

THE TRANSFORMING POTENTIAL AND FUNCTIONAL ANALYSIS OF THE c-KIT RECEPTOR TYROSINE KINASE AND ITS NATURAL OCCURRING ISOFORMS.

By Georgina Caruana, B.Sc. (Hons.), Department of Microbiology and Immunology,

The University of Adelaide.

A degree submitted for the degree of Doctor of Philosophy, Faculty of Science at

The University of Adelaide

March, 1996

Awarded 1996

ABSTRACT

In this study, the function of the receptor tyrosine kinase, c-Kit, was examined in relation to the role of receptor levels in factor dependence and cell transformation. In addition, the functions of several naturally occurring isoforms of the human c-Kit receptor were analysed by expressing cDNA encoding these isoforms in murine cells.

Cells of the murine factor-dependent cell line, FDC-P1, require the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) for cell growth. FDC-P1 cells also express c-Kit, however when cultured in the presence of its ligand, *Steel* factor (SLF), they fail to proliferate. Co-culture of FDC-P1 cells on wild-type (+/+) fibroblastoid-3T3 lines, in the absence of exogenously added factors, enabled contact-dependent support of the FDC-P1 cells in the presence of a neutralising antiserum to GM-CSF. +/+ fibroblasts are able to produce both membrane-bound and soluble forms of SLF. The lack of support of FDC-P1 cells by *SV/Sld*-3T3 and *SV/Sl*-3T3 fibroblasts, which produce only soluble SLF or completely lack SLF production, respectively, in the presence of GM-CSF antiserum, demonstrated that membrane-bound SLF was supporting FDC-P1 cells on +/+ fibroblast feeder layers.

Although FDC-P1 cells, which had been previously cultured in GM-CSF or IL-3, failed to proliferate in high concentrations of soluble murine SLF, the cells displayed synergistic proliferative responses to SLF when combined with sub-optimal levels of GM-CSF or IL-3. FDC-P1 cells previously grown in GM-CSF were adapted to grow in SLF alone by gradual substitution of SLF for GM-CSF over a period of 3 weeks. The resulting population, FDC-P1(SLF) cells, were responsive to SLF alone and maintained the ability to grow in GM-CSF or IL-3. mRNA analysis demonstrated that c-kit had been downregulated approximately 7-fold or 2.5-fold in the cells grown in GM-CSF or IL-3, respectively, as opposed to the cells grown in SLF alone (FDC-P1(SLF)). Downregulation of surface protein was also seen in FDC-P1 cells grown in GM-CSF or IL-3 compared with cells grown in SLF. Conversely, proliferation assays suggested that the GM-CSF and IL-3 receptors were not functionally downregulated by SLF, since FDC-P1(SLF) cells were able to proliferate just as well in GM-CSF or IL-3 as the cells originally grown in the latter factors. The differential

proliferative response of FDC-P1 cells to soluble SLF may be a consequence of the level of c-kit expressed by these cells.

Elevated receptor levels have been implicated in carcinogenesis. Overexpression of the receptor tyrosine kinase encoded by the *Her2/neu* proto-oncogene has been shown to be a prognostic indicator in a subset of breast and ovarian cancers. Similarly, Ashman *et al.*, (1988) demonstrated that high levels of the c-Kit receptor in a sub-group of acute myeloid leukaemic (AML) patients at presentation also correlated with poor prognosis. The remainder of this study therefore focussed on the potential role of the wild type c-Kit receptor in transformation, with respect to c-Kit receptor levels and their effect on factor dependence.

