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Abstract

The design of optimal lifting surface configurations requires a capacity to quickly evaluate

derived quantities such as iift and drag of a given lifting surface and an algorithm for im-

proving the geometry based on these quantities. The piecewise-constant vorticity method

of Tuck (1993) for solution of the lifting-surface integral equation accurately determines

integrated quantities such as the lift produced by planar lifting surfaces. We introduce a

modification to this method whereby the accuracy in prediction of local quantities such

as the leading-edge singularity strength is dramatically increased for little extra com-

putational effort. Consequently, the leading-edge suction force, and hence the induced

drag, may also be calculated accurately. A discussion of endplates and the optimisation

of the lift-to-drag ratio for endplates on a given wing leads to the more general problem of

the maximization of lift with respect to frictional and induced drag of a lifting surface in

ground effect with finite endplates. We also present a discussion of the wave-induced drag

when an aerodynamic body flies in proximity to a water surface, and introduce leading-

order thickness effects to the aerodynamic analysis program. Finally, we use a genetic

algorithm to search a restricted desìgn space of wing-endplate combinations for a range

of operational conditions, with the aim of illustrating the change in optimal geometry as

we penalise a varying combination of skin-friction and induced drag.
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Introduction

The design of optimal lifting surfaces requires the capacity to quickly evaluate the derived

quantities such as lift and drag of a given lifting configuration and an algorithm for

improving the geometry based on these quantities.

The task of calculating the aerodynamic load distribution on a thin three-dimensional

lifting surface or wing of finite aspect ratio at small angle of attack presents difficulties for

most numerical methods. The two-dimensional lifting-surface integral equation that must

be solved is highly singular, and does not possess analytic solutions, even for simple plan-

form geometries such as rectangles or ellipses. In Chapter 1, we compare some methods

that have been used successfully to determine accurate pointwise and integrated loadings,

and discuss the underiying numerics. Particular attention is paid to the singularities that

occur at the leading edge (Ltr) and at the tips of finite lifting surfaces, and to the rate

at which the results provided by the numerical methods converge to their asymptotic

limits. In particular, the constant-vorticity rectangular-panel method of Tuck (1993)

has been modified to improve the resolution of the LE singularity. A correction proced-

ure is devised incorporating the inverse-square vorticity variation near the LE, thereby

enabling accurate determination of the Ltr singularity strengths and spanwise loading

distributions as functions of the spanwise co-ordinate. The LE singularity strength is

important in some applications, such as for induced drag and trailing tip vortices in wing

aerodynamics, and (in an equivalent hydrodynamic context) for estimation of the size of

the Ltr splash jet created by a planing surface. In particular, we pay attention to post-

processing induced-drag computation, both via a Trefftz-plane method and separately

via direct pressure integration. Accurate reconciliation between these two procedures is

possible only if the LE suction force, which is proportional to the spanwise integrai of the

square of the LE singularity strength, is known to adequate accuracy. In Chapter2,we

consider the numerical evaluation of the induced drag for an arbitrary three-dimensional

1



lifting geometry.

In Chapter 3, we present a discussion of the effect of the addition of endplates to a bare

wing in order to increase lift and decrease the induced drag. A limited optimisation of

the lift to frictional drag ratio for rectangular endplates on a given wing then leads to the

more generai problem of the maximization of lift with respect to frictional and induced

drag of a lifting surface with endplates.

In Chapter 4, we consider a range of effects that may be manifest when a lifting config-

uration flies in proximity to a frxed ground plane. In moderate ground effect, the lift is

significantly higher than that for the free-air case and the addition of endplates provides

a reduction of induced drag. Motivated by a demand for high eficiency wing-in-ground

effect vehicles, or ekranoplans, we consider the addition of endplates to wings in ground

effect and discuss the transition to ground effect in terms of the optimal geometry of a

wing-endplate combination as a function of altitude.

In Chapter 5 we consider the additional hydrodynamic wave drag experienced by a lifting

conflguration flying over water. A numerical scheme is presented for calculating the

propagation of wave energy after the evaluation of the aerodynamic forces.

To first order, the thickness effects of a planar wing may be decoupled from the lifting

effects. This is not the case when endplates are used, or the wing is in proximity to another

wing or the ground. In Chapter 6, the numerical scheme is modified to incorporate

leading order thickness effects. We consider the additional forces due to thickness and

compare the magnitude with the forces due to angle of attack, proximity to ground and

the addition of endplates. We present a discussion and optimisation of the optimal flying

configuration for a vertical stack of lifting surfaces with thickness.

Finally, in Chapter 7, we address optimisation issues for lifting surfaces based on the work

presented in the preceding chapters. A genetic algorithm is used to optimise the planform

of a bare wing and the wing-endplate geometry for a range of operational conditions.

2
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Chapter 1

Lifting Surfaces

1.1 Introduction

Lifting surfaces may be wings on airplanes or birds, propeller blades, windmills, racing-car

downforce devices, aerodynamic aids such as tails or fins on airplanes or dragsters, frisbees

or aerobees, paper planes, kites, control surfaces in air or water, hydrofoils, boomerangs

or re-entry space vehicles. In all cases, forward motion induces a pressure difference

between the upper and lower sides of a relatively thin surface which is dependent upon

the geometry of that surface, and which can be obtained by solving an integral equation

over the surface. Accurate solutions to this integral equation have been actively sought

by many investigators. Although modifications to the techniques to be discussed do exist

to deal with unsteadiness and viscosity, we restrict ourselves here to the steady potential

flow of an ideal fluid. Much work has been done on potential flow (Hess and Smith,

1967); however there are numerical issues relevant to flow over thin wings that are at

present unresolved.

Inparticular,foraliftingsurface,:f(*,y) thatisclosetotheplanez:}inanr-
directed stream U,the pressure difference or loading is proportional to a bound vorticity

l@,y) which is determined for small / by solution of the lifting surface integral equation

(LSm)

I l;G,ùw(* - t,y - ù d,e dn : -4nu f,@,y¡ (1.1.1)

over the projection B of the lifting surface onto the plane z :0. The kernel function

W(X,Y):Y-'(r+XIR), (1.1.2)
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Figure 1.1: The wing is assumed to haue thiclcness t(*,y): l+(*,A)- f-(*,a), n'¿ean

camber l@,a): (l+@,a)+ f-@,yDlz and angle of attack ary, which are small when

compared to the chord c. Under such assumptions, the lifting anil non-lifting components

may be decoupled to first order.

with -R : X2 + Y2, is the downwash induced by a unit horseshoe vortex (Ashley and

Landahl, 1965), (Tuck, 1993). Equation (1.1.1) can be integrated once with respect to r
and the resulting constant of integration used to satisfy the Kutta condition at each fixed

value of gt, requiring 7(r,9) : 0 at the trailing edge of B. No exact analytic solutions

of (1.1.1) exist although series solutions have been sought by a number of investigators

(Hauptman and Miloh, 1986), (Jordan, 1973), (Jordan, 1971).

Wingtip

t : f+(*ra)
z : l(x,,a)

,
I



L.2 Quantities of Interest

Quantities of engineering and design interest may be determined by the solution of (1.1.1).

The relationship between the pressure difference across the upper and lower wing surfaces

and the loading l@,A) is given by

p+(n,y) - p-(*,y): -p¡U1(r,y). (1.2.8)

The chordwise-integrated loading is

f (v) : ["'.':' 1@,v) d,r (r.2.4)
,trtølg)

and the total lift produced by the surface is given by

L : -p¡(J l"r@) 
or. (1.2.5)

The lift coefficient, C7 is a useful reference quantity, given by

Cr -- ,furÈ 
: - * J J"r@,y) drdy, (1.2.6)

where B is the plan area of the surface. Similarly, the induced drag coefficient Cp, is

defined as

2D¿
Co¿

P¡U2 B' (1.2.7)

where the induced drag lorce D¿ is a function of the trailing vortex sheet and will be

discussed further in Chapter 2 with the leading-edge suction force ,S. The rate at which

vorticity is shed at the wingtip directly relates to the strength of the wingtip vortex.

Consequently, we present results for the asymptotic behaviour of f(y) as g tends to the

wingtip Urrc.

l-.3 Existing Numerical Schemes

A number of popular numerical techniques for approximately solving the linear lifting

surface equation have been developed. While there are many variations in gridding and

co-ordinate systems, there are essentially two classes of algorithm, namely the vortex

Iattice methods and the higher order panel methods.

8



1-.3.1- The Vortex Lattice Method

Certainly the most widely used numerical technique for solving the lifting surface equation

is the vortex lattice method (Falkner, 1943) in which the unknown function 7(r) is

replaced by a finite but large number of Dirac delta functions whose strength is to be

determined by collocation. This method models the flow by discrete line vortices, rather

than by a smooth distribution of vorticity. The location of these vortices and collocation

points is crucial to success of the vortex lattice method.

It has evolved with high speed computers into an economical, accurate engineering tool

for the design and analysis of such various devices as Darrieus wind turbines (Strickland,

1979) (Zhr, 1981), wind-tunnels (Heltsey,1976) and marine propellers (Kerwin, i986),

(Kerwin and Lee, 1978). While numerous modifications have been made to the basic

method for specific applications, the vortex lattice method seems to produce results for

lifting surfaces with a certain serendipity. Essentially the difference between the vortex

lattice methods and the other panel methods is the order of representation of the wing

loading 7 on each panel. While a constant (order 0) or higher (Cunningham Jr., 1971)

representation of the loading might be expected to produce a better result than a vortex

(order -1 Dirac delta function), the vortex lattice methods have produced "remarkably

accurate" solutions (James, 1972). Efforts to represent specific output quantities by

higher order functions, such as the spanwise integrated loading (Kálmán et al., 1970)

can produce smooth results for that quantity, but often reduce accuracy in some other

output quantity. An excellent summary of the trade-off between order of representation

and sensitivity to the location of the collocation point within each panel (Ando and

Ichikawa, 1983) shows that the vortex lattice method quickly loses accuracy when the

panels and collocation points do not correspond to the roots of the Chebyschev polynomial

corresponding to the desired number of gridpoints. For higher order methods, the specific

discretization is less significant.

Because of its accuracy and ease of numerical implementation, the vortex lattice method

is probably the most widely used algorithm for the preliminary design of lifting surfaces in

steady, ideal flow. However, because of the sensitivity of the convergence of point loadings

to the grid arrangement, the standard technique is usually modifed to suit a particular

application. Consequently, the lattices are arranged in a manner based on the anticipated

or desired answer. It has also been noted (Hancock, 1971) that while the vortex lattice
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method leads to a finite lift, strictly it implies an infinite induced drag since the induced

drag of each horseshoe vortex line is in itself infinite. Also, unless some modifications

are made to the layout of lattices and collocation points, the Kutta condition requiring

smooth flow detachment at the trailing edge is not automatically satisfied (Lan, 1974).

While most investigators agree that a variation on the Chebyschev grid suits most applic-

ations, one suggestion (Lowe, 1988) is that a superposition of vortices near the leading

edge provides closer modelling of the wingtip behaviour.

Numerous ingenious methods of arranging the lattices and collocation points "determined

from the finite sum used to approximate the downwash integral of lifting surface theory"

(DeJarnette, 1976), or based on empirical observations have been used to improve the

economy and accuracy of the vortex lattice methods. A study of some popular codes

based on vortex lattices (Wang, I974) illustrates that integrated quantities such a lift and

pitching moment are relatively easy to obtain numerically, whereas obtaining agreement

between the near-field and far-field estimates for the induced drag coefficient can be very

difficult. In order to illustrate some of the existing linear collocation methods, consider

the two-dimensional analogue of the lifting surface equation.

L.3.2 The Airfoil Equation

The airfoil equation

f9d,(:[t(r) (1.3.s)
J" * - ç

is the two-dimensional equivalent of the LSIE (1.1.1), for a given function //(r), and

integrates once to give

l.t6)log lz - (l d6 : l@). (1.3.e)

An implicit constant of integration in /(z) ultimately determines the unique solution of

(1.3.8) satisfying the Kutta condition ? : 0 on the trailing edge (Ttr). For example, if

the airfoil is a flat plate with f'(*):1,-1 ( r 1I, this solution has

1

1lr): -
1f

I-r
llr' (1.3.10)

Note the inverse square root leading edge singularity at r : -1, and a zero of square-root

type at the trailing edge r :7.

10



Although an explicit analytic solution can be written down as a quadrature (Tricomi,

1965) for any f'@), the airfoil equation (1.3.8) may also be solved numerically to "re-

markable accuracy" (James, 1972) by the vortex lattice method.

1.3.3 Starkts Scheme

Stark (Stark, 1971) showed that the optimum way of dealing with the Cauchy singular-

ity associated with a vorticity distribution behaving like a weight function W(r) is to

represent this vorticity distribution by a set of discrete vortices which may be mapped

onto the zeros of the orthogonal polynomial associated withW(r). In the lifting surface

case, the natural weight function for two-dimensional steady flows is

l-rw(r): Llr' (1.3.11)

which captures both the leading edge singularity and the trailing edge zero. The associ-

ated orthogonal polynomials are the Jacobi polynomials of order (+tlZ,-Il2) .

Alternatively, if 1@) lW(r) is a polynomial of degree less than or equal to 2m, then Stark

(DeJarnette, 1976) proved that the weighted approximation

l"*de:äw,* i:!,...,ffi. (1 312)

is exact for the following discretization

È.s,

(ti

W¡

/ 2i-l \
-cosl=: -rl i:lr...rn't.\2m-ll /

(2i \
-cos I =--: .r I j :I¡...,,Trt

\2m*I /
2r /zi-I \

2*+Itt" (.2-+ r"/ L: r''"')rn)

(1.3.13)

(1.3.14)

(1.3.15)

where *¿, tj and W¿ are the vortex location, collocation point and weight function re-

spectively. It is illustrated in Figure 1.2.

L.3.4 Lants Quasi-Continuous Method

The Quasi-Continuous Method (QCM) of Lan (Lan, 1974) is probably the most widely

implemented vortex lattice method variant (Lan, 1974), (Lan, 1976), (DeJarnette, 1976)

and (Guermond, 1988).
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Figure L2: The lattice a,rrangernent of V. E. Stark
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Figure 1.3: The lattice úrrl,ngement of C. E. Lan

Lan showed that the continuous distribution of vortices occurring on a wing may be

advantageously represented by a set of discrete vortices located at points which may be

mapped onto the set of the zeros of the Chebyschev's polynomial of the first kind.

2i-l
i:Lr...rffi (1.3.16)eX

1J

cos

cos

2m

TJ

n'¿
)n'L (1.3.17)

w¿ : a rir' (="\ i: r,... jn¿ (1.g.1s)'nL \2m /

This Chebyschev or cosine spacing can also be seen as related to the conformal trans-

formation of a circle into a flat or parabolically cambered plate by the Joukowski trans-

t2

À

J

L

L



formation (Kerwin, 1986)

While Lan's quadrature is a trapezoidal rule on the mapped segment [0, r], Stark's quad-

rature is a Gaussian rule on the actual segment [-1, +1]. As a Gaussian integration,

Stark's rule is more accurate and likely to converge faster than Lan's when the ratio

1@)lW(r) differs from a polynomial (DeJarnette, 1976). The motivation for Lan's

scheme was to obtain the same accuracy in three-dimensional wing analysis as was pos-

sible with the two-dimensional Chebyschev spacing for airfoils.

1.3.5 Three Dimensionality

There are a number of issues beyond those that must be considered for airfoil analysis

that effect the accuracy of analogous schemes in three dimensions. The most obvious

way to apply the accurate two-dimensional method to the wing is by a strip-theory

approximation as illustrated in Figure 1.4. The vorticity strength is piecewise constant

in the spanwise direction and optimally spaced in the chordwise direction to capture the

leading and trailing edge behaviour. Here the chordwise grid is generated with rn : I

and the spanwise grid with n : 6. Versions with staggered grids for point vortices and

collocation points have also been used, but the spanwise constant vorticity method gives

greater accuracy for little extra computational effort. The immediate complication of

applying the method in three dimensions is that the vortex lines extending downstream

must not intersect any collocation points. For more complicated geometries, this is not

always trivial to arrange.

The numerical solution of the three-dimensional lifting surface problem is also complic-

ated because the Cauchy singularity exists not only in the chordwise direction, but also in

the spanwise direction. The spanwise wing loading has a square root zero at the wingtip,

which should be treated as carefully as the leading edge inverse square root singularity

(Guermond, 1988).

Another dificulty is the choice of panel shape. For numerical convenience, quadrilateral

panels are usually chosen to model the surface. This choice seems to be legitimate in

the case of quadrilateral wings but it is not natural for wings with rounded boundaries.

In the latter case a weak logarithmical singularity arises in the calculation of the self-

induced velocity coefficients. Since very large velocities occur at the leading edge, no

matter how weak the logarithmic singularity may be, one cannot prove that it has no

13



Wake

Figure L4: Vorter lattice &rr&ngenxent for three-di,mensional rectangular wing. The lattice

points are generated using cosine spacing with m : I and n : 6 for the chordwise

and spanwise grids respectiuely. Here the uorticity is piecewise constant in the spanwise

di,recti,on, with orientati,on determined by the conuentional right hand rule.

perturbing influence on the leading-edge behaviour of the numerical solution (Guermond,

1e88).

Another feature of classical methods which is rarely discussed is the control point loc-

ations. In the circular wing case, if control points are rigorously located according to

Lan's recommendations, then the first and last control points of the tip strips are outside

their respective panel. Of course, such a configuration cannot be accepted. Generally

the problem is solved by defining the control point location as the mean value calculated

from the location of the four vertices of each panel. This rule usually works but has no

theoretical basis (Guermond, 1988).

Uncertainty in the control point position can also cause numerical instability for rounded-

tip wings when the number of panels increases. In the vicinity of rounded tips, large panel

numbers create highly skewed panels for which a slight uncertainty in the control point

location may easily result in a wrong calculation of the self-induced velocity coeficients

(Guermond, 1988). This problem is often pragmatically solved by giving an arbitrary

U
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non-zero chord length to the tip section. This is discussed further in the section on curved

panels.

1.3.6 Spanwise Modifications

Many schemes have been devised to accurately capture the spanwise behaviour of the

wing loading, but these have largely been designed with a particular asymptotic behaviour

in mind. It is difficult to then apply these methods to analyse the loading in the close

vicinity to the wingtip, because the results are grid dependent.

It was found (Rubbert, 1964) that insetting the location of the horseshoe vortices and

control points at the wing tips could lead to improved resolution of the known square root

zero at the wingtip. Later a one-quarter panel inset in the examination of rectangular and

swept wings was applied (Hough, 1973), (Hough, 1976). Using mathematical techniques

similar to Lan's, a quasi-continuous spanwise scheme was produced (DeJarnette, 1976) as

illustrated in Figure 1.5. In the infinite aspect ratio limit, the three spanwise modifications

U Wake

I L
1

Figure 1.5: Spanwise scheme of F. R. DeJarnette with m : 2 and n : 3. The uorti,ces

are spanwise inset at the wi,ngtips to capture the wingtip singularity.

are identical. We use only DeJarnette's scheme for comparison.

---+-
---l--F-----

Ir
I
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For the chordwise discretization, we give comparative results for Stark's and Lan's schemes

only. Furthermore, since the performance of the vortex lattice method on wings with

curved edges is notoriously poor unless modifications are made at the wing tips, or cur-

vilinear coordinate systems (Guermond, 1988) ate used, we will not use these models in

the examination of circular wings.

L.3.7 Spatial Mapping

An alternative approach is to map the geometry to a rectilinear space (Guermond, 1988).

Guermond's curved panel method is presented as an extension to Lan's Quasi-Continuous

Method. The numerical implementation of the mapping is by the inclusion of a Jacobian

term in Lan's integral equation. The mapping is certain to be undefined at the wingtips,

but elsewhere need not be conformal for the method to work. Although the results for

the overall spanwise distribution of the circulation largely seem to agree very well with

Jordan's series analytical solution (Jordan, 1973), it is not surprising that the leading

edge suction is not captured near the wingtips. There is also no comparison of the

spanwise loading very close to the wingtip, and unfortunately no other data is presented

with which comparisons can be made.

1.3.8 The Panel Method of Tuck

The panel method of Tuck (Golberg, 1990) for the solution of integràl equations with

Cauchy-type singularities has been used on a variety of problems in aerodynamics, hy-

drodynamics and heat transfer (Oertel, 1975) (MacCaskiII,L977) and (Anderssen, 1980).

The method is used to solve the once chordwise integrated version of the LSIE (1.1.1)

fr
J J;G,n)I{xv(* - €,a - rt) d(dr¡ : -4r f (r,y) + C(y), (1.3.19)

where Kxv :Y-'(X * Ë) and R: \Æ+Y2. The constant of integration C(y) that

must be chosen at each spanwise position to ensure satisfaction of the Kutta condition

l@rø(a),U) : 0 is calculated as part of the solution procedure. The planform B is

divided into a finite number of rectangular panels as illustrated in Figure 1.6 on each of

which the loading'y is assumed constant.

While any discretization will in principle work, the favoured method for any planform is

to use the Chebyschev scheme illustrated for a circular wing in Figure 1.6. The specific
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scheme is as follows, in the order in which the points should be calculated. Note that

the chord length of a strip is determined by the Chebyschev midpoint of the strip in the

spanwise direction.

lt - cos(jn ln)l J 0 ,..)n

j:1,.'.)n

ll - cos(irlm)l i : 0, ...,ffi

1 - cos((j )" l")

sqj:,
saj:t

t..
S¿J

rit

1

(1.3.20)

(1.3.21)

(t.3.22)

2

*"(y¡)*'þE@
*"(y¡)*'W|r_.",11;-'¡l"t^ll;:|,.,',m(L.3'23)

Evaluating the left hand side of Equation 1.3.19 on each panel is achieved by considering

the value of K, the formal antiderivative of the kernel Kyy at each of the 4 corners of

panel fI¿¡ Consequently the double integral

t t- Kyy d{d,r¡ : K*+ - v-+ + K-- - 7ç+- (r.3.24)
J Jll¿¡

is exact for each panel and each collocation point (*,A). In this manner the integral

evaluation is computationally efficient and the Hadamard singularity in Kyy is avoided.

The resulting system of linear equations is solved for the vector of values of 7 using any

standard dense matrix inversion package.

This method has been used (Tuck, 1993), (Tuck, 1992) to produce seven figure accurate

values for the lift coefficient C¡f a¡ar for rectangular wings. However, close examina-

tion of the calculated loading in the vicinity of the leading edge reveals a highly local-

ised inadequacy in the representation of the inverse square-root leading-edge singularity

(Standingford and Tuck, 1994), (Tuck and Standingford, 1997).

L.4 Improved Panel Method

All known numerical techniques for solving the LSIE (1.1.1), including the vortex lat-

tice method (VLM) (Lan and Mehrotra, 1979), (Lan, 1974) exhibit a similar inadequacy

(Lazauskas et al., 1995) and yet the leading edge singularity strength is of direct aero-

dynamic significance because it relates to the leading edge suction. One method (Carter

and Jackson, 1991) of fixing this problem for the vortex lattice method is to specify a
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Figure 1.6: The panel method of E. O. Tuck. This scheme will produce a grid ouer any

single wing planform prouided that the leading and trailing edges are giuen as functions

of the spanw'ise co-ordinate.

quadratic profile of :X -:XLE l@,A) over the first 3 collocation points from the LE. We

first turn to the two-dimensional version of the problem to seek an alternative remedy.

At one order of representation higher than the vortex lattice methods, to solve the

two-dimensional airfoil equation (1.3.8) in a manner analogous to the three-dimensional

method of Tuck (Tuck, 1993), \¡r'e assume a constant value f (() : .yj or each of rn panels,

which are Chebyschev spaced, resulting in the discrete set of linear equations

0

0

r

Éj=r t,':IJ log lr¿ - (ld,e: f @¿) (r.4.25)

where the integral equation is exactly satisfied at each of the rn collocation points ix¿,i :
1, . . . , rn. The integral itself can be evaluated exactly over each panel, and the resulting

Panels

Collocation
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algebraic equations

Ðt¡Ao¡: f @¿) (r.4.26)
J=L

require inversion of the influence matrix

A¡.i: (r¿ - ()(1 - log lr¿ - {l)
SJ

€r-r
(t.4.27)

Solution of the set of equations (1.4.26) produces an accurate estimate for the overall

lift which converges with O(n-2) rate. However, inspection of the output values of the

function J" l@), which should approach a constant value at r : 0 shows insteacl a

distinct kink which does not appreciably climinish in amplitucle with an inclease in the

number m of panels used. This numerical ar"tefact is largely local to the first few values

of 7 from the leading edge and hence the errol it contributes to the predicted lift tends to

zero rapidly with n, being proportional to the size of the panels, which for a Chebyschev

grid are especially small in that vicinity. However, the effect on local properties near the

leadìng edge can be significant. For example (see Figure 1.7) if the first two values of .y¡

are used to predict the strength of the leading edge singularity by linear extrapolation to

r:0 
"1 t/* 1(r), the accuracy of this prediction will decrease rather than increase with

the number of panels used.

