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"under static loading" to read "under proportional
static loading" in line 7.

"has been in" to read "has been observed in" in
Sth last line.

"mid-section" to read "“centroid" in line 6.
"sophisticated" to read "complex" in line 1.
"obtained" to read "obtain" in lines 11,15,17.
"jterate" to read "iteration" in line 13.

Delete the entire sentence beginning with "The
program was modified .." and replace it with "The
program used does not include the material
unloading path described earlier in Section 2.4."
in line 2.

"for beam AA3" to read "for the unbound region of
beam AA3" in line 16.

"safeguard" to read "safeguards" in line 14.
"underestimate" to read "underestimates" in line
4,

"for section" to read "for a section" in line 8.
“"balance" to read "balanced" in second last line.
"squashed" to read "squash" in 7th last line.
“are" to read “"were" in lines 11,19.

“jinto" to be deleted in line 8.

"geometrical" to read "the geometrical” in line 3.
"nonlinearities" to read "nonlinearity" in line
19.

"nointed out” to read:"indicated" in line 7.
"ysed" to read "use" in line 13.

"make" to read "makes" in line 19.

“requiring" to read "requires" in line 7.

"Carry out" to read "Execution of” in line 10.
"change change" to read “"change" in line 11.
"deformed" to read "deforms" in line 9.

"croses" to read "cross" in the second line of the
first box in Figure 3.5.

“vreinforce" to read "“reinforced" in line 12.
“plasticfication" to read "plastification" in line
3.

"He" to read "They" in line 2.

“"arbitrary" to read "“arbitrarily" in line 3.
"earlier” to read "had earlier” in line 7.
"refers" to read “refer" in line 2.

"deformation" to read "the deformation" in line
13.

"jncreases or decreases" to read "increase or
decrease" in line 3.
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“partially" to read "a partially" in line 18.

"He" to read "They" in line 18.

“govern" to read "gaverns" in the last line.
"described" to read "describes" in line 6.
"reinforced" to read "a reinforced" in line 21.
"solution” to read "a solution” in line 5.
"support” to read "interior support" in 6th last
line.

"amount" to read "amounts" in the last line.

"the strength of concrete" to read "different
concrete strengths" in line 1.

"exist" to read "exists" in line 10.

"load” to read "a load" in line 7.

"limits" to read "limited" in 7th last line.
"required" to read "requiring" in 4th last line.
"concerns" to read "concerned' in 2nd last line.
“ignore" to read "ignoring" in last line.
"literatures" to read "literature" in line 4.

"in this chapter"” to read "by the author and
reported in this chapter" in line 4.

"reinforced" tao read " a reinforced" in line 6.
"individual" to read "by individual" in line 7.
After the sentence ending with “curvature" insert
the following sentences: "The "key" segment is
chosen by trial and error. It is likely to be cne
of the more highly stressed segments." in line 9.
"gives" to read "give the" in line 13.

"This out-of-balance forces is" to read "These
out-of-balance forces are" in line 14.

In the seventh box down from the top "Kunie(1)" to
read "Kunio(keyl)" in Figure 4.1.

"was" to read "were" in line 4.

"will" in line 12 to be deleted.

"stiffness" to read “stiffness matrix" in lines
10,11.

"literatures" to read "literature" in line 9.
"give" to read "gives" in line 2.

"moment" to read "moments" in line 20.
"curvatures" to read "curvature" in line 15.
"numerical technique"” to read “a numerical
technique" in line 17.

"perfectly” to read " a perfectly" in lipes 7,8.
"also difficult" to read "it is also difficult" in
line 8. -

"Rad, Gunnin and Furlong" to read "Gunnin, Rad and
Furlong" in line 13.

"Rad, Gunnin and Furlong" to read "Gunnin, Rad and
Furlong" in 3rd last line.

"single" to read "a single" in 4th last line.
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"moment-curvature" to read "a moment-curvature" in
line 6.

"nonlinerity" to read "non-linearity" in line 19.
"relatively" to read "a" in line 3.

"were" to read "was" in line 12.

"are" to read "were" in last line.

"the total" to read "of the total" in 2nd last
line.

"the total" to read "of the total” in line 7.
Yend" to read "ends" in line 7.

“quantity" to read "quantities" in line 17.

"step" to read "steps" in line 14,

"are" to read "is" in line 7.

"Though," to read "Though" in line 15.

"seems is" to read "appears" in 3rd last line.
"convenience" to read "convenient" in line 1.

"the a frame" to read "the frame" in line 10.
"was" to read "is" in lines 22,24.

“veaches" to read "reach" in S5th last line.
"Comparable" to read "A comparable" in line 6.
"Mue = is the moment" to read "Mue = the moment"
after equation 7.2.

"Rosenbluth" to read "Rosenblueth" in line 5.
“Yobtain" to read "obtain the" in the last line.
"column" to read "columns" in line 7.

"steels" to read "steel" in line 1.
"symmetrically" to read "a symmetrically" in line
15.

"correspond” to read "corresponds" in line 16.
"constructability" to read "constructibility" in
line 20.

"is given" to be deleted in line 18.

"higher" to read "a higher" in line 4.

"plastic collapse" to read "a plastic collapse" in
line 12,

"sway mechanism" to read "a sway mechanism" in
line 17.

"reaching peak strengths" to read "reach their
peak strengths"”.

"continue" to read "continued" in line 2.
"continue" to read "continued" in line 2.
"obtained" to read "obtained from" in line 15.
"load" to read "loads" in 8th last line.

"depends" to read "depend" in line {. .
"corresponds” to rvead "which corresponds" in line
7.

"has" to read "have" in 3rd last line.

"to the same" to read "to be the same" in line 3.
"also got rid of" to read "it also eliminated" in
line 1.

"rigorous" to read "rigorous analysis" in line 21.
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"Carry out" to read "Use of" in line 4.

Delete last line.

"transdormation" to read "transformation" in 2nd
last line.

"then the" to read "than the" in line 11.

“"closed" to read "close" in line S.

“check" to read "checked" in 9th last line.

"can now be ctalculated" to read “can be
calculated" in line 8.

"interval" to read "intervals" in line 11.

“of unity" to read "is unity" in line 13..

“take into account®” to read "take account" in 4th
last line.

"axial length due" to read "axial 1length change
due" after equation El.

"differentiating" to read "differentiation of"
after equation E7.

"contragrediant" to read “contragradiant" after
equation E20.

"noadal" to read "nodal" before equation E29.
“contragrediant" to read "contragradiant® after
equation E31.

"gspecified" to read "specifies" in the last line.
"distant" to read "distance" in line 3.

"number of segment” to read "number of segments"
in line 9.

"specify" to read "specifies" in B8th and 10th last
lines.

"gpecifies" to read "specify" in line 4.

*layer" to read "layers" in 4th last line.

"ies required to specified" to read "are required
to specify" in line 13,

"assign" to read "assigned" in 3rd last line.
"element" to read "elements" in 4th last line.
"completely" to read "complete" in 2nd last line.
"for individual" to read "for an individual" in
line 8.

“for ultimate" to read "for the ultimate" in line
10.

"for design" to read "for the design" in line 1i1.
"safeguard"” to read "safeguards" in line 10.
“Ycarry" to read "carry out" in 4th last line.
"Proceedinds" to read "Proceedings" in Ref. 10.
"Frish-Fay" to read "Frisch-Fay" in Ref. 74. -
“"Combined and"” to read "Combined Bending and" in
Ref. 95.

"Prang" to read "Pfrang" in Ref. 122.

“"Chracteristic"” to read "Characteristic" in Ref.
148.
"Porblems" to read "Problems" in Ref. 154.
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Abstract xvill

ABSTRACT

An efficient computational procedure to analyse reinforced concrete skeletal
plane frames taking into consideration material and geometrical nonlinearities
is presented, which allows structural behaviour to be followed through the
working load and overload ranges and up to ultimate load and then into the
post-collapse, softening range. A computer program SAFRAME based on this
procedure has been developed which is suitable for carrying out top-tier design
in accordance with the new Australian concrete code, AS3600. The accuracy
of the program is demonstrated by comparing analytical results obtained for

columns and frames with published laboratory test results.

The program has been used to carry out a numerical study of the collapse

behaviour of a wide range of portal frames and several multi-storey frames.

The results of the numerical study suggest that the final mode of collapse of
a realistic portal frame is likely to be initiated by the formation of one or
several hinges, which may or may not proceed into the softening stage, with
final instability due to geometric non-linearity. Simple plastic collapse, with
a sufficient number of hinges forming to produce a collapse mechanism, was

only found to occur in relatively stocky structures.

Snapback instability, a phenomenon of softening structures, was also observed

in some of the portal frames analysed.

The program was also used to evaluate the accuracy of the present Australian
Standard AS3600 code-based, simplified methods for the analysis and design
of slender reinforced concrete frames. Portals and multi-storey frames were
included in this study. For most frames, the simplified methods give con-
servative results, sometimes too conservative. However, these methods may
over-estimate ultimate loads in frames which fail by instability with significant

lateral displacement of loaded joints. In estimating design loads, the middle-
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tier method has been found to be unconservative for this type of frame.

Xix
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Principal Notations

B = width of rectangular section

d = the effective depth of a cross section

H = depth of rectangular section

EI(n) = the flexural stiffness of the nth segment
E, = modulus elasticity of steel

E. = modulus elasticity of concrete

fem = mean cylinder strength of concrete

fsy = yield stress of reinforcing steel

$s = stress in steel

Jemoz = peak stress of concrete in structure

F., = characteristic cylinder strength of concrete at 28 days
ISTEP = typical curvature step

[k] = element stiffness matrix

(k] = first-order element stifness matrix

(k] = second-order element stiffness matrix

[K] = global or structure stiffness matrix

M = design bending moment

N, = the buckling load used in column design
N, = the ultimate strength in compression of an

eccentrically loaded compression member
Nuo = the ultimate strength in compression of an

axially loaded cross-section, without eccentricity

P = point load
S(m) = the extentional stiffness of the mth element
SF = scaling factor

= uniformly distributed load
¢ = the strength reduction factor

€c = strain in concrete
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€cmaz = strain in concrete corresponds to femas
Y15 Y2 = the column end restraint coeflicients
o = the moment magnifier for an unbraced column

bs = the system magnifier for a floor



Chapter 1

Introduction

1.1 Introduction

Collapse behaviour of reinforced concrete frames is complicated by the ma-
terial and geometrical nonlinearities present in such frames. In extreme cir-
cumstances, non-linearity can even lead to the occurrence of snapback in the
characteristic deflections. Snapback instability, a phenomenon described by
Bazant et al(1987b), occurs when a characteristic deflection exhibits one or
more local ultimate deflections, dP/dA = —oo, where P is a load term and A is
the characteristic deflection. To follow such behaviour analytically, procedures

have to be developed to traverse local peak load, and local peak deflections.

Much theoretical work has been carried out on the collapse behaviour of iso-
lated reinforced concrete columns. These studies, together with limited experi-
mental tests of structures such as simple frames and columns, enable simplified

methods of design and analysis to be developed. These simplified methods,
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though relatively simple to use, are based on a number of highly idealised
concepts. While checks have been made on the accuracy of these methods for
isolated columns, the inaccuracy when extended to more complex frames has

not been adequately investigated.

1.2 Objectives and Scope

In this thesis, an investigation is made of the collapse behaviour of slender
reinforced concrete frames under static loading. The investigation consists of

the following:

1. development of an efficient and accurate computer program to ob-
tain the collapse behaviour of frames with material and geometric

nonlinearities.

2. development of other computer programs to assist in carrying out
the prediction of strength of slender frames using the simplified

methods of the Australian Standard AS3600.

3. study of the collapse behaviour of slender frames, including phe-

nomena such as softening, snapback and instability.

4. investigations of the accuracy and adequacy of the simplified code

methods of analysis and design of slender columns in frames.

The thesis is concerned primarily with the short-term collapse behaviour of
slender reinforced concrete frames, with major emphasis on the predictions of

the strengths of such frames.

The development of a computer program to carry out rigorous analysis, as

described in item 1 of the above list, forms a major portion of the work.
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Structures under investigation are assumed to be subjected only to flexural

and axial forces. Deformations due to shear and torsion are not considered.

As the investigation is concerned only with short-term loading, time-dependent

effects such as creep and shrinkage are outside the scope of the thesis.

1.3 Layout and Content of Thesis

A review of the methods of analysis of reinforced concrete sections is given
in Chapter 2 and a review of the methods of analysis of reinforced concrete

structures is given in Chapter 3.

Chapter 4 develops the underlying concept of segmental analysis and de-
scribes the computational techniques used to develop the computer program
SAFRAME. The derivations for the element stiffness matrix and the fixed end
moments are given in this chapter. The efficiency resulting from the use of a

segmented element is illustrated.

In Chapter 5, the accuracy of results obtained from program SAFRAME is
studied by comparing predictions with published test results and also with

analytical results obtained by other researchers.

Non-linear behaviour of frames is studied in Chapter 6. The softening be-
haviour of concrete structures is described and discussed. The effects of sec-
tional thrust and the amount of beam reinforcement are also studied in this
chapter. Occasionally, snapback in characteristic deflections of frames has been
in the analyses. Results obtained for some frames with snapback are presented
and snapback behaviour in frames is described. The collapse behaviour of two
3-storey 2-bay frames is described. The order of hinge formation is traced for

each of the frames.
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In Chapter 7, the accuracy and adequacy of the moment magnifier method of
AS3600 are investigated by analysing 144 unbraced portal frames, 36 braced

portal frames and 2 multi-storey frames.

In Chapter 8, the accuracy and adequacy of the second-tier, second-order
elastic method of AS3600 are investigated by re-analysing the 144 unbraced

portal frames, 36 braced portal frames and 2 multi-storey frames.

Chapter 9 contains conclusions and recommendations for further work.

A user’s manual for program SAFRAME is provided in Appendix H.



Chapter 2

Methods of Analysis of

Reinforced Concrete Sections

2.1 Introduction

The analysis of member cross-sections to obtain moment-curvature-thrust (M-«-N)
relations forms part of most analytical techniques for the “rigorous” analysis

of reinforced concrete skeletal frames.

In this chapter, computational methods to obtain M-x-N relations for re-
inforced concrete sections are reviewed. The method chosen for the section
analysis routine for subsequent use in Chapter 4 for the analysis of frames
(program SAFRAME) is also described. Some factors affecting the M-x-N

relations are also investigated.
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2.2 Moment-Curvature-Thrust Relations

2.2.1 Basic Formulation for a Beam Segment

Theoretical M-&-N curves for reinforced concrete sections are determined on
the basis of three major assumptions, the first being sections that are plane
before bending remain plane after bending (also referred to as Bernoulli’s prin-
ciple). The second assumption is that the stress-strain curves of concrete and
steel are known and the final assumption is that perfect bond exists between

concrete and steel.

The curvature of a concrete segment of length dz and its relationship with
the applied end moments and axial forces can be illustrated by using an ini-
tially straight segment subjected to equal end moments and axial forces. The
deformed shape is shown in Figure 2.1. The assumptions that plane sections
remain plane after bending and that compatibility of strain is maintained re-
sult in a linear strain distribution, as shown in Figure 2.1. For an uncracked
segment with perfect bond between the concrete and the steel reinforcement,
the assumption of linear strain distributions across the sections is reasonable.
When cracking occurs in some sections, the behaviour of the segment is more
complex. Across a primary crack, the bond between the concrete and steel
is no longer perfect. This results in the strain distribution being non-linear
directly at the crack. Thus, in a cracked segment, the curvature along the seg-
ment varies as a result of the fluctuation of the neutral axis caused by cracking.
To simplify analysis, the average strain distribution over a segment of reason-
ably large gauge length is assumed to be linear. Hognestad(1951) found this to
be a reasonable assumption from the strains measured over a gauge length of
150mm for laboratory tests carried out on eccentrically loaded 254mm square

columns.
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Hence, over a short gauge length the average curvature « of a segment may be

calculated using the expression given below:

€c €s €.+ €5 (2.1)

K

T kd d(1—k) d

where all the basic terms are shown in Figure 2.1.

STRAIN DIAGRAM
OF SECTION A

Figure 2.1: Response of concrete segment under equal end moments and axial

forces

2.2.2 Methods for Determining Moment-Thrust-Curvature

Relations

For a rectangular section as shown in Figure 2.2, subjected to axial force N

and biaxial bending moments M, and M, having a known strain distribution_
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b e o — e — et — —
I ———

L_L_dx

Figure 2.2: Rectangular section under forces

over the entire section, equilibrium equations relate the internal stresses to the

external forces as follows:

N = /A odA (2.2)
M, = /A G (2.3)
M, = /A ozdA (2.4)
where
o = average stress acting on elemental area dA.

Variables = and y are measured from the centre of the rectangular section

where the axial force N acts.
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Methods for determining moment-curvature relations are based on evaluating
Equations 2.2 through 2.4 for known curvatures in a given section. The strain
distribution is assumed to be linear about both principal axes, resulting in a
skewed, planar strain distribution across the section. Moments and axial force
are obtained for a given strain distribution either by integrating directly or by

using numerical techniques to evaluate the equations approximately.

Methods of direct integration have been used by a number of researchers (Smith

and Young, 1956; Broms and Viest, 1958; Breen, 1964; Sved, 1988);

Smith and Young(1956) derived analytical expressions to predict the moment
capacity for a singly reinforced concrete section in bending about a principal
axis (See Appendix A). The stress-strain relationship proposed is described
by a single exponential curve which includes both the loading and unloading

branch. The relationship is as follows:

f=f (;) el =/ (2.5)

where
f! = compressive strength of a 150mm x 300mm
concrete cylinder; and
€, = concrete strain corresponding to f! as determined

from the cylinder test.

Breen(1964) used analytical expressions derived by Broms and Viest(1958) to
obtain moment-thrust-curvature relations for a symmetrically reinforced rect-
angular section in uniaxial bending as illustrated in Figure 2.3. Hognestad’s
stress-strain relationship, shown in Figure 2.4, was used with the maximum
flexural concrete stress f” assumed to be 0.85f. where f{ is the compressive

strength of a 150mm by 300mm cylinder.
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Figure 2.4: Stress-strain relationship of concrete proposed by Hognestad(1951)
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The following expressions were obtained by Broms and Viest:

N pe(faa+ fs A
1" = t( > " 3) A = (2'6)
fc bt 2fc €4 — €
M p(faa— fs2) (t —2d) B eaat+ea A .
1"h2 - 4 fi1t + _ 2 — 2'5 ( ' )
f I (€4 —€1)” (€4 —e€1)
where

N = axial load;

M = bending moment;

y3 =Ast/bd;

€1, €2, €3, €4 = strains as indicated in Figure 2.3;

Js2 = Esea;

fsa = Eses;

d’ = distance from the centroid of the compression

reinforcement to the extreme compressive fibre;
t = depth of the section; and

f! = compressive strength of the concrete in the member.

The values of A, B, f,; and f,3 are functions of the strains ¢4 and ¢;. Owing to
the discontinuities in the stress-strain relationship, different sets of equations
have to be derived for four cases of strain distribution. These four cases are:
(1) section in compression and maximum strain not exceeding ¢,, (2) section
in compression and maximum strain exceeding €,, (3) part of the the section in
tension and maximum compressive strain not exceeding ¢, and (4) part of the
section in tension and maximum compressive strain exceeding €¢,. The values

of A and B for each case have been derived by Broms and Viest.

The advantage of this approach is that it is computationally efficient, as the
analytical expressions can be solved directly. One disadvantage of this method
is that the idealised stress-strain relationship of the concrete has to be in a
form that can be integrated easily. This limits the number of stress-strain

relationships that can be used. Using a different stress-strain relationship for
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concrete would require the formulation of a new set of equations. Another
disadvantage of this method is that it does not take account of unloading

caused by strain reversal in the concrete.

The approach proposed by Sved (1988) differs from the others in that cubic
splines are used to represent the stress-strain relationship of the concrete. Sved
suggested that the use of spline functions between data points allows ease of
integration to obtain relations between moment, curvature and thrust. Fur-
thermore, this approach is suitable for use in conjunction with experimental

data for the stress-strain relation of concrete.

Warner(1969) pointed out that the derivation of analytical expressions ceases
to be feasible in the general case of sections under biaxial bending. He proposed
an alternative approach whereby the cross-section is subdivided into numerous
small elements on a rectangular grid as shown in Figure 2.5. For known values
of curvature ¢, direction of the neutral axis # and the depth of the neutral
axis d,, the strain ¢;; at the centre in the case of rectangular elements can be
calculated for each ij-th element. From the strain ¢;; the stress o;; can then
be calculated from any chosen stress-strain relation for the material in the
element. This stress is assumed to be uniform for the element. Equilibrium

Equations 2.2 through 2.4 then become:

N = EZU,'J'A:I:,'ij (2.8)
i=1 3=1
M, = 3% oiliAly; (2.9)
i=1 ;=1
My = Z Z O’;j.’fJ{A.’I);AyJ' (210)
i=1 j=1
where
o;; = stress at the centre of the ij-th element;
y; = distance of the ¢j-th element from the z plastic centroidal axis;

z; = distance of the ij-th element from the y plastic centroidal axis;
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Az; = length of the element along the x-axis; and

Ay, = length of the element along the y-axis.

As this method uses direct summations as an approximation to the exact inte-
grals of Equations 2.2 through 2.4, a sufficient number of elements is required
for accuracy. In analyses carried out on reinforced concrete sections, Warner
found that a 10 by 10 division is usually fine enough to give acceptably small
errors in the bending moments calculated. Warner also described the applica-

tion of this procedure to sections with irregular shapes.

For a rectangular section of width & as shown in Figure 2.6, with bending
about one axis under the influence of M, and an axial force N, Equations 2.8

through 2.10 reduce to:

N = b)Y ojAy; (2.11)
j=1
M, = b} 0;5;Ay; (2.12)
1=1
where
o; = stress at mid-level of the j-th layer;

Ay; = thickness of the j-th layer; and
y; = distance from the mid-point of the

j-th layer to the centroidal axis.

The advantages of this method are that it is relatively easy to program and it
allows the flexibility of changing the stress-strain relationship of the concrete.
It also allows unloading and strain reversal to be taken into account. Another
advantage of this method is that the section analysed can be of any shape.
A disadvantage of the method is that an insufficient number of elements (for

section under biaxial bending) or slices (for section bending about one axis)
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Figure 2.5: Partitioning of concrete section {Warner, 1969)
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Figure 2.6: Section under bending about one axis and axial load

may give rise to inaccurate solutions, but this can be overcome by means
of sensitivity analysis in which the number of elements or layers is varied to

determine the number of elements or slices required.

Aas-Jakobsen and Grenacher(1974) used this method to obtain bending mo-
ment M and axial thrust N from known values of curvature & and mid-section\f’

strain ¢,, for a section in bending about one principal axis.

Virdi(1977) proposed a method based on numerical integration of Equations 2.2
through 2.4 using Gauss quadrature for reinforced and composite sections in
biaxial bending. The Gaussian quadrature approach involves replacing a def-
inite integral between the limits —1 and +1 by a weighted sum of the values

of the integrand at certain specific points. The formula for a single integral is:

[ 5@y = 3" Hiftad (213)
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where
H; = weighting coefficients; and

¢ = a; are the specified Gaussian points.

The integration is exact if f(¢) is a polynomial of degree up to 2m — 1. Values
of H; and a; are available in most texts on numerical methods (Kopal, 1961;

Zienkiewicz, 1967).

Double integrals can similarly be replaced by double summations:

/_11 /_11 f(&,n)dnd¢ = iznjH,-H,-f(a,-,b,-) (2.14)

1=1 5=1

Before the Gaussian quadrature formula can be applied to a rectangular section
or quadrilateral section it is necessary to map the actual area to a correspond-
ing square area bounded by the limits 7 = +1 and { = *1. This is achieved
by devising the special co-ordinates (7,£) such that lines of constant  and ¢
are straight and parallel to the sides of the section. This special co-ordinate

system is shown in Figure 2.7 for a quadrilateral section.

The procedure involves sub-dividing the section into trapezoidal and triangu-
lar elements. In each element, stresses are calculated at a few (2 or 3) gaussian
points. The integrations are replaced by weighted summations of these stresses
and their moments. Virdi suggested that this method reduces the computa-
tional time by a factor of a third as compared to methods which use discrete

summation as an approximation to the exact integral.

This method has the disadvantage that it involves more complicated program-
ming when compared with the method using summation as an approximation

to the exact integral.

Of the three methods described above, direct summation seems to be most

suitable for the present investigation and is therefore chosen to be used in the
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Figure 2.7: Section coordinates proposed by Virdi(1977)

program SAFRAME. It has the flexibility to allow any stress-strain relation-
ship for the concrete to be used. In particular, material unloading needs to be
considered, and this method can accommodate such effects. The disadvantage,
of requiring more computational time, is largely offset by the availability of

modern computing facilities.

2.2.3 Numerical Techniques to Obtain Strain Distri-

bution for Sections Subjected to Known Forces

Up to this point, the discussion of moment-thrust-curvature calculations has
involved the relatively straight forward calculation of forces from known strain
distribution over the section. The reverse process, the determination of the

strain distribution which corresponds to a known moment and thrust, however,



Chapter 2: Methods of Analysis of Sections 18

requires more sophisticated numerical techniques. In structural analysis, it is
often the case that strains in the section have to be determined for a given

moment and axial force.

One such technique is the Newton method, described by Harrison(1976) for
solving a system of non-linear equations. This technique has also been used by
Virdi and Dowling(1976) to obtain moment-thrust-curvature relations. The
application of this technique to obtain a solution for mid-section strain €, and
curvature k£ from known moment, M,cquirea and known thrust, Nrequired 15 as

follows:

e assume initial values k, and ¢,, using the summation approach or the
direct integration approach, obtained misclosures or boundary errors m,
and n,, where m, is equal to (M, — Myequirea) and n, is equal to (N, —

Nrequircd)-

e assume k, + 6k, €, using the summation or the direct integration ap-
proach obtained the moment misclosure of m, + (0m,/0k).6«, and the

thrust misclosure of n, + (On,/0k).6«,

e similarly, assume «,, €, + ¢, hence obtained moment misclosure m, +

(0m,/d¢).6¢ and thrust misclosure n, 4+ (9n,/0¢).b¢,

e get a better approximation of £, and ¢, from the following equations:

-1

dm am

Ome CJOMe

Kvl . Eo 3K 36 mo (2 15)
dng  Ong ' )

€1 € B D6 o

e the cycle is repeated with the improved estimates «; and €, replacing &,

and ¢, until misclosures m, and n, are within acceptable tolerances.

Another technique, based on search procedures, was proposed by Warner and

Lambert(1974). The basic search technique for a nonli:hear equation involves

LS
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two phases. Assume that = has to be determined for a given value of y,, and
the nonlinear equation y = f(z) is defined. In the first phase, a fixed increment
or decrement is applied to the unknown variable z until two values of = are
obtained, =7, and zy, which give y values that are respectively lower and higher
than the required y, value. In the second phase, iterative cycles are carried out
whereby the mid-point zar between zy, and zy is used within the cycle. The
value ypr corresponding to xps is compared with y, and a solution of z, equal
to zas is accepted when yy is sufficiently close to y,. If this convergence check
is not satisfied then zas is used to reduce the size of the bound (by replacing
either zp, or zy depending on the value of yar) and the whole cycle is repeated.
As this technique arrives at a solution by carrying out intelligent searches, it

will be referred to as the search technique in this thesis.

A two-dimensional nested search procedure was developed by Warner and Lam-
bert consisting of an outer procedure to find ¢, and an inner procedure to find
€1, where ¢, is the concrete strain in the extreme compressive fibre and ¢, is
the concrete strain in the extreme tensile fibre. Both procedures use the basic
search technique described above. The nested procedure was used to obtain
moment-curvature relations for reinforced concrete sections in pure bending.

The equilibrium requirements under consideration are:

|N - Nrequired |

IN

tn (2.16)
IM_Mrequiredl S tM (217)

where
ty and £pr = specified tolerances; and

N and M = longitudinal force and resultant moment respectively.

The flow diagram of the inner procedure SEEKE1 used by Warner and Lambert
to analyse sections subjected to pure bending (where Nyequirea = 0) is shown

in Figure 2.8.
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Figure 2.8: Search procedure proposed by Warner and Lambert(1974)
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Warner and Lambert suggested that even though this procedure is not optimal,
it has been found by them to be efficient and reliable. This technique has been
used previously by Warner and Lambert(1974), Ahmad and Warner(1984),
and Kgoboko(1987).

As the search procedure has been well tested by earlier researchers and found

to be reliable, it is used in the section analysis routine of program SAFRAME.

2.3 Section Analysis Routines for Use in Anal-

ysis

The generation of moment-thrust-curvature relations of reinforced concrete
sections has so far been discussed in isolation. We now consider the incorpo-

ration of section analysis routines into frame analysis programs.

In previous studies carried out on reinforced concrete frames, two different
methods have been used to incorporate the section analysis into the frame
analysis. One of these is to use a section analysis routine automatically to
generate values of bending moment, curvature and thrust values, wherever re-
quired, during the analysis. The other method is to pregenerate a series of
moment-curvature curves over a practical range of thrust values. An interpo-
lating routine is then used to obtain appropriate values of bending moment,

curvature and thrust as required.

2.3.1 Automatic Generation of Values of M, x and N
In this method a built-in section analysis routine generates axial strain €,, and
curvature & for given values of thrust N and moment M, as shown in the

schematic diagram in Figure 2.9.
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SECTION
ANALYSIS
ROUTINE

Figure 2.9: Schematic diagram of the section analysis routine

The advantage of the automatic generation method is that a minimum amount
of input data needs to be fed into the main analysis program. For each section,
the required input data are the shape of the section and the properties of the
component materials. This reduces greatly the task of checking the accuracy

of the input data.

This method was used by Aas-Jakobsen and Grenacher(1974) in their analysis

of reinforced concrete structures.
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2.3.2 Pre-generated M-«x-N Relations with Special In-

terpolation Algorithms

MOMENT

A

<
Ry

C = Cracking

Y = Yielding of steel
P = Softening

U = Ultimate curvature

L o e e e = e — e —— —

=
K, K, CURVATURE

~
P

Figure 2.10: Typical linearised moment-curvature relation

In this method, a separate section analysis program is used to generate a large
number of data points for a full range of M, &, N values. The data may
be directly fed into the main structural analysis program; alternatively, they
can be fitted to curvilinear equations, before feeding into the main program.
Another possibility is to fit the data with piecewise linear relations. The section
analysis routine uses these data to generate M, «, N data points as needed by

the main program.

A typical linearised relation is shown in Figure 2.10. Key points are labelled
in the figure: This may represent a piecewise linearisation of the M-« curve

for a concrete section with a particular thrust value.
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Tests have been carried out by previous researchers to obtain moment curva-
ture relations for reinforced concrete sections. From these tests, Monnier(1970)
and Darvall and Mendis(1985) proposed the use of linearised M-« relations.
Monnier carried out some tests on beams to obtain moment-curvature rela-
tions using the well-known four-point bending test which gives a constant
moment region. The elongations and shortenings were measured along the
entire length of the constant moment region. Monnier did not include in his
study the load softening behaviour of the section. From the study carried
out, he concluded that the moment-curvature relation can be approximated
using a trilinear relationship. Examples of idealised M-x relations given by
Monnier for four different percentages of tensile reinforcement are shown in
Figure 2.11, where w, is the percentage of tensile reinforcement (100A4,;/BD).
The key points in the trilinear relation are defined by the cracking moment M,
and the yield moment M,. Monnier gave suggestions on how these values could
be estimated. He concluded from his investigation that the uncracked flexu-
ral stiffness practically corresponds to the calculated flexural stiffness which
includes the presence of the reinforcement. It will be noted that he did not

consider the unloading, or softening, branch of the M-« relation.

Darvall and Mendis (1985), and Tse and Darvall (1986) used a deformation-
controlled testing system to obtain experimental moment-curvature relations of
reinforced concrete sections, and included the softening portion of the curves.
A trilinear approximation was used by Darvall and Mendis to represent the
behaviour of reinforced concrete sections. The trilinear curve represents three
different stages in the behaviour of the concrete section: elastic, plastic and

softening. A typical trilinear moment-curvature curve is shown in Figure 2.12.

Normally only the key points of moment-curvature relations are stored. A
moment-thrust-curvature point can be determined by using a simple linear

interpolation between two adjacent data points for given values of thrust and
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Figure 2.11: Examples of idealised M-« relations (Monnier,1970)
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Figure 2.12: Trilinear moment-curvature relations (Darvall and Mendis,1985)
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curvature if the thrust corresponds with that of one of the pregenerated curves.
If the thrust value does not correspond to those of the pre-generated curves,
two moment-curvature points are first determined using simple interpolation
within the respective curves to give the required curvature. As these two points
do not have the required thrust value, a further linear interpolation is carried
out between them to obtain a solution point with the required thrust value.

This process is illustrated in Figure 2.13.

The advantage of this method is that the section analysis is carried out sep-
arately, thereby reducing greatly the times required for the analysis of the
structure. It also allows experimentally determined M-« relations to be used.
Furthermore, the states of the sections during loading can be easily visualised
from the pregenerated curves. This assists greatly in determining the state of

hinge formation at time of collapse.

The disadvantage of using this method is that linearisation and interpola-
tion decrease the accuracy of the solution. Another disadvantage is that this
method requires additional work involved in pre-generating and linearising the
M-k-N curves. If this is carried out manually and the processed data are man-
ually fed into the routine, more time will be required to prepare input data
than for those methods which automatically generate values of M, £ and N
as and when required. This can be overcome by not linearising the data and
programming the routine to read in directly the M-x-N data pre-generated

and previously stored onto disk files by the separate section analysis program.

2.4 Section Analysis Routine for SAFRAME

In the course of the structural analysis developed in Chapter 4 of this thesis,
a section analysis routine is used to provide data points (M, «, N) for a large

number of segments.
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MOMENT
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Steps to obtain M; from known curvature K;
and thrust Nj:

(1) Obtain (Ma; ,K;) on linearised curve
with thrust N,
K.— K
M, = M +<——-' 2L>M—M
2i 2L Kpn—Ky, (Mzr—Ma)

(2) Obtain (M,; .& ) on linearised curve
with thrust N,

; - K
My = M+ (K ‘L) (Mig=Mu)
wR—K

(3) Obtain (M; .Ki) with thrust N;

M, = M“+< ‘“"“)(M — My)

where

M = Bending Moment
N = Thrust

K = Curvature

Figure 2.13: Interpolation algorithm
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Figure 2.14: Schematic diagram of the section analysis routine

As described in Section 2.2.3, two search procedures must be used to deter-
mine unknowns ¢,, and & from known values of N and M. By choosing the
appropriate variables as unknown when updating the flexural and extensional
stiffnesses, it is possible to reduce the number of search procedures to one,
hence improving the efficiency of the program. For the section analysis rou-
tine of SAFRAME, the known variables are selected to be the axial thrust
N and the curvature &, and the unknown variables are the bending moment
M and the axial strain ¢,,. This is illustrated by the schematic diagram in

Figure 2.14.

The section is modelled numerically by a number of thin concrete layers and
a number of reinforcing layers based on the approach of Warner(1969). In the
present work it was found that 15 concrete layers were usually sufficient to
provide moment-thrust-curvature relations of acceptable accuracy. Based on a
trial value of the top extreme fibre strain €, and a predetermined curvature «,

the linear strain distribution across the section is specified, and so the stresses
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and hence the forces in each concrete and steel layer can be determined by
means of appropriate stress-strain relations. The stress-strain relationship used
for concrete in the program SAFRAME is that proposed by Warner(1969),
and an elastic-plastic relationship is used for the reinforcing steel. To enable
realistic modelling of material behaviour, unloading paths have been included

in the stress-strain relationships (Figure 2.15).

The equations defining the curvilinear stress-strain relationship are:

& <00 : f.=00 (2.18)

00<e <10 : fi=me+B-2meE+(n—2)8 (2.19)

10<é. <y : fo=1-(1-2+8)/(1—-272+) (2.20)
&>y ¢ f.=00 (2.21)

where
€. = normalised strain equal to €./€cmax;
f. = normalised stress equal to f. [ femaz;
m=E, X 6crmu:/fcvmu:;
E, = modulus of elasticity of concrete;
femaz = strength of concrete; and

€omaz = strain corresponding to stress femaz-

The unloading paths are assumed to be parallel to the initial loading path of the
stress-strain relationship. No arbitrary upper “collapse” strain is assumed for
the concrete, so that the strain can increase indefinitely. The unloading effects
of the concrete and steel are taken into consideration by storing the peak strains
of all the layers and their corresponding stresses in an array. The values in
this array are updated at the ends of the computational steps used to trace the

behaviour of the structure under increasing load. In program SAFRAME, the
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Figure 2.15: Stress-strain relationships used in program SAFRAME
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computational steps represent increasing curvatures in a chosen key segment
in the structure. The flow charts to calculate stresses for the concrete and steel

layers, including the effect of unloading, are given in Appendix B.

Summation of the forces in the concrete and steel layers gives the thrust N

(see Figure 2.16):

nlayer nsteel
N = Z oA + Z O'SjAsj (2.22)
=1 j=1
where
Oci = stress at mid-level of the i-th concrete layer;
A, = area of the i-th concrete layer;
Osj = stress at mid-level of the j-th concrete layer; and
A,; = area of the j-th concrete layer.
I
|
7 !
L dg l fo
N 7 s S d o M
| J N

dsj | REFERENCE

stress

Figure 2.16: Cross section, stress and strain distribution, and forces

Adjustment of the value of €, is made using the search procedure described
earlier in this chapter until the calculated thrust is equal to the desired thrust

to within an acceptable tolerance.
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Having obtained the required ¢, value, the bending moment in the section

about the reference axis is calculated as :

nlayer nsteel
M = Z JciAciyci + Z UsjAsjysj (223)
=1 j=1
where
Yei = distance from the mid-level of the i-th concrete layer

from the reference axis;

Ys; =distance from the mid-level of the j-th steel layer from
the reference axis;

nlayer = total number of concrete layers; and

nsteel = total number of steel layers.

The convergence criterion described above, which is based on the thrust values,
has been found to be inefficient as it is difficult to decide on whether the present
iterate is sufficiently close to the true solution. A more eflicient convergence
criterion based on the top strain of the section ¢, is therefore used. Convergence

is assumed to be achieved when:

e.(new) — ¢€,(old)

. (old) < tolerance (2.24)
where
e,(old) = top fibre strain of the previous cycle; and
€,(new) = top fibre strain of the current cycle.

Table 2.1 shows the results obtained by using the two different convergence
criteria described above for a reinforced concrete section shown in Figure 2.17.
The use of a deformation-based criterion was found to reduce the computing
time significantly. The results obtained indicate that a tolerance of 1.0 x 1072

gives solutions of acceptable accuracy.
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Figure 2.17: Reinforced concrete section analysed

Table 2.1: Bending moments in kNm for N/Ny, = 0.30

force deformation
criterion criterion

Curvature | |Npew — Notd| tol= tol= tol= tol=
(m™1) |<5x10"* kN |5x1072|1x1072 [1x107% [1x 107
0.0010 17.45 17.47 17.44 17.45 17.45
0.0050 68.32 69.14 68.52 68.34 68.32
0.0100 97.12 95.78 96.97 97.12 97.12
0.0150 117.96 117.93 118.24 117.97 117.96
0.0200 134.71 134.67 134.88 134.70 134.71
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2.5 Testing of Section Analysis Routine

Two reinforced concrete sections, tested under pure flexure by Igbal and Hatcher
(1975), were analysed using the numerical procedure described here. The pro-
gram was modified slightly to avoid non-linear unloading effects in the mate-

rials which were not taken into consideration.

In the tests carried out by Igbal and Hatcher, the beams were unbound (with-
out stirrups) at the constant moment region. Figure 2.18 shows the config-
uration of the beams tested. A stiff loading system was used to obtain the

softening branch of the moment-curvature relation of the section.

The beams chosen for analysis are beams AA3 and B2; details of which are
given in Figure 2.19. According to Igbal and Hatcher, the reinforcing index
q was chosen so that the steel would not strain harden in the post-crushing
range for the concrete. Stress-strain plots for the reinforcing steel of beams
AA3 and B2, shown in Figure 2.20, are reproduced from those obtained by

the investigators.

Bending moment plots obtained using the section analysis program for beam
AAS3 are plotted in Figure 2.21. One of the plots is for the section with con-
crete strength for the structure fomer equal to fom (fem 1s the average cylinder
strength of concrete) and the other for foner equal to 0.85fcn. Analytical
results obtained by Ahmad and Shah(1979) for the same section assuming
stress-strain relationships of concrete to be those of Ahmad and Shah(1979),
Desayi and Krishnan(1964), and Hognestad(1951) are also given in Figure 2.21.
The stress-strain relationships proposed by Ahmad and Shah, and Desayi and
Krishnan are shown in Figures 2.22 and 2.23 respectively. For the stress-strain
relationship proposed by Ahmad and Shah, the four constants A, B, C and D
are determined from four key points. These are the secant modulus of elas-

ticity at 45 percent of the peak stress; the peak stress and the corresponding
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Figure 2.18: Configuration of beams tested by Igbal and Hatcher (1975)
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Figure 2.19: Details of beams AA3 and B2

BEAM AA3

212.5 mm

34.5 MPa
324 MPa

550 mm?2

34.5 MPa
441 MPo

1538 mm?2

36



Chapter 2: Methods of Analysis of Sections 37

800

600 AA3
,a -4
o
=
9400 1 B2
(T8}
o
o l
(V2]

200 -

O L] L] T
0 0.01 0.02 0.03 0.04

STRAIN

Figure 2.20: Stress-strain relationships of reinforcing bars of beams AA3 and

B2

strain, the inflection point and an arbitrary point on the descending portion
(Desayi and Krishnan, 1964). The peak stress was assumed to be equal to the

mean cylinder strength fon in all three cases.