Ectopic expression of murine c-Kit in NIH/3T3 cells was achieved by infection with the defective retroviral vector, pZenneo, containing c-kit cDNA. Overexpression of the receptor demonstrated that the pool population of infectants, NIH(mukit), grew in an anchorage independent, though factor-dependent manner in semi-solid agar, with a plating efficiency of 11% in 200 ng/ml of murine SLF. In the absence of exogenous SLF colonies appeared at a plating efficiency of 1%, possibly due to autocrine production of SLF by NIH/3T3 cells. Attempts to block endogenously produced SLF from binding to surface c-Kit, using the antagonistic anti-c-Kit monoclonal antibody, ACK2, or by neutralising SLF production with an anti-SLF antiserum revealed that the colonies were resistant to inhibition, implying that an intracellular interaction was occurring between c-Kit and SLF. The cells giving rise to these colonies expressed functional c-Kit receptors, demonstrated by their ability to reproduce SLF-dependent anchorage independent colonies upon replating in semi-solid agar. Analysis of the transformation potential of 24 clones spanning a 16.8 fold range of c-kit mRNA expression revealed a correlation between c-kit expression and anchorage-independence in the presence of 100 ng/ml SLF (R = 0.53; p<0.01). Cells expressing low levels of c-kit mRNA were mostly unable to produce anchorage independent colonies, in contrast to clones expressing medium to high levels of c-kit mRNA relative to the pool of NIH(mukit) infectants. In the absence of exogenously added SLF only two clones, which also expressed high levels of c-kit, demonstrated significant anchorage independent

colony production. An increase in murine c-kit expression in early passage (ep) NIH/3T3 cells also resulted in enhanced transformation and tumourigenicity.

Similar studies were performed with the human c-Kit receptor and several of its natural occurring isoforms. One pair of isoforms differ in the deletion/insertion of 12 base pairs (12-/12+), encoding the amino acids Gly-Asn-Asn-Lys (GNNK), located in the extracellular domain adjacent to the transmembrane domain as a result of mRNA alternative splicing. A second set of mRNA splice variants exist, resulting in c-Kit isoforms which differ in the deletion/insertion of a serine residue (S⁻/S⁺), at position 715 located within the interkinase domain. Four c-kit cDNAs encoding the following isoforms were generated: Kit(GNNK+S+), Kit(GNNK-S+), Kit(GNNK+S-), Kit(GNNK-S-) and cloned into the defective retroviral vector, pRUFMC1neo. Infection of epNIH/3T3 cells with these constructs and subsequent analysis of the ability of the c-Kit isoforms, expressed at comparable levels, to transform these cells, revealed discernible differences in their transforming potentials. c-Kit(GNNK-S+) was the most potent able to produce focus-formation, anchorage independent growth and induce tumours in nude mice. c-Kit(GNNK+S+)displayed the ability to produce focus-formation and anchorage independent growth, while c-Kit(GNNK+S-) was only able to induce focus-formation. Unfortunately, c-Kit(GNNK-S-) protein expression was not detected and as a result its transforming potential was not analysed. Analysis of cells expressing increasing levels of the isoforms demonstrated that focus-formation increased with an increase in c-Kit expression in a factor-dependent manner. epNIH/3T3 cells expressing c-Kit(GNNK-S+) at all levels and cells expressing c-Kit(GNNK+S-/+) at high levels were also able to induce focus-formation in the absence of exogenously added human SLF. In contrast to the focus-formation results cells expressing increasing levels of the human c-Kit isoforms demonstrated that, surprisingly, as the level of c-Kit increased, the number of anchorage independent colonies decreased in the presence and absence of human SLF. The latter was also demonstrated in an independent system in which the c-kit(GNNK+S+) cDNA was cloned in a mammalian expression vector pRSV009/A+. This vector encodes a dihydrofolate reductase gene, allowing sequential amplification of the linked c-kit gene upon increasing concentrations of methotrexate selection in NIH/3T3 cells. It appeared that a 'window' of c-Kit receptor level expression was required for maximal induction of transformation.

Constructs encoding the c-Kit isoforms were also introduced into murine factor-dependent cell lines. Cells expressing comparable levels of the c-Kit receptor were analysed for their responsiveness to SLF, and the ability of a range of monoclonal antibodies to c-Kit, to block SLF-driven proliferation.

