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Abstract

The design of optimal lifting surface configurations requires a capacity to quickly evaluate
derived quantities such as lift and drag of a given lifting surface and an algorithm for im-
proving the geometry based on these quantities. The piecewise-constant vorticity method
of Tuck (1993) for solution of the lifting-surface integral equation accurately determines
integrated quantities such as the lift produced by planar lifting surfaces. We introduce a
modification to this method whereby the accuracy in prediction of local quantities such
as the leading-edge singularity strength is dramatically increased for little extra com-
putational effort. Consequently, the leading-edge suction force, and hence the induced
drag, may also be calculated accurately. A discussion of endplates and the optimisation
of the lift-to-drag ratio for endplates on a given wing leads to the more general problem of
the maximization of lift with respect to frictional and induced drag of a lifting surface in
ground effect with finite endplates. We also present a discussion of the wave-induced drag
when an aerodynamic body flies in proximity to a water surface, and introduce leading-
order thickness effects to the aerodynamic analysis program. Finally, we use a genetic
algorithm to search a restricted design space of wing-endplate combinations for a range
of operational conditions, with the aim of illustrating the change in optimal geometry as

we penalise a varying combination of skin-friction and induced drag.
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Introduction

The design of optimal lifting surfaces requires the capacity to quickly evaluate the derived
quantities such as lift and drag of a given lifting configuration and an algorithm for

improving the geometry based on these quantities.

The task of calculating the aerodynamic load distribution on a thin three-dimensional
lifting surface or wing of finite aspect ratio at small angle of attack presents difficulties for
most numerical methods. The two-dimensional lifting-surface integral equation that must
be solved is highly singular, and does not possess analytic solutions, even for simple plan-
form geometries such as rectangles or ellipses. In Chapter 1, we compare some methods
that have been used successfully to determine accurate pointwise and integrated loadings,
and discuss the underlying numerics. Particular attention is paid to the singularities that
occur at the leading edge (LE) and at the tips of finite lifting surfaces, and to the rate
at which the results provided by the numerical methods converge to their asymptotic
limits. In particular, the constant-vorticity rectangular-panel method of Tuck (1993)
has been modified to improve the resolution of the LE singularity. A correction proced-
ure is devised incorporating the inverse-square vorticity variation near the LE, thereby
enabling accurate determination of the LE singularity strengths and spanwise loading
distributions as functions of the spanwise co-ordinate. The LE singularity strength is
important in some applications, such as for induced drag and trailing tip vortices in wing
aerodynamics, and (in an equivalent hydrodynamic context) for estimation of the size of
the LE splash jet created by a planing surface. In particular, we pay attention to post-
processing induced-drag computation, both via a Trefftz-plane method and separately
via direct pressure integration. Accurate reconciliation between these two procedures is
possible only if the LE suction force, which is proportional to the spanwise integral of the
square of the LE singularity strength, is known to adequate accuracy. In Chapter 2, we

consider the numerical evaluation of the induced drag for an arbitrary three-dimensional



lifting geometry.

In Chapter 3, we present a discussion of the effect of the addition of endplates to a bare
wing in order to increase lift and decrease the induced drag. A limited optimisation of
the lift to frictional drag ratio for rectangular endplates on a given wing then leads to the
more general problem of the maximization of lift with respect to frictional and induced

drag of a lifting surface with endplates.

In Chapter 4, we consider a range of effects that may be manifest when a lifting config-
uration flies in proximity to a fixed ground plane. In moderate ground effect, the lift is
significantly higher than that for the free-air case and the addition of endplates provides
a reduction of induced drag. Motivated by a demand for high efficiency wing-in-ground
effect vehicles, or ekranoplans, we consider the addition of endplates to wings in ground
eflect and discuss the transition to ground eflect in terms of the optimal geometry of a

wing-endplate combination as a function of altitude.

In Chapter 5 we consider the additional hydrodynamic wave drag experienced by a lifting
configuration flying over water. A numerical scheme is presented for calculating the

propagation of wave energy after the evaluation of the aerodynamic forces.

To first order, the thickness effects of a planar wing may be decoupled from the lifting
effects. This is not the case when endplates are used, or the wing is in proximity to another
wing or the ground. In Chapter 6, the numerical scheme is modified to incorporate
leading order thickness effects. We consider the additional forces due to thickness and
compare the magnitude with the forces due to angle of attack, proximity to ground and
the addition of endplates. We present a discussion and optimisation of the optimal flying

configuration for a vertical stack of lifting surfaces with thickness.

Finally, in Chapter 7, we address optimisation issues for lifting surfaces based on the work
presented in the preceding chapters. A genetic algorithm is used to optimise the planform

of a bare wing and the wing-endplate geometry for a range of operational conditions.



Nomenclature

a Horizontal offset or displacement

Gy Wave amplitude

Ao Wing area

A Total area, wing plus endplates

Ajj Influence coefficient

A, Fourier coeflicient for I'(y)

aw Angle of attack of wing

oy Optimal angle of attack of wing

op Angle of attack of endplate

AR Aspect ratio = s%/A

b Vertical offset or displacement

B Wing planform

B, Fourier coefficient for Q(y)

c Wing chord

C Trace of trailing vortices in the Trefftz plane
Induced drag coefficient

O?),- Induced drag coefficient of an elliptically loaded surface
Cy Coeflicient of linear friction

CrL Lift coefficient based on total area = L/(1pU?A)
c? Lift coefficient based on wing area = L/(3pU?A,)
—Cy  Moment coefficient

Cs Suction coefficient

D; Frictional drag

e Oswald efficiency factor = C%/[r AR(Cp, — CP,)]

f*,f Camber functions
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Kernel function
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Source strength distribution
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Chapter 1

Lifting Surfaces

1.1 Introduction

Lifting surfaces may be wings on airplanes or birds, propeller blades, windmills, racing-car
downforce devices, aerodynamic aids such as tails or fins on airplanes or dragsters, frisbees
or aerobees, paper planes, kites, control surfaces in air or water, hydrofoils, boomerangs
or re-entry space vehicles. In all cases, forward motion induces a pressure difference
between the upper and lower sides of a relatively thin surface which is dependent upon
the geometry of that surface, and which can be obtained by solving an integral equation
over the surface. Accurate solutions to this integral equation have been actively sought
by many investigators. Although modifications to the techniques to be discussed do exist
to deal with unsteadiness and viscosity, we restrict ourselves here to the steady potential
flow of an ideal fluid. Much work has been done on potential flow (Hess and Smith,
1967); however there are numerical issues relevant to flow over thin wings that are at

present unresolved.

In particular, for a lifting surface z = f(z,y) that is close to the plane z = 0 in an z-
directed stream U, the pressure difference or loading is proportional to a bound vorticity

v(z,y) which is determined for small f by solution of the lifting surface integral equation

(LSIE)

//B Y(E&mW(z — &y —n)dédn = —4nU fo(z,y) (1.1.1)

over the projection B of the lifting surface onto the plane z = 0. The kernel function

W(X,Y)=Y"*(1+ X/R), (1.1.2)



Wingtip
[ -
—_—
VS ~
> =
g -
~ ~
_— 8 8
Il I
8 8
U — &0 . H s
] B e
[} 8]
00 20
y S| =
: :
— B
—_——
X o
_
zZ

] aw

Figure 1.1: The wing is assumed to have thickness t(z,y) = ft(z,y) — f~(z,y), mean
camber f(z,y) = (fY(z,y) + f(z,y))/2 and angle of attack aw, which are small when
compared to the chord c. Under such assumptions, the lifting and non-lifting components

may be decoupled to first order.

with R = /X% + Y2, is the downwash induced by a unit horseshoe vortex (Ashley and
Landahl, 1965), (Tuck, 1993). Equation (1.1.1) can be integrated once with respect to z
and the resulting constant of integration used to satisfy the Kutta condition at each fixed
value of y, requiring y(z,y) = 0 at the trailing edge of B. No exact analytic solutions

of (1.1.1) exist although series solutions have been sought by a number of investigators

(Hauptman and Miloh, 1986), (Jordan, 1973), (Jordan, 1971).



1.2 Quantities of Interest

Quantities of engineering and design interest may be determined by the solution of (1.1.1).
The relationship between the pressure difference across the upper and lower wing surfaces

and the loading v(z,y) is given by
P (z,y) —p (2,y) = —paUn(z,y). (1.2.3)
The chordwise-integrated loading is
zrg(y)
I(y) = f v(z,y) de (1.2.4)
and the total lift produced by the surface is given by
L=—paU / I(y) dy. (1.2.5)
The lift coefficient, C'f, is a useful reference quantity, given by

)d 2.
CL pAUzB UB // ,y CI,'dy, (1 2 6)

where B is the plan area of the surface. Similarly, the induced drag coefficient Cp, is

defined as

2D,

Cp; = o2U? B’

(1.2.7)

where the induced drag force D; is a function of the trailing vortex sheet and will be
discussed further in Chapter 2 with the leading-edge suction force S. The rate at which
vorticity is shed at the wingtip directly relates to the strength of the wingtip vortex.

Consequently, we present results for the asymptotic behaviour of I'(y) as y tends to the

wingtip yrip.

1.3 Existing Numerical Schemes

A number of popular numerical techniques for approximately solving the linear lifting
surface equation have been developed. While there are many variations in gridding and
co-ordinate systems, there are essentially two classes of algorithm, namely the vortex

lattice methods and the higher order panel methods.



1.3.1 The Vortex Lattice Method

Certainly the most widely used numerical technique for solving the lifting surface equation
is the vortex lattice method (Falkner, 1943) in which the unknown function «y(z) is
replaced by a finite but large number of Dirac delta functions whose strength is to be
determined by collocation. This method models the flow by discrete line vortices, rather
than by a smooth distribution of vorticity. The location of these vortices and collocation

points is crucial to success of the vortex lattice method.

[t has evolved with high speed computers into an economical, accurate engineering tool
for the design and analysis of such various devices as Darrieus wind turbines (Strickland,
1979) (Zhu, 1981), wind-tunnels (Heltsey, 1976) and marine propellers (Kerwin, 1986),
(Kerwin and Lee, 1978). While numerous modifications have been made to the basic
method for specific applications, the vortex lattice method seems to produce results for
lifting surfaces with a certain serendipity. Essentially the difference between the vortex
lattice methods and the other panel methods is the order of representation of the wing
loading v on each panel. While a constant (order 0) or higher (Cunningham Jr., 1971)
representation of the loading might be expected to produce a better result than a vortex
(order -1 Dirac delta function), the vortex lattice methods have produced “remarkably
accurate” solutions (James, 1972). Efforts to represent specific output quantities by
higher order functions, such as the spanwise integrated loading (Kélman et al., 1970)
can produce smooth results for that quantity, but often reduce accuracy in some other
output quantity. An excellent summary of the trade-off between order of representation
and sensitivity to the location of the collocation point within each panel (Ando and
[chikawa, 1983) shows that the vortex lattice method quickly loses accuracy when the
panels and collocation points do not correspond to the roots of the Chebyschev polynomial
corresponding to the desired number of gridpoints. For higher order methods, the specific

discretization is less significant.

Because of its accuracy and ease of numerical implementation, the vortex lattice method
is probably the most widely used algorithm for the preliminary design of lifting surfaces in
steady, ideal flow. However, because of the sensitivity of the convergence of point loadings
to the grid arrangement, the standard technique is usually modifed to suit a particular
application. Consequently, the lattices are arranged in a manner based on the anticipated

or desired answer. It has also been noted (Hancock, 1971) that while the vortex lattice



method leads to a finite lift, strictly it implies an infinite induced drag since the induced
drag of each horseshoe vortex line is in itself infinite. Also, unless some modifications
are made to the layout of lattices and collocation points, the Kutta condition requiring

smooth flow detachment at the trailing edge is not automatically satisfied (Lan, 1974).

While most investigators agree that a variation on the Chebyschev grid suits most applic-
ations, one suggestion (Lowe, 1988) is that a superposition of vortices near the leading

edge provides closer modelling of the wingtip behaviour.

Numerous ingenious methods of arranging the lattices and collocation points “determined
from the finite sum used to approximate the downwash integral of lifting surface theory”
(DeJarnette, 1976), or based on empirical observations have been used to improve the
economy and accuracy of the vortex lattice methods. A study of some popular codes
based on vortex lattices (Wang, 1974) illustrates that integrated quantities such a lift and
pitching moment are relatively easy to obtain numerically, whereas obtaining agreement
between the near-field and far-field estimates for the induced drag coeflicient can be very
difficult. In order to illustrate some of the existing linear collocation methods, consider

the two-dimensional analogue of the lifting surface equation.

1.3.2 The Airfoil Equation

The airfoil equation

c %dg = f'(2) (1.3.8)

is the two-dimensional equivalent of the LSIE (1.1.1), for a given function f'(z), and

integrates once to give

[ 1og o — ¢l dé = f(2). (1.3.9)

An implicit constant of integration in f(z) ultimately determines the unique solution of
(1.3.8) satisfying the Kutta condition ¥ = 0 on the trailing edge (TE). For example, if
the airfoil is a flat plate with f'(z) =1,—1 < 2 < 1, this solution has

y(e) = %\/ ;i (1.3.10)

Note the inverse square root leading edge singularity at « = —1, and a zero of square-root

type at the trailing edge ¢ = 1.
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Although an explicit analytic solution can be written down as a quadrature (Tricomi,
1965) for any f'(z), the airfoil equation (1.3.8) may also be solved numerically to “re-

markable accuracy” (James, 1972) by the vortex lattice method.

1.3.3 Stark’s Scheme

Stark (Stark, 1971) showed that the optimum way of dealing with the Cauchy singular-
ity associated with a vorticity distribution behaving like a weight function W(z) is to
represent this vorticity distribution by a set of discrete vortices which may be mapped
onto the zeros of the orthogonal polynomial associated with W(z). In the lifting surface

case, the natural weight function for two-dimensional steady flows is

W(z) =/ ;i (1.3.11)

which captures both the leading edge singularity and the trailing edge zero. The associ-

ated orthogonal polynomials are the Jacobi polynomials of order (+1/2,—1/2) .

Alternatively, if v(z)/W (z) is a polynomial of degree less than or equal to 2m, then Stark
(DeJarnette, 1976) proved that the weighted approximation

() o V(&) :
—=dé =) W———— j=1,...,m. 1.3.12
cx—§ ; &i—z; ( )

is exact for the following discretization
 — 1
T; = —cCoS (227;+17r) i=1,...,m (1.3.13)
£ = ( 27 ) =1 1.3.14
; = —cCos 2m+17‘l’ j=1,....m (1.3.14)
2r . (21—1 .

W; = Qm—l—lsm (2m+17r) i=1,...,m, (1.3.15)

where z;, £; and W, are the vortex location, collocation point and weight function re-
spectively. It is illustrated in Figure 1.2.
1.3.4 Lan’s Quasi-Continuous Method

The Quasi-Continuous Method (QCM) of Lan (Lan, 1974) is probably the most widely
implemented vortex lattice method variant (Lan, 1974), (Lan, 1976), (DeJarnette, 1976)
and (Guermond, 1988).

11



Figure 1.3: The lattice arrangement of C. E. Lan.

Lan showed that the continuous distribution of vortices occurring on a wing may be
advantageously represented by a set of discrete vortices located at points which may be

mapped onto the set of the zeros of the Chebyschev’s polynomial of the first kind.

T; = —cCos (%w) i=1,....,m (1.3.16)
J :
£ = —cos <Eﬂ> 7=l 6, m (1.3.17)
21 — 1
W, = Zsin <z—7r> i=1,...,m (1.3.18)
m 2m

This Chebyschev or cosine spacing can also be seen as related to the conformal trans-

formation of a circle into a flat or parabolically cambered plate by the Joukowski trans-

12



formation (Kerwin, 1986)

While Lan’s quadrature is a trapezoidal rule on the mapped segment [0, 7], Stark’s quad-
rature is a Gaussian rule on the actual segment [—1,41]. As a Gaussian integration,
Stark’s rule is more accurate and likely to converge faster than Lan’s when the ratio
v(z)/W(z) differs from a polynomial (DeJarnette, 1976). The motivation for Lan’s
scheme was to obtain the same accuracy in three-dimensional wing analysis as was pos-

sible with the two-dimensional Chebyschev spacing for airfoils.

1.3.5 Three Dimensionality

There are a number of issues beyond those that must be considered for airfoil analysis
that effect the accuracy of analogous schemes in three dimensions. The most obvious
way to apply the accurate two-dimensional method to the wing is by a strip-theory
approximation as illustrated in Figure 1.4. The vorticity strength is piecewise constant
in the spanwise direction and optimally spaced in the chordwise direction to capture the
leading and trailing edge behaviour. Here the chordwise grid is generated with m =1
and the spanwise grid with n = 6. Versions with staggered grids for point vortices and
collocation points have also been used, but the spanwise constant vorticity method gives
greater accuracy for little extra computational effort. The immediate complication of
applying the method in three dimensions is that the vortex lines extending downstream
must not intersect any collocation points. For more complicated geometries, this is not

always trivial to arrange.

The numerical solution of the three-dimensional lifting surface problem is also complic-
ated because the Cauchy singularity exists not only in the chordwise direction, but also in
the spanwise direction. The spanwise wing loading has a square root zero at the wingtip,

which should be treated as carefully as the leading edge inverse square root singularity

(Guermond, 1988).

Another difficulty is the choice of panel shape. For numerical convenience, quadrilateral
panels are usually chosen to model the surface. This choice seems to be legitimate in
the case of quadrilateral wings but it is not natural for wings with rounded boundaries.
In the latter case a weak logarithmical singularity arises in the calculation of the self-
induced velocity coeflicients. Since very large velocities occur at the leading edge, no

matter how weak the logarithmic singularity may be, one cannot prove that it has no

13
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Figure 1.4: Vortex lattice arrangement for three-dimensional rectangular wing. The lattice
points are generated using cosine spacing with m = 1 and n = 6 for the chordwise
and spanwise grids respectively. Here the vorticity is piecewise constant in the spanwise

direction, with orientation determined by the conventional right hand rule.

perturbing influence on the leading-edge behaviour of the numerical solution (Guermond,

1988).

Another feature of classical methods which is rarely discussed is the control point loc-
ations. In the circular wing case, if control points are rigorously located according to
Lan’s recommendations, then the first and last control points of the tip strips are outside
their respective panel. Of course, such a configuration cannot be accepted. Generally
the problem is solved by defining the control point location as the mean value calculated
from the location of the four vertices of each panel. This rule usually works but has no

theoretical basis (Guermond, 1988).

Uncertainty in the control point position can also cause numerical instability for rounded-
tip wings when the number of panels increases. In the vicinity of rounded tips, large panel
numbers create highly skewed panels for which a slight uncertainty in the control point
location may easily result in a wrong calculation of the self-induced velocity coefficients

(Guermond, 1988). This problem is often pragmatically solved by giving an arbitrary
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non-zero chord length to the tip section. This is discussed further in the section on curved

panels.

1.3.6 Spanwise Modifications

Many schemes have been devised to accurately capture the spanwise behaviour of the
wing loading, but these have largely been designed with a particular asymptotic behaviour
in mind. It is difficult to then apply these methods to analyse the loading in the close

vicinity to the wingtip, because the results are grid dependent.

It was found (Rubbert, 1964) that insetting the location of the horseshoe vortices and
control points at the wing tips could lead to improved resolution of the known square root
zero at the wingtip. Later a one-quarter panel inset in the examination of rectangular and
swept wings was applied (Hough, 1973), (Hough, 1976). Using mathematical techniques
similar to Lan’s, a quasi-continuous spanwise scheme was produced (DeJarnette, 1976) as

illustrated in Figure 1.5. In the infinite aspect ratio limit, the three spanwise modifications
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Figure 1.5: Spanwise scheme of F. R. DeJarnette with m = 2 and n = 3. The vortices

are spanwise inset at the wingtips to capture the wingtip singularity.

are identical. We use only DelJarnette’s scheme for comparison.
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For the chordwise discretization, we give comparative results for Stark’s and Lan’s schemes
only. Furthermore, since the performance of the vortex lattice method on wings with
curved edges is notoriously poor unless modifications are made at the wing tips, or cur-
vilinear coordinate systems (Guermond, 1988) are used, we will not use these models in

the examination of circular wings.

1.3.7 Spatial Mapping

An alternative approach is to map the geometry to a rectilinear space (Guermond, 1988).
Guermond’s curved panel method is presented as an extension to Lan’s Quasi-Continuous
Method. The numerical implementation of the mapping is by the inclusion of a Jacobian
term in Lan’s integral equation. The mapping is certain to be undefined at the wingtips,
but elsewhere need not be conformal for the method to work. Although the results for
the overall spanwise distribution of the circulation largely seem to agree very well with
Jordan’s series analytical solution (Jordan, 1973), it is not surprising that the leading
edge suction is not captured near the wingtips. There is also no comparison of the
spanwise loading very close to the wingtip, and unfortunately no other data is presented

with which comparisons can be made.

1.3.8 The Panel Method of Tuck

The panel method of Tuck (Golberg, 1990) for the solution of integral equations with
Cauchy-type singularities has been used on a variety of problems in aecrodynamics, hy-

drodynamics and heat transfer (Oertel, 1975) (MacCaskill, 1977) and (Anderssen, 1980).

The method is used to solve the once chordwise integrated version of the LSIE (1.1.1)

//B (& Kxy(z — &y —n) dédn = =4 f(z,y) + C(y), (1.3.19)
where Kxy = Y~2(X + R) and R = v/X? + Y2. The constant of integration C(y) that

must be chosen at each spanwise position to ensure satisfaction of the Kutta condition
y(zre(y),y) = 0 is calculated as part of the solution procedure. The planform B is
divided into a finite number of rectangular panels as illustrated in Figure 1.6 on each of

which the loading v is assumed constant.

While any discretization will in principle work, the favoured method for any planform is

to use the Chebyschev scheme illustrated for a circular wing in Figure 1.6. The specific
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scheme is as follows, in the order in which the points should be calculated. Note that
the chord length of a strip is determined by the Chebyschev midpoint of the strip in the

spanwise direction.

R = %[l—cos(jw/n)] J=0,...,n (1.3.20)
uio= 31— eos((i- -;—)ﬂ'/n)] R (1.3.21)
b = o)+ ZTW) 5 105 11 _ cos(im/m)] i=0,...,m (1.3.22)
z; = zn(y;) + 22(y;) g oL(y;) [1 —cos((i — %)W/m) i=1,...,m (1.3.23)

Evaluating the left hand side of Equation 1.3.19 on each panel is achieved by considering
the value of K, the formal antiderivative of the kernel Kxy at each of the 4 corners of

panel II;; Consequently the double integral
// Kxy dédnp = K**+ ~ K~+ 4+ K= — K*- (1.3.24)
IL;;

is exact for each panel and each collocation point (z,y). In this manner the integral
evaluation is computationally efficient and the Hadamard singularity in Kxy is avoided.
The resulting system of linear equations is solved for the vector of values of v using any

standard dense matrix inversion package.

This method has been used (Tuck, 1993), (Tuck, 1992) to produce seven figure accurate
values for the lift coefficient Cr/aw for rectangular wings. However, close examina-
tion of the calculated loading in the vicinity of the leading edge reveals a highly local-

ised inadequacy in the representation of the inverse square-root leading-edge singularity

(Standingford and Tuck, 1994), (Tuck and Standingford, 1997).

1.4 Improved Panel Method

All known numerical techniques for solving the LSIE (1.1.1), including the vortex lat-
tice method (VLM) (Lan and Mehrotra, 1979), (Lan, 1974) exhibit a similar inadequacy
(Lazauskas et al., 1995) and yet the leading edge singularity strength is of direct aero-
dynamic significance because it relates to the leading edge suction. One method (Carter

and Jackson, 1991) of fixing this problem for the vortex lattice method is to specify a
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Figure 1.6: The panel method of E. O. Tuck. This scheme will produce a grid over any
single wing planform provided that the leading and trailing edges are given as functions

of the spanwise co-ordinate.

quadratic profile of /= — g (2, y) over the first 3 collocation points from the LE. We

first turn to the two-dimensional version of the problem to seek an alternative remedy.