Similar plots were also obtained for the section of beam B2. These plots are

shown in Figure 2.24.

Two values of peak stress for the concrete fomar Were used in the analysis of
the section. This is because the conversion factor between the peak strength
of concrete in structural members and the mean cylinder strength depends, to
a certain extent, on the placement of concrete in the structural members. This
observation was pointed out by Breen(1964). Breen found that the calculated
moment systematically showed less moment than that actually present. The

magnitude of this error, he suggested, is caused by making the assumption
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Figure 2.21: Moment curvature plots of beam AA3
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Figure 2.22: Stress-strain relationship of concrete proposed by Ahmad and
Shah(1979)
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Figure 2.23: Stress-strain relationship of concrete proposed by Desayi and
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Figure 2.24: Moment curvature plots of beam B2
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that fonezr equals 0.85fc, in horizontally cast members.

Results obtained from the present analysis indicate that the section analysis
routine of program SAFRAME gives reasonable estimates of the behaviour of

reinforced concrete sections.

2.6 Factors affecting Moment-Curvature Re-

lations

It must be appreciated that the overall behaviour of a reinforced concrete frame
is strongly dependent on the behaviour of cross-sections and segments in the
high moment regions. The shape of the M-« curve is therefore of considerable
interest. One of the most important properties is ductility, or the ability to
undergo large deformations under conditions of ultimate strength. Ductility
governs the rotation capacity of hinging zones and hence the redistribution of
moments in an indeterminate structure. This enables structures to adapt to
differential foundation settlements and also safeguard structures from sudden

local overloads within parts of the structure.

The ductility of a concrete section is measured by a widely accepted parameter,
Ky /[y, which is known as the ductility factor. The yield curvature &, is defined
as the curvature at which the tensile steel yields. Several definitions have been
used for k,, the ultimate curvature of a section. In most design codes, &,
is defined by an arbitrarily chosen limiting value of the concrete strain, nor-
mally taken to be 0.003. Riisch(1960) proposed a more satisfactory definition
of &, based on the value of concrete strain ¢, corresponding to the maximum
moment carrying capacity. Park and Sampson(1972) argued that many sec-
tions have considerable capacity for plastic rotation beyond the peak of the

moment curvature curve and they defined «, as the curvature corresponding
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to 0.9M, along the softening branch of the M-« diagram. Ghosh and Cohn
(1972,1974) in their analytical studies chose to use the &, proposed by Riisch.
They found that the conventional definition based on a limiting strain of 0.003
grossly underestimate the deformability of a section. Therefore, if the con-
ventional definition of the ultimate curvature is used, a very safe estimate of
the strength of structure analysed is obtained. The conventional definition is
useful for design purposes. The ratio of %, based on Riisch’s proposal to that
based on the conventional definition was found to be as large as 4-5 for section

failing in tension.

Moment-curvature relations of concrete sections are governed by the amount
and type of reinforcement, the strength of concrete, the magnitude of thrust

acting on the section and tension stiffening.

2.6.1 Effect of Thrust

The moment curvature relation of a section under combined bending and thrust
differs significantly from that for a section under pure bending. The main dif-
ference is the reduction in ductility due to the presence of the axial load. The
ductility of reinforced concrete sections subjected to combined bending and ax-
ial load has been studied by Pfrang et al(1964), Mirza and McCutcheon(1974),
and Ghosh and Cohn(1974).

In all the studies mentioned, it was found that as the axial force increases, the
rotation capacity of the section decreases. Pfrang et al carried out analytical
studies on the effect of thrust on the ductility of rectangular sections. They
found that the sections have large amounts of ductility at low axial thrust
levels. As the axial thrust increases, ductility decreases markedly. They also
found that at balance axial\load, only a negligible amount of ductility remains

for the sections.
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Ghosh and Cohn(1974) carried out an extensive analytical study on the be-
haviour of reinforced concrete sections under combined bending and compres-
sion. In this study 405 symmetrically reinforced rectangular concrete sec-
tions of width 250mm (10in) and depth 500mm (20in) with varying concrete
strengths, steel grades and reinforcement percentages were subjected to vary-
ing magnitudes of thrust. They found irregularities in the failure mode when
failure was defined in terms of sectional moment capacity as compared with
that defined in term of a conventional arbitrary maximum strain of 0.003.
These irregularities are: (1) the moment capacities under pure bending are
larger than those under bending combined with low axial loads and (2) the
ultimate curvatures sometimes increase with increasing axial loads around the
balanced point. Two plots illustrating these irregularities observed by Ghosh
and Cohn are shown in Figure 2.25. In these plots M, is the ultimate moment,
P, is the ultimate axial force, b is the width of the section, & is the total depth

of the section and ¢ is the sectional curvature. -

Mirza and McCutcheon(1974) tested 20 beams both analytically and exper-
imentally. They found that the available rotation capacity decreased by ap-
proximately 25 per cent as the axial compressive load was increased from zero
to the balanced column failure load. They also found that beyond the balance
point, available hinge rotation diminished gradually, becoming zero for the

case of pure axial compression.

Moment-thrust-curvature plots of a section shown in Figure 2.26 with different
amounts of thrust are shown in Figure 2.27. In this figure N,, is the squashed
load of the section. The section was analysed using a section analysis routine
described earlier in this chapter. The stress-strain relationship for concrete is
assumed to be that of Warner(1969). For the concrete, mean cylinder strength
value f.n was assumed to be 35 MPa. Value femar is assumed to be 0.85 M=
and value of parameter v, was assumed to be 3.0. Value E. was assumed to

be 5000\/f.m. These plots indicate the decreasing ductility of section with
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Figure 2.25: Results from analysis by Ghosh and Cohn (1974)
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Figure 2.26: Doubly reinforced concrete section subjected to thrust
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Figure 2.27: Moment-thrust-curvature plots for doubly reinforced section
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increasing thrust.

2.6.2 Effect of the Amount of Reinforcement

For a singly reinforced concrete section, ductility decreases as the amount of
tensile reinforcement increases. Plots of moment-curvature for the singly re-
inforced concrete section (Figure 2.28) are given in Figure 2.29. The analysis
was carried out using the same routine as described in the earlier section. Ma-
terial properties are assumed to be similar to the section analysed in the earlier
section. These plots indicate the effect of the amount of tensile reinforcement

on the ductility of a singly reinforced section.

B = 300mm
—~=3]
b, =460 MPo R
£ = 35 MPa
D =300 mm
Ast = 0.01 pBD S0mm
st = 0.01 p |
e
Y

Figure 2.28: Singly reinforced section subjected to pure bending

Pfrang,- Seiss and Sozen(1964) found that the general character of the M-«
relation is not markedly affected by the ratio of reinforcement for the symmet-
rically reinforced concrete sections analysed by them. Ductility of the sections,

however, was found to be reduced by increasing the amount of reinforcement.



Chapter 2: Methods of Analysis of Sections

46

250.0
| — —p=1PERCENT
_ —- p=2PERCENT
200.0- AN —— p=3PERCENT
V4 N --—-p=4PERCENT
3 I \
E f’/',
Z A  J ,.
é1 50.0 ';{f T —
pd . i / i
] ',; /7
E A 1 H
510001 i
= I/
1 4
50.0 1/
. N !i"
}’::l
1
0.00 L] ¥ T T T T T T T
0.00 2.0E-02 4.0E-02 6.0E-02 8.0E-02 0.10

CURVATURE(1/m)

Figure 2.29: Moment-curvature relations for section with various steel propor-

tions

Cohn and Ghosh(1972) found that section ductility can be increased by the

addition of suitable amounts of compressive reinforcement.

2.6.3 Effect of Tension Stiffening

Even after the formation of cracks, it is possible for the tensile concrete to
continue to carry some forces between the cracks. The contribution to flexural
stiffness by the concrete in the tension zone has been observed by previous re-
searchers(Sawyer and Stephen, 1957; Yu and Winter, 1960; Corley and Sozen,
1966) who found that the stiffness of a cracked section is greater than that

calculated assuming no tensile strength in concrete.

Two commonly used techniques for modelling are: (1) to assume an average
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tensile stress to act over an effective area of concrete surrounding the bars
in the tension zone (Lin and Scordelis, 1975; Clark and Speirs,1978) and (2)
to modify the steel stresses to include the effect of tension stiffening in the

surrounding concrete (Borges and Oliveira,1963).

Gilbert and Warner(1978b) used both techniques in predicting slab deflections
using a layered finite element approach. Three stress-strain relationships used
for the concrete in the tension zone based on the first approach are shown
in Figure 2.30. The first relationship, shown in Figure 2.30(a), has stepped
diagrams similar to that proposed by Scanlon and Murray(1974), but the num-
ber and magnitude of the steps have been reduced in the once-removed and
twice-removed layers. The second relationship, shown in Figure 2.30(b), has
unloading curves similar to that of Lin and Scordelis, but as in the earlier case,
the shapes of the unloading curves have been adjusted to reflect the position of
the layers relative to the reinforcement. The third relationship, shown in Fig-
ure 2.30(c), has piece-wise linear diagrams with a discontinuity at the initial
cracking stress. This third relationship was proposed by Gilbert and Warner.
The stress-strain relationship for tensile steel, based on the second technique,
is shown in Figure 2.31. The cracked concrete is assumed not to carry any load
but an additional stress is carried by the steel. The additional force acting on
the steel represents the total internal force carried by the concrete between
the cracks. Gilbert and Warner suggested using the second technique as it re-
quired considerably less computing time and yet produced good results when

compared with the first technique.

The effect of tension stiffening is ignored in the present study because the main
concern is to obtain the ultimate loads of frames under short term loading.
Though tension stiffening is important around and below the working load

regions, it usually has little effect on ultimate loads.
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2.7 Summary and Conclusions

The literature review carried out in this chapter looked into different meth-
ods to obtain the moment-thrust-curvature relations for reinforced concrete
sections. These included the use of direct integration, numerical integration
in the form of Gauss quadrature, and the use of summation directly as an
approximation to the integrals. From this review, it was decided to adopt the

direct summation method in the present study.

Two techniques to obtain axial strain and curvature from known axial force
and bending moment were described. The search technique is selected for use

in the program SAFRAME.

Two methods for carrying out section analyses for use in structural analysis are
described. One relies on the automatic generation of M-k-N data points; the
other uses pre-generated M-«-N relations. The former is chosen as it requires
less input data and thus is less prone to human error. It also allows the effect

of thrust to be taken into consideration easily and accurately.

The section analysis routine of program SAFRAME is described. The use of
N and « as inputs and € and M as the output variables improves the efficiency

of the routine by reducing the number of search procedures from two to one.

A few factors affecting the M-x-N relations are discussed and it was found that
sectional thrust effect is important in numerical modelling of the behaviour of

sections under the influence of a significant amount of thrust.

The tension stiffening effect and its numerical modelling are described. This
effect is ignored in the present study as the major concern is to determine the
ultimate load of concrete structures. Nevertheless, the techniques described
for including the effect of tension-stiffening can be incorporated easily into the

present section analysis routine for future studies.
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Methods of Analysis of

Reinforced Concrete Structures

3.1 Introduction

In this chapter, several basic methods for the analysis of reinforced concrete
structures are reviewed. Section 3.2.1 describes numerical models which take
accéunt of material non-linearities. In Section 3.2.2, numerical models which
take into account of geometric non-linearities are described. Such elastic anal-
yses which allow only for the effect of geometric non-linearities are useful for

approximate analysis and are referred to in existing concrete design standards.

In Section 3.3, the tangent stiffness approach, the secant stiffness approach and
the initial stiffness approach are considered as procedures for obtaining solu-
tions for non-linear problems which result from material nonlinearity and/or

geometric nonlinearity.

50
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In Section 3.4, several numerical models for the analysis of reinforced con-
crete frames, including the effect of material non-linearity used by previous

. : dhlr
researchers, are described and discussed. In some of these analyses, geometri-

. .. . . A\
cal non-linearity effect is included in the numerical models. !
The use of the tangent stiffness, secant stiffness or initial stiffness approach
by itself, generally, does not enable the softening behaviour of reinforced con-
crete frames to be obtained. They have to be used in conjunction with other
techniques. Several strategies suitable for tracing the softening behaviour of

frames are described and discussed in Section 3.5.

Previous analytical studies of the softening behaviour of reinforced concrete
structures are described and discussed in Section 3.6. Several previous propos-

als for hinge length are also described in this section.

3.2 Nonlinearities

Concrete structures display increasingly non-linear behaviour as they progres-
sively deform under load. There are two major causes of nonlinear behaviour
under short-term loading. The first is material nonlinearity resulting from the
non-linear stress-strain relationships of concrete and steel, and the nonlinear
material unloading effects resulting from material strain reversal. The second
is geometric no‘ifi’iimearities resulting from the deflections along the members
and the displacements of the nodes of the frame under loading. For long-
term loading, time-dependent material effects such as creep and shrinkage of
concrete also contribute to the non-linear behaviour, however, they are not

included in the present study.
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3.2.1 Material Nonlinearity

Earlier approaches to analyse reinforced concrete frames followed those used
for steel structures. Material non-linear effects were considered by assuming
that perfect plastic hinges formed at the critically stressed section once their
moments reach the plastic moment required for the formation of a “plastic”

hinge. These hinges were assumed to be localised at a point.

Bazant et al(1987b) pointed out that when the hinge size is reduced to zero,
strain-softening material models give physically meaningless solutions as the
energy dissipated tends to zero. This indicates that the approach mentioned
above is not suitable for modelling the strain-softening behaviour of concrete

structures.

Recognising the limitation of using a point hinge, Cranston(1965a) and Dar-
vall(1983) used hinges with finite length. This allows the softening behaviour

of regions to be included in the analysis.

Another shortcoming of using localised hinges is that the positions of potential
hinges have to be pre-determined before the analysis as they are modelled to
occur at the ends of the elements. The analysis gives errors in predicted peak
loads if the positions of pre-assumed hinges do not correspond to the positions
of actual hinges. Furthermore, the accurate prediction of the positions of
potential hinges is difficult in cases where the frames have complicated load

patterns.

The variation of secant stiffnesses along members in a structure is modelled by
Aas-Jakobsen and Grenacher(1974) and Gunnin, Rad and Furlong(1977) by
discretising entire members into small elements. This approach not only allows
the non-linear behaviour at the most highly stressed element to be taken into
consideration, but also includes the non-linear effect of all the elements along

a member. The position of hinges can be at any of the numerous elements
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making up the structure, thereby doing away with the need to pre-assume the

positions of concrete hinges.

The advantage of this approach is that it is easy to develop a computer pro-
gram to carry out the analysis as it requires only the modification of either
a linear-elastic frame analysis (Gunnin et al,1977) or a second-order elas-
tic (with geometric noniinearity built-in) frame analysis (Aas-Jakobsen and
Grenacher,1974). The disadvantage of this approach is that it requires a large
amount of computer storage and involves the manipulation of large matrices

which is inefficient with respect to both storage and program execution speed.

3.2.2 Geometric Nonlinearity

In order to allow for geometric nonlinearities, the equilibrium equations have to
be formulated for the deformed frame. This results in nonlinear relationships
between loads and displacements. Several procedures to obtain moments and
deflections, taking into consideration the effect of geometric nonlinearity are

outlined:

3.2.2.1 The P-A Method

An iterative method to estimate the second-order shears, moments and forces
in an elastic structure, such as a tall building designed for normal deflection
limitation, can be obtained by an iterative calculation which make use of fic-
titious “sway forces” induced by the P-A moments (Macgregor,1972). The
computation of sway forces involves the use of a first-order elastic analysis
to calculate the relative lateral displacements A; in each storey. Additional
storey shears due to the vertical loads (assumed to act at floor level) are then

calculated as (3° P.Ai)/hi, where 3 P; is the sum of the axial forces in all the
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Figure 3.1: Calculation of storey shear (after MacGregor and Hage,1977)

columns of the i-th storey and A; is the height of the storey. At any given floor
level, the sway force is the algebraic sum of the storey shears from the column
above and below the floor (see Figure 3.1). The sway forces are then added to
the applied lateral loads for the computation of the total forces and moments
in the structure in the next iterative cycle. One or two cycles are generally ad-
equate to obtain a converged solution. This method has the advantage that it
can be easily understood and requiring only a first order linear elastic method

of analysis.

An alternative method proposed by Fey(1966) and Parme(1966) involves the
direct determination of the second-order effect without the use of iteration.
They have shown that the second-order deflection, Ay; in the -th storey of an

elastic structure can be evaluated approximately using the equation below:

Ay
= E PiAq;

Hih;

Agi = (3.1)
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where
H; = shear in the storey due to the applied lateral loads; and
h; = height of the i-th storey.

A second-order analysis using this method requires:

e A first-order analysis to determine A;; in each storey.

e Calculation of the second-order deflection in each storey using Equa-

tion 3.1.

o Evaluation of the sway forces as in the case of the iterative method

described earlier in this section.

e Carry out another first-order analysis for the frame subjected to the
applied vertical and lateral loads, plus the sway forces calculated earlier.

This gives the second-order moments and forces.

The methods described above take into consideration the geometric non-linearity
effect resulting from the deflection of the joints of the frame but do not allow

for the P-A effect within the length of the members.

3.2.2.2 Second-Order Finite Element Methods

Solution for second-order analysis, including the effect of geometric nonlinear-
ity, can be obtained more accurately by means of the finite element method

(Jennings,1968; Przemieniecki,1968; Gunnin et al,1977).

One commonly used approach is to use a geometric element stiffness matrix k,
to augment the normal element stiffness matrix k.. Derivation of this matrix

is given in a number of publications (Przemieniecki,1968; Young,1973). The
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matrix k, is given below for the case of a prismatic member:

K 0 0 0 0 0 |
L
: % 0 -5 w
2L2 L L?
2L2 g _L _ L%
kg — '11_\-[/ 15 10 30 (3.2)
SYMME—- 0 0 0
L
TRIC E§ &
212
s 15
where
N = axial force acting on the element; and
L = the length of the element.

The secant stiffness matrix of the member k is obtained from:
k =ke + kg (3.3)

This approach was used by Aas-Jakobsen and Grenacher (1974) to include the
P-A effect along the members, and a solution procedure using this approach

is described in greater detail in Section 3.4.1.

Another approach is to use an updated Lagrangian formulation which separates
the effect of pure member deformations from the joint displacements. This
is achieved by introducing a local, convective reference system attached to
the members. Jennings(1968) has derived matrices based on this approach.
With this approach it is possible to determine the behaviour of an elastic
skeletal plane structure until it has deformed so much that the deformed shape

bears little resemblance to its original configuration (Jenning,1968; Meek and

Tan,1983).

Yet another approach is to ignore deformations within the length of the ele-
ments and assume that changes in geometry are reflected only by node point

movements (Gunnin et al,1977; Saafan and Brotton,1962; Oran,1973; Oran
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and Kassimali, 1976). The deformed shape of the structure, specified by the
most recent position of the nodes, is used for the transformation of forces. An
iterative technique is used to calculate the out-of-balance forces at the nodes
at each iterative cycle and the forces are added to the load to be used for the
next iterative forces until these out-of-balance forces are negligible. When this
occurs, an equilibrium position has been obtained for the frame in its deformed
configuration. Ignoring the P-A effect within the length of a member can al-
ways be made acceptable by including a sufficient number of nodes along the
deformed member to trace its deflected shape. This has the effect of shortening
the length of the element and thereby reducing the inaccuracy caused by not

taking the P-A effect along the element into consideration.

3.3 Analysis for Frames with Non-linear Be-

haviour

The non-linear behaviour of a frame under load cannot be determined in a
direct manner, and iterative techniques therefore have to be developed. Re-
peated cycles of linear analysis usually provide the basis for the solutions.
One such iterative approach, commonly referred to as the Newton-Raphson or
tangent stiffness approach is described in the text by Livesley (1975). This
approach is illustrated in Figure 3.2a. For the first iterative cycle, the starting
point is chosen to be at displacement zero. The structural stiffness at this
point is K,. Using this stiffness, the deformation of the frame A; is obtained

from the relation:
Aw

Ay =22
Tk,

(3.4)

where ), is the total applied load.

For the displacement A;, the corresponding load level A, is determined, and

hence the structural stiffness at this stage is updated to Ki. The out-of-balance
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load is (Aw — A1). A second iterative cycle is then carried out to get a better

estimate of the deformation using the relation:

fiom =)
Ay = A+ 22—

K (3.5)

Thus, for the -th iteration:

Aw — A
Ai=A1+A2+---+Ai—1+“—I,—1‘
fin1

(3.6)
In the above equation, the calculation of K;_; includes the effect of all non-

linearities.

Iterations are carried out until either the out-of-balance load at the end of
the iterative cycle, or the change in deformation between successive iterative

cycles, is less than a pre-determined tolerance.

The process described above will not converge if the starting point is too far
away from the solution (Livesley,1975). This can be overcome by dividing the
load into numerous load steps. The solution of each load step is obtained in
turn, starting from the first increment, until the final load is reached. The
starting point of each load step is taken to be the converged solution point of
the previous load step. This approach has the advantage that in addition to
obtaining the final solution point, the entire loading path up to this point is

also obtained.

Variations to the tangent stiffness approach have been used by other researchers.
The commonly used variations are the secant stiffness approach and the initial
stiffness approach. Both these approaches are similar to the tangent stiffness
approach except that different stiflnesses are used. As the name suggests, the
secant stiffness approach makes use of the secant structural stiffness through-
out the analysis (Figure 3.2b). In the initial stiffness approach, the stiffness at

the beginning of the first cycle is used throughout the analysis (Figure 3.2c).
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Figure 3.2: Iterative solution techniques for non-linear problem
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Of the three approaches described earlier, the tangent stiffness approach re-
quires the least number of cycles to obtain the solution for a given load step.

This can be seen in Figure 3.2.

Both the tangent stiffness approach and the secant stiffness approach require
the updating of the structural stiffness matrix (to reflect the most recent state
of the structure, including non-linear effects) at the beginning of each cycle.
In contrast, the initial stiffness approach uses the initial stiffness throughout
the analysis, thereby eliminating the considerable effort required to update the
stiffness matrix. The initial stiffness approach requires more cycles to obtain
a solution for a given load step as compared to the other two approaches.
This approach is suitable for structures with stiffnesses that do not glidhgé;
change much with loading and is therefore not suitable for highly non-linear

structures.

Though all three techniques described earlier are suitable for analysis up to
the peak load, they generally fail to give a satisfactory solution beyond this
point. This is due to: (1) the tangent stiffness of the frame being zero at the
peak load;(2) the multiple stable solutions available for a single value of load;
and (3) snapback instabilities in softening structures caused by some parts of
the structures either unloading as a result of strain-softening or strain-reversal.
Strategies for predicting post-limit response have been proposed by previous

researchers and some of these are described in Section 3.5.

3.4 Non-linear Analysis of Concrete Frames

In modelling the behaviour of reinforced concrete frames it is common practice
to use a large number of line elements. The stiffness of an element is normally
assumed to be uniform within its length and is determined from the behaviour

of a section at mid-length. Based on the moment-curvature thrust relations
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of this section, the stiffness of each element in the structure, and hence of the
entire structure, is determined. It is common in this approach to follow the
non-linear behaviour of the frame by iteratively solving an equivalent elastic
frame with the element properties being updated at each iteration by means

of a non-linear section analysis carried out for a section in each element.

This approach was used by Aas-Jakobsen and Grenacher (1974) and Gunnin,
Rad and Furlong (1977). This approach will be referred to in this thesis as the

line element approach.

An alternative approach for modelling concrete frames is to use the properties
of layered elements directly in the formation of the element stiffness matrix.
In this approach, section analyses to obtain moment-curvature thrust rela-
tions are not required. The layers are used to model the behaviour of the
steel reinforcement and concrete within the elements. This approach was used
by Bazant et al(1987a); Blaauwendraad (1972); Kreonke, Gutzwiller and Lee
(1973); Menegotto and Pinto (1974); Aldstedt and Bergan (1974);and Kang
and Scordelis (1980) for the analysis of frames. A similar approach was also
used for the analysis of slabs by Gilbert and Warner (1978b). In this approach,
the entire frame is modelled by elements consisting of steel and concrete layers.
The terms in the element stiffness matrix are formed directly from the stress-
strain relationships of the materials of the layers making up the elements. This

approach will be referred to as the layered element approach.

Numerical models based on the line element approach and those based on the

layered approach are presented in Section 3.4.1 and 3.4.2, respectively.

3.4.1 Line Element Approach

Lazaro and Richards (1973) used a procedure which they referred to as the

“successive linear approximation” approach (Lazaro and Richards,1973). This
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approach is similar to that of Becker (1967, cited by Lazaro and Richards,1973)
who modified a flexibility approach developed by Cranston(1965a) for simple

frames.

The approach of Lazaro and Richards involves the modification of an existing
stiffness approach for elastic frames to analyse reinforced concrete structures.
The authors stated that this approach is superior to the plastic mechanism
approach for the determination of collapse load as it eliminates the guesswork

required to determine all possible failure modes in the latter approach.

According to Lazaro and Richards, the method developed can be divided into
two main phases. The first phase involves the formulation of the stiffness coef-
ficients and the fixed end forces, and the solution of the resulting simultaneous
equations for the joint forces and displacements as in the case of a normal stiff-
ness approach for an elastic structure. In the second phase the cross-section
properties of the elements are modified as the analysis progresses. Geometric
nonlinearities were not considered in the method. The method is illustrated

by Lazaro and Richards using the flow diagram reproduced in Figure 3.3.

Aas-Jakobsen and Grenacher (1974) proposed a non-linear analysis of
2
concrete frames which takes into account both material and geometric norilj)n-

earities.

In this method, the concrete frame to be analysed is discretised into numerous
line elements. Each of these elements is assumed to be uniform, having axial
and flexural stiffnesses equal to those of the sections at mid-length of the

elements. Loading is assumed to be applied only to the nodes.

A displacement control, secant stiffness approach was used. For each value
of the specified displacement w (chosen to be the sway displacement at beam
level by Aas-Jakobsen and Grenacher), the corresponding load factor A is ob-

tained interactively. First, stiffnesses are assumed for all the elements. The
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load factor is then increased in steps until the calculated and specified displace-
ment coincide. Updated axial and flexural stiffnesses are then obtained from a
cross sectional analysis taking into consideration the stress-strain relationship
of both the concrete and reinforcing steel. The procedure is repeated until
agreement is obtained between the assumed and calculated stiffnesses. The
displacement control procedure enables the onset of instability of the frame to

be determined.

Geometric nonlinearity within the elements, caused by the interaction of axial
forces with deflections, is accounted for by the addition of a non-linear geo-
metric stiffness matrix k, to the normal first order elastic stiffness matrix k.
These two matrices are given in Figure 3.4. Derivation of the k, matrix can

be found in a number of papers and texts (Przemieniecki, 1968; Young, 1973).

For the start of the analysis the axial forces in the elements are assumed to
be zero and the stiffnesses of the elements are calculated from uncracked gross
section properties. The element stiffness matrix in local co-ordinates is formed

from the expression below:

k =k + k (3.7)

Using standard procedures (Hall and Kabaila, 1977; Cheung and Yeo, 1979),
the global stiffness matrix K of the structure is obtained. The equilibrium

relation of the structure is:

Q=K xD (3.8)
where
Q = load vector in the structural system; and
D = deformation vector in the structural system.

Solving the equations above gives nodal deformations which in turn enables

nodal forces to be obtained. From these, the updated axial and flexural stiff-
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nesses are obtained from the moment-curvature relations. These updated val-
ues are then used in the analysis for the next cycle. Iterative cycles are carried

out until the stiffnesses converge.

The analysis of Aas-Jakobsen and Grenacher is illustrated by the flowchart
shown in Figure 3.5. This procedure is not suitable for obtaining post collapse

behaviour of frames.

In the form proposed by Aas-Jakobsen and Grenacher, the method does not
take into consideration the geometric non-linearity caused by the moving of the
joints as the structure deformed. The modelling of the material nonlinearity
effect by using numerous elements results in the need to store and manipulate
large matrices. This results in inefficiency with respect to storage and program

execution time.

Gunnin, Rad and Furlong (1977) proposed a line element approach which
differs from that proposed by Aas-Jakobsen and Grenacher in that it not only
includes the effect of the geometric nonﬂii)\nea.rity caused by the lateral defor-
mation of the members but it also includes the geometric norﬂihearity caused
by the displacements of the joints during loading. The movement of the joints
is included in the analysis by updating the positions of the nodes (by modi-
fying the transformation matrices of the elements). The out-of-balance nodal
forces for the frame under loading are calculated and these are used to adjust
the applied forces until the out-of-balance nodal forces become zero. When
this occurs, an equilibrium position has been obtained for the deformed frame

under the prescribed loading.

This, as in the case of the earlier method, requires large number of elements

and suffers the same inefficiency.

Darvall and Mendis(1985) proposed a method to carry out analysis of

softening frames. This method differs from those described earlier in that the
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structure stiffness matrix is formed from elements which can soften at the ends.
This was an extension of an earlier approach proposed by Darvall (1983) to
study softening effects in concrete structures to include the effect of geometric
nor‘iﬁﬁearities. The softening behaviour of a typical element is defined by the
softening length I, and the linearised moment curvature relationship of typical

sections.

The linearised moment-curvature relationship is assumed to be made up of
three portions, a linear elastic, a plastic and finally a linear softening branch.
Parameters ¢ and b control the degree of softening of the finite-length hinge
at the left and right end of the beam respectively (see Figure 3.6). Beam tests
carried out by Darvall and Mendis suggested that “th!e linearised relationship
is a reasonable model for the behaviour of reinfor@j concrete sections without

thrust.

Mendis and Darvall(1987) derived stability functions for elements with soften-
ing hinges at the ends of the elements. Such an element is shown in Figure 3.6.
The functions proposed reduce to the well known stability functions of Livesley
and Chandler(1956) for a beam without any plasticity. The accuracy of this
approach depends on the values of the hinge lengths used in the elements. To
obtain good accuracy these values need to be comparable with the actual val-
ues in the real structures. The behaviour of concrete hinges depends on many
factors, some of these being thrust, amount of reinforcement and shear force.
Extensive test programs must therefore be carried out to determine suitable
hinge length values for different types of elements. The positions of potential
hinges are constrained to occur at the end of the elements. To obtain accurate
modelling of the behaviour of frames, finite elements have to be placed cor-
rectly in the-computer model so that the hinge positions of the computer model
correspond to the actual hinge positions in the real structure. The position
of hinges cannot always be determined with certainty, especially in building

frames under a combination of imposed loading on the beams and wind load-
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Figure 3.6: Beam with concrete hinges (Mendis and Darvall,1987)

ing at floor levels. In such cases some trial and error would presumably be

required to locate the hinges.

The effect of sectional thrust on the moment-curvature relation which affects
the behaviour of softening hinges cannot easily be incorporated into the analy-
sis. This would require the pre-generation and pre-linearisation of the moment-
curvature relations for key sections along the elements. An alternative ap-
proach which requires less input data is to automatically generate the moment

and curvature values as and where required during the analysis.

3.4.2 Layered Element Approach

Blaauwendraad (1972) used a layered finite element technique to model

reinforced concrete frames. The structure is divided into members and the
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members are divided into layers of concrete and reinforcing steel. To take
into consideration the varying position of the centroidal axis resulting from
cracking and plasticfication, he assumed a parabolic variation of u along a

fixed reference axis, where u is the axial deformation.

He included geometrical nonlinearities in his formulation: these include the
effect of axial deformation along the members, and the effect of movements
of the ends of the members as a result of loading. Hence, he included all the

geometrical nof’\ﬂi/:flearities likely to be present in a structure.

Retaining the author’s notations, the formulation relating the member end

forces k® and deformations v¢ (Figure 3.7) is:

K = S°ve (3.9)
T
where k® = [H,- Vi M; Hj V; M,-] (3.10)
T
and V¢ = [“i v @i uj v ¢j] (3.11)

The member stiffness matrix S¢ in global co-ordinates given in Equation 3.9

is obtained from the expression below:

s¢ = CTs°c+as™ (3.12)
where S° = S. — SwuSgaSue (3.13)
S2'2 523 524
See = 523 S33 534 (314)
_524 534 544-
- WT
Sew = {512 S13 Sus (3.15)
[ |
Sue = S12 Si3 Su (3.16)

Suu = [-Su] (3.17)
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Figure 3.7: Displacements v¢ and member end forces k® in the e* member

(after Blaauwendraad, 1972)
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where S;;1 = %/{;1(4—8¢)2Du d¢ (3.18)
Sz = %/:(4 —8¢) D11 do (3.19)
S = % / '(4— 86)(4 — 6¢) Dz dé (3.20)
Si = % / "(4— 84)(2 — 66) Dyz déb (3.21)
1 1
Su = 7 [ Duds (3.22)
1 1
Sw = T /0 (4 — 6¢) Dy d (3.23)
G = —IL— /0 "(2 — 6) Dyz dé (3.24)
533 == %A1(4 bt 6(15)2 D22 dd) (325)
Sa = % / "(2— 66)(4 — 6¢) Dz dd (3.26)
Se = % /0 "2 — 64)* Dyz do (3.27)
where Dy; = EA (3.28)
Dy = y,EA (3.29)
D12 - D21 (330)

where
= secant modulus of material;
cross-sectional area;

= second moment of area of the layer under consideration;

S O~ eI
f

= z/L where L is the length of the member and
z is the horizontal distance measured from the centroid
of the layer to the left end of the member; and

Yz = distance measured from the centroidal axis of the layer

to the chosen reference axis.

The term AS™ in Equation 3.12 takes into consideration the effect of geo-
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metrical noplinearities. The expression for this term is:

As™ = cTs"c + As® (3.32)
[0 0 00 0 0]
0o ¥ oo -% o
where AS" = R (3.33)
00 00 0 0
N
0o -Zoo ¥ o0
(0 0 00 0 O]
0 0 0
and S} = |o XL OL (3.34)
0 —NL 2NL
30 15

The transformation matrix C in Equations 3.12 and 3.32 is given by the ex-

pression:
-1 001 0 O
C=|0 £10-70 (3.35)
0 Loo0 -1o

The solution procedure is illustrated in Figure 3.8 by a flow diagram repro-
duced from Blauuwendraad’s paper (Blauuwendraad, 1972). First a reference
axis is chosen for each member. At the start of the analysis axial thrust N is
assumed to be zero and the modulus of elasticity E is taken to be the value at
the origin of the stress-strain diagram. Matrix S? is obtained using Expression
3.13. Matrix AS™™ is obtained using Expression 3.32. The total element stiff-
ness matrix in global co-ordinates S® is then obtained from Expression 3.12.
The assembling of the global stiffness matrix S from the element stiffness ma-
trices follows the normal procedure as that for a linear analysis. The global

displacement matrix v is obtained by solving the following equation:
Sv=k (3.36)

where k is the load matrix in the global co-ordinates.
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Member displacements v® and axial thrusts N are then obtained for all the

members and an updated S is then used for the next cycle of calculations.

The updating of E for each layer is carried out by using information obtained
from the displacement matrix v®. From this matrix, the axial extension at
midspan of a typical member u; and the rotations at the ends of the member

0; and 0; are obtained thus:

0 = - (_”J%”_) (3.37)

B = = (&Z_") (3.38)

U = ——-Siz(’u,j — U,‘) hant 51—30: - 51103 (339)
11 Sll Sll

Based on known values of u;, u;, u, 0; and 0;, the strain at reference level ¢,

and the curvature k are calculated from the expressions :

v; —v; 4L —8x
€, = JL + 7 U (3.40)

41, — 6z 2L — 6z
K = 0,-}-

L? L?

0; (3.41)

Once ¢, and & are known, the strain distribution across the section is known.
The modulus of elasticity for each layer can then be obtained from known

stress-strain relationship of the material.

The derivations for all the formulae given above for this approach can be found

in the paper by Blaauwendraad (1972).

Bazant, Pijaudier-Cabot and Pan(1987a) also used the layered finite
element approach (Zienkiewicz,1977) for the analysis of some softening beams
and symmetrically loaded frames. Geometrical non-linearities are not included
in the analysis. Their analysis was based on a secant stiffness approach using
deflection control. The entire structure is divided into a number of elements.
The secant stiffness matrix generated includes the effect of variation of stiffness

across the section and along the elements. Sections are divided into finite layers
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and the section properties are obtained by summation of all the concrete and
steel layers as an approximation to the integration required. He used a linear
shape function for the axial deformation along the arbitrary chosen reference
axis. Bazant et al used a deflection control procedure to follow the softening
behaviour of reinforced concrete structures. The derivations of the matrices,

reproduced from the paper by Bazant et al(1987a), are given in Appendix C.

Kulicki and Kostem (1974),;’earlier used an approach similar to that of
Bazant et al(1987a). Instead of ﬁsing one matrix, two matrices were used to
form the element stiffness matrix in their studies on the behaviour of concrete
beam columns. These matrices are k. and the geometrical stiffness matrix k,.
The element stiffness matrix k. is of the same form as that used by Bazant et

al except that they used a tangent stiffness formulation.

Kang and Scordelis (1980) used a tangent stiffness approach for the analysis
of reinforced and prestressed concrete structures. In obtaining the tangent
stiffness matrices of members, layer integration for the steel reinforcement
and concrete is carried out at the centre of the elements. However, in the
evaluation of the internal resisting forces, Gaussian quadrature integration is

based on three points along the element.

The modelling of a structure using this approach is shown in Figure 3.9. The
structure is divided into numerous elements with each having the usual six
degrees of freedom at the ends. The standard shape functions along the ele-
ments are assumed to be linear for the axial displacements and cubic for the
transverse displacements. Shear deformation was not included in the analysis.
The local co-ordinate system of each element passes through the ends of the
element, and is assumed to follow the element as it deforms. This approach
where the local co-ordinate system changes with the deformed shape of the

structure is commonly referred to as the updated Lagrangian approach.

The nonlinear geometric effect within the element is taken into consideration
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Figure 3.9: Modelling of structure using approach of Scordelis and Kang(1980)
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by adopting a norﬂj}mear geometric stiffness matrix k,. The nodal positions
and the element transformation matrix between local and global co-ordinates

are reqularly updated.

The cross section at mid-element is assumed to be representative of the sections
along the element when forming the element stiffness matrix. The section,
symmetrical about the local y-axis, is divided into concrete and steel layers.

Each of these layers is assumed to be under uniaxial strain.

Other basic assumptions made in the analysis are:(1) plane section remains
plane after bending, and (2) bond slip does not occur between the interface of

the reinforcing bars and the concrete.

Employing the unusual order used by the authors for labelling the degrees of
movement, the incremental equilibrium equation relating incremental load dq

to incremental nodal displacement dr in the local co-ordinate system is:

kidr = dq (3.42)
where ki = ke+k, (3.43)
T
and r = [ Ty T9 T3 T4 Ts5 Tg ] (3.44)
T
and q = [ @1 42 43 94 95 9Ge ] (3.45)

The component stiffness matrices k. and k, are given below:

EA EA ES s

T T L 0 0 Bs  _EBS

EA ES ES

k2 D 0 =R SR

12£4 12BA gEL  gEI

i L3 3 12 %
o= [9BA _gEI _gEL (3.46)

L3 6L2 6L2

SYMMETRIC 4BL 9Bl

4E!L

! 1
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00 0 0 0 0
0 0 0 0 0
6N _6N N N
_ sL sL 10 10
k, = o N N (3.47)
5L 10 10
SYMMETRIC L AL
L 2NL
15
where EA = > EiAa+) EuAs (3.48)
i=1 i=1
and ES = - Z EciyciAci - Z EsiysiAsi (349)
=1 1=1
and  EI = 3 EayliAa+ Y EayiAs (3.50)

i=t i=1

where n. and n, are the number of concrete and steel layers respectively, and

the subscripts ¢ and s refers to the concrete and steel respectively.

The structure or global tangent stiffness matrix K, is assembled from the
element tangent stiffness using standard procedures (Hall and Kabaila, 1977;

Cheung and Yeo, 1979).

For a typical step where the load increment is AQ), iterative cycles are carried
out to obtain convergence. Within each cycle, the tangential equilibrium Equa-
tion 3.51 for the structure is solved for global displacement increments, AR.
These increments are then transformed to give local displacement increments,

dr for each element.

K, AR = AQ (3.51)

Strain increment Ae at any point (defined by x-ordinate p = z/L and y-

ordinate y) within the element is obtained from the expression below:
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Ae = Bdr+ % drT CT Cdr (3.52)
where B = [ -1+ 3+ Ly(1-2p)
Zy(—=1+2p) 2y(2-3p) Zy(1-3p) ] (3.53)
and C = [ 0 0 $(-p+p?)
S(p—p*) 1—4p+3p° —2p+3p° ] (3.54)

B is the strain-displacement matrix for large deformation; and C is the strain-

displacement matrix for large deformation.