To correct this numerical error, the representation of the strength of the inverse square

root singularity in the loading function 7(r) near the leading edge r : 0 must be im-

proved.

t.4.L Subpanelisation

One method that is quite successful but computationally expensive is subpanelisation,

illustrated in Figure 1.8 in which we subdivide each main panel into many smaller sub-

panels, and then modify the numerical integration of the kernel in the integral equation

to account for the variation of the relative loads on each of the subpanels, namely, an

inverse square root interpolation to the centre of that subpanel, based on the reference

value n : lG¡) at the centre of main panel j.

The derivation of the methocl of subpanelisation is as follows. The expectation from

two-dimensional analysis is that

l-*¡
llrj''lj -
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Figure I.7: Two-d'imensional airfoil loading with square root singularity remoued, with6,

9 and 12 panels. The kink in the results near the leading edge does not reduce in size wi,th

increased numbers of panels. The corrected curue is also shown, and is indistinguishable

from the analytic solution.

over the interval r j € (-l) 1). We modify Equation 1.3.8 according to the transformation

( : - cos d, (1.4.29)

whereupon the integral becomes

llt

J" ,? cos 0) sin d log lr -l cos 0l d0. (1.4.30)

The discrete version becomes

Dt¡rinl, [^ttloglø lcoslld,O. (1.4.31)
' Jo¡-t

Now the integrand here has no formal anti-derivative, so we transform back to (-space

Ðt, "inl¡ [.e' log lr - ¿1--!É-,,- (r.4.J2)
j 'JÊ¡-, ur ''r/L-('

and further approximate, by extracting sin I : ,/T- from the integrand, and regarding

it as constant over a small subpanel k. Hence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

û

AnalYtic 

-L2
9- .

T2

Corrected
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Figure I.8: The main wing panels are further diuided into chordwise subpanels, on which

the relatiue loads are uaried to account for the leading edge singularity.

Dt¡Tfþ lr',-,',rr ,Log 
lr - (ld€' (1.4.33)

If the ratio (sin 0¡f sind¡) is close to unity, then this closely approximates Tuck's original

method. However, near either the leading or the trailing edge, this ratio approaches

infinity (as an inverse square root) and zero (as a square root), respectively.

We may then evaluate the integral more accurately on a given panel by subpanelising.

For such a panel, we use the approximation

f --f-,--= [."* Ke d(, (r.4.84)
k=t\/1 -Çr€¡'*-t

noting that the integral is again exact. The inverse square root factor is assumed to

2t

Main panel

Subpanel

Collocation



be constant over each subpanel, although the actual location of the (¡ within the kth

subpanel is still arbitrary. As the motivation for employing this method arises from the

critical ratio for each subpanel (sin 0¡lsin0n), tn is chosen to lie on a global Chebyschev

grid of finer resolution. Treating the approximation as a Riemann integration, the kink in

the results for loading can be significantly reduced by using 10 or more subpanels. Figure

1.9 illustrates the improvement in the results. This method has also been successfully

employed for the solution to the Planing Splash problem (Tuck, 1994).

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1.9: Improuement in the resolution of the leading edge loading by subpanelling

with m": 1,3,5 subpanels for a solution to the airfoil equation with m: 12. The case

TrL" : I corresponds to the case where there are no ertra panels on each main panel.

Beyond ffis : 5, there is no uisible improuement in the resolution and in general m, :70
has been found to improue the point estimate for the leading edge si,ngularity strength to

within 3 signifi,cant fi,gures of the fully ertrapolated estimate for a giuen m.

1

3

5
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L.4,2 Subpanels in Three-Dimensions

Applying an equivalent chordwise-only subpanelisation to a two-dimensional planform,

Equation 1.3.19 is approximated by the discrete version:

nn1

t t 1(E ¡,T)A¿¡ : -4n f (r,a) + c (v),
i=l j=l

(1.4.35)

(1.4.36)

(1.4.37)

where

is evaluated by

A¿i : I In,,*""(* - Ë,a - rù d(drt

p

D
1ç:l *+ I l',,,Kxv('- t'Y -'t) d€d't'

in which (;;¡ .nd (t,¡ ur. global Chebyschev points located within the subpanel IIf¡¡ and

main panel fI¿¡ respectively. The integral

t t I(yy(r - €,a - n) d(dn (1.4.3s)
J Jn¿¡¡

may be evaluated exactly as per Tuck's original method. The concept of subpanelisation

has also been extended to the spanwise discretization in an attempt to enhance resolu-

tion of the wingtip singularity. This is discussed further in the later section on curved

panels. Hence we refer to a complete panel scheme for a particular planform geometry

as (m,n,m"ll,...,rn][l,...,n],n"1l,...,m1[1,...,n]), the number of chordwise panels,

spanwise panels and chordwise and spanwise sub-panels within each main panel respect-

ively, all relatively Chebyschev spaced.

L.4.3 Direct Inclusion of Singularity

Rather than using large numbers of subpanels to achieve greater resolution of the leading

edge behaviour, it is possible in two dimensions to specifically include the singularity, by

assuming an inverse square root load distribution over all of the m panels, resulting in

the influence matrix

A¿j ,E lr'j ,'oe 
11¿= (l ,, (1.4.3e)

The integral in (1.4.39) can also be evaluated exactly, although with slightly more numer-

ical effort, regardless of the particular grid used. When the new matrix A¿¡ is inverted,
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1

2

.)

4

5

6

7

8

-0.191386

-0.101378

-0.059830

-0.036050

-0.020521

-0.010244

-0.003903

-0.000865

-0.289623

-0.426612

-0.220609

-0.L25994

-0.073296

-0.040306

-0.020458

-0.011057

-0.256148

-0.332619

-0.572224

-0.285674

-0.161189

-0.096496

-0.060113

-0.043370

-0.182541

-0.224340

-0.341500

-0.642983

-0.320623

-0.189536

-0.128624

-0.102337

-0.044738

-0.061629

-0.098395

-0.t64022

-0.291848

-0.571379

-0.324656

-0.251166

0.999992

0.999977

0.999946

0.999895

0.999817

0.999695

0.999458

0.999278

-0.104447

-0.131046

-0.19287i

-0.327320

-0.642732

-0.334279

-0.220412

-0.179378

-0.012201

-0.022686

-0.044824

-0.081616

-0.14040 1

-0.246278

-0.459530

-0.341164

Table 1.1: Corrected matrir of infl,uence coefficients A¿¡ for the solution of the ai,rfoil

equation with a constantly loaded two-dimensional panel method using m: B panels with

Chebyscheu spacing.

1

2

.)

4

5

t)

7

8

-0.007419

0.003071

0.000880

0.000450

0.000316

0.000267

0.000249

0.000243

-0,010349

-0.003440

0.003876

0.001432

0.000899

0.000730

0.000671

0.000652

-0.005106

-0.007805

-0.002888

0.003379

0.001411

0.001002

0.000883

0.000849

-0.002768

-0.003428

-0.005978

-0.002629

0.002405

0.001062

0.000816

0.000759

-0.001351

-0.001605

-0.002273

-0.004292

-0.002378

0.001243

0.000501

0.000396

-0.000 122

-0.000174

-0.000284

-0.000476

-0.000807

-0.001557

-0.001541

-0.000567

-0.000008

-0.000023

-0.000054

-0.000105

-0.000183

-0.000305

-0.000542

-0.000722

-0.000519

-0.000634

-0.000896

-0.001421

-0.002795

-0.002043

0.000157

-0.000123

Table 1.2: Correction matrir E¿¡

the kink in the loading effectively disappears while the rate of convergence to the lift

coefficient is maintained (See Figure 1.7).

For any given grid, we may now calculate the difference between the influence matrix

A¿j : A¿1 assuming constant loading, as given by (.a.27) and the more accurate influence

matrix A¿j: Afl with the singularity built in, as given by (1.a.39). Hence a correction

matrix E¿j Af, - Alt is obtained for any discretization. For a Chebyschev grid the

correction matrix E¿¡ is a fixed constant (the size of the smailest panel) multiplied by a

set of factors whose only parameter is the number of panels zn. For example, for m: 8 the

corrected influence coefficients A¿¡, their correction factors E¿¡ and the relative magnitude

E¿¡lA¿¡ are presented in tables l.l,I.2 and 1.3 respectively.
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0.038767

-0.030296

-0.014716

-0.012489

-0.015393

-0.026095

-0.063880

-0.287472

0.035733

0.008063

-0.017567

-0.011367

-0.0L2270

-0.018103

-0.032792

-0.058993

0.019933

0.023467

0.005047

-0.011828

-0.008757

-0.010388

-0.014688

-0.019570

0.015162

0.015281

0.017504

0,004089

-0.007501

-0.005605

-0.006346

-0.007412

0.012938

0.012250

0.011785

0.013114

0.003700

-0.003719

-0.00227r

-0.002207

0.011603

0.010281

0.009105

0.008666

0.009578

0.003576

-0.000485

0.000491

0.010013

0.007657

0.006346

0.005828

0.005751

0.006321

0.003354

0.001663

-0.000008

-0.000023

-0.000054

-0.000105

-0.000183

-0.000305

-0.000542

-0.000722

Table I.3: Relatiue magnitude of correction matrir E¿¡lA¿¡.

t.4.4 Direct Inclusion in Three-Dimensions

Since the two-dimensional airfoil equation has an analytic solution and numerical meth-

ods are really only needed for lifting surfaces in three dimensions, the influence matrix

correction E¿¡ is more useful when applied to the three-dimensional problem. Integrated

once in the r direction, the kernel for the three-dimensional LSIE (1.1.1) -uy be expressed

AS

W(X,Y) : Kxv : Y-2(X + ,3), (1.4.40)

where

K(x,Y):xtog(Y+Ä) + 
tlvt"rçx+B) 

- xY-r(x+ R)12. (1.4.4t)

Now the kernel, Kyy is to be integrated over a rectangular panel. We observe that the

numerical scheme provides adequate accuracy in the spanwise direction Y and turn our

attention to the X-integration of K¡. Integrating once with respect toY, we obtain

Kx: log(Y+ A) - Y-'(x +r?) +1 (r.4.42)

All of the terms here are analytic with respect to X except when Y : 0 and X -+ 0.

In this case there is a weak singularity in log(Y + ,B). If we let Y : 0, then this is

reduced to the two-dimensional kernel and we might expect that a correction factor

equal to that used in the two-dimensional case would be appropriate. We use the above

formula for Ky as it stands only when Y : A - rt > 0; if this is not so, the identity

log(Y + ,R) : 2IogX - log(Y - R) is used. Now when Y takes the same sign on both

sides of the panel, the term 2Iog X is either not present (both Y values positive) or else
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cancels out (both Y values negative). On the other hand, when the sign of Y changes

from one side of the element to the other (this occurs when the collocation point lies in

the same chordwise strip as the panel), the integration over the full panel takes the form

log(Y+ +,3+) - log(Y- + A-) : los(Y+ + B+) - (ztogX - log lr- - O-l)

(1.4.43)

There is now a -21og X term present, so the appropriate three-dimensional correction to

the influence matrix A¿¡ is exactly -2 times that for the corresponding two-dimensional

kernel. On application of this correction, the leading edge kink in the three-dimensional

results for 7 disappears, as it did in two dimensions (see Figure 1.10).
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Figure 1.10: Effect of correcting the leading edge ki,nk for a three-dimensional square

planform wing by direct inclusion of the lcernel correction term, with m : 12 and n : 12.

1.5 Curved Panels

The problem of resolving the behaviour of the leading edge loading near the wingtips

arguably depends upon the ability to correctly represent the wing planform with non-

rectangular panels. It is unclear how the sweep angle of the leading edge effects the load

0

T

0.0011
0.0096
0.0265
0.0516
0.0843
0.r24t
0.1703
0.2222
0.2789
0.3393
0.4025
0.4673
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singularity there and it is plausible that some vital aspect of the geometry might not

be adequately captured by a rectangular mesh, no matter how finely approximating the

true shape of the wing boundary. On the other hand, all that is sought is an accurate

estimate of the influence of the loading on each main panel on each of the collocation

points and this ought to be specified to arbitrary accuracy by just such a configuration.

Figure 1.11 shows the approximation of a circular geometry by a Chebyschev rectangular

mesh as used in Tuck's and the present method.

t.2

0.8

0.6

0.4

0.2

-0.2

1

0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

xj

Figure 1.11: The rectangular panelisation of a circle using a Chebyscheu distribution

of n : 18 spanwise strips, each of which has n : 78 Chebyscheu distributed, chordwise

panels.

The only obvious shortfall is the self-influence of the panels in the vicinity of the leading

edge, where the local geometry might be far from rectangular. Even though the sensitivity

of the point loading to the collocation position is far less for the constant loading panel

Panel

Collocation
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methods than for the vortex lattice methods, the results for the leading edge singularity

strength can be signiflcantly altered by moving the collocation points in the panels close

to the leading edge. This in itself is an indication of the art required to produce accurate

results for this particular output quantity using any scheme.

The curved panel method of Lazauskas is an extension of Tuck's panel method. It is argu-

ably a misnomer, because the main panels are not actually cutved, but are approximated

by a spanwise subpanelling technique as illustrated in Figure 1.12.
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Figure 1.12: The curued panel method of Lazauslcas. For clarity, not all curued panels

haue been shown. Note that the curued panels are constructed by n'¿el,ns of a spanwise

subpanelisation and that the ori,ginal collocation point for the rect,angular mesh is still

ualid as the collocation point for the curued grid.

The vorticity is assumed constant on each subpanel within a main panel and has the

same value as the main panel. In the limit as the number of spanwise subpanels n" tends

to infinity, the planform of the wing will be exactly modelled without the need to invert

a matrix where the influence of every subpanel must be considered separately. Like the

-. -i lrrli -f'
I

Main panel

Curved panel

Collocation
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chordwise subpanelisation method, this is an attempt to include more information in a

matrix prior to inversion. This is a noteworthy point. Since the task of matrix inversion

is so computationally expensive, there should be an optimal balance point between work

spent on setting up the matrix and work done in solving the resulting system of equations.

In the case where the relationship between the system variables and the desired output

is complicated by the process of compressing the matrix in this way, there is also the

additional work to be done in recovering the meaningful output. Essentially, solving the

subpanelised model may be regarded as solving a full system of equations for the loading

on each subpanel, where there is a known relationship between the unknowns on the same

main panel. Clearly when the wing planform is rectangular, this method is equivalent to

the panel method of Tuck.

It is also advantageous to vary the number of subpanels across the span, thereby using

more subpanels where the main panels are highly skewed. Two methods have been

implemented so far. In the first, the number of subpanels varies linearly from the midspan

to the wingtip, and in the second, the distribution of subpanels is based on the first

derivative of the function defining the leading edge. This method appeals because of the

"automated" allocation of subpanels for arbitrary geometry and the consequent increase

in resolution near the tips. In practise, because an enormous number of subpanels are

prescribed when the derivative approaches zero (such as at the tip of an elliptic wing), the

number of subpanels is "normalised" according to the maximum memory space allocated

to subpaneiling. For example, on a circular wing with 16 spanwise and 16 chordwise

panels, and allowing a minimum number of 4 subpanels, this option allocates the following

distribution from midwing to tip n" : (4,12.,22,34,50,76,734,412).

1.6 Results for a Square Wing

As there are a number of separate numerical issues concerning the representation of

curved planform surfaces, we first present comparative results for the simpler case of a

square wing plan. Results are given for the various arrangements of the vortex lattice

method as well as for Tuck's original panel method and the present panel method with

the direct inclusion of the kernel correction.
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1.6.1 Lift Coefficient

The most numerically robust quantity to use to compare the various methods is the lift

coefficient. Since all the methods to be examined are linear with respect to the angle of

attack ary, the quantity C t I ow will be used. A summary of the extrapolated results for

the methods discussed is given in Table 1.13.

C¡,low : C +A x 10-5 x (l}lm)M I B x10-5 x (10/n)N

Method ¡/

2.833

2.660

2.825

2.695

2.859

2.859

Figure L!3: Asymptotic ualues and conuergence rates for the lift coefficient C7f ayy for

o, squol'e wing planform. The modifi,cations to the uorter lattice method are listed for the

chordwise and spanwise distributions of gridpoints.

We notice that the error cancellation effect in the lift coefficient of Tuck associated with

opposite signs of the coefficients A and B is not apparent in the present solution or

any of the vortex lattice methods. In the original method of Tuck, this cancellation

can be used to numerical advantage by carefully selecting the number of chordwise and

spanwise points. Of the vortex lattice methods, Lan's method is slightly better than the

others both in accuracy and convergence. DeJarnette's modifications improve the initial

estimates but result in a slower rate of convergence and is not considered further. In any

case, all methods tabulated yield a highly satisfactory accuracy of at least 6 figures for

Czlow.This accuracy is however, not reproduced by some other output quantities.

I.6.2 Spanwise Circulation

The next most numerically robust output quantity of interest is the spanwise distribution

of circulation f (y). We present a graphical illustration of the degree of similarity between

Chord Span C A B M

VLM Lan Cheb r.4602269t -7.44 -6.44 2.853

DeJa. r.46022702 -7.32 -5.04VLM Lan 2.8t7

VLM Stark Cheb t.46022694 -6.59 -6.42 2.776

VLM Stark DeJa. 7.46022695 -6.73 -5.10 2.802

Tuck Cheb Cheb 7.46022679 18.74 -6.41 3.237

Present Cheb Cheb r.46022714 -27.27 -6.47 3.155
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Figure 1.14: Spanwise circulation l(y) for a squo,re planform wing of unit chord and,

spa,n. The wi,ngtip is located at A - 0. Similar results are obtained by Lan's and Starlc's

schemes for the uorter lattice method, Tuclc's panel method and the present panel method.

They differ at most in the fi,fth decimal place. In all cases n : m :16.

1.6.3 Pointwise Loading

It is possible for a numerical method to obtain acceptable results for integrated forces

while examination. of the pointwise data reveals relative errors significantly larger than

the global error. This may be because of error cancellation, such as grid scale oscillations

with approximately zero sum, or because the large relative errors are confined to a smali

area of the model, where their contribution to global forces is limited.

The loading on a square planar wing in free air is shown in Figure 3a. The loading

drops io zero at the wingtips and at the trailing edge.

The accompanying figures in this section compare the pointwise wing loading 1@,y) for

the methods described above. Rather than give results for the entire wing, chordwise

strips at the midspan and the wingtip are presented as representative. The midspan

strip in general provides an indication of the effect of the leading-edge singularity and
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Fignre 1.15: The uingl Loud,ing o.f a bare sql;are wittg with constant downtnash in Jree air.

cal,ctila,tecl usitzq n, -- tn, : 78 sparzuise and chordruise panels and uisualised usittg the AVS

grtrythics packr,tge.

the wingtip result aclcls 1,o i,his the effect of the spanwise singularitl,. In orcler to highlight

the cleficiencies that all methocls have with regarcl to the leacling-eclge singularity, the

quantity plotted is 1@,y) I -:r,LE versus r. As the singularitl, ¿¿ the leaclìng edge is

dominantly inverse squa,re root in na,ture, this graph shoulcl have a, finite rrertical axis-

intercept, na,mely the leadirg-eclge singularity strength Qfu)

Figure 1.16 shows the output for La,n's and DeJarnette's schemes at the midwing y - s12

and a,1; l;he wingtip y = 0 for n : 'nt, : 16. Nol;e that the spanrvise location of the tipmost
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section is different for these two vortex-lattice-type methods. Similarly Figures 1.17 shows

the output for Tuck's and the present panel scheme. Note that the leading edge kink

in the loading in the constant loading panel method of Tuck has been removed in the

present improved method at the midwing location. As expected, because of the careful

lattice arrangement, the kink at this spanwise location is also negligible in the modified

vortex lattice methods. We note here that all four methods illustrate that the singularity

is not clearly of a square root nature at the tip.
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Figure Ll6: Pointwise loadi,ng for a squo,re wing with the square root singularity remoued

calculated usi,ng n : n'L: 16. The loading 1@,s12) r - ![LE is plotted ouer the chord

at the tipmost and midwing sections for Lan's and DeJarnette's latti,ce-type schemes

L.6.4 Leading-Edge Singularity Strength

The leading-edge singularity strength (LESS) 8(y) i. the coefficient of the extrapolated

value of 1@,y) r-TLE as r -+ r¿6. Figure 1.18 illustrates the form of this coefficient

as a function of spanwise location using the present method wilh 24 spanwise and 24

chordwise panels.

From the previous section, it is clear that Lan's, Stark's and the present method are well

correlated for this quantity in the case of a square wing. Consequently, only the data
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Figure 1.17: Poi,ntwise loading for & squúre wing with the square root si,ngularity remoued

calculated using n : n'¿: 16. The loading 1@,s12) it - irLE is plotted ouer the chord

at the tipmost and midwing sections for Tuclc's and the present panel methods

for the present method is shown. In the case of a circular wing, there will be significant

differences.

It is clear that for a square wing the LtrSS Q(y) tends to zero at the tip y : 0 and

that there is an infinite slope in the graph "f Q(y) as gr -+ 0 at the tip. Numerically

determining the precise asymptotic behaviour of Q(y) at the tip is extremely difficult;

however based on the data produced with n : n'L - 12,24 and 48, a two-figure estimate

for the zero singularity strength ir 8(E) - 'Ao'32 at the wingtip A -+ 0.

L.7 Non-Rectangular Planforms

The problem of applying the previous solution methods to a wing where the chord van-

ishes at the tips lies in the resolution of the leading-edge and wingtip singularities. De-

termination of the true nature of the of the tip singularity is the key to the complete

solution of the analytic problem (Jordan, I974). Since this information is missing, and

collocation methods are based on analytic models, they are particularly unreliable at and

0

Midwing Tuck --3-
Midwing Present --+----

Wingtip Tuck "E----

Wingtip Present .N'-..
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Figure 1.18: The spanwise uariation of the leading-edge si,ngulari,ty strength (LESS) for

o, squo,re wing, calculated using the present method wi,th m :24 and n : 48.

near the tips.

In particular, for a wing whose planform is parabolic at the tips, classical lifting line

theory suggests that the strengths of the two singularities should exactly cancel. The

two known wing edge pïessure singularities, of order (, - *"t)-å at the leading edge and

of order (rrt - Q+L at the trailing edge, meet at a single point. It is in fact not very

easy to visualize a composite tip singularity which performs a transition between the two

different edge singularities (Jordan, I974).

In this Chapter, we are not interested in the effects of specific geometry or aspect ratio

and so the analysis is confined to the simplest planform which exhibits the above property,

namely the circle.

1.8 Results for a Circular Wing

As for the square wing, results are given for the various arrangements of the vortex lattice

method as well as for Tuck's original panel method and the present panel method with

the direct inclusion of the kernel correction.

0
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1.8.L Lift Coefficient

The accurate numerical computation of the lift coeffici ent, C 7 f a for a circular wing is of

distinct interest to the world aerodynamic There are two existing analytic

solutions for the case of a flat circular wing which differ in their prediction of the lift

coefficient in the fifth significant figure. Agreement of the present numerical scheme with

either of the two models would provide significant support for the assumptions upon

which the favoured analytic model were based. Jordan (1973), whose analysis following

Prandtl and Kinner made use of a simple representation of the leading coefficients of the

basis Legendre functions, gives Ctld: 1.7900230 whereas Hauptman (Hauptman and

Miloh, 1936) proposes the value Ctlo:321(f-+z-2):1.7907503, also using a series of

Legendre functions and representing the circular wing as a degenerate oblate spheroid.

Both analytic solutions are expressed as the sums of infinite series, so determination of

the correct formulation might provide useful insight into the true nature of the loading at

the tips. In subsequent personal communication, the second author of the latter method

reported that the Kutta condition was in fact satisfied only in an average manner and

therefore that the Jordan result should be regarded as more accurate in this sense.

Using the same method of extrapolation as was applied to the case of the square wing

is not entirely satisfactory in the case of the circular planform. Asymptotic coefficients

for Tuck's panel method, the present method and the curved panel method of Lazauskas

are calculated from results with rn and n independently varied with values 12,24 and 48.

For the curved panel method, extrapolation to an infinite number of subpanels was made

using p : 64,128,256 subpanels.