CONTENTS

Δ.	hst	ro	ct
/-1	1251	10	V Z

Statement

Acknowledgements

Abbreviations

Conference Presentations and Publications

CHAPTER 1: INTRODUCTION

- 1.1: The Capture of proto-oncogenes by Retroviruses
- 1.1.1: The discovery of the c-kit proto-oncogene
- 1. 2: Growth Factor Receptor Tyrosine Kinases
- 1.3: Alternative splice variants of c-kit
- 1.4: Association of c-kit with the W locus
- 1.5: The ligand to the c-Kit receptor: The Link between W and Sl mutant mice
- 1.5.1: Isolation and Characterisation of *Steel* factor (SLF)
- 1.5.2: SI Mutant Mice
- 1.5.3: Differential roles of membrane-bound and soluble SLF
- 1.6: c-Kit/SLF involvement in Haemopoiesis
- 1.7: Biochemical analysis of the c-Kit receptor
- 1.7.1: Ligand Binding Domain
- 1.7.2: Dimerization
- 1.7.3: Signalling
- 1.7.4: Downmodulation of c-Kit expression/activation
- 1.7.5: Soluble c-Kit Receptor
- 1.8: Mechanisms inducing signalling diversity by the RTK
- 1.8.1: Heterodimerization
- 1.8.2: Receptor levels
- 1.9: Transformation induced by RTKs
- 1.9.1: The assays used to demonstrate transformation
- 1.9.2: Modes of Transformation by Growth Factor RTK

- 1.9.3: Transforming potential of the c-kit gene
- 1.9.3.1: Genetic alterations that activate the c-Kit receptor
- 1.9.3.2: Autocrine transformation
- 1.9.3.3: Overexpression of RTK
- 1.9.3.4: c-Kit expression in leukaemogenesis
- 1.10: AIM

CHAPTER 2: MATERIALS AND METHODS

- 2.1: TISSUE CULTURE
- 2.1.1: Media
- 2.1.2: Cytokines
- 2.1.3: Cell Lines and Maintainence
- 2.1.4: Cryopreservation of Cells
- 2.1.5: Thawing Cryopreserved Cells
- 2.2: IMMUNOASSAYS
- 2.2.1: Antibody Details
- 2.2.2: Indirect Immunofluorescence Assay
- 2.2.3: Fluorescence activated cell sorting
- 2.2.4: Quantitation of cell surface human c-Kit
- 2.2.5: Alkaline phosphatase anti-alkaline phosphatase (APAAP) technique
- 2.2.6: Immune rosetting
- (a) Purification of red blood cells (RBC) from whole blood
- (b) Haemagglutination Assay
- (c) Screening of transfectants via immune rosetting
- 2.3: PROLIFERATION ASSAYS
- 2.3.1: ³H-thymidine incorporation assays
- 2.3.2: FDC-P1 co-cultures on fibroblast "feeder" layers
- 2.3.3: Cell cycle analysis

- 2.4: DNA MANIPULATIONS
- 2.4.1: Restriction Endonuclease Digestion
- 2.4.2: Analytical and preparative separation of DNA fragments
- 2.4.3 Purification of DNA from agarose or solution
- (a) GENECLEAN®
- (b) Magic Polymerase Chain reaction (PCR) Preps DNA Purification System
- (c) β-Agarase 1 Treatment
- (d) Phenol extraction
- 2.4.4: Size determination of DNA fragments
- 2.4.5: Quantitation of DNA
- 2.4.6: End-filling DNA fragments
- 2.4.7: Dephosphorylation of DNA
- 2.4.8: Kinasing
- 2.4.9: Ligation
- 2.4.10: Production of competent bacterial cells
- (a) Calcium chloride competent cells
- (b) Electrocompetent cells
- 2.4.11: Transformation of CaCl₂ competent *E.coli*
- 2.4.12: Transformation of Electrocompetent E.coli
- 2.4.13: Small scale plasmid preparations
- 2.4.14: Midiprep DNA method
- 2.4.15: Large scale plasmid preparation
- 2.5: POLYMERASE CHAIN REACTION (PCR)
- 2.5.1: Purification of oligonucleotide primers
- 2.5.2: Oligonucleotide Primers
- 2.6: SEQUENCING
- 2.6.1: Dideoxy Sequencing of DNA
- 2.6.2: Sequencing Gel

