrix. The algorithm was terminated when the cost function

Q changed in value by less than 0.1 percent.

The results obtained for the Toeplitz coupling matrix are shown in figure 4.1. Figure a.1(a)-

(b) show the amplitude, of the actual coupling matrix used and the estimated coupling matrix

respectively, while figure a.l(d)-(e) show the phase, of the actual coupling matrix used and

the estimated coupling matrix respectively. The phase values of the coupling matrices have

not been unwrapped to allow easy comparison. The root-mean-square coupling amplitude

estimation error is 0.04, while the root-mean-square phase estimation error is 0.03 radians.

Figure a.1(c) and 4.1(f) show the sensor position errors for, the nominal sensor positions (o)

and the estimated sensor positions (*). These results indicate the algorithm has performed very

well. The coupling matrix estimated is very similar to the actual coupling matrix used, and

the estimated sensor positions are very close to the true sensor positions. The DOAs estimated

were -45.3o, -0.3o and -144.6o. A number of simulations were conducted, similarly good

results being obtained in each case.

In chapter 3 the degradation caused by uncompensated mutual coupling and sensor position

erïors on radar performance was quantified; the main degradation being in the array sidelobe

levels. Hence to further analyse the performance of the algorithm, it is necessary to compare

the sidelobe levels obtained using the estimated parameters with those ofthe uncalibrate d anay.
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Figure 4.1: Generalised Weiss-Friedlander method's performance - Toeplitz coupling matrix

Given the sensor positions and the coupling matrix, the weighting required to obtain minimum

average sidelobes can be shown to be (see Appendix A equation (4.9))

where x : ,[ â(d)ât(d) cos $d$, â(/) is the steering vector formed using the estimated sensor

positions, and ô is the estimated coupling matrix. The range of the integral for calculating K

is over the sidelobe region (i.e. the region outside the main beam). The array beampattern is

then obtained as

Be"(ó): ll*H(d,)"(d)ll' Ø.33)

where á, is the steer direction of the beam, / is the signal bearing considered,"(Ó) is the actual

steering vector including the effects of mutual coupling (i.e. "(/) : c"(d)). The sidelobe

levels can then be calculated.

To determine the sidelobe levels obtained using the parameters estimated above, the side-

lobe region required to compute matrix K was chosen such that the resulting beam had the same
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Figure 4.2: Average and peak sidelobe levels for parameters estimated in figure 4.1 - nominal
parameters (-.-), estimated parameters (--) and actual parameters (-).

beamwidth as that obtainable using the Hamming window. The average and peak sidelobe lev-

els, obtained using equation (4.33), are shown in figure 4.2 as a function of look direction (d,).

The sidelobe levels using the estimated parameters (--) are fairly close to the sidelobe levels

for the actual parameters (-), and significantly better than those for the nominal parameters

(-.-). Hence it can be concluded that the algorithm has performed quite well.

Next the performance of the algorithm with the full experimentally measured coupling

matrix, is considered as discussed before. The results obtained are shown in figure 4.3. The

results are clearly poor. The amplitude of the estimated coupling matrix is quite different from

the amplitude of the actual matrix; the root-mean-square estimation error being 0.47 . Large

discrepancies are also observed in the phase values; the root-mean-square estimation error

being l.l7 radians. The estimated sensor positions are not close to the true sensor positions,

with the mean difference being about 0.015 wavelengths. The DOAs estimated were -45.7o,

-0.5o and +45.2".
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(a) Actual Amplitude (dB) (b) Est¡mated Amplitude (dB)
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Figure 4.3: Generalised Weiss-Friedlander method's perforrnance - full measured coupling
matrix.

The sidelobe levels in this case are shown in figure 4.4. As expected the results are not

as good as those in figure 4.2, with the sidelobe levels for the estimated parameters much

worse than that for the actual parameters. Similar results were obtained for several simulations

conducted, with different sensor position errors and coupling matrices. No significant im-

provement was observed when the number of sources used for array calibrationwas increased.

While this algorithm does well for To eplitzcoupling matrices, the algorithm is unsatisfactory

for this experimentally measured coupling matrix. Hence an alternate model for the coupling

matrix needs to be considered.

4.4 Modified Algorithm for OTH radars

Any coupling matrix c is equal to its transpose due to the 'reciprocity'theorem, which states

that the energy received by element k due to the re-radiation of element rn is equal to the

energy received by element rn due to the re-radiation by element k. This was found to be

valid in experimentally measured c. Hence it was decided, for the array calibration algorithms

developed in this thesis, to only restrict the coupling matrix to be symmetric. Note this model,
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Figure 4.4: Average and peak sidelobe levels for parameters estimated in figure 4.3 - nominal
parameters (-.-), estimated parameters (--) and actual parameters (-).

unlike a symmetric Toeplitz model, does not restrict the coupling, between all equally spaced

elements, to be the same. Further this model is applicable for arrays of arbitrary geometry.

Modifications to the generalised Weiss-Friedlander method are made : (a) so that a sym-

metric coupling matrix can be estimated; and (b) so that disjoint (single-mode) sources (in the

form of meteor trail echoes) can be used for performing array calibration. Recall disjoint here

means that the sources do not occupy both the same time snapshots and the same radar range

cells.

For a single source, the vector of sensor outputs is

\--

a(t) : cra(d1)"r (¿) + n(¿) (4.34)
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The covariance matrix for this signal, assuming zero mean noise, is

Rt : E{,t(t),|(t)}

57

(4.35)

Now consider // disjoint sources/echoes. As will be shown in chapter 7 most meteor trail

echoes observed are resolvable in time and range, indicating different underlying physical

mechanisms, and hence these sources will be represented here as statistically disjoint sources.

The exact covariance matrix for the nth disjoint source/echo is

R,, : E{2"(t)zY(t)} (4.36)

where z,(t) is the vector of M sensor outputs for the nth disjoint source/echo.

The problem is then to estimate the sensor positions and coupling matrix, given the 1ú

estimated covariance matrices. It is assumed here that the data z"(t) have been corrected for

receiver gairVphase errors (so I - lru),by injecting signals internally at the receiver inputs.

The modified cost function used is

¡¡
e:tllûH(n)c"(0,)ll' (4.37)

n:1

where Û(n) is obtained from the eigendecomposition of the nth estimated covariance matrix

R,,. Note in the generalised Weiss-Friedlander method Û is independent of n, and is created

from the single covariance matrix of the non-disjoint sources.

The cost function in@.37) is a least squares formulation of N(M - 1) complex equations.

There are2M -3 unknownsensorpositions,ly' unknownDOAs, and(M(M +l)-2) unknown

coupling parameters (since one estimates a complex symmetric coupling matrix up to an

arbitrary complexscalar). Henceasolutioncanexist onlyiî(2M -3)+¡/+ (M(M+ 1)-2) <

2N(M - l) which implies N > (M' +3M - 5)lQM - 3); for example for a 16-element

arcay N > 11. Note if non-disjoint sources are used, the number of complex equations would

be N(M - N), so clearly by using disjoint sources one can estimate many more parameters

for a given number of sources. (Note also for disjoint sources ly' can be greater than M).

The proposed iterative procedure for minimising cost function (4.31) again contains three

steps. The first step uses the best estimates of sensor positions and coupling values available,
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and estimates the 1/ DOAs using the MUSIC algorithm for each disjoint source, as follows

58

(4.38)

(4.3e)

(4.40)

(4.4r)

(4.42)

(4.43)

p-(o): ¡rr"1rffi n : r,2, "'' N

The DOA corresponding to the peak value of p"(0) is the estimated DOA for the nth signal.

The DOAs estimated, and the best available values of the coupling parameters, are then

used in the second step to estimate the sensor positions. The sensor positions are estimated as

in the generalised Weiss-Friedlander method, as

.,*y : [Ae{nHe}1-t n"1øHz¡

where s : [8" ( l), Br (2),..., Bt(¡t/)] r, z : lzr Q), z' (2), ..., z' (N)l',
buthere B(n) : -[ÛH(n)c d,ias{a1(0")},,ÛH1";c dict,s{"2(0,)}],2("): ÛH(t)c 

"o(0,),

"t(0.) : j"0(0^)(tnlu)sin(0*), a2(0*) : j"0(0")(wlu)cos(0"). (An alternate method for

estimating sensor positions is proposed later in this chapter.)

For the third step, estimation of the symmetric coupling matrix, one writes Ca(0") as

w(0")c so that as before the cost function can be written as

c
n=1

and obtain the quadratic minimum for estimating c, under the constraint c1 : l, ¿5

G-lu

[w]-r :

N

amlk-p(m)

úm,-l

0

Q:"" D *' (e *)û (n)ûH (n)w (P" )

c
uHG-lu

where here G : Df=, wn(P")Û(n)Ûø(n)w (0,) andr, : [1,0,..., O]". It can be shown that

for the symmetric coupling matrix model employed, the MxM(M + l) matrix w(d") is

p(*)<k<p(rn+l)-1
lc: p(m-l)+/ Vl </< (^-I)
otherwise

where
( t u:l

P(u) : 1\ / 
[ p("- l)+ (M -u-t2) 21u <(M +t)

Note the expression for matrix w(9") is a new contribution.
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Each of the three steps above decrease the cost function, and thus the algorithm is expected

to converge. Simulations are now conducted to illustrate the performance of the algorithm.

Note sensor position estimation must be performed before mutual coupling estimation since

good sensor position estimates are possible even when the coupling matrix is unknown, but

the reverse has been experimentally found to be not true.

4.5 Simulation Example

The experimentally measured coupling matrix [136] from the Jindalee OTH radar's transmitting

affay was again used in simulations for investigating whether disjoint sources could be used

to estimate the coupling matrix parameters and sensor positions using this modified algorithm.

Thirty disjoint signals, equally spread from -90o to *90o in azimuth, with SNR of 30 dB, were

simulated. Covariance matrices for each signal were estimated, from 500 snapshots, and noise

subspaces created (see the next section for the algorithm's performance for typical number of

snapshots obtainable from meteor trail echoes).

Simulations were performed for a 16 element, nominally equispaced linear array with inter-

element spacing oî d :0.41. The actual sensor positions were randomly generated as before.

Note that while the designed arcay is a linear afiay, due to sensor position errors the actual

array is not linear, and hence array calibration is possible (it has been observed that the Fisher

information matrix, derived in section 6.1, is invertible for y position effors of the magnitude

considered).

The initial sensor positions were taken to be the nominal sensor positions, and the identity

matrix was used as the initial value for the coupling matrix. The termination criterion was for

the algorithm to stop when the cost function Q changed in value by less than 0.1 percent.

The results obtained are displayed in figure 4.5 :

o the cost function initially decreases rapidly, and then tends to level off after about 20 iterations;

o MUSIC, for the signal shown, is much sharper in the calibrated case (-) than the uncalibrated

case (--);
o the DOA effors are fairly small;

o the magnitude and phase of the coupling matrix used, and the coupling matrix estimated, are

in close agreement (the phase is unwrapped for easy comparison);

o the errors in the r and y coordinates, after the final iteration (*), are much smaller than the

effors in the nominal values (o).

Using equation (4.9) the sidelobe levels can now be calculated. The average and peak
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Figure 4.5: Performance of modified method - cost function decreases with iteration number;

sharpening of MUSIC; errors in estimated source DOAs; actual coupling matrix and estimated

coupling matrix; errors in nominal (o) and estimated (*) sensor positions.
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Figure 4.6: Average and peak sidelobe levels for parameters estimated in figure 4.5 - nominal
parameters (-.-), estimated parameters (--) and actual parameters (-).

sidelobe levels are shown in figure 4.6 for different look directions do, and hence are a function

of azimuth. Clearly the algorithm has performed very well; the sidelobe levels for the estimated

parameters (- -) being much better than the sidelobe levels for the nominal parameters (-.-),
and being close to the sidelobe levels for the actual parameters (-). The modified algorithm

has performed well in this example; further analysis of the algorithm is conducted next.

4.6 Monte Carlo Analysis

To analyse this algorithm's performance in detail, a Monte Carlo analysis was conducted. The

performance measure considered is

0

0

200

nï):ffi*1oo (4.44)
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where AS L,"*(0) is the average sidelobe level obtained with nominal parameters , AS L",t(0)

is the average sidelobe level obtained with estimated parameters , and AS Loa(d) is the average

sidelobe level obtained with actual parameters; each quantity expressed in dB, and a function

of look direction á. Hence if r¡ (0) is small (close to zero) then the algorithm has not performed

well, while if r¡(0) is large (close to hundred) then the algorithm has performed well. This

measure has been found to reflect well the performance of algorithms, and is thus used here.

Initially 100 simulations were conducted, with the sensor position errors being randomly

generated in each case. The performance measure ry(d) is shown in figure 4.7 as a function

of azimuth, for the 100 simulations. The results clearly indicate the algorithm has performed

well in all cases. Note the same coupling matrix was used in all the simulations.

To test the algorithm's performance for typical SNRs and number of snapshots obtainable

from meteor trail echoes (see chapter 7), simulations were conducted for different SNR-

snapshot combinations. Two combinations are shown in figure 4.8; for the first case the SNRs

are 20 dB and the number of snapshots are 5, while for the second case the SNRs are 30 dB

and the number of snapshots are 10. Four failures (black vertical stripes) are seen in the first

case, while no failures are seen in the second case. The performance measure (and hence the

sidelobe level) is clearly better for the second case, where the SNRs and number of snapshots

are larger. Note the algorithm's performance versus SNR is also considered in section 6.1.6,

and the accuracy (standard deviations) of the estimated parameters was found to be inversely

proportional to the square-root of the SNR.

Figure 4.9 shows the dependence of the algorithm on the number of sources. These

simulations were performed for the same affay, with 500 snapshots obtained from each of the

30 dB disjoint sources. When the number of sources is less than 16, the algorithm fails as there

are insufficient sources for this algorithm to estimate the unknown parameters for 16-element

affays; note the necessary condition (see section 4.4) was for l/ > 1 l. When the number of

sources is greater than about 18 the performance is essentially independent of the number of

sources.

Overall, while the algorithm has done very well, one notes a few cases where it has failed.

These failures could perhaps be overcome by using better initial values for the parameters being

estimated, since in general one cannot guarantee convergence to the global minimum. Note

for the coupling matrix, any modelled or previously estimated coupling matrix could be used

as the initial value, instead of the identity matrix which has been used for these simulations.
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Figure 4.9: Dependence of algorithm on number of sources.

An alternate sensor position estimator, which was developed using a Newton search proce-

dure, has been found to reduce the number of failures (i.e. the algorithm with this particular

sensor position estimator had less failures). This procedure, which is the second contribution,

is considered next.

4.7 Alternative Sensor Position Estimator

V/hile the results obtained using the above method were good, a new sensor position estimator

was developed and tested to see if the number of failures could be reduced for practical SNRs

and number of snapshots.

Let 1@) : [*(k)", y(k)r]r, where x(k) and y(k) are the vectors of estimated sensor

positions after the kth iteration. Then the Newton method for obtaining the sensor positions

afterthe (k + l)th iteration is

4k + 1) : 7(k) - u w(1ft))-' .(7(k)) (4.4s)

60
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a2o
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where H is the Hessian matrix for the sensor positions, r is the gradient vector for the sensor
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positions, and the step length is 0 < z < l. The 2Mxl gradient vector is r(7(k)) :

l@8 I A*&))' , @Q lAy&Ðrlr , and the 2Mx2M Hessian matrix is

a2Q
ax(À)ôx"(e)H(r(k)) :

¡¡

n=l

a2Q
ax(k)ay"(k)

a2Q
(4.46)

(4.47)

(4.48)

(4.4e)

(4.s0)

a2Q
ay@)axr(k) ay(k)ayr(k)

Now define à",(0^) : ð"(0")10*, : dxp O "(0"), where O is the Hadamard prod-

uct and dxo is an M element vector with all but the pth element zero; the pth element is

(+Zr¡ ¡S¡ sin(d,), where À is the radar wavelength. Then from equation (4.37)

ðr
aQ N

D l;!, çe ") 
c n Û ( n ) Û 

H 
çn¡ c u(0 *) + uH çe *¡c 

H 
Û 

1 
n ¡ Û 

H (n) c à 
", 

(0 )]
p n:l

: t- 
{Ë 

uH ç+.¡cHu(n)ûH(n)c(axp o "(0,))}

and hence

a2g
ðr*,

2n

2m

Ð l(""(8") o a*o')c'Û1";ÛH1n)c(axo o a(d,))

+aH (lòcrÛ(n)ÛH(n)c(axo o d*p o "(d"))]
N

D l{"t14") o a*oø;cHÛ1";ÛH1n)c(a*o o a(d,))
n=l

+aH (lòcøÛ(n)ÛH(n)c(a*o o dxq o a(d"))]

¡t¡

D, l{"' çe") o a*nH)cHÛ1";ÛH1n)c(a*o o a(d'))
n=1

Are
0rr0nn

I
I

:2n

ì
I
r)

where ft{} is the real part, e I p and dxq is an M element vector with all but the qth element

zero;the qth elementis (+2r jl l) sin(d").

The partial derivatives with respect to the y coordinates are similarly obtained as

aQ
0a,

Arg
o2v,

2fr,

2n

¡r/t
n=1
¡\rt

n=l

"H çï,¡cH'Û(n)ÛH(n)c(dvp o "(0"))

l{"t{4") o avp')cHû1";ûH1n)c(avn o a(d,))

+a,H (LòcH Û(n)ÛH(n)c(¿vp o dyp o a(p"))] ì
I

(4.51)
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arg
oarovo

t- 
{å [i^'{4,) o dvqrr)c'û1,,;ûH1n)c(avo o "(g'))]}

67

where dyp is an M element vector with all but the pth element zero; the pth element is

(+zr¡ lll cos(0").

The 02Q l7rrða, and 02Q lÔ*rðyn terms are

(4.s2)

(4.53)

(4.s4)

Are
0rr}y,

Arg
0rrïyn

2W

,- {Ë [i"'ia,) o ¿vq')cHû1,r;ûHir,)c(a*o o "td,))]]

¡¡

D [i""ia") o avoH;cHÎtçn¡'ÙH (n)c(a*o o "(d"))
n=7

+aH (0,)c4Û(n)ÛH(n)c(a*o o dyp o "(d"))]

The algorithm's perfoffnance with this sensor position estimator is shown in figure 4.10.

The cases considered here are the same as those in figure 4.8, where (a) the SNRs are 20 dB

and the number of snapshots are 5, and (b) the SNRs are 30 dB and the number of snapshots

are 10. The results obtained are as good as those in figure 4.8, but note no failures are present

here unlike in figure 4.8 for case (a) where four failures (13 percent) were obtained (the

improvements obtained here are attributed to the use of the second derivative in the Newton

method).

4.8 PerformanceCriteria

In practice, after running an array calibration algorithm, it is highly desirable to know whether

the algorithm has been successful in achieving accurate calibration. In other words it would

be nice if there was some easy to determine performance criteria by which one can test if an

anay callbration procedure has in fact been successful.

One possible approach is to use a set of disjoint meteor trail echoes, distinct from the echoes

used to calibrate the array. The criterion is based on the fact that if effective array calibration

has been performed then the integrated sidelobe level will be much lower than without any

arraycalibration. Considerlúdisjointmeteorechoes,withcovariancematricesRl,R2,...,R¡tr.

It is assumed that the meteor echoes are line-of-sight echoes, or have propagated via a single

ionospheric layer, and hence each covariance matrix only contains one signal (see chapter 7).

The criterion proposed is the integrated sidelobe level, which for 1l different beams (steering
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directions) is K L
ISLB: tÐato(d¡¡)cos(d¡¿) (4.ss)

k=l l=l

where B o r(0) is the beampattern of the kth beam, and 0 ¡,¡ is a sidelobe direction for this beam.

Note for the kth beam, only echoes in the kth beam's sidelobes are to be used with this criterion,

and hence this criterion requires tr meteor echoes to be present in the sidelobes of each beam.

It is possible to determine which echoes are in the sidelobes of a given beam, since even

for uncalibrated arrays, bearing errors are not large (see chapter 3). Equation (4.55) can be

expressed in terms of the meteor echo principal eigenvectors as follows

I{L
I S LB: t I l*t(r*).,¡¿ l2 cos(0¡¿) (4.s6)

À:l ¿-t

where v¡¿ is the (normalised) principal eigenvector, for a meteor echo in the sidelobes of the

kth beam.

The ISLB using the uncalibrated optimal w (see section 4.3) is compared to the ISLB

using the calibrated optimal w. If the I S LB is sufficiently better for the calibrated case then

array calibration has been successful, and ifnot then array calibration has been unsuccessful.

In fact, the I S LB level can be used to quantify the array calibration performance. Using this

measure on the simulation example in figure 4.5-4.6, the ISLB is -9.6 dB for the uncalibrated

case and -32.7 dB for the calibrated case (the ISLB is -32.9 dB for the perfectly calibrated

case).

Note equation (4.56) consists of two components : (a) contributions from the meteor echoes

towards the ISLB; and (b) white noise contributions. To get a measure of the ISLB the meteor

echo powers must be well above the noise-level power. This can only be guaranteed if the echo

powers are say lOdB or more above the array sidelobe levels required. An alternative approach

is to use one very strong source, such as the radar transmitter signal. (Note the transmitter

signal, for certain radar configurations, is seen in the early ranges (as in figure 1.2) and so the

covariance matrix can be estimated for this source). The integrated sidelobe level can then be

estimated as follows 
K

I SLB: t ¡*H1O*;'¡2 cos(d) (4.51)
k=l

where v is the principal eigenvector of the source, and 0 is the direction of the source.

Figure 4.1 I (a) shows the ISLB value for this criterion when applied to the example in figure

4.5-4.6; the uncalibrated (-.-), calibrated (--) and perfectly known (-) cases are shown.
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The ISLB values are shown as a function of the DOA of the strong source used to form the

criterion. The results indicate that this criterion can clearly distinguish the uncalibrated and

well calibrated cases, and also that the results are not significantly influenced by the DOA of

the strong source used to form the criterion. Figure 4.1 1(b) shows a measure analogous to n(0)

in equation (4.44), applied in this case to the three curves in figure 4.1 1(a). The values around

100 illustrate the good discriminating ability of the criterion.

4.9 Mutual Coupling Estimation Investigation

The simulations conducted thus far for the modified algorithm, used the coupling matrix

experimentally measured from the Jindalee transmitting array. To further test the mutual

coupling estimation performance, coupling matrices from another OTH radar were considered;

this radar being located in Longreach in Queensland. This radar is one of the two radars making

up the Jindalee Operational Radar Network (JORN), which is currently being constructed for

long range surveillance.

The coupling matrices considered were for the transmittingarray, and were measured over

the frequency range of 5-12 MHz. This measured data was in the form of scattering matrices.

A scattering matrix relates the forward and backward voltages on antennas, and is related to

the coupling matrix as follows (excluding a scaling constant) [211]

C:I¡,t *Sc (4.s8)

where r¡a is the identity matrix and 56: is the scattering matrix. Using this equation, it is

possible to obtain coupling matrices from the scattering matrices.

Figure 4.12 shows the first row of a Longreach coupling matrix; that is the coupling values

between each antenna element and the first antenna element. The amplitude variation in

figure 4.12(a) indicates that the coupling between the first and the second elements is about

-15 dB, and that the coupling between the first and other elements drop off steadily as the

distance between the element and the first element increases. For the Jindalee transmitter's

coupling matrix the coupling between the first two elements was about -J dB, and the drop off

in coupling values between the first element and elements further along the array was much

less. In figure 4.12(a) the couplingbetween the first and last (fourteenth) element is about

-25 dB, compared with the Jindalee coupling matrix where the coupling between the first and

last element (sixteenth element) is about -16 dB. The phase variation, shown in figure 4.I2(b),
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illustrates that the phase varies approximately linearly with element spacing, however some

curvature is apparent.

The coupling matrix considered in figure 4.12 was for 5.0 MHz. Figure 4. I 3 shows the first

row of all the coupling matrices obtained, from 5-12 MHz. The amplitude values shown have

been normalised so that the coupling between the first element and itself is 0 dB. As would

be expected, the coupling values drop off with increasing frequency (since the inter-element

spacing in wavelengths, increase). The coupling between the first two elements decreases from

about -15 dB at 5.0 MHz to about -25 dB at 12.0 MHz. The coupling between the two end

elements in the array decreases from about -25 dB at 5.0 MHz to about -50 dB at I2.0 MHz.