The strain increments are obtained for the layers of sections at three Gaussian
quadrature points along the lengths of the elements. Based on these elemental
strain increments, the total strains are obtained for the layers. From these total
strains and predefined stress-strain relationships of materials, total stresses are
then calculated. The internal end forces of each element in local co-ordinates
are then computed by integrating the current total stresses of the layers. These
end forces are then transformed into global co-ordinates using the updated
transformation matrices, and they are assembled into a matrix consisting of

the internal resisting joint forces R'.

From the resisting force R’ and the current total applied joint loads Q’, the

out-of-balance loads Q* are obtained, i.e.,

Q*=Q' - R’ (3.55)

These out-of-balance loads are applied as forces for the next iterative cycle,
and the cycle is repeated until the out-of-balance loads are within acceptable

tolerances. The updating of the nodal forces is represented by the expression:

AQ = Q* (3.56)
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The out-of-balance loads are then added to the load increment for the next
load steps and the whole process of carrying out iterating cycles is continued

until convergence.

As the cross section at mid-element is assumed to be representative of the sec-
tions along the element when forming the element stiffness matrix, numerous
elements are required to give accurate modelling of the material non-linearity
effect for the structure. This will result in inefliciency with respect to program

execution time and storage.

The layered element approach does not require the use of separate section
analysis to generate the moment-thrust-curvature relations. Instead of using
flexural stiffnesses of the elements to form the global stiffness matrix as for
the line element approach, the properties of the layers are used directly. The
layered element approach is not suitable to be used for deformation control
technique which uses curvature as the control criterion. This is because the
stiffness of the structure is not formed directly from the stiffnesses of the

elements but rather from the material and geometric properties of the layers.

3.5 Strategies for Traversing Limit Points

Limit points exist in a structure at peak strength (where dP/dA=0) or at local
ultimate deflection (where dP/dA=—o0). Typical limit points are illustrated

in Figure 3.10 for a one degree of freedom structure.

In Figure 3.10, point A represents a limit point for a structure under load
control, while points B and C represent limit points for a structure under
displacement control. Behaviour that gives rise to both point B and point C
is referred to as snapback instability, a behaviour shown numerically to exist

by Bazant, Pijaudier-Cabot and Pan (1987b) for a softening beam with elastic
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Figure 3.10: Limit points

end restraints. (This phenomenon of snapback instability had independently
been observed to occur in portal frames in computations carried out during

the course of the present study.)

For a structure with the behaviour shown in Figure 3.10, a load control pro-
cedure using monotically increasing load can only follow the behaviour up to
approach point A, unless special techniques are devised as discussed below. If
the displacement D is to be prescribed as the displacement control parameter,
and this displacement is monotically increased, the limit point A can be tra-
versed and the softening range AB can be traced. However, such a procedure
would fail at a point approaching limit point B. For a one degree of freedom
structure, the ability to trace the behaviour up to this point is normally suffi-
cient to give an indication of the peak load. For structures with many degrees
of freedom of movement, a wrong choice of the displacement control parameter

can result in premature termination of the analysis before reaching the peak
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load. Such termination will occur if the chosen control parameter is not monot-
ically increasing, i.e., there is a reduction in the value of the control parameter
as the global structural load continues to either increases or decreases. This
would amount to forcing the control parameter to take on a value larger than
its peak value which will result in non-convergency of the solution procedure.
To ensure that such premature termination does not occur during the analy-
sis, numerical strategies have been developed to traverse limit points. Some of

these are reviewed below.

3.5.1 Strategy of Bergan

Bergan (1980a) introduced the concept of a current stiffness parameter S,.
The parameter S, at a point on the load-deflection curve is the ratio of the
current slope to the initial slope of the curve. Mathematically this parameter

is defined by Bergan as (see Figure 3.11):

ﬂ’_) 2 T

().  [APN? ArgTKoAr,

= ki = (22 (3.57)
dr

AP,, AriTK;Ari
where the basic terms are shown in Figure 3.11.

The current stiffness parameter starts off with an initial value of one at the
origin and progressively reduces until it reaches a value of zero at the singular
point. This parameter is therefore useful to sense in advance the approach
of a limit point. Equilibrium is disregarded by Bergan when the magnitude
of the parameter is less than a threshold value to prevent non-convergence of
the solution procedure. The solution procedure, based on load control, can
therefore bypass the limit point and advance along the solution path. In the
softening region, the current stiffness parameter S, is negative and when this

occurs the load increment is reversed. The negative load increment is then
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Figure 3.11: Figure illustrating the solution procedure of Bergan (1980a)

continued until the next limit point is reached.

The low stiffnesses of the structure around the limit points can produce un-
controlled displacements which may cause divergence. Small load increments
are therefore necessary to prevent drifting away from the equilibrium path.
Bergan pointed out that even with small load increments, the displacement
can still be large. A simple method to prevent this, he suggested, is to cal-
culate a norm of the displacement increment and scale down both load and

displacement increments to be less than a specified maximum value.

3.5.2 Strategy of Crisfield

A popular method for traversing limit points is solve for displacements by

incrementing the load parameter up to the limit point, and from then on
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incrementing a characteristic displacement to obtain the corresponding load.
This approach will work only if the control displacement component is monot-
ically increasing. If the controlling displacement is poorly chosen and is found
to snap back on incrementing the load, then this approach will not converge.
Thus a proper choice of the controlling displacement is essential and for some

structures this choice is not obvious.

A procedure, first proposed by Riks (1979) and Wempner (1971), can be used
to overcome the problem described earlier. They proposed the use of a com-
plete displacement vector as the constraint parameter instead of using a single
component of the displacement vector. The proposed expression to constrain

the load step AA is:

AuTAu+ ANAPTAP = AP (3.58)
where
P = load vector;
u = displacement vector;
l = constrained vector; and
A = load factor.

Originally this constraint equation was added to the incremental stiffness ex-
pression but unfortunately this resulted in the loss of bandedness and symme-

try in the stiffness matrix.

Ramm (1981) modified the strategy of Riks and Wempner by using a two step
technique, similar to the one first proposed by Batoz and Dhatt(1979). This
modified technique allows both iteration in a “plane” normal to the tangent
and iteration in a “sphere”. The solution paths of Ramm are illustrated for a

single degree of movement problem in Figure 3.12.
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Figure 3.12: Figure illustrating the solution procedure of Ramm(1981)

Crisfield(1980) proposed the use of a spherical constraint surface which he
claimed (Crisfield,1981) is less likely to fail than would a planar constraint

surface. The constraint equation proposed by Crisfield is:

AuT Au = (Al)? (3.59)
where
u = displacement vector; and
Al = arc-length.

Crisfield(1986) proposed that an initial guess of the arc-length can be used

and, thereafter, the arc-length adjusted according to the expression below:

I,
Al; = (—’L—I>AI,-_1 (3.60)

where



Chapter 3: Methods of Analysis of Structures 87

Al; = arc-length to be used for the j-th increment;
Al;_; = arc-length required for the preceding increment; and

I, = desired number of iterations.

Crisfield suggested that if convergence is not achieved within a specified max-

imum number of iterations, the arc-length may be reduced.

The constraint arc length strategy of Crisfield applied to a structure with one

degree of freedom of movement is shown in Figure 3.13. Details of this strategy

can be obtained from Crisfield’s papers(Crisfield,1980;1983;1986).

The procedure, when applied to the materially noq}i{ﬁear analysis of rein-
forced concrete beams and slabs has limited success (Crisfield,1983), particu-
larly when significant strain-softening occurs in the constitutive laws. Crisfield
(1983) successfully obtained solutions using standard displacement control af-

ter introducing line searches and simple accelerations into the analysis.

3.5.3 Strategy of Warner

Warner (1984) proposed a strategy suitable for the analysis of softening be-
haviour of structures. This strategy has been used to study the ductility of rein-
forced and prestressed concrete beams (Warner and Yeo, 1984a; 1984b;Ahmad
and Warner, 1984) and partially prestressed bridge girder (Kgoboko, 1986;
Kgoboko, Wyche and Warner, 1987).

A brief description of the strategy is given here. This strategy is described in
greater details in Chapter 4 of this thesis. Warner modelled the entire structure
using members, divided into small segments. The solution procedure involved
carrying out, iteratively, a linear analysis on an equivalent elastic frame with

segments having flexural stiffnesses reflecting the most recent updates of the
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segment properties. The analysis of the structure is carried out by selecting
a “key” segment and imposing upon this segment increments of curvatures.
The flexural stiffness is assumed to be uniform within each segment and is
obtained from the properties and state of stress of the section at mid-segment.
The linear elastic equivalent frame is solved to give forces and deformations. If
the deflected shape does not give the targeted key curvature in a pre-selected
key segment, then the secant stiffnesses of all the segments are updated and
the linear frame is solved again. This calculation cycle is repeated until com-
patibility and equilibrium are achieved in the equivalent elastic frame. When
this occurs, the solution for the actual frame is assumed ‘to have been ob-
tained. The behaviour of the frame is obtained by progressively increasing the

curvature of the key segment by a small increment.

Warner and Yeo(1984) used this approach to study the collapse behaviour of
indeterminate concrete beams with limited ductility. The nonlinear analysis
was carried out by incorporating a standard linear elastic frame analysis. Seg-
ments are represented by individual elements and therefore require substantial

computer storage capacity.

Ahmad and Warner (1984) used a similar approach to study the overload,
collapse and post-collapse behaviour of continuous reinforced concrete beams
with limited ductility. The analysis was based on a flexibility type approach
which, according to Ahmad and Warner, is more efficient than the stiffness

matrix approach when applied to the analysis of a continuous beam.
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3.6 Softening Behaviour of Reinforced Con-

crete Structures

3.6.1 Hinge Length

Based on experimental investigations, Bazant(1984) found that strain soften-
ing is frequently distributed over finite-size regions of a heterogeneous material.
These regions are normally referred to as hinges. At present, there is no sat-
isfactory theoretical prediction for the length of these hinges. As hinge length
I, is an important parameter in softening analysis, several of the proposed

formulae for determining it are described below.

The I.C.E. committee (1962) recommends the following formula for the
equivalent plastic hinge length, [,. The variable I, is defined as the equivalent
length over which plastic rotation occurred with constant curvature in that

length.

L = kykaks (3)I d (3.61)

where k; = 0.7 for mild steel

= 0.9 for cold-worked steel

&
k2 = ] +0.5 (-P—u")

0.3
ky = 0.9— —(f —11.
2 = 09— = (fi-117)

where
f! is assumed to be 0.85 x the cube strength of
concrete (f! is in MPa);

z is the distance of critical section to the point
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of contraflexure;
d is the effective depth of the member;
P is the axial force on member; and
P, is the ultimate compressive strength of

the member under axial load without bending moment.

Cohn and Petcu (1963) observed from tests carried out on two-span beams
that the length to one side of the plastic zone at the internal support is between

0.3d and 0.9d.

Baker and Amarakone (1964) proposed the following formula on the basis
of experimental investigation of beams both with and without confinement by

transverse steel.

I, = 0.8k ks (3) ¢ (3.62)

where c is the neutral axis depth at the ultimate moment and the other symbols

have the same meaning as in Equation 3.61.

Sawyer (1964) proposed the following formula for the equivalent length of
the plastic hinge:

I, = 0.25d 4 0.075= (3.63)
The above equation is based on the assumptions that the maximum moment
in the member is the ultimate moment, that Af,/M, = 0.85, and that the zone

of yielding is spread d/4 past the section in which bending moment is reduced

to M,.

Corley (1966) proposed the following formula for the equivalent length of

the plastic hinge based on the results of tests on simply supported beams:

I, = 0.5d + 0.2Vd (3) (3.64)

Mattock (1967), in discussing Corley’s paper, suggested a simpler form of
Equation 3.64 that fitted the trend of the data obtained in investigation at the
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Portland Cement Association. This equation is:

I, = 0.5d + 0.05z (3.65)

Park et al (1982) found that the experimentally measured equivalent lengths
of plastic hinge are comparatively insensitive to axial load level and had an
average value of 0.42kh where h is the overall section depth. Since the columns
tested had overall depth of 550mm and effective depth, d, of 488mm, the

average value of I,/d is approximately 0.48.

Warner and Yeo (1984c) considered the flow of forces in a hinging region
at an intermediate support, and concluded that in regions subjected to shear
cracking, the region of steel yield spreads outward from the face of the support
in steps of the stirrup spacing, s. Based on this observation, they suggested
that a reasonable estimate of the final length of the hinging region to one side
of the support was a multiple of s which is less than or equal to the effective

depth, d of the beam.

Bazant et al (1987b) found that when the element size is refined to zero,
strain-softening material models give physically meaningless solutions as the
energy dissipated at failure tends to zero. Therefore, a certain minimum length
of the strain-softening segment of the beam must be imposed. He suggested
that this length may be approximately taken to be equal to the beam depth.
This concurs with BaZant’s earlier suggestion (Bazant,1976) that the element
length must not be shorter than both three maximum aggregate sizes and the
beam depth, H. The second condition is a consequence of the assumption of

plane cross sections and in practice it always govern (Bazant et al, 1987b).
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3.6.2 Previous Analytical Studies of Softening Behaviour

Softening behaviour has so far been observed experimentally in structures
such as beams (Darvall and Mendis, 1984) and some portal frames (Cranston,
1965b) under the effect of point loads. To enable such behaviour to be studied
in more complex structures, analytical studies to include the effect of strain
softening have to be carried out. This section described several previous ana-

lytical studies on the softening behaviour of reinforced concrete structures.

Cranston(1965a) used a flexibility matrix approach to analyse a pin-ended
portal frame subjected to symmetrical two-point loading on the beam span.
The frame was tested by him and is described in another paper (1965b). He
assumed two falling branch hinges: one at the mid-span of the beam and the
other at the top portion of the column, just below its intersection with the
beam. The discontinuity length was assumed to be be approximately equal
to 4 per cent of the corresponding member length. The analysis carried out
made use of experimentally derived moment-curvature curves. The results
obtained show that the load falls only after the formation of the second hinge.
The agreement between analytical and experimental results was good at all

loading stages.

Ghosh and Cohn (1972) proposed a method of non-linear small-deformation
analysis of reinforced concrete structures, considering the effect of the descend-
ing branches of the moment-curvature diagrams. The analysis of reinforced
concrete structure of known configuration and geometry by this approach be-
gins with the pre-generation of the moment-curvature relationships of various
sections in the structure from a chosen stress-strain relationship and the known
geometric properties of the section. The chosen material stress-strain relation-
ship may be based on an idealised, proposed relation or based on experimental
data defined at discrete points. Loads of some known intensity are imposed

on the structure, and a moment-field in equilibrium with the load is assumed.
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The associated curvature field is obtained from the pre-generated moment cur-
vature relationships. Slopes and deflections along the member are calculated
from the known curvature field and the boundary conditions are checked. A
moment-field in equilibrium with the imposed loads and satisfying all boundary
conditions is found by trial and error. After obtaining solution for a particular
load intensity, the imposed load intensity is increased at desired intervals, and
the solution process is repeated until the ultimate capacity is reached in at
least one section along the member. Let the most critically stressed section be

known as section A.

In carrying on the analysis beyond the above stage, section A is assigned a
bending moment along the descending branch of its moment-curvature rela-
tionship. Ghosh and Cohn assumed that a section at an infinitesimal distance
away is subjected to the same moment, but on the ascending branch of the
same moment-curvature curve. A discontinuity therefore occurs at section A
and its value can be calculated from the moment-curvature curve, as shown
in Figure 3.14. Knowing this discontinuity curvature, and the gauge length
on which the stress-strain relationship and moment-curvature relation of the
section are based, the concentrated rotation at section A can be calculated.
This concentrated rotation is considered as part of the compatibility condi-
tions to be met in establishing, by trial and error, a load intensity for the
structure with the prescribed moment at A. The above procedure is repeated
with progressively decreasing values of descending branch moments assigned
to the section A. For the two-span continuous beams analysed by Ghosh and
Cohn, section A occurs at the support, and the analysis is terminated when
the moment capacity is attained at the span sections. This method is based
on the concept of concentrated rotations at critical sections, rather than on

the concept of discontinuity length.

Ghosh(1977) used the above approach to analyse a number of symmetrically

loaded two-span continuous beams with different amount of tension reinforce-
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Concentrated Rotation =
Gauge length X Discontinuity

MOMENT

CURVATURE

discontinuity

Figure 3.14: Discontinuity length(Ghosh and Cohn,1972)

ment and the strength of concrete. He reported that the non-linear load-
deformation characteristics up to the point of collapse are in reasonable agree-
ment with experimental results. From this study, he concluded that it is
essential that the descending branches of the sectional moment-curvature re-
lationships be considered in order to obtain accurate analytical predictions of

the load-deformation characteristics of reinforced concrete structures.

The above approach proposed by Ghosh and Cohn is suitable for relatively
simple structures. The accuracy of the method depends on the value of the

gauge length used in the analysis.

Bazant(1976) and Darvall(1983) found that there exist a critical softening slope
in the softening branch of the hinge. This results in the structure not being

able to carry any extra loads.
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Mendis(1986) included the effect of geometrical nor{iljﬁnearity effect in the non-
linear analysis of concrete frames. He concluded that by not including this
effect, the order of hinge formation in the structure during loading may be
affected. In his studies, he was concerned with structures with at least one

hinge being formed at collapse.

Bazant et al(1987b) suggested the possibility of multiple snapbacks forming in
load softening structure. They concluded from this study that:

a statically indeterminate strain-softening structure of redundancy de-

gree n can exhibit at most n + 1 points of snapback instability,

e 2 structure will exhibit all its snapbacks if it is sufficiently slender, or if

the strain-softening slope is sufficiently steep,

e finite element analysis would encounter all these snapback instabilities if

the finite elements were sufficiently small, and

e the strain-softening segment of a beam cannot be replaced, for the pur-
pose of calculations, by a softening hinge, unless the beam is sufficiently

slender.

3.7 Summary and Concluding Remarks

The commonly used load control techniques to analyse non-linear behaviour
are the secant, tangent and initial stiffness techniques. These techniques, by
themselves, are not suitable for following the load-softening behaviour of re-
inforced concrete frames. They must be used in conjunction with other tech-
niques such as the those described above in Section 3.5. The technique pro-
posed by Crisfield is difficult to program, especially when line searches and

simple accelerations have to be incorporated into the approach in order to ob-
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tain solutions for structures with strain-softening behaviour. Bergan’s strategy
has the disadvantage of bypassing the limit point. The region around the peak
load, therefore, cannot be analysed and the peak load cannot be determined
accurately. The technique proposed by Warner is chosen for the development
of the computer program in the present study as a good compromise between

simplicity of programming and efficiency.

Several numerical models for the analyses of concrete frames have been re-
viewed. The two common models reviewed are firstly one in which the frame
is modelled by using numerous line elements and secondly the frame is mod-
elled using numerous layered elements. In the latter approach the element
stiffness matrix is formed directly from the behaviour of the layers comprising
the elements. The numerical model used in the present study is based on the

technique which uses line elements proposed by Warner.

The hinge length parameter has been reviewed and a hinge length value be-
tween 0.5 and 1.0 times the depth of the corresponding section, D, is to be
adopted by the author.

Previous analyses to obtain the softening behaviour of reinforced concrete
structures have been described. They have one or more of the the following

limitations:

limits to the analysis of simple structures;

e without the ability to follow the snapback instability behaviour of the

structure;

e required guesses of the positions of concrete hinges to obtain accurate

solution;

e concerns with softening behaviour with at least one hinge forming, thus

ignore the possibility of softening before the formation of hinges; and
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e requires the discretisation of structures into numerous elements resulting
in large global stiffness matrices which causes the solution procedure to
be ineflicient.

b
The survey of the litera.ture;s/ carried outf\in this chapter suggests that there
is a need to develop an efficient computer program to trace the behaviour
of/\reinforced concrete frame over its full-range behaviour. It is important
that the softening behaviour of frames be obtained to enable the peak load
to be accurately determinated. To the knowledge of the author, snapback
instability in concrete frames has not been observed in any computer analysis.
To enable this phenomenon to be observed and studied, computer programs

using efficient techniques to traverse limit points need to be developed.

To overcome the shortcomings in existing techniques, a computer program has
been developed to trace the full-range behaviour of reinforced concrete frames.
The computational technique used in this program 1s described in Chapter 4.
The same program is also used, together with several other programs, to eval-
uate the accuracy of the present Australian Standard AS3600. These studies
are described in Chapters 7 and 8.



Chapter 4

Segmental Method of Analysis

4.1 Introduction

The basic concept in the development of the segmental method of analysis
is that reinforced concrete frames can be represented by elements, and the
behaviour of these elements is influenced by the properties of short segments

along them (Warner,1975), rather than individual cross sections.

Based on the above concept, studies have been carried out to define ductility
limits for reinforced and partially prestressed concrete beams (Ahmad and

Warner,1984; Warner and Yeo,1984a,1984b).

A similar approach was used to study the ductility limits of partially pre-
stressed concrete girders (Kgoboko,1987; Kgoboko, Wyche and Warner,1988).
In that study, the effect of thrusts on moment-curvature relations of the sec-
tions was not included. Use was made of linearised moment-curvature rela-

tions obtained from pre-generated relations using a separate section analysis

99
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program. As this requires a large amount of input data compared with pro-
grams that use a built-in section analysis routine, greater care is required to

ensure the accuracy of these data.

To enable more complicated structures to be analysed, a computer program
based on the segmental approach has been developed (Wong, Yeo and Warner,
1987a, 1987b). The program, based upon a finite element formulation, has
general applications in the analysis of plane skeletal frames with different con-
figurations and under different types of loading. The computer program devel-
oped during the present study, program SAFRAME (abbreviation for Segmen-
tal Analysis of reinforced concrete FRAME ) uses a built-in section analysis
subroutine described in Chapter 2 to generate values of moment, thrust, and
curvature for individual segments whenever required by the main routine in

the program.

Computer program SAFRAME was written in Fortran77 to run initially on
a VAX 750 operating under VMS. It was subsequently modified for a UNIX
operating environment. As numerous cycles of calculations are carried out to
obtain a solution, rounding-off errors may occur. To minimise the effect of
rounding-off errors, values of real type are stored in a double precision (64

bits) internal representation.

Some of the material in this chapter has previously been published (Wong,
Yeo and Warner,1987a, 1987b; Wong and Warner,1988).

4.2 Structural Analysis

The segmental method of analysis used here is similar in concept to one previ-
ously applied to the analysis of continuous reinforced and prestressed concrete

beams (Warner,1984). However, to treat skeletal frame behaviour in an ad-
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equate manner, it has been necessary to extend the analysis to allow for the

following:

e axial deformations;
e geometric non-linearities in the frame;

e the effect of thrust on the moment-curvature relations for column seg-

ments; and

o inclastic (as well as non-linear) behaviour in segments subject to local

unloading.

In order for the structure to be modelled accurately with respect to material
noéﬁhearity, the length of the segments needs to be comparable with actual
concrete hinges. An earlier study by Warner and Yeo (1984c) suggested that
in regions of high shear, the length of hinges may be approximately equal to
the effective dt;pth. A study by Bazant et al(1987b) showed that the unloading
path of softening structures is affected by the length of the segments used in

the analysis and he recommended a length equal to the depth of the section.

Instead of the usual approach of using the behaviour of the segments to obtain
the structural stiffness directly, a more efficient two-stage approach has been
adopted. This involves grouping the segments together to form elements, and
using the stiffnesses of the segments to determine element stiffnesses. As the
behaviour of the elements is influenced by the behaviour of the component seg-
ments, this approach of modelling the structure reduces considera.blj.r the size
of the structural stiffness matrix, but still maintains the same level of accu-
racy in modelling the material nog@he&rities. Computer program SAFRAME
contains a section analysis routine which automatically generates the moment-
curvature-thrust relations during the analysis. This enables the program to

be fully automated, thereby reducing the amount of input from users when
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analysing concrete frames. Using moment-curvature-thrust relations generated
within the program instead of using pre-generated moment-curvature relations

also allows more accurate modelling of the effect of sectional axial thrust.

The frame to be analysed is divided into elements, and the elements into
segments. The behaviour of the structure is analysed for a given loading pat-
tern. The behaviour of each segment is defined by the moment-curvature-
thrust relations obtained for the section at mid-segment. The analysis of
the structure is carried out by selecting a “key” segment and imposing upon
this segment increments of curvature. For each value of curvature, Kiey(1),
.. Koy (ISTEP), ... Kiey(NSTEP), the loads required to cause this curva-
ture are computed, together with the displacements throughout the structure,
by an iterative procedure based on a linear secant stiffness analysis. The final
curvature Ko, (NST EP) represents an arbitrary state of post-ultimate soften-

ing of the key segment, and unloading of the structure as a whole.

At each computational step, the flexural secant stiffness and axial secant stiff-
ness of each segment are progressively adjusted until all equilibrium and com-
patibility requirements are satisfied, taking account of the segmental moment-

curvature-thrust relations.

For the start of a typical computational step ISTEP, in which the target
curvature in the key segment is &, (IST E P), the trial flexural stiffness values,
El;a(n), for all the segments are set equal to the values at the end of the
previous step, i.e. equal to the values already obtained to correspond to the
key segment curvature of &, (ISTEP — 1). The trial axial stiffnesses of the
elements S(m), are also set equal to the values at the end of the previous step.
For the first step in the analysis the secant stiffnesses are set equal to the EA
and EI values of the gross cross-sections ignoring the presence of the steel

reinforcement.
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Computational cycles are then carried out until a solution is obtained for the
frame under the prescribed load pattern and having a curvature of Kkey(IST EP)

in the key segment. Steps in a typical computational cycle are described below:

1. Form the secant stiffness matrix for each element in turn, using in its
build-up the most recent bending and axial stiffness trial value for
each segment comprising the element. The derivation of the element
stiffness matrix for a segmental element is given in Section 4.3. From
these matrices and appropriate element transformation matrices,
assemble the global stiffness matrix, [/] using standard procedures

(Hall and Kabaila, 1977; Cheung and Yeo, 1979).

2. Form the nodal load matrix, {Qunrit}, from a unit applied load pat-
tern. Analysis is carried out to obtain scaling factors to this unit

load pattern that will giv sngned values of curvatures in the key

segment. This implies that the analysis is carried out for the struc-
ture under proportional loading. Contributions from unit load pat-
terns within elements are taken into consideration by using equiva-
lent nodal loads based on fixed end moments which are dependent
on the flexural stiffnesses of all the segments within the elements.
Expressions for fixed end moments for a segmented element are
given in Section 4.4. The derivation of these expressions is similar
to that for an elastic element with non-uniform section (Bull and

Sved,1965).

3. Obtain the nodal deformations A,n;; due to combined “unit” out-
of-balance nodal forces from the previous cycle {Qout—of—bat} (ap-
propriately taken to be zeros for the first cycle of the first step) and
the unit load pattern {Qunic} by solving the equation: ’

{Quni!} + {Qout—o]—bal} b [I{] {Aum't} (4'1)



Chapter 4: Segmental Method of Analysis 104

4. From the nodal deformations of the frame, using standard proce-
dures, obtain deformations and forces at the ends of all the elements.
Based on these and the unit load patterns within the elements, de-
termine the curvatures Kyn;:(n) of all the segments due to the unit
load pattern:

Mynit(n)

Kum‘t(n) = m (42)

5. If the curvature of the key segment, as given by this calculation
using unit load is Kunit(key), whereas the required curvature for
this segment is &yey (/ST EP) then the scaling factor is:

krey(ISTEP)

SF =
Kunit(key)

(4.3)

6. Obtain a trial set of segmental curvatures throughout the structure,

Keriat(n), by multiplying Kunit(n) by the scaling factor SF.
Etriat(n) = SF X Kunie(n) (4.4)

Note that the trial curvature in the key segment &¢riq1(key) is always

equal to the target curvature, K¢y (ISTEP).

7. Store the previous stiffnesses prior to calculating the new stiff-

nesses(see Equation 4.6):

OLDEI(n) = EI,r;al(n) (4.5)

8. Use a section analysis routine in turn for each segment to determine
the segmental moment My, iu(n) to correspond to Keriat(n) and the
thrust value for the element obtained earlier. Hence calculate the
new secant bending stiffnesses from:

Mtrial(n)

ntrial(n)

Elyia(n) = (4.6)

Obtain the total axial deformation of the element along its cen-

troidal axis from the section analysis routine. This together with
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the element thrust value N(m) enables a trial axial stiffness S(m)

to be determined.
nseg

6(m) = 3 e(n)i(n) (4.7)

_ N(m)

S(m) = Fm)

(4.8)

where §(m)= total axial deformation of element m
along reference axis;
e(n) = strain of segment n along reference axis; and

I(n) = length of segment n.

9. Calculate the “total” out-of-balance nodal forces from the resist-
ing forces at the nodes based on the latest deformed state of the
structure in the full load system (not that in the unit load refer-
ence system) and the applied total loads. These forces are scaled
down to unit load reference system to give the “unit” out-of-balance
nodal forces {Qout—os—sat} using the latest scale factor, SF. This
out-of-balance forces is used in item 3 to achieve joint equilibrium

for the structure in its deformed configuration.

10. Convergence is considered to have been achieved when the change in
flexural stiffness of each segment between two successive cycles and
the out-of-balance nodal forces are less than acceptable tolerances.

If convergence has not been achieved, the cycle is repeated.

When convergence is achieved, the state of the structural system corresponding
to the key curvature &g, (ISTEP) is obtained by applying the scaling factor
SF to the unit load analysis. The load producing this state is equal to the
scaling factor, SF.

The gross section EI and EA values are used for the first step in the anal-
ysis (i.e. for &xey(1)). For all subsequent steps in the analysis, the first trial

stiffnesses are those obtained at the end of the previous step.
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As can be seen from the steps described above, geometric non-linearity is al-
lowed for by updating the nodal positions at the end of each iterative cycle, and
applying the out-of-balance forces on top of the contribution from the applied
loading as nodal loads of the next iterative cycle. At the end of the iterative
cycles, when convergence is achieved, results (such as forces and deformations)
are obtained for the structure in its deformed shape with equilibrium of forces
been achieved at all nodes, and with the frame having the nominated curvature

in the key segment for that particular step.

The computational procedure for a typical step is illustrated by the flowchart
in Figure 4.1.

It has been found that in the unloading phase, convergence is improved if the
updated flexural stiffness values are taken as the average of the previous and
current values for any iterative cycle, instead of the current values. This also
assists in damping out any oscillating effect occurring numerically during the

analysis.

4.3 Derivation of Stiffness Matrix for a Seg-

mented Element

In this section, the stiffness matrix of a segmented element is derived. A typical
element ot.' length L is divided into nseg segments, each having a flexural
stiffness value governed by the level of the curvature at mid-segment. The
moments at the left and right ends of the element are M, and M.nq respectively;

the shear forces are V, and V..4 respectively.

Let 0; be the change in rotation within a typical segment i, assumed to occur

at the mid-segment, and calculated from the bending moment at mid-segment,
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Commence Step ISTEP

I

Set curvature of key segment to
Koy (ISTEP)

I

[ Set El(n) = OLDEI(n)

|

Set CYCLE=0

|

I

CYCLE = CYCLE + 1

|—_

I

Linear elastic analysis:

For unit load pattern ond ocut—of—balance
forces toking deformed structurol
configuration under full load
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Obtain curvature Kyni(n).

Calculate scaling factora,
SF = Kkay (ISTEP) /Kunt(1)

Obtain trial curvatures for all segments:
Kiial(n) = Kunit(n) X SF

Obtained new deformed configuration
and calculate out—of—balance
nodal forces

v

Section analysis:
Determine M q(n) for each Kyiai(n).

Obtain new flexural stiffnesses:
El(n) = Mya(n) / Kisial(n)

Determine axial stiffness values

S(m) for all elements

I

Calculate ‘unit’ out—of—balance
nodal forces based on latest geometry

Check Convergence:

El(n) — OLDEKn

|
s OLDEI(n

< tolerance ?

Are out—of—balance nodal forces

< tolerance ?

No

[ OLDEI(n) = El{n)

—

ISTEP = ISTEP + 1

%

Figure 4.1: Calculation cycle for a typical step
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Figure 4.2: Typical Segmented Element

M, — V,z;, and the flexural stiffness S: using the equation:

_ Mo - ‘/ozi

0; .
Si (49)
where
S,‘ = EI;/I;; and
; = length of segment :.

From Figure 4.2, the siopes and displacements at the end of a typical segment
¢ are:

0;,=0,—-0,—-0;—---—0; (4.10)

Ai= Ayt OuLi — Oy(Li — 1) — Oa(Li — z2) — - — O Li —z)  (4.11)

where L; is the distance from the left end of the element to the end of segment

t as shown in Figurelz4.2 and tan 0; is assumed to be §; in Equation 4.11 above.
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Hence, the deformations at the end of the element are:

Oud =0y — 0y — Oy — - —O; — - — 0n (4.12)
Byend = Dyo+ O L—0y(L—z1) = O5(L—2) —--- =i L—z:) =+ - = On(L— )
(4.13)

Substituting Equation 4.9 into Equations 4.12 and 4.13 yields:

nseg 1 naseg T:
Omd =0 — MY, = +Vo D = (4.14)
i=1 Si i=1 Si
Ayem.d _ Ayo nseg 1 Alo nseg T; nseqg z; Vo nseg 2:?
Syend TBw _g M,y =+=2Y 24V, Y -2 2 (41
L gsi—*-Liz::lS.‘.l- ;S.' L;S.'( 5)
Let G =SMP L, C=Yr¥ % and G =i 5.
Equations 4.14 and 4.15 become:
Ocnd — 00 = —M,Cy + VoCy (4.16)
Ayend — Do M, v,
Ju%—i-ef>4mx+f@+%a-f@ (4.17)

Solving Equations 4.16 and 4.17 gives:

1
1
Vo [C]Ayo + Czeo . C]Aymd '|" (C]L b Cz) G,,,d] (4.19)

= CiCs— C?
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M., .4 and V.., are obtained from the equilibrium relationships given below:

Vot Vena =0

M0+Mend_‘/oL=0

(4.20)

(4.21)

Equations 4.18, 4.19, 4.20 and 4.21 combined with the axial stiffness S(m)

described in the main text give the element stiffness matrix shown below:

(P, ) (Ao |
v, Ayo
M, O,

g » = [K] x ) >
Pcnd A:l:cnd
‘/cnd Ayend

\ Mend b, L ecn.d J

where [K] is the segmental element stiffness matrix shown below:

where 522 = CI/ (0103 — 022) 9 833 = Cs/ (CIC3 s ng) 9 523 = Cg/ (C]C3 - 022)

[ S(m) 0© 0 ~S(m) 0 0
S22 523 0 —522 LS22 - S23
S 0 —Sa3 LS23 — Sa3
S(m) 0 0
SYMME- Sa Sa3 — LS
[ TRIC L2Sy, — 2LSy + Sz |

(4.22)

(4.23)



Chapter 4: Segmental Method of Analysis 111

4.4 Derivation of Fixed End Moments for a

Segmented Element
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Figure 4.3: Fixed end moments for segmented element

As mentioned in Section 4.2, the fixed end moments of a segmented element
have to be calculated to include the effect of transverse loading along the
element. The derivation of the fixed end moments for-a segmented element is

presented in this section.

For the element shown in Figure 4.3, using the moment area method and noting

that the tangent to the element at B passes through A and vice versa yields:

M

B
i diagram about A]A =0 (4.24)

[Moment of
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B
[Moment of .8 diagram about B] =0 (4.25)
EI A

The bending moment at any mid-segment point G distant z; from N is found
by the summation of two bending moments; firstly, the bending moment, M,
as if the element carrying the external loads was simply supported and sec-
ondly, the bending moment caused by the end moments Mg and Mpy, as

expressed by the equation below:

(X + 2:;)

Mg = Mup — 7

[Mag + Mpa] (4.26)

The total moment at G is therefore:

(X + i)
L

where M,,; is the simply-supported bending moment which is a function of z;

M. = My, + Mup — [Map + Mp4) (4.27)

and the applied loading.

For a segmented element, the moment area Equations 4.24 and 4.25 thus be-

come:

%e:g {[an' + Map - (X Z ) (Map + MBA)] A z'} =0  (4.28)

i=1

X +z;

nseg L _ X _ ..
{[MPPt + Myp — ( ) (Map + MBA)] ——E—I—i} =0 (429)
:—1 [

The origin N is then chosen to be the centroid of the 1/EI diagram such that:

5 _ T2 (wlEL)
7 (1/BE)

(4.30)
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Since N is the centroid of the 1/EI diagram

> =0 4.31

24 EI, (4.31)
nseg z nse i nse iTi

Let P =YY o7 R=YX g S=L& —hl—;':zﬁl, T=y3 —ZLMEI.'

Equations 4.28 and 4.29 become:

XS+T+

M;” [X(L-X)P-R]— A—lfi [x2P+R] =0 (4.32)

M,
- x15-1+M42 [ x)? P+ B - “EAX (L - X)P—R] =0
(4.33)
Solving Equations 4.32 and 4.33 simultaneously yields:
XT S
Myp = [ P (4.34)
_Je-xT | S
Mgy = [ R + P (4.35)

4.5 Convergence Criteria

Convergence criteria need to be decided for non-linear structural problems
that are solved by iteration. According to Bergan and Clough(1972), these
criteria can usually be classified into the following groups :(1) force criteria,

(2) displacement criteria and (3) stress criteria. One of the main problems with
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iterative techniques is deciding on whether the present iteration is sufficiently

close to the true solution.

The force criteria described earlier in Section 4.2 are based on the unbalanced
or residual forces. These forces are the differences between the actual loads act-
ing on the structure and forces calculated from the internal resisting stresses.
It is essentially an equilibrium check on the structure, normally in its deformed
configuration. Use of such a criterion causes difficulty in deciding the accept-
able tolerances as quantities under consideration may be of completely different
order or even of different dimensions. For instance it is difficult to decide on
the acceptable out-of-balance nodal forces and out-of-balance nodal moments
for nodes that carry no loads but are free to move. Choosing over conservative
values will result in inefficiency of the solution procedure with iterations will

continuing even though the solution is close to the actual solution.

To overcome the problem associated with using force criteria, Bergan and
Clough (1972) proposed the use of displacement criteria. They introduced a
nondimensional vector based on displacements, which they referred to as the

¢ vector defined below:

—— (4.36)

T Lo ol
Tiref T2,ref Tiref Ta,ref )
where
n is the total number of unknown components;
A, is the change in displacement component 1
during iteration cycle j; and

rives are the reference displacement quantities.

The reference displacement quantities are generally not equal to the corre-

sponding total components because, if r; is close to zero, the ratio A, [r:i could
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be large even after convergence has occurred. Instead, every A,, is scaled by
the largest displacement component of the corresponding “type”. Bergan and
Clough suggested that a mean value could be used instead of a maximum

value.

Three alternative norms were suggested by Bergan and Clough for measuring

the size of the € vector. These are:

1) modified absolute norm

n Ar'
¢ = LyiSn, (4.37)
N2y | Tiref
2) modified euclidean norm
1/2
130 A
= =X |— 4.38
‘ [ﬂ ; Firef ] ( )
3) maximum norm
e = maz|— (4.39)
Tiref
The convergence criterion for the above norms is:
€ < v (4.40)

where the value of 7 is usually of the order of 1 x 1072 to 1 x 10~°, depending

on the required accuracy.

Figure 4.4 obtained by Bergan and Clough indicates that the various norms
follow each other in a parallel manner during iteration so it is of no great
significance which norm is chosen. As using deformation convergence criteria
has the advantages described earlier in this section over using force criteria,

the former was incorporated into program SAFRAME. The maximum norm
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Figure 4.4: Comparison of different convergence criteria (after Bergan and

Clough,1972)

is used as it gives an absolute bound for all displacement components instead

of an average bound obtained using the other two norms.

4.6 Efficiency of the Segméntal Approach

The efficiency of the solution procedure is related to the size of the global
stiffness matrix of the structure as the solution procedure involves solving

a set of simultaneous equations of size equal to that of this matrix. As most
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non-linear analyses involve forming and solving a set of simultaneous equations
repetitively, the size of the global stiffness matrix has great influence on the

efficiency of the solution procedure..

The efficiency of the segmental approach is illustrated using a three-storey
two-bay frame (see Figure 4.5). If all segments are treated as elements, the
labelling is shown in Figure 4.6(a). The labelling of the nodes using the seg-
mental approach, assuming that three internal nodes are required for accurate
modelling of the P-A effect within the columns, is shown in Figure 4.6(b). As-
suming that the banded nature of the global stiffness matrix is not exploited,
the first approach results in a global stiffness of size 522 x 522 whereas the
latter approach results in a global stiffness of size 108 x 108. In certain struc-
tures where the P-A effect for the columns is not significant, one element per
member can be used. For the frame shown in Figure 4.5, this reduces the size

of the global stiffness matrix to 27 x 27.

4.7 Summary

The development of the program SAFRAME has been described. Convergence
criteria based on forces and deformations have been discussed and the latter
are adopted for use in SAFRAME as a more efficient means of determining

the convergence.