Unfortunately, for the panel method of Tuck and the present method, such a tableau is

of limited value. The results are shown in Table 1.19.

It is tempting to believe that the extrapolated value of C¡f ary :1.79024579 for the

present method is in support of the analytic method proposed by Jordan. However, the

tableau used to produce the least squares asymptotic results is somewhat oscillatory,

depending on the relative magnitudes of n and zn. It is not even possible to obtain

an extrapolated value for Tuckts method using this data. This because for rectangular

panels, an increase in the number of chordwise panels causes a larger proportion of panels

to intersect the edge of the wing. An increase in the number of spanwise panels reduces

this proportion. Thus the curved-panel method of Lazauskas is the only scheme with
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n:72 24

24

48

rn :12 r.794234t775749

1.7942167310811

t.7942128704278

t.7978544390226

t.79t8749529351

7.7918844214374

Present 72 24

12

24

48

1.7939175509580

1.794t437959117

t.7947957837602

1.7915567896180

r.7918047t18664

t.79186757 69909

Tuck 48

1.7908781829830

1.7908652637469

1.7908933530325

48

1.7905968241995

1.7907984861273

1.7908768443562

Figure L79: Results for the lift coefficient Ct,low for a wing of ci,rcular planform. The

data obtained for Tuck's panel method and the present rnethoil, differ but osci,llate with

respect to the number of chordwise and spanwise panels.

which a fully extrapolated value can be found. It is clearly shown in Table 1.20

Czld - C - Ax 70-a x (lllm)M + B x10-a x (10/n)N

Method Chord Span Collocation C A B M ¡r

Curved Cheb Cheb Cheb.* 1.78997313 4.725 -22.5 or
a).i) 1.10

Figure 1.20: The ertrapolated ualue and conuergence behauiour for the li,ft coeffici,ent of

a circular planform wi,ng using the curued panel method of Lazauskas. * - Whether the

collocation point here is actually Chebyscheu spaced giuen the relatiue panel geornetry is

unclear. Determining eractly where the appropri,ate Chebyscheu collocation point is may

hold the key to higher üccur&cy,

Despite the oscillations in the results for the rectangular panel methods, it is still clear

that the results must approach a single vaiue. When the present method is applied with

n: rn - 72, the raw result is a lift coefficient of C¡f ary: 1.7905408. By generating a

statistically large number of results with large panel numbets, sufficient evidence might

be procured to eliminate one or both of the contending analytic solutions. Another

approach is to ensure monotone convergence by setting rù : rrù. The present method

using n: rrù - 12,24 and 48 then predicts that C¡f aw: I.7901502968, with a rate of

convergence proportional to (l0lm)L'r2. This is not conclusive evidence against Jordan's
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value because the ratio of n to zn is arbitrary. By selecting different ratios, one can

manipulate the extrapolated value. It seems that there is a numerical issue that is difficult

to resolve without the use of non-rectangular panels. The following table, reproduced in

part from Hauptman and Miloh (1986) with the current results added, compares the lift

and moment slope coefficients for a circular wing. It is reasonably clear that the analytic

solution proposed by Hauptman and Miloh is not supported beyond 3 figures by this

numerical investigation, though the solution of Jordan is not clearly verified beyond 4

flgures, either.

Method c"lo* -C* lo*
Present solution

Hauptman and Miloh

Jordan

Kida

Levey and Wynter

Kinner

Van Spiegel

Krienes and Schade

Robinson and Laurman

Medan

Watkins et. al.

Prandtl lifting line

1.7900

1.790750

1.790023

1.790

1.790

r.87747

r.7902

L.7984

1.7596

1.790

1.7910

2.444

0.4661

0.46882

0.46617

0.466

0.4663

0.4679

0.4663

0.466

0.4662

0.4694

0.611

Table 1.4: Lift-slope and rnoment-slope coefficients for a fl,at circular wing from uarious

soltrrces, both numeri,cal and analytic.

L.8.2 Circulation

Numerous attempts, both analytic and numeric, have been made to exactly quantify the

behaviour of the circulation f (y) as A ) Urtp for the circular planform flat plate wing

(Jordan, 1974,, page 473, Equation 6.2) (Hauptman and Miloh, 1986, page 48, Equation

30) and (Boersma, 1989). This is an important matter, because the rate at which vorticity

is shed at the wingtips is directly related to the visible wingtip vortices which are the
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primary sources of aerodynamic induced drag. A summary of some recent results is given

in Table 1.5. Included with this data is an unpublished result (Miloh and Tuck, 1993)

obtained upon slight modification to the analysis of Hauptman.

Again, Jordan's result is supported more than any of the others. An extremely large

number of panels is likely to be required in order to pursue this matter further. This

will also need more than standard double precision for machine accuracy because of the

vanishingly small size of the panels near the wingtips with a Chebyschev style grid.

f(y) - A^ rß + B x ylogy - C *y +

Method B

Jordan (1974) -0.2819

Hauptman & Miioh (1985) -0.497

Miloh & Tuck N/A

Present -0.58

Table 1.5: Estimates for the spanwise circulation l(y) at the wingtip U ) Urtp for a

circular wing.

1-.8.3 Pointwise Loading

The most obvious negative feature of the pointwise loading predicted by the vortex lat-

tice methods is a catastrophic loss of accuracy at the wingtip, illustrated in Figure 1.21

for Lan's and DeJarnette's schemes. By contrast, the rectangular panel methods pro-

duce relatively well-behaved results at both the midwing and the wingtip, as seen in

Figure 1.22.

The vanishing chord length at the tip of a circular wing has unsettling effects on all the

numerical methods so far discussed. In the schemes primarily suited for two-dimensional

flow, such as the vortex lattice methods, highly converged results for the total lift may

be produced from pointwise loadings that are rather unsatisfactory at the wingtips. Cer-

tainly all methods have a tendency to propagate numerical errors along the leading edge

from the wingtip towards the mid-span. The source of the original error may be a cata-

strophic loss of accuracy near the tip, or the severe grid mismatch in the chordwise

(Num/Analy) A

Analytic 3.186

Analytic 2.813
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calculated usi,ng n : rn: 16. The loading 1@,s12) íD - ítLE is plotted ouer the chord

at, the ti,prnost and midwing sections for Lan's and DeJarnette's lattice-type schemes.

E Midwing Lan
Midwing DeJarnette

Wingtip Lan
Wingtip DeJarnette

ï

-9-
-+

E

X

40



0.8

0.7

0.6

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T

Figure 1.22: Pointwise loading for a circular wing with the square root singularity remoued

calculated using n : rn: 16. The loading 1@,s12) I-ÏLE is plotted ouer the chord

at the tipmost and midwi,ng sections for Tuclc's and the present panel methods

0.5
Þ
ÊÐ

I

s
ò

0

o

Midwing Tuck --3-
Midwing Present --+----

Wingtip Tuck --B----

Wingtip Present --N-...-..

4I



Þ
È
H

I

-

dimension at the tip.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 1.23: The pointwise loadi,ng with leading-edge singularity remoued, for a circular

wing calculated using the present panel method with n : rn: 16. The ertreme numerical

error in the pointwise loadings in the present scheme is caused by the spanwise grid

mismatch. The leading edge panel for one chordwise strip may be spanwise adjacent to a

larger panel that is not at the leading edge of its chordwise strip. There 'is consequently a

false distribution of loading that is propagated spanwise near the leadi,ng edge.

Because of the rectangular panelisation, adjacent chordwise strips for non-rectangular

planforms can be significantly mis-aligned, especially at the wingtips. Figure 1.23 shows

all chordwise strips of the present panel method solution for the circular wing, using

n : rÍù: 16. Note that the loading of the tipmost chordwise section using the present

method appears to be smooth, but that the section closest to it has a kink, or bulge at

the chordwise location of the singularity in its tipmost neighbour. This effect is propag-

ated along the leading edge, although the effect is most pronounced at the tip, where the

leading-edge is most swept. One of the appealing aspects of the curved panel method of

Lazauskas is that this effect is markedly diminished. Unfortunately, a very large number

of subpanels is required to reduce the effect. Figure 1.24 shows the pointwise loading ob-

tained by using the curved panel method with n" : 100 subpanels. The propagated bulge

has effectively disappeared, but a kink has been reintroduced to the leading-edge at all
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spanwise locations. This feature actually also disappears with sufficiently large numbers

of subpanels, but the rate of convergence is logarithmic with n". More importantly, the

prediction of the leading-edge singularity strength has completely changed and, as will

be shown in the next section, incorrectly.

1.8.4 Leading-Edge Singularity Strength

The leading-edge singularity strength is by far the hardest quantity to determine correctly

by any numerical lifiing surface method. Noting that the curved panel method and the

present method are the same when the number of spanwise subpanels n" : 1, we chart

the prediction of Q(y) versus n" in Figure 1.25.
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Figure 1.25: The predi,ction of the leading-edge singularity strength Q(y) using the curued

panel method of Lazauskas with n : nù : 16 and Tt, : 1,9,19,49 and gT. There i,s a

distinct change of mode when the panel becomes curued, such that the prediction of Qfu)

totallg changes.

It is unfortunate that using the curved-panel method, which so effectively improved the

grid mismatching of the rectangular panelisation, introduces such a radical change to the

prediction of the leading-edge singularity strengtlt Q@). The resulting prediction of Ç(y)

produced an estimate of the leading-edge suction which does not match the corresponding

-a-
-+

EI

X

1

9
19
49
97

44



lift and induced drag estimates. This is presumably due to the extreme change in the

self-induced vorticity of the panels near the leading edge and the consequent change

in the correct location of the collocation point. In order to demonstrate how sensitive

the value of the leading-edge singuiarity strength is to the choice of collocation points,

Figure 1.26 shows how the prediction of Q(A) changes for a rectangular paneiisation when

the collocation points are moved from the Chebyschev midpoint to the actual midpoint of

the panels in the spanwise direction. They are still Chebyschev spaced in the chordwise

direction.
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Figure L26: The prediction of the leading-edge singulari,ty strength Q(y) using the present

rectangular panel method wi,th leading edge correction. The method is adapted so that the

spanwise collocation positi,on is at the actual midpoint of each Chebyscheu-proportioned

panel. The resulting behauiour of Q@) differs signifi,cantly from the case where collocati,on

is at the Chebyscheu mi,dpoi,nt.

We also compare the prediction of the leading-edge singularity strength with those of

Guermond (1939), (1990) and Jordan (1973). Figure 1.27 shows the spanwise variation

of thc leading-edge singularity strength. Jordan's infinite-series analytic solution predicts

a finite value for the leading edge singularity strength at the wingtip, but with an infinite

slope as a function of the spanwise co-ordinate, so that the strength drops very rapidly as

we move away from the wingtip. For a finite number of panels, the present method (and
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Guermond (1989)) suggests incorrectly that the leading edge singularity strength is zero

at the wingtip. However, it then rises rapidly to a maximum close to the wingtip, and

as the precision of our computation is increased by taking more panels, this maximum

moves closer to the wingtip itself, and the results approach those of Jordan.
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Figure 1.27: Spanwise uariation of the leading-edge singulari,ty strength for a circular

planform wing. Results are ex)pressed as the spanwise suction force S(y): rl4Q2(A),

where Q@) it the leading-edge singularity strength in the loading l(*,y), for n: rn:
36,72,96 and L44.

l-.9 Conclusron

The ideal panel method is a marriage of the present rectangular panelisation including

the leading-edge kernel correction, with the curved panel method of Lasauskas, in order

to obtain spanwise grid continuity. Unfortunately, the use of curved panels to achieve

this goal appears to destroy the accuracy in the prediction of the leading-edge suction

coefficient.

A large amount of work has subsequently been done in trying to achieve this marriage

through correction factors and shifting the collocation points to their "correct" locations,
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given the local aggregate panel geometry. No consistent method has been found that

will produce both smooth loading and an accurate prediction of the leading-edge suction.

Such an investigation, if successful, would hold the key to a fuller understanding of the

leading-edge and wingtip singularities.

For the present work however,'we shall accept that the present rectangular panel method

with the kernel correction provides an accurate estimate for the forces of interest, even

with the associated grid mismatching. It is used throughout the remainder of this thesis.
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Chapter 2

Suction and Induced Drag

2.L Induced Drag

Induced drag is a three-dimensional effect that reduces the efficiency of lifting surfaces.

Unlike skin-friction drag and parasite drag, which are related to the streamwise flow over

the lifting structure, induced drag is a byproduct of the lift force. The pressure difference

between the lower and upper wing surfaces tends to circulate fluid from below the wing

to above the wing via the wingtips. This causes the wingtip vortices that are illustrated

in Figure 2.1. This large rotating fluid body requires energy, which the lifting surface

experiences as a drag force. Typically, this induced drag is regarded as representing

about half of the total cruise drag of a transport aircraft (Smith and Kroo, 1993), which

is directly related to the fuel consumption in straight-and-levelflight. Numerous schemes

have been proposed for reducing the induced drag of lifting surfaces, including the use of

aft swept wing tips following the lunate or crescent-shaped tail fins observable in some

birds and fish (Burkett, 1989), (Smith and Kroo, 1993), (Lighthill, 1969); the addition of

endplates or winglets which will be discussed in Chapter 3 and flying in close proximity

to the ground or water surface which will be addressed in Chapter 4. In nature, birds fly

in formations which can increase the overall or group efficiency and squadrons of aircraft,

like fleets of ships, often fly in formations which reduce the total drag.
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Fignre 2.1: The uingti,p uortices are clearly uisible in the cloud formation downstream of

the Cessna Ci,tation VI. Reqtrodu,ced from the Gallery oJ Fluid Motion, special reprint,

Physics of Fluids A, Volume 5, number 9, September 1993.
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2.2 Minimum Induced Drag

The field of optimising the ratio of lift to induced drag has been strongly influenced

by the work of Max Munk, a student of Ludwig Prandtl. Munk's first theorem, often

referred to as the stagger theorem, states that the induced drag of a multiplane system

is unaltered if any of the lifting components is moved in the direction of travel, provided

that the attitude of the elements is adjusted to maintain the distribution of lift among

them. This means that the sweep of a wing is irrelevant to the calculation of induced

drag, and that multiple surfaces can be treated simultaneously. All that is important is

the distribution of lift in the yz-plane.

The second theorem of Munk allows the induced drag computation to be performed

in the Trefftz plane, far downstream of the actual geometry. The benefit of this is that

the velocity distribution resulting from the arrangement of trailing vortices is numerically

simpler than the fully three-dimensional calculation required locally at the lifting surfaces.

The third theorem of Munk is of specific application to endplates and winglets. It states

that when all the elements of a lifting system have been translated longitudinally to a

singie plane, the induced drag will be a minimum when the component of the induced

velocity normal to the lifting element at each point is proportional to the cosine of the

angle of inclination of the lifting surface at that point (Blackwell Jr., 1976). This implies

that a horìzontal lifting surface should have constant downwash and that the sidewash

of a vertical component such as an endplate should be zero. This does not mean that

the vertical component should have zero loading, but that the sidewash produced on the

vertical component by the horizontal wing should be exactly opposed by the sidewash

induced on the vertical component by itself. In other words, the induced angle of attack

of the vertical component should be zero. This also reduces the downwash and hence

induced drag of the wing. In Chapter 3, optimisation with respect to a combination of

skin-friction and induced drag will be considered, where Munk's third law will be only

asymptotically valid.

Several measures of aerodynamic efficiency are used in the literature to measure lift

against induced drag. It is unclear as to which benchmark should be applied, because

the theoretical maximum lift to induced drag ratio for a planar wing is undefined when
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the wing has infinite aspect ratio. Measures, such as the Oswald efficiency factor

': = -C?
rÆl(C¡t, - Cb,) Q'z'L)

may be used to compare the induced drag of an elliptically loaded and therefore optimal

wing to a wing of the same span and total lift. This has also been used to defrne the

"effective aspect ratio" of a general lifting surface when endplates are used or when the

surface is in ground effect. In such cases the efficiency factor may be greater than one

and the effective aspect ratio refers to the aspect ratio of an elliptically loaded wing that

provides the same ratio of C'"lCr,. This matter is further discussed in Chapter 3.

2.3 Evaluation of Induced Drag

As stated, the induced drag of a lifting surface (Thwaites, 1960) may be evaluated as the

kinetic energy in the Trefrtz plane, far downstream and perpendicular to the free stream

direction fr, namely:

no : 
Tro I_ I_O2 + u)\ d,yd,z. (2.2.2)

Assuming a perturbation velocity potential / such that q : (u,u,w) : V/ then

no : lreo 
l* l-øi + ó2) d,yd,z. (2.3.8)

Stokes Theorem for boundary integration allows us to transform this double integral to

a single contour integral

no : Lroo 

f"ø (ffi) ,", (2.r.4)

where ds is an element of the trace of the trailing vortices C and ô is a unit outward

normal to this surface. In the case of an infinitely thin trailing vortex sheet, this closed

contour integral may be replaced by symmetry by a version where each simply connected

segment is traversed only once, namely:

nn: 
f;eo lrtrrç"¡*(s)ds, (2.8.b)

where u.,(s) is the downwash induced O, ,n" vortex distributio n on C,according to

t (s) : I rço¡\{$) ao, (2.s.6)Jc \ / lV"ol"
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where V"o is the vector ("("), y(s),2(s))-(r(o),y(o),2(o)). It is useful to integrate this

double integral once by parts to obtain

oo:rroo l"rr'lj* ¡;ø1ffi d,od.s. (2.s.7)

In the general non-planar case, it is difficult to evaluate this double integral numerically.

Some authors (Katz and Plotkin, 1991) present Riemann-based algorithms assuming

that f has a discrete span-wise representation, but to date we have found these slow to

converge with the number of spanwise panels. The vortex lattice method is often used

to calculate induced drag, but is known to underpredict the correct value. A spanwise

correction factor (Kálmán et al., 1970) has been used to correspondingly renormalize the

raw distribution of induced drag over the span. For an elliptically loaded wing, there is

an exact relationship between induced drag and lift,
ñ2

crn: ih,. (2.3.s)

The fact that the wing must be elliptically loaded for the formula (2.3.8) to hold is

sometimes not emphasised in the literature. Another occasional misconception is that an

elliptic planform at constant angle of attack produces an exactly eliiptically loaded wing;

this is only true at ,4R: oo. These two approximations combined sometimes result in a

false *exact value" by which numerical methods are measured.

A graphical means of estimating the double integral has also been presented (Eminton,

1961), but is not generally used. A clever exploitation of the analogy between fluid flow

and electrostatics has also been used to produce a rheoelectric-analog device (Lundry,

1968), (Cone Jr., 1962) for the evaluation of the energy in the Trefrtz plane for arbitrary

geometry wake cross-sections.

In the case of a single planar lifting surface of span s, integration by parts results in the

following integral (Ashley and Landahl' 1965).

Do: -? [" f ++los ly - ytldydy (2.3.e)' 4n Jo Jo dy dAt

Assume that f(y) may be accurately represented as a Fourier sine series

N
f(s) : u'DA*s:r'.(nÉ), (2.3.10)

n=l

where

z - lsind."2
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Then the induced drag coefficient is given (Ashley and Landahl, 1965) as

n. - nP¿'LI2s2 i,rlz,. (z.z.r2)ux_^ g ?-,onn.

The induced drag coefficient is then given by

N
CD;: ,nl"AZ". (2.8.19)

' n=l

In the case of a non-planar wing, an equivalent method has not been found. Whether

there are computationally efficient ways to calculate Cpr lor non-planar geometries is an

interesting question. However, by considering the baiance of forces on the body, it should

not be necessary to directly evaluate C p, at all for flat wings. The force perpendicular to

a flat wing provided by the pressure jn-p between its bottom and top sides must balance

the drag and leading-edge suction forces, such that Cs : C¿ sin aw - Cn.

In this sense, induced drag might be regarded as the disproportionate reduction in leading-

edge suction when compared with lift that occurs when flow becomes three-dimensional.

2.4 Leading-Edge Suction

It may be shown (Milne-Thompson, 1973), (Siekmann, 1965) that there is a non-zero

suction force that acts tangent to a sharp (cusped) point on a profile in two-dimensional

flow. This force may be regarded as the product of the infinite pressure required to make

the fluid negotiate a 180o turn, times the zero area of an infinitesimal body element on

which it acts. It may also be shown that the magnitude of this leading-edge suction force

is proportional to the square of the coefficient of the inverse square root leading-edge

singularity produced in the pressure freld at the cusp.

It has not always been clear (Billington, 1971) that this result is directly portable to

three-dimensional flow. However, it has been shown (Tuck, 1995), (Lan and Mehrotra,

1979) that if the suction force is to exist for a three-dimensional thin wing, then it must

be given by

s :i 
lo' 
e{ù'or, (2.4.14)

where Q@) i" the singularity strength

Q@): -lir" r(r,s)' t--+Í L E
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Hence for a small angle of attack, we expect the leading edge suction force coefficient to

be given by

3:î1,"(ry)'o' (2416)

At higher angles of attack, for wing planforms with highly swept leading edges, the

leading-edge suction analogy may be referred to (Polhamus, 1966), (Er-El and Yitzhak,

19SS). This is a method of predicting the increase in lift when the leading-edge vortex

detaches and causes an increase in velocity of the fluid on the upper surface of the

wing. It is distinct from the linear leading-edge suction of the present analysis. Also in

the literature, the definitions of the thrust coefficient Cz and the leading-edge suction

coefficient Cs differ. Here we refer to suction in the streamwise direction only, with

positive suction opposing drag.

Evaluating the integral in (2.4.16) is made very easy when the integrand is represented

as a Fourier series such that

/q@)':Ë B,sin(n,,), (2.4.i7)
\d/ n

where y : ; cos d. In this case, the leading-edge suction force is given by

Cs:zSlA:T"r. (2.4.18)

2.5 Results

For a rectangular wing of Æl : 2, the suction converges to Cs : 1.500 at the rate

,;'. In order to verify the present computational method, Ct lo, CD;la2 and Csf a2

are calculated independently for rectangular, elliptic and delta planform wings of varying

aspect ratios. These quantities are plotted in Figures 2.2, 2.3 and 2.4. In all cases,

we should find that Crlo - Co;lo'+ Ctlo'. While the unextrapolated results are

reasonable (n, : n, : 18 gives at least 3 figure accuracy for planforms with Æl > l),

there is a noticeable decrease in accuracy for small ,4R, especially for the elliptic and

delta planforms. Figure 2.5 shows the relative error (o*Ct - Co¿ - Cs)l@y¡C;) for

the rectangular, elliptic and delta planforms. Nonetheless, the absolute error C7f a -
CD,loz - Csf o'tends to zero for all cases with rate n-1.
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Figure 2.2: Lift, drag and leading-edge suction on planar rectangular wings of uarying

aspect ratio. The data has been produced from the present method using n: n1: 18.

2.6 Discusston

The power of the current technique is not fully realised for planar wings because it is

relatively simple to calculate the induced drag C¿, directly from the Trefftz-plane double

integral. However, for lifting-surface geometries that are non-planar, or with multiple

components such as endplates or biplane wings, or in ground effect, such direct evaluation

of Cp, is computationally difficult.

By comparison, the evaluation of the leading-edge suction force C5 is essentially geometry-

independent, once the pointwise loading 7 has been accurately calculated by solution of

the non-planar equivalent of the lifting-surface integral equation. An immediate con-

sequence is that the induced drag of wings with endplates, thickness and/or ground

effect can be confidently tackled (Standingford and Tuck, 1996a).
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Chapter 3

Endplates

3.1 Introduction

In this Chapter, we address the use of endplates to increase the lift and decrease the

induced drag on thin wings in free air. Thickness effects will be considered separately in

Chapter 6 and so all surfaces in this chapter are taken to be flat plates with zero camber.

The effect of adding an endplate to a finite-span wing is to inhibit spillage of air from

the lower surface to the upper surface, via the tips. This then maintains the lift-creating

pressure difference between bottom and top surfaces to a distance closer to the tips than

if there were no endplates. Thus the flow becomes more two-dimensional, as if the wing's

aspect ratio were larger, and the net lift increases and the induced drag decreases.

This concept is not limited to wings on aircraft. In addition, shrouded propellets, cata-

marans, vertical axis wind turbines with tip-vanes (van Holten, 1981) and otter boards

on fishing nets (Patterson and Watts, 1985), to name a few, all make use of this increase

in efficiency when the aspect ratio of a lifting surface is necessarily small.