The coupling values for this array are much lower than those obtained for the Jindalee array,

since the Longreach antennas were designed significantly better.

In order to determine the sidelobe levels that would be obtained for an array with these

coupling values, the same procedure as before, using the weights given in equation (4.9),

was used. However since the Longreach coupling values result in better sidelobe levels (than

the Jindalee coupling values), the sidelobe region over which the matrix K in this equation is

computed, needs to be made smaller; resulting in the sidelobe levels obtainable under ideal

(error free) conditions being better. This allows the limiting sidelobe levels of the Longreach

coupling matrices to be determined

The sidelobe levels obtained for the Longreach coupling values are shown in figure 4.14.

The average sidelobe levels for different look directions (or azimuth's) are shown for each

frequency. The average sidelobe levels clearly decrease with frequency (since the coupling

values decrease with frequency) : at 5.0 MHz it is -30 dB (at worst), while at I2.0 MHz it is

-50 dB (at worst).

The algorithm developed was used to estimate some ofthese coupling values. The algorithm

was successful in reducing the sidelobe levels in all cases, the results obtained for 5.0 and 12.0

MHz are shown in figure 4.15 and 4.16 respectively. Figure 4.15 shows the 5.0 MHz coupling

values have been estimated very well, and the resulting sidelobe levels have been greatly

reduced. The results obtained in figure 4.16 are very good too, although some differences

between the actual and estimated parameters can be observed here.

4.10 Error Surface

The cost function, or etror surface, is analysed now to see how it varies with the unknown

parameters. The smoothness of the error surface is of key importance, and it is of interest to see
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Figure 4.13: First row of Longreach coupling matrix for 5-12 MHz.

if the surface is highly multi-modal. If the surface is highly multi-modal, then the algorithm

can get "stuck" and fail to get close to the global minimum.

The cost function in equation (4.37) was analysed for a nominally uniform linear 4-element

array with inter-element spacing of d : 0.41; the randomly generated sensor position errors

in the r-coordinate and y-coordinate being given in Table 4.1. The coupling matrix employed

\Mas measured from the Jindalee transmitting array. Ten sources equally spaced over 180o

in azimuth were considered, and the exact covariance matrix determined for each source (see

below regarding results for typical number of snapshots). The covariance matrix of each source

was eigendecomposed and the matrices u(n) created. For the sensor positions, coupling matrix

and signal bearings, in equation (4.37), initial parameter values were used as obtained in section

4.5, i.e. the nominal sensor positions (*i : md and y'^ : 0) were used, the identity matrix

was used for the coupling matrix, and the signal bearings were estimated using the MUSIC

algorithm. With these quantities, the cost function can then be computed. The behaviour of

the cost function is analysed below, with two parameters varied, while all other parameters are
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Figure 4.14 Average sidelobe levels for Longreach coupling matrices.

fixed at the values determined above.

Sensor 1 2 J 4

g-coordinate (À) -0.rt49 0.0674 0.0011 -0.0361

r-coordinate (l) -0.0499 0.0130 0.0156 -0.0162

Table 4.1: Position Errors for 4-element Array

The cost function was first analysed as a function of the sensor position (both r and y

coordinates)of thethirdsensori.e. Q@t,yt).The¿ andy coordinateswerevariedupto

0.4À (i.e. the size of the inter-element spacing) around the nominal sensor position, the results

obtained being displayed in figure 4.17; where two sub-figures of the same effor surface are

shown. This error surface is clearly smooth, and is not multi-modal. Note the curvature (or

slope/gradient) at any point is towards the minimum, with the minimum curvature observed at

the extremes of the sub-figures. When the r and y coordinates were varied up to 0.81 (twice

the inter-element spacing) around the nominal sensor position (not shown), curvatures away

from the minimum were observed; note however position errors as large as this are not of

interest here. Similarly good surfaces were obtained for the coupling parameters.

5
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The error surface for the bearings of two sources is shown in figure 4. I 8. This error surface

is Q(91,95), where the closest source to end-fire (at -81") and the closest source to broadside

(at -9o) are considered. Note the variation of this surface, if one of these two DOAs is

fixed, reflects the array beampattern (as would be expected). Unlike the surface in figure

4.17, only over a small region is the curvature towards the minimum; the small region being

approximately 10o-15o in each direction from the minimum (note the length of the region is

a little smaller than the beamwidth, which is about 30"). These results indicate that, if initial

bearing estimates are not possible to within 10o-l5o of their true value, then the algorithm can

diverge away from the global minimum. The error surface obtained, when the position errors

were twice the amount in the above case, indicated that this critical region was even smaller.

When estimated covariance matrices (from 5 snapshots and l0 dB SNR sources) were used,

the error surface did not change significantly.

From these results, it is clear that the signal DOAs are the most sensitive parameters. Hence

the procedure used for bearing estimation and the means used for obtaining initial bearing

estimates, are of critical importance. The algorithm in this chapter used the MUSIC algorithm

for bearing estimation, and has obtained good results for the size of model errors considered.

The MUSIC algorithm is however not very robust to model errors, and if the model effors were

to be increased, the MUSIC algorithm would be expected to produce poor DOA estimates;

causing the array calibration algorithm to possibly fail. Hence for interest,larger model effors

are considered, and the algorithm's performance analysed for such errors.

The performance of the algorithm for larger model effors is shown in figure 4.19. Sensor

position eTïors with standard deviation (STD) of 0.2d,0.3d and 0.4d, are considered here. The

algorithm's performance for a STD of 0.3d is a little ìworse than that for 0.2d; these results

being almost as good as that obtained for a STD of 0.1d in figure 4.1 . The performance for

a STD of 0.4d is however poor, with many failures observed. Note a STD of 0.4d means the

position erïors are greater than À110, and since it is well known that the beampattern is robust

only for errors up to l/ 10, good performance is not expected for errors as large as 0.4d.

4.11 Conclusion

A technique for estimating the coupling matrix and sensor position effors for OTH radars has

been presented. The algorithm was developed for using scattered echoes from ionised meteor

trails, which can be considered as disjoint sources of opportunity from an affay calibration

perspective. Simulations were conducted, using measured coupling matrices, to illustrate
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the performance of this method; the method's performance being good for typical SNRs and

number of snapshots obtainable from meteor trail echoes. The algorithm was also found to be

capable of estimating a variety of coupling matrices.

Performance criteria, which use sources of opportunity, were proposed for determining in

practice the success achieved by an array calibration method. The algorithm's error surface

was analysed and found to be in general good; the exception being for the signal DOAs, where

the surfaces \ryero good only within about a half-beamwidth of the true values.

In chapter 5 an algorithm is proposed for using disparate sources, to estimate the coupling

matrix and sensor position effors; the problem considered here is a special case of that to be

considered in the next chapter.



Cunprpn 5

Array Calibration using Disparate

Sources

Unlike previous array calibration algorithms, which require a specific type or class of sources

for calibrating the array, the algorithm proposed here can use all available sources for array

calibration. For example, the algorithms proposed by See et. al. [182, 183, 140, 184] to

estimate sensor positions and mutual coupling, need disjoint single-mode sources of known

DOAs, and the DOAs must be time-invariant. The algorithm proposed here, however, can use

sources present in different disjoint clusters; a cluster (see figure 5.1) being here used to denote

any collection of sources which all occupy both the same time snapshots and the same radar

range cells (i.e. are overlapped or non-disjoint). This algorithm can use disparate sources

: multimode and near-field sources (in addition to single-mode sources), known DOA and

unknown DOA sources, and sources with time-varying DOA or time-invariantDoA. Note the

problem considered in chapter 4 (where single-mode, disjoint, time-invariant (unknown) DOA

sources are considered), is a special case ofthat considered here.

As will be mentioned in chapter 7, for OTH radar array calibration, special sources such

as beacons, noise sources such as radio stations, and scattered echoes from meteors, may be

used. These sources have widely varying properties, which must be accounted for when they

are used for array calibration. The anay callbration procedure proposed here exploits multi-

dimensional MUSIC for time-invariant DOA sources, while single-snapshot techniques are

used for sources which have time-varying DOA. A non-linear separable least-squares solution

to the array calibration problem is used to estimate the coupling matrix and sensor positions.

The problem is formulated in the first few sections, and then the algorithm is presented in

section 5.6. Simulations are conducted in sections 5.7 and 5.8, using experimentally-measured

83



5.1. SIGNAL MODEL

(t)
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Time (snapshots)

Figure 5.1: Illustration of disjoint clusters : A, B and C are disjoint clusters, each of which

may contain a number of non-disjoint sources/signals.

coupling matrices, to analyse the algorithm's performance. The performance of this algorithm

is analysed in section 5.9 for the special case where all the sources are single-mode, disjoint,

and have time-invariant (unknown) DOAs; these results being compared to those obtained in

the previous chapter. The algorithm's error surface is analysed in section 5.10, its performance

with larger model erïors is considered in section 5. I I , and finally in section 5 .I2 the chapter is

concluded.

5.1 Signal Model

For a signal impinging the array, the vector of sensor outputs is

z(t) : cra(d1)"r (¿) + n(t) (s. 1)

where for a time-varying DOA signal 0t : 0t (t); however for simplicity of notation, the

dependence is not shown but can be easily inferred from the context. The covariance matrix

for a time-invariant DOA signal, assuming zero mean noise, is

n: D{"(t)r'(t)} (s.2)

84

Given measurements z(ú) and/or estimated covariance matrices R, for a number of signals,
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the problem is then to estimate both the sensor positions and coupling matrix, by formulating

a cost function and minimising it with respect to these and other unknown parameters. It is

assumed here again, that the data z(t) have been corrected for gairVphase errors (so r : I¡a).

5.2 Time-varying DOA Sources

For time-varying DOA sources a meaningful spatial covariance matrix is difficult in general

to be estimated, due to the non-stationary spatial behaviour of the source. Instead single-

snapshot data canbe used for array calibration, provided the signal-to-noise ratio is sufficiently

high. In fact time-varyingDOA sources, which have distinct DOAs each snapshot, can provide

multiple single-snapshot sources for array calibration. Examples of time-varying DOA sources

are meteor head echoes (see chapter 7) and calibration sources mounted on trucks or aircraft.

For the case of one single-mode source, a single-snapshot is

z: cu(0)s I n (s.3)

for which a non-linear least squares problem is formulated, with a cost function

Q:ll,-c"(9)sll2

Note if s is deterministic and the noise white, then the parameters minimising this cost function,

are deterministic maximum likelihood estimates. For the case of multiple sources, either

uncorrelated or correlated (multimode) signals, which are overlapped in time (non-disjoint),

equation (5.3) can be generalised as follows for (a single-snapshot of) l/ signals

z:CAs*n (s.5)

where a : [a(dr),"(0r),...,"(0¡r)], and the vector s of complex signal amplitudes is. :

["', rr, ..., "¡r]". 
The cost function is then

(s.4)

Q:ll,-cA"ll2 (5.6)
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5.3 Time-invariant DOA Sources

Here time-invariant DOA sources refer to those sources whose DOA varies at most marginally

from a nominal value. For these sources a meaningful spatial covariance matrix (as in chapter

4) can be estimated. Examples of time-invariant DOA sources are meteor trail echoes (see

chapter 7) and beacons. This section starts with an outline of multi-dimensional MUSIC, and

then the problem for time-invariant DOA sources is formulated.

Multi-dimensional MUSIC, proposed originally in [l78] (see also 12791), is a multi-

dimensional search procedure for DOA estimation. It does not have the drawback of one-

dimensional search procedures, such as MUSIC, of not being able to cope with coherent

signals, since it does not assume the signal covariance matrix to have full rank. Consider the

eigenvectors corïesponding to the largest eigenvalues of the covariance matrix (i.e. the signal

subspace), and let p be the matrix whose columns are these eigenvectors. It can thenbe shown

that, in uncorrelated receiver noise, there exists a matrix/vector S such that

E: CAS (5.7)

where the elements of s are not necessarily the signal amplitudes (unlike the elements of s

in section 5.2), but rather relate the actual steering vectors (columns of the product AS) to the

signal eigenvectors in E. The category of sources that can be considered here (for a cluster)

are

. one single-mode source

o one multimode source

o multiple non-disj oint (overlapped) single-mode sources

o multiple non-disjoint (overlapped) multimode sources

A non-linear least squares problem is formulated, for each cluster of non-disjoint sources,

AS

Q:llE-cASll'z,- (5.8)

where Ê is the estimated Mxk' signal subspace matrix/vector, and S is a lcxkt matrix/vector,

for the cluster of non-disjoint sources. The number of signals present is k and the number of

signal eigenvalues is k'. If all the signals in the cluster are uncorrelated then lc' : lc, and if any

of the signals are correlatedk' < k.

Note that, if a source has a time-invariant DOA for some portion of its duration and has a
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time-varying DOA for the rest of the time, the approaches in both sections 5.2 and 5.3 can be

used for the corresponding time segments.

5.4 Overall Cost Function

All sub-problems, for each and all of the disjoint clusters, can be combined into one problem

with a single cost function, using the addition property of norms. The overall cost function is I

Q:lli-cASlll (5.e)

where matrix Z contains a column of z for each different cluster of time-varying DOA sources,

and column(s) of o for each different cluster of time-invariant DOA sources. 3 is made up

of s's from each disjoint sub-problem/cluster. Here ly'c will refer to the number of different

sub-problems/clusters, N7 to the total number of signals, and N 2 to the number of columns in

i. lnexample of the structure of 2 and 3 are given in the next section.

V/hile this problem cannot be solved in general, the matrices C, A and S have special

structures : the coupling matrix being estimated is symmetric (see chapter 4 for the details), the

columns of A are steering vectors, and S is a sparse matrix of known structure. Thus equation

(5.9) is minimised given the special structure of these matrices. Furtheq the algorithm proposed

in this chapter, is only expected to provide a solution close to the global minimum when the

initial parameter values are sufficiently close to the actual parameter values.

5.5 An Example

To purely illustrate the structure of i and S, the following scenario is considered. Disjoint

clusters of time-varying DOA sources : one cluster of a single-mode source, one cluster of

a multimode source (with three correlated signals). Disjoint clusters of time-invariant DOA

sources : one cluster of a single-mode source, one cluster of three single-mode sources. For

this case Nc : 4, Nr : 8, the matrix i lttttxe¡ and S (8x6) are as given below, where 21, z2

are vectors of single-snapshots and ê1, Êz is a vector and a matrix of eigenvectors.

z l,t ,,r,ôl , Êt]

I For a near-field source the steering vector depends on both the source's DOA and its range from the radar. If
the source's range is known, as is the case for scattered echoes and known transmitters, then the steering vector

is known except for the DOA, and so this source can also be used for array calibration.
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where for the first cluster s 1 1 relates the actual steering vector to z 1 , for the second cluster the

three scalars s2¡ relate the three actual steering vectors to z2,for the third cluster s¡r relates the

actual steering vector to ê1, and finally for the fourth cluster the nine scalars s4¡ relate the three

actual steering vectors to the Mx3 matrix o2. Note for the fourth cluster, where uncorrelated

signals are present, the number of signal eigenvectors obtained is the same as the number of

signals present. However each signal eigenvector in not necessarily a scaled version of one of

the actual steering vectors; each signal eigenvector instead usually being a linear combination

of the actual steering vectors. Hence the reason for nine scalars s4ft required in the fourth

cluster.

5.6 Algorithm

The algorithm sequence, for this multi-parameter optimisation problem, was based on the

observation that it was possible to improve significantly the sensor position estimates even

when the coupling parameters were unknown, but it was not possible to obtain any such

improvements in the estimates of the coupling parameters when the sensor position effors were

large. By trying to improve the sensor position estimates (at each stage updating the DOAs

and complex s's) and then estimating the coupling matrix (again at each stage updating the

DOAs and complex s's), the cost function is minimised. The algorithm sequence is shown in

figure 5.2; the order of operations \ilas determined heuristically by comparing the results for

different orders.
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Initialisation

Figure 5.2: Algorithm Sequence.

5.6.1 Initialisation

As with most non-linear least squares problems, the initialisation is of paramount importance.

The initial values for the unknowns in the cost function (5.9) are obtained by : (I) using the

nominal sensor position values and nominal coupling matrix; (II) estimating the unknown

signals' DOAs using the parameter values in (I), and then creating A; and (III) estimating the

complex s's using the parameter values in (I) and (II), and then creating S.

In step (II), the nominal sensor position values and the nominal coupling matrix, are used

with the Bartlett processor (conventional beamformer) to obtain initial estimates of each of the

unknown signals' DOAs. The Bartlett processor is used here, since it is capable of providing

robust DOA estimates in the presence of correlated signals (unlike the MUSIC algorithm,

which was used in chapter 4). For the case of each cluster of time-varying DOA sources, the

Bartlett processor here is

p(o) : "! 1e¡c! ,",f; c'".10¡ (s.10)

1
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where Co is the nominal coupling matrix, ",(d) is the nominal arcay steering vector, and z, is
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the single-snapshot of sensor outputs for the nth cluster of time-varying DOA sources. For the

case of each cluster of time-invariant DOA sources, the Bartlett processor here is

p(o) : "! çe¡c!Êtnc'ao(o) (5. I 1)

where R, is the estimated covariance matrix for the nth cluster of time-invariant DOA sources.

The peak of each spectra gives the DOA of the strongest signal in the cluster. When multiple

signals exist (in a cluster) and their DOAs have to be estimated from either a single-snapshot

or a covariance matrix, the projection matrix is used 12691. For example if for the strongest

signal, a DOA of d- is obtained, then the steering vector for finding the next strongest signal's

DOA is

u',ql¡ : (t, - L*^,p*1^y çe*¡) ^.çll¡ (s.12)

This steering vector is then used in the Bartlett processor above to obtain the next strongest

signal's DOA. This procedure is repeated for obtainingany subsequent signals' DOAs in the

cluster. Using this technique the limitation of the Bartlett processor, of resolving closely spaced

signals (see section 2.I.2), is somewhat overcome.

Once initial values for all signals' DOAs have been obtained for the cluster, these values

together with the nominal sensor positions can be used to form the matrix A(r), of steering

vectors for the cluster. Matrix A, in equation (5.9), is created by simply combining the matrices

,t (n) columnwise.

In step (III), the nominal coupling matrix and matrix A(r), are used to obtain initial values

for the complex s's in each cluster. For time-varying DOA sources

sr, : (coA(r))*r" (5. l 3)

while for time-invariant DOA sources

s, : (c,A("))*Ê" (s.14)

where 0* i. the generalised inverse operator. Once all initial complex s's for all clusters, have

been estimated, the matrix 5 in equation (5.9) can be formed. This completes the initialisation

step.
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5.6.2 Sensor Position Estimation

The last estimates of the DOAs, coupling matrix and complex s's are used in this step to

estimate the sensor positions. The last estimates of sensor positions are used in a Newton

search to update the estimates of the sensor positions.

Let 7(k) : [*r(k), v,(k))', where *(k) and y(k) are the.vectors of estimated sensor

positions after the kth iteration. Then, as in section 4.7 ,

^t& + l) :7(k) - z H-r(r(¿)) "(r(k))
(5. r s)

where H is the Hessian matrix for the sensor positions, r is the gradient vector for the sensor

positions, and the step length is 0 < u 1 l. Expressions for this Hessian and gradient are

obtained from the cost function in (5.9), and are derived below.

The 2Mxl gradient vector is '(7(k)) 
: l(aQ lõx(k))' , @Q lav&))r1", and the 2Mx2M

Hessian matrix is

u(7(k)) :
I a'q
I axlr¡axr1*;
I a'q
L ãtTElãxrTÐ

(s.16)

(5.17)

The cost function Q in equation (5.9) can be re-written as

L

a Ðllz, - cAõ¿ll2
l=l
L

J=1

L

I=l
L

Ð(ãf ãir - zf ca.;¡ - Éf tH cHãt -téf tH cHcaõ¿) (s. I 8)

where ã¿ is the /th (of ¿) column oî 2 , and õ¿ is the /th (of ¿) column of s.

Now defin" L,o : 0t lðrp - D*p Q A, where O is the Hadamard product and Dxo is an

MxNT matrixwith all but thepth rowzero; the nth element of thepth row is (+2"¡ ¡ S¡ sin(0"),

where À is the radar wavelength. Also define ixfo : ð(l,.H) I \rp : Dxpr/O -þ,H : (0n'l îrr)H .

Then

a8
ã., l(-;f cir,,ét -;f ir!,cH zt + í'f it!,cHcRõ¿ + éf tH cH cÁ."oõ¿)

Ð(zi -;f { cH )c(o*n o A)õr-2n
I-

(s.1e)
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and hence

Arq
0rr0ro

a2g
0rr,

92

Are
0rrðy,

: -2n

-2fr.

2m

L

Ðlfzi -;f tH cH )c(o"o o Dxp o A)õ¿

l=l

-õfl(At o oxoH)cHc(o*o o A)õ¿] 
)

L

}lfzf -;f tH cH )c(o*o o Dxq o A)õr
l=l

-Áf @' o DxqH)cøc(o*o o A)õ¿] 
)

T,

l=l

(5.20)

(5.2r)

(s.22)

(s.23)

(s.24)

(s.26)

2n D ¡fl(ot o oxnE)cHc(n*o o A)õ¿

where n{} is the real part, and q I p.Equation (5.22) is obtained from equation (5.21) since

Dxp O Dxq is the zero matrix for q f p.

The partial derivatives with respect to the y coordinates are similarly obtained as

a8
-2m Ðf¿i -;f tH cH )c(ovp o A)õr

0a,

a2Q

ð2v, Ðlf¿i -;f tH cH )c(ovp o Dvp o A)õr
l=1

-¡fl(at o oypH)ctc(o"o o A)õ/] 
)

L

Y,lfzi - tf tH cH )c(o*o o Dvp o A)õ¿

l=1

-¡fl(tt o ovpH)cHc(o*o o A)õ,1 Ì"r 
)

L

/= 1

L

2n

g+ : ,n{ièfl(A'o ovq')coc(ovp o A)è/} (s.2s)oyrôa, tEí " )

where Dyp is an. MxNr element matrix with all but the pth row zero; the nth element of the

pth row is (+2r j lÀ) cos(9").

The ð2Q l0rr0u, ana ð2Q lïrrÔan terms are

I
I

(s.27)
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5.6.3 Coupling Matrix Estimation

The last estimates of the sensor positions, the signals' DOAs and complex s's are used in this

step to estimate the coupling matrix. It can be shown that the cost function in (5.9) can be

re-written as follows

Q : ll,, - .trllt (5.2s)

where ã : uec(Z), the M N2 element column vector containing all entries of i in a column-

wise order. Vector c contains the (M+1) M12 :urrrllnown complex coupling parameters, since

the coupling matrix is assumed to be symmetric (see chapter 4). Matrix F is created from the

matrix product AS, an expression for this l(M+l)Ml2lxlM N2l matrix is given below The

coupling parameters are then estimated as

c: (rr)+ã (s.2e)

It can be shown that for the symmetric coupling matrix employed, the matrix F in equation

(5.29)is givenforall I 1 m 1 M andl 1 n I N2 as

ll.)t,6-t¡nr+^:

Trn¡t-p(m),n

Tn,n

0

p(-) < I < p(r" + 1)- 1

l:p(h)tm-h VI<h<(--l)
otherwise

(s.30)

(5.31)

whereT:AS,and

p("): I u:l
p(u - r) + (M - u *2) 2 I u < (M + t)

5.6.4 DOA Estimation

The last estimates of the sensor positions, coupling matrix and complex s's are used in this step

to estimate the signals' DOAs. The last estimate of the signals' DOAs are used in a Newton

search to update the estimates of the signals' DOAs. The vector of the signals' DOAs after the

(k + l)thiterationis

0(k + r) : 0(k) - u l'j^-t(0(k)) .(g(k)) (s.32)

where H is the Hessian matrix for the DOAs, r is the gradient vector for the DOAs, and the

step length is 0 < u 1 l. Expressions for this Hessian and gradient, which are obtained from
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the cost function in (5.9), are givenbelow. If any signal has a known DOA, this signal's DOA

is not considered in (5.32). Note equation (5.32) could independently be used for the signals

in each cluster, since the clusters are disjoint; this is what was actually done, so computation

time could be minimised.