At one order of representation higher than the vortex lattice methods, to solve the
two-dimensional airfoil equation (1.3.8) in a manner analogous to the three-dimensional
method of Tuck (Tuck, 1993), we assume a constant value y(£) = 4; on each of m panels,

which are Chebyschev spaced, resulting in the discrete set of linear equations

i—1

i%‘ /;j log |z; — | d€ = f(=:) (1.4.25)

where the integral equation is exactly satisfied at each of the m collocation points z;,7 =

1,...,m. The integral itself can be evaluated exactly over each panel, and the resulting
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algebraic equations

> viAi = flz:) (1.4.26)
1=1
require inversion of the influence matrix
&
Ay = |(zs — &) (1 —log|a; — &) . (1.4.27)
€j—1

Solution of the set of equations (1.4.26) produces an accurate estimate for the overall
lift which converges with O(n~2) rate. However, inspection of the output values of the
function v/z (z), which should approach a constant value at z = 0 shows instead a
distinct kink which does not appreciably diminish in amplitude with an increase in the
number m of panels used. This numerical artefact is largely local to the first few values
of 4 from the leading edge and hence the error it contributes to the predicted lift tends to
zero rapidly with n, being proportional to the size of the panels, which for a Chebyschev
grid are especially small in that vicinity. However, the effect on local properties near the
leading edge can be significant. For example (see Figure 1.7) if the first two values of v;
are used to predict the strength of the leading edge singularity by linear extrapolation to
z = 0 of \/z y(z), the accuracy of this prediction will decrease rather than increase with

the number of panels used.

To correct this numerical error, the representation of the strength of the inverse square
root singularity in the loading function (z) near the leading edge * = 0 must be im-

proved.

1.4.1 Subpanelisation

One method that is quite successful but computationally expensive is subpanelisation,
illustrated in Figure 1.8 in which we subdivide each main panel into many smaller sub-
panels, and then modify the numerical integration of the kernel in the integral equation
to account for the variation of the relative loads on each of the subpanels, namely, an
inverse square root interpolation to the centre of that subpanel, based on the reference

value v; = v(;) at the centre of main panel j.

The derivation of the method of subpanelisation is as follows. The expectation from

1-— :EJ'
Vi~ \/1+$J_, (1.4.28)
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Figure 1.7: Two-dimensional airfoil loading with square root singularity removed, with 6,
9 and 12 panels. The kink in the results near the leading edge does not reduce in size with
increased numbers of panels. The corrected curve is also shown, and is indistinguishable

from the analytic solution.

over the interval z; € (—1,1). We modify Equation 1.3.8 according to the transformation

£ = —cosd, (1.4.29)
whereupon the integral becomes

/1r v(—cos 8) sin flog |z + cos 0] df. (1.4.30)

0

The discrete version becomes

0
> 4;sind; ]0 log |z + cos 9| df. (1.4.31)
j i1

Now the integrand here has no formal anti-derivative, so we transform back to £-space

Z%sme./ 10g|m—§|\/_€2 (1.4.32)

and further approximate, by extracting sin § = /1 — £? from the integrand, and regarding

it as constant over a small subpanel k. Hence
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Figure 1.8: The main wing panels are further divided into chordwise subpanels, on which

the relative loads are varied to account for the leading edge singularity.

6. r&i-1x
27 Z(é)/& log & — ¢ d€. (1.4.33)
7 k 7—1,k—1

If the ratio (sin 6;/sin 6y) is close to unity, then this closely approximates Tuck’s original
method. However, near either the leading or the trailing edge, this ratio approaches

infinity (as an inverse square root) and zero (as a square root), respectively.

We may then evaluate the integral more accurately on a given panel by subpanelising.

For such a panel, we use the approximation

L / UK, de (1.4.34)
/ = & UG, 4.
k=1 1 _ é'i gj,k—l

noting that the integral is again exact. The inverse square root factor is assumed to
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be constant over each subpanel, although the actual location of the &, within the kth
subpanel is still arbitrary. As the motivation for employing this method arises from the
critical ratio for each subpanel (sin ;/sin 6;), £, is chosen to lie on a global Chebyschev
grid of finer resolution. Treating the approximation as a Riemann integration, the kink in
the results for loading can be significantly reduced by using 10 or more subpanels. Figure
1.9 illustrates the improvement in the results. This method has also been successfully

employed for the solution to the Planing Splash problem (Tuck, 1994).
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Figure 1.9: Improvement in the resolution of the leading edge loading by subpanelling
with ms = 1,3,5 subpanels for a solution to the airfoil equation with m = 12. The case
ms = 1 corresponds to the case where there are no extra panels on each main panel.
Beyond m, = 5, there is no visible improvement in the resolution and in general m; = 10
has been found to improve the point estimate for the leading edge singularity strength to

within 8 significant figures of the fully extrapolated estimate for a given m.
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1.4.2 Subpanels in Three-Dimensions

Applying an equivalent chordwise-only subpanelisation to a two-dimensional planform,

Equation 1.3.19 is approximated by the discrete version:

> €T Ai = =4 f(x,y) 4+ C(y), (1.4.35)
=1 j=1
where
Ay = //HU Kxy(z — &y —n)didn (1.4.36)
is evaluated by
M // Kxy(z — &y —n) dédn, (1.4.37)
fz'j — &k I3,

in which &;;;, and :’;rz-j are global Chebyschev points located within the subpanel 1%, and

main panel II;; respectively. The integral

//n-k Kxy(z — &y —n)dédy (1.4.38)

may be evaluated exactly as per Tuck’s original method. The concept of subpanelisation
has also been extended to the spanwise discretization in an attempt to enhance resolu-
tion of the wingtip singularity. This is discussed further in the later section on curved
panels. Hence we refer to a complete panel scheme for a particular planform geometry
as (m,n,ms[1,...,m][1,...,n],n,s[1,...,m][1,...,n]), the number of chordwise panels,
spanwise panels and chordwise and spanwise sub-panels within each main panel respect-

ively, all relatively Chebyschev spaced.

1.4.3 Direct Inclusion of Singularity

Rather than using large numbers of subpanels to achieve greater resolution of the leading
edge behaviour, it is possible in two dimensions to specifically include the singularity, by
assuming an inverse square root load distribution over all of the m panels, resulting in

the influence matrix

o F (Y loglzi — ¢l
YREN /gj_l — d¢. (1.4.39)

The integral in (1.4.39) can also be evaluated exactly, although with slightly more numer-

ical effort, regardless of the particular grid used. When the new matrix A;; is inverted,
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-0.191386 -0.289623 -0.256148 -0.182541 -0.104447 -0.044738 -0.012201 0.999992
-0.101378 -0.426612 -0.332619 -0.224340 -0.131046 -0.061629 -0.022686 0.999977
-0.059830 -0.220609 -0.572224 -0.341500 -0.192871 -0.098395 -0.044824 0.999946
-0.036050 -0.125994 -0.285674 -0.642983 -0.327320 -0.164022 -0.081616 0.999895
-0.020521 -0.073296 -0.161189 -0.320623 -0.642732 -0.291848 -0.140401 0.999817
-0.010244 -0.040306 -0.096496 -0.189536 -0.334279 -0.571379 -0.246278 0.999695
-0.003903 -0.020458 -0.060113 -0.128624 -0.220412 -0.324656 -0.459530 0.999458
-0.000865 -0.011057 -0.043370 -0.102337 -0.179378 -0.251166 -0.341164 0.999278

0o N O Ot oA W N =

Table 1.1: Corrected matriz of influence coefficients A;; for the solution of the airfoil
equation with a constantly loaded two-dimensional panel method using m = 8 panels with

Chebyschev spacing.

-0.007419 -0.010349 -0.005106 -0.002768 -0.001351 -0.000519 -0.000122 -0.000008
0.003071 -0.003440 -0.007805 -0.003428 -0.001605 -0.000634 -0.000174 -0.000023
0.000880  0.003876 -0.002888 -0.005978 -0.002273 -0.000896 -0.000284 -0.000054
0.000450 0.001432  0.003379 -0.002629 -0.004292 -0.001421 -0.000476 -0.000105
0.000316  0.000899  0.001411 0.002405 -0.002378 -0.002795 -0.000807 -0.000183
0.000267  0.000730  0.001002  0.001062  0.001243 -0.002043 -0.001557 -0.000305
0.000249  0.000671  0.000883  0.000816  0.000501 0.0001567 -0.001541 -0.000542
0.000243  0.000652  0.000849  0.000759  0.000396 -0.000123 -0.000567 -0.000722

o = O Ut kW N =

Table 1.2: Correction matriz E;j.

the kink in the loading effectively disappears while the rate of convergence to the lift

coeflicient is maintained (See Figure 1.7).

For any given grid, we may now calculate the difference between the influence matrix
Ay = Ag assuming constant loading, as given by (1.4.27) and the more accurate influence
matrix A = A5 with the singularity built in, as given by (1.4.39). Hence a correction
matrix E;; = Ag — Ag» is obtained for any discretization. For a Chebyschev grid the
correction matrix F;; is a fixed constant (the size of the smallest panel) multiplied by a
set of factors whose only parameter is the number of panels m. For example, for m = 8 the
corrected influence coefficients A;;, their correction factors F;; and the relative magnitude

E;;/A;; are presented in tables 1.1, 1.2 and 1.3 respectively.
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0.038767  0.035733  0.019933  0.015162  0.012938  0.011603 0.010013 -0.000008
-0.030296  0.008063  0.023467 0.015281 0.012250  0.010281 0.007657 -0.000023
-0.014716 -0.017567  0.005047 0.017504 0.011785 0.009105 0.006346 -0.000054
-0.012489 -0.011367 -0.011828  0.004089 0.013114 0.008666 0.005828 -0.000105
-0.015393 -0.012270 -0.008757 -0.007501  0.003700  0.009578 0.005751 -0.000183
-0.026095 -0.018103 -0.010388 -0.005605 -0.003719  0.003576 0.006321 -0.000305
-0.063880 -0.032792 -0.014688 -0.006346 -0.002271 -0.000485 0.003354 -0.000542
-0.281472 -0.058993 -0.019570 -0.007412 -0.002207 0.000491 0.001663 -0.000722

oo ~ O Ot B~ W NN =

Table 1.3: Relative magnitude of correction matriz E;;[A;;.
1.4.4 Direct Inclusion in Three-Dimensions

Since the two-dimensional airfoil equation has an analytic solution and numerical meth-
ods are really only needed for lifting surfaces in three dimensions, the influence matrix
correction E;; is more useful when applied to the three-dimensional problem. Integrated
once in the ¢ direction, the kernel for the three-dimensional LSIE (1.1.1) may be expressed

as
W(X,Y)=Kxy =Y *X +R), (1.4.40)

where
K(X,Y)= Xlog(Y + R) + %Ylog(X +R) - XY Y X+R)/2. (14.41)

Now the kernel, Kxy is to be integrated over a rectangular panel. We observe that the
numerical scheme provides adequate accuracy in the spanwise direction Y and turn our

attention to the X —integration of Kx. Integrating once with respect to Y, we obtain
Kx =log(Y +R) - Y ' (X+R)+1 (1.4.42)

All of the terms here are analytic with respect to X except when ¥ = 0 and X — 0.
In this case there is a weak singularity in log(Y + R). If we let Y = 0, then this is
reduced to the two-dimensional kernel and we might expect that a correction factor
equal to that used in the two-dimensional case would be appropriate. We use the above
formula for Kx as it stands only when Y = y —n > 0; if this is not so, the identity
log(Y + R) = 2log X — log(Y — R) is used. Now when Y takes the same sign on both
sides of the panel, the term 2log X is either not present (both Y values positive) or else
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cancels out (both Y values negative). On the other hand, when the sign of Y changes
from one side of the element to the other (this occurs when the collocation point lies in

the same chordwise strip as the panel), the integration over the full panel takes the form

log(Y* + R") —log(Y™ + R™) = log(Y* + R¥) — (2log X — log |y~ — R7|).
(1.4.43)

There is now a —2log X term present, so the appropriate three-dimensional correction to
the influence matrix A;; is exactly —2 times that for the corresponding two-dimensional
kernel. On application of this correction, the leading edge kink in the three-dimensional

results for v disappears, as it did in two dimensions (see Figure 1.10).
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Figure 1.10: Effect of correcting the leading edge kink for a three-dimensional square

planform wing by direct inclusion of the kernel correction term, with m = 12 and n = 12.

1.5 Curved Panels

The problem of resolving the behaviour of the leading edge loading near the wingtips
arguably depends upon the ability to correctly represent the wing planform with non-

rectangular panels. It is unclear how the sweep angle of the leading edge effects the load
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singularity there and it is plausible that some vital aspect of the geometry might not
be adequately captured by a rectangular mesh, no matter how finely approximating the
true shape of the wing boundary. On the other hand, all that is sought is an accurate
estimate of the influence of the loading on each main panel on each of the collocation
points and this ought to be specified to arbitrary accuracy by just such a configuration.
Figure 1.11 shows the approximation of a circular geometry by a Chebyschev rectangular

mesh as used in Tuck’s and the present method.
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Figure 1.11: The rectangular panelisation of a circle using a Chebyschev distribution
of n = 18 spanwise strips, each of which has n = 18 Chebyschev distributed chordwise

panels.

The only obvious shortfall is the self-influence of the panels in the vicinity of the leading
edge, where the local geometry might be far from rectangular. Even though the sensitivity

of the point loading to the collocation position is far less for the constant loading panel
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methods than for the vortex lattice methods, the results for the leading edge singularity
strength can be significantly altered by moving the collocation points in the panels close
to the leading edge. This in itself is an indication of the art required to produce accurate

results for this particular output quantity using any scheme.

The curved panel method of Lazauskas is an extension of Tuck’s panel method. It is argu-
ably a misnomer, because the main panels are not actually curved, but are approximated

by a spanwise subpanelling technique as illustrated in Figure 1.12.
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Figure 1.12: The curved panel method of Lazauskas. For clarity, not all curved panels
have been shown. Note that the curved panels are constructed by means of a spanwise
subpanelisation and that the original collocation point for the rectangular mesh is still

valid as the collocation point for the curved grid.

The vorticity is assumed constant on each subpanel within a main panel and has the
same value as the main panel. In the limit as the number of spanwise subpanels n; tends
to infinity, the planform of the wing will be exactly modelled without the need to invert

a matrix where the influence of every subpanel must be considered separately. Like the
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chordwise subpanelisation method, this is an attempt to include more information in a
matrix prior to inversion. This is a noteworthy point. Since the task of matrix inversion
is so computationally expensive, there should be an optimal balance point between work
spent on setting up the matrix and work done in solving the resulting system of equations.
In the case where the relationship between the system variables and the desired output
is complicated by the process of compressing the matrix in this way, there is also the
additional work to be done in recovering the meaningful output. Essentially, solving the
subpanelised model may be regarded as solving a full system of equations for the loading
on each subpanel, where there is a known relationship between the unknowns on the same

main panel. Clearly when the wing planform is rectangular, this method is equivalent to

the panel method of Tuck.

It is also advantageous to vary the number of subpanels across the span, thereby using
more subpanels where the main panels are highly skewed. Two methods have been
implemented so far. In the first, the number of subpanels varies linearly from the midspan
to the wingtip, and in the second, the distribution of subpanels is based on the first
derivative of the function defining the leading edge. This method appeals because of the
“automated” allocation of subpanels for arbitrary geometry and the consequent increase
in resolution near the tips. In practise, because an enormous number of subpanels are
prescribed when the derivative approaches zero (such as at the tip of an elliptic wing), the
number of subpanels is “normalised” according to the maximum memory space allocated
to subpanelling. For example, on a circular wing with 16 spanwise and 16 chordwise
panels, and allowing a minimum number of 4 subpanels, this option allocates the following

distribution from midwing to tip n, = (4,12,22,34, 50,76, 134,412).

1.6 Results for a Square Wing

As there are a number of separate numerical issues concerning the representation of
curved planform surfaces, we first present comparative results for the simpler case of a
square wing plan. Results are given for the various arrangements of the vortex lattice
method as well as for Tuck’s original panel method and the present panel method with

the direct inclusion of the kernel correction.
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1.6.1 Lift Coefficient

The most numerically robust quantity to use to compare the various methods is the lift
coefficient. Since all the methods to be examined are linear with respect to the angle of
attack aw, the quantity CL/aw will be used. A summary of the extrapolated results for

the methods discussed is given in Table 1.13.

Cr/aw = C+ A x 1078 x (10/m)™ + B x 107° x (10/n)N

Method | Chord | Span | C A B M N

VLM Lan Cheb. | 1.46022691 | -7.44 | -6.44 | 2.853 | 2.833
VLM Lan DelJa. | 1.46022702 | -7.32 | -5.04 | 2.817 | 2.660
VLM Stark | Cheb. | 1.46022694 | -6.59 |-6.42 | 2.776 | 2.825
VLM Stark | DeJa. | 1.46022695 | -6.73 | -5.10 | 2.802 | 2.695
Tuck Cheb. | Cheb. | 1.46022679 | 18.74 | -6.41 | 3.237 | 2.859
Present | Cheb. | Cheb. | 1.46022714 | -27.27 | -6.41 | 3.155 | 2.859

Figure 1.13: Asymptotic values and convergence rates for the lift coefficient Cr,/aw for
a square wing planform. The modifications to the vortex lattice method are listed for the

chordwise and spanwise distributions of gridpoints.

We notice that the error cancellation effect in the lift coefficient of Tuck associated with
opposite signs of the coefficients A and B is not apparent in the present solution or
any of the vortex lattice methods. In the original method of Tuck, this cancellation
can be used to numerical advantage by carefully selecting the number of chordwise and
spanwise points. Of the vortex lattice methods, Lan’s method is slightly better than the
others both in accuracy and convergence. DeJarnette’s modifications improve the initial
estimates but result in a slower rate of convergence and is not considered further. In any
case, all methods tabulated yield a highly satisfactory accuracy of at least 6 figures for

Cr/aw. This accuracy is however, not reproduced by some other output quantities.

1.6.2 Spanwise Circulation

The next most numerically robust output quantity of interest is the spanwise distribution

of circulation I'(y). We present a graphical illustration of the degree of similarity between
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the various methods in Figure 1.14.
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Figure 1.14: Spanwise circulation I'(y) for a square planform wing of unit chord and
span. The wingtip is located at y = 0. Similar results are obtained by Lan’s and Stark’s
schemes for the vortex lattice method, Tuck’s panel method and the present panel method.

They differ at most in the fifth decimal place. In all cases n = m = 16.

1.6.3 Pointwise Loading

It is possible for a numerical method to obtain acceptable results for integrated forces
while examination of the pointwise data reveals relative errors significantly larger than
the global error. This may be because of error cancellation, such as grid scale oscillations
with approximately zero sum, or because the large relative errors are confined to a small

area of the model, where their contribution to global forces is limited.

The loading on a square planar wing in free air is shown in Figure 3a. The loading

drops to zero at the wingtips and at the trailing edge.

The accompanying figures in this section compare the pointwise wing loading v(z,y) for
the methods described above. Rather than give results for the entire wing, chordwise
strips at the midspan and the wingtip are presented as representative. The midspan

strip in general provides an indication of the effect of the leading-edge singularity and
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Figure 1.15: The wing loading of a bare square wing with constant downwash in free air.

calculated using n = m = 18 spanwise and chordwise panels and visualised using the AVS

graphics package.

the wingtip result adds to this the effect of the spanwise singularity. In order to highlight
the deficiencies that all methods have with regard to the leading-edge singularity, the
quantity plotted is y(z,y) /& — xrp versus z. As the singularity at the leading edge is
dominantly inverse square root in nature, this graph should have a finite vertical axis-

intercept, namely the leading-edge singularity strength Q(y).

Figure 1.16 shows the output for Lan’s and DeJarnette’s schemes at the midwing y ~ s/2

and al the wingtip y ~ 0 for n = m = 16. Note that the spanwise location of the tipmost
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section is different for these two vortex-lattice-type methods. Similarly Figures 1.17 shows
the output for Tuck’s and the present panel scheme. Note that the leading edge kink
in the loading in the constant loading panel method of Tuck has been removed in the
present improved method at the midwing location. As expected, because of the careful
lattice arrangement, the kink at this spanwise location is also negligible in the modified
vortex lattice methods. We note here that all four methods illustrate that the singularity

is not clearly of a square root nature at the tip.
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Figure 1.16: Pointwise loading for a square wing with the square root singularity removed
calculated using n = m = 16. The loading v(z,s/2) \/x — zLE is plotted over the chord

at the tipmost and midwing sections for Lan’s and DeJarnette’s lattice-type schemes.

1.6.4 Leading-Edge Singularity Strength

The leading-edge singularity strength (LESS) Q(y) is the coefficient of the extrapolated
value of y(z,y) \/x — zrg as ¢ — zpg. Figure 1.18 illustrates the form of this coefficient
as a function of spanwise location using the present method with 24 spanwise and 24

chordwise panels.

From the previous section, it is clear that Lan’s, Stark’s and the present method are well

correlated for this quantity in the case of a square wing. Consequently, only the data
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Figure 1.17: Pointwise loading for a square wing with the square root singularity removed
calculated using n = m = 16. The loading v(z,s/2) \/x — xrg is plotted over the chord

at the tipmost and midwing sections for Tuck’s and the present panel methods.

for the present method is shown. In the case of a circular wing, there will be significant

differences.

It is clear that for a square wing the LESS Q(y) tends to zero at the tip y = 0 and
that there is an infinite slope in the graph of Q(y) as y — 0 at the tip. Numerically
determining the precise asymptotic behaviour of Q(y) at the tip is extremely difficult;
however based on the data produced with n = m = 12,24 and 48, a two-figure estimate

0.32

for the zero singularity strength is Q(y) ~ y°°* at the wingtip y — 0.

1.7 Non-Rectangular Planforms

The problem of applying the previous solution methods to a wing where the chord van-
ishes at the tips lies in the resolution of the leading-edge and wingtip singularities. De-
termination of the true nature of the of the tip singularity is the key to the complete
solution of the analytic problem (Jordan, 1974). Since this information is missing, and

collocation methods are based on analytic models, they are particularly unreliable at and

34



0-9 I I 1 1 i I T T T

0.8
0.7
0.6
05
S 04
0.3

0.2

0.1 f 4

0 1 1 1 1 1 1 1 L 1
0 005 01 015 02 025 03 035 04 045 0.5

Y

Figure 1.18: The spanwise variation of the leading-edge singularity strength (LESS) for

a square wing, calculated using the present method with m = 24 and n = 48.

near the tips.

In particular, for a wing whose planform is parabolic at the tips, classical lifting line
theory suggests that the strengths of the two singularities should exactly cancel. The
two known wing edge pressure singularities, of order (z — LE)_% at the leading edge and
of order (zrg — :c)"'% at the trailing edge, meet at a single point. It is in fact not very
easy to visualize a composite tip singularity which performs a transition between the two

different edge singularities (Jordan, 1974).

In this Chapter, we are not interested in the effects of specific geometry or aspect ratio
and so the analysis is confined to the simplest planform which exhibits the above property,

namely the circle.

1.8 Results for a Circular Wing

As for the square wing, results are given for the various arrangements of the vortex lattice
method as well as for Tuck’s original panel method and the present panel method with

the direct inclusion of the kernel correction.
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1.8.1 Lift Coeflicient

The accurate numerical computation of the lift coefficient, C},/a for a circular wing is of
distinct interest to the world aerodynamic community. There are two existing analytic
solutions for the case of a flat circular wing which differ in their prediction of the lift
coefficient in the fifth significant figure. Agreement of the present numerical scheme with
either of the two models would provide significant support for the assumptions upon
which the favoured analytic model were based. Jordan (1973), whose analysis following
Prandtl and Kinner made use of a simple representation of the leading coefficients of the
basis Legendre functions, gives Cr/a = 1.7900230 whereas Hauptman (Hauptman and
Miloh, 1986) proposes the value Cp/a = 32/(8 + 7?) = 1.7907503, also using a series of
Legendre functions and representing the circular wing as a degenerate oblate spheroid.
Both analytic solutions are expressed as the sums of infinite series, so determination of
the correct formulation might provide useful insight into the true nature of the loading at
the tips. In subsequent personal communication, the second author of the latter method
reported that the Kutta condition was in fact satisfied only in an average manner and

therefore that the Jordan result should be regarded as more accurate in this sense.