The efficiency in using a segmental a.pproé.ch was described using a three-storey
two-bay frame. For the frame with the P-A effect of the columns ignored, the
size of the global stiffness matrix is reduced from the usual 522 x 522 to 27 x
21.

Derivations of the elemental stiffness matrix have been presented in this chap-

ter. To enable transverse loading along the elements to be included in the
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Figure 4.5: Configuration of 3-storey 2-bay frame
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Figure 4.6: Efficiency of the segmental approach
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analysis, expressions for fixed end moments for segmented elements have also

been derived.



Chapter 5

Program Testing

5.1 Introduction

Before program SAFRAME can be used to study the collapse behaviour of rein-
forced concrete frames, the accuracy of the program in predicting the behaviour
of actual reinforced concrete frames needs to be demonstrated. This was car-
ried out by comparing results obtained from laboratory tests with those ob-
tained using SAFRAME. Test structures chosen for analyses include columns

and frames reported previously in literatures.

When analytical solutions are compared with experimental data, one must
keep in mind that although the experimental results do give us a fair idea of
the behaviour of the structures, the accuracy of the results obtained depends
on a number of factors. These include the loading system, the accuracy of
setting up the tests, the accuracy of the instruments used to obtain the data,

and the consistency of concrete behaviour. In cases where the test structures

121
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are simple, comparison between results obtained from the present analysis with
those obtained using other sound analytical methods also give some indication

of the accuracy of the present procedure.

Some of the results published in this chapter have previously been published
(Wong, Yeo and Warner, 1987a; 1987b; 1988¢c; Wong and Warner, 1988).

5.2 Column Test

Hinged columns subjected to eccentric axial loading were tested by Ramu et
al(1969). Column 24 was loaded in a short time test to failure. The structure
is shown in Figure 5.1. Value of f, is 452 MPa. Value f.n is assumed to be
25.2 MPa (0.80 foute) and value fomas is assumed to be 0.85 fom. Value of E,
is assumed to be 5000 \/fem. Value €cmqz is assumed to be 0.002 . Value 1

calculated from fomaz, Ec and €qmqz is 2.34 and 7, is assumed to be 3.0.

Using one element will not model the geometric nonlinearity effect within the
member as the column failed by buckling. Figure 5.2 gives the results predicted
by the program with two elements and a node at mid length and having a total
of 32 segments. In the same figure, another plot is shown for 64 segments. The
results obtained indicate that increasing the number of segments has little

effect on the results obtained for the structure.

In Figure 5.3 theoretical results are shown for the same structure modelled
using various numbers of elements. The total number of segments was main-
tained at 64. There was a significant change in the result when the number of
elements was increased from two to four; however, a further increase from four
to eight did not affect the results much. Thus, four elements were considered
sufficient to model the behaviour of this column. Comparison between analyti-

cal and experimental results in Figure 5.3 shows that the predicted failure load
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Figure 5.1: Hinged column tested by Ramu et al(1969)
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is lower than the experimental value. This may be caused by the inaccuracy in

the factor used to convert the strength of standard cubes to that of standard

cylinders.

300.0

100.07 —w— 32 SEGMENTS
- 64 SEGMENTS

L] L]

000 200 40.0 60.0 80.0
HORIZONTAL DEFLN, D(mm)

Figure 5.2: Load versus horizontal deflection plot for hinged column with 2

elements
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Figure 5.3: Load versus horizontal deflection plot for hinged column with

various numbers of elements
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5.3 Frame Tests

5.3.1 Sway Frame

Program SAFRAME was used to analyse an unbraced slender reinforced con-
crete frames L3, which had been tested by Ferguson and Breen (1966). The
same frame had previously been analysed by other analytical techniques (Gun-
nin, Rad and Furlong, 1977, Epsion,1986). Reasonable agreement between
experimental and theoretical load versus sway deflection relations had been

obtained by Gunnin et al and Epsion.

The structural frame L3 is shown in Figure 5.4. Two cases were chosen for
analysis. In case A, the frame was modelled using one element per member,
each in turn was modelled by using ten segments. In case B, the number of
elements used per member was maintained at one, but the number of segments
was increased to twenty. Results obtained from these analyses are shown in
Figure 5.5. The value fomas for concrete is assumed to be 0.85 f.,.. Value of
E. is assumed to be 5000/ fcm. Value of €mas is assumed to be 0.002. The
average value for Eg.er 1s 2.02 X 10° MPa. Value of f,, for reinforcement bars
in the beams and columns is 403 MPa. Value of v; calculated from E., €:maz

and fonaz is 2.50 and v, is assumed to be 3.00.

The results shown in Figure 5.5 show that increasing the number of segments
from ten to twenty has little effect on the simulated behaviour of the structure.
In the same figure, the experimental results are plotted. The plots indicate

excellent agreement between analytical and experimental results.

To study the effect of the number of nodes on the accuracy of the theoretical
results, the number of elements used to represent a member was increased.
Keeping the total number of segments per member constant at twenty, an

extra node was inserted into each member by using two elements per member.
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Figure 5.4: Sway frame L3 tested by Breen and Ferguson (1969)
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Figure 5.5: Load versus sway-deflection plot for sway frame L3 with 1 element

per member
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Another analysis was carried out by increasing the number of elements per
member to four, resulting in three nodes within the member. Results from
these analyses are shown in Figure 5.6. The results show that for this frame,
where the columns deformed with double curvatures, one element per member

is sufficient to give reasonably accurate results.

150.00
120.00
< 90.001
o
2
O 60.001
—
30.00- —g- 1 ELEMENT PER MEMBER
—¢ 2 ELEMENTS PER MEMBER
—— 4 ELEMENTS PER MEMBER
0.00 L] L) L3 T T T T
0.00 25.00 50.00 75.00 100.00

SWAY DEFLECTION, D(mm)

Figure 5.6: Load versus sway-deflection plot for sway frame L3 with fzarious

numbers of elements
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‘;!; y

The ability to obtairg;gaccurate prediction of the load versus sway deflection for
this frame implies good agreement between the présent analysis and analytical
procedures developed by Gunnin et al and Epsion because, as pointed out ear-
lier, they too get good prediction of the load versus sway deflection behaviour

for this frame.

The load versus bending moment plots for the stations immediately adjacent
to the joints were obtained theoretically using the present analysis assuming
10 segments per element and 1 element per member. These are shown by a
continuous line in Figure 5.7. On the assumption that the correct column
loads and lateral loads have been applied and that the frame behaviour is
symmetrical, the column moments were computed by Ferguson and Breen as
the sum of the nominal end moment and the product Py/2, where P is the
column load and y is the measured lateral deflection of the upper joint of
the column relative to the lower joint. The moments calculated from this

assumption are shown in Figure 5.7 as a dashed line.

Moments were also obtained through curvature measurements by Ferguson and
Breen using a series of 165 mm gage length rotation meters immediately adja-
cent to the four joints. Test results are shown as data points in Figure 5.7 for
three of the joints (the rotation meter for corner A was faulty during the test).
As bending moment could not be obtained directly, they were obtained from
the curvature measurements indirectly by using a section analysis program
based on the assumption that the stress strain relation of the concrete follows
Hognested’s model. Hence, the accuracy of the bending moments obtained

depends on the accuracy of the moment-curvature calculations.

The bending moments obtained using deflection measurements give values
close to the joints, whereas those obtained using rotation meters give average
values over a gage length of 165 mm. This is reflected in the plot as the val-

ues obtained using the latter approach are smaller. Since the results obtained
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theoretically by the present approach are adjacent to the joints, these were
compared with those obtained experimentally from deflection measurements.

The agreement is considered to be very good(Figure 5.7).

Investigation of the moment curvature relations of all the segments obtained
from SAFRAME shows that no hinge was formed at collapse. The moment
curvature relations of the critical segments are obtained using SAFRAME;
those along the columns adjacent to joints A, B, C and D are shown in Fig-
ures 5.8 through 5.11. Thus, the collapse was caused by instability, whereby
as a result of both material and geometrical non-linearity effects, the frame
swayed to such an extent that deflection continued to increase without any
increase in load. Eventually a stage was reached in the calculations when an

equilibrium condition could not be found.

5.3.2 Frames with Columns in Single Curvature

Furlong and Ferguson (1966) tested seven rectangular frames loaded so that the
columns were bent in single curvaturé?} Test frames F2 and F4 were selected
for study here These frames were also analysed by Gunnin, Rad and Furlong
(1977) usmg numerlcal technique developed by them. Column loads P and

beam loads aP were increased proportionally until the frame collapsed.

Half of the symmetric frame F2 is shown in Figure 5.12. Only one half of the
frame was used in the present analysis, with supports A and B not allowed
to rotate. The assumed properties of the concrete are: fo, is 29.7 MPa; E.
= 5000+ Tom; fomaz = 0-85 X fom; 1, calculated from E, €cmaz and fomas, i
2.16; and 72 = 3.00. For steel reinforcement: fs, is 380 MPa; and E, = 2.0 x
10° MPa.

The load deflection plots obtained from the present analysis using 2 elements

per column and 4 elements per column are shown in Figure 5.13. 20 segments
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Figure 5.8: Moment curvature relation for segment adjacent to joint D
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Figure 5.10: Moment curvature relation for segment adjacent to joint B
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were used for the entire column. In the same figure, experimental results
obtained and reported by Furlong and Ferguson are also plotted. Although
the frame is symmetric, two experimental curves are shown: one for the left
column and the other for the right column. There is a large variation in the
behaviour of the two columns. This non-symmetric behaviour in a supposedly
symmetric frame is likely to be caused by difficulties involved in setting up such
frames for testing; it is not only difficult to built/i;érfectly symmetric frame,
but‘:‘::élsz(;jdifﬁcult to apply perfectly symmetric loaél; The horizontal deflections
at mid-height of the columns are plotted along the x-axis. In light of the
different test results obtained for the two columns, the present analysis gives
a reasonably good estimate of the behaviour of this frame, over the range of
the experimental results. With 4 elements per column an ultimate load of 302
kN is predicted as compared with 274 kN obtained from the experiment. Rad,
Gunnin and Furlong obtained a failure load of 287 kN using their analytical

analysis, which agrees well with the present estimate.

The axial load versus the magnitude of the bending moment plot obtained ana-
lytically by the present approach and that obtai ned experimentally by Furlong
and Ferguson are shown in Figure 5.14. The moments obtained theoretically
show the same trend in behaviour as those obtained from experiment. The
behaviour can be divided into three stages. In the first stage, both the end
moments and the mid-column moments increase. A second stage is reached
where the end moments decrease, distributing some of their moments to the
mid-column. Finally a stage is reached whereby both the end moments and
the mid-column moments decrease with increasing curvature in a pre-selected
key segment; a collapse condition having been reached. There is reasonable
agreement between experimental and theoretical results for the end moments

but agreement between the results for the mid-column is not good.

Results are also obtained for frame F4, a frame similar to frame F2 but having

stiffer beams. The frame is shown in Figure 5.15. For this frame, the assumed
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Figure 5.15: Test frame F4 tested by Furlong and Ferguson (1966)

properties of the concrete are: fem = 22.3 MPa; E. = 5000v/ fom; femaz = 0.85
X fom; 71 calculated from E., €cmar and femaz is 2.49; and 7, = 3.00. For the
steel reinforcement: f,, is 370 MPa; and E, =20 x 10° MPa.

A plot of load versus horizontal deflection obtained from the present analysis
using 2 elements per column is shown in Figure 5.16. Twenty segments were
used for the entire column. In the same figure, the experimental results
obtained and reported by Furlong and Ferguson are also shown. Although the
results predicted by the present analysis is not particularly good, the large
variation in the load versus deflection behaviour between the two supposedly
similar columns suggests that it may be difficult to get a good fit. The present
analysis gives an ultimate load of 207 kN as compared with 234 kN obtained
from the experiment. Rad, Gunnin and Furlong obtained a failure load of

200 kN using their analytical technique, which agrees well with the present

estimate.
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Figure 5.16: Load versus mid-column horizontal deflection for frame F4

139



Chapter 5: Program Testing 140

The axial load versus the magnitude of the bending moment plots obtained an-
alytically by the present approach and that obtained experimentally by Furlong
and Ferguson are shown in Figure 5.17. This frame displays similar behaviour
to that of frame F2. There is reasonable agreement between experimental and

theoretical results for the moments at the ends and at mid-column.

5.4 Conclusions

Comparisons between results obtained from the present analysis with test re-
sults and results obtained by other analytical methods indicate that the present
approach can give reasonably good predictions of the behaviour of reinforced
concrete frames. Comparisons with test results obtained by other analytical
methods suggest the the results obtained using the present approach are as
good as any other “rigorous” method of analysis. Obviously, the program can
be further developed to give better agreement with test results. An extensive
study of all available frame and beam test data is required if the computa-
tional model is to be improved. Further possible improvements are proposed

in Chapter 9.

For the present analytical approach, using segment size of length approximately
equal to its depth is sufficient to produce accurate modelling of concrete frames.
The number of elements required to model the behaviour of columns depends
on whether the column failed in a sway mode or a buckling mode. It was
found that 4 elements are usually sufficient to model accurately the behaviour
of single column failing in a buckling mode. For frames failing in a sway mode,
fewer elements are required. In the case of the sway frame (with columns in
double curvature) analysed, it was found that one element‘ per column was

sufficient to model the behaviour.
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Chapter 6

Study of the Non-linear
Behaviour of Reinforced

Concrete Frames using

program SAFRAME

6.1 Introduction

In this chapter, the non-linear behaviour of reinforced concrete frames is stud-
ied up to peak load and into the post-peak range. This study was undertaken
as a prelude to the investigations described in Chapters 7 and 8, the pur-
pose of the study being to provide information on the conditions which exist
when peak load occurs in a frame, on post-collapse peak load behaviour, and
on the effect of several parameters (notably beam stiffness and the degree of

geometrical not‘hlitnea.rity modelling) on collapse and post-collapse behaviour.
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Some of the frames, depending on geometry and load pattern, exhibit substan-
tial softening and even snapback, a phenomenon described earlier in Chapter 3.
In Section 6.2, the softening behaviour of a test frame, previously analysed in
Chapter 5 is discussed. The frame softens before the formation of any con-
crete hinges. A concrete hinge is defined in this and subsequent chapters as a
segment having moment-curvature relation (with the effect of thrust included)
that has either a relatively flat plateau or a softening path, and which dis-
plays monotonic increase in curvature for the loading conditions being studied.
Hinges which follow a softening path will be referred to as softening hinges.
The behaviour observed in this test frame can also be reproduced in a simple
cantilevered column. Another frame, similar to the test frame, but with more
stocky columns, and with a larger applied horizontal load, can be used to illus-
trate the behaviour of frames which collapse immediately upon the formation

of a plastic hinge mechanism.

Four sets of frames with different loading patterns are also analysed using
SAFRAME to investigate the range of behaviour which may be expected to
oceur in concrete frames and the effect of the variations in the process of numer-
ical modelling of the geometrical non-linearities. For each set, three numerical
models are used. These include one without any geometrical nox{i"ineﬁty effect
(model I); one with P-A effect of the joints only (model II); and one with full
treatment of geometrical nor{l}nearities (model III). For each set, frames with

three-metre high columns and nine-metre high columns are analysed.

In Section 6.4, investigations are carried out on the effect of neglecting the
thrust effect on frame behaviour. This is useful as some numerical models
use a pre-determined moment-curvature relation for each segment which is
" assumed not to be affected by the change in thrust acting on the segment as
loading progresses. The inaccuracy in neglecting thrust effect in the numerical
model is investigated by analysing a frame with and without thrust effect being

included into the analysis.
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As the Australian code does not take into account the amount of beam rein-
forcement in the determination of the strength of frames with slender columns,
Section 6.6 investigates the effect of beam reinforcement on the strength of
frames. A portal frame is analysed with different amounts of reinforcement in
the beam. Results obtained indicate the importance of beam behaviour on the

strength of the frame.

Snapback instability, a phenomenon suggested to occur in strain softening
structures, has been observed occasionally. Three frames displaying snapback
behaviour are discussed in Section 6.4. The ability to trace snapback is im-

portant if the softening behaviour of frames is to be studied.

Finally, the non-linear behaviour of a few multi-storey frames is treated in
Section 6.7. The behaviour, though more complex, can be related to the basic

behaviour patterns displayed by the portal frames investigated in Section 6.3.

6.2 Softening Behaviour of Frames

In this section, the softening behaviour of reinforced concrete frames is studied
using program SAFRAME. The causes of system softening are traced through
the moment-curvature plots of the potential hinge forming segments in the
frames. The effect of sectional thrust is included when obtaining the moment-

curvature relations.

In Chapter 5, it was found that the frame L3 tested by Breen et al load soft-
ened before the formation of any concrete hinges, thus giving rise to instability
failure. This happens as the result of combined geometrical and material non-
linearities. The frame is shown together with the moment-curvature relations
of the potential hinge-forming segments of the beams in Figure 6.1, and with

those of the columns in Figure 6.2. These segments are next to the joints of
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the frame. It can be observed that no hinges were formed at collapse.

This softening behaviour before the formation of concrete hinges is best illus-
trated using a simple structure such as a cantilevered column, with point loads
at the free end, as shown in Figure 6.3. The load is plotted against horizontal
deflection of the top of the column in Figure 6.4. The moment-curvature curve
for the segment at the base is shown in Figure 6.5. In Figure 6.6, the load is

plotted against curvature in the same segment.

As the analytic approach uses a deformation control procedure with a “key”
segment, of which curvature is used as the controlling parameter, the struc-
ture under the effect of the specified load pattern is progressively solved for
increasing curvature in the key segment. An increase in curvature in the key
segment at the base of the column (and, presumably, in other adjacents seg-
ments) results in a horizontal movement of the tip of the column. The increase
in moment of the base segment can result either from an overall increase in
load magnitude or from the increase in the horizontal movement A and hence
the moment PA. If the column is sufficiently long, it is thus possible for the
load to decrease even though M and  both increase. This effect causes the col-
umn to display load-softening behaviour before the formation of any concrete

hinges. This can be observed clearly in Figures 6.5 and 6.6.

Another analysis was carried out on a frame with the same beam and column
cross section as the frame L3 tested by Breen, but with equal vertical loads
applied above the columns and with the sway force increased to ten per cent of
total vertical load. The height of the frame was reduced to half that of frame L3
(see Figure 6.7). The load versus sway deflection at the top of the left column
is shown in Figure 6.8. The collapse of the frame occurs after the formation of
four hinges, i.e., the formatioﬁ of a complete plastic collapse mechanism. The
term “plastic collapse mechanism” is used throughout this thesis to describe

the formation of sufficient hinges for elastic-plastic collapse to occur. The



Chapter 6: Behaviour of [rames

146

0.00 8.00
. SEGMENT D - SEGMENT 8
= -2.00- £6.00-
s : -
£ .4.001 L% 4.00-
g T
o o
= -6.00- =2.00-
'8.00 T T T 0.00 T T T
“8.0E-02 -4.0E-02 0.00 0.00 4.0E-02 8.0E-02
CURVATURE(1/m) CURVATURE(1/m)
t1.01P a0.99p
vD B8y
- 0.02F
C A
L)
0.00 8.00
4 SEGMENT C - SEGMENT A
€ -2.001 €600
s s
% -4.00- %4 00-
= ] |
5 3
= -6.00- =2.00
%-m L] L] L] o.m L] A L]
-8.0E-02 -4.0E-02 0.00 0.00 4.0E-02 8.0E-02
CURVATURE(1/m) CURVATURE(1/m)

Figure 6.1: Moment-curvature relations of potential hinge-forming beam seg-

ments



Chapter 6:

Behaviour of rames

147

SEGMENT B

0.00

" 0.00

o.e9P

3.0E-02
CURVATURE(1/m)

6.0E-02

8.00
- SEGMENT D
£6.00-
pa
z
£ 4.00-
w
> N
o
= 2.00-
0.00 : : :
0.00 3.0E-02 6.0E-02
CURVATURE(1/m)
1.01P
i
D
C
0.00
B SEGMENT C
= 2,001
z
z -
£ _4.00-
w
s -
o
= _6.00-
-8.00 T T T
“6.0E02 -3.0E-02 0.00
CURVATURE(1/m)

A
2.

> 0.02P

3

8

MOMENT(kNm)
A
(=]
it

&
3

SEGMENT A

-8.00

-6.0E-02

T T

-3.0E-02
CURVATURE(1/m)

0.00

Figure 6.2: Moment-curvature relations of potential hinge-forming column seg-

ments



Chapter 6: Behaviour of FFramcs 148

-—

0.01P—» ‘—T
fon = 35 MPa
150mm
fomox= 0.85 fom l
E. = 5000/fem B == L _100mm
(@]
— (@)
p =30 3 150mm2_/ T
E. = 2.0E+05 MPo
NO OF ELEMENTS = 4
f,, = 460 MPa TOTAL NUMBER OF SEGMENTS = 24
FIFTIITIITTTFIIT _’

Figure 6.3: Frec standing cantilever

LOAD (kN)

0.00 T T T T T
0.00 30.0 60.0 90.0

HORIZONTAL DEFLECTION (mm)

Figure 6.4: Behaviour of cantilevered column



Chapter 6: Behaviour of I'ramcs 149

6.40

4.80-

3.201

MOMENT (KNm)

1.601

0.00 - -
0.00 1.0E-02

o OE-02  3.0E-02  40E-02
CURVATURE(1/m)

Figure 6.5: Moment-curvature plot for segment at base of column

80.0

60.01

40.0

LOAD (kN)

20.0

0.00 L L] T T T T
0.00 1.00 2.00 3.00 4.00

CURVATURE (X1.0E-02/m)

Figure 6.6: Load-curvature plot



Chapter 6: Behaviour of Frames 150

moment-curvature relations of potential hinge-forming segments are shown in
Figure 6.9 and Figure 6.10. These figures show that all the hinges are at the

ends of columns as the beams have relatively higher amount of reinforcement.

The results of these two sway frames show that the the collapse of concrete
frames can occur at any stage of hinge formation. Indeed, it is not necessary
for any hinge to form at all especially in very slender frames which display
substantial geometrical nonhnearltles This observation throws some doubt on
the use of elastic, perfectly plastic analysis both for the prediction of peak load

and as the basis for design.

6.3 Non-linearities in Frame Behaviour

In order to study the effects of various assumptions regarding non-linear be-
haviour, a series of computer simulations were carried out using SAFRAME
for a number of portal frames with various load pattern. Twenty-two frames
were analysed using the three levels of accuracy of treating nonlinear effects.

These levels are:

o Model I: material nonlinearity effect only.

e Model II: material nonlinearity effect and geometric nonlinearity effect

caused by the deflections of the joints of the frames.

e Model III: material nonlinearity effect and full geometric nonlinearity
effects: that caused by the movement of the joints and that caused by
the deflection of the member away from the centerline joining the ends

of the member.

Four sets of loadings were considered. These are referred to as SETI, SET2,

SETS3 and SET4. For each set, two frames are considered: one with a height of
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3 metres and the other 9 metres. Details of load patterns and frame geometry

and properties are shown in Figure 6.11 and Figure 6.12.
For model I, the treatment of geometric effects in SAFRAME was bypassed.

Type II model includes the treatment of the geometric effects caused by the
lateral movements of loaded joints. This assumes that only the joints reflect

the deflected shape of the members.

The type III model was achieved by using four elements (and therefore in-
serting three additional internal nodes) per column. This, as shown earlier in
Chapter 5, allows the deflected shape of a column (be it in single or double
curvature bending) to be taken into consideration. No internal nodes were

inserted along the beams.

For SET4, the frame is braced, and therefore model II 1s not applicable as it
will give the same results as model I as the joints of the compression members

are not allowed to move horizontally.

FRAME1S and FRAMELT are subjected to loading only at the joints to ensure
that local beam collapse does not occur, as such collapse affects the overall

behaviour of the frame.

The short frame, FRAMELS, is quite stiff laterally. This results in smaller
sway at beam level and therefore reduces the amount of geometric noff'l}lear—
ity caused by the deflection of the loaded joints. This in turn results in smaller
bending moments in the potential hinge-forming segments next to the sup-
ports, thus, allowing these segments to carry larger axial thrust, and thereby

increasing the load-carrying capacity of the frame.

The load versus sway deflection plot of this frame, shown in Figure 6.13, indi-
cates steeply softening and local ultimate deflection for model I. D in this plot

is the horizontal deflection at the top end of the left column. The moment
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Figure 6.13: FRAMELS: sway deflection

curvature relation of the key segment, selected to be the segment at the base
of the right column, has a relatively steep softening path (see Figure 6.14).
The softening of the frame occurs at the same curvature step as the com-
mencement of softening in this segment; this agrees with previous findings by
other researchers (Bazant, 1976; Darvall and Mendis, 1985) that softening of
a structure can be caused by a softening hinge. In the works of Darvall and
Mendis, the softening slope in the linearised moment-curvature relation is pre-
determined and is fed as input data into the analysis. In reality, the softening
is dependent on the stress history of the segment, and in particular also on the
axial thrust acting. Model I analysis of FRAMELS takes this into account, but
the effect of the degree of softening of a hinge on the post-ultimate behaviour
of a frame cannot be investigated directly. However, the effect of changing
thrust is obviously important and is usually ignored in the analysis based on

predetermined moment curvature relations.
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Figure 6.14: FRAMELS: moment-curvature plot for key segment

Though eventually four hinges formed in the frame (two at the ends of the
beam and two at the bases of the columns), only two of these hinges were
present at peak load. These were next to the supports of the frame. This
agrees with previous observations by Darvall and Mendis(1985) that softening

in one or several hinges can cause the load to soften.

When geometrical noﬁii?iearities are included (in models II and III), the frame
displays a more gradual softening slope (see Figure 6.13). The moment cur-
vature relations of the key segment (also taken to be at the base of the right

column) in these models have almost flat peaks (see Figure 6.14).

The importance of including geometrical non-linearity effects when modelling
this frame can be observed from the load versus sway deflection plots; the

peak load obtained using model I is about 940 kN and that for models II
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and III is about 800 kN (see Figure 6.13). The peak load is overestimated by
approximately 17.5 per cent when geometric nonlinearity effects are ignored in
the numerical modelling. On the other hand, comparison of models II and III
shows that deflections of the node points are clearly far more important than

the additional deflections within the length of each column.

FRAMEILT, which has nine-metre high columns, does not display steep soft-
ening (see Figure 6.15). The tallness of the frame results in large bending
moment acting on the base segments caused by the applied horizontal load at
beam level. The large moment and relatively small thrust acting at the base
results in moment-curvature relations of the base segments with relatively flat
softening paths. This causes the load versus sway deflection plots to have

relatively flat plateaus (i.e. no steep softening)

The peak load of model I occurs after the formation of four concrete hinges
(at positions required for the formation of a sway plastic collapse mechanism).
When geometric nonlinearities are included (models II and I11), fewer hinges

are formed at peak load: two hinges for model II and three for model III,

though eventually a complete set of four hinges is formed. This indicates that o

geometrical noﬁﬁpearity (frame instability) affects the collapse behaviour of

this frame.

The importance of including the geometrical non-linearity effect when mod-
elling this frame can be observed from the load versus sway deflection plots;
the peak load obtained for model I is about 250 kN and that for model II and
II1 is about 175 kN. Not including the effect of geometrical nonlinearity results
in the peak load of this frame being over-estimated by approximately 43%.

Frame FRAME2S (see Figure 6.11) is subjected to point loads above the
columns, a uniformly distributed load along the beam and a horizontal load
at beam level with magnitude of five percent the total vertical load acting on

the frame.



Chapter 6: Behaviour of Frames 160

300.0
| —=— MODELI
—e— MODELII
25004 —— MODEL W
200.01
z ;
X
a
~ 150.01
<
S 4
—J
100.0-
50.0-
0-00 L] L] L] L] 1 L] T
0.00 80.0 160.0 240.0 320.0

SWAY DEFLECTION, D(mm)

Figure 6.15: FRAMELT: sway deflection

The load versus mid-span vertical deflection plots show that the estimated
peak loads are almost the same for models I, II and III (see Figure 6.16).
This suggests the geometrical nonlinearity effect has little influence on the
behaviour of this frame. The moment-curvature relations of potential hinge-
forming segments obtained from the analysis indicate that three hinges have
formed in the beam at peak load, one at each end of the beam and another at

mid-span. No hinges form in the column.

The plots for load versus sway deflection for the same frame (see Figure 6.17)
show that a “recovery” of sway deflection occurs in all three models during the
later part of the analysis as increasing curvature is applied to the key segment
during the analysis. This chosen segment is located in the beam, adjacent

to the right end of the member. Such “recovery” of characteristic deflection
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Figure 6.16: FRAME?2S: vertical deflection

has been observed in structures exhibiting snapback behaviour (Bazant et al,
1987b). Snapbacks have been described earlier in Section 3.5. However, the
analysis of frame FRAME2S has not been carried far enough to indicate the

presence (or absence) of snapbacks.

In the case of the tall frame FRAME2T (see Figure 6.11), the load versus
mid-span vertical deflection plots indicate significant difference in the peak
load for model I compared with those of models II and III (see Figure 6.18).
However, there is little difference between the peak loads of models II and IIL
This suggests that including the P-A effects caused by the lateral deflections
of the joints is important, but including the the P-A effects within the length
of the columns does not affect the results significantly. In all three models, two
hinges are formed, one at the right end segment of the beam and the other at

approximately mid-span.
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Figure 6.17: FRAME2S: sway deflection

The load versus sway deflection plots (Figure 6.19) indicate that model I is
stiffer laterally when compared with models II and III. This observation sug-
gests that reducing the degree of modelling with respect to geometric nqnlip—

earities produces results which overestimate the sway stiffness of the frame.

FRAMES3S is subjected to a uniformly distributed load along the beam, ver-
tical point loads above the columns and a horizontal load at beam level (see
Figure 6.12) with magnitude of ten percent the total vertical load acting on the
frame. The load versus mid-span vertical deflection plot shown in Figure 6.20
indicates that type IT and type III models give almost the same behaviour. The
load versus sway deflection is given in Figure 6.21. The softening of the frame
occurs at the eleventh curvature step, when only two hinges are formed along

the beam, i.e., at a stage whereby the number of hinges is not sufficient to form
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a beam plastic collapse mechanism, even though eventually three hinges are
formed. Observation of the moment curvature relation of the segment at the
right end of the beam for model I indicates that the softening slope increases
significantly at the eleventh curvature step (see Figure 6.22), a likely cause for

the softening behaviour of the frame at that stage.

Model II and III both display the same behaviour as model I, i.e., system
softening corresponds with the onset of relatively steep softening in the right

segment of the beam.

The peak load is not affected much by including the geometrical no:nl“i/tlea.rity
effect for this frame and this indicates that the load-carrying capacity of the
frame is constrained numerically by local beam failure. This results from the
use of pattern load, where the load acting along the beam is related to the

forces acting at the joints.
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For model I of FRAME3T (see Figure 6.12), the peaks of the plots obtained
are almost flat (see Figure 6.23 and Figure 6.24) Observation of the moment-
curvature relations of the potential hinge-forming segments of the frame indi-
cates that four hinges are formed when the frame reaches the peak load: two of
these in the right column and two in the beam; one at about mid-span and the
other at the right end of the beam. None of these hinges has steep unloading

which explains the almost flat peaks observed.

Both models II and III display the same behaviour, with the load plateau
(almost flat) occurring after the formation of three hinges in the frame. These
hinges have flat peaks; two of them in the right column and the other in the
segment next to the right end of the beam. As there are insufficient hinges at
peak load to create a plastic collapse mechanism and the moment curvature
relations of the hinges have relatively flat plateau (and therefore softening of
hinges is not the cause), the peaks of these two frames are caused by frame

instability occurring before the formation of a plastic collapse mechanism.

The peak load predicted by model I, of about 30 kN, 1s substantially different
to the 25 kN (approximately) predicted by models II and III. Models II and
111 give almost the same peak load. This indicates that for tall sway frames,
the geometrical nor_ﬁ'inearity effect of the loaded joints is important, but that
including the effect 6f geometric nonli'nearity within the member length has

little influence on the behaviour of sway frames.

For FRAMEAS (see Figure 6.12), model ITis not relevant as the frame is braced
laterally. Load versus mid-span deflection of the beam for model I is given in
Figure 6.25 and the horizontal deflection at mid-column is given in Figure 6.26.
Model III of this frame is analysed by using four elements, and hence three
nodes, per column. This allows the geometrical non-linearity effect along the
column to be modelled. Results are given in Figures 6.25 and 6.26. Peak load

corresponds to the formation of a local beam collapse mechanism, i.e., three
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hinges form in the beam, one at each end and one at midspan. The hinges
form almost at the same instant, i.e., at the fifth curvature step, indicating

that the local beam failure is the cause for the frame reaching its peak load.

Results obtained for a taller frame FRAMEAT (see Figure 6.12) are given in
Figure 6.27 and Figure 6.28. In this case, the columns are less stiff compared
to those of FRAMEAS. Peak load also occurs when a beam plastic collapse
mechanism forms, but the hinges at the end of the beam and that at mid-
span do not form at the same instant as in the case of FRAMEAS. For model
I, the hinge at midspan forms at the fifth curvature step whereas those next
to the joints form at the twenty-fourth curvature step. Comparing the load
versus vertical deflection plots of FRAME4S and FRAMEAT shows that the
the change in slope is quite sudden for FRAMEAS whereas for FRAMEAT,
the change in slope is more gradual. This shows that even though local beam
failure controls the peak load the frame can carry (if it is subjected to propor-

tional loading), the nature of the load versus vertical deflection (at mid-span
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of the beam) depends on the stiffness of the columns connected to the ends of

the beam.

The effect of geometrical non-linearities is not pronounced in this frame. This
is likely due to the local beam failure having the effect of limiting the amount

of axial force in the columns.

The results obtained above indicate that softening in frames is caused either
by the presence of a softening hinge or frame instability after the occurrence

of one or more plastic hinges.

Comparisons of results obtained for the different models show the importance
of including P-A effect caused by lateral movements of joints in numerical

models. It was found that P-A effect within the member length has little
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influence on the behaviour of sway frames. The comparisons also indicate that

ignoring geometric nonlinearity effect gives significant over-estimation of the

peak loads of sway frames.

6.4 FEffect of Sectional Thrust on the Be-

haviour of Reinforced Concrete Frames

In some proposed computational procedures, the effect of thrust on section
behaviour is ignored when analysing reinforced concrete frames. The effect of

ignoring thrust in concrete frame analysis is studied in this section.

A portal frame A under sway loading shown in Figure 6.29 is analysed both
with and without the effect of thrust on the sectional behaviour. Results

obtained for these two cases are plotted in Figure 6.30. It can be observed



Chapter 6: Behaviour of Frames 171

50.0

40.0

30.0- —a— MODEL
—e— MODEL

20.01

LOAD, w(kN/m)

10.00

0.00 T v T . . ;
-40.0 -30.0 -20.0 -10.00 0.00

HORIZ. DEFLECTION(mm)

Figure 6.28: FRAMEAT: horizontal deflection at mid-height of left column

that the frame is stiffened significantly when the effect of thrust on the section
behaviour is taken into consideration in the analysis. The predicted collapse
load changes from P = 413 kN for the frame without the effect of thrust to
P = 586 kN for the frame with the effect of thrust.

The moment-curvature relations of all the potential hinge-forming segments are
shown in Figure 6.31, obtained from the analysis of the frame with the effect
of thrust and Figure 6.32, obtained from the analysis of the frame without the
effect of thrust. The inclusion of thrust effect in the analysis has resulted in
fewer hinges forming in the columns as compared with the case where thrust
effect was excluded. The details of hinge formation from the two analyses are

shown in Figure 6.33.

For the frame with the effect of thrust, four hinges are formed; two in the beam
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and two in the columns. For the frame without the effect of thrust, six hinges
were formed; two in the beam and four in the columns. The positions of the
hinges indicates that the stiffening effect of axial thrust in the columns has
prevented the formation of hinges at the top of the columns. Even the order of
hinge formation is affected; in the case where the effect of thrust is included,
hinges first formed at the ends of the beam whereas in the other case, hinges

first formed at the lower ends of the columns (see Figure 6.31 and Figure 6.32).

The analyses show the importance of including the effect of thrust on moment-
curvature relationships when analysing structures with substantial axial thrusts
in the members. The collapse load, and the order and number of hinge forma-

tion can be affected by the exclusion of this effect from numerical models.

6.5 FEffect of Beam Reinforcement on Frame

Behaviour

In the Australian concrete standard AS3600, the reinforcement present in the

beam is assumed not to have any effect on the strength of reinforced concrete

columns forming part of a frame. In this section, a sway frame B subjected

to joint loading shown in Figure 6.34 is analysed with different qua,ntitf}’}‘i;f

reinforcement in the beam.

Load versus sway-deflection plots for frame B with five different beam rein-
forcements of 0.5%, 1%, 2%, 3% and 4% of the gross cross-section area are
shown in Figure 6.35. The reinforcement of the column section was main-
tained at 2% that of the gross sectional area. As can be seen from the plots,
the strength increases significantly as the reinforcement in the beam was in-
creased from 0.5% to 1%, and also from 1% to 2%. The strength increased

slightly when the reinforcement was increased from 3% to 4%. For the first
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three cases, four hinges were formed at collapse (peak load), two at the ends
of the beams and two at the bases of the columns. For the last two cases, only
two hinges were formed at the bases of the columns. This indicates that for the
last two cases, the amount of reinforcement in the beam is sufficient to stiffen
up the frame to enable the vertical loads to increase to a stage where stability

failure of the frame occurred before the formation of a collapse mechanism.

The strength of the frame varies from P=335kN for the frame with beam
having 0.5% reinforcement to P=685kN for the frame with beam having 4%
reinforcement. This indicates the importance of beam reinforcement on frame

behaviour, especially on the strength and stiffness.

6.6 Snapback Instability

Snapback instability has been described in Chapter 4. Occasionally snapback
behaviour was observed when the analysis was carried far enough into the
load softening region. This section looks at a few frames which exhibit this
type of behaviour. Snapback behaviour was observed for the frame C shown
in Figure 6.36. Plots of load versus sway deflection and load versus beam
midspan deflection are shown in Figure 6.37 and Figure 6.38 respectively. It
can be seen that snapback instability occurs for the sway deflection but not

for the beam deflection in this case.

Another frame (Frame D) shown in Figure 6.39 also displays snapback in-
stability behaviour, but this occurs for the midspan vertical deflection of the
beam instead of the sway deflection as in the previous case. The load versus
sway deflection, and the load versus beam midspan deflection plots for frame

D are shown in Figure 6.40 and Figure 6.41 respectively.

In frame E, shown in Figure 6.42, two snapbacks occur, one in the curve of
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vertical beam deflection (Figure 6.43) and the other in the sway deflection at
the top of the left column (Figure 6.44).

6.7 Multi-storey Frames

Two three-storey two-bay reinforced concrete frames are analysed using pro-
gram SAFRAME. Material properties are as those used for the portal frame

analyses described earlier in this chapter.

The load versus sway deflection plot for frame A (Figure 6.45) is shown in
Figure 6.46. Each solution point indicates one curvature step in the control
of a key segment use in the numerical analysis. Load deflection behaviour is
linear until the formation of the first set of hinges next to the right ends of the
left beams 6 and 11 of the frame (the number assigned to the beams is given
in Figure 6.45). One curvature step later, hinges form next to the right ends
of beams 1, 7 and 12. The slope remains almost constant until three curvature
step later, when more hinges are formed. The order of the hinge formation 1s
shown in Figure 6.46. After the eighth curvature step, the slope of the curve
decreases to almost a plateau. The peak load occurs not long after at the tenth
step. At peak load, the number of hinges formed is not sufficient to cause a
frame plastic collapse mechanism. However, the frame sways sufficiently to

cause a decrease in load.

Moment curvatures plots for the hinges show that all have relatively flat curves.
A typical plot for the column segment at position 15B in Figure 6.46 is given in
Figure 6.47. This suggests that the softening is not caused by steep softening

in one of the hinges, and therefore instability is the main cause of the collapse.

Unloading behaviour in segments has also been observed in some of the seg-

ments in the frames; a typical segment with unloading hinge is shown in Fig-
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ure 6.48 for the segment close to the midspan of beam 11.

The load versus sway deflection plot for multi-storey frame B (Figure 6.49)
is shown in Figure 6.50. This frame is the same as frame A, but is subjected
to larger horizontal applied loads. As in the case of frame A, load-deflection
behaviour is linear up to the formation of the first hinge. A distinct load-
softening path can be observed from the plot. At peak load, the number of
hinges formed are almost sufficient to form a frame plastic collapse mechanism.
All the hinges formed have relatively flat plateaus, indicating that, as for the
case of frame A, instability is the cause of softening. But in frame B, the
softening is more severe, a reflection of the weak condition of the frame caused

by the large number of hinges.

A simple calculation carried out on a beam similar to those of the frames, sub-
jected to a uniformly distributed load, indicates that plastic collapse occurs
when the load reaches 70 kN/m. The beam is assumed to be fixed at both
ends. Though, the beams in the frames are subjected to additional moments
and thrusts from the lateral forces acting on the frames, this simple analysis
gives a rough estimation of beam collapse load. It is expected that the collapse
loads of the frames do not exceed the actual beam collapse loads. The approx-
imate value of beam collapse load of 70 kN/m compares well with the overall
frame collapse load of 75 kN/m and 62 kN/m obtained for frames A and B

respectively, even though no beam plastic mechanism forms at peak loads.