The lfuxl gradient vector is r(0(k)) : 0QlAe(k), and the N7xN7 Hessian matrix is

H(0(k)) : A2Q lae@)Aïr &). Now defin" ir,,, Td'l 00r: D(dp)n"p"fl, where D(Îr) --
(+Ur¡ lS¡aiag{xcos(00) - y sin(0o)}, and e, is the unit vector with all but the pth element

zero. Then from equation (5. I 8)

a8
a0, Ð ezf 

"i+roÉ, 
- ;f Lf,cH zt + ;f Lf,cHcr.õ¡ + Áf tH cH cÁ.p,õ¿)

teL(e)

: -2n t lzf co(0r)d..re[ét -;f tH cH co(do)a"oeflsr] (s.3 3)
(p)leL

I
I

2m Ð fzi -Éf tHcH)co(0,)n"o"[é¡
teL(e)

where I(p) is the set of all / indices corresponding to the cluster containing 0o.

From equation (5.34),

D lzf cns,@r)d'"r"[Ér ¡ "f co(0r)Ä'so"r"[Á¡
I€L(e)

-;f Lf,cH cD(do)ae, 
"Té, -;f tH cH cos,(lr)a'"r"[Át

-;f tH cH cD(oe)^0,"r.1.,1 Ì (5.3s)\ y/ ", " u 'J 
)

t lzf c(oz(e) + oçe,¡r,(0,))t e,e[Ã¡
te.L(e)

+ (;f ",$ { o(0,)cH co(o,)

-.tf tH cH c(o2(0r) + o(eo)o(ao))) 4"0"fl;r]

(s.34)

: -2n

where Dt,(2r): AD(lp)lð0, - oz(0r) : (-2r j lÀ)dicts{xsin(do) * ycos(do)}. Hence

Are
Fu

atQ
2m

a20p

Now from equation (5.34),

a2g | ;f Lf"cH co(0r)d..r"[Át

(s.36)

0oeaoq
+2æ

teL(e)
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-2m | ;f "n"l.Løo (dn) c H co (0 r) a..o"[é¡ (5.37)
teL(e)

where q I p but is inthe same cluster, and D(gn) : (¡2njlÀ)diag{xcos(gn) - ysin(do)}

Note the fact that Dt,(0r) and Àen"o"fl equal zero matrices has been used here.

5.6.5 Estimation of Complex s's

The last estimates of the sensor positions, coupling matrix and the signals' DOAs are used in

this step to estimate the complex s's. For each disjoint cluster of time-varying DOA sources

equation (5.13) is used, and for each disjoint cluster of time-invariant DOA sources equation

(5.14) is used.

5.6.6 Assumptions

The following assumptions have been made :

o the number of signals, present in each measured snapshot of array outputs and in each

estimated covariance matrix, is known 1241, 6, 245, 239, 247, 2421;

o a procedure is available for determining whether a signal has a time-varying DOA or a

time-invariant DOA.

A possible approach is now suggested (which v/e proposed in [3] for non-stationary detec-

tion), to detect variations in the DOA of incident signals. The time interval over which the

signal is present is divided into tr sub-intervals, of duration 7. Then -L covariance matrices

are estimated, with the óth covariance matrix (where b : I,2, ..., L) obtained over the interval

(l,bT), as follows 
t br

Êro : #T,,(t),H (t) (s.38)
1=l

Note, the duration ? chosen must be long enough to get a good estimate of Rl, and also short

enough so that Ê.1 represents only information at a particular time'

Eigendecomposing each of the -L covariance matrices, one obtains Êa the signal subspace of

Ê.¿, and Û6 the noise subspace of Ê.6. Using Ê1 as a reference, consider the following function

f Q) : llÊflÛ,ll' (5.3e)
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or alternatively

96

f (q : tuacelÊt¡È{ ûoûfl1 (s.40)

If the signal's DOA is time-invariant, then / should remain small for all ó, while if the signal's

DOA is time-varying I should increase/vary with á. Hence by considering this function it

should be possible to detect DOA variations.

Note that since mutual coupling and sensor position errors are both time-invariant over

typical radar dwell durations, it is possible to conclude any DOA variation detected by the

array is due to the received signal rather than the antenna array.

5.7 Simulation Example

As in chapter 4, simulations were performed for a 16 element, nominally equispaced linear array

withinter-elementspacing of d:0.4À. Theactualsensorpositionswere:¿m - md+L,r^atd

A^ : L!)^, where A,r^ and L,y^ arezero mean Gaussian random variables, both with standard

deviation of 0.I d. The coupling matrix used was an experimentally measured coupling matrix

from the Jindalee OTH radar's transmitting array (situated at Harts Range in central Australia).

The initial sensor positions were taken to be the nominal sensor positions, while the identity

matrix was used as the initial coupling matrix. The termination criterion was for the algorithm

to stop when the cost function Q changed in value by less than 0.1 percent.

In total thirty three sources were used, with signal-to-noise ratios of 30 dB. The number

of snapshots obtained from the time-invariant DOA sources was 500 (see the next section

for the algorithm's performance, for typical number of snapshots). Disjoint clusters of time-

varying DOA sources : a single-mode source (2 clusters), a multimode source (2 clusters),

a known DOA single-mode source (several clusters); in total 10 sources (14 signals) being

present. Disjoint clusters of time-invariant DOA sources : a single-mode source (2 clusters), a

multimode source (2 clusters), three single-mode sources (1 cluster), a multimode source plus

a single-mode source (1 cluster), a known DOA single-mode source (several clusters); in total

23 sources (28 signals) being present.

The results obtained are displayed in figure 5.3 :

o the cost function initially decreases rapidly, and then tends to level off after about 30 iterations;

o the signals' DOA estimates are good in most cases (note the first 8 DOAs are for time-varying

DOA signals, while the next 22DOAs are for time-invariant DOA signals). The largest DOA

erïors observed seem to be associated with clusters that have multiple signal eigenvectors (i.e.
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signal DOAs 17-22), and are probably due to array ambiguities;

o the magnitude and phase of the coupling matrix used, and the coupling matrix estimated, are

in close agreement (the phase is unwrapped for easy comparison);

o the errors in the r and y coordinates, after the final iteration (*), are much smaller than the

effors in the nominal values (o).

As in chapter 4, to further analyse the performance of this algorithm, it is necessary

to compare the sidelobe levels obtained using the estimated parameters with those of the

uncalibrate d array. The weighting required to obtain minimum average sidelobe levels, given

the sensor positions and the coupling matrix, is (see Appendix A)

(ô¡r)-1K-1â(d,)
*(0")

àH (0,)x-tà(0")

where c is the estimated coupling matrix and â(/) is the steering vector formed using the

estimated sensor positions. The matrix x : [ â,(Ó)à(Ó)u cos þdS, where the range of the

integral is over the sidelobe region. The array beampattern is then

B e"(ó) : llwrl (9,) 
" 
(Ðll'

(5.41)

(s.42)

where do is the steer direction of the beam, / is the DOA considered, "(d) is the actual steering

vector (including the effects of mutual coupling). Using equation (5.42) the sidelobe levels

can then be calculated.

In order to obtain the sidelobe levels using the parameters estimated in figure 5.3, the

sidelobe region required to compute matrix K was chosen so that the resulting beam had the

same beamwidth as that obtainable using the Hamming window. Figure 5.4 shows the sidelobe

levels for this example, where both the average and peak sidelobe levels are shown as a function

of azimuth. The sidelobe levels for the estimated parameters (--) is much better than the

sidelobe levels for the nominal parameters (-.-), and is close to the sidelobe levels forthe

actual parameters (-). It is hence concluded that the algorithm has performed well here.
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matrix; erïors in nominal (o) and estimated (*) sensor positions.
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Figure 5.4: Average and peak sidelobe levels for the nominal parameters (-.-), estimated

parameters (--) and also the actual parameters (-)'

5.8 Monte Carlo Analysis

A Monte Carlo analysis is required to analyse the algorithm's perfofinance in detail. The

performance measure considered here, as in chapter 4, is

0
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mÞ
o)
!l.=
-o-
E

nQ):ffi*roo (5.43)

where ASL^"*(0), ASL."t(0) and ASL"ú(0) are the average sidelobe level obtained with

nominal parameters, with estimated parameters and with actual parameters, respectively. Each

quantity is expressed in dB, and as a function of look direction d. Hence if r¡Q) is small (close

to zero) the algorithm has not performed well, while if r¡(0) is large (close to hundred) the

algorithm has performed well.

Initially 100 simulations were conducted, as shown in figure 5.5, with the sensor position
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errors being randomly generated in each case; the same coupling matrix was used in all these

simulations. As can be seen the algorithm has performed very well in all cases and there are

no failures. The results obtained here are however not as good as those in chapter 4, but note

different types of sources are used here. Later both algorithms, using the same type of sources,

are compared.

To test the algorithm's performance for typical SNRs and number of snapshots obtainable

from OTH radar sources, simulations were conducted for different SNR-snapshot combina-

tions. Two combinations are shown in figure 5.6, where the SNRs and number of snapshots

are 20 dB and 5 respectively in the top image, and 30 dB and l0 in the bottom image. Note

however the SNRs of time-varying DOA sources (single-snapshot sources) are 30 dB in both

cases. Clearly the algorithm has performed very well, robust results being obtained even for a

few snapshots (note the performance of the algorithm is also considered in section 6.2.5, and

will be shown to be good). It has, however, been observed that poor results are obtained when

the SNRs of time-varying DOA sources (single-snapshot sources) is not high (below about 25

dB), as would be expected. Note the Cramer-Rao lower bound standard deviations (for high

SNR), are shown in chapter 6, to be inversely proportional to the square-root of the SNR and

the number of snapshots; thus the SNR of a time-varying DOA source needs to be 7 times the

SNR of a time-invariant DOA source, for both the sources to contribute equally.

The algorithm's performance can be further improved by using better initial values for

the parameters being estimated. As mentioned earlier for the coupling matrix, instead of the

identity matrix which has been used for these simulations as the initial value, any modelled

or previously estimated coupling matrix could be used. While in general convergence to the

global minimum cannot be guaranteed, the results obtained indicate that good performance has

been obtained for typical initial conditions.

5.9 Special Case

The method presented in chapter 4 was for using disjoint single-mode meteor trail echoes to

perform array calibration. With only this very important class of sources, the method in this

chapter is also able to perform array calibration. Hence its performance for this special case is

considered, and results obtained compared with those achieved for the method in chapter 4'

As mentioned earlier, for the case of 1ú disjoint single-mode sources (of time-invariant

DOAs), -ly' covariance matrices Â, can be estimated. Each of the covariance matrices contain

only one single-mode source, and hence have only one signal eigenvalue. The cost function in
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(5.9), for this scenario, simplifies to

103

Q:Dllê,- c^(0,)s^llz
N

n=l
(s.44)

where ô,, is the eigenvector coffesponding to the signal eigenvalue þrincipal eigenvector) of

Ê.,,.

The cost function in equation (4.37) is formulated using the noise subspace, while the

cost function in equation (5.44) is formulated using the signal subspace (in this case just the

principal eigenvector). Hence similar performance is expected when the sources have high

SNRs and large number of snapshots; that is both methods are expected to perform as well

asymptotically. The performance of the methods for finite SNRs and snapshots however could

be different.

Note further the optimisation procedure in each method are quite different. The method

in chapter 4 iterates sequentially between DOA estimation, sensor position estimation and

coupling matrix estimation, until the cost function changes in value by less than 0.1 percent.

The method in this chapter has a complicated iteration sequence (see figure 5.2) which was

obtained heuristically. The methods also use different techniques for estimating each parameter.

Hence the comparative perfoÍnance of the methods are illustrative of not only differences in

the cost functions themselves, but also of differences in the optimisation procedures and the

parameter estimators.

5.9. 1 Simulation Example

The performance for the special case is first illustrated with a simulation example, and then

the results obtained are compared with those in figure 5.3 which was for a variety of sources.

As in chapter 4 thirty disjoint single-mode sources, with SNRs of 30 dB, are considered. The

sources are equally spread from -90o to *90o in azimuth. The covariance matrices for each

single-mode source is created from 500 snapshots (see below for typical number of snapshots)

of the array output.

As before a l6-element nominally equispaced linear affay, with inter-element spacing of

d : 0.4À, was considered. The actual sensor positions v/ere generated as before, and the

experimentally measured coupling matrix from the Jindalee transmittin g array was used. The

algorithm is run until convergence.

Figures 5.7 and 5.8 show the results obtained for the special case :
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o the cost function decreases rapidly in the first few iterations, and then levels off by about the

3Oth iteration;

o the DOA estimation effors are less than about a quarter degree;

o the coupling matrix used and that estimated are very similar;

o the errors in the estimated sensor positions (*) are significantly better than those for the

nominal sensor positions (o);

o the sidelobe levels obtained when the estimated parameters are used for affay processing are

very good.

These results are comparable to the results in the simulation example for the method in

chapter 4, figure 4.5-4.6, and is better than those in figure 5.3-5.4 where a variety of sources

were used. To obtain a good comparison, however, a Monte Carlo analysis has to be conducted.

5.9.2 Monte Carlo Analysis

Both the asymptotic performance and performance for finite/practical SNRs and snapshots (as

would be the case in practice), are considered. Again the following scenarios are considered :

o case A : 30 dB SNRs and 500 snaPshots;

. case B:20 dB SNRs and 5 snaPshots;

o case C : 30 dB SNRs and 10 snaPshots.

Case A should illustrate the asymptotic performance, while case B and C illustrate the

finite/practical performance. One hundred simulations were conducted for case A and is

shown in figure 5.9. For both of the finite/practical cases, thirty simulations were conducted,

the results being shown in figure 5.10. Comparing these results with those obtained in figure

4.7-4.8, one notes the performance for case A and C are very similar for both methods; both

being very good in each case. Comparing the performances for case B one notes, unlike the

method in chapter 4 (section 4.4), no failures are observed here. Good results are observed

here, like the method in chapter 4 when no failures occur.

Hence it is concluded that both methods have good asymptotic perforrnance and fi-

nite/practical performance, except that the method in chapter 4 tends to have a few fail-

ures. This is in accordance to what one would expect, since the method in chapter 4 has a

MUSIC-like cost function; MUSIC being well known to have good asymptotic performance

1212, I04, 108, 159, 30, I l9], but also of being able to perform poorly when the SNR and

number of snapshots are small 1212, 206, 262, 1891.

The dependence of the algorithm on the number of sources is shown in figure 5.1 1. The
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Figure 5.8: Average and peak sidelobe levels for parameters estimated in figure 5.7 - nominal
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same affay is considered for each of these simulations, where 500 snapshots are obtained from

each of the 30 dB disjoint sources. The algorithm fails when the number of sources is less than

16, since the number of sources is then insufficient for this algorithm to estimate the unknown

parameters. These results are as good as those obtained in chapter 4 (see figure 4.9).

V/hile ionospherically propagated meteor echoes are far-field returns, line-of-sight meteor

echoes are often near-freld returns (see chapter 7), and so the sensitivity of the algorithms to

near-field sources is now considered. While radars can approximately estimate the range of

returns, and so one can account (to some extent) for their near-field steering vectors, it is still

of interest to determine how sensitive the algorithm is to unaccounted near-field sources. Thus

the performance of the algorithm was investigated for the case where the source wavefronts are

spherical and emanate from specified ranges (since the range effects the amount of wavefront

curvature). The same affay was considered for all the simulations, where 30 sources were

present in the absence of any noise. The integrated sidelobe level (ISLB) obtained are shown
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Figure 5.1 1 : Dependence on number of sources, for the special case.

in Table 5.1, for sources at the specified ranges (note the array aperture was 6)); the ISLB for

the nominal case was -9.6 dB. The algorithm failed for ranges less than about l0l, while for

larger ranges the performance improved with range; the performance being range independent

for ranges greater than about 250À. The performance of the algorithm in chapter 4 was very

similar to that shown in Table 5.1, except that it also failed for the case where the range was

less than 10À. These results indicate the algorithms are robust, provided the sources are not

very close (less than about ten times the array aperture length) to the radar

Range (À) 6 l0 25 60 100 250 600 oo

ISLB -21.1 -28.9 -3 1.8 -32.4 -32.1 -32.7 -32.7

Table 5.1: Effect of near-field sources on ISLB

5.10 Error Surface

The cost function I error surface is analysed in this section. As mentioned in chapter 4, it is

important to investigate the smoothness of the error surface and to determine if it is highly

multi-modal. The error surface is analysed for a 4-element array (as in chapter 4), and also a
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theoretical analysis is conducted for a 2-element array.

5.10.1 4-element Anay

In this section the "special case" cost function in equation (5.44) is first analysed, and then the

general cost function in equation (5.9) is analysed. As in chapter 4 the nominally uniform linear

4-element arÍay,with the position effors in Table 4.1, is considered together with the Jindalee

coupling matrix. Ten disjoint single-mode sources equally spaced over l80o in azimuth are

considered, with the exact covariance matrix for each source determined (as before). The

covariance matrices are eigendecomposed and the principal eigenvectors e,, obtained. The

nominal sensor positions are r"^ : md and yl,: 0, and the identity matrix is used for the

coupling matrix. Bearing estimates and the complex scalars sn) ate determined as in section

5.6.1. These quantities are then used to calculate the error surface; two parameters being

simultaneously varied while the other parameters are fixed at the values determined above'

First the cost function was analysed while the sensor position (both r and y coordinates) of

the third sensor was varied i.e. Q @3,U1). Figure 5.12 shows the error surface when the r and y

coordinates were varied up to 0.4À around their nominal coordinate values. Note two different

sub-figures of the same error surface are shown here to better illustrate the error surface. As

in chapter 4 the error surface Q("t,,yr) ir smooth, not multi-modal, and the curvature at all

points are towards the minimum. Again as in chapter 4, for displacements up to 0.8) from

the nominal values (not shown), curvatures away from the minimum were observed; position

effors of this size however not being of interest. Good error surfaces were also obtained for

the coupling parameters and the complex scalars s,,.

The error surface Q(0t,05), for two DOAs, is shown in figure 5.13; where the true values

of dr and 05 arc -81o and -9o respectively. As in chapter 4, only over a small region is the

curvature towards the minimum. This critical region is smaller than the corresponding region

in chapter 4 (figure 4.18) and so initial bearing estimates need to be closer to the true values

for this algorithm than that in chapter 4. Note also the rest of the error surface in figure 5.13 is

more highly multi-modal than the error surface in figure 4.18. The critical region was smaller

when the position effors were twice the amount infigure 5.13, and the shape of the error surface

did not change much when estimated covariance matrices (from 5 snapshots and l0 dB SNR

sources) were used.

The signal DOAs are the most sensitive parameters and so the bearing estimation procedure

is of most importance. The Bartlett processor is robust, and so the results obtained in this
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chapter have been good.

The error surface for the general case (considered prior to section 5.9), with eight time-

invariant DOA signals and seven time-varying DOA (single-snapshot) signals, was also con-

sidered. The surface Q(0t,,á5), fortwo sources with true DOAs of -79" and - 10o respectively,

is shown in figure 5.14. As in the special case the curvature towards the minimum occurs only

over a small critical region, with the surface otherwise highly multi-modal. The critical region

is somewhat bigger than that for the special case, but is flatter and hence the true minimum

less well defined. The less well defined minimum (which is due to single-snapshot sources)

is possibly the reason why the results for the general case were not as good as those for the

special case. The results obtained for the other unknown parameters were not very different

to that for the special case. Note the error surfaces for the general case differed somewhat for

each realisation, since single-snapshot sources are involved.

5.10.2 Theoretical Analysis of 2-element Anay

The error surface in equation (5.44) is now analysed analytically to determine how the unknown

parameters effect the surface. In Appendix C analytic expressions are derived for this error

surface. For the 2-element array considered in Appendix C, the error surface \Ã/as analysed for

each of the unknown parameters, while the other parameters were fixed at their true values'

While this provides a simplified view of the error surface, it has been found to provide a good

intuitive understanding.

One sensor was arbitrarily chosen to be at (0,0), while the other sensor was chosen to be

along the r-axis at (r,0). The symmetric coupling matrix was arbitrarily chosen to have a first

element of unity, the coupling matrix being

C-
I

c1¿i'l't

c1e.i'þr

c2¿i"l'z

(5.45)

As derived in Appendix C, for the source DOA estimate á,,,

Q rQ")

d'QtQ,)

d0,

,PQtQ")

rr" (r - cos (Trsind," - "á"r))

-zffrc-.orá,,n (Tf sind,, -.i'a,l)
2ffx-þi"a, rt" (Trsind,, - ri"rî,1)

(s.46)

d20n

(s.47)
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++ cos2 0n"", P+rsin d," - ,i, a,1)l (5.48)

^ 
'" \^ "'/J

where Kn : 2ls^12(cl + ,?r). As expected when 0n : 0n, Q, :0 i.e. the global minimum.

The location of local minima/maxima can be obtained by determining the locations where the

first derivative is zero. This occurs when ân : *:90o (i.e. end-fire directions) and when

f trt" ,,'* - sin',,l : pll

: -=rPr,, * sing,
2(r l\sin 0,

(5.4e)

(s.s0)

(s.s2)

(s.s3)

where p : 0, +1, +2, t3 etc (any integer). The minima corresponding to p : 0 is the true

solution (A^ : d,), while all other solutions are incorrect. Note for all solutions corresponding

to even p values Qt :0, and the second derivative at these solutions is

¿'8tQ,) : ffo,cos'â., (5.s 1)
d20n p even

which is greater than or equal to zero (note 11, > 0). Hence these solutions are minima. For

the solutions corïesponding to odd p values Qt : 2I{., and the second derivative at these

solutions is
ÊQtQ")

d20^

which is less than or equal to zero; these solutions hence are maxima. So the error surface for

the source DOA has multiple minima and maxima, and good initial estimates are required to

prevent conver ence to an incorrect solution.

The second derivative computed at the true solution, indicates how shallow the error surface

is in the vicinity of the true solution; the greater the value the less shallow the error surface.

Substitutin g 0. : 0n into equation (5.48) gives

I 4r2r2
| : -!-i¡,cos'É.nlpodd A-

d''QtQ*)
d20^

: g,r2(n lÀ)'1",1'k1 ¡ cl) cosz o,
0n=0n

which indicates the shallowness of the error surface decreases : (a) with increasing mutual

coupling; (b) with increasing inter-element spacing; and (c) as the source DOA approaches

broadside direction. Note that condition (c) can be observed in figure 5.13, where the DOA

closer to broadside has a less shallow minimum.
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For the sensor position error Ar : ã - r,

I{^sitf 0.

116

(s.s4)

(s.s5)

(s.s6)

(5.60)

Qr(L")

dQz(Lr)
dA,r

azqr(nr)
d2 L,x

io-(r-"", (ry.*r"))

þ,+ tt"sin d,"'* (ry,in a")

i:+ Ii n sin2o,, cos ('Y,in a')

As expected Q, : 0 when Ar : 0 (i.e. the global minimum). For the case of a single

calibration source (1/ : 1), the first derivative is zero when 0n : 0 or when

(5.s7)

p
(s.58)

À

where again p is any integer. The solution coffesponding to p : 0 is the true solution (Ar : 0),

while all other solutions are not correct. Solutions which correspond to even p values result in

Qz: 0, and the second derivative at these solutions is

&qrçm)

2rA,r
stn d'

Ar
p7t

2sin0n

d2L.r
(5.5e)

p even

which is greater than or equal to zero; these solutions hence are minima. The solutions

corresponding to odd p values give Q2 - 2Kn f 0, and the second derivative at these

solutions is

: Ço-sirf o*

4rz

podd À

which is less than or equal to zero; these solutions are hence maxima. V/hile the error surface

for the position error is multi-modal, note the closest maxima to the true solution are at

lLr I Àl > 0.5 (see equation (5.58) and note the closest maxima are when P : Xl and also note

that lsin(d")l < 1). Hence initial position estimates may have large errors, and so position

estimates are not as critical as source DOA estimates.

The second derivative at L,r: 0 is

2

(5.61)
Ar=0

¡/ o-2

2þl',"1'G? 
+ 'l¡sin2 

o,

The shallowness of the error surface decreases with increasing mutual coupling, but in this
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case the shallowness increases as the source DOA moves towards broadside direction.