Using the same method of extrapolation as was applied to the case of the square wing
is not entirely satisfactory in the case of the circular planform. Asymptotic coefficients
for Tuck’s panel method, the present method and the curved panel method of Lazauskas
are calculated from results with m and n independently varied with values 12,24 and 48.
For the curved panel method, extrapolation to an infinite number of subpanels was made

using p = 64,128,256 subpanels.

Unfortunately, for the panel method of Tuck and the present method, such a tableau is

of limited value. The results are shown in Table 1.19.

It is tempting to believe that the extrapolated value of CL/aw = 1.79024579 for the
present method is in support of the analytic method proposed by Jordan. However, the
tableau used to produce the least squares asymptotic results is somewhat oscillatory,
depending on the relative magnitudes of n and m. It is not even possible to obtain
an extrapolated value for Tuck’s method using this data. This because for rectangular
panels, an increase in the number of chordwise panels causes a larger proportion of panels
to intersect the edge of the wing. An increase in the number of spanwise panels reduces

this proportion. Thus the curved-panel method of Lazauskas is the only scheme with
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Tuck

n=12

24

48

m =12
24
48

1.7942341775749
1.7942161310811
1.7942128704278

1.7918544390226
1.7918749529351
1.7918844214374

1.7908781829830
1.7908652637469
1.7908933530325

Present

12

24

48

12
24
48

1.7939175509580
1.7941437959117
1.7941957837602

1.7915567896180
1.7918047118664
1.7918675769909

1.7905968241995
1.7907984861273
1.7908768443562

Figure 1.19: Results for the lift coefficient Cr/aw for a wing of circular planform. The
data obtained for Tuck’s panel method and the present method differ but oscillate with

respect to the number of chordwise and spanwise panels.

which a fully extrapolated value can be found. It is clearly shown in Table 1.20.

Cr/a=C—Ax107* x (10/m) + B x 107* x (10/n)V

Method
Curved

Chord
Cheb.

C
1.78997313

A
4.725

B M

3.5

N
1.10

Collocation

Cheb.*

Span
Cheb.

-22.5

Figure 1.20: The extrapolated value and convergence behaviour for the lift coefficient of
a circular planform wing using the curved panel method of Lazauskas. * - Whether the
collocation point here is actually Chebyschev spaced given the relative panel geometry is
unclear. Determining exactly where the appropriate Chebyschev collocation point is may

hold the key to higher accuracy.

Despite the oscillations in the results for the rectangular panel methods, it is still clear
that the results must approach a single value. When the present method is applied with
n = m = 72, the raw result is a lift coefficient of Cr/aw = 1.7905408. By generating a
statistically large number of results with large panel numbers, suflicient evidence might
be procured to eliminate one or both of the contending analytic solutions. Another
approach is to ensure monotone convergence by setting n = m. The present method
using n = m = 12,24 and 48 then predicts that Cr/aw = 1.7901502968, with a rate of

convergence proportional to (10/m)*'2. This is not conclusive evidence against Jordan’s
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value because the ratio of n to m is arbitrary. By selecting different ratios, one can
manipulate the extrapolated value. It seems that there is a numerical issue that is difficult
to resolve without the use of non-rectangular panels. The following table, reproduced in
part from Hauptman and Miloh (1986) with the current results added, compares the lift
and moment slope coeflicients for a circular wing. It is reasonably clear that the analytic
solution proposed by Hauptman and Miloh is not supported beyond 3 figures by this
numerical investigation, though the solution of Jordan is not clearly verified beyond 4

figures, either.

Method Crlow | —Cm/ow
Present solution 1.7900 0.4661
Hauptman and Miloh | 1.790750 | 0.46882
Jordan 1.790023 | 0.46617
Kida 1.790 0.466
Levey and Wynter 1.790 0.4663
Kinner 1.81741 | 0.4679
Van Spiegel 1.7902 0.4663

Krienes and Schade 1.7984 0.466
Robinson and Laurman | 1.7596 =

Medan 1.790 0.4662
Watkins et. al. 1.7910 0.4694
Prandtl lifting line 2.444 0.611

Table 1.4: Lift-slope and moment-slope coefficients for a flat circular wing from various

sources, both numerical and analytic.

1.8.2 Circulation

Numerous attempts, both analytic and numeric, have been made to exactly quantify the
behaviour of the circulation I'(y) as y — yrrp for the circular planform flat plate wing
(Jordan, 1974, page 473, Equation 6.2) (Hauptman and Miloh, 1986, page 48, Equation
30) and (Boersma, 1989). This is an important matter, because the rate at which vorticity

is shed at the wingtips is directly related to the visible wingtip vortices which are the
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primary sources of aerodynamic induced drag. A summary of some recent results is given
in Table 1.5. Included with this data is an unpublished result (Miloh and Tuck, 1993)

obtained upon slight modification to the analysis of Hauptman.

Again, Jordan’s result is supported more than any of the others. An extremely large
number of panels is likely to be required in order to pursue this matter further. This
will also need more than standard double precision for machine accuracy because of the

vanishingly small size of the panels near the wingtips with a Chebyschev style grid.

D(y) ~Ax /y+Bxylogy—C xy+...

Method (Num/Analy) | A B
Jordan (1974) Analytic 3.186 | -0.2819
Hauptman & Miloh (1985) Analytic 2.813 | -0.497
Miloh & Tuck Analytic 3.456 | N/A
Present Numeric 3.21 | -0.58

Table 1.5: Estimates for the spanwise circulation I'(y) at the wingtip y — yrrp for a

circular wing.

1.8.3 Pointwise Loading

The most obvious negative feature of the pointwise loading predicted by the vortex lat-
tice methods is a catastrophic loss of accuracy at the wingtip, illustrated in Figure 1.21
for Lan’s and DeJarnette’s schemes. By contrast, the rectangular panel methods pro-
duce relatively well-behaved results at both the midwing and the wingtip, as seen in

Figure 1.22.

The vanishing chord length at the tip of a circular wing has unsettling effects on all the
numerical methods so far discussed. In the schemes primarily suited for two-dimensional
flow, such as the vortex lattice methods, highly converged results for the total lift may
be produced from pointwise loadings that are rather unsatisfactory at the wingtips. Cer-
tainly all methods have a tendency to propagate numerical errors along the leading edge
from the wingtip towards the mid-span. The source of the original error may be a cata-

strophic loss of accuracy near the tip, or the severe grid mismatch in the chordwise
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Figure 1.21: Pointwise loading for a circular wing with the square root singularity removed

calculated using n = m = 16. The loading v(z, s/2) \/x — z1g is plotted over the chord

at the tipmost and midwing sections for Lan’s and DeJarnette’s lattice-type schemes.
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Figure 1.22: Pointwise loading for a circular wing with the square root singularity removed
calculated using n = m = 16. The loading y(z,s/2) \/r — zLE is plotted over the chord

at the tipmost and midwing sections for Tuck’s and the present panel methods.
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dimension at the tip.
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Figure 1.23: The pointwise loading with leading-edge singularity removed, for a circular
wing calculated using the present panel method with n = m = 16. The extreme numerical
error in the pointwise loadings in the present scheme is caused by the spanwise grid
mismatch. The leading edge panel for one chordwise strip may be spanwise adjacent to a
larger panel that is not at the leading edge of its chordwise strip. There is consequently a

false distribution of loading that is propagated spanwise near the leading edge.

Because of the rectangular panelisation, adjacent chordwise strips for non-rectangular
planforms can be significantly mis-aligned, especially at the wingtips. Figure 1.23 shows
all chordwise strips of the present panel method solution for the circular wing, using
n = m = 16. Note that the loading of the tipmost chordwise section using the present
method appears to be smooth, but that the section closest to it has a kink, or bulge at
the chordwise location of the singularity in its tipmost neighbour. This effect is propag-
ated along the leading edge, although the effect is most pronounced at the tip, where the
leading-edge is most swept. One of the appealing aspects of the curved panel method of
Lazauskas is that this effect is markedly diminished. Unfortunately, a very large number
of subpanels is required to reduce the effect. Figure 1.24 shows the pointwise loading ob-
tained by using the curved panel method with n, = 100 subpanels. The propagated bulge
has effectively disappeared, but a kink has been reintroduced to the leading-edge at all
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Figure 1.24: Pointwise loading for the circular wing calculated using the curved panel
method of Lazauskas with n = m = 16 and n, = 100. The spanwise propagation of the
error caused by grid mismatch has been cured, but at the expense of the resolution of the

leading-edge singularity strength.
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spanwise locations. This feature actually also disappears with sufficiently large numbers
of subpanels, but the rate of convergence is logarithmic with n,. More importantly, the
prediction of the leading-edge singularity strength has completely changed and, as will

be shown in the next section, incorrectly.

1.8.4 Leading-Edge Singularity Strength

The leading-edge singularity strength is by far the hardest quantity to determine correctly
by any numerical lifting surface method. Noting that the curved panel method and the

present method are the same when the number of spanwise subpanels n, = 1, we chart

the prediction of Q(y) versus n, in Figure 1.25.
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Figure 1.25: The prediction of the leading-edge singularity strength Q(y) using the curved
panel method of Lazauskas with n = m = 16 and n, = 1,9,19,49 and 97. There is a
distinct change of mode when the panel becomes curved, such that the prediction of Q(y)

totally changes.

It is unfortunate that using the curved-panel method, which so effectively improved the
grid mismatching of the rectangular panelisation, introduces such a radical change to the
prediction of the leading-edge singularity strength Q(y). The resulting prediction of Q(y)

produced an estimate of the leading-edge suction which does not match the corresponding
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lift and induced drag estimates. This is presumably due to the extreme change in the
self-induced vorticity of the panels near the leading edge and the consequent change
in the correct location of the collocation point. In order to demonstrate how sensitive
the value of the leading-edge singularity strength is to the choice of collocation points,
Figure 1.26 shows how the prediction of Q(y) changes for a rectangular panelisation when
the collocation points are moved from the Chebyschev midpoint to the actual midpoint of
the panels in the spanwise direction. They are still Chebyschev spaced in the chordwise

direction.
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Figure 1.26: The prediction of the leading-edge singularity strength Q(y) using the present
rectangular panel method with leading edge correction. The method is adapted so that the
spanwise collocation position is at the actual midpoint of each Chebyschev-proportioned
panel. The resulting behaviour of Q(y) differs significantly from the case where collocation
is at the Chebyschev midpoint.

We also compare the prediction of the leading-edge singularity strength with those of
Guermond (1989), (1990) and Jordan (1973). Figure 1.27 shows the spanwise variation
of the leading-edge singularity strength. Jordan’s infinite-series analytic solution predicts
a finite value for the leading edge singularity strength at the wingtip, but with an infinite
slope as a function of the spanwise co-ordinate, so that the strength drops very rapidly as

we move away from the wingtip. For a finite number of panels, the present method (and
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Guermond (1989)) suggests incorrectly that the leading edge singularity strength is zero
at the wingtip. However, it then rises rapidly to a maximum close to the wingtip, and

as the precision of our computation is increased by taking more panels, this maximum

moves closer to the wingtip itself, and the results approach those of Jordan.
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Figure 1.27: Spanwise variation of the leading-edge singularity strength for a circular
planform wing. Results are expressed as the spanwise suction force S(y) = m/4Q*(y),

where Q(y) is the leading-edge singularity strength in the loading y(z,y), for n =m =

36,72,96 and 144.

1.9 Conclusion

The ideal panel method is a marriage of the present rectangular panelisation including
the leading-edge kernel correction, with the curved panel method of Lasauskas, in order
to obtain spanwise grid continuity. Unfortunately, the use of curved panels to achieve

this goal appears to destroy the accuracy in the prediction of the leading-edge suction

coeflicient.
A large amount of work has subsequently been done in trying to achieve this marriage

through correction factors and shifting the collocation points to their “correct” locations,
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given the local aggregate panel geometry. No consistent method has been found that
will produce both smooth loading and an accurate prediction of the leading-edge suction.
Such an investigation, if successful, would hold the key to a fuller understanding of the

leading-edge and wingtip singularities.

For the present work however, we shall accept that the present rectangular panel method
with the kernel correction provides an accurate estimate for the forces of interest, even

with the associated grid mismatching. It is used throughout the remainder of this thesis.
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Chapter 2

Suction and Induced Drag

2.1 Induced Drag

Induced drag is a three-dimensional effect that reduces the efficiency of lifting surfaces.
Unlike skin-friction drag and parasite drag, which are related to the streamwise flow over
the lifting structure, induced drag is a byproduct of the lift force. The pressure difference
between the lower and upper wing surfaces tends to circulate fluid from below the wing
to above the wing via the wingtips. This causes the wingtip vortices that are illustrated
in Figure 2.1. This large rotating fluid body requires energy, which the lifting surface
experiences as a drag force. Typically, this induced drag is regarded as representing
about half of the total cruise drag of a transport aircraft (Smith and Kroo, 1993), which
is directly related to the fuel consumption in straight-and-level flight. Numerous schemes
have been proposed for reducing the induced drag of lifting surfaces, including the use of
aft swept wing tips following the lunate or crescent-shaped tail fins observable in some
birds and fish (Burkett, 1989), (Smith and Kroo, 1993), (Lighthill, 1969); the addition of
endplates or winglets which will be discussed in Chapter 3 and flying in close proximity
to the ground or water surface which will be addressed in Chapter 4. In nature, birds fly
in formations which can increase the overall or group efficiency and squadrons of aircraft,

like fleets of ships, often fly in formations which reduce the total drag.
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Figure 2.1: The wingtip vortices are clearly visible in the cloud formation downstream of

the Cessna Citation VI. Reproduced from the Gallery of Fluid Motion, special reprint,
Physics of Fluids A, Volume 5, number 9, September 1995.




2.2 Minimum Induced Drag

The field of optimising the ratio of lift to induced drag has been strongly influenced
by the work of Max Munk, a student of Ludwig Prandtl. Munk’s first theorem, often
referred to as the stagger theorem, states that the induced drag of a multiplane system
is unaltered if any of the lifting components is moved in the direction of travel, provided
that the attitude of the elements is adjusted to maintain the distribution of lift among
them. This means that the sweep of a wing is irrelevant to the calculation of induced
drag, and that multiple surfaces can be treated simultaneously. All that is important is

the distribution of lift in the yz-plane.

The second theorem of Munk allows the induced drag computation to be performed
in the Trefftz plane, far downstream of the actual geometry. The benefit of this is that
the velocity distribution resulting from the arrangement of trailing vortices is numerically

simpler than the fully three-dimensional calculation required locally at the lifting surfaces.

The third theorem of Munk is of specific application to endplates and winglets. It states
that when all the elements of a lifting system have been translated longitudinally to a
single plane, the induced drag will be a minimum when the component of the induced
velocity normal to the lifting element at each point is proportional to the cosine of the
angle of inclination of the lifting surface at that point (Blackwell Jr., 1976). This implies
that a horizontal lifting surface should have constant downwash and that the sidewash
of a vertical component such as an endplate should be zero. This does not mean that
the vertical component should have zero loading, but that the sidewash produced on the
vertical component by the horizontal wing should be exactly opposed by the sidewash
induced on the vertical component by itself. In other words, the induced angle of attack
of the vertical component should be zero. This also reduces the downwash and hence
induced drag of the wing. In Chapter 3, optimisation with respect to a combination of
skin-friction and induced drag will be considered, where Munk’s third law will be only

asymptotically valid.

Several measures of aerodynamic efficiency are used in the literature to measure lift
against induced drag. It is unclear as to which benchmark should be applied, because

the theoretical maximum lift to induced drag ratio for a planar wing is undefined when
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the wing has infinite aspect ratio. Measures, such as the Oswald efficiency factor

_ Ci
e= T AR(Co, — C5.) (2.2.1)

may be used to compare the induced drag of an elliptically loaded and therefore optimal
wing to a wing of the same span and total lift. This has also been used to define the
“effective aspect ratio” of a general lifting surface when endplates are used or when the
surface is in ground effect. In such cases the efliciency factor may be greater than one
and the effective aspect ratio refers to the aspect ratio of an elliptically loaded wing that

provides the same ratio of C}/Cp,. This matter is further discussed in Chapter 3.

2.3 Evaluation of Induced Drag

As stated, the induced drag of a lifting surface (Thwaites, 1960) may be evaluated as the
kinetic energy in the Trefftz plane, far downstream and perpendicular to the free stream

direction 4z, namely:

_l o [ore] 2 9
Q—2mlmlév+wﬂwz (2.3.2)

Assuming a perturbation velocity potential ¢ such that ¢ = (u,v,w) = V¢ then
1 00 00
Di = 5pa f_oo /_Oo((/); + 62) dydz. (2.3.3)

Stokes Theorem for boundary integration allows us to transform this double integral to

a single contour integral

1 0
B §ijt{CqS (aﬁ) ds, (2.3.4)

where ds is an element of the trace of the trailing vortices C' and 7 is a unit outward
normal to this surface. In the case of an infinitely thin trailing vortex sheet, this closed
contour integral may be replaced by symmetry by a version where each simply connected

segment is traversed only once, namely:
1 B
ngmLA%m@M& (2.3.5)

where w(s) is the downwash induced by the vortex distribution on C, according to

1mg=Lm@%ﬁ%ﬁw, (2.3.6)
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where V,, is the vector (z(s),y(s),2(s)) — (z(0),y(0),2(c)). It is useful to integrate this

double integral once by parts to obtain

fl d Vio-n(8)
Di = 5pa /C P(s)—- /C (o)t dods. (2.3.7)

In the general non-planar case, it is difficult to evaluate this double integral numerically.
Some authors (Katz and Plotkin, 1991) present Riemann-based algorithms assuming
that I' has a discrete span-wise representation, but to date we have found these slow to
converge with the number of spanwise panels. The vortex lattice method is often used
to calculate induced drag, but is known to underpredict the correct value. A spanwise
correction factor (Kalmén et al., 1970) has been used to correspondingly renormalize the
raw distribution of induced drag over the span. For an elliptically loaded wing, there is

an exact relationship between induced drag and lift,

i
Cp, = —.

The fact that the wing must be elliptically loaded for the formula (2.3.8) to hold is

(2.3.8)

sometimes not emphasised in the literature. Another occasional misconception is that an
elliptic planform at constant angle of attack produces an exactly elliptically loaded wing;
this is only true at AR = co. These two approximations combined sometimes result in a

false “exact value” by which numerical methods are measured.

A graphical means of estimating the double integral has also been presented (Eminton,
1961), but is not generally used. A clever exploitation of the analogy between fluid flow
and electrostatics has also been used to produce a rheoelectric-analog device (Lundry,
1968), (Cone Jr., 1962) for the evaluation of the energy in the Trefltz plane for arbitrary

geometry wake cross-sections.

In the case of a single planar lifting surface of span s, integration by parts results in the

following integral (Ashley and Landahl, 1965).

= /sd_Fd_F _
i ywl) N S log |y — y1| dy:1dy. (2.3.9)

Assume that T'(y) may be accurately represented as a Fourier sine series

N
I'(y) = Us Y A,sin(nd), (2.3.10)
n=1
where
S .
y = zsin 0. (2.3.11)
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Then the induced drag coefficient is given (Ashley and Landahl, 1965) as

PAU2 2

D; = Z nA2. (2.3.12)

The induced drag coefficient is then given by
T N
Cp, = ZAR > nAZ. (2.3.13)
=1

In the case of a non-planar wing, an equivalent method has not been found. Whether
there are computationally efficient ways to calculate Cp, for non-planar geometries is an
interesting question. However, by considering the balance of forces on the body, it should
not be necessary to directly evaluate Cp, at all for flat wings. The force perpendicular to
a flat wing provided by the pressure jump between its bottom and top sides must balance

the drag and leading-edge suction forces, such that Cs = Cp sinaw — Cp.

In this sense, induced drag might be regarded as the disproportionate reduction in leading-

edge suction when compared with lift that occurs when flow becomes three-dimensional.

2.4 Leading-Edge Suction

It may be shown (Milne-Thompson, 1973), (Siekmann, 1965) that there is a non-zero
suction force that acts tangent to a sharp (cusped) point on a profile in two-dimensional
flow. This force may be regarded as the product of the infinite pressure required to make
the fluid negotiate a 180° turn, times the zero area of an infinitesimal body element on
which it acts. It may also be shown that the magnitude of this leading-edge suction force
is proportional to the square of the coefficient of the inverse square root leading-edge

singularity produced in the pressure field at the cusp.

It has not always been clear (Billington, 1971) that this result is directly portable to
three-dimensional flow. However, it has been shown (Tuck, 1995), (Lan and Mehrotra,
1979) that if the suction force is to exist for a three-dimensional thin wing, then it must

be given by

=2 [ @y, (2.4.14)

where @(y) is the singularity strength

Qy) = lim v(z,y)v2 — 215 (2.4.15)

T—TLE
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Hence for a small angle of attack, we expect the leading edge suction force coefficient to
be given by

S %/0 (@)2 i (2.4.16)

o

At higher angles of attack, for wing planforms with highly swept leading edges, the
leading-edge suction analogy may be referred to (Polhamus, 1966), (Er-El and Yitzhak,
1988). This is a method of predicting the increase in lift when the leading-edge vortex
detaches and causes an increase in velocity of the fluid on the upper surface of the
wing. It is distinct from the linear leading-edge suction of the present analysis. Also in
the literature, the definitions of the thrust coefficient Cr and the leading-edge suction
coefficient Cg differ. Here we refer to suction in the streamwise direction only, with

positive suction opposing drag.

Evaluating the integral in (2.4.16) is made very easy when the integrand is represented
as a Fourier series such that

(M>2 - i:j B, sin(n#), (2.4.17)

o

where y = £ cosf. In this case, the leading-edge suction force is given by

2
Cs =2S/A = %Bl. (2.4.18)

2.5 Results

For a rectangular wing of AR = 2, the suction converges to Cs = 1.500 at the rate
ny2. In order to verify the present computational method, Cr/a, Cp,/ca? and Cs/a?
are calculated independently for rectangular, elliptic and delta planform wings of varying
aspect ratios. These quantities are plotted in Figures 2.2, 2.3 and 2.4. In all cases,
we should find that Cr/a = Cp,/a? + Cs/a®. While the unextrapolated results are
reasonable (n, = n, = 18 gives at least 3 figure accuracy for planforms with AR > 1),
there is a noticeable decrease in accuracy for small AR, especially for the elliptic and
delta planforms. Figure 2.5 shows the relative error (awCy, — Cp, — Cs)/(awCr) for
the rectangular, elliptic and delta planforms. Nonetheless, the absolute error Cr/a —

Cp,/a* — Cs/a? tends to zero for all cases with rate n™'.
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Figure 2.2: Lift, drag and leading-edge suction on planar rectangular wings of varying

aspect ratio. The data has been produced from the present method using n = m = 18.

2.6 Discussion

The power of the current technique is not fully realised for planar wings because it is
relatively simple to calculate the induced drag Cp, directly from the Trefftz-plane double
integral. However, for lifting-surface geometries that are non-planar, or with multiple
components such as endplates or biplane wings, or in ground effect, such direct evaluation

of Cp, is computationally difficult.