For both the above frames, the key segment is the one nearest to the base of
the centre column. It was found that using this segment gives better numerical

stability as compared with controlling a segment in the beam.

A total of 210 segments were used in each of the analyses to give segment

lengths approximately equal to the depth of the respective members.

The failures of the two multi-storey frames analysed are due to instability,
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whereby there is no plastic collapse mechanisms being formed at the peak
load. This behaviour is very much like that obtained for most of the sway

portal frames analysed in Section 6.3.

6.8 Conclusions

The load softening behaviour of reinforced concrete may occur even before the
formation of any concrete hinges in the structure. This is mainly caused by
the geometrical norj;laearity effect. The effect has been demonstrated using a

simple cantilevered column.

The collapse behaviour of noriilil;iea.r reinforced concrete frames has been stud-

ied using portals. The following features have been observed:

¢ For a structure with mainly material nor’iii}xearity effects (i.e., geometrical
nonlinearities are not important), the peak load of the structure occurs
after the formation of a plastic collapse mechanism provided the concrete
hinges do not have steep softening slopes. In the case of a portal frame,
this can either be a local beam mechanism or a sway mechanism. It is also
possible for such a structure to reach peak load without the formation of
a plastic collapse mechanism; the requirement is that at least one hinge

has a softening slope.

e When carrying out non-linear analysis of a frame under proportional
loading, local beam failure may limit the load a structure can carry. It
has been observed in some of the frames analysed that the peak load is
reached once a local beam failure occurs. Numerically, the entire frame
seems is unable to carry extra load, but the actual situation could be
that only the beam will collapse if the peak load is reached (especially

if the frame has weak beams and strong columns). The assumption of
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proportional loading is a convenience analytical device, but restricts the

conclusions which can be drawn.

e Most of the portal frames analysed failed by frame instability, whereby
the peak load is reached before the formation of a complete set of con-
crete hinges (to form a plastic collapse mechanism) or the formation of
a critical softening hinge. Since this instability occurs for a non-linear
structure with both material and geometric non‘li'nearities, it is highly
complex and therefore difficult to model accurately using simplified ap-

proaches such as those used in design codes.

e The results of the analyses suggest that failure of the a frame in most
practical cases is likely to occur either by a local plastic beam mecha-
nism, or by a complex instability mode which occurs due to geometric
non-linearities after one or several plastic and/or softening hinges have

appeared.

¢ Geometrical no;{@earity due to movement of the ends of the columns
during loading was found to be very important and therefore should be
included in any numerical modelling of concrete frames. Results obtained
suggest that geometric noﬁlihea.rity due to deflection along the column

is less important for the modelling of behaviour of concrete sway frames.

e The results obtained for the braced portal frames indicate that the flex-
ibility of neighbouring columns connected to the beam influence the
collapse behaviour of the system. When the beam was connected to
stiff columns, the fall off in load occurs suddenly without much warning
whereas in the.case where the beam was connected to less stiff columns,
the load increments gradually decrease with increase in mid-span deflec-
tion before the load decreases. This gives ample warning of impending

collapse in a real structure.

The effect of thrust on moment-curvature relation of reinforced concrete mem-
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bers cannot be ignored in the analysis of reinforced concrete frames. Ignoring
the effect of thrust has been shown to affect the strength and the stiffness of
the structure. It also gives different results concerning the formation of the

number of concrete hinges.

Effect of the quantity of beam reinforcement has been shown to affect the
strength and stiffness of slender reinforced concrete frames. Simplified analysis
such as that stipulated by AS3600, which does not take the reinforcement of
the beam into consideration when calculating the stiffnesses of the columns, is

not likely to give accurate estimate for the strength of the frames.

Snapback instability has been found to occur in reinforced concrete portal '

frames. It was observed from the frames analysed that at most one snapback

occurs in each of the characteristic deflections of the frames. Snapbacks oc-

curred either in the vertical deflection of the beam or in the sway deflection or |

in both the vertical and sway deflections.

Multiple snapbacks in one characteristic deflection, a phenomena postulated to
occur by Bazant et al (1988b), was not observed in the frames analysed. How-
ever, multiple snapback is possible in a given frame, in the sense that individual
snapback can occur with respect to different load-deflection curves (e.g., in the
independent curves of load versus vertical deflection and load versus horizontal

deflection). Indeed, multiple snapback of this type was obtained.

The ability of the approach to predict the softening behaviour of multi-storey
frames is demonstrated using two practical size frames. The behaviour ob-
tained indicates that these frames reaches their peak load before the formation
of plastic collapse mechanisms, therefore suggesting stability failure caused by
geometric nonlinearity effect in a frame with both material and geometric
nonlinearity effects. This behaviour conforms to the behaviour of portals in-

vestigated earlier in this chapter.



Chapter 7

Investigation of the Accuracy of
the Moment Magnifier Method
for the Analysis/Design of

Slender Columns

7.1 Introduction

The design of reinforced concrete columns in slender frames using a “rigorous”
analysis taking into account the interactive effect of material and geometri-
cal nonlinearities is seldom carried out because of the inherent complexities.
Recognising this, the Australian Standard AS3600 a.llows slender columns to
be designed to different tiers, or levels of sophlstlca,tlon \These are referred as
the bottom-tier method (also known as the moment magnifier method), the

middle-tier method, and the top-tier method.

197
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Each of these methods requires a different type of analysis. The top-tier
method, clearly, requires complex analytical tools in the form of computer
programs that can perform non-linear analysis of frames including both the
material and geometric non-linearities. The middle-tier method requires the
use of a second-order elastic analysis program which takes only the geometric
non-linearities into consideration. The bottom-tier method being the simplest

of the three, is based on a first-order linear elastic analysis.

In this chapter, the moment magnifier method of AS3600 is described and
studied. This highly idealised and simplified method of analysis is the most
popular of the three mentioned above. To enable the study of the accuracy
of strength predictions of slender frames using the moment magnifier method
(as compared with using a more accurate method of analysis/design) to be
carried out, a suite of computer programs have been developed to carry out the
moment magnifier method of design/analysis. These programs are described

in Appendix L.

Analysis and design calculations have been carried out for a wide range of
portal frames using the simplified moment magnifier method. For comparison
purposes, parallel analyses were made with the top-tier method in the form
of program SAFRAME described in Chapter 4. Comparisons of the results
obtained from these two methods provide the basis for evaluating the accuracy

and adequacy of the bottom-tier method.

The purpose of the study in this chapter is to make comparisons between the
simplified method and the more accurate method of design, i.e., the top-tier

method, in order to evaluate the accuracy and adequacy of the former method.

Comparisons were first made of predicted ultimate loads, using the analytic
procedures without safety coefficients. Comparisons were then made of the

design procedures using design loads and all safety coefficients.
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7.2 The Moment Magnifier Method

7.2.1 Background and Sources

Column design procedures in successive Australian codes and standards have
generally followed developments in the ACI concrete code (with a time lag).
For example, ACI 318-63 used a load reduction factor method for the design
of slender columns.’i Comparable method was retained in the concrete code
AS1480 until 1988, when AS1480 was replaced by the new Australian Standard,
AS3600.

Recent attempts to rationalise the simplified design procedure resulted in both
the American standard and the Australian standard using the moment magni-
fier method as the bottom-tier method. In contrast with the reduction factor
method, the moment magnifier method magnifies the bending moment with-
out increasing the axial force. This is more rational than the reduction factor
method which requires the magnification of both the bending moment and the

axial force.

The moment magnifier method used in AS3600 is similar to that used in ACI
318-83(1983). The sources of ACI 318-83 are therefore also those of AS53600.
The moment magnifier method used in ACI 318-83 is based on that of AISC
steel design specifications (American Institute of Steel Construction, 1963).

In the analysis of 'qoncrete structures to determine forces acting on members,
assumption‘ih;;‘io be made of the EI values (E is the modulus of elasticity
and I is the second moment of area of cross-section) for beams and columns.
ACI 318-83 and AS3600 both stipulate that any reasonable assumptions may
be adopted for computing relative flexural stiffnesses of columns, provided

consistency is maintained throughout the analysis.
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The use of column buckling concepts in the moment magnifier method re-
quires the determin?tion of a buckling load, N; the calculation of N, is based
on the assumptiorizl\é\i;if:\column hivfng a uniform EI value. Previous stud-
ies (described by B/iacgregor, Breen and Pfrang(1970)) resulted in ACI 318-83
adopting representative empirical values, for short-term behaviour, given by

the Equation:

(7.1)

Studies by Menn(1974) and MacGregor et al(1975) suggested that the repre-
sentative EI might be calculated conveniently at the “balanced” point on the
strength interaction diagram. This point corresponds to the tensile steel just

starting to yield when the moment capacity is reached.

For conditions of multiple layers of reinforcement and prestressing tendons, the
“balanced” definition cannot be upheld and, therefore, a more general concept

based on curvature of the section is applied. Based on this concept, the EI

value is defined in AS3600 as:

EI = 200d My, (7.2)
where
d = effective depth of the section; and
M,, =is the moment corresponding to a neutral axis

depth of k,d = 0.6d and a strength reduction
factor ¢ of 0.6.

7.2.2 The Method: Design

The Australian Standard AS3600 allows a slender column to be designed using

the moment magnifier method provided the column slenderness lies within
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prescribed limits. For a braced column, the lower limit for slenderness is

specified by:

Iz
— > 25;o0r (7.3)

.
M; N*
> 60 (1+ M;) / (1 - 0.6N.w) (7.4)

whichever is the greater.

where
L. = effective length of a column;
r = radius of gyration of a section;
M ,M; = The smaller and larger design bending
moments respectively at the ends of a column;
Nyo = the ultimate strength in compression of an axially
loaded cross-section, without eccentricity;

N* = the design axial force.

For an unbraced column, the lower limit is specified by:

— > 22 (7.5)

If the column slenderness is less than these specified limits, then it may be re-

garded as “short” and geometric slenderness effects can be ignored altogether.

An upper limit of the slenderness ratio of 120 is specified by the Australian
standard for slender columns designed using the simplified methods. For
frames with column slenderness greater than this value, a top-tier method

is required.

The moment magnifier method, even though simplified, cannot be used to
determine section sizes directly from given design loads. A trial and error

approach has to be used whereby a trial section is chosen and then checked
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for adequacy; if the column cannot carry the design loads according to the

moment magnifier method of analysis, it must be adjusted accordingly.

To design/analyse slender columns in a given frame, the design load is first
determined. This loading should reflect the proportional nature of the design
loads, factored up from the service loads using the appropriate load factors of
AS3600. Gross sectional EI and EA values are then used to carry out a linear

elastic analysis of the frame to determine first-order forces.

To allow for geometric non-linearities, the bending moments determined from

the first order analysis are magnified.

For a column in the frame, the linear analysis gives the end moments M7 and
M}, where M and M; are the smaller and larger design bending moment
respectively at the ends of a column. The axial force N* is also obtained from
the analysis. Next the end restraint coefficients 4, and 72 are calculated at

each end of the column, as:

T V2= = (%)C (7.6)
=(%)s
where
1 — second moment of area of the gross concrete section;
L = length of the member;
B = fixity factor for fixity condition at

the far end of the beam;

DY (%)c = sum of the stiffnesses in the plane of bending of all
the columns meeting at, and rigidly connected to,
the end of the column under consideration; and

> (%I)B = sum of the stiffnesses in the plane of bending of all

the beams meeting at, and rigidly connected to,
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the end of the column under consideration.

According to Clause 10.5.6 of AS3600, the end restraint coefficient ¥ may be
taken as ten when the end restraint is provided by a footing with negligible
restraint, and may be taken as one when the end of the column is restrained

from rotating.

From these restraint factors, the effective length of the column is calculated
as kL, where the effective length factor k is determined from the Jackson-
Mooreland charts provided in AS3600. Depending on whether the column is

braced or unbraced, the appropriate chart is to be used.

For both braced and unbraced columns, the magnified moment obtained using

the braced moment magnifier, 8, is obtained from the expression:

M* =6, x M; (7.7)
where
km
66 = N+ Z 1 (7.8)
1-%

In the above equation, kn, = 0.6 — 0.4M} /M for a column without transverse
loading between its ends and N, = («*/L2)[200d(¢ M)/ (14 B4)]. The value
of k,, is limited to 0.4 to account for the unwinding, under high axial loads,
of columns bending in double curvature where 0.5 < %f < 1.0. The design
strength in bending ¢ My corresponds to values of k, = 0.6 and ¢ = 0.6.
B4 is a empirical factor equal to the ratio of the dead load to the total load;
this factor is taken as zero when L./r < 40 and N* < M*/2D, i.e., when the

eccentricity of load is large.

In the calculation of N, above, a value of EI is implied. For a compression
member, the stiffness EI varies with the magnitude of the moment and axial
force acting. It also varies with the variation of the bending moment along the

beam. In the Australian standard, the EI value at the “balanced point” on the
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column interaction diagram is used. This contradicts the use of gross sectional
EI in the frame analysis used to obtain forces described earlier. The use of this
value of EI has no theoretical justification (Warner et al,1989) and is based
on the studies by Macgregor, Oelhafen and Hage (1975); and Menn(1974) who
suggested that a single representative value of EI might be calculated at the

“balanced” point on the interaction diagram.
For a braced column the design moment is calculated from Equation 7.7.

For an unbraced column the design bending moment is taken to be the larger
of two bending moments calculated: one obtained from Equation 7.7 and the

other from Equation 7.9 below:
M* =6, x M; (7.9)

where

(7.10)

The summations in the above equation include all columns within the storey.

In lieu of Equation 7.9, the system moment magnifier can be obtained for the

entire frame by using the critical buckling load of the frame using the equation

below:
1
)= (1_ 5 ) (7.11)
Psruc
where
M. = ratio of the elastic critical buckling load

of the entire frame to the design load for
the strength limit states; and

B4 = ratio of the dead load to the sum of the dead
and live load, and ¢, is a correction factor

taken as 0.6.
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The value of 8, obtained from the above expression is applied to all the columns

in the frame.

The elastic buckling load used in Equation 7.11 above for a sway frame can
be obtained approximately from the expression given below (Stevens, 1967;

Rosenbluth, 1965; and MacGregor; 1972):

Kyihi
P== (7.12)
v
where
h; = height of the i-th storey; and
v = a parameter which varies from 1.0 for frames with

flexible beams to 1.22 for frames with rigid beams.

The lateral stiffness of the i-th storey, Ky; is calculated as % where H; is the
horizontal load above the i-th storey and A; is the lateral sway within storey

height h,~ )

An upper limit on §, of 1.5 is proposed by AS53600. This is based on the study
by MacGregor and Hage (1977) who found that above this value, instability
failure occurs before the section with the maximum moment reaches its full

strength.

The evaluation of the accuracy of the bottom-tier method using the system
magnifier of Equation 7.11 is not covered in the present investigation, which
is concerned only with the magnifiers of Equations 7.7 and 7.9. Attention is
focussed on Equation 7.9 instead of Equation 7.11 as the former equation is

normally used by designers in preference to the latter equation.

After obtaining the braced moment magnifier and the storey moment magnifier
for the column with the most critically loaded section, the next step is to obtain

the design strength interaction curve. Details of the steps involved to obtain
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interaction curve for symmetrically reinforced concrete sections are given in
Appendix D. For the purpose of design or determination of design strength, a
strength reduction factor ¢ is applied to the calculated moment. This strength
reduction factor, given in in Table 7.1, is dependent on the magnitude of N,

and k,.

Table 7.1: Strength reduction factor ¢ for section under combined bending

and axial compression

Nu Z Nub 0.6
N, < Ny and £k, <0.4

for the section 0.6 + 0.2 (1 o Nﬁu‘;)

strength in pure bending
N, < Ny and k, > 0.4

for the section 0.6 + [(OSM'M"f) - 0-6] (1 - Tvl%',‘;)

strength in pure bending

The larger moment M; of the column obtained from the linear analysis 1s
multiplied by the larger of 6, and §,, and together with the axial thrust value
acting on the section, a point is located on the interaction diagram. If this
point lies to the left of interaction curve, then the sizes and the amount of
reinforcement chosen for the members of the frame are acceptable, else they
have to be adjusted and the entire procedure repeated. Even if the point lies
to the left of the interaction curve, adjustment may still be required to achieve

an economical design.
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7.2.3 The Method: Strength Determination

Sometimes it is necessary to determine the design strength of a frame given
the load pattern and geometry. The design strength takes account of all the
material reduction factors and other safety factors provided by the standard.
The determination of design strength requires an approach different from the

trial and error approach used in design.

For design strength calculations, Equation 7.7 can be written in a more ap-
propriate form (Warner et al,1982). Substituting M; = N*e; (where e; is the
eccentricity of axial force at the end with the larger moment M3) into this

equation and rearranging, gives:

N* = — - (7.13)
(52) + (%)

The Equation 7.13 defines the strength requirements of the critical section in

a column and, therefore, is referred to as the loading line of the section. The
N-M design strength interaction curve provides the second relation defining
the permissible strength of the section. The point that satisfies the require-

ments of both curves gives the largest permissible N value to use in design.

The requirement that & is greater than 1.0 (see Equation 7.8) results in a
bounding straight loading line satisfying the following relationship:

M

€2

N~ (7.14)
The form of Equation 7.9 is not suitable for determining the design strength of
a frame under the effect of the storey moment magnifier §,. Since the forces in
the frame are obtained from a linear elastic analysis, it is possible to write the
sum of all the axial forces in the columns within the same storey as the column
under consideration, represented by the notation 3~ N*, as 6. N*, where 6, 1s

a constant factor determined from the forces obtained from the linear elastic
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analysis and N* is the axial force in the column under consideration. Substi-
tuting this relation and M; = N~e; into Equation 7.9 and rearranging, as for

the case of Equation 7.13, gives:

1
N* = ‘I_T_' (7-15)
M* + ZNC
This expression defines a loading line for the section with the larger load ec-

centricity ez, under the influence of the moment magnifier 6.

For the analysis of a slender column, Equations 7.13 and 7.15 are used to plot
two loading lines, the first representing the larger end moment M; magnified
by 6, and the second representing A{; magnified by 6. The straight line defined
by Equation 7.14 is the third loading line required. The intersection points
between the loading lines and the design strength interaction diagram of the
column section can be obtained either graphically or numerically. The design

strength of this column is the intersection point with the lowest thrust value.

After locating the design strength of the column, the moment magnifier can

be obtained from the expression below:

M~
6= .
G N- (7.16)
where
M* = bending moment at the intersection point;
N* = axial force at the intersection point; and
ez = the eccentricity of axial force at the end

with the larger moment M;

Once the value of the design strength N* of the critical column is determined,
the corresponding strength of the frame can be determined from the result
obtained from the linear elastic analysis carried out earlier. In cases where

the critically loaded column cannot be readily identified, analyses are carried
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out for each column. The lowest value is chosen as the design strength of the

frame.

The accuracy of the moment magnifier method has previously been checked by
Smith and Bridge (1984) for isolated columns. They found that the method is
accurate for slenderness ratios L/r < 40. This covers most practical cases of
braced columns. For L/r above this limit, the method becomes increasingly
conservative, particularly for column with small end moments. The study
of Smith and Bridge was limited to isolated pinned-ended columns with end
eccentricity loading. Unfortunately, no checks have been made of columns in

frames, which is the major application in practice.

In fact gross simplifications and idealisations are introduced in order to apply
the moment magnifier method to columns in frames. For example, there exists
the inconsistency of assuming EI values based on the gross concrete sections
for frame analysis and assuming the section having EI values corresponding
to that of the balanced points when calculating N, used to obtain the moment

magnifiers.

In the calculation of the effective length, the effective length factor k is obtained
for the frame assuming that the reinforcement in the beam has little or no effect
on the strength. Previous analytical study by Pagay, Ferguson and Breen
(1970) indicates substantial influence of the amount of beam reinforcement on

the strength of concrete frames.

However, the major idealisation occurs in the use of the effective length concept
to account for frame action. This comes from elastic buckling theory and is
not logically related to real behaviour of concrete frames with lateral loads and

beam loads.

A suite of computer programs has been developed to facilitate the design and

ultimate strength calculations for slender frames. They are used to carry out
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the analyses described for the frames below. The details of these programs are

given in Appendix L

7.3 TUnbraced Portal Frames Analyses

7.3.1 Details of Frames Analysed

A total of 144 portal frames are analysed, with the configurations shown in
Figure 7.1. The cross section of all beams and columns is 300 mm by 300 mm,

with the concrete cover taken to be 50 mm.

The parameters varied in this study are:

loading patterns: four types;

amount of column reinforcement: two ratios— two per cent and four per

cent of gross sectional area;

e total amount of beam reinforcement: six ratios— 0.5 per cent, 1 per cent,

2 per cent, 3 per cent, 4 per cent and 5 per cent gross sectional area; and

e column heights: three heights— 3m, 6m and 9m.

The portals have column slenderness ratios l./r (based on AS3600) of 48, 88
and 127, corresponding to the frame heights of 3 m, 6 m and 9 m respectively.
These provide a good cover of the range allowed by AS3600 for the simplified
method of design, i.e, from 36 to 120.

As previous studies by Pagay, Ferguson and Breen (1970) have shown that
the quantity of beam reinforcement has a significant effect on overall frame

behaviour, the six different reinforcement ratios given above were used. All



Chapter 7: Accuracy of Moment Magnifier Method

O.E?WL w kN/m O.S’WL

S S T A T |
0.02wL — =
L=6m FRAMEA? :
HEIGHT =
VARIABLE
FRAMEA4 :
b i

05wl kN/m O-5wL

| e R |
0.2wL — =
L=6m FRAMEB? :
HEIGHT =
VARIABLE FRAMEB4 :
P P
0.02P —
6m FRAMEC? :
HEIGHT =
VARIABLE
FRAMEC# :
P P
{ !
0.2P —
6m FRAMED2 :
HEIGHT =
VARIABLE
FRAMED4 :
P aiiiai.d -"Lf'

Column Reinforcement
= 0.028H

Column Reinforcement
= 0.04BH

Column Reinforcement
= 0.02BH

Column Reinforcement
= 0.04BH

Column Reinforcement
= 0.028H

Column Reinforcement
= 0.048H

Column Reinforcement
= 0.028H

Column Reinforcement
= 0.04BH

Figure 7.1: Configurations of portal frames analysed
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beams are symmetrically reinforced with equal amounts of steels in the upper

and lower regions over the full span length.

AS3600 stipulates the minimum and maximum amount of reinforcement al-
lowed in beams and columns. For columns, the minimum reinforcement is
0.01A, where Ay is the gross sectional area except that, when a column has a
larger area than is required for strength, a reduced value may be used. The
maximum amount of column reinforcement is 0.04A, or less if proper placing
and compaction of concrete is impeded. The “deemed to satisfy” minimum
amount of tensile reinforcement for rectangular reinforced concrete beams spec-

ified in AS3600 is:
Ag S 1.4

bd ~ fs
With the characteristic f,, of 400 MPa, this gives a lower limit of 0.0035

(7.17)

(the effective depth d of the beams in the portals is 250 mm and the overall
depth D is 300 mm). The lowest beam reinforcement value of 100A,/BD
(where A, is the total amount of steel for symmetrically reinforced concrete
section) of 0.5 per cent correspond to a value of 0.003, slightly less than the
minimum requirement of Equation 7.17. No upper limit is given in AS3600 for

symmetrically reinforced beam sections.

It is recognised that the upper limit of 5% chosen for steel content in the beams
may not be feasible from the viewpoint of constructability; nevertheless, it was

considered important to cover a full range of possibilities.

These portals are analysed by using 1 element per beam. Four elements are
used for each of the columns to enable the insertion of sufficient nodes along
each column to model the geometrical noniinearity effect that occurs along the

member.
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7.3.2 Accuracy of Ultimate Strength Predictions

Material properties used in the analyses for the predictions of ultimate strength

are average (not characteristic) values. They are as follows:

e concrete:

— average compressive strength : fo, = 35 MPa;
— peak strength in members : fonaz = 0.85fem;

—_ elastic modulus : E. = 5000/ fom (E. and fen, in MPa)

o steel:

— average yield stress : fy,(average) = 460 MPa;

— elastic modulus : E, = 200,000 MPa.

To identify the frames within any series, the 3 m frame is referred to as Low,
the 6 m frame is referred to as Medium and the 9 m frame is referred to as Tall.
Thus, the 9 m frames of series FRAMEAZ2 are referred to as FRAMEA2T. An
individual frame within this set which has 0.5 per cent beam reinforcement is

referred to as FRAMEA2T _0.5.

A typical plot of ultimate strength versus quantity of reinforcement is illus-
trated using set FRAMEB2L (load configuration B, two per cent column re-
inforcement, and 3 m frame height) is given in Figure 7.2b. Results indicated
by square symbols are obtained using program SAFRAME. The solid line rep-
resents ultimate load as limited by column failure, calculated by the moment
magnifier method. This line is horizontal, indicating that the strength of the
frame based on column failure is independent of the amount of reinforcement
in the beam. The results indicated by circle symbols are ultimate loads of
frames obtained based on the failure of the most critically stressed section

in the beam. Axial thrust is taken into consideration when determining the
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strength of critical beam sections from the corresponding strength interaction
diagrams. The failure surface for the bottom-tier method is thus composed of
an inclined line, with a positive slope with increasing reinforcement, changing
over to a straight horizontal line at higher amount of reinforcement. For set
FRAMEB2L, this crossover occurs at approximately 2.3 per cent beam rein-
forcement. This failure surface has a similar general shape as that obtained
from the top-tier analyses, except that it flattens out at a lower percentage of
beam reinforcement. This suggests that the failure surface predicted by the
bottom-tier method using the coupled beam-failure column-failure representa-

tion is appropriate, at least qualitatively.

The ratios of collapse loads, obtained from the bottom-tier and the rigorous
method, are plotted in Figure 7.2(a) against the amount of beam reinforce-
ment. The results are in all cases conservative (i.e., less than 1.0), and probably

overconservative for large percentages of beam reinforcement.

In Figure 7.3, the results of analyses for FRAMEB2T are presented. These
have the same loading configuration and the same amount of column rein-
forcement as for FRAMEB2L, except that the frames are 9m high. Again,
the bottom-tier results are conservative, but the bi-linear failure surface has a
shape that agrees much better with that obtained from the rigorous analysis
as compared with the results of FRAMEB2L. The top-tier results show a more

pronounced flattening for steel percentages greater than 2.0 per cent.

The results obtained for the frames with two per cent column reinforcement
(0.02BH), i.e., for series FRAMEA?2, FRAMEB2, FRAMEC2, and FRAMED?2,
are summarised in Table 7.2 and those for the frames with four per cent column
reinforcement (0.04BH), i.e., for series FRAMEA4, FRAMEB4, FRAMECLI
and FRAMED4, are summarised in Table 7.3. Histograms of the ratio of
the ultimate load based on the bottom-tier method to that based on the
top-tier method (obtained using program SAFRAME), Pyot(ult.)/ Peop(uit.) (or
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wyot(ult.) weop(ult.)), are given in Figure 7.4.

The histograms indicate that out of the 144 frames analysed, 60 frames are
controlled by beam section failure and 84 frames are controlled by column
failure. The comparison ratio Py:(ult.)/ Pop(ult.) (or weer(ult.)/weop(ult.)) lies
between 0.35 and 1.34.

The largest unconservative strength ratio, of 1.34, occurs in frame FRAMEC4T 0.5,
which has type C loading pattern, 9m columns with reinforcement of 4 per cent,
and 0.5 per cent beam reinforcement. It has P,y of 550kN. Comparing this ul-
timate load with that of FRAMEC2T 0.5 (with P, = 471kN) indicates that
increasing the amount of column reinforcement from 2 per cent to 4 per cent
does not cause much increase in the ultimate load of the frame. Since there
is no loading along the beam, plastic collapse mechanism cannot form in the
beam. Simple plastic analyses, carried out on the frames, assuming sections
failed by steel yielding, give sway plastic collapse loads of 1150 kN and 2070
kN for FRAMEC2T_.0.5 and FRAMEC4T 0.5, respectively. Plastic hinges are
assumed to occur next to the bases of the columns and the ends of the beam.
Clearly, sway plastic mechanism has not formed at collapse. Therefore, the

collapse is likely to be caused by instability.

Parallel analyses using the bottom-tier method, considering column failure,
give an ultimate load of 526 kN for FRAMEC2T 0.5 and an ultimate load of
788 kN for FRAMEC4T_0.5. For both frames, the ultimate load predicted
based on the bottom-tier method considering beam section failure is 735 kN.
(Both the frames have an identical beam section failure load as the amount of
column reinforcement is ignored in the first-order elastic analysis using gross
section properties.) FRAMEC2T 0.5 therefore has an ultimate load of 526 kN
(column failure) and FRAMECAT 0.5 has an ultimate load of 735 kN (beam
section failure). Thus the comparison ratio of the frame with 2 per cent column

reinforcement is 1.12 and that for the frame with 4 per cent column reinforce-
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ment is 1.34. Increasing the amount of column reinforcement twofold has
resulted in an increase of the ultimate load of approximately 17 percent (ac-
cording to the top-tier calculation) and a predicted increase of approximately
40 percent according to the bottom-tier method. This suggests that the use of
the bottom-tier method may be over-optimistic when applied to frames which

fail by loss of stability arising from lateral displacement of loaded joints.

Frames with unconservative strength ratios in excess of unity are all from the
series FRAMEC2 and FRAMECA. This suggests that care should be taken if
the bottom-tier method is used to predict ultimate loads of frames with very
slender columns that are are likely to have significant induced P-A moments
caused by heavily loaded joints; these moment not being able to be determined
from the linear elastic analysis. Such columns are likely to be found in lower
floor columns which are subjected to large axial loads from the loads on the

floors above.

There is no attempt made to locate the number and position of concrete plastic
hinges in the frames using the results obtained from the top-tier analysis as it
has been shown earlier in Chapter 6 that softening, and therefore the peak load,
can occur at any stage of hinge formation, from no hinges to a complete set of
concrete hinges required for the formation of a plastic collapse mechanism, and
therefore this information is considered not useful for determining the onset of

collapse.

7.3.3 Accuracy of Design Strength Predictions

In this section, a study is made of the adequacy of the safety provisions used

when the moment magnifier method is applied to column design.

The frames analysed are the same as those described previously in Section 7.3.1.

Instead of using mean values, characteristic values are used for the material
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Table 7.2: Ratio Pyot(ult.)/ Prop(ult.)(or Wot(ult.) Jweop(ult.)) for the frames

with column reinforcement of 2% BH

frame beam reinforcement (%BH)

height 0.5 1.0 2.0 3.0 | 40 | 5.0
3m | 0.82(B) | 0.82(B) | 0.82(B) | 0.73 | 0.63 | 0.58
FRAMEA2 | 6m | 0.83(B) | 0.82(B) | 0.83(B) | 0.77 | 0.66 | 0.58
om | 0.74(B) | 0.75(B) | 0.80(B) | 0.69 | 0.61 | 0.52
sm | 0.64(B) | 0.62(B) | 0.70 |0.64 | 0.61 | 0.58
FRAMEB2 | 6m |0.61(B) |0.68(B)| 0.80 |0.70 [ 0.66 | 0.63
9m | 0.57(B) | 0.77(B) | 0.64 |0.58 |0.56 | 0.54
3m 1.03 0.98 0.93 |[0.9110.90 | 0.89
FRAMEC2 | 6m 1.10 0.87 0.71 | 0.64 | 0.61 | 0.59
9m 1.12 0.86 0.68 | 0.62 | 0.59 | 0.57
3m | 0.53(B) | 0.80(B) | 0.87 |0.80 | 0.76 | 0.71
FRAMED2 | 6m |0.61(B) |0.87(B)| 090 |0.82|0.80 | 0.78
om | 0.68(B) | 0.96(B) | 091 |0.86|0.84 |0.84

(B) : bottom-tier beam failure
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Table 7.3: Ratio Pyor(ult.)/ Pop(ult.)(or wher(ult.)/wiop(uit.)) for the frames

with column reinforcement of 4% BH

frame beam reinforcement (%BH)

height 0.5 1.0 2.0 3.0 4.0 5.0
3m | 0.72(B) | 0.82(B) | 0.82(B) | 0.82(B) | 0.83(B) | 0.75
FRAMEA4 | 6m | 0.83(B) | 0.84(B) | 0.81(B) | 0.83(B) | 0.84(B) | 0.79
om | 0.74(B) | 0.74(B) | 0.77(B) | 0.80(B) | 0.80 | 0.70
3m | 0.63(B) | 0.63(B) | 0.65(B) | 0.67(B) | 0.68(B) | 0.71
FRAMEB4 | 6m | 0.59(B) | 0.59(B) | 0.68(B) | 0.76(B) | 0.78 |0.73
om | 0.50(B) | 0.61(B) | 0.75(B) | 0.84(B) | 0.80 |0.76
3m | 1.01(B) 1.05 1.00 0.98 095 | 0.94
FRAMEC4 | 6m |1.04(B)| 1.08 | 084 | 075 | 0.71 |0.68
9m | 1.34(B) 1.09 0.85 0.77 0.72 |0.70
3m | 0.35(B) | 0.55(B) | 0.85(B) | 0.92 0.89 | 0.87
FRAMED4 | 6m |0.38(B) | 0.62(B) | 0.91(B) | 094 | 0.86 |0.83
9m | 0.45(B) | 0.71(B) | 0.98(B) | 094 | 087 | 085

(B) : bottom-tier beam failure
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! is assumed to be 30

c?

properties. The characteristic strength for concrete,

MPa, and the yield strength of reinforcement fsy is assumed to be 400 MPa.

The strength reduction factor ¢ is included in the analysis to obtain the design
strength of frames using the middle-tier and bottom-tier methods. For the top-
tier method, AS3600 specifies that the strength of a frame is to be determined
based on the critical section reaching its strength. Results obtained for the
cantilevered column analysed in Chapter 6 indicate that the peak load of a
structure can be caused by instability before sections in the structure reaching ,
peak strengths. The results suggest that using the AS3600 top-tier method to
determine strength may result in unconservative, and even dangerous, design
as it is possible for the frame to be close to the peak load, even though the

critical section has not reached its ultimate strength, owing to instability.

In order to enable realistic comparisons to be made between the simplified
methods and the top-tier method, a global strength reduction factor is ap-
plied to the load determined using the top-tier method. Unlike the strength
reduction factor used in the moment magnifier method, this factor is applied
to the load instead of the section strength. This is more appropriate as the
collapse load does not normally occur when the ultimate strength of a sin-
gle cross-section is reached. As the global strength reduction factor can only
be determined from a full reliability study, it is assumed to be equal to the
strength reduction factor ¢ of the critical section governing the design strength
of the simplified bottom-tier method. If such an approach is used in practice
to carry out a design, it would be unrealistic to carry out a parallel analysis us-
ing the moment magnifier method to determine the global strength reduction
factor. The more conservative value of 0.6 corresponding to column failure at

N, should probably be used in such a case.

In making comparisons, load factors are assumed to be the same for both the

rigorous method and the bottom-tier method, and therefore cancel out when
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calculating the comparison ratios.

The results obtained for the sets of frames with columns having reinforcement
of 2% BH (i.e., for FRAMEA2, FRAMEB2, FRAMEC?, and FRAMED?2) are
summarised in Table 7.4 and Table 7.5. and those for the sets of frames with
columns having reinforcement of 4% BH, i.e., for FRAMEA4, FRAMEB4,
FRAMEC4 and FRAMED4 are summarised in Table 7.6 and Table 7.7. His-
tograms of the ratio Py.(des.)/ Piop(des.) (or wpot(des.) [ wiop(des.)) are given
in Figure 7.5.

The histograms indicate that out of the 144 frames analysed, 55 frames have
design strength controlled by beam section failure and 89 frames have design
strength controlled by column failure. All the columns have their strength
controlled by loading curves for the storey effect, i.e., by curves represented by
Equation 7.9. The constraint of AS3600 that 4, is to be less than or equal to 1.5
is ignored in this first set of plots. Thus the results from all 144 frames are in-
cluded in producing Figure 7.5(c). The comparison ratio Pyot(des.)/ Piop(des.)
(or whor(des.)/wiop(des.)) varies from 0.35 to 1.32 with 85.5 per cent between
0.5 to 0.9. Frames with a ratio greater than 1.0 are, as in the study of ultimate

strength, mainly found within the series FRAMEC2 and FRAMEC4.

The use of a top-tier strength global reduction factor equal to the strength
reduction factor of the critical section gives conservative bottom-tier results
for a vast majority of the frames. The results obtained indicate that 7.0 per
cent of the frames have comparison ratios greater than 1.1, which may be of

concern, especially when this ratio may be as large as 1.32.

However, when the constraint specified by AS3600 that 6, i1s to be less than
or equal to 1.5 is included, the comparison ratios of the frames satisfying this
requirement are between 0.3 to 1.0, with 93.4 per cent between 0.5 to 0.9 (see
Figure 7.6(c)). Out of the 38 frames eliminated by the afore-mentioned require-

ment, 27 frames have a comparison ratio of less than unity. This indicates that
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approximately 71 per cent of the frames eliminated by the application of this
requirement are actually giving conservative estimates of design load, indicat-

ing the unsatisfactory consequence of using this requirement.

In general, the safety ratios for the design predictions have reduced in value,
i.e., have become more conservative as compared with those obtained for the
ultimate load condition. Approximately 21 per cent of the results show a safety
ratio of less than 0.6. It should be emphasized that this represents safety over
and above the safety purposely introduced in the form of ¢ factors, etc., and
the use of characteristic strengths. These results may well be considered as

over- conservative.

7 4 Braced Portal Frames

7.4.1 Details of Frames Analysed

A total of 36 braced portal frames were analysed. The configurations of these

frames are shown in Figure 7.7. The parameters varied in these frames are:

e amount of column reinforcement: two ratios— two per cent and four per

cent of gross sectional area;

e amount of beam reinforcement: six ratios— 0.5 per cent, 1 per cent, 2 per

cent, 3 per cent, 4 per cent and 5 per cent gross sectional area; and

e column heights: three heights— 3 metres, 6 metres and 9 metres.
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Table 7.4: Ratio Pyot(des.)/ Puop(des.) (or wyo(des.)/wiop(des.)) for the frames

with column reinforcement of 2% BH

frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 | 40 | 5.0
FRAMEA2 | 3m | ratio | 0.81(B) | 0.81(B) | 0.82(B) | 0.68 | 0.58 | 0.52
¢ 0.80 0.80 0.79 |0.76 | 0.76 | 0.76
b5 = - = 1.08 | 1.08 | 1.08
6m | ratio | 0.84(B) | 0.81(B) | 0.82(B) | 0.70 | 0.60 | 0.52
¢ 0.80 0.80 0.80 |0.76 | 0.76 | 0.76
ds = - - 1.28 | 1.28 | 1.28
om | ratio | 0.75(B) | 0.74(B) | 0.76 | 0.61 | 0.53 | 0.46
¢ 0.80 0.80 0.77 | 0.77 | 0.77 | 0.77
bs - = 1.64 1.64 | 1.64 | 1.64
FRAMEB2 | 3m | ratio | 0.63(B) | 0.61(B) | 0.69(B) | 0.59 | 0.56 | 0.53
¢ 0.80 0.80 0.79 |0.77 | 0.77 | 0.77
s - - = 1.06 | 1.06 | 1.06
6m | ratio | 0.59(B) | 0.65(B) | 0.76 |0.64 | 0.59 | 0.56
¢ 0.80 0.80 0.78 |0.78 | 0.78 | 0.78
ds = = 1.17 1.17 | 1.17 | 1.17
9m | ratio | 0.56(B) | 0.75(B) 0.73 | 0.65 | 0.63 | 0.62
¢ 0.80 0.80 0.78 |0.78 | 0.78 | 0.78
ds = - 1.29 |1.29 | 1.29 | 1.29
(B): bottom-tier beam failure
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Table 7.5: Ratio Pho(des.)/ Peop(des.)(or wpor(des.)/ wyop(des.)) for the frames

with column reinforcement of 2% BH - continue

frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 | 3.0 | 40 | 5.0
FRAMEC2 | 3m |ratio| 1.23 1.18 |1.13|1.11 | 1.09 | 1.08
¢ 0.60 0.60 | 0.60 | 0.60 | 0.60 | 0.60
ds 2.72 2.72 | 272|272 |2.72|2.72
6m | ratio | 0.95 0.77 | 0.61 | 0.56 | 0.54 | 0.53
¢ 0.68 0.68 | 0.68 | 0.68 | 0.68 | 0.68
s 4.65 4.65 |4.65|4.65 | 4.65 | 4.65
9m | ratio | 0.91 0.71 |0.54 | 0.48 | 0.47 | 0.46
¢ 0.74 0.74 |0.74 |0.74 | 0.74 | 0.74
ds 5.59 5.59 | 5.59 | 5.59 | 5.59 | 5.59
FRAMED2 | 3m | ratio | 0.52(B) | 0.77(B) | 0.75 | 0.69 | 0.65 | 0.64
¢ 0.80 0.79 |0.720.72 | 0.72 | 0.72
bs ~ - 1.19 | 1.19 | 1.19 | 1.19
6m | ratio | 0.60(B) | 0.86(B) | 0.80 | 0.73 | 0.71 | 0.70
¢ 0.80 0.80 |0.77 | 0.77 | 0.77 | 0.77
bs - - 1.30 | 1.30 | 1.30 | 1.30
9m | ratio | 0.66(B) | 0.92(B) | 0.82 | 0.77 | 0.76 | 0.75
é 0.80 0.80 |0.78|0.78 | 0.78 | 0.78
ds = - 1.40 | 1.40 | 1.40 | 1.40

(B): bottom-tier beani failure
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Table 7.6: Ratio Pyoe(des.)/ Prop(des.)(or wpor(des.) [wiop(des.)) for the frames

with column reinforcement of 4% BH

frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 4.0 | 5.0
FRAMEA4 | 3m | ratio | 0.80(B) | 0.83(B) | 0.82(B) | 0.81(B) | 0.85 | 0.83
¢ 0.80 0.80 0.79 0.79 0.74 | 0.74
ds - - - - 1.09 | 1.09
6m | ratio | 0.84(B) | 0.81(B) | 0.81(B) | 0.81(B) | 0.84 | 0.72
¢ 0.80 0.80 0.80 0.80 |0.74 | 0.74
ds = = - - 1.35 | 1.35
9m | ratio | 0.75(B) | 0.74(B) | 0.76(B) | 0.78(B) | 0.72 | 0.63
¢ 0.80 0.80 0.80 0.80 |[0.75 [ 0.75
bs = - - = 1.78 | 1.78
FRAMEB4 | 3m | ratio | 0.62(B) | 0.62(B) | 0.62(B) | 0.65(B) | 0.71 | 0.68
¢ 0.80 0.80 0.79 0.79 |0.75 | 0.75
ds = - = 2 1.07 | 1.07
6m | ratio | 0.58(B) | 0.58(B) | 0.66(B) | 0.74(B) | 0.72 | 0.67
¢ 0.80 0.80 0.80 0.79 | 0.76 | 0.76
ds = - - - 1.21 | 1.21
om | ratio | 0.51(B) | 0.56(B) | 0.73(B) | 0.86 | 0.72 | 0.68
¢ 0.80 0.80 0.80 0.77 |0.77 | 0.77
05 = - % 1.36 1.36 | 1.36

(B): bottom-tier beam failure
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The columns have slenderness ratio l./r values (based on AS3600) of 44, 79
and 114 corresponding to frame heights of 3 metres, 6 metres and 9 metres

respectively.