The significant improvement to the design of the International twelve-metre class yacht

made famous when Australia 1/ won the America's Cup race in 1983, known as the winged

keel is strongly analogous. The keel is designed to act as a lifting surface in opposition to

the capsizing force on the sail. In this case, the apparent depth of the keel was increased

by the addition of an approximately horizontal plate at the bottom of the keel. The body

of knowledge in the study of aerodynamic endplates that had been collected was readily

applicable to this kind of ship design (van Oossanen and Joubert, i986).
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The analysis of the effect of adding endplates or winglets to wings is not new. The use of

endplates to reduce drag was involved in a patent by Lanchester in 1897 although the first

experiments involving endplates did not take place until about 1924 (Spillman, 1978).

Since then, names such as "booster tips" have been applied to the various appendages to

wingtips to achieve greater operational efficiency. Interestingly, one of the initial names

for this class of appendage was "tip sail" because the strong vortex cross flow near the

wingtip was seen as a possible source of thrust for an appropriately angled sail. Figure 3.1

shows three such sails attached to the wingtip fuel tank of a "Paris" training aircraft.

Pilots noticed a significant improvement in handling on landing, where the high angle of

attack leads to large lift and induced drag forces. The similarity with the splayed wingtip

feathers of birds on landing is remarkable.

Figure 3.1: Tip sails, mounted on the "Paris" training aircraft, used to generate thrust

from the wingtip uorter flow. Reproduced from Spi,llman (1978)'

A significant motivation for research has been a perceived value in retro-fitting existing

aircraft with devices to improve their fuel consumption, providing an immediate saving,
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although the associated parasite drag prevented them from achieving the improvement

motivated by the inviscid theory (Whitcomb, 1976).

Hemcke (1927) considered the theory of induced drag by applying a conformal mapping

in conjunction with the lifiing line theory. He deduced that the reduction in drag, when

endplates are used, was sufficiently large to increase the efficiency of the wing. Although

the computational power at the time did not support a lifting surface analysis, Hemke

made use of windtunnel experiments as well as theoretical analysis to determine that

endplate location and shape was crucial to their performance and in particular that

endplates designed to minimise induced drag should be positioned towards the wing

leading-edge. Since there is no rearward force on the plates due to a lift component when

they are at zero angle of attack, the only calculable streamwise force on the plates is

the leading-edge suction, which directly opposes the induced drag. This might also be

considered to be physical dissipation of the wingtip vortex. Without wishing to decrease

the circulation and hence the lift of a lifting system, one can still decrease the kinetic

energy of the wingtip vortex system by increasing its core diameter. Basically, the greatest

increases in span efficiency occur for modiflcations which tend to release the major portion

of vorticity near the tip and over an appreciable vertical area (Naik and Ostowari, 1990).

Similar effects have also been sought by means of spanwise camber, without resorting to

the discontinuity of a wing-endplate join (Lowson, 1990).

A portion of this Chapter is reproduced from a technical note (Standingford and Tuck,

1996b), where a limited wing-endplate optimisation is discussed. Here, the author also

presents a more detailed literature review; a more complete investigation of the possible

wing-endplate configurations and inclusion of induced drag in the optimisation of the

wing-endplate geometry.

3.2 Endplates and Winglets

The terms endplate and wingleú are sometimes used interchangeably in the wider literat-

ure. Within the context of the present analysis, they have distinct meanings. A winglet

refers to a small, nearly vertical wing-like surface, mounted at the wingtip to decrease

induced drag (Reynolds, 1979). Winglets are usually aerodynamically shaped, vary in

both chord and camber over their span and are also often "canted" outwards. Figure 3.2

60



shows a popular winglet geometry. Generally it has been found that for minimising in-

duced drag the greatest winglet effectiveness has been achieved with the trailing edge of

the winglet near the trailing edge of the wing (Whitcomb, 1976).

Figure 3.2: Front uiew of a popular winglet d,esign, reproduced from Witcomb (1971).

Note the uertical asymmetry, cant angle and horizontal offset of the sections aboue and

below the wing.

By contrast, an endplate is perfectly vertical, and therefore contributes only indirectly

to the total lift. The endplate may be cambered and/or have a non-zero nominal angle

of attack ap to the free stream.

In order to limit the number of variables, we shall only consider endplates here. A

common query about endplates is whether they act to increase lift or to decrease drag or

both. They can be tuned to perform either of these functions. Endplates on the upper

half of the wing only can be "toed out" to create a thrust force from the wingtip vortex

thereby reducing the induced drag. Alternatively, they can be "toed in" to increase the

tift at the expense of induced drag. Finally, the angle of attack ap caî be be tuned for a

specific geometry and flight condition such that an efficiency function combining lift and
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induced drag can be optimised. In some cases this will mean that the endplate does not

exist at all.

3.3 Design Considerations

The advantages and disadvantages of wingtip treatments in general are debated from

varying perspectives. Other things being equal, most designers agree that a single el-

liptically loaded lifting surface is best. Any additional wingtip structure represents extra

manufacturing complexity, increased tip loading that may increase the root bending mo-

ment of the wing under gust conditions and a significant contribution to parasite drag at

the wing-endplate join. At high speeds and low angles of attack, the skin friction drag

penalty often outweighs the reduction in induced drag (Whitcomb' 1976)'

However, the wingspans of commercial aircraft are often limited by hangar restrictions

and parking space at airports. Other wings, such as on racing cars, or propellers are

limited in aspect ratio by design specifications or practical considerations. Generally it is

true that the greatest relative improvements to lifting surfaces made by adding wingtip

treatments occur when the aspect ratio of the lifting surface is small and thus the bare

wing leaves the greatest room for improvement (Kuhlman and Liaw, 1988). It is often

suggested that the final designs for the winglets on large modern commercial aircraft

are made for aesthetic purposes rather than for performance optimisation (Conley, 1980)

(Reynolds, 1979). When aircraft are retro-frtted with winglets, the designer needs to

carefully check the change in stability conditions, although in general (van Dam, 1981)

the stall characteristic improves.

3.4 Mathematical Formulation

Within thin-wing theory (Ashley and Landahl, 1965), the problem of determining the lift

L on a wing-endplate combination at small angles of attack alyy and op respectively in a

uniform stream [/ of air of constant density p¿ relies on the solution of a pair of coupled

singular integral equations (Tuck, 1992) for the bound vorticity distribution on both the

planar wing and the endplate. The wing and endplate are both assumed thin and the

endplate lies within a plane perpendicular to the wing. These equations are just the
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generalisation of the lifting surface integral equation presented in Chapter 1 to include

the induced downwash of the wing on the endplate and vice-versa. For completeness, the

equations are

I l* { re,n) Gz(* - t,v - r, z - 0 dt dn

I l, f G,Ò Hr(* - t,u - r¡z - 0 d'edi" : -4ru fY @',v)

I l* { rc,\) Gv(* - €,u - \,' - () d,€ dn

I l, f {e ,0 Hr(* - t,u - \¡, - ç) de de : -anu fl (x, z)

where G(X,Y, Z) : Z F(X,Y, Z) is the velocity potential at any point (X,Y, Z) for a unit

horseshoe vortex on a wing surface with normalñ': (0,0,1). Similarly, H(X,Y,Z) :

YF(X,Y,Z) is the velocity potential due to a unit horseshoe vortex on an endplate

surface with normal î¿ : (0,1,0). In these unit horseshoe vortex potentials,

F(x,Y,z): y,+ nlr - ä] , (3.4 3)

where R: {N, i7r+T. Equations 3.4.1 and 3.4.2 are solved for the bound vortices

1w and.7P, subject to the Kutta conditions that 1w : 0 on the trailing edge of the wing

and 7P : 0 on the trailing edge of the plate. In order to simplify the numerical task of

satisfying these conditions, both equations are integrated once with respect to X and the

resulting kernels expressed as cross derivatives to obtain

l l { rcH* ¿t¿,t - l l f x[P aEaç : -+nuf@,v) + ð@ (8 4.4)

llrx{{ d(d,"rt+ llf x{,'atae : -+nuf@,,)' +fi,), (3.4.5)

where C*(y) ar'd CP(z) are the constants of integration that are used to satisfy the

Kutta condition at each y value on the wing trailing edge and each z value on the

endplate trailing edge.

These integral equations have been solved numerically here, using analogous modifications

to the ones described in the previous Chapters to enhance the resolution of the leading

edge singularities on both the wing and endplate.

3.4.L Numerical Experience

It is particularly important to achieve a good resolution of the leading-edge singularities

for the task of optimising wing-endplate geometries, because numerical artefacts such as

+

(3.4.1)

(n,y,z) e w

(3.4.2)

(r,y, z) € P,
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overestimation of the loading at the leading edge can wrongly favour endplates located

close to the leading edge. Similarly, there may appear to be a false local maximum in lift

when the endplate is attached either completely above (or equivalently below) the wing,

due to numerical error in resolving the wingtip singularity. Special care must be taken

when the endplate dimensions are either small or large when compared with those of the

wing, since there can be interference between the smaller element and the numerical panel

scale of the larger element. Most results in this Chapter were computed using a 12 x 72

rectangular Chebyschev-spaced grid on both the wing and endplate, and are believed to

be accurate to at least 3 significant figures.

The convergence of the method was tested on a unit square wing with centrally positioned

unit square endplates as illustrated in Figure 3.3. Extrapolation using n :3,6, 12, where

n is the number of panels in each of the spanwise, chordwise and vertical directions gives

a value fot Cs (using As as a reference area) of 0.922 with convergence rate O(n-2).

3.5 Optimisation

Much of the remainder of this Chapter will be concerned with the task of identifying

successful wing-endplate geometries for the maximisation of lift with respect to drag.

This problem needs careful specification and in particular we must state whether we

are optimising with respect to induced drag, skin-friction drag or some combination

of the two. It is rare in the literature to find examples of the third option. There

is a natural tendency to decouple the two kinds of drag, firstly because they depend

upon somewhat different aspects of the design and secondly because the task becomes

significantly simpler.

In the absence of a penalisation of skin-friction drag, the optimal endplate geometry

for any wing is one where the endplates extend infinitely in all directions, producing

effectively two-dimensional flow. In this case artificial constraints on the extent of the

total geometry may be imposed. See for example a recent paper using genetic algorithms

(Gage et al., 1995) to optimise wing-endplate geometries.

The optimisation of lift with respect to induced drag has been extensively treated in

the literature. In this case, Munk's third theorem specifies the optimum distribution of

vorticity in the wake for any given total lift and Trefftz plane geometry. This principle has
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Figure lÌ.3: IVhen cndltlcde,s are adrled to the sr¡uut'e uing, the wit'rg loaditzg becontes

som,ewh,a,t two-di,nt,en,sionu,l although Lhc plute loadinq i,s three-dinzen,sional. Note tlza,t the

u"b,colute pressure di..fferen,cc is illustratecl, r.nrd [lt,c sigrt of the prcssure jump c,htnges frorn

the louter to the lrpp(:r ltorl,iorzs of th,e arñplcLte.

been applied to the clesign of ship screw propellers (de Jong, 1991) where the designer

solrres an inrrerse lrroblem to cleterntinc the chorcl length and cra,rnber a,s functions of

spa,nwise location on the wing arrcl heightr,vise location on the propeller endplate.

In the abserrce of a, cost lor incluced clrag, the wing a,nd enclplate a,ngles of a,ttack shou]cl

be large and 1,he rvìng rvoulcl be of infinite as¡rect ratio. Beca,use we intend to inrrestìgate
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the optimisation with respect to some combination of skin-friction and induced drag, we

might fix the wing geometry and consider the optimisation of C¡f ayy with respecl to D ¡.

Since skin-friction is only weakly a function of the distribution of the area of the surface

itself, to a good approximation the skin-friction may be regarded as a constant multiplied

by surface area. Hence an equivalent investigation is the optimisation of the endplate

geometry for a fixed wing geometry so as to maximiseCTf a¡a, based on the total area.

3.6 Optimisation with respect to Total Area

The complete parameter space for single rectangular endplates on a rectangular wing of

chord c and span s has been explored. That is, rectangular endplates of arbitrary length

(. and height h ate placed on and perpendicular to both wingtips (i.e. side edges) of

the rectangular wing, with their centres offset o horizontally and ó vertically from the

mid-chord of the wingtip. Figure 3.4 shows the relevant geometry.

f_ l. _____v

U

I
b

t

4a------4

Figure 3.4: Unit square wing with rectangular endplates of height h, length (., horizontal

offset a and uertical offsetb. The endplate has angle of attack ap:0.

The aim is to maximise the lift coefficient per unit angle of attack Crlow,, based on the

total (wing plus endplate) area A,by varying all four of the above input plate parameters.

In a rough sense, this is equivalent to maximising the lift/drag ratio, if drag is dominated

by skin friction and therefore is proportional to the total area A. In the more general

optimisation later in this chapter, we include induced drag, which is proportional to 42.

h
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The results presented here can be alternatively viewed as optimisation at very small

angles of attack.

3.6.1- Asymptotic Results

slc=20

10 
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2-
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cil o(',u
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3
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B r0

Figure 3.5: Lift coefficient Co,law ueî-sus erzdplate height hf c for endplates with fired

length (.: c on rectangular wings of uarying aspect ratio. Reproduced from Standingford

and Tuck (1996b).
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Figtrre 3.6: Lift coefficient Cl,f aw uersus endplate height hf c for endpLates of uarying

length [.f c on a square wing. Reproducedfrom Standingford and Tuclc (1996b).

Figure 3.5 shows the lift increase to a rectangular wing of various aspect ratios s/c,

obtained by aclding an endplate with a : b: 0 and (. : c, as a function of the endplate

height å. Thus this endplate iras the full wing chorcl, and is attached flush, leading edge

to leaciing edge and trailing edge to trailing edge. Note bhat for the purpose of this figure

(and the next), the area measure is the area A¡ : cs of the wing only, and these results

do not penalise the lift for the extra area of the endplates; Clf a¡,y is used to emphasize

this distinction.
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With this family of endplates, fully two-dimensional flow can never be attained even

when the height ñ, is infinite. Although the results reach distinct asymptotes as the

endplate height increases for each fixed wing aspect ratio, the precise relationship between

the asymptotic value for an infinitely high (but finite length) endplate and the wing

parameters is not known. Of course, as the wing aspect ratio increases, the results

approach the well-known two-dimensional value Cl,lo* - 2n, and endplates provide

relatively less benefit.

Since even quite small endplates have a dramatic effect on the square wing with s f c : l,

and there are applications such as dirt-track racing cars (Turrill, 1992) and catamarans

where wings of approximately square planform are important, we first examine that case.

Figure 3.6 shows the variation with endplate height å of the lift (as Cl,l o* , based again

on wing area only) for a square wing to which is added centrally placed (i.e. ø : ó : 0)

endplates of various lengths l, fixed relative to wing chord c. Again, as å increases,

these curves approach an asymptote whose value varies with endplate length, and only

approaches the two-dimensional limit of 2n for Iarge !,f c, when the endplates become

infinitely extended in both directions.

3.6.2 Optimal Rectangular Endplates

Although endplates increase the lift compared to a bare wing, this does not necessarily

mean that the lift coefficient slope Ct,lo, as defined above based on total area A in-

creases, since the endplates add to the total area and hence may have a negative affect on

the ratio of lift to area. Indeed, it is not difficult to see from the results of Figure 3.6 that

no endplate of length / equal to or greater than the wing chord c produces a combined

wing-endplate geometry with a C;f ay¡ value greater than that of a bare wing. However,

it is a different story for shorter endplates.

The optimal dimensions and location of the endplate are shown via contour plots of

Crlow in Figures 3.7 and 3.8. In Figure 3.7, the dimensions of the plate are fixed at

(. : 0.5c and å, : 0.5c while the offsets ø and b are varied. The ciear maximum is

when the plate is centered on the wing mid-chord, i.e. a : b : 0. Figure 3.8 has the

offsets fixed at this optimum while the dimensions of the endplate vary. The maximum

Crlow : 1.84 is attained when !. : 0.t5cand å : 0.48c. In this figure, the axes h : 0

and (.: 0 represent geometries where the endplate does not exist and hence they have
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Figure 3.7: Contour pLots oJ the tift coefficient C¡f ayy based on total area, with endplate

d,imensions fi,red at (:0.5c and h:0.5c and uariable horizontal offset a and uertical

offset b. Reproduced from '9tat'tdingford and Tuck (1996b).

contou¡ value Crlow : l-.46 colresponding to the bare wing. There is another contour

with this value which intersects the horizontal ancl vertical axes at (.f c:1 and hf c::3-l

respectively. Anv choice of hlc ar'd (.f c lying within the closed loop thus produced gives

Crld > 7.46, i.e. an improvement on the bare wing.

If one is forced to use a sub-optimal placement of the endplates, i.e. non-zero ø,å, then

I

b/c

0

0

o/c
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Figure 3.8: Contou- plots of the lift coefficient C 1f ayy , based on total area with the offsets

fi,red at o, : b : 0 and uariable plate length (. and height h. Reproduced frorn Standingf ord"

and Tuck (1996b).

the optimal endplate dimensions depend upon the offset parameters ¿ and ó. Table 3.1

gives the optimal dimensions and the resulting lift slope coefficient when the endplate

horizontal offset is c : -cl2 (flrsh with the wing leading edge) oï a : 0 (horizontally

centered at wing mid-chord), and the vertical offset is ô : h12 (entirely above wing) or

b: 0 (vertically centered).

0.1 0.6 0.8 r.0 2
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a b optimal / optimal å optimal Ct ld

-cl2

-"12
0

0

h12

0

h12

0

0.28

0.25

0.i9

0.15

0.22

0.36

0.28

0.48

7.62

r.67

L.7I

1.84

Table 3.I: Optimal endplate dimensi,ons at fired locations

The bare square wing with no endplates has the value lor C;f ayy given (Tuck, 1993) to 7-

figure accuracy as I.460227. The conclusion is that the same wing with single rectangular

endplates of length c : 0.15c and height h : 0.48c, centered both horizontally and

vertically at the mid-chord of the wing (a : b:0) has Ctld: 1.84. If the extra

area of magnitude 0.1.44c2 due to these two optimai endplates were instead added to the

span of the previously square wing, so making a rectangular bare wing of aspect ratio

s l . - LT44, this wing would have only C 
" 

l o* : 1.63. It is thus better to use this area

in the form of (optimat) endplates rather than increased (full-chord) span.

3.7 Other Degrees of Fleedom

There are infinitely many ways in which the parameter space for the optimisation can

proceed from these baseline results. Rather than immediately attempt to determine a

global optimum for the design of a wing-endplate configuration, we shall restrict ourselves

to a smali number of additional parameters which yield insight into the problem.

3.7 .L Elorizontal Offset

As a first extension we now allow the endplate sections above and below the wing to move

independently in the chordwise direction. The horizontal offset o measures the distance

between the leading edges of the top and bottom sections of the endplate as illustrated

in Figure 3.9.

The new parameter space to be explored is ((.,h,o), and it will be assumed that the

solution space is otherwise symmetric in the parameters a and b. In the case where o is

non-zero, b will indicate the average horizontal offset of the endplates from the wing mid-
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chord. It is anticipated that there will be two mechanisms which will jointly determine

the optimal geometry, namely (i) that the most area-efficient location for an endplate

is centred, both vertically and horizontally on the wing mid-chord and (ii) that since

area is penalised, each endplate should be as highly loaded as possible. Consequently an

endplate should not be in the immediate vicinity of another endplate, whose function is

the same. Such endplates would tend to shadow each other, resulting in inefficient usage

of both. The task is to gain insight into the relative importance of these two features.

As with the previous Section, we consider skin-friction drag only.

Figure 3.10 shows the variatiot in C¡f ay, for a unit square wing with endplates at angle

of attack (tp :0 and geometry ((,:0'5c,h :0'5c,o' :0,ó : 0, -1 < o < 1). The graph

is symmetric about the vertical axis, indicating as would be expected that the endplate

can be reflected in the r-axis with no change in the wing loading. There is a clear

maximum when the endplates are offset such that o : t or equivalently when o : -t,
such that the endplates are just touching ieading-edge to trailing-edge. This result is

true no matter where the centroid of the split endplate is, and is a particularly significant

result as it limits the search space to the two-parameter specification (L,h,o: l).

h12

J

I
l2h

<-o + L-

Figure 3.9: Endptate with independent sect'ions aboue and below the wing. The horizontal

offset o of the two sect,ions 'is measured as the distance between their leading edges and is

positi,ue when the upper plate is forward'

The optimisation, previously performed with the single rectangular endplates is repeated

with the new endplate specification. Qualitatively, the results are the same, but with a

higher optimum value. It is interesting to note that the optimal geometry ([. :0.LTc,h :

0.53c, o : l) gives the value for C¡f ay, - 1.91, which is significantly greater than the
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Figure 3.I0 Lift coeffici,ent Ct low uersus the horizontal offset o of the top and bottom

endplate halues on a unit square wing. The centroid of the combi,ned endplate is such that

a : b : 0 and the endplate has angle of attack op : 0.

optimal value C"lo*: 1.84 produced using ((.:0'15,,h:0.48,r:0) for a single

rectangular plate. The actual area of the split plate geometry is also greater than that of

the single plate, and is thus producingTTo more lift. An important optimisation principle

is highlighted here, namely that the optimal dimensions of the endplate increase with their

loading.

3.7.2 Flare

In order to further load the endplates and procure higher values oT C 7 f ay¡ , the endplates

will be fl,ared, whereby the top and bottom sections will be pitched at angles of attack

cvp and -op respectively such as to increase the pressure difference between the lower to

upper wing surfaces. In the literature, setting a wingtip device at an angle of incidence

to the direction of travel is sometimes referred to as "toe-out" when the leading edge of

the device is outboard of the trailing edge and "toe-in" when the leading edge is inboard

of the trailing edge. Figure 3.11 illustrates the case of positive flare, which refers to the

case where lift is increased by having toe-in above the wing and toe-out below.
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Figure 3.1.1: Split endplate wi,th top and bottom endplate sections fl,ared to increase lift.

The case of positi,ue flare is illustrated, whereby the upper portion of the endplate is 'toe-

in" and the lower portion'is 'toe-out."

For the present linear analysis, \ /e use the flare ratio ap f ay,y between the endplate angle

of attack and the wing angle of attack as our measure of flare. Figure 3.12 illustrates

the effect of varying the flare ratio from 0 to 1 starting with the optimal endplates from

the previous section. In one sense the result is uninspiring because it is, of course, a

straight line under the present linear analysis. However, it does provide a estimate for

the magnitude of the extra attainable lift by flaring the endplates. More subtly, the

slope of the graph is a measure of the relative significance of endplates on the overall

configuration. Indirectly, the lift-curve slope of these endplates is C¡,f ap - 0.5, based

on total area of wing plus endplates. This is a significantly high value, given that there

is no direct lift force on the endplates. Of course, under the present scheme there is no

limit to the flare angle, and the possible increase of the lift coeffi.cient is unbounded. It

will be shown that the optimal ratio ap f a¡.y is naturally attenuated when we consider

induced drag, but let us first consider the present situation when ap : gw.

Within this new paradigm, the optimisation of the lift coefficient with respect to the

geometric parameters (a : 0,b : O,(.,,h,o : t) produces the optimal plate geometry

([.:0.25,h : 0.95), yielding C"low :2.54, a staggeringSS% improvement on the

optimum with no flare in the previous section and, as the optimal area has also increased,

an actual increase in lift of 66%.
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Figure 3.12: Lift coefficientC"lo* uersus linear fl,aremeasured as aplaw for endplates

defined by ("-- 0,ô:0,.(.:0.17,h:0.53, o:l) mounted on a unit square wing'

3.8 More Realistic Optimisation

Having estabiished some basic principles of endplate optimisation with respect to area,

or skin-friction only, we turn to the inclusion of induced drag. Ideally for a single wing

with endplates we should be able to do this within the existing linear formulation.

3.8.1 Quasi-Linear Object Function

We wish to consider an object function which favours high lift and penalises some com-

bination of induced and frictional drag. There are a number of possible existing options,

such as the Oswald efficiency factor e: C?l(Co - Cp)r'4R or the so-called subsonic

endurance parameter C="1' I C, (Gall and Smith, 1937). It seems natural in the linear case

to adopt a function whose dependence upon angle of attack is restricted to the relative

importance of the two forms of drag. In general, frictional drag will be given by

1

p
+P

*ot
dn

or: I.
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If we assume that the relative geometry of the wing does not significantly alter the

frictional characteristics, then we may make the simplifying assumption that

c,: p#t (lo^u') (3 s.2)

The total drag coefficient is then given by 
r.

CDr : Co, * CJ, (3.8.8)

and if we define the optimisation task to be maximising the value of

C,L
(3.8.e)

Cor a.W

then the only quantity external to the existing linear algorithm is C ¡ la2*. Since it is

inversely dependent upon the square of as,, it may span several orders of magnitude.