For the coupling amplitudes,

¡¡

tt7

(s.62)

(s.63)

(s.64)

(s.6s)

(s.66)

(s.67)

(5.70)

(s.71)

Qt(êt¡

dQt(¿')
dèt

d'QtGt)
d2êt

Q{ôr¡

dQc(¿z)

dêz

d'Qq?r)
d2ôz

dLrþt

d'Qt(L,,þt)
d'Lrþt

Ð41'"1'

l2ls"l2(c2,-2q6¡èl)
n=l
¡¡

l+ls"lzQr - cr)

Dl""ltk7-2czôr+ ¿7)

n=l
¡r

n=1

n:1
¡r

n=1
N

n=l

lz1""l2Qz - cz)

Ðzl""l'

The first derivatives for the coupling amplitudes are zero only when êt : ,t and è,2: cz' This

indicates that only one minimum exists, and, as expected, the respective cost functions aÍe zero

under these conditions. The second derivatives are independent of the coupling amplitudes,

since the cost functions are quadratics. Note also the shallowness of the error surface is

independent of the source DOAs and the position error.

For the coupling phases,

¡r

Qt(Lrþt) \ +ls"l2 cl( 1 - cos(Arl1 )) (5.68)
n=l
NdQs L'þt)
| +ls"l2rl sin(Atl1) (s.6e)

D +l""l2c]cos(Arl1)

n=l
¡¡

n=l
¡\r

n=l
N

n=l
¡¡

Qa(Lrþz) Ð zl" 
"l' "70 - cos( Atl2) )

dQa(Lrþz)
lzls"l2clsin(Arl2) (s.72)

dLrþ,

d'Qu(Lrþt)
I zl""l2 clcos(Atl2) (s.73)

drLrþ, n=I

where Lrþ, : ,Îtt - rþt and Ltþ2 : ,þz - ,þ2. Asexpected, the respective cost functions are zeÍo

when Lrþ, :0 and Lrþ, :0. The first derivatives are zero when Lrþt : ptr and L,tþ2 : ptr
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respectively. The true solution is clearly when p : 0, but other minima (even p's) and maxima

(odd p's) exist too. Good initial estimates are however not necessary since the distance between

the true minima, and the closest maxima to it, is large (tr radians).

The second derivatives, evaluated at the true solutions are

d'Qs(Lrþr) ¡,/

| +ls"lzcl (s.74)
d'Lrþt

d?Qe(Lrþz)

drLrþ, \zls"l2cl (s.7s)

(s.16)

(s.77)

(s.78)

(s.7e)

(s.80)

(5.81)

Arþt:0 n=1

¡¡

Atþ2=0 n=l

The shallowness of the error surfaces decrease with the increasing amplitude of the corre-

sponding coupling coefñcient, and are independent of the source DOAs and position error.

For the complex scalars s,,

8'(13"1)
dQt(ls"l)

d,li'"l

dre, l,ô" l)
d''13"1

8s(Aó")
dQ8(L6.)

dL6.
d2Q8(L6")

L,(lt,l' -21"^ll3"l + 13"12)

2L"(|3"1 - l""l)

2L".

2ls^12 L*(l - cos(Aô"))

2ls*12 L,sin(aá,)

d2L6*

where Ln: | +2c?+cl+cr(hi¿-i'Þr *hn¿i'Þt)-fc1c2(hn¿i('l'z-'l'r) *h;ei(ø,-'l'z))and

Aó,, : 8. - 6n. The onlyminimum for l3,l occurs when 13, I : ls,l, and the second derivative

is independent of l,ô,1 since the cost function is a quadratic (with the shallowness decreasing

with increasing mutual coupling). The first derivative for 46,. is zero when Aô,, : ptr. The

true solution occurs when p : 0, with other minima (even p's) and maxima (odd p's) existing;

initial estimates for Aô, are not critical since the minimum at the true solution is well separated

(n radians) from its closest maxima.

5.11 Performance with Larger Model Errors

The algorithm's performance for larger model effors is shown, in figure 5.15 for the special

case, and in figure 5.16 for the general case. In each case sensor position effors with STD of

0.2d, 0.3d and 0.4d, are considered. The performance for the special case is good, for a STD
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of 0.2d, and in most cases for 0.3d; the performance for a STD of 0.4d being however poor.

The performance for the general case is good for a STD of 0.2d, but is poor in many cases for

0.3d and in all cases for 0.4d; the general case being worse than the special case, due mainly

to only a single-snapshot being obtained from some sources (in the general case). The results

for the special case is comparable to those obtained in chapter 4 (see figure 4.19).

5.12 Conclusion

A new array calibration approach which can use disparate sources in the HF environment, to

estimate mutual coupling and sensor position errors, has been presented. The performance of

the algorithm has been analysed using simulations, illustrating that the algorithm significantly

reduces the array sidelobes. It was also shown that the algorithm performed well for typical

SNRs and number of snapshots obtainable from OTH radar sources. In general, while con-

vergence to the global minimum cannot be guaranteed, good results are obtained for typically

available initial conditions.

The performance of the algorithm, for the special case where all the sources are disjoint

and single-mode (as considered in chapter 4), was shown to be comparable to that obtained in

chapter 4. The algorithm's error surface was analysed and it was shown that the source DOAs

are the most critical parameter.

In chapter 6 the Cramer-Rao lower bound is derived and analysed, for the problems con-

sidered in both this chapter and chapter 4. In chapter 7 sources present in the HF environment

are investigated from aî aÍray calibration perspective.
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Cramer-Rao Lower Bounds

In this chapter the Cramer-Rao lower bound (CRLB) is derived and analysed for the array

calibration problems considered in both chapters 4 and 5. The chapter starts with the derivation

of the CRLB for the problem considered in chapter 4, i.e. for the case where all the sources

are disjoint sources. This CRLB is then analysed : (a) to investigate the variation of the bound

with SNR, number of snapshots, number of sources, etc; and (b) to compare the performance

of the algorithm in chapter 4 with the bound. Then the CRLB expressions are generalised

for the problem considered in chapter 5, and the performance of the algorithm in chapter 5 is

compared with this CRLB.

The CRLB for anay calibration has been considered in [148], [170, 168], [250], [83], [66],

¡38, 1391, 12351, [140], U96, 1941. Only [170, 168] and [140] consider multiple sources

which are disjoint. In [170, 168], only sensor position errors are considered, and prior statistics

are used in the derivation of the CRLB. In [a0] the source DOAs are assumed to be known

a priori and the coupling matrix is unstructured. Here the CRLB is determined for disjoint

sources (and later for disparate sources), where the sensor positions, symmetric coupling matrix

and source DOAs are unknown.

6.1 CRLB for Disjoint Sources

In this section the CRLB is derived for the problem considered in chapter 4, where disjoint

(single-mode) sources are used to estimate sensor positions, mutual coupling and source DOAs.

Thelikelihoodfunctionforthecompletedataset {"*(t),t:I,2,-..,7&'n:1,2,...,I/}(see
r22



'\¡/here ,,(t) : lrT þ),rT(t), ...,rTuþ)l', the parameters being estimated v : l0r ,*r ,vr ,"rlr
and the M NxM N matrix É is

R1 0 0

oRz 0

6. 1. CKLB FOR DISJO/NT SOURCES

chapter 4) is given by

but since È, É-t , 0É.10.üt n are all block structured matrices

N

plúQ), ú(2), ..., ;(\ I ul:,I ti' .*p (- ;" 1ú) R- I 
¿ (ú ) )

J*t : Jr": T trace{"-'#u #}

00 R¡¡

where the exact covariance matrix of the nth source is R," : o?c^(O^)"H (0,)cH -f o2*le¡

(for spatially white noise), assuming all trail echoes have SNR = ""1"k. Note it has been

assumed that gain/phase errors have been calibrated out, and so the covariance matrix is free

of gainlphase effors.

The likelihood function is really the probability density function of the data, viewed as a

function of the unknown parameters. The "sharpness" of the likelihood function, at its peak,

determines how accurately the unknown parameters can be estimated [109]. The negative of

the second derivative of the logarithm of the likelihood function (at its peak), is the curvature of

the log-likelihood function, and denotes the sharpness of the likelihood function. The average

curvature of the log-likelihood function, is the limiting accuracy to which unknown parameters

can be estimated, and defines the CRLB.

The unconditional CRLB can be shown to be

CRI,B(.[) : J-t (ú)

R-

where the elements of the symmetric Fisher Information Matrix (FIM) arel2l3l

t23

(6.1)

(6.2)

(6.3)

(6.4)

J*t : T \trace
ôR,
A\t rn=l

R; (6.5)



6. 1. CKLB FOR DIS/OINT SOURCES t24

6.1.1 DOA - DOA Terms

Since we have disjoint sources, ðP""f ð0¿ is a zero matrix for n f l, and hence Jso,s, is zero for

kll.Now

r. , ( '[)n-, ,'4r¡l (6.6)Jor,ot : f'trctce 
t*;'ãfu 

*;'ã0_ 
I

: To!trace{Rf rcåpo 
Q¡)"H (e)ctRttcà6n(0¡)uH (0r)c'

+ R; I c ä6 o (0 ¡) uH ( d¿ ) cH n; I c a(0 ¡,) àf;rQ r) c'

+R; t c a(0 ¡,) àfr(d¡ ) cHn;' c à6 o(0 ¡) "H 
(0 r)c'

+Rtlc"@)àfre)cHn;tca(l¡)àfr!r)c' j (6.i)

: 2To[ft {troce{nit càru@òaH Qk)ctR;t cà6o(0¡,)uH (0r)c'

+Rt' càso(ï¡,)uH (0¡)cH n;t c"(g¡)àf*(B*)c"Ì) (6.8)

J¡x,0x : 2To!ft {trace{nl'càro?¡,)"H Q¡)ctRtt
c(à6oQ¡)au Qr) ¡ "(0¡)"f-(B*))ctÌ) (6.e)

where äeo(îr) : ô"(0n)100x : o(0¡)"(0e) (with o(9¿) : (+2rjlÐdias{xcos(á¡) -
y sin(O¿))), and the property trace{zH} : conj(trace{z}) has been used in equation (6.8).

6.1.2 Sensor Position - Sensor Position Terms

The sensor position entries are

J,0,,, : rfLror"{*;'P*;'þl
n=r """ ì."r orr'un oq I

N
: r "I D tr a ce {n;t c ä, o (0,) uH (0,) cH n;t c à", (0,) ^' (0 *) c'

n=l

+R; t c à,, n (0,) aH (0.) cH n;l c 
"ç0 ^¡ 

à{,(0 *) c'
+ R; I c a(0.) à! o(0,) cH n;t c à,, (0,) uH (0 *) cu

+R; 1 c a(0,) à! *(0,) cH n;t c 
"(0 ") 

àY,(0 ò cH j
¡/

J,o,,, : 2TolI n {tr"""{n;tçà,n(0,)uH (0^)cH

n;rc(å,, Q)"H Q) + a(0,)a!,(0"))c" jl

(6.10)

(6.11)

(6.t2)
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where à,u(0*) : 0"(0")lïxp : dx¡ O "(9,) (see section 4.7). The y coordinate and r-y

coordinate terms are similarly derived, and are

¡/
Joo,o, : 2To[:O {tr"r"{n;l àooçï.¡u'(0*)"u

n;lc(år, (0*)uH (0,) ¡ "(0^)àf,(0"))c' 
j\

¡t
J",,0, : zTo[t n {tr"r"{n;l à"*(0.)^H(0,)cH

n;rc(år, e)^H (0,) ¡ "(o*)àf,(0"))c' 
j\

where àoo(0") : 0"(0") l}yn : dyk O a(d') (see section 4.7)

6.1.3 Coupling - Coupling Terms

The coupling parameter entries are

(6.13)

(6.t4)

(6.rs)

(6.16)

(6.17)

T-J,t ,cI

J.n,.,

r { tro""f o--'T- ' ân- ì

7=, t '" o;*;' u; J
N

r "! D tr a ce {n;t c., u(0 n) 
^H 

(0,) cH n;t c 
", ^(0 

n) uH (g *) c'
n=1

+R;1 C"o^(0,)^H (g^)cH n;t ca(0*)"H (0")öI

+R;' Ca(o,)aH (o.)c!*n;t c",u(o^)uH (o*)c',

+R;t ca(0,)"H (o")c!rn;t c"(g^)"H (0")cy,j
N

2To! | m {tro'e{R;rö"0. Q)"H (0,)ctR;'
n,:7

(ö", "(9,)r' (0.)"' f ca(d,)a' (0 ")c|)j\

T o[ tr a ce {n* 
I c (åBo (0 ò aH Q ù -l a(0 r") àf;r(0 r)) c'

R;rc(å,, (ÎùaH (0k) + "(1¡)àf,(eù)c' 
j

where matrix ö"0 : 0c f ðc¡,, c¿ being the amplitude/phase of an element in the symmetric

coupling matrix. Note C"* has only one non-zero element if c¡ is a diagonal element, and has

only two non-zero elements (of equal value) if c6 is an off-diagonal element.

6.1.4 Cross Terms

The cross terms can be similarly derived as

Jto,,,

(6.18)
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Jox,ct

J 
"r,r,

To!trace{n[1c(aBo QùaH Qù + "(0¡,)àf*(do))ct
Rl,1(c"¿a(d n)"H (0r¡cH f c"(9¡)aH(B*)cl)]

N
r "[ Ð tr a ce {n;t ( ö 

"0 
.(d, )" (0,) 

"' } ca(0, ) a' (0 
") 

c!,)
n:1

R;rc(å", (0^)"H Q) + a(p")åfl(r.ò)cH\

126

(6.1e)

(6.20)

6.1.5 CKLB Analysis

The array calibration problem can only be solved when the CRLB exists, hence the existence of

the CRLB addresses the question of identifiability i.e. whether the sensor positions and mutual

coupling can be estimated, and hence if array calibration can in fact be performed. Further,

since the CRLB gives the minimum variance that an unbiased estimator can obtain, it gives the

accuracy attainable under given scenarios. Analytically analysing the CRLB for this problem,

to study the attainable accuracy andthe identifiability conditions, is however extremely complex

and hence non-analytic results can only be obtained in general; the exceptions being for

simplified cases, as for example in section 6.1.7.

In this section the attainable performance is investigated (non-analytically) for a 4-element

arïay, where both sensor position errors and mutual coupling are present. Consider a nom-

inally uniform linear 4-element array with inter-element spacing of d : 0.4À; the randomly

generated sensor position effors in the r-coordinate and y-coordinate being given in Table 4.1.

The coupling matrix employed was experimentally measured from the Jindalee OTH radar's

transmittingarray tl36]. Unless specified otherwise, l0 sources equally spaced from -90o to

*90o in azimuth, each with SNR of 30 dB and 500 snapshots are considered.

Since the location of one sensor and the direction to another sensor are assumed to be

known, there are only 5 sensor position parameters, (2M - 3), which are unknown. For the

coupling parameters, since a symmetric coupling matrix is assumed and the constraint that

cn : I is placed, 18 coupling values (M (M + 1) - 2) are unknown. Finally since all DOAs

are unknown, for 10 sources 10 DOAs (N) are unknown. The total number of unknown

parameters is then 33 (the signal and noise powers are assumed to be known).

Figure 6.1 shows the CRLB as a function of the number of snapshots, for the estimation

of the third sensor's y-coordinate (-) and r-coordinate (--), and the coupling value c12's

amplitude (-.-) and phase (...). The standard deviation (STD) values for the sensor position

are in units of wavelengths, while the coupling value phase is in units of radians. While the

number of snapshots for meteor trail echoes is typically less than about 15-20 (see chapter
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Figure6.l: CRLBvariationwithnumberofsnapshots: thirdsensor'sy-coordinate(-) and

r-coordinate (--), and c12's amplitude (- -) and phase (...). The standard deviation values

for the sensor position are in units of wavelengths, while the coupling value phase is in units

ofradians.

7), the behaviour for higher values gives useful insight. The STD values indicate that good

array calibration accuracy can be achieved for 10 echoes with their typical 20-30 dB SNRs and

typical number of snapshots (5- 15) : for 10 snapshots this figure indicates, the sensor position

can be estimated up to about 0.0051, coupling amplitude up to about 0.003, and the coupling

phase up to about 0.015 radians.

The STD variation observed in figure 6.1 is in accordance with the I lt/T fall off expected,

and indicates that if more snapshots from meteor trail echoes can be obtained, the performance

can be improved. Note it has been assumed that each snapshot of a given meteor trail echo is

independent, even though meteor trails are passive sources (as they reflect energy rather than

transmit energy), since the scattering is a rapidly time-varying process ll32l.

The STD variation with SNR is shown in figure 6.2 lor a raîge of meteor echo SNRs

and for 500 snapshots : STD values for l0 snapshots are simply 50 times larger. The

monotonically decreasing STD values with SNR indicates the problem is well defined, and

these results indicate the STD is proportional to I l\ßm. As expected, the calibration

accuracy achievable for the third sensor's ø-coordinate and y-coordinate position, are similar.
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Figxe 6.2: CRLB variation with SNR : third sensor's y-coordinat. (-) and r-coordinate

(--), and c12's amplitude (- -) and phase (...). The standard deviation values for the sensor

position are in units of wavelengths, while the coupling value phase is in units of radians

Figure 6.3 shows the STD variation with number of sources. The performance attainable

increases rapidly initially, and then improves more gradually. The FIM was non-invertible,

and hence the problem non-identifiable, for less than four sources; indicating that for the given

scenario, the information provided by less than four sources is insufûcient to estimate the

unknown parameters. It can be concluded from this figure that the more sources used for array

calibration, the greater the achievable accuracy. Howeve¡ since the curves start to flatten off

for high number of sources, the improvement obtained by adding further sources becomes

minimal. Note for this 4-element array, the beamwidth of the conventional beamformer is

lv 30o (æ (0.381) l(Md,) radians), so there are only six independent beams : thus one would

expect that the STD versus number of sources would fall off rapidly until there are six sources,

assuming the sources are equally spread, and the performance improvement obtained by using

more than six sources to be small. Note similar results were obtained in figure 4.9, where the

algorithm's performance was investigated as a function of the number of sources (but for a

16-element array).

It has been mentioned in I I 3 8] that b etter arcay calibration accuracy can be obtained by using

t28
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Figure 6.3: CRLB variation with number of sources : third sensor's y-coordinate (-) and

r-coordinate (--), and c12's amplitude (- -) and phase (...). The standard deviation values

for the sensor position are in units of wavelengths, while the coupling value phase is in units

of radians.

"active array calibration" (special sources with known DOAs) as compared with "passive array

calibration" (sources of opportunity with unknown DOAs). Figure 6.4(a) shows the CRLB

of the third sensor's y-coordinate, for the standard case (-) together with some important

special cases. The dashed curve (--) shows the performance achievable if the source DOAs

are known a priori. The improvement for sensor position estimation is a factor of about 2.5-

3, while for the coupling amplitude (not shown) and coupling phase (see figure 6.a@)) the

improvement is a factor of about 10. Hence Active Array Calibration does perform better, but

clearly the difference can be offset by the use of sources with higher SNRs and number of

snapshots (and to some extent by using a larger number of sources).

Also shown in figure 6.4 is the CRLB for the case where other combinations of parameters

are known a priori. For sensor position estimation, knowing the coupling values a priori (...)

gives slightly better results than knowing the DOAs (--), while as expected knowing both

the coupling and DOAs a priori (- -) gives even better performance. For the estimation of

c12's amplitude (not shown), the difference in perfoñnance between the three cases is small,

with the best accuracy obtained with both known DOAs and sensor positions (as expected). In

a

\
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the case of c12's phase (see figure 6.4(b)), knowing the sensor positions (...) u priori is slightly

worse than knowing the DOAs a priori (--), and again knowing both a priori (- -) achieves

the best results.

Meteor trails are formed when meteoroids enter the earth's atmosphere and are at altitudes

of about 100 Km (see chapter 7). Hence, meteor trail echoes reach OTH radar arrays from

heights of about 100 Km. Thus far it has been assumed that the sources are at zero elevation,

but now one investigates how array calibration performance is affected by the elevation angle

of meteor echoes. The mth element of the steering vector, for non-zero elevation angles, is

["(P, d)] * - ¿i-('^sindcosd*s- cosdcos/)/u (6.2r)

where here / is the elevation angle of the source. The CRLB, obtained using this steering

vector, will indicate how the elevation angle of the sources effects the attainable accuracy.

Figure 6.5 shows the achievable accuracy as a function of the range (and hence elevation

angle) of the meteor echoes; the closer the sources are to the radar the higher the elevation

angle. These results clearly show that calibration accuracy is seriously affected for echoes

from ranges less than about 100 Km, with the accuracy being independent of range for echoes

from ranges greater than about 200 Km. Note as the range decreases, and hence the elevation

angle increases, the effective azimuths of all the sources approach broadside (for a nominally

linear arcay) due to the array coning effect; hence the results are expected to worsen. For

simplicity, the drop off in antenna gain with elevation and the decrease in meteor echo intensity

with range, have been ignored here.

It has been observed that as the azimuth spread over which the sources exist increases, the

performance attainable increases. This is expected, since as the azimuth spread of the sources

increases (and there are sufûciently large number of sources), the information obtained should

increase, and hence the performance attainable increases. It should be mentioned that even

though a linear array is considered, once sensor position effors are introduced the array is no

longer linear, and hence improvement in perfonnance is expected when the source spread is

above 180o too (as has been observed).
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6.1.6 Algorithm Comparison with CKLB

To quantify the performance of the algorithm developed in chapter 4, the algorithm was

compared with the CRLB. The comparison was performed for a 4-element arcay, with inter-

element spacing d : 0.4À and position effors as given in Table 4.1. As in the previous section,

since (a) the location of one sensor and the direction to another sensor are assumed to be

known, (b) a symmetric coupling matrix is assumed with the constraint ctt -- | placed, and (c)

all 10 source DOAs are unknown, the total number of unknown parameters is 33.

The CRLB, for 10 sources with 500 snapshots each, is shown in figure 6.6 (solid line);

the CRLB for the r and y coordinates of the third sensor, and the amplitude and phase of

the coupling parameter q2,being illustrated. The standard deviation (STD) values (circles)

estimated from 10 algorithm runs, and the 99 percent confidence intervals (vertical bars)

have been over-plotted. These results clearly indicate the algorithm is statistically efficient.

Note similar results were obtained for the other unknown parameters, and the bias was small

compared to the STD in all cases.
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(solid line), STD (circle) and 99 percent confidence intervals (vertical bar) as a function of
SNR, for the position of a sensor and for the amplitude and phase of a coupling parameter. The

STD values were obtained from 10 algorithm runs.

6.1.7 Mutual Coupling Estimation using a Single Source

For sensor position only estimation, it is well known that a single source is only capable

of estimating position displacements in the direction of the source. Hence for a nominally

linear aÍray, a source in the broadside direction can only estimate position displacements

orthogonal to the array; similarly a source in the end-fire directions can only estimate position

displacements along the array. V/ith mutual coupling estimation, no work has however been

done to determine if a source from a particular direction is incapable of estimating the coupling

parameters. Hence a theoretical analysis of the CRLB is performed, for mutual coupling only

estimation using a single-mode source, to answer this question.

To obtain theoretical expressions for the CRLB, a 2-element anay is considered, with the

coupling matrix assumed to be Toeplitz. The unknown parameters are the source DOA (d), the
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coupling amplitude (c), and the coupling phase (ú). In Appendix B the CRLB variances and

the non-identifiability conditions are derived for both the passive and active array calibration

cases. As a result of the complexity of this problem, specific coupling values were chosen;

c : 0.5 and tþ : r 12 (see later regarding other coupling values).

As shown in Appendix B, the passive array calibration (unknown source DOA) problem

is non-identifiable when the source is either at broadside direction, end-fire directions, or

+38.682' from broadside; the reason for these non-identifiable conditions being array ambi-

guities (see Appendix B). High SNR approximations for the CRLB variances were derived in

Appendix B and are

@Ð,

("?),

(6.22)

-0.625
Tø2 [cos(l.6r sin(d)) - 1]

3.r25

(6.23)

(6.24)

Notecos(1.6rsin(d))tl :0when 0: t38.682o,cos(1.6nsin(d))- 1 - 0when 0:0,and

cos2(9) :0when 0 -- +.90o. Nearg : f38.682opeaksoccur in(ol)rand(o2)r,near0:0a

peak occurs in (al), and a minimum occurs in (of)r, and near 0 : I90o peaks occur in (o!)r.