By comparison, the evaluation of the leading-edge suction force C's is essentially geometry-
independent, once the pointwise loading v has been accurately calculated by solution of
the non-planar equivalent of the lifting-surface integral equation. An immediate con-
sequence is that the induced drag of wings with endplates, thickness and/or ground

effect can be confidently tackled (Standingford and Tuck, 1996a).
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Figure 2.3: Lift, drag and leading-edge suction on planar elliptic wings of varying aspect

ratio. The data has been produced from the present method using n = m = 18.
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Figure 2.4: Lift, drag and leading-edge suction on planar delta wings of varying aspect

ratio. The data has been produced from the present method using n = m = 18.
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Figure 2.5: Relative error in the force prediction using the present constantly loaded
panel method with kernel correction for wings of rectangular, elliptic and delta planforms.

Results computed using n = m = 18 spanwise and chordwise panels. In all cases, the
errors tend to zero at the rate n™!.
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Chapter 3

Endplates

3.1 Introduction

In this Chapter, we address the use of endplates to increase the lift and decrease the
induced drag on thin wings in free air. Thickness effects will be considered separately in

Chapter 6 and so all surfaces in this chapter are taken to be flat plates with zero camber.

The effect of adding an endplate to a finite-span wing is to inhibit spillage of air from
the lower surface to the upper surface, via the tips. This then maintains the lift-creating
pressure difference between bottom and top surfaces to a distance closer to the tips than
if there were no endplates. Thus the flow becomes more two-dimensional, as if the wing’s

aspect ratio were larger, and the net lift increases and the induced drag decreases.

This concept is not limited to wings on aircraft. In addition, shrouded propellers, cata-
marans, vertical axis wind turbines with tip-vanes (van Holten, 1981) and otter boards
on fishing nets (Patterson and Watts, 1985), to name a few, all make use of this increase

in efficiency when the aspect ratio of a lifting surface is necessarily small.

The significant improvement to the design of the International twelve-metre class yacht
made famous when Australia IT won the America’s Cup race in 1983, known as the winged
keel is strongly analogous. The keel is designed to act as a lifting surface in opposition to
the capsizing force on the sail. In this case, the apparent depth of the keel was increased
by the addition of an approximately horizontal plate at the bottom of the keel. The body
of knowledge in the study of aerodynamic endplates that had been collected was readily
applicable to this kind of ship design (van Qossanen and Joubert, 1986).

58



The analysis of the effect of adding endplates or winglets to wings is not new. The use of
endplates to reduce drag was involved in a patent by Lanchester in 1897 although the first
experiments involving endplates did not take place until about 1924 (Spillman, 1978).
Since then, names such as “booster tips” have been applied to the various appendages to
wingtips to achieve greater operational efficiency. Interestingly, one of the initial names
for this class of appendage was “tip sail” because the strong vortex cross flow near the
wingtip was seen as a possible source of thrust for an appropriately angled sail. Figure 3.1
shows three such sails attached to the wingtip fuel tank of a “Paris” training aircraft.
Pilots noticed a significant improvement in handling on landing, where the high angle of

attack leads to large lift and induced drag forces. The similarity with the splayed wingtip

feathers of birds on landing is remarkable.

Figure 3.1: Tip sails, mounted on the “Paris” training aircraft, used to generate thrust

from the wingtip vortez flow. Reproduced from Spillman (1978).

A significant motivation for research has been a perceived value in retro-fitting existing

aircraft with devices to improve their fuel consumption, providing an immediate saving,
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although the associated parasite drag prevented them from achieving the improvement

motivated by the inviscid theory (Whitcomb, 1976).

Hemcke (1927) considered the theory of induced drag by applying a conformal mapping
in conjunction with the lifting line theory. He deduced that the reduction in drag, when
endplates are used, was sufficiently large to increase the efficiency of the wing. Although
the computational power at the time did not support a lifting surface analysis, Hemke
made use of windtunnel experiments as well as theoretical analysis to determine that
endplate location and shape was crucial to their performance and in particular that
endplates designed to minimise induced drag should be positioned towards the wing
leading-edge. Since there is no rearward force on the plates due to a lift component when
they are at zero angle of attack, the only calculable streamwise force on the plates is
the leading-edge suction, which directly opposes the induced drag. This might also be
considered to be physical dissipation of the wingtip vortex. Without wishing to decrease
the circulation and hence the lift of a lifting system, one can still decrease the kinetic
energy of the wingtip vortex system by increasing its core diameter. Basically, the greatest
increases in span efficiency occur for modifications which tend to release the major portion
of vorticity near the tip and over an appreciable vertical area (Naik and Ostowari, 1990).
Similar effects have also been sought by means of spanwise camber, without resorting to

the discontinuity of a wing-endplate join (Lowson, 1990).

A portion of this Chapter is reproduced from a technical note (Standingford and Tuck,
1996b), where a limited wing-endplate optimisation is discussed. Here, the author also
presents a more detailed literature review; a more complete investigation of the possible
wing-endplate configurations and inclusion of induced drag in the optimisation of the

wing-endplate geometry.

3.2 Endplates and Winglets

The terms endplate and winglet are sometimes used interchangeably in the wider literat-
ure. Within the context of the present analysis, they have distinct meanings. A winglet
refers to a small, nearly vertical wing-like surface, mounted at the wingtip to decrease
induced drag (Reynolds, 1979). Winglets are usually aerodynamically shaped, vary in

both chord and camber over their span and are also often “canted” outwards. Figure 3.2
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shows a popular winglet geometry. Generally it has been found that for minimising in-

duced drag the greatest winglet effectiveness has been achieved with the trailing edge of

the winglet near the trailing edge of the wing (Whitcomb, 1976).

Figure 3.2: Front view of a popular winglet design, reproduced from Whitcomb (1971).
Note the vertical asymmetry, cant angle and horizontal offset of the sections above and

below the wing.

By contrast, an endplate is perfectly vertical, and therefore contributes only indirectly
to the total lift. The endplate may be cambered and/or have a non-zero nominal angle

of attack ap to the free stream.

In order to limit the number of variables, we shall only consider endplates here. A
common query about endplates is whether they act to increase lift or to decrease drag or
both. They can be tuned to perform either of these functions. Endplates on the upper
half of the wing only can be “toed out” to create a thrust force from the wingtip vortex
thereby reducing the induced drag. Alternatively, they can be “toed in” to increase the
lift at the expense of induced drag. Finally, the angle of attack ap can be be tuned for a

specific geometry and flight condition such that an efficiency function combining lift and
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induced drag can be optimised. In some cases this will mean that the endplate does not

exist at all.

3.3 Design Considerations

The advantages and disadvantages of wingtip treatments in general are debated from
varying perspectives. Other things being equal, most designers agree that a single el-
liptically loaded lifting surface is best. Any additional wingtip structure represents extra
manufacturing complexity, increased tip loading that may increase the root bending mo-
ment of the wing under gust conditions and a significant contribution to parasite drag at
the wing-endplate join. At high speeds and low angles of attack, the skin friction drag
penalty often outweighs the reduction in induced drag (Whitcomb, 1976).

However, the wingspans of commercial aircraft are often limited by hangar restrictions
and parking space at airports. Other wings, such as on racing cars, or propellers are
limited in aspect ratio by design specifications or practical considerations. Generally it is
true that the greatest relative improvements to lifting surfaces made by adding wingtip
treatments occur when the aspect ratio of the lifting surface is small and thus the bare
wing leaves the greatest room for improvement (Kuhlman and Liaw, 1988). It is often
suggested that the final designs for the winglets on large modern commercial aircraft
are made for aesthetic purposes rather than for performance optimisation (Conley, 1980)
(Reynolds, 1979). When aircraft are retro-fitted with winglets, the designer needs to
carefully check the change in stability conditions, although in general (van Dam, 1981)

the stall characteristic improves.

3.4 Mathematical Formulation

Within thin-wing theory (Ashley and Landahl, 1965), the problem of determining the lift
L on a wing-endplate combination at small angles of attack aw and ap respectively in a
uniform stream U of air of constant density p4 relies on the solution of a pair of coupled
singular integral equations (Tuck, 1992) for the bound vorticity distribution on both the
planar wing and the endplate. The wing and endplate are both assumed thin and the

endplate lies within a plane perpendicular to the wing. These equations are just the
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generalisation of the lifting surface integral equation presented in Chapter 1 to include
the induced downwash of the wing on the endplate and vice-versa. For completeness, the

equations are

// (&) Gz(z =&y —n,2— () dEdn (3.4.1)
+ [ AEO Hale =&y =z =) dede = ~4nUfF (my)  (w.3,7) €W

// Y(&n) Gy (z — &y —mn,2=() ddn (3.4.2)
+ [[ e @6y —nz=0) ddl = ~4nUfl () (my)EPR,

where G(X,Y, Z) = ZF(X,Y, Z) is the velocity potential at any point (X,Y, Z) for a unit
horseshoe vortex on a wing surface with normal # = (0,0,1). Similarly, H(X,Y,Z) =
YF(X,Y,Z) is the velocity potential due to a unit horseshoe vortex on an endplate

surface with normal 7 = (0,1,0). In these unit horseshoe vortex potentials,

! X
F(X,Y,2) = o7 [1 4 E] , (3.4.3)

where R = /X2 +Y? 4 Z2. Equations 3.4.1 and 3.4.2 are solved for the bound vortices

W and 4%, subject to the Kutta conditions that 4" = 0 on the trailing edge of the wing
and vF = 0 on the trailing edge of the plate. In order to simplify the numerical task of
satisfying these conditions, both equations are integrated once with respect to X and the

resulting kernels expressed as cross derivatives to obtain
w

//ryWKg?’Wdfdn+//7PK¥Pd§d§ —4nUf(z,y) +Cly)  (3.44)

[["REY dedn+ [ [ 7 KEF dedc = 4nUfle 2y +Clz) ,  (345)

where C% (y) and CF(z) are the constants of integration that are used to satisfy the
Kutta condition at each y value on the wing trailing edge and each z value on the

endplate trailing edge.

These integral equations have been solved numerically here, using analogous modifications
to the ones described in the previous Chapters to enhance the resolution of the leading

edge singularities on both the wing and endplate.

3.4.1 Numerical Experience

It is particularly important to achieve a good resolution of the leading-edge singularities

for the task of optimising wing-endplate geometries, because numerical artefacts such as
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overestimation of the loading at the leading edge can wrongly favour endplates located
close to the leading edge. Similarly, there may appear to be a false local maximum in lift
when the endplate is attached either completely above (or equivalently below) the wing,
due to numerical error in resolving the wingtip singularity. Special care must be taken
when the endplate dimensions are either small or large when compared with those of the
wing, since there can be interference between the smaller element and the numerical panel
scale of the larger element. Most results in this Chapter were computed using a 12 x 12
rectangular Chebyschev-spaced grid on both the wing and endplate, and are believed to

be accurate to at least 3 significant figures.

The convergence of the method was tested on a unit square wing with centrally positioned
unit square endplates as illustrated in Figure 3.3. Extrapolation using n = 3, 6,12, where
n is the number of panels in each of the spanwise, chordwise and vertical directions gives

a value for Cs (using A as a reference area) of 0.922 with convergence rate O(n~?).

3.5 Optimisation

Much of the remainder of this Chapter will be concerned with the task of identifying
successful wing-endplate geometries for the maximisation of lift with respect to drag.
This problem needs careful specification and in particular we must state whether we
are optimising with respect to induced drag, skin-friction drag or some combination
of the two. It is rare in the literature to find examples of the third option. There
is a natural tendency to decouple the two kinds of drag, firstly because they depend
upon somewhat different aspects of the design and secondly because the task becomes

significantly simpler.

In the absence of a penalisation of skin-friction drag, the optimal endplate geometry
for any wing is one where the endplates extend infinitely in all directions, producing
effectively two-dimensional flow. In this case artificial constraints on the extent of the
total geometry may be imposed. See for example a recent paper using genetic algorithms

(Gage et al., 1995) to optimise wing-endplate geometries.

The optimisation of lift with respect to induced drag has been extensively treated in
the literature. In this case, Munk’s third theorem specifies the optimum distribution of

vorticity in the wake for any given total lift and Trefftz plane geometry. This principle has
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Figure 3.3: When cndplates are added to the square wing, the wing loading becomes

somewhat two-dimensional although the plate loading is three-dimensional. Note that the
absolute pressure difference is illustrated, and the sign of the pressure jump changes from

the lower to the upper portions of the endplate.

been applied to the design of ship screw propellers (de Jong, 1991) where the designer
solves an inverse problem to determine the chord length and camber as functions of

spanwise location on the wing and heightwise location on the propeller endplate.

In the absence of a cost for induced drag, the wing and endplate angles of attack should

be large and the wing would be of infinite aspect ratio. Because we intend to investigate
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the optimisation with respect to some combination of skin-friction and induced drag, we
might fix the wing geometry and consider the optimisation of C,/aw with respect to Dy.
Since skin-friction is only weakly a function of the distribution of the area of the surface
itself, to a good approximation the skin-friction may be regarded as a constant multiplied
by surface area. Hence an equivalent investigation is the optimisation of the endplate

geometry for a fixed wing geometry so as to maximise C/aw based on the total area.

3.6 Optimisation with respect to Total Area

The complete parameter space for single rectangular endplates on a rectangular wing of
chord ¢ and span s has been explored. That is, rectangular endplates of arbitrary length
¢ and height h are placed on and perpendicular to both wingtips (i.e. side edges) of
the rectangular wing, with their centres offset a horizontally and b vertically from the

mid-chord of the wingtip. Figure 3.4 shows the relevant geometry.

&
v
]
1
1
I
e

Figure 3.4: Unit square wing with rectangular endplates of height h, length £, horizontal
offset a and vertical offset b. The endplate has angle of attack ap = 0.

The aim is to maximise the lift coefficient per unit angle of attack CL,/aw, based on the
total (wing plus endplate) area A, by varying all four of the above input plate parameters.
In a rough sense, this is equivalent to maximising the lift/drag ratio, if drag is dominated
by skin friction and therefore is proportional to the total area A. In the more general

optimisation later in this chapter, we include induced drag, which is proportional to o?.
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The results presented here can be alternatively viewed as optimisation at very small

angles of attack.

3.6.1 Asymptotic Results

6 s/c=20
10 -

Figure 3.5: Lift cocfficient C}/aw versus endplate height h/c for endplates with fized

length € = ¢ on rectangular wings of varying aspect ratio. Reproduced from Standingford

and Tuck (1996b).
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Figure 3.6: Lift coefficient C7/aw versus endplate height h/c for endplates of varying
length £/c on a square wing. Reproduced from Standingford and Tuck (1996b).

Figure 3.5 shows the lift increase to a rectangular wing of various aspect ratios s/e,
obtained by adding an endplate with a = b = 0 and ¢ = ¢, as a function of the endplate
height k. Thus this endplate has the full wing chord, and is attached flush, leading edge
to leading edge and trailing edge to trailing edge. Note that for the purpose of this figure
(and the next), the area measure is the area Ay = cs of the wing only, and these results
do not penalise the lift for the extra area of the endplates; C7/aw is used to emphasize

this distinction.
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With this family of endplates, fully two-dimensional flow can never be attained even
when the height h is infinite. Although the results reach distinct asymptotes as the
endplate height increases for each fixed wing aspect ratio, the precise relationship between
the asymptotic value for an infinitely high (but finite length) endplate and the wing
parameters is not known. Of course, as the wing aspect ratio increases, the results
approach the well-known two-dimensional value C¢/aw = 2w, and endplates provide

relatively less benefit.

Since even quite small endplates have a dramatic effect on the square wing with s/c =1,
and there are applications such as dirt-track racing cars (Turrill, 1992) and catamarans

where wings of approximately square planform are important, we first examine that case.

Figure 3.6 shows the variation with endplate height h of the lift (as C7/aw, based again
on wing area only) for a square wing to which is added centrally placed (i.e. a = b =0)
endplates of various lengths ¢, fixed relative to wing chord ¢. Again, as h increases,
these curves approach an asymptote whose value varies with endplate length, and only
approaches the two-dimensional limit of 27 for large £/c, when the endplates become

infinitely extended in both directions.

3.6.2 Optimal Rectangular Endplates

Although endplates increase the lift compared to a bare wing, this does not necessarily
mean that the lift coefficient slope Cf,/aw as defined above based on total area A in-
creases, since the endplates add to the total area and hence may have a negative affect on
the ratio of lift to area. Indeed, it is not difficult to see from the results of Figure 3.6 that
no endplate of length £ equal to or greater than the wing chord ¢ produces a combined
wing-endplate geometry with a Cr/aw value greater than that of a bare wing. However,

it is a different story for shorter endplates.

The optimal dimensions and location of the endplate are shown via contour plots of
Cp/aw in Figures 3.7 and 3.8. In Figure 3.7, the dimensions of the plate are fixed at
£ = 0.5¢ and h = 0.5¢ while the offsets a and b are varied. The clear maximum is
when the plate is centered on the wing mid-chord, i.e. @ = b = 0. Figure 3.8 has the
offsets fixed at this optimum while the dimensions of the endplate vary. The maximum
Cr,/aw = 1.84 is attained when £ = 0.15¢ and h = 0.48c. In this figure, the axes h =0

and £ = 0 represent geometries where the endplate does not exist and hence they have
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Figure 3.7: Contour plots of the lift coefficient Cp/aw based on total area, with endplate
dimensions fized at £ = 0.5¢ and k = 0.5¢ and variable horizontal offset a and vertical

offset b. Reproduced from Standingford and Tuck (1996b).

contour value CL/aw = 1.46 corresponding to the bare wing. There is another contour
with this value which intersects the horizontal and vertical axes at {/c = 1 and h/c = 3.1
respectively. Any choice of h/c and ¢/c lying within the closed loop thus produced gives

Cp/a > 1.46, i.e. an improvement on the bare wing.

If one is forced to use a sub-optimal placement of the endplates, i.e. non-zero a,b, then
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Figure 3.8: Contour plots of the lift coefficient Cp/aw, based on total area with the offsets
fized at a = b =0 and variable plate length £ and height h. Reproduced from Standingford
and Tuck (1996b).

the optimal endplate dimensions depend upon the offset parameters a and b. Table 3.1
gives the optimal dimensions and the resulting lift slope coefficient when the endplate
horizontal offset is a = —c/2 (flush with the wing leading edge) or a = 0 (horizontally
centered at wing mid-chord), and the vertical offset is b = h/2 (entirely above wing) or

b = 0 (vertically centered).
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a b | optimal £ | optimal A | optimal Cf/«
—¢/2 | hj2 | 0.28 0.22 1.62
—c/2| 0 0.25 0.36 1.67

0 h/2 0.19 0.28 1.71

0 0 0.15 0.48 1.84

Table 3.1: Optimal endplate dimensions at fized locations.

The bare square wing with no endplates has the value for Cr,/aw given (Tuck, 1993) to 7-
figure accuracy as 1.460227. The conclusion is that the same wing with single rectangular
endplates of length ¢ = 0.15¢ and height A = 0.48¢, centered both horizontally and
vertically at the mid-chord of the wing (¢ = b = 0) has C/a = 1.84. If the extra
area of magnitude 0.144¢? due to these two optimal endplates were instead added to the
span of the previously square wing, so making a rectangular bare wing of aspect ratio
s/c = 1.144, this wing would have only C/aw = 1.63. It is thus better to use this area

in the form of (optimal) endplates rather than increased (full-chord) span.

3.7 Other Degrees of Freedom

There are infinitely many ways in which the parameter space for the optimisation can
proceed from these baseline results. Rather than immediately attempt to determine a
global optimum for the design of a wing-endplate configuration, we shall restrict ourselves

to a small number of additional parameters which yield insight into the problem.

3.7.1 Horizontal Offset

As a first extension we now allow the endplate sections above and below the wing to move
independently in the chordwise direction. The horizontal offset 0 measures the distance
between the leading edges of the top and bottom sections of the endplate as illustrated
in Figure 3.9.

The new parameter space to be explored is (¢, h,0), and it will be assumed that the
solution space is otherwise symmetric in the parameters ¢ and b. In the case where o is

non-zero, b will indicate the average horizontal offset of the endplates from the wing mid-
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chord. It is anticipated that there will be two mechanisms which will jointly determine
the optimal geometry, namely (i) that the most area-efficient location for an endplate
is centred, both vertically and horizontally on the wing mid-chord and (ii) that since
area is penalised, each endplate should be as highly loaded as possible. Consequently an
endplate should not be in the immediate vicinity of another endplate, whose function is
the same. Such endplates would tend to shadow each other, resulting in inefficient usage
of both. The task is to gain insight into the relative importance of these two features.

As with the previous Section, we consider skin-friction drag only.

Figure 3.10 shows the variation in C/ow for a unit square wing with endplates at angle
of attack ap = 0 and geometry (£ = 0.5¢,h = 0.5¢c,a = 0,b =0,—1 < 0 < 1). The graph
is symmetric about the vertical axis, indicating as would be expected that the endplate
can be reflected in the z-axis with no change in the wing loading. There is a clear
maximum when the endplates are offset such that o = £ or equivalently when o = —/,
such that the endplates are just touching leading-edge to trailing-edge. This result is
true no matter where the centroid of the split endplate is, and is a particularly significant

result as it limits the search space to the two-parameter specification (¢, h,0 = £).

Figure 3.9: Endplate with independent sections above and below the wing. The horizontal
offset o of the two sections is measured as the distance between their leading edges and is

positive when the upper plate is forward.

The optimisation, previously performed with the single rectangular endplates is repeated
with the new endplate specification. Qualitatively, the results are the same, but with a
higher optimum value. It is interesting to note that the optimal geometry (£ = 0.17¢,h =
0.53c,0 = £) gives the value for Cp/ow = 1.91, which is significantly greater than the
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Figure 3.10: Lift coefficient Cr,/aw versus the horizontal offset o of the top and bottom
endplate halves on a unit square wing. The centroid of the combined endplate is such that

a =b=0 and the endplate has angle of attack ap = 0.

optimal value Cp/aw = 1.84 produced using (£ = 0.15,h = 0.48,0 = 0) for a single
rectangular plate. The actual area of the split plate geometry is also greater than that of
the single plate, and is thus producing 7% more lift. An important optimisation principle
is highlighted here, namely that the optimal dimensions of the endplate increase with their
loading.

3.7.2 Flare

In order to further load the endplates and procure higher values of C,/aw, the endplates
will be flared, whereby the top and bottom sections will be pitched at angles of attack
ap and —ap respectively such as to increase the pressure difference between the lower to
upper wing surfaces. In the literature, setting a wingtip device at an angle of incidence
to the direction of travel is sometimes referred to as “toe-out” when the leading edge of
the device is outboard of the trailing edge and “toe-in” when the leading edge is inboard
of the trailing edge. Figure 3.11 illustrates the case of positive flare, which refers to the

case where lift is increased by having toe-in above the wing and toe-out below.
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Figure 3.11: Split endplate with top and bottom endplate sections flared to increase lift.
The case of positive flare is illustrated, whereby the upper portion of the endplate is “toe-

in” and the lower portion is “toe-out.”

For the present linear analysis, we use the flare ratio ap/aw between the endplate angle
of attack and the wing angle of attack as our measure of flare. Figure 3.12 illustrates
the effect of varying the flare ratio from 0 to 1 starting with the optimal endplates from
the previous section. In one sense the result is uninspiring because it is, of course, a
straight line under the present linear analysis. However, it does provide a estimate for
the magnitude of the extra attainable lift by flaring the endplates. More subtly, the
slope of the graph is a measure of the relative significance of endplates on the overall
configuration. Indirectly, the lift-curve slope of these endplates is Cr/ap = 0.5, based
on total area of wing plus endplates. This is a significantly high value, given that there
is no direct lift force on the endplates. Of course, under the present scheme there is no
limit to the flare angle, and the possible increase of the lift coefficient is unbounded. It
will be shown that the optimal ratio ap/aw is naturally attenuated when we consider

induced drag, but let us first consider the present situation when ap = aw.

Within this new paradigm, the optimisation of the lift coefficient with respect to the
geometric parameters (¢ = 0,b = 0,4,h,0 = £) produces the optimal plate geometry
(£ = 0.25,h = 0.95), yielding C/aw = 2.54, a staggering 33% improvement on the
optimum with no flare in the previous section and, as the optimal area has also increased,

an actual increase in lift of 66%.
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Figure 3.12: Lift coefficient Cr/aw versus linear flare measured as ap/aw for endplates

defined by (a = 0,6 =0,£ = 0.17,h = 0.53,0 = £) mounted on a unit square wing.