The portals are modelled by using 1 element per beam and four elements per
column. Four elements are used to enable the insertion of sufficient nodes
along each column to model the geometrical nonlinearity within the length of

the member.

For the analyses in this section, member sizes are all 300 mm X 300 mm.
Material properties used are the same as for the unbraced frames described

earlier in this chapter.

Comparison ratios wye(ult.)/weep(ult.) for the frames are summarised in Ta-
_ ble 7.8. Of the 36 frames analysed, only 6 frames have column failures. The
comparison ratio for the frames ranges from 0.63 to 0.99. This indicates that
the moment magnifier method is conservative in predicting ultimate loads for

the braced frames analysed.

Comparison ratios wee(des.)/ wyop(des.) for the frames are summarised in Ta-
ble 7.9. Of the 36 frames analysed, only 7 frames have column failures. The
comparison ratio for the frames ranges from 0.58 to 0.93. This indicates that
the moment magnifier method is conservative in estimating design loads for

the braced frames analysed.

7.5 Three-storey Two-bay Frames

A three-storey two-bay frame shown in Figure 7.8 is analysed. All members
are assumed to be 300mm by 300mm. Material properties used for the frame

are the same as those used for the portals analysed earlier in this chapter. All
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Table 7.7: Ratio Poot(des.)/ Piop(des.)(or wyor(des.)/wiop(des.)) for the frames

with column reinforcement of 4% BH -continue

frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 | 4.0 | 5.0
FRAMEC4 | 3m | ratio | 0.97(B) | 1.32 | 128 |1.21|1.21|1.20
¢ 0.80 0.60 0.60 | 0.60 | 0.60 | 0.60
ds - 2.42 2.42 242 | 242 | 2.42
6m | ratio | 0.09(B) | 1.09 | 085 |0.74|0.71 | 0.70
¢ 0.80 0.62 0.62 0.62 | 0.62 | 0.62
ds - 4.78 478 | 4.78 | 4.78 | 4.78
9m | ratio | 1.21 0.94 0.70 | 0.63|0.59 | 0.57
¢ 0.71 0.71 0.71 0.71 | 0.71 | 0.71
05 6.30 6.30 6.30 | 6.30 | 6.30 | 6.30
FRAMED4 | 3m | ratio | 0.35(B) | 0.53(B) | 0.82(B) | 0.87 | 0.84 | 0.82
() 0.80 0.79 0.79 | 0.68 | 0.68 | 0.68
ds = = = 1.21 | 1.21 | 1.21
6m | ratio | 0.38(B) | 0.50(B) | 0.88(B) | 0.84 | 0.77 | 0.74
¢ 0.80 0.80 0.79 |10.750.75 | 0.75
ds = - — 1.36 | 1.36 | 1.36
om | ratio | 0.43(B) | 0.68(B) | 0.97(B) | 0.84 | 0.78 | 0.75
o) 0.80 0.80 0.79 | 0.77 | 0.77 | 0.77
05 — - = 1.50 | 1.50 | 1.50

(B): bottom-tier beam failure
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Figure 7.5: Histograms for bottom-tier (design strength)
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Table 7.8: Ratio wyee(ult.)/wiop(ult.) for braced frames

frame beam reinforcement (%BH)

height 0.5 1.0 2.0 3.0 4.0 5.0

3m | 0.88(B) | 0.96(B) | 0.86(B) | 083 | 072 | 0.63
FRAMEE2 | 6m |0.91(B) | 0.83(B) | 0.81(B) | 0.90(B) | 0.92 | 0.80

om | 0.75(B) | 0.73(B) | 0.73(B) | 0.83(B) | 0.92(B) | 0.99(B)

3m | 0.88(B) | 0.86(B) | 0.85(B) | 0.84(B) | 0.85(B) | 0.88
FRAMEE4 | 6m | 0.85(B) | 0.83(B) | 0.81(B) | 0.80(B) | 0.81(B) | 0.86(B)

om | 0.75(B) | 0.74(B) | 0.72(B) | 0.72(B) | 0.73(B) | 0.78(B)

(B) : bottom-tier beam failure
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Table 7.9: Ratio wyo(des.)/wiop(des.) for braced frames
frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 4.0 5.0
FRAMEE2 | 3m | ratio | 0.85(B) | 0.86(B) | 0.85(B) | 0.77 | 0.66 | 0.8
¢ 0.80 0.80 0.79 0.76 0.76 0.76
8y - — - 1.00 1.00 1.00
6m | ratio | 0.91(B) | 0.81(B) | 0.80(B) | 0.89(B) | 0.83 | 0.73
¢ 0.80 0.80 0.80 0.80 0.75 0.75
b - = - = 1.00 1.00
om | ratio | 0.72(B) | 0.72(B) | 0.70(B) | 0.78(B) | 0.88(B) | 0.93
¢ 0.80 0.80 0.80 0.80 0.80 0.74
o = = = = - 1.00
FRAMEE4 | 3m | ratio | 0.89(B) | 0.85(B) | 0.86(B) | 0.83(B) | 0.86(B) | 0.84
¢ 0.80 0.80 0.79 0.79 0.79 0.73
S - - - - - -
6m | ratio | 0.84(B) | 0.82(B) | 0.80(B) | 0.79(B) | 0.79(B) | 0.85(B)
¢ 0.80 0.80 0.80 0.80 0.79 0.79
bb - - - - - -
9m | ratio | 0.72(B) | 0.71(B) | 0.71(B) | 0.68(B) | 0.70(B) | 0.75(B)
¢ 0.80 0.80 0.80 0.80 0.80 0.80
bs - - - - - -

(B): bottom-tier beam failure
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members have two per cent reinforcement, and are symmetrically reinforced
with equal amounts of steel in the upper and lower regions. Slenderness ratio

I/r calculated for the columns based on AS3600 ranges from 38 to 61.

In the top-tier method, the columns are each modelled using one element.
This is acceptable, as the results obtained in Chapter 6 indicate that the P-A
effect along columns does not affect significantly the ultimate load for unbraced
frames subjected to sway-induced forces. 15 segments are used for each beam
and 10 segments are used for each column, resulting in each segment having a

length to depth ratio of unity.

Results obtained for the frame for ultimate strength determination are sum-
marised in Table 7.10. The results indicate a beam section failure load of 47.9
kN/m. An estimate of the beam plastic collapse mechanism gives a failure
load of about 65 kN/m (assuming the beam to be fixed at both ends, and the
plastic capacity of sections calculated based only on the steel yielding). The
ultimate load obtained SAFRAME is 84 kN/m.

The bottom-tier results suggest that beam section failure controls the ultimate
load of the frame. The comparison ratio wy.(ult.)/wyp(ult.) for the frame

based on the bottom-tier method is 0.57.

Table 7.10: Ratio wpee(ult.)/wep(ult.) for multi-storey frame MULTI1

Method Beam failure | Coln failure | Ultimate Load | Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) whot(ult.) [ wiop(ult.)

Top-tier - - 84.1 -

Bottom-tier 47.9 88.0 47.9 : 0.57

Results obtained for the frame for design strength determination are sum-
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Figure 7.8: Configuration of multi-storey frame analysed
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marised in Table 7.11. The bottom-tier results suggest that beam section fail-
ure controls the design load of the frame. The comparison ratio wpot(des.) [weop(des.)

for the frame based on the bottom-tier method is 0.57.

Table 7.11: Ratio wyo(des.)/weop(des.) for multi-storey frame MULTI1

Method Beam failure | Coln failure | Design Load | Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) | wpor(des.)/weop(des.)

Top-tier - - 58.7 -
(for ¢ = 0.8)
Bottom-tier 33.3 63.3 33.3 0.57

(¢=0.8) (¢=0.77) (¢ =038)

Another multi-storey frame with the same frame geometry as that of frame
MULTI1 is also analysed. This frame is the same as frame MULTII, except
that the amount of beam reinforcement is increased from two per cent to four
per cent. Slenderness ratio I/r calculated for the columns based on AS3600,
as for MULTIL, ranges from 38 to 61 because reinforcement in the beams
is not considered in calculating the effective length, I. As the bottom-tier
method uses gross concrete section properties of beams in the analysis/design
of columns in a frame, the column failure load for the frame is the same as
that obtained for frame MULTI1. The beam section failure load for the frame
are larger than that of MULTTL, reflecting the doubling of the amount of beam

reinforcement.

Results obtained for ultimate strength determination are summarised in Ta-
ble 7.12. The beam section failure load is 98 kN/m. An estimate of the beam
plastic collapse mechanism gives a failure load of about 131 kN/m (assuming
the beam to be fixed at both ends, and the plastic capacity of sections calcu-

lated based only on the steel yielding). This estimate is close to the ultimate
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load of approximately 146 kN/m obtained from the top-tier analysis. The
bottom-tier result suggests that column failure now controls the ultimate load
of the frame, instead of beam section failure in FRAMEL. The comparison
ratio wyer(ult.)/weop(ult.) for the frame based on the bottom-tier method is

0.60.

Table 7.12: Ratio wy,¢(ult.)/weop(ult.) for multi-storey frame MULTI2

Method Beam failure | Coln failure | Ultimate Load | Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) Whot(ult.) [ wiop(ult.)

Top-tier - - 146.0 -

Bottom-tier 98.0 88.0 38.0 0.60

Results obtained for design strength determination are summarised in Ta-
ble 7.13. The bottom-tier results suggest that beam section failure controls
the design load of the frame. The load of the frame based on column failure is
only slightly higher than that based on beam section failure. The comparison
ratio wyo(des.)/wip(des.) for the frame based on the bottom-tier method is

0.54.

Results obtained for the two multi-storey frames analysed indicate that for
frames of practical proportions, the moment magnifier method gives very con-

servative estimates of both ultimate and design loads.

7.6 Summary and Conclusions

A suite of computer programs has been developed to carry out the determina-

tion of design and ultimate strengths based on the moment magnifier method.
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Table 7.13: Ratio wpyo:(des.)/wsop(des.) for multi-storey frame MULTI2

Method Beam failure | Coln failure | Design Load | Comparison Ratio
w(kN/m) | w(kN/m) | w(kN/m) | wso(des.)/wiop(des.)
Top-tier - - 102.0 =
(for ¢ =0.8)
Bottom-tier 62.8 63.3 62.8 0.62
(¢=0.8) (¢=0.77) $=0.8

An equation has been derived that enables loading curves incorporating the

storey magnifier é, to be obtained.

Analyses of 144 unbraced portal frames were carried out using the bottom-

tier (moment magnifier) method, and results obtained were compared with

results obtained from the top-tier method. 36 braced portal frames and two

multi-storey frames of practical proportion were also analysed.

From the results obtained, the following conclusions can be drawn:

1. The failure surfaces of the strength versus the quantity of beam re-

inforcement plots obtained from the bottom-tier method have gen-

erally similar shapes as those obtained from the more accurate top-

tier method. This indicates that the beam-failure column-failure

combination model used to obtain the strength of frames for the

bottom-tier method does give a fair, if oversimplified, representa-

tion of the behaviour of the frames analysed.

2. Tt has been found that the moment magnifier method when used to

predict ultimate load could not model the complicated, interactive




Chapter 7: Accuracy of Moment Magnifier Method 239

behaviour between material and geometrical nonlinearities, result-
ing from the P-A introduced into the columns by the movement of
loaded joints. This caused over-estimation of the ultimate strength

for such frames.

3. The bottom-tier method, when used to estimate the ultimate load
of frames, was found to be unconservative for frames likely to fail
by loss of stability arising from movement of loaded joints. Thus,
unconservative estimates of ultimate strength are likely to occur
in vertical columns carrying large axial forces with relatively small
first-order end moments. Such columns, as pointed out earlier in
this chapter, are likely to be those in the lower floors of a multi-

storey building.

4. The bottom-tier method was found to be conservative when the
design standard requirement that é, be less than or equal to 1.5
is applied. Though this requirement succeeded in preventing the
11 frames with non conservative estimates of design loads to be
designed using this method, it also prohibits 27 frames which give
conservative estimates of design load. Of the 144 unbraced portal
frames analysed, only 106 satisfy this requirement. According to the
design standard, those frames that do not satisfy this requirement
cannot be designed using the simplified moment magnifier method.
This implies that either larger sections must be used, or the top-tier

method must be applied.

5. Results obtained for the the limited number of braced frames anal-
ysed suggest that the moment magnifier method is conservative in

estimating both the design and ultimate loads.

6. Results obtained for the two multi-storey frames suggest that the
moment magnifier method is very conservative when applied to
multi-storey frames of practical proportions. Comparison ratios of

0.57 and 0.62 have been obtained for design strength estimates for
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frames MULTI1 and MULTI2 respectively. Corresponding ratios of

0.57 and 0.60 have been obtained for ultimate strength estimates.



Chapter 8

Investigation of the Accuracy
of the Middle-Tier Method for
the Analysis/Design of Slender

Columns

8.1 Introduction

As described already in Chapter 7, the Australian Standard AS3600 allows
the use of both a bottom-tier and a middle-tier method for the simplified

design/analysis of slender frames.

In this chapter, the middle-tier method is described, and the accuracy of this
method in the determination of ultimate and design loads of slender frames

investigated.
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8.2 Middle-Tier Method

The middle-tier method requires second order elastic analysis using computer
programs which take into account the P-A effect caused by the movement of

the joints in a loaded structure.

The material nonlinearity effects are taken into consideration to a certain ex-
tent by assuming the EJ values of the beam and column sections to be 0.4 and

0.8 respectively of the gross sectional values. These values were first proposed

by MacGregor and Hage (1977).

According to AS3600, the maximum moments in the columns are obtained
using an analytical technique which allows for the relative movement of the
joints of the frames. The moments thus obtained are then magnified by the
braced moment magnifier &, in order to allow for deformations within the
length of the columns. For design, the column sections have to be able to
carry the axial thrusts and moments calculated by second order analysis and

magnified by &, for the factored design loads.

Though not specifically stated in AS3600, it can be inferred that the second
step of magnifying the moment obtained is not necessary if a complete second-
order elastic analysis is carried out. A complete second-order elastic analysis
is one which allows for joint displacements and deformations within the length

of the members.

In this study of the accuracy of the second-tier method, a complete second-
order elastic analysis is used. This analysis includes the P-A effect within
the members as well as the P-A effect caused by the movement of the joints.
The nonlinear equilibrium equations derived by Jennings(1968) were used to
take account of the geometrical nonlinearity effects. The derivations of these

equations are given in Appendix E.
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To carry out a design strength determination using this method, the frame
is subjected to a “unit” load pattern based on the configuration of the ap-
plied load. For increasing value of load (obtained by applying a load factor
to the “unit” load pattern), loading curves are obtained for potential failure
sections in columns. Note that these loading curves include all geometrical
noéii:hearity effects. The design strength of the column is obtained by locating
the intersection point between the loading curve for the section and the design
strength interaction curve of the section. From this strength value, the load
factor of the frame is determined. The relationship between the thrust in the
column and the applied load is non-linear and therefore a numerical proce-
dure such as linear interpolation (acceptable when carried out between closely
space solution points) is used to estimate the load factor corresponding to the
intersection point. After obtaining the load factors associated with the inter-
sections points of all the potential failure sections, the lowest value is selected

to be the strength of the frame.

The procedure described above is for estimating the strength of a given frame.
For design purposes, the full design load is applied to a frame with pre-selected
trial sections. The conditions of thrust and moment at the potential failure
sections are obtained using the complete second-order elastic analysis and are
plotted as points on the design strength interaction diagram for the section.
If all the points lie to the left of the design strength interaction curve then
the trial sections chosen are safe. If not, the sizes or the amount of rein-
forcement of the trial sections are adjusted and another cycle of checking is
required. Overconservative designs also require adjustment and further cycles

of checking.

The middle-tier method has built-in assumptions which affect the accuracy of
the prediction of ultimate load. In the middle-tier method, the assumptions
of beam EJ of 0.4, and the column ET of 0.8 of the gross concrete sections,

obviously cannot represent all cases of loading on structures. The EI values
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will depends much on the types of loading (e.g. whether it is uniformly dis-
tributed load or point load), the amount of thrust acting along the members,
the amount of reinforcements, amongst others. This implied assumption that
ultimate section strength governs frame failure load also ignores the possibility

of system stability failure.

8.2.1 Method of Analysis

A suite of computer programs was-developed to facilitate the design and ulti-
mate strength calculations for slender frames based on the middle-tier method.
They were used to analyse the frames described in the later part of this chapter.

The details of these programs are given in Appendix J.

To obtain the strength of a frame by the middle-tier method, the frame is first
analysed using program NEWTONR. The Stiffnesses of the beams and columns
are assumed to be 0.4E.I, and 0.8E.I, where E. is the mean modulus of
elasticity of concrete and I, is the moment of inertia of the gross concrete
section. Program NEWTONR allows the user to nominate the ends of elements
for which files with N, M, P values are created (P here represents the factor
applied to the unit pattern load acting on the frame to give the total load). The
ends of the elements used in the second-order analysis are positioned to coincide
with potential failure sections. Program NEWTONR generates a few output files:
The major output file, which has a name with suffix “out”, consists of the
complete output information of the frames including forces and deformations
of all the elements. The others, which have file names with a suffix “nmc”,
consist of the N-M-P information of the potential failure sections. For a sway

frame, these sections are usually at the ends of the columns.

Intersection points between the strength interaction curves of the sections and

their respective loading curves are then obtained. The N value at the inter-
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action point, Nineersect for each of the loading curves is obtained and based on
this, the corresponding load factor of the frame is calculated. As the analysis
of the frame is non-linear, the relationship between the thrust N of a column
and the load factor P of the frame is non-linear; therefore, P at the inter-
section point is determined from the results obtained from the second-order
elastic analysis. To obtain P at the intersection, a non-linear curve should be
fitted to the N-P solution points, and the P value corresponds to the Nintersect,
Pintersect, is read off the curve. However, a good estimate of the Pintersect Can be
obtained by using a curve with straight lines joining adjacent solution points,
provided that the adjacent solution points are not too far apart. The load
factors of the frame at the intersection points are automatically determined
by program INTERSECM. The lowest value of P is chosen as the strength of the
frame. The output results from program INTERSECM are stored in files with a

suffix of “met”.

8.3 TUnbraced Portal Frames Analyses

8.3.1 Details of Frames Analysed

The portal frames analysed are the same as those used in Chapter 7. Material

properties are also the same as those in Chapter 7.

8.3.2 Accuracy of Ultimate Strength Predictions

Typical results for sets FRAMEB2L and FRAMEAZL (i.e. for 3 m high frames
with load configurations B and A respectively, with 2 per cent column rein-
forcement) are given in Figure 8.1 and Figure 8.2 respectively. In Figure 8.1,

the inclined beam failure line intersects the horizontal column failure line at
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a beam reinforcement ratio of approximately 2.5 per cent, which corresponds
to a tensile steel proportion of 0.015. The rigorous analysis line shows signs
of flattening at high beam reinforcement percentages, giving roughly a shape
similar to that of the bilinear middle-tier failure line. The comparison ratios,
shown in Figure 8.1(a), are consistently conservative, and have values of about

0.6.

The results in Figure 8.2(b) follow a rather different pattern, in that there
is little flattening at high values of beam reinforcement. The failure line ob-
tained from the rigorous analysis follows the beam failure line of the middle-
tier method much more closely than the column failure line. The middle-tier
method seems to under-estimate the frame failure load by a significant amount.
The ultimate load drops to almost 0.5 times the rigorous method value at the

top end of the beam reinforcement under consideration.

Results for set FRAMEC2T are shown in Figure 8.3. In this instance, the
middle-tier method consistently over-estimates the ultimate load capacity. On
the other hand, the over-estimation does not exceed 20 per cent of the top-tier
values. The shape of the middle-tier failure line matches well with that of the

rigorous analysis.

The results obtained for the sets of frames with column reinforcement of 2%
BH, i.e., for FRAMEA?2, FRAMEB2, FRAMEC2, and FRAMED?2 are sum-
marised in Table 8.1 and those for the sets of frames with column reinforce-
ment of 4% BH, i.e., for FRAMEA4, FRAMEB4, FRAMEC4 and FRAMED4
are summarised in Table 8.2. Histograms of the ratio of Pria(ult.) Peop(ult.)
(or wia(ult.)/wiop(ult.)) are given in Figure 8.4. Comparisons between these
plots with those obtained for the bottom-tier method shown in Figure 7.4 in-
dicate that 11.8 % of the frames | h;Z% }cc;;rr:panson ratio greater than unity in

the middle-tier method as compared with 6.3 % in the bottom-tier method.

The bottom-tier method gives conservative estimates in more frames than the
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middle-tier method.

The histograms indicate that out of the 144 frames analysed, 83 frames have
ultimate strength controlled by beam section failure and 61 frames have ul-
timate strength controlled by column failure in the middle-tier method. The
comparison ratio Ppia(ult.)/ Pop(ult.) (or wmia(ult.)/wiep(ult.)) varies from 0.4
to 1.2 with approximately 79 per cent between 0.6 to 1.0. Frames with the
ratio greater than 1.0 are, as in the case of the bottom-tier method, mainly
found within the sets FRAMEC2 and FRAMEC4. This again indicates that
the middle-tier method may be unconservative in frames with heavily loaded
columns where the adjacent beams are lightly loaded and the frames resisting

relatively small lateral loads at beam levels.

8.3.3 Accuracy of Design Strength Predictions

To obtain the design strength, the capacity reduction factor ¢ must be included
in the analysis of frames based on the middle-tier method. As in the bottom-
tier method, a global strength reduction factor equal to the ¢ value obtained
for the critical section in the corresponding middle-tier analysis is applied to

the load predicted by SAFRAME to give top-tier design load.

The results obtained for the sets of frames with columns having reinforcement
of 2% BH, i.e., for FRAMEA2, FRAMEB2, FRAMEC2, and FRAMED?2 are
summarised in Table 8.3. and those for the sets of frames with columns having
reinforcement of 4% BH, i.e., for FRAMEA4, FRAMEB4, FRAMEC4 and
FRAMED4 are summarised in Table 8.4.

Histograms of the ratio of Pnia(des.)/Piop(des.) (or Wid(des.) [wiop(des.)) are
given in Figure 8.5. Comparisons between these plots with those obtained
for the bottom-tier method shown in Figure 7.5 indicate that 21.7% of the

frames has comparison ratio greater than unity in the middle-tier method as
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Table 8.1: Ratio Pia(ult.)/ Piop(ult.)(or wmig(ult.)/wiop(ult.)) for the frames

with column reinforcement of 2% BH

column beam reinforcement (%BH)
height 0.5 1.0 2.0 3.0 4.0 | 5.0
3m | 0.74(B) | 0.74(B) | 0.74(B) | 0.70 | 0.60 | 0.55
FRAMEA2 | 6m |0.82(B) | 0.81(B) | 0.82(B) | 0.82 |0.71 | 0.62
om | 0.87(B) | 0.87(B) | 0.92(B) | 0.92 |0.78 |0.70
3m | 0.61(B) | 0.60(B) | 0.67(B) | 0.65 |o0.61 |0.58
FRAMEB2 | 6m | 0.57(B) | 0.63(B) | 0.74(B) | 0.74 |0.70 | 0.66
om | 0.53(B)|0.71(B) | 0.83(B) | 0.85 |0.82|0.79
3m 1.03(B) 1.08 1.04 1.01 1.00 | 0.99
FRAMEC2 | 6m |0.91(B) | 1.02(B) | 1.10(B) | 1.03 |0.99 | 0.95
om | 1.06(B) | 1.12(B) | 1.14(B) | 1.16(B) | 1.10 | 1.07
3m | 0.66(B) | 0.94(B) | 0.85 0.78 |0.75 | 0.73
FRAMED2 | 6m |0.42(B) | 0.65(B) | 0.90(B) | 0.97 |0.89|0.85
om | 0.70(B) | 0.95(B) | 1.01(B) | 0.96 |0.94 |0.93
(B) : middle-tier beam failure
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Table 8.2: Ratio Pmig(ult.)/ Puop(ult.)(or wmia(ult.)[wiop(ult.)) for the frames

with column reinforcement of 4% BH

column beam reinforcement (%BH)
height | 0.5 1.0 2.0 3.0 4.0 5.0
3m | 0.65(B) | 0.74(B) | 0.74(B) | 0.74(B) | 0.74(B) | 0.73
FRAMEA4 | 6m | 0.82(B) | 0.83(B) | 0.81(B) | 0.82(B) | 0.83(B) | 0.88(B)
om | 0.87(B) | 0.84(B) | 0.89(B) | 0.90(B) | 0.91(B) | 0.98(B)
sm | 0.60(B) | 0.60(B) | 0.62(B) | 0.63(B) | 0.64 | 0.62
FRAMEB4 | 6m | 0.55(B) | 0.54(B) | 0.63(B) | 0.69(B) | 0.73(B) | 0.79
om | 0.46(B) | 0.56(B) | 0.68(B) | 0.73(B) | 0.80(B) | 0.85
3m 0.86(B) 1.09 1.04 1.02 0.95 0.99
FRAMEC4 | 6m | 0.80(B) | 0.91(B) | 0.94(B) | 0.97(B) | 091 | 0.87
om | 0.91(B) | 0.96(B) | 0.95(B) | 0.96(B) | 0.99 | 0.95
3m | 0.43(B) | 0.65(B) | 1.00B) | 0.89 | 0.86 | 0.84
FRAMED4 | 6m |0.67(B)|092(B)| 094 | 08 | 084 | 082
om | 0.46(B) | 0.71(B) | 0.93(B) | 0.99(B) | ©0.8¢ | 0.73

(B) : middle-tier beam failure
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Figure 8.4: Histograms for middle-tier (ultimate strength)
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compared with 9.1% in the bottom-tier method, the requirement of §, < 1.5 of
the latter method not being taken into consideration. This suggests that the
bottom-tier method is a better design method than the middle-tier method.

Out of the 144 frames analysed, 75 frames have design strength controlled by
beam section failure and 69 frames have design strength controlled by column
section failure in the middle-tier method. The comparison ratio Pria(des.)/ Prop(des.)
(or wmid(des.)/ Wwyop(des.)) varies from 0.3 to 1.6 with 73 per cent between 0.5 to
1.0. Frames with the ratio greater than 1.0 are, as in the case of the bottom-tier
method, mainly found within the sets FRAMEC2 and FRAMEC4. This also
indicates that the use of the bottom-tier method to estimate design strength
could be unconservative for frames with such loading pattern, i.e., with large

vertical loads above the column with a relatively small horizontal load.

The use of a global strength reduction factor equal to the strength reduction
factor of the critical section gives conservative results for a vast majority of
the frames. The results obtained indicate that 21.7 per cent of the frames have
comparison ratios greater than 1.0, which may be of concern, especially when

this ratio may be as large as 1.60 (see Table 8.3).

In contrast to the bottom-tier method when used to determine design strength,
whereby frames with loading pattern of types FRAMEC2 and FRAMEC4
are prevented from being designed using this method by the requirement of
6, < 1.5, there is no such requirement in the middle-tier method. This results

in the possibility of unconservative designs when using the middle-tier method.
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Table 8.3: Ratio Ppia(des.)/ Piup(des.) (or Wmid(des.) [weop(des.)) for the frames

with column reinforcement of 2% BH

frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 | 4.0 | 5.0
FRAMEA2 | 3m | ratio | 0.73(B) | 0.74(B) | 0.74(B) | 0.64 | 0.55 | 0.49
¢ 0.80 0.79 0.79 0.77 | 0.77 | 0.77
6m | ratio | 0.82(B) | 0.50(B) | 0.81(B) | 0.73 | 0.66 | 0.58
¢ 0.80 0.80 0.80 |0.76 | 0.76 | 0.76
om | ratio | 0.87(B) | 0.86(B) | 0.87(B) | 0.86 | 0.75 | 0.65
¢ 0.80 0.80 0.80 [0.76 | 0.76 | 0.76
FRAMEB2 | 3m | ratio | 0.60(B) | 0.59(B) | 0.66(B) | 0.60 | 0.56 | 0.53
¢ 0.80 0.80 0.79 |0.77 | 0.77 | 0.77
6m | ratio | 0.56(B) | 0.63(B) | 0.74(B) | 0.70 | 0.64 | 0.62
¢ 0.80 0.80 0.80 0.77 |1 0.77 | 0.77
om | ratio | 0.52(B) | 0.69(B) | 0.81(B) | 0.79 | 0.76 | 0.75
¢ 0.80 0.80 0.80 |0.78|0.78 | 0.78
FRAMEC2 | 3m | ratio | 1.09(B) 1.60 1.53 1.50 | 1.47 | 1.46
¢ 0.80 0.60 0.60 | 0.60 | 0.60 | 0.60
6m | ratio | 0.93(B) | 1.11(B) | 1.50 |1.39|1.34 | 131
¢ 0.80 0.80 0.60 | 0.60 | 0.60 | 0.60
9m | ratio | 1.12(B) | 1.25(B) | 1.27(B) | 1.47 | 1.45 | 1.40
¢ 0.80 0.80 0.80 |0.64 [ 0.64 | 0.64
FRAMED2 | 3m | ratio | 0.62(B) 0.96 0.75 |0.69 | 0.66 | 0.64
¢ 0.79 0.72 0.72 |0.7210.72 | 0.72
6m | ratio | 0.66(B) | 0.92(B) | 0.91 |0.83 |0.80 | 0.79
¢ 0.80 0.80 0.76 |0.76 | 0.76 | 0.76
om | ratio | 0.69(B) | 0.95(B) | 0.99 |0.93|o0.91 | 0.90
¢ 0.80 0.80 0.78 |0.78 | 0.78 | 0.78

(B): middle-tier beam failure
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Table 8.4: Ratio Pnig(des.)/ Piop(des.) (or wmia(des.)/wiop(des.)) for the frames

with column reinforcement of 4% BH
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frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 4.0 5.0
FRAMEA4 | 3m | ratio | 0.72(B) | 0.74(B) | 0.74(B) | 0.73(B) | 0.73(B) | 0.81
¢ 0.80 0.79 0.79 0.79 0.79 |0.74
6m | ratio | 0.83(B) | 0.80(B) | 0.80(B) | 0.81(B) | 0.83(B) | 0.84
¢ 0.80 0.80 0.80 0.79 0.79 10.73
om | ratio | 0.87(B) | 0.86(B) | 0.87(B) | 0.90(B) | 0.91(B) | 0.94
¢ 0.80 0.80 0.80 0.80 0.80 |0.73
FRAMEB4 | 3m | ratio | 0.59(B) | 0.59(B) | 0.59(B) | 0.62(B) | 0.66(B) | 0.69
¢ 0.80 0.80 0.79 0.79 0.78 |0.75
6m | ratio | 0.55(B) | 0.54(B) | 0.61(B) | 0.68(B) | 0.72(B) | 0.75
¢ 0.80 0.80 0.80 0.79 0.79 0.75
9m | ratio | 0.48(B) | 0.53(B) | 0.68(B) | 0.74(B) | 0.81(B) | 0.83
¢ 0.80 0.80 0.80 0.80 0.79 |0.76
FRAMEC4 | 3m | ratio | 0.91(B) 1.59 1.54 1.46 1.46 | 1.45
¢ 0.80 0.60 0.60 0.60 0.60 | 0.60
6m | ratio | 0.83(B) | 0.97(B) | 1.04(B) | 1.33 | 1.28 |125
¢ 0.80 0.80 0.80 0.60 0.60 | 0.60
om | ratio | 0.95(B) | 1.05(B) | 0.95(B) | 1.09(B) | 1.38 |1.34
¢ 0.80 0.80 0.80 0.80 0.62 | 0.62
FRAMED4 | 3m | ratio | 0.39(B) [ 0.66(B) | 0.95 0.87 0.84 |[0.82
é 0.79 0.79 0.68 0.68 0.68 | 0.68
6m | ratio | 0.34(B) | 0.63(B) | 0.90(B) | 0.95 | 087 |0.83
¢ 0.80 0.80 0.79 0.74 0.74 |0.74
9m | ratio | 0.45(B) | 0.70(B) | 0.92B) | 1.03 | 094 |0.92
¢ 0.80 0.80 0.80 0.76 0.76 |0.76

(B): middle-tier beam failure
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8.4 Braced Portal Frames

8.4.1 Details of Frames Analysed

A total of 36 braced portal frames are analysed. These frames are the same as

those analysed in Chapter 7.

Comparison ratios wmig(ult.)/wep(ult.) for the frames are summarised in Ta-
ble 8.5. Of the 36 frames analysed, only 8 frames have column failures. The
comparison ratio for the frames ranges from 0.55 to 0.98. This indicates that
the second-tier estimates for ultimate loads are conservative for the braced

frames analysed.

Table 8.5: Ratio wmig(ult.)/wiop(ult.) for braced frames

frame beam reinforcement (%BH)

height 0.5 1.0 2.0 3.0 4.0 5.0

3m |0.79(B) | 0.78(B) | 0.78(B) | 0.72 | 0.62 | 0.55
FRAMEE2 | 6m | 0.96(B) | 0.87(B) | 0.85(B) | 0.85(B) | 0.72 | '0.63

3m | 0.79(B) | 0.78(B) | 0.76(B) | 0.75(B) | 0.76(B) | 0.77
FRAMEE4 | 6m | 0.89(B) | 0.87(B) | 0.85(B) | 0.84(B) | 0.84(B) | 0.90(B)
9m | 0.91(B) | 0.88(B) | 0.86(B) | 0.86(B) | 0.86(B) | 0.91(B)

) )
) )
9m | 0.90(B) | 0.88(B) | 0.87(B) | 0.98(B) | 0.86 | 0.75
) )
) )

(B) : middle-tier beam failure

Comparison ratios wmid(des.)/weop(des.) for the frames are summarised in Ta-
ble 8.6. Of the 36 frames analysed, only 11 frames have column failures. The
comparison ratio for the frames ranges from 0.51 to 0.92. This indicates that
the determination of design loads using the middle-tier method is conservative

for the braced frames analysed.
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Table 8.6: Ratio wmis(des.)/wep(des.) for braced frames
frame beam reinforcement (%BH)
ht 0.5 1.0 2.0 3.0 4.0 5.0
FRAMEE2 | 3m | ratio | 0.76(B) | 0.77(B) | 0.77(B) | 0.68 | 058 | 0.51
¢ 0.80 0.80 0.79 0.76 0.76 0.76
6m | ratio | 0.96(B) | 0.86(B) | 0.84(B) | 0.79 0.67 0.58
¢ 0.80 0.80 0.80 0.76 0.76 0.76
9m | ratio | 0.88(B) | 0.87(B) | 0.84(B) | 0.92 | 080 | 0.73
¢ 0.80 0.80 0.80 0.76 0.76 0.76
FRAMEE4 | 3m | ratio | 0.80(B) | 0.76(B) | 0.77(B) | 0.74(B) | 0.76(B) | 0.74
¢ 0.80 0.80 0.79 0.79 0.79 0.74
6m | ratio | 0.88(B) | 0.86(B) | 0.84(B) | 0.83(B) | 0.84(B) | 0.86
¢ 0.80 0.80 0.80 0.80 0.79 0.73
9m | ratio | 0.88(B) | 0.86(B) | 0.85(B) | 0.82(B) | 0.84(B) | 0.85(B)
é 0.80 0.80 0.80 0.79 0.79 0.74
(B): middle-tier beam failure

8.5 Three-storey Two-bay Frames

Multi-storey frames MULTI1 and MULTI2 analysed using the moment-magnifier

method in Chapter 7 are analysed using the middle-tier method. The geom-
etry and material properties of the frames are assumed to the same as those

given in Chapter 7.

Results obtained for the ultimate strength analysis of frame MULTIIL are
summarised in Table 8.7. The middle-tier results suggest that beam sec-
tion failure controls the ultimate load of the frame. The comparison ratio

Wmid(ult.) [wip(ult.) based on the middle-tier method is 0.59.
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Table 8.7: Ratio wmig(ult.)/wiep(ult.) for multi-storey frame MULTI1

Method | Beam failure | Coln failure | Ultimate Load | Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) Winia(ult.) [ wiep(ult.)
Top-tier - - 84.1 -
Middle-tier 49.8 79.7 49.8 0.59

Results obtained for the design strength analysis of frame MULTII1 are sum-

marised in Table 8.8. The middle-tier results suggest that beam section failure

controls the ultimate load of the frame. The comparison ratio wmia(des.)/wp(des.)

based on the middle-tier method is 0.47.

Table 8.8: Ratio wmia(des.)/wiop(des.) for multi-storey frame MULTI1

Method | Beam failure | Coln failure | Design Load Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) Wmid(des.) [weop(des.)
Top-tier - = 58.7 -
(for ¢ = 0.80)
Middle-tier 27.7 44.3 27.7 0.47
(¢=0.80) (¢=0.78) (¢ = 0.80)

Results obtained for ultimate strength analysis of frame MULTI2 are sum-

marised in Table 8.9. The middle-tier result suggests that column failure now

controls the ultimate load of the frame, instead of beam section failure control

in FRAME]. The middle-tier result still suggests that beam section failure con-

trols the ultimate load of the frame. The comparison ratio wmiq(ult.)/wep(ult.)




Chapter 8: Accuracy of Middle-Tier Method

based on the middle-tier method is 0.51.
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Table 8.9: Ratio wmia(ult.)/weop(ult.) for multi-storey frame MULTI2

Method | Beam failure | Coln failure | Ultimate Load | Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) Winig(wlt.) [ weop(ult.)
Top-tier - -~ 146.0 -
Middle-tier 74.1 79.7 74.1 0.51

Results obtained for design strength analysis of frame MULTI2 are summarised

in Table 8.10. The middle-tier result suggests that column failure controls the

design load of the frame, instead of column failure in frame MULTIL. The

comparison ratio Wpig(des.) [wip(des.) based on the middle-tier method is

0.44.

Table 8.10: Ratio wmig(des.)/wip(des.) for multi-storey frame MULTI2

Method Beam failure | Coln failure | Design Load Comparison Ratio
w(kN/m) w(kN/m) w(kN/m) | wnid(des.)/wiop(des.)
Top-tier = - 99.5 -
(for ¢ = 0.78)
Bottom-tier 51.8 44.3 44.3 0.44
(¢=0.8) (#=0.78) ¢ =0.78

For MULTI1, the comparison ratio obtained for ultimate load estimate is al-

most the same as that obtained from the bottom-tier method. The ratio ob-

tained for design load estimate from the bottom-tier method is closer to unity

than that obtained from the middle-tier approach. For MULTI2, the ratios for
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both design and ultimate load estimates obtained from the bottom-tier method
are closer to unity than those obtained from the middle-tier method. This in-
dicates that, for the multi-storey frames, the bottom-tier method, generally,

gives better estimation of strength.