These equations give easy interpretation on how the source DOA, SNR (ø2) and the number

of snapshots ?, effect the attainable accuracy; these expressions agreeing well with the exact

expressions for high SNR. Note the CRLB variances are inversely proportional to the number

of snapshots, and the CRLB variance of the coupling amplitude is also inversely proportional

to the SNR; the CRLB variances for the DOA and coupling phase, being independent of SNR

(for these high SNR approximation).

The active array calibration (known source DOA) problem, is shown in Appendix B, to

only be non-identifiable when the source is at broadside direction. For this problem, high SNR

approximations for the CRLB variances are (see Appendix B)

-0.625

@'t), ? [cos(1.6r sin(d)) + 1]

("?)" (6.2s)

(6,26)

To2fcos(l.62r sin(9)) - ll
-2.5

@T)" Tø2 [cos(1.6n sin(d)) - 1]

Since cos(1.6zrsin(á)) - I - 0 when 0 :0, a peak occurs in both (o2.)" and (ol),near

0 : 0. These equations illustrate how the source DOA, SNR and the number of snapshots,
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effbct the estimation accuracy for active array calibration; for high SNR these expressions

agree well with the exact expressions. Note these CRLB variances are inversely proportional

to the number of snapshots and the SNR.

Figure 6.7 shows how the CRLB standard deviations (STD) of the unknown parameters

vary with the source DOA. Plotted here are the exact expressions for passive array calibration

(-) : oe from equation (8.64), a. from equation (8.68), and oç from equation (8.72). The

number of snapshots is 500 and the SNR of the source is 30 dB. The attainable DOA estimation

accuracy worsens as the source DOA approaches the end-fire directions and t38.682o. The

DOA estimation accvracy improves as the source DOA approaches broadside. The coupling

amplitude accuracy is reasonably constant with source DOA, but worsens as the source DOA

approaches broadside. The coupling phase accuracy worsens as the source DOA approaches

+38.682o, but is otherwise fairly constant. As mentioned earlier, at broadside direction, at

end-fire directions, and at +38.682o, the problem is non-identifiable.

The CRLB STD for active array calibration have also been shown in figure 6.7 using dashed

lines (--). Plotted here are the exact expressions : oc from equation (8.107) and 44, from

equation (8.110). The number of snapshots is 500 and the SNR of the source is 30 dB, as for

the passive array calibration case. The coupling amplitude accuracy coincides exactly with

that for passive array calibration. The coupling phase accuracy is significantly better than

passive array calibration, with the accuracy worsening as the source approaches broadside;

broadside direction being the only direction for which the active array calibration problem is

non-identifiable.

The SNR dependence is now considered when, for example, the source DOA is -45o. For

this case, the high SNR approximations for the CRLBs in equation (6.22)-(6.26), become

(ot), (6.27)
692

,/T
0.571

(o"), (6.28)

(6.2e)(o")"

(o,t'),

(oo)"

?(sNfr)
0.571

7(s¡iÄ)
10

JT
6

1.14

(6.30)

r(s¡/A)
(6.31)
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If the number of snapshots is 500, then the CRLB STDs become

:0.120
0.0255

SNfi

While (o")r, (o"), and (o,p)" decrease with increasing SNR, (o6), and (",t), are independent

of SNR (the exact expression for these two CRLB STDs indicate that they do decrease with

SNR, but do so slowly). Equations (6.32)-(6.36) agree well with the exact expressions for high

SNR.

Figure 6.8 shows the variation of the CRLB STDs (exact expressions) with the SNR of the

source. The number of snapshots is 500 and the source DOA is -45o. The results for passive

array calibration (-) indicate that for SNRs greater than about 10 dB, the attainable accuracy

for the source DOA and the coupling phase do not improve much as the source SNR increases

(as indicated earlier); the accuracy for the coupling amplitude improves significantly however.

Similar results were obtained for other source DOAs.

The CRLB STDs versus source SNR is shown in figure 6.8 for active array calibration using

dashed lines (--). The number of snapshots is 500 and the source DOA is -45o, as for the

passive array calibration case. For source SNRs greater than about 5 dB, the coupling amplitude

accuracy is the same as that for passive array calibration; the accuracy being marginally better

than passive array calibration for SNRs less than 5 dB. The coupling phase is significantly better

than that for passive array calibration (as before), with the accuracy increasing significantly

with SNR (unlike passive array calibration).

Passive array calibration using a single calibration source, was shown to produce poor

results when the source DOA was near 0o, +38.682o and +90o. In general multiple sources

will be used for array calibration, and hence it is of interest to see if such problems exist in

the case of multiple calibration sources. The CRLB was hence analysed for the case of two

disjoint single-mode sources, using the non-analytic approach used in the previous sections

(but for a Toeplitz coupling matrix model). The CRLB STDs for the unknown parameters are

shown in figure 6.9, where the number of snapshots is 500 and the SNRs of the sources are 30

dB.

(or),

(o.),

(o")"

@,t'),

(o^t)"

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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The FIM was non-invertible when either sources' DOA was at end-fire directions, and

when either sources' DOA was at broadside direction. Note however good CRLB STD values

are observed for the couplingparameters in figure 6.9 near these locations, and poor STD

values are observed only when both sources' DOAs are near +38.682o (coupling phase and

both source DOA STD values are poor). Hence it can be concluded for multiple sources, that

provided (a) none ofthe sources is exactly at broadside direction, or (b) none ofthe sources

is exactly at end-fire directions, good array calibration is possible except in the unlikely cases

that all the sources are near +38.682". Another important observation in figure 6.9, is that

unlike in the case of non-disjoint sources, for disjoint sources 0t -- 0z does not cause the FIM

to be non-invertible (except for the special cases mentioned above)'

In order to illustrate that the CRLB results obtained above (for a Toeplitz coupling matrix

with c : 0.5 and þ : r 12) are representative, results are now presented for the non-Toeplitz

measured coupling matrix from the Jindalee transmittingarray. The first 2x2 sub-matrix of

this coupling matrix is considered, and the CRLB is obtained using the non-analytic approach

used in the previous sections (but for a Toeplitz coupling matrix model).

Figure 6.10 shows the CRLB STDs of the parameters being estimated as a function of the

single source's DOA, as in figure 6.1. The CRLB for passive array calibration (-) and active

array calibration (--) are displayed, with a grid size of one degree. The results obtained are

similar to those in figure 6.7, with the problem being non-identiflable (FIM non-invertible)

when the source is at broadside or end-fire directions. The problem is also (probably) non-

identifiable when the source DOA is at approximately -4lo and at approximately 143o. These

DOAs are non-symmetric around broadside direction, due to the coupling matrix being non-

Toeplitz. The STD of the coupling amplitude is better for active array calibration, unlike in

figure 6.7 where it was the same as that for passive array calibration. Note also peaks are

observed near -41o and near 1-43o for the coupling amplitude STD, unlike in figure 6.7. The

coupling phase STD is againbetter for the case of active array calibration, as compared to the

case of passive array calibration.

Figure 6.I I shows the results when two disjoint single-mode sources are used for estimating

this coupling matrix. The results obtained aro as expected; the FIM being non-invertible when

either sources' DOA is at end-fire directions, and when either sources' DOA is at broadside

direction. Good CRLB STD values are observed near these locations however, and poor STD

values are only observed when both sources' DOAs are near approximately -41o / +43o. As

in figure 6.9 it canbe concluded that for multiple sources, provided (a) none of the sources is
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exactly at broadside direction, or (b) none of the sources is exactly at end-fire directions, good

array calibration is possible except in the unlikely cases that all the sources are near -4Io I

+430.

6.2 CRLB for Disparate Sources

In section 6.1 the CRLB was derived for the case of disjoint single-mode sources. These

expressions are now generalised for the problem considered in chapter 5, where disparate

sources are used. The unconditional CRLB for estimating i[ : l0T ,*T ,vT ,.7]" is

CRI,B(.I,) : ¡-1(.P) (6.31)

where the elements of the FIM, as in section 6.1, are

¡¡
J*t : T ltrace R; ôP."

Avr
(6.38)

(6.3e)

n:l

but now R, is for the nth disjoint cluster, and is R,, : Cn(n)e,A (n)' Cu I o2tvI¡w (for spatially

white noise). The matrix e, is the signal covariance matrix for the nth disjoint cluster, and

,L(n) is the matrix of steering vectors for each of the signals in the nth disjoint cluster. The

noise power is assumed to be the same for each cluster, and is øfrr.

It can be shown that for the case where different number of snapshots are obtained for each

cluster, the elements of the FIM are given as

N
Jnt : Df"trace or'ffior'ffi)

n=l

where 4" is the number of snapshots obtained from the nth disjoint cluster. The terms derived

in section 6.I are now generalised.

6.2.1 DOA - DOA Terms

Since we have disjoint clusters, 0n,"100¡ is a zero matrix for / > f),,, where 0' is the set of all

signals in the nth cluster. Hence if k e f),,, then Jsn,s, is non-zero only if I e Q. and is

2T* fr. {t, """ {n;t ç Á. e * (n)e, tH (n) ct n; t

c(Ar, (n)Y,tH (n) a n(n)e "Lf,("))cH 
j\

Jor,e,

(6.40)
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\¡/here Àr*(r) : ðt(n)100u : o(0¿)A(n)"¡"1. o(0*) : (+Ur¡l\aias{*cos(0¡) -
y sin(O¡)], and e¡ is the unit vector with all but the /th element zero where / is the col-

umn number of a(n) which contains the steering vector of the kth signal. (Note the signal

porùrers are included in the matrix P,).

6.2.2 SensorPosition - Sensor Position Terms

The sensor position entries are

¡r
J"r,,, : 2Ðr.ft {tr".e{n,, 

tcÀ'o 
@)e,tH (n)cH

n=l 
n;1c(4,, (n)e,r, (n) +.r(,r¡e,afl1n))c'1) (6.41)

N
Jor,o,

n=t 
n;rc(Àr, (n)e^tH (n) + l(n)e,Äfl(n))c']) (6.42)

^¡J,o,o, : 2Ðr*D {trac"{ni'cÃ,o@)e,nH (n)cH
n=t 

n;rc(Àr, (n)e,tH (n) a a(n)e,Af,(n))cÌrÌ) 6.43)

where L"*(n):0t(n)lôrft : Dxk O A(n), and Àr*(t) : 0a,(n)l0y¡, - Dvk O,t(n).

6.2.3 Coupling - Coupling Terms

The coupling parameter entries are

N
J"*,", : 2Ð

n--l
T^ W, {tr ace{R; I ö"0 I (n)e,lH (n) ctn; t

(c",a(n)e *^H (n)cH t cn(n)e ,^H @)c!,)i) fo.++¡

where matrix ð.0 : 0cf ðc¡,, c¡, being the amplitude/phase of an element in the symmetric

coupling matrix. Note Ö"0 has only one non-zero element if c¡ is a diagonal element, and has

only two non-zero elements (of equal value) if c¡ is an off-diagonal element.



6.2.4 Cross Terms

The cross terms are

6.2. CKLB FOR DISPARATE SOURCES

J o *,rt T 
^ 

t r a ce {ni' c (Ã, r (n)e, tH (n) + a ( n ) e 
" 

Lfr @)) cH

n; 1 c (.L,, (n) e,aH (n) +,t (n)n 
" 
i+|,(n)) cH \

Tntrace{R,tc(Àro (n)e^tH (n) + a(n)e 
"Ãf;r@))cH

n.;l(ö", a(n)e,nH (")c" + c.t (n)e "tH ç"¡c!,¡¡
N

Ðr,tuace{n;l(ö"0,L(n)n,tH çn¡cH 1 c,o.(n)n "# (")cfl)
n=1

n;rc(Å,, (n)y*tH (n) a.o.(n)n "Ã!,(n))cH 
j

Jor,",

J.r,r,

t45

(6.4s)

(6.46)

(6.47)

where for equation (6.45) and (6.46) k € Q*

6.2.5 Algorithm Comparison with CRLB

The performance of the algorithm in chapter 5 was compared to the CRLB for clusters of

multiple snapshot time-invariant DOA sources. As in section 6.1 it r,¡/as assumed that the

location of one sensor and the direction to another are known, and hence for the 4-element

array considered, there were only 5 sensor positions (2M - 3) unknown. Since a symmetric

coupling matrix has been assumed and the constraint ctt : I has been placed, 18 coupling

values (M(M + l) - 2) were unknown. Eleven disjoint clusters, each with a single-mode

source, and another disjoint cluster, with a multimode source (with 3 correlated signals), were

considered. All signals had unknown DOAs; hence 14 DOAs (1ú7) were unknown. The total

number of unknown parameters is therefore 37 (the signal and noise powers were assumed to

be known).

The solid line in figure 6.12 is the CRLB when 500 snapshots are obtained from these

time-invariantDOA sources. The standard deviation (STD) values (circles) estimated from 10

algorithm runs, and the 99 percent confidence intervals (vertical bars), have been plotted. The

results clearly show that the algorithm attains the CRLB, and is hence statistically efficient.

Similar results were obtained for the other unknown parameters, and in each case the bias was

small compared to the STD.

V/hen multiple snapshot time-invariant DOA sources and single-snapshot time-varying

DOA sources were used together (not shown), the algorithm's performance was observed to
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depart from the corresponding CRLB. This somewhat expected result is due to only single-

snapshots being obtained from the time-varying DOA sources; the CRLB being only achieved

asymptotically (i.e. for large number of snapshots and SNRs).

6.2.6 CRLB Analysis

The CRLB is now analysed to : (a) compare the perforrnance of disjoint and non-disjoint

sources; and (b) investigate the effect of signal correlation on the CRLB. The study was

conducted for a nominally uniform linear 4-element anray, with inter-element spacing of

d : 0.4),. The randomly generated sensor position errors are those in Table 4.1, and the

coupling matrix used was experimentally measured from the Jindalee OTH radar's transmitting

array. Unless specified otherwise, 12 signals with DOAs equally spaced from -90o to l90o
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in azimuth, each with SNR of 30 dB and 500 snapshots, are considered.

To compare disjoint and non-disjoint sources, three cases were considered. The cases

considered are :

o case A : twelve disjoint clusters, each cluster containing only a signal (-);

o case B : six disjoint clusters, each cluster containing two non-disjoint signals (--);
. case C : four disjoint clusters, each cluster containing three non-disjoint signals (-.-).

All the signals considered rwere uncorrelated. The CRLB for each case is shown in figure

6.13, as a function of the signals' SNRs. The CRLB for case A (-) is the best, the CRLB for

case B (--) is the next best, and the CRLB for case C (-.-) is the worst. This is so for all

of the parameters being estimated. These results indicate that given a fixed number of sources

(also SNRs, snapshots, etc), the more disjoint clusters the better the CRLB; this is as expected,

since the more disjoint clusters present, the more the a priori information, and so the resulting

performance should be better. Note also it was stated in section 4.4 that with disjoint sources,

many more parameters can be estimated than with non-disjoint sources, for a given number of

sources.

To investigate the effect of signal correlation on the CRLB, the scenario in case B above

was considered. The 2x2 signal covariance matrix is now non-diagonal, and is

Pn
I-p

p

p

l-p
(6.48)

where p determines the level of correlation (0 < p < ll2). Figure 6.14 shows the effect of

signal correlation on the CRLB for four parameters. The three cases considered are :

o case A : uncorrelated signals in each cluster (-) i.e. P : 0;

o case B : partially correlated signals in each cluster (--), with p : I 13;

. case C : coherent signals in each cluster (-.-) i.e. p : 1f 2.

These results clearly illustrate that the CRLB worsens as the signal correlation increases,

indicating the best results are obtained with uncorrelated signals. These observations agree

with those of Ng and Nehorai in [138].

6.3 Conclusion

The CRLB has been derived for the problems considered in chapters 4 and 5, and it has been

demonstrated using simulations that the algorithms in these chapters attain the corresponding



6.3. CONCLUSION

10'
CRLB for x,

15 20 25 30 35

sNR (dB)

CRLB for Amplitude of c.,,

15 20 25
sNR (dB)

30 35

148

.<
co
(d

c.)o
þ
(d
!c
(ú

U)

-t10-

1 o-4

10'

10 "

10-

.<
co
(õ

(¡)
o
'tt
(ú
Ec
(ú

U)

10 '

10-

-4
10

100

10-

10"

o-3 10"

CRLB for y,

10 'r5 20 25
sNR (dB)

CRLB for Phase of c.,,

0 5 10

0 5 10

05 30 35

o-1

Ø

.gÞ(ú
c,

.F

.g
c)o
!
(d
Ec
(ú
(t)

-t0-
c
.o
.(ú

o)o
o
(ü
ÞE
(d

U)

05101520253035
sNR (dB)

Figure 6.13: CRLB dependence on disjoint/non-disjoint sources - (a) twelve disjoint clusters,

each with one signal (-); (b) six disjoint clusters, each with two non-disjoint signals (--); (c)
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CRLBs under asymptotic conditions. The behaviour of the CRLB has been investigated as

a function of SNR, number of snapshots, number of sources, signal correlation, etc. For a

4-element arcay,the array calibration problem was identifiable when four or more sources were

used; the problem being well defined, and the CRLB STDs indicating the unknown parameters

could be estimated to good accuracy. "Active anay callbration" was shown to produce better

accuracy than "passive affay calibration", at the cost of requiring special sources. The influence

of the elevation angle of meteor trail echoes on affay calibration accuracy was also illustrated.

The problem of mutual coupling only estimation using a single source, was studied ana-

lytically, and it was shown that the problem is non-identifiable for certain (small number of)

source DOAs; for multiple sources, except when a source is at broadside or end-fire directions

these non-identifiable conditions were shown to however be very unlikely.

In chapter 7 sources present in the HF environment are investigated from an array calibration

\\



6.3. CONCLUSION

10'

o
(U

o)o
p
(d
E
(!
U)

't0 "

1 0-4

CRLB for x. CRLB for y.

10 15 20 25
sNR (dB)

CRLB for Phase of c,,

10 15 20
sNR (dB)

149

30 35

25 30 35

10'

3
õ10-
(ú'5
oo
p
(ú -o
E 10"
(ú

CJ)

-)0-

0 5

0 5 10

25 30 35

25 30 35

05

05

10 15 20
sNR (dB)

CRLB for Amplitude of c.,,

15 20
sNR (dB)

1 o-4

100

10"

v,

.(úÞ(!
c
.9
.(ú
q)
o
p
(úÞ
(d
q)

O-Ò
Ë10-.;
(1)o
!
(ú
E
ã 1o-"
U)

10'

1 0-4

o-1

o-21

Figure 6.14: CRLB dependence on signal correlation - (a) uncorrelated signals (-); (b) partially

correlated signals (--); (c) coherent signals (-.-).

perspective, and finally in chapter 8 the thesis is concluded.
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Sources for HF Array Calibration

For OTH radar anay calibration one may use discrete sources such as noise sources, beacons

(special sources), meteor echoes and ship/aircraft returns. While all of these sources can

provide sufficiently strong signals for array calibration, meteor echoes are the most attractive.

Meteor echoes are sources of opportunity, and are also observed by OTH radars in great

numbers; thus providing numerous sources for array calibration. Hence meteor echoes are the

most desirable sources for array calibration, and so are considered in detail here.

This chapter starts with an overview of the Jindalee OTH radar,which has been instrumental

in the analysis of the various sources. This is followed in section 7 .2 by a description of the

physical and temporal properties of meteor echoes, which is primarily from the existing

literature; then a spatial analysis of their wavefronts is given which indicates how often meteor

echoes can be used as sources of opportunity for array calibration. Noise sources for array

calibration is discussed in section 7.3, while other sources are discussed in section 7.4. Finally

in section 7.5 meteor echoes are used to calibrate the Jindalee OTH radar; demonstrating, using

arcalradar system, the capability of these sources.

7.1 Jindalee Radar Overview

The Jindalee OTH radar [190, l9l, 192, 193, I I 5, 103, 1 16, 10] is located in central Australia;

the transmitting array is located in Harts Range and the receiving array in Mount Everard.

This radar is called a skywave radar, see figure 7.1, since ituses the ionosphere to propagate

signals beyond line-of-sight by operating in the HF band (i.e. 3-30 MHz). Jindalee is capable

of detecting air and surface targets, over a 90o coverage, and at ranges of 800-2800 Km.

The transmitting array is a linear array of 16 Log-periodic antennas, which produces a

150
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Figure 7.1: Skywave radar propagation environment (Lees et. al.).

steerable wide beam of energy. The Log-periodics produce a fairly constant power output over

all frequencies in the HF band. The receivingaffay is a2766 metre long uniform linear array of

462 twin-fan monopoles, which makes tp 32 fully overlapped subarrays (see figure 7 .2). Each

of the 28 monopoles in a subarray is connected to an analogue hardware beamformer, with

the output of each subarray (or hardware beamformer) then processed by a HF receiver. The

hardware beamformers are time-delay beamformers, with the time-delays such that signals are

received over the same azimuthal region that the transmit beam is illuminating.

The transmitting array sends out a frequency modulated continuous wave (FMC'W), and

the receivin g array receives signals scattered by targets, the ground and the sea. Computerised

processing ofreceived signals is done in three steps, as shown in figure 7 .2. The signals received

by each subarray/receiver is compared to a replica of the transmitted signal to obtain "range

formed" data, i.e. signals over discrete range bins called "raÍrge cells". The subarray/receiver

ouþuts for each range cell are then digitally beamformed to produce fine beams, called "finger

beams", within the subarray beampattern. Then the signals in each range cell - finger beam,

over several FMCW periods (sweeps), are processed to obtain signals as a function of discrete

Doppler bins. Data is processed in such a manner, over a coherent transmission interval called

a "dwell".

A typical example of the radar output is shown in figure 7.3;thepower output for 10 finger

beams being shown as a function of range cell and Doppler cell. In each finger beam, strong



>
ì

:r z fr fr
i t! Þ
. U Ð o l¡ >
o lrl (â l.)

1

1

oa
 0

c
ô:

 ¡-
Lã xo --

l õ-
H

E
it

do (l 
'-t

oÊ
Þ

v)
 o

-
C

h 
âr

ir 
F

¡

da
 rC o () o v) (t

)

0c o F
r) ä o o C
D (D o. U
)

oa t0 U
) I ã êl 9 ûa o E ¡_
t o o o U
) v) iJ 0c È 0a d (D Ê
¡ o' 4 ) I

I
t4

 1
5

28
 2

9 
42

 4
3

56
 5

7

...
..Y

aa
aa

a
aa

aa
a

43
5 

44
8 

44
9 

46
2

Y
...

..
aa

aa
a

aa
aa

a

aa
aa

a

32
R

ec
ei

ve
r

O
ut

pu
ts

R
an

ge
P

ro
ce

ss
in

g

D
op

pl
er

P
ro

ce
ss

in
g

2
31

32
F

in
qe

r
B

ea
:m

s

aa
aa

aa
oa

aa
aa

aa
aa

aa
aa

aa
aa

H
ar

dw
ar

e 
B

ea
m

fo
fin

er
an

d 
H

F
 r

ec
ei

ve
r

D
ig

ita
l B

ea
m

fo
rm

in
g

{ 
t*

itr
-f

an
 m

on
op

ol
e



7.1. TINDALEE RADAR OVERVIEW
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Figure 7.3: Example of Jindalee radar output. The received power is displayed, for each of the

10 finger beams, as a 2-dimensional image; each image comprising of 20 range cells (vertical

axis) and 128 Doppler cells (horizontal axis).

energy exists at all ranges around zero Doppler (Doppler cell 64). This is energy scattered from

the ground; since the ground has zero velocity, the energy appears at zero Doppler. Returns

from the ground and the sea are referred to as clutter.

The data in figure 7.3 was collected in air-mode, where the radar parameters are set for

detecting aircraft. Data obtained in this mode consists of short dwells, so the progress of

aircraft can be tracked. Data collected in ship-mode, where the radarparameters are chosen for

detecting ships, consist of long dwells (with a large number of sweeps) so that good Doppler

resolution can be obtained for resolving ships from the sea clutter.

Sampled subarray outputs from the Jindalee radar arc stored on tapes; the tapes for all radar

runs being archived. This enables post-processing to be performed on radar data, making the

Jindalee radar also a very powerful research tool.
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Figure 7.4: Propagation modes for meteor echoes.