3.8 More Realistic Optimisation

Having established some basic principles of endplate optimisation with respect to area,
or skin-friction only, we turn to the inclusion of induced drag. Ideally for a single wing

with endplates we should be able to do this within the existing linear formulation.

3.8.1 Quasi-Linear Object Function

We wish to consider an object function which favours high lift and penalises some com-
bination of induced and frictional drag. There are a number of possible existing options,
such as the Oswald efficiency factor e = C?/(Cp — Cp,)m AR or the so-called subsonic
endurance parameter Cz/ ?/Cp (Gall and Smith, 1987). It seems natural in the linear case
to adopt a function whose dependence upon angle of attack is restricted to the relative

importance of the two forms of drag. In general, frictional drag will be given by

ou
D; = /W+P ue dS. (3.8.6)
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If we assume that the relative geometry of the wing does not significantly alter the

frictional characteristics, then we may make the simplifying assumption that

oU , /1
Cr=up aﬁ/ (gpAUz) : (3.8.7)

The total drag coefficient is then given by

Cpr = Cp; + Cf, (3.8.8)
and if we define the optimisation task to be maximising the value of
C,% < CL )2 OD'- Cf
CDT - aw / a%v + E 3 (3.8.9)

then the only quantity external to the existing linear algorithm is Cy/ofy,. Since it is
inversely dependent upon the square of aw, it may span several orders of magnitude.
There is also a weak dependence of C; upon Re as shown in Figure 3.13 which is re-
produced in part from Rosenhead (1963). Whether the boundary layer is modelled as
laminar or turbulent, for subsonic aircraft the linear friction coefficient may be assumed
to lie within the range 0.001 < C; < 0.01. If we fix Cy/ajy = 1, this corresponds to a
range of angle of attack 1.8° < aw < 5.7°. Rather than independently select values of
C; and aw for specific applications, it is more useful at this stage to chart the general
trends in optimal geometry as we vary the combination C}/ a3y. It should be noted that
the results for the present work converge to the previous results for optimisation with
respect to area only in the limit C';/afy — co. The ranges of values for C; and aw

corresponding to the parameter C¢/ady, are illustrated in Figure 3.14.

3.8.2 The Search Space

There are a very large number of variables to be considered when setting out to find the
best three-dimensional lifting surface. Even without variable camber, the chord must be
specified as a function of y and z over the wingspan and the vertical extent of the plate
respectively. While this is an admirable ultimate aim, we shall begin by examining the
relative effects of a smaller number of geometric parameters, where possible determining
their dependencies. In order to restrict the search we will again presume that the wing is
a unit square. Thus the only variables are those describing the size, location and relative
angle of attack of the endplates. To emphasise the immediate effect of including induced
drag in the calculation, we start with a determination of the optimal angle of attack of

the endplates ap/aw.
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Figure 3.13: Variation of the linear friction coefficient Cy with the Reynolds number Re.
After Rosenhead (1963). Whether the model of the boundary layer used is laminar or
turbulent, the linear friction coefficient lies well within the range 0.001 < C'y < 0.01.

3.8.3 Optimal Endplate Angle of Attack

In the optimisation of C#/Cp,, Munk’s third theorem concerning optimal wake vorticity
distribution suggests a trade-off between loading on the plates and the resultant induced
drag. Before exploring this optimisation, we must explicitly include the drag component
due to the angle of attack of the endplates, since the force perpendicular to the endplates

now has a component parallel to the direction of travel.

In order to incorporate this effect, the total drag component of the objective function is

modified according to

Cp; CrL\ 2 Cr ap Cs
OD,' =S (a%v) Oj%,v = (E) aw + 2 < O./uf) (E) Ot%;V — (g%;) Ol%,V, (3810)

where the endplates on both sides of the wing have been included. Note that each of the

required output quantities is still available from the current linear formulation.

For simplicity, we again consider the case of a unit square wing, with unit square endplates
centered both horizontally and vertically on the wing mid-chord. Figure 3.15 shows

the variation in the object function C?/Cp, with the flare ratio over the range from
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Figure 3.14: Ranges of the frictional coefficient 0.001 < C; < 0.01 and angle of attack

aw corresponding to the parameter Cy/ajy = 0.1,0.2,0.5,1,2,5 and 10.

—5 < ap/aw < & for various values of the flow parameter 0.1 < C/ak, < 10. The
negative values for ap/aw indicate that the flare on the endplates is acting to reduce the
lift, which actually creates a geometry with zero lift but finite drag when ap/aw = —1.7.
When the flare is positive however, the trend in optimal design is clear. For low values
of C¢/cdy,, since there is no penalty on area, the endplates should be used with small
angle of attack. For higher values of Cy/cody, the optimal flare ratio approaches infinity
because any available area must be as highly loaded as possible. It is interesting to note

that for Cf/a%, = 1, the optimal endplate angle of attack is ap/aw = 1.5.

3.8.4 Optimal Location

We already know that the optimal endplate location corresponding to a large value of
C;/a?, is centered both horizontally and vertically on the wing mid-chord. What effect
will the inclusion of induced drag have on the optimal placement? Firstly we consider a
unit square wing with endplates of dimensions (£ = 0.5,h = 0.5). Figure 3.16 shows the

variation in C2/Cp, as the horizontal offset varied over the range —0.5 < a < 0.5. The

endplate is maintained at the vertically central position.
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Figure 3.15: Variation in the object function C}/Cp,, including both induced and frictional

drag versus the flare ratio ap/aw for a unit square wing with unit square endplates. The

flow parameter takes values Cy/ady, = 0.1,0.2,0.5,1,2,5 and 10.

The smooth transition is fairly clear, with a horizontal offset a = 0 as expected for high
values of the flow parameter yielding to a forward placement of the endplates to reduce
induced drag as was found by Hemcke (1927) when the flow parameter is small. The
optimum placement for small values of the flow parameter C;/ajy is flush with the wing
leading edge, thereby maximising the leading edge suction on the endplate. Figure 3.17
shows the lift, total leading edge suction and resultant total induced drag components

separately for the linearised aw = 180°/7 case.

It is also interesting to see whether there are any induced drag effects on the optimal
vertical location of the endplates. Figure 3.18 shows the variation in C}/Cp, with the
vertical offset b of the same endplates, maintaining the streamwise central location. For
the range of flow parameters 0.1 < Cy/af, < 10, the optimal location is vertically
centered, although in all cases the gradient is very small. It is likely that this feature could

be easily sacrificed to increase the efficiency with respect to another design parameter.
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Figure 3.16: Variation of the object function C}/Cp, as the endplate horizontal offset is
varied over —0.5 < a < 0.5 for values of the flow parameter C¢/aj, = 0.1,0.2,0.5,1,2,5
and 10. The highest value curve corresponds to Cyla¥, = 0.1, down to the lowest which

corresponds to Cy/ady, = 10.
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Figure 3.17: Variation in the individual linearized force components Cp/aw, Cs/ofy and
Cp,/c?, versus the streamwise endplate offset a for the case of a unit square wing with

square endplates defined by (£ = 0.5¢,h = 0.5¢).
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meter.
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Chapter 4

Ground Effect

4.1 Introduction

Ground effect is the term used to describe the modification to the forces experienced by
a body when moving in the vicinity of a planar fluid boundary. The boundary may be
rigid as in the case of solid ground or a sea bed (Tuck, 1974) or it may be a deformable
free surface, analogous to the case of an interfacial wave (Grundy, 1986b). In the latter
case, the boundary may be effectively planar such as for a large scale object moving
at high speed in air over a calm water surface (Rozhdestvensky and Synitsin, 1993) or
be geometrically complicated by natural and/or artificial features. It is not uncommon
when considering an air/water interface to consider the aerodynamics over a steady water

surface undergoing hydrostatic deformation (Tuck, 1975), (Grundy and Tuck, 1987).

This Chapter contains material already published (Standingford and Tuck, 1996a) con-
cerning the effect of introducing a rigid ground plane to the free air analysis presented
in Chapter 3. The specific application is the design of a Wing-In-Ground-Effect (WIG),
otherwise known as an ekranoplan. [Note: ekrano-plan = Russian for screen-plane, or a
craft whose aerodynamic characteristics are dominated by the presence of a (reflective)
fluid boundary]. Here we also present a more comprehensive literature review and an

examination of the effect of wingspan on ground effect.
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4.1.1 Classes of Ground Effect

Ground effect can be divided into three regimes, namely small (clearance far in excess
of chord), moderate (clearance comparable to chord), and extreme (clearance small com-
pared to chord). Tuck gives a full derivation of the extreme ground effect theory in two
dimensions (Tuck, 1978), (Tuck, 1980) and (Tuck, 1981) which adds work on trailing-edge
flaps and stability, and (Tuck and Bentwich, 1983) which gives theory and computations

for wings of finite aspect ratio.

Extreme ground effect is nonlinear, with large deviations from free-stream velocity in the
gap zone, and hence large forces. The lift coefficient can be of the order of unity, and
in particular is not proportional to the small angle of attack. Instead, it is more closely
related to the contraction ratio of the gap zone, or leading-edge clearance to trailing-edge

clearance.

The papers mentioned so far assume that the ground plane is solid. Some other papers
(Tuck, 1975), (Tuck, 1984) and (Grundy and Tuck, 1987) assume a water surface which
is allowed to deform hydrostatically under the influence of the aerodynamic pressure in
the gap. There is then a strong nonlinear coupling between aerodynamics and hydrostat-
ics, since the deformation of the water surface affects the air flow and vice versa. The
assumption that the water surface deformation is hydrostatic is also questionable, but

incorporation of true hydrodynamic effects into the coupled nonlinear extreme ground-

effect problem is very difficult (Grundy, 1986b).

Moderate ground-effect (clearance comparable to chord) is more conventional. The prob-
lem then reverts (for small angle of attack) to linear aerodynamics, with small lift coef-
ficients proportional to the angle of attack, though with a coefficient of proportionality
substantially different from the open-air value. This regime was studied (Tuck, 1971) for
a general non-wing-like body (e.g. an automobile) and for wing-like leaflet valves near
a plane wall (Tuck, 1982c), (Tuck et al., 1982). The aerodynamic effect of moderate
ground effect on standard wing design is available in the literature (Katz and Plotkin,

1991), (Kuchemann, 1978),
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4.2 Ekranoplans

Flying in ground effect is an attractive option for military and commercial aircraft be-
cause of the high lift and low drag, as well as radar avoidance considerations. In recent
years, the work on aerodynamic design specifically for flying in ground effect has been

significant. Figure 4.1 shows the comparison between a swan taking off and an Airfisch

3, manufactured by Fischer Flugmechanik.

Figure 4.1: Comparison of the Fischer Flugmechanik “Airfisch 3" with a swan taking off.
Reproduced from “Ekranoplans and Very Fast Craft” (1996).

A number of highly specialized groups worldwide are considering the various problems
concerning the commercialization of ekranoplan technology. Aside from the original
Wright brothers flyer, which arguably never flew out of ground eflect, the Russian models
such as the “Orlyonok” illustrated in Figure 4.2 otherwise known as the “Caspian Sea

Monster” were the first to receive serious attention.

Although some early investigation from the British and United States’ defence sectors

explored the possibility of applying ground-effect technology to similar large vehicles, it
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Figure 4.2: The 120 tonne “Orlyonok” is one of the largest Russian ekranoplans. First
launched in 1972, it has a length of 60 metres, a cruising speed of 400 kilometres per hour
and a range of 1000 kilometres. Reproduced from “Engineers Australia” (1996).

is only now that the United States is considering the manufacture of a large transport
“Wingship” (Hooker, 1996). It is now accepted that the original Russian vehicles do not
compete in efficiency with modern transport aircraft, but the large payload combined
with the flexibility of landing on any open water surface rather than on an airstrip means

that they are still in use.

One must be careful when distinguishing between the craft flying in aerodynamic ground
effect and those making use of a static air-cushion analogous to a hovercraft. The term
“ekranoplan” has been applied to a number of commercial craft that use a partial flexible
hovercraft-like skirt to produce lift. Throughout this Chapter, ground effect will refer
only to vehicles deriving their lift from aerodynamic forces. There is current debate
also as to the various classes of ekranoplan and whether they should be able to sustain
flight out of ground effect for safety reasons. This forms part of a wider discussion about
whether the relevant regulatory body should be Maritime or Aviation (Bogdanov and
Maskalik, 1996).

It is generally accepted that future ekranoplans will have to have integrated functionality
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so that the body acts as a lifting surface and the transition from the body to the wing
becomes smooth (Hooker, 1996). For very large craft with reasonably efficient aspect
ratios, root bending moment considerations suggest that distributed payload systems
would offer a considerably lighter structure for a given payload. The free air “spanloader”
has been the subject of considerable research for this reason (Lange, 1988). The design

process involved in producing such a vehicle is made difficult because the functionality of

individual components is not unique. An appealing design among the smaller categories

of vehicles operating in ground effect that exhibits this integrated design philosophy is
the RADACorp “C-850” illustrated in Figure 4.3.

Figure 4.3: The RADACorp C-850 shows the trend in future designs for ground effect
vehicles. Although integrated wing-body designs are more complicated for aerodynamic
analysis, they offer superior parasite drag characteristics and market appeal. Reproduced

with permission.

Despite the theoretical advantages of flying in ground effect, there are a number of gen-
erally accepted challenges that the so-far embryonic industry must face before successful
production vehicles can be made. When the ground surface actually refers to a fluid
surface like an ocean, the stability requirements on the design of the craft mean that that

service must be either limited to very calm water or that the size of the vehicle must be
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Weicome to

Wingship, Inc.

Figure 4.4: The proposed Wingship Hoverplane concept ground effect vehicle. The Hov-
erplane is expected 1o be large enough to be able to fly safely above 8 metre waves. Re-

produced with permission.

large when compared to the size of the largest waves likely to be encountered. One such
proposed design is the Wingship “Hoverplane” which is intended to be large enough to
safely fly over 8 metre waves. While a passively stable design is the ultimate aerodynamic
aim, it is likely that a certain amount of the near-surface control will be antomated to

improve stability and ride quality.

4.3 Present Formulation

A feature of moderate ground effect is that when the ground plane is replaced by a
water surface there is, to leading order no coupling between the aerodynamics and hy-
drodynamics. Hence one can solve the combined aero-hydro problem in serial stages, first
computing the acrodynamic problem for a rigid ground plane, then applying the resulting
ground pressure distribution to the water surface, so generating a hydrodynamic flow due
to an apparent “hovercraft” with that pressure distribution. A more detailed justification

of this approach is presented in Chapter 5 .

Here we first include rigid ground effects to the lifting-surface computational tools de-
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veloped and applied in the previous Chapters. When one is including a ground plane
(in principle quite straightforward by the method of images) it is important to maintain
maximum numerical accuracy of determination of the pressure distribution on the wing
and ground plane. This is particularly difficult when the wing is close to the ground
(i.e. when h/c < 0.1) and large numbers of chordwise panels are required to capture the

pressure distribution in the gap zone.

The linear model also loses validity when the wing loadings are very high because of
backwash. Lan (1976) noted that the image vortex system may in some cases be strong
enough to decrease the velocity on the wing enough to reduce the lift to below the free

air value.

An important inclusion in the present thesis is the computation of the effect of the ground
plane on the induced drag of a wing, both with and without endplates. Information is
provided here on the optimum size and positioning of wingtip endplates, which become

full skirts touching the ground for heights less than about one-half of the wing’s chord.

Once we have a good algorithm for determination of the pressure distribution on the
ground plane, it is only necessary to apply that distribution as a free-surface forcing
term to determine the hydrodynamics of the flow in the water. The required formula is
well known (Wehausen and Laitone, 1960), and all that is needed is an accurate double
numerical integration over the whole free surface, noting that the aerodynamic pressure

is felt everywhere, not just immediately beneath the wing.

Some wave resistance computations have been made in this way, and will be reported in
the next Chapter. However, the general conclusion seems to be that the wave resistance
of a wing in ground effect is negligible relative to the aerodynamic induced drag, for
vehicles traveling at speeds high enough that there is adequate aerodynamic lift. This is
so for two reasons. In the first place, there is a factor involving the small air/water density
ratio between the water and air drags, expressing the fact that the size of the traveling
pressure distribution is proportional to the air density, but has to create a disturbance
proportional to the water density. Secondly, the Froude number is likely to be of the
order of Fy, ~ 10, which is far in excess of the usual naval architectural values, and any

water-borne vehicle is an inefficient wave generator at such Froude numbers.

However, at low velocities the wave drag may be significant. The ground-effect industry

is acutely aware of the hump drag that must be overcome when a vehicle accelerates
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to take off from a hydrostatic mooring. This is the well understood increase in hydro-
dynamic wave resistance up to a critical velocity, sometimes called the hull-speed of a
non-planing ship. Beyond this critical velocity, the wave resistance is inversely propor-
tional to the speed. In order to make this transition as easily as possible, ground-effect
vehicles sometime have take-off aids. One such addition, called power-augmented ram
(PAR) (Lange, 1988) makes use of the backwash phenomenon previously mentioned to
create stagnation pressure beneath the wing. This technique requires a large amount of

power and ingenious alternatives are likely to be developed.

4.4 Results for a Rigid Ground Plane

The aerodynamic induced drag of a bare wing in ground effect increases as altitude
decreases. It is a misconception that as a lifting surface approaches a rigid ground
the flow becomes more “two-dimensional” in nature. What really happens is that the
pressure beneath the wing drives the fluid sidewards out from under the wing and around
the wingtip at a rate proportional to the pressure drop in the gap zone, and since that
pressure drop increases as the altitude decreases, this undesirable sideslip velocity also

increases.

The only thing that can prevent sidewards flow is the addition of some barrier. In open-
air aerodynamics, such barriers are called endplates, or in a somewhat different role,
winglets. In racing-car design for downforce, barriers that effectively touch the ground,
so blocking all sideways flow, were called “skirts” when used very effectively in Formula
1 racing in the late 1970’s (Tuck, 1983), (Incandela, 1990). Skirts were later banned from
Formula 1 in an attempt to reduce dependence upon ground effect. We shall use the
term skirt here to denote an endplate that lies only below the wing, extending for its full

chord, and touching the ground.

In the case of open-air aerodynamics, it has been shown (Standingford and Tuck, 1996b)
that even quite small endplates located halfway along the wing chord and vertically
centered on it (symmetrically above and below) can dramatically increase the lift coeffi-

cient.

As a wing approaches the ground, the character of the pressure distribution changes

significantly. On a thin lifting surface in open air, there is both a pressure increase
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beneath the wing and a pressure decrease above the wing, relative to free-stream pressure,
and these effects essentially contribute equally to the lift-creating pressure difference
across the wing. This pressure difference becomes large only very near the leading edge.
In extreme ground effect, although there is still a pressure decrease above the wing of
comparable magnitude to that in open air, the net pressure difference is dominated by a
vastly increased pressure on the lower wing surface. That surface may be considered to
be the upper boundary for a converging channel flow between the wing and the ground.
There is a rapid fall in velocity near the entrance to the channel, followed by a slower
return to free-stream velocity at the trailing edge exit. This produces a large rise in

pressure extending over most of the forward part of the channel .

For wings of finite aspect ratio, whether in ground effect or not, the pressure difference
between the upper and lower wing surfaces becomes zero at the wingtips. This both
reduces the lift, being the integrated pressure difference, and also causes an induced drag
which is seen in the vortices which trail behind the wing, driven by the flow of air around

the wingtip from bottom to top.

For evaluating the induced drag of a planar wing in ground effect, we may verify our
present leading-edge suction formulation with the Trefftz-plane double integral, which

must include a term for the image of the wing in the ground plane, viz

ll

D= gou [, 01 [, 00 (Ao - ) v (0

Since the quickly-convergent method of evaluating this integral by means of a Fourier
transformation discussed in Chapter 2 has no analogue when the non-singular part is
concluded in the kernel, a Riemann-type approach is used instead. While the results
agrec with those predicted by the suction method, the rate of convergence with the

number of spanwise panels is very slow, and so the suction method is used from now on.

Figure 4.5 shows our computations of the lift and induced drag coefficients as a function
of ground clearance for a bare planar square wing with aspect ratio A% = 1. What is clear
from this Figure is that lift and induced drag both increase dramatically as the ground
clearance is reduced, ultimately both varying inversely with mean ground clearance or
altitude ho/c. Substantial lift increase is indeed obtained from ground effect, but at the
expense of increased induced drag. For a bare wing, there is no indication that ground
effect makes the flow more two-dimensional, or reduces the relative importance of induced

drag. The loading for the case of a bare wing in ground effect is shown in Figure 1.15. In
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Figure 4.5: Variation of the lift and induced drag coefficients for a bare square wing in

moderate ground effect.

all cases, the absolute pressure distribution is shown on the ground surface. The actual

pressure distribution will be discussed in Chapter 5.

These Figures illustrate the importance of including endplates or full skirts into the design
of vehicles operating in ground effect. Without them, the actual efficiency of the vehicle
is likely to be similar to a vehicle operating in free air, with the exception that a higher
lift coefficient will allow a smaller angle of attack and a greater resulting reduction in the

induced drag coeflicient.

4.4.1 Endplates Below the Wing

Since the main aim is to increase the lift due to ground effect and reduce the effect of
induced drag, we first consider the addition of endplates to the bottom half of the wing
only, along the full wing chord and extending to the ground. Specifically we shall examine

the addition of rectangular skirt-like endplates to a square wing.

When such endplates are added (see Figure 4.8) we find that the lift is vastly increased

but the induced drag changes hardly at all. The flow has been made significantly more
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Figure 4.6: When a bare wing flies over a ground plane, there is a pressure exerted on

the ground, but the flow remains three-dimensional, no matter how small the clearance.

two-dimensional by the endplates. Below an altitude of A = 0.15¢, where ¢ is the wing
chord, the induced drag of a wing with endplates is actually less than that of the bare

wing, even though the lift is many times higher.

4.4.2 Aspect Ratio Effects

It is well accepted that in open air, the aspect ratio AR of a wing is crucial to its per-
formance, and the higher the aspect ratio the better. Since the two-dimensionality of the
flow over a bare wing is unaffected by the presence of a rigid ground, this is also true
in ground effect. For a bare wing at altitude hg = 0.1c, the lift coefficient is more than
doubled by increasing the aspect ratio from AR = 1 to AR = 2 (see IFigure 4.9). On the

other hand, the more nearly two-dimensional low over the same wing with skirts already
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Figure 4.7: When endplates or skirts are added to the wing in ground effect, the flow

becomes effectively two-dimensional.

has a much higher lift coefficient, and the extra increase in lift due to the same change
in aspect ratio is less than 5%. Hence skirts enable effective use to be made of wings of

much lower aspect ratio than is conventional in open air.

As the aspect ratio of a bare wing increases from AR = 1 to AR = 2, the induced drag
coefficient at altitude hg = 0.1¢ increases by more than 50%, whereas the same wing with

skirts has a corresponding decrease in induced drag of 50%.

4.5 Optimal Placement of Endplates

It has been established in Chapter 3 that if lift is to be maximised by the placement of

finite endplates on the wingtips tips of a given rectangular lifting surface in open air,
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Figure 4.8: Lift and induced drag coefficients for a square wing with lower full-chord
endplates in ground effect. Note that the lift coefficient increases with the inverse of the
altitude while the induced drag remains constant. While the lift force is proportional to the
pressure realised on the body, the potential for induced drag is in some sense proportional

to the product of the pressure and the cross sectional area of the gap flow.

then the endplates should be centered on the wingtip mid-chord. The optimal size of the

endplates depends upon the various flow parameters and the aspect ratio of the wing.