There is also a weak dependence of C¡ upon Re as shown in Figure 3.13 which is re-

produced in part from Rosenhead (1963). Whether the boundary layer is modelled as

laminar or turbulent, for subsonic aircraft the linear friction coefficient may be assumed

to lie within the range 0'001 < c¡ < 0'01' If we fix c¡lo'*: 1' this corresponds to a

range of angle of attack 1.8o < ow < 5.7'. Rather than independently select values of

C ¡ anð. ayy for specific applications, it is more useful at this stage to chart the general

trends in optimal geometry as we vary the combinationC¡/a?1,v.It should be noted that

the results for the present work converge to the previous results for optimisation with

respect to area only in the limit C¡1"'* -+ oo. The ranges of values lor C¡ and ayr

corresponding to the parameter C ¡ f a21a¡ are illustrated in Figure 3.14.

3.8.2 The Search Space

There are a very large number of variables to be considered when setting out to find the

best three-dimensional lifting surface. Even without variable camber, the chord must be

specifled as a function of y and z ovet the wingspan and the vertical extent of the plate

respectivety. While this is an admirable ultimate aim, we shall begin by examining the

relative effects of a smaller number of geometric parameters, where possible determining

their dependencies. In order to restrict the search we will again presume that the wing is

a unit square. Thus the only variables are those describing the size, location and reiative

angle of attack of the endplates. To emphasise the immediate effect of including induced

drag in the calculation, we start with a determination of the optimal angle of attack of

the endplates ap f as.

Cr
,
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Figure 3.13: Variation of the linear friction cofficient C¡ with the Reynolds number Re.

After Rosenhead (1963). Whether the model of the boundarg layer used is larninar or

turbulent, the linear friction coefficient lies well within the range 0.00i < C¡ < 0.01.

3.8.3 Optimal Endplate Angle of Attack

In the optimisati on of C?lCo,, Munk's third theorem concerning optimal wake vorticity

distribution suggests a trade-off between loading on the plates and the resultant induced

drag. Before exploring this optimisation, we must explicitly include the drag component

due to the angle of attack of the endpiates, since the force perpendicular to the endplates

now has a component parallei to the direction of travel.

In order to incorporate this effect, the total drag component of the objective function is

modified according to

/cn,\ , /ct\cD¿: 
\*--- )a-w 

: \-*)oh, +r(*) (#) a?1,v - (#) "r, (3 8 10)

where the endplates on both sides of the wing have been included. Note that each of the

required output quantities is still available from the current linear formulation.

For simplicity, we again consider the case of a unit square wing, with unit square endplates

centered both horizontally and vertically on the wing mid-chord. Figure 3.15 shows

the variation in the object function C?lCo, with the flare ratio over the range from

0.002

0
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Figure 3.14: Ranges of the frictional coefficienú 0.001 < C ¡ < 0.01 and angle of attack

ow corresponding to the parameter c ¡ lo'* - 0.1,0.2,0.5, I,2,5 and 10.

-5 < aplaw ( 5 for various values of the flow parameter 0.1 < C¡1"'* < 10' The

negative values lor ap f ay, indicate that the flare on the endplates is acting to reduce the

lift, which actually creates a geometry with zero lift but finite drag when ap law : -L.7.

When the flare is positive however, the trend in optimal design is clear. For low values

of C ¡ la21y, since there is no penalty on area, the endplates should be used with small

angle of attack. For higher values of C ¡ la?1r¡, the optimal flare ratio approaches infinity

because any available area must be as highly loaded as possible. It is interesting to note

that for C¡lo'*: 1, the optimal endplate angle of attack is apf ary: 1.5.

3.8.4 Optimal Location

We already know that the optimal endplate location corresponding to a large value of

C ¡ lo'* is centered both horizontally and vertically on the wing mid-chord. What effect

will the inclusion of induced drag have on the optimal placement? Firstly we consider a

unit square wing with endplates of dimensions ({. :0.5,h: 0.5). Figure 3.16 shows the

variation in C2,lCo, as the horizontai offset varied over the range -0.5 < a < 0.5. The

endpiate is maintained at the vertically central position.
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Figure 3.1,5: Variati,on i,n the object function C?lC r, including both induced and fri,ctional

drag uersus the fl,are ratio apf aw lo, a unit square wing with unit square endplates. The

fl,ow parameter talces ualues C ¡ I o?* : 0.1, 0.2, 0.5, Ir2,5 and 70'

The smooth transition is fairly clear, with a horizontal offset a :0 as expected for high

values of the flow parameter yielding to a forward placement of the endplates to reduce

induced drag as was found by Hemcke (1927) when the flow parameter is small. The

optimum placement for small values of the flow parameter C ¡ f a21a, is flush with the wing

leading edge, thereby maximising the leading edge suction on the endplate. Figure 3.17

shows the lift, total leading edge suction and resultant total induced drag components

separately for the linearised dw : 180o/n' case.

It is also interesting to see whether there are any induced drag effects on the optimal

vertical location of the endplates. Figure 3.18 shows the variation in C?lCo, with the

vertical offset ó of the same endplates, maintaining the streamwise central location. For

the range of flow parameters 0.1 < C¡1"'. ( 10, the optimal location is vertically

centered, although in all cases the gradient is very small. It is likely that this feature could

be easily sacriflced to increase the efficiency with respect to another design parameter.
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Chapter 4

Ground Effect

4.L Introduction

Ground effect is the term used to describe the modification to the forces experienced by

a body when moving in the vicinity of a planar fluid boundary. The boundary may be

rigid as in the case of solid ground or a sea bed (Tuck, 1974) or it may be a deformable

free surface, analogous to the case of an interfacial wave (Grundy, 1986b). In the iatter

case, the boundary may be effectively planar such as for a large scale object moving

at high speed in air over a calm water surface (Rozhdestvensky and Synitsin, 1993) or

be geometrically complicated by natural and/or artifrcial features. It is not uncommon

when considering an air/water interface to consider the aerodynamics over a steady water

surface undergoing hydrostatic deformation (Tuck, 1975), (Grundy and Tuck, 1987).

This Chapter contains material already published (Standingford and Tuck, 1996a) con-

cerning the effect of introducing a rigid ground plane to the free air analysis presented

in Chapter 3. The specific application is the design of a Wing-In-Ground-Effect (WIG),

otherwise known as an elcranoplan fNote: elcrano-plan : Russian for screen-plane, or a

craft whose aerodynamic characteristics are dominated by the presence of a (reflective)

fluid boundary]. Here we also present a more comprehensive literature review and an

examination of the effect of wingspan on ground effect'
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4.L.L Classes of Ground Effect

Ground effect can be divided into three regimes, namely small (clearance far in excess

of chord), moderate (clearance comparabie to chord), and extreme (clearance small com-

pared to chord). Tuck gives a full derivation of the extreme ground effect theory in two

dimensions (Tuck, 1978), (Tuck, 1930) and (Tuck, 1981) which adds work on trailing-edge

flaps and stability, and (Tuck and Bentwich, 1983) which gives theory and computations

for wings of finite aspect ratio.

Extreme ground effect is nonlinear, with large deviations from free-stream velocity in the

gap zone, and hence large forces. The lift coefficient can be of the order of unity, and

in particular is not proportional to the small angle of attack. Instead, it is more closely

related to the contraction ratio of the gap zone, or leading-edge clearance to trailing-edge

clearance

The papers mentioned so far assume that the ground plane is solid. Some other papers

(Tuck, 1975), (Tuck, 1934) and (Grundy and Tuck, 19S7) assume a water surface which

is allowed to deform hydrostatically under the influence of the aerodynamic pressure in

the gap. There is then a strong nonlinear coupling between aerodynamics and hydrostat-

ics, since the deformation of the water surface affects the air flow and vice versa. The

assumption that the water surface deformation is hydrostatic is also questionable, but

incorporation of true hydrodynamic effects into the coupled nonlinear extreme ground-

effect problem is very difficult (Grundy, 19S6b).

Mod.erate ground-effect (clearance comparable to chord) is more conventional. The prob-

lem then reverts (for small angle of attack) to linear aerodynamics, with smali lift coef-

ficients proportional to the angle of attack, though with a coefficient of proportionality

substantially different from the open-air value. This regime was studied (Tuck, 1971) for

a general non-wing-like body (e.g. an automobile) and for wing-like leaflet valves near

a plane wall (Tuck, 1982c), (Tuck et a1., 1932). The aerodynamic effect of moderate

ground effect on standard wing design is available in the literature (Katz and Plotkin,

1991), (Kuchemann, 1978),
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4.2 Ekranoplans

Flying in ground effect is an attractive option for military ancl commercial aircraft be-

cause of the high lift and low drag, as well as radar avoidance considerations. In recent

years, the work on aeroclynamic design specifically for flying in ground effect has been

significant. Figure 4.1 shows the comparison between a swan taking olT and an Airfisch

3, manufactured by Fischer Flugmechanik.

Fignre 4.1: C'omparison, of thr: Fischer Fltt,gmechanik "Airfisch 3" uith a suatt' taking off

Reproduced from. "Elcrarzoplat'¿s and Very Fast Craft" (1996).

A number of highly specialized groups worldwide are considering the various problems

concerning the comrnercia,lization of ekra,noplan technologv. Aside from the original

Wright brothers flyer, rvhich arguably neveï flew out of ground effect, the Russian models

such as the "Orhronok" illustrated in Figure 4.2 otherwise known as the "Caspian Sea

Monster" were the first to receive serious attention.

Although some ea,rly investigation from the British and Unitecl States' defence sectors

explorecl the possibilitv of appiying grouncl-effect technology to similar large vehicles' it

86



Figure 4.2: The 120 tonne "Orlyonoh" is one of the largest Russian elcranoplans. First

Iaunched in 1972, i,t has a length of 60 metres, a cruising speed of 100 lcilometres per hour

and a range of 1000 kilometres. Reproduced from "Engineers Australia" (1996).

is only now that the United States is considering the manufacture of a large transport

"Wingship" (Hooker, 1996). It is now accepted that the original Russian vehicles do not

compete in efficiency with modern transport aircraft, but the large payload combined

with the flexibility of landing on any open water surface rather than on an airstrip means

that they are still in use.

One must be careful when distinguishing between the craft flying in aerodynamic ground

effect and those making use of a static air-cushion analogous to a hovercraft. The term

"ekranoplan" has been applied to a number of commercial craft that use a partial flexible

hovercraft-like skirt to produce lift. Throughout this Chapter, ground effect will refer

only to vehicles deriving their lift from aerodynamic forces. There is current debate

also as to the various classes of ekranoplan and whether they should be able to sustain

flight out of ground effect for safety reasons. This forms part of a wider discussion about

whether the relevant regulatory body should be Maritime or Aviation (Bogdanov and

Maskalik, 1996).

It is generally accepted that future ekranoplans will have to have integrated functionality
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so that tþe bocly acts a,s a lilting surfa,ce ancl the transition from the bocly to the wing

becomes srnooth (Flooker, 1996). For ver¡, large craft with reasonably efficient aspect

ratios, root bencling moment consiclerations suggest that distributed payload systems

would offer a considerablv lighter structure for a given payload. The free air "spanloadet"

has been the subject of consiclerable research for this ïeason (Lange, 1988). The clesign

pïocess invoived in producing such a, vehicle is made clifficult because the functionalitl' 6f

incliviclual components is not unique. An a,ppealing design among the smaller categories

of vehicles operating in grouncl effect that exhibits this integrated design philosophy is

T,he RADACoTp "C-&50" illustratecl in Figure 4.3.

Fignre 4.3: Th,c RADACoTp C' 850 shou¡s the tret't,d in .fttture desigt't-s for ground e.ffect

uelzicles. Althou,gh it-ttegrated, uin,g-body desigtzs are more comqtlica,ted .for aerodyn'amic

analysi,s, th.ey o.ffer sttpcrior ltu,rasite drag characteristics and market appeal' Rr:produ'ced

with perm.issiot"¿,

Despite the theoretical aclvantages of fl)ring in grouncl efTect, there are a number of gen-

eral1y accepted challenges tha,t the so-far eml¡ryonic inclnstry must face before successful

procl¡ction rrehicles can be made. When the ground surface actually refers to a fluid

surface iil<e an ocean, the stability requirements on the design of the craft mean that that

service mnst be either limited to very calrn water or that the size of the vehicle must be
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;ù
l.üefcome to

frllingsfrip, trnc.

Fignre 4.zl: Tlt,e pro¡toscd Wingship Ilouerplmte concept grorut,rl, effect uchicl'e. 'fhe Hou-

erplane is er2tectecl [o be lurgr: enottc1h to I¡e. a,l¡le to fl,y sa.fely nboue I nzetrc molre-c. ]l'e-

pror|uccrl ui l h 1tc t'rrt i.ssi.ott.

large lvhcn cornpared to the size of l,hc largesl, waves likely 1,o be encounterecl. One such

proposecl clesign is the IVingshi,p "Floverpla,ne" which is intendecl to be large enough to

safely fl), o.r*l" 8 metre waves. While a passively stable design is the ultimate aeroclynamic

aim, it is lil<ely tirat a certa,in a,mount of the nea,r-surface control will be automatecl to

irlprove stability a,ncl ricle c¡ra1it.y.

4.3 Present Formulatron

A feat¡re o1 ns¡lcrate ground eiTect is that when the ground plane is repla,cecl by a

wa,ter snrfa,ce there is, to lea,cling older no coupling between tl're aeroclynantics and h5'-

drochrnarnics. IIence olre can solrre the combiltecl a,ero-hyclro problem in selial stages, first

computing the aerocll,na,mic ploblern for a rigicl grouncl pla,ne, then appl1,ing the resulting

gror.rncl pressrue clistribution to the water surface, so generating a hSrcllocl\rna,nricflolv clue

to an a,ppa,renl, "hovercraft" with that pressuïc clistributìon. A mole detailecl.iustificatiort

of this a,pproach is presentecl in Chapter l'r .

Here rve first inclucle rigici grouncl effects to the lifting-surface comptltational tools cle-
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veloped and applied in the previous Chapters. When one is inciuding a ground plane

(in principle quite straightforward by the method of images) it is important to maintain

maximum numerical accuracy of determination of the pressure distribution on the wing

and ground plane. This is particularly difficult when the wing is close to the ground

(i.e. when hlr< 0.1) andlargenumbersof chordwisepanelsarerequiredtocapturethe

pressure distribution in the gap zone.

The linear model also loses validity when the wing loadings are very high because of

backwash. Lan (1976) noted that the image vortex system may in some cases be strong

enough to decrease the velocity on the wing enough to reduce the lift to beiow the free

air value.

An important inclusion in the present thesis is the computation of the effect of the ground

plane on the induced drag of a wing, both with and without endplates. Information is

provided here on the optimum size and positioning of wingtip endplates, which become

full skirts touching the ground for heights less than about one-half of the wing's chord.

Once we have a good algorithm for determination of the pressure distribution on the

ground plane, it is only necessary to apply that distribution as a free-surface forcing

term to determine the hydrodynamics of the flow in the water. The required formula is

well known (Wehausen and Laitone, 1960), and all that is needed is an accurate double

numerical integration over the whole free surface, noting that the aerodynamic pressure

is felt everywhere, not just immediately beneath the wing.

Some wave resistance computations have been made in this way, and will be reported in

the next Chapter. However, the general conclusion seems to be that the wave resistance

of a wing in ground effect is negligible relative to the aerodynamic induced drag, for

vehicles traveling at speeds high enough that there is adequate aerodynamic lift. This is

so for two reasons. In the first place, there is a factor involving the small air/water density

ratio between the water and air drags, expressing the fact that the size of the traveling

pressure distribution is proportional to the air density, but has to create a disturbance

proportional to the water density. Secondly, the Froude number is likely to be of the

order of Ft - 10, which is far in excess of the usual naval architectural values, and any

water-borne vehicle is an inefficient wave generator at such Froude numbers.

However, at low velocities the wave drag may be significant. The ground-effect industry

is acutely aware of the hurnp drag that must be overcome when a vehicle accelerates
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to take off from a hydrostatic mooring. This is the well understood increase in hydro-

dynamic wave resistance up to a critical velocity, sometimes called the hull-speed of a

non-planing ship. Beyond this critical velocity, the wave resistance is inversely propor-

tional to the speed. In order to make this transition as easily as possible, ground-effect

vehicles sometime have take-off aids. One such addition, called power-augmented ram

(PAR) (Lange, 1938) makes use of the backwash phenomenon previously mentioned to

create stagnation pressure beneath the wing. This technique requires a large amount of

power and ingenious alternatives are likely to be developed.

4.4 Results for a Rigid Ground Plane

The aerodynamic induced drag of a bare wing in ground effect increases as altitude

decreases. It is a misconception that as a lifting surface approaches a rigid ground

the flow becomes more "two-dimensional" in nature. \Mhat really happens is that the

pressure beneath the wing drives the fluid sidewards out from under the wing and around

the wingtip at a rate proportional to the pressure drop in the gap zone, and since that

pressure drop increases as the altitude decreases, this undesirable sideslip velocity also

rncreases.

The only thing that can prevent sidewards flow is the addition of some barrier. In open-

air aerodynamics, such barriers are called endplates, or in a somewhat different role,

winglets. In racing-car design for downforce, barriers that effectively touch the ground,

so blocking all sideways flow, were called "skirts" when used very effectively in Formula

1 racing in the late 1970's (Tuck, 1983), (Incandela, 1990). Skirts were later banned from

Formula 1 in an attempt to reduce dependence upon ground effect. We shall use the

term skirt here to denote an endplate that lies only below the wing, extending for its full

chord, and touching the ground.

In the case of open-air aerodynamics, it has been shown (Standingford and Tuck, 1996b)

that even quite small endplates located halfway along the wing chord and vertically

centered on it (symmetrically above and below) can dramatically increase the lift coeffi-

cient.

As a wing approaches the ground, the character of the pressure distribution changes

significantly. On a thin lifting surface in open air, there is both a pressure increase
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beneath the wing and a pressure decrease above the wing, relative to free-stream pressure,

and these effects essentially contribute equally to the lift-creating pressure difference

acïoss the wing. This pressure difference becomes large only very near the leading edge.

In extreme ground effect, although there is still a pressure decrease above the wing of

comparable magnitude to that in open air, the net pressure difference is dominated by a

vastly increased pressure on the lower wing surface. That surface may be considered to

be the upper boundary for a converging channel flow between the wing and the ground.

There is a rapid fall in velocity near the entrance to the channel, followed by a slower

return to free-stream velocity at the trailing edge exit. This produces a large rise in

pressure extending over most of the forward part of the channel .

For wings of finite aspect ratio, whether in ground effect or not, the pressure difference

between the upper and lower wing surfaces becomes zero at the wingtips. This both

reduces the lift, being the integrated pressure difference, and also causes an induced drag

which is seen in the vortices which trail behind the wing, driven by the flow of air around

the wingtip from bottom to top.

For evaluating the induced drag of a planar wing in ground effect, we may verify our

present leading-edge suction formulation with the Trefftz-plane double integral, which

must include a term for the image of the wing in the ground plane, viz

no : rroo 
l*r@)

d

dy
@ -n)

a-n @-n)'+4h2ol*'ø¡ ( ) 
o'o' (4.4.1)

Since the quickly-convergent method of evaluating this integral by means of a Fourier

transformation discussed in Chapter 2 has no analogue when the non-singular part is

concluded in the kernel, a Riemann-type approach is used instead. While the results

agree with those predicted by the suction method, the rate of convergence with the

number of spanwise paneis is very slow, and so the suction method is used from now on.

Figure 4.5 shows our computations of the iift and induced drag coefficients as a function

of ground clearance for a bare planar squa e wing with aspect ratio ,Æ : 1. What is clear

from this Figure is that lift and induced drag both increase dramatically as the ground

clearance is reduced, ultimately both varying inversely with mean ground clearance or

altitude ås/c. Substantial lift increase is indeed obtained from ground effect, but at the

expense of increased induced drag. For a bare wing, there is no indication that ground

effect makes the flow more two-dimensional, or reduces the relative importance of induced

drag. The loading for the case of a bare wing in ground effect is shown in Figure 1.15. In
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Figure 4.5: Variation of the lift and induced drag coffici,ents for a bare square wing i,n

moderate ground effect.

all cases, the absolute pressure distribution is shown on the ground surface. The actual

pressure distribution will be discussed in Chapter 5'

These Figures illustrate the importance of including endplates or full skirts into the design

of vehicles operating in ground effect. Without them, the actual efficiency of the vehicle

is likely to be similar to a vehicle operating in free air, with the exception that a higher

lift coefficient will allow a smaller angle of attack and a greater resulting reduction in the

induced drag coefficient.

4.4.L Endplates Below the Wing

Since the main aim is to increase the lift due to ground effect and reduce the effect of

induced drag, we first consider the addition of endplates to the bottom half of the wing

only, along the full wing chord and extending to the ground. Specifically we shall examine

the addition of rectangular skirt-like endplates to a square wing.

When such endplates are added (see Figure 4.8) we find that the lift is vastly increased

but the induced drag changes hardly at all. The flow has been made significantly more
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Fignre 4.6: Whe¡-¿ a bat-e witzg fl,i.es ouer ü ground plune, there is a pressure ererted on

the qroutzd, but the .fl"ow remains three-dimensional, no matter hou small the clearance.

two-clirnensional bv the endplates. Below an altitude of h :0.15c, where c is the wing

chorcl, the inclucecl drag of a wing with enclplates is actually less than that of the bare

wing, even though the lift is many times higher.

4.4.2 Aspect Ratio Effects

It is well acceptecl that in open air, the aspect ratio .4R of a wing is crucial to its per-

formance, and the higher the aspect ratio the better. Since the two-dimensionality of the

flow over a, bare wing is unaffected by the presence of a rigid grouncl, this is also true

in grouncl effect. For a bare wing at altitucle /zs: ['1t, the lift coefficient is more than

doubled by increasing the aspect ratio from Æ1.: I T,o ,4R: 2 (see Figure 4.9). On the

other hancl, the more nearly two-climensional flow over the same wing with skirts alreaclv
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Figure 4.7: When endplate.s or skirts are added to the wir"tg in ground effect, the fl'ow

b eco m es e.ff ectiu ely tw o - dim en s i on al.

has a much higher lift coefñcient, and the extra increase in lift due to the same change

in aspect ra,tio is less than 5%. Hence skirts enable effective use to be made of wings of

much lower aspect ratio than is conventional in open air.

As the aspect ratio of a, ba,re wing increases from Æ1. : 7 to Æ1. : 2, the induced drag

coefficient at altitude åo : 0.1c increases by more than 50%, whereas the sa,me wing with

skirts ha,s a corresponding decrease in induced clrag of 50%.

4.5 Optimal Placement of Endplates

It has been established in Chapter 3 that if lift is to be maximised by the placement of

finite endplates on the wingtips tips of a given rectangular lifting surface in open air'
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Figure 4.8: Lift and induced drag coefficients for a squa,re wing with lower full-chord

endplates in ground effect. Note that the lift coefficient increases with the 'inuerse of the

altitude while the induced drag remai,ns constant. While the lift force is proporti'onal to the

pressure realised on the body, the potential for induced drag is in some sense proportional

to the product of the pressure and the cross sectional area of the gap fl,ow.

then the endplates should be centered on the wingtip mid-chord. The optimal size of the

endplates depends upon the various flow parameters and the aspect ratio of the wing.

It has already been stated that the character of the flow in ground effect is fundamentally

different to that in free air. The first test is whether this difference affects the optimai

chordwise location of a given plate. Figure 4.10 illustrates that the optimal placement of

an endplate whose length matches the length of the wing itself is somewhat forward of

center. The lift itself is a maximum when the endplate is at the mid-chord position, but

the induced drag may be decreased as for the free air case by moving it slightly forwards.

4.6.L Endplates Above and Below the \Ming

Endplates that extend above the wing could also be used, but their influence is similar

to that in open air, whereas endplates below the wing directly influence ground effect,

and hence are more effective in maintaining the increased pressure in the channel flow

0
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Figure 4.9: Variation of the lift and induced drag coeffi,cients agai,nst the aspect ratio of

o, squúre wing with and without full-chord skirts at an altitude ho:9.1".

there. However, the present computer program can also compute easily the effect of

above-wing endplates, and Figure 4.11 shows some results. Even though the intention of

use of endplates is to increase the lift due to ground effect, it is impracticable to operate

a wing at altitudes less than about h :0.1c. We may then be interested in extracting

every little extra lift possible out of wings that are not of very high aspect ratio, and

above-wing endplates may aid in this objective. By how much, then can the lift due to

accelerated flow over the top surface be increased by the addition of endplates above the

wing?