7.2 Meteors

Possible propagation modes by which HF radar may detect meteors are shown in fr,gxe 7.4,

when only a single ionospheric layer exists. Mode 0 is direct scatter along the line-of-sightpath,

Mode 0 echoes being observed in close-in radar ranges. Mode I relies on forward scattering by

the ionosphere while Mode 2 relies on both ionospheric and ground forward scattering. Mode

1 echoes appear at greater ranges than Mode 0 echoes, while Mode 2 echoes appear at even

greater ranges. Mode 0 echoes are often near-field echoes, while Mode 1 and Mode 2 echoes

are far-field returns. (Mode 3 echoes, where the propagation modes to and from the meteors

are different, are also possible).

Mode 0 meteor echoes will be observed in the data, for skywave radars, at ranges prior

to the ranges at which the sea/ground clutter is observed. The range at which clutter starts

appearing is frequency dependent, and this start range value is obtainable from the radar's

frequency management system (FMS) 145,461.

Now some of the properties ofmeteor echoes, which have been described in1132,220,221,

222,223, 146,217 ,26] are outlined, and results from the analysis of meteor echo wavefronts

that one has conducted is presented. The properties required for obtaining scattered echoes

from meteors, the difference between underdense and overdense echoes, the difference between

shower meteors and sporadic meteors, the wavefronts of both line-of-sight and ionospherically
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propagated meteor echoes, the effects of radar frequency on meteor observations, the diurnal

variation of meteor echoes and the variation of echo rates with range, are described.

7.2.1 Visual Observations

The word meteor refers to the "shooting star" seen when a meteoroid, enters the earth's

atmosphere, and dissipates its energy. The visible radiation from a meteor emanates mainly

near the vaporising meteoroid, and hence the meteor looks like a travelling light source. After

the passage of a bright meteoroid, a glowing trail can sometimes still be seen.

7.2.2 Radar Observations

Two echoes, of different physical origin, are observed from a single meteor when a radar

transmits a radio wave and obtains energy back. The two echoes are known as "head echo"

and "trail echo". The head echo is associated with the meteoroid, and is hence an echo that

moves in space. This echo is short-lived since the meteoroid burns up fairly quickly, due to

frictional heating, upon entering the earth's atmosphere. The physical mechanism for the head

echo is not yet fully understood, but the echo seems to originate from a cloud of ionisation

around the meteoroid. The radar does not obtain an echo from the meteoroid itself, since the

cross-section of the meteoroid is too small to be detected by the radar.

The trail echo is a specular reflection from the trail of ionisation, created by the collision

of meteor atoms with the surrounding air molecules when a sufficiently large meteoric object

descends into the earth's atmosphere. No significant ionisation occurs until the meteoric object

descends to heights about 120 Km above the earth, since the air is not dense enough and

hence collisions with air molecules are not sufficiently frequent. Most of the ionisation occurs

between 80- 1 20 Km because the air density is large here, and also because most of the meteoric

object vaporises prior to reaching a height of 80 Km (note higher velocity meteoroids produce

trails at higher heights). The trail echo is seen just after the head echo, and is of much longer

duration. Note the trail echo is an aspect sensitive return, whereas the head echo is an aspect

insensitive return.

A long trail of ionisation can be created when even a very small meteoric object (smaller

than even a pinhead) enters the atmosphere. The total backscattered radio energy from all areas

of the column of ionisation, which is radar target like and has cross-sectional area much larger

than the object itself, can result in a substantial echo. The trail of ionisation can be tens of
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Figure 7.5: Examples of radar meteor echoes (McKinley).

kilometres long, be present over 10-15 Km in altitude, and exist in space for several seconds or

minutes after the meteoroid has vaporised, before finally disappearing due to rapid diffusion.

Although the trail of ionisation may be many radar wavelengths long, the trail echo is (and is

modelled as) a point source due to the aspect sensitivity of the return.

Examples of radar meteor echoes are shown in figure 7.5, in a range-time display. Note

since meteor echoes are scattered radar signals, the range of the meteor can be determined.

The closest return in figure 7.5 is due to a meteoroid approaching the radar, while the other two

returns are due to meteoroids going away from the radar. For each return the slanted nalrow

line at the start of the return is the head echo, while the more persistent echo which spreads in

range is the trail echo.

7.2.3 (Jnderdense versus Overdense Echoes

When meteor trail reflection properties are considered, meteor trails are conveniently divided

into two major subdivisions : underdense trails and overdense trails. Underdense trails are

those in which the electron density (proportional to the meteor's mass) is sufficiently low

so that the radio wave penetrates the trail and each electron acts as an individual scattering

source. Overdense trails are those where the electron density is sufñciently high to prevent
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complete penetration of the radio wave, and cause reflection of the radio waves like ionospheric

reflection. The duration of underdense trails is typically of the order of a tenth of a second,

and the duration of overdense trails may be from a tenth of a second to many minutes.

7.2.4 Shower Meteors and Sporadic Meteors

The sky location from which a meteor appears to originate is called the radiant of the meteor.

Meteors which originate from the same radiant are called shower meteors, while meteors which

do not belong to recognised showers are called sporadic or non-shower meteors. Sporadic

meteors have a large distribution of velocities, with a mean value of about 40 Km/s. Meteors

which are part of a shower, however, move as a collection of particles and travel at the same

velocity; hence shower meteors have well-defined velocities. Meteors entering the earth's

atmosphere have velocities between 11 and 72Km/s, and decelerate by a small amount during

ablation.

Thomas tracked a meteor shower using the Jindalee OTH radal on the 6th of May 1986

1222]. By measuring the radar's noise floor level, provided by the rudar at each dwell, he could

obtain the total backscattered power level from all meteors present during any dwell. Using

this data he was able to continuously monitormeteor activity, and hence detect meteor showers

over range, azimuth and time.

Figure 7.6 shows the results Thomas obtained in tracking the Eta Aquarid shower over

azimtth and time. The solid curve shows the predicted position of the shower radiant, while

the dashed curves on either side correspond to a standard deviation of the radiant position.

The observed data positions have error bars which indicate, the time interval over which data

averagingwas performed(|2 minutes) and also the uncertainty in the azimuth (6o). For array

calibration one not only has many meteor echoes when a shower is present but also, since the

shower meteors appeaf at different azimuths during the day, one has echoes from all azimuths

for performing calibration. Note further, Thomas has observed that the proportion of strong

echoes was greater for shower meteors than for sporadic meteors (at least for this shower).

7.2.5 Radio Frequency Dependence

Radar meteor echo rates are biased by the observation tool [85, 86], and radars have been

known to detect only a small fraction of the meteors observed by satellites [1a6]. Figxe 7.7

shows the relative echo rates as a function of frequency, modelled and observed by Thomas et.
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Figure 7.6: Tracking of Eta Aquarid shower over azimuth and time (Thomas et. al.)

al. using the Jindalee radar on day 296, 1985, between the hours of 0230 and 0730 local time.

Also shown are the rates predicted by Greenhow ([85, 86]). The observed data was corrected

for the frequency dependence of both the antenna polar diagram and radar sensitivity, and

hence it is concluded that the remaining frequency dependence is purely due to the frequency

of the transmitted radar signal (and is termed the "echo ceiling" effect).

The sporadic meteor echo power variation with frequency, obtained by Thomas et. al., is

shown in figure 7.8 (*). Curve A is modelled results when the height distribution of Olsson-

Steel et. al. 1146] is used with a full treatment of the underdense echo ceiling, while curve B

is modelled results when previously accepted height distributions are used and the underdense

echo ceiling is not considered. The frequency variation observed by Thomas et. al. clearly

supports the modelled results in curve A, and illustrates how the meteor echo rates (proportional

to observed power) fall off at higher frequencies in the HF band. These results indicate, that

for array calibration using meteor echoes, one has to collect meteor data for a longer period at

the high-end of the HF band as compared to the low-end of the HF band.
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Figure 7.7: Yariation of echo rates with frequency (Thomas et. al.)
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Figure 7.8: Sporadic meteor echo power variation with frequency (Thomas et. al.). Curve A
and B are modelled results, while the circles show measured values.
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Figure 7.9: Predicted diurnal variation of sporadic meteor echo rates for different days in the

year (Thomas et. al.).

7.2.6 Diumal Variation

Thomas et. al. used their computer model to predict the diurnal variation of sporadic meteor

echo rates, that would be observed using the Jindalee radar, via single-mode ionospheric

propagation 12231. Figure 7.9 shows the echo rates predicted for a north pointing radar for

several days during the year. Clearly non-zero meteor echo rates are expected throughout the

day, with the peak intensity of echoes occuring near dawn and a trough occuring near sunset.

Due to the orbital motion of the earth, at dawn (when the earth is rotating towards the sun) the

meteor rates are high, and at sunset (when the earth rotates away from the sun) the meteor rates

are low. For array calibration using meteor echoes, the results in figure 7.9 indicate that near

sunset one has to collect meteor data for a greater time.

Variation of meteor echo rates from month-to-month are mainly determined by the variation

of meteoroid activity itself.

7.2.7 Range and Altitude Dependence

The number of meteors observed by radars fall off with raîge, due to the decreasing detection

ability of radars with range. The height distribution of trail echoes has been determined by

Olsson-Steel et. al. to be non-Gaussian, with a peak at 105 Km (at 2 I|l4IJz), and most of the
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meteor trails present have been found at or above this altitude of 105 Km [146]

7.2.8 Numerous Disjoint Sources of Opportunity

In this section, and the next two sections, one analyses the spatial properties of meteor echoes.

The wavefronts of meteor echoes is analysed in this section, while the spatial stationarity of

meteor echoes, and multimode meteor echoes, are studied in the following two sections. All

these results were obtained using the well calibrated Jindalee receiving array. This section

starts with a typical example of data analysed, in order to determine if meteor echoes have

"good enough" wavefronts to perform array calibration, and then results are presented for a

number of echoes.

Figure 7.10(a) shows the output of a single subarray/receiver (after the clutter has been

filtered out), for a dwell obtained during ship-mode data collection. The horizontal axis is

sweep number (time snapshot), and the vertical axis is the radar range cell number. The strong

signals (SNRs 10-30 dB) observed here are ionospherically propagated meteor trail echoes.

As can be seen several echoes exist in this data, which was collected in 30 seconds. Many

of these echoes occur over a few sweeps and range cells, and are well separated from other

echoes. Since most echoes are separable from other echoes, statistics for each echo can be

obtained independently, and thus in this thesis, such meteor echoes have been called "disjoint"

echoes or "disjoint" sources.

The phase variation across the array aperture (or receiver outputs), for three successive

time snapshots, of an echo in figure 7.10(a) is shown in figure 7.10(b). The linearity of the

phase variations across the receivers in each case is clearly seen, the three snapshots being time

shifted versions of each other. This was found to be the case for many returns examined (see

later).

The MUSIC algorithm applied to each range, is shown in figure 7.10(c). The covariance

matrix for each range was estimated from the vector of receiver outputs for that range; averaging

of the covariance matrix occuring over the sweeps. Since the wavefronts are reasonably linear,

it is not surprising that meteor echoes are beamformed well. Note that time limited echoes in

a particular range in figure 7.10(a) are seen in figure 7.10(c) as spatially localised echoes.

Several dwells from the Jindalee OTH radar were analysed, to determine the linearity of

meteor echo wavefronts. Both ionospherically propagated and line-of-sight meteor echoes,

were considered. In all dwells considered, the covariance matrix was estimated for each echo

in the dwell, in order to obtain an estimate of the wavefront of the echo. The covariance matrix
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Figure 7.10: Example data set analysed for investigating.'¡/avefront of meteor echoes.

for an echo was estimated as

,(t),H (t)
tT

^lsR.:-)tTt ZJr t=l

where z(ú) is the vector of receiver outputs at time snapshot t,andthe summation is performed

over all sweeps I range cells over which the echo is present. The analysis conducted is now

described, with the results obtained for a particular echo, presented to illustrate the analysis.

Once the covariance matrix for an echo has been obtained, the covariance matrix is eigende-

composed; obtaining eigenvectors and eigenvalues. The eigenspectrum for an echo is shown

in figure 7.ll(a), which indicates there is one dominant (signal) eigenvalue. In cases where

there were two overlapped echoes, hence resulting in two dominant eigenvalues, the echoes
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were omitted from the analysis. Further echoes with SNRs, given by the difference between

the largest two eigenvalues, which were less than 10 dB were also not considered.

The principal eigenvector, that is the eigenvector corresponding to the largest eigenvalue, is

a maximum likelihood estimate of an echo's wavefront [83]. Figure 7.1 l(b) shows the phase

values (*) of the principal eigenvector for the echo considered. A straight line is then fit to

these phase values (-) to estimate wavefront phase errors (deviations from the straight line).

The phase errors are determined, as given in figure 7.11(c), and then the standard deviation of

the phase effors computed. The wavefront amplitude errors are determined, for each echo, by

estimating the amplitude deviations of the principal eigenvector elements from their average

value (not shown). From the amplitude deviations for an echo, the standard deviation of

the amplitude errors is computed; the standard deviation computed is then normalised by the

average amplitude value.

The wavefronts of ionospherically propagated trail echoes were analysed from 48 radar

dwells, covering I I days during 1986-1990. The wavefronts of line-of-sight trail echoes were

analysed from 36 radar dwells, from a day in 1989. The wavefronts of head echoes (all line-

of-sight) were analysed from a day in 1987 and a day in 1989. Histograms for the wavefront

phase and amplitude errors are shown in figures 7.12 and 7.13 respectively.

The flrst two sub-plots in both figure 7 .12 and 7 .13 are for ionospherically propagated trail

echoes. In each of these figures the first sub-plot is for "bad" echoes which were obtained

during five of the eleven days, and the second sub-plot is for "good" echoes which were

obtained during the other six days. Here "good" echoes refer to those echoes obtained from

data in which the ground/sea clutter is of good quality (i.e. the clutter is narrow and only

single-mode clutter is obtained), while "bad" echoes refer to echoes obtained from data in

which the clutter is not of good quality. The phase errors for the "good" echoes are distributed

around 6o, while the phase effors for the "bad" echoes are broadly distributed around 14o. The

amplitude efrors for the "good" echoes are located around 0.12, while for the "bad" echoes the

distribution is flatter.

In figures l.I2 and7.I3 the third sub-plot is for line-of-sight trail echoes. The phase effors

are distributed around 7o, in comparison with the ionospherically propagated "good" echo

phase errors which are distributed around 6o. The amplitude error histogram is somewhat

similar to that for ionospherically propagated "good" echoes, with a peak near 0.1. Note

line-of-síght trail echoes originate (often) from meteors in the radar's near-field, and so have

wavefronts with a small amount of curvature; as a result of this a quadratic (instead of a straight
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line) was fit to the wavefront phase values of these echoes (for obtaining the phase errors).

The fourth sub-plot in both figure I .12 and I .13 are for hne-of-sight head echoes. These

histograms have large spread, since only a single-snapshot is obtained for each echo. The

phase effors are distributed around 10o, while the amplitude errors are distributed around about

0.18. Note for these line-of-sight head echoes, as in the case of line-of-síght trail echoes, a

quadratic (instead of a straight line) was fit to the wavefront phase values (since these echoes

originate from near-field meteors).

Theoretical results have been derived in [ 109] which give the standard deviations obtainable

from sources with finite signal-to-noise ratio and snapshots. Given ? snapshots from a source

of signal-to-noise ratio,Sl/-R, the standard deviation of the amplitude and phase errors are

2
(7.2)Co: orþ : r(s¡\rÄ)

where oo is for a signal with mean amplitude of unity, and o,¡ is in radians. Hence for trail

echoes, for a worse case situation where T : 5 (see below) and ^9N,R = 10 dB, the amplitude

error standard deviation will be 0.2 and the phase error standard deviation will be I 1.5o. Thus

it can be concluded the wavefront errors, for both ionospherically propagated "good" trail

echoes and line-of-sight trail echoes, are due only to both the limited number of snapshots

and the finite signal-to-noise ratio of the echoes. Hence these echoes are suitable for array

calibration . The ionospherically propagated "bad" trail echoes have wavefront errors which

are due, not only to finite number of snapshots and finite SNRs, but in addition to ionospheric

perturbation [55, 166,791of the wavefronts. These echoes are not expected to be suitable for

array calibration.

Since only one snapshot is obtained from each head echo, the standard deviation (given in

equation (7.2)) for amplitude errors is 0.45 and for phase errors is about 25o. The results in

figure 7.12 and 7.13 indicate the wavefront errors of head echoes are due to finite signal-to-

noise ratio and also due to only a single-snapshot being obtained from these echoes. Hence

head echoes are suitable for array calibration.

Note the above results indicate that ionospherically propagated meteor echoes may be used

as sources of opportunity for array calibration, when the propagation conditions are good.

The quality of the propagation conditions can be assessed by investigating the quality of

the ground/sea clutter : when single-mode clutter is present, and the clutter is narrow, the

propagation conditions can in general be considered to be of good quality. Hence by operating
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Figare 7.I4: Histogram of number of snapshots obtained from meteor trail echoes - (a)

ionospherically propagated echoes; (b) line-of-sight echoes.

the radar in a regime where the clutter observed is of good quality, one is likely to receive

satisfactory ionospherically propagated meteor echoes.

The number of snapshots, wþich is proportional to the echo duration, used above to obtain

the covariance matrix for each trail echo was noted. This is a useful statistic since it indicates the

number of snapshots array calibration algorithms have, for estimating the unknownparameters.

A histogram of the number of snapshots is shown in figure 7 J4 for both ionospherically

propagated and line-of-sight trail echoes. In most cases 5-10 snapshots are only obtainable.

Note the number of sources required for array calibration will dictate the duration for which

the radar must be run to collect calibration data. This duration will be of the same order as a

normal ship-mode dwell.
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7.2.9 Spatial Stationarity Analysis of Head and Trail Echoes

The spatial stationarity of sources is of critical importance. If the source is spatially stationary

then a covariance matrix can be estimated from the data, but if the source is spatially non-

stationary then only snapshots of the source may be used for array calibration. In order to

analyse the spatial behaviour of meteor echoes (over time) single-snapshot spatial processing

was performed, which is possible due to the good SNRs many echoes posses. It was necessary

however to first overcome the effects of signal correlation.

Correlation between signals impinging aîarray can destroy the spatial stationarity, and can

affect spatial processing. It is well known that high resolution subspace techniques (such as that

used below) perform poorly when signals are correlatedl2l2,l36]. To overcome this, spatial

smoothing can be performed [186]. Since the Jindalee receive array is a linear equally spaced

array of similar elements, spatial smoothing is possible using a sliding window to estimate the

covarrance matrrx

The covariance matrix at time snapshot t,for a given range cell, is estimated as

M_K+1

D z^(t),fl(t)
m:1

(7.3)

where "*(t) : lz^(t), z^+t(t), ...,t Zm*K_1(t)lr , z¡(t) is the output of the kth receiver at time

snapshot ú for the range cell considered, and 1l is the sliding window length. The spatially

smoothed MUSIC algorithm at time snapshot l, is obtained by eigendecomposing n(l), and is

(1.4)

where Û, is the estimated noise subspace of n(t), and "(d) is the array steering vector. The

temporal variation (i.e. over f) of a spatially smoothed MUSIC algorithm, for a single range

cell, is here called a TSSM (Temporal-Spatial-smoothed-Music) plot. Head and trail echoes

are now analysed using TSSM plots.

Figure 7.15 shows two examples of TSSM plots. The power-time displays indicate that there

are at least three underdense meteor trail echoes present. The TSSM plot shows horizontal lines

for these echoes, indicating that these echoes have time-invariant DOAs, and so are spatially

stationary. This is a property that one would expect from a meteor trail echo, since specular

scattering from the ionised trail only occurs when the trail is orthogonal to the radar beam; so

if the trail does not fluctuate in azimuth over time, then a time-invariant DOA echo will be
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Figure 7.15: Two examples of TSSM plots showing meteor trail echoes.

observed.

Figure 7.16(a) shows a range-time display, which contains a head and trail echo, definitely

from the same meteoroid (it has a characteristic signature). Since the head echo has a varying

Doppler (which reduces to zero at the same time the trail is formed), unlike the trail echo the

head echo is observed in increasing range cells with time, and in only a few s'weeps of each

range cell. Figure 7.16(b)-(d) show the power-time plots and TSSM plots for three consecutive

range cells.

In figure 1.16(b) the head echo is observed just before sweep 10. In figure 7.16(c) the head

and trail echo are observed, at approximately the same azimuth, with the trail echo lasting for

a few s'weeps. In figure 7.16(d) the trail echo is stronger, exists for much longer, and clearly

has a time-invariant DOA (as seen before). The DOA variation of the head echo was analysed

over ranges and sweeps, and the TSSM plot in figure 7.16(e) was obtained, which illustrates

the time-varying DOA I (and so the spatial non-stationarity) of this head echo. Note that the

head echo was not as strong as the trail echo (compare figure 7.16(d) and figure 7.16(b)), as is

normally the case. It should be mentioned that Thomas et. al. have also observed meteor head

echoes using the Jindalee radar l22ll, not using high resolution spatial processing, but rather

via conventional Fourier techniques.

These observations have been made in numerous data sets, obtained under single-mode

propagation conditions. Note the algorithm in chapter 5 was developed to work with both

spatially stationary sources (such as trail echoes) and spatially non-stationary sources (such as

lfor a meteor which is 100 Km from the radar and travelling tangential to the radar's beam at 40 Km/s, the

DOA of the head echo will vary by about 50 in a typical (ship-mode) sweep duration of 0.25 seconds.
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head echoes); the algorithm in chapter 4 was developed specially for the spatially stationary

trail echoes.

7.2.10 Multimode Echoes

During the night time, multiple ionospheric layers are often present. As shown in figure 7.1

two of the ionospheric layers are denoted as the E and the F layer. Under such multimode

ionospheric propagation conditions multiple Bragg-line pairs are often observed in ship-mode

data, when the E and F layers rise/fall at different rates. An example of this is shown in figure

7.17(a). The meteor echoes present in this data were analysed to investigate their wavefronts.

The phase variation across the aperture of a typical echo, for three snapshots, is shown

in figure 7.I7(b). The wavefront is crinkled, but the wavefront at each snapshot is a shifted

version of the others. This could perhaps mean that one signal is present with a crinkled



7.3. EXTEKNAL NOISE 173

wavefront, or that multiple overlapped (correlated) signals are present.

Figure 7.17(c) shows the TSSM plot for this echo which illustrates that not only is a trail

echo present (time-invariantDOA), but that this echo consists of two plane wavefront (localised

in azimuth) signals. The distinct DOAs are believed to be due to the array coning effect; where

different DOAs are observed by a linear array for signals emanating from the same azimuth,

but from different heights. Some of the backscattered energy reaching the radar has been

reflected by the E layer, while the rest has been reflected by the F layer; hence the reason for

the number of signals observed being two.

Many observations have been made of two DOAs undermultimode ionosphericpropagation

conditions. On some occasions two DOAs were observed even when only a single Bragg-

line pair was present in the ship-data, since when the E and F layers rise/fall together (at the

same velocity) only a single Bragg-line pair is observed even though multimode ionospheric

propagation conditions may exist. The algorithm detailed in chapter 5 was developed to work

with multimode meteor echoes.

7.3 External Noise

Some of the different types of noise present in the HF environment (as given in [79]), and the

HF noise statistics obtained by Ward inl240l, are outlined in this section. Noise at HF consists

of atmospheric, galactic and man-made noise [79]. An example of HF noise observed by the

Jindalee OTH radar, is shown in figure 7.18(a). The noise is strongest in finger beam 6 and 7 ,

and is seen to be present in all range-Doppler cells of these beams.

Atmospheric noise is caused mainly by lightning strikes, resulting in broadband noise

during thunderstorms. Atmospheric noise can propagate over large distances beyond line-of-

sight; major contributors to the atmospheric noise level being from the opposite hemisphere

or from across the day-night terminator. Galactic (or cosmic) noise has its origin outside the

ionosphere, but since it has to penetrate the ionosphere for the signals to be received on earth

the ionosphere influences the noise received.

Man-made noise is influenced by both the density and technological sophistication of the

population. Coherent transmitters are the strongest class of man-made noise, and are present in

broadcasting, aerospacelland4maritime, mobile-radio, fixed-point communication, radio navi-

gation and meteorological monitoring. Coherent transmitters are always present or present for

long durations. Other classes of man-made noise are : devices which provide localised control

and communication functions; out of band emissions from Industrial, Scientific and Medical
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Figure 7.18: Jindalee data showing sources in the HF environment: (a) noise source; (b)

beacon, aircraft return and meteor return.