8.6 Summary and Conclusions

Analyses of 144 unbraced portal frames were carried out using the middle-
tier method, and results obtained were compared with results obtained from
parallel top-tier (rigorous) method. 36 braced portal frames and two multi-

storey frames of practical proportion were also analysed.

From the results obtained, the following conclusions can be drawn:

1. The failure surfaces of the strength versus the quantity of beam re-
inforcement plots obtained from the middle-tier method have gen-
erally similar shapes as those obtained from the more accurate top-
tier method. This indicates that the beam-failure column-failure
combination model used to obtain the strength of frames for the
middle-tier method does give a fair representation of the behaviour

of the frames analysed.

9. It has been found that the middle-tier method when used to pre-
dict ultimate load could not model the complicated, interactive be-
haviour between material and geometrical nonlinearities, resulting
from the P-A introduced into the columns caused by the move-
ment of loaded joints. This caused over-estimation of the ultimate

strengths for such frames.

3. The middle-tier method also over-estimates the design load of the
type of frames described in item 2. Unlike the bottom-tier method,

whereby the use of the requirement that §, is to be less than or equal
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to 1.5 prevents such frames from being unconservatively designed,
no such requirement is imposed on the middle-tier method. This
suggests that the middlle-tier method should be used with great

care.

4. Comparisons of the bottom-tier and middle-tier methods indicate
that the latter gives unconservative (i.e, comparison ratios greater
than unity) estimates for more frames as compared with the other
method. This suggests that the bottom-tier approach is a safer
design method.

5. Results obtained from the limited number of braced frames analysed
indicates that the middle-tier method is conservative in estimating

both the design and ultimate loads.

6. Results obtained for the two multi-storey frames suggest that the
middle-tier method is very conservative when applied to multi-
storey frames of practical proportions. Comparison ratios of 0.47
and 0.44 have been obtained for design strength estimates for frames
MULTI1 and MULTI2 respectively. Corresponding ratios of 0.59
and 0.51 have been obtained for ultimate strength estimates. The
results obtained also indicates that, generally, the bottom-tier method

gives better estimation of strength.
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Conclusions and

Recommendations

9.1 Conclusions

This study of the non-linear behaviour of reinforced concrete slender frames
has concentrated on two major areas, i.e., the non-linear behaviour of these
frames and the accuracy of simplified code methods for predicting ultimate
and design loads of such frames. The major contributions in these areas are

listed below:

1. A computer program SAFRAME has been developed to study the non-
linear behaviour of reinforced concrete frames. The program takes into
consideration both the short-term material nonlinearities and the ge-
ometrical nonlinearities. It has the ability to predict the softening be-

haviour beyond the peak load with the use of a deformation-control tech-

264
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nique whereby the curvature of a key segment is chosen as the controlling
parameter during the analysis. The computational technique is efficient
as the structure is modelled using segmented elements, thus reducing
both the number of elements required to model the material nqnl%nearity

effects and the size of the global stiffness matrix of the frame.

9. The accuracy of the computer program SAFRAME has been checked by
comparing results obtained with experimental results obtained for some
test structures. Comparison with results obtained using other analytical
methods has also been carried out. Generally the accuracy of the results
obtained from the present analysis is reasonable. Nevertheless, there 1s
a need for further “tuning” of the program to provide better correla-
tion with available test data. Indeed an extensive study of all available
frame and beam test data is needed as a basis for program optimisation.
One specific area where program improvement can be effected is in the
treatment of tension stiffening. The inclusion of tension stiffening for
all segments, particularly those at overload but not at the condition of

hingeing, should improve the accuracy of SAFRAME.

3. Snapback instability behaviour has occasionally been observed in some of
the portals analysed. Multiple snapback in the characteristic deflections
of the portals has not been observed. Most of the portals have only one
snapback. Occasionally portals with two snapbacks have been observed:
one of these snapbacks occurs in the mid-span vertical deflection of the
beam and the other occurs in the sway deflection of the frame at beam

level.

4. The case of the double snapbacks mentioned in (3) above suggests the
superiority of using the curvature of a key segment as the controlling
parameter instead of using characteristic deflection. Using the latter
would have resulted in non-convergence of the solution at one of the

snapbacks, thus preventing the solution from being taken far enough to
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5.

10.

indicate the presence of multiple snapback.

The study has shown that softening behaviour in reinforced concrete
frames can be caused by geometric instability. A free standing column
has been used to illustrate that this can occur even before the formation

of a concrete “plastic” hinge or softening hinge.

. The effect of ignoring the sectional thrust effect on the moment curvature

relation of segments has been investigated. It was found that both the
calculated sway stiffness and ultimate strength are reduced significantly
if the effect of thrust is ignored. It was also observed that the number of

concrete “hinges” at collapse is affected by ignoring the thrust effect.

A parametric study has been carried out in Chapter 6 on the effect of
beam reinforcement on the behaviour of portals. When the amount of
beam reinforcement is small, the beam provides little stiffening effect on
the frame, thus resulting in the frame failing at low ultimate load. When
the reinforcement is increased to an amount greater than about 4 %,
there is little increase in the ultimate load of the frame. At this stage,

the beam has exerted its maximum stiffening effect on the frame.

Computer programs have been developed to assist the predictions of the
design and ultimate strengths of frames based on the simplified bottom-

tier and middle-tier methods.

The bottom-tier or moment-magnifier method, when used to estimate ul-
timate load, generally gave conservative results for 144 unbraced portal
frames. Nevertheless, the moment-magnifier method may be unconser-
vative for frames with heavily loaded columns where the adjacent beams

are lightly loaded and the frames resist relatively small lateral loads.

A requirement exists in the moment-magnifier method of AS3600 which
prevent frames which are likely to fail by instability before section failure

from being designed using this method. This requirement is effective in
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eliminating those frames which give unconservative estimates, but !\also
got rid of a large proportion of frames which give conservative estimates
of design loads. This requirement does not therefore perform its function

effectively.

11. The middle-tier method for estimation of design loads was found to give
unconservative estimate for frames which are likely to fail by instability,
caused by joint displacements. The bottom-tier method, is not applicable
to these frames because of the requirement mentioned above in item 10.
The absence of such a requirement in the middle-tier method can result

in unconservative designs.

12. Comparisons of the bottom-tier and middle-tier methods indicate that
the latter gives unconservative (i.e, accuracy ratios greater than unity) es-
timates for more frames than the former. This suggests that the bottom-

tier approach is a safer design method.

13. Frames analysed by the top-tier method mainly failed by instability. The
possibility of structures reaching peak loads before sections reaching their
peak strength (an example is the cantilevered column analysed in Chap-
ter 6) suggests that using the top-tier method may result in unconser-
vative, and in extreme cases, unsafe design. An alternative and more
logical approach of using a global strength reduction factor apphed to

the peak load determined from a rlgorous 1s proposed IS ;o

9.2 Recommendations for Fur.ther Research

Further research into the following areas is recommended:

e Improvement to the present program by using more accurate models for

materials. More laboratory tests have to be carried out to study the
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softening behaviour of concrete.

o Inclusion of tension stiffening effect into SAFRAME should improve the
accuracy of SAFRAME.

e Carry out probabilistic studies to determine an “under-performance” fac-
tor to be used in conjunction with the rigorous analysis to give design

strength of frames analysed using the top-tier method.

e Inclusion of creep and shrinkage effects into the numerical model of

SAFRAME to enable long-term behaviour of frames to be studied.



Appendix A

Analytical Moment-Curvature

Relationship

For a section with stress and strain diagram shown in Figure A.1, the total

compression force C' is:

kd
C=0b fdy
0

From the strain diagram:

Therefore :

bkd [eu
C = 6u~/(; fde

The stress-strain curve proposed by Smith and Young (1956) is:

F=f(S)el-s

€

(A.1)

(A.2)

(A.3)

(A4)

where f! is the compression strength of a 150mm X 300mm concrete cylinder

and ¢, is the concrete strain corresponding to f;.
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Figure A.1: Stress and strain diagram across section

Substituting f from Equation A.4 and integrating between limits:

C=bmuy%{5%(-i—4)+q (A.5)

€o

where fle<e [e'%: (—‘;‘: — 1) + 1] is the average stress denoted by f,.

Equation A.5 may be rewritten as follows:

C=bkdf. (A.6)

Before the ultimate moment can be determined, k; has to be calculated to
determine whether the beam is under-reinforced (failed by yielding before the
concrete crushes) or over-reinforced (failed by crushing of concrete before the

steel yields). The value of k; is calculated as follows:

e (A7)
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where ¢, is the strain in the steel at yield point.

An under-reinforced section has k values less than k, whereas a over-reinforced

section has k values larger than k.

For an under-reinforced concrete beam, the steel has yielded and therefore:

T = Asfyp (A.8)

where f,, is the yield stress of the steel reinforcement.

For equilibrium:

bkdfa . Asfyp (A.9)

Substituting p = A,/bd into Equation A.9:

k= %’E—" (A.10)

For a over-reinforced concrete section, using similar triangles on the strain

€ = (1 ; k) €u (A.11)

diagram:

From equilibrium:

C =T = A,Ese, = A,E, (1 ; k) €y (A.12)

Equation A.11 and A.12:

1—k
bkdfa e AsEs ( k ) €u (A13)

Letting

p= b’ (A.14)
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and simplifying gives:

fa Eseu Eseu
sz + p_ka —-p f’

Writing pE,e./f! as 8, Equation A.15 becomes:

(%) B+pk—p=0

272

(A.15)

(A.16)

Hence k is determined from Equation A.10 or A.16 depending on whether the

section is under-reinforced or over-reinforced.

To calculate the ultimate moment, the position of the centroid of the stress

block is determined as follows:

Cy

Yo

o [1- 22 -2(2)] +2()

kT w[e® (—a—1)+1]

o

Once y, is calculated, the ultimate moment is obtained from:

M, =T(d—kd+y,)

(A.17)

(A.18)



Appendix B

Stress-Strain Relationships of

Materials including Unloading

The numerical model used in program SAFRAME includes material unloading
to allow for the possibility of strain reversal in the concrete and steel layers
used to model the sectional behaviour. The shapes of the stress-strain curves
of concrete and reinforcing steel are given in Chapter 2. In this appendix, flow
diagrams are presented to illustrate the computational steps used to determine
the stress-strain relationships of steel and concrete including the effect of strain

reversal.

B.1 Steel Unloading

The flow diagram for the determination of steel stress from known strain in a

typical steel layer within a computational step is given in Figure B.1.

For each steel layer, two variables are used to record the maximum historical
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For each steel layer, two variables are used to record the maximum historical
g{grh;alised stress and strain, represented by fma® and €™ respectively in the
ﬁ;w diagram. These values are kept constant at the start of a curvature step,
are maintained throughout the entire step, and are then updated at the end

of the step when a solution has been obtained for the curvature step. At the

start of the analysis f™°® and ™" are each assigned a value of zero.

As described above, the maximum historical normalised stress and strain are
updated at the end of each curvature step after a solution has been obtained.
This updating for a typical layer is illustrated by the flow diagram in Fig-
ure B.2.

B.2 Concrete Unloading

The flow diagram for the determination of normalised concrete stress from a

given normalised strain value for a typical concrete layer is given in Figure B.3.

As in the case of the typical steel layer, for each concrete layer, two variables
are used to record the maximum historical normalised stress and strain, rep-
resented by f™** and Er respectively in the flow diagram. These values are
kept constarndii, ra,t the start of a curvature step, are maintained throughout the
entire step, and are then updated at the end of the step when a solution has
been obtained for the curvature step. At the start of the analysis fmez and

=m

gm® are each assign a value of zero.

The maximum historical normalised stress and strain are updated at the end

-

of each curvature step after the solution has been obtained. This updating for

a typical layer is illustrated by the flow diagram in Figure B.4.
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IS ABS(R™™) £1.07 s @ l@

=€
YES YES
fs=1.0 f&=-1.0
" | k
IS £,"*=1.07 T Nc T, =1.0 —(ET* &)
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f.=1.0 @ NQ
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f=—1.0
k___
NO
1S £ & =1.0-(67" )
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f=—1.0 @ No
YES
f=1.0
F_—
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Figure B.1: Flow diagram for the calculation of stress in a typical steel layer

within a curvature step
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(__ START )

IS ABS(f ") #1.07

IS fs=1.0
OR f=—1.07

NO

Figure B.2: Flow diagram for the updating of the maximum stress and strain

in a typical steel layer at the end of a curvature step
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Figure B.3: Flow diagram for the calculation of stress in a typical concrete

layer within a curvature step
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Figure B.4: Flow diagram for the updating of the maximum stress and strain

in a typical concrete layer at the end of a curvature step



Appendix C

Layered Element Approach

The modelling of a typical element is shown in Figure C.1.

steel bar
concrete
layer

o

Figure C.1: Layered finite element
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Each cross section is divided into N; layers, some of which may represent the

reinforcing bars. The column matrices of element displacements and forces are

(see Figure C.1):

Uj

(C.1)

-
.
-

. (C.2)

QE"’<&2§S~2

where
u is the axial displacement;
v is the transverse displacement;
6 is the rotation of cross section;
and subscripts 7 and j refer to the cross section ¢ and j

at the ends of the element.

The internal forces are referred to the centroidal axis z.

The strain at any point z, y (in cartesian coordinates z, y) is e(z,y) =
du(z,y)/0z, and the displacement in the axial direction is u(z,y) = u(z,0) —
ydv(z,0)/0z. Finite elements with a cubic variation of v are used. For any

point on the axis z:

u(z,0) = (1—&ui+Ly; (C.3)
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o(z,0) = (1— 36 +28%)v: + (36 — 26%)v; +
FL(€E — 262 4 £2)0; + L(E® — £%)0; (C4)

where

(¢ =%;and

L  =element length.

Substituting these expressions into €(z,y) =du(z,y)/0z and u(z,y) = u(z,0)

— ydv(z,0)/0z, we obtain the geometric relation é(z,y) = Bu where

B = % [ ~1 6p(1—26) 2Ln(2—36) 1 69(26 —1) 2Ln(1 -3¢ ] (C.5)

where

n =i

Then applying the virtual-work principle to the beam element, we have ulf
= [, 6eT odV = éuf [, BTodV, and since this must hold for an arbitrary
variation éu, we obtain f = [, BTodV = [, BTE,BudV = keu, where V =
element volume, E, is the secant modulus (o = Eq¢), and ke = [y E,BTBdV.
k. is a 6 x 6 element stiffness matrix. Along z, we may integrate analytically
and the integral over the cross section area we approximate by a sum over all
the layers m =1, ..., N;. Matrix ke must then be tranformed from element
coordinates (x,y) to global coordinates; Ke = TTkeT where T is a 6 x 6
transdormation matrix for coordinate rotation by angle «, which represents

the angle between axes X and z. The T matrix is given below:

| cogé;} sind" 0 0 0 0]
—sinf cosf 0 0 0 O
0 0 1 0 0 0
T = ‘ , (C.6)
0 0 0 cosfy sinf 0
0 0 0 —sind cosd 0
0 0 0 0 0 1]
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In this manner, we obtain:
[ kl k2 k4 —kl —k2 k7

k3 k5 —kz —’C3 kg
ke —ks —ks 0.5ks

Ke = (C.7)
k£ ky  —kr
SYMME— ks —ks
TRIC ke

where
k, = QL;'c® + 125L7%s
k, =(QL;' — 125L7%)cs
ks = QL7's® +12SL7%¢
ky =—RL7'c— 6SL;%s
ks = —RL's + 6SL;%c
ke =4L;'S
k; = RL7'c—6SL;%s
ks = RL7's + 6SL%c
with
c = cosq;
s = sino;
Q = T Esm)bmhm;
R =Y Eym)bmbhmym;
S =T Eym)bmbmy;
b, = width of the m-th layer;
h,. = thickness of the m-th layer;
ym = centroidal coordinate for the m-th layer.

Matrices K, are finally assembled into the structural stiffness matrix K. After
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the displacements are solved, the internal forces are calculated as:

Ni = —Nj=[(Xi—X;)c+(¥; - Y)s| QL + (6; — 0:) RL;™ (C.8)
Vi = —V;=[(X;— Xi)s — (¥; — Y) J12SL;% + (6: + 0;) 6SL*(C.9)
M; = [(X;—X:)e— (Y; — Vi) s|RLT +[(X; — Xi) s—
(Y; — Y;) ] 6SL;* +2(20; + 6;) SL.* (C.10)
M; = [(Xi+X;)e—(Y;—Y)s|RLT" +[(X; — Xi) s—
(Y; — Yi) | 6SL% +2(0: +20;) SL;" (C.11)

in which X;, X;, Y;, Y; are the displacement components in the global X and

Y directions at the element nodes ¢ and j.



Appendix D

Strength Interaction Diagrams

Strength interaction diagram of a given section gives combinations of N and M
at failure. The key points of such diagrams represent the different conditions
at failure. These are: (1) under axial load only (2) balanced condition and
(3) pure bending. They are indicated in Figure D.1 as point D, B and A

respectively.

The balanced failure condition occurs when the tensile steel yields simulta-
neously with the extreme concrete strain reaching €., at the peak load Nys.
The corresponding effective depth parameter is k; and the corresponding ec-
centricity is ;. If ¢ is less then the balanced value e;, the tensile steel has not
yielded at failure (normally referred to as primary compression failure). If €’
is greater than e}, the tensile steel has yielded at failure ( normally referred to

as primary tension failure).

The key points described earlier are determined first. As the present work

is concerned only with sections with significant amount of compressive re-

284



Appendiz D: Strength Interaction Diagrams 285

straight line

NuO

k'=kp (balanced condition)

k'=kp (pure bending) /a

Figure D.1: Strength interaction diagram

inforcement, the program to develop strength interaction diagram will cater
specifically for these sections. The calculation of the ultimate moment under
pure bending for a double reinforced section is dependent on whether the com-
pressive steel is at yield. For reinforced concrete section with large amount of
compressive steel closed to the extreme fibre, it is unlikely that the compressive
steel is at yield at ultimate moment. Therefore the program firstly assumes
that the compressive steel is not yielded and a check is carried out later to

check the validity of this assumption.

For a rectangular section under pure bending, based on the rectangular stress
block concept, and assuming that the compressive steel has not yielded, the

force in the compressive steel is:

kK'd —d.
Cs = Eséu (—k,-d—-) Asc (Dl)
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The force in the concrete is:
C. = 0.85vF.bk'd (D.2)
where 7 is obtained as indicated below.

~ = 0.85—0.00725(F, — 28) (D.3)

within the limits 0.65 and0.85

The equilibrium of forces across a section 1s:

C,+Co=T (D.4)

Substituting Equation D.1 and Equation D.2 into Equation D.4 gives the

quadratic equation below:

klz + ulk' — Uy = 0 (D5)
where
6uEsAAsc - fsyAst
D.
“ 0.85 F/ 7bd (D-6)
u.chsAsc
y, = metoaree. (D.7)

0.85 F! ~bd?
Solving Equation D.5 gives k; value corresponding to the failure condition.
Strain of the compressive steel corresponding to the k' value is check to en-
sure that the earlier assumption that the compressive steel has not yielded is
acceptable. The strain in the compressive steel obtained from Equation D.8 is

to be less than the strain at yield es,.

k'd —d.

kld (D'8)

€sc = €y
After determining k;, the compressive forces Cs and C. are obtained from
Equations D.1 and Equation D.2 respectively. M, is then calculated using the

equation below:

M, = Cy(d — d.) + Co(d — 0.5vK'd) (D.9)
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Next, the balanced condition indicated by point B in Figure D.1 is determined.
First, the effective depth parameter at this condition is determined from the

expression given below:
€Cu

k) = (D.10)

€ T €sy

Multiplying both the numerator and denominator by the elastic modulus for
steel, E, = 200000 M Pa, and with ¢, = 0.003, Equation D.10 becomes:

y 600

= D.
b 600+fsy ( 11)

The region of the curve between point B and point C can now be calculated
from the steps given in the flow diagram shown in Figure D.2, now that we
know the values of &' at B and C. This is carried out by obtaining N-M values
for a discrete number of points at equal interval of k value between k; and
ki. Similarly the region between point B and point D (point D represents
a condition where k' of unity) is determined by varying &' from k' = kj to
k' = 1.0. For k' value greater than unity, strength calculation is complicated
by a truncation of the compressive stress block, so that the rectangular stress
block is not applicable. However, Warner et al (1982) suggested that this
region can be approximated with good accuracy by using a straight line. This
straight line joins the N-M point with k' = 1.0 to the point representing the
failure condition under axial load only. The latter point is defined by the point
(0, Ny) where:

Ny = 0.85F/bD + foy(Asc + Ast) (D.12)

Note that the correction to take into account of the concrete area replaced by
the compressive steel area A,c is not made when determining the interaction
curve. This correction, as pointed out by Warner et al(1982), is of negligible

importance unless the proportion of steel is very high.
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Est = ——_Su (1k
NO
@ o-st = fsy
YES
O. Es&st
|2
I
E,(k'=06
o 800
dc
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@ = Ose = fsy
YES
O, = E<&sc
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Figure D.2: Flow diagram for the determination of N -M points from given k'

value



Appendix E

Derivation of Matrices for
Analysis of Frames with Large

Deformation

In developing the nonlinear equations relating forces and deformations, two
separate co-ordinate systems are employed: a fixed global set of co-ordinates
and a local convective system which rotates and translates with the element.
The element deformations are thus separated from the joint displacements.
The basic element force-deformation relations are derived in the local convec-
tive co-ordinates with element deformations assumed to be small relative to it,
through the principle of minimum potential energy. This formulation of the
equilibrium equation through an updated Lagrangian approach is thus appli-
cable to analysing structures exhibiting large rotation small strain behaviour.
The element forces and displacements in the various co-ordinate systems are

illustrated in Figure E.1
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Hy W ORIGINAL POSITION

(c) Joints displacement and corresponding
forces at ends of a typical member

Figure E.1: Element deformations and associated forces
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E.1 Element Basic Force-Displacement Rela-

tion

On assuming a cubic lateral deflection curve and that the axial deformation,

e is small compared to the original element length, {

2¢2 3 z?2 23
yzal(a:—7+p)+02( 1+T2') (E.1)

and the axial length due to bowing is

- / ( ) (E.2)

- (29 — 0,0, + 203) (E.3)
The axial load, N is thus

2 2
N= EA[I+%(20 — 0,0, + 262 )] (E.4)

where EA is the axial rigidity. Neglecting the shear strain energy, the potential

energy due to lateral deflection along the principal axis is:

¢—2/ EI (dm’i) dz — Myb; — M202+N( / (Z’Zﬂ) d:z:) (E.5)

Through the principle of minimum potential energy, the element forces are

thus:
AEI 4Nl 2ET Nl
My= (T + ‘30—) O+ (T - '33) 02 (E.6)
2B NI 4EI 4Nl
Mg = (—l— 30) 01 + ( ] + '50—) 02 (E7)

where EI is the flexural rigidity.

The basic incremental stiffness is obtained by partial differentiating Equations

E.4, E.6 and E.7 with respect to the element basic deformations. Hence

dN -E—IA' % (401 - 02) % (—01 + 402) de
dMy, | = | SYMME—- ks ka3 do, | (E.8)

dM, TRIC k33 db;
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where
AE] 4EAe EAl
k2 = 7+ * 300 (893—49102+30§) (E.9)
9EI EAe EAl
ks = 7= 55+ 300 (—20§+60102—2a§) (E.10)
AE] 4EAe EAl
ks = —+ 35— T 300 (303—40192+8o§) (E.11)

Equation E.8 can be written as:

As =k Av (E.12)

E.2 Transformation from Element Basic Co-
ordinates System to Element Intermedi-

ate Co-ordinates System

Considering gross deformation:

e = JI+w) +v2-1 (E.13)

!
6, = 0 —tan™ (l-:ju) (E.14)
9, = Gé—tan“l(ziur) (E.15)

On partial differentiating:
1 1
de = {5 [(l +u')? + v'2] *2(1+ u')} du'

+ {% [(1 4wy + 7] K 2v’} dv' + (0) dfy + (0)db;  (E.16)

do Y g — LY Gy 4 (1) dB, + (0) d6 (E.17)
=5 - v )
1 (l+6)2 (l+6)2 1 2
v’ [+
do, = du' — dv' + (0) db, 1) dé., E.1
2 (f+e)2u (l+e)2v+() 1+ (1) do, (E.18)
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Thus: )
dul -]
4+’ o
de I+e T—}-e 00 dv'
— v 4!
do, | = To? —a—;'L'—e)—y 10 0 (E.19)
v 4
db (He)? (i+e) 01 .
| db; |
Equation E.19 can be written as:
Av=A Ad (E.20)
By the contragrediant principle:
f'=ATs (E.21)
where ) i
R
, )
f' = (E.22)
M
| M; |
and ) .
N
M,
On differentiating Equation E.21:
Af = AT As+ D Ad’ (E.24)
where i )
dyy diz 00
dyy daz 0 0
p_ | (B.25)
0 0 00
| 0 0 0 0|
and

1

d =
11 (l+ 6)4

[0+ ) T+ (20 + ) + v?) v'S) (E.26)
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1 3 n3
dyy = do= 5o [T — (1 + ) S| (E.27)
1 ! n2 ” N2 1
dyy = 5 [(z+u)((z+u) +20%) T — (I + ) v'S|  (E.-28)

E.3 Transformation from Element Interme-
diate Co-ordinates System to Nodal Global

Co-ordinates System

The element intermediate displacements are related to the noadal displace-

ments by:
o W
[ | [ _cosa —sina 0 cosa sina 0 | Usg
v’ sina¢ —cosa 0 —sina cosa 0 U3
_ (E.29)
9, 0 0o 1 0 0 0| us
0] | 0 0 0 0 0 1| us
L Ye
Therefore
u'=Tu (E.30)
and
Au' =T Au (E.31)
By the contragrediant principle,
Af = T7 (AT As+D Av) (E.32)
= TT(ATkAv+D Aw') (E-33)
= T7(ATkA AU +D Au') (E.34)
= T7(ATkA+D)T Au (E.35)
= k; Au (E.36)



Appendix F

Derivation of Geometric

Stiffness Matrix

y
A
u
Jlu2 \‘{y |5
u u
SN Ux 5%
U1...——- | ——» }—» u

74 X 4
- ]

Figure F.1: Beam element with end displacements

The conventional displacement distribution on a uniform cross-section beam

element is (Przemienski, 1968):
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w | [1-€ 6E-gn  (F1+aE -3¢
0 1-3¢+28 (£-202+6)

U
£ 6(—¢+E)m (26 -3y u3
0 36220 (&4 || w

Usg

L (F.1)

[ us |

where
u1,...,us are the element displacements

shown in Figure F.1.

In calculating the strain energy U; we neglect the contributions from the shear-
ing strains. Thus only the normal strain €z, will be included. These strains

for large deflections on a beam in bending are determined from :

_ Duo _ Puy
ez & Oz 0x?

1
y+3 (Du,0z)’ (F.2)

where
y is measured from the neutral axis of the beam; and

uo denotes the u, displacement at y = 0.

We use Equation F.2, and the strain energy U; is given by:

U = g €2 dV (F.3)
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2
B duo  9*uy duy
- f [ ity ("a_x" dv (F.4)
dug u,\* , 1 duy\* auoa2uy
- 2./ /[( ) (8:1:2)‘1/-*_1 Oz 20:1: 9z 7
0%, (Ou,\”  Ouo [Ouy ?
dz? (79—) ¥+ 52 \ 3z ) | <4 (F5)

4
The higher-order term % (%’-) can be neglected in the above expression. In-

tegrating over the cross-sectional area A and noting that since y is measured
from the neutral axis, all integrals of the form [ydA must vanish, we have

that:

EA ' {0uo\” EI [t (8%, EA [l 0uo (0uy\’
Ui = 2 Jo (3&7) de + 2 Jo (3.’1:2 dz + 2 Jo Oz \ Oz de (F.6)
where

I denotes the moment of inertia of the cross-section.

We may note that the first two integrals in Equation F.6 represent the linear
strain energy while the third integral is the contribution from the nonlinear

component of the strain. From Equation F.1 we obtain:

% _ 1(_u1+u4) (F.7)
= = H (646wt (1- 4 +36) tus 4.6 (6~ ) st

(~2¢ + 3¢%) g (F.8)
%2:2” = 1[6( 1+ 26) uz +2(=2+3¢) fug + 6 (1 — 2() us+

(=1 + 3¢) lue] (F.9)

Substitution of Equations F.7 to F.8 into F.6 and integrating leads to:
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EA
U;: = o (uf — 2uquq + ui) +

2F1
—15— (311,2 + lzug + 3U§ + l2u§ + 3IU2'U.3 - GU2U5 + 31“2“6_
Jluzus + Puzug — 3lu5u6) +
EA 3 1 3 1 1
1_2 (U4 — ul) (gug + Bl2u§ + gug + '1—512112 + EIUQU;;—
6 1 1
gUg’U.5 + EIUQUS = Ib‘lU3U5 - galzu:ﬂh; - —1—0—u5u6) (FlO)

We may note that even for relatively large deflections the quantity EA(us — uy)/1
may be treated as a constant equal to the axial tensile force in the beam. Hence

we may introduce

EA
= —(ug — u1) ® const

: (F.11)

and apply Castigliano’s theorem to the strain energy expression (Equation F.10).

This results in the following element force-displacement equation:

5] [#
S 0 12
ﬁsstg{ 0 6l
S S
Ss 0 -12
| S | | 0 6l
[ 0
0 ¢
|0
L'lo o
0 -3
[0 %

SYMME—

., TRIC

0 4

—61 0 12

22 0 —61 41 |
SYMME—

.p TEIC

15

0 0

~5 0 %

&0~ &P

Uy

U2

us

Uyg

Us

Ug

Uy

U2

us

Ug

Us

Ueg

L (F.12)
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which may be written symbolically as:

k = (k. + k,)u (F.13)



Appendix G

Testing of Program

NEWTONR

The testing of program NEWTONR is carried out by comparing results obtained
using the program with published analytical solutions for a cantilevered beam

and a portal frame.

The matrices given by Jennings(1968) have been used previously by other re-
searchers and found to give accurate predictions of the non-linear behaviour

of structures with geometrical nonlinearities. As the matrices given by Jen-
3

nings have to be used together withFNewton—Raphson procedure for solving
non-linear equations, care has to be taken to ensure successful implementation
into a computer program. Therefore, the testing of the program is not only to
confirm the accuracy of using Jennings’s matrices, but also to act as a check

to ensure that the program NEWTONR has been coded correctly.

The matrices of Jennings have been used by Meek and Tan(1983) for post-

buckling analysis of elastic frames. Meek and Tan compared results obtained
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using this analytical approach with analytic solution to a cantilever beam with
a vertical point load at its free end. This structure was chosen as its simple
configuration allows ‘exact’ solutions to be obtained analytically. The analytic
solution is obtained by Frisch-Fay(1962) using elliptic integrals. Meek and Tan
observed that the solution using Jenning’s algorithm agrees closely with that
obtained by Frisch-Fay. Results obtained from these two analytical approaches
are shown in Figure G.1 reproduced from the report by Meek and Tan.

The same beam is also analysed using program NEWTONR. The solutions for the
beam modelled by one, two and four elements, given in Table G.1, Table G.2
and Table G.3 confirm Meek and Tan’s observation that Jenning’s algorithms
can model accurately geometrical nonlinearities effect in elastic structures. In
these tables, u is the horizontal displacement, v is the vertical displacement

and 0 is the rotation as indicated in Figure G.1.

A portal frame analysed by Lee, Manual and Rossow(1968) is also chosen for
analysis using program NEWTONR. Results obtained are plotted as a series of
points in Figure G.2. Those obtained by Lee et al are shown as a continuous
curve. The plots show close agreement between the two solutions. The de-
formed shape of this frame at a load factor of 14.9 is obtained by Lee et al;
the shape is shown in Figure G.3

It is not possible to obtain solution point closer to the plateau of the curve
using a load control technique. Although the program CRISFIEL has been
developed to trace the entire curve caused by geometrical nonlinearities, it is
not used in the present study. The load control program NEWTONR is sufficient
for the purpose of the present study which is to carry out a middle-tier strength

analysis of frames.
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Figure G.1: Results for analysis of cantilevered beam (Meek and Tan,1983)
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Table G.1: Results from analysis of cantilevered beam (vertical deflection)

(L —w)/L
PIL*/EI | 1 ELEMENT | 2 ELEMENTS | 4 ELEMENTS | FRISH-FAY’S
SOLUTION
0.0 1.0000 1.0000 1.0000 1.0000
1.0 0.9441 0.9438 0.9438 0.9436
2.0 0.8420 0.8401 0.8399 0.8394
3.0 0.7515 0.7468 0.7463 0.7456
4.0 0.6805 0.6728 0.6720 0.6711
5.0 0.6275 0.6150 0.6133 0.6124
6.0 0.5813 0.5683 0.5665 0.5654
7.0 0.5460 0.5305 0.5283 0.5271
8.0 0.5170 0.4990 0.4965 0.4952
9.0 0.4925 0.4728 0.4695 0.4682
10.0 0.4715 0.4500 0.4465 0.4450
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Figure G.2: Results for analysis of portal frame
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Table G.2: Results from analysis of cantilevered beam (horizontal deflection)

v/L
PI?/EI | 1 ELEMENT | 2 ELEMENTS | 4 ELEMENTS | FRISH-FAY’S
SOLUTION
0.0 0.0000 0.0000 0.0000 0.0000
1.0 0.3008 0.3018 0.3020 0.3017
2.0 0.4895 0.4938 0.4943 0.4935
3.0 0.5955 0.6040 0.60438 0.6033
4.0 0.6588 0.6708 0.6725 0.6700
5.0 0.6998 0.7150 0.7170 0.7138
6.0 0.7280 0.7460 0.7485 0.7446
7.0 0.7488 0.7690 0.7723 0.7674
8.0 0.7645 0.7870 0.7905 0.7850
9.0 0.7770 0.8013 0.8055 0.7991
10.0 0.7873 0.8133 0.8177 0.8106
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Table G.3: Results from analysis of cantilevered beam (rotation)

6(radian)
PL?/EI | 1 ELEMENT | 2 ELEMENTS | 4 ELEMENTS | FRISH-FAY’S
SOLUTION
0.0 0.000 0.000 0.000 0.000
1.0 0.460 0.461 0.462 0.461
2.0 0.777 0.782 0.782 0.782
3.0 0.976 0.986 0.987 0.986
4.0 1.105 1.121 1.123 1.121
5.0 1.193 1.215 1.217 1.215
6.0 1.254 1.283 1.285 1.284
7.0 1.299 1.335 1.337 1.335
8.0 1.332 1.374 1.376 1.374
9.0 1.356 1.405 1.407 1.405
10.0 1.375 1.429 1.432 1.430
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Figure G.3: Deflected shape at load factor = 14.9 (Lee et al,1968)



Appendix H

User Manual for Program

SAFRAME

H.1 Scope of the Program

The program SAFRAME numerically simulates the behaviour of reinforced
skeletal plane frames as they are progressively loaded up to and beyond the

peak load, into the softening range.

-

The program takes into consideration the effect of geometric noﬁlijglearity
caused by the movement of the nodes under loading, but does notsinclude
the effect of geometric nonlinearity caused by the movement of the element
away from the line joining its ends. Therefore to accurately simulate the be-
haviour of members in compression, such members are modelled using a few
elements. This results in placing more nodes along a member and, therefore,

enables the geometric nonlinearity effect along the member to be included in

308
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Table H.1: Typical units for input data

length m
curvature m™!
point load kN

distributed load | kNm™!

bending moment | kNm

Young’s modulus | kNm™?

yield stress kNm™2

the numerical model.

Program SAFRAME was developed using standard FORTRANT77 language to

run in a UNIX-based operating environment.

H.2 Data Preparation

Input data are in consistent units. The set of units used by the program is
given in Table H.2. An exception to the above is that the width and depth

relating to the section are in millimetres.

H.3 Numbering of Nodes and Elements

The numbering of nodes is in sequence starting from unity up to the total
number of nodes. Each element is assigned a number, starting from one up

to the total number of elements. For each element, the connectivity detail is
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declared. This connectivity detail specifies the initial position of the element
in relation with the position of the nodes. The specification of the connectivity
detail assists the interpretation of the directions of output forces in relation to

the element.

H.4 Fixity of Nodes

The support condition of each node is defined by using a group of three in-
tegers. The first indicates the condition of the restraint along the x-axis, the
second, along the y-axis, and the third, rotation about the z-axis. The input
required for each of the integers is either unity (for no restraint) or null (for
full restraint). Inputs required for nodes with different conditions of restraint

are shown in Figure H.1.

H.5 Loading

The loading data are divided into two sets; the first defines the loading at the

nodes, and the second defines loading along the elements.

Loading at a node is defined by specifying each of the point loads for the three
possible degrees of movement. Even though a particular degree of movement

is restrained, a value of flull is still required for the corresponding point load.

Two different types of loa,diﬂg are allowed along an element. These are: (1)
transverse uniformly distributed load (UDL) along the entire element and (2)
a transverse point load anywhere along the element. An integer of 1 is required
to specify the former load type, and an integer of 2 is required for the latter.

Two further variables are required; for the UDL case, the first of these two

variables specified both its magnitude (in force per unit length) and direction,
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[1,1,1]
[0.0,0]
[0.1.0] (0.1.1]
(1.0,0] [1.0.1]
[0.0.1]

Figure H.1: Constraints of joints and supports
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and the second is not used by the program, but a value of zero is required; for
the second case, the first variable specifies the magnitude and direction, and
the second variable specifies the distant of this load from the left end of the
element. Up to four different sets of loading can be applied simultaneously
to a particular element. This enables a combination of different basic loading

patterns within an element, e.g., UDL together with a few point loads.

H.6 Dividing Elements into Segments

For each element, the program requires the input of the number of segments.
As a guide, the number of segment should be chosen such that the segment
length to depth ratio is between 0.5D to 1.0D, where D is the depth of the

element.

Material properties are defined for each segment. The program limits the

number of layers of reinforcing steel to two.

H.7 Input Files

Input files are normal text files. No predefined format is used to read in the
input, and therefore input data within the same line are separated by commas.

For easy identification such files should have filenames with a suffix of “inp”.

The various data required are listed below in the order in which they should

be placed:

e FILENAME (type:string): For easy identification the output filename should
has a prefix of “¢t”. An example for the name to be placed in first line

for the input file with filename of “t_test. inp” is “t_test”.
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e TITLE (type:string): This is a one line description of the run. An example

is “Testing frame : 9 metre tall column”.

e IPDEL (type:integer): If IPDEL = 1 then include geometrical nonlinearity
effect. If IPDEL = 0 then do not include this effect.

e IPRINM (type:integer): If IPRINM =1 then print detailed output for all
the segments in output file with suffix “out”. If IPRINM = 0 then print

only partial output.

o IDEGFRE (type:integer): This gives the degree of freedom to be used for
printing out the deflections in the output file with suffix “pdl”.

e IPMEM, IPSEG (type:integer, integer): These specify the segment to be
used for printing out the deflections in the output file with suffix “pdl”.

e ITO, JTO (type:integer, integer): These specify the segment to be used
as the key segment for controlling curvature. If they are zeros, then the
program will locate the segment that has the largest curvature during

the first step, and subsequently use this segment as the key segment.

e NHSECT (type:integer): This specify the number of concrete layers to be

used to model the sections.

e CURMAX (type:real): This specify the maximum curvature to be used for

the key segment to trace the behaviour of the structure.

e NPOINT(type:integer); This specifies the number of incremental curvature

steps to reach peak curvature CURMAX.

e TOLSTR, TOLMEM (type:real, real): The first specifies the tolerance to be
applied to the structure for the measure of convergency. The second
specifies the tolerance to be applied to the section for the measure of

convergency.
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e NODE, ELEMENT (type:real, real): Number of nodes and number of ele-

ments.

e J, X, Y, ND1, ND2, ND3 (type:integer, real, real, integer, integer, in-
teger): J specifies the node number. (X, Y) is the co-ordinates of the
node. The last three integers specifies the restraints of the node. This

input is to be specified for all the nodes.

e J, N1, N2, NSEG, GAMMA1, GAMMAZ2, FCPEAK, ECPEAK (type:integer, in-

teger, integer, real, real, real, real): where

— Jis the element number

N1, N2 are the node numbers of the ends of the element

— NSEG is the number of segments to be used for this element

GAMMA1 is the material parameter v; for this element
_ GAMMA? is the material parameter 7, for this element
— FCPEAK is the peak concrete strength femaz

— ECPEAK is the strain at peak concrete strength €cmaoz
This input is to be specified for all the elements.

e ESTEL, FSY (type:real, real): ESTEL specifies the Young’s Modulus and

FSY specifies the yield stress of the reinforcing steel.

e WIDTH, DEPTH, NST, AST(1), DT(1), AST(2), DT(2) (type:real, real,

integer, real, real, real, real): where

WIDTH and DEPTH are the width and depth of the segment
— NST is the number of layer of reinforcing bars
— AST(1) is the cross-sectional area of the top reinforcing layer

— DT(1) is the distance from the centre of the top layer to the top

concrete fibre
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— AST(2) is the cross-sectional area of the bottom reinforcing layer

— DT(2) is the distance from the centre of the bottom layer to the top

concrete fibre

This input is to be specified for all segments starting from the first seg-

ment of the first element to the last segment of the last element.
o NN (type:integer): this specifies the number of nodes with loads.

e NN, PX(NN), PY(NN), PM(NN) (type: integer, real, real, real): NN spec-
ifies the node number, and PX, PY and PM specify the loads acting on
the node along X axis, the Y axis and Z direction. This input is to be
specified for all the loaded nodevs.

e NL (type:integer): For each element, the number of element loads NL is
to be specified. If NL is not equal to zero, input lines following this line
is required to specified the loading within the element. The additional

lines for non zero NL have the following formats:

— LT, VL, A (type:integer, real, real): LT =1 for UDL and LT =2 for
point load. If LT =1 then VL specifies the magnitude and direction
of the load in load per unit length, and A is to be zero. If LT =2
then VL specifies the magnitude and direction of the point load, and
A specifies the distance of this point load from the left end of the

element. Direction is positive upward along an element.