It has already been stated that the character of the flow in ground effect is fundamentally
different to that in free air. The first test is whether this difference affects the optimal
chordwise location of a given plate. Figure 4.10 illustrates that the optimal placement of
an endplate whose length matches the length of the wing itself is somewhat forward of
center. The lift itself is a maximum when the endplate is at the mid-chord position, but

the induced drag may be decreased as for the free air case by moving it slightly forwards.

4.5.1 Endplates Above and Below the Wing

Endplates that extend above the wing could also be used, but their influence is similar
to that in open air, whereas endplates below the wing directly influence ground effect,

and hence are more effective in maintaining the increased pressure in the channel flow
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Figure 4.9: Variation of the lift and induced drag coefficients against the aspect ratio of

a square wing with and without full-chord skirts at an altitude ho = 0.1c.

there. However, the present computer program can also compute easily the effect of
above-wing endplates, and Figure 4.11 shows some results. Even though the intention of
use of endplates is to increase the lift due to ground effect, it is impracticable to operate
a wing at altitudes less than about h = 0.1c. We may then be interested in extracting
every little extra lift possible out of wings that are not of very high aspect ratio, and
above-wing endplates may aid in this objective. By how much, then can the lift due to
accelerated flow over the top surface be increased by the addition of endplates above the

wing?

4.6 Optimal Dimensions

It is interesting to see how the presence of a rigid ground alters the optimum dimensions
of an endplate. As in Chapter 2, we now take as our function to maximise the lift
coefficient Cp/aw based on total area, ignoring induced drag for this study, and assume
that the wing is square (AR = 1). As the wing is lowered to the ground, there will

presumably be some point when the optimal endplate will touch the ground and become
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Figure 4.10: Variation of the lift and induced drag coefficients for a unit square wing
at altitude ho = 0.1c with skirts of length £ = c and horizontal offset a. As for the
free air case, the endplate produces mazimum lift when flush with the wing. Induced
drag reductions may be made by shifting the endplate slightly forwards. The total drag

including a frictional component should be used to determine the specific optimum.

a skirt. Figure 4.12 suggests that this happens when the altitude is approximately one
half of the chord. The best size for the part of the endplate above the wing remains
essentially unchanged (with a length of about £ = 0.15¢ and a height of h = 0.24¢) no
matter what the altitude. What does change is the size of the optimal lower part of the
endplate, which increases rapidly, until below the critical altitude ho = 0.5¢, it becomes

a full-chord skirt touching the ground, illustrated in Figure 4.13.

When the optimisation procedure is repeated for a wing of aspect ratio AR = 2, similar
results are obtained. In particular, there appears to be little dependence of this result
upon the wingspan. Within the aviation industry, it is generally regarded that the “float”
effect on landing due to the ground is first experienced at an altitude proportional to the
wingspan, rather than the chord length. This is caused by the vertical compression of the
flow field in ground effect, giving rise to an increase in the apparent aspect ratio. It thus
represents a decrease in induced drag rather than an increase in lift due to the streamwise

gap contraction ratio. We must therefore consider two distinct modes of ground effect.
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Figure 4.11: The increase in lift coefficient C}/aw based on the wing area only, due
to the addition of full-chord endplates above the wing of height h' to a square wing in
ground effect with full skirts for parameter values of the altitude ho = 0.1¢,0.3c and 0.5c.
The relative change in the lift coefficient C%/aw based on wing area only shows that the
endplate section above the wing is significantly less effective than the lower section when
the altitude is small. As the altitude approaches infinity, the upper and lower sections

become equally effective.

4.7 Multiple Wing Configuration

In this section, we consider the optimisation of the lift-to-drag ratio of a tandem wing
configuration in ground effect, by varying the angles of attack of two separate wings.
Because the angle of attack is to be varied, we shall consider an object function that is

dependent upon lift, rather than the square of lift, namely:

L

where L = lift, D; = frictional drag assumed to be given by area times linear friction

coefficient and D; is the induced drag as previously calculated.

Before considering the two-wing combination, we optimise the angles of attack of two

flat, unit square wings in ground effect independently. The first wing is located at an
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Figure 4.12: The optimal lower endplate geometry for a unit square wing as a function
of altitude. The lift coefficient Cp/aw with respect to toal area is mazimised at each
altitude hg. It is clear that beyond hy = 2c, the wing is effectively in free air. There is
a dramatic change when the wing flies at an altitude ho < ¢/2. Below this altitude, the
optimal configuration is a full-chord skirt, such that the length of the lower plate 0 =c
and the height of the lower plate h® = ho.

altitude ho = 0.1c in a uniform stream U = 1. The optimum angle of attack aw = ajy
occurs when D; = Dy, such that the object function L/(D; + Dy) = 15.167. The lift,

drag and suction coefficients are also shown in Table 4.1.

The second wing is a flat unit square located at an altitude ho = 0.2¢, for which the

optimal angle of attack is higher. The force coeflicients are shown in Table 4.2.

Note that the decrease in ground effect for the second wing has resulted in lower lift L

for the same induced drag D;.

The interesting question is how the optimal angles of attack and the forces on the two
wings change when they interact. For the purposes of this test, they separately maintain
their altitude, but the second wing follows directly behind the first, such that the leading
edge of wing number 2 is 0.1c directly above the trailing edge of wing number 1. In this

case, the angles of attack are varied independently so as to maximise the total lift-to-drag
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oy 6.1111°
2 0.1517
D; 0.0050
S 0.0112
; 0.0050
Cy 0.3033
Co: 0.0100
Cr/aw 2.8440
Cs/oly 1.5433
L/(D; + Dy) | 15.167

Table 4.1: Lift, drag and suction force coefficients for wing one alone.

oy 7.2027°
L 0.1277
D; 0.0050
S 0.0111
D; 0.0050
Cy 0.2554
o 0.0100
Cr/aw 2.0318
Cs/ oy 1.0987
L/(D; + Dy) | 12.770

Table 4.2: Lift, drag and suction force coefficients for wing two alone.
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Figure 4.13: Below the critical altitude ho = c/2, the optimal endplate geometry for the
lower plate is a full-chord skirt. The optimal geometry of the upper plate does not change
significantly from the free air case h = 0.24c and £ = 0.15c¢.

ratio. The force coefficients for the combination are shown in Table 4.3.

oy 8.9407° | 4.6013°
L 0.2204 | -0.0029
D; 0.0050 | 0.0050
S 0.0239 | 0.0003
D; 0.0100
Cr 0.2175
oy 0.0100
Cr/aw 2.8249 | -0.0715
Cs/oZ, 1.5398 | 0.0719
L/(D; + Dy) 10.878

Table 4.3: Lift, drag and suction force coefficients for wings one and two, optimised

together.

The results are consistent with the result for a single wing. The optimal configuration
again requires that Dy = D; for the combination. However, the lift force on wing number
2 is negative. Wing number one is at a higher angle of attack than if it were alone, and

consequently produces both more lift and induced drag. This induced drag is reduced
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by wing number 2, which experiences an negative induced angle of attack due to the
downwash of wing 1 that is greater than its own nominal positive angle of attack. The
net angle of attack is negative and the second wing acts to reduce the energy in the

vortices trailing wing 1.

Wing number 2 might also be considered to be the ground-effect equivalent for the upper
surface of wing 1. This ceiling effect speeds up the flow over the upper surface of wing
number 1 and thereby increases the pressure jump from the lower surface to the upper
surface. This is in a sense sacrificial as the flow is also accelerated under wing number
2, causing a downward force. It should be noted that the value of L/(D; + Dy) for the
combination is less than the optimal value for either of the wings alone. The aspect ratio
of the combination is half that of either wing individually, because of the arrangement.
Wing 2 is providing the same function as a very ineflicient endplate, because its only
contribution is in blocking vortex flow, but this has a direct reduction in the total lift,

whereas an endplate does not reduce the lift at all.

In Chapter 6 we consider the streamwise separation in free air for which the combination
is aerodynamically better that either of its constituents independently (birds for example
which fly in a vertical arrowhead formation). The real advantages may only be seen when
a certain bank angle in ground effect is required, forcing the lead wing to have a small

aspect ratio.

4.8 Pitch Stability

The heave-pitch stability of a single wing in ground effect has been considered by a number
of investigators (Tuck, 1981), (Kuhmstedt and Milbrandt, 1995), (Rozhdestvensky, 1992).
There has been a general acceptance of the theory of Gallington (Gallington et al., 1972)
that a single wing in ground effect is always heave-pitch unstable and this has been
the motivation for the enormous tailplanes of the Russian models. This is because the
centre of aerodynamic pressure in free air lies close to the quarter chord z = 0.25¢ for
a symmetrical airfoil but shifts back to ¢ = 0.4¢ when in ground effect. When subject
to a upward gust of air, this shift causes the centre of pressure to move forward and the

ground effect vehicle tends to flip backwards.

Other than simply using a large tailplane to counter the natural instability of a single
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lifting surface, there are several other methods that have been implemented. Firstly the

wing design illustrated in Figure 4.14 and, later in Figure 4.15 increases the pitch stability

by using a large channel flow with two similar lifting surfaces in tandem.

Figure 4.14: The tandem-wing design of the Jorg TAF VII is used to counteract the

natural pitch-heave instability of a single wing in ground effect.

Adding a tailplane is an established solution to this problem, but to counter the pitch
instability of a large wing in ground effect, the tailplane must be huge and far from the
ground. This means a large tailplane support structure. However, a canard wing when
appropriately positioned and sized can also provide a measure of pitch stability. It is not
within the scope of this thesis to present an analysis of the pitch stability of a three-
surface configuration However, ground effect does introduce a difference in the linear
case between chordwise camber, whose effect upon lift is well understood, and multiple
connected surfaces at differing altitudes and angles of attack, because of the change in

ground clearance of each component with global pitching.

Without presenting a stability analysis of the configuration, the loading is illustrated in

Figure 4.18.
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Figure 4.15: The Taiwanese Chung-Shan transport vessel also incorporates the tandem

wing design. Larger vehicles along similar design lines are expected from Taiwan in the

near future.
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Figure 4.16: Straight and level flight in ground effect. The canard in this configuration
is relatively highly loaded, at a high angle of attack and in extreme to moderate ground

effect. The main wing is in moderate ground effect and the tailplane remains in effectively

free air. The center of aerodynamic pressure (CAP) balances the center of mass (CM).
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Figure 4.17: Ideally the three-surface configuration should be passively stable to pitch.

When a gust causes the configuration to pitch, the loss of ground effect (GE) on the

canard wing moves the center of aerodynamic pressure rearwards, restoring the flight

attitude.
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Figure 4.18: The loading of a three-surface configuration in ground effect.
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Chapter 5

Wave Drag

5.1 Introduction

When a body flies in air close to a water surface, the shape of the water surface is modified.
In this Chapter, we consider whether or not this significantly effects the problem of
optimising the geometry of a large, high speed wing-in-ground-effect (WIG) vehicle flying

over water.

For bodies that do not pierce the water surface, much of the work in this chapter is
analogous to the calculation of the wave resistance of air cushion vehicles (Monacella
and Newman, 1967), (Doctors and Sharma, 1970). In the absence of spanwise skirts
in addition to chordwise skirts, the present numerical evaluation of the pressure on the
water due to the lifting surfaces is favoured instead of the analytic work appropriate to

air cushion vehicles.

The present algorithm for determining the aerodynamic lift and drag on a three-dimensional
finite lifting surface with endplates in moderate ground effect is to be used with the addi-
tion of the drag associated with the waves made on the surface of the water. The vertical
gap between the wing and the water plane is denoted ko and we assume that this gap is
O(1) when compared with the wing chord ¢. The method of images will be employed to
account for the aerodynamic ground effect. This is justified on the basis that the angle
of attack ay is small relative to the gap ho. Consequently the deflection of the water
surface makes far less relative difference to the aerodynamic forces than it does to the

hydrodynamic ones.
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There are a number of ways to estimate the deflection of the water surface given the
velocity discontinuity across the lifting surfaces. If the limit as ho/c tends to zero, the
pressure “footprint” registered on the water is asymptotically the same as the pressure
p~(z,y) on the lower surface of the wing. This would involve no additional computational
effort but would be inaccurate for greater altitudes. Also, the resulting discontinuity in
pressure across the projection of the leading edge on the water surface would cause
numerical difficulty in evaluating the wave drag. This may be overcome by using a
smoothing function as applied to air-cushion vehicle analysis (Doctors, 1997) but this is

clearly less appropriate for vehicles without hovercraft-like skirts.

The present method explicitly determines the velocity influence at each point on a fi-
nite grid on the ground from all airborne lifting-surface panels. The resulting matrix is
then used to evaluate the wave drag W using a two-dimensional wave resistance integral
(Wehausen and Laitone, 1960) which estimates the wave energy propagated by a moving

pressure disturbance in all directions.

5.2 Three-Dimensional Formulation

In order to determine the wave drag W due to an airborne vehicle flying above a water
surface, we must determine the pressure on the water surface due to the vehicle. In
principle, this may be achieved to a first order approximation by considering the velocity
potential on the water surface due to the lifting surface perturbation to the free stream
and then applying Bernoulli’s law. A Michell-like integral (Tuck, 1989) is then used to

estimate the wave drag associated with this pressure distribution.

The lifting surface integral and the wave drag integral are sufficiently different in structure
as to warrant two distinct numerical grids for quadrature. However, these must be linked
in such a way as to minimise numerical error, which can be relatively large. This Section
will explore some of the sources of these errors as well some remedies. An examination
is also made of the different pressure footprints made by bare and skirted wings and the

dependence of the wave drag on the planform of the wing.
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5.2.1 Hydrodynamic Pressure Due to an Airborne Wing

The hydrodynamic pressure distribution p(z,y) on the water surface due to the presence
of the airborne lifting surface must be calculated. This is easily done by considering the
linearised Bernoulli’s equation in terms of the small perturbation velocity ¢ = (u,v,w)

so that

p = %p [U2— ((U+u)2+v2+w2)]

~ —pUu.

Now the u velocity component can be determined on the water surface by finding the
z-derivative of the velocity potential ¢(z,y,z), knowing already the loading ~y(z,y, ho)
on the wing. The potential of a unit horseshoe vortex (Ashley and Landahl, 1965) may
be used directly to evaluate the influence of the wing and endplate on the streamwise

velocity on the water surface. The potentials are
d(X,Y,2)=G(X,Y,Z) = ZF(X,Y,Z)

for a line of vertical dipoles and
#(X,Y,Z2)=H(X,Y,Z)=YF(X,Y, Z)

for a line of horizontal dipoles where F'(X,Y, Z) is the kernel of the conventional lifting

surface equation

1 X
FX.Y,2) = o [+ )

Thus the perturbation velocity u = ¢, may be determined at any point in space as the

contributions from the wing-endplate combination plus the image in the water surface:

u@y,) = [ [ &m) K (@ - &y —nz—ho) dedn
— [" [ atem) K (0 = &,y = n,7 + ho) dédn
+ [ [ 60 K=y —n2 - ¢) ds;
[ 60 K@ - &y =25 4,2 - () dedd
t [ [ 60 KO (@ - gy =,z + ) deg
—/Oh /qu(g,g) KOP(z— €,y —2s +1,2+¢) dedc.  (5.2.1)
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In the case where z = 0 on the water surface, this becomes

u(z,y,0) = /03/007(5’77) [I{GW(m_g,y_n,_ho)_I(Gw(w_é,y_n,ho)] de di
[ [ 60 KF -ty —n,-0— Kz~ 6y —25 45,0

+KP(z — &y —n,0) = K (2 — &,y — 25+, ()] d dC.

(5.2.2)
The new kernel functions are
XY Y
aw _ —
K" (X,Y,Z) = arctan(RZ> —}-arctan(Z)
XZ A
KP(X,Y,Z) = (—) (-) 2.
K" (X,Y,Z) arctan By + arctan v (5.2.3)

where the obvious vertical symmetry has been exploited in the actual computer algorithm.

5.2.2 Work Done by a Moving Pressure Distribution

An expression for the rate of work done on a water surface by a moving pressure distri-

bution is given (Wehausen and Laitone, 1960, page 598) as

2,z
_ v 2 5 2 2
W= /0 do sec® 0 [P*(0) + Q*(0)), (5.2.4)
where
PO) = /_o:o ‘/_o:o dz dy p(z,y) cos [1/ sec? 6 (z cos 0 + ysin 0)] ) (5.2.5)
Q) = /_o:o /:: dz dy p(z,y) sin [1/ sec? 0 (z cos f + ysin 0)] ) (5.2.6)
and v = g/U>.

5.2.3 Numerical Evaluation of Integral

Numerically, the computation of the 6 integral is complicated by the oscillatory nature of

the integrand. Filon’s quadrature (Tuck, 1987) is implemented and the method becomes

Ny Na:
P(9) =Y Ay > Az w; w; p(zi,y;) cos [1/ sec® 0 (z; cos § + y; sin 0)] ,  (5.2.7)
j=1 1=1

111



where the weights for Filon’s quadrature are given by

wy = 4(sin K — K cos K)/K*® (k even)
wy = (3K + Kcos2K —2sin K)/K® (k odd)

where K = vsecOAzx.

Care must be taken with the numerical implementation of this algorithm. The number
of panels on the wing must be large enough that the water surface grid does not falsely
include energy associated with waves of the grid scale on the wing. Having too large a
number is prohibitive in terms of CPU time, because the influence from each aerodynamic

panel must be calculated for each water surface panel.

In order to limit the number of parameters while determining the numerical behaviour

of the integral 5.2.4 we consider the wave resistance of a Gaussian pressure distribution

p(z,y) = exp(—z* — y°) (5.2.8)

illustrated in Figure 5.1 for which the wave drag integral 5.2.4 may be written analytically
as

1/2

/2
W = - /0 sec’(0)m? exp(r? sec4(«9)/2)d0. (5.2.9)

The value for W does not appear to converge reliably with increased numbers of gridpoints
on the water surface. Depending upon the free stream velocity U and the number of values

of @ into which the outer integral is partitioned, the value for W can converge or vary

wildly.

The grid implemented on the water surface is regular in each of the z and y directions
separately and has n, = m, points distributed over an (8 x 8) domain centered on the
origin. Extending the grid further does not significantly effect the results. Figure 5.2
shows the 6 integrand from 0 < 6 < m/2 for my = 60,120 and 240 for a free stream
U = 5. The integral is in each case dominated by peaks which occur at different values
of 0. When the algorithm is modified such that the contribution is neglected when fewer
than two data points are present for each period of the integrand within the P and @
integrals for a particular value of 6, these spurious peaks disappear and the integrand
curves are replaced by those in Figure 5.3. These curves predict a wave drag which

converges to W = 0.0004043 with rate of convergence O(m;*). The exact solution for

U =5is W = 0.00040469.
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For values of the energy propagation angle approaching 6 = /2, correspondingly large
values of m, and n, are required to capture the diverging wave pattern. In general,
m, = 120 has been found to estimate the wave drag to two significant figures. As
increasing these parameters is rewarded with diminishing marginal returns on overall

accuracy, this is regarded as sufficient at least in the first instance.

rrqrrrr1m 1 1 1d

Figure 5.1: Gaussian pressure distribution on the water surface given by the expression
p(z,y) = exp(—22 — y?). This is to be used to test the accuracy of the numerical scheme
for the wave integral, independent of the aerodynamic calculations and the calculation of

the resulting pressure on the water plane.

5.2.4 Variation of Wave Drag with Velocity

The magnitude and distribution of the wave energy spectrum 0 < 6 < /2 varies with
the parameter v = g/U?. Figure 5.4 shows the change in the energy spectrum as U
varies from 1 to 10. The curves have been normalised with respect to their definite
integral so that their forms may be compared. At low velocity U, the energy is mainly

associated with waves at small angles 0 to the free stream. As the velocity increases, the
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Figure 5.2: Wave drag 8-integrand including spurious peaks for my = 60,120 and 240 for

a Gaussian pressure distribution traveling with velocity U = 5.

energy is largely contained in the diverging waves near § = /2. Figure 5.5 shows the
corresponding variation of the drag integral W. As the velocity increases, the wave drag
initially associated with waves propagating in the streamwise direction increases slowly
until reaching a sharp increase and then a maximum. Thereafter, increase in velocity
reduces the wave drag until the only waves produced are transverse or at right angles to
the direction of the free stream. In the limit as the velocity U tends to infinity, the wave

drag W tends to zero with rate W ~ U~%,

5.3 Pressure Footprints of Wings in Ground Effect

Different wings flying over water leave different pressure footprints. In general, some parts
of the water surface will experience a reduction in pressure and some an increase even
though the wing exerts a net downward force on the water. The addition of endplates or
skirts to a wing in ground effect markedly alters the form of the pressure footprint and

in general increases the deflection of the water surface.
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Figure 5.3: Corrected wave drag 6-integrand with spurious peaks removed for ng = my =

60,120 and 240 for a Gaussian pressure distribution traveling with velocity U = 5.
5.3.1 Bare Wing

The pressure footprint made by a unit square wing at angle of attack aw = 5°, altitude
ho = 0.1c and free stream U = 5 is illustrated in Figure 5.6. The high pressure region
beneath the wing is matched in magnitude by the low pressure immediately surrounding
it. The corresponding energy distribution is shown in Figure 5.7. Note that the curves
calculated using n, = m, = 40, 60,120 appear to converge, but retain peaks and troughs
in the integrand near 6 = m/2. These represent real information about the influence of
the wing geometry on the wave drag. The curve calculated using n, = my, = 240 is
significantly higher than the others. This is numerical error caused by the mismatch in
grid scales on the wing and the ground. Figure 5.8 is a zoom-in of Figure 5.7 near 6 =m/2.
It appears that the oscillations in the 6-integrand are at least partially independent of
the grid on the ground. The grid on the wing is a standard Chebyschev with n = m = 18
so the 240 x 240 grid on the ground is in places far denser. Consequently, the ground
grid resolves the grid scale behaviour of the loading on the wing and attributes high
frequency wave energy to the discontinuous panel loading. In order to achieve highly

accurate estimates for W, the wing panelling must also be significantly dense or else
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Energy spectrum(9)

Figure 5.4: Normalised wave drag 0-integrand representing the wave energy spectrum of
a Gaussian surface pressure distribution moving with velocity U = 2,...,10. Calculated
numerically using a (8 x 8) ground plane grid with n, = my = 120 panels in both the

chordwise and spanwise directions.

another method must be used to transfer the wing loading to the water surface.

5.3.2 Aspect Ratio Effects

As the wing aspect ratio AR = s*/A increases we might expect a greater contribution to
W from the waves in the streamwise direction and greater cancellation of the diverging
waves. From slender hull theory we expect W ~ AR? for small AR. Figure 5.9 shows the
form of the pressure footprint of a rectangular wing with aspect ratio AR = 10. Relative
to the unit square wing, the only differences are that the increased aspect ratio has
increased the magnitude of the pressure on the surface and that the resulting pressure
distribution on the water surface is one average closer to that on the wing itself, because
the encroachment of the low pressure region at the wingtips is relatively less significant

to the total geometry.

We wish to examine the behaviour of the wave drag W as the aspect ratio is varied.