(ISM) equipment; and incidental electrical/electromechanical radio-noise sources. Note for

example ISM devices have been observed providing HF signals as high as 30 dB above the

noise floor 12321.

7.3.1 Suitable Noise Sources

Of all noise sources, it is expected that only man-made noise sources, of narrow bandwidth

and with sufficient porwer levels, can be used for array calibration. Further, for ionospherically

propagated noise it is only expected that noise propagating through a well behaved ionosphere

can be used

In section 7 .2.8 it was mentioned that if the radar clutter is of good quality, in a particular

region, then scattered signals from meteors in that region may be used for array calibration;

so choosing appropriate meteor echoes is easily done, since radars can estimate the range (and

azimuth) from which meteor echoes emanate. The range from which noise signals emanate

cannot however be estimated directly by radars, hence making the selection of appropriate

noise sources for array calibration difficult.

Indirect methods for determining the location of noise sources however exist. In the case
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of audio coherent transmissions one can listen to the noise source, using a short-wave receiver

connected to the radar antennas, and determine if the noise source can be identified as a

coherent transmission originating from a known location. In the case of non-audio signals, one

can determine if the signal signature received is known to be from a noise source in a known

location. This could be implemented by correlating received signals, possessing adequate

porwer levels, with signal signatures stored in memory.

7.3.2 HF Noise Statistics

Some statistical results on HF coherent transmissions from a study conducted by Ward 12401,

are now outlined. This study was on the HF signal environment at Alice Springs (Australia).

V/ard presented results on the signal powers and the SNR distribution (ratio of strong signals

to the level of atmospheric noise). The HF bands he considered were broadcast, maritime,

aeronautical, fixed, amateur and radioastronomy. He observed large spread in the signal

powers, over any typical month, and said the large spread reflects the changes in propagation

conditions with time of day. The strongest signals at low frequencies were observed in the

night time, due to the large attenuation of low frequencies during the day. High frequency

signals do not propagate far during the night and hence the strongest high frequency signals

were observed during the day.

Broadcast bands had the biggest percentage of strong signals, but large numbers of strong

signals existed in the fixed service bands (some of which were broadcast stations operating

adjacent to the international broadcast bands). The largest SNR distribution was observed in

the broadcast bands, particularly at 7, 9, 11, 15 and 17 MHz. Signals with SNR as high as

50-80 dB were seen to occur, with the proportion of signals with such SNRs being as high as 20

percent (in some occasions). At frequencies over 20MHz, alarge proportion of the frequency

spectrum was free from strong signals.

The above results indicate there should be a good number of strong noise sources for array

calibration. However as mentioned earlier, since sources for array calibration must propagate

via a well behaved ionosphere, the number of noise sources that can be used will be much less

than that indicated here.
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7.4 Other Sources

Beacons are special sources, located in the radar's coverage, that are used for calibrating a

radar. Figure 7.18(b) shows a beacon, observed by the Jindalee OTH radar; the beacon being

clearly observed in finger beams 6, J and 8. Beacons have three significant advantages over all

other sources. Firstly the signal parameters of the beacon (signal-to-noise ratio and duration

of signal) can be controlled. Secondly the location of the source is known, and can be placed

in a location of choice. Thirdly, in the case of repeaters at least, returns are observed for all

frequencies. Note, while for skywave returns, the location of the beacon may not imply that

the DOA of the source is known, it may still provide a good nominal DOA value.

Beacon signals via surface-wave mode may also be used for array calibration. While such

beacon signals may imply the beacon has to be in the radar's near-field, this does not matter

since the location of the beacon is known; so the beacon's steering vector can be specified

in terms of the array parameters. Note also for surface-wave radars, located near the sea,

the beacon may be placed behind the radar if a reversible array is used or if the radar's

"front-to-back" antenna ratio is not substantial.

Strong scattered returns from ships, aircraft, vehicles etc may also be used. These signals

may propagate via either surface-wave or skyrrvave modes. If the signal reaches the radar via

surface-wave mode and the location of the source is known, then as forbeacons, the source can

be used for array calibration even if it is located in the near-field of the radar. Figure 7.18(b)

shows an aftcraft return in finger beams 8 and 9.

7.5 Jindalee Array Calibration

The Jindalee radar's receiving antenna array has no significant mutual coupling and the posi-

tions of the antennas are very accurately located in their designed positions. Amplitude (gain)

and phase mismatch/errors however exists between the receivers, over the passband of each

receiver and between the unequal length cables which connect the antennas to the receivers.

To compensate for this mismatch, the Jindalee radar's receiving array is calibrated using an

internal signal which is injected via equal length "calibration cables" to each of the receivers

[115, 103]. The result of this calibration is a "calibration table", which is applied to data

received by the aÍÍay, to obtain well calibrated radar data.

The calibration table is a two-dimensional array of complex weights. Weights are stored

for each receiver - range cell pair. The variation of the weights over the range cells, for a given
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receiver, is a result of variation in the gainlphase of the receiver frequency response over its

passband and attenuatiorVdelays in the cable. The variation of the weights over the receivers,

for a given range cell, is due to gainlphase mismatch between the different receivers and also

due to variations in attenuatiorVdelays between the unequal length cables.

An example of the calibration weights for a receiver, as a function of range cells, are shown

in figure 7.19. The amplitude variation in figure 7.I9(a) is flat except for the early range cells.

This is because the receiver's gain response is flat within the passband, and drops off rapidly

before and after the passband. The early range cells have been obtained from just prior to

the receiver's passband, and hence the amplitude of the calibration weights need to be high

to compensate for the low gain in this region. The phase variation of the calibration weights,

shown in figure 7.19(b), is fairly linear over the range cells.

The calibration weights for a range cell, as a function of receiver number, are shown in

figure 7.20. The amplitude variation shown in figure 7.20(a), indicates that some variation

is observed, with the amplitude of receiver number two and four being somewhat different

from the others. The phase, shown in figure 7.20(b), has large variation since the cables are

nominally of different lengths.

7.5.1 Calibration oveÍ Receivers

In order to see if meteor echoes can be used to perform array calibration for the Jindalee OTH

radar, some data collected on day 297 in 1986 was analysed. This data was collected at 14.8

MHz and at ranges of about 1000-2000 Km fromtheradar. Nine dwells from 05:21UT to 05:29

UT were analysed, and thirty three ionospherically propagated meteor trail echoes obtained.

This data was calibrated only over the range cells, using the standard Jindalee calibration

weights; calibration over the receivers was not performed, since the calibration weights over

the receivers are to be estimated using the meteor echoes.

In order to estimate these calibration weights, the principal eigenvector of the covariance

matrix of a selected echo (of SNR 23dB and 10 snapshots), was used. The covariance matrix

was estimated by averaging the anay receiver outputs over all range-time samples for which

the meteor echo was present. The estimated calibration weights are then simply the inverse of

the principal eigenvector element values i.e. the estimated calibration weights ãre u¡ : I lun,

where u¡ is the kth element of the principal eigenvector.



7.5. TINDALEE AKRAY CALIBRATION

10

I
I
7

10 20 30

10 20 30

50 60 70

50 60 70

178

o6o
fÈÃo-v
E

3

2

0

at)
(l)
o
o)oìo
q)
at)
(ú
-cfL

350

300

250

200

00

50

0

1

40
Range Cell

40
Range Cell

1

Figure 7.19: Jindalee calibration weights versus range, for a particular receiver.



7.5. JINDALEE AKRAY CALIBRATION

12

12

14

179

16

o)o
=
o-
E

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
2 4 6 I 10

Receiver Number

810
Receiver Number

350

300

200

150

100

50

U'
q)
c)
o,oþ
o
an
(ú
-cfL

0
2 4 't46

Figure 7.20 Jindalee calibration weights versus receiver number, for a particular range.

16



7.6. CONC¿USION 180

7.5.2 Performance Determination

The estimated calibration weights (+) together with the standard calibration weights (o), are

as shown in figure 1 .21. The amplitude comparison shown in figure 7 .21(a), indicates that the

estimates are fairly close, the biggest difference being for receiver number three and twelve.

The phase comparison is shown in figure 7.2l(b),which indicates the estimates are good.

To further compare the calibration weights the sidelobe levels, achieved when the array

is calibrated over the receivers using the standard and estimated calibration weights, were

determined. The other thirty two echoes present during this period were used as sources

for measuring the sidelobe levels (gain/phase variation over this 10 minute interval will be

minimal). A Hamming window was used to weight the receiver outputs, and then the average

and peak sidelobe levels were calculated for each echo when a beam was digitally steered over

azimuth. Since the Jindalee sidelobe levels are classified, the difference in the sidelobe levels

for the standard calibration weights and the estimated calibration weights is considered.

The sidelobe level difference for each of the thirty two echoes are shown in figure 7 .22. For

the average sidelobe level, the difference is at most 1.5 dB and at worst -3 dB. For the peak

sidelobe level, the difference is at most 1.5 dB and at worst -3.5 dB.

Figure 7.23 shows the results obtained when twenty different echoes were each separately

used to calibrate the radar. The sidelobe level differences are given, for both the peak and

average sidelobe levels, from ten separate echoes present during this period. The SNRs of the

echoes used to calibrate varied from 10 dB to about 25 dB; better results being obtained for the

stronger echoes. These results indicate that the averagelpeak sidelobe levels are in most cases

within 2 dB of the standard calibration approach.

7.6 Conclusion

The propagation modes by which HF radar may obtain head/trail echoes, the difference between

shower and sporadic meteors, the effect of radar frequency on echo rates observed, and the

diurnal variation of echo rates, have been described. Analysis of head/trail echo wavefronts

was conducted, which illustrated that often these echoes can be used as sources of opportunity

for array calibration. Trail echoes, which can be considered as disjoint sources, were found to

be present in most cases for 5-10 snapshots. The spatial stationarity of head/trail echoes was

examined; trail echoes being found to have time-invariantDOAs, while head echoes in general

had time-varying DOAs. Under multimode propagation conditions, multiple correlated signals
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(with distinct DOAs) were observed for meteor echoes.

Differenttypes ofnoise sourcespresent inthe HF environment, some HF noise statistics, and

methods for determining the suitability of noise sources for array calibration, were discussed.

The properties of beacons, and other possible sources for array calibration, were also outlined.

Array calibration using meteor echoes was investigated, using the Jindalee OTH radar. The

results obtained indicate that array calibration using meteor echoes has been almost as good as

the standard calibration (using a special signal injected via cables to the receivers). Since it is

known that the standard calibration of the Jindalee OTH radar is good, it is clear that one has

been very successful in calibrating this radar.
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Conclusion

In this chapter the thesis is concluded. An overview of the thesis, an outline of the main

contributions, and a description of future work that could be performed, are given.

8.1 Overview and Contributions

Modern OTH radar receiving affays, which are being designed to be rapidly relocated, require

accurate array calibration. In this thesis, the effect of array model errors on the performance of

such radar affays has been determined, and signal processing algorithms have been developed

(and tested) to correct for these imperfections using sources in the HF environment.

In chapter 3 the effect of array model effors on the performance of OTH radar affays

was analysed. The effect of gainlphase mismatch between the receivers, sensor position

errors and mutual coupling between the antenna elements, were considered. The performance

degradation in the signal-to-noise ratio, anay gain,bearing estimation and anay sidelobe levels,

were obtained in terms of the standard deviation of the model elrors. The main degradation

was the array sidelobe levels, which was shown to cause the sub-clutter visibility (and so target

detectability) to be degraded when non-stationary interferers were present. In this chapter

it was concluded that array calibration was necessary so the array sidelobe levels could be

improved. The main contributions \ryere : (a) obtaining the performance degradations

in terms of the model error standard deviations; (b) showing that model errors could

degrade target detectabilify in the HF radar scenario.

In chapter 4 a signal processing algorithm was developed for using disjoint (single-mode)

sources (such as meteor trail echoes) to estimate sensor position errors and mutual coupling.

This algorithm was obtained by modifying and extending a method proposed in the literature
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by V/eiss and Friedlander. The new algorithm was analysed for a variety of scenarios, using

simulations, and found to perform well. Also in this chapterperformance criteria were proposed

for determining in practice if an array calibration algorithm has been successful, and the error

surface for this algorithm was analysed. The main contribution was developing an array

calibration algorithm, for utilising echoes from meteor trails, to estimate sensor position

errors and mutual coupling.

In chapter 5 a signal processing algorithm was developed for using disparate sources,

present in the HF environment, to estimate sensor position effors and mutual coupling. Unlike

the algorithm in chapter 4, which uses disjoint sources, the algorithm developed in chapter 5 can

use (non-disjoint) sources present in different disjoint clusters. Further the algorithm in chapter

5 can use multimode and near-field sources (in addition to single-mode sources), sources with

time-varying or time-invariant bearings, and the bearing of each source may be either known

or unknown. The algorithm was analysed using simulations, and its performance was found

to be good. Also in this chapter the performance of the algorithm was investigated for the

case (considered in chapter 4) where all sources are disjoint (and single-mode), and found to

compare well with the performance of the algorithm in chapter 4. The chapter ends with an

analysis of the algorithm's error surface. The main contribution \ryas the development of

an array calibration algorithm, for using disparate sources, to estimate sensor position

errors and mutual coupling.

In chapter 6 the theoretical Cramer-Rao lower bound was determined for each of the prob-

lems considered in chapter 4 and5, and the algorithms were found to achieve the corresponding

bound. The variation of the bound with signal-to-noise ratio, number of snapshots, number

of sources, etc, was investigated; the results obtained indicate that the problems are well de-

fined, and that good accuracy caî be achieved in estimating the unknown parameters. The

main contribution was the determination of the Cramer-Rao lower bounds for the array

calibration problems considered in chapter 4 and 5.

In chapter 7 sources present in the HF environment were considered from an anay cali-

bration perspective. Scattered echoes from meteor trails were shown to be excellent sources

of opportunity for arcay calibration : these sources in general have planar wavefronts at the

ranges of interest, are received in large numbers over the entire HF band, are disjoint sources,

have sufficiently high SNRs, and are of adequate duration for sufficient number of snapshots to

be obtained for array calibration. Meteor head echoes were also shown to be good sources of

opportunity, and their properties along with that of other sources (beacons and noise sources)
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were outlined. Array calibration was performed on the Jindalee OTH radar's receiving array

using ionospherically propagated echoes from meteor trails; amplitude and phase effors being

calibrated, and results obtained were found to compare well with those for the standard (expen-

sive) Jindalee calibration. The main contributions were showing that the spatial properties

of meteor head and trail echoes allow them to be used for OTH radar array calibration,

and demonstrating that meteor trail echoes can be used to calibrate the amplitude and

phase errors in the Jindalee radar's receiving array.

In the appendices the array weighting required to obtain minimum sidelobe levels for a

two-dimensional array with known mutual coupling is first given. Next a theoretical analysis of

the Cramer-Rao lower bound is conducted, for the problem of mutual coupling only estimation.

Finally error surface theoretical expressions are derived, for the analysis presented in chapter 5.

The main contributions were obtaining both the identifiability conditions and theoretical

Cramer-Rao lower bound variance expressions, in the mutual coupling only estimation

problem.

8.2 Future Work

The algorithms developed need to be analysed, using real data collected from an OTH radar

receiving array with both sensor position effors and mutual coupling. The emphasis should be

placed on using meteor trail echoes for performing array calibration, but other sources should

also be examined since in practice if other sources are present they should also be used if
possible.

In particular note :

o different combinations of position errors should be considered;

o different array geometries should be considered;

o anay callbration should be attempted at several frequencies in the HF band, since the coupling

matrix varies with frequency;

o performance criteria proposed in section 4.8 should be investigated.

Also it should be investigated how well coupling matrices estimated at a given frequency are

in calibrating the radar at other frequencies in the HF band. The coupling matrix estimated at

one frequency may have to be modified in some manner for it to be appropriate for calibrating

the radar at other frequencies. This modification may need to be obtained from modelled

information or previous results.



Apppxrx A

Sidelobes for 2-D Array with Mutual

Coupling

The optimal array weights for a two-dimensional array with mutual coupling, are no\ry derived;

the criterion considered being minimum aveÍage sidelobe levels. The determination of the

optimal weights, for the sensor positions and coupling matrix estimated, enables the sidelobe

levels (obtainable using these estimates) to be determined.

Let â(/) be the steering vector formed using the estimated sensor positions, and let ô be

the estimated coupling matrix. The total sidelobe power expected, for the beam steered in

direction d,, is

o : I ll*r/(d,)ôâ (þ)ll2 cos S dg (4.1)

where the range of the integral is over the sidelobe region. Equation (4.1) can be re-written as

tp : *'(0")ð â(d)ât(d) cos g dþ cH *(0.) ( .2)

p : *'(Éo)ôxôH*(d,) (A.3)

where t<: [ â(d)â"(d) cosþd$.

Now p has to be minimised subject to the constraint that the gain in the look direction is

one, i.e. *HiA,;ôa10,) : 1. Substituting uH(d,) : *H (0,)c, ('(9,) : cH*(0,)) into (4.3)

p : ."'(Éo)r'(9,)

glves
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(A.4)



with the constraint uH (0.)à(0") : 1. Using Lagrange multipliers this is solved by defining

I : uH (0")Ku(p,) + Àr(l - ..H14,;a1d,)) + ì¿(1 - aHia,¡,'10,¡; (4.5)

Then the derivative of / with respect to u is taken,

f-:2Ktr(0.) - 2^Â(0.) (A.6)
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(4.7)

(A.8)

Setting this to zero,

u(d') : l'x-1â19'¡

But also uH (9,)à(0") : l, and so (since (x-t;ø : K-r) one obtains

Hence the optimal weights are

r-râ1d,¡
u(oo) : ;r(Ux.qgS

(A.e)

The array beampattern is

Br"(ó): llwn(d")"(d)ll' (4.10)

where do is the steer direction of the beam, / is the signal direction considered, "(d) is the

actualsteeringvectorincludingtheeffectsofmutualcouplingi.e. v(/) : c"(d).Thesidelobe

levels can then be calculated.



Appsxux B

Mutual Coupling Estimation using a

Single Source

The Cramer-Rao lower bound (CRLB) is derived here, for the problem of mutual coupling

only estimation using a single-mode source. In order to obtain theoretical expressions for the

CRLB, a 2-element array is considered, and it is assumed that the coupling matrix is Toeplitz

(to simplify the problem). One sensor is arbitrarily placed at the origin (0,0), and the other

sensor is arbitrarily placed along the r-axis; hence the second sensor is at (r,0). The first

element of the coupling matrix is arbitrarily chosen to be one. The coupling matrix is then

1 ceiú
C- (B.l)

(8.2)

."iú 1

where the re-radiated signal is of magnitude c (< 1) times the signal amplitude, and the phase

of the re-radiated signal is r/ radians with respect to the initial signal received by both the

elements.

The array steering vector is

a(d) :
I

"i2trt 
sin(0) / \ l;l

where 6 _ 
"izrcsin@)l\
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The FIM for this problem of estimating iú : 10,c,$lr,is

J_

Je,þ

J"rþ

Jv,l

191

(8.3)

(B.4)

(8.5)

Jee Je.

Jæ J""

J,lt J^þ"

where the (k,/)th element of the symmetric FIM is

Jm : T trace
,ôR*-'a.I** ,ân

-t

0út

The covariance matrix for the source is R : o2rc"(0)"H (0)c' I o2*t2. Now arbitrarily let

the noise power o?v : l, then ø! is the SNR of the source. For convenience the subscript is

dropped i.e. let o2s : o2. Substituting now the coupling matrix and array steering vectoq into

the expression for the covariance matrix,

R: o2

where v(0) : ca(d). Then

"),r 
"',r)l ;l t , h*

1 + hr"¡'t' h.* + cei'þ I I
,riú+h h*ceiú*tlL

(1 +c2) lhcei'þ lh*ce-i'þ

h+h*czicei'þice-i'þ

(8.6)

l.l;il*',

(8.8)

(B.e)

(8.10)

(B.11)

o2

)o"

I

I

ce-iú

cc

ce

l.l;
l;il

jrþ 0

I

I

An expression for R-l is now obtained by first expressing R as follows

j'þ
ce

h*+hc2 Ice-i'þ*cei'þ
(l +c2) *hce-i'þ *h*cei'þ

R: o2u(o¡"Hçe¡ +y

_l
R vQ)vHQ) * #t)

o'r,-##ffi1

(8.12)
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where the matrix inversion lemma has been used in equation (8.10), and K(0) : I +
o2uH (0)cH ca(0). Now

K(0) !+02 lh*
1

ce-iú

,"-iú

i;l
ceJú

1ceJúI

I

| * hce¡'t'

,"j'l' ¡ h

(8.13)

(8.14)

(8.16)

(8.17)

(8.18)

r+02 I + h*ce-i'l' ""-i'l' ¡ h¡

| + o2(z l2r2 I h*ce-i'þ I hcei'þ I h*cei'þ -f hce-i'Þ¡ (B.15)

From equation (8.12), R-l is

,- o'
K(0)

R, (ry',- cu(o)a.(r).")

o2 ry-(l +c2) -hceiú -¡"""-i't' -h* -hcz -cei'þ -ce-iú
K(0)

o2

r{(0)

ôn
0c

Now consider

2c+ hei'þ + h*e-i'þ

2h*cl.i'l'¡s-i'þ

hceiú - h*ce-iú

ceiú _ ce-iú

2hc -f 
"-i'l' ¡ ¿i'l'

2clhe-i'þ lh*e'¡'t'

-r"-iú i ,"i,t, I
-hce-iú -f h.cei,Þ 

1

-h,-h"c2-ceiú-re-iú
L" + fl -l c2) I h*cei'þ I hce-i'þ

-h-h*c2-ceiú-ce-iú

ry-Q+c2)-hce-iÚ-h"cei
_h*_hc2_ceiú_ce-jú

i + 0 + c2) + hceiú i h*ce-i'þ

where K(0) in equation (8.15) has been substituted in equation (8.18).

Consider now the partial derivatives,

ôn
ô0

ôn
Arþ

o2(¡Z',rçr lÀ)cos(g))
hceiú - h*ce-iú

h - h*c2

hcz - h*

hce-iú - h*ceiú
(8.1e)

(8.20)

(8.21)

(8.22)

(8.23)

)o"

Jo

ôn
a0

ân
A.
ôn
Arþ

R-1

R

R

Lo'
KQ)L"
.^'to'
xçq"r

Ls

(8.24)
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where after some manipulation it can be shown that

[Lp], : jØ*,r - h*""-iú) + ca - | ¡ c3ei'tç¡+ å.) * czç"izø - "-iz't'¡
_ce_i.þ(h+ h.)

¡ce-i,l,(¡¿ + å.) (B.28)

1

[L"] r r 
: \çZr+t "i'l' 

¡h. e-i'l'¡¡¡¿i'l' -6* rz 
"-i'l' -(h*)2 c¡hcz e-iú +h'" - h* eiú (8.29)

I
[L"]rz: \12t "+"iú + e-i'\+"i'Þ ¡2hc-2h*c*6zrz"-i'Þ -rz"-i'l'-(h\2ei'þ @.30)

[L"]r, : \ç2t."+"i'l' ¡"-i'l'¡iei't' -2hc*2h*c*(h*)zcze-i'þ - rz"-i'Þ -¡z"i'Þ18.3I)o'
1

lL"lt.¡: \çZr+t "-i'l'¡6* "i'l)-O"i* ¡h*"z"-i'l'¡(h*)2c-hcze-itÞ -¡2" I h* ei'þ (8.32)

1 .,
[r,¿],, : \çhr"iú - h* r"-iú) + h2"2 - (h.)'r' ] hceiú - lt*ceiú * hc3 e-iú

_h* ca e-i.þ (8.33)

1

ll-'],r:\ç--"-i'l'¡rei^/)-2h"c2+2hc2-çh*)z."i'Þ¡hzc3"-i'l'¡¿¿i'l'-rt"-i'l'@.34)
l,

lt+]rr: \çr"iú _ ce-i'\+zh* c2 -2hc2 *(h*)2c3 e-i'Þ -¡zr"i'/'lceiú -ca e-i'þ G.35)

I

lt,plrr: pt-hce-iú t h*cei'l'¡ - h2c2 I (h.)2c2 - h,ceiú r h.*cei'þ I h*c3"-i"þ

_ hca e-i"þ (8.36)

Due to the complexity of these expressions and the further algebra that has to be performed,

specific coupling parameters were chosen. The coupling amplitude c was chosen to be 0.5,

and the coupling phase ry' was chosen tobe r f 2, in order to simplify the above expressions.