4.6 Optimal Dimensions

It is interesting to see how the presence of a rigid ground aiters the optimum dimensions

of an endplate. As in Chapter 2, we now take as our function to maximise the lift

coefficient C t I ow based on total area, ignoring induced drag for this study, and assume

that the wing is square (Æ. : l). As the wing is lowered to the ground, there will

presumably be some point when the optimal endplate will touch the ground and become
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Figure 4.10: Variation of the lift and i,nduced drag coefficients for a unit square wing

at altitude ho : O.Ic with slcirts of length I : c and horizontal offset a. As for the

free air case, the endplate produces marimum lift when fl,ush with the wing. Induced

d,rag reductions may be made by shifting the endplate slightly forwards. The total drag

including a fri,ctional cornponent should be used to determine the specif'c optimum.

a skirt. Figure 4.12 suggests that this happens when the altitude is approximately one

half of the chord. The best size for the part of the endplate above the wing remains

essentially unchanged (with a length of about (. : 0.75c and a height of h : 0.24c) no

matter what the altitude. What does change is the size of the optimal lower part of the

endplate, which increases rapidly, until below the critical altitude ho : 0.5c, it becomes

a full-chord skirt touching the ground, illustrated in Figure 4.13.

When the optimisation procedure is repeated for a wing of aspect ratio .4R : 2, similar

results are obtained. In particular, there appears to be little dependence of this result

upon the wingspan. Within the aviation industry, it is generally regarded that the "fl.oat"

effect on landing due to the ground is first experienced at an altitude proportional to the

wingspan, rather than the chord length. This is caused by the vertical compression of the

flow field in ground effect, giving rise to an increase in the apparent aspect ratio. It thus

represents a decrease in induced drag rather than an increase in lift due to the streamwise

gap contraction ratio. We must therefore consider two distinct modes of ground effect.

a,

Lift
Induced Drag
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Figure 4.11: The increase in lift coeffici,ent C|lo* based on the wing area only, due

to the addition of futt-chord endplates aboue the wing of height ht to a squo,re wing i,n

ground effect wi,th full slcirts for parameter ualues of the altitude ho: 0.Ic,O.3c and 0.5c.

The relati,ue change in the li.ft coefficient Clf ay, based on wi,ng area only shows that the

endplate sect,ion aboue the wi,ng is si,gnificantly less effecti,ue than the lower section when

the altitude is small, As the altitude approaches i,nfinity, the upper and lower sections

become equally effecti,ue.

4.7 Multiple Wing Configuration

In this section, we consider the optimisation of the lift-to-drag ratio of a tandem wing

configuration in ground effect, by varying the angles of attack of two separate wings.

Because the angle of attack is to be varied, we shall consider an object function that is

dependent upon lift, rather than the square of lift, namely:

L
D¡ I D,i

(4.7.2)

where L:Iift, D.f : frictional drag assumed to be given by area times linear friction

coefficient and D¿ is the induced drag as previously calculated.

Before considering the two-wing combination, we optimise the angles of attack of two

flat, unit squa e wings in ground effect independently. The first wing is located at an
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Figure 4.12: Th,e optimal lower endplate geornetry for a unit square wing as a function

of altitude. The lift cofficient C;f ary with respect to toal area is marimised at each

altitude ho. It is clear tlrat beyond ho - 2c, the wing i,s effectiuely in free air. There is

a dramatic change when the wing fl,ies at an altitude hs < cfz. Below this alti,tude, the

opti,mal conf,guration is a full-chord, slcirt, such that the length of the lower plate lb : c

and, the height of the lower plate hb - ho'

altitude ho :0.!c in a uniform stream U : L The optimum angle of attack dw : aIll

occurs when D¡: D¡, such that the object function Ll@n+ D¡): 15.167. The lift,

drag and suction coefficients are also shown in Table 4.1'

The second wing is a flat unit square located at an altitude ho : 0.2c, for which the

optimal angle of attack is higher. The force coefficients are shown in Table 4.2.

Note that the decrease in ground effect for the second wing has resulted in lower lilt L

for the same induced drag D¿.

The interesting question is how the optimal angles of attack and the forces on the two

wings change when they interact. For the purposes of this test, they separately maintain

their altitude, but the second wing follows directly behind the first, such that the leading

edge of wing number 2 is 0.lc directly above the trailing edge of wing number 1. In this

case, the angles of attack are varied independently so as to maximise the total lift-to-drag

0
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üW 6.1111"

L 0.1517

D¡ 0.0050

s 0.0112

D¿ 0.0050

Ct 0.3033

Cn¿ 0.0100

C¡,low 2.8440

cs lo'w 1.5433

LIQ; + D¡) 15.167

Table 4.1: Lift, drag and suction force coefficients for wing one alone.

a14r 7.2027'

L 0.1277

D¡ 0.0050

^9
0.0111

D¿ 0.0050

Cn 0.2554

Cn; 0.0100

C¡,lo* 2.0318

cslo?w 1.0987

Ll@n + D¡) 12.770

Table 4.2: Lift, drag and suction force coefficients for wing two alone
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Figure 4.13: Below the critical altitude ho: cl2, the optimal endplate geometry for the

lower plate is a full-chord ski,rt. The optimal geornetry of the upper plate does not change

significantly from the free air case h:0.24c and l.:0.15c.

ratio. The force coefficients for the combination are shown in Table 4.3

airv 8.9407" 4.6013',

L 0.2204 -0.0029

D¡ 0.0050 0.0050

.9 0.0239 0.0003

D¿ 0.0100

Ct 0.2r75

Cn¿ 0.0100

Crlow 2.8249 -0.0715

cslo,w 1.5398 0.07i9

Ll@n+ D¡) 10.878

Table 4.3: Lift, drag and suction force coefficients for wings one and two, optimised

together.

The results are consistent with the result for a single wing. The optimal configuration

again requires lhat D ¡ : D¿ for the combination. However, the lift force on wing number

2 is negative. Wing number one is at a higher angle of attack than if it were alone, and

consequently produces both more lift and induced drag. This induced drag is reduced
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by wing number 2, which experiences an negative induced angle of attack due to the

downwash of wing 1 that is greater than its own nominal positive angle of attack. The

net angle of attack is negative and the second wing acts to reduce the energy in the

vortices trailing wing 1.

Wing number 2 might also be considered to be the ground-effect equivaient for the upper

surface of wing 1. This ceili,ng effect speeds up the flow over the upper surface of wing

number 1 and thereby increases the pressure jump from the lower surface to the upper

surface. This is in a sense sacrificial as the flow is also accelerated under wing number

2, causing a downward force. It should be noted that the value of Ll(D¿+ D¡) for the

combination is less than the optimal vaiue for either of the wings alone. The aspect ratio

of the combination is half that of either wing individually, because of the arrangement.

Wing 2 is providing the same function as a very inefficient endplate, because its only

contribution is in blocking vortex flow, but this has a direct reduction in the total lift,

whereas an endplate does not reduce the lift at all.

In Chapter 6 we consider the streamwise separation in free air for which the combination

is aerodynamically better that either of its constituents independently (birds for example

which fly in a vertical arrowhead formation). The real advantages may only be seen when

a certain bank angle in ground effect is required, forcing the lead wing to have a small

aspect ratio.

4.8 Pitch Stability

The heave-pitch stability of a single wing in ground effect has been considered by a number

of investigators (Tuck, 1981), (Kuhmstedt and Milbrandt, 1995), (Rozhdestvensky, 1992).

There has been a general acceptance of the theory of Gallington (Gallington et alr,lg72)

that a single wing in ground effect is always heave-pitch unstable and this has been

the motivation for the enormous tailplanes of the Russian models. This is because the

centre of aerodynamic pressure in free air lies close to the quarter chord r : 0.25c for

a symmetrical airfoil but shifts back l,o r : 0.4c when in ground effect. When subject

to a upward gust of air, this shift causes the centre of pressure to move forward and the

ground effect vehicle tends to flip backwards.

Other than simply using a large tailplane to counter the natural instability of a single

'a
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lifting surface, there are several other methods that have been implemented. Firstly the

wing design illustrated in Figure 4.14 and,later in Figure 4.15 increases the pitch stability

by using a large channel flow with two similar lifting surfaces in tandem.

Figure 4.14: The tandem-wi,ng design of the Jörg TAF VIII is used to cou,nteruct the

natural pitch-heaue instubilit1 oÍ a, single wing in ground effect.

Adding a tailplane is an established solution to this problem, but to counter the pitch

instability of a large wing in ground effect, the tailplane must be huge and far from the

ground. This means a, large tailplane support structure. Howevet, a canard wing when

appropriately positioned and sized can also provide a measure of pitch stability. It is not

within the scope of this thesis to present an analysis of the pitch stability of a three-

surface configuration However,, ground effect does introduce a clifference in the linear

case between chordwise camber, whose effect upon lift is well understood, and multiple

connected surfaces at cliffering altitudes and angles of attack, because of the change in

ground clearance of each component with global pitching.

Without presenting a stability anall,sis of the configuration, the loading is illustrated in

Figure 4.18.
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Figure 4.lb: The Tai,wazese Chung-Shan trar-tsport uessel also incorporates the tandem

wing d,esign, Larger uehicles alortg similar design lines are erpected from Taiwan in the

near future.
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CAP
balances CM

-Fignre 4.16: Strl"ighl nnd leuel .flight it't qround e.ffect. The cat-¿at"d in this configttration

is reluti,uely highty loacled, at a high a,ngle of atta,clc and it"t ertrem,e to moderate grourtd

effect. The main uing is in moderate grounrl efJect ar¿d the tailltlune remair¿s in e.ffectiuely

free air. The cetztet. o.{ aerocLyrzamic pressllre (CAP) balarzces the center of mass (C'M).

{--
CAP morres rearwards

I

Canarcl loses CìE

-

Fignre 4.17: Irl,eally the lhree-surJace config'ura,tiot¿ should be passiuely stable to ltitch'

Wher'¿ 1 gnst c(ruses lhe configru'ati,on to pi,tch, the loss of grounrl eJJect (GE) on the

canard, uti,ng moues the cetzter o.f aerodyr'r,amic pre.ssure rearwards' restor-itl'g the Jlight

attitude.
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Figure 4.18: The loacling o.f a three-surface configuration in ground effect'
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Chapter 5

\Mave Drag

5.1- Introduction

When a body flies in air close to a water surface, the shape of the water surface is modified.

In this Chapter, we consider whether or not this significantly effects the problem of

optimising the geometry of a large, high speed wing-in-ground-effect (\ /IG) vehicle flying

over water

For bodies that do not pierce the water surface, much of the work in this chapter is

analogous to the calculation of the wave resistance of air cushion vehicles (Monacella

and Newman, 1967), (Doctors and Sharma, 1970). In the absence of spanwise skirts

in addition to chordwise skirts, the present numerical evaluation of the pressure on the

water due to the lifting surfaces is favoured instead of the analytic work appropriate to

air cushion vehicles.

The present algorithm for determining the aerodynamic lift and drag on a three-dimensional

flnite tifting surface with endplates in moderate ground effect is to be used with the addi-

tion of the drag associated with the waves made on the surface of the water. The vertical

gap between the wing and the water plane is denoted âo and we assume that this gap is

O(1) when compared with the wing chord c. The method of images will be employed to

account for the aerodynamic ground effect. This is justified on the basis that the angle

of attack ary is small relative to the Bap å0. Consequently the deflection of the water

surface makes far less relative difference to the aerodynamic forces than it does to the

hydrodynamic ones.
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There are a number of ways to estimate the deflection of the water surface given the

velocity discontinuity across the lifting surfaces. If the limit as hsf c tends to zero, the

pressure "footprint" registered on the water is asymptotically the same as the pressure

p- (r,,gr) on the lower surface of the wing. This would involve no additional computational

effort but would be inaccurate for greater altitudes. Also, the resulting discontinuity in

pressure across the projection of the leading edge on the water surface would cause

numerical difficulty in evaluating the wave drag. This may be overcome by using a

smoothing function as applied to air-cushion vehicle analysis (Doctors, 1997) but this is

clearly less appropriate for vehicles without hovercraft-like skirts.

The present method explicitly determines the velocity influence at each point on a fl-

nite grid on the ground from all airborne lifting-surface panels. The resulting matrix is

then used to evaluate the wave drag W using a two-dimensional wave resistance integral

(Wehausen and Laitone, 1960) which estimates the wave energy propagated by a moving

pressure disturbance in all directions.

5.2 Three-Dimensional Formulation

In order to determine the wave drag W dte to an airborne vehicle flying above a water

surface, we must determine the pressure on the water surface due to the vehicle. In

principle, this may be achieved to a first order approximation by considering the velocity

potentiai on the water surface due to the lifting surface perturbation to the free stream

and then applying Bernoulli's law. A Michell-like integral (Tuck, 1989) is then used to

estimate the wave drag associated with this pressure distribution'

The lifting surface integral and the wave drag integral are sufficiently different in structure

as to warrant two distinct numerical grids for quadrature. However, these must be linked

in such a way as to minimise numerical error, which can be relatively large. This Section

will explore some of the sources of these errors as well some remedies. An examination

is also made of the different pressure footprints made by bare and skirted wings and the

dependence of the wave drag on the planform of the wing.
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6.2.L Hydrodynamic Pressure Due to an Airborne 'Wing

The hydrodynamic pressuïe distribution p(r,y) on the water surface due to the presence

of the airborne lifting surface must be calculated. This is easily done by considering the

linearised Bernoulli's equation in terms of the small perturbation velocity q: (u,u,w)

so that

t¡rlu'- 
(lu + u)2 + u' + r')fp

-puu

Now the u velocity component can be determined on the water surface by finding the

r-derivative of the velocity potential Ó(*,y,2), knowing already the loadinS'Y(x,y,ho)

on the wing. The potential of a unit horseshoe vortex (Ashley and Landahl, 1965) may

be used directly to evaluate the influence of the wing and endplate on the streamwise

velocity on the water surface' The potentials are

Ó(x,Y, z) : G(X,Y, Z) : ZF(X,Y,Z)

for a line of vertical dipoles and

Ó(X,Y, Z) : H (X,Y, Z) : Y F(X,Y, Z)

for a line of horizontal dipoles where F(X,Y,Z) is the kernel of the conventional lifting

surface equation

F(x,Y,z): r+"lt - ä]
Thus the perturbation velocity u : ó, may be determined at any point in space as the

contributions from the wing-endplate combination plus the image in the water surface:

u(r,y,z) : 
1"" lr" 4(,ù K"* (* - €,a - \,2 - hs) d,{d,q

r((, q) I{t* (* - €,y - \, z * hs) d(drt

7(6,() I<"' (* - {a - r,z - Ò ded'e

?((, () K"'(* - €,a - 2s I T, z - e) d,€d,C

"/({,() K"' (* - Ë,A - T,z + 0 dfle

,y(6,() K"' (* - €,y -2s I T,,z * 0 ded(

- 1"" 1""

* l"^ l:
- I"n I,'
* l"' l"'

- l,o l"'
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In the case where z :0 on the water surface, this becomes

u(n,Y,o):
1"" I"' ^vG,ùlK** (, - €,v - \,-ho) - K"'(* - t,v - q,ho)) dt dn

* 
lrn I"n 7((, () I t<*'(* - €,,a - rt,-e) - K"'(* - €,v - 2s t rt,-e)

+KGP (* - €,,u - n,() - Kt'(* - t,u - 2s I n,0) aq aç.

(5.2.2)

The new kernel functions are

I(Gw (X,Y, Z) : arctan

KGP çX,Y, z¡ : arctan (5.2.3)

5.2.2 'Work Done by . Moving Pressure Distribution

An expression for the rate of work done on a water surface by a moving pressure distri-

bution is given (Wehausen and Laitone, 1960, page 598) as

u2 ¡Tw:t - l'¿ese"5olr,@)+q'@), (5.2.4)
npU Jo

where

arctan

anarct

where the obvious vertical symmetry has been exploited in the actual computer algorithm.

+

+

XY
RZ
XZ
RY

Y
z
Z
Y

P(0)

QQ)

: l: l: d,r dy p(r,y) 
"o. l, s".2 0 (r cos d + sr sin d)] ,

: l: l: ar d,y p(r,y) sir' l, sec2 0 (r cos d 1 y sin d)] ,

(5.2.5)

(5.2.6)

andu:glU'.

5.2.3 Numerical Evaluation of Integral

Numerically, the computation of the d integral is complicated by the oscillatory nature of

the integrand. Filon's quadrature (Tuck, 1937) is implemented and the method becomes

Ne N"
P(0) xÐty ËO" u¿ ui p(r¿,a) 

"o, [, ""c2 
0(r¿cos 0 +aisin0)] , Ø.2.7)

.i=l i=I
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AS

where the weights for Filon's quadrature are given by

uk : 4(sin 1l - 1l cos K) I K" (k even)

wk : (3K + 1l cos 2K - zsin K) I K3 (f oaa;

where K : usecïL'r.

Care must be taken with the numerical implementation of this algorithm' The number

of panels on the wing must be large enough that the water surface grid does not falsely

inciude energy associated with waves of the grid scale on the wing. Having too large a

number is prohibiiive in terms of CPU time, because the influence from each aerodynamic

panel must be calcuiated for each water surface panei.

In order to limit the number of parameters while determining the numerical behaviour

of the integral 5.2.4we consider the wave resistance of a Gaussian pressure distribution

P@,a): exp(-ø2 - a') (5.2.8)

illustrated in Figure b.1 for which the wave drag integraI5.2.4 may be written analytically

u2 tÍ 12* : + fo"'" 
,""u{0)r2 exp(-u" "."nçe¡¡z)ae. (5.2.9)

The value for W does not appear to converge reliably with increased numbers of gridpoints

on the water surface. Depending upon the free stream velocity U and the number of values

of 0 into which the outer integral is partitioned, the value for W can converge or vary

wildly.

The grid implemented on the water surface is regular in each of the z and y directions

separately and has rùs : n1s points distributed over an (8 x S) domain centered on the

origin. Extending the grid further does not significantly effect the results. Figure 5.2

shows the 0 integrand from 0 < 0 < rfT lor n'ts -- 60,120 an.ð,240 for a free stream

IJ :5. The integral is in each case dominated by peaks which occur at different values

of d. When the algorithm is modifred such that the contribution is neglected when fewer

than two d.ata points are present for each period of the integrand within the P and Q

integrals for a particular value of 0, these spurious peaks disappear and the integrand

curves are replaced by those in Figure 5.3. These curves predict a wave drag which

converges to W : 0.0004043 with rate of convergence O(m;a). The exact soiution for

U:5isW:0.00040469.
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For values of the energy propagation angle approaching 0 : r f 2, conespondingly iarge

values of mn and nn are required to capture the diverging wave pattern. In general,

Tn,n : 120 has been found to estimate the wave drag to two significant flgures. As

increasing these parameters is rewarded with diminishing marginal returns on overall

accuïacy, this is regarded as sufficient at least in the first instance.

1
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Figure b.1: Gauss,ian pressure distribution on the water surface giuen by the erpression

p(*,y): exp(-xr2 _ a\. Thi,s is to be used to test the &ccur&ca of the numerical scheme

for the waue integral, i,ndependent of the aerodynamic calculations and the calculation of

the resulti,ng pressure on tlte water plane.

6.2.4 Variation of 'Wave Drag with Velocity

The magnitude and distribution of the \À/ave energy spectrum 0 < 0 < n 12 varies with

the parameter u: glU'. Figure 5.4 shows the change in the energy spectrum as [/

varies from 1 to 10. The curves have been normalised with respect to their definite

integral so that their forms may be compared. At low velocity U,,the energy is mainly

associated with waves at small angles d to the free stream. As the velocity increases, the

4
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2
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0
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Figure 5.2: Waue d,rag 0-integrand including spurious peales formn - 60,120 and240 for

a Gaussian pressure distribution traueli,ng wi'th uelocity U :5'

energy is largely contained in the diverging waves near d -- T 12. Figure 5'5 shows the

corresponding variation of the drag integral W. As the velocity increases, the wave drag

initially associated with waves propagating in the streamwise direction increases slowly

until reaching a sharp increase and then a maximum. Thereafter, increase in velocity

red.uces the wave drag until the only waves produced are transverse or at right angles to

the direction of the free stream. In the limit as the velocity [/ tends to inflnity, the wave

dragW tends to zero with rate W - [J-r.

5.3 Pressure Footprints of Wings in Ground Effect

Different wings flying over water leave different pressure footprints. In general, some parts

of the water surface will experience a reduction in pressure and some an increase even

though the wing exerts a net downward force on the water. The addition of endplates or

skirts to a wing in ground effect markedly aiters the form of the pressure footprint and

in general increases the deflection of the water surface.
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Figure 5.3; Corrected waue drag ï-integrand with spurious pealcs remoued fornn - rrtn:

60,120 and 240 for a Gaussi,an pressure distribution traueli,ng with uelocity U :5.

5.3.1 Bare \Ming

The pressure footprint made by a unit square wing at angle of attack (tw :5o, altitude

ho:0.1c and free stream IJ :5 is illustrated in Figure 5.6. The high pressure region

beneath the wing is matched in magnitude by the low pressure immediately surrounding

it. The corresponding energy distribution is shown in Figure 5.7. Note that the curves

calculated using ns : n'ùs - 40160,120 appear to converge, but retain peaks and troughs

in the integrand near 0 : T 12. These represent real information about the influence of

the wing geometry on the wave drag. The curve calculated using ns : rns : 240 is

signifi,cantly higher than the others. This is numerical error caused by the mismatch in

grid scales on the wing and the ground. Figure 5.8 is a zoom-in of Figure 5.7 near 0 : r 12.

It appears that the oscillations in the d-integrand are at least partially independent of

the grid on the ground. The grid on the wing is a standard Chebyschev with n : m: 18

so the 240 x 240 grid on the ground is in places far denser. Consequently, the ground

grid resolves the grid scale behaviour of the loading on the wing and attributes high

frequency wave energy to the discontinuous panel loading. In order to achieve highly

accurate estimates for W, the wing panelling must also be significantly dense or else

Analytic
60

r20
240
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Figure 5.4: Normalised waue drag 0-i,ntegrand representing the waue energY spectrurn of

a Gauss,ian surface pressure distribution mouing with uelocity U :2,...,10' Calculated

numerically using ø (8 x 8) ground plane grid wi,th ns : n't s : 120 panels in both the

chordwise and spanwise directions.

another method must be used to transfer the wing loading to the water surface'

6.3.2 Aspect Ratio Effects

As the wing aspect ratio ,4R: s2lA increases we might expect a greater contribution to

W frorn the waves in the streamwise direction and greater cancellation of the diverging

waves. From slender hull theory we expect W - ,4R2 for small -4R. Figure 5'9 shows the

form of the pressure footprint of a rectangular wing with aspect ratio Æì': l0' Relative

to the unit square wing, the only differences are that the increased aspect ratio has

increased the magnitude of the pressure on the surface and that the resulting pressure

distribution on the water surface is one average closer to that on the wing itself, because

the encroachment of the low pressure region at the wingtips is relatively iess signifrcant

to the total geometrY'

We wish to examine the behaviour of the wave drag W as the aspect ratio is varied.

Because of the extreme numerical sensitivity to mismatch of the aerodynamic and hydro-
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Figure 5.5: Waue drag W of a Gaussian pressure distribut'ion uersus the free stream

uelocity IJ . Calculated numerically using ø (8 x 8) ground plane grid' with ns : n'Ls : I20

panels in both the chordwi,se and spanwise directi,ons'

dynamic grids, we introduce a special scheme to reduce the grid-interference noise from

the real results. The pressure footprints have been calculated previously on a ground-

plane grid which is the dimension of the wing plus a fixed margin of 2 units on all sides.

In the g-direction, \rye now use a margin which is half of the wingspan for the partic-

ular wing being evaluated. Prior to calculating the pressure footprint on the ground,

the loading on the wing is interpolated onto a regular grid on the wing which coincides

exactly with the grid on the ground-plane. While the grid-scale oscillations still present

numerical difficulty, the variation in the wave drag W is plotted for the range of aspect

ratios 0 <,R ( 4 for arectangular wing moving withvelocityU:5 and angle of attack

ew :5o. Wave interferencefrom the two side-edges of the pressure footprint causes real

oscillations in the graph, shown in Figure 5.10. Since the natural wavelength of water-

surface \ryaves in infinitely deep water is ): 2rU2f g, and the wave pattern propagates

at an angle of arctan(1/3) behind the vessel (Newman, 7977), then weexpect to see an

interference effect when s: À16:2.67. In fact, we also resolve the behaviour on the

scale of the chord-length, corresponding to a variation in span of s : c/3 : 0.33'

0
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Figure 5.6: Water surface pressure footprint of unit squa,re wing in ground effect, at angle

of attaclc qw -- 5o and uelocitg IJ :5. The projection shows the zero pressure contour

li,ne. Clearly the region beneath the wing has domi,nantly hi,gher pre$ure that the free

strearn and elsewhere the pressure is reduced.