- 2.7: PREPARATION AND ANALYSIS OF mRNA
- 2.7.1: Preparation of poly A+ mRNA
- 2.7.2: Probes
- 2.7.3: Random oligonucleotide priming
- 2.7.5: Northern Blot Transfer
- 2.8: INTRODUCTION OF c-kit cDNA INTO EUKARYOTIC CELLS
- 2.8.1: (a) cDNAs and expression vectors
- 2.8.1: (b) Production of c-kit cDNA variants using PCR site-directed mutagenesis
- 2.8.2: Transfection of NIH/3T3 cells via the Calcium Phosphate Technique
- 2.8.3: Transfection via calcium phosphate into ψ2 cells
- 2.8.4: Retroviral infection of fibroblast cell lines
- 2.8.5: Retroviral infection of suspension cells
- 2.9: TRANSFORMATION ASSAYS
- 2.9.1: Low serum assay
- 2.9.2: Foci assay
- 2.9.3: Anchorage Independence Assay
- 2.9.4: Injection of nude mice

CHAPTER 3: Responses of the murine myeloid cell line FDC-P1 to soluble and membrane-bound forms of *Steel* factor (SLF)

- 3.1: INTRODUCTION
 - RESULTS
- 3.2: Summary of initial studies demonstrating GM-CSF-independent but contact-dependent growth of FDC-P1 cells on +/+ fibroblasts.
- 3.3: FDC-P1 responsiveness to soluble SLF.
- 3.4: SLF increases the proliferation of FDC-P1 cells in synergy with GM-CSF or IL-3
- 3.5: Downregulation of c-kit by GM-CSF and IL-3
- 3.6: DISCUSSION

CHAPTER 4: The transforming potential of the murine c-kit proto-oncogene.

- 4.1: INTRODUCTION
 - RESULTS
- 4.2: Overexpression of murine c-kit causes transformation of NIH/3T3 fibroblast cells.
- 4.3: Does transformation occur in the absence of endogenous SLF?
- 4.4: Analysis of clones able to grow in the absence of exogenously added SLF.
- 4.5: What level of c-Kit expression is required for transformation?
- 4.6: Analysis of levels of SLF mRNA produced by the NIH(mukit) sorted and plucked clones
- 4.7: Spontaneous transformants
- 4.8: Infection of a new early passage NIH/3T3 cell line
- 4.9: Tumourigenicity in nude mice
- 4.10: DISCUSSION

CHAPTER 5: The transforming potential of the natural occurring isoforms of the human c-Kit receptor tyrosine kinase.

- 5.1: INTRODUCTION
 - RESULTS
- 5.2: Obtaining NIH/3T3 cells expressing increasing levels of c-Kit surface protein by methotrexate selection
- 5.3: Production of cDNAs encoding the GNNK+/- and S+/- c-Kit isoforms
- 5.4: Expression of the c-Kit isoforms in the early passage NIH/3T3 cells
- 5.5: Transformation of epNIH/3T3 cells by the c-Kit isoforms
- 5.6: Tumourigenicity in *nude* mice
- 5.7: Comparative analysis of the levels of c-*kit* expression in NIH(mu*kit*) and epNIH(GNNK+/-S+/-) cells
- 5.8: DISCUSSION

CHAPTER 6: Responsiveness of factor-dependent cell lines expressing the human c-Kit isoforms to soluble SLF.

6.1: INTRODUCTION

RESULTS

- 6.2: Introduction of the c-KIT isoforms into the factor-dependent cell line
- 6.3: Analysis of the responsiveness of the FDC-P1 cells expressing the different c-Kit isoforms to SLF
- 6.4: The effect of anti-c-Kit mAb on the binding of hSLF and vice versa
- 6.5: The ability of anti-c-Kit antibodies to block SLF-dependent proliferation of FDC-P1 cells expressing the human c-Kit isoforms.

6.6: DISCUSSION

CHAPTER 7: GENERAL DISCUSSION

BIBLIOGRAPHY

APPENDIX

Appendix 1: Reagents

A1.1: Reagents for APAAP technique

A1.2: Reagents for the Immune rosetting technique

A1.4: Bacterial plates and media

A1.5: Sequencing Reagents

A1.6: RNase-free treatment of reagents and apparti

A1.7: mRNA analysis

Appendix 2: Publication

Responses of the murine myeloid cell line FDC-P1 to soluble and membrane-bound forms of steel factor (SLF)