Since ú: rl2,eiú -- j,e-i'þ : -j,ei21þ - -1 and e-iz'l' - -1. Note K(0): I +2.502,

and (r I \ was chosen to be 0.4. Now

(8.2s)

(8.26)

(8.27)

(8.37)

(8.38)

(8.3e)

Ir,B] r r

lt.ø]tz :

lntlzt :

lttlz, :

pø+ å.) + o.62si(h+ å.) - o.e37s

I

+(0.25h - å.) + 0.3r25h - 1.25h. + 1.25i

I

"r(o 
- 0.25h-) - 0.3 r25h. + r -25h - 1.25.i

#rn + h-) - o.62si (h + h-) + o.s3i5 (8.40)



[L"]" :

[L"]t, :

[L"]l :

lL.lr, :

[r,ø]' ' 
:

ll-^plr, :

lnolr''

Irtlr, :

#, * ih - ih.) + 0.7si(h - h.) + o.s1r,2 - (t.)')

"L, 

* r.2si + (h - h.) - o.zs¡ t 2 - i (h-)',

5 * t.2si - (h - h-) - o.2si(h.)' - it'

)o - ih + ih.) - 0.isi(h - h-) - o.sqt2- (h-)')

pø+ å.) + o.zsit2 - (1,.)t) + 0.31si(h - h.)

4 + o.sØ - h.)- 0.si(h-)2 - o.tzs¡t2 + 0.62si

\ - o.sçn - h-) - o.s¡tz - 0.t2si(h-)2 + o.ezs¡

Yrn + h.) - o.zs1r,2 - (h-)') - 0.37si (h - h.)

+r2rg4@ /¡)2 22s2Q) e.r2s * 7.Br25o2)(l + 2.502)2

(8.46)

t94

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

(8.47)

(8.48)

(B.52)

(8.s3)

(8.54)

(B.ss)

Substituting equations (8.22), (8.23) and (8.24) into equation (8.4) and inserting K(0) :

I + 2.5o2, one can after some manipulation obtain the elements of the FIM as

Jee

J".

J+,t

Je.

Je,þ

J.o

J.rþ

Jøt

J,þ.

(

0

i

(8.4e)

Toa
(g + 10d2 - 5o2h-2 - 5o2h2 - 2h-2 - 2h',) (8.50)

(r + 2.5æ)2

Toa
(3 + 2.502 - t.25o2h-2 - r.25o2h2 + o.sh-', + o.st',¡ (8.51)

I t 2.5o2)2

2nToa(r f À) cos(0) (t.25h-t - t.25h + 3.125o2h-r - 3. l25o2h)
(l + 2.502)2

0

(B.57)

å4(2h-'+2h)
i2rToa(r lI) c2s(0) 

0.2sh-t - r.2sh + 3.r25o2h-r - 3. r2so2h) (B.s6)
(l + 2.502)2

-Toa tat -l
(t .-ir37P(2h-' + 2t¿)

Both the case where the source DOA is unknown (passive array calibration), and the case

where the source DOA is known (active array calibration), are now considered separately. In

each case the determinant ofthe FIM and the CRLB variances (diagonal elements ofthe inverse

FIM), are obtained. Note the existence of the CRLB addresses the question of identifiability,

and so the conditions under which the determinant of the FIM is zero, is of great importance.
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8.1 Passive Array Calibration

If the source DOA is unknown, then the FIM is a 3x3 matrix. Expressions are now obtained

for the determinant of the FIM and the CRLB variances of the unknown parameters. Firstly

consider the determinant of the passive array calibration FIM l,

ll¡ I

_n2y3otz * l\2 cos2(0)h4
(125o2 - 50h4 + 25 + 25h8 + 156.25oa - 250hao2

-312.5hao4 + t56.25h8oa + l25h8o2) (8.5s)

Itse .zs"oçhs - 2h4 + l) + r25o2(h8 - zh4 + l)

+2s(h8 - zn4 + r)) (B.se)

(r + 2.502)6

- n273 orz ç, I \2 cosz (0)h4

(l + z.soz¡a

-- 
r2T3 o1' (" I Ð' cos2 (a ¡ h4 

llse.zs oo +r25 oz +2s) ( n + r )2 ( h - r)2 Ø+r)r] e.ool(l +2'502)6 r\---'---

The CRLB variance of the DOA is

-(l + 2.5o2)2

To412 cos2(9)

-(l + 2.5o2)2 6.25o2(ha -2h2 + 1) - 2.5(h4 + 8h2 + l)
Toar2(rf À)2 cos2(d)

-(1+ 2.5o2)2

t56.25o2(h+ ¡)h2 + l)+ 62.5(h4 +2h2t-T-

6.25o2(h-1)2(å+1)2-2.s(tf+81¿2+l)

(8.61)

(8.62)

(8.63)

(8.64)

Toarz(rf À)2 cos2(d)

-(1 + 2.5o2)

I

(156.25o2 + 62.5)(h2 + 1)2

6.25o2(h - r)',(h+ 1)t - 2.s(h4 + gh2 + 1)

T oar2(r f À)2 cos2(á) 62.s(h2 + l)'

where the last equation is obtained since (156.25o2 + 62.5) : 62.5(l -12.5o2).

The CRLB variance of the coupling amplitude is

_¡z
.6s)

(8.66)

(B.67)

3t.25(t t 2.5o2)2

I 56.25 o2 ha _3 12. 5 o2 hz + | 5 6.25 oz ¡62.5 h+ -125h2+62.
_62

156.25o2(h4 -2h2 + 1) + 62.5(h4 -Zt¿z +l)
_62

(t56.25o2 + 62.s)(h - r)'(h + 1)'

Toa

3l.25(l ¡ 2.5o2)2

Toa

o.s(1+ 2.5o2)
Toa

The CRLB variance of the coupling phase is

(8.68)
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- 62 . 5 h2 - 7 8 . 12 5 o2 h2 +3 9 . 0 62 5 o2 +3 9 .062 5 o2 h4 + | 5 . 62 5 + | 5 . 625 h4

I 5 6 .2 5 o2 + I 5 6 .2 5 o2 h8 -3 | 2 . 5 o2 h4 - I 2 5 h4 + 62 . 5 + 62. 5 h8

_ 4(t * 2.5o2)2h2

Toa

39.0625o2(h4 - zhz + 1) + r5.625(h4 - +h2 + t)
r56.25o2(h8 - 2hq + t) + 62.5(h8 - 2h4 + r)

39.0625o2(h - r)2(h + l)2 + 15.625(h4 - 41,.2 +

t96

(8.6e)

(8.70)

_ 4(r ¡ 2.5o2)2h2

Toa

I

(156.25o2 + 62.s)(h2 + 1)2(h + 1)2(h - l)
39.0625o2(h - \2(h+ 1)', + 15.62s(h4 - 4h2 + r)

erp(j4r(r/À)sin(d)) : -1
arQ.a) sin(d) : plT

sin(g) : fß
sin(d) : 0.625p

2
(8.71)

(8.73)

(8.74)

(8.75)

(B.76)

(8.71)

(8.78)

(8.7e)

(8.80)

(8.81)

(8.82)

ts.62s(h2 + r)2(h + t)2 (h - r)'
(8.72)

When the determinant is zero the FIM is non-invertible, and hence the problem is non-

identif,able for the case considered. Hence this gives the observability conditions. From

equation (8.60) the determinantis zero when: (a) cos2(d) : 0; (Ð lr2 - -l; (c) å : l; and

(d) å : -1. Condition (a) occurs when 0 : Itrl2 (i.e. end-fire directions). Condition (b)

occurs when

where p : LI, +3, t5, etc. Since sin0 cannot be greater than one, the only solutions are

when p: 11. These correspondto sin(d) : L0.625,andhenceoccurwhen0: t38.682o

(with respect to broadside). Condition (c) occurs when

erp(j2n(r/À) sin(d))

2tr(0.a) sin(d)

sin(d)

sin(d)

I

qT

q

0.8
: 1.25q

where Q : 0, +2, +4, etc. Since sinO cannot be greater than one, the only solution is when

Ç : 0. This corresponds to sin(g) : 0, which occurs when 0 : 0 (i.e. broadside direction).

Condition (d) occurs when

erp(j2tr(r/À) sin(d)) : -1
2tr(0.a) sin(0) : plT
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@Ð, È

sin(d) :
sin(d) :

-0.1s831(h+ D2(h-r)2
T cos2(0)(h2 + I)2

-0.1583I(ho-zh2+t)
T cos2(0)(h4 +2h2 + r)

-0.15831 h2_2+h-2)
Tcos2(O)(hz ¡Z¡h-z)

p

0.8

1.25p

t97

(8.83)

(B.84)

(B.8s)

(8.86)

(8.87)

(8.88)

(8.8e)

(8.e0)

(8.e1)

(8.e2)

(8.e3)

(8.e4)

where again p : Ll, +3, +5, etc. Since sinO cannot be greater than one, no solution exists.

So this problem is non-identifiable when the source is either at broadside direction, end-frre

directions, or :E38.682o from broadside. These are key observations, and the reason for these

non-identifiable conditions will be given in section 8.3.

High SNR approximations for the CRLB variances can be obtained, which illustrate how

the variances vary with the source parameters. From equation (8.64) the CRLB variance for

the DOA can be approximated as

2 cos(l.6tr sin(0)) - 2

2 cos(1.6ø' sin(0)) + 2
cos(l.6nsin(d)) - 1

cos(1.6r sin(d)) + I

-0.15831
7 cos2(9)

-0.15831

("?), N

0)cos2T

The CRLB variance of the coupling amplitude in equation (8.68) can be approximated for

high SNR as

-t.25h2
7oz(l¿+_ztf+t)

-1.25
7oz(þz_2+h-2)

-t.25
To2 l2cos(1.6ø'sin(d)) - 2l

-0.625
?ø2 [cos(l.6zr sin(á)) - 1]

(8.e5)
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The CRLB variance of the couplingphase in equation (8.72) is approximated forhigh SNR as

198

. î. 2.5o2h2
loilo È f"^

6.25h2

39.0625o2(h - I 2(t, + t)2
ts.62s(h2 + r)2 (h + t)z(h - r)'

(B.e6)

(8.10s)

(8.r06)

T(h2 + r)2
6.25h2

(8.e7)

T(h4+2h2+t)
(8.e8)

6.25

T(h2+2+h-2)
(B.ee)

6.2s (8.100)
T [2 cos(1.6r sin(d)) + 2]

3.125 (8.101)

8.2 Active Array Calibration

When the DOA of the source is known, the FIM is a 2x2 matrix, with the first row and first

column of ¡ in equation (8.3) removed. Expressions are now determined for the determinant

of the FIM and the CRLB variances of each of the unknown parameters. Consider first the

determinant of the active array calibration FIM Ja,

7 [cos(l.6zr sin(0)) + l]

ll¡"ll
T2oBha

(l + 2.502)4

72o8¡4

(l + 2.502)4

72o864

(r + 2.502)4

(-1 - 25ozh2 - 25oah2 * 6.25oa - 6h2 + 50o2h4 + r4h4

+37.5o4h4 - 25oah6 - 25o2h6 + 6.25oah8 - hs - 6h6) (8]02)

f-(ot + 6h6 - t4h4 + 6h2+ 1) - 25o2(h6 - 2h4 + h')

+6.25o4(h8 - 4h6 + 6h4 - +n'z + t)] (8.103)

l-Øo +Bh2 + 1)(å - r)'(h + 1)' -2so2h2(h - r)'(h + l)'

+6.25o4(h - r)o(h + 1)o] (B.lo4)

The CRLB variance of the coupling amplitude is

-(1 + 2.5o2 2h2
-2.5o2h2 + 1.25o2 + !.25o2h4 - 0.5 - 0.5h4 - 3h2

Toa DN

Toa

-(1 + 2.5o2)2h2

-0.5(å4 + 6h2 + 1) + 1.25o2(h4 - zhz + t)
D¡¡

h4 + 6h2 + l) + r.25o2(h - t)2(h + |

2
oc

(r + 25o)2h2

l
)'

Toa
-0.s(

Dru
(8.107)
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where DN: -(h4+sh2+l)(l¿ -l)2(h+l)2-25o2h'(h-l)'(h+l)2+6.2so4(h-l)4(h+l)4
The CRLB variance of the coupling phase is

199

I

"fl
-(1 + 2.5o2)2h2

Toa

-(1 + 2.5o2)2h2 z(ho-4h2+l)+5a2( h4-2h2+l)
Toa

-(1 + 2.5o2)2h2

D¡¡

(8.108)

(8.10e)

(8.110)

(8.114)

(B.l ls)

(8.116)

(8.117)

Toa

From equation (8.104), the determinant is zero when h - -1, and when h : I. As

determined above, h : I when 0 : 0 (i.e. broadside direction), and h - -1 has no solution.

Hence the problem is only non-identifiable when the source is at broadside direction. Note

for passive array calibration the problem was non-identifiable when the source was at end-fire

directions or from +38.682o, in addition. These are key observations, and the reason for this

non-identifiable condition will be given in section 8.3.

High SNR approximations for the CRLB variances are now obtained. The CRLB variance

of the coupling amplitude in equation (8.107), may be approximated as

(8.111)

-t.2sh2 (8.112)
To2(h-I)z(h+l),

-0.625 (8.113)

where equation (B.l 13) is obtained since equation (8.112) indicates that the CRLB variance

of the coupling amplitude is the same as that in the passive array calibration case. The CRLB

variance of the coupling phase in equation (8.110) is approximated as

("?)"

:

:

(o't)" È

7o2 [cos(1.6r sin(d)) - l]

-sh

-2.52o4h2
Toa

yoz(þ+_2h2+t)

-5
7oz(tu2 _2+h-2)

-5
T oz 12 cos( I .6r sin(0)) - 2l

-2.5
To2l l.6n sin(d)) - 1l

(B.118)
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8.3 Interpretation for Non-Identifiable Conditions

The non-identifiable conditions obtained in the previous sections are due to anay ambiguities.

Consider first the passive array calibration problem when the source is at end-fire directions or

+38.682". 'Whenthe source is at one of these directions, say 0p, the vectorof sensor outputs

(with mutual coupling) is the same as that for the case (without mutual coupling) where : (a)

two coherent signals impinge the array, with one of the signals being a scaled and delayed

replica of the other signal; (b) the DOA of the stronger signal is do; and (c) the DOA of the

weaker signal is known. This is so, since it can be shown that the vector of sensor outputs

where ô is due to a time delay and 0, is the DOA of the weaker signal. Like in equation (B.3),

the unknowns are a single DOA (0ò, u scalar amplitude (0.5) and a phase (ó) (note 0n must be

known). The combinations of parameters which satisfy equation (8.120) are given in Table

8.1.

0e 0q 6

-900 +900 3r
to

-38.682" +38.682" 0

+38.682" -38.682"
+900 -900

l1t
ln

Table B.1: Ambiguity Conditions

When the source is at broadside, both the passive and active array calibration problems are

non-identifiable, since the vector of sensor outputs

,(t) ca(do)s(ú)

("(or) ! o.5ei6 u(or))'1t¡

: ca(90")s(f )

: 
"(90")s'(f)

(8.11e)

(8.120)

(B.121)

(8.t22)
"(t)

wheres/(t) : (1+O.S¡)s(t). Thusthearraycannotdistinguishbetweenthecasewheremutual

coupling exists (as given by equation (8.1) with c : 0.5 and þ : r 12) with a signal s(l)

impinging the array, and the case where no mutual coupling exists and a signal (l + 0.5j)s(t)

impinges the array.
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Analytic Expressions for Error Surfaces

Analytic expressions are derived here for studying the cost function / error surface in chapter

5, as a function of the unknown parameters. For each unknown parameter the error surface

is analysed separately, with the other unknown parameters fixed at their true values. This

simplifies the expressions derived, while still providing very useful insight.

The cost function, for the special case considered in chapter 5, was given in equation

(5.44). When the number of snapshots and the SNRs of the sources, approach infinity, the

estimated principal eigenvector equals the exact (true) principal eigenvector. Equation (5.44)

then becomes 
¡/

a : Dll", - c;çe.¡â"¡' (c.1)

where en : Ca(0,n,)s, (true values), *0,n"^on top denotes that these parameters are to be

estimated.

A 2-element anay is considered, with the position of one sensor arbitrarily chosen to be at

the origin, and the other sensor located at (r,0) i.e. along the r-axis. The first element of the

symmetric coupling matrix is arbitrarily chosen to be unity. The coupling matrix is then

c- I

q¿i'Þt

c1¿i'Þt

c2¿i'l'z

(c.2)

The steering vector rs

I

"i2trr 
sin 0n / \

where hn - "l2n'sino^/\

"(0^) --
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C.l Source DOA

Now consider the error surface when only one source's DOA is unknown and is to be estimated.

All other parameters are assumed to be known and equal their true values. This error surface

Q,@,): llc.(d,)s" - ca(d,)s,ll' (c.4)

where the summation has been removed since the contribution to the cost function by all other

disjoint clusters is zero. Now

Q{0") : lls,c(a(d,) -"(d"))ll

: ll" i r crei'tt l: 
ll"" |- 

.,,rr' czei,r, )

2
(c.5)

(c.6)

(c.7)

(c.8)

(c.e)

(c.10)

(c.11)

(c.r2)

where equation (C.l l) is obtained since eiß I e-i* : 2 cos lc, and I{n : 2ls"l2(cl + 
"3).

Now differentiating (C.12) with respectß ân,

ll",,o,-i,,) I"5, 11¡'

ls *12 (hin^ - h;h* - lr;lr* + îr;îr"¡ç.! + 
"?r¡

l" ^l' k? + c|)(t - "- 
i2* sin 0n I À 

"i2rt 
sin 0 n I À

,-"-r""sin0nf 

À"j2rrsina./À + 1)

: l",l'k? + ô (z- exp (-#rsind,, - sind,l

- exp (-*rsing,, - ,i'a,l)

(, - r,", (T' sin d,, -,i" rî,1)

(Trsino,"-'"á"r))

(0") : -'#o,.oro, r- (Trsind' - ,ita't)

sn

K(0")a

)
"7)

)

)

)

n

(.? +

I cos

d8
d0n

Differentiating again with respectto ân,

¿'8tQ*)
,l'0.

: *'#o-þma,,t" (Tr sin,,n- sino,l

(c.13)
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Qz(t)

2trn ô ^ /.+ .l cos'0n ", [Ttsind, -. "a"f)]

¡t/

Ð lr,l'Qr;lr^ - h;h* - îrl'tr. + îr;n"¡!rl + 
"3)

l",l'k', + cl)(l - "-i2rrsin?nf 
)'"i2rîsinînl\

_ 
"- 

iTtrî sin 0n I À 

"i2rr 
sinî,/f 1 I )
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(c.14)

C.2 Sensor Position Error

Consider now the error surface when the position r is unknown, while all other parameters are

known and are equal to their true values. This error surface is

¡¡
Qz(î) : t ll ca(d,)s, - cà(O*)s*llz (c.ls)

n=l

where the summation is present since the contribution to the cost function by each disjoint

cluster is non-zero.

The first few steps, up to equation (C.8), are the same (except for a summation) as those in

the source DOA case, and hence are not repeated here. As in equation (C.8)

n:l
Nt

n=l

¡trt
n=l

¡¡t
n=1
¡¡t

n=l
Nt

n=l

ls"l2(cl + cl) 2-exp + sin d,

,in A,)

"" 
r"))S22

- exp
j2rlã - r)

À

2trlî - rl

(c.16)

(c.17)

(c.18)

(c.le)

(c.20)

(c.21)

)

)

)

ls"lz(cl + c|) co I

rAz(a

zls,lz(cl+ 4l (r - cos (ry.''r"))
n.(t-cos ?r,t,,r,))

where the position effor is Ar : î - r.

Differentiating (C.21) with respect to Ar,

dQ2(Lr)
dL,r

¡t/t
n:1

2]r-sino,,'* (ry rme,) (c.22)
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Again differentiating with respect to Ar,

d2Q{ê')
d2êr

: Ð+1""1'
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(c.2s)

(c.26)

(c.27)

(c.28)

(c.2e)

(c.30)

(c.31)

(c.32)

d282(Lr) (c.23)
d2L,r

C.3 Coupling Amplitude

The error surface when c¡ is unknown and the otherparameters are all known, is now considered.

This error surface is

¡t/

Q{¿) : !llc"(g,)",- c^(0^)s.ll2 (c.24)

ZçI{, sin2 d," cos ('+.in a,)

N: Iltt" - ð)^çe*¡s*1¡2

"" (l ,,)r, 
',','"'.,rrl,,l 

I u,),r, 
u"',""'.,ïi,,0 

I ; ]ll'

"-1",r,(oo-u,) 
"ú'( -"') ]hlll'

hn

1

¡¡t
n=l

¡/t
n=l

Nt
n=l

n=l

n=l

n=l

M

n=1

sn¿i'l't ("t - ê')

l
N

h;1
hn

I
: I "" '(r, - ¿t)'

Q{¿,) : \zls,l2(c? - zqA + ¿?)

Now differentiating (C.30) with respect to ô1,

@*!:Ë 4ls*12(ê1 - c¡)
d,î,

' n--l

Differentiating again with respect to ô¡,

¡/

n=l

'When 
cz is unknown and the other parameters are all known, the following expresslons can
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be similarly obtained

Q'?þt) :

N

Qo(êz) : I lr"l'k?, - 2czêz + ê3)

dQqGz)

dôz

n=l
¡r

n:l
Ðzl'"|'G, - ,r)
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(c.33)

(c.34)

(c.35)

(c.36)

d,2Qo(êz) E "i;- : L'z|""|'
' n:l

C.4 Coupling Phase

The error surface whenT/l is unknown and all the other parameters are known, is

¡¡t
n:l

N

D
n=7

¡¿t
n=1

¡/t
n=l
¡¡t

n=l
Nt

n=l
Qs(Lrþt) :

sn

sn

I r c1¿i,tt l_f ctei'û'f

l r1"i't, c2¿i,t'z I t c1ei"ûr czei,Þz )

n=l

l
0 c1(ei'Þt - "tr') I I

c1(¿i'Þt-¿i'Ì',) 0 
'lL (c.37)

snq(eiú'-"i'û', lllll
2

(c.38)

ls *12 cl(e- i'/' t - "' 
i'û t 

) ki,þ' - "i'û 
t 
) ØLh * + t) (c.3e)

l"^l'""(1 - "ia'h - "-iaú;r 
+ l)(1 + l) (c.40)

4ls 
"12 

cl(l - cos(A'rl1 )) (c.41)

where Lrþ, : ,þt - ,þr.

Differentiating with respect to L,tþ 1,

dQs(Lrþt) N
(c.42)

dLrþt

d'Qs(Lrþt)

: | +1',,l2rlsin(A,r/1)

: D qlt"l2cl cos(A,r/1) (c.43)
d'Lrþt n=l

I

hn

For úz unknown with the other parameters all known, the following expressions may
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similarly be obtained :
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(c.44)

(c.4s)

(c.47)

(c.48)

(c.4e)

(c.50)

(c.51)

(c.s2)

N

Qe(Lrþr) : DZI'"1'r70 - cos(Atl2))
n=1

dQe(Lrþz) ¡/

dLrþ,

¿'Qu(Lrþr)

Dzl""l2clsin(4,:.þ2)
rL=

| 2ls"l2 clcos(Arl2) (c.46)
drLrþ, n=l

where Lrþz: ,þz - ,þ2.

C.5 Complex Scalar s,,

Expressions forboththe amplitude ls,l andphase ó, of the complex scalar s,,, canbe similarly

obtained, and are given below.

^¡

: L*(1"*l' - 21"*ll3"l + 13"12)

: 2L"(13"1- l""l)

: 2ls*12 L*(l - cos(aó"))

: 2ls^12 L.sin(aá,)

: 2ls*12 L^cos(Aó,)

8'(13"1)
dQt(13"1)

dl.î"1

a?Qr|s"l)
2Ln

d'13"1

where Ln: | +2cl+ 17+ c1(h*¿-i,lt lh,ei'l't) + cr c2(h^si('þz-'l'r) ¡l¿*ei('/'r-'l'z)). Defining

L6,,-6n-6n,

8s(Aá')
dQr 4á,)

dL6"
d2Q8(L6")

d2L6,
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