5.3.3 'Wing with Skirts

The lift and induced drag force on a wing in ground-effect are significantly changed when

endplates are added as full-chord skirts below the wing. Figure 5.11 shows the pressure

distribution on the water surface due to a unit square wing at angle of attack o¿w : 5o

moving with veiocity tJ : 5 at altitude åo : 0.1 with full skirts. This may be directly

compared. to Figure 5.6, where the skirts are omitted. The magnitude of the pressure

in the case with skirts is significantly higher as we expect from the lift forces generated,

but we also note regions of high pressure extending upstream and also downstream of

the configuration. This is largely due to the endplate vorticity, which accentuates the

blockage to the flow created within the channel'

1
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ï 1
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Figure 5.7: Waue energy spectrum for a uni,t square wing at angle of attack ùw : 5o

traueling with uelocity U : 5 in ground effect ouer d, water surface with clearance hs :

0.1c. Curues &re shown.for ground-plane panel numbers ns: n'¿s - 40160,120 and240'

5.4 \Mave Drag Versus Aerodynamic Drag

Although it is clear that the present scheme may be used to predict the wave drag of a

wing-in-ground effect flying over water, the level of computational complexity required

to produce accurate results suggests that this facet of the algorithm be avoided when

possible. We now consider the circumstances under which we may assume that the wave

drag will be significantly smaller than the corresponding aerodynamic drag, starting with

a two-dimensional approximation for the circulation resulting from an inclined flat plate

in ground effect.

6.4.L Two-Dimensional Airflow

The flow field associated with a general lifting surface in ground effect is not two-

dimensional. However, in Chapter 4 it was shown that the addition of full chord skirts

to a wing in ground effect can provide reasonably two-dimensional conditions within the
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Figure 5.B: Zoom-in of the waue energy spectrum for unit squo're wing in ground effect

near 0 : T 12. Curues for nn : ffis - 40,60,120 and' 240 are shown'

gap. It is also clear that the hydrodynamic forces associated with wings in ground effect

are very much higher when full skirts are used. If we consider a small gap of length c

and cleara nce h : ho I o.(" - *), 0 I r ( c then Bernoulli's equation applied to the

gap region becomes

(5.4.10)
P¡

If we the air velocity in the gap be approximated by the iinear theory, such that

1

,ø
(*), : r*Tu,

P-Po 1

Tæ -r-
and assume that Po : 0, then

2 f" p@) d,r : , %l' ( 5.4.12)
pou' J, no i ?nc

If the gap clearance is O(1) when compared to the wing chord, whereas the angle of

attack aq is small compared to the wing chord thett avv f ho - 0 and

2r.12
p^u, J" n@ dt : aL' (5'4'13)

2

(5.4.11)
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Figure 5.9: Pressure footprint of a rectangular wing with Æì : I0 in ground effect at

altitud,e ho:Q.Ic, angle of attack 5o and uelocity U :5. The only lines shown on the

contour plot are where pressure p(rrA) :0.

Thus we may approximate the circulation generated by an inclined flat plate in moderate

ground effect as

fc2
-^JUa 2ho

5

0

-5

v

5.4.2 Two-Dimensional Wave Drag

We now consider the wave drag R of a finite two-dimensional surface pressure distribution.

It may be shown (Lamb, 1932, page 415) that the resistive force per unit span on a

disturbance advancing with velocity U < JgH-, where fI is the depth of water is

R : 
49Pwa

1 2

(5.4.14)

(5.4.15)

where o: glU'is the wave number. As we are dealing with water of inflnite depth 11,

1"R: 
ngPwait

t2l

then this reduces to

(5.4.16)
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Figure 5.10: Waue dragW uersus spl,n s for a rectangular wing fl,ying at altitud,e ho :0.1c

at, ueloci,ty U : 5 and angle of attack aw : 5o.

where ø,,, is the amplitude of the wave train following the object. This wave amplitude

may be determined (Grundy, 1986a), (Tuck, !982a, page 245), (Tuck, 19S2b) and (Lamb,

1932, page 403) by the planing equation, which specifies the surface elevation 4(r) res-

ulting from a finite pressure distribution p as

rt@) : 
1"" 

,(r)u[(* - () de , Ø.4.tT)

where the integrated kernel function (for numerical convenience) is

r., \ ru2,,n_l)*[+cos(ffi)-r, z)0, 
(5.4.18)Iftlr):- nJli" [0, ¿(o

where / is the auxiliary function for the sine and cosine integrals (Abramowitz and

Stegun, 1965, Page 232) defined as

f @) : Ci(lrl) sinø - si(lrl)cos r ssnÍ (5.4.1e)

We are not necessarily interested in the near-field form of the \ryaves, only the amplitude

far downstream. As r -+ *oo then

I P(0
g

u2
("-o)n@) -+ 2 sin(7ø)

L22
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Figure 5.1I: Water surface pressure footprint of unit squa,re wing in ground effect, at angle

of attack (tw :5o and uelocity IJ : 5 with full-chord slcirts. The projecti'on shows the zero

pressure contour li,nes. In addition to th,e high pressure reg'ion directly beneath the wing,

the pressure ,is increased upstream and downstrearn by the parti'al blockage represented by

the channel fl,ow region. The pressure still drops as the leading edge is approached frorn

upstrearn as for the case of the bare wing'

For general P(€), this integral must be calculated numerically. However, \rye shall assume

that the previous assumption regarding two-dimensional airflow is valid and that there is

a linear variation in velocity from the leading edge to the trailing edge within the gap zone.

While this strictly implies a parabolic variation in pressure, for numerical convenience

and because we are only interested in the magnitude of the forces rather than their

variation with the gap geometry, we shail assume a linear variation from leading-edge

to trailing-edge, where the perturbation pressure is zero. We may then define a factor

F(ù, which gives the wave-train amplitude following a linear two-dimensional pressure

distribution per unit chordwise integrated pressure as

4
[sin(À +?) -sin(À) -7cos())] (5.4.21)F(ù : l.r@ o,

12
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where

À : arctan (5.4.22)

The parameter 7 : Fl'is based on the length Froude number P¿ given by

(5.4.23)

Assuming that the pressure within the gap is constant with respecL'to z, then we may

relate the pressure on the water surface to the loading on the wing by

p(*) : pwU2 P(r) : -p¡U1@) (5.4.24)

We may therefore approximate the wave resistive force R per unit span, due to a two-

dimensional pressure disturbance from a lifting surface in moderate ground effect, where

the forces are dominated by a linear channel flow as

o : Lno* ( ttlrrrl\' þ.4.25)'"- 4 \pwu /

5.4.3 Magnitude of Three-Dimensional 'Wave Drag

In order to compare the relative magnitudes of the aerodynamic induced drag and the

hydrodynamic wave resistance, we must consider the three-dimensional analogue of the

two-dimensional resistance formula above, because the induced drag is a strictly three-

dimensional phenomenon. If we accept that full skirts on the wing make the flow effect-

ively two-dimensional, then an approximation to the three-dimensional wave drag may

be given by extending the expression for the two-dimensional wave drag along the span

Dw: 
Io" 
o(r)or. (5.4.26)

If we assume in addition that the two-dimensional resistance is spanwise constant, then

we may further simplify by setting R(a) : 'R from Equation 5'4'25, obtaining

Dey _t ^po t (l@rrr.r))'¿r. (5.4.27)o, : 4n p* /" \ ur " \'a'7',

Thus the wave drag coefficient realised on the wing is

Cnw gP¿

/cos(r) - 1\

\sin(7) - 7/

l"(H'(u'r))

Ft to'
,,1æ

2

dya2 2AsU2 pvr
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On substitution of 5.4.14 into 5.4.28, we obtain a likely magnitude for the three-dimensional

wave drag coefficient based on locaily two-dimensional flow past a full-skirted wing in

moderate ground effect a

d2 2AoU2 pw
(5.4.2e)

If we assume that the wing is rectangular and the flow is uniform with respect to g, then

Co* g P¿.

I"(*"u'ù)'au

C *|-tt- (8Pt \
2

)
Dvr

hoa2

c
tF'(ù. (5.4.30)
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Figure 5.72: Plot of the waue resistance functi,on lF'(l) uersus the waue nurnber 1. The

marimum ualue is 7.2 when 1 :2.9'

The function 1F2(1) is illustrated in Figure 5.12. Clearly the function tends to zero as

7 tend.s to either zero or infinity, but there are an infrnite number of local maxima and

minima in between. The largest value of 1F2(1) is 7.2,, when 'Y :2.9. This corresponds

to a chord length c:2.9[J2f g, which either requires an enormous aircraft or a very

low velocity. Assuming that such a figure could be obtained, then the corresponding

maximum possible wave drag coefficient would be approximately given by

gl"" / ^ r2
'+- = ("') (5 4 31)

For a coefficient of the order of one, this requires an altitude less than 5% of the chord

length.
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Thus it is highly unlikely that wave drag will be significant relative to aerodynamic

induced drag for wings in ground effect unless they also directly pierce the water surface.

The only situation in which a low velocity and a low altitude are experienced is during

take-off and possibly landing, when specifi.c aids are often required. We may conclude

that for the optimisation of a wing-in-ground effect vehicle in cruise mode, the wave drag

may be regarded as far less significant than the aerodynamic drag.
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Chapter 6

Thickness

6.1- Introduction

In the previous Chapters, thickness effects have been treated as distinct from the lifting

flow calculations. It is certainly true in the case of a single thin wing with no endplates

in free air that the thickness may to leading order be decoupled from the lifting equation

(Ashiey and Landahl, 1965); however this is not true if any of the above conditions

are violated. Any thick body iying in a plane other than that of a lifting surface will

induce a velocity difference across that surface, which may be considered as an apparent

angie of attack. Alternatively, a formal perturbation series may be used to determine

the effect of thickness on the kinematic boundary conditions on the upper and lower

surfaces (Kinnas, 1992). The result is that thickness may be explicitly included prior to

the loading calculation and does not signifi,cantly increase the computational complexity

of the problem. In the case where mean camber surfaces deviate significantly from the

plane (Hsin et al., 1991) Kinnas shows that it is necessary to first calculate the ioading

for zero thickness before adding a thickness correction factor to the free stream in order to

obtain the coupled solution. We shall consider here only systems of surfaces which deviate

from planes by a small amount and under such circumstances, the two formulations are

equivalent.

It is consistent with the present formulation to model the thickness of any thin surface by a

source distribution on the center plane of that surface. While this source distribution will

influence the velocities on the upper and lower surfaces equally, and thereby contribute

nothing to the pressure difference between them, it witl signifi.cantly modify the potential
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across all other planes in the flow domain. This Chapter deals with thickness as it effects

endplates, ground effect and the case of two or more wings flying in proximity.

6.2 Suction and Induced Drag

Under the present formulation, the lift and suction are regarded as sufficient to determine

the induced drag with and without thickness. However if this approach had not been

taken, then it would be necessary to consider the coupling of lifting and thickness to

second order in angle of attack, in order to correctly determine the induced drag. Such

an analysis (Tuck, unpublished notes on aerodynamics) for a single wing with thickness

shows that the resulting drag may be evaluated as

| |"t t., v,0+) fi @,a) - p(n,a,0-) r; @, v)l d,rd'v (6.2.1)

(6.2.2)DslDv*Dt,

where

(6.2.3)

is the contribution from the sources alone,

Dv : o^ I l"a"¿, I l"d,(dl¡ 1(r,ùtG,ùH,(* - (,y - ?,0) (6.2.4)

is the contribution from the vortices alone, and

Dr : o^ I l"¿"¿, I I"d,(dl¡ 
m(n,ùtG,ù1G,," - Hr,l(* - t,a - ?,0) (6.2.5)

is the contribution from the interaction between sources and vortices, where GrHrGl

and fI1 refer to the singular and non-singular kernels for the influences of source and

horseshoe vortex distributions respectively.

The only way in which such a complicated interaction could be manifest in the current

formulation is through a thickness modification to the linearized leading-edge suction

coeffi.cient. Although a number of investigators have considered the nonlinear attenuation

of the suction phenomenon with angle of attack for real airfoils (Lan and Su, 1987) and

the variation of leading-edge suction with camber (Delaurier, 1983), the reduction of

leading-edge suction with linear thickness is unclear. Such an investigation is beyond the

scope of this thesis, but would no doubt make an interesting study. For the purposes

of the remainder of this thesis it will be assumed that linear leading-edge suction is not

affected by wing thickness.

Ds : -r^ I l"¿"a, I I"d,{d,q 
m(x,ù*(t,ùG"(* - €,,a - ?,0)

D¿
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6.3 Mathematical Formulation

Free stream [/
+

Physical surfaces

Ground plane

Image surfaces

fll=r
/---- -l---l_ /

<-__ __L---v:j==s

t__

Figure 6.1: Wing-endplate combinati,on plus image

In order to properiy formulate the thickness problem, we need to specifically consider the

inciusion of ground effect. Ground effect in the presence of a rigid ground plane can be

mod.elled as in Figure 6.1 using an image as though reflected in the ground plane. Let

the velocity be given bY

e : V (Ur -l ó(",a,t)) (6.3.6)

where / is the velocitY Potential

ó@,a, r)
ff: 

J J;G,ùE(" - t,y - r,z - Od(dn
11+ 

J JrtG,ÒG(* - ê,v - rt,z - () dfle
tf+ 

J J**G,q)S(" - t,a -r,z - Od€d,t
r1+ 

J Jr*G,flS(, - Ë,a -\,2 - Òdt'd('

I

t-_

. --=

r<
t/,' /./

---7-----/

| -'t

l/

I

I

I
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The composite potential functions include the image contributions such that

E : H -fHt:H(r-t,a-T,z -() - H("-€,,a-n,z-l(") (6'3'8)

G : 6 + 6r:6(r- t,y -\,2 -() + @(" -t,y -r¡,r+.1.) (6.3.9)

S : ^9*Sr : S(n-t,y-\,2-()+ S(*-€,a-n,r-+C). (6.3.10)

Maintaining the previous notation, 11 is the potential function for a unit horseshoe vortex

on the wing, G is the potential function for a unit horseshoe vortex on the plate and ,9

is the potential for a source on either the wing or the plate. For convenience, it will be

assumed. that when ,9 refers to a source on the plate, the influence of both endplates is

included. In the special case where one endplate only is to be included, we shall use ,S*

instead. Then

y : ll*ru"d(d,t+ ll,tc,a€ae
+ I lr*t, d(d'r¡ + I lr*t " d'td'4.. (6.3.11)

Taking the limits above and beiow the surface of mean camber z -+ h f 0 gives

u rl :,tf1. 
{ I l*ru " 

d,€d,n + I 1,r"" d€d,e + I l**t, d€d'n + I I"*t " 
dëd'(\

: 
ll*ru"d(d,r¡ + ll,r",d€de +T** ll**t,,d(d'q + llr^s"aUe (6'3'12)

Subtracting the two halves of Equation 6.3.12 and solving for rn gives

*(*,y): u (fJ - f;) : ufrfwing rhickness). (6.3.13)

Taking the average of the two haives of Equation 6.3.12 and substituting the mean camber

r": ffl + r;)12 Eives

uf, -- Il*rE"dËd'n + Il,ra"d€d'C + ll**s,,d,(d,r¡ + IL*t"d'td'ç
(6.3.i4)

Thus the first of the coupled lifting-surface equations for wings and endplates in ground

effect with leading-order thickness is

I l*ru,d(d,t + I l,r",d(d( : - I |-mst,d(dn - I I,*t"d'U'e + u f,
(6.3.15)

Similarly, the second equation is

ll*ru,d(d'rt + ll,r",di.di.: - ll,ms[d'(d'( - ll**Sod¿dq r(rs,,
(6.3.16)
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where ,9* is the contribution to the velocity potential S due to the second endplate oniy.

In the case of multiple wings or wing-endplate combinations in or out of ground effect,

the contribution of sources from every other surface and its image must also be included'

Once these equations have been integrated once with respect to r, we need only calculate

the additional kernel functions based on the velocity potentiai for a source

s(x,Y,, z)
1:--

4nR'
(6.3.17)

(6.3.18)

where ,R: X I 22. Thrs

Kl: I
KE:l

AS

dy

AS

d"
(6.3.1e)

Since there is no formal antiderivative to these kernel functions analogous to the kernel for

a horseshoe vortex in the present method, we model the thickness using a Riemann-type

summation. For numerical convenience, we assume that the thickness is constant on each

panel with a value given by the standard NACA 4-digit section distribution evaluated at

the collocation point. This distribution is given (Abbott and von Doenhoff, 1958, page

113) as

t
LA, : a2¡ (O.ZOO g0\/*- 0.12600r - 0.35160r' + 0.28+3013 - 0.10150ra) ,

(6.3.20)

where ú is a thickness parameter expressing the maximum thickness as a fraction of the

chord. length and the chord is defined for 0 < r 11. In fact, this distribution describes a

foil which is slightly longer than c : 1, but as it is a standard in the literature it will be

used without modifrcation. Figure 6.2 shows the thickness distributions over 0 1 æ 1l

for various values of f.

With the exception of the case of a single wing without endplates in free air, thickness

effects are significant to first order for every wing or wing-endplate combination in or

out of ground effect. In the context of the previous Chapters, there are three cases that

should be described, namely the influence of thickness when adding endplates to a single

wing in free air, the effect of wing thickness with and without endplates in ground effect,

and the effect of a second iifting configuration in proximity to the first.
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Figure 6.2: Thickness d,istributions for NACA l-digit wi,ng sections for uarious ualues of

the thickness parameter t

6.4 Single \Ming with EndPlates

From the thickness modification to the mathematical formulation of the lifting surface

integral equations presented in Section 6.3 of this Chapter, it is easy to see that the

thickness of any component of a wing-endplate configuration alters the apparent angle

attack of every component other than those in the same plane as itself. However, it is

not aiways clear what effect this will have on the lift distribution.

In order to develop some intuition on these coupled effects, an examination is made of a

single wing with endplates. The case where the wing has thickness while the endplates

d.o not is considered first, then the case of a flat plate wing with thick endplates. It will

be seen that even a flat plate at nominal angle of attack a¿w :0' will produce lift when

there is a vertically asymmetric distribution of thickness on the endplates.

6.4.t \iling u¡ith zero-Thickness Endplates in Flee Air

We take a unit square wing with unit square endplates. The endplates have no thickness

andthewinghasspanwiseuniformthicknessparametert(y):ú.Wechartthevariation

ú : 0.05
ú : 0.10
t :0.20
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of Ct against the vertical offset ó of the endplates from the central position for various

values of f . We maintain the horizontal symmetry a : 0 as before. For clarity these

results are presented in Figures 6.3 and 6.4. Figure 6.3 shows the variation in lift with

the vertical location of the square endplate for a wing at angle of attack dw -- 0'. The

thickness parameter tf ctakes the values 0T0,2T0,4%,6%,8% and 10%'

0.04

0.03
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0.01

0

-0.02

-0.03

-0.04
-0.5 -0.3 -0.1 0.1 0.3 0.5

Figure 6.3: Plots of Cn against the uertical offset b of the zero thiclcness endplates from

the central posi'tion for as : 0o and' tf c:0Yo',270,4%r6%,8% and l0%' Note that

thickness c¿uses a d,ownforce when the endplate is on the lower half of the wing only'

Note that when the wing has thickness, asymmetry in the position of the endplate causes

a net lift or downforce on the wing, even though the wing is at zero nominal angle of

attack. This is because the wing thickness accelerates the flow on both upper and lower

surfaces in the same way as fluid is accelerated through a Venturi and the pressure is

consequently reduced. When the endplate is is symmetrically located, this effect is equal

on both upper and lower surfaces and. the pressure difference between the surfaces caused

by the thickness is zero. When the endplate is asymmetrically positioned, the Venturi

efiect is greater on the surface where flow is more two-dimensionai. Thus if the end-

plates are dominantly below the wing, the two-dimensional flow on the lower surface

produces a lower average pressure than on the upper surface and the wing experiences a

È()

-0.01

b

0%
2To

4%
6%
8%

n%
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net downforce. For a zero camber airfoil, this effect is vertically symmetric. Figure 6'4

includes the information from Figure 6.3 but also shows the relative effect of this ad-

ditional 'thickness lift' to flat-plate lift for the square-wing, square-plate geometry at

angles of attack (lw :0or2o1416or8o and 10'. It is clear that thickness effects are not

significant whenever the endplates are vertically central. Maximum lift no longer always

occurs when the endplates are vertically central. In contrast to the flat-plate case, there

is now a balance to be struck between the two lift-generating mechanisms. For positive

angles of attack, thickness reduces the high pressure below the wing and increases the

suction above the wing. It is consequently worth offsetting the endpiate such that ó > 0

to make the flow over the wing more two-dimensional and the flow below the wing less

two-dimensional.

6.4.2 Flat-Plate 'Wing with Thick Endplates

Introducing thickness to endplates is another way to increase the lift of a system with

the same planform geometry. In order to compare this effect with the lift of a flat plate

and the thickness-reiated. lift of a thick wing, thickness is added to the endplate aboue

the wi,ng only. This will accelerate the flow over the upper wing surface and cause a lift

force. Figure 6.5 shows the variation in lift of a square flat-plate wing at angle of attack

(tw :0o against vertical offset b of square planform endplates. Curves are shown for the

parameter fp, being the thickness of the endplate above the wing. The endplate has zero

thickness below the wing.

Note that there is still an optimal vertical offset b even though the wing and lower

plates have zero thickness. The section of the endplate below the wing sti1l has a role

to play in maintaining the difference in pressure between upper and lower wing surfaces

by preventing the relatively high pressure air below the wing from circulating around

the wingtip to the low pressure region created by the Venturi between the thick upper

endplates. In this case, the balance is struck when the endplate is almost entirely above

the wing. By comparing Figures 6.3 and 6.5 we see that the thickness effect of the

end.plates is certainly of the same order as that of the wing and in the case of the square

planforms, creates a lifting force roughly three times greater than for the same thickness

on the wing.
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Figure 6.4: Plots of C7 against the uertical offset b of the endplates from the central

position. The group of curues for each of the angles of attack Qw :0o12o14o16o,8o and

l0o shows the effect of tlc:0T0,,2%,4%,6%,8% and l0%' In euery case the greatest

uariation in tift occlrrs for the thiclcest wing. At higher angles of attack, the thiclcness

related, tift is relatiuely less significant than the fl,at-plate lift. In all ca,ses' fini,te thickness

malces the opti,mal enrl,plate displacement b positi,ue, rather than zero as already shown for

a wing of zero thiclcness.

6.5 \Ming Thickness in Ground Effect

Having developed an insight into the effect of thickness in free air, we turn to the case

of a single wing in ground effect. Rather than repeat the work of the previous section,

we consider only the cases of wing thickness with and without flat endplates. Before

proceeding with the geometries of specific interest, it is prudent to verify the numeric

implementation. In the previous Chapter on ground effect, it was found that even in

moderate ground effect, the wing grid scale can cause large inaccuracies when image

vortices are close to surface panels. It is reasonable to assume that image sources will

have similar numerical behaviour. One test of the numerics is to compare the predicted

b
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Figure 6.5: Plots of C¡ against the uertical offset b of the endplates from the central

positi,on. The end,plate has thiclcness parameter tp :0%,2%,4%,6%,8% and,l0% aboue

the wing and zero thickness below the wing'

downforce of a single wing at zero nominal angle of attack with full endpla,tes with that

estimated by the one-dimensional channel flow

p(*) : ro +rredu' (t - @olh(r))') , (6.5.21)

where åo is the nominal altitude of the wing and ä(r) is the actual clearance. In this

case A(r) - ho - At(r). Since it is only the ratio hslh(r) that determines the pressure

distribution beneath the wing, \4/e may calculate the exact value of the total downforce

for any given thickness parameter f. For t : holl\ the lift coefficient Cn : -'0729.