Because of the extreme numerical sensitivity to mismatch of the aerodynamic and hydro-
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Figure 5.5: Wave drag W of a Gaussian pressure distribution versus the free stream
velocity U. Calculated numerically using a (8 x 8) ground plane grid with ny = my =120

panels in both the chordwise and spanwise directions.

dynamic grids, we introduce a special scheme to reduce the grid-interference noise from
the real results. The pressure footprints have been calculated previously on a ground-
plane grid which is the dimension of the wing plus a fixed margin of 2 units on all sides.
In the y-direction, we now use a margin which is half of the wingspan for the partic-
ular wing being evaluated. Prior to calculating the pressure footprint on the ground,
the loading on the wing is interpolated onto a regular grid on the wing which coincides
exactly with the grid on the ground-plane. While the grid-scale oscillations still present
numerical difficulty, the variation in the wave drag W is plotted for the range of aspect
ratios 0 < AR < 4 for a rectangular wing moving with velocity U = 5 and angle of attack
aw = 5°. Wave interference from the two side-edges of the pressure footprint causes real
oscillations in the graph, shown in Figure 5.10. Since the natural wavelength of water-
surface waves in infinitely deep water is A = 2rU?/g, and the wave pattern propagates
at an angle of arctan(1/3) behind the vessel (Newman, 1977), then we expect to see an
interference effect when s = A\/6 = 2.67. In fact, we also resolve the behaviour on the

scale of the chord-length, corresponding to a variation in span of s = ¢/3 = 0.33.
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Figure 5.6: Water surface pressure footprint of unit square wing in ground effect, at angle
of attack ow = 5° and velocity U = 5. The projection shows the zero pressure contour
line. Clearly the region beneath the wing has dominantly higher pressure that the free

stream and elsewhere the pressure is reduced.
5.3.3 Wing with Skirts

The lift and induced drag force on a wing in ground-effect are significantly changed when
endplates are added as full-chord skirts below the wing. Figure 5.11 shows the pressure
distribution on the water surface due to a unit square wing at angle of attack aw = 5°
moving with velocity U = 5 at altitude ho = 0.1 with full skirts. This may be directly
compared to Figure 5.6, where the skirts are omitted. The magnitude of the pressure
in the case with skirts is significantly higher as we expect from the lift forces generated,
but we also note regions of high pressure extending upstream and also downstream of
the configuration. This is largely due to the endplate vorticity, which accentuates the

blockage to the flow created within the channel.
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Figure 5.7: Wave energy spectrum for a unit square wing at angle of attack aw = 5°
traveling with velocity U = 5 in ground effect over a water surface with clearance ho =

0.1c. Curves are shown for ground-plane panel numbers ng = my = 40,60,120 and 240.

5.4 Wave Drag Versus Aerodynamic Drag

Although it is clear that the present scheme may be used to predict the wave drag of a
wing-in-ground effect flying over water, the level of computational complexity required
to produce accurate results suggests that this facet of the algorithm be avoided when
possible. We now consider the circumstances under which we may assume that the wave
drag will be significantly smaller than the corresponding aerodynamic drag, starting with
a two-dimensional approximation for the circulation resulting from an inclined flat plate

in ground effect.

5.4.1 Two-Dimensional Airflow

The flow field associated with a general lifting surface in ground effect is not two-
dimensional. However, in Chapter 4 it was shown that the addition of full chord skirts

to a wing in ground effect can provide reasonably two-dimensional conditions within the
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Figure 5.8: Zoom-in of the wave energy spectrum for unit square wing n ground effect

near 0 = 7/2. Curves for ng = my = 40,60,120 and 240 are shown.

gap. It is also clear that the hydrodynamic forces associated with wings in ground effect
are very much higher when full skirts are used. If we consider a small gap of length ¢

and clearance b = ho + aw(c— ), 0 <z <cthen Bernoulli’s equation applied to the

gap region becomes

1 1
p—ﬁj) b lger =24 0, (5.4.10)

If we the air velocity in the gap be approximated by the linear theory, such that

2
P—Do ho
£ 82 _ 1= 4.11
%pAU2 (h()-|-(.tw(c—$)) ’ (5 ! )

and assume that po = 0, then

2

2 ¢ ac
de = —~—. 4.
WIE /0 p(z)dz ot o (5.4.12)

If the gap clearance is O(1) when compared to the wing chord, whereas the angle of

attack aw is small compared to the wing chord then aw /ho ~ 0 and

62

2 c
Al /0 p(z)dz = %h—o. (5.4.13)
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Figure 5.9: Pressure footprint of a rectangular wing with A& = 10 in ground effect at
altitude ho = 0.1c, angle of attack 5° and velocity U = 5. The only lines shown on the

contour plot are where pressure p(z,y) = 0.

Thus we may approximate the circulation generated by an inclined flat plate in moderate

ground effect as

T c?
—_— —— 4.1
Ua 2h0 (5 4)

5.4.2 Two-Dimensional Wave Drag

We now consider the wave drag R of a finite two-dimensional surface pressure distribution.
It may be shown (Lamb, 1932, page 415) that the resistive force per unit span on a
disturbance advancing with velocity U < y/gH, where H is the depth of water is

2kH )

1
R = ~gpwa’ (1 .
gpwa sinh 2 H

1 (5.4.15)
where «k = g/U? is the wave number. As we are dealing with water of infinite depth #,
then this reduces to

1
R= ngwafu, (5.4.16)
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Figure 5.10: Wave drag W versus span s for a rectangular wing flying at altitude hg = 0.1c
at velocity U = 5 and angle of attack aw = 5°.

where a,, is the amplitude of the wave train following the object. This wave amplitude
may be determined (Grundy, 1986a), (Tuck, 1982a, page 245), (Tuck, 1982b) and (Lamb,
1932, page 403) by the planing equation, which specifies the surface elevation n(z) res-

ulting from a finite pressure distribution p as

n(e) = [ P)Kya— ) de, (5.4.17)
where the integrated kernel function (for numerical convenience) is
[? 202 cos(42) — 1, z>0
Ko(z) = —E—f(%) +¢ 7 (£2) , (5.4.18)
g 0, x<0

where f is the auxiliary function for the sine and cosine integrals (Abramowitz and

Stegun, 1965, Page 232) defined as
f(z) = Ci(|z|) sina — si(|z]|) cos z sgnz. (5.4.19)

We are not necessarily interested in the near-field form of the waves, only the amplitude

far downstream. As z — +oo then
n(z) - 2sin(ya) [ P(€) (%(w - 5)) dt. (5.4.20)
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Figure 5.11: Water surface pressure footprint of unit square wing in ground effect, at angle
of attack aw = 5° and velocity U = 5 with full-chord skirts. The projection shows the zero
pressure contour lines. In addition to the high pressure region directly beneath the wing,
the pressure is increased upstream and downstream by the partial blockage represented by
the channel flow region. The pressure still drops as the leading edge is approached from

upstream as for the case of the bare wing.

For general P(£), this integral must be calculated numerically. However, we shall assume
that the previous assumption regarding two-dimensional airflow is valid and that there is
a linear variation in velocity from the leading edge to the trailing edge within the gap zone.
While this strictly implies a parabolic variation in pressure, for numerical convenience
and because we are only interested in the magnitude of the forces rather than their
variation with the gap geometry, we shall assume a linear variation from leading-edge
to trailing-edge, where the perturbation pressure is zero. We may then define a factor
F(%), which gives the wave-train amplitude following a linear two-dimensional pressure

distribution per unit chordwise integrated pressure as

F(i) = [ P(e)dé = % (6B e ] — sinl(@Y) = B[] (5.4.21)
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where

) = arctan (m—_—l> : (5.4.22)

sin(y) — 7

The parameter v = F; % is based on the length Froude number Fy, given by

U2
Fr=4/—. (5.4.23)
gc

Assuming that the pressure within the gap is constant with respect to z, then we may

relate the pressure on the water surface to the loading on the wing by
p(z) = pwU?P(z) = —paU~(z). (5.4.24)

We may therefore approximate the wave resistive force R per unit span, due to a two-
dimensional pressure disturbance from a lifting surface in moderate ground effect, where

the forces are dominated by a linear channel flow as

1 pa I’ 2
. L Noll . 4.
R = 790w (pW 7 (7)) (5.4.25)

5.4.3 Magnitude of Three-Dimensional Wave Drag

In order to compare the relative magnitudes of the aerodynamic induced drag and the
hydrodynamic wave resistance, we must consider the three-dimensional analogue of the
two-dimensional resistance formula above, because the induced drag is a strictly three-
dimensional phenomenon. If we accept that full skirts on the wing make the flow effect-
ively two-dimensional, then an approximation to the three-dimensional wave drag may

be given by extending the expression for the two-dimensional wave drag along the span

Dw = /0 " R(y) dy. (5.4.26)

If we assume in addition that the two-dimensional resistance is spanwise constant, then

we may further simplify by setting R(y) = R from Equation 5.4.25, obtaining

Dw _1 pa (L) 2
2 = 1% / ( Ta Fw)) dy. (5.4.27)

Thus the wave drag coeflicient realised on the wing is

O _ _9_pa [ (T, 1) gy (5.4.28)
o? 2A0U% pw Js \ Ua ’ ' o
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On substitution of 5.4.14 into 5.4.28, we obtain a likely magnitude for the three-dimensional
wave drag coefficient based on locally two-dimensional flow past a full-skirted wing in

moderate ground eflect

CDW g PA / ¢ ?
= L — dy. 22
) 24002 pw Js 2h0F(y’7) y (5.4.29)
If we assume that the wing is rectangular and the flow is uniform with respect to y, then
Cpw 1pa ( & )2 )
N —— | — ] YF(y). A.
D 224 (£) 4P () (5.430)

vF?(7)

Figure 5.12: Plot of the wave resistance function yF?*(v) versus the wave number v. The

magzimum value is 7.2 when v = 2.9.

The function yF?2(y) is illustrated in Figure 5.12. Clearly the function tends to zero as
~ tends to either zero or infinity, but there are an infinite number of local maxima and
minima in between. The largest value of yF?(y) is 7.2, when v = 2.9. This corresponds
to a chord length ¢ = 2.9U%/g, which either requires an enormous aircraft or a very
low velocity. Assuming that such a figure could be obtained, then the corresponding

maximum possible wave drag coefficient would be approximately given by

Cpiax c \?
o (33h0> ' (54.31)

For a coefficient of the order of one, this requires an altitude less than 5% of the chord

length.
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Thus it is highly unlikely that wave drag will be significant relative to aerodynamic
induced drag for wings in ground effect unless they also directly pierce the water surface.
The only situation in which a low velocity and a low altitude are experienced is during
take-off and possibly landing, when specific aids are often required. We may conclude
that for the optimisation of a wing-in-ground effect vehicle in cruise mode, the wave drag

may be regarded as far less significant than the aerodynamic drag.
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Chapter 6

Thickness

6.1 Introduction

In the previous Chapters, thickness effects have been treated as distinct from the lifting
flow calculations. It is certainly true in the case of a single thin wing with no endplates
in free air that the thickness may to leading order be decoupled from the lifting equation
(Ashley and Landahl, 1965); however this is not true if any of the above conditions
are violated. Any thick body lying in a plane other than that of a lifting surface will
induce a velocity difference across that surface, which may be considered as an apparent
angle of attack. Alternatively, a formal perturbation series may be used to determine
the effect of thickness on the kinematic boundary conditions on the upper and lower
surfaces (Kinnas, 1992). The result is that thickness may be explicitly included prior to
the loading calculation and does not significantly increase the computational complexity
of the problem. In the case where mean camber surfaces deviate significantly from the
plane (Hsin et al., 1991) Kinnas shows that it is necessary to first calculate the loading
for zero thickness before adding a thickness correction factor to the free stream in order to
obtain the coupled solution. We shall consider here only systems of surfaces which deviate
from planes by a small amount and under such circumstances, the two formulations are

equivalent.

It is consistent with the present formulation to model the thickness of any thin surface by a
source distribution on the center plane of that surface. While this source distribution will
influence the velocities on the upper and lower surfaces equally, and thereby contribute

nothing to the pressure difference between them, it will significantly modify the potential
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across all other planes in the flow domain. This Chapter deals with thickness as it effects

endplates, ground effect and the case of two or more wings flying in proximity.

6.2 Suction and Induced Drag

Under the present formulation, the lift and suction are regarded as sufficient to determine
the induced drag with and without thickness. However if this approach had not been
taken, then it would be necessary to consider the coupling of lifting and thickness to
second order in angle of attack, in order to correctly determine the induced drag. Such
an analysis (Tuck, unpublished notes on aerodynamics) for a single wing with thickness

shows that the resulting drag may be evaluated as

Di = [ Ipla,y, 005 (2,9) — pla,, 05 (@, y) dady  (621)
= Dg+ Dy + Dy, (6.2.2)

where

Ds = —pa //B dzdy //B dédn m(z,y)m(€,n)G.(z — &,y —n,0) (6.2.3)

is the contribution from the sources alone,

Dy =pa //B dzdy ]/B dédn ~y(z,y)y(&m Ho(z — &,y — n,0) (6.2.4)

is the contribution from the vortices alone, and

Dy =pa [ [ dady [[ dednm(z,p)y(6,m)(Grs — Hrilw = &y =n,0)  (6:25)

is the contribution from the interaction between sources and vortices, where G, H, G\
and H; refer to the singular and non-singular kernels for the influences of source and

horseshoe vortex distributions respectively.

The only way in which such a complicated interaction could be manifest in the current
formulation is through a thickness modification to the linearized leading-edge suction
coefficient. Although a number of investigators have considered the nonlinear attenuation
of the suction phenomenon with angle of attack for real airfoils (Lan and Su, 1987) and
the variation of leading-edge suction with camber (DeLaurier, 1983), the reduction of
leading-edge suction with linear thickness is unclear. Such an investigation is beyond the
scope of this thesis, but would no doubt make an interesting study. For the purposes
of the remainder of this thesis it will be assumed that linear leading-edge suction is not

affected by wing thickness.
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6.3 Mathematical Formulation

e Physical surfaces

i

Free stream U

—_—

Ground plane

________________________

7 y Image surfaces

Figure 6.1: Wing-endplate combination plus image.

In order to properly formulate the thickness problem, we need to specifically consider the
inclusion of ground effect. Ground effect in the presence of a rigid ground plane can be
modelled as in Figure 6.1 using an image as though reflected in the ground plane. Let

the velocity be given by
q=V Uz + ¢z,y,2)) (6.3.6)

where ¢ is the velocity potential

¢(z,y,2) = /fW A& ) H(z — &y —n, 2 — ) dedy
& //P'Y(E,O@(w — &,y —n,z —()d€dC
U //Wm(ﬁ,n)ﬁ(w — &,y —n,2— () dédny
[, m&.08( ~ &y = n,z — ) ded. 63.7)

+
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The composite potential functions include the image contributions such that

—H - H+H1=H($—§ay—n,Z—C)_H(m—f,y—naz‘FO (638)
G = 6+6=6(c—-&y—n2-0)+&z—-&y—nz+() . (639)
g = S+Sl:5(37_f,y—naZ—C)+S(fc—f>y—Tl>Z+C)- (6310)

Maintaining the previous notation, H is the potential function for a unit horseshoe vortex
on the wing, G is the potential function for a unit horseshoe vortex on the plate and S
is the potential for a source on either the wing or the plate. For convenience, it will be
assumed that when S refers to a source on the plate, the influence of both endplates is
included. In the special case where one endplate only is to be included, we shall use 5~

instead. Then

g_f =[] AH.dein+ [ [ 4G deic

* //W ms dfd’”ffp mS, déd. (6.3.11)

Taking the limits above and below the surface of mean camber z — h £+ 0 gives

Ut :Zgﬁ{ [ T dédn + [ [ oG- dedc + [ [ mS. dedn + [[,m3. d§d<}
= //Wvﬁz dé“dn+//Pv@ dédéiém+//wmslzd§dn+//lj mS, déd¢  (6.3.12)

Subtracting the two halves of Equation 6.3.12 and solving for m gives
0
m(z,y)=U (fi - f7) = U —(Wing Thickness). (6.3.13)

Taking the average of the two halves of Equation 6.3.12 and substituting the mean camber
fo= (£ + f7)/2 gives

Ufe= [[ 2. dedn+ [ [ AGededc + [ [ mSr. dedn + [ [ 3. dec.
(6.3.14)

Thus the first of the coupled lifting-surface equations for wings and endplates in ground

effect with leading-order thickness is

[ AT dean+ [ [ vC.dedc =~ [ [ mS,. dean — [ [ m3. deac + U
(6.3.15)

Similarly, the second equation is

//W’rﬁy dédn + //P YGy déd( = —//P mSy déd¢ — //W mSy dédn + Uga,
(6.3.16)
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where S* is the contribution to the velocity potential S due to the second endplate only.
In the case of multiple wings or wing-endplate combinations in or out of ground effect,

the contribution of sources from every other surface and its image must also be included.

Once these equations have been integrated once with respect to =, we need only calculate

the additional kernel functions based on the velocity potential for a source

1
XY, 7Z)=——= 3.
S(X,Y,Z7) R (6.3.17)
where R = /X2 +Y? + Z2. Thus
as 1 XY
L hafadlt” TN

Ky = i dx In (V' + 2R (6.3.18)

0 XZ
K§ = £f3;~ sl (6.3.19)

T 4n (Y2 4+ 2R

Since there is no formal antiderivative to these kernel functions analogous to the kernel for
a horseshoe vortex in the present method, we model the thickness using a Riemann-type
summation. For numerical convenience, we assume that the thickness is constant on each
panel with a value given by the standard NACA 4-digit section distribution evaluated at
the collocation point. This distribution is given (Abbott and von Doenhoff, 1958, page
113) as

t
+y, = —— (0.20690/z — 0.12600z — 0.35160x” +0.284302° — 0.101502*) ,

0.20
(6.3.20)

where t is a thickness parameter expressing the maximum thickness as a fraction of the
chord length and the chord is defined for 0 < & < 1. In fact, this distribution describes a
foil which is slightly longer than ¢ = 1, but as it is a standard in the literature it will be
used without modification. Figure 6.2 shows the thickness distributions over 0 < z <1

for various values of .

With the exception of the case of a single wing without endplates in free air, thickness
effects are significant to first order for every wing or wing-endplate combination in or
out of ground effect. In the context of the previous Chapters, there are three cases that
should be described, namely the influence of thickness when adding endplates to a single
wing in free air, the effect of wing thickness with and without endplates in ground effect,

and the effect of a second lifting configuration in proximity to the first.
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Figure 6.2: Thickness distributions for NACA 4-digit wing sections for various values of

the thickness parameter t.

6.4 Single Wing with Endplates

From the thickness modification to the mathematical formulation of the lifting surface
integral equations presented in Section 6.3 of this Chapter, it is easy to see that the
thickness of any component of a wing-endplate configuration alters the apparent angle
attack of every component other than those in the same plane as itself. However, it is

not always clear what effect this will have on the lift distribution.

In order to develop some intuition on these coupled effects, an examination is made of a
single wing with endplates. The case where the wing has thickness while the endplates
do not is considered first, then the case of a flat plate wing with thick endplates. It will
be seen that even a flat plate at nominal angle of attack aw = 0° will produce lift when

there is a vertically asymmetric distribution of thickness on the endplates.

6.4.1 Wing with Zero-Thickness Endplates in Free Air

We take a unit square wing with unit square endplates. The endplates have no thickness

and the wing has spanwise uniform thickness parameter t(y) = t. We chart the variation
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of Cr, against the vertical offset b of the endplates from the central position for various
values of £. We maintain the horizontal symmetry a = 0 as before. For clarity these
results are presented in Figures 6.3 and 6.4. Figure 6.3 shows the variation in lift with
the vertical location of the square endplate for a wing at angle of attack aw = 0°. The

thickness parameter t/c takes the values 0%, 2%, 4%,6%,8% and 10%.
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Figure 6.3: Plots of Cr, against the vertical offset b of the zero thickness endplates from
the central position for aw = 0° and t/c = 0%,2%,4%,6%,8% and 10%. Note that

thickness causes a downforce when the endplate is on the lower half of the wing only.

Note that when the wing has thickness, asymmetry in the position of the endplate causes
a net lift or downforce on the wing, even though the wing is at zero nominal angle of
attack. This is because the wing thickness accelerates the flow on both upper and lower
surfaces in the same way as fluid is accelerated through a Venturi and the pressure is
consequently reduced. When the endplate is is symmetrically located, this effect is equal
on both upper and lower surfaces and the pressure difference between the surfaces caused
by the thickness is zero. When the endplate is asymmetrically positioned, the Venturi
effect is greater on the surface where flow is more two-dimensional. Thus if the end-
plates are dominantly below the wing, the two-dimensional flow on the lower surface

produces a lower average pressure than on the upper surface and the wing experiences a
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net downforce. For a zero camber airfoil, this effect is vertically symmetric. Figure 6.4
includes the information from Figure 6.3 but also shows the relative effect of this ad-
ditional ‘thickness lift’ to flat-plate lift for the square-wing, square-plate geometry at
angles of attack aw = 0°,2°,4°,6°,8° and 10°. It is clear that thickness effects are not
significant whenever the endplates are vertically central. Maximum lift no longer always
occurs when the endplates are vertically central. In contrast to the flat-plate case, there
is now a balance to be struck between the two lift-generating mechanisms. For positive
angles of attack, thickness reduces the high pressure below the wing and increases the
suction above the wing. It is consequently worth offsetting the endplate such that b>0
to make the flow over the wing more two-dimensional and the flow below the wing less

two-dimensional.

6.4.2 Flat-Plate Wing with Thick Endplates

Introducing thickness to endplates is another way to increase the lift of a system with
the same planform geometry. In order to compare this effect with the lift of a flat plate
and the thickness-related lift of a thick wing, thickness is added to the endplate above
the wing only. This will accelerate the flow over the upper wing surface and cause a lift
force. Figure 6.5 shows the variation in lift of a square flat-plate wing at angle of attack
aw = 0° against vertical offset b of square planform endplates. Curves are shown for the
parameter tp, being the thickness of the endplate above the wing. The endplate has zero
thickness below the wing.

Note that there is still an optimal vertical offset b even though the wing and lower
plates have zero thickness. The section of the endplate below the wing still has a role
to play in maintaining the difference in pressure between upper and lower wing surfaces
by preventing the relatively high pressure air below the wing from circulating around
the wingtip to the low pressure region created by the Venturi between the thick upper
endplates. In this case, the balance is struck when the endplate 1s almost entirely above
the wing. By comparing Figures 6.3 and 6.5 we see that the thickness effect of the
endplates is certainly of the same order as that of the wing and in the case of the square
planforms, creates a lifting force roughly three times greater than for the same thickness

on the wing.
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Figure 6.4: Plots of Cp, against the vertical offset b of the endplates from the central
position. The group of curves for each of the angles of attack aw = 0°,2°,4°,6°,8° and
10° shows the effect of t/c = 0%,2%,4%,6%,8% and 10%. In every case the greatest
variation in lift occurs for the thickest wing. At higher angles of attack, the thickness
related lift is relatively less significant than the flat-plate lift. In all cases, finite thickness
makes the optimal endplate displacement b positive, rather than zero as already shown for

a wing of zero thickness.

6.5 Wing Thickness in Ground Effect

Having developed an insight into the effect of thickness in free air, we turn to the case
of a single wing in ground effect. Rather than repeat the work of the previous section,
we consider only the cases of wing thickness with and without flat endplates. Before
proceeding with the geometries of specific interest, it is prudent to verify the numeric
implementation. In the previous Chapter on ground effect, it was found that even in
moderate ground effect, the wing grid scale can cause large inaccuracies when image
vortices are close to surface panels. It is reasonable to assume that image sources will

have similar numerical behaviour. One test of the numerics is to compare the predicted
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Figure 6.5: Plots of Cr against the vertical offset b of the endplates from the central
position. The endplate has thickness parameter tp = 0%, 2%, 4%, 6%, 8% and 10% above

the wing and zero thickness below the wing.

downforce of a single wing at zero nominal angle of attack with full endplates with that

estimated by the one-dimensional channel flow

p(z) = po + %—pAU2 (1= (ho/h(2))?) (6.5.21)

where hg is the nominal altitude of the wing and h(z) is the actual clearance. In this
case h(z) = ho — yi(z). Since it is only the ratio ho/h(z) that determines the pressure
distribution beneath the wing, we may calculate the exact value of the total downforce

for any given thickness parameter t. For ¢t = ho/10 the lift coefficient O = —-.0729.