H.8 Output Files

All the output files have the first part of their names set equal to the input
character string of the first line of the input file. The suffix of each file is assign
a unique three-character string by the program. This enables output files to

be easily located.
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The name of the input can be of any form, but for easy identification, it
should have a meaningful suffix such as “dat” or “jnp”. If the first line of
the data file has a string “test”, the output files created by the program
are “test.out” “test.pdl”, “test.map” and “test.mkt”. The output file
with the suffix “out” consists of the complete information of the input and
output data. The output file with the suffix of “pd1” is in a form suitable for
plotting of the load versus deflection curves. The file with a suffix of “map”
consists of information about the states of the segments. The file with the
suffix of “mkt” consists of the complete moment-curvature information of all
the segments. Another program BREAK is required to process this file to
extract M-« information and to create data files for segments selected by the
users. The data files created are suitable for input into standard plotting

programs.

Program PSPLOT has been developed using FORTRANTT7 to create corre-
sponding POSTSCRIPT test files from the individual moment-curvature file
of the segment. The POSTSCRIPT file can then be sent to laser printers
supporting the POSTSCRIPT language to create a hard copy of the plot.
POSTSCRIPT (see Adobe System Incoporated,1985) is a device-independent
graphic description language. Printer supporting this language has a built-
in interpreter to process incoming file with POSTSCRIPT instructions, and

translates these instructions to give hard copy plots.

To illustrate the input required for a typical frame using program SAFRAME,
a portal frame shown in Figure H.2 is analysed. To reduce the amount of
output only three elements are used, one for each member. Each of these
element is modelled using nine segments only. The number of segments is also

kept small to reduce the amount of output.

The input and output files are printed out onto the Apple LaserWriter. The

input data are shown in Figure H.3.
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Figure H.2: Configuration of portal frame G
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saframe rem:output filename (no suffix!)
sample input for saframe.f / rem:TITLE; notes.

1 rem:IPDEL (1 or 0).

0 rem:IPRINM (1 =complete, 0 =partial printout).
1 rem: IDEFGRE; DEGREE OF FREEDOM TO PRINT.

1,5 rem: IPMEM, IPSEG; DEFLECTION OF SEGMENT TO PRINT.
3,1 rem:ITO,JTO; CONTROL SEGMENT.

15 rem:NHSECT; NO OF LAYERS.

0.04 rem: CURMAX; MAX CURVATURE FOR CONTROL SEGMENT.
15 rem:NPOINT; NO OF STEPS TO REACH MAX CURVATURE.
0.01,0.001 rem:TOLSTR, TOLMEM; TOL.STRUCT, TOL.SECTION.
4,3 rem:NODE, ELEM; NO OF NODES, NO OF ELEMENTS.
1,0.0,5.4,1,1,1 reml:J, X, Y, ND1, ND2 ,ND3.
2,5.4,5.4,1,1,1 rem2: (NODE NO,X-ORD.,Y-ORD.,RES-X,RES-Y,RES-Z) .
3,0.0,0.0,0,0,0

4,5.4,0.0,0,0,0

1,1,2,9,1.99,3.0,29.75,0.002 reml:J,N1,N2,GAMMALl, GAMMA2, FCPEAK, ECPEAK.
2,1,3,9,1.99,3.0,29.75,0.002 rem2: {(ELEM, FR, TO, GAMMA1, GAMMA2, FCPEAK, ECPEAK).
3,2,4,9,1.99,3.0,29.75,0.002 rem3: <==——= CONCRETE—==————=—~== >.
2.0E+05,460.0 reml: ESTEEL,FSY;MODULUS, YIELD STRESS.
300.0,600.0,2,1800.0,50.0,1800.0,550.0 rem:WIDTH,
300.0,600.0,2,1800.0,50.0,1800.0,550.0 DEPTH,
300.0,600.0,2,1800.0,50.0,1800.0,550.0 NST,
300.0,600.0,2,1800.0,50.0,1800.0,550.0 AST(1),
300.0,600.0,2,1800.0,50.0,1800.0,550.0 QUL’ DT(1),
300.0,600.0,2,1800.0,50.0,1800.0,550.0 ﬂ | AST(2),
300.0,600.0,2,1800.0,50.0,1800.0,550.0 \ DT (2).
300.0,600.0,2,1800.0,50.0,1800.0,550.0 o sb‘/
300.0,600.0,2,1800.0,50.0,1800.0,550.0 0
300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0 v
300.0,300.0,2,900.0,50.0,900.0,250.0 .Q G
300.0,300.0,2,900.0,50.0,900.0,250.0 \

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

300.0,300.0,2,900.0,50.0,900.0,250.0

2 rem:NN; NO OF NODES WITH LOADS.

1,270.0,-2160.0,0.0 rem: NN, PX (NN) ,PY (NN) , PM (NN) ;

2,0.000,-2160.0,0.0 NODE NO, LOAD-X, LOAD-Y,MOM-Z.

1 rem:NL;NO OF LOADS FOR ELEMENT 1.

1,-100.0,0.0 rem:LT,VL,A; LOADTYPE,VALUE,VARIABLE A.

0 rem:NO OF LOADS FOR ELEMENT 2.

0 rem:NO OF LOADS FOR ELEMENT 3.
rem:tt*ttttittttttt*tttt*tti*ttttttttttk*tttttttkt********tt*t*

rem:* THIS IS A SAMPLE INPUT FILE FOR PROGRAM SAFRAME *
rem:ttttttit*ttt*tkttttttl‘ttttttttkitIttttttt*titttkt**t***tt*t

Figure H.3: Input data for portal frame G
/,,
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The output data from the file “test .pd1” are shown in Figure H.4. The output
data from the file “test .map” are shown in Figure H.5. The output data from
the file “test.mkt” are shown in Figure H.6 and Figure H.7. Owing to the
large number of pages of printout, only the first page and the last page are
shown. The output data from the file “test.out” are shown in Figure H.8
to Figure H.11. Owing to the large number of pages of printout, only the first

four pages are listed.

The listings of output files, though not completely in a few cases, are sufficient

to give an idea of the output expected from the program.



Appendiz H: User Manual for Program SAFRAME

320

0.00000
0.00267
0.00533
0.00800
0.01067
0.01333
0.01600
0.01867
0.02133
0.02400
0.02667
0.02933
0.03200
0.03467
0.03733
0.04000

{FILENAME OF PROGRAM USED
g CURTAR({1/m) SF{(x100)

0.00000

7.80978
15.22972
21.25901
26.08938
29.88170
32.76773
34.95599
36.63934
37.20830
36.95387
36.45671
35.80833
34.95486
34.01932
32.79293

{FILENAME OF THIS FILE : saframe.pdl

: saframe.exe

DELDF (mm)

0.00000
11.66745
23.09885
34.41877
46.20701
58.04067
69.65690
81.00170
92.18530
101.33322
108.51307
115.13228
121.97652
128.65622
135.10124
140.86952

MOMTAR (kNm)
0.00000
31.16089
60.15959
85.33136
107.22133
125.81378
141.16955
153.98021
165.07696
169.09291
168.78061
166.86218
164.24329
160.95389
156.77189
151.65450

DELSEG (mm) ICYCLE

0.00000
-0.93588
-2.37660
-3.52100
-4.48458
-5.31807
-6.05987
-6.74462
-7.39810
-7.85576
-8.10069
-8.34741
-8.52735
-8.65805
-8.75446
-8.81839

0
19

SJUuuUuUuoaaaununununnne

Figure H.4: Printout of file “test.pdl”
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OF

STEP NO
hkkkkkkkk
E=1 S5=1
E=1 S§=2
E=1 §=3
E=1 S=4
E=1 S=5
E=1 S=6
E=1 S§=7
E=1 S=8
E=1 5=9
STEP NO
khkkwkkkk
E=2 S§=1
E= 2 S=2
E= 2 5= 3
E=2 S=4
E=2 S=5
E=2 S=6
E= 2 S5=1
E=2 S=8
E=2 S=9
STEP NO
222322 289
E=3 S=1
E=3 S=2
E=3 S=3
E=3 S=4
E=3 S=5
E=3 S=6
E=3 S=71
E=3 S=8
E=3 S=9

ABOVE IS GREATER THAN 0.05.

NOTE THAT THIS OUTPUT IS JUST TO GIVE SOME
INDICATIONS OF THE BEHAVIOUR OF THE SEGMENTS---
FOR MORE ACCURATE DETERMINATION OF BEHAVIOUR,
MOMENT CURVATURE RELATIONS OF SEGMENTS HAVE TO BE

* PLOTTED.
[ 2 Y T R L AL 222 2 S 2 2 22 2 A A2 A R S S 8 2 2t b b ad

FILENAME OF THIS FILE : saframe.map
t*t*tt*tt**tt**t*kt*t*tt*t*tkt*t**k**kt******t******kt
* L = LOADING, U = UNLOADING, H = HINGE *
S = SOFTENING : A HINGE IS DEFINED WHEN THE ABS. =

THE SLOPE OF THE MOMENT-CURVATURE RELATION AT *

*

*

* THE PRESENT STEP IS LESS THAN 0.05 THAT OF THE *
* FIRST STEP. SOFTENING IS WHEN THE PRESENT SLOPE IS *
* NEGATIVE AND THE RATIO OF THE ABS. SLOPES DESCRIBED*
*
*
*
*
*

* * * % % %

000000000111111111122222222223333333333444444444455555555556
123456789012345678901234567890123456789012345678901234567890
LLLLLLLLLLLLLUU
LLLLLLLLLLLLHUU
LLLLLLLLLLLLUUU
LLLLLLLLLLLLUUU
LLLLLLLLLLLLUUU
LLLLLLLLLLLLHUU
LLLLLLLULLLLLLL
LLLLLLLLLUUUUUU
LLLLLLLLLUUUUUU
000000000111111111122222222223333333333444444444455555555556
123456789012345678901234567890123456789012345678901234567890
LLLLLLLLLLLLHHH
LLLLLLLLLLLLLLU
LLLLLLLLLLLLLLH
LLLLLLLLLLLLLLU
LLLLLLLLUUUUUUU
LLLLLLLLLUUUUUU
LLLLLLLLLLUHUUU
LLLLLLLLLLRHUUU
LLLLLLLLLHHHHHH
000000000111111111122222222223333333333444444444455555555556
123456789012345678901234567890123456789012345678901234567890
LLLLLLLLLHHHHHH
LLLLLLLLLHUUUUU
LLLLLLLLLUUUUUU
LLLLLLLLLUUUUUU
LLLLLUUUUULLLLL
LLLLLLLLLLUUULL
LLLLLLLLLLUHUHH
LLLLLLLLLLUUUUU
LLLLLLLLLHHHHHH

Figure H.5: Printout of file “test .map”
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FILENAME OF THIS FILE : saframe.mkt

ELEMENT= 1SEGMENT= 1

KEYCUR[1/m] MOM(kNm)  CUR[1/m]  EI[kNm~2) SF(x100) THRUST (kN]
0.267E-02 -0.253E402 -0.358E-03  70621.8172 7.8098  12.3858
0.533E-02 —-0.538E+02 —0.7S4E-03  71309.5238  15.2297  23.1805
0.800E-02 —-0.792E+02 -0.110E-02  71971.8178  21.2590  31.8704
0.107E-01 -0.102E+03 -0.140E-02  72429.2946  26.0894  38.6847
0.133E-01 —-0.121E+03 -0.167E-02  72747.5412  29.8817  43.8476
0.160E-01 -0.139E+03 -0.190E-02 72994.9851  32.7677  47.5866
0.187E-01 —-0.154E+03 -0.210E-02  73021.0074  34.9560  50.2540
0.213E-01 -0.166E+03 ~0.229E-02  72794.2255  36.6393  52.1840
0.240E-01 -0.17SE+03  —0.241E-02  72579.0142  37.2083  52.1623
0.267E-01 —-0.180E+03  -0.248E-02  72350.4227  36.9539  50.9778
0.293E-01 -0.183E+03  -0.254E-02  72177.4630  36.4567  49.3892
0.320E-01 —-0.186E+03 -0.259E-02  72073.7346  35.8083  47.6781
0.347E-01 —-0.187E+03 -0.260E-02  71948.2139  34.9549  45.8686
0.373E-01 —-0.186E+03 -0.259E-02  71886.3365  34.0193  44.0518
0.400E-01 -0.183E+03 —0.255E-02  71785.2798  32.7929  41.9048

ELEMENT= 1SEGMENT= 2

KEYCUR[1/m] MOM[kNm]  CUR{1/m]  EI(kNm*2} SF(x100) THRUST [kN]
0.267E-02 -0.288E+02  -0.407E-03  70621.8172 7.8098  12.3858
0.533E-02 -0.600E+02 —0.841E-03  71309.5238  15.2297  23.1805
0.800E-02 —0.872E+02 -0.121E-02  71971.8178  21.2590  31.8704
0.107E-01 —-0.111E+03 -0.153E-02  72429.2946  26.0894  38.6847
0.133E-01 —-0.131E+03 -0.180E-02  72747.5412  29.8817  43.8476
0.160E-01 -0.148E+03 -0.203E-02 72998.6707  32.7677  47.5866
0.187E-01 —-0.162E+03 -0.223E-02  72737.5678  34.9560  50.2540
0.213E-01 -0.174E+03  ~0.240E-02  72543.8432  36.6393  52.1840
0.240E-01 -0.182E+03 -0.251E-02  72398.4860  37.2083  52.1623
0.267E-01 -0.186E+03  —-0.257E-02  72215.7184  36.9539  50.9778
0.293E-01 -0.189E+03  -0.262E-02  72085.5014  36.4567  49.3892
0.320E-01 -0.191E+03  -0.265E-02 71963.7315  35.8083  47.6781
0.347E-01 -0.191E+03 -0.265E-02 71833.7765  34.9549  45.8686
0.373E-01 -0.189E+03 -0.263E-02 71746.1492  34.0193  44.0518
0.400E-01 -0.186E+03  -0.259E-02  71708.7295  32.7929  41.9048
ELEMENT= 1SEGMENT= 3

KEYCUR{1/m] MOM({kNm]  CUR[1/m]  EI[kNm"2] SF(x100) THRUST [kN)
0.267E-02 -0.294E+02  -0.416E-03  70621.8172 7.8098  12.3858
0.533E-02 -0.607E+02  -0.852E-03  71309.5238  15.2297  23.1805
0.800E-02 -0.875E+02 -0.122E-02 71971.8178  21.2590  31.8704
0.107E-01 -0.110E+03 -0.1S52E-02  72429.2946  26.0894  38.6847
0.133E-01 -0.129E+03 -0.178E-02  72747.5412  29.8817  43.8476
0.160E-01 -0.145E+03 -0.199E-02  73002.5026  32.7677  47.5866
0.187E-01 -0.158E+03 -0.217E-02  72879.0224  34.9560  50.2540
0.213E-01 -0.169E+03  -0.233E-02 72684.8698  36.6393  52.1840
0.240E-01 -0.176E+03  -0.242E-02  72524.1642  37.2083  52.1623
0.267E-01 -0.179E+403  -0.247E-02  72369.8556  36.9539  50.9778
0.293E-01 -0.181E+03 -0.251E-02 72223.2322  36.4567  49.3892
0.320E-01 -0.182E+03  -0.253E-02  72115.9132  35.8083  47.6781
0.347E-01 -0.182E+03  -0.253E-02  71999.7779  34.9549  45.8686
0.373E-01 -0.1B0E+03 -0.2S0E-02 71912.8189  34.0193  44.0518
0.400E-01 -0.177E+03  -0.246E-02  71807.0827  32.7929  41.9048

ELEMENT= 1SEGMENT= 4

KEYCUR(1/m] MOM{kNm]  CUR[1/m]  EI[kNm"2] SF(x100) THRUST [kN]
0.267E-02 -0.272E+02  -0.385E-03  70621.8172 7.8098  12.3858
0.533E-02 -0.560E+02 -0.785E-03  71309.5238  15.2297  23.1805
0.800E-02 -0.802E+02 -0.111E-02  71971.8178  21.2590  31.8704
0.107E-01 -0.100E+03  -0.139E-02  72429.2946  26.0894  38.6847
0.133E-01 -0.117E+03 -0.161E-02 72747.5412  29.8817  43.8476
0.160E-01 -0.131E+03 -0.179-02  72994.9851  32.7677  47.5866
0.187E-01 -0.142E+03  -0.193E-02 73234.6804  34.9560  50.2540
0.213E-01 -0.151E+03 -0.206E-02  73195.4274  36.6393  52.1840
0.240E-01 -0.156E+03 -0.214E-02  73048.3814  37.2083  52.1623
0.267E-01 -0.1S9E+03  -0.218E-02  72895.0103  36.9539  50.9778
0.293E-01 -0.161E+03 -0.221E-02  72743.8245  36.4567  49.3892
0.320E-01 -0.161E+03 -0.222E-02  72638.2499  35.8083  47.6781

Figure H.6: First page printout of file “test .mkt”
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0.800E-02
0.107E-01
0.133e-01
0.160E-01
0.187E-01
0.213E-01
0.240E-01
0.267E-01
0.293E-01
0.320E-01
0.347E-01
0.373E-01
0.400E-01
ELEMENT=
KEYCUR(1/m]
0.267E-02
0.533E-02
0.800E-02
0.107E-01
0.133E-01
0.160E-01
0.187E-01
0.213E-01
0.240E-01
0.267E-01
0.293E-01
0.320E-01
0.347E-01
0.373E-01
0.400E-01
ELEMENT=
KEYCUR[1/m]
0.267E-02
0.533E-02
0.800E-02
0.107E-01
0.133E-01
0.160E-01
0.187E-01
0.213E-01
0.240E-01
0.267E-01
0.293E-01
0.320E-01
0.347E-01
0.373E-01
0.400E-01
ELEMENT=
KEYCUR([1/m]
0.267E-02
0.533E-02
0.800E-02
0.107E-01
0.133E-01
0.160E-01
0.187E-01
0.213E-01
0.240E-01
0.267E-01
0.293E-01
0.320E-01
0.347E-01
0.373E-01
0.400E-01

-0.206E+02
-0.260E+02
-0.306E+02
-0.345E402
-0.377E402
~0.406E+02
-0.420E+02
-0.424E+02
~0.423E402
-0.423E+02
-0.421E402
-0.422E+02
~0.428E+02
3SEGMENT=
MOM [kNm]
-0.152E+02
-0.304E+02
-0.423E+02
~0.525E+02
-0.617E+02
-0.695E+02
~0.760E+02
-0.816E+02
-0.B846E+02
-0.851E+02
-0.845E+02
-0.840E+02
-0.829E+02
-0.821E+02
-0.813E+02
3SEGMENT=
MOM [kNm]
~0.229E+02
-0.451E+02
-0.628E+02
-0.789E+02
-0.928E+02
-0.104E+03
-0.114E+03
-0.123E+03
-0.127E+03
~0.128E+03
-0.127E+03
~0.126E+03
-0.124E+4+03
-0.122E+03
-0.120E+03
3SEGMENT=
MOM [ kNm]
-0.306E+02
-0.589E+02
-0.838E+02
-0.105E+03
-0.124E+03
-0.139E+03
-0.152E+03
-0.164E+03
-0.169E+03
-0.169E+03
~0.168E+03
-0.166E+03
-0.164E+03
-0.161E+03
-0.159E+03

-0.106E-02
-0.129e-02
-0.151E-02
-0.173E-02
-0.191E-02
-0.207E-02
-0.215E-02
-0.217E-02
-0.217E-02
-0.217E-02
-0.216E-02
-0.216E-02
-0.219E-02
7
CUR[1/m]
-0.115E-02
-0.175E-02
-0.228E-02
-0.294E-02
-0.360E-02
-0.421E-02
~0.477E-02
-0.527E-02
-0.557E-02
~0.565E-02
-0.564E-02
-0.565E-02
-0.564E-02
-0.565E-02
-0.571E-02
8
CUR([1/m]
-0.174E-02
-0.321E-02
-0.462E-02
-0.611E-02
~0.758E-02
-0.898E-02
-0.103E-01
-0.116E-01
-0.123E-01
-0.125E-01
-0.125e-01
-0.124E-01
-0.123E-01
-0.123e-01
-0.123e-01
9
CUR[1/m]
-0.260E-02
-0.516E-02
-0.774E-02
-0.103E-01
-0.130E-01
-0.156E-01
-0.182E-01
-0.209E-01
-0.233E-01
-0.256E-01
-0.279E-01
-0.302E-01
-0.325E-01
-0.347E-01
-0.364E-01

19364.5479
20174.0187
20244.8691
19964.8845
19742.2071
19566.5320
19503.5294
19524.3974
19520.6446
19519.1527
19508.8932
19514.2031
19553.1897

EI [kNm"~2]

13173.1133
17380.1961
18519.0794
17874.7442
17128.0237
16497.8379
15951.7031
15483.8925
15191.6651
15067.3183
14964.0596
14859.2272
14699.0522
14520.0014
14248.8857

EI[kNm"~2)
13173.1133
14072.9554
13596.1206
12912.4415
12237.7191
11623.9437
11088.3065
10604.3598
10297.0396
10208.1474
10182.5180
10110.4793
10018.7675
9942.9907
9789.4623

EI(kNm~2)
11794.3127
11431.7134
10825.0561
10185.1418
9551.0752
8927.0285
8346.1166
7822.5637
7251.6915
6624.0890
6027.4325
5497.7563
5037.0752
4655.6340
4373.7314

21.2590
26.0894
29.8817
32.7677
34.9560
36.6393
37.2083
36.9539
36.4567
35.8083
34.9549
34.0193
32.7929

SF (x100)
7.8098
15.2297
21.2590
26.0894
29.8817
32.7677
34.9560
36.6393
37.2083
36.9539
36.4567
35.8083
34.9549
34.0193
32.7929

SF (x100)
7.8098
15.2297
21.2590
26.0894
29.8817
32.7677
34.9560
36.6393
37.2083
36.9539
36.4567
35.8083
34.9549
34.0193
32.7929

SF (x100)
7.8098
15.2297
21.2590
26.0894
29.8817
32.7677
34.9560
36.6393
37.2083
36.9539
36.4567
35.8083
34.9549
34.0193
32.7929

547.6600
673.4535
772.8702
849.1439
907.5519
952.9878
969.1373
963.7824
952.0370
936.3591
915.0494
891.3314
859.9407

THRUST [kN]
200.4025
391.5657
547.6600
673.4535
772.8702
849.1439
907.5519
952.9878
969.1373
963.7824
952.0370
936.3591
915.0494
891.3314
859.9407

THRUST [kN}
200.4025
391.5657
547.6600
673.4535
772.8702
849.1439
907.5519
952.9878
969.1373
963.7824
952.0370
936.3591
915.0494
891.3314
859.9407

THRUST (kN]
200.4025
391.5657
547.6600
673.4535
772.8702
849.1439
907.5519
952.9878
969.1373
963.7824
952.0370
936.3591
915.0494
891.3314
859.9407

Figure H.7: Last page printout of file “test.mkt”
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FILENAME OF THIS

FILE :

saframe.out

TITLE :sample input for saframe.f

IPDEL = 1

IPRINM = 0

DEGREE OF MOVEMENT OF NODE TO PRINT:
DEFLN OF ELEM,SEG TO PRINT:

KEY ELEMENT =
KEY SEGMENT =

3
1

NO OF LAYERS FOR SECTION =

MAXIMUM CURVATURE

1,

15

= 0.040000
NO OF DIVISION FOR CURVATURE = 15

TOLERANCE= 0.010000
TOLERENCE (SECTION) = 0.001000
NODE X-VALUE Y-~VALUE
1 0.000000 5.400000
2 5.400000 5.400000
3 0.000000 0.000000
4 5.400000 0.000000
ELEMENT FROM TO NSEG GAMMA1
1 1 2 9 1.9900
2 1 3 9 1.9900
3 2 4 9 1.9900
STEEL DATA

MODULUS OF ELASTICITY =0.2000E+06

YIELD STRESS = 460.0000

SEGMENTS DETAIL
A KkAKAARNRAKN KK

ELEMENT NO =
NSEG WIDTH
300.00
300.00
300.00
300.00
-300.00
300.00
300.00
300.00
300.00

VoA WNKE

ELEMENT NO =
NSEG WIDTH
300.00
300.00
300.00
300.00
300.00
300.00
300.00
300.00
300.00

CodaunaWwN+=

ELEMENT NO =
NSEG WIDTH
1 300.00

1
DEPTH
600.00
600.00
600.00
600.00
600.00
600.00
600.00
600.00
600.00

2
DEPTH
300.00
300.00
300.00
300.00
300.00
300.00
300.00
300.00
300.00

3
DEPTH
300.00

NBARS AST-TOP

NNNMNNNNMNNDN

1800.00
1800.00
1800.00
1800.00
1800.00
1800.00
1800.00
1800.00
1800.00

NBARS AST-TOP

2

NNNNNNDNODN

900.00
900.00
900.00
900.00
900.00
900.00
900.00
900.00
900.00

NBARS AST-TOP

2

900.00

1
S
ND1 ND2
1 1
1 1
0 0
0 0
GAMMA2 FCMAX
3.0000 29.7500
3.0000 29.7500
3.0000 29.7500
DST-TOP AST-BOT
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
50.00 1800.00
DST-TOP AST-BOT
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
50.00 900.00
DST-TOP AST-BOT
50.00 900.00

OOHI—‘%

ECMAX

0.0020
0.0020
0.0020

DST-BOT
550.00
550.00
550.00
550.00
550.00
550.00
550.00
550.00
550.00

DST-BOT
250.00
250.00
250.00
250.00
250.00
250.00
250.00
250.00
250.00

DST-BOT
250.00

Figure H.8: First page printout of file “test .out”
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2 300.00 300.00 2 900.00 50.00 900.00 250.00
3 300.00 300.00 2 900.00 50.00 900.00 250.00
4 300.00 300.00 2 900.00 50.00 900.00 250.00
5 300.00 300.00 2 900.00 50.00 900.00 250.00
6 300.00 300.00 2 900.00 50.00 900.00 250.00
7 300.00 300.00 2 900.00 50.00 900.00 250.00
8 300.00 300.00 2 900.00 50.00 900.00 250.00
9 300.00 300.00 2 900.00 50.00 900.00 250.00
NODAL LOARD
NODE PX PY PZ
1 270.00 -2160.00 0.00
2 0.00 -2160.00 0.00
MEM LT VL A
1 1 -100.00 0.00
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTCR= 0.1359 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.1111 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0996 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0925 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0877 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0846 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0824 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0810 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0801 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0794 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027
SCALE FACTOR= 0.0790 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1
TARGETED CURVATURE = 0.0027

Figure H.9: Second page printout of file “test.out”
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SCALE FACTOR= 0.0787 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0785 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0784 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0783 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0782 1ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0781 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0781 ICONGE = 0
TARGETED ELEMENT NUMBER = 3
TARGETED SEGMENT NUMBER = 1

TARGETED CURVATURE = 0.0027

SCALE FACTOR= 0.0781 ICONGE = 1
TARGETED CURVATURE = 0.0027
LOAD FACTOR = 0.0781

ELEMENT DEFORMATIONS

MEM DEL1X DEL1Y ROT1 DEL2X DEL2Y ROT2
1 0.0117 0.0000 -.0009 0.0132 0.0000 0.0001
2 0.0000 0.0117 -.0009 0. 0. 0.
3 0.0000 0.0132 0.0001 0. 0. 0.
ELEMENT FORCES
MEM FI1X FlY M1 F2X F2Y M2
1 12.39 10.43 -22.53 -12.39 31.74 -35.01
2 179.1 9.088 22.53 -179.1 -9.088 26.54
3 200.4 12.87 35.01 -200.4 -12.87 34.51
NODAL DEFORMATION
NODE DELX DELY ROT
1 0.0117 0.0000 -.0009
2 0.0132 0.0000 0.0001
3 0. 0. 0.
q 0. 0. 0.
ELEMENT NO = 1

DIST (m) MOM(kNm) ROT(rad) DEFN(m) CUR(1/m) EI(kNm"2) STR-TOP STR-BOT
0.300 -25.32 -0.65D-03 ~0.27D-03 -.36D-03 0.71D+05 0.32D-03 0.11D-03
2.700 -22.23 0.27D-03 -0.94D-03 -.31D-03 0.71D+05 0.32D-03 0.14D-03
5.100 25.86 0.12D-03 -0.79D-04 0.37D-03 0.71D+05 -0.87D-03 -0.66D-03

ELEMENT NO = 2

DIST(m) MOM(kNm) ROT(rad) DEFN(m) CUR(1/m) EI(kNm"2) STR-TOP STR-BOT
0.300 19.78 -0.180-02 0.11D-01 0.16D-02 0.13D+0S -0.30D-03 0.17D-03
5.100 -23.80 -0.14D-17 -0.35D-17 -.19D-02 0.13D+05 0.30D-03 -0.27D-03

ELEMENT NO = 3 ~
DIST (m) MOM(kNm) ROT(rad) DEFN({m) CUR(1/m) EI(kNm"~2) STR-TOP STR-BOT
0.300 31.16 -0.15D-02 0.13D-01 0.27D-02 0.12D+0S -0.43D-03 0.37D-03

Figure H.10: Third page printout of file “test.out”
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5.100 -30.62 0.81D-18 0.24D-17 -.26D-02 0.12D+05 0.37D-03 -0.41D-03
SCALE FACTOR= 0.1562 ICONGE = 0
SCALE FACTOR= 0.1540 ICONGE = 0
SCALE FACTOR= 0.1528 ICONGE = 0
SCALE FACTOR= 0.1523 ICONGE = 1
TARGETED CURVATURE = 0.0053
LOAD FACTOR = 0.1523
ELEMENT DEFORMATIONS
MEM DEL1X DEL1Y ROT1 DEL2X DEL2Y ROT2
1 0.0231 -.0005 -.0018 0.024S -.0005 0.0003
2 0.0004 0.0231 -.0018 0. 0. 0.
3 0.0004 0.0245 0.0003 0. 0 0.
ELEMENT FORCES
MEM F1X FlY M1 F2X F2Y M2
1 23.18 19.53 -48.56 -23.18 62.71 -68.04
2 348.4 19.43 48.56 -348.4 -19.43 56.35
3 391.6 24.96 68.04 -391.6 -24.96 66.76
NODAL DEFORMATION
NODE DELX DELY ROT
1 0.0231 -.0005 -.0018
2 0.0245 —~.0005 0.0003
3 0. 0. 0.
4 0. 0. 0.
ELEMENT NO = 1
DIST {m) MOM (kNm) ROT (rad) DEFN (m) CUR(1l/m) EI (kNm~2) E-TOP -BOT
0.300 -53.75 -0.13D-02 -0.10D-02 —.75D-03 0.71D+05 0.33D-03 -0.12D-03
2.700 -45.79 0.56D-03 —0.24D-02 -.64D-03 0.71D+05 0.33D-03 -0.55D-04
5.100 50.01 0.31D-03 -0.59D-03 0.70D-03 0.71D+05 -0.87D-03 -0.45D-03
ELEMENT NO = 2
DIST (m) MOM (kNm) ROT (rad) DEFN (m) CUR (1/m) EI (kNm~2) E-TOP E-BOT
0.300 43.05 -0.37D-02 0.23D-01 0.32D-02 0.13D+05 -0.44D-03 0.52D-03
5.100 -49.71 0.69D-17 0.15D-16 -.41D-02 0.12D+05 0.61D-03 -0.63D-03
ELEMENT NO = 3
DIST (m) MOM(kNm) ROT(rad) DEEN(m) CUR(1/m) EI(kNm~2) E-TOP E-BOT
0.300 60.16 -0.29D-02 0.25D-01 0.53D-02 0.11D+05 -0.84D-03 0.76D-03
5.100 -58.93 0.48D-17 0.29D-16 -.52D-02 0.11D+05 0.74D-03 -0.81D-03
SCALE FACTOR= 0.2272 ICONGE = 0
SCALE FACTOR= 0.2195 ICONGE = 0
SCALE FACTOR= 0.2154 ICONGE = 0
SCALE FACTOR= 0.2138 ICONGE = 0
SCALE FACTOR= 0.2126 ICONGE = 1
TARGETED CURVATURE = 0.0080
LOAD FACTOR = 0.2126
ELEMENT DEFORMATIONS
MEM DEL1X DEL1Y ROT1 DEL2X DEL2Y ROT2
1 0.0344 -.0008 -.0025 0.0358 -.0009 0.0004
2 0.0006 0.0344 -.0025 0. 0. 0.
3 0.0006 0.0358 0.0004 0. 0. 0.
ELEMENT FORCES
MEM F1X FlY M1l F2X F2Y M2
1 31.87 26.11 -72.24 -31.87 88.69 -96.74
2 485.1 28.64 72.24 -485.1 -28.64 82.44
3 547.17 35.53 96.74 -547.1 -35.53 95.14

Figure H.11: Fourth page printout of file “test.out”



Appendix 1

Programs for Bottom-tier

Method of Analysis

A suite of computer programs has been developed to facilitate design and
ultimate strength calculations for slender reinforced concrete frames based on

the moment magnifier method of the Australian concrete standard AS3600.

All the programs were developed using Fortran77 language to run in a UNIX
operating environment. The advantage of having all the programs within one
operating system is that users can execute the programs without having to
change over to another system. This also enables all the input and output files

to be kept together, therefore, easing the task of interpreting the results.

The programs developed to carry out the moment magnifier method of analysis

are listed below:

LINFRAME : A standard first-order, linear elastic frame analysis program using

a stiffness approach.

328



Appendiz I: Programs for Bottom-tier Method of Analysis 329

NMAUSTD and NMAUST : Programs to generate data points used to define the
strength column interaction diagram. Program NMAUST produces N-M
points for the ultimate strength condition, whereby the strength reduc-
tion factor ¢ is assumed to be unity. Program NMAUSTD produces N-M
points for the design strength condition, whereby all strength reduction

factors are included.

LOADCURVD and LOADCURV : Programs to generate data points used to de-
fine the loading curves for individual column and for the column taking
into consideration storey stability effect. Program LOADCURV generates
loading curves for ultimate strength condition and program LOADCURVD

generates loading curves for design strength condition.

INTERSECB : A program to locate the intersection point between the linearised
curve fitted to data produced by program NMAUST and that fitted to
data produced by program LOADCURV, or between the curve fitted to
data produced by program NMAUSTD and that fitted to data produced by
program LOADCURVD.

Program LINFRAME is a standard first-order elastic analysis program. Algo-
rithms used in this program can be obtained from numerous texts on structural

analysis(Hall and Kabaila, 1977; Cheung and Yeo, 1979).

Programs NMAUST and program NMAUSTD are used to generate the strength
interaction diagrams of reinforced concrete columns with symmetrically placed
reinforcement. The section analysis is based on the use of the rectangular
stress block as outlined in AS3600. A description of program NMAUST is given
in Appendix D.

Programs LOADCURV and LOADCURVD generate output files consisting of N-M
values which define the loading curves based on the “braced” moment magnifier

of braced column, &3, and on the “sway” moment magnifier, §;. The former file
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is automatically assigned a filename with suffix “nmc” and the latter a filename
with suffix “ams”. The equations used to generate these files are Equation 7.11

for the former and Equation 7.13 for the latter.

Program INTERSECB first reads in the M-N points defining the interaction
curve for the column section generated by program NMAUST(or NMAUSTD). The
loading curve data, in the form of M-N points, stored in the file with suffix
“ame” is then read in. To obtain complete curves from individual data points,
straight lines are used to connect neighbouring data points. The error brought
about by this approximation is small provided the data points are not too far
apart. An intersection point between the two linearised curves is obtained.
The eccentricity of the solution point is then checked to see if it is greater
then eccentricity es. If it is less than e, the intersection point does not satisfy
the minimum moment magnifier of unity as stipulated by AS3600. If this is
the case, a revised intersection point is chosen to be that between the loading
line with a constant eccentricity value of e, (which is the loading line with
a moment magnifier of unity) and the interaction curve. The loading curve
with suffix “nms” is then read in, and another intersection point with the
interaction curve is obtained. Of the two intersection points, the one with the
lower N value gives the ultimate strength of the column. The N value of the
lowest intersection points is obtained from the output of this program, which
is automatically given the same file name as the input file but with the suffix

changed to “met”.

The suite of programs has been developed to enable maximum interaction be-
tween the different programs. Therefore, in some cases, the output files gener-
ated by some programs are in turn being used as input files for other programs.
The users, therefore, need not reproduce these data, hence eliminating human
errors caused by keying in incorrect data. For proper documentation of the
output data files, input data are printed out in the output files. The print-
ing of lines of input data in the output files enables ease of checking by the
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users. These lines are ignored by those programs which use these files as input
data files. In order to keep tab of the numerous input and output files pro-
duced during analysis, each of them is identifiable by using a filename with an
identifiable prefix (eg. “t”, “mn” and “b” where t=top-tier, m=middle-tier and
b=bottom-tier) and an identifiable suffix at the end (eg. “inp”, “out”, “pdl”,
“nme”, “nms”, “int”, etc.). An example of the filename for the input file of
run “runl” using the bottom-tier method is “b_runi.inp”. The automatic
assignment of suffix for names of output files prevents the users from keying in
the wrong suffix which can create confusion later in locating the output files.

This also safeguard against the possibility of accidental deletion of existing

files cause by not using the correct suffix.

The inter-relation between different input and output files, and their relation-
ships with the programs listed earlier, are illustrated in the schematic diagram

in Figure I.1.



BOTTOM-TIER METHOD

(ULTIMATE STRENGTH CONDITION)

SECTION

DETAILS ——= NMAUST

——»=NAME.INT

B_NAME.INP-»-\ LINFRAME

(Information from
output {lle)

=B _NAME.OUT —= LOADCURV

.

I——P—

INTERSECB

— B_COL.MET

NOTE: FOR DESIGN STRENGTH CONDITION: PROGRAM NMAUSTD REPLACES PROGRAM NMAUST.
PROGRAM LOADCURVD REPLACES PROGRAM LOADCURY

B_COL.NMC —

B_COL.NMS

Figure 1.1: Schematic diagram showing the relationship of files and programs

for the bottom-tier method
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Appendix J

Programs for Middle-tier
Method of Analysis

A suite of computer programs was developed to allow the determination of
ultimate and design strengths of slender reinforced concrete frames based on

the middle-tier method of the Australian standard AS3600.

The programs developed to carry out the middle-tier method of analysis are

listed below:

NEWTONR : A complete second-order elastic frame program using the nonlin-
ear equilibrium equations proposed by Jennings(1968), and using the

Newton-Raphson technique to solve these equations.

CRISFIEL : A complete second-order elastic frame analysis program using the
nonlinear equilibrium equations proposed by Jennings(1968), and using

the Newton-Raphson limit-point traversal technique of Crisfield(1980).

NMAUSTD and NMAUST : Programs to generate data points used to obtain strength

column interaction diagrams, as described in Appendix L.

333
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INTERSECM : A program to locate the intersection point between the linearised
curve fitted to data produced by program NMAUST and that fitted to data

produced by program NEWTONR.

Program NEWTONR is a nonlinear elastic analysis program which takes account
of all geometrical nonlinearities present in a framed structure. The matrices
to account for second-order effects are those proposed by Jennings(1968) de-
scribed in Chapter 3. The program uses a Newton-Raphson technique, also
described in Chapter 3, to solve the nonlinear equilibrium equations proposed
by Jennings. The behaviour of the structure is obtained by controlling the
load. The accuracy of this program has been checked by comparing analytical

results obtained for a simple cantilever and a portal frame (see Appendix G).

Even though a more advanced program CRISFIEL was developed to allow
traversing of limit points, it was not used as program NEWTONR was found

to be sufficient to carry the present study.

The inter-relation between different input and output files, and their relation-
ships with the programs listed earlier, are illustrated in the schematic diagram

in Figure J.1.



MIDDLE-TIER METHOD
(ULTIMATE STRENGTH CONDITION)

M_NAME.QUT

M_NAME.INP -»= NEWTONR

(Individual Section Loading Curves)

M_SECT.NMC
\

SECTION —— INTERSECM —= M_SECT.MET
DETAILS — ™ NMAUST —=NAME.INT

(Individual Section Strength
Interaction Curves)

FOR DESIGN STRENGTH CONDITION: PROGRAM NMAUSTD REPLACES PROGRAM NMAUST,

Figure J.1: Schematic diagram showing the relationship of files and programs

for the middle-tier method
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