Numerically it is difficult to reproduce this result using the three-dimensional code be-

cause computational effort must be expended to include sufficiently large endplates so as

to make the flow effectively two-dimensional. Also, the grid scale must be frne enough

to resolve the influences of image sources located beneath the ground plate. Using flat

rectangular endplates which extend from one chord length upstream of the leading edge

to one chord length behind the trailing edge, and from the ground to two chord lengths

above the wing we obtain the data presented in Table 6.1.
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ho t Cr

0.100

0.050

0.025

tl*

0.0100

0.0050

0.0025

holt0

-0.0440

-0.0525

-0.0581

-0.0694

Table 6.1: Downforce prod,uced on a uni,t square wing with thickness [)aro,rneter t : ho ll0 '

End,plates haue no thiclcness and are full skirts to produce effecti,uely 2-dimensional flow.

In the limit as ho ) 0, l-dimensional channel fl,ow predicts that Ct -+ -0'0729. Ertra-

polation is used to match the one-dimensional case.

White increased endplates and consequently increased numbers of panels asymptotically

improve the results for this test, they are regarded as sufficient code verification for the

following sections.

6.5.1- Bare'Wing

The thickness in ground effect of a bare square wing with thickness parameter ú is to

be considered. Since the effects of aspect ratio and angle of attack have been covered in

the previous Chapter 4we consider only the parameters âs and ú. Figure 6'6 shows the

variation of Ct, with the altitude å,s for various thickness parameters l.

As with the case of negative angle of attack and no thickness, the downforce varies linearly

with the thickness parameter ú and inversely with the altitude ås. In order to increase

the downforce, \rye can add endplates as full skirts.

6.6.2 \iling with Flat Endplates

By adding skirts to the wing in ground effect, we limit the flow of air into the low pressure

zone directly beneath the wing. Figure 6.7 shows the variation of the lift coefficient C¿

with the altitude for various thickness parameters.
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Figure 6.6: Plots of Ct aga,inst the uertical altitude ho oT a bare square wi'ng in ground

effect. The wing has thiclcness pa,raríreters t - 0To,2T0,4%,6To,8To and l0To.

6.6 Multiple Body Flight Configuration

Birds and aircraft often fly in formation. This might be for efficiency, such as the delta

a rangement for large load-carrying aircraft which simulates a wing with a larger (if

discontinuous) span. The addition of thickness to the wings introduces nothing to the

case where ali wings lie in the same plane, but when the surfaces are stacked verticaliy,

as in some bird formations, the thickness becomes significant. The first observation is

that the flow is accelerated in the diminished gap between the surfaces, thus decreasing

the lift on the upper wing and increasing the lift on the lower wing. The relative location

of the wings can significantly effect the coupling due to thickness. Having established

the thickness properties of endplates in previous sections, we consider only multipie wing

interaction in free air. In particular, we consider the case of a second wing identical to

the first with a horizontal offset ø and a with a vertical offset b (see Figure 6'9)'
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Figure 6.7: Plots ol Cr against the uertical altitude ho ol & squúre wing with full-chord,

slci,rts in ground, effect. The wing has thi,clcness paranùeters t - 0T0,2%,4T0,6%,870 and

l0To and the endplates haue zero thicleness.

6.6.1 Horizontal Offset

For any given pair of wings at a given vertical separation, there is an optimal horizontal

offset ø which maximises the combined lift to drag ratio. To illustrate this, consider two

unit square wings each with a NACA thickness distribution with thickness parameter f.

Each wing is at an angle of attack of ay, : 5o. Figure 6.9 shows the variation in the

ratio of lift to induced drag Lf D¡ for the two wing combination as the horizontal offset ø

between the leading edges of the two wings varies from ø - -c) when the top wing is a

full chord length in front of the lower wing to o, : c,t where it trails by a full chord. The

vertical separation between the two wings is ó : c/2. Note that there is no attempt to

include skin frictional drag in this case. As biplane theory predicts (Kuchemann, 1978)

for wings of zero thickness, there is an optimum when the wings lie directly on top of

each other. As thickness is gradually introduced to both wings, the maximum is higher

and occurs when the upper wing is forward of the lower wing.

To see what is happening to each of the two wings, we plot Lf D¿ as realised on each of
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-Wing 2

Wing 1

U
--------------+

b

4-- A, --------->

Figure 6.8: Two id,entical wings with thickness pt,rúrneter t and horizontal and uertical

offsets a andb, respectiuelY'

the wings individually. Figures 6.10 and 6.11 illustrate that as the thickness parameter

ú is increased and the suction between the two wings correspondingly increases, the lift

on the ¿pper wing decreases. In order to reduce the drag on the upper surface it may be

moved forward, thus increasing the leading edge suction. In fact for t: L\To, there is a

region from -0.25 < a < -0.05 where Lf D¿ on the upper wing is negative. This is not

because the lift is negative, but because the suction is so strong that the upper wing is

getting a free ride. This situation does not correspond to the global optimum, however!

Clearly the optimal offset ¿ will vary with the angies of attack, span, vertical separation

and thickness of the two wings. It is also clear that the variation will not be linear with

any of these.

6.6.2 Vertical Separation

While there is always a well defined optimal value of ø for a given vertical offset ó, there is

not always an ad.vantage in utilising the straight "biplane effect." Consider the 2 square

wings, again at a,¡y : 5o with fixed horizontal separation o : 0 and variable vertical

separation ó. Figure 6.12 shows the variation in Lf D¿ aga\nst b for a variety of thickness
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Figure 6.9: Combi,ned Lf D¿ against hori,zontal offset a for two unit square uings at

dw : 5o and, thi,clcness parameter t :0To,2%,4T0,6%,8% and I0%.

parameters ú.

While there is a clear advantage to wings of zero thickness flying in vertical proximity,

this advantage is reduced by thickness coupiing. If only vertical movement is allowed, the

zero thickness wings should fly with a separation of b : 0.3c. At a smaller separation, the

loss in lift is not compensated for by the dissipation of vortex energy. Beyond a thickness

of approximately tf c:5%, there is no such balance point. However, if horizontal

movement were also allowed, there would be an optimal finite pair (a,ó) that described

a confi.guration whose performance exceeded that of the two separate wings in free air'
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Chapter 7

Optirnization

The theme of optimisation has been significant in many of the preceeding Chapters

in this thesis, but there are issues regarding the formulation and numerical solution

of optimisation problems that have not yet been explicitly addressed' This Chapter

is not a comprehensive study of optimisation but contains a number of examples and

separate discussions of specifrc problems associated with using an optimisation algorithm

to improve a lifting configuration.

7.! Introduction

The designer of an algorithm for calculating the forces on general lifting surfaces may

start with a pre-conceived notion of what sort of 'general' planforms will be input to

the program. It may be expected that the boundary will be quite smooth, except at a

small number of points (maybe cusped wingtips) and the likely optimal shape will in all

likelihood be a sleek object. However, the automatic search does not know this' Even

a very clever algorithm for generating shapes needs to have a representation that allows

geometric flexibility but will not trip up the numerics. In other words, the designer of

the optimal search should be aware of all the possible shapes that wili be input to the

lifting surface program, but should not pre-empt the results'

Another approach to the structural optimisation problem involves the determination of

the loading of a structure and the subsequent removal of material with loading below

a critical value (Xie and Steven, 1993). This approach has been successfully used to

optimise Michell trusses and other mechanical structures. Its strength lies in the ability
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to use information from the function evaluation to guide the search direction. It may be

useful to include a similar feature to the present algorithm, though it must be noted that

such an algorithm used. alone would not correctly predict the location of the leading edge

on a lifting confrguration, as material would never be removed from the ieading edge to

relocate it.

7.L.L Finite Geometric Representation

Much effort has been devoted recently to the deveiopment of global optimisation al-

gorithms that seek to find which of the possible values of an input vector f of either

binary or real values will maximise a given function F(/). These algorithms may go

under the broader category names of Genetic Algorithms or Simulated Annealing, but

the common feature is that they should have limited or zero functionality that is specific

to the system that they are optimising.

While it is expected that certain search parameters may be tuned either externally or by a

so-called meta-algorithm, only algorithms with 'heuristic' components have any problem-

specific functions. All they have to do is be able to call a function to evaluate F. The way

in which -f represents the state of the system at hand is the only mechanism by which we

may influence the direction of the search. The particular choice of representation may be

unimportant or crucial to a given problem'

Consider the maximisation of the lift coefficient C;f aw for a wing geometry. Let the

real-valued vectorl specifytheleadingedge LE(y),O<y ( s and chord 
"(A),0 

<A <s

functions over the wingspan s at a discrete set of points, namely the spanwise collocation

points yi)i:1,...,n. Hencetheinputvectorisgivenbyf : (t,'r,'"rCn,LEtr"',LE')

and we can run a standard real vector optimizer.

We might expect to fi.nd that the optimal input vector I : I* defines a circle or a square

or maybe an infrnite -,4R ellipse, but these geometries will not be found by the genetic

algorithm. There is no natural limit to the size of the wing in this pseudo-random search,

so there are infrnitely many geometrically similar wings with the same aspect ratio. It

is very tikeiy that the optimizer will never converge, because of the genetic drift lhat

frequently occurs when a problem is under-specified or under-constrained.

One solution is to prevent this from happening at the function evaluation stage by normal-
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izing all vector entries with respect to the largest value. Now the optimiser wiii quickly

start increasing the span s. This is because s is the single vector entry that has the

greatest immediate effect on the lift coefficient. To have the same effect as increasing the

span, all chord length entries wouid have to decrease in unison, the probability of which

is very smal|. The optimiser returns a wing with a very iarge aspect ratio, but very little

useful information about the chord length distribution, which will be effectively random.

Of course it is not reasonable to seek the wing with optimal lift coefficient C7f a¡¿, because

practically the span will be limited by structural considerations. We need to fix both the

span and the planform area in order to have a workable problem.

7.L.2 Grid-Scale Oscillation

Many algorithms require an estimate for the downhill gradient of an optimisation cost

function. For example, a popular general optimisation routine GMRES has been used

to modify standard NACA airfoil profiles to improve their performance (Vossinis, 1995).

However, not ali functions are so numerically well behaved. A discussion of a number of

,,Industrial Strength" optimisation problems is presented in Davis (Davis, 1996).

There are often grid-scale oscillations in the search space that are artificial products of

the discretisation scheme, quite distinct from the order of computational accuracy, that

introduce an artiflcial sub-structure to the global optimisation problem. To illustrate

this point, Figure 7.1 shows the variation in the tift coefficient Crlow of a unit square

wing versus the horizontal offset a of a smaii llaby 1/4 square endplate that is vertic-

ally centered on the wing. The number of points chosen to represent the geometry is

deliberately small, with m - !2,n :12,ffip :6 and np : 12'

Standard gradient methods are likely to find this troublesome, so we choose to implement

a simple genetic algorithm for the search.

7.2 A Simple Genetic Algorithm

Much work has been done recently on the tuning of genetic algorithms for specific applica-

tions. In this section we do not endeavor to examine the rate of convergence of the genetic

algorithm beyond a level of interest motivated by the present study of aerodynamics.
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Figure 7.1: Gri,d-scale oscillations in the object function Crlow for a unit square wing

uersus the horizontal offset a of small, uertically centered squl,re endplates'

The present algorithm operates on a population of 
^6 

"chromosomes" c¡ri :1,..,N0,

each of which consists of ¡ún "genes" gi)i : 1, ..,/ús, or real numbers describing the

geometry to be optimised. Each new generation of the population is produced by creating

At ,,chiidren" from the 1ú, "parents." These new -lú" 1 N, chromosomes replace the

chromosomes of the existing population which have the lowest fitness. The fitness is the

external function to be optimised. The children are produced by one of four randomly

selected operations:

o mired" crossol)er) whereby each gene in the child chromosome is randomly selected

from the corresponding genes in each of two randomly selected parents.

o rand,om perturbation, where the genes in a single parent chromosome are randomly

either increased or decreased by 5%.

o aueraginø, whereby the corresponding genes in two parent chromosomes are aver-

aged to produce a child, and

0

o,
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. snxoothing whereby each gene in a parent chromosome is replaced by the average of

its two neighbouring genes i,f their basic role in the chromosome is the same.

The last operation is the only one of this list which is function-dependent, because the

genetic algorithm must have some information about the role of each gene in determining

the geometry of the wing-endplate configuration. Ideally, there should be no such opera-

tions, but this one has been found to significantly increase the rate of convergence. The

algorithm ceases producing ne\4/ generations when the highest fitness in the population

has converged to within an acceptable tolerance of the optimal solution.

Determining the optimal values "f ^I, 
and l/" for a particular problem is very difficult and

usually varies as the generation number increases. The number of original chromosomes

retained at each generation, N, - At is known as the generation gap. If ali but one

of the current population is replaced (^¡, - ¡úc : 1), the system is known as elitist.

In general, a large generation gap results in early convergence (Brown, 1997)' while

a small generation gap allows good schemata, or successful small-scale sub-structures

within the chromosomes that are later assembled into complete solutions, to remain

in the population. According to Davis (1939) the most effective population size is a

parameter that is dependent on the problem being solved, the representation being used

and the operators manipulating the representation. Other researchers in the fleld of

genetic aigorithms agree. It could take longer to derive parameter values tailored to

one's problem than the time available for solving the problem itself (Davis, 1989, p61).

There is very little iikelihood of finding gtobally correct answers to questions such as

the choice of population size and crossover operators (De Jong and Spears, 1990, p47).

At present genetic algorithms are as much an art as a science Davis (1991). For the

purposes of this simple genetic algorithm, we shall use a population 1ú, : 8, without any

formal justification other than that it is small enough for the present computing capacity

to make some headway and large enough to maintain some genetic diversity within the

population.

7.2.L Optimal Wing Planform

In this section, we consider a limited optimisation of the planform geometry of a wing

with timited aspect ralio Æl : L. In order to further limit the search space' the wing

will be assumed to be fore-aft symmetric. Thus the only variables are the local chord
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lengths at a finite number of stations. We choose stations to coincide with the Chebyschev

collocation points on one half of the wing, such that Ns : nl2.

In order to determine the optimal number of children l/" at each generation number' tvve

repeat this test case for 
^t 

- 2,4 and 6 corresponding to generation gaps of Gn:6,4

and 2 respectively. The results are shown in Figure 7'2

t.47
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Figure 7.2: The rate of conuergence to tl¿e optimal wing planform with constant downwash

uersus the generation gap Gs: Nr- N.:2r4 and6. Clearly a small generation gap i's

preferable in this case.

The optimal lift coefficient C"lo* :L467 is somewhat greater than the lift coefficient

for the square wing C7f aw : I.460 and for the elliptic wing with unit aspect ratio

C"lo* - 1.460, not to be confused with the elliptic wing of aspect ntio 4f n, a circle.

Interestingly, the optimal chord-length distribution is a hybrid of the two'

7.2.2 Optimal EndPlate

A stightly more complicated optimisation problem is the addition of endplates to a square

wing as considered for rectangular endplates in Chapter 3. In this chapter, we consider

2

4

6

150



7.2

0.8

0.6

0.4

0.2

0

-0.2

1

5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

r

Figure 7.3: The finite solution produced by the si,mple genetic algorithm for matimisi,ng

the tift cofficient Czlow of a planar wing with constant downwash and aspect ratio

,4R: L The function eualuation is made bg tlte present lifti'ng surface panel method with

m: I0 and n :20.

generally-shaped endplates but we restrict the endplate to be fore-aft symmetric about

the wing mean chord, although it need not be vertically symmetric. The chromosome

is chosen to represent lh6,h¡,g¿,i :1,. . . , no] where å6 is the height of the lower section

of the endplate, /z¿ is the height of the upper section of the endplate atd g¿ are the

chord lengths of the endplate, again measured at the Chebyschev collocation points' The

function evaluation is used with n : 'rrl -- 18 on the wing and mr: 6 and np : 12

on the endpiate, giving Ns :14 genes per chromosome. The generation gap is retained

at Gn : ). The rate of convergence is significantly slower than for the planar wing.

Figure 7.4 shows the convergence of the lift coefficiett C7f ayr over 1500 generations.

The converged value of the lift coefficient is C¡'low: 1'913 whereas the previous op-

timum obtained using rectangular endplates was 1.84. It is interesting to also plot the

convergence rates for the individual genes. For clarity, \rye present only the rates for h6rh¡

and. g¿,i : 1,. . . ,6 in Figure 7.5. The rates for the chord-lengths on the upper portion of
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Figure 7.4: The rate of conuergence to the optimal hori,zontally centered endplate at zero

angle of attaclc on a unit square wing.

the endplate are simiiar. It takes far longer for the tipmost values to converge than the

values representing chordwise strips near the wing. This is because the tipmost values are

relatively less significant than the values near the wing. The section heights ht and ht do

not converge as fast as the difference between them, indicating that vertical asymmetry

is strongly penaiised. The actual optimal geometry is illustrated in flgure 7.6'

The endplates appear to be cusped, and in the limit as the number of panels on the plate

increases, we expect that the endplate will be a fairing between the wing and an efficient,

centrally located endplate with area zero and infinite aspect ratio, namely a line.

The colour map is a useful visualisation of the optimisation task. Clearly the high-lift

regions on the wing shown in red need to be maximised. Hence piacing the endplate far

forward is in a sense redundant because there is already high loading there' Simiiarly,

placing the endplate towards the rear of the wing reduces the load on the endplate because

of the lower pressures there, so the optimal location is central. That the location appears

to be exactly central is intriguing'
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Figure Z.b: The rate of conuergence to for indiuidual genes representing the endplate.

The chord, length genes start, at the bottom of the endplate such that 91 is the chord length

near the tip of the lower endplate and 96 is the chord, length near the wing of the lower

endplate.

7.2.3 F\rll Wing-Endplate Optimisation

As with the optimisation presented in Chapter 3, we shall consider the optimisation of

a wing-endplate geometry for values of the flow parameter C¡f a21a¡ - 0.1,0'2,0.5,1,,2,5

and 10. Because the nature of the optimal solution changes dramatically when the

endplates are allowed to flare, we present a series of optimai designs, generated by the

present genetic algorithm operating on the chromosomelta,h6,ht,Pl, where u; is a vector

of real values describing the location of the wing leading-edges and chord-lengths at six

Chebyschev-located spanwise collocation positions and p gives the leading-edge and chord

values for six Chebyschev-spaced heightwise collocation points on the endplate.

Adding a gene to represent the endplate flare angie dramatically increases the number

of generations required to obtain convergence. This may be because of the strongly

dependent roles of this gene and the genes representing the height and location of the
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I¡igure 2.6: The optirna] horizo¡ztr.tlly ccntet'ecl endplale a[ zero ttngle oJ a,tlack JoT o, ut,it

.squa,re utirtr¡. |'he ob.ir:ct ftntcti.ort is the lift coe'.fficient C¡'f av' und the opti'mal' ualue

is 1,gj:J (rs corrlplrel atitlt the optintctl reclangn,lar endplates for the sarn,e problent', tuith

optimctl ual'rr,e 1.8-/¡.

errclplate. For the va,l¡cs of l,he flow parametet C¡f ala, > 1, wherc irtcluced ch-ag is

penalisecl far less than slcin lricijon. thc natur¿r,l flare angle is larger tha'n can be accura'tely

inp.1, to the present linea,r algorithm for cva,luating the pressure clistributions on the wìrtg

ancl i;he cndplate.

Also, if the gerretic algoril,hnr is allorvecl to proceed rvith no check on the spanwise con-

tin¡ity of l,he r,vi¡g ancl enclplate geornetlies, l,here is a tenclency to procltrce somewha't
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disjoint shapes with extreme grid-scaie oscillation, when the flare-angle gene is included.

This may be cured by increasing the relative frequency of the genetic operation which

smooths out the jagged edges on the surfaces, but it is interesting that an increased

ioading on the endplate favours disjoint geometries'

The present geometric scheme allows chordwise strips to move, expand and contract to

represent a planform, and spanwise discontinuity on the wing surface itself in a sense

decreases the effective aspect ratio of the wing. A discussion of the effect of small gaps

in tifting surfaces as are produced when a chordwise strip is significantly displaced from

its neighbours is presented in Whìte (1969). By comparison, a highly-loaded endplate,

for example when flare is introduced, may well be improved by a slight feathering effect.

A full analysis of this idea is not within the scope of this thesis.

while this efiect is manifest as a degeneracy in the present scheme, it highlights one of

the real advantages in using psuedo-random search techniques. By blurring the interface

between the user and the function evaluation, successful new solutions may be found.

For these reasons, the inclusion of a variable flare-ratio is left for future work. It is

assumed that the wing-endplate configuration is symmetric about the axis I : 0. The

angle of attack of the endplates is maintained at ap : 0. Additionally, thickness variation

had been omitted from the present optimisation, although thickness will alter the optimal

configuration and improve the overall performance'

By using a genetic algorithm with a small, but representative number of genes per chro-

mosome, we are able to quickly isolate a successful flnite wing-endplate configuration for

each of the cases c¡lo'* - 0.1,0.2,0.5,I,2,5 and 10. The trend is fairly cleat, with the

endplate size d.ecreasing as area is increasingly penalised, but there are other interesting

features. While none of the designs can be regarded as "fully converged" to the optimal

solution, there is a distinct asymmetry in all cases between the upper and lower sections

of the endplate. However, as the horizontal offset is maintained naturally throughout the

search, such that the endplate sections touch leading-edge to trailing-edge at the wing,

it may be more instructive to note that the endplate portion near the leading edge of

the wing is, in general, vertically shorter than the rear section. For smaller values of the

flow parameter C¡f a2.,the optimal endplate moves forward to the leading edge of the

wing and the optimal wing geometry itself changes such that the leading edge is swept

and the trailing edge is unswePt.
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Figure 7.7: The best discrete wing-endplate geometry found after 500 generations using

n: TLp:6 and nì,: trl'p - 18, for the case of C¡lo'*:0'1'

While a calculus-based search is likely to be useful once a successful design paradigm

has been identifi.ed by a genetic algorithm, it is also possible to increase the number of

unknowns once an initial solution can be provided to a genetic algorithm. Figure 7.14,

which also appears in colour at the front of this thesis, shows the converged solution after

1000 iterations for the wing-endplate geometry w\th' C ¡ la'zw -- I and n - frp : 14 and

Tft, : TTLp: 18.

It is interesting that the present optimal lifting surface is produced entirely randomly

and. li,nearly. Features such as the reduced size of the forward plate and the endplate

shaping are often regarded as products of non-linear analysis.

7.3 Conclusron

Cleariy the genetic algorithm is a powerful tool for identifying and optimising lifting geo-

metries. However, there must be a balance struck between the pseudo-random seatch,

used to avoid the solution becoming trapped in the local minima so evident in the contem-
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Figure Z.g: The best discrete wing-endplate geometry found after 500 generations using

n: ïtrp:6 and, rn: TTì,p - 18, for the case of C¡1"'*:0'2'

porary panel methods, and using a calculus-based gradient scheme to optimise localised

geometric features. For example, Gage et. al. (1995) present a variable-complexity al-

gorithm which starts with a genetic algorithm and ends with a specific gradient-based

scheme for the optimisation of a wing design for minimum induced drag'

In an attempt to reduce the number of grid-scale oscillations in the design during the iter-

ative proced.ure, the representation was changed from assigning to the genes the leading-

edge and chord value at the spanwise stations. Instead, the leading-edge and chord-length

conflguration were represented as Fourier-series, where the genes took the values of the

Fourier coefficients. The values of the resulting functions were then evaiuated at each

of the spanwise collocation stations and the appropriate leading-edge and chord-length

values assigned. Rather than reduce the grid-scale oscillation, it was found that the

coefficients of the higher frequency modes maintained high values until convergence was

reached, so no improvement was made by this particular change in representation.

Even though the search space for the optimisation of wing-endplate geometries using the

present scheme undoubtably contains grid-scale behaviour that prevents the use of generic
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Figure 2.9: The best di,screte wing-endplate geometry found after 500 generations using

tu: flp:6 and rrù: Trùp - 18, for the case of C¡1"'*: 0'5'

d.erivative-based search procedures, the space is in many cases not so poorly behaved as

to warrant a truly rand.om search. There may be merit in introducing an acceleration

or over-relaxation to the present genetic aigorithm in order to speed the approach to a

converged solution.
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Figure 7.10: The best discrete wing-endplate geometry found after 500 generat'ions using

n:rtp:6 and,Tn:rrlp- 18, forthe case of C¡la2*:t'
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Figure T.lL: The best discrete wing-endplate geometry found after 500 generations usxng

fr:tup:6 and'n7':TrLp - 18, forthe case of C¡la2*:Z'
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Figure T.LZ: The best iliscrete wing-endplate geometry found after 500 generations usi'ng

fl : ftp : 6 and' ffi -- ffip- 18, for the case of C¡la2* : 5'
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Figure T.u: The best d,iscrete wing-endplate geometry found after 500 generations using

n:Ttrp:6 and'wt:rn,p- 18, forthe case of C¡1"'*:10'
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