Numerically it is difficult to reproduce this result using the three-dimensional code be-
cause computational effort must be expended to include sufficiently large endplates so as
to make the flow effectively two-dimensional. Also, the grid scale must be fine enough
to resolve the influences of image sources located beneath the ground plate. Using flat
rectangular endplates which extend from one chord length upstream of the leading edge
to one chord length behind the trailing edge, and from the ground to two chord lengths
above the wing we obtain the data presented in Table 6.1.
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ho t Cr
0.100 | 0.0100 | -0.0440
0.050 | 0.0050 | -0.0525
0.025 | 0.0025 | -0.0581
1/00 | ho/10 | -0.0694

Table 6.1: Downforce produced on a unit square wing with thickness parametert = ho/10.
Endplates have no thickness and are full skirts to produce effectively 2-dimensional flow.
In the limit as ho — 0, 1-dimensional channel flow predicts that C, — —0.0729. Euxtra-

polation is used to match the one-dimensional case.

While increased endplates and consequently increased numbers of panels asymptotically
improve the results for this test, they are regarded as sufficient code verification for the

following sections.

6.5.1 Bare Wing

The thickness in ground effect of a bare square wing with thickness parameter 1 is to
be considered. Since the effects of aspect ratio and angle of attack have been covered in
the previous Chapter 4 we consider only the parameters ho and ¢. Figure 6.6 shows the

variation of C, with the altitude ho for various thickness parameters t.

As with the case of negative angle of attack and no thickness, the downforce varies linearly
with the thickness parameter ¢ and inversely with the altitude ho. In order to increase

the downforce, we can add endplates as full skirts.

6.5.2 Wing with Flat Endplates

By adding skirts to the wing in ground effect, we limit the flow of air into the low pressure
zone directly beneath the wing. Figure 6.7 shows the variation of the lift coeflicient Ct

with the altitude for various thickness parameters.
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Figure 6.6: Plots of Cr against the vertical altitude ho of a bare square wing in ground

effect. The wing has thickness parameters t = 0%, 2%, 4%, 6%, 8% and 10%.

6.6 Multiple Body Flight Configuration

Birds and aircraft often fly in formation. This might be for efficiency, such as the delta
arrangement for large load-carrying aircraft which simulates a wing with a larger (if
discontinuous) span. The addition of thickness to the wings introduces nothing to the
case where all wings lie in the same plane, but when the surfaces are stacked vertically,
as in some bird formations, the thickness becomes significant. The first observation is
that the flow is accelerated in the diminished gap between the surfaces, thus decreasing
the lift on the upper wing and increasing the lift on the lower wing. The relative location
of the wings can significantly effect the coupling due to thickness. Having established
the thickness properties of endplates in previous sections, we consider only multiple wing
interaction in free air. In particular, we consider the case of a second wing identical to

the first with a horizontal offset a and a with a vertical offset b (see Figure 6.9).
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Figure 6.7: Plots of Cr, against the vertical altitude ho of a square wing with full-chord
skirts in ground effect. The wing has thickness parameters t = 0%, 2%, 4%,6%,8% and

10% and the endplates have zero thickness.
6.6.1 Horizontal Offset

For any given pair of wings at a given vertical separation, there is an optimal horizontal
offset ¢ which maximises the combined lift to drag ratio. To illustrate this, consider two
unit square wings each with a NACA thickness distribution with thickness parameter .
Each wing is at an angle of attack of aw = 5°. Figure 6.9 shows the variation in the
ratio of lift to induced drag L/D; for the two wing combination as the horizontal offset a
between the leading edges of the two wings varies from a = —c¢, when the top wing is a
full chord length in front of the lower wing to a = ¢, where it trails by a full chord. The
vertical separation between the two wings is b = ¢/2. Note that there is no attempt to
include skin frictional drag in this case. As biplane theory predicts (Kuchemann, 1978)
for wings of zero thickness, there is an optimum when the wings lie directly on top of
each other. As thickness is gradually introduced to both wings, the maximum is higher

and occurs when the upper wing is forward of the lower wing.

To see what is happening to each of the two wings, we plot L/D; as realised on each of
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Figure 6.8: Two identical wings with thickness parameter t and horizontal and vertical

offsets a and b, respectively.

the wings individually. Figures 6.10 and 6.11 illustrate that as the thickness parameter
¢ is increased and the suction between the two wings correspondingly increases, the lift
on the upper wing decreases. In order to reduce the drag on the upper surface it may be
moved forward, thus increasing the leading edge suction. In fact for ¢ = 10%, there is a
region from —0.25 < a < —0.05 where L/D; on the upper wing is negative. This is not
because the lift is negative, but because the suction is so strong that the upper wing is

getting a free ride. This situation does not correspond to the global optimum, however!

Clearly the optimal offset @ will vary with the angles of attack, span, vertical separation
and thickness of the two wings. It is also clear that the variation will not be linear with

any of these.

6.6.2 Vertical Separation

While there is always a well defined optimal value of a for a given vertical offset b, there is
not always an advantage in utilising the straight “biplane effect.” Consider the 2 square
wings, again at aw = 5° with fixed horizontal separation @ = 0 and variable vertical

separation b. Figure 6.12 shows the variation in L/D; against b for a variety of thickness
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Figure 6.9: Combined L/D; against horizontal offset a for two unit square wings at

ow = 5° and thickness parameter t = 0%,2%,4%,6%,8% and 10%.

parameters t.

While there is a clear advantage to wings of zero thickness flying in vertical proximity,
this advantage is reduced by thickness coupling. If only vertical movement is allowed, the
zero thickness wings should fly with a separation of b = 0.3¢c. At a smaller separation, the
loss in lift is not compensated for by the dissipation of vortex energy. Beyond a thickness
of approximately t/c = 5%, there is no such balance point. However, if horizontal
movement were also allowed, there would be an optimal finite pair (a,b) that described

a configuration whose performance exceeded that of the two separate wings in free air.
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Figure 6.10: The efficiency L/D; for wing number 1 versus the horizontal offset a

for two unit square wings angles of attack aw = 5° and thickness parameters t =

0%, 2%, 4%, 6%, 8% and 10%.
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Figure 6.11: The efficiency L/D; for wing number 2 versus the horizontal offset a

for two unit square wings at angles of attack aw = 5° and thickness parameters

t = 0%, 2%, 4%, 6%, 8% and 10%.
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Figure 6.12: Combined efficiency L/D; versus the vertical separation b of two unit square
wings at angles of attack aw = 5° and thickness parameters t = 0%, 1%,2%,3%,4% and
5%.
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Chapter 7

Optimization

The theme of optimisation has been significant in many of the preceeding Chapters
in this thesis, but there are issues regarding the formulation and numerical solution
of optimisation problems that have not yet been explicitly addressed. This Chapter
is not a comprehensive study of optimisation but contains a number of examples and
separate discussions of specific problems associated with using an optimisation algorithm

to improve a lifting configuration.

7.1 Introduction

The designer of an algorithm for calculating the forces on general lifting surfaces may
start with a pre-conceived notion of what sort of ‘general’ planforms will be input to
the program. It may be expected that the boundary will be quite smooth, except at a
small number of points (maybe cusped wingtips) and the likely optimal shape will in all
likelihood be a sleek object. However, the automatic search does not know this. Even
a very clever algorithm for generating shapes needs to have a representation that allows
geometric flexibility but will not trip up the numerics. In other words, the designer of
the optimal search should be aware of all the possible shapes that will be input to the

lifting surface program, but should not pre-empt the results.

Another approach to the structural optimisation problem involves the determination of
the loading of a structure and the subsequent removal of material with loading below
a critical value (Xie and Steven, 1993). This approach has been successfully used to

optimise Michell trusses and other mechanical structures. Its strength lies in the ability
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to use information from the function evaluation to guide the search direction. It may be
useful to include a similar feature to the present algorithm, though it must be noted that
such an algorithm used alone would not correctly predict the location of the leading edge
on a lifting configuration, as material would never be removed {rom the leading edge to

relocate it.

7.1.1 Finite Geometric Representation

Much effort has been devoted recently to the development of global optimisation al-
gorithms that seek to find which of the possible values of an input vector I of either
binary or real values will maximise a given function F (I). These algorithms may go
under the broader category names of Genetic Algorithms or Simulated Annealing, but
the common feature is that they should have limited or zero functionality that is specific

to the system that they are optimising.

While it is expected that certain search parameters may be tuned either externally or by a
so-called meta-algorithm, only algorithms with ‘heuristic’ components have any problem-
specific functions. All they have to do is be able to call a function to evaluate F'. The way
in which I represents the state of the system at hand is the only mechanism by which we
may influence the direction of the search. The particular choice of representation may be

unimportant or crucial to a given problem.

Consider the maximisation of the lift coeflicient Cf, [aw for a wing geometry. Let the
real-valued vector I specify the leading edge LE(y),0 < y < s and chord c(y),0 <y <s
functions over the wingspan s at a discrete set of points, namely the spanwise collocation
points y;,4 = 1,...,n. Hence the input vector is given by I = (s,¢y...,Cp, LEy,. .., LE,)

and we can run a standard real vector optimizer.

We might expect to find that the optimal input vector I = I * defines a circle or a square
or maybe an infinite AR ellipse, but these geometries will not be found by the genetic
algorithm. There is no natural limit to the size of the wing in this pseudo-random search,
so there are infinitely many geometrically similar wings with the same aspect ratio. It
is very likely that the optimizer will never converge, because of the genetic drift that

frequently occurs when a problem is under-specified or under-constrained.

One solution is to prevent this from happening at the function evaluation stage by normal-
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izing all vector entries with respect to the largest value. Now the optimiser will quickly
start increasing the span s. This is because s is the single vector entry that has the
greatest immediate effect on the lift coefficient. To have the same effect as increasing the
span, all chord length entries would have to decrease in unison, the probability of which
is very small. The optimiser returns a wing with a very large aspect ratio, but very little

useful information about the chord length distribution, which will be effectively random.

Of course it is not reasonable to seek the wing with optimal lift coefficient C./ aw, because
practically the span will be limited by structural considerations. We need to fix both the

span and the planform area in order to have a workable problem.

7.1.2 Grid-Scale Oscillation

Many algorithms require an estimate for the downhill gradient of an optimisation cost
function. For example, a popular general optimisation routine GMRES has been used
to modify standard NACA airfoil profiles to improve their performance (Vossinis, 1995).
However, not all functions are so numerically well behaved. A discussion of a number of

“Industrial Strength” optimisation problems is presented in Davis (Davis, 1996).

There are often grid-scale oscillations in the search space that are artificial products of
the discretisation scheme, quite distinct from the order of computational accuracy, that
introduce an artificial sub-structure to the global optimisation problem. To illustrate
this point, Figure 7.1 shows the variation in the lift coefficient CL/aw of a unit square
wing versus the horizontal offset a of a small 1/4 by 1 /4 square endplate that is vertic-
ally centered on the wing. The number of points chosen to represent the geometry is

deliberately small, with m = 12,n = 12,m, = 6 and n, = 12.

Standard gradient methods are likely to find this troublesome, so we choose to implement

a simple genetic algorithm for the search.

7.2 A Simple Genetic Algorithm

Much work has been done recently on the tuning of genetic algorithms for specific applica-
tions. In this section we do not endeavor to examine the rate of convergence of the genetic

algorithm beyond a level of interest motivated by the present study of aerodynamics.
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Figure 7.1: Grid-scale oscillations in the object function Cp/aw for a unit square wing

versus the horizontal offset a of small, vertically centered square endplates.

The present algorithm operates on a population of N, “chromosomes” ¢;,j = 1,.., N,
each of which consists of N, “genes” g;,t = 1,.., N, or real numbers describing the
geometry to be optimised. Each new generation of the population is produced by creating
N, “children” from the N, “parents.” These new N, < N, chromosomes replace the
chromosomes of the existing population which have the lowest fitness. The fitness is the
external function to be optimised. The children are produced by one of four randomly

selected operations:

e mized crossover, whereby each gene in the child chromosome is randomly selected

from the corresponding genes in each of two randomly selected parents.

o random perturbation, where the genes in a single parent chromosome are randomly

either increased or decreased by 5%.

e averaging, whereby the corresponding genes in two parent chromosomes are aver-

aged to produce a child, and
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e smoothing whereby each gene in a parent chromosome is replaced by the average of

its two neighbouring genes if their basic role in the chromosome is the same.

The last operation is the only one of this list which is function-dependent, because the
genetic algorithm must have some information about the role of each gene in determining
the geometry of the wing-endplate configuration. Ideally, there should be no such opera-
tions, but this one has been found to significantly increase the rate of convergence. The
algorithm ceases producing new generations when the highest fitness in the population

has converged to within an acceptable tolerance of the optimal solution.

Determining the optimal values of N, and N, for a particular problem is very difficult and
usually varies as the generation number increases. The number of original chromosomes
retained at each generation, N, — N, is known as the generation gap. If all but one
of the current population is replaced (N, — N. = 1), the system is known as elitist.
In general, a large generation gap results in early convergence (Brown, 1997), while
a small generation gap allows good schemata, or successful small-scale sub-structures
within the chromosomes that are later assembled into complete solutions, to remain
in the population. According to Davis (1989) the most eflective population size is a
parameter that is dependent on the problem being solved, the representation being used
and the operators manipulating the representation. Other researchers in the field of
genetic algorithms agree. It could take longer to derive parameter values tailored to
one’s problem than the time available for solving the problem itself (Davis, 1989, p61).
There is very little likelihood of finding globally correct answers to questions such as
the choice of population size and crossover operators (De Jong and Spears, 1990, p47).
At present genetic algorithms are as much an art as a science Davis (1991). For the
purposes of this simple genetic algorithm, we shall use a population N, =8, without any
formal justification other than that it is small enough for the present computing capacity
to make some headway and large enough to maintain some genetic diversity within the

population.

7.2.1 Optimal Wing Planform

In this section, we consider a limited optimisation of the planform geometry of a wing
with limited aspect ratio A2 = 1. In order to further limit the search space, the wing

will be assumed to be fore-aft symmetric. Thus the only variables are the local chord
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lengths at a finite number of stations. We choose stations to coincide with the Chebyschev

collocation points on one half of the wing, such that Ny = n/2.

In order to determine the optimal number of children N, at each generation number, we
repeat this test case for N, = 2,4 and 6 corresponding to generation gaps of Gy = 6,4

and 2 respectively. The results are shown in Figure 7.2
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Figure 7.2: The rate of convergence to the optimal wing planform with constant downwash
versus the generation gap G, = N, — N, = 2,4 and 6. Clearly a small generation gap is

preferable in this case.

The optimal lift coeflicient Cf, [aw = 1.467 is somewhat greater than the lift coeflicient
for the square wing Cr/aw = 1.460 and for the elliptic wing with unit aspect ratio
Cr/aw = 1.460, not to be confused with the elliptic wing of aspect ratio 4/, a circle.
Interestingly, the optimal chord-length distribution is a hybrid of the two.

7.2.2 Optimal Endplate

A slightly more complicated optimisation problem is the addition of endplates to a square

wing as considered for rectangular endplates in Chapter 3. In this chapter, we consider
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Figure 7.3: The finite solution produced by the simple genetic algorithm for mazimising
the lift coefficient Cr/aw of a planar wing with constant downwash and aspect ratio
AR = 1. The function evaluation is made by the present lifting surface panel method with
m = 10 and n = 20.

generally-shaped endplates but we restrict the endplate to be fore-aft symmetric about
the wing mean chord, although it need not be vertically symmetric. The chromosome
is chosen to represent [hy, bt, gi,7 = 1,...,n,] where hy is the height of the lower section
of the endplate, h; is the height of the upper section of the endplate and g; are the
chord lengths of the endplate, again measured at the Chebyschev collocation points. The
function evaluation is used with n = m = 18 on the wing and m, = 6 and n, = 12
on the endplate, giving N, = 14 genes per chromosome. The generation gap is retained
at Gy = 2. The rate of convergence is significantly slower than for the planar wing.

Figure 7.4 shows the convergence of the lift coefficient Cr/cw over 1500 generations.

The converged value of the lift coefficient is Cr/aw = 1.913 whereas the previous op-
timum obtained using rectangular endplates was 1.84. It is interesting to also plot the
convergence rates for the individual genes. For clarity, we present only the rates for hy, h¢

and g;,1 = 1,...,6 in Figure 7.5. The rates for the chord-lengths on the upper portion of
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Figure 7.4: The rate of convergence to the optimal horizontally centered endplate at zero

angle of attack on a unit square wing.

the endplate are similar. It takes far longer for the tipmost values to converge than the
values representing chordwise strips near the wing. This is because the tipmost values are
relatively less significant than the values near the wing. The section heights hy and k¢ do
not converge as fast as the difference between them, indicating that vertical asymmetry

is strongly penalised. The actual optimal geometry is illustrated in figure 7.6.

The endplates appear to be cusped, and in the limit as the number of panels on the plate
increases, we expect that the endplate will be a fairing between the wing and an efficient,

centrally located endplate with area zero and infinite aspect ratio, namely a line.

The colour map is a useful visualisation of the optimisation task. Clearly the high-lift
regions on the wing shown in red need to be maximised. Hence placing the endplate far
forward is in a sense redundant because there is already high loading there. Similarly,
placing the endplate towards the rear of the wing reduces the load on the endplate because
of the lower pressures there, so the optimal location is central. That the location appears

to be exactly central is intriguing.
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Figure 7.5: The rate of convergence to for individual genes representing the endplate.
The chord length genes start at the bottom of the endplate such that g, is the chord length
near the tip of the lower endplate and ge is the chord length near the wing of the lower
endplate.

7.2.3 Full Wing-Endplate Optimisation

As with the optimisation presented in Chapter 3, we shall consider the optimisation of
a wing-endplate geometry for values of the flow parameter Ci/ady =0.1,0.2,0.5,1,2,5
and 10. Because the nature of the optimal solution changes dramatically when the
endplates are allowed to flare, we present a series of optimal designs, generated by the
present genetic algorithm operating on the chromosome [w, Ay, hy, p], Where w is a vector
of real values describing the location of the wing leading-edges and chord-lengths at six
Chebyschev-located spanwise collocation positions and p gives the leading-edge and chord

values for six Chebyschev-spaced heightwise collocation points on the endplate.

Adding a gene to represent the endplate flare angle dramatically increases the number
of generations required to obtain convergence. This may be because of the strongly

dependent roles of this gene and the genes representing the height and location of the
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Figure 7.6: The optimal horizontally centered endplate at zero angle of atlack for a unit

square wing. The object function is the [ift coefficient Cr./aw and the optimal value
is 1.913 as compared with the optimal reclangular endplates for the same problem, with

optimal value 1.84.

endplate. For the values of the flow parameter C /a¥, > 1, where induced drag 1s
penalised far less than skin [riction, the natural flare angle is larger than can be accurately
input to the present linear algorithm for evaluating the pressure distributions on the wing

and the endplate.

Also, if the genetic algorithm is allowed to proceed with no check on the spanwise con-

tinuity of the wing and endplate geometries, there is a tendency to produce somewhat
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disjoint shapes with extreme grid-scale oscillation, when the flare-angle gene is included.
This may be cured by increasing the relative frequency of the genetic operation which
smooths out the jagged edges on the surfaces, but it is interesting that an increased

loading on the endplate favours disjoint geometries.

The present geometric scheme allows chordwise strips to move, expand and contract to
represent a planform, and spanwise discontinuity on the wing surface itself in a sense
decreases the effective aspect ratio of the wing. A discussion of the effect of small gaps
in lifting surfaces as are produced when a chordwise strip is significantly displaced from
its neighbours is presented in White (1969). By comparison, a highly-loaded endplate,
for example when flare is introduced, may well be improved by a slight feathering effect.

A full analysis of this idea is not within the scope of this thesis.

While this effect is manifest as a degeneracy in the present scheme, it highlights one of
the real advantages in using psuedo-random search techniques. By blurring the interface

between the user and the function evaluation, successful new solutions may be found.

For these reasons, the inclusion of a variable flare-ratio is left for future work. It is
assumed that the wing-endplate configuration is symmetric about the axis y = 0. The
angle of attack of the endplates is maintained at ap = 0. Additionally, thickness variation
had been omitted from the présent optimisation, although thickness will alter the optimal

configuration and improve the overall performance.

By using a genetic algorithm with a small, but representative number of genes per chro-
mosome, we are able to quickly isolate a successtul finite wing-endplate configuration for
each of the cases C;/a¥ =0.1,0.2,0.5,1,2,5 and 10. The trend is fairly clear, with the
endplate size decreasing as area is increasingly penalised, but there are other interesting
features. While none of the designs can be regarded as “fully converged” to the optimal
solution, there is a distinct asymmetry in all cases between the upper and lower sections
of the endplate. However, as the horizontal offset is maintained naturally throughout the
search, such that the endplate sections touch leading-edge to trailing-edge at the wing,
it may be more instructive to note that the endplate portion near the leading edge of
the wing is, in general, vertically shorter than the rear section. For smaller values of the
flow parameter C/a%,, the optimal endplate moves forward to the leading edge of the
wing and the optimal wing geometry itself changes such that the leading edge is swept

and the trailing edge is unswept.
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Figure 7.7: The best discrete wing-endplate geometry found after 500 generations using

n=n, =6 and m = m, = 18, for the case of Cy/afy =0.1.

While a calculus-based search is likely to be useful once a successful design paradigm
has been identified by a genetic algorithm, it is also possible to increase the number of
unknowns once an initial solution can be provided to a genetic algorithm. Figure 7.14,
which also appears in colour at the front of this thesis, shows the converged solution after
1000 iterations for the wing-endplate geometry with C¢lak, =1 and n = n, = 14 and

m=m, = 18.

It is interesting that the present optimal lifting surface is produced entirely randomly
and linearly. Features such as the reduced size of the forward plate and the endplate

shaping are often regarded as products of non-linear analysis.

7.3 Conclusion

Clearly the genetic algorithm is a powerful tool for identifying and optimising lifting geo-
metries. However, there must be a balance struck between the pseudo-random search,

used to avoid the solution becoming trapped in the local minima so evident in the contem-
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Figure 7.8: The best discrete wing-endplate geometry found after 500 generations using

n =mn, =6 and m = m, = 18, for the case of C;/ad, =0.2.

porary panel methods, and using a calculus-based gradient scheme to optimise localised
geometric features. For example, Gage et. al. (1995) present a variable-complexity al-
gorithm which starts with a genetic algorithm and ends with a specific gradient-based

scheme for the optimisation of a wing design for minimum induced drag.

In an attempt to reduce the number of grid-scale oscillations in the design during the iter-
ative procedure, the representation was changed from assigning to the genes the leading-
edge and chord value at the spanwise stations. Instead, the leading-edge and chord-length
configuration were represented as Fourier-series, where the genes took the values of the
Fourier coefficients. The values of the resulting functions were then evaluated at each
of the spanwise collocation stations and the appropriate leading-edge and chord-length
values assigned. Rather than reduce the grid-scale oscillation, it was found that the
coefficients of the higher frequency modes maintained high values until convergence was

reached, so no improvement was made by this particular change in representation.

Even though the search space for the optimisation of wing-endplate geometries using the

present scheme undoubtably contains grid-scale behaviour that prevents the use of generic
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Figure 7.9: The best discrete wing-endplate geometry found after 500 generations using

n =n, =6 and m = m, = 18, for the case of Cslod, =0.5.

derivative-based search procedures, the space is in many cases not so poorly behaved as

to warrant a truly random search. There may be merit in introducing an acceleration

or over-relaxation to the present genetic algorithm in order to speed the approach to a

converged solution.
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Figure 7.10: The best discrete wing-endplate geometry found after 500 generations using

n =mn, =6 and m = m, = 18, for the case of C¢lady = 1.
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Figure 7.11: The best discrete wing-endplate geometry found after 500 generations using

n=mn, =6 and m = m, = 18, for the case of Cylod, =2.
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Figure 7.12: The best discrete wing-endplate geometry found after 500 generations using

n=n,=6 and m=m, =18, for the case of C;/ady = 5.
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Figure 7.13: The best discrete wing-endplate geometry found after 500 generations using

n=n, =6 and m = m, = 18, for the case of C¢/od, = 10.
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Figure 7.14: The optimal wing-endplate configuration for a flow parameter Cilaty = 1.

Generaled nusing 1000 generations of the present genelic algorithm. The wing is forced lo

have aspect ratio AT = 